
CONTROL DATA
CORPORATION

MAY 1964

ALGOL for the 1604

CONTROL DATA CORPORATION
Documentation and Evaluation Department

3145 Porter Drive

Palo Alto, California

AE-16

PREFACE

This compiler was developed as a cooperative effort between the Mathematics
Division of the Oak Ridge National Laboratory and Control Data Corp. Oak Ridge
participants were Dr. A. A. Grau whose report "The Structure of an ALGOL
Translator" formed the basis for this translator and Mr. L. L. Bumgarner who
designed the compiler and directed the implementation.

CONTENTS

1 PROGRAM 1

2 ELEMENTS OF THE LANGUAGE 3

Delimiters 3
Identifiers 3
Numbers 4
Boolean Values 4
Strings 4

3 VARIABLE IDENTIFIERS 5

4 TYPES 5

5 SIMPLE EXPRESSIONS 7

Arithmetic Expressions 7
Precedence of Arithmetic Operators 8
Boolean Expressions 9
Precedence of Boolean Operators 10
Relational Expressions 10

6 CONDITIONAL EXPRESSIONS 13

7 STATEMENTS 15

Assignment Statements 15
Multiple Assignment Statements 16
GOTO Statements 16

Labels 17
Designational Expressions 17

Conditional Statements 18
FOR Statements 19

8 DECLARATIONS 23

Simple Variables 23
Subscripted Variables 24
Switches 25

9 COMMENTS 27

10 BLOCKS 29

11 OWN 33

12 PROCEDURE DECLARATIONS 35

Heading 35
Body 37

13 PROCEDURE CALL 39

14 FUNCTION PROCEDURE DECLARATIONS 39

15 FUNCTION PROCEDURE CALL 41

16 EXTERNAL PROCEDURE DECLARATIONS 41

17 ST AND ARD FUNCTION PROCEDURES 43

18 DAT A TRANSMJSSION 45

Read 45
Write 46

19 DAT A TRANSMJSSION USING LJST DECLARATIONS 47

Print 48
Punch 48
Input 48
Output 48

20 FORMAT 51

21 INTERMEDIATE TAPE PROCEDURES 53

Binwrite 53
Binread 53
Endfile 53
Rewind 53
Backup 53

22 TAPE CHECKING PROCEDURES 55

Eof 55
Readerr 55
Writerr 55

23 PAGE 55

24 CONTROL CARDS 57

MCS Card 57

25 COOP CONTROL CARDS 59

ALGO 59
ALDAP 59
Binary 61
FTN 61

26 COMPILER CONTROL CARDS 63

EOP 63
End 63
Finis 63
LIB 63
Program 63
Source Deck 63

27 EXAMPLES OF EXECUTION 65

28 FORTRAN SUBPROGRAMS 71

APPENDIX

A ERROR CHECKING AND DIAGNOSTICS 73
SYNTACTICAL ERRORS 73

B HARDWARE REPRESENTATION OF ALGOL SYMBOLS 75

c CALLING SEQUENCE FOR ALGOL PROCEDURES 77

D CALLING SEQUENCE FOR FORTRAN SUBROUTINES 79

1 PROGRAM

The format of Control Data ALGOL 60 programs is free field and can be
constructed by the programmer with few restrictions. Spaces are ignored
except in strings, where certain information is to be reproduced as it is
originally written. The language used to write Control Data ALGOL 60 pro­
grams is based on letters of the alphabet, a through z, and the ten decimal
digits, 0-9. No distinction is made between upper and lower case letters.
Special additional symbols include: t

+ * I t
:=

10

() [J ~'

= > > < < ~

- => v A ~

t See Appendix B for symbols punched on 48 character keypunch

1

2 ELEMENTS OF THE LANGUAGE

The reference language is built from the following basic elements:

delimiters

identifiers

numbers

boolean values

strings

DELIMITERS

Delimiters have fixed meanings as defined in this manual. Word delimiters
used by ALGOL are underlined in this manual and are treated as individual
symbols .t The following is a list of ALGOL delimiters.

Arithmetic operators: + - * I +
Relational operators:

Logical operators:

Separators:

Brackets:

Other delimiters:

IDENTIFIERS

<< = > >;:J

::>VA "7

, : ; Comment

() [] ,, b. d egm ~

: = own boolean integer real array switch
procedllre format list str:iiii label value
go to if then else for do step until while --------------

Identifiers begin with a letter and are followed by any number of letters
and/or digits. Any identifier may be used as a variable (simple or sub­
scripted), label, switch, format, list, or procedure name.

Examples:

value

bernice

alpha

BE 156

Ce3S56 sum 3

rel a A2B3

tDelimiters are punched with apostrophes (called escape symbols) around them.
(see Appendix B)

3

NUMBERS

Numbers in Control Data ALGOL 60 programs are written according
to the following formats:

±m

±E
±10

±m. n 10 ±E

±m.n

±m ±E
10

±.n

The integer part m, fraction n, and exponent E consist of any combination
of digits. Omitted signs are assumed positive.

