
Report No. 1099

AN EXTENDED ALGOL 60 COMPILER

for the

UNIVAC 1108

STAFF

Andrew R. Jennings Computiing Center

Case Western Reserve University

April 1968

PREFACE

This manual is intended to be a definitive user's guide to an Algol 60

compiler that has had five years' extensive development and use in the Andrew

R. Jennings Computing Center at Case Western Reserve University. In the

initial design stages it was decided to have the compiler adhere as close

to the "Revised Report on the Algorithmic Language Algol 60" as possible

without at the same time excluding the possibilities of axtending the language

for the user's benefit. Thus, the reader will discover that substantial

additions hava been made to the language (e.g. a sort/merge facility) while

very few deviations have been made from the formal report. He will also note

that quite comprehensive and understandable run-time diagnostics have been

included in this implementation.

Naturally both the program and this document itself are the end products

of t.he efforts of many people -- in particular we single out Mr. Paul Meilan::i

who "volunteered" to produce this manual. Following is an alphabetical list

of those who have had major responsibilities in creating the program and/or

the manual:
David Abt

H. Lynn Beus

Martin Charns

John Dedourek

Stan Eisenstadt

Gilbert Hansen

· George Haynam

Nicholas Hubacker

Robert Ladner

W. C. Lynch

John Massie

Paul Meiland

Julius Nadas

Frank J. Olynyk

Sharon Sanford

David Santich

Jon Shomer

Joseph Speroni

Truth Walkey

Kenneth Walter

Frederick Way

James Wilt

Five Thousand Users

In summary, any criticisms, complaints and/or objections to this work

should be directed to Prof. F. Way, III, Associate Director, Computing Center

while any co:nplimentary remarks, praises and/or general enthusiasm should be

directed to any of the individuals on the above li~t.

This work was·supported in part by National Science Foundation
(NSF GP-642).

TABLE 0 F C 0 N T E N T S

GENERAL INTRODUCTION 1

CHAPTER I - INTRODUCTION 12

Basic Symbols 14

CHAPTER II - ELEMENTS OF THE COMPILER LANGUAGE 18

Characters 1 8

Metalinguistic Symbols 19

Identifiers 19

Quantities 20

Variables 21

INTEGER Constants 22

REAL Constants 23

REAL2 Constants 24

COMPLEX Constants 24

BOOLEAN Constants 25

STRING Constants 25

Evaluated Procedures 25

'
CHAPTER III - EXPRESSIONS 27

Arithmetic Expressions 27

Strlngs in Arithmetic Expressions 29

Boolean Quantities 29

Rel~tional Operators 29

Strings in Relations 30

Boolean Operations 31

Construction of Boolean Expressions 31

Precadence of Boolean Operations 32

Designational Expressions 32

Arithmetic Expressions and Boolean Relations 33

ii

CHAPTER IV - STATEMENTS 35

The Assignment Statement 35

Arithmetic Assignment Statements 36

Str]ng Assignment Statements 3~

Boolean Assignment Statements 38

Generalized Assignment Statements 38

The Grammar of Statements 39

Compound Statements 39

Statement Labels 40

CHAPTER V - BASIC DECLARATIONS 41

Declarations of Type 41

The ARRAY Declaration 42

Construction of ARRAY Declarations 42

The STRING Declaration 43

Construction of STRING Declarations 43

The STRING ARRAY Declaration 44

The OWN Declaration 46

The DEFINE Declaration 46

The SWITCH Declaration 47

The 1QCAL Declaration 48

The COMMENT 49

CHAPTER VI - CO~TROL STATEMENTS 50

Unconditional Control Statements 50

Conditional Control Statements 51

The IE Statement 51

The Alternative Form of the IF Statement 52

The FOR Statement 53

Jumps In and Out of FOR Statements 59

CHAPTER VII - STRINGS 60

STRING Quantities 60

STRING Constants 60

The STRING Declaration 61

Predefined Identifiers in STRING Declarations 61

iii

STRING Variables 62

The STRING ARRAY Declaration A3

Strings in Arithmetic Expressions 65

STRING Assignment Statements 65

Strings in Relations 66

The RANK Declaration 66

The SETRANK Procedure 67

The RANK Procedure 68

A Word of Caution Concerning
String Procedures 69

CHAPTER VIII - ALGOL LIBRARY 71

Intrinsic Functions 71

Table of Intrinsic Functions 73

Library Functions 75

Recursive Library Procedures 75

Non-recursive Library Procedures 76

Standard Mathematical Procedures 76

Special Procedures 77

The RANDOM Function 83

The INTRANDOM Function 83

CHAPTER IX - INPUT/OUTPUT - CARDS, PRINTER, PUNCH 85

The READ Procedure 85

The WRITE Procedure 87

The FORMAT Declaration 88

Format Phrases 90

Repeated Format Expressions 95

Definite Repeat 95

Variable Repeat 96

Indefinite Repeat 97

The FORMAT Procedure 98

General Remarks on Formats Used with WRITE 98

General Remarks on Formats Used with READ 101

The kIST Declaration 104

The CARDS Devic.3 106

Free Format with CARDS 1 07

The PRINTER Device 109

iv

Auxiliary Procedures to Control PRINTER 110

The PUNCH Device 111

Library Procedures for Card, Printer
and Punch I/O 112

CHAPTER X - INPUT/OUTPUT - TAPE, DRUM 113

The TAPE Device 113

Drum Simulated Tapes 114

Details of Tape Format 115

Output to Tape 116

Modifiers 117

Input fro~ Tape 118

The POSIT}:ON Procedure 121

The REWIND Procedure 122

The DRUM Device 123

DRUM as a Parameter to READ 125
I -

DRUM as a Parameter to WRITE 125

Speed of Drum and Tape Input/Output 126

Library Procedures for Tape and Drum I/0 127

CHAPTER XI - BLOCKS 128

Blocks 128

Block Format 128

Defining a Block 129

Local and Global Identifiers 131

CHAPTER XII - PROCEDURES 134

The Procedure Block 134

The PROCEDURE Declaration 134

The VALUE Part 135

The Specification'Part 136

VALUE an1 Name Parameters 139

Functional Procedures 140

The Procedure Call 140

Copy Rule 141

Recursive Procedure Calls 142

General Problem Solver 143

v

Library Procedures 144

External Procedures 144

EXTERNAL PROCEDURE Declaration 144

External Procedure Calls 146

External References 146

CHAPTER XIII - THE DIAGNOSTIC SYSTEM 148

Compiler Diagnostics 148

Compiler Error Messages 149

Error Messages at Execution Time 150

Error Numbers for Library Error Messages 164

Diagnostic Procedures 165

The DUMP Statement 165

The ERRORTRAP Procedure 167

The ERROR Procedure 168

TRACE Options 168

CHAPTER XIV - USING ALGOL UNDER EXEC III 171

Exec Control Cards 171

The RUN Card 171

The ALG Card 172

The XQT C~rd 172

Data Cards and the EOF Card 173

The FIN Card 173

Sample Input Deck 173

The LST and PCH Cards 174

The Complex Utility Routine 175

APPENDIX I - SPECIAL IDENTIFIERS 176

" II - WRITING ALGOL p-qocEDURES IN SLEUTH 179

" III - GENERALIZED VARIABLES AND THE
DEFINE DECLARATION

" IV - SORT-MERGE PACKAGE

V - PLOTTER ROUTINES "
" VI - SPECIAL INPUT/OUTPUT DEVICES: EDIT,

CORE, PCF, SLIP

" VII - FALTRAN: TRANSLATION FROM FORTRAN
TO ALGOL

vi

183

193

204

213

223

APPENDIX VIII - MACHINE':' AND SYSTEM-DEPENDENT
INTRINSIC FUNCTIONS AND PROCEDURES 223

"
"

"

IX - A CULL FOR USE WITH ALGOL PROGRAMS

X - CATHODE RAY TYPE (CRT) PROCEDURES
FOR ALGOL PROGRAMS

XI - CHARACTER DEFINITIONS FOR THE 1107

vii

230

GENERAL INrRODUCTION

The first part of this manual is intended to give an introduction to

the uninitiated into the process of using a computer to solve problems. No

assumptions will be made about "mathematical maturity" and no knowledge

about computers will be assumed of the reader. The really difficult part of

explaining a problem solution process to a computer is that one must be able

to ~ake the explanation in such a way that a person (or the computer) who is

tota:ly unfamiliar with the problem will be able to follow your recipe

exac~ly and obtain the desired results. One device for exhibiting recipes

to either computers or other people is to draw flow charts. Again, the

reader is cautioned that the really difficult part of using the computer

will usually turn out to be the construction of a valid flow chart for the

problem.

EXAMPLE: Supp::>se we want to write down a set of instructions for

so~eone to follow in orjer to solve the following problem:

Given nilinerical values of A, B, C finj the numerical value

of X which satisfies the equation

2
Ax + Bx + C = 0 •

At this point the reader yawns and says the solution is obvious,

namely

x =
-B ± -v B2 - 4AC

2A

As it turns out, this is NOT a solution to the problem we are considering!

Why not? Because we were supposed to write down a set of instructions for

solving the problem and the recipe above will not be of any use at all unless

the person nading the recipe has already done som':l problems like 1,his, has

used this recipe, and understood what was behind it. This set of 1·squirements

is asking a little too :nuch from any computer. They will all have already

solved this type of problem, but it is very unlikely that any of bem under­

stood what trey were doing!

- 1 -

One simple method of making sure that ve get the results desired is to

admit at the outst-"'t that the computer is not particularly bright, but :is quite

rapid. Therefore ve will supply it vith all sorts of advice and instructions

and let it proceed on its stupid but rapid way to the problem solution. For

the problem at hand we knov that a solution consists of two roots. However

th9 specification of a root involves both a real part and an imaginary part.

Therefore we must recognize that a complete set of answers requires writing

down four real numbers.

At this point the reader is urged to examine Figure 1. Begin at the

place labeled START and follow the arrows. You should be able to convince

yourself that no matter what values of A, B, C are used that this flow chart

will take care of the situation.

If ,we can construct such a flow chart for any particular problem, then

the process of using the computer to solve the problem is fairly trivial. All

we need do at this point is to tell the computer what the flow chart looks like

an::3. set it to work. The purpose of the first part of this manual is to de­

scribe a rather elegant (and not too complicated) method for telling the

computer what the flow chart looks like. In other words we translate the

flow chart into some other language which the computer will understand (not

really understand, but at least accept). The language at hand is ALGOL-60.

The next batch of information will be much easier to understand if the

reader will arm himself with a pencil and scratch paper and follow di,rections !

All of the instructions and advice which we are about to give the

computer must be written using only the capital letters of the English alphabet,

the ten decimal digits and some assorted punctuation marks. In addition there

are some words and abbreviations' which have special meaning to the computer and

may, NOT be used for any use other than what the computer thinks they are

supposed to mean. Any time such a special word is used in this manual it will

be underlined to call to your attention that this is a RESERVED WORD. The

input to the computer will NOT be underlined, but the machine alr,~ady knows

all of the reserved words and will not make mistakes with them.

Keeping an eye on the flow chart we now start writing a pr0gram:

The reader :s advised to write the program on his scratch pad as we go.

First progr~m line:

COMMENT THIS IS A QUADRATIC EQUATION SOLVER EXAMPLE $

- 2 -

3

Read in
print out
A, B, C

')

JISC -E- B'- - 4AC

TS.l,'E

R.X1~ -B+. DISC /2
IX1~ 0
EX2~ (-B.../DISC)/'2
IX2~ 0

FLOW CHAR.T for solution of AX-; I BX + C co ()

9

Print 'linear
equation'

>--~'>I solution is
-C/B

>-----r'>IA bsurd pro bl em 1-------l~I
specification

Any value of
X will do

Print out va ues
of RX 1 , IX 1 , RX2
IX2

8

RX1~ -B 2A
IX1~ -DISC/2A
RX2~ RX1
IX2~ IX1

FIG. 1

- 3 -

Note that the word COMMENT is underlined, i.e. it is a reserved word. The

computer will ignore any characters to the right of the word COMMENT until

it encounters a dollar sign. The reason for including CO~Nr in thP

language is so that the human will have a chance to see w~at is going on

in the program, not only while he is writing it, but six months later when
\

he once again comes across it.

Box 1 in the flow chart says to obtain and record values for A, B, C.

Next program line:

READ(A,B,C) $

Again note the underlined word READ; it has a special meaning. The A,B,C

mean that the computer is to read in a card and accept the first three numer­

ical values on the card as being the values for A,B,C respectively,

Next program line:

WRITE('QUADRATIC EQUATION WITH A, B, C RESPE8TIVELY, ',A,B,C) $

The lines of program a.re punched on cards exactly as shown -- including

everything, spaces, punctuation marks and all -- especially the dollar sign!

The line which we have just written will cause the computer to print 0ut the

message included between the quotation marks, followed by the three numerical

values which it read in from the data card.

We are now at Box 2 in the flow chart. Notice that it effectively says that

if A is not equal to zero we should go to Box J.

Next program line:

The only non-obvious part of this line is just what B3 is supposed to mean.

We will take ~are of this when we get to the place where Box 3 is actually

used in the program. Now th9 reader may well be a little curious f!.bou t what

happens if the proposition " A NEQ 0 " is NOT true. In this case +,he computer

SKIPS the inEltruction which says" GO TO BJ", and goes on in the program to

see what to do next. In this flow chart Box 7 comes next in the case where

" A NEQ 0 " :i s false (i. e, A is equal to zero) •

- 4 -

Next program line:

1[B ~_g 0 THEN GO TO B9 $

Applying the same reasoning as used in the last paragraph we see that there

is nothing particularly complicated about what the computer action will b8

in either case (i.e. the cases where 1 • " B NEQ 0 " is true and 2. is false).

We are now at Box 10.

Next program line:

IF C NEg 0 THEN GO TO B11 $

WRITE (1 NO PROBLEM SPECIFIED 1) $ GO TO B1 $

The reader now looks at the program he has written and spots a

problem --- he knows where B1 is, but has not told the computer apout where

B1 is supposed to be. We now go back and CHANGE THE SECOND LINE OF THE

PROGRAM so that it reads:

B1 •• B:EAD(A,B,C) $

This ch~nge in effect defines what B1 means. Note the use of th~ two periods

following the label "B1"; the periods tell the machine that B1 is a label

which is being defined (i.e. placed) at this point. Note that the possibility

of placing a label at this point (before the RE4Q) was (is now) fairly ohiTious

since there are two lines on the flow chart which enter the first box. We now

start to clean up the remaining o~ds and ends of the flow chart.

Next program lin·=d s):

B'11 •• WRITE('NOT A '!ERY REASONABLE S?ECIFICATION') $ GO TO B1 $

B9 .. WRIT:§.('LINEAR EQ1JATION, SOLUTION IS X=' ,-C/B) $ r;.o TO B1 $

Note that tl.e last line above prints out the mes3age between the iUOtation

marks follo~ed by the numerical value of -C/B.

Contin.iing at box 3:

B3.. DIS·~ = BH2 - 4*A*C $

- 5 -

Note that the above line says "the present value of DISC is .1:.fil2.laced QI: the

result of computing B squared minus 4 times A times C". The equal sign

always means "is replaced by".

Continuing at box 4:

IF ;:nsc LSS 0 IHEN BEGIN

RX1 = -B/(2*A) $ IX1 = ~T(-DISG)/(2*A) $
RX2 = RX! $

IX2 = -IX1 END

ELSE

BEGI~

RX1 = (-B + SQRI(DISC))/(2*A) $ IX1 = 0 $
RX2 = (-B-~RT(DISC))/(2*A) $ IX2 = 0 ENQ. $

We have now encountered several new items -- for instance .§.<;lli'!'., the meaning of

which is not at all mysterious -- however, note that the quantity which is to

have its square root extracted must be enclosed in parentheses. Other new

items turn out to be the use of BEGIN and "§..@ which are used to enclose several

statements into one lump to make it clear to the computer just how much to do or

skip as the case may be. We have so far encountered two forms of construction

which both started with the word IF, they are:

IF (Boolean expression) THEN (unconditional statement)

an:i

IF (Boolean expression) THEN (unconditional statement) ELSE <stateme1

The use above of the marks "<" and ")" means that the text between the

< an:i > refers to a general construction which can be (and is) defined for

ALGOL-60. A Boolean expression is something which has a value of either tr~e

or false (e.g. AN~ 0). An unconditional statement is one that does NOT start

with the word IF.

This is a rather negative definition of the idea of an unconditional

statement, but it will do for the time being. We may now be tempted to suppose

that a conditional statement is one which does start with the word IF, which is

correct. The construction used in the program which started with the word

BEGIN, and ended with the w~rd END, is an example of an unconditional statement

(note that it did NOT start with the word IF).

;_ 6 -

The action of the first construction for IF above is to test the truth

of the Boolean expression and then to either do or skip the following ,.m­

condi tional statement (which follows the word THEN).

The action of the second construction for IF is again to test the

truth of the Boolean expression and then to do eith9r the unconditional

statement following th9 word THEN or to do the statement following the word

~' but never to do both and never to skip both.

Next program line:

WRIT~('REAL X1, IMAG X1, REAL X2, IMAG X2 1 ,RX1,IX1,RX2,IX2) $

GO TO B1 $

At this point our program is almost done, but not quite!

With a problem of the type presently under discussion it is a rather

simple matter to test all of th8 alternative possibilities for the data. We

now furnish some data to test our program. The data cards are the cards which

will be read when the computer is executing the program and encounters the

word READ. Since these cards are to be read during the execution phase of the

program they MUST (obviously) follow the last card of the program itself.

Next set of cards (one for each line)

2 5 2

-2 -15

1 -4 13

0 3 18

0 0 2

0 0 0

There is now only one more thing to do in order to have a complete

program. As we will later discover, it is always necessary to specify "types"

of variables. The o~ly reasonable method at the moment is to specify all of

the variables as of type REAL. We do this by inserting one line at the very

top of the program which reads:

fil':AL A,B,C,DISC,RX1,IX1 ,RX2,IX2 $

If you have followed directions you are to be congratulated! Yo'l have

now written a co~plete ALGOL-60 program which should operate correctly. Your

scratch paper should now have the following information on it:

- 7 -

REAL A,B,C,DISC,RX1,IX1,RX2,IX2 $

COMMENT THIS IS A QUADRATIC EQUATION SOLVER EXAMPLE $
B1 •• READ(A,B,C) $

The data

WRITE('QUADRATIC EQUATION WITH A, B, C RESPECTIVELY, ',A,B,C) $
IF A NEQ 0 THEN GO TO B3 $

1F B NEQ 0 THEN GO '.!:Q B9 $
IF C NEQ 0 THEN GO TO 811 $
WRITE ('NO PROBLEM SPECIF:ED') $ GO TO B1 $

B11 •• WRITE('NOT A VERY REASONABLE SPECIFICATION')

B9 .• WRITE('LINEAR EQUATION, SOLUTION IS X=' ,-C/B)

B3 .• DISC= B**2 - 4*A*C $

IE DISC LSS 0 THJir:! BEGIN

$ GO TO B1

$ GO !Q B1

RX1 = -B/(2*A) $ IX1 = SQRT(-DISC)/(2*A) $
RX2 = RX1 $

IX2 = -IX1 END
ELSE

BEGIN

RX1 = (-B + SQRT(DISC))/(2*A)

RX2 = (-B-SQR!(DISC))/(2*A)

$ IX1 = 0 $
$ IX2 = 0 END $

WRITE('REAL X1, IMAG X1, REAL X2, IMAG X2, ',RX1,IX1,RX2,IX2) $

GO TO B1 $

cards could appear as follows:

2 5 2

1 -2 -15

-4 13

0 3 18

0 0 2

0 0 0

We once again call your attention to the fact that the underlines are

used only to call the reader's attention to the fact that some of the words

are reserved for special meanings. The input which goes into the computer

will NOT be underlined -- it "knows" w!'lich are reserved words and which are not.

For example:

The fifth line of the program will appear to the computer as:

- g -

IF A NEg 0 THEN QQ TO B3 $

Note that if we smash the characters together:

then we cannot make any sense out of the line and as it t~rns out -- neither

can the computer. Thus it would appear that spaces are not only useful - but

absolutely necessary. Tne easiest view to take of the rules regarding spaces

is that if you would accept a particular rendering of a program from your

secretary, then the computer will very likely also accept that form. If you

cannot easily decide ~here things (words, etc.) start and end, then the computer

will not only not be able to decide but it won't even make an attempt. The

rules for the use of spaces are not as inflexible as they might appear

if one space is necessary, then any number will be acceptable (i.e. at least

one), if no spaces are NE~ESSARY then spaces will not hurt anything.

For example:

RX2=RX1$

is co.npletely aquivalent to

RX2 = RX1 $

BUr the following line will not do at all:

R X ; = R X $

It would seem then, that there are so~e more rules with regard to how

one names va~iables. The rules for variable (and label) names are quite simple.

1. Names must start with an alphabetic character and may contain

only alphabetics and numerics -- never spaces or punctuation

mar!<s.

2. The computer examines only the first twelve characters of a

name to "remember" the name, thus

HEMIDEMISEMIQUAVER

is a valid name but is regarded as equivalent to

HEMIDEMISEM rANTIDISESTABL ISHMENTARIA NISM

since the first twelve characters are the same in both.

A cons0quence of the rules above is that although

RX2

is a legitim~te nime for a variable,

- 9 -

2RX

is NOT an acceptable name for a variable. (It does not start with an

alphabetic character).

There is now some explanation owed to the reader as to how the computer

decides which arithmetic operation to perform first if there is any choice.

For example

-B/2*A might mean -(B/2*A)
or -B/(2*A)

or (-B/2)*A
or possibly some other things, the question being not what it might mean

but what it does mean.

Common usage suggests that we would like to have our arithmetic

expressions evaluated by doing in order

1. Exponentiation(**) and

Unary minus (the kind of minus that does not have

a number or a variable to its left) on an equal

basis, but evaluate the unary minus from right to left.

2. Multiplication an1/or division

3. Addition and/or subtraction

with all of the above (except the unary minus) being done on a left to

right basis at any particular parenthesis level. These rules result in:

Examples:

Desired Quanti~

Q-2

B2-4AC

~-2 ~-5 -u -n

1,..T2
2u

Algol-60 Repres8ntation

Q**-2

B**2-4*A*C

-G**-'.2-H**-5

G*T**2/2

A*B**-2**-B*C**-3

The last example above is correct, bat points up a rJle that should not

be ignored, namely--

"WHEN IN DOUBT, USE PARENTHESES BY THE BUSHEL"

- 10 -

Thus, if you 1esire

'Write

A*(B**-(2**-B))*(C**-3)

CARD PUN~HING RULES

The rules for punching the program on cards are quite simple:

1. The computer examines columns 1-72 only -- all else is ignored.

2. The computer views column 72 on one card as being directly to the

left of column 1 on the following card.

3. The user may put any valid information at all into cols. 73-80,

e.g., the name of the program.

These rules imply that the machine does not know and in fact does not care

whether statements exist one or more than one per card. The user is advised

to generally restrict himself to one statement per card in order to make

his life easier when the time co~es for making alterations in the program.

The data cards have a separate set of rules:

1. The computer examines columns 1-80 for data

2. In no ~ase may a number be split between two cards, since the

machine DOES NOT consider column 80 on one card to be connected

to colu.~n 1 on the following card.

A description of the Exec III control cards that are used to actually

run a program through the computer is given in Chapter XIV, USING ALGOL

UNDER EXEC III.

- 11 -

I ...

1NTRODUCTION

This section is intended as a reference manual in the use of an extended

Algol 60 language, based in part on the "Revised Report on the Algorithmic

Language ALGOL 60" (Communications of the ACM, Vol. 6, January 1963, 1-17.)
The Algol translator is a program which accepts statements expressed in the

Algol language and produces ma.chine-language programs for the Univac 1107

Thin Film Memory Computer.

The Algol translator (compiler) utilizes a Univac 1107 with 65,536 words

of core memory, two FH-8SO magnetic drums, card readers and line printers. The

Algol compiler is an integral part of the Exec III operating system.

The text of this reference manual consists principally of definitions

and rules for the use of the translator, examples of these rules, and some

sample programs. A set of appendices summarizes the text an1 lists some de­

tails on the operation of the program, the contents of the library, etc.

Whenever a term is defined, it is underlined in the defining sentence.

Greek letters or names enclosed in corner brackets (e.g. (integer)) are used

in the text to denote generic representations; for example, E is used to

represent an expression ani t to represent a statement. For the most part,

other symbols represent themselves.

The examples, which have been used quite liberally, have been employed

for "definitions by example" in only those few cases where a formal de­

scription has proved particularly unwieldy.

A program that is to be run on a computer must take the form of

machine language, i.e., instractions that can be directly decoded and

executed by the electronic apparatus of the computer. On the other hand,

a program that is to be practical for solving problems should be in a form

that is easily written anJ understood by human beings.

At present there is no program.~ing language that meets both these

requirementr. Th'9refore the use of a language such aR .AJ goJ in ~'1mputlng

12

involves two closely related bµt distinct program forms.

The first, called a so1irce program, consists of Algol instructions

written by the program:ner to describe the process he wants carried 01it.

The second form, called an object program consists of machine language

instructions appropriate to the specific computer at hand. In the present

case the intermediary that translates source language to machine language

is called an Algol compiler.

The compiler is an elaborate program that accepts an Algol source

program as input and produces a corresponding machine language program

(object program) as output. The object program may then be directly

carried out by the computer or it may be stored for later use.

A typical run of an Algol program is as follows:

1) The Algol source program is fed into the computer on punched cards.

2) The Algol compiler translates the program into machine language,

printing out the source instructions, some diagnostic messages and,

possibly, some error messages. The resulting object program is

temporarily stored on the magnetic drum. At this point the compiler's

work is done.

3) The obje'~t program and any auxiliary routines that it calls for (e.g.,

SIN, !1EAD, SORI) are copied from the drum to the memory unit (i.e.,

allocated) and executed by the computer, using data provided by the

user on punched cards. Every Algol program uses at least a few

auxiliary routines from the Algol system library, which is always

stor'9d on the magnetic drum.

Among the many features made available to the programmer by Case

Algol are extensive data processing facilities, double precision and

co~plex arithmetic, and bit manipulation. There are also available

routines to stor'9 programs and data on tape, create visual displays using

a plotter, and a sort-merge package.

Deviations From Algol 60

For those familiar with th9 Algol 60 publication language, the deviations

of Case Algol from Algol 60 can be summarized as follows:

- 13 -

1) Uniqueness of an identifier is determined by examining its first

twelve characters only (for exceptions, see IDENTIFIERS).

2) Every formal parameter must be mentioned in the specification part

of the procedure heading.

3) Numeric labels are excluded from the language.

4) A com.~a is the only acceptable parameter delimiter in procedure calls.

5) The result of integer exponentiation (I**J, I and J both integer) is

always integer.

6) Forward referenced identifiers should be declared by a local declaration.

7) Arrays declared OWN are not dynamically allocated.

8) In a lQ~ statement using the STEE-UNTIL (for list element), the step

expression is evaluated once for each time the loop is entered.

These and other restrictions are covered in more detail in other

sections of this manual.

Many extensions have been made to the Algol 60 language to facilitate

the handling of large complex programs. These extensions include:

1) Input/Output routines to provide very flexible handling of various

data forms;

2) Double precision and complex arithmetic to extend the scope of scien­

tific computations;

3) General character string operations to provide very flexible data

processing features;

4) Provisions for allowing procedures written in Algol or Sleuth or

subroutines written in Fortran to be linked to and executed in con­

junction with the object program;

5) O~tions to facilitate debugging of the program;

6) A set of intrinsic functions that allow partial word and bit operations.

BASIC SYMBOLS

The following correspondences are made for the representation of basic

symbols:

- 14 -

HA.EllC ~ymbol

for
Publication Language

true

false

+

x

I

=

J
v
/\

go to

if

then

else

for

do

&

·­.-

~asic Symbol
for

Translator

TRUE

FALSE

+

*
I
II
**
LSS

LEQ

EQL

GEQ

GTR

NEQ

EQUIV

IMPL

OR

AND

NOT
GOTO or

IF

THEN

ELSE

FOR

DO

&

- 15 -

or

$ or

=or .-

GO TO

reserved identifier

reserved identifier

12

11

11-4-8

0-1

0-1 0-1

11-4-8 11-4-8

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

0-3-8

12-3-8

2-8

5-8 or 12-3-8 :2-3-8

11-3-8 or 11-f;,-8

3-8 or

(blank)

- ':1
)-_,

Basic Symbol
for

Publication Language

step

until

while

comment

(

)
r
I
L

J
'
' begin

end

own

Boolean

integer

real

array

switch

procedure

string

lab9l

value

Basic Symbol
for

Translator

STEP

UNTIL

WHILE

COMMENT
(

)

(or [

) or J

BEGIN

END

OWN

BOOLEAN

INTEGER

REAL

ARRAY

SWITCH

PROCEDURE

STRING

LABEL

VALUE

Card Code

reserved identifier

reserved identifier

reserved identifier

reserved identifier

0-4-8

12-4-8

0-4-8 or 12-5-8

12-4-8 or 11-5-8

4-8

4-8

reserved iqentifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

In order to extend the language the following basic symbols have been

introduced:

Basic Symbol
for

Translator

TO

REAL2

LIST
FOR.t.i!T

EXTERNAL

- 16 -

Card Code

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

Basic Symbol
for

Translat.or

COMPLEX

LOCAL

DEFINE
STRING

XOR

GO

TRACE

DUMP

RANK

(terminate scan of current card)

(force character into string)

Card Code

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

reserved identifier

11-0

12-7-8

Typographical features such as blank space or change to a new line

have no significance to the compiler except that blanks may not appear

within basic symbols, identifiers and numbers. Otherwise blank spaces

and blank lines may be used freely to facilitate reading.

An exclamation mark "!" punched in column one of an Algol source

program card will cause the printed listing of the program to begin a new

page with that car1. In this case the scan of the card continues starting

w~th column two.

- 17 -

II •••

ELEMENTS OF THE

COMPILER LANGUAGE

CHARACTERS

The Algol compiler employs a character set which is commonly available

as a variant of the usual Hollerith code (IBM 026 Fortran H set) together

with a few special multipunch 1107 characters. These characters are:

THE ROMAN ALPHABET

A,B, ••• ,z

THE ARABIC NUMERALS

0,1, ••• ,9

SPECIAL CHARACTERS

+

=

(

)

$

I
*

(space)

(a 5-8 punch)

& (a 2-8 punch)

- 18 -

< (a 12-6-8 punch)

) (a 6-8 punch)

(a 11-6-8 punch)

[(a 12-5-8 punch)

J (a 11-5-8 punch)

(a 11-0 punch)

(a 12-7-8 punch) (later referred to

as "pound sign")

In addition, so~e multiples of characters are given meaning as though

they constituted a single character:

**

&.&

II

exponentiation

base-10 scale factor double precision

integer divide

From these characters, statements are constructed which are translated

by the compiler into machine language for execution by the Univac 1107.

METALING~ISTIC SYMBOLS

In addition to the script letters used in the text, some symbols will

be employed with metalinguistic significance. These symbols include:

SYM!30:..

p

IDENTIFIERS

SIGNIFICANCE

is equivalent to
has the form of

relational operator

arithmetic operator

space

The fundamental construct of the Algol language is the identifier.

Identifiers are used to name the various things that make up a program,

such as variables, functions, labels and procedures. An identifier is a

- 19 -

string of letters and digits subject to the following conditions:

1) The first character must be a letter.

2) No special characters (including spaces) may be embedded within an
identifier (the only exception is GO TO).

3) Any number of characters may be used. However, the compiler considers

two identifiers to be the same if their first twelve characters are

the same (six for external system names, eleven for procedures used

in the functional sense, three for defined variables).

A few identifiers are reserved by the compiler for use as operators

and punctuation marks. These reserved identifiers shoQb.1 not be ~ed Qy:

the orogrammer in any context other than that set down in thi~ ™al.

Any other identifiers may be used at the programmer's discretion.

However, some other words, called predefined identifiers, are known by the

compiler as the names of library functions or intrinsic functions and

should be used wit~ caution if the program.~er wishes to employ the standard

library element in his program.

A list of reserved identifiers and predefined identifiers is gjv~n

in Appen:iix I. Whenever they occur in examples in this manual they are

underlined.

EXAMPLES:

QUANTITIES

z
BEGIN

PARKA VENUESOUTH

ENTIER

A374

U1107POINT5

COMMENT

RUNGEKUTTAGILL

GTR

The c::>mpiler is concerned with the manipulation of six typt·s of

- 20 -

quantities: real quantities, integer quantities, Boolean quantities,

double precision quantities, complex quantities, and string quantities.

Rea! Quantitie~ represent the class of real numbers to an accuracy

of eight significant decimal digits, the maximum permitted by the word

length of the Univac 1107.

Integer quantities represent the class of integers that can be

expressed in the word length of the Univac 1107, i.e. the integers whose·

magnitude is less than 235 - ~ .
Double precision quantities represent the class of real numbers with

a precision of sixteen significant decimal digits.

The m~gnitude of a real quantity (single or double precision) must

be less than 1038 • Any real quantity which is less than 10-38 in magnitude,

is represented by zero.

Boolean ~uantitie~ represent truth values. The only values for

Boolean quantities are TRIJrl and FALSE.

Complex quantities represent the class of complex numbers, which are

expressed as an ordered pair of real numbers.

String quantities represent the class of strings of valid characters.

A maximum of 4095 characters is permitted in any single string.

A program ma.y contain quantities of any or all of these types. The

programmer assigns the types of the variables and evaluated procedures that

appear in his program.

VARIABLES

Variables treated by this compiler are two kinds--simple variables

and variables with subscript(s). A simple variable represents a single

quantity and is denoted by an identifier; a variaQl~ ~ith suQ~ipt.G!l re­

presents either 1) a single element of an array which is denoted by the

identifier which names the array, followed by a subscript list enclosed in

parentheses, or 2) a portion of a string variable. A subscript list consists

of arithmetic expressions sep~rated by commas.

EXA~PLES:

Simple Variables:

x
ALPHA

C13

- 21 -

Variables with Subscripts:

A(I,J)

M(I + 1, J + 1)

V(F(P t 1), 12 + Q)

Q(W(T), X(T), Y(T), Z(T))

c (13)

The expressions (see Chapter III) which make up the subscripts of a

variable with subscripts may be of any complexity. Real values are allowed,

in which case the real number is rounded to the nearest integer (see the

description of the INTEGER function in Chapter VIII). Each subscript

expression must have a valu~ which is not less than the minimum and not

greater than the maximum specified for that array by the ARRAY declaration

or for the string as specified by the STRING declaration (see Chapter V).

The number of subscript expressions must equal the numh3r of dimensions of

the array as declared in the ARRA~ declaration for that array, or be less

than three in the case of string variables.

A string variable may have zero, one or two subscripts. For

example, if S is a string variable then

S(I,J)

refers to the substring of J characters taken from S in ascending order

starting with the character in the Ith position.

The second subscript may be omitted, in which case it is assumed to

have a value of one. Therefore

S(I)

refers to the single character in the Ith position of the string S. If

both subscripts are omitted then it is understood that the entire string

is being referenced. (See Chapter VII, STRINGS.)

The "declaration of type" described in Chapter V determines whether

a variable represents an INTEGER, REAL, REAL2 (double precision), COMPLEX,

STRING or BOOLEAN quantity.

INTEGEa CONSTANTS

Intefer constants may be represented in either the decimal or octal

number systems.

A decimal integer consists of a string of one to ten decim~tl digits.

Leading zeroes are ignored and imbedded spaces are not permitted.

- 22 -

1 s
16384

2121

If the "K" option is used on the Algol control card the compiler

interprets an integer constant with one or more leading zeroes as an octal

number. The magnitude of an octal constant must be less than 812 . Only the

di~its O, 1, ..• ,7 may b9 used in an octal constant. When the compiler goes

into octal mode the word OCTAL is printed at the left of the listing. The "K"

option may be invoked selectively in a program by means of trace number 25.

See Chapter XIII for a des~ription of option letters and trace numbers.

EiCAMPLES:

0

017

040000

04111

REAL CONSTANTS

Real constants are represented by a string of digits which contains

"·" -- a decimal point. The decimal point may not appear at the end of the

string. A real constant may contain a maximum of eight digits, significant or

not.

EXAMPLE~>:

3.1415927

43.0

.6394

If desired, a scale factor may be appended to a real constant to

indicate that it is to be multiplied by the indicated power of 10. This scale

factor is w:r:-itten as an ampersand (&) followed perhaps by a + or - sign and

then by an integer. The integer specifies the power of 10 to be used, and is

limited to a two-digit number.

EXAMPLES:
(:

2.E:&5 means 2.6 x 10- or 260,000.0

1.7&-3 means 1,7 x 1(1- 3 or 0.0017

- 23 -

A third option allows a real number to be written as an integer

followed by a scale factor.

EXAMPLE:

3&+4

This is precisely equivalent to writing 3.0&+4 or 30,000.0. Note

that a scale factor alone may be used to specify a real number--for example

102 may be written as &+2, etc.

REAL2 CONSTANTS (DOUBLE PRECISION)

Double precision constants are represented by a string of more than

eight digits which contains"·" -- a decimal point. A double precision

constant may contain a maximum of sixteen digits.

EXAMPLES:

0.00006174205

2.71828182845904

If desired, a scale factor may be appended to a double precision or

real constant to indicate that it is to be multiplied by the indicated power

of 10. This scale factor is written as two ampersands followed perhaps by +

or - sign and then by an integer as in the real case.

EXAMPLE:

1. 0&&-1 or &&-1

This represents 0.1 correct to sixteen significant figures. One

should note that 0.1 is not represented exactly in binary, and that double

precision representation will be more accurate than the normal single precision.

NOTE: The ampersand (&) is used only in writing constants. Exponentiation

of variables in a program is denoted by "**"

COMPLEX CONSTANTS

Complex constants are represented as an ordered pair of real constant~

separated by a comma and enclosed by corner brackets ().

EXAMPLES:

(1.0, 1.0) represents 1 + i

<-3.4, -1.0 & -2) represents -3.4 + 0.01i

- 24 -

BOOLEAN CONSTANTS

Only two Boolean constants are allowed: TRUE and FALSE.

:c:;TRING CONSTANTS

String constants are represented by any string of acceptable characters

(excluding an apostrophe, exclamation mark, or pound sign) enclosed by

apostrophes. The exclamation mark (!) terminates the string on the current

card and continues it with the first non-blank character on the next card.

If a string constant is continued from one card to the next without being

terminated by an exclamation point on the earlier card, then the string resumes

with column one of the next card. The pound sign (#) forces the next character

on the card into the string no matter what it is, as in the following examples:

Characters Effective

punched on card string

1 HOIDNOIDBROWN~COW 1 HOW NOW BROWN cow
'i.2°.Ff .2 1 128F6.2

'I'I:0.AIN' WJffiUSE' IT AIN'T NO USE

'WHE'..J# !# ! ' WHEW!!

' l\EDOF6F## ' KEY OF F#

CAUTION: The only constant that may contain an embedded space (blank) is a

constant of type STRING.

EVALUATED PROCEDURES

The compiler allows the use of a wide variety of functions. In this

section we will consider only the simplest form of functional notation in order

to provide a basis for the next chapter. (Chapter XII contains a complete de­

scription of the use of procedures and the manner in which they are defined.)

For the moment we will assume that a procedure acts on one or more quantities

called arguments and produces a single number as a result. This resulting

quantity is called an evaluated procedure.

GENERAL FOqM:

(identifier) ((exp1), ... , <expN))

where (identif~er) is the name of the procedure and (exp1) through <expN) are

expressions wh~ch are the arguments of the procedure.

- 25 -

EXAMPLES:

SIN(X)

SQRT(B**2-4*A*C)

HYPERGEOM(A,B,C,Z)

LN (SIN(THETA-ALPHA/2))

The type of a procedure depends on the manner in which the procedure

was defined. The type required for each of the arguments is also determined

by the definition of the procedure. It. is the programmer's responsibility iQ
ensure that each of the arguments is of the proper type. However, VALUE

parameters will have the arithmetic converted if possible, and all other

violations will cause an error message.

- 26 -

III •••

EXPRESSIONS

Algol statements deal with three kinds of expressions: Arithmetic

expressions (those having numerical values), Boolean expressions (those

having truth values), and Designational expressions (those having statement

labels as values). This chapter describes the manner in which these ex­

pressions may be combined to produce new expressions. Expressions must be

well formed in accordance with mathematical convention and with the rules

set forth below.

ARITHMETIC EXPRESSIONS

Arithmetic quantities are combined by means of the operations +, ~,

*, /, //, and**· The symbol** is used to denote exponentiation, (t),
[i.e. B**2 has the meaning of B2 or (Bt2)], and// denotes integer divide

(-:-). In addition to these six symbols, parentheses may be employed to

indicate that a specific order of evaluation is to be followed rather than

the assumed order in ALGOL. To be explicit, it is assumed -- in the ab­

sence of parentheses to indicate otherwise -- that exponentiation is per­

formed before multiplication and division, multiplication and division

before addition and subtraction. An option is provided for assigning a

higher precedence to multiplication(*) than division(/) or (//). Operations

on the same level (e.g. addition and subtraction) are done from left to

right. Parentheses should be ~~ to express the exact meaning desired.

A variable, a constant, or an evaluated procedure of type INTEGER,

REAL, REAL2, COMPLEX, or STRING will in itself constitute an arithmetic

expression. Furthermore, if

(arith exp1), <arith exp2>
are arithmetic expressions and

- 27 -

(Bool exp)

is a Boolean expression, then each of the following is also an arithmetic

expression:

((arith exp1))

+ (arith exp1)

IF (Bool exp) THEN (arith exp1>
ELSE (arith exp2>

The arithmetic operation denoted by a double slash (//) is called

"integer division". If A and Bare of type INTEGER and BIO, then the

result of A//B is equal to the value of the expression

SIGN(A/B) * ENTIER(ABS(A/B))

See Chapter VIII for descriptions of the SIGN, ENTIER and ABS functions.

EXAMPLES:

Expression

A+B*C

A*B+C

A*B/C

-X*Y

-X-Y

Compiler interpretation

A+(B*C)

(A*B)+C

(A*B)/C

(-X)*Y
(-X)-Y

NOTE: Exponentiation of expressions cannot be accomplished by use of the

ampersand (&). The expressions

<arith exp1) & (arith exp2>
(arith exp1> && (arith exp2)

are meaningful only under the conditions described in Chapter II,

Real Constants and Real2 Constants.

- 28 -

STRINGS IN ARITHMETIC EXPRESSIONS

Whenever a string quantity (variable, constant, or procedure) is used

within the context of an arithmetic expression, then the string is assumed

to be a ~tring Qf digits and is converted automatically to an integer quantity

denoting the value of the string. If the assumption of a string of digits is

false an error at run time will be detected and a message "Improper string

conversion" will be indicated.

As an example, let:

A be the string '4'
B be the string '9'

then A*B has the value 36

and A**'2' has the value 16.

Note: '2' + '36' is equivalent to 2+36 as an arithmetic expression.

