
INTERFOR/REFERENCE MANUAL

.

CONTROL DATA 160-A COMPUTER

CONTROL DATA CORPORATION

8100 34th Avenue South

Minneapolis 20, Minnesota

INTERFOR/REFERENCE MANUAL

SEPTEMBER 1962

Pub. No. 512 @ 1962, Control Data Corporation

PREFACE

The INTERFOR programming system for the Control Data Corporation 160-A

computer is a joint development of Control Data Corporation and Mr. Gordon Stanley

of General Motors Corporation*. Mr. Stanley provided flow charts and documentation

for the INTERFOR system, and developed the matrix instructions.

Control Data Corporation gratefully acknowledges the assistance of Mr. Stanley

in this development.

*Aerospace Operations Group
Defense Research Laboratories,
Goleta, California

iii

TABLE OF CONTENTS

Page

INTRODUCTION

PART I

INTERFOR SYSTEM DESCRIPTION 1

Interpreter Routine 1

PART II

INTERFOR WORD STRUCTURE 5

Memory Allocation 5

Instruction Word Format 6

Data Format 11

Tl AT> 'T" TTT r.n..n.t .L.l.l

INTERFOR INSTRUCTIONS 17

Data Transmission 19

Address Modification 21

Floating Point Arithmetic 21

No Address 23

Jumps and Stops 23

Storage Te st 26

Storage Se arch 26

PART IV

INTERFOR SUBROUTINES 29

Internal I/O Subroutines 29

Machine Language Subroutines 33

v

PART V

INTERFOR ASSEMBLY PROGRAM (FLAP)

Symbolic Instruction Format

FLAP Pseudo Instructions

Machine Language Coding

Instruction Word Pairing

FLAP Input

FLAP Output

FLOADER

INTER FOR OPERA TOR'S GUIDE

FLAP Operating Procedures

F LOADER Operating Procedures

Interpreter Operating Procedures

PART VI

APPENDIX

EXTERNAL FUNCTION SUBROUTINES

TABLE I

Interpreter Pseudo Registers

TABLE II

Summary of Instruction Codes
Accepted by FLAP

TABLE III

TABLES

Flexowriter and Punched Card Characters
Accepted by FLAP

vi

Page

37

39

44

45

46

48

50

52

53

53

55

57

65

2

38

43

INTRODUCTION

The purpose of the INTERFOR system is to facilitate the solution of scientific

and engineering problems on a basic Control Data Corporation 160-A computer with

up to four banks of core storage. The following on-line peripheral equipment will

increase the usefulness of the INTERFOR system: A 161 typewriter, a 166 line

printer and a 167 card reader. A 165 plotter may also be included.

The system, based on a 33-bit floating point interpreter, provides the programmer

with up to 6521 8 48-bit words of storage and a repertoire of 22 single address

instructions.

The INTERFOR system consists of the interpreter routine, the assembly program

(FLAP), the binary load routine (F LOADER), nine function subroutines, and a PLOT

subroutine for the Control Data 16 5 plotter. The interpreter routine is described in

parts I, II and IV; INTERFOR word formats are in part II; the instruction repertoire

is described in part IV. FLAP and F LOADER are described in part V. All operating

instructions are in part VI. The function and PLOT subroutines are described in the

appendix, which also includes calling sequences and octal listings.

vii

PART I

INTERFOR SYSTEM DESCRIPTION

The INTERFOR system provides the programmer with a means of solving problems

in floating point notation on the Control Data 160-A computer. An INTERFOR program

is executed under control of the interpreter routine and may be coded either in octal

or in symbolic format. Octal instructions are directly loaded and executed by the

interpreter routine. Symbolic instructions are first assembled by FLAP, the INTERFOR

assembly program to produce a listable output and a binary object program tape.

The listable output, which may be on paper tape or on the 166 line printer, consists

of a side-by-side listing showing the symbolic input and the assembled program. The

binary object program tape is first loaded by FLOADER, the INTERFOR binary load

routine before being executed by the interpreter.

Provision is made to include 160-A instructions within INTERFOR programs.

The external function subroutines provided with the system simplify the computing of

various mathematical functions. These subroutines utilize a portion of the interpreter

routine but are loaded separately as described in the Appendix. See part V for a

detailed description of FLAP and FLOADER.

INTERPRETER ROUTINE

The interpreter routine simulates twenty Control Data 1604 floating point instruc­

tions and two floating point matrix operations, using the Control Data 160-A computer.

Each data word is converted into a 33-bit signed binary fraction and a 10-bit signed

binary exponent. Data words and instruction words each occupy 48 bits of storage

in the 160-A (four 160-A words). Each 48-bit word is addressed by a 4-digit octal

number called the INTERFOR address. Since arithmetic is done in binary floating­

point format, a pseudo accumulator is built into the interpreter routine. To implement

the indexing features provided by several of the INTERFOR instructions, certain

1

locations in low core of bank 0 in the 160-A are used as pseudo index registers.

Table I identifies the contents of low core storage locations (00-77) in the 160-A

that are utilized by the interpreter. The argument locations are identified by X, the

pseudo accumulator locations are identified by A, and the low-order portion of the

result of a multiply instruction is identified by Q. The remainder of the pseudo

registers in table I are used for housekeeping by the interpreter.

160-A Address

0000

0001

0002

0003

0004

0005

0006

0007

0012

0013

0014

0015

0016

0017

0022

0023

0024

TABLE I

INTERPRETER PSEUDO REGISTERS

Contents Name

7157

6720 ENTRY

PAK

y

B

u

yy

5733 EXIT

AEXP

ASIGN

AH

AM

AL

EXPDIG

XEXP

XSIGN

XH

2

Function

JFI Start; with address in A

Entrance to INTERPRETER

160 Program Address Counter

160 Address of Operand

Index Designator

Upper Lower CTR: 2=lower,
O=upper

INTERFOR Address of Operand

Goes to NORMALIZE

A Exponent

A Sign

A Fraction, high 11 bits

A Fraction, middle 11 bits

A Fraction, low 11 bits

Input Exponent Digit Counter

X Exponent

X Sign

X Fraction, high 11 bits

160-A Address Contents Name Function

0025

0026

0036

0037

0044

0045

0046

0051

0052

0053

0054

0055

0056

0057

0060

0070

0071

0072

0073

0074

0075

0076

0077

4000

3777

6713

XM

XL

l\1I

M2

QH

QM

QL

Bl

B2

B3

B4

B5

B6

START

P-REG

TEMO

TEM 1

TEM2

TEM3

TEM4

TEM 5

TEM6

TEM 7

X Fraction, middle 11 bits

X Fraction, low 11 bits

Mask

Mask

Q Fraction, high 11 bits

Q Fraction, middle 11 bits

Q Fraction, low 11 bits

Index Register 1

Index Register 2

Index Register 3

Index Register 4

Index Register 5

Index Hegister 6

INTERPRETER Entrance, ADR
in A

INTERFOR Program Address

Temporary Storage

NOTE: All low core locations (0000---0077) are used by INTERFOR
except: 0010, OOll, 0020, 0021, 0030, 0031, 0040, 0041. These locations
~TP lPft opPn to provide interrupt capabilities for the INTERFOR system.

3

PART II

INTERFOR WORD STRUCTURE

The INTERFOR interpreter routine requires that the instructions and data in a

program to be executed by the interpreter be in a specific format. Each instruction

word and data word is converted by the interpreter to a particular internal format.

Since each converted word is 48 bits, a special INTERFOR address identifies the

storage location of each word. An instruction word consists of two 24-bit INTERFOR

instructions. A data word consists of one floating point decimal number in binary

form.

INTERFOR instructions written in octal notation may be loaded from previously

prepared Flexowriter paper tape or manually inserted on the console typewriter under

control of I/O subroutines within the interpreter routine. Data may be entered from

previously prepared paper tape, from the console typewriter, and from the 167 card

reader.

Segments of object programs may contain 160-A machine language coding. The

interpreter does not execute instructions coded in machine language. Machine

language coding under the INTERFOR system is explained in part V together with

symbolic coding.

Instruction and data words, input formats, and the INTERFOR addressing scheme

are described below.

MEMORY ALLOCATION

The following description of the interpreter memory allocation applies to a 4-bank

160-A computer. Storage for a 2-bank 160-A consists of banks 0 and 1 only.

5

Bank 0 Bank 1 Bank 2 Bank 3

~
2000 4000 6000

3777 5777 7777
0

Each bank contains 1024
10

48-bit words. Each octal (INTERFOR) address refers to a

48-bit word. The interpreter routine occupies INTERFOR locations 0000 8 though

0020 8 and 0540
8

through 17778 of bank 0 (shaded area). Remaining storage space in

bank 0 may be used by the programmer. However, external system subroutines*

must be located in bank O; therefore it is advisable that object programs be located

in other banks. When a program is executed under control of the interpreter, bank

switching is provided by the interpreter routine; for those portions of programs that

are coded in 160-A machine language, bank switching must be programmed.

NOTE: For machine language programming under the INTERFOR
system, SPECIFIC mode instructions may be used as the
interpreter does not normally use machine location 77778

in bank 0. However, an MEL or an MES interpreter instruc­
tion will destroy the previous contents of this location. Re­
fer to 160-A programming manual for SPECIFIC mooe expla­
nation.

INSTRUCTION WORD FORMAT

UPPER LOWER

An INTERFOR instruction word contains two 24-bit INTERFOR instructions--the

upper instruction and the lower instruction. Each instruction is made up of four

functional parts:

*Appendix A

G

where

OP
2 octal digits

B
1 octal digit

h
1 octal digit

m
4 octal digits

OP code specifies the instruction that is to be executed.

Index designator specifies which (if any) of 6 index registers is
to be used in modifying the execution address of the instruction.

Breakpoint designator causes a conditional halt in processing
(before the execution of the instruction) if certain selective
stop console switches are set. (See Selective Stop Switch Table).

Depending on type of instruction specified by OP code, m may
be used as the base address of an operand (modified by the con­
tents of the specified index register) or as the operand itself.

The IN"TERFOR instruction repertoire is contained in part Ill.

Address Modification

The interpreter recognizes two modes of addressing: direct, b = O, and relative,

b = 1 through G. In the direct mode, the m term is interpreted as the execution

address. In the relative mode, the execution address is formed by adding b (contents

of index register) to m. (b = 7, illegal value.)

EXAMPLE: Given the symbolic instruction

OP b m

LDA 5 0106

where the contents of index register 5

is 7000, the execution address M is

m + (Bb).

M = 0106 + 7000

= 7106, the final execution address.

7

Breakpoint Designator

The conditions of the selective stop switches for the \Tarious values of h are

shown below (x indicates a stop switch in the VP position):

SELECTIVE STOP S\VITCH TABLE

~ 4 2 1

0

1 x

2 x

3 x x

4 x

5 x x

6 x x

7 x x x

EXAMPLE: A breakpoint stop will occur if an instruction

contains h = 5 and either selective stop switch

4 or 1 (or both) are up.

Breakpoints in Symbolic Coding

The breakpoint designator, h, in symbolic coding is a single octal digit in the

third character position of the comments field preceded by bp in the first two character

positions of the comments field. A more complete explanation of symbolic coding is

contained in part V.

Instruction Load Formats

INTERFOR object programs are punched on paper tape and loaded via the paper

tape reader, or loaded manually via the console typewriter. For either medium, each

8

instruction must be 8 octal characters; the format must be one of the two shown

below. Octal information consisting of 8 characters per word may be loaded in the

same manner as instructions. Object programs are relocatable by use of a relocation

constant (INTERFOR address) at load time. (Instruction Load Operating Instructions,

part VII.)

The following symbols are used in defining the two instruction load formats:

Symbol

A

I

Meaning

Four octal digits specifying the simulator storage address.

The 8 octal digits specifying the information to be loaded
at the specified address.

