CONTROL DATA

160G

GASS
PRELIMINARY
MANUAL

CONTROL DATA

160G

GASS
PRELIMINARY
MANUAL

GO1676
13 JULY 1963

The information contained in this
manual is preliminary and subject
to change without notice,

CONTENTS

Chapter _ Page

1 Description of GASS (.iiiceetecscscsscsscsscssssasees 1=1
Description ticeieesecssssssocsrsscsscscasanss 1-=1
Special Features Included in GASS....... 1=2
Subprogram and Subroutine Linkages...... 1-2
Subprogram ForM..cceseecestescessccscseses 1=4
Data Storage..cceeecesceectesssscssscssaes 1=
Program RelocatioN...ioeeececacssceneonne
Operator Options for GASS. ... ciececerenes
2 Instruction Format.,eeeecscssscscssosscccscccnnoans

bbbb#b#bb#bpk#bfhbbk#wNNNNNNNNN—‘—*
OO NN PEELEDPDDDDNNDNNNDN— == OWODNDNDDNN-=O0OP D

Fie'dsotoc.o0'0000.00.0.'.00000..‘ooroooo‘toc.

LLocation Fieldeceeseeesosoeecessesosssacsosns

Operation Fieldeieeoseeesseeesetssssseocans

Modifier EXpressioN....cceceececcecss

Address Field..eeeerieeeeeeeeereeeaaasanan

Arithmetic EXpression...cceceeesceccas

Comments Fieldeceeieeeseeoecssecsssscnasss

OSAS Option of Operation...seceececcssccscsos

3 Rules of Operation...ceceeccecseceeserscscesossssceesss
4 Pseudo INStructionS. i cceeeeecosccscescscsscasosonssss
Subprogram Linkage..ccceseeeesessesscocssssne
DescriptioN.eeeeeeeecscacecsscscssansns
ComMMeENtS.eeessesecsscesssscsaansess

Example. e ceiiectsccssscertersccnss

System Use of IDENT ... ittt ecsns
DescriptioN.eeececeesscsceasssccscsnse
CommeNntS..iececescesscsssssanssass

System Ulse of END......ccveeeeane
DescriptioN.: i ceeeeeeecscssscassenns
CommenNtS.sieescessssccssssscsscsscs

1

WA e et eeeesoessssasasscssosssoscssssocsnsas
Description. ccesecsseescecscscecsssoca
ComMmMeEeNtS.cceescesestosnecsccsssnsss

ENTRY (vt eresosrsccsscscsssosssssoscssssca
DescriptionN.e. seecceccersccscsscsssanss
CoMMENtS.ecssetscssssssssssncansns
System Use of ENTRY i ivevireenoens

DescriptioN.:cciceesreccessscsasssasses
CommentS.e.eceeeseesoncoceens
System Use of EXTNL....cc0veeen
CautioN.vceeesstsseessssessosnncssss
Legal Example.icseeciscssessosenes
Hlegal Example.ccececescececocsssns

L OCAL L tttteretstssstsssosssssosessnsass
DescriptioN.csesceecesosessssosssses
ComMMeENtS.ceeeeceecessasesccnsnnsas
System Use of LOCAL .. ivveeensns
NONLC . ittt ieetrssessossscsossscssnsonass
I
DescriptioN. ceeescesssescscsoosscnss
EXample..ieeeescecescosossssescnscaa
CoOMMENES .t e esessrsesssssssescacanss =11
System Use of LLIBA. ...ttt eeess 4-11
L B S . it ittt rteeerssososcsososcscsssssssses 4=12
DescriptioN.seeeecsessecesscsssaceee 4=12
System Use of LIBS. . icieeceaeceess 4-12
Storage AlloCatioNS.ceeeeeetssescscsosscsceses 4-13
BSS.. i) <
BLR: ittt eoesosossessstscsssssssesssnsces 4-13
BE S, ittt tsrestssssssesssssessccsscss 4=-14
LOCM,. i ittt teeconssscsesssosssosnssansaes 44=14
DescriptioN. cccceeeesccccecsossocccess 4=14
CoMMENtS. s eeeeerossssscscsscsesess 4=15
COMN . ittt esecseessssssssassssssscnsss 4-15
DescriptioN.ceseceessssscscsssssssee 4-=15
Example..cceeseescccscstsssscsessceecs 4=-16
ComMMENMtS.teeeescsesessssssssncssees 4=16
Data DefinitioN «iceeeeeesesesessscscosscnsases 4-17
DA ittt eteessstossessssssassssssssasscss 4=-18
OC T i teeeescessssssosssosssssssssassasesese 4-19
DEC .. ittt eiecesrsocsssossscassssasascsses 4=19
BCD ittt eesssssossssosesssssoscrsssssessses 4=19
FL X itieesooeesoseooseovnossssasssossssoasass 4-20
Assembler Control...seeeeecsersossessccsnsnass 4=21
O S A S . i ttreeeosnsossssssssssssssncssceee 4=21
CA S S . i ttteesssasesscsscssssscsssscessess 4-21
BNK . teeeresosevsassessessssasascsssesnsses 4-22
' DescriptioN. e ceeeeseececeeoane ceoees 4-22
CoOMMENtS .t eetecessssccssssssscssces 4-22

1
- = O O O OVOOmWMNNINV

(e o Ne)

bbbbbkb-{}bbbbbkb

[}
-—
-—

ORG . eeeeossnssessosssassssesssassssasss 4=23
DescriptioN.cceeceeersrseerecscccassas 4-23
CoOMMENtSeeseeetssesssoscssasascnsanes 4-23

PRG.ticeeeteesesssscssssssssssssssnasss 4=23
CoMmMMENtS.seeeesosessscescsscessscsee 4=24

CON it eeseesossssssssssscsssssssscnsssss 4=-24
DescriptionN v.ceececesecsccsscsacocasesd=24
CoOMMENtS.eeeoccossossssssscssssses 4=-24
System Use of ORG,PRG and CON..4-25

EQU . ioeeeessecosoaccssscsscssacssaanase 4=25

MA S S, i ieeeeessescscssssssscssssssnsses 4=25
DescriptioN.cceesececrsescccacsscsnsss 4-25
CoMMENtS.eeeesscescscssossssseness 4=26

Output l—isting Contr‘oloaoaooacqgoo..-00;0-...- 4"27

REM.: ittt eetesstocecsarssensnensosss 4=27
EJECT it teesensssescscssssssossssssens 4=27
SPACE .t iieettescsessesssccssssaasesess 4=27
NOLIS T ittt tertesesoscossrecscscscscssosess4-28
I = A

5 InStI"‘UCtiOnSo...‘.-o.a-o-..-..-........o.....o-o....

Appendix
Appendix
Appendix
Appendix

oomd»

Figure 2-1
Figure 3-1

GASS Form of InstructioNnS. s ceeeveeeccsscsose
Group | FE.iieeetteetesoscsscsosssnsssccas
Group
Group
Group
Group
Group

FEo.ooo-oc.o..o.oot'.o.ooo.-oo

FE Gllo.-.a ® 8 6 000 00008 000t S
F EG... ® 0 0 0 0 0 @ o 0 st s 0B S0 00 0
':- E G'ooo-ooolo.uo ® e 0 0 000 0 e

oOnp Wb

APPENDIXES

Pseudo INStrUCtioNS.cececeesessosesssccsscsanase
Machine INStruCtioNS. cececeecessscsccsssssscnccns
Error CodeS.cesecisrssscscssssccssscssssscssns
Special Codes for Type Entries....ccceeeeans

FIGURES

160G Assembly System Coding Form....ceece
Entire Memory Instruction «c.eeeentcsccosccses

Fe e s eo000s0000s00ss 0000600000000

5-1

CHAPTER 1

DESCRIPTION OF GASS

An assembly program has two major functions. The first is to al-
low the programmer to use meaningful names for the instructions;
thus, an add instruction could be written as ADD rather than

octal 20. The assembly program thus translates the mnemonic oper-
ation codes to the actual machine codes required. The second func-
tion is to allow the programmer to assign lables or names to loca-
tions which are to be referenced in the memory. These lables or
names are called symbols. When a location is labled by a symbol,
the programmer then may refer to that location by use of the symbol
without concern about the actual location in the program. The as-
sembly program takes care of the assignment of symbols to locations
and the resultant translation by the construction of the symbol table
which gives the absolute location and the symbol to which it has been
assigned.

Using the assembly program, a programmer may write, "ADD L.2V,
The assembly program noting the assignment of location L2 trans-
lates the above statement to the actual machine coding to perform the
function. GASS provides these basic functions of an assembly pro-
gram and other capabilities as defined in this manual.

DESCRIPTION

CASS accepts symbolic instructions for the 160G computer as an
input. These instructions which are prepared on punched cards
may be transferred to magnetic tape as an alternate input to the
program. The assembly process requires two passes (readings)
of the source language information. During the first pass, GASS
reads each line (card) of symbolic information and, optionally,
writes this information on an intermediate magnetic tape for the
second pass. The information is scanned, and a partial translation
of the operation code is made to determine the space which will be
required in the memory of the 160G to contain the instructions and

data. This information is used to assignh values to symbols which
appear in the program. The symbols then are inserted into the in-

ternal and external symbol tables for use in the second pass of the
assembly process.

During the second pass, GASS analyzes the input information
(derived either from the input media or the intermediate magnetic
tape) and converts this information to machine form. It transmits
each line of output and groupings of assembled binary words to the
output devices. At the completion of the assembly process, it also
provides the linkage information for inclusion in the binary program
output. If the information compiled in the current internal symbol
table will be needed during the assembly of other programs, it may

be punched on a separate, special card deck at the completion of the
second pass.

Normally, GASS prepares the internal symbol table based on the in-
put symbolic coding; however, the symbol table from a previous as-
sembly may be loaded prior to assembly of a program. This

special symbol table information must have been prepared by GASS

as an output from a previous assembly.

The following output information results from the assembly process:

1. An output listing of the assembled program

2. Relocatable binary card output for subsequent loading and
execution of the assembled program
3. Relocatable binary card images on magnetic tape

4, A symbol table for use in combining other programs
during a separate assembly

SPECIAL FEATURES INCLUDED IN GASS

Gass includes several special features which are described in this

chapter. Additional features are covered in other chapters of the
manual.

SUBPROGRAM AND SUBROUTINE LINKAGES

At running time, a program is composed of one or more independ-
ently assembled subprograms. Each subprogram is composed of
one or more subroutines which are assenmbled at the same time,

1-2

For the object program to operate correctly, all references in the
various subprograms and subroutines must refer to the actual
machine locations as they are assigned at run time. The following
methods are used to specify and complete these linkages provided in
MASS and GASS:

1.

Several parts of one program may be assembled at differ-
ent times by the use of the internal symbol from the pre-
vious assemblies. To do this, the first part of the pro-
gram is assembled and the internal symbol table is saved.
For the assembly of the second part, the symbol table
from the first part is included in the input information. In
this manner, all references from the second part to the
first part may be made symbolically. This method is
limited by the fact that there is no easy way to make a
symbolic reference from the first to the second part; how-
ever, a possible method is to use the EQU statement in
the first part.

By use of the pseudo instructions LOCAL and NONLC,
the location symbols appearing in one subroutine may be
declared local to the current coding until the appearance
of another LOCAL. or NONL.C pseudo instruction. Cross
references from other subroutines to be assembled at the
same time are indicated in the address field of the
LLOCAL. pseudo instruction. This technique allows the
programmer to re-use symbols in various subroutines
without trouble from multiple definition. Only the cross
reference symbols will appear in the main symbol table.
This technique also allows the use of more symbols in the
program than the capacity in the symbol table. (See the
description of LOCAL. and NONLC pseudo instructions.)

Subprograms assembled separately or contained on the
library tape, communicate with each other by the use of
entry points and external symbols., (See ENTRY and
EXTNL pseudo instructions.) If,in subprogram 1 there
is a desire to make reference to the location represented
by the symbol ABLE which occurs in subprogram 2,
ABLE must be declared as an external symbol in Sub-
program 1 and as an entry point in subprogram 2. The
linkage, or insertion of the true machine location, is made
by MASS at load time. Only a limited number of linkages
can be made by MASS due to the limited storage available
in the basic 160G system. A program is available to pre-
link the subprograms prior to run time.