BOOLEAN ~UANTITIES

Boolean q'.18.ntities may be combined by means of logical operations to

form Boolean expressions in a manner entirely analogous to the combination of

arithmetic quantities by arithmetic operations. Boolean expressions are again

true or false, depending entirely on the truth values of the quantities en­

tering into the expression and the definitions of the Boolean operations

combining them.

RELATIONAL OPERATORS

Another class of Boolean expressions is comprised of those which result

from a test on arithmetic expressions. These are termed arithmetic relations,

and consist of two arithmetic expressions and a relational operator. The

latter is an operator in the sense that it performs a transformation on the

comparison to produce a truth value. This value is either true or false

depen~ing upon the results of the comparison.

- 29 -

GENERAL FORM:

(arith exp1> (rel oper) (arith exp2)

where (arith exp1> and (arith exp2) are arithmetic expressions and (rel oper)

is a relational operator. The relation has the value TRUE if (arith exp1>
is in the relation to (arith exp~; otherwise its value is FALSE.

The relational operators employed in the Algol compiler are GTR,

GEQ, EQL, LEQ, LSS and NEQ. Their significance is indicated in the following

table:

CONVENI'IONAL

MATHEMATICAL

EXPRESSION NOTATION MEANING

(arith exp1) G'lR (arith exp2) A1) A2 greater than

(arith exp1> GEQ (arith exp2> A1 ~ A2 greater than or equal t

(arith exp1) EQL (arith exp2) A1 - A - 2 equal to

(arith exp1> LEQ (arith exp2> A ~ A2 less than or equal
1

(arith exp1> LSS (arith exp2> A1 < A2 less than

(arith exp1> NEQ (arith exp2> A1 'f A2 not equal to

Spaces are required to the left and right of the relational operator.

EXAMPLES:

X NEQ 0

ABS(L - LPRIME) LSS EPSILON I

T GTR TMAX

STRING IN RELATIONS

Strings may be compared by the above relational operators. The com­

parisons are made using the natural collating sequence of characters on the

1107 (i.e. F:leldata code). If a non-standard collating sequence is desired

- 30 -

to

then a declaration of RANK may be made (See Chapter VII).

A string comparison is made only if both sides of the relation are

strings. If either operand is non-string then the string operan::i is con­

verted automatically to its associated arithmetic expression before per~

forming the comparison as in the arithmetic expression case.

BOOLEAN OPERATIONS

The Boolean operations which are accepted by the compiler are NOT,

AND, OR, XOR, IMPL, and EQUIV. These operations are called negation,

conjunction, disjunction, exclusive disjunction, implication, and equiv­

alence, and are defined as follows (P and Qare Boolean quantities):

p Q NOT P P AND Q P OR Q P XOR Q P IMPL Q P EQUIV Q
--

false false true false false false true true

true true false true true false true true

true false false false true true false false

false true true .false true true true false

-

CONSTRUCTION OF BOOLEAN EXPRESSIONS

Any variable, constant, evaluated function, or procedure will itself

constitute a Boolean expression, if it is of Boolean type.

In addition, given the arithmetic relation

(arith rel)

and the Boolean expression~

(Bool exp1), (Bool exp2), (Bool exp3)

then each of the following is also a Boolean expression:

- 31 -

~<..arith rel))

((Bool exp1>
(Bool exp1) OR (Beel exp2>
(Bool exp1) AND (Beel exp2>
(Bool exp1) EQUIV (Bool exp2>
(Bool exp1) XOR (Boal exp~

(Boal exp1> IMPL (Boal exp~

NOT (Boal exp1>
IF (Bool exp)· THEN (Bool exp1) ELSE (Beel exp2>

PRECEDENCE OF BOOLEAN OPERATIONS

Conventions for the order of precedence of Boolean operations are not

as well established as are those for arithmetic operations. However, we

shall assume the following order, which is apparently the most common:

Unless indicated otherwise by the use of parentheses, NOT will be

executed before AND; AND will be executed before OR and XOR; OR and XOR will

be executed before IMPL; and IMPL will be executed before EQUIV. In the case

of equal priorities, operations are executed from left to right. For example,

P IMPL Q IMPL R means ((P IMPL Q) IMPL R).

EXAMPLES:

NOT(P AND Q) OR R IMPL P OR NOT Q

NOT (NOT P) EQUIV P

P IMPL P OR U AND V

(P OR Q) AND NOT (P AND Q)

(A LEQ X) AND X LEQ B

(ERROR LSS TOLERANCE) XOR (N GTR 40)

R ANDS OR (F(X) ~ 4)

(M*N*(R-2) + 4 LSS TAN(BETA-ALPHA)) OR FLAG

(U*SINH(M) GTR M7) EQUIV (V*COSH(M) GTR M12)

Boolean expressions mRy only be used in other Boolean exp1·essions.

DESIGNATIONAL EXPRESSIONS

Designational expressions· are those expressions whose values are

- 32 -

statement labels. The form of a designational expression is either a label,

a switch variable or a conditional expression between designational ex­

pressions. For example, each of the following is a designational expression:

<label)

<switch) (<arith exp))

IF <Bool exp) THEN <desig exp1> ELSE <de~ig exp2>

A..B.ITHMETIC EXPRESSIONS AND BOOLEAN 3.ELATIONS

Entries in tables represent the arithmetic mode in whic~ calculation

or comparison is carried out. The following abbreviations are used.

R Real

s String

I Integer

R2 Double Precision Real

c Complex

+ Addition

Subtraction

* Multiplication

I Division

** Exponentiation

Rel Relational Operators (Q.TR, GEQ, EQL,

LEg, LSS, ~)

TABLE 1

Type of Right Operand ,- ---i---

+ - s I R R2 I c
* !..

s I § I § R R2 c

I I § I § R R2 c

R R R R :l2 c

R2 R2 R2 R2 R2 c
1--

c c c c c c

§ In these cases division (/) is done in Real mode.
- 33 -

Integer division (//) is always done in Integer mode. If either

operand is complex, integer division is undefined.

TABLE 2

Type of Right Operand

Rel s I R R2 c

s s I R R2 c §

I I I R R2 c §

R R R R R2 c
~

R2 R2 R2 R2 R2 c §

c c § c ~ c § c § c §

§ If either operand is complex, only EQL and NEQ are valid relational

operators.

Entries in Table 3 denote the type of the result. The method of

computing the result of exponentiation depends on the values of the

operands.

**

s

I

R

R2

c

TABLE 3

Type of Exponent

s I R

I I R

I I R

R R R

R2 R2 R2

c c c

- 34 -

R2 c

R2 c

R2 c

R2 c

R2 c

c c

IV •••

STATEMENTS

The statement is the fundamental unit of expression in the description

of an algorithm. Most of what follows in this manual deals with the form~tion

of statements and th9ir interrelation to form larger constructs. Statements

may be divided int9 two classes -- the operational statement apd the declara­

tive statement. ~rational statements specify something that the object

program is to do. Declarative statements give information to the compiler

about. the program being compiled. After this chapter, the word statement

will usually be employed to mean an operational statement; a declarative

statement will then be called a declaration. However, for the present,

"statement" will stand for either sort.

The first part of this chapter discusses one particular kind of opera­

tional statement -- th9 assignment statement. The last part of the chapter

deals with the grammar of statements in general, using assignment statements

for- examples.

THE ASSIGNMENT STATEMENT

The assignment statemeQ~ specifies an expression which is to be

evaluated and a variable which is to have the resulting value assigned to it.

GENERAL ~a~:

<variable) = (exp)

Note that the symbol " = " is used in a special sense in this compiler to

signify the process of assignment or substitution of values. Thus X = X + 1

means "using the current value of the variable X, evaluate the expression

X + 1, and assign the result as the new value of X". Although X = X + 1 is

- 35 -

not a valid equation, it is a well-formed operational statement, and the

compiler will carry out the indicated substitution. Thus the following

valid algebraic expression:

X**2 = Y + 2

has no meaning to the compiler, while

X = ~(K)
is a valid statement, and can be executed by a compiled program, which will

assign the value of Kt to the variable X.

ARITHMETIC ASSIGNMENT STATEMENTS

If the variable in

<variable) = <arith exp)

is of type INTEGER, REAL, REAL2, or COMPLEX then we have an arithmetic assign­

ment statement. If <variable) and <arith exp) are of different type then one

of two cases applies:

1) ~arith exp) will be converted to the type of <variable) before the

assignment is made;

2) the compiler will indica~e that the conversion of type is undefined

and machine code will not be generated for the statement in question.

EXAMPLES:

R = (-B + SQRT(B**2 - 4*A*C))/(2*A)

U = X*COS(X*COS(THETA) + Y*SIN(THETA))

1QMEGA = 1/~(L*C)
E = M*C**2

C(I,J) ~ C(I,J) + A(I,K)*B(K,J)

STRING ASSICNMENT STATEMENTS

If the variable in

<variable) = <exp)

is a string variable, we have a string assignment statement. In this case

- 36 -

(exp> must be either of type string or an arithmetic expression. In the

latter instance, (exp> is first converted to type integer, if possible, and

then into the corresponding string of digits.

In all cases the replacement is made such that the left most character

of the right hand side replaces the left most character in the left hand string

variable. Extra spaces are S'.lpplied to the right as necessary to fill out the

left hand string and any excess of characters from the right hand side will

be dropped (i.,. the replacement is left justified in the left hand string

variable).

As an illustration, consider the following uses in which A

variable

EXAMPLES:

of length six:

A before Statement

ABC DEF A='XYZUVW'

ABCDEF A='LOOP-DE-LOOP'

ABCDEF A='HOW'

ABCDEF A(2)='Q'

ABC DEF A(2,.3)='XYZ 1

ABCDEF A(2~.3)=69
ABCDEF A=.3. 1415927
ABCDEF A(2,2) = -7

S=1000*SIN(X)

S=IF x GTR y THEN I P1 I ELSE 'I P2 I

S(1, N)=S(2, N-1)

A after

XYZUVW

LOOP-D

HOW

AQCDEF

ilYZEF

A69 EF

.3
A-7DEF'

is a string

One word of caution, the string replacements are performed a character

at a time starting with the left most character; hence, a replacement of the

form:

S(2, N-1) = S(1, N-1)

will result in the character in the 1,1 position, S(1, 1), being propagated

down the string (i.e. the first N characters of the string S will all be the

same as the character in S(1, 1)). In order to shift the characters in a

string righr,, it is necessary to first move the string into anotYer string

of the same length. For example, let S and T be strings of the same length,

then a right shift of one place can be performed on S by:

- .37 -

T = S $

S(2, N-1) = T(1, N-1)

This operation leaves the character in S(1) unchanged.

BOOLEAN ASSIGNMENT STATEMENTS

If the variable in

(variable) = (Bool exp)

is a Boolean variable, we have a Boolean assignment statement.

EXA..\fPLES:

FLAG = (SWITCH4 OR SWITCH5) AND FLAGPRIME

TEST= (X NEQ O)·AND (Y NEQ 0)

TOGGLE3 = TOGGLE4 AND TAG OR (U LSS V)

GENERALIZED ASSIGNMENT STATEMENT

GENERAL FORM:

= = (exp)

If it is desired to assign the same value to a number of variables,

it can be accomplished in a single statement by employing this generalized

form.

Note that if the list of variables to which a value is being assigned

is ~ixed type, then conversion of type will be performed; e.g., assume X, Y,

(exp) are real, and I is integer. Then the statement

X = I = Y = (exp)

will cause the value of (exp) to be stored into Y, rounded to an integer
before storing into I, and then this rounded result will be converted to

type REAL 9.nd stored into X. Th'.ls, for the above condition, X =I = Y =
(exp), X = Y = I = <exp), and I = X = Y = (exp> may all give di"ferent

results w1 en (exp) is real. The result of the rounding process is described

under INTI.GER function in C"iapter VIII.

EXAMPLES:

v = x = y = 15.302

A(I) = B(I) = Z = 0

- 38 -

THE GRAMMAR OF STATEMENTS

This section discusses certain definitions and rules of the compiler

language which have to do with the writing of statements. The basic rule of

the grammar of statements is that a statement must be separated from ~

following statement !?.z ! dollar~ (or semicolon).

Even though a statement ends on a given line and the next statement

begins on the next line, the separating dollar sign must be indicated. The

end of a line has no meaning as ?unctuation.

GENERAL FORM:

Unless otherwise indicated, statements are performed one after the

other in the sequence in which they are written. As many statements as

desired may be written on a line (subject of course to the physical limit­

ations of the input medium), or a statement may use as many lines as are

required for its expression.

EX.AMPLE:

W = A + B $ X = A - B $ Y = A*B $ Z = A/B

COMPOUND STATEMENTS

It is frequently desirable to group several statements together to

form a larger construct which is to be considered as a single statement.

Such a construct ls called a compound statement.

GENERAL FORM:

The words BEGIN and END serve as opening and closing sta~ement

par'9nthese&.

Throughout this description of the compiler, unless the ~ontrary is

·specifically stated, the word "statement" should be construed to mean

either a simple or a compound statement.

Certain other constructs involving the grouping of several statements

- 39 -

automatically constitute compound statements. These will be discussed

further in their proper context in CHAPTER XI.

EXAMPLES:

STATEMENT LABELS

BEGIN U = -B/(2*A). V = §Q!IT(U**2 - C/A) $

R 1 = U + V t R2 = U - V END

BEGIN". S = SIN(THETA) $ C = COS (THETA) $

X1 = C*X + S*Y $ ETA = -S*X + C*Y END

It is often necessary to attach a name to a statement (e.g. if one

wishes to get from the end of a program back up to the beginning). This

name is called a statement label. A statement label must be an identifier.

GENERAL FORM:

EXAMPLES:

(identifier) •• (statement)

START. • SUM = 0

LEGENDRE •• P(N) = ((2*N - 1)*P(N - 1) - (N - 1)*(N - 2));

ROTATE •• BEGIN S = SIN(THETA) $ C = COS(THETA) $
X1 = C*X + S*Y $ ETA = -S*Y + C*Y END

When using a compound statement, the programmer may insert a letter strir

after the word END. The comment is terminated by the next 11 $11 , END, or

ELSE. This may be done for readability of the print-out produced during

compilation; the compiler itself makes no use of the information.

GENERAL FORM:

(label)

EXAMPLE:

BEGIN (statement1> $ ••• $ (statementN) END <sequence

of symbols not containing 11 $11 , END or ELSE)

ROOTS •• BEGIN U = -B/(2*A) $ V = ~(B**2 - 4,,·A*C)/(2*A) $

R1 = U + V $ R2 = U - V END ROOT PROCESSING SECTION $

- 40 -

v . ".

BASIC DECLARATIONS

The declarations of type -- INTEGER, REAL, REAL2, COMPLEX, STRING,

BOOLEAN -- are explained in this chapter, together with the ARRAY, COMMENT,

OWN, DEFINE, SWITCH and LOCAL declarations. These do not exhaust the entire

set of declarations available to the programmer; the others are founj in

later chapters, where they may be treated at greater length.

Declarations determine how the compiled program will handle certain

of its elements. It is always necessary to precede the use of an identi­

fier with a declaration of its type.

Upon declaration the value assigned to each variable is "undefined"

unless the variables are OWN, in which case all are set to zero except

Booleans, which are set to FALSE and strings, which are set to blanks.

DECLARATIONS OF TYPE

Declarations of type are used to indicate that a specified set of

identifiers represent quantities of a given type.

GENERAL FORM:

INTEGER (type list) $

REAL <type list) $

REAL2 (type list) $
COMPLEX <type list) $

STRING <type list) $

BOOLEAN <type list) $

Th,~se statements declare the identif'iers given in <type list) to be

of integer, single precision real, double precision real, compJex, string

a"ld Boolean respectively. N te the integer 11 211 in the declara1ion of double

- 41 -

precision quantities. A (type list) consists of a sequence of identifiers

separated by commas.

EXAMPLES:

INTEGER GAMMA, Q202, IOU5, VITAE $

BOOLEAN AB6, PARITY, UF048, AREWE $

THE ARRAY DECLARATION

The ARRAY declaration provides a means of referring to a collection

of quantities by the use of a single identifier, and at the same time

specifies to the compiler the structure which is to be imposed on this

collection. The number of dimensions of an array must be less than 64.

If the identifier of an array requires a declaration of type, then

that declaration must immediately precede the word ARRAY in the array

declaration (cf. GENERAL FORM).

CONSTRUCTION OF ARRAY DECLARATIONS

The identifier of an array must be described by an ARRAY declaration

prior to the use of that identifier in a statement.

GENERAL FORM:

<type> ARRAY< array element), •.. , <array element)

where

< type > is any of the possible type declarations (REAL, REAL2,

INTEGER, COMPLEX or BOOLEAN). If the type declaration is omitted then

REAL will be assumed. The< array element> 's are list items of the array

declarator list. These list items take on the form:

(array name) ((lower bound1): (upper bound1), ••• ,(lower boundN):

(upper boundN)) where (lower boundJ) and (upper boun1J) are arithmetic

expressions that specify the lower and upper limits on the Jth dimension,

respectively. If the specifications of size are omitted after th? name

then that array will be assumP.d to have the same specifications a; the

next (array element).

The length of the Jth dimension is given by

INTEGER ((upper boundJ)) - INTEGER (<lower bound)) + 1

where INTEGER is the transfer function described in Chapter VIII.

- 42 -

INTEGEH ARRAY M, N (1 : 3 , 1 : 4) , CHAR (-1 : 4 , 0: 'i , 1 : (,) , VECTOR (T : ,T) $

fhl:--; dl'C'laratlon reserves twelve cells in storage for each of th;,

two-dimensional arrays M and N, 216 cells for the three-dimensional array

CHAR, and J-I+1 cells for the one-dimensional array VECTOR (where J and I

are integer variables).

THE STRING DECLARATION

The STRING declaration provides a means of referring to a collection

of alphanumeric characters in fieldata code by the use of a single identifier,

and at the same time specifies to the compiler the struqture which is to be

imposed on this collection. It is also possible to subdivide this collection

into pieces, each of which may be assigned a different identifier. In

effect, this means that string variables may be partitioned into a set of

substrings, each with a different identifier. This partitioning may be

nested to any depth; however, the partitioning at any level must consist

only of disjoint pieces.

CONSTRUCTION OF STRING DECLARATIONS

A string variable must be described by a STRING declaration before

the string variable is used~

GENERAL FORM:

STRING <string element), ••• , (string element) $

The <string element)'s are list items of the string declarator list. These

list items take on the form:

<string name) (<subelement1>, ••• , (subelementN>)

where <string name) is an identifier and (subeiementJ> is either an

arithmetic expression w~ich denotes the length of the Jth subst:-·ing or is

itself a <string element). The length of the entire string (i.e., the

total number of characters) is equal to the sum of the lengths of its

subelements.

EXAMPLE:

STRING CARD(80), LINE(132), ITEM(CODE(DEPT(2), SECTION(S)), 5,

NAME(30), RATE(5), TIME(5), GROSS(10), NET(10)) $

- 43 -

The string CARD holds 80 characters corresponding to a card image.

Correspondingly, the string LINE holds one 1004 line image. The string

ITEM, on the other hand, has the somewhat complicated structure shown below:

DEPT 2 SECTION 8 Rate Time Gross Net
CODE 10 NAME 10 10

ITEM (75)

ITEM has 75 characters partitioned into the strings CODE, NAME, RATE, TIME,

GROSS, and NET. Also the string CODE of 10 characters is partitioned into

the strings DEPT and SECTION.

THE STRING ARRAY DECLARATION

When defining a string array, the general form of the array declaration

must be modified to include the length of the string portion along with the

partitioning of the string array into substring arrays.

GENERAL FORM:

STRING ARRAY <string array element), ••• ,<string array element) $

A <string array elem~nt) has the form

<string array name) (<subelement1>, ... , <subelementN) :

<lower bound1> : <upper bound1), ••• ,<lower boundN): <upper boundN))

where (string array name) is an identifier, <subelementJ) is as described

under "THE STRING DECLARATION" and (lower bo~ndJ) and (upper boundJ) are as

described under "CONSTRUCTION OF ARRAY DECLARATIONS". The number of dimensions

and thei,r s· tbscript limits apply to each <subelement) as well as ~o the entire
~"'! •

array, i.e., each subelement is itself a string array of N dimensions.

EXAMPLE:

STRING ARRAY A(B(7),3,C(10) •. 1 •• 6,-J .. 2) $

This declaration defines a string array A, each of whose elements

consists of 20 characters. The array A is partitioned into three subarrays,

whose elements contain seven (array B), three, and ten characters (array C),

respectively. The main array and subarrays are each two-dimensi0nal, the

- 44 -

subscripts of the first dimension being numbered from 1 to 6, and the

subscripts of the second dimension from -3 to 2 (see the accompanying

figure).

A

-3-2-1 0 1 2

STRING ARRAY A(B(7),3,C(10) •• 1 •• 6,-3 •• 2) $
..__~--~~------- ~

7+3+1Q:r20 6-1+1=6 2-(-3)+1=6

6 * 6 = 3t)

(11,4 •• 6,-1)

c (1,4 •• 6,-1)

A (17,1 •• 2,2)

A (17 •• 2,2)

c (7,1 •• 2,2)

c (7 •• 2,2)

(7,5 •• 4,2)

Each. cube in the figure corresponds to one character in the string array A.

In the example of calls on the array shown in the figure, note that the in­

formation before the colon specifies the starting point and length of a string,

- 45 -

while the information following the colon specifies which of 36 possible

strings is desired.

THE O\IN DECLARATION

All of the above declarations will assign space dynamically from

local variable storage as needed. When the declarations are no longer in

force, this space is made available to the program for other uses. If it

is desired to assign permanently the space for the variables, then each of

the above declarations must be preceded by the word OWN. The declaration

then becomes an OWN declaration. (See Chapter XI, BLOCKS, for details on

dynamic storage assignment and OWN variables.)

A FORMAT declaration (described in Chapter IX) and a RANK declara­

tion (described in Chapter VII) may likewise be made into OWN declarations

so as to permanently assign storage for such elements.

EXAMPLES:

OWN INTEGER A,B,C $

OWN STRING S(100) $

OWN ARRAY FACTORIAL (0 •• .30) $

OWN FORMAT (A1 ,S72,S8) $

CAUTION: In Block 1 the following quantities are always assigned to OWN

storage but are not automatically externally defined (see Chapter XII,

EXTERNAL REFERENCES): simple variables, arrays, formats, ranks, and

generalized variables.

THE DEFINE DECLARATION

A generalized classification scheme for variables has been incorporated

into Case Algol. This allows the programmer to define the structure of what

are kno'Wil as "generalized variables" and to declare these variables by means

of the DEFINE declaration.

Generalized variables are described in Appendix III and a~ example of

a set of routines that use this feature of Algol is found in the Sort/Merge

package, described in Appendix IV.

- 46 -

THE SWITCH DECLARATION

The SWITCH declaration provides a means of selecting a label, switch

variable or designational expression from a list by means or a subscript

expression on a switch identifier. In effect, the switch declaration

defines a switch variable which is similar to a one-dimensional array

except that the elements are labels, switch variables or designational

expressions.

A sw~tch must have been described by a SWITCH declaration prior to

the use of any switch variable with subscripts which represents an element

of the switch. The range of subscripts is from 1 to N, where N represents

the number of elements in the switch. If a subscript expression on a

switch variable falls outside the defined range of the switch then the

switch operation is ignored.

The form of a SWITCH declaration is as follows:

GENERAL FORM:

S"wITCH (identifier)= <switch element1>, ... ,<switch elementN> $

where (identifier) is the name of the switch and (switch element3> is a

designational expression that represents a statement label.

EXAMPLE:

SWITCH S = L1, IF X GTR Y THEN L2 ELSE L3, L4, T(I+6), L5 $

If the switch variable S is referenced from a g,Q TO statement (see chapter VI)

as S(J), then the following transfer of control is made depending upon the

value or J.

1) if J = 1 then control transfers to 11.

2) if J = 2 then control transfers to either L2 or L3 depending

upon X and Y.

3) if J = 3 then control transfers to L4.

4) if J = 4 then control transfers to switch T.

5) if J = 5 then control transfers to L5.
6) if J < 1 or j > 5 then no transfer is executed.

- 47 -

THE LOCAL DECLARATION

Under certain conditions in a program, the necessity arises for using

an identifier at a point when its definition may be ambiguous or unknown

(e.g., using a label in a GOTO statement before the ooourenoe or the label

definition). If the definition will still be unknown when the current

block is ended, the use of the identifier is said to be a forward reference.

The case of ambiguity of definition may arise if an identifier has

different meanings in different blocks (see Chapter XI, BLOCKS). A parameter

to a procedure may also require the LOCAL declaration even though, strictly

speaking, it does not constitute a forward reference.

In these oases the identifier must be named in a LOCAL declaration

before it is used. This declaration, in effect, localizes the identifier

to the proper block as well as supplying information to the compiler about

the kind of identifier being used.

GENERAL FORM:

LOCAL (identifier type) (identifier1>, ••• , (identifierN> $where

(identifier type) is one of the following: LABEL, PROCEDURE, LIST~ SWITCH.

In the case of labels, the LOCAL LABEL declaration is needed in the

following cases.

1) A GOTO statement refers to a label which will not be defined

until after the current block is ended (forward reference).

2) A GOTO statement refers to a label whose identifier is identical

to that of another label in a containing block. This applies

when the label will be defined later in the current block.

3) A label is used as a parameter in a procedure call before the

label has been defined.

Note that in all cases the LOCAL declaration must appear in the block

in which the label is defined.

EXAMPLES:

LOCAL LABEL L1,L2,A6,BOX $

LOCAL SWITCH NEXT $

- 48 -

The COMMENT allows the programmer to include any clarifying remarks,

identifying symbols, etc., in the printed compilation. The COMMENT does not

appear as part of the compiled program, and has no effect on the program; it

merely ssts apart any string of characters for printing as part of the com­

pilation. Since the comment extends t~ the next dollar sign, a dollar sign,

obviously cannot be used within the string of characters.

GENERAL FORM:

COMMENT S $

where S is any string of characters not containing a dollar sign.

EXAMPLES:

COMMENT $ SMOOTH FIELD DATA AND REDUCE TO STANDARD FORM $

A = 2*A $ COMMENT $ TWO BARRELS ARE NOT

ENOUGH $END

- 49 -

VI •••

CONTROL STATEMENTS

This chapter deals with the means of expressing the 'flow of control'

of an algorithm which is to be described in Algol. The order of execution of

statements is as important to the description of an algorithm as are the

statements themselves.

Control Statements are divided into three sub-classes:

Unconditional control statements,which transfer control to

other parts of the program (the GO TO statement).

Conditional control statements,which execute statements

contingent on given criteria (the IF statement).

Iterative control statements,which execute statements

repetitively (the FOR statement).

UNCONDITIONAL CONTROL STATEMENTS

THE GO TO STATEMENT

The GO TO statement provides the ability to transfer control from one

part of the compiled program to another.

GENERAL FORM:

GO TO (desig exp)

or

GOTO (desig exp)

The statement with the label specified by (desig exp) will be exe,uted im­

mediately after the GO TO statement.

EXAMPLES:

GO TO START

GOTO S(K)

GO TO IF X GTR Y THEN POGO ELSE S(3+I)

- 50 -

Note: In the second example, if K is within the range of definition of the

switch S then transfer of control is made to the indicated statement of

label. However, if the subscript expression on a switch variable is outside

the range of dafinition on a switch reference, then no transfer of control

is performed and control resumes with the next statement after the GO TO

and in effect the GO TO is ignored.

CONDITIONAL CONTROL STATEMENTS

THE IF STATEMENT

The IF statement provides the means of indicating that the next state­

ment in sequence is to be conditionally executed.

FIRST GENERAL FORM:

IF (Bool exp) THEN <statement)

The action of the first form of the IF statement is described graphi­

cally by means of the following flow chart:

(Bool exp) False

ue

(statement)

~f the (Bool exp> has the value TRUE then (state~ent) is executed;

if (Bool exp) is FALSE, (statement) is skipped over and control passes to

the next statement in sequence.

- 51 -

EXA.\fi'LES:

IF X*2 GTR 7 THEN GO TO HOME

IF (I EQL J) THEN A(I,J) = 1

IF (M NEQ 0) OR (N NEQ 0) THEN GO TO LAST

IF (P EQUIV R.) OR (P EQUIV S) THEN K = B(J)

IF (X LEQ 0) AND FLAG THEN X = ABS(X)

IF U OR V AND (X LSS 2.4) Ilif,!N BEGIN U = 0 $

V = 0 $ GO TO REPEAT END

THE ALTERNATIVE FORM OF IF STATEMENT

A second form of the IF statement provides for a choice of alterna­

tives based on the result of a condition.

SECOND :}ENERAL FORM:

At this point in the program if (Boal exp) is TRUE then (statement1> is

performed and <statement2> omitted. If (Boal exp) has the value FALSE

then (statemen~1 > is skipped over and <statement2> is executed.

True ------. False
...-----{(Boal exp)

(Statement1>

EXAMPLE:

INTEGER R, N $
REAL PNEXT, PNOW, PPREV, X, NLEGPOLYINX $

- 52 -

COMMENT EVALUATE THE LEGENDRE POLYNOMIAL OF DEGREE R

IN X USING THE RECURSION RELATION

N=1,2, •••

REFERENCE: FOURIER SERIES AND BOUNDARY VALUE PROBLEMS,

R. V. CHURCHILL, M6GRAW-HILL, 1941, P.~80 $

IF R LSS 0 THEN

BEGIN COMMENT YOU MADE AN ERROR $ PNEXT = 1.rut38

END ELSE

IF R ~ 0 THEN PNEXT = 1 ELSE

ll R m 1 THEN PNEXT = X ELSE

BEGIN PNOW = X $ PPREV = 1 $

FOR N = 2 STEP 1 UNrIL R DO BEGIN

PNEXT = ((2*N-1)*X*PNOW - (N-1)*PPREV)/N $
PPREV = PNOW $ PNOW = PNEXT END END $

NLEGPOLYINX = PNEXT

THE FOR STATEMENT

The FOR statement finds its principal use in the control of an

iteration where the statement or statement group to be iterated involves

a variable (the induction variable) which must take on a succession of

values. It is also used to cause a statement to be executed a predetermined

number of times.

GENERAL FORM:

FOR (variable) = (for list) D~ (statement)

where (variable) may be simple or subscripted, and where (for list) is

a sequence of (for list element)'s, which are defined below.

The (for list) describes the sequence of values that (v~riable)
is to assume. For each of theae values (statement) will be executed.

When the (for list> has been exhausted, the statement following the

FOR statement will be executed.

There are three forms of (for list element)'s which can be used to

construct a (for list). The (for list element)'s are separated from each

other by commas. A summary of the possible forms is given below:

- 53 -

FIRST FORM:

(arith exp>

The value of <arith exp) will be assigned to <variable) and <statement)

will be executed before going on to the next (for list element).

A FOR statement consisting of only these types of elements becomes;

FOR <variable)= <arith exp1>, .•. , <arith expN) DO <statement)

which can be interpreted in a flowchart as follows:

<variable) ~ <arith exp1>

,,
Execute <statement)

v
I

9
<variable) ~ <arith expN)

Execute (statement)

That is, (variable) ~-s successively assigned the values r1f (a.rith exp.,>,

(a.ri th e_xp2> and so on through (arith expN). For each value that (variable)
assumes, <statement) is executed once.

EXAM?LES:

FOR X = O, Y + 3 i~ Z, IF Z GTR Y THEN Z ELSEY, MAX(i, Y) DO WRITI:(X

I = O $

FOR A (I) = 2 , 3 , 5 , 7 , 11 , 1 3 , 1 7 D 0 I = I + 1

- 54 -

SECOND FORM:

(arith expi) STEP (arith expd) UNTIL (arith exp_r>

A FOR statement including just one of these elements takes on

the form:

FOR (variable) = (arith exp1) STEP (arith expd) UNTIL (arith exp_r>

DO (statement)

This form is equivalent to the simpler statements:

(variable) = (arith expi) $
TEMP = (ari th exp d> $

(label) •• IF ((variable) - (arith exp_r>) * SIGN(TEMP) LEQ 0 THEN

BEGIN (statement) $

TEMP = (arith expd) $ (variable) =(variable) + TEMP $
. GO?O (label) $ END

where TEMP is a variable of the same type as (arith expd). This is

described by the following flowchart:

- 55 -

(variable) ~ <arith exp.)
1.

TEMP ~ (arith exp)

No Yes

Yes Yes

<statement)

TEMP~ (arith expa>

(variable) ~ <variable) + TEMP

- 56 -

Note that in any case if the test fails initially, the triplet is

considered vacuous and (statement> vill not be executed.

If the FOR statement is exited as a result of exhaustion of the

(for list), then the value of <variable), the induction variable, is

considered to be undefined.

EXAMPLES:

COMMENT EVALUATE INNER PRODUCT OF TWO N-VECTORS U AND V $
DOT = 0 $ FOR I = 1 STEP 1 UNTIL N DO

DOT = DOT + U(I)*V(I)

COMMENT LINEAR EQUATION SOLVER FOR AX = B
ADJOINED TO A AND ANSWERS ARE STORED IN B $

WHERE B IS

FOR J = 2 STEP 1 UNTIL N+1 DO FOR I = 1 STEP 1 UNTIL N DO

BEGIN SUM = 0 $
FORK= 1 STEP 1 UNTIL MIN(I-1,J-1) DO

SUM = SUM + A(I,K)*A(K,J) $

A(I,J) = A(I,J) - SUM$

IF I LSS J THEN A(I,J) = A(I,J)/A(I,I) END $
Fo:g, I = N-1 STEP -1 UNTIL 1 DO

BEGIN SUM = 0 $

FOR K = N STEP -1 UNTIL I+1 DO
SUM= SUM+ A(I,K)*A(K,N+1) $

A(I,N+1) = A(I,N+1) - SUM END

COMMENT MULTIPLY MATRIX A BY MATRIX B

PUTTING THE RESULT IN MATRIX C $

FOR I = 1 STEP 1 UNTIL N DO - ------
FOR J = 1 STEP 1 UNTIL N DO

BEGIN SUM = 0

FORK= (1, 1, N) DO
SUM = SUM + A(I, K) * B(K, J) $

C(I, J) = SUM

- 57 -

The third and final form that a (for list element) may assume is

called a WHILE element.

THIRD FORM:

(arith exp) WHILE (Boal exp)

A FOR statement having a (for list) consisting of one WHILE element has

the form:

FOR (variable) = (arith exp) WHILE (Boal exp) DO (statement)

The interpretation of this statement is as follows. First (variable)

is set equal to (arith exp) and (Bool exp) is evaluated. If the value is

TRUE then (statement) will be executed. After the execution of (statement),

(variable) will be assigned the value of (arith exp) and (Boal exp) will

again be tested. On the other hand if (Boal.exp) is FALSE then (statement)

will be skipped and control will resume with the statement following the

FOR statement.

In other words this type of FOR statement can be replaced by the

following set of statements:

(label) •• (variable) = (arith exp) $
IF (Boal exp) THEN BEGIN (statement) $

GO TO (label) END

which can be expressed by the following flowchart:

(variable) ~ arith exp)

(Boal exp) True <statement)

False

- 58 -

If the program exits from the FOR statement because (Bool exp) is

FALSE then the value of (variable) is considered to be undefined.

JUMPS IN AND OUT OF FOR STATEMENTS

A GO TO into a FOR st~tement leads to an undefined operation (i.e.,

the result is unpredictable). A GJ TO out of a FOR statement is acceptable

and (variable), the iterated variable, retains its current value.

rt should of course be realized that al] three types of for list

elements can be combined together in any order to form a general < for list)

to be used within a FOR statement. The sequence of values which results is

the expected one.

EXAMPLES:

F:J::l. Z = O STEE 1 UNTIL 10, 15 STEP 5 UNTIL 50,

100 STEE 50 UNTI~ 1000, 5000, 10000 DO

S = S + SIMPSON (O, Z, &-5, F)

This statement would cause the summation to be performed for

z = o, 1, 2, ••• , 9, 10, 15, 20, 25, ••• , 50, 100, 150, ••• , 950, 1000,

5000 and 10000.

FO!i I = 1 §.TEP 1 ![NTIL N DO

FOR J = 1 STEP 1 UNTIL I-1 ' I +1 s·rEP 1 UNTIL N DO

A(I,J) = A(I,J)/A(I,I)

This statement would divide off-diagonal elements of each row of

the matrix A by the diagonal element of that row. Note that ~he first

. <for list element) of the second FO~ clause (the one indexed by J) is

vacuous when I= 1; the second (for list element) is.vacuous when I= N.

- 59 -

VII •••

STRINGS

This chapter is a compendium of the basic declarations and operations

involving strings. Some of the material found in other chapters is dupli­

catec here in the belief that a unified reference for this subject will

prove valuable to the programmer.

STRING QUANTITIES

A string quantity is a sequence of 1107 characters. The number of

characters in a string is called its length. The length of a string may

be between one and 4095. See Appendix XI for a list of 1107 Fieldata

characters and their representations in the computer memory and on I/O

d'3vices.

STRING CO~STANTS.

A string constant consists of a string of characters (excluding

apostrophe, exclamation mark and pound sign) enclosed by apostrophes. The

exclELmation mark (!) terminates the string on the current card and continues

it with the first non-blank character on the next card. The pound sign (#)

forces the next character on the card into the string r~gardless of what

it is -- the sequence#' enters the character (') into the string, the

sequence ;/..!! enters a (!) into the string and the sequence ## erters a (#)

into the string.

These considerations do not apply to strings in source program in­

structions and strings in input data. (See Chapter IX, INPUT/OUTPUT.)

- 60 -

EXAMPLES:
1128F6.2 I

I HOW6NO~ROW~COW. I

'HELP#! I

where o. denotes a blank (space).

THE STRING DECLARATION

A string variable is us~d to refer to a sequence of alphanumeric

characters that are represented in the 1107 memory by Fieldata code (see

Appendix XI). The STRING declaration is used to name the variable,

specify its length and indicate, if desired, the partitioning of the

string into substrings. Each substring may itself be named and parti­

tioned. The partitioning of a string variable may be nested to any depth.

GENERAL FORM:

STRING (string element), ••• ,(string element) $

A <string element) has the form

(string name) ((subelement1>, ... , (subelementN))

where (string name) is an identifier and (subelementI) is either an

arithnetic expression which denotes the length of the Ith substring or

is itself a (string element). The length of the entire string is the sum

of the lengths of the subelements.

EXAMPLE:

STRING HOBBIT (FROD0(10),BILB0(5),5,SAM(2)) $

This declares a string named HOBBIT of 22 characters, which is partitioned

into four substrings of 10, 5, 5 and 2 characters.

PREDEFINED IDENTIFIERS IN srRIN~ DECLARATIONS

A predefined identifier may be used in a (string element> in two

wa.ys. It may be redefined as the name of a string or substring, as in

- 61 -

STRING CLOUDY (SIN(10),COS(10))

or it may be part of an expression that specifies the string length, as in

STRING WINDY (PART1(+INTEGER(X)),PART2(2*INTEGER(Y)))

where the length of ·the string WINDY is equal to the value of the expression

INTEGER(X) + 2*INTEGER(Y)

STRING VARIABLES

Any substring of a string variable may be handled by appending

subscripts to the identifier of the string. It is not required that the

declaration of the string explicitly partition the string into substrings.

Characters of a string are numbered from left to right in ascending

order starting at one.

GENERAL FORM:

(string name) (<arith exp1), (arith exp2>)

denotes the substring of (string name) having length equal to the value

of (arith exp2> and starting at the character position specified by

(arith exp1).

EXAMPLE:

Qq_EUES (I + 5, 2 * K)

denotes the substring of 2*K characters starting at the (I+5)th character

of the string QUEUES.

If the second subscript is omitted the form is

<string name) ((arith exp))

which denotes the single character.in the (arith exp) position of

(string name). That is, if the second subscript is absent it is assumed to

have a value of one.

If both subscripts are missing, the entire string is referenced.

EXAMPLE:

INVENTORY (X-1)

refers to the character in the (X-1)th position of the string INVENTORY.

CAUTION: The result of an operation involving a string variable whose

starting position or length is less than one is undefined.

- 62 -

THE STRING ARRAY DECLARATION

The STRING ARRAY declaration allows a collection of strings to be

referred to by a single identifier.

GENERAL FORM:

STRING ARRAY (string array element), ••• ,(string array element) $

A <string array element) has the form

<string array name) ((subelement1>, ... , (subelementN) :

(lower bound1): (upper bound1), ••• ,(lower boundN) : (upper boundN))

where (string array name) is an identifier, (subelement:(is as described

under THE STRING DECLARATION, and (lower bound!) and (upper boupd1> are

arithmetic expressions that specify the lower and upper limits, respectively,

on the value of the Ith subscript. The number of dimensions and their

subscript limits apply to each ·subelement identifier as well as to the

array identifier, i.e., each subelement is itself a string array of N

dimensions. The size of the Ith dimension is given by

INTEGER ((upper bound!)) - INTEGER ((lower bound1)) + 1

NOTE: Although the ARRAY declaration allows dimension specifications to

be omitted, the STRING ARRAY decl.s.ration requires each (string array

element) to include comple·te information about the lengths and dimensions

of the element.

EXAMPLES:

STRING ARRAY STR(12 •• 1 •• 10) $

The array STR consists of ten strings of twelve characters each. The

expressio~1

STl(J •• L)

refers tc the Jth character of the Lth element of the array. ~he expression

STR(J ,K • • L)

refers to the K characters starting at the Jth character of the Lth element.

STR(L)

refers to the entire Lth element (i.e., the entire 12-character string).

STRING ARRAY STACK1(0RS(6),ANDS(6) •• 1 •• N,1 •• M) $

- 63 -

The arra;'r STACK1 is partitioned into two subarrays, ORS and ANDS, and all

three arrays are two-dimensional. An element of STACK1, say STACK1(I,J),

is partitioned into two substrings of six characters each, namely (ORS(I,J)

and ANDS (I,J).

EXAMPLE:

STRING ARRAY A(B(7),3,C(10) •• 1 •• 6,-3 •• 2) $

This declaration defines a string array A, each of whose elements

consists of 20 characters. The array A is partitioned into three subarrays,

whose elements contain seven (array B), three, and ten characters (array C),
respectively. The main array and subarrays are each two-dimensional, the

subscripts of the first dimension being numbered from 1 to 6, and the sub­

scripts of the second dimension from -3 to 2 (see the accompanying figure).

,..,.. _____ -(

-3 -2 -1 0 1 2

STRING ARRAY A(B(7),3,C(10) •• 1 •• 6,-3 •• 2) $
.... --"~~ ...,..

7+3+10=20 6-1+1=6 2-(-3)+1=6 , _____ """ _____ ,,,,,,

6 * 6 = 36

- 64 -

A (11,4 •• 6,-1)

c (1,4 •. 6,,...1)

A (17, 1 •• 2,2)

A (17 •• 2,2)

c (7,1 •• 2,2)

c (7 •• 2,2)

Each cube in the figure corresponds to one character in the string array

A.