A diagnostic will occur if one of the following conditions exist.

1. The total number of digits and/or symbols exceeds 64.

2. A number of the type ±m falls outside the range ±(247 -1).

. ±308 3. Any other number type falls outside the range ±10 .

Examples:

1

.5

-10245

• 999999

1310-5

+64.0025

+20
-10

-1. 00000:

1015

3. 54910-:

BOOLEAN VALUES

STRINGS

Boolean values may be either true or false.

Strings are arbitrary sequences of basic symbols enclosed within, string
quotes,' and ' . Strings are used as actual parameters of procedures. In
particular, strings may be used in input-output operations.

Examples:

' delta X = ' l' This is a string '

' computation of the diagonal begins here '

3 VARIABLE IDENTIFIERS

Variables are devised by the programmer to represent the values within the
program. They may be either simple or subscripted; subscripted variables
are covered in more detail in section 8.

Simple variables:

cheryl

bob

Subscripted variables:

form [a + 1, b]

ab [1,n]

salt

sa 135 b

var [i]

box [a + i - b, c J

4 TYPES

Variables may be one of three types. Type integer is a variable (or con­
stant) that does not contain a fractional part and is represented as a fixed
point value in the range In I< 2-47 -1 and zero on the 1604. Type real
variables (or constants) may contain a fractional part and are represented
as floating point values in the range 10-308 < Ix I < 10+308 and zero on the
1604. Type boolean variables can only have the value true or false.

5

ARITHMETIC
EXPRESSIONS

5 SIMPLE EXPRESSIONS

An arithmetic expression may take one of the following forms:

operand

±operand

±(arithmetic expression)

arithmetic expression arithmetic operator arithmetic expression

There are six arithmetic operators:

+(add)

-(subtract)

*(multiply)

/(real divide)

+(integer divide)

+(exponential)

The operators+, -, *yield type real values unless both operands are type
integer. The operator I always yield type real values. The operator 7 is
defined when both operands are type integer; the result of this division is
truncated and is type integer. If one or both operands involved in integer
divide is type real, the real operand (operands) is replaced by entier (R + • 5)
before division occurs.t

The operation a t b denotes exponentiation with a as the base and b as the
exponent. The expression

but

nk
means (2)

t . 5 is added to the operand and the greatest integer not exceeding the
result is used.

7

With i as a type integer operand, r as a type real operand, and a as an
operand which may be type real or type integer, the result of exponentia­
tion is defined by the following table:

a+ i Jf i > 0,

Jf i = 0,

a*a* •• *a (i times)

if a i 0, 1. O

if a = O, undefined

Jf i < 0, if a 1 0, 1/ (a *a* ••• *a) (the denominator has i

a + r Jf a> O, exp (r*ln(a))

If a = 0, if r > 0, o. o
if r ~ 0, undefined

Jf a < O, undefined

The result of a t b is integer only if a is an integer value and be is a
positive integer constant. Jf a is integer a t 3 results in an integer value.

Examples of expression:

ab

3

sam +table - chair

-(X*Y)/2

x t 2

PRECEDENCE OF
ARITHMETIC OPERATORS

xty

-3 t 4

a+ 3.5

2.1 t-1.7

(3+2) 7 (8-6)

(X+ Y) - 3 * 4 - Z

(A*B-C+D/E) * F

Delta /3.1416

Expressions are evaluated from left to right with the operators given
in the following order of precedence:

first t

second * I .
third + -

Expressions enclosed within parentheses are evaluated as groups within a
larger expression. The value of parenthet~cal expressions is used in
the evaluation of the larger expressions, ailowing the programmer to
govern the order of operations by the placement of parentheses.

8

Left to right evaluation is suspended temporarily when the operator in
question is of lower precedence than the next operator encountered.

Examples:

The expression A+ BtC*D+ E is evaluated as follows:

1. A+B -+Rl

2. C*D-+ R2

3. Rl+R2-+R3

4. R3 + E

An expression containing parentheses X*(A+B)/(C+D) is evaluated as
follows:

BOOLEAN
EXPRESSIONS

1. A+B --+Rl

2. X*Rl--. R2

3. C+D -+R.3

4. R2/Ra

A boolean expression may take one of the following forms:

operand

-z operand

-z. (boolean expression)

boolean expression boolean operator boolean expression

The five boolean operators are:

< (not)

/\ (and)

v (or)

:::> (implies)

(equivalent)

9

The results of the boolean operators are defined as follows:

bl false false true

b2 false true false

? bl true true false

bl A b2 false false false

bl V b2 false true true

b 1 ::> b2 true true false

bl = b2 true iaise iaise

Examples:

7B

a A=B

B A c V d A (7 E)

PRECEDENCE OF
BOOLEAN OPERATORS

true

false

true

true

true

true

Boolean expressions are evaluated from left to right similarly to the
arithmetic expression, operators have the following order of precedence:

first 7

second "
third v
fourth ::>

fifth =

RELATIONAL
EXPRESSIONS

A relational expression takes the following form:

Arithmetic expression relational operator arithmetic expression

There are six relational operators:

< (less than)

< (less than or equal to)

=(equals)

10

ol (does not equal)

>(greater than)

~ (greater than or equal to)

The evaluation of a relational expression always results in a boolean value,
true or false.

