PREFACE

CONTENTS

1. INTRODUCTION

(SRR
H LW -

Background.

Forth at OVRO.

Forth Develapment History.
Scope of this Manual.

2. FORTH OVERVIEW

NRNNNNNRND

NONOCU S WY =

Words and the Dictionary.

The Stack.

Block Storage.

Defining new Words.

Storing and retrieving data in memory.
Controlling Forth —— The Text Interpreter.
Typewriter output.

Conditional Branches.

The Editor.

3. THE STRUCTURE OF FORTH

w
[

wwo
wn~

VENBELWY

(NEARANA)

== JgB~N>Uh

WWWLUWWUMNWW=90

[y

General Remarks.
the Stacks.
The Dictionary.

.3.1 Branch Structure.

.3.2 Header Section.

.3.3 Code and Parameter Sections.
.3.4 Expanding and Contracting the Dictionary.

Program Control —— The Address Interpreter.
The Text Interpreter.

Error Messages —— ABORT.

Block Input/Output.

Forth Assemblers.

Compilation of : Words.

Defining Words —- ; CODE.

Branches in : Words.

.11.1 An Unconditional Branch.
.11.2 Conditional Branches.

Interfacing with an Operating System.

L1201 To Stand Alone or Not to Stand Alone.
.12. 2 0S Interfacing Techniques.
Multiprogramming and Real-Time Applications.
.13, 1 Priority Scheduling.

.13. 2 Round—Raobin Scheduling.

.13. 3 Scheduling through Operating Systems.

I UL
NhWWe=

NI’JI‘JFIJI‘JNFJ

n
PL1d
NIl

2-14

3-1

3-2

3-4

3-4

3-8

3-13
3-16
3-17
3-22
3-24
3-25
3-26
3-28
3-30
3-33
3-33
3-33
3-34
3-36
3-38
3-39
3-39
3-42
3-42



4. FORTH VOCABULARIES

Notation.
Standard Voc

shab
PN~

Charac
The Ex
Deferr
Double
1

paass

ppss
(U AN b

il

e
»
o

PP APP AEaRa
n
rormUOY AUy

PP SRR prpaa

2
3
4
9
6
7
8
e
.1
.2

Introduction.

abulary List.

Special vocabularies.
.4, 1 Standard Editor.

ter Strings.

tended Editor.

ed Operations.
Precision Math.

Data Types.

Basic Operations.
Caoamparison Operations.
Shift Operations.

Multiplication, Division,

and Normalization
Mixed-mode Operations.
Number ogutput.
Functions.

System.
Standard File System Vocabulary.

File Maintenance Vocabulary.

APPENDICES

A. PDP-11 Implementation.

B. PDP-10 Implementation.

C. SDS-920 Implementation.

D. QED - Quick Editor.

E. Forth Bibliography.

4-1

4-1
4-1

4-3

4-22
4-22
4-23
4-25
4-26
4-27
3-27
4-28
4-28
4-29

4-30
4-30
4-31
4-31
4--32
4-33
4-34



PREFACE

This is the second edition of the Caltech—0OVRO Forth
Manual. It reflects numerous changes that have occurred in
the 3 1/2 years since the original publication. Chief among
these bhas been ¢the shift at OVRO toward diverse Forth
applications based on PDP-11 systems, many running DEC
operating systems.

Both the PDP—-11 and PDP-10 systems have heen revised to
take advantage of a Caltech-developed innovation in the
interpreter system. Substantial ¢time and core savings
result from using an address interpreter requiring only one
machine instruction. The PDP-11 system has been further
refined so that only two memory words are required for
header information in Forth dictionary entries.

Another development reflected in this Manual 1is ¢the
emergence of a Forth standard vocabulary. Although the
AST. 01 and AST. 01X documents adopted by the Astronomy Forth

Users Group in the U. S are not fully mature language
specifications, they de provide uvseful guidelines +for new
Forth systems. ‘They help to reduce the chronic problem of

Forth installations at various institutions ¢that all have
originated #from mainstream Forth, but which have diverged
under the assault of numerous clever, but neon-communicating
programmers.

I would like to thank H. W. Hammond and D. H.
Rogstad who have been responsible for many ' of the
developments to the PDP-11 Forth at Caltech. I thank D.
Dewey, H. W. Hammond, R. B. Leighton, and D. H.

Rogstad for reviewing this manuscript. Work at the Owens
Valley Radio Observatory is supported in part by the
National Science Foundation. This work was also supported
in part by the Caltech Jet Propulsion Laboratory.

Martin S. Ewing
3 June 1978

This Manual was prepared on the Caltech PDP-10 wusing
the TECO and RUNOFF utilities and a Printronix printer via
the VLBI GT44 computer. It is available on machine readable
media.



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND.

Rapid acceptance of minicomputers for interactive data
acquisition and system control has created a need for
matching software systems. High 1level languages like
Fortran., Algol, or PL/1 are not normally effective in
environments with limited memory and peripheral devices.
Even when these languages can be used, they are designed for
batch processing and usually lack features needed for direct
interaction with the operator. By default many programmers
have been forced to wuse assembly language. This is
efficient for small programs, but there can be great
practical difficulties in writing and maintaining larger
assembly programs.

The Forth system meets the problem described above; it
provides a flexible programming system for minicomputers of
moderate size. A machine with BK 16-bit words and at least
one mass storage device can make effective use of Forth.
Most new laboratory computers will have at least this size;
programming difficulties with smaller machines increasingly
outweigh the falling cost of memory and peripherals.

Forth also has important capabilities for the designer
of microcomputer systems. Microcomputer development systems
typically have some sort of floppy disk storage and so may

TUN the full, minicomputer style Forth. Systems
incorporating microcomputers, however, often have minimal
peripheral devices. Forth techniques are useful in these

cases as a means of writing memory—efficient code and of
implementing conversational interaction with the user.



INTRODUCTION Page 1-2

A list of the salient features of Forth will include
the following:

1. Incremental compilation and assembly.,
2. Push—down stack for parameters and data, natural
re—entrancy. '

3. Simple language extensibility,

4. On-line editing, rapid compilation,

S. Structured programming encouraged,

6. Typewriter driven system, minimal prompting.,

7. Easy trade—off between compact interpretive code
and fast machine—language code, and

8. Machine independence for high level programs.

i.2 FORTH AT OVRO.

The Forth system has been adopted for numerous
applications by the California Institute of Technology Owens
VYalley Radio Observatory. These include control of the 3
OVRO telescope systems: the 27 m interferometer, the 40 m

telescope, and the new 10 m millimeter telescopes. These
systems requitre Forth’s capabilities for real-time control
of antenna servos, data acquisition, user interactive

controcl, and easy proagram maintenance.

Other OVRO applications include more specialized
instruments: the Caltech—JPL Mark II VLBI Processor, and a
1024 channel autocorrelation spectrometer. In the former
case a heavy real—-time control requirement was combined with
the need for geometric model calculations of very high (64
bit) accuracy. In all cases, Forth has been used as an
intimate and highly flexible hardware debugging tool.

Forth systems at Caltech have been implemented on the
PDP-11, PDP-10, and SDS-920 computers. A wide variety of
other computers has been used at other institutions; these
include the Nova, HP 2100, Varian. and Modcomp machines.



INTRODUCTION Page 1-3

1.3 FORTH DEVELOPMENT HISTORY.

The guiding spirit in the development of Forth has been
C. H. Moore, who with E. R. Rather constructed the first
Forth systems at the NMational Radio Astronomy Observatory.
Since that time (ca. 1973), they and others have continuved
as a private company (Farth, Inc., Manhattan Beach, Ca.) ¢to
develop the Forth system for a wide variety of applications,
both scientific and commercial. The name "“Forth" is claimed
as a registered trademark by Forth, Inc.

Many other individuals and organizations have adapted
Forth to their requirements. Most non—commercial wuser
activity is still in the area of astronomy; astronomy users
groups have been established both in Europe# and the U S. ##

Work by the U . S vsers group has led to the adoption
of a Forth language standard, AST-01, and an extension,
AST-01X. The Caltech-OVRO Forth systems wvary from that
standard to some degree. In cases where there is
disagreement, both wusages will be given. It is the
intention of the Caltech~OVRO group gradually to maove to the
standard.

NOTE
AST-01 and AST-01X are
standards adopted only by the
U. 8. Forth Astronomy Users

Graup and have na relationship
to products offered by Forth,
Inc.

s (4t aar cat9p e S somen e

#Contact Dr. Peter W. Hill, Observatory, University of St.
Andrew, Fife, U K.

##Contact Dr. Robert W. Milkey, Kitt Pesk National
Observatory. Tucson, Arizona. :



INTRODUCTION Page 1-4

1.4 SCOPE OF THIS MANUAL.

Chapter 2 is intended as an introduction for the new
user of Forth. That Chapter and the vocabulary lists of
Chapter 4 should provide you with enough information ¢to
begin programming at a Forth terminal.

Chapter 3 provides more detailed descriptions of the
internal mechanisms of Forth; the presentation assumes some
practical knowledge of Forth. This Chapter should help you
if you develop or maintain Forth systems.

Chapter 4 contains the "standard" Forth vocabularies,
the one vuvsed in the Caltech—-OVRO Forth, AST~-01, and AST-01X.
The appendices give the implementation details for various
Caltech systems. A Bibliography sets out the (rather
sparse) publications available.



CHAPTER 2

FORTH OVERVIEW

2.1 WORDS AND THE DICTIONARY.

The central element of the Forth system is the "word".
A Forth waord is 1like a subroutine or procedure in other
languages; executing, or calling, a word causes a definite
sequence of actions to be performed. The reason for calling
a Forth routine a "word” is that it nearly always has a name
that 1is known to the keyboard interpreter: it can be
executed simply by typing its name. Thus Forth words are
. equivalent ¢to words of text (English or nonsense) that you
can type on the keyboard.

NOTE

You must be careful to
distinguish a "Forth ward",
which is 1like a subroutine,
from a "memory word"”, which is
a unit of storage (e.g. 16
bits).

Words are defined in the dictionary, which, 1like
English dictionaries. is a table of word—names and their
definitions. Two types of definitions eccur in the Forth
dictionary. Words may be defined in terms of other words
that are defined earlier, or words may be defined by a
sequence of machine language instructions. Ultimately, of
course, all Forth words must resolve into machine
instructions.



FORTH OVERVIEW Page 2-2

As a Forth user, you may type in words (more precisely,
word names) to your keyboard terminal. Forth permits a very
general and free—form input. With few exceptions, any
combination of letters, numbers, or other characters can be
used to name a word. One character, normally a “blank"“, is
reserved to delimit words. A few other characters are
reserved +¢to let you correct errors in typing. (For
Caltech—-0OVRO PDP-10/11 systems "del" or "rubout" lets you
retract the last character you typed, and "CTRL-U" or "AU”»
cancels the entire current line you are typing.)

One rule for recognizing Forth word names may be
unfamiliar. Words are distinguished on the basis of their
first N characters and their ¢total 1length. (In current
Caltech—OVRO systems N=4.) N is chosen as a tradeoff between
memory savings and freedom in choosing names. Examples of
recognizable and distinguishable Forth word names are
presented in Fig. 2.1.

1A?@XX. : SOME-ARE-LONG

X # {recognizable words)
FOURTEEN SUM

ABCDEFG (equivalent —— not distinguishable)

ABCDXXX

ABCDEFG (not equivalent —— distinguishable)

ABCDEFGH

Fig. 2.1 Récognition and Distinction of Forth words.

I# you type in a "word" that can’t be found in the

dictionary, Forth sees if the "word"” makes sense as a
number. If so, the "word" is converted to binary and pushed
on the stack (explained below). If a "word"” you type is not

in the dictionary and is not a number, Forth issues its
standard error message —— a question mark.



FORTH OVERVIEW : Page 2-3

2.2 THE STACK.

Numbers and other data are normally handled through the
Forth "stack". This is a so—-called "push—down" stack. Such
a stack is a way to store data such that the most recently
stored items are immediately accessible. New data "pushes

down" older items. When an item is no longer rTequired, it
is "popped"” off the top of the stack, making older items
available again. {(The push—down stack is a last-in

first—out queue.)

The purpose of the stack is to provide you with an
efficient means of handling data and intermediate results in
the course of a calculation. (Just as do the HP "RPN"
calculators -- HP-25, HP-67, etc.) Labelled variables to
hold intermediate data are not required in most cases.
Since the space wused by the stack is shared by nearly all
Forth words, there is a ctonsiderable saving in memory.

Most Forth words operate on data you supply on ¢the
stack. pap their input data, and push the results onto the
stack. For simplicity., the Forth convention is that you
must ¢type the arguments of a function (Forth word) before
you type the word itself; i.e. you must give commands in
“reverse Polish notation". An example

(1 +2 ) # (3 + 4)
may be written

i1 2+34+ %

2.3 BLOCK STORAGE.

In most practical applications Forth requires an
auxiliary mass—storage device. IBM-style magnetic tape,
DECtape, cassette tapes, and floppy disks are all usable for
this purpose, although a high—speed disk unit is preferable.
In any case, a random—access technique is required. #
#IBM-compatible magnetic tape is conventionally wused for
sequential, not random access. Random access (with update
in place) can be achieved by using preformatted tape with
long inter—-record gaps.



FORTH OVERVIEW Page 2-4

The storage device 1is divided into fixed-length
"hlocks", normally 512 words = 1024 characters long. These
blocks may be used as a sort of "virtual memory", i.e. you

may store data in blocks when you don’t have enough room in
main memory. Blocks are suitable for holding large amounts
of experimental data, for example. They are also used for
the Forth system itsel#f: the Forth binary obgject program
and the Forth source (text) for loading the standard system
and for users’ applications.

Forth handles its transactions with the block storage
device in a simple and device-independent way. Blocks are
simply numbered sequentially from O ¢to some high number.
Two buffers in main memory hold the last two blocks you have
used. In order to retrieve a new block, you type BLOCK,
which takes the number you‘ve put on the top of the stack as
a block number, reads the block into a buffer, and returns
the address of that buffer on top of the stack.

I+ you want to change the data in a block, you type
UPDATE after BLOCK. Then, before the buffer holding your
block is released for a new BLOCK command. it will be
rewritten to block storage. You can type FLUSH to rewrite
updated blocks explicitly.

2.4 DEFINING NEW WORDS.

The "standard" Forth system has around 200 words
defined in its dictionary. These provide the functions most
commonly need in useful application programs. "Writing" s
Forth program actually consists of defining new Forth words.
which draw on the o0ld vocabulary., and which in turn may be
vsed to define even more complex applications.

Forth provides a number of ways of defining new words.
The 1language even gives you ways of defining words that
define words. (It is an extensible language.)

The word CODE permits you to define words whose actions
are expressed directly in machine~ or assembly-language
(terms wused synonymously). CODE words are clearly
machine—dependent, but they give you the means ¢to get

B e e

##Throughout the Manual Forth words and typed input to Forth
will be underlined for clarity.



FORTH OVERVIEW Page 2-5

maximum execution speed. If the tightest 1loops of your
program  are in CODE words, you may find that your Forth
program is as fast as a pure assembler program.

A sample CODE definition follows:
CODE # 0 S )+ MOV, S8 ) O ADD, NEXT,

o e chmme  eeSeacs  wiwe W OWn  Oweete

Here the Forth word + is defined as three PDP-11

instructions. Their action is to sum the top two stack
values and leave the Tesult instead. For further
information consult Section 3.8 and the assembler

description of your particular machine.

With the word ; (colon) you can define Forth words in
terms of other Forth words. Colon definitions are fairly
machine independent. They do not have the full speed of a
CODE ward, but they are much easier to write. Colon wards
often use less memory than CODE words.

Each function invoked (i.e. word referenced) in a
definition takes one memory word (one byte in some
microcomputer versions). This memory word holds a pointer
(address) to the Forth word that is to be invoked. The
caoamputer aperates in an interpretive mode while a ;| word is
being executed: a sequence of pointers controls the
computer. The interpreter overhead is quite tolerable in
most cases —-- ranging from 2 to B microseconds in the
Caltech-0VRO PDP-11/40 version. These figures are
comparable ¢to and often somewhat better than equivalent
subroutine calls in assembler language.

This is an example of a Forth ; definition:

Can  fue  Cne—————— e — ——— -

Here the word _ (period) is defined as the sequence
CONVERT, COUNT, TYPE, where these words are assumed present
in the dictionary when you type in the example. Semicolon
(i) is a word with the special meaning: "and
definition".

There are other, more specialized, ways to define Forth
words. Numeric constants can be defined with the word
CONSTANT. For example.

31415 CDNSfANT PI-TIMES—-10000



FORTH DVERVIEW Page 2-6

defines the Forth word PI-TIMES-10000. Whenever gyou type
this word, the constant 31415 will be pushed on the stack.

Often you find that it is awkward to have all your data
on the stack at once. You can store data in single named
memory words. The Forth word VARIABLE (INTEGER on older
systems) lets you reserve and name such locations. Type

13 VARIABLE @

to define the Forth word Q. When you type @, the address of
the storage location corresponding ¢to @ is pushed on the
stack. The number you typed (13) sets the initial contents
of the storage location.

If you need to reserve a multiword block of memory +for
data, you can use ARRAY:

25 ARRAY DATA

This example reserves 25 memory words named "DATA". When
you type “DATA", you get back the address of the first
memory word. You can add an index to the first address if

you want the address of a later word.
Very often the only way you want to access data in an
array is through an index, e.g. the i—th word in an array.

The preferred way to define such an array is with the (J)DIM
word: .

16 ()DIM FOO

Like ARRAY, ()DIM reserves the indicated number of memory

words under the name FOO. When you wish to access any of
the data in FOO, however, you must supply an index. For
example,

3 FOO

Here you are specifying the 3rd item in array FOO. What you
get back is the memory address of the 3rd word.

()DIM is better than ARRAY because yau don‘t have ¢tao
worry about the addressing scheme of your computer or about
the precision of your data. {In some machines, e.g.
PDP-11, ad jacent fullwords have addresses differing by 2
because they use byte addressing.)




FORTH OVERVIEW Page 2-7

2.5 STORING AND RETRIEVING DATA IN MEMORY.

The word @ is provided so you can “read out” data +from
any address. You type

<address> @
where <address> is any valid memory address to retrieve the
data stored there. {The data replaces <addressX on the
stack. ) Thus type
Qe
to get the integer in variable @ (initially 13).

To "write" data from the stack into a 1location in
memory you type

Lvalue> <address> !

Here <value> 1is stored in location {address>. More
concretely,

148 @ !
stores a new value (148) in variable @. (Note that both
“148" and Q push numbers on the stack. The "store" word [!]

stores the data away and then pops both input data from the
stack. )

Another little program might run

1 VARIABLE ABC

ABC @ MINUS ABC !
In the first line ABC is defined with initial value 1. In
the second, the address of the integer (ABC) is placed on
the stack, the value at that address is fetched (@), ¢the
value is negated (MINUS), the address is again placed on the
stack, (ABC), and the negated value is stored back in the
integer location (!). This is a slow but feasible way to
negate an integer.



FORTH OVERVIEW Page 2-8

2.6 CONTROLLING FODRTH —— THE TEXT INTERPRETER.

You normally control a Forth computer from your
terminal. The system 1is idle and listening for anything
from the keyboard until you type in a complete line. When
Forth gets a full line (ended with "return"), it attempts to
execute the words (or numbers) you have typed.

Many times you will want to avoid typing long.,
standard: or repetitive sequences of words. For example.
once you have debugged a new word., you don‘t want to have to
type it in again. "The Forth text editor (see below) lets
you store away the program (in source text form) in a block.
To define the word, or collection of words, in the future
all you need to do is type

<block#> LOAD

LOAD is a word that temporarily redirects Forth’s text
interpreter away from your terminal to the block number you
specify. Almost any user commands (Forth words) you could
type directly can be executed from a block via LOAD.

Each block to be loaded must end with the special word
i8S which restores the text interpreter to the source
previously in effect. Note that LOADs may be nested: a
block to be loaded may contain LOADs itself.

A block might contain the following text:

22+ .

13 LOAD

i8S
If you were to load this block, Forth’s response would be to
convert and push "2" on the stack (twice), add those
numbers, and type the result (4) on the typewriter. After
this, block number 13 is loaded (with whatever commands are
contained there). Finally the ;8§ returns control to the

calling program (e. g. to the typewriter).



FORTH OVERVIEW Page 2-9

2.7 TYPEWRITER OUTPUT.

Output from Forth normally comes ¢to your terminal

(typewriter or CRT). A few basic words will suffice for
many applications. You can type a number from the stack
with the word _ (periocd). Question mark ? uses an address

on the stack and types the number that lies at that address.

The base wused for numeric input and ouvtput is
determined by the variable BASE. BASE may have any value
from 2 through 10 (decimal). Some implementations allow

base 16 as well. The special words OCTAL and DECIMAL let
you set BASE automatically. The default number base should
be decimal, but you should check this on your system. :

For typing arbitrary strings of data you may use TYPE.
TYPE takes two numbers on the stack: :

<pointer> <{character count> TYPE

The nature of the pointer depends on +the system. In ¢the
PDP-11, it is simply a byte address that indicates the first
character to be typed. For the PDP—-10, it is a byte-pointer
with the same effect. Beginning with the specified
character, TYPE puts out sequential characters until ¢the
count is satisfied.

Terminal input and output save space by using the same
buffer in main memory. To avoid problems you should use
only one output word on a command line; you should place an
output word at the end of the command. For example

123 . 456 .
typed in as one line will give you only "i23" on your
terminal. This 1is because "456 ." is wiped out when "123"

is typed.

2.8 CONDITIONAL BRANCHES.

Forth gives you several means to direct the flaow of
execution. The methods described here work only within .
definitionsi oather similar words are available in the Forth
assemblers,



FORTH OVERVIEW Page 2-10

The simplest conditional branch 1is specified by <the
words BEGIN and END. Consider the following example:

. EXAMPLE 1 BEGIN 1 — DUP END DROP ;
BEGIN signals the beginning of a loop. When the program
gets to the END (during execution of EXAMPLE), control will
return to the BEGIN if and only if the current stack value
is zero. The wvalue is popped after testing Jjust as most
Forth words pop their input arguments.

This is what happens when you execute EXAMPLE: The
value 1 is pushed on the stack and the program enters the
loop. Again, 1 is pushed; then subtracted from 1 to leave
0. The O value is duplicated (DUP) and tested by END; then
the duplicated value is popped from the stack. Since END

found a O, control returns to BEGIN; 1 is again subtracted,
leaving -1. END finds -1 and control passes through to DROP

where the remaining —1 value is popped. Control returns to
the calling word, e.g. to the interpreter if you  were
typing.

The BEGIN — END construction is wuseful +for program
loops where the loop termination condition can conveniently
be expressed by leaving a zero or non—zevro value on ¢the
stack.

A looping facility more like the Fortran DO-LOOP is
provided ¢through the words DO, LOOP, and +LOCOP. Another
example:

When you execute EX2:, the constants 5 and O are pushed on
the stack. DO takes these numbers to be the limit and
initial index for the loop., respectively. The 1imit and
index disappear from the stack and are placed on a hidden
internal stack (the return stack)*. Control passes into the
loop. The word I retrieves the current loop index value and
pushes it on the stack. The value is typed (and poapped) by
— LOOP increments the index value by 1, then tests it
agains the limit. If the new index value is still less than
the 1limit, control returns to the DO (i.e. to the point
Just after DO). Otherwise the limit and index are popped
#Thus data calculated outside the DO - LOOP range can be
passed into the range without interfering with loop indices.



FORTH OVERVIEW ' Page 2-11

off the internal stack and control passes out of the loop.
Thus when you execute EX2, you get
012234

typed on your terminal.

NOTE

The index of a DO stops one
short of the limit. The limit
gives the number of times the
loop is executed i# the
initial index is O. The rTange
of a loop is always executed
at least once.

Words J and K are defined like I to 1let you retrieve
indices in nested DO loops. In the word EX3, defined as

LE!QQQQQQLDQL&QQL;Q;E.&QB.L@_EEQQB&QQ.EL

Ll retrieves the innermost index, J the next outer, and K the

outermost:; CR causes a carriage return. EXJ should give
you the following output. (Again, each index stops one

short of its limit.)

