Report No. 1099

AN EXTENDED ALGOL 60 COMPILER
for the

UNIVAC 1108

STAFF

Andrew R. Jennings Computing Center

Case Western Reserve University

April 1968

PREFACE

This manual is intended to be a definitive user's guide to an Algol 60
compiler that has had five years' extensive development and use in the Andrew
R. Jennings Computing Center at Case Western Reserve University. 1In the
initial design stages it was decided to have the compiler adhere as close
to the "Revised Report on the Algorithmic Language Algol 60" as possible
without at the same time excluding the possibilities of =xtending the language
for the user's benefit. Thus, the reader will discover that substantial
additions have been made to the language (e.g. a sort/merge facility) while
very few deviations have been made from the formal report. He will also note
that quite comprehensive and understandable run-time diagnostics have been
included in this impleﬁentation.

Naturally both the program and this document itself are the end products
of the efforts of many people —- in particular we single out Mr. Paul Meiland
who "volunteered" to produce this manual. Following is an alphabetical list
of those who have had major responsibilities in creating the program and/or

thz manual:
David Abt

H. Lynn Beus
Martin Charns
John Dedourek
Stan Eisenstadt
Gilbert Hansen
- George Haynam
Nicholas Hubacker
Robert Ladner
W. C. Lynch
John Massie
Paul Meiland
Julius Nadas
Frank J. Olynyk
Sharon Sanford
David Santich
Jon Shomer

Joseph Speroni

Truth Walkey
Kenneth Walter
Frederick Way
James Wilt
Five Thousand Users
In summary, any criticisms, complaints and/or objections to this work
should be directed to Prof. F. Way, III, Associate Director, Computing Center --
while any complimentary remarks, praises and/or general enthusiasm should be
directed to any of the individuals on the above list.
This work was supported in part by National Science Foundation
(NSF GP-642).

GENERAL

CHAPTER

CHAPTER

CHAPTER

TABLE OF CONTENTS

INTRODUCTION

I - INTRODUCTION
Basic Symbols

IT - ELEMENTS OF THE COMPILER LANGUAGE
Characters
Metalinguistic Symbols
Identifiers

Quantities

Variables

INTEGER Constants
REAL Constants

REAL2 Constants
COMPLEX Constants
BOOLEAN Constants
STRING Constants

Evaluated Procedures

III - EXPRESSIONS

Arithmetic Expressions

Strings in Arithmetic Expressions
Boolean Quantities

Relational Operators

Strings in Relations

Boolean Operations

Construction of Boolean Expressions
Precasdence of Boolean Operations
Designational Expressions

Arithmetic Expressions and Boolean Relations

ii

12
14

18
18
19
19
20
21
22
23
24
24
25
25
25

27
27
29
29
29
30
31
3
32
32
33

CHAPTER

CHAPTER

CHAPTER

CHAPTER

IV - STATEMENTS

The Assignment Statement
Arithmetic Assignment Statements
String Assignment Statements
Boolean Assignment Statements
Generalized Assignment Statements
The Grammar of Statements
Compound Statements

Statement Labels

V - BASIC DECLARATIONS
Declarations of Type

The ARRAY Declaration
Construction of ARRAY Declarations
The STRING D=sclaration
Construction of STRING Declarations
The STRING ARRAY Declaration

The OWN Dsclaration

The DEFINE Declaration

The SWITCH Declaration

The LOCAL Declaration

The COMMENT

VI - CONTROL STATEMENTS

Unconditional Control Statements
Conditional Control Statements

The IF Statement

The Alternative Form of the IF Statement
The FOR Statement

Jumps In and Out of FOR Statements

VII - STRINGS

STRING Quantities

STRING Constants

The STRING Declaration

Predefined Identifiers in STRING Declarations

iii

35
35
36
36
38
38
39
39
40

41
41

42
43
43
44
46
46
47
48
49

50
50
51
51
52
53
59

60
60
60
61
61

CHAPTER

CHAPTER

STRING Variables

The STRING ARRAY Declaration
Strings in Arithmetic Expressions
STRING Assignment Statements

Strings in Relations
The RANK Declaration
The SETRANK Procedure
The RANK Procedure

A Word of Caution Concerning
String Procedures

VIII - ALGOL LIBRARY

Intrinsic Functions

Table of Intrinsic Functions
Library Functions

Recursive Library Procedures
Non-recursive Library Procedures
Standard Mathematical Procsdures
Special Procedures

The RANDOM Function

The INTRANDOM Function

IX - INPUT/OUTPUT - CARDS, PRINTER, PUNCH
The READ Procedure

The WRITE Procedure

The FORMAT Declaration

Format Phrases

Repeated Format Expressions

Definite Repeat

Variable Repeat

Indefinite Repeat

The FORMAT Procedure

General Remarks on Formats Used with WRITE
General Remarks on Formats Used with READ
The LIST Declaration

The CARDS Device

Free Format with CARDS

The PRINTER Device

iv

62
63
65
65
66
66
67
68

69

71
71
73
75
75
76
76
77
83
83

85
85
87
88
90
95
95
96
97
98
98
101
104
106
107
109

CHAPTER

CHAPTER

CHAPTER

Auxiliary Procedures to Control PRINTER
The PUNCH Device

Library Procedures for Card, Printer
and Punch I/0

X - INPUT/OUTPUT - TAPE, DRUM

The TAPE Device

Drum Simulated Tapes

Details of Tape Format

Output to Tape

Modifiers

Input from Tape

The POSITION Procedure

The REWIND Procedure

The DRUM Device

DRUM as a Parameter to READ

DRUM as a Parameter to WRITE

Speed of Drum and Tape Input/Output
Library Procedures for Tape and Drum I/0

XI - BLOCKS

Blocks

Block Format

Defining a Block

Local and Global Identifiers

XIT - PROCEDURES

The Procedure Block

The PROCEDURE Declaration
The VALUE Part

The Specification 'Part
VALUE and Name Parameters
Functional Procedures

The Procedure Call

" Copy Rule

Recursive Procedure Calls

General Problem Solver

110
111

112

113
113
114
115
116
17
118
121
122
123
125
125
126
127

128
128
128
129
131

134
134
134
135
136
139
140
140
141
142
143

Library Procedures
External Procedures
EXTERNAL PROCEDURE Declaration

Externhl Procedure Calls

External References

CHAPTER XIII - THE DIAGNOSTIC SYSTEM

CHAPTER

APPENDI

n

Compiler Diagnostics
Compiler Error Messages

Error Messages at Execution Time

Error Numbers for Library Error Messages

Diagnostic Procedures
The DUMP Statement

The ERRORTRAP Procedure
The ERROR Procedure
TRACE Options

XIV - USING ALGOL UNDER EXEC III
Exec Control Cards

The RUN Card

The ALG Card

The XQT Card

Data Cards and the EOF Card

The FIN Card

Sample Input Deck

The LST and PCH Cards

The Complex Utility Routine

X I - SPECIAL IDENTIFIERS
II

WRITING ALGOL PROCEDURES IN SLEUTH

EDIT,

IIT - GENERALIZED VARIABLES AND THE
DEFINE DECLARATION
IV - SORT-MERGE PACKAGE
V - PLOTTER ROUTINES
VI - SPECIAL INPUT/OUTPUT DEVICES:
CORE, PCF, SLIP
VITI - FALTRAN: TRANSLATION FROM FORTRAN

TO ALGOL

vi

144
144
144
146
146

148
148
149
150
164
165
165
167
168
168

17
171
171
172
172
173
173
173
174
175

176
179

183
193
204

213

223

APPENDIX VIII

MACHINE- AND SYSTEM-DEPENDENT
INTRINSIC FUNCTIONS AND PROCEDURES

A CULL FOR USE WITH ALGOL PROGRAMS

CATHODE RAY TYPE (CRT) PROCEDURES
FOR ALGOL PROGRAMS

CHARACTER DEFINITIONS FOR THE 1107

vii

GENERAL INTRODUCTION

The first part of this manual is intended to give an introduction to
the uninitiated into th= process of using a computer to solve problems. No
assumptions will be made about "mathematical maturity" and no knowledge
about computers will belassumed of the reader. The really difficult part of
explaining a problem solution process to a computer is that one must be able
to make the explanation in such a way that a person (or the computer) who is
totally unfamiliar with the problem will be able to follow your recipe
exactly and obtain the desired results. One device for exhibiting recipes
to either computers or other people is to draw flow charts. Again, ths
read=r is cautionsd that the really difficult part of using the computer
will usually turn out to be the construction of a valid flow chart for ths
problem. '

EXAMPLE: Suppose we want to write down a set of instructionsvfor
someons to follow in order to solve the following problem:

Given numerical values of A, B, C find the numerical value

of X which satisfies the equation

Ax2 + Bx+C=20.

At this point the reader yawns and says ths solution is obvious,

namely

B+ YB% - JAc

x = - .
24

As it turns out, this is NOT a solution to the problem we are considering!

Why not? Because we were supposad to write down a set of instructions for
solving th= problem and the recipe above will not be of any use at all unless
the person reading ths recipe has already done some problems like uhis, has
used this recipe, and understood what was behind it. This set of requirements
is asking a little too much from any computer. Thsy will all have already
solved this type of problem, but it is very unlikely that any of tiem under-

stood what ttey were doing!

-1 -

One simple method of making sure that we get the results desired is to
admit at the outset that the computer is not particularly bright, but is quite
rapid. Therefore we will supply it with all sorts of advice and instructions
and let it proceed on its stupid but rapid way to the problem solution. For
the problem at hand we know that a solution consists of two roots. However
the specification of a root involves both a real part and an imaginary part.'
Therefore we must recognize that a complete set of answers requires writing
down four real numbers.

At this point the reader is urged to examine Figure 1. Begin at the
place labeled START and follow the arrows. You should be able to convince
yourself that no matter what values of A, B, C are used that this flow chart
will take care of the situation.

If we can construct such a flow chart for any particular problem, then
the process of using the computer to solve the problem is fairly trivial. All
we need do at this point is to tell the computer what the flow chart looks like
and set it to work. Thé purpose of the first part of this manual is to de-
scribe a rather elegant (and not too complicated) method for telling the
computer what the flow chart looks like. In other words we translate the
flow chart into some other language which the computer will understand (not
really understand, but at least accept). The language at hand is ALGOL-60.

The next batch of information will be much easier to understand if thes
reader will arm himself with a pencil and scratch paper and follow directions!

All of the instructions and advice which ws are about to give the
computer must be written using only the capital letters of the English alphabet,
the ten decimal digits and some assorted punctuation marks. In addition there
are some words and abbreviations which have special meaning to the computer and
may ' NOT be used for any use other than what the computer thinks they are
supposed to mean. Any time such a special word is used in this manual it will
be underlined to call to your attention that this is a RESERVED WORD. The
input to the computer will NOT be underlined, but the machine already knows
all of the reserved words and will not make mistakes with them.

Keeping an eye on the flow chart we now start writing a program:

The reader s advised to write the program on his scratch pad as we go.

First progrsm line:
COMMENT THIS IS A QUADRATIC EQUATION SOLVER EXAMPLE $

-2 -

FLOW CHART for solution of AX~ 4 BX + C = 0

Read in and
print out
A, B, C

2
DISC € B™ - 4AC

Print
equation'
solution is
-C/B

'linear

11

Absurd problem
specification

Any value of

X will do =>%;
A . .
Tac ~ INIRUE
FALSE
5 8
RX1€ (-E+/DISC)/2 T —B/oh
IX1€0
— X1&4/-DISC/2A
FX2€ (-B+/DISC)/2 §x2:iﬁx1l /2
IX2€ 0 IX24 TX1
é é
Print out values
of RX", IX*, RX2,
1X2 >

Note that the word COMMENT is underlined, i.e. it is a reserved word. The
computer will ignore any characters to the right of the word COMMENT until
it encounters a dollar sign. The reason for including COMMENT in the
language is so that the human will have a chance to see what is going on
in the progranm, no§ only while he is writing it, but six months later when
he once again comeé across it.

Box 1 in the flow chart says to obtain and record values for A, B, C.
Next program line:
READ(A,B,C) $

Again note the underlined word READ; it has a special meaning. The A,B,C
mean that the computer is to read in a card and accept the first three numer-

ical values on the card as being the values for A,B,C respectively,
Next program line:
WRITE('QUADRATIC EQUATION WITH A, B, C RESPECTIVELY, ',A,B,C) §

The lines of program are punched on cards exactly as shown -- including
everything, spaces, punctuation marks and all -- especially the dollar sign!
The line which we have just written will cause the computer to print out the
message included between the quotation marks, followed by the three numerical

values which it read in from the data card.

We are now at Box 2 in the flow chart. Notice that it effectively says that
if A is not equal to zero we should go to Box 3.

Next program line:
IF A NEQ O THEN GO TO B3 $

The only non-obvious part of this line is just what B3 is supposed to mean.

We will take zare of this when we get to the places where Box 3 is uactually
used in the program. Now the reader may well be a little curious about what
happens if the proposition " A NEQ O " is NOT true. In this case ths computer
SKIPS the instruction which says " GO TO B3 ", and goes on in the program to
see what to do next. In this flow chart Box 7 comes next in the case where
"ANEQ O" is false (i,e. A is equal to zero).

-4 -

Next program line:
IF B NEQ O THEN GO TO B9 $

Applying the same reasoning as used in the las% paragraph we sse that there
is nothing particularly complicated about what the computer action will be

in either case (i.e. the cases where 1. " B NEQ O " is true and 2. is false).

We are now at Box 10.

Next program line:

IF C NE§ O THEN GO TO B11 &
WRITE('NO PROBLEM SPECIFIED') $ GO TO B1 $

The reader now looks at the program he has written and spots a
problem --- he knows where B1 is, but has not told the computer about where
B1 is supposed to be. We now go back and CHANGE THE SECOND LINE OF THE
PROGRAM so that it reads:

B1..READ(A,B,C) $

This change in effect defines what B1 means. Note the use of th= two periods
following the label "B1"; the periods tell the machine that B1 is a label
which is bsing d=fined (i.e. placed) at this point. Note that the possibility
of placing a label at this point (before the READ) was (is now) fairly obvious
since there are two lines on the flow chart which enter the first box. We now

start to clean up the remaining odds and ends of the flow chart.

Next program lina(s):

B11.. WRITE('NOT A VERY REASONABLE SPECIFICATION') $ GO TO B1 §
B9.. WRITE('LINEAR EQUATION, SOLUTION IS X=',-C/B) $ 40 TO B1 §

Note that tl.e last line above prints out the message bestween the juotation

marks followed by ths numerical value of -C/B.
Continaing at box 3:

B3.. DIST = B¥#2 - 4¥A%C §

Note that the above line says "the present value of DISC is replaced by the
result of computing B squared minus 4 times A times C". The equal sign

always means "is replaced by".
Continuing at box 4:

F DISC LSS O THEN BEGIN

RX1 = -B/(2#*A) $ IX1 = SQRT(-DISC)/(2*A) $
RX2 = RX1 $
IX2 = -IX1 END
ELSE
BEGIN

RX1 = (-B + SQRT(DISC))/(2*A) ¢ 1IX1 =0 $
RX2 = (-B-SQRT(DISC))/(2*A) $ IX2 =0 END $

We have now sncountered several new items -- for instance SQRT, the meaning of
which is not at all mysterious -- however, note that the quantity which is to
have its square root extracted must be enclosed in parentheses. Other new

items turn out to be the use of BEGIN and END which are used to encloss several
statements into ons lump to make it clear to the computer just how much to do or
skip as the case may be. We have so far encountered two forms of construction
which both started with the word 1F, they are:

IF <Boolean expression> THEN <unconditional statement>
ani

IF <Boolean expression> THEN <unconditional statement> ELSE <{stateme:

The use above of the marks "<" and ">" means that the text between the
< and > refers to a general construction which can be (and is) defined for
ALGOL-60. A Boolean expression is something which has a value of either trus
or false (e.g. A NEQ 0). An unconditional statement is one that does NOT start
with the word IF.

This is a rather negative definition of the idea of an unconditional
statement, but it will do for the time being. We may now be tempted to suppose
that a conditional statement is one which does start with the word IF, which is
correct. The construction used in the program which started with the word
BEGIN, and ended with the word END, is an example of an unconditional statement
(note that it did NOT start with the word IF).

-6 -

The action of the first construction for IF above is to test the truth
of thz Boolean expression and then to either do or skip the following un-
conditional statement (which follows the word THEN).

The action of the second construction for IF is again to test the
truth of the Boolean expression and then to do eithzr the unconditional
statement following thz word THEN or to do the statement following the word
ELSE, but never to do both and never to skip both.

Next program line:

WRITEZ('REAL X1, IMAG X1, REAL X2, IMAG X2 ',RX1,IX1,RX2,IX2) $
G0 10 B1 §

At this point our program is almost dbne, but not quite!

With a problem of the type presently under discussion it is a rather
simple matter to test all of the alternative possibilities for the data. We
now furnish some data to test our program. The data cards are the cards which
will be read when the computer is executing the program and encounters the
word READ. Since these cards are to be read during the execution phase of the

program they MUST (obviously) follow the last card of the program itself.

Next set of cards (one for each lins)

2 5 2
1 -2 =15
1 -4 13
0 3 18
0 0 2
0 0 0

There is now only one more thing to do in order to have a complete
program. As we will later discover, it is always necessary to specify "types"
of variables. The only reasonable method at the moment is to specify all of

the variables as of type REAL. We do this by inserting one line at the very

top of the program which reads:
RrAL A,B,C,DISC,RX1,IX1,RX2,IX2 $

If you have followed directions you are to bz congratulated! You have
now written a complete ALGOL-€0 program which should operate correctly. Your

scratch paper should now have the following information on it:

-7 -

REAL A,B,C,DISC,RX1,IX1,RX2,IX2 $
COMMENT THIS IS A QUADRATIC EQUATION SOLVER EXAMPLE $
B1.. READ(A,B,C) $
WRITE('QUADRATIC EQUATION WITH A, B, C RESPECTIVELY, ',A,B,C) $
IF A NEQ O THEN GO TO B3 §
1F B NEQ O THEN GO I0 B9 §
F C NEQ O THEN GO TO B11 §
ITE('NO PROBLEM SPECIFIED') $ GO TO B1 $
B11..WRITE('NOT A VERY REASONABLE SPECIFICATION') $ GO TO B1 $
B9..WRITE('LINEAR EQUATION, SOLUTION IS X=',-C/B) $ GO TO B1 $
B3.. DISC = B¥**2 - ,4*A%C §

5 |5

|

———— e

RX1 = -B/(2*A) $ IX1 = SQRT(-DISC)/(2%a) $
RX2 = RX1 §
IX2 = -IX1 END
ELSE
BEGIN

RX1 = (-B + SQRT(DISC))/(2*A) ¢ IX1 =0 $

RX2 = (-B-SQRT(DISC))/(2*A) $ IX2 =0 END §$
WRITE('REAL X1, IMAG X1, REAL X2, IMAG X2, ',RX1,IX1,RX2,IX2) $
GO T0 B1 §

The data cards could appear as follows:

2 5 2
1 =2 215
1 4 13
0 3 18
0 0 2
0 0 0

We once again call your attention to the fact that the underlines are
used only to call the reader's attention to the fact that some of the words
are reserved for special meanings. The input which goes into the computer
will NOT be underlined -- it "knows" which are reserved words and which are not.
For example:

The fifth line of the program will appear to the computer as:

-8 -

IF A NEQ O THEN GO T0 B3 $
Note that if we smash the characters together:
IFANEQOTHENGOTOB3$

then we cannot make any sense out of the line and as it turns out -- neither

can the computer. Thus it would appear that spaces are not only useful - but
absolutely necessary. The eaéiest view to take of the rules regarding spaces

is that if you would accept a particular rendering of a program from your
secretary, then the computer will very likely also accept that form. If you
cannot easily decide where things (words, etc.) start and end, then ths computer
ﬁill not only not bes able to decide but it won't even make an attempt. The
rules for the use of spaces are not as inflexible as thz2y might appear --

if one spacs is necessary, then any number will be acceptable (i.e. at least

onz), if no spaces are NECESSARY then spaces will not hurt anything.

For example:

RX2=RX1$

is completely =quivalent to
RE2 = RK1 §

BUT the following lins will not do at all:
R X 2 =R X 1 §

It would seem then, that there are some more rules with regard to how
one names variables. Ths rules for variable (and label) names are quite simple.
1. Names must start with an alphabetic character and may contain

only alphabstics and numerics -- never spaces or punctuation

marKs.

N
.

The computer examines only the first twslve characters of a

name to "remember" the name, thus

HEMIDEMISEMIQUAVER

is a valid name but is regarded as equivalent to

HEMIDEMISEMIANTIDISESTABLISHMENTARIANISM

since the first twzlve characters are the same in both.

A consnquence of the rules above is that although
RX2

is a legitimate neme for a variable,

2RX

is NOT an acceptable name for a variable. (It does not start with an
alphabetic character).

There is now some explanation owed to the reader as to how the computer
decides which arithmetic operation to perform first if there is any choice.

For example

-B/2%A might mean -(B/2*A)
or -B/(2*A)
or (-B/2)*A

or possibly some other things, the question being not what it might mean
but what it does mean.
Common usage suggests that we would like to have our arithmetic
expressions evaluated by doing in order
1. Exponentiation (¥**) and
Unary minus (the kind of minus that does not have
a numbsr or a variable to its left) on an equal
basis, but evaluate the unary minus from right to left.
2. Multiplication and/or division
3. Addition and/or subtraction
with all of the above (except the unary minus) being done on a left to

right basis at any particular parenthesis level., These rules result in:

Examples:
Desired Quantity Algol-60 Represgzntation
Q‘2 Qi*-2
B2-4AC B##2-,*A%C
722 —GH**_2_H#*_5
%GTZ GHT##2 /2
-B
A(B‘(2))(0‘3) AXBH¥ Q¥ _BrCH®_3

The last example above is correct, but points up a rule that should not
be ignored, namely--
"WHEN IN DOUBT, USE PARENTHESES BY THE BUSHEL"

- 10 -

Thus, if you desire

-B
-2y (e

write

A(B

Ax (Brt_(2#%_B))*(C**=3)

CARD PUNCHING RULES

The rules for punching the program on cards are quite simple:
1. The computer examines columns 1-72 only -- all else is ignored.
2. The computer views column 72 on one card as being dirsctly to the
left of column 1 on the following card.
3. The user may put any valid information at all into cols. 73-80,
e.g., the name of the program.
These rules imply that the machine does not know and in fact does not care
whether statements exist one or more than on= per card. The user is advised
to generally restrict himsz1f to one statement per card in order to make

his life easier whan the time comes for making alterations in the program.

The data cards have a separate set of rules:

1. The computer examines columns 1-80 for data

2. In no ~ase may a number be split between two cards, since the
machine DOES NOT consider column 80 on one card to be connected

to column 1 on the following card.

A description of the Exec III control cards that are used to actually

run a program through the computer is given in Chapter XIV, USING ALGOL
UNDER EXEC III. '

I...

TNTRODUCTION

This section is intended as a reference manual in the use of an extended
Algol 60 language, based in part on the "Revised Report on the Algorithmic
Language ALGOL 60" (Communications of the ACM, Vol. 6, January 1963, 1-17.)
The Algol translator is a program which accepts statements expressed in the

Algol language and produces machine-language programs for the Univac 1107

Thin Film Memory Computer.

The Algol translator (compiler) utilizes a Univac 1107 with 65,536 words
of core memory, two FH-880 magnetic drums, card readers and line printers. The
Algol compiler is an integral part of the Exec III operating system.

The text of this reference manual consists principally of definitions
and rules for the use of ths translator, examples of these rules, and some
sample programs. A set of appendices summarizes the text and lists some de-
tails on the operation of the program, the contents of the library, etc.

Whenever a term is defined, it is underlined in the defining sentence.
Greek letters or names enclosed in corner brackets (e.g. <{integer>) are used
in the text to denote generic representations; for example, € is used to
represent an expression and & to represent a statement. For the most part,
other symbols represent themselves.

The examples, which have been used quite liberally, have been employed
for "definitions by example" in only those few cases where a formal de-
scription has proved particularly unwieldy.

A program that is to bs run on a computer must take the form of
machine language, i.e., instructions that can be directly decoded and
executed by the electronic apparatus of the computer. On the other hand,

a program that is to be practical for solving problems should be in a form
that is easily written and understood by human beings.

At present there is no programming language that meets both these

requirements. Therefore the use of a language such as Algol in computing

12

involves two closely related but distinct program forms.

The first, called a source program, consists of Algol instructions
written by the programmer to describe the process he wants carried out.
The second form, called an object program consists of machine language
instructions appropriate to the specific computer at hand. In ths present
case the intermediary that translates source language to machine language
is called an Algol compiler.

The compiler is an elaborate program that accepts an Algol source
program as input and produces a corresponding machine language program
(object program) as output. The object program may then be dirsctly
carried out by the computer or it may be stored for later use.

A typical run of an Algol program is as follows:

1) The Algol source program is fed into the computer on punched cards.

2) Thes Algol compiler translates the program into machine language,
printing out the source instructions, some diagnostic messages and,
possibly, some error messagés. The resulting object program is
temporarily stored on the magnetic drum. At this point the compiler's
work is done.

3) The object program and any auxiliary routines that it calls for (e.g.,
SIN, READ, SORT) are copied from the drum to the memory unit (i.e.,
allocated) and executed by the computer, using data provided by the
user on punched cards. Every Algol program uses at least a few
auxiliary routines from the Algol system library, which is always

stored on the magnetic drum.

Among the many features made available to the programmer by Case
Algol are extensive data processing facilities, double precision and
complex arithmetic, and bit manipulation. There are also available

routines to store programs and data on tape, create visual displays using

a plotter, and a sort-merge package.

Deviations From Algol 60

For those familiar with ths Algol 60 publication language, the deviations
of Case Algol from Algol 60 can be summarized as follows:

- 13 -

1) Uniqueness of an identifier is determined by examining its first

twelve characters only (for exceptions, see IDENTIFIERS).

2) Every formal parameter must be mentioned in the specification part

of the procedure heading.
3) Numeric labels are excluded from the language.
4) A comma is the only acceptable parameter delimiter in procedure calls.

5) The result of integer exponentiation (I**J, I and J both integer) is
always integer.

6) Forward referenced identifiers should be declared by a local declaration.
7) Arrays declared OWN are not dynamically allocated.
8) In a FOR statement using the STEP-UNTIL <for list element>, the step

expression is evaluated once for each time the loop is entered.

These and other restrictions are covered in more detail in other
sections of this manual.

Many extensions have been made to the Algol 60 language to facilitate
the handling of large complex programs. These extensions include:

1) Input/Output routines to provide very flexible handling of various
data forms;

2) Double precision and complex arithmetic to extend the scope of scien-
tific computations;

3) General character string operations to provide very flexible data
processing features;

4) Provisions for allowing procedures written in Algol or Sleuth or
subroutines written in Fortran to be linked to and executed in con-
junction with the object program;

5) Options to facilitate debugging of the program;

6) A set of intrinsic funztions that allow partial word and bit operations.

BASIC SYMBOLS

The following correspondences are made for the representation of basic
symbols:
- 14 -

Basic Symbol Rasic Symbol

for for Card Code
Fublication Language Translator

true TRUE reserved identifier
false FALSE reserved identifier
+ + 12
- - 11
X # 11-4-8
/ / 0-1
- // 0-1 0-1
T *it 11-4-8 11-4-8
< LSS reserved identifier
< LEQ reserved identifier
= EQL reserved identifier
2 GEQ reserved identifier
> GTR reserved identifier
7 NEQ reserved identifier
= EQUIV reserved identifier
) IMPL reserved identifier
V OR reserved identifier
/\ AND reserved ldentifier
- NOT reserved identifier
go to GOTO or GO TO reserved identifier
if IF reserved identifier
then THEN reserved identifier
else ELSE reserved identifier
for FOR reservad identifier
do DO reserved identifier
’ ’ 0-3-8
. . 12-3-8
& & 2-8

T or .. 5-8 or 12-3-8 *12-3-2
H ‘ $ or ; 11-3-8 or 11-£-8

= = or := 3-8 or -2 5-%

s A (blank)

- 15 -

Basic Symbol Basic Symbol

for for Card Code

Publication Language Translator

step STEP reserved identifier

until UNTIL reserved identifier

while WHILE reserved identifier

comment COMMENT reserved identifier

((0-4-8

)) 12-4-8

L (or [0-4-8 or 12-5-8

]) or] 12-4-8 or 11-5-8

(4 ' 4-8

9 ' 4-8

begin BEGIN reserved identifier

end END reserved identifier

own OWN reserved identifier

Boolean BOOLEAN reserved identifier

integer INTEGER reserved identifier

real REAL reserved identifier

array ARRAY reserved identifier

switch SWITCH reserved identifier

procedure PROCEDURE reserved identifier

string STRING reserved identifier

labsl LABEL reserved identifier

value VALUE reserved identifier

In order to extend ths language the following basic symbols have been
introduced:

Basic Symbol

for Card Code
Translator
TO reserved identifier
REAL?2 reserved identifier
LIST reserved identifier
FORMAT resarved identifier
EXTERNAL reserved identifier

- 16 -

Basic Symbol Card Code

for

Translator

COMPLEX reserved identifier
LOCAL reserved identifier
DEFINE reserved identifier
SfRING reserved identifier
XOR reserved identifier
GO reserved identifier
TRACE reserved identifier
DUMP reserved identifier
RANK reserved identifier
! (terminate scan of current card) 11-0

(force character into string) 12-7-8

Typographical features such as blank space or change to a new line
have no significance to the compiler except that blanks may not appear
within basic symbols, identifiers and numbers. Otherwise blank spaces
and blank lines may be used freely to facilitate reading.

An exclamation mark "!" punched in column one of an Algol source
program card will cause the printed listing of the program to begin a new
page with that card., In this case the scan of the card continues starting

with column two.

.17 -

II...
ELEMENTS OF THE

COMPILER LANGUAGE

CHARACTERS

The Algol compiler employs a character set which is commonly available
as a variant of the usual Hollerith code (IBM 026 Fortran H set) together
with a few special multipunch 1107 characters. These characters are:

THE ROMAN ALPHABET

A,B,...,Z
THE ARABIC NUMERALS
0,1,..-,9

SPECIAL CHARACTERS
+

X NO B

<{space>

1

(a 5-8 punch)
& (a 2-8 punch)

- 18 -

a 12-6-8 punch)

AVARVAN

(
(a 6-8 punch)

(a 11-6-8 punch)

(a 12-5-8 punch)

(a 11-5-8 punch)

(a 11-0 punch)

(a 12-7-8 punch) (later referred to

as "pound sign")

o— g T 1 we

In addition, some multiples of characters are given meaning as though

they constituted a single character: '

*# exponentiation

&& base-10 scale factor double precision

// integer divide —

From these characters, statements are constructed which are translated

by the compiler into machine language for execution by the Univac 1107.

METALINGUISTIC SYMBOLS

In addition to the script letters used in the text, some symbols will

be employed with metalinguistic significance. These symbols include:

SYMBOL SIGNIFICANCE

z is equivalent to
has thes form of

p ' relational operator
V) arithmetic operator
O space

IDENTIFIERS

The fundamental construct of the Algol language is the identifier.
Identifiers are used to name the various things that make up a program,

such as variables, functions, labzsls and procsdures. An identifier is a

- 19 -

string of letters and digits subject to the following conditions:

1) The first character must be a letter.

2) No special characters (including spaces) may be embedded within an
1dentifier (the only exception is GO TO).

3) Any number of characters may be used. However, the compiler considers
two identifiers to be the same if their first twelve characters are
the same (six for external system names, eleven for procedures used

in the functional sense, three for defined variables).

A few identifiers are reserved by the compiler for use as operators
and punctuation marks. These reserved identifiers should not be used by

the programmer in any context other than that set down in this manual.

Any other identifiers may be used at the programmer's discretion.
Howsver, some other words, called predefined identifiers, are known by the
compiler as tle names of library functions or intrinsic functions and
should be used with caution if the programmer wishes to employ the standard
library element in his program.

A list of reserved identifiers and predefined identifiers is givzn
in Appendix I. Whenever they occur in examples in this manual they are

underlined.

EXAMPLES:
Z
BEGIN
PARKAVENUESOUTH
ENTIER
A374
U1107POINTS
COMMENT
RUNGEKUTTAGILL
GIR

QUANTITIES

The compiler is concerned with the manipulation of six types of

- 20 -

quantities: real quantities, integer quantities, Boolean guantities,

double precision quantities, complex quantities, and string quantities.

Real Quantities represent the class of real numbers to an accuracy
of eight significant decimal digits, the maximum permitted by the word
length of the Univac 1107.

Integer quantities represent the class of integers that can be
expressed in the word length of ths Univac 1107, i.e. the integers whose -
magnitude is less than 2% -1,

Double precision guantities represent the class of real numbers with

a precision of sixteen significant decimal digits.

The magnitude of a real quantity (single or double precision) must
be less than 1038. Any real quantity which is less than 10_38 in magnitude,
is represented by zero.

Boolean guantitieg represent truth values. The only values for

Boolean quantities are TRUE and FALSE.

Complex guantitieg represent the class of complex numbers, which are

expressed as an ordered pair of real numbers.

String quantities represent the class of strings of valid characters.

A maximum of 4095 characters is permitted in any single string.
A program may contain quantities of any or all of these types. The
programmer assigns the types of the variables and evaluated procedures that

appear in his program.

VARIABLES

Variables treated by this compiler are two kinds--simple variables
and variables with subscript(s). A simple variable represents a single

quantity and is denoted by an identifier; a variable with subscript(s) re-

presents either 1) a single element of an array which is denoted by the
identifier which names the array, followed by a subscript list encloszd in
parentheses, or 2) a portion of a string variable. A subscript list consists

of arithmetic expressions separated by commas.

EXAMPLES:
Simple Variables:
X
ALPHA
Cc13

-21 =

Variables with Subscripts:
A(1,J)

M(I+1,J+1)

V(F(P + 1), 12 + Q)
Q(W(T), X(T), ¥(T), 2(T))
c(13)

The expressions (see Chapter III) which make up the subscripts of a
variable with subscripts may be of any complexity. Rezal values are allowed,
in which case the real number is rounded to the nearest integer (see the
description of the INTEGER function in Chapter VIII). Each subscript
expression must have a value which is not less than the minimum and not
greater than the maximum specified for that array by the ARRAY declaration
or for the string as specified by the STRING declaration (see Chapter V).
The number of subscript expressions must equal the number of dimensions of
the array as declared in the ARRAY declaration for that array, or be less
than three in the case of string variables.

A string variable may have zero, one or two subscripts. For
example, if S is a string variable then

s(1,J)
refers to the substring of J characters taken from S in ascending order
starting with the character in the Ith position.

The second subscript may be omitted, in which case it is assumed to
have a value of one. Therefore

S(1)
refers to the single character in the Ith position of the string S. If
both subscripts are omitted then it is understood that the entire string
is being referenced. (See Chapter VII, STRINGS.)

The "declaration of type" described in Chapter V determines whether

a variable represents an INTEGER, REAL, REAL2 (double precision), COMPLEX,
STRING or BOOLEAN quantity.

INTEGER CONSTANTS

Integer constants may be represented in either the decimal or octal
number systems.

A decimal integer consists of a string of one to ten decimaul digits.

Leading zeroes are ignored and imbedded spaces are not permitted.

- 22 -

WXAMPLES:
0
15
16384
2121

If the "K" option is used on the Algol control card the compiler
interprets an integer cdhstant with one or more leading zeroes as an octal
number. The magnitude of an octal constant must be less than 812. Only the
digits 0, 1, ...,7 may be used in an octal constant. When the compiler goes
into octal mode the word OCTAL is printed at the left of the listing. The "K"
option may be invoked selectively in a program by means of trace number 25.
See Chapter XIII for a des:ription of option letters and trace numbers. |
EXAMPLES:

0

017
040000
04111

REAL CONSTANTS
Real constants are represented by a string of digits which contains

"." -- a decimal point. The decimal point may not appear at the end of the

string. A real constant may contain & maximum of eight digits, significant or

not.
EXAMPLES:
3.1415927
43.0
€394

If desired, a scale factor may be appended to a real constant to
indicate that it is to be multiplied by the indicated power of 10. This scale
factor is written as an ampersand (&) followed perhaps by a + or - sign and
then by an integer. The integer specifies the power of 10 to be used, and is
limited to a two-digit number.

EXAMPLES:
2.64&5 means 2.6 x 105 or 260,000.0
1.7&-3 means 1.7 x 107> or 0.0017

- 23 -

A third option allows a real number to be written as an integer
followed by a scale factor.
EXAMPLE:

3&+4

This is precisely equivalent to writing 3.0&+4 or 30,000.0. Note
that a scale factor alone may be used to specify a real number--for example

102 may be written as &t2, ete.

REAL2 CONSTANTS (DOUBLE PRECISION)

Double precision constants are represented by a string of more than
eight digits which contains "." -- a decimal point. A double precision
constant may contain a maximum of sixteen digits.

EXAMPLES:
0.00006174205
2.71828182845904

If desired, a scale factor may be appended to a double precision or
real constant to indicate that it is to be multiplied by the indicated power
of 10. This scale factor is written as two ampersands followed perhaps by +
or - sign and then by an integer as in the real case.

EXAMPLE:
1.0&&-1 or &%-1

This represents 0.1 correct to sixteen significant figures. One
should note that 0.1 is not representsd exactly in binary, and that double

precision representation will be more accurate than the normal single precision.

NOTE: The ampersand (&) is used only in writing constants. Exponentiation

of variables in a program is denoted by M"¥*",

COMPLEX CONSTANTS

Complex constants are represented as an ordered pair of real constant:
separated by a comma and enclosed by corner brackets < >.
EXAMPLES:
<1.0, 1.0> represents 1 + i
<-3.4, -1.0 & -2> represents -3.4 + 0.011

- 24 -

BOOLEAN CONSTANTS

Only two Boolean constants are allowed: TRUE and FALSE.

STRING CONSTANTS

String constants are represented by any string of acceptable characters
(excluding an apostrophe, exclamation mark, or pound sign) enclosed by
apostrophes. The exclamation mark (!) terminates the string on the current
card and continues it with the first non-blank character on the next card.

If a string constant is continued from one card to the next without being
terminated by an exclamation point on the earlier card, then the string resumes
with column one of the next card. The pound sign (#) forces the next character

on the card into the string no matter what it is, as in the following examples:

Characters Effective
punched on card string
" HOWANOW..BROWNACOW! HOW NOW BROWN COW
1129F€. 2! 128F6.2
'ITAAIN' TANQAUSE! IT AIN'T NO USE
"WHEW# !#!" WHEW! !
'KEYAOFAF##! _ KEY OF F#

CAUTION: The only constant that may contain an embedded space (blank) is a
constant of type STRING.

EVALUATED PROCEDURES

The compiler allows the use of a wide variety of functions. In this
section we will consider only the simplest form of functional notation in order
to provide a basis for the next chapter. (Chapter XII contains a complete de-
scription of the use of procedures and the manner in which they are defined.)
For the moment we will assume that a procedure acts on one or more quantities
called arguments and produces a single number as a result. This resulting

quantity is called an evaluated procedure.

GENERAL FORM:

{identifier> (<exp >, «uey <expN>)
where <identifier> is the name of the procedure and <exp1> through <expN> are

expressions which are the arguments of the procedure.

- 25 -

EXAMPLES:
SIN(X)
SQRT(B**2-4*A*C)
HYPERGEOM(A,B,C,Z)
LN (SIN(THETA-ALPHA/2))

The type of a procedure depends on the manner in which the procedure
was defined. The type required for each of the arguments is also determined
by the definition of the procedure. It is the programmer's responsibility to
ensure that each of the arguments is of the proper type. However, VALUE B
parameters will have the arithmetic converted if possible, and all other
violations will cause an error message.

- 26 -

III..I

EXPRESSIONS

Algol statements deal with three kinds of expressions: Arithmetic
expressions (those having numerical values), Boolean expressions (those
having truth values), and Designational expressions (those having statement
labels as values). This chapter describes the manner in which these ex-
pressions may be combined to produce new expressions. Expressions must be

well formed in accordance with mathematical convention and with the rules
set forth below.

ARITHMETIC EXPRESSIONS

Arithmetic quantities are combined by means of the operations +, =,
* /, //, and **, The symbol ** is used to denote exponentiation, (1),
[i.e. B**2 has the meaning of 8% or (Bt2)], and // denotes integer divide
(=). In addition to these six symbols, parentheses may be employed to
indicate that a specific order of evaluation is to be followed rather than
the assumed order in ALGOL. To be explicit, it is assumed -- in the ab-
sence of parentheses to indicate otherwise -- that exponentiation is per-
formed before multiplication and division, multiplication and division
before addition and subtraction. Ah option is provided for assigning a
higher precedence to multiplication (*) than division (/) or (//). Operations
on the same level (e.g. addition and subtraction) are done from left to

right. Parentheses should be used to express the exact meaning desired.