Examples:

A~B

C=D

A -=J hand

(if A is less than or equal to B the result is true)

(if C equal D the result is true)

(if A is not equal to hand the result is true)

Relational expressions may be connected to a boolean expression by a
boolean operator'.

Examples:

X = B A C (if X equals B and the Boolean variable C is true,
the result is true)

t 0 ~ X /\ X ~ 1 (if X is greater than or equal to O and is less than
or equal to 1 the result is true)

t The mathematical notation 0 ~ x ~ 1 is illegal in an ALGOL program and must
be written as 0 < x /\ x < 1. - -

11

6 CONDITIONAL EXPRESSIONS

The value of an expression may be subject to a condition:

if B then El else E2 - -- --
Bis an expression which results in a boolean value and El and E2
are expressions.

If the boolean or relational expression B is true, the value of the expres­
sion will be El. If the boolean or relational expression B is false, the
value of the expression will be E2. El and E2 must be of the same type;
both must result in real value, integer value, or boolean value. E2 may
be a conditional expression, but El may be conditional only if it is
enclosed within parentheses.

Example:

if A < B then 1. O else 2. 1

if -z Z then Bool 1 else Bool 2 A Bool 1

if C ~ D then (if A1B then 2 else 3) else 4

if C = DVE then 7 .14 else if Q:R then 3. 15 else 2. 8

if A then (if B then Bool 1 else Bool 2)
else if c then Bool 3 else Bool 4

13

7 STATEMENTS

The operations to be performed within an ALGOL program are specified
by statements; each of which must terminate with a semicolon. State­
ments not terminated by a semi-colon are continued automatically on
subsequent cards until a semicolon is encountered. Four types of state­
ments are available.

assignment statements

goto statements

conditional statements

for statements

Statements may be included between begin and end forming compound
statements. Every begin must have an end. A compound statement has
the form:

ASSIGNMENT
STATEMENTS

begin s1; s2; ••• ; S end;
-- n-

Assignment statements assign the value of the expression E to the variable
V. If the expression results in a boolean value, the variable must be type
boolean.

V:=E;

V is a simple or subscripted variable and the symbol : = means
is replaced by:

If V is type integer and E type real the .following conversion is implied.

V:=entier (E+.5)

Examples:

A:= 3; (A is assigned the value 3)

B:=R*S/5;

C: = if I < J then 5. 37 else delta; (delta must be type real in this
expression)

15

MULTIPLE

C:= if Bool then 1 else if A > B then 2 else 3;
(Jf the Boolean w:iable, Bool, is true, C will be
assigned the value of 1. If Bool is false, C will
be assigned 2 if A is greater than B; otherwise,
the value assigned to C will be 3.)

ASSIGNMENT STATEMENTS

Multiple assignment statements assign the value of an expression E to
several variables, V 1, V 2, .•• , V n. The variables must be the same
type.

V ·-V ·- ·-V ·-E· 1·- 2·- .•.. - n·- '

Examples:

R: = S: = T: = 5;

A: = B: = C: = D: = A*(X-Y)/Z;

In the first example R, S, and T must be the same type; example 1
is equivalent to:

T:= 5;

S: = 5:

R:=5;

In the second example A, B, C, and D must be the same type;
example 2 is equivalent to:

D:= A*(X-Y)/Z;

G:= A*(X-Y)/Z;

B:= A*(X-Y)/Z;

A:= A*(X-Y)/Z;

GOTO STATEMENTS

Algol statements are normally executed in sequence. A goto statement
may be used to interrupt this sequence. A goto statement uses labels
and designational expressions. --

16

LABELS

Labels are identifiers which name statements. In the alternate label
form consisting of digits only, leading zeros are ignored. Labels
must be followed by a colon and precede the statement they are label­
ing. Multiple labels are allowed.

Examples:

24: S; L: M: S;

004: S; L2: 3: S;

DESIGNATIONAL
EXPRESSIONS

Designational expressions must take one of the two forms:

label

if B then label else designational expression

The first form is a simple designational expression; the second a
conditional designational expression.

A conditional designational expression may follow then if it is enclosed
within parentheses.

The form of the goto statement is:

goto designational expression;

A goto statement interrupts the normal sequential execution of state­
ments by explicitly defining the next statement to be executed. The
next instruction executed will be the statement with the label contained
in the designational expression.