In the example of :calls on the array sho'Wn in the figure, note that the

information before the colon specifies the starting point and length of a

string, 'While the information following the colon specifies which of 36

possible strings is desired.

STRINGS IN ARITHMETIC EXPRESSIONS

A string quantity may be used as an operand in an arithmetic

expression. In this situation an attempt will be made at execution

time to handle the string as a string of digits possibly including a

sign and spaces. If the attempt succeeds. the string will be converted

to the corresponding integer value. Otherwise the message

"IMPROPER STRING CONVERSION"

'Will be printed.

STJiING ASSIGRMENT STATEMENrs

GENERAL FORM:

<string variable) = <string exp)

or

<string variable) = <arith exp)

In the second case, <arith exp) is evaluated and converted to type integer

and the integer is converted to a string of digits, beginning 'With a minus

sign if the value is negative.

No matter how the righthand string is specified the following rules

govern the assignment statement:

(a) the leftmost character of the left side is replaced by the leftmost

character of the right side;

(b) if the length of the lefthand string is greater than the length of

the righth!ind string then the lefthand side is space filled in the

higher numbered positions;

(c) if the righthand side string length is greater than the '_efthand

side string length then the excess characters in the higher-numbered

- 65 -

positions are ignored (are not used in the replacement).

See Chapter IV for examples.

STRINGS IN RELATIONS

The relational operators GTR, GEQ, EQL, LEQ, LSS and .NEQ may be

used to compare two string quantities or to compare a string quantity

with an arithmetic expression.

GEtiERAL FORM:

(string or arith exp) (rel oper) <string or arith oper)

If one of the operands is an arithmetic expression and the other is a

string, ~n attempt will be made to convert the string to an ipteger

value and if this is successful the comparison proceeds as in an arith­

metic relation.

If both operands are string quantities the operation proceeds by

comparing corresponding characters of the two strings starting with the

first position. If one string is shorter than the other, the shorter

is filled with blanks (octal 05) when necessary to complete the comparison.

Two strings are considered equal if all characters in corresponding

positions are of equal rank. If the strings are not equal then the

direction of inequality is determined by the leftmost pair of corresponding

characters that are not equal.

EXAMPLES:

The following relations are true u:ider the standard collating

sequence.

'ABADABA? ' LSS 'ABADABA!'

' = '> ' G TR ' < = '

THE RANK DECLARATION

All string comparisons are based on the natural sequence as defined

by 1107 Fieldata character code (see appen1ix XI for the usual Fieldata

collating sequence). The RANK declaration specifies a string variable

which defines a new character collating sequence.

- 66 -

GENERAL FORM:
RANK (rank list element), ••• ,(rank list element)$

A (rank list element) defines an ordering relationship among the

Fieldata character and have the following form:

(rank name) (<string))

where (rank name) is an identifier and (string) is of the form

'(char1> (oper1> (char2> (oper2> ... (charN_1> (operN_1> (charN)'

where (char.) is any of the 64 Fieldata characters (including space)
l.

and (oper.) is any of the four operators=, :, -, <. Note that the":"
l.

in this case cannot be represented by " " but must correspond to the

5-8 multiple card punch.

The significance of the rank operators is as follows:

a< ~ the character ~ is assigned a rank one higher than a

a = p the character a is assigned to the same rank as ~

a - ~ the characters a through ~ are assigned ranks in

ascending order. (a must be less than ~ in the

natural collating sequence.)

the characters a through ~ are assigned to the same rank.

(a must be less than~ in the natural collating sequence.)

Note that a space (~) is meaningful with a RANK s~ring. It should be noted,

that any character not e~plicitly assigned to a rank will be assigned to

zero rank (i.e., below all other assigned characters).

EXAMPLES:

RANK SP I 0: 9 < A - z I) $

This declaration generates a table which assigns all numerics to rank 1,

the alphabetics A through Z to ranks 2 through 27, and all other characters

to rank O.

THE SETRANK PROCEDURE

The table of values that is generated by a RANK declaration is activated

- 67 -

by the SETRANK procedure. SETRANK may be used to invoke a previously

declared (rank list element) or to return to the usual Fieldata collating

sequence.

GENERAL FORM:

SETRANK (<rank name>)

This causes the collating sequence defined by the string associated

with <rank name) to be put into effect. All string comparisons attempted

while it is in effect will make reference to that sequence.

SE TRANK

This causes the usual Fieldata collating sequence to be put into

effect. In sum, the SETRANK procedure should have one parameter when a

new sequence is to be put into effect and no parameter when the usual

Fieldata sequence is to be invoked.

The SETRANK procedure is generated in-line by the Algol compiler

and its effect is local to the block in which it appears. On exit from

a block, considerations of rank that were invoked in that block will

no lo~ger apply.

THE RANK PROCEDURE

The numeric value of one or more characters in a string may be

obtained by use of the RANK function.

GENERAL FOR'i:

RANK ((character))

The result of this function is an integer that represents the rank of

(character) according to the collating sequence currently in force.

EXAMPLE:

RANK (NAME(3))

returns the numeric rank of the third character of the string NAME.

Another use of th~ RANK function has the form

RANK (<string)) •

- 68 -

The result of this call on RANK is an integer which falls into one of two

cla.3ses:

(a) if all characters of the string have the same rank according to the

collating sequence currently in effect then the result is that rank;

(b) if all the characters do not have the same rank then the result is the

negative of the character position of the leftmost character that does

not have the same rank as the character immediately preceding it (note

that in this case a result of minus one is never returned). In this

case the result returned is negative to distinguish it from case (a).

EXAMPLE:
RANK (CARD)

where CARD is a string.

A WORD OF CAUTION CONCERNING THE USE OF STRING PROCEDURES

The following remarks apply for all string procedures, whether they

appear in programs using the ~erge package S2!: not! (See Chapter XII,

PROCEDURES) •

If, for example, IN is the name of some arbitrary string procedure,

within the procedure body of IN, an operation of the form

IN = S

where S is a variable whose type is compatible with a string, may be thought

of as simply setting a p·ointer in IN which points to the "string" S. Thus,

if the sequence

OWN STRING S(6) $

STRING PROCEDURE IN $

BEGIN S = 'FIRST' $

IN = s $

s = 'LAST'

END IN $

WRITE(IN) $

appeared in a program, the "value" written would be "LAST", since IN points

to S and since the last "value" of S is "LAST''. Also, if S were declared

within I~ as a non-OWN variable, upon exiting from the procedure S is no longer
available.

- 69 -

Thus, here, if IN = S appeared within the procedure body, it is possible

that, since IN points to S and since S is not defined outside IN, the

result outside the procedure is undefined.

- 70 -

VIII •••

ALGOL LIBRARY

Computational procedures for certain standard operations of mathe­

matics and data processing are available for use in Algol.programs. A

procedure is called by means of the appropriate identifier followed by

the arguments that the procedure requires. The call appears in the

program in the form:

where NAME is the identifier of the procedure and (exp1>, ••• , (expN)

are the desired expressions for the arguments.

The set of standard procedures is divided into two classes: intrinsic

functions and library procedures. Included in the latter category is a

full complement of Input/Output operations.

INTRINSIC FUNCTIONS

When the programmer calls on an intrinsic function in a source program,

the desired operation is made an integral part of the object program by the

Algol compiler. Non-intrinsic procedures, rather than being generated in

toto by the compiler, are routines that are written separately and linked

to the object program only at execution time.

The set of intrinsic functions that are not machine-dependent is dis­

cussed and a tabular summary is given below. For a descripti0n of intrinsic

functiors that are dependent on the specific computer and operating system,

see Appendix VIII.

ABS ((exp))

The function ABS has a single argument. The result of the ABS function

- 71 -

is the absolute value of the argument, which may be of any type except

BOOLEAN. If the argument is of type INTEGER, REAL or REAL2 the result is

of the same type while a COMPLEX argument gives a REAL result and a STRING

argument is converted to the corresponding integer value, leading to an

integer result.

CLOCK

The function CLOCK has no arguments. The result is of type INTEGER

and is the number of seconds elapsed since midnight.

CLOK

The function CLOK has no arguments. The result is of type INTEGER

and is the number of sixtieths-of-a-second elapsed since the start of the

current year.

DIMENSIONS ((array))

The result of the DIMENSIONS function is of type INTEGER and its value

is the number of dimensions of the parameter (array).

EVEN ((exp))

T~e EVEN function is of type BOOLEAN and the result is TRUE if the

parameter is an even number, FALSE otherwise. Before the function is

evaluated the parameter <exp) is converted to type INTEGER if it is not

already of that type.

LENGTH((exp))

LENGTH((array),(exp))

If only one parameter is furnished to the LENGTH function, it must be of

type STRING and the result is the number of characters in (exp).

If the first parameter to LENGTH is an ARRAY then the second parameter

must be present to specify which dimension of (array) is being c0nsidered.

The result is the number of elements in that dimension given by <exp), i.e.,

LENGTH((array),(exp)) = UPPERBOUND((array),(exp)) - LOWERBOUND((array),(exp)) + 1

where UPPERBOUND and LOWERBOUND are the library functions described later in

this chapter.

- 72 -

The dimensions of an ARRAY are numbered consecutively starting at one.

If (exp) is not of type INTEGER it is converted to that type before the

function is evaluated. In all cases the result of the function is of type

INTEGER.

MOD (<exp1>, (exp2>)
The function MOD requires two arithmetic expressions as arguments. The

arguments may be of type INTEGER, REAL, REAL2, or STRING; non-integral ex­

pressions will be converted to integer values when the routine is executed.

The value of the function is the integer remainder that results from

dividing the first argument by the second. The sign of the result is the

same as the sign of the first argument.

ODD((exp))

The function Qiill gives a BOOLEAN result, namely TRUE if the parameter

is an odd number, and FALSE otherwise. Before the function is evaluated,

(exp) is converted to typ~ INTEGER if it is not already of that type.

SIGN((exp))

The function SIGN has a single argument. If the argument is positive

the result will be t1; if zero, the result is zero(+ or - according to

the sign of the argument); it negative, the result is -1. The type of the

argument is INTEGER, REAL, REAL2, or STRING. A STRING argument must represent

a string of digits and will be converted to the corresponding integer value.

Name and Description

ABS(X)=IXI

CLOCK

TABLE OF INTRINSIC FUNCTIONS

Type of
argument(s)

STRING

INTEGER
REAL

REAL2 -
COMPLEX

none

- 73 -

Type of result

INTEGER

INTEGER
REAL

~
REAL

INTEGER

Examples

ABS(-39.2) is 39.2
ABS(<1.o,2.o>) is 2.2360'

CLOCK is 3421

TABLE OF INTRINSIC FUNCTIONS (continued)

Namd and Description Type of
argument(s)

Type of result Examples

CLOK none INTEGER CLOK is 76534

DIMENSIONS(A) ARRAY INTEGER DIMENSIONS(Q) is 2

EVEN(X) INTEGER BOOLEAN m!(24) is~

REAL
REAL2

STRING

LENGTH(A,B) first: ARRAY INTEGER LENGTH{A,B) is 100

second:
INTEGER

REAL

REAL2

STRING

LENGTH(X) STRING INTEGER LENGTH(S) is 29

MOD{x,,x2) INTEGER INTEGER MOD { 1 00, 7) is 2

= x1-(x1//x2)*x2 MOD(-200,7) is -4

ODD(X) INTEGER BOOLEAN ODD(24) is FALSE

REAL
REAL2
STRING

r OD
INTEGER INTEGER SIGif (34) is 1

SIGN(X) = 0 X=O REAL INTEGER SIGH(-1.3) is -1
-1 X(O REAL2 INTE.GER

STRING ·INTEGER

- 74 -

LIBRARY FUNCTIONS

All library functions can be used in the recursive sense, but for

greater object code efficiency the set of library procedures are divided

into two classes:

a) Recursive class

b) Normally non-recursive class

The reasoning behind the normally non-recursive class is that most of the

standard functions are used in a non-recursive sense. Thus, greater object

code efficiency can be obtained by the compiler calling these proced~res in

a special non-recursive manner.

RECURSIVE LIBRARY PROCEDURES

The set of "recursive only" library procedures is briefly summarized

below.

WRITE (X1 , ••• , ~)

This is the input procedure that

is described in Chapters IX and X.

This is the output procedure that

is described in Chapters IX and X.

The result of this procedure is

the value of the elemi:!nt of

maximum value (algebraically) ir.

the list x1 , •.•• , xw

The result of this procedure is

the value of the ele~ent of

minimum value (algebraically) ~r.

the list X1, ••• , XN.

The input arguments XI may be expressions, arrays, strings or lis~s.

The functions MAX and MIN are not defined for complex, string or Bool~ar.

arguments. The output of MAX and MIN is always REAL.

- 75 -

NO!~-RE'.;URSIV£ LIBRARY PROCEDURES

This set of procejures is further subdivided into two subclasses,

na:nely:

a) Standard mathematical

b) Special

STANDAR~ MATHEMATICAL PROCEDURES

The stan:lard mathematical procedures require only one input a.rgumerit

and th:l type of the result depends upon the type of the input argument.

This relationship is described below:

Type of Input Type of Result

INI,EGER REAL

REAL REAL

REAL2 REAL~

.QilMPLE~ COMPLEX ----
STRINo:} REAL

The mathematical functions that fall into this subclass are:

NAME

ARC~OS (<arith exp))

ARCSIN (<arith exp>)

ARCTAN (<arlth exp))

COS (<arith exp))

C03H (<arith exp))

EXP (<arith exp))

LN (<arit~ exp))

SIN (<arith exp))

SINtl ((arith exp>)

~RT (<arith exp>)

TAN (<arith exp))

TANH (<arith exp))

- 'it: -

DZSCRIPTION

inverse cosine

inverse sine

inverse tangent

cosine

hyperbolic cosine

exponential to base e

natural logarithm

sine

hyperbolic sine

square root

tangent

hyperbolic tangent

SPECIAL PROCEDURES

The special procedures that are currently available in the system

library are described below. Special procedures that are directly related

to the Input/Output routines are described in Chapter IX and X.

NOTE: If an argument to a procedure is required to be of arithmetic type,

an argument of type STRINJ may be used if all its characters are numeric.

In Ghis case the string is converted to the associated integer value before

the procedure is evaluated.

The follo~ing characters are considered to be numeric: plus sign (+),
minus sign (-) and blank (L.). The blank is also regarded as an alphabetic

character.

- 77 -

..:.. • ~ .._. . .._,J....JJ.J UJ. \.L.J l..L..11.:J V.J:

CALL ARGUMENTS

ALPHABETIC(X) STRING

ARG(X) COMPLEX

CHAIN(X) INTEGER

REAL

REAL2

STRING

COMPLEX(x,,x2) either _may

be

INTEGER

REAL

REAL2

STRING

COREMAX none

CORE TOTAL none

.J..J...l J...J VJ

RESULT

BOOLEAN

none

none

none

none

COMPLEX

COMPLEX

COMPLEX

COMPLEX

INTEGER

INTEGER

LJDl.JV11..l . .l .1..1.VH

Result TRUE if string is alphabetic, FALSE otherwise.

Obtains argument of complex expression X.

Used in conjunction with processed MAP (see

EXEC II m~nual); loads and transfers control

to program specified by X.

Forms complex number using value of x1 for real

part, value of x2 for imaginary part.

The result is fill upper bound for the number of

words of core memory that may be obtained in the

next request from the available space pool. The

least upper bound depends on the kind of space

requested.

The result is the total amount of core memory

remaining in the available space pool. Note

that the Algol library allocates space in such a

PROCEDURE

CALL

DATE

ENl'IER(X)

HEADING

(<string),

<arith exp>)

TYPE OF

ARGUMENTS

none

INTEGER

REAL

REAL2

STRING

The first

is STRING,

the second

may be

INTEGER

STRING

REAL or

REAL2

TYPE OF

RESULT

STRING

INTEGER

IN'raGER

INTEGER

I'iTEGER

none

DESCRIPTION

way that at any particular time the value of

COREMAX may be considerably less than the value

of CORETOTAL.

The result is a STRING of eighteen characters

which gives the month in letters, day of month, and year

on which this program was allocated (for absolute

programs this is the date when the ABS operation

was performed). The result is left-justified

and blank-filled.

Result is greatest integer in X. Non-integral

arguments converted to type INTEGER first.

<string) will be printed at the top of each page

of 011tput, beginning with the first p9.ge that is

started after the call. Pages will be numbered

consecutively starting with the value of

<arith exp), which will be converted to type

INTEGER, if it is not of that type. If the

second parameter is omitted, the numbering of

pages will not be affected. If both parameters

are omitted, the heading action is disabled,

i.e., no heading will be printed on succeeding pages.

PROCEDURE TYPE OF

CALL ARGUMENTS

IMAG(X) COMPLEX

INTEGER(X) INTEGER

REAL

REAL2

STRING

INTRANDJM(X1 ,x2) INTEGER

REAL

REAL2

STRING

LOWERBOUND The first must

(<array),(arith be an ARRAY,

eA."P)) the second may

be STRING,

INTEGER,

REAL, or

REAL2

NUMERIC(X) STRING

OPTION((string)) STRING

TYPE OF

RESULT

REAL

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

BOOLEAN

BOOLEAN

DESCRIPTION

Obtains imaginary part of complex expression X.

Rounds X to nearest integer. Result obtained

according to the formula

ENTIER (X + 0.5)

Gene1·ates next element in pseudo-random number

sequence. Result is an integer, the value of

which lies between x1 and x2 inclusive. An

error results unless x1 < x2 •

The result is the lower bound for <array) on

the dimension specified by (arith exp).

Result TRUE if the string X is numeric, FALSE

otherwise.

The function tests for presence of an option

letter on the processor call card (including

0
('()

PROCEDURE

CALL

RANDOM(X)

RANK(X)

REAL(X)

REAL2(X)

TYPE OF

ARGUMENTS

INTEGER

REAL

REAL2

STRING

S'rRING

INTEGER

REAL

REAL2

INTEGER

REAL

REAL2

STRING

COMPLEX

INTEGER

REAL

REAL2

TYPE OF

RESULT

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

REAL

REAL2

REAL2

REAL2

DESCRIPTION

XQT) for the processor currently in effect.

The parameter, which should be one character

long, specifies the option letter in question.

If this letter is present, the result is TRUE,

otherwise it is FALSE.

Generates next element in pseudo-random number

sequence. Input argument used only on first

call. Sequence starts at INTEGER(X) if X I O,

otherwise at value of CLOK on first call.

See Chapter VII, THE RANK PROCEDURE, for a

detailed description

Converts X to floating-point form. If X is COMPLEX

the result is its real part.

Converts X to double precision floating-point

form.

PROCEDURE TYPE OF

CALL ARGUMENTS

COMPLEX

STRING(X) INTEGER

REAL

REAL2

STRING

UPPERBOUND The first

C<array),(arith must be an

exp)} ARRAY, the

second may

be STRING,

INTEGER,

REAL or

REAL2 --

TYPE OF

RESULTS

REAL2

STRING

STRING

STRING

STRING

INTEGER

DESCRIPTION

Converts X to a string of digits. Non-integer

expressions are converted to type INTEGER first.

If X is negative the result includes a minus

sign.

The result is the upper bound for (array)

on the dimension specified by (arith exp).

THE RANDOX FUNCTION

A function having a result of type REAL and a parameter of type INTEGER

is provided in Algol to generate random numbers that are rectangularly dis­

tributed on the [0,1] interval. The method used to generate the random numbers

is described by the accompanying Algol program. (The FIELD proc2dure is de­

scribed in Appendix VIII.)

The parameter suppli~d is used during the first call only and if non­

zero it acts as the starting value of the sequence. Starting values in the
1g

neighborhood of 2 give the longest cycles.

REAL PROCEDURE RANDOM(I) $
. .

VALUE I $ INTEGER I $

BEGIN

OWN INTEGER LAST $

OWN BOOLEAN SW $

REAL R $

IF NOT SW THEN BEGIN

SW = TRUE $

IF I EQL 0 THEN I = CLOK $

h~ST = ABS(I) + (IF MOD(ABS(I),2)EQL 0

THEN 1 ELSE 0)

EIW $

LAST = LAST*(J+2**18) $

LAST= FIELD(LAST,2,35) $.

FIELD(R, 1 ,9) = 128 $

FIELD(R,10,27) = FIELD(LAST,2,27) $

RAEDO~ = 0 -1- R.

END

THE INTRANDOM FUNCTION

The algori thrn used by the INTRANDOM is described by the f ollo-.ri n,­
Algol program.

INT:f,GER PROCEDURE

VAL'JE L U $ -- '
DJTEGER L, U $

INTRANDOM(L,U) $

- 8J -

BEGIN
OWN INTEGER LAST $
OWN BOOLEAN SW $

IF NOT SW THEN

BEGIN SW = TRUE $
LAST = 1 END $

IF U LEQ L THEN ERROR(22) $

LAST = LAST*(3**22) $

INTRANDOM = L + ABS(2*(U-L+1)*LAST) $
END INTRANDOM $

- 84 -

Cl\ HP:~

PRINTER IX •••

PUNCH INPUT

OUTPUT

We new pursue in some detail the subject of communication with the

computer. In previous chapters there have been examples of readin~ in data

and printing out answers. In this chapter we present the details (with

examples) of the card and printer I/O (Input/Output) processes.

The reader is warned that this chapter is difficult going. In any

given explanation, there are usually numerous references to other sections

of the chapter. This has been done in order to make descriptions as clear

as possible. The reader is advised to read through the whole chapter

before trying to 'pin down' any details.

THE READ PROCEDUHE

The READ procedure is fully recursive and is used to input information.

The general form of the READ is:

READ ((device name), (label), (format), (list ··name), (actual input parameter list)

where any combination of the above may be present.

(device name) enables the user to specify any one of the various input

devices as the source of input information. The following input devices are

available to the user:

CARDS

CORE

DRUM

EDIT

PCF

SLIP

If (device name) is not specified then +,he source of the input is

assumed to be cards. It should be noted that if the (device name) option is

used it must be the first name. The other parameters may appear in any order,

but the speed of the object program is increased if the above indicated order

is observed.

- 85 -

(lttbt'l" consi:d.~1 or om"', t.wo, or three labels (scparatt>ct by commas .if

mor1' thnn orh.,) which are used as alternative exits by thf' READ proct'd11rP.

These exits are utilized when abnormal conditions are encountered while

reading. The appropriate exit is chosen in the following manner:

i) Exit is made to the first label (if present) when an EOF (end of

file) condition occurs.

ii) Exit is made to the second label (if present) when an EOI (end

of information) condition occurs. An EOI condition arises

'When an attempt is made to read beyond the bounds of the input.

iii) Exit is made to the third label (if present) when an ERR (error)

condition occurs. An ERR condition is considered to be either

improper input or a malfunction of the input device.

These labels will be referred to as the EOF, EOI and ERR labels, respectively.

The standard Algol error exit is supplied for all missing labels. If an exit

is made to the Algol error routine, an appropriate message is printed and the

program is terminated.

(format) is the name of a sequence of format phrases which has been

previously defined in a FORMAT declaration, or is a call on the FORMAT

procedure. (format) need not be specified.

(list name) consists of one or more identifiers (separated by commas

if more th~n one) which are the names of lists of variables that have been

previously'defined by LIST declarations. (list name) need not be specified.
Lists and formats are described in greater detail later in this chapter.

<actual input parameter list) is (list elements separated by commas).

See definition of this term in section dealing with the LIST declaration. In

general (actual input parameter list) consists of a sequence of identifiers

and variables separated by commas. (actual input parameter list) need not be

specified.

EXAMPLE

REAL A,B,C $
READ(A,B,C)

This rAads the value of the three variables A,B,C from card(s). The

first number encountered is the value of A, the second is B, and the third

is C.

EXAMPLE

REAL A,B,C $

- 86 -

LIST ZILCH(A,B,C) $

READ(ZILCH)

Exactly the same interpretation as the above example.

THE WRITE PROCEDURE

The general form of the WRITE procedure is

lolE.I.IE((device name), (label), (format), (list name),

(actual output parameter list))

where any combination of the parameters may be present.

(device name) enables the user to specify any one of the various output

devices for outputting desired information. The following output devices

are available to the user:

CORE

DRUM

EDIT

PCF

PRINTER

PUNCH

TAPE

In the absence of (device name), PRINTER will be assumed to be the

desired device. If (device name) is specified it must be the first parameter.

The order of the other parameters to the WRITE procedure is immaterial, but

the indicated order will produce greater efficiency in the object program.

(label) consists of one or two labels (separated by commas if two)

which are used as alternative exits by the WRITE procedure. These exits are

utilized when abnormal conditions are encountered while writing. The ap­

propriate exit is chosen in the following manner:

i) Exit is made to -the first label (if present) when an ERR

(error) condition occurs. An ERR condition is considered

to be a malfunction of the output device.

ii) An EOI condition will cause an exit to the second label if

present. If the second label is not present then exit will

be made to the first label if it is present. An EOI condition

arises when an attempt is made t.o write beyond tlie bounds of

the output medium.

These labels are referred to as the ERR and EOI labels respectively. The

standard Algol error exit is supplied if both labels are missing. If an exit

is made to the Algol error routine, an appropriate message is printed and the

program is terminated.

- 87 -

(format) is the name of a sequence of format phrases which has been

·previously defined in a FORMAT declaration, or is a call on the FORMAT

procedure. (format) need not be specified.

(list name) consists of one or more identifiers (separated by commas

if more than one) which are the names of lists of variables that have been

previously defined by a LIST declaration. (list name) need not be specified.

Lists and formats are described in greater detail later in this chapter.

(actual output parameter list) is (list elements separated by commas).

See definition of this term in section dealing with the LIST declaration. In gener1

(actual output parameter list> consists of a list of expressions and/or

identifiers. (actual output para.meter list) need not be specified.

EXAMPLE

REAL A,B,C $

WRITE(A,B,C)

This will write out the values of A,B, and C on the printer.

EXAMPLE
REAL A,B,C $

LIST ROHO(A,B,C) $

WRITE(ROHO)

Same action and interpretation as the above example.

THE FORMAT DECLARATION

We defer the actual definition of a FORMAT declaration until later in

this section in the belief that the reader should not be faced with it at

this time! The general definition will be much easier to understand if the

reader has already seen some.particular examples.

Before detailing the uses of the format list let us consider the problem

of reading so~e data cards which should be in a specified format. Suppose

that we wish to read in data cards pertaining to student grades. The cards

have the following format:

Columns

1-5

6, 7
8-21

22

23,24

25-37

Contents

Student Number

Initials

Last Name

Status (i.e. class)

Curriculum

Not used in this program

- 88 -

Columns Contents

38-44 Course designation

45, 46 Not used in this program

47 Credit hours

48-59 Not used in this program

60 Letter grade

Assume that the columns not used have information in them which is of

no concern to the problem at hand. The problem is now to read in the above

data in a form which will make the manipulations easy and still enable us

to print out all of the above data. It is this type of problem which gives

rise to the necessity of specifying the card format.

For this problem it is reasonable that we would like the computer to

take the following action with regard to card reading:

1. Read the card (i.e. Activate the input card reader)

2. Accept the first five columns as an integer

3. Accept the next two columns as a string

4. Accept the next fourteen columns as a string

5. Accept the next column as an integer

e. Next two columns as integer

?. SKIP the next thirteen columns

8. Next seven columns as a string

9. SKIP two columns

10. One column as an integer

11. SKIP twelve columns

12. One column as a string

(student number)

(initials)

(last name)

(status)

(curriculum)

(not used)

(Course title)

(not used)

(credit hours)

(not used)

(letter ~Tade)

The format declaration is used to take care of all of the above functions.

For this example the format would be:

FORMAT UNAMEIT (A,I5,S2,S14,I1 ,I2,X13,S7,X2,I1,X12,S1) $

Note that there is one entry in the format for each numbered line above.
Each of the items in the above format is referred to as a "format. phrase".
A reasonab1e program segment for the above problem would be:

INTEGER STUDENTNUMBER, STATUS, CURRICULUM, CREDIT$

STRING INITIALS(2), LASTNAME(14), COURSE(?), GRADE(1)$

FORMAT UNAMEIT (A,I5,S2,S14,I1,I2,X13,S7,X2,I1 ,x12,s1) $

LIST EVERGREEN(STUDENTNUMBER,INITIALS,LASTNAME,STATUS,CURRI'JULUM,

COURSE,CREDIT,GRADE)$

READ(UNAMEIT,EVERGREEN)

- 89 -

The list specifies what is to be read, while the format specifies how

the reading is to take place. Formats for outputtin~ information are con­

structed in a similar fashion.

Now that we have a feeling for how formats 11rt~ 1i.~ed, we procPPd t.o

define exactly what is meant by a FORMAT declaration.

The general form of a FORMAT declaration is:

FORV.AT <format name) (<format phrases separated by commas))$

where <format name) is a name supplied by the programmer and <format phrases

separated by commas) refers to the uses of the format phrases describ-,d beloH.

Note that the descripqons given below are only for the PUNCH, PRINTER and

CARDS devices. Formats may be used with some of the other devices and the

interpretation of the format·by these devices is described in the relevant

sections of the manual.

FORMAT PHRASES

Ab.a CARDS Activate the card reader. The b.a is ignored. The activation

must precede the format list which applies to the card being

read.

Bw

PRINTER Activate the output device skipping £ lines before printing

and !! lines after printing. The activation must follow the

format list which applies to the line being printed. Note that

upon completion of printing a line, the printer does NOT advanc 0

the paper unless it is told to by a non-zero a value. The .a

may .be omitted if one desires ~ to be zero, i.e., A3 is thr=:

same as AJ.O.

PUNCH Activate the punch. The b.a p9.rt is ignored. Also thP punch

only punches 80 columns and any output beyond 80 columns is

lost. The activation must follow the format list which applies

to the line being punched.

CARDS Accept a BOOLEAN variable from w consecutive columns. This

phrase translates a string (without quotation marks) into a

Boolean expression. Only the first character of tr,e str:inf"

is interpreted and should be T or F.

PRINTER

PUNCH Output a Boolean expression using w columns. The v.·ords

TRUE or .EALSE will be outputted if space permits. Otherv.·~ se

the w leftmost characters of the word will be outputted.

Cw.d CARDS Read a COMPLEX number from 2w+3 columns. In each w field,

- 90 -

PR::NTER

the number is tr8ated identically as if the format phrase

was Rw.d. The two fields are separated by a slash (/) and

bounded by corner brackets (<)). For example 3+2i would be

punched on card as

('.0/2.0"

and the proper format phrase would be:

C3. 1

where the complex number occupies 21f 3+ :>:9 columns on the

card. If this format is objectionable, then the 113er can

format each part of the complex number separately using any

other phrases. For example, the format

F(A,I5,X3,I5)

and the READ pro~edure call (where C is a complex number)

READ(F,C)

and the data card

L.A0£::..~+~5 I

will set C to the value (3.0, 5.0)

PUNCH Output is a COMPLEX number using 2w+3 columns. This phrase

is equivalent to the set of format phrases.

'<' ' Rw. d ' ' /' ' Rw. d ' ' > '
If this forms.t is objectionable, then the user can format each

part of the complex number separately using any of the other

phrases. For example, the format

F (I 5 'X2' I+ I 'I 5' I I I ,A 1 • 1)

and the WRITE procedure call

WRITE (F,(3.0,5.0>).

will ocoduc8 the line image

3 + 5I

Dw.d CARDS Same action as Rw.d

PRINTER

PUNCH U.sing w coLunns, output a number (EEAL) with d dii;:i ~.s to t~ie

right of the decimal point, locatin~ the decimal pont properly,
?

e.g., if a variable has the value).145 x 10·-, a D5.1 format

will output

314. 5

En CARD3 Not allowed.

PUNCH Ignored.

PRINTER Eject the page to line number n-1 and start the next activation

- 1~ -

phrase at this point. A standard page (f,f, lines) consists

of top and bottom margins of six lines each and a body of

54 lines. A standard page can be modified using the MARGIN

procedure h.~r.). In any case, if the body currently contains

K lines, then these lines are numbered from 0 to K-1 . Thh:

phrase will then cause the pare to b0 ejected to line n-1 mod K

if n I 0 or line K-1 if n = O. No line will be printRd. Except

for ejecting the page, this phrase produces no effect on the

formatting process.

Fw CARDS Read the next w columns as if there were no format (i.e. in

PUNCH

free format). The format phrase, F80, will take longer to

read a card than no format at all. The F format cannot extend

from one card to another. Free format is explained in the

section describing the device CARDS.

PRINTER Not allowed.

Iw CARDS Read an integer expressed to the base d from w consecutive

Iw.d columns. The value of d may be

Ow

PRINTER

d = 0 or 2 S d S 10.

If d is omitted or d = 0 then the base is assumed to be 10.

Blanks occurring between the end of the number and the end

of the field are interpreted as zeros.

PUNCH Output an integer expressed to the base d using w columns.

The value of d may be

d = 0 or 2 s d s 10,

If d is omitted or d = 0 then base ten is assumed. The

number is right ·justified in the field.

Ow.d CARDS Not allowed.

PRINTER

PUNCH The same as Iw.d except that the siP"n bit (leftmost bit) is

treated as a numeric bit, i.e., the word is considered to b~

a 3E-bit binary number. If the number is not lar~e ":mouvh to

fill the field then zeros are inserted to the left cf the left­

most digit.

Pw CARDS Sets the scanner to start scanning at column w of tre present

card image beginning with the next format phrase. The ran~e of

- 92 -

w should be 1 ~ w ~ 80.

PRINTER

PUNCH Sets the output editor to start creatinr a line irnap:e at

column w of the current line image. The ranfe of w should

be

1 ~ w ~ 132

Rw.d CARDS Accept a REAL variable from w columns - If one of the columnP

contains a decimal point, then its position is used to define

the actual decimal point - If there is no decimal point ex­

plicitly p-Jnched in the card then it is assumed to be located

d divits to the left of the right-hand end of the field

givin~ the numerical value. For example, R5.2 will force

PRINTER

the following correspondences:

CARD COMPUTER

12345 123.45

12.34

12,03

12.34
3 0.12 x 10

Note th9.t the character sequence "03'' serves to multi ply

the value by ten with a power of 03.

PUNCH Output a REAL variable using w columns with d-1 digits after

the decimal point. The form of the output is alwayP:

x.xx, ee (represents R9.3)

where the first xis not zero (unless ~l of the x~s are

zero) and ee represents the exponent of ten. Since one

must .leave room for the sign of the mantissa, sign cf the

exp,-:ment and decimal point the safe rule iP that w must be

equal to or greater than d+7. Note that d may not be zero.

Sw CARDS Read in a STRING from w consecutive columns. rhe ftring is

PRINTER

left justified in the input strinf variable and any remaininf

posit-ions in the string variable are "space" fillec. A strinrr

may spill over from one card to the next and still be proc·ess~;d

properly. No quote marks .are needed to delimit the strinr'.

PUNCH Output a STRING using w columns.

- 93 -

Tw.u CARDS Same action as Rw.d.

ew

PUNCH

PRINTER Output a REAL variable using w columns and truncate the

number to d significant figures while inserting the

decimal point in its proper place. e.f" Tf,,3 will do:

CO~UTER PRINTED PAGE

123,45?- 123 .

0.002345 • 00234

-0.002_:45 ~({*' {~· {!· {~ {~ (i.e. field is too small)

Uw.d CARDS Not allowed

PUNCH
-·

PRINTER Same as Iw.d except that the sign bit (leftmost bit) is

treated as a numeric bit, i.e., the word is considered a~ a

Jc-bit positive binary number rath~r than a 35-bit pinary

number with sign.

Xw CARDS Skip over (X-out) w columns.

Zw

PUNCH

PRINTER Skip O'.rer w columns. Unless the Pw format phrase is used t~is

is eq' :i val en t to inserting w blanks.

Zw.d CARD§ :iot allowed.

PUNCH

PRINTER The same as Iv .d except that the field is filled at the left

with leading zeros, if necessary. If the integer is positive,

w Jigits are outputted, otherwise w-• didts preceded by a

minus sign are o'utputted.

'(quotation mark)

CARDS Not allowed.

PUNCP

PRINTEfc Quotation marks must appear in matched pairs, i.e., t,here

must be a "left" and a correspondin; 1 "right"quote ma''k in

each use of the quotation marks. All characters, including

spaces, betw~en the quotation marks will be outputted ex­

actly as written. The only way to output a quotation mark

is to use the pound sign ahead of it.

- 94 -

Rules Concerning Format Phrases

If a format phrase can be of the form mw.d where m is any letter, thC'n

w and d must be ~ 63. If a format phrase can only be written in the

form mw then w must be S 4095. For example, for the format phrase

Iw, w must be s 63 since Iw.d is a permissible form but for Sw, w may

be as large as 4095.

2. w and d are always bonsidered to be unsigned numbers.

3. When a COMPLEX variable or expression, (exp), occurs as a parameter to

READ or WRITE and the associated format phrase is not Cw.d, the (exp)

is considered to be the two REAL variables, REAL ((exp)) and IMAG(<exp)).

Thus on input two values are read and converted to COMPLEX and on

output.a COMPLEX number is decomposed into two it1AL values.

REPEATED FORMAT EXPRESSIONS

It is frequently desi:i'able to repeat one (or several) pieces of format

without the programmer writing the whole thing out in l~borious detail.

These situations are taken care of by three cases:

1. Definite repeat

2. Variable repeat

3. Indefinite repeat

DEFINITE REPEAT

For example if it is desired to print out ten REAL variables on

one line where each variable is to be formatted by R12.4, one could

write:

FORMAT OWW (R12.4,R~ 2. 4,R1.2. 4,R12. 4,R12. 4,R12. 4,R12. 4,R12. 4,

R12.4,R12.4,A1) $
However this is very inconvenient. But by using the definite repeat, the

equivalent format

FOR.,.\1AT OWW(10R12.4,A1) $

can be written. Now consider the case where we wish to repeat tw.J variables

per line on the page for 5 lines of print. We merely write

FORMAT GRUNST (5(2R12.4,A1)) $

Thus the definite repeat really assumes two forms:

First form: (integer giving number of repeats) (format to be repPated)

Second form: (integer giving number of repeats>((format phrases separated

by commas))

- 95 -

VARIABLE REPEAT

Let's assume that we have a proe;ram which is to print out several lines

and we do not wish to specify until run time how many numbers to print on

each line. (We _could repunch the format declaration prior to running th8

program each time but this is ~.mdesirable.) In other words we have avail­

able and wish to use some expression or variable which specifies how many

variables we desire on the line. The variable repeat is used in this

instance to allow an expression to specify how many times a (sequence of)

format phrase(s) is to be repeated.

Before the exact form of the variable repeat is given, let us illustrate

its ~.ise.

INTEGEH I,N$

REAL AF.HAY X(1:1000)$

FOP.MAT GUDGEON(A,X5, i:-R8.4)$

READ(N)$

READ(GUDGEON,2'fN+1, FOR I = 1 STEP 1 UNTIL 2'fN+1 DO X(I))

The first call on READ will cause a value for N to be assigned from the

first card of input data. The second call on READ will cause:

1) The value of 2'fN+1 to be substituted for the lf If N

were 4 then the format becomes A,X5,9R8.4.

2) A card will be read.

3) The first five columns of the card are skipped.

4) The number in columns 6-13 inclusive will be placed

in X(1), the number in columns 14-21 inclusive will

be placed in X(2), etc., intil 2*N+1 values have been

read.

Note that in the second READ statement, a.value is not read from cards for

21fN+1 since it corresponds to the variable repeat (lf) and is only used to

determine the repeat-value. Also the variable repeat only affects the

number of times the format is repeated.

The form nf the variable repeat is then:

''<single format phrase) OR lf ((format phrases separated by comma~

Suppose n asterisks occur in a FORMAT declaration. Then in the READ or

WRITE procedure in which this format is a parameter, the first n eYpressions

in either the input or output list are considered as call-by-value expressions

and the value of each is associated from left to right with the re:·.pecti ve

variable repeat. The values of the variable repeats are then retained

- 96 -

throu~hout the r'"mainrJ";r of HEAD or WR.ITE. The sf; fir:--: t n exprnsd on;, arc

u:~r;d only tr) givf~ values to the variable ropeats and ~rr~ iff,nored durinr'.

the remainder of the processing of the procedure. These first n expressions

must be of INfEGER type and have non-negative values. If the value of any

variable repeat is zero then the associated (sequence of) format phrase(s)

is skipped. It should also be noted that if these n expressions are used

in a READ statement, then the expressions are evaluated before processing

the input variables.

INDSFINITE REPEAT

The form of the indefinite repeat is:

(<format phrases separated by commas))

Th8 indefinite repeat is used when the user does not wish to specify how

many times a (sequence of) format phrase(s) is to be repeated. The in­

definite repeat will cause <format phrases separated by commas) to be

repeated until the input or output list is exhausted. Thus the entire

format is viewed as an indefinite repeat. No format phrases to the right

of the first indefinite repeat will ever be interpreted. This rule has the

following ·implications:

1. An activation phrase should always be included in an indefinite

repeat.

2. READ terminates immediately upon exhausting the input list

regardless of which format phrase is being interpreted.

J. WRITE terminates if the output is exhausted and all of format

phrases between the point in the format at which the output list

became exhausted and the end of the indefinite repeat have been

interpreted. For phrases requiring output for which no output

·exists, blanks are inserted instead.

EXAMPLE:

INTEGER M,N,P$

READ(M,N,P)$

BEGIN

INTEGER ARRAY D(1 .. 20,1 .. 10)$

REAL ARRAY A(1 •• M), B(1 •. N), C(1 •. P)$

FORMAT PUMPERNICKEL(A, >}R1.2.4 ,A, lfR10. 3 ,A ,-::·D5. 1 , (A, 1 OI4)) $

LIST BORSCHT(M,N,P,A,B,G,D)$

READ(PUMPERNICKEL,BORSCHT)

END
- 97 -

In the preceding example, the values of M,N,P are assir,ned to thr~ a.~t.0ri~;k:

in the FORMAT from left to right, M elements of A are read under R12.4, N

elements bf Bare read under R10.3, P elements of Care read under D5.1, and

the array D is completely filled via the indefinite repeat (A,10I4)

EXAMPLE:

REAL Y$

FORMAT MOXIE(' X SQRT(X)', A1, (D3.1,X2,T8.6,A1))$

LIST AXOLOTL (FOR Y=1 STEP 1 UNTIL 6 DO (Y,~(Y)))$

WRITE(MOXIE,AXOLOTL)

The above program fragment will result in:

x SQRT(X)

1 • 0 1 .00000

2.0 1.41421

3.0 1. 73205

4,0 2.00000

5,0 2.23606

6.0 2.44948

Note: Any of the various repeat options are considered to be single phrases.

THE FORMAT P~OCEDURE

The nse of a (format name) in a READ or WRITE procedure may be replaced

by a call on the FORMAT procedure of the form:

FORMAT (<string expression))

This call results in the string expression being processed at this point as a

format string. The value of .the string expression must have the fo~m:

((format phrases separated by commas))

to be interpreted properly as a format string. Note that the outermost

parentheses must be present in the string. It should also be noted that

this string expression cari be read in from cards as well as gen3rated by any

of the readily available string operations.