NOTE: Any number of spaces and/or
tabs may be contained within
I, but I must contain 8 octal
digits.

() The parentheses enclose a quantity which is optional
within the format.

I

The minus code indicates that the A field is not to be
modified by the relocation constant that may be manually
inserted in the 160-A accumulator prior to initiating the
load routine. If the minus code is not used, the load
address will be modified by the relocation constant at
load time.

The slash code immediately follows I and causes the last
4 octal digits of I to be increased by the relocation constant
before being stored.

The period code, following the first group of 4 octal digits
of I, causes these 4 digits to be increased by 4 times the
relocation constant. Similarily, a period code following the
second group of 4 octal digits causes these 4 digits to be
increased by 4 times the relocation constant.

CR The carriage return terminates a line of information. The
loading routine anticipates a new storage address as the
first item of the subsequent line. If a new address is speci­
fied, the information, I, of that line will be stored in the

9

Symbol Meaning

upper half of the storage address. If a new address is not
specified (skipped over by a tab) the information will be
stored in the half-word following that used for the previous
storage.

TAB Each tab code in a line indicates the beginning of an I field.

The semicolon, following a CR, terminates the instruction
load routine.

FORMAT A

One instruction per line (one tab)

(CR)

(-) A Tab I (/.) CR

(-) (A) Tab I (/.) CR
(Instructions)

(-) (A)TabI(/.) CR

The I field of the first line is loaded as an upper instruction. Subsequent I fields

will be placed in sequence, lower, upper, lower, upper, lower, etc., unless a sub-

sequent I field is preceded by an A field, resulting in a new sequence of upper and

lower I fields. If the lower half of an instruction word is not specified, the previous

contents are preserved.

FORMAT B

Two instructions per line (two tabs)

(CR)

(-) A Tab I (/.) Tab I (/.) CR

(-) (A) Tab I (/.) Tab I (/.) CR
(Instructions)

(-) (A) Tab I (/.) Tab I (/.) CR

10

In Format B, each line represents a complete 48-bit instruction word. The first

I field in the line represents the upper instruction.

NOTE: Formats A and B may be mixed.

EXAMPLE: Relocation constant of 0500 specified
at load time. Format A is used.

RESULTING STORAGE

Input Listing Location Contents

A I (INTERFOR Address)

-0100 12345677 CR 0100 12345677 (lower = previous
contents)

0000 11112222 CR 0500 1111222233334444

TAB 33334444 CR

TAB 5555 GGGG CR 0501 53556666 (lower = previous
contents)

0010 7777 0000/ CR 0510 7777050024012402

TAB 0001.0002. CR

160-A machine coding may be loaded in the same manner by packing two octal

machine instructions in each octal INTERFOR instruction, and supplying the proper

INTERFOR address in the A field. Each INTERFOR address contains four 160-A

machine instructions.

DATA FORMAT

Data words in the INTERFOR system must be floating point decimal numbers.

The format for entering floating point data is:

+
TAB

.DDDDDDDDD or
CR

11

+
TAB

EEE or
CR

where D represents a decimal digit of the fractional field of the data word and E

represents a decimal digit of the exponent. Both the fractional part and the exponent

may be preceded by a+ or - sign.

If the sign is omitted, the field is interpreted to be positive. The fractional field

which may contain up to 9 decimal digits is terminated by a TAB if followed by an ex­

ponent, otherwise the field is terminated by a CR. The exponent field which may con­

tain up to 3 decimal digits may be terminated by either a TAB or a CR.

The interpreter converts each floating point decimal word into a 33-bit normalized

binary fraction (12s fraction < 1) and a 10-bit exponent; each 12 bits occupies a con­

secutive 160-A storage location. In the two low-order machine locations bit 12 is always

zero. The exponent sign occupies two bit positions.

I 12 11

t f
I<\ I__,,

I

I

1112 112 1112

10 bits I + I 11 bits 11 bits I o I 11 bits

EXPONENT••-!-~__,.:------ CHARACTERISTIC -------l•..il
I

Base 2 1

t :
I
\

I

Absolute Value, Binary Normalized

Fractional
\

..__-Radix Point

'----Sign of Number 0 = +; 1 = -
I

'Integer Exponent: Absolute Value if exp sign = + = 0

1' s complement if exp sign = - = 1

'Exponent Sign (bits 11 and 12 are identical)

The following examples demonstrate hmv floating point decimal numbers will

appear in octal format after being converted to binary numbers.

12

1010 = 0.10100------00*2 4 (binary fraction)

= 0004 2400 0000 0000 (octal notation)

-510 = 1.100------00*2° (binary fraction)

= 0000 6000 0000 0000 (octal notation)

+.2510 = 0.100------00*2
-1

(binary fraction)

= 7776 2000 0000 0000 (octal notation)

NOTES: 1. Input data may be prepared on cards or Flexowriter tape,
or entered from the console typewriter.

2. Delete codes may appear on paper tape as they are not
recognized by the interpreter load subroutines.

3. The approximate magnitude of range for decimal numbers

is between the values of 10 10 -
308 and 10 10 +

307

Floating point data words are loaded and converted by one of two types of internal

interpreter subroutines as described in part IV. One type is for loading data under

program ~ontrol, and the other is for manually inserting data after interrupting the

program. The manual load subroutines accept data from either the paper tape reader

or from the console typewriter. The programmable data input subroutines accept data

from either the 167 card reader, the paper tape reader, or the typewriter. Each sub­

routine requires that data be in a specific format as shown below. The format is the

same for paper tape as typewriter input.

Paper Tape Format for Program Control

The format for loading data under program control is:

± .DDDDDDDDD TAB ± EEE TAB
or or
CR CR

No additional control characters are required. The number of data words that

may be punched under this format is limited only by storage capacity. The first word

13

on tape may be preceded by a CR; it will not be recognized by the subroutine.

Trailing zeros in the fractional field need not be punched.

EXAMPLE: Five decimal numbers, -0 .1, -0 .0 5, 1.2 5, 5. 7 5, 11.6, are

to be punched in floating point format and loaded under

program control. The data tape is punched in the follow-

ing manner:

CR (optional)

-.1 CR

-.5 TAB -1 CR

.125 TAB 1 CR

.575 TAB 1 CR

.116 TAB 2 CR

NOTES: 1. Use same format for entering the data from the console
typewriter. If a typing error is made, an X character in­
serted in the faulty word will cause that word to be ignored.

2. The exponent fields may be terminated by a TAB.

3. Delete codes may appear on the data tape.

Data Card Format for Program Control

The card input format for floating point data is as follows:

Column

1

2

3-11

12,13

± .DDDDDDDDD ±EEE*

Sign of fractional field: - , + or blank

Decimal point (must be punched)

Fractional field (up to nine decimal digits)

Must be blank

14 Sign of exponent field: -, + or

14

Column

15-17

18

19-80

Exponent Field (up to three decimal digits)

Asterisk (must be punched to terminate read operation)

Ignored

NOTES: 1. Blanks in fractional and exponent fields are interpreted
as spaces, not as zeros.

2. Fractional field should be normalized.

3. Only one word may be punched on a card.

Paper Tape Format for Manual Load

The manual load subroutine format differs from the program control format in

that an INTERFOR address field must precede the fractional field of each word. Re­

gardless of the sequence of loading, a load address must accompany each data word.

The rules for the fractional and eArponent fields are the same for both load formats.

Operating instructions for the manual load subroutine are in part VII. Format for

manual load is shown in the following example.

EXAMPLE: Load the decimal numbers -0.1, -0.05, 1.25, 5.75, and

11.6 using the manual data load subroutine. The numbers

are to be stored in sequential INTERFOR locations start­

ing at 3000. The data tape is punched as follows:

CR

3000 TAB -.1 CR

3001 TAB -.5 TAB+ 1 CR

3002 TAB .125 TAB 1 CR

3003 TAB .57.S TAB 1 CR

3004 TAB .116 TAB 2 CR

15

NOTES: 1. A relocation constant used with the manual data load
subroutine will modify the A field of all words that do
not have a - sign preceding the A field. In the example,
if a relocation constant of 2000 is used at load time, the
resulting INTERFOR addresses will be 5000, 5001,
5002, 5003, and 5004. If the A fields are preceded by -
signs, the relocation constant is ignored and the words
will be stored consecutively starting at 3000.

2. The format for manual data load from the console type­
writer is the same as above.

3. Exponent fields must be terminated by a CR.

4. The ; symbol must he placerl after carriage return of the
last word in order to terminate the manual data load sub­
routine.

5. Delete codes may be used to correct typing errors.

16

PART III

INTERFOR INSTRUCTIONS

In the 22 INTERFOR instructions described on the following pages, the title line

of each instruction contains the mnemonic code and format, name, and absolute

coding. Abbreviations and symbols are defined as follows:

A

b

Exit (full)

Half Exit

LA

UA

m

M

()

y

y

h

•

48-bit pseudo accumulator

Index designator

Designated index register

Proceed to upper instruction of next progTam
step

Proceed to lower instruction of same program
step

The condition designator for jump and stop
instructions

Lower address

Upper address

Unmodified operand address

Modified operand address M = m + (Bb)

Contents of (register or storage location)

Unmodified operand

Modified operand. Y = y + (Bb)

Breakpoint designator

A description of the error codes included in the specification of certain instruc­

tions is contained in the operator's guide in part IV.

17

Mnemonic Code

LDA

LAC

STA

MEL

MES

LIU

LIL

SIU

SIL

ISK *
FAD

FSB

FMU

FDV

ENI

INI

AJP

SLJ

SLS **
SSK *

EQS *
THS *

* Upper Instruction Only

** j = 0 or 4 only

INSTRUCTION REPERTOIRE

Name

Load A

Load A Complement

Store A

Matrix Element Load

Matrix Element Store

Load Index Upper

Load Index Lower

Store Index Upper

Store Index Lower

Index Skip

Floating Add

Floating Subtract

Floating Multiply

Floating Divide

Enter Index

~, Increase Index

f Exit to 160

A Jump

Selective Jump

Selective Stop

Storage Skip

Equality Search

Threshold Search

18

Absolute Code

12 bh mmmm

13 bh mmmm

20 bh mmmm

34 bh mmmm

35 bh mmmm

52 bh mmmm

53 bh mmmm

56 bh mmmm

57 bh mmmm

54 bh yyyy

30 bh mmmm

31 bh mmmm

32 bh mmmrn

33 bh mmmm

50 bh yyyy

51 bh yyyy

51 Oh yyyy

22 jh mmmm

75 jh mmmm

76 jh mmmm

36 bh mmmm

64 bh mmmm

65 bh mmmm

DATA TRANSMISSION

LDA b m Load A 12 bh mmmm

Replaces (A) with a 48-bit operand contained in the location specified by M.

Initial (A) are changed during execution; (m) remain unchanged. Negative zero is

formed in A if the operand at M is equal to negative zero.

LACbm Load A Complement 13 bh mmmm

Replaces (A) with the complement* of the operand contained in the location

specified by M. Initial (A) are changed during execution; (M) remain unchanged.

Negative zero is formed in A if the operand at Mis equal to positive zero.

STA b m Store A 20 bh mmmm

Replaces contents of designated location, M, with contents of A. Initial (A) remain

unchanged; initial (M) are changed.

MEL b m bph Matrix Element Load 34 bh mmmm

Replaces (A) with a 48-bit operand from the brow and h column of a columnwise

stored matrix. The a 11 element of the matrix must be stored at address m + 1. The

column length of the matrix must be stored in octal form in the upper half of word at

address m. (Bb) == current value of column index. The breakpoint designator bph

cannot be 0.

* Changes sign of the number only.

19

SIL b m Store Index Lower 57 bh mmmm

Replaces lower address portion of m with contents of designated index register.

Remaining bits of the word in storage are unchanged. Initial (Bb) are unchanged;

initial (m) are changed. If b = 0, this instruction becomes a pass instruction.