Examples:

goto 8;

goto Ll;

goto :!! ab < c then 17 else help;

17

CONDITIONAL
STATEMENTS

A conditional statement may take the following form:

If Bl then 81;

Bl is an expression which results in a type boolean value. 81 is any
statement. If the value of Bl is true 81 is executed, otherwise it is
omitted. In either case, control passes to the next statement (unless
81 is a goto statement).

An alternate form of the conditional statement is:

If Bl then Sl else 82;

In this form, if the value of Bl is false, 82 is executed. Control then
passes to the next statement.

The statement which follows then in both cases may be conditional only
if it is enclosed within BEGIN and END.

The following diagrams illustrate the effects of conditional statements.

Bl true
I + r---;.

if Bl then 81; 82;

I Bl false f

Bl true
I +1 +

if Bl then 81 else 82; 83;

I Bl false JU
Bl truej :i.1 B2 true

I + I +
if Bl then 81 else if B2 then 82 else 83; 84;

I
-- --

Bl false 1 I B2 false jLJ

18

Examples:

(1) if intfr < 5 then
intfr := intfr +. 5;

(2) if c < 1 then A:= A+ 1 else B:=B+ 1;

(3) if intfr < 1 then begin
if intf r > 0. 5 then

intfr := intfr +O. 5 end;

(4) if Q A 5 then A:= B-1 else if Q V S
then B:= 2 else B:= 3;

FOR STATEMENTS

For statements control repetition of specified statements. The general
form is:

for V := H do S;

Vis the loop variable and S is the statement, simple or compound, to be
executed with the values of V specified by H.

H is the for list element; it can be one of two forms:

(1) E

E is any expression resulting in a value of type real or integer. S is
executed with the current value of E assigned to V

E is the initial value for V; E2 is the value by which V is incremented
afgebraically each time through the loop; and E3 is the limiting value.
El, E2, and E3 may be any expression resulting in values of type real or
integer.

The step expression produces the same results as the following set of
statements:

V·= E . . 1'

Loop: if (V-E3)* sign (E2) > O then goto terminate;
statement;
Vl=V+E2;
goto loop;

terminate:

19

Several for list elements may appear in a single for statement.

for V:= H1, H2, ••. , Hn do S;

Another form of the for statement allows the number of repetitions to be dete
during the execution of the loop:

for V:= E while B do S;

The statement S is repeated as long as the conditional expression B is true.

The following two examples produce the same results:

(1) L: A:=B;

if D < -5
10 then

begin

B:= A+B;

D:= abs(B-A);

goto L

end;

(2) For
-5

A:=B while D < 10 do

begin

B:= A+B;

D:= abs(B-A);

end;

The three forms of the for list element can be combined, as in:

for I:= 1, 2, 3 step 2 until 15, J while B do S;

The simple or compound statement S is executed for:
I= 1, 2, 3, 5, 7, 9, 11, 13, 15, J while Bis true.

20

Examples:

for X:= 4 do
A:= A+X;

for B:=l, 2, 3, do
A:= A*B;

for W:= 1 step 2 until 400 do
- _!! Bool then W::= 400 else X:= Y/Z;

for W:= sin(l) step -. 01 until -. 6 do
A:= A-W;

for I:= 1 step 1 until 100, 99 step - 1 until 1 do
- B:= B+A(I]-; - - - -

for A:= if sin(. 3) > cos(x) then 2 else 3
step if B then 1. 33 else 2. 15
until 456, 16 while delta > 105
do
B:= A;

21

8 DECLARATIONS

Declarations define the use of variables in Algol programs. All variables in
an Algol program must be declared as to type and/or usage. Declarations
may occur only after a begin or another declaration. The six kinds of decla­
ration allowed are:

1. simple variables

2. subscripted variables

3. switches

4. procedures

5. lists

6. formats

SIMPLE VARIABLES

Simple variables represent values in Algol programs, and
may be real, integer, or boolean. The form of the decla­
ration is:

real v1, V2, . . . ' v ; n

integer v1, v2, . . . ' V·
n'

boolean v1, v2, . ' v ; n

v 1' v2 • . . ' v are identifiers.
n

The identifiers may be of arbitrary length, but only the
first 64 characters are interpreted. A diagnostic occurs
if an identifier is declared more than once within a block.