GENERAL REMARKS ON FORMATS USED WITH WRITE

1. A format describes how the user wants the outputted line to appear,

where the descriptive process generally proceeds seqi~ntially from

- 98 -

left to right (with the exception of the Pw phrase). Each device has

a maximum line length which it will accept (the longest beinr, 1 ~2).

Any characters specified in excess of the maximtun munber wil1 bi~ 10~1t

and no error message will be prod'..lced. Any colwnns not explicitly

filled by the user will be filled with blanks.

EXAMPLE

FORMAT KNIF(X120, 'SOME OF THIS ISNT', A1) $
WRITE(KNIF)

T~e output on the high speed printer page (128 character line length)

for the above fragment of program will consist of 120 blanks followed by

SOME OF

2. A plus sign is never outputted by any of I,T,D,R,C,Z,O,U.

3. BOOLEAN variables used for output have only two possible values:

TRUE

and

FALSE

thus any use of the B format must use at least 4 and probably 5 as the

nwnber of columns, if the entire word is to be printed.

4, If the field is too small for any of the format phrases, then one of

the following actions will occur.

a) If the format phrase is Swor Bw,the output will consist of as

many characters as possible, starting with the leftmost character.

b) If the format phrase is Iw.d, Ow.d, Uw.d or Zw.d then the most

significant part is lost, the sign (if present) is retained and

the resulting field is preceded by an asterisk ({~).

c) If the format phrase is Rw.d, Iw.d or Dw.d, then the nwnber will

be truncated to fit the field. If the field is too small for

even this minimwn information, an error message will be produced

consisting of w asterisks ({~) showing the requested size of the

field.

d) If the format is complex, no check is made on the entir·~ field

sjze but only on each sub-field and th~ errors will be Lndicated

as in c) above.

e) If none of the above conditions are true then an appropriate error

message is printed and the program is terminated.

5. All output (except STRING and BOOLEAN values) is always pus11ed over

to right (right justified) within the available column specification.

- 99 -

EXAMPLE:

PRINTER OR PUNCH

63.4 under R9.2 6. 3 ,+01

-63.4 under R9.2 -6.3 ,+01

0.00634 under R.9.2 6.3,-03
-O.OJ634 under R9.2 -6.3,-03

- 1 27 under I9 -127
TRUE under B9 TRUE

E. In the Iw.d and Uw.d formats all leading zeros o~ the field are deleted.

7. The following program fragments are equivalent.

and

ARRAY A(L1··u1,L2 .. u2, ... ,Ln •• Un) $
WRITE (FOR I1 = L1 STEP 1 UNTIL U1 DO

FOR I 2 = L2 STEP 1 UNTIL u2 DO

FOR I = L STEP 1 UNTIL U DO -n n-- --n-
A(I1 ,I2, ••. ,In))

ARRAY A(L, .. u,,L2··u2,···,Ln .• Un) $
WRITE (A)

For two dimensional arrays, this amounts to outputting the array row

by row. The second fragment executes far faster than the first.

- 100 -

8. Allowable conversions of type in WRITE with format are given in th~

following table:

FORMAT
ALLOWABLE

TYPES OF PARAMETERS

B BOOLEAN

c COMPLEX

D,R,T INTEGER ----
REAL
BOOLEAN
REAL2
COMPLEX (only the real or

imaginary part will be
used. For complete
explanation see dis-
cussion of Cw .d format
phase.)

I,O,U,Z INTEGER
REAL
BOOLEAN
STRING
REAL2
COMPLEX (same as D format)

s STRING

GENERAL REMARKS ON FORMATS USED WITH READ

1 • An activation phrase (A) must be the first format phrase in a format

that is a parameter to READ. If the first phrase is not an activation

then an error message will be given and the program terminated.

2. A complete discussion of free format is given in tr.e section describin~

the procedure CARDS. The free format specified by the Fw phrase differs

from free format in the following ways:

a) With the format Fw, an activation phrase must lie specified.

b) With the format Fw, an asteri<k (if) as data is consider"3d

an illegal character unless it is part of a string constant.

3. By using a format in the READ procedure, a card can be considere~ ~o

have up to 4095 columns. This feature is invoked when any forma+, prrase

(except X, P and F) extends beyond the end of a card. Wher this accurs,

- 101 -

column one of the next card immediately follows column 80. No activation

phrase is necessary. The phrases X, P and F may~ run across card

boundaries.

EXAMPLE

STRING T (180) $

FORMAT F(A,5180) $

READ (F, T)

After reading is initiated by the activation (A) phrase, the S format

will read two additional cards in order to reach the end of the specified

field. The strin6 T is filled with the first two cards and the first

twenty columns of the third.

4. If any part of a card has not beer. examined w1 e~ the input parameter

list is exhausted, any information on that part of the card is

lost. In the above example, ~olumns 21 through 80 of the third card

are discarded.

5. The following two program fragments are equivalent.

and

ARRAY A(L •• u1 ,L2··u2,···,L .• u) $
1 . n n

READ (FOR I 1 = 11 STEP 1 UNTIL u1 rrQ
FOR I 2 = L2 STEP 1 UNTIL u2 DO

FOR In = Ln STEP 1 UNTIL Un DO

A(I1 ,I2 , ••• ,In))

ARRAY A(L1 •• u1 ,L2··u2, ••• ,Ln •• Un) $

REAJ2 (A)

For two dimensional arrays this amounts to fillin~ the array row by

row. The second fragment will execute far faster than the first.

f. Conversion of type in a READ procedure with format is a very intricate

process involving the interaction of the form~t, the type of parameter

and the type of data on the card. This proc~ss is described l~re.

A datum on a card will be called a number except for strings.

A number is BOOLEAN if it begins with a T ot' an F. A number ·• s an

integer ·.f

~) there is no decimal point in the number and

ii) there is no exponent present in any form and

iii) if the format is Cw.d, Dw.d, Rw.d or iw.d then d = O.

Any other occurrence of a number is considere:l a real number. All

real numtiers are double precision.

- 102 -

Any conversions necessary are made using the usual transfer functions.

The allowable type conversions are

a) If the n11mber is Boolean then the parameter must be BOOLEAN.

b)

FORMAT

c

D,R,T

B,I

s

ALLOWABLE TYPES OF PARAMETERS

INTEGER}
REAL

REAL2

COMPLEX

BOOLEAN

INTEGER

REAL

REAL2

BOOLEAN

COMPLEX

INTEGER

fiEAL

REAL2

BQQLEAN

STHING ·

Only the real part is used. The

imaginary part is discarded

Only the real part is examined. If it

is an· integer number and has val1Je

of 0 or 1 then it is an allowable

conversion

Allowed only if number is inte~er

and has value 0 or 1.

Only half of a complex number will

be assigned a value. See discussion

of Cw.a format phrase and remark 3

on formats.

Allowed only if number is interer

and has value 0 or 1.

Only half of a complex n~mber will

be assi~ned a value. See discussion

of Cw.d format phrase anj remark 3

on form'3.ts.

- 103 -

THE LIST DECLARATION

The general form of the LIST declaration is:

LIST (list name'-((list elements separated by commas))$ when· (list name"

is a name supplied by the programmer and (list elements separated by commas)

is discussed belo~.

First we point out that any LIST which can be used in READ may also

be used in WRITE -- but it is not true that any LIST usable in gRITE may

be also u~ed in READ.

A list element may assume any of the follD"..Jing forms:

1. A simple variable name (e.g. X)

2. A subscripted variable .(e.g. A(I,J))

3. An ARRAY name (e.g. A)

4. A STRING element (e.g. NAME(2))

5. A STHHTG name (e.g. NAME)

6. A sub-STRHJG (e.g. NAME(6,9))

7, A LIST n9.me

8. A generative process

9. An intrinsic or predefined

proced'1re call

:o. An explicitly defined procedure

call
: 1 An arithmetic expression

12. A Boolean expression

1 3. An arithmetic constant

1 4. A STHING constant

·5. A BOOLEAN constant

(explained below)

(explained below)

(e.f. SQHT(X))

(e • f . MY OWN (A , B , P , Q))

(e.g. X+Y)

(e.g. A IMPL B OR C EQUIV P)

(e.g. 5,03734)

(e.g. 'FRITZWEG')

(e.p:. TRUE)

Any of the first six forms of a list element (and with certain

reservations, the seventh and eighth m9.y be used in a LIST to be i1c::1?d in

READ. Any of the forms may be used in WRITE.

Thus i,·e :iow see that ba~k at the beginninf" of +,r1i2 section ·.1her"· He:

talked about (actual input parameter list) we meant that allowatl~ item~

in the lis. are any of :he first six (and with reservations, the

sevent'.-: an1: eighth) of the list element forms.

Also where we mentioned (actual oi.;tput par1:;.rneter list) we row rjefi.rv"

the elements to be of any of the list element forms enumerated &bove.

- 104 -

A generative process (item 8 in the enumeration above) is of the form:

FOR (variable identifier or subscripted variable> = (for list) DO

(<any of the fifteen forms of list element Reparated by commas'>) where

(for list~ is defined as:

<arithmetic expression)

or

<arith exp) STEP (ar'ith exp) UNTIL <arith exp)

or

(arith exp) WHILE (Boolean expression)

or

any sequence of the above separated by commas. See the section

describing the FOR statement for a complete explanation.

EXAMPLE:

INTEGER I , N $

READ (N) $

BEGIN

ARRAY A,X(1 .. N) $
LIST ELDIABLOROJO(FOR I= STEP~ UNTIL tJ DO (A(I), X(I))).$ -- --
READ(ELDIABLOROJO) $

WRITE(ELDIABLOROJO)

END

The above program fragment reads in a value for lJ, i:::stabl is'."ies the: si 7e of

arrays A and X, reads in values for

A1 ,x1 ,A2,x2, ... ,AN,XN

and will then write out the values in the same sequence.

By now it is no doubt clear to the reader that the form of the fEnerati·.re

process which is acceptable to READ is

FOR <variable ider;tifier or subscripted variaqle) = (for 1: s+,) DO

((any of the first six forms (and with reserva+,ions, the se\~ent;, an::l r:if-ht}1J

of the lift element forms s·~parated by commas)).

A LISr may itself be ·rned as a list element in a LIST (i.e. LIST's

may be nested). If the parent LIST is used in a READ procedure ~l':en all

list elements of all nested LIST's should follow the above sui:rf"~stions

regarding the allowable forms of list elements.

Multiple LIST' s m11y be used in input/outp·1t statements. T·1erefor'° the

parameter (list name) in a READ or WRITE procedure may in fact ~onsist of

one or more LIST's.
- 105 -

EXAMP:.:...E:

LIST L(H,J) $

LIST X(H,J,L) $

LIST Z(A,B,C,X) $

A = 1 $ B = 2 $ C = 3 $ H = 7 $ J = R $

WRITE (L,L,L,L) $

WRITE (Z)

The first WRITE procedure contains multiple LIST's; and the seco'1d uses

a nesting of LIST's that is three deep.

THE CARDS DETICE

CARDS may only be 'Jsed as a parameter to READ and is used to specify

the on-line card reader as the (device name). This is exactly equivalent

to omitting (device name). The cards to be read should follow the control

card which caused execution of the program and should not include control

cards other than EOF cards.

The (format> parameter to the READ procedure is optional for CARDS

and should be used only when the user desires to make a rifid specification

of the card co'1tents. When a format is specified, the operation is as

described previously. Otherwise the cards are read in a so-call1:d "free

format" (described below).

If alternative exits are provided to the READ procedure (as the

parameter (label)); then for the (device name) CARDS these exits are taken

in the following circumstances.

1) Exit is made·to the EOF label if an EOF control card is

encountered and the input parameter list has not been

exha·1sted. S·1bsequent calls 0'1 RE.AD v!ill continue to

read the cards following the EOF card.

2) Exit is made t8 the SOI label i'. a control card)ther

than an EOF ~ard is encountered and the input pa:·ameter

list has not been exhausted. A·1y subsequent cal .s on

READ will co:1tin11e to exit to t·1e EOI label.

3) Exit is made to the EBR label only if a card con~ains

a seq1~ence o~· characters which cannot be transfo"'.'med

into an acceptable value for th~ associated inpu~ variable.

- 1 Of -

This might be due to a mispunched card, a misread card,

or a request for an illegal type co~version.

FREE FORMAT WITH CARDS

Data cards to be read in free format whould be punched according

to the following rules. Four types of data may appear:

Ex:AMPLES:

1) An integer value is represented by a sequence of digits,

optionally preceded by a sign.

2). A real value may be represented in any of several forms:

3)

a) A sequence of decimal di~its containing a decimal point

b) An ampersand (&) followed by an unsigned or signed

integer. This represents a power of ten

c) A sequence of decimal digits with or without a decimal

point followed by a power of ten. This power of ten

may have the form b above or the form comma (,) followed

optionally by a blank, or sign, followed by an unsigned

integer

d) Any of a, b, or c preceded by a sign.

A string value is represented by

not containing an apostrophe (')

used as quote marks. IMPORTANT:

a sequence of characters

and enclosed in apostrophes

The characters # and : do

not have the special significance which is attached to them

within string constants in an Algol program. As ~ result,

it is not possible to read the character apostrophe (')

under free format.

4) A Boolean value is represented by a sequence of characters

except blank and asterisk, the first of which is either T

or F. Only the first character is examined to determine

the value: TRUE for T, ~ for F.

Data on Card

928

-2

+6.5

3.2&2

&-3

~
INTEGER

"
REAL or REAL2

REAL or REAL2

" " "

- 107 -

Value

+928

-2

+6.5

+3.2 x 10+2

+1.0 x 1 o-3

Data on Card ~ ~~

5:4,3. REAL or REAL2 +5.4 x 103

5.4, 3 " " " +5.4 x 1 o3

5.4,+3 " " " +5.4 x 103

5.4,-3 " " " +5.4 x 10-3

'TOM' STRING TOM

TOM BOOLEAN TRUE

If an asterisk (if) not contained in a string constant occurs on a data card

then the rest of the card is ignored.

If several values appear on the same card, they must be separated by

one or more blanks. A blank may not appear in a data item except in a string.

value and in a·real value following a comma. In the latter case, only a

single blank is permitted, and it is exactly equivalent to a plus sign. A

value is always terminated after column 80, and therefore a value may not

extend from one card ~o the next. An asterisk not contained in a string

value will act the same as the end of card.

At least one card is always read (unless an EOI condition exists).

Additional cards will be read until enough values are obtained to exhaust

the input list. Unused values on the last card are lost since the next

call on READ begins by reading a card.

Each INTEGER, REAL, REAL2, BOJLEAN, STRING simple variable and element

of an array requires one value fro~ the input cards. Each COMPLEX variable

and element of an array requires two ttEAL values, which become respectively

the real and imaginary components of the complex number. The corner bracket

form of complex numbers may not be used for free format input. Values

representing REAL values are always read as REAL2 values and then truncated

to ~AL, if necessary

The followinf table indicates the permitted types of input parameters

for each type of value which may appear on a card.

Type of Value on Card

INTEGER

Allowable Types of Input Parameters

INTEGER.

REAL

P.EAL2

COMPLEX

BOOLEAN

- 108 -

Two values are r<:?ad

Convert 0 to FALSE,

1 to TRUE

Type of Value on Card

REAL or H.~:AL2

BOOLEAN

STRING

THE PRINTEn DEVICE

Allowable Types of Input P11rameLer;;

IN'flt:(;~]i ----
rn:I\ 1.

REAL2

COMPLEX

BOOLEAN

STRING

Two values are read

The WRITE procedure outputs to this device when the (device name) parameter

is PRINTER or is omitted. Output is printed ?n the same printer as the rest

of the user's listing.

None of the alternative exits specified by (label) are used when output

is to the printer.

The (format) parameter is optional. When a format is supplied, operation

is as previously described. If a format is not supplied by the user, the

implied format described below is used.

Type of Output Value Implied Format Phrase

INTEGER

REAL

REAL2

COMPLEX

BOOLEAN ----
STRING

I12

R12.5

R12.5

Two REA1 values are print,o.d,

each under R12.5

B12

See below

Each call on WRITE beg-ins a new line. ·Except for type 2,TRING, ter:. values

are printed ·per lin1 until the output parameters from this call on WRITE

have all been printed. If less than ten values are printed on the last

line then blanks are supplied to complete the line. A STRING value, however,

always beFins a new line, after forcing any values preceding it in the outpi;t,

list to be printed. The string is divided int0 substrinfs of 112 characters

each, with blanks supplied to complete the last, substrinv if necessary, ani

these substrings are printed-, one per line. Any output parameters following

the strinF will befin a new line.

The user should note that two different models of printer are in use.

A 1004 printer accepts a line of 132 characters. The high speed print,~r

accepts a line of 128 characters, and thus some characters of lonq strinqs

- 109 -

printed under implied format will be lost.

AUXILIARY PROCEDURES TO CONTROL PRINTER

~)r~vc'ral proced11rf':~ 11re nvn.ilable for providinr: addi Liona.l control ovt>r

the printer nnd nre described below.

The HEADING Procedure

This procedure may be called with O, 1, or 2 parameters:

HEADING

HEADING (<exp1))

HEADING (<exp1),(exp2>) ,

where (exp1) should be of type string and (exp2) should be of type integer

and should be in the range 0 S (exp2) S 4095. The top margin of each

succeeding page will contain a heading line composed of the first 60

characters of (exp~), ~he current date and the page numb9r. If (exp2) is

present and is non-zero,then the next page heading printed will contain this

page number. Otherwise the page number is not altered. The form without

parameters will terminate the printing of the heading, including page numbers.

Note that if the top m9.rgin is not large enough to contain the heading (because

of a call on MARGIN) then no heading will be produced.

The MARGIN Procedure

.The form of a. call on this procedure

MARGIN (<exp1),<exp2>,<exp3>)

where each parameter may be of type INTEGER, REAL, REAL2, or STRING. Con­

version of the value of ea.ch parameter to type INTEGER is ma.de in the usual

manner. Thereafter, ea.ch page is considered to have a top margin of (exp1>

lines, a. body of (exp2> lines, and a. bottom margin of (exp3) lines. Note

that, in general, the position of the pa.per in the p~inter following a call

on '118.rgin will be undefined. Ho~ever, if the standard margin of 6, 54, 6

is called for, the position will be adjusted so that the perforations of

standard paper will separate pages.

The PAPER Procedure

This procedure is called by:

PAPER ((exp))

where (exp) m9.y be of type INTEGER, REAL, REAL2, or STRIN8. The value of'

- ~:o -

(exp) will be converted to type STRING in the w~1rn.l manner. During print i Ilf'

of the output, (Pxp'> will be printed at tlw Lop of t.h0 1wxt. !1'l/'.t', 11 rat'P

will be ejected, and t.hE' printer will be su:>pPnd, d. l'l,i.~ f'ent.11rc L~ 11:~ed

when special forms are to be inserted in the prlnLer. An unsolicited key

in (6PR4 for the 1004, L:::.PR~ for the high speed printer) is necessary to

continue printing (see Exec III manual).

THE PUNCH DEVICE

Output may be made to the on-line card punch if the (device name)

parameter of WRITE is PUNCH. The card punch accepts a line of ·80 characters,

and any excess characters will be ignored.

None of the alternative exits specified by (label) are used when the

output device is the card punch.

The user may ~pecify a particular format for the output and operation

will be as previously described. If the (format) parameter of WRITE is

omitted, the implied format described below is used for each type of output

value.

TI12e of OutQut Value Implied Format Phrase

INTEGER I16

REAL R16.8

B.ML2 R1L8

COMPLEX Two REAL values are punched,

each under R1 L2

BOOLEAN B1 f,

STRING See below

Except for type string, five values are punched per card until all values

have been outputted. If less than five values are are available for the

last card for this WRrTE, blanks are supplied. A STRING valu~ always begin3

a new card, after forcing any preceding output parameters to be punched. The

string is divided into substrings of 132 characters, and the ~irst 80

characters of each substring are punched, without quote marks, into a card.

Any output values following the string will begin on a new card. Not~ that

it is usually undesirable to punch strings longer than 20 characters under

the implied format.

- 111 -

Procedure call

FORMAT ((exp))

HEADING ((exp1 ,
(exp2))

MARGIN{(exp1),

(exp2),(exp3))

PAPER{(exp))

PRINTER

LIBRARY PROCEDURES FOR CARD, PRINTER AND PUNCH I/O

Type of
argument(s)

none

STRING

First is
STRING, second
is INTEGER

Any may be
INTEGER,
REAL,
REAL2,
STRING

STRING

none

none

Type of
result

none

FORMAT

none

none

none

no11e

none

Description

Defines card reader as input device in a READ
procedure call.

Converts (exp) into an edited list of format
phrases.

Prints (exp1) at the top of every page of
printed output. (exp2) controls page numbering.

Defines form of printed page:
(exp1> is number of lines in top margin;

(exp2> is number of lines in body of page;

(exp3> is number of lines in bottom margin.

Non-integer arguments are converted.
The standard values are 6,54,6 respectively.

(exp) is printed at top of next page, the
page is ejected and the printer is then sus­
pended. This facilitates the changing of paper
forms.

Defines printer as output device in a WRITE
procedure call.

Defines punch as output device in a WhITE
procedure call.

TAPE

DRUM x ...

INPUT

OUTPUT

This chapter discusses the I/O devices TAPE and DRUM and the procedures

that relate to the use of these devices. To understand this chapter the

reader should know exactly what magnetic tape and drum are and the basic

dynamics of their use. Also the reader should be familiar with the previous

chapter dealing with card and printer I/O.

THE TAPE DEVICE

TAPE is a non-recursive procedure that specifies a (device name) to the

I/O procedures READ, WRITE, POSITION and REWIND. Such a specification selects

one of the magnetic tape units as the input/output device. To use TAPE as a

parameter to an! of these procedures (which is the only allowed use of TAPE)

it must have the form

. TAPE((exp))

where (exp) must be an expression that can be converted to type S'I'RING and

have the value

'(unit)' or '(unit) (numeric)'

(unit) denotes the desired logical unit and (numeric), if present, denotes

the length of the tape in feet. If (numeric) is omitted, then, for magnetic

tape, the length is taken to be 1200 feet. If (numeric) consists of all

blanks then the length is set to zero. The length of the tape is set every

time (numeric) is specified regardless of the position of the tape. The

assumed length is only made at the time of the first reference to a particular

tape unit. The tape length is used to allov the user to make a programmed

recovery when the physical end of tape is encountered while writing. This is

- 113 -

done because some tape units (such as Univac II A) will not, by themselve~,

alert the programmer to the end of tape condition. The procedure TAPE will

keep track of how much tape has been written and, if the tape length was

correctly specified, give an EOI condition when the physical end of tape is

near.

The followir.g table indicates allowable values of (unit) and the device

(unit) specifies for each value.

Value of (unit)

A - Z

0
~

I

2

4 - 9

Physical Device Specified

Tape units A - Z

Printer

'Card reader

Punch

Drum simulated tapes

Drum simulated tapes are discussed in the next section. If the logical

unit is. a letter, this letter should correspond to the letter used on the

ASG control card that assigns the tape (see EXEC III manual). If the logical

unit is O, 1 or 2 then TAPE will act as if PRINTER, CARDS or PUNCH, respectively,

had been used instead. Thus

WRITE(TAPE(1 0 1), <list name)) has exactly the same effect as

WRITE(PRINTER, (list name)) which is the same as

WRITE((list name))

Note that if the logical unit is o, 1 or 2 then (numeric) has no meaning and

is not examined.

DRUM SIMULATED TAPES

Drum simulated tapes (DST's) enable the user to regard drum as a magnetic

tape unit. Such a simulation has the advantage of using an intrinsically

faster I/O device and much reduced rewind and position times.

To select a DST, the logical unit should have a value between 4 and 9

inclusive. If a tape length is not specified on the first reference to s. DST,

then the DST will be made long enough to include all of the allowable drum

that is unused by any other DST. The sum of the lengths of all drum tapes

must not exceed 524 feet.

Drum simulated tapes are indistinguishable from normal magnetic tape

in all respects except for the following:

1. DST's cannot be rewound with interlock (see the section

describing the REWIND procedure).

2. DST's do not need to be assigned by an ASG card.

3. Once a length has been assigned to a DST, it will not be

changed for the remainder of the program.

4. DST's are erased at the end of each run. Thus a DST must

be initialized by writing on it before reading from it.

5. The device DRUM (q.v.) should never be used when DST's are

being used.

EXAMPLE

REWIND(TAPE('4120'))

This procedure call will initialize DST '4' to 120 feet if this DST

has not been used before. In any case, DST '4' is rewound.

NOTE: Unless indication is made to the contrary, the rest of the explanation

of TAPE applies only to magnetic and drum simulated tape.

DETAILS OF TAPE FORMAT

The smallest unit of information that can be written to tape is a word.

Since writing information to tape a word at a time is extremely wastef~l of

space, information is collected together into 255 word bundles by Algol

before being written. Such a bundle will be called a block. An additional

word is added to each block by Algol and then the block is written to tape.

The extra word is fo:::- the device TAPE's own use and is completely un­

detectable by the Algol programmer.

When reading from or writing to tape, the number of words read or

written by each type of Algol variable is given below.

1. An INTEGER, BOOLEAN or REAL datum consists of one word.

2. A REA~g or COMPLEX datum consists of two words.

3. A STRING datum consists of the number of words given by the

formula

1 + ((CH+ 5 + MOD(ST - 1,f-))//6)

where CH is the number of characters in the desired string and ST

is the position of the first character of the desired string in the

outermost string.

4. For all types of arrays except string arrays, the number of words

composing the array is found by multiplying the number of elements

- 115 -

in the array by the size of each element (see steps 1 and ?).
5. The number of wo~ds composing a string array is found by

multiplying the number of elements in the array by

(CH+ 5)//6
where CH is the length in characters of each element of the array.

Splitting data between blocks has no significance when writing the tape.

If aL entire block has not been accumulated when the output parameter list

is exhausted then a short block is written consisting of as many words as

have been accumulated. The user should be aware that blocks of less than

twenty words will generally cause unreliable operation of the tape unit.

OUTPUT TO TAPE
To output data to magnetic and drum simulated tape, the device name

in WRITE must be TAPE((exp)). The other parameters to WRITE (q,v.) have the

following specific interpretations.

(label) is utilized in the following fashion:

1. Exit is made to the ERR label if the tape cannot be written properly.

2. Exit is made to the EOI label if either the physical end of tape

is sensed or the remaining tape length is indicated to be zero

(by utilizing the tape length).

If both labels are missing then exit is made to the Algol error routine

instead.

(format> is not allowed as a parameter.

(list name) and (actual parameter list) are the same as described

in the previous chapter with the following exceptions:

1. A substring array name without subscripts is not allowed.

2. A class of procedures called modifiers are allowable parameters.

These procedures are described in the next section called MODIFIERS.

Note that whenever a tape unit is switched from writing to any other

operation, an EOI (end of information) marker is written on the t,ape following

the last wcrd of information. While the user can position past Ghe EOI marker,

it is almoet always catastrophic to do so.

The actual transmission of data to the tape proceeds concurrently with

execution of the program. Consequently, the program may terminate before

all the data has been written to tape. To insure that output has terminated

correctly the user should do any non-output tape operation on all units that

were written to last just before exiting

- 116 -

from the program. An example is rewinding all tapes used for output at

the end of the program.

EXAMPLE:
The statement

WRITE(TAPE(1G1), DARN, DONEFOR, ARRAY1, ARRAY2)

will cause the arrays named ARRAY1 and ARRAY2 to be written on the tape mounted

on logical unit G. If a tape error occurs during the operation, exit will be

made to the statement labeled DARN. If the end of the tape is sensed before

the write is completed, exit will;be made to the statement labeled DONEFOR.

MODIFIERS

The modifiers described in this section may only be called as parameters

to WRITE and POSITION. Any call on them in contexts other than these two

will cause disastrous (and probably not immediately observable) errors.

Only the use of modifiers with WRITE will be discussed in this section,

but it should be kept in mind that in both WRITE and POSITION the modifier

called is the same procedure and consequently the effect is the same.

The two modifiers allowed in W:O.ITE are KEY and EOF. In the following

discussion, the term sentinel will be the generic term used to refer to the

class constituted by KEY and EOF.

Sentinels allow a user to partition his data on tape in a manner

similar to the way EOF control cards partition a data card deck. Encountering

any EOF mark while reading tape causes the same action as encountering an

EOF card does when reading cards. KEY marks are ignored during input.

A call on KEY or EOF may be any of the following forms:

1 • KEX 4. EOF

2. KEY(<string exp)) 5. EOF((string exp))

3. KEY((integer exp)) 6. EOF((integer exp))

The parameters to KEY and EOF serve to distinguish between different EOF

marks and between different KEY marks. If the parameter is (string exp)

(forms 2 and 5) then only the first five characters are used to identify the

sentinel. If less than five characters are specified then blanks are appended

to the end. If the parameter is (integer exp) (forms 3 and 6) then only

integers in the range

-(230- 1) ~(integer exp)~ 230- 1

are used to identify the sentinel. If integers outside this range are used

- 117 -

then the result of MOD(ABS((integer exp?), 2**30) *SIGN ((integer exp))

is used.

No type conversion is made on the parameters to EOF and KEY and if the

parameter is not of type STRING or INTEGER then an error message is given.

The mark written on tape by each of the above forms is distinguishable from

each of the other forms regardless of the parameter supplied. For example

all of the following calls produce different sentinel marks.

KEY KEY(123) KEY('123') EOF('123 1) EOF(123) EOF

When a modifier is encountered in an output parameter list, the fol-

lowing sequence of actions occurs:

1. Output all the parameters occurring before the modifier.

2. Write the appropriate sentinel on tape.

3. Continue processing the output parameter list.

Note that any number of sentinels may be written by a single call on WRITE.

Also any number of sentinels may be written consecutively on tape.

The use of modifiers as parameters to POSITION is discussed in the

section discussing the POSITION procedure.

INPUT FROM TAPE

To read data from magnetic or drum simulated tape the (device name) in

READ must be TAPE((exp)). The other parameters to READ (q.v.) have the

following specific interpretations.

(label) is utilized in the following fashion:

1. Exit is made to the EOF label when an EOF mark is encountered.

EOF marks are described in section MODIFIERS.

2. Exit is made to the EOI label when either the end of written

information or the physical end of tape is encountered.

3. Exit is made to the ERR label whenever a tape cannot be read

properly.

If any of the labels are missing then exit is made to the Algol

error routine instead.

(format) is not allowed as a parameter

(list name) and (actual parameter list) are the same as for card

input with the exception that a substring array name without subscripts

is not allowed.

Only tapes written by calls on the WRITE procedure can be read by the

READ procedure. Each call on READ will cause a new block to be read from

- 118 -

tape. Words are extracted from the block as needed and substituted into

elements of the input parameter list. If there is not a sufficient number

of words in the first block to exhaust the input list, then blocks will

continue to be read until enough words have been read. Any information

in the last block read that is not used is discarded.

No conversion of type is ever made during tape input. The following

discussion indicates how data can be read properly from tape. Define an

0 1.itput list to be that portion of an output parameter list that occurs be­

tween two modifiers (excluding the modifiers) such that a) no modifier is

included in the output list and b) if the parameter adjacent to either end

of the output list is added to the output list then the output list would

include a modifier. The parentheses of the WRITE procedure will be con­

sidered to act as modifiers in the sense of determining output lists. Also

<device name) and (label) will never be part of an output list.

EXAMPLE:
LIST OUT(A, B, ARAY1, KEY, C, D, EOF,EOF, E, ARAY2) $
WRITE(TAPE(1A1), LAB1, KEY,OUT, BOOL, 2**10)

The output lists in the above example are

A,B,ARAY1

C,D

E,ARAY2, BOOL, 2**10

.An input list will denote a proper input parameter list that is constructed

from an output list in the following manner:

1. For every variable and identifier on the output list substitute,

respectively, a variable or identifier that has exactly the same

arithmetic type as the parameter on the output list. If the

output parameter is a string then the input parameter must be

a string of exactly the same number of characters. If the output

parameter is an array .then the input parameter must be an array

of exactly the same number of dimensions and the same number of

elements per dimension.

2. For every expression and constant not included in steo 1 a

variable or identifier should be substituted that has the same

arithmetic type as the expression or constant.

EXAMPLE:

LIS·~ OUT(A,B ARAY1 ,KEY('2'),C,D,EOF(-1),EOF(3),E,ARAY2) $

WRITE (TAPE('A'), LAB~, KEY(1), OUT, BOOL, 2{rn10)

- 119 -

The following are proper input lists tha.t correspond to the output lists

OUTPUT LIST

A,B,AR.AY1

C,D

E ,ARAY2, BOOL, 21: "1 0

INPUT LIST

INT1, INT2, ARAY

C,D

E,ARAY3,BOOL1 ,INT

Proper input will occur if the sequence of input lists used in READ

is the same as the sequence of output lists used the WRITE that created the

tape. Also if the tape is positioned to a point just after a modifier, then

the sequence of input lists can start with the list that corresponds to the

output list that followed that modifier. Note that no detection of a KEY

mark will be possible during input. H0wever, any attempt to read past an

EOF mark will cause an exit to the EOF label.

EXAMPLE

In relation to the above example the following are correct

sequences of input lists

INT1 ,INT2,ARAY

INT1 ,INT2,ARAY,C
:,D,Z,h-A7) if the tape was positioned to KEY(2) first.

Only C and D will be read into since an EOF mark (EOF(-1)) will be

encountered when attempt is ma.de to read into E.

E,ARAY3,BOOL1 ,INT if the tape was positioned to EOF(J) first.

Correct calls on the READ procedure corresponding to the above might be

READ(TAPE('A'),INT1,INT2,ARAY)

£1EAD(rAPE('A'), INT1 ,INT2,ARAY,C)

P.EAD(TAPE('A'),LABJ,C,D,E,ARAY3)where LAB3 is the EOF label.

READ(TAPE('A'),E,ARAY3,BOOL1 ,INT)

assuming the tape is positioned properly first.

Since inpu-S from tape ic:i not checked to see if it i'3 the proper arithmetic

type, a great deal of flexibility (a.nd responsibility) is allowed the user. Data

is s~bstituted into input para.meters on the basis of the number of words each

p~rameter occupies (see DETAILS OF TAPE FORMAT). For instance, a. two dimensional

array can be written to tape in one call on WRITE and read back a. row at a.

time into ~ vec~or. There are two special cases of which the user ml:st be

cognizant. Precautions must be ta.ken when inputting strings and string arrays.

No check is ma.de when reading these two types of data. so tha.t if the following

rules a.re not observed, only the user will experience difficulty.

- 120 -

When a string is written to tape, it is prefaced with a control word

that is interpreted by Algol. To correctly read in a string the tape must

be positioned so that the control word will be the first word read. Also

the string input parameter must have exactly the same number of characters

as the string on tape.

A string array is not written to tape in the same format as a string.

Consequently, string arrays miist be read in the same manner as they were

written. The string array input parameter should have exactly the same

number of dimensions, the same number of elements per dimension for each

dimension and the same number of characters per element as the string array

that was originally written on tape.

THE POSITION PROCEDURE

The POSITION procedure is a fully recursive procedure used to position

a magnetic or drum simulated tape. The general form of POSITION is:

POSITION((label),(position pair))

These two parameters may occur in any order.

(lab~l) consists of one or two labels (separated by a comma if two)

which are used as alternative exits by the POSI1ION pro~edure. These exits

are utilized when abnormal conditions are encountered w~ile positioninE a

tape. The appropriate exit is chosen in the following manner:

i) Exit is made to the first label (if present) if either the

beginning or the end of written informatio~ is encountered

before satisfying the position. This label is called the

EOI label.

ii) Exit is made to the second labr-:>l (if present) if the tape

cannot be moved because of some malfunction of the tapP

unit. This label is called the ERR label.

(label) need not be specified. The standard Algol error exit is supplied

for all missing labels. If an exit is made to the Algol ~rror routinP, an

appropriate message is printed and the program is terminated.

(position pair) consists of a call on TAPE, a com"'.Tla and a position

modifier. A position modifier may be any one of the following eleven forms:

1. ID or +KEY

2. EOF or +EOF

3. -KEY

- ~ 2~ -

4. -EOF

5. EOI or +EOI

6. -EOI

7. (integer exp)

8. KEY (<exp)) or +KEY (<exp))

9. EOF (<exp)) or +EOF (<exp))

1 o. -KEY (<exp))

11 • -EOF (<exp))

(exp) may be either a string expressio~ or an integer expression. I"

either case it has the same effect as a write modifier. In all eleven forms

if the position modifier is unsigned or positive then the tape is moved in

the forward direction; otherwise it is moved in the backward direction.

If position modifier is a KEY or EOF (forms 1 ,2,3,4,8,9,10 and 1 1) Lhen

the designated tape unit is moved in the appropriate direction until the

closest specified KEY or EOF mark is found. If no such KEY or EOF mark

is found then exit will be IDA.de to the EOI label if it is present. If the

position is in the forward direction then the tape will be positioned im­

mediately following the KEY or EOF mark. If the position is in the backward

direction then the tape will be positioned immediately preceding the KEY or

EOF mark. In this case an attempt to read forward will exit through the

EOF label if present if it is an EOF mark.

If position modifier is an EOI (forms 5 and 6) then the tape is moved

to the beginning or end of information, respectively. If it is a position

to the end of information the tape is left so that a call on WRITE will

remove the EOimarker fro~ t~at spot on the tape.

If position modifier is an integer expressio~ then the tape is positioned

(integer exp) blocks in the appropriate direction. If the end of written in­

formation is encountered before the requisite number of blocks have been

positioned, then exit will be made to the EOI label if present.

EXAMPLE:

POSITION(TAPE('D'),KEY('SIS'),LAB1 ,LAB2)

This statement will initiate a forward search of the tape on logical 1;nlL

D for a KEY mark having as identifier the string 'SIS'. If s·,1ch a KFY

mark is not found, control resumes with the statement labeled LAB2.

THE REWIND PROCEDURE

The REWIND procedure is a fully recursive procedure ;.,ised to rewind

- 1.<2 -

tape units. The general form of the REWIND is:

RE~IND((tape list 1), (mo~ifier>, (tape list 2))

where any combination of the parameters m9.y be omiLLE'd.

(tape list 1> and (tape list Z>are calls on TAFE separated hy com.11a:;.

EXAMPLE:
.IAI:E (I A I) 'TAPE (I p1 200 I) 'TAPE (s (1)) 'TAPE (I 4 I)

where S is a string.

For REWIND, logical units of O, 1 and 2 are permitted. If any of these

logical units occur, they are ignored. All tape units specified by (+,ap'3

list 1) are rewound. (tape list 2) is explained below.

(modifier) is the procedure call INTERLOCK. If INTERLOCK occurs in

the parameter list, then all tapes designated by (tape list 2) are rewound

with interlock. All tapes in (tape list 1) are unaffected.

EXAMPLE:

REWIND~TAPE('4'),TAPE(1 1 1),IAPE(1 P 1),INTERLOCK,TAPE(1 P 1))

Here :3.r:im simulated t9.pe 4 is rewound, and logical unit P

is first rewo~nd and then rewound with interlock. Rewindi~r

logical ~nit ~ produces no action.

Drum simulated tapes cannot be rewound with interlock. If such an operation

is attempted then the tape is rewo:ind.

-=-!-E DRUM DEVICE

DRl'M is a non-recursiv'3 procedure that specifies a (device nam':'> :o the

I/O procedures READ and WRITE. When DRUM is used as a p9.rameter to ei :r1er of

these procedures it must have one parameti:;r of type INTSGER,. The param.cter

specifies an address on drum at which an input or output operation is to

start. All drum operations will proceed from this starting address '.,o in­

creasing addresses. The starting address will have an implied ran~e of

allowable values which is

J ~(starting address)~ 2?2, 1 43.

This rang! can be doubled ty making the declaration

EXTERNAL SLEUTH PROCED'JRE DRUM $

When the declaration is in effect, there will be no auto:n9.tic type cow"er,,ion

of the pa:·ameter of DRlil-'l to type integer. If such a conversior is n.:::ces3ary

it must C'" explicitly mad.:; by the user. This declaration has the follcw:'.ns­

effects:

- 1 23 -

1 •

...., -.

" '.

The starting address now has the allowable range

0 ~ (starting address) ~ 524,287

What 11fH''ct t.o bP address 0 in the implied ra.n1~e becomes actdr<>fl~~

'.'r<", 1 .:.~ and :1Cl on for alJ hlghrr adrlrPSGE'~.

Any starting address bl"tween 0 and ::'1,2,14~, i1wlttfdvl~, wi11

input or output from the users' program complex file (PCF).

The device DRUM should never be used when drum simulated tapes are

being used since the same area of drum is used by both. The amount of

drum used by drum simulated tapes remains fixed and cannot be altered by

the above declaration of DRUM.

The starting address indicates where input or output is to begin.

Each address corresponds to a word of data on dri.lill. If more than one

word is needed for input or output then consecutive higher addresses are

used. Data is represented on drum exactly as it is on tape except, of

course, that there are no blocks on drum. Also, there is no special

internal control word for every 255 words of data. The number of words

occupied by each kind of.Algol variable is given below.

1. An INTEGER, BOOLEAN or REAL datum consists of one word.

2. A REAL2 or COMPLEX datum consists of two words.

3. A STRING datum consists of the number of words given by

the formula

~ + ((CH+ 5 + MOD(ST - ~, (:))//6)

where CH is the number of characters in the desired string

and ST is the position of the first character of the desired

strin~ in the outermost string.

4. For all types of arrays except string arrays, the number of

words composing the array is found by multiplying the

number of elements in the array by the size of each element

(see steps• and 2).

5. ThE: n-.unber cf words composing a string array is found by

multiplyinf the number of elements ir. the array by

(er+ 5)//6
whe '."e C!"! is the length in characters of each element of ,he

arr 3.Y.

Note that the final address written into or read from must be in '.he same

range as the starting address.

- 124 -

The user should be aware that there is no predictable data on drum at

the start of his program. It is necessary for the program.~er to initialize

the drum by writing on it before anything is read fro~ drum. Also all data

is erased at the end of each run.

DRUM AS A PARAMETER TO HEAD

When DRID1 is specified as the device in a READ procedure call, the

labels that are parameters are interpreted in the following fashion:

i) The EOF label is never used.

ii) Exit is made to the EOI label when an attempt is made to

read past address 262,143 (or 524,287 of enlarged drum).

iii) Exit is made to the ERR label if the drum cannot be read

correctly.

(format> is not allowed as a parameter.

(list name) and (actual parameter list) are the same as for card input

with the exception that a substring array name without subscripts is no~

allowed.

EXAMPLE:
The statement

READ(DRUM(MAX(THIS,THAT)),PRO.JECTS,RECOVER)

will read the drum starting at the address given by whichever

INTEGER variable has the larger value, THIS or THAT. The array PROJESTS will

be filled by READ and the error label is RECOVER.

DRUM AS A PARAMETER TO V.1RITE

When DRUM is specified as the device in a WRITE proced'..lre call, th-= label

parameters are interpreted in the following way.

1 • Exit is made to the ERR label if the dr1.lm cannot be written prop~rly.