A variable, a constant, or an evaluated procedure of type INTEGER,
REAL, REAL2, COMPLEX, or STRING will in itself constitute an arithmetic
expression. Furthermore, if
<arith exp1>, <arith exp,>
are arithmetic expressions and

- 27 -

<{Bool exp>

is a Boolean expression, then each of the following is also an arithmetic

expression:

<arith exp1> * {arith exp2> <arith exp,> + <arith exp2>
<arith exp1> / <arith exp2> <{arith exp1> - <arith exp2>
<arith exp,> ** <arith exp2> + <arith exp1>

(<arith exp,>) - <arith exp,>

<arith exp,> // <arith exp,> IF <Bool exp> THEN <arith exp,>

ELSE <arith exp2>

The arithmetic operation denoted by a double slash (//) is called
"integer division". If A and B are of type INTEGER and B # O, then the

result of A//B is equal to the value of the expression

SIGN(A/B) * ENTIER(ABS(A/B))

See Chapter VIII for descriptions of the SIGN, ENTIER and ABS functions:
EXAMPLES:

Expression Compiler interpretation
A+B*C A+(B*C)
A¥B+C (A*B)+C
A¥B/C (a*B)/C
-X*Y (-X)*Y
-X-Y (-X)-Y

NOTE: Exponentiation of expressions cannot be accomplished by use of the
ampersand (&). The expressions
<arith exp1> & <arith exp2>

<arith exp1> && <arith expé>

are meaningful only under the conditions described in Chapter II,

Real Constants and Real2 Constants.

- 08 -

STRINGS IN ARITHMETIC EXPRESSIONS

Whenever a string quantity (variable, constant, or procedure) is used
within the context of an arithmetic expression, then the string is assumed

to be a string of digits and is converted automatically to an integer quantity

denoting the value of the string. If the assumption of a string of digiﬁs is
false an error at run time will be detected and a message "Improper string
conversion" will be indicated. “
As an example, let:

A be the string '4'

B be the string '9'
then A*B has the value 36
and A*¥'2' has the value 16,

Note: '2' + '36' is equivalent to 2+36 as an arithmetic expression.

BOOLEAN QUANTITIES

Boolean quantities may be combined by means of logical operations to
form Boolean expressions in a manner entirely analogous to the combination of
arithmetic quantities by arithmetic operations. Boolean expressions are again
trus or false, depending entirely on the truth values of the quantities en-

tering into the expression and the definitions of the Boolean operations

combining them.

RELATIONAL OPERATORS

Another class of Boolean expressions is comprised of those which result

from a test on arithmetic expressions. These are termed arithmetic relations,

and consist of two arithmetic expressions and a relational operator. The

latter is an operator in the sense that it performs a transformation on the
comparison to produce a truth value. This value is either true or false

depending upon the results of the comparison.

- 29 -

GENERAL FORM:

<arith exp1> <rel oper> <arith exp,>

where <arith exp1> and <arith exp2> are arithmetic expressions and <rel oper>
is a relational operator. The relation has the value TRUE if <arith exp1>
is in the relation to <arith eXp,”} otherwise its value is FALSE.

The relational operators employed in the Algol compiler are GIR,
GEQ, EQL, LEQ, LSS and NEQ. Their significance is indicated in the following
table:

CONVENTIONAL
MATHEMATICAL
EXPRESSION NOTATION MEANING
<arith exp1> GZR <arith exp2> A, > A, greater than
{arith exp,> GEQ <arith exp,> Ay 24, greater than or equal t
<arith exp1> EQL <arith exp2> Ay =4, equal to
<arith exp1> LEQ <arith exp2> A1 < A, less than or equal to
<arith exp1> LSS <arith exp2> A, < A, less than
<arith exp1> NEQ <arith exp2> A1 # A2 not equal to

Spaces are required to the left and right of the relational operator.
EXAMPLES:

X NEQ O
ABS(L - LPRIME) LSS EPSILON!
T GTR TMAX

STRING IN RELATIONS

Strings may be compared by the above relational operators. The com-
parisons are made using the natural collating sequence of characters on the

1107 (i.e. Fieldata code). If a non-standard collating sequence is desired

- 30 -

then a declaration of RANK may be made (See Chapter VII).

A string comparison is made only if both sides of the relation are
strings. If either operand is non-string then the string operand is con-
verted automatically to its associated arithmetic expression before per-

forming the comparison as in the arithmetic expression case.

BOOLEAN OPERATIONS

The Boolean operations which are accepted by the compiler are NOT,
AND, OR, XOR, IMPL, and EQUIV. These operations are called negation,
conjunction, disjunction, exclusive disjunction, implication, and equiv-

alence, and are defined as follows (P and Q are Boolean quantities):

P Q NOT P P AND Q POR Q P XOR Q P IMPL Q P EQUIV Q
false false true false false false true true
true true false true true false true true
true false false false true true false false
false true true false true true true false

CONSTRUCTION OF BOOLEAN EXPRESSIONS

Any variable, constdnt, evaluated function, or procedure will itself
constitute a Boolean expression, if it is of Boolean type. ‘

In addition, given the arithmetic relation

<arith rel)>

and the Boolean expressiong

<Bool exp1>, <Bool exp2>,‘<Bool exp3>

then each of the following is also a Boolean expression:

- 31 -

(<arith rel>)

(<Bool exp,>)

<Bool exp,> OR <Bool exp,>

<Bool exp1> AND <Bool exp,>

<Bool exp,> EQUIV <Bool exp2>

<Bool exp,> XOR <Bool exp2>

<Bool exp1> IMPL <Bool exp2>

NOT <Bool exp,>

IF <Bool exp> IHEN <Bool exp,> ELSE <Bool exp2>

PRECEDENCE OF BOOLEAN OPERATIONS

Conventions for the order of precedence of Boolean operations are not
as well established as are those for arithmetic operations. However, we

shall assume the following order, which is apparently the most common:

Unless indicated otherwise by the use of parentheses, NOT will be‘
executed before AND; AND will be executed before OR and XOR; OR and XOR will
be executed before IMPL; and IMPL will be executed before EQUIV. In the case
of equal priorities, operations are executed from left to right. For example,
P IMPL Q IMPL R means ((P IMPL Q) IMPL R).

EXAMPLES:

NOT(P AND Q) OR R IMPL P OR NOT Q

NOT (NOT P) EQUIV P

P IMPL P OR U AND V

(P OR Q) AND NOT (P AND Q)

(A LEQ X) AND X LEQ B

(ERROR ;_s:§ TOLERANCE) XOR (N GTR 40)

R AND S OR (F(X) EQL 4)

(M#N*(R-2) + 4 LSS TAN(BETA-ALPHA)) OR FLAG
(U*SINH(M) GTR M7) EQUIV (V*COSH(M) GTR M12)

Boolean expressions may only be used in other Boolean expressions.

DESIGNATIONAL EXPRESSIONS

Designational expressions are those expressions whose values are

- 32 -

statement labels. The form of a designational expression is either a label,
a switch variable or a conditional expression between designational ex-
pressions. For example, each of the following ié a designational expression:
<label>
<switch> (<arith exp>)
IF <Bool exp> THEN <desig exp,> ELSE <de§ig exp,>

ARITHMETIC EXPRESSIONS AND BOOLEAN RELATIONS

Entries in tables represent the arithmetic mode in which calculation

or comparison is carried out. The following abbreviations are used.

R Real

S String

I Integer

R2 Double Precision Real
Complex
Addition

- Subtraction

* Multiplication

/ Division

il Exponentiation

Rel Relational Operators (GIR, GEQ, EQL,
LEQ, LSS, NEQ)

TABLE 1
Type of Right Operand
- o
t- S I R R2 | ¢
*4/ i
S I§ 1§ R R2 o
o}
=
2
g| I Iel ITgl r R2 c ‘
o
+
9 R R R R 72 o
[|
G
° R2 R2 R2 R2 R2 o
8. .
o Cc c c C C o

"§ In these cases division (/) is done in Real mode.
- 33 -

Integer division (//) is always done in Integer mode.

operand is complex, integer division is undefined.

§ If either operand is complex, only EQL and NEQ are valid relational

operators.

Entries in Table 3 denote the type of the result.

operands.

Type of Left Operand

Type of Left Operand

TABLE 2
Type of Right Operand
Rel S I R R2 C
S S I R R2 C §
I I I R R2 C»§
R R R R R2 C §
R2 R2 R2 R2 R2 C §
C C c.|] C C C .
§ $ § § §

If either

The method of

computing the result of exponentiation depends on the values of the

TABLE 3
Type of Exponent
*3 S I R R2 c
S I I R R2 C
I I I R R2 C
R R R R R2 C
R2 R2 R2 R2 R2 c
¢ C C C C C

- 34 -

Iv...

STATEMENTS

The statement is the fundamental unit of expression in the description
of an algorithm. Most of what follows in this manual deals with the formation
of statements and thzir interrelation to form larger constructs. Statements
may be divided into two classes -- the operational statement apd the declara-

tive statement. Oﬁerational statements specify something that the object

program is to do. Desclarative statements give information to the compiler

about the program being compiled. After this chapter, the word statement
will usually be employed to mean an operational statement; a declarative
statement will then be called a declaration. However, for the present,
"statement" will stand for either sort.

The first part of this chapter discusses one particular kind of opera-
tional statement -- ths assignment statement. The last part of the chapter
deals with the grammar of statements in general, using assignment statements

for examples.

THE ASSIGNMENT STATEMENT

The agsignment statement specifies an expression which is to be

evaluated and a variable which is to have the resulting value assigned to it.

GENERAL 7"ORM:
<{variable> = <exp>

Note that the symbol " = " is used in a special sense in this compiler to
signify the process of assignment or substitution of values. Thus X = X + 1
means "using the current value of the variable X, evaluate the expression

X + 1, and assign the result as the new value of X". Although X =X + 1 is

- 35 -

not a valid equation, it is a well-formed operational statement, and the
compiler will carry out the indicated substitution. Thus the following
valid algebraic expression:

X##2 =Y + 2
has no meaning to the compiler, while

X = SQRT(K)

is a valid statement, and can be executed by a compiled program, which will
assign the value of K% to the variable X.

ARITHMETIC ASSIGNMENT STATEMENTS

If the variable in
<{variable> = <arith exp>

is of type INTEGER, REAL, REAL2, or COMPLEX then we have an arithmetic assign-

ment statement. If <{variable> and <arith exp> are of different type then one
of two cases applies:

1) <arith exp> will be converted to the type of {variable> before the
assignment is made;
2) the compiler will indicate that the conversion of type is undefined

and machine code will not be geherated for the statement in question.
EXAMPLES:

R = (-B + SQRT(B**2 - 4*A*C))/(2*A)
U = X*COS(X*COS(THETA) + Y*SIN(THETA))

OMEGA = 1/SQRT(L*C)
E = M*C#%2
c(1,J) = ¢(1,J) + A(I,K)*B(K,J)

STRING ASSICNMENT STATEMENTS

If the variable in

<{variable> = <exp>

is a string variable, we have a string assignment statement. In this case

- 36 -

<exp> must be either of type string or an arithmetic expression. In the
latter instance, <exp> is first converted to type integer, if possible, and
then into the corresponding string of digits.

. In all cases the replacement is made such that the left most character
of the right hand side replaces the left most character in the left hand string
variable. Extra spaces are supplied to the right as necessary to fill out the
left hand string and any excess of characters from the right hand side will
be dropped (i.e. the replacement is left justified in the left hand string
variable).

As an illustration, consider the following uses in which A is a string

variable of length six:

A before Statement A after
ABCDEF A='XYZUVW' XYZUVW
ABCDEF A='LOOP-DE-LOOP' LOOP-D
ABCDEF A="HOW' HOW
ABCDEF A(2)='Q' ' AQCDEF
ABCDEF A(2,3)='XYZ! AXYZEF
ABCDEF A(2,3)=69 A69 EF
ABCDEF A=3,1415927 3
ABCDEF A(2,2) = -7 A-7DEF

EXAMPLES:

S=1000#SIN(X)
S=IF X GIR Y THEN 'P1' ELSE "P2'
S(1, N)=8(2, N-1)

One word of caution, the string replacements are performed a character
at a time starting with the left most character; hence, a replacement of the
form:

S(2, N=1) = S(1, N-1)

will resiilt in the character in the 1,1 position, S(1, 1), being propagated
down the string (i.e. the first N characters of the string S will all be the
same as the character in S(1, 1)). In order to shift the characters in a
string right, it 1s necessary to first move the string into anotter string
of the same length. For example, let S and T be strings of the same length,
then a right shift of one place can be performed on S by:

- 37 -

T=5$§
S(2, N=1) = T(1, N-1)

This operation leaves the character in S(1) unchanged.

BOOLEAN ASSIGNMENT STATEMENTS
If the variable in
{variable> = <Bool exp>

is a Booléan variable, we have a Boolean assignment statement.
EXAMPLES:

FLAG = (SWITCH4 OR SWITCH5) AND FLAGPRIME

TEST = (X NEQ 0)' AND (Y NEQ O)

TOGGLE3 = TOGGLE4 AND TAG OR (U LSS V)

GENERALIZED ASSIGNMENT STATEMENT

GENERAL FORM:

<variab1e1> = <variable2> T ... = <variableN> = <exp>
If it is desired to assign the same value to a number of variables,
it can be accomplished in a single statement by employing this generalized
form.
Note that if the list of variables to which a value is being assigned
is mixed type, then conversion of type will be performed; e.g., assume X, Y,

<exp> are real, and I is integer. Then the statement
X=1I=Y =<exp>

will cause the value of <exp> to be stored into Y, rounded to an integer
before storing into I, and then this rounded result will be converted to

type REAL and stored into X. Thus, for the above condition, X : I =Y =
lexp>, X =Y =1 =<exp>, and I = X = Y = <exp> may all give di“ferent
results wlten <exp> is real. The result of the rounding process is described
under INTEGER function in Chapter VIII. |
EXAMPLES:

WY

=X
A(I)

=Y = 15,302
=B(I) =2 =0

- 38 -

THE GRAMMAR OF STATEMENTS

This section discusses certain definitions and rules of the compiler
language which have to do with the writing of statements. The basic rule of

the grammar of statements is that a gstatement must be separated from a

following statement by a dollar sign (or semicolon).
Even though a statement ends on a given line and the next statement
begins on the next line, the separating dollar sign must be indicated. The

end of a line has no meaning as punctuation.

GENERAL FORM:

<statement1> $ <{statement,> $... ¢ <statemantN>

Unless otherwise indicated, statements are performed one after the
other in the sequence in which they are written. As many statements as
desired may be written on a line (subject of course to the physical limit-
ations of the input medium), or a statement may use as many lines as are
required for its expression.

EXAMPLE:

W=A+B$X=A-B$Y=-A*B$Z=A/B

COMPOUND STATEMENTS

It is frequently desirable to group several statements together to
form a larger construct which is to be considered as a single statement.

Such a construct is called a compound statement.

GENERAL FORM:

BEGIN <statement,> $... $ <statement,> END

The words BEGIN and END serve as opening and closing sta‘ement
parentheses. '

Throughout this description of the compiler, unless the contrary is
"specifically stated, the word "statement" should be construed to mean
either a simple or a compound statement.

Certain other constructs involving the grouping of several statements

- 39 -

automatically constitute compound statements. These will be discussed
further in théir proper context in CHAPTER XI.
EXAMPIES:

BEGIN U =-B/(2*A)$ V = SQRT(U**2 - C/A) $

R1 =U+V8$R=U-V END

BEGIN ' S = SIN(THETA) $ C = COS(THETA) $

X1 = C*X + S*Y § ETA = -S*X + C*Y END

STATEMENT LABELS

It is often necessary to attach a name to a statement (e.g. if one
wishes to get from the end of a program back up to the beginning). This

name is called a statement label. A statement label must be an identifier.

GENERAL FORM:
<{identifier> .. <statement>
EXAMPLES:
START.. SUM = 0
LEGENDRE.. P(N) = ((2*N - 1)*P(N - 1) = (N = 1)*(N - 2)),
ROTATE.. BEGIN S = SIN(THETA) $ C = COS(THETA) $
X1 = C*X + S*Y § ETA = -S*Y + C*Y END

When using a compound statement, the programmer may insert a letter stri:
after the word END. The comment is terminated by the next "$", END, or
ELSE. This may be done for readability of the print-out produced during
compilaﬁion; the compiler itself makes no use of the information.

GENERAL FORM:

<label> .. BEGIN <statement,> $... $ <statement,> END <sequence
of symbols not containing "$", END or ELSE>
EXAMPLE : '
' ROOTS.. BEGIN U = -B/(2*A) $ V = SQRT(B**2 - 4=A%C)/(2*A) $§
R1 =U+V$ R2=U-V END ROOT PROCESSING SECTION $

- 40 -

BASIC DECLARATIONS

The declarations of type -- INTEGER, REAL, REAL2, COMPLEX, STRING,
BOOLEAN -- are explained in this chapter, together with the ARRAY, COMMENT,
OWN, DEFINE, SWITCH and LOCAL declarations. These do not exhaust the entire

set of declarations available to the programmer; the others are found in

later chapters, where they may be treated at greater length.

Declarations determine how the compiled program will handle certain
of its elements. It is always necessary to precede the use of an identi-
fier with a declaration of its type.

Upon declaration the value assigned to each variable is "undefined"
unless the variables are OWN, in which case all are set to zero except

Booleans, which are set to FALSE and strings, which are set to blanks.

DECLARATIONS OF TYPE

Declarations of type are used to indicate that a specified set of

identifiers répresent quantities of a given fype.

GENERAL FORM:
INTEGER {type list> §
REAL {type list> ¢
REAL2 <{type list> §
COMPLEX <{type list> $
STRING 4 <type list> $§
BOOLEAN {type list> $

These statements declare the identifiers given in <type list> to be
of integer, single precision real, double precision real, complex, string

and Boolean respectively. N te the integer "2" in the declaration of double

- 41 -

precision quantities. A <{type list> consists of a sequence of identifiers
separated by commas.
EXAMPLES:

INTEGER GAMMA, Q202, IOU5, VITAE §

BOOLEAN AB6, PARITY, UFO48, AREWE $

THE ARRAY DECLARATION

The ARRAY declaration provides a means of referring to a collection
of quantities by the use of a single identifier, and at the same time
specifies to the compiler the structure which is to be imposed on this
collection. The number of dimensions of an array must be less than 64.

If the identifier of an array requires a declaration of type, then
that declaration must immediately precede the word ARRAY in the array
declaration (cf. GENERAL FORM).

CONSTRUCTION OF ARRAY DECLARATIONS

The identifier of an array must be described by an ARRAY declaration
prior to the use of that identifier in a statement.

GENERAL FORM:

< type > ARRAY < array element >,... , < array element >
_Wwhere _
< type > is any of the possible type declarations (BEAL,.BEALE,
INTEGER, COMPLEX or BOOLEAN). If the type declaration is omitted then

REAL will be assumed. The < array element > 's are list items of the array

declarator list. These list items take on the form:

<array name> (<lower bound1> : <upper bound1>, «esy <lower bouth> :
<{upper boundN>) where <lower boundJ> and <upper boundJ> are arithmetic
expressions that specify the lower and upper limits on the Jth dimension,
respectively. If the specifications of size are omitted after th: name
then that array will be assumed to have the same specifications a; the
next <array element>.

The length of the Jth dimension is given by

INTEGER (<upper boundJ>) - INTEGER (<lower bound>) + 1

where INTEGER is the transfer function described in Chapter VIII.
| - 42 -

INTEGER ARRAY M, N(1:3, 1:4), CHAR (-1:4, 0:5, 1:6¢), VECTOR (T:J) §

[his declaration reserves twelve cells in storage for each of the
two-dimensional arrays M and N, 216 cells for the three-dimensional array
CHAR, and J-I+1 cells for the one-dimensional array VECTOR (where J and I

are integer variables).
THE STRING DECLARATION

The STRING declarationAprovides a means of referring to a collection
of alphanumeric characters in fieldata code by the use of a single identifier,
and at the same time specifies to the compiler the strugture which is to be
imposed on this collection. It is also possible to subdivide this collection
into pieces, each of which may be assigned a different identifier. 1In
effect, this means that string variables may be partitioned inte a set of
substrings, each with a different identifier. This partitioning may be
nested to any depth; however, the partitioning at any level must consist

only of disjoint pieces.

CONSTRUCTION OF STRING DECLARATIONS

A string variable must be described by a STRING declaration before

the string variable is used.

GENERAL FORM:
STRING <string element>, ..., <string element> §

The <string element>'s are list items of the string declarator list. These

list items také on the form:

<{string name> (<subelement1>, ceey <subelementN>)

where <string name> is an identifier and <subelementJ> is either an
arithmetic expression which denotes the length of the Jth subst:ing or is
itself a <string element>; The length of the entire string (i.e., the
total number of characters) is equal to the sum of the lengths of its
subelements.
EXAMPLE:

STRING CARD(80), LINE(132), ITEM(CODE(DEPT(2), SECTION(8)), 5,

NAME (30), RATE(5), TIME(5), GROSS(10), NET(10)) $

- 43 -

The string CARD holds 80 characters corresponding to a card image.
Correspondingly, the string LINE holds one 1004 line image. The string
ITEM, on the other hand, has the somewhat complicated structure shown below:

DEPT(Z) SECTION(8) Rate | Time | Gross | Net
CODE(10) (5) NAME(30) | (5)1 (5) | (10)] (10)

ITEM (75)

ITEM has 75 characters partitioned into the strings CODE, NAME, RATE, TIME,
GROSS, and NET., Also the string CODE of 10 characters is partitioned into
the strings DEPT and SECTION.

THE STRING ARRAY DECLARATION

When defining a string array, the general form of the array declaration
must be modified to inélude the length of the string portion along with the

partitioning of the string array into substring arrays.

GENERAL FORM:
STRING ARRAY <string array element>, ..., <string array element> $

A <{string array element> has the form

<{string array name> (<sube1ement1>, ooy <subelementN> :
<{lower bound1> : <upper bound1>, «eey <lower boundN> : <upper boundN>)

where {string array name> is an identifier, <subelementJ> is as described
under "THE STRING DECLARATION" and <lower bogndJ> and <upper boundJ> are as
described under "CONSTRUCTION OF ARRAY DECLARATIONS". The number of dimensions
and their s.bscript limits apply to each <{subelement> as well as to the entire
array, i.e;, each subelement is itself a string array of N dimensions.
EXAMPIE:

STRING ARRAY A(B(7),3,C(10)..1..6,-3..2) $

This declaration defines a string array A, each of whose elements
consists of 20 characters. The array A is partitioned into three subarrays,
whose elements contain seven (array B), three, and ten characters (array C),

respectively. The main array and subarrays are each two-dimensirnal, the

-4 -

subscripts of the first dimension being numbered from 1 to 6, and the

subscripts of the second dimension from -3 to 2 (see the accompanying

figure).

JA (11,4..6,-1)
]9 (1,4..6,-1)

9 'A (17,1..2,2)
A (17..2,2)
c (7,1..2,2)
4 LC (7..2,2)

0 A (7,5..4,2)

A (4,2..3,2)

]B (4,2..3,2)

aflo fwis| »m] o

-32-10 1 2

STRING ARRAY ASB(?),E,C(1Q)..1..6,-3..2) $

7+3+10=20 6-1+1=6 2-(-3)+1=6

6% 6 =30

Each cube in the figure corresponds to one character in the string array A.

In the example of calls on the array shown in the figure, note that the in-

formation bafore the colon specifies the starting point and length of a string,

- 45 -

while the information following the colon specifies which of 36 possible
strings is desired.

THE OWN DECLARATION

All of the above declarations will assign space dynamically from
local variable storage as needed. When the declarations are no longer in
force, this épace is made available to the program for other uses., If it
is desired to assign permanently the space for the variables, then each of
the above declarations must be preceded by the word QWN. The declaration
then becomes an OWN declaration. (See Chapter XI, BLOCKS, for details on
dynamic storage assignment and OWN variables.)

A FORMAT declaration (described in Chapter IX) and a RANK declara-
tion (described in Chapter VII) may likewise be made into OWN declarations
so as to permanently assign storage for such elements.

EXAMPLES:
| OWN INTEGER A,B,C $
OWN STRING S(100) $
OWN ARRAY FACTORIAL (0..30) $
OWN FORMAT (A1,872,58) $

CAUTION: 1In Block 1 the following quantities are always assigned to OWN
storage but are not automatically externally defined (sSee Chapter XII,
EXTERNAL REFERENCES): simple variables, arrays, formats, ranks, and

generalized variables.

THE DEFINE DECLARATION

A generalized classification scheme for variables has been incorporated
into Case Algol. This allows the programmer to define the structure of what
are known as "generalized variables" and to declare these variables by means
of the DEFINE declaration.

Generalized variables are described in Appendix III and an example of
a set of routines that use this feature of Algol is found in the Sort/Merge
package, described in Appendix IV.

- 46 -

THE SWITCH DECLARATION

The SWITCH declaration provides a means of selecting a label, switch
variable or designational expression from a list by means of a subseript
expression on a switch identifier. In effect, the switch declaration
defines a switch variable which is similar to a one-dimensional array
except that the elements are labels, switch variables or designational
expressions. .

A switch must have been described by a SWITCH declaration prior to
the use of any switch variable with subscripts which represents an element
of the switch. The range of subscripts is from 1 to N, where N represents
the number of elements in the switch. If a subscript expression on a
switch variable falls outside the defined range of the switch then the
switch operation is ignored.

The form of a SWITCH declaration is as follows:

GENERAL FORM:
SWITCH <identifier> = <{switch element1>, eesy <switch elementN> $

where <identifier> is the name of the switch and <switch elementJ> is a
designational expression that represents a statement label.
EXAMPLE:

SWITCH S = L1, IF X GTR Y THEN L2 ELSE L3, L4, T(I+6), L5 $

If the switch variable S is referenced from a GO TO statement (see chapter VI)
as S(J), then the following transfer of control is made depending upon the

value of J.

1) if J =1 then control transfers to L1.

2) if J = 2 then control transfers to either L2 or L3 depending
upon X and Y.

3) if J = 3 then control transfers to Li.

L) if J = 4 then control transfers to switch T.

5) 4f J = 5 then control transfers to L5.

6) if J <1 or jJ > 5 then no transfer is executed.

47 -

THE LOCAL DECLARATION

Under certain conditions in a program, the necessity arises for using
an identifier at a point when its definition may be ambiguous or unknown
(e.g., using a label in a GOTO statement before the occurence of the label
definition). If the definition will still be unknown when the current

block is ended, the use of the identifier is said to be a forward reference.

The case of ambiguity of definition may arise if an identifier has
different meanings in different blocks (see Chapter XI, BLOCKS). A parameter
to a procedure may also require the LOCAL declaration even though, strictly
speaking, it does not constitute a forward reference.

In these cases the identifier must be named in a LOCAL declaration
before it is used. This declaration, in effect, localizes the identifier
to the proper block as well as supplying information to the compiler about

the kind of identifier being used.
GENERAL FORM:

LOCAL <identifier type> <identifier1>, coey <identifierN> $ where
<{identifier type> is one of the following: LABEL, PROCEDURE, LIST, SWITCH.

In the case of labels, the LOCAL LABEL declaration is needed in the
following cases.
1)_ A GOTO statement refers to a label which will not be defined
until after the current block is ended (forward reference).
2) A GOTO statement refers to a label whose identifier is identical
to that of another label in a containing block. This applies
when the label will be defined later in the current block.

3) A label is used as a parameter in a procedure call before the
label has been defined.

Note that in all cases the LOCAL declaration must appear in the block
in which the label is defined.
EXAMPLES:

LOCAL LABEL L1,L2,A6,B0X $

LOCAL SWITCH NEXT $

- 48 -

THE COMMENT

The COMMENT allows the programmer to include any clarifying remarks,
identifying symbols, etc., in the printed compilation. The COMMENT does not
appear as part of the compiled program, and has no effect on the program; it
merely sets apart any string of characters for printing as part of the com-
pilation. Since the comment extends tc the next dollar sign, a dollar sign,

obviously cannot be used within the string of characters.

GENERAL FORM:
COMMENT S §

where S 1is any string of characters not containing a dollar sign.

EXAMPLES:

COMMENT $ SMOOTH FIELD DATA AND REDUCE TO STANDARD FORM $
BEGIN A = 2¥A $ COMMENT $ TWO BARRELS ARE NOT
ENOUGH $ END

- 49 -

VI...

CONTROL STATEMENTS

This chapter deals with the means of expressing the 'flow of control'
of an algorithm which is to be described in Algol. The order of execution of

statements is as important to the description of an algorithm as are the
statements themselves.

Control Statements are divided into three sub-classes:
Unconditional control statements,which transfer control to

other parts of the program (the GO TO statement).

Conditional control statements,which execute statements

contingent on given criteria (the IF statement).

Iterative control statements,which execute statements

repetitively (the FOR statement).

UNCONDITIONAL CONTROL STATEMENTS

THE GO TO STATEMENT

The GO TO statement provides the ability to transfer control from one
part of the compiled program to another.

GENERAL FORM: ‘
GO TO <desig exp>

or
GOTQ <desig exp>

The statement with the label specified by <desig exp> will be exe:uted im-
mediately after the GO TO statement.
EXAMPLES:

GO TQ START

GOTO S(K)

GO TO IF X GTR Y THEN POGO ELSE S(3+I)

- 50 -

Note: In the second example, if K is within the range of definition of the
switch S then transfer of control is made to the indicated statement of
label. However, if the subscript expression on a switch variable is outside
the range of definition on a switch reference, then no transfer of control
is performed and control resumes with the next statement after the GO TO
and in effect the GO TO is ignored.

CONDITIONAL CONTROL STATEMENTS

THE IF STATEMENT

The IF statement provides the means of indicating that the next state-
ment in sequence is to be conditionally executed.
FIRST GENERAL FORM:
IF <Bool exp> THEN <statement>

The action of the first form of the IF statement is described graphi-
cally by means of the following flow chart:

<Bool exp> \\\ False

<{statement)>

If the <Bool exp> has the value TRUE then <statement> is executed;
if <Bool exp> is FALSE, <statement> is skipped over and control passes to
the next statement in sequence.

- 51 -

EXAMPLES:

X*2 GIR 7 THEN GO TO HOME
(I EQL J) THEN A(I,J) =1

(M NEQ 0) OR (N NEQ O) THEN GO TO LAST
(P EQUIV R) OR (P EQUIV S) THEN K = B(J)
(X LEQ 0) AND FLAG THEN X = ABS(X)

U QR V AND (X LSS 2.4) THEN BEGIN U = 0 §
V=0 $ GO TO REPEAT END

515 15 1= 1 =

THE ALTERNATIVE FORM OF IF STATEMENT

A second form of the IF statement provides for a choice of alterna-
tives based on the result of a condition.
SECOND GENERAL FORM:

IF <Bool exp> THEN <statement,> ELSE <{statement, >

At this point in the program if <Bool exp> is TRUE then <statement1> is
performed and <statement2> omitted. If <Bool exp> has the value FALSE

then <statement1> is skipped over and <statement2> is executed.

True <Bool S a\False
ool ex
)

v

<Statement1> <Statement2>

EXAMPLE :
INTEGER R, N $
REAL PNEXT, PNOW, PPREV, X, NLEGPOLYINX $

- 52 -

COMMENT EVALUATE THE LEGENDRE POLYNOMIAL OF DEGREE R
IN X USING THE RECURSION RELATION

(N+1) Py, (x) = (28+1) X P(X) + N Py ,(X) =0 N=1, 2, «us

Nt

REFERENCE: FOURIER SERIES AND BOUNDARY VALUE PROBLEMS,
R. V. CHURCHILL, MBGRAW-HILL, 1941, P.<80 $

IF R LSS O THEN

BEGIN COMMENT YOU MADE AN ERROR § PNEXT = 1.0&38
END ELSE

IF R EQL O THEN PNEXT = 1 ELSE

IF R EQL 1 THEN PNEXT = X ELSE

BEGIN PNOW =X $ PPREV =1 §

FOR N = 2 STEP 1 UNTIL R DO BEGIN
PNEXT = ((2%N-1)*X*PNOW - (N-1)*PPREV)/N $
PPREV = PNOW § PNOW = PNEXT END END $
NLEGPOLYINX = PNEXT ‘

THE FOR STATEMENT

The FOR statement finds its principal use in the control of an
iteration where the statement or statement group to be iterated involves
a variable (the induction variable) which must take on a succession of
values. It is also used to cause a statement to be executed a predetermined

number of times.

GENERAL FORM:

FOR <variable> = {for list> DO <statement>

where <{variable> may be simple or subscripted, and where <for list> is

a sequence of <for list element>'s, which are defined below.

The <{for 1ist> describes the sequence of values that <variable>
is to assume. For each of these values <{statement> will be executed.

When the <for 1ist> has been exhausted, the statement following the
FOR statement will be executed.

There are three forms of <{for list element>'s which can be used to
construct a <{for list>. The <{for list element>'s are separated from each

other by commas. A summary of the possible forms is given below:

- 53 -

FIRST FORM:
<arith exp>

The value of <arith exp> will be assigned to <variable> and <statement>
will be executed before going on to the next <for list element>.

A FOR statement consisting of only these types of elements becomes;
FOR <variable> = <arith exp,>, .., <arith expN> DO <statement>

which can be interpreted in a flowchart as follows:

{variable> & <arith exp,>

Execute <{statementd>
:

{variable> € <arith exp

j

Execute <{statement)

N

Thet is, <variable> s successively assigned the values of <arith exp, 7,
<arith exp2> and so on through‘<arith expN>. For cach value that {variable>
assumes, <statement> is executed once.

EXAMPLES:
FOR X =0, Y+ 3 * 2, IF Z GIR Y THEN Z ELSE Y, MAX(Z, Y) DO WRITE (X
I=0%
FOR A(I) =2, 3, 5, 7, 11, 13, 17 DO I =1 + 1
| - 54 -

SECOND FORM:

<arith exp,> SIEP <arith expd> UNTIL <arith expo>

A FOR statement including just one of these elements takes on
the form:

FOR <variable> = <arith expi> STEP <arith expd> UNTIL <arith expf>
DO <statement>

This form is equivalent to the simpler statements:

<{variable> = <arith expi> $
TEMP = <arith exp,> $

<{label>.. IF (<variable> - <arith expf>) * SIGN(TEMP) LEQ O THEN
BEGIN <{statement> $

TEMP = <arith expg> $ <variable> = <variable> + TEMP $§
' GOTO <label> $ END

where TEMP is a variable of the same type as <arith expd>. This is
described by the following flowchart:

- 55 -

<variable> €~ <arith expi>

v

TEMP €« <arith expy>

<}
Is
No [stan(TEMP) > O Yes
v Is Is No
P . . . Yes Ye . . .
{variable> > <arith expf> <{variable> < <arith expf>
<{statement>

TEMP <« <arith expd>

v

{variable> < <variable> + TEMP

o

- 56 -

Note that in any case if the test fails initially, the triplet is
considered vacuous and <statement> will not be executed.
If the FOR statement is exited as a result of exhaustion of the
<{for list>, then the value of <{variable>, the induction variable, is
considered to be undefined.
EXAMPLES:
COMMENT EVALUATE INNER PRODUCT OF TWO N-VECTORS U AND V $
DOT =0 $§ FOR I =1 STEP 1 UNTIL N DO
DOT = DOT + U(I)*V(I)

COMMENT LINEAR EQUATION SOLVER FOR AX = B WHERE B IS
ADJOINED TO A AND ANSWERS ARE STORED IN B §

FOR J = 2 STEP 1 UNTIL N+1 DO FOR I = 1 STEP 1 UNTIL N DO
BEGIN SUM = 0 §
FOR X = 1 STEP 1 UNTIL MIN(I-1,J-1) DO
SUM = SUM + A(I,K)*A(K,J) §
A(1,J) = A(1,J) - SUM $
IF I LSS J THEN A(I,J) = A(I,J)/A(I,I) END $
OR I = N-1 STEP -1 UNTIL 1 DO

BEGIN SUM =0 $

FOR K = N STEP -1 UNTIL I+1 DO
SUM = SUM + A(I,K)*A(K,N+1) §
A(I,N+1) = A(I,N+1) - SUM END

oI (]

COMMENT MULTIPLY MATRIX A BY MATRIX B
PUTTING THE RESULT IN MATRIX C $
FOR I = 1 STEP 1 UNTIL N DO
FOR J = 1 STEP 1 UNTIL N DO
BEGIN SUM = 0
FOR K = (1, 1, N) DO
SUM = SUM + A(I, K) * B(K, J) $
C(1, J) = SUM

END

- 57 -

The third and final form that a <for list element)> may assume is
called a WHILE element.

THIRD FORM:

<arith exp> WHILE <Bool exp>

A FOR statement having a {for list> consisting of one WHILE element has

the form:

FOR <variable> = <arith exp> WHILE <Bool exp> DO <statement>

The interpretation of this statement is as follows. First <variable>
is set equal to <arith exp> and <Bool exp> is evaluated. If the value is
TRUE then <{statement> will be executed. After the execution of <statement>,
<{variable> will be assigned the value of <arith exp> and <Bool exp> will
again be tested. On the other hand if <Bool exp> is FALSE then <statement>
will be skipped and control will resume with the statement following the
FOR statement.

In other words this type of FOR statement can be replaced by the

following set of statements:

{label> .. <{variable> = <arith exp> §
' IF <Bool exp> THEN BEGIN <statement> §
GO I0 <label> - END

which can be expressed by the following flowchart:

r

{variable> <& arith exp>

{statement)>

If the program exits from the FOR statement because <Bool exp> is
FALSE then the value of <variable> is considered to be undefined.

JUMPS IN AND OUT OF FOR STATEMENTS

A GO TO into a FOR statement leads to an undefined operation (i.e.,
the result is unpredictable). A GO TO out of a FOR statement is acceptable

and <variable>, the iterated variable, retains its current value.

It should of course be realized that all three types of for list
elements can be combined together in any order to form a general < for list >
to be used within a FOR statement. The sequence of values which results is
the expected one.

EXAMPLES:
FOR Z = O STEP 1 UNTIL 10, 15 STEP 5 UNTIL 50,
100 STEP 50 UNTIL 1000, 5000, 10000 DO
S = S + SIMPSON (0, Z, &-5, F)

This statement would cause the summation to be performed for
Z = O, 1, 2’ es 0y 9, 10, 15, 20, 25’ ee ey 50, 100, 150, s ey 950, 1000,
5000 and 10000.

FOR I = 1 STEP 1 UNTIL N DO
FOR J = 1 STEP 1 UNTIL I-1, I+1 STEP 1 UNTIL N DO
A(I’J) = A(I)J)/A(I’I)

This statement would divide off-diagonal elements of each row of
the matrix A by the diagonal element of that row. Note that the first
<for list element> of the second FOR clause (the one indexed by J) is

vacuous when I = 1; the second <for list element> is vacuous when I = N.

- 59 -

VII...

STRINGS

This chapter is a compendium of the basic declarations and operations
involving strings. Some of the material found in other chapters is dupli-
catec here in the belief that a unified reference for this subject will

prove valuable to the programmer.

STRING QUANTITIES

A string quantity is a sequence of 1107 characters. The number of
characters in a string is called its length. The length of a string may
be bstween one and 4095. See Appendix ¥I for a list of 1107 Fieldata

characters and their representations in the computer memory and on I/0

devices.

STRING CONSTANTS

A string constant consists of a string of characters (excluding
apostrophe, exclamation mark and pound sign) enclosed by apostrophes. The
exclaemation mark (!) terminates the string on the current card and continues
it with the first non-blank character on the next card. The pound sign (#)
forces the next character on the card into the string regardless of what
it is -- the sequence #' enters ths character (') into the string, the
sequence #| enters a (!) into the string and the sequence ## erters a (#)
into the string.

These considerations do not apply to strings in source program in-

structions and strings in input data. (See Chapter IX, INPUT/OUTPUT.)

- 60 -

EXAMPLES:
1128F6.2'
' HOWANOWABROWNACOW . !
"HELP#!'

where o denotes a blank (space).

THE STRING DECLARATION

A string variable is used to refer to a sequence of alphanumeric
characters that are represented in the 1107 memory by Fieldata code (see
Appendix XI). The STRING declaration is used to name the variable,
specify its length and indicate, if desired, the partitioning of the
string into substrings. Each substring may itself be named and parti-

tioned. The partitioning of a string variable may be nested to any depth.

GENERAL FORM:
STRING <{string element>, ..., <string element> $

A <string element> has the form

<{string name> (<subelement1>, cees <subelementN>)

where <string name> is an identifier and <sube1ementI> is either an
arithnetic expression which denotes the length of the Ith substring or
is itself a <{string element>. The length of the entire string is the sum
of the lengths of the subelements.
EXAMPLE:

STRING HOBBIT (FRODO(10),BILBO(5),5,SAM(2)) $

This declares a string named HOBBIT of 22 characters, which is partitioned

into four substrings of 10, 5, 5 and 2 characters.