'Examples:

integer N, I, GAMMA, ALF;

real ROGER, BAKER, STU, FREE;

boolean TOUR, LYON, SS, MYER;

23

SUBSCRIPTED VARIABLES

An ordered set of variables constitute an array. Array declarations must
specify the maximum range of array dimensions. Such declarations permit
reference by subscripting. If the type is omitted, it is assumed real.
Values are assigned to array elements by input operations or assignment
statements. The possible array declarations are:

array or real array P [a1:b1, a2:b2,

integer array AR [a1:b1, a2:b2, .••

••• , a :b J; mm

, a :b l ; mm_,

boolean array X [a1:b1, a2:b2, ••• , am:bm J ;
The number of array dimensions ism (any positive integer). The lower
bounds of each dimension are specified by a1 , a2 , . . . , am; the upper
bounds by b1, b2 , ... , bm. Bounds values may be specified by any
expression which results in a type real or integer value. Real values
are rounded for subscripts by adding . 5 and forming integers according
to the algorithm:

I: = entier(R+. 5)

Array identifiers of the same type, separated by commas, can follow
the associated type declarator. Arrays of the same type, with the same
dimensions, may be listed sequentially with the dimension specification
after the last array identifier in a group.

Examples:

array ALMA [1:20, 1:10.5, 1:20, 3.1:8] , GEORGE [1:8000]

integer array BEAT, SOURCE. FILE [1:10] , RAVV [1:100]

integer array SOON [-2000: -1000) , LATE (-1: -10,. 08:9. 4)

array SING, FLAK [r:ww] ;

array SIS [0:10, 0:10) , GRIT [sin(x) :arctan(x)]

boolean array SORT [-k:p] , ZIRT [l:m] ;

24

Array elements may be referenced in an expression (or may appear on the
left-hand side of an assignment symbol) by writing the array name with a
list of subscripts.

Examples:

SWITCHES

A (i, j) :=4;

B:=W [i] + X [k,l,m,n)/Y(i,i)

C:= X [i] -4.5;

A switch consists of an ordered set of designational expressions. The
switch declaration takes the following form:

Switch V:= DE1, DE2, ... , DEn;

Vis the switch identifier and DE1, DE2, .•. , DEn are designational
expressions. A switch element must be referenced by using the switch
identifier with the appropriate subscript. Only subscript values 1 through
n are meaningful; values outside this range produce undefined results. A
subscripted switch identifier is a designational expression.

Example:

switch SWD:=ENT, REN'J', BENT, EXIT;

goto SWD [2] ;

goto SW [!! B then l+sin(x) else 3. 0]

The following two sets of statements perform the same function:

1. Integer X;

!! X ~ O V X>4 then goto undefined else

!! X = 1 then goto Ll else

;!!' X = 2 then goto L2 else

;!!' X = 3 then goto L3 else

goto L4;

25

2. switch S:= <1, <2, <3, <4;

goto S [X);

Switch elements may also be used in a switch list.

Example:

switch VECTOR:= STA, TEM, ENT;

! : = 3;

goto TRSFR (i)

The current value of i is 3, so that reference is made to the third designa­
tional expression in the switch declaration TRSFR. The third designational
expression in TRSFR transfers control to VECTOR [1], which transfers
control to statement ST A.

Switch subscripts resulting in type real values are converted to type integer
according to the formula:

I : = entier (R+O. 5)

26

9 COMMENTS

Comments may be inserted anywhere in the program if they are enclosed
within the separators comment and a semicolon.

Examples:

Begin comment this is a comment;

Sl, 82, •.. Sn;

end;

S:= A; comment assign A to S;

Any information following an end and preceding another end, else, or a
semicolon is treated as a comment.

Examples:

end this ends the first statement end;

end this ends the then part else

end the whole program is finished;

27

10 BLOCKS

A block starts with begin, includes declarations and statements and ter­
minates with end. It takes the following form:

begin Dl, D2, '
D·

n' . s1, s2,.. . . . ' s
m'

end;

where D1 through Dn are declarations and s 1 through Sm are simple or
compound statements or blocks.

A block contained within a block is called a subordinate block. A block
containing subordinate blocks is called a dominant block. Subordinate
blocks appear in the statement portion of related dominant blocks, and
subordinate blocks may in turn contain nested subordinate blocks. Blocks
may be nested to any level. Complete blocks which appear in sequence
form parallel blocks.

Examples of block nesting:

BLOCK A: begin

declarations

statements

BLOCK B: begin

declarations

statements

end BLOCKB;

BLOCK C: begin

declarations

statements

end BLOCK C;

statements

end BLOCK A;

29

Block A is dominant; Block B is parallel to Block C and both are sub­
ordinate to Block A.

Identifiers declared within a block are local to that block and may not
be referenced by a dominant block. Identifiers declared within a
dominant block may be referenced within a subordinate block and are
non-local to the subordinate block. If the same identifier is declared
within a dominant and a subordinate block:

1) Its use within the subordinate block is defined by the local

declaration.

2) The dominant block identifier may not be referenced within

the subordinate block.

3) Upon leaving a subordinate block, the identifier reassumes

the dominant block usage.

A label is declared by its occurrence and is val.id for the entire block·
in which it occurs.