2. Exit is ms.de to the EOI label when s.n attempt is made tc write

past address 2i:2,143 (or 524,287 if th!:- larger drum area is in ;_;si:; J •

(forma·.) is not allowed 9.S a parameter.

(list iame) and (actual parameter list) are the same as described in sh<0

previous chr:.pter with the exceptio!l that a substring array name i,;ithout s .b­

scripts is r.ot allowed as a p"irameter.

- 1 25 -

EXAMPLE:

WRITE(£RUM(I),ARAY)

This procedure call will write array ARAY to drum starting at address I.

SPEED OF ~R~ AND TAPE INPUT/OUTPUT

The following suggestions are made to allow the user to maximize the

speed of input/output operations to tape or drum. These suggestion do not

need to be observed.

It is always faster to specify an array by name only instead of specify­

ing each element separately.

Input of a string will be faster if, when the string is written out,

the position of the first character of the string has character position

(:'fN+1 (for some N) in the outermost string and the string that is the input

parameter satisfies the same restriction. If both of these conditions are

met, f3~ ((CH + 5) / /6) (where CH is the number of characters in the input

parameter string) characters will always be read.

- 12iS -

Procedure Call

DRUM((exp>)

±EOF(<exp")

_ _.
/\)

-.J

±EOI

INTERLOCK

±KEY((exp))

TAPE ((exp'-)

LIBRARY PROCEDlB.ES FOR TAPE AND DRUM I/O

Type of
Argument(s)

INTEGER,

REAL2,

STRING

STRING or

INTEGER.

none

none

STRING or ----

STRINI;

Type of
Result

none

none

none

none

none

Description

Sets starting address for drum

Input/Output operation equal to (exp). If

EXTERNAL SLEUTH PROCEDURE DRUM $ has been

used then the parameter to DRUM must be of

INTEGER type.

Used as parameter to POSITION and WRITE.

Positions to designated EOF mark on selected

tape unit when used as parameter to POSITION.

Writes EOF mark when '.lsed as parameter to WRITE.

Used as parameter to POSITION. Will position

to either beginning or end of "Written informa­

tion depending on sign.

Used with REWIND to rewind tape units with

interlock

Used as parameter to WRITE and POSITION. Positions

to designated KEi mark on selected tape unit

when used as parameter to POSITION. Writes KEY

mark when used as parameter to WRITS.

Defines tape un1 L spt'cj fied by (exp) as device

in Jnp.tt/Output procedure·

XI •••

BLOCKS

BLOCKS

In Algol 60, ~ program consists of ~ block which in turn may contain

within it many subblocks nested to any depth. These subblocks serve to de­

fine a structure within a program which facilitates the construction of a

program by permitting it to be built up of pieces -- each of which may be

relatively independent of each other. These pieces may in turn be tested

separately before putting them together in the final program.

