
November 1963

IQ@i;Ml•W)
C 0 R'P 0 R <I 'I' I 0 N

160-A FORTRAN MAINTENANCE MANUAL

CONTROL DA TA CORPOHATIO:N
3330 Hillview Avenue
Palo Alto, California

Pub. :No. M050S

Section 1.1

General Description

INTRODUCTION

This introduction will describe the general construction of the entire

160A FORTRAN System.

The compiler, distinguished from the interpreter, is composed of two

passes. In addition, there is a preliminary section which allows for changes

from the standard compiling procedure. Specifically, routines which bring

in the source code and write the memory map may be changed. This preliminary

loads Pass I, the principal part of the compiler. Finally, the source input

routine is loaded.

Pass I scans source statements one at a time. When a legal state~ent is

rEµ1d, the compiler generates object code in final form if possible.. In some

cases, for instance transfers, only relative addresses can be known at this

time •. As soon as the compiler encounters an illegal statement, all previously

generated code is destroyed and a diagnostic code is output to the scratch tape.

While no further object code is output to the scratch tape, the compiler continues

to process each statement for further diagnostics.

Pass II, the second part of the compiler, is essentially a loading and

relocating pass. When Pass II begins, the compiler has available all of the

information it needs to lay out core for execution. Specifically it knows which

interpreter modules and functions (I/O and library) it will need. A memory

map is prepared giving all object code locations of variables, constants,

statement labels, and subprograms. All identifier information necessary

for relocation is saved in condensed form. The object code is then loaded

and all relocatable addresses are updated. Finally the interpreter and its

modules are loaded. If diagnostics were generated, these last three steps are

bypassed and, instead, the diagnostic information is output and the system

halts.

The interpreter consist of a main fixed part and modules for floating point

arithmetic, Boolean arithmetic, and FORMAT control. These modules are loaded only

if required by the source program. At the end of Pass II, control is.given

to the interpreter and execution begins. Interpretive object code instructions

are executed sequentially until an interpretive control instruction changes

the sequence. Transfers to library functions and input-output drivers are

effected through a transfer vector resident in the interpreter.

1

MEMORY LAYOUT DURING CCMPILATION.and EXECUrION

During Pass I, Bank 1 contains working storage and the processors for

most statements. Bank 0 contains the input/output buffer, the source

code input routine, the system input routine, the algebraic scan and

various utility routines. As statements are processed, a symbol table, called

Idlist, is formed starting downward from the highest numbered location in

memory. This table records all statement labels, variables, constants and

other identifiers encountered by the compiler. The area in bank 1 starting

" from the end of the processors and ending with the beginning of Idlist (or,

in a three or more bank system, the end of bank 1 if Idlist is not in bank 1)

i's available for processing statements. This area is increased if there are

no EQUIVALENCE statements and is further increased if no C<11MON declaration

is made. ~t holds lists for data declarations (SUBROUTINE parameters, COMMON,

DIMENSION, and EQUIVALENCE statements) until they are all processed for a

given routine, The effective area is decreased, temporarily, during the

processing of nested DO-loops.

During Pass II, bank 0 contains the coding for Pass II and a condensation

of the IDLIST in the locations which will ultimately be occupied by the

Interpreter and library routines. Object code is loaded into its execution

locations, all relocatable addresses are fixed, and, finally, the Interpreter

and library functions are loaded over Pass II.

The.interpreter memory is organized as follows: In Bank O, beginning

at location 0000,are low core, the library function transfer vector, the

I/O buffer, t~e fixed interpreter, the floating interpreter, the format

interpreter, the boolean interpreter, (these last three only as needed), the

required I/O routines, a routine called INPUT which does input conversion,

li~rary functions and ob~ect code. Data storage is assigned by the compiler

from the end of the ·last available bank. Between the end of the object code

and this data is an area called erasable storage. The data assignment is in

nto parts: COMMON and variables local to subroutines. The first four cells

as'Signed are for a variable called IO and the constant "l". IO is needed

only when array I/O by name is used, but this variable is nevertheless

always assigned.

Two points might be mentioned at this time. First, arrays are stored

forward in core, i.e. x(l) has a smaller location number than x(2). Secondly,

2

'.[I

all functions and I/O routines which end up in Bank 0 will be loaded

beginning at an even cell while those in Bank 2 will begin at an odd. An

integer constant or variable requires two 160-A words, floating point

requires three. The area between the object code and the data storage is

called "erasable". Room is needed here for linkage between subroutines

and functions. If a function is used, space for a minimum of 32 erasable

locations is allocated by the compiler. If only subroutines are used, one

erasable location will be set aside for each subroutine and another for each

formal parameter used. Each erasable location requires three 160-A words.

Since no flow analysis is done by the compiler, room will be set aside for the

worst case. One or two locations are set aside to insure that in the first

bank occupied by erasable, the number of locations available is divisible

by ·three.

Schematically, the memory layout, during compilation, Pass I and Pass II

and execution, is as follows for n + 1 banks of memory:

0,0000 1,0000 n,_nn .
(Compiler Pass 1)(Processing)(Idlist)

(Compiler Pass II) (Condensed Idlist) (Object Code) (Unused) (Data + COMMO~)
(Interpreter-knodules)(Library Routines)(Object Code)(Erasable)(Data +COMMON)

3

COMPILER PASS I

The coding for Pass I occupies all of Bank 0 and 3/4 of Bank 1. State­

ments are brough~in one at a time, blanks removed (except for FORMAT state-

ments) and moved into Bank 1. If the statement has a label., this identifier is

entered in the symbol table called Idlist. As the statement is cracked, all

new variables, constants, etc., are entered in the Idlist. If this list gets

tco large, i.e., if it is impossible to move a statement into Bank I and to work

on that statement, compilation cannot continue.

All items are entered in thP Idlist as they are encountered together rather

than in separate tables. The entry includes a notation as to the length of the

entry. This depends on two factors: The type of entry and the length of the

iuentifier. As variables and formats are encountered their object code locations

may be determined. Only transfer points and internal stores are undefined. A

2-character name or statement label requires one word, a three or four character

identifier, two words, and a five or six character identifier, three words. Since

formats ·and statement labels are different types, they may have the same number.

Similarly, the name used in an assigned GO TO statement may be the same as a

variable~ A level number is assigned to the subroutine according to the order of

its occurrence. All entries into the list are identified by level; the main pro-

gram may or may not be level_l. Constants and the variable I/O described above

are assigned to level 0 and may be referenced by any subroutine. All other

identifiers except subroutine and function names are local to a subroutine.

Fixed point quantities are represented by two words. The high order bit

in each word is for the sign. Boolean constants also occupy two words and once

D

)

the compiler has formed such a constant, it is indistinguishable from an integer

constant. Floating point quantities occupy three words. They are stored by the C})

4

compiler in BCK (See STM 160-A-17). In the QWIK system these BCK numbers are

converted to a 36-bit binary quantity whose format is the same as a 7090 word.

As mentioned, the symbol table may overflow. This may occur in two ways.

·First, any given statement which is processed may be too large to be cracked.

The compiler will quit on this statement but attempts to go on to the remaining

statements. However, if it cannot move the statement into working storage, the

compiler stops. It is still possible, however, to obtain a memory map.

In Pass I, statements are scanned using the following procedure. All cot11ttent

cards are skipped. The first statement entered is checked for numerical COMMON.

If present, a bound is set as described in the conmon processor below. The

section of code used for this checking and other initialization is then released

to working storage. It is necessary that the compiler read ahead one card so

that it may check for continuation cards. As soon as a statement is isolated,

it is checked to see if it is FORMAT. If it is, Idlist is checked to insure that

it contains an entry for this FORMAT statement. The relative object code loca­

tion for the statement is computed and stored in the entry. Note that it is

possible that this statement number may have already occurred and is present in

the Idlist as an unassigned quantity. It may also be doubly defined; this causes

a diagnostic.

To determine whether the non-format statement is an algebraic statement, it

is scanned for an equal sign. Only one other kind of statement has an equal sign,

the "OO" statement, but it also must have connnas outside of parentheses. Having

identified an algebraic statement, three lists are created. First, a Operand­

Operator list, MATIIST. All operand references in this list point to relative

locations in a second list. This second list BOPLST, contains the object code

locations for all operands in the statement. The final list, BOXLST, contains

indexing information. The algebraic translator then generates the appropriate

sequence of one-, two-, or three-word conrrnands. Ordinary arithmetic commands

5

referencing memory require two words; references to formal parameters or pseudo­

accumulators used by the interpreter for temporary storage ordinarily are one

word instructions. A subscript expression is analyzed into a fixed part and a

part depending on variables. The fixed part is compiled into the command and

the variable part is converted into an indexing expression. Rather than.calculate

the value of an index each time one is used, the compiler sets up a pseudo index

register (pseudo B-box) for each subscript expression. For each integer variable

appearing in subscript expressions, an UP subroutine is created which describes

its position in each of the b-boxes in which it appears. The UP routine also con­

tains the last value of the variable. When a value is assigned to the variable,

an UP conmand is executed which causes each pseudo b-box it references to be

modified according to the increment.

If not an algebraic statement, a scan is made of the first two letters. In

many cases the first two letters and length are sufficient to define the state­

ment given that it is a legal FORTRAN statement. This does lead to some anomalies.

For instance PANTS become equivalent to PAUSE. Several of the statement types

(GO TO,.IF, etc.) refer to statement labels which may not as yet be defined. An

Idlist entry will be made for these unassigned labels and when they are encountered,

the list will be updated with their object code locations.

The SUBROUTINE statement, if present, is processed first. If there are

array formal parameters, the DIMENSION statement must be in core at the same

time. The formal parameters will be processed with references to the DIMENSION

statement. The COMMON statement, which must be next after the SUBROUfINE state­

ment, also requires that the DIMENSION statement be in core. Finally, the EQUIVA­

LENCE statement, which follows the DIMENSION statement, is processed referring to

the DIMENSION statement. All variables in the DIMENSION statement which have not

D

)

yet been processed will be placed in the Idlist. It is possible to have more than -~

one DIMENSION statement but the variables in this statement must be local and

6

must not.appear in the EQUIVALENCE statement. Since the DIMENSION statement

triggers the indexing, it is necessary that each program have a DIMENSION

statement (if there is going to be one) before any integer variables are

encountered. When the first COMMON statement in the source program is pro-

cessed, a bound for the COMMON area is computed. Any subsequent COMMON state-

ment requiring more storage area will cause a diagnostic to be produced.

For many of the non-algebraic FORTRAN statements, ASSIGN, computed GO TO,

etc., the compiler generates macro calls to the interpreter. In executing an

I/O statement, the interpreter transfers control to an input/output macro.

The list has been compiled as a series of loads for output and series of stores

for input. The I/O macro processes the information in the list according to the

format statement, transferring control to the actual I/O routine when required.

In order to process the list, the normal linkage within the interpreter has been

modified. For this reason, at the termination of the I/O statement, a macro

called IOT is called to restore the interpreter. In implementing the "DO" loop,

a count of the number of times through the loop is calculated. This count is a

negative quantity and is defined as (M2-Ml)/M3, for the statement DO N [=

Ml, M2, M3. This count and the increment may not be changing during execution

of the loop. This means that while M3 may be changed, it will not effect the

increment. The compiler will not allow the increment to be a negative constant,

but the interpreter does allow a variable M3 to take 0n negative values.

Initialization of the loop is accomplished by interpretive arithmetic coding;

incrementation is done by a macro.

7

Low Core
OUTBUF:

BINARY:

INBUFF:

RFADST:

I/O TBL:

PRIMER:

NXTSTr:

NEWSTT:

L(CLAS:

FORMOP:

COMPILER PASS I ROUTINES and STORAGE AREAS

BANK 0

Output buffer for compiled code

Binary tape routine

Input buffer for a source record

BCD source input routine

Table of input output equipment names.

Read the first source card, go to (BEGN) in bank 1

20 November 1963

Read next complete statement, check to see if it is FORMAT,

move it into processing area in bank 1 (eliminating blanks

unless FORMAT). If statement is too large to fit in processing

area, halt. If statement is FORMAT, set flag and exit to

FORMAT in bank 1. Otherwise, go to NEWSTT.

Process statement number if present. Test to see if statement

contains an equal sign and does not contain any convnas outside

parentheses. If so, exit to algebraic processor at PREALG.

Otherwise type statement according to the first two letters

and exit to the appropriate processor in bank 1.

Classify character in A according blank (0), special character

(1), nwnber (2), letter I through N (3), other letter (4).

Classify identifier by first character. If blank, then error

unless at the end at the statement being processed. If

special character, store translation into algebra string,

put 0 in A and exit. If number, isolate complete constant,

convert it from BCD to binary, type it as integer or floating,

ensure that it is in IDLIST, and exit with type in A. If

letter, set fixed or floating type. Pack characters into name

until special character is encountered. If this character

is a left parenthesis, then either an array IDLIST entry

has been made for this identifier or the previous character

is an F and this is a library function or else there is an

erro~. For any legtimate identifier ensure that it is in

IDLIST, and exit with type in A.

8

LIB-FN:

PACKID:

LSTSPY:

MAKEID:

NTRID:

SUBSCR:

ALGSTR:

STNOCK:

STNOID:

Search IDLIST for previous occurence of named library

function. If found, exit. If not, increase library

function counter, make IDLIST entry and exit with function

number in A.

Pack identifier, two characters per word appending final

blank if necessary, into cells IDEN through (LETEND).

Compute number at words required, exit.

Check IDLIST for previous occurence at the proper level of

the identifier in IDEN through (LETEND). If found, exit with

IDLIST type in A; if not, exit with zero.

Create data address and IDLIST preamble for simple variable

or constant. Jump to NTRID to enter identifier. Exit with

list type A.

Enter identifier (including preamble) into next available

IDLIST locations.

Analyze subscript expression. Create constant additive and

index expression. If the subscript is not constant, ensure

that proper pseudo b-box entry is in idlist.

Refine algebraic expression. At entry, expression consists of

the BCD source input string. Jumps are made to routines to

isolate and translate identifiers and operators and to form

subscript expressions. At exit, the expression has been

replaced by three lists to be used by the algebraic translator.

The first, MATHST, consists of a one word-per-element translation

of the original expression. For operand description it points

to the second list, BOPLST. This contains object code location

or formal parameter position for each of the designated operands,

and, in the case of variable subscript expressions, also

contains the constant part of the expression and a pointer to

the third list, BOXLST, which contains IDLIST locations for

the appropriate pseudo b-boxes.

Set beginning and find end of a statement number, set list type

to 13, and jump to LBLCHK.

Pass through leading zeros in a statement number; jump to STNOCK.

9

LBLCHK:

MAKCOM:

MAKSTO:

PRF.ALG:

STATNO:

TILT:•

VNUMCN:

(FMBKl:

VADXT:

VMLTIN:

ALGEBRA:

Pack statement number, search IDLIST for it. If not found,

create preamble and jump to NTRID to enter identifier.

Set flags so that proper command will be made. (This is

used principally to make store commands in algebraic

replacement statements and to generate loads an~ stores

during I/O list proce:>sing). Put the command away in

OUTBUF and exit.

Jump to MAKCOM with store designator in A. Save object code

location for possible DO-loop incrementation. If store was

of an integer variable and there are dimensioned variables,

generate an UP command.

Process arithmetic replacement statements. Jump to ALGSTR

to refine algebraic string, then to ALGBRA to translate the

algebraic expression, and finally to MAKSTO to make the

appropriate store command.

Check first non-blank character found in columns 1-5 of a

source statement. It must be B for Boolean, 0 for octal, S

for symbolic, or a number for the first digit in a statement

label. Insure that it is in IDLIST, but has not previously been

assigned a relative object code location. Zero out L(CURR,

used by diagnostics processor, which counts number of statements

since last label.

First time through rewind tape 2. Create a diagnostic message

and dump it onto tape 2.

Convert numbers from BCD to fixed or floating binary represen­

tation. TILT if magnitude is out of range.

Effect a pseudo jump return from bank 1 to bank O. Routine

contains an ordered list of all bank 0 routines jumped to from

bank 0. List position is in (TOBKO; the E.pecific call is used

to transfer the contents of A.

Integer add and subtract routine. Operands are in OPJ and

ACCJ at entry, result is found in ACCJ. Sign of A on entry

determines which operatior

Integer multiply routine.

entry, result goes to ACCJ.

is to be performed.

Operands are in OPJ and ACCJ at

Translate an algebraic expression. Put the coding away into

OUTBUF. See ALBEGRAIC TRANSLATOR for details.

10

)

CD

I • J ,K:

FORMOT:

BNKlVC:

PUTWAY:

FINISH:

B(Z), A(Z):

(TOBKO:

CMNVEC:

FORMAT:

L(ST):

L(PA):

L(FU):

(PAUSN:

L(D):

INCSAV:

L(CO):

L{CON):

Generate coding for DO-loop preamble or DO-implied I/O list.

Exit to SVCODL in MAKSTO where UP coll11l8nds are generated

as needed.

Output a FORMAT statement after dumping OUTBUF if there was

anything in it.

Exit to routine in bank 1 which branches to various processors

depending on contents of A.

Put one word into object code buffer (OUTBUF). When it is

filled, dump it out on tape 2.

Save flags, load Pass II and jump to it.

BANK 1

Relative object code location immediately following last store

generated. This is used by DO-loop processor as the location

to jump to after incrementation.

Routine used in conjunction with (FMBKl in bank 0 to effect a

pseudo jump return from bank 1 to bank O.

Distributor for routines in bank 1 jumped to from bank 9.
Pack FORMAT statement 2 characters per word. Ensure that label

is in IDLIST and has proper object code address. Go to FORMOT

in bank 0 to output the statement.

Generate coding fro STOP n instruction by jumping to (PAUSN

to generate a PAUSE n instruction and following this by a

"transfer back one location" instruction.

Jump to (PAUSN to create a PAUSE n instruction and put it away.

Give a diagnostic if a FUNCTION subprogram is encountered.

Isolate octal number n and generate an HPR n instruction

Process a "DO N I = Ml, M2, M3" instruction. Jump to STNOID

to process _statement number N. Refine the rest of the statement

using ALGSTR. Jump to INCSAV to save incrementation information.

Jump to I = J,K to generate coding for DO-loop preamble. Save

all information necessary for DO-loop incrementation in the first

locations of the processing area. Move location of beginning

of area, L(PROC, to reflect this.

If next character is M,. branch to CCX>1MON processor, L(COM).

Otherwise it must be CONTINUE statement.

Process CONTINUE statement. If statement is numbered, check

to see if it is a terminal statement of a DO-loop. If so, make

incrementation coding by jumping to MAK.INC.

11

COEXIT:

L(TILT:

L(GO):

MAKINC:

F.QUPNO:

REI.ESE:

NXTSPG:

L(EN):

Nonnal exit from processors. Increase increment from last label

and exit to NXTSTT in bank 0 to read and process next statement.

Exit from bank 1 routines to diagnostic routine, TILT, in bank O.

Generate coding for ordinary GO TO and for computed and assigned

GO TO statements. If assigned GO TO. label is terminated either

by blank or comma. If computed GO TO, generate macro which

contains number of branches, the location of the control variable,

and, for each of the branches, two words giving the bank and

location of the IDLIST entry for the branch number.

Generate incrementation macro for DO-loops and for DO-implied

I/O lists. Restore the beginning of the processing area,

L(PROC, to the beginning of the beginning of the incrementation

information.

Find library number for I/O equipment referenced. If it is a

standard I/O call, find the name in I/OTBL. If not, isolate

the name and pack the identifier. In any event, jump to LIB-FN

to obtain library vector number and exit with it in A.
Release processing area which has been used temporarily to hold

formal parameter, DIMENSION, and COMMON lists until they have·

been processed. If there are no EQUIVALENCEs, make the space

used for this processor available; if in addition COMMON is not

used, free this space also.

Prepare for next subprogram by increasing LEVEL count and

initializing various switches. Make an entry for a statement

numbered 0 at this level and exit to NXTSTT to process next

statement.

If statement is END FILE, branch to that processor. Otherwise,

process END statement. If a subroutine is just compiled and

n_o RETURN was encountered, generate a RETURN macro. If a main

program and the last statement was not STOP, generate a STOP

0 command. In any event, check to see if the next statement

to be processed is all blank. If not, go to NXTSPG. If so,

exit to FINISH.

12

)

OUTPlIT:

INPlIT:

L(PU):

L(PR):

L(WR):

REWIND:

ENDFIL:

L(BA):

L(RE):

READ:

FK(OlIT:

RDTYPE:

RDFLEX:

BCDTPI:

TAPEIO:

READCD:

Generate output macro, set I-OR-0 to O.

Generate input macro, set I-OR-0 to I.

Set NXTTYP to standard punch. Jump to OlITPUT. If PUNCH FLEX

set parameter and merge with RDFLEX. If not, set A to NXTTYP -

designator and rrerge with READCD.

Set A to standard printer and merge with L(PU).

Create output macro. IF WRITE OUTPUT TAPE, set A to 15 if

standard equipment is being used or to zero for non-standard

and merge with TAPEIO. IF WRITE TYPE, set parameter and merge

with RDFLEX. Otherwise set binary tape function write, load A

with equipment number, and merge with FM(OUT.

Set tape function rewind, load A with equipment number, and merge

with FM(OlIT.

Generate output macro, set tape function end file, load A

with equipment number, and merge with FM(OUT.

Generate input macro, set tape function bakcspace, load A with

equipment number, and merge with FM(OUT.

If READ or REWIND, exit to READ. Otherwise, generate a return

macro if in a subroutine.

Generate input macro. If REWIND, jumpt to REWIND. If RF.AD FLEX,

exit to RDFLEX. If READ INPUT TAPE, exit to BCDTPI. If RF.AD

TYPE, exit to RDTYPE. If READ n or READ (, exit to READCD.

Otherwise, set binary tape function read, load A with equipment

number and exit to FM(OUT.

Create appropriate coding for binary tape function on given

tape. Exit to list processor.

Set type parameter, get library vector number, and merge with

RDLABL.

Set flex parameter, get library vector number, and merge with

RDLABL.

Check for alphabetic READ label. If so, exit to READCD. Other­

wise, set A to 12 if standard equipment is being used or to zero

if nonstandard and merge with TAPEIO.

Get library v'ector and put it and tape number into equipment

description. Merge with RDLABL.

Get library vector number and put it into equipment description.

Merge with RDLABL.

13

RDLABL:

LIST:

IO-END:

L(IF):

(TOPTO:

(OCTAL:

L{AS):

STTYPE:

NEWDAT:

NTRDIM:

L(DI):

Isolate format label and ensure that it is in IDLIST. If

alphabetic label, make certain that object code address· is

in FORMAT label entry. Exit to LIST.

Put away first two words of I/O macro which describe

equipment, driver, and location of FORMAT statement or binary

tape function. If there is no list, exit to IO-END. Otherwise

generate loads if output or stores if input for the elements

in the list. If parentheses are encountered, generate

DO-loop initialization and incrementation coding. If an

unindexed array name is found, exit to ARYNAM. When list is

exhausted, exit to IO-END.

Generate macro for 1/0 END.

Generate macros for IF(SENSE SWITCH i), IF ACCUMULATOR OVERFLOW,

IF QUOTIENT OVERFLOW, or IF DIVIDE CHECK. Use ALGSTR and

ALGBRA to generate coding for the expression in an arithmetic

IF, then generate the macro. Use a commo1 routine for putting

out the branch locations.

Routine used by many of the processors in bank 1 to shorten

coding necessary to get i:o the PUTWAY rou< ine in bank O.

Pack four octal digits into a word and put it away as the

next word of object code.

Generate coding for ASSIGN n TO i stateme11t.

Check next statement for type. Exit with parameter in A:

1 for COMMON, 2 for DIMENSION, 3 for EQUP'ALENCE, 0 for anything

else.

Create new end of data address by reducini: DATEND by the number

of words in NOTINT.

Make IDLIST entry for array.

Process DIMENSION statement. Isolate identifiers and subscript

maxima, compute number of elements in the arrays, and pack this

information at the beginning of the processing area. If there

is an unprocessed COMMON list, jump to COMNID to process it.

If there are SUBROUTINE parameters, jump to SUBRID to process

them. If the next statement to be processed is EQUIVALENCE,

exit without completion of array processing. If not, use NTRDIM

to make appropriate IDLIST entries. Exit to RESTOR beginning

of processing area.

14

L(SU):

NTRVBL:

SUBRID:

MATCHK:

L(CA):

•

NAMPRM:

ARYNAM:

Process SUBROUTINE statement. Ensure that subroutine name is

in IDLIST and give it the proper relative object code location.

Create a packed list of parameter names at the beginning .of the

processing area. If the next statement to be processed is

CaiMON or DIMENSION, exit without processing the parameters.

If not, jump to SUBRID to process the parameters, release the

processing area and exit.

Create IDLIST entries for simple variables in Cet1MON, EQUIVALENCE,

or SUBROUTINE statements. Use NTRID to make the entries. Make

U? commands for integer variables if there are arrays in this

subprogram.
Process list of f:•rmal parameters for SUBROUTINE. Count
parameters and jump to MATCHK to effect appropriate entry.

Check next identifier to see if it is in the unprocessed array

list. If so, set type for CCliMON or parameter and jump to

NTRDIM to make an IDLIST entry. If not, jump to NTRVBL to

make simple variable entry.

Process CALL stateme1•t. Generate coding for evaluating

actual parameters given as arithmetic expressions, for

loa<ling locations of first element of an array if its name

is given, or for loading the value of a simple variable. In

each case, generate a store into the next available erasable

locations. Generate the return jump coding necessary for

jumping to the subroutine. For any simple variable actual

parameter, generate a load of the appropriate 1~rasable location

and a store into the proper memory location using MAKSTO.

Used by L(CA) to isolate the next actual parameter and refine

it using ALGSTR.

Used by LIST when it encounters an unindexed array name in

an I/O list. Coding is created as though the array were

indexed by a variable called IO which takes on values 1

through the total number of elements in the array. I/ODO

is used to generate initialization coding, a dummy list is

entered into the processing area and an exit is taken back

to LIST.

15

L(C<M):

COMNID: ·

EQNUM:

L(EQ):

(BEGN):

Process COMMON statement. Pack the COMMON identifiers into a

list starting at the beginning of the processing area. If the

next statement to be processed is DIMENSION, exit without pro·

cessing the COMMON list. Otherwise, jump to COMNID to do the.

processing. If there are subroutine parameters, jump to process

them.

Process COMMON list. If this is the first COMMON statement, the

length for COMMON is computed. If not a check is made to make

certain that the original COMMON bound has not been exceeded.

As each name in the list is isolated, jump to MATCHK to make

the appropriate IDLIST entry.

Used by equivalence processor to compute object time addresses.

If the identifier is an element of an array, the address is

increased or decreased by the element position according to

whether the identifier is the left or right half of an

equivalence pair.

Process EQUIVALENCE statement. Isolate identifiers, use EQNUM

to compute object code addresses, and use MATCHK to make appro·

priate IDLIST entries. If there are unprocessed array names,

process them.

This is the master initialization routine and its space is

given up to the processing area as soon as it is used.

Variable object code and IDLIST addresses depending on the

number of banks in the object and compiling computers are

set. If the first non·conunent card is a numeric COMMON

card, the COMMON bounds are set at this time. Exit is to

NXTSPG.

16

l>

)

TABLE OF CONTENTS

SECTION 1.1 GENERAL DESCIUPTION OF THE COMPILER

1. 2 SOURCE INPUT AND COMPILER ROUTINE DESCIUPTIONS

l. 3 ALGEBRAIC TRANSLATOR INPUT INFOR~1A TION
...

1.4 GENERAL DESCRIPTION OF THE ALGEBRAIC TRANSLATOR

1. 5 FLOW CHARTS OF THE ALGEBRAIC TRANSLATOR

SECTION 2.1 DESCRIPTION OF PASS TWO

2.2 FLOW CHARTS FOR THE MEMORY MAP ROUTINES

SECTION 3.1 GENERAL INFORMATION ABOUT THE INTERPRETER

3.2 DESCIUPTION OF THE INTERPRETIVE CONTROL SECTION

3.3 FLOATING POINT OPERATIONS

3.4 1/0, LIBRARY, AND SUBROUTINE LINKAGE INFORMATION

3.5 FLOW CHARTS OF THE I/O ROUTINES

3.6 FLOW CHARTS OF THE LIBRARY ROUTINES
..

SECTION 4.1 OSAP-AF ASSEMBLY SYSTEM FOR LIBRA RY FUNCTIONS

SECTION 5.1 DESCRIPTION OF THE CARD VERSION OF l60A FORTRAN

5.2 GENERATION OF THE CARD VERSION FROM THE MAGNETIC TAPE

VERSION

SECTION 1.2

Specifications for BINARY

BINARY is a closed subroutine to do all binary (odd parity)-tape handling

operations required within the compiler. All bank settings must be zero

upon execution of the routine. BINARY is included in the initialization

routines. The two BINARY routines are used as follows: BIN for 163

magnetic tapes or equivalent. BIN7 for 1607 magnetic tapes.

The routine will be entered by a JPR to the first location with A con­

taining a parameter requesting these functions:

A = 0 - write tape 2 from 100 to 200

A = 1 - read tape 2 into 100 to 220

A = 2 - write an end of file record on tape 2

A = 3 - rewind tape 2

A = 4 - rewind tape 1

A = 7777 - search forward for an end of file record on tape 1

A = address (anything else) - load one record from tape 1

beginning at the address in A upon entry to the routine.

Error conditions will be handled as follows:

Entry parameter = 0

End of tape - stop. If restarted, return

Parity error - try to rewrite the record three times

If error persists, skip tape and try three more times.

If error persists, stop. There is no provision for recovery.

Entry parameter = 1 or "address" -

End of tape - stop. If restarted, return.

End of file - return with A negative.

Parity error - try three times then stop. There is no

provision for recovery.

Entry parameter = 2, 3, or 4

No error checking is done.

The normal return for the functions is to the address

provided by the JPR instruction with A sr~t as follows:

0 - A = 0

1 - A = 0

2 - A j 0

3 - A j 0

4 - A j 0

7777 - A f 0

Address- A=O

A bootstrap loader will be included as a bioctal tape. This loader sets

all banks to zero, rewinds both tapes, reads the first record from the

systems tape (tape 1) and transfers control to the initialization

routine that was read. As explained in the write up of the initialization

routines, the contents of the A-register has meaning to this loader

-2-

Procedure: BIN

1. Enter by JPR with A = entry parameter.

Set START = entry parameter.

Entry parameter for tape 1 operation? No, go to 3.-

2. Create codes for tape 1 operations. Go to 4.

3. Create codes for tape 2 operations.

4. Select odd parity (binary mode).

Entry param = O? Yes, go to 21.

5. Entry param :;: 2? Yes, go to 22.

6. Entry param = 3? Yes, go to 23.

7. Entry param = 4? Yes, go to 25.

a. Entry param = 7777? Yes, go to 17.

9. Set to bypass write end of file error procedure.

Set read code in execution sequence.

Tape 1 operation? yes, go to 12.

10. Set buff er limits 100 to 220.

11. Create INP or OUT instruction and store in execution sequence.

12. Execute preset sequence.

Check status. Are there errors? No, (A 0) go to 18~

13. End of tape response? Yes, go to 24.

14. End of file response? Yes, (A non zero) go to 18.

15. Is this the third parity error on this operation? Yes, go to 19.

16. Backspace, go to 12.

17. Search forward for end of file on tape l~ (A non zero).

-3-

18. Return.

19. Is this a read operation or the second try on a write operation?

Yes, go to 24.

20. Reset counters, backspace, write end of file, go to 16.

21. Set write code in execution sequence. Preset INSTR to create OUT

instruction. Go to 10.

22. Write end of file on tape 2. (A non zero). Go to 18.

23. Rewind tape 2. (A non zero). Go to 18.

24. Stop. lf restarted, go to 18.

25. : Rewind tape 1. (A non zero). Go to 18.

-4-

Procedure: BIN7

1. Enter by JPR with A containing the entry parameter. Set exit address

and initialize counters. Create select codes for the requested

2.

3.

4.

5.

tape. Select the tape first as a write tape then as a read tape,

tape 1 cannot be tested for write ready. Generate mask. Wait for

the selected tape to be ready. Was write tape 2 operation requested?

Yes, go to 15.

Was the read tape 2 operation requested? Yes, go to 10.

Was the write end of file operation requested? Yes, go to 14.

Was the rewind tape 1 or 2 operation requested? Yes, go to 11.

Was the search forward for end of file operation requested? Yes,

go to 12.

6. Read the selected tape into the area specified by the entry parameter.

Wait ready. Was an end of file record read? Yes, set A = 10 and go

to 19.

7. Are ihere parity errors on the operation? No, go to 19 (A= 0).

8. Is this the third consecutive error? Yes, go to 18.

9. Backspace the selected tape. Wait ready. Go to 6.

10. Set entrance parameters to read into locations 100 to 220. Go to 6.

11. Rewind the selected tape. Go to 19 (A f 0).

12. Read one record from the selected tape and wait ready. Was this an

end of file record? Yes, go to 19 (A f 0).

13. Go to 12.

-5-

14. Write end of file record on selected tape. Wait ready. Go to 19.

(A = O).

15. Write tape 2 from 100 to 220 and wait ready. Were there parity

errors on this operation? No, go to 19 (A= O).

16. Backspace the selected tape and wait ready. Is this the third

consecutive error? No, go to 15.