-1 13
013
-1 23
23
-114
014
-1 2 4
024

I# yau need an increment other than +1 in your loop.
you can use +H OOP. Here is an example:

Here again O is the limit and 5 the initial index for the
loap. EX4 proceeds like EX2, except that +L0O0OP takes the



FORTH OVERVIEW Page 2-12

current stack value to be the loop increment. (+LOOP tests
the index in a way that depends on the sign of the
increment. For a positive increment the test is the same as
for LOOP; when the increment is neqative, the loop will run
once with the index equal to the limit. Thus the output of
EX4 is

543210 .)
Variable increments are also possible with +LOOP: whatever

word 1is left on the stack %ben +L00P is executed will be
used for the increment. s

The general conditional branch in Forth will be
familiar to wusers of Algol or PL/1: an IF - THEN - ELSE
construction. Assume that TRUE-CLAUSE and FALSE-CLAUSE are
words that have previously been defined; then define EXS5 as
follows:

. EX5 IF TRUE-CLAUSE ELSE FALSE-CLAUSE THEN i
When you run EXS, 1IF tests <(and pops) the current stack
valuei it it is non-zero, TRUE-CLAUS runs, otherwise
FALSE-CLAUSE runs. In general, control flows as shown in
the following line -

if <valuvue>. eq.0

v
<value> IF <true—code> ELSE <false-—code> THEN

- -

~

s
1)

In some cases you only need ¢to test for a "true”
condition. e.gqg.

. EX&6 IF TRUE-CLAUSE THEN ;i

Here TRUE-CLAUSE is run if and only if the current stack
value is non—zero ("true"). The logical diagram is



FORTH OVERVIEW Page 2-13

if <valued>. eq.0

<value> IF <true—code> THEN

A more realistic example of a program using conditional
branches might look like this:

. FUNCTION DUP 0 < IF MINUS ELSE DROP O THEN DUP DUP # # ;

FUNCTION takes the current stack value (say x) as input and
.returns

0 it x .GE. 0, and

(-x)##3 if x .LT. O. ({Fortran notation)

Let us briefly explain what happens in EUNCTION. The
word £ is a binary function that returns 1 if ¢the
next-to-current stack value is less than the current value;
otherwise it returns O. MINUS replaces the current stack
value with its negative. and # returns the product of ¢the
top two values.

When you executed FUNCTION, the input wvalue (x) |is
duplicated (DUP) and tested against O (0 <). I+ x < 0, £
returns 1, and IF will transfer control to the true-clause
(MINUSG). The current stack value at this time will be x,
since both € and IF will have popped the stack. MINUS then
negates x, and control bypasses the ELSE clause (the
false-clause) and resumes following THEN, The current stack
valuve (-x) is then <cubed (DUP DUP # #), and EFUNCTION is
done.

On the other hand, if x were .GE. O, IF would transfer
to the false-clause (DROP Q). Here x is popped and replaced
with 0. Control then passes over THEN, O is cubed, leaving
O on the stack. Like Fortran and other common languages,
Forth lets you nest BEGIN - ENDs, DO - LOOPs, IF - THENs,
etc., provided that the range of a nested loop or branch
lies strictly within the range of all the branches and loops

that contain it. For example,



FORTH OVERVIEW Page 2-14

... bO ... IF ... IF ... THEN ... ELSE ... THEN ... LOOP
N. L. =1 2 3 3 2 2 1
is a valid ordering. (Note the indication of nesting

levels. ) The following is invalid:

bo ... IFE ... LOOP ... THEN ...

In this case the range if the IF-THEN does not 1lie within
the range of the DO-LDOP.

Unlike Fortran, Forth does not 1let you “GO TO" an
arbitrary location with a statement label (number). In
general, IF is the only way you have to make a forward jump.
The loss is not serious if you take care to "structure" your
programs —— it turns out that most "GO TOs" are unnecessary.

2.9 THE EDITOR.

In preceding sections, the Forth block storage scheme
was introduced. A major use for block storage is to hold
text data, Forth source code for example. The way you can
enter and modify text in Forth blocks is with the Forth text
editor.

In the Caltech—-OVRO versions of Forth, at 1least ¢two
editors are available. The basic editor (EDBIT) is very
compact but gives you everything you need to modify text a
line at a time. The extended editor (XED) includes flexible
string manipulations and lets you search for, insert. or
delete text strings anywhere in a block.

For <the PDP-11 systems containing a8 VT-11 vector
graphics system (the Caltech~JPL VLBI Processor‘s GT44 and
the OVRO 1024-channel autocorrelator’s  G6T40) there 1is a
special editor called QED. This editor uses the refreshed
display to show a block being edited and a cursor within the
block. Flexible cursor controls and text manipulations are
available. (Refer to Appendix D.)

The standard block length +for Forth systems is 512
16-bit words = 1024 8-bit characters. This is
conventionally divided into 16 lines of 64 characters. # (The
#This format only applies to block to be used for text. Any
block may also be used for binary data, in which case you
can choose any format.



FORTH OVERVIEW Page 2-15

44th character of a line ‘is logically just before the #first
character of the next line. )

The variable BLK is used to hold the Forth blaock to be
edited, thus to edit block 35, we type

35 BLK .

If you want to list the entire block 35, you type
35 LIST.

As a side effect LIST sets BLK to equal the specified block.
To list blocks 35 through 40 at once, you type

35 40 SHOW.

To list just one line (say the OSth) of the current
‘block, you type

s L
You can delete the second line by typing

2 D

D deletes the line by moving up all the lines following the
one you delete. The last line (16) should be filled with
blanks.

To enter new text into a block you +first need the
special words " or ( to put a line of text into an internal
buffer. Quote (") enters all text up to the next quote into
the buffer. Left parenthesis (() does the same except that
the text line must be terminated with a right parenthesis
(}). Thus

and

both place "THIS IS A TEXT -STRING" into the buffer. If
needed: blanks are added to the right to make &4 characters.
Note that, like any words, * and ( must have a blank



FORTH OVERVIEW Page 2-146

following in ¢the input. The text string to go into the
buffer begins after this necessary blank. The » or ) that
terminates the ¢text is just a "delimiter"; it needs no
preceding blank.

Once you have got the new text entered in the buffer
with » or (, you may use it to replace (R) an existing line
or to insert (I) following an existing line. To rveplace
line 3 of block 10 with “FOO BAR", you could type

10 BLK ! - FOO BAR™ 3 R.
To insert ‘THIS IS A QUOTE: "’ after line 12 of block

10 you can type
10 BLK ! ¢ THIS 1S A QUOTE: ") 12 1.

(Here you must use the ( — ) construction to enter a string
containing a quote.) I inserts the line following line 12 by
first moving lines 13 through 15 down one. The old line 16
is lost.

After a T or D operation the line that was typed or
deleted is automatically copied into the internal buffer,
ready for a possible R or I. For example

i4 D21
has the effect of moving line 14 to line 3, with lines 4 -
13 moving down one.

After an editing session you should be careful that the
updated blocks are actually written back into block storage.
Forth usually takes care of this correctly, but you still
may want to type FLUSH to make certain. You get rid of the
editor by typing FORGET EDITOR, i.e. the editor’s
dictionary space is reclaimed.



CHAPTER 3

THE STRUCTURE OF FORTH.

This Chapter provides a more thorough descriptian of
the Forth system. The reader is assumed to be familiar with
the preceding Chapters and to have had a significant amount

of. "hands—on” experience with a Forth computer. The
presentation is intended for implementers and systems
programmers, but it should be wuseful ¢to more casual

programmers who want to know how to make the most efficient
use of Forth.

3.1 GENERAL REMARKS.

It is important to stress that Forth is a complete
programming system, not merely a language. In some
versions, Forth provides all the software functions of ¢the
computer on which it is run. This includes preparation of
programs (text editing), compilation (or assembly) of
programs, debugging and input/output operations through
direct—access or typewriter devices. In other versions of
Forth, including several Caltech-OVRO systems, Forth runs as
a jJob or task under a standard operating system. The
operating system provides standard interfaces for 1I1/0,
scheduling, and memory management.

Forth has been designed around certain basic concepts
which serve to distinguish it from other systems. These
include the dictionary. the address interpreter, and the
technique of compilation. Less crucial but still
distinctive features are block I/0, the parameter stack, the
text interpreter, and the assembly technique.



THE STRUCTURE OF FORTH. Page 3-2

Such features do not really define a language. There
is a Forth language. however: one that we can call
“standard" Forth (SF). In this language concrete words are

defined, such as +, BLOCK, and DO. SF may be compared with
other programming languages like Fortran, Basic, or Algol.
SF could in principle be implemented with a compiler like a
Fortran compiler, and run like Fortran in a batch
processor. # But Forth'’s distinctive incremental
compile/debug approach is much more productive and is  well
suited to the way real minicomputers are used.

3.2 THE STACKS.

Modern minicomputers generally have very flexible

addressing methods; these are heavily used in Forth
systems. An important example is the use of push—down
stacks. Most Forth systems use two stacks extensively: a

parameter stack and a return stack.

The parameter stack, often simply called "the stack"”,
is the one most visible to the applications programmer. It
is used as the primary vehicle for input and output data for
Forth  words. Usually data types such as integer, double
precision integer, and floating point are intermixed +freely
on the stack. Context wusvally suffices to distinguish
types.

The push-down stack accounts for the "unnatural”
reverse Polish notation of Forth. That is:. all parameters
must be placed on the stack before they are operated upon.
Thus the algebraic expression

B##2 — 4#A*#C
covld be written in Forth as

BBx 4 A#*® C # —

e e e e e e eee e

The advantages derived from the stack technique include
simplicity in the compiler, easy addressing at execution
time, economy of main storage, and ease of providing
#In fact a card-oriented Forth for the IBM 360 has been
develaped at the NRAO.



THE STRUCTURE OF FORTH. Page 3-3

reentrant code for real-—-time systems. Against such
advantages must be counted the inconvenience, especially for
new Forth programmers, of placing all the arguments before
the operators.

The parameter stack is commonly implemented beginning
near the high end of main memory and growing downward toward
the dictionary, which grows upward (see Fig. 3.1).

i
! user application
H dictionary

H

high limit P i
H H
HE A !
R {
! ~ return stack H
f e e e e e e !
v , !
{ v parameter stack t
HEERY H
~ 1 H
~ i H
memory ~ 0 H
addresses ~ | d
”~ 1 [
t 1
~ 9 H
1
L}
L]
L
[
]

- we wn

...............................

[ ]
]
{ "standard” Forth
H dictionary

...............................

P
“«w we e oo

H
{ Forth object dictionary

on an om am
o= aw oo ==

(kernel)
A Biﬁ;k'8b¥¥é;'é ........... :
1 4 [
€ e o o o s o o ¢ o o o » s 4 o o 8 a 8 8 3 s o 5 o & s o 0 05 ® ]
i block buffer 1 H

low limit e e e e i

Figure 3.1. Memory layout of a typical Forth system.

The “"return stack” is separate from the parameter
stack; it is used primarily for the execution of _-words;
this application is described later in <this Chapter.



THE STRUCTURE OF FORTH. Page 3-4

Various other information may be placed on the return stack.
This stack is normally used to hold indices and limits for
DO loops. Using the return stack for this purpose, the
implementer avoids having the loop information on the
parameter stack where it might lie in the way of data for
other calculations.

In the same vein, the word 2R is defined to take one
word #fraoam the parameter stack and save it on the return
stack. R> has the reverse effect.

3.3 THE DICTIONARY.

The Forth dictionary is the heart of the system. All
programs written in Forth appear as words or collections of
words in the dictionawry. The organization of the dictionary
and the details of dictionary entries differ between various
Forth implementations. In this Section we will principally
describe the Caltech-0OVRO Forth for PDP-11.

3.3.1 Branch Structure.

Forth dictionaries are organized as threaded lists each
of whose elements is the definition of a word. The simplest
list structure would have a single linear thread connecting
the Forth words in the sequence of their definition. Few
Forth systems wse this simple method, since efficiency in
search time and memory space can be gained rather easily.

The dictionary 1list structure developed for the
Caltech—OVRO PDP-11 systems is sketched in Fig. 3.2.



Page 3-5

THE STRUCTURE OF FORTH.

1 ]
| e wv wn e ww . -~ | | w» 0w me w0 we e | o~ |
l I I | D
\ i \ | = |
| »~ |
“ - W we ov ve e “ “ — ee B Yo vu e “ “ m —
A4 I v | | W _
5
J ! { ] ] | 1 f ] | { i - n o
] | w | ] } w | | § n i } | w | i i
| | Ev | | x| Ew | l | Ewv | | x| Eo |
] | m | B 1 =] | 281 =~ | Il B |
i ol ool | = | @) =i nwi |~} mo)
1 | a-~ | I = | aw | =l aw~| | ~ | a-~-|
1 1 % | I | 4 | i ! 4 | i t 4 |
1 |
I i
4
_ -y e wn e oo . . ne _ - - e oo oe .- o ~
! i ! 0
\ i Vv <
i
_ - mm - ww o w- . _ . e e e e - — H
i | I ]
\ | \ 1
] ] } | ] ] i i | | 1 |
i i w | i ] w | ] ] n | | ] n |
[ | Eo© | | x| Ewvli x| Ev© | I x| Ewv |
] | | | 1 & | el =~ 1| P E ] &t}
Ol o] j~ | 9@} | = | % @i =] ol
] | o~ | | | o~ | {f =] - | | =] Q-]
] i 4 | ! ! 4 | | i 4 | i i 4 | - an we
-
o
| ow oo an oo e N . . — — e e me - oo - ~
} ] | Q
v I \ <
ol
“ " w- e we o e “ “ - e we e e we “ H
\ i Vv |
i ] | i ] ] ] i ] } | |
i | w | | i w | ] i v | ] i w |
| | Ew | | x| v | | x| Ewo | | « | Ew© | (14
i | =~ | - | 81 &m ) | Bl | O
1O} mol | =1 ® @ | Il ~i 8al| .|~} 7o)l Qb
| | a-w~| | = | | | = | o= | | 4§ ooem | <0
| 1 4 | | ! 4 | I 1 % | | i % | %%

or branches. The

a word appears is a function of its name.
it is only necessary

"hash code”

(The scheme amounts to a

3.2 Dictionary Organization.

which

Fig.

in
search one branch.

The dictionary is split inte 16 threads
for accessing words by name. )

branch
Thus to find a particular word by name.

to



THE STRUCTURE OF FORTH. Page 3-6

The head, or growing end, of the list is defined by a
i6-element vector of pointers. These pointers aim at the
most recently defined word in each branch. A field in each
word definition in turn points to the previous word in the
same branch. (The exact target of the link may not be ¢the
link of the previous work; some versions have the link
pointing to the previous link plus one, for instance.) Each
branch terminates with a word having zero 1link field.
Definitions in different branches may be interleaved
arbitrarily in memary.

A different dictionary organization has been adopted by
most Forth wusers (but not Caltech—-0OVRO at this writing).
The principle is to divide the dictionary into branches
similar ¢to those discussed above. In this scheme however,
the branch in which a given word appears is under control of
the  user. The programmer segregates words according to the
context of their application; such groupings are known as

"vocabularies". The words VOCABULARY and DEFINITIONS
control the branching. Figure 3.3 illustrates the

VOCABULARY technique.



THE STRUCTURE OF FORTH. Page 3-7

[} [}
. ?
! central :
{ vocabulary H
{ (FORTH) H
{ H
H H
i H
H H
H H H H
{ more H { assembler H
{ (FORTH) H { vocabulary H
H H { (ASSEMBLER) H
H H H H
! H -~
: Cal
H H ~
H : H ! : H ~
! editor H ! more H ~
! vocabulary H ! (FORTH) H ~
{ (EDITOR) H H H ~
: : s ”~
P el ”~
N o ’”~
HEAD(EDITOR)? HEAD(FORTH) HEAD (ASSEMBLER)

Fig. 3.3 VOCABULARY branching.

An unlimited number of HEAD pointers can be maintained;
each one points to the last defined word in a dictionary
branch. Branches merge as you trace back in memeory until
finally all searches end at the first Forth word in the root
(FORTH) segment. A forth word in one branch cannot execute
(or interfere with) a word in another parallel branch except
by explicit arrangement. Thus the VOCABULARY arrangement
gives you some program security and can eliminate problems
with unintentional multiple word definitions.

There are just two circumstances in which you have to
specify what branch you are using. Most obviously. you need
to say what branch will be searched when you ¢type a Forth
word. Only one branch and its HEAD are active at a time.
Thus i# EDITOR is the current branch for searching, you
cannot type a word defined only in the ASSEMBLER branch.



THE STRUCTURE OF FORTH. Page 3-8

The other circumstance is when you are definining new words:
what branch should they be compiled into?

The branches in effect for word 1look-ups and for
compiling do not have to be the same. For example, you may
wish to use the ASSEMBLER vocabulary when you are compiling
a CODE word in some other branch.

We briefly describe ¢the action of VOCABULARY and
DEFINITIONS. If you type

VOCABULARY FOO

a new branch of the dictionary is formed. The branch leaves
the current dictionary branch (FORTH or the 1last one
specified by DEFINITIONS) at its current head. A new Forth

word FOO 1is created. When you type FOO. the dictionary
branch to be wused for +further dictionary searches is
switched to the FOO branch, i.e. the one you’ve just

created. Similarly, any time you type FORTH, ASSEMBLER,
etc., you switch to the corresponding branch.

I+ you type DEFINITIONS, the dictionary branch ¢to be
used for compiling is switched to the current branch used

for searching.

3.3.2 Header Section.

The detailed format of a word in the dictionary varies
between Forth implementations. This section describes the
format used in the Caltech-0OVRO PDP-11 Forth. This +format
is notable in its very efficient use of memory. Only twao
memory words of header are required in most cases, even when
we use 4 characters plus count for a word name. #

Each word definition in the 146-way PDP-11 dictionary
contains a “header” which defines the word name (first 4
characters and count), precedence, and the 1link to ¢the
previous word in the same dictionary branch. These data are
#Previous Forth implementations for 16-bit computers have
generally required 3 - 5 words for header information and
typically recognized only the first 3 characters plus count.
The <core savings for the Caltech—OVRO PDP-11 system may
exceed 1,000 memory words in a large Forth application.



THE STRUCTURE OF FORTH. Page 3-9

efficiently encoded into two 16-bit memory words as shown in
Fig. 3. 4.



THE STRUCTURE OF FORTH.

Ul -
Ho-
W
(18
[

-

c2

g}
[
-~
-~ - -

C4 low L’

Page 3-10

NUMBER
0O 0O OO OO O O 0 ©
9 8 7 &6 5 4 3 2 1 0
LONG LINK FIELD (ONLY IF OFFSET LINK=0) WORD O
: c3 ! c4 WORD 1
: ! high
P ! OFFSET LINK WORD 2

. wE wn G me ew we Se we ww W W
.- mm e

———— wmieme  wmem e e e
. . . . . .

—— A am e et waees G
. . . . . . o

BEGIN MACHINE INSTRUCTIONS
% PARAMETERS

First four characters of word name:

Ci =
c2,

Ci’ *
€3, C4

16 + THREAD#

THREAD# (O - 15) is the thread in which the word

is found.

Characters are &-bit ASCII codes.

Length of

L + 4
4
3

L

nounn

2

1

Range of L is 1 — 11 characters.

word name:

if L’ .neq. O

it L’ .eq. O, C4 .neq. blank

if L’ .eq. O, C4 .eq. blank,
C3 . neq. blank

if L’ .eq. O, C4 .eq. C3 .eq. blank,
C2 .neq. blank

if L’ .eq. O, C4 .eq. C3 .eq.
€2 .eq. blank

Names with identical

first 4 characters and lengths greater than or equal
to 11 are indistinguishable.

Fig 3.4 Dictionary Header for PDP-11



THE STRUCTURE OF FORTH. Page 3-11

Precedence bit:

1 immediate execution (compiler directive)
(o] normal word, may be compiled.

P

Link to previous entry:

Previous address = current address — 2 # (offset link)

(if offset link .neq. O)

Previous address = long link field
(if offset link .eq. 0O)

Long link field is absent if the link span is less
than 512 bytes.

Fig. 3.4 Dictionary Header for PDP—-11 (cont‘d)

Some restrictions on the generality of Forth names have
allowed ¢the preservation of 4 characters plus count. The
character set is limited to the 6-bit ASCII subset, which
includes nearly all of the ASCII characters except the lower
case alphabet. (Many terminals cannot even print lower
case, so the restriction is of little importance. ) The 3-bit
length field (L’) allows lengths of 1 to 10 characters to be.
distinguished wuwniquely. Names of 11 or more characters are
allowed, but these will be equivalent to Forth if the first
4 characters are the same. Again, the limitation is slight,
as most practical Forth code has few names as long as 10
characters.

The following are examples of distinguishable names:
A B ABCD ABCE ABCE1

However, the following pairs of names are indistinguishable:
ABCD1 ABCD2
C12345467890 C123454678%01

ABCD1234567 ABCDO98746543210WERTY



THE STRUCTURE OF FORTH. Page 3-12

Even with the &6-bit coding and the restricted 1length
field, a further savings in bits is required to fit all the

header data into two words. This 1is accomplished easily
since a natural "key" for choosing a dictionary branch for a
Forth word is one of ¢the characters of the name. In

particular the 4 low—-order bits of the first character are
distributed fairly randomly and are suited for the purpose.
We define the following function: '

THREAD# = HASH( NAME )

where the hashing function "HASH" is just equal to ¢the
number expressed by the 4 low-order bits of the first
character of the "NAME" string.

If the HASH function is vused to select a branch for the
word entry, the Forth word header does not need to contain
those bits selected by HASH; they would be redundant. Thus
the field C1’ in Fig. 3.4 contains only the two highest
order bits of the first character: the low—order bits are
implied from context, i.e. from the thread number.

One bit of the Fofth word header is reserved for

“"precedence". Normally this bit is zero, but ¢for
"immediate" words the bit is one. This bit has special
importance for compilation; it is discussed below in

Section 3. 9.

The #inal header field consists of B bits reserved for
the offset link. The link points to the last previous word
in the same dictionary thread, In most cases the memory
spanned by the link is less than 25&6 words (512 bytes): so
that the offset link has enough bits. In cases where the
link must cover more than 256 words:, the offset link is set
to zero and an additional 1é6-bit "long 1link field" is
allocated. The 1long link field is a complete byte address
that may direct the dictionary search anywhere in memory.
In the special case of the first word (foot) of a dictionary
thread, both the offset and the long link field are zero.



THE STRUCTURE OF FORTH. Page 3-13

3.3.3 Code And Parameter Sections.

A complete dictionary entry contains one or two
sections in addition to the header discussed above. These
are shown schematically in Fig. 3.5.

s oot et s G . s St e i e s cue

} HEADER !

B0 e cowes a0 w—e Sums ewms e e €90 s et e WO

(2 OR 3 LOCATIONS)

CODE SECTION

i (1 OR MORE LOCATIONS)!
t
1

R Y e com e O con ey s e

-
. - ®

PARAMETER SECTION
(OPTIONAL)

. .
: H
s . . . - o

Fig. 3.5 General Forth Dictionary Entry.

Every word must contain a code section; +this is one or
more machine instructions that are executed when the Forth
word is invoked. The address aof the first location of ¢the
code section is the one compiled into address sequences in ;

definitions (see Section 3.9). For CODE words, i.e. those
defined by assembly instructions, the code section is
normally the final part of the dictionary entry. It will
finish by "calling"® ‘the address interpreter ¢through

executing the instruction NEXT: (JMP @(IC)+, see Section
3. 4).

Other kinds of words, in particular ; words, require

an additional parameter section in their dictionary entries.
In . words the parameter section contains compiled
addresses which direct the execution of the address
interpreter. Words defined by VARIABLE or CONSTANT wuse

locations in the parameter section to hold data.



THE STRUCTURE OF FORTH. Page 3-14

Some more concrete examples of dictionary entries far
various types of words are presented in Fig. 3. 6.



THE STRUCTURE OF FORTH. Page 3-15

CODE WORD COLON WORD
t HEADER H { HEADER H
H H H H
H H i JSR IC, e# t <= 43537(8)
! MACHINE H H H
H INST. CTRS | { 1ST WORD ADR |
| H H H
H H { ADDITIONAL H
H H { WORD H
i JMP e(IC)+ H i ADDRESSES H
1 [ ] 3 11
H H
! ADR( SEMI ) !
CONSTANT WORD VARIABLE WORD
? [ [ ,
! HEADER ! ! HEADER !
i JSR IC,e# : I JSR IC,e# !
! = ' :
! ADR( CONST ) ! ! ADRC VAR ) !
! VALUE ! ! VALUE :
(CODE SECTIONS REFER TO FOLLOWING CODE)
SEMI: MOV (R)+, IC i POP INST. CTR FROM RETURN STACK
JMP @(IC)+ i "NEXT" = ADDRESS INTERPETER
CONST: MOV @IC, —(SP) i MOVE VALUE TO PARAMETER STACK
MOV (R)+, IC i RESTORE IC FROM RETURN STACK
JMP e(IC)+ i “"NEXT*®
VAR: MOV IC,-(SP) i MOVE ADR. OF VALUE TO PARM. STACK
MOV (R)+, IC i RESTORE IC FROM RETURN STACK
JMP @(IC)+ i “NEXT®
Fig. 3.6 Common Forth Word Formats

(Caltech—-0OVRO PDP-11).



