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CHAPTER 1 

INTRODUCTION 

The Control Data 160 FORTRAN system has been developed to alleviate the 
difficulties normally associated with machine-language coding. The form 

of its source language resembles the semantics and syntax of the more 

familiar mathematical notations. 

The 160 FORTRAN compiler translates this language to a form intelligible 

to the 160 computer. The result is a program which precisely reflects 

the intent of the statements comprising the original source program. At 

no point in the process, from statement of the problem to its solution, 

is the user required to have more than a cursory knowledge of the computer. 

This manual describes in detail all phases of the system and how they 

must be applied to effect problem solutions. 

A short glossary is provided at the back of this manual; however, it may 

be well to discuss the usage of a few words before getting into the 

detailed descriptions. Within 160 FORTRAN, numbers may be represented 

in two distinct ways. Integers or fixed point numbers (the terms are 

used interchangeably) are whole numbers from 0 to 2047 and the negatives 

of these numbers. Floating point numbers are numbers consisting of two 

parts; one part contains the significant digits of the number; the other 

part contains a scale factor. Floating point numbers ~~2 take on the 

value zero, yalues in the range from (and including) 10 to {but ex-
. 3 

eluding) 10 , and the negatives of these values. 

The term "constant" is used only in connection with positive numbers or 

zero. A negative number may be considered an arithmetic expression, but 

never a constant. The term "variable" is used to mean a single quantity 

whose value may change from time to time. Variables may be lumped 
together in "arrays", but in this manual such an array is never called 

a variable. One element of an array is a variable, a subscripted variable. 

A variable which is not an element of an array is known as a simple vari­

able. The term "operand" is used to mean something that is being operated 

on, usually by an arithmetic operator (+, -, etc.). Variables and con­

stants can be used as operands in arithmetic expressions. 
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There are many cross references to other sections and chapters within this 

manual. The user who reads through from the beginning will probably find 

it unnecessary to look up the references. Certainly it would be best not 

to go to the forward references until the intervening material has been 

read. The manual will also be found to be sufficiently repetitious to 

allow the more experienced user to consult only those sections in which 

he is interested at the moment. 
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CHAPTER 2 

FORTRAN LANGUAGE MEDIA 

2 .1 Coding Form 

The FORTRAN coding form is illustrated in Figure 1. 

The forms are available as 8-1/2 by 11 inch padded sheets. There are 80 
columns in which the FORTRAN characters (including blank) are to be 
written, one character per column. The columns are numbered at the top 
and bottom of the page and the form contains lines and captions to indicate 
the correct use of each column. 

2,2 Statements 

FORTRAN statements, the instructions and descriptions in the FORTRAN lan­
guage, must be written in columns 7 through 72. Each statement must begin 
on a new line. Although there must only be one statement on a line, any 
statement may extend over as many lines as necessary or desirable. Blanks 
are ignored and may, therefore, be used freely in FORTRAN statements to 
enhance readability. Do not end any line with slash (/) (section 2.8). 

2.3 Statement Type 

Certain statements must have a "type" designation. The character which 
designates the type must be written in column 1 of the first or only line 
of the statement. 

2.4 Statement Number 

Any statement may be assigned a statement number for identification, but 
only those statements to which reference is made from elsewhere in the pro­
gram are required to have numbers. The statement numbers need not be in 
any sequence, but within the main program or within any subroutine, no two 
statements are permitted to have the same number. If there is no type 
designation other than blank, digits of the statement number are written in 
any columns from 1 through 5 of the first or only line of the statement. If 
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there is a type designation other than blank, the statement number is limited 
to columns 2 through 5 of the first line of the statement. A statement 

number must not be greater than 2047. 

2.5 Continuation 

Column 6 is used to indicate continuation of a statement from line to line. 

If a statement is contained on one line, column 6 must be blank or zero. If 

the statement occupies more than one line, the first line of the statement 

must have a blank or a zero in column 6. All subsequent lines of a state­

ment must have some FORTRAN character other than blank or zero in column 6. 

2.6 Identification Field 

Columns 73 through 80 are ignored in the translation process. Many pro­

grammers use these columns for identification purposes when the program is 

to be transcribed on punched cards. 

2.7 Punched Cards 

Although 160 FORTRAN does not use punched cards, the coding form was de­

signed with 80-column cards in mind. Each line on the coding form corre­

sponds to one card. The terms "line" and "card" are often used inter­

changeably. 

2.8 Punched Paper Tape 

Punched paper tape is used for both the input and output media in the 160 

FORTRAN system. Input tape is prepared on a Flexowriter. The Flexowriter 

operator punches certain characters on the tape which are not included in 

the FORTRAN character set, but which affect the translation process. 

"Upper Case" and "lower case" codes are needed to distinguish between some 

special characters, but the case codes do not take up a column of the 

coding sheet. Until the first case code in the program is encountered, it 

is assumed that all character codes are in lower case. 

The "tab" code does not take up a column, but it has the effect of spacing 

over to column 7. The "carriage return" code must be used to end a line 

of coding. It does not occupy a column and it may be used whenever nothing 

remains in the line other than blanks. If the "tab" code is used at column 

6 or beyond, all punching is ignored until the next "carriage return" code. 
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For the convenience of the Flexowriter operators, the 160 FORTRAN compiler 

will ignore any line ending in slash followed by carriage return. Therefore, 

the programmer must not write a slash (/) as the last character on any line 

of the coding form. 

All the Flexowriter codes and the space they occupy within the computer must 

be taken into consideration when planning input and output to be under con­

trol of the FORTRAN Program. 

160 FORTRAN CODING FORM 
PROGRAM 
ROUTINE 

FORTRAN STATEMENT 
T ci-----
y STATE- o 

MENT 
NO. 

O=ZERO l=ONE 

!1'=ALPHAO I= ALPHA I 

CONTROL DATA 
~ ' ' "' 

------- - --------------

NAME 
PAGE 
DATE 

2 • TWO 

i-•ALPHAZ 

SERIAL 

NUMBER 

,_.~~-+-t--~~~~~--LJ J t 1 1 1 l l l l I Ll L.l. Ll l L J ...L __ LJ_L_LI I I I I I I I I l l l l l l l l l I 1 1 ~ _Ll_j __ j_ l L l i l l l ] l l ] 1 

1 J I; J _, __ Ll_J -1 J J l l l l_1 

_ 1 LJ __ -~~~~~ L__l_J _Ll 1Ll1 ,_l_l_!______l _ __L__l_J_[_J l_J_I J 1-Ll IL Ll~~~~~~l_l l J 1 j_J _ ____j_____L______J_ 1 1 l l L! _ 

""-+-+-~~~~-.LL l Ll I 1 l ~ l L,_ l.1 L L__l__j L l I LI J l 1-. .. L_L~~~~~~~~-_J_J 1 1 l l l LJ_J_ _ ______j_l____l_ l J_ 1 L J l __ _l____L___j 

I 
'-+~~-+-+-~.J.__i___L_LJ__LLJ J l I l ;_i__.__J JI Ll .. 1.1 LL! LJ l.l--1~~~~~~....l.____!___l____l__I I l I J J l J_,_, __ _;____l___;_ _ _i_ _ _l_ L_ l ~--'--~ 

l _l .L___L_J_____J____J [____!_ _ _! 

>-+~~-+-+-~~~~~~ .l I l 1 1-LLL_l _ _!_LLJ_j_LLl J _l_J-1.l Ll~~~~~~~L_l 1 I l 1 J J I J J LL l l l I l 