17. Write end of file record, wait ready, reset counters. Is this the

third consecutive error sequence? No, go to 16.

18. Stop. If restarted, go to 19 with A = 0 unless altered while the

program was halted.

19. Return.

-6-

Specifications for READST

The READ Statement routine is a closed subroutine, entered by a JPR·to

the first location, which will read one 72 decimal character input record.

All bank settings must be zero when the routine is entered. If necessary,

the input codes are converted to BCD codes, and are stored (one character

per word) from INBUFF to INBUFF + 72. The contents of "INBUFF +72 will

always equal a BCD blank. INBUFF is a symbolic location within the

compiler that is the first location of the input buff er.

READST requires no parameters. There are nine routines for statement

input, which may be used interchangeably. They are in binary format

on the systems tape without indentifiers •. They require the following

equipment and are named as follows:

Paper tap~ (flex) FLEXIN

088 card reader RDCARD

167 card reader RD167 or DBH167

167 card reader, source
list on 166 printer RD167CS

163 magnetic tape unit
(tape 3) or equivalent RD163C

1607 magnetic tape unit
(tape 3) RD1607C

405 card reader DB405C

167 card reader, source
list on 1612 printer RD167CP

If a normal record has been read, the normal return is to the location

provided by the JPR instruction

-7-

•

Procedure: FLEXIN

1. Enter by JPR. Initialize and load the buffer with BCD blanks. Select

paper tape reader.

2. Set case to lower.

3. One character to A.

4. Is it a case code? Yes, set case flag to proper case and go to 3.

5. Is character a backspace or delete code? Yes, go to 3.

6. ls character a tab code? Yes, begin storing at sixth location in

buffer. Go to 3.

7. Is it a carriage return? Yes, return (A= 0).

8, Convert flex code to BCD. Store converted character. Increase

counter. Have 72 characters been stored? No, go to 3.

9. Read to a carriage return. Return (A= O) •

-8-

Procedure: RD167C - RD167CS - RD167CP

1. Enter by JPR.

2. Wait for card reader ready. Set return address.

3. Select single cycle read.

4. Input two columns. Check for reader failure. Failure, display

status and halt. Clear A-reg. and run to continue (for amp.

failure replace last card in hopper).

5. Convert and store the two columns in buff er. Set LWA + 1 of buff er

to BCD blank.

6. Read one column.

7. Convert to BCD and store lower 6 bits in buffer.

8. Have 62 columns been read? No, go to 6.

9. Lock out timing fault. Return (RD167C). RD167CS go to 10. RD167CP

go to 13.

10~ Pack buff er. Wait ready on 166 printer.

11. Output packed buffer on 166.

12. Restore buffer (unpack) and return.

13. Wait ready on 1612 printer.

14. Output buff er on 1612 and return.

-9-

Procedure: (RDCARD)

1. Enter by JPR.

2. Wait for card reader ready. Select primary read. Initiate buffer

input. Initialize to convert columns 1-36.

3. Wait for current row to b.e completely read.

4. Set COLUMN to address of column 1 or 37.

5. Set WORDER to word to be converted.

6. Is word negative? Yes, go to 12.

7. Set A = O.

8. Store in buffer (for none row) or add to buffer (for succeeding rows).

Is this the end of the row being converted? Yes, go to 15.

9. Is this the last bit of the word being converted? Yes, go to 14.

10. Shift the word being converted one place to the left. Go to 6.

11. Is the value of the current row non zero? Yes, go to 8 •
..
12. Is the previous value of the column equal to zero? Yes, set A=l2.

Go to 8.

13. Set A = 20. Go to 8.

14. Increase address of word to be converted. Go to 5.

15. Skip columns 37-84 if first half. Reset address of word to be

converted; reset 13 counter. Is row value 40? Yes, go to 18.

16. Set STORER to RAI if not already set. Subtract one from row value.

Is resulting row value positive? Yes, go to 3.

17. Set row value=--= minus (40). Go to 3.

-10-

18. Is row value= 60? Yes, reset column address to column 1 or 37. Set-

all zero value columns to 20. (BCD blank). Go to 20.

19. Set current row value = 60. Go to 3.

20. Has the second half of the card been converted? Yes, go to 22.

21. Reset to convert columns 37-72. Transfer remaining image to the end

of the buffer area. Set 73rd character = blank. Go to 4.

22. Return.

-11-

Procedure: RD163C

1. Enter by a JPR.

2. Initialize, select even parity (BCD).

3. Set 73rd character = BCD blank.

4. Read tape 3 (6 bit) from Inbuff to Inbuff + 110.

5. Status response = O? Yes, go to 10 (A = 0).

6. End of file? Yes, go to 2.

6a End of tape? Yes, go to 11.

7. Backspace. Is this the third try? Yes, go to 9.

8. Go to 4.

9. Is this second time? Yes, halt. Go to 10.

9a No, backspace three records or to load point and reposition tape.

Go to 4.

10. Return.

There is no provision for recovery.

• 11. Rewind unload and halt. Run if A was cleared. Go to 2. Otherwise

go to 10. (A non zero)

-12-

Procedure: Rl607C

1. Enter by JPR. Initialize counters, set exit address, select read

tape 3 and wait for read tape ready.

2. Read one record and wait for tape ready. Are there tape errors?

Yes, go to 5.

3. Unpack and store characters in buff er area. Set A = O.

4. Return.

5. ls the end of file indicator set? Yes, go to 2.

5a End of tape? Yes, rewind and halt. Run, if A was cleared,go to 2.
Otherwise, go to 4.

6. Backspace tape and wait ready. ls this the third error? No, go to 2.

7. Stop. If restarted, go to 4.

8. Set A non zero. Go to 3

-13-

Procedure: DB405C - DBH167

1. Enter by JPR.

2. Set return address and counter.

3. Is a card image waiting in buffer? Yes, go to 12.

4. Wait ready. JPR to 5.

5. Set up buff er entrance and exit registers.

6. Check status. Zero? Yes, go to 11.

7. Check for hopper empty. Yes, go to 14.

8. Reader failure? Yes, go to 9, in the case of DB405C also get card

to secondary hopper.

9. Halt with status + 1000 in A register.

10. Select single cycle read. Go to 6.

11. Select single cycle read. Set buffer bank control to zero. Initiate

buffered input. Return to main routine.

• 12. Set ~lag for no card image waiting in buffer. JPR to 5.

13. Reset flag for card image waiting in buffer.

14. Unpack card image and return.

-14-

VARIABLE AND CONSTANT STORAGE

Generally, each floating point variable or constant requires three words of
storage; each fixed point variable or constant requires two. If an array has
dimensions Dl, D2, DJ stated in a DIMENSION statement, then it will occupy
Dl*D2*D3 "words" of storage where a "word" is 2 or 3 words in the 160-A
depending on the mode. ~

Level:

If a main program is thought of as a special type of subprogram, then associated
with each subprogram is its order in the source deck. This will be referred to
as the "level of the subprogram". Since the same variable name can be used in
different subprograms to ref er to different quantities, each name will be further
identified by giving it the level of its subprogram. Constant will also be

given level zero, and the same constant (NOT statement .number) occurring in two
programs will cause only one storage assignment for the value. Constant which
have the same value but different representations will similarly be identified.

Variable names for formal parameters in SUBROUTINE subprograms will cause no
reservation of storage space even if these names also occur in a DIMENSION
statement in the subprogram.

It is possible to reuse storage space a program through the use of EQUIVALENCE
statement. Formal parameters may not appear in EQUIVALENCE statements. Two
or more programs can ref er to the same variables (without including them in
a parameter list) by placing them in a COMMON statement.

-15-

STORAGE REQUIREMENTS FOR STATEMENTS

SYMBOLS:

Let H be an address in a (up to 8-bank) 160-A then b(H), 3 bits, is the number

of the bank and A(H), 12 bits, is the location within the bank. Generally for

H a fifteen bit integer, B(H) represents the upper 3 bits and A(H) the lower 12.

MACRO OPERATIONS:

QofPUTD: List following transfer contains information for computed GO TO.

IF: Next 4 words contain 3 conditional transfer addresses depending on value

in the 'accumulator.

IFOV: Next 3 words contain two alternative branches depending on over flow

indicator.

IFDVCK: Divide check branch.

!NCR: Next 5 words contain information for increasing and testing for DO-Looping

CALL: Next words contain information for calling a subroutine.

RETURN: Do necessary subroutine return operations.

VARIABLE IN ARRAYS:

Let $ be a matrix with dimensions D1$, D2$, D3$. If $ is floating, m$•3; other-

wise, m$c2. Subscript expression: The address of $ (il*jl+kl, i2*j2+k2,

i3*j3+k3) is {L $(1,1,1) + (((k3-l)*D2$+(k2-l))*Dl$+(kl-l))*m$} +i3*

{D2$*Dl$*m$} +12* (ol$*J 2*m~~ +il* { m$*jl)

The parts in curly brackets are computed by the compiler; the rest is a subscript

expression computed during execution and held in a pseudo B-box.

-16-

Let f3 • D$*Dl*m$*j3

f2 • Dl$*m$*j2

fl • m$*jl

These values are computed by the compiler then a B·box is described by:

£3, i3; f2. i2; fl, 11

and the value of the B-box is the current value of

fl*il+f2*i2+f3*i3

-17-

STATEMENT

GO TO n

ASSIGN i TO n

IF ACCUMULATOR OVERFLOW n l, n2
or

IF QUOTIENT OVERFLOW n 1, n2

IF DIVIDE CHECK n1, n2

PAUSE or PAUSE n

STOP or STOP n

DO n i • m
1

, m
2

, m
3

(if no m
3

, then L(m3) • L(l))

z

n

GOx b(n) alwaye IDLIST location 2

A (n)

CAO b(Ti)

A (T1)

520 b(n)

A (n)

GOx b(n)

A (n)

TRM Oil'UTD
m,o b(i)

A (1)

b(n
1
)

A b(n
1

)

where Ti: CO b(i)

. A(i)

11a" ie in accumulator

TRM IF

b(n1); b(n2); b(n3); 0

A (n
1

)

A (n2)

A (n3)

TRM IFOV

b(n
1
); b(n2); 0,0

A (n
1

)

A (n2)

TRM IFDVCK

b(n1); b(n2); O;O

A (n
1

)

A (n2)

HPR 0

HPR n

TRB 1

CAO b(m
1

)

A (m
1

)

520 b(i)

A (1)

UPx b(U)

A (ii)

TRM INCR

4

2

2m + 3

s

4

4

1

2

s

STATEMENT PROGRAM ~

b(i); b(m2); b(m3); b(z)

A (i)

A(~)

A (m3)

A (z) 12

CONnNUE none 0

END (in Subroutine) none

or same as RETURN 'l

END (Main Program) none

or same as STOP 'l

RETURN TRM RETURN 1

-19-

MISC~LLANEOUS STORAGE REQUIREMENTS

I. nIMENSIONcd variabl1·s

E.1ch di(fcrcnt subscript expresi;ion is contained in a pseudo B-box

whnf~" codi.n~ requires 4, 5 or 6 words for 1, 2, or J dimensional

arrays. The coding is as follows for a B-box for an element of a 3

dimensional array:

XB O; 0 0 b (B)

A(B)

b (fl) ; b (f2) ; b (f3) ; 3

A(fl)

A{f2)

A(f3)

last octal digit gives dimensionality

2. To keep all B-boxes current, each time the value of an integer not in

an array is redefined (by occurring on the left of an equal sign, by

replacement of a formal parameter during call of a subroutine, by tras-

• mission through an input list, or by valid incrementation during a DO-

loop), a 2 word command UPx is invoked. Suppose I is an integer-valued

variable which occurs in the expression of the third subscript in B-box

BO and of the first subscript in BJ. Then UPx (I) will refer to the

following routine.

(I) O; O; O; b (I) I: location of current value of I

A (I)

o· ' O; 0; b (IO) IO: last value of I at previous UPx (I)

A (IO) occurrence

J.
' O· ' 0; b (XBO) third subscript of BO

A (XBO)

l • ' O; O; b(XBJ) first subscript of BJ

A (XBJ)
-20-

The (I) routine will require 4 + 2 m locations where m is the number of

occurrences of I in different subscript expressions. If I occurs in

none, the routine (I) will consist solely of a flag. The first word of

the last subscript reference to I will be negative.

3. ASSIGN

Each statement number referred to in an ASSIGN statement will cause

a 2 word GO TO command to be generated.

-21-

ID LIST TYPES

01 Floating variables

11 Floating constants

ID LIST

05 Floating variable subprogram arguments

03 Floating arrays

07 Floating array-type subprograms arguments

02 Fixed point variables

12 Fixed point constants

06 Fixed point subprogram arguments

04 Fixed point arrays

10 Fixed point array-type subprogram arguments

13 Labels (statement numbers)

14 Subprogram names

17 Format Statements

15 Library function names

16 Pseudo B-boxes

20 ASSIGN Transfers

21 Up subroutine

22 Unused up-subroutine

• 23 Incrementation information

1. Variables (not in arrays)

WORDl: 3; Level; Length of entry - 3 (really(distance

WORD2: 01,02,05, or 06; O; b(object code location)

WORJ?3: (object code location)

Succeeding Words: Alphanumeric Identifier

-22-

to next entry)-3)

2. Arrays

WORDl:

WORD2:

WORD3:

WORD4:

WORDS:

WORD6:

WORD7:

4+d; Level; Length of entry - 3

03,04,07, or 10; b (number of elements in array); b(object
code location}

A(object code location of first element)

A(number of elements in array)

b (Dl); ,b (D2); 0; d

A(Dl)

A(D2)

if d ,, 1

if d .. 3

Succeeding Words: Alphanumeric identifier

where d = number of dimension of the array

and Dl, 02 are the first two dimensions

3. Constants

WORDl: 3; O; Length of entry (2 for fixed, 3 for float)

WORD2: 11 or 12 ; 0; b (object code location)

WORD3: A(object code location)

Succeeding Words: Value of the constant (2 or 3 words}

4. Labels (statement numbers) or Subroutine names

WORDl:

WORD2:

WORD3:

3 Level Length of entry - 3

13 or 14 0 ; b (object code location)

A(relative object code location)

Label (in internal format)
or alphanumeric identifier

5. Library Function Names

WORDl: 2; O; Length of entry

WORD2: 15; Count of number of library functions thus far encountered

Succeeding Word: Alphanumeric identifier

-23-

6.

7.

Format Statements

WORDl: 3. , Level; Length of entry - 3

WORD2: 17; 0; b(object code location)

WORD3: A(object code location)

Succeeding Words: Label (in internal format)

Pseudo

WORD!:

WORD2:

B-boxes

2 Level ; Length of entry (1, 4, 6)

16 ; b (Fl) ; b (il)

A(Fl)

A(il)

These are IDLIST location for i

b (F2); b (i2); b (F3); b (i3) Missing if I-dimensional

A(F2) Missing if I-dimensional

A{i2) Missing if 1-dimensional

A(F3) Missing if 2-dirnensional

A(i3) Missing if 2-dirnensional

-24-

8. ASSIGN transfers: ASSIGN i ton

WORDl: 4 ; Level; 1

WORD2: 20 ; b (IDLIST entry for i); b (T {i))

WORD3: A(T(i))

WORD4: A{IDLIST) entry for i)

9. Up Subroutine UP (i) Generated during 2nd pass

WORDl: O, O, O, length -3

WORD2:

WORD3:

21 or 22, B (IDLIST LOC of i), B(OBJ, LOC, UP-SUBT)

IDLIST LOCATION FOR 0
n

WORD4: OBJECT CODE LOC. UP SUBR. (7777 if not used)

10. Incrementation Information

WORD!: 3; Level ; 0

WORD2: 23; O; B(INCR + 1)

WORD3 : A {INCR + 1)

-25-

LSTSPY: Searches IDLIST for identifier already formed which is the same as - one

currently being processed. If it finds no previous entry, it creates one. In any

event, it returns with object code location of identifier in all those cases where

it can have this information.

Entry: Identifier type is in LSTTYP, beginning location is in LETBEG (=NUMBEG),

ending location+ 1 is in LETEND. For variables, LSTTYP at entry is O, 1 if mode

is floating, fixed. Current level is in LEVEL.

Method: Starting with entry at location LASTID in bank LSTBNK, find entry of same

level, type, and name as identifier being processed. If lower level or end of

storage is encountered with no match, then go to MAKEIDentifier list entry subroutin

and return as though identifier had been found.

Exit: Bank of object code location is in B(OBJ), relative address is in A. Bank

of idlist entry is last digit of memory location SICIDl: beginning address of idlist

entry is in LOC(ID.

-26-

Procedure: (~ST S P'f)

1. Initialize: LOC(BK = LSTBNK, NEXTNAME - LASTIDentifier.

2. If idlist type is variable name, set mask to use only last bit for mode;

otherwise look at all 5 bits of type.

3. Set relative address of beginning of next entry and next bank.

4. Has available storage been exceeded: Yes, go to 18.

5. No, set indirect bank to B(ID).

6. Compute address of beginning of next entry (NXTNAM).

7. Is it in next bank? Yes, increase bank indicator LOC{BK.

8. Set beginning of IDLIST name.

9. Does IDLIST level agree with LEVEL? Yes, go to 12.

10. Is c?nstant being looked for? No, go to 18.

11. Yes, is this IDLIST entry for a constant? No, back to 3.

12. Is type (masked) of IDLIST entry same as type being sought? No, back to 3.

1). Yes, do names agree? No, go to 3.

14. Yes, put unmasked type into LSTTYP.

15. Store object code data bank in B(OBJ).

16. Load object code relative address.

17. Return

18. Go to MAKEID, return with B(OBJ) set and with relative address in A. Back

to 17.

-27-

SllBSCRipt processor

Hov~ just encountered array name X

If subscript c. p;·cssion is (ml *Il±nl, m2*I2±n2, Dl3*I3±n3)

where X is Dl x D2 x DJ and lXl is 2(3) for fixed (floating)

Need ba$e: L [x(l,1,1))

Need additive: t \(± n3-l)x D2,:tn2-l] x Dl ± nl-1 1 x lXl

Need B-box: lXlxml for Il, (lXl x m2) x 01 for 12, l_C1x1 x m3) x 02] x 01 for n~

1.) Initialize: J = 1, ADDTVE • 0

2.) Fetch NUMber of Oillensions, create proper representation of Dl and 02, create

NUHber of WoRDs per entry, by-pass left parens.

3.) FORM next OPerand. If integer constant (12) go to 5)

4.) If integer variable (02 or 06), then set M(J) • 1 and go to 7)

5.) Check next symbol. If right parens or comma, set M(J) = 0 and IOI(J) a O.

Store constant as N(J). Go to 11)

6.) Constant is M(J). If next symbol is asterisk, FORM next OPerand. Must be

integer variable (02 or 06).

7.) ~store IDI(J), the idli~t location of variable I(J).

8.) Is next. symbol right parens or comma? Yes, set N(J) = 0 and go to 11)

9.) Next symbol must be plus or minus. Save this.

10.) FORM next OPerand. Must be int<!ger constant (12). This is N(J) and next

syDibol must be comma or right parens.

11.) ADO(J) "" (=N(J)-1) x NUMWRD. L "" -J

12.) L = L + 1. If L = O, go to 14). (K = J + L)

13.) Otherwise, M(J) = M(J)*D(K) and ADD(J) = ADD(J)*D(K). Go to 12)

14.) ADDTVE = ADDTVE + ADDCJ)

15.)' Was last symbol encountered a right parens.? Yes, go to 17)

-28-

l&.) J • J + J. Gotto 3).

17.) Form B-box LiSTSPY for previous occurence and STore in Identifier List if

necessary.

18.) Exit with additive in ADDTVE and Idlist location of pseudo-B-box in LOC(BK

and LOC(ID

-29-

LLGcbraic S~Ring pre-processor

ic:m 8CD lnput string (blanks elimlnntcd) from left to right forming MATHSTring

•Y r~placing operators by their internal designations (0-14). replacing variable

1ames and constants either by 2-word descriptions if space allows (which it always

rill if the identifier consists of at least two characters) or else by one word

lescriptions:

~o-word description: [Idlist type, o, b(Idlist locf) (!.Ctdlist location)]

lne-word: (!dliGt type. BCD characteiJ for non-integer idlist type or [Idlist

type, 40 + BCD character.:J for integer

lote that any floating constant requires at least two source BCD characters.

1urinf~ this scan, indexing functions are computed by jump to SUBSCRipt calculation

nd are lcf t as three word descriptions.
~)

hree-word description: (o.b(additive),O,b(ID for B-boxf} [p.(additiv~J [ACID for B-box"iJ

his threc~word package is placed inunediately after the array identifier it modifies.

ach array mentioned makes this requirement. There is always room for this since

he shortest index specification, viz. (I), requires three BCD characters. (An

rray name mentioned in an arithmetic statement without any further specification

ill be taken to be the first element of the array). These R-box occurences will be

ounted.

ibrary function names are at least 2 BCD characters in length. They will be re-

laced by one word descriptions of the following form:

[i (0 or 1) 1 0 11, Number in function librarYJ

i.e., [43, nJ for floating functions

-30-

tD '<.

and [73, rJ for integer-valued functions

A pseudo-end (0011) is inserted after the last character.

~ Scan - MATH String collapsed on itself

Initialize: ERaSable LOCations beginning • Beginning of OPerand LiST

• Location of pseudo-end

and L CHI) = MATHST .,. L(PROC

Fetching will occur through L(CHI) and storing through MATST.

BOXLiST is set to min [first available IDLIST location; 1,7776~ minus twice the

number.of B-box references (not necessarily the number of different B-boxes) in

the statement.

1.) If 0£ C [L(CHI)J <:::: 15, then store C [L(CHl)f in MATHST.
.;_.J

If "end" (0006), go to 14. If "start" (0015) set BINIT equal to MATHST

GO to 10)

2.) If c[L(CHI)_]<..o, then library function so shift around 6 and mask off original

.,ign bit. Store in MATHST and go to 10)

l.) To get here must have operand of some type. Is it a one-word description?

Yes, go search IDLIST for it and return with IDLIST location and create a 2-worc

description.

4.) Is the operand the name of a.n array? Yes, go tc 11)

5.) Is 2-word operand entry already in operand list" Yes, go to 9)

6.) No, are there two word~ available between ERSLOf and BOXLST? Yes, go to 8)

7.) No, try to condense by moving words from L(CHI) through ERSLOC to the area

starting at MATHST. Note relocation of "end" ard set BOPLST accordingly.

Set L(CHI) = l+ MATHST. Change ERSLOC to give r~w location of pseudo-end.

8.) Add new operand entry to list.

-31-

9.) Create 12 + relative operand designation and add to one word entry in

MATHST.

10.) Increase L(CHI) and MATHST; go to l)

11.) Isolate B-box information. Check through existing B-box list. Has it

occured previously? Yes, go to 13).

12.) No, add new B-box to list.

13.) Create relative B-box designation and 2 word operand list entry. Go to 5).

14.) Condense string by moving L(CHI) through ERSLOC to nrea starting at MATllST.

Note relocation of BOPLST and ERSLOC.

15.) JPR to ALGeBRA. On return, exit to caller •

•

-32-

HAKe a STOre cormnand

DIMensioned variable SWitch is 0 if no arrays in this subprogram

BMODZ is 0 for floating, 5 for fixed

BMDSW is O for store in same mode as arithmetic, 2 for changed

BOXSW contains number of index register for store (0 if none)

STOBNK contains 20 + storage bank for idlist entry for integer variable

STOADD contains relative address for idlist entry for integer variable.

Procedure:

1.)

2.)

3.)

4.)

S.)

'tt

Set BSTOre SW itch to 13. JPR to MAKe COMmnnd with 13 in A.

Was store of an integer? No, go exit

Are there dimensioned variables? No, so no UPP's. Go exit.

Was store indexed? Yes, go exit.

No, generate UPP command (7600) with bank of idlist entry for the integer

variable as low order bits. PUTaWAY.

Next word of UPP convuand is relative address of idlist entry.

also. Go exit.

-33-

PUT this aWAY

t'RE-ALGcbra

On entry, a string of BCD characters exists in bank l extending from L(PROC to

L(BUFL

1.) JPR to ALGebraic STRing processor. On return, all object code for the right

side of the arithmetic statement has been put away.

2.) JPR to MAKe a STOre command and an UPP if nece~sa_ry.

3.) EXIT

-34-

NTRID - creates all idlist entries which consist of PReAMBLe followed·by

IDENtifier. The preamble starts in PRAMBL and has N(PRAM elements to it.

The identifier starts in IDEN and extends to (not through) the address

found in ID*END. The first word of preamble looks like [NCPRAM, level, ~·

At entry, the last identifier had been located at LSTBaNk· address LASTID.

At exit, the LaSTBaNK, LASTID has been corrected and the entry made.

1. Compute length of complete entry • LSTLNG.

2. Is LSTLNG '?' LASTID? No, go to 4.

3. Yes, LSTBNK • LSTBNK-1, TEMP = LASTID, LASTID • -LSTLNG, LSTLNG r- LSTLNG + TEMP

4. Set L(CHAR • LASTID, set indirect bank to LSTBNK.

5. Place LSTLNG-3 as last 5 bits of first word of preamble.

6. S • ~NCPRAM, I • 1

7. L(CHAR (1]. PRAMBL [N(PRAM-s+i]

8. I • I + 1.S•s+l. If S ; O, go to 7

9. •s • IDEN-ID*END(•MAX)

10. L(CHAR ·I • IDEN [HAX-S + U
11. I • I + 1. S-S + 1. If S ~ O, go to 10.

12. Set indirect bank to 1 and exit.

-35-

M~KEID - creates idlist preamble for simple variables (not formal parameters)

and for constants. This routine calls NTRID which puts the entry into idlist.

1. If LSTTYP • 11 or 12, level should be O.

2. PRAMBL = 3; level; 0

3. Compute address of next data entry. Last entry was at B(DATL,DATEND. If

DATEND 3 (or 2 for non-floating) then B(DATL • B(DATL-1 and DATEND • DATEND-~

(or 2)

4. PRAMBL+l • LSTTYP,0, B(DATL ~ote: Set LSTTYP•2 if LSTTYP • §]
5. PRAMBL+2 • DATEND

6. N(PRAM • 3

7. JPR to NTRID

8. Load A with LSTTYP and exit.

-36-

STATNO: Preliminary processor for all statements whose first five characters

are not blank. On entry, L(CHI) contains indirect bank location of first

nGn-blank character and A contains that character minus BCD blank (20).

1. Is character numeric? No, go to 3.

2. Yes, go check idlist for statement number. If it does not already exist,

make an entry (SlNOID). In any event place relative object code address

B{CODL, CODEND in the idlist entry. Set LAST NO to location of beginning

of idlist entry. Set L(CURRent, the distance from last label to current

statement, to zero. EXIT.

3. Is character S? Yes, go to SYMBOLic coding processor.

4. Is character 07 Yes, go to (OCTAL to putaway octal coding.

5. Is character B7 Yes, put zero in SWBOOL, blank out character located by

L(CHI) and go to Q.STNO.

6. No, TILT with NOSTAT.

-37-

STNOID: Makes preamble of statement label entries.

Calls = NTRIDentifier to place statement label in list.

1. Form label identifier. Search idlist for previous occurence. If found, go

exit at 7.

2. Otherwise PReAMBLe • 3,LEVEL,O

3. PReAMBLe + 1 • 13, O, 0

4. PReAMBLe + 2 0 until relative object location is assigned.

5. N(PRAM = 3 elements to preamble.

6. Go eNTeR IDentifier in idlist.

7. Exit

-38-

MAKe COMmand is a routine which generates interpretive commands not occuring in

ordinary algebraic expressions. Specifically it is used to generate stores after

evaluation of an algebraic statement, to generate stores and fetches of elements

of input-output lists, and to provide the means of implementing a set of symbolically

code (S) instructions. The operations that can be performed are load, store, add,

subtract, multiply, and divide both in fixed and floating mode.

On entry to MAKCOM, the A contains the command type BOXLST must contain first locatior

of B-box list (Bank l)

BOPLST must contain first location of operand list (Bankl)

BSCNLC • L(PROC must contain location of one-word description (Bank 1)

BMODF. must contain mode (0 for floating, 5 for integer)

BMODE must be set to agree with the mode of the operand for all commands except

store after arithmetic statement which can generate a convert accumulator conmand.

On exit, the appropriate commant has been PUTaWAY.

Procedure:

1.) Store command type in ORDTYP.

2.) Set BSCNLC equal to L(PROC

3.) Zero out FORward-BAcKward scan switch, BWRONG which is used for **, and FIRST

which will make subroutine BPTSUB do the PUTaWAY without a log.

4.) JPR to BSCANK for mode agreement check.

5.) JPR to BSCAND for index register usage.

6.) JPR to BSCANE. This has three exits. The first after the JPR says pseudo­

accumu1ators or temporary erasable are used. The A-register is zero at this

exit. Exits two and three have non-zer<l A-register and mean normal fifteen bit

operand from exit two and either 1 or 3 word command from exit three.

7.) If exit one is achieved or zero in exits two or three, then TILT.

-39-

8.) If exit two, go to 10.)

9.) If exit three, go to 13.)

10.) If the command is a store, set BSTOSW to 26.

11.) If the counnand is a load, set LODFLG to 10.

12.) Set JPR to go to BSCANG which processes two word conunands. Go to 14.)

13.) (If command is load or store then BTOSW and LODFLG are proper.) Set JPR to go

to BSCANF which processes one and three word conunands.

14.) S~ore LODFLG in BLODSW. Load A-register with command type. JPR to appropriate

processor.

13.) .Go to put away the command (JPR to BPTSUB).

16.) Zero out LODFLG, BSTOSW.

Return

•

-40-

LIST: String extends from(L(CHI)] to L(BUFL-1 in bank 1. I-OR-0

contains BCDI or BCDO according as input or output is to be done.

Rout i.ne must make appropriate stores (using MAKSTO) or loads (using

ALGBRA). In addition, indexing control information must be generated.

Caution: Special care must be taken to insure preservation of and re­

storing of low core values used as locators since a great many routines

may be used by this processor.

1. Save, L(PROC in L)PROC.

Replace contents of L(BUFL by BCD, and increase L(BUFL. Save in

SWBOOL.

2. Is list exhausted, ie., does L(CHI) SWBOOL? Yes, res tore L (PROC

and exit.

3. Set MATHST = L(CHI). Go to FORMOP.

4. Is list element operator? Yes, go to 14.

5. No means operand. Is next character [L(CHI):J a,? No, go to TILT

•6. Set L(CHAR = MATHST. Set L(PROC=L(BUFL=SWBOOL. Store = in L(BUFL.

Increase L(BUFL.

7. Move L(CHAR into L(BUFL. Increase L(BUFL.

8. Increase L(CHAR. L(CHAR L(CHI)? No, go to 7.

9. Save L(CHI) in L)CHI(. Go to ALGSTR. If operand is array called by

name, go to ARYNAM. Otherwise, if input is to be done, go to 11.

10. (Output): Increase L(PROC. Go to ALGBRA. Decrease L(PROC. Go to 12.

11. (Input): Set BMODE so no conversion of accumulator is done. Go to

MAKeSTOre.

12. Restore L(BUFL(=L(PROC).

13. Set L(CHI) = 1 + L)CHI(. Go to 2.

-41-

·14. ls operator)? No, go to 16.

15. Yes, save l+L(CHI) in L)CHI(. Go MAKeINCrementation coding.

Go to 13.

16. Is operator (? No, go TILT.

17. Set PARENS = 0. Save L(CHI) in L)CHI(.

18. Increase L(CHI). Is next op (? No, go to 20.

19. Yes, increase PARENS, go to 18.

20. Is it) 7 No, go to 23.

21. Yes, decrease PARENS. Is it non-negative? No, go to TILT.

22. Yes, go to 18.

23. ls it ,7 No, go to 25.

24. Yes, save L(CHI) in L(CHAR. Go to 18.

25. Is it =? No, go to 18.

26. Is PARENS=O? No, go to 18.

- 27. Increase L(CHI). Is next character)? No, go to 27.

28. Set L(BUFL = L(PROC = SWBOOL. Save L(CHAR in L)CHAR. Increase

L(CHAR.

29. , l L(CHARJ goes to L(BUFL.

30. Increase L(BUFL. Increase L(CHAR. Does it = L(CHI)? No, go to 29.

31. Set L(CHAR to L)CHAR.

32. l L(CHAR J goes to L(CHI).

33. Decrease L(CHI). Decrease L(CHAR. Does it = L)CHI(? No, go to 32.

34. Save L(CHI) in L)CHI). Go to ALGSTR.

35. Set LPROCI = L)PROC-6. Go to INCSAV. Set L)PROC = L(PROC.

36. Set L(CHI) = 1 + L)CHI). Go to 3.

-42-

ARYNAM - Input/Output of Arrays with Implicit Indexing

The initialization routine (BEGN) creates IDentifier LIST entries

for the integer 1, a level 0 indexing.variable 10, and for fixed and floating

one-dimensional indexing functions using the variable 10. It also plants

proper last-bank references in the list called ARYD0, a dummy list of the

form ordinarily generated by explicit indexing.

•

1. Correct operator string which has been phonied to specify array

name not followed by subscripting.

2. Create decrement, 2 for fixed point array, 3 for floating.

3. Put address of proper indexing function in B&XLST.

4. Create proper operand list entry, either

b. (first address of arTay-decrement),0,0,0;A (first address-decrement)

orb (-decrement),O, parameter number; A (-decrement).