THE STRUCTURE OF FORTH. Page 3-16

Note a little scam in the woTd: the code section
instructien (JSR IC, @#address) is a double—word instruction,
but the second location is really just the first location of
the parameter +field -— as far as the Forth compiler is
concerned. This address and those following comprise ¢the
sequence that directs the address interpreter. It turns out
that the PDP-11 instruction JSR IC,@#address has precisely
the right action to start the address interpreter; it saves
the instruction counter on the return stack and directs
execution to the code located by the first address of the
address sequence. #

3.3.4 Expanding And Contracting The Dictionary.

The Forth dictionary is initially set up when ¢the
program is loaded from disk, e.g. when you type

.R FORTH

under the RT~11 operating system. This initial dictionary
and its associated code is called the "object program” or
“kernel". For Caltech-0OVRO systems the kernel is defined in
Macro-11 assembly language. Other systems sometimes use
so~called "Metaforth", which 1is a Forth program ° that
cross—compiles code from one Forth computer to generate a
new kernel for another (or possibly the same) computer.

You extend the dictionary by executing "defining words"
-- words that define new dictionmary entries. You can do
this directly from a terminal (typing :. CODE, etc.) or
indirectly by LOADing blocks that contain defining words.
The defining words have the logic required to compute the
proper thread number and to enter a new element in the
corresponding dictionary branch.

At times you need to truncate the dictionary and free
up memory areas. You do this with FORGET. Type

FORGET BAR

to look up BAR in the dictionary and truncate all branches
at the highest possible memory addresses lower than the
#These elegant coding tricks for the PDP-11 were invented by
D. H. Rogstad and H W. Hammand.



THE STRUCTURE OF FORTH. | Page 3-17

beginning of BAR.

Thus BAR and all words defined after BAR (in time
sequence) are deleted. Judicious use of FORGET gives you a
simple overlay capability in Forth.

3.4 PROGRAM CONTROL —-- THE ADDRESS INTERPRETER.

Another central element of the Forth system is the
function of the address interpreter (AI}). This code directs
the execution af Forth words #$from address sequences in
memory. The normal termination of every CODE word is an
invaocation of the address interpreter.

The interpreter operates on a sequence of memory
addresses which 1lie in consecutive words of main memory.
Such an address sequence is the parameter +field of a [
word. Each address peoints to the code section of an earlier
dictionary entry. (See Fig. 3.7.)



THE STRUCTURE OF FORTH. Page 3-18

! HEADER "ABC" ! ! HEADER "A" ;
! JUSR IC,e# ... ! - >! JSR IC.e# . ]
i 4 [] ] 1 [}
! ADDRESS( A ) |==—————v ! ! ADDRESS( AA ) !
! , ! ! !
(IC)=——>! ADDRESS( B ) |=——=——m ! ! ADDRESS( AB ) !
3 [ ] [ ] 1
! ADDRESS( C ) =——=! ! ! ADDRESS(SEMI) !
] 1 ] [} : ;
! ADDRESS(SEMI) ! ' !
! ! ! HEADER "B" !
| le————=>! JSR IC,@# ... !
Forth definitions: ' H H
! ! ADDRESS( BA ) !
A AA AB ; ' ! :
B BA ; ' ! ADDRESS(SEMI) !
C CA; ! ! :
ABC A B C ; ]
! HEADER “C*"
[ —— >! JUSR IC,e# ..

ADDRESS( CA )

ADDRESS(SEMI)

e e e 6 on e o0 e oo
- wmE ww we mw we mw e W

Fig. 3.7 Compiled address sequences.

In each ;| definition an address sequence specifies the
Forth words to be run when the ;| word itself is executed.
I e. if ABC is defined ;| ABC A B C i, the addresses of
words A, B, €, and i are found in the parameter field of
ABC. These addresses define what actions occur when ABC is
executed.

We can describe the effect of the AI in the following
general terms. A register (or memory location) is reserved
as the Forth "instruction counter" (IC). Like hardware



THE STRUCTURE OF FORTH. Page 3-19

instruction counters, IC points ¢to the next (Forth)
instruction to be executed. "Instructions" to the Al are
Just the addresses of Forth words.

The Forth interpreter must pick up the address that 1IC
points ¢to, increment IC to point to the next address in
sequence, and finally Jjump to the code specified by the
first address. In terms of Fig. 3.7, the next invocation
of the interpreter will pick up the address of the word B,
IC will be incremented to point to the next address (address
of C), and control passes to the JSR instruction in the code
section of B. #

Several computers are so appropriately designed that
the entire AI function can be achieved in a single
instruction. The DEC PDP-11 and PDP-10 are of this ¢type.
Fig. 3.8 displays the AIs (NEXT instructions) for 3 types
of computer.

(PDP-11) NEXT: JMP e(IC)+ i IC is a register °
(PDP-10) NEXT: ADJA IC,e0(IC) ; ditto

(8080) NEXT: LHLD IC -3 IC is a 16-bit
MOV E.M 3 double—~word
INX H
MOV D.M
INX H
SHLD IC
XCHG
PCHL

Fig. 3.8 Address Interpreters for 3 Computers

The discussion to this point tells how the Forth Al
progresses through an address sequence a step at a time.
The linear flow of execution may be modified in several
#Most Forth implementations wuse a slightly different
algorithm for the Al In these systems, the first word of
the code section is always an address instead of an

instruction. The address in turn points to the actual ceade
to be executed. Thus the AI jJump instruction must be a
double indirect jump. In implementing the Caltech—-0OVRO

system for the PDP-11, we found that core and speed savings
could be had by adopting the technique described here.



THE STRUCTURE OF FORTH. Page 3-20 .

ways. The simplest would be ¢to alter IC directly in a
CODE-defined word, and then to invoke the interpreter.

A more subtle, but more uvseful redirection of
instruction flow 1is performed every ¢time a _  word is
executed from a : word. This is the situation presented

above in Fig. 3.7.

A good way to accomplish the diversion of the Al is ¢to
store away the contents of IC on a stack (the return stack),
and to set IC so that it points to the +first word of the
parameter section of the new word to be interpreted. (Done
this way, the AI algorithm is recursive.)

In general, what is the appropriate instruction to put
in the code section so that the Al is redirected? We need
an instruction that lets us push a register on a stack and
somehow "remembers"” where it is when executed. Usually some
kind of subroutine call instruction is appropriate.

As we suggested already., the PDP-11 has an instruction
which does all ¢the right operations by itself. With most
other computers you need to write a 2 or 3 word subroutine
(conventionally called COLON) ¢to redirect the Al The
techniques for 3 computers are illustrated in Fig. 3.9



THE STRUCTURE OF FORTH. ‘ Page 3-21

(PDP-11)

Appearance of code section: JSR IC, e# il really one
addressi ti instruction
address2

No subroutine required.

(PDP-10}

Appearance of code section: PUSHJ RP, COLON
addressli
address2

Required subroutine: COLON: EXCH IC,O(RP)

: ADJA IC,e0(IC) ; (NEXT)

(8080)

Appearance of code section: CALL COLON*
addressli i two bytes
address2 ;i two bytes

Required subroutine: COLON: LHLD IC
XCHG
CALL RPUSH i (DE)-=D>RSTK .
POP. H i FROM CALL INST.
SHLD IC '
JMP  NEXT#*

#The CALL COLON and JMP NEXT instructions can be replaced
by hardware reset (RST) instructions, with a savings

of 2 bytes per use. You must have appropriate code at
the corresponding low—-memory locations.

Fig. 3.9 The COLON Function for 3 Computers.

You end a normal ;| definition with ;. The semicolon
(i) compiles an address called “SEMI" into the dictionary as
the last entry in the parameter section of the word you‘re
currently defining. (i alsc resets the compile state.)
SEMI is the address of a machine code routine that undoes



THE STRUCTURE OF FORTH. Page 3-22

the effect of the COLON function. It must restore the old
contents of IC from the return stack. The SEMI routines for
the same 3 computers are given in Fig. 3. 10.

(PDP-11) SEMI: MOV (RP)+, IC
JMP e(IC)H+ i (NEXT)

(PDP-10) SEMI: POP RP, IC
ADJA IC,@0(IC)» i (NEXT)

(8080) SEMI: CALL RPOP
XCHG
SHLD IC
JMP NEXT

Fig. 3.10 The SEMI Function for 3 Computers.

The discussion and figures above indicate that the
address interpreter may be nested very deeply, limited only
by stack space. In other words, Forth ; words can refer to
earlier ;| words, which can refer to yet earlier words, etc.
The time overhead for the AI recursion (or the "calling"” of
one ; word by another) is seen to be very nominal -— about
equivalent to a conventional subroutine call.

In summary we can say that the address interpreter is
the engine that makes ; words go. The technique is not
new; it is also used in DEC’s "threaded code” in PDP-11
Fortran. But in combination with the text interpreter (see
below) it is responsible for the unique power of the Forth
system.

3.5 THE TEXT INTERPRETER.

In the preceding Section we discussed the address
interpreter and how Forth executes words containing
compiled address sequences. There is one fundamental Forth
I word (GO#) whose Jjob it is to interpret what you type in
to your terminal. This is called the "text interpreter”
(TI). It is distinguished +from the address interpreter
because its input is text from a terminal (or block) rather

#Actually G0 is an "anonymous" word (without a header) and
can not directly be accessed from your terminal.



THE STRUCTURE OF FORTH. Page 3-23

than addresses.

The TI is really a Forth program in its own right. In
fact it is the basic program that executes in normal Forth
systems. When you type in a word ("command") to Forth, it

is the TI that interprets your command and actuvally begins
execution.

A structured program (in pseudo—-English) for a typical
TI #ollows in Fig. 3.11.

GO: IFC( Input is from typewriter )
THEN IF( Text buffer is empty )
THEN Wait for next full input line
from typewriter;

IF( Input is from typewriter )
THEN Prepare to read typewriter bhuffer
ELSE Prepare to read selected block buffer;

Collect a text string (word) from buffer;

IF( Word exists in dictionary )
THEN IF( In compile state )
THEN Compile a pointer to dictionary
wardi
ELSE Execute the dictionary word

ELSE IF( Input string converts to a number

in current radix )

THEN IF( In compile state)
THEN Compile a pointer to "LITERAL"

followed by number value

ELSE Push number value on stack

ELSE Abort;

60 TO 60:

Fig. 3. 11 A Structured Pseudo—English Text Interpreter.

We can elaborate a bit on this program. The input to the TI
can be either from the terminal ("typewriter™) or from block
storage. Nothing happens with typewriter input wuntil you
enter a complete line, ended with "return®. I#f a block is
the input source, TI runs straight through without a pause



THE STRUCTURE OF FORTH. Page 3-24

until ;8 is encountered. (And ;8 had better be there!)

"Collecting a text string" means scanning the input
source until a complete word-name—candidate is found. That
is, scanning begins from the current position of an input
text pointer wuntil the first non—-blank character is found.
Then all the non—blank characters up to the next blank (or
other specified delimiter) are moved to a special places.

Using the appropriate rules for identifying word names

with dictionary entries (e.g. first 4 characters plus
length), the TI attempts to find a match with an existing
entry iIin the dictionary. If a match exists, the TI will
normally simply execute that word. There is one case where,
if you type a word, you don‘t want it executed: this is
when you are defining a ;. word. I# you are defining a -

word. the TI will store a pointer to the word in the next
available dictionary location. :

If there is no matching entry, the TI will try to see
if its collected string will convert properly as a number.
I# the string does make sense as a number, that number is.
. normally just pushed on the stack. If you happen to be
compiling a ;. word, the TI compiles a call ¢to a special
word "LITERAL" +followed by <the value, so that the number
you‘ve typed will be pushed on the stack when you execute
your new word.

If the "word” you’ve typed can’t be found in ¢the
dictionary or converted as a legal number, the TI gives up
and ABORTs. All the stacks are reset, the compile state is
reset, the word itself is typed again followed by a question
mark, and Forth starts the TI all over again.

3.4 ERROR MESSAGES --— ABORT.

The only "standard” error routine in Forth is called
ABORT. ABORT simply resets nearly everything in the Faorth
system: the parameter and return stacks, the
compile/execute state (to execute), the terminal buffer,
etc. Only the dictiomary and the current state (block
contents and wupdate flags) of the block I/0 system are not

#Actually to the next several available dictionary locations
in case this word is to be entered in the dictiaonary.



THE STRUCTURE OF FORTH. Page 3-25

atfected.

In addition to the reset function, ABORT types a very
simple error message on the terminal: the name of the last
word processed by the text interpreter +followed by a
question mark.

The action of ABORT in a real time Forth system is not
standardized. In most situations with Caltech-0OVRO Forth,
an ABORT caused by an error in a background (user—terminal)
task will not affect a foreground, real-time task. This is
simply because the background <¢ask only runs when the
foregraund task is finished, i.e. when the foreground task
has nothing to keep on the stacks.

3.7 BLOCK INPUT/OUTPUT.

Forth normally maintains a single direct-access file on

secondary storage (such as disk). This storage is not
logically required to run Forth; micro—computers, for
example, may wuse a Forth system permanently "blasted"” into
read-only memory. But in general purpose minicomputer

systems, much of Forth’s versatility depends on adequate
block storage. '

The conventional record size for block storage is 1024
8-bit bytes, or 512 1é6-bit words. Blocks are simply
numbered sequentially from O, thousands are typically
available.

Typical systems have two block buffers in main memory.
When you type '

nnn BLOCK

Forth chooses the less recently wused buffer, writes its
contents back to disk if necessary (i. e. if that block has
been UPDATEd), and then finally reads in block nnon from
disk. The buffer address is returned on the stack.

Once in main memory, a block may be read or altered in
any way. If you want to change a block‘s contents on disk,
you must be sure to type UPDATE +following BLOCK. UPDATE
sets a +flag that insures that the buffer last returned by
BLOCK will be rewritten to disk before the buffer is reused



THE STRUCTURE OF FORTH. Page 3-26

for some other block. You can type FLUSH at any time ¢to
force rewriting of any UPDATEd blocks to disk.

I+ you want to be sure that you are dealing with
"fresh" copies of disk blocks, you can type ERASE-CORE
before BLOCK. ERASE-CORE simply sets a flag that marks all
block buffers empty; thus any BLOCK following will force a
read disk operation.

Forth blocks are perfectly general in the types of data
that they may hold. However one important use for blocks is
to hold Forth text, i.e. input for the text interpreter.
In this mode a block is considered to be a single string of
1024 characters. That is, the text interpreter may scan the
entire block withovt any division into smaller records
(lines). \

For text entry, editing, and listing, however, it is
convenient to divide the 1024 character block into 16 lines
of 64 characters. The lines have fixed length and there is
no separation (carriage return or line feed) between the
last character of one line and the beginning of the next.

When you type
nnn LOAD,

Forth fetches block nnn, stores the text interpeters input
pointers on the return stack, and sets the input pointers to
the beginning of the block. The interpreter will then scan
the block executing words as they are encountered, until
told to do otherwise. Semicolon-S (;iS) 1is the word that
must terminate +the scan on each block. I ;8 is not
present, the interpreter will run off the end of the block
with unpleasant results.

3.8 FORTH ASSEMBLERS.

Section 2. 4 described generally how input text can be
converted into machine—language instructions. This process

is called assembly. Forth assemblers for different
computers will naturally differ according to their

instruction sets. The full assemblers for some Caltech-—-OVRO
systems are presented in the Appendices. This section deals
with aspects of assembly that are common to most



THE STRUCTURE OF FORTH. Page 3-27

Caltech—0OVRO Forth systems.

You can assemble code any time the system is in the
execution state. i. e, when it is not compiling ;| waords.
Usually youv assemble code in the course of a CODE word
definition.

The assembler vocabulary consists mainly of opp—-code
words whose names are normally chosen to reflect the
conventional assembler codes like MACRO-11. In fact the
op—~code names are usually Jjust the conventional mnemonic
with an appended comma. Thus the PDP—-11 move instruction,
MOV, becomes MOV. in Forth.

To assemble a machine instruction into the dictionary.
you type the address fields and modifiers you need followed
by an op—-code word. (Remember rteverse Polish notation?)
There 1is normally a set of special words to help you set up
the correct addressing modes, branch conditions, etc.

A sample CODE definition +for the PDP-11 might 1look
like: v

CODE ADD3 O S )+ MOV, O 8 )+ ADD, S ) O ADD, NEXT,

This word will add up the top 3 numbers on the stack,
leaving the sum.

The +irst part of the definition (CODE ADD3) sets up a
new dictionary entry (header only) with the name ADD3. The
code section of ADD3 is filled in with 4 machine

instructions: a MOV, two ADDs, and a JMP (expansion of
NEXT, ). The first instruction maves the cantents of the top

stack location to register O and adds 2 bytes to the stack
pointer register. The next instruction adds the contents of
the next stack location to register O, incrementing the
stack painter again. The second ADD adds register O ta the
contents of the next (originally the third) stack location
without changing the stack pointer. NEXT. expands into the
instruction JMP @(IC)+, the address interpreter.

An equivalent MACRO-11 program would look like this:

. WORD HEADER1

. WORD HEADERZ2

MoV (S)+, RO ; MOVE STACK TO REG. O

ADD (S)+, RO s ADD NEXT STACK VvAL. TO RO



THE STRUCTURE OF FORTH. Page 3-28

ADD RO, (S) ;i ADD TO NEXT STACK VAL.
JMP e(IC)+ i G0 TO NEXT FORTH INSTR.

Forth assemblers provide forward conditional branches
similar ¢to the compiler directives IF, ELSE, and THEN.
These are the macro instructions 1F,, ELSE,, and THEN, (with
1 8). In the case of the PDP-11, these macros set up
appropriate conditional branch instructions that test a
register. An example:

Cload Ri> 1 TST. NE IF. <true code> ELSE: <false code> THEN,

This expandé into the equivalent of the following MACRO
code:

<load reg. 1> set up data in register 1

i
TST R1 i test register 1
BEQ 1% i branch if equal zero
<true code> i do if R1L .NE. ©O
BR 2% i branch around false routine
; do if R1 . EQ. O

i%: <false code>

2% end

The "else clause" is optional, thus you can write
<load reg. 22> 2 IST., €T IF. <true code> THEN,
which expands to

-

<load reg. 2>

ST R2
BLE 1%
<true code>
1%: ... i end

3.9 COMPILATION OF : WORDS.

The use of : words has been discussed above and ¢the
dictionary format was presented in Fig. 3. 6. The process
of producing a dictionary entry from the input text is
called compilation for ;. definitions. Thus compilation is

distinct from assembly, which applys to CODE words.




THE STRUCTURE OF FORTH. Page 3-29

Forth has two "states”": execution and compilation. In
execution state the ¢text interpreter operates normally.,
executing words as they are found in the input text¢. The
word ;. in the text stream changes the state to compilationi
it also invokes WORD to collect the next properly delimited
word from the text stream. The word name is placed in the
next available dictionary locations in the correct
dictionary format. The 1link field is set to point to the
last—-defined word in the same dictienary branch, and ¢the
HEAD pointer 1is set to point to the new entry. A call to
the COLON function is placed in the code section. (This 1is
the “"half-instruction" JSR IC, e#. .. in the PDP-11 system.)

(At this point in compilation the dictionary formally
contains the new entry, which 1is not fully defined. To
prevent false, premature references to the entry, . also
alters the name field slightly so that the name becomes
unrecognizahle. A%t the conclusion of the definition, ;i or
;i CODE restores the correct name.)

It now remains to create the parameter field of the new

ward. In the compile state, the text interpreter (Fig.
3.11) is modified so that when an input word is found in the
dictionary it 1is not executed; rather, its address is
stored in the next available dictionary location.

Similarly, numbers are not immediately pushed on the stack,
but the address LIT is compiled followed by the literal
value of the number. (LIT points to a simple code routine
that picks up the number following LIT‘’s invocation point,
pushes the number on the stack, and increments IC in order
to skip to the next compiled address.) Thus the number is
not pushed on the stack until the new word is executed.

The interpreter will proceed to compile the input text
stream into the dictionary until a "compiler directive” is
encountered. A compiler directive is a word with a
precedence bit set to 1. Such words are executed
immediately, even when Forth is compiling.

The mast common compiler directive is i, which compiles
SEMI into the dictionary and also resets the compile state.
Other compiler directives are IF, THEN, ELSE, ;CODE. etc.

I# you want to make a word yau’‘ve Just defined into a
compiler directive, simply type IMMEDIATE. (Since IMMEDIATE
is itself immediate, you can make a word immediate either by
typing "IMMEDIATE" inside or outside the definition. E.g.



THE STRUCTURE OF FORTH. Page 3-30
X IMMEDIATE A B C i  and
. XABC; IMMEDIATE

are equivalent.)

3.10 DEFINING WORDS -— iCODE.

A special technique is available in Forth to define
words whose function will be to define words. Some of these
"defining words" are built into the kernel: CODE., .,
CONSTANT., etc. A new defining word is appropriate whenever
a new class of word functions is required. The availability
of defining words makes Forth an wunusually extensible
language system.

‘As an example take VARIABLE, which is defined in - the
standard system. The new class of words provided by
VARIABLE consists of words that push the address of their
parameter +field on the stack. N may be defined a VARIABLE

by typing
1 VARIABLE N.

An initial value (1) is assigned to N. The dictionary entry
created for N is shown in Fig. 3. 12.

header

- e Cm wm e me e em e Oe wm

l'h‘“.

JSR IC, e#

Address (VAR)

value = 1

e e wn cn Am we me ca ww an =

Fig. 3.12 Dictionary Entry for VARIABLE N.

The entry differs from an entry produced by CONSTANT only in
the address that appears in the second word of the code
section. All VARIABLE words will have the address VAR in



THE STRUCTURE OF FORTH. Page 3-31

this location. This code must pick up the address of ¢the
parameter field of the variable word being executed and then
push it on the stack.

The definition of VARIABLE for the PDP-11 may be given
in terms of CONSTANT:

L VARIABLE CONSTANT ;CODE S —) IC MOV, SEMIL,.

The definition has two partsi the first is like a naormal
definition. Word names appearing here are compiled into the

dicitionary. The part of VARIABLE contains only
CONSTANT. ‘

The second part of the example begins with ;CODE.
iCODE is a compiler directive ¢that compiles an address
(called SCODE), and sets ¢the system state to execution.
Following i CODE are assembly instructions. These
instructions define the code (VAR) which will be associated
with all VARIABLE words. The dictionary entry for VARIABLE
is shown in Fig. 3.13. {Note that the assembler word SEMI,
expands into two PDP-11 instructions.)

header

s o e

"VARIABLE"

JSR IC, e#

Adr (CONSTANT)

Adr (SCODE)

VAR: MoV IC, ~(S)

MOV (R)+, IC

JMP e(IC)+ (NEXT)}

Mo AW R BE Gw GRS SR R BT Am B NO WS G 8 SO
S me mE Gn GD BT G0 G GE S BE GE Be me am B we

Fig. 3.13 Dictionary Entry for VARIABLE.



THE STRUCTURE OF FORTH. Page 3-32

What happens when we execute VARIABLE? First, CONSTANT
creates a dictionary entry wusing the stack value as the
constant value and the next word in the input stream as its
name. The new dictionary entry has a code section which
invokes CONSTANT (see Fig. 3.6), which is inappropriate ¢for
a VARIABLE word. It is the purpose of SCODE to establish a
different code routine. When this (anonymous) woard is
executed, the address part of the JSR instruction of the
word just defined is reset to point to the machine code part
of VARIABLE. Thus the resulting dictionary entry looks like
N in Fig. 3.12.

The code routine VAR for any VARIABLE word works in the
following way. When N is executed (for example), VAR pushes
the contents of register IC on the stack. (It turns out
that the JSR IC,@#VAR instruction puts the address of the
first word of the parameter field in that register.) VAR
must now restore the IC from the return stack, and execute
the NEXT function.

To summarize, jCODE is used to create new tode routines
which are associated with a defining word. All words
defined with that defining word will employ ¢the new code
routine. Thus a new Forth word class is defined.