1-3

SUBPROGRAM FORM

The first card of each subprogram must contain the IDENT pseudo

instruction, and the last card must contain the END pseudo instruc-
tion,

Any subprogram may be the main subprogram -- the one to which
initial control will be given on completion of the loading process.
One, and only one subprogram must have an ENDT card which
gives the name of the entry point in the main subprogram. When
the binary deck of the assembled program has been loaded by the
linking binary loader, a bank return jump is made to this entry point.
If ho entry point has been specified, the loader terminates the job.
When the program is complete,there should be a jump to the entry

point location. This jump returns control to the operating system
and terminates the job.

DATA STORAGE

Data may be stored in the same area as the program and thus be
relocatable with the program or non-local to the subprogram. Non-
local data storage must be declared in COMN statements (see
COMN pseudo instruction). Blocks of common storage declared in
a subprogram may be in different banks of memory with the restric-
tion that any one block of common storage must be wholly contained
in one memory bank. A block of common storage shared by two or
more subprograms or by more than two computers, must be de-
clared in each of the subprograms which refer to that block. Fur-
ther rules regarding the use of common storage are given under
the COMN pseudo instruction. '

PROGRAM RELOCATION

All programs assembled by GASS are relocatable (if certain ad-

dress field conventions are followed) by the specification of a re-

location constant at load time. This constant may be originated by
the programmer under self-contained operation or by MASS under
the monitor form of operation.

1-4

The relocation process depends on the contents of the word and on
whether a word is relocatable. The following definitions will be used.,

1. A relocatable word is a word of program or data which
was assembled under control of the ORG or PRG counter.

2. A nonrelocatable word is a word which was assembled
under control of the CON counter or which is defined in
a COMN pseudo instruction,

3. A word which may be modified that specifies a reference to
the 13-bit address of a relocatable word.

Under the above definitions, the relocation process consists of stor-
ing all nonrelocatable words at the location specified as the result
of the GASS assembly. All relocatable words will be stored at
the location specified in the assembly, plus the relocation constant.
All words which make a 13-bit reference to a relocatable word will
have the relocation constant added to the contents of the word thus
making a reference to the true location of the relocated word.

The following words are not modified by the relocation constant:

1. One word instructions (for example, load direct, load
relative, etc. instructions)

2. Words which consist of a numeric address field

3. Words that refer to addresses of words assembled under
control of the CON counter or specified in COMN

4, Words which specify the difference of the addresses of
two relocatable words

OPERATOR OPTIONS FOR GASS

By positioning jump switches on the 160G console, the operator may
do any of the following during GASS assembly:

1. Suppress binary output
2. L.oad a special symbol table prior to assembly
3. Obtain the symbol table as output of the assembly

Further options, including the assembly of several jobs at one time,

may be performed. See the GASS operating instructions for these
options. ‘

1-5

CHAPTER 2

INSTRUCTION FORMAT

Input to GASS consists of symbolic instructions for the 160G
written in the form of characters punched on 80-column cards or

images of these cards on magnetic tape.

The cards are punched

from coding lines written by a programmer on the 160G assembly

system coding form.

the information will be punched.

figure 2-1.

The format of the input as written on the
coding form is expressed in terms of the colums of a card in which
The coding form is illustrated in

160 G ASSEMBLY SYSTEM CODING FORM

PROGRAM

NAME

CONTROL DATA

ROUTINE

PAGE

b

DATE

LOCATION OPERATION ADDRESS FIELD COMMENTS IDENT
rluuqnuvun-olu.n|u|u\uuunn-na:mum]uunupvmm.mmuuunu[w 383940} 41 142143 44]45|48]47] 48| 49{30 |81 |52[83 84188 | 84187 58 83{40)8)
[A R lllllllllllllll!Illlllllllll!l;|llIlllllillllllLlJtllll!lllIlIIllllll
P O B | IAIIllllllllllllllllllLllII(Itlllll!lll|l|llllIlIIIIIIIIIILllIIlJJ
T T O O llIIIIIII:AIIIIIIllIIliJI‘lIII:!lllllilllllllllll\lllll}ll]ljlIllllll
S SR | lILJJ_l_lLL:lliilllIAIILLALIIIII:II](IIIIIIKJ!AII}IIlllllIIlLIJIIllllll
L4 Illllilll:lllllllllllllllllll:llll!llllllllIIIllllIlllI!l{lLlLllilll
(I B | lll!Iklll‘llll\lll!lllllli!lII:IllllllIIIIIIIIIIIII!Illl111|||Illlill
1
T T | Illllllll;llllLIIIlillllIllII:IlllIllilLIIII!IIII‘IIlllIIlllIIIIlII]
[| lIlIlIllI:lilIIllllLll4ll|lIlILll_l](IIlllJIlllIIIIIlIlIl;lIIIlIllllLL
IS B II|JLLJLL:J_(_1|IIIIII|IIItll!IllLlliil\lllJ!hl)ILIIll!lIIIIIIIl|ll|||
[S B AR IIIIl]lII:lllLlleALIIIIIIIIIJ:IIIIIIIIII|IlIILI|LIIl|IIJIIIIILllllll
R A S lIIIIIllliJ_lLl!Il]llillllLiIl:lllIIiIIlIllllllllLI!lIIllllllllllllll
[A A B |I||\IilltllllkllllllllllIIIAL:IIXIIIIILIllllllllllklllllkllll||I||IL
A A |||||||||:||||||||||||k||||||:14L|1|||11L||||:|||||1|x||||||11||1|1|
N S | |IIII£IIl:LJl(IIllllliL\llIII:IIIIlIIliJl]IIIIl]lIIIILlIIIIIIIILLL‘L
A B N B AI|IIllll:llllllL!lilllllllIl:llllJlllllllllllIlIIIlII]LllIlIIllllll
FEN N A Illllllll!lllLllllIIilllllJIl:lIIllll(l!lIlIIIIIlkLIll)lllLllIIILLJL
Lia 1§y IIIILI!LI{LIIIII(l!OIIIIIIIll:lIlI)ILIIIIIIIAlILLIIllIILIIII:Illllll
13111l Illlillll:lllllIALlll|l|l|||Il'llllllll)llllllllllllLlltlALlllllkLI_I_LL
L1l llllillllllxlllLJllIIIII:IILl‘llllILLIIltllllllllllllll-lllll_._LlIlilLll
L6yl lelIllI:llllillllliLllLll||l|1IIIIIIlIIbIIIlllAllJ_‘I!IIIl!]Illlllll
[S R ILlIlllII’l!lJlIll!lllIlllll!L‘IllLlLLIIIIEIIIlIIIIIIIlllJllALLIIllllLL
[EN N N B IIIIIIlIl:lIIII]llLLIALALllllll:lIlllllllilllllllllllll!Ihlllllbllllll
L1 3t 11 Illllllll:llll_l|(IIIIIIlIllIIIILXIJIIIAL,L‘IIlllll(llllllxllllllllllllll
1f2i3je s q6qr 8 fefioyiiii2]i3]ia11918)i7)18)1920]2¢ 26127{2829{30 ! 49)80| 51 |82 1|72 73|74 |73 76|77)78[79]| 80
CDC 533 @3 ALPHA © 0 = NUMERIC O Iz ALPHA 12 NUMERIC | 23 ALPHA Z 2: NUMERIC 2

Figure 2-1.

160G Assembly

2-1

System Coding

Form

FIELDS

A coding line is divided into four major fields: location field, L ;
operation field, O; address field, A; and comments field, C. The
location field covers columns 1 through 8., Column 9 is not used.
The operation field begins in column 10 and ends at the first blank
column., The address field may start anywhere to the right of the
blank column terminating the operation field, but must begin no later
than column 20. Column 20 (the first dashed line on the coding
form) is a convenient justification point for the address field. The
address field terminates at the first blank column or at column 72,
The remaining columns after the blank column following the address
field are treated as comments. Column 41 (second dashed line) is
suggested for justifying the comments if the address field ends before
column 40. Columns 73 to 80 may be used only for comments or
identification.

LOCATION FIELD

The location field (called an L.~-term, label, symbol, or identifier)
may contain a symbol or 8 blanks. A symbol consists of 1 to 8
non-blank characters, with at least one character being alphabetic.
L_eading, imbedded, and trailing blanks will be ighored, and the
symbol will be packed and left justified in the field by GASS. The
following characters may not be used in constructing a symbol:

+ - * / y = () $
All other characters from the 64-character set may be used.

OPERATION FIELD
The operation field may consist of the following:

1. One of the mhemonic operation codes listed in Appendix B,
followed by a blank column or a comma

2. One of the pseudo operations listed in Appendix A

3. The name of a macro-instruction

4, One of the preceding, a comma, and a modifier
expression

A blank in column 10 indicates that the word to be assembled does

not contain an operation field. In this case, the address field may
start in column 11,

Modifier Expression

A modifier expression is contained in the operation field and is

sSeparated

from the operation code by a comma. The modifier may

take on any form which is described under address field. A re-
striction on the modifier expression is that it must be of the correct

maghnitude

to be acceptable to GASS,

ADDRESS FIELD

The address field is evaluated to get either the address of an oper-
and in memory or a constant which will enter into the calculations in

the 160G.

1.
20

The address field may be any of the following:

Blank. In this case, it will be evaluated as zero.

A decimal number less than 27, A number will be in-
terpreted as decimal unless it is suffixed with a B.

An octal number no greater than 377777g. A number to
be interpreted as octal must be suffixed with the charac-
ter B.

A symbol

A symbol prefixed with the character $. This symbol

will be interpreted as '"the number of the bank which con-
tains the location specified by the symbol!". For example,
The symbol ABLE is assigned to location 0077 in bank 5.
$ABLE will be interpreted as the number 0005,

An array element expressed as A. For example,
Al(i,j,k) where A is an array name defined in COMN and
i,j, and k are element numbers in the array. The element
numbers must be numeric.

A special symbol (*). The value of ¥ is the current
value of the location counter. This value specifies the ad-
dress at which the operation code portion of the current
instruction is being assembled.

A special symbol (**), The value of ** is always the
octal value 17777. This symbol may not appear in an
arithmetic expression. It is normally used in a field which
is going to be preset,

An arithmetic expression combining any combination of the
preceding items 2 through 7.

Arithmetic Expression

An arithmetic expression may combine symbols and constants using
the four operations of addition (+), subtraction (-), multiplication (*),
and division (/). The expression is evaluated from left to right, per-
forming all multiplications and divisions and then all additions and sub-
tractions. The use of parentheses for grouping is not permitted,

For example, the expression:

15%a + 5/2% C-5

is evaluated as

(15:A) + ((2) - ©) -5
The following rules apply to the evaluation of an arithmetic expression:

1. The modulus of the arithmetic is 213—1 .

2. In a divide operation, only the integer portion of the quotient
is retained.

3. Symbols which appear in an arithmetic expression must be
defined, thus external symbols must not appear in an arith-
metic expression.

COMMENTS FIELD

The comments field begins with the first column after the blank column
which terminates the address field and ends with column 80. The

comments field is ignored by the assembler, but it is printed on the
output listing.

OSAS OPTION OF OPERATION

If a line of coding is indicated to be in the OSAS format by the pre-
vious appearance of the OSAS pseudo instruction, the format and

general rules of operation are as given in Control Data Publication
507a NOSAS-A 160-A Assembly System!'.

2-4

CHAPTER 3

RULES OF OPERATION

During the first pass of an assembly process, CASS forms the sym-
bol table which gives a symbol and its numeric equlvalent. The nu-
meric equivalent is determined by where the symbol appears in the
location column of a coding form or in the COMN statement. The
numeric equivalent is stored in the symbol table as a 17-bit humber
of which the upper 5 bits represent a bank number (4096-word bank)
and the lower 12 bits represent the location within the bank. In the
G mode of operation, the programmer may consider this number to
be a 5-bit bank number, where the banks are numbered 0,2,4,6,
etc., and a 13-bit address within a 8192-word bank.