5. Fetch number of elements in the array, convert into 22-bit format,

and search IDLIST for it, making entry if necessary.

6. Set ST0rage ADDress, ST0rage BaNK to IDLIST locations for the

dwmny index 10. Set locaters as though algebraic pre-processing

(ALGSTR) has just been done.

7. Move the list at ARYD0 into the processing area.

8. Save the 10 indexing information (I/0D~).

9. Put right parenthesis at end at string.

10. Restore locaters and exit back to the list processor.

-43-

MATCHK - COMMON, DIMENSION, EQUIVALENCE identifier processor

Given an identifier in packed BCD in low core cells !DEN through

ID*END - 1, this routine checks the unprocessed array list to determine

a match, and if there is one, goes to eNTeRDIMension to make the appropriate

entry. If not, a simple variable entry is made through eNTeRVariaBLe.

1. Save MATHST, the locater for the next item to be processed.

2. Are there dimensioned variables, i.e., is DIMSW ~ 01 If not, go to 13)

3. If so, set L(CHI) to the beginning of the array list, MATBEG.

4. Set L(CHAR at the beginning of the next array list entry. Set

N0TINT to the beginning of the candidate identifier.

5. Do the names agree so far? If not, go to 10)

6. Look at next words of both names. Is candiate name complete?

No, go to 5)

7. Yes, is array name complete? No, go to 10)

• 8. Yes, correct LiSTTYPe and go eNTeRDIMensioned quantity.

9. Restore MATHST and exit.

10. Find end of array identifier

11. Skip to beginning of next array.

12. Are array names exhausted? No, go to 4).

13. Identifier must be for simple variable so go to eNTRVariaBLE.

14. Go to 9)

-45-

!QNUM - modify base address for equivalence variable if there is an additive.

Amount of modification is number of words per entry times value of integer,

and direction is increase for left half of equivalence pair, decrease for

right half. Fifteen bit base is found in EQUADD, EQBANK, next character is

found through L(CHI).

1. Is there modification to be done, i.e., is next character (?no, exit,

2. Save beginning and end of equivalence name.

3. Set beginning of number.

4. Check for digits to find end of number.

5. Next character should be) or else go to error in L(EQ) routine.

6. Store number of words per entry, N0TINT, in 0P,0P+l.

7. Set integer flag, -1, and go convert the number.

8. Move converted number to arithmetic accumulator, ACCJ, and

multiply by nt.unber of words.

- 9. Move result to 0P, move base to ACCJ.

10. Go add or subtract depending on the equivalence flip=flop EQFLIR.

11. The result replaces EQUADD, EQBANK.

12. If memory overflow, go to error in L(EQ).

13. Bypass ending).

M. If right equivalence go to 16).

15. Exit.

16. Restore beginning and end of equivalence name. E~

-46-

L(EQ) - processor of equivalence statements

For each equivalence pair, check for previous occurence at left-hand name

and make idlist entry as n'~eded. Save location of variable (or first word

of array) in EQBANK, EQUADD. Check for additive and increase the base

address as necessary. Check for previous occurence of right-hand name,

and, if it has previously occurred, call it an error. Check for additive

and decrease the base address as necessary. Then make the entry for the

right-hand name.

It

1. Skip letters in the name EQUIVALENCE. Set L(CHI) to the next

character. Set A to (.

2. Next character,[L(CHI)], must be the same as A. If so, go to 4.

3. Error: reset the flip-flop, EqFLIP, to starting position and

store it also in EQUFLP. Exit to error routine, L(TILT.

4. Isolate the variable name, fix its .type as fixed or floating

(LSTTYP), and store number of words per element in N0TINT.

s. Save location of character ending name.

6. If left half, go to EQNUM to check for additive.

7. Pack identifier and search IDLIST.

8. Has it occurred before? No, go to 11).

9. Yes, is identifier for right half? Yes, to to.3j.

10. Otherwise, go to 12).

11. Make appropriate entry using routine MATCHK.

12. If left hand of equivalence, go to 19.

13. If right hand, restore end of name locater in L(CHI).

14. Is next character)? No, go to 3).

15. Increase L(CHI). Are all characters exhausted? Yes, to to 22.

-47-

16. Is next character , 1 No, go to 3).

17. Increase L(CHI). Set specific cell to).

18. Flip-flop EQFLIP. Load A with contents of specific cell.

Go to 2).

19. For left hand of equivalence, fetch base address and put it in

EQBANK, EQUADD.

20. Check for additive using EQNUM. Restore locater of end of name.

21. Set specific cell to , . Go to 18).

22. Are there dimensioned variables? No, exit to process them.

23. Otherwise, normal exit to C0EXIT.

-48-

lbO-A Fortrnn, Compiler pass 1

Subroutine FOHMOT

1. Enter by JPR

2. Move B(DATL 1 DATEND, L(PROC to NTEMPl, NTEMP2, L(CHI) respectively.

3. Dump buffer.

4. Set OUT= FIRST

S. C(OUT = l(NTEMPl) 00 000 000, OUT= OUT+ 1

6. C(OUT) = C(NTEMP2)

7. OUT= OUT+ 1

8. C(OUT) C(L(CHT)), C(FIRST) C(FIRST) + l

9. L(CHI) = L(CHI) + l

10. If L(CHI) • L(BUFL) go to 17.

11. NTEMP2 = NTEMP2 + l

12. If NtEMP2 ~ 0, go to 15.

13. Shift ENDSWC, if -, go to 3.

14. NTEMPl = NTEMPl + 1, NTEMP2 = -1, go to 7.

15. OUT = OUT + 1

16. If OUT = FIRST + 800 go to 3, otherwise go to 8.

17. Dump buffer, reset NDSWC, Exit.

-49-

160-A Fortran - Compiler Pass l

·Subroutine PUTWAY

1. Enter by JPR, word in A-register

2. Save word in TEMP

3. If OUT ; FIRST go to 5

4. C(OUT) • O, OUT = OUT + 1

5. If OUT ; LAST go to 8

6. Dump buffer

7. OUT• FIRST, go to 3.

8. C(OUT) • C(TEMP)

9. OUT • OUT + 1

10. C(FIRST) = C(FIRST) + 1

11. CODEND = CODEND + 1

12. If CODEND ; 0 go to 14

13. B(CODL a B(CODL + 1

14. Exit

-so-

SECTION 1.3

160-A FORTRAN ALGEBRAIC TRANSLATOR

INPUT INFORMATION

The algebraic translator derives the necessary information to encode an

algebraic statement for the generation of object code from three lists.

1. Statement scan list

2, Operand information list

3, B-box information list

Statement Scan List:

•

This is a list, beginning with a start code and terminating with an end

code, of the necessary operation indicators that define an algebraic

statement. These operation indicators are represented by the following

symbols and mnemonics,

+; - ; *; /; **; (;) ; ; , ; FUNCTION; START; END; 6PERAND •

The operand indicator is one of two types.

1. Normal Fortfan operand

2. Call Subroutine operand

For both cases the operand is a relative operand locatil)n which refers to

a position in the Operand Information List containing more specific

information about the true Fortran operand.

The Statement Scan List is composed of 1 word (12-bit) quantities in the

following format.

. •. :;,. .. t: ..
.~ · "' -

~.. ·

11 10 9 8 7 6 5 4 3 2 1 0

~-----A..,~
Relative M Operation
Operand 0 Indicator

D
E

Operand Information List:

This list has 2-word (24 bit) quantities which contain the necessary

information for referencing Fortran operands in the preparation of

object code. There are two possible formats for this list.

1. Normal Fortran Operand format

2. Call Subroutine Operand format

-.

The normal format contains the bank setting of the required operand, the

absolute location of the required operand and a relative B-box List

location if the operand is to be index register modified.

11 10 9 8 7 6 5 4 3 2 1 0

~~
Bank B-box list 0 0 0 0 0 1st word

~ .---·-·
,,..------ absolu~ location ·~ 2nd word

The call format contains the relative function erase operand location,

and a 15-bit modifier if the operand is to be index register modified.

11 10 9 8 7 6 5 4 3 2 1 0

.......---./~ ,---~ ~-
Modifier B-box List Relative Function 1st word

Erase Location

~'\..._ --------~
Modifier 2nd word

-2-

B-box Informati.on List:

This list has 2 word (24 bit) quantities which contain 15 bit absolute

B-box locations.

11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0
~ Bank 1st word

r A..
~ Absolute Location 2nd word

-3-

SECTION 1.4

160-A FORTRAN

ALGEBRAIC TRANSLATOR

The algebraic translator is divided into four major sections.

1. A section designed to delimit and isolate a parentheses group

for processing.

2. A section designed to generate the necessary linkage (object code)

if the delimited parentheses group is a function group.

3. A section designed to generate the object code necessary in im­

plement the meaning of a parentheses group.

4. A section designed to process a Boolean statement.

nle four sections stated above, various associated subroutines, and some

necessary definitions will be described in the following pages. The actual

step by step logical procedure of the translator is described in a second

document entitled "160-A Fortran Algebraic Translator Flow Analysis".

Contained within the first three major sections is the fourth section, the

necessary logic to perform the translation if the encountered statement is

defined as Boolean.

Definitions

For this document the list of words below will have the meanings stated in the

associated description.

1. OPERATION INDICATORS: Any one of the following symbols or mnemonics.

**

*
I

+·

END FUNCTION

(

START

PSEUDO END

2. LP";~TOR: Any one of the following operation indicators: **; *; I; +; -

3. ENDING IND1C~TOR: Any one of the following operation indicators: END;

); ,; PSEUDO END.

4. STARTING INDICATOR: Any one of the following operation indicators:

• FUNCTION; (; START.

6. ALGEBRAIC STATEMENT: Any normal, meaninl'>£ul ero:•!>ing of operation

i ncHC dJI s and operands. The first symbol must be ~TJ\.J\T :md the last

symbol must be END. Imbedded blanks are acceptable. This grouping

will, in general, represent the right hand ~ide of an algebraic equation.

7. PARENTHESES GROUP: A subsection of an algebraic statement which has one

of the following pairs of delimiters.

a . START; END

b. (;

c. (; '

d. , ')

.)

-3-

8. FUNCTION GROUP: A parentheses group preced1•d by a FUNCTION operation

indicator.

9. SUBGROUP: A subsection of an algebraic statement which has one of the

following pairs of delimiters.

a. START; END

b. START; +

c. (;)
d. (; :t
e. +· _,)

f. +· _, •
g. , , +

h. +· _, +

10. PARENTHESES GROUP LEVEL OR LEVEL: Essentially a parentheses group, but

used to describe the hierarchy or order of evaluation (encoding) of

parentheses groups. For instance, the innermost parentheses ~ level

of an algebraic statement will be encoded first.

ll. ENCOMPASSING GROUP: The next higher level parentheses group from the

current delimited parentheses group.

12. EVALUATE OR ENCODE: Create object code from source language.

13. MODE: The type of arithmetic, floating point or integer, associated wit~

an operand, parentheses group, or an algebrnic statement.

14. GENERATE: Create object codf!.

15.. HIERARCHY LEVELS: Within a subgroup there are three levels of

evaluation. They are in order of importance **; *; /; +J - The

normal sequence of evaluation is as follows.

a. Scanning from left to right evaluate the ** operator.

b. Scanning from the ** operator to the left, evaluate all

*, I operators.

c. Scanning from the ** operator to the right, evaluate all

*, I operators.

d. When all subgroups have been evaluated in the sequence

a, b, c, scan from left to right to evaluate the +, -

operators.

16. PSEUDO ACCUMULATORS: Intermediate storage to be used when subgroups

inside of parentheses are being evaluated.

17. CONVERT: For mixed arithmetic statements an operand or result of an

evaluation may have to be converted (i.e. floated or fixed depending

on the direction of conversion).

-5-

Parentheses Groups

Tite evaluation of algebraic statements with parentheses groups and subgroups as

the main units of evaluation will be given in the following description.

1. Delimit the next parenthe~es group and encompassing group.

2. With the parentheses group delimited L'Tl (1) to define the level of

evaluation, delimit the next subgroup of the encompassing group.

3. If there is a parentheses group contained in the delimited subgroup

of (2) go to (6).

4. Evaluate the subgroup (return transfer to Within Parentheses Group

(W.P.G.)).
\'V

5. Go to (JI).

6. Evaluate the parentheses group (return transfer to W.P.G.).

7. If the evaluated parentheses group is a function group do a return

transfer to Function Groups (F.G.).

8. If the subgroup in which the evaluated parentheses group is contained

does not embody one of the following criteria go to (11).

a. More than one parentheses group.

b. A **·operator

9. Generate a STORE ERASE connnand.

10. r.o to (1).

11. Finish evaluating the subgroup (return transfer to W.P.G.).

-6-

12. Interrogate the encompassing group. If it has been completely

evaluated go to (1).

13. Go to (2).

14. Go to (3).

-7-

Function Groups

1. If this function is not an Absolute Value Function go to (4).

2. Generate a SET SIGN PLUS command.

3. Go to the Return Exit.

4. If this function is the same as the last encountered function go to (7).

5. If this function is not one of a series of stacked function (functions

within functions go to (7)).

6. Generate an INCREMENT FUNCTION ERASE COUNTER command.

7. If this is a single valued function go to (10).

8. Generate a STORE FUNCTION ERASE cormnand.

9. If this is not the terminal function parameter go to Parentheses Group (P.G.),

10. Generate a TRANSFER (to function) command.

11. If this function is one of a series of stacked functions, generate a

DECREMENT FUNCTION ERASE COUNTER command.

12.• Go to the return exit.

-l

-8-

Within Parentheses Groups

1. Delimit the next subgroup. Scan from left to right.

2. If the subgroup does not contain a **operator go to (9). For the following

discussion assume the example A *"'~ B.

3. Generate a LOAD B command and a STORE PSEUDO ACCUMULATOR cormnand.

4. Generate a LOAD A (or a LOAD AND CONVERT A if A is an integer quantity and

Bis a floating point quantity).

5. Generate a TRANSFER TO POWER command.

6. If the results of the power calculation need converting, generate a CONVERT

cormnand.

7. If there is more than one** operator in the subgroup go to (19).

8. Assuming a scan from the ** operator to the left, go to (9) to evaluate that

portion of the subgroup.

9. If the subgroup does not contain any*, I operators go to (21).

10. Interrogate the next operation indicator. If it is not a* or I go to (14).

11. If mixed arithmetic is necessary, generate a LOAD AND CONVERT command.

12. Generate the appropriate MULTIPLY, DIVIDE, or INVERSE DIVIDE (for a right

to left scan) command.

13. Go to (10).

14. If the scan had been in the normal forward direction (left to right), go to

(17).

15. If the initial operator of the subgroup had been a - operator generate a

CHANGE SIGN command.

-9-

16. Assume a forward scan and go to (10).

17. If there are any intermediate results in a Pseudo Accumulator generated,

generate an ADD PSEUDO ACCUMULATOR command.

18. If there are no more subgroups left to be evaluated go to (23).

19. Generate a STORE PSEUDO ACCUMULATOR command.

20. Go to (1).

21. Scanning from left to right interrogate the first encountered operator.

22. Generate either a LOAD or a LOAD NEGATIVE command depending on the sign of

the first operator.

23. Interrogate the next operation indicator. If it is an ending indicator go

to the Return Exit.

24. Generate the appropriate ADD or SUBTRACT command.

25. Go to (23),

~ \ ~·. . . -~ ... ~ .. .-

-10-

Boolean Statement Evaluation

Roolean statements do not follow the same set of rules for evaluation as a

normal algebraic statement. There are three major differences.

1. Operator hierarchy

2. Parentheses group combination

3. Mixed arithmetic

Operator Hierarchy:

n.e normal algebraic operators have the following associated meaning within a

Boolean statement.

** Shift

* And

I Exclusive OR

+ Inclusive OR

Load Complement

Within these five operators there is three levels of hierarchy. They are in

their order of evaluation importance:

1.

2.

3.

** * '
+, I

. l

There may be only one - operator within a subgroup. If one does exist it has to

be the leading operator. Non-adherence to these two rules will create object

code which is essentially nonsense.

-11-

Parentheses Group Combination:

Titere is no attempt to optimize th~ object code generated after a parentheses

group evaluation. A STORE ERASE command will always be generated. Titat is

intermediate-storage will always be used, whereas in a normal algebraic

statement intermediate storege will be avoided if possible within the rules

of the evaluation algorithm.

Mixed Arithmetic:

Differentiation between the two modes of operands, integer and floating point,

will be avoided. Titat is operands of both modes may be interspersed within a

Boolean statement without any difference in evaluation.

Within the limits of the above three differences, statement evaluation is

identical to a normal algebraic statement. Tite logic needed to differentiate

between the two types of statements is interspersed, at the appropriate places,

within the algebraic translator.

160-A FORTRAN ALGEBRAIC TRANSLATOR

List of Subroutines

The following is a list of all the subroutines used in the translation of an

algebraic statement. Reference to these subroutines is made in the section

entitled "160-A Fortran Algebraic Translator Flow Analysis·". A description ..

of the input and output quantities for the individual subroutines subsequently

follows:

BS CANA:

BSCANB:

BSCANC:

BSCAND:

BSCANE:

BSCANF:

BSCANG:

BSCAIDI:

BSCANJ:

BSCANK:

BSCANL:

BSCANM:

BSCANN:

BSCANO:

BSCANQ:

BSCANR:

BSCANS:

BSCANT:
BS CANN:
BPTSUB:

OPERATOR SCAN

SCAN FOR ERRORS

MODE DETERMINATION

INDEX REGISTER TEST

OPERAND TYPE TEST

ARITHMETIC FUNCTION ERASE CCMMAND

ARITHMETIC COMMAND

PARENTHESES GROUP DETERMINATION

OPERATOR DETERMINATION

MODE EQUALITY TEST

RELATIVE OPERATOR DETERMINATION

ACC /ERASE ARITHMETIC COMMAND
n

STORE ACC /ERASABLE TEST
n

OPERAND INTERROGATION

OPERAND LOCATION DETERMINATION

LOAD DRIVER ROUTINE

STORE ERASABLE ROUTINE

PARENTHESES GROUP STORE TEST
MODE COMPARISON
PUT AWAY DRIVER

-2-

BSCANA: OPERATOR SCAN

•

INPUT:

l. BINI TA Initial group location.

OUTPUT:

1. BTRMNL Terminal subgroup location.

2. BTRMOP Terminal subgroup operator.

3. BH23SW Status of**, *, I operators.

-~ if ndl: encountered

0 if encountered

4. BH23SW = Status of*, I operators.

-L.io:

if none encountered

if encountered

5. B+-SW c Status of leading lower level operator.

6. B*/SW

7. BCOUNT

t
for no leading operator

= 4 for + leading operator

for - leading operator

Location of leading lower level operator •

.) (BINITA) for no leading operator

={list location for± leading operator

Octal count of the number of element; in the subgroup.

(excluding parentheses group elements).

=tBINITA)for a 1st element operator
8. FRSTOP

0 for a 1st element operand

{,

0 for no encountered parentheses group
9. BPARSW =

0 for an encountered parentheses group

10. BPWRSW = number of ** operators in subgroup.

11. BH3Sw =Status of** operators.

:. { O if none encountered

; 0 if encountered

-3-

BSCANB: ERROR SCAN

INPUT:

1. Initial list location.

OUTPUT:

1. Either a proper exit indicating no errors, or an error exit

to TILT with the proper error indicator in the Accumulator.

The types of errors are listed below:

Ending operator.

Two adjacent ope~ands.

Two adjacent operators.

Unequal (and).

Two ** operators in sequence.

Initial**, *, or /.

Misplaced commas.

Compiler error.

BSCANC: MODE DETERMINATION

INPUT:

1. Accumulator List starting location.

OUTPUT:

1.

BSCAND:

INPUT:

1.

2.

3.

4.

~
o for floating mode

BMODE = S for integer mode

INDEX REGISTER TEST

BSCNLC operand location.

BINDSW current relative I.R.

BOPLST Initia 1 operand list

address.

location.

BOXLST Initia 1 B-box list location.

-4-

OUTPU'f:

1. BINDSW = New relative I.R. address.

2. Generated Load I.R. command, if nne was necessary.

3. BOPRLS = Absolute location of operand.

4. BOPRLS+l = Absolute location + 1 of operand.

[

0 for no I.R. reference
5. BOXSW =

el. B-box location for an I.R. reference

BSCANE: OPERAND TYPE TEST

INPUT:

1. BSCNLC Operand location.

2. SWBOOL 0 for Boolean statement.

0 for normal statement.

OUTPUT:

1. BLODSW = 0

.. 2 • ACCTYP = 77 77

0 for ACC operand n

7777 for Erasable opera1d

3. BVARTP absolute location for Erasable (Boolean statement}

0 for normal operand

0 for Function erasable operand

-L
Rel. location for an erasable operand.

4. BANK 0 for an erasable operand (Boolean statement)

(0-7) setting for a normal operand

5. ERSBIT has the nth (n = l - 12) bit cleared for an erasable operand.

BSCANF:

-5-

i
0 I or ACCn or Era1:;::1ble ·.>perand

6. Accmnulator ~
0 for normal or Function erasable operand

7. One of 3 returns to main program.

A. Return: ACC or Erasable operand n

B. Return + 1: Normal operand

c. Return + 2: Function erasable operand

ARITHMETIC FUNCTION ERASE COMMAND

INPU'.J::

1. One of the following operator codes will appear in the

ACCumula tor.

2. BSCNLC

3. BOXSW

4. BMDSW

5. FORBAK

6. BLODSW

7. BMODE

8. BWRONG

2 multiply

3 divide

4 add

5 subtract

13 store

Operand Scan list location

={~. no B-box used
B-box used

={~ no conversion necessary
conversion necessary

{ 0 forward direction scan = 7777 backward direction scan

0 no load command
3 lond command

0 floating point
5 integer

5- 0 general operand

lnn ** operand

class

-6-

9. BOPRLS = Erasable relative location

10. BOPRLS + 1 =Modifier value (low 12 bits)

11. Bank =Modifier value (hi 3 bits)

12.

13.

OUTPUT:

BSTOSW ={O no store ~ption
13 store option

BOOLSW =fO Boolean statement
l1 0 normal statement

1. Generated proper 1, or 3 word command

A. 1-word: NO CALL SUBR.

B. 3-word: CALL SUBR.

BSCANG: ARITHMETIC COMMAND

INPUT

1. One of the following operators will appear in the ACCumulator.

2.

3.

4.

5.

6.

7.

2 MPY

3 DIV

4 ADD

5 SUB

13 STORE

BMODE = {O floating point
5 integer

BMDSW =f~ no convert
2 convert

BLODSW =~ no load command
10 load command

BSCNLC ={Operand scan list location
0 forward direction scan

FORBAK =' 0 forward direction scan
777 backward direction scan

BWRONG =[0 general operand class
l7777** operand

-7-

8. BANK "" Operand bank setting

9.

10.

11.

12.

OUTPUT:

BOXSW ={ 0 no B-box used
b' 0 B-box used

BOPRLS+l = Operand absolute location

BSTOSW =JO no store ~ption
ll3 store option

BOOLSW =J 0 Boolean statement
l;' 0 normal statement

A. Generated proper 2 or 4 word coumand.

BSCANH: PARENTHESES GROUP DETERMINATION

INPUT:

1. ACCmnulator starting scan location.

OUTPUT:

1. BCOMAS = relative function parameter location.

2.

3.

4.

BRTPAR =~ 0 terminal operator not a right parentheses
1# 0 terminal operator a right parentheses

BFUNSW =)O parentheses group not a function group
\Function location for a function group

BENDSW =[0 end of statement not encountered
\# 0 .end of statement encountered

5. BINITA Parentheses group start location

6. BINITC = Encompassing parentheses group start. location

BSCANJ: OPERATOR DETERMINATION

INPUT:

1. BSCNLC: Initial scan location

2 FO BAK = { 0 forward direction scan
• R 7777 backward direction scan

-8-

OUTPUT:

1. BSCNLC "' Operator Scan location

2. BOPLOC Operator Scan location

3. BOPRTR Operator indicator

4. BOP RSV Opera tor indicator

5. BVARCD -& 0 no operand encountered
- 1 0 operand encountered

6. There are one of 4 exits

A. Return exit *, I operator

B. Return exit + 1: +, - operator

C. Return exit + 2: Ending operation indicator

D. Return exit + 3: Starting operation indicator

BSCANK: MODE EQUALITY TEST

INPUT:

1. BSCNLC = operand location

2. BMODE = {O floating point
5 integer

3. BOOLSW _ ~O Boo lean statement
- .:j. O norma 1 s ta ternen t

OUTPUT:

{O for modes equa I
1. BNDSW = 2 for modes not equal

0 for a Boolean statement

2. **OPT has ** option type

BSCANL: RElATIVE OPERATOR DETERMINATION

INPUT:

1. ACCumulator = Operation code

2. BMDSW =So for modes equal
\2 for modes not equal

-9-

FORBAK = J 0 forward direction scan 3• l7777 backward direction scan

4. BLODSW = { 0 no load command
3, 10 load command

OUTPUT:

BSCANM:

1. The Accumulator will contain the necessary logical combination of the

4 input quantities.

ACC /ERASABLE ARITHMETIC COMMAND
n

INPUT:

1. One of the following operator codes will appear in the ACCumulator.

2.

3.

4.

5.

6.

7.

8.

9.

10.

2 MPY

3 DIV

4 ADD·

5 SUB

BLODSW ,.,, 0

f 0 forward direction scan
FORBAK =)7777 Backward direction scan

_ { 0 ACCn operand
BVARTP - 7171 Erasable operand

BSCNLC = Scan list operand location

BANK = Relative erasable operand

ACCN = ACCn operand location + 1

BM ODE ={O floating point
5 integer

BOPRLS+l • Location (ACCN)

location

ACCTYP ={7777 ACCn type commands
0004 Accumulator type commands

-10-

OUTPUT:

1. Generated proper 1-word connand.

BSCANN: STORE ACC /ERASABLE TEST

INPUT:

1.

2.

n

[O Previous command not function erasable
BOPTST =);o Previous conunand function erasable

fo store ACCn conunand
BLODSW = .J.O

r store operand command

3. ACCN = 1, 2, 3 or ACCn indicator

4.

OUTPUT:

BOOLSW = {O Boolean statement
10 normal statement

1. Either one of the following as output.

BSCANO:

INPUT:

1.

2.

OUTPUT:

A. For a previous function erasable command, a one word stor~ cormnand

is generated.

B. For a previous non-function erasable conunand,

tl for ACCl storage
BNSW =

3
2 for ACC2 storage

for ACC3 storage or operand storage
(if BLODSW :#0)

C. For a Boolean statement a STORE ERASE command is generated.

OPERAND INTERROGATION

BSCNLC = operator scan location.

FORBAK ={ 0 forward scan
7777 backward scan

With the given input, this routine referencing the routines:

1. BSCAND

-11-

2. BS CANE

3. BSCANF

4. BSCANG

s. BSCANK

6. BSCANM

7. BS CANN

8. BSCANQ

9. BSCANR

·will do the following:

1. Set the BNSW store switch or generate a STORE ACCN if necessary.

2. Check mode of operand.

3. Load the index register, if necessary.

4. Convert the operand if necessary.

5. Generate the proper couunand.

OPERAND LOCATION DETERMINATION

INPUT:

1. BSCNLC = Potential operand scan location

OUTPUT:

1. BSCNCL = True operand scan location.

BSCANR: LOAD DRIVER ROUTINE

INPUT:

1. BSCNLC Operand scan location

OUTPUT:

With the given input, this routine referencing this routines:

1. BSCAND

2. BSCANE

3. BSCANF

...

-12-

4. BSCANG

5. BSCANK

6. BSCANM

7. BSCANQ

will do the following:

1. Check mode of operand.

2. Load the index register, if necessary.

3. Convert the operand, if necessary.

4. Generate the proper load command.

BSCANS: STORE ERASABLE ROUTINE

INPUT:

1. ERSBIT with relative erase bit set

OUTPUT:

1. ERSBIT with relative erase bit cleared.

2. ERASE operand indicator to the scan list

3. STORE ERASE command.

BSCANT: PARENTHESES GROUP STORE TEST

INPUT:
0 floating point

1. BMODE = 5 integer

2. BINITC = Initial location of encompassing parentheses group.

3. BSCNLC = Right parentheses indicator

4. BOPLOC = Right parentheses indicator

5. BINITA = Left parentheses indicator

6. BINIT = Start of statement

7. BEND= End of statement

-13-

BSCANU: MODE COMPARISON ROUTINE

Input:
0 floating point

1. BMODE = 5 integer
0 floating point

2 • .. BMDSAV = 5 integer

Output:

1. Generated CONVERT ACCUMULATOR corrmand if BMODEJ'= BMDSAV and

BMDSAVl 1 BMODE. Where BMDS Vl is the mode for the encompassing

parenthesis group.

-14-

0 end of statement not reached
8. BENDSW = fO end of statement reached

0 Boolean statement
9. BOOLSW ='jO nonnal statement

OUTPUT:

1. One of the two returns

A. Start of Scan: Generate a STORE ERASE COMMAND

B. RETURN Continue ~valuation

2. Right and left parentheses indicators cleared.

BSCANU: -·--)

BPTSUB: PUT AWAY DRIVER SUBROUTINE

INPUT:

1. BNOWDS = 1, 2, 3, or 4 number of words that make up the command.

2. BWORDl, BOWRD2, BOWRD3, BWORD4 contain the corrmand information.

3. BNSW = O, 1, 2, 3 = pseudo accumulator bits for the previous

generated command.
0 first time thru routine

4. Specific Cell =/@ not first time thru routine

OUTPUT:

1. GO to PUTAWAY to output the previously generated cormnand.

2. BOPTST = 0 (erasable storage option switch)

3. BNSW = 0

4. BNOWDS = l

5. Specific '/-0

SECTION 1.5

ALGEBRAIC STATEMENT TRANSLATOR

The translator, is, in general, divided into three portions:

1. A program to isolate and create the object code linkages between

parentheses groups.

2. A program to create the necessary object code for those parentheses

groups that are function groups.

3. A program to create object code for an isolated parenthesis group.

In general, the Algoritlun is as follows:

1. Isolate an innermost parenthesis group.

2. Evaluate (generate object code) the isolated group.

3. If the group isolated is a function group generate ~e necessary

STORE, FUNCTION, ERASE and TRANSFER commands.

4. If it is necessary generate a STORE ERASE command for the results

of the parenthesis.

5. If more object code can be generated before a STORE ERASE is necessary,

generate this object code then generate the STORE conunand.

6. Continue at (1) until the statement is exhausted.

A more detailed analysis of the three sub-algoritluns follows.

Parentheses Groups

l. Isolate a parenthesis group for evaluation. Also determine the delimiters

for the next encompassing higher level parentheses group.

2. Using the higher level delirninters isolate a subgroup. A subgroup is

defined as having one of the following pairs of deliniters:

A. ')

B. ·. (, +

c. + , ±

D. + ')

3. If the subgroup does not contain a parentheses group, do a R. J. (return Jump)

to W.P.G. (within parentheses groups) to evaluate the subgroup. GO TO (8).

4. If the subgroup does contain a parenthesis group, do an R.J. to W.P.G. to

evaluate the parenthesis group isolated in step (1).

5. If the parenthesis group was a function group, do an R.J. to F.G. (function

groups).

6. Scan the rest of the subgroup. If it contains a ** evaluation or another

parenthesis group, or if the statement is Boolean, generate a STORE ERASE

command. G~ TO (l)!

7. If the subgroup did not contain a** operator do an R.J. to W.P.G. to evaluate

the rest of the subgroup, if possible (/, +and /, I combinations not valid

in a right to left scan).

-2-

8. If the end of the statement has been encountered go to the final exit.

9.' If' the subgroup' just evaluated was the last one contained inside the

deliminters of the higher level parentheses group determined in step (l)t

go to (1).

10. Do a mode comparison check between the current parenthesis group and the

mode of the encompassing group. If they differ generate a Float command.

11. Generate a STORE ERASE conmand. Go to (1).

-3-

Function Group

1. Check the function switch. If it references the 0th relative function,

generate a SET SIGN PLUS command. Go to R.J. exit.

2. If this is a single parameter function go to (6).

3. If this function parameter does not belong to the same function as the

l.ast parameter evaluated, generate an INCREMENT FUNCTION ERASE command.

4. Generate a STORE FUNCTION ERASE command.

S. If this is not the last parameter of the current function go to P.G.

(parentheses groups) step (1).

6. Generate a TRANSFER FUNCTION command.

7. If an INCREMENT FUNCTION ERASE command was generated for this function

generate the corresponding DECREMENT FUNCTION ERASE command.

8. Go to the R.J. exit.

-4-

Within Parentheses Groups

1. If this routine is being entered either from step (7) of the P.G.

evaluation go to (13).

2. Isolate the next subgroup.

3. Does this subgroup contain a ** operator? If it does not go to (7).

4. Evaluate the A ** B group.

S. Does the isolated subgroup contain another ** operator? If it does not go

to (13}.

6. Generate a STORE ERASE command. Go to (2}.

7. Does the current subgroup contain any* or I symbols? If not go to (12).

8. Generate object code for the subgroup.

9. If it is necessary to accumulate a sum from previous subgroup evaluations

generate .an ADD ACCn corrmand.

10. Set an accumulate switch.

11. If there are no more * or I operators left in the parentheses go to (12).

Generate a STORE ACCn command. Go to (2).