A word closely related to ;CODE is ;. il associates
a :~level routine with a defining word. The parameter field
address is passed on the stack. Thus an alternative

definition of VARIABLE would be

L VARIABLE CONSTANT ;: i
The associated ;| routine is null in this case.

Defining words may be established to define any data
type or operation class; examples include VARIABLE, ARRAY,

SET, etc. I# a class of fixed repetitive operations can be
identified it may be most economical of storage and
execution time to create an appropriate defining word. An

example with CONSTANT: ¢the line

1 CONSTANT ONE

defines ONE as a constant word that will push the value 1 on
the stack. This will always be more efficient that using
the number 1 literally. (In the text interpreter the number
conversion is avoided, and in a compiled definition the call



THE STRUCTURE OF FORTH. ’ Page 3-33

to LIT is not needed. )

In practice we use the name "1" instead of NE. Thus
the dubious definition
1 CONSTANT 1.

Of course: you could also define 1] with the following line

= L 1 i

but this way two extra storage locations are used —— far LIT
and for SEMI. Because of the return stack operation and the
extra interpreter cycles, execution af the defined 1
would be much slower than the CONSTANT word.

3.11 BRANCHES IN : WORDS.
3.11.1 An Unconditional Branch.

An unconditional branch to any Forth word is provided
by the EXEC function. You type

<address value> EXEC

to jump to the address specified. I# the address is that of
a Forth word, you could type

%z <word name> EXEC.

(Z returns the code section address of the word whose name
follows. Note that in non-Caltech—0OVRO systems, the word ‘
gives the right address. In the Caltech-QVRO system
Teturns the address of the parameter field.)

EXEC works by setting up the return stack and
instruction counter to execute a word as if it were called
from a normal compiled address sequence. After the word
finishes, control passes back ¢to the next word following
EXEC, either compiled or from the terminal, as appropriate.




THE STRUCTURE OF FORTH. Page 3-34

3.11.2 Conditional Branches.

Use of the branches IF, BEGIN, etc. was described in
Chapter 2. The discussion here concerns the dictionary
entries produced by these words and the state of ¢the stack
during compilation.

Consider 0=, which might be defined

L 0= IF O ELSE 1 THEN :

This word tests the value passed to it on the stack; if the
value 1is non-zerao, zero is returned. Zero input produces
one. The compiled dictionary entry for O= is presented in
Fig. 3.14,

header

P Bw W W N PR BE GG W PE e B KR BE B e W B B EE e

“O="

JSR IC, e#

address (XIF)

address = 1%

address (0)

address (XSKP)

address = 2%

1%: address (1)

2%: address (SEMI)

B W Mm W EE ME ER B e e WS e R e e Eme RE B GE WE e

Fig. 3.14 Dictionary Entry Illustrating IF.

The words IF, ELSE, and THEN are compiler directives:
they are not compiled in the O= definition, they are
executed. Their execution does compile word addresses and
address constants, however. The word addresses are shown in
the figure as XIF and XSKP, which actually control branching
at execution time.



THE STRUCTURE OF FORTH. Page 3-3%

The example illustrates the operation of IF - ELSE -
THEN sequences. The address interpreter begins with the
address XIF. XIF tests and pops the stack. A false outcome
(zero) will require a branch to the "false clause”, i.e.
the words compiled between ELSE and THEN. The branch is
carried out by loading IC with the contents of the location
following the address XIF ("1s$"). The interpreter continves
at that location., pushing 1 on the stack.

The "true clause"”, between IF and ELSE, will be
executed if the stack tests true (non—-zero). In this case
XIF simply increments IC so that the interpreter skips over
the address 1$. Zero is pushed on the stack. The
interpreter then encounters the address XSKP which
unconditionally 1loads IC with the contents of the following
location (2%). Finally SEMI terminates execution of either

case.

Other forms of compiled branches work 1like IF, THEN,
etc. Fig. 3.15 is the dictionary entry of a typical DO -
LOOP construction:



THE STRUCTURE OF FORTH. Page 3-36

header

i
I
{
|
|
I

n LP L]

JSR IC, e#

address{LIT)

4

address(0)

address (XDO)

1%: address (RANGE)

address(XLOOP)

is

address (AFTER)

address (SEMI)

W G® M W R B R WS NG BN BE e GG e EE W R mE W RS e e B aw ew
W] W BE WE WE W B RE WG BED B ME W WE MR WE EmR WE WW We e WW Be e Ee.

Fig. 3.15 1Illustration of DO - LOOP.

A few peculiarities should be explained. We assume that O
is defined by

O CONSTANT O

as discussed above. However 4 is not so defined in <¢this
example; it is treated the way arbitrary numbers are. Thus
LIT must be executed with argument 4 to get 4 on the stack.
(IC increments after LIT picks up its argument so that the
interpreter resumes with the O word. RANGE and AFTER are

Just random words predefined in the dictionary.

XDO takes the top two stack variables (0O and 4) and
pushes them on the return stack as discussed in Chapter 2.
Execution proceeds with RANGE. XLOOP increments the loap
index, checks the index against the 1limit, and either
branches back to RANGE (by loading IC with 1%$) or skips ¢a
AFTER. ’




THE STRUCTURE OF FORTH. Page 3-37

3.12 INTERFACING WITH AN OPERATING SYSTEM.

A controversial topic among Forth users is the role of
general purpose operating systems. The computer vendors
supply operating systems with varying levels of function and
complexity. Generally their purpose 1is to allocate,
schedule, and promote sharing of computer resources for a
single task or for several concurrent tasks. The question
is whether the function, standardization, and economy of the
operating systems are worth the overhead in speed and memory
for particular Forthish applications.

Caltech-OVRO systems have been developed both with and

without 0OS support. In ¢this Section we consider some
creteria for these choices.

3.12.1 To Stand Alone Or Not To Stand Alone.

We can attack the problem either economically or

technically. In economic terms, the price of computer
memory (particularly semiconductor memory) is falling
rapidly. Low <cost peripherals (e.g. floppy disks) are

widely available. These technological forces tend to reduce
the economic penalty for relatively large, general purpose
operating systems.

In contrast, the cost of software development steadily
Tises. So there is an economic incentive favoring
vtilization of off—the—shelf software systems when possible.
Reinvention of complex scheduling and I/0 algorithms is
rarely justified.

Technical analysis is more difficult. One (prominent)
line of ¢thinking is that much can be done with extremely
simple software. Thus Forth standalone systems with minimal
multiprogramming, no concurrent I/70, and practically no
error recovery capabilities have been very successful. The
same thought process leads to the idea that practically all
camputing can be handled by Forth programming on 16 ©bit
computers with no more than 32K memory words. (Thus the
mapping problem for larger memories is avoided.)

With standalone Forth, «cross assemblers (such as
MetaForth) can be developed that generate systems with
nearly identical structure for widely different types of



THE STRUCTURE OF FORTH. Page 3-38

computer. Maintenance and developmént effort are reduced
accordingly.

Technical arguments for Forth running under operating
systems have a few major themes: concurrency of large
tasks, reliability, and transportability. Programming for
many large Jjobs is simpler when large amounts of memory are
available. Memory is cheap, 16 bit computers can give you
instant access to 32K words; s0 why not allow each task in
the system to use up to this amount?

The difficulty with large tasks in a multitasking
system is that phuysical memory has to be mapped into the 32K
task address space. The mapping problem is fairly severe if
you require efficient use of physical memory and CPU time.
Vendors’ operating systems usually cope with this problem;
development of generalized Forth memory mapping software is
a nontrivial project.

Concurrency of large tasks may include non-Forth tasks.
For example a Forth real-time control task may have to
co—exist with Fortran data reduction. This is feasible if
both tasks run under a common operating system.

Reliability of a software system is hard ¢to define.
One useful principle is that a software fault in one task of
the system should be isolated from other tasks. Commonly
this +feature is provided by memory mapping and by carefully
defining user— and system—states of the CPU. Again, it is a
majar effort to provide these functions in standalone Forth.

Another aspect of the reliability problem is what to do
in the event of hardware faults. LLarge peripheral devices
(particularly disks) can be very complex. Many operating
and error recovery modes are available. The manufacturer’s
device driving software (a component of operating systems)
becomes correspondingly elaborate and difficult to repeat in
Forth.

One hindrance to the wider propagation of Forth has
been that many implementations are constructed using the
MetaForth cross—compiling scheme. | Forth defined in terms of
Forth is difficult to learn and difficult to transport to a
non—Forth computer. Implementations in the standard
assembler code of a particular machine can easily be
transferred to other machines of the same type, particularly
if standard file structures and formats are observed.



THE STRUCTURE OF FORTH. Page 3-39

3.12. 2 0S Interfacing Techniques.

Implementation of Forth as a task under an operating
system such as RT—11 or TOPS~10 is generally simpler than as
a standalone system. The 0S provides macro instructions for
terminal and disk I/0. Buffering and error checking are
provided by the 0OS. '

When you have to connect non—-standard I/0 devices or
respond to special hardware interrupts, the situation is a
little more complicated. The general purpose operating
systems necessarily restrict your freedom of interfacing -
with external devices, since the system’s integrity must be
preserved for other system users. In particular for RT-11
you must carefully observe the interrupt protocols with
appropriate use of the . INTEN and . SYNCH macros.

Of course any macro defined in the conventional
assemblers can be expressed in terms of the Forth assembler.
Unfortunately standard Forth lacks a true macro—-processing
capability, so that it is difficult to define macros with
the generality available in the conventional assembler. The
problem is not too bad: since you rarely need more than a
few types of macro in a given Foarth application.

3. 13 MULTIPROGRAMMING AND REAL-TIME APPLICATIONS.

In real-time control or data acquisition Jobs it is
often necessary for a Forth system to interact with external
devices on a prescribed time schedule, e.g. sample data
every 10 msec or update telescope drives every 0.5 sec. You
vsually want to be able to converse with Forth in a normal
way while the real—-time processes are running. In some
cases, unrelated users may want to share the computer at the
same time. '

All such situvations require some multiprogramming
scheme. Multiprogramming is ¢the general technique of
sharing the computer’s time, memory, and peripheral devices
between multiple job tasks or users. A number of schemes
have been used “for Farth multiprogramming. Most
Caltech—-0OVRO systems use a multilevel priority scheduling
system. Other Forth systems use a round-robin scheduler,
especially for multiuser "timesharing" applications. When
running “under a multiprogramming operating system,



THE STRUCTURE OF FORTH. Page 3-40

independent copies of Forth may be run as separate tasks
under the operating system.

3.13.1 Priority Scheduling.

A simplified priority scheduling algorithm is wused in
several Caltech-0OVRD systems. Figure 3. 16 illustrates the
method.



Page 3-41

THE STRUCTURE OF FORTH.

B B mE e e C" e CE Ve BE Ce Ye e m~ e s VW BE Be Gn 8 Y Ve e e e

Al N I
I | !
~ | ~ | |
- o1l o | i
+ ci (3| |
a ~ | ~ | i
- i 1 v
- e e ew e e ew we o= > we o e " ve we on e ww e we - we e we
[
@ a x 2
<+ w n [T ]
= L) 4] L) m n €
- + [t + o +» o
f-
+ [ ] - ] s (N @ 4 o
[ =, [ e ww [ B -] - - € - - [ B -] - - [ - o= e
@ Bl >0 ot > W vt [ =3
- P - - 0 a»ﬁ - 0 »Z - K
- | & val ~ i vaj~ I #* S
3 ~ > 0 n ~ g " ~t L A
[T} a [~ o n [ [ L) [T ~4
o [ 1} - O > 1] - @ on @ [ S
- ~ ~ [ ~ -
A " ee oe we - ww eoe o " we eow ee - we Yo o - we ee oo " we oe e

3.146 Priority scheduled Multiprogramming.

Fig.



THE STRUCTURE OF FORTH. Page 3-42

A recurrent interrupt (say &0 Hz) initiates the
“foreground tasks" shown in the figure. Task 1 contains
all the functions to be performed every interrupt. When
task 1 is completed a counter is examined to see if a
predetermined number of interrupts has been processed. If
the interval T2 has elapsed, the counter is reset and the
lower level task (#2) begins. If T2 has not elapsed, a
return from interrupt instruction is performed: the
"background" (e.g. Text Interpreter) then has the use of
the machine until the next interrupt.

This multiprogramming technique lets you set wuvp an
arbitrary number of execution levels each of which is
initiated after a certain integral number of instances of
the next higher level. If the interrupt return information
is stored carefully, the foreground structure 1is at least
partially reentrant. The 1level 1 task may interrupt the
level 2 task many times before level 2 completes. You must
insure that there 1is enough ¢time for each task level to
complete before it is next scheduled to run.

Advantages of this priority scheduling method include
"the minimal context switching requirements, simplicity, and
guaranteed servicing of high priority -tasks. The context
that has to be preserved when entering a given foreground
level is just the general registers including the Forth
instruction counter IC, and the hardware instruction
counter. I# disk and terminal I/0 are o be allowed from
more that one execution level. then separate buffers must be
maintained.

A lower level task in general does not have to be aware
of the existence of higher level tasks, except that higher
level tasks effectively slow down the computer. I+ a 1low
level task hangs uvp in a loop., higher level tasks will still
execute.

Problems with the method include the awkwardness of
multilevel I/0, the requirement that <the basic Forth
routines be reentrant, and that the programmer must see that
the completion time of an execution level never exceeds its

scheduling interval.



- THE STRUCTURE OF FORTH. Page 3-43

3.13.2 Round-robin Scheduling.

A second popular Forth multiprogramming scheme is the
round-robin. As ¢the name suggests, ¢the principle is to
allow one task to finish, then to begin the next in a chain.
After the last task in the chain completes; the #first begins
again.

The method is well suited to an environment with
multiple users all bhaving equal claim to the computer.
Performance degrades gracefully as more tasks are added ¢to
the loop.

Proper operation of the round-robin requires that tasks
be ‘“cooperative", i.e. willing to relinquish rights to the
CPU in a timely way. A task does not have to complete its
total function before it allows others to execute, but it
must release control frequently so that response time ¢to
other users is acceptable. .

The round-robin is not well matched to real-time
situations in which guaranteed response to external events
is required. It also lacks "robustness" in the face of any
user who wants to monopolize the CPU.

3.13.3 Scheduling Through Operating Systems.

Multiprogramming facilities are available in most
general operating systems. These range from simple
foreground—background (dual task) systems like DEC’s RT-11
to full—-scale priority scheduled systems like RSX—-11. For a
price, the RSX—-11 system will give you priority scheduling.,
time—slicing between tasks of similar priority, and memory

protection between tasks. As discussed in the previous
Section, you save implementation expense but suffer greater
memory and CPU time overheads to implement Forth

multiprogramming through operating systems.



CHAPTER 4

FORTH VOCABULARIES.

4.1 INTRODUCTION.

This Chapter sets out English definitions for the words
in several Forth Vocabularies. Three categories of words
exist: words in current Caltech-OVRO wuse, words in the
AST. 01 standard, and words in the AST. 01X extended standard.
There is a 1large overlap between these categories (in
particular AST. 01X includes AST.O01). There is also no
single Caltech—~-0OVRO vocabularyi the vocabulary presented
here 1is weighted toward the PDP-11 system used for the
Caltech—JPL VLBI Proacessor.

4.2 NOTATION.

Notation of this Chapter follows that of the AST.O1
document (June, 1977, Terrel Miedaner, Kitt Peak National
Observatory). Much of# ¢the following ¢text is from that
document.

The words appear in essentially the same sequence as

their numerically sorted identifier codes. The action of
each ward is described in abbreviated form: A string of
symbols indicating which parameters are to be placed on the
stack before executing the woard; the word itseléf; then,

any parameters left on the stack by the word. In this
notation, the top of the stack is to the right.

Symbols are used as follows:

b Block number.



FORTH VOCABULARIES. Page 4-2

c 7-bit ASCII character coade.

o Flag: O=False, non-zero=True. All words which
return a flag return O=False or 1=True.

mnop

qr s i6-bit integers :

Uuvau Double—precision (2 cell) numbers.

nnnn

ppPP The name of a word.

8585 A string of characters.

vvvy - A vocabulary name.

Preceding a verbal description of each word, certain

characters may appear in parentheses. These denote some
special action or characteristics, as follow:

c

The word may be used only within a colon—-definition.
A following digit (CO or C2) indicates the number of
memory cells used when the word is compiled, i¢
other than one. A following + or - sign indicates
that the word either pushes a value onto the stack
or TrTemoves one from the stack during compilation.
(This action is not related ¢to its action during
execution. ) )

The word may not normally »be compiled within a
colon~definition.

The word is a KPNO word., not currently part of the
standard.

The word causes loading and poassible execution of
one or more blocks.

Non-reentrant; may net be used within an
interrupt—handler word.

Tape systems only.
Caltech-OVRO word, not currently part of the
standard. A following number (10, 11, 920, 8080)

indicates which type of CPU if not common to all.

The word is part of the AST. 01X extension.



FORTH VOCABULARIES. Page 4-3

4.3 STANDARD VOCABULARY LIST.

!BLOCK

#TER

%

(IDIM

mp ! Stores m at address p. (Vili, v8080: 1p is a
byte address)

b !BLOCK p (Not V) Obtains a core buffer for block
b, leaving the first buffer cell address. The block
is not read from disk, and is automatically marked
as updated.

Y 55555 (Not V) Transmits a message of up ¢to &3
characters delimited by " to the selected output
device. Note that a null message (single blank
between "s) is not permitted.

" sssss" (V) Enters a string of up to 63 characters
into buffer TEXT (or onto string stack in XED) for
use by editor. This word is in editor wvocabularies
only. Mote that a null message (single balnk
between "s) is not permitted.

#TER m (X, not V) Returns the physical wuwnit number
of the terminal device.

Z nnnn p (V) Like ‘ (below), except returns the
address of the code section of nnnn.

‘ nnnn p Leaves the address of the parameter field
af nnnn. A compiler directive, ' is executed when
encountered in a colon- definition: The address of
the following word’s parameter field is found
immediately (at compilation), and stored in ¢he
dictionary (after the address of LIT) as a literal
to be placed on the stack at execution time.

e. g. the sequence: ‘" nnnn is identical to:
LITLC " nann , J within a colon-definition.
(NMote: meaning of [ differs in V!)

( ssss) Ignores a comment of up ¢to &3 characters
delimited by a right parenthesis. A single blank
between parentheses is not allowed.

m ()DIM nnnn (K) Defines an array m+il cells in
length, named  nnnn. The sequence; i nnnn leaves
the address of the i—-th cell on the stack. The



FORTH VOCABULARIES. ' Page 4-4

*/

+

+!

+BLOCK

+L00oP

» CODE

/M0D

index i should be in the range 0 <= i <= m» but no
check is made for values outside this range.

mn ¥ q 16~bit integer multiply.

mnp ¥/ q Leaves q= (m#*n)/p. Retention of an
intermediate 32-bit product permits greater accuracy
than the otherwise equivalent sequence: mn ¥ p /,
mn+q 1lé-bit integer addition.

mp +! Adds integer m to value at address p.

m +BLOCK b (not in V) leaves the sum of m plus ¢the
number of the block currently being interpreted.

m +LO0OP (C) Adds m to the loop index. Exit from the
loop 1is made when the resultant index reaches or

passes the limit, if m is greater than zero; or -
when the index is less than (passes) the limit, if m
is less than zero. The value m may be a variable.

v8080: This implementation has conditionals
that may be executed without compiling. DO, +LO0P

Temember and restore the Text Interpreter,
respectively. The range of the loop must be all in
the message buffer (or block) at one time. In

practice, you can enclose a sequence of words by DO
and LOOP and repetitively interpret them as long as
everything can be typed on one line.

m , Stores m into the next available dictionary
cell, advancing the dictionary paointer.

m , CODE nnnn (V) Begin a cade definition named nnnn
as for CODE.  Allow space for m cells for parameters
before beginning machine code. (‘ nnnn will give
the address of the first reserved parameter.)

mn - q 16~bit integer subtraction (m—-n).

m . Prints the value on the stack as an integer,
canverted according to the current number base.

mn / q l6~bit integer divide, m/n. The quaotient is
truncated; any remainder is lost.

mn /MOD v q 16-bit integer divide, m/n. The



' FORTH VOCABULARIES. Page 4-5

OSET
i+

i+!

1SET

2%

2+

2/

quotient is left on top of the stack, the remainder
beneath. The remainder has the sign of the
dividend, m.

mO) q (X, not V) Inverts (toggles) the most
significant bit of m.

m OC £ Leaves a ¢true flag if m is negative.
m O0<= £ (X)) True if m is z2ero or negative.
m O= £ True if m is zero.

m O<> £ (X) True if m is non-zero.

m 0> £ True if m is positive and non—zerao.

m O>= £ (X) True if m is greater than or equal to
zero.

p OSET (V) Store zero at location p.

m 1+ q (X) @q =m + 1.

p I+! (X) Add 1 to the caontents of address p.
mi- q (X)) q = m ~ 1.

p 1SET (V) Store one at lacation p.

m 2% q (X) q = 2 #* m.

m2+ q (VY g =m + 2.

m 2~ q (V) g m - 2.

m2/ q (X) g =m/ 2

nnnn Create a dictionary entry for a
colon—-definition, set compilation mode, and set the
cantext vocabulary equivalent to the current

vocabulary (V: no vocabularies).

1> (CV) Switch mode from compilation to execution.
Compiles a word address ¢that, at execution, will
restore IC and branch to the <code beginning after
D>, I# the code ends with NEXT, the return will be



FORTH VOCABULARIES. Page 4-6

i CODE

i EXIT

<>

<R

correct.

Example: : NNNN . . > .. (assembly
instructions) ... NEXT, ,
{D. H. Rogstad suggests that better notation would
be ;< instead of :>, and D: for the reverse
function. See >: L)

i (C) Terminates a colon-definition and stops

compilation.

FIN (C) Terminates a defining word nnnn, which c¢an
subsequently be executed to define a new word pppp.
Subsequent use of pppp will cause the words between
i and to be executed with the parameter—-field
address of pppp on the stack. Further explained in
Section 3. 10. (V11l: parameter—field address is not
passed at present —— but should be!)

;CODE (C) Stops compilation and terminates a
defining word nnnn. Switch the context vocabulary
to ASSEMBLER in anticipation of a machine—-code
sequence. When nnnn is subsequently executed to
define a new word pppp. the execution—address of
pppp will point to the machine code sequence
following the i CODE of nnnn. Then, subsequent wuse
of pppp (or any other word defined by nnnn) will
cause this machine—code sequence to be executed.

GEXIT (X, Not V) Terminate a colon-definition when
encountered at execution time; compilation is
unaffected.

38 (E) Stops interpretation of a symbolic block.

mn < £ True if m less than n. (2’s complement, 16
bits)
mn <= £ True 1if m does not exceed n. (2’s

complement, 16 bits)

mn=¢Ff True if m = n.

mn <> £ True if m not equal to n.

m <R (V) See >R. OVRO has used <R and R> (bra—ket
naotation) while AST.01 wuses >R and R> (arrow
notation}) to signify moving data te and #from the



FORTH VOCABULARIES. Page 4-7

\’

>R

>IM

?DEF

?TER

return stack, respectively.
mn > f True if m > n. (2’s complement, 1& bits)

>: (V) Switch mode from execution to compilation.
Assembles instructions that save IC and begin the

Address Interpreter just after >:. I# the compiled
code ends with ;, the return will be correct.
Example: CODE nnnn ... > .. {(compiled Forth
waords) ... i

Note that >: and :>» can be used freely in either
CODE or : definitions.

m n > £ True if m not less than n. (2’s
complement, 1& bits)

m >R (C) Pushes m onto the top of the return stack.
See I and RD. (V11 <R).

>IM nnnn (not V) Set the precedence bit of the
following word, making it a compiler directive.

p ? (N) Prints the value contained at address p in
free format, according to the current base.

?DEF nnnn m (Not V) Returns the +#first memory cell
address of nnnn if nnnn can be found in the context
vocabulary; zevro otherwise.

?TER ¢ (X, not V) Returns the character code of the
last character entered at the terminal, or zero if
no character has been typed.

p @ q Leaves the contents q of memory address p.

L (Not V) Stop compilation. The words following the
left bracket in a colon—-definition are executed, not
compiled. Typically, left and right brackets are
used in conjunction with the interpreter-level
conditionals IFTRUE-IFEND to control compilation.