An upper bound of 1 ,020 different blocks per program is imposed by

the Algol compiler not including any external sections (see Chapter XII),

:h:s bound should be adequate for most programs, but if necessary this

~~~er can be extended by using external procedures. The blocks are 

~·..:.::'oere.1 !'rom 4 to 1 ,020 in the order in which the program is read by 

:::e coap:!.:er. 

An example of a program with a complex block structure is given in 

F:!.gure <. 

3:.::K FOR.V.AT 

A block consists of two parts; namely, the heading and the body. The 

heading may not be empty and the block head must precede the body of the 

block. 

The block head consists of all declarations needed within th~ block. 

This forces all identifiers, procedures, lists, ~ormats, arrays, 

et.c. to be defined before they are used. 

The body of the block on the other hand contains all statements per­

tinent to the block which are not declarations. This means that all of 

- 128 -



the active statements such as replacement statements must be located in 

the body of the block. 

DONOTHING •• BEGIN 

INTEGER I $ 

REAL "~RRAY A(1 •• 20) $ 
FOR I = 1 STEP 1 UNTIL 20 DO 

A(I) = 0.0 

END DONOTHING $ 

In the above example, the declarations INTEGER $and REAL ARHAY A!~ •• 2~ 1 ~ 

constitute the head of the block while the FOR statement and replacement 

statement form the body of the block. 

DEFHHNG A BLOCK 

A block is defined by enclosing a section of program consisting of a 

head and body within a set of BEGIN - END statement parentheses, as in the 

above example. This, in effect, means that the word BEGIN followed immediately 

by some form of declarations defines a new block which is terminated by the 

EN:l that matches the defining BEGIN. The double use of the BEGIN - END 

parentheses should be noted by the user. A group of statements enclosed by 

a BEGIN - ~ND pair will form a compound statement if the statement following 

the B3GIN is not a declaration. On the other hand if this statement is a 

declaration then a new block will be defined rather than a compound statement. 

A special rule has been incorporated in the compiler for defining 

the outermost block in a program (block 1 in figure 2). The normally re­

quired BEGIN - END pair is not required in this instance as the compiler 

will automatically supply a matching BEGIN - END pair. However, if the user 

desires to supply his own BEGIN - END as the formal language requires, no 

error will result in the compiled program. All inner blocks do r~quire the 

bounding BEGIN - END pair. 

EXAMPLES: 

COw.IBNT 

Program 1 

THIS PROGRAM INVERTS A SQUARE MATRIX 
BY STRAIGHT GAUSS ELIMINATIO~. 

A = Y~TRIX, N = ORDER OF A. 

- 129 -



COMMENT 

REPEAT •• 

INVERSE OF A IS WRITTEN OVER A $ 
INTEGER N $ 

READ (N) $ 

BEGIN REAL ARRAY A(1 •• N, 1 •• N), V(1 •• N) $ 

INTEGER I, J, C $ 
READ (A) $ 

FOR C = 1 STEP 1 UNTIL N DO 
BEGIN FOR I = 1 STEP 1 UNTIL N-1 DO 
V(I) = A(1, I+1)/A(1,1) $ 

V(N) = 1/A(1,1) $ 

FOR I = 1 STEP 1 UNTIL N-1 DO 
BEGIN FOR J = 1 STEP 1 UNTIL N-1 DO 
A(I,J) = A(I+1, J+1) - A(I+1, 1)*V(J) $ 
A(I,N) = -A(I+1, 1 )i•V(N) 

END t 
filIB J = 1 STEP 1 UNTIL N DO A(N,J) = V(J) 
END $ 

WRITE ( I INVERSE OF A I , A) 
END 

Program 2 

THIS PROGRAM DETERMINES THE SPECTRAL RADIUS OF A SQUARE 
MA TRIX BY THE POWER METHOD, A = MA TRIX, N = ORDER OF A $ 
INTEGER N $ READ (N) $ 
WRITE ( I ORDER OF A = I ,N) • 

BEGIN INTEGER I,J,K $ 
REAL MAXQ, MINQ, SUM, YMAX $ 

REAL ARRAY A(1 •• N,1 •• N), X,Y(1 •• N) $ 

~ QUOTIENTS(10B K = 1 .s,m 1 UNTIL N DO A~(Y(K)/X(K))) 
LIST YABS(FOR K = 1 STEP 1 UNTIL N DO ABS(Y(K))) $ 

READ (A) $ WRITE ('MATRIX A 1 ,A) $ 

filIB I = 1 STEP 1 UNTIL N DO X (I ) = 1 • 0 $ 

FOR I = 1 STEP 1 UNTIL N DO 
BEGIN SUM = O.O $ 
FOR J = 1 §.m 1 UNTIL N DO 

- 130 -



FINA •• 

SUM = SUM + A(I,J) * X(J) $ 

Y(I) = SUM 

END$ 

MA.XQ = MA.X(QUOTIENTS) $ 
. MINQ = MIN (QUOTIENTS) $ 

IF (MA.XQ - MINQ)/MAXQ LSS &-5 THEN -· - --
BEGIN WRITE ('SPECTRAL RADIUS OF A' ,MAXQ) $ 

GOTO FINA END $ 

YMAX = MA.X(YABS) $ 

FOR I= 1 STEP 1 UNTIL N DO X(I) = Y(I)/YMAX $ 

QQIQ REPEAT $ 

END 

LOCAL AND GLOBAL IDENTIFIERS 

All identifiers that are declared explicitly within a given block are 

said to be local to that given block. Any identifiers that are defined in 

an outer block of the given block (i.e. in any block that contains the 

given block) and are not redefined in the given block are said to be global 

to the given block. Also any identifiers that are defined within an inner 

block (i~e. any block contained in the given block) will have !1Q meaning 

in the given block and cannot be referred to from the given block. 

Since a label is an identifier, this last statement means that all 

blocks are entered through their heads and it is impossible within the 

language to enter the middle of a block. Also all variables that are 

defined in a block and hence local to the block will be bound to the block. 

When a block is entered (througQ. its head) space will be requested and 

taken a'W8.y from the remaining available space in memory and assigned to all 

normally defined.local variables in the block including arrays. The 

·initial values of these variables a.re to be considered a.s undenned, except 

for OWN vqriables. The value zero is assigned to OWN variable< of type 

INTEGER, REAL, REAL2, a.nd COMPLEX while OWN STRING's a.re set tC' blanks a.nd 

OWN BOOLEAN variables a.re initialized to FALSE. When a.n exit of a.ny form, 

whether by means of a. GOTO statement or normally through the end of a. block 

is made from a. block, a.11 memory space that is assigned to local 

norm.al variable storage is returned to the a.va.ila.ble 

- 131 -



space part of memory and can be used by other blocks for local variable 

storage, At times it i's desirable to have variables retain their values 

from block entry to block entry. Since normal variables will have their 

values redefined to zero upon each entry and thrown away on each exit, a 

special class of variables called ~ variables is defined. This class 

has permanently allotted space in 111Bmory and variables named in an OWN 

declaration will retain their values from entry to entry. However, it 

should be noted that the identifier rule still holds, and these variables 
: 

although residing in memory cannot be addressed from outside the defining 

block. See Chapter V, THE ~DECLARATION, for a description of storage 

assignment of Block 1 quantities. 

To further illustrate .the concept of local and global identifiers 

consider the block displayed in Figure 1. The variables I, J, K, X, Y, Z 

and labe1sL1, L2, are local identifiers in Block 1. Only I, K, X, Y, Z, 

L1, L2 will be global to Block 2, while J is redefined and local in Block 

2 along with L, M, u, v. In Block 3, I, Y, Z, L1, L2 from Block 1 are 

global along with J, L, u, V from Block 2. K, M, N, W, X are local in 

Block 3. Consider the statement, L3. The global variable Y will be re­

placed by the sum of the local variable X with the product of the global 

variables V, z. The statement L4 in Block 4 looks the same as L3 in Block 

3. However, the variable X in this case refers to the variable X in Block 

1 rather than the varialbe X in Block 3; hence the effect of the statements 

will be different. 

In Block 5, the labeled statement L5 has an erroneous GO TO L4 after 

the word ~. The label L4 is defined in Block 4 and has no meaning 

within Blpck 5 since the blocks are disjoint. However, the GO TO L1 is 

correct and will send control to the statement labeled L1 in Block 1. This 

in effect will cause the program to re-enter Block 2. 

- 132 -



-- -------~----~--- - - - ----- ---- ----------·----· -· -~--

Figure 2 

INTEGER I,J,K $ 

REAL X,Y,~ $ 

(Block 1) 

L 1 •• BEGIN 

L2 •• ~ 

INTEGER J,L,M$ 

REAL u,vt 
(Block 2) 

, (Block 3) 
INTEGER K,M,N $ 
REAL W,X $ 

L3. ~Y=X+V*Z $ 

(Block 4) 
BOOLEAN B1, B2 $ 

INTEGER P, Q $ 
REAL Z1, Z2 $ 

14 •• Y=X+V*Z $ 

(Block 5) 
COMMENT NOTE THAT THE STATEMENT LABELLED 15 IS IN EP.ROE $ 

!:NTEGER V, Z $ 
REAL I, M $ 

BOOLEAN B1? 
L5 •• IF' B1 .'.!]fill GOTO L4 ELSE 
GOTO L1 $ 

- 133 -



XII. .• 

PROCEDURES 

A procedure in Algol is a very general and flexible structure which 

includes as a subset the more or less generally recognized classes of sub­

routines and functions. It is generally used to specify a section of 

program, which usually represents an algorithm, as a somewhat independent 

piece of the program that can be called or reused many times from other 

parts of the program. This structure enables one to test various inde­

pendent pieces of a program before putting them together in a more complicated 

way. 

The procedure may be classified or subdivided into three categories, 

namely: normal Algol pr,ocedures (simply called procedures), library 

procedures, and external procedures. First, let us consider the class of 

normal Algol procedures. 

These procedures represent a special type of block called a procedure 

block. Procedure blocks are defined by means of a procedure declaration 

and exhibit most of the normal properties of blocks. 

THE PROCED~ BLOCK 

A procedure block consists of a procedure heading followed by either 

a standard block or a statement, which represents the body of the procedure. 

The procedure heading consists of .three parts, namely: the procedure 

declaration with formal parameter list, the value part, and the specifi­

cation part. 

rHE PROCEDURE DECLARATION 

The format of the procedure declaration is as follows: 

- 134 -



(type) PROCEDURE (identifier) 

(type) PROCEDURE (identifier) ((par1>, ... , (parN)) 

(type) PROCEDURE (identifier) ((par1>) (str2>: ((par2>) 

(str 3>: . . . ((par N>) 

where (identifier) is the name of the procedure, the (par1> are the formal 

parameters of the procedure, the <str1) are strings which represent paren­

thetical comments (and need not be included), and (type) (see Chapter V) 

is one of the following: REAL, RE.\.L2, INTEGER, BOOLEAN, COMPLEX and STRING. 

It should be noted that (type) may be empty. However, if <type) is empty, 

the procedure cannot be used in the functional sense (see below). Since 

the first parameter must be written immediately after the procedure name, 

the maximum number of comment strings is one less than the number of 

parameters. 

When the procedure declaration is encountered at run time, space is 

created for each of the formal parameters in a fashion similar to that 

used for local variables in a block. The formal parameters are considered 

as local identifiers to the defining procedure block, and may be used in the 

global sense in any block nested inside the procedure block. When the pro­

cedure is called, space is allotted for all local variables and parameters, 

and all of the actual parameters are moved into the cells allotted to the 

formal parameters. 

The procedure declaration must be pr$sent in all procedure blocks 

and is-the first part of the procedure heading. 

EXAMPLES: 

PROCEDURE INVERT (A, B) $ 

REAL PROCEDURE SIMPS (A,B) FUNCTION •• (F) ERROR .•• (DELTA) ;E: 

Note that 

)<strI>: ( 

is equivalent to a comma as a separator of parameters. 

THE VALUE PART 

This part of the procedure heading is optional and has the follo~ing 

format: 

- 135 -



GENERAL FORM: 
VALUE <formal parameter list> $ 

The <formal parameter list> consists of those formal parameter identifiers 

con:ained in the procedure declaration, which are t~ be considered as 

values, separated by commas. These parameter values are obtained from 

the procedure call when the procedure block is entered and remain fixed 

(unless altered by a replacement statement) throughout the body of the 

procedure. Any formal parameter occurring in the VALUE part is considered 

to be a call-:!2z-value parameter or simply a value parameter. A value 

parameter behaves identically to a local variable except that its initial 

value is obtained from the procedure call rather than being considered 

undefined. 

It should be noted that a value parameter which is an array identifier 

will cause the entire array supplied by the procedure call to be copied 

locally within the procedure block. This, in effect, may cause large 

amounts of memory space to be unexpectedly used when the procedure is 

called. Also, value parameters that correspond to labels will cause any 

switch variable or designational expression in the call to be evaluated 

upon entry, as expected. 

If the arithmetic type of the actual parameters in the procedure call 

differ from those of the formal parameters, then an appropriate type con­

version will be performed (if possible) for those cases in which the formal 

parameter is a value parameter. All other cases will result in an error 

message at run-time. 

The value part (if present) must follow the procedure declaration and 

precede the specification part. 

EXAMPLE: 

VALUE X, A, Z $ 

~:: ~~~~a: parameters defined by a procedure declaration !fil!:"t be speci­

~~;~ ~~~~ r!gar~s to ~type) in the sp~cification part of a proceJure heading. 

:•.; :~:.r:"..at :.:' ·,~:.:: sr:.ecification part is as follows: 

- 1Y:: -



GENERAL FORM: 

(specification) (formal parameter list) 

The (specification) has one or the following forms: 

(type) 

ARRAY 

(type) ARRAY 

PROCEDURE 
(type) PROCEDURE 

LABEL 

SWITCH 

FORMAT 

LIST 
(define classification) 

and (type) is one of the following; 

INI'EGER 

REAL 

REAL2 

BOOLEAN 
COMPLEX 
STRING 

The (formal parameter list) again consists of the formal parameter 

identifiers contained in the procedure declaration separated by commas. 

The reason that all formal parameters must be specified is that the 

compiler must know the type of all parameters in order to compile proper 

machine code. 

EXAMPLES: 

INTEGER I I K $ 

REAL X, Y $ 

REAL ARRAY Z $ 

BOOLEAN PROCEDURE F $ 

STRING S $ 

The details of constructing a procedure block can best be described by 

displaying several examples. 

EXAMPLES: 
PROCEDURE SPUR(A) ORDER •• (N) RESULT •• (S) $ 

- 137 -



VALUE N $ ARRAY A $ INTEGER N $ REAL S $ 
COMMENT PROCEDURE SPUR COMPUTES THE TRACE OF MATRIX A $ 

BEGIN INTEGER K $ 

s = o.o $ 

FOR K = 1 STEP 1 UNTIL N DO S = S + A(K,K) 

END SPUR $ 

PROCEDURE TRANSPOSE (A,N) $ 
VALUE N $ ARRAY A $ INTEGER N $ 

COMMENT PROCEDURE TRANSPOSE REPLACES MATRIX A BY THE TRANSPOSE OF A, 

COMMENT 

WHICH rs A SQUARE MATRIX OF ORDER N $ 

BEGIN REAL W $ INTEGER I, K $ 

FOR I = 1 STEP 1 UNTIL N DO 

FOR K = I+1 STEP 1 UNTIL N DO - ------
BEG IN W = A (I , K) $ 

A(I,K) = A(K,I) $ 

A(K,I) = W 

END 

END TRANSPOSE $ 

INTEGER PROCEDURE STEPS(U) $ REA1 U$ 
STEPS = IF 0 LEQ U AND U LEQ 1 THEN 1 ELSE 0 

PROCEDURE ABSMAX(A) SIZE •• (N,M) RESULT .• (Y) SUBSCRIPTS •. (I,K) $ 

VALUE N, M $ 

ARRAY A $ I~TEGER N, M, I, K $ REAL Y $ 

PROCEDURE ABSMAX ASSIGNS TO Y THE MAGNITUDE OF THE ELEMENT OF 

GREATEST ABSOLUTE VALUE IN MATRIX.A, AND ASSIGNS TO I AND K 

THE SUBSCRIPTS OF THAT ELEMENT $ 
BEGIN INTEGER P, Q $ 

y = o.o $ 
FOR P = 1 STEP 1 UNTI~ N DO 

FOR Q = 1 STEP 1 UNTIL M DO 

IF A.BS(A(P,Q)) GTR Y THEN 

1@.J.li f = _bBS (A ( P, Q) ) $ 

I=P $ K=Q 

- 138 -



END 

END ABSMAX $ 

PROCEDURE INNERPRODUCT (A,B) ORtER •• (K,P) RESULT •• (Y) $ 

COMMENT PROCEDURE INNERPRODUCT AND (MODIFIED) CALL 

TAKEN FROM REVISED ALGOL 60 REPORT $ 
VALUE K $ INTEGER K, P $ REAL Y, A, B $ 
BEGIN REAL S $ 
s = o.o $ 
FOR P = 1 STEP 1 UNTIL K DO S = S + A*B $ 
y = s 

END INNERPRODUCT $ 

YAL1lE AND NAME ?ARAMETERS 

All formal parameters that have been listed in a VALUE part are called 

val~ parameters. These parameters will be assigned a value corresponding 

to the value of the actual parameter in the procedure call upon entering the 

procedure block. Any changes made in the value parameters within the body 

of the procedure block will have no effect outside the body of the procedure. 
I -

Any formal parameters that have not been listed in a VALUE part are 

called ~ parameters. The address of the actual parameter in the procedure 

call will be assigned to the formal parameter upon entering the procedure 

block. Consequently, any changes made in the name parameter within the body 

·or the procedure block will be carried outside to the actual parameters 

supplied by the calling block. 

This property of name parameters permits a large number of results to be 

supplied to the calling program from within the procedure. One wrrd of 

caution: This property can sometimes cause far-reaching and disastrous effects 

in the overall program by altering either the values of variables in the call­

ing block or the actual parameters in the call when least expected. (Consider 

in detail the GPS procedure below). 

- 139 -



FUNCTIONAL PROCEDlB.ES 

Procedures which are to be used in the functional sense (e.g. SI~, EXP) 
must ha1e a <type> associated with the procedure identifier (i.e. procedure 

name). This <type> declaration must be the first symbol of the procedure 

declaration. Also for the functional procedure to have a value associated 

with it, the procedure identifier must occur at least once as the left part 

of an assignment statement in the procedure body. In addition, at least one 

of these assignment statements must be executed on a given procedure call for 

a value to be assigned to the procedure. If more than one such assignment 

statement is executed within the body, then the last one executed before 

exiting from the procedure determines the value associated with the procedure. 

Any other occurrences of the procedure identifier within the body of the 

procedure will be considered as (recursive) calls on the procedure. 

EXAMP:.E: 
REAL PROCEDURE FACTORIAL1(N) $ 

VALUE N $ INTEGER N $ 

BEGIN REAL S $ 

INTEGER I $ 

s = 1.0 $ 

FOR I = 1 STEP 1 UNTIL N DO S = S*I $ 
FAC·TORIAL 1 = S 

END FACTORIAL 1 $ 

THE PROCEDURE CALL 

A procedure call has the following format: 

<identifier> (<par1>, ... , <parN>) 

where <identifier> is the name of the called procedure and the <par1> are 

the actual parameters supplied to the procedure. 

The correspondence between the actual parameters in the procedure call 

and the formal parameters of the procedure heading is established as follows: 

The actual parameter list of procedure call must have the same nwnter of 

entries as the formal parameter list of the procedure declaration headin~. 

The correspondence is obtained by taking the entries of these two lists in 

the same order, It is the responsibility of the programmer to match the 

types of parameters in the lists. 

- 140 -



A formal parameter which occurs as the left part variable of an assign­

ment statement within the procedure body and which is not called by value 

(see above) should only correspo~d to an actual parameter which is a variahJ .- • 

Also, a formal parameter which is used within the procedure body as an array 

identifier should only corresp~nd to an actual parameter which is an array 

identifier of an array of the same dimensions and subscript bounds. In 

addition, if the formal array parameter is called by value, the local arr~y 

created during the call will have the same subscript bounds as the actual 

array. Correspondingly, a formal parameter which is used within the pro­

cedure body as a string identifier can only correspond to an actual para­

meter which is a string identifier unless the formal parameter is called by 

value. In this case, appropriate conversions of type will be made if 

possible. 

The following rule-of-thumb will help avoid problems involving the 

correspondence between formal and actual parameters: all parameters to a 

procedure except arrays should be called by value unless there is an ex­

plicit reason for doing otherwise. In particular, actual parameters that 

are constants and procedure calls should correspond to formal parameters 

that are called by value. 

COPY RULE 

The proced~re call acts as if the call were replaced by the statements in 

the procedure body with the following changes being made in the body: 

1) All formal parameters quoted in the value part of the procedure 

declaration are assigned values of the corresponding actual 

parameters, these assignments being considered as being performed 

explicitly before entering the procedure body. 

2) Any formal parameter not quoted in the value list is replaced, 

throughout the procedure body, by the corresponding actuel parameter, 

after enclosing the actual parameter in parentheses whenever syn­

tactically possible. Possible conflicts between identifje~s in­

ser~ed through this process and o~her identifiers alreadJ present 

wit~in the procedure body will be avoided by suitable sy~tematic 

changes of the formal or local identifiers involved. 

3) Any global identifier ::-eferenced within the procedure :·1as its 

- ... 4"' -



identity defined as at the point of declaration, while its value 

is that in force at the time of the call. 

4) The procedure body, as modified above, is executed in place of the 

call. 

RECURSIVE PROCEDURE CALLS 

The usual context for a recursive proc~dure call is an explicitly 

stated procedure call from within the body of the procedure itself. As an 

example~ consider th~ following recursive form for the previous factorial 

procedure: 

EXAMPLE: 

REAL PROCEDURE FACTORIAL2(N) $ 

VALUE N $ INTEGER N $ 

FACTORIAL2 =IF N ~~ 0 !HEN 1.0 ELSE NllFACTQRIAL2(N-1) 

A more obscure method for a procedure to be called recursively is to 

pass a call for the procedure into the procedure as. a name parameter. As 

an example, consider the following procedure for integration using Simpson's 

Rule (Frank Olynyk, Comm. of ACM, Vol. 7, June 1964, p.348). 
EXAMPLE: 

BOX •• 

REAL PROCEDURE SIMPS (X, X1, X2, DELTA, F) $ 

VALUE X1, X2, DELTA $ 

REAL X, X1, X2, DELTA, F $ 
BEGIN 

BOOLEAN· TURING$ ~ Z1, Z2, Z3, H, K $ 

TURING = FALSE $ 

IF X1 EQL X2 THEN - -- --
BEGIN Z1 = 0 $ 

~OTO BOX2 END $ 

IF X1 GTR X2 THEN 

BEGIN H = X1 $ X1 = X2 $ X2 = H $ 

TURING = TRUE END $ 

x = X1 $ Z1 = F $ X = X2 $ '.03 = Z1 = Z1 + F 
K = X2 - X1 $ 

Z2 = 0 $ H = K/2 $ 

- 142 -

$ 



BOX2 •• 

FO::l. X :::.. Y.. 1 -+ H ~ . .IEP K UNTIL X) DC 7. 

71 = z~ + ~*Z2 $ 

:2 + F $ 

I? H*AB.3( (7 1 -?>:-z3)/(IF Z1 ~.:.:..: () 'T'i;E<:;: • ELSE 7~ 1; 

~r~.~ DE~TA THEN GOTO E::JX? .r.i.. .• 11 ~ 3 - 7i $ 

z· = z· - 2*Z? $ 

r. . !i $ ':ro ro BOX $ 

IF EF ING THEN H = -H $ 

SIVJ'S = H*Z 1 /3 

END SIMPS $ 

Using this procedure, the double integral 

.1 :1-x2 Y~ 
j O j (X + Y) dXdY 

would be evaluated by the recursive call: 

ITERINT = SIMPS (X, O, 1, DELTA, 

SIMPS(Y, O, ~(1-XH2), DELTA2, X+I)) 

GENERAL PROBLEM SOLVER 

Now for those of the readers who feel that they have mastered the c0nceu·. 

of procedures in Algol and. who consider themselves sophisticated prograr..mers, . 

. consider the following procedure, called GPS for General Problem Solvsr 

(D. E. Knuth, Comm. of ACM, Vol. 4, June 19(:1, p. 271): 

EXAMPLE: 

REAL PROCEDURE GPS(I, N, Z, V) $ 

REAL I , N, Z , V $ · 

BEGIN 

FOR I = 1 STEP 1 UNTIL N.'JO Z - V $ 

GPS = 1 

EW-) GPS ~ 

Isn't t11at the most harmless looking procedure you ever saw? ':Jai.t. 1. 

minute, there is a lot of danger as well as opp~rtunity lurking :n the ~~l~­

by-name parameters. 

- ; ~3 -



If we wish to calculate the innerproduct of the N-element vectors A 

and B, we simply write: 

Z :-: 0 $ I :: GPS (I, N, 'l., Z + A (I ) 1: H (I) ) 

But we can do much b<:itter than that. SupposP. WP. want to mulLi.ply Lhr; 

array A(1 •• M, 1 •• N) by 8(1 •• N, 1 •• P) and s"t.ore the result in C(1 •• M, 1 •• P). 

This can also be done usj_ng GPS, by writing 

I = GPS (I, 1.0, C(1, 1), O.O)*GPS(I, (M-1 )* 

GPS(J, (P-1)*GPS(K, N, C(I,J), 

C(I,J) + A(I,K)*B(K,J)), C(I,J+1), o.o), 
C(I+1, 1), 0.0) 

Problems which are unrelated to matrix multiplication can also be done 

with GPS. In fact, we can actually compute any computable function using 

a single Algol assignment statement containing one or more calls o~ GPS. 

LIBRARY fROCEDURES 

Chapter VIII is the basic reference for library procedures. Other 

material on library procedures will be found in Chapters IX, X and XIII. 

EXTERNAL PROCEDURES 

External procedures in ALGOL can be coded in any of three ways, n~mely: 

1) Another ALGOL procedure compiled separately. 

2) A procedure coded in SLEUTH following specified r'.lles. 

3) A FORTRAN subroutine compiled separately. 

The coding rules vary depending upon the choice of coding methods. Eact 

method in turn also specifies the form of the procedure declaration wlthin 

the main ALGOL program • 

.t:.:XTEP.NAL PR0 1-::EDURE DE:::LARATior; 

If the external procedure has been coded in ALGOL and compiled separately, 

then the name of the procedure must be defined in the main progran, by means 

- 144 -



of an EXTERNAL procedure declaration. The form of the declaration in this 

case is 

EXTERNAL (type) PROCEDURE (proc1>, ... , (procN) $ 

where tl:le (proc1> are the names of the desired external procedures, and 

(type) is non-empty if the procedures are to be used in the functional sense 

(see Chapter V, DECLARATIONS OF TYPE, for a list of the available types). 

Omission of the type specification indicates that no functional results will 

be ass.ocia ted with the names of the procedures. 

A procedure declared this way will always be called in the recursive 

sense by the calling program. It should be noted that only procedures of 

this form (i.e., recursive) can be passed on to other procedures as actual 

parameters. 
' An external procedure may also be written in 1107 Sleuth. In this 

case the form of the external declaration in the calling progra~ is: 

EXTERNAL SLEUTH (type) PROCEDURE (proc1), ••• , (procN) $ 

where (proc1? and (typ~) have the same meanings as in the previous case. 

Since the details of coding a Sleuth routine that may be called recursively 

are very complicated, it is assumed that a procedure declared in this manner 

in noi-recursive. Therefore such a procedure cannot be passed to other pro­

cedures as parameters and all expressions passed on to the Sleuth procedure 

will be evaluated before entry to the procedure. 

See Appendix II for an explanation of the calling sequence generated 

for a.Sleuth pro~edure and description of how to handle the parameters in 

the Sleuth routine. 

If the procedure is a function or subroutine written in Fortran, it 

must be compiled separately and the form of the external declaration in the 

calling program becomes: 

EXTERNAL FORTRAN (type) PROCEDURE (proc1), ••• , (procN) $ 

where (procI) and (type) have the same meanings as previously. (Note that 

STRING is not acceptable as a (type) for a Fortran function.) t procedure 

declared in this form is non-recursive and therefore cannot be rassed as a 

parameter to another procedure. 

- 145 -



EXTERNAL PROCEDURE CALLS 

The form of the procedure call for external procedures ·is the same as 

that for internall;;~ defined or library procedures, namely 

(identifier)((par1>, ... ,(parN)) 

where (identifier) is the nama of the procedure and the (parI) are the actual 

parameters to the procedure. 

If an array is to be pas3ed as 9. parameter to a Fortran subprogram then 

the actual parameter should be the first element of the array. For example 

if the array is two-dimensional and is named SECTION then the actual argument 

on the call should be SECTION (1 ,1). 

EXTERNAL RE"FEHENCES 

To facilitate communication between programs and their subpro~rams, and 

to save allocation time, variables, and formats may be externally defined. 

This is accomplished via the OWN declaration. 

All OWN variables and formats declared in block 1 of an Algol provram 

are automatically externally defined. These elements may then be referenced 

from Algol procedures that are called by the program in question. In the 

case of variables the procedure must includP- an external declaration of the 

form 

EXTERNAL (type) (var1), •.. , (varN) $ 
where (type) is as described in Chapter V, DECLARATIONS OF TYPE, and the 

(varI) are the variables in question. 

In the case of formats the declaration is 

EXTERNAL FORMAT (format1>, ... , (formatN) $ 

EXAMPLE: 

1 
8 

ALG ?ROGRAM 

OWN INTEGER I, J, K $ 

OWN FORMAT LINE ( I4, A 1 ) $ 

EXTERNAL PROCEDURE OuTSIDE $ 

I = 1 $ J = 2 .$ 

OUTSIDE 

- 146 -



~ ALG PROCEDURE 

EXTERNAL FORMAT LINE 

EXTERNAL INTEGER I, J, 

PROCEDURE OUTSIDE 

BEGIN 

K = I + J $ 

WRITE (LINE, K) $ 

END 

$ 

$ 

K $ 

Note the following rules when compiling external Algol procedures: 

1) the Algol processor card governing the compilation must carry the E op~ion; 

2) a program u~der this option cannot be executed as a mainline program; 

3) the E option causes all procedures declared in block 1 to be externally 

defined; 

4) any number of external procedures may be declared in one program; 

5) the object programs for all external procedures must be available in the 

user's program complex on drum before the main program is executed 

t) variables declared in block 1 of a program compiled under ':,he "E" 

option can only be simple variables (not including strings). Lists 

declared in block 1 may contain only such variables; 

7) the first six characters of all externally defined identifiers must 

be unique. 

~ules for writinv and processing Fortran and Sleuth routines are 

avai.lable in the manuals on those languag-es. SPe Appendix II fo.,.. further 

information on the linkage between calling program and proc8dure~. 



XIII. •• 

THE DIAGNOSTIC SYSTEM 

The detection and correction of programming errors, commonly known as 

debugging, is facilitated in Case Algol by an extensive diagnostic system. 

Responsibility for error detection is divided between the compiler and the 

system library routines. By paying close attention to the messages pro­

duced by these two segments, the programmer will generally save himself 

time and aggravation. 

As the compiler translates an Algol program it prints the sou~ce 

program instructions and in addition generates two types of information, 

diagnostics and error messages. 

This information is located as close as possible to the instruction 

to which the message applies and always begins at the extreme lefthand 

side.of the listing. 

COMPILER D~AGNOSTICS 

Diagnostics are provided by the compiler to help the programmer under. 

stand the structure of his program and to call attention to specia~ features 

that the program uses. Diagnostic messages never inhibit the production of 

an object program. 

The stru•1ture of a program is determined by the use of BEGIN-END pairs, 

particularly when such a pair creates a new block. As the compiler dis­

covers ~' s in a program it numbers them consecutively starting ~Lt one 

and each END :s given the same number as the ~ whi'ch it matches. The 

appropriate diagnostic is 

B n or E n 

- 148 -



where n is the number assigned by the compiler. If the outermost BEGIN-END 

pair is omitted, BO appears at the beginning of the program. 

Blocks are also numbered in order of appearance in the program and the· 

extent of a block is denoted by the diagnostics 

BLOCK n 

which occur in matched pairs. 

an:l END BLOCK n 

On the same lin'3 as BLOCK n, the message 

LEVEL m 

is given to indicate how blocks are nested. The outermost block is at LEVEL 

1 and each new level causes the level number to be increased by one. At 

the end of a block the level number is decreased by one. 

The following table describes special features of Case Algol that 

generate diagnostics. 

Diagnostic 

c 
D 

FR 

GV 

N 

OCTAL 

Q 

T 

TRACE 

COMPILER ERROR ME;SSAGES 

Description 

comment occurring immediately after an END 

double precision constant 

forward reference - the compiler has 

taken an identifier to be a label the 

definition of which has not yet been 

encountered (not applicable to switch 

declarations) 

generalized variable operation (see Appendix III; 

identifier or constant extends over card boundaries 

·octal constant (operative only under K option) 

string constant or format mode. extending 

over card boundaries 

line terminated or page ejected via 

exclamation sign (!) 

trace mode initiated or termineted 

Although the generation of diagnostic messages never interferes with the 

production of an object program, the appearance of erro.r messages diiring 

- 149 -



compilation may do so. These messages are intended to be self-explanatory and 

will not be described in Jetail here. However the programmer should be aware 

o~ the following conditions: 

1) The compiler indicates with an asterisk(*) the place where the existence 

of an error was definitely ascertained. However, the actual programming error 

may well have occurred some distance before the point that is marked with an 

asterisk. The programmer should search backwards from the asterisk for his 

mistake, 

2) When an error in syntax is found, the compiler may stop looking for 

other errors in the current Algol instruction. Therefore it may take more 

than one compilation for all syntactical errors to be rooted out. 

3) A single error may cause several messages to be printed, some of which 

may be spurious. The correction of such an error may eliminate several 

messages from the next compilation. 

4) When the A option is in effect, an attempt will be made to prod~ce an 

object program in spite of syntactical errors, and some approximation to a 

normal object program will.be placed in the user's program complex on dr'...Ull, 

even though it may not be e:xecutable, If the A option is not in effect and 

no object program is generated, this fact will be annm.mced by the compiler 

at the end of th8 listing. 

ERROR MESSAGES AT EXECUTION TIME 

When an Algol-compiled program is executed, the system always makes 

available library routines which can provide information about errors caused 

by faulty programming. 

In the event of an error during a run, control is transferred to the run 

time error routine. This routine prints the contents of the thin-film registers 

(B, A, R) if the N option is ~ot selected by the XQT card (see Chapt~r XIV, 

THE XQT CARD). The appropriate error message is printed together wLh the 

location from which the call was made to the routin~ in which the er~or was 

detected. 

If the errJr occurs in a procedure, the proced11re name (to six :haracters) 

and the co!llplet'3 nesting of procedures, of which this procedure is t'1e inner­

most procedure, is printed along with the location from which each o~ these 

procedures is called. For example, consider the following program fall sample 

programs in this chapter are assl,med to have been compiled under the name PROG): 

- 1 50 -



EXAMPLE 1 : 

1 

2 

3 

4 

5 
6 

7 

8 

9 

10 
11 

12 

13 

14 
15 

REAL A, B, C $ 

REAL PROCEDURE PROC1(X,Y) $ 
VALUE X, Y $ ~ X, Y $ 
BEGIN PROC1 = X/Y END PROC1 $ 
REAL PROCEDURE PROC2(X,Y) $ 

VALUE X, Y $ REAL X, Y $ 
BEGIN PROC2 = X*Y END PROC2 $ 
REAL PROCEDURE PROCJ(X,Y) $ 
VALUE X, Y $ REAL X, Y $ 
BEGIN PROCJ = X+Y END PROC3 $ 
REAL PROCEDURE PROC4(X,Y) $ 

VALUE X, Y $ REAL X, Y $ 
BEGIN PROC4 = X-Y END PROC4 $ 
A= 1.0 $ B = 0.0 $ 
C = PROC3(PROC2(A,B),PROC4(PROC1(PROC3(A,B),B),A))$ 

l~ 

Notice that the call to PROC1 shown by the asterisk (*) causes a divide 

overflow (division by zero). The resulting error message is: 

INFINITY, INFINITY, YOU DONE DIVIDED BY ZERO 

PROG ON LINE 4 

FROC1 DEFINED AT FROG ON LINE 2, CALLED FROM PROG ON LINE 1 5 

FROC4 DEFINED AT PROG ON LINE 11, CALLED FROM FROG ON LINE ~5 

FROC3 DEFINED AT FROG ON LINE 8, CALLED FROM FROG ON LINE ;5 

This error message tells us that the error occurred in PROC1 , which is 

nested in PROC4, which in turn is nested in PROCJ. 

Following is a complete list of run time error messages generated by 

the ALGOL library, along with their respective meanings and causes. 

INTERNAL.ERROR 

This message results from a fault of the library or the compiler. 

It may be forced, however by improper use of the language. Rewriting the 

seation of coding in which the error occurred will usually resolve this 

error. 

- 151 ~ 



INCORRECT NUMBER OF ARGUMENTS 

Th:\ s t>ITor occurs wht>n the number of arr,urnent.s supplied as pararnet.Prs 

tL1 11 prN'1'd11r,, n1· t.l1 ll lilirnry ro11Llni:> ls not. cornpat.lhlt' wiLh Lhe rnimht>r of' 

ar~~;1mPnl.s required by Llw procedure or the llbrary rout.inc>. F'or t'xamp1~, 

consider the following program: 

EXAMPLE 2: 

REAL FAUTE $ 
2 PROCE;:JURE DUMMY (F) $ 

3 REAL PROCEDURE F $ 

4 FA UTE = F(1 .O, 2.0) $ 

5 DUMMY (COS) $ 

The COS routine requires one argument. Specifying two parameters 

~enerates the message: 

INCORRECT NUMBER OF ARGUMENTS TO COS 

FROG ON LINE NO. 2.i 

DlJWv'Y DEFINED AT PRO~ ON LINE NO. 2' CALLED FRO~ FROG ON LillE no. 5 

The message INCORRE1;:2 °:UMBER OF ARGUMENTS can also arise from a call to 

a procedure declared within or external to the main Algol program. In either 

case the message would read: 

EXAMPLE 3: 
"1 

2 

3 

4 

5 

IN80!IB.ECT NUMBER OF ARGUMENTS TO PROCEDURE AT (LOS.) 

REAL X, Y, 2 $ 

REAL PROCEDURE WOOFS (X,Y,7) $ 

REAL X, Y, 2 $ 

WOOFS = X - Y + Z $ 

z = woa~s (X,Y) $ 

INCORRECT NUMBER OF ARGUMENTS. TO PROCEDURE . 

FROG ON LINE NO. 5 

WOOFS DEFINEI AT FROG ON LINE NO. 2, CALLED FROM PROG ON LINE NO. 

BOOM!!! MEMORY CAPACITY EXCEEDED 

No, you iid not really blo~ up the computer. However, the st~rape 

area availabl'= for your prog-ram has been exceeded. The message can occur 

when space is bein~ allotted for single variables, arrays, strings, or blocks. 

- 152 -



EXAMPLE 4: 

REAL ARRAY ROOF(1 •• 2f0000' 

re~·..:ltir:~ error messa~ti i~: 

The message for each case of this error is: 

BOOM! ! MEMORY CAPACITY EXCEEDED IN ••• 

STRING DECLARATION ••• 

ARRAY DE CLARA TI ON ••• 

PROCEDURE ••• 

IMPRQPER ARRAY DECLARATION 

For storage of strings 

For storage of arrays 

For Blocks and procedure blocks 

This message results from improperly specifying the limits on an array 

subscript by declaring the lower limit greater than the upper limit. The 

message gives the array name and the bounds on the improperly specified 

subscript. 

EXAMPLE 5: 

1 INTEGER M, N $ 

2 M = 2 $ N = 1 $ 
3 BEGIN REAL AR.9.AY NOTAGAIN(M •• N) $ 

4 END 

IMPROPER ARRAY DECLARATION NOTAGA ( 2 1 ) 

PROG ON LINE NO. 3 

NOTE: Other forms of the above message are: 

IMPROPER OWN ARRAY DECLARATION ••• 

IMPROPER STRING ARRAY DECLARATION .•• 

IMPROPER OWN STRING ARRAY DECLARATION ••• 

They have the same meaning as IMPROPER ARRAY DECLARATION. 

SUBSCRIPT OUT OF RANGE FOR ARRAY 

This m~ssage results from a subscript specified for a given array not 

- 153 -



being within the boundaries declared for this array. The message gives the 

following information: 

i) Which subscript is out of range 

2) The value of the subscript out of range 

3) The first six characters of the array name if it is not a string 

4) The subscript bounds of the subscript out of range 

5) The location from 'Which the call was made to the .array 

For example, consider the follo'Wing program: 

EXAMPLE 6: 

1 REAL B $ 

2 

3 

REAL ARRAY SOMENAME (1 •• 4,-3 •• 7) $ 

B = SOMENA~ (0,-2) $ 

The resulting error message is: 

SUBSCRIPT NO. (VALUE OF 0) OUT OF RANGE FOR ARRAY SOMENA (1:4) 

PROG ON LINE NO. 3 

Notice that subscript number one, counting from the left, is not within 

the bounds specified for array SOMENAME, for the subscript has a value of O, 

and the bounds specified for this subscript are (1 •• 4). 

EXAMPLE 7: 
1 REAL B $ 

2 

3 

REAL ARRAX DATAHOLD (1 •• 4,3 .• 7) $ 

B = DATAHOLD (3,-17) $ 
The resulting error message is: 

SUBSCRIPT NO. 2 (VALUE OF -17) OUT OF RANGE FOR ARRAY DATAHO (3:7) 

PROG ON LINE NO. 3 

SUBSCRIPT OUT OF RANGE FOR STRING ARRAY 

This message occurs. when ( 1) a subscript to the "array portio11" of a 

string array is out of range, as explained above for strings and as shown 

in EXAMPLE 7, or (2) the subscript designating the character positLon in a 

string elemert exceeds the bounds of that string element, as shown in 

EXAMPLE 8 and EXAMPLE 9. 

·EXAMPLE 8: 

1 STRING A (10) $ 

. - , 54 -



2 STRING ARRAY ITHURTS (23 •• 1 •• 10) $ 

3 A(1 ,8) = ITHURTS (13,8 •• 12) $ 

EXAMPLE 9: 

SUBSCRIPT NO. 1 (VALUE OF 12) OUT OF RANGE FO~ STRING ARRAY 

LIMITS WERE (1:10) 

PROG ON LINE 3 

1 STRING HELP (10) $ 
2 STRING ARRAY ITHURTSMORE (23 •• 1 •• 10) $ 

3 HELP (1,8) = ITHURTSMORE (25,8 •• 3) $ 

SUBSCRIPT OUT OF RANGE FOR STRING ARRAY, VALUE OF (25,8), LENGTH WAS 23 

PROG ON LINE 3 

EXAMPLE 10: 
1 STRING ALONG (10) $ 
2 STRING ARRAY OHNO (23 •• 1 •• 10) $ 

3 ALONG (1,8) =OHNO (21,8 •• 3) $ 

SUBSCRIPT OUT OF RANGE FOR STRING ARRAY, VALUE OF (21,8), LENGTH WAS 23 

FROG ON LINE 3 

SUBSCRIPT OUT OF RANGE FOR STRING VARIABLE 

This message occurs when the subscript specifying the character position 

in a string variable exceeds the length of that string variable. 

EXAMPLE 11: 

1 .§.TRING IGIVE-:JP (40) $ 

2 IGIVEUP ( 50) = 'HE WHO IS CARELESS WILL BE CAST ASIDE ••• ' $ 

SUBSCRIPT OUT OF RANGE FOR STRING VARIABLE, VALUE OF (50), LENGTH WAS 40 
PROG ON LINE 2 

IMPROPER NU¥BER OF DIMENSIONS FOR ARRAY 
This error occurs when the number of subscripts specified ir a call to 

an array is not equal to the number of dimensions for which the e.rray i~ 

defined. The error message gives the foliowing information: 

1) The number of subscripts given 

2) The dimensionality of the array 

- 155 -



3) The first six characters of the array name 

4) The location from which the call was made to the sub­

script calculator 

Consider the f ollowin~ program: 

EXAMPLE 12: 

1 REAL ARRAY WHATSIT (1 •• 1 0) $ 

2 REAL B $ 

3 B = WHATSIT (1 ,3) $ 

The resultinf error message is: 

IMPROPEF. NUMBER OF DIMENSIO~lS FOR 1 DIMENSIONAL ARRAY. 

TWO DIMENSIONS GIVEN AS PARAMETERS TO ARRAY WHATSI 

PROG ON LINE 3 

Array WHATSIT is defined over one dimension. Two subscripts are 

specified in the array call; res~lting in the error. 

EXAMPLE 13: 

REAL B $ 

2 REAL ARRAYXFIELD (1 •• J,1 .. 4,0 •• 7) $ 

3 B = FIELDX(2,3) $ 

The resulting error message is: 

IMPROPER NUMBER OF DIMENSIONS FOR 3 DIMENSIONAL ARRAY, 

TWO DIMENSIONS GIVEN AS PARAMETERS TO ARRAY FIELDX 

PROG ON LINE 3 

IltPROPER NUMBER OF DIMENSIONS FOR STRING AP.RAY 

This error occurs when the number of dimensions given as parameters 7,'.) 

a call on a given strin~ ar~ay is not equal to the dimensionality of this 

string array. The information piven in the error messape is: 

1) The declared dimensionality of the array 

2) The first six characters of the array name 

3) The location from which the call was made to the str:.np array 

subscript calculator which discovered the error. 

EXAMPLE 1 4: 

STR:NG WHAT (10) $ 

2 §_TR:T:NG ARRAY IT (20 • • 1 •• 10,1 •• 20) $ 

3 WHAT ( 1 , ?. ) = IT ( 5 , 2 . . 4 ) 

- 15r-- -



IMPROPER NUMBER OF DIMENSIONS FOR 2 DIMENSIONAL ARRAY 1 DIMENSIGNS 

GIVEN AS PARAMETERS 

PROG ON LINE 3 

NOTE: The error message for OWN STRING ARRAY is exactly the same as the 

message for STRING ARRAY, if the error is of the type "IMPROPER NUMBER OF 

DIMENSIONS" or "SUBSCRIPT OUT OF RANGE". 

Similarly, the error message for OWN ARRAY is exactly the same as the 

message for ARRAY, if the error is of the type "IMPROPER NUMBER OF DIMENSIONS" 

or "SUBSCRIPT OUT OF RANGE". 

RESULT UNDEFINED 

A message of this type occurs when, for a given argument, a specified 

library procedure is unable to produce a result. For example consider the 

following s'.lbprogram: 

EX.AMPLE 15: 

1 REAL A $ 
2 A=~ (-1.0) $ ~ 

Since for real arithmetic the square root of a negative number is ~m­

defined, the following message results: 

RESULT UNDEFINED FOR SQRT, ARG~NT=-0.10000000+01 

PROG ON LINE 2 

Note: The value of the argument is interpreted as a decimal number times 

a signed power of 10. 

EX.AMPLE 1 €:: 

1 REAL A $ 

2 A = ARCSIN(2.0) $ 

The resulting error message is: 

RESULT UNDEFINED FOR ARCSIN, ARGUMENT= 0.20000'J00+01 

PROG ON LINE 2 

The message RESULT UNDEFINED can also occur when, in attemp1inp to 

convert a string to an integer, the string contains characters wLich are 

not numeric;1. For example, consider the fol lo•,.ring subprogram: 

EXAMPLE 17: 

1 I:JTEGER A $ 

2 STRING S(fO) $ 

3 8(1) ='IF ALL ELSE FAILS ••• ' $ 

4 A =INTEGER (S( 1 ,8)) $ 

- 157 -



RESULT UNDEFINED FOR STRING TO INTEGER 

PROG ON LINE 4 

The message RESULT UNDEFINED can also originate in one of the power 

routines. No result is defined for zero to the zero power. As a typical 

example, consider the following subprogram: 

EXAMPLE 18: 

1 REAL A $ 

2 A = 0.0**0.0 $ 
Both the base and the exponent are of type real. Hence, the error 

message would read: 

RESULT UNDEFINED FOR REAL TO REAL POWER, BASE = o.oooooooo+oo, 

EXPONENT = O.OOOOO:JOO+OO 

PROG ON LINE 2 

Note: When ap integer is raised to a real power, the integer base is con­

verted to type real. The real to real power routine is then called. 

If the result is undefined for an integer to a real power, therefore, 

the error message would read: 

RESULT UNDEFINED FOR REAL TO REAL POWER ••• 

Although zero to a negative power gives a result without bounds, we 

give the message "RESULT UNDEFINED". 

EXAMPLE 19: 

1 REAL A $ 
2 A = 0.0**-3.0 $ 

RESULT UNDEFINED FOR REAL TO REAL POWER, BASE= 0.00000000+00, 

EXPONENT=-0.3000000o+01 

PROG ON LINE 2 

RESULT OUT OF RANGE 

This message occurs when the resulting absolute value of a given library 

routine upon a given argument is greater than 10.038 or 235-1, for results of 

type REAL and of type INTEGER respectively. 

EXAMPLE 20i 

1 REAL A $ 

2 A = EXE(90.0) $ 
RESULT Ol!r OF RANGE FOR EXP, ARGUMENT=0.90000000+02 

FROG ON LINE 2 

- 158 -



Note: The e~onential function is within the range of the computer when its 

argument is less than 88.028. 

EXAMPLE 21: 

1 INTEGER A $ 
2 A= ENTIER(1.2&12) $ 

RESULT OUT OF RANGE FOR ENTIER, ARGUMENT =0.12000000+13 

PROG ON LINE 2 

The message RESULT OUT -JF RANGE can also occur when, in converting a 
. 35 

string to an integer, the result is greater than 2 -1. 

EXAMPLE 22: 

1 INTEGER A $, 

2 A = INTEGER·: I 123456789123 I) • 

RESULT OUT OF RANGE FOR STRING TO INTEGER 

PROG ON LINE 2 

The message RESULT OUT OF RANGE can occur in one of the power routines. 

In this case, it means that the result of raising a given base to a given 

power is not within the numeric range of the computer, as outlined above. 

For a typical example, consider the following: 

EXAMPLE 23: 

1 INTEGER A $ 

2 A = 5**37 $ 
RESULT, OUT OF RANGE FOR INTEGER TO INTEGER POWER, BASE= 5, 

EXPONENT= 37 

PROG ON LINE 2 

Note: A real number raised to a.real power, resulting in an absolute value 
-38 of less than 10.0 ,yields a result of 0.0. An integer raised to 

an integer power resulting in·•.an absolute value of less than 1 yields 

result of O. 

The real to integer power routine may give an error message of RES'JLT 
-:.;8 OF RANGE if the result is less than 10.0 in absolute value. 

In raising an integer to a real power, the integer is conve:-·ted to 

type real. The real to real powe~ routine is then called. Rene~;, a message 

of RESULT 01T OF RANGE FOR REAL TO REAL POWER can originate in raising an 

integer to a real power, the result of which is out of range as previously 

defined. 

- 159 -



INFINITY, INFINITY, YOU DONE DIVIDED BY ZERO 

This message originates when a division by zero is attempted. Do not 
-38 forget that a real number less than 10.0 in absolute value will assume 

the value of zero. 

HURTSVILLE, CHARACTERISTIC OVERFLOW 

This message occurs when the result of an arithmetic operation (+,-,if,/) 

is of the type REA~ or REAL2 and is greater than 10.038 in absolute value. 

The message can also result from raising a real number to an integer power. 

If the power is less than 64 and the result of the expo~entiation is out of 

range, the message HURTSVILLE, CHARACTERISTIC OVERFLOW will result. 

To avoid the error HURTSVILLE, CHARACTERISTIC OVERFLOW, it is sometimes 

possible to "break up" an arithmetic expression such that at no time during 

the evaluation of this expression will the absolute value of any part of it 

exceed 10.038 • If the aforementioned scheme doi:ls not work, an insertion of 

a dummy variable may be the key to your problem. 

EXAMPLE 24: 

1 REAL A, B, C, D $ 

2 A= 1.0&-25 $ 
3 B = 1.0&30 $ 
4 c = 1.0&21 $ 
5 D = (B/A)/C $ 

HURTSVILLE, CHARACTERISTIC OVERFLOW 

PROG ON LINE 5 

Solution to EXAMPLE 24: 

EXAMPLE 25: 

1 REAL A, B, C, D $ 

2 A = 1 .0&-25 $ 

3 B = 1 .0&30 $ 

4 c = 1 .0&21 $ 

5 D = B/(A*C) 

UNRECOVERABLE TAPE/DRUM ERROR 

FOR 0.10000000+.31 I 

This mesf.:age occurs when, during a tape or drum operation, an unsuccessful 

- 1tO -



read or wr1~e occurs. The error could be the result of: 

1) A hardware failure. 

2) 11he user's attempt to read information which is not present where 

he is looking for it. 

ATTEMPT TO PASS END OF INFORMATION IN READ 

This error occurs when a·n attempt is made to read beyond the end of 

recorded information on magnetic tape. 

MISSING OR MISPLACED ACTIVATION PHRASE 

This message may result from a card read in which the supplied format 

does not have a proper ac~ivation phrase (see Chapter IX, FORMAT PHRASES). 

EXAMP:::.E 2 f.. : 

1 INTEGER A $ 
2 FORMAT FORM(I8,A) $ 

3 READ(FORM,A) $ 
MISSING OR MISPLACED ACTIVATION PHRASE IN READ 

PROG ON LINE NO. 3 

READ, CALLED FROM PROG ON LINE NO. 3 

CONSTANT OUT OF RANGE · 

This error occurs when: 

1 ) 

2) 

In a read, an integer constant is e.ncountered which is greater than 

235 -1 in absolute value. 
. 38 In a read, a real constant is encountered which. is great~r than 10.0 

in absolute value. 

3) A string exceeds 4095 characters in length. 

ILLEGAL CHARACTER/UNDEFINED TYPE CONVERSION IN ABOVE RECORD 

In attempting a read, one of the following occurred: 

1) An illegal character was encountered within a record. For example, 

an attempt to read the word 1¢H1 as a real number would result in 

the above error. 

- 161 -



2) A word is encountered which is not of the type requested and for 

which a conversion to the requested type is not defined. For 

example, consider the following: 

EXAMPLE 27: 

2 

BOOLEAN NEVERAGAIN $ 
READ (NEVERAGAIN) $ 

Encountering an integer other than ¢ or 1 would cause the above men­

tioned error, for no conversion is defined from integer (other than¢ or 1) 

to Boolean. 

NOTE: Above the re~ister printout (if present) will be found a listinv of 

the data card which caused the error. The asterisk (if) points to the 

character on the card which ultimately caused transfer to be made to 

the error routine. 

IMPROPER PARAMETER 

This error occurs when the parameter supplied to a procedure or to a 

library routine is not of the type required. 

Case 1: Call by name parameter to procedure. 

EXAMPLE 28: 

1 REAL PRUNEJUICE, APPLEJUICE, LEMONJUICE $ 
2 PROCEDURE JUICY(BOT, TOMS, UP)$ 

3 REAL BOT, TOMS $ 
4 INTEGER UP $ 
5 BEGIN UP = ENTIER(TOMS+BOT) 

6 END JUICY $ · 

7 JUICY (PRUNEJUICE, APPLEJUICE, LEMONJUICE) $ 
.. 

Since the call by name parameter, LEMONJUICE, is not of the same 

arithmetic as the variable UP, the error "IMPROPER PARAMETER TO PROCEDURE" 

will result. 

Case 2: A l~brary routine is used as a call by name parameter and the 

argument supplied to this library procedure is of the improper type. 



EXAMPLE ?9: 
1 PROCEDURE F (Q) $ 

2 ~ PROCEDURE Q $ 

3 BEGIN REAL A $ 
4 A = Q( 'ERROR') END $ 

5 F(SIN) $ . 
IMPROPER PARAMETER TO SIN 

PROG ON LINE NO. 4 
F DEFINED AT PROG ON LINE NO. 1, CALLED FROM PROG ON LINE NO. 5 

NOTE: An improper parameter to tape and drum routines results in the 

message "IMPROPER PARAMETER TO (NAME LOST AT OCCURRENCE OF ERROR) 

AT (LOG ) 

Case 3. The form of the READ sta~ement is incorrec~. 

EXAMPLE 30: 

1 STRING A(1) $ 

2 A = 'S' $ 
3 READ (CARDS,TAPE(A)) $ 

Two input devices are specified in the ~ statement. The error 

message wo~ld read: 

IMPROPER PARAMETER TO READ 

PROG ON LINE NO. 3 

READ, CALLED FROM PROG ON LINE NO. 3 

UNDEFINED TYPE CON"VERSION 

In attempting to convert a variable of a given type into a different 

type, it is discovered that no conversion is defined be.tween the two types. 

For example, consider the fi!l°llowing: 

EXAMPLE 31: 

1 STRING A(2) $ 
2 FOR.MAT GREEN (R10.2,A1) $ 

3 LIST BEAN(A) $ 
4 A= 1 SS 1 $ 

5 WRITE (GREEN,BEAN) $ 
No car.version is defined from STRING to REAL. Hence the error: 

UNDEFINED TYPE CONVERSION IN WRITE 

PROG ON LINE NO. 5 
WRITE, CALLED FROM PROG ON LINE NO. 5 

- 1 f;J -



There are a number of error messages which can result from an error in 

the use of the FORMAT routine. These messages have the same meaning as the 

corresponding messages for compilation errors. Furthermore, they contain the 

additional information which is always provided by the error routine. 

NOTE: The abbreviations "D.P." and "REAL2" both characterize a double 

precision routine. For example, the message "RESULT UNDEFINED 

FOR D.P. TO D.P. POWER ••• " means that the error occurred in the 

routine for rai~ing a double precision bas~ to a double precision 

power. 

INSUFFICIENT,DATA 

If a READ statement does not find enough data on the (card reader) 

input device to satisfy th~ input parameter list, then the execution will 

be terminated with the foliowing message: 

INSUFFICIENT DATA FOR PROGRAM 

PRO~RAM ABNORMALLY ABANDONED 

ERRO~ NUMBERS FOR LIBRARY ERROR MESSAGES 

There is associated with each type of message an error numb~r that can 

be used in conjunction with the ERROR and ERRORTRAP procedures (q.v.). The 

following is a list of error message types and their associated error 

numbers that are currently part of the Algol library. 

ERROR NUMBER 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

11 

DESCRIPTION 

Internal error 

Incorrect number of arguments 

Memory capacity exceeded 

Undefined designational expression 

Improper size phrase 

Undefined type conversion 

Same as 4 
Same as 4 

Not used 

Unrecoverable Tape/Drum er"or 

"Attempt to pass end-of-information 

Constant out of range 

- 164 -



ERROR NUMBER 

12 

13 

14 
I 

~5 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

DIAGNOSTIC PROCEDURES 

DESCRIPTION 

Not, used 

Characteristic overflo~ 

Divide by zero 

Improper number of dimensions 

Not used 

Result undefined 

Result out of range 

Real2/Complex/Misc routine not in library 

Illegal character,l.Undefined type conversion 

Improper sequence of format phrases 

Improper parameter 

String too long 

Extra right parenthesis 

Missing or misplaced activation phrase 