30

Examples:

Q: begin integer i,k; real w; array A [1:10, 1:10]

for i:= 1 ste:p 1 until 10 do

for k:= i+ 1 step 1 until 10 do

begin s:=A [i, k];

A [i, k}= A [k, i];

A [k, i}= w

end loop .!_ and k

end block Q;

begin

integer A, B;

real C;

A:= 5 * 6 - 4;

Begin

end;

end;

integer A;

boolean D;

D:= true;

A:= if D then 7 else 5;

B:= 6;

print (A, B);

C:= A** 2;

print (A, C);

The results obtained from executing this program would be:

7

26

31

6

676

Storage for variables is assigned at the time of block entry. When exiting
from a block, the variable storage is released for subsequent blocks. As
a result, variable values are always undefined upon block entry. Storage
may be permanently reserved for variables by the addition of the own
declarator to the declaration.

Examples:

own real A;

own boolean B, C;

own array P, Q [1:5, -3: 1]

~integer array A [0:3] ;

Array storage is computed dynamically upon block entry for non-own
arrays. Array storage for ~ arrays is allocated only at the time the
block is first entered. The first occurrence of bounds declarations for
own arrays should indicate the maximum bounds that the array will assume.

33

HEADING

12 PROCEDURE DECLARATIONS

Statements which occur several times within a program may be written
once as a procedure and the procedure may be referenced each time the
series of statements is to be executed. A list of parameters makes it
possible for a procedure to be used with varying values and/or variables.
A procedure is divided into two parts: the heading and the body.

The heading consists of a procedure identifier, a formal parameter
list (if any), and specifications (if any).

a) A procedure identifier is the name given to the procedure
in the program.

b) Formal parameters are those parameters within the body
which will be replaced by actual parameters each time the
procedure is executed.

A procedure name and list of formal parameters is defined as:

procedure identifier (P 1, P 2 , . . . , P n);

comments may be included in the form:

procedure identifier (p1, p2 , ... , pm)comment: (pm+l' ... , pn);

Procedures to be compiled with an ALGOL program must appear in the
declaration part of the block or a dominant block in which the procedure
is referen~ed. Procedures which have been compiled independently or
with another program may be declared external and used as binary
input to avoid recompilation. (See external declaration, section 16.)

The following is a list of specifiers:

value, real, integer, boolean, array, integer array, boolean array,

procedure, real procedure, integer procedure, boolean procedure,

switch, string, list, format.

The use of a specification takes a form similar to a declaration. How­
ever, the purpose of a specification is to indicate the type or usage of'
an actual parameter and does not constitute a declaration.

The form of specification is:

specifier FP 1, FP 2, •.. , FP n ;

35

FPl through FPn are a list of formal parameters. A parameter
specified value is a call-by-value parameter. Parameters not speci­
fied value are call-by-name parameters. The expression corresponding
to a formal parameter specified value is computed upon procedure entry.
The resulting value is assigned to the formal parameter before exe­
cution of the procedure body. This value is local to the procedure.
A value parameter should not appear on the left of an assignment
symbol. Parameters specified as value should also be specified
as to type. Arrays may not be specified value. If the type of a
formal parameter representing an arithmetic quantity is not de-
clared in a specification, it is assumed real. A specification is
required only for integer arithmetic parameters, and non-ALGOL
delimiters such as list and format; however, full use of specifi-
cations is desirable for descriptive purposes and for optimization.

Examples of procedure heads:

procedure P(A, B, C, D) results: (E, F);

value C;

integer A, C;

real E, F: Procedure D;

integer array B;

Pis the procedure identifier. A, B, C, D, E, and F are the formal
parameters. The word, results, is a comment. The actual parameter
corresponding to A is an integer expression, B corresponds to an
integer array name, C is an integer expression which is evaluated
once at the time of procedure entry (this value is used throughout the
procedure whenever C appears in an expression), D corresponds to
a procedure name, and E and F correspond to real expressions.

procedure triangle (X, Y, Z, S, TO, W);

value S, TO;

integer X, S;

switch Z;

boolean array W;

boolean TO;

real array Y;

36

BODY

The procedure body consists of a simple or compound statement or
block.

A procedure is similar to a block in that a list of formal parameters
defines identifiers which are local to the procedure. Identifiers
within the procedure may not be referenced outside the procedure.
A formal parameter identifier may be redefined within a procedure
body by appearing as a label or in a declaration statement. The
formal parameter cannot be referenced within the scope of the new
definition.

Global variables are declared outside the procedure declaration
in the same or a dominant block, and may be referenced directly in
the procedure body. Formal parameters with the same name as the
global variables supersede the global variables when referenced
within the procedure body.

Formal parameters not appearing in the value list are replaced
throughout the procedure body by the corresponding actual parameters
and are call-by-name parameters. This means that actual parameters
that correspond to expressions are evaluated each time the formal
parameter is encountered. Formal parameters that appear to the
left of an assignment symbol must correspond to an actual parameter
which is a simple or subscripted variable. This formal parameter
must not be specified by value (it is a call-by-name parameter).