ADDRESS MODIFICATION

ISK by Index Skip 54 bh yyyy

This instruction compares the quantity in the designated index register with the

operand, y. If (Bb) are less than y, (Bb) are increased by one, and a half exit is

performed. When the two quantities y and (Bb) become equal, the designated index

register is cleared to zero and a full exit is performed. A half exit proceeds to

the lower instruction of the program step, and a full exit proceeds to the upper

instruction of the next program step. If the quantity in the index register is greater

than the operand y, an error stop occurs. That is, the interpreter assumes that y

is the maximum value the index register will be allowed to attain.

FLOATING POINT ARITHMETIC

An exponent fault error, e, will occur if the absolute value of the binary exponent

exceeds 17778 •

FADbm Floating Add 30 bh mmmm

Forms the sum of two operands packed in floating point format. A floating point

operand is read from storage location M and added to the floating point word in A.

The result is normalized, rounded, and retained in A at the end of the operation.

Exponent equalization takes place prior to performing the arithmetic operation.

NOTE: If the result is zero, the sign of the original contents
of the accumulator is assigned to the answer.

21

FSB b m Floating Subtract 31 bh mmmm

Forms the difference of two 48-bit operands in floating point format. The

subtrahend is acquired from storage address M and is subtracted from the minuend

in A. The result is rounded and normalized if necessary and retained in A. Exponent

equalization occurs prior to performing the arithmetic operation. See note under

FAD.

FMUbm Floating Multiply 32 bh mmmm

Forms the product of two 48-bit operands in floating point format. One operand

must be loaded into A prior to executing the instruction. The other operand is read

from storage location M.

The product is rounded and normalized if necessary and retained in A.

FDVb m Floating Divide 33 bh mmmm

Forms the quotient of two 48-bit operands in floating point format. The dividend

must be loaded into A prior to executing this instruction. The divisor is read from

the storage location specified by l\I. The quotient is rounded and normalized (if

necessary) and retained in A at the end of the operation.

22

NO ADDRESS

In these instructions, the operand y is treated as a one 1s complement number.

Numbers 4000 to 7777 are considered to be negative numbers; 4000 == -3777,

7777 == -0.

ENI by Enter Index 50 bh yyyy

Replaces (Bb) with the operand y. If b == O, this instruction becomes a pass or

do nothing instruction.

INI by
Increase Index

Exit to 160-A Coding

51 bh yyyy

51 Oh yyyy

Increases (Bb) by the operand y. If b == 0, this instruction causes an exit from

the interpreter to basic 160-A coding. In this case yyyy specifies the interpreter

return address when a normal exit is made from machine language back to the

interpreter. The 160-A word immediately following this instruction is the first

160-A instruction to be executed.

NOTE: See part IV, Machine Language Subroutines.

JUMPS AND STOPS

Address modification does not apply to these instructions.

Normal Jump

A jump instruction terminates a current program sequence and initiates a new

sequence at a different location in storage. In all jump instructions, the execution

address, m, specifies the beginning address of the new program sequence. The

word at address m is read from storage, and the upper instruction (first instruction

of the new sequence) is executed.

23

Some jump instructions are conditional upon a register containing a specific

value or upon the position of a jump key on the console. If the criterion is satisfied,

the jump is made to location m. If it is not satisfied, the program proceeds in its

regular sequence to the next instruction.

A jump instruction may appear in either position in a program step. If the jump

instruction appears in the first (upper) part of the program step and the jump is

taken, the second (lower) part of the program step is never executed. If the jump

appears in the lower part, the upper part is executed in the normal manner.

AJP j m A Jump 22 jh mmmm

Jumps to m if the conditions of the A register specified by the j exist. If not, the

next instruction is executed.

SLJ j m

j = 0 jUmp if (A) = 0

j = 1 jump if (A) I 0

j = 2 jump if (A) = +

j = 3 jump if (A) = -

NOTE: The zero tests are made on the bits of the fractional
part of the number in the accumulator. The sign bit
is not included.

Selective Jump 75 jh mmmm

Jumps to m if the condition of the jump keys specified by j exists. If not, the

next instruction is executed.

= 0 Jump unconditionally. (Key setting does not reference jump.)

= 1 Jump if selective jump key 1 is set.

j = 2 Jump if selective jump key 2 is set.

j = 3 Jump if selective jump key 4 is set.

24

Normal Stop

SLS 0 m Selective Stop 76 Oh mmmm

Stops at present step in the sequence and executes an unconditional jump to

address m when the run-step key is moved to RUN or STEP. If j I- 0 or 4, an error

stop d occurs during the halt of a SLS instruction with the following display:

p = 6351 A = INTERFOR Address z = 7700

Return Jump

A return jump begins a new sequence at the lower instruction of the program

step to which the jump is made. At the same time, the execution address of the

upper instruction of that program step is replaced with the address of the next step

in the main program. This instruction is usually an unconditional jump instruction

and aiiows a return to the main program after completing the sub-program

sequence.

AJP j m A Jump 22 jh mmmm

Executes a return jump to m if the condition of the A register specified by j

exists. If not, the next instruction is executed.

j = 4 Return jump if (A) = 0

j = 5 Return jump if (A) I- 0

j = 6 Return jump if (A) = +

j = 7 Return jump if (A) = -

The same conditions apply to the zero tests as outlined with AJP Normal.

25

SLJ j m Selective Jump 75 jh mmmm

Executes a return jump to m on condition j (selective jump key setting). If the

condition is not satisfied, the next instruction is executed.

= 4 Return jump unconditionally. (Does not reference jump keys.)

= 5 Return jump if jump key 1 is set.

:::::: 6 Return jump if jump key 2 is set.

NOTE: The set position of a jump key is UP.

Return Stop

SLS 4 m Selective Stop 74 4h mmmm

Stops unconditionally and executes a return jump-to m if the run key is moved to the

RUN or STEP. If j /:- 0 or 4, an error stop d occurs during the halt of an SLS

instruction with the following display:

p:::::: 6351

STORAGE TEST

SSK b m

A = INTERFOR Address m

Storage Skip

z = 7700

36 bh mmmm

Senses the sign bit of the operand in M. If the sign is negative, a full exit is

taken. If the sign is positive, a half exit is taken. The contents of the operational

registers are left unmodified. SSK is restricted to an upper instruction. If used as a

lower instruction an error stop, S, occurs.

STORAGE SEARCH

If b = 0 or if (Bb) = 0 in the following instructions, only the word at storage

location m will be searched. The search area must be entirely within one bank.

26

EQS b m Equality Search 64 bh mmmm

Searches a list of operands to find one that is equal to A. The number of i terns

to be searched is specified by Bb. These items are in sequential addresses beginning

at the location specified by m. The search begins with the last address, m + (Bb) -1.

For each word that is searched (Bb) is reduced by one until an operand is found that

equals A or until (Bb) equals zero. If the search is terminated by finding an operand

that equals A, a full exit is made. The address of the operand satisfying this condition

is given by the sum of m and the final (Bb). If no operand is found that equals A, a

half exit is taken. Positive zero and minus zero are recognized as the same quantity.

If EQS is used as a lower instruction, an error stop "S" occurs.

THS b m Threshold Search 65 bh mmmm

Searches a list of operands to find one that is greater than A. The number of

• • • "' , "1 • •r-• 1 1 ,-..b ml •L • l ,..J....'J nems to oe searcnea is spec1neu oy n • .i nese 11..e1ns are Hi sequen1.1fu auuresses

beginning at the location specified by m. The search begin~ with the last address,

m + (Bb) - 1. The content of the index register is reduced by one for each operand

examined. The search continues until an operand is reached that is greater than A

or until (Bb) is reduced to zero. If the search is terminated by finding an operand

greater than the value in A, a full exit is performed. The address of the operand

satisfying the condition is given by the sum of m and the final contents of B b. If no

operand in the list is greater than the value in A, a half exit is performed. In the

comparison made here positive zero is considered as greater than minus zero. If

THS is used as a lower instruction, an error stop "S" occurs.

27

PART IV

INTERFOR SUBROUTINES

Subroutines for the INTERFOR system fall in three categories:

Internal I/O subroutines

External subroutines

Machine language subroutines

Internal I/O subroutines are an integral part of the interpreter routine and perform

input/ output functions. External subroutines consist of arithmetic and output sub­

routines that are a part of the INTERFOR system but are not included with the inter­

preter routine. The external subroutines are described in Appendix A. Machine

language subroutines are those in an object program that are coded in machine (160-A)

language. An explanation of the methods used for entrance and exit for each type of

subroutine, as well as a description of the internal I/O subroutines, is given below.

Internal and external subroutines are entered via return jump instructions in the object

program. Machine language coding under INTERFOR also requires the use of return

jumps to leave and re-enter the interpreter routine. Input formats are described in

part II.

INTERNAL I/O SUBROUTINES

The internal I/O subroutines consist of programmable data input and output sub­

routines, manual data input and output subroutines, and the instruction load subroutines.

Input/ Output media for internal subroutines are: paper tape reader, paper tape punch,

console typewriter, 166 printer and 167 card reader. Programmable I/0 subroutines

are called by the programmer in an object program. Manual I/O subroutines and the

instruction load subroutines are initiated by the computer operator at the 160-A

console. Operating instructions for the latter subroutines are in part VII.

29

Programmable Data I/O Subroutines

These routines provide for programmable input and output of floating-point decimal

data between the accumulator and the I/O equipment. These subroutines, which are

integral to the INTER FOR interpreter, are stored in fixed locations.

Each data input subroutine converts one floating point decimal data word into

binary format and leaves the converted binary word in the accumulator. Therefore

the programmer must enter a data input subroutine each time a new data word is to be

loaded, and also store the converted binary word before loading the next word.

Each time a data output subroutine is entered, the contents of the accumulator are

converted and dumped as a single floating point decimal number on the specified output

medium. The word to be dumped must be in the accumulator prior to entering the

output subroutine.

To enter the programmable data input subroutines, the programmer must use a

return jump instruction in which the M term contains the INTERFOR entrance address

of the required subroutine. When the word has been loaded or dumped, the subroutine

will exit to the upper half of the next instruction word in the main program.

Data Input Subroutine Entrances

Entrance locations to data input subroutines depend upon the source of

input data.

Source

167 Card reader

Paper tape reader

Typewriter

Entrance Address

0754

1224

1226

Format for floating point input data is in part II.

30

Data Output Subroutine Entrances

Entrance locations to data output subroutines depend on the output device and

whether the word is terminated with TAB or CR.

Output

Paper tape punch
followed by TAB
followed by CR

Typewriter
followed by TAB
followed by CR

166 Printer
followed by TAB
followed by CR
output TAB only
output CR only

Entrance Address

1230
1232

1234
1236

0612
1126
0654
1222

EX AMP LE: The following example in symbolic notation demonstrates

the programmable data input and output subroutines. A

h lock of ten words is to be read from the paper tape reader

and stored in consecutive locations starting at BLOCK. The

first five words of this record are then dumped on the console

typewriter. Index register #1 is used as a counter.

START (U) ENI

ENI

LOAD (U) SLJ

ENI

(U) STA

1

0

4

0

1

31

0

1224

BLOCK

Pass

Enter input subroutine

Pass

ENI 0 Pass

(U) ISK 1 9D

SLJ 0 LOAD

(U) SLS 0 OUT Temporary Halt

ENI 0

OUT (U) ENI 1 0

ENI 0 Pass

DUMP (U) LDA 1 BLOCK

SLJ 4 1236

(U) ISK 1 4D

SLJ 0 DUMP

(U) SLS 0 START

U = upper instruction

Instruction Load Subroutines

The instruction load subroutines allow INTERFOR instructions in octal format to

be loaded from paper tape or the typewriter. To use the instruction load subroutine,

the interpreter routine must be halted. Operating procedures for loading instructions

in octal format are contained in part VII. The octal format for instructions is specified

in part II. Symbolic instructions cannot be loaded by these subroutines. Refer to part

V for symbolic format.

