
CONTROL DATA
160-A COMPUTER

160-A FORTRAN/REFERENCE MANUAL

CONTROL DATA 160-A COMPUTER

160-A FORTRAN/REFERENCE MANUAL

CONTROL DAT A CORPORATION

8100 34th Avenue South

Minneapolis 20, Minneaota

Pub. No. 60051300, Rev. B
January, 1964

This manual, publication 60051300, rev. B,
is a major revision and obsoletes publication
513A. Any comments should be addressed
to:

Control Data Corporation
Documentation Department
3145 Porter Drive
Palo Alto, California

© 1964, Control Data Corporation
Printed in the United States of America

CHAPTER 1

CHAPTER 2

CHAPTER 3

CONTENTS

INTRODUCTION

1.1

1.2

Preparation of A Fortran Program

Sample Program

ELEMENTS OF THE LANGUAGE

2 .1 Reserved Words

2.2

2.3

2.4

Constants

2.2.1 Integer Constants

2.2.2 Floating Point Constants

2.2.3 Masking (Boolean) Constants

Simple Variables

2.3.1 Simple Integer Variables

2.3.2

Arrays

2.4.1

2.4.2

2.4.3

Simple Floating Point Variables

Storage of Arrays

Subscripted Integer Variables

Subscripted Floating Point Variables

ALGEBRAIC EXPRESSIONS AND STATEMENTS

3.1

3.2

3.3

3.4

3.5

Arithmetic Expressions, Operators

3.1.1 Evaluation of Exponentiation

Arithmetic Expressions, Mixed Mode

Masking Expressions

3.3.1

3.3.2

Masking Expressions, Operators

Ordering of Operations

Expressions as Subscripts

H.eplacement Statements

3.5.1

3.5.2

Arithmetic Statements

Masking Statements

iii

1

1

2

5

5

5

5

5

6

7

7

7

7

8

9

9

11

11

14

14

15

15

17

18

18

19

19

CHAPTER 4 CONTROL STATEMENTS 21

4.1 Statement Identifiers 21

4.2 GO TO Statements 21

4.2.1 Direct GO TO Statement 21

4.2.2 Assigned GO TO Statement 22

4.2.3 Assign Statement 22

4.2.4 Computed GO TO Statement 22

4.3 IF Statements 23

4.3.1 Computed IF Statement 23

4.3.2 IF Sense Switch Statement 23

4.4 DO Statement 24

4.4.1 DO Loop Execution 25

4.5 Arithmetic Fault Tests 27

4.5.1 Overflow Tests 27

4.5.2 Divide Check Test 27

4.6 Continue Statement 28

4.7 Pause Statement 28

4.8 Stop Statement 28

4.9 End Statement 28

CHAPTER 5 FUNCTIONS AND SUBROUTINES 29

5.1 Functions 29

5.2 Subroutines 30

5.2.1 Subroutine Statement 31

5.2.2 Formal Parameters 32

5.2.3 Return Statement 33

5.2.4 Call Statement 33

CHAPTER 6 DATA STORAGE 37

6.1 Dimension 37

6.2 Common 38

6.2.1 Numerical Common 40

6.3 Equivalence 41

iv

CHAPTER 7 INPUT/OUTPUT 45

7.1 Data List 46

7.2 Format 48

7.2.1 Repeating Conversion Specifications 49

7.2.2 Format Specifications 49

7.2.3 Heading and Spacing Specifications 56

7.2.4 Complete Format Specifications 57

7.3 Variable Format Control 58

7.4 Magnetic Tape Statements 59

7.5 Punched Card Statements 60

7.6 Flexowriter Statements 61

7.7 Typewriter Statements 61

7.8 Printer Statements 62

7.9 Specifications for Non-Standard Equipment 62

CHAPTER 8 CODING PROCEDURES 63

8.1 Statements 63

8.2 Continuation 64

8.3 Comments 64

8.4 Identification Field 64

8.5 Punched Cards 64

8.6 Paper Tape 65

8.7 Magnetic Tape 65

CHAPTER 9 DECK STRUCTURE 67

CHAPTER 10 SAMPLE PROGRAMS 69

APPENDIX A UTILITY FUNCTIONS 79

APPENDIX B DIAGNOSTICS AND MEMORY MAP 89

APPENDIX C BCD - FLEXOWRITER - TYPEWRITER EQUIVALENCE CODES 94

APPENDIX D GLOSSARY 97

v

APPENDIX E MAGNETIC TAPE

APPENDIX F PAPER TAPE AND TYPEWRITER

APPENDIX G STATEMENT INDEX

APPENDIX H TOPIC INDEX

VI

99

102

104

107

1.1

PREPARATION OF
A FORTRAN
PROGRAM

INTRODUCTION 1

This manual describes a FORTRAN* programming language for the CONTROL
DATA® 160-A computer and is written for persons with a basic knowledge of
stored-program digital computers and FORTRAN. Persons who are unfamiliar
with these topics may find the FOR TRAN Autotester a helpful introduction to
the material in this manual.

Since most FORTRAN statements are translated into groups of machine language
statements, FORTRAN programs are usually shorter, easier to write, and easier
to debug than machine language programs. When the programmer's major
interest is to find an immediate solution for a particular problem, FORTRAN
offers him a fast and easy means to achieve this objective.

Page 2 contains a general description of the steps taken in going from a problem
in the programmer's mind to the solution of the problem by the computer. Included
is a sample FORTRAN problem and a description of the steps for writing this
problem. In Chapters 1 - 9, the FORTRAN programming language is described;
Chapter 10 contains sample programs. A glossary of computer terminology is
given in Appendix D and statement and topic indexes are given in Appendixes G
and H.

To prepare a FORTRAN program, the programmer must first reduce the solution
of the problem to a series of simple steps which can be written as FORTRAN
statements. The FORTRAN statements including those for transferring data into
and out of the computer are written on FORTRAN coding forms and subsequently
punched into cards or paper tape.

The program is read into the 160-A computer and translated by the 160-A
FORTRAN compiler into an intermediate language. The intermediate language
program is either executed at that time by an interpreter or stored for future
use. The process of translating from FORTRAN statements to intermediate
language statements is called compiling.

*FORTRAN is an abbreviation for FORmula TRANslation and was originally developed for
International Business Machine equipment.

1.2

SAMPLE PROGRAM Given 20 sets of floating point constants with 4 constants in each set, find the
square root of the sum of the squares of the constants in each set. If the data
in each set are labeled as A(I),B(l),C(I) and D(I), where I designates the
particular set (1 - 20), then the following computation is performed 20 times.

Y(l) =
~ 2 2 2 2 A(l) + B(l) + C(l) + D(l)

The FORTRAN program shown below reads the data from punched cards,
computes Yi for each of 20 sets and prints the answers in a column. Each line
of the program contains a FORTRAN statement. The function of each statement
in the program is also explained.

*

30

Statement

PROGRAM SAMPLE

DIMENSION A(20), B(20), C(20), D(20), Y(20)

(8F8. l) FORMAT

READ 30,A,B,C,D

DO 4 I= 1,20

4 Y(I) = SQRTF(A(1)**2+B(I)**2+C(I)**2+D(I)**2)

1

2

3

4

5

6

7

8

40 FORMAT (lOX, 1HY/(5X, F9.l))

PRINT 40,Y

END 9

Explanation Line

The * denotes the beginning of the program. (See Deck 1
Structure, Chapter 9.)

Reserves space in computer memory for the 20 sets of 2
constants (A,B,C,D) and 20 results (Y).

Sets the input control to read floating point constants. 3

Causes the card reader to read cards into A, B, C and 4
D according to the format established by statement 30.
One constant will be read for every 8 columns on the
card; 8 constants are punched into each card.

Causes the next statement to be repeated 20 times, 5
increasing the variable I by 1 each time.

Computes J A(I)2+B(I)2+c(I)2+D(I)2 and substitutes the 6
result in the memory location reserved for Y(I).

2

Explanation Line

Sets the output control to transmit the heading Y 7
and a column of 20 floating point numbers.

Causes the printer to print the contents of Y according 8
to the format established by statement 40.

Instructs the compiler that this is the end of the program. 9

3

ELEMENTS OF THE LANGUAGE 2

2.1

RESERVED WORDS

2.2

CONSTANTS

2.2.1

INTEGER
CONSTANTS

2.2.2

FLOATING POINT
CONSTANTS

The word FORMAT has a special function in the FORTRAN compiler and should
be used only as described in this manual. All other words including those
described in this manual can be used for identifiers or variable names.

Three types of constants can be expressed in the 160-A FORTRAN language:
integer (fixed-point), floating point, and masking (Boolean). The type of a
constant in the source program is declared either by the form in which it is
written or the environment in which it appears. All constants are stored as
positive values.

Integer constants can have 1 to 7 decimal digits; they must be in the range
0 through 4194303. When used in an expression, a + sign or a blank before the
constant indicates a positive value; a - sign indicates a negative value. If more
than 7 digits are written, a diagnostic message will result. Spaces will be
ignored, but illegal characters will be interpreted as the end of the constant
field. (A comma is an illegal character in an integer constant). Each integer
constant occupies two consecutive 160-A words.

Examples:

1
-2037

+23

4194303
-17
-6029

A floating point constant is a number expressed as any number of decimal digits
and must include a decimal point . When used in an expression, a + sign or a
blank before the constant indicates a positive value; a - sign indicates a negative
value. The number may be multiplied by an integral power of 10, indicated by an
E and a - sign, a + sign, or a blank (indicating a +), and an integer exponent of
1 or 2 decimal digits.

5

2.2.3

MASKING
(BOOLEAN)
CONSTANTS

.n n --n xlO el e2
1 2 m

If the E is followed immediately by a digit, the sign of the exponent is assumed
to be positive.

The range of a floating-point constant is .1x10-32 through .99999999Xl03 1. (If
the CONTROL DATA® 168-2 auxiliary arithmetic unit is used, the floating point
range is io-38 to io38-l). Spaces are ignored (squeezed out), but illegal
characters will cause diagnostic messages.

Three consecutive machine words are used to store each floating-point constant
and except for leading zeros which position the decimal point, only the first
eight significant digits are retained.

Examples:

-3.9865087E22
.00000698E6

+687. 830E-5
9.5E30

-306.5E-30

These are
equivalent
forms

! .65Eb3
0.65E3
.65E+3
.65E03

650.0

b indicates blank

A masking constant is an integer of 1 to 8 octal digits. When used in an
expression, a + sign or blank before the integer indicates the value repre­
sented; a - sign before the integer indicates the seven's complement of the
value represented. Masking constants represent patterns of 24 binary digits
and are used with masking operators in partial word operations. Each masking
constant occupies two consecutive 160-A computer words. (Each 160-A word
contains 12 binary digits). Spaces and illegal characters are interpreted as
zeros.

Example:

Masking Constant

77000077
5252
-14

Binary Representation

Word 1

111111000000
000000000000
000000000000

Word 2

000000111111
101010101010
000000001100

(when -14 occurs in an expression, the 7' s complement of the stored
number (111111111111 111111110011) will be used in the calculations.)

6

2.3

SIMPLE VARIABLES A simple variable is the name of a storage area in which integers, floating­
point or masking constants can be stored. The variable is referenced by the
location name; the value specified by the name is always the current value
stored in that location.

2.3.1

SIMPLE INTEGER
VARIABLES

2.3.2

SIMPLE
FLOATING POINT
VARIABLES

2.4

ARRAYS

This value can be changed at any time by an arithmetic statement or a data
input statement. A simple variable has a name without a subscript and its
appearance in an expression is sufficient to reserve memory space for it.
Integer and floating-point variables are distinguished by the names assigned
to them. Spaces are ignored in variable names.

A simple integer variable is identified by a name of from 1 to 6 alphabetic or
numeric characters, the leftmost of which must be I, J, K, L, M, or N. It can
be assigned any integer value in the range from -4194303 to 4194303 inclusively.

Examples:

N
K2S04
LOX

NOODGE
M58
M 58

Since spaces are ignored in variable names, M58 and M 58 are identical.

A simple floating point variable is identified by a name of from 1 to 6
alphabetic or numeric characters, the first of which must be alphabetic and
not I, J, K, L, M, or N.

Any value from .1 E-32 to .99999999E31 and zero can be assigned to a simple
floating point variable, either positive or negative.

Examples:

VECTOR
BAGELS

A65302
BATMAN

An array is a block of successive memory locations divided into areas for
storage of variables. Each element of the array is referenced by the array
name with a subscript. Arrays may have one, two, or three subscripts. The
number of elements stored in the array is equal to the product of the subscripts.

7

2.4.1

STORAGE OF
ARRAYS

The maximum size of a subscript or the product of the subscripts is 2047. The
array name and its maximum dimensions must be declared at the beginning of
the program in a DIMENSION statement. Arrays can store either integer or
floating point values. The type of an array is determined by the array name;
spaces are ignored in array names. A subscript can be an integer constant, an
integer variable, or any integer expression listed in section 3.4.

Examples:

OBIES (9, 9)
LOUIE (80)

JOES (2, 8, 80)
BILLS (40, 3, 5)

Arrays are stored by columns as shown in the example below. Any element of
an array can be referenced by the array name plus a single numeric subscript,
regardless of the number of subscripts initially assigned to the array. The
value of the single subscript can be determined from the following equation:

Subscript= (i)+(j-1) *I+(k-l)*I*J (3 dimensions)
= (i)+(j-l)*I (2 dimensions)

where i, j, and k are the subscript values of the desired locations; and I, J, and
K are the maximum values declared for the subscripts. The symbol * is a
multiplication symbol. I and i refer to the first subscript, J and j to the
second, and K and k to the third. I, J, and Kin the example below equal 3.

Memory Words

B+O--B+2
B+3--B+5
B+6--B+8
B+9--B+ll

B+24- B+26
B+27- B+29
B+30-B+32
B+33-B+35
B+36 - B+38

B+78- B+80

8

I,J,K
ARRAY (3,3,3)

Array Element
i, j, k

B(l, 1, 1)
B(2, 1, 1)
B(3, 1, 1)
B(l, 2, 1)

B(3, 3, 1)
B(l, 1, 2)
B(2, 1, 2)

B(3, 1, 2)
B(l, 2, 2)

B(3, 3, 3)

Single-Subscript Element

B(l)
B(2)
B(3)
B(4)

B(9)
B(lO)
B(ll)
B(12)
B(13)

B(27)

2.4.2

SUBSCRIPTED
INTEGER
VARIABLES

2.4.3

SUBSCRIPTED
FLOATING POINT
VARIABLES

Zero as a subscript will result in a program error, an error that will not be
detected during compilation, but will occur when the program is executed.
Program errors will also result from the use of subscripts larger than those
initially declared for the array, unless a single subscript notation is used for a
two or three dimensional array. In this case, a subscript larger than the
product of the declared subscripts will result in a program error.

The elements of an integer array, called subscripted integer variables, can
be assigned the same values as simple integer variables. An integer array
is an array named by an integer variable name (1 to 6 alphabetic or numeric
characters; the first of which is I, J, K, L, M, or N).

Examples:

NEURON (6, 8, 6)
MORPH (20, 20)

L6034(J, 3)
N3(1)

The elements of a floating point array, called subscripted floating point
variables, can be assigned the same values as simple floating point
variables. A floating point array is an array named with a floating point
variable name (1 to 6 alphabetic or numeric characters, the first of which
is alphabetic and not I, J, K, L, M, or N).

Examples:

TMESIS (6, 4, 7)
PST(20, 3, 3)

9

YCLEPT(46)
SVELTE(6, 8)

3.1

ARITHMETIC
EXPRESSIONS,
OPERATORS

ALGEBRAIC EXPRESSIONS
AND STATEMENTS 3

An expression is a constant, variable (simple or subscripted), function
(Section 5.1) or any combination of these separated by operators, and
parentheses, written to comply with the rules given below for expressions.

The operators are + - * I and **. Expressions are divided into arithmetic
and masking expressions, and are used in arithmetic, masking, and control
statements and as subscripts.

An arithmetic expression can contain the following operators:

Symbol Function

+ addition

subtraction

* multiplication

I division

** exponentiation

Within an expression, sub-expressions can be grouped by parentheses to
indicate the order of operations.

Two operators or two operands cannot appear next to each other in any ex­
pression. If - is used as a minus sign in an arithmetic expression, the sign
and its operand must be enclosed in parentheses if it is preceded by an
arithmetic operator.