PREDEFINED IDENTIFIERS IN STRING DECLARATIONS

A predefined identifier may be used in a <string element> in two

ways. It may be redefined as the name of a string or substring, as in

- 61 -

STRING CLOUDY (SIN(10),C0S(10))

or it may be part of an expression that specifies the string length, as in
STRING WINDY (PART1(+INTEGER(X)),PART2(2*INTEGER(Y)))

where the length of ‘the string WINDY is equal to the value of the expression
INTEGER (X) + 2*INTEGER(Y)

STRING VARIABLES

Any substring of a string variable may be handled by appending
subscripts to the identifier of the string. It is not required that the
declaration of the string explicitly partition the string into substrings.

Characters of a string are numbered from left to right in ascending

order starting at one.

GENERAL FORM:
{string name> (<arith exp.,>, <arith exp,>)

denotes the substring of <string name> having length equal to the value
of <arith exp2> and starting at the character position specified by
<arith exp,>.
EXAMPLE:

QUEUES (I + 5, 2 * K)

denotes the substring of 2*K characters starting at the (I+5)th character
of the string QUEUES.
If the second subscript is omitted the form is

<string name> (<arith exp)>)

which denotes the single character .in the <arith exp> position of
<{string name>. That is, if the second subscript is absent it is assumed to
have a value of one.
If both subscripts are missing, the entire string is referenced.
EXAMPLE: |
INVENTORY (X-1)
refers to the character in the (X-1)th position of the string INVENTORY.

CAUTION: The result of an operation involving a string variable whose
starting position or length is less than one is undefined.

- 62 -

THE STRING ARRAY DECLARATION

The STRING ARRAY declaration allows a collection of strings to be
referred to by a single identifier.

GENERAL FORM:
STRING ARRAY <string array element>, ..., <string array element> $

A <string array element> has the form

<{string array name> (<subelement1>, ceey <sube1ementN> :
<lower bound,> : <{upper bound1>, veey <lower boundN> : <upper boundN>)

where <{string array name> is an identifier, <subelementI> is as described
under THE STRING DECLARATION, and <lower boundI> and <upper boundI> are
arithmetic expressions that specify the lower and upper limits, respectively,
on the value of the Ith subseript. The number of dimensions and their
subscript limits apply to each subelement identifier as well as to the

array identifier, i.e., each subelement is itself a string array of N

dimensions. The size of the Ith dimension is givsn by

INTEGER (<upper boundI>) - INTEGER (<lower boundI>) + 1

NOTE: Although the ARRAY declaration allows dimension specifications to
be omitted, the STRING ARRAY declaration requires each <string array

element> to include complete information about the lengths and dimensions

of the element.

EXAMPLES:
STRING ARRAY STR(12..1..10) $

The array STR consists of ten Strings of twelve characters each. The

expression
ST(J..L)

refers tc the Jth character of the Lth element of the array. "he expression
STR(J,K..L)

refers to the K characters starting at the Jth character of the Lth element.
STR(L)

refers to the entire Lth element (i.e., the entire 12-character string).
STRING ARRAY STACK1(ORS(6),ANDS(6)..1..N,1..M) $

- 63 -

The arraj STACK1 is partitioned into two subarrays, ORS and ANDS, and all
three arrays are two-dimensional. An element of STACK?1, say STACK1(I,J),

is partitioned into two substrings of six characters each, namely (ORS(I,J)
and ANDS (I,J).

EXAMPLE:
STRING ARRAY A(B(7),3,C(10)..1..6,-3..2) $

This declaration defines a string array A, each of whose elements

consists of 20 characters. The array A is partitioned into three subarrays,
whose elements contain seven (array B), three, and ten characters (array C),
respectively. The main array and subarrays are each two-dimensional, the
subscripts of the first dimension being numbered from 1 to 6, and the sub-

scripts of the second dimension from -3 to 2 (see the accompanying figure).

A (11,4..6,-1)
c (1,4..6,-1)

ko

9 A (17,1..2,2)
5 A (17..2,2)
516 _ c (7,1..2,2)
i c (7..2,2)
3
2 A (7,5..4,2)
0
6
5 8
0 .
; 4 A (4,2..3,2)
> B (4,2..3,2)
2
A
2

3 -2-10 1

STRING ARRAY A(B(7),3,C(10)..1..6,23..2) §

7+3+10=20 6-1+1=6 2-(-3)+1=6
N—

—

~
6 * 6= 36
- bl -

Each cube in the figure corresponds to one character in the string array
A.

In the example of icalls on the array shown in the figure, note that the
information before the colon specifies the starting point and length of a
string, wnile the information following the colon specifies which of 36

possible strings is desired.

STRINGS IN ARITHMETIC EXPRESSIONS

A string quantity may be used as an operand in an arithmetic
expression. In this situation an attempt will be made at execution
time to handle the string as a string of digits possibly including a
sign and spaces. If the attempt succeeds. the string will be converted

to the corresponding integer value. Otherwise the message
"IMPROPER STRING CONVERSION"

will be printed.

STRING ASSIGRMENT STATEMENTS

GENERAL FORM:

<{string variable> <{string exp>

or

<{string variable> <arith exp>

In the second case, <arith exp> is evaluated and converted to type integer

and the integer is converted to a string of digits, beginning with a minus

sign if the value is negative.
No matter how the righthand string is specified the following rules
govern the assignment statement:

(a) the leftmost character of the left side is replaced by the leftmost
character of the right side;

(b) 1if the length of the lefthand string is greater than the length of
the righthand string then the lefthand side is space filled in the
higher numbered positions;

(¢) if the righthand side string length is greater than the =fthand

side string length then the excess characters in the higher-numbered

- 65 -

positions are ignored (are not used in the replacement).

See Chapter IV for examples.

STRINGS IN RELATIONS

The relational operators GTR, GEQ, EQL, LEQ, LSS and NEQ may be
used to compare two string guantities or to compare a string quantity

with an arithmetic expression.

GENERAL FORM:

<{string or arith exp> <rel oper> <string or arith oper>

If one of the operands is an arithmetic expression and the other is a
string, an attempt will be made to convert the string to an ipteger
value and if this is successful the comparison proceeds as in an arith-
metic relation.

If both operands are string quantities the operation proceeds by
comparing corresponding characters of the two strings starting with the
first position. If one string is shorter than the other, the shorter
is filled with blanks (octal 05) when necessary to complete the comparison.

Two strings are considered equal if all characters'in corresponding
positions are of equal rank. If the strings are not equal then the
direction of inequality is determined by the leftmost pair of corresponding
characters that are not equal.

EXAMPLES:

The following relations are true under the standard collating
sequence.

'ABADABA?' LSS 'ABADABA!'

1=>1 GTR <=

THE RANK DECLARATION

All string comparisons are based on the natural sequence as defined
by 1107 Fieldata character code (see appendix XI for the usual Fieldata
collating sequence). The RANK declaration specifies a string variable

which defines a new character collating sequence.

- 66 -

GENERAL FORM:
RANK <rank list element>, ..., <rank list element> $

A <rank list element> defines an ordering relationship among the
Fieldata character and have the following form:

<rank name> (<string>)
where <rank name> is an identifier and <string> is of the form

'<char1> <oper,> <char,> <oper,> ... <{chary ,> <opery ,> <charp>'

where <{char,> is any of the 6/ Fieldata characters (including space)
and <operi> is any of the four operators =, :, -, <. Note that the ":"
in this case cannot be represented by ".." but must correspond to the
5-8 multiple card punch.

The significance of the rank operators is as follows:

a < B the character p is assigned a rank one higher than a

a =B the character a is assigned to the same rank as B

a - B the charactersa through B are assigned ranks in
ascending order. (a must be 1less than p in the
natural collating sequence.)

a ¢ p. the characters a through B are assigned to the same rank.

(¢ must be 1less than B in the natural collating sequence.)

Note that a space (&) is meaningful with a RANK string. It should be noted,
that any character not explicitly assigned to a rank will bs assigned to

zero rank (i.e., below all other assigned characters).
EXAMPLES:

RANK SP ('0:9< A -12')$

This declaration generates a table which assigns all numeries to rank 1,

the alphabetics A through Z to ranks 2 through 27, and all other characters
to rank O.

THE SETRANK PROCEDURE

The table of values that is generated by a RANK declaration is activated

- 67 -

by the SETRANK procedure. SETRANK may be used to invoke a previously
declared <rank list element> or to return to the usual Fieldata collating

sequence.

GENERAL FORM:
SETRANK (<rank name)>)

This causes the collating sequence definesd by the string associated
with <rank name> to be put into effect. All string comparisons attempted

while it is in effect will make reference to that sequence.

SETRANK

This causes the usual Fieldata collating sequence to be put into
effect. In sum, the SETRANK procedure should have one parameter when a
new sequence is to be put into effect and no parameter when the usual
Fieldata sequence is to be invoked.

The SETRANK procedure is generated in-line by the Algol compiler
and its effect ié local to the block in which it appears. On exit from
a block, considerations of rank that were invoked in that block will

no longer apply.

THE RANK PROCEDURE
The numeric value of one or more characters in a string may be
obtained by use of the RANK function.
GENERAL FORM:
RANK (<character))

The result of this function is an integer that represents the rank of
<{character> according to the collating sequence currently in force.
EXAMPLE:

RANK (NAME(3))

returns the numeric rank of the third character of the string NAME.
Another use of ths RANK function has the form

RANK (<string)>).

- 68 -

The result of this call on RANK is an integer which falls into one of two
classes:
(a) if all characters of the string have the same rank according to the
collating sequenceAcurrently in effect then the result is that rank;
(b) if all the characters do not have the same rank then the result is the
negative of the character position of the leftmost character that does
not have the same rank as the character immediately preceding it (note
that in this case a result of minus one is never returned). In this
case the result returned is negative to distinguish it from case (a).
EXAMPLE:
RANK (CARD)
where CARD is a string.

A WORD OF CAUTION CONCERNING THE USE OF STRING PROCEDURES

The following remarks apply for all string procedures, whether they

appear in programs using the Sort/Merge package or not! (See Chapter XII,
PROCEDURES) .

If, for example, IN is the.name of some arbitrary string procedure, -

within the procedure body of IN, an operation of the form
IN =S .

where S is a variable whose type is compatible with a string, may be thought
of as simply setting a pointer in IN which points to the "string" S. Thus,
if the sequence

OWN STRING S(6) $

STRING PROCEDURE IN $

BEGIN S = 'FIRST' $

IN=S§
S = 'LAST'
END IN $
WRITE(IN) $

appeared in a program, the "value" written would be "LAST", since IN points

to S and since the last "value" of S is "LAST". Also, if S were declared

within IM as a non-OWN variable, upon exiting from the procedure S is no longer
available.

- 69 -

Thus, here, if IN = S appeared within the procedure body, it is possible
that, since IN points to S and since S 1s not defined outside IN, the

result outside the procedure is undefined.

- 70 -

VIII...

ALGOL LIBRARY

Computational procedures for certain standard operations of mathe-
matics and data processing are available for use in Algol .programs. A
procedure is called by means of the appropriate identifier followed by
the arguments that the procedure requires. The call appears in the
program in the form:

NAME (<exp1>, cens <expN>)

where NAME is the identifier of the procedure and <exp1>, ceny <expN>
are the desired expressions for the arguments.

The set of standard procedures is divided into two classes: intrinsic
functions and library procedures. Included in the latter category is a
full complement of Input/Output operations.

INTRINSIC FUNCTIONS

When the programmer calls on an intrinsic function in a source program,
the desired operation is made an integral part of the object program by the
Algol compiler. Non-intrinsic procedures, rather than being generated in
toto by the compiler, are routines that are written separately and linked
to the object program only at execution time.

The set of intrinsic functions that are not machine-dependent is dis-
cussed and a tabular summary is given below. For a descriptionn of intrinsic

functiors that are dependent on the specific computer and operating system,
see Appendix VIII.

ABS (<exp>)
The function ABS has a single argument. The result of the ABS function

-7 -

is the absolute value of the argument, which may be of any type except
BOOLEAN. If the argument is of type INTEGER, REAL or REAL2 the result is
of the same type while a COMPLEX argument gives a REAL result and a STRING

argument is converted to thé corresponding integer value, leading to an

integer result.

CLOCK
The function CLOCK has no arguments. The resuit is of type INTEGER
and is the number of seconds elapsed since midnight.

CLOK
The function CLOK has no arguments. The result is of type INTEGER
and is the number of sixtieths-of-a-second elapsed since the start of the

current year.

DIMENSIONS (<array>)
The result of the DIMENSIONS function is of type INTEGER and its value

is the number of dimensions of the parameter <array>.

EVEN (<exp>)

The EVEN function is of type BOOLEAN and the result is TRUE if the
parameter is an even number, FALSE otherwise. Before the function is
evaluated the parameter <exp> is converted to type INTEGER if it is not
already of that type.

LENGTH (<exp>)
LENCTH(<array>,<exp>)

If only one parameter is furnished to the LENGTH function, it must be of
type STRING and the result is the number of characters in <exp>.

If the first parameter to LENGTH is an ARRAY then the second parameter
must be present to specify which dimension of <array> is being considered.
The result is the number of elements in that dimension given by <exp>, i.e.,
LENGTH (<array>,<exp>) = UPPERBOUND (<array>,{exp>) - LOWERBOUND (<array>,<exp>) + 1
where UPPERBOUND and LOWERBOUND are the library functions described later in
this chapter.

- 72 -

The dimensions of an ARRAY are numbered consecutively starting at one.
If <exp> is not of type INTEGER it is converted to that type before the
function is evaluated. In all cases the result of the function is of type

INTEGER.

MOD (<exp1>, <exp2>)
The function MOD requires two arithmetic expressions as arguments. The
arguments may be of type INTEGER, REAL, REAL2, or STRING; non-integral ex-

pressions will be converted to integer values when the routine is executed.

The value of the function is the integer remainder that results from
dividing the first argument by the second. The sign of the result is the

same as the sign of the first argument.

ODD (Kexp>)

The function ODD gives a BOOLEAN result, namely TRUE if the parameter
is an odd number, and FALSE otherwise. Before the function is evaluated,
<exp> is converted to type INTEGER if it is not already of that type.

SIGN(<exp>)

The function SIGN has a single argument. If the argument is positive
the result will be +1; if zero, the result is zero (+ or - according to
the sign of the argument); if negative, the result is -1. The type of the
argument is INTEGER, REAL, REAL2, or STRING. A STRING argument must represent
a string of digits and will be converted to the corresponding integer value.

TABLE OF INTRINSIC FUNCTIONS

Name and Description Type of - Type of result Examples
argument(s)
ABS(X)=|X| STRING INTEGER
~ INTEGER INTEGER ABS’-39.2) is 39.2
REAL REAL ABS(<1.0,2.,0>) is 2.2360
REAL2 REAL2 |
COMPLEX REAL
CLOCK ‘ . none INTEGER CLOCK 1is 3421

- 73 -

Namd and Description

CLOK
DIMENSIONS(A)

EVEN(X)

LENGTH(A,B)

LENGTH(X)

MOD (X, X

5)
- X, /1)y

oDD(X)
1 0
SIGN(X) =40 X=0
-1 X<0

TABLE OF INTRINSIC

Type of
argument(s)

none
ARRAY

INTEGER
REAL
REAL2
STRING

first: ARRAY
second:
INTEGER
REAL

REAL2
STRING

STRING

INTEGER

INTEGER
REAL
REALZ2
STRING

INTEGER
REAL
REAL2
STRING

- 74 -

FUNCTIONS (continued)

Type of result
INTEGER
INTEGER

BOOLEAN

INTEGER

INTEGER

INTEGER

BOOLEAN

INTEGER

INTEGER
INTEGER

- INTEGER

Examples

CLOK is 76534

DIMENSIONS(Q) is 2

EVEN(24) is TRUE

LENGTH(A,B) is 100

LENGTH(S) is 29

MOD(100,7) is 2
Mgg('200’7) is -4

ODD(24) is FALSE

SIGN(34) is 1
SIGN(-1.3) is -1

LIBRARY FUNCTIONS

All library functions can be used in the recursive sense, but for
greater object code efficiency the set of library procedures are divided
into two classes:

a) Recursive class

b) Normally non-recursive class
The redsoning behind the normally non-recursive class is that most of the
standard functions are used in a non-recursive sense. Thus, greater object
code efficiency can be obtained by the compiler calling these procsdures in

a8 special non-recursive manner.

RECURSIVE LIBRARY PROCEDURES

The set of "recursive only" library procedures is briefly'summarized

below.

READ (X1, cee XN) This is the input procedure that
is described in Chapters IX and X.

WRITE (X1, oo Xy) This is the output procedure that
is describasd in Chapters IX and X.

MAX (X1, ceey XN) The result of this procedure is
the value of the element of
maximum value (algebraically) in
the 1ist X;, <.y Xp.

MIN (X, «eey Xy) The result of this procedure is

the value of the element of
minimum value (algebraically) ‘r.
the list X1, ceny XN.
The input arguments XI may be expressions, arrays, strings or lists.
The functions MAX and MIN are not defined for complex, string or Boolean

arguments. The output of MAX and MIN is always REAL.

- 75 -

NON-RECURSIVE LIBRARY PROCEDURES

This set of procedures is further subdivided into two subclasses,
namely:
a) Standard mathematical
b) Special

STANDARD MATHEMATICAL PROCEDURES

The standard mathematical procedures require only one input argument
and ths type of the result depends upon the type of the input argument.

This relationship is described below:

Type of Input Type of Result
INTEGER ~ REAL
REAL REAL
REAL2 REALZ
COMPLEX COMPLEX

The mathematical functions that fall into this subclass are:

NAME DISCRIPTION
ARCCOS (<arith exp>) ' inverse cosine
ARCSIN (<arith exp>) inverse sine
ARCTAN (<arith expd>) inverse tangent
C0S (<arith exp>) cosine
CO3H (<arith exp>) hyperbolic cosine
EXP (<arith exp>) exponential to base e
LN (<arith exp>) natural logorithm

- SIN (<arith exp>) sine
SINH (<arith exp>) hyperbolic sine
SQRT (<arith exp>) v square root
TAN (<arith exp>; tangent,
TANH (<arith exp)) hyperbolic tangent

- e .

SPECIAL PROCEDURES

The special procedures that are currently available in the system
library are described below. Special procedures that are directly related
" to the Input/Output routines are described in Chapter IX and X.

NOTE: If an argument to a procedure is required to be of arithmetic type,
an argument of type STRING may be used if all its characters are numeric.
In this case the string is converted to the associated integer value before
the procedure is evaluated.

The following characters are considered to be numeric: plus sign (+),

minus sign (-) and blank (A). The blank is also regarded as an alphabetic
character.

Loan N v Ul

CALL

ALPHABETIC(X)

COMPLEX (X, ,X,,)

COREMAX

CORETOTAL

141 0 VU

ARGUMENTS

STRING

COMPLEX

INTEGER
REAL
REAL2
STRING

either may
be

INTEGER
REAL
REAL2
STRING

none

none

41l VL

RESULT

BOOLEAN

none
none
none

none

COMPLEX
COMPLEX
COMPLEX
COMPLEX

INTEGER

INTEGER

LLovitll LAV

Result TRUE if string is alphabetic, FALSE otherwise.
Obtains argument of complex expression X.

Used in conjunction with processed MAP (see
EXEC II manual); loads and transfers control

to program specified by X.

Forms complex number using value of X1 for real

part, value of X2 for imaginary part. a;
[
!

The result is an upper bound for the number of
words of core memory that may be obtained in the
next request from the available space pool. The
least upper boﬁnd depends -on the kind of space

requested.

The result is the total amount of core memory
remaining in the available space pool. Note

that the Algol library allocates space in such a

- 6L -

PROCEDURE
CALL

ENTIER(X)

HEADING
(<string>,
<arith exp>)

TYPE OF TYPE OF

ARGUMENTS RESULT
none STRING
INTEGER INTEGER
REAL ~ INTEGER
REAL?2 INTEGER
STRING INTEGER
The first none

is STRING,
the second
may be
INTEGER
STRING
REAL or
REAL2

DESCRIPTION

way that at any particular time the value of
COREMAX may be considerably less than the value
of CORETOTAL.

The result is a STRING of eighteen characters

which gives the month in letters, day of month, and year
on which this program was allocated (for absolute
programs this is the date when the ABS operation

was performed). The result is left-justified

and blank-filled.

Result is greatest integer in X. Non-integral

arguments converted to type INTEGER first.

<{string> will be printed at the top of each page
of output, beginning with the first page that is
started after the call. Pages will be numbered
consecutively starting with the value of

<arith exp>, which will be converted to type
INTEGER, if it is not of that type. If the
second parameter is omitted, the numbering of
pages will not be affected. If both parameters
are omitted, the heading action is disabled,

i.e., no heading will be printed on succeeding pages.

PROCEDURE
CALL

IMAG(X)

INTEGER (X)

INTRANDOM(X1,X2)

LOWERBOUND
(array>,<arith
exp>)

NUMERIC(X)

OPTION(<string>)

TYPE OF

ARGUMENTS

COMPLEX

INTEGER
REAL
REALZ2
STRING

INTEGER
REAL
REAL2
STRING

The first must
be an ARRAY,
the second may
be STRING,
INTEGER,

REAL, or
REAL2

STRING

STRING

TYPE OF
RESULT

REAL

INTEGER
INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER
INTEGER

INTEGER

BOOLEAN

BOOLEAN

DESCRIPTION

Obtains imaginary part of complex expression X.

Rounds X to nearest integer. Result obtained

according to the formula
ENTIER (X + 0.5)

Generates next element in pseudo-random number
sequence. Result is an integer, the value of
which lies between X, and X, inclusive. An

error results unless X1 < X2.

The result is the lower bound for <array> on

the dimension specified by <arith exp>.

Result TRUE if the string X is numeric, FALSE

otherwise.

The function tests for presence of an option

letter on the processor call card (including

- 80 -

PROCEDURE
CALL

RANDOM(X)

RANK (X)

REAL(X)

REAL2 (X)

TYPE OF
ARGUMENTS

INTEGER
REAL
REAL2
STRING

STRING
INTEGER
REAL

REAL2

INTEGER
REAL
REAL2
STRING
COMPLEX

INTEGER
REAL

TYPE OF
RESULT

REAL
REAL
REAL
REAL

INTEGER

INTEGER

INTEGER
INTEGER

REAL
REAL
REAL
REAL
REAL

REALZ2
REAL2
REAL2

DESCRIPTION

XQT) for the processor currently in effect.
The parameter, which should be one character
long, specifies the option letter in question.
If this letter is present, the result is TRUE,

otherwise it is FALSE.

Generates next element in pseudo-random number
sequence. Input argument used only on first
call. Sequence starts at INTEGER(X) if X # O,

otherwise at value of CLOK on first call.

See Chapter VII, THE RANK PROCEDURE, for a

detailed description

Converts X to floating-point form. If X is COMPLEX

the result is its real part.

Converts X to double precision floating-point

form.

PROCEDURE
CALL

STRING (X)

UPPERBOUND
(<array>,<arith
exp>)

TYPE OF
ARGUMENTS

COMPLEX

INTEGER
REAL
REAL2
STRING

The first
must be an
ARRAY, the
second may
be STRING,
INTEGER,
REAL or
REAL2

TYPE OF
RESULTS

DESCRIPTION

Converts X to a string of digits. Non-integer
expressions are converted to type INTEGER first.
If X is negative the result includes a minus

sign.

The result is the upper bound for <array)>
on the dimension specified by <arith exp>.

- 82 -

THE RANDOM FUNCTION

A function having a result of type REAL and a parameter of type INTEGER
is provided in Algol to generate random numbers that are rectangularly dis-
tributed on the [0,1] interval. The method used to generate the random numbers
is described by the accompanying Algol program. (The FIELD procasdure is de-
scribed in Appendix VIII.)

The parameter supplied is used during the first call only and if non-
zero it acts as the startinz value of the sequence. Starting values in the

. 18
neighborhood of 2 givé the longest cycles.

REAL PROCEDURE RANDOM(I) $
VALUE I & INTEGER I $
BEGIN
OWN INTEGER LAST $
OWN BOOLEAN SW $
REAL P $
IF NOT SW THEN BEGIN
SW = TRUE $
IF I EQL O THEN I = CLOK $
LAST = ABS(I) + (IF MOD(ABS(I),2)EQL O
THEN 1 ELSE O)

END 3
LAST = LAST*(3+2%%18) &
LAST = FIELD(LAST,2,35) §

FIELD(R,*,9) = 128 8

FIELD(R,10,27) = FIELD(LAST,2,27) $
RANDOM = O + R ’
END

THE INTRANDOM FUNCTION

The algorithm used by the INTRANDOM is cescribed by the following
Algol program.

INTEGER PROGCEDURE INTRANDOM(L,U) $
VALJE L,U $
INTEGER L,U $

BEGIN
OWN INTEGER LAST $
OWN BOOLEAN SW $
IF NOT SW THEN
BEGIN SW = TRUE $
LAST =1 END $
IF U LEQ L THEN ERROR(22) $
LAST = LAST*(3%#22) §

INTRANDOM = L + ABS(2%(U-L+1)*LAST) $
INTRANDOM §

- 8, -

CARDS
PRINTER IX...
PUNCH INPUT

OUTPUT

We ncw pursue in some detail the subject of communication with the
computer. In previous chapters there have been examples of reading in data
and printing out answers. In this chapter we present the details (with
examples) of the card and printer I/0 (Input/Output) processes.

The reader is warned that this chapter is difficult going. In any
given explanation, there are usually numerous references to other sections
of the chapter. This has been done in order to make descriptions as clear
as possible. The reader is advised to read through the whole chapter

before trying to 'pin down' any details.

THE READ PROCEDURE

The READ procedure is fully recursive and is used to input information.
The general form of the READ is:

READ (<device name>, <label>, <format>, <list name>, <actual input parameter list>

where any combination of the above may be present.
<{device name> enables the user to specify any one of the various input
devices as the source of input information. The following input devices are

évailable to the user:

CARDS PCF
CORE suIp
DRUM TAPE
EDIT

If <device name> is not specified then *he source of the input is
assumed to be cards. It should be noted that if the <device name> option is
used it must be the first name. The other parameters may appear in any order,
but the speed of the object program is increased if the above indicated order

is observed.

-85 -

{label™ consists of one, two, or three labels (separated by commas if
more than one) which are used as alternative exits by the READ procedure.
These exits are utilized when abnormal conditions are encountered while
reading. The appropriate exit is chosen in the following manner:
i) Exit is made to the first label (if present) when an EOF (end of
file) condition occurs.
ii) Exit is made to the second label (if present) when an EOI (end
of information) condition occurs. An EOI condition arises
when an attempt is made to read beyond the bounds of the input.
iii) Exit is made to the third label (if present) when an ERR (error)
condition occurs. An ERR condition is considered to be either
1mproper input or a malfunction of the input device.
These labels will be referred to as the EQOF, EOI and ERR labels, respectlvely.
The standard Algol error exit is supplied for all missing labels. If an exit
is made to the Algol error routine, an appropriate message is printed and the
program is terminated.
<{format> is ths name of a sequence of format phrases which has been
previously defined in a FORMAT declaration, or is a call on the FORMAT
procedure. <format> need not be specified.
<list name> consists of one or more identifiers (separated by commas
if more than one) which are the names of lists of variables that have been
previously ‘defined by LIST declarations. <list name> need not be specified.
Lists and formats are described in greater detall later in this chapter.
<actual input parameter list> is <list elements separated by commas>.
See definition of this term in section dealing with the LIST declaration. In
general <actual input parameter list> consists‘of a sequence‘of identifiers
and variables separated by commas. <actual input parameter list> need not be
specified. '
EXAMPLE .
REAL A,B,C $
READ(A,B,C)
This reads the value of the three variables A,B,C from card(s). The
first number encountered is the value of A, the second is B, and the third
is C.
EXAMPLE
REAL A,B,C §

- 86 -

LIST ZILCH(A,B,C) ¢
READ(ZILCH)

Exactly the same interpretation as the above‘example.

THE WRITE PROCEDURE

The general form of the WRITE procedure is

WRITE (<device name>, <label>, <format>, <list name>,
<actual output parameter list>)
where any combination of the parameters may be present.
{device name> enables the user to specify any one of the various output
devices for oﬁfputting desired information. The following output devices

are available to the user:

CORE PRINTER
DRUM ~ PuNCH
EDIT TAPE
PCF

In the absence of <device name>, PRINTER will be assumed to be the
desired device. If <device name> is specified it must be the first parameter.
The order of the other parameters to the WRITE procedure is immaterial, but
the indicated order will produce greater efficiency in the object program.

<{label> consists of one or two labels (separated by commas if two)
which are used as alternative exits by the WRITE procedure. These exits are
utilized when abnormal conditions are encountered while writing. The ap-
propriate exit is chosen in the following manner:

i) Exit is made to .the first label (if present) when an ERR
(error) condition occurs. An ERR condition is considered
to be a malfunction of the output device.
ii) An EOI condition will cause an exit to the second label if

present. If the second label is not present then exit will

be madé to the first label if it is present. An EOI condition

arises when &n attémpt is made to write beyond the bounds of

the output medium.
These labels are referred to as the ERR and EOI labels respectively. The
standard Algol error exit is supplied if both labels are missing. If an exit
is made to the Algol error routine, an appropriate message is printed and the

program is terminated.

- 87 -

<{format> is the name of a sequence of format phrases which has been
‘previously defined in a FORMAT declaration, or is a call on the FORMAT
procedure. <format> need not be specified.
<{list name> consists of one or more identifiers (separated by commas
if more than one) which are the names of lists of variables that have been
previously defined by a LIST declaration. <list name> need not be specified.
Lists and formats are described in greater detail later in this chapter.
<actual output parameter list> is <list elements separated by commas>.
See definition of this term in section dealing with'the LIST declaration. In gener
<actual output parameter list> consists of a list of expressions and/or
identifiers. <actual output parameter list> need not be specified.
EXAMPLE
REAL 4,B,C $
WRITE(A,B,C)
This will write out the values of A,B, and C on the printer.
EXAMPLE
REAL A,B,C $
LIST ROHO(A,B,C) $
WRITE (ROHO)

Same action and interpretation as the above example.

THE FORMAT DECLARATION

We defer the actual definition of a FORMAT declaration until later in
this section in the belief that the reader should not be faced with it at
this time! The general definition will be much easier to understand if the
reader has already seen some .particular examples.

Before detailing the uses of the format list let us consider the problem
of reading some data cards which should be in a specified format. Suppose
that we wish to read in data cards pertaining to student grades. The cards

have the following format:

Columns Contents

1-5 Student Number

6, 7 _ Initials

8-21. Last Name

22 ‘ Status (i.e. class)
23,24 Curriculum

25-37 : Not used in this program

- 88 -

Columns Contents

38-44 Course designation

45, L6 Not used in this program
47 Credit hours

48-59 Not used in this program
60 Letter grade

Assume that the columns not used have information in them which is of
no concern to the problem at hand. The problem is now to read in the above
data in a form which will make the manipulations easy and still enable us
to print out all of the above data. It is this type of problem which gives
rise to the necessity of specifying the card format.

For this problem it is reasonable that we would like the computer to
take the following action with regard to card reading:

1. Read the card (i.e. Activate the input card reader)

2. Accept the first five columns as an integer (student number)
3. Accept the next two columns as a string (initials)

L. Accept the next fourteen columns as a string (last name)

5. Accept the next column as an integer (status)

€. Next two columns as integer (curriculum)
7. SKIP the next thirteen columns (not used)

8. Next seven columns as a string (Course title)
9. SKIP two columns _ (not used)

10. One column as an integer (credit hours)
11, SKIP twelve columns (not used)

12. One column as a string (letter grade)

The format declaration is used to take care of all of the above functions.
For this example the format would be:

FORMAT UNAMEIT (A,I5,52,S14,11,I12,X13,57,X2,11,X12,51) §
Note that there is one entry in the format for each numbered lire above.

Each of the items in the above format is referred to as a "format phrase".
A reasonable program segment for the above problem would be:

INTEGER STUDENTNUMBER, STATUS, CURRICULUM, CREDIT$
STRING INITIALS(2), LASTNAME(14), COURSE(7), GRADE(1)$
FORMAT UNAMEIT (A,I5,S2,514,I11,12,X13,57,X2,11,X12,51) §
LIST EVERGREEN(STUDENTNUMBER,INITIALS,LASTNAME,STATUS,CURRISULUM,
COURSE,CREDIT,GRADE) $
READ (UNAMEIT,EVERGREEN)
- 89 -

The list specifies what is to be read, while the format specifies how
the reading is to take place. Formats for outputting information are con-
structed in a similar fashion.

Now that we have a feeling for how formats are used, we proceed to
define exactly what is meant by a FORMAT declaration.

The general form of a FORMAT declaration is:

FORMAT <format name> (<format phrases separatsd by commas>)$
where {format name> is a name supplied by the programmer and <format phrases
separated by commas> refers to the uses of the format phrases describ=d below.
Note that the descriptions given below are only for the PUNCH, PRINTER and

CARDS devices. Formats may be used with some of the other devices and the

interpretation of the format by these devices is described in the relevant

sections of the manual.

FORMAT PHRASES

Ab.a CARDS Activate the card reader. The b.a is ignored. The activation
' must precede the format list which applies to the card being
read.
PRINTER Activate the output device skipping b lines before printing
and a lines after printing. The activation must follow the
format list which applies to the line being printed. Note that
upon completion of printing a line, the printer does NOT advance
the paper unless it is told to by a non-zero g'value. The .a
may be omitted if one desires a to be zero, i.e., A3 is the
same as A3.0.
PUNCH Activate the punch. The b.a part is ignored. Also the punch
‘only punches &0 columns and any output beyond 80 columns.is
lost. The acfivation_must follow the format list which applies
to ths line being punched.
Bw CARDS Accept a BOOLEAN variable from w consecutive columns. This
phrase translates a string (without quotation marks) into a
Boolean expression. Only the first character of thte string
is interpreted and should be T or F.
PRINTER
PUNCH Output a Boolean expression using w columns. The words

TRUE or FALSE will be outputted if space permits. Otherwise

the w leftmost characters of the word will be outputted.
Cw.d CARDS Read a COMPLEX number from 2w+3 columns. In each w field,

- 9 -

the number is treated identically as if the format phrase
was Rw.d. The two fields are separated by a slash (/) and
bounded by corner brackets (< >). For example 3+2i would be
punched on card as
<3.0/2.0™
and the proper format phrase would be
C3.1
where the complex number occupies 2%3+2=9 columns on the
card. If this format is objectionable, then the user can
format each part of the complex number separately using any
other phrases. For example, the format
F(4,15,X2,15)
and the READ procedure call (where C is a complex number)
READ(F,C)
and the data card
OO AN T
‘ will set C to the value <2.0, 5.0>
PRINTER
PUNCH Output is a COMPLEX number using 2w+3 columns. This phrase
is equivalent to the set of format phrases.
1<', Rw.d, '/', Rﬁ.d, 1Y
If this format is objectionable, then the user can format each
part of the complex number separately using any of the other
phrases. For example, the format
F(I5,X2,'+',I5,'I',A1.1)
and the WRITE procedure call
WRITE (F,<3.0,5.0>)
will produc= the line image
3 + 51
Dw.d CARDS Same action as Rw.d
PRINTER ‘
PUNCH Using w columns, output a number (REEAL) with d digits to the
fight of the decimal point, locating the decimal po:nt properly,
e.g., if a variable has the value 3.145 x 107, a D5.1 format
will output
314.5
En CARLCS Not allowed.
Egggﬂ Ignored.
PRINTER Eject the page to line number n-1 and start the next activation

- 2" _

Fw CARDS
PUNCH
PRINTER
Iw CARDS
Iw.d
PRINTER
PUNCH
Ow
Ow.d CARDS
PRINTER
PUNCH
Pw CARDS

phrase at this point. A standard page (66 lines) consists

of top and bottom margins of six lines each and a body of

54 lines. A standard page can be modified using the MARGIN
procedure (1.v.). In any case, if the body currently contains
K lines, then these lines are numbered from O to K-1. This
phrase will then cause the page to be ejected to line n-1 mod K
if n # 0 or line K-1 if n = 0. No line will be printed. Except
for ejecting the page, this phrase produces no effect on the
formatting process.

Read the next w columns as if there were no format (i.e. in
free format). The format phrase, F80, will take longer to

read a card than no format at all. The F format cannot extend
from one card to another. Free format is explained in the

section describing the device CARDS.

Not allowed.
Read an integer expressed to the base d from w consecutive
columns. The value of d may be

d =0 or 2<d¢<10.
If d is omitted or d = O then the base is assumed to be 10.
Blanks occurring between the end of the number and the end

of the field are interpreted as zeros.

Output an integer expressed to the base d using w columns.
The value of d may be

d =0 or 2 <d < 10.
If d is omitted or d = O then base ten is assumed. The

number is right ‘justified in the field.
Not allowed.

The same as Iw.d except that the sien bit (leftmost bit) is
ﬁreated as a numeric bit, i.e., the word is considered to be

a 3f-bit binary number. If the number ié not large enough to
fill the field then zeros are inserted to the left cf the left-
most digit.

Sets the scanner to start scanning at column w of ttre present

card image beginning with the next format phrase. The range of

- 92 -

Rw.d

Sw

PRINTER
PUNCH

CARDS

w should be * < w < 80.

Sets the output editor to start creating a line image at
column w of the current line image. The range of w should
be

1w
Accept a REAL variable from w columns - If one of the columns
contains a decimal point, then its position is used to define

the actual decimal point - If there is no decimal point ex-

~ plicitly punched in the card then it is assumed to be located

PRINTER
PUNCH

" CARDS

PRINTER
PUNCH

d digits to the left of the right-hand end of the field
giving the numerical value. For example, R5.2 will force

the following correspondences:

CARD COMPUTER
12345 123.45
12.34 12.34
12,03 0.12 x 10°

Note that the character sequence "O3" serves to multiply

the value by ten with a power of 03.

Output é REAL variable using w columns with d-1 digits after
the decimal point. The form of the output is always:

X.XX, ee (represents R92.3)
where the first x is not zero (unless all of the x's are
zero) and ee represents the exponent of ten. Since one
must‘leave room for the sign of the mantisca, sign of the
exponent and decimal point the safe rule is that W must b=

equal to or greater than d+7. Note that d may not be zero.

Read in a STRING from w consecutive columns. The string is

left justified in the input string variable and any remaining
positions in the string variable are "space" fillec. A string
may spill over from one card to the next and still be processed

properly. No quote marks are needed to delimit the string.'

Output a STRING using w columns.

- 93 -

Tw.a CARDS Same action as Rw.d.
PUNCH
PRINTER Output a REAL variable using w columns and truncate the
number to d significant figures while inserting the

decimal point in its proper place. e.g. T€.3 will do:

COMPUTER PRINTED PAGE

123.45¢ 123.

0.002345 .00234

-0.002%45 | wxsnr (1,e. field is too small)

Cw
Uw.d CARDS Not allowed
PUNCH
PRINTER Same as Iw.d except that the sign bit (leftmost bit; is
treated as a numeric bit, i.e., the word is considered acs a
3€6-bit positive binary number rathar than a 35-bit binary
number with sign.

Xw CARDS Skip over (X-out) w columns.

PRINTER Skip over w columns. Unless the Pw format phrase is used this

is eguivalent to inserting w blanks.

Zw.d CARDS Yot allowed.
PUNCH
PRINTER The same as Iv.d except that the field is filled at the left
with leading zeros, if necessary. If the integer is positive,
w digits are outputted, otherwise w-' dirits preceded by a
minus sign are outputted.
"(quotation mark)
CARDS Not allowed.
 PUNC
PRINTEE Quotation marks must appear in matched pairs, i.e., there
must be a "left" and a corresponding "right"quote mark in
each use of the quotation marks. All characters, including
. spaces, between the quotation marks will be outputted ex-
actly as written. The only way to output a quotation mark

is to use the pound sign ahead of it.

- 9% -

Rules Concerning Format Fhrases

1. If a format phrase can be of the form mw.d where m is any letter, then
w and d must be < 63. If a format phrase can only be written in the
form mw then w must be < 4095. For example, for the format phrase
Iw, w must be < €3 since Iw.d is a permissible form but for Sw, w may
be as large as 4095.

2. w and d are always tonsidered to be unsigned numbers.

3. When a COMPLEX variable or expression, <exp>, occurs as a parameter to
READ or WRITE and the associated format phrase is not Cw.d, the <exp>
is considered to be the two REAL variables, REAL (<exp>) and IMAG(<exp>).

Thus on input two values are read and converted to COMPLEX and on

output a COMPLEX number is decomposed into two ikAL values.