Improper format symbol 

Extra left parenthesis 

Subscript out of range 

Subscript cut of range for string array 

Not used 

NO MESSAGE IS PRINTED 

Two special procedures, DUMP and ERRORTRAP, are available in the Algol 

library to speed up the process of debugging a program. DUMP allows the 

user to gather information about the status of a program when an error occurs 

at execution time. ERRORTRAP allows the user to replace the usual library 

error routines with an Algol procedure of his own. With this faature the 

programmer can gather special information and decide how executior. should 

continue in the event of an error. 

THE DUMP STATEMENT 

The programmer may specify that the values of certain variab:,es be 

printed out 'Nhen a run-time error occurs by using the DUMP statement. 

- 165 -



GENERAL FORM: 

DUMP((dump list>) 

where: <dump liRt,.> i!'l <'i.dentHier) or 

(d11mp ll~~t,/,....-idnnLifi<~r/. 

E11ch <identi fler/ I~ the name of a simp1e variabl1) or Lhe nam£~ of A.Tl arrny, 

and further, (identifier) must not be a call by name parameter. Note that 

constants, expressions, subscripted arrays, or subscripted strings may not 

be used in a l2.ID1E statement. 

Any block can have only one dump list invoked at a given time. Each 

DUMP statement (in effect) erases the old (dump list) for that block and 

replaces it with a new list. 

Each active block can have a (dump list) associated with it. If an 

error occ~rs while N blocks are active, then a maximum of N(dump list)'s 

will be printed out. If no error occurs after the DUMP statement is en­

countered, the (identifier list) will not be printed out. 

EXAMPLE: 

INTEGER A,B,C,D,E,F,H,J,K,X$ 

DUMP(A,B,C,D,E,F,H,J,K,X)$ 

A = 1 $ B = 2 $ C = 3 $ D = 4 $ E = 5 $ 
F = 6 $ H = 7 $ J = 8 $ K = 9 $ X = 0 $ 
H = A'~B/X 

When execution of this program is attempted, the results are as follows: 

INFINITY, INFINITY, YOU DONE DIVIDED BY ZERO 

P::ZOG ON LI!!E rro. 5 

DUMP LIST: 

A 

B 2 

c 3 

D 4 

E 5 

F t 
H 7 

J 8 

K 9 

x 0 

- 1H: -



THE ERRORTRAP PROCEDURE 

When a run-time error o.ccurs the Algol library gathers and prints as 

much information as it can a'bout the situation that ca.used the error and 

then terminates the execution. 

By using ERRORTRAP the programmer may cause control to be transferred 

to a procedure of hie own before the library routine takes over. His 

procedure may then decide on the basis of the error type how to continue. 

GENERAL FORM OF THE CALL 

ERRORTRAP ((proc name)) 

where (proc name) is the identifier of the user-written procedure to which 

control will be transferred if an error occurs. This procedure must have 

exactly one parameter, of type IN~GER. On entry to the user-written 

procedure, the value of the integer parameter will be set equal to the ar­

propriate error number by the ERRORTRAP routine (see the accompanying table 

of library error message~). Error number 2, Memory Capacity Exceeded, 

cannot be handled this way. 

The ERRORTRAP routine may be disabled by calling it with no parameter: 

ERRORTRA~ 

When this call is in effect, an error at execution time will be handled in 

the usual way, i.s., the library error routine will take control and the 

user's error-handling procedure will be ignored. 

If the user-written procedure is exited via the procedure END rather 

than by a GOTO statement, then control is passed to the library error routine 

and normal error processing ~nsues. 

Unless the programmer wishes to live dangerously, the first statement 

of his error-handling procedure will be: 

"RRRORTRAP 

to disable his errortrap procedure. If errortrap is not disabled and an 

.r:·r;y is dJt )CterJ in k•' 0 rr.0r-handling procedurf!, then the error--hs.n::lling 

rm1~!n~ will be called again and possibly the error will be detecGed again, 

and round ani round ••• ~hus the error routine may be entered rec1rsively 

with (possibly) the wrong value as parameter. 



THE ERROR PROCEDURE 

The ERROR procedure allows an Algol program to call in the library 

error routine even though the system library itself has not detected an 

error. This can be particularly useful if the Algol program is intended 

to be a processor. 

GENERAL FORM OF THE CALL: 

ERROR ((arith exp)) 

The effect of this call is to transfer control to the library error routine 

with the value of (arith exp) as the error number. (arith exp) is converted 

to type INTEGER if it is not already of that type. The library error routine 

takes action appropriate to the value of the parameter, including printing 

messages, unwinding nested procedures, and terminating the execution. 

TRACE OPTIONS 

The compiler allows the programmer to exercise options that affect the 

compilation and execution of an Algol program. The following optio~s are 

currently available: 

OPTION 

LETTER 

A 

B 

c 
D 

E 

F 

H 

J 

K 

L 

TRACE 

NUMBER 

21 

29 

25 

1 

ALGOL COMPILATION OPTIONS AND TRACE NUMBERS 

DESCRIPTION 

- 168 -

Accept program even if errors are found 

(an element is placed in program complex 

Block and BEGIN-END diagnostics suppress 

Cycle numbers suppressed 

Do not abort compilation after 20 errors 

Externally define all procedures 

declared in block one 

Full card (80 columns) s~anned 

Hierarchy of operators ~hanged so that 

multiplication is performed before 

division (on the same p~renthesis level) 

Treat program as proces~or (contents of 

B11 saved) 

Octal constants allowed 

List edited machine lang1af:e 



OPTION 

LETTER 

N 

0 

R 

s 

v 
w 

x 

z 

TRACE 

NUMBER 

13 

16 

18 

26 

. 12 

15 

28 

30 

DESCRIPTION 

Suppress listing (except errors) 

Open coding - array subscripts not check<'i 

Registers dumped in case of errors at 

compile time 

Card number tables treated as labeled 

common block 

Number errors in order of occurrence 

Print correction cards before source 

listing 

Abort compilation immediately if error 

is detected 

Do not. generate card number tables 

Externally define all OWN variables 

Allow G.V. array operations 

Trace option letters are punched on the Algol processor card starting 

in column two (see EXEC III Manual, p. 50-54). This causes the option to 

be in effec~ throughout the co~pilation process. 

Some of the options may be invoked selectively during compilation by 

mi:lans of the corres.ponding trace number. The following Algol statement 

will turn on the designated trace options: 

'.ffiACE ON n1 , n2 , ••• , nK $ 
where nI are unsigned integers·chosen from the above table. The following 

statement turns off the designated options: 

TRACE OFF n1 , n2 , • •. • , nK $ 

To turn oft all trace options that are not beirig used as letter options in this 

compilation, the statement 

TRACE OFF $ 

is sufficient. 

The cas·~ n1 = 0 does not have a corresponding option letter. l'he 

statements 

and 

will cause the compiler to insert the following 1107 Sleuth statem9nts, 

resp9ctively, into the object program: 

SLJ XLOG$ and SLJ XFREE$ 

- ~r:9 -



(see 1107 Monitor System Notes for an explanation of these diagnostic 

traces). 

The statements 

~ .Qli n1, ••• nK t 

TRACE OFF n1, ••• nK $ 

may appear in a program anywhere a COMMENT may appear. 

- 170 -



XIV ••• 

USING ALGOL UNDER EXEC III 

The programming of the Case 1107 makes use of various elements of a 

comprehensive operating system. The operating system includes the Algol 

compiler and library, and is controlled by a basic set of routines known 

as Exec III. 

In particular, compilation and execution of an Algol program are 

governed by the use of Exec control cards. A full description of control 

cards that are recognized by the executive ro.itines is given in the Exec 

III manual. The present discussion is limited· to some of the basic features 

used in Algol program:ning. 

; 

EXEC CONl'ROL CARDS 

Every Exec control card must have a 7 /8 punch in column on':! and ar.y 

card with a 7/8 punch in column 1 will be treated as an Exec control card. 

This multiple punct is often referred to as a "master space". In t1!i::: fol­

lowin~ discussion the symbol "L..1" represents a blank card column. 

The first card of every deck that is read into the computer sho·ild be 

eithep a RUN card, LST card or PCH card. The LSr and PCH cards will be ex­

pla·i red later. If compilation and/or execution of a pro~ram ar? desir-::1, 

the ?.UN card must be used. 

THE RUN CARD 

A typical RiJN card for a student run is as follows: 

where the student number is 12345 and the class for which the p~ogram is 

- 171 -



being run is E12. Each class using the computer is assigned time and page 

limits by its instructor. 

A typical RUN card for a project run is: 

~6 RUN 6 99999,2 

wh~re the project number is 99999 and the programmer number is 2. If, as 

in the above example, no time or page limit is declared then the assumed 

limits for that project and programmer will be in force. To specify limits 

other than the assumed limits, for example, a maximum of 120 seconds and 

20 pages, the card would appear as follows: 

~6 RUN 6 99999,2, (120,20) 

THE ALG CARD 

To initiate compilation of an Algol program, the source deck must be 

immediately preceded by an Algol processor card. This is an Exec control 

card that specifies the name of the program and any Algol options the pro­

grammer wants to exercise. An example of an Algol processor card is: 

~FN 6 ALG D. PR031 

where the program is named PROG1 and the F and N options are indicated. 

If several programs are to be compiled in the same run, a separate 

Algol processor card must precede each program. 

THE XQT CARD 

If, after compilation, the program is to be executed, the Algol source 

deck is fa.lowed by an "execute" card. This Exec control card epecifles 

the name o~ the program to be run and usually the N option is exercised on 

this card. If the program name is PROG1 the card is: 

~N 6 XQT 6 PROG1 

- i 7?. -



If the N option is left off the XQT card the a.11 oca ti on of computer memory 
i 

for the main program and its associated procedures will be printed out, 

thereby providing one or more pages of information that is almost always 

worthless. 

DATA CARDS AND THE EOF CARD 

The XQT card is followed by the data cards used by the program. Among 

the data cards may be EOF cards, to be used in conjunction with the input 

routine described in Chapter IX. An EOF card has the form: 

Columns two and six of an EOF card must be blank but any 1107 characters 

may be punched in columns 7-80 

THE FIN CARD 

The last card of an input deck must be a FIN card. This Exec control · 

card signals the end of the user's file and the entire input deck will be 

ignored if it is not present. Its form is: 

~ 6 FIN 6 

Just as with the EOF card, columns two and six of a FIN card must be blank 

and columns 7-80 may contain any 1107 characters. 

If a program is to be executed the FIN card follows the data cards 

or,:if there are none, it follows the XQT card. A program may be compiled 
I 

without being executed, in which case the FIN card may immediately follow 

the source deck. 

SAMPLE INPUT DECK 

~ 6 RUN t::. 12.345, E1 2 

~F 6 ALG t::. TEST1 



6 RUN 7b344•E12 
6F ALG lESTl 

COMMENT THE F OPTIUN ON TH~ ALG CARD TELLS THE COMPILER TO 
SCAN ALL AO COLUMNS OF THE SOURCE CA~O• NOT JUST 
THE FIRST 72 $ 

INTEG~R l•START•QUIT•THISMUCHS 
R~AL PROCEDURE FACT0RIAL2(N)~ 

VALi I~ NS INTEGER NS 
FACTORlAL2 : IF N EQL 0 TH~N leO 

ELSE N•FACTORIAL~(N-1)$ 
REAO(START•THlSMUCH•QU~T>~ 
FOR I : START STEP THISMUCH UNTIL QUIT 00 

wRITE(FACTuRlAL2(l))S 

A~ XQT lE~Tl 
2 3 10 

A FIN 

When the above program is executed, the printout will contain the values 

of 2!, 5!, and 8!. 

THE LST AND PCH CARDS 

A deck of cards may be listed on a printer using the LST card. The 

form of this card is: 

Any deck of cards not including a RUN or FIN card may be listed ry putting 

a LST card i.n front of it and a FIN card behind the deck. When this deck 

is read into the computer the listing will appear on the printer corresponding 

to that reader. 

- 174 -



• The PCH card is used to duplicate a deck of cards. The form of this 

card is: 

The use of the PCH card is similar to that of the LST card except that the 

output consists of punched cards instead of printout. Note that the punch 

feed should be loaded with enough cards to accommodate duplication of the 

entire input deck. 

EXAMPLE: 

deck to be listed 

~FI~ 

THE COMPLEX UTILITY ROUTINE 

The 1107 operating system includes a processor called the Complex 

Utility Routine (CuR). It may be used to store a library of source and/or 

object programs on magnetic tape, retrieve them from tape when needed, and 

punch object programs onto cards. 

CUR and other parts of the operating system are described in the 

manual, 1107 Monitor Sy!jltem Notes. 
' 

- 175 -



Appendix I 

SPECIAL IDENTIFIERS 

Two classes of identifiers, reserved words and predefined identifiers, 

are treated as special cases by the Algol compiler. These identifiers are 

underlined in this manual to call the reader's attention to their use. 

RESERVED WORDS 

A reserved word is an identifier whose use in Algol programming is 

restricted to the situations described in this manual. The compiler will 

not allow the meaning of a reserved word to be changed by the programmer 

(e.g., a reserved word cannot be used as variable name, procedure name or 

label). 

The following is a list of reserved words: 

AND LABEL 

ARRAY LEQ 

BEGIN LIST 

BOOLEAN LISTSTRUCTURE 

COMMENT LOCAL 

COMPLEX LSS 

DEFINE NEQ 

DO NOT 

DUMP OR 

ELSE OWN 

END PROCEDURE 

EQIV RANK 

EQL REAL 

EQUIV REAL2 

EXTERNAL STEP 

FALSE STRING 

IQ!! SWITCH 

FORMAT THEN 

GEQ TO 

GO TRACE 

GOTO TRUE 
- 176 -



GTR UNTIL 

IF \rALllE 

IMPL WHILE 

INTEGER !Qli 

PREDEFINED IDENTIFIERS 

A predefined identifier is an identifier for which a standard 

definition is known by the compiler (e.g., SIN, READ, etc.). If the 

programmer wants to use the standard definition of such a word, he 

must not attempt to redefine its meaning. However, he may redefine the 

meaning of a predefined identifier in any block in which he will not use 

it in the standard sense. These identifiers are considered to be defj~ed i~ block ~. 

The following is a list of predefined identifiers: 

INTRINSIC FUNCTIONS 

ABS PARITYODD DMPVAR 

CLOCK PARTBL ERROR 

CLOK SE'TRANK ERROR TRAP 

DIMENSIONS SIGN FORCE TYPE 

DSA ~ HEADING 

DSC SSC INSERT 

DSL SSL LOWERBOUND 

EVEN MARGIN 

EXIT LIBRARY FUNCTIONS MERGE 
EXITABORT ALPHABETIC NOLI ST 
EXITERROR CHAIN NUMERIC 

EXITNORMAL CLOSE OPTION 

FIELD COREMAX PAPER 

FIELDS CORE TOTAL PCFELT 
IMAG CRTSW POSITION 
LENGTH DATE HEAD 
MGR DELETE RELEASE 

MEMmY DEVICE REWIND 
MOD DISPLAY QUEUE 

ODD DMPBLK SO'l.T 
PARITIEVEN DMPCOR 3WAF 

- 1 77 -



TRANSFER 

TYP~ 

UPPERBOUND 

WRITE 

INPUT-OUTP~T DEVICES 

CARDS 

CORJ~ 

DRUM 

EDIT 

PCF 

PRINTER 

PUNCH 

SLIP 

TAPE 

PLOTTER ROUTINES 

C:HANGEKEY 

CHAR 

DPARAM 

KEY COUNT 

MOVE 

NEWGRAPH 
PLOT 

SCALE 

SCHAP. 

Sl'OP 

MATHEMATICAL FUNCTIONS 

ARCO§ 

ARCS IN 

ARC TAN 

ARG 

cos 
GOSH 

EN TIER 

EXP 

INTRANDOM 

LN 

MAX 

MIN 

RANDOM 

SIN 

SINH 

SQRT 

TAN 

TANH 

INPUT-OUTPUT MODIFIERS 

EOF 

EOI 

INTERLOCK 

Y.E1 

The :'allowing identifjers may be used as the prorrammer s• es fit, 

but each has a special meaning in the specified context: 

FORTRAN o~ SLEUTH following the "Word EXTERNAL (used in deda.ra t.ior. 

Qf ~xternal procedure); 

ON or OFF foliowing the word TRACE (used to invoke or revckP. tracP 

opti'Jn numbers). 

- 17~ -



APPENDIX II 

WRITING ALGOL PROCEDURES IN 1107 SLEUTH 

For the benefit of programmers writing procedures in Sleuth II, this 

appendix describes the calling sequence generated by the Algol compiler, 

and explains how the parameters to the procedure may be handled in the 

Sleuth coding. 

THE EXTERNAL SLEUTH PROCEDURE 

The calling sequence generated for a call on an EXTERNAL SLEUTH 

PROCEDURE is: 

LMJ B11, <procedure name) 

+K 

G T1,A1,L1,ADDRESS1 

G TK,AK 11ic,ADDRESSK 

G FORM 6,3,3,24 

where K is the number of parameters to the procedure and the word 

G TI,AI,LI,ADDRESS1 

is the descriptor of the Ith parameter. ADDRESS! may be any of the 

following: 

B10, ADDRESS RELATIVE TO B10 

B9, ADDRESS RELATIVE TO B9 

O, ABSOLUTE ADDRESS 

Of the twenty-two bi ts in ADDRESS1 , the high-order four denote the index 

register and the low-order eighteen bits denote the relative adjress, h and i bits. 

TI is an octal number that denotes the structure of the Ith 

parameter: 

TI 
0 

01(!) 

011 

Meaning 

Simple variable- or expression 

ARRAY 

STRING ARRAY 

- 179 -



021 Generative LIST 

040 Sort/Merge 

041 RANK 

042 FORMAT 

043 LIST STRUCTURE 

Generalized variables are denoted by 040-047, the first four of 

which are currently predefined via system library routines •. 

AI denotes the type of the parameter: 

1 

2 

3 

4 

5 
6 

Meaning 

INTEGER 

REAL 

COMPLEX 

BOOLEAN 

STRING 

REAL2 

LI denotes the nature of the parameter: 

LI Meaning 

0 Simple name 

Constant 

2 Result 

3 Not used 

4 Loealized global name 

5 U-field integer constant 

6 Indirec·t result 

THE EXTERNAL FORTRAN.PROCEDURE 

(-1<K NO. 

The cal:ing sequence generated for a call OL an EXTERNAL FOR'~RAN 

PROCEDURE has the same form as the sequence for an EXTERNAL SLEUTH PROCEDUtIB 

except that the word specifying the number of param9ters 

+K 
is omitted. 

- HW -

. ~ 
<'- , ~I ,, -t!.) 



CODING THE EXTERNAL SLEUTH PROCEDURE 

The parameters to a Sleuth-written procedure can be made available 

to the Sleuth routine as follows: The value of the Nth parameter is loaded 

into a register by the instruction 

L (register),*N,B11 

If the parameter is a STRING, ARRAY or LIST then the register will be 

loaded with the descriptor of the parameter (see USE OF STRUCTURED 

VARIABLES below). 

The following suggestions should be observed when coding the Sleuth 

routine: 

1) The entry line must be labeled with the name of the procedure 

(an identifier of at most six characters) followed by a star ( *) •. 

2) Register B10 must not be changed (or chaos will follow). 

3) All error checking is the responsibility of the Sleuth roatine. 

4) If the procedure is being used in the functional sense (e.g., 

EXTERNAL SLEUTH INTEGER PROCEDURE), the result should be left 

on exit from the procedure in register A2 (A2, A3 in the case of 

REAL2 or COMPLEX) • If 'the result is a STRING, ARRAY or LIST the 

descriptor of the result should be left in A2. 

5) The return to the calling program is made by the instruction 

J K+1,B11 

where K is the number of parameters to the procedure. 

6) Under all circumstances the contents of registers B1 ,B2;8~, and 

B4 should be.the same when leaving the Sleuth procedure as when 

entry was·made. 

7) Register B9 must not be changed until all the parameters have 

been accessed. 

USE OF STRUCTURED VARIABLES 

1) Strings 

A string is stored in a sequence of memory cells, six characters pi:lr 

cell. The parameter passed to the Sleuth procedure is a string descriptor, 

which has the form 

F 

F 

FORM 

<length),(position),(address) 

12,6,18 

where (length) is the number of characters in the string, (position) is 

- 181 -



t~e position of the leftmost character in the first cell, and (address~ 

is the location of the first cell. The sixths of a word are numbered from 

left to ripht, from 2ero to five: 

I o 1T2 3 4 5 

i.e., 0 ~(position)~ 5. 

2) Arrays 

If an array element is used as a parameter to an EXTERNAL SLEUTH 

PROCEDURE, the value of the element is passed to the procedure. If, however, 

an array name is used as a parameter, the procedure will receive the address 

of the first word of the array head. The structure of the array head for non­

string arrays is as follows: 

(no. of elements), (address of first element) 

(no. words per element), (no. of dimensions) 

(lower ( 1 )),(upper (1) -lower (1) + 

(lower (N)),(upper (N) -lower (N) + 

(special constant for 0 option) ,('3.d:lres's of array name) 

(first element of array) 

(last .element of array) 

1) I 
1) 

The array is stored by rows. For string arrays the structure is: 

(no. of elements),(address of first elt. descriptor) 

1, (no. of dimensions> 

(lower (1)),(upper (1) -lo~er (1) + 1) 

(lower (N) ,<up!Jer (N) -lower (N) + 1~, 

+ 0 

(descripto~ of first element) 

(words/string) 

(first strinf) 

(last 3tring) 

- 1 82 -

Bo'lnds on 
Si1bscript 
Values 



APPENDIX III 

GENERALIZED VARIABLES AND THE DEFINE DECLARATION 

A generalized classification scheme for variables has been incorporated 

in the syntax of Case Algol. The scheme described here has been designed to 

permit the user to add new classes of variables to his program provided he. 

defines the structure by means of external Sleuth II coding. The structure 

of these variables is determined by specifying in the Sleuth routines the 

meaning of the standard operators. 

In standard Algol 60, only simple quantities are allowed for, namely, 

INTEGER, REAL, and BOOLEAN. Variables of type STRING, REAL2, and COMPLEX 

are found in Case Algol, but these are also handled like simple variables. 

Arrays are intended only to store large quantities of simple variables, 

rather than being considered variable entities in themselves. 

The introduction of generalized variables is intended to supplement 

this by allowing the direct manipulation of variables with a non-simple 

structure, or with attributes that are not com~on enough to be directly 

incorporated into the compiler. For example, the manipulation of matrices, 

polynomials, sets, or topologies could be treated by means of ordinary 

Algol statements if the proper Sleuth routines were provided. 

DECLARATIONS IN CASE ALGOL 

Every variable that is used in:'an Algol program must be declared 

(i.e• defined) in the following manner: 

<classification> <variable1), ••• ,<vari~bleN) 

where (classification) is a sequence of identifiers that names the type 

and kind of variable and the <variable.)'s denote the variables of that 
·1 

type and kind. The form of <variable.) is: 
1 

<name) 

or <name)((parameter list)) 

where (name) is the identifier of the variable and (parameter list) consists 

of a sequP.nce of parameters that may be separated either by co~mas (' ,') or 

colons(':' or 1 •• 1 ) Both kinds of separators may be used as, for example, 

in the standard ARRAY declaration. 

- 1 83 -



THE DEFINE DECLARATION 

An identifier that serves as the (classification> of a generalized 

variable t;rpe must be named in a DEFINE declaration to inform the compiler 

that it is now desirable to have a new kind of variable, viz., (classification) 

The general form is: 

DEFINE (class1),(class2>, ••• ,(classn> $ 

where (classi> is: 

(classificationi) 

or (classificationi) (N) 

where N is an integer constant such that ¢ ~ N ~ ?. Any further occurrence 

of (classificationi) will be treated just as an occurrence of INTEGER, REAL, 
ARRAY, FORMAT, etc. That is, it serves to identify variables to be declared 

as being of type and kind (classificationi). It also serves as a transfer 

function that takes one parameter and converts it to the t;rpe and kind of 

(classificationi> (just as INTEGER (1.0).is a call on the transfer function 

for t;rpe and kind INTEGER). 

The integer N is called the ranking index. The numerical kind of 

a generalized variable is 0408 + N. Systems so far implemented are: 

level kind Generalized variable 

0 040 Sort/Merge, SOL-B 

1 041 Ranks 

2 042 Formats 

3 043 List Structures 

Any attempt to define and use generalized variables at these levels while 

using one of the corresponding predefined generalized variables may result 

in a certain amount of chaos. 

CODING FOR GENERALIZED VARIABLES 

Thus, in theory, Algol has now been equipped with the machinery to 

handle any type of variable. However we must remember that Algol on the 

1107 is not purely a meta-language in which we can express an algorithm for 

the solution of some problem. It also doubles as a source language which 

is translated into an object code (machine language). Thus we will now 

- 184 -

.. 



consider what all of the above is translated into. 

THE DECLARATION OF A GENERALIZED VARIABLE 

In the declaration of a generalized variable the following coding is 

turned out: 

line 1 LX,U B9,<name) 

line 2 LMJ B11,09---$ 

llne 3 + n 

lines 4 to (de~criptor1 > 
n+3 (descriptorn> 

line n+4 '(name of the generalized variable)' 

Line 1 loads B9 with the address of the cell associated with the variable. 

This cell later becomes a pointer to the actual variable. Line 2 transfers 

control to the Sleuth routine that initializes the generalized variable. The 

name of the routine is defined by the following algorithm: Take the first 

three characters from (classificationi). Prefix these characters with 09 

and suffix with a $. If there are less than three characters use as many 

as there are. It is obvious from the above that if two (classification>'s 

have the same first three characters, there is going to be some confusion. 

On line 3 n is the number of parameters in this declaration, -n if this 

variable is OWN, +n otherwise. Lines 4 to n+3 are the descriptors for the 

n parameters (see Appendix II for the form of descriptors for such a call). 

The descriptor is in a form such that an indirect address on the word will 

·obtain the parameter. The initial contents of (name) is undefined. 

The above calling sequence enables the user to initialize each 

generalized variable. Initialization consists of three major sections: 

1. Setup of structure involved with the manipulation of the 

variable. 

2. It gives the user the location associated with the variable 

(given in B9). This location is sometimes referred to as the 

pointer to the variable. 

3. It gives the user the opportunity to put the address of an 

operation table (described below) in the H1 field of the location 

associated with the variable. The H2 field of this location 

may be used in any way the user desires. It usually points to 

- 18~ -



the actual memory locations that the generalized variable 

occupies, i.e., the address of the variable is put into the 

H2 field of the pointer. 

Consider the following segment of an Algol program (this example 

is continued later in this appendix): 

DEFINE SET(.3), ELEMENT, CLASS(4) $ 

(The compiler generites no coding for the above.) 

ELEMENT A,B$ 

LX,U B9,A 

LMJ B11,09ELE$ 

+ 0 
tA 

LX,U B9,B 

LMJ B11,09ELE$ 

+ 0 

'B 
The allowable operations are: 

Binary operators: 

+ 'ADD' .ICB. 1XOR 1 

'SUB' mi, 'IMP' 
* 'MUL' EQUIV 1EQV 1 

I •DIV' ~ 'EQL' 

II 1DII' LSS 1LSS 1 

** 'EXP' GTR 'GTR' 

OR 'OR' YJQ. 'LEQ' 

!ND 'AND' NEQ 'NEQ' 

= 'REP' GEQ 1GEQ 1 

Unary operators: 

'NEG' .NQI 1NOT 1 

Subscript calculate: 1SSC 1 

The address of the operation table for that particular generalized 

variable should be stored in the H1 field of the pointer. 

When Pn operation occurring in the operation table is requested by 

an Algol program, control is transferred to the address of the specified 

routine with the following information available (excluding SSC): 

B11 - Address of the first of two (one, if it is a unary operation) 

- 186 -. 



conse~utive parameter descriptors; the first descriptor for the 

left operand and the second for the right operand. 

08XIT$ - A location that contains the address to which control should 

be transferred when done with the operation. 

A2,A3 - should contain the result of the operation upon exit. The 

result is usually a pointer to the resultant quantity if the 

result is non-simple. If the result is simple, then the ap­

propriate INTEGER, REAL, COMPLEX, BOOLEAN, STRING, or REAL2 

quantity should be put in A2,A3. For binary arithmetic operations, 

the kind of the result will be taken to be the kind of the operand 

with the larger numerical kind. For Boolean and relational operators, 

the result kind is always BOOLEAN. 

If the operation is 'SSC', the following information is available 

B11 - Address of a word which contains an integer which indicates 

the number of parameter descriptors immediately following. 

08XIT$ - contains the return point (see above). 

B9 - snmild contain upon exit the result of the subscripting operation. 

Thi~ result is usually the pointer of the generalized variable 

referenced by the subscripting operation. 

The following conventions must be remembered in tre use of subscripted 

generalized variables: 

1) Any variable or expression has type and kind associated with it. 

A variable is assumed to have universal type if no other type is 

specified, except for arrays where REAL type is assumed. 

2) A variable with a subscript on it drops its kind (that is, it 

becomes of kind simple) if it has non-universal type. If it has 

universal type it retains its kind. 

3) A STRING subscript is not really a subscript, it only specifies a 

substring. It is the same as specifying a subpartition of an 

ARRAY. 

Consider the following example: 
SET V(3,A,B), S1 $ 

LX,U B9,V 

LMJ B11, 09SET $ 
-1- 3 

- 187 -



G SIMPLE$, INTEGER$, CONSTANT$, (.3) 

G 040,0,NAME$,A 

G 040,0,NAME$,B 

'V t 

LX,U B9,S1 
LMJ B11,09SET$ 

+ 0 
I S1 

BOOLEAN CLASS TOPOLOGY (V •. 1 TOP 1 ) $ 

LX,U B9, TOPOLOGY 
LMJ B11, 09CLA$ 
+ 2 
G 043,0 NAME$, v 
G SI}fl'LE$, STRING$, NAME$, (F LENGTH,,( 1T0P')) 
1TOPOL0' 

TOPOLOGY(7 •• A) = V + B LSS TOPOLOGY$. 

LX,U B9~ TOPOLOGY 
LMJ s11, o8ssc$ 

+ 2 

G SIMPLE$, INTEGER$, CONSTANT$, ( 7 ). 

G 040,0,NAME$,A 
SX B9, TEMP$(1), B10 
LMJ B11, 08ADD$ 

G 043,0,NAME$,V 
G 040,0,NAME$,B 
SA A2, TEMP$(2), B1~ 

LMJ B11, 08LSS$ 

G 043, RESULT$,B10,TEMP$(2) 
G 04J, BOOLEAN$+ NAME$,, TOPOLOGY 
SA A:2,uTEMP$(1),B10 

- 188 -



OPERATIONS INVOLVING GENERALIZED VARIABLES 

Generalized variables can be used in arithmetic, Boolean, and relational 

operations. The ability to do this is taken care of by the operation table. 

The operation table is constructed as follows: 

line 1 + p 

line 2 + '~OP1 ) 1 ,ad1 
to 

P+1 + '(OP )' ad p ' p 

where P is the number of operations that are in the table, 1(0P.)' is the 
1 

fieldata of one of the allowed operations, and ad. is the address of the 
1 

routine that performs the operation given by '(OP.)'. 
1 

The compiler generates calls to routines 08ADD$, 08SUB$, 080R$, 

etc. which are in the standard Algol library. These routines select the 

address of the operation table by examining the descriptors of the left 

and right operands. If the left operand is a non-simple variable and there 

is an address in the H1 field of the pointer (i.e. H1 of the pointer IO), 

the library routines use this address as the location of the operation table. 

If the above test fails for the left operand, the right operand is then 

tested (only one operand is tested for a unary operation). If neither 

operand has an operation table associated with it, an error message vill 

be generated. Once the operation table is found, the library routine 

searches the operation table for the operation (e.g., 08ADD$ searches for 

'ADD'). If the operation is found, the library routine transfers control 

to the user's routine to perform the operation. If the operation is not 

found, an appropriate error message will be generated. When the user is 

finished, he leaves the result in the proper registers and returns to the Algol 

program via the address in 08XIT$. 

The general form for an operation is (only one descriptor for unary 

operators): 

LMJ 

The general 

LX,U 

LMJ 

+ 

B11,08---$ 

(descriptor for left operand) 

(descriptor for right operand) 

form for a subscript 

B9,(name) 

B11,08SSC$ 

n 

is: 

- 189 -



(descriptor > 
n 

Note that the user need not perform operations by use of the operation 

table. The user may call his routines 08ADD$, etc. and have control trans­

ferred directly to his own routines. However, when many different general­

ized variables are used in one program, each user operation routine would 

have to determine which operation to perform for the kind presented. The 

library routines decide which operation to call by looking at an operation 

table, and each different kind of generalized variable can have a different 

operation table. 

GENERALIZED VARIABLE TRANSFER FUNCTIONS 

It was mentioned before that each.(classificationi) becomes a 

transfer function. The compiler generates the following coding: 

LMJ B11,07---$ 

(descriptor for parameter) 

Consider the following example: 

S1 = SET(A) 

LMJ B11,0?SET$ 

+ 1 

G 040,0,,A 

SA A2,TEMP$(2),B10 

LMJ B11 ,08REP$ 

G 043,0,,S1 

G 043,RESULT$,B10,TEMP$(2) 

REGISTER USAGE 

The registers that must not be tampered with in any way by user 

routines are B1, B2, B3, B4, and B10. Failure to observe this rule will 

yield catastrophic results. 

ACQUIRING AND RELEASING OF CORE 

For most generalized variables, core will be needed either for the 

variable or for information relating to the variable. Core, however, may 

- 190 -



not be used indiscriminately. To request a block of core: 

1) Load A3 with the number of words desired. 

2) Make the call: SLJ OPRO$ 
3) The address of the start of the block of the size requested is 

in A¢ upon return from OPRO$. 

If no bleak of the requested size is available then control is transferred to 

the library error routine. If transfer to the error routine is not desired 

then the following call should be used: SLJ OEPRO$. In this case if the 

block is not available the return is made with the contents of register 

AO = 0. 

Care must be taken to see that no core is used except exactly that which has 

been requested. When finished with the core, it may be "put back" for 

future use by: 

1) Loading A¢ with the starting address of the core to be released. 

2) Make the call: SLJ OCON$ 

Only the exact block of core which was requested may be returned. Both 

OPRO$ and OCON$ destroy registers A¢, A1, A2, A3, and A4. 

THE DEALLOCATION LIST 

The deallocation list is a list that contains those items that 

should be deallocated when leaving a block or a procedure. There is a 

separate list associated with each block or procedure. To reference the 

head of the allocation list anything equivaient to the following form is 

acceptable. 

OHEAD$,B1 O,H2 

If the list head is zero then the list is pull. 

Items are placed on the deallocation list in LIFO ordered by the 

library utility routines OINS$ and removed by OREM$. 

The contents of a list item can be one of two forms: 

1) The H2 field contains an address in which case it is 

assumed to point to a block which is to be deallocated. 

OCON$ is called with this address as a parameter. The 

H1 field is ignored. 

2) The H1 field contains an address and the H2 field 

contains a negative parameter which is discussed below. 

The address is assumed to point to a subroutine that 

- 191 -



accepts the positive parameter as input. The subroutine 

is assumed to handle all deallocation that is necessary. 

Entry into the subroutine is made in the following manner: 

LM AO, -(parameter),*BO,XU 

LMJ B6,(subroutine) 

The registers which cannot be used unless saved and restored are 

B1,B2,B3,B4,B8,B10,A7 

A FINAL WORD 

With generalized variables the user is able to declare anq manipulate 

otherwise unwieldy variables. Many sophistications are possible and many 

problems are also possible. But, believe it or not, it can be made to 

work. OR rather, you can be made to work it. 

- 192 -



APPENDIX IV 

SORT-MERGE PACKAGE 

Sort-merge facilities operating within the Algol framework are 

now available. The basic units with which the sort-merge package works 

are files. A file is defined as an area of storage in core, on drum, or 

on magnetic tape. Thus.there are three types of files, namely: core, drum, 

and tape files. A file is well defined whether or not it has any relevant 

information stored in it. The creation (i.e. definition) of files is done 

using the Algol DEFINE declaration, and they may be processed, written, or 

read only by the sort-merge package. If a file has been written into, the 

items are in the form of Algol strings, which ~ay be of different lengths. 

A summary of allowable calling sequences follows: 

FILES: 

DEFINE FILE $ 

FILE (identifier)('(type)' ,(length))$ 

where (type) is either CORE, DRUM, or TAPE, and, for types CORE and DRUM, 

(length) is the file length in words. For type TAPE, (length) is a list 

of the form ('(logical unit)', (usable tape length in feet),•(logical unit)', 

(usable tape length in feet), 000
). The file is assumed to progress through 

the tapes listed in the declaration from left to right. A tape swap may be 

called for by following (length) by ·, 1 SWAP 1 • 

EXAMPLES: 

DEFINE FILE $ 
FILE F1 ( I CORE I '400) 'B ( I TAPE I ' I A I , 1 200' I BI '600) ' 

DRUMFILE ( I DRUM I , 5000) 'F2 ( I CORE I '800) ' 

SUPER ( ' TAPE' ' I c I '1 200' ID I '1 200' I SWAP I ) $ 

Here, two areas of core of lengths 400 and 800 words are set aside 

for core files F1 and F2. A 5000 word area of drum space is cleared and 

set aside for drum file DRUMFILE. A tape file (B) of total length 1800 

feet is assumed to exist starting with 1200 feet of tape on logical unit 

A with an additional 600 feet of space on unit B. A tape file of 

undetermined length is assumed to exist with an undetermined nu~ber of 1200 

foot tapes on logical uni ts C and D , starting with 1200 feet on unit C 

continuing on unit D , and returning to C , moving cyclically between 

units C and D. 
- 193 -



Note that, as with Algol 60 arrays, when storage is declared (i.e. 

either a file or an array declaration), the space declared is assumed empty, 

and remains empty until the user places items into the file or array. Only 

a previously created non-empty tape file may be used as a tape file input in 

a new program. Also, it should be noted that the Algol drum routine and the 

sort-merge drum files are not compatible and hence exclusive use of one or 

the other of these drum processing methods should be made. 

SORTKEYS: 

DEFINE SORTKEY$ 

SORTKEY (identifier)((start char1>,<char length1>, ••• , 

(start charN),(char lengt~)) $ 
where (start char!> is the starting character position and (char length!) 

is the character length of the Ith most significant key. 

EXAMPLES: 

DEFINE SORTKEY$ 

SORTKEY KY(20,4,6,8),DATAKY(1,5,10,5), 

SPECIAL(1,80),VACATION(27,2,25,2,1,20) $ 

Suppose that a file, FIL, contains information. In particular, 

suppose that for each item in FIL, characters 1-20 designate an employee 

name, characters 25-26 and 27-28 contain the day and month (01-12, where 

01 is January), respectively, of the start of the employee's vacation period. 

A subsequent sort of file FIL with the key VACATION as defined above would 

produce a group of items grouped by vacation date with the vacation dates in 

chronological order. If more than one employee starts his vacation on a 

given date, the items are grouped in alphabetic order by employee name. 

Note that a key is meaningful only with respect to a sort or a merge. 

POOLS: 

DEFINE POOL$ 

POOL (identifier)(L) $ 

where L is as defined for tape files, without the swap option. Pools must 

consist of magnetic tape, and are only used for temporary storage by a 

sort process. 

EXAMPLES: 
DEFINE POOL$ 

POOL SPARE ('M' ,3600,'P' ,1200,'R' ,300), 

ROOM('N' ,1200, 10 1 ,2400) $ 

Here, SPARE provides 5100 feet of magnetic tape for intermediate 

- 194 -



storage for the system during a sort operation. Note that a pool is 

used only for intermediate storage in ~ sort operation. 

Sort-merge procedure calls: 

SORT((output),(input),(key identifier)) 

SORT((output),(input>,<~ey identifier),(pool identifier)) 

MERGE((output),(input)1,(input>2, ••• ,(input)n,(key identifier)) 

TRANSFER((output),(input)) 

TRANSFER((output),(input),(intermediate procedure)) 

TRANSFER((output),(input),(boolean)) 

TRANSFER((output),(input),(intermediate procedure),(boolean>) 

where (output) is either 'NONE', a file name, or the name of an Algol 

procedure having a single string parameter; where (input) is either a file 

name, an Algol string procedure name.with no parameters, a call on SORT, a 

call on MERGE, or a call on TRANSFER; where (intermediate procedure) is an 

Algol string procedure having a single string parameter; and where (boolean) 

is either a boolean variable or an Algol boolean procedure. 

EXAMPLES: 

Suppose it is desired to load items from cards into a file, F. 

Let the items be arranged on cards so that one item appears per card and 

so that the item is within columns 1-40. A program which accomplishes this 

is shown below: 

1 DEFINE FILE $ 
2 FILE F ( I TAPE I , I A I , 1100) • 

3 STRING PROCEDURE IN $ 
4 BEGIN OWN STRING S(40) $ 
5 FORMA.T FORM (A,S40) $ 
6 READ (FORM,S,STOP) $ 
7 IN = S $ GOTO OUT $ 
8 STOP.. IN= I I • 

9 OUT. • END IN $ 
10 TRANSFER (F,IN) 

Note that, as shown on line 8, the TRANSFER operation is terminated by setting 

the input equal to a null string (IN=''). A null string is ctefined to be a 

string of character length zero, represented by two ad1acent qt:ote marks. (See 

the flowcharts at the end' this appendix.) ·. 
Assume nov that we desire to delet~ certain items from file F, along 

with deleting some of the item information •. In particular, suppose that a "D" 

- 195 -



in the first character of an image indicates that that item is to be deleted. 

Also, columns 2-4 are to be set to ¢¢¢ for all items. A program which ac­

complishes this is shown below. 

1 DEFINE FILE $ 

2 FILE FNEW( 1 TAPE','B',1200),F( 1 TAPE 1 , 1A1 ,1108) $ 

3 STRING PROCEDURE EDIT(S) $ STRING S $ 
4 BEGIN IF S EQL " THEN EDIT = " ELSE 

IF 3(1) EQL 'D' THEN EDIT=" 

5 ELSE BEGIN S(2,3) = 1¢¢¢1$ 

6 EDIT = S END 

7 END EDIT $ 
8 TRANSFER (FNEW,F,EDIT) 

Here, an item is taken from the input, F, and passed into the intermediate 

procedure EDIT. Note that EDIT must check for an "end of file" (null 

string - line 4) from the input. If an item is to be deleted, the output 

of the intermediate procedure EDIT is set to a null string (line 4). Note 

that a null string from fill intermediate procedure is not passed on to the 

output and operation continues, while a null string from the input serves as 

an end of file, and operation terminates after passing the item to the output. 

See the flowcharts in this appendix. Note that on line 4 S is checked for the 

null string first. Otherwise, if Sis null and S(1) is checked against 'D' 

first the library will consider this an error. 

Now, as a check, let's print the first 100 items of file FNEW. An 

appropriate program is shown below. 

1 INTEGER I $ 

2 DEFINE FILE $ 

3 BOOLEAN BOOL $ 

4 STRING PfiOCEDURE COUNT(S) $ STRING S $ 

5 BEGIN IF 1 EQL 101 OR S EQL ' 1 THEN 

6 BEGIN BOOL =TRUE$ COUNT='' $ 

7 GOTO EXIT END 

8 ELSE I = I + 1 $ COUNT = S $ 

9 EXIT.. END COUNT $ 

10 PROCEDURE GUT(S) $ STRING S $ 

11 BEGIN IF S NEQ 1 1 THEN WRITE (S) END OUT $ 

1 2 FILE FNEW ( I TAPE I , I B I , 11 00) $ 
13 I = 1 $ BOOL = FALSE $ 

14 TRANSFER (OUT,FNEW,COUNT,BOOL) 

- 19f- -



Here, after 100 items have been encountered or if an "end of file" has 

occurred, a boolean variable is set to TR~ (line 6). With the boolean 

variable set to~, the process is terminated by setting the intermediate 

result to a null string. See the flo'Wcharts for more detail. 

No'W, let's sort the file FNEW and place the sorted file in file F. In 

sorting, items will be sorted by ~ characters starting at character 10, and 

by 2 characters starting at character 20. The additional coding necessary 

to accomplish this is shown below. 

1 DEFINE SORTKEY $ 
2 SORTKEY KY(10,4,20,2) $ 
3 FILE F ( ' TAPE ' , 'A ' , 11 00) $ 
4 SORT (F,FNEW,KY) 

Note that sorting and merging produce output in ascending order. 

If we wanted to merge the (sorted) file F 'With, for example, items . 

from a sorted file EXTRA, placing the entire output on tape, the call would 

appear as (using the same key as above). 

MERGE (TOUT,FNEW,EXTRA,KY) 

'Where TOUT is an (tape) output procedure co!lstri:,cted as before. 

If equal minimum items occur in merging, the left-most input in the 

merge call is taken as the actual input, that is, with respect to the calling 

sequence of a merge, the item processed at each pass is the "left-most" 

minimum item. 

VOLATILE DRUM SPACE 

It should be noted by the user that any DRUM file or any call on the 

SORT routine may destroy part of the user's PCF and/or the "drum tape" region 

used by CUR and Algol. Thus, if information is required to be in the PCF or 

"drum tape" region it must be saved by the user, elsewhere than on drum. 

AVAILABLE DRUM SPACE 

The number of 'Words of drum storage available to the user's program 

is a dynamic property of the operating system. That is, it is subject to 

change as the needs of system change. 

- 197 -



In general, the SORT routine requires temporary storage approximately 

equal to the total length of the final set of sorted items. Therefore, if 

the sorted items are to be kept in a drum file, it will not be necessary to 

have POOL tapes if only about one-half of the available drum is used for a 

drum file, leaving the rest for temporary storage for the SORT routine. 

FILES 

Upon declaration, all files are set closed and empty (i.e., the file 

contains only a null element). Let A be a properly defined S/M file. Let 

C be defined by 

FILE C$ C=A 

If A is not a tape file, define file B as 

FILE B(A)$ 

Any operation with file C is equivalent to performing that operation 

with.file A. File B, on the other hand, operates as an independent file 

using the same storage area. Thus with files of the A and B type, informatio 

may be written into and read from the same storage area simultaneouslyo 

That is, using files A and B, two (possibly different) types of operations 

may be performed on a given set of items simult.t:ineously. 

Thus, an operation of the form 

TRANSFER(A,A,INTER) or MERGE(A,A,B,KY), 

where the prE!l1'ious definitions for A and B hold, is well defined.* 

SUBSCRIPTED FILES, SORTKEYS AND POOLS 

In processing information it is often necessary to perform the same 

operation or sets of operations on several different sets of data. In 

Algol 60 the FOR statement is ideal for circulating through a given set of 

operations a known number of times. 

For files, sortkeys and pools, if A has been previously declared 

and is of a corresponding t;rpe, declarations of the form 

* The usA.r should note that an operation of the form 

SORT(A,A,KY) 

is well defined since file A is opened, read, and closed before items 

are written into file A. 

- 198 -



1) (declarator)· B(A),C,D{(integer)) 

and, in addition, in the case of a file declaration, 

2) FILE E{(integer),'(type)', ••• ) 

are allowed where (declarator) is either FILE, SORTKEY, or POOL. As with 

files, a replacement of the form 

C=A. 

simply associates the name C with A. Any operation performed on C is 

identical to performing the same operation on A. In the case of sortkeys 

and pools, however, the declaration 

(declarator) B(A) 

does not have any special advantage, but merely duplicates the declaration 

used for A. That is, the effect of a declaration of the form 

(declarator) B(A) $ 
for sortkeys and pools has the net effect of a declaration of the form 

(declarator) B$ 

followed by B=A with the exception that internal storage is used in the 

former.case. Thus the latter type of declaration is preferable in associating 

different pool and sortkey names. The former type of declaration is only 

made available to maintain consistency. 

The declaration 

(declarator) D{(intdger)) 

is used to denote a subscripted file, sortkey or pool whose subscripts will 

range from 1 to (integer), where ((integer)))¢. 

Actual elements are associated with the subscripted file, sortkey, 

or pool by replacement statements of the form 

D (<integer)) = A 

where A is some (possibly sµbscripted) file, sortkey, or pool. 

The special file declaration simply declares (integer) ~iles, all 

of the same type, with subscripts ranging from 1 to (integer), ~(integer>)>¢. 

MULTIPLE F'ILE ACCESS 

In order to incorporate virtually complete flexibility ·.rithin the 

Sort/Merge framework it is necessary to enable the user to read 'write items from/to 

- 199 -



several files within the Algol 60 framework. Thus the S/M package will 

accept statements of the form: 

(file name) = (string) 

or 

(string name) = (file name) 

where the first form can be interpreted to mean "write the item whose 

representation is (string) into file (file name)", with a corresponding 

interpretation of the second form of "copy next item from file (file name) 

into (string name)". Note that no limitation is made on the number of 

different files used, but that the file read/write rules described previously 

still apply. The only additional restriction that applies here is that 

these st~tements must be executed during a call on the S/M package, i.e., 

in a procedure currently being called by the S/M package. 

NOTE: Ascending order is determined by the result of a SETRANK statement, 

if one or more occur in the program. 

- 200 -



pass item to 
output 

pass 1 ' 

to output 

sort STABLE 

gft item 

from STABLE 

= 

FLOWCHARTS 
SORT 

get item 
from input 

pass 
item to 
out ut 

- 201 -

enter item 
in STABLE 



pass '' 
to output 

N = T subscript 
of min. item or 
min. sub. of min 
equal items 

= 

T - MX N -

= 

I = 1 

N = 1 

get item from 
input1: Place 

item in T1• 

pass item 

TN to output 

get new 

item input N 

= 

TN = item 

- 202 -

I = 
I+ 1 

NOTE: MX is an item which 
when sorted along 
with all possible 
string combinations 
of symbols, would 
occur as the last 
item in the sorted 
ascending sequence. 



INSKIP: 

yes 

pass N to 

inter. proo. 

NW.-ne'W 
item from 
inter. proc. 

bool. var. ? 
es 

= 

EOF+- false 

INSKIP..-false 

EOF: true 

N....,_item 

from inpu 

N II 

NW4--N 

I 

TRANSFER 

pass "to 

output 
TRANSFER 4-- II 

NW: I I 

,_..---------~=:::.....------~---, res.:tru 

INSKIP.,_ 
true 

Pass NW to 
output 
TRANSFER._ 

= 

OF+-true 

- 20J -



APPENDIX V 

PLOTTER ROUTINES 

THE CALCOMP PLOTTER 

The Calcomp 565 plotter uses a roll of paper 120 feet long and 12 

inches wide. The actual plotting width is 11 inches. A rotating drum 

moves the paper lengthwise, while a carriage moves a replaceable pen back 

and forth along the width of the paper. Both ball point and ink pens are 

available. 

The pen-up-pen-down functions control writing. Motion is in 

0.005 inch increments at a maximum rate of 300 steps per second. Drawings, 

therefore, consist of short line segments oriented in increments of 45 

degrees. Repositioning to a reference point is precise. A user may run 

a drawing 120 feet long and then accurately rep~sition at the point of 

origin. 

The control unit and the plotter must both be on (red indicator 

lamps on control unit) to operate the plotter. Also, the stop lamp (white) 

lliust be extinguished manl:Lally, if it. is on, by depressing "run". Depress~ 

ing "stop" turns on the stop lamp and stops operation until "run" is de­

pressed. If the computer issues a stop command, the effect is the same 

as a manual stop. 

Manual controls on the plotter are used to remove completed 

drawings. 

BASIC PLOTTER OPERATION 

The various routines needed for use of the plotter will compute 

the necessary control codes and write them to a magnetic tape. This tape 

must be assigned to logical unit 'P' by means of an ASG control card. 

Afte:r a program has written plotting instructions on the tape, 

the graph can be plotted by means of an EXEC III parasite called FLT. 

To initiate +.he plotting parasite the user makes an unsolicited keyin of 

the form: 

I PLT (label),(paper feed) 

- 204 -



where (label) is the label of a tape to be plotted. This label must have 

been previously assigned to a physical unit by means of an unsolicited 

keyin of the form: 

A (label)/(physical unit) 

(paper feed) is the distance which the paper will be advanced through 

the plotter in units of inches/100 before starting the plot. For example, 
the keyin: 

I PLT GRAPH, 300 

will initiate the plotter parasite. The parasite will plot the information 

contained on the tape on the physical unit assigned to the label called 

GRAPH. Before plotting, PLT will advance the paper 3 inches. 

PLT may be suspended or terminated by the usual unsolicited keyins. 

The tape is not rewound after plotting. 

An EOF marker may be written on the tape using Algol or CUR. This 

will be considered a stop command by the PLT parasite. With the use of CUR 

a specific plot may be found on a tape and then plotted with the PLT parasite. 

ALGOL PLOTTER PROCEDURES 

There are several procedures available for use from an Algol program 

to produce output for the plotter. These are available in the system 

stored library on the drum. 

The available procedures are as follows: 

1. SCALE ((initial x),(initial y),(x scale),(y scale),(max y),(grid type), 

(x unit),(y unit),(coordinate system)) 

a). Sets the initial point (see figure J) to correspond to· tne 

scaled coordinates: 

((initial x),(initial y)) 

where (initial x) and (initial y) must be real numbers. 

b). Sets the scale of the x axis to (x scale) units/inch. (x scale) 

must be a real number, but may be positive or negative. 

c). Sets the scale of they axis to (y scale) units/inch. (y scale) 

must be a real number, but may be positive or negative. 

d). Sets the maximum expected y coordinate to be (max y). 

e). Draws a grid indicated by (grid type), which must be of type STRING. 

i). If (grid type) is '~'then no grid is drawn. 

ii). If (grid type) is 'AXIS' then an x-y coordinate exis is 

- 205 -



Direction 
of 

Flow 

Paper 

DIAGRAM OF PLOTTER 

Pen 

y 

Plotter Drum 

Figure 3 

- 206 -. 



drawn the width of the paper, and from (initial y) to 

(max y). Marks are drawn on the axes in increments of 

(x unit) and (y unit) for the x and y axes. The origin 

of the coordinate axes is the scaled point (o.o,o.o). 
(x unit) and (y unit) must be real numbers. 

iii). If (grid type) is 'GRID' then a grid is drawn with lines 

crossing at intervals of <x unit) units in the x direction 

and (y unit) units in the y direction. <x unit) and 

(y unit) must be real numbers. 

f). If (coordinate system) is 'POLAR' then all subsequent plotting 