I I l _L~~~~~ l l J I I I 1 I l J l L_ _ _L _ _L_J_LL LI 1 I I LJ J LL I l LL_L _ _l____L__l__J 1 l l l I ! l J 1 l 1 I _LLLl l l J l J 

~~~~~_j_ _J _J_J l _l I l I l I l L_l_____l_____J_____ _J I I l L 1 1 l 1 l _j l I i_j_____j______j_L__, l l J [JllLt_J__~_____L_j_j_J 

_L_LL _ ____j______j___J LI l I I l I I l L l J_LLL_l__J J____j__l_____j_____j___Ll_L_l_l_~~~~~ J______l____j__, l l l J J l l ~ J _J l 

l l _L_l_l_J l I LJ l J I l I l ~ _ _L_'~· __L_-'---~-~ 

l .LJ __ __l,__l______L__.i__J_ l l J_l l l L-1 I 11 l LL_l_ _ __j____L___j_____j_______l_l_J__l_l LJ_ l _ _l_i_ l__L_l____L___L___ ___ L 

>-+~~-++-~~~~~ _l__l Ll l_l _ _l_____l 1 I I l .LJ __ l_J___l___J____L__l LLl_-1_1 l_L_l_ 1-J_Ll_____.____.._l I I< 

L 1 l l__J__J___J___J___j____ l_J I 1 1 1 _l___l_L__J______j____j_J__l_ I l 1 I I l l l 1 l-1 _J______j______l 1 I I I 

_ _L__l_ ""-+-+~~~~~_J __ J I J_ J l I l 1---1 Ll _ _l__J______J__J___L__L_l_J_LI l J _ _L _L_L_l_ L__L____l____J_ _ _j_____L____L__J_l J l I 1 l l l J 
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CHAPTER 3 

FORTRAN CHARACTERS 

3.1 Standard FORTRAN II Characters 

The FORTRAN language is written using the letters A through Z, the digits 
0 through 9, and the special characters, comma, period, blank, *, /, +, 
-, =, and left and right parentheses. Notice in Figure 1 that standards 
are prescribed for writing the digits zero, one, and two, and the letters 
I, 0, and Z, in order to avoid confusion. 

3.2 Differences in 160 FORTRAN Characters 

The Flexowriter has no asterisk (~'(); therefore, the Flexowriter apostrophe 
(') is read and written by the compiler in place of the asterisk. Flexo­
writer operators must be instructed to punch apostrophe in positions which 
correspond to asterisk on the coding form. 

FORTRAN II ignores blanks within statements (columns 7 through 72) except 
within Hollerith Fields. In 160 FORTRAN, blanks are ignored within state­
ments except that they must not occur in H fields (sections 9.11 and 9.18). 

For some input/output conversion (sections 9.8 and 9.16) all Flexowriter 
codes are acceptable, whether or not they are FORTRAN characters. 
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CHAPTER 4 

THE ELEMENTS OF 160 FORTRAN 

4.0 Introduction 

The 160 FORTRAN language will be described in terms of the standard 
FORTRAN characters without regard to differences introduced by the 
use of Flexowriter tape. Wherever the discussion is in terms of Flex­
owriter codes, this will be clearly indicated by context. 

4.1 Primitive FORTRAN Words 

The following words have special meanings in FORTRAN: 

ASSIGN INPUT 
CALL NONLOCAL 
CONTINUE OUTPUT 
DIMENSION PAUSE 
DO PUNCH 
END READ 
FORMAT RETURN 
GOTO STOP 
IF SUBROUTINE 

GOTO may be written GO TO and NONLOCAL may be written NON LOCAL since 
spaces are ignored in FORTRAN statements. 

4.2 Names 

Names are used to identify simple variables, arrays, subroutines, and 
functions. Names consist of from 1 to 6 letters and digits. The first 
character must be a letter. The primitive FORTRAN words must not be used 
as names and they must not occur as the leading characters of any name. 
Each name may be used to identify only one simple variable, array, subroutine, 
or function. 
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EXAMPLES: B58 
MATRIX 
SORT 
SINF 

There are further restrictions on names depending on whether they are used 
to identify simple variables, arrays, subroutines, or functions. These 
additional restrictions will be explained in the appropriate sections. 

4.3 Integer Constants 

Integer constants are written using from 1 to 4 digits. They must not con­
tain a period (decimal point) between digits nor at either end. They may 
have values from 0 through 2047 inclusive. 

EXAMPLES: 1 
2047 

23 

4.4 Boolean Constants 

2046 
17 

1999 

Boolean constants are octal numbers which represent patterns of twelve bits 
(binary digits). They are written using from 1 to 4 digits, where each 
digit is a number from 0 through 7. The following examples show a twelve-bit 
binary number on the left and the corresponding Boolean constant on the 
right. 

EXAMPLES: 000000000000 
111111111111 
101010101010 
011011011011 
000000000100 

0 
7777 
5252 
3333 

4 

Boolean constants can occur only in Boolean statements. Boolean statements 
are indicated by placing the letter B in column 1 (the type column) of the 
first line of the statement. 

Notice that many Boolean constants look exactly like integer constants. 
They are distinguished entirely by context. Boolean statements can en­
compass both integer constants and Boolean constants in distinct roles, 
This will be explained in the section on Boolean expressions (section 5.5). 
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4.5 Floating Point Constants 

A floating point constant may be written as a string of digits with one 
leading, trailing, or embedded period which indicates the decimal point. 
The decimal point must be present explicitly. 

EXAMPLES: 2. 
2.5 
. 2 
0003.14159 

A floating point constant may also be written as described above, followed 
by one of the following: 

EXAMPLES 

E and a one or two-digit integer 
E + and a one or two-digit integer 
E - and a one or two-digit integer 

314159.E-5 
.0000314159E05 

The number following E indicates the power of ten to be multiplied by the 
number preceding E, to arrive at the value for the floating constant. Al­
though any number of digits (at least one) may precede the E, the permissible 
values for floating constants are zero and values in the range from, and 
including, l.E-32 to, but excluding l.E31. Except for positioning the 
decimal point, only the first eight significant digits are considered. 

4.6 Simple Integer Variables 

Quantities whose values may change during the operation of a FORTRAN program 
are known as variables. If such a variable will always be an integer in the 
range from -2047 to 2047, inclusive, it may be represented by a simple 
integer variable. Simple integer variables are represented by names of from 
1 to 6 letters and digits which begin with one of the letters I, J, K, L, 
M, or N. General rules for the formation of names are given in section 4.2. 
The names of variables are further restricted in that, if the name consists 
of more than three characters, the last one must not be F. The following 
are examples of simple integer variables. 

EXAMPLES: N 
MARY 

NACL 

10 

K2S04 
J567A 
LOOK 



4.7 Simple Floating Point Variables 

Simple floating point variables may take on values greater than -l.E31 and 

less than l.E31. They are identified by names of 1 to 6 letters and digits 

which begin with a letter other than I, J, K, L, M, or N. The names of such 

variables follow the general rules given in section 4.2; and if the name 

consists of more than three characters, the last one must not be F. The 

following are examples of simple floating point variables. 

EXAMPLES: A 

x 
U235 

4.8 Arithmetic and Boolean Operators 

CHOSEN 

PDQ 

RB47 

There are two types of operations in 160 FORTRAN, arithmetic and Boolean. 

The FORTRAN operators and their arithmetic and Boolean meanings are 

sununarized in Figure 2. In arithmetic A**B means A raised to the power B. 

Multiplication must always be indicated by the *operator. 

The operators are considered Boolean only if they occur in statements with 

type designation B (in column one of the coding form) and not always then, 

For instance, subscripts are never Boolean, even if they are present in 

Boolean statements. The details of the "not always then" are explained in 

section 5.5. Boolean operators apply to constants and integer variables 

considered as patterns of 12 binary digits (bits) since these quantities 

are stored in computer words which are 12 bits long. In Boolean expressions, 

I**J means shifting the bit pattern represented by I, J places to the left, 

The shift is end around, which means that bits leaving the pattern at the 

left reappear at the right. If J is negative, that is, if the bit pattern 

of J has a one at the left, then I is shifted right by -J, the complement 

of J. -I means the complement of I, that is, the pattern obtained by 

changing all the zeros of I to ones and all the ones to zeros. The other 

three Boolean operators are logical connectives known as AND (*), exclusive 

OR (/), and inclusive OR (+). Each of these operators applies, bit by bit, 

to the two twelve-bit patterns represented by the expressions on either 

side. Figure 3 consists of three operations tables. For bit values shown 

at the left and top, the intersection of row and column shows the result of 

the indicated Boolean operation. Figure 4 shows some examples of the re­

sults of Boolean operations. 
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4. 9 Subscripts 

Subscripts are used, normally, to designate a particular element of an array 

(which is explained in the next section). A subscript is written in any one 

of the following seven forms: 

n 

i 

m '"}~ i 

i + n 

i - n 

m -/( i + n 

m "'k i - n 

where m and n represent integer constants and i represents an integer 

variable. The operators are to be understood in the arithmetic sense even 

if the subscript occurs in a Boolean statement. The value of a subscript 

must be kept within the range 1 to 2047, inclusive, whenever the statement 

containing the subscript is being executed. In general, subscripts are more 

severely restricted. Each subscript must stay within the corresponding 

range assigned at the beginning of the program. The DIMENSION statement, 

explained in section 7.1, is used to assign these ranges. 

EXAMPLES: 23 
N 

16 ,'( KON 

L99 + 2047 

4.10 Arrays, Subscripted Variables 

J9F - 165 
7 -/( MQ + 16 
1000 -/( LOLA - 2 

An array is an associated group of variables called by a single name. The 

naming rules for arrays are the same as those for simple variables. An 

array name is 1 to 6 letters or digits, the first of which is a letter. It 

must not end with F if it is longer than three characters. An integer array, 

or array of integer variables, must start with I, J, K, L, M, or N. A 

floating point array must start with some other letter. 

A subscripted variable is one element of an array. It is designated by the 

array name followed by one, two, or three subscripts, enclosed in paren­

theses and separated by commas. There are three forms, depending on the 

number of dimensions of the array: 

12 



a (s) 

a (s,t) 
a (s,t,u) 

where a represents an array name and s, t, and u represent subscripts. 

EXAMPLES: VECTOR (25 ~·~ MOM - 17) 

MATRIX (KILL - 99, I + 3) 
TENSOR (8 -:~ JOY, K9, 88) 

4.11 Integer Variables 

The term integer variable will mean either a simple integer (fixed point) 
variable (section 4.6), or a subscripted integer (fixed point) variable 
(section 4.10). 

EXAMPLES: INDEX 

KARD (80) 

MATRIX (I,J) 

4.12 Floating Point Variables 

A floating point variable will mean either a simple floating point 
variable (section 4.7) or a subscripted floating point variable (section 

4.10). 

EXAMPLES: A 

EMTRX (MROW,NCOL) 

x (3,5,27) 

4.13 Integer Operands 

An integer operand is an integer variable (section 4.11) or an integer con­
stant (section 4.3). 

EXAMPLES: 99 

I 

J(K,L,M) 

13 



4.14 Boolean Operands 

A Boulean operand is an integer variable (section 4.11) or a Boolean constant 
(secticrn 4.4). Boolean operands are distinguished from integer operands in 
that they occur only in Boolean statements, which are distinguished by having 
type designation B. 

EXAMPLES: 7777 
I 
J(7,8,9) 

Note that the subscripts which may help to identify particular Boolean 
operands are not themselves Boolean. 

4.15 Floating Point Operands 

A floating point operand means a floating point constant (section 4.5), a 
~lc~ting point variable (section 4.12), or a function (section 5.4). 

EX,IMPLES: 3 .14159 
A(9,M) 
SINF(B + C) 

FORTRAN Arithmetic 
Operator Operation 

constant 
array element 
function 

Boolean 
Operation 

-1-.-k Exponentiation Left Shift 

* Multiplication AND 

I Division Exclusive 

+ Addition Inclusive 

OR 

OR 

- Subtraction Complementation 

Figure 2. 



"'i': 0 1 I 0 1 + 0 1 

0 0 0 0 0 1 0 0 1 

1 0 1 1 1 0 1 1 1 

Figure 3. Boolean Operation Tables 

Left Boolean Right Effective 
Operand Operator Operand Result 

000001101010 ** 000000000011 001101010000 

111000111000 ~'( 000000111111 000000111000 

111000111000 I 000000111111 111000000111 

111000111000 + 000000111111 111000111111 

- 000000111111 111111000000 

Figure 4. 
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CHAPTER 5 

ARITHMETIC EXPRESSIONS AND OTHER PHRASES 

5.0 Introduction 

This chapter discusses the constructions in 160 FORTRAN which cause 
manipulation of operands. In general the operations available are those o~ 
arithmetic and of Boolean algebra. There are also special procedures, or 
sequences of operations, known as functions and subroutines. The use of 
functions will be described in this chapter, but discussion of subroutines 
will be deferred until chapter 8. 

5.1 Arithmetic Expressions 

The arithmetic operators have been discussed previously in section 4.8. 
Exponentiation means raising to a power. For example, ALPHA**3 means ALPHA 
cubed, or ALPHA raised to the third power. Division of one integer (fixed 
point) operand by another integer operand yields a truncated integer result, 
but only if every operand in the expression is fixed point. For example, 
8/3 yields 2 as a result. 

Arithmetic expressions are made up of strings of operands connected with 
operators. Operands and operators may be grouped by the use of paren­
theses. Within a group, the ordinary rules of precedence apply: exponen­
tiation is done first, followed by multiplication and division, followed 
by addition and subtraction. Within the rules of precedence, operations 
are performed starting at the left. In the following examples, assume that 
3 is the current value of INDEX. 

EXAMPLES: INDEX * 3/2 
INDEX .,, (3/2) 

result is 4 
result is 3 

Note that multiplication must be indicated by the ~'< operator. There is no 
operation in FORTRAN expressed by placing operands or expressions next to 
each other. In any arithmetic expression, an arithmetic operator must 
stand between any two operands. This is not mitigated by the presence 
of parentheses. An operand must stand between two operators unless a left 
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parenthesis stands between them and the operator on the right is a minus sign. 

Parentheses may be included in an expression only if the number of left 

parentheses equals the number of right parentheses. 

The following examples illustrate the various rules governing the order of 

evaluation. Processing is described step by step in some of the examples. 

EXAMPLES: 

Operator Priorities 

a. Raise C to the D power and store in temporary location TEMP 1. 

b. Divide B by the results of (a) and store in TEMP 1. 
c. Multiply E times F and store in TEMP 2. 
d. To A, add the results of (b), and subtract the results of (c). 

Left to Right Rule 

A ~'< B/C ~'< D 

a. A is multiplied by B. 
b. The results of (a) are divided by C. 
c. The results of (b) are multiplied by D. 

Parentheses Evaluation Rule 

((A + B)/C - D) * E 

a. Add B to A. 
b. Divide by C. 

c. Subtract D from the results of (b). 

d. Multiply by E. 

Operand Placement Rule 

RIGHT WRONG 
A~'<B+C AB + C 
A i~ (B + D) A(B + C) 

(A + B) i~ (C + D) (A + B)(C + D) 
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Operator Placement Rule 

RIGHT 
A>'< (-B) 

B/(-A) 

WRONG 
A ~·< -B 

B/-A 

Arithmetic expressions are either floating point or fixed point as defined 
in the next two sections. 

5.2 Integer Expressions 

Integer expressions form a subset of arithmetic expressions. They are 
strings of integer operands (integer variables and integer constants) 
separated by arithmetic operators and formed into groups by means of paren­
theses. In order to be more precise, consider the three following forms: 

i 
i a j 
(-i) 

where i and j represent integer operands (section 4.13) and a represents an 
arithmetic operator (section 4.8). Then the above three forms are integer 
expressions. 

EXAMPLES: 7 
K(3,2) 
J2 >'< 2 

3 - MAN(2 * I,J,K) 
(-28) 

(-KID) 

Let k and m represent integer expressions of the above three forms. Then 
the following three forms are also integer expressions: 

EXAMPLES: I + J + K + 3 
(I >'< J) 
(-1/J) 

k a m 
(k) 
(-k) 
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Extend the meaning of k and m to represent integer expressions of the above 
forms. This makes the definition of integer expression recursive, allowing 
strings of operands and operators, nestings, and groupings of any necessary 
complexity. 

EXAMPLES: (I + J) I (K + 3) 
(-I -J) * (-7 I K) 
(((K4 * I + K3) * I + K2) * I + Kl) * I + KO 

One more form completes the definition of integer expression: -k 

EXAMPLES: -2047 
-K I (3 * I - J) 
- (I ~·: I + J 'i: J) 

Every operand occurring in an integer expression must be an integer operand. 
Integer expressions may take on values only in the range -20lf7 to 2047 inclu­
sive. This means that the programmer must avoid calculations which exceed the 
permissible range at any step. (See section 5.1 for order of calculations.) 
Within an integer expression, division yields a truncated integer result. For 
example -15/4 yields -3 as the result. 

In evaluating fixed point expressions, exponentiation returns a value of 1 
when the right operand (the exponent) is non-positive; for positive exponents 