37

Examples of procedure declarations

Procedure Beta (X, Y);

Value Y;

Real array X; Integer Y ;

Begin Integer A; Real Sum;

Sum:=O

For A:=l step 1 until Y Do

Sum:= Sum+X f Al ; - ...
end· _,

Procedure Assign (I, A) to: (B);

Integer I; Real A, B;

Begin Switch S:=L, M, N;

goto S [I] ;

L: B: = sin(A);

goto exit;

M: B:= cos(A);

goto exit;

N: B:= sin(A)/cos(A);

exit; end assign;

38

1 3 PROCEDURE CALL

A procedure call statement is defined as follows:

P(AP1, AP2, . . ' AP)· n'
or

P(AP 1 , AP 2 , • . • , AP) comments: (AP 1, AP); m m+ n

AP1 through APn are the actual parameter and P is the procedure
name. N must be equal to the number of formal parameters in
procedure P. The actual parameters AP1 through AP n may be
any expression or identifier.

Examples:

Beta (AR, if bool then 50 else 100);

assign (2, AR delta+ Y, Result);

prop (Z, Z - 7) result: (r);

14 FUNCTION PROCEDURE DECLARATIONS

A function procedure declaration takes the following form:

type procedure declaration

Type may be real, integer, or boolean. Procedure declaration
is defined in section 12.

The function procedure name must appear to the left of an assignment
symbol at least once within the procedure body. This is the value
that is obtained when activating the procedure.

Example:

real procedure PAT (A, B);

real A, B;

PAT:= if A >B then A* B else

if A = B then A else B;

39

1 5 FUNCTION PROCEDURE CALL

A function procedure is activated by the appearance of the function
name and associated actual parameters in an expression. When
the program is executed, the expression is evaluated using the
value computed by the function procedure.

Example:

X:= Y * PAT (cos(X), Z + F - sin (y))/2;

16 EXTERNAL PROCEDURE DECLARATIONS

An external procedure declaration takes the form:

external P 1, P 2, ... , Pn;

P through P are independently compiled procedures.
1 n

External function procedures must be declared as to type and
take the form:

P through P is defined as above and type is real, integer, or
1 n --- -

boolean.

Example:

external prol, pro2, pro3;

integer external dizzy, weak, sickly;

41

17 STANDARD FUNCTION PROCEDURES

Standard function procedures are defined for 1604 Control Data ALGOL, and
require no declaration. They act as if declared in a block dominant to the
program. At execution time expressions containing standard functions are
evaluated using the value computed by the functions. The argument E may
be a variable, a number, a standard function procedure, including itself, or
a combination of these. Standard functions are the only procedures which can
call themselves.

The following standard function procedures accept real or integer values and
supply type real results.

sqrt (E)

sin (E)

cos (E)

arctan (E)

ln (E)

exp (E)

abs (E)

square root of E; not defined for x less than 0

sine of E radians

cosine of E radians

arctan of E radians; principal value between - 11/2
and + 11/2

natural logarithm of E; not defined for E less than
or equal to 0

exponential function of E

absolute value of E

The remaining two standard function procedures result in type integer values.

sign (E) E sign (E)

E > 0 +1

E = 0 0

E<O -1

entier (E) largest integer not exceeding the value of E

Examples of function procedures:

abs (z)

Bl + (sqrt(B t 2-4*A, *C)/2A.)

sin(sin(X))

entier (2. 5*sign(ABAR))

ACE+ arctan(TRFL)

43

READ

18 DATA TRANSMISSION

Six standard procedures provide for data transmission operations.

READ

PRINT

WRITE

PUNCH

INPUT

OUTPUT

ALGOL numbers and boolean values are entered from the standard input
unit, 50, into the computer by READ statements. The input values must
take the form defined in section 2 except the letter E may be used in
place of 10 •

READ (v l' v 2, •.. v n);

v 1 through vn comprise the list of variable identifiers into which the
values are to be stored. If a number read differs from the type declara­
tion contained in the program, the number is converted and stored accord­
ing to the type declaration. The following values may be used for true
and false:

T, TRUE, T, TRUE

F, FALSE, F, FALSE

Input numbers may be any length up to 64 characters, but each number,
including the last, must be terminated by a comma. Any number of
cards may be used to contain the punched input numbers and values.
Spaces are ignored and the number field may be continued on a following
card. All 80 card columns are interpreted. Arrays may be read by
the READ procedure and a for statement.

Example:

for I:=l step 1until100 do READ (A[I]);

The variable I is incremented by 1, reading 100 numbers from cards
in the standard input unit and storing them in the A array. Each
number, including the last, must be followed by a comma, to indi­
cate the field widths.