12. Generate object code for the + and - operators finishing the parenthesis group

evaluation. Go to R.J. exit.

13. Evaluate the subgroup in a reverse direction until a .± or a starting symbol

is encountered. If a /, *or /, I combination is encountered exit to P.G. (11).

-5-

14. Generate a CHANGE SIGN c0tm1and if a - sign was encountered. Go to (8).

In addition to the outlined algorithm three other major coperations occur.

1. Loading of Index Registers when necessary

2. Generation of conversion commands for use with mixed arithmetic.

3.. Termination of the evaluation and setting of a switch when a parenthesis

group is encountered as an operand.

-6-

160-A FORTRAN ALGEBRAIC TRANSLATOR

FLOW ANALYSIS

ALGBRA: Scan statement for errors.

1 . BINIT - - ~ BINITB.

2. Use the low order 4 bits of (BINITB) to preset a 20-way transfer

switchboard.

4-BITS MEANING ROt.rrINE

00 Blank BO

01 ** Bl

02 * B2

03 I B2

04 + B4

• 05 B4

06 End B6

07 B7

10 BlO

. 11 Error BBERR

12 Error BBERR

13 Function BO

14 Bl4

15 Start Bl5

16 2-word var. Bl6

17 2-word var. Bl6

-7-

BBERR: Compiler error.

1. Load "Compiler Error Indicator".

2. Go to TILT.

BO: Increase location counter.

1. BINITB + 1 --~ BINITB, BENDSW

2. Go to ALGBRA, 2.

Bl:. Power operator.

1. If there is not a preceding power operator go to (4).

2. Load "Double Power Indicator".

3. Go to TILT.

4. Set double power switch (DBLPWR). ·

5. Go to B2, 2.

B2: *, I operators.

1. Zero power switch (BPWRSW).

2. If this operator is not a leading operator ga to (5).

3. Load "Illegal Leading Operator Indicator".

4. Go to TILT.

5. If there is not a preceding operator go to (8).

6. Load "Preceding Operator Indicator".

7. Go to TILT.

8. Zero variable switch, (BVARSW)

Zero right parentheses switch, (BPARSW)

Set operator switch, (BOPRSW).

-8-

9. If this statement is not a Boolean statement go to BO.

10. Modify operator indicators according to the following table:

1 --~ 2

2 --~ 3

3 --~ 4

4 --~ 5

5 ---> 1

11. Go to BO.

B4: +, - operators.

1. Zero power switch, (BPWRSW)

Zero leading operator switch, (BFIRSW).

2. Go to B2, 5.

B6: End indicator.

1. If there is not a trailing operator go to (4).

2. Load "Trailing Operator Indicator".

3. Go to TILT.

4. If there are equal left and right parentheses go to BOUT.

5. Load "Unequal Left and Right Parentheses Indicator".

6. Go to TILT.

B7: Right parentheses indicator.

1. Reduce parentheses count (BPRCNT).

2. If there are more right parentheses than left parentheses go to B6, 5.

3. Set right parentheses switch (BPARSW).

4. Go to BlS, 3.

. -9-

BlO: Cormna indicator.

1. Set first operation switch (BFIRSW).

2. If there is a bad conuna inserted in the statement go to Bl5, 2.

3. Load "Bad Corrana Indicator".

4. Go to TILT.

814: Left parentheses indicator.

1. Increase parentheses count (BPRCNT).

2. Set first operation switch (BFIRSW).

3. If a left parentheses follows a right parentheses go to8L6, 3, if not

go toBlS, 3.

815: Start indicator.

1. Set first operation switch, (BFIRSW)

Zero parentheses count switch (BPRCNT).

2.

3.

Zero right ·parentheses switch (BPARSW).

Zero double power switch (BPWRSW)

Zero operator switch, (BOPRSW)

Zero variable switch (BVARSW).

4. Go to BO.

Bl6: Var1able indicator.

1. Zero first operation switch.

2. If there is not a preceding variable go to (5).

3. Load "Double Variable Indicator".

4. Go to TILT.

-10-

5. Zero operator switch, (BOPRSW) set variable switch (BVARSW).

6. Go to BO.

BOUT: Begin cracking statement

1. Zero switches.

a. First object code output (Specific Cell).

b. Erasable bit indicator (ERSBIT).

c. Index Register setting (BINDSW).

d. Store Option switch (BSTOSW).

3. Temporary function list (ERSLOC).

2. Determine mode of statement (JPR BSCANC).

3. Preset mode of encompassing parentheses group: BMODE --- BMDSA.

4. PRESET Function Erasable Statement counter (32 LRASE).

5. Go to BPG.

-11-

BPG: Parentheses group detennination.

1. Zero direction switch (FORBAK).

2. Preset Pseudo Accumulator Counter (2 --- ACCN).

3. Isolate a parentheses group (JPR BSCANH).

4. Determine next subgroup (JPR BSCANA).

5. Go to BPGYB.

BPGYB: Continue Scan I Erasable Store

1. If one of the following conditions exist go to BPGYA.

a. The contents of the previous parenthesis were not exhausted.

b. There is a parenthesis group in the current subgroup.

c. The end of the statement t~rminates this subgroup.

2. Zero the right and left parenthesis deliniters of the previously

executed parenthesis group.

BPGYA: Evaluate Subgroup.

1. Save tenninal operator of subgroups (BTEMP2

2. Save terminal location of subgroups (BINITB

3. Pseudo end inidcator to terminal operator.

BTRMOP).

BTRMNL).

4. If there was not a parentheses group in the encountered subgroup

go to (5).

5. Return jump to subgroup evaluation (JPR BWPGl).

6. Go to (12).

7. Return jump to parentheses group evaluation (JPR BWPGl).

8. If this is a Function Group retunn jtUnp to BFG.

9. Do a parentheses group store check (JPR BSCANT).

10. Replace the currently evaluated parentheses group with a pseudo

end indicator.

11. Return jump to subgroup evaluation (JPR BWPGl).

12. Scan for next subgroup (JPR BSCANA).

-12-

13. If the subgroups have not been completely encoded go to BPGDA.

BPGDB: Exhaustion of encompassing parenthesis group.

1. If the end of the statement has been encountered go to the FINAL EXIT.

2. Zero the contents switch () -- BPGYO)

3. Go to BPG.

BPGDA: Prepare for next scan.

1. Set the Information In ACC switch (BSTRSW).

2. Do a mode comparison check (JPR BSCANU).

3. If there is a parenthesis group in the next subgroup to be

evaluated go to BPGZ.

4. Go to BPGYB.

BPGZ: Reduce the scan locater

1. Reduce the location counter (BSCNLC - 1 -- BSCNLC).

2. Go to BPGG.

BPGG: Store Erase Command
~

1. Generate a Store Erase COttll\and (JPR BSCANS).

2. Reser the contents switch (1 -~BPGYC)

3. Go to BPG.

-13-

BFG: Function Group Evaluation.

1. If this is not the first function encountered go to (3).

2. Initialize function erasable counter (32D ---> LERA.SE).

3. Zero the terminal operator of the group (either a conma or a right

parentheses).

4. If this function is not the 0th relative function go to (7).

5. Generate a SET SIGN PLUS command.

6. Go to Return Exit.

7. If this function. is not the first in a series of functions (functions

within functions) go to (10).

8. Increment function list locator (ERSLOC).

9. Go to (15) .

10. If this function is not the same as the last encountered function go

to (17).

11. Gener ate INCREMENT FUNCTION ERASABLE COUNTER command.

12. Inc-rement the "statement function erasable C< unter" (LRASE) •
•

13. If the "program function erasable counter" (I ERASE) has a smaller count

than the "statement function erasable count" (I.RASE) go to (15).

14. LRASE --~ LERASE.

15. Increment function list locator (ERSLOC).

16. Save function location in list. BFUNSW --.;> List.

17. If there is list space still available go to (20).

18. Load "No More List Space Indicator".

19. Go to TILT.

20. Save the current number of function parameters in the function list.

BCOMAS ___ .,. List.

-14-

21. If this is a single valued function go to (24).

22. Generate STORE FUNCTION ERASE cormnand.

23. If this is not the terminal function parameter go to BPG.

24. Decrement function list locator (ERSLOC).

25. Generate a TRANSFER TO FUNCTION cormnand.

26. If this is a function inside a another function (series of functions)'

go to (28).

27. Go to the Return Exit.

28. Generate a DECREMENT FUNCTION ERASABLE COUNTER corrmand.

29. Go to the Return Exit.

BWPGlZ: Parentheses groups evaluation exit.

1. Restore terminal operator.

2. Zero Information In Ace (BSTRSW) switch.

3. Go to the Return Exit.

BWPG: Parentheses group evaluation.

1. Zero Load and Convert switch (BWRONG).

2. The mode of previous evaluation goes to the mode of current evaluation

BMDSWl --~ BMODE.

3. If the Information In ACC switch (BSTRSW) is set go to BWPGAR.

4. If a backward direction evaluation is being performed go to BWPGAK.

5. Determine the mode of the parentheses group (JPR BSCANC).

6. Go to BWPGZY.

-15-

BWPGZY: Hierarchy determination.

1. Determine ncxl opcrator to be processed.

2. Set operator switch (BOPRTR) to ADD.

3. Set Boolean first operator switch (BOPFST) to Inclusive OR.

4. If the next operator is a** go to (7).

5. Zero the Load and convert switch (BWRONG).

6. Go to BWPGA.

7. Operator location to scan location (BSCNI_.c) and operator location

(BOPLOC).

8, If this is not a Boolean statement go to (11).

9. Set operator switch (BOPRTR) to LOAD COMPLEMENT.

10. Go to BWPGAH.

11. Zero** operator (A** B).

12. Set Load and Convert switch (BWRONG).

13. Generate a LOAD B command. (JPR BSCANR).

14. Generate a STORE ACCn conunand. (JPR BSCANN).

15. If this is an (INTEGER) ** (FLOATING) option zero the Load and Convert

switch (BWRONG).

16. Generate a LOAD A command. (JPR BSCANR).

17. Generate the proper TRANSFER TO POWER command.

18. Set the proper bit in the Power Option Used test word (PWRBIT).

19. If the mode of the power option equals the mode of the encompassing

arithmetic go to (21).

20. Generate a CONVERT ACCUMULATOR command.

21. Go to GWPGAK

.. 16-

BWPGAS: Reverse Scan Check

1. If the previous operator - current operator do not have

either the combination/, * or/,/ go to BWPGAH.

2. Increment the scan location (BSCNLC + 1 -;BSCNLC).

3. Restore the terminal operator (BTRMOP -)(BTRMNL)).

4. Go to BPGG.

-17-

BWPGAS

BWPGA: Process *, I operators

1. If there are no * or I operators in the subgroup go to BWPGBA •

2. Set the scan location, (BSCNLC) to the location of the first *, I

operator.

3. Alter the scan location if there is a leading+, - operator.

4. Generate a LOAD command (JPR B~CANR).

5. Go to BWPGAB.

BWPGAB: Increment locater.

1. Increment the scan location (BSCNLC).

2. Go to BWPGAK.

BWPGAH: Interrogate Operand.

• BWPGAK:

1. Interrogate operand and generate a multiply or divide command

(JPR BSCANO).

2. Go to BWPGAK.

Interrogate the next operator.

1. Determine the next operator (JPR BSCANJ).

2. If the next operator is

a. *• /: Go to BWPGAS

b. +, -: Go to· (3).

c. End : Go to (9).

d. Start: Go to (7).

3. If the scan is in a forward direction go to (10).

4. Zero the +, - operator.

5. If the operator is +go to (7), if it is - go to (6).

6. Generate a CHANGE SIGN command.

7. Reset the direction Mitch (FORBAK) to forward (= O).

-18-

8. If there was only one ** operator in the subgroup, go to BWPGAB.

9. Store an operand indicator in the scan lid. Go to BWPGAP.

10. If this is a boolean ;tatement go to (13).

11. If the Information In ACC switch (BSTRSW) is not set go to (13).

12. Generate an ADD command. (JPR BSCANM).

13. Set the Infonnation In ACC switch (BSTRSW).

14. Scan the current subgroup. (JPR BSCANA).

15. Go to BWPGAR.

BWPGAR: *, I operator check.

1. If there are*, I operators left in the subgroup go to BWPGAP, if

not go to BWPGZY.

BWPGAP: STORE ACCN cormnand.

1. Generate a STORE ACCN command. (JPR BSCANN).

2. Go to BWPGZY.

B"{PGBA: +, - operates interrogation.

1. Reset scan location (BSCNLC) to start of subgroup.

2. Scan for next operator (JPR BSCANJ).

3. If the operator is a +, - go to (7), if it is an end code go to (4).

4. If a single operand is left in the subgroup go to (8).

5. Zero ending code.

6. Go to BWPGIZ. (return Exit).

7. If a leading+, - was nc>t encountered go to (14)

8. If this is not a Boolean statement go to (11).

9. Set the operator switches (BOPRTR and BOPRSV) equal to the leading

operator of the subgroup.

10. Go to (12) •
-19-

11. Set the operator switches (BOPRTR and BOPRSV) to an ADD indicator.

12. Reset scan location (BSCNLC) to start of subgroup.

13. Go to (15).

14. Zero the operator indicator.

15. If the Infonnation In ACC switch (BSTRSW) is set go to (21), if

not go to (16).

16. Increment the scan locator (BSCNLC) to the operand location.

17. Generate a "Load" command. (JPR BSCANR).

18. Set the Infonnation In ACC switch (BSTRSW).

19. Increment the scan locator.

20. Go to (2).

21. Interrogate operand and generate a command (JPR BSCAND).

22. Go to (19).

-20-

BPTSUB: Put Away Driver Subroutine.

1. If this is not the first time thru this routine for the current

statement go to (7).

2. Set the first time switch (Specific Cell).

3. Zero the Use Pseudo ACC switch (BNSW).

4. Zero the Eraseable or Function Erasable Corrmand Generated switch (BOP!ST)

5. Set Number of Words Count (BNOWDS) to 1.

6. Go to the Return Exit.

7. Output the next word of the command (JPR PUTAWAY).

8. If there are more words to output go to (7), if not go to (3).

-21-

BSCANA: Subgroup Scan.

1. Set starting scan address: BINITA + --~ BINITB.

2. Set *, I location address. BINITA + 1 --.;> B*/SW.

3. Set leading +, - operator address. BINITA + 1 --;> FRSTOP.

4. Zero ** address locator (BH3SW)

Zero *, I address locator (BH2SW)
Zero temporary cell (BTEMPl).
Zero Items In Subgroup counter (BCOUNT)

Zero parentheses indicator (BPARSW).

Zero ** counter (BPWRSW)

Zero **, *, I indicator (BH23SW)

5. Preset leading +, - operator switch (B+-SW) to an ADD.

6. If the low order 4 bits of (BINITB) is zero go to AO.

7. Use bits 1, 2, 3 of (BINITB) to preset a 10 way switchboard.

3-BITS MEANING ROUTINE

0 ** Al

1 *, I A2

2 +, - A4

3 END, Return exit.

4 ' , PSEUOO END AO

5 FUNCTION AO

6 (, START A14

7 OPERAND AO

-22-

-1

AO: Increase location counter.

1. Increment subgroup element counter (BCOUNT) by 1.

2. Increment the scan address (BINITB) by 1.

3. Go to BSCANA, 6.

Al: **operator.

1. If a ** operator has already been encountered in the subgroup

go to (3).

2. Set ** address with current scan location. BINITB -- BH3SW.

3. Increment the ** counter {BPSRSW) by 1.

4. Set the **, *, I indicator (BH23SW.)

5. Go to AO.

A2: *, I operators.

1. If the previous operator is a /, set an indicator in the upper

half of the operator scan location.

2. If a *, I operator has already been encountered in the subgroup go

to Al, 4.

3. Set *, I address with current scan location. BINITB --;>BH3SW.

4. Go to Al,4.

A4: +, - operators.

1. If a **, *, I has been encountered {i.e. BH23SW is set) go to the

Return Exit.

2. Set *, I preceding location address with current scan location

BINITB --- B*/SW.

3. Reset leading +, - operator switch (B+-SW) with the current operator.

4. Go to AO.

-23-

Al4: Left parentheses operator.

1. Scan the subgroup until the matching right parentheses has been

encountered.

2. Go to AO.

-24-

·l

BSCNCZ: Return Exit.

1. Set floating point mode indicator. 0 --:;. (BMODE).

2. Go to the Return Exit.

BSCANC: Mode Determination.

1. Set scan address locator (BINITB) with initial scan address.

2. Zero parentheses counter (BTEMPl).

3. Increment parentheses counter (BTEMPl) by 1.

4. Increment location counter (BINITB) by 1.

5. Interrogate the current operation indicator (low order 4-bits).

a. If it is an arithemtic operator go to (4).

b. If it is an ending indicator go to (6).

c. If ~t is a starting indicator go to (3).

d. If it is an operand go to (7).

6. If the parentheses count (BTEMPl) is zero go to the return exit, if

it is not go to (4).

·1. If the operand is of a floating point mode go to BSCNCZ, if of an

integer mode go to (8).

8. Set integer mode indicator. 5 --~ BMODE.

9. Go to (4).

BSCAND: Index register test.

1. Interrogate the relative operand location.

a. If it is an Erase or Pseudo Accumulator operand go to the return

exit.

b. If it is a Normal or Function Erase operand go to (2).

-25-

2. Operand list location to BOPRLS, BOPRLS + 1. D
3. Interrogate the operand information bits. B-box indicator bits --~ BOXSW.

4. If the operand does not have a B-box associated with it go to the

Return Exit.

5. If the B-box associated with the operand is identical to the last

encountered B-box go to the Return Exit.

6~ Generate a LOAD INDEX REGISTER conmand.

7. Go to the Return Exit.

BSCANE: Variable type test.

l; Zero the load command switch (BLODSW).

Zero the variable type switch (BVARTP).

2. Set pseudo accumulator type switch. 7777 --~ ACCTYP.

3. Interrogate the relative operand location.

a. If it is a pseudo accumulator operand go to the Return Exit.

b. If it is an Erase operand go to (4).

• c. If it is a Normal Function Erase operand go to (11).

4. Zero the proper bit in erasable bit indicator (ERSBIT).

5. If this is a Boolean Statement go to (6), if not go to (9).

6. Change the relative erase operand location to an absolute two word

operand location.

7. Zero the B-box indicator (BOXSW).

8. Go to (14).

9. Set the variable type switch (BVARTP) to minus 0 (7777).

10. Go to the Return Exit.

-26-

.)

,_:D:
'Jl

ll. Operand bank setting --~BANK.

12. If the operand needs a 3-word command go to (15).

13. If the operand bank setting is zero go to (16).

14. Go to ehe Return + 1 exit.

15. Go to the Return + 2 exit.

16. If the absolute operand location is 32 go to (15), if not go to (14).

BSCANF: Function Erase Command Generator.

1. Return jump to BSCANL.

2. Preset command locator instruction.

3. If this is not a STORE command go to (12).

4. If a mode conversion is not necessary gq to (12).

5. Generate a CONVERT ACCUMULATOR command.

6. Go to (12) •

7. If this is a LOAD command go to (12).

• 8. If this is not a Boolean statement go to (12).

9. Increment the "Number of Words in Command" count (BNOWDS) by 1.

10. Increment the command locator instruction by 13.

11. Go to (10).

12. Compute the proper mode indicator bit for the current command.

13. Store the command in the output area: BWORDl, BWORD3.

14. Store the relative operand location in the output area: BWORD2, BWORD4.

15. If this is a Boolean statement (except for LOAD and STORE corrmand) go

to (14).

16. BWORDl + (BWORD2) --- BOWRDl, BWORD3.

-27-

...

17. If this is not a 3 or 4 word command go to the Return Exit.

18. Compute a 3 word command (op. code 75) and place it in the output

area BWORDl, BWORD2.

19. Increment the Number of Words In Command count (BNOwoS) by 2.

20. Go to the Return Exit.

BSCANG: Normal operand command generator.

1. Return jump to BSCANL.

2. Preset cormnand locator instruction.

3. If this is not a STORE command go to (7).

4. If a mode conversion is necessary increment the command locator

instruction by 2.

5. Set mode bit for the conrnand.

6. Go to (12).

7. If this is a LOAD conmand go to (11).

8. If this is not a Boolean statement go to (11).

9. Increment the command locator instruction by 31.

10. Go to (12).

11. Increment the command locator instruction if a LOAD AND CONVERT

command is to be generated.

12. Send the Operation Code + Bank Setting + Index Register Option Bit

to the output area (BWORDl).

13. Send the absolute operand location to the output area (BWORD2).

14. Go to the Return Exit.

-28-

BSCANH: Parentheses Group Determination.

1. Initial scan location --~ BTEMPl.

2. Zero right parentheses switch (BRTPAR),

Zero function switch (BFUNSW),

Zero end switch (BENDSW).

3. Interrogate the lower order 4 bits of (BTEMPl).

4. If they indicate an arithemtic operator go to HO.

5. Use the low order 4-bits of (BTEMPl) to set a 10 way switchboard.

4-BITS

06

07

10

ff

12

13

14

15

16

17

HO: Increment location counter.

MEANING

END

)

PSEUDO END

FUNCTION

START

2-word operand

3-word operand

1. Increment location counter (BTEMPl) by 1.

2. Go to BSCANH,3.

-29-

ROUTINE

H6

H7

Return Exit

Return Exit

Return Exit

Hl3

H14

HlS

HO

HO

H6: End indicator.

1. Set end switch (BENDSW).

2. Go to the Return Exit.

H7: Right parentheses indicator.

1. Set the right parentheses switch (BRTPAR).

2. Go to HlO.

Hl3: Function indicator.

1. Set the function switch BTEMPl --3> BFUNSW.

2. Go to Hl4,2.

H14: Left parentheses indicator.

1. Zero the function switch (BFUNSW).

2. The previous parentheses group starting location goes to the

encompassing group starting location. BINITA --~ BINITC.

3. The current scan location goes to the parentheses group starting

location. BTEMPl --~ BINITA.

4. Go to HO.

HIS: Start indicator.

1. The statement starting location goes to the encompassing group starting

location. · BTEMPl --~ BINITC.

2. Go to H14,3.

-30-

BSCANJ: Operator determination.

1. Zero the Preceding Operand switch (BVARCD).

2. Use bits 1, 2, 3 of (BSCNLC) to set an 8 way switchboard.

3-BITS MEANING ROtrrINE

0 BLANK, ** JO

1 *, I BSCNJY

2 * ' J4

3 END,) J6

4), PSEUDO END J6

5 FUNCTION J14

6 (, START J14

7 OPERAND Jl6

JO: Increment location counter.

1. Increment the scan locator (BSCNLC) by

a. +l for forward direction.

b. -1 for backward direction.

2. Go to BSCANJ,2.

Jl4: Left parentheses and start indicators.

1. Increment the Return Exit address by l.

2. Go to BSCNJY.

BSCNJY: Save scan location.

1. Save the scan location in the operator location switch (BSCNLC --~ BOPLC

2. Go to the Return Exit.

-31-

~16: Operand indicator.

1. Set Preceding Operand switch (BVARCD).

2. Go to JO.

-32-

BSCANK:

1.

Mode Equality Test.

Compare the mode of the operand with the mode of the parentheses

group in which the operand is contained. If they are

a. Equal, Zero the mode equality switch (BMDSW).

b. Unequal, set to 2 the mode equality switch (BMDSW).

2. If this is not a Boolean statement go to the Return Exit.

3. Zero the mode equality switch (BMDSW).

4. Go to the Return Exit.

-33-

BSCANL: Relative operator Determination.

1. If the current operator is not a divide operator go to (3).

2. If the direction of the scan is

a. Forward the operator remains a normal divide.

b. Backward the operator changes to an inverse divide.

3. If the LOAD switch (BLODSW) is not set go to the Return Exit.

4. If the Mode Equality switch (BMDSW) is not set go to the Return Exit.

5. Change the LOAD operator to a LOAD and CONVERT operator.

-34-

BSCANM: Pseudo Accumulator and Erasable Arithemtic.

1. Return jump to BSCANL (JPR BSCANL).

2. Preset an arithemtic command locator.

3. If this is a Pseudo Accumulator command go to (10). If an

Erase command go to (4).

4. Set the Erase-Function Erase operand switch (BOPTST).

S. If the mode of the operand and the mode of the encompassing subgroups

are equal go to (8).

6. Generate a CONVERT ACCULULATOR command.

7. Increment the Number Of Words In Connuand count (BNOWDS) by 1.

8. Set the mode indicator bit for the generated command.

9. Go to (12).

10. Decrement by one the Pseudo Accumulator counter (ACCN)

11. Set the mode indicator bit for the generated command.

12. Generate the proper command.

13. Go to the Return Exit.

-35-

BSCANN:

1.

2.

3.

4.

5.

Store Pseudo Accumulator Lc.;r:.

If this is not a Boolean statement go to (5).

Generate a STORE ERASE command (JPR BSCANS).

Reset the initial operator of the subgroup in the statement scan list.

Go to the Return Exit.

If the previously generated command was an Erase or Function Erase

command go to (9).

6. Generate the proper bits for the Pseudo Accumulator bit indicator

(BNSW).

7. Increment the Pseudo Accumulator counter (ACCN).

8. Go to the Return Exit.

9. If this is a Store In Operand Register conmand go to (8).

10. Generate a STORE PSEUDO ACCUMULATOR command (JPR BSCANM).

11. Go to (7) •

-36-

•

BSCANO: Operand Interrogation.

1. Increment the scan location (BSCNLC) to enable operand references.

a. +l for a forward scan.

b. -1 for a backward scan.

2. Determine the operand location (JPR BSCANQ).

3. Do a mode equality test (JPR BSCANK).

4. Do an index register test (JPR BSCAND).

s.

6 .

If the operand does not need converting to to (10).

Generate a LOAD AND CONVERT command (JPR BSCANR).

7. Do a pseudo accumulator store check (JPR BSCANN).

8. Generate the necessary (dwnmy) command (JPR BSCANM).

9. Go to (12).

10. Check the operand type (JPR BSCANE).

11. If the operand type is a

a. Pseudo Accumulator or Erase go to (8).

b. Normal operand do a return jump to BSCANG.

c. Function Erase do a return jump to BSCANF.

12. Zero the operand indicator. Zero the operator indicator.

13. Go to the Return Exit.

-37-

BSCANQ:

1.

Operand Location Determination.

If the contents of the operand scan location is not equal to

zero go to the Return Exit.

2. Increment the scan locator by

a. +l for a forward scan.

b. -1 for a backward scan.

3. Go to (1).

-38-

BSCANR:

1.

2.

3.

4.

5.

6.

7.

8.

Load Driver Routine.

If this is not a Boolean statement go to (3).

Preset a LOAD (in contrast to a LOAD NEGATIVE) operator.

Determine the operand location (JPR BSCANQ).

Do an operand conversion check (JPR BSCANK).

Do an index register test (JPR BSCAND).

Check for operand type (JPR BSCANE).

Set operator switch (BOPRTR) for LOAD command.

If the operand type is

a. Pseudo Accumulator or Erase operand do a return jump to BSCANM.

b. Normal operand do a return jump to BSCANG.

c. Function Erase operand do a return jump to BSCANF.

9. Zero the operand indicator in the scan list.

Zero the load command switch (BLODSW).

10. Go to the Return Exit •

•

-39-

BSCANS: Store Erase Routine.

1. Preset relative erase count to one.

2. Store an erase operand indicator in the scan list.

3. Starting with the low order bit of the erase bit counter (ERSBIT),

check to determine if there are any more erase locations available.

If there are, go to (6).

4. Load "No More Erase" indicator.

5. Go to TILT.

6. Update the operand indicator in the scan list.

7. Generate a STORE ERASE command (JPR BSCANM).

8. Go to the Return Exit.

-40-

BSCANT: Parentheses Group Store Check.

1. Zero the left parentheses indicator.

2. If this is a Boolean statement go to (4).

3. If them is a ** operator adjacent to the parenbeses group

go to (4).

4. Go to BPGG.

5. Do a subgroup scan (JPR BSCANA).

6. If the contents of the subgroup are not completely encoded go to (8).

7. Go to BPGDB.

8. Do a mode comparison check (JPR BSCANO).

9. Save previous mode (BMDSVI --7 BMODE).

10. Do a subgroup scan (JPR BSCANA).

11. If, in the subgroup scan, one of the following conditions existed

go to (4), if not go to the Return Exit.

a. If there exists a second parentheses group in the subgroup.

b. If the next executeable operator in the subgroup is not adjacent

to the currently evaluated parentheses group.

BSCANU: Mode Comparison Check.

1. Save the current mode (BMODE --- BMDSVl).

2. If the current mode is the same as the statement go to the Return Exit.

3. Scan for the mode of the encompassing group. (JPR BSCANC).

4. If the current mode is identical to the mode of the encompassing

group go to the Return Exit.

5. Generate a CONVERT ACC. cormnand.

6. Go to the Return Exit.

-41-

SEC1 ION 2 .1

160 - A FORTRAN - COMPILEn PASS 2

At the completion of the first pass of a 160-A Fortran compilation all
source statements have been read and an identifier li~;t - IDLIST, a table
of information pertinent to the compilation, prepared and retained in
memory. If Pass 1 has not detected any errors in the source program tape 2
contains a preliminary version of the object code. Otherwise tape 2 contains
the appropriate diagnostic messages. The second pass creates some additional
object code, it this is necessary, and produces a lisc of diagnostics and
a memory map. It loads the preliminary object code from tape 2 an_d makes
the appropriate corrections using information from the identifier list.
Finally, the second pass determines which library functions and interpreter
modules are required for the execution of the source program and loads them.
Control is then turned over to the interpreter and the execution of the object
code is begun. The following paragraphs provide a detailed description of
these processes.

The Preliminary Object Code

During the first pass, object code, in the form of 160-A Fortran
intermediate language instructions, tailored to the intent of the source
program, is produced and written onto tape 2, and this process is continued
until either all source statements have been processed ofruntil a recognizable
source program error is encountered. If there are no such errors, tape 2
will contain, at the end of pass 1, the preliminary object code. The object
code, exclusive of the object code for format statements, is on tape 2 as
binary records, each 80 decimal words in length, with the first word giving
the'"number of words of object code in the record. During the first pass
object code is accumulated in an 80 word buffer area. When the buffer is
full it is written onto tape 2. However, when a FORMAT statement is encount­
ered, the format statement is then written on tape 2, and the process contin­
ues. Since format statements are handled in the same fashion as constants
and variables as regards memory allocation, it is possible to assign them
memory locations during the first pass. They are then written onto tape 2
in a format which facilitates loading them into memory du;-ing pass 2. This
format is a sequence of binary records each 80d in length. The first word
of the record has the number of data words in the record in bit positions
0-6, the bank number of the address of the first data word of the record in
bit positions 8-10, and a l in bit position 11. The second word contains
the address of the first data word, which is the third word of the record.
The further restriction is made that no record contains data for two differ­
ent banks.

The preliminary object code as produced by pass 1 is not in a form that
can be executed correctly by the interpreter. First, if any pseudo-b-boxes.

'·
!I

. ~.l~ ',.
I,,'.,.,. .

z '-'\.
(~.J: */•· •.:'If

and UP-instructions are required they have not yet been produced; second,
there are a nwnber of intermediate language instructions which refer to
locations within the object code, and these locations cannot be known until
the completion of pass 1.

More specifically the following intermediate language instructions are
produced by pass l in the following preliminary form (b stands for bank of,
A stands for address of):

1. Load Index: LXB (b-box)
A (b-box) is produced in

the form LXb (Id)
A (Id) (where Id is the address of the correspond-

ing pseudo b-box id list entry.

2. UP instruction: G04 b (Up!)
A (UpI), where UpI; the address of the UP-

subroutine, is produced in the form
G04 b (IdI)
A (Id!), where Id! is the address of the idlist

entry for the integer variable I.

3. GO TO instructions: G00 b (0S)

4.

A (0S), where 0S
is the object code location of a statement number, an address
in variable storage corresponding to a variable n in a GO TO
n statement,
is produced as G00 b

A
(Id!)
(Id0), where Id0 is

the idlist address of a statement number entry, or a label (n)
entry.

The store instructions which initialize the incrementation
counters for a D0 loop: CA Ml

TSl I
IS M2
ID M3 - (may be absent)
G01 M4
CA M3
G0 M4 + 2, where

Ml, M2, M3 are the parameters from the statement D0 n I =Ml,
M2, M3, M4, = Ml-M2/M3 and is located following the correspond­
ing TRM !NCR instruction. The preliminary object code is
produced as CA Ml

TSl I
IS M2
ID M3
771 b (IdS)

-2-

A (IdS)
CA M3
771 b (IdS)

A (IdS), where IdS is the
idlist address of a TRM !NCR entry.

5. Transfers to library functions TRAn where n is the transfer
vector number of the function in question is produced as TRAn~
where n' is assigned during Pass -1. The first encountered
library function is assigned n' = 1, the second n' = 2, etc.

6. For the Fortran statement IF (algebraic Statement) Sl, 52, SJ,
for which the object code is: (Algebra)

TRM IF
b (Sl), b(S2), b(S3), 0
A (Sl)
A (S2)
A (SJ), where

Sl, S2, S3, are statement numbers, Pass 1 produces
(Algebra)

TRM IF
b (IdSl), b(IdS2), b(IdS3), 0
A (Ic!Sl)
A (Ic!S2)
A (Ic1S3), where

IdSl, •• are the addresses of the idlist entries for the
corresponding statement numbers.