the algebraic value of the left operand (the base) is used. This differs from 
exponentiation in a floating point expression where the absolute value of the 
base is used (section 5.3). 

5.3 Floating Point Expressions 

Any arithmetic expression which includes at least one floating point operand is 
a floating point expression. Let g represent any floating point operand, that 
is, a floating constant, a floating variable, or a function (section 5.4). Let 
x represent any floating point or integer operand. Let a represent any arith­
metic operator. Then the following four fori,1s are floating point expressions: 

EXAMPLES: G 
2. 7E4 
1.1 + I 

g 
g a x 
:K a g 
(-g) 

3 ~·: ALPHA (I,J ,K) 
(-B29) 
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Let e and f represent floating point expressions of the above four forms. 

Let k represent any integer expression which does not begin with a minus 

sign (section 5.2). Then the following five forms are also floating point 

expressions: 

EXAMPLES: A ~'( B + c * D 

A ~'( B - I I J 
I I J I ( - X) 
( 5 ~·( ALPHA) 

(-3.2 I I) 

e a f 
e a k 

k a e 
(e) 
(-e) 

Now extend the meaning of e and f to include all nine of the above forms. 

·Then the definition of floating point expression becomes recursive, allowing 

expressions of any necessary degree of complexity. There is one more form 

which completes the definition of floating point expression: 

-e 

EXAMPLES: -.1 
-(A(I,J + 3) ** 4) 

Note that at least one operand occurring in each floating point expression 

must be a floating point operand. In evaluating floating point expressions, 

exponentiation uses the absolute value of the left operand even if the right 

operand is an integer. Floating point expressions are permitted to take on 

values only greater than -l.E31 and less than l.E31. Therefore, the pro­

grammer must avoid calculations which exceed the permissible range at any 

step. The order of calculations is given in section 5.1. In the calcula­

tion of integer expressions which form part of a floating point expression, 

the range -2047 to 2047 does not apply and division does not truncate the 

quotient. 

5.4 Functions 

A function is a special set of instructions which operates on one or more 

arguments, yielding a floating point result. There are eight func tir' n::; 
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presently available in 160 FORTRAN. Each installation can change its 160 

FORTRAN library tape to change, add, or delete functions. Details are given 

in another manual. 

A function is invoked by writing a function name followed by the arguments, 

enclosed in parentheses and separated by commas. Each argument must be an 

integer or floating point expression. A function name is a name (section 

4.2) of four, five, or six characters, the last of which is the letter F. 

EXAMPLES: SINF (BETA) 

COSF (-23 ** SKIDOO) 

SIGNF (I * A, - J * B) 

Every function yields a single floating point value depending on the value 

of its arguments. For purposes of explanation, a function is considered 

to be a floating point operand. Therefore, a function can be an element 

of a floating point expression as defined in section 5.3. 

EXAMPLES: K * SINF(BETA(2)) 
-SQRTF (X *~': x + y ~·d: Y) I 2 

Furthermore, the argument of a function can be a floating point expression 

which includes a function. 

EXAMPLE: SQRTF (SINF(ATANF(X))/COSF(ATANF(Y))) 

Figure 5 is a table listing the eight current function names with the 

appropriate number of acceptable arguments. The value of each function 

is also listed. The programmer is still responsible for ensuring meaningful 

values within the acceptable range. For instance, one should not attempt 

to obtain the exponent function of a value greater than 71. 

5.5 Boolean Expressions 

160 FORTRAN provides for manipulation of integer variables by means of 

Boolean operators as well as arithmetic operators. The operators used are 

the same FORTRAN operators displayed in Figure 2, but with their Boolean 

meanings. 

A Boolean operand is an integer variable (section 4.11) or a Boolean con­

stant (section 4.4). Let p and q represent any Boolean operands. Let b 
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represent one of the four Boolean operators**, *, /, or+ (shift circular 

left, AND, exclusive OR, inclusive OR). Note that b does not include 
complementation. Then the following three forms represent Boolean expres­

sions: 

EXAMPLES: 7777 
I(J,K) °{( M(J,K) 
(-MASK) 

p 
p b q 

(-p) 

Let r and s represent Boolean expressions of the above three forms. Then 
the following three forms also represent Boolean expressions~ 

EXAMPLES: 

r b s 
(r) 
(-r) 

I(K - 9) + J(K - 9) + J8(K - 9) 
(-MASKS (9 ~'( K) ~'d( 7) 

Notice in the above examples, that the subscripts of the variables are not 

Boolean expressions; they are integer expressions. Now extend the meaning 

of r and s to include Boolean expressions of all the above six forms. Then 

any necessary complexity of Boolean expressions is possible. There is one 

more form needed to complete the description of possible Boolean expres­

sions: 

-r 

An expression, of the proper form, is Boolean only if it occurs in a state­

ment which has a B in column 1 of the first line (or the only line) of the 

statement. This B is not part of the statement. It designates the type of 
the statement and is placed in the type column on the coding form. Any 

statement which does not have a B in the type column does not contain any 

Boolean expressions. Boolean expressions can occur in replacement state­

ments (section 6.1) and in IF statements (section 6.7). In such Boolean 

statements, the subscripts which identify variables are never Boolean and 

the statement numbers in the IF statement are never Boolean. Also state­

ment numbers in the statement number columns are never Boolean. 
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The Boolean operators are shown in Figure 2 in Chapter 4. Boolean operators 
operate on fixed point variables and octal constants considered as patterns 
of bits (binary digits). The value of a Boolean expression is the integer 
value represented by the resulting pattern of bits. The use or existence 
of "truth values" is not implied by the use of Boolean expressions. To 
understand the Boolean operations, it is ·necessary to be aware of the way 
that fixed point numbers are represented by object programs produced by the 
160 FORTRAN compiler. Positive numbers are represented in the binary 
system by 12 bits, the first bit of which is zero. Zero is represented by 
12 zero bits. Negative numbers are represented by the complements of the 
corresponding positive numbers. That is, to obtain a negative number, 
change all ones to zeros and change all zeros to ones in the corresponding 
positive number. Hence, the first bit of every negative number is one. 

The complement of zero, which consists of 12 zero bits, is 12 one bits. 
Thereby arises an ambiguity. In testing a value for negative, zero, or 
positive, the pattern of 12 ones is considered negative, but in performing 
arithmetic with such a value, it will be treated as zero. 

Except for the complement of zero, there is no question, in Boolean expres­
sions, of exceeding the permissible range for integers. In the following 
examples, the number on the left is the value of a FORTRAN operand, in 
decimal, and the pattern on the right is the representation of that value 
within the computer. 

EXAMPLES: 3 
-3 
2047 
-2047 

5.6 Boolean Operations 

000000000011 
111111111100 
011111111111 
100000000000 

The *~': operator in Boolean expressions means circular left shift. More 
specifically, I ** J means shift the pattern represented by I circularly 
to the left J places. If J is negative, the shift is -J places circularly 
to the right. Circular shift means that bits shifted off one end reappear 
at the other end. In section 5.5, we have seen the patterns representing 
3 and -3. The following examples show patterns which result from use of 
the shift operator. 
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EXAMPLES: -3 *"k 3 111111100111 
3 *"'\ 3 000000011000 

-3 ** (-3) 100111111111 
3 -,':·k (-3) 011000000000 

The complementation operator (-) in Boolean expressions is a unary operator; 
it can never stand between two operands unless it immediately follows a 
left parenthesis. 

In Boolean expressions, just as in arithmetic expres~ions, parentheses are 
used to enclose subexpressions which are to be evaluated and then treated as 
single operands in the larger expression. Within parenthetical groups, the 
precedence rules require that shift operations (**) be performed first, 
followed by AND and exclusive OR (* and /), followed by inclusive OR and 
complementation (+and -). Within the order established by the precedence 
rules, operations are performed from left to right. 

EXAMPLES: -I * J 
-I + J 

SINF (A) 

COSF (B) 

ATANF (C) 

EXPF {U) 

LOGF (V) 

SQRTF (W) 

ABSF (X) 

SIGNF (Y,Z) 

means 
means 

sine of A 

cosine of 

- (I i( J) 

(-I) + J 

radians 

B radians 

arctangent in radians 

e raised to the power 

(-Tr /2 to Tr /2) 

u I 

logarithm of !vi to the base e I 

square root of !wl 
!xi {ab so lute value of X) 

~l~I if Z is not negative, 
if Z is negative 

I e is the base of the natural logarithms. 

Figure 5. 
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CHAPTER 6 

160 FORTRAN STATEMENTS 

6.0 Introduction 

The basic statements of FORTRAN are those which calculate the values of 
variables based on the current values of other variables, examine the 
results, and change or interrupt the sequence of computations based on 
the results of these examinations. 

6.1 Replacement Statement, The Basic FORTRAN Statement 

The fundamental statement in FORTRAN causes the current value of a variable 
to be replaced by a new value, the currently calculated value of an expres­
sion. Let v stand for a variable; simple or subscripted, integer or 
floating point (sections 4.6, 4.7, 4.10, 4.11, 4.12). Let e stand for an 
expression; integer, floating point, or Boolean (sections 5.2, 5.3, 5.4, 
5.5). Then the following form represents the replacement statement: 

EXAMPLES: A(I,J) = 2.3 
I J * K 
N = N + 1 

v = e 

Note that this is not the same as an equation in the mathematical sense. 
The last example above causes N to take on a new value, 1 greater than the 
old value. 

To distinguish between Boolean and integer expressions at the right of the 
= sign, a B is placed in the type designation column of statements contain­
ing Boolean expressions (section 2.3). 

The replacement statement may consist of a floating point variable on the 
left and a Boolean or integer expression on the right. In such a case, the 
integer value of the expression is converted to floating point in order to 
replace the value of the variable. There may also be an integer variable 
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on the left with a floating point expression on the right. In this situation, 

the expression is evaluated in floating point. Any integer operands in the 

expression are converted to floating point for purposes of calculation. 

Then the value of the expression is converted and truncated to an integer 

for replacement as the new value of the integer variable on the left. 

Usually, however, no conversion is needed because the left hand variable is 

floating point and the expression is floating point, or because there is an 

integer variable on the left and a Boolean or integer expression on the 

right. 

The replacement statement, as any statement, may be given a statement number 

for reference (section 2,4). 

6.2 Limitation of Operands 

The number of different operands in a replacement statement is limited to 

63. This includes the variable to the left of the = sign, each constant, 

simple variable, array element, and function, whether in the main expres­

sion or in the arguments of functions. It does not include operands which 

occur only within subscripts, If the expression is floating point, the 

occurrence of exponentiation counts as one operand. Different elements of 

the same array count as separate operands. Even the same element, if sub­

scripted in different ways, will be considered as separate operands. 

The same limitation applies to the number of operands in the expression 

enclosed in parentheses in an IF statement (section 6.7). 

6.3 Unconditional Transfer of Control, GOTO Statement 

Normally statements in a FORTRAN program are executed sequentially in the 

order in which they occur on the coding sheets (hence, on the Flexowriter 

tape). However, certain statements interrupt this progression at a specific 

point and transfer control to a specific numbered statement in the program, 

Statements of the form 

GO TO n 

where n is a statement number, cause control to be transferred to the state­

ment whose number, in columns 1 to 5, is n. If the GO TO statement is in 

the main program, the number must refer to a statement in the main program. 

If the GO TO statement is in a subroutine, the number must refer to a state­

ment in the same subroutine, The space between GO and TO is entirely optional. 
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EXAMPLE: GO TO 2047 

Statement numbers must be in the range from 1 to 2047, inclusive. Throughout 
this chapter the discussion will involve statement numbers. In each case, 
the number must refer to a statement in the same subroutine as that in which 
the reference occurs. Or if the reference is in the main program, the 
referenced statement must also be in the main program. 

Subroutines are discussed in chapter 8. 

6.4 Computed GOTO 

Consider statements of the following forms: 

GO TO (nl, n2),i 
GO TO (nl, n2, n3),i 
GO TO (nl, n2, n3, n4),i 
etc, 

where i is a simple (non-subscripted) integer variable and nl, n2, n3, n4, 
etc. are statement numbers. This causes control to be transferred to a 
point which depends on the current value of the variable i. If i equals 1, 
control goes to statement nl; if i equals 2, the sequence of computations 
is transferred to statement n2; etc. 

EXAMPLE: GO TO (1962, 832, 1, 17, 23), JUMBO 

For values of JUMBO equal to 1, 2, 3, 4, or 5, control is transferred to 
statement number 1962, 832, 1, 17, or 23, respectively. 

At the time of execution of a computed GO TO statement, the value of the 
associated variable must not be zero and it must not be greater than the 
number of statement numbers within the parentheses. 

6.5 ASSIGN Statement 

Statements of the form 

ASSIGN n TO i 

where n is a statement number and i is an integer variable, are used to 
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associate the location of a numbered statement with the named variable. The 
variable may then be used in an assigned GO TO statement (section 6.6). 

EXAMPLE: ASSIGN 25 TO JUMP 

Note that in the above example, JUMP does not have the arithmetic value 25. 
The actual number that JUMP equals depends~ the location of the statement 
numbered 25. After the value of an integer variable has been set by means 
of an ASSIGN statement, that same variable may be referenced only in assigned 
GO TO statements. The integer variable may be set, at any time, to an 
integer value by means of the replacement statement (section 6.1) or a PAUSE 
or DO statement, to be explained later. After being given an arithmetic 
integer value, an integer variable must not be used in an assigned GO TO 
statement. 

EXAMPLE: ASSIGN 25 TO JUMP 

25 A=B~'.-kC 

GOTO JUMP, (25,29) 

EXAMPLE: JUMP = I + 1 
INDEX = JUMP ,"( 5 .... 

The question of before or after is directly dependent on the order of 
execution of the object program. It is only indirectly dependent on the 
order in which statements appear on the coding sheets. 

6.6 Assigned GO TO Statement 

Consider statements of the following forms: 

GO TO 
GO TO 
GO TO 
etc. 
GO TO 
GO TO 
etc. 
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where i is a simple integer variable and nl, n2, n3, etc. are statement 

numbers. Whenever such a statement is executed, it is required that the 

current value of i be the result of execution of an ASSIGN statement 

(section 6.5). 

EXAMPLE: GOTO KIKI(27, 105, 3, 9, 7) 

The parenthesized list of statement numbers is entirely unnecessary. It 

may be included, however, to list the possible statement numbers to which 

the variable might have been assigned at this point in the program. 

The effect of the assigned GOTO statement is to transfer control to the 

statement designated by the associated integer variable, the current value 

of the variable having been affected by execution of an ASSIGN statement. 

6.7 Conditional Transfer, IF Statement 

Statements of the form 

IF (e) nl, n2, n3 

where nl, n2, and n3 are statement numbers and e is an expression (sections 

5.2, 5.3, 5.5), provide conditional transfer of control. If the current 

value of the expression is negative, zero, or positive, control is trans­

ferred to statement numbered nl, n2, or n3, respectively. 

EXAMPLES: 

B 

IF 

IF 

IF 

(ALPHA) 

(I - 5) 

(J * 77) 

1,2,3 

4,5,4 
8,8,9 

In the last example the B goes in column 1 to indicate that the expression 

is Boolean. If the rightmost six bits of J are zeros, control goes to 

statement 8. Otherwise control goes to statement 9. The Boolean expression 

J * 77 cannot be negative since the constant has a zero in the sign position. 

In the first example control goes to statement 1 if ALPHA is negative, state­