Manual Data Load Subroutines

The manual data load subroutines provide for relocation of floating-point data at

load time by requiring that a storage address be entered with each floating point data

word. Each load address may be incremented by a relocation constant if desired. The

manual data load subroutines differ from the programmable data load subroutines in

that (1) the interpreter routine must be at a normal stop, and (2) the subroutine

32

(paper tape or typewriter) is entered by forcing the P register to the required starting

address (operating instructions part VI). Format for manual input data is in part II

as well as with the operating instructions.

MACHINE LANGUAGE SUBROUTINES

An object program to be executed by the INTERFOR interpreter routine may

contain 160-A machine instructions (in octal form) as well as INTERFOR instructions.

Since 160-A instructions are not recognized by the interpreter routine, provision is

made for exit and re-entry.

Interpreter Exit

To exit from the interpreter routine to machine language coding, the INTERFOR

instruction I.NI 0 y (51 Oh yyyy) must be in the lower half of the INTERFOR instruction

word immediately preceding the first word of 160-A coding. The y field of the INI

instruction contains the INTERFOR location of the next instruction to be executed by

the interpreter routine. When the INI 0 y instruction is executed, control is transferred

to the 160-A machine language subroutine or program segment immediately following

the INI instruction. The subroutine is then executed independently of the interpreter

routine.

Returning to Interpreter Control

To re-enter the interpreter routine, the last two 160-A machine instructions must

be:

Mnemonic

LDC 00

6720

ACJ 70

33

Octal

2200

6720

0070

The above instructions clear all bank settings to zero and enter the interpreter

routine at INTERFOR address 1564 (machine address 6720).

NOTES: 1. Both INTERFOR and machine language instructions
must be in octal notation unless assembled by FLAP,
the INTERFOR assembly program. All 160-A instruc­
tions in a program to be assembled by FLAP must be
in octal form.

2. The relative bank setting is equal to the direct bank
setting when an exit from the interpreter is performed.
The two bank settings depend on the location of the
last INTERFOR instruction executed. The indirect bank
setting may or may not be equal to the relative and
direct banks when an exit from the interpreter is
performed.

EXAMPLES:

Open Subroutine

In this example the ACJ instruction returns control to location PLACE in
the INTER FOR coding.

INTERFOR coding EXIT INI 0 PLACE

f 160-A coding

160-A coding LDC 00

l
67 20

ACJ 70

INTERFOR coding PLACE

34

Closed Subroutine

In this example the ACJ instruction returns control to the SLJ 0 instruc­
tion, which in turn causes a jump to another segment of the INTERFOR
coding.

INTERFOR coding BEGIN
SLJ 0 xx xx
INI 0 BEGIN

160-A coding 160-A coding

I
LDC 00

67 20
ACJ 70

35

PART V

INTERFOR ASSEMBLY PROGRAM

(FLAP)

FLAP, the INTERFOR assembly program, is included as a part of the INTERFOR

system to allow coding of INTERFOR programs in symbolic language. FLAP processes

symbolic coding to produce a binary object program that is executed under control of the

interpreter routine. A listable output is produced that lists the symbolic input with the

side-by-side translation of the symbolic coding. Input to FLAP may be on either cards

or paper tape. Li stable output may be on paper tape or on the lGG printer; binary out­

put is on paper tape. The binary object program is loaded by FLOADER, the binary

loader routine. Operating instructions for both FLAP and FLOADER are contained in

parL VI.

FLAP is normally a two-pass assembler, unless available storage is exceeded

during assembly in which case a third pass is required to complete the assembly.

During the first pass, FLAP reads the symbolic input and compiles the symbol table,

translates all mnemonic operation codes into machine language, and condenses each

line of coding for processing during the second pass. If storage capacity is exceeded

during the first pass, the input for the second pass is automatically ptinched out on

paper tape. This paper tape must be positioned for reading before starting the second

pass. The second pass generates the assembled listing and the binary object program.

A third pass is required only if the storage space required for the binary output

exceeds available core storage. The third pass requires the second pass input, and

will generate the binary object program tape. Generation of the assembled listing

will be completed during the second pass. The capacity of the symbol table is

approximately 500 symbols; if capacity is exceeded as indicated by an error stop, the

number of symbols in the symbolic program must be reduced.

37

TABLE II

SUMMARY OF INSTRUCTION CODES ACCEPTED BY FLAP

Mnemonic Octal Instruction
Code Equivalent Description

LDA 12 Load A

LAC 13 Load A, Complement

STA 20 Store A

AJP 22 A Jump

FAD 30 Floating Add

FSB 31 Floating Subtract

FMU 32 Floating Multiply

FDV 33 Floating Di vi de

SSK 36 Storage Skip, Upper Only

ENI 50 Enter Index

INI 51 Increase Index

LIU 52 Load Index Upper

LIL 53 Load Index, Lower

ISK 54 Index Skip, Upper Only

SIU 56 Store Index, Upper

SIL 57 Store Index, Lower

EQS 64 Equality Search, Upper Only

THS 65 Threshold Search

SLJ 75 Unconditional Jump

SLS 76 Unconditional Stop

MEL 34 Matrix Element Load

MES 35 Matrix Element Store

38

Mnemonic
Code

REM

EQU

ORG

DEC

BSS

OCT

END

Octal
Equivalent

(Pseudo instructions)

SYMBOLIC INSTRUCTION FORMAT

Instruction
Description

Remarks

Equivalence

Origin

Decimal Constant

Block Reserve

Octal Constant

End of Assembly

Each symbolic INTERFOR instruction to be assembled by FLAP is represented by

one line of coding in the following format:

Location Operation B- M- Comments

Field Field Field Field Field

Each line is assembled as one-half of an INTERFOR instruction word; every line with

a symbol in the location field will be assembled as the upper half of the instruction

word. If consecutive lines have symbols in the location field, the assembly program

will insert a pass instruction (ENI 0) in the lower half of the appropriate preceding

instruction word. If an instruction is to be assembled in the upper half of an INTERFOR

instruction word, but the programmer does not want to use a symbol in the location

field, a comma or a + character may be entered in the location field instead. A

comma (Flexowriter) or + (card input) appearing by itself in a location field will cause

that line to be assembled as an upper instruction.

39

Location Field

The location field symbolic identifier may contain up to eight alphanumeric

characters. All identifiers must contain at least one non-numeric character. Any

legal Flexowriter character may be used in this field. If a symbol is punched in this

field, the line will be assembled as an upper instruction.

Operation Field

This field must contain a 3-character mnemonic operation code representing one

of the INTERFOR instructions or one of the FLAP pseudo-instructions in Table II.

This field cannot be omitted.

B-Field

The B-Field must contain a single octal digit (0 through 7) that normally

specifies one of the two modes of INTERFOR addressing - direct or relative. Digits

1 through 6 specify index registers and imply relative addressing. If the field is zero,

no index register is specified, indicating direct mode of addressing. If the field

contains the illegal B term of 7, the line is flagged with error "B" except when used

with the AJP instruction. For the selective jump and stop instructions, the j term is

placed in the B-field. (An alphabetic character may precede the digit in the B-field;

it will be ignored by the assembly program.)

M-Field

The M-field normally specifies a memory address that may be modified by the

contents of the index register designated by the B-field. The M-field may have any

of the following forms:

40

1. A symbolic identifier that references a symbol in the location
field. This symbol must be identical to the symbol referenced
in the location field. The line will be flagged with u if the sym­
bol in the M-field does not appear in a location field within
the symbolic program.

2. A symbolic identifier followed by a + or - sign and up to 4
numeric characters. If D is placed after the numeric characters,
they will be interpreted as a decimal number, otherwise they will
be interpreted as an octal number. The entire M-field is evalu­
ated by computing the algebraic sum of the numeric value of the
identifier and the number.

3. Four numeric characters preceded by a + or - sign. If no sign
appears, the number is assumed to be positive. D following the
last digit indicates that the number is decimal, otherwise it is
octal.

4. A / character. This character indicates that the M-field has the
same value as the INTERFOR address of the line being assembled.

5. A symbolic identifier followed by a + or - sign and another
identifier.

The M-field may be modified by a relocation constant when loading the binary object

program, depending on the type of format used within the M-field. The examples in

group I below will be modified by a relocation constant at load time. The examples in

group II (all numeric) will not be modified by a relocation constant.

Group I

ABCDEFGH

ABCDEFGH ± 1234

ABCDEFGH ± 1234D

ABCDEFGH ± IJKLMNOP

I
I ± 1234

I ± 1234D

/ ± ABCDEFGH

41

Group II

± 1234

± 1234D

NOTE: The + sign in group II may be omitted. A + sign is
replaced by the , character for Flexowriter input.

Comments Field

The comments field is optional except for instructions that contain breakpoints.

The breakpoint designator h must appear in the third character position of the comments

field preceded by bp in the first and second character positions of the comments field.

The only restrictions on the characters in the comments is that they must be legal

Flexowriter characters (see table III). If the field contains more than 30 characters

(including space codes and control characters), the comments field will appear on two

or more lines on the listable output of FLAP. The first 30 characters will be included

with the line being assembled. The excess characters will appear on subsequent lines

with an REM pseudo instruction appearing in the operation field.

42

TABLE III

FLEXOWRITER AND PUNCHED CARD CHARACTER CODES
ACCEPTED BY FLAP

Flexowriter Punched Flexowriter Punched
Character Code Card Code Character Code Card Code

A, a 30 12-1 0 56 0

B,b 23 12-2 1 74 1

c, c 16 12-3 2 70 2

D,d 22 12-4 3 64 3

E,e 2o 12-5 4 62 4

F, f 26 12-6 5 66 5

G,g 13 12-7 6 72 6

H,h 05 12-8 7 60 7

I, 14 12-9 8 33 8

J, 32 11-1 9 37 ()

v

K,k 36 11-2 + 46* 12

L, 1 11 11-3 52 11

M;m 07 11-4 I 44 0-1

N,n 06 11-5 42 12-3-8

0, 0 03 11-6 50

P, p 15 11-7 54 12-4-8

Q,q 35 11-8

R, r 12 11-9 Functions

s, s 24 0-2 Back space 61

T, t 01 0-3 Upper Case 47

U,u 34 0-4 Lower Case 57

V,v 17 0-5 Space 04 blank

Vl,w 31 0-6 Tab 51

x, x 27 0-7 Carriage
return 45

Y,y 25 0-8

z, z 21 0-9

*Upper Case, Lower case prints as a comma.

43

FLAP PSEUDO INSTRUCTIONS

In addition to the INTERFOR instructions listed in table II, the assembly program

recognizes the following pseudo instructions.

Symbol

REM

EQU

ORG

DEC

Definition

REMARKS causes the succeeding characters in the current line of
coding to be treated as comments. Remarks may consist of any
number of Flexowriter characters.

EQUIVALENCE assigns to the symbolic identifier in the location
field, the value of the expression appearing in the M-field.

ORIGIN precedes a block of INTERFOR instructions to be loaded
sequentially in INTERFOR locations starting at the address specified
by the M-field of the ORG instruction. The first INTERFOR
instruction in the block will appear in the upper half of the instruction
word as specified by the M-field. The second instruction will be
placed in the lower half of the first instruction word if no symbol
appears in the location field. Consecutive instructions will be placed
in the respective upper and lower halves of sequential addresses.
If no ORG is specified, the first word of a program is loaded in
INTERFOR location 2 0 8 •

DECIMAL CONSTANT indicates that the number in the M-field is in
floating binary form. This constant will be converted by FLOADER
at load time. The decimal number must be in the format:

±.DDDDDDDDDe±EEE

where

(1) the fractional coefficient consists of 1 to 9
decimal digits (D's)

(2) the decimal point must not be omitted

(3) the exponent, if used, contains from 1 to 3
decimal digits and must be preceded by an
e, and a - sign if negative

(4) the M-field must be terminated with a TAB
or CR.