L ssss]l p q (V) Compile literal string ssss into the
dictionary. When control passes to [ at execution
time, the starting byte address p and character
ctount q are returned on the stack ready for TYPE.

J (not V) Resume compilation. Words following the



FORTH VOCABULARIES. Page 4-8

AO>

AQ>=

A<

A=

AL

A>

AD=

AL

AL<=

right bracket are compiled.
J (V) Delimiter for string compiled by L.

“~ nnnn (Not V) Return the compilation address of the
following word; that is, the address which wauld be
compiled in a colon—- definition. Abort if nnnn is
naot found. (V: see %)

p AOL £ (V) Comparison of data with zero (address
mode). p is an address painting to the data.

p AQ<L= £ (V) Address mode campare; true if data
less than or equal to zero.

p AOL> £ (V) Address mode compare; true if data not
equal to zero. :

p A0O= £ (V) Address mode campare; true if data
equal to zero. .

p AOD> £ (V) Address mode compare; true if data
greater than zero. '

p AO>= £ (V) Address mode compare; true if data
greater than or equal to zero.

p q AC £ (V) Address mode compare; true if first
datum less than second. Equivalent to p @ q € <.

p q@q A<= £ (V) Address mode compare; ¢true if first
datum less than or equal to second.

p g AC> £ (V) Address mode compare; true if first
datum not equal to second.

P @ A> £ (V) Address mode campare; true if first
datum greater than second.

p q A>= £ (V) Address mode compare; ¢true if first
datum greater than or equal to second.

P q@ ALE £ (V) Address mode unsigned compare; true
if first datum less than second when considered as
16~-bit unsigned integers.

p 0@ AL<= £ (V) Address mode unsigned compare; true



FORTH VOCABULARIES. Page 4-9

AL>

AL>=

ABORT

ABS

ADOPT

AND

ARRAY

ASSEMBLER

B!

Be

B,

if first datum less than or equal to second.

p q AL= £ (V) Address mode compare; true if first
datum equal to second. (Better notation would be
A=)

p q AL> £ (V) Address mode unsigned compare; true
if first datum greater than second.

p q AL>= £ (V) Address mode unsigned comparei true
if first datum greater than or equal to second.

ABORT Enter the abort sequence, clearing all stacks.,
printing a simple message, and returning control to
the terminal.

m ABS q Leaves the absolute value of a number.

m ADOPT (C, not V) Stores m into the next available
dictionary cell, advancing the dictionary pointer.
(See ,.)

m n AND q Bitwise logical AND of m and n.

m ARRAY nnnn (V) Define a word nnnn ¢that, at
execution, will push the starting address of an
array of m cells on the stack. The m cells are not
initialized and may have random values.

ASSEMBLER (X, not V) Switch the context vocabulary
pointer so that dictionary searches will begin at
the Assembler Vocabulary. The Assembler Vocabulary
is always chained to the current vocabulary.

mp B! (V) The low order B bits of m is stored at
the byte address p. (See \!.)

p Bé m (V) The 8-bit byte at address p is returned
in the 1low order part of m. With luck, the high
order part of m contains the sign extension of the
byte. (I.e. 200(8) ——> 177600(8).) (See \@.)

n B, (V) Compile the low-order byte of n into ¢the
dictionary and increment the dicitionary pointer by
1 byte. (See \.,.)



FORTH VOCABULARIES. Page 4-10

BMOVE

BASE

BEGIN

BELL

BLK

BLOCK

CASE

CHAIN

m n v BMOVE (V) Move v bytes from area beginning at
byte address m to area beginning at byte address n.
(See \MOVE.)

BASE p An integer pointing to the current conversion
base value.

BEGIN (CO+) Mark the start of a BEGIN-END loop. The
words between BEGIN and its corresponding END will
be repetitively executed until the END—condxtlon is
satisfied. Loops may be nested.

v8080: BEGIN and END, like DO and LOOP, may be used
at interpreter 1level ~-— as 1long as the enclosed
range fits on one line or one block.

BELL (X) Activate terminal bell or noisemaker.

BLK p (N) An integer, pointing to the number of the
block being listed or edited.

b BLOCK p Leaves the first address of Block b. If
the block is not already in memory, it is
transferred from disk or tape into whichever core
buffer has been 1least recently accessed. I# the

block occupying that buffer has been updated, it is
rewritten on disk or tape before Block b is read
into the buffer.

m C nann (V) Abbreviatiaon for CONSTANT.

mnCASE ... ELSE m ... THEN or

m n CASE ... THEN m

(C2+, X, not V) If m equals n, m is dropped from the
stack, and the words immediately following CASE are
executed until the next ELSE or THEN. If m does not
equal n, m remains on the stack and the words after
ELSE (or THEN if no ELSE is used) are executed. The
value n is always dropped.

CHAIN vvvv (X, not V) Connects the current
vocabulary to all definitions that might be entered
into Vocabulary vvvv in the future. The current
vacabulary may not be FORTH or ASSEMBLER. Any given
vocabulary may be chained only once, but may be the
object of any number of chainings. For example,

‘every user— defined vocabulary may include the

sequence, CHAIN FORTH.



FORTH VOCABULARIES. Page 4-11

CODE

coMm

CON

CONSTANT

CONTEXT

CODE nnnn Creates a dictionary entry for a code
definition named nnnn, and sets the context
vocabulary to Assembler.

m COM q Leaves the one‘s complement of m.

m CON nnnn (X)) Abbreviation of CONSTANT.

m CONSTANT nnnn Creates a word which when executed
pushes m onto the stack. Since the "constant” m may
be modified by the sequence: qQ ‘' nnnn ! it is
oftentimes advantageous t¢to define a variable as a
constant, particularly if the variable 1is accessed
more often than it is modified.

CONTEXT p (X, not V) An integer that indicates at
which vocabulary dictionary searches are to begin.

CONTINUED

COPY

COUNT

CR

CURRENT

DEC IMAL

b CONTINUED (not V) Continue interpretation at Block
b. The block currently being interpreted is marked
as least—-recently— accessed, so that its buffer will
be wused for storage of Block b, and the contents of
the alternate block will remain in memory.

m n COPY (V) Copy the contents of block m into block
n and mark block n as updated.

p COUNT (m) n (C) The count—-byte n is extracted from
the first memory cell of a message string beginning
at address p,» and left on  the stack. The
character—address m of the first byte of the message
is typically left on the stack or in a register.
Whatever, COUNT is to be used in conjunction with a
following PRINT or TYPE.

CR Transmit carriage return/line feed codes to ¢the
selected output devices.

CURRENT p (X, not V) An integer that indicates ¢the
vocabulary into which new words are to be entered.

DECIMAL Sets the numeric conversion base ta decimal
mode.

DEFINITIONS



FORTH VOCABULARIES. Page 4-12

DIM

DISCARD

DO

DP

DPL

DROP

(vvvv) DEFINITIONS (X, not V) Sets the current
vocabulary (into which new definitions are placed)
to Vocabulary vvvvy (the context vocabulary). vVvVvYVY
need not be specified explicitly.

mn ... pq DIM nnnn (V11) Creates a q dimensional
array m+l by n+l by ... by p+1 memory words in
length.

To access the i, y,..., k—th element of array nnnn,
type iy ... kK nnnn; this will 1leave the

appropriate memory address on the stack.
Note: m ()DIM nnn is equivalent to m 1 DIM.

DISCARD (N) A null—-definition intended for use as a
standard REMEMBER word, as some version of DISCARD
can always be found in the dictionary.

n m DO (C) Begin a loop, to be terminated by LOOP or

+L00P. The laop index begins at m and may be
modified at the end of the loop by any positive or
negative value. The 1looep 1is terminated when an

incremented index reaches or exceeds n, or when a
decremented index becomes 1less than n. Within a
loop, the word I will place the current index value
on the stack.

Loop indices are available to three levels
of nesting. Within nested loops, the word I always
returns the index of ¢the innermast 1loop that is
being executed, while J returns the index of the
next outer looap, and K returns the index of the
second outer loop.

Execution of DO places three parameters on
the return stack: The starting location of the
loop, the index limit, and the index.

v8080: DO may be used at interpreter level;
see +LOOP.

DP p (V) Returns pointer to dictionary pointer.

DPL. p (Not V) An integer, pointing to a

number—conversion parameter: The number of digits
following the fractional point on input or output.
A negative value at DPL indicates that no ". " was

entered on input. or that none is to be printed on
autput.

m DROP Drop the topmost value from the stack.



FORTH VOCABULARIES. Page 4-13

DUMP

bup

EDIT

EDIT

EDITOR

ELSE

END

mn DUMP (V) Dump n memory cells beginning at
address m. Dump is in current number base.

m DUP m m Returns a duplicate of the topmost stack
value.

b EDIT (LX, Not V) The Editor Vocabulary is loaded.
if not already in the dictionary, becoming the
context vocabulary. Block b is listed.

EDIT (V) A constant equal to the block number of the
first block of the standard editor. Type "EDIT
LOAD" to load the standard editor. :

EDITOR (X, Not V) The name of the Editor Vocabulary.
I+ that vocabulary is loaded, EDITOR establishes it
as the context wvocabulary, thereby making its
definitions accessible.

ELSE (C2) Precedes the false part of an IF-ELSE-THEN
conditional or the continuation of a CASE-type
conditional.

£ END (C2-) Mark the end of a BEGIN-END loop. I+ ¢
is true the loop 1is terminated. If # is false.
cantrol returns to the first word after the
corresponding BEGIN.

v8080: BEGIN and END may be wused at
interpreter level. See +L0O0OP.

ERASE—-CORE

ERASE-CORE Marks all block—-buffers as empty. without
affecting their actual contents. Updated blocks are
not flushed.

EXCHANGE

EXIT

m n EXCHANGE (V) Exchange the contents of blocks m
and n and flush.

EXIT (C, Not V) Force termination of a DO-loop at
the next opportunity by setting the loaop limit equal
to the current value of the index. The index itself
remains unchanged, and execution proceeds normally
until LOOP or +LDOOP is encountered. (V: see TERM)

F p (KV) An integer pointing ¢to +the field length
reserved for a number during ocutput conversion.



FORTH VOCABULARIES. Page 4-14

FLUSH

FORGET

FORTH

FORTH

GCH

60-TO

HEAD
HERE

HEX

FLUSH Write all blocks that have been flagged  as
"updated" ¢to disk or tape. Return when output is
completed.

FORGET nnnn Delete nnnn and all dictionary entries
following it. Although nnnn must be in the context
votabulary to be found, the words that follow it are
deleted no matter which vocabulary they belong to.

Normally, FORGET should not be used within a
colon- definition, as it is not a compiler
directive. For such applications, use a word
defined by REMEMBER.

FORTH (X, not V) The name of the primary vocabulary.
Execution makes FORTH the context vocabulary. Since
FORTH cannot be chained to anything, it becomes ¢the

~only vocabulary that is searched ¥for dictionary

entries.

Unless additional wuser vocabularies are
defined:, new user defintions normally become part af
the Forth Vocabulary.

FORTH b (V) A constant whose value is the number of
the first block to be loaded as part of the standard
Forth system. Thus after you do a bootstrap load
from disk or tape, you type "FORTH LOAD" to load the
standard system.

GCH ¢ (Not V) Get a character from the terminal,
i.e., return the ASCII code of the next character
typed. (V: See TYI.)

m GO-TO (EX, Not V) Interrupt interpretation of a
block, rTesume at line m of the current block. GO0-TO
may only be used during loading of a block.

HEAD p Returns a pointer to the first 1location of
the last word defined in the current vocabulary.

HERE p Return the address of the next available
dictionary location. :

HEX (Xv8080) Switch the number base to hexadecimal.
I m (C) Push the topmost return stack value onto the

user stack without disturbing the return stack.
Typically I is wsed to return the L index of an



FORTH VOCABULARIES. _ Page 4-15

innermost DO-loop, but it can also be used to access
values pushed onto the return stack by >R.

12 I2 m (CV11) Equivalent to I 2% I2 is wuseful in
byte  addressing computers to let you index
fullwords.

IF £ IF ... ELSE ... THEN or
£ IF ... THEN
(C2+) IF is the first word of a conditional. If ¢
is true (non-zero), the words following IF are
executed and the words following ELSE are not
executed. The ELSE part of the conditional is
aptional. I¢ £ is false (zero): woards between IF
and ELSE:; or between IF and THEN when no ELSE is
used, are skipped. IF-ELSE-~THEN conditionals may be
nested.

IARRAY IARRAY nnnn (V) Create a word nnnn that will, at
execution time, push the address of its parameter
field on the stack. The parameter field is not
allocated or initialized. You must initialize these
values explicitly, e.g., using ..

IFEND IFEND (EX., Not V) Terminates a conditional
interpretation sequence begun by IFTRUE.

IFTRUE # IFTRUE ... OTHERWISE ... IFEND (EX, Not V)
Unlike IF-ELSE-THEN, these conditionals may be
employed during interpretation. In conjunction with
L and 1, they may be used within a colon— definition
to control compilation, although they are nat to be
compiled. These words cannot be nested. See GO-TO.

IM> IM> nnnn (Net V) Clears the precedence bit of nnnn.
Words with the precedence bit set are compiler
directives,

IMMEDIATE

IMMEDIATE (CVY) Set the precedence bit of the word
Just defined in the dictionary. Like 2IM, but takes
no argument. '

INTEGER n INTEGER nnnn (V) Equivalent to VARIABLE.

J

J m (C) Execute J within a nested DO-laoop to return
the index of the next outer loop.



FORTH VOCABULARIES. Page 4-16

J2

K

K2

LL

LAST

LINE

LIST

LIT

LOAD

LOOP

J2 m (CV}) Equivalent to J 2%

K m (C) Execute K within a nested DO-loop to return
the index of the second outer loop.

K2 m (CV) Equivalent to K 2%,

mn L £ (V) True if m less than n as wunsigned
numbers. (See UL )

mn LL= £ (V) True if m less than or equal toe n as

unsigned numbers. (See U<=. )
mn L= £ (V) True if m equals n. (Better notation
is =.)

mnL> £ (V) True if m greater than n as wunsigned
numbers. (See U>.) '

mn L>= £ (V) True if m greater than or equal to n
as unsigned numbers. (See U>=..) '

LAST p An integer pointing to the address of the
last dictionary entry made, which is not necessarily
a complete or valid entry.

m LINE p Leaves the character address of the
beginning of line m for the block whose number is
contained at BLK.

b LIST (VK) List the block b as 16 lines of 464 ASCII
characters on the selected output device.

LIT m (C, Not V) Automatically compiled before each

literal encountered in a colon-definition, LIT
causes the contents of the next dictiaonary cell ¢o
be pushed on the stack. (V: LIT is anonymous. )

b LOAD Begin interpreting block b. The block must
terminate with ;S or CONTINUED.

LOOP <(C) Increment the DO-loop index by one,
terminating the loop if the new index is equal %o or
greater than the limit. .

v8080: LOOP can run at interpreter level.
See +LO0OP.



FORTH VOCABULARIES. Page 4-17

MAPO

MAX

MESSAGE

MIN
MINUS

MK!

MKe

MOD

MOVE

NAND

NEXT,

NOR

NOT

MAPO p (T) An integer pointing to the #first laocation
in the tape map.

mn MAX q Leaves the greater of two numbers.

n MESSAGE (V) Get line n relative to the first line
of block MSGBLK, strip the trailing blanks. and type
at the terminal. This word lets you define a large
number of messages on disk without tying up main
memory.

m n MIN q Leaves the lesser of two numbers.
m MINUS -m Negates a number (2’s complement).

MK! (V) Mark the present value of DP. Equivalent
to HERE MKVAR !, Useful in assembler programming
for passing parameter addresses. See MKE.

MKe n (V) Obtain the value of DP that was last
marked with MK!. Equivalent to MKVAR @.

Example: MK! 123456 , CODE nnnn S —-) MKe P MOV,
NEXT, This PDP-11 roautine will push 123456 on the
stack. MK! and MK have applications similar ¢to
»CODE and Kitt Peak pseudovariables.

mn MOD r Leaves the remainder of m/n, with the same
sign as m.

p 9 n MOVE Moves the <contents of n memory cells
beginning at address p into n cells beginning at

address q. The contents of p 1is moved #first;
overlapping of data can occur.

(0 10 ' 10 11 4 MOVE clears locations 10 through
14.)

m NAND n (X, Not V) Logical not—and.

NEXT, (V) An assembler word that may be used ¢to
terminate a CODE word. It invokes the Address
Interpreter. In Vi1 and ViO NEXT, assembles a " jump
indirect through IC and increment IC" instruction.

m NOR n (X, Not V) Legical not-or.

m NOT £ (X)) Equivalent to 0=



FORTH VOCABULARIES. | Page 4-18

NUMBER NUMBER Convert a character string 1left in the
dictionary buffer by WORD as a number, returning the
result in registers, internal temporary locations,
or on the stack. The appearance of characters that
cannot be properly interpreted will cause an error
exit.

OCTAL OCTAL Set the number base to octal.

a. n 0. (V) Type n as an unsigned octal number. See
06.

00 n 00 (V) Type n as an unsigned octal number. 0. is
preferred.

OR mn OR q Bitwise logical inclusive OR.

ORrR! m p OR! (V) Form the logical OR of m and the
contents of p. Store at address p.

OTHERWISE A
OTHERWISE (Not V) An interpreter-level conditional
word. See IFTRUE.

OVER mn OVER m n m Push the secaond stack valvue.

PAGE PAGE (Not V) Clears the terminal screen or performs
a similar action on the current terminal.

PICK n PICK Returns the n-th stack value, not counting n
itsel#f. (2 PICK is equivalent to OVER.)

PCH c PCH (Not V) Transmit a character to the selected
autput printer device. See TCH. (V: See TYD.)

PRINT m n PRINT (C Not V) Transmit n characters to the
selected output printer starting at character
address m» which will have been placed on the stack
or in an internal register by COUNT.

PRINTER PRINTER (X, Not V) Select a hard—copy printer as the
output device for all output directed through PCH or
PRINT. See TERMINAL.

GBLOCK b QBLOCK p (X, Not V) Like BLOCK, but may return

while previous contents of block are still being
written to output device.



FORTH VOCABULARIES. Page 4-19

R> R> n (CX) Pop the topmost wvalue from the return
stack and push it onto the user stack. See I and
>R.

READ-MAP

READ-MAP (T. Not V) Read to the next file mark on
tape, constructing a correspondence table in memory
(the map) relating physical block position to
logical block number. The tape should normally be
rewound to its load point before executing READ-MAP.

REMEMBER

REMEMBER nnnn (V920, Nat other V) Define a word nnnn
which, when executed: will cause nnnn and all
subsequently defined words to be deleted from ¢the
dictionary. The word nnnn may be compiled into and
executed from a colon—definition. The sequence
DISCARD REMEMBER DISCARD provides a standardized
preface to any group of transient blocks.

REWIND REWIND (T, Not V) Rewind the tape to its load point,
setting CUR=1.

ROLL uin) uin-1) ... u{l) n ROLL u{n-1) ... u(l) uwin)
Extract the n—th value from the stack, leaving it on
top and moving the remaining values into the vacated
position. (3 ROLL is equivalent to ROT; 1 ROLL is
a null operation; O ROLL is undefined.)

ROT mnp ROTnp m Rotate the topmost three stack
values.

SEMI, SEMI, (V11) This word must be used to ¢terminate
PDP-11 i CODE words.

SET m p SET nnn Defines a word nnnn which, when
executed, will cause the value m to be stored at
address p.

SHOW mn SHOW (V) Type blocks m through n at ¢the
terminal, 3 blocks to a page.

SPACE  SPACE (V) Type one space.
 SPACES m SPACES (V) Type m spaces.

SWAB n SWAB m (V11) Exchange the left and right bytes of



FORTH VOCABULARIES. Page 4-20

n.
SWAP n m SWAP m n Exchange the topmost two stack valvues.
TCH ¢ TCH (Naot V) Transmit a character code to ¢the

terminal, irrespective of output—-device selection.

See PCH. (V: see TYO.)

TERMINAL
TERMINAL Select the terminal as the only output
device, cancelling previous selection of printer,

THEN THEN (CO-) Terminates an IF-ELSE-THEN conditional

sequence.
TYI1 TYI ¢ (V) Input one character c, from the keyboard.
TYO c TYO (V) Output one character to the terminal.
TYPE m n TYPE (C) Transmits n characters to the terminal,

irrespective of output device selection, starting at
the character address m. See COUNT, PRINT.

U< mn UC £ (X, Not V) Like <, but wunsigned (integer
range O - &55395). (See L) :

U<= mn UC= & (X, Mot V) Like <=, but unsigned. (See
L<=)

u> mn U> £ (X, Not V) Like >, but unsigned. fSee L>»)

U>= mn U>= £ (X, Not V) Like >=, but wunsigned. (See
L>=)

UPDATE UPDATE Flag the most-recently referenced black as
updated. The block will subsequently be transferred
auvtomatically to disk or tape should its buffer be

required for storage of a different block. See
FLUSH.

VAR m YAR nnnn (X) Abbreviation of VARIABLE.

VARIABLE .
m VARIABLE nnnn (Not V) Creates a word nnnn which,
when executed, pushes the address of a variable
(initialized to m) onto the stack. (V: See

INTEGER. )



FORTH VOCABULARIES. Page 4-21

VOCABULARY

WORD

XOR

A

\,

\@

\MOVE

VOCABULARY vvvv (EX) Define a vacabulary name.
Subsequent wuse of vvvvy will make vvvvy the context
vacabulary. The sequence vvvv DEFINITIONS will make
vvvvy the current vocabularly, into which definitions
are placed.

¢ WORD (CN) Read the next word from the input string
being interpreted. up to 63 characters or until the
delimiter ¢ is found, storing the packed character
string beginning at the current dictionary pointer.
(V: Delimiter ¢ must be stored in integer DELIM,
which is set to blank by WORD.)

mn XOR q The logical exclusive OR.

np \! (V) Store right hand byte of n at byte
address p. (B! preferred.)

n \, (V) Compile right hand byte of n into next byte
of dictionary. Increment DP by 1 byte. (B,
preferred. )

p \@ n (V) Return byte at address p in rvright hand
part of n. Left hand part of n may contain the sign
extension of the right hand byte. (B@ preferred. )

p @ » \MOVE (V) Move r bytes beginning at address p
to area beginning at address q. (BMOVE - is
preferred. )



FORTH VOCABULARIES. Page 4-22

4.4 SPECIAL VOCABULARIES.

Of the vocabularies presented here., only the standard
editor 1is generally wused outside of Caltech-0OVRO systems.
The others, however, are frequently wuvsed in our local
systems.

4.4, 1 Standard Editor.

The "standard” Forth editor is a very simple editor
based on substitution of fixed—length 1lines in the
fixed-format block. There are 16 lines of 64 characters in
each Forth block.

Type EDIT LOAD (SYSTEM DISK EDIT LOAD <user> DISK it
file system is loaded) to 1load the standard editor. Type
FORGET EDITOR to release the editor vocabulary.

" * s558" As described in standard vocabulary abave.
Copies string ssss into buffer TEXT. String is
padded to the right with blanks as needed to make 64

characters.

( ({ ss88) Copies string ssss into TEXT like ".

BLK BLK p An integer that specifies the number of the

" block you’re currently working with.

Example: 144 BLK ! to edit block 144,

BT BT Type the current block. Equivalent to BLK e
LIST.

D n D Delete line n from the current block and mave
lines n+i, n+2, ..., 16 down one line. Line 14 is

filled with blanks. The old contents of line n are
moved into buffer TEXT.

I n I Lines n+l, n+2, ..., 19 are moved down one line.
(Line 16 1is lost.) The contents of TEXT are moved
into line n+1. ‘

R n R The contents of TEXT are moved into line n.

T n T Type line n.



FORTH VOCABULARIES. Page 4-23

4.4.2 Character Strings.

Character string manipulations are a central part of

more sophisticated text editors. Standard Forth has no
support of strings; thus the following vocabulary was
developed.

Variable length character strings (0-463 characters) may
be placed on a special string stack (which has a fixed
maximum depth). Various operations, prefixed by ~, operate
on this stack. :

Type STRINGS LOAD (STRINGS /LOAD i+ +file system |is
loaded) to load the strings vocabulary.

~@ p ~@ ssss Get string ssss, located at p, and push it
on the string stack. (Byte O of the string is its
length. )

~1 ssss p ~! Pop ssss from the string stack and store

at location p.

~CLR ~“CLR Clear the string stack. Note: the string
stack is not cleared by ABORT.

~LEN “LEN n Get length n of top string on string stack.