The numeric equivalent is formed in three ways:

1. It is obtained from an EQU pseudo instruction. In this
case, the number contained in the location term is convert-
ed to a 17-bit number and placed in the symbol table, or
the expression in the location term is evaluated and placed
in the symbol table.

2. The equivalent is implied by the current value of the pro-
gram location counter. In this case, the value of the
counter is placed as the numeric equivalent, including the
bank number.

3. The equivalent is determined by the COMN statement.

The symbol table also classifies a symbol as to whether it may be
relocatable or non-relocatable. A relocatable symbol is any symbol
which has its numeric equivalent assigned from a setting of the
ORG-PRG program location counter or which is defined by an equi-
valence statement to a relocatable symbol. A non-relocatable symbol
is any symbol which has its numeric equivalent assigned from a set-
ting of the CON program location counter or from an EQU statement
which has a numeric location term only. A relocatable symbol also

may be defined by an equivalence statement to a relocatable symbol
plus or minus a constant.

The value of the address term is also flagged on the binary card

output as being relocatable or non-relocatable to permit the relocating
binary loader routines to position the program correctly. Generally,
an address term will be flagged as non-relocatable unless it consists

3-1

of a single relocatable symbol or a single relocatable symbol plus or
minus a constant, Any other form of relocatable symbols appearing
in an address term will be evaluated. Generally, the resulting pro-
gram will operate correctly only at the position it was assembled,
and the program itself will not be relocatable.

In constructing the final machine instruction from the symbolic state-
ment, the evaluated address term, and also modifier terms, must be
reduced to 3, 6, 13, or 18 bits., The following rules of operation
are followed by GASS In producing the address portion of the In-
struction or the instruction,

1. A line that contains information only in the remarks field
will appear on the listing, but it will not reserve space
in the binary object program.

2. If the operation field is blank (column 10 is a blank code),
the address field will be evaluated if It is an arithmetic ex-
pression, A 13-bit number will be produced and stored.
The operands will an consist of the lower-order 13 bits of
the numeric equivalent without regard to the bank number
assignhed in the numeric equivalent,

3. If the operation field specifies no address, direct, or in-
direct addressing (N,D,1), the address field is evaluated to
form a 13-bit address. If this value is greater than 77
the line is flagged as a range error (R) on the listing,
and the lower 6 bits of the instruction are set to zero, If
the value is less than or equal to 778, it is used to form
the one-word - instruction,

4, 1If the operation field specifies 6-bit relative addressing
(F,B,R) and a numeric address field is given, this ad-
dress is inserted in the 6-bit E portion of the instruction,
if it is the right size. If the address field is symbolic, it
is evaluated, and the contents of the locatlion counter is sub-
tracted from the evaluated address field to determine the re-
lative increment. For F type operation codes, a positive
result is directly inserted in the lower-order 6 bits of the
instruction., If the result is negative or the number is
greater than 77g, the lower 6 bits of the instruction are
taken as zero, and the line is flagged as a possible range
error in t he listable output, For B-type operation codes,
a negative result is complemented, and the process is as
for forward operation.

The possibility of range errors may be reduced by substi-
tuting an R-type code for the F- or B-type operation codes.
In this case, GASS determines the correct relative machine
operation code and selects the correct operation if the ad-
dress specified is within range. (JPR and ERR, which
are not considered R-type operation codes, will not be re-
cognized as such by GASS,)

If the operation code specifies a 13-bit address portion
(M,C,IB,MX), the evaluated address field will be stored as
the 13-bit G portion of the instruction,

If the operation code specifies relative entire bank (RB), the
location of the operation code F portion of the instruction
will be subtracted from the evaluated address field and
stored as a 13-bit humber.

If the operation code specifies entire memory (no modifier),
the 17-bit value of the evaluated address field is stored as
18 bits in the instruction, The 5-bit bank designator is
stored as the lower 5 bits of the E portion of the instruc-
tion. The 12 bits of the bank location plus the low-order
bit of the bank designhator are stored as the 13-bit G por-
tion of the instruction, as shown in figure 3-1.

4 K BANK LOCATION IN BANK
BBBBB XXX XXX XXX XXX

L .
OP CODE :BBBBB B XXX XXX XXX XXX

F PORTION E PORTION G PORTION

Figure 3-1. Entire Memory Instruction

3-3

CHAPTER 4

PSEUDO INSTRUCTIONS

Pseudo instructions are non-machine language instructions which are
used in preparing a subprogram for GASS assembly, a program
for inclusion on the library tape, and the output of the GASS assem-
bly for operation under the MASS monitor system. Some of the
pseudo instructions provide required information to GASS, others
provide information which is passed on to MASS for operation of the
program, and still others are programmer aids which provide a
more convenhient means for defining portions of a program. The
pseudo instructions are grouped according to functions., Following
several of the pseudo instructions are comments on the function and
programmer use of the pseudo instructions.

Samples of the way that the pseudo instructions are weritten on the

GASS coding form are included with the description of each pseudo
instruction. The pseudo instructions have certain specifications on
the symbols which may appear in the location field and the address

field. The following conventions have been followed in preparing the
samples:

1. If a symbol must appear in a field, the symbol REQUIRED,
REQ, or some variation is written in the field.

2. If a symbol may occur, but is not necessary, the symbol
OPTIONAL , OPNL, OP, or some variation is written in
the field.

3. |If a symbol must not appear in a field, the field is left blank.

4. Other self explanatory information may appear in the ad-
dress and comments field.

5. All examples are shown with the address field starting in
column 20 of the coding form. This is not necessary; the
address field may start following the first blank column
following the operation field.

SUBPROGRAM LINKAGE

These pseudo instructions define the name, beginning, and end of a
subprogram. They define the logical input/output units which are
used by the subprogram if the subprogram is to be operated under
MASS. They also define the subprograms which will be called

4-1

during the execution of the subprogram under MASS control. In-
structions are also provided to incorporate other subroutines during
the assembly of a given subprogram,

IDENT
LOCATION OPERATION ADDRESS FIELD COMMENTS
IDENT REQUIRED l
112314516 7 [8 9|10t |2]i3(14{18]16]17]|I8|19|20(21|22|23{24]29|26|27[26]29)30|31)32|33|34]33)36[37|38|30[40]{41)42(43{44[45]46[47]48{49|80

Description

IDENT causes the symbol contained in the address field to be estab-
lished as an identifier lable for the assembled subprogram. This con-
trol operation must be physically located prior to any Instruction, data
definition, insertion, or storage allocation statement in a subprogram.
REM pseudo operations may precede the IDENT card for a program
which is not to be included on the library tape in a symbolic form,

Comments

IDENT must appear as the first meaningful card of each subprogram;
otherwise, "NO IDENT CARD!" will appear as the first line on the
output listing. I|f an IDENT occurs anywhere but the first line of a
subprogram, it will be flagged on the output listing with the error
code I. An L term is meaningless and will be ighored. The ad-
dress field must contain a symbol. If the subprogram is to be oper-
ated under MASS and makes use of the MASS standard input/output
routines, the standard unit designation of the 1/O units used in the

subprogram must also appear on the IDENT card as shown in the
following example.

Example

LOCATION

OPERATION ADDRESS FIELD COMMENTS

1j2]3)4(5]6]7]8

TDENMT \PEQUIRED, Iy 1 1,3,aF5 [

10 |11 11213 1418|1617 |18]19{20]2) |zz|:3|u|zs|zo|zr|zl|a’|?o|u | 3233134353637 |30|39{40]41[42]43]44|45[46]47]48|49|80]

System use of IDENT

The identifier lable provided in the address field of the IDENT card
has the following uses throughout the 160G programming systems:

1. The subprogram may be included on the system library
tape in a symbolic form for inclusion with other assemblies
of subprograms. In this case, the program may be called
a subroutine. For this use, the IDENT card must be the
first card of the subroutine deck. The program identifier
lable from the address field is used by GASS in searching
for the subroutine from the library tape. This calling of a
subroutine from the library tape is provided by the LIBA
pseudo instruction.

2. The subprogram may be assembled to a relocatable binary
form and included on the MASS library tape. In this case,
IDENT provides the identifier for locating the program on
the library tape and information on the length of the pro-
gram and the standard 1I/O units which are required.

3. The subprogram may be combined with other subprograms
at object program load time. The other subprograms may
be loaded from the same media as the original subprogram,
or they may be called from the library tape. The effect of
the IDENT card is to cause an IDC (ldentification Card) to
be produced as the first card of a binary program deck.
The format will be that prescribed by the MASS relocat-
able linking loader. The symbol from the address field will
appear on the IDC card as the name of the subprogram.
Also appearing on this IDC card will be the length of the
subprogram and the standard input/output units which may
be called on by the subprogram.

The identifier lable specified in the address field of the IDENT card
is unique and may or may not be the same as any location lable de-
fined in the subprogram or any other subprogram. This lable will
be printed out (on option) at object program load time, to tell what
subprograms are being used. The lable is also used in the address
field of the LIBA and LIBS pseudo operations to specify what sub-
programs are to be included in the final operating program.

END

LOCATION ' OPERATION ADDRESS FIELD COMMENTS
EMND GFTIONAL |
L p2 (3|45 |6(7]8[9j01)i2[3114}i5]16]17 118 [49 20|21 |22]23]24]25{26|27}28]29 3031 13233 34[35]36|37]38]39|40{4! |42]43]|44|45]46]47|48]49]50]
Description

END marks the end of the current subprogram to the assembly pro-
cess. It causes the assembly operation to prepare for the next pass
or to terminate the program assembly process. Since END marks
the end of the subprogram, it causes a binary transfer card (TRA
card) to be produced as the last card in the relocatable binary deck.
If a symbol appears in the address field, the TRA card will contain
the relocatable transfer address within the subprogram. If there is
ho symbol, there will not be a transfer address in the TRA card.
A location term, if present, will be ignored.

Comments
END must always be the last card of a subprogram.

System use_of END

END is used by the assembler to mark the end of an assembly pro-

gram and to produce a binary transfer card on the relocatable output.
The binary transfer card is used by the relocatable loader routine to

identify the end of a binary deck. When the relocatable loader is used
independently of the MASS system, the transfer address given in the

TRA card is set up as the starting point of the program. If there is
no transfer address, the loader will stop and leave the starting of the
program up to the operator.

Within MASS, the transfer address given in the TRA card is ighored
during the loading, and the MASS linking relocatable loader depends

oh the 'symbolic transfer card to designate the starting point in an ob-
ject program. For the MASS loader, two successive binary trans-

fer cards must appear to signal the end of the loading process.

ENDT

LOCATION

OPERATION ADDRESS FIELD COMMENTS

ij2]3]4|5]647]8

ENDT IREQUI RED !

10)11 112113 141151617 |18 {19202} (222324252627 |28)29)30]31 |32|33[34|35|36|37)3839|40]|41|42{43{44]|45]|46]|47|46]43[80|

Description

ENDT causes a symbolic transfer card (STRA) to be produced in
the relocatable binary deck. Normally, the ENDT is the card pre-
ceding the END card of a subprogram. The address field must con-
tain a symbolic transfer address. This address must appear in an
ENTRY statement in the current subprogram or in one of the sub-
programs which are loaded together with the current subprogram in
obtaining the final object program. The symbolic transfer card will
be in the format specified by the linking relocatable binary loader used
in MASS., A location term will be ignored. '

Comments

The ENDT pseudo command is used to specify a transfer of machine
control to the MASS linking relocatable loader. On completion of the
loading of all programs provided and called for at the running time, a
transfer is made to the symbolic location specified. The transfer ad-
dress must be specified as an ENTRY point to one of the subpro-
grams which are loaded since the transfer is made by an examination
of the entry point table at load time.

WA

~ LOCATION

OPERATION ADDRESS FIELD COMMENTS

tj2)3]4|516]7]8

Description

WAL COMMENTS TO PERATER !