44

A blank M-field is converted to zero; the + sign (, for Flexowriter)
may be omitted. DEC numbers are converted by the binary load
routine using one of the conversion subroutines in the interpreter.

BSS BLOCK RESERVE reserves a block of memory. If a location symbol
is used, it will be assigned to the first word of that block. The word
length of the block to be reserved is placed in the M-field. The next
line of coding will be placed in the location following the last word in
the reserved block.

OCT OCTAL CONSTANT provides a means of entering signed octal
constants. The sign is optional; up to 16 octal digits may be placed
in the M-field. If fewer than 16 characters are entered, the octal
number is right-adjusted (leading zeros are appended to less than
16 digits). The OCT pseudo instruction is used to load 160A machine
language coding.

END END OF ASSEMBLY appears at the end of a symbolic program to
indicate the end of the program tape or deck. If an address appears
in the M-field, the END pseudo instruction will also generate a
transfer card to be interpreted by the loader as the start execution
location.

MACHINE LANGUAGE CODING

The programmer may wish to include 160-A machine language coding within a

symbolic program. This is accomplished by writing the desired 160-A instructions

in octal notation, and placing them in the M-field of OCT pseudo instructions, four

instructions in each M-field. Since the symbolic portion of a program is normally

relocatable, the 160-A coding should consist entirely of relative (forward or backward),

no address, and constant type 160-A instructions in order to maintain relocatability.

Instructions that reference low core (00-77) must not be used. The first machine

language instruction must be preceded by an INI 0 instruction in the INTERFOR

coding. The programmer must also provide for a return to the interpreter routine.

Methods of exits and entrances are described under machine language subroutines in

Part IV.

45

INSTRUCTION WORD PAIRING

Certain INTERFOR instructions must be placed either in the upper or lower half

of an instruction word because of the inherent characteristic of each instruction.

Therefore the programmer must explicitly or implicitly indicate the part of the

instruction word that each symbolic IN TE RF OR instruction must occupy. Instructions

may be explicitly loaded only in the upper half of an instruction word. Instructions may

be implicitly loaded in either half of an instruction word.

To explicitly load a symbolic instruction in the upper half of a word, a symbol or

a , character (+ character) must be placed in the location field. Conversely, every

instruction that has a symbol in the location field will be placed in the upper half of an

instruction word. The exception to this rule is the first INTERFOR instruction

following an ORG pseudo instruction in a symbolic program. This first instruction

will be placed in the upper half of the word at the location specified by the M-field of

the ORG pseudo instruction, even without a symbol in the location field. Consecutive

instructions will be placed alternately in the lower and upper halves of the first and

succeeding instructions words until a location field symbol is detected. A new sequence

of upper and lower instruction assignments commences with each instruction having a

symbol in the location field. If two or more consecutive instructions have symbols in

the location field, each will be an upper instruction and the assembly program will

generate pass instructions (ENI 0) in the lower half of the appropriate words. This

same situation occurs when an instruction identified with a symbol follows an instruc­

tion that normally falls in the upper part of an instrudion word.

To implicitly load an instruction in either the upper or lower half of a word, the

programmer must note the location of the instruction last specified as an upper

instruction, and keep an account of the number of succeeding instructions he has

included in his program. If the number of succeeding instructions is an odd number,

the next instruction will be an upper instruction; otherwise it will be a lower instruction.

Pass orders may be used to cause a sequence to be odd or even.

46

The following example demonstrates how a sequence of instructions in a symbolic

program appears on the listable output. The coding represents a routine that uses

programmable input/ output subroutines.

EXAMPLE:

Loe

START

LOAD

BLOCK

OUT

DUMP

Symbolic Inpu~

Op

ORG

ENI

SLJ

STA

ISK

SLJ

SLS

EQU

ENI

LDA

SLJ

ISK

SLJ

SLS

END

47

B

1

4

1

1

0

0

1

1

4

1

0

0

M

2000

0

1224

BLOCK

9D

LOAD

OUT

3000

0

BLOCK

1236

4D

DUMP

START

START

Address Assignment

IN TE RF OR
Address Loe Op B M

2000 START ENI 1 0

ENI 0

2001 LOAD SLJ 4 1224

ENI 0

2002 STA 1 BLOCK

ENI 0

2003 ISK 1 9D

SLJ 0 LOAD

2004 SLS 0 OUT

BLOCK EQU 3000

ENI 0

2005 OUT ENI 1 0

ENI 0

2006 DUMP LDA 1 BLOCK

SLJ 4 1236

2007 ISK 1 4D

SLJ 0 DUMP

2010 SLS 0 START

ENI 0

END 2000

48

FLAP INPUT

Symbolic programs to be assembled by FLAP may be punched on paper tape or

cards. Paper tape input is via the 350 paper tape reader; card input is via the 167

card reader.

Paper Tape Format

Each word on paper tape must be in the form shown under INSTRUCTION FORMAT.

Each field is separated by a TAB, and each line of coding is terminated by a carriage

return. All fields except the comments field must appear in each line. If, within a line,

a field (except comments) is to be skipped, a TAB must be punched for that field. For

example, if the location field is to be blank, a TAB must be punched at the beginning of

the line. Space codes are ignored except in the comments field. The last word on tape

must be an END pseudo instruction to terminate the read operation. The maximum

number of characters permitted in each field is as follows:

Location field 8 characters

Operation Field 3 characters (always)

B-Field 1 character (0-7)

M - Field 17 characters

Comments Field - 30 characters (in card line)
(Optional)

NOTES: 1. If the comments field contains more than 30 characters,
FLAP generates additional lines of REM pseudo instructions,
and the excess in any line will appear as succeeding lines
in the listable output. As many REM lines will be generated
as are necessary.

2. Remarks may be included in a line of symbolic input in
any field, provided that not more than 30 characters
are used in one line and the last character is followed
by a I and a CR. The combination of I CR causes the
line containing the remarks to be ignored by the assembly
program. This same combination of / CR may be used
for deleting lines during tape preparation, as long as no
more than 30 characters appear in the entire line.

49

CAUTION: If an M-field contains only a I character as
described earlier, the field must be terminated
by a TAB, even if the comments field is not used.
Otherwise, the line will be ignored by FLAP.

Card Input Format

The restrictions placed on each field for card input are the same as those

described for paper tape input. Only one line may be punched on a card. Card input

format is as follows:

Column

1-8

9

10-15

16

17-18

20-40

41-80

Location Field (Up to 8 alphanumeric characters)

Blank

Operation Field (3 characters always)

Blank

B-Field (One character, 0-7)

M-Field (Up to 17 characters)

Comments Field (Up to 30 characters)

The last card in a symbolic deck must be an END card (END in operation field) to

terminate read operation. See NOTES under paper tape input format for further

information on remarks field.

FLAP OUTPUT

Output from the FLAP assembly program is of two kinds; listable and binary. The

listable output is in a 9-field format as follows:

Error
Flag

INTERFOR INTERFOR
Instruction Address
(octal)

Location
Field

Operation
Field

and represents an assembled line of symbolic coding.

50

B­
Field

M­
Field

Comments
Field

The binary output is the object program to be executed by the interpreter routine

and is loaded under control of FLOADER, the INTERFOR load routine. Binary output

is in binary card format on paper tape. Listable output may be on paper tape or on

the 166 printer. If both listable and binary output are on paper tape, the listable out­

put appears first. The listable output medium is specified by inserting a parameter

in the A register as described in the operating instructions.

FLAP Error Flags

The following symbols may occur in the Error Flag column of the listable output.

L - Location symbol contains illegal character. Correct translation
of M-fields containing this symbol is not guaranteed

or

Location symbol inappropriate for pseudo instruction in OP-field,

D - Location field contains a symbol appearing in another location field.
The value of the symbol in the symbol table will be the address of the
last location using this symbol.

0 - Illegal mnemonic code in OP-field. OP-field of current instruction is
cleared to zero.

B - Illegal B term.

M - Illegal character in M-field, or term does not conform to M-field rules.

U - Undefined symbol in M-field (i.e., does not appear in a location field
within program being assembled).

P - Undefined M-field in pseudo instruction.

51

FLOADER

The FLOADER routine loads the binary object program tapes that are prepared by

FLAP. When loaded, the object program is ready for execution by the interpreter

routine. Programs loaded by FLOADER may be relocated by specifying a relocation

constant as described in the FLOADER operating instructions in part VI. This

relocation constant is added to the address assigned to each word in the object program

and to the M terms as described in the instruction format in this section.

FLOADER examines two frames of the binary input tape at a time. When a load

address is encountered, FLOADER replaces the previous load address with the new

address. When INTERFOR instructions are encountered, they are stored in sequential

locations starting at the last load address specified. If a DEC number is encountered

in the object program tape, the load routine converts from floating point decimal to

floating point binary. The last two frames on the binary output tape are the checksum

which is examined by FLOADER to check the accuracy of the read operation.

If the interpreter routine is in storage when FLOADER is executed, FLOADER

will set up the first address to be executed by the interpreter. This address is

specified by the M-field of the END pseudo instruction in the symbolic program.

52

PART VI

INTERFOR OPERATOR'S GUIDE

The INTERFOR system operating instructions are arranged in order of use. They

include the operating procedures for FLAP, FLOADER, and the interpreter. Each

procedure consists of the required console operations, and the normal and error stops

and printout, if any. Corrective action for error stops is included where feasible.

SWAP catalog codes are given for the FLAP, FLOADER and INTERFOR tapes.

FLAP OPERATING PROCEDURES

The FLAP program is contained on paper tape AAl.02 in machine loadable bi-octal

format, and must be loaded at location 0000, bank 0. The input and listable output

media (cards, paper tape, or printer) for FL.l\.P is determined by entering the proper

parameter in the A register before executing FLAP. Binary output is always on

paper tape.

To load the FLAP assembly tape and execute the assembly program:

1. Position FLAP program tape in paper tape reader; turn reader on.

2. Master clear; clear all bank settings to 0.

3. Machine load FLAP program tape starting at location 0.

4. At completion of FLAP load, place RUN switch in neutral, and
position symbolic program input in reader. Turn punch on.

5. Set P register to 0241. (Do not master clear.)

6. Enter one of the following parameters in the A register to
determine FLAP input-output media:

0000 = Paper tape input, paper tape listable output

0001 = Paper tape input, 166 printer listable output

0010 = 167 card input, paper tape listable output

0011 = 167 card input, 166 printer listable output.

7. Press RUN switch. FLAP will proceed to assemble symbolic
program.

53

Output of FLAP consists of the listable output, either on paper tape or the 166

printer, and the binary object program, which is always on paper tape.

If both listable and binary output are on paper tape, the listable output appears

before the binary output, separated by blank tape. The binary output is to be loaded

by FLOADER and executed by the interpreter routine.

A second and third pass may be required as indicated by appropriate stop. If this

occurs, first pass generates paper tape output that is used as input by second and third

pass.

Normal
FLAP Program Stops

3072

4321

FLAP Error Stops

2757 2772

2745

2577

2322

An intermediate output tape has been gen­
erated by FLAP. To load this tape, remove
from punch, position in paper tape reader, and
run. (This stop may occur before second and
third pass.)

Final Stop. Program assembly has been com­
pleted. Another program may be assembled
by repeating steps 4 through 7.

Parity check error on intermediate output
tape. Frame just read has lateral parity error.
Program must be reassembled.

Longitudinal check error. Frame just read is
not longitudinal check character. Program
must be reassembled.

Symbol table capacity has been exceeded.
Number of symbols in object program must be
reduced. Symbol table capacity is approxi­
mately 500 symbols.

Length of field in symbolic line greater than
77g.