Examples:

Correct

-A*B+C

B*A/(-C)

A*(-C)

11

Incorrect

A*-B

B*A/-C

AC+B

Hierarchy of operations:

**

I
*
+

exponentiation

division
multiplication

addition
subtraction

class 1

class 2

class 3

EXPRESSIONS WITH NO INTERNAL PARENTHESES

1. The expression is scanned from left to right until a sequence of operands
and operators is found with only the operators*,/, or** (A**B, A*B).

2. If the sequence contains **, this operator is evaluated first.

3. Scanning to the left of the ** operator all * and I operations in the
sequence are evaluated, left to right.

4. Then, scanning to the right of the ** operator, the remaining *and I
operators in the sequence are evaluated, left to right.

5. If the sequence does not contain the ** operator, the *and I operators
are evaluated as the sequence is scanned from left to right.

6. Scanning from this sequence to the right, steps 1-5 are repeated until
the end of the expression is encountered. In complicated expressions,
the programmer may insure the correct result by using parentheses to
direct the evaluation.

7. When all sequences containing only *, I, and * * have been evaluated, or
if no sequences of this type are found, the expression is scanned from
left to right again and all + and - operators are evaluated as they are
encountered.

Example:

A+3*B/C-D/F**2*G+H

Order of Evaluation

3*B

(3*B)/C-Tl

F * * 2

D/(F * * 2)

12

(D/F * * 2) * G--T2

A+Tl

(A+Tl)-T2

((A+Tl)-T2)+H evaluation complete

EXPRESSIONS CONTAINING PARENTHETICAL GROUPS

1. Expressions within parentheses are evaluated first. When parenthetical
expressions contain parenthetical expressions, evaluation begins with
the innermost expression and proceeds outward.

2. Each level of parenthetical expression is evaluated according to the
above rules. If two or more independent parenthetical groups are on
the same level, they are evaluated as they are encountered in scanning
left to right.

3. After all parenthetical expressions have been evaluated, the order of
operations proceeds normally until the entire expression is evaluated.

Example:

B + A * (B + F **2 I (C * (D - (E + F)))) + (F - D)

E+F --Tl

D -Tl -T2

C * T2 -T3

F ** 2 -T4

T4 I T3 -T5

B + T5 -T6

F-D -T7

A* T6 -TB

B +TS --T9

T9 + T7 -TlO evaluation completed

Functions are treated as parenthetical groups.

The order in which operations are performed is always important, but
special attention must be given to fixed point expressions where remainders
of division operations are dropped.

The expression 4*10/3 will produce a result of 13, but the expression 10/3*4
will produce a result of 12.

13

3.1.1

EVALUATION OF
EXPONENTIATION The mode and final value of an expression after exponentiation can be

determined from the following algorithms:

3.2

ARITHMETIC
EXPRESSIONS,
MIXED MODE

A,B = floating-point expressions
I,J = integer expressions

Expressions

1. A**J

2.

3.

4.

IF J~O
IF J< 0

A**B

I**J

IF J>O
IF J= 0
IF J<O

I**B

Algorithm

A *A * ... *A, iterated J times
(1/A) * (1/A)* ... *(1/A), iterated
IJ I times

eB*lo~ I Al

I*I ... *I, iterated J times
1

0

B*log I fl(I) I e e
where fl(I) is the floating point value
of I.

Integer and floating-point variables and constants may appear in the same
arithmetic expression. The following are legal 160-A FORTRAN expressions

JOE+ BETA(31)*KATT/R(6)

ADAM/L(2,3) +IND+ BROOM/6

Mixed mode expressions are evaluated according to the rules in Section 3.1
with the modification that whenever an operation involves both an integer and
a floating-point operand, the integer is converted to a floating-point quantity
before the operation is performed. Computing time can be shortened by
arranging arithmetic expressions to optimize the number of integer-to­
floating-point conversions.

The expression I * ABE/ J requires two conversions whereas the equivalent
expression (I/ J) *ABE requires only one. (Because of truncation during
integer division, however, these two expressions may produce different
values.)

14

3.3

MASKING
EXPRESSIONS

3.3.1

MASKING
EXPRESSIONS,
OPERATORS

Masking expressions are used primarily to mask selected parts of con­
stants and variables for arithmetic operations. With·masking expressions,
it is possible to remove any particular bits of an operand, add them to the
same bits of another operand, and restore the results in the first operand.

All expressions except subscript expressions are interpreted as masking
expressions if a B appears in column 1 of the coding form. Subscript
expressions are always arithmetic even when they occur in a masking
expression.

Example:

B A(l,J) = C(3*K+2) + R(5*1,3*J-2) the expression is masking
and contains arithmetic
subscript expressions

The following rules apply to masking expressions:

1. Operations are performed on a bit-by-bit basis with 24-bit operands.

2. If a floating-point quantity is specified, only the first 24 bits will be
used.

3. Expressions can be connected by operators to form more complex
expressions with the restriction that the minus sign specifies an
operation on the operand immediately to the right only. For ex­
ample, A - B has no meaning because the minus sign specifies an
operation on B only. One correct expression would be A+(-B).

A masking expression can contain the following operators:

Symbol

+

I

*
**

Function

Complement (NOT)

Inclusive OR

Exclusive OR

AND

Shift

The NOT operator specifies the bit-by-bit complement of the operand
immediately to the right. (All zeros are changed to ones and all ones changed
to zeros.)

15

Octal

Binary

Constants

77000700

75400023

Complement

00777077

02377754

110111000101011100111000 001000111010100011000111

The inclusive OR, exclusive OR, and AND operators are defined by the
following tables, where the abscissa is a bit position of one operand while
the ordinate is the corresponding bit position of the other operand.

+ 0 1

0 0 1

1 1 1

I o 1

0 0 1

1 1 0

* 0 1

0 0 0

1 0 1

Octal

Operands A=101111010011001100000111

B=l01001001011110000000001

57531407

51136001

Expressions Results

A+B

A/B

A*B

101111010011111100000111

000110100000111100000110

101001001011000000000001

57537407

06407406

51130001

The operator ** is defined for the expression I**J as follows:

J2:0 I is shifted J binary positions to the left. Bits leaving
the pattern on the left reappear on the right (end around
to the left).

J < 0 I is shifted I JI binary positions to the right. Bits leaving
the pattern on the right are lost (end off to the right).
Sign is not extended.

J must be either an octal number or an integer variable.

16

3.3.2

ORDERING OF
OPERATIONS

Expression

00774073**6

00774073**7

00774073**(-2)

Result

77407300

77016601

00177016

(all numbers are octal numbers)

The ordering of operations in masking expressions is as follows:

EXPRESSIONS WITH NO INTERNAL PARENTHESES

1. The expression is scanned from left to right until a sequence of
operands and operators is found with only the operators -, **, or *.

2. If the group contains -, this operator is evaluated first.

3. Scanning left, all ** and * operators in this group are evaluated.

4. Scanning right, the remaining ** and *operators in the group are
evaluated.

5. If the group does not contain the - operator, the **and *operators are
evaluated as the group is scanned from left to right.

6. Scanning from this group to the right, steps 1-5 are repeated until the
end of the expression is encountered.

7. When all groups containing only -, **, and *have been evaluated, or if
no groups of this type are found, the expression is scanned from left
to right again and the+ and I operators are evaluated as they are en­
countered.

Example:

-I+ J + K*L**7

-I

K*L

(K*L)**7

Rl + J

R3 + R2

--Rl

-R2

--R3

--R4

17

3.4

EXPRESSIONS
AS SUBSCRIPTS

3.5

REPLACEMENT
STATEMENTS

EXPRESSIONS CONTAINING PARENTHETICAL GROUPS

The innermost parenthetical group is evaluated according to the above
rules. Two or more parenthetical groups on the same level are evaluated
as they are encountered in scanning left to right. After all parenthetical
expressions have been evaluated, the order of operations proceeds according
to rules 1 to 7 until the entire expression is evaluated.

Example:

J+(-I) + K*(L**7 + M)

-I

L**7

(L**7)+M

K* ((L**7)+M)- Tl

J+(-I)

T2 +Tl

-T2

-T3

The following integer expressions can be used as subscripts for array
elements.

n i-n

i m * i+n

m*i m * i-n

i+n

m and n are unsigned integer constants and i is a simple integer variable.
A subscript expression is always evaluated as an arithmetic expression,
even if it appears in a masking statement.

CLOTHO(MOERAE-3)

A TROPO(12 *KUTS)

FAT AE(3*NEMES+80)

Replacement statements may be arithmetic or masking in the form R = E.
The symbol = is a replacement operator which specifies that the expression
E is to be evaluated and the result stored in R.

18

3.5.1

ARITHMETIC
STATEMENTS

3.5.2

MASKING
STATEMENTS

In the statement R = E, R is any variable name (simple or subscripted) and
E is any arithmetic expression. R will be replaced by the value of the ex­
pression E with mode change, if necessary.

The mode of the variable name R determines the mode to which the value
of the expression will be converted. For example, in the statement A= I+ 2,
the value of I+ 2 will be calculated in integer mode and converted to floating
point mode before being stored in A. In the statement I= X + 2.0, the value
of X + 2.0 will be calculated in floating point mode and converted to integer
mode by dropping the fractional part.

If, in the statement IP = F + Y, the evaluation of the expression F + Y
resulted in a value of 2.56, IP would be assigned the value 2.

UB(l)

IST

IGNIS

(X+Z) *Y/60.3*(X**2)

IST + 1

EZRA (K)+B (3)

A masking statement has the same form as an arithmetic statement and is
identified as masking by the letter B in column 1 on the coding form. In the
statement R = E, R is a simple or subscripted variable name and E is a
masking expression. The operator= in a masking statement means replace
by.

Integer and floating point constants in masking expressions are evaluated
as octal numbers; operations are performed on a bit-by-bit basis with
24-bit operands. Masking expressions can be assigned to either integer or
floating point variables. If a masking operation is specified on a floating
point quantity, only the first two of the three computer words for that
quantity are used.

A

JOE(3)

X+(-B)

(X*Y)+(Z)*7700

19

4.1

STATEMENT
IDENTIFIERS

4.2

GO TO
STATEMENTS

4.2.1

DIRECT GOTO
STATEMENT

CONTROL STATEMENTS 4

The execution of statements normally proceeds from one statement to the
statement immediately following it in the program. Control statements can be
used to alter this sequence and transfer control to any other s~atement in the
program, or they can cause a number of iterations of a program section.
Control may be transferred only to executable statements (Appendix G). A
transfer to a non-executable statement will result in a program error, but not
a compiling error.

Iteration control provided by the DO statement causes a predetermined sequence
of instructions to be repeated any number of times with the stepping of a simple
integer variable after each iteration. PAUSE, STOP, and END statements
provide for termination of the main program or subroutines.

Statements are identified by numbers which can be referenced in other sections
of the program. On the coding form, statement identifiers appear on the same
line as the statement. Statements containing masking expressions have 1 to 4
digit identifiers in columns 2 through 5 with the letter B in column 1. All other
statement identifiers are from 1 to 5 digits and are written in columns 1
through 5. Leading blanks and zeros are ignored; the following identifiers are
equivalent forms:

05
5

0005

Unconditional transfer of control is provided by GO TO statements which transfer
control either to a fixed address or an address which is determined during execu­
tion of the program.

GO TOn

Control will be transferred to statement n; n is a statement identifier. Since
the value of n cannot be altered, this statement is used for unconditional
transfer of control to a fixed location.

21

4.2.2
ASSIGNED GO

GO TO 20

20 SUM = SUM + 1

TO STATEMENT GO TO i

4.2.3

ASSIGN
STATEMENT

4.2.4

COMPUTED eo

Control will be transferred to the current statement number assigned to the
simple integer variable i by an ASSIGN statement. The variable i represents
a statement label; the variable name can be used in arithmetic expressions.
The assigned GO TO is used to alter the transfer address during the execution
of the program.

GO TO JERRY

GO TOM

ASSIGN n TO i

This statement assigns an identifier to the simple integer variable i; it is
used only in conjunction with the assigned GO TO statement.

30 KOUNT = A*B
ASSIGN 30 TO JERRY

GO TO JERRY

ASSIGN 40 TO JERRY

40 KOUNT = A/B

TO STATEMENT GO TO (n1 ,n2 , ... ,nm)i

GO TO (n1 ,n2 , ... ,nm),i

n1 , n2, ... ,nm are statement numbers, one of which will be executed next
and i is a simple integer variable which may assume one of the subscript

22

4.3

IF STATEMENTS

4.3.1

COMPUTED
IF STATEMENT

4.3.2
IF SENSE SWITCH

values in the sequence 1, 2, ... ,m. Each time this statement is encountered,
the current value of i determines the transfer address. The value of i is
assigned by an arithmetic statement in the program and it can be altered as
often as the programmer desires.

The computed GO TO is used when transfer of control is contingent upon the
current computed value of an integer variable. A program error will result
if i is greater than the number of addresses.

I= 2
GO TO (80,3:3,9,70),I control is transferred to statement 33

J = I + 1
GO TO (10,ll,12)J control is transferred to statement 12

Conditional transfer of control is provided by IF statements.

E is an arithmetic expression (or masking expression if a B appears in
column 1 of the coding form) and n1, n2 , n3 are statement identifiers. This state­
ment provides a three way branch in the program contingent on the value of an
expression. If E is less than zero, n 1 will be executed. If E is zero, n2 will
be executed; if E is greater than zero, n3 will be executed.

IF (I*JOE(3)/N(7,4))10,11,10
B IF (X+(-Y)) 20,21,22

STATEMENT IF (SENSE SWITCH i) n1 , n2

Statement n1 will be executed if sense switch i is on; if it is off, statement n2
will be executed. i is an integer 1-7 and n 1 , n2 are statement numbers. The
three sense switches on the 160-A console are referenced by digits 1, 2, and 4;
they are normally off and must be preset by the operator before the program is
run. The inclusive OR function of sense switches can also be used. The sense
switch test may be used with the dump functions (Appendix A).

This statement is generally used during debugging to control the sequence of
the program from the console.

23

4.4

DO STATEMENT

The following combination of switches an• tested:

sense switches

:1 1,2

5 1,4

6 2,4

7 1,2,4

Thus, if i is :3, n 1 will be executed if either sense switch 1 or 2 is on.

The group of statements which follow, up to and including statement n, will
be repeated the number of times specified by the values m 1, m 2 and m 3. The
index, i, is a simple integer variable; and m 1, m 2, and m 3 are unsigned
integer constants or simple integer variables. Positive or negative values can
be assigned to integer variables used in DO statements. The initial value
assigned to i is m 1, m 2 is the largest value assigned to i, and m 3 is the amount
added to i after each DO loop is executed. If m 3 is one, it can be omitted. The
statements starting with the DO and ending with n form the DO loop. The range
of the DO loop is the DO loop excluding the DO statement. In the program

100 DO 101 I= 1, 10, 2
101 A(I) = B(I + 2)

the range of the DO statement is statement 101 and the DO loop consists of
statements 100 and 101.

Examples:

DO 6 I= 5,10,2

DO 2 K = -30,30

INCR = -1
DO 5 J = 30,0,INCR

24

4.4.1

DO LOOP
EXECUTION The DO loop is executed in the following manner:

1. Index i is set to m 1.

2. The expression m 4=(m 1-m2)/m3 is computed and the integer part
retained.

3. The loop is executed once.

4. If m 4 is positive (zero is positive), the loop is satisfied and the next
statement following the DO loop is executed.

5. If m 4 is negative, one is added to m 4 .

6. m 3 is added to i.

7. Steps 3-6 are repeated.

Example:

DO 10 I~ 2,8,2
AJ = J

10 PROD = PROD * AJ
11 SUM = PROD + SUM

Index i becomes 2,4,6,8 successively.
m4 = (2-8)/2
m 4 = -3, the loop will be executed 4 times

before finally satisfied.
Control will then be transferred to state­

ment 11.

Any statement may be included in the range of a DO statement with the following
restrictions.

1. The last statement in the range of a DO loop may not be a transfer of
control statement (GO TO, IF (E). See CONTINUE (Sec. 4.6).

2. A DO statement in the range of another DO statement must have a
range which is contained in the first DO statement range; that is, the
last statement of the inner DO loop must either be the same statement
as the last statement of the outer DO loop, or occur before it.

25

These statements are correct:

DO 10 I= 1, 10

DO 11 J = 2, 20

11 --

10 --

The statements below are incorrect because the inner DO loop is not wholly
contained in the outer DO loop range:

DO 10 I= 1, 10

DO 11 J = 2, 20

10 --

11 --

3. The number of repetitions of the DO loop is determined when the loop
is entered and cannot be altered after this point. The value of the loop
index may be altered within the loop by the programmer, but this will
not affect the number of repetitions of the loop.