REPEATED FORMAT EXPRESSIONS

It is frequently desirable to repeat one (or several) pieces of format
without the programmer writing the whole thing out in laborious detail.
These situations are taken care of by three cases:

1. Definite repeat
2. Variable repeat

3. Indefinite repeat

DEFINITE REPEAT _
For example if it is desired to print out ten REAL variables on
one line where each variable is to be formatted by R12.4, bne could
write:
FORMAT OWW(RW2.4,R’2.4,RT2.4,R12.4,R12.4,R12.4,R12.4,R12.4,
R12.4,R12.4,A1) § _
However this is very inconvenient. But by using the definite repeat, the
equivalent format
FORMAT OWW(10R12.4,A41) $
can be written. Now consider the case where we wish to repeat two variables
per line on the page for 5 lines of print. We herely write
FORMAT GRUNST (5(2R12.4,A1)) &
Thus the definite repeat really assumes two forms:
First form: <integer giving number of repeats> <format to be repeated>
Second form: <integer giving number of repeats>(<format.phrases separated
by commas)>)

- 95 _

VARIABLE REPEAT

Let's assume that we have a program which is to print out several lines
and we do not wish to specify until run time how many numbers to print on
each line. (Ws could repunch the format declaration prior to running the
program each time but this is undesirable.) In other words we have avail-
able and wish to use some expression or variable which specifies how many
variables we desire on the line. The variable repeat is used in this
instance to allow an expression to specify how many times a (sequence of)
format phrase(s) is to be repeated.

Before the exact form of the variable repeat is given, let us illustrate
its use.

INTEGER I,N$

REAL ARRAY X(1:1000)$

FORMAT GUDGEON(A,X5,*R8.4)$

READ(N)$ ‘

READ (GUDGEON,2*N+1, FOR I = 1 STEP 1 UNTIL 2*N+1 DO X(I))
The first call on READ will cause a value for N to be assigned from the
first card of input data. The second call on READ will cause:

1) The value of 2*N+1 to be substituted for the *. If N

wefe 4 then the format becomes A,X5,9R8.4.
2) A card will be read.

3) The first five columns of the card are skipped.
- 4) The number in columns 6-13 inclusive will be placed
in X(1), the number in columns 14-21 inclusive will
be placed in X(2), etc., intil 2*N+1 values have been
read.
Note that in the second READ sﬁatement, a.value is not read from cards for
2%N+1 since it corresponds to the variable repeat (%) and is only used to
determine the repeat value. ‘Also the variable repeat only affects the
number of times the format is repeated.
The form nf the variable repeat is then:
‘{single format phrase> OR *(<format phrases separated by commas
Suppose n asterisks occur in a FORMAT declaration. Then in the READ or
WRITE procedure.in which this format is a parameter, the first n expressions
in either the input or output list are considered as call-by-value expressions
and the value of each is associated from left to right with the respective

variable repeat. The values of the variable repeats are then retained

- 9% -

‘throughout the remainder of READ or WRITE. These first n expressions are

used only to give values to the variable repeats and arc ignored during

the remainder of the processing of the procedure. These first n expressions
must be of INTEGER type and have non-negative values. If the value of any
variable repeat is zero then the associated (sequence of) format phrasefs)
is skipped. It should also be noted that if these n expressions are used

in a READ statement, then the expressions are evaluated before processing

the input variables.

INDEFINITE REPEAT

The form of the indefinite repeat is:
({format phrases separated by commas>)

Ths indefinite repeat is used when the user does not wish to specify how
many times a (sequence of) format phrase(s) is to be repeated. The in-
definite repeat will cause <format phrases separated by commas> to be
repeated until the input or output list is exhausted. Thus the entire
format is viewed as an indefinite repeat. No format phrases to the right
of the first indefinite repeat will ever be interpreted. This rule has the
following ‘implications:

1. An activation phrase should always be included in an indefinite
repeat.

2. READ terminates immediatély upon exhausting the input list
regardless of which format phrase is being interpreted.

3. WRITE terminates if the output is exhausted and all of format
phrases between the point in the format at which the output list
became exhausted and the end of the indefinite repeat have been
interpreted. For phrases requiring output for which no output
"exists, blanks are inserted instead.

EXAMPLE:
INTEGER M,N,P$
READ(M,N,P)$
BEGIN
INTEGER ARRAY D(1..20,1..10)$
REAL ARRAY A(1..M), B(1..N), C(1..P)$
FORMAT PUMPERNICKEL(A,*R12.4,A,*R10.3,A,*D5.1,(A,1014))%
LIST BORSCHT(M,N,P,A,B,C,D)$
READ (PUMPERNICKEL ,BORSCHT)
END

- 97 -

In the preceding example, the values of M,N,P are assigned to the astericsk
in the FORMAT from left to right, M elements of A are read under R12.4, N
elements nf B are read under R10.3, P elements of C are read under D5.1, and

the array D is completely filled via the indefinite repeat (A,1014)
EXAMPLE:

REAL Y$
FORMAT MOXIE(' X SQRT(X)', A1, (D3.1,X2,T8.6,A1))$
LIST AXOLOTL (FOR Y=1 STEP 1 UNTIL é DO (Y,SQRT(Y)))$

WRITE (MOXIE,AXOLOTL)
The above program fragment will result in:
X SQRT (X)
1.0 1.00000
2.0 1.41421
3.0 1.73205
4.0 2.00000
5.0 . - 2.23606
6.0 . 2.44948

Note: Any of the various repeat options are considered to be single phrases.

THE FORMAT PROCEDURE

The use of a <format name> in a READ or WRITE procedure may be replaced
by a call on the FORMAT procedure of the form:

FORMAT (<string expression>)
This call results in the string expression being processed at this point as a
format string. The value of the string expression must have the form:
({format phrases separated by commas)>)
to be interpreted properly as a format string. Note that the outermost
parentheses must be present in the string. It should also be noted that
this string expression can be read in from cards as well as genzrated by any

of the readily available string operations.

GENERAL REMARKS ON FORMATS USED WITH WRITE

1. A format describes how the user wants the outputted line to appear,

where the descriptive process generally proceeds seguentially from

- 98 -

left to right (with the exception of the Pw phrase). Each device has
a maximum line length which it will accept (the longest being 132).
Any characters specified in excess of the maximum number will be lost
and no error message will be produced. Any columns not explicitly
filled by the user will be filled with blanks.
EXAMPLE

FORMAT KNIF(X120, 'SOME OF THIS ISNT', A1) $

WRITE (KNIF)
The output on the high speed printer page (128 character line length)

for the above fragment of program will consist of 120 blanks followed by

SOME OF _
A plus sign is never outputted by any of I,T,D,R,C,Z,0,U.
BOOLEAN variables used for output have only two possible values:
TRUE
and
FALSE

thus any use of the B format must use at least 4 and probably 5 as the

number of columns, if the entire word is to be printed. '

If the field is too small for any of the format phrases, then one of

the following actions will occur.

a) If the format phrase is Sw or Bw, the output will consist of as
many characters as possible, starting with the leftmost character.

b) If the format phrase is Iw.d, Ow.d, Uw.d or Zw.d then the most
significant part is lost, the sign (if present) is retained and
the resulting field is preceded by an asterisk ().

¢) If the format phrase is Rw.d, Iw.d or Dw.d, then the number will
be truncated to fit tﬁe field. If the field is too small for
even this minimum information, an error message will be produced
consisting of w asterisks (*) showing the requested size of the
field. ‘

d) If the format is complex, no check is made on the entir=s field
size but only on each sub-field and the errors will bs indicated.
as in c) above. |

e) If none of the above conditions are true then an appropriate error
message is printed and the program is terminated.

A1l output (except STRING and BOOLEAN values) is always pushed over

to right (right justified) within the available column specification.

- 99 -

EXAMPLE:
PRINTER OR PUNCH

63.4 under R9.2 6.3,+01

-63.4 under R9.2 _6.3,+dﬁ
0.00634 under R9.2 €.3,-03
-0.00634 wunder R9.2 -€.3,-03
-127 under I9 =127
TRUE under B? : TRUE

€. In the Iw.d and Uw.d formats all leading zeros of the field are deleted.
7. The following program fragments are equivalent.
ARRAY A(L1..U1,L2..U2,...,Ln..Un) $
WRITE (FOR I1 = L1 STEP 1 UNTIL U, DO
FOR 12 L2 STEP 1 UNTIL U, DO

2

FOR I =L STEP 1 UNTIL U_ DO
— "n n n —

A(T),I5,000,1))

and
ARRAY A(L1..U1,L
WRITE (A)

For two dimensional arrays, this amounts to outputting the array row

«eUsy,.eebl U) $

2 n n

by row. The second fragment executes far faster than the first.

- 100 -

8‘

Allowable conversions of type in WRITE with format are given in the

following table:

ALLOWABLE
TYPES OF PARAMETERS

B BOOLEAN

FORMAT

C COMPLEX

D,R,T INTEGER

REAL

BOOLEAN

REALZ2

COMPLEX (only the real or
imaginary part will be
used. For complete
explanation see dis-
cussion of Cw.d format
phase.)

1,0,U0,2 INTEGER
REAL
BOOLEAN
STRING
REALZ2

COMPLEX (same as D format)

S STRING

GENERAL REMARKS ON FORMATS USED WITH READ

1.

An activation phrase (A) must be thehfirst format phrase in a fofhat
that is a parameter to READ. If the first phrase is not an activation
then an error message will be given and the program terminated.
A complete discussion of free format is given in the cseclicn describine
the procedure CARDS. The free format specified:by the Fw phrase differs
from free format in the following ways: _

a) With the format Fw, an activation phrase must le specified.

b) With the format Fw, an asterick (¥) as data is considered

an illegal character unless it is part.of a string constant.

By using a format in the READ procedure, a card can be considered %o
have up to 4095 columns. This feature is invoked when any format* prrase

(except X, P and F) extends beyond the end of a card. Wher this sceurs,

- 101 -

column one of the next card immediately follows column 80. No activation
phrase is necessary. The phrases X, P and F may never run across card
boundaries.
EXAMPLE

STRING T(180) $

FORMAT F(A,S180) §

READ (F,T)

After reading is initiated by the activation (A) phrase, the S format

will read two additional cards in order to reach the end of the specified
field. The stringz T is filled with the first two cards and the first
twenty columns of the third. ‘
If any part of a card has not been examined w''en the input parameter
list is exhausted, any information on that part of the card is
lost. In the above example, columns 21 through 80 of the third card
are discarded. '
The following two program fragments are equivalent.
ARRAY A(L,..U,,Lye.Usseee,L 20U) §
READ (FOR I, =L, STEP 1 UNTIL u, Do

]
FOR I, = L, STEP 1 UNTIL U, DO

2 2

FOR I =L _ STEP 1 UNTIL U_ DO
- n n n —
A(T,,Ip,.00,1))

2

and

ARRAY A(L1..U1,L2..U2,...,Ln..Un) $

READ (4)
For two dimensional arrays this amounts to filling the array row by
row. The second fragment will execute far faster than the first.

Conversion of type in a READ procedure with format is a very intricate

process involving the interaction of the format, the type of parameter

and the type of data on the card. This process is described tiere.
A datum on a card will bs called a number except for strings.
A number is BOOLEAN if it begins with a T or an F. A number ‘s an
integer f
i) there is no decimal point in the number and
ii) there is no exponent present in any form and
iii) if the format is Cw.d, Dw.d, Rw.d or Tw.d then d = O.
Any other occurrence of a number is considered a real number. All

real numbers are double precision.

- 102 -

Any conversions necessary are made using the usual transfer functions.
The allowable type conversions are

a) If the number is Boolean then the parameter must be BOOLEAN.

b)
FORMAT ALLOWABLE TYPES OF PARAMETERS
C INTEGER Only the real part is used. The
REAL imaginary part is discarded
REALZ2
COMPLEX
BOOLEAN Only the real part is examined. If it

is an' integer number and has value

of O or 1 then it is an allowable

conversion
D,R,T . INTEGER
REAL
REAL2
BOOLEAN Allowed only if number is integer
and has value O or 1.
COMPLEX ' Only half of a complex number will
be assigned a value. See discussion
of Cw.d format phrase and remark 3
on formats.
B,I INTEGER
REAL
REAL2
BOOLEAN Allowed only if number is intepger
and has value O or 1.
COMPLEX Only half of a complex number will
| be assigned a value. See discussion
of Cw.d format phrase ani remark 3
on formats.
S STRING

- 103 -

THE LIST DECLARATION

The general form of the LIST declaration is:

LIST <list name™(<list elements separated by commas>)$ where <list name>
is a name supplied by the programmer and <list elements separated by commas>
is discussed below.

First we point out that any LIST which can be used in READ may also
be used in WRITE -- but it is not true that any LIST usable in WRITE may
be also used in READ.

A list element may assume any of the following forms:

1. A simple variable name (e.g. X)

2. A subscripted variable (e.g. A(I,T))

3. An ARRAY name (e.g. A)

4. A STRING element (e.g. NAME(2))

5. A STRING name (e.g. NAME)

€. A sub-STRING (e.g. NAME(/,9))
7. A LIST name (explained below)
3. A generative process (explained below)
9. An intrinsic or predefined (e.g. SQRT(X))

procedure call

"0. An explicitly defined procedure (e.g. MYOWN(A,B,P,Q))

call
1. An arithmetic expression (e.g. X+Y)
12. A Boolean expression (e.g. A IMPL B OR C EQUIV F)
"3, An arithmetic constant (e.g. 5.92734)
“L. A STRING constant (e.g. 'FRITZWEG')
"5. A BOOLEAN constant (e.g. TRUE)

Any of the first six forms of a list element (and with certain
reservations, the seventh and eighth may be used in a LIST to be nused in
READ. Any of the forms may be used in WRITE.

Thus ve now see that bazk at the beginning of this section where we
talked about <actual input parameter list> we meant that allowatle items
in the 1lis. are any of -he first six (and with reservations, the
sevent® an: eighth) of the list element forms.

Also where we mentioned <actual output parameter list> we row defire

the elements to be of any of the list element forms enumerated above.

A generative process (item 8 in the enumeration above) is of the form:
FOR <variable identifier or subscripted variable> = <for list> DO
(<any of the fifteen forms of list element. separated by commas>) where
{for list> is defined as:
{arithmetic expression>
or
<arith exp> STEP <arith exp> UNTIL <arith exp>
or '
{arith exp> WHILE <Boolean expression>
or
any sequence of the above separated by commas. See the section

describing the FOR statement for a complete explanation.

EXAMPLE: ,
INTEGER I,N $
READ (N) &
BEGIN

ARRAY A,X(7..N) $

LIST ELDIABLOROJO(FOR I = 1 STEP * UNTIL N DO (A(I), X(1)))%
READ (ELDTABLOROJO) $

WRITE (ELDIABLOROJO)

END

The above program fragment reads in a value for il, establishes the sirze of
arrays A and X, reads in values for

LU SN SPRTN W o

and will then write out the values in the same sequence.

By now it is no doubt clear to the reader that the fdrm of the generative
pfocess which is acceptable to READ is

FOR <variable identifier or subscripted variable> = <{for 1list> DO
(Cany of the first six forms (and with reserva“ions, the sevent’. and eirhth)
of the lict element forms separated by commas>).

A LIST may itself be used as a list element in a LIST (i.e. LIST's
may be nested). If the parent LIST is used in a READ procedure :hen all
list elements of all nested LIST's should follow the above sugg:stions
regarding the allowablé forms of list elements.

Multiple LIST's may be used in input/outpit statements. Tnerefore the

parameter <{list name> in a READ or WRITE procedure may in fact -onsist of

one or more LIST's.
- 105 -

EXAMP.E:

LIST L(H,

@X(HJL)&&

LIST Z(4,B,C,X) $
1$B:2$C:3$H:7$J:8$
E (L,L,L,L) $
E (2)

The first WRITE procedure contains multiple LIST's; and the second uses

a nesting of LIST's that is three deep.

THE CARDS DEVICE

CARDS may only be used as a parameter to READ and is used to specify
the on-line card reader as the <device name>. This is exactly equivalent
to omitting <device name>. The cards to be read should follow the control
card which caused execution of the program and should not include control
cards othsr than EOF cards. '

The <format> parameter to the READ procedure is optional for CARDS
and should be used only when the user desires to make a rigid specification
of the card contents. When a format is specified, the operation is as
described previously. Otherwise the cards are read in a so-called "free
format" (described below).

If alternative exits are provided to the KEAD procedure (as the
parameter <label>), then for the <dsvice name> CARDS these exits are taken
in the following circumstances.

1) Exit is made to the EOF label if an EOF control card is
encountered and the input parameter list has not been
exhausted. CSubsequent calls on READ will continue to
read the cards following the EOF card.

2) Exit is made to the Z0I label i< a control card »sther
than an EOF card is encountered and the input parameter
list has not been exhausted. Any subsequent cal .s on
READ will continue to exit to the EOI label.

W
~~

Exit is made to the ERR label only if a card con:ains
a sequence oY characters which cannot be transformed

into an acceptable value for the associated inpu‘ variable.

- 10F -

This might be due to a mispunched card, a misread card,

or a request for an illegal type coaversion.

FREE FORMAT WITH CARDS

Data cards to be read in free format whould be punched according

to the following rules. Four types of data may appear:

EXAMPLES:

1)

2).

An integer value is represented by a sequence of digits,

optionally preceded by a sign.

A real value may be represented in any of several forms:

a) A sequence of decimal digits containing a decimal point

b) An ampersand (&) followed by an unsigned or signed
integer. This represents a power of ten

c¢) A sequence of decimal digits with or without a decimal
point followed by a power of ten. This power of ten
may have the form b above or the form comma (,) followed
optionally by a blank, or sign, followed by an unsigned
integer l

d) Any of a, b, or c preceded by a sign.

A string value is represented by a sequence of characters

not containing an apostrophe (') and enciosed in apostrophes

used as quote marks. IMPORTANT: The characters # and : do

not have the special significanczs which is attached to them

within string constants in an Algol program. As a result,

it is not possible to read the character apostrophe (')

under free format.

4) A Boolean value is represented by a sequence of characters
except blank and asterisk, the first of which is either T
or F. Only the first character is examined to determine
the value: TRUE for T, FALSE for F.

Data on Card Type Value
928 INTEGER +928
-2 " -2
+6.5 REAL or REAL2 +€.5
3.282 REAL or REAL2 3.2 x 10°2
&-3 . +1.0 x 107>

- 107 -

' Data on Card Type Value

5:4,3 . REAL or REAL2 5.4 x 10°

5.4, 3 moomoo +5.4 x 10°

5:45%3 moomoo +5.4 x 107

5.4,-3 moonooon +5.4 x 1073
'TOM! STRING TOM

TOM 'BOOLEAN TRUE

If an asterisk (¥*) not contained in a string constant occurs on a data card
then the rest of the card is ignored.

If several values appear on the same card, they must be separated by
one or more blanks. A blank may not appear in a data item except in a string
value and in a real value following a comma. In the latter case, only a

single blank is permitted, and it is exactly equivalent to a plus sign. A

value is always terminated after column 80, and therefore a value may not
extend from one card %o the next. An asterisk not contained in a string
value will act the same as the end of card.

At least one card is always read (unless an EOI condition exists).
Additional cards will be read until enough values are obtained to exhaust
the input list. Unused values on the last card are lost since the next
call on READ begins by reading a card.

Each INTEGER, REAL, REAL2, BOJOLEAN, STRING simple variable and element

of an array requires one value from the input cards. Each COMPLEX variable

and element of an array requires two REAL values, which become respectively
the real and imaginary components of the complex number. The corner bracket
form of complex numbers may not be used for free format input. Values
representing REAL values are always read as REAL2 values and then truncated
to REAL, if necessary

| The following table indicates the permitted types of input parameters

for each type of value which may appear on a card.

Type of Value on Card Allowable Types of Input Parameters
INTEGER INTEGER
REAL
REAL2
COMPLEX Two values are read
BOOLEAN Convert O to FALSE,
1 to TRUE

- 108 -

Type of Value on Card Allowable Types of Input Parameters

REAL or REALZ INTEGER

REALZ2

COMPLEX Two values are read
BOOLEAN ' BOOLEAN
STRING STRING

THE PRINTER DEVICE
The WRITE procedure outputs to this device when the <device name> parameter

is PRINTER or is omitted. Output is printed on the same printer as the rest
of the user's listing.

None of the alternative exits specified by {label> are used when output
is to the printer.

The <format> parameter is optional. When a format is supplied, operation
is as previously described. If a format is not supplied by the user, the

implied format described below is used.

Type of Qutput Value Implied Format Phrase

INTEGER 112

REAL R12.5

REAL2 R12.5

COMPLEX Two REAL values are printed,

each under R12.5
BOOLEAN | B12
STRING See below

Each call on WRITE begins a new line. "Except for type STRING, ter wvalues
are printed per line until the output parameters from this call on.wglzg
have all been printéd. If less than ten values are printed on the last
lin= then blanks are supplied to complete the line. A STRING value, however,
always begins a new line, after forcing any values preceding it in the output
list to be printed. The string is divided into substrings of 132 characters
each, with blanks supplied to complete the las® substring if necessary, and
these substrings are printed, one per line. Any output parameters following
the string will begin a new line.

The user should note that two different models of printer are in use.
A 1004 printer accepts a line of 132 characters. The high speed printer

accepts a line of 128 characters, and thus some characters of long strings

- 109 -

printed under implied format will be lost.

AUXTLTARY PROCEDURES TO CONTROL PRINTER

Several procedures are available for providing additional control over
the printer and are described below. |
The HEADING Procedure
This procedure may be called with O, 1, or 2 parameters:
HEADING
HEADING ((exp1>)
HEADING (<exp,>,<exp,>) ‘
where <exp1> should be of type string and <exp2> should be of type integer
and should be in the range 0 < <exp2> < 4095. The top margin of each
succeeding page will contain a heading line composed of the first é0
characters of <exp,>, the current date and the page numbsr. If <exp2> is
present and is non-zero,then the next page heading printed will contain this
page number. Otherwise the page number is not altered. The form without
parameters will terminate the printing of the heading, including page numbers.
Note that if the top margin is not large enough to contain the heading (because
of a call on MARGIN) then no heading will be produced.

The MARGIN Procedure
The form of a call on this procedure
MARGIN (<exp1>,<exp2>,<exp3>)
where each parameter may be of type INTEGER, REAL, REALZ2, or STRING. Con-

version of the value of each parameter to type INTEGER is made in the usual

manner. Thereafter, each page is considered to have a top margin of <exp1>
lines, a body of <exp2> lines, and a bottom margin of <exp3> lines. Note
that, in general, the position of the paper in the printer following a call
on margin will be undefined. However, if the standard margin of 6, 54, €
is called for, the position will be adjusted so that the perforations‘of

standard paper will separate pages.

The PAPER Procedure
This procedure is called by:
PAPER (<exp>)
where <exp> may be of type INTEGER, REAL, REAL2, or STRING. The value of

- "0 -

<exp> will be converted to type STRING in the usual manner. During printine
of tﬁe output, <exp> will be printed at the top of the next pupye, a page
will be ejected, and the printer will be suspend.d. This feature is uned
when special forms are to be inserted in the printer. An unsolicited key

in (APR4 for the 1004, APR! for the high speed printer) is necessary to

continue printing (see Exec III manual).

THE PUNCH DEVICE
Output may be made to the on-line card punch if the <device name>

parameter of WRITE is PUNCH. The card punch accepts a line of ‘80 characters,

and any excess characters will be ignored.

None of the alternative exits specified by <label> are used when the
output device is the card punch.

The user may specify a particular format for the output and operation
will be as previously described. If the <{format)> parameter of WRITE is
omitted, the implied format described below is used for each type of output

value.

Type of Qutput Value Implied Format Phrase
INTEGER 1€
REAL | R1€.8
REAL2 R1€.8
COMPLEX Two REAL values are punched,
' each under R1€.8
BOOLEAN) | B1£
STRING ' See below

Except for type string, five values are punched per card until all values
have been outputted. If less than five values are are available for the

last card for this WRITE, blanks are supplied. A STRING valus always begins
aAnew card, after forcing any preceding output parameters to be punched. The
string is divided into substrings of 132 characters, and the “irst 80
characters of each substring are punched, without quote marks, into a card.
Any output values following the string will begin on a new card. Note that
it is usually undesirable to punch strings longer than 80 characters under
the implied format.

- 111 2

Procedure call

CARDS
FORMAT (<exp>)

HEADING (<exp1,
<exp2>)

MARGIN((exp1>,
<exp2>,<exp3>)

PAPER (<exp>)

PRINTER

PUNCH

LIBRARY PROCEDURES FOR CARD,

Type of
argument (s)

none

STRING

First is
STRING, second
is INTEGER

Any may be
INTEGER,

REAL2,
STRING

STRING

none

none

Type of

result

none

FORMAT

none

none

none

none

none

PRINTER AND PUNCH I/0

Description

Defines card reader as input device in a READ
procedure call.

Converts <exp> into an edited list of format
phrases.

Prints <exp,> at the top of every page of

printed output. <exp,> controls page numbering.
2

Defines form of printed page:
<exp1> is number of lines in top margin;

<exp2> is number of lines in body of page;
<exp3> is number of lines in bottom margin.
Non-integer arguments are converted.

The standard values are 6,54,6 respectively.

<{exp> is printed at top of next page, the

page is ejected and the printer is then sus-
pended. This facilitates the changing of paper
forms.

Defines printer as output device in a WRITE
procedure call.

Defines punch as output device in a WRITE
procedure call.

- 112 -

TAPE
DRUM X...
INPUT

OUTPUT

This chapter discusses the I/0 devices TAPE and DRUM and the procedures
that relate to the use of these devices. To understand this chapter the
reader should know exactly what magnetic tape and drum are and the basic .
dynamics of their use. Also the reader should be familiar with the previous
chapter dealing with card and printer I/0. ’

THE TAPE DEVICE:

TAPE is a non-recursive procedure that specifies a <device name> to the
1/0 procedures READ, WRITE, POSITION and REWIND. Such a specification selects
one of the magnetic tape units as the input/output dsvice. To use TAPE as a

parameter to any of these procedures (which is the only allowed use of TAPE)
it must have the form

. TAPE(<exp>)

where <exp> must be an expression that can be converted to type STRING and
hﬁve the value _

'<unit>! or 'Cunit> <numeric)>'
<unit> denotes the desired logicai unit and <numeric>, if bresent, denotes
the length of the tape in feet. If <numeric> is omitted, then, for magnetic
tape, the length is taken to be 1200 feet. If <numeric> consists of all
blanks then the length is set to zero. The length of the tape is set every
time <numeric> is specified regardless of the position of the tape. The
assumed length is only made at the time of the first reference to a particular
tape unit. The tape length is used to allow the user to make a programmed

recovery when the physical end of tape is encountered while writing. This is

- 113 -

done because some tape units (such as Univac II A) will not, by themselves,
alert the programmer to the end of tape condition. The procedure TAPE will
keep track of how much tape has been written and, if the tape length was
correctly specified, give an EOI condition when the physical end of tape is
near. .

The followirg table indicates allowable values of <unit> and the device

<unit> specifies for each value.

Value of <unit> Physical Device Specified
A-7Z ' Tape units A - Z
0 Printer
1 Card reader ¢
2 Punch
4L -9 Drum simulated tapes

Drum simulated tapes are discussed in the next section. If the logical
unit is.a letter, this letter should correspond to the letter used on the
ASG control card that assigns the tape (see EXEC III manual). If the logical
unit is O, 1 or 2 then TAPE will act as if PRINTER, CARDS or PUNCH, respectively.
had been used instead. Thus

WRITE(TAPE('0'), <1ist name>) has exactly the same effect as

WRITE (PRINTER, <list name>) which is the same as

WRITE(<1list name>)
Note that if the logical unit is O, 1 or 2 then <numeric> has no meaning and

is not examined.

DRUM SIMULATED TAPES

Drum simulated tapes (DST's) enable the user to regard drum as a magnetic
tape unit. Such a simulation has the advantage of using an intrihsically
faster I/0 device and much reduced rewind and position times.

To select a DST, the logical unit should have a value between 4 and 9
inclusive. If a tape length is not specified on the first reference to a DST,
then the DST will be made long enough to include all of the allowable drum
that is unused by any other DST. The sum of the lengths of all drum tapes
must not exceed 524 feet.

Drum simulated tapes are indistinguishable from normal magnetic tape

in all respects except for the following:

- 11 -

1. DST's cannot be rewound with interlock (see the section
describing the REWIND procedure).
2. DST's do not need to be assigned by an ASG card.
3. Once a length has been assigned to a DST, it will not be
changed for the remainder of the program.
L. DST's are erased at the end of each run. Thus a DST must
be initialized by writing on it before reading from it.
5. The device DRUM (q.v.) should never be used when DST's are
" being used.
EXAMPLE
REWIND (TAPE('4120'))-
This procedure call will initialize DST"A' to 120 feet if this DST
has not been used before. In any case, DST '4' is rewound.
NOTE: Unless indication is made to the contrary, the rest of the explanation

of TAPE applies only to magnetic and drum simulated tape.

DETAILS OF TAPE FORMAT

The smallest unit of information that can be written to tape is a word.
Since writing information to tape a word at a time is extremely wasteful of
épace, information is collected together into 255 word bundles by Algol
before being written. Such a bundle will be called a block. An additiomal

word 1s added to each block by Algol and then the block is written to tape.
The extra word is for the device TAPE's own use and is completely un-

detectable by the Algol programmer.

When reading from or writing to tape, the number of words read or
written by each type of Algol variable is given below.

1. An INTEGER, BOOLEAN or REAL datum consists of one word.

2. A REAL2 or COMPLEX datum consists of two words.

3. A STRING datum consists of the number of words given by the
. formula
1+ ((CH + 5 + MOD(ST - 1,¢))//6)
where CH is the number of characters in the desired string and ST
is the position of the first character of the desired string in the
outermost string.
4. For all types of arrays except string arrays, the number of words

composing the array is found by multiplying the number of elements

- 115 -

in the array by the size of each element (see steps 1 and ?).
5. The number of words composing a string array is found by

multiplying the number of elements in the array by

| (cH + 5)//6

where CH is the length in characters of each element of the array.
Splitting data between blocks has no significance when writing the tape.
If ar. entire block has not been accumulated when the output parameter list
is exhausted then a short block is ﬁritten consisting of as many words as
have been accumulated. The user should be aware that blocks of less than

twenty words will generally cause unreliable operation of the tape unit.

OUTPUT TO TAPE
To output data to magnetic and drum simulated tape, the device name
in WRITE must be TAPE(<exp>). The other parameters to WRITE (g.v.) have the
following specific interpretations.
<label> is utilized in the following fashion:
1. Exit is made to the ERR label if the tape cannot be written properly.
2. Exit is made to the EOI label if either the physical end of tape
is sensed or the remaining tape length is indicated to be zero
(by utilizing the tape length).
If both labels are missing then exit is made to the Algol error routine
instead.
{format> is not allowed as a parameter.
<{list name> and <actual parameter list> are the same as described
in the previous chapter with the following exceptions:
1. A substring array name without subscripts is not allowed.
2. A class of procedures called modifiers are allowable parameters.
These procedures are described in the next section called MODIFIERS.
Note that whenever a tape unit is switched from writing to any other
operation, an EOI (end of information) marker is written on the tape following
the last werd of information. While the user can position past the EOI marker,
it is almost always catastrophic to do so.
The actual transmission of data to the tape proceeds concurrently with
execution of the program. Consequently, the program may terminate before
all the data has been written to tape. To insure that output has terminated
correctly the user should do any non-output tape operation on all units that

were written to last just before exiting

- 116 -

from the program. An example is rewinding all tapes used for output at
the end of the program.
EXAMPLE: -

The statement

WRITE(TAPE('G'), DARN, DONEFOR, ARRAY1, ARRAY?2)

will cause the arrays named ARRAY1 and ARRAY2 to be written on the tape mounted
on logical unit G. If a tape error occurs during the operation, exit will be
made to the statement labeled DARN. If the end of the tape is sensed before
the write is completed, exit will ibe made to the statement labeled DONEFOR.

MODIFIERS

The modifiers described in this section may only be called as parameters
to WRITE and POSITION. Any call on them in contexts other than these two
will cause disastrous (and probably not immediately observable) errors.

Only the use of modifiers with WRITE will be discussed in this section,
but it should be kept in mind that in both WRITE and POSITION the modifier
called is the same procedure and consequently the effect is the same.

The two modifiers allowed in WRITE are KEY and EOF. In the following
discussion, the term sentinel will be the generic term used to refer to the
class constituted by KEY and EOF.

Sentinels allow a user to partition his data on tape in a manner
similar to the way EOF control cards partition a data card deck. Encountering
any EOF mark while reading tape causes the same action as encountering an
EOF card does when reading cards. KEY marks are ignored during input.

A call on KEY or EOF may be any of the following forms:

1. KEY 4. EOF
2. KEY(<string exp>) 5. EQF(<string exp>)
3. KEY(<integer exp>) 6. EOF(<integer exp)>)

The parameters to KEY and EQF serve to distinguish between different EOF
marks and between different KEY marks, If the parameter is <string exp>
(forms 2 and 5) then only the first five characters are used to identify the
sentinel. If less than five characters are specified then blanks are appended
to the end. If the parameter is <{integer exp> (forms 3 and €) then only

integers in the range

(230 30_

- 1) < <integer exp> £ 2

are used to identify the sentinel. If integers outside this range are used

- 17 -

then the result of MOD(ABS(<integer exp>), 2%%30) * SIGN (<integer exp>)
is used.

No type conversion is made on the parameters to EOF and KEY and if the
parameter is not of type STRING or INTEGER then an error message is given.
The mark written on tape by each of the above forms is distinguishable from
e;ch of the other forms regardless of the parameter supplied. For example
all of the following calls produce different sentinel marks.

KEY KEY(123) KEY('123') EOF('123') EOF(123) EOF

When a modifier is encountered in an output parameter list, the fol-
lowing sequence of actions occurs:

1. Output all the parameters occurring before the modifier.

2. Write the appropriate sentinel on tape.

3. Continue processing the output parameter list.

Note that any number of sentinels may be written by a single call on WRITE.
Also any number of sentinels may be written consecutively on tape.
The use of modifiers as parameters to POSITION is discussed in the

seetion discussing the POSITION procedure.

INPUT FROM TAPE
To read data from magnetic or drum simulated tape the <device name> in
READ must be TAPE(<exp>). The other parameters to READ (q.v.) have the
following specific interpretations.
<label> is utilized in the following fashion:
1. Exit is made to the EOF label when an EOF mark is encountered.
EOF marks are described in section MODIFIERS. |
2. Exit is made to the EOI label when either the end of written
information or the physical end of tape is encountered.
3. Exit is made to the ERR label whenever a tape cannot be read
properly.
If any of the labels are missing then exit is made to the Algol
error routine instead.
<{format> is not allowed as a parameter
<list name> and <actual parameter list> are the same as for card
input with the exception that a substring array name without subscripts
is not allowed.
Only tapes written by calls on the WRITE procedure can be read by the

READ procedure. Each call on READ will cause a new block to be read from

- 118 -

tape. Words are extracted from the block as needed and substituted into
elements of the input parameter list. If there is not a sufficient number
of words in the first block to exhaust the input list, then blocks will
continue to be read until enough words have been read. Any information

in the last block read that is not used is discarded.

No conversion of type is ever made during tape input. The following
discussion indicates how data can be read propefly from tape. Define an
output list to be that portion of an 6utput parameter list that occurs be-
tween tﬁo modifiers (excluding the modifiers) such that a) no modifier is
included in the output list and b) if the parameter adjacent to either end
of the output list is added to the output 1list then the output 1list would
include a modifier. The parentheses of the WRITE procedure will be con-
sidered to act as modifiers in the sense of determining output lists. Also
<{device name> and <label)> will never be part of an output list.

EXAMPLE: : :
LIST OUT(A, B, ARAY1, KEY, C, D, EOF,EQF, E, ARAY2) $
WRITE(TAPE('A'), LABY, KEY,OUT, BOOL, 2%*10)
The output lists in the above example are
A,B,ARAY1
c,D
E,ARAY2, BOOL, 2%#10
.An input list will denote a proper input parameter list that is constructed

from an output list in the following manner:

1. For every variable and identifier on the output list substitute,
respectively, a variable or identifier that has exactly the same
arithmetic type as the parameter on the output list. If the
output parameter is a string then the input parameter must be
a string of exactly the same number of characters. If the output
parameter is an array then the input parameter must be an array
of exactly the same number of dimensions and the same number of

elements per dimension.

2. For every expression and constant not included in step 1 a
variable or identifier should be substituted that has the same
arithmetic type as the expression or constant.

EXAMPLE: | |

LIST OUT(A,B ARAY1,KEY('2'),C,D,EOF(-1),EQF(3),E,ARAY2) ¢
WRITE (TAPE('A'), LAB1, KEY(1), OUT, BOOL, 2%*10)

- 119 -

The following are proper input lists that correspond to the output lists

OUTPUT LIST INPUT LIST
A,B,ARAY INT1, INT2, ARAY
C,D c,D
E,ARAY2,BOOL,2%*10 E,ARAY3,BOOL1,INT

Proper input will occur if the sequence of input lists used in READ
is the same as the sequence of output lists used the WRITE that creafed the
tape. Also if the tape is positioned to a point just after a modifier, then
the sequence of input lists can start with the list that corresponds to the
output list that followed that modifier. Note that no detection of a KEY
mark will be possible during input. However, any attempt to read past an
EOF mark will cause an exit to the EOF label.
EXAMPLE
In relation to the above example the following are correct
sequences of input lists
INT1,INT2,ARAY

INT*,INT2,ARAY,C
C,0,E,ATATZ if the tape was positioned to KEY(2) first.

Only C and D will be read into since an EOF mark (EOF(-1)) will be
encountered when attempt is made to read into E.
E,ARAY3,BOOL1,INT if the tape was positioned to EOF(3) first.
Correct calls on the READ procedure corresponding to the above might be
READ(TAPE('A'),INT1,INT2,ARAY)
READ(TAPE('A'), INT1,INT2,ARAY,C)
READ(TAPE('A'),LAB3,C,D,E,ARAY3)where LAB3 is the EOF label.
READ(TAPE('A'),E,ARAY3,BOOL1,INT)
assuming the tape is positioned properly first.

Since input from tape is not checked to see if it is the proper arithmetic
type, a great deal of flexibility (and responsibility) is allowed the user. Data
is substituted into input parameters on the basis of the number of words each
parameter occupies (see DETAILS OF TAPE FORMAT). For instance, a two dimensional
array can be written to tape in one call on WRITE and read back a row at a
time into a vector. There are two special cases of which the user must be
cognizant. Precautions must be taken when inputting strings and string arrays.
No check is made when reading these two types of data so that if the following

rules are not observed, only the user will experience difficulty.

- 120 -

When a string is written to tape, it is prefaced with a control word
that is interpreted by Algol. To correctly read in a string the tape must
be positioned so that the control word will be the first word read. Also
the string input parameter must have exactly the same number of characters
as the string on tape.

A string array is not written to tape in the same format as a string.
Consequently, string arrays must be read in the same manner as they were
written. The string array input parameter should have exactly the same
number of dimensions, the same number of elements per dimension for each
dimension and the same number of characters per element as the string array

that was originally written on tape.

THE POSITION PROCEDURE

The POSITION procedure is a fully recursive procedure used to position

a magnetic or drum simulated tape. The general form of POSITION is:
POSITION(<label>,{position pair>)

These two parameters may occur in any order.

<lab21> consists of one or two labels (separated by a comma if two)
which are used as alternative exits by the POSITION procedure. These exits
are utilized when abnormal conditions are encountered while positioning a
tape. The appropriate exit is chosen in the following manner:

i) Exit is made to the first label (if present) if either the
beginning or the end of written information is encountered
before satisfying the position. This label is called the
EOI label.

ii) Exit is made to the second label (if present) if the tape
cannot be moved because of some malfunction of the tape
unit. This label is called the ERR label.
<{label> need not be specified. The standard Algol error exit is supplied
for all missing labels. If an exit is made to the Algol error routine, an
appropriate message is printed and the program is terminated.
<{position pair> consists of a call on TAPE, a comma and a position
modifier. A position modifier may be any one of the following eleven forms:
1. KEY or +KEY
2. EQF or +EQF
3. -KEY
- 21 _

-EOF

EQI or +EOI

-E0I

. <integer exp>

KEY (<exp>) or +KEY (<exp>)
9. EOF (<exp>) or +EQF (<exp>)
10. -KEY (<exp>)

11. -EQOF (<exp>)

<exp> may be either a string expression or an integer expression. I»

.

R 2 O WUt

either case it has the same effect as a write modifier. In all eleven forms
if the position modifier is unsigned or positive then the tape is moved in
the forward direction; otherwise it is moved in the backward direction.

If position modifier is a KEY or EOF (forms 1,2,3,4,8,9,70 and 11) Lhen
the designated tape unit is moved in the appropriate direction until the
closest specified KEY or EOF mark is found. If no such KEY or EOF mark
is found then exit will be made to the EOI label if it is present. If the
position is in the forward direction then the tape will be positioned im-
mediately following the KEY or EOF mark. If the position is in the backward
direction then the tape will be positioned immediately preceding the KEY or
EOF mark. In this case an attempt to read forward will exit through the
EOF label if present if it is an EOF mark.