54

3416

3746

Binary output storage and intermediate input
storage areas have overlapped. Reposition
symbolic input tape for loading and restart
assembly at 0570. Starting at 0570 produces
intermediate output on paper tape. Proceed as
outlined in program stop 3072.

Assembly program has dropped information
while processing. Most probable occurrence is
during second pass when intermediate input is
on paper tape. In this case, error is probably
due to punch malfunction. Program must be re­
assembled.

FLOADER OPERA TING PROCEDURES

The FLOADER routine is contained on paper tape A4.11 and loads the binary out­

put tapes produced by FLAP in proper format to be executed by the interpreter routine.

FLOADER also provides for relocation of the binary object program by adding a re­

location constant to the INTERFOR load addresses contained in the object program,

as well as to the appropriate M terms. The relocation constant is entered in the A

register prior to executing the load routine. FLOADER may be loaded after the

interpreter routine is loaded; however, the loader occupies that area in storage assigned

to the manual service subroutines contained within the interpreter, and will replace

these subroutines if loaded after the interpreter routine.

If DEC pseudo instructions are contained in the symbolic program from which the

binary output was obtained, FLOADER must be loaded after the interpreter routine is

loaded, because the conversion of DEC constants is accomplished by an internal sub­

routine within the interpreter. If the manual service subrouiines are to be used, then

the interpreter must be reloaded.

To load the FLOADER routine and the binary program tapes:

1. Turn on paper tape reader. Master clear, set bank settings 1 to 0,
and position FLOADER tape (A4 .11) in reader.

55

2. Set P register to 7400 and machine load FLOADER tape.

3. Position binary program tape in reader.

4. Set P register to 7400, set A register to relocation constant. If no
relocation constant, A register must be zero.

5. Set RUN switch. Binary object program will be loaded in the proper
storage locations ready for execution by the interpreter routine.

Normal Program Stops

7543 Object program correctly loaded. Z register
contains 7700, A register contains starting
INTERFOR address of object program as spec­
ified by M term of END pseudo instruction in
the symbolic program. If the interpreter was
loaded before FLOADER, running from this
halt begins execution of the object program
starting with the INTERFOR address in the A
register.

Error Stops

7411

7534

7766

CAUTION:

Incorrect first frame on binary tape. Symbolic
tape must be reassembled.

Checksum error on binary tape. Run from
this stop to ignore checksum error. Loader
routine will proceed to normal stop.

Illegal decimal number. Run from this point to
obtain error printout on typewriter. Error
printouts are the same as those described in
the interpreter operating procedures.

The FLOADER routine does not check for storage
range errors. Storage references in illegal banks
are detected by a machine halt and a red background
in the P register display.

56

INTERPRETER OPERATING PROCEDURES

The interpreter routine executes the binary object programs assembled by FLAP

and loaded by FLOADER. The interpreter routine contains instruction load subroutines

that load octal INTERFOR programs, and various service subroutines. Load formats

are contained in part II.

Interpreter Tape Load

The INTERFOR interpreter routine is contained on paper tape ABl.03 and is in

machine load format. To load tape:

1. Turn on paper tape reader.

2. Position interpreter tape (ABl.03) in reader.

3. Master clear and clear all bank settings to O.

4. Set P register to 3050.

5. Machine load simulator tape

Loading stops with P register = 0100

A register = 0410 (checksum)

Z register = 0000

If tape fails to load correctly, reload starting with step 2.

Octal Instruction Load

After loading the interpreter routine, octal instructions may be loaded from

Flexowriter tape or from the console typewriter.

From Flexowriter Tape

1. Turn on reader

2. Position tape in reader

3. Master clear

57

4. Set P register to 7400, set relocation constant in A register, and
run. At completion of load, program stops with 7463 in P register.

NOTE: Last instruction on tape must be followed by a
CR and a semicolon to terminate the load operation.

From Typewriter

1. Master clear

2. Set P register to 7402 and run.

3. Type in octal instructions in the format given in part II. Last instruc­
tion must be followed by a CR and a semicolon to terminate the load
routine.

Interpreter Execution

After loading the object program with FLOADER or the instruction load routine,

execute the object program by performing the following steps:

1. Master clear

2. Enter starting INTERFOR address in A register and run. Object
program will be executed. If output is to be on paper tape, turn punch
on before running.

Interpreter Manual Service Subroutines

The following manual service subroutines are part of the interpreter routine and

serve as debugging aids for the programmer. However, if the FLOADER routine is

loaded after the interpreter is loaded, the manual service subroutines are not available

since FLOADER occupies the same storage locations. In this case, the interpreter

must be reloaded if the service subroutines are to be used.

58

Instruction Dump

The contents of consecutive locations may be punched on paper tape or listed on

the typewriter in octal notation by performing the following steps:

1. Master clear

2. Set P register to:

7401 =paper tape dump

7 403 = typewriter dump

3. In A register, insert INTERFOR location of first word to be dumped and
run.

4. At halt, insert in A register last INTERFOR location to be dumped and
run. Each instruction will be dumped on the typewriter or paper tape
in octal format with the INTERFOR location of each word. Subroutine
halts with 7 653 in P register.

Manual Data Load

Floating point decimal data may be loaded by the manual data load subroutine.

Data from paper tape or the typewriter must be in the following format as explained

in part II:

CR
TAB

(-)A TAB± .DDDDDDDDD ~; ±EEE CR

TAB

(-) A TAB ± .DDD~DDDDD or ±E EE CR
CR

The load address A must be specified for each word. The minus sign before A is

optional and indicates that the load address will not be modified by the relocation

constant. The + signs are also optional.

59

To manually load data from paper tape:

1. Turn on reader, insert data tape in reader

2. Master clear

3. Set P register to 7404 and run.

4. Program stops at 7745 after correctly loading data. If error stop 7766
occurs, run to obtain error printout on typewriter, and continue loading
by repeating steps 2 and 3. Error printouts are described under Error
Code Identification.

To manually load data from the typewriter:

1. Master clear

2. Set P register to 7406 and run.

3. Type in data in the above format. Program stops at 7754 after entering
each word. If error stop 7766 occurs, run to obtain typewriter printout
and restart with step 1.

4. Return RUN switch to neutral after all data words have been entered.

5. Master clear.

NOTE: If a typing error is made return carriage and retype
the line.

Data Dump

The contents of INTERFOR locations may be non-destructively listed on the

typewriter in floating point decimal format.

To dump data:

1. Master clear

2. Set P register to 7407

3. Set A register to first INTERFOR location to be dumped and run.

60

4. Data word will be printed out on typewriter. A register contains
INTERFOR address of next consecutive location. P register
contains 4106.

5. Move RUN switch to neutral and back to run to obtain next
consecutive word.

Accumulator Dump

Dumps the contents of the INTERFOR accumulator in decimal floating point form.

The dump routine destroys the contents of the accumulator.

To dump the accumulator:

1. Master clear

2. Set P register to 7410 and run.

3. Word is dumped on typewriter and program stops at 6351.

Interpreter Normal Program Stops

0077 - End interpreter load, A register contains checksum of
interpreter tape

7463 - End instruction load

7754 - End manual data load

7653 - End instruction dump

4106 - End data dump, A register contains INTERFOR address of
next word to be dumped

6351 - End accumulator dump, A register contains 1244

6751 - Breakpoint stop, A register contains INTERFOR address
of breakpoint stop instruction. The least significant digit
in the Z register is the breakpoint stop designator h.

6351 - Selective stop, A register contains INTERFOR address of
selective stop instruction.

61

Simulator Error Stop

The simulator routine has only one error stop. To identify the type of error, the

operator may call for an error printout on the typewriter or on paper tape.

The following display indicates that an error has occurred:

p = 7766 A = 0013 z = 7700

Typewriter Printout

To identify the type of error by typewriter printout, move RUN switch to neutral

and back to run; the error code will be typed.

Paper Tape Output

To obtain the error code on paper tape:

1. Master clear

2. Turn on paper tape punch

3. Set P register to 7762 and run.

A stop code precedes the error code on the paper tape output to identify the

beginning of the error code words.

Error Code Identification

Error codes are printed or punched in the following format:

Line 1. Error code

Line 2. Indicates the index register used by instruction causing error.

Lines 3 and 4. Instruction word causing error and its INTERFOR location.
L or U indicates which instruction is in error.

62

Error Codes

c - Illegal op code

d - Index designator error

e - Exponent error. Exponent exceeds permitted range.

-308 307 (10 10 ::s e < 1010).

i - Indicates index register errors:

(1) Index register contents negative for search instruction, or

(2) contents of index register greater than y for an index skip
instruction.

v - INTERFOR address range error (outside areas 0020-0537,
2000-7777).

s - Skip instruction placed in lower half of word where used in
equality or threshold search, or in storage or index skip
instructions.

a - Illegal argument used for input to a subroutine.

Example of error output:

c

b 0005

u 2042 6010 0020

7540 1157

Indicates an illegal op code in the upper instruction at INTERFOR location 2042.

6010 0020 indicates the instruction in error. The 1 in 6010 indicates index register

1 was in use. The printout b 0005 indicates that the contents of index register number

1 is 0005. The lower im;truetion in location 2042 i:::; li:::>ted below the upper instruction.

If the error had occurred in the lower instruction, an L would be printed before the

address, in place of the U.

63

APPENDIX

EXTERNALINTERFORSUBROUTINES

The INTERFOR subroutine library consists of subroutines and a PLOT subroutine

for programming the 165 Plotter. Subroutines are written in a combination of

INTERFOR instructions and basic 160-A instructions, and are relocatable in the

available storage locations by use of the instruction load subroutine in the interpreter.

All of the subroutines are on punched paper tape in Flexowriter code., which is

recognized by the instruction load subroutine. Octal listings of the subroutines are

included.

External subroutines are:

ARCTANGENT X

SINE X

COSINE X

ARCCOSINE X

ARCSINE X

BASIC (SERIES EXPANSION)

EXPONENTIAL (2X, ex lif)

SQUARE ROOT

LOG TO BASE 2

PLOT

All routines are written starting at location 0000 and must be relocated at load

time. All subroutines must be loaded in bank 0, therefore they may only occupy

INTERFOR locations 0020-00537.

A slash indicates that an address is written relative to the beginning location. For

example, 0034/ refers to an address which is 34 8 locations following the base location

in which a routine is relocated.

65

Routines are entered by a return jump (7 540xxxx) instruction to the location

specified as the entrance of the subroutine. The return jump may be either an upper

or a lower instruction. Return from the subroutine will, in all cases, be to the upper

instruction of the next word of the main program.

66

A. IDENTIFICATION

TITLE: INTERFOR Subroutine - Arctangent

IDENTIFICATION NUMBER: INTERFOR-1

PROGRAMMER: Payne

B. PURPOSE

Given a number X, compute the arctangent of X using the following Maclaurin

series approximation:

7

Arctan* X \"' C2i+ l X2i+1
i~O

where C1

C. USAGE

.99999,93329

-.33329,85605

.19946,53599

-.13908,53351

1. Operational Procedure:

If -1 ~ X ~ 1, use the series directly.

.09642,00441

- . 05590,98861

.02186,12288

-.00405,40580

If X > 1, then take Arctangent of 1/X and subtract this value from n /2 to get

arctangent of X.

If X < -1 then subtract Arctangent 1/X from -n /2 to get Arctangent of X.

2. Entry:

A contains the number X in floating point

3. Exit:

A contains the answer in radians

B6 is used, but is reset to its original value before exit.

67

4. Error Conditions:

None

5. Subroutines Used:

Basic

6. Remarks and Restrictions:

Uses 51 8 permanent locations.

Basic subroutine is located at 0040/ (incorporated on an instruction load tape)

See INTERFOR-8 for subroutine listing.