7. For the Fortran statements IF OVERFLOW Sl, 52
• IF DIVIDE CHECK Sl, 52

IF SENSE SWITCH 51, 52
for which the object code is TRM IFOV

b (51), B (52), 0, 0
A (51)

nA (S2), where Sl, S2
are statement numbers. PASS 1 produces

TRM IFOV
b (Id51), b(Id52), 0, 0
A (IdSl)
A (IdS2), where A (Id51) is the

address
of the idlistmentry for statement number Sl, etc.

8. For the computed go ~o statement GO TO (51, .•• SM), i
for which the object code is

TRM CMPTD
M, b (I); A (I), b (S 1)

-3-

9 bits

b (SM)
A (SM), where the Bl are

statement numbers, Pass 1 produces
TRM CMPlITD
M, b (IdSl)

A (IdSl)

b (IdSM)
A (IdSM), where the

IDSl are the addresses of idlist entries for the corresponding
statement numbers.

9. For input-cutout: TRM I/0-IN, or I/O-OUT
m n x b (F)
3 bits 5 bits lbit 3 bits
A (F) or binary tape function,

where m is the unit number, n the vector number of the required
I/O driver routine, x a binary flag, and F a format statement
number, is produced as

TRM I/0-IN, or I/O-OUT
m n' x b (IdF)
3 bits 5 bits 1 bit 3 bits

A (IdF) or binary tape function
where n' has the same meaning as in 5, and IdF is the idlist
entry for the format statement F.

LOW CORE FROM PASS 1

In addition to the identifier list and the object code on pate 2,
Pass 1 also leaves information in the following low core cells.

ID BANK
I DLA ST

BNKCON
CONLST
BANKS

OB BANK
OB LAST

TABLCl

INTER.P

Address of last-made idlist entry

Address of last assignment in constant-variable storage

SIC (number of banks in -::omputer)

Last relative object code location, i.e., the last location
~- l that the object code would occupy if it began at
location 1 in bank o.

If bit 0 1, A**B is used
If bit 1 1, A**l is used
If bit 2 ~1, I**J is u3ed.

If bit 11
If bit 10
If bit 9

1, floating pmint is used
1, format control is used
1, boolean arithmetic is used

-4-

· •

DIAGNS •
r

ERAS EL

and bits 0-5 give the number on the systems tape of the desired
memory map routine. (O =suppress memory map).
0 means no pass 1 diagnostics.
0 means pass 1 diagnostics.
number of function erasable locations required for execution
of the source problem (1/3 the number of storage locations
required.)

SEQUENTIAL DESCRIPTION OF TIIE OPERATION OF PASS 2.

1. Preliminaries

At the beginning of Pass 2, if diagnostics have occurred, then
DIAGNS 'I 0. If this is the case the output routine is "blocked"
so that any subsequent operation calling for writing on tape 2
are not performed.

Since the output buffer may be partially full, the object code is
written onto Tape 2 followed by an end of file. Pass 2 then
reads the following three records from the systems tape.

a.

b.

c.

CALTBL, a table of information determing which library
·routines call other library routines.

INTBL, a table, 64d words in length, whc•se nth entry is
the length of the library function with transfer vector
number n.

LIBTBL, a table, of length 180d, containing 60 3 word
entries, 6 BCD characters/entry, where the nth entry is
proper FORTRAN name of the library function with transfer
vector number n-4. (Vector numbers 1-4 refer to the inter­
preter modules.)

-5-

2. Determination of required library functions, storage allocation

library functions and interpreter modules, and computation of

the first object code locations.

Pass2 assigns storage to library functions and interpreter modulta

in the order in which the routines appear on the tape, subject

to the following conditions:

a. The first interpreter module or library function follow­

ing the interpreter control section (CONTRL) (which is

always present) begins at the last word address + 2 of

CONTRL. Each succeding interpreter module begons at the

last word address + 1 of the previous one. The reason for

this anomaly is that CONTROL is read as one binary record

from the systems tape, after all other parts of the object

program have been loaded, and this type of read zeroes the

last cell loaded + 1.

b. Each library function begins at either the last word

address + 1 or + 2 of the preceding routine«, the add­

itive l or 2 being chosen to make the resulting address

even if the function goes in bank 0, and odd in bank 1.

(odd in the sense that the binary nutnber has a 1 in bit

position 01 i.e. -i is even)

-6-

In no case will a library function be assigned storage

in both bank 0 and l. If a function will ov4rlap,. it is

instead assigned storage beginning at location 0001 in

bank 1, the excess memory in bank 0 beiJlB "wasted".

The information as to which interpreter modules and library functions

are required by a particular compilation is left in the following form by Pass .1. • ...,

a. Interpreter modules: the use of the interpreter modules is deter-

mined by the upper 3 bits of low core location INTERP.

A module is required if its corresponding bit is 1.

bit 11 - floating point arithmetic

bit 10 - format control

bit 9 - boolean arithmetic

b. Power routines, A**B, A**I, I**J. The use of these routines is

determined by the lower 3 bits of low core location TABLCl, a

routine being needed if its corresponding bit is 1.

bit 2 - I**J

bit 1 - A**I

bit 0 - A**B

c. Library functions explicitly refered to by the source program.

The use of these library functions is determined by their app­

earance in an IDLIST entry. They are identified by their BCD

FORTRAN names.

-7-

Pass2 then prepares from this information a condensed table--5

low _core words beginning with SUBRTN--which can be retained throughtout

compilation and referred to when necessary. The bits in this table refer

in order to the transfer vector numbers of the library functions with bit

0 of. SUBRTN referring to transfer vector number 5. This table is intially

cleared. Then. if format control (FORMAT) is required the bit corre~ponding

to input control (INPUT, transfer vector number 45) is set to 1. Next the

bits in TABLBI co~responding to the power routines are moved to their proper

place in the table. and if. A**B is called. the bits for LOGF and EXPF are

set. Now Pass2 begins to search the IDLIST for library function entries.

When one is found, it is moved to low core, and its BCD name compared to

those in LIBTBL. If a match is found, the proper bit is set to 1 in the

table, and a search of CALTBL is made t·o see if this function calls and

other library functions, and, if so, also sets the proper bits for these

functions.

Pass2 now uses the condensed table beginning at SUBRTN, and INTERf

to allocate storage for these routines.

This is done sequentially. subject to the restrictions stated above.

The lengths of the routines are obtained from INTBL.

-8-

The final length of the interpreter and library functions is then decre-

monted by 1 and stored in locations BNKINT, INTLTH as a 15-bit quantity. The

decrement of 1 is to compensate for the fact that the first word of object code

is assigned relative location 00001 instead of 0 0000. Since the obje-t code

' begins immediatly following the interpretef and library functions, adding the

increment now in BNKINT, INTLTil to a relative object code.location gives an

actual object code location. Pass2 now uses this information to compute the

current actual last object code location+ l, leaving this 15-bit number in

On'LANK OBI.AST. At this point, and at each subsequent point where OBBANK,

OBI.AST are increased,a test is made to sec that the last object code entty is

not so close to the last data I constant storage entry as to not leave room

for a sufficient number of function erasable locations for the excution of thv

program. If this is the case location LONG3W is set non-zero so that the mes-

sage OBJECT CODE EXCEEDS MEMORY appears on the memory map.

3. Generation of Pseudo B-Boxes .
At the time of excution of the source program, the addresses of elements

in arrays are determined as a fixed base address and 15-bit variable quantity

which is added to the base address. The base address is in the instruction

being excuted, It is computed by the compiler, and is determined by the con-

stant information in the source program subscript expression to which it re-

fers. The variable quantity is saved in the pseudo b-box for this subscript

expression. It depends upon the values of the integer variables involved in

the subscript expression and is kept current as these values change by means

of the interpretive UP instruction, discussed in the next section.

-9-

The information necessary for the generation of a pseudo b-box by Pass2

is left by Passl as a pseudo b-box IDLIST entry. Pass2 generates the pseudo

b-box, assigning as its first object code location the current value of OBBANK,

OBI.AST, and puts it out with the object code. The object code location is then

saved in the IDLIST entry so that all LX (load index) instructions can be co -

rrected at a later time. Finally OBBANK, OBBLAST are increased by the length

of the pseudo b-box just generated. When all pseudo b-box IDLlST entries have

been processed, PASS2 begins the generation of UP-subroutines.

The pseudo b-box IDLIST entry has the form

2; level; length of entry-3 (1,4 or 6)

16 b (Fl) ; b (il)

A (Fl)

A (il)

b (F2); b (i2) ; b (F3); b (i3)

A (F2)

A (i2)

A (F3)

A (i3)

(missing

(missing

(missing

(missing

(missing

if dim = 1)

if dim = 1)

if dim = 1)

if dim = 2)

if dim = 2)

Where Fl, F2, F3 are multiplicative 15-bit quantities, and il,i2, 13 are the

idlist locations of entries for the integer variables which appear in the euh­

script expression. These integer variables do not affect the form of the pseudo

b-box; they affect only the as3ociatcd UP subroutine. The pseudo b-box; gene-

rated by Pas~2 has the form

0

0

b (Fl), b (F2), b (F3), dimension (1,2, or 3)

A (Fl)

A (F2)

A (F3)
-10-

Where of course, only those Fi up to the dimemsion of the b-box appear. The

idlist entry is then altered by replacing the 15-bit quantity b(Fl), A (Fl)

by OBB~K, OBLAST.

4. Generation of UP-subroutines

the pseudo b-boxes are kept current during excution in the following way:

in a subprogram in which dimensioned variables are present, interpretation in­

structions which might change the value of an intefer variable, I, are follow­

ed by the interpretive instruction UP (A(UI) where the address A(UI) refers

to the UP-subroutine for I. The UP instruction causes each pseudo b-box involv­

in~ I to be increased or decreased by the proper amount.

The UP subroutine for I has the following format:

•

X;O; 2; b (I)

A (I)

Dl; 0

D2; 0

Dk; 0

m

n

0 ; b (BBXl)

A (BBXl)

0 ; b (BBX2)

A (BBX2)

7, b (BBmt)

A (BBXk)

Object code location of I. X = O, unless

A (I) is in erasab1e storage in which case

I • 4

value of I at last

UP (A(UI) instrucLon

Where BBXj is ab-box in which I occurs in dimension Dj. A 7 in bits 3-5 of

an entry , e. g. Dk;0;7;b(BBXk)

-11-

A (BBXK) signifies that this is the last entry in this

UP-subroutine. If the object code location of I. b(I), \(I), is in function

erasable storage, then the first word of the UP-subroutf.le is 4; O; 2; b(I)

(c:O)

Pass2 begins this procedure by searching the idlist for integer variables.

When ·an integer variable is found the idlist is searched for pseudo b-boxes

in which it is involved. If the integer variable is not involved in any

pseudo b-box, no UP-subroutine is generated and an idlist entry of the form

O;O;O; length - 3

22 b(I)

A(I)

7777

7

is made at the beginnig of the IDLIST.

If this integer variable does occur in some pseudo b-boxes the inf or­

mation from all such b-boxes is collec~ed and an UP-subroutine generated and

written on the end of the object code.

An IDLIST entry of the form

O; O; O; length - 3

2 1 ; b(I) ; OBBANK

A(I)

OBI.AST is made at the beginning of the idlist. Here

OBBANK, OBI.AST refer to the 15-bit address in those locations, which will

now be the starting address of this UP-subroutine. OBBANK, OBI.AST are

then increased by the length of the UP-subroutine.

-12-

When all integer vafiables have been processed and their UP-subroutines

generated, generation of the preliminary object code is complete. PASS2 now

adjusts OBBANK, OBLAST by l or 2, if necessary, to insure that there are an

itegral number of function erasable locations in the bank of OBBANK, i. e.

that 4096D - OBI.AST is divisible by 3. The object code buffer is also written

onto tape 2, followed by an end-of-file.

5. Diagnostic Messages

Pass2 now reads the next record on the systems tape, the diagnostic

messages. This record overlays those parts of the code which have been

discussed so far. A search of the idlist is then made for unassigned labels.

An unassigned label is either a statement number, FORMAT statement, or

SUBRllUTINE name with the relative address 0,0000., or a library function with

bit 10 0 in the first word of the corresponding IDLIST entry. (This bit is

set to 0 earlier in Pass2 if the library function is not one of those on the

systems tape.)

If no unassigned labels are found Pass2 proceeds to test for diagnostics,

otherwise Pass2 sets location MAPSWC, which is initialized to -1, to 0, and

brings in the memory map 1/0 driver from the systems tape by means of a re­

turn jump to subroutine MAPIN. Thi5 subroutine brings in the memory map

output driver and positions the systems taps at the beginnirtg of file J,

If the option of supressing the memory map has been made, an error stop

will occur at 0,5772. Compilation can either be stopped at this point,

or the number of a desired output driver can be entered into the A-register

and compilation continued. The heading UNASSIGNED LABELS is then put out

followed by a list of the BCD identifiers of the unassigned labels.

-13-

After all unassigned labels have been treated a test is made to see if

low core locations DIAGNS is 0. If so Pass 2 proceeds to the normal memory

map procedure. Otherwise Pass 1 has detected errors in the source program,

and there must be output in a usable format, MAPSWC is now increased by 1.

If the result is not zero the memory map output driver is already present in

memory. Otherwise it is brought in by a return jump to MAPIN. The diagnostics

headings are then output, and tape 2 is rewound to get the diagnostic messages

left there by Pass 1. These diagnostic messages are in the form of binary

records of length 80d in which only words 2-3 are significant. These four

words contain the following information:

word 2 b(Id)

word 3 A(Id)

word 4 increment

word 5 error

where b(Id), A(Id) is the IDLIST address of the first label preceding the

statement in which the error occurred and the increment is number of state­

ments from the last label statement to the offending statement. The error is

designated by a number 60d. Pass 2 then gets the statement label from the

IDLIST, and a descriptive phrase describing the error fro~ the table of

diagnostic messages and outputs this information, one linE for each error •

•
There is one further diagnostic test which is made after all diagnostics

are out and before the memory map is prepared. This is a test (LONGSW = 0)

to determine whether or not the object code has exceeded the available

memory. If this condition is present the appropriate message will appear

before the memory map.

-14-

If this condition is present, or if .there have been diagnostics

or unassigned labels, DlAGNS is set non-zero at this point. Compilation will

then stop (an error stop at 5432) after the memory map is out.

6. Memory Map

The memory map is essentially a listing, by type, of the contents of the

IDLIST. It is produced in a completely straight forward fashion, i. e. a

search of the IDLIST is made for a particular type of entry. If one entry of

a desired type is present, then the appropriate heading is output, followed

by a list of entries of that type. The last line of the memory map is headed »:

ERASABLE STORAGE. The numbers given ate respectively the first word of function

erasable storage and the first word of constant I data storage.

7. Condensation of the Idlist

Pass2 is now ready to begin the correction of the preliminary object code.

Since this object code may occur and and all of the locations after its known

first location, it is necessary to save that information in thP- IDLIST which is

required in these corrections in the lower part of memory. Whnt is done is that

the Idlist entries for statement n)'r.tDcr:;, i:iubroutines, pseudo b-boxes, fofmat

statements, both types of UP-subroutines, plus entries for Do loop initialization

are reduced to the following condensed form: x ; x ; b(Ob)

A(Id)

b(Id)

A(Ob), where Ob is

the Object code location, and Id the Idli~t location of the statement in question.

It is not necessary to retain the type of statement. These condensed entries are

then moved to the lowest currently available part of memory, be3inning immediately

after the coding which updates the object code. Condensed idlist information

is accumulated until it exhausts the idlist, or until it reaches the smaller of

-15-

Constants and the coding fol assigned GO TO'S are written onto tape 2 during

thi3 process in the following formats:

1. Floating point constants:

1 l ; 0 ; b (OB) (Ob is object code location)

A (Ob)

2. Integer Constants:

12; 0 b (Ob)

A (Ob)

value

(3 words)

(2 words)

3. Assigned GO TO'S (ASSIGN I TO •••)

12 0 b (Ti) (Ti) is storage

A (Ti) location for the GO instruction

GO (=76) b (I) (I) is object code location

A (I) of stateme~t number I.

When the IDLIST is exhausted, the remaining constants in the output buffer

are wtitten onto tape 2, followed by an end-of-file. The completed library

function transfer vector is now written onto tape 2, followed by an end-of-file.

8. Banks 1 through the last available are cleared to 0000.

9. Correction of Preliminary Object Code

Tape 2 is now rewound, and the first file, containing the preliminary object

tode and format state•ents from Passl, is loaded. This code now occupies its

final machine locations. Now knowing the beginning of the object code, the len­

gth of each instruction, and which types of instructions require corrective

action (the types described earlier always need coerection) it is a simple

matter, using the condensed IDLIST and the table of true library function

transfer vector numbers, to correct the object code.

-16-

10. Loading of Library Functions and Interpreter Modules

Pass 2 now loads Pass 2, Part 2 from the systems tape, overlaying Pass 2

Part 1 beginning at location 0 0402, and transfers control to this location.

Then the pseudo-b-boxes, UP-subroutines, constants, and assigned GOTO's are

loaded into their proper memory locations, and the completed library function

transfer vector brought into a temporary location following the coding of Pass2 ~

Bart 2, but not exdeeding the memory which will be later occupied by the

control section of the interpreter. A test is now made on selective jump

switches 1 and 2, and if these are set the appropriate object code lister is

read from tape 1, and a listing of the object code produced. Execution is

not possible, otherwise tape 1 is positioned at the beginning of file 4 and

tape 2 is rewound.

At this time, the library function table in the five words beginning at

SUBRTN, and the interpreter module information in low core location INTERP

is still correct. Pass 2, Part 2 now goes sequentially through the transfer

vector numbers, beginning with 2 (= floating point arithmetic) checking each

one to see if it is required by this compilation. If the routine is required

Pass 2, Part 2 searches forward on tape 1 until a routine with this transfer

vector is detected. If no such routine is present there will be an error

stop at 0 0722. If the proper routine is found it is then loaded relocatably

beginning at the address for this routine given in the transfer vector,

using this address also as a relocation incrememt. The routines in the fourth

file are OSAP binary format, and this relocation is accomplished in the usual

fashion when the routine in question goes in bank O. For those routines

which go in bank 1 there is the complication that those words which need to

be increased by the relocation increment are usually part of the 15-bit

address in a two-word interpretation instruction.

Hence for routines which go into bank 1 the loader not only adds the

relocation increment to indicated words, but also inc1:ements the preceding word

by one.

The transfer vector is now moved to the locations beginning at 0 0100.

The interpreter control section is then read in as one binary record (file

5), and compilation is complete. If no selective stop switch had been set

execution will begin.
-17-

160-A FORTRAN COMPILER PASS II

Generation of UP subroutines

Symbols: Same as for pseudo B-boxes

1. Set TABLCl TABLC2 !DI.AST.

2. Set flag for 1st time through IDTYPE.

3. Return jump to IDTYPE.

4. -0 means IDLIST exhausted exit. If not 02 back to 3.

5. Make IDLIST entry for this UP subroutine.

6. Save TABLC2. Set TABLCl TABLC2 IDLAST.

7. Set flag for 1st time through IDTYPE.

8. Return jump to IDTYPE.

9. If -0 go to 13, if not 17 back to 8.

10. Return jump to IIMOVE.

11. If I not mentioned in this B-box go to 8 .
•
12. Move infonnation about I into UP subroutine area. Go to 8.

13. Finish·UP subroutine.

14. Return jump to OUTBUF.

15. Set TABLCl TABLC2 Value of TABLC2 savel in 6.

16. Back to 2.

-18-

160-A FORTRAN Compiler Pass 2

Output constants and condense IDLIST

1. Initialize IDTYPE

2. Return jump to IDTYPE

3. If - 0 goto 4., otherwise a transfer vector as follows:

11,12 (constants) write constant on output tape,~o to 2.

l,Z,3,4,5,6,7,10 (variables) and 15 (library functions) go to 2.

21,20,13,14,17 (assign, up subroutine labels, subprogram names, and pseudo b-boxe
create a condensed IDLIST entry of the form

0,0,b (OBJECT CODE LCN) b (IDLIST LCN)
A (IDLIST LCN)
A (OBJECT CODE LCN)

go to 2.

22 (unused UP-SUBROUTINE) created condensed idlist entry of the form

0,0,0, b(IDLIST LCN)
A (IDLIST LCN)

7777

go to 2.

4. Output last block of constants.

5. Exit.

-19-

160-A FORTRAN - Compiler Pass 2

Load and update object code.

LOADER:

FIX

OBJECT:

1.

2.

3.

Subroutine to load object code.

Subroutine which replaces IDLIST location with correct object code
location.

Current object code location.

Load object code beginning at end of interpreter + library.

Initialize OBJECT to first object code location.

Get instruction in OBJECT, then go to a transfer vector as follows:

O, 2-43: OBJECT = OBJECT + 1, go to 3.

44 (LIX) return jump to FIX, OBJECT = OBJECT + 2, go to 3.

45-75 OBJECT = OBJECT + 2, go to 3.

76-77 (UP, GO) return jump to FIX, OBJECT OBJECT + 2, go to 3.

01 (TRM) test lower 6 bits of instruction.

if RETURN; OBJECT = OBJECT + 1, go to 3.

CMPUTD; OBJECT = OBJECT + 3,

la. Return jump to FIX.

lb. OBJECT OBJECT + 2, m = m - 1.

le. If m = 0 go to 3 otherwise back to la.

IF; OBJECT = OBJECT + 1, C(OBJECT) = B*C (OBJECT)

2a. Return jump to FIX.

2b. C(OBJECT) = 8*C(OBJECT, if not 3rd back to 2a.

2c. OBJECT = OBJECT + 4, go to 3.

-20-

IFOV, IFDVCK:

CALL

4. Exit.

OBJECT = OBJECT + 1, C(OBJECT) = 8* C(OBJECT)

3a. Return jump to FIX.

3b. C(OBJECT) = 8* C(OBJECT) if not 2nd, go to 3a.

3c. C(OBJECT = 8* C(OBJECT),

3d. OBJECT =OBJECT+ 2, go to 3.

OBJECT = OBJECT+ 1, return jump to FIX, OBJECT = OBJECT+ 2n,
go to 3.

-21-

SECTION 2.2

Compiler Pass II

160-A FORTRAN Listing

•

1. Test low core location LISTRN to see which output medium, if any,
has been chosen for the listing. If no listing has been opted,
exit. Otherwise bring the appropriate output routine in from the
systems tape.

2. Set TABLCi TABLC2 IDLAST.

3. Set HEDSWC -1.

4. Return jump to IDPE.

5. If -0 go to 18, if not 2 (integer variable'> back to 4.

6. HEDSWC = HEDSWC + 1.

7. If HEDSWC I~ go to 10.

8. Print INTEGER VARIABLE headings.

9. Enter information for integer variable.

10. Save TABLC2, set TABLCl = TABLC2 = IDLAST.

11. Return jump to IDTYPE.

12 • If not 22 or 23 (up subroutine) back to 11, if -0; error.

13. Compare to integer variable if no match, back to 11.

14. Enter the up subroutine information in the line.

15. Return jump to output subroutine.

16. Set TABLCl = TABLC2 = value saved in step 1.

17. Return to 4.

18. Set TABLCl = TABLC2 = IDLAST, HEDSWC -1.

19. Return jump to IDTYPE.

20. If -0 go to 24 if not 01 (floating point variables) back to 19.

21. HEDSWC HEDSWC + 1, if HEDSWC I 0 go to 23.

22. Output FLOATING VARIABLES heading.

23. Output IDLIST information, back to 19.

24. The rest of the entries are generated in the same manner as the
floating variables, above. For constants conversion will be
required.

After all pertinent IDLIST information has been written the
following will be done.

la. Compute the length of erasable and output.

-2-

SPECIFICATIONS FOR LISTER

LISTER is a closed subroutine, entered by a JPR to the first location,

which will write one 80 character record from location 100 in bank zero.

If A is equal to zero upon entry, an end of file record is written.

Characters are converted for output if necessary. All bank settings

are assumed to be zero upon entry.

There are six routines available on the system tape which may be used

interchangeably. A parameter is supplied to the system during operation

which governs the choice of the routine to be called. All available

routines exist in one file on the systems tape in binary format. The

names of the routines and the equipm~nt required are as follows:

CDLIST - 523 card punch (1610)

PCHFLX - paper tape punch

WRBCDC - 163, 164, or 606 magnetic tapes (unit 3)

LPRC - 1612 printer

Wl607C - 1607 magnetic tapes (unit 3)

LP166C - 166 printer

-3-

Procedure: CDLIST

1. Enter by JPR. Is A= O? Yes, go to 5.

2. Initialize counters. Zero card image area.

3. Convert BCD codes to Hollerith card image (80 characters).

4. Wait for card punch ready. Initiate buff er action to punch.

5. Set exit address and return. (A= return address).

-4-

Procedure: PCHFLX

1 •. Enter by JPR. Is A= O? Yes, go to 8.

2. Initialize to punch an 80 character record from 100 to 220. Select

paper tape punch and punch an upper case code. Is the first

character a page eject code (BCD l)? Yes, go to 9.

3. Add one to the line counter. Is a page eject required? Yes, go to 9.

4. Adjust record length to delete final blank characters. Is the entire

record blank? Yes, go to 7.

5. Convert one character to flex codes. Punch character and necessary

case codes. Is this the last non-blank character? Yes, go to 7.

6. Go to 5.

7. Punch a carriage return code (end of record).

8. Set exit address and return. (A = return address).

9. Punch six carriage return codes. Reset the line counter. Go to 3.

-5-

Procedure: WRBCDC

1. Enter by a JPR with A entry parameter.

2. A= O? Go to 11.

3 •. Initialize error counters; select even parity (BCD). Store (BCD)

blanks in first 4 locations of buffer.

4. Write tape 4 (100 to 220). Status response O? Yes, go to 12.

5. End of tape indication? Yes, go to 9.

6. Is this the fourth try? Yes, go to 7. No, backspace go to 4.

7. Is this the fourth EOF? No, write EOF, backspace and go to 4.

8. Stop. Run go to 12.

9. Backspace, write 2 end of files, and rewind unload tape. Halt. Run

go to 4.

10. Select even parity (BCD). Write end of file record.

11. Return.

-6-

Procedure: LPRC

1. Enter by JPR. Is A= O? Yes, go to 5.

2. Select 1612 printer. Add one to the line counter. Is a page eject

required? Yes, go to 6.

3. Does the first character request a page eject? (BCDl) Yes, go to 6.

3a Wait ready. Store blanke in first three locations of print buff er.

4. Print from 101 to 220 and advance paper one line.

5. Set exit address and return.

6. Eject the page. Reset the line counter. Go to 4.

-7-

Procedure: Wl607C

1. Enter by JPR. Save the contents of the A register. Select write

tape 4 in coded mode and wait for tape ready. Was an end of file

record requested? Yes, go to 7.

2. Initialize counters. Add one to the line counter. Is a page eject

required? Yes, go to 8.

3. Pack the 80 character record, two characters per word. Store packed

BCD blanks in first two locations of buffer.

4. Write the record (from 100 to 150) and wait for tape ready. Is the

end of tape indicator set? Yes, go to 9.

5. Is there a parity error? Yes, go to 10.

6. Set exit address and return. (A = exit address)

7. Write an end of file record. Wait for tape ready. Go to 6.

~· Set the first character to BCD 1 and reset the line counter. Go to

3.

9. Backspa~e, write 2 end of files, rewind tape, and halt. If restarted,

go to 4.

10. Backspace the tape and wait ready. Is this the fourth consecutive

error? No, go to 4.

11. Write an end of file record and wait ready. Is this the fourth

consecutive error procedure? Yes, halt. If restarted, go to 6.

12. No, reset error counters and go to 10.

-8-

Procedure: LP166C

1. Is A= 0 upon entry? Yes, go to 5.

2. Initialize and set the first three characters of the print record to

blanks. Pack the remaining record two characters per word. Wait

for printer ready. Print from 100 to 150 and space paper.

3. Set exit address and return. (A = 0).

-9-

SECTION 3.1

160-A FORTRAN-Variable Length Interpreter

A given Fortran source program may well not require all the capabilities of the

interpreter for its execution. For this reason, and since lack of space is always

a problem, the 160-A Fortran interpreter will be written as several separate

subprogram~ a 11 but one of which need not be present for the execution of a given

source program. The compiler then prepares a suitable interpreter as a part of

the compilation process, and this is done as follows:

First, during pass I of the compiler, notice is taken of the use of various portions

of the interpreter, and this use is recorded by setting to 1 the appropriate bit

of the upper 4-bits of a given computer word. No one knows how many modules there

will be, but floating point arithmetic will be one of them and it will be assigned

the'left-most bit. The bit assigned to a given part of the interpreter also

determines the position of this part relative to the rest of the interpreter. I

thin~ it will also be possible to use the rest of this word to signify the output

medium for the memory map, and the information as to whether we compile and go,

or dump the object code, etc.

In pass II, a transfer vector is prepared to provide entry into those parts of the

interpreter which are used. This transfer vector is of fixed length and a given

position in it always denotes the same routine. Right now this transfer vector is

contiguous with the library function transfer vector although this is of course

not necessary.

The transfer vector is prepared by pass II using a table of lengths which is read

from the systems tape as a separate record.

-2-

The entry in the transfer vector is the first location used by this part of the

interpreter in this particular case.

Since all the variable parts of the interpreter are loaded relocatably it is not

necessary to provide for connections from them to the fixed part of the interpreter

•

SECTION 3.2

160-A FORTRAN INTERPRETIVE CONTROL SECTION

The interpretive control section is designed to execute the intention of the

various interpretive commands (object code) generated by the 160-A Fortran

compiler or used in library subroutines. It employs the following logic to

identify a command, transfer control via a switchboard, encode the command,

and return transfer to identify a subsequent command.

1. The bank and location counters (a 15-bit quantity) are restored to

reference the next instruction address minus one.

2. The bank and location counters are incremented to reference the next

instruction.

3. The upper six bits of the instruction are used to preset a 64 way

switchboard.

4. Transfer is directed to one of the various command encoder routines

via the switchboard described in (3).

5. The command encoder routines interprets the intention of the individual

commands with, in general, reference to various necessary subroutines.

6. Return transfer is in general directed back to (1), (ARITH) or in some

special cases as a GO TO command to transfer is directed to (2),

(ARITHA).

The interpretive control section is divided into three cl~sses of routines.

-2-

1. Routines designed to execute the intent of the various operation codes.

2. Special purpose routines needed as aids in implementing the first class

of routines.

3. Routines (macros) designed to execute the intent of various Fortran

Statements.

A complete description of the first class of routines will not be written. In­

stead, reference should be made to the attached write-up entitled "160-A Fortran

·Intermediate Language". A list of these routines with the operation codes

., implemented by the individual routines, will be listed.

A description of the second and third class of routines will follow in subsequent

paragraphs.

-3-

Class l Routines

BOCOO Operation code 00 Halt and Proceed

BOCOl Operation code 01 Drop Out, Transfer to Macro

BOC02 Operation code 02 Transfer, Return Transfer

BOC50 Operation code 50 Transfer to Power

BOC03 Operation codes 03,04 Relative Transfer

BOC05 Operation codes 05,06 Positive Jump

BOC07 Operation codes 07,10 Negative Jump

BOCll Operation codes 11, 12 Zero Jump

BOC13 Operation codes 13,14 Non-Zero Jump

BOC44 Operation code 44 Modify Fune tion Erase Counter

BOC45 Operation code 45 Store/Restore Pseudo Acea.

BOC46 Operation code 46 One Word Option

BOC47 Operation code 47 Transfer On Index

BOCi4 Operation code 74 Load Index Register

BOC76 Operation code 76 Go To, UP B-box

BOC15 Operation code 15 Store Pseudo Aces.

BOC16 Operation codes 16,17,20,21 Pseudo Acc. Arithmetic

BOC22 Operation code 22 Inverse Divide Pseudo Aces.

BOC23 Operation code 23 Load Pseudo Aces.

BOC24A: Operation codes 24, 35 Store Erase/Function Erase

BOC25A: Operation codes 25,26,27,30, Erase/Function Erase Arithmetic
36,37 ,40,41

BOC31A: Operation codes 31,42 Inverse Divide Erase/Function Erase

-4-

BOC32A: Operation codes 32,33,43 Load Erase/Function Erase

BOC34A: Operation code 34 Load and Float Function Erase

BOC52 : Operation codes 52,53,54,55, 2-Word Arithmetic
57,60,61,62

BOC56 Operation codes 56,63 2-Word Inverse Divide

BOC64 Operation codes 64,65,66 2-Word Load

BOC67 Operation code 67 2-Word Load and Float

BOC70 Operation code 70 2-Word Load Negative and Float

BOC51 Operation code 51 2-Word Store

BOC71 Operation code 71 2-Word Boolean

BOC72 Operation code 72 Function Erase Boolean

BOC73 Operation code 73 Boolean Shift

BOC75 Operation code 75 Three Word Conunand

-5-

Class 2 Routines

1. ARITH:

a. Reset the 160-A indirect bank setting to correspon~ to the

value of the location counter bank setting BANK.

b. Increment by one the location counter absolute value setting

LOCC.

c. Go to ARITHA.

2 ~ ARITIIA:

a. Transfer control to one of the various command encoder (class 1)

routines. This transfer is directed thru a swit~hboard of 64

locations based on the six bit operation code.