If position modifier is an EOI (forms 5 and €) then the tape is moved
to the beginning or end of information, respectively. If it is a position
to the end of information the tape is left so that a call on WRITE will
remove the EOImarker from that spot on the tape.

If position modifier is an integer expression then the tape is positioned
{integer exp> blocks in the appropriate direction. If the end of written in-
formation is encountered before the requisite number of blocks have been
positioned, then exit will be made to the EOI label if present.

EXAMPLE:
POSITION(TAPE('D'),KEY('SIS'),LAB1,LAB2)
This statement will initiate a forward search of the tape on logical unit

D for a KEY mark having as identifier the string 'SIS'. 1If such a KKY

mark is not found, control resumes with the statement labeled LAB2.

THE REWIND PROCEDURE

The REWIND procedure is a fully recursive procedure used to rewind

tape units. The general form of the REWIND is:
REWIND(<tape list 1>, <modifier>, <tape list 2>
where any combination of the parﬁmeters may be omitted. .
<tape list 1> and <tape list 2>are calls on TAFE separated by commas.
EXAMPLE: ' ‘
IAPE('A'),TAPE('P1200"),TAPE(S(1)),TAPE('4")

where S is a string.

For REWIﬁD, logical units of O, 1 and 2 are permitted. If any of these
logical units occur, they are ignored. All tape units specified by <{Hape
list 1> are rewound. <tape list 2> is explained below.

<modifier> is the procedure call INTERLOCK. If INTERLOCK occurs in
the parameter list, then all tapes designated by <tape list 2> are rewound
with interlock. All tapes in <tape list 1> are unaffected.
EXAMPLE: _ _

REWIND(TAPE('4'),TAPE('1'),TAPE('P'),INTERLOCK,TAPE('P'))

Here drum simulated tape 4 is rewound, and logical unit P

is first rewound and then rewound with interlock. Rewindinr
logical unit % produces no action.
DPrum simulated tapes cannot be rewound with interlock. If such an operation

is attempted then the tape is rewound.

<Hx DRUM DEVICE

_

i

G

DRUM is a non-recursive procedure that specifies a <device nam=> %o the

1/0 procedures READ and WRITE. When DRUM is used as a parameter to either of
these procedures i% must have one parameter of type INTEGER:. The param=ster
specifies an address on drum at which an input or output operation is to
start. All drum operations will proceed from this starting address %o in-
creasing addresses. The starting address will have an implied range of
allowable values which is

J £ <{starting address> < 262,143,
This rang: can be doubled ty making the declaration

EXTERNAL SLEUTH PROCEDJRE DRUM $

When the declaration is in effect, thers will be no automatic type conversion

of the parameter of DRUM to type integer. If such a conversior is necessary
it must te explicitly made by the user. This declaration has the following
effects:

- 723 -

1. The starting address now has the allowable range
0 £ <starting address> < 524,287

2. What used to be address O in the implied range becomes address

2el,14y and o on tor all higher addresses.

3. Any starting address between O and 102,143, inclusive, will

input or output from the users' program complex file (PCF).

The device DRUM should never be used when drum simulated tapes are
being used since the same area of drum is used by both. The amount of
drum used by drum simulated tapes remains fixed and cannot be altered by
the above declaration of DRUM.

The starting address indicates where input or output is to begin.
Each address corresponds to a word of data on drum. If more than one
word is needed for input or output then consecutive higher addresses are
used. Data is represented on drum exactly as it is on tape except, of
course, that there are no blocks on drum. Also, there is no special
internal control word for every 255 words of data. The number of words
occupied by cach kind of Algol variable is given below.

1. An INTEGER, BOOLEAN or REAL datum consists of one word.

2. A REAL2 or COMPLEX datum consists of two words.

3. A STRING datum consists of the number of words given by

the formula
* + ((CH + 5 + MOD(ST - 1, #))//6)

where CH is the number of characters in the desired string
and ST is the position of the first character of the desired
string in the outermost string.

L. For all types of arrays except string arrays, the number of
words composing the array is found by multiplying the
number of elements in the array by the size of each element
(see steps " and 2).

5. The numbervcf words composing a string array is found by
multiplying the number of elements in the array by

(CK + 5)//6
where CH is the length in characters of =zach element of “he
array. | '
Note that the final address written into or read from must be in ‘he same

range as the starting address.

- 124 -

The user should be aware that there is no predictable data on drum at
the start of his program. It is necessary for the programmer to initialize
the drum by writing on it before anything is read from drum. Also all data

is erased at the end of each run.

DRUM AS A PARAMETER TO READ

When DRUM is specified as the device in a READ procedure call, the
labels that are parameters are interpreted in the following fashion:
i) The EOF label is never used.
ii) Exit is made to the EOI label when an attempt is made to
read past address 262,143 (or 524,287 of enlarged drum).
iii) Exit is made to the ERR label if the drum cannot be read
correctly.
{format> is not allowed as a parameter.
<list name> and <actual parameter list> are the same as for card input
with the exception that a substring array name without subscripts is nol
allowed.
EXAMPIE:
The statement
READ (DRUM (MAX (THIS,THAT)) ,PROJECTS,RECOVER)

will read the drum starting at the address given by whichever

INTEGER variable has the larger value, THIS or THAT. The array PROJECTS will
be filled by READ and the error label is RECOVER.

DRUM AS A PARAMETER TO WRITE

When DRUM is specified as the device in a WRITE procedure call, the label
parameters are interpreted in the following way.

1. Exit is made to the ERR label if the drum cannot be written properly.

2. Exit is made to the EOI label when an attehpt is mads tc write

past address 262,143 (or 524,287 if the larger drum area is in use).

<{forma‘> is not allowed as a parameter.

<{list r.ame> and <actual parameter list> are the same as described in the
previouS chepter with the exéeption that a substring array name without s.b-

scripts is 1ot allowed as a parameter.

- 125 _

EXAMPLE:
WRITE (DRUM(I),ARAY)

This procedure call will write array ARAY to drum starting at address I.

SPEED OF DRUM AND TAPE INPUT/OUTPUT

The following suggestions are made to allow the user to maximize the
speed of input/output operations to tape or drum. These suggestion do not
need to be observed.

It is always faster to specify an arfay by name only instead of specify-
ing each element separately.

Input of a string will be faster if, when the string is written out,
the position of the first character of the string has character position
£*N+1 (for some N) in the outermost string and the string that 1s the input
parameter satisfles the same restriction. If both of these conditions are
met, é*((CH + 5)//6) (where CH is the number of characters in the input
parameter string) characters will always be read.

- Lle -

LIBRARY PROCEDUIES FOR TAPE AND DRUM I/0

Procedure Call Type of o Type of Description
Argument (s) Result
DRUM (<exp>) o 'INTEGER, none Sets starting address for drum
| REAL, . _ Input/Output operation equal to <exp>. If
REALZ2, ' EXTERNAL SLEUTH PROCEDURE DRUM $ has been
STRING used then the parameter to DRUM must be of

INTEGER type.

*EOF (<exp™) ~ STRING or _ none Used as parameter to POSITION and WRITE.
INTEGER. Positions to designated EOF mark on selected

tape unit when used as parameter to POSITION.

Writes EOF mark when used as parameter to WRITE.

iEQl none none Used as parameter to POSITION. Will position
to either beginning or end of written informa-
tion depending on sign.

INTERLOCK none none ‘ Used with REWIND to rewind tape units with
interlock

*KEY (<exp>) STRING or none Used as parameter to WRITE and POSITION. Positions

INTEGER to designated KEY mark on selected tape unit

when used as parameter to POSITION. Writes KEY
mark when used as parameter to WRITZ.

TAPE (<exp™) STRING nonz Defines tape unit specified by <exp> as device

in Tnp.t/Output procedure-

onou

BLOCKS

BLOCKS

In Algol 60, & program consists of one block which in turn may contain
within 1t many subblocks nested to any depth. These subblocks serve to de-
fine a structure within a program which facilitates the construction of a
program by permitting it to be built up of pieces -- each of which may be
relatively independent of each other. These pieces may in turn be tested
separately before putting them together in the final program.

An upper bound of 1,020 different blocks per program is imposed by
the Algol compiler not including any external sections (see Chapter XII),
Tnls bound should be adequate for most programs, but if necessary this
nurber can be extended by using external procedures. The blocks are
rarbered from * to 1,020 in the order in which the program is read by
~ne compiler.

An example of a program with a complex block structure is given in
Flgure <.

31.2CK FORMAT

A tlock consists of two parts; namely, the heading and the body. The
heading may not be empty and the block head must.precede the body of the
block. -

The block head consists of all declarations needed within the block.
This forces all identifiers, procedufes, lists, “ormats, arrays,
etc. to be defined before they are used.

The body of the block on the other hand contains all statements per-
tinent to the block which are not declarations. This means that all of

- 128 -

the active statements such as replacement statements must be located in
the body of the block.

DONOTHING. . BEGIN
INTEGER I $
REAL ARRAY A(1..20) $
FOR I =1 STEP 1 UNTIL 20 DO
A(I) = 0.0
END DONOTHING $

In the above example, the declarations INTEGER $ and REAL ARRAY A(",,27) 7
constitute the head of the block while the FOR statement and replacement
statement form the body of the block.

DEFINING A BLOCK

A block isAdefined by enclosing a section of program consisting of a
head and body within a set of BEGIN - END statement parentheses, as in the
above example. This, in effect, means that the word BEGIN followed immediately
by some form of declarations defines a new block which is terminated by the
END that matches the defining BEGIN. The double use of the BEGIN - END
parentheses should be noted by the user. A group of statements enclosed by
a BEGIN - END pair will form a compdund statement if the statement following
the BEIGIN is not a declaration.- On the other hand if this statement is a
declaration then a new block will be defined rather thah a compound statement.

A special rule has been incorporated in the compiler for defining
the outermost block in a program (block 1 in figure 2). The normally re-
quired EEQIE - END pair is not required in this instance as the compiler
will automatically supply a matching BEGIN - END pair. However, if the user
desires to supply his own BEGIN - END as the formal language requires, no
error will result in the compiled program. All inner blocks do require the
bounding BEGIN - END pair.

EXAMPLES:
Program 1
COMMENT THIS PRCGRAM INVERTS A SQUARE MATRIX
BY STRAIGHT GAUSS ELIMINATION.
A = MATRIX, N = ORDER OF A.

- 129 -

COMMENT

REPEAT. .

INVERSE OF A IS WRITTEN OVER A §
INTEGER N $
READ (N) $
BEGIN REAL ARRAY A(1..N, 1..N), V(1..N) $
INTEGER I, J, C §
READ (&) $
FOR C = 1 STEP 1 UNTIL N DO
BEGIN FOR I =1 STEP 1 UNTIL N-1 DO
V(1) = A(1, I+1)/A(1,1) $
V(N) = 1/A(1,1) § |
FOR I =1 STEP 1 UNTIL N-1 DO
BEGIN FOR J = 1 STEP 1 UNTIL N-1 DO
A(I,J) = A(I+1, J+1) = A(I+1, 1)*V(J) $§
A(I,N) = -A(I+1, 1)*V(N)

END §
FOR J = 1 STEP 1 UNTIL N DO A(N,J) = V(J)
END $
WRITE ('INVERSE OF A', A)
END
Program 2

THIS PROGRAM DETERMINES THE SPECTRAL RADIUS OF A SQUARE
MATRIX BY THE POWER METHOD, A = MATRIX, N = ORDER OF A §
INTEGER N $ READ (N) $ |
WRITE ('ORDER OF A = ',N) §
BEGIN INTEGER I,J,K $
REAL MAXQ, MINQ, SUM, YMAX $
REAL ARRAY A(1..N,1..N), X,Y(1..N) $
LIST QUOTIENTS(FOR K = 1 STEP 1 UNTIL N DO ABS(Y(K)/X(K))) :
LIST YABS(FOR K = 1 STEP 1 UNTIL N DO ABS(Y(K))) $
READ (A) $ WRITE ('MATRIX A',A) $
FOR I = 1 STEP 1 UNTIL N DO X(I) =1.0 $
FOR I =1 STEP 1 UNTIL N DO
BEGIN SUM = 0.0 $
FOR J = 1 STEP 1 UNTIL N DO

- 130 -

SUM = SUM + A(I,J) * X(J) $
(1) = |
END $

MAXQ = MAX(QUOTIENTS) $

 MINQ = MIN(QUOTIENTS) $

IF (MAXQ - MINQ)/MAXQ LSS &-5 THEN
BEGIN WRITE ('SPECTRAL RADIUS OF A',MAXQ) $
GOTO FINA END $

YMAX = MAX(YABS) $

FOR I = 1 STEP 1 UNTIL N DO X(I) = Y(I)/YMAX $

GOTO REPEAT $

FINA.. END

LOCAL AND GLOBAL IDENTIFIERS

All identifiers that are dqciared explicitly within a given block are
said to be local to that given Elock. Any identifiers that are defined in
an outer block of the given block (i.e. in any block that contains the
given block) and are not redefined in the given block are said to be global
to the given block. Also any identifiers that are defined within an inner
block (i,e. any block contained in the given block) will have no meaning
in the given block and cannot be referred to from the given block.

Since a label is an identifier, this last statement means that all
blocks are entered through their heads and it is impossible within the
language to enter the middle of a block. Also all variables that are .
~defined in a block and hence local to the block will be bound to the block.

When a block is entered (through its head) space will be requested and

taken away from the remaining available spdce in memory and assigned to all
-normally defined local variables in the block including arrays. The
‘initial values of these variables are to be considered as undefined, except
for OWN variables. The value zero is assigned to OWN variabler of type
INTEGER, REAL, REAL2, and COMPLEX while OWN STRING's are set tc blanks and
OWN BOOLEAN variables are initialized to FALSE. When an exit of any form,

whether by means of a GOTO statement or normally through the end of a block
is made from a block, all memory space that is assigned to local

normal variable storage is returned to the available

- 131 -

space part of memory and can be used by other blocks for local variable
storage, At times it is desirable to have variables retain their values
from block entry to block entry. Since normal variables will have their
values redefined to zero upon each entry and thrown away on each exit, a
special claés of variables called OWN variables is defined. This class
has permanently allotted space in msmory and variables named in an OWN
declaration will retain their values from entry to entry. However, it

- should be noted that the identifier rule still holds, and these variables
althoﬁgh residing in memory cannot be addressed from outside the defining
block. See Chapter V, THE OWN DECLARATION, for a description of storage
assignment of Block 1 quantities.

To further illustrate'the concept of local and global identifiers
consider the block displayed in Figure 1. The variables I, J, Kk, X, Y, 2
and labelsll, L2, are local identifiers in Block 1. Only I, K, X, Y, Z,
L1, L2 will be global to Block 2, while J is redefined and local in Block
2 along with L,y M, U, V., In Block 3, I, Y, Z, L1, L2 from Block 1 are
global along with J, L, U, V from Block 2. K, M, N, W, X are local in
Block 3. Consider the statement, L3. The global variable Y will be re-
placed by the sum of the local variable X with the product of the global
variables V, Z., The statement L4 in Block 4 looks the same as L3 in Block
3. However, the variable X in this case refers to the variable X in Block
1 rather than the varialbe X in Block 3; hence the effect of the statements
will be different.

In Block 5, the labeled aiatement L5 has an erronebus QQ IO LA after
the word THEN. The label L is defined in Block 4 and has no meaning
within Blpck 5 since the blocks are disjoint. Howéver, the GO TO L1 is
correct and will send control to the statement labeled L1 in Block 1. This
in effect will cause the program to re-enter Block 2.

- 132 -

Figure 2

INTEGER I,J,K $§ » (Block 1)
REAL X,Y,7 §
L1..BEGIN
INTEGER J,L,M$ (Block 2)
REAL U,V$
BEGIN . (Block 3)
INTEGER K,M,N $
REAL W,X $
L3..Y=X+V*Z §
END $
BEGIN (Block 4)
' BOOLEAN B1, B2 §
INTEGER P, Q $
REAL Z1, Z2 $
L4. . Y=X+V*Z $§
END
END $
L2..BEGIN (Block 5) ‘
" |COMMENT NOTE THAT THE STATEMENT LABELLED L5 IS IN ERROR $ -
INTEGER V, Z $
REAL I, M $
BOOLEAN B1#
L5..IF B1 THEN GOTO L4 ELSE
GOTO L1 $.
END

- 133 -

XII...

PROCEDURES

A procedure in Algol is a very general and flexible structure which
includes as a subset the more or less generally recognized classes of sub-
routines and functions. It is generally used to specify a section of
program, which usually represents an algorithm, as a somewhat independent
plece of thé program that can be called or reused many times from other
parts of the program. This structure enables one to test various inde-
pendent pieces of a program before putting them together in a more complicated
way. '

The procedure may be classified or subdivided into three categories,
namely: normal Algol procedures (simply called procedures), library
procedures, and external procedures. First, let us consider the class of
normal Algol procedures.

These procedures represent a special type of block called a procedure
block. Procedure blocks are defined by means of a procedure declaration
end exhibit most of the normal properties of blocks. |

THE PROCEDURE BLOCK

A procedure block consists of a procedure heading followed by either
a standard block or a statement, which represents the body of the procedure.
The procedure heading consists of,thfee parts, namely: the procedure
declaration with formal parameter list, the value part, and the specifi-
cation part. ' '

THE PROCEDURE DECLARATION'

The format of the procedure declaration is as follows:

1

- 134 -

<{type> PROCEDURE <identifier>

<type> PROCEDURE <identifier)> (<par1>, ceey <parN>)

<typs> PROCEDURE <identifier> (<par,>) <str,>: (<par2>)

<str3>: cee ((parN>)

where <{identifier> is the name of the procedure, the <parI> are the formal
parameters of the procedure, the <strI> are strings which represent paren-
thetical comments (and need not be included), and <type> (see Chapter V)
is one of the following: REAL, REAL2, INTEGER, BOOLEAN, COMPLEX and STRING.
It should be noted that <{type> may be empty. However, if <{type> is empty,

the procedure cannot be used in the functional sense (see below). Since
the first parameter must be written immediately after the procedure name,
the maximum number of comment strings is one less than the number of
parameters. ‘
When the prdcedure declaration is encountered at run time, space is
created for each of the formal parameters in a fashion similar to that
used for local variables in a block. The formal parameters are considered
as local identifiers to the defining procedure block, and may be used in the
global sense in any block nested inside the procedure block. When the pro-
cedure is called, space is allotted for all local variables and parameters,
and all of the actual parameters are moved into the cells allotted to the
formal pafameters.
The procedure declaration must be present in all procedure blocks’
and is the first part of the procedure heading.
EXAMPLES:
PROCEDURE INVERT (A, B) $
REAL PROCEDURE SIMPS (A,B) FUNCTION.. (F) ERROR .. (DELTA) &

Note that
)<str1>=(

is equivalent to a comma as a separator of parameters.

THE VALUE PART

This part of the procedure heading is optional and has the following

format:

- 135 -

GENERAL FORM:
; VALUE <formal parameter list> $

The <formal parameter list> consists of those formal parameter identifiers
contained in the procedure declaration, which are t» be considered as
values, separated by commas. These parameter values are obtained from

the procedure call when the procedure block is entered and remain fixed
(unless altered by a replacement statement) fhroughout the body of the
procedure. Any formal parameter occurring in the VALUE part is considered
to be a call-by-value parameter or simply a value parameter. A value
parameter behaves identically to a local variable except that its initial

value is obtained from the procedure call rather than being considered

undefined.

It should be noted that a value parameter which is an array identifier
will cause the entire array supplied by the procedure call to be copied
locally within the procedure block. This, in effect, may cause large
amounts of memory space to be unexpectedly used when the procédure is
called. Also, value parameters that correspond to labels will cause any
switch variable or designational expression in the call to be evaluated
upon entry, as expected.

If the arithmetic type of the actual parameters in the procedure call
differ from those of the formal parameters, then an appropriate type con-
version will be performed (if possible) for those cases in which the formal
parameter is a value parameter. All other cases will result in an error
message at run-time.

The value part (if présent) must follow the procedure declaration and
precede the specification part. |
EXAMPLE:
VALIE X, A, 2 $

5z SFEROIFICATION PART

A2l formal parameters defined by a procedure declaration must be speci-

Do

1l Wl

aris %o “<type> in the specification part of a procedure heading.

~ne specification part is as follows:

- 13F -

* GENERAL FORM:
, <{specification> <{formal parameter list>
The <specification> has one of the following forms:

<type>
ARRAY
<{type> ARRAY
PROCEDURE
<type> PROCEDURE
LABEL
FORMAT
LIST
{define classification>
and <type> is one of the following;
| | INTEGER
REAL
REAL2
BOOLEAN
COMPLEX
STRING
The <formal parameter list> again consists of the formal parameter
identifiers contained in the procedure declaration separated by commas.
The reason that all formal parameters must be specified is that the
compiler must know the type of all parameters in order to compile proper
machine code.
EXAMPLES:
INTEGER I, K ¢
REAL X, ¥ $
REAL ARRAY Z $
BOOLEAN PROCEDURE F $
STRING S $
The details of constructing a procedure block can best be dzscribed by

displaying several examples.
EXAMPLES:
PROCEDURE SPUR(A) ORDER..(N) RESULT..(S) $

- 137 -

VALUE N § ARRAY A ¢ INTEGER N § REAL S §
COMMENT PROCEDURE SPUR COMPUTES THE TRACE OF MATRIX A §

BEGIN INTEGER X $

S =0.0%

FOR K = 1 STEP 1 UNTIL N DO S = S + A(K,K)

END SPUR $

PROCEDURE TRANSPOSE (A,N) $
VALUE N § ARRAY A $ INTEGER N §
COMMENT PROCEDURE TRANSPOSE REPLACES MATRIX A BY THE TRANSPOSE OF A,
WHICH IS A SQUARE MATRIX OF ORDER N $
BEGIN REAL W § INTEGER I, K §
FOR I =1 STEP 1 UNTIL N DO
FOR K = I+1 STEP 1 UNTIL N DO
BEGIN W = A(I,K) $

A(I,K) = A(K,I) $
AK,I) = W
END

END TRANSPOSE $

INTEGER PROCEDURE STEPS(U) $ REAL U$
STEPS = IF O LEQ U AND U LEQ 1 THEN 1 ELSE O

PROCEDURE ABSMAX(A) SIZE..(N,M) RESULT..(Y) SUBSCRIPTS..(I,K) ¢
VALUE N, M $
ARRAY A $ INTEGER N, M, I, K $ REAL Y §

COMMENT PROCEDURE ABSMAX ASSIGNS TO Y THE MAGNITUDE OF THE ELEMENT OF
GREATEST ABSOLUTE VALUE IN MATRIX. A, AND ASSIGNS TO I AND K
THE SUBSCRIPTS OF THAT ELEMENT $

BEGIN INTEGER P, Q §

Y =0.0 $

FOR P = 1 STEP 1 UNTIL N DO

FOR Q = 1 STEP 1 UNTIL M DO

IF ABS(A(P,Q)) GIR Y THEN
BEGIN Y = ABS(A(P,Q)) #
I=P $ K=Q

END
END ABSMAX $

PROCEDURE INNERPRODUCT (A,B) ORLER..(K,P) RESULT..(Y) $
COMMENT PROCEDURE INNERPRODUCT AND (MODIFIED) CALL
TAKEN FROM REVISED ALGOL 60 REPORT $
VALUE K $§ INTEGER K, P § REAL Y, A, B §
BEGIN REAL S $

S =0.0$
FOR P = 1 STEP 1 UNTIL K DO S = S + A*B §
Y=5

END INNERPRODUCT §

VALUE AND NAME PARAMETERS

All formal parameters that have been listed in a VALUE part are called
value parameters. These parameters will be assigned a value corresponding
to the value of the actual parameter in the procedure call upon entering the
procedure block. Any changes made in the value parameters within the body
of the procedure block will have no effect outside the body of the procedure.

Any formal parameters that have not been listed in a VALUE part are
called name parameters. The address of the actual parameter in the prodedure
call will be assigned to the formal parameter upon entering the procedure
block. Consequently, any changes made in the name parameter within the body
‘of the procedure block will be carried outside to the actual parameters
supplied by the calling block.

This property of name parameters permits a large number of results to be
supplied to the calling program from within the procedure. One wcrd of
caution: This property can sometimes cause far-reaching and disastrous effects
in the overall program by altéring either the values of variables in the call-
ing block or the actual parameters in the call when least expected. (Consider
in detail the GPS procedure below).

- 139 -

FUNCTIONAL PROCEDURES

Procedures which are to be used in the functional sense (e.g. SIN, EXF)
must have a <{type> amssociated with the procedure identifier (i.e. procedurs
name). This <type> declaration must be the first symbol of the procedure
declaration. Also for the functional procedure to have a value. associated
with it, the procedure identifier must occur at least once as the left part
of an assignment statement in the procedure body. In addition, at least one
of these assignment statements must be executed on a given procedure call for
a value to be assigned to the procedure. If more than one such assignment
statement is executed within the body, then the last one execuﬁed before
exiting from the procedure determines the value associated with the procedure.
Any other occurrences of the procedure identifier within the body of the
procedure will be considered as (recursive) calls on the procedure.

EXAMPLE:
REAL PROCEDURE FACTORIAL1(N) $
VALUE N $ INTEGER N $
BEGIN REAL S $

INTEGER I $
s=1.0 §

FOR I =1 STEP 1 UNTIL N DO S = S*I §
FACTORIALT = S
END FACTORIALY &

THE PROCEDURE CALL

A procedure call has the following format:
{identifier> (<par,>, ..., <parp>)
where <identifier> is the name of the called procedure and the <parI> are
the actual parameters supplied to the procedure.

The correspondence between the actual parameters in the procedure call
and the formal parameters of the procedure heading is established as follows:
The actual parameter list of procedure call must have the same numter of
entries as the formal parameter list of the procedure declaration heading.
The correspondence is obtained by taking the entries of these two lists in
the same order. It is the responsibility of the programmer to match the
types of parameters in the lists.

- 140 -

A formal parameter which occurs as the left part variable of an assign-
ment statement within the procedure body and which is not called by value
(see above) should only correspond to an actual parameter which is a variabl-.
Also, a formal parameter which is used within the procedure body as an array
identifier should only correspond to an actual parameter which is an array
identifier of an arrey of the same dimensions and subscript bounds. In
addition, if the formal array parameter is called by value, the local array
created during the call will have the same subscript bounds as the actual
array. Correspondingly, a formal parameter which is used within the pro-
cedure body as a string identifier can only correspond to an actual para-
meter which is a string identifier unless the formal parameter is called by
value. In this case, appropriate conversions of type will be made if
possible.

The following rule-of-thumb will help avoid problems involving the
correspondence between formal and actual parameters: all parameters to a
procedure except arrays should be called by wvalue unless there is an ex-
plicit reason for doing otherwise. In particular, actual parameters that

are constants and procedure calls should correspond to formal parameters

that are called by value.

COPY RULE

The procedure call acts as if the call were replaced by the statements in
the procedure body with the following changes being made in the body:
1) All formal parameters quoted in the value part of the procedure
declaration are assigned values of the corresponding actual
parameters, these assignments being considered as being performed

explicitly before entering the procedure body.

2) Any formal parameter not quoted in the value list is replaced,
throughout the procedure body, by the corresponding actuel parameter,
after enclosing. the actual parameter iﬂ parentheses whenever syn-
tactically possible. Possible conflicts between identifiers in-

 ser%ed through this process and other identifiers already present
within the procedure body will be avoided by suitable sy:tematic
changes of the formal or local identifiers involved.

3) Any global identifier referenced within the procedure has its

identity defined as at the point of declaration, while its value
is that in force at the time of the call.

4) The procedure body, as modified above, is executed in place of the
call,

RECURSIVE PROCEDURE CALLS

The usual context for a recursive procedure call is an explicitly
stated procedure call from within the body of the procedure itself. As an
example, consider the following recursive form for the previous factorial
procedure:

EXAMPLE:
REAL PROCEDURE FACTORIAL2(N) ¢
VALUE N $ INTEGER N §$
FACTORIAL2 = IF N EQL O THEN 1.0 ELSE N*FACTORIAL2(N-1)

A more obscure method fof a procedure to be called recursively is to
pass a call for the procedure into the procedure as a name parameter. As
an example, consider the following procedure for integration using Simpson's
Rule (Frank Olynyk, Comm. of ACM, Vol. 7, June 1964, p.348).

EXAMPLE: :
REAL PROCEDURE SIMPS (X, X1, X2, DELTA, F) §
VALUE X1, X2, DELTA $

REAL X, X1, X2, DELTA, F §

BEGIN ,
"BOOLEAN - TURING $ REAL 21, 72, Z3, H, K $
TURING = FALSE $

IF X1 EQL X2 THEN

BEGIN 21 =0 §

GOTQ BOX2 END $

GTR X2 THEN

BEGIN H = X1 $ X1 =Xx2 ¢ X2=H B
TURING = TRUE END §

X1 ¢ 21 =F § X=X
2 -x1 $

BOX.. 22 =0 $ H=K/2 §

'H
]
>~
-2

- 142 -

rey

OR X = ¥* + H STEP K UNTIL X> DC 7. 2+ F §
1= 71 + 4¥72 §
H*ABS((71-2%23)/(1F 71 &.. O THEL ~ ELSE 71,

.- DELTA THEN GOTO EOJX2 siul ©% - 71 . &

J

z
I

70 = 70 - 2¥720 §
L - i § 0TO BOX §
BOX2.. IF TUFING THEN H = -H $

SIMPS = H*Z'/3
END SIMPS $

Using this proczdure, the doﬁble integral
.1 (1-)(2)4't
J (X + Y) axdy

would be evaluated by the recursive call:

ITERINT = SIMPS (X, O, 1, DELTA,
' SIMPS(Y, O, SQRT(1-X*¥2), DELTA2, X+1))

GENERAL PROBLEM SOLVER

Now for those of the readers who feel that they have mastered the conceu-
of procedures in Algol and who consider themselves sophisticated programmers,
. consider the following prbcedure, called GPS for General Problem Solvsr
(D. E. Knuth, Comm. of ACM, Vol. 4, June 1961, p. 271):
EXAMPLE:
'REAL PRGCEDURE GPS(I, N, Z, V) §
REAL I, N, Z, V §
BEGIN ',
FOR I =1 STEP * UNTIL NDO Z =V §
GES =1 ‘
END GPS %

Isn't that the most harmless looking procedure you ever saw? Wait =

minute, there is a lot of danger as well as opportunity lurking in the =2z17-

by-name parameters.

o
“~ -

If we wish to calculate the innerproduct of the N-element vectors A

and B, we simply write:
Z2=08% I =0G6PS (I, N, 7, Z + A(1)"B(I))

But, we can do much better than that. Suppose we want to multiply the
array A(1..M, 1..N) by B(1..N, 1..P) and s%ore the result in C(1..M, 1..P).

This can also be done using 6PS, by writing

I=GPS (I, 1.0, C(1,1), 0.0)*GPS(I, (M-1)#
GPS(J, (P-1)*GPS(X, N, C(I,J),
c(1,J) + A(I,K)*B(X,J)), C(I,5+1), 0.0),
C(I+1, 1), 0,0)

Problems which are unrelated to matrix multiplication can also be done
with GPS. In fact, we can actually compute any computable function using

a single Algol assignment statement containing one or more calls on GPS.

LIBRARY PROCEDURES

Chapter VIII is the basic reference for library procedures. Other
material on library procedures will be found in Chapters IX, X and XIII.

EXTERNAL PROCEDURES

External procedurés in ALGOL can be coded in any of three ways, namely:
1) Another ALGOL procedure compiled separately.
2) A procedure coded in SLEUTH following specified rules.
3) A FORTRAN subroutine compiled separately.

" The coding rules vary depending upon the choice of coding methods. Each

method in turn also specifies the form of the procedure declaration within

the main ALGOL program.

EXTERNAL PROCEDURE DECLARATION

If the external procedure has been coded in ALGOL and compile¢ separately,

‘then the name of the procedure must be defined in the main program by means

- 144 -

of an EXTERNAL procedure declaration. The form of the declaration in this
case is
EXTERNAL <type> PROCEDURE <proc,>, ..., <proc,> $

where the <proc1> are the names of the desired external procedures, and _
{type> is non-empty if the procedures are to be used in the functional sense
(see Chapter V, DECLARATIONS OF TYPE, for a list of the available types).
Omission of the type specification indicates that no functional results will
be associated with the names of the procedures.

A procedure declared this way will always be called in the recursive
sense by the calling program. It should be noted that only procedures of
this form (i.e., recursive) can be passed on to other procedures as actual
parameters.

An external procedure may also be written in 1107 Sleuth. In this

case the form of the external declaration in the calling program is:

EXTERNAL SLEUTH <type> PROCEDURE <proc,>, ..., <proc,> %

where <proc1} and <typ§> have the samé meanings as in the previous case.
Since the details of coding a Sleuth routine that may be called recursively
are very complicated, it is assumed that a procedure declared in this manner
in nor-recursive. Therefore such a procedure cannot be passed to other pro-
cedures as parameters and all expressions passed on to the Sleuth procedure
will be evaluated before entry to the procedure.

See Appendix II for an explanation of the calling sequence generated
for a Sleuth procedure and deécription of how to handle the parameters in
the Sleuth routine. ‘ | -

If the procedure is a function or subroutine written in Fortran, it
must be compiled separately and the form of the external declaration in the

calling program becomes:

EXTERNAL FORTRAN <type> PROCEDURE <proc1>, cees <procN> S
where <procI> and <{type> have the same meanings as previously. (Note that
STRING is not acceptable as a <{type> for a Fortran function.) ! procedure
declared in this form is non-recursive and therefore cannot be rassed as a

parameter to another procedure.

- 145 -

EXTERNAL PROCEDURE CALLS

The form of the procedure call for external procedures is the same as

that for internallf defined or library procedures; namely
<identifier>(<par1>,...,<parN>)

where <{identifier> is the namz of the procedure and the <parI> are the actual
parameters to the procedure. _

If an array is to be passed as a parameter to a Fortran subprogram then
the actual parameter should be the first element of the array. For example
if the array is two-dimensional and is named SECTION then the actual argument
on the call should be SECTION (1,1).

EXTERNAL REFERENCES

To facilitate communication between programs and their subprograms, and
to save allocation time, variables, and formats may be externally defined.
This is accomplished via the OWN declaration.

A1l OWN variables and formats declared in block 1 of an Algol program
ére automatically externally defined. These elements may then be referenced
from Algol procedures that are called by the program in question. In the
case of variables the procedure must include an external declaration of the
form '

EXTERNAL <type> <var,>, ..., <vary> $
where <{type> is as described in Chapter V, DECLARATIONS OF TYPE, and the
<varI> are the variables in question.

In the case of formats the declaration is .
| EXTERNAL FORMAT ~ <format,>, ..., <format,> $

EXAMPLE:
% ALG PROGRAM
OWN INTEGER I, J, K $

OWN FORMAT LINE (I4, A1) §

EXTERNAL PROCEDURE OUTSIDE &

I =1 $ J =2 $
OUTSIDE

- 146 -

%\1

7)

ALG PROCEDURE

EXTERNAL FORMAT LINE $

EXTERNAL INTEGER I, J, K §

PROCEDURE OUTSIDE $
BEGIN
K=I+J §

WRITEA (LINE, K) $

ND

2}

Note the following rules when compiling external Algol procedures:

the Algol processor card governing the compilation must carry the E option;
a program under this option cannot be executed as a mainline program;

the E option causes all procedures declared in block 1 to be externally
defined;

any number of external procedures may be declared in one program;

the object programs for all external procedures must be available in the
user's program complex on drum before the main program is executed ;
variables declared in block 1 of a program compiled under “he "E"

optiqn can only be simple variables (not including strings). Lists
declared in block 7 may contain only such variables; v

the first six characters of all externally defined identifiers must

be unique.

Rules for writing and processing Fortran and Sleuth routines are

available in the manuals on those languages. See Appendix II for further.

information on the linkage between calling program and procsdures.

- 147 -

XIII...

THE DIAGNOSTIC SYSTEM

The detection and correction of programming errors, commonly known as
debugging, is facilitated in Case Algol by an extensive dilagnostic system.
Responsibility for error detection is divided between the compiler and the
system library routines. By paying close attention toc the messages pro-
duced by these two segments, the programmer will generally save himself
time and aggravation.

As the compiler translates an Algol program it prints the source
program instructions and in addition generates two types of information,
diagnostics and error messages.

This information is located as close as possible to the instruction
to which the message applies and always bégins at the extreme lefthand
side of the listing. | '

COMPILER DIAGNOSTICS

Diagnostics are provided by the compiler to help the programmer under-
stand the structure of his program and to call attention to special features
that the program uses. Diagnostic messages never inhibit the production of
an object program.

The stru~ture of a program is determined by the use of BEGIN-END pairs,
particularly when such a pair creates a new block. As the compiler dis-
covers BEGIN's in a program it numbers them consecutively starting at one
and each END is given the same number as the BEGIN which it matches. The
appropriate diagnostic is

B n or . E n

- 148 -

where n is the number assigned by the compiler. If the outermost BEGIN-E

pair is omitted, BO appears at the beginning of the program.

Blocks are also numbered in order of appearance in the program and the:
extent of a block is denoted by the diagnostics '

BLOCK n and END BLOCK n
which occur in matched pairs.
On the same line as BLOCK n, the message
LEVEL m
is given to indicate how blocks are nested. The outérmost block is at LEVEL
1 and each new level causes the level number to be increased by one. At
the end of a block the level number is decreased by one. '

The following table describes special features of Case Algol that
generate diagnostics.

Diagnostic ' Description

C : comment occurring immediately after an END
D ' double precision constant
FR ' forward reference - the compiler has

taken an identifier to be a label the
definition of which has not yet been

encountered (not applica%le to switch

declarations)
GV . generalized variable operation (see Appendix III;
N ' identifier or constant extends over card boundaries
OCTAL ' S "octal constant (operative only under K option)
Q » . string constant or format mode extending

over card boundaries
T . line terminated or page ejected via
exclamation sign (!)

TRACE trace ﬁode‘initiated or termineted

COMPILER ERROR MESSAGES

Although the generation of diagnostic messages never interferes with the

production of an object program, the appearance of error messages during

- 149 -

compilation may do so. These messages are intended to be self—expianatory and
will not be described in detail here. However the programmer should be aware

of the following conditions:

1) The compiler indicates with an asterisk (*) the place where the existence
of an error was definitely ascertained. However, the actual programming error
may well have occurred some distance before the point that is marked with an
asterisk. The programmer should search backwards from the asterisk for his
mistake.

2) When an error in syntax is found, the compiler may stop looking for

other errors in the current Algol instruction. Therefore it may take more
than one compilation for all syntactical errors to be rooted out.

3) A single error may cause several messages to be printed, some of which
may be spurious. The correction of such an error may eliminate several
messages from the next compilation.

4) When the A option is in effect, an attempt will be made to prodyce an
object program in spite of syntactical errors, and some approximation to a
normal object program will be placed in the user's program complex on drum,
even though it may not be executable., If the A option is not in effect and
no object program is generated, this fact will be announced by the compiler
at the end of the listing.

ERROR MESSAGES AT EXECUTION TIME

When an Algol-compiled program is executed, the system always makes
avallable library routines which can provide information about errors caused
by faulty programming.

In the event of an error during a run, contfol is transferred to the run
time error routine. This routine prints the contents of the thin-film registers
(B, A, R) if the N option is not selected by the XQT card (see Chapter XIV,

THE XQT CARD). The appropriate error message is printed together wi-h the
location from which the call was made to the routine in which the eryor was
detected.

If the error occﬁrs in a procedure, the procedure hame (to six :haracters)
and the complete nesting of procedures, of which this procedure is the inner-
most procedure, is printed along with the location from which each o7 these
procedures is called. For example, consider the following program ‘all sample

programs in this chapter are assumed to have been compiled under the name PROG):

- 150 -

EXAMPLE 1:
1 REAL A, B, C §

2 REAL PROCEDURE PROCt(X,Y) $

3 VALUE X, Y $ REAL X, Y §

L BEGIN PROC1 = X/Y END PROC1 §
5 REAL PROCEDURE PROC2(X,Y) $

6 VALUE X, Y $ REAL X, Y §

7 BEGIN PROC2 = X*Y END PROC2 $
8 REAL PROCEDURE PROC3(X,Y) $

9 VALUE X, Y $ REAL X, Y §

10 BEGIN PROC3 = X+Y END PROC3 $
11 REAL PROCEDURE PROC4(X,Y) $
12 .~ VALUE X, Y $REAL X, Y §

13 _ BEGIN PROC4 = X-Y END PROC4 $
14 A=10$B=0.0%

15 C = PROCB(PROC2(A,B),PROCA(PROCL(PROCB(A,B),B),A))$

Notice that the call to PROC! shown by the asterisk (*) causes a divide
overflow (division by zero). The resulting error message is:
INFINITY, INFINITY, YOU DONE DIVIDED BY ZERO
PROG ON LINE 4
PROC? DEFINED AT PROG ON LINE 2, CALLED FROM PROG ON LINE 5
PROC4 DEFINED AT PROG ON LINE 11, CALLED FROM PROG ON LINE *5
PROC3 DEFINED AT PROG ON LINE 8, CALLED FROM PROG ON LINE 5
This error message tells us that the error occiurred in PROC1, which is
nested in PROC4, which in turn is nested in PROC3.
Following is a complete list of run time error messages generated by
the ALGOL library, along with their respective meanings and causes.