10112131415 11617 |18 |49;2o_|z|lzzjzs[zqzsigurlchzslaolsn |32]33]34]35] 36|37 |38 39{40|41 |42]43{44{45]46|47|48]|49|50|

WA\ causes the program assembly process to stop. The contents of
theWA statement starting at column 10 will be typed on the typewriter
to provide instructions to the operator. Typing a space and then a
carriage return causes the assembly process to continue. Typing a
carriage return simulates the END pseudo operation.

Comments

An END or WAI pseudo operation must be the last card of the pro-
gram to be assembled. If a WAI is the last instruction, the END
pseudo must be generated by the operator as given in the preceding
description in order to complete the assembly process.

ENTRY

LOCATION OPERATION ADDRESS FIELD COMMENTS

ENTRY IREQ, PPTT O ML 2 |

L2133 418 67 0|90t 121314} 15[16]17]18 149|zollegajzslzqzann|zo|zoL:o|sllszpa;!ﬂsqu|31|u|u(4014| |42[{43]44|45]46(47|46[49]|30]

Description

ENTRY causes the symbols appearing in the address field to be
placed in an Entry Point Name Table. These symbols must be de-
fined within the subprogram. If a symbol has not been defined, the
error flag U will appear next to the ENTRY pseudo operation in the
program listing. A location term will be ignored. The address
field is of the form SYMBOL1, SYMBOL2, etc., with the field ter-
minated by the first blank column, ENTRY pseudo operations may
appear any place in a subprogram.

Comments

The ENTRY pseudo operation is used to define locations in a sub-
program which will be referenced by other subprograms.

System use of ENTRY

The entry point name table is punched out as a part of the binary
program deck. The information in the table is combined with in-
formation on the entry point name table obtained from other subpro-
grams that are loaded at the same time. This allows the linking re-
locatable loader to provide the linkage which permits all subprograms
to work together. The information in the entry point name table is
carried as the symbolic name of a location and the relocatable binary
location which corresponds to the symbolic name in the subprogram.
At load time, the symbols specified in the external symbol table are
matched with symbols specified in the entry point name table. The
corresponding substitution of absolute machine locations is made in
the subprograms to complete the linkage.

EXTNL

 LOCATION OPERATION ADDRESS FIELD COMMENTS
REQU)REDSPPTIBNAL, O M1, JP YA

L
tjeysjeysiejris]siogi luzps,uu_suem|no“s)zolzu|221z:|20|zs|2q21|zl[zo|no|:7:szp!1u|Hlsqgu'u]‘npo]u|4z|'431u|¢5|«|c7|4014s1501

Description

EXTNL causes the symbols appearing in the address field to be en-
tered into the external symbol table. The ENTRY and EXTNL con-
trol operations are used to establish linkage controls for the object
program linking loader in the system monitor program. The form of
the address term in EXTNL is the same as that in ENTRY. The
symbols appearing in the address field are entered in order into the

- external symbol table, Duplicate external symbols are deleted. A
location term will be ignored.

Comments

The symbols in the address field represent entry point names of sub-
programs and library subroutines which will be called in at load time.
If the symbols were not named as external, they would appear to the
GASS assembler as undefined symbols., A symbol appearing in the
address field of EXTNL must not appear anywhere in the location
column or otherwise be defined in the subprogram which contains

the EXTNL pseudo operation.

In the output listing of the subprogram where these symbols appear
in address fields, the machine language will contain the location of a
previous reference to that external symbol. The first reference to
the external symbol will contain the machine value of 17777. In the
column preceding this reference octal value, the letter X will appear.

System use of EXTNL

The external symbol table is punched out as a part of the binary
program deck. The information in the table is added to information
on external symbols from other subprograms which are loaded at
the same time. When all subprograms are loaded, each entry in
the external symbol table is matched with the corresponding symbolic
member from the entry point name table. The absolute location of
the named entry point is then placed in the object program and re-
places the chain of references to the given external symbol.

4-7

Caution

Each reference to a location defined as external by the EXTNL
pseudo operation must appear as the symbol alone, and the instruc-
tion which references the external symbol must be a two-word in-
An external symbol may appear as a constant. The
following coding shows legal and illegal use of an external symbol,

struction.

_egal Example

LOCATION OPERATION ADDRESS FIELD COMMENTS
NESRIENENKNRANNE) '°I“1'21'31"l‘51"l"I"ll9’Ilil?:gl“ﬂ‘ﬁﬂ“l"l“lzﬂ“ll'13&‘{!5‘!3”"l"l"l”l"):"I‘ﬂlﬂl“l“l“l"I“I"15°|
I T gITIMXI)I;IIII:/?LELSIIII_IJI!IIJ[IIIIII;IIIIILLIII
I B O ‘TllellIlIll:FlUl/VlClTlA/llIllllllllllll:llllllll_l_l
I R LLDIFLJIllIl‘tAIIIILLL‘LLJLLLJ‘IIllll:llllllllll
T T N JIFVZ::LIJ1|l,|l|1|¢1|||1|¢JJ(|L11:44|||L1111
e e START
AL lllllllIILFIUIMCLDMIIIIIIIII!IIIIEIIJIIIIIII
Ll EXTME !LFiajal)lFJUlMc\Tl’vl)IRIEISI I I I : I T O O
START | ﬁ’iLlTLLLLJLJElJLJJlLJIII.IIIIIIIII:IIIIIIIII!
lllegal Example

LOCATION OPERATION ADDRESS FIELD COMMENTS

1 j2]34 sj6 7|8

9

EXTNL KO @, FUunve 7#3,011?55

10|11 1211311415 16|17 |18 |49 |20|2!]22|23(24|25| 2627 |28|29]

31132|3334{35]36|37|38(39]40[41[42]43|44]45]46]47]48]|49]50]

I Y O I T

LIDIDI N I S | :F.leal 1 1 4 l(lQ),lNlEl waqlkjbl ICIONIMA{‘JIDI)LJ | T |

| T O I I |

Srrlm I T I | :/?IEISI*IFI 1 ICI/M¢ID11-IFIILElDI)I 111

|
| N VS S NS VO T S A |

N N B

LIDIRIBI N IJIFIUINICITIM I(IDQAI/VIG'!fl)?IaIUISIDI 14

|
N T T T Y Y

LOCAL

LOCATION OPERATION ADDRESS FIELD COMMENTS

REQUIRED| [LACAL \GPTIBNAL vy BPN '

tj2l3jaisisyrielofiof ;uzm‘upsps.wm|49;zo|z|1zz|za|zqasuqznz 2930 1 1132133134135 36/37|38{39(40]41 42|43 44|45 46[47|48]49[30]

Description

LOCAL causes ensuing symbols which appear in the location field to
be considered local to the coding which follows the LOCAL pseudo
operation. Symbols which will be referenced from outside of the
local region are specified in the address field of the LLOCAL pseudo
instruction. A location symbol must appear with the first LOCAL
pseudo instruction of a local region. If the number of symbols refer-
enced from outside of the local region will not fit in the address field
of a card, the address field can be continued by another LOCAL.
pseudo operation which does not have a symbol in the location field.

Comments

LOCAL defines a region of coding which extends from the L OCAL
pseudo operation to the next LOCAL. pseudo operation with a location
symbol, or to the NONL.C pseudo operation. Symbols which appear
in the location field are unique to the local region. This feature allows
a programmer to reuse symbols as often as desired, provided each
Use occurs only once in each local region. Correspondingly, a pro-
grammer can freely use symbolic library programs without any

trouble due to duplicate symbols between the main program and the
library routines.

Any reference to a symbol within a local region from outside of the
region is made by weriting the symbol in the address field of the
LOCAL pseudo operation.

System use of LOCAL

Each LOCAL pseudo operation which contains a symbol in the loca-
tion field establishes a local symbol table and also closes out the pre-
vious local symbol table. The address field of the LLOCAL pseudo
operation contains a list of symbols, which if encountered in the loca-
tion field in the local area, will be entered into the common symbol
table for the main program. For a program with a large number
symbols which may overflow the internal symbol table, the local
symbols will be put on tape and called back as needed.

4-9

NONL.C

LOCATION 'OPERATION ADDRESS FIELD COMMENTS

/‘/@/\’LC | |

Ll2 | 314516 |7| 819 [10fii|2)i3)i4]15(18|17)18]!9)R0|21|22]23{24]25|2¢]27]28)20 30|31 {32]33|34(35|36[37 38|39|40)41]42]|43]|44[45]48[47[48]49{80]

NONLC terminates a local region which was initiated by LLOCAL..
If there was no LOCAL. pseudo operation, the NONL.C will be ig-
nored by the assembler.

LisA L [pT

LOCATION OPERATION ADDRESS FIELD COMMENTS

~LEAyn INAME Ty NaME -y s ey NAME 5

G y2 3 je(Sj6 7@ |9 [10]11112]13114(15]16]1718(19]20]21]22]23[24]25]26[27|28]29{30]31[32)33]34{35)36)37|38]39{40|41|42[43|4a|45]46|4T|48(49]50]

Description

LIBA (include library routine in assembly form) causes the symbolic
library routines specified in the address field to be included as input
to the assembly process for inclusion in the current program. The
operation modifier, n, specifies the number of routines which are to
be called in. The names in the address field are the identifiers
which occur on the IDENT cards in the library routines. The
library routines which are carried on the system library tape in
assembly coding, conform to the rules for weriting library routines.

In case more routines are required than there is space on one card
to name them, a continuation of the LIBA pseudo instruction is made
by giving the modifier, n, on the first card the value which will in-
clude all routines desired. The continuation card will contain LLIBA,
without a modifier, and a continuation of the names of routines, On
each card of a continued LIBA, the last routine named must be
followed by a comma and a blank column, A routine name must nhot
be split between two cards.

Example

LOCATION OPERATION ADDRESS FIELD COMMENTS
1j2)3]ajs (6|7 8)s é]?ﬂB]é[?ﬂ]!’S’]l‘]l? .u“.:Q’,ﬁmjg..’..)qzq/’,mﬁfz,?. IaJupqsslul?r[M&ljw |4:1;144|45|4G|47J00[45[50|
| T O VO I | LIJTBIA I N | :MANlﬁs.IJI‘I‘I.I)IMAIMEI”I. S I I | l I T T T N S T I |

" The library routines will be included in the program at the point that
the LLIBA pseudo instruction occurs. GASS will treat them as a
continuation of the programmers own coding.

Comments

One pass of the symbolic library tape will occur when an LIBA
pseudo instruction is encountered. All routines named on the LIBA
card will be included in the programmers coding at the point the
cards occur. The routines will occupy the bank and location indicat-
ed by the present setting of the program location counter.

The library routines Include a size iIndication. The assembly process
will have an error indicated if the library routines included cause a
program to overflow one bank of memory.

Routines on the library tape may also call for other routines from the
library tape. In this case, an extra pass of the library tape may be
caused for each level of routine calling within the llbrary tape. The
programmer can prevent the extra passes of the tape by Including

all routines which may be called In his LIBA Instruction.

Several LIBA pseudo instructions may be given at different places in
the main program. Each occurance of LLIBA causes a pass of the
library tape. If the same routine is called in two different LIBA
pseudo instructions, it appears in the program twice with the result-
ing duplication of symbols,

System use of LIBA

The function of the LIBA pseudo instruction is to include the given
library routine names into a library search table. This table is
filled until the end of the LLIBA address field, (as indicated by a
symbol followed by a blank column (whether the first or the end of
a group of continuation cards). Then the library tape is searched,
and each IDENT card from the library tape is compared with the
library search table. If a match is found, the library routine is

4-11

then treated as normal input up to the END card of the library

routine.

Then the search continues.

The library routine names in

the address field of the LIBA may occur in any order; however,
all routines within one LIBA pseudo instruction will appear in the
program in the order they appear on the library tape.

The required library routines are copied on the intermediate tape as
they go through the first pass of the assembly; therefore, an inter-
mediate tape must be used if LIBA occurs in a program.