3. ARTSBA:

a. Increment LOCC by one.

b. If a bank change occurs go to ARTHSB.

c. Exit.

4. ARTHSB:

a. Increment the bank setting BANK by one.

b. Reset the indirect bank to correspond to the setting in cell BANK.

5. BSUBA:

a. Store the contents of the Fortran accumulator ACC into one of the

pseudo ~ccumul~tors ACCl; ACC2, ACC3 if the 160-A machi~e

accumu~ator equals 10, 20 or 30 respectively.
' '

b. Go to ARITH.

-6-

6. BOC35:

a. Calculate an absolute Erase location given the relative 4 bit

location contained in the low order bits of the current command.

b. Transfer, via a switchboard, to one of four routines depending on

one of seven operation codes.

35: BOC24A

36: BOC25A

37: BOC25A

40: BOC25A

41: BOC25A

42: BOC31A

43: BOC32A

7. BSUBCY:

a. Preset a return address in an exit switchboard for routine BOC24.

b. Go to BOC24.

8. BOC24:

a. Calculate an absolute Function Erase location given the relative

5 bit locat.ion contained in the low order bits of the current

conmand.

b. Transfer, via a switchboard, to either a preset location or one of

five locations depending on one of nine operation codes.

General Preset

24: BOC24A

25: BOC25A

26: BOC25A

27: BOC25A

30: BOC31A

-7-

31: BOC31A

32: BOC32A

33: BOC32A

34: BOC34A

9. 52SBA: This routine is used to reference normal 2-word operands.

a. Set the LOAD - FETCH - STORE option switch (BOPSW).

b. Bank setting of operand to BWDll.

c. Absolute location of operand to BWD12.

d. If the cormnand is not Index Register modified go to (g).

e. Contents of Index Register to BWD21, BWD22.

f. Return jump to BINTAD (15-bit add routine).

g. Go to 52SBB.

10. 52SBB: This routine is used to reference normal 2-word operands.

a. Set the indirect bank to the setting given in BWDll.

b. Interrogate the LOAD - FETCH - STORE option switch (BOPSW).

i. Negative indicates a STORE. The negative number indicates

the number of words to be stored. Store indirectly the

contents of the Fortran accumulator (ACC) into the operand

indicated by the location contained in BWD12.

ii. Zero indicates a FETCH. Load indirectly from the operand

indicated by the location contained in BWD12 into the operand

register (OPER).

iii. Positive indicates a LOAD. Load fndirectly from the operand

indicated by the location contained in BWD12 into the Fortran

accumulator ACC.

c. Exit.

-8-

Ll. BOC75: This routine is used to reference 3-word operands.

a. Upper 3 bits of modifier to BWD21.

b. Lower 12 bits of modifier to BWD22.

c. If the conunand is not index register modified go to (g).

d. Index register to BWDll, BWD12.

e. Return jump to BINTAD.

f. BWDll to BWD21, BWD12 to BWD22.

g. Set 3-word switch.

h. Go to ARITH.

12. 75SUB: This routine is used to reference Erasable and Function Erasable

operands.

a. Save option indicator in BOPSW.

b. If the 3-word switch is set go to (e).

c. Return jump to BINTAD.

d. Clear 3-word switch.

e. Set return address.

f. Go to 52SBB.

13. ACCOPR:

a. Store the contents of the Fortran accumulator ACC in the operand

register OPER.

14. BOPACC:

a. Store the contents of the operand register OPER in the Fortran

accumulator ACC.

-9-

15. BINTAD:

a. Add the two 15-bit quantities A and B and store the results in A,

where A is the low order 3 bits of BWDll plus BWD12, and B is the

low order 3 bits of BWD21 plus BWD22.

-10-

Class 3 Routines

This class of routines are referenced via a Transfer to Macro (00) command.

When one of these routines is referenced, the location counter is set at the

current TRM command. In general a list of information will immediately

follow the TRM command. The various lists and the meaning of the macros will

be discussed. In the following discussions b() means bank setting of, and

A() ~eans absolute location of.

1. IFSNSE:

IFOV:

a. Information List

i. b(nl); b(n2); O,S

ii. A(nl)

iii. A(n2)

S is a selective jump switch setting 1-7; where 1, 2, 4 are

single switch settings; 3, 5, 6 are double switch settings

and 7 is a triple switch setting.

b. Execute the intent of the IF Sense Switch Fortran statement

where nl is the transfer location if the desired switch is

set and n2 is the transfer location if the desired switch is

not set.

a. Information List

i. b(nl); b(n2); O; 0

ii. A(nl)

iii. A(n2)

-11-

b. Execute the intent of the IF Accumulator Overflow Fortran

statement where nl is the transfer location if the overflow

switch is set and n2 is the transfer location if the overflow

switch is not set.

3. IFDVCK:

4. IF:

a. Information List

i. b(nl); b(n2); O; 0

ii. A(nl)

iii. A(n2)

b. Execute the intent of the IF Divide Check Fortran statement

where nl is the trans.fer location i'f the divide check switch

is set and n2 is the transfer location if the divide check

switch is not set.

a. Information List

i. b(nl); b(n2); b(n3); 0

ii. A(nl)

iii. A(n2)

iv. A(n3)

b. Execute the intent of the IF Fortran statement where nl is the

transfer location if the arithmetic statement is negative, n2

for statement zero, n3 for statement positive.

-12-

5. CMPUTD:

a. Information List

i. M; O; O; b(i)

ii. A(i)

iii. b(nl)

iv. A(nl)

S b(nm)

S+l A(nm)

b. Execute the intent of the Computed Go To Fortran statement.

i is the integer control variable. Ni ••• Nm are the transfer

locations.

6. RETURN:

7. INCR:

a. Information List

None

b. Return control from the "Call" subroutine to the main program.

a. Information List

i. (Ml - M2) /M3

ii. M3

iii. 2, b(Z), 2, b(I)

iv. A(I)

v. A(Z)

b.

-13-

Where Ml, M2, M3 and I refer to the 9uantities in the DO statement.

DON I =Ml, M2, M3.

Z refers to the address where control is transfered to for

continuation of the DO loop sequencing.

Execute the intent of the DO statement iteration test. The

quantity (Ml - M2)/M3 is incremented by a count of one. If

the result of this reduction gives a negative quantity control

is transfered to the location Z. If the result is positive control

is transfered to the location subsequent to the !NCR macro (the

statement following statement N referenced in the DO statement.

SECTION 3.3

Floating Point O_P.erations

The section designated 3 WORD FRELIM in the ASSEMBLY LISTING contains
the entrance to all floating point operations. -t tests for special
cases, disassembles the Fortran accumulator (ACC> and operand (OP),
puts constants into,low core and exits to the proper subroutine.

Procedure: The header Sis left out in the foll~wing:

FSUB
FADD
FMLT
FDIV
ASK

I<AT

HVOP
TSTOV
LOKOP

CLA
DVY
HOV
TSTD

DI SAS

FORN

JFLX

Entrance to subtract
Enttance to Add
Entrance to multiply
Entrance to Divide
1, 0 or -1 into FLAG for Add, Multiply or Divide.
ACC = O? No, go to TSTOV. Yes, if not multiply
go to KAT. For multiply give 0 or overflow as OP
is finite or infinite and exit.
Divide? No, go to MVOP. Yes, if OP 1 O, exit.
Otherwise, go to DVY.
Put OP into ACC and exit.
Overflow? Exit.
OP f O? No, go to TSTD. Divide? Yes, go to DVY.
Exit, if add.
0 into ACC and exit.
Signal divide check.
Put overflow into ACC and leave.
Overflow? No, go to DISAS. Divide, go to CLA.
Otherwise go to MVOP.
Disassemble ACC and store into EXP, A2, A3, and A4.
(the floating accumulator). Disassemble the OP and
store into EXPB (EXP+ 1) and Cl, C2, and C3.
Determine SIGN according to whether signs agree
(+) or disagree (-). Put constants 1000,100,10
and 1 into OP.
Entrance for the fixed to floating conversion. Exit
to appropriate subroutine (add, multiply, divide).

Floating Point Addition

The floating accumulator (FA) occupies cells AS to Al, with the most
significant part last. Initially the addend D is put in the middle
(MA) of FA, i,e., cells A2 to A4 and the augend E into cells (C) Cl, C2
and C3. The difference in exponents d = expD -expE = FAC + 3TMOVE is tested
for being less than 9 (absolutely) and the greater of the two numbers D
and E is put into MA. The other is put into C (or the auxiliary storage
B). MA is decimal shifted FAC times and b (or C) is moved TMOVE to the
right as it is added into FA.

Procedure:

SAD DR

SC

CHOOS
EQX

Zero out f las, set up exit fromnultiply by 10,
determine which number is larger and fix exponent
of answer, EXP.
Exponents differ more than 8? No, go to ADJST
if differ by exactly 8. Otherwise go to SASSEM.
Set exit from PLCE and go there.
For equal exponents and A2 =Cl, choose OP to be
the larger and put 1 into HIGH.

LODE

ADJ ST

PLCE

SGNF
MLT

REP
SUCH
X2MLT

LEV
SARI TH

ADDER
SUB
INC

WHAT

ROH
SHOW

SHOW2

FAC2
FACl
DIFER
SASS EM

-2-

Signal exit from PLCE to SARITH, i.e., no decimal
shift.
Determine number of decimal shifts and moves
necessary.
Put the higher nwnber into MA (HIGH j 0 means
augend is larger and put addend into B).
Determine sign of answer
Special multiply by 10. Multiplies Al, MA by
powers (FAC+l) of 10 and leaves answer there. Used
by MULT and DIV routines as well. The arithmetic
is first done mod 2000 in each cell of FA and then
reduced to mod 1000 for the answer. The algorithm
is; lOAl into Al, 2MA into R (Cells SRl, SR2, SR3),
8MA into MA and R + MA into MA, with the answer
in Al, A2, A3, and A4.
Double MA
Switch for carries to Al.
Add R to MA and reduce mod 1000. Repeat multiply
by 10 if FAC j O.
Exit from routine.
Add-subtract section proper. The smaller number
(B or C) is added into cells A2, A3, and A4, or A3,
A4, and AS, or A4, AS according to TMOVE. Go to
SUB if signs differ.
Beginning of actual add.
Subtract routine.
A 1 negative? Yes, subtracted wrong way, go to
PLCE.
Propagate carries (ADDER routine may terminate
before reaching leading word).
Find first significant word.
If not Al, are there 8 digits in MA? If not, move
number to left so that in MLT, the 8 digits are
preserved.
Is leading word normalized? Greater than 997 Go
to FAC2. Less than 10? Go to FACl.
2 decimal shifts are necessary. Go to MLT.
1 decimal shift is necessary. Go to MLT.
Moves reru 1 t left so that there are 8 digits in MA.
Assembly of result. This section is used by MLT,
DIV, ADD and SUB. Also fix to float conversion
and READ use it. Tests are made for overflow and
underflow. The results are left in MA and exit
through CNFINI, which ordinarily then moves answer
to the ACC, except in fix to float.

Floating Point Division

169QU = 16aA/10cC

Length: 1278 cells from NFIXEX to NDIVEX (2517-2645 as of 4/4/62)

Description: On entry to floating divide (at ENTRYD), 32+a is in NEXPA;
32+c is in NEXP; A is in NA2, NA3~ NA4; and C is in NCI,

-3-

NC2, NC3. Upon exit (through SASSEM), 32+a is in
NEXP and QU is in NA2, NA3, NA4. The leading word is an integE
between 10 and 99.

Procedure:

1) Initialize: I = 1, 32+q = (32 + c) + 32 + (32 +a), j 2, Q = 6
2) If a C, then q = q + lj go to 4)
3) Set A = 10 • A
4) If A C, go to 6)
5) If A e, set A= A-C, Q = Q + lo(j-1), go to 4)
6) j = j-1
7) If j O, back to 3)
8) Set j = 3, Q(l) = Q
9) For next time through, set Q = O, I = I + 1

10) If I 3, go back to 3)
11) Otherwise process is finished. If 2• A C, ro~nd by increasing Q(3)
12) Transfer Q to A; exit.

Symbols:

I;
j:
Q:
A:
C:
a:
c:
q:

Counts words in the quotient
Counts decimal digits wihtin a quotient word
Accumulates one word of quotient
3-word divident (or remainder)
3-word quotient
Exponent of dividend
Exponent of divisor
Exponent of quotient

Floating Point Multiplication

Length: 1438 , from MCNGl to MSHOW (2646-3010 as of 4/4/62)

Description: Entry is made at MPX with 32 + a in EXP, 32 + c in EXPB,
A in MA2, MA3, MA4, and C in MCl, MC2, MC3. On exit from
the routine (through MSHOW), EXP contains 32 + p and PR
is in MA2 through MA7 in BCK format and with 1 MA2 99.
SHOW must noralize.

Symbols:

A:
C:
P:
PR:
LIER:
a:
c:
p:
j:

Multiplier (3 words in 5 word area) - also hold accumulated product
Multiplicand (3 words)
Partial product register (4 words)
Product - overlays A
One word of A used as a multiplier.
Exponent of multiplier
Exponent of multiplicand
Exponent of product (same storag~ as ~)
Counter for words of multiplier

-4-

Procedure:

1) Exponent work: 32 + p = (32 + c) - 32 + (32 + a), PR(4)
PR (5) - PR (6) =-- 0

2) A~ 10 A (original shift for scaling purposes)
3) j 3, COUNT ~ -10 for 10-bit BCK multipliers
4) Go to 10) to perform P =- LIER xC where LIER = A(j)
5) PR(j) = 0
6) PR(j+k) = PR(j+k) + P(k) in BCK for k = 0(1)3
7) j = j-1
8) If j O, go to 4)
9) Otherwise, (A= PR): EXIT to SHOW with address of leading word •

of product in the accumulator.
10) Set P = 0
11) If bit (11-COUNT) of LIER is 11 011 , go to 13)
12) Otherwise, P(k) - P(k) + C(k) in BCK for k = 1 (1)3 and where

carries can extend into P(O)
13) COUNT = COUNT +l
14) If COUNT = 0, return to 5)
15) Otherwise P(k) = 2P(k) in BCK for c = 0(1)3
16) Go to 11)

Plaaoing point operationa using the 168-2.

I. Format of numbera

•· Floating point

Floating point numbers ot the form t 2
1.r where I

11 a binary exponent, /E/S 17781 and 1 11 a

nornaali1ed 27· bit binary fraction, are repre1ented

by Sign bit exp+2008
l

Fnction
27 bite

Example11 A1 3 160-A words (octal) with the word containing

the exponent given tir1t1

l • 2014, o--·. O··•

2 • 2024, o---. O···

3 • 2026, o---, o---
·5 • 603.S, o---. o---
9. 2044, 4000, o--·

b. Integers

lntegera .re in the "standard" 22·blt format.

!xampleaa I • 0000 OOOI

40009 • 0001 0000

--l • 7777 7776

2. Ute of routina11

The floating point package la approximately 1008

in length. It is eelocatable vithin bank 0 u1ing

tha OSAP loader. The entrie1 for the varioua· function

.re H follows:

-5-

rtA\T lit eddreH

nx " +I

MULfiPLY •• +2

DIVIDE .. +3

SUBTRACT " +108

ADD .. +139

All operetton1 return to symbolic locetf.on ARITll.

Overflow 1et1 tymbolic locetion OVYLW non-Eero.

Dividing by 0 1et1 1ymbolic location DIVCHK nogative.

All operation• require five traneient low core location•,

plue • three word Operand regiater, also in low cont.

Vith the exception of the conver11on routine• PIX Ind

FI.DAT. the operations also require a three vord accum•

lator in low core,

:,.c- The 1Ht word of the operand reghter ii symbolic location

OP, the laat word of the accumulator aymbolic location ACC.

Numbers are 1tored "backwords" in the operend register

and accuraulator. v.e. • floating point I in the

accuraulator looka like

ACC - 2

ACC - 3

Ace

0-···
O····
2014

While the integer - 1 in the oporend regi1ter looks like

OP ·2 xxx

OP •I 7776

OP 7777

-6-

Under the1e eeaumptiona the operations give the follovina re1ult11

l'LOAT

PIX

MULTIPLY

DIVIDI

SUBTRACT

leplece the integer in the operand.

regl1ter by it• floating point equivalent

replece the f loattng point number in the operand

regi1ter by its integer equiv.

replace the contents of the accumulator by the

product of the contents of the accumulator end

the operand regieter.

Replace the content• of the accumulator by the

quotient of the contenta of the eccumuletor by

the contents of the operand reghter (ACC/OP)

Replace the contents of the accumulator by the

content• of the accumulator minu1 the content&

of the Qperand register. (ACC--OP)

Replace the content• of the accumulator by the

l\8Jl of the conteata of the accumulator and the

content• of the operand register.

OVerflow occur1 when the result of en operation ha1 an

exponent),2008•

-7-

SECTION 3.4

DOCUMENTATION OF I/O IN 160-A FORTRAN INTERPRETER

All words in capital letters ref er to actual symbols used in coding.

Thus ACC refers to the first cell of the FORTRAN accumulator, which

for short will be called the accumulator. OP is the first cell of the

operand. The machine accumulator will be referred to as·A (the A-register).

The I/O part of the interpreter is divided into several sections. The

fixed interpreter contains the Magnetic Tape and I/O List Control. Format

Control together with WOUT (the output conversion) occur as a separate

package and are present only when a format statement appears in the so..irce

code. Another subroutine called WIN (input conversion) is also call.al whenever

a format statement appears. Although it appears as a library I/O subroutine

it is really one of the several interpreter modules. All input-output

data is transmitted through a 171 word buffer in the fixed interpreter

(cells 200 to 371). Whenever a record needs to be transmitted a return

juvip is done to the necessary library 1/0 subroutine through the transfer

vector switchboard in cells 100 to 177. Only WIN and Flextype need to have

fixed transfer vector numbers, (44 and 7 relative to 100) the other routines

can be arbitrarily ordered. They may be in bank 0 or bank 1. There are

three entrances to the I/O from the macro switchboard; IOI, which is for

input, IOO, for output, and IOT, end of I/O. The next two succeeding words

of the object code after the transfer macro have bits set which give the

format location, if any, the library I/O transfer vector number, the tape

unit number, if any, and the type of magnetic tape operation if binary.

The form is as follows:

3 bit
unit

5
transfer vector

1
binary

3
format

bank

format location or tape backspace, rewind, read or write

The tape unit numbers are from 0 to 7 to correspond with the actual nwnbers

L to 8. The I/O list consists of a series of load instructions {for output command

lumbers are 32.& 64) store instructions (for input command numbers are 24 & 51)

Lnterlarded with various other commands for dolooping and upping B-boxes. Every

:ommand is interrupted and the unpaired load (or store) commands are interpreted as

iata transmission commands.

>ymbol

>EOF

;HFLAG

mRECT

1= 0 or 7777

1= 0

mNK ~ ZLOCC.

iBUF

iWAY

iTIP

iWID

iPEC

IREPl

:rF
IFORMF

:PARCT

:QUIK

:LOCLP

'BNK & FLOCC

:cHAR

HCNT

:OFFLG

- or +

0 or+

-1

0 or+

2525 or 5252

Low Cores Flags Used in Format

either first entry to format or re-entry after end of format

in the midst of Hollerith characters in format string

counter for nwnber of physical records in a logical record

current format string location

buffer counter {from 200 to 371)

input or output

contains BCD characters, E,F,I,O or A according to field specs

field width

decimal specification in E or F

number of repeats in a single field specification

first entry to format or the relative location in format strin~

that format has been processed to a data conversion specificati

upper for every left parens and downed for right. 0 is end of
format,

current character in upper part of word or lower part of word

relative position in format string of character following last
unquantified left parenthesis

location of start of format string

current character in format

hollerith counter

END OF FILE FLAG

-2-

Symbol

SDATRY

SPECT

SLLP

SREPAR

SNUM

IOI

IOO

ST SWAY

SP LUG

SBINAR

SB READ

ST RANS

Relative Flags in Fonnat Control

~
-1

Signals

data transmissive instruction has been encountered

-1 a field delimitor (i.e. /, or)) has not been encounte1

relative position of last quantified left parenthesis

number of repeats in a parens repeat

storage for integers in string, e.g., width or decimal•
specifications

I/O List Control Initialization

Entry for input, put -1 into SWAP and go to STWAY

Entry for output, put 1 into SWAY

Decode object code and put switchboard location of I/O routine into TROUT

determine whether binary and set SBINSW accordingly, set FBNK and

FLOCC

Short circuit switchboard to cause interrupt on every command. Zero out

flags in format, initialize buffer counter, set SEOF I 0 to flag

first entry to I/O. Set FLOCC. If binary called for, go to SBINAR.

If input, read a record. Otherwise exit to ARITH.

Signal to I/O routine binary operation by negative tape number in UNIT.

Set SFORMF negatave and zero out SEOF. If not data transmission,

go to SMVTAP. If read, go to SBREAD, otherwise write called for.

Zero out first cell of buffer and set SBRECT. Exit to ARITH.

Enter 370 into SBUF to cause a record to be read on first store conunand

and exit to ARITH.

Connection With I/O Library Subroutines

Enter by JPR. Negative number in A is stored in SLENG (parameter to

tape routine) to backspace n records and go to STLNG. Ge to SBUFF

on positive entry.

3

SB ERR

SBWRT

STWY

SB RED

SB REED

SBINTR

SBWRIT

Magnetic Tape Control (Can't)

Stop on error return from tape subroutine (only parity error

encountered, i.e. - or+ in A). If read, go to SBRED.

Zero out first word of buffer to signal not final record of

logical record and up SBRECT.

Write binary. Transfer accumulptor to buffer and go to TSTLDD.

Branch to read (SBREAD) or write {SBWRT).

Store first word of record into counter.

Transfer three words from buffer to accumulator and exit.

Terminating I/O entry. If read, read to last record of logical record

and exit. Otherwise go to SBWRIT.

If write end of file, exit. Put in record count and write record.

May be empty except for record count.

SBTX Transmit record. Nonzero return indicates error. Exit to SCOMEX to

SMVTAP

SBCDBK

RWDEOF

SFORMT

TGOSEN

restore switchboard and return to ARITH. Rewind, backspace and

write end of file.

If A f 0 go to RWDEOF. Otherwise backspace one physical record.

Read the record in binary to find the mode. If parity error

return, go to BCDBK. Halt on other error (i.e., nonzero).

Examine bits 4 to 10 in first word of buffer to find number of

records in the logical record and backspace accordingly.

Examine first word of buffer to see whether bits 0 to 3 are set to 1.

If so, go to error halt, since this is an illegal BCD code.

Otherwise flip UNIT positive and backspace one record.

Rewind or write end of file according to whether the read or write

library subroutine is called for.

Format Control

If SFORMT or SREPl = -1, go to TGOSEN. If SEOF f O, go to SETFOR.

Otherwise go to SELBNK.

If SDATRY = -1, go to WIN or WOUT. Otherwise reset SFORMF and go to

TSTLDD.

SAFT Entry from WIN. If SREPl set, go to TSTLDD. Otherwise go to SELBNK.

4

SBUFF

SETSMP

SWINT

STINT

SD ATC

STLDW

..SLOAD

TSTLDD

SWTBR

SC OF OR

SLDEXT

IOT

SBIN

Connection with I/O Library Subroutines (Con't.)

Set up length of record. If blank record, put two blanks at

start of buffer. 0 length means rewind in case of read tape.

Reset SBUF to 200, start of buffer.

Jump to 1/0 in bank 0 or bank L according to whether vector

is even or odd.

SWITCHBOARD INTERRUPT

Enter here for every command in I/O list. If op code is 75,

exit to SWTF+l. If a store command (24 or 51) go to STINT.

Ohterwiee go to STLDW.

Zero out SLDSWT (cancels any call for a load command). If

output go to SWTBR. Otherwise test and clear store disable

STSWT (= -1 diables store, otherwise not set). If SEOF not

set go to SDATC. If SIF = 0 go to fonnat processing first.

Otherwise read record before executing store.

Flag call for data (a real store or load encountered) and go to

SCOFOR.

Clear store disable and test load switch. If not set go to TSTLDD.

A load instruction encountered. If SEOF set, go to SGOFOR •

Otherwise clear load switch and flag data call by going to SDATC.

Test for load instruction (32 or 64). If yes, put -1 into SLDSWT

and STSWT.

Exit on either SFORMF or SREPl set.

Branch to binary or format control.

Return to macro switchboard.

Terminating instruction in the I/O li;t. Branch to binary or

reset instruction inrracro switchboard. If input, exit. If

output, send out record if not empty.

Magnetic Tape Control

If buffer full (or set on entry read I/O) transmit record, unless

on read binary, the last record has been read, then do not

read any more records.
5

SHCON

Format Control (Con't)

Hollerith is packed in format string. A check is made of the field

width so as not to exceed buffer. Error halt occurs if too

large.

SENF End of format indicated. Reset SPARCT and SIF. Put 7777 into SFORMF

SFEXT

SETFOR

SFORA

SD ELIM

SPROC

SDOt-n>R

SFETUP

SELBNK

SFETF

TSLFT

SI.AS

SENSP

SFLSPC

and SEOF and transmit record if output. Go to TSTLDD.

Check to see if this was first entry to format processing. rf so

and output is called for, exit to STLDW+l rather than TSTLDD; if

input, goto SFORMT. Otherwise go to TSTLDD.

Reset ZBNK and ZLOCC unless SIF = o.
If SHFLAG i O, go to SHCON (Hollerith).

The format characters are tested in the following order: blank,),

(, /, digit, X, H, and if none of these, the character is stored

in STIP. Blanks are ignored. In the following if a delimiter,

i.e.,) /, is encountered test SPECT and go to SENSP first

before performing required operation. If right parenthesis, up

SREPAR. If +, go to SDONPR. Otherwise set SIF to SLLP and go

to SETFOR.

Put -1 into SFORMF and go to SFEXT.

Reduce SPARCT. If O, go to SENF.

Fetch character from format string.

Set .indirect bank to ZBNK to fetch. Restore to O.

Put upper or lower character into SCHAR according to SQUIK.

If "(", up SPARCT. If SNUM I O, go to SREGP. Otherwise set up

infinite repeat by putting SIF into SLOCLP. EXIT*.

If slash, transmit record.

End of field indicated. If STIP has H or X in it, go to SDELIM. If

E or F, put SNUM into SDEC, else into SWID and go to SPROC.

Put -1 into SPECT. If character is a digit go to SCINT. If X or H

flag, go to SDELIM. Otherwise put -SNUM into SREPl and 0 into

SNUM. EXIT.

* EXIT means return to SFETUP, the normal return after processing a character.

6

SREGP

TSX

SC INT

SHCONl

VI SUB

VADD

VADDRT

VSUBT

VXT

VINTML

VFINMR

VXTQ

VI.DC

VZERO

VSAVR

VSMD

Format Control (Con't)

Put - SNUM into SREPAR, SIF into SLLP, 0 into SNUM and .EXIT.

For X, add SNUM to SBUF for output, and for input, put blanks into

buffer.

Put 10-kSNUM + SCHAR into SNUM. EXIT.

Put -SNUM into SHCNT and SHFLAG and 0 into SNUM. EXIT.

Integer Routines in the Fixed Interpreter

Add

Entry for Subtraction. Flip operand to complement.

Entry for addition. Partial results are accumulated in the accumulator

and the necessary adjustments for differing signs, carries, etc.,

are made later by testing the appropriate bits. If signs differ

go to VSUBT.

Like signs. Exit if no carry from lower part. Otherwise correct lower

word and carry to upper and exit.

Signs differ. Combine lower parts of operand and accumulator and

exit. Otherwise test for negative zero. If not, go to VNEGRE

for negative result or VNZHI + 1 for positive result.

Multiply

Exit. Check for minus zero or plus zero and exit.

Entry for multiply. Put sign of answer in VISIGN. Make operand and

accumulator positive.

Detennine multiplier, i. e., the number whose upper word is zero.

Not both of the numbers can be more than 11 bits since then over­

flow would result. The larger number will be called the multiplican

It goes into cells VMl and VM2.

Flag overflow.

If accumulator is multiplicand, put it into VM2.

Zero answer.

Operand in multiplicand.

Store into multiplier VMLTR and zero out accumulator.

7

VSTAR

VFIN

Integer Routines in the Fixed Interpreter (Con't)

Multiply

HLTR is shifted right once each entry until O, whereupon exit.

After each shift test the lower bit. If set, add in multiplicand

to accumulator.

VDOM Double the multiplicand and return to VSTAR unless overflow, then go

VINTDV

VTSNEG

VEND IV

SHIFTY

VCoMP

VDIFER

VMOVQ

VNXBIT

VFIRS

VDQHI

to VXTQ.

Divide

Entry for divide. Set up exit in VDIVEX so that switchboard can be

used to go to the add routine. Put sign of answer in SDIGN.

There is a 4-word temporary accumulator VJl, VJ2, VJ3 and VJ4,

the last 2 cells of which contain the positive accumulator.

Check for zero operand, set divide check if so and exit.

Set operand negative (for future subtracts) and zero out accumulator

and quotient XSACCJ (2 cells), and set VQUO, the indirect

addresser for the quotient.

Exit from routine. The lower part of the remainder is saved.

Fix sign of answer and exit.

4 word left shift of dividend.

Compare new dividend and the divisor if smaller, go to VMOVQ. If

upper parts are equal, go to VEQHI.

Otherwise do a subtraction and enter a 1 bit into the quotient.

Right shift quotient bit VQUOB and if not zero, go to SHIFTY.

Up VQUO and go to exit if end.

Set up VQUOB and go to VSTOB.

Compare lower parts of dividend and divisor and go to VMOVQ if

dividend is smaller. Otherwise go to VDIFER.

8

WSIGN

BCNT

TSAV

CANSWT

SGNEXP

WEXP

KEEP1(2&3)

SD EC LC

WLET

NUM

KTDATA

Fl.JNCD

SDECTP

WOUT

ACON

*
FINISH

TOOUT2

FETCH

*
(FCON)

Flags Used in WOUT (Output Conversion)

Low Core

Sign of Result.

End of field indicator.

Temporary for indirect addressing in integer conversion.

0 for E, -1 for F.

Signed exponent.

Absolute value of exponent.
I

Fractional part of floating point number.

Absolute location of decimal point in buffer (for a field).

Start of location of significant digits to be stored in buffer.

Indirect addressing for KEEP.

Indirect addressing for accumulator.

Same as STIP, the BCD code for the type of conversion.

Relative

Temporary storage for SDEC (specification may be changed in case

of F conversion).

Output Conversion, Last Half of FORMAT Package

Branch to A conversion or INITO (initialization).

As.many characters (beginning with the upper 6 bits of ACC) are outputed

as called for in SWID, but garbage after first six.

See POW32 for 168-2 version.

If positive answer, got to TOOUT2. Otherwise search through buffer

to first nonblank character (not beyond end of field) and insert

minus sign before this character.

Set SBUF to next field. If answer is blank, replace last blank by

zero. Exit to SAFr.

Set CANSWT. Split up floating point number into WSIGN, WEXP, KEEPl,

KEEP2, and KEEP3. Branch to ECON for CANSWT • O.

See FETCH below.

F conversion. Set up SDECLC and WLET. Check for special case,

SDEC = O. Put in 0 in buffer.

9

SNOZ

CONZER

I NI TO

CHKFLD

FTSMLL

Fl.DOK

*
NUMCON

ECON

ICON

TNCM

TSTAR

TPUTIN

TUPSAV

TSING

TI.ATE

OCON

Output Conversion, Last Half of FORMAT Package (Con't)

If room for digits lcf t, go to CHKFLD.

Put in dP.cimal point and zeros after it in place of blanks. Go to

FINISH.

Initialize SDECTP, NUM and KTDATA. Blank out portion of buffer for

the field. Check for too large a field width. and go to FTSMLL

if not enough room. Otherwise branch to proper conversion

(ICON, OCON, or FETCH).

Check WLET against start of field. If not enough width, try E conversion.

If still not enough room by reducing decimal specification,

go to FTSMLL.

Field is too small (or too large) for the number. Put out X's and exit.

Check WLET against SDECLC and up if necessary.

See FinoK below.

Converts fractional part of floating point number to digits and

stores them in the buffer. Exit to CONZER.

E conversion. Put the exponent field in the buffer. Set BCNT to

location of "E" in buffer. Go to SETDEC.

I conversion. Put out integers right justified, truncating on

right if too long for the field width.

Set up entry to table and make accumulator positive.

Convert integers, double precision subtract used in fixed interpreter.

Store digit in buffer, use blanks instead of insignificant zeros.

If end of field, go to FINISH.

Single precision.

Table of powers of 10.

0 conversion. Right justify field and drop insignificant zeros.

Truncate on right. Exit.

* Refer to revelant sections in the 168-2 version. See below.

10

Additions for 168-2 Version

Changes in WOUT were made for the E and F type conversion, so as to use the

168-2. Also entry from WIN (input conversion) was provided for. Except where

noted below, the coding is the same as for WOUT in the regular system (as referenced

by *).

POW32 Table of powers of 10 with exponents 32, 16, 8, 4, 2 and 1 in that

order.

QO Approximating log102.

POWQ The binary exponent of the number to be outputed.

* Continue with FINISH above.

FETCH

QCONIN

MOV!O

QLD

QFUL

QIT

QITZ

QNORM

FIN ORM

QNORD

QDIV!

QDIVlO

*
FLDOK

The binary exponent is reciuced by one and multiplied by log 2. The

greatest integer in the answer is stored in SGNEXP as a trial

power of 10. Branch to MOVTO for output.