ment 2 if ALPHA is zero, and statement 3 otherwise. In the second example, 

if I - 5 is zero control goes to statement 5; otherwise control goes to 

statement 4. The expression is limited to 63 operands (section 6.2). 
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6,8 IF OVERFLOW 

At any step in evaluation of a floating point expression (section 5.3), if 
the computed value gets outside the range greater than -l.E31 and less than 
l.E31, a special indicator called the overflow switch is turned on and the 
value of the expression is replaced by a special number called the overflow 
number. The appropriate sign accompanies the overflow number, which might 
be considered tantamount to infinity. 

EXAMPLE: ALPHA = BETA ~·(* BETA 

In the above example, if BETA is 30.El, the value of the expression is about 
2.06E44. Therefore, the overflow switch would be turned on and the overflow 
number would replace the value of ALPHA. 

The condition of the overflow switch is tested by statements of the following 
form: 

IF ACCUMULATOR OVERFLOW nl, n2 
IF QUOTIENT OVERFLO~ nl, n2 

where nl and n2 are statement numbers. The effects of the two forms above 
are identical. If the overflow switch is off, control is transferred to 
statement n2. If the overflow switch is on, it is turned off and control is 
transferred to statement nl. 

EXAMPLE: IF ACCUMULATOR OVERFLOW 17,3 

Evaluation of floating point expressions can only turn the overflow switch 
on, never off. If one of the values being used in a computation is already 
the overflow number, the overflow switch will not be turned on. For in­
stance, in the following 

EXAMPLES: A 
E -D ·k C "/( B 

if Bis l.El6, C is l.El7, and Dis the overflow number, evaluation of A 
would cause the overflow switch to be turned on. Calculation of the value 
of E would not cause the overflow switch to be turned on, although the new 
value of E would be minus the overflow number. 
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6.9 IF DIVIDE CHECK 

In attempting to divide by zero at any step in evaluation of a floating point 
or integer expression, a special indicator called the divide check switch is 
turned on. The resulting value, in the case of floating point, is the over­
flow number (section 6.8). In the case of integer expressions, the result 
is zero. 

The condition of the divide check switch is tested by statements of the form: 

IF DIVIDE CHECK nl, n2 

where nl and n2 are statement numbers. If the divide check switch is off, 
control is transferred to statement numbered n2. If the divide check 
switch is on, it is turned off and control is transferred to statement nl. 

EXAMPLE: IF DIVIDE CHECK 1024, 2047 

6.10 PAUSE Statement 

Any of the following forms: 

PAUSE n,i 
PAUSE n 
PAUSE ,i 
PAUSE 

where n is a four digit octal number and i is a simple integer variable, 
will, during execution of the object code, cause the computer to halt. n 
will be displayed in the accumulator register of the 160 console. If n 
has not been specified, zero will be displayed. 

At this time, if the operator activates the run switch, computation will 
continue with the next statement. Also, if an integer variable has been 
specified, its value will be replaced by the contents of the accumulator 
register. 

EXAMPLE: PAUSE 0707, ILIAD 
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6.11 STOP Statement 

Either of the following forms: 

STOP n 
STOP 

where n is a four-digit octal number, will, during execution of the object 
code, cause the computer to halt. n will be displayed in the accumulator 
register of the 160 console. If n has not been specified, zero will be 
displayed. Computation cannot be continued past this point. 

EXAMPLE: STOP 0001 

6.12 DO Loops 

Consider statements of the forms: 

DO n i =ml, m2 
DO n i =ml, m2, m3 

where n is a statement number, i is a simple integer variable, and ml, m2, 
and m3 are either integer constants or simple integer variables. If m3 does 
not occur in the statement, it is considered to be the constant 1. n must 
be the number of a statement beyond the DO statement. 

The DO statement causes all the following statements, up to and including 
the statement numbered n, to be repeated a number of times depending on 
the values of ml, m2, and m3. During each repetition i takes on one of a 
series of values also dependent on ml, m2, and m3. The first value of i 
is ml. For each repetition of the loop, i is increased in value by m3, so 
long as it does not become greater than m2. The last value of i is less 
than or equal to m2, unless ml is greater than m2. If ml is greater than 
m2, the sequence is executed just once and the last value of i is ml. 

EXAMPLE: 

1 

EXAMPLE: 
2 

DO 1 JACK = 2, 9, 4 
A(JACK) = B(JACK, INDEX) 
SUM SUM + A(JACK) 

DO 2 JILL = 1, 10 
V = V + ALPHA(K,JILL) * BETA(JILL,N) 
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In the first example, the short loop consisting of two statements is executed 
twice and JACK is left with the value 6. In the second example, the one­
statement loop is executed ten times, leaving JILL with the value 10. The 
effect of a DO loop can be achieved with other coding. For instance, the 
repetitions can be strung out as in the first example below or the loop can 
be turned by means of a conditional transfer statement as in the second 
example below. The two following examples accomplish the same effects as 
the two examples above. 

EXAMPLE: 

EXAMPLE: 
20 

A(6) = B(6,INDEX) 
SUM= SUM+ B(2,INDEX) + A(6) 
JACK = 6 

JILL = 1 
V = V + ALPHA(K,JILL) * BETA(JILL,N) 
JILL = JILL + 1 
IF (10 - JILL) 30, 20, 20 

30 JILL = JILL - 1 

Within a DO loop, there can be statements which change the value of i. Such 
statements, of course, can affect the number of repetitions of the loop. 
For instance, in the following example, the coding indicated by the ellipsis 
will be executed four times, with K taking on the values 1, 5, 7, and 8. 

EXAMPLE: DO 1 K = 1, 8, 5 

1 K = K I 2 

In the following example, the loop would be repeated endlessly with K 
taking on the values 1, 5, 7, 8, 9, 9, 9 ...•. 

EXAMPLE: DO l K = 1, 9, 5 

1 K = K I 2 

If ml, m2, and m3 are variables, they too can be changed within the loop. 
Changing ml will not affect the number of repetitions after i has been 

initialized, but changing m2 or m3 will be significant, In the following 
example, the loop will be executed five times with K taking the values 1, 3, 
6, 10, 15. 

35 



EXAMPLE: INC = 1 
DO 3K 1, 20, INC 

3 INC = INC + 1 

In the following example, the loop will be executed seven times with K 
taking the values 1, 1, 2, 3, 5, 8, 13. 

EXAMPLE: J = 0 
DO 4 K = 1, 20, INC 

INC J 
4 J = K 

Within a DO loop, i is not in any way a special variable, It may be set 
outside the loop; control may be transferred into the midst of the loop; 
and exit may be made from the loop by means of any conditional or uncon­
ditional transfer. All these points are illustrated in the following 

EXAMPLE: 

7 

K = 5 
GOTO 7 
DO 10 K = 1, 100, 3 
x = A (K) I B (K) 

IF (X) 7 , 15 , 9 
9 Y=Xid~3 

10 z = 0 
15 LIMIT = K 

After exit from the loop, whether by transfer from within or by exceeding 
m2, i will have the last value it had within the loop. This is illustrated 
by the two following examples, which are entirely equivalent except for the. 
necessary statement numbers: 

EXAMPLE: BETA = ALPHA 
DO 10 I =Ml, M2, M3 
X = SINF(Y(I)) 

10 Y(I) = COSF(X) 
ALPHA = BETA 
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EXAMPLE: 

20 

BETA = ALPHA 
I Ml 
X = S INF (Y (I) ) 

Y(I) = COSF(X) 
I = I + M3 
IF(M2 - I) 30, 20, 20 

30 I = I - M3 
ALPHA BETA 

Ordinarily the last statement of a DO loop, Y(I) = COSF(X) in the above 
example, should not be a conditional or unconditional transfer. The in­
crementing and testing of the loop variable does not correspond to any 
statement in the FORTRAN program at the end of the loop. Therefore, it 
is impossible to put a statement label on the increment and test. There­
fore, if the last statement of the loop is a transfer, there is no way to 
get to the increment and test of the loop variable. In section 6.14 a 
dummy statement is introduced which can be used to provide a label at the 
end of a loop. 

6.13 Nested DO Loops 

It is correct for a DO loop to contain another DO loop. It is often 
useful to initialize the inner loop variable by means of the current 
value of the outer loop variable as in the following 

EXAMPLE: DO 9 I = 1,20 
DO 9 J = I,20 
TEMP = A(I,J) 
A(I,J) = A(J,I) 

9 A(J,I) = TEMP 

As in the above example, the nested DO loops may end with the same statement, 
In this situation, the loop variable initialized last is incremented and 
tested first. It is also permissible for the inner loop to end before the 
outer loop as in the following 

EXAMPLE: DO 8 I = 1,20 
DO 9 J = I,20 

9 ALPHA(J) = 0 
8 BETA(I) = 0 
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Normally, there is nothing useful to be gained by overlapping the ranges of 
different DO statements. That is, in general, the DO loop which starts 
later must end earlier. If this rule is violated as in the following 

EXAMPLE: DO 8 I = 1, 20 
DO 9 J = I,20 

8 BETA(I) = 0 
9 ALPHA(J) = 0 

the later loop variable really does not control a loop. It is simply 
initialized every time around the first loop. 

There is no limitation on the depth of nesting permitted in 160 FORTRAN, 
except for practical considerations of the space available for the program. 
The following example of three nested DO loops illustrates multiplication 
of a 4 by 3 matrix by a 3 by 6 matrix: 

EXAMPLE: DO 5 I = 1,4 
DO 5 J 1,6 
C(I,J) = 0 
DO 5 K = 1,3 

5 C(I,J) = C(I,J) + A(I,K) * B(K,J) 

The following example is another program to transpose a matrix which 
takes less computation time than the first example: 

EXAMPLE: DO 9 I = 1,19 
J = I + 1 
GOTO 8 
DO 9 J = 1,20 

8 TEMP = A(I,J) 
A(I,J) = A(J,I) 

9 A(J,I) = TEMP 
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6.14 CONTINUE Statement 

The complete statement is 

CONTINUE 

This statement calls for no computation; it only establishes a statement 
number. It is normally used following a transfer statemen~ which would 
otherwise be at the end of a DO loop. 

EXAMPLE: DO 2047 N = 2, 68, 4 

IF(A(N)) 2047, 13, 2047 
2047 CONTINUE 

13 RAJAH = X ** Y 

6.15 END Statement 

The complete statement is 

END 

This statement calls for no computation. Its purpose is to signal the 
compiler at the end of every program. For this purpose, two END state­
ments in succession are required. 

EXAMPLE: 
STOP 7007 
END 
END 

The END statement is also used at the end of every subroutine as explained 
in section 8.4. 
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CHAPTER 7 

DATA STORAGE 

7.0 Introduction 

Every distinct constant which occurs in a 160 FORTRAN source program is in­
cluded within the object code. For every distinct simple variable, space 
is provided. In the case of arrays, it is impossible for the compiler to 
infer the amount of storage required from examination of the arithmetic 
statements in the source program. Therefore, a special statement is pro­
vided explicitly to reserve space for arrays. This is discussed in the next 
section. Another statement which provides space for headings and titles 
to be output is discussed in chapter 9. 

7.1 DIMENSION Statement 

Consider the following three forms: 

a(nl) 
a(nl, n2) 
a(nl, n2, n3) 

where a is an array name (section 4.10) and nl, n2, and n3 are integer con­
stants greater than one. These forms are descriptions of one, two, and 
three dimensional arrays, respectively. The constants give the extent of 
each dimension of the named array and the number of constants gives the 
number of dimensions. Let dl, d2, d3, d4, etc., be array descriptions in 
the above forms. Then the following are the forms of the DIMENSION state­
ment: 

EXAMPLES: 

DIMENSION dl 
DIMENSION dl, d2 
DIMENSION dl, d2, d3 
etc. 

DIMENSION ALICE (5,2,18), JACK(3,2) 
DIMENSION B29(100), I(5,10,15), ALF(9,6) 
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The DIMENSION statements name all arrays which occur in the main program and 
give the number and extent of the dimensions of each. The DIMENSION state­
ments must all be placed at the beginning of the FORTRAN source program, 
following the FORMAT statements (section 9.21). 

There may be as many DIMENSION statements as convenient or the arrays may 
all be described in one DIMENSION statement, but all arrays in the program 
must be so described except those which are formal parameters of subroutines. 
Throughout the program, each reference to an array element must have the 
number of subscripts occurring in the original description and the value of 
each subscript must stay within the limits in the original description. 
There are exceptions in the case of input, output, and subroutines, where 
an entire array may be referenced just by naming it. 
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CHAPTER 8 

SUBROUTINES 

8.0 Introduction 

In many programs, there are sections of coding, or groups of statements, 
which are essentially repetitions of other sections or groups, except that 
different data may be involved. Certain such groups which are relatively 
common have been put in the 160 FORTRAN library. These are the functions, 
the use of which is described in section 5.4. This chapter describes 
another means whereby the 160 FORTRAN user may set aside sections of coding 
and then call on these sections from various points in his program, thus 
avoiding the repetitions. 

These sections of coding which are set aside are called subroutines. The 
SUBROUTINE statement introduces a group of statements to be regarded as a 
subroutine. The END statement terminates the group. The CALL statement 
calls the subroutine into use from any point within the program. These, 
and other statements pertinent to subroutines, are discussed in this 
chapter. 160 FORTRAN permits the use of no more than seven subroutines in 
any program. 

8.1 SUBROUTINE Statement 

This statement is one of the forms: 

SUBROUTINE s 
SUBROUTINE s(vl) 
SUBROUTINE s(vl, v2) 
SUBROUTINE s(vl, v2, v3) 
etc. 

wheres is a subroutine name and vl, v2, v3, etc., known as formal parameters, 
are the names of arrays or of simple variables, The SUBROUTINE statement 
introduces a block of statements to be regarded as a subroutine. 

EXAMPLES: SUBROUTINE 
SUBROUTINE 

MULT (A,B,C) 
SORT 
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The first example might be the beginning of a subroutine which multiplies two 
matrices. A, B, a:1d C are two-dimensional arrays, the left multiplier, the 
right multiplier and the product matrix, respectively. 

A, B, and C would be known to be two-dimensional arrays because within the 
body of the subroutine these names would occur only as doubly-subscripted 
variables and because the actual parameters which correspond to them would 
be two-dimensional arrays. The second example above might be the heading of 
a subroutine which sorts the entries of a table, always the same table since 
there are no parameters. 

8.2 NONLOCAL Statement 

Statements of the forms: 

NONLOCAL ml 
NONLOCAL ml, m2 
NONLOCAL ml, m2, m3 
etc. 

where ml, m2, m3, etc., are the names of arrays or of simple variables, are 
used within subroutines to designate the names of those variables and arrays 
which are used within a subroutine, but which belong to the main program. 

EXAMPLES: NONLOCAL TEMP 
NONLOCAL TABL, TEMP 

Many subroutines have need for temporary variables, the values of which are 
significant at some time during the execution of the subroutine, but not at 
the time of entering or leaving. It saves space in the object code for 
every subroutine to use the same temporaries, declaring them to be non-local. 
Information may be passed between subroutines and the main program by non­
local variables instead of parameters. In the second example above, TABL might 
be the name of the array always rearranged by a SORT subroutine. 

Simple variables used within a subroutine must be local, non-local, or they 
must be formal parameters. Subscripted variables (array elements) used 
within a subroutine must be elements of arrays which are either non-local or 
formal parameters. If there are any non-local arrays or simple variables 
referenced within a subroutine, they must all be listed in a single NONLOCAL 
statement inunediately following the SUBROUTINE statement. 
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Simple variables used in subroutines, which are not formal parameters and 
are not listed in the NONLOCAL statement, are automatically local to the 
subroutine. 

8.3 RETURN Statement 

The complete statement is 

RETURN 

It is used to return control to the main program, or whatever program called 
the subroutine, when the work of the subroutine is completed. 

8.4 END Statement 

The complete statement is 

END 

It is used to signal the end of the block of coding which constitutes a 
subroutine. One and only one END statement must be used at the end of every 
subroutine. It calls for no computation, The END statement is also used 
to terminate a program (section 6.15). 

8.5 Structure of a Subroutine 

Every subroutine must begin with a SUBROUTINE statement (section 8.1) and 
end with an END statement (section 8.4). Somewhere within the subroutine 
there must be one or more RETURN statements (section 8.3) to get out of 
the subroutine when its job is done. If any of the variables used by the 
subroutine are non-local, they must be declared in a NONLOCAL statement 