~~LEN ~=-LEN n Get length n of second string on string
stack.

ATYPE ssss ~TYPE Type ssss and pop off string stack.

~Ce n “C@ ¢ Retrieve n—th character from ¢top string.,
push  its ASCII value ¢ on Forth stack. Character O
is the string length.

~C! tcn ~C! ASCII character c replaces n-th character
of top string.

~LEN! n “LEN! Set length of top string to n. Equivalent
ton O ~C!.

ANULL *NULL ssss Push null string ssss (length O0) oan
string stack.

" " ssss" Push a 1literal string ssss onto string
stack. Similar to " in standard editor.



FORTH VOCABULARIES. Page 4-24

In compile mode: Compile ssss into the dictionary
with a call to a string literal routine that will
push ssss onto the stack at execution time.

(¢ (¢ ssss) Like " except the delimiter is ). (( lets
you enter quotes in a text string.

~SUBSTR
ssss N m ~SUBSTR tttt New string tttt is the
substring of ssss beginning at character n and
ending with character m.

“LINE n LINE ssss String ssss is drawn from line n of the
block whose number is in BLK. Trailing spaces are
deleted.

~LINE! ssss n LINE! S8String ssss is stored in line n of
BLK. Blanks are added to the right to make 64
characters.

-SPACES ssss —SPACES tttt String tttt is ssss with all
trailing blanks removed.

“~CAT rrrr ssss ~CAT ¢tttt Strings rrrr and ssss are
concatenated to form string tttt.

“PAD rrrT ssss n “PAD tttt String rrrr is padded to the
right using the first character of ssss so that the
resulting string tttt is n characters long.

=STRINGS
rrrr 555 =STRINGS + Compare strings rrrr and ssss,
return £=1 1if equal (including in 1length), ©
otherwise.

~SUBSTR!
rrrr ssss n m “SUBSTR! ¢ttt Result is string rrrr
with string ssss inserted instead of substring n
through m of rrre. The length of ssss does not have
to equal the length of the substring to be replaced.

~INDEX ssss tttt ~INDEX m Search string ssss for the first
gecurrence of tttt 8as a substring. Returns
character position of match if found, O otherwise.

“STRING ssss "STRING nnnn Like CONSTANT, define nnnn., which,
when executed, will push ssss on the string stack.



FORTH VOCABULARIES. Page 4-25

4.4.3 The Extended Editor.

The Forth Extended Editor (XED) is a superset of the
standard editor. In addition to the line-at-a-time
commands, it allows you to search for character strings:
alter strings identified by context, etc. XED uses the
Character Strings vocabulary described above.

Type XED LOAD (XED /LOAD if file system is 1loaded) ¢to
load the extended editor. XED will avtomatically load
STRINGS. Type FORGET EDITOR to release the XED and STRINGS
vocabularies.

FT ssss FT Find the first occurrence of ssss beginning
at the current line number (L#) in the current block
(BLK) and type the whole line containing the string.
If a match 1is not found in the current block.,

continue at BLK + 1 etc. {(You have to type 2
CTRL-Cs tao stop in RT11 or RSX1l1l.)

Example: " THIS" FT to find the first occurrence of
"THIS" in or after the current block.

FR rrrr ssss FR Find the first occurrence of rrrr in
the current block beginning at the current line;
replace it with ssss. The resulting line is
truncated at &4 characters.

Example: " THIS" " THAT" FR to replace the first

occurrence of "THIS" with "THAT®.

FD ssss FD Find the first occurrence of ssss in the
current block beginning at the current line; delete
this substring of the line. Pad the line back to &4
characters with blanks. :

FI rrrr ssss FI Find the first occurrence of rrrr  as
above; insert ssss immediately following rrrr.
Truncate the line at 64 characters.

HT n HT Hold line n of current block on string stack
and type.
HR n HR Replace line n with the string on the stack

(like R), but save the old contents of line n on
string stack.

HD n HD Delete line n (like D), but hold 1its former
cantents on the string stack.



FORTH VOCABULARIES. Page 4-26

HI n HI Insert string on line following n (like I), but
hold old contents of line 16.

LT LT Type current line number and line.

BT BT Type current block. Reset line number to 1.

L? L? Type current line number.

L1 L1 Set current line to 1.

HOLD ntm tDLD Put lines n — m of current block on string
stack.

UNHOLD n m UNHOLD Replace lines n — m from string stack.
+B +B Increment BLK by 1.
-B —B Decrement BLK by 1.

ENTER ENTER Beginning at the current line of ¢the current
block, insert text exactly as typed. Each line is
terminated by the user typing a carriage return,
which fills out the current line with blanks and
advances L#. Typing more than 64 characters between
carriage returns results in a "bell" and automatic
line advance. The line number and a backslash are
output before each line is input. Input terminates
with a CTRL-Z character. BLK automatically advances
atter line 16 of the current block is entered.

CLR-BLK n CLR-BLK Set block n to blanks.

4.4 4 Deférred Operations.

A class of operations modelled on the addressing moades
of the PDP—11 has been developed by H W. Hammond. These
are particularly valuable when you need to work with
pointers to access successive elements of data structures.
Straightforward generalizations to data types other than
l6-bit integers are possible.

3! mp ) Store m at the address q found at location
p. Equivalent tom p @ !.



FORTH VOCABULARIES. Page 4-27

e p )@ m Get the contents of address q which is +found
at location p. Equivalent to p @ @.

ye! p )@! Equivalent to p e @ p !.

I+! mp )+! Staoare m at address q found at location p.,
then increment P by 2 bytes. (PDP-11
"auto—-increment") Equivalent to m p @ ! 2 p +!f.

}+@ p )+@ m Get the contents of q found at location p,
then increment p by 2 bytes. Equivalent to p € @ 2
p +!

-)! mp —)!' Decrement contents of p by 2 bytes, then
store m at location q whose address is found at
location p. ("Auto—decrement") Equivalent to -2 p+!
p € !.

-)e p —)@ m Decrement contents of p by 2, then get

contents of location q whose address is found at
location p. Equivalent to -2 p +! p @ @.

4.4, 5 Double Preciéion Math.

The Double Precision Math Package (DPMATH) includes
operations that deal with 32-bit integers as well as a
library of mathematical functions that use 32-bit integers.
A double-precision number is represented in (PDP-11) memory
by the high—order part in the lower word and the low-order
part in the higher word of memory. The left-most bit is the
sign, which applies to the full number.

The DPMATH vocabulary was developed first for the 27-m
interferometer system (PDP-11/20) by H. W. Hammond. It
was carried over to the VLBI Processor (PDP-11/740 = GT44)
without ma jor change. The nomenclature followed the
then—current Faorth usage at other sites. Since that time an
improved notation has been adopted.

The ariginal vocabulary uses a “"." (period) postfix to
indicate double precision. The new system uses a prefixed
character to indicate precision and ¢ype. "D" and “F"
indicate double precision (32-bit) integer and
single—precision (32-bit) floating point, respectively.
(N. B. The VLBI Processor uses a prefix "F" and postfix ".



FORTH VOCABULARIES. Page 4-28

to indicate double precision floating point. We have no
agreed—upan standard notation for this case, but it seems
that a wunique one-—character prefix (["G" 7?1 would be

preferable to the pre- plus post-fix scheme. ) Pure stack
operations (SWAP, DUP, etc.) use a prefixed "2" or "4" for
double or quadruple word operations. (Such operations may
be useful even for single-precision data.)

In the following documentation the origimnal (postfix
*. ") notation is given first with the newer (preferred)
notation second in parentheses.

4.4 5.1 Data Types. -

INTEGER.
u INTEGER. nnnn Like INTEGER, define nnnn which
will push the address of a 32-bit integer (initial
value u)} on the stack. (2VARIABLE or 2VAR is
preferred for new systems. )

C. u C. nnnn  Like CONSTANT., C. defines a 32-bit
constant nnnn which when executed will push value u
an the stack. (2CONSTANT, 2CON, or 2C preferred for
new systems. )

4.4 .5 2 Basic Operations. -

SWAP. u v SWAP. v u Exchange top two 32-bit numbers on
stack. (2SWAP preferred for new systems. )
DROP. v DROP. Get rid of top 32-bit number from stack.

(Or, drop 2 16~-bit numbers. ) (2DROP preferred.)

DUP. u DUP. u u Duplicate top 32-bit number on stack.
Equivalent to OVER OVER. (2DUP preferred. )

OVER. v v OVER. u vu Like OVER for 32-bits.
(20VER preferred.) !. up ! Store u at address p.

e. p @ u Get the 32-bit integer at location p. (2e
preferred. )



FORTH VOCABULARIES. Page 4-29

<R. u <R. Move u to the return stack. (The symbal 2>R
is preferred for new systems. )

R>. R>. u Get u from the return stack. (2R>
preferred. )

+. U v +. w Compute 2’s complement sum of u and wv.
(D+ preferred for new systems.)

-. uUuv - w Coampute u - v. (D- preferred. )}

MINUS. u MINUS. -u Negate u. (DMINUS preferred. )

ABS. u ABS. v Compute absolute value of wu. (DABS
preferred. )
S>D n S>D u Convert a 1é6~bit number n into a 32-bit
number u by extending the sign to the left.
OSET. p OSET. Store a 32-bit zero at p. (208ET is ¢the
: logically preferred - but confusing alternative
notation. Solution: O0SET as a preferred
notation?)
1+, p 1+!. Add 1 to double precision number at p.

(Di+! preferred.)

4.4.5.3 Comparison Operations. -

The following operations provide comparisons equivalent
to the  words with corresponding names without the terminal
".". These words take 32-bit operands and return a 16-bit
logical #lag.

0= 0<>. o<. 0>. 0<=. 0>=.
L= L<. L>. L<=. L>=.
<. <. > <= >=.

Preferred notation:
DO= DO<L> DO DO> DO<= DO>=

D= D< D> D<= D>=



FORTH VOCABULARIES. Page 4-30
D<o D< D> D<= D>=

The following words are comparisons in the address mode
which are comparable to their single—precision counterparts.
Note: These are used only in the VLBI Processor system. A
better notation might use a different prefix ("B" 7).

AQ=. A0S, AO<. AQ>. AOL=, AOD=,
AlL=. AL, AL>. ALL=. AL>=,
A, AL, A>. Al=, A=,

4.4.5.4 Shift Operations. -

In the following an arithmetic shift refers to a shift
in which the sign bit never changes when shifting left.
When shifting right the sign bit is copied into successive
bits to the right. A logical shift treats the sign bit like
any other.

ASHIFT n m ASHIFT r Arithmetic shift, result
T = n % 2%%m). I# m>0, shift is to left; m<O, to
right. (ASH may be preferred.)

LSHIFT n m LSHIFT r» Logical shift left m places. m may be
negative. (LSH may be preferred.)

ASHIFT. u m ASHIFT. v Arithmetic shift like ASHIFT, but for
32~-bit integers. (DASH preferred.)

LSHIFT. u m LSHIFT. v Logical shift 1like LSHIFT, but for
32~-bit integers. ({DLSH preferred.)

ROL n m ROL r Rotate n left m places. Bit 15 (the sign)
rotates into bit O m may be negative.

LSsL n mLSL r Logical shift left n by m places. {m must
be positive.)

LSR nmLSR r Logical shift right n by m places. (m
must be positive.)



FORTH VOCABULARIES. Page 4-31

ASL

ASR

LSL.

L.SR.

ASL..

ASR.

4.4.5.5

Q.

n m ASL r Arithmetic shift left by m places. (m
must be positive.)

n m ASR r Arithmetic shift right by m places. (m
must be positive.)

u m LSL. v Logical 32-bit shift left by m places.
(DLSL preferred, m must be positive.)

v m LSR. v Logical 32-bit shift right by m places.
{DLSR preferred, m must be positive.)

U m ASL. v Arithmetic 32-bit shift 1left by m
places. (DASL preferred, m must be positive.)

u m ASR. v Arithmetic 32-bit shift right by m
places. {DASR preferred, m must be positive.)

Multiplication, Division, And Normalization. -

U v w Compute w = u*v, low order 32 bits in
result. (D# preferred.)

uv /. w Compute w = u/v. (D/ preferred. )

u v Qi w Computer w = u#%*v, where u, v, and w are
scaled with the binary point to the vright of the

"sign bit, i.e. in the range -1 to +1. The resvlt

Q/.

NOR.

is the high—-order 32 bits of +the product. (No
obvious preferred notation except to assign a new
prefix letter: R#* ?)

u v Q/. w Compute w = u/v, with the same scaling as
Q3. (R/ preferred?)

u NOR. v n Result n is the number of bits u must be
shifted 1left so that bit 15 is different from bit
14; v is the resulting normalized 32-bit number.
{DNOR preferred. )



FORTH VOCABULARIES. Page 4-32

4.4 5. 6 Mixed—mode Operations. -

The following words operate on one 32-bit and one
16-bit number.

M v n Mt v Compute the low-order part of the product
u¥n,

M/MOD unM/MOD vm Divide 32-bit number u by 16-bit
number n to obtain 16-bit remainder m and 32-bit
quotient v. NMote that remainder and quotient are in
reverse order compared to /MOD. (This definition
should be changed to correspond.)

M/ vn M/ v Divide 32-bit number u by 14—bit number n
to yield 32-bit quotient v.

MOVER v n MOVER u n u Push the 32-bit number on the stack
over the 16—-bit number.

MSWAP un MSWAP n v Interchange arguments on the stack.

4.4.5.7 Number Output. -

The following words are provided in the DPMATH package
on the 27 m system and on the VLBI Processor:

DD.. u n DD. Type variable v with scale #factor n. n
specifies the number the number of digits to appear
to the right of the decimal point. E.g. 123. 1
DD. types 1.23, while 123. 4 DD. types 0. 0123.
D.D v DD Type the decimal value of the 32-bit number u.
00. v 00. Type the unsigned octal value of u.

The following words are provided on the 10 m system and
in some other Forth systems:

D. u D Type u as a decimal number with as many
columns as required.

D.R u x DR Type u as a decimal number rtight justified
in a field of x columns.



FORTH VOCABULARIES. Page 4-33

4.4.5. 8 Functions. -

SART. u SGRT. v Equare root. (DSGRT preferred.)

ATAN. u v ATAN. w Arctan(u/v) preserving quadrant
information. Result w is in Binary Angular Measure
(BAM)}. (In BAM, O degrees = 0, 90 degrees =
40000(8), 180 = -180 = 100000(8), etc.) (DATAN

preferred. )

SIN. u SIN v Result v, scaled in the interval -1 —— +1
(binary point to the right of the sign bit), is the
sinme of angle u in BAM. (DSIN preferred.)

cos. v COS. v Compute cosine similar to SIN. (DCOS
preferred. )

4. 4 6 File System.

The typical Caltech-0OVRO Forth system has one "user" at
a +%time, but many wusers sequentially in time. In this
environment, confusion over allocations of block storage is
a significant problem. Particularly with the VLBI Processor
system, many non—expert persons potentially need to edit
blocks. The Forth File System (FFS) is intended to
alleviate the problem of disk allocation and protection.

FFS divides the PDP—-11 Forth block file (which may be a
file within an RT-11 or RSX-11 file structure) into "user

files". Each user file may contain up to 512 blocks.
numbered O ~ 511. A user refers to his blocks Jjust as in
Forth without FFS, i.e., through BLOCK, LIST, etc. Block
numbers in the wuser file are logical block numbers; FFS
maintains a map (User File Directory - UFD) of

correspondences between logical and physical block numbers.
(“"Physical" means numbered in the sense of non—FFS systems;
FFS physical block 10 may correspond to an arbitrary
hardware disk block when running under RT—11, for example.)

A table of available disk blocks is maintained in block
"AVAIL". It is a bit map with each bit signifying the
availability (if 1) of a particular physical block. A user,
after his UFD is set up, may request up to 512 blocks to be
placed in his file. Initially, no blocks are allocated;
i.e. any block reference will cause an error message. The



FORTH VOCABULARIES. Page 4-34

user must assign himself blocks using ASNBLK. Blocks are
assigned one at a time and are given specific logical block
numbers in the user’s file. Blocks do not have ¢to be
assigned continuously; blocks O, 1, and 3 may be assigned

(using ASNBLK) while block 2 is unsassigned. Thus the wuser
only needs to assign the particular logical blocks he will
be using.

An unneeded block can be returned to the available pool
with the word RLSBLK.

A user file is specified by a numeric constant (1 -
511). A suitable constant word would normally be defined to
specify the file, e.g.: SYSTEM, STRINGS, VLBI., etc. At all
times, Forth/FFS maintains a disk "context"” which specifies
the user file from which all blocks are taken. The user may
change wuser files by wsing DISK, e.g.. SYSTEM DISK. The
file must have been previously defined.

Typical user #files will contain software packages such
as floating point, VLBI processor software, diagnostics,
etc. A special word has been defined to load such packages:
/LOAD. I+ the user types DIAGNGCSTICS /LOAD: the diagnostics
user file is loaded at logical block O /LOAD preserves
context, i.e. if the. current user file is SYSTEM, SYSTEM
will be current after a /7L0OAD command. Thus /7L0OADs may be
nested.

A group of words that create and manipulate UFDs are
accessible through (FILES) LOAD. You must first FORGET
FILES, then type (FILES) LOAD. When (FILES) is running., FFS
is disabled. It is intended that only system maintainers
("experts®”) will need to run (FILES).

4.4 41 Standard File System Vocabulary. -

The fellowing wards are loaded if FFS5 is implemented in
the standard system:

DISK n DISK Set current wuser file (context) ¢to n.
Normally n 1is provided by a CONSTANT word, e.g.
SYSTEM, STRINGS, etc.

ASNBLK n ASNBLK Get a block from the available pool, clear
it to blanks, and assign it the logical bloeck number



FORTH VOCABULARIES. Page 4-35

n (O —- 511) in the cufrent vser file. Block n must
previously have been unassigned.

RLSBLK n RLSBLK Deassign logical block n from the current
user file and return it to the available pool.

/LOAD n /L0OAD Load from block O of user file n. The wuser
file which was current before /LOAD is current after
/L0OAD.

/COPY mn v /COPY Copy block m from user file n to block r
of the current user file. Example: MSE DISK 13 DHR
10 /COPY copies block 13 of disk DHR to block 10 of
disk MSE.

/EXCHANGE ‘
mn T /JEXCHANGE Like /COPY, but the contents of the
two blocks are exchanged.

These words are updated to imply references to logical
block numbers in the current user file:

LOAD BLOCK LIST SHOW COPY EXCHANGE

4.4 6.2 File Maintenance Vocabulary. -

The following words are accessible by typing FORGET
FILES (FILES) LOAD. In this mode, all block references are
physical.

UFD UFD Get an available block and designate it as a UFD
for a new user file. The file number is typed by
UFD. This number should be defined as a constant
with the name that will be used to reference the
user file.

STAV n STAV Set physical block n ‘“"available®. (Set
corresponding bit in AVAIL ¢to 1.) No check for
errors is made.

SNAV n SNAV Set physical block n "not availabléW

SMFD m n SMFD Store value m in word n in Master File
Directory (MFD). Note: n 1is a word, not byte,



FORTH VOCABULARIES. Page 4-36

address.
LMFD LMFD Dump MFD block.
LUFD n LUFD Dump UFD corresponding to user file n.

XASN m n XASN Define physical black m as logical block n
in the current user file. No checks for errors or
conflicts are made.

TRANSFER
mn r s TRANSFER Logical block m of #file n is
transferred to block r of file s. The data are not
moved: only ownership is transferred.



APPENDIX A

PDP-11 IMPLEMENTATION.

A. 1 GENERAL CHARACTERISTICS.

The DEC PDP-11 is a 16-bit computer architecture that
has been realized in many models. OVRO operates 4 distinct
types of PDP-11: two PDP-11/40s (VLBI Processor and 10 m
telescope control), a PDP-11/20 (27 m interferometer),
PDP-11/03s (also known as "LSI-11s", for remote pointing of
the 10 m antennas and of the 39 m antenna), and a PDP-11/05
(also known as a "GT40", uvsed for the 1024-channel
autocorrelator).

Several Forth systems have been developed for these
machines. One (for the 11/20) runs as a standalone system
using ?-track magnetic tape for block I/0. Most of the
other systems bhave disk storage and so0o can run the DEC
operating systems. The VLBI Processor and autocorrelator
use the RT-11 operating system, while the 10 m control
computer runs RSX-11/M.

Forth on the 11/20 is based on a specially formatted
F—-track 800 bpi tape. Direct access ("update in place”) is
possible because long inter—record gaps are written after
data blocks. The sequence of records on tape is as follows:

(beginning of tape marker}
(long inter—-record gap)

(12 word label record "1")

1]
t

{standard inter—-record gap)

&
L}



PDP-11 IMPLEMENTATION. ; Page A-2

(data record. 1024 bytes)

(long inter-record gap)
(12 word label record "2")

(standard inter—-record gap)
]

(data record 2. 1024 bytes)
1

Label records are required to provide indexing so that a new
black <can be found reliably without rewinding the tape from
its current position. The label consists of 12 identical
words each containing the number of ¢the data block to
follow. (12 words are required so that the 1label 1is not
treated as a “"noise record".)

Data records are found by referring to the labels. An
existing data record can be overuritten safely if the tape
is positioned by first reading its label record. The 1long

inter—record - gaps insure that label records are not erased
by updating data.

The direct access tape method is not particularly
efficient in use of tape because long interrecord gaps
account for about &0%L of the tape used. Nevertheless 1000
Forth blocks will fit in 500 feet of tape.

PDP—-11s use the standard 7-bit ASCII character set with
one character right-—justified in an 8-bit byte. PDP-11
Forth recognizes certain characters for control purposes:

CHARACTER FUNCTION
CTRL-A (RT-11 only) After you stop type out with CTRL-S,

you may type CTRL-A to type jJjust one more page af
text. This is useful when using CRT terminals or

. GT ON".

CTRL-C Interrupts execution of any program and rteturns
control to the keyboard. Two CTRL-Cs may be
required if the program is not 1listening to the
keyboard.

RT—11: RT-11 types "." and you may type any monitor



PDP-11 IMPLEMENTATION. : Page A-3

CTRL-O

CTRL-Q

CTRL~-S

CTRL-U

RUBOUT

command (e.g. REENTER or RUN). REENTER will let
you resume Forth in most cases (but not on the VLBI
Precessor).

RSX—-11: RSX types "MCR>" and you may type any
monitor command, such as ABORT. Forth can not be
reentered in the current version.

(RT11 and RSX11) Cancels type out #from a Tunning
program, but program continues. Allows you to skip
lengthy listings. A second CTRL-0O turns on type out
again.

(RT11) After you type CTRL-S to stop type out, you
may type CTRL-Q to resume. Type out will not staop
again unless you type CTRL-S.

(RT11) Stops type out from a running program in such
a way that no ovutput will be lost. The program
continues to run until the output buffer is Ffull.
CTRL—-Q or CTRL-A may be used to restart output.

Cancels the entire line you have just typed in.
Only effective before you type "return".

Cancels the last character you have just typed in.
Same as DEL or DELETE.

The 8 PDP-11 registers are allocated according to the
following table:

REG. NAME FUNCTION

0 - General Use

1 T Stack top or General

2 TT Multiply/Divide or General

3 - General Use

4 S Forth Stack Pointer

S5 IiC Forth Instruction Counter

6 R Forth Return Stack Pointer and
PDP-11 Hardware Stack Pointer

7 - PDP~-11 Program Counter



PDP-11 IMPLEMENTATION. : Page A-4

A.2 DICTIONARY FORMAT.

The PDP—11 dictionary format was featured in Section
3.3 of this Manual and will not be repeated herve.

A.3 ASSEMBLER.

Three types of instructions are supported by PDP-i1
Forth: zero—, one—, and two-operand instructions. Forth
words 10P and 20P are provided to define single and double
operand instructions, respectively.

10P defines words (like CLR,) which require one
argument on the stack. The argument specifies ¢the
addressing mode and register. For example
3 CLR,
is equivalent to the Macro-11 1line
CLR R3,

which clears register 3.

For more complicated types of addressing a .set ot
auxilliary words has been provided as follows:

ARGS SYMBOL  VALUE ADDRESSING TYPE

r ) 10 register deferred

r I+ 20 auvto—-increment

r e)+ 30 auto-increment deferred
T - 40 avto—-decrement

T e-) S0 avto—-decrement deferred
or I) - &0 indexed

cr @I 70 indexed deferred

dst \ 100000 byte mode

dst B 100000 byte mode (preferred
notation}

v # 27 immediate mode

a e# 37 absolute mode

a P &7 relative mode

a er 77 relative deferred mode



PDP-11 IMPLEMENTATION. Page A-5

In this table r stands for any register (0-7), o stands for
a 16-bit offset, dst stands for a complete destination
specification (e.g. 4 )+ ), vy stands for a 1é6-bit integer
value, and a for a 16-bit address.