4. The variable used as the index of a DO statement may be used as an
integer variable within the DO loop.

26

4.5

ARITHMETIC
FAULT TESTS

4.5.1

OVERFLOW
TESTS

4.5.2

DIVIDE CHECK
TEST

5. Once the DO loop has been initiated, a program can:

a. transfer out of the range of a DO loop,

b. transfer out then back into the same DO loop,

c. transfer from an inner DO loop into a more inclusive loop in the
case of nesting (rule 2).

The results of floating point operations on the standard 160-A computer must
remain in the range .1x10-32 through .99999999x1031. If the CONTROL DATA\!''
168-2 auxiliary arithmetic unit is used, however, the floating point range is
10-38 to 1038. If a floating point operation produces a result outside of this
range, an overflow switch is turned on. Two statements may be used to test
for overflow faults. The actual result of such an operation will be an un­
normalized floating-point constant with exponent E32.

IF ACCUMULATOR OVERFLOW n1, n2
IF QUOTIENT OVERFLOW n1,n2

If the overflow switch is on, control is transferred to statement number n1 and
the overflow switch is turned off. If the overflow switch is off, a transfer is
made to n2 .

This statement should be used to test for overflow whenever floating point
operations are performed which may produce results outside of the 160-A
floating point range.

IF DIVIDE CHECK n1 , n2

If the divide check switch is on, control is transferred to statement n1 and the
divide check switch is turned off. If the divide check switch is off, a transfer
is made to n2. This statement is used to detect an attempt to divide by zero.

27

4.6

CONTINUE
STATEMENT

4.7

CONTINUE

CONTINUE is a dummy statement primarily used as the last statement in a
DO loop range when the last statement would otherwise have been a transfer
statement. It may be used to establish a label at any point in a program.
During program execution, it is interpreted as a no operation statement, and
control continues to the next statement. It must not be used as the first state­
ment in a subroutine.

PAUSE STATEMENT PAUSE n

4.8

PAUSE n stops the computer with the last two digits of n displayed in the
least significant digits of the accumulator; n is an octal integer or blank.
The upper two digits of the accumulator will be 00. If the run switch is
pressed, program execution will continue with the statement following the
PAUSE statement. This statement is used primarily in debugging a
program.

PAUSE (n omitted) causes a pause in computation with zeros displayed in
the accumulator.

STOP STATEMENT STOP n

4.9

STOP n stops the computer with the last two digits of n displayed in the
least significant digits of the accumulator; n is an octal integer or blank.
The upper two digits of the accumulator will be 00. Computation cannot
be continued past this point.

STOP (n omitted) causes a stop with all zeros in the accumulator.

END STATEMENT END

The last statement of the main program and of each subroutine must be an
END statement. In a main program this statement automatically forms an
additional statement which is STOP 00. The STOP 00 statement effectively
precedes the END statement.

28

5.1

FUNCTIONS

FUNCTIONS AND SUBROUTINES 5

Functions and subroutines are logically independent statements or groups
of statements which can be called at any time for execution. A function is
a group of statements which computes a value like sin, cos, or log. Functions
are stored on the 160-A FORTRAN library tape and are called for execution
whenever their names appear in an arithmetic expression. A function can
operate on any number of variables or constants, but it can return only a
single result. The values which the function operates on must be communi­
cated directly to the function when it is called.

A subroutine is an independent program that must be called for execution by
a CALL statement. It can operate on any number of variables or constants
and can return any number of results. Subroutines can communicate with
other sections of the program either through explicit transmission of values
or through COMMON.

The standard 160-A FORTRAN library contains eight functions. Additional
functions can be included at the option of the installation or standard func­
tions can be expanded or replaced. In addition, a number of utility functions
are available. See Appendix A. Only those routines required from the
library are compiled with a particular program. A function name consists
of 1 to 6 alphanumeric characters ending in F, with the parameters in
parentheses. The value of a function is an integer if the first character of
the function name is X.

Standard Library Functions

SINF(X)

COSF(X)

ATANF(X)

EXPF(X)

LOGF(X)

t ABSF(X),XABSF(I)

Computation

Sine of X radians

Cosine of X radians

Inverse tangent in radians
(-rr/2 to rr/2) of X

e raised to the power X

Natural logarithm of IX I
Absolute value of X or I

t These functions are built into the compiler, but they are used as if they were library functions.

29

5.2

SUBROUTINES

Standard Library Functions

SIGNF(X,Y)

SQRTF(X)

Computation

Sets the value of X with the sign
of Y

Square root of I X I

The values in parentheses following the function name (X,Y, and I) are
referred to as formal parameters.

A function is used as an operand in an arithmetic expression. When the
function is called by appearing in an arithmetic expression, the actual param­
eter values are enclosed in parentheses after the function name in the same
order as the formal parameters to which they correspond. Thus, in the
following expression

B(I)* COSF(POE(S,3))/38

the function COSF would be computed with X=POE(S,3) and the result sub­
stituted for the operand COSF(POE(S,3)). The remainder of the expression
would then be computed.

The actual values used in the function call can be constants, variables or
expressions; but they must correspond in order, mode (integer or floating
point) and number with the formal parameters. The correspondence of
actual and formal parameters is always by position; that is, the first
parameter after the left parenthesis in the function call is substituted for
the first formal parameter after the left parenthesis in the function definition,
and so on.

Examples:

Z = SINF(BET A)

W = COSF(-23**SK)

ALPHA= SIGNF(I*A,-J*B)

OMEGA= SQRTF(SINF(ATANF(X))/COSF(ATANF(Y)))

A subroutine is an independent program that can be called for execution by
the main program or by another subroutine. It is generally used when the
same set of instructions must be executed at different points in a program.

A subroutine can operate on information present in the main program and
can return a value or values resulting from these operations to the main
program. This communication of information can be accomplished in two
ways.

30

5.2.1

SUBROUTINE
STATEMENT

1. A program can store information in the common area of storage
in locations which are referenced by the subroutine. This is re­
ferred to as implicit transfer of information. (section 6.2)

2. A program can also transmit information through the formal para­
meters of the subroutine and the subroutine may return results in
a similar fashion. This is referred to as explicit transfer of
information. The formal parameters for subroutines and functions
transmit information in the same way.

Although subroutines must be compiled with the main program, they are
independent of the main program and of other subroutines. This means
that variable names and statement identifiers that appear in one program
section (the main program or a subroutine) are not defined outside of that
section and can not be referenced directly by any other program section.

SUBROUTINE name
or

SUBROUTINE name (a1 , a 2 , a3. · · ·)

Name is an identifier of 1 to 6 alphabetic or numcric charactcrs, the first of
which must be alphabetic. The items a 1 , a 2 , a3 ... are the formal parameters
of the subroutine.

The complete subroutine begins with a SUBROUTINE statement, includes
any legal 160-A FORTRAN statements except another SUBROUTINE state­
ment and is terminated by an END statement. The following rules apply to
subroutines:

1. If a COMMON statement is used, it follows the SUBROUTINE
statement.

2. If a DIMENSION statement is used with a COMMON statement,
DIMENSION appears immediately after COMMON.

3. If a DIMENSION statement is used and a COMMON statement is not
used, the DIMENSION statement follows the SUBROUTINE
statement.

4. A subroutine may call other subroutines and may also use functions.

5. The first statement after the SUBROUTINE statement must not be
a CONTINUE statement.

6. Subroutines may appear before the main program, but must not
appear between statements in the main program or within another
subroutine.

7. A subroutine may have a maxim um of 15 formal parameters, or it
may have none.

31

5.2.2

FORMAL
PARAMETERS The following rules apply to formal parameters:

1. A formal parameter can be a simple variable name or the name of
an array. All restrictions on size, name, and mode of simple
variables and arrays apply also when they are used as formal
parameters.

2. The actual parameters supplied when the subroutine is called must
agree with the formal parameters in order and mode.

3. If a formal parameter references an array, the array name with its
critical subscripts must appear in a DIMENSION statement in the
same subroutine. The critical subscript for a two dimensional
array is the first subscript; for a three dimensioned array, the
first two subscripts. The array names which will be actual para­
meters must appear in a DIMENSION statement in the main program.
For example, the subroutine

SUBROUTINE BARB(X,Y)

DIMENSION X(l0,10), Y(l0,10)

uses the formal parameter X as an array which will have maximum
subscript values of 10,10. The main program DIMENSION statement
would appear as

DIMENSION A(l0,10) ,B(l0,10)

and a call for the function BARB would appear

CALL BARB(A,B).

4. A subroutine can have none, one, or up to 15 formalparameters and
can return none, one, or more results.

5. The values of formal parameters having been determined through
arithmetic expressions or data input, are substituted for the actual
parameters to which they correspond after the subroutine is
executed.

6. Because formal parameter names are local to the subroutine in
which they appear, they may be the same as names appearing out­
side the subroutine.

32

5.2.3
RETURN
STATEMENT

5.2.4
CALL
STATEMENT

7. A formal parameter can be used both as an input and as an output
parameter. In the subroutine shown below, JOBX will be assigned
the value of the corresponding actual parameter before the sub­
routine is executed. The subroutine will then be executed, using
this value for JOBX. After execution the new value of JOBX will
be substituted in the corresponding actual parameter (I). I will
assume the new value for the remainder of the program unless
changed.

Subroutine

SUBROUTINE COUNT (JOBX, JOBY)

JHOURS = JOBX*36+JOBY/6*JOBX

JOBX = (JHOURS**l2)/48

END

Calling Program Reference

CALL COUNT (I,J)

RETURN

This statement returns control from a subroutine to the statement immediately
following the CALL statement. (If the CALL statement ends a DO loop, the
loop will be continued until it is satisfied.)

Every subroutine must be terminated by an END statement. This statement
returns control to the statement following the CALL statement if a RETURN
statement is not used.

CALL name (a1, a2, ...)

Control transfers to the subroutine name for execution; (a1, a2 , ...) are the
actual parameters to be used in the subroutine.

33

Each of the actual parameters of the CALL statement must be one of the
following forms (integer and floating-point):

constant

simple or subscripted variable

array name

arithmetic expression

The actual parameters in the CALL statement must agree in number, mode,
order, and with the formal parameters in the SUBROUTINE statement of
the called subroutine.

EXAMPLES OF SUBROUTINES

(1) SUBROUTINE AA(BCD,PO,DIV)

BCD=PO-(PO/DIV)*lO

IF(BCD)2,3,2

2 RETURN

3 BCD=lO

END

SUBROUTINE DIVINE (WATER,RODS,HUNJUN)

HUNJUN=lO

CALL AA(VOODOO,WATER,HUNJUN)

PRINT 10, VOODOO

10 FORMAT (lX,Al)

END

(2) Example of subroutine within a main program. Note in particular
the use of COMMON.

* PROGRAM MEASURE

COMMON DEBIT

DIMENSION DEBIT (1000), BAL (1000)

CALL MEAN(AVER)

DO 5 I= 1,500

5 BAL (I)= DEBIT(l)+AVER

DO 10 I= 501,1000

10 BAL(I) = DEBIT(l)-AVER

34

END

SUBROUTINE MEAN (AVER)

COMMON OWE

DIMENSION OWE (1000)

CTR= 0.

AVER= 0.

DO 15 I = 1,1000

IF(OWE(I)-50.) 6, 15, 15

6 CTR= CTR+ 1

AVER= AVER+ OWE

15 CONTINUE

AVER= AVER/CTR

END

35

EXAMPLES OF PROGRAMS WITH SUBROUTINES

Program

* PROGRAM 1256

DIMENSION A(20)

XLOBT=A(6)*65.8/ A(9)**3

CALL PUTTY(A~r)

SUBROUTINE PUTTY(WYE ,XINK,L YNK)

DIMENSION WYE(20)

WYE(4)=WYE(1)**2+WYE(3)**2

LYNK=WYE(4)/XINK+LYNK*36

END

* PROGRAM REPORT

DIMENSION NEWS(l0,10)

CALL DATA(NE~

SUBROUTINE DATA(MRAVDA)

DIMENSION MRAVDA(l0,10)

READ 10, MRAVDA

10 FORMAT (A4)

END

Operations Performed

1. Starting address of array A is substituted
for address of WYE.

2. Function SQRTF is evaluated using current
value of XLOBT, and result is used for XINK.

3. Contents of ISAQ are used for LYNK.

4. Subroutine is executed.

5. Contents of LYNK are stored in ISAQ.

6. Control is returned to statement following
CALL PUTTY () .

1. Starting address of NEWS is substituted for
address of MRAVDA.

2. Subroutine is executed, reading values into
NEWS(l,1) - NEWS(l0,10).

3. Control is returned to statement following
CALL DATA ().

36

6.1

DIMENSION

DATA STORAGE 6

DIMENSION and COMMON statements allocate storage space for variables
used in the program; the EQUIVALENCE statement permits variables to
share storage space. All three statements are non-executable and must
appear before the first executable statement (Appendix G) of the program.
When all the statements are used in a program, the order of sequence is:

COMMON
DIMENSION
EQUIVALENCE

DIMENSION vl, v2, v3,

where V 1, V 2 , V 3, ... are subscripted variable names having 1, 2, or 3
integer constant subscripts (s 1, s 2, s 3).

Memory locations will be reserved for the arrays V , V , V , . . . The
subscripts s 1 , s 2, s 3 of the variable name determinJ the2nu~ber of memory
locations required. The number of locations in the array will be equal to
the product s 1 *s2 *s3 times the number of words for each variable (two for
integer, three for floating point). Each subscript for an array states the
maximum value which it may be expected to assume during execution of
the program.

Every subscripted variable in a program or subroutine must appear with
its subscripts in a DIMENSION statement in that program or subroutine.

A single DIMENSION statement may contain any number of array names, and
any number of DIMENSION statements can be included in a program or sub­
routine.

Example:

DIMENSION A(3,9,6),JOE(55),ZEKE(8,9)

DIMENSION statements that dimension arrays contained in common must
immediately follow the COMMON statement.

37

6.2

COMMON Variable names are not defined outside of the program or subroutine in
which they appear. In the following program LOGOS, UPS, PCOUNT, and
RATIO are defined for the main program only and INN, OWT, MIN, MAX,
and PCOUNT are defined for the subroutine only. The variable PCOUNT
defined in the subroutine is not assigned to the same location as the variable
PCOUNT in the main program, and therefore is independent of it.

DIMENSION LOGOS(l2,12), UPS(3,3,3)

PCOUNT = LOGOS(3,6)*RATI0/12

SUBROUTINE SEARCH(INN, OWT)

PCOUNT = OWT*INN + OWT/INN

OWT = INN + (MAX-MIN)/2 + PCOUNT

END

To transmit information from one program section (main program, sub­
routines) to another, without using formal parameters of subroutines, the
information must be stored in an area called common. Information in this
area is available to the main program and to all subroutines. Storage
locations are reserved in common by the statement

L1, L 2 , L 3 are simple variable names or array names without subscripts.

Information is exchanged between program sections by having variables in
the different sections occupy the same areas in common. To insure the
transfer of information, a COMMON statement must appear in each program
section which is to share information. Variable names used in the program
sections are defined only for the section in which they appear, even if they
appear in common.

38

Example:

COMMON AA, JOB, NOS
DIMENSION AA(20)

SUBROUTINE SALARY(PX, RYTE)
COMMON EMP, LYMT, NET
DIMENSION EMP(20)

In this example, the array AA in the main program will occupy the same
area in common as the array EMP in subroutine SALARY. JOB will occupy
the same area as L YMT and NOS will occupy the same area as NET.

CAUTIONS

(1) Since integer variables occupy two memory words and floating point
variables occupy three memory words, it is necessary that the variable
names agree not only in position within the COMMON statement, but also
in mode. If, in the previous example, JOB were replaced by BOB, it would
occupy one more word in common than L YMT and NOS and NET would no
longer reference the same location.

(2) Variables are stored backwards in common. Thus, the statements

COMMON LAKE, FISH, WEEDS
DIMENSION LAKE(2,2)

will result in the following assignments within common:

Location (memory words)
relative to WEEDS

1-3
4-6
7-8
9-10

11-12
13-14

Variable

WEEDS
FISH
LAKE(l,1)
LAKE(l,2)
LAKE(2,1)
LAKE(2,2)

(3) If an array appears in a COMMON statement, the array must also
appear in a DIMENSION statement which immediately follows the COMMON
statement.