iIIU!lediately following the SUBROUTINE statement. When the subroutine is 
called, computation begins with the statement iIIU!lediately following the 
SUBROUTINE statement or the NONLOCAL statement if there is one. 

Besides the four statement types named in the last paragraph, a subroutine 
may contain all types of 160 FORTRAN statements except READ, PUNCH, and 
FORMAT (chapter 9) and DIMENSION (section 7.1). Formal parameters must not 
be used as the loop variable in a DO loop nor as a list variable in an I/O 
list. All statement numbers which occur in a subroutine are independent of 
statement numbers in other subroutines or in the main program. Therefore, 
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the statement numbers within a subroutine may, with impunity, duplicate 
statement numbers outside. 

Elements of non-local arrays referenced within the subroutine must be within 
the range specified by the DIMENSION statements of the program. Elements of 
formal parameter arrays must be within the range specified for the corre­
sponding actual parameter arrays (section 8.6) by the DIMENSION statements 
of the program. No other subscripted variables may be used within the 
subroutine. If simple variables are used which appear neither in the list 
of formal parameters nor the list of non-local variables, they will be given 
locations within the object code for the subroutine. The names of such 
local variables may be the same as the names of variables or arrays in the 
main program or in other subroutines. The names of formal parameters may 
also be the same as the names of simple variables or arrays outside the 
subroutine. 

It is impossible to transfer control into a subroutine except by means of 
the CALL statement (section 8.6). It is impossible to get out of a sub­
routine except by means of the RETURN statement (section 8.3) or, temporarily, 
by a CALL statement to another subroutine. 

8.6 CALL Statement, Use of Subroutines 

The CALL statement is used to invoke a subroutine. It names the subroutine 
and it specifies the actual parameters to be used in the computation. The 
forms of the CALL statement are as follows: 

CALL s 
CALL s(pl) 
CALL s(pl, p2) 
CALL s(pl, p2, p3) 
etc, 

wheres is the name of a subroutine and pl, p2, p3, etc., known as actual 
parameters, are constants, variables, or array names. There must be the 
same number of actual parameters in the CALL statement as there are formal 
parameters in the SUBROUTINE statement with the same subroutine name. The 
actual parameters replace the corresponding formal parameters wherever they 
occur in the subroutine. The correspondence is established by relative 
positions in the lists following the subroutine name in the CALL and SUB­
ROUTINE statements. 
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EXAMPLES: CALL MULT (X,Y,Z) 
CALL SORT 

When the subroutine is finished, control is returned to the statement 
following the CALL statement. If the CALL statement is at the end of a DO 
loop, control is returned to the increment and test of the loop variable. 

Figure 6 lists compatible characteristics between formal parameters and the 
corresponding actual parameters. 160 FORTRAN permits no more than seven 
subroutines in any program. 

Within a subroutine, there may be a CALL statement invoking another sub­
routine. 

EXAMPLE: SUBROUTINE A(B,C,D) 
B = C + D 
RETURN 
END 
SUBROUTINE E(F,G,H) 
x = G I H 
CALL A(F,X,H) 
RETURN 
END 

CALL E(X,Y,Z) 

In the above example, the effect of the call on subroutine E is the same as 

x = Y I z + z 

Notice that the X in the main program is distinct from the X in subroutine 
E because X is not declared NONLOCAL. 

The depth to which subroutines may call each other is limited to four levels. 
That is, there may be no more than four CALL statements executed before 
execution of a RETURN statement. This limitation applies to actual depth 
during execution of the object code and not to potential depth which may be 
apparent in the FORTRAN source program. Subroutines may even call themselves 
either directly or indirectly through other subroutines. The limitation to 
four levels applies here also, but the parameters at the initial levels are 
not preserved. This means that any subroutine which is called recursively 
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must not have any output parameters because the reference to the original 
actual output (result) parameter is destroyed when the subroutine is 
entered at a lower level. References to the actual input parameters are 
also destroyed. However, if no reference is made to the formal input 
parameter after the recursive CALL nor as an actual parameter in the recur­
sive CALL statement, no difficulty will ensue. 

EXAMPLE: 

1 

2 

3 

4 
5 

6 

7 

8 

SUBROUTINE ARITH (M,N,JOB) 
NONLOCAL Z 
IF (JOB - 2) 1, 2, 4 
Z=M+N 
RETURN 
J2 = 0 
N2 = N 
00 3 I = 1, N2 
J2 = z 
RETURN 
IF (JOB - 4) 5,5,7 
J3 = 1 
N3 = N 
DO 6 J = 1, N3 
CALL ARITH (Ml ,J 3, 2) 
J3 = z 
RETURN 
J4 = 1 
N4 = N 
00 8 K = l,N4 
CALL ARITH (Ml,J4,3) 
J4 = z 
RETURN 
END 

In the above example, it was desired to have an output parameter, Z, to 
represent the final result. Since this is impossible, Z is used as a non­
local variable. The value of the input parameter, M, does not change 
anywhere in the subroutine, but it is incorrect to use M in the recursive 
CALL statements. Therefore, it is necessary to set another variable, Ml, 
to the value of M and use Ml in the CALL statement. At each stage a new 
value is used as the N parameter and the current value of N must be saved 
in three different places. JOB controls the depth of the subroutine and 
need not be saved after initial entry. 
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The above subroutine does one of the four arithmetic operations of addition, 
multiplication, exponentiation, and tetration, depending on the value of JOB 
which must be 1, 2, 3, or 4, respectively. Tetration is repeated exponen­
tiation. At each level the operation is carried out by repetitions of the 
next lower level, down to addition. Mand N must be positive integers. The 
answer is given in floating point, The example is for illustrative purposes 
only. 

The following 

EXAMPLE: CALL ARITH(Z,4,3,4) 

calls for tetration of 4 by 3, The required answer is 4 ** 64, which is 
just beyond the capacity of the 160 FORTRAN system. Furthermore, if the 
computation could be carried out, it would require in excess of 250,000, 
000,000,000,000,000,000,000,000 years, ARITH(Z,3,3,4), which is 3 ** 27, 
requires only 600 years. ARITH(Z,2,4,4) which is 2 ** 16, requires an hour 
or two. 

Characteristics of 
formal parameters 

Integer 

Floating Point 

Simple Variable, the value of 
which is changed by the 
subroutine 

Simple Variable, the value of 
which is not changed by the 
subroutine 

Array Name (the subroutine uses 
the name as a subscripted 
variable) 

Figure 6. 
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Requirements for 
actual parameters 

Integer 

Floating Point 

Variable 
(simple or subscripted) 

Constant or Variable 

Array Name (the DIMENSION 
statement must assign the 
number of subscripts used 
within the subroutine) 



CHAPTER 9 

INPUT/OUTPUT IN 160 FORTRAN 

9.0 Introduction 

The acquisition of problem data and the output of answers are discussed in 
this chapter. All inputs and outputs are handled by paper tape. The READ 
statement provides for input of data from a tape prepared on a Flexowriter. 
The PUNCH statement provides punched tape which can be listed on a Flexo­
writer. The INPUT and OUTPUT statements read and punch, respectively, tape 
in binary machine language format. The items for input or output are listed 
in the above named statements. In addition, the READ and PUNCH statements 
refer to FORMAT statements which specify the details of conversion between 
the printed data and their binary representations. 

9.1 Input-Output (I/O) Lists 

Let e and f stand for constants, simple variables, array names, or sub­
scripted variables. Then call e and f I/O lists. Such I/O lists are 
singular, since they only have one element each; however, the following 
forms are also I/O lists. 

e, f 
(e, i 

(e, i 
ml, m2) 
ml, m2, m3) 

Where i is a simple integer variable (called a list variable) and ml, m2, 
and m3 are integer constants or simple integer variables. Now let e and f 
include I/O lists of the above three forms. Then apply these forms re­
cursively. This results in quite general structures for I/O lists. The 
above description of I/O lists includes constants as elements, although it 
would be inappropriate to input to a constant. 

EXAMPLES: A 

A,JOE 
B(LIST), C(5,3),29.E5,33 
(D(5,J),J = 1, 10),(I(J),J = 2, 10,2) 
((MAN,15,RILL(MAN,J),MAN = 1, J),J = K,99,3) 
(A,B,I,I = I,10) 
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As indicated in the above examples, i may or may not occur as an element of 
the associated I/O list or as a subscript of such an element. By associated 
I/O list is meant the entire list preceding i back to the left parenthesis 
matching the right parenthesis which follows m2, or m3. Parentheses must 
be used only to enclose subscripts and to enclose a list variable with its 
associated I/O list. 

I/O lists appear in INPUT, OUTPUT, READ, and PUNCH statements and they 
indicate precisely the constants and/or variables involved in input and/or 
output. The intended meaning is obvious in the case of I/O lists not con­
taining the 11 i=11 constructions. The 11 i=11 construction with its associated 
I/O list is treated entirely analogously to a DO loop (section 6.13). If 
m3 is not specified, it is taken as 1. The following two examples illustrate 
the effects of the last two examples above: 

EXAMPLE: 

EXAMPLE: 

l,15,RILL(l,K),2,15,RILL(2,K), •.. ,K,15,RILL(K,K),l,15, 
RILL(l,K + 3),2,15,RILL(2,K + 3), ... ,K + 3,15,RILL(K + 3, 
K + 3),1,15,RILL(l,K + N * 3), ••. ,K + N * 3,15,R(K + N * 3, 
K + N 1< 3) 

A,B,I,A,B,I + l,A,B,I + 2, ... ,A,B,10 

Except for subscripts (section 4.9), the arithmetic expressions such as 
K + N * 3 and I+ 2 are not permitted in I/O lists. They are included in 
the two examples above just to illustrate the effects of the previous 
examples of I/O lists with loops. 

When an array name occurs without subscripts in an 1/0 list, the effect is 
the same as listing all the elements of the array, with the first subscript 
varying most rapidly. To illustrate, if the dimensions of A are 3,2,2, the 
following three I/O lists are equivalent: 

EXAMPLES: A 

(((A(I,J,K),I = 1,3),J = 1,2),K = 1,2) 
A(l,l,l),A(2,l,l),A(3,l,l),A(l,2,l),A(2,2,l),A(3,2,l), 
A(l,l,2),A(2,l,2)>A(3,l,2),A(l,2,2),A(2,2,2),A(3,2,2) 

9.2 INPUT Statement 

The forms are 
INPUT e 
INPUT, e 
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wher.e e is an I/O list as described in section 9.1. None of the elements 
of the I/O list should be constants, or the value of the constant will be 
changed. 

EXAMPLES: INPUT 
INPUT 
INPUT 
INPUT 

N,A(N) 
N,(A(I),I = l,N) 
(N,A(I),I = N,10) 
(A(N),N,B(N),N = 1,10) 

The first example causes input of a value to N, then input to an element of 
A, the particular element designated by the value of N just read in. The 
second example inputs N and then N elements of A. In the third example, 
I takes on the value of N before any input takes place. Then a value is 
read into N. Then a value goes to the element of A designated by I, which 
is the element designated by N before any input. Then I is incremented by 
1. What happens to I is independent of any new values of N. The loop is 
then repeated; another new value goes to N and a new value is input to the 
next element of A. The loop is repeated for each value of I, up to and 
including 10. I has the value 10 after input is complete. If the original 
value of N is greater than 10, the loop is executed once and I ends up with 
the old value of N. Such an I/O list structure is not likely to be used 
since it calls for several values to be input to N, only the last of which 
can have any effect on later computations. 

In the tourth example N is set to 1, then input goes to A(l), to N, and to 
B(N), depending on the new value of N. Suppose the new value of N is 6, 
N is then incremented, making it 7, and input goes to A(7) and to N. Suppose 
this makes N equal to 10, then input goes to B(lO). Since N is now 10, the 
input is done. The loop will continue to be repeated until a value of 10 
or greater is input to N. 

The information which the INPUT statement reads from tape always begins 
with a special symbol which is not put into any of the listed items. 
The tape is moved forward until the special symbol, a punch in the seventh 
level, is found. Following the special symbol there must be floating point 
and integer numbers to match the floating point and integer quantities 
specified by the I/O list. The binary patterns on the input tape are put 
into the specified places in exactly the same configuration, without any 
conversion. One machine word of twelve bits is provided for each integer 
variable. Three words are provided for each floating point number. Thus 
two frames are required on the tape for integer input and six frames for 
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floating point input. There can be input for several INPUT statements on 
one tape or on more than one tape, but all the input to be processed by one 
execution of an INPUT statement must be on a single tape with no extra 
blank tape within the significant information. Blank tape is read as zeros. 
The computer operator must somehow be informed when and if a new input tape 
is required. 

9.3 OUTPUT Statement 

The forms are 

OUTPUT e 
OUTPUT, e 

where e is an I/O list as described in section 9.1. 

EXAMPLES: OUTPUT 18,N,A(N) 
OUTPUT (N,A(I),I = N,10) 
OUTPUT (A(N),N,B(N),N = 1,10) 

The first example causes output of three quantities: 18,N, and the Nth 
element of array A. The second example causes output of N, A(N), N, 
A(N + 1), N, A(N + 2), N, ••• , N, A(lO). It also causes I to end up with 
the value 10, unless N is greater than 10. Note that N is output every 
time a different element of A is output. If N is greater than 10, the 
output consists just of N and A(N) and I is left with the value N. In 
the third example, the output consists of A(l), 1, B(l), A(2), 2, B(2), 
.•. , A(lO), 10, and B(lO), while N ends up with the value 10. 

The OUTPUT statement first writes a special character on the paper tape 
which consists of a single punch in channel 7. The output specified by 
the I/O list then follows in binary, just as it is found within the com­
puter, six binary digits (bits) per frame. A frame is a single line 
across the paper tape. Fixed point quantities occupy one word of twelve 
bits within the computer. Floating point quantities occupy three words. 
Therefore, on the paper tape, integer numbers take up two frames and 
floating point numbers take up six frames. A punched hole represents a 
1-bit, absence of a hole represents a 0-bit. A frame of blank tape repre­
sents half a word of zero bits. 

If it is expected that the information produced by an OUTPUT statement will 
be read by an INPUT statement, it must all be punched on one tape. 
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9.4 Conversion Specifications 

For input from or output to a Flexowriter tape, it is necessary to relate the 
configuration of data outside the computer to the variables (or constants 
in the case of output) within the computer. There must be a conversion 
specification for each quantity to be read or punched. This includes the 
requirement for an explicit conversion specification for each element of an 
array even though only the array name occurs in the I/O list, without sub­
scripts. There are exceptions since some of the conversion specifications 
will be repeated if necessary. This is explained in section 9.20. 

There are conversion specifications which do not correspond to items in the 
I/O list of the READ (section 9.23) or PUNCH (section 9.22) statement. 
These are specifically the X and H conversions. X and H conversions are 
not to be counted in matching conversion specifications to I/O list items. 

Conversion specifications are listed in FORMAT statements (section 9.21). 
The FORMAT statements are referenced in READ and PUNCH statements, The 
same conversion specifications can apply to both input and output, but the 
effects are not always compatible. In the following sections, the output 
effects are given for all conversion specifications. Then the input 
effects are given. 

9.5 Punch Conversions 

The I and 0 conversions apply to integer (fixed point) variables and con­
stants. The A conversion applies to integer variables which contain the 
representations of Flexowriter characters and control codes. The E and F 
conversions apply to floating point variables and constants. The H con­
version is a specification of a string of Flexowriter characters; no 
variable or constant is involved. The X conversion is just a specification 
for spaces to be inserted in the output; no variable or constant is in­
volved. The next seven sections discuss these conversions in more detail. 

9.6 Punching by I Conversion 

The form of the specification is 

I n 

where n is an integer, greater than zero, which specifies the width of the 
field, that is, the number of character spaces provided on. the typed output 
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page. A specification of this form may be used only for punching of an 