(until the next call on SCALE) will be in polar coordinates. 

If (coordinate system) is 'CARTESIAN' then Cartesian coordinates 

will be used. If this parameter is omitted from the call on 

SCALE then Cartesian coordinates will be used. 

g. Only in the case of (grid type) equal to '.b' is the pen positioned 

to the initial point. In the other cases the pen may be anywhere 

on the paper. 

2. PLOT(<x coord.), (y coord.), (line type), (arrival action)) 

a). Puts the pen down 

b). If plotting is being done in polar coordinates then (x coord.) 

is the radius, and (y coord.) is the angle in radians of the 

point to which the pen is to be moved, where (x coord.) and 

(y coord.) are real numbers. 

c). If plotting is being done in Cartesian coordinates then the 

pen is moved to the point ((x coord.), (y coord.)). 

d). If the string (line type) is 'DASH' then a dashed line is drawn, 

while a continuous line is drawn if (line type) is 'SOLID'. 

e). The (arrival action> parameter is of type STRING. Its value 

should be one of the following: 

i). rBox·1 draw a. small box aro'.lnd the point (<x coord.), 

(y coord.)) 

ii). 'CROSS' draw a small line perpendicular to the direction 

of travel at the point (<x coord.), (y coord.)) 

iii). 'ARROW' draw an arrow head in the direction of travel, with 

the point of the arrow head at (<x coord.), (y coord.)) 

iv). '~' take no action at the end of the line. 

- 207 -



3. MOVE (<x cocrd.), (y coord.)) 

a). raise the pen 

b). moves the pen to the point ((x coord.), (y coord.)) if the plot­

ting is in Cartesian coordinates, or uses (x coord.) as the 

radius, a~d (y coord.) as the angle in radians of the point to 

move to, if the plotting is in polar coordinates. <x coord.) 

and (y coord.) must be real numbers. 

4. CHAR ((direction), (size), <string)) 

a). puts the pen down 

b). draws the characters of <string) with a height of (size) inches, 

in the direction of (direction), where the present pen position 

is the lower left-hand corner of the first character. 

c). if (direction) is of type STRING then its value should be one of 

the following 

d) • 

i) • 'X' edit the string in the positive x direction 

ii). '-X' edit the string in the negative x direction 

iii). 'Y' edit the string in the positive y direction 

iv). '-Y' edit the string in the negative y direction 

If (direction) is not of type STRING then it should be of type 

REAL, in which case it is the angle in degrees at which the string 

is to be plotted. The angle is measured counterclockwise, with 

·~he positive x axis denoted by an angle of zero degrees. 

e}. The point at which the pen is positioned when the CHAR operation is don~ 

is described in 11) of the MISCELLANEOUS NOTES section of this 

appendix. 

5. SCHAR ((direction), (size), (index)) 

a). SCHAR is similar to CHAR except that SCHAR draws only one character. 

This character is selected from the table of character indices:.ac­

cording to the value of (index), which must be of type INTEGER. 

The table and ways to add or delete characters are explained later 

in this appendix. 

b). The point at which the pen is positioned when the SCHAR operation is done 

is described in 11) of the MISCELLANEOUS NOTES section of this 

6. STOP 

appenUx. 

causes the generation of a stop command by the computer. The user 

must manually release the plotter to continue plotting. 

- 208 -



?. NEWGRAPH((inches)) 

moves the pen (inches) beyond the point ((initial x),(y max)) given 

by the previous SCALE call. (inches) should be of type REAL. 

8. DPARAM((length),(spacing)) 

changes the length and spacing of dashed lines so that the value 

of (length) is the length of the dash and the value of (spacing) 

is the size of the gap between dashes. Both parameters should 

be of type REAL and are in units of inches. 

9. KEYCOUNT 

is an INTEGE~ PROCEDURE without parameters. Its value is the 

number of characters that can be indexed by SCHAR (at the time 

of this writing the value is 168). 

10. CHANGEKEY ((index),(pair list)) 

is used to add or delete characters in the table of character 

indices. (index), a parameter of type INTEGER, should be such 

that 

¢ ~ \(index)\ ~ KEYCOUNT + ~9 
(pair list) is a sequence of pairs of INTEGER parameters that 

describe the new character. 

If a character with index \<index)\ is already present, it will be 

deleted. The new character is then added. The (pair list> is a sequence 

of x-y coordinates. Each (integer expression) must be in the range 

-31 ~ (integer expression) ~ +32. The pen will be raised before starting 

each character. If the x coordinate is +32 then the pen will be raised, 

and the y coordinate is ignored. It will be dropped after performing the 

next pen movement. As an example of usage, the call 

CHANGEKEY(KEYCOUNT, ¢,5, 4,5, 32,¢, 4,3, ¢,3) 

would put an equal sign in the character set, and remove the character 

(if any) which had index KEYCOUNT. It should be noted that a call on 

CHANGEKEY does not change the value of KEYCOUNT. 

If (index) is negative, then the pen will stay at the last point it 

was moved to. An example of this usage is the backspace character, which 

is defined by the call CHANGEKEY(-KEYCOUNT, -e,¢) 

- 209 -



FORMATTED OUTPUT ON THE PLOTTER 

The use of the EDIT input/output device in conjunction with the plotter 

is illustrated in Appendix VI. 

TABLE OF CHARACTER INDICES 

The following characters are now available: 

1 2 6 7 8 

¢ "V [ J # 6. A B c D 

1 E F G H I J K L M N 

2 0 p Q R s T u v w x 
3 y z ) + < = > + $ 
4 * % ? \ ¢ 1 

5 2 3 4 5 6 7 8 9 
6 I D -f 

, .. .. ~ II 

7 a b c d e f g h i j 

8 k 1 m n 0 p q r s t 

9 u v w x y z • ~ 

1¢ A B I' 6 E z H e I K 

11 /\ M N .. Q II p E T 'Y' 

12 ¢> x \V ~ a p y b £ t 
13 f) (:I (. k. A. ~ \I ~ 0 TT 

14 p d ..,. v ¢ JC. ,,, w 

15 c 3 ~ ~ d t ..., 

16 /\ :> 't 3 -

Those with an index greater than 63 can be used only with SCHAR. 

Note the following characters: 

index 5: blank 

69: backspace 

98: under dash 

99: under line 
1 48: over dash 

149: over line 

165: superscript.shift 

166: subscript shift 

- 210 -



If the character size for 165 and 166 is the same, they will return 

to the original vertical position on the line. For example: 

SCHAR('X' ,¢.1¢,74) $ SCHAR('X' ,¢.10,165) $ 

SCT1AR('X' ,¢.1¢,93) $ SCHAR( 1X1 ,¢.1¢,166) $ 
CHAR( 'X' ,¢.1¢, '+1 1 ) 

x will plot e +1 • 

MISCELLANEOUS NOTES 

1). Improper usage of the plotter routines can bring swift retribution 

as there is no error checking with respect to the parameters. 

2). The user deserves what he gets if he uses any plotter routines before 

the first call on SCALE. 

3) •. Note the action taken at the boundaries by the plotter routines. 

A sample might be: 

SCALE (0.0,0.0,1.0,1.0,' 1 ,0.5,0,5) $ MOVE(10.o,10.o) $ 
PLOT ( 1 2 • 0, 1 2. 0, I SOLID I , I I ) 

This is equivalent, with the same SCALE call, to 

MOVE ( 1 0. 0, 10. 0) $ PLOT ( 11 • 0, 11 • 0, I SOLID I, I I ) $ PLOT ( 11 • 0, 12.0, I SOLID I , I I ) 

Note also, in this example, that it is possible to plot beyond YMAX 

without ill effects. 

4). Plotter movements of more than 109.22666 feet in they direction (on 

one call to the plotter routines), may produce anomalous results. 

5). When using ink, the user should impulse. the pen up and down several 

times to start the ink flowing. This is best done manually. 

6). It is possible to plot two (or more) graphs, in different scales, 

on top of each other. This is done by omitting the call on NEWGRAPH 

between plots, and positioning the pen so that the point on the left­

hand boundary of the paper opposite the pen is the desired initial 

point. It is not necessary to actually move the pen to the initial 

point, since the call on SCALE will do this. For example, if the 

pen is oresently at (x,y), then the initial point after the next call 

on SCAL~ corresponds to the point (~initial x), y) under the present SCALE. 

7). To guar 1mtee that the last buffer will be written to tape, the user 

should ~xecute a ~TOP at the end of his program. Programs terminated 

because of errors may or may not have the last buffer written to tape. 

- 211 -



8). BASIC CHARACTER FORM 

~ ,~ 

~ 
1 
~ 

~ 
~ 

~ i... ,,,,,,,-~ -

~ 
9). Upon entering CHAR or SCHAR, pen is assumed to be positioned at 

indicated point. 

:o). The basic character grid is eight units high, and five units wide. 

Each character starts six units from the start of the preceding 

character. The characters themselves are seven units high and four 

units wide. 

11). After plotting a character the pen will be positioned in the lower 

left-hand corner of the next character grid except when the character 

just plotted is backspace (69), superscript shift (165) or subscript 

shift (166). Each of these three characters will leave the pen in 

the final pen position of that character and all others will leave the 

pen in the (O,O) position of the next character. 

- 212 -



APPENDIX VI 

SPECIAL INPUT/OUTPUT DEVICES: 

EDIT, CORE, PCF, SLIP 

This appendix describes several special I/O devices that may be 

used in adjition to the standard devices CARDS, PRINTER, PUNCH, TAPE and 

DRUM. 

PCF: Program Complex File 

SLIP: Source Language Input Process~r 

Two new devices have been added for use from Algol READ and 

~'RITE calls. These are PCF and SLIP. They are used to get card images 

from a symbolic element in the user's complex. PCF may be used in READ and 

WRIT~, while SLIP may be used in READ only. They are called in a manner 

similar to DRUM or TAPE, for example, READ(PCF( ••• ) •.• ~ 

PCF may have one or zero parameters. If there is a parameter it 

may be of type integer or string. If the parameter is a string, then it is 

the name/version(cycle) of an element in the user's complex. It does not 

have to be left justified in the string, but can be preceded by spaces. If 

the parameter is an integer, then it must be in the range one to six, and is 

used to index the name/versions present on the Processor call card. For ex­

ample, READ(PCF('HELLO/DERE'), .•• ) is a legitimate call on the PCF device. 

If the processor call card is 

\J ACE AAAAAA/US,AAAAAA/GERMAN,AAAAAA/JAPAN 

then READ(PCF(2), ••• ) would be a request for a card image from the element 

AAAAAA/GERMAN. If there is no parameter to PCF, then the element used on 

the previous call will be used. 

The PCF device is used to read or write sequential card images to 

or from an element in the user's complex. The parameter indicat,~s which 

element is to be read or written. Each request on the PCF device when reading 

will pass cne card image (80 columns) from the complex to the read routine, 

to be processed according to the format included in the call, or the implied 

- 213 -



format for the card reader if there is no format included in the call. 

Similarly, each request on the PCF device when writing will pass 

one card image (80 columns) from the write routine to the complex, which 

has been prepared according to the format included in the call, or the 

implied format for the card punch if no format was included in the call. 

If more than 80 columns are passed to the PCF devlce only the first 80 will 

be used. All page ejects (E format phrases) areignored. Line skips (Aw.a) 

not ignored, but w = 0 is equivalent tow= 1. 

The SLIP device is used to read a symbolic element from the 

user's complex, insert correction cards obtained from the card reader, and 

prepare an updated symbolic element, in a manner similar to the compiler. 

Please note that SLIP may not be used when calling WRITE. Furthermore, 

the results of calling WRITE(PCF( •• ) ••• ) before fill entire element has~ 

SLIPped ~ unpredictable. 

SLIP may have 0,1 or 2 parameters, of type integer or string. The 

first parameter to SLIP indicates the element to be updated, while the 

second parameter indicates the name of the updated symbolic. If the second 

para~eter is not present, then there will be no updated symbolic ~ntered 

intQ the user's complex. However, it is not possible in this ca1e to write 

in the complex using the PCF device (while the SLIP device is being used). 

If no parameters are present, then the previous parameters will be used. 

USE OF FORMATS WITH PCF AND SLIP 

The PCF and SLIP devices will act just like the card reader or 

card punch. Thus, formats are optional, but generally desirable. 

ERROR RETURNS FROM PCF AND SLIP 

If the error label is present on a call to PCF or SLIP it will 

be ~sed if any errors are found while processing the call. 

The only type of abnormal return from PCF when reading is an EOF 

return when trying to read the (n+1)th card from an element containing only 

n cards. Any subsequent attempts to read the same element again will cause 

the element to b~ reread, i.e., the first time this happens card 1 will be 

processed, et:. Attempts to read an element which is not in the u~er's 

complex will ·~ause the message '***** input source language element 

(XXXXXX/x:XXXXX) not available' to be printed and the program will be termin­

ated. It is, of course, possible for the read routine to discover errors, 
in which case the other error returns will be used. 

- 214 -

are 



There ar8 no abnormal returns possible from PCF when writing. The 

only error which can occur will be insufficient space available on the drum 

(i.e., running off the end of the drum), and in this case the program will 

be terminated, with a message from the system. 

The abnormal return from SLIP will depend on the type of control 

card present at the end of the correction cards being read in. The abnormal 

return will occur when an attempt is made to read the (n+1)th card of an n 

card element. If the correction cards are terminated with an EOF card, then 

a return will be made to the EOF label in the input list. Any other type 

of control card will cause a return to the EOI label. Further attempts to 

SLIP the same element will cause the element to be reread. Note that the 

program will be terminated if the appropriate error label is not present. 

If a third label is present in the input list then it will be used in case 

of a card read error by the Algol READ routine, or is case an error is found 

·.-:hile SLI!:p'ing the element. 

READING AND WRITING SEVERAL ELEMENTS AT ONCE WITH PCF 

It is possible to be reading cards from several elements at once 

using PCF. The PCF device merely keeps track of all the elements being 

read which still have cards available. Each element being read uses 02002 

octal words of memory (1026 decimal). It is possible to be reading SLIP 

and PCF at the same time, although they should be working on different 

elements. It is not possible to be writing several elements at the same 

time. Whenever the name/version (cycle) of the element being written is 

changed, the previous element is entered into the user's PCF. Any sub­

sequent writing in the complex of an element of the same name will cause 

the first element to be deleted. That is, writing element A, and then B, 

and then A again, will cause the first element named A to be dEleted. 

The use of improper or incorrect correction cards with SLIP will 

cause the printing of one of the following messages: '***** ILL"~GAL CORRECTION 

CARD', '***** CORRECTION CARD SEQUENCE ERROR', or '*****IMPROPER DELETION 

-mmmmm,nnnnn'. The correction card concerned will be ignored, and the 

- 215 -



program will not be aborted. 

Note that it is only possible to use integer parameters to PCF 

or ?LIP when the program is being run as a Processor. 

EXAMPLE OF THE USE OF SLIP 

The following program is essentially the Processor DATA. 

INTEGER I$ FORMAT F(A,S80), G(X10, I5, 1 • 1 , X5, S80, A1) $ 

LOCAL LABE~ EOF, FIN$ STRING A(80) $ 

FOR I = 1 STEP 1 UNTIL 10000000000 DO BEGIN - -- --- ---
READ(SLIP(1,2)F,A,EOF,FIN) $ WRITE(fRINTER,D,I,A) END$ 

EOF •• FIN 

At present, the maximum number of elements which may be entered into 

the complex with one call on XQT or a user's processor, is about 32. 

THE CLOSE PROCEDURE 

CLOSE is used to close out an input buffer being used by the PCF 

or SLIP device. A call on the CLOSE procedure has the form 

CLOSE((element name)) 

where (element name) is of the same form as a parameter to the PCF or SLIP 

routine. The ·6ffect will be to delete the memory buffer being used by 

(element name).and return it to the available space pool. 

Any subsequent attempts to access (element name) with the PCF or 

SLIP device will result in redefining the element and passing the first 

card(s) of the element. Since each buffer used by an element requires 02002 

octal words of memory, this provides a means of releasing unused storage 

for other purposes. 

THE PCFELT PROCEDURE 

PCFELT is used to obtain information about the elements in t~1e 

program complex file, regardless of their types. The call has the form 

- 216 -



PCFELT((string),(type),(oldest),(newest),(maximum>) 

where the parameters are as follows: 

<string) is the name of a STRING variable into which the PCFELT routine 

will place the name/version of the element. The characters are left­

justified in the string, and a '/' (if needed) will separate the name 

from the version. 

(type) is an INTEGER variable which is set equal to the type of the element. 

(oldest) is an INTEGER variable that is set equal to the lowest cycle 

number available if the element is symbolic, and otherwise is set to 

zero. 

(newest) is an INTEGER variable that is set equal to the highest cycle 

number available if the element is symbolic, and otherwise is set to 

zero. 

(maximum) is an INTEGER variable that is set equal to the number of cycles 

that will be saved if the element is symbolic, and otherwise is set to zero. 

The first call on PCFELT during execution of a program will return 

information about the first non-deleted element present in the complex. 

By first is meant the first element entered into the complex. The second 

call on PCFELT will return information about the second non-deleted element, 

and similarly, the Nth will deal with the Nth element. If there are M 

elements in the complex, the (M+1)th call on PCFELT will return with (type) 

set equal to zero and all other parameters unchanged. The (M+2)th call on 

PC.FELT willstart from the beginning, i.e., will d~al with the first element. 

PCFELT operates on the entire complex, not. just the symbolic 

elements. If the ?CFELT and PCF-SLIP devices are used r,o~ether, the element 

table is reaa from drum only once, thus saving up to 4700 words of 

memory by no·. duplicating the element table. 

THE FORCETYPL PROCEDURE 

FORCETYPE may be used to change the type of an element being 

- 217 -



written in the program complex file by the PCF or SLIP device. The 

procedure call has the form 

FORCETYPE((integer exp)) 

The type of the element currently being written in the complex will be 

set equal to the value of (integer exp). 

To be effective FORCETYPE should be called after the first card 

of the element has been written, and before the entry of this element has 

been completed. Therefore FORCETYPE should be called before the first 

card of the next element having different name/version is started, or, if 

the current element is the last element to be entered into the complex, it 

should be called before the termination of the program. 

EDIT 

The I/O device EDIT has been added to the list of devices which 

lJ'<•y 're used from READ and WRITE. The call is 

READ(EDIT(<string)),<parameter list> 

WR:TE(EDIT((string)),(parameter list) 

(parameter list) has the same form as in a call on READ or WRITE using CARDS 

or PRINTER, respectiYely. 

In the first case the effect is to use the (string) in place of the card 

reader. Every time an activation phrase is encountered by the READ routine, 

EDIT will pass 80 characters from (string). If more than one activation 

phase is present in the format, EDIT will pass sequential sets of 80 
characters. If an attempt is made to pass more sets of 80 characters than 

are present in (strin~>, the READ will terminate, with action taken as follows: 

If the (EOF label) is present in the I/O list, then 

control will be transferred to it. 

If not, the program is aborted, and the message for 

insufficient data for program is printed. 

All line sktps are ignored. The implied format when reading is the same as 

for the card reader. 

In the case of WRITE(EDIT(<string)), ••• ) the effect is to use the 

<string) in place of the 1004 printer. The (string) is blank filled upon 

entry to EDIT. Every time an activation phrase is encountered by the 

WRITE routine, EDIT is passed 132 characters from WRITE. Sufficient 

- 218 -



characters are skipped to satisfy the line spacing, and then the characters 

are inserted in the <string). Eject format phrases are ignored. A¢.d 

activation phrases have the same effect as A1.d. 

If an attempt is mad~ to pass more sets of 132 characters than can 

be fit into (string' the WRITE operation will be terminated with action as follows: 

If the (EOI label) is present in the I/O list, then control will 

be transferred to it. 

If not, the EDITing is aborted, the message "string too short for 

EDIT" is printed, and control is transferred to the Algol error routine. 

EXAMPLES OF USAGE: 

(1) INTEGER I,J,L $RF.AL X,Y $STRING B(10) $ 
STRING A(80) $ FOHMAT F1(A,S80), F2(A,X1, 3I4, 2F15.8), F3(A,S20,3I10,2F15.8) $ 

~(F1 ,A) $ 

IF J.(1) EQL 1 1 I THEN READ(EDIT(A),F2,I,J,K,X,Y) 

ELSE READ(EDIT(A),F3,B,I,J,K,X,Y) 

(2) FORMAT F(S2,D15.8,A1) $ srRING A(132) $REAL x $ 

WRITE(EDIT(A) ,F, 'X=', X) $ 

CHAR(0.0,0.2,A(1,20)) 

CORE is designed to be a high speed random access device to be used in 

place of drum or drum tapes when the amount of data is relatively small but 

not easily stored in arrays because of unknown amounts or types. CORE also 

provides for retrieval of data by key where the number of keys is large or 

vary in type. CORE maintains a dictionary or directory of the information 

by their keys so that the information can be found quickly. As implied by 

the name the data is kept in core memory. 

There are three uses of the CORE device: 

WRITE((core device),(parameter list)) 

READ((core device),(parameter list)) 

REILASE ((core device list)) 

(parameter 1 .st) is any list of data and labels permitted in READ and WRITE 

for DRUM. The (core device) has three forms: 

CORS((key expression)) 

COli~ 

COR~((key expression),(block size)) 

- 219 -



The (key expression) is any simple variable of type INTEGER, REAL, BOOLEAN, 

COMPLEX, REAL2, or STRING. The value and type of the (key expression) 

is the key associated with the information. This means that 1, 1.0, TRUE, 

(1.0,0.0), and 1 1' are unique keys. The second use of CORE designates a 

special key called null for which no look up is necessary in the dictionary. 

This saves time when no key is necessary for the data. 

The information written is kept in blocks of memory, each of which is 

initially ten words long. Each block also uses three extra words internally. 

The second parameter to core is a positive integer less than 2049. This 

changes the block size for all further writes until the block size is 

changed again. Partial blocks of memory are never returned so that the 

size should be adjusted to maximize use of core. 

WRITE causes the data in the parameter list to be moved to available 

blocks of memory and the key expression to be associated with this informa­

tion. If a previous WRITE with the same key exists then the information from 

the p~evious WRITE is lost and the memory used is either reused for the new 

WLITE or returned to available storage space by blocks. If no available 

memory exists for a block in a WRITE then control will be returned to the 

label in the (parameter list) if one exists; otherwise the run will be 
I 

aborted. If computation is to continue, the information in the new WRITE 

should be released since it is incomplete. 

READ causes the information associated with the key to be transferred 

to the variables in (para.meter list). The information is not cha.ngPd by 

the READ and may be reread. Two labels may be used in the (para.meter list) 

with READ. Control will return to the first label if more data is speci-

fied in the READ than has been written. The second label is used if no 

information had been writ.ten with this key or if the information and key 

had been wiped out by a RELEASE statement. If the appropriate label is not 

provided the ~un will be aborted when either of these error conditions occurs. 
The proc•~dure RELEASE allows information and keys no longer needed 

to be erased and the core memory space returned to the available space 

list so that Lt can be used by the rest of the program. The (core device 

list) is a. list of core devices with keys specifying which a.re to be re­

leased from fQrther use. The release of information previously released 

- 220 -



or never written does not cause an error, but is simply ignored. 

hote that if the information is too large to be kept in core then the 

key may just be the key to the drum address where the data is stored. However, 

it is up to the user to manage the reuse of drum space. 

EXAMPLE: 

J.NTEGER I, L, MAXL, K, CNT $ 

STRING WORD(JO) $ 

EXTERNAL PROCEDURE NEXr $ 

COMMENT NEXT IS A PROCEDURE WHICH SCANS CARDS AND PUTS THE NEXT IDENTIFIER 

IN WORD AND ITS LENGTH IN L $ 

LOOP •• 
K = 0 $ 

NEXT(WORD,L) $ 

IF L EQL 8 THEN GO TO OUTPUT $ CO~NT END OF DATA $ 

READ (CORE (WORD) , I, E·RR, NEW) $ 

.Q.l~h~NT FIND INDEX I FOR THE IDENTIFIER IN WORD. IF NONE IS FOUND 
TRANSFER CONTROL TO NEW FOR A NEW ENTRY. $ 

READ(CORE(I),WORD,CNT+1) $COMMENT UPDATE COUNT$ 

GO TO LOOP $ 
NEW.. K=K+1 $ COMMENT INCREMENT INDEX $ 

WRITE(CORE (K),1) $COMMENT SET COUNT TO 1 $ 
READ(CORE(-L),I,ERR,NEWCNT) $ 

COMMENT GET C00NT OF NUMBER OF DIFFERENT IDENTIFIERS OF LENGTH L OR GO 
TO NEWCNT IF THIS IS THE FIRST IDENTIFIER OF LENGTH L $ 

WRITE(CORE(-L),I+1) $COMMENT UPDATE COUNT$ 

NEWCNT .• 

OUTPUT •. 

GO TO LOOP $ 

WRITE (CORE (-L) , 1 ) $ COMMENT ONE IDENTIFIER THIS LENGTH $ 

MAXL=MAX(L,MAXL) $ COMMENT KEEP MAX LENGTH $ 
GO TO LOOP $ 

FOR L=1 STEP 1 U.'lTIL MAXL DO 
BEGIN 

READ(CO~(-L),I,ERR,NONE) $ 

WRITE(L,I) $ 

COMMENT WRITE NUMBER OF IDENTIFIERS OF LENGTH L $ 

RELEASE (CORE ( -L) ) 
NONE •. 

- ~21 -



FOR L=1 STEP 1 UNTIL K DO 
BEGIN 

READ(CORE(L) ,WORD,CNT) $ 

COMMENT READ EACH IDENTIFIER AND THE NUMBER OF ITS OCCURRENCES $ 
"WRITE (WORD, CNT) $ 
RELEASE(CORE(L),CORE(WORD)) 

END $ 
GO TO EXIT $ 

ERR.. WRITE('/-/-/-/ C 0 RE FAULT /-/-/-/ 1 ) $ 
EXIT •• 

- 222 -



APPENDIX VII 

FALTRAN - TRANSLATION FROM FORTRAN TO ALGOL 

The processor Faltran translates a Fortran source program into an Algol 

sou::-ce program. It allows the user to do any or all or the following 

operations sim~ltaneously (i.e., with a single call on Faltran): 

1) translate a Fortran maiuline program with or without internal subprograms; 

2) use correction cards to modify the Fortran program; 

3) enter the updated symbolic Fortran program in the user's program complex 

file; 

4) enter the resulting Algol symbolic in the user's PCF; 
5) include externally defined Fortran subprograms (after they have been 

translated) in ~he resulting symbolic Algol program. 

Fortran statements that present problems for translation into equivalent 

Algol symbolic are marked by the Faltran translater with error messages in the 

printed listing. These statements are discussed later in this appendix (see 

LIMITATIONS OF THE TRANSLATION PROCESS). 

THE FALTRAN PROCESSOR CARD 

The processor call card for Faltran when the input is from cards has 

the form 

~options~A~(element1 >,<element2>,<element3> 
and for input from drum the form is 

~options)l:Ji'AL,i:t:.<eiement 1 ),(element2),(element3> 
where (element1> has the form 

(namei>/<versioni)((cyclei)) 

and the op1ions are as follows: 

DESCRIPTION OPTION LETTER 

N Do not list the input Fortran or the translated Algol 

I Do not list the input Fortran 
0 Do not list the translated Algol 

x Abort the processor if an error is fcund 

- 223 -



(element1> is the name/version of the input Fortran element, (element2> 
is the name/version of the updated Fortran element that is entered into the 

complex, and (element3> is the name/version of the resulting Algol source 

program, which is: also entered into the complex. 

If it is desired to translate several subprograms and include them with 

a mainline program then an EOF card must follow the mainline program and this 

must be followed by a card of the form 

(element~,<element5> 

Here (elementi> has the same form as above, (element4> is the name/version 

of the inp~t Fortran subprogram and (element5> is the name/version of the 

updated Fortran program, which is entered into the program complex. 

If the main program, (element1>, is input from drum then (elementi> 

must also be on the drum. (element5> may be omitted if the updated Fortran 

subprogram is not to be saved on drum. Correction cards may be used on (element4>. 

It is assumed that normally these subprograms are compiled separately 

from the main program. After the last subprogram (or the main program if 

there are no separately compiled subprograms included) there must be a control 

card - any control card except an EOF card. or course, it is possible to in­

clude subprograms with the main program to be translated by Faltran, just as 

it is possible to include internal subprograms in a main program to be com­

piled by Fortran. 

LIMITATIONS OF THE TRANSLATION PROCESS 

Some Fortran statements are not translated at all by Faltran. 

Therefore, Faltran output should be scrutinized before attempting to run it 

through the Algol compiler. 

The main problem is FORMAT statements, which are never process~d by 

Faltran. The programmer must translate these according to the needs of his 

program. 

Other fe11tures of Fortran that must be handled by the user as he sees 

fit include Hollerith strings, DATA statements and BLOCK DATA programs. 

These present problems, the resolution of which is either impossible or in­

compatible with the goal of an efficient translator. 

- 224 -



EXAMPLES 

Example 1: 

Fortran 
source 
deck 

The updated Fortran symbolic is named B, the resulting Algol is named C, 

and both Band Care entered into the user's PCF. 

Example 2: 

PAL,*b.A,B,C 

correction {~ 
cards : . . 
The Fortran program named A is read from the user's PCF, the corrected version 

of A is entered into the PGF and named B, and the translated Algol is entered 

under the name C. 

Example 3: 

Fortran 
source 
deck 

7 
~AIL:A,B,C 

SUBROUTINE D 

END 

The mainline A and an internal subroutine D are translated into a single Algol 

program nameJ C. 

Example 4: 

Fortran 
source 
deck 

7 PAIL:A,B,C 

J: 
l: 

- 225 -



~OF 
D,E 

correction • 
cards 

The Fortran mainline A and the external subroutine D are together translated 

into the Algol symbolic named C. The updated version of D is entered into 

the complex under the name E. The symbolic for D must be in the user's PCF 

on drum when the Faltran is called. : 

- 226 -



APPENDIX VIII 

MACHINE- AND SYSTEM-DEPENDENT INTRINSIC FUNCTIONS AND PROCEDURES 

This appendix is devoted to intrinsic functions that are specific to the 

hardware of the Univac 1107, the Exec III operating system and the structure 

of the Alge: compiler and library. The interested reader is referred to the 

detailed documentation of each for relevant details. These functions were 

originally created to facilitate the writing of processors (e.g., compilers) 

in Algol. 

FIELD (<exp1>,<exp2>,<exp3>) 

The function may be written on either the left-hand or right-hand side 

of an assignment statement. On the right-hand side it allows the extraction 

of a specified bit field of an 1107 36-bit word. When written on the left it 

allows replacement of a bit field. 

In either c~se the word is designated by (exp1>, which may be of any 

type. (exp1) will not be converted unless it is a STRING expression, ~n 

which case the first six characters will be used. If the characters in the 

string number is less than six they will be right-justified and master-space 
filled before the FIELD operation takes place. 

The expression (exp2> denotes the starting bit of the field (bits are 

numbered 1 to 36, left to right, across the word) and (exp3) denotes the 

number of bits in the field. Both (exp2> and (exp3> may be of type INTEGER, 

REAL, REAL2, or STRING and will be converted to integers if necessary. If 

<exp3> is omitted from the call, the length is taken to be one bit and if 

both <exp2> and <exp3> are omitted the starting position will be bit 1 and 

the length 36 bits (i.e., the entire 1107 word at the address specified by 

<exp1> is used.) 

When FIELD is used on the left of an assignment statement orily the 

part of the word determined by (exp2) and <exp3> is affected and if (exp1> 

denotes a STRING a maximum of six characters may be replaced. 

Multiple replacement statements involving FIELD are undefined (e.g., 

FIELD(F,1,5) = FIELD(6,32) = FIELD(S(I)), 

The FIELD function is undefined for these values of the parameter 3 : 

- 227 -



(exp2'> ::: U; (exp3> = O; (exp2) )36; (exp3) ) 37 - (exp2>. 

The values of (exp2) and (exp3) are not checked at execution time. 

FIELDS (<exp1>,<exp2>,<exp3>) 

The arguments of FIELDS have the same meaning as those of the FIELD 

function except that if <exp1) is of type STRING only, the FIELDS function 

acts upon the string descriptor rather than the characters in the string. 

DSC ( <e'xp1), (exp2>) "Double Shift Circular" 

DSA ((exp1),(exp2>) "Double Shift Arithmetic" 

DSL (<exp1),(exp2>) "Double Shift Logical" 

SSC (<exp1),(exp2>) "Single Shift Circular" 

SSA (<exp1>,<exp2)) "Single Shift Arithmetic" 

SSL ( (exp1>1.<eXJ1i>) "Single Shift Logical" 

Each of these functions is based on the Sleuth instruction whose mnemonic 

is the same as the function name. The variable specified by (exp1) is loaded 

into register A2 (A2,A3 for two word variables) and a shift of (exp2> places is 

performed on A2. Then the contents of A2 (A2,A3) is stored according to the 

Algol statement. 

MEMORY ((exp)J 

PARTBL (<exp)) 

MCR ((exp)) 

" core memory" 

"parameter table"· 

"monitor communications region" 

These functions may be used to store into or load from any word of core 

memory that Exec III does not regard as sacred. 

The MEMORY function retrieves or stores into the word of core denoted 

by (exp>. The PA~TBL function serves the same purpose except that the starting 

address of the ::xec parameter table is added to (exp) to form an effective 

address. The !:L:R function is similar to the PARTBL function except that the 

starting addres 1 of the Exec Monitor Communications Region is added to (exp) 

to form an effe :tive address. 

The reade:· is referred to the most recent Exec documentation for the 

addresses of core that may be accessed without interference by the Exec and 

the significanc~ of those locations. 

- 228 -



EXIT 

EXITNORMAL 

~XI TERROR 

EXITABORT 

Any of these four :~ntrinl!lic procedures may be called at any point in 

an Algol program to cause a jump to an Exec entry point. None of them re­

quires a parameter. 

The functions EXIT and EXITNORMAL are identical in their effect, 

which is to cause a 

J MEXIT$ 

to b& executed. 

EXITERROR causes a 

J MERRt 

to be executed. 

EXITABORT causes a 

J MXXXt 
to be executed. 

If the Algol J-option is in effect then the jumps will be made to the 

corresponding processor exits. It should be noted that the usual program 

termination action provided by the Algol library is circumvented when these 

special exit functions are invoked. 

PARITYEVEN((arith exp)) 

PARITYODD((arith exp)) 

These functions have BOOLEAN results and before they are evaluated the 

parameter is converted to type INTEGER if it is not already of that type. 

The result of PARITYEVEN is TRUE.if the 1107 internal representation 

of the parameter has an even.number of bits, and FALSE otherwise. The function 

PARITYODD has a value of TRUE in case of odd parity, FALSE otherwise. 

- 229 -



APPENDIX IX 

A CULL FOR USE WITH ALGOL PROGRAMS 

The processor called Alcull produces a sorted list of the occur­

rences, by block number and card number, of all identifiers defined in an 

Algol program, as well as all reserved words used in the program. A listing 

of the Algol program may also be printed if desired. 

The card number on which an identifier is defined is denoted by an 

asterisk and appears first in the list for that identifier, even though, in 

the case of a label, it may not be the first card on which the identifier is 

used. 

ANYIO 

ANY OUT 

ARRAY 

An example of the output is the following: 

BOOLEAN 

1: 170* 1940 

4: 
5: 

OWN BOOLEAN 

303* 

322 

307 

RESERVED WORD 

1: 175 178 

2767 2769 

334 341 366 374 

The BOOLEAN variable ANYIO was defined in block 1 on card 170 and 

referenced on cards 1940, 2767 and 2769. The OWN BOOLEAN variable ANYOUT 

was defined in block 4 on card 303 and referenced on card 322 in block 5, 

among others. The reserved word ARRAY was used in block 1 on cards 175 and 

178. 

The processor card for Alcull has the fonn 

t:options)6ALC 

if the input is from cards. If the input is from the drum then the processor 

card is 

~options)6ALC,*L::.(element name-version-cy~le). 

- 230 -



The relevant options for Alcull are 

F - scan all 80 columns 

N - do not list the input program 

Best results are obtained when culling syntactically correct Algol 

programs. 

- 231 -



APPENDIX X 

CATHODE RAY TUBE (CRT) PROCEDURES FOR ALGOL PROGRAMS 

Procedures are available to display pictures on the CRT. These procedures 

must be CURred in from tape when needed. 

Coordinates 

The CRT display area is a square with the following coordinate system: 

(-255,255) ~ +y (255, 255) 

+x _,,., 
~ 

(-255,-255) (255, -255) 

THE DISPLAY PROCEDURE 

The DISPLAY procedure has the five forms: 

FIRST FORM: DISPLAY((time),(display items)) 

Here (time) is the time, in secondf, that the picture is to stay on the 

screen. It is an INTEGER1 REAL, or REAL2 expression, and must be within the 

limits 1/60 sec LEQ (time) LEQ 1 hour. 

(display items) is a series of (item>'s which describe the picture. 

Each (item) is a series of two, three or four parameters as described below: 

(1) The group of parameters 

(string exp),(coordinates) 

will display the string with the leftmost character at the coordinates given. 

Only that part of the string which is in the display area will be displayed. 

· (coordinates) are either (a) two INTEGER, REAL or REAL2 expressions 

giving the abscissa and ordinate, respectively, or (b) a single COMPLEX ex­

pression whose real and imaginary parts give the abscissa and ordinate, 

respectively. 

( 2) Th<3 group 

(coordinates1),(coordinates2> 
will display a straight line segment from (coordinates1> to (coordinates2>. 

- 232 -



Only that part of the segment which is in the display area will be display~d. 

Display items may be generated by simple or generative lists, or by 

calls on special procedures to be described later. 

The DISPLAY procedure, when ~alled by the first form, will edit the 

time and items into a 500~word core buffer, start the picture, and return 

to the main program. 

SECOND FORM: DISPLAY ((integer array),(display items)) 

where (display items) are as before and (integer array) is one-dimensional. 

The DISPLAY routine will edit the items into CRT output data and put them. 

into (integer array). If (integer array) already contains such data, the 

new data will be added at the end. The first element of (integer array) 

(lowest subscript) contains the data count (so it should be initialized to 

zero), and subsequent elements contain the data. No picture is displayed. 

THIRD FORM: DISPLAY ((time),(integer array)) 

will display the data edited into (integer array) by the second form. 

FOURTH FORM: DISPLAY ((time)) 

This is essentially the first form with no (display items). It will display 

a blank screen for the time given. 

FIFTH FORM: DISPLAY 

This should be programmed at the end of the Algol program. Nothing is 

displayed, but the routine waits until the previous pict1lre is done before 

continuing. 

Declaring external procedures 

The identifier DISPLAY is recognized by the compiler without being 

defined. However, all the procedures described below must be defined by the 

following declarations: 

EXTERNAV..PROCEDURE DABORT, DEOF, DINPUT, DERR $ 
EXTERNAL INTEGER PROCEDURE BROKEN, SIML $ 

EXTERNAL SLEUTH INTEGER PROCEDURE ARC, LETTER $ 

ABORTING A PICTURE 

FROM THE CONSOLE. To abort a picture from the console, turn selective 

- 233 -



jump #4 on and then off. The picture will vanish and the next picture (if 

' any) will begin. 

FROM THE PROGRAM. To abort a picture from the program, simply execute 

the procedure call: 

DABORT (no parameters) 

ABORTING A SERIES OF PICTURES 

To abort a series of pictures, put the procedure call 

DEOF ((label)) 

at the appropriate place in or after the series. Then while the series is 

visible on the CRT, turn selective jump #5 on. This aborts every picture 

until the above procecure call is encountered. Then control hangs in a tight 

loop until selective jump #5 is turned off. Then transfer is made to (label) 

or, if (label) is omitted, to the next statement. 

EXAMPLE: 

BROKEN LINES 

COMMENT ROTATING LINE $ 
INTEGER I $ REAL A $ 

EXTERNAL PROCEDURE DEOF $ 
LOCAL LABEL L $ 
A = 0 $ 
FOR I = 1 STEP 1 UNTIL 15*60 DO BEGIN -- --- ---

DISPLAY ( 1 .15 ,-1 OO*COS(A) ,-100l'SIN(A) ' 1 oo:*COS (A)' 100l'SIN(A)) $ 

A = A + 0.05 $ 

DEOF(L) END $ 

L •• 

If the procedure call 

BROKEN ((coordinates1),(coordinates2>, ... ,(coordinatesN)) 

is passed as a display item.to DISPLAY, it will generate the proper items to 

draw a broken (polygonal) line from (coordinates1> to (coordinates2> to ••• to 

(coordinatesN). Coordinates may be generated by simple or generative lists. 

The BROKEN p~ocedure, therefore, shortens notation by eliminating the need 

for repeating coordinates of interior points. 

EXAMPLE: 

COMMENT A HUGE LETTER "S" $ 
DISPLAY ( 60.0, BROKEN ( 50,100, -50,100, -50,0, 50,0, 

50,-100, -50,-100 ) 

- 234 -



ARCS 

The procedure call 

ARC (<coordinates),(radius),(angle1),(angle2),(integer exp)) 

generates an approximation to an arc of radius (radius) about the point 

(coordinates) from (angle1) to (angle2>, using (integer exp) chords. Here 

(radihs) is an INTEGER, REAL or REAL2 expression and (angle,-> and (angle2> 
are INTEGER, REAL or REAL2 expressions in units of degrees. 

BLOCK LETTERING 

The procedure call 

LETTER ((coordinates),<cix),~),(kind),(string exp)) 

will generate the appropriate line segments to display the (string exp) in 

block letters. Here (coordinates are the coordinates of the lower left corner 

of the first letter, and <fsx.) and <l::iy) are two INTEGER, REAL or REAL2 ex­

pressions giving the components of a vector whose length ~b.:x.2~2 ) is the 

height of the lettering and whose direction in the direction of the lettering. 

If (.Ay) is omitted, it is presumed to be zero, giving horizontal lettering of 

height <fsx.). (kind) is a three-digit integer which determines the kind of 

lettering used, according to the following scheme: 

hundreds 

0 = Roman 

1 = Greek 

tens 

0 = 

1 = 

2 = 

3 = 

capital 

small 

slant capital 

slant small 

units 

0 = regular 

1 = superscript 

2 = subscript 

At present the only (kind)'s. which work are 010 and 000, or Roman small 

regular and Roman capital regular, respectively. 

The (string expression) is the string to be edited to bloc~ letters. 

All capital characters except a few will be displayed in block form which is 

much like the printed form. Small characters other than letters will, for 

the most part, be the same as capitals, but the spacing will be closer. 

However, a dollar sign in a Roman small regular ((kind)=10) string will be 

skipped and the next character will be made capital. The character after 

that will be again small. 

- 235 -



The parameters may end with the first string, or additional groups of 

parameters of the form 

<changes>,<string exp) 

may be added. Here <string exp) is a continuation of the previous string 

and <changes) are the changes in the editing p~ocess. These <changes) have 

three forms: 

FIRST FOR.M: <coordinates) 

Here (coordinates> are two INTEGER, REAL or REAL2 variables or a single COMFL.E 

variable (not an expression or constant). The coordinates of the lower left­

hand corner of the next character are stored into these variables. Then edit­

ing continues as before. 

SECOND FORM: <kind) 

Here <kind) is the new kind under which the new string is to be edited. 

THIRD FORM: <coordinates),<kind) 

This combines the effects of the first two forms. 

EXAMPLE: The procedure call 

DISPLAY ( 68, LETTER ( -208.0,0,20,20,10, '$THE', X1,Y1 ,30, 
1·~ $TITANIC', X2,Y2 ), X1+10,Y1-10, X2+10,Y2-10) 

will display the picture: 

THE TITANIC 

Ert.ROR MESSAGES 

If the DISPLAY procedure cannot partition its arguments properly into 

items, the error message IMPROPER NUMBER OF PARAMETERS TO DISPLAY will result. 

If the core buffer capacity is exceeded, the message TOO MANY ITEM3 IN DISPLAj 

will result. Other messages are self-explanatory. 

If a run-time error oc~urs while a picture is in process, the error 

message will be lost and the registers will be dumped twice. To prevent this, 

the procedure call 

DERR (no parameters) 

should be made at the beginning of a program being debugged. This procedure 

will overstore the error routine with instructions which cause it to wait 

until the current picture is finished. Then the error message and line numbeI 

- 236 -



will be printed out normally. 

INTERROGATION OF CRT SWITCHES FROM ALGOL 

The switches on the CRT may be interrogated in al Alrol program by 

using the library function named CRTSW. The result of CRTS~ is of type 

BOOLEAN. 

The call on CRT3W has the form 

CRTSW ((integer exp)) 

where the value of (integer exp) specifies the number of the switch to be 

interrogated (the switches are numbered from one to eighteen). If the 

indicated switch is UP and the black button is pressed, the value of CRTSW 

is TRUE, otherwise the value is FALSE. 

- 237 -



APPENDIX XI 

CHARACTER DEFINITIONS FOR THE 1107 

Octal Symbol Card 1004 HSP Console 
Code Code 600 lpm Printer 

00 M.S. 7-8 @ Space M.S. 
01 u.c. 12-5-8 1 Space u.c. 
02 L.C. 11-5-8 Space L.C. 
03 L. F •1 12-7-8 II Space L.F. 
04 C.R. 11-7-8 /;:. Space C.R. 
05 Space Blank Space Space Space 
06 A 12-1 A A A 
07 B 12-2 B B B 
10 c 12-3 c c c 
11 D 12-4 D D D 
12 E 12-5 E E E 
13 F 12-6 F F F 
14 G 12-7 G G G 
15 H 12-8 H H H 
16 I 12-9 I I I 
17 J 11-1 J J J 
20 K 11-2 K K K 
21 L 11-3 L L L 
22 M 11-4 M M M 
23 N 11-5 N N N 
24 0 11-6 0 0 0 
25 p 11-7 p p p 
26 Q 11-8 Q Q Q 
27 R 11-9 R R R 
30 s 0-2 s s s 
31 T 0-3 T T T 
32 u 0-4 u u u 
33 v 0-5 v v v 
34 w 0-6 w w w 
35 x 0-7 x x x 
36 y 0-8 y y y 
37 z 0-9 z z z 

NOTE: The offline 1004 follows the above table. However, under Exec III, 
when the 1004 is on line, the characters 11@11 and "D." are interchanged. 

- 238 -

1090 
CRT 

6 ,.. 

.t 
Space 
A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K. 

L 
M 
N 
0 
p 
Q 
R 
s 
T 
u 
v 
w 
x 
y 
z 



Octal Symbol Card 1004 HSF Console 1090 
Code Code 600 lpm Printer CRT 

40 12-4-8 
'41 11 
42 + 12 + + + + 
43 < 12-6-8 < < < < 
44 = 3-8 = = = = 
45 > 6-8 > > > > 
46 2-8 & & & 
47 T 11-3-8 $ $ T $ 
50 * 11-4-8 * * * i~ 

51 ( 0-4-8 ( ( ( ( 
52 II 0-5-8 % Space II II 

53 5-8 
54 ? 12-0 ? Space ? ? 
55 11-0 Space 
56 ' 0-3-8 

~ ' ' ' 57 Stop 'J-6-8 Space @ % 
60 0 0 0 0 0 0 
61 1 1 1 1 1 
62 2 2 2 2 2 2 
63 3 3 3 3 3 3 
64 4 4 4 4 4 4 
65 5 5 5 5 5 5 
66 6 6 6 6 6 6 
67 7 7 7 7 7 7 
70 8 8 8 8 8 8 
71 9 9 9 9 g 9 
72 4-8 
73 ; 11-6-8 ; Space ; . 

' 74 I 0-1 I I I I 
75 12-3-8 . . 
76 Special 0-7-8 D Sp9.ce 0 D 
77 Idle 0-2-8 -f Stop (N.P.) t t 

- 239 -



ABS function, 71 

ALG card , 1 72 

Alphabetic characters, 77 

ALPHABETIC function, 78 

ARG function, 78 

I ND E X 

Arithmetic assignment statement3, 36 

Arithmetic expressions, 27 

Arithme:.ic relations, 29 

ARRAY declaration, 42 

Assigrunent statement, 35 

Basic symbols, 14 

~3lock BorJ.y, 1 28 

B~ock definition, 129 

Sl::i2k head, 128 

Block level, 149 

Block 1 storage, 46 

Block, entering and leaving, 131 

BOOLEAN assignment statements, 38 

BOOLEAN constants, 25 

BOOLEAN expressions, 31 

BOOLEAN operations, 31 

BOOLEAN quantities, 29 

Card punching rules, 11 

CARDS device, 1 06 

CARDS procedure, 112 

C~-IAIN procedure, 78 

CHANGEKEY procedure, 209 

CHAR procedure, 208 

Character de~initions, 
fieldata code, 239 

Character forced into string, EO 

Character set, 18 

CLOCK function, 72 

CLQK function, 72 

CLOSE procedure, 216 

COMMENT, 49 

Compiler, 1 2 

COMPLEX constants, 24 

COMPLEX f~nction, 78 

Compound statements, 39 

Copy rule, 1 41 

CORE device, 219 

COREMAX function, 78 

CORETOTAL function, 78 

CRTSW fu.nction, 237 

Cull for Algol programs, 230 

Data cards, "173 

DATE function, 79 

Declarations of type, 41 

DEFINE de clara ti on, 46, 1 84 

Definite repeat in format, 15 

Desi~national expressio~s, 32 

Deviations from Algol 1:0, 13 

Diagnostic procedures, 1f5 

Diagnostics, compiler, 1l3 

DIMENSIONS fu~ction, 72 

DISPLAY procedure, 232 

Double precisio~ constants, 24 

gPARAM procedure, ?09 

DRUM as a parameter tc READ, 125 

DRUM as s. parameter tc WRITE, 1 25 

DRUM device, 123 

DRUM procedure, 127 

Drum simulat8d tapes, 1 14 

D3A function, 228 



DSC function, 228 

DSL function, 228 

DUMP statement, 165 

EDIT device, 218 

Embedded space, 25 

ENTIER function, 79 

EOF card, 173 

EOF procedure, 127 

EOI procedure, 127 

Error messages, compiler, 149 

Error messages, library, 150 

ERROR procedure, 168 

ERRORTRAP procedure, 167 

Evaluated procedures, 25 

E'JEN f·,mction, 72 

Exec control cards, 171 

EXIT procedure, 229 

EXITABORT procedure, 229 

EXITERROR procedure, 229 

EXITNORMAL procedure, 229 

Extensions to Algol 60, 14 

External Fortran procedure, 180 

External procedure calls, 146 

External procedure declaration, 144 

External procedures, 144 

External references, 146 

External Sleuth procedure, 179 

Faltran, 223 

FIELD f J.:.~ction, 227 

Fieldata code, 239 

FIELDS funcV.on, 228 

F2.l~, 

FORCETYPE procedure, 217 

Formal parameters, 137 

FORMAT declaration, 88 

FORMAT function, 112 

Format phrases, 90 

FORMAT procedure, 98 

Formats used with READ, 1 01 

Formats used with WRITE, 98 

Formatted output on the plotter, 210 

Forward reference, 48 

Free format with cards, 107 

Functional procedures, 140 

General problem solver, 143 

Generalized as.3ignment statem9nt, JS 

Generalized variable declaration, 18 

Generalized variable operations, 186 

Generalized variable transfer 
functions, 190 

Global identifiers, 131 

GO TO statement, 50 

Grammar of Statements, 39 

HEADING procedure, 79, 110, 112 

Hierarchy of arithmetic 
operations, 10, 27 

Hierarchy of boolean operations, 32 

Identifiers, 9, 19 

IF statement, 51 

IMAG function, 80 

Implied format with PRINTER, 109 

Implied format with PPNCH, 111 

Indefinite repeat in format, 97 

Input deck, sample, 173 

Input devices, 85 



Input/output units, 1 14 

INTEGER constants, 22 

lNl'EC~EH. function, ~O 

J N'l'Ei\LIJCK procedure, 1 ')•'• ...... ' 

INTRANDOM function, 80, 83 

Intrinsic functions, 71 

Jumps in and out of FOR statements, 59 

KEY procedure, 127 

KEYCOUNT procedure, 209 

Labels, 40 

Labels as parameters to READ, 86, 118 

Labels as parameters to WRITE, 87, 116 

LENGTH function, 72 

Library functions, 75 

LISI declaration, 104 

LOCAL declaration, 48 

Local identifiers, 131 

LOWEnBOUND function, 80 

LSJ:' card, 174 

MARGIN procedure, 110, 112 

MGR function, 228 

MEMORY function, 228 

MERGE procedure, 195 

MOD function, 73 

Vode of expressions 
and relatio~s, 33 

V)difie:r-s, 117 

M07E procedure, 208 

:?.1.rr?J..?-':: proci:d ure, 209 

::or:-rec·1rsi·r~ library procedures, 76 

:T~..unb~r:'...ng of >tr inf! characters, 62 

Numeric characters, 77 

NUMERIC funC'tion, RO 

Object prorram, 1~ 

ODD function, 73 

Q~TION function, 80 

OWN declaration, 46 

OWN variables, 132, 146 

PAPER procedure, 110, 112 

Parameter correspondence, 140 

Parentheses in source statements, 10 

PARITYEVEN function, 229 

PARITYODD function, 229 

f ARTBL function, 228 

PCF device, 213 

PCFELr procedure, 216, 

PCH card, 17~ 

PLOT proc2dure, 207 

Plotter character form, 212 

Plotter parasite, 205 

Plotter, Calcomp, 204 

Pool, 194 

POSITION procedure, 121 

Predefined identifiers, ~77 

Predefined identifiers 
string declarations, 

PRINTER device, 109 

PRINTER procedure, 112 

Proc.=dure block, 134 

Procedure call, 140 

Procedure declaration, 

PUNCH device, 111 

PUNCH procedure, 112 

Quantities, 20 

RANDOM function, 81, 83 

in 
t: 1 

11 I _, ..... 



RAN~ declaration, 66 

RANK function, 68, 80, 81 

READ procedure, 85 

REAL constants, 23 

REAL function, 81 

REAL2 constants, 24 

REAL2 function, 81 

Recursiva library procedures, 75 

Recursive procedure calls, 142 

Relational operator, 29 

RELEASE procedure, 219 

Reserved words, 176 

REWIND procedure, 122 

RUN card, 1 71 

SCALE procedure, 205 

SC'.IAR procddure, 2og 

SETRANK procedure, 67 

SIGN function, 73 

SLIP deyice, 213 

SORT procedure, 195 

SORT.KEY, 194 

s~urce card form, 9 

Source program, 12 

Specification of parameters, 136 

Speed of drum and tape 
input/output, 126 

SSA function, 228 

SSC function, 228 

SSL function, 228 

Standard ma~hematical procedures, 76 

Statement hbel, 40 

STOP procec~re, 208 

STRING ARRAY declaration, 44, 63 

String arrny subscripts, 63 

String assignment statements, 36, 65 

String comparisons, 66 

STRIN~ constants, 25, 60 

STRING declaration, 43, 61 

STRING function, 82 

String quantities, 60 

String replacements, 37, 65 

String variables, 62 

Strings in arithmetic expressions, r 
Strings in relations, 30, bf 

Structured variables, 181 

SWITCH declaration, 47 

TAPE device, 113 

Tape forms. t, 11 5 

Tape input, 118 

Tape output, 116 

TAPE procedure, 127 

TRACE options, 168 

TRANSFER procedure, 195 

UPPERBOUND function, 82 

VALUE parameters, 135, 139 

Variable repeat in format, 9~ 

Variables, 21 

WRITE procedure, 87 

XQT card, 1 72 