39

6.2.1

NUMERICAL
COMMON

(4) If a program section does not use all of the common locations reserved
by other program sections, it may be necessary to include dummy variables
(variables not used in that program section) in the COMMON statement in
that section to ensure the proper correspondence of common areas. Thus,
if a subroutine were to use the information stored in LAKE(2,2) and WEEDS
in the above example, the statements

COMMON I,A,B
DIMENSION I(2,2)

could be used. The variable A is a dummy variable used to space over the
area reserved by FISH. If only the information stored in LAKE were de­
sired, then the following statements would be sufficient.

COMMON I
DIMENSION I(2,2)

(5) Only one COMMON statement may appear per (sub)program.

COMMON (n)

This statement reserves n storage locations in COMMON; n is any decimal
integer constant greater than 0.

Since the amount of COMMON storage is determined by the first COMMON
statement in the program, COMMON (n) should be used when any subsequent
(sub)programs use more COMMON space than the first encountered (sub)
program.

The value of n must be equal to the maximum amount of COMMON space used
by the entire program. This value can be computed by allowing three words
for each floating point variable and two words for each integer variable.

When COMMON (n) is used, it must be the first statement of the program.
A COMMON statement of the type described in section 6.2 can follow
COMMON (n). The two types are independent statements.

If COMMON locations are not used and the program does not have an
EQUIV ALEN CE statement, the statement COMMON (0) increases the memory
space available to the symbol table generated during program compilation.
This statement permits the symbol table to overlay the COMMON and
EQUIVALENCE processors.

40

6.3

EQUIVALENCE

Example:

* MAIN PROGRAM
COMMON (12)
COMMON X, Y, Z

END
SUBROUTINE ONE
COMMON A, B, C, D

END

In this example, n ._, 12 because there is a maximum of four variables and
each variable occupies three 160-A words. If the COMMON statement in
the subroutine had only three variables, a numerical COMMON would be
unnecessary.

The EQUIVALENCE statement permits variables to share locations in
storage. The general format is:

Vi is a variable or dimensioned variable (integer or floating) written with
a single subscript. Elements of a multiply subscripted array must be con­
verted to a singly subscripted variable by the following formulas:

Subscript = (i) + (j -1) * I+ (k-1) * I+ J (3 dimensions)
or

Subscript = (i) + (j -1) * I (2 dimensions)

(See sec, 2.4.1, Storage of Arrays).

A non-subscripted array name is interpreted as the first clement of the
array.

The EQUIV ALEN CE statement assigns only the initial locations of the
variable pairs. The rest of the array will be stored in consecutive locations.

41

Example:

DIMENSION A(3, 5), M(2, 3, 4)

EQUIV ALEN CE (A, B), (CC, I (5)), (J(4), M), (A(3), D(2))

EQUIVALENCE Rules:

(1) Within any (sub)programs the EQUIVALENCE statement, as well as the
COMMON and DIMENSION statements, are unique to that (sub)program.

(2) EQUIV ALEN CE must precede the first executable statement and follow
any COMMON or DIMENSION statements.

(3) Only one EQUIVALENCE statement per (sub)program is allowed.

(4) Within a (sub)program only the left variable of an EQUIVALENCE pair
can occur in a COMMON statement in that (sub)program or previously in
the EQUIVALENCE list.

(5) A formal parameter may not be used in EQUIVALENCE statements.

(6) (Sub)programs using EQUIV ALEN CE must precede those not using it
since the space for the EQUIV ALEN CE processor is made available to the
compiler as soon as a (sub)program without EQUIVALENCE is encountered;
if there are no common locations used, the symbol table will also overlay
the common processor.

(7) The EQUIV ALEN CE pair may contain any combination of integer
floating point variables.

The programmer must remember that an
integer takes two 160-A words and a floating
point variable requires three 160-A words.

EQUIV ALEN CE is most commonly used when two or more arrays of
different or equal lengths can share the same storage locations.

Example:

DIMENSION A(lO, 10), I (150)
EQUIV ALEN CE (A, I)

5 READ 10, A

6 READ 20, I

42

The EQUIVALENCE statement causes arrays A and I to be stored in the
same storage locations.

In this example A and I use the same num bcr of
160-A words. Before statement 6 is executed
all use of A should be completed. Statement G
reads the values of I into the storage location
previously occupied by A, thus c!est ro.\'i ng /\.

The left variable in an EQUIVALENCE pair determines the starting
address to be used by that pair. If the right quantity uses more storage than
the left quantity, elements of the right quantity will overlap the locations
aftc r the left quantity.

When an EQUIVALENCE statement contains t\rn arrays, the subscript
constant of the left quantity must be greater or equal to the subscript con­
stant of the right quantity.

Example:

DIMENSION A (10, 10), I (100)

EQUIVALENCE (A, I (5))

This is a programming error that will not give a diagnostic. The first
four elements of I (eight IGO-A words) are outside of A and overlap some
undefined portion of data assignment.

43

IN PUT/OUTPUT 7

The transfer of data into or out of internal storage is specified by input/
output statements. In each statement the programmer specifies, either
explicitly or implicitly, the following:

Data List: the data to be moved
Format: the manner in which data will be moved
Input/output process: read, write, punch, print, or type
Input/ output device: magnetic tape unit, paper tape unit, card

reader, card punch, printer, or typewriter.

The general form of an input/ output statement is

NAME n,A,B, ... ,M

Name specifies the process and input/ output device, n references a
FORMAT statement which specifies how to move the data, and A,B, ... ,M
are the variables (storage locations) into or out of which the data will be
transferred. In binary tape statements no FORMAT statement is necessary.

Example:

READ 22,A,B,I(3,5)

READ
22
A,B,1(3,5)

WRITE OUTPUT TAPE 3, 10, X, JOE

WRITE OUTPUT TAPE 3
10
X,JOE

45

indicates input by cards
FORMAT statement number
variables (storage locations) into
which data from punched cards will
be read

indicates output on magnetic tape 3
FORMAT statement number
variables (storage locations) to be
written on the tape

7.1

DATA LIST A data list may contain any number and type of simple or subscripted vari­
ables, separated by commas. During an output operation, the contents of
storage locations specified by the variables will be transferred to the desig­
nated output device. During input, data from an external device will be read
into these locations.

Example:

PRINT12,A,JOE(l,6),MAX,Y,PUNCH,ZEBRA(l2*I-3)

Part or all of an array can also be represented as a list item. If an array
name appears without a subscript, the whole array is used in the data transfer.

In the example,

DIMENSION SA VE (20)

READ 10, SAVE

all 20 elements of SAVE will be read into storage locations before the
READ statement terminates. All arrays in data lists must be defined in a
DIMENSION statement. Data list notation and DO loops provide alternative
methods of producing the same results as shown below.

46

Data DO-Implying Form DO Loop Form

1. The first N elements (B(I) ,l=l ,N) DO 5 I= l,N
of array B 5 LIST (I) = B(I)

2. All elements of an N ((B(I,J),J=l,M),I=l,N) K =' 1
row, M column, array DO 5 I 0= l,N
B, arranged by rows. DO 5 J = l,M
(B(l ,l) ,B(l ,2) LIST (K) = B(l,J)
---B(l,M),B(2 ,1), 5 K=,K+l
B(2,2)--B(N,M))

3. All elements of N ((B(l,J),l=l,N),J=l,M)

I
K=l

row, M column, DO 5 J = 1,M
array B, arranged

or
DO 5 I= l,N

by columns. (B(l,1), B (the entire array is LIST (K) = B(I,J)
B(2,1)--B(M ,1) ,B(2 ,1), transferred) 5 K=K+l
B(2 ,2)---B(N ,M))

4. Elements of the ((B(I,J) ,J=l ,M) ,I=2,5 ,3) K=l
second and fifth rows DO 5 I= 2,5,3
of an N row, M column, DO 5 J = l,M
array B, arranged by LIST (K) = B(l,J)
rows. 5 K=K+l

5. The first N elements (A(I) ,B(I) ,l=l ,N) K=l
of arrays A and B DO 5 I= l,N
(A(l) ,B(l),A(2) ,B(2)---). LIST= A(I)

LIST K = B(I)
5 K=K+l

6. All elements of N (((B(I,J,K),I=l,N),

I
KK= 1

row, M column, L J=l ,M) ,K=l ,L) DO 5 K = l,L
plane, array B, arranged

or
DO 5 J = 1,M

by planes and columns. DO 5 I= 1,N
B (the entire array is LIST (K) = B(I,J,K)

transferred) 5 KK=KK+l

47

7.2

FORMAT

The first index variable defined in the list (I in item G\ is stepped first. When
it reaches the maximum value it is reset, the next variable to the right is
stepped, and the process repeated.

The list forms can be treated like nested DO loops as shown below.

(((A(I,J,K),I=l,N\,J~l,M),K=l,L)

rmo~ JLJ Loop
Middle Loop

~---- Outer Loop

Each loop must be enclosed within parentheses. The right parentheses of each
loop except the outer loop must be followed by a comma.

The index variables (N, M, L in the above list) can be either integer variables
defined in the program or integer constants. The entire partial array list
notation is enclosed in parentheses and separated by commas from the other
list variables.

Example:

READTAPE 2,BATH,A,((JOE(I,J) ,J=2 ,6) ,I=l,10,2) ,X(36) ,(Z(I) ,I=l,12)
PUNCH FLEX 8,((BTYE(K,J) ,K=7,M),J=3,12),0RB(6,3) ,MAX

In all input/output statements except READ TAPE and WRITE TAPE the pro­
grammer must specify the type of data (octal integer, decimal integer, floating­
point, or alphanumeric) to be stored in each list variable or to be transferred
to the output device, and the physical positioning of the data (characters per
word or line, spacing between characters, and so forth).

These specifications are written in a FORMAT statement.

n FORMAT (s)

The statement identifier (section 8.1) referenced by input/output statements is n
and (s) is the format specification list. This statement can appear anywhere in
the program and can be referenced by any number of input/output statements. A
format statement cannot be referenced from outside the subprogram in which it
appears. (Variable format control is described in section 7 .3 .)

Each variable in the data list must have a corresponding specification in the
format specification list to indicate the final form of that variable. The mode of
the variable must agree with its FORMAT specification. Symbols for spacing
and skipping characters, words, or lines are also included in the list.

48

7.2.1

REPEATING
CONVERSION
SPECIFICATIONS

7.2.2

FORMAT
SPECIFICATIONS

lw

The notations nEw.d, nOw, nlw, nFw.d, and nAw, can be used to indicate that
the specification is to be repeated n times. A group of specifications can
be repeated if they are enclosed in parentheses and preceded by an integer
n to indicate the number of repetitions:

FORMAT (FG.2, 13, 13, E5.l, FG.2, 13, 13, E5.l)

may be written as

FORMAT (2(FG.2,2I3, E5.l)).

A repeated parenthetical group may not be contained within another repeated
parenthetical group.

It is possible to repeat conversion specifications without using the n factor.
The I/O list and format specification need not be the same length. If the
original format is exhausted before the end of the input/output list, the re­
maining data will be converted according to specifications included in the
last unquantified parenthetical grouping. Specifications are repeated from
the last (left to right) open parenthesis that is not preceded by a repetition
factor. The right parenthesis becomes equivalent to a slash.

Example:

FORMAT (El2.4, F5.3, (213, 3(F6.2)))

The original format E12.4, F5.3, 13, 13, F6.2, F6.2, is exhausted before the
end of the I/ 0 list. Therefore, the remaining data will be converted by 13, 13,
FG.2, FG.2, FG.2; (F6.2) was not used for converting remaining data because
it is preceded by a repetition factor 3.

The format specifications in the data list instruct the computer to convert
the data from the initial form to the form specified before storing it in the
data list variables (input) or transferring it out of internal storage (output).
Data conversion is similar for input and output; minor differences will be
noted.

Decimal Integer Conversion

l conversion is used to store integer data in integer variables or to output
integer data as decimal digits. The field width (number of decimal digits)
to be reserved for the item is specified by the unsigned integer constant, w.

49

On input, a quantity is converted to internal integer representation and is stored
right-justified in the specified variable. Blanks and illegal characters are con­
verted to zeros. On output. the contents of the specified variable are converted
to BCD decimal digits before they are transferred out of storage. If the field
width, w, is less than the number of digits in the integer being converted, the
integer will be truncated on the right to w digits. If the field width, w, is
greater than the number of significant digits after conversion to BCD, the lead­
ing positions are replaced by blanks. Leading zeros are ignored. Since
FORTRAN 160-A integers can be no more than 7 digits, l 8 will cover all integer
conversions.

Data List

4650
508763

00308
76304

Example:

Conversion

14
15
15
I8

READ 10, LAMED, MEM, (NUN(I),1=1,8)
10 FORMAT (215 , 818)

Output Data

4650
50876
bb308

bb76304
(b is a blank code)

The first 5 decimal digits on the card are converted to internal integer format
and stored in LAMED.

The second 5 decimal digits on the same card are converted to the internal
integer format and stored in MEM.

Each of the next 8 fields of 8 decimal digits is converted to internal integer
format and stored in one of the first 8 variables in the array NUN.

CAUTION: Since blanks in a numeric data field are converted to
zeros, input specifications must right-justify the input
data. For example, if the number 5 is punched in column
3 of a card and the remaining columns are blank, 13 will read
this integer as 5, but 14 will read it as 50, 15 as 500, and so on.

Ow Octal Integer Conversion

0 conversion is used to store octal quantities or to read out the octal repre­
sentation of a variable. The field width (number of octal digits) to be reserved
for the item is specified by an unsigned integer, w.

50

On input, the octal integer is converted to internal storage format and stored.
right-,iustificd in the designated variable. On output, the s1wcifh.'d \"ariahll' is
convcrtt'd to a I3CD representation of octal numbers ancl transferred out of
storage. Leading zeros are ignored; and if w is less than the num bcr or
digits in tlw quantity being converted, the octal representation is truncated
on the right to w digits. 13lanks and illegal characters arc com•crkd to zeros.

Input Data

:30SG3
30Gubb

477G777
GAQ59

(b ·~ blank)

Example:

Conversion

OS
OG
04
05

PUNCH 8, KOPH, MEJVI, KIIET
8 FOICVIAT (04.lOOfi.O!l)

Stored Data

:lOii<i:l
;3()()()()()

.f77G
()()()!,()

The variable KOPII is converted to octal digits and punched into the first
four columns of a card.

Each of the ten variables in array MEM is converted to octal digits and
punched into consecutive six-column fields in the same card. The variable
KHET is converted to octal digits ancl punched into the next five columns in
the same card.

The caution given for I conversion applies also to 0 conversion.

Ew .d Single Precision Floating Point Conversion

E conversion is used for iloating point numbers having exponent::;.

The field width is specified by w (digits, plus or minus signs, ancl E, if
present) and d specifies the number of digits to the right of the decimal
point; w, d, arc unsigned integer constants.

INPUT

E conversion converts the BCD character form of the floating point field to
the normalized storage format and stores it in the designated variable. If E
conversion is specified, and the input constant contains a decimal point, the
decimal point will override the significant digit specification (cl).

51

E conversion is used if a+, -, or E is present in the exponent portion of the
field. If E conversion is specified and neither+, -, or E is present, the ex­
ponent is assumed to be zero and F conversion is used.

If the field width w is larger or smaller (including signs of characteristic and
exponent, decimal point, E, and exponent) than the actual ll'ngth of the input
quantities, incorrect values may be read, converted and stored.

Example:

Input field

3

3

3

In memory:

+4.G5E+l-2 .478E+2

READ 3, CAT, DOG

FORMAT (E8.3, E9.3)

~ 8-+--- 9----j

+4.65E+l-2.478E+2

~6+----11--1

FORMAT (E6.2, Ell.4) +4.65E+l-2.478E+2

1-----·10 7 ---l

FORMAT (E 10.4, E7 .3) +4.65E+l-2.478E+2

CAT

.465E02

.465E01

.465E-ll

DOG

-.2478£03

.OOOOE38

.478E02

Spaces and illegal characters are converted to zeros. For example, if E7 .2 is
specified for the constant, 3G54E2b (b~blank), then input will be 36.54£20.

OUTPUT

The floating-point number will always be represented by the form

The field width w must be greater than or equal to the number of significant
digits plus six. (The six extra places are for sign of characteristic, decimal
point, E, sign of exponent and two digits for the exponent.) The term d cannot
be zero.

Floating-point numbers are right-justified in the output field. If the field width
w is smaller than the stored number, XXXX ... X will be output for the entire
field. If the field width is larger than necessary, spaces will be provided to the
left of the number. Since only 8 significant digits are used in FORTRAN 160-A,
the specification El4.8 will cover all floating-point output specifications.