Entry from WIN. Test exponent. If smaller than -30, flag UNSWT and

up SGNEXP by 10. Otherwise an inadvertent underflow might occur.

Skip to QITZ if SGNEXP = O. Put absolute value of SGNEXP in QEX.

Initialize PL to power of 10 and set QFIRS.

Algorithm for computing QEXth power of 10. Exit to QIT when finished,

i.e., QEX reduced to zero. Multiply in higher powers of 10 first.

Put power of 10 in operand.

Move accumulator to operand.

Move original number to accumulator and for output, divide by created

power of 10 for positive exponent, multiply for negative exponent.

Do the reverse in case of input.

Go to FINORM for output. Otherwise test UNSWT and if necessary reduce

result by 10**8 before exiting.

Reduce accumulator further by dividing by ten if necessary so that

the binary exponent is less than 4.

If binary exponent not yet O, up SGNEXP. Put absolute value of

SGNEXP into EXP and branch to (FCON) or ECON.

Multiply accumulator by 10 to obtain next digit in answer.

Enter by JPR for the above multiply.

Continue with (FCON) above.

Left shift accumulator N times where N is in XXNX in the leading word ACC

Since this is end around, pick off 1, 2 or 3 bits as necessary

for the first digit of the answer.

11

NUMCON

WSIGN

(W)EXPF

Qi)DECCT

PLACCT

(W)DIGCT

WID

(W)STORD

WIDF

DECF

FUN CD

Will

WLO

SAC

CONSWT

Additions for 168-2 Version (Con't)

Jump to QDIVlO for multiply by 10. Continue with NUMCON above.

Low Core Flags in WIN

Sign of the answer

Exponent flag. -1 for positive exponent, +l for negative exponent

and 0 if no exponent flag encountered.

The relative location of the decimal point in the field •. A negative

number means that a period has been encountered in the input data.

The number of digits after the decimal point.

Significant digits counter. 0 means no significant digits as

yet and that any + or - sign belongs to the fractional part,

not exponent.

The field counter, which is initially set to -SWID.

Indirect addressing cell for placing digits in the accumulator or

exponent.

Equivalent to SWID

"
II

II

"

" SDEC

II STIP

II ACC

II ACC + 1

Indirect addressing cell for A type.

Switch for I, E and F. Set 0 for I and I 0 for E and F.

(W) means the W appears as a header sometimes.

WIN

ENDFL

WIN (Input Conversion)

Entry to input conversion. Branch to NONNUM for 0 and A type

conversion. Otherwise go to DECODE.

If F or E type, go to DOFLT. Otherwise determine sign of integer

result and exit.

12

DO FLT

*
WEXT

INUP

WINIT

WMIN

WTPLUS.

WESIG

WTSPER

DECODE

!NIT

FCON

DIGCON

rsCONS

WT RUE

WCOMM

*
FLTCON

•

WIN (Input Conversion) -- Can't

Add bias (40) to signed exponent. Adjust exponent for decimal point

and significant digits. If overflow, put 3740 in ACC. Combi~c

fraction and exponent together, affix ~ign and exit to SAFT in

format control.

See DOFLT below for 168-2 version.

Exit to format control through transfer vector.

Up SBUF and WID and fetch next character from buffer.

Character is tested thus: I - + E and the digits 0 to 9. A slash

terminates the field. If no exponent flag had been set, adjust

DIGCT accordingly and exit.

Test for -. If DIGCT = O, set WSIGN. Otherwise put 1 into WEXPF.

Test for +. Ignore if DIGCT = O. Otherwise go to WESIG.

Flag positive exponent and change CONSWT to integer conversion. Set

Pl.ACCT and initialize STORD.

Test for period. Set WDECCT.

Set CONSWT, branch to FCON for E and F type.

Initialize WID, STORD, set Pl.ACCT = 1, and zero out the accumulator,

DIGCT, EXPF, WEXP and 1 WSIGN. Go to WINif.

E or F type conversion called for. Initialize DECCT to SDEC. Set up

switches in the floating conversion (FLTCON). Go to !NIT.

Digit conversion. Change BCD zero to O. Go to TSCON for integer

conversion. Check for insignificant zeros otherwise. Up DIGCT

for significant digits and ignore digits after the 8th.

If process on fraction, go to FLTCON. Otheri.-lise branch to WTRUE for

I type or put lOi.-WEXP +VALUE into wexp ind go to INUP.

Go to WMlOLT for double precision integer multiply by 10. Otherwise

check ACC + 1 for number less than 200 a 1d use machine MUT instruction,

Add in VALUE to accumulator and go to INUP.

See FLTCON below for 168-2 version.

The current digit is multiplied by 1, 10, or 100 according to the

switch BRANX and added into the proper cell of the accumulator.

Go to INUP.

13

WMlOLT

OCTCON

AOONV

Double precision decimal shift of the accumulator for integer conversion.

Go to WCOMM.

Octal conversion. Accumulator is shifted left and the current character

is added in until the end of the field. BCD characters greater

than 7 are ignored.

Pack characters from buffer into the accumulator until the end of

the field (or until end of the accumulator) and fill the rest of

the accumulator with blanks if necessary.

Modifications for 168-2 Version

The only changes made to the above are as follows:

DOFLT ·

FLTCON

ban

Adjust the exponent as in DOFLT above but without the bias and put it

into SGNEXP. Normalize and float the fractional part which is in

the accumulator. Exit to SAFT + 4 in fonnat control to compute

the necessary power of 10 and combining together of the exponent

and fraction part.

Multiplies the accumulator by 10, using the 168-2. Correct indirect

bank is selected from SBNK, since the execution loader will up

SBNK for bank 1 because SBNI< occurs just before a relocatable

constant. Return to INUP.

Error Stops in 1/0

Magnetic tape operations

SMVTAP - 1

SB ERR

Format control

SHUPBF + 4

SLDUP + 3

A parity error has occured on trying to backspace a binary record.

Rerun from stop with 0 in A.

Either an end of file has been encountered or there is a parity

error on the tape (+ or -). Can't continue.

Field width too large in Hollerith.

A zero has been encountered in the format string, which is illegal.

Probably unmatched parenthesis so that end of format has been overshot.

14

There is no error stop in case the field width is too great for E, F or I

on output but only X's are outputed. No check is made on input (other than H)

but garbage will be picked up for conversion after the end of the buffer.

15

FLOATING POINT PACKAGE -------- --- - -

The floating point arithmetic in 160 A FORTRAN is the same as that

in 160 FORTRAN except that all reference to SNOPSW has been dropped and

the arithmetic i~ unrounded.

FI~!O FLOATING CONVERSION

METHOD: To convert an integer N to its equivalent floating point form

a b c d e f y * 10 **M perform the following arithmetic operations from

left to right.

(N - a*l06) 1103 "' bed + efg I 103

(The lower part of the remainder after an integer division is kept

in cell OP :- 3) The parts a, b c d and e f g are than put together with

the correct exponent by jumping to a special entry SJFLX in the floating

point package.

FLCONV Preserve exit thru macro switchboard. Save the accumulator

and set up flags and switches to the floating point package.

Determine sign of answer and set the operand positive. Put

-1,000,000 in the operand. Go to SECPAR if subtraction is

not necessary.

SGOSUB Keep subtracting 1,000,000 until accumulator is negative.

Then add 1,000~000 back in. Answer in A2..

SECPAR Divide reduced number by 1,000. Put quotient in A3 and re-

mainder in A4. Set up return to SBACK and jump to SJFLX for

assembly of parts.

SBA CK Transfer lower part of result to operand. restore accumulator

and exit.

-16-

•

FLOATING TO FIX CONVERSI:Q~

METHOD: To convert a floating point number N- a b c d e f g *lO**M, _

add to it .64* 10**8. Then a is in A2. bed in A3 and efg in A4. Perform

the following from left to right.

XCONV

XAD16

XMlOOO

XBIG

XSTOPl

(a * 1000 + bed) * 1000 + efg

Preserve exit and save the accumulator. Determine sign of

result and set the operand positive. If nvmber too big, i.e.

greater than .9*10**7, go to XBIG. If less than one, answer

is Zero.

Add in . 64*10**8.

Multiply A2 by 1000. Add in A3 and again multiply by 1000.

Add in A4 and sign and go to XSTOPl.

Set overflow switch.

Restore accumulator and exit.

ANAtYSIS OF CONVERSION OF FLOATING POINT

NUMBER ON OUTPUT

Let the number

lOqg, where . 5 ~ f ~ 1 . 1 ~ g "- 1 .

2Pf being the internal representation. To obtain a first estimate to q,

consider the following. where log is to the base 10.

log 2Pf log lOqg

pc + log f = q + log g, wh~re c = log 2

q ~ pc + log f /g

Now 1/2 <f/g< 10 and hence

-c ~ log f I g <' 1

-11-

Therefore

c (p-1) < q <pc + 1

Let q' r. entier ~(p-1)) i.e. greatest integer function

Now for p~l
p p-1 I

10log2) 10log2 .?1oq

and hence

(1)

where h is the normal fraction in the internal representation and 0 ~ r < 4.

(If lOq' does not reduce r below 4 another division by 10 is done.)

If r I 0, the fraction h in the accumulator is left shifted r times

to obtain the first digit of g. The succeeding digits are obtained by

• multiplying h by 10.

In the case P~ 0, the above inequalities are reversed and lOq' > lOq.

Since then the number N is multiplied by loq' and the relation (1) still

holds.

Powers of 10 are computed from a table containing 1032 , 1016 , 108 ~

104 , 102 and 10, from which any power S, IS I!:. 63, can be obtained from

at most one multiplication of each factor. e.g.

1032 = 1016*104*102*10

-18-

...

Specifications for Format Decoding in the Interpreter

All format cracking will be done in the interpreter, the compiler

will merely take all characters between the enclosing parenthesis (in­

cluding these also) and pack them in data storage. Thus it will be

possible at execution time to read in a format statement to be used

during the run. There will be no error stops executing the format state­

ments but illegal characters will be ignored as far as possible, though

they may occassionally mislead the routine. A format statement will be

processed until data execution is called for (i.e., an I,O,A,E or F code)

whereupon control is returned to the list until an unpaired Load (Store)

is encountered, which causes return to the format routine, switches to

Qut (in) conversion routine, back to format to see whether a simple repeat

is being performed, whence to list control, otherwise resume format pro­

cessing. End of format is signalled by encountering the left parenthesis

that matches the beginning parenthesis. A flag is set, the format counter

is set so that re-entry to the routine resumes processing at the field

following the rightmost left parenthesis not preceded by a numeral and

a record is sent if Out conversion is called for. Upon encountering the

second TR IO if an out conversion has been called for and the buffer is

no; empty a record is sent. If there is a further call for data trans­

mission (by an unmatched Load-Store pair) and an In conversion is flagged

than another record will be read before format processing is resumed.

Note that when a format statement is used in conjunction with a

PRINT statement then the first field of every format group producing a

line of print should be either lHO for double spacing, lHl for page ~ject

or lH for single spacing. If no control character is specified and the

first character of the record is not a 0 or a 1 then single spacing will

be performed and the first character will be lost.

-19-

Specifications for Integer Add and Multiply

These routines may be entered either by a JFI 1 to VADD and VINTML

respectively (with also an entry to subtract via VISUB) or by a JPR to

VADXT and VMLTIN with a positive number in the accumulator for add and

negative for subtract in the former entrance. For an entry via JFI the

Lntegers should be in ACC, ACC 1, OP and OP with the result in ACC and

ACC 1. With a JPR entry the numbers should be in ACCJ, ACCJ 1, OP and

OP 1 with result in ACCJ and ACCJ 1. With a JFI entry the exit is to

ARITH. The number should have a 22 bit magnitude, using the left 11

hit magnitude, using the left 11 bits of two words. A negative number

ls.indicated by complementing its magnitude (both upper and lower parts).

Thus the octal number 26047 would have the form 000 000 000 101 010 000

100 111 in binary or in octal digits 0005 2047. -26047 would then be

7772 5730. No overflow or fault indicator is set but garbage will result

tf the numbers are out of range.

-20-

. Specifications for the Object Code for the I/O in the Interpreter

There will be two transfer to I/O macros: TR IOI (INPUT) and TR 100

(OUTPUT), TR IO stands for either in the following. The locations of

the I/O subroutines in the transfer vector will be grouped together

and there will be less than 32 of them, so bits are needed for the tape

unit (or which of the four types in the flex-type routine) and 15 bits

for the location of the format statement (which will be somewhere in

data storage). One bit must be set to signal binary. If binary is

flagged the second word carrying the location of format is not needed

and instead the codes 0 for Read, 1 for Write, 2 for backspace, 3 for rewind

and 4 1 for write end of file will be used. Thus the I/O coding will look

like this:

TR IO

11-9 8-4 3 2-0

Unit VecLoc Binary flag Format Bank
'"' 1

Location of format or
<! Code for tape movement

List

TR IO

The second TR IO can be of either type and need not agree with the first.

Thus the I/O contr~l will operat.e independently of what equipment is used

and will only know what type of equipment is being used when binary is

called for, since in that case only a tape routine is possible. Hence

I/0 executions calling for backspace, rewind or write end of file should

be signalled by flagging binary.

-21-

SECTION 3.5

Specifications for 1/0 Transmission

The 1/0 Transmission routines are absolutely relocatable and are

available in OSAS-A binary format on the library tape. The function of

these routines is to read or write one physical record, check for errors,

and indicate special results. All bank settings, except relative, must

be zero upon entry to the routines. The routines are entered by a SRJ to

the first location of the routines with Location 77 containing the address

of the parameter list (in bank zero). Location 75 contains the return

address. The parameter list is explained for each individual routine,

but is always three contiguous words. If a normal~record was transmitted,

~he return should be with A = O. The routines for I/O transmission are

as fallows:

Name Ineut/Outeut Eguiement

RWTF I/O 161 Typewriter-paper tape
punch and reader

LPRINT 0 1612 printer

LP166 0 166 printer

CDPNCH 0 523 card punch

RDC088 I 088 card reader

RDC167 I 167 card reader

RD1634 I 163, 164, or 606 magnetic
tape units

WR1634 0 163, 164, or 606 magnetic
tape units

RD1607 I 1607 magnetic tape 1 units

WR1607 0 1607 magnetic tape units

RDC405 I 405 card reader

Parameter list

1. location of buffer

2. punch flex = 1

· type out = 2

read flex = 3

type in = 4

RWTF

3. length of record (necessary for output only)

The return is always with A = O. If an operation is requested when the

unit is not ready, or if reading is requested when no infonnation is

available, a delay will be executed which will not allow any further

action to be taken. Recovery is not possible except by satisfying the

condition which caused the delay.

There are no page control functions available. All lines for output are

single spaced. Blank lines are described for each function. All illegal

codes are converted to blanks with no error indications made.

-2-

Punch flex -

Each record is preceded by a lower case code. Additional case codes are

supplied as necessary to provide the correct characters. These case

codes have no effect on the character count to detennine the record

length. The record length may be lz x 120 decimal characters, but should

be governed by the length of the line of the fefxowriter being used for

listing. Each record is terminated with a carriage return. A blank

record may be created by supplying one or more blank codes as a complete

record. All letters are punched upper case and numbers all lower case

as a result of the BCD to Flex conversion.

-3-

Type Out-

Each record is preceded by a carriage return with case codes supplied

as needed. All letters are typed upper case. A record may be lz x zl20

decimal characters, but should be governed by the practical length of

the line provided on the typewriter. No additional blanks are supplied,

and the carriage return is not provided at the end of the record. Since

only legal BCD characters may be typed, this eliminates the use of the

tab for output. Blank lines may be typed by providing a record containing

one or more blank codes.

-4-

Read flex -

Each record is assumed to begin in lower case. Characters are converted

until a carriage return is read or until 120 decimal BCD characters are

stored. If 120 characters are stored before a carriage return has been

read, reading continues until a carriage return is found and any intervening

information is skipped. If a carriage return is found before 120 characters

have been stored, the record is terminated and remains in this shortened

form. Blanks are supplied after the carriage return has been read. The

special flex characters are as follows:

Apostrophe is converted to asterisk

Colon is converted to dollar sign.

Blank records may be created by successive carriage returns, with each

carriage return terminating one record.

-5-

Type in-

When a typewriter input is requested by the program,. a carriage return

and a question mark, will be typed, and lower case code selected. The

computer is ready to accept input at this time. Characters will be

accepted, converted, and stored until a carriage return is received,

or until 120 decimal characters have been stored. Blank records may

consist of a carriage return as the only character of the record. There

are several special codes for typewriter input:

Tab - this will delete the record which has just been typed

and reposition the typewriter as for a new record. This

allows irrmediate error correction but must be used before

the carriage return has been typed.

Apostrophe or quotation Marks - this is a psuedo change of

case code. The use of either of the case shift keys on the

typewriter does not affect the record in any way. This

change of case code must be used in order to make all legal

codes available for input. Since this code does not affect

the character count, there is no limit to the nwnber of times

it may be used in each record.

-6-

Procedure: RwrF

1. Enter by SRJ with TBLADR containing the location of the parameter

list and RETURN containing return address.

2. Is type or Flex input called for? Yes, clear buffer area.

3. Typewriter operation called? Yes, go to 5.

4. Set to do flex code conversions. Parameter call for punching?

Yes, go to 7.

5. Go to 12.

6. Set to do typewriter code conversions. Parameter call for output?

Yes, go to 20.

7. Go to 31.

8. Preset addresses; select punch; punch lower case code.

9. Pick up character, go to 37.

10. Is A negative? Yes, punch case code. Restore converted code.

11. Punch converted code. Was this the last char~cter? Yes, punch

carriage return code. Go to 30 (A= zero}.

12. Go to 8.

13. Preset addresses and flags. Select paper tape reader.

14. One character to A (omit leader).

15. Is character a carriage return? Yes, go to 30.

16. Is character a delete code? Yes, go to 13.

17. Restore character. Go to 38.

18. Is A negative? Yes, go to 13.

-7-

i9. Store code. Have 120 characters been stored? Yes, advance input

record to the next carriage return. Go to 30 (A= zero).

20. Go to 13.

21. Preset addresses and flags. Wait for typewriter ready. Select

typewriter output. Type carriage return and a lower case shift.

22. Pick up one character.

23. Is character a left paren, dollar sign, asterisk, or right paren?

Yes, go to 28.

24. Restore original code. Go to 37.

25. Is A negative? Yes, type case shift code and pick up converted

code.

26. Type converted code.

27. Has last character been typed? Yes, go to 30 (A zero).

28. Go to 21.

29. Appropriate code to A. Save code. Is a case shift required?

Yes, type upper case shift.

30. Go to 25 (code in A).

31. Return.

32. Preset addresses and flags. Wait for typewriter ready. Select

typewriter output. Type carriage return, upper case code, question

mark, lower case code. Select typewriter input.

33. One character to A.

34. Is character a carriage return? Yes, go to 30.

35. Is character a Tab? Yes, go to 31.

-8-

36. · Is character an apostrophe? Yes, change case flag setting. Go

to 32.

37. Restore code. Go to 38.

38. Preset to convert BCD codes to Flex or Typewriter codes. Go

to 39.

39. Preset the convert Flex or Typewriter codes to BCD codes.

40. Convert code. Return to 9, 17, 24, or 40.

41. Store converted code. Is this the 120th character? Yes, go to

30 (A= zero).

42. Go to 32.

-9-

RD1634 or RD1607

P~rameter list:

1. location of buffer

2. logical tape number - 1

positive - BCD mode (even parity)

complemented (negative) - binary mode (odd parity)

3. zero = rewind tape

positive non zero - read one record

negative - backspace n records. N is the complement of the number

of records to be backspaced.

The normal return will be with A = 0. An end of tape error response will

cause the tape to be rewound and the routine will halt with A (non zero).

If restarted, a normal exit will be made.If A is cleared the present

record will be reread, assuming a new tape. If a parity error is sensed

the tape will be backspaced and will be reread. If errors persist after

trying three times the parity selection is checked. If BCD mode was

selected a stop is .made. Restarting will cause an exit to be made.

If binary mode was selected, a return is made with a negative number

in A. If EOF is encountered, the buffer will be cleared, a flag

set for EOF function, and a register exit made.

-10-

. t

Procedure: RD1634

1. Enter by SRJ with PARAM containing the location of the parameter

list and RETURN containing return address.

2. Initialize counters, create EXF codes, wait for ready on the

requested unit, select parity, pick up third parameter. Was

backspacing requested? Yes, go to 12.

3. Was reading requested? Yes, go to 6.

4. Rewind tape. Set A = zero.

5. Return.

6. Read one record. Wait ready. Was this record an end of file record?

Yes, set EOF flag. Clear buffer to blanks and go to 5.

7. Was there a parity error? Yes, go to 10.

8. Was the end of tape indicator set? Yes, rewind tape, and stop. If

• restarted, go to 9. If restarted with A cleared, go to 6.

9. Set A = 0 and go to 5.

10. ls this the third try? Yes, go to 14

11. Backspace; wait ready, go to 6.

12. Backspace; wait ready. ls this the nth backspace? Yes, go to 5

with A = zero.

13. Go to 12.

14. ls this a binary operation? Yes, set A negative; go to 5.

15. Is this third time? Yes, halt. If restarted, go to 5. No, backspace

three records, reposition tape. Go to 6.

-11-

Procedure: RD1607

1. Enter by SRJ with PARAM containing the location of the parameter

list and EXITAD containing the return address. Save this location,

and initialize counters. Create FWA and LWA + 1 and pick up tape

number. ls binary operation operation requested? Yes, go to 11.

2. Initialize for BCD operation.

3. Create the select code, select the tape, and wait ready. ls

rewinding requested? Yes, go to 12.

4. ls backspacing requested? Yes, go to 13.

5. Read one record, save last address, and wait for tape ready. ls the

end of tape indicator set? Yes, go to 14.

6. Was an end of file record read? Yes, go to 15 (A non zero).

7. Was there a parity error? No, go to 17 (A= zero).

8. Was this the third error? No, go to 16.

9. ls this a binary operation? Yes, go to 19 (A is negative).

10. Stop. If restarted, set A = 0 and return.

11. Initialize for binary operation. Go to 3.

12. Rewind the selected tape. Go to 19 (A= zero).

13. Backspace n records. Go to 19 (A= zero).

14. Rewind the selected tape and stop. If restarted, return (A is set

to zero). If restarted with A cleared, go to 5.'

15. Set EOF .flag and return. (A= zero). Clear buffer to blanks.

-12-

16. Backspace tape and wait ready. Go to 5.

17. Was this binary read operation? Yes, go to 19 (A= 0).

18. Unpack the record and store in buff er area. Go to 19 (A = 0).

19. Return.

-13-

WR1634 or WR1607

Parameter list

1. location of buffer

2. logical tape number

positive = BCD mode (even parity)

complemented (negative) = binary mode (odd parity)

3. length of record (number of characters)

zero requests an end of file record.

The return will always be with A = 0. If the end of tape indicator

is sensed, a stop will be made with A containing the rewind tape code.

If restarted, the record will be written again, assuming a new tape.

If parity errors persist after three efforts to rewrite the record, some

blank tape will be skipped and another effort made to write the record.

If this fails after three times a stop is made with A = 0. Restarting

will cause an exit to be made.

-14-

Procedure: WR163

1. Enter by SRJ with PARAM - location of the parameter list and

RETURN containing return address.

2. Initialize to create EXF codes for the proper tape unit, and the

required parity. Wait for ready response from requested unit.

Select parity.

3. Is the record length zero? Yes, go to 11.

4. Write record. Request status. Response indicate parity error?

Yes, go to 8.

6. Response indicate end of tape? Yes, backspace, write 2 EOF•s. If

restarted, go to 4.

7. Return with A= zero.

8. Is this the third try? Yes, backspace write EOF. If this third

EOF? Yes, go to 10.

9. Backspace, wait ready, go to 4.

10. Stop. If restarted, go to 7.

11. Write end of file record. Go to 7.

-15-

Procedure: WR1607

1. Enter by SRJ with PARAM containing the location of the parameter

list and EXITAD containing return address. Save this location.

Initialize. Is binary operation requested? Yes, go to 8.

2. Set for BCD mode. Is an end of file record requested? Yes, go to 4.

3. Pack the characters two per word and a:!Just counters.

4: Select the requested tape and wait ready. Is an end of file record

requested? Yes, go to 9.

5. Write one record and wait ready. Was there a parity error? Yes,

go to 10.

6. Was the end of tape indicator set? Yes, go to 13.

7. Return. (A= O).

8. Set for binary mode• Go to 4.

9. Write and end of file record and wait ready. Go to 7.

10. Backspace tape and wait ready. Is this the third error? No, go to 5.

11. Write end of file record and wait ready. Reset counters. Is this

the third error sequence? No, go to 10.

12. Stop. If restarted, go to 7.

13. Backspace, write 2 EOF•s, rewind selected tape and stop. If restarted

go t~ 5.

-16-

RDC088

Parameter list

1. location of buffer

2. ignored

3. ignored

Eighty (80) characters are converted to BCD codes to be stored in the

specified buffer area. There is no error checking done. Blank cards

may be read witharut special indications made. The only return is with

A = O. This routine uses only the primary feed of the 088. If the card

reader does not become ready when control has been transferred to this

routine, a delay will be executed which will not allow any further action

to be taken. There is no recovezyfrom this condition except a ready

signal from the reader.

-17-

Procedure: RDC088

1. Enter by SRJ with PARAM containing the address of the parameter

list and BUFCHK containing return address.

2. Wait for card reader ready. Initiate buffer action to read

one card. Initialize counter.

3. Wait for row to be read.

· 4. Convert 36 columns. Is this the last row? Yes, go to 6.

5. Set new column value and adjust counters. Go to 3.

6. Is this the last group of columns? Yes, go to 8.

7. Preset to convert columns 37-80. Go to 3.

8. Return.

-18-

. t

Cr>PNCH

Parameter list

1. location of buffer

2. ignored

3. length of record

The return from this routine is always with A = O. The length of record

may be from 1 to 80 characters. A blank card may be punched by supplying

.a one word record consisting of a BCD blank code. There is no error

checking done.

-19-

Procedure: CDPNCH

1. Enter by SRJ with PARAM containing the address of the parameter

list and CDP98 containing return address.

2. Pack BCD characters. Zero punch image. Initialize.

3. Convert BCD codes to punch image (1 to 80 codes)

4. W8it for card punch ready.

S. Initiate buffer action.

6. Return.

-20-

. i

LPRINT or LP166

Parameter list

1. location of buffer

2. ignored

3. length of record

The first character of the record is interrogated as a page control

character and is not printed.

BCD l page eject

BCD 0 double space

BCD blank = single space

There is no error checking done for illegal codes. The return is always

with A = O. The record length may be from 2 to 121 decimal characters.

This length must include the page control character which is never printed.

-21-

. I

Procedure: LPRIMT (1612)

,1. Enter by SRJ with PARAM containing location of parameter list, and

RETURN containing RETURN address.

2. Save parameters.

3. Select printer (without interrupt), wait ready.

4. BEGIN = location of second character in buffer.

5. PRINTl = last word address + 1 of buffer.

6. First character of record = BCDl? No, go to 10.

7. Eject page.

8. Print line and advance paper.

9. Return with A = zero.

10. First character of record = BCD zero? No, go to 8.

11. Space paper on line. Go to 8.

-22-

Procedure: LPR166

1. Initialize to print, set exit address, and wait for printer ready.

Does the first character request a page eject? Yes, go to 4.

i. Does the first character request a double space? Yes, go to 5.

3. Pack characters two per word and adjust the record length. Wait

for printer ready. Print and move paper. Set A = 0 and return.

4. Eject the page. Go to 3.

5. Move paper one space. Go to 3.

-23-

IWC167 or Rl>C405

Parameter list

1. locating buffer

2. ignored

3. ignored

Eighty (80) characters are converted to BCD code to be stored in the

specified buff er area. Error checking is done in the 167 routine for

feed and amplifier failure. Recovery from the 167 routine consists of

running from next location after halt with last card replaced in hopper

for the case of amplifier failure. In the case of reader failure in the

405 routine, the card is sent to the secondary hopper. Recovery consists

of replacing the card in hopper, and running from next location after

halt. Blank cards may be read without special indications made. The

only return is with A = O. If the card reader does not become ready

after one card read cycle, a halt occurs with 3535 in A-register. Run

from next location wait ready again.

-2'4-

Procedure: RDC167 or RDC405

1. Save parameter list location. Wait one card read cycle for card

reader ready, then halt with 3535 in A-register. Run to continue

waiting ready.

2. Initialize to convert 80 column card image.

3. Convert to BCD codes and store in buffer.'

4. Return.

-25-

SECTION 3.6

The Natural Logarithmic Function

Length: 151
8

locations

Method: The fractional approximation was used as follows: choose n and
m such that X = lonzm

Where: .48 y 1 and 0 m 3

Then: log X = n log 10 + m log 2 + log y

Procedure:

Accuracy:

Timing:

1)

2)

3)

4)

5)

Is X 01 If no error return to ma in program.

Store exponent of 10 in N. Let denote

Is • 48? If so M = 0 and go to 8.

Is .24? If so M = 1 and go to 7.

Is .12? If so M = -2 and go to 7.

6) Is .127 If so M = -3.

7) Compute Y = (2-m).

8) T= (Y-1)/{Y+l)

9) logy T(A + r2 {B + C/{D + T2)

where

A = 2.

B = .10907889

c lC .777314

D = -1.3940651

10) log X = N log 10 + M log 2 + log y

11) Return to main program.

8 digits for f • 6 or f .48

7 digits for .48 X .6

190

the fractional part •

The Exponential Function

Length: 2118 location

Method: The fractional approximation was used on er as follows; choose
integers n and m such that ex = l0°2mer where m 3 and R

.!2A.1. •
2

Procedure:

Accuracy:

Timing:

1)

2)

3)

4)

5)

6)

Set sign

Fix Y/log

Is N = 01

Float N

N. log 10

Z = Y - N.

X positive and denote it by Y.

10 and store in N

If so go to 6.

log 10

7) Find integer part of Z/logZ + .5 and store in M.

8) Pick up 2M (=2, 4 or 8) and store in EX2.

9) R = (Z/log2 - M) log 2.

10) -S(R) = 600/(60+R2)-12.

11) -S(R)+R = O? If so eR = 4 jump to 15.

12) eR = (-S(R)-R)/(-S(R) + R)

13) ey = eR .EX2 • 10"

14) Check over/under flow. If o/u set overflow switch, and give
overflow no as answer.

15) Is X O. If not go to 17.

16) ex = l/eY.

17) Return to main program.

7 digits or better.

220

-2-

AR TAN FUNCTION (NORMAL)

ATANF(X)

1. If X is positive, set FLAG to O. If negative, set FLAG to
negative and X to -X.

2. If X 0.4, set T = X and Y = O.

3. If 0 .• 4 X 2.4, set T = (X-1) and Y == PI/4.

4. If X _ 2.4, set T = -1./X and Y = PI/2,

5. Then ATANF(X) =

Y + T * DO + T*T* D 1 + E 1

where: DO = 1.0
01 = -0.015585371
02 = 2.1005541
03 = 1.6210238
El -0.58531514
E2 -0.419003

6. If FLAG is negative set ATANF(X)

7. Exit

-3-

T*T + D2 + ~
T*T + DJ

-ATANF(X)

....

SQUARE ROOT FUNCTION (NORMAL - SQ RTF (X)

1.

2.

3.

4.

If X = 0 go to 8.

Set X = ABSF(X).

Divide exponent (biased 32 10) by 2 discarding any remainder.
Store in ROOTN. Note that oias is 16

10
.

If exponent is odd, set X = mantissa * 10.
If exponent is even, set X = mantissa.

5. First approximation:

and S).

R = X + P • (See below for values of P
s

6. ROOT =_X __ + ! + R
! + R _R_. __ _
R 4

7. Add exponent ROOTN to ROOT adjusting for additional bias of 16
10

•

8. Exit.

For mantissa in range .1
.32

.1
3.2

-4-

to
to
to
to

.32,
1. ,
3.2,
10.,

p = .18666408, s .88191319
p s .58926406, s 1.5656854
p = 1.8666408, s 2.7888544
p = 5.8926406, s = 4.951132

COS!tfi FUNCTION (NORMAL) COSF{X)

SILE FUNCTION (NORMAL - SINF(X) COSF (X - PI/2)

1. X = ABSF(X).

2. N =Integer part of X/(Pl/2). This is the quadrant number ~l.

3. R = Pl/2 * N - Pl/2 * X. This will be nagative.

4. For N = 0 (mod 4) FLAG = 0 RTEST = .96 SIGN = 0
1 1 .64 1
2 0 .96 1
3 1 .64 0

5. If R _ RTEST, reverse flag. Set R = R + PI/2.

6. Flag = 1 use following SILE approximation, then go to 8.
COSF(X) = -R * Sl + ____ S_2 ____ _

R*R + SJ + S4
This will be positive.

7. Flag= 0 use following cosile approxiIMtion:

COSF(X) = 1 + R * R * C2 + CJ
R*R + C4 + CS

8. If SIGN = 1, set sign of result to minus.

9. Exit.

COS - SIN, Continued.