INTERNAL ERROR

This message results from a fault of the library or the compiler.
It may be forced, however by improper use of the language. Rewriting the

seation of coding in which the error occurred will usually resolve this
error.

- 151.‘_

INCORRECT NUMBER OF ARGUMENT3

This error occurs when the number of arguments supplied as parameters
to n procedure or to a library rouline is not compatible with the number of
arguments required by Lhe procedure or the library routine. For example,
consider the following program:

EXAMPLE 2:
1 REAL FAUTE $
2 PROCEDURE DUMMY (F) $
3 REAL PROCEDURE F $
4 FAUTE = F("1.0, 2.0) &
5 DuMMY (COS) §

The COS routine requires one argument. Specifying two parameters
generates the message: '

INCORRECT NUMBER OF ARGUMENTS TO COS
PROG ON LINE NO. 2

DUMMY DEFINED AT PROG ON LINE NO. 2, CALLED FROM PROG ON LINE NO. 5

The message INCORRECI NUMBER OF ARGUMENTS can also arise from a call to

a procedure declared within or external to the main Algol program. In either

case the message would read:

INCORRECT NUMBER OF ARGUMENTS TO PROCEDURE AT (LOZ.)

EXAMPLE 3:
1 REAL X, Y, 72 $
2 REAL PROCEDURE WOOPS (X,Y,7) $
3 REAL X, Y, 7 $
4 WOOPS =X - Y + 2 §
5 7 = WOOPS (X,Y) $

INCORRECT NUMBER OF ARGUMENTS TO PROCEDURE .
PROG ON LINE NO. 5

WOOPS DEFINEL AT PROG ON LINE NO. 2, CALLED FROM PROG ON LINE NO.

BOOM!!! MEMCRY CAPACITY EXCEEDED

No, you iid not really blow up the computer. However, the stnorage
area available for your program has been exceeded. The message can occur

when space is belng allotted for single variables, arrays, strings, or blocks.

- 152 -

EXAMPLE 4:
REAL ARRAY ROOF(1..2¢0000)
Tre regulting error message is:
2OCM! ! MEMCRY CATACITY EXCEEDED IN ARRAY DuECLARATION

The message for each case of this error is:

BOOM!! MEMORY CAPACITY EXCEEDED IN...

STRING DECLARATION... For storage of strings
ARRAY DECLARATION... For storage of arrays
PROCEDURE. .. For Blocks and procedure blocks

IMPROPER ARRAY DECLARATION

This message results from improperly specifying the limits on an array
subscript by declaring the lower limit greater than the upper limit. The

message gives the array name and -the bounds on the improperly specified
subscript.

EXAMPLE 5: |

1 INTEGER M, N §

2 M=2$N=1%

3 BEGIN REAL ARRAY NOTAGAIN(M..N) $
4 END

IMPROPER ARRAY DECLARATION NOTAGA (2 : 1)
PROG ON LINE NO. 3

NOTE: Other forms of the above message are:
IMPROPER OWN ARRAYbDECLARATION...
IMPROPER STRING ARRAY DECLARATION...
iMPROPER OWN STRING ARRAY DECLARATION...

They have the same meaning as IMPROPER ARRAY DECLARATION.

SUBSCRIPT OUT OF RANGE FOR ARRAY

This m=ssage results from a subscript specifiéd for a given array not

- 153 -

being within the boundaries declared for this array. The message gives the
following information:
1) Which subscript is out of range
2) The value of the subscript out of range
3) The first six characters of the array name if it is not a string
4) The subdcript bounds of the subscript out of range
5) The location from which the call was made to the array
For example, consider the following program: '
EXAMPLE 6:
1 REAL B $
5 REAL ARRAY SOMENAME (1..4,-3..7) $
3 B = SOMENAME (0,-2) $
The resulting error message is:
SUBSCRIPT NO. i (VALUE OF 0) OUT OF RANGE FOR ARRAY SOMENA (7:4)

PROG ON LINE NO. 3
Notice that subscript number one, counting from the left, is not within

the bounds specified for array SOMENAME, for the subscript has a value of O,
and the bounds specified for this subscript are (1..4).

EXAMPLE 7:
1 REAL B §

2 REAL ARRAY DATAHOLD (1..4,3..7) $
3 B = DATAHOLD (3,-17) $

The resulting error messagé is:
SUBSCRIPT NO. 2 (VALUE OF = -17) OUT OF RANGE FOR ARRAY DATAHO (3:7)

PROG ON LINE NO. 3

SUBSCRIPT OUT OF RANGE FOR STRING ARRAY

This message occurs when (1) a subscript to the "array portion" of a
string array is out of range, as explained above for strings and as shown
in EXAMPLE 7, or (2) the subscript designating the character position in a
string elemert exceeds the bounds of that string element, as shown in
EXAMPLE 8 and EXAMPLE 9.

- EXAMPLE 8:
1 STRING A (10) §

- 154 -

2 STRING ARRAY ITHURTS (23..1..10) $
3 A(1,8) = ITHURTS (13,8..12) §

SUBSCRIPT NO. 1 (VALUE OF 12) OUT OF RANGE FOR STRING ARRAY
LIMITS WERE (1:10)
PROG ON LINE 3

EXAMPLE 9:
1 STRING HELP (10) $
2 STRING ARRAY ITHURTSMORE (23..1..10) $
3 HELP (1,8) = ITHURTSMORE (25,8..3) $

~

SUBSCRIPT OUT OF RANGE FOR STRING ARRAY, VALUE OF (25,8), LENGTH WAS 23
PROG ON LINE 3 '

EXAMPLE 10: .
1 STRING ALONG (10) $
2 STRING ARRAY OHNO (23..1..10) $
3 ALONG (1,8) = OHNO (21,8..3) $

SUBSCRIPT OUT OF RANGE FOR STRING ARRAY, VALUE OF (21,8), LENGTH WAS 23
PROG ON LINE 3

SUBSCRIPT OUT OF RANGE FOR STRING VARIABLE

This message occurs when the subseript specifying the character position
in a string variable exceeds the length of that stfing variable.
EXAMPLE 11:
1 STRING IGIVEUP (40) $
2 ‘ IGIVEUP‘(50) = 'HE WHO IS CARELESS WILL BE CAST ASIDE...' $

SUBSCRIPT OUT OF RANGE FOR STRING VARIABLE, VALUE OF (50), LENGTH WAS 40
PROG ON LINE 2 ' :

IMPROPER NUMBER OF DIMENSIONS FOR ARRAY
This error occurs when the number of subscripts specified ir a call to
an array is not équal to the number of dimensions for which the erray is
defined. The error message gives thé following information:
1) The number of subscr’if)ts given

2) The dimensionality of the array

- 155 -

3) The first six characters of the array name
4) The location from which the call was made to the sub-
seript calculator

Consider the following program:

EXAMPLE 12:

1 REAL ARRAY WHATSIT (1..70) $
2 REAL B $
3 B = WHATSIT (7,3) $

The resulting error message is:
IMPROPER NUMBER OF DIMENSIONS FOR 1 DIMENSIONAL ARRAY,
TWO DIMENSIONS GIVEN AS PARAMETERS TO ARRAY WHATSI
PROG ON LINE 3

Array WHATSIT is defined over one dimension. Two subscripts are

specified in the arrhy call; resulting in the error.

EXAMPLE *3:
1 REAL B §
2 " REAL ARRAXXFIELD ("..3,1..4,0..7) $
3 B = FIELDX(2,3) $

The resulting error message is:
IMPROPER NUMBER OF DIMENSIONS FOR 3 DIMENSIONAL ARRAY,
TWO DIMENSIONS GIVEN AS PARAMETERS TO ARRAY FIELDX
PROG ON LINE 3

IMPROPER NUMBER OF DIMENSIONS FOR STRING ARRAY

" This error occurs when the number of dimensions given as parameters %o
a call on a given string array is not equal to the dimensionality of this
string array. The information given in the error message is:
1) The declared dimensionality of the array
2) The first six characters of the array name
3) The location from which the ¢all was made to the string array
subsceript calculataor which discovered the error.
EXAMPLE 4:

! STRING WHAT (10) §
2 STRING ARRAY IT (20..1..10,1..20) §
3 WHAT (1,2) = IT (5,2..4)

- 156 -

IMPROPER NUMBER OF DIMENSIONS FOR 2 DIMENSIONAL ARRAY 1 DIMENSIONS

GIVEN AS PARAMETERS

PROG ON LINE 3
NOTE: The error message for OWN STRING ARRAY is exactly the same as the
message for STRING ARRAY, if the error is of the type "IMPROPER NUMBER OF
' DIMENSIONS" or "SUBSCRIPT OUT OF RANGE".

Similarly, the error message for OWN ARRAY is exactly the same as the
message for ARRAY, if the error is of the type "IMPROPER NUMBER OF DIMENSION3"
or "SUBSCRIPT OUT OF RANGE".

RESULT UNDEFINED

A message of this type occurs when, for a given argument, a specified
library procedure is unable to produce a result. For example consider the

following subprogram:

EXAMPLE 15:
1 REAL A $ |
2 A = SQRT (-1.0) $ &

Since for real arithmetic the square root of a negative number is wn-
defined, the following message results:

RESULT UNDEFINED FOR SQRT, ARGUMENT=-0.10000000+01

PROG ON LINE 2 ‘
Note: The value of the argument is interpreted as a decimal number times

a signed power of 10

EXAMPLE 163
1 REAL A $
2 A = ARCSIN(2.0) $

The resulting error message is:

RESULT UNDEFINED FOR ARCSIN, ARGUMBNT- 0.20000200+01

PROG ON LINE 2

The message RESULT UNDEFINED can.also occur when, in attempting *to

convert a string to an integer, the string contains characters wl.ich are
not numerics. For example, consider the following subpfogram;
EXAMPLE 17: |
INTEGER A $
2 STRING S(¢0) $
3 > S8(1).= 'IF ALL ELSE FAILS...' $
4 A = INIEGER (S(7,8)) $

-

- 157 -

RESULT UNDEFINED FOR STRING TO INTEGER

PROG ON LINE 4

The message RESULT UNDEFINED can also originate in one of the power
routines. No result is defined for zero to the zero power. As a typical

example, comsider the following subprogram:

EXAMPLE 18:
1 REAL A §
2 A = 0.0%%0.0 $

Both the base and the exponent are of type real. Hence, the error
message would read: .
RESULT UNDEFINED FOR REAL TO REAL POWER, BASE = 0.00000000+00,
EXPONENT = 0.00000000+00
PROG ON LINE 2
Note: When an integer is raised to a real power, the integer base is con-
verted to type real. The real to real power routine is then called.
If the result is:undefined for an integer to a real power, therefore,
the error message would read:
RESULT UNDEFINED FOR REAL TO REAL POWER...
Although zero to a negative power gives a result without bounds, we
give the message "RESULT UNDEFINED".

EXAMPLE 19:
1 REAL A $
2 A =0,0%-3,0 §

RESULT UNDEFINED FOR REAL TO REAL POWER, BASE= 0,00000000+00,
EXPONENT=-0.30000000+01 ‘
PROG ON LINE 2

'RESULT OUT OF RANGE

This message occurs when the resulting absolute value of a given library

routine upon a given argument is greaﬁer than 10.038'or 235

type REAL and of type INTEGER respectively.

-1, for results of

EXAMPLE 203
1 REAL A ¢
2 A = EXP(90.0) $

RESULT OGT OF RANGE FOR EXP, ARGUMENT=0,90000000+02
PROG ON LINE 2

- 158 -

Note: The exnonential function is within the range of the computer when its
argument is less than 88.028.

EXAMPLE 21: .
1 INTEGER A $
2 . A = ENTIiER(1.2&12) §

RESULT OUT OF RANGE FOR ENTIER, ARGUMENT =0.12000000+13
PROG ON LINE 2 '

The message RESULT OUT OF RANGE can also occur when, in converting a
' 35

string to an integer, the result is greater than 277-1.
EXAMPLE 22: |

1 INTEGER A $.

2 A = INTEGER('123456789123') $

RESULT OUT OF RANGE FOR STRING TO INTEGER
PROG ON LINE 2

The message RESULT OUT OF RANGE can occur in one of the power routines.
In this case, it means that the result of raising a given base to a given
power is not within the numeric range of the computer, as outlined above.

For a typical example, consider the following:

EXAMPLE 23:
1 INTEGER A $
2 A = 5%%37 §
RESULT. OUT OF RANGE FOR INTEGER TO INTEGER POWER, BASE= 5,
EXPONENT= 37 | | | |

PROG ON LINE 2
Note: A real number raised to a real power, resulting in an absolute value
of less than 10.0-38,yie1ds a result of 0.0. An integer raised to
an integer power resulting intan absolute value of less than 1 yields

result of O,

The real to integer power routine may give an error message of RESILT OU
OF RANGE if the result is less than ‘10.0-38 in absolute value.

In raising an integer to a real power, the integer is converted to
type real. The real to real power routine is then called. Hence, a message
of RESULT OUT OF RANGE FOR REAL TO REAL POWER can originate in raising an
integer to a real power, the result of which is out of range as previously
defined.

- 159 -

L

INFINITY, INFINITY, YOU DONE DIVIDED BY ZERO

This message originates when a division by zero is attempted. Do not

forget that a real number less than ‘lO.O-38 in absolute value will assume

the value of zero.

HURTSVILLE, CHARACTERISTIC OVERFLOW

\

This message occurs when the result of an arithmetic operation (+,-,%,/)
is of the type REAL or REAL2 and is greater than 10.038 in absolute value.
The message can also result from raising a real number to an integer power.
If the power is less than 64 and the result of the exponentiation is out of
range, the message HURTSVILLE, CHARACTERISTIC OVERFLOW will result.

To avoid the error HURTSVILLE, CHARACTERISTIC OVERFLOW, it is sometimes
possible to "break up" an arithmetic expression such that at no time during
the evaluation of this expression will the absolute value of any part of it
exceed 10.038. If the aforementioned scheme does not work, an insertion of

a dummy variable may be the key to your problem.

EXAMPLE 24:

1 REAL A, B, C, D §
2 A= 1.0&-25 $

3 B = 1.0&30 $

4 C=1.0&21 $

5 D = (B/A)/C $

HURTSVILLE, CHARACTERISTIC OVERFLOW FOR 0.10000000+31 / 0.799920a°_
PROG ON LINE 5
Solution to EXAMPLE 24:

EXAMPLE 25:

1 REAL A, B, C, D $
2 A= 1.0&-25 §

3 B = 1.0&30 $

4 ©C = 1.0&21 $

5 D = B/(A*C)

UNRECOVERABLE TAPE/DRUM ERROR

This mescage occurs when, during a tape or drum operation, an unsuccessful

- 1€0 -

read or write occurs. The error could be the result of:
1) A hardware failure. |
2) The user's attempt to read information which is not present where:
he is looking for it.

ATTEMPT TO PASS END OF INFORMATION IN READ

This error occurs when an attempt is made to read béyond the end of
recorded information on magnetic tape.

i

MISSING OR MISPLACED ACTIVATION PHRASE

This message may result from a card read in which the supplied format

does not have a proper activation phrase (see Chapter IX, FORMAT PHEASES).

EXAMPLE 2¢:
1 INTEGER A $
2 FORMAT FORM(I8,A) $
3 READ(FORM,A) §
MISSING OR MISPLACED ACTIVATION PHRASE IN READ
PROG ON LINE NO. 3 |
READ, CALLED FROM PROG ON LINE NO. 3

CONSTANT OUT OF RANGE -

This error occurs when: » }
1) In a read, an integer éonstant is encountered which is greater than

235—1 in absolute value.

2) In a read, a real constant is éncountered which is greater than 1Of038
in absolute value.

3) A string exceeds 4095 characters in length.

ILLEGAL CHARACTER/UNDEFINED TYPE CONVERSION IN ABOVE RECORD

In attempting a read, one of the following occurred:

1) An illegal character was encountered within a record. For exémple,
an attempt to read the word 1¢H1.as a real number would result in
the above error.

- 161 -

2) A word is encountered which is not of the type requested and for
which a conversion to the requested type is not defined. For
example, consider the following:

EXAMPLE 27:
1 BOOLEAN NEVERAGAIN $§

2 READ (NEVERAGAIN) $

Encountering an integer other than @ or 1 would cause the above men- .
tioned error, for no conversion is defined from integer (other than #or 1)
to Boolean.

NOTE: Above the register printout (if present) will be found a listing of
the data card which caused the error. The asterisk (%) points to the

character on the card which ultimately caused transfer to be made to
the error routine.

IMPROPER PARAMETER

This srror occurs when the parameter supplied to a procedure or to a
library routine is not of the type required.

Case 1: Call by name parameter to procedure.
EXAMPLE 28:

REAL PRUNEJUICE, APPLEJUICE, LEMONJUICE $

-

2 PROCEDURE JUICY(BOT, TOMS, UP) $§
3 REAL BOT, TOMS $

4L INTEGER UP § A

5 BEGIN UP = ENTIER(TOMS+BOT)

¢ END JUICY $ ‘

7

JUICY (PRUNEJUICE, APPLEJUICE, LEMONJUICE) $

Since the call by name parameter, LEMONJUICE, is not of the same

arithmetic as the variable UP, the error "IMPROPER PARAMETER TO PROCEDURE"
will result.

Case 2: A l:brary routine is used as a call by name parameter and the

argument supplied to this library procedure is of the improper type.

c= 162 -

EXAMPLE 29:
1 PROCEDURE F (Q) ¢

2 REAL PROCEDURE Q $

3 BEGIN REAL A $

4 A = Q('ERROR') END $
5 F(SIN) § .

IMPROPER PARAMETER TO SIN
PROG ON LINE NO. 4
F DEFINED AT PROG ON LINE NO. 1, CALLED FROM PROG ON LINE NO. 5

NOTE: An improper parameter to tape and drum routines results in the
message "IMPROPER PARAMETER TO (NAME LOST AT OCCURRENCE OF ERROR)
AT (LOC)
Case 3. The form of the READ stavement is incorrect.
EXAMPLE 30:
1 STRING A(1) $
2 A="'5"$%
3 READ (CARDS,TAPE(A)) $
Two input devices are specified in the READ statement. The error
message would read:
IMPROPER PARAMETER TO READ
PROG ON LINE NO. 3
READ, CALLED FROM PROG ON LINE NO. 3

UNDEFINED TYPE CONVERSION

In attempting to convert a variable of a given type into a different
type, it is discovered that no conversion is defined between the two types.
For example, consider the fallowing:

EXAMPLE 31:
STRING A(2) §
FORMAT GREEN (R10.2,A1) $§
LIST BEAN(A) $
A= 135" §
WRITE (GREEN,BEAN) $
No corversion is defined from STRING to REAL. Hence the error:
UNDEFINED TYPE CONVERSION IN WRITE
PROG ON LINE NO. 5
WRITE, CALLED FROM PROG ON LINE NO. 5

(S A

- 163 -

There are a number of error messages which can result from an error in
the use of the FORMAT routine. These messages have the same meaning as the
corresponding messages for compilation errors. Furthermore, they contain the
additional information which is always provided'by the error routine.

NOTE: The abbreviations "D.P." and "REAL2" both characterize a double
precision routine. For example, the message "RESULT UNDEFINED
FOR D.P. TO D.P. POWER..." means that the error occurred in the
routine for raiéing a double precision basz to a double precision

power.

INSUFFICIENT .DATA

If a READ statement does not find enough data on the (card reader)
input device to satisfy the input parameter list, then the execution will
be terminated with the foliowing message:

INSUFFICIENT DATA FOR PROGRAM
PROGRAM ABNORMALLY ABANDONED -

SRROR NUMBERS FOR LIBRARY ERROR MESSAGES

There is associated with each type of message an error number that can
be used in conjunction with the ERROR and ERRORTRAP procedures (q.v.). The

following is a list of error message types and their associated error

numbers that are currently part of the Algol library.

ERROR NUMBER DESCRIPTION

Internal error

Incorrect number of arguments
Memory capacity exceeded

Undefined designational expression
Improper size phrase

Undefined type conversion

Same as 4

Same as 4

Not used

Unrecoverable Tape/Drum error

O OV ™ 9 O UM M~ W N = O

. N

‘Attempt to pass end-of-information

-
-3

Constant out of range

- 164 -

ERROR NUMBER DESCRIPTION

12 Not, used

13 Characteristic overflow

14 ‘ Divide by zero

15 Improper number of dimensions

16 Not used

17 Result undefined

18 Result out of range

19 . Real2/Complex/Misc routine not in library
20 _ Illegal character/Undefined type conversion
21 Improper sequence of format phrases

22 Improper parameter

23 String too long

24 Extra right parenthesis

.25 A Missing or misplaced activation phrase

26 Improper format symbol

27 Extra left parenthesis

28 Subseript out of range

29 . Subscript cut of range for string array
30 ~ Not used

31 NO MESSAGE IS PRINTED

DIAGNOSTIC PROCEDURES

Two special procedures, DUMP and ERRORTRAP, are available in the Algol
library to speed up the procesé of debugging a program. DUMP allows the
user to gather information about the status of a program when an error occurs
at execution time. ERRORTRAP allows the user to replaces the usual library
error routines with an Algol procedure of his own. With this feature the
programmer can gather special information and decide how executior. should

continue in the event of an error.

THE DUMP STATEMENT

The programmer may specify that the values of certain variab.es be

printed out when a run-time error occurs by using the DUMP statement.

- 165 -

GENERAL FORM:

DUMP (<dump 1list>)
where: <dump list- is <identifier> or
{dump lisbt,“identificr .
Each <identifier, i3 the name of a simple variable or tLhe name of an array,
and further, <{identifier> must not be a call by name parameter. Note that
constants, expressions, subscripted arrays, or subscripted strings may not
be used in a DUMP statement.

Any block can have only one dump list invoked at a given time. Each
DUMP statement (in effect) erases the old <dump list> for that block and
replaces it with a new list.

Each active block can have a <dump list> associated with it. If an
error occurs while N blocks are active, then a maximum of N<dump list>'s
will be printed out. If no error occurs after the DUMP statement is en-
countered,. the <identifier 1ist> will not be printed out.

'EXAMPLE: |
INTEGER 4,B,C,D,E,F,H,J,K,X$
DUMP(A,B,C,D,E,F,H,J,K,X)$

A=1$B=28C=38D=4L$E=5%
F=¢$H=78$7=88K=908$X=0%$
H = A*B/X

When execution of this program is attempted, the results are as follows:
INFINITY, INFINITY, YOU DONE DIVIDED BY ZERO
PROG ON LIMNE !NO. 5

P

DUMP LIST:

BE Y

MR g om = H O o w e
O OV 0 2 O vt &~ W

- 16€ -

THE ERRORTRAP PROCEDURE

When a run-time error occurs the Algol library gathers and prints as
much information as it can about the situation that caused the error and
then terminates the execution.

By using ERRORTRAP the programmer may cause control to be transferred
to a procedure of his own before the library routine takes over. His

procedure may then decide on the basis of the error type how to continue.

GENERAL FORM OF THE CALL

ERRORTRAP (<proc name>)
where <proc name> is the identifier of the user-written procedure to which
control will be transferred if an error occurs. This procedure must have
exactly one parameter, of type INTEGER. On entry to the user-written
procedure, the value of the integer parameter will be set equal to the aﬁ—
propriate error number by the ERRORTRAP routine (see the accompanying table
of library error messageg). Error number 2, Msmory Capacity Exceeded,
cannot be handled this way.

The ERRORTRAP routine may be disabled by calling it with no parameter;

ERRORTRAP
When this call is in effect, an error at execution time will be handled in
the usual way, i.€., the library error routine will take control and the
user's error-handling procedure will be'ignored.

If the user-written protedure is exited via the procedure END rather
than by a GOTO statement, then control is passed to the library error routine
and normal error processing ensues.

Unless the programmer wishes to live dangerously, the first statement
of his error-handling procedure will be:

FRRORTRAP |
to disable his errortrap procedure. If errortrap is not disabled and an
rrer is détzcted in t»~ ~rror-handling procedure, then the error-handling
rouilin~ will be called again and possibly the error will be detecned again,
and round ani round... Thus the error routine méy be entered recirsively

with (possitly) the wrong value as parameter.

- T -

THE ERRCR PROCEDURE

The ERROR procedure allows an Algol program to call in the library
error routine even though the system library itself has not detected an
error. This can be particularly useful if the Algol program is intended
to be a processor. |
GENERAL FORM OF THE CALL:

ERROR (<arith exp)>)
The effect of this call is to transfer control to the library error routine
with the value of <arith exp> as the error number. <arith exp> is converted
to type'INTEGER if it is not already of that type. The library error routine
takes action appropriate to the value of the parameter, including printing

messages, unwinding nested procedures, and terminating the execution.

TRACE OPTIONS

The compiler allows the programmer to exercise options that affect the
compilation and execution of an Algol program. The following options are

currently available:

ALGOL COMPILATION OPTIONS AND TRACE NUMBERS

OPTION TRACE DESCRIPTION
LETTER NUMBER
A - Accept program even if errors are found

(an element is placed in program complex

B 21 Block and BEGIN-END diagnostics suppress

C - : ~ Cycle numbers suppressed

D 29 Do not abort compilation after 20 errors

E - - Externally define all procedures
declared in block one

F - Full card (80 columns) scanned

H - Hierarchy of operators ~hanged so that
multiplication is performed before
division (on the same p:rrenthesis level)

J - Treat program as processor (contents of
B11 saved)

K 25 . Octal constants allowed

1 List edited machine language

- 168 -

OPTION TRACE DESCRIPTION

LETTER NUMBER
N 13 Suppress listing (except errors)
0 16 Open coding - array subscripts not checked
R 18 Registers dumped in case of errors at

_ compile time
S - : Card number tables treated as 1ape1ed

common block

v 26 ‘ Number errors in order of occurrence

W - Print correction cards before source
listing

X ‘ 12 Abort compilation immediately if error
is detected

A 15 , o Do not generate card number tables

- 28 ' Externally define all OWN variables

- 30 Allow G.V. array operations

Trace option letters are punched on the Algol processor card starting
in column two (see EXEC III Manual, p. 50-54). This causes the option to
bz in effect throughout the compilation process.

Some of the options may be invoked selectively during compilation by
means of the corresponding trace number. The following Algol statement
will turn on the designated trace options: .

TRACE ON Nyy Doy ooyl $
where n, are unsigned integers chosen from the above table. The following
statement turns off the designated options:

TRACE OFF n,, n,, x

To turn off all trace options that are not beihg used as letter options in this

ee ey n

compilation, the statement

TRACE OFF $
is sufficient.
The casa n; = 0 does not have a corresponding option letter. The
statements
TRACE ON O $ and ~ TRACE OFF 0 $

will cause the compiler to insert the following 1107 Sleuth statements,
respectively, into the objéét program:
SLJ XLOG$ and SLJ XFREE$

_“4_9_

(see 1107 Monitor System Notes for an explanation of these diagnostic
traces).
The statements
IRACE ON nq,...n $
TRACE QOFF NyyeeeDy ¢

may appear in a program anywhere a COMMENT may appear.

- 170 -

XIV...

USING ALGOL UNDER EXEC III

The programming of the Case 1107 makes use of various elements of a
comprehensive operating system. The operating system includes the Algol
compiler and library, and is controlled by a basic set of routines known
as Exec III.

In particular, compilation and execution of an Algol program are
governed by the use of Exec control cards. A full description of control
cards that are recognized by the executive routines is given in the Exec
III manual. The present discussion is limited to some of the basic features

used in Algol programming.

EXEC CONTROL CARDS

Every Exec control card must have a 7/8 punch in column on= and ary
card with a 7/2 punch in column 1 will be treated as an Exec control card.
This multiple punch is often referred to as a "master space". In the fol-
lowing discussion the symbol "." represents a blank card column.

The first card of every deck that is read into the computer sho.ld be
either a RUN card, LST card or PCH card. The LST and PCH cards will be ex-
plained later. If compilation and/or execution of a prorram arz desirex,

the SUN card must be used.

THE RUN CARD

A typical RUN card for a student run is as follows:

% A RUN A 12345, E*2

where the student number is 12345 and the class for which the program is

- 171 -

being run is E12. Each class using the computer is assigned time and page
limits by its instructor.
A typical RUN card for a project run is:

0 RUN & 99999,2

where the project number is 99999 and the programmer number is 2. If, as
in the above example, no time or page limit is declared then the assumed
limits for that project and programmer will be in force. To specify limits
other than the assumed limits, for example, a maximum of 120 seconds and

20 pages, the card would appear as follows:

78-A RUN & 99999,2, (120,20)

THE ALG CARD

To initiate compilation of an Algol program, the source deck must be
immediately preceded by an Algol processor card. This is an Exec control
card that specifies the name of the program and any Algol options the pro-
grammer wants to exercise. An example of an Algol processor card is:

%FN A ALG A PROS

where the program is named PROG1 and the F and N options are indicated.
If several programs are to be compiled ip the same run, a separate

Algol processor card must precede each program.

THE XQT CARD

If, after compilatioﬁ, the pfogram is to be executed, the Algol source
deck is fo .lowed by an "execute" card. This Exec control card specifies
the name ol the program to be run and usually the N option is exercised on
" this card. If the program name is PROG1 the card 1s:

%N A XQT A PROG1

=172 -

If the N option is left off the XQT card the allocation of computer memory
for the main program and its associated procedures will be printed out,
thereby providing one or more pages of information that is almost always

worthless.

DATA CARDS AND THE EOF CARD

The XQT card is followed by the data cards used by the program. Among
the data cards may be EOF cards, to be used in conjunction with the input
routine described in Chapter IX. An EOF card has the form:

z
g A EOFA

Columns two and six of an EOF card must be blank but any 1107 characters

may be punched in columns 7-80

THE FIN CARD

The last card of an input deck must be a FIN card. This Exec control :
card signals the end of the user's file and the entire input deck will be
ignored if it is not present. Its form is:

7
BAA FIN A

Just as with the EOF card,'columns two and six of a FIN card must be blank
and columns 7-80 bay‘contain any 1107 characters.

If a program is to be executed the FIN card follows the data cards
or,.if there are none, it follows the XQT card.. A program may be compiled

without being executed, in which case the FIN card may immediately follow

the source deck.

SAMPLE INPUT DECK

%A RUN A 12345, E12
%F A ALG A TEST

- 172 2

8 RUN 753440E12
oF ALG TEST1

COMMENT THE F OPTIUN ON THE ALG CARD TELLS THE COMPILER TO
SCAN ALL 80 COLUMNS OF THE SOURCE CARDe NOT JUST
THE FIRST 72 %
INTEGER I+START»QUIT» THISMUCHS
REAL PRUCEDURE FACTORIAL2(N)®
VALIIE N%® INTEGER N9%
FACTURIAL2 = IF N EQL O THEN 1.0
_ ELSE N*FACTORIALz(N=1)%
READ(START» THISMUCH!QUIT) S
FOR I = START STeEP THISMUCH UNTIL QUIT DO
wRITE(FACTORIAL2(I))S

AN XQT TEST1

2 3 10
A FIN

. When the above program is executed, the printout will contain the values
of 2!, 5!, and 8!. '

"THE LST AND PCH CARDS

A deck of cards may be listed on a printer using the LST card. The
form of this card is: '

%sLsm

Any deck of cards not including a RUN or FIN card may be listed ty putting
& LST card in front of it and a FIN card behind the deck. When this deck

is read into the computer the listing will appear on the printer corresponding
to that reader.

- 17, -

+ The PCH card is used to duplicate a deck of cards. The form of this

card is:

gAPcHA

The use of the PCH card is similar to that of the LST card except that the
output consists of punched cards instead of printout. Note that the punch
feed should be loaded with enough cards to accommodate duplication of the

entire input deck.
EXAMPLE:

%’ALSTA

deck to be listed
%AFINA

THE COMPLEX UTILITY ROUTINE

The 1107 operating system includes a processor called the Complex
Utility Routine (CUR). It may be used to store a library of source and/or
object programs on magnetic tape, retrieve them from tape when needed, and
punch object programs onto cards. _ |

CUR and other parts of the operating system are described in the
manual, 1707 Monjtor System Notes. ' ' '

- 175 -

SPECIAL IDENTIFIERS

Appendix I

Two classes of identifiers, reserved words and predefined identifiers,

are treated as special cases by the Algol compiler. These identifiers are

underlined in this manual to call the reader's attention to their use.

RESERVED WORDS

A reserved word is an identifier whose use in Algol programming is

restricted to the situations described in this manual. The compiler will

not allow the meaning of a reserved word to be changed by the programmer

(e.g., & reserved word cannot be used as variable name, procedure name or

label).

The following is a list of reserved words:

AND
ARRAY
BEGIN
BOOLEAN
COMMENT
COMPLEX
DEFINE
DO
DUMP
ELSE
END
EQIV
EQL
EQUIV

EXTERNAL

FALSE
FOR
FORMAT
GEQ

GO
GOTO

LABEL
LEQ
LIST
LISTSTRUCTURE
LOCAL
LSS
NEQ
NOT
OR
OWN
PROCEDURE
RANK
REAL
REAL2
STEP
STRING
SWITCH
THEN
TO
TRACE
TRUE

GIR
IF

MPL
INTEGER

(o]

—

PREDEFINED IDENTIFIERS

[==]
=
-3
—
=

2|
b |8

bl
53]

- A predefined identifier is an identifier for which a standard
definition is known by the compiler (e.g., SIN, READ, etc.). If the

programmer wants to use the standard definition of such a wbrd, he

must not attempt to redefine its meaning.

However, he may redefine the

meaning of a predefined identifier in any block in which he will not use

it in the standard sense. These identifiers are considered to be defined ir block

The following is a list of predefined identifiers:

INTRINSIC FUNCTIONS

ABS
CLOCK
CLOK
DIMENSIONS
DSA

DSC

DSL

EVEN
EXIT
EXITABORT
EXITERROR

EXITNORMAL

FIELD
FIELDS
IMAG
LENGTH
MCR
MEMO} ¥
MOD

0DD
PARITYEVEN

PARITYODD
PARTBL
SETRANK

& |4
L ()
=

|

(€]
0
(@]

n
|92}
!

LIBRARY FUNCTIONS

" ALPHABETIC
CHAIN
CLOSE
'COREMAX
CORETOTAL
CRTSW
'DATE
DELETE
DEVICE
DISPLAY
DMPBLK
DMPCOR

DMPVAR
ERROR
ERRORTRAP
FORCETYPE
HEADING
INSERT
LOWERBOUND
MARGIN
MERGE
NOLIST
NUMERIC
OPTION
PAPER
PCFELT
POSITION
READ
RELEASE
REWIND
QUEUE
SORT
SWAP

-

e

TRANSFER MATHEMATICAL FUNCTIONS

TYPE ARCOS
UPPERBOUND ARCSIN
WRITE ARCTAN
ARG
INPUT-OUTPUT DEVICES - £os
cARDS COSH
coR | ENTIER
DRUM EXP
— INTRANDOY
- | Ly
PRINTER MAX
PUNCH —
- | RANDOM
SINH
SQRT
TAN
PLOTTER ROUTINES —
CHANGFKEY
CHAR
DPARAM INPUT-QUTPUT MODIFIERS
KEYCOUNT - ECF
MOVE | e
EWGRAPH . INTEPLOCK
SCALE
STOP

The following identifiers may be used as the programmer s<es fit,

but each has a special meaning in the specified context:

FORTRAN or SLEUTH following the word EXTERNAL (used in declaratior

of external procedure) ;

ON or OFF following the word TRACE (used to invoke or revcke trace

option numbers).
- 172

-

APPENDIX II
WRITING ALGOL PROCEDURES IN 1107 SLEUTH

For the benefit of programmers writing procedures in Sleuth II, this
appendix describes the calling sequence generated by the Algol compiler,
and explains how the parameters to the procedure may be handled in the
Slsuth coding.

THE EXTERNAL SLEUTH PROCEDURE

- The calling sequence generated for a call on an EXTERNAL SLEUTH
PROCEDURE is:

MJ ' B11, <procedure name>
+K
9 T1,A1,L1,ADDRESS1
G Ty Ay s Ly ,ADDRESS,
G FORM 6,3,3,24

where K is the number of parameters to the procedure and the word

G | T ,A;, L, ADDRESS

is the descriptor of the Ith parameter. ADDRESSI may be any of the
following:

B10, ADDRESS RELATIVE TO B10

B9, ADDRESS RELATIVE TO B9

o, ABSOLUTE ADDRESS
Of the twenty-two bits in ADDRESS, the high-order four denote the index
register and the low-order eighteen bits denote the relative adiress, h an

TI is an octal number thdat denotes the structure of the Ith

parameter:
‘TI Meaning
0 Simple variable or expression
010 ARRAY
011 STRING ARRAY

- 179 -

RN

021 Generative LIST

040 Sort/Merge

041 RANK

042 FORMAT

043 LIST STRUCTURE

Generalized variables are denoted by 040-047, the first four of
which are currently predefined via system library routines..

AI denotes the type of the parameter:

AI ‘Meaning
1 INTEGER
2 REAL

3 COMPLEX
4 BOOLEAN
> STRING
6 REAL2

LI denotes the nature of the parameter:

LI _ Meaning

0 Simple name

1 Constant

2 ~ Result

3 Not used

4 Localized global name

5 U-field integer constant (-1<K NO. <:‘?-2)
6

Indirect result

THE EXTERNAL FORTRAN PROCEDURE

The caliling sequence generated for a call or. an EXTERNAL FOR' RAN
PROCEDURE has the same form as the sequence for an EXTERNAL SLEUTH PROCEDURE
except that the word specifying the number of paramzters

+K

is omitted.
- 180 -

CODING THE EXTERNAL SLEUTH PROCEDURE

The parameters to a Sleuth-written procedure can be made available
to the Sleuth routine as follows: The value of the Nth parameter ‘is loadgd

into a register by the instruction

L <{register>,*N,B11

If the parameter is a STRING, ARRAY or LIST then the register will be
loaded with the descriptor of the parameter (see USE OF STRUCTURED
VARIABLES below).

The following suggestions should be observed when coding the Sleuth

routine:

1) The entry line must be labeled with the name of the procedure
(an identifier of at most six characters)‘followed by a star (*)..

2) Register B10 must not be changed (or chaos will follow).

3) All error checking is the responsibility of the Sleuth routine.

4) If the procedure is being used in the functional sense (e.gey,
EXTERNAL SLEUTH INTEGER PROCEDURE), the result should be left
on exit from the procedure in register A2 (A2, A3 in the case of
REAL2 or COMPLEX). If ‘the result is a STRING, ARRAY or LIST the
descriptor of the result should be left in A2.

5) The return to the calling program is made by the instruction

J K+1,B11
where K is the number of parameters to the procedure.

6) Under all circumstances the contents of registers B1,B2,83, and
B4 should be.the same when leaving the Sleuth procedure as whén
entry was made.

7) Register B9 must not be changed until all the parameters have

been accessed.

USE OF STRUCTURED VERIABLES

1) Strings
A string is stored in a sequence of memory cells, six characters per
cell. The parameter passed to the Sleuth procedure is a string descriptor,

which has the form
F ‘ <{length>,<{position>,<address>
F FORM 12,6,18

where <length> is the number of characters in the string, <{position> is

- 181 -

the position of the leftmost character in the firstvcell, and <address™
is the location of the first cell. The sixths of a word are numbered from

left to right, from zero to five:

0 1 2 3 4 5

i.e., 0 < <position> K 5.

2) Arrays
If an array element is used as a parameter to an EXTERNAL SLEUTH
PROCEDURE, the value of the element is passed to the procedure. If, however,

an array name is used as a parameter, the procedure will receive the address
of the first word of the array head. The structure of the array head for non-
string arrays is as follows:
<no. of elements’, <address of first element>
<no. words per element>, <no. of dimensions>
<{lower (*)>,<upper (1) -lower (1) + 1> Bounds on
E E Subscript
{lower (N)>,<upper (N) -lower (N) + 1> Values
<special constant for O option>,<{address of array name> '
{first element of array>

<{last element of array>
The array is stored by rows. For string arrays the structure is:
<no. of elements>,<address of first elt. descriptor>
1, <no. of dimensions> ’ '
<{lower (1)>;<upper (1) -lower (1) + >

<lower (N),<upver (N) -lower (N).+ ™
+ 0

<{descriptor of first element>

{words/string> '

{first string>

<{last string>

- 182 -

APPENDIX III

GENERALIZED VARIABLES AND THE DEFINE DECLARATION

A generalized classification scheme for variables has been incorporated
in the syntax of Case Algol. The scheme described here has been designed to
permit the user to add new classes of variables to his program provided he.
defines the structure by means of external Sleuth II coding. The structure
of these variables is determined by specifying in the Sleuth routines the
meaning of the standard operators. _

In standard Algol 60, only simple quantities are allowed for, namely,
INTEGER, REAL, and BOOLEAN. Variables of type STRING, REAL2, and COMPLEX

are found in Case Algol, but these are also handled like simple variables.