52

Input Data Specification

1685062E3 E12.3

168.5062E3 El2.3

-39XY2E12 E12.3

46503E-4 ES.2

-392077E-3 El0.2

+.6217-4 E8.l

5.3+6 E5.0

Stored Value Specification

.650358E6 E12.6

-.5984E20 El0.4

Example:

READ 8, ALEPH,BET
8 FORMAT (El2.6,E10.4)

Normalized Input Form

.1685062E7

.1685062E6

-.39002E14

.46503E-1

-.392077El

.6217E-4

.53E7

Output Form

.650358E 06

-.5984E 20

The floating-point number contained in the first 12 columns of a card will be
converted to the internal storage format and stored in the variable ALEPH.

The floating-point number contained in the next 10 columns of the same card
will be converted to internal storage format and stored in the variable BET.

Fw .d Floating Point Conversion

The total field width is specified by w; d specifies the number of digits to be
retained after the decimal point. F conversion is used for floating-point num­
bers that do not contain an exponent.

INPUT

The floating-point number is converted to the normalized form of the number
and stored in the designated variable. If an E or + or - sign is present after
the fractional part of the number, E conversion is used. Spaces and illegal
characters are converted to zeros.

53

The field width w must always be the same as the actual length of the input
field containing the input number. If w is too small, only the first w characters
will be input. The rest of the number will be converted by the next format
specification. If w is larger than the input number, part of the next data field
will be included.

Example:

Input field l-6-t--7-i

(a) 3

(b) 3

(c) 3

-32.54+4.5678

READ3,ALPHA,BETA

FOHMAT (F6.2, F7.2)

FORMAT (F4.2, F5.4)

FORMAT (F8.2. F5.3)

ALPHA

-32.54

-32.

-32.54+4

BETA

+4.5678

54+4.

.5678

If the input quantity contains a decimal, d will be ignored.

OUTPUT

The number will be represented by the form

(o±N N ... N .D ... Dd)
1 2 n 1

unless the number is too large to be expressed by the F format. In such a case
E conversion of the form Ew.(w-6) will be used if w is greater than 6. Other­
wise XXXX ... X will be output for the entire field.

Input Form Specification Normalized Input Form

-13906 F6.4 -.13906E01

279.370G45 Fl0.4 .27937064£03

5R7E07 F8.2 .507E08

279370645 F8.3 .27937064£06

Stored Value Specification Output Form

.1234E4 F7.4 b. lE 04

.1234E4 F6.4 xxxxxx

.1234E4 Fl0.4 b1234.0000

(b indicates blank)

54

Example:

HEAD 8, DALET, HE, (VAV(I),I=l,5)
8 FOHMAT (2F9.3, 5F12.6)

The floating numbers in the first two 9-eolumn fields will be converted,
retaining 3 digits after the decimal point, and stored in DALET and HE.

The floating point numbers in the next five 12-column fields will be converted
to internal storage format and stored in the first five variables in array VAV.

Aw Alphanumeric Conversion

Conversion A stores BCD characters or transfers BCD ch.arac:krs from
storage to an output medium. Any legal FORTRAN character ..v ill be accepted
including blanks.

The number of BCD characters is specified by the unsigned integer constant, w.

The field width w is limited to 6 for floating-point variables and 4 for integer
variables. If a floating-point variable is specified, 6 characters will be con­
verted. If a masking operation is specified on a floating point operand, how­
ever, only the first 4 characters will be used.

On input, the characters are left-justified and the remaining character
positions are filled with the BCD blank character (octal 2 0). Thus, if A 1 is
specified for input to an integer variable location, one character will. be left­
justified in the variable; the remaining 3 character positions will be filled with
the BCD blank character.

Input Data

Example:

RXOP

$) (B

cc cc
1 BA

PUNCH 6, KHIRIK
6 FORMAT (10A4)

Specification

A3

A4

Al

A3

Stored Data

RX Ob

$) (B

Cbbb

lbBb

Four characters from each of the 10 variables in array KHIRIK will be
punched in consecutive 4-column fields in a card.

55

7.2.3

HEADING
AND SPACING
SPECIFICATIONS

wHc1 ... en Heading and Labeling Information

This specification is used to directly output BCD characters included in the
format specification list which are generally used for headings and labels. w
is an unsigned integer specifying the number of BCD characters c1 ... Cn in the
field.

During output, all characters to the right of H are transferred to the specified
output device. During input, n characters are read into the H specification.
These may be any legal FORTRAN character including blank.

Example:

PUNCH 5, LAMED
5 FORMAT (35H TWAS BRILLIG AND THE SLITHY TOVES, 18)

The first 35 columns of a card will be punched with the characters TWAS
BRILLIG AND THE SLITHY TOVES

Columns 36-43 will be punched with the contents of variable LAMED (in decimal
digits).

wX Intra-line Spacing

With this specification characters may be skipped during input or blanks inserted
between characters during output; w is an unsigned integer.

During input, wX specifies that the next w characters are to be ignored. During
output, wX specifies that w BCD blanks are to be inserted on the output record
before the next variable is transferred from storage.

Example:

READ 5, IC, MIN, ME
5 FORMAT (A4,10X,I8,4X,A4)

The first 4 BCD characters on the card are read into variable IC. The next
10 columns on the card are skipped and the digits in columns 15-22 are stored
in MIN. The next 4 columns are skipped and the BCD characters in columns
27 -30 are stored in variable ME.

56

7.2.4

COMPLETE
FORMAT

I Inter-spacing of Records

The symbol/ signals the end of a 13CD record; it can be used to skip lines,
cards, or magnetic tape records. During input, I specifies that control
passes to the next record or card.

Example:

READ G, (HE(J), 40), 13ET
G FORMAT (40Al/Fl2.G)

The first 40 BCD characters in the first card are read into the first 40
variables in array HE, one character left-justified in each variable. The
remainder of the card is ignored and the floating point number in the first
12 columns of the next card is converted to internal storage form and stored
in BET.

During output, I signals the end of one record and the beginning of a new
line, record, or card.

Example:

A = 25.3
B ~ 25.3

PRINT 11, A, 13
11 FORMAT (GHSUBTOT, GX, F4.2//GHTOTAL,

GX, F4.2)

// will cause the printer to double space before printing a new record.

Print-Out SUI3TOT

TOTAL

25.3

25.3

line 1
line 2
line 3

Each line corresponds to a BCD record; line 2 is a null record.

SPECIFICATIONS All individual conversion specifications and the entire specification list is
included in parentheses in the FORMAT statement. A comma after the H
specification will be ignored by the compiler and can be omitted. A I re­
places a comma and need not be separated by commas from other speci­
fications. A FORMAT statement may contain only Hollerith information or
spacing specifications. Any FORMAT statement can be referenced by more
than one input/ output statement. FORMAT statements are local to the
subroutines in which they appear.

57

7.3

VARIABLE FORMAT

Example:

1) WHITE OUTPUT TAPE 1, 1, ETEN, ETAN, LUFIAN, LUFODE, GELUFD
1 FORMAT (30X, 7HCHAUCER/10X,El2. 7 ,5X,Fll.6,4X,2I4,5X,El3. 7)

Execution of the WRITE statement will cause the current values stored
in the list variables to be output according to the FORMAT conversion
list. U ETEN,ETAN,LUFIAN,LUFODE, and GELUFD contain 2, 4. fi,

10, and -500, the printed output will be as shown below.

CHAUCER

.2000000E AOlAA I\ I\ I\ A AA4.000000 f\ M /\/\I\ 61\{\ 101\ I\ I\ I\ f.5000000E I\ 0:1

2) llEAD 6
6 FO!{MAT (//)

I·:ach time this statement is executed three cards will be skipped.

:l) 2 FOHMAT (20X,3HABC,15,15)

4 FOB.MAT (20X,15,15)

5 PUNCH FLEX 2,JA,JB,JC

() PUNCH FLEX 4,KAB.KBB.KCB

7 PUNCH FLEX 4,LA.LB.LC,LD

If JA, JB, JC, KAB, KBB, KCB, LA, LB, LC, and LD contain the values 1, 2,
3, 11, 12, 13, 21, 22, 23, and 24, then the above three examples of PUNCH
statements, with their referenced FOl{MAT statements, will cause punching,
for ultimate printing of six lines, as follows:

spaces
20 ABC 1 2

}
1\1\1\1\ 1\1\1\1\ Statement 5

20 ABCl\l\l\A3

2" 11 12

}
.,

/\/\/\ Statement 6
23 13

23 21 22

}
{\/\/\

Statement 7
23 231\/\/\24

CONTROL It is possible to bring in format statements at the time of execution rather
than include them in the source code. The format specifications including
the left and right parentheses, but not the statement number or the word
FO!{MAT, are read in under A4 conversion and stored in an integer array.
(This array may not begin with the letter I.) The array locations arc used
in an input/output statement in plaee of a FOl{MAT statement number as
shown below:

58

7.4

MAGNETIC TAPE
STATEMENTS

Source Program Code to Read and Store Format

DIMENSION K(lOO)

3 FORMAT (4A4)

READ 3, (K(I), I= 1,4)

Input Data

(E10.3,F4.2,214)

K must have enough space reserved by the DIMENSION statement to provide
for any FORMAT specification list anticipated. Similarly, the A4 specification
in the FORMAT statement must be adequate to store the specification list as
it is read in. (Blanks are ignored except in H specifications.) The READ
statement specifies that data will be stored two characters per 160-A word in
BCD code. After execution, array K will contain the following:

Word Characters BCD Code

K (1) I~ (E 3465 Each integer K (I) con-
10 0112 tains two 160-A words.

K (4) { ~ 21 0271
4) 0474

Later in the source program, an input or output statement can refer to K as
its FORMAT statement designator. Conversion of the input/ output list will
proceed in accordance with the specification list previously read into K; for
instance:

READ K, BAILLY, YGUEM, LATOUR, MOUTON

Data will be read into BAILLY under the El 0.3 conversion, into YG UEM
under the F4.2 conversion, and into LATOUR and MOUTON under the 14
conversion. K cannot be subscripted.

In 160-A installations, magnetic tape units are integral logical tape unit
numbers, 1,2, ... n, where n is the number of available units. To allow
the programmer and the operator latitude in the selection of tape units for
a particular program, digits are not assigned on an absolute basis, but rather,
on a logical basis. Thus, the programmer selects any of the tape unit num­
bers used in input/output statements; and at execution time, the operator is
told what numbers to assign to the different units. For example, if the pro­
gram uses two data tapes, A and B, the programmer can assign A to tape unit
1 and B to tape unit 2. The operator will be told that the unit on which he loads
data tape A will be designated as unit 1, and the unit on which he loads data
tape B will be unit 2.

59

7.5

PUNCHED CARD
STATEMENTS

In the following statements, i = logical tape unit number, n = FORMAT
statement number, A= data list.

READ INPUT TAPE i, n, A

Data is read from tape i, converted according to FOB.MAT statement n, and
stored in A.

WRITE OUTPUT TAPE i, n, A

Data from A is converted according to FORMAT statement n, and written
on tape unit i.

READ TAPE i, A

Data from tape unit i is read in binary format into A. This statement is
used to read data written by the WRITE TAPE statement, and has no format
statement designator because it transfers data in binary format only.

WRITE TAPE i, A

Data from array A is written on tape unit i in binary format. Since only
binary format is used with this statement, no format statement is referenced.

BACKSPACE i

This statement backspaces BCD tape one physical record, or binary tape
i one logical record. (Appendix E)

REWIND i

This rewinds tape i to load point, but does not disconnect the tape from the
system. The tape is available for further use.

ENDFILE i

This statement writes an end of file mark on tape i.

In the following statements, n = FORMAT statement number, A= data list.

READ n, A

Data is read from punched cards, converted according to FORMAT statement
n, and stored in A. Illegal BCD characters are converted to blanks during
processing and further converted to zeros if they occur in a numeric data
field. The maximum record length is 80 card columns.

60

7.6

FLEXOWRITER
STATEMENTS

7.7

TYPEWRITER
STATEMENTS

PUNCH n,A

Data stored in A is converted according to FOHMAT statement n, and
punched into cards. All 80 card columns can be used.

Flexowriter characteristics are discussed in Appendix F. In the following
statements, n = FORMAT statement number, A= data list.

HEAD FLEX n, A

Data from paper tape prepared on a Flexowriter is converted according to
FORMAT statement n and stored in A. Conversion begins with the first
character on the tape.

PUNCH FLEX n,A

Data from A is converted according to FORMAT statement n and punched
into paper tapes for subsequent listing on the Flexowriter.

In the following statements, n = FORMAT statement number, A = data list.

READ TYPE n,A

Information from the typewriter is converted according to FORMAT statement
n and stored in A. Before each record is read this statement returns the
carriage, types a question mark, ? , and sets the typewriter to lower case.
After the dash is typed, the operator types the data, one record at a time.
Each typed line is recognized as a record and can have a maximum of 120
characters. A record ends when 120 characters are typed or when a
carriage return is struck. Since there are less than 120 character positions
on a typewriter line, the typewriter carriage must be returned manually to
obtain 120 characters on a single record.

WHITE TYPE n,A

Information from A is converted according to FORMAT statement n and is
typed out on the typewriter. When the typewriter is selected for output, the
system automatically performs a typewriter carriage return before each data
record. Illegal BCD characters are typed as blanks except in numeric data
fields where they are typed as zeros. Further information on the typewriter
appears in Appendix F.

61

7.8

PRINTER
STATEMENTS

7.9

PRINT n,A

Data in A is converted according to FORMAT statement n and printed. The
maximum record length is 121 characters, but the first character of every
record is used for carriage control on the standard CONTROL DATA®
printer and is not printed. Carriage control symbols are given below.

BCD 1 PAGE EJECT

BCD 0 DOUBLE SPACE

Any other BCD SINGLE SPACE
Characters
(normally blank)

A record which has a BCD 1
as the first character will
appear at the top of a new
page.

This code will cause a double
space before printing.

This code will cause a single
space after printing a line.

There is no automatic page eject on program controlled output. A BCD 1
must appear as the first character of any line which begins at the top of a
new page.

SPECIFICATIONS FOR
NON-STANDARD
EQUIPMENT Each 160-A installation has a systems tape which describes the standard

input/output equipment used by the system. If, however, a program uses a
non-standard input/output device, standard equipment assignments must be
changed on the systems tape and each input/ output statement must reference
a subroutine on the systems tape which uses non-standard equipment. This
subroutine is referenced by including the subroutine name in parentheses
after the input/output statement name.

Example:

READ (HOOKUP) 6,A,B,C,JOE
WRITE OUTPUT TAPE (HOOKUP) 3,5,MAX,ETC

(HOOKUP is a program for handling non-standard equipment.)

62

8.1

STATEMENTS

CODING PROCEDURES 8

FORTRAN 160-A coding forms contain 80 columns in which the FORTRAN
160-A characters are written, one character per column.

1604 FORTRAN CODING FORM

£-
NAME

PROGRAM PAGE
ROUTINE DATE

FORTRAN STATEMENT

' ' v STATE- o

MENT ~ 0 • ZERO
SERIAL

NO. - f • ALPHA 0 ~ • ALPHA l
NUMBER

•. >. > 0 o 0 """"""""""""' .. NHHHnHHO••"HUHnOHM"""'"""""""

PROGRAM C 0 1'-\PA RE

~C....._~~C=O=M=P~A~R=E~E~F~F=E=C~T~l~V~E~S=P~E~E~D~O~F~3=6=0=0~T=0~7~0=9=4..,__,~l~l__,__u..._L..LL..L.L..L.L..L.L..L-'--'_L.L.L..L..L.L..L-4...l....!...L..!_Lic...Lj

f-+.L..L-'-+-¥0..,_,_,11,M ,,,1E,,,,,.N,,,Sc..1 "'o"'N'--"'L"'O"'M""N""D"'<x4,,,o=1 .u.Pc=RC"""N-'"T"-1 "'2"'0'-'l=A,.,c=o"'"M"'l'""2°'"0=1 .u.B•J1c,,_,,"'o,,,,M,c_l 1.,,2.,,,ou,1J.i, ·L• L' .L• _i_1 _i_1 .L..L..J.I-'-' ...l.. .. LL . .ll...LLL.JL..Lf-J-.-LLLL.J'-Lj

IAANSl20) BANS{20)

I 5 F,O,R,M,A1T1l121Ar41.131F161.r21)1 1 1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 I I I I I I I I I I I I I I I I I -L.lJ...L..!_yLLLLLLLL-i

READ 25 ACYC BCYC

2 5 f,ORMAT I 2F LQ,_. 2il_

AT,O,T•O.