integer (fixed point) variable or constant. 

EXAMPLES: I 10 
I 6 
I 3 
I 1 

If the value to be punched is positive, its basic width is 4. If it is 
negative, its basic width is 5, which includes the minus sign. If the width 
of the field is greater than the basic width, the number is printed at the 
right of the field, preceded by blanks. If the width of the field is less 
than the basic width, leading zeros are squeezed out. If squeezing out all 
lead zeros still leaves a number too big to fit in the field, the digits at 
the right are truncated. Leading zeros are replaced by blanks except for 
a zero value. Figure 7 (page 67) shows the effects of various width fields 
on the printing of several values. 

The following form: 

m I n 

where m and n are each integers greater than zero, represents m repetitions 
of In. 

EXAMPLE: 3I6 

The above example is equivalent to the following 

EXAMPLE: I6, I6, I6 

9.7 Punching by 0 Conversion 

The form of the specification is 

On 

where n is an integer, greater than zero, which specifies the width of the 
field and 0 is the letter. Specifications of this form may only be used for 
punching of integer variables or constants. The O specification causes 
printing of the octal equivalent of the twelve-bit representation of the 
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integer value. Leading zeros are 
the n leading digits are printed. 
with n-4 blank spaces. 

EXAMPLES: 

The following form: 

010 
0 4 
0 2 

not suppressed. If n is less than 4, 
If n is greater than 4, the field begins 

mOn 

where m and n are both integers greater than zero, represents m repetitions 
of On. 

EXAMPLE: 307 

The above example is equivalent to the following 

EXAMPLE: 07, 07, 07 

9.8 Punching by A Conversion 

The forms of the specification are 

A2 
Al 

These specifications apply to punching of integer variables or constants 
only. The tape is punched with the bit pattern of the integer value. A2 
causes punching of two frames corresponding to the left and right halves, 
respectively, of the 12-bit integer. Al conversion causes punching of just 
one frame of six bits from the right half of the 12-bit integer. 

The A conversions are intended to be used for the punching of Flexowriter 
codes. The extreme freedom allowed permits the punching of all Flexowriter 
codes, including blank tape, "delete", "stop", "color shift", and "back 
space" codes. 

The following forms: 

n Al 
n A2 
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where n is an integer greater than 1, represent n repetitions of Al or A2, 
respectively. 

EXAMPLE: 2A2 

The above example is equivalent to the following 

EXAMPLE: A2, A2 

9.9 Punching by E Conversion 

The form of the specification is 

E m.n 

where n is an integer between 1 and 8 inclusive and m is an integer greater 
than or equal to n + 6. The field width is given by m. The number of 
significant digits is n. The E conversion specifies punching of floating 
point variables and constants only. 

EXAMPLE: El5.7 

The printing format specified by E conversion is minus sign or blank, decimal 
point, n digits (the first one not zero), E, minus sign or blank, two digits. 
If the field width is greater than n + 6, extra blanks are used at the left. 
The number following E is the power of ten to be multiplied by the decimal 
fraction preceding E to arrive at the true value. Ordinarily the first 
digit following the decimal point is not zero, but if the floating point 
number is zero, all digits in the decimal fraction will be zero and the 
power of 10 will be -32. Output of the overflow number (section 6.8) re­
sults in a zero in the first position after the decimal point and 31 as the 
power of 10. Figure 8 (page 68) shows the effects of printing several values 
under control of El5.7 conversion. In figure 8, b represents a blank space. 

Floating point numbers are stored within the computer with an accuracy of 
eight significant decimal digits. If the output conversion calls for 
fewer than eight digits, the excess significance is truncated without 
rounding. 

The following form: 

k E m.n 
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where k is an integer greater than 1 and m and n are integers as described 
above, stands for k repetitions of Em.n. 

EXAMPLE: 4E8.2 

The above example is equivalent to the following 

EXAMPLE: E8.2, E8.2, E8.2, E8.2 

9.10 Punching by F Conversion 

The form of the specification is 

F m.n 

where n is zero or a positive integer less than 9 and m is an integer greater 
than or equal to 3 and at least as large as n + 2. The field width is given 
by m. The number of digits after the decimal point is given by n. There 
is no multiplying factor printed. The number of digits before the decimal 
point is determined by the value to be printed. Two spaces are required for 
a sign and a decimal point. Therefore, the number of integer digits is 
limited to m-n-2. The F conversion applies to punching of floating point 
variables and constants only. 

EXAMPLES: Fl2.6 
Fl2.10 
Fl0.4 

The printing format is more easily described starting at the right of the 
m character field: n fractional digits, a decimal point, required number 
of integer digits, blank or minus sign, blanks to fill out the field. There 
will never be more than eight digits printed. Excess digits after the 
decimal point are replaced by blanks. If conversion of a value requires 
more than eight or more than m-n-2 integer digits and if m and n are com­
patible with an E conversion (section 9.9) then the value will be punched 
as if an E conversion had been specified. If the number cannot be printed 
under the F specification and if m and n are not compatible with an E 
specification, x's will print instead of the number. 

The following form: 

k F m.n 
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where k is an integer greater than 1 and m and n are integers as described 
above, stands for k repetitions of Fm.n. 

EXAMPLE: 2Fl2.2 

The example above is equivalent to the following 

EXAMPLE: Fl2.2, Fl2.2 

9.11 Punching by H Specification 

The forms of the specification are as follows: 

lHa 
2Hab 
3Habc 
etc. 

where a, b, c, etc., are semicolons or any 160 FORTRAN characters except 
blanks. 

EXAMPLES: 6HTITLES 
7HNAMES;= 

24HAND;**WILD;ANIMAL**;ACTS 
llH*-/)URK(/-* 

This specification prescribes a string of printed characters to appear in 
the Flexowriter listing. The number before H tells how many characters are 
to be printed and this many characters must be written following H. 
Parentheses are among the characters which may be specified. Asterisk (*) 
will print as apostrophe ('). Blanks must not appear in the specification. 
At places where a blank is to appear in the printed output, a semicolon (;) 
is used in the specification. 

The H specification provides all the information for output. It does not 
need and does not correspond to any variable or constant in the program, 
nor to any element of an I/O list. Repetition of an H specification can 
be expressed by enclosing the specification in parentheses, preceded by the 
number of intended occurrences. 

EXAMPLES: 2(3HTUT) 
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The above example is equivalent to the following 

EXAMPLE: 3HTUT, 3HTUT 

The normal mode of printing is lower case, but if the last character of a 
printed H specification is upper case, the following printing will be 
upper case. Semicolon, standing for space, is accompanied by lower case 
code. 

9.12 Punching by X Specification 

The form of the specification is 

nX 

where n is an integer greater than zero. 

EXAMPLES: lX 
27X 

This specification prescribes that n space codes be punched on tape, and, 
therefore, that n 
the typed output. 
to any element of 

blank spaces appear at the corresponding positions on 
The X specification does not need and does not correspond 

an I/O list. 

9.13 Read Conversions 

The I, O, and A conversions apply to input to integer (fixed point) variables. 
The E and F conversions apply to input to floating point variables. The H 
conversion provides, directly, space within the computer for storage of 
Flexowriter codes; no variable or constant is involved. The X conversion 
just specifies that characters on the input tape be skipped. All of the 
field widths in read specifications refer to characters. Blank frames and 
delete codes are skipped without counting. Except in the A conversion, 
case codes do not count, but they are examined to help in identifying the 
following characters. 

9.14 Reading by I Conversion 

The form of the specification is 

I n 
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where n is an integer, greater than zero, which specifies the number of 
characters to be read from the input tape. Case codes and delete codes are 
ignored and they do not count as characters read. If a slash (/) is en­
countered it means that no more characters are in the field even if fewer 
than n characters have been read. It is expected to find only spaces, 
digits, and (if required) a minus sign. All other characters, including 
the plus sign, are illegal. Decimal points will count as characters read, 
but they will not enter into the conversion. Other illegal characters, 
including carriage return, will be treated as zeros. For instance .l.P6 
on an input data tape to be converted according to I5 will read in as the 
value 106. The I conversion applies to reading of values for integer 
variables only. Integer variables may only take on values in the range 
from -2047 to 2047, inclusive. 

The following form: 

min 

where m is an integer greater than 1, represents m repetitions of In. 

EXAMPLE: 4I2 

The above example is equivalent to the following 

EXAMPLE: I2' I2' I2' I2 

9.15 Reading by 0 Conversion 

The form of the specification is 

On 

where n is an integer, greater than zero, which specifies the number of 
characters to be read from the input tape, and 0 is the letter. Case codes 
and delete codes are ignored and they do not count as characters read. If 
a slash (/) is encountered, it means that no more characters are in the 
field even if fewer than n characters have been read. It is expected to 
find only spaces, digits from 0 to 7, and (possibly) a minus sign. All 
other characters, including the plus sign, are illegal. Decimal points 
will count as characters read, but they will not enter into the conversion. 
Although the conversion is octal, the digits 8 and 9 will be included at 
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face value. Other illegal characters, incluclilig c;" ;-_. · 

treated as zeros. 

EXAMPLES: 3849 
A03.2 

is equivalent to 
is equivalent to 

The 0 conversion applies to reading of values , 
The conversion treats the numbers read as act·!· 
will be 1 ~'<512+2>'<64+3>'<8+4. 

The following form: 

mOn 

! c'- .rrt, Hill be 

variables only. 
'.:: 1 e value of 1234 

where m is an integer greater than 1, represents ~· ,-" -,, .. :i tions of On. 

EXAMPLE: 904 

The above example is equivalent to the following 

EXAMPLE: 04,04,04,04,04,04,04,04,04 

9.16 Reading by A Conversion 

The forms of the specification are 

A2 
Al 

This specification applies to reading of data for integer variables only. 
A2 causes reading of the bit pattern from two frames of the input tape into 
the corresponding integer variable. Al causes reading of the bit pattern 
from one frame of the input tape into the right half of the corresponding 
integer variable. The left half of the variable is set to six binary zeros. 
Any six-bit pattern except delete code or blank tape is read from each 
frame of the input tape, including the codes for carriage return, slash, 
and case shifts. 

The following forms: 

nAl 
nA2 
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where n is an integer greater than 1, represent n repetitions of Al or A2, 
respectively. 

9.17 Reading by E and F Conversion 

The forms of the specification are 

Em.n 
Fm.n 

where m is an integer greater than zero, n is an integer greater than or 
equal to zero, and m is at least as great as n. These specifications apply 
to reading of data for floating point variables only. They cause the 
reading and conversion of m characters from the data input tape. If a 
slash (/) is encountered, it means that no more characters are in the field 
even if fewer than m characters have been read. It is expected to find 
only spaces, digits, minus signs, and the letter E. All other characters, 
including the plus sign, are illegal. Illegal characters, including 
carriage return, and imbedded blanks will be treated as zeros. Delete 
code is skipped and does not count as a character, 

Let s, t, and u represent strings of digits. Then the following forms 
represent possible fields on the input tape to be converted by E or F con­
version: 

s 
.s 
s. 
s.t 
-s 
-.s 
-s. 
-s.t 

Now let f represent any of the above eight forms. Then the following forms 
also represent possible fields on the input tape to be converted by E or 
F conversion: 

fEu 
f-u 
fE-u 
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There must not be more than two digits in u. If there is no decimal point 
in the number on the input tape, then n tells how many of the digits of s are 
to be considered fractional. If a decimal point is present n is ignored. 
m tells how many characters of the input tape are to be considered, ignoring 
case codes. No more than eight digits before the E or the minus sign are 
converted. Values represented by any additional digits are lost, Figure 9 
gives some examples of specifications, input fields, and the resulting 
values. If the absolute value of the input is less than l.E-32, it is 
converted to floating point zero. If the input is as great as l.E31 in 
absolute value, it is converted to the overflow number (section 6.8). 
Repetition of an E or F specification can be indicated by preceding the 
specification with the desired number of occurrences. 

EXAMPLE: 6F4.2 

The above example is equivalent to the following 

EXAMPLE: F4.2,F4.2,F4.2,F4.2,F4.2,F4.2 

9.18 Reading by H Specification 

The forms of the specification are as follows: 

lHa 
2Hab 
3Habc 
etc. 

where a, b, c, etc., are semicolons or any 160 FORTRAN characters except 
blanks. For input, there is no significance to the particular characters 
appearing after the H. They just serve to reserve space into which charac­
ters from the input tape may go. A computer word containing two Flexowriter 
codes, case code and the particular character code, is set aside for each 
character after H in the specification. On input, if no case code is found 
before the character, lower case is assumed. Delete code is skipped. On 
input, space codes are read as spaces and semicolons are read as semicolons. 
Repetition of an H specification may be indicated by enclosing the specifi­
cation in parentheses and preceding with the number of desired occurrences. 

EXAMPLE: 3(9HLOOK;AWAY) 

65 



The above example is equiv.:-dcnt to the following 

EXAMPLE: 9HLOOK;AWAY, 9HLOOK;AWAY, 9HLOOK;AWAY 

9.19 Reading by X Specific~tion 

The form of the specificat~0~ is 

nX 

where n is an integer greater than zero. 

EXAMPLES: lSX 
137X 

This specification prescribes that n characters of the input tape be skipped. 
Case codes, delete codes, and blank tape are skipped without being counted. 
The X specification does not need and does not correspond to any element of 
an 1/0 list. 

9.20 Specification Listn 

The conversion specifications discussed in the previous sections of this 
chapter can be arranged in lists of individual specifications separated by 
commas or slashes. 

EXAMPLES: El2.6,F8.i'r,3X,4HM1FF 
E20.8/F9.0,JHEND 
2El0.4,3F5.0/214 

Parts of the list can effectively be repeated by enclosing the repeated 
part in parentheses and preceding the parenthetical group with the number, 
greater than one, of desired occurrences. However, such parenthetical 
groups must not be nested. 

EXAMPLES: 2(16, (3A2/1X)) 
2(E8.2,F4.2),3(1X/5X,14) 

Specification lists can also include, at the end, one parenthetical group 
without a preceding number. This unnumbered parenthetical group may stand 
alone at the end of the list, or it may be within a numbered parenthetical 
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group, or it may include a numbered parenthetical group. Specification 
lists are theoretically infinite; that is, the list is used repetitively as 
many times as necessary during execution of the READ or PUNCH statement. 
If the list includes a parenthetical list without a number, it is this 
unnumbered parenthetical specification list that is considered to be re­
peated after the complete specification list has been exhausted. In these 
implied repetitions, the implied separator is the slash rather than the 
comma. For instance, the fourth example in this section is equivalent to 
the following 

EXAMPLE: I6,A2,A2,A2/1X,I6,A2,A2,A2/1X/A2,A2,A2/1X/A2,A2,A2/1X/ ... 

Specification lists occur in FORMAT statements (section 9.21) which are 
referenced by PUNCH and READ statements (sections 9.22 and 9.23). As 
explained above, every specification list is equivalent to a list (without 
parentheses and without implied repetitions) of specifications separated 
by commas or slashes. The commas serve only to separate specifications. 
The slashes separate specifications and affect the processing in a way 

IS I4 I3 I2 Il 

0000 0000 000 00 0 
I 

5 5 i 5 5 5 
86 86 86 86 8 

743 743 743 74 7 
1395 1395 139 13 1 

- 6 - 6 - 6 -6 -- 23 - 23 -23 -2 -
- 456 -456 -45 -4 -
-1789 -178 -17 -1 -

Figure 7. 