Examples of typical assembler constructions for single

operand instructions follow with their Macro-11
counterparts:
3 CLR, ' CLR R3

Clear register 3 to zero.

8 -) TST, TST —-(S)

Subtract 2 from register S5 (4) and test the data at
the 1location to which 8 now points. This is a
simple way to reserve a word on the stack.

134 1 I) INC, INC 134(R1)
Increment the data word found at the address 134 +
{contents of register 1),

134 1 I) \ INC, INCB 134(R1)

134 1 I) B INC, INCB 134(R1) (preferred
notation. )

Increment the data byte found at the address 134 +
(contents of register 1).

XYZ P CLR., CLR XYZ
Clear the data in variable XYZ. (The assembler uses
the relative addressing mode. )

XYZ @# CLR, CLR @#XYzZ

Clear the data in variable XYZ. (The assembler uses
the absolute addressing mode.) The P and @# modes
are equivalent in most cases. '

Double operand instructions require both a source and a
destination field which can be defined with the mode words
as described above. A few examples:

8 =) 112 2 1) MOV, - MOV 112(R2), -(S)
Move data from address 112 + (contents of register
2) to the stack, after having subtracted 2 from
register S (4). (You use the construction § —-) as a
destination to push data on the Forth stack.)

AYZ P —-10 # MOV, MOV #-10, XYZ



PDP-11 IMPLEMENTATION. - Page A-6

Maove the immediate value (—10) into variable XYZ.

S )+ T MUL, MUL T.(S)+

Multiply register T (1) by the top stack value, pop
the stack, and return the praoduct in T (1) and TT
(2). Note that the MUL instructionm (like DIV, ASH,
etc. ) may have only a register type "source" field.

Conditional branches (IF, THEN, BEGIN, etc.) are
handled through the PDP-11 BR—-type instructions. The
following Forth words are available as constant definitions:

R s e SR el SRal meee Sl

These test the PDP-11 condition codes the same way as the
branch instructions Bxx, where xx is replaced by one of the
two letter codes.

To make an assembler conditional branch you give the
following assembler commands:

<set up condition codes (TST)> xx IF, <true code> THEN,

Yaou first set up the condition codes; this can be a
byproduct of some arithmetic (e. g. from an ADD instruction)
or the result of an explicit TST or CMP operation. Next

give the two letter condition code from the list above,
followed by IF,. The IF, will assemble the appropriate
branch instruction. (Actually, the branch around the "true
code"” must occur when the condition you specify is false, so
the branch that is assembled is the logical inverse of the
condition type you specify.)

An example:

3 2 ¢cMP, EQ IF, FLAG P 1 # MOV, THEN,

T e e e St —————— - o— — to——————

This is assembled like the following Macro-11 code:

CMP 2,3

BNE 1%

MOV #1, FLAG
1%:



PDP—-11 IMPLEMENTATION. ' Page A-7

The BEGIN, — END., construction works in a similar way:
BEGIN, <loop code> xx END,

where xx is a condition from the same list. As a concrete
example

BEGIN, O DEC, MI END,

translates to the following Macro-il1l code:

1$: DEC O
BPL 1%

Following is a 1list of the PDP-11 Forth assembler
op—codes: ‘

010000 20P MOV, 020000 20pP CMP, 030000 20P BIT,
040000 20P BIC, 050000 20P BIS, 060000 20P ADD.
160000 20P SUB, 070000 20P MUL, 071000 20P DIV,
072000 20P ASH, 073000 20P ASHC., 074000 20P XOR.
004000 20P JSR,

S000 10P CLR, 5100 1QP COM, 5200 10P INC, 5300 10P DEC,
5400 10P NEG., 5500 10P ADC, 5600 10P SBC, 5700 10P TST,
&000 10P ROR: 6100 10P ROL, 6200 10P ASR, 4300 10P ASL.,
0100 10P JMP, 0200 10P RTS, 0300 10P SWAB, 0240 10P CLEAR,
0260 10P SET, &700 10P SXT,

NEXT, IC 30 + JMP, . SEMI, IC R 20 + MOV, NEXT,
CLC, 1 CLEAR, ; : RTI, 2 ., : WAIT., 1, . HALT, O ,
SEC, 1 SET. Do POUMP, .
Notes:
1. The following operations are invalid on the
PDP-11/04, /05, /10, and /20: ASH, ASHC, XOR, SXT,
MUL, DIV,

2. Floating point operations are not defined in ¢the
basic vacabulary. :



APPENDIX B

THE PDP-10 IMPLEMENTATION.

B.1 GENERAL CHARACTERISTICS.

The PDP-10 (DECsystem—10) is a 346-bit computer that
uses 7-bit ASCII character codes. The Caltech PDP-10 is
operated by the Computing Center and runs the TOPS-10
timesharing system with up to about 45 simultaneous jobs.

Forth for PDP—-10 has been written in the MACRO-10
assembly language to run under TOPS—10. Forth relies on the
operating system for terminal and disk I/0. It occupies a
minimum of 4K words, but may access up to the maximum S6K
words normally allowed any (CIT) PDP-10 job.

The character set is the full 7-bit ASCII, with wupper-
and lower—case characters distinguished. (All standard
Forth words are defined in wupper case.) Certain control
characters are treated specially by the operating system; a
partial list of these follows:

Character Action
CTRL-C (~C) Stop Forth and return to monitor level.

(Two ~Cs will be needed to stop if job is not
listening to terminal.)

CTRL-0O Q) Stop printing at the terminal. Job
cantinues running. A second “~0 will resume
printing.

CTRL-Q@ (~Q) Resume printing after suspended by ~G.

CTRL-R ("R} Retype current input line. Useful after



THE PDP-10 IMPLEMENTATION. Page B-2

gou'’‘ve used <rubout> several times.

CTRL-S (~S) Suspend printing at terminal and suspend
Job. I e. no owvtput will be lost. Resume with ~Q.

CTRL-T (~T) Monitor +types a 1line giving status of
current job: cpu time, core, etc. '

CTRL-U (~U) . Monitor deletes entire 1line typed in ¢to
date.

<{rubout> Monitor deletes last character typed in.
Deleted character is echoed after "\" is typed.

(<rubout> = <{deletel)

Forth’s block storage on the PDP-10 is the +file found
by the file specification: DSK: FORSYS. DAT. The Forth
kernel uses “dump-mode” I/0, 2 physical blocks at a time, to
retrieve and store Forth blocks. Becauvuse a physical block
is 128 words long, the Forth block has room for 5 x 256 =
1280 characters in the standard PDP-10 format (left
Justified, extra bit = 0). So that the last 256 characters
are not wasted, . the PDP-10 Forth editor operates on 20
(decimal) lines of 64 characters.

Several words peculiar to the PDP-10 environment are
provided. SAVE preserves essential Forth information and
returns to the monitor. A monitor “SAVE <filespec>" command
will then save the Forth core image in such a way that a
maonitor "RUN <filespec>" command will restart Forth. In
this way it is not necessary to use the Forth LOAD each time
a program is to be run.

CORE, which takes one argument on the stack, allocates
the specified number of 1K word blocks of PDP-10 memory to
the Forth job. The stacks are moved up or down, as
appropriate. CORE will not allow you to have negative
stacks; if you say "Q CORE", you will get the lowest even
number of kilowords in which your dictionary plus a modest
stack will fit

A complementary word, CORE?, returns a number on the
stack which 1is the number of memory words unused in the
current job, i.e. the distance between the head of the
dictionary and the initial stack pointer.



THE PDP-10 IMPLEMENTATION. Page B-3

WOPEN is required if you wish to write Forth blocks
As Forth comes wup, access to DSK: FORSYS. DAT is read-only.
WOPEN opens the file for output. WCLOSE <closes the block
I1/0 #ile for writing. but leaves it open for reading. WOPEN
and WCLOSE facilitate sharing of FORSYS. DAT blocks between
simultaneous Jobs. (TOPS—10 allows only one job at a time
to open a file for writing.)

If it is unnecessary to refer to any Forth blocks for a
given Forth application, you may type NOFORSYS and then SAVE
the core image. When you run the core image, FORSYS. DAT is

not opened at all. In this situation the file does not have
to be present in your directory. (FORSYS undoes the effect

of NOFORSYS. )

The first 16 PDP-10 memory words are special high-speed
registers, which are allocated for special Forth functions.
CODE words have to respect these allacations at least to the
point of restoring critical registers after wuse. The
current register allocations are-as follow:

Reg. # Name/status

(octal)

0O -7 Available

10 vV (available)

11 DP (critical)

12 T (critical)

13 TT (available)

14 SP (critical)

15 IC v

16 Available

17 RP (critical)
Register DP is ¢the dictionary pointer: T always

contains the same value as the top stack value; TT is an
auxilliary register useful in multiply/divide operations;
8P is the stack pointer; IC is the Forth instruction
counter; and RP is the return stack pointer. Register 16
is left unassigned because it is the register used by
Fortran to pass parameters.



THE PDP-10 IMPLEMENTATION. Page B-4

B.2 DICTIONARY FORMAT.

A Forth word in the PDP—-10 system has the header format
shown in Fig. B-1.

bit number —
3333332222222 2221111111111000000000
54321098765 43210987635 43210987605 4321
§ e o wmm aw  emm e eem  w  ame e e mm  eme  wee e mem s e e wm e e e mem e mm wmee e eme e e e e e e
' ABSOLUTE LINK ADDRESS ' (ZERO)
3 [}
C A A T c .
{ COUNT i CHAR. 1 { CHAR. 2 i CHAR. 3 { CHAR. 4 il
: ! : : ; '

- e e ems  emm  emm  wmm  wme e m  ems  cem mam mme  Gm  eww e e s e e wme s e wm s e e wmm  cem  eme e e e o
. . .

1
' CODE SECTION ( MACHINE INSTRUCTION )
i 1 OR MORE WORDS

e mmm  wme  cem e mm wmn wem tum WM e am  mm e e mm e mm @ G e wme e mee  wm mme  mm  wmm  wmm e ewe  vee e wmw

Fig. B-1. Forth Word Format for PDP-10.

Word 1 of the header contains only the 18-bit absolute
address of the preceding word in the same dictionary branch.
The right 18 bits are zeroes, not wused in the current
version of the system.

Word 2 contains the name of the Forth word, in standard
PDP-10 ASCII +format: S 7-bit characters left—-justified in
the 36—-bit word. Actually the +irst "character" is ¢the
character count —-— the number of characters in the name.
The remaining 4 characters are the first 4 characters of the

name. I# a name has less than 4 characters, the remaining
ctharacters are filled with blanks. The least significant
bit of word 2 1is wused for the precendence bit: a O is

normal, while a 1 forces execution even in the compile



THE PDP-10 IMPLEMENTATION. Page B-5

state.

The code section begins in word 3. One or more machine
instructions must be present. Optional parameters follow
_the code section.

B.3 ASSEMBLER.

Most PDP—-10 instructions are represented in Forth as
“CPU" instructions. Let ADD, be defined by the sequence

270 CPU ADD, .

A complete add instruction may be assembled with the
sequence

i23 S5 ADD., .
This is equivalent to the Macro—10 line

ADD 5, 123,

i.e. the contents of location 123 will be added to register

When you execute a CPU word 1like ADD,. the current
stack value is taken as a register specification (possibly
including op—code modifiers). The second stack value is

taken to be a general address specification —— offset, index
register, and indirect bit. These fields are or‘ed together

with the op~-~code, the result 1is stored in the next
dictionary laocation, and the dictionary pointer is
incremented.

Some Forth words are defined to assist in specifying
the general address valve. For example, the sequence

pushes octal 26000123, then 1. onto the stack, and assembles
the Macro—-10 instruction

ADD @123(6)

into the dictionary. The effective address is then the



THE PDP-10 IMPLEMENTATION. Page B-6

contents of the word whose address 1is <the contents of
register 6 plus 123. (The @) adds in 20000000, the indirect

bit.)

Op-code modifiers are also defined to reduce the total
number of# op-codes that are needed to represent the rich
PDP—-10 instruction set. For example,

assembles an instruction equivalent to
ADDM 10, @123(s6).

The op—code modifiers correspond to the suffixes vused
by Macro—-10:

I/ - immediate,
M/ ~- result to memory,
B/ — result to both register and memory. and

S/ - result to self.
Additional madifiers are defined for the halfword MOVE
instructions:
HZ/ - #£ill other half with zeroes,
HO/ —~ #ill other half with ones, and
HE/ - £ill other half with extended sign bit.

As an example consider

which is equivalent to
HRRME 11, 123.
A special assembly instruction ofs assembles an

unconditional jump (JRST) requiring just one stack valve,
which is the address to which you want to Jjump.



~THE PDP-10 IMPLEMENTATION. Page B-7

Arithmetic conditional instructions (e. g. JUMP, ,
SKIP, ., CAI,., CAM, ) take modifiers to indicate the sense of
the condition:

L/ - .LT.O 6/ - .6T.0

LE/ - .LE. O GE/ - .GE. O
E/ - .EQ. O N/ - .NE. O

A/ —- always

If no modifier is used, these instructions will never skip
oT Jump.

The condition to be tested and the register +to be

tested are determined by stack values at assembly time. The
same op—code modifiers used for JUMP,, etc. are used. E.g.
4 LE/ IF, ... THEN,

executes the contained true clause if (at execution time!)
the contents of register 4 are less than or equal to zero.

In the case that the current stack value (in register
T) is to be tested, some abbreviations are supplied:

IFL, IFLE, IFE, IFA, IFGE, IFG., IFN,.

The definitions go like:

IFL, T L/ IF,

- 1.

The following table presents the definitions of the
PDP-10 assembler op—-codes:

250 CPU EXCH, 251 CPU BLT, 200 CPU MOVE, 210 CPU MOVN,
204 CPU MOVS, 214 CPU MOVM, 500 CPU HLL. = 544 CPU HLR,
540 CPU HRR, 504 CPU HRL, 270 CPU ADD, 274 CPU SUB,
220 CPU IMUL, 224 CPU MUL, 230 CPU IDIV, 234 CPU D1V,
400 CPU SETZ, 474 CPU SETO, 424 CPU SETA, 414 CPU SETM,
404 CPU AND, 434 CPU IOR, 430 CPU XOR, 444 CPU EQV,
133 CPU IBP, 135 CPU LDB, 137 CPU DPB, 134 CPU ILDB,
136 CPU IDPB, 264 CPU JSR, 265 CPU JSP, 254 CPU JRST,
266 CPU JSA, 267 CPU JRA, 255 CPU JRCL, 256 CPU XCT,
243 CPU JFFO, 261 CPU PUSH, 262 CPU POP, 260 CPU PUSHJ,

263 CPU POPJ, 240 CPU ASH, 244 CPU ASHC, 241 CPU ROT,



THE

245
253
330
370
620
660
631
671
144
131
160

PDP-10 IMPLEMENTATION.

CPU
CcPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
cPU
CPU

ROTC,
ABUN,
SKIP,
S$0S,
TRZ,
TRO,
TSZ,
T80,
FADR,
DFN.,
FMP,

242
300
340
601
641
610
6350
047
154
130
170

CPU
CPU
CPU
cPU
CcPU
cPU
CPU
CPU
CPU
CPU
cPU

LSH,
CAI,
AOJ,
TLN,
TLC,
TDN,
TDC,
CALLI,
FSBR,
UFA,
FDV,

246
310
360
600
640
611
651
051
164
140

CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU

LSHC,
CAM,
S0J,
TRN,
TRC,
TSN,
TSC,
TTCALL.,
FMPR.
FAD,

252
320
350
621
661
630
&70
132
174
150

CPU
CPU
CPU
CPU
cPU
CPU
CPU
CPU
CPU
CPU

Page B-8

ABJP,
JUMP,
ADS.,
TLZ,
TLO,
TDZ,
TDO,
FSC,
FDVR,
FSB.



APPENDIX C

SDS920 IMPLEMENTATION.

C. 1 GENERAL CHARACTERISTICS.

The SDS?20 (XDS920) is a 24-bit machine using the BCD
(6-bit) character set. These two facts set 1its Forth
implementation apart from the more common 16-bit sustems.
{(The only Caltech application of this system is at the 40-m
antenna at OVRO.)

Some of the BCD characters cannot easily be represented
in this Manual, which is composed on an ASCII system. The
representations to be used here, along with the
corresponding octal codes, are as follow:

Character Code

<check> 17
<{backsp> 32
<pole> 37
<return> S2
<blank> &0
<tab> 72
{delta> S7
<gull> 75
<{fence> 77

Two control devices exist at the 40 m installation:
the KSR-35 teletype and the keyboard/Self-8Scan Display
system. The KSR-3% is a +true BCD device while the
keyboard/Self-Scan wuses the ASCII code. The commonly used
characters translate one-to—one between the two codes (a
software table is used for this purpose). Some of the less



SDS920 IMPLEMENTATION. Page C-2

common characters do not map directly; these are listed 1in
the following table:

ASCII BCD
Character Code Character Code
e 00 <delta> 57
" 42 \ 76
# 43 {check> 17
& 446 <gull> 75
? 77 <pole> 37

In addition the following BCD characters convert ¢to
ASCII "~" (34): <backspl, <tabZ>, <blank2>, <fencelr, and
Lreturnd.

The following ASCII characters convert to BCD <fencel
(77): ren, #L" (or up—arrow), "}" (or left-arrow), "!", and

The Forth word "store" (!) is replaced by = in the ‘9220
system. This is an archaic Forth usage.

The following table summarizes the characters that are
recognized from either the kegboard/SelF—Scan or the KSR-35
to perform special Functzons

Function ASCI]I Character BCD Character

P

Delete last character

typed RUBDUT <backsp>
Delete entire line

typed CTRL-SHIFT-K {fence>
Program interrupt ALT-MODE <tab>

Block I1/0 for the SDSP920 is maintained on a 7-track.,

5956 bpi magnetic tape. The tape 1is organized in a
direct—access format, with a header record preceding every
block. The block length is 256 24-bit words. At least 256

blocks are preformatted on the system tape. The tape format
is shown in Figure C-1.



SD5920 IMPLEMENTATION. Page C-3

(Beginning of tape - tape mark)

Long (3.75 in)
Interrecord Gap

-~ o - m-
e o wm men

Header Record for data
block # 1
50 words, each equal to
012340001

- .- e® . w- -
o wm wm mw m. --

Normal interrecord gap
(0.75 in)

- wn w- -
- - - m-

Data Blaock # 1
256 words of text or
binary data

- - w.- a- =
- e we aw w-

Long Interrecord Gap

- . -
. we a- -

]
'

Header Record for data
block % 2
50 x 12340002

- m. we we we
—_—— m. we me e

Figure C-1 SDS920 System Tape Format.



SDE920 IMPLEMENTATION. Page C-4

A set of byte operations for the 920 has been
implemented as Programmed Operators (POPs). These are
modelled on the byte instructions of the PDP-10.

A data entity called a "byte—-pointer" is defined wusing
the following format:

Q0B BOO 000 Oww www www www www.

Here ww.. . w is a normal 14-bit address of a 920 word. BB
specifies the 6&6-bit byte within that word. The left most
byte is 00, the right most is 11.

The following POPs all address byte—pointers:

IBP Increment Byte Pointer. Increments the byte pointer
by one byte. The word address is incremented if -
necessary. I.e. byte O of word N+1 follows byte 3
of word N

DBP Decrement Byte Pointer. As IBP but moves the
' byte—pointer in reverse (“"to the left").

LDBT Load Byte. The byte addressed by the specified

byte-pointer ~ is returned in the A register,

right—justified.

DPBT Deposit Byte. The right—justified &-bit byte
supplied in A is deposited in the location specified
by the byte-pointer. Other bytes in the same word
are undisturbed.

ILDB Increment then Load Byte. Increment the
byte—pointer then load the byte into A.

1DPB Increment then Deposit Byte. Increment the
byte—pointer then deposit the byte in A through the
incremented pointer. '

Note that these POPs are pseudo—-machine operations. As
such they are available to the kernel assembly and to CODE
words, but not necessarily as Forth dictionary words.



SDS920 IMPLEMENTATION. Page C-5

C.2 DICTIONARY FORMAT.

SDS?20 Forth is of an older generation than the other

Caltech~OVRO systems. Dictionary words do not always have
code sections; rather, there is a code address field which

points to the <code to be executed when the word is
referenced.

NEXT in the SDS920 is the routine
NEXT LDX #IC
MIN IC
BRU #0,2

which is effectively a doubly indirect branch through IC.

Figure C. 2 demonstrates the format used in the §SDS-920
dictionary.

bit number
00000000001 11111111131 2222
012345678901 2345678%90123
Wword 1 ! Char. 1o ; Link :
i Count H ' Address H
Jow cmt cmm mam e cms  mm s e sam  wes  amo  emn  wve wmmo mwn  ewd  ewm  wwe  wme s emn cww e :
Word 2 | Char t Char ! Char. { Char '
H 1 H 2 H 3 H 4 '
L o com wn mn e e smm e o w e ams me e e oe e e e e emo . emv e ;
Word 3 ¢ 0 HE S N o Code !
H H : i Address H
e v om mem wee e me ome mmm  oms  mam e e e mme  wem  mem  mmm  mm e wms  mem e = :
Word 4 Parameter 1

;
H (optional)
3

Fig. C.2 SDS920 Forth Word Format.



SDS?20 IMFLEMENTATION. Page C-6

At least three 24-bit words are used for each Forth
word. The 1link is the 14-bit absolute address of the
preceding entry in the dictionary. The first dictionary
entry has a link of zero.

The first 4 characters of the name of the Forth word
are stored in word 2. I+ the name has 1less than 4
characters, it is padded on the right with blanks (BCD code
12081). The overall length of the name (1 — 64 characters)
is contained in bits O — 5 of word 1.

The word precedence is contained in bits & and 7 of
word 3. The absolute address of the code to bhe executed
when the word is referenced is in bits 10 - 23 of word 3.
Note ¢that bits 1 and @ of word 3 (the index and indirect
bits) must be left zero.

A Forth word with precedence 2 will be executed at all
times when referenced. A word with precedence O will be
executed when Forth is in the execution state, but compiled
when in compile state. The low order bit of the precedence
is not used.

C.3 ASSEMBLER.

Four classes of machine instructions are recognized by

the 6SD5920 Forth assembler. The MCPU class includes all
memory reference instructions together with others such as
shifts and EOMs. The Forth word MCPU takes as input an

op—code of up to 12 bits. The op-caode is associated with
the name following in the input stream. Thus

760 MCPU LDA,

defines the assembler instruction LDA, (load A register)
with op—coade 0760 (octal). Strictly, the op—caode is 76. An
extra digit is provided on the right to facilitate the shift
instructions.

When referenced, LDA, will take the (then) current
stack valuve, "or" it with 760 # 2##12, and store the result
at the next available dictionary location. The dictionary
pointer (DP) 1is then incremented by one. Assume that the
value of DP is 1000. The Forth line



SDS?20 IMPLEMENTATION. Page C-7

is equivalent to the Symbol assembler line

LDA 4521
and assembles the octal number 74604521 in location 1000; DP
is incremented to 1001. All MCPU-defined words work
analogousluy; only the op—codes differ.

Certain words are defined to assist in specifying the
address part of an MCPU-type instruction. The word (X sets
the index bit (bit 1) of the current stack ward, while (I
sets bit 9, the indirect addressing bit. Thus the line

21072 (X (I LDA,

is equivalent to the Symbol line
LDA #21072.,2 ;
it assembles the number 274661072 into the dictionary.

The word CPU is wused ¢to define all fixed—-format
instructions that do not reference memory. An example of
this class 1is the register operation (LA, (clear A
register). This instructien is defined by the line

04600001 CPU CLA, .

When CLA, is executed, the constant 4600001 is assembled
into the current dictionary locatiaon.