BTOT•O.

AAN1S1l1Ii)1=1A1C101M1l1l1h*1A1C1Y1C1*.P~fu~,T,(1l1li I I I I

BANS,{,!,)• BCO.M1l I,)• BCYC•PRCNT 11)

ATOT•ATL01T+AANS{ I)

~T101T1•1B1T101T1+,B,A1N 1 s1<il1l1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.~.n CONT I NUE

L..LLLLLLLLLLLLL L J _J _l _ _L_l--t--'~~~'--l

I ! I I LJ....L..!...L..!...L..!...L..!...L..!...L..!_J_l.LL.l....LLL.L-4--'-.l...J...J.Li.J

1 1 1 1 I I ..L.L L..L.L..L.L..L.L..L...L..!...L..!LL~..LL.l . .LI J .. L..L_._.,.~~~~

PRINT 40 IL~{2•I-I) LOMN0{2•1) AANhlI1)1BANSII) l•I 2 0)

.__._~4~0"--"F~O=~~A~T~l~2"'0~X~2-"""'A'4'4..1'2~o~x"'-'FC!..'-ll0"""'.~2~2"'0~X'-"'-F~l~0~.~2~/~)<.L..L--'--LLLL.L.L.L.L.L.L.L.L.L.L.L.LL..L1lJ_LLL.LL.Lf-L-L.LL.

PRINT ~ ALQJ...,!!TOT

50 JF 10RMAT (///42X 6HTOTA.L=FI0.2 14X 6HTOTAL=FL!...&i_.,2il1111111 I LL1 J._ L LLLLLJ.--t--'-'-'-'-'~--' -

~·~~-~~~~~~~~~~~~~~~~~~_J._ __ LJ....L..!_LILLLL~L.L.L..L.L.L.L..L__!_l_l_.LL-1-'--'-+.JL.LL.LL.L-'--i

The statements, instructions and descriptions in the FORTRAN 160-A language
are written in columns 7 through 72. Each statement must begin on a new line
and, although there can be no more than one statement to a line, any statement
may extend over additional lines. Because blanks are ignored, they may be
used freely in any FORTRAN statement. Blanks are significant only in an H
field of a FORMAT statement specification list.

If the type designator (B or C) is required, it is written in column 1 of the
first line of the statement. B indicates a masking expression and C identifies
a comment.

Any statement may have an identifier, but only those statements referred to
elsewhere in the program require identifiers. An identifier is a string of
from 1 to 5 digits. If there is a type designator (B or C) in column 1, the

63

8.2

CONTINUATION

8.3

COMMENTS

8.4

IDENTIFICATION
FIELD

8.5

identifier is limited to columns 2 throug·h 5, otherwise it can occupy columns
1 through 5. Statement numbers need not be in any sequence, but within the
main program or within any subroutine, no two statements may have the
same number.

The first line of every statement must have a blank or zero in column 6. If
the statement occupies more than one line, all subsequent lines of a state­
ment must have a FORTRAN character other than blank or zero in column 6.
The end of a card does not act as a blank. Therefore, if a statement is con­
tinued beyond a line and a blank is to appear after column 72, this blank must
appear in column 7 of the next line.

Comments can be included in the program by placing the type designator C
in column one on the coding sheets. Comments will be ignored by the com­
piler. They can extend from columns 2 to 72; any keypunch character may
be used in the comments field.

Columns 73 through 80 are ignored in the translation process. They may be
used for identification when the pro!,rram is put on punched cards.

PUNCHED CARDS Each line of the coding form corresponds to one 80-column card, and the
terms line and card are often used interchangeably. Source programs and
data can be read into the computer from cards; an object program memory
map, program diagnostics, and data can be written directly on cards. The
object program can be read out on magnetic tape but not punched directly
on cards.

A blank card included in the source program will be read, and it will cause
compilation errors. However, one blank card must follow the source pro­
gram END card to signal an end to compilation.

If punched cards are used for data input, the data cards follow the blank
card at the end of the source deck. All 80 columns can be used for data
input.

64

8.6

PAPER TAPE

8.7

MAGNETIC TAPE

Punched paper tape prepared on a Flexowriter can be used for source pro­
gram and data input.

If the 160-A FORTRAN source program is prepared on the Flexowriter, a
72-character line of input constitutes a maximum length record. A carriage
return (CR) on the Flexowriter terminates a record. Fields within a record
arc fixed exactly as on punched cards. On source code input, the statement
field can be terminated by a carriage return at whatever point the source
code terminates within the field. \Nhen a tab is encountered, it is interpreted
as an information error; control is returned to column seven and the erroneous
information is destroyed. Delete characters, carriage returns, and case codes
do not count as spaces in a field.

On data input, an SO-character line can be used. A tab is an illegal character
and is replaced with a blank.

A blank record must follow the final source program END statement. This
punch pattern can be created on the paper tape by two successive carriage
returns. This record pattern signals an end to the compile process; it should
appear only after the terminal END statement. Appendix F includes additional
information on paper tape.

Two tapes are necessary for the 160-A FORTRAN system. One tape holds
the system library tape; the second tape holds the compiled program. If the
source program is loaded from tape, a third tape is required. Diagnostics
and an object program memory can be output on magnetic tape.

65

DECK STRUCTURE 9

The bootstrap routine requires that each job begins with a card which has
an asterisk in column 1. The remaining columns of this card may contain
comments. Each asterisk control card is output to the standard output
device.

!-
(_

t!__
{DATA ~

{BLANK CARD

I-" _{mo
I---'

£-
L_ I-

L_
CUBROUTINE

{END

~

7-
L I-

;:__
{MAIN PROGRAM

*COMMENT CARD

I-

Single Job

67

L_

f-
{_ i [PROGRAM # N]

{ *COMMENT CARD
[JOB #N]

!---'
t!__

L_ f-J t
{[BLANK CARDS]

i-
f

t-

{[PROGRAM # 2]

{*COMMENT CARD
[JOB #2]

i-
t---

,;:__ !---' z_
{[0PTIONAL NUMBER

OF BLANK CARDS]

~

£- ,__....
y_

L[PROGRAM AND SUBRT. FOR JOB#I
WITH EXITF CARD AT END OF JOB]

*COMMENT CARD
[JOB # 1]

,__....

Stacked Jobs

68

SAMPLE PROGRAMS 10

Example One:

The "least squares" technique applies to the line, Yi = axi + b, and involves solving normal equations:

Na+ bL.;xi - L.;Yi = o

a 6xi + b ~f - L.;xi Yi = o

N = number ot-Paired points, Xi and Yi
Summations <2.) shown are from

i=ltoi=N

Therefore, if given paired points:

The results are

X1 = 0.50, Y1 = 0.38
X2 = 1.00, Y2 = 0.82
X3 = 2.50, Y3 = 2.00

N = 3, L.;xi = 4, L.;Yi = 3.20

L.;x[= 7.50, L.;xi Yi = 6.01

and the normal equations are

{
3a + 4b - 3.2 = 0
4a + 7.5b - 6.01 = 0

Normal equations can be solved for x and y by using determinants.

lax+ by -c = 0

d x + ey -f 0 O

is solved

by

x = -ce +bf
ae -bd

af +cd y=
ae -bd

X and Y values are read in by groups. Each group is preceded by a control card indicating the
number, N, of paired points in the group. A control card, N = 0, indicates the end of the data.
N can vary from 2 to 50; X and Y values contain three significant digits. Write a program
which will print out a and b in a form similar to

A=

69

,., EXAMPLE PROGRAM ONE
DIMENSION X(SO) ,Y(SO)

10 READ l, N
l FORMAT(12)

IF(N) 2,6,2
2 READ 3,(X(l),Y(l),l=l,N)
3 F 0 RMA T (2 E 9 . 3)

SUMX=O.
SUMY=O.
SUMXY=O.
SUMX2=0.
DO 4 I= l, N
SUMX=SUMX+X (I)
SUMY=SUMY+Y (I)
SUMXY=SUMXY+X(l)*Y(I)

4SUMX2=SUMX2+X(1)**2

YE

FN=N
A=(SUMY*SUMX2-SUMXY*SUMX)/(FN*SUMX2-SUMX**2)
B=(FN*SUMXY-SUMX*SUMY)/(FN*SUMX2-SUMX**2)
PRINT 5, A,B

5 FORMAT(3H A=, E9.3,5X,2HB=, E9.3)
GO TO 10

6 CONTINUE
END

70

YES

SUM - SUM+ ENOTE RM

SUM -- SUM* fl X/3

PRINT SUM

c "'2.

MEMORY MAP

INTEGER VARIABLES
IDENT LEVEL OBJECT CODE LOCATION UP SUBROUTINE

N
10

1
l
0

FLOATING POINT VARIABLES

7307
7313
7775

IDENT LEVEL OBJECT CODE LOCATION

B
A
FN
SUMX2
SUMXY
SUMY
SUMX

FLOATING POINT ARRAYS
IDENT LEVEL

y
x

CONSTANTS
VALUE

0.0

STATEMENT
IDENT

4
6
2
10
0

2

50
l

NUMBERS
LEVEL

FORMAT STATEMENTS

OBJECT

OBJECT

OBJECT

7251
7254
7257
7264
7267
7272
7300

CODE LOCATION

l 7315
1 7543

CODE LOCATION

7262
7275
7771
7773

CODE LOCATION

0720
1041
0566
0547
0547

IDENT LEVEL OBJECT CODE LOCATION

5
3
l

7233
7303
7311

71

1 1057
NOT USED
1 1065

DIMENSION DI Ml DIM2

LIBRARY FUNCTIONS
IDENT LEVEL

(P1660
(R1671
INPUT

A"l<-1(I

OBJECT CODE LOCATION

0 7130
0 7240
1 0001
1 0457

ERASABLE STORAGE 1 1075 TO 1 7233
A=-.615E-02 B= .804E 00

Example Two:

Simpson's rule for approximating a definite integral is:

Jb f (x)dx = D.x (f(a) +4f(a+Lix)+2f(a+2Lix)+4f(a+36.x)+ ... f(b))
a 3

For example, using a= l, b = 2, Lix = 0.25, and the integral 1: ,/ l+4xdx gives:

f(a) = f (l) = ,/ 1+4(1) = 15
4f(a+Lix) = 4f(l+.25) = 4f(l.25) = 4,/ 1+4(1.25) = 4,/6

2f(a+26.x) = 2f(l+2(.25)) = 2f(l.5) = 2,/ 1+4(1.5) = 2/7

4f(a+3Lix) = 4f(l+3(.25)) = 4f(l.75) = 4V1+4(1.75) = 4-18

Since (a + 46.x) = 1 +4(.25) = 2 = b; the last term is f(2) = ,/ 1 +4(2) = /9.

The last term is reached when (a+nD.x) = b, and no number (2 or 4) appears in front of the first
or last terms.

The sum of the equation is:

1: V1+4xdx = ·~ 5 (../5 + 4,/6 + 2../7 + 4-18 + /9) = 2.636 approx.

Card 1 contains the value Lix, ranging from -.25 to +.25. The first two fields of Card 2 contain a
and b, each of which range from -9.99 to +9.99. Write a program which will use Simpson's rule to
approximate and print the results for the integral,

cos x
x

dx

72

* EXAMPLE PROGRAM TWO
READ 10, DELTAX,A,B

10 FORMAT(E8.2/2E9.3)
ENTERM=COSF(B)/B
SUM=COSF(A)/A
J=(B-A)/DELTAX
C=4.
1-J+l
DO 14 N= l, I
FN=N
IF(FN-J)9,9, 17

COUNT=ON=O

SUMX = 0

SUMV = 0
SUMXY = 0
SUMXY : 0

9 TERM=COSF(A+FN*DELTAX)/(A+FN*DELTAX)
IF (TERM-ENTERM)16, 17, 16

16 SUM=SUM+C*TERM
IF(C-4.) 13,12,13

12 C=2.
GO TO 14

13 C=4.
14 CONTINUE
17 SUM=SUM+ENTERM
15 SUM=(SUM*DELTAX)/3.

PRINT 20, SUM
20 FORMAT(5H SUM=, E9.3)

END

73

SUMX + X -- SUMX

SUMY + 1 -- SUMY

SUMXY + X • 1 - SUMXY

SUMX2 •X. * 2 --suMX2

ADO I TO COUNT

NO

COUNT
EQUAL

N'

YES

A-- (SUMY * SUMX.2

- SUMXY 'II SUMX)/

(f\J * SUMX2

- SUMX *" *" 2)

s-- (N * SUMXY

- SUMX• SUMVI/

IN• SUMX2

- SUMX••2)

PRINT
A ANO 8

MEMORY MAP

INTEGER VARIABLES
IDENT LEVEL OBJECT CODE LOCATION P SUBROUTINE

N
I
J
10

l
l
l
0

FLOATING POINT VARIABLES

7732
7734
7744
7775

IDENT LEVEL OBJECT CODE LOCATION

TERM 7724
FN 7727
c 774 l
SUM 7746
ENTERM 775 l
B 7762
A 7765
DEL TAX 7770

CONSTANTS
VALUE OBJECT CODE LOCATION

0 .30000000 E 01 7716
0.20000000 E 01 7721
0.40000000 E 01 7736

1 7773

STATEMENT NUMBERS
IDENT LEVEL OBJECT CODE LOCATION

15 03 70
12 0340
13 0346
16 0317
17 0362
9 0265
14 0352
0 016 l

FORMAT STATEMENTS
IDENT LEVEL OBJECT CODE LOCATION

20 l 7706
10 l 7754

74

NOT USED
NOT USED
NOT USED

0 20

LIBRARY FUNCTIONS
IDENT LEVEL

(P1660
(Rl671
INPUT
SINF
COSF

ERASABLE STORAGE
SUM= . 165E 02

OBJECT CODE LOCATION

0 6712
0 7020
0 7136
1 0001
1 0151

0432 TO 1 7706

75

APPENDIX SECTION

77

APPENDIX A

UTILITY FUNCTIONS

Utility functions have been added to the 160-A FORTRAN source language
to perform the following operations:

1. Check for an end of file on a read operation. (XEOF)

2. Return control from a running program to the compiler. (XEXITF)

3. Dump memory for later execution. (XPDMPF, Xl63F, XCDMPF,
Xl607F)

4. Plot lines on the 165 Plotter. (PLOTF)

All except the XEOF and PLOTF functions are written in the form:

I = function (P)

I is any integer variable and P is the parameter list. All functions except
the PLOTF function use a single parameter. The PLOTF function has the
form:

X = function (P)

X is a floating point variable and P is the parameter list. The variable I
or X is a dummy variable required by the form of the statement; the contents
of I or X will always be altered when the function is executed.

XEOF FUNCTION The XEOF function tests whether or not an end of file was detected during the
last executed READ TAPE or READ INPUT TAPE statement. This function is
used as an operand in an IF statement.

IF (XEOF(V)) n1 , n2 , nl

V is any fixed or floating point variable and n1 and n2 are statement numbers.
Control will transfer to n1 if an end of file mark was read during the last tape­
read operation. Otherwise, control transfers to n2. The contents of V are not
changed when the statement is executed.

If an end of file is detected during a read operation, zeros are stored in all
variables contained in the input list, regardless of whether or not an XEOF test
is made by the programmer.

79

Example:

READ INPUT TAPE 2, 10, A, B, C, N

IF (XEOF (DUM)), 7, 8, 7

7 PRINT 3

3 FORMAT (17H END OF FILE ON 2)

STOP 77

8 DO 11 I= 1, N

If an end of file is detected during a read operation, the program prints END OF
FILE ON 2 and stops. Otherwise, processing continues with statement 8.

XEXITF FUNCTION This function transfers control from the execution of one program back to an
initialization routine within the system for compilation of the next program.

XPDMPF,X163F,
XCDMPF,X1607F

I = XEXITF (N)

is any integer variable and N specifies the magnetic tape unit as follows:

N magnetic tape unit

0 163 or 162

1 1607

The XEXITF function statement should replace all STOP statements in a
program.

FUNCTIONS These functions are used to obtain reloadable core dumps. XPDMPF outputs
to paper tape, X163F outputs to 163 or 162 magnetic tape unit 2, XCDMPF
outputs to cards, using the 523 card punch and X1607F outputs to 1607 magnetic
tape unit 2.

I = XCDMP F (N)
I= XPDMPF (N)
I= X163F (N)
I = X1607F (N)

80

I is any integer variable and N is the number of the last bank to be dumped. N
can be an integer variable or constant; I is a dummy variable whose value will
be changed during execution. A halt occurs after the dump is completed. Run­
ning from this halt continues execution at the statement following the dump
function.