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which depends on whether the specification list is being used to control 
conversion during punching or reading. During punching, a slash means to 
punch a carriage return character before proceeding to the next conversion. 
During reading, a slash or the implication of one through repetition of a 
specification list, means to move the paper tape forward to the next car­
riage return character and then resume conversion with the frame after the 
carriage return. 

9.21 FORMAT Statement 

All format statements must appear at the beginning of the program. The 
form is as follows: 

n FORMAT (s) 

where n is a statement number (in the statement number field of the coding 
form) and s is a specification list as explained in section 9.20. Every 
FORMAT statement must have a unique statement number. The FORMAT state­
ment is not executed as such. Its purpose is to provide a specification 
list which is used in converting the variables and constants listed in 
PUNCH and READ statements (sections 9.22 and 9.23). 

EXAMPLES: 6 
23 

FORMAT (lllU;DOE;;;RUN,13) 
FORMAT (I4,(El4.8)) 

Value Printed Output 

.0123456 bbb.1234560E-Ol 

.1234567 bbb.1234567Eb00 
-5960352. bb-- .5960352Eb07 
-.000005 bb-.5000000E-05 

27.345 bbb.2734500Eb02 

Figure 8. Printing Under El5.7 Specification 
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In the above examples FORMAT statement 6 might be used in connection with 
a PUNCH statement in order to identify the output. The run number would 
be calculated or read in with the input data. FORMAT statement 23 might be 
used in connection with a READ statement to bring in a number representing 
the length of an array and then the specified number of floating point 
values for the array elements, the elements being separated by carriage 
return. The El4.8 specification would effectively be repeated the required 
number of times. 

Any FORMAT statement may be referenced by either PUNCH or READ statements; 
however, the effects of the listed specifications in the FORMAT statement 
may not give compatible results in punching and reading. The meanings of 
the specifications for punching are described in sections 9.6, 9.7, 9.8, 
9.9, 9.10, 9.11, and 9.12. The meanings of the specifications for reading 
are described in sections 9.14, 9.15, 9.16, 9.17, 9.18, and 9.19. 

9.22 PUNCH Statement 

The forms are as follows: 

PUNCH n 
PUNCH n,e 
PUNCH ne 

where n is the statement number of a FORMAT statement (section 9.21) and 
e is an 1/0 list (section 9.1). 

EXAMPLE: PUNCH 6,N 
PUNCH 2 

The effect of the PUNCH statement is to cause punching of paper tape for 
later listing on a Flexowriter. First a carriage return character is 
punched. Then all the variables and constants of the 1/0 list in the PUNCH 
statement are matched with the conversion specifications of the specification 
list in the referenced FORMAT statement and conversion and punching proceeds 
until the 1/0 list is exhausted. Each item of the 1/0 list must match its 
corresponding conversion specification as to being integer or floating point. 

Whenever a slash is encountered as a separator between specifications, a 
carriage return is punched. Whenever an H or X specification is encountered 
in the specification list, printing or spacing is done according to the 
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specification, but consideration of the next item in the I/O list is 
delayed until the next E, F, I, O, or A specification is reached. If 
the end of the specification list in the FORMAT statement is reached 
before the end of the I/O list in the PUNCH statement, part or all of 
the FORMAT list is considered repeatedly (section 9.20). If the end of 
the I/O list is reached before the end of the FORMAT list, punching in 
accordance with slashes and H and X specifications will proceed until 
the next E, F, I, O, or A specification or the end of the FORMAT list 
is reached, If there is no I/O list in the PUNCH statement, the 
specifications in the FORMAT statement must all be Hor X specifications, 
or they must at least begin with H or X specifications if any punching is 
to occur. 

EXAMPLES: 2 
4 

FORMAT (20X,3HABC,I5,I5) 
FORMAT (20X,I5,I5,3HXYZ) 
PUNCH 2 
PUNCH 2,JA,JB,JC 
PUNCH 4,KAK,KBK,KCK 
PUNCH 4,LA,LB,LC,LD 

If we assume that JA, JB, JC, KAK, KBK, KCK, LA, LB, LC, and LD contain 
the values 1, 2, 3, 11, 12, 13, 21, 22, 23, and 24, respectively, then the 
above four examples of PUNCH statements, with their referenced FORMAT 
statements, will cause punching, for ultimate printing of seven lines, as 
follows: 

ABC 
ABC 1 2 
ABC 3 

11 ~2XYZ 

13 
21 22XYZ 
23 24XYZ 

If the I/O list in the PUNCH statement contains list variables (section 9.1), 
the values of these variables will be affected by execution of the PUNCH 
statement. For instance, the value of NIMBLE will be 9 after execution of 
the following 

EXAMPLE: PUNCH 2,(JACKBE(NIMBLE),NIMBLE = 1,10,2) 
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9.23 READ Statement 

The forms are as follows: 

READ n 
READ n,e 
READ ne 

where n is the statement number of a FORMAT statement (section 9.21) and 
e is an I/O list (section 9.1). 

EXAMPLES: READ2 
READ 23, N, (ALPHA(J),J = l,N) 

The effect of the READ statement is to read paper tape for data required 
in further execution of the program. The information on the tape is read 
and converted according to the specifications in the FORMAT statement 
(referenced in the READ statement) and the resulting value is stored in the 
variables named in the I/O list of the READ statement. All the items of 
the I/O list must be variables, not constants. The items of the I/O list 
are matched with the specifications of the specification list in the FORMAT 
statement except for the H and X specifications, which stand by themselves. 
The items of the I/O list and the corresponding specifications must match 
as to being integer or floating point. 

The data must begin with a carriage return character. Upon execution of 
the READ statement, the input tape is searched forward for a carriage 
return and conversion begins with the character following the carriage 
return. Whenever a slash is encountered as a separator between speci­
fications, the tape is moved forward to the next carriage return and con­
version resumes with the next character after the carriage return. A 
slash found on the input tape while converting a field according to E, F, 
I, or 0 conversion means that the field is finished even if the specified 
number of characters have not been found. Whenever an H or X specification 
is encountered in the specification list, characters are skipped or read 
into the space reserved, but consideration of the next variable in the I/O 
list is delayed until the next E, F, I, 0, or A specification is reached. 
If the end of the specification list in the FORMAT statement is reached 
before the end of the I/O list in the READ statement, part or all of the 
specification list is considered repeatedly (section 9.20). If the end 
of the I/O list is reached before the end of the specification list, 
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reading will proceed in accordance with slashes, H specifications, and X 
specifications until the next E, F, I, O, or A specification or the end 
of the specification list is reached. If there is no I/O list in the READ 
statement, the specification list in the FORMAT statement must begin with 
H or X specifications if any reading is to occur. 

EXAMPLES: 6 

8 
FORMAT (6HA;B;C;,F9.6,El2.6,I3) 
FORMAT (I4,(E8.6,E8.6,A2)) 
READ 6 
READ 6,ALPHA,BETA,JACK 
READ 8,IDENT,(BMBRS(J),FGTRS(J),KSYMB(J),J=l,M) 

Execution of the first READ statement among the above examples would cause 
the six computer words occupied by three space codes and the three letters 
A, B, and C, and associated case codes, to be replaced by six characters 
from the input tape. Execution of the second READ statement would also 
cause input of six characters to those reserved computer words. But then 
input and conversion of three numbers to become the new values of ALPHA, 
BETA, and JACK, would proceed according to the last three specifications 
in FORMAT statement 6, Notice that the conversion specifications are for 
two floating point numbers and one integer, and that those 

Specification Input Data Field Value 

F6.4 -13906 -1. 3906 
F6.4 279.37 279.37 
F6.4 3G59El 3.059 
F6.4 5.R7-l .507 
El0.3 2468357988 2468357.9 
ElO .3 1234.1234E 1234 .1234 
El0.3 -27.27E 2 -2727 
El0.3 39XYZE- 01 3.9 

Figure 9. 
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are the respective types of the variables named in the READ statement. 

FORMAT statement 8, if referenced by a READ statement, calls for convcr::' i<''1 

and input of values of an integer variable and as many lines as necessary 

of two floating point variables and one fixed point variable. The last 

READ statement of the examples above satisfies this requirement. It calls 

for input to the integer variable IDENT and to M elements of the float:i~1g 

point arrays BMBRS and FGTRS and the integer array KSYMB. 

Notice that execution of a READ statement can change the value of a vari­

able which is not an element of the I/O list. In the last example above, 

J will be left with the value which M has, even though there is no inpt.:t 

to J. 
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CHAPTER 10 

A PROGRAM IN 160 FORTRAN 

10.0 Introduction 

Basically, a useful computation requires that data be read in, computations 
be performed on the data, and results be punched out for listing on a Flex­
owriter. Complexities begin to creep in immediately in that alternative 
computations must be provided and intermediate results must be examined in 
order to choose among the alternatives. The IF statements and the con­
ditional GO TO statements have been provided for the task of choosing 
(sections 6.4, 6.5, 6.6, 6.7, 6.8, 6.9). Other seeming complexities are 
actually simplifications. DO loops and SUBROUTINES have been provided 
so that some tasks to be done repeatedly may be programmed only once 
(sections 6.12, 6.13, 6.14, and Chapter 8). 

10.1 Structure of a Program 

The following rules apply to all 160 FORTRAN programs: 

1. All FORMAT statements must appear first in the program. 

2. All FORMAT statements must have unique statement numbers. 

3. All DIMENSION statements must appear next in the program. 

4. All subroutines must appear next in the program. 

a. Each subroutine must begin with a SUBROUTINE statement. 

b. If there is a NONLOCAL statement in the subroutine, it must appear 
next. 

c. There must not be any READ or PUNCH statements inside a subroutine. 

d. There must not be any FORMAT or DIMENSION statements inside a sub-
routine. 

e. There must not be any SUBROUTINE or END statements inside a sub-
routine. 

f. There must be an END statement at the end of each subroutine. 
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5. The next statement is the first one to be executed in the object 
program. 

6. There must be a PAUSE or STOP statement as the last one to be executed. 

7. There must be an END statement as the next-to-last statement in the 
program. 

8. There must be an END statement as the last statement of the program. 

10.2 Comments in 160 FORTRAN Programs 

It may be desirable to insert comments within a FORTRAN program to explain 
the processing at any point. A means has been provided to do this so that 
the comments will be listed along with the rest of the source code, but 
will be ignored in the compilation process. If a C is written in column 1, 
the type column, of the coding sheet (section 2.3) the entire line will be 
ignored by the compiler. The C designation does not carry over from line 
to line; if there are several consecutive comment lines, each must have a 
C in column one. 

10.3 A Sample 160 FORTRAN Program 

This section contains a sample program in 160 FORTRAN source language as 
it would appear in a Flexowriter listing of the input tape. Notice that 
there is a prime (') wherever an asterisk (*) was written on the coding 
sheet. There are two statements which are continued onto a second line. 
They are the statements following statements 7 and 8, respectively. It 
is important that the statement after statement 8 breaks between N and the 
plus sign rather than between the slash and the N. As a convenience to 
the Flexowriter operator, in case an error occurs in transcribing, a slash 
followed by a carriage return is a signal to the compiler to ignore the 
whole line. Therefore, if a line ends in slash, this, combined with the 
following carriage return code, will cause the line to be left out. The 
letters in the following example are all upper case; however, it is im­
material to the compiler if the letters are upper or lower case. The 
sample program follows: 

100 FORMAT (I4/(F5.l,Fll.8)) 
101 FORMAT (Fl2.3/2Fl2.3/2Fl2.3/Fl2.3) 
102 FORMAT (3Fl2.3) 

DIMENSION X(lO),Z(lO) 
READlOO, N, (X(I),Z(I), I=l,N) 
READ101, TN2, CHI1,CHI2,A,B,ZO 
XBAR=O 
ZBAR=O 
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DO 1 I=l,N 
XBAR=XBAR+X(I)/N 

1 ZBAR=ZBAR+Z(I)/N 
C ESTIMATE REGRESSION COEFFICIENTS AND VARIANCE 

BETA=O 
ALPHA=O 
TEMP=O 
DO 2 I=l,N 
BETA=(X(I)-XBAR)'(Z(I)-ZBAR)+BETA 

2 TEMP=TEMP+(Z(I)-ZBAR) 11 2 
BETA=BETA/TEMP 
ALPHA=XBAR-BETA'ZBAR 
VAR=O 
DO 3 I=l,N 

3 VAR=VAR+(X(I)-ALPHA-BETA I Z(I)) 11 2/N 
PUNCH102, ALPHA, BETA, VAR 

C CONFIDENCE INTERVAL FOR ALPHA 
TEMP=O 
TEMPl=O 
DO 4 I=l,N 
TEMP=TEMP+Z(I) 11 2 

4 TEMPl=TEMPl+(X(I)-ALPHA-BETA'Z(I))' '2 
TEMPl=TEMPl 'TEMP 
TEMP=O 
DO 5 I=l,N 

5 TEMP=TEMP+N'(N-2) 1 (Z(I)-ZBAR) I '2 
TEMP=SQRTF(TEMP/TEMPl) 
TEMP2=(TN2+ALPHA'TEMP)/TEMP 
TEMP1=(-TN2+ALPHA'TEMP)/TEMP 
PUNCH102, TEMPl, TEMP2 

C CONFIDENCE INTERVAL FOR BETA 
TEMPl=O 
TEMP2=0 
DO 6 I=l ,N 
TEMPl=TEMPl+(X(I)-ALPHA-BETA'Z(I))' '2 

6 TEMP2=TEMP2+(N-2) '(Z(I)-ZBAR)' 1 2 
TEMP=SQRTF(TEMP1/TEMP2) 
TEMP1=(-TN2+BETA'TEMP)/TEMP 
TEMP2=(TN2+BETA'TEMP)/TEMP 
PUNCH102, TEMP1,TEMP2 

C CONFIDENCE INTERVAL FOR VAR 
TEMP1=(N'VAR)/CHI2 
TEMP2=(N'VAR)/CHI1 
PUNCH102,TEMP1,TEMP2 
TEMP=O 

C COMPUTE F FOR ALPHA=A AND BETA=B 
DO 7 I=l,N 

77 



7 TEMP=TEMP+(Z(I) ''2) '(BETA-B) 
TEMPl=(N'(ALPHA-A)+2'N'ZBAR'(ALPHA-A)' 

l(BETA-B)+TEMP)/(N'VAR) 
PUNCH102, TEMPl 

C PREDICTION INTERVAL FOR X CORRESPONDING TO Z 
TEMP=O 
DO 8 I=l,N 

8 TEMP=TEMP+(Z(I)-ZBAR)' 1 2 
TEMP=TN2 1VAR 1 SQRTF((N/(N-2))'((N+l)/N 

l+(ZO-ZBAR)''2/TEMP)) 
TEMPl=ALPHA+BETA 1 ZO-TEMP 
TEMP2=ALPHA+BETA'ZO+TEMP 
PUNCH 102, TEMP 1, TEMP2 
STOP 7707 
END 
END 
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CHAPTER 11 

ENVIRONMENT OF 160 FORTRAN 

11.0 Introduction 

The 160 FORTRAN system consists of the FORTRAN programming language as 
described in the previous chapters of this manual, the Control Data 160 
(or 160-A) Computer, the program tapes to compile the FORTRAN source 
program, and the program tape to interpret the FORTRAN object program. The 
following sections describe aspects of the system that may help the user 
to realize the maximum benefits from the system. 

11.1 Source Program 

The original program is written in the 160 FORTRAN language on standard 
forms (Figure 1). From this manuscript a punched paper tape and a listing 
are prepared on a Flexowriter. The listing is for reference. The punched 
paper tape is for input to the compiler. The method of accomplishing 
compilation is described in the operating instructions at the end of this 
manual. 

11.2 Results of Compilation 

The main output of the compiler is a binary punched tape of the object code 
which is used in executing the program. It is also possible to obtain two 
auxiliary tapes for listing on a Flexowriter. The first is the IDLIST 
Tape, which contains lists of the variables, constants, and other entities 
used in the program. The second auxiliary tape is an interpreted listing 
of the object code. 

11.3 The IDLIST Tape 

The first list is the list of simple variables. This variable list gives 
the first of two or four locations associated with each variable in the 
program and the name of the variable. The locations are given in octal 
as are all locations on the list tape and the object code tape. The first 
location for a variable contains its type: 2 for integer, 5 for floating 
point, 3 for integer formal parameter of a subroutine, 7 for floating 
point formal parameter. For formal parameters or local variables there 
is a number, from 1 to 7, in the list, after the variable name, that 
tells to which subroutine it belongs. If the variable type is 2 there is 
one word, immediately following the type, which will contain the value 
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of the integer variable. Variable type 5 means the three following words 
contain the floating point value. Variable type 3 or 7 means the following 
word contains the location of the actual parameter. 

There will always be a variable named IF listed. This is not a legal 
variable name for the prograrrnner to use. It is included by the compiler 
for use as an index in input and output of arrays. 

If there are any arrays, they are listed next under the heading, "Array 
Storage". A location is given along with the name and dimensions of the 
array. The given location is the fourth of several allocated to the array. 
The first three words contain the dimensions of the array. The fourth 
word (the one given in the listing) contains the type: 1 for integer, 4 
for floating point. Following this there is one word for each element of 
an integer array and three words for each element of a floating point array. 