Two instruction classes have been defined specifically
for the W-buffer I/0 instructions. WOP is used to define
the major EOM instructions. It takes one argument when
defining the op—code: the complete EOM code for the number
of characters/word and the unit number af the device
involved. For example,

00202001 WOP RKB,

defines the RKB, {(read keyboard) instruction for the
assembler, When referenced, RKB. uses the current and
second stack values to determine the unit number and number
of characters per word, respectively. Thus



SDE920 IMPLEMENTATION. Page C-8

4 1 RKB,

is equivalent to the 920 Symbol expression
RKBW 1,4 ;
it assembles 02024601 into the dictionary.
Finally the TWOP instruction class defines those
control EOMs or GSKSs which need a unit number but do not

have a "C/W" field. An example is TRT, (tape ready test)
which is defined

04010411 TWOP TRT, .

The line

2 TRI.

assembles 04010412, the equivalent of the Symbol line

TRTW 2.

Recognized SDS920 assembler codes are given in the
following table:

760 MCPU LDA, 350 MCPU STA, 750 MCPU LDB. 360 MCPU STB.

710 MCPU LDX, 370 MCPU STX, 770 MCPU EAX, 620 MCPU XMA,
950 MCPU ADD, 570 MCPU ADC, 630 MCPU ADM, 610 MCPU MIN,
940 MCPU SUB, 560 MCPU SUC, 640 MCPU MUL, 650 MCPU DIV,
140 MCPU ETR, 160 MCPU MRG. 170 MCPU EOR. 010 MCPU BRU,

410 MCPU BRX, 430 MCPU BRM, 510 MCPU BRR., 400 MCPU SKS,
500 MCPU SKE, 730 MCPU SKG., 600 MCPU SKR., 700 MCPU SKM,
530 MCPU SKN, 720 MCPU SKA, 920 MCPU SKB. 740 MCPU SKD.
460 MCPU RCH, 660 MCPU RSH, 662 MCPU RCY. 670 MCPU LSH,
672 MCPU LCY, 671 MCPU NOD, 000 MCPU HLT. 200 MCPU NOP,
230 MCPU EXU, 020 MCPU EOM, 120 MCPU MIW, 320 MCPU WIM,
130 MCPU POT, 330 MCPU PIN,

4600001 CPU CLA, 4600002 CPU CLB., 45600003 CPU CLR,
4500004 CPU CAB., 4600010 CPU CBA, 4600014 CPU XAB,
44600012 CPU BAC, 44600005 CPU ABC, 24600000 CPU CL.X,
45600200 CPU CXA, 244600003 CPU ALL., 45600400 CPU CAX,
4500600 CPU XXA, 4600020 CPU CBX, 4600040 CPU CXB.
456500060 CPU XXB, 4400122 CPU STE, 44600140 CPU LDE,

45600160 CPU XEE, 4601000 CPU CNA,



SDS?20 IMPLEMENTATION.

4020400
4020040
0220002
4020002
0214000

CPU
cPU
cPU
cPU
CPU

BPT1,
BPT4,
EIR,
IDT,
TOP,

4020200
4020001
0220004
0250000
0212000

CPU BPT2,

CPU OVT,
CPU DIR,
CPU ALC,
CPU ASC,

4020100
0220001
4020004
0200000
4020010

Page C-9

CPU BPT3,
CPU ROV,
CPU IET,
CPU DST,
CPU BET,

4021000 CPU BRT,
WoP
woP
WoP
WoP
WoP

WopP

RPT,
RCB,
TYP,
SFB.,
SRD,
EFT,

202004
203006
202041
203031
206031
203071

0212006 TWOP SRC,
4011006 TWOP CFT,
4012011 TWOP BTT,
4013610 CPU TFT,

WOP
wopP
WOoP
WoP
wWopP
woP

202044
202006
203011
202031
203051
207071

PPT,
RCD,
RTB,
SFD,
WTB,
ERT,

4012006 TWOP CRT.
4010411 TWOP TRT,
4011011 TWOP ETT.
4012610 CPU TGT,

- 202001

200044 WOP
WOP
WOoP
WaP

WOP

PTL,
RKB,
RTD,
SRB.
WTD,

202011
207031
202051

4014006 TWOP FCT,
4014011 TWOP FPT,
0214011 TWOP REW,
0214000 CPU RTS,

0213610 CPU SRR,

The assembler conditionals are listed in the following
table:

Word name test Word name ¢test
IFL, A.LT.O IFGE, A.GE. O
IFLE, A.LE. O IFG, A.GT. 0O
IFE, A.EQ. O IFN,

A.NE. O

(Fortran notation for arithmetic comparison is used in ¢the

table.) These operations test the value of the A register.
For example, IFL, assembles instructions which test for A
less ¢than zeroa. See Section 3.8 for the general IF, ELSE,

THEN. constructions.



APPENDIX D

QED - QUICK EDITOR.

‘ Dave Dewey has developed a new editor to take advantage
of the high—speed CRT available on the GT40 and 6T44
versions of +the DEC PDP-11. The following 1is Dave’s
description of his editor:

The block being edited is always visible on the screen,
so the results of any editing are immediately available to
the operator. Most commands are only a few keystrokes, and
a cursar indicates the current paoint of editing. A brief
resume of applicable commands appears below the block being
edited, and thus this instruction summary is needed only for
reference. In fact, QED will be much easier to learn by
Just reading the +first page of this manval and the
experimenting with it than by attempting to digest all of
its capabilities before trying it out.

A, LOADING THE EDITOR INTO THE DICTIONARY QED has been
improved +to allow editing with GT ON or OFF. Typical
start-up sequence:

(Bootstrap the system)
R FORTH
FORTH LOAD

XXX DISK {replace XXX with the
appropriate name) .
QED /LOAD

QED does not redefine the standard system words, so (unlike
EDIT or XED) other FORTH programs may be loaded and run on
top of QED, as space permits. Even XED may be loaded on top
of QED. Interactive editing and debugging is thus hastened.
When you no longer need QED, remove it from the dictionary



QED - QUICK EDITOR. Page D-2

with

FORGET EDITOR
(If you have also loaded XED, the FORGET line must be typed
twice, once for each editor.)

B._ LOOK MODE
To look at block NNN, use the command

NNN Q
(To look at the block most recently listed or edited,
Just type

QQ )

The screen will display this block as well as a summary
of the possible commands to QGED while in LOOK mode.

Note: The "~" preceding a character does not mean
to . type a carat; rather, it means to hold down the
CTRL key while typing the character it precedes.

Key Result :

~X Display the next block following the current one.
“~W Display the block previous to the current one.

~Z Quit—-—-return to FORTH. ,

~P Prepare to edit——switch to EDIT moade.

One can skim through a series of blocks in search of a
particular one exceedingly fast using ~X and "W

I°

EDIT MODE. br; Assume that you have 1located the block
that you wish to edit, using the aforementioned commands.
A P will set up EDIT mode, which has these properties:

1. An L-shaped cursor will appear at the beginning
of the black. (Future references to the
Ycurrent" position in this writeup will refer to
the cursor’s location. It is always between two
character locations, and its vertical bar
indicates that point.)

2. More commands are now available to the user, and
the summary at the bottaom of the block grows to
reflect this.

3. The ~X, ~W, and “~Z commands perform an extra
function while QED is in EDIT mode: the current
block is briefly checked for these  common
mistakes:

1. no "i8" in the block



GQED - QUICK EDITOR. Page D-3

2. last char of the block nan—blank
3. TUNONS: last char of one line and first
char of the next one non—-blank.

If there is one of these mistakes, GED will let

you know and you may fix them immediately. 1f,
however, this unusual block structure is
purposeful, repeating the X, “W, or ~Z will
override the error check. I# all is  well, the
block will be immediately flushed to the disk and
the traditional X, ~W, or ~Z +function will
gccur. {Whenever you go to 3 new block, QED is

reset to LOOK mode. }

C. 1 BASIC EDITING COMMANDS
{Text>: Any 1legal FORTH block character, including
space, will be inserted just before the cursor. The
cursor and rest of line will move out of the way as

needed.

It is conventional in FORTH to indicate that a given line
is a continuation from the previous one by indenting the
continuation 1line two spaces (possibly more). The
indentation is ordinarily ignored by FORTH just as spaces
anywhere else are. (An exception is any field which is
interpreted as literal characters, for example [ ... 1
or " ... ", in which the spaces are not ignored.) The
only reason for the indentation is to make the block
easier to read by the programmer.

QED does the ‘“right thing" with attempts to put
characters beyond the end of the line. Such a situation
can occur in one of two ways:

A. Inserting text when the cursor is at the end of
a line.
B. Inserting text in a line whose last character is

non—-blank.

When QED sees such an attempt, it does one of three
things:

1. If the next line is a continuation 1line and it
has room for the word which is about to pop off
of the end of the current line, GED pushes that
word onto the beginning of the next one. The



QED - QUICK EDITOR. Page D-4

indentation is kept the same, and one space is
inserted between the just-pushed word and the old
contents of that line.

2. I+ the criteria in #1 are not met, QED attempts
to do a <CR> <space> <{space> Jjust before the word
about to be popped off of the current line. In
other waords, it starts a new continuation line.

3. If #2 was attempted but no free line was found in
the block to do the <CR>, the attempt to insert a
character is ignored. An appropriate error
message 1is given, and the block is left in its
previous condition.

In all three cases, QED refrains from breaking any
words——that 1is, any string of non—blank characters will
be put entirely on one 1line oar the next, instead of
starting on the end of a given line and finishing at the
beginning of the following ane.

As a result of this special treatment, one can insert
characters at any point in a block without paying
attention to boundary conditions. As long as there is
room in the block, QED will shuffle its contents to make
room for the text being inserted. The cursor maves in
step with such shuffling. One cannot accidentally delete
any non~blank characters or lines by inserting text.

<RUBOUT>: This deletes the character preceding the cursor.
The rest of the line, as well as the cursor, moves to the
left one column. <RUBOUT> is useful not only in fixing
Just—typed data, but also in deleting any incorrect
characters before the cursor.

<CR>: <CR> first makes sure that a blank line follows ¢the
current one. I# not, it gets one from elsewhere in the
block (preferring ones near the bottom) and inserts it.
Then <CR> moves the cursor (and any chars which may
follow it) to the beginning of the next 1line. Notice
that <CR> will not delete any non-blank lines—if no
blank lines are available, it aborts.

The previous commands are all that are needed to create a
FORTH block. The following ocnes are added to ease
editing.



GED - QUICA EDITOR. Page D-5

C.2 CURSOR MOVEMENT COMMANDS

key command position of cursor

~T TOP Just before the first character of the block

~B BOTTOM just after the last character of the block

~Y -LINE to the previous beginning—af~line (on ¢the current

line
unless the cursor is at column 1)

“N +LINE the next beginning-of-line

~“H -WORD the previous beginning—of—word, where a3 word is any

sequence :
of non—blank characters. ( a
beginning—of-line counts as a
beginning—-of-word, as does the location one
space after the last ward in a line.)

~L +WORD the next beginning-—of-word

~J =CHAR the previous character

~K +CHAR the next character

<TAB> or TAB the next tab staop (Tab stops are permanently
set every .
~I 8 columns as usual)

Any attempt to move the cursor beyond a block bouhdarg
(beginning or end of block) will result in a position at
that boundary. v

With the exception of <TAB>, all of the cursor movement
commands may be typed with the right hand, allowing the
left one to hold down the CTRL key. If the +fingers are
resting one key to the left of typist’s "home" position.
the direction and magnitude of movement roughly
correspond to the location of the keay. (See keyboard
diagram. )

C.3 DELETE PREFIX: =D
A ~D changes the operatian of the single character

following it To let the user know that QED is waiting
for that secaoand character, ™D causes the cursor to start
flashing. It can have two functions:

~D <cursar—-maving-key> (DELETE PATH) Instead of moving the
cursor, all of the characters along the expected path are
deleted. Any lines which end up being all blank by this
process are removed.



QED - QUICK EDITOR. Page D-6

~D <CR> (CONCATENATE) In effect, this deletes the next CR,
to allow concatenation of lines. The next line is moved
to the end of the current one. ‘No matter how many
leading blanks the following line may have, CONCATENATE
inserts exactly one blank between the two segments of the

resultant line. (If there is insufficient room at the
end of the current line to append all of the next one, as
much as will #fit is so maved. FORTH words will not be
divided. }

At the completion of CONCATENATE, the cursor is
positioned between the two resultant segments, at the end
of the original first line.

C.4 USE OF THE SAVE BUFFER
Same or all of a FORTH block may be saved, to be later
inserted——the contents may be inserted elsewhere in the
same blaock, in a different block, or even in a different

disk. The save buffer is particularly wuseful #for
changing the order of lines in a block or for duplicating
portions of a block. Additionally, one can put a

template block in <the save buffer to expedite the
creation of a series of similar but non—identical blocks.

Three commands manipulate the save buffer:

~“F FLAG LINES Flag mode is set. While in flag mode, all
lines that the curser touches are marked at their left
edge with a rectangular +flag. (The current line is
flagged immediately.) The operation of all other commands
of QED is unchanged by ~F.

Flag mode, and all flags, are cleared by ~V as well as
those commands which initialize a block (X, ~W. “R., ~P).

~V SAVE FLAGGED LINES All flagged lines are capied into ¢the
save buffer. The block’s contents are unaltered, but the
previous contents of the save buffer are lost.
(Therefore, if there are no flagged lines, ~V will clear
the save buffer.) At the completion of ~V, flag mode and
all flags are cleared.

Notice that the only way to change the contents af the
save buffer is with “V. Even if you exit from the editor
with ~Z, QED faithfully remembers what was last saved.
(QED /LOAD initializes the buffer to zero; from then on.
it is only altered by ~V.)



GED — QUICK EDITOR. Page D-7

If you accidentally flag more 1lines than you want to
save, Just hit ~V which clears all the flags. Set the
flags that you want and then hit ~V again. ’

“~ UNSAVE The contents of the save buffer are inserted
before the current line. The save buffer contents are
unchanged. The cursor will then be at the beginning of
the 1line following the last inserted line. (If the last
inserted line was at the bottom of the block, the cursor
will be at the end of the block.)

“U will abort with a message 1if there are more saved
lines than free lines in the bloack. (These blank lines
need not be contiguous, nor need they be at the cursor.
“U will move the blank lines as needed, without changing
the ovrder of non—blank lines.)

C. S5 ‘RESCUE’ COMMAND

The fact that editing is so easy and fast with QED means
that mis-editing is also easy. After entering edit mode
with ~P, one might attempt to delete the first line with
~D N, but accidentally type ~D "B, thus clearing the
entire block. The rescue command has been added for just
such an occasion. Realize, though, that the block you
see before doing a successful ~Z, “W, or ~X is the block
that will be on the disk. Flushing is auvtomatic in that
case, and you will have to re—edit the block if it was
wrong. Assuming that you have realized your error in
time, here is the way out:

~R RESET BLOCK The block is reset to its condition Jjust
before EDIT mode was most recently entered: its contents
are restaored and QED returns to look mode. "

D. ERROR HANDLING

QED is designed to be reasonably intelligent, and it should
catch any 1illegal command sequences, responding with an
informative message. Attempts to use <CR> and Text when
there 1is insufficient room will be similarly caught. The
only way I have found to bomb the system is to hit two ~C’s
in quick swuccession. (Incidentally, one ~C will return to
RT-11 monitor without altering the previous contents of <the
current block.

A side benefit is this: if you have inadvertantly hit ~D,
but do not wish to delete anygthing, Just hit any text



QED - QUICK EDITOR. Page D-8

character. QED will give you the error message and ignore
both the D and the text char.)

i —————ei———  S— g < ——————

A. UNASSIGNED BLOCKS
Any attempts to look at a block which has not been
assigned to the current disk context will be
refused, and a message will be given.

B. DISK I/0 PROBLEMS Very accasionally FORTH will have
trouble reading a block from the disk. QED will
most likely crash with a message like "Q?". The
picture may remain on the CRT. {An attempt to list
such a block will also fail.)

If the disk I/0 error occurred as a result of ~X,
then <the block after the current one is at fault;
if it occurred upon ~W, then the previous block is
bad.

In any case, it is recommended that a new bootstrap
is done to reset any possibly altered parts of FORTH
or RT-11.

Most likely the error occurred as a "random" glitch,
but it 1is possible that it is a "hard" error. Ta
check, ¢try fixing the block by copying a good one
into it. Hoapefully the error will be eliminated and
QED will be happy.

I# the block is still bad, make note of the disk and
block number to let a "system expert"” fix the block.
In the meantime, avoid any accesses of that block.
Do not Just Telease that block and assign
another——if you do, some unsuspecting user will wind
up with a bad block!

C. BLOCKS WITH UNUSUAL CONTENTS FORTH blocks ordinarily
contain only SIXBIT text characters. The SIXBIT
ctodes are the ASCII values 040 through 137 (octal).
Here they are in numerical order:

(spacé) PUREAL ()4, - /0123456789 ;i <=>7?
@ABCDEFGHIJKLMNOPQRSTUVWXYZLNI"_

Note that lower case letters are not SIXBIT.



GED — QUICK EDITOR. Page D-9

Some of the earlier FORTH blocks have been
initialized to zeros rather than spaces. Therefore,
QED will interpret a zero byte as a space. In fact,
after you edit a block and exit GED, all such nulls
will have been replaced by spaces.

Any other character values are illegal. The display
will reveal such illegal characters when you look at
such a block: the dotted 1line which ordinarily
marks the position Jjust after column 64 in each line
will be located one space ta ¢the left for each

illegal character in that line. (The illegal
characters do not print or take up space in the
line.)

QED assumes that the existance of such non-SIXBIT
characters indicates that the block is used for
numeric data storage (like the Master File Directory
block) rather than for character storage. It
protects such blocks by making it illegal for you to
edit them with QED. If you really do want to edit
them: you must eliminate the bad characters by
clearing the block, copying another block into it,
or editing the bad lines with XED or EDIT.

D. 2 ERROR MESSAGES :

SORRY, NOT ENOQUGH ROOM TO LOAD GQED. MUST FORGET

SOMETHING FIRST.
This happens if you attempt to do a GED /LOAD when
there 1is not enough room in the dictionary for QED.
QED requires about 5200 (decimal) words of memory,
and if there isn’t 5400 words of space {allowing for
stack usage) QED just won’‘t load.

NO SUCH BLOCK EXISTS. This message appears if you ask
QED to look at a block which has not been assigned
to the current disk context. Causes: W ~X (or,
from FORTH, Q@ or QQ)

NOT ENQUGH ROOM. This indicates that you have attempted
to insert something into the block, but there isn’t
enough Troom. In the case of CONCATENATE, the
message means that there is not sufficient free
space at the end of the current line to append even
one of the words from the next line. Causes: Text
<CR> ~U CONCATENATE



GED -~ QUICK EDITOR. Page D-10

CAN'T RUBDUT BEYOND BEGINNING OF LINE. Rubout deletes
the character just before the cursor. None exists
at the beginning of the line. Cause: <RUBOUT>

<CHAR> IS ILLEGAL-IGNORED. Cause: anything other than a
QED command.

<CHAR> WHEN NOT IN EDIT MODE IS ILLEGAL~IGNORED. Cause:
anything other than ¢ “W ~X ~Z ~P while in look
mode.

<CHAR> AFTER ~D IS ILLEGAL—-IGNORED. Cause: anything
gther than <CR> or a cursor—-moving—key (~T “B ~Y ~N
“H ~d K ~L <TAB>), after hitting ~D.

NO SAVED LINES Cause: U when SAVED LINES = 0.

NO FLAGGED LINE. Cause: ~V when there are no flagged
lines.

WARNING: NO ‘:;S‘ OR RUNONS FROM ONE LINE TGO THE NEXT OR
LAST CHAR OF BLOCK NOT BLANK. REPEAT COMMAND 7O
CONFIRM EXIT.

This message indicates that the current block is not
in the typical FORTH format and is therefore likely
incaorrect. Causes: "W ~X ~Z (See above, under EDIT
MODE. )

NO LINE FOLLOWS THIS ONE TO CONCATENATE. Cause: D «CR>
while the cursor is at line 16.

NON-CHARACTER DATA FOUND'!' FIX BLOCK BEFORE EDITING WITH
QED. Cause: ~“P when current block has non—-SIXBIT
bytes. (See BLOCKS WITH UNUSUAL CONTENTS, aboaove.)

D. 3 ERROR MESSAGE DEFEAT COMMAND Printing of error messages
can take an appreciable time, particularly with GT OFF.
QED allows the operator to cancel error message printing.
although the "“beep"” associated with an error will still
accur, alerting the user that some kind of error has
occurred. If error printing is disabled and such a beep
comes at an unexpected time, Just re—enable error
printing and repeat the command that caused the beep.

~G FLIP ERROR PRINTING ENABLE If errors will currently
print, disable such printing. I#f errors will not
currently print, enable such printing.



QED — QUICK EDITOR. Page D-11

D. 4 MISCELLANEQUS ERRORS

Dave Rogstad’s correlation program alters various things
throughout the PDP-11's memoryi: some of that alteration is
not restored even by a ~C. On occasion I have seen a QED
print three <CR><CLF>‘s upon entering each block while GT was
OFF. This indicates that the VLBI program has set the bits
in the computer which show GT to be ON, even though it is
not. The remedy is to re-bootstrap the PDP-11 and then do
the editing. (You may also type the monitor command "_IN"
to reset these bits without reloading. - MSE)

E. TECHNIGUES
iTo get to the end of a line: wuse ™N or Y as needed to get
to the beginning of the following line, then use ~J.

To delete the rest of the block: ~D ~B
(kills whole block if cursor at beginning of block.)

To delete the rest of the line: ~D N
(kills whole line if no chars precede cursor.)

To delete the beginning of the line: ~D ~VY
(kills previous line if cursor at calumn 1)

To compress several short lines of code into a few long

lines:

Move the cursor to the first 1line of the chosen
sequence. Do D <CR2> until there is no more room in
the first line, then move ¢to the next one and

repeat, etc.

To push words off of the end of the current 1line and onto
the beginning of the next one: Move the cursor to
the beginning of the current line with ~Y if it is
not already there. Hit <space> repeatedly until the
desired number of words has been moved to the next
line. Then use <RUBQUT> the same number of times to
shift the current 1line back to its original
position.

There are no search commands in QED, since the need for
actual searching is so rare. On those few occasions where a
search need be made one can either visually scan the blocks
with “X and “W or use the FT command in XED.



APPENDIX E

FORTH BIBLIOGRAPHY.

Anon.. FEorth Introductory Programmer ‘s Guide.,

Forth, Inc., Manhattan Beach, California, 1975.

Anon., Forth Programmer’s Technical Manual, Forth.

Inc., Manhattan Beach, California, 1975.

Ewing, Martin 5., The Caltech EForth Manual, First
Edition, Owens Valley Radio Observatory, California
Institute of Technology. Pasadena, California.
1974,

Ewing, Martin 8., and Hammond, H. Wayne, The Forth
Programming Sustem. Proceedings of the Digital
Equipment Computer Users Society. Nov. . 1974, pp

477 - 482.

Hollis, Jan M., 36 EFoot Telescope Computer Sustem
Manual, National Radio Astronomy Observatory.,
Charlottesville, Virginia, Computer Division
Internal Report No. 18, 197S5.

James, John 8., FORTH for Microcamputers, Dr.
Dobb ‘s Journal of Computer Calisthenics &
Orthodontia, No. 25, 3, Issue 5, pp. 21-27, 1978.

Miedaner, Terrell, AST-01 and AST-01X Definitions.
Memorandum to the Astronomy Forth Users Group, Kitt
Peak National Observatory. Tucson, Arizona, 1977.

Moare, C. H., and Rather, E. D., The Fgrth Program
for Spectral Line Observing, Proc. I.E E. E., 61, 9




FORTH BIBLIDGRAPHY. Page E-2

10,

i1.

13.

14,

Moore, C. H., Forth: A New Way to Program a
Mini—computer, Astronomy and Astrophysics
Supplement. 15, pp 497 - 511, 1974.

Rather, E. D., Moore, C. H , and Hollis, Jan M.,
Basic Principles of Forth Langquage as Applied to a

ppP-11 Computer. National Radio Astronomy
Observatory., Charlottesville, Virginia, Computer

Division Internal Report No. 17, 1974

Sachs, Jonathan, An Introduction to Stoic,
Technical Report BMEC TR0OO!, Harvard-MIT Pragram in
Health Sciences and Technology. Biomedical

Engineering Center for Clinical Instrumentation,
Juna, 1976.

Sinclair, W. S., Forth: A Stack Oriented Language;

Interface Age, September, 1976.

Sinclair, W. 5., The FORTH Approach to QOperating
Sustems, Proc. ACM ‘76, pp. 233-240, 0October, 1976.

Stein, P.., The FORTH Dimension: Mini Langquage Has
Many Faces, Computer Decisions, November. p. 10,
1975.




	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	E-01
	E-02