68

A. IDENTIFICATION

TITLE: INTERFOR Subroutine - Sine Cosine

IDENTIFICATION NUMBER: INTERFOR-2

PROGRAMMER: Payne

B. PURPOSE

Given X, compute the Sin X or Cos X (where X is in radians)

C. USAGE

1. Operational Procedure:

The framework for the program is around the Sin X routine.

Cos X uses the Sin X as a subroutine where Cos X = Sin (7r /2 + X)

2. Entry:

A contains the angle X in radians

3. Exit:

A contains the value of Sin X or Cos X.

B6 is used, but reset to its original value before exit.

4. Error Conditions:

None.

5. Subroutines Used:

Basic is incorporated in Sin X. Cos X incorporates both Basic and Sin X.

6. Remarks and Restrictions:

Sin X uses 44 permanent INTERFOR locations.

Cos X uses 4 permanent INTERFOR locations.

This is a relocatable program on flex tape with entry address of Sin X at 0000/ and

Cos X at 0045/. Basic entry address is at 0033/. Accuracy is within 1 or 2 in the ninth

decimal place.

69

INTERFOR-2 SIN X COS X

0000 75007777 entrance to sin x subroutine
32000032/

20000016/
30000015/

31000016/
32000021/

222oooo4/
31000021/

65000024/
30000021/

65000022/
75000007/

75000010/
00000000

32000020/
30000023/

20000016/
32000016/

20000017/
50000000

12000014/
75400033/ entrance to basic to evaluate series

32000016/
75000051/ go to check limit of one

Oo400017/
00000025/

oo410000
00000000

00000000
00000000

00000000
00000000

00016ooo
00000000

70

INTERFOR-2 (Cont.)

00036000
00000000

00012000
00000000

00022000
00000000

00023000
00000000

00013110
17662440

00006452
35700553

77742431
24253546

77706311
o63031o4

77632366
27562212

77752427
31403333

1500 1m
5JOOOo41/

2056 4o67
o4o4 4056
2016 4220
2014 4214

o4oo 4014
4015 4016

2200 4011
4012 7001

3200 7777
5000 0000

3060 7777
51000033/

exit to basic la.ngua.ge

LOOP

TABIE
exit to basic language

71

INTERFOR-2 (Cont.)

2056 0701
4056 6205

2o67 4056
2341 7057

2202 7057
oo4o/oooo

75007777 cos x entrance
30000050/

75400000/
00000000

75oooo45/
00000000

00013110
176625o4

3100 0022/
22300053/

1200 0022/
7500 0000/

3000 0023/
2230 0055/

3100 0022/
7500 0000/

1300 0022/
7500 0000/ ,,,,,

72

A. IDENTIFICATION

TITLE: INTERFOR Subroutine - Arcsine, Arccosine

IDENTIFICATION NUMBER: INTERFOR-3

PROGRAMMER: Payne

B. PURPOSE

Given a number X, this subroutine will find the Arccos of X or the Arcsin of X

using the following approximation:

Arccos X ~ • l/J*(X)

where l/J* (X) a 0 + a 1 x + a2 X2 + ... + a7 X7

and

C. USAGE

1.5707 ,9630,50

-.2145,9880,16

.0889,7898,74

-.0501, 7430,46

1. Operational Procedure:

. 0308,9188 ,10

-.0170,8812,56

.0066,7009,01

-.0012,6249,11

Arcsin Xis evaluated by using Arccos X as a subroutine where

Arcsin X = 7r/2 - Arccos X.

2. Entry:

A contains the number X.

3. Exit:

A contains Arcsin X or ArccoR X.

B6 is used, but is reset to its original value before exit.

73

4. Error Conditions:

None.

5. Subroutines Used:

Arc cos X incorporates SQRT and Basic.

Arcsin X incorporates SQRT, Basic, and Arccos X.

6. Remarks and Restrictions:

Arccos X uses 55 permanent locations.

Arc sin X uses 5 permanent locations.

This is a relocatable program on flex tape. Entry is: Arccos X at 0000/,

Arosin X at 0055/. Basic is used to evaluate the series.

The SQRT subroutine is also incorporated with the following entry points:

Basic at 0022/, SQRT at 0034/. Accuracy is within 3 or 4 in the eighth

decimal place.

74

INTERFOR-3 ARCSIN ARCCOS ROUTINES

0000 75oom1
20000007/

1200001 l /
31000007/

75400034/
00000000

20000010/
120oooo6/

75400022/
00000000

32000010/
75000000/

00700007/
(V'VVV\rt 1 ~ I
VVV'\J'V'V • ._,

00000000
00000000

00000000
00000000

00012000
00000000

00013110
17662376

77757335
37621646

77742661
32471415

77737154
03442255

77723750
20760246

77726137
34311450

77703324
2o611326 75

INTERFOR-3 (Cont.)

77666453
32123762

7500 7777
5100 0030/ exit to basic language

2056 4067
2012 0111

0110 4056
2016 4216

2014 4210
o4oo 4014

4016 2226
4012 7001 return to simulator

3200 7777 LOOP
5000 0000

306o 7777 TABIE
5100 0022/ exit to basic language

2056 0701
4056 6205

2o67 4056
2341 7057

2202 7057
0027/4011

75000000
20000054/

51oooo42/
20126203

22556102
22544206

20120111
01100103

10377777
42462037

42457001
oooooo47/ 76

INTERFOR-3 (Cont.)

33000052/
30000052/

32000053/
51000034/

20143630
63102015

36266305
20163624

12116624
23237057

20000052/
50000000

12000054/
75000o42/

77763036
03000000

00000000
00000000

00002000
00000000

00000000
00000000

75007777
75400000/

2ooooo60/
12oooo61/

31oooo6o/
75000055/

00000000
00000000

00013110
176625o4

.. ,,
77

A. IDENTIFICATION

TITLE: IN TE RF OR Subroutine - Basic (series expansion)

IDENTIFICATION NUMBER: INTERFOR-4

PROGRAMMER: Mansfield

B. PURPOSE
n

Compute the value of a given series l: Cix i of n terms.
i=O

(n = 1, 2 ... n)

C. lTSAGE

1. Operational Procedure:

A code word must have been previously loaded in A before entering the Basic

subroutine. The code word is in the octal format:

NNNOXXXX
OOOOTTTT

where NNN is the number of terms in the series not including Ca, XXXX is

the address of the floating point number X to be used by the series and TTTT

is the address of the first coefficient Ca in the table of coefficients. The 0

character positions are ignored by the subroutine and may be any digit.

2. Entry:

.~ contains the code \Vord.

3. Exit:

A contains the result of the series expansion.

B6 is used, but reset to its original value before exit.

4. Error Conditions:

None

79

5. Remarks and Restrictions:

Uses 11 8 permanent INTERFOR locations. This routine is on relocatable

Flexowriter tape.

See INTERFOR-8 for subroutine listing.

80

A. IDENTIFICATION

TITLE: INTERFOR Subroutine - Exponential

IDENTIFICATION NUMBER: INTERFOR-5

B. PURPOSE

Calculate 2", eX, or lox

C. USAGE

1. Operational Procedure:

This basic subroutine calculates 2x, but ex and lif may be calculated by

performing one preliminary multiplication on X using a constant contained in

the subroutine. The multiplication factors for ex and lif are stored in the

subroutine as shown:

ex factor is stored at 0033 8 plus the starting address

lox factor is stored at 0034 8 plus the starting address

As an example of the use of this subroutine, it is assumed that the sub­

routine has been loaded starting at location 0300. The main program to

enter the subroutine by a return jump is as follows for 2x:

Loe. Upper inst.

2400 1200 2100

81

Lower inst.

7540 0300

Remarks

Load x in accumu­
lator from 2100 and
Jump to the sub­
routine.

For ex a possible entrance is

Loe. Upper inst.

2377 1200 2100

2400 7540 0300

2401 2000 2200

2. Entry:

Lower inst.

3200 0333

0000 0000

0000 0000

Remarks

Load x into ace. Mult.
by factor in 0733 (in
subroutine)

Return jump to sub -
routine, lower
instruction is
skipped.

On return from sub­
routine, store ex in
0200, the lower in -
struction is a pass
order.

A contains the number x (premultiplied if ex or lif are desired)

3. Remarks and Restrictions:

Entry is by a return jump to the first address in the subroutine. 35 8

permanent locations are required. This routine is on a relocatable flex

tape.

82

INTERFOR-5 EXPONENTIAL

0000 75000000
20000027/

22300002/
30000025/

31000024/
30000026/

20000030/
13000030/

30000027/
20000027/

32000027/
20000031/

30000023/
20000032/

i2000022/
33000032/

30000021/
32000031/

30000020/
31000027 /

20000032/
30000027/

30000027/
33000032/

51000000/
22576202

14374254
26520701

42504650
56466502

20123244
40127001

00022705
12163123

83

INTERFOR-5 (Cont.)

77732156
31470403

00033422
34153701

00072567
04132057

00002000
00000000

00012000
00000000

00410000
00000000

00000000
00000000

00000000
00000000

00000000
00000000

00000000
00000000

00012705
12163123

00023244
32360230

84

A. IDENTIFICATION

TITLE: IN TE RF OR Subroutine - Square Root

IDENTIFICATION NUMBER: INTERFOR-6

B. PURPOSE

Given a number X in the accumulator, find the square root of the number by the

use of the Newton iteration method and leave the square root in the accumulator.

C. USAGE

1. Entry:

A contains the number X in floating point

2. Exit:

A contains the square root in floating point

3. Remarks:

This routine used 21 permanent locations and is on relocatable flex tape.

85

INTERFOR-6 SQUARE RCXJr

0000 75000000
20000020/

51000005/
20126203

22556102
225442o4

20120114
10377777

42502037
42477001

33000016/
30000016/

32000017/
51000000/

20143634
63122015

36326307
20163630

12116303
70010013/

23017057
00000000

20000016/
50000000/

12000020/
75000005/

77763036
03000000

00000000
00000000

00002000
00000000

00000000
00000000

;an9 86

A. IDENTIFICATION

TITLE: INTERFOR Subroutine - Log to Base 2

IDENTIFICATION NUMBER: INTERFOR-7

B. PURPOSE

Given a floating point number in A, calculate the log to the base 2 of this number.

C. USAGE

1. Entry:

A contains the number X in floating point.

2. Exit:

A contains the log to the base 2 of the value of X.

3. Remarks and Restrictions:

Routine uses 47 8 permanent locations and is on relocatable flex tape.

87

INTERFOR-7 LOG BASE 2

0000 75000000
51000004/

201362<>4
o4307101

77562012
07014233

o4014012
70017777

20000023/
30000024/

20000025/
12000023/

31000024/
33000025/

20000023/
32000023/

20~5/
12000027/

75400035/
00000000

32000023/
}0000026/

51000022/
23106205

27124313
20366102

o4oo4316
o4oo4350

23226103
23036110

33266304
4330576o

651oo413
37634255

88

INTERFOR-7 (Cont.)

23361736
42537001

30000034/
75000000/

00000000
00000000

00012650
o4742720

00000000
00000000

00002000
00000000

00300025/
00000030/

00022705
12163073

00003661
30443103

00002234
33020030

77763362
27223225

00000000
00000000

75007777
5100oo43/

2056 4o67
o403 4o56

2016 4220
2014 4212

o4oo 4014
4015 4016

2200 4011
4012 7001

89

INTERFOR-7 (Cont.)

3200 7777
5000 0000

3060 7777
5100 0035/

2056 0701
4056 6205

2o67 4o56
2341 7057

2202 7057
oo42/4011

90

A. IDENTIFICATION

TITLE: IN TE RF OR Subroutine - Trig Routines

IDENTIFICATION: INTERFOR-8

B. PURPOSE

This tape contains the following subroutines with the given entrances:

C. USAGE

SIN X

coxx
ARCTAN X

BASIC

0000/

0045/

0051/

0033/

See writeups of the original routines.