LIBS
LOCATION | | OPERATION ADDRESS FIELD COMMENTS
112]3] ALQ 9 %UI”é[l!s[)ll’zpCll'l|IlU':mﬁ|c}]!§|zlﬂl?§|;q;‘r[2‘!|29|3/xﬁ|!!‘]!3513",|SS]!6]!1]3![3!]40:" |42]43]44]45]46|4®|88]49|50]|

escription

LIBS (library

routines named |

outine from the system

(binary) tape) causes the

the address field to be included in the program at

running time when the program is to be run under MASS control.

LLIBS has the same form as the LIBA pseudo instruction.

The

LIBS pseudo instruction must be the last card before the END card
of the subprogram.

System use of LIBS

LIBS causes a system library call card to be punched as a part of

the binary program deck.,

This card i

is used by MASS to determine

which binary programs are to be included from the binary system

tape.

STORAGE ALLOCATION

The storage allocation pseudo instructions give the programmer con-
trol of the positioning of the program in the core storage of the
computer and also enable him to allocate data storage to be associat-
ed with the program. The data storage may be unique to one pro-
gram (BSS, BLR, and BES) or it may be in an area common to
a number of subprograms (COMN).

BSS

LOCATION OPERATION ADDRESS FIELD COMMENTS

@

'l

'? ’
DTaoNALl Bre A PR SN l
2| ; (4ys sy 8l 011 |12]13(14]15]16]17[18):9]20|21}22/23124|25|276]|27|28|29|30|31 |32|53{34{35{36|37[38]39(40pi |42|43]|44[45]|46|47|46]49{50]

BSS reserves a block of consecutive addresses and assignhs the
location symbol, if present, to the first location of the block. The
symbol in the location field is optional, The evaluation of the
address fields specifies the number of locations to be reserved.
Any symbols which occur in the address fileld expression must be
previously defined, A negative value for the address field Is con-
sidered as an error, and the BSS will be ignored, A zero ad-
dress field leaves no space, but it assigns a value to the symbol
appearing in the location field.

BLR

LOCATION OPERATION ADDRESS FIELD COMMENTS

(PJ)?

LA

3)R K Fal |
2i3)9,8)6] v' [els -o|n] |:|»3p41|3|ns||7|||1n;zo|z»[gjz 1u|zmo|z7|zqm:o|:v [32[33[34]35]36]37|5039[40|41|42(43]44]45|46{47]48149(80]

BL-R operates the same as BSS,

BES

LOCATION OPERATION ADDRESS FIELD COMMENTS
OPTITONAL| (BES " g

s |
1j2]3]e]5](6j7]8 9]0 mllsuquguln|u|n|ao|z||u]5|u|zs|a¥|nLalespﬂm 32]3334|35]36/37136139140]41]42]43|44]45]46]|47]48]49]50]

BES reserves a block of consecutive addresses and assigns the lo-
cation symbol, if present, to the last location of the block. The
symbol in the location field is optional. The evaluation of the address
fields specifies the number of locations to be reserved. Any sym-
bols which occur in the address field expression must be previously
defined. A 2zero value for the address field leaves no space, but it
assighs a value to the symbol appearing in the location field.

NOTE: The BSS, BLR, and BES pseudo oper-
ations will result in relocatable addresses
if they are used under control of the
ORG-PRG counter. They will result
in non-relocatable addresses if they are
used under control of the CON counter.

LLOCM

LOCATION OPERATION ADDRESS FIELD COMMENTS

LpCMm \REQUIKRED |

| 123|615 6178 |9 |10)1112]13)14[15[16]17]18]49[20]21][22]23]24{25]26{27]28]29]30]31|32]33|34|35|36|37|38]39]40|41 |42(43]44]|45]|46]47]|48]49]|50]

Description

LOCM (L.ocate common) specifies the beginning address assignment
for the following COMN statements. The address term is required
and may take two basic forms:

1. Assign a bank and location with a bank. This form would
be weritten as LOCM,# LOCN where # is a bank number
and LLOCN is a location within a bank.

2. Assign a bank and location within a bank frorm the implicit
bank assignment which is available.

The general form of the address field of the LOCM is the same as
applied to entire memory addressing forms for computer instructions.

Comments

The LOCM specifies the beginning value for the "assignment of com-~
mon storage. The address term may be any value which is defined,
Uses of LOCM in addition to specifying the beginning of the common
area include defining an overlay of common name assignments, defin-
ing sub-arrays within another array, etc.

COMN

FLDGATION | OPERATION ADDRESS FIELD COMMENTS

C@M N lA() B (a 2 3)] C (03|3)5|s?qsaa13?2:|}o:4|D|‘)z|4Eslu|u(as|n|«lnlsol

j2ysyegsyspryefefoglijizyinjieqisjie)i7)iei9)20i2ij22j23174|25j26]27]28)29)30)31 32|33}

Description

COMN defines the data to be included in a common block for refer-
ence from several subprograms, The data may be expressed as
arrays or as single symbols. A location symbol will be ignhored.
The address field defines the arrays to be included in the block.,
The address field is terminated by the first blank character encoun-
tered, Array definitions are separated by commas, the general
form of the address field is as follows:

All,j,k),B(1,m,n), etc.,

where 1,j,k are the dimensions of the array. An array Is restricted
to a maximum of three dimensions. In the example and In practice,
i,i,k.1,m, and n must appear as integer constants, For a two-
dimensional array, the third subscript should be omitted, For a
one~-dimensional array, only one subscript should appear. For a
single element. the entire term within the parentheses and the paren-
theses enclosing this term are omitted,

The assembler will sum the expressed sizes of the arrays for all
common data in one block, This sum will be the total number of
computer words reserved for the block. The firsi eiement of the
first array in the block will occupy the location specified in the pre-
vious LLOCM pseudo operation. Successive words and arrays will
occupy successively higher locations. Successive COMN statements
will continue filling the area started by a LLOCM pseudo operation.

Address reservation under the control of the COMN pseudo operation
is considered to be non-relocatable,

If the number of arrays to be specified exceeds the capacity of one
'car'd, the common specification can be extended to a second or more
cards by writing COMN and continuing the arrays. An array defini-
tion must be completed on one card.

Example

LOCATION OPERATION ADDRESS FIELD COMMENTS

Vyz g sjersjej7jely 9|?|/|zﬂﬂ/y|m;:s|u|n|u|u:4a|z |z'zl§;|t>4|zls|2'f;zzgz‘géngp?ﬁ:un?&uqaq)rpqupo:u|¢z|os]«|qs|u|47|«|n|uo|
Ly C|¢1M|A{J P :CI(I&I)Islyl)IDI)IEL)JG‘ NN

It should be noted that the occurrence of A, B, C, D, E, and F
in the preceding common statement causes the location of the first
element in the array to be assigned in the symbol table. (This is
the only case in which an assignment will be made to a symbol
which does not appear in the location field of a card.)

Comments

The arrays defined in COMN may have up to three dimensions.

The general form is A(i,j,k) where the value of | is assumed to
vary most rapidly, j next most ragpidly, and k the slowest. For
example, the array defined in common as A(3,3,2) defines an

array of 18 elements. The Individual elements of the array would

be referred to Iin the main part of a program as A(1,1,1),
A(3,2,1), etc. The allocation of the members of the array would be
as follows, assuming that the first element of the array appeared at
location 1000g.

.L_ocation Array element

1000 A(1,1,1)
1001 A(2,1,1)
1002 A(3,1,1)
1003 A(1,2,1)
1004 A(2,2,1)
1005 A(3,2,1)
1006 A(1,3,1)
1007 A(2,3,1)
1010 A(3,3,1)
1011 Al1,1,2)
1012 A(2,1,2)
1013 A(3,1,2)
1014 Al1,2,2)
1015 Al2,2,2)
1016 A(3,2,2)
1017 A(1,3,2)
1020 A(2,3,2)
1021 A(3,3,2)

If a symbol is defined as an array hame, e.g. MATRIX (3,2),
references to its elements must be made in the same dimension or
less than the one in which the array name was defined., Thus, a
reference to MATRIX would refer to element (1,1) of the array.
A reference to MATRIX(3) would refer to element(3,1), and a
reference to MATRIX(3,2,2) would be illegal.

DATA DEFINITION

The data definition pseudo instructions cause data to be assembled
into the subprogram or into a common block. A data definition
pseudo operation will cause space to be. reserved and data to be
inserted into this space for entry into the computer when the object
program is loaded into the machine. Data definitions which are made
after a PRG or ORG statement (any time after the statement) are
assigned to the private storage occupied by the program. This data
will be moved with the program as the program is relocated, Data
definitions following a CON statement are fixed in location in the
memory.

A CON pseudo operation may be used to originate a sequence of
data in the common area defined by a COMN pseudo operation. In
this case, the address field of the CON pseudo operation is the
name of an array defined within the common block. After the pre-
setting operation is completed, a PRG instruction, or a CON with
a symbol or number in the address field, may be used to resume
the subprogram assignments.

Example

If it is desired to set the values 1 to 9 In an array A defined in a
COMN statement, the coding would be as follows:

LOCATION OPERATION ADDRESS FIELD COMMENTS

2| 3ja|si6jT(@|Rl0]11]I12]13]14[IS]I61I7[I8 |uizo1zuzz]u(u|zanzv|zl|zs;:o|s-pzlu|34|u:up?|n|u|oo:«L¢z|03144|45|45|41;Q'0149]so[
I IIllllIlllllllllllllIl||ll|llJ;lllll¢1_Lll
I O | Clpr"!/\/:alll8(9)1\1/41(?01\1 (II)IR‘)JIIIIlIIIlIlIlIl
Illlll‘W.h‘_r(l'JIIILJJIIIIIJII:llllllllll

—W._.._.—/"“ |

O N T OO T Do o O T s S S VO T T T O U YO VT T TN N YN O OO O N A OO OO
lllllllCJ@/\{IIIIII:Allllllllllillllllll:lIlllIIIII
[B T B | DIEICrI [| :/1)1'?Q|3|;.n‘;‘9 !.;-L)IGI}I?DIX,\I(’L 111 : I S O O O I A |

I I N PIRI&III!Illll!JllllIIllllllIllIl:L}IllII!II

DAF

- LOCATION OPERATION ADDRESS FlEI.D COMMENTS

¢| 2)3]4 |?| 647 l 9 mﬁ[uzl«spa[nslueLJ mps;zo;zn[)zlzslzqzq |z7lzu|ggszlsz|23luésqs‘lsapn |41]42]43]44(45]46]|47|46]49]80|¢

DAF (Data Former) causes constants to be inserted into consecutive
machine words. A location term is optional. If present, it will be as-
signed to the first word of the group of constants. The address field
consists of one or more consecutive subterms, separated by commas
and terminated by a blank, Each subterm specifies one constant
which may take any form that is legal for the address term of a
machine instruction. Thus, the subterm may be an octal number, a
decimal number, the value of a symbol, etc.; or the subterm may be
an arithmetic combination of quantities. Each subterm is evaluated
modulo 213 - 1,

oCT

LOCATION OPERATION ADDRESS FIELD COMMENTS

; A - T /05, — '7 :
%Z}TE;QA.&.I; 9 gf,;rm]-q-slmm[mlnlzolzuLzszzluugl?tha |:90|mQ|sn|u|ululas|u|s1|u|u|4o|u1oz1u|u|cs|u|47|«|43|u|

OCT causes octal constants to be Inserted Into consecutive machine
words., A location term is optional, If present, it will be assigned
to the first word of the group of octal constants. The address fleld
consists of one or more consecutive subterms, separated by commas.
Each subterm specifies one constant as a sign (+,-, or none),
followed by up to 5 octal digits, Each constant Is assigned to a
separate word., A negative constant Is stored as the ones comple-
ment of the positive value.