Sl 7.2J08469
S2 -814.80759
SJ = 55.40962J
S4 = 1262.6242
SS 16.754492

-5-

C2
C3
C4 =
cs
C6

-1. 6771458
271.20668
80.855187
2442.5426
16.33J897

R*R + C6

. I

.. '
.i'- •

EXITF Function

This function is used to transfer control from the execution of one

program back to an initialization routine within the s.ystem for compilation

of the next program. nte fonn of the statement is

X • EXITF (N)

X is any floating point variable and N specifies the magnetic tape

unit as follows:

!

0

1

Magnetic tape unit

163 or 162

1607
•

nte EXITF function statement should replace all STOP statements in a program.

-6-

PDUMPF, MDUMPF, CDUMPF Functions

These functions are used to obtain reloadable core dumps. PDUMPF o~tputs

to paper tape, MDUMPF outputs to 163 or 162 magnetic tape (unit 2) and CDUMPF

outputs to cards, using the 523 card punch. These statements have the form

X .. CDUMPF (N)

X = PDUMPF (N)

X = MDUMPF (N)

X is any floating point variable and N is the number of the last bank

to be dumped. N can be an integer variable or constant while X is a dummy

variable whose value will be changed during the execution of the function. A

halt occurs after the dump is completed. Running from this halt continues

execution at the statement following the dump functjon.

Separate loaders are available for each of the dumps. Operating instructions

for these loaders are contained in the 160-A FORTRAN OPERATIONS MANUAL.

When the dump is reloaded, execution begins at the statement following the

dump function.

-7-

Procedure: X 163F and X 1607F

1. Initialization

a. Set Indirect and Direct Bank settings to zero.

b. Store Relative bank setting in direct cell 1.

c. Set up counter containign the compliment of the number of banks to

be dumped plus one.

2. Rewind to loadpoint tape 2/

3. Store 101 as last word address, and 2 as first word address to be output.

4. Write tape 2.

5. Output 0 - first word of record 1 contains

0

6. Output record via normal output.

7. Check for parity error - if zero go to 8 - backspace 1 record, write end of

file, backspace 1 record, go to step 4.

8. Determine location of last record written.

a. Subtract 101 from last word address, if zero go to 9.

b. Subtract 117 from last word address, if zero go to 10.

c. Subtract 400 from first word address, if zero go to 11.

d. Subtract 1 from last word address, if zero go to 12.

e. Increase last word address and first word address by 1000, go to 6

9. Store 7777 in first word address and 220 in last word address. Set indirect

bank setting to 9, go to 6.

10. Store 400 in first word address, 1000 in last word address, go to 6.

11. Store 1000 in first word address, replace add 1000 to last word address;

go to 6.

12. Add one to number of bank counter, if zero go to 14.

-8-

/

13. Reinitialize for banks 1-7.

a. Store 7777 in first word address

b. Store 1000 in last word address

c. Increase by 1 Indirect bank setting

d. Go to 6

14. Write end of file mark.

15. Halt.

16. Normal sequence of return.

-9-

Procedure: XCDMPF

Assume knowledge conversion of card column to card row output for 523 punch.

1. Initialize card image by zeros in card buffer.

2. Set Indirect and Direct bank setting to zero.

3. Store Relative Bank setting.

4. Set up Exit address.

5. Initialize first word address and Indirect bank setting.

6. Initialize number of locations to be stored on card in bits 11 - 6 of

col 1.

7. Store the number of bank from which card is dumped in bits 1, 3, 4 of

column 1.

8. Binary code placed in bits O, 2, of column 1.

9. Initialize counter for X words to be stored. This is normally 105.

10. Store first word address in column 3 of card.

11. Load output area, store in columns 4-72 of card image.

Add 1 to First word address.

Add 1 to storage address.

Add 1 to word counter if zero, go to 20, if non-zero, go to 11.

12. Sequence cards in columns 73-79.

13. Punch card.

14. Test last word address of card.

a. Is it zero, no go to 14b.

Store 7777 in first word address

Output card containing only specific cell, go to 6.

b. Is this the card following specific cell, yes to to 15.

c. Is this the card prior to location 220 in bank O, yes go to 16.

-10-

d. Is this location 220 in bank O, yes go to 17.

e. Is this the last card in bank O, yes go to 18.

f. Is this the last card in bank 1-7, yes go to 19.

15. Add to bank counter, if zero go to 21.

Add 1 to Indirect bank setting, go to 6.

16. Store 6 in number of words on card, go to 6.

17. Store 400 in first word address, go to 6.

18. Store 54 in number of words on card, go to 6.

19. Store 30 in number of words on card, go to 6.

20. Store checksum in column 2 of card image, go to 12.

h. Halt.

22. Return to normal sequence.

-11-

Procedure: XPDMPF

1. Initialization

a. Set Direct Controls to zero.

b. Store Relative bank setting in direct cell 1.

c. Set up counter containing the number of banks to be dumped plus one.

2. Punch out leader containing 300 frames.

3. Set up frame counter containing complement of 100.

4. Punch out first frame containing number.of ~ast bank, add the contents of

this frame to checksum.

5. Set Indirect bank setting to zero.

6. Load output cell.

a. Store in temporary cell.

b. Replace add to checksum.

c. Output left half of word.

d. Increase frame count by 1.

e. Output right half of word • .
7. Test location of output word:

a. Is it loc O, yes go to 7d.

b. Is it loc 7777, yes go to 9.

8. Add one to output address

a. If zero, go to 12.

b. Is it loc 220, yes go to 10.

c. Increase frame count by one, not zero go to 6, if zero go to 11.

9. Add one to number of banks counter, if zero go to 13.

a. Reinitialize output addr~ss.

b. Add one to Indirect bank setting.

c. Add one to number of b_anks dumped.

d. Go to 5.

-12-

10. Check for bank O, not zero go to 8c; load 400 store in output address.
11. Load checksum.

'8. Output left half of word + 100.

b. Output right half of word + 100.

c. Reinitialize frame counter with complement of 100.

d. Reinitialize checksum by storing O; go to 6.

12. Load 7777 in output address go to 6.

13. Halt.

14. Return to normal sequence.

-13-

160-A FORTRAN PLOTF FUNCTION for 165 PLOTTER

The PLOTF function in its current fonn drives the plotter (16~;) at plotter

speed on the normal channel. The PLOTF function is referenced in a manner

similar to the other library functions with the exception that the arithmetic

output of the function is meaningless. The plot function has three arguments

and is called as follows:

C PLOTF (X,Y,J)

The interpretation of X and Y is detennined by the value of J.

J 1 X and Y are interpreted as the scale factors.

J ..

J=3

If J

If J

2 x and y are interpreted as the origin or current pen location

or 4 This will result in pen motion

is 3 the pen will be raised, moved to X,Y and lowered.

is 4 or greater a line will be from the current pen

location to X,Y. For J equal to or greater than 4 the plotter
function will assume that the pen is down, this assumption results
in a time savings of 70 milliseconds per pen excursion

The pen motion in the X or Y direction resulting from one reference of the

PLO'l'F function may not exceed 20.

-14-

160A FORTRAN END OF FILE FUNCTICN, EOF

The EOF function provides a means of testing for the reading of an

end of file during the magnetic tape reads at execution time. The form

of the statement used to reference this function is as follows:

IF (EOF(X)) N1,N2,N1

where X is a dummy variable. Control will transfer to N1if an end of

file mark was read or Ni._ if one was not read. This test must be made

before the next magnetic tape READ statement is executed.

-15-

A~~~r for 168-2 Unit

Length: 668 locations.

Method: A is multiplied to itself I times if I is positive. l/A is
multiplied -I times if I is negative.

Procedure:

1) Is A = 07 If so go to 10.

2) Is I = O? If not go to 4.

3) A**I 1 and go to 10.

4) Is I negative? If not go to 6.

5) (ACC) = 1/A

6) Store (ACC) in ACC2 and ACC3.

7) I = I-1.

8) Is it zero? If so go to 10.

9) (ACC3) = (ACC3) * (ACC2) and go to 7.

10) Return to main program.

Accuracy: 8 digits.

Timing: 5 (I) + 1 ms

A**B for 168-2 Unit

Length: 408 locations.

M~thod: A**B = EXPF (B*LOGF(A))

Procedure:

1) Is A= O? If so go to 8.

2) Is B O? If not go to 4.

3) A**B 1, and go to 8.

4) Store B in location B.

5) Transfer to LOGF to obtain

6) Multiply by B.

7) Transfer to EXPF to obtain

8) Return to main program.

Accuracy: 7 digits or better

Timing: 65 ms

-16-

log (A).

Exp (B x log (A))

I**J for 168-2 Unit

Length: 518 locations.

Method: I is multiplied to itself J times to obtain I**J.

Procedure:

1) Is I = O? If so go to 10.

2) Is J = O? If not go to 4.

3) I**J = 1 and go to 10.

4) Is J O? If not go to 6.

5) I**J = 0 and go to 10.

6) Store I in ACC2 and ACC3.

7) (ACC) I* (ACC2).

8) (ACCI) J-1.

9) Is (ACCl) = 07 If not go to 7.

10) Return to main program.

Accuracy: 8 digits

.
Timing: 5 (J) + 1 ms

-17-

I

. f

EXPF for 168-2 Unit

Length: 1238 locations.

Method: The fractional approximation was used for er after portioning
ex = 2m .er where r .!£&..1.

2

Procedure:

1) Store given value in X.

2) Take absolute value of X.

3) Z = X/log 2.

4) z + .5.

5) Take integer part (let N).

6) Float N.

7) Subtract z.
8) Multiply by log 2 to obtain -

9 > -s () .. 600 I (60 + r 2) - 12 •

10) er = (-S(r) - r)/ (-S(r)-+T).

11) Add N to the exponent of er to obtain ex.

12) Check 1st word of ex.

13) If it is positive go to 15.

14) Set overflow flag.

15) Is X O? If so go to 17.

16) ex = 1/ex.

17) Return to main program

Accuracy: 7 digits or better.

Timing: 31 ms.

-18-

LOGF for 168-2 Unit

Length: 1328 locations.

Method: X = 2mf where .5 f l

Procedure:

Then log (X) = rn log (2)+log(f).

1) Is X = O? If so error return to main program.

2) Take absolute value of X.

3) Store exponent of 2 in m.

4) t • (f+l)/(f-1)

5) log f = t(a+t2(b+c/d+t2)))

a = 2.

b = .10907889

c ,., • 777314

d = 1.3940651

6) log(X) = m log (2) + log (f)

7) Return to main program.

Accuracy: 8 digits

Timing: 34 ms.

-19-

SINF for 168-2 Unit

Length:

Method:

146
8

locations.

For 0 t
II
2

sint = t (l+ t2
+ t2 al

a
2

+ t 2

83 + t
2

84

Where: Al -6.0000029

A2 = -3.3334504

A3 = 11.4363332

A4 = 8.9696229

Procedure:

1) F = X/(/2).

2) Fix F, ie I = F.

3) If In even SIGN = 0, if odd SIGN O.

4) If I/2 is even T = 1., if odd T= -1.

5) If x 0 change sign of T.

6) Calculate t /2 (F-I)

7) If SIGN = 0 then go to 9.

8) t = /2-t.

9) Compute SINF(t) by above formula.

10) Return with SINF(X) = T.SINF(t)

Accuracy: 7 digits or better

Timing : 40 ms

-20-

..

COSF for 168-2 Unit

Length: 6
8

locations

Method: Cos (X) = Sin(X - /2)

Accuracy: 7 digits or better

Timing: 41 ms

-21-

ATANF for 168-2 Unit

Length: 1558 locations.

Method:

Procedure:

ATANF(t) t (d
1
_+~~---e_l ______ _

t2 + d2 + e2

for t 2 - 1

1) Store sign of X in SIGN.

2) Take absolute value of X.

t2 + d3 + e3

t2 + d

4

3)

4)

5)

Is X

Is X

2-1)? If so t • X, go to 6.
l+X

2+1)? If so t = l~X , SI = /4, go to 6.

t = -1/X, SI = /2.

6) Arct (t) • t(d1 +

Where dl = .201312'06

e
1

= 3.1138501

d2 = 5.4062285

e2 c-3.9283157

d3 "" 2. 718 2904

e
3

"" -.15058394

d4 = 1.3387596

7) Arct (x) = SI + Arct (t)

8) If SIGN is negative Arct (X) = -Arct (x).

9) Return to main program.

Accuracy: 8 digits

Timing: 36 ms
-22-

. i

SQRTF for 168-2 Unit

Length: 1538 locations.

Method: Two Newton's iterattons are used after a linear approximation.

Procedure:

1) Take absolute value of X.

2) Store (exponent)/2 in (EXP).

3) Is exponent of X even? If so go to 6.

4) (EXP) = 2 (EXP)

5) Fractional part F = F/2 and go to 7.

6) A = .875 and B = .27863 and go to 8.

7) A = .578125 and B = .421875

8) xl = AF + B.

9) x
2

= .5 (X1 +F/X1)

10) x3 = .5(X2+F/X2)

11) SQRTF(X) = (EXP)X3
12) Return to main program

Accuracy: 8 digits

Timing: 23 ms

-23-

SECTION 4.1

THE OSAP-AP ASSEMBLY SYSTEM

OSAP-AP is a version of OSAP-A which will correctly assemble programs containing

both OSAP and 160-A FORTRAN intermediate language mnemonic operation codes.

The FORTRAN intermediate language and the 160-A assembly system are described

elsewhere. The mnemonics assigned to the FORTRAN intermediate language instruction

and their proper use for assembly purposes are described below:

MNEMONIC OPERATION CODES FOR THE 160-A FORTRAN INTERMEDIATE IANGUAGE.

The operations fall into the following categories determined by the use the assemhl

program makes of the other information on the line with the op-code.

NO ADDRESS REQUIRED.

For these op-codes the assembly pr~gram ignores the remaining information on the

lin~.

The following FORTRAN op-codes are of the no address required type:

NAME OSAP-AF MNEMONIC OCTAL

Drop Out DRO 0100

Return Transfer RTR 0200

Convert Accumulator (FIX) IAC 4601

Convert Accumulator (FLOAT) FAC 4600

Set sign positive (integer) IPS 4641

Set sign positive (floating) Fl'S 4640

Set sign negative (integer) INS 4645

Set sign negative (floating) FNS 4644

Change sign (integer) ICS 4643

-2-

OSAP-AF MNEMONIC

Change sign (floating)

Add it ion skip

Store Ace in ACCn

Add Acea to Ace, Store in ACCn

Subtract ACC from ACC, Store in ACCn

Multiply ACC by Acea' Store in ACCn

Divide ACC by ACCa' Store in ACCn

Inverse Divide ACC by ACC, Store
in ACCn a

Load ACCa' Store in ACCn

FeS

ASK

STO a

ADn a

SBn a

MPn a

DVn a

Dln a

IJ>n a

It should be noted that in ACCn coumands no checking for

OCTAL

4642

4602

15x a

16n a

17n a

20n a

2ln a

22n a

23n a

illegal charac tere is

done in the n portion of the conmand while a is only checked to be 0 a 9. It

should also be noted that ACCn coumands are written as four letter op-codes.

NO ADDRESS MODE

Fop no address mode instructions the assembly program computes the sum of the

address ~nd additive fields, and, if the result is less than 100
8

, adds the sum

to the octal instruction.

The following instructions are of the no address mode type.

NAME OSAP-AF MNEMONIC

Halt and Proceed HPR

Transfer TRA

Transfer to Macro TRM

Store function erasable, floating FST

Add function erasable, integer IAD

Add function erasable, floating FAD

Subtract function erasable, integer ISB

OCTAL

0000 + (AA)

0200 + (AA)

0100 + (AA)

2400 + (AA)

2540 + (AA)

2500 + (AA)

2640 + (AA)

. I

-3-

OSAP-AF MNEMONIC

Subtract function erasable, floating

Multiply function erasable, integer

Multiply function erasable, floating

Divide function erasable, integer

Divide function erasable, floating

Inverse Divide function erasable,
integer

Inverse Divide function erasable,
floating

Load function erasable

Load negative function erasable,
integer

Load negative function erasable,
floating

Load negative and floating convert
function erasable

Store erasable, integer

" Store erasable, floating

Add erasable, integer

Add erasable, floating

Subtract erasable, integer

Subtract erasable, floating

Multiply erasable, integer

Multiply erasable, floating

Divide erasable, integer

Divide erasable, floating

Inverse divide erasable, integer

Inverse divide erasable, floating

FSB

IMP

FMP

IDV

FDV

IID

FID

FLD

ILN

FIB

ILC

!ES

FES

IAE

FAE

ISE

FSE

!ME

FME

IDE

FDE

IIE

FIE

OCTAL

2600 + (AA)

2740 + (AA)

2700 + (AA)

3040 + (AA)

3000 + (AA)

3140 + (AA)

3100 + (AA)

3200 + (AA)

3340 + (AA)

3300 + (AA)

3400 + (AA)

3540 + (AA)

3500 + (AA)

3640 + (AA)

3600 + (AA)

3740 + (AA)

3700 + (AA)

4040 + (AA)

4000 + (AA)

4140 + (AA)

4100 + (AA)

4240 + (AA)

4200 + (AA)

. I

-4-

NAME OSAP-AF MNEMONIC ~

Load erasable, integer ILE 4340 + (AA)

Load erasable, floating FU 4300 +·(AA)

Increase function erasable counter IEC 4400 + (AA)

Decrease function erasable counter SEC 4440 + (AA)

Store accumulators SAC 4500 + (AA)

Res tor'e accumulators LAC 4540 + (AA)

Transfer to Power TIU' 5000 + (AA)

(AA) • Address + Additive

Since the assembler only checks (AA.)~1008 while for these instructions it is

necessary to have (AA)~ 408 (~148 for erasable) it is advisable to use caution

when (AA) is defined symbolically.

FORWARD AND BACKWARD RELATIVE INSTRUCTIONS

On these instructions the assembler computes the sum of address and additive f felds

and, if neither is symbolic, adds the result to the octal instruction. If e .her

f

the addrtss or additive field is symbolic, and the location field does not begin with

a minus sign, then the current location counter is subtracted from the result, and

this number (or its negative, depending on whether the mode is forward or backward),

is added to the octal instruction. If either address or additive is symbolic, and

the location field starts with a minus sign, the sum of address and additive is

computed and the result, or its negative, added to the octal instruction.

The following instructions are of relative type:

Transfer on index backward

Relative transfer forward

~elative transfer backward

(AA) • Address + Additive

OSAP-AF MNEMONIC

TIX

TRF

TRB

OCTAL

4700 + (AA)

0300 + (AA)

0400 + (AA)

-5-

&HE. OSAP-AF MNEMONIC OCTAL

Transfer on positive, forward TPF 0500 + (AA)

Transfer on positive, backward TPB 0600 + (AA)

Transfer on negative, forward TNF 0700 + (AA)

Transfer on negative, backward TNB 1000 + (AA)

Transfer on zero, forward TZF llOO + (AA)

Transfer on zero, backward TZB 1200 + (AA)

Transfer on non-zero, forward ZNF 1300 + (AA)

Transfer on non-zero, backward ZNB 1400 + (AA)

(AA) = Address + Additive

TWO WORD OF CODES

These op codes cause two lines of coding to be generated, the second line being

the sum of address and additive.

The following are the two word instructions.

NAME OSAP-AF MNEMONIC OCTAL

Store, two-word TSnb 5lnb

Floating add FAnb 52nb

Floating subtract FSnb 53nb

Floating multiply FMnb 54nb

Floating divide FDnb 5Snb

Floating inverse divide FVnb 56nb

Integer add !Anh 57nb

Integer subtract ISnb 60nb

Integer multiply IMnb 6lnb

Integer divide IDnb 62nb

Integer inverse divide IVnb 63nb

-11

-6-

NAME OSAP-AF MNEMONIC OCTAL

Load CAnb 64nb

Load negative, floating NFnb 65nb

Load negative, integer Nlnb 66nb

Load and floating convert FCnb 67nb

Load negative and floating convert NCnb 70nb

Normal Boolean BNnb 7lnb

Function erasable Boolean BFnb 72nb

Boolean shift BSnb 73nb

Load index LIXb 74nb

Three word conmand 'l'Wnb 75nb

Go to (also UP) GOnb 76nb

The octal digit "b" denotes the bank of (AA) it must be punched. even if b • O.

The octal digit n serves a dual purpose, both denoting a pseudo accumulator, and

showing whether or not the array option is chosen. Thus n • O, 1, 2, 3 denotes

pseudo accumulators O, 1, 2, 3 respectively, without the array option, while

. i

4, 5, 6, 7 denote the same pseudo accumulators, with the array option being chosen.

Again no check for illegal n is made although "b" is checked to be O!:b.!:9, so

that all illegal "b" except 8 and 9 are caught.

\\r(}>R.Tir\)
11

JS' A REIURN JUN\Y . SUT3f<:QJUTINE
Efl.JTER£D AT ""'8ADQ>P ''

SEAk:C. H
TABLE

"A,,

-l --- ,---~

c~r~~A)
tJ<f>r_'A"?-' , --

. 3~~-1
.______,._'' N ,,

(Cl>P HJ · ----··-- ···-···-~

\ TABJ-E "NH~ N ---- ---- - ~

SEARC.H
·~-el.E.. ,, E: ,,

c/>C..TAL€~·
'16

0500
·-· -·-----~-

. -···"'\

T'

l
FE = ~CTAL EJ.
+-nb
FT: O'+DO

. --- -·-· ---

. I

OSAP-A SYMBOLS

CClO; CCll, CC12, CC13 Contain the locations of the OP CODE portion of the
RCD Card image

OPCl, OPC2 Contain OP Code packed two characters/word

~ is the entry to the region in which t e illegal OP flap is set

Fe Is where the octal equivalent of the OP CODE is stored

!!_is a word of condensed information for this line of coding as follows:

BIT

ii 1 = Pseudo OP
io 1 = illegal OP CODE

9 1 = Duplicate location symbols
8 l 7 OP - Flags
6
5 1 =-Sign in location field
4 0 =Constant address, i = variable location
3 1 = Signed address
2 0 = + Sign, i = Sign
1 0 0 1 = Decimal 1 = Symbolic Address 0 0 = Blank,

1 = Octal, 0 1
•

OP - FLAGS

BLR 0 N, D, OR I
END 1 F
EQV 2 B
ORG 3 R
PRG 4 TWO -WORD OP
CON 5 NO ADDRESS REQUIRED
RFM, BNK, SUP 6 BLANK OP
BCD, FLX, TTY 7 NUMERIC OP

-t

SECTION 5.1

CARD VERSION OF 160-A FORTRAN

The two magnetic tapes normally used in 160A FORTRAN may be dispensed with
by placing the system on cards and using paper tape as intermediate output.
Room requirements restrict the card reader to a column reader.

Since all of the magnetic tape handling is done in. a routine called BINARY,
this routine along with the bootstrap are all that need to be changed to
form a card-papertape system. The tape initialization routines have been
removed, eliminating the use of an asterisk card; and halts have been sub­
stituted for rewinds of the magnetic tapes. The deck is divided into two
sections with the source code placed between the t'·o. This division is
after file 1. (See insert for card format).

Specifications for BINARY

This version of BINARY is a closed subroutine which replaces the version
·designed to do all binary {odd parity) tape handling operations. It will
be assembled se·parately from the compiler and will assume that all bank
settings are zero upon execution of the routine. The routine will be
entered by a JPR to the first location (i.e., 220) with A containing a
parameter requesting these functions:

A= 0 - Punch object tape from locations 100 to 217, incl.
(Valid only in Section 1 and File 1 of Se~tion 2).

A= 1 - Read object paper tape into locations 100 to 217, incl.
(Valid after File 1 of Section 2).

A = 2 - Punch end of file frame on paper tape.
(Valid only in Section 1 and File 1 of Section 2).

A= 3 - Halt to place object tape in reader. Paper tape read
version of BINARY will be brought in at this time.
(Replaces rewind so that any other rewind in Section I
must be replaced by a HLT. This will be ignored in
Sect ion II).

A = 4 - Not valid.

A =7777 Search forward for an End of File in the system.

A =Address (Anything else)

Load one record of the system beginning at the address in A.

. t

Abnormal Conditions

Parity error on read - stop - no recover.

End file - return with A negative.

Invalid Entry - assume no check is made.

Normal Return

· A was 0
1
2
3

7777
Address

will be = 0
""'0
1' 0
I: 0
I: 0
""'0

When the first error in a program is found, the request for rewind of the
tape has been changed to a halt. At this time all previous intermediate
object code is discarded. By placing a 2 in the A register and running,
a single frame is punched as was at the beginning of the program.

There is not enough space set aside for BINARY to read and punch paper
tape and read cards. Two versions of BINARY are provided. The first is
on the bioctal paper tape used to initiate the system. It reads cards
and punches paper tape. The second is imbedded in Section II after file
2. It reads cards and paper tape. When the request for rewind of the

•object code occurs, the first version of binary reads an initialization
routine from cards into location 100. This reads in the second version
of BINARY from cards and halts so that the paper tape intermediate object
code may be placed in the photoreader. This procedure is the same whether
diagnostics have occurred or not.

What has been described are, with one exception, the only differences
between the cardpaper tape system and the magnetic tape system. This
exception is the use of jump switch 1 to change the object computer.
Because this change requires magnetic tape (system deck) to be read
and rewound, this option has been removed. The bank change is possible,
however. Any changes to the object computer must be made before the deck
is punched.

-2-

. t

PAPER TAPE FORMAT

Each record is 243 8 frames long. The first 240
8

frames (120 words) are
the contents of locations 0100-0217 inclusive. Frame 241

8
is a record mark,

127. Frames 242
8

and 243
8

are the 12 bit check sum of the 120
8

words. An
End of File frame is 177.

TAPE TO CARD OPERATION

1. Set load-clear switch to clear.
2. Set A to 0000
3. Set jump switch 1.
4. Place blank cards to be punched in the 523 card punch hopper.

Turn punch on.
5. Place tape to be punched on unit 1.
6. Set run step switch to run.
7. Normal halt is at P = 0301
8. Error stops

CARD FORMAT

Col. 1:

Col. 2:

p = 0150
No jump switch was set. Set jump switch 1 and run.

p 0304
Parity error on tape read. No recovery is possible.

p 0567
The punch is not ready. Correct condition and run.

7 bits (row 12 - row 4) for the word count, row 7 and 9
indicate binary cards. Row 8 will be punched if this is
the last card in a record. Row 6 is punched on every other
card. Note that Column 1 is 4505 or 4515 octal except for
the last card in the record.
Check sum of column 3-76 inclusive.

Col. 3-76
Col. 77-80

(less on last card in the record). The actual words.
Sequence number.

An end of file card has 0177 as Column 1. The rest of the card is
ignored.

-3-

GENERATING A SYSTEM DECK

Since a tape-to-card and verify program is available {chapter 2 of the
operating instructions), the program used to generate the system deck is a
special tape copy program. This program does not copy the first two records
(initialization routines for magnetic tape) on file six, inserts the second
version of BINARY and its bootstrap and sets the diagnostic halt. In using
the tape-to-card and verify program, the first octal digit of the A register
should be set to 5. Once the deck has been produced the last card, an End
of File card, should be removed. File 1 (about 100 cards) should be care­
fully marked or reproduced on a different color since the source deck (with
a single blank card after the end card) follows file l.

-4-

INITIAL BOOTSTRAP

The first version of BINARY is on the same bioctal paper tape so it is
also in core.

1. Output 77
8

blank frames as leader.

2. Output an E0F using BINARY as a dummy frame so that leader may be
skipped.

3. Read the first record using BINARY beginnin.~ at 0400. This is Pass
1 Part 1.

4~ Jump to 0400.

BINARY. FIRST VERSION

This version does not read paper tape. It is used while intermediate
object is being punched.

ENTER 1. Save A register parameter in TEMO

2. Set up exit

3. If (TEMO) = 0 go to 7

4. If (TEMO) ; 2 go to 15

'WEQF s. (TEMO) = 2. Write an EOF on tape, i.e., punch 177.

6. Go to 23

PTWR 7. (TEMO) = 0. Punch a ·record from 0100-0217 inclusive.

8. Set checksum (loc. 0220) to zero.

9. Initialize pickup address to 0100.

PTWR 10. Punch out word. No 7th level punch.

11. Bump address. If less than 6220 go to 10.

12. If greater than 220 go to 23.

13. Punch record mark (127).

-s-

14. Go to 10.

NEXT 15. If (TEMO) ; -0 go to 24.

GOE OF 16. Read cards until EOF card (0177 in col. l) is found.

17. Lock out timing fault

GOE OF 18. Set A to -l. Go to 23.

BTSTRP 19. Bring in second bootstrap. Save return address in 0073.

20. JPR ENTER (BINARY) with A = 0100, i.e., load second bootstrap
at 0100.

21. Jump to second bootstrap

22. Set A to O.

23. Exit.

NEXTA 24. If (TEMO) = 3 go to 19.

RDCRD 25. Read a record from cards. A is initial address. Set up STM
instruction.

RDCRD 26. Start the read. Store col. 1 in TEMO

27. If col. 1 is 0177 (EOF) go to 17.

28. Set up SCN instruction for rows 6, 7, 8, 9, if present.

29. ·If no 7-9 punch, go to 41.

30. Zero the checksum (CHKSUM)

SC 31. Set up COUNT (12 row through col. 4) as negative number.

32. Store col. 2 in TEMO (checksum from card).

RDCRD 33. Read a col. and store it.

34. Add it to CHKSUM, bump address and COUNT

35. If COUNT is not zero, go to 33.

36. Lock out timing fault.

-6-

37. If calculated check sµm is not equal to check sum from card, go
to 40.

38. If col. 1 row 8 was punched go to 22.

39. Go to 26.

40. Check sum error. To try again replace card, adjust storage
address by count and run from 26.

41. Reader failure. See 40.

-7-

SECOND· BOOTSTRAP

This will be in core at 0100 and will be entered from the first bootstrap.
The return address is in 0073. The second version of BINARY is read into
0220 and a halt made so that the intermediate object code paper tape can
be placed in the photoreader.

BOOT4

BOOTS

1. Set up return.

2. Read in BINARY. Initialize address at 0200.

3. Read in col. 1 and save in YTEMP and COLIHD.

4. Set up SCN instruction at sex to take card of rows 6, 7, 8, 9,
if present.

5. If 7-9 punch is not present, halt. Run from 3.

6. Set YCHKSM to zero.

7. Set up. Y COUNT (negative).

8. Store col. 2 in YTEMP

BOOT 9. Read a col. and store it.

10. Add to checksum, bump address and count. If count is not zero,
go to 9.

11. If YTEMP and YCHKSM do not agree, halt. After modifying address
according to the count, rerun from 3.

12. if this is not the last card in the record, i.e. , check 8 row
punch using sex, go to 3.

13. Punch trailer. Halt.

14. Skip leader

15. Set up jump in second BINARY which checks alternating punch in
row 6 col. 1. If last card read had no punch, jump is okay as
is, i.e., go to 17.

16. Change jump to ZJF.

17. Exit.

-8-

SECOND VERSION OF BINARY

This version reads both cards and paper tape. There is room to check
the alternating punch is row 6 col. l. Some low core is available now.

ENTER l. Save A register parameter in TEMO

2 • Set up ex it .

3. If TEMO 1 1, go to 13.

RDPT 4. Read a record from paper tape into 0100-0217 inclusive. Zero

RDPTl

the checksum.

5. Initialize address and EOF jump at step 6 jump. An EOF must
be the first frame encountered.

6. Read a frame. If EOF go to 16.

7. NOP/EOF test in step 6

8. Store word. Add it to check sum and bump address.

9. If address is not 220, go to 6.

10. Check record mark. Halt is error.

11. Check check sum. Halt if error.

12. Go to 17.

NEXT 13. If TEMO = 3 go to 18.

14. If TEMO 1 -0 go to 17.

GOE OF 15. Read cards until an EOF card is reached (177 in col. 1).

16. Set A to -1.

17. Exit.

RDCRD 18. Read a record from cards. Store address in TEMl

RDCRDl 19. Read col.l and store it in TEMO.

20. If EOF go to 16.

-9-

21. Set up SCN instruction at SC to take care of row 6, 7, 8, 9,
if present.

22. If 7·9 punch is not present, halt.

23. Look at row 6. This will alternate as 0 and 1. XJUMP is
changed from ZJF to NZF accordingly. Halt if error.

24. Zero out CHKSM.

25. Set up COUNT as negative number.

26. Read col. 2 (checksum) from card. Store in TEMO.

27. Read and store a col. Add it to checksum. Bump COUNT.

28. If COUNT is not zero, go to 27.

29. Lock out timing fault. Check check sum. If error, halt.

30. If row 8 of col. 1 is not .. punched (check SC) go to 19.

31. Set A to 0

32. Go to 17".

SECTION 5.2

COPY PROGRAM FOR GENERATING SPECIAL TAPE

As explained, once the new tape is generated 5 files are punched on
cards. In copying, the magnetic tape system tape is placed on unit 1. The
tape to be generated is placed on unit 2. The copy program contains tbe
second bootstrap and the second version of BINARY. These are assembled at
0200 and 0320, respectively, i.e., all addresses are off by 100.

1. Rewind the tapes and set them to binary.

2. After initializing counters, skip the first two records. These
are the magnetic tape initializating routines.

3. Copy records 3 (Pass 1 Part 1) and 4 (Pass 1 Part 2).

4. Read in record 5 (Pass 1 Part 2) and change location 4054 (now
at(l) 3016). Output the record.

5. Copy rest of file 1 and all of file 2.

6. Output second bootstrap and second BINAFY as two records.

7. Copy files 3, 4, and 5.