Next there are lists of the integer and floating point constants, type 2 
or 5, respectively, with two or four locations allocated to each. The 
lists are in two columns giving location and the value of the constant. 

Next comes a list of statement labels. The list is headed, "Labels". It 
consists of four columns giving a reference location, the object code 
location, the prograrrnner's statement number, and the rank. The reference, 
or "Varlist" location, is needed only because the compiler is one-pass. 
Rank of zero means the statement number is in the main program. Ranks 
from 1 to 7 tell which subroutine. The compiler always supplies statement 
number zero to the first executable statement in the program. 

Following the statement labels there may be a list called "EAPACK". This 
is a list of all the different ways of referring to array elements, The 
listed location is the first of several assigned to the corresponding 
subscripted variable. This first location contains codes indicating the 
number of subscripts and the structure of each. Following this there are 
the locations of the array and the locations of the variable subscript 
elements and the values of the constant subscript elements. 

Next are lists of the library functions and the subroutines. PUNCH, READ, 
and ~·:* (with floating point operands) make use of the library functions 
PU, RE, and EXPF, respectively. PU and RE ar·e library functions which 
cannot be called explicitly by the prograrrnner. The listings give the re­
ference location, the object code location and the name of the function 
or subroutine. 

11.4 The Object Code 

The object code produced by the 160 FORTRAN compiler is not in 160 machine 
language. It is a special language designed to be read and interpreted by 
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a program (part of the 160 FORTRAN system called the interpreter) which is 
in the computer at the same time as the object code. The Control Data 160 
Computer contains 4096 words, numbered (in octal) from 0000 through 7777. 
All locations are given in octal. The interpreter occupies locations 0000 
through 3200 if there are no FORMAT statements. Otherwise it continues to 
3500. The object code, starting with the subroutines and FORMAT statements, 
follows the interpreter. The library functions follow the object code. 
The variable list is built down from 7777. In order for the program to 
operate, it must be small enough that the object code or library functions 
do not overlap the variable list. The approximate lengths of the library 
functions are, in octal, 355 for READ, 520 for PUNCH, and from 100 to 200 
for each of the others. 

An interpretive listing of the object code may be obtained as explained in 
the operating instructions. This consists of a symbolic listing of the 
macro-instructions of the object code, together with their octal locations. 
The macro-instructions are the sentences of the language read by the in­
terpreter. The listing uses mnemonic symbols which, it is hoped, will 
convey some meaning. 

11.5 Samples of the IDLIST and Object Code List 

This section contains excerpts, printed on a Flexowriter, of the listings 
described in sections 11.3 and 11.4: 

VARIABLE LIST 

7470 L 
7474 K 
7502 K, 1 
7504 JD, 1 
7506 N4, 1 
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7560 LPLP 
7572 LP 
7574 JOB, 1 
7576 N, 1 
7600 M, 1 
7773 IF 

ARRAY STORAGE 

7642 1(10) 

INTEGER CONSTANTS 

7547 1789 
7551 9 
7556 456 
7560 8 
7565 23 
7567 7 
7574 6 

LABELS 
VARLIST LCN 

7450 
7454 
7456 
7460 
7464 
7500 
7512 

7742 
7761 
7767 
7771 

EAPACK 

7535 I(J) 
7544 I(+9) 
7553 I(+8) 

OBJCODE LCN 

4620 
4541 
4446 
4353 
4260 
4203 
4130 

7717 
7744 
7763 
4220 

NAME RANK 

25 0 
24 0 
23 0 
22 0 
21 0 
8 1 
6 1 

3 0 
2 0 
1 0 
0 0 
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LIBRARY FUNCTION NAMES 
VARLIST LCN OBJCODE LCN NAME 

7476 4710 PU 

SUBROUTINE NAMES 
VARLIST LCN OBJCODE LCN NAME 

7602 3700 ARI TH 

OBJECT CODE 

3700 SUBROUTINE FOLLOWS, NUMBER OF PARAMETERS: 3 
M, 1 
N, 1 
JOB, 1 

3704 AR ITH 
MODE: INTEGER 

3710 ADD LP 
ADD 1 
STO LP 
END 

3714 ARI TH 
MODE: INTEGER 

3720 ADD LP 
SUB 1000 
END 

3723 IF 
32 1 
31 1 
31 1 
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4172 INIT 
1 
K, 1 

4175 CALL ARITH 
3 
Ml, 1 
J4, 1 
JD, l 

4203 ARI TH 
MODE: FLTNG 

4207 ADD Z 
STO J4, 1 
END 

4212 !NCR 
K, 1 
N4, 1 
1 
4175 

4217 RETURN 

4663 CALL ARITH 
3 
2 
4 
4 

4671 IO 
PUNCH 
6 0 
PU 

4675 IOC 
5 
2 
4 
z 
LPLP 
LP 

4704 STOP 
7776 

4706 STOP 
0000 

4710 PU 4710-5531 
VARIABLE LIST 7450-7776 
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SUMMARY OF STATEMENTS IN 160 FORTRAN 

1. Control 

a. Unconditional GO TO 
b. ASSIGN 
c. Assigned GO TO 
d. Computed GO TO 
e. IF 
f. IF ACCUMULATOR OVERFLOW 
g. IF QUOTIENT OVERFLOW 
h. IF DIVIDE CHECK 
i. PAUSE 
j. STOP 
k. DO 
1. CONTINUE 

2. Subroutine 

a. SUBROUTINE 
b. CALL 
c. NONLOCAL 
d. RETURN 
e. END 

3. Declaration 

a. DIMENSION 

4. Input/Output 

a. READ 
b. PUNCH 
c. INPUT 
d. OUTPUT 
e. FORMAT 
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FORTRAN SPECIAL CHARACTERS 

1. ** Power, Shift 

2. * Multiply, Logical Product 

3. I Divide, Exclusive OR 

4. + Add, Inclusive OR 

5. Subtract, Complement 

6. ( Left Parenthesis 

7. ) Right Parenthesis 

8. Separator 

9. Floating Point Indicator 

10. Replacement symbol 

11. Space Designator in an H Specification 
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FLEXOWRITER CHARACTERS 

Character Code Case Shift* 

A 30 UC, LC 
B 23 UC, LC 
c 16 UC, LC 
D 22 UC, LC 
E 20 UC, LC 
F 26 UC, LC 
G 13 UC, LC 
H 05 UC, LC 
I 14 UC, LC 
J 32 UC, LC 
K 36 UC, LC 
L 11 UC, LC 
M 07 UC, LC 
N 06 UC, LC 
0 03 UC, LC 
p 15 UC, LC 

Q 35 UC, LC 
R 12 UC, LC 
s 24 UC, LC 
T 01 UC, LC 
u 34 UC, LC 
v 17 UC, LC 
w 31 UC, LC 
x 27 UC, LC 
y 30 UC, LC 
z 31 UC, LC 
0 56 UC, LC 
1 74 UC, LC 
2 70 UC, LC 
3 64 UC, LC 
4 62 UC, LC 
5 66 UC, LC 
6 72 UC, LC 
7 60 UC, LC 
8 33 UC, LC 
9 37 UC, LC 

* UC = Upper Case, LC Lower Case 
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Character Code Case Shift 

blank (space bar) 04 UC, LC 
I (apostrophe) 44 UC 
I 44 LC 

S2 UC, LC 
( S4 UC 
) S4 LC 

(cormna) 46 LC 
+ 46 UC 

42 LC 
= 42 UC 

so LC 
so UC 

Carriage return 4S UC, LC 
Tab bar Sl UC, LC 
Color Shi ft 02 UC, LC 
Back space 61 UC, LC 

Upper case (UC) 47 
Lower case (LC) S7 
Skip for tape feed Blank tape 
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array: 

binary: 

bioctal: 

bit: 

Boolean: 

constant: 

conversion 
specification: 

fixed point: 

Flexowriter: 

GLOSSARY 

A collection of variables. Usually the members of the 
collection are related in some way. One member of the 
collection is known as an array element. In FORTRAN there 
may be one, two, and three dimensional arrays. The array 
elements are identified by one, two, or three subscripts, 
respectively, and are also called subscripted variables. 

Characterized by two, as 1) a binary operator, such as +, 
which operates on two quantities, or 2) the binary number 
system which has just two digit symbols, 0 and 1. The 
binary system uses positional notation in which each 
position represents a power of two instead of a power of 
ten. 

Characterized by two octal digits. Sometimes used to de­
signate six level paper tape punched with internal computer 
code. In this manual such tape is called binary. 

A binary digit, which may be 0 or 1. 

Originally the symbolic logic developed by the mathematician 
George Boole. In 160 FORTRAN, the operations of shifting, 
logical multiplication (AND), logical addition (inclusive 
OR), exclusive OR, and complementation, carried out in 
parallel on the twelve bits of integer operands. 

A positive numerical quantity or zero, not subject to 
change. In FORTRAN, constants are referred to by their 
values. 

A stated relationship between internal and external re­
presentations of numbers. Used in carrying out READ and 
PUNCH operations. 

The ordinary notation for numbers, in which the decimal point 
or binary point is explicitly stated and there is no scale 
factor. In FORTRAN fixed point numbers are all integers. 

A brand of electric typewriter with paper tape punching and 
reading mechanisms attached. 

89 



floating point: A representation for numbers in which the binary point or 
decimal ppint is always in a standard position and a scale 
factor is included which indicates a power of 2 or 10 to 
be used as a multiplier. 

frame: 

Hollerith: 

integer: 

I/O list: 

list: 

one-pass: 

operand: 

operator: 

recursive: 

specification 
list: 

A line of punched holes across a paper tape. 

Originally a coding scheme for representing letters, digits, 
and special characters on punched cards, named for the 
designer. Now used to mean almost any scheme, associated 
with computers, for representing letters, digits, and 
special characters. 

A whole number, without any fractional part. In FORTRAN, 
used to refer to fixed point numbers, which are required 
to be integers. 

A list of variables, arrays, and constants for input or 
output by an INPUT, OUTPUT, READ, or PUNCH statement. 

I/O list or specification list. In this manual, context 
will always clearly indicate which. In other works on 
FORTRAN, list often means only I/O list. 

Characteristic of compilers or assembly programs which 
only look at the source code once. 

In arithmetic or other operations, the quantities on which 
the operations are performed. 

That which indicates the arithmetic or other operation to 
be performed. 

Done again. A recursive subroutine is one which calls 
itself or which calls a chain of subroutines which ultimately 
call the original subroutine. To be useful the subsequent 
call must somehow differ from the previous call so that 
the subroutine can eventually complete its work. A recursive 
definition is a definition by formula in which the defined 
term can be used as a term in the formula, thereby ex­
tending the definition. 

A list of conversion specifications occurring in a FORMAT 
statement. 
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unary: 

variable: 

word: 

Characterized by one, as a unary operator such as negation 
or complementation which acts on only one operand. 

A numeric quantity which is allowed to change 
execution of a program. A simple variable or 
variable (array element). In this manual, an 
called a variable. 

value during 
a subscripted 
array is not 

A memory cell of a computer. In the Control Data 160 
Computer, memory is organized into 4096 words of 12 binary 
digits (bits) each. 
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OPERATING PROCEDURES FOR 160 FORTRAN 

I. Operating equipment. 

A. Control Data 160 with paper tape punch and reader. 

B. Flexowriter. 

II. Listings and paper tapes invloved in a typical run. 

A. The FORTRAN program tapes -- furnished by Control Data. 

1. Compiler I. 
2. Compiler II. 
3. Compiler III (the interpreter). 

B. Tapes and listings furnished/generated by user for a given 
problem. 

1. Source program -- Flexowriter tape with FORTRAN statements 
in standard format. 

2. Listing of IDLIST (optional). 
3. Compiler output -- a binary punched paper tape (odd parity) 

consisting of: 
a. Format specifications, if any, corresponding to format 

statements in the source code. 
b. The object code. 
c. Library subroutines, if any. (Object code format.) 
d. Var list. 

4. Interpretive listing of object code (optional). 
5. Input-output tapes (during execution). If the compiled 

program involves input-output, this will be via paper tape 
reader and punch. These input-output tapes are of two 
types: 
a. Binary tapes, internal format. 
b. Flexowriter tapes, external format. 

III. Detailed operating procedures. 

We shall assume the source code has been generated on a Flexowriter 
and proceed to do a compilation and execution. 

A. Compilation. 
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1. Machine load Compiler Tape I at P=OOOO. Check sum: 0000 
2. Position the source code tape in the reader, turn on punch, 

clear and run (from P=OOOO). 
3. If no source code errors have been detected during compilation, 

a stop will occur at P=5431 and 0000 will be displayed in 
the A-register. DO NOT CLEAR. At this point, a binary tape 
has been output which consists of Format specifications 
(if any) and the bulk of the object code; however, some 
"end" coding still remains in memory. Do not remove the 
punched tape from the punch at this point. 

Error Stops: 

When an error stop occurs (at P=5252 or P~5427), the 
A-register will contain the type of error. Run from 
here and another stop will occur (P=5255.) Now the A­
register contains the value of the last encountered 
statement number in the source coding. (This second 
stop does not occur for error types 20, 27 and 30.) 
Memory cell #40 will contain the number of statements 
between the statement given in the A-register and the 
statement where the error stop occurred. 

Pressing run after an error stop will start compilation 
of the next FORTRAN statement. Either another error 
stop will occur or the final program stop at P=5431. 
At this point the A-register contains the number of 
errors detected during compilation. Thus for each 
error detected during compilation it is possible to 
determine the type of error and the source code state­
ment in which the error occurs. 

If error stops occur, the program cannot be executed, but 
it may be helpful to continue with steps 4 and 5 for 
diagnostic purposes. If there is a format statement at 
some position other than first in the program, an error stop 
will occur at P=6262; no restart is possible from this start. 

4. Position Compiler Tape II in the reader and run. (P=5431). 
The remainder of the object code is punched out, including the 
required library functions and the variable list. 

Stop at P = 0240 DO NOT CLEAR! 

Remove the binary tape from punch. (This will be used during 
execution and step 5 following.) The operator can proceed 
directly to execution at this point or implement step 5. 
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Error Stops: 
P=Ol62, parity error stop. 

Note: If a parity error stop occurs at this time, it 
indicates reader/machine errors. (All the library 
functions and final service routines have been verified.) 
To reload the record in which a parity error is indicated, 
position the tape in the reader on the blank frames pre­
ceding the section in question, clear, set P=Ol34 and run. 

In addition, Compiler error stops ERR20, ERR27, and ERR30 
can occur during this step. 

5. Optional service routines. 
a. For a listing of IDLIST, press Run (P=0240). A Flexo­

writer tape is generated and a stop occurs at P=2343. 
DO NOT CLEAR. 

b. For an interpretive listing of the object code position 
the binary object code tape in the reader and run 
(from P=2343). A Flexowriter tape is then punched out 
and a final stop occurs at P=4374. 

Error Stops: 

P=2521 
P=4001 

P=4055 

Name of macro not in table 
Parity error. (recompile. Usually 
indicates punch trouble.) 
Search failure. (Varlist location 
not in IDLIST.) 

Note: These Flexowriter tapes are designed to be listed 
on a Flexowriter with the standard OSAP tab settings 
(7, 10, 14, 17, 22, 26, 30, 40). However, it is possible 
to modify the tab settings to one tab per field of in­
formation. Also the select codes can be altered to permit 
listing on an on-line typewriter. 

This is done preceding step 5.a. by inserting an appropriate 
number into the A-register as follows (P=0240 at this point): 

A=l Type IDLIST 
A=2 Type object code 
A=3 Change tab settings 

After entering the appropriate parameter in the A-register, 
press run (P=0240). A stop occurs at P=0240, A=OOOO. 
Another change can be made in the dump routine by putting 
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another parameter in the A-register, or step 5.a. can be 
implemented (with A= 0000). 

B. Execution 
1. Machine load Compiler Tape III (the interpreter) at P = 0000. 

Check sum = 0000. 
2. Clear, position the binary object tape in the reader and 

run (from P = 0000). Stop at P = 0120. DO NOT CLEAR! 

Error Stop: 

P = 0052 Parity error stop. Usually indicates 
punch trouble. 

Note: If a punch failure has caused three or more blank 
frames to be inserted in a binary object tape the 
program will hang up when the blank frames are en­
countered. 

3. At this point the FORTRAN object program is in memory and 
ready to be executed. Turn on the punch, position input 
tapes in the reader as required, and run (from P = 0120). 

Error Stop: 

p = 0445 Invalid operation code. (Compiler Error.) 
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PROGRAM ERRORS DETECTED DURING COMPILATION 

Contents of A-register 

1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 

5 

Type of Error 

No variable following operation symbol 
No (after function 
Two adjacent variables 
Two adjacent operation symbols 
Unequa 1 ( and ) 
Two ** ** 
Initial **, *, or I 
Compiler error 
Unknown character 
Array name used as variable 
Wrong IF format 
Format error in GO TO 
Format error in NON LOCAL 
Not implemented in 160 FORTRAN 
Problem too large 
Undefined label 
Format error in I/O list 
Format error in I/O list 
Numeric conversion 
Too many characters in identifier 
Identifier of wrong form 
Format error in DIMENSION 
Object code too large 
Library routine not on tape 
Error in Format Statement 
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