Separate loaders are available for each of the dumps. Operating instructions
for these loaders are contained in the 160-A FORTRAN OPERATIONS MANUAL.
When the dump is reloaded, execution begins at the statement following the
dump function.

* THIS IS A PROGRAM TO DEMONSTRATE THE Xl63F FUNCTION
DIMENSION SIN(360), COS(360), X(360)
Pl = 3.14159
DO l 0 I = 1 , 3 6 0
X (I) = I *P I /l 80 .
SIN(I) = SINF(X(I))

10 COS(I) = COSF(X(I))
R=XP DMPF (l)
PRINT 100

100 FORMAT (52H DEGREE X(I) COS(I) SIN(I),/)
DO 2 0 I = l , 3 6 0
PRINT 200, 1,X(l),COS(l),SIN(I)

200 FORMAT (I 10,5X,Fl0.8,4X,Fl0.8,4X,Fl0.8)
20 CONTINUE

X=EXITF(O)
END

PLOTF FUNCTION The PLOTF function provides output on the 165 plotter.

X = PLOTF (A,B,J)

X is a floating point variable and A and B are floating point variables or
constants, interpreted according to the value of J. J may be an integer constant
or variable.

Upon return from the function, X contains the value of the 12 switches on the
165 plotter. These can be tested using a masking statement.

Example:

X = PLOTF (1,1,1)
B IF (X*4) 20,10,20

81

If the third switch from the right is set,
control transfers to statement 20.

If J = 1, A and B define the coordinate scale factors in units per inch for
subsequent PLOTF statements. If no scales are given, the scale factors
are initially set to 1.

If J = 2, A and B define the coordinates of the present position of the pen
in the units defined by a J = 1 PLOTF statement. A and B are initially set
to O; all following coordinates of PLOTF functions which control pen motion
will be interpreted relative to these initial coordinates. If a specific initial
position on the plotter is desired, the operator must manually place the pen
at that point. If an initial pen position is not defined before the first pen
motion is requested, the relative coordinates are 0, 0.

If J = 3, the pen is raised from the paper, moved to position (A,B) and
lowered on the paper. The direction and length of pen movement is deter­
mined as shown below. A1 and B1 are the present coordinates of the pen
(defined either by a PLOTF (A1 ,B1 ,2) function or by a previous pen motion,
and A2,B2 are given in the PLOTF (A2 ,B2 ,3) function: AS and BS are the
scale factors.

Pen motion in the A direction: 'f ,9 .s ~ iJ (" :'. i 0

t::.A = ~~ (A2 - A1) in plotter units (1 plotter unit = 1 ~0 inch) r"" .P....-:--tJ ••.•
-"/ ·"'".....J'.,;..v

Pen motion in the B direction: d
t::.B = ~~ (B2 - B1) in plotter units ..,...1) j(,.....-£·.wGI? J ·"'"""l.o{;o./

: • Direction = tan - l t::.B/ t::.A degrees

Length = ((C::.B)2 + (t::.A)2) 1/2 plotter units

All lengths are rounded to the nearest 1 ~ 0 inch.

If J = 4, motion is the same as J = 3, except that the pen remains in contact
with the paper at all times. The pen is assumed to be down.

If J is any integer other than 1, 2, 3, or 4, it will be treated as though J = 4.
A single PLOTF function may not request pen motion in excess of 20 inches
in either A or B direction.

Programming

A plot subprogram should begin with statements (A, B, 1) and (A, B, 2) to
define the scale factors and initial position of the pen.

82

Example:

The following program produces the patterns shown on pages 85-87.
The variable H is the radius and may be changed to give a larger or smaller
plot.

C 160-A PLOTF DEMONSTRATION-PRODUCES THREE PLOTS EACH 10
INCHES WIDE

C POSITION PLOTTER PEN ON LEFT HAND SIDE OF 165 PLOTTER
CALL RAY
CALL KRIECH
CALL LAMP
END
SUBROUTINE RAY

C PRODUCES DIAMETERS OF A CIRCLE, EACH SPACED 3 DEGREES
APART
R=5.0

4 FORMAT (2 (4X, E 14. 8) , 4X , I 2, 2 (4X , E 14. 8))
Q=PLOTF(l.O, l.O, l)
Q=PLOTF(-R,0.0,2)
N=l
T=3. 1415926/2
Z=3. 14 l 5926/60
DO 10 l=l ,60
T=T-Z
XR=R*COSF (T)
YR=R*S I NF (T)
XL=-XR
YL=-YR
GO TO (20,30) N

20 N=2
PRINT 4,XR,YR,N,XL,YL
Q=PLOTF(XR,YR,3)
Q=PLOTF(XL,YL,4)
GO TO 10

30 N=l
PRINT 4,XR,YR,N,XL,YL
Q=PLOTF(XL,YL,3)
Q=PLOTF(XR,YR,4)

10 CONTINUE
Q=PLOTF(-R, 15.0,3)
END
SUBROUTINE KRIECH

C CONCENTRIC CIRCULAR ENVELOPES
DIMENSION X(20) ,Y(20)
R=5.0
NPOINT=l9
p 1=3. 1415926
DELTA=2*Pl/NPOINT

83

DO l 0 l I= l , NPO I NT
P I =P I - DELTA
X (I)=R*COSF (PI)
Y (I) =R*S I NF (P I)

101 CONTINUE
Q =PL 0 TF (l . 0 , 1 . 0 , 1)
Q=PLOTF(-R,0.0,2)
Q =P L 0 TF (X (1) , Y (1) , 3)
LIMIT=NPOINT/2
L=l
DO 10 J=l ,LIMIT
DO 10 K=l ,NPOINT
L=L+J
IF(L-NPOINT)lO, 10,3

3 L=L-NPOINT
10 Q=PLOTF(X(L),Y(L) ,4)

Q=PLOTF(-R, 15.0,3)
END
SUBROUTINE LAMP
R=5.0
Q=P LOTF (1 . 0, 1 . 0, 1)
Q=PLOTF(-R,0.0,2)
N=l
T=3. 1415926/2
Z=3. 14 15926/60
DO 1 0 I = 1 , 1 2 0
T=T-Z
XR=R*COSF(T)
YR=R*S I NF (T)
XL=-XR
YL=O.O
GO TO (2 0 , 3 0) N

20 N=2
Q=PLOTF(XR,YR,3)
Q=PLOTF(XL,YL,4)
GO TO 10

30 N=l
Q=PLOTF (XL, YL ,3)
Q=PLOTF (XR, YR ,4)

10 CONTINUE
Q=PLOTF(-R, 15.0,3)
END

84

PROGRAM RAY PLOT

Figure 1

85

PROGRAM LAMP PLOT

Figure 3

87

DIAGNOSTICS

APPENDIX B

DIAGNOSTICS AND MEMORY MAP

Diagnostics, prepared by the compiler may be output on cards, paper tape,
on-line printer, or magnetic tape. Diagnostics indicate errors in the
program language,but not in program logic.

When the first error is encountered during a compilation, the system stops
the object program output. It rewinds the binary output tape and writes a
coded error diagnostic over the object program. The system continues
compiling the program and outputing diagnostics as additional errors are
encountered. When the compilation is complete, the system reads the
diagnostic information back into the computer, converts it to a meaningful
format, and outputs it on the specified unit. If the output unit is the printer,
the diagnostics immediately follow the source program listing. When there
are no diagnostics, the memory map immediately follows the source pro­
gram.

Two error messages can occur before the diagnostics listing.

UNASSIGNED LABEl.S
(list of labels)

OBJECT CODE
EXCEEDS MEMORY

types of errors that may cause this
message: misspelling the name of a
library function, using a non-existent
statement number.

the system will continue to compile the
entire source program, but the object
code will be destroyed.

160-A FORTRAN diagnostics have the following format:

ID ENT LEVEL INCREMENT ERROR

IDENT - statement number

LEVEL - sequence number of subprogram containing error.
Sequence numbers are assigned in chronological order­
first subprogram encountered is level 1.

INCREMENT - number of statements beyond the last identified state­
ment (IDENT). If the error occurs in a numbered
statement, INCREMENT will be 0.

ERROR - a message describing the error.

89

MEMORY MAP A memory map prepared by the compiler during compilation is output on
cards, paper tape, on-line printer, or magnetic tape. Each line of output
is limited to a maximum of 80 characters; this format is constant for any
output unit.

A memory map is optional and may be suppressed. If the memory map is
to be suppressed, the memory map subroutine is not loaded as a part of the
system. The system, however, is designed so that if errors are detected
during compilation, operation halts to allow the operator to bring the
necessary routine into core. Failure to initiate this action will cause the
run to be a complete loss. Suppressing memory map output and changing
Standard Equipment Table assignments are explained in 160-A FORTRAN
Operating Instructions.

A memory map is essentially a symbol table showing the location of the
program in memory. In debugging it may be used to locate incorrectly
punched variables and constants. If the programmer has access to the
console, he can check the contents of a particular location specified in the
memory map. A memory map includes only that information needed by a
particular program. For instance, if there are no integer arrays in the
program, the memory map will not give INTEGER ARRAYS (See Sample
Programs for an example).

INTEGER VARIABLE
ID ENT LEVEL OBJECT CODE LOCATION UP SUBROUTINE

FLOATING POINT VARIABLE
!DENT LEVEL OBJECT CODE LOCATION

INTEGER ARRAYS
ID ENT LEVEL OBJECT CODE LOCATION DIMENSION DIM 1 DIM 2

FLOATING POINT ARRAYS
!DENT

CONSTANTS
VALUE

LEVEL

SUBPROGRAMS
ID ENT LEVEL

OBJECT CODE LOCATION DIMENSION DIM 1 DIM 2

OBJECT CODE LOCATION

OBJECT CODE LOCATION

INTEGER VARIABLE USED AS SUBPROGRAM ARGUMENTS
ID ENT LEVEL ERASABLE LOCATION UP SUBROUTINES

90

INTEGER ARRAYS USED AS SUBPROGRAM ARGUMENTS
ID ENT LEVEL ERASABLE LOCATION DIMENSION DIM 1 DIM 2

FLOATING POINT VARIABLE USED AS SUBPROGRAMS ARGUMENTS
!DENT LEVEL ERASABLE LOCATION

FLOATING POINT ARRAYS USED AS SUBPROGRAMS ARGUMENTS
IDE NT LEVEL ERASABLE LOCATION DIMENSION DIM 1 DIM 2

STATEMENT NUMBERS
ID ENT LEVEL OBJECT CODE LOCATION

FORMAT STATEMENT
ID ENT LEVEL OBJECT CODE LOCATION

LIBRARY FUNCTIONS
ID ENT LEVEL OBJECT CODE LOCATION

ERASABLE STORAGE

ID ENT

LEVEL

- identification (name) of the variable, array, subprogram, etc.

- the number of the (sub)program containing that particular
item. Number assignment is related to the sequence of the
(sub)programs except when !DENT is IO and LEVEL is
zero. This indicates array input/output by name and is
present in all programs.

OBJECT CODE - first gives the bank designator, then the address of the
LOCATION location containing the object code or in the case of arrays,

subprograms, and library functions, the first address.

UP SUBROU- - starting address and bank designator of a routine to incre-
TINE ment an index or set of indexes. If there is no incrementing,

NOT USED is printed.

DIMENSION - number of subscripts for the array.

DIM 1 - if the array has 2 subscripts, the critical (first) one is listed.
DIM 2 - if the array has 3 subscripts, the critical (first two) are

listed.

VALUE - the value of the constant. If the value is outside the size
limits for constants, EXPONENT EXCEEDS 32 will be printed
under CONSTANTS (normal version only).

91

ERASABLE
LOCATION

Example:

- is used to determine the address containing a subprogram
argument. The bank designator is given; the number
following it indicates how far past the first erasable storage
address the location is. The first location of erasable
storage corresponds to erasable location 0000 (which con­
tains the return address for the subprogram). Each
number in ERASABLE LOCATION represents three 160-A
words.

ERASABLE STORAGE 1 0060 to 1 1060

ERASABLE LOCATION 1 0002 (bank designator is 1)

Addresses 0060
0061 Erasable Location
0062 0000

0063
0064 Erasable Location
0065 0001

0066
0067 Erasable Location
0068 0002

For more than one subprogram, the ERASABLE LOCATION indicator is
incremented to avoid overlap.

ERASABLE
STORAGE

- defines the area in memory reserved for ERASABLE
LOCATIONS. This area is located between the object
program and the data. The left number is the first
address after the last object code location; the right
address is one less than the last data address; the data
is stored in the opposite direction.

92

FORTRAN 160-A DIAGNOSTICS

ALGEBRAIC EXPRESSION LEFT OF

COMPILER TRANSLATION ERROR

CONVERTED NUMBER IS TOO LARGE

DATA STORAGE EXCEEDS MEMORY

DUPLICATED FORMAT STATEMENT

ERROR IN COMMON STATEMENT

ERROR IN EQUIVALENCE STATEMENT

ERROR IN FORM OF PAUSE OR STOP

ERROR IN LABEL IN DO STATEMENT

ERROR IN SUBSCRIPT EXPRESSION

FLOATING NAME IN FORMAT LABEL

ILLEGAL BCD CHARACTER READ

ILLEGAL CHARACTER IN NUMBER

ILLEGAL EXPONENTIATION

IMPROPER ARRAY NAME

IMPROPER CHARACTER IN 1/0 LIST

IMPROPER CHARACTER IN STATEMENT

IMPROPER DO NESTING

IMPROPER OCTAL NUMBER

IMPROPER STATEMENT LABEL

IMPROPER STATEMENT NUMBER

IMPROPER MAGNETIC TAPE LABEL

INCORRECT SUBROUTINE FORMAT

10-LIST OR DO-LOOP CONTROL ERROR

LEADING OPERATOR (NOT+ OR -)

MACHINE ERROR OF UNKNOWN TYPE

93

MISPLACED COMMON OR EQUIVALENCE

MISSING DIMENSION PARENTHESIS

MISSING FORMAT PARENTHESIS

MISSING SENSE SWITCH NUMBER

MISSING) IN IF STATEMENT

MISSING

MISSING

IN CALL STATEMENT

IN IF STATEMENT

MORE SUBSCRIPTS THAN DIMENSIONED

MORE THAN THREE DIMENSION

MUST HAVE NUMERIC DIMENSION

NO END BEFORE SUBROUTINE

NO FORMAL STATEMENT LABEL

NON MATCHING PARENTHESIS

NO OPERAND AFTER OPERATOR

NO OPERAND BETWEEN OPERATORS

NO OPERATOR BETWEEN OPERANDS

ORIGINAL COMMON AREA EXCEEDED

PREVIOUS ASSIGNMENT OF LABEL

PROBABLE MACHINE ERROR

PROBABLY IMPLICIT MULTIPLICATION

SHOULD BE COMMA OR RIGHT PAREN

SIMPLIFY ALGEBRAIC EXPRESSION

STATEMENT TOO LONG TO PROCESS

STATEMENT TYPE NOT IMPLEMENTED

TOO MANY CHARACTERS IN NAME

VARIABLE NAME ALREADY ASSIGNED

APPENDIX c

BCD - FLEXOWRITER - TYPEWRITER EQUIVALENCE CODES

Character Equivalence Table

Flexowriter Typewriter
Character BCD Card Code UC LC UC LC

1 01 74 74

2 02 70 70

3 03 64 64

4 04 62 62

5 05 66 66

6 06 72 72

7 07 60 60

8 10 33 33

9 11 37 37

0 12 56 56

blank 20 04 04 04 04

dash - 14 52 52 52 52

minus - 40 52 52 52 52

slash I 21 44 44

A 61 30 30

B 62 23 23

c 63 16 16

D 64 22 22

E 65 20 20

F 66 26 26

G 67 13 13

H 70 05 05

I 71 14 14

J 41 32 32

K 42 36 36

L 43 11 11

M 44 07 07

N 45 06 06

94

Character

0

p

Q

R

s
T

u

v
w
x
y

z

+

$

*

Character

Carriage Return

Lower Case Shift

Upper Case Shift

Apostrophe' or
quotation mark"
changes case code for
typewriter input

Tab is a delete record
code for typewriter
input

BCD Card Code

46

47

50

51

22

23

24

25

26

27

30

31

13

60

73

74

53

54

33

34

BCD Card Code

Flexowriter
UC LC

03

15

35

12

24

01

34

17

31

27

25

21

42

46

42

54

50

44

46

54

Special Function Codes

95

Flexowriter

45

57

47

Typewriter
UC LC

03

15

35

12

24

01

34

17

31

27

25

21

02

46

42 42

56

62

74

40 40

37

Typewriter

45

57 (Output Only)

47 (Output Only)

54 (UC or LC)

51

ARRAY

BCD

BINARY

BIT

BOOLEAN

CALLING PROCEDURE

APPENDIX D

GLOSSARY

A group of consecutive storage locations reserved for data storage. Each element
of the array is referenced by the array name plus a subscript that indicates its
position in the array. 160-A FORTRAN allows one, two, and three dimensional
arrays.