DEC
LOCATION OPERATION ADDRESS FIELD COMMENTS
Qﬁ?ﬁzﬁlﬁ/&ﬁﬁ] Q|§'|§Tm[l‘llallljﬂ|08Qll:1/0|ﬁz?ji)ﬂzﬁ?ﬂﬂ%];‘323?[!’![!3”4]!9[3.[!7]30|39|Q0:QI|§2|4!]44|45|40|47|4l|4’|l0|

DEC causes decimal constants to be inserted Into consecutive ma-
chine words. A location term Is optional, If present, It will be
assigned to the first word of the group of decimal constants. The
address field consists of one or more consecutive subterms, sepa-
rated by commas. Each subterm specifles one constant as a sign
(+,-, or none), followed by a value of up to 4 decimal digits.
The decimal number must be less than 8192 In absolute value,

BCD
LOCATION OPERATION ADDRESS FIELD COMMENTS
QE.?E]Q&:AA‘) oglg, uQ-slulvsusm;mm:z{p{laz]z:|2$}slpzc[z':’|u5|£[5qd[zgs§pq|sspspr|3a|sspo:4||4z14;|44|4s|«|4nups|so|

. BCD causes binary-coded-decimal characters to be inserted, two
per word, into consecutive words, A location term is optional,

If used, it will be assigned to the first word of the group. The ad-
dress field consists of a number n where n=S50 or a previously de-
fined symbol which is followed by a comma and n succeeding char-.
acters, including blanks. The result is n/2 computer words, each
containing 2 BCD characters. The order of the characters in the

4-19

words is as follows: the first character goes to bits 11 through 6
of the first word, the second character goes to bits 5 to 0 of the
first word, etc., If n is odd, the last word will contaln a blank code
in the lower six bits, In all cases, the highest-order bit of the
words is zero, Anything after n characters is treated as remarks.

FLX

LOCATION OPERATION ADDRESS FIELD COMMENTS

Qﬁ Z‘z’ﬁ#ﬁé [] |€fuL|(¥| mpqmmm|um::{;zzzjZ;Zﬁaﬁzuz}lfaﬁugsglfzsnu|airu arlaapﬂwlw|qz|as|u|ss|u|u|u|n|no|

FLX causes Flexowriter coded characters (input/output typewriter
code) to be Inserted, two per word, Into consecutive words. A
location term Is optional, If used, it will be assigned to the first
word of the group. The address field consists of a number n
where n = 50 or a previously deflned symbol which is followed by
a comma and n succeeding typewriter code equivalent characters,
including blanks,

NOTE: Certain special functions such as carriage
return, tab, etc, are not in the BCD code,
They are represented by two-letter groups
where the first character is asterisk (*).
These special] groups are counted as one
character,

The result is n/2 computer words, each containing 2 typewriter
characters, The order of the characters In the words is the same
as In BCD, If n Is odd, the last word will contain zeros as the
lower six blts, This code Is ignored by the typewrliter or Flexowrl-
ter. In all cases, the highest-order bit of the words is zero., Any-
thing after n typewrliter characters is treated as remarks.

ASSEMBLER CONTROL

The assembler control pseudo instructions give the programmer con-
trol of the allocation of space in the final object program and aiso
allow him to specify the modes of operation of the assembler.

OSAS

LOCATION | | OPERATION ADDRESS FIELD COMMENTS

c [!
1j2)3 e sy efels J:’u {1215 1a 15 1617 (184912021 |22]23|24]| 25| 2627 [28]29 30|31 |32|33|34|35[36|37|38]39(40]41|42]43]44|45]|46|47]40{49]50¢

OSAS causes the assembler to accept cards in OSAS format until
a GASS pseudo instruction is encountered. If nho OSAS pseudo

instruction occurs and the operator has not specified OSAS mode of
operation, GASS format is assumed for all cards. An L term, if

present, will be ignored. Everything beyond column 14 is treated as
comments.

CAUTION: Numbers under the OSAS format are
treated as octal numbers if there is no
designation to the contrary. Numbers
in GASS format are treated as decimal

numbers if there is no designation to the
contrary.

CASS

LOCATION OPERATION ADDRESS FIELD COMMENTS

10 [t |12)13 1a (151617 |18 19|20 21| 22)2324[25|26|27 |26(29(30131 |32]33[34|35|36|37|38|39|40|41|42]43]44|45]46(47]48[49]50]

1j2 3|4 5]6]7]|8]9

GASS pseudo instruction switches the input format to GASS if an
OSAS pseudo instruction occurred previously. If the current for-
mat mode is GASS, this pseudo instruction will be ignored. Every-

thing beyond column 14 is treated as comments. A location term, if
present, will be ignored.

CAUTION: See discussion under OSAS regarding number
conventions,

BNK

LOCATION _OPERATION ADDRESS FIELD - COMMENTS

| |
1j2]3)e|sj6j7]0a|9 §|n 1n/z(|) [14[1S§16]17]1849]20)21[22)23]24|25]26]27|28|29]30|31 |32)33]34|38)36]37(38|39|40|41|42]43|44[45]46(47|48[49]50|

Description

BNK causes the words following this control operation to be loaded
into the bank specified by the operation modifier if the location count-
er is set to locations in bank zero or one.

Comments

The BNK pseudo instruction allows a symbolic program to be assign-
ed to a different bank than the one for which it was weritten. This
action only applies if there is no bank specified or implied in the
setting of the PRG-ORG counter or in the setting of the CON count-
er. If the program location counters are set to bank 2 or higher,
the bank pseudo instruction is ignored.

This instruction has the following two operations under the preceding
restriction:

1. It causes all symbols appearing in the location field of the
ensuing instructions to have the bank number appended to
them in the symbol table. This feature will be apparent
in the entire memory mode of instructions which refer to
these symbols,

2, It causes a bank specification card to be punched in the
binary program deck. In the loading, BNK takes prece-
dence over all address assignments to place data in banks
0 and 1. It does not change bank 2 and higher numbered
banks.

ORG

LOCATION OPERATION ADDRESS FIELD COMMENTS
tj2)3(4)516]7]8 9'@“' I%"l"l"’l"l" |:o|us:zolgzqzslg‘a}fm:éjggépow l32|33|u|35|nlupu|u|4o:u 142]43]44[45146]47]48]49]30}
Description

ORG enters the value obtained from the address field into the
ORG-PRG counter and causes this counter to assume control of the
word location process., All words assembled under control of the
ORG-PRG counter are relocatable, Any symbol which occurs in
the address field must have been previously defined. A location

term, if present, will be ignored. The address field may take a
value which implies a bank setting other than zero (for example,
ORG 040000B). In this case, the program is restricted to the bank

implied, but the program may be relocated within that bank,
Comments

The ORG pseudo operation activates the use of the ORG-PRG coun-
ter in assighing locations to the following words in the assembly pro-
cess, The counter is set to the value of the evaluated address
fileld or to zero if the address field is missing. The instruction
immediately following the ORG pseudo instruction is assembled to the
location contained in the ORG-PRG counter as a result of the pseudo

operation. If no counter setting pseudo instruction appears as the
first instruction of a program, the ORG-PRG counter is assumed to
be In control and it will begin assigning locations at the first location

after MASS in bank 0.

PRG

LOCATION | | OPERATION ADDRESS FIELD COMMENTS

| |
1]2]3je(sy6j7(8]9 Eln 11213]54(15]16]17 18192021]|22]|23]|24]25{26]2728]29(30{31 [32|33|34|35|36|37]36|39|40[41/42|43|44]45[46[47]|48{49]50]

PRG causes the ORG-PRG counter to assume control of the word
location process. The value of the ORG-PRG counter is set to the
value of the counter prior to a previous CON statement or to the
value specified in the previous ORG statement if no CON statement
intervened,

Comments

The ORG pseudo instruction is always used to insert a starting
value for assignment of storage locations for a program., As such it
must always have a value in its address field, or the value of the
address fleld will be assumed to be zero. In the process of assign-
Ing locations, the programmer may desire to assign non-relocatable,
or common storage., This is done by the CON pseudo Instruction.
The PRG pseudo instruction allows the programmer to resume the
assignment of relocatable locations from the last location assigned
before the CON operation, The same effect could be obtained by
using ORG with a value in the address field which defines the cor-
rect starting location,

CAUTION: To operate correctly, the PRG pseudo
operation must follow the CON pseudo
operation, If no CON appears prior to
the PRG pseudo operation, the PRG-ORG
counter will be reset to the value given in
the previous ORG pseudo instruction.

CON

. LOCATION OPERATION ADDRESS FIELD ' COMP.JIENTS

N '? QK 3 |
1j2)3j4fsj617(8]9 g]@uzlnnu]wqu[mlw|z 121 7€) 23Y2425)26)27 28293031 | 32|33 {3438 36)37 38| 39|40 41 [42[43]44]45]46]47|48149]80]

Description

CON sets the translated value of the contents of the address field
into the CON counter and causes this counter to assume control

of the word location process. All words assembled under control
of the CON counter are non-relocatable.

Comments

The CON counter is initially set to 0 if nho CON pseudo operation
occurs at the beginning of a program. When a CON pseudo opera-
tion is encountered, the CON counter is set to the value of the eval-
vated address field, - If the address field is blank, the CON counter
continues counting from the previous value of the counter before an
ORG or PRG pseudo operation occurred, As long as the CON
counter remains active, it is Incremented by one for each word
assigned in storage, except when it is reset by the address field

of a CON pseudo operation,

SYSTEM USE OF ORG, PRG, AND CON

The preceding pseudo operations are used to establish the starting
point and the type of counter which will be used in constructing the
symbol table, Each symbol in the location field of a line in a sym-
bolic program is assigned a numeric value by GASS, This numeric
value is determined by the current value of the assignment counter,
or by the EQU pseudo Iinstruction. The corresponding symbol and
numeric value is stored in the symbol table. Symbols in the table
are classified as relocatable and constant, The relocatable symbols
are flagged as such on the binary program output and may be incre-
mented by a relocation constant at the time they are loaded. L.oca-
tions which refer to a constant symbol are not relocated or modified
at the time the program is loaded.

EQU
LOCATION | | OPERATION ADDRESS FIELD COMMENTS
REQUIKID| [FQU % BR <Y BoL |
Pj2 |3 jesj6Tialoliogiri2(i3]14[1S]i6117][181I9{20]2t] 7 2%]24)25(26|27 |ab[29{30]31 [32]33)34[35]36]37|38[39|40]4! 42|43]44]|45146]47]48[49/80]|

EQU equates a symbol to the value of the address fleld. Thus, It
provides a means of establishing a numeric equivalent for the symbol
appearing in the location field, Any symbols which occur In the
address field must be previously defined., A blank location term is
meaningless,

MASS

LOCATION OPERATION ADDRESS FIELD COMMENTS

MAS

| |
1j2 3|4 56478 |9]iofn |r21§u4 11511617118]19|20]21]22]23[24)25|26{27|28[29{30]3! |32]33]34|35]36]37|38(39|40[41]42]43]44]45]46]47]|48{49]50}

Description

MASS terminates the assembly process and causes GASS to return
control to the operating system. The MASS pseudo instruction
should follow the END pseudo instruction of the last subprogram to
be assembled by GASS., Ii MASS follows any card which is not
END, control will be returned to MASS following the second pass
of the assembly process, but a 0 error will be flagged on the out-
put listing., A location term is meaningless and,if present, will be
ighored., Everything beyond column 14 is treated as comments,

4-25

Comments

If an END card is missing from the last program to be assembled,
MASS will provide the same function as END, but an error will
be signaled as previously described.

OUTPRPUT LISTING CONTROL

The output listing control pseudo instructions give the programmer
control over the appearance of the listing of the program which is
assembled and also allow him to Include additional remarks In the
program,

REM

LOCATION || OPERATION __ADDRESS FIELD COMMENTS
KT 7 P AGIAREEL PE i o i

(273 e sjejrgs]aliogn pa,umlm emlu|ns(zolz»]_zzlzslulzslzqzv|zs|zn;so|sx |32]3334]35136|37|38139(40]41[42]43]44]|45]46|47|48]49|80]

REM produces an output record on the program listing which con-
tains remarks only. The pseudo Iinstruction is Ignored by GASS as
far as producing information in the binary program output. All
columns except 9 to 13 inclusive are available for remarks. On the
listing, the code REM is suppressed,

EJECT

LOCATION | | OPERATION __ ADDRESS FIELD COMMENTS
,]' | |

1238|8617 8|9 i tl|3||ll|s|l6|l7||e|:9|20|2|]22]2!|24|25|20|27]20]2!|30|3l |32(3334]35) 36|37 38|39|40| 41 42| 43| 44|45|46|47]46]49]80):

EJECT will produce a character in column one of the next record
of the magnetic tape listing. This character causes the line printer
to eject paper to the top of the next page. Also if listing is perform-
ed on line, the eject action will take place. The input record con-
taining the EJECT pseudo instruction will be suppressed on the list-

ing.