Contains 112 8 locations.

91

INTERFOR-8 TRIG PACKAGE

0000 75007777
32000032/

20000016/
30000015/

31000016/
32000021/

222oooo4/
31000021/

65000024/
30000021/

65000022/
75000007/

75000010/
00000000

32000020/
30000023/

20000016/
32000016/

20000017/
50000000

12000014/
75400033/

32000016/
75000000/

Oo400017/
00000025/

oo410000
00000000

00000000
00000000

00000000
00000000

00016000
00000000

92

INTERFOR-8 (Cont.)

ooo36ooo
00000000

00012000
00000000

00022000
00000000

00023000
00000000

00013110
17662450

00006452
35700553

77742431
24253546

777o6311
o63031o4

77632366
27562212

77752427
31403333

1500 1m
51oooo41/

2056 4o67
2012 0111

0110 4056
2016 4216

2014 4210
o4oo 4014

4016 2226
4012 7001

3200 7777
5000 0000

3o6o 7777
51000033/

exit to basic language

return to simulator
LOOP

TABIE
exit to basic language

93

INTERFOR-8 (Cont.)

2056 0701
4056 6205

2o67 4056
2341 7057

2202 7057
oo4o/4011

75007777 cos entrance
30000050/

75400000/
00000000

75oooo45/
00000000

00013110
17662523

75007777 arctan entrance
50000000

65000073/
75000054/

65000074/
75000063/

200001o6/
12000073/

33000106/
75400065/

200001o6/
22200061/

12000075/
31000106/

75000051/
00000000

12000110/
31000106/

75000051/
00000000

94

.. ,,

INTERFOR-8 (Cont.)

75400065/
00000000

75000051/
00000000

75007777
20000106/

32000106/
20000107/

12000071/
75400033/

32000106/
75000065/

00100101/
00000076/

00000000
00000000

00012000 00000000
00016000 00000000
00017110 17662523
00003777 37750635
77766525 06063706
77753142 00511553
77756163 14302654
77743053 27673200
77737450 01603612
77722630 26241657
777o6o46 277132o6
00000000 00000000
00000000 00000000
00013110 17662523 ,,,,

95

A. IDENTIFICATION

TITLE: INTERFOR Subroutine - Plot

IDENTIFICATION: INTERFOR-9

CATEGORY: Mathematical Subroutine

PROGRAMMER: H. Theiste

DATE: March, 1961

B. PURPOSE

The purpose of this subroutine is to plot results on the on-line plotter in either

of two ways:

1. Moving from previous plot point to present plot point in a straight line with

pen down.

2. Moving from previous plot point to present plot point with pen up, plot a

symbol to represent desired point.

As written, the subroutine uses output from routines written in INTERFOR

language. The method is applicable for plotting either fixed or floating point

results.

C. USAGE

1. Operational Procedure

Before any plotting can be done, the subroutine must be provided with the X

and Y scale factors. The scale factor (F) is determined by dividing 100 by

the number of units per inch on the plotted output. Thus, if the X scale were

1 inch = 4 units and the Y scale were 1 inch = .5 units, the scale factors are

97

F (X)

F (Y)

100
4

100
0.5

25

200

These are stored in locations 0073/ and 0074/ respectively. It is the task of

the user to store the X and Y scale factors in these locations. After the scale

factors have been set up, the initial values of X0 and Y 0 must be provided to

the routine. This is accomplished by a return jump to location 0070/ of the

plot subroutine with the address of X 0 in B6.

Two entries are provided for plotting results from the interpreter routine,

depending on whether the plot is to be a line plot or a point plot. In either

case, X and any Y values must be stored in consecutive locations, with X

preceding Y.

If a line plot is desired, i.e., move between points with the pen down, a return

jump is made to location 0000/ with the address of the X value in BG. The pen

will move from its present position to the point X, Y along a nearly straight

line, and the subroutine will exit to the main program.

If a point plot is desired, i.e., move between points with the pen up and plot

a symbol at the desired point, a return jump is made to location OllO/ with

the address of X in BG. This subroutine uses Bl, but restores the original

contents.

To load the plot subroutine:

a. Interpreter routine must be in the computer.

b. Turn on reader and insert PLOT tape anywhere on leader.

c. Set P = 7400

d. A = First INTERFOR location of subroutine

e. Press Run Switch

98

f. Line Plot

Set B6 to location of X-coord. Return jump to first location of Plot

routine.

g. Point Plot

Set B6 to location of X-coord. Return jump to location 0110/ of Plot

routine.

h. Set X0 and Y0

Set B6 to location of X 0 -coord. Return jump to location 0070/ of Plot

routine.

3. Space Required

110 8 INTERFOR locations (440 8 or 288 10 160-A locations).

4. Temporary Storage

The point plot subroutine uses Bl, but restores the original contents before

exit. The contents of B6 remain unchanged. Therefore, if several points are

to be plotted, the address of X will always be in B6. Also X and Y are left

unchanged.

11. Accuracy

The plotted point will be accurate to the nearest 1/lOOth of an inch.

13. Equipment Configuration

Minimum 160-A computer with CDC 165 Plotter.

D. METHOD

To plot a given point, the subroutine multiplies each coordinate (XL or YL) by its

scale factor and retains only the integer portion of the coefficient of the floating

point number, discarding the fractional portion. It then subtracts the previous

coordinates to obtain values of~ X and ~ Y, representing actual pen motion.

99

The subroutine then determines which value has the greater magnitude, b.X or b. Y.

This indicates along which axis most of the pen motion will occur. The larger

quantity (in magnitude) is called RL and the other L.

RL is divided by L to obtain the ratio R between the two motions. The directions

of pen motion for R L and L are determined and two plotter outputs are set up,

P 1 and P2 • P1 moves the pen one unit in the RL and L directions, and P 2 moves the

pen only in the RL direction. The three quantities, RL, Land R, are made positive

to serve as counters and a fourth quantity T is obtained by subtracting 2 from R.

L is decremented by one and, if it remains positive, a P 1 output is given to the

plotter; whereupon T is decremented by one and, if it remains positive, RL is

decremented by one and a P2 pulse is given to the plotter. If, however, T goes

negative R is added to T, RL is decremented by one and the process is repeated,

starting with decrementing L by one. If L goes negative, and if RL is at least

one, R L is decremented and a P2 output is given to the plotter until R L goes

negative, at which time the X and Y coordinate values are updated and an exit is

made from the subroutine.

100

INTERFOR-9 PLC1l' RW1'1NE

0000 75000000
126ooooo

32000073/
30000075/

20000024/
31000<:2.6/

20000026/
126oooo1

32000074/
30000075/

20000025/
31000027/

20000027/
c; 1 nmm c; I , ______ ,,

20123673
63066114

22711222
34146310

o4Q4.3273
4274()4.01

327o4272
6130o401

32644265
o4o43261

42637001
00003777

12000026/
2000oo63/

12000027/
20000026/

l200oo63/
20000027/

51000037/
223362o4 101

INTERFOR-9 (Cont.)

22360207
52342222

62o42232
02075230

22270217
52246125

0030 74000037/
74007400

23131362
43152312

13654314
231o4247

23114267
75067420

23246205
22037057

44010036/
23257057

12000026/
75000041/

12000026/
33000027/

20000063/
31000071/

31000071/
20000072/

12000027/
31000071/

22300052/
20000027/

5100oo45/
74007001

12000072/
31000071/

102

INTERFOR-9 (Cont.)

22300o6o/
20000072/

12000026/
31000071/

20000026/
5lOOoo45/

74007001
00000000

12000026/
31000071/

22300055/
20000026/

51000052/
o4oo6417

12000024/
20000026/

12000025/
20000027/

75000000/
00000000

30000o63/
20000072/

12000026/
31000071/

20000026/
75oooo42/

oo64 12600000
32000073/

30000075/
20000026/

126oooo1
32000074/

30000075/
20000027/

103

INTERFOR-9 (Cont.)

75000000
75oooo64/

00012000
00000000

0075 oo410000
00000000

57100107/
50107440

57100033/
75400000/

50107420
57100033/

53100112/
51000103/

74o474o4
74207001

75000000
75000076/

75000000
75400103/

510001o4/
74027402

74107410
74107410

74017401
74017401

74o474o4
74o474o4

74027402
74407410

74107001
00000000

75000000
75400103/ 104

INTERFOR-9 (Cont.)

51000113/
74127412

74117411
74057405

74o674o6
o4oo6425

75000000
75400103

51000111 /
74107410

74107410
74407406

74o67420
74017401

74017401
74407402

74027001

105

Other publications concerning programming and programming systems

for the Control Data Corporation 160-A Computer are:

160-A Programming Manual

Fortran Autotester

Satellite Programming

160-A Programming Systems

160-A Fortran/ General Information

OSAS-A/160-A Assembly System

INTERFOR

Peripheral Processing Package

106

#145b

#186a

#187

#502

#505

#507

#512

#517

CONTROL DATA PROGRAMMING SYSTEMS
CORPORATION

Revisions to the INTERFOR/Reference Manual

Control Data Publication Number 512

This bulletin describes the necessary revisions that should be made
to the INTERFOR Manual, Publication #512, to make the manual conform
with recent modifications to the INTERFOR system.

Page 59 -

Page 60 -

Page 61 -

November 1962

Item 4. (middle of page) Change 7653

Item 4. (top of page) Change 7745
7766

Item 3. (middle of page) Change 7754
7766

Under Normal Stops Change 0077
7463
7754
7653

CONTROL DATA CORPORATION
Application Services Department

3330 Hillview Avenue
Palo Alto, California

to 7655

to 7756
to 7767

to 7756
to 7767

to 0100
to 7464
to 7756
to 7655

PSB-BBOl

PUB. NO. 512

CONTROL DATA SALES OFFICES

ALBUQUERQUE, N. M., 937 San Mateo, N.E., Phone 265-7941

BEVERLY HILLS, CALIF., 8665 Wilshire Boulevard, Phone OL 2-6280

BIRMINGHAM 13, ALA., 16 Office Park Circle, Phone TR 1-0961

BOSTON, MASS., 594 Marrett Road, Lexington, Mass., Phone VO 2-0002

CHICAGO, ILL, 840 South Oak Park Avenue, Oak Park, Ill., Phone 386-1911

CLEVELAND, OHIO, Center Building, 46 West Aurora Road, Northfield, Ohio, Phone 467-8141

DALLAS 35, TEXAS, 2505 West Mockingbird Lane, Phone FL 7-7993

DAYTON 29, OHIO, 10 Southmoor Circle, Phone 298-7535

DENVER 3, COLORADO, 655 Broadway Building, Phone AC 2-8951

DETROIT, MICHIGAN, 12800 West Ten Mile Road, Huntington Woods, Michigan

HOUSTON 27, TEXAS, 4901 Richmond Avenue, Phone MA 3-5482

ITHACA, NEW YORK, Cornell University, Rand Hall, Phone AR 3-6483

KANSAS CITY 6, MISSOURI, 921 Walnut Street, Phone HA 1-7410

MINNEAPOLIS 20, MINN., 8100 34th Avenue South, Phone 888-5555

NEWARK, NEW JERSEY, Terminal Building, Newark Airport, Phone Ml 3-6446

NORFOLK 2, VIRGINIA, P.O. Box 1226, Phone 341-2245

ORLANDO, FLORIDA, P.O. Box 816, Maitland, Florida, Phone 647-7747

SAN FRANCISCO, CALIF., 885 North San Antonio Road, Los Altos, Cal., Phone 941-0904

WASHINGTON 16, D.C., 4429 Wisconsin Avenue N.W., Phone EM 2-2604

WASHINGTON 10, D.C., 1515 Ogden Street N.W., Phone RA 6-4983

CONTROL DATA

8100 MTH AVENUE SOUTH, MINNEAPOLIS 20, MINNESOTA

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	A-01
	xBack