An abbreviation for binary coded decimal, a six-bit binary notation for representing
alphabetic, numeric, and special characters. (See Appendix B.)

Characterized by two, as a binary operator, such as+, which operates on two
quantities, or the binary number system, which has only two digits, 0 and 1.

An abbreviation for binary digit--a digit which can be 0 or 1.

See Masking.

The statements used to transfer control to a subroutine. The calling procedure may
transmit variables to the subroutine and return values to the main program from
the subroutine.

COMPILER A computer program which translates non-machine language source programs into
machine language object programs, generally producing more than one machine
instruction for each source program statement. The 160-A FORTRAN compiler
translates 160-A FORTRAN programs into 160-A machine language programs.

DAT A LIST A list of variables for input or output.

DIAGNOSTICS Statements written on the FORTRAN program listing by the compiler, indicating
errors detected in the source program.

EXECUTABLE STATEMENT A statement which initiates a computer operation in the object program. Non­
executable statements are used by the compiler to reserve memory locations and
to set initial conditions for a program.

FIXED POINT A notation for numbers in which the decimal point or binary point is explicitly
stated without modification by a scale factor. In FORTRAN all fixed point numbers
are integers, that is, the decimal point is not written and is assumed to be im­
mediately to the right of the least significant digit.

97

FLEXOWRITER

FLOATING POINT

HOLLERITH

LEFT-JUSTIFY

INTEGER

MASKING

MEMORY MAP

OBJECT LANGUAGE

OCTAL

RIGHT-JUSTIFY

SOURCE LANGUAGE

SPECIFICATION LIST

STORAGE LOCATION

UNARY

WORD

A brand of electric typewriter which has paper tape reading and punching
mechanisms.

A notation for numbers in which both a decimal point and a scaling factor are used
The scaling factor indicates a power of 10 to be used as a multiplier of the numbc1

A coding scheme for representing letters, digits, and special characters either by
holes punched in cards or paper tape, or by binary numbers.

To place the first character of a quantity in the left most position in the area in
which it is contained.

A whole number without a fractional part.

Logical operations used to select parts of constants for numerical operations.

A listing of memory locations reserved by the compiler for the program.

The programming language produced by a compiling or translating process. The
160-A FORTRAN compiler produces a 160-A machine language object program f1
a 160-A FORTRAN source program.

An eight-digit (0-7) number system in which the digit positions represent powers
of eight. The octal equivalent of a number represented by binary digits can be
found by converting each successive group of three binary digits to its integer va

To place the last character of a quantity in the right most position in the area in
which it is contained.

The programming language used in writing a program.

A list of conversion, heading, and spacing specifications occurring in a FORMA 1
statement.

A location, or word, in the computer memory. Each 160-A memory location cor
12 binary digits. Each FORTRAN 160-A integer is stored in two consecutive ID{

locations and each floating point constant is stored in three consecutive location
When operations involving variables are specified, the computer decides on the
basis of the mode of the variable whether to use two or three memory locations.

Characterized by one, as a unary operator such as negation or complementation
which acts on a single operand.

See Storage location.

98

BINARY MODE

CODED MODE

APPENDIX E

MAGNETIC TAPE

Only binary tapes prepared by 160-A FORTRAN can be read in by the system.
A binary record contains 121 twelve-bit words or less. If more than 121
words are output, enough 121 word records will be written to include all
the data. The total output is referred to as one logical record and the
separate 121-word records as physical records.

In 160-A FORTRAN, each physical record contains 121 twelve-bit words.
The first word of each physical record (except the last) is a code word con­
taining all zeros. In each logical record, the identifier word of the last
physical record contains an 8-bit code followed by four binary ones. The
8-bit code is the binary representation of the number of physical records
contained in the logical record.

A logical record in 160-A FORTRAN can be composed of any amount of
information up to a limit of 15,488 words. The logical record limit applies
to any 160-A system, regardless of the number of banks used by the com­
puter. A BACKSPACE statement will always cause a backspace over an
entire logical record. Similarly, a READ TAPE statement will read an
entire logical record (minus the code words); or, if enough memory space
is not specified in the data list, it will read in the specified variables and
then skip to the end of the logical record.

When writing a tape in binary mode, each integer or floating point quantity
requires three 12-bit words on the tape. The contents of the third tape
word of an integer quantity are meaningless. Binary tapes are written in
odd parity.

All input/output statements imply coded (BCD) mode except for the READ
TAPE and WRITE TAPE statements. Input/output statements implying
coded mode require that a FORMAT statement designator be named. When
reading BCD tape, the number of characters per record varies according
to the function of the input tape. If a source program is being read, the
system reads either to an end-of-record gap, or through 72 characters; a
record is terminated by either condition. Excess characters in a record
will be lost. A maximum of 121 data characters per record may be read
or written under FORMAT control.

99

PROCEDURES

READ
OPERATIONS

When writing BCD records, many tape to printer routines treat the first
character of a 121-character record as a printer control character. This
character is not printed. A record of less than 120 characters may be
written. An attempt to create a record which exceeds the maximum will
result in the loss of all characters after the !21st.

BCD tapes are written in even parity.

The following discussions refer to binary and BCD tapes; internal refers to
reading the system tape and reading and writing the pre-object code on the
scratch tape. Compiler refers to source input or memory map output and
object refers to the executable subroutines in the library.

Accumulator Codes for Tape Operation Halts

Mode Tape Set Rewind Logical
Number Number Code Tape Number

1 =BCD 1 = first 4-tape 6 =rewind 1 - 4 = tape number
operation set code on designated

cabinet
2 =binary 2 = second 4-tape

operation set

When an end-of-file is encountered:

Internal The A register is set to non-zero on return to the main compiler.

Compiler The EOF is ignored and the next record is read.

Object Input buffer is set to blank; low core flag is set for testing
by an XEOF function.

When an end-of-tape is encountered:

Compiler
and

Object

The tape is rewound to load point. Operation halts with
216X or 226X in the accumulator for binary mode, 116X or
126X in accumulator for coded mode. A register will be
non-zero. If A is still non-zero when the run switch is set
the record in the buffer will be used. If A is zero, a new
record will be read. This procedure allows for mounting
a new tape.

100

WRITE
OPERATIONS

If a parity error occurs:

Internal The system tries to re-read the record three times. If the
error persists, the operation halts. The faulty record can
be ignored by setting the Run/Step switch on RUN.

Compiler On a 1607 tape drive, the system tries to re-read the record
three times then halts. On a 163 tape drive or equivalent,
the tape is backspaced three records, repositioned, and the
current record is re-read three more times before halting.
The record will be ignored if RUN is set.

Object The operation is the same as for compiler except the
record will always end up in even parity (BCD).

The system does not recognize an end-of-file encountered during the write
process.

When an end-of-tape is encountered:

Compiler
and

Object

The system backspaces, writes two end-of-files, rewinds
the tape and halts the operation. If the equipment con­
figuration includes no more than four tapes, the accumulator
will contain 216X; Xis the logical tape number. If the tape
is located in a second set of four tapes, the accumulator
will contain 226X. Setting the Run/Step switch to RUN will
cause the tape to be written again.

If a parity error occurs:

Internal On a 163 or equivalent, the system backspaces the tape one
record and tries to re-write the record (three times). If
the parity error persists, the system writes an end-of-file
mark, skips 6 inches of tape and tries three more times to
write the record. This moving and writing process will be
repeated two more times if necessary.

On the 1607, the system will backspace the tape and try to
re-write the record only once before skipping tape.

In both cases, if the run switch is set, the record will be
ignored and the WRITE operation is completed.

STATUS CHECKING On a 163 or equivalent tape drive, the only check is made after the READ
or WRITE; there is no wait until ready loop.

On the 1607, status is checked for ready before any operation is per­
formed as well as after any READ or WRITE.

101

PUNCHED
PAPER TAPE

TYPEWRITER

APPENDIX F

PAPER TAPE AND TYPEWRITER

Punched paper tape can be used for input/output in the 160-A FORTRAN
system. A Flexowriter is used to prepare and list paper tape output.
Source programs and data can be read from paper tape; an object program
memory map, program diagnostics, and results can be punched on paper
tape for listing on the Flexowriter.

The 160-A FORTRAN system recognizes only legal flex characters for
either Flexowriter input or output. Illegal flex characters are converted
to blanks during processing. If an illegal character occurs in a numeric data
field, the blank is further converted to zero. A Flexowriter tab is an illegal
character for data input. A carriage return should not be used as the first
character in a source program or as the first character in data input since
the carriage return is interpreted as an end-of-record.

When the Flexowriter is used for input/output, a line constitutes a record,
and a record contains a maximum of 120 characters. Delete characters,
carriage returns, and case codes do not count as spaces in a record.

Case codes and several other paper tape characters which affect the trans­
lation process are not included in the FORTRAN character set. Flexowriter
case codes which appear as characters on paper tape have a mechanical
function only. The 160-A FORTRAN system automatically sets up a lower
case condition at the beginning of each record. When necessary, upper case
must be re-specified at the beginning of a record even though the previous
record ended in upper case. Flexowriter operators preparing 160-A
FOR TRAN input must be informed that an upper case code condition applies
only to the line in which it appears. They also must be instructed to punch
an apostrophe (') for an asterisk (*) and a colon (:) for a dollar sign ($).
The $ sign is legal only in a Hollerith field. Flexowriter codes and the
spaces they occupy within the computer need not be taken into consideration
when planning input/output under program control; system input/output
routines handle such details automatically.

The typewriter can be used only for data input or output. Mechanical re­
strictions affect the use of upper and lower case shifts during input.
Consequently, users must ascertain that typed input meets all requirements.

102

INPUT

OUTPUT

Each time the system is ready to accept an input record from the typewriter,
it returns the carriage, types a question mark, and sets the typewriter to
lower case. A data record is a typed line, 120-characters maximum; each
record is terminated by a carriage return. Only legal BCD characters
should be used since illegal characters are converted to blanks. If the
illegal characters occur in a numeric data field, blanks are further con­
verted to zeros.

An error may be corrected by striking the typewriter tab bar. This re­
positions the typewriter to column one, erases the previous record, and
resets the typewriter to accept input.

Because case code cannot be input from the 160-A typewriter, the 160-A
FORTRAN system uses a pseudo change of case code. The system recog­
nizes an apostrophe (') or a quotation mark n as a signal to set the case
code opposite to the one currently in effect. If a record is begun in normal
lower case, striking an apostrophe or quote mark shifts the typewriter into
upper case. This upper case will continue until the end of the record, or
until another apostrophe or quote mark is used. There is no limit on the
number of case shifts which can be made in a single record. Apostrophes
and quote marks do not count as characters in a consideration of record
length.

When the typewriter is specified as the output medium, a carriage return
precedes each data record. Any legal BCD character can be typed out.
Special typewriter symbols not recognized as legal BCD characters are
treated as illegal and are converted to blanks.

Output is single spaced and all alphabetic characters are written in upper
case.

103

APPENDIX G

STATEMENT INDEX

X = executable N = nonexecutable

statement Type Page

ASSIGN x 22

BACKSPACE i x 60

CALL x 33

COMMON N 38

COMMON (n) N 40

CONTINUE x 28

DIMENSION N 37

DO x 24

END * 28

ENDFILE x 60

EQUIVALENCE N 41

FORMAT N 48

GOTO i x 22

GOTOn x 21

GOTO() i x 22

IF ACCUMULATOR OVERFLOW x 27

IF (E)nl ,n2 ,n3 x 23

IF DIVIDE CHECK x 27

IF QUOTIENT OVERFLOW x 27

IF(SENSE SWITCH i) x 23

PAUSE x 28

PRINT x 62

PUNCH x 61

*END is executable only under certain circumstances. See 5.2.3 as well as 4.9.

104

statement Type Page

PUNCH FLEX x 61

READ x 60

READ FLEX x 61

READ INPUT TAPE x 60

READ TAPE x 60

READ TYPE x 61

RETURN x 33

REWIND x 60

STOP x 28

SUBROUTINE N 31

WRITE OUTPUT TAPE x 60

WRITE TAPE x 60

WRITE TYPE x 61

105

Arithmetic Expressions

computed IF statement

mode

operators

ordering of operations

subscripts (use as)

Arithmetic statements

Arrays

single subscript form

storage

subscripts

used in COMMON statement

data lists

DIMENSION statement

Blanks

used in constants

data fields

formats

variable names

Boolean - see Masking

Coding form

Comments

Constants in source program

floating point

integer

masking

APPENDIX

TOPIC INDEX

107

H

Page

11

23

14

11

12

18

19

7

8

8

18

38

45

37

5,6

56

56

7

63

64

5

5

5

6

Constants in input data - see Data conversion

Continuation

Control statements

numerical COMMON statement

statement in DO loops

subroutines

Data conversion

alphanumeric - A

floating-point - E

floating point - F

integer - I

octal - 0

Data list - input-output

Deck structure

COMMON statements

DIMENSION statements

Diagnostics

Divide check

DO loop

Equivalence

Executable statements

Exponentiation

Fault Tests

Flexowriter

data input

input-output statements

source program input

Formal parameters

Format

complete specifications

data conversion

headings and spacing

108

Page

64

21

40

24

30

49

55

51

53

49

50

45

67

38

37

93

27

25

41

104

14

27

103

103

60

65

32

48

57

49

56

repeated specifications

reserved words

variable format control

Functions

in DO loop range

Headings in formats

Identification field

Index variables

data lists

DO loops

Magnetic tape

logical tape unit numbers

physical and logical records

recording mode

source program input

statements

Masking expressions

computed IF statement

operators

ordering of operations

Masking statements

Memory map

Non-standard input-output equipment

Numerical common

Operators

arithmetic

masking

Overflow tests

Plotter

Printer

carriage control

statements

109

Page

49

5

58

29

24

56

64

45

24

99

59

99

99

67

59

15

22

15

17

19

89

62

40

11

15

27

81

62

62

Punched cards

data input

statements

source program input

Range of Constants

floating point

integer

masking

Reserved words

Sense switches

Spaces - see blanks

statements

arithmetic

list of 160-A statements FORTRAN

masking

replacement

statement identifiers

storage allocation

COMMON

overlay

Subroutines

calling

in DO loops

linkage - COMMON

linkage - formal parameters

Subscripts

array elements

in DIMENSION statement

legal types

reduction to single subscript

Typewriter

110

Page

64

67

60

67

6

5

6

5

23

19

104

19

18

21

8,37,40

38

39

30

33

24

38

32

18

37

18

8

103

data input

statements

Variables

index

in masking statements

simple floating-point

simple integer

subscripted floating point

subscripted integer

111

Page

103

61

7

24,48

19

7

7

9

9

CONTROL DATA SALES O""ICES

ALAMOGORDO • ALBUQUERQUE • ATLANTA • BILLINGS • BOSTON • CAPE

CANAVERAL • CHICAGO • CINCINNATI • CLEVELAND • COLORADO SPRINGS

DALLAS• DAYTON• DENVER• DETROIT • DOWNEY, CALIFORNIA • HONOLULU

HOUSTON • HUNTSVILLE • ITHACA • KANSAS CITY, KANSAS • LOS ANGELES

MADISON, WISCONSIN • MINNEAPOLIS • NEWARK • NEW ORLEANS • NEW

YORK CITY • OAKLAND • OMAHA • PALO ALTO • PHILADELPHIA• PHOENIX

PITTSBURGH • SACRAMENTO • SALT LAKE CITY • SAN BERNARDINO • SAN

DIEGO• SEATTLE• WASHINGTON, D.C.

Pub. No. 60051300

ATHENS• CANBERRA• FRANKFURT • THE HAGUE • HAMBURG • JOHA

BURG • LONDON • MELBOURNE • MEXICO CITY (REGAL ELECTRON!

MEXICO, S.A.) • MILAN • MUNICH • OSLO • OTTAWA (COMPUTING DI

OF CANADA, LIMITED) • PARIS • STOCKHOLM • STUTTGART • S'

TOKYO (C. ITOH ELECTRONIC COMPUTING SERVICE CO., LTD.) • Z

CONTROL DATA
CORPORATION

8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