SPACE

LOCATION OPERATION ADDRESS FIELD COMMENTS

C [I
tj2y3jejs|6j7je]9 ‘$o.|ulnz|-3,mpslusu”w]«ﬂzolan|zz]zslzc]zslzc|z‘l|zu|29|30]i| [32]33[34]35]36|3713839]40|41[42|43{44|45]46]47]48]49]30]

SPACE will cause the listing to be spaced the number of lines
specified by the address field. If this spacing would cause an over-
flow at the bottom of the page, the page is ejected to the top of the
next page only. The input record containing the space pseudo
instruction will be suppressed on the listing.

NOLIST

OPERATION ADDRESS FIELD COMMENTS

 LOCATION |

1j(2(3]415|6]7(0

LTS ! |
«Q:‘ﬂ%uq;,:nqw 118 {19 [20]21 |22 23{264]25[26[27 {2829 |30[31 3233|3435 36|37 |38[39[40]41[42[43]44]|45|46]47]68{49]80]

NOLIST will cause GASS to suppress the output listing when It

appears,

This suppression will continue until a LIST pseudo in-

struction Is encountered or until the END pseudo instruction is
encountered., The input record containing NOLIST will be sup-
pressed on the output listing.

LIST

- LOCATION

OPERATION ADDRESS FIELD COMMENTS

Lj2]3]e|5|6]7]8

| !
101112 [qulsluurlw 149 {2021 |22 |23124]25]26)27 2029|3031 | 32|33 3435|3637 30|39|40|41[42]43]44[45]46[47]|48]49]50]

LIST will cause GASS to resume the output listing when it is en-
countered if the listing was previously suppressed by the NOLIST
pseudo instruction., The input record containing LLIST will be
suppressed on the output listing. If NOLIST has not been encoun-
tered previously, LIST will be ignored.

CHAPTER 5

INSTRUCTIONS

The 160G Iinstructions can be classified Into six groups, depending
on the number of words occupied by the Iinstruction and the layout of

the instruction. The most general form of a 160G Iinstruction is as
follows:
F E G
[7 Bits [6 Bits | 13 Bits |

Group 1 instructions have only a 13-bit operation code., This group
will be indicated as FE.

CGroup 2 instructions have a 10-bit operation code and a 3-bit e
portion. This group will be indicated as Fe e,

Group 3 instructions have a 7-bit operation code and a 6-bit E
portion, This group will be indicated as F E,

Group 4 instructions have a 13-bit operation code and a 13-bit G
portion. This group is indicated as FE G,

Group 5 instructions have a 7-bit operation code and a 19-bit E
and G portion, This group is indicated as F EG,

Group 6 instructions have a 7-bit operation code, a 6-bit E portion,
and a 13-bit G portion, This group is indicated as F E G.

GASS FORM OF INSTRUCTIONS

The instructions from each group will be listed along with the accept-
able forms of weriting the instruction in A coding.

GROUP 1 FE

Group 1 instructions are written as the operation codes given below, All
information after the operation code is ighored and treated as comment.

The GASS form of group 1 instructions is:

ERR LS6 LPS SRS ETA2 INAG6 CIL.3
PTA MUT SCS RAS ETAS3 INA7 CiL-4
LS1T MUH LDS AOCS ETA4 cBC2 CILS
LS2 RSI1 LCS INA ETAS CcBC3 CIL6
CBC RS2 ADS OTA ETAG6 cBC4 CIL?
ETA CIL SBS HLT ETA7 cBCS AMOD
LS3 CTA STS ERRG INA2 cBC6 GMOD
INA3 CcBC7 CTAQ
INA4 CIL 1 XAQ
INAS CiIL.2 HLTG

GCGROUP 2 Fe e

The general form for group 2 is as follows:

OPN,X or OPN X
where X is a digit from 0 through 7 or a symbolic expression. The
value of the expression must be in the range of 0 through 7 or the in-
struction will be flagged with an R(range) error on the output listing
and the value 0 inserted.

This group of commands is weritten as follows:

NOP,X SRJ,X SIC,X IRJ,X SDC,X DRJ,X
SID,X ACJ,X SBU,X STP,X STE,X NOPG,X

GROUP 3 F E

Group 3 instructions are weritten in the general form:

OPN X or OPN,X
where X is a number from 0 through 6310 (or 0 through 778) or a
symbolic expression. The value of the symbolic expression must also
fall in the range specified for the preceding number given with three
exceptions. If the last letter of the mnemonic operation code is F, B,
or R indicating relative addressing and the expression can be reduced
to the form SYMBOL + # or SYMBOL - #, GASS will form the
difference of the symbolic location and the location of the instruction.
This difference will be accepied as E if it meets the limit on the size
of E.

5-2

The group 3 instructions are written as follows:

PN X
LPF X
LDD X
LcB X
sBl X
STR X
RAF X
ZJF X
ZJR X
OTN X
LRSS X

SCN X
LPB X
LDI X
LCR X
SBF X
SRD X
RAB X
NZF X
NZR X
EXF X
LLS X

LDN X
LPR X
LDF X
ADD X
sBB X
SRI X
RAR X
PJF X

LCN X
scD X
LDB X
ADI X
SBR X
SRFF X
AOD X
NJF X 2ZJB X
PJR X NJR X JPIX
HWI X SLS X ARS X
sSDCG,X SICG,X

ADN X
sSCl X
LDR X
ADF X
sSTD X
SRB X
AOI X

SBN X
SCF X
LCD X
ADB X
sTlI X
SRR X
AOF X
NZB X
JFI X

ALS X

LPD X
sceB X
LCI X

ADR X
STF X
RAD X
AOB X
PJB X
INP X

QRS X

LPI X

SCR X
LCF X
sBD X
sTB X
RAI X

AOR X
NJB X
ouT X
QLS X

GROUP 4 FE G
Group 4 instructions are written in the general form:
OPN X or OPN,X
where x is a number or symbolic expression with a value of 0

through 819119 or 0 through 17777g.

The group 4 commands are weritten as:

BLS X ATE X ATX X LPM X LPC X SCM X sScCC X
LDM X LDC X LCM X LCC X ADM X ADC X sSBM X
SBC X STM X STC X SRM X SRC X RAM X RAC X
AOM X AOC X JPR X IBI X IBO X EXC X BBC2 X
BEBC3 X BBC4X BBC5X BBC6X BBC7X ATE2X ATE3X
ATE4 X ATES5X ATE6X ATE7X ATX2X ATX3X ATX4X
ATXE5X ATX6X ATX7X

Bl12 X IBI3 X 1Bi4 X IBIS X IBl6 X 1B17 X

1BO2 X 1IBO3 X I1IBO4 X I1BOS5S X I1BO6 X IBO7 X

EXC2X EXC3X EXC4X EXC5X EXC6X EXC7X

RCJP X ZJRB X NZRB X PJRB X NJRB X UJRB X

BITJ X JRIB X JRPIB X LPIB X LPRBX sScCIB X
SCRB X LDIBX LDRBX LCIBX LCRBX ADIBX

ADRB X SBIBX SBRBX STIBX STRBX SRIB X

SRRB X RAIBX RARBX AOIBX AORBX LQIBX

LQRB X SQIB X SQRB X sSQC X MuUuBX MURB X

MUC X DVIBX DVRBX DvC X

GROUP 5 F EG
Group 5 instructions may be written in either of the following forms:

1. OPN X
2, OPN,x X

In form 1, X may be a number less than 217 or a symbolic ex-
pression which is evaluated to less than 217. The bank designation
which appears in the E portion of these instructions is supplied by
the symbol table in GASS.

In form 2, the address is split to bank designation and location with-
in bank. In this case, x is a bank designator which is a humber
from 0 through 37g or an expression which has a value in the same
range. The quantity X may be a number less than 213 or a sym-
bolic expression which is evaluated to a number less than 213,

Under option 1, the group 5 instructions are written as follows:

JPRG X DRJP X SRJP X ZJ X N2Z X PJ X NJ X

LP X SC X LD X LC X AD X sSB X ST X
SR X RA X AO X LQ X sSa X HW X MU X
DV X

Under option 2, the Group 5 instructions are written as follows:

JPRG,x X DRJP,x X SRJP,x X 2ZJ,x X NZ,x X PJ,x X
NJ,x X LP,x X SC,x X LD,x X LC,x X AD,x X
sSB,x X ST,x X SR,x X RA,x X AO,x X LQ,x X
sSQ,x X HW,x X MU, x X DV,x X

GROUP 6 F E G

Group 6 instructions which include Indexing are weritten in the gen-
eral form

OPN,l X
where | is a number in the range of 2 through 6310 (or 2 through
778) or a symbolic expression which when evaluated is in the
same range as the number. X is a number or symbolic expression
which has a value of 0 througk 819149 (or 0 to 17777g) .

The group 6 instructions are weritten as follows:

LPMX,l X SCMX,l X LDMX,I X LCMX,I X ADMX,lI X
SBMX,l X STMX,l X SRMX,l X RAMX,l X AOMX,l X
LQMX,I X SQMX,l X MUMX,l X DVMX,l X

Mnhemonic

APPENDIX A

PSEUDO INSTRUCTIONS

LUlse

BCD
BES
BNK
BLR
BSS
COMN
CON
DAF
DEC
EJECT
END
ENDT
ENTRY
EQU
EXTNL
FLX
GASS
IDENT
LiBAa
LIBS
LIST
LOCAL
LOCM
MASS
NOLIST
NONLC
OoCT
ORG
OsAS
PRG
REM
SPACE
WA\

Insert BCD characters

Reserve block of storage

Specifies bank number for address assignment
Reserve block of storage

Reserve block of storage

Declare array in common

Set location counter

Insert constants

Insert single precision decimal constants
Eject a single page on the output listing
Specify the end of a subprogram
Specity the end of a subprogram

Define entry points in a subprogram
Equate an undefined symbol to a defined symbol
Define external symbols

Inserts flexowriter coded characters
Change input to GASS format

ldentify the subprogram by name
Includes library routines

Includes library routines at run time
Resume output listing

Begins local region

Specifies beginning address of common storage
Perminates assembly process

Suppress output listing

Perminates local region

Insert octal constants

Set location counter

Change input to OSAS format

Set location counter

Insert remarks on the output listing
Insert spaces in the output listing
Causes pause in assembly process

4-19
4-14
4-22
4-13
4-13
4-15

| AN R A NN IR Y I R B | | J D R R A R A B |
- = B = =N
CoOUP ONO =0 O N0 op

bbbbbbbb#bbf&bbbbbkbbb
N = ODN==DNDDNDDDINDOGV

|
N
(%)

4-21

4-23
4-27
427
4-5

NOTE :

000
000
000

000
000

000
000

000

000

001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
002
003

004
005

EB - Entire Bank;