Arrays are intended only to store large quantities of simple variables,
rather than being considered variable entities in themselves.

The introduction of generalized variables is intended to supplement
this by allowing the direct manipulation of variables with a non-simple
structure, or with attributes that are not common enough to be directly
incorporated into the compiler. For example, the manipulation .of matrices,
polynomials, sets, or topologies could be treated by means of ordinary

Algol statements if the proper Sleuth routines were provided.

DECLARATIONS IN CASE ALGOL _
Every variable that is used in-an Algol program must be declared

" (i.e: defined) in the following manner:
<{classification> <variable1>,...,<variab1eN>

where <classification> is a sequence of identifiers that names the type
and kind of variable and the <variablei>'s denote the variables of that
type and kind. The form of <variab1ei> is:

<name>

or <name>(<{parameter 1list>)

where <name> is the identifier of the variable and <parameter list> consists
of a sequence of parameters that may be separated either by commas (',') or

colons (':' or '..') Both kinds of separators may be used as, for example,

in the standard ARRAY declaration.

- 183 -

THE DEFINE DECLARATION

An identifier that serves as the <classification> of a generalized
variable type must be named in a DEFINE declaration to inform the compiler’
that it is now desirable to have a new kind of variable, viz., <classification>
The general form is:

DEFINE <class,>,<class,>,...,<class > $
where <classi> is:

<classificationi>
or <c1assificationi> (N)

where N is an integer constant such that § < N < 7. Any further occurrence
of <classificationi> will be treated just as an occurrence of INTEGER, REAL,
ARRAY, FORMAT, etc. That is, it serves to identify variables to be declared
as being of type and kind <classificationi>. It also serves as a transfer
function that takes one parameter and converts it to the type and kind of
<classificationi> (Just as INTEGER (1.0).is a call on the transfer function
for type and kind INTEGER).

The integer N is called the ranking index. The numerical kind of
a generalized variable is OLO8 + N. Systems so far implemented are:

level ~ kind Generalized variable
0 040 Sort/Merge, SOL-B
1 041 Ranks
2 042 Formats
3 043 List Structures

Any attempt to define and use generalized variables at these levels while
using one of the corresponding predefined generalized variables may result
in a certain amount of chaos. ' ' '

CODING FOR GENERALIZED VARIABLES

Thus, in theory, Algol has now been equipped with the machinery to
handle any type of variable. However we must remember that Algol on the
1107 is not purely a meta-language in which we can express an algorithm for
the solution of some problem. It also doubles as a source language which
is trahslated into an object code (machine lﬁnguage). Thus we will now

- 184 -

consider what all of the above is translated into.

THE DECLARATION OF A GENERALIZED VARIABLE

In the declaration of a generalized variable the following coding is
turned out:

line 1 LX,U B9,<name>
line 2 LMJ B11,09---$
line 3 + n
lines 4 to <de§criptor1>
n+3 <deécriptorn>
line n+4 '<name of the generalized variable)>'

Line 1 loads B9 with the address of the cell associated with the variable.
This cell later becomes a pointer to the actual variable. Line 2 transfers
control to the Sleuth routine that initializes the generalized variable. The
name of the routine is defined by the following algorithm: Take the first
three characters from <classificationi>. Prefix these characters with 09
and suffix with a $§. If there are less than three characters use as many
as there are. It is obvious from the above that if two <{classification>'s
have the same first three characters, there is going to be some confusion.
On line 3 n is the number of parameters in this declaration, -n if this
variable is OWN, +n otherwise. Lines 4 to n+3 are the descriptors for the
n parameters (see Appendix II for the form of descriptors for such a call).
The descriptor is in a form such that an indirect address on the word will
"obtain the‘parameter. The initial contents of <name> is undefined.
The above calling sequence enables the user to initialize each
generalized variable. Initialization consists of three major sections:
1. Setup of structure involved with the manipulation of the
variable.
2. It gives the user the location associated with the variable
(given in B9). This location is sometimes refsrred to as the
pointer to the variable.
3. It gives the user the opportunity to put the address of an
operation table (described below) in the H1 field of the location
associated with the variable. The H2 field of this location

may be used in any way the user desires. It usually points to

- 185 -

the actual &emory locations that the generalized variable
occupies, i.e., the address of the variable is put into the
H2 field of the pointer.

Consider the following segment of an Algol program (this example

1s continued later in this appendix):
DEFINE SET(3), ELEMENT, CLASS(4) $

(The compiler generétes no coding for the above.)

ELEMENT A,B$
LX,U B9,A
IMJ B11,09ELE$
+ 0
rA]
LX,U B9,B
LMJ B11,09ELE$
+ 0
IB !

The allowable operations are:
Binary operators:

+ 1ADD' X0R 'XOR'
- 'SUB! IMPL ' IMP!
* '"MUL! EQUIV 'EQV!
/ ‘DIV! EQL 'EQL'
// 'DII’ LSS '1LSS!
#*# 'EXP! GTR 1GTR'
OR '0R! LEQ ‘LEQ!
AND TAND! NEQ 'NEQ'
= 'REP! GEQ 'GEQ!

Unary operators:
- 'NEG' NOT 'NOT!

Subscript calculate: 'SSC!

The address of the operation table for that particular generalized
variable should be stored in the H1 field of the pointer.

When an operation occurring in the operation table is requested by
an Algol program, control is transferred to the address of the specified
routine with the following information available (excluding SSC):

B11 - Address of the first of two (one, if it is a unary operation)

- 186 -.

consecutive parameter descriptors; the first descriptor for the
left operand and the second for the right operand.

O8XIT$ - A location that contains the address to which control should
be transferred when done with the operation.

A2,A3 - should contain the result of the operation upon exit. The
result is usually a pointer to the resultant quantity if the
result is non-simple. If the result is simple, then the ap-
propriate INTEGER, REAL, COMPLEX, BOOLEAN, STRING, or REAL2
quantity should be put in A2,A3. For binary arithmetic operations,
the kind of the result will be taken to be the kind of the operand
with the larger numerical kind. For Boolean and relational operators,
the result kind is always BOOLEAN.

If the operation is 'SSC', the following information is available

B11 - Address of a word which contains an integer which indicates
the number of parameter descriptors immediately following.

08XIT$ - contains the return point (see above).

B9 - shotld contain upon exit the result of the subscripting operation.
This result is usually the pointer of the generalized variable

referenced by the subscripting operation.

The following conventions must be remembered in tre use of subscripted

generalized variables:

1) Any variable or expression has type and kind associated with it.
A variable is assumed to have universal type if no other type is
specified, except for arrays where REAL type is assumed.

2) A variable with a subscript on it drops its kind (that is, it
becomes of kind simple) if it has non-universal type. If it has
universal type it retains its kind.

3) A STRING subscript is not really a subseript, it only specifies a
substring. It is the same as specifying a subpartition of an
ARRAY.

Consider the following example:
SET V(3,A,B), S1 §

1X,U B9,V
LMJ B11, O9SET $
+ 3

- 187 -

G SIMPLE$, INTEGER$, CONSTANT$, (3)

G 040,0,NAME$,A
G 040,0,NAME$,B
LAY '

IX,U B9,S1

LMJ B11,09SET$

+ 0

|S1 1

BOOLEAN CLASS TOPOLOGY (V..'TOP') §
LX,U B9, TOPOLOGY
LMJ B11, 09CLA$

+ 2

G 043,0 NAME$, V

G SIMPLE$, STRING$, NAME$, (F LENGTH,,('TPP'))
' TOPOLO!

TOPOLOGY(7..A) = V + B LSS TOPOLOGY$.
LX,U B9, TOPOLOGY
IMJ B11, 08SSC$

2
G SIMPLE$, INTEGER$, CONSTANT$, (7).
G 040,0,NAME$,A
SX B9, TEMP$(1), B10
IMJ B11, 08ADD$
G 043,0,NAME$,V
G 040,0,NAME$,B
SA A2, TEMP$(2), B10
IMJ B11, 08LSS$
043, RESULT$,B10,TEMP$(2)
G 040, BOOLEAN$ + NAME$,, TOPOLOGY
SA Az ,*TEMP$(1),B10

- 188 -

OPERATIONS INVOLVING GENERALIZED VARIABLES

Generalized variables can be used in arithmetic, Boolean, and relatidnal
operations. The ability to do this is taken care of by the operation table.

The operation table is constructed as follows:

line 1 + P
line 2 + ‘<OP1>',ad1
to :
P+1 + 'COP >!',ad
P ’p

where P is the number of operations that are in the table, '<0Pi>' is the
fieldata of one of the allowed operations, and adi is the address of the
routine that performs the operation given by '<OPi>'.

The compiler generates calls to routines O8ADD$, O8SUB$, OSOR$,
etc. which are in the standard Algol library. These routines select the
address of the operaﬁion table by examining the descriptors of the left
and right operands. If the left operand is a non-simple variable and there
is an address in the H1 field of the pointer (i.e. H1 of the pointer # 0),
the library routines use this address as the location of the operation table.
If the above test fails for the left operand, the right operand is then
tested (only one operand is tested for a unary operation). If neither
operand has an operation table associated with it, an error message will
be generated. Once the operation table is found, the library routine
searches the operation table for the operation (e.g., O8ADD$ searches for
'ADD'). If the operation is found, the library routine transfers control
to the user's routine to perform the operation. If the operation is not
found, an appropriate error message will be generated. When the user is
finished, he leaves the result in the proper registers and returns to the Algol
program via the address in 08XIT$.

The general form for an operation is (only one descriptor for unary
operators): .

IMJ B11,08---$

<{descriptor for left operand>
<{descriptor for right operand>

The general form for a subscript is:

LX,U B9,<name>
LMJ B11,08s3C$
+ n

- 189 -

<descriptor1>

<descriptorn>

] Note that the user need not perform operations by use of the operation
table. The user may call his routines O8ADD$, etc. and have control trans-
ferred directly to his own routines. However, when many different general-
ized variables are used in one program, each user operation routine would

have to determine which operation to perform for the kind presented. The
library routines decide which operation to call by looking at an operation

table, and each different kind of generalized variable can have a different
operation table.

GENERALIZED VARIABLE TRANSFER FUNCTIONS

It was mentioned before that each-<classificationi> becomes a
transfer function. The compiler generates the following coding:

LMJ B11,07---$
<{descriptor for parameter>
Consider the following example:

S1 = SET(A)
IMJ B11,07SET$
1
G 040,0,,A
SA A2,TEMP$(2),B10
ILMJ B11,08REP$
G 043,0,,51

043,RESULT$,B10, TEMP$(2)

REGISTER USAGE

The registers that must not be tampered with in any way by user

routines are B1, B2, B3, B4, and B10. Failure to observe this rule will
yield catastrophic results.

ACQUIRING AND RELEASING OF CORE

For most generalized variables, core will be needed either for the

variable or for information relating to the variable. Core, however, may

- 190 -

not be used indiscriminately. To request a block of core:
1) Load A3 with the number of words desired.
2) Make the call: SLJ OPRO$
3) The address of the start of the block of the size requested is
' in Ag upon return from OPRO$.

If no blecok of the requested size is available then control is transferred to
the library error routine. If transfer to the error routine is not desired
then the following call should be used: SLJ OEPRQ$. In this case if the
block is not available the return is made with the contents of register
A0 = 0.
Care must be taken to see that no core is used except exactly that which has
been requested. When finished with the core, it may be "put back" for
future use by:
1) Loading A@ with the starting address of the core to be released.
2) Make the call: SLJ OCON$
Only the exact block of core which was requested may be returned. Both
OPRO$ and OCON$ destroy registers A@, A1, A2, A3, and AL.

THE DEALLOCATION LIST

The deallocation list is a list that contains those items that
should be deallocated when leaving a block or a procedure. There is a
separate list associated with each block or procedure. To reference the
head of the allocation list anything equivalent to the following form is
acceptable.
OHEAD$,B10,H2
If the list head is zero then the list is null.
Items are placed on the deallocation list in LIFO ordered by the
library utility routines OINS$ and removed by OREM$.
The contents of a list item can be one of two forms:
1) The H2 field contains an address in which case it is
assumed to point to a block which is to be deallocated.
OCON$ is called with this address as a parameter. The
H1 field is ignored.
2) The H1 field contains an address and the H2 field
contains a negative parameter which is discussed below.

The address is assumed to point to a subroutine that

- 191 -

accepts the positive parameter as input. The subroutine
is assumed to handle all deallocation that is necessary.
Entry into the subroutine is made in the following manner:

IM A0, <parameter>,*B0,XU
IMJ B6,<{subroutine>

The registers which cannot be used unless saved and restored are
B1,B2,B3,B4,B%,B10,A7

A FINAL WORD

With generalized variables the user is able to declare and manipulate

otherwise unwieldy variables. Many sophistications are possible and many

But, believe it or not, it can be made to
work. OR rather, you can be made to work it.

problems are also possible.

- 192 -

APPENDIX IV

SORT-MERGE PACKAGE

Sort-merge facilities operating within the Algol framework are
now available. The basic units with which the sort-merge package works
are files. A file is defined as an area of storage in core, on drum, or
on magnetic tape. Thus.there are three types of files, namely: core, drum,
and tape files. A file is well defined whether or not it has any relevant
information stored in it. The creation (i.e. definition) of files is done
using the Algol DEFINE declaration, and they may be processed, written, or
read only by the sort-merge package. If a file has been written into, the
items are in the form of Algol sfrings, which way be of different lengths.
A summary of allowable calling sequences follows:
FILES:

DEFINE FILE $

FILE <identifier>('<type>',{length>) $
where <type> is either CORE, DRUM, or TAPE, and, for types CORE and DRUM,
<{length> *s the file length in words. For type TAPE, <length> is a list-
of the form <'<{logical unit>', <usable tape length in feet>,'<logical unit>',
<usable tape length in feet}, '°°>. The file is assumed to progress through
the tapes listed in the declaration from left to right. A tape swap may be
called for by following <length> by -,'SWAP',
EXAMPLES:

DEFINE FILE $

FILE F1('CORE',400),B('TAPE','A',1200,'B',600),

DRUMFILE ('DRUM',5000),F2('CORE',800),
SUPER (' TAPE','C',1200,'D',1200, 'SWAP')$

Here, two areas of core of lengths 400 and 800 words are set aside
for core files F1 and F2. A 5000 word area of drum space is cleared and
set aside for drum file DRUMFILE. A tape file (B) of total length 1800
feet is assumed to exist starting with 1200 feet of tape on logical unit
A with an additional 600 feet of space on unit B. A tape file of
undetermined length is assumed to exist with an undetermined number of 1200
foot tapes on logical units C and D, starting with 1200 feet on unit C
continuing on unit D, and returning to C, moving cyclically between
units C and D.

- 193 .

Note that, as with Algol 60 arrays, when storage is declared (i.e.
either a file or an array declaration), the space declared is assumed empty,
and remains empty until the user places items into the file or array. Only
a previously created non-empty tape file may be used as a tape file input in
a new program. Also, it should be ﬁoted that the Algol drum routine and the
sort-merge drum files are not compatible and hence exclusive use of one or
the other of these drum processing methods should be made.
SORTKEYS: '

DEFINE SORTKEY$

SORTKEY <identifier>(<start char1>,<char length1>,...,

<{stert char,>,{char length) $

where <{start charI> is the starting character position and <{char lengthI>
is the character length of the Ith most significant key.
EXAMPLES:

DEFINE SORTKEY$

SORTKEY KY(20,4,6,8),DATAKY(1,5,10,5),

SPECIAL(1,80),VACATION(27,2,25,2,1,20) §

Suppose that a file, FIL, contains information. In particular,
suppose that for each item in FIL, characters 1-20 designate an employee
name, characters 25-26 and 27-28 contain the day and month (01-12, where
01 is January), respectively, of the start of the employee's vacation period.
A subsequent sort of file FIL with the key VACATION as defined above would
produce a group of items grouped by vacation date with the vacation dates in
chronological order. If more than one employee starts his vacation on a
given date, the items are grouped in alphabetic order by employee name.

Note that a key is meaningful only with respect to a sort or a merge.
POOLS:

DEFINE POOL$

POOL <identifier>(L) $
where L is as defined for tape files, without the swap option. Pools must
consist of magnétic tape, aﬁd are only used for temporary storage by a
sort process.

EXAMPLES:
DEFINE POOL$
POOL SPARE ('M',3600,'P',1200,'R',300),
ROOM('N',1200,'0',2400) $
Here, SPARE provides 5100 feet of magnetic tape for intermediate

- 19 -

storage for the system during a sort operation. Note that a pool 1is
used only for intermediate storage in & sort operation.
Sort-merge procedure calls:
SORT (<output>,<input>,{key identifier>)
SORT (Koutput>,<input>,{key identifier>,<{pool identifier>)
M§§§§(<output>,<input>1,<input>2,...,<1nput>n,<key identifier)>)
TRANSFER (<output>,<input>)
TRANSFER (<output>,<input>,{intermediate procedure>)
TRANSFER (<output>,<{input>,<{boolean>)
TRANSFER (<output>,<{input>,{intermediate procedure>,{boolean>)
where <output> is either 'NONE', a file name, or the name of an Algol
procedure having a single string parameter; where <input> is either a file
name, an Algol string procedure name.with no parameters, a call on SORT, a
call on MERGE, or a call on TRANSFER; where <intermediate procedure> is an
Algol string procedure having a single string parameter; and where <boolean>
is either a boolean variable or an Algol boolean procedﬁre.
EXAMPLES:
Suppose it is desired to load items from cards into a file, F.
Let the items be arranged on cards so that one item appears per card and
so that the item is within columns 1-40. A program which accomplishes this
is shown below:
1 DEFINE FILE $
2 FILE F('TAPE','A',1100) $
3 STRING PROCEDURE IN $
4 BEGIN QN STRING S(40) $
5 FORMAT FORM (A,S40) $
é READ (FORM,S,STOP) $
7 IN = S $ GOTO OUT $
8 STOP.. IN="''$
9 OUuT.. END IN §
10 TRANSFER (F,IN)
Note that, as shown on line 8, the TRANSFER operation is terminated by setting
the input equal to a null string (IN = ''). A null string is defined to be a
string of character length zero, represented by two adjacent quote marks. (See
the flowcharts at the end’ this appendix.) :
Assume now that we desire to delete certain items from file F, along
with deleting some of the item information. . In particular, suppose that a "D"

- 195 -

in the first character of an image indicates that that item is to be deleted.
Also, columns 2-4 are to be set to @@F for all items. A program which ac-

complishes this is shown below.

1 DEFINE FILE $

2 FILE FNEW('TAPE','B',1200),F('TAPE','A',1100) §
3 STRING PROCEDURE EDIT(S) $ STRING S $

4 BEGIN IF S EQL " THEN EDIT = " ELSE

IF 3(1) EQL 'D' THEN EDIT = "

5 ELSE BEGIN S(2,3) = 'ggg'$
6 EDIT = S END

7 END EDIT $

8 TRANSFER (FNEW,F,EDIT)

Here, an item is taken from the input, F, and passed into the intermediate
procedure EDIT. Note that EDIT must check for an "end of file" (null

string - line 4) from the input. If an item is to be deleted, the output
of the intermediate procedure EDIT is set to a null string (line 4). Note

that a null string from an intermediate procedure is not passed on to the

output and operation continues, while a null string from the input serves as

an end of file, and operation terminates after passing the item to the output.
See the flowcharts in this appendix. Note that on line 4 S is checked for the
null string first. Otherwise, if S is null and S(1) is checked against 'D! '
first the library will consider this an error.

Now, as a check, let's print the first 100 items of file FNEW. An
appropriate program is shown below.
INTEGER I $

—A

2 DEFINE FILE §

3 BOOLEAN BOOL $

4 STRING PROCEDURE COUNT(S) $ STRING S $

5 BEGIN IF I EQL 101 OR S EQL '' THEN

é BEGIN BOOL = TRUE $ COUNT = '' $
7 GOTO EXIT END

8 ELSE I = I + 1 $ COUNT =S $

9 EXIT.. END COUNT $
10 PROCEDURE OUT(S) $ STRING S $
11 BEGIN IF S NEQ '' THEN WRITE (S) END OUT $
12 FILE FNEW('TAPE','B',1100) $
13 I =1 § BOOL = FALSE $
14 TRANSFER (OUT,FNEW,COUNT,BOOL)

- 194 -

Here, after 100 items have been encountered or if an "end of file" has
occurred, a boolean variable is set to TRUE (line 6). With the boolean
variable set to TRUE, the process is terminated by setting the intermediate
result to & null string. See the flowcharts for more detail.

Now, let's sort the file FNEW and place the sorted file in file F. In
sorting, items will be sorted by 4 characters starting at character 10, and
by 2 characters starting at character 20. The additional coding necessary

to accomplish this is shown below.

1 DEFINE SORTKEY $
2 SORTKEY KY(10,4,20,2) $
3 FILE F('TAPE','A',1100) $

A SORT (F,FNEW,KY)

Note that sorting and merging produce output in ascending order.

If we wanted to merge the (sorted) file F with, for example, items .
from a sorted file EXTRA, placing the entire output on tape, the call would
appear as (using the same key as above).

MERGE (TOUT,FNEW,EXTRA,KY)
where TOUT is an (tape) output procedure constructed as before.

If equal minimum items occur in merging, the left-most input in the
merge call is taken as the actual input, that is, with respect to the calling
sequence of a merge, the item processed at each pass is the "left-most"

minimum item.

VOLATILE DRUM SPACE

It should be noted by the user that any DRUM file or any call on the
SORT routine may destroy part of the user's PCF and/or the "drum tape" region
used by CUR and Algol. Thus, if information is required to be in the PCF or

"drum tape" region it must be saved by the user, elsewhere than on drum.

AVAILABLE DRUM SPACE

The number of words of drum storage available to the user's program
is a dynamic property of the operating system. That is, it is subject to

change as the needs of system change.

- 197 -

In general, the SORT routine requires temporary storage approximately
equal to the total length of the final set of sorted items. Therefore, if
the sorted items are to be kept in a drum file, it will not be necessary to
have POOL tapes if only about one-half of the available drum is used for a

drum file, leaving the rest for temporary storage for the SORT routine.

FILES

Upon declaration, all files are set closed and empty (i.e., the file
contains only a null element). Let A be a properly defined S/M file. Let
C be defined by
FILE C$ C=A
If A is not a tape file, define file B as
FILE B(A)$
Any operation with file C is equivalent to performing that operation
with file A. File B, on the other hand, operates as an independent file
using the same storage area. Thus with files of the A and B type, informatio
may be written into and read from the same storage area simultaneously.
That is, using files A and B, two (possibly different) types of operations
may be performed on a given set of items simultsneously.
Thus, &n operation of the form)
TRANSFER(A,A,INTER) or MERGE(A,A,B,KY),
where the prerious definitions for A and B hold, is well defined.*

SUBSCRIPTED FILES, SORTKEYS AND POOLS

In processing information it is often necessary to perform the same
operation or sets of operations on several different sets of data. In ‘
Algol 60 the FOR statement is ideal for circulating through a given set of
operations a known number of times.

For files, sortkeys and pools, if A has been previously declared

and is of a corresponding type, declarations of the form

% The user should note that an operation of the form
SORT (A,A,KY)
is well defined since file A is opened, read, and closed before items
are written into file A.

- 198 -

1) <declarator> - B(A),C,D(<integer>)

and, in addition, in the case of a file declaration,

2) FILE E(<integer>,'<type>',...)

are allowed where <declarator)> is either FILE, SORTKEY, or POOL. As with

files, a replacement of the form
C=A .

simply associates the name C with A. Any operation performed on C is
identical to performing the same operation on A. In the case of sortkeys

and pools, however, the declaration

<{declarator> B(A)

does not have any special advantage, but merely duplicates the declaration

used for A. That is, the effect of a declaration of the form
<declarator> B(A) $

for sortkeys and pools has the net effect of a declaration of the form
{declarator> B$

followed by B=A '~ with the exception that internal storage is used in the
former.case. Thus the latter type of declaration is preferable in associating
different pool and sortkey names. The former type of declaration is only
made available to maintain consistency.

The declaration

<declarator> D(<integer>)

is used to denote a subscripted file, sortkey or pool whose subscripts will
range from 1 to <integer>, where (<integer>)>d.
Actual elements are associated with the subscripted file, sortkey,

or pool by replacement statements of the form
D(<integer>) = A

where A is some (possibly subscripted) file, sortkey, or pool.
The special file declaration simply declares <integer> Tiles, all
of the same type, with subscripts ranging from 1 to <integer>, <integer>)>@.

MULTIPLE FILE ACCESS

In order to incorporate virtually complete flexibility -rithin the

Sort/Merge framework it is necessary to enable the user to read ‘write items from/to

- 199 -

several files within the Algol 60 framework. Thus the S/M package will
accept statements of the form:

<{file name> = <string>
or

<{string name> = <file name>

where the first form can be interpreted to mean "write the item whose
representation is <{string> into file <file name>", with a corresponding
interpretation of the second form of "copy next item from file <file name>
into <string name>". Note that no limitation is made on the number of
different files used, but that the file read/write rules described previously
still apply. The only additional restriction that applies here is that

these statements must be executed during a call on the S/M package, i.e.,

in a procedure currently being called by the S/M package.

NOTE: Ascending order is determined by the result of a SETRANK statement,
if one or more occur in the program.

- 200 -

FLOWCHARTS

SORT
B
get item enter item
from input in STABLE

sort STABLE
5]
get item pass
from STABLE item to
output

pass item to
output

i

pass '!

to output

S,

s it last
item

- 201 -

=2 -
1] i

get item from
inputI. Place

item in T

Il

N = T subsecript
of min. item or
min. sub. of min
equal items

pass '!

to output

pass item

TN to output

4

get new
item input N

tem:'!

—

NOTE: MX is an item which
when sorted along
with all possible
string combinations
of symbols, would
occur as the last
item in the sorted
ascending sequence.

T

= item

- 202 -

TRANSFER

EOF ¢— false
INSKIPe~false

A =]
O - pass "to
{ # (EOF: true)——"

output

\# j) . TRANSFER «—"
"(INSKIP: true) 1
Ne—1iten
from inpuf
- ']
[N "
o
EOF @=tru
Z NW: 1! =
_.__innter. proc.&r10 l
L —r © .
pass N to
L 1
inter. proc. no ~\ yes

bool. var.?

J
L e bool. res.:t@'—'—
NW @ new :
item from e OF @=true
inter. proc. _

1 es

T)ool. var. ?} 1

bool. res.:trg—— 3

INSKIPe—}
true

[
N
O
Vel
I

APPENDIX V

PLOTTER ROUTINES

THE CALCOMP PLOTTER

The Calcomp 565 plotter uses a roll of paper 120 feet long and 12
inches wide. The actual plotting width is 11 inches. A rotating drum
moves the paper lengthwise, while a carriage moves a replaceable pen back
and forth along the width of the paper. Both ball point and ink pens are
available.

The pen-up-pen-down functions control writing. Motion is in
0.005 inch increments at a maximum rate of 300 steps per second. Drawings,
therefore, consist of short line segments oriented in increments of 45
degrees. Repositioning to a reference point is precise. A user may run
a drawing 120 feet long and then accurately reposition at the point of
origin.

The control unit and the plotter must both be on (red indicator
lamps on control unit) to operate the plotter. Also, the stop lamp (white)
must be extinguished manually, if it is on, by depressing "run". Depress-
ing "stop" turns on the stop lamp and stops operation until "run" is de-
pressed. If the computer issues a stop command, the effect is the same
as a manual stop. '

Manual controls on the plotter are used to remove completed
drawings.

BASIC PLOTTER OPERATION

The various routines needed for use of the plotter will compute
the necessary control codes and write them to a magnetic tape. This tape
must be assigned to logical unit 'P' by means of an ASG control card.

After a program has written plotting instructions on the tape,
the graph can be plotted by means of an EXEC III parasite called FLT.

To initiate the plotting parasite the user makes an unsolicited keyin of
the form:
I PLT <label>,{paper feed>

- 204 -

where <label> is the label of a tape to be plotted. This label imust have

been previously assigned to a physical unit by means of an unsolicited
keyin of the form:

A <label>/<physical unit>

<paper feed> is the distance which the paper will be advanced through
the plotter in units of inches/100 before starting the plot. For example,
the keyin:

I PLT GRAPH, 300

will initiate the plotter parasite. The parasite will plot the information
contained on the tape on the physical unit assigned to the label called
GRAPH. Before plotting, PLT will advance the paper 3 inches.

PLT may be suspended or terminated by the usual unsolicited keyins.
The tape is not rewound after plotting.

An EOF marker may be written on the tape using Algol or CUR. This
will be considered a stop command by the PLT parasite. With the use of CUR
a specific plot may be found on a tape and then plotted with the PLT parasite.

ALGOL PLOTTER PROCEDURES

There are several procedures available for use from an Algol program
to produce output for the plotter. These are available in the system
stored library on the drum.
The available procedures are as follows:
1. SCALE (<initial x>,<{initial y>,<{x scale>,{y scale>,<max y>,<{grid type>,
<x unit>,<y unit>,{coordinate system>)
a). Sets the initial point (see figure 3) to correspond to the
scaled coordinates:
(<initial x>,<initial y>)
where <initial x> and <initial y> must be real numbers.
b). Sets the scale of the x axis to <x scale> units/inch. <x scale>
must be a real number, but may be positive or negative.
c). Sets the scale of the y axis ta <y scale> units/inch. <y scale>
must be a real number, but may be positive or negative.
d). Sets the maximum expected y coordinate to be <max y>.
e). Draws a grid indicated by <grid type>, which must be of type STRING.
i). If <grid type> is 'A'then no grid is drawn.
ii). 1If <grid type > is 'AXIS' then an x-y coordinate exis is

- 205 -

DIAGRAM OF PLOTTER

Pen

Paper

/

Direction ’Z
of
Flow

Initial Point

Plotter Drum

Figure 3

- 206 -

drawn the width of the paper, and from <initial y> to
<max y>. Marks are drawn on the axes in increments of
<x unit> and <y unit> for the x and y axes. The origin
of the coordinate axes is the scaled point (0.0,0.0).
<x unit> and <y unit> must be real numbers.’

iii). If <grid type> is 'GRID' then a grid is drawn with lines
crossing at intervals of <x unit> units in the x direction
and <y unit> units in the y direction. <x unit> and
<y unit> must be real numbers.

f). If <coordinate system> is 'POLAR' then all subsequent plotting
(until the next call on SCALE) will be in polar coordinates.

If <coordinate system> is 'CARTESIAN' then Cartesian coordinates
will be used. If this parameter is omitted from the call on
SCALE then Cartesian coordinates will be used.

g. Only in the case of <grid type> equal to 'A' is the pen positioned
to the initial point. In the other cases the pen may be anywhere
on the paper.

PLOT{(<x coord.>, <y coord.>, <line type>, <arrival action>)

a). Puts the pen down

b). If plotting is being done in polar coordinates then <x coord.>
is the radius, and <y coord.> is the angle in radians of the
point to which the pen is to be moved, where <x coord.> and
<y coord.> are real numbers.

c¢). If plotting is being done in Cartesian coordinates then the
pen is moved to the point (<x coord.>, <y coord.>).

d). If the string <line type > is 'DASH' then a dashed line is drawn,
while a continuous line is drawn if <line type> is 'SOLID'.

e). The <arrival action> parameter is of type STRING. Its value
should be one of the following:

i). TBOX! draw a. small box around the point (<x coord.>,
<y coord.>)

i1). 'CROSS' draw a small line perpendicular to the direction
of travel at the point (<x coord.>, <y coord.>)

iii). 'ARROW' draw an arrow head in the direction of travel, with

the point of the arrow head at (<x coord.>, <y coord.)>)
iv). 'A' take no action at the end of the line.

- 207 -

MOVE (<x cocrd.>, <y coord.>)

a). raise the pen

b). moves the pen to the point (<x coord.>, <y coord.>) if the plot-
ting is in Cartesian coordinates, or uses <x coord.> as the
radius, and <y coord.> as the angle in radians of the point to
move to, if the plotting is in polar coordinates. <x coord.>
and <y coord.> must be real numbers.

CHAR (<direction>, <size>, {string>)

a). puts the pen down

b). draws the characters of <string> with a height of <size> inches,
in the direction of <direction>, where the present pen position
1s the lower left-hand corner of the first character.

¢). if <direction> is of ﬁype STRING then its value should be one of
the following
i). 'X' edit the string in the positive x direction

ii). '-X' edit the string in the negative x direction
iii). 'y edit the string in the positive y direction
iv). '-Y' edit the string in the negative y direction

d). If <{direction> is not of type STRING then it should be of type
REAL, in which case it is the angle in degrees at which the string
is to be plotted. The angle is measured counterclockwise, with
=<he positive x axis denoted by an angle of zero degrees.

e). The point at which the pen is positioned when the CHAR operation is done
is described in 11) of the MISCELLANEOUS NOTES section of this
appendix.

SCHAR (<direction>, <size>, <index>)

a). SCHAR is similar to CHAR except that SCHAR draws only one character.
This character is selected from the table of character indices:ac-
cording to the value of <index>, which must be of type INTEGER.
The table and ways to add or delete characters are explained later
in this appendix.

b). The point at which the pen is positioned when the SCHAR operation is done
is described in 11) of the MISCELLANEOUS NOTES section of this
appeniix.

STOP
causes the generation of a stop command by the computer. The user

must manually release the plotter to continue plotting.

- 208 -

7. . NEWGRAPH(<inches)>)

moves the pen <inches> beyond the point (<initial x>,<y max>) given

by the previous SCALE call. <inches> should be of type REAL.

8. DPARAM(<length>,<spacing>)
changes the length and spacing of dashed lines so that the value
of <length> is the length of the dash and the value of <spacing>
is the size of the gap between dashes. Both parameters should
be of type REAL and are in units of inches.

9. KEYCOUNT
is an INTEGER PROCEDURE without parameters. Its value is the
number of characters that can be indéxed by SCHAR (at the time
of this writing the value is 168).

10. CHANGEKEY (<index>,<{pair listD>)
is used to add or delete characters in the table of character
indices. <index>, a parameter of type INTEGER, should be such
that

g < [<index>| < KEYCOUNT + 19

<{pair list> is a sequence of pairs of INTEGER parameters that

describe the new character.

If a character with index l<index>| is already present, it will be
deleted. The new character is then added. The <pair 1list> is a sequence
of x-y coordinates. Each <{integer expression> must be in the range
-31 € <integer expression> < +32. The pen will be raised before starting
each character. If the x coordinate is +32 then the pen will be raised,
and the y coordinate is ignored. It will be dropped after performing the
next pen movement. As an example of usage, the call

CHANGEKEY (KEYCOUNT, #,5, 4,5, 32,8, 4,3, #,3)
would put an equal sign in the character set, and remove the character
(if any) which had index KEYCOUNT. It should be noted that a call on
CHANGEKEY does not change the value of KEYCOUNT.

If <index> is negative, then the pen will stay at the last point it
was moved to. An example of this usage is the backspace character, which
1s defined by the call CHANGEKEY(-KEYCOUNT, -¢,d)

- 209 -

FORMATTED OUTPUT ON THE PLOTTER

The use of the EDIT input/output device in conjunction with the plotter
is illustrated in Appendix VI.

TABLE OF CHARACTER INDICES

The following characters are now available:

g 1 2 3 A 5 6 7 g 9
g v [] # A A B C D
1 E F G H I J K L M N
2 0 P Q R S T U ' W X
3 Y z) - + < = > + $
4 * (% ? ! , \ g 1
5 2 3 4 5 6 7 8 9 ' ;
6 / . o # - - " ‘ ?
7 a b c d e £ g h i J
8 k 1 m n o P q r] t
9 u v w X y z ¥ <
19| A4 B r A E& 2z H e I K
11 A M N) q I P z T T
12 ¢ x ¥ e a P Y > € 4
13 1 6 ¢ k A " v £) m
14 P g T Y ¢ X V] w
15 | C ' | 3 ¢ > 3 1t oS
16 A 4 a] 3

Those with an index gréater than 63 can be used only with SCHAR.
Note the following characters:

index 5: blank
69: backspace
98: under dash
99: under line
148: over dash
149: over line
165: superscript shift
166: subscript shift

- 210 -

If the character size for 165 and 166 is the same, they will return
to the original vertical position on the line. For example:
SCHAR('X',#.1¢,74) $ SCHAR('X',#.10,165) §
SCHAR('X',#.1¢,93) & SCHAR('X',f.1¢,166) $
CHAR('X',d.1g,'+1")

will plot eX41,

MISCELLANEQOUS NOTES

1). Improper usage of the plotter routines can bring swift retribution
as there is no error checking with respect to the parameters.

2). The user deserves what he gets if he uses any plotter routines before
the first call on SCALE.

3). Note the action taken at the boundaries by the plotter routines.
A sample might be:
SCALE (0.0,0.0,1.0,1.0,' ',0.5,0.5) $ MOVE(10.0,10.0) $
PLOT (12.0,12.0,'SOLID',' ')
This is equivalent, with the same SCALE call, to
MOVE(10.0,10.0) $ PLOT(11.0,11.0,'SOLID',' ') $ PLOT(11.0,12,0,'SOLID',' ')
Note also, in *his example, that it is possible to plot beyond YMAX
without 111 effects. '

4). Plotter movements of more than 109.22666 feet in the y direction (on

one call to the plotter routines), may produce anomalous results.

5). When using ink, the user should impulse the pen up and down several
times to start the ink flowing. This 1s best done manually.

6). It is possible to plot two (or more) graphs, in different scales,
on top of each other., This is done by omitting the call on NEWGRAPH
between plots, and positioning the pen so that the point on the left-
hand boundary of the paper opposite the pen is the desired initial
point. It is not necessary to actually move the pen to the initial
point, since the call on SCALE will do this. For example, if the
pen is oresently at (x,y), then the initial point after the next call
on SCALT corresponds to the point (<initial x>, y) under the present SCALE.

7). To guarantee that the last buffer will be written to tape, the user

should :xecute a STOP at the end of his program. Programs terminated

because of errors may or may not have the last buffer written to tape.

- 211 -

8).

9).

).

11).

BASIC CHARACTER FORM

-~

Upon entering CHAR or SCHAR, pen is assumed to be positioned at
indicated point.

The basic character grid is eight units high, and five units wide.
Each character starts six units from the start of the preceding
character. The characters themselves are seven units high and four
units wide.

After plotting a character the pen will be positioned in the lower
left-hand corner of the next character grid except when the character
just plotted is backspace (69), superseript shift (165) or subscript
shift (166). Each of these three characters will leave the pen in

the final pen position of that character and all others will leave the

pen in the (0,0) position of the next character.

- 212 -

APPENDIX VI

SPECIAL INPUT/OUTPUT DEVICES:

EDIT, CORE, PCF, SLIP

This appendix describes several special I/0 devices that may be

used in addition to the standard devices CARDS, PRINTER, PUNCH, TAPE and
DRUM.

PCF: Program Complex File

SLIP: Source Language Input Processor

Two new devices have been added for use from Algol READ and

WEITE calls. These are PCF and SLIP. They are used to get card images
from a symbolic element in the user's complex. PCF may be used in READ and
WRITE, while SLIP may be used in READ only. They are called in a manner
similar to DRUM or TAPE, for example, READ(PCF(.ss)ess)

PCF may have one or zero parameters. If there is a parameter it
may be of type integer or string. If the parameter is a string, then it is
the nams/version(cycle) of an element in the user's complex. It does not

have to be left justified in the string, but can be preceded by spaces. If

the parameter is an integer, then it must be in the range one to six, ard is
used to index the name/versions present on the Processor call card. For ex-
ample, READ(PCF('HELLO/DERE'),...) is a legitimate call on the PCF device.
If the processor call card is

V ACE AAAAAA/US,AAAAAA /GERMAN,AAAAAA /TAPAN
then READ(PCF(2),...) would be a request for a card image from the element
AAAAAA/GERMAN. 1If there is no parameter to PCF, then the element used on
the previous call will be used.

The PCF device is used to read or write sequential card images to
or from an element in the user's complex. The parameter indicates which
element is to be read or written. Each request on the PCF device when reading
will pass cne card image (80 columns) from the complex to the read routine,
to be processed according to the format included in the call, or the implied

- 213 -

format for the card reader if there is no format included in the call.

Similarly, each request on the PCF device when writing will pass
one card image (80 columns) from the write routine to the complex, which
has been prepared according to the format included in the call, or the
implied format for the card punch if no format was included in the call.

If more than 80 columns are passed %o the PCF device only the first 80 will
be used. All page ejects (E format phrases) areignored. Line skips (Aw.d) are
not ignored, but w = O is equivalent to w = 1.

The SLIP device is used to read a symbolic element from the
user's complex, insert correction cards obtained from the card reader, and
prepare an updated symbolic element, in a manner similar to the compiler.
Please note that SLIP may not be used when calling WRITE. Furthermore,
the results of calling WRITE(PCF(..)...) before an entire element has been
SLIPped are unpredictable.

SLIP may have 0,1 or 2 parameters, of type integer or string. The
first parameter to SLIP indicates the element to be updated, while the
second parameter indicates the name of the updated symbolic., If the second
parameter is not present, then there will be no updated symbolic entered
ints the user's complex. However, it is not possible in this case to write
in the complex using the PCF device (while the SLIP device is being used).

If no paraﬁeters are present, then the previous parameters will be used.

USE OF FORMATS WITH PCF AND SLIP

The PCF and SLIP devices will act just like the card reader or

card punch., Thus, formats are optional, but generally desirable.

ERROR RETURNS FROM PCF AND SLIP

If the error label is present on a call to PCF or SLIP it will
be used if any errors are found while processing the call.

The only type of abnormal return from PCF when reading is an EOF
return when trying to read the (n+1)th card from an element containing only

n cards. Any subsequent attempts to read the same element again will cause
the element to be reread, 1.e., the first time this happens card 1 will be
processed, et:. Attempts to read an element which is not in the user's
complex will cause the message '#¥*¥¥ input source language element
(XAXXXX/XXXXXY) not available' to be printed and the program will be termin-
ated. It is, of course, possible for the read routine to discover errors,
in which case the other error returns will be used.

- 214 -

There are no abnormal returns possible from PCF when writing. The
only error which can occur will be insufficient space available on the drum
(i.e., running off the end of the drum), and in this case the program will
be terminated, with a message from the system.

The abnormal return from SLIP will depend on the type of control
card present at the end of the correction cards being read in. The abnormal
return will occur when an attempt is made to read the (n+1)th card of an n
card element. If the correction cards are terminated with an EOF card, then
a return will be made to the EOF label in the input list. Any other type
of control card will cause a return to the EOI label. Further attempts to
SLIP the same element will cause the element to be reread. Note that the
program will be terminated if the appropriate error label is not. present.

If a third label is present in the input list then it will be used in case
of a card read error by the Algol READ routine, or is case an error is found

while SLIPping the element.

READING AND WRITING SEVERAL ELEMENTS AT ONCE WITH PCF

It is possible to be reading cards from several elements at once
using PCF. The PCF device merely keeps track of all the elements being
read which still have cards available. Each element being read uses 02002
octal words of memory (1026 decimal). It is possible to be reading SLIP
and PCF at the same time, although they should be working on different
elements. It is not possible to be writing several elements at the same
time. Whenever the name/version (cycle) of the element being written is
changed, the previous element is entered into the user's PCF. Any sub-
sequent writing in the complex of an element of the same name will cause
the first element to be deleted. That is, writing element A, and then B,
and then A again, will cause the first element named A to be deleted.

The use of improper or incorrect correction cards with SLIP will
cause the printing of one of the following messages: '¥*##¥¥ TIIVGAL CORRECTION
CARD', '###¥* CORRECTION CARD SEQUENCE ERROR', or '###*IMPROPER DELETION

-mmmmm,nnnnn'. The correction card concerned will be ignored, and the

- 215 -

program will not be aborted.
Note that it is only possible to use integer parameters to PCF

or SLIP when the program is being run as a Processor.

EXAMPLE OF THE USE OF SLIP

The following program is essentially the Processor DATA.
INTEGER I $ FORMAT F(A,s80), G(X10, I5, '.', X5, S80, A1) $
LOCAL LABEL EOF, FIN$ STRING A(80) $
FOR I =1 STEP 1 UNTIL 10000000000 DO BEGIN
READ(SLIP(1,2)F,A,EOF,FIN) $ WRITE(PRINTER,D,I,A) END $
EOF..FIN

At present, the maximum number of elements which may be entered into

the complex with one call on XQT or a user's processor, is about 32.

THE CLOSE PROCEDURE

CLOSE is used to close out an input buffer being used by the PCF
or SLIP device. A call on the CLOSE procedure has the form
CLOSE (<element name))

where <element name> is of the same form as a parameter to the PCF or SLIP

routine. The -effect will be to delete the memory buffer being used by
<element name>-and return it to the available space pool.

Any subsequent attempts to access <element name> with the PCF or
SLIP device will result in redefining the element and passing the first
card(s) of the element. Since each buffer used by an element requires 02002
octal words of memory, this provides a means of releasing unused storage

for other purposes.

THE PCFELT PROCEDURE

PCFELT is used to obﬁain information about the elements in the

program complex file, regardless of their types. The call has the form

- 216 -

PCFELT (<string>,<{type>,<oldest>,<newest>,<maximum>)

where the parameters are as follows:

<{string> is the name of a STRING variable into which the PCFELT routine
will place the name/version of the element. The characters are left-
justified in the string, and a '/' (if needed) will separate the name

from the version.
<{type> 1s an INTEGER variable which is set equal to the type of the element.

<oldest> is an INTEGER variable that is set equal to the lowest cycle
number available if the element is symbolic, and otherwise is set to

Zero.

<newest> is an INTEGER variable that is set equal to the highest cycle
number available if the element 1s symboliec, and otherwise is set to

Zero.

{maximum> is an INTEGER variable that is set equal to the number of cycles
that will be saved if the element is symbolic, and otherwise is set to zero.
The first call on PCFELT during execution of a program will return
information about the first non-deleted element present in the complex.
By first is meant the first element entered into the complex. The second
call on PCFELT will return information about the second non-deleted element,
and similarly, the Nth will deal with the Nth element. If there are M
elements in the complex, the (M+1)th call on PCFELT will return with <{type>
set equal to zero and all other parameters unchanged. The (M+2)th call on
PCFELT willstart from the beginning, i.e., will d=al with the first element.
PCFELT operates on the entire complex, not just the symbolic
elements. If the PCFELT and PCF-SLIP devices are used together, the element
table is read from drum only once, thus saving up to 4700 words of

memory by no'. duplicating the element table.

THE FORCETYPL PROCEDURE
FORCETYPE may be used to change the type'of an element being

- 217 -

written in the program complex file by the PCF or SLIP device. The

procedure call has the form
FORCETYPE (<integer exp>)

The typé of the element currently being written in the complex will be
set equal to the value of <integer exp>.

To be effective FORCETYPE should be called after the first card
of the element has been written, and before the entry of this element has
been completed. Therefore FORCETYPE should be called before the first
card of the next element having different name/version is started, or, if
the current element is the last element to be entered into the complex, it

should be called before the termination of the program.

EDIT

The 1/0 device EDIT has been added to the list of devices which
mry te used from READ and WRITE. The call is
READ (EDIT (<string>),<{parameter 1list>
WRiTE (EDIT (<string>),{parameter list>
<parameter list> has the same form as in a call on READ or WRITE using CARDS
or PRINTER, respectively.

In the first case the effect is to use the <string> in place of the card
reader, Every time an activation phrase is encountered by the READ routine,
EDIT will pass 80 characters from <string>. If more than one activation

phase is present in the format, EDIT will pdss sequential sets of 80
characters. If an attempt is made to pass more sets of 80 characters than

are present in <string>, the READ will terminate, with action taken as follows:

If the <EOF label> is present in the I/0 1list, then
control will be transferred to 1it.
If not, the program is aborted, and the message for
insufficient data for program is printed.
All line skips are ignored. The implied format when reading is the same as
for the card reader.

In the case of WRITE(EDIT(<string>),...) the effect is to use the
<string> in place of the 1004 printer. The <string> is blank filled upon
entry to EDIT. Every time an activation phrase is encountered by the
WRITE routine, EDIT is passed 132 characters from WRITE. Sufficient

- 218 -

characters are skipped to satisfy the line spacing, and then the characters
are inserted in the <string>. Eject format phrases are ignored. Ag.d
activation phrases have the same effect as A1.d.

If an attempt is mades to pass more sets of 132 characters than can

be fit into <string> the WRITE operation will be terminated with action as follows:

If the <EQI label> is present in the I/0 1ist, then control will
be transferred to it.
If not, the EDITing is aborted, the message "string too short for
EDIT" is printed, and control is transferred to the Algol error routine.
EXAMPLES OF USAGE:
(1) INTEGER I,J,L $ RPAL X,Y $ STRING B(10) $
STRING A(80) $ FORMAT F1(A,S80), F2(A,X1, 3I4, 2F15.8), F3(A,S20,3I10,2F15.8) $
READ(F1,A) $
IF A(1) EQL '1' THEN READ(EDIT(A),F2,I,J,K,X,Y)
ELSE READ(EDIT(A),F3,B,I,J,K,X,Y)
(2) FORMAT F(S2,D15.8,A1) $ STRING A(132) $ REAL X $
WRITE(EDIT(A),F,'X=", X) $
CHAR(0.0,0.2,A(1,20))

CORE

CORE is designed to be a high speed random access device to be used in
place of drum or drum tapes when the amount of data is relatively small but
not easily stored in arrays because of unknown amounts or types. CORE also
provides for retrieval of data by key where the number of keys is large or
vary in type. CORE maintains a dictionary or directory of the information
by their keys so that the information can be found quickly. As implied by
the name the data is kept in core memory.

There are three uses of the CORE device:

WRITE(<core device>,<{parameter list>)

READ(<core device>,{parameter list)>)

RELLASE (<core device 1ist>)
<{parameter 1 .st> is any list of data and labels permitted in READ and WRITE
for DRUM. The <core device> has three forms:

CORE (<key expression>)
COR%
CORE (<key expression>,{block size>)

- 219 -

The <key expression> is any simple variable of type INTEGER, REAL, BOOLEAN,
COMPLEX, REAL2, or STRING. The value and type of the <key expression>

is the key associated with the information. This means that 1, 1.0, TRUE,
<1.0,0.0>, and '1' are unique keys. The second use of CORE designates a
special key called null for which no look up is necessary in the dictionary.
This saves time when no key is necessary for the data.

The information written is kept in blocks of memory, each of which is
initially ten words long. Each block also uses three extra words internally.
The second parameter to core is a positive integer less than 2049. This
changes the block size for all further writes until the block size is
changed again. Partial blocks of memory are never returned so that the
size should be adjusted to maximize use of core.

WRITE causes the data in the parameter list to be moved to available
blocks of memory and the key expression to be associated with this informa-
tion. If a previous WRITE with the same key exists then the information from
the previous WRITE is lost and the memory used is either reused for the new
WIITE or returned to available storage space by blocks. If no available
memory exists for a block in a WRITE then control will be returned to the
label in the <parameter list> if one exists; otherwise the run will be
aborted. If computation is to continue, the information in the new QQLIE
should be released since it is incomplete.

READ causes the information associated with the key to be transferred
to the variables in <parameter 1list>. The information is not changed by
the READ and may be reread. Two labels may'be used in the <{parameter list>
with READ. Control will return to the first label if more data is speci-
fied in the READ than has been written. The second label is used if no
information had been written with this key or if the information and key
had been wiped out by a RELEASE statement. If the appropriate label is not
provided the run will be aborted when either of these error conditions occurs.

The procedure RELEASE allows information and keys no longer needed
to be erased and the core memory space returned to the available space
list so that it can be used by the rest of the program. The <core device
list> is a list of core devices with keys specifying which are to be re-

leased from further use. The release of information previously released

- 220 -

or never written does not cause an error, but is simply ignored.

Note that if the information is too large to be kept in core then the
key may just be the key to the drum address where the data is stored. However,
it is up to the user to manage the reuse of drum space.

EXAMPLE:

INTEGER I, L, MAXL, K, ONT $

STRING WORD(30) $

EXTERNAL PROCEDURE NEXI $
COMMENT NEXT IS A PROCEDURE WHICH SCANS CARDS AND PUTS THE NEXT IDENTIFIER

IN WORD AND ITS LENGTH IN L $

K=0%

LOOP. . NEXT (WORD,L) § -
IF L EQL O THEN GO TQO OUTPUT $ COMMENT END OF DATA $
READ (CORE (WORD) ,I,ERR,NEW) $
CCMENT FIND INDEX I FOR THE IDENTIFIER IN WORD., IF NONE IS FOUND
TRANSFER CONTROL TO NEW FOR A NEW ENTRY. ¢
READ(CORE(I),WORD,CNT+1) $ COMMENT UPDATE COUNT $
GO TO LOOP $
NEW. . K=K+1 $ COMMENT INCREMENT INDEX $
WRITE(CORE (XK),1) $ COMMENT SET COUNT TO 1 §
READ (CORE(-L),I,ERR,NEWCNT) $
COMMENT GET COUNT OF NUMBER OF DIFFERENT IDENTIFIERS OF LENGTH L OR GO
TO NEWCNT IF THIS IS THE FIRST IDENTIFIER OF LENGTH L $
WRITE(CORE(-L),I+1) $ COMMENT UPDATE COUNT §
GO TO LOOP $
NEWCNT. . WRITE(CORE(-L),1) ¢ COMMENT ONE IDENTIFIER THIS LENGTH $
MAXL=MAX (L,MAXL) $ COMMENT KEEP MAX LENGTH $ |
GO TO LOOP §
OUTPUT.. FOR L=1 STEP 1 UNTIL MAXL DO
BEGIN
READ (CORE(-L),I,ERR,NONE) $
WRITE(L,I) $
COMMENT WRITE NUMBER OF IDENTIFIERS OF LENGTH L $
RELEASE (CORE (-L))
NONE. . END $

- 221 -

FOR L=1 STEP 1 UNTIL K DO
BEGIN
READ (CORE (L) ,WORD,CNT) $
COMMENT READ EACH IDENTIFIER AND THE NUMBER OF ITS OCCURRENCES $§
WRITE (WORD,CNT) $
RELEASE (CORE (L), CORE (WORD))
END $
GO TO EXIT §
ERR.. WRITE('/-/-/-/ CORE FAULT/-/-/-/") §
EXIT..

- 222 -

APPENDIX VII

FALTRAN - TRANSLATION FROM FORTRAN TO ALGOL

The processor Faltran translates a Fortran source program into an Algol
source proéram. It allows the user to do any or all or the following
operations simultaneously (i.e., with a single call on Faltran):

1) translate a Fortran mairline program with or without internal subprograms;

2) use correction cards to modify the Fortran program;

3) enter the updated symbolic Fortran program in the user's program complex
file;

4) enter the resulting Algol symbolic in the user's PCF;
5) 1include externally defined Fortran subprograms (after they have been

translated) in “he resulting symbolic Algol program.

Fortran statements that present problems for translation into equivalent
Algol symbolic are marked by the Faltran translater with error messages in the
printed listing. These statements are.discussed later in this appendix (see
LIMITATIONS OF THE TRANSLATION PROCESS).

THE FALTRAN PROCESSOR CARD
The processor call card for Faltran when the input is from cards has
the form
%(options)ﬁJALAKelement1>,<element2>,<element3>

and for input from drum the form is

%(options)AFAL,%A<eiement1>,<element2>,<element3>
where <element1> has the form
<namei>/<versioni>(<cyclei>)

and the options are as follows:
OPTICN LETTER DESCRIPTION
Do not list the input Fortran or the translated Algol

I Do not list the input Fortran
0 Do not list the translated Algol
X Abort the processor if an error is fcund

- 223 -

<e1ement1> is the name/version of the input Fortran element, <element2>
is the name/version of the updated Fortran element that is entered into the
complex, and <element3> is the name/version of the resulting Algol source
program, which is also entered into the complex.

If 1t is desired to translate several subprograms and include them with
e mainline program then an EOF card must follow the mainline program and this
must be followed by a card of the form

L},(eleﬁents

Here <elementi> has the same form as above, <element4> is the name/version

>

<{element

of the inpﬁt Fortran subprogram and <element5> is the name/version of the
updated Fortran program, which is entered into the program complex.
If the main program, <element1>, is input from drum then <element4?
must also be on the drum. <element5> may be omitted if the updated Fortran
subprogram is not to be saved on drum. Correction cards may be used on <element4>.
It is assumed that normally these subprograms are compiled separately
from the main program. After the last subprogram (or the main program if
there are no separately compiled subprograms included) there must be a control
card - any control card except an EOF card. Of course, it is possible to in-
clude subprograms with the main program to be translated by Faltran, just as
it 1s possible to include internal subprograms in a main program to be com-
piled by Fortran.

LIMITATIONS OF THE TRANSLATION PROCESS

Some Fortran statements are not translated at all by Faltran.
Therefore, Faltran output should be scrutinized before attempting to run it
through the Algol compiler.

The main problem is FORMAT statements, which are never preccessed by
Faltran. The programmer must translate these according to the needs of his
program.

Other features of Fortran that must be handled by the user as he sees
fit include Hollerith strings, DATA statements and BLOCK DATA programs.
These present:problems, the resolution of which is either impossible or in-
compatible with the goal of an efficient translator. |

- 224 -

EXAMPLES

Example 1:
ZAFALAA,B,C
Fortran .
source .
deck .

END

The updated Fortran symbolic is named B, the resulting Algol is named C,
and both B and C are entered into the user's PCF.

Example 2:
7 #*
FAFAL, ¥A4,B,C
correction /.
cards .

The Fortran program named A is read from the user's PCF, the corrected version

of A is entered into the PCF and named B, and the translated Algol 1s entered
under the name C.

Example 3:

ZAFALAL,B, 0

/
Fortran .
source {e SUBROUTINE D
deck .

R END

The mainline A and an internal subroutine D are translated into a single Algol
program named C.

Example 4:
7 FA
g-FALAA, B, C
Fortran JI
source .
deck h

- 225 -

§AE0F

D,E
correction .
cards .

The Fortran mainline A and the external subroutine D are together translated
into the Algol symbolic named C. The updated version of D is entered into
the complex under the name E. The symbolic for D must be in the user's PCF
on drum when the Faltran is called.

- 226 -

APPENDIX VIII

MACHINE- AND SYSTEM-DEPENDENT INTRINSIC FUNCTIONS AND PROCEDURES

'~ This appendix is devoted to intrinsic functions that are specific to the
hardware of the Univac 1107, the Exec III operating system and the structure
of the Algol compiler and library. The interested reader is referred to the
detailed documentation of each for relevant details. These functions were
originally created to facilitate the writing of processors (e.g., compilers)
in Algol.

FIELD (<exp1>,<exp2>,<exp3>)

The function may be written on either the left-hand or right-hand side
of an assignment statement. On the right-hand side it allows the extraction
of a specified bit field of an 1107 36-bit word. When written on the left it
allows replacement of a bit field.

In either case the word is designated by <exp1>, which may be of any
type. <exp1> will not be converted unless it is a STRING expression, in
which case the first six characters will be used. If the characters in the

string number is less than six they will be right-justified and master-space
filled before the FIELD operation takes place.

The expression <exp2> denotes the starting bit of the field (bits are
numbered 1 to 36, left to right, across the word) and <exp3> denotes the
number of bits in the field. Both <exp2> and <exp3> may be of type INTEGER,
REAL, REAL2, or STRING and will be converted to integers if necessary. If
<exp3> is omitted from the call, the length is taken to be one bit and if
both <exp2> and <exp3> are omitted the starting position will be bit 1 and
the length 36 bits (i.e., the entire 1107 word at the address specified by
{exp,> is used.)

When FIELD is used on the left of an assignment statement only the
part of the word determined by <exp2> and <exp3> is affected and if <exp1>
denotes a STRING a maximum of six characters may be replaced.

Multiple replacement statements involving FIELD are undefined (e.g.,
FIELD(F,1,5) = FIELD(6,32) = FIELD(S(I)).

The FIELD function is undefined for these values of the parameters:

- 227 -

Cexp,> = 05 {expy> = 05 <exp,> >36; <expy> > 37 - <exp,>.

The values of <exp2> and <exp3> are not checked at execution time.

FIELDS (<exp1>,<exp2>,<exp3>)

The arguments of FIELDS have the same meaning as those of the FIELD
function except that if <exp1> is of type STRING only, the FIELDS function

acts upon the string descriptor rather than the characters in the string.

<ekp1>,<exp2>) "Double Shift Circular"

DSC (

DSA (<exp1>,<exp2>) "Double Shift Arithmetic"
DSL (<exp1>,<exp2>) "Double Shift Logical"
SSC (<exp1>,<exp2>) "Single Shift Circular"
SSA ((exp1>,<exp2>) "Single Shift Arithmetic"
SSL (<exp,>,<exp,>) "Single Shift Logical"

Each of these functions is based on the Sleuth instruction whose mnemonic
is the same as the function name. The variable specified by <exp1> is loaded
into register A2 (A2,A3 for two word variables) and a shift of <exp2> places 1is
performed on A2. Then the contents of A2 (A2,A3) is stored according to the
Algol statement.

MEMORY (<exp>) "core memory"
PARTBL (<exp>) "parameter table":
MCR (<exp>) "monitor communications region"

These functions may be used to store into or load from any word of core
memory that Exec III does not regard as sacred.

The MEMORY function retrieves or stores into the word of core denoted
by <exp>. The PARTBL function serves the same purpose except that the starting
address of the !xec parameter table is added to <exp> to form an effective
address. The MR function is similar to the PARTBL function except that the
starting addres: of the Exec Monitor Communications Region is added to <exp>
to form an effe:tive address.

The reader is referred to the most recent Exec documentation for the
addresses of core that may be accessed without interference by the Exec and

the significanc: of those locations.

- 228 -

EXIT
EXITNORMAL
TXITERROR
EXITABORT

Any of these four :intrinsic procedures may be called at any point in
an Algol program to cause a jump to an Exec entry point. None of them re-
quires a parameter.

The functions EXIT and EXITNORMAL are identical in their effect,
which is to cause a

J MEXIT$

to be executed.
EXITERROR causes a

J MERR$
to be executed.
EXITABORT causes a
J MXXX$
to be executed.
If the Algol J-option is in effect then the jumps will be made to the
corresponding processor exits. It should be noted that the usual program

termination action provided by the Algol library is circumvented when thesé
special exit functions are invoked.

PARITYEVEN(<arith exp>)
PARITYODD (<arith exp)>)

These functions have BOOLEAN results and before they are evaluated the
parameter is converted to type INTEGER if it is not already of that type.

The result of PARITYEVEN is TRUE .if the 1107 internal representation
of the parameter has an even number of bits, and FALSE otherwise. The function
PARITYODD has a value of TRUE in case of odd parity, FALSE otherwise.

- 229 -

APPENDIX IX

A CULL FOR USE WITH ALGOL PROGRAMS

The processor called Alcull produces a sorted list of the occur-
rences, by block number and card number, of all identifiers defined in an
Algol program, as well as all reserved words used in the program. A listing
of the Algol program may also be printed if desired.

The card number on which an idesntifier is defined is denoted by an
asterisk and appears first in the list for that identifier, even though, in
the case of a label, it may not be the first card on which the identifier is

used.

An example of the output is the following:

ANYIO BOOLEAN
1 170% 1940 2767 2769
ANYOUT OWN BOOLEAN
4s 303% 307 334 341 366 374
5: 322
ARRAY RESERVED WORD
1: 175 178

The BOOLEAN variable ANYIO was defined in block 1 on card 170 and
referenced on cards 1940, 2767 and 2769. The OWN BOOLEAN variable ANYOUT
was defined in block 4 on card 303 and referenced on card 322 in block 5,

among others. The reserved word ARRAY was used in block 1 on cards 175 and
178.

The processor card for Alcull has the form

%<options>AALc

if the input is from cards. If the input is from the drum then the processor

card is

%(options)ﬁALC,ﬁﬁ(element name-version-cyczle>.

- 230 -

The relevant options for Alcull are

F - scan all 80 columns
N - do not list the input program
Best results are obtained when culling syntactically correct Algol
programs.

- 231 -

APPENDIX X
CATHODE RAY TUBE (CRT) PROBEDURES FOR ALGOL PROGRAMS

Procedures are available to display pictures on the CRT. These procedures

must be CURred in from tape when needed.
b

Coordinates

The CRT displ&y area is a square with the following coordinate system:

(-255,255) 4y (255,255)
+x
>
(-255,-255) (255,-255)

THE DISPLAY PROCEDURE

The DISPLAY procedure has the five forms:

FIRST FORM: DISPLAY(<time>,<{display items)>)

Here <time> is the time, in secondsg, that the picture is to stay on the
screen. It is an INTEGER» REAL, or REAL2 expression, and must be within the
limits 1/60 sec LEQ <time> LEQ 1 hour.

<{display items> is a series of <item>'s which describe the picture.
Each <item> is a series of two, three or four parameters as described below:

(1) The group of parameters

<{string exp>,{coordinates>
will display the string with the leftmost character at the coordinates given.
Only that part of the string which is in the display area will be displayed.
<coordinates)> are either (a) two INTEGER, REAL or REAL2 expressions
giving the abscissa and ordinate, respectively, or (b) a single COMPLEX ex-

pression whose real and imaginary parts give the abscissa and ordinate,
respectively.

(2) The group
<coordinates1>,<coord1nate52>
will display a straight line segment from <coordinates1> to <coordinatesz>.

- 232 -

Only that part of the segment which is in the display area will be displayed.

Display items may be generated by simple or generative lists, or by
calls on special procedures to be described later.

The DISPLAY procedure, when called by the first form, will edit the
time and items into a 500-word core buffer, start the picture, and return
to the main program.

SECOND FORM: DISPLAY (<integer array>,<{display items)>)
where <display items> are as before and <integer array> is one-dimensional.
The DISPLAY routine will edit the items into CRT output data and put them
into <integer array>. If <integer array> already contains such data, the
new data will be added at the end. The first element of <{integer array)>
(lowest subscript) contains the data count (so it should be initialized to
zero), and subsequent elements contain the data. No picture is displayed.

THIRD FORM: DISPLAY (<time>,<{integer array>)
will display the data edited into <integer array> by the second form.

FOURTH FORM: DISPLAY (<time)>)

This is essentially the first form with no <display items>. It will display
a blank screen for the time given.

FIFTH FORM: DISPLAY

This should be programmed at the end of the Algol program. Nothing is

displayed, but the routine waits until the previous picture is done before

continuing.

Declaring external procedures
The identifier DISPLAY is recognized by the compiler without being
defined. However, all the procedures described below must be defined by the

following declarations:

EXTERNAL"PROCEDURE DABORT, DEOF, DINPUT, DERR §
" EXTERNAL INTEGER PROCEDURE BROKEN, SIML §
EXTERNAL SLEUTH INTEGER PROCEDURE ARC, LETTER §

ABORTING A PICTURE
FROM THE CONSOLE. To abort a picture from the console, turn selective

- 233 -

Jjump #4 on and then off. The picture will vanish and the next picture (if '
any) will begin. -
FROM THE PROGRAM. To abort a picture from the program, simply execute
the procedure call:
DABORT (no parameters)

ABORTING A SERIES OF PICTURES

To abort a series of pictures, put the procedure call

DEOF (<label))

at the appropriate place in or after the series. Then while the series is
visible on the CRT, turn selective jump #5 on. This aborts every picture
until the above procecure call is encountered. Then control hangs in a tight
loop until selective jump #5 is turned off. Then transfer is made to <label>
or, if <label> is omitted, to the next statement.
EXAMPLE:
COMMENT ROTATING LINE §
INTEGER I § REAL A $
EXTERNAL PROCEDURE DEOF $
LOCAL LABEL L §
A=0%
FOR I = 1 STEP 1 UNTIL 15%€0 DO BEGIN
DISPLAY (1.15,-100*_0@(A),-100*§_I_N(A),1OO>‘\'@§(A),1OO*S_I_I\1(A)) $
A=A+0.058%
DEOF(L) END $
L..

BROKEN LINES
If the procedure call

BROKEN (<coordinates1>,<coordinatesz>, ...,<coordinatesN>)
is passed as a display item.to DISPLAY, it will generate the proper items to
draw a broken (polygonal) line from <coordinates1> to <coordinate52> to ... to
<coordinatesN>. Coordinates may be generated by simple or generative lists.
The BROKEN procedure, therefore, shortens notation by eliminating the need
for repeating coordinates of interior points.
EXAMPLE:

COMMENT A HUGE LETTER "S" §

DISPLAY (60.0, BROKEN (50,100, -50,100, -50,0, 50,0,

50,-100, -50,-100))

= 234 -

ARCS
The procedure call

ARC ((coordinates),(radius),<ang1ei>;<ang1e2>,<integer exp))

generates an approximation to an arc of radius <radius> about the point
<coordinates> from <angle1> to <angle2>, using <integer exp> chords. Here
<radius> is an INTEGER, REAL or REAL2 expression and <angleq> and <angle2>
are INTEGER, REAL or REAL2 expressions in units of degrees.

BLOCK LETTERING

The procedure call

LETTER (<coordinates),{ax>,<ay>,<kind>,<{string exp>)

will generate the appropriate line segments to display the <string exp> in
block letters. Here <coordinates are the coordinates of the lower left corner
of the first letter, and <Ax> and <Ay)> are two INTEGER, REAL or REALZ2 ex-
pressions giving the components of a vector whose length ¢/Ax“+Ay~) is the
height of the lettering and whose direction in the direction of the lettering.

If <y> is omitted, it is presumed to be zero, giving horizontal lettering of
height <Ax>. <kind> is a three-digit integer which determines the kind of

lettering used, according to the following scheme:

hundreds , tens . units

0 = Roman 0 = capital 0 = regular

1 = Greek 1 = small 1 = superscript
2 = slant capital 2 = subscript
3 = slant small

At present the only <kind>'s which work are 010 and 000, or Roman small
regular and Roman capital regular, respectively. _

The <string expression> is the string to be edited to block letters.
All capital characters except a few will be displayed in block form which is
much like the printed form. Small characters other than letters will, for
the most part, be the same as capitals, but the spacing will be closer.
However, a dollar sign in a Roman small regular (<kind>=10) string will be
skipped and the next character will be made capital. The character after
that will be again small.

- 235 -

The parameters may end with the first string, or additional groups of

parameters of the form
<changes>,{string exp>

may be added. Here <string exp> is a continuation of the previous string
and <changes> are the changes in the editing process. These <changes> have
three forms:
FIRST FORM: <coordinates>
Here <coordinates> are two INTEGER, REAL or REAL2 variables or & single COMPLI

variable (not an expression or constant). The coordinates of the lower left-
hand corner of the next character are stored into these variables. Then edit-
ing continues as before.

SECOND FORM: <kind>
Here <kind> is the new kind under which the new string is to be edited.

THIRD FORM: <coordinates)>,<kind>
This combines the effects of the first two forms.
EXAMPLE: The procedure call

DISPLAY (60, LETTER (-200.0,0,20,20,10, '$THE', X1,Y1,30,
'A $TITANIC', X2,Y2), X1+10,Y1-10, X2+10,Y2-10)
will display the picture:
THE TITANIC

ERROR MESSAGES

If the DISPLAY procedure cannot partition its arguments properly into
items, the error message IMPROPER NUMBER OF PARAMETERS TO DISPLAY will result.
If the core buffer capacity is exceeded, the message TOO MANY ITEMS IN DISPLAY
will result. Other messages are self-explanatory.

If a run-time error occurs while a picture is in process, the error
message will be lost and the registers will be dumped twice. To prevent this,

the procedure call
DERR (no parameters)

should be made at the beginning of a program being debugged. This procedure
will overstore the error routine with instructions which cause it to wait

until the current picture is finished. Then the error message and line numbe:

- 236 -

will be printed out normally.

INTERROGATION OF CRT SWITCHES FROM ALGOL

The switches on the CRT may be interrogated in al Algol program by
using the library function named CRTSW. The result of CRTSW is of type
BOOLEAN.

The call on CRTSW has the form

CRTSW (<integer exp>)
where the value of <{integer exp> specifies the number of the switch to bs
interrogated (the switches are numbered from one to eighteen). If the
indicated switch is UP and the black button is pressed, the value of CRTSW
is TRUE, otherwise the value is FALSE.

APPENDIX XI

CHARACTER DEFINITIONS FOR THE 1107

Octal - - Symbol Card 1004 HSP Console 1090

Code Code 600 1lpm Printer CRT
00 M.S. 7-8 e Space M.S. Iy
01 u.C. 12-5-8 5 Space U.C.

02 L.C. 11-5-8 Space L.C. ?
03 L.F. 12-7-8 # Space L.F.

04 C.R. 11-7-8 A Space C.R. S
05 Space Blank Space Space Space Space
06 A 12-1 A A A A
07 B 12=2 B B B B
10 C 12-3 C C c C
1 D 12-4 D D D D
12 E 12-5 E E E E
13 F 12-6 F F F F
14 G 12-7 G G G G
15 H 12-8 H H H H
16 I 12-9 I I I I
17 J 11-1 J J J J
20 K 11-=2 K K K K
21 L 11-3 L L L L
22 M 11-4 M M M M
23 N 11-5 N N N N
24 0 11-6 0 0] 0] 0]
25 P 11=-7 P P P P
26 Q 11-8 Q Q Q Q
27 R 11-9 R R R R
30 S 0-2 S S S S
31 T 0-3 T T T T
32 U 0-4 U U U U
33 v 0-5 v v \'f \'f
34 W 0-6) W w W
35 X 0-7 X X X X
36 Y 0-8 Y Y Y Y
37 YA 0-9 Z Z Z Z

NOTE: The offline 1004 follows the above table. However, under Exec III,
when the 1004 is on line, the characters "@" and "A" are interchanged.

- 238 -

0
—. ee = *¢¢| VA4 |~ E
o
o
]

t
o
o

0TI NM~NWNND 2O

.
’

/

Special
Idle

Card 1004,
Code

12-4-8)
11 -
12 +
12-6-8 <
3-8 =
6-8 >
2-8 &
11-3-8 §
11-4-8 *
0-4-8 (
0-5-8 3
5-8 :
12-0 ?
11-0 !
0-3-8 ,
0-6-8 \
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
4-8 '
11-6-8 ;
0-1 /
12-3-8 .
0-7-8 O
0-2-8 #

- 239 -

HSP Console
600 1pm Printer

W~ %XRRNV I AN+ | —

pace
Space
Space

-

-\Om\)f)\\n;\wm_;ohg)
o
Q
o

w
o
o
Q
0]

Space
Stop (N.P.)

’*#I\/H/\-i-lv

=

=[] ~- —om«smmbwm—‘o@. — e ee

xRNV I A+ 1 —

1090
CRT

=

— 3 oo

~O 02PNV~ WN 2O N«

"—)Dn N

INDEX

ABS function, 71

ALG card, 172

Alphabetic characters, 77
ALPHABETIC function, 78
ARG function, 78

Arithmetic assignment statements, 36

Arithmetic expressions, 27
Arithmetic relations, 29
ARRAY declaration, 42

Assignment statement, 35

Basic symbols, 14

Block Body, 128

Biock definition, 129

Rlock head, 128

Block level, 149

Block 1 storage, 46

Block, entering and leaving, 131
BOOLEAN assignment statements, 38
BOOLEAN constants, 25

BOOLEAN expressions, 31

BOOLEAN operations, 31

BOOLEAN quantities, 29

Card punching rules, 11
CARDS device, 10€

CARDS procedure, 112
CHAIN procedure, 78
CHANGEKEY procedure, 209
CHAR procedure, 208

Character definitions,
fieldata code, 239

Character forced into string, €0

Character set, 18

CLOCK function, 72
CLOK function, 72

CLOSE procedure, 216
COMMENT, 49

Compiler, 12

COMPLEX constants, 24
COMPLEX function, 78
Compound statements, 39
Copy rule, 141

CORE device, 219
COREMAX function, 78
CORETOTAL function, 78
CRTSW function, 237
Cull for Algol programs, 230

Data cards, 173

DATE function, 79

Declarations of itype, 41
DEFINE declaration, 46, 184
D=finite repeat in format, 75
Designational expressions, 32
Deviations from Algol 0, 13
Diagnostic procedures, 1£5
Diagnostics, compiler, 142
DIMENSIONS function, 72
DISPLAY procedure, 232

Double precision constants, 24
DPARAM procedure, 209

DRUM as a parameter tc READ, 125

DRUM as a parameter tc WRITE, 125

DRUM device, 123

DRUM procedure, 127

Drum simulated tapes, 74
D3A function, 228

DSC function, 228
DSL function, 228
DUMP statement, 165

EDIT device, 218

Embedded space, 25

ENTIER function, 79

EQF card, 173

EQOF procedure, 127

EOI procedure, 127

Error messages, compiler, 149
Error messages, library, 150
ERROR procedure, 168
ERRORTRAP procsdure, 167
Evaluated procedures, 25
EVEN function, 72

Exec control cards, 171

EXIT procedure, 229
EXITABORT procedure, 229
EXITERROR procedure, 229
EXITNORMAL procedure, 229
Extensions to Algol 60, 14

External Fortran procedure, 180

External procedure calls, 146

External procedure declaration, 144

External procedures, 144
External references, 146

External Sleuth procedure, 179

Faltran, 223

FIELD fuaction, 227
Fieldata code, 239
FIELDS function, 228
File, 32

FI. cegrd, °73

s -
FCz z<watement, 52

FORCETYPE procedure, 217
Formal parameters, 137
FORMAT declaration, 88
FORMAT function, 112
Format phrases, 90

FORMAT procedure, 98
Formats used with READ, 107

Formats used with WRITE, 98

Formatted output on the plotter, 210

Forward reference, 48
Free format with cards, 107

Functional procedures, 140

General problem solver, 143

Generalized assignment statement, 38
Generalized variable declaration, 18

Generalized variable operations, 18¢

Generalized variable transfer
functions, 190

Global identifiers, 131
GO TO statement, 50

Grammar of Statements, 39

HEADING procedure, 79, 110, 112

Hierarchy of arithmetic
operations, 10, 27

Hierarchy of boolean operations, 32

Identifiers, 9, 19
IF statement, 51
IMAG function, &80

Implied format with PRINTER, 109

Implied format with PUNCH, 111
Indefinite repeat in format, 97
Input deck, sample, 173

Input devices, 85

Input/output units, 114
INTEGER constants, 22
INTEGER function, 80
INTERLOCK procedure, 127
INTRANDOM function, 80, 83

Intrinsic functions, 71

Jumps in and out of FOR statements, 59

KEY procedure, 127
KEYCOUNT procedure, 209

Labels, 40

Labels as parameters to READ, 86, 118
Labels as parameters to WRITE, 87, 116
LENGTH function, 72

Library functions, 75

LIST declaration, 104

LOCAL declaration, 48

Local identifiers, 131

LOWERBOUND function, 80

LST card, 174

MARGIN procedure, 110, 112
MCR function, 228

MEMORY function, 228
MERGE procedure, 195

MOD function, 73

Mode of expressions
and relations, 33

Mxdifiers, 117

MOVE procedure, 208

TZWGEATE procedurs, 209
lon-recursive library procedures, 76

‘umbering of siring characters, 62

Numeric characters, 77

NUMERIC function, 80

Object program, 12

ODD function, 73

OPTION function, 80

OWN declaration, 46

OWN variables, 132, 146
PAPER procedure, 110, 112
Parameter correspondence, 140
Parentheses in source statements, 10
PARITYEVEN function, 229
PARITYODD function, 229
PARTBL function, 228

PCF device, 213

PCFELT procedure, 216,

PCH card, 174

PLOT proczdure, 207

Plotter character form, 212
Plotter parasite, 205
Plotter, Calcomp, 204

Pool, 194

POSITION procedure, 121
Predefined identifiers, 77

Predefined identifiers in
string declarations, €1

PRINTER device, 109
PRINTER procedure, 112
Procadurs block, 134
Procedure call, 140
Procedure declaration, 134
PUNCH device, 111

PUNCH procedure, 112

Quantities, 20

RANDOM function, 81, 83

=

N{ declaration, 66

NK function, 68, 80, &1
AD procedure, 85

REAL constents, 23

REAL function, &1

REAL2 constants, 24
REAL2 function, 81

Recursive library procedures, 75

=

B

Recursive procedure calls, 142
Relational operator, 29
RELEASE procedure, 219
Reserved words, 176

REWIND procedure, 122

RUN card, 171

SCALE procedure, 205

SCHAR procddure, 208

SETRANK procedure, 67

SIGN function, 73

SLIP device, 213

SORT procedure, 195

SORTKEY, 194

Source card form, 9

Source program, 12

Specification of parameters, 13€

Speed of drum and tape
input/output, 126

SSA function, 228
SSC function, 228
SSL function, 228

Standard mathematical procedures, 76

Statement 1label, 40
STOP procecure, 208
STRING ARRLY declaration, 44, 63

String array subscripts, 63

String assignment statements, 3€, €5

String comparisons, €

STRING constants, 25, €0
STRING declaration, 43, 61
STRING function, 82

String quantities, 60
String replacements, 37, €5

String variables, 62

Strings in arithmetic expressions, ¢

Strings in relations, 30, €%
Structured variables, 181
SWITCH declaration, 47

TAPE device, 113

Tape format, 115

Tape input, 118

Tape output, 11€

TAPE procedure, 127
TRACE options, 168
TRANSFER procedure, 195

UPPERBOUND function, 82
VALUE parameters, 135, 139
Variable repeat in format, 9%

Variables, 21

WRITE procedure, 87

XQT card, 172