E
00
0X
1

2X
3X

4Xx
5X

6X

7

00
01
02
03
04
05
05
07
10
11
12
13
14
15
20
30
4x
5X
6x
XX
XX

XX
XX

APPENDIX 3

MACHINE INSTRUCTIONS
EM - Entire Memory

<

X X

Mnemonic

Operation

ERR
NOP
SRJ

SIC
IRJ

sSDC
DRJ

SID
ACJ

BLS
PTA
LSt

LS2
cBC
ATE
ATX
ETA
LS3
LS6
MUT
MU H
RS1

RS2
CIL

CTA
sBU
sSTP
STE
LPN
SCN

LDN
LCN

Error Stop

No OP

Set Relative Bank Control;
Jump

Set Indirect Bank Control

Set Indirect and Relative Bank
Controls; Jump

Set Direct Bank Control

Set Direct and Relative Bank
Controls; Jump

Set Indirect and Direct Bank
Controls

Set Direct, Indirect, and
Relative Bank Controls; Jump
Block Store

P to A

L.eft Shift One

L.eft Shift Two

Clear Buffer Controls

A to BER

A to BXR

BER to A

L eft Shift Three

L_eft Shift Six

Multiply A by 10,4

Multiply A by 10010

Right Shiit One

Right Shift Two

Clear Interrupt L_ockout

Bank Controls to A

Set Buffer Bank Control
Store P at L.ocation 5X

Store BER at 6X, A to BER
L.ogical Product No Address
Selective Complement, No
Address

lL.oad No Address

Load Complement, No Address

M

006
007
010
011
o1
012
012
013
013
014
015
015
016
016
017
017
020
021
021
022
022
023
023
024
025
025
026
026
027
027
030
031
031
032
032
033
033
034
035
035
036
036
037

im

XX
XX
XX
00
XX
00
XX
00
XX
XX
00
XX
00
XX
00
XX
XX
00
XX
00
XX
00
XX
XX
00
XX
00
XX
00
XX
XX
00
XX
00
XX
00
XX
XX
00
XXX
00
XX
00

[0]

Mnemonic Operation

ADN Add No Address

SBN Subtract No Address

L.PD L.ogical Product Direct

L.PM L.ogical Product Memory

(| L. ogical Product Indirect
LPC L.ogical Product Constant
_PF L_ogical Product Forward
LPS L.ogical Product Specific
LPB L_ogical Product Backward
sCD Selective Complement Direct
SCM Selective Complement Memory
SCl Selective Complement Indirect
SCC Selective Complement Constant
SCF Selective Complement Forward
SCSs Selective Complement Specific
sCcB Selective Complement Backward
LDD L.oad Direct

LDM L.oad Memory

L.DI L oad Indirect

LDC L.oad Constant

LLDF L.oad Forward

LDS L.oad Specific

LDB L.oad Backward

LCD L.oad Complement Direct
LCM L_oad Complement Memory
LCilI L_oad Complement Indirect
LCC Load Complement Constant
LLCF l.oad Complement Forward
LCs L.oad Complement Specific
LCB L.oad Complement Backward
ADD Add Direct

ADM Add Memory

ADI Add Indirect

ADC Add Constant

ADF Add Forward

ADS Add Specific

ADB Add Backward

sBD Subtract Direct

SBM Subtract Memory

=1=1 Subtract Indirect

sBC Subtract Constant

SBF Subtract Forward

sBS Subtract Specific

im

037
040
041

041

042
042
043
043
044
045
045
046
046
047
047
050
051

051

052
052
053
053
054
055
055
056
056
057
057
060
061

062
063
064
065
066
067
070
071

071

072
072

im

XX
XX
00
XX
00
XX
00
XX
XX
00
XX
00
XX
00
XX
XX
00
XX
00
XX
00
XX
XX
00
XX
00
XX
00
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
00
XX
00
XX

®

<X

Mnemonhnic

Operation

sBB
sTD
STM
STI
STC
STF
STS
STB
SRD
SRM
SRI
SRC
SRF
SRS
SRB
RAD
RAM
RAI
RAC
RAF
RAS
RAB
AOD
AOM
AOI
AQOC
AOF
AOS
AOB
ZJF
NZF
PJF
NJF
ZJB
NZB
PJB
NJB
JPI
JPR
JFI
1=]]
INP

B-3

Subtract Backward
Store Direct
Store Memory
Store Indirect
Store Constant
Store Forward
Store Specific
Store Backward

Shift Replace
Shift Replace
Shift Replace
Shift Replace
Shift Replace
Shift Replace
Shift Replace
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add
Replace Add

Direct
Memory
Indirect
Constant
Forward
Specific
Backward
Direct
Memory
Indirect
Constant
Forward
Specific
Backward
One Direct
One Memory
One Indirect
One Constant
One Forward
One Specific
One Backward

Zero Jump Forward
Nonh-Zero Jump Forward
Positive Jump Forward
Negative Jump Forward
Zero Jump Backward
Non-Zero Jump Backward
Positive Jump Backward
Negative Jump Backward

Jump Indirect
Return Jump

Jump Forward Indirect

Initiate Buffer
Normal Input

Input

=

073
073
074
075
075
076
076
076
077
077
077
077
077
100
100
100
100
100
100
100
100
100
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101

E

00
XX
YY
00
XX
00
XX
77
00
oY
YO
Y'Y
77
00
oX
1Y
2Y
3Y
4Y
SY
6Y
7Y
oY
1Y
2Y
3Y
60
61
62
63
64
70
71
72
73
74
75
76
77

10

< <X

X X

NXXX XXN

XXXXXXXX X

Mnemonic

Operation

IBO
ouT
OTN
EXC
EXF
INA
HWI
oTA
HLT
sSLS
sLJ
sSJs
HLT
ERRG
NOPG
BBCY*
ATEY*
ATXY*
ETAY*
MTMY*
IBIY*
IBOVY*
EXCY*
INAY*
CcBCY*
CIL Y**
AMOD
GMOD
CTAQ
RCJP
XAQ
ZIRB
NZRB
PURB
NURB
UJRB
BITJ
JRIB
JPIB

Initiate Buffer Output

Normal Output

Output No Address

External Function Caénstant
External Function Forward
Input to A

Half Write Indirect

Output From A

Hait

Selective Stop

Selective Jump

Selective Stop, Jump

Halt

Error Stop

No Op

Set Buffer Bank Control,Channel Y
A to BER, Channel Y

A to BXR, Channel Y

BER, Channel Y, to A
Memory to Memory, Channel Y
Initiate BF R Input, Channel VY
Initiate BF R Output, Channel Y
External Function, Channel Y
Input to A, Channel Y

Clear Buffer Controls, Channel Y
Clear Interrupt Lockout, Channel Y
Select A Maode

Select G Mode

Bank Controls to AQ

AQ to Bank Controls; Jump
Interchange A and Q@

Zero Jump Relative - EB
Non-Zero Jump Relative - EB
Positive Jump Relative - EB
Negative Jump Relative - EB
Unconditional Jump Relative - EB
Bit-by~-Bit Jump

Jump Relative Indirect - EB
Jump Indirect - EB

* ¥ ,which is included in the operation code, must be a digit
from 2 through 7,
** Y ,which is included in the operation code, must be a digit

from 1 through 7.

B-4

Im

103
104
105
106
107
110
111

111

111

113
114
115

115

115

117
120
121
121
121
123
124
125
125
125

127
130
131
131
131
133
134
135
135
135
137
140
141
141

im

ZZ
2Z
2z
ZZ
ZZ
ZZ
00

01

YY
Y'Y
22Z
00

01

YY

YY
2Z
00
o1
YY
YY
ZZ
00
o1
YY

YY
Z2Z
00
o1
YY
YY
ZZ
00
01
YY
YY
22
00
01

16

XXXX XXXX X X XX XXXXXXXXX

XXX XXXX XXXX

Mnemonic

Operation

JPRG
ZJ

NZ

PJ

NJ

P
LPRIB
LPRB
LPMX
ARS
SC
sSCiB

SCRB
SCMX

ALS
LD
LDIB
LDRB
LDMX
QRS
We'
LCIB
LCRB
LCMX

QlLs
AD
ADIB
ADRB
ADMX
LRS
sB
sBIiBs
SBRB
SBMX
LLS
ST
STIB
STRB

Return Jump - EM

Zero Jump - EM

Non-Zero Jump - EM
Positive Jump. - EM

Negative Jump - EM

l.ogical Product - EM
l.ogical Product Indirect - EB
L.ogical Product Relative - EB
L_ogical Product Index

A Right Shift

Selective Complement - EM
Selective Complement

Indirect - EB

Selective Complement
Relative - EB

Selective Complement Memory
Index

A Left Shift

LLoad - EM

L.oad Indirect - EB

L oad Relative - EB

L.oad Memory Index

@ Right Shiit

l.oad Complement - EM
L.oad Complement Indirect - EB
LLoad Complement Relative - EB
Load Complement Memory
Index

Q Left Shift

Add-EM

Add Indirect - EB

Add Relative - EB

Add Memory Index

AQ Right Shift

Subtract - EM

Subtract Indirect - EB
Subtract Relative - EB
Subtract Memory Index

AQ L.eft Shift

Store-EM

Store Indirect - EB

Store Relative - EB

Im

141
143

144
145
145
145
147

150
151

151

151

1583
154
155
155
155
157
160
161

161

161

162
164
165
165
165
166
167
170
171

171

171

172
173
174
175
175
175
176
177

im

Y'Y
ZZ

22z
00
01
YY
ZZ

ZZ
00
01
YY
ZZ
2Z
00
01
Y'Y
2z
Z2Z
00
01
Y'Y
00
ZZ
00
o1
YY
00
22
22
00
01
YY
00
ZZ
ZZ
00
o1
YY
00
XX

[0}

XXXXXXXXXXXXLXXXXXXXXX XXXX XXXX XXXXX XX

Mnemonic

Operation

STMX
SRJP

SR
SRIB
SRRB
SRMX
DRJP

RA
RAIB
RARB
RAMX
SDCG
AO
AOIB
AORB
AOMX
SICG
L
LQis
LQRB
LQMX
LQcC
SQ
sQiBs
SQRB
sQMX
sQQC

MU
MUIE
MURB
MU MX
MUC
HILO
DV
DVIB
DVRB
DVMX
DVvC
HLTG

Store Memory Index

Set Relative Bank Control;
Jump-EM

Shift Replace - EM

Shift Replace Indirect - EB
Shift Replace Relative - EB
Shift Replace Memory Index
Set Direct and Relative Bank
Controls; Jump-EM

Replace Add - EM

Replace Add Indirect - EB
Replace Add Relative - EB
Replace Add Memory Index
Set Direct Bank Control - EM
Replace Add One - EM
Replace Add One Indirect - EB
Replace Add One Relative - EB
Replace Add One Memory Index
Set Indirect Bank Control —-EM
Locad Q - EM

L oad Q Indirect - EB

Load @Q Relative - EB

L.oad Q Memory Index

L_ocad @Q Constant

Store Q - EM

Store Q Indirect - EB

Store Q Relative -~ EB

Store Q Memory Index

Store Q Constant

Half Write - EM
Multiply - EM

Multiply Indirect - EB

Multiply Relative - EB

Multiply Memory Index

Multiply Constant

High-L.ow Comparison

Divide - EM

Divide Indirect - EB

Divide Relative - EB

Divide Memory Index

Divide Constant

Halt

APPENDIX C

ERROR CODES

Address Field Error. An A error will occur If there is
a format error In the address field or In an individual ad-
dress term,

Duplicate Symbol., A D error results If a symbol occurs
more than once In a location fleld of a subprogram. The
symbol will be Ignored on the second and subsequent
occurrences,

Full Symbol Table. No assignment is made Iif a table
entry would cause overflow of the symbol table.

ldent Error., AnNn | error will occur If an IDENT record
appears anywhere except as the first record of a sub-
program,

Location Term Error. An L error occurs If an L term
appears where none is allowed, if an L term Is absent
where one is requlired, or If an lllegal type symbol appears.

Operation Code Error. An O error occurs if an lllegal
operation code is used. Zeros are substituted,

Range Error. The E term of assembled machine OF code
is greater than 774.

Ulndefined Symbol. A symbol referenced in the address
field has not been defined; zeros are substituted.

APPENDIX D

SPECIAL. CODES FOR TYPE ENTRIES

BCD CHARACTERS TYPE EQUIVALENT
*R Carriage Return

*U Shift to Upper Case
*L Shift to Lower Case
*B Backspace

*T Tab

*X !

*A !

*S ;

CONTROL DATA

CORPORATION 8100 34th Avenue South, Minneapolis 20, Minnesota

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	D-01
	xBack