45

WRITE ('string,);

Procedure WRITE has one or more parameters; each is a string or a con­
ditional string expression. The WRITE procedure reproduces strings on
standard output unit, 51 for headings and other identification. The strings
can be subjected to a conditional clause. A WRITE procedure always begim:
a printed line with single spacing between WRITE procedure strings. If a
string is not completed on a 120 space line, it is continued on subsequent
lines. Each string printed begins a new line.

Examples:

WRITE ('TABLE,);

WRITE (if D=O then 'TRUE' else 'FALSE,);

46

19 DATA TRANSMISSION USING LIST DECLARATIONS

The remaining input/output procedures require lists to specify the trans­
mitted information. The actual list may be used as a parameter, or a list
identifier may be used to reference a list declaration. The form of a list
declaration is:

list identifier:=v 1, v 2 , •.. ' v ; n

The elements of the list, v1 through v can be variable identifiers, for
n -

clauses, or expressions.

Examples:

list RES:=X, A+B;

list SOLUTION:= for I:= 1 step 1 until N do A [I];

list ar:= for I:= 1 step 1 until N do (A[i], B[i]);

A list identifier may appear in a list. The following examples illustrate
two methods of transmitting the same data.

Examples:

(1) list M:= for I:= 1 step 1 until 10 do (A[I], for J:= 1 step 1
- until 20 do B [I,J]); - - -

(2) list L:= for J:=l, J+l while J'.520 do B [I,J];

list M:= for I:= 1 step 1 until 10 do (A [I], L);

list M in either case transmits the following data:

A [1] ,

A [2] ,

A [10],

B [1, 1] ,

B [2, 1] ,

B [10, 1], ,

47

B [1, 2]

B [2, 2]
' '
' '

B [1, 20]

B [2, 20]

B [10, 20]

PRINT

PUNCH

The PRINT procedure produces up to 6 numbers, with 10 decimal places,
per line in the following format:

n. nnnnnnnnnnE±nn

n is any integer in the range 0 through 9. The numbers are printed on the
standard output unit, right justified in 20-column fields. Print lists contain­
ing more than six variables are continued six per line until the list is ex­
hausted. Each use of PRINT begins a new line.

Example:

(1) PRINT (A, B);

(2) PRINT (for I:= 1 step 1 until 10 do A [I]);

Example 1 will print two numbers on a line and example 2 will produce
one printed line containing six numbers, followed by a line containing
four numbers.

The PUNCH procedure produces up to 4 numbers with 10 decimal places per
card (in the same format as PRINT) on standard punch unit, 52, right jus­
tified in 20-column fields. The numbers are separated by commas and care
are punched until the list is exhausted. The cards may be used as input for
a READ statement. At least one card is produced for every execution of a
PUNCH statement.

PUNCH (v1, v2 ,

INPUT/OUTPUT

... ' v) ; n

The INPUT procedure enters input numbers and Hollerith information accor
ing to format specifications. The forms are:

INPUT (M, F, list);

INPUT (M, F);

The OUTPUT procedure produces output on the specified logical unit numbe
according to format specifications. The forms are:

OUTPUT (M, F, list);

OUTPUT (M, F);

48

M is an expression designating the logical unit number: programmer units
1-49, 56 and 57, 50 for standard input, 51 for standard output. If the
expression is not an integral value, it is rounded upward if the fractional
part is one half or more; otherwise it is truncated.

F may be one of the following format expressions:

format

for mat identifier

conditional format expression

variable representing the initial address of a format string

20 FORMAT

Formats must be in parentheses and are enclosed within string quotes,

t(format)'

Examples:

t(6E20. IO)'

'(IHO, 9X, 5HTABLE, 13)'

Formats may appear explicitly in an INPUT or OUTPUT statement or may
be referenced by an identifier in the declaration part.

format identifier := '(format)' ;

Formats control conversion by specifying the position of information on an
input/output record. Printed output record lines are 120 Hollerith charac­
ters in width. The first character, which is interpreted for printer control,
does not appear as printed output. Punched cards containing alphanumeric
information have a record width of 80 Hollerith characters. See Control
Data FORTRAN publications for a complete explanation of conversion types.

Numerical Conversion Types

Ew.d

Fw.d

Iw

Ow

Floating point with exponent

Floating point without exponent

Integer

Octal

Hollerith Conversion Types

Aw

Hw

wX

Alphanumeric

Headings and titles

Spaces

Multiple Record Control

I Begin new record

51

Format strings and format identifiers cannot be mixed in a conditional for­
mat expression. READ and INPUT procedures both buffer ahead one card
image and should not be used together in a program. Input always initiates
a new card. READ continues with the unused portion of a card remaining i1
its buffer.

Examples:

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

(4, if B then '(E20. 7)' else '(E20. 6)", BETA);

(6, if B then Fl else F2, X, Y, Z);

(11, if B then Fl else c(E20. 6)' A);
This is mixed and not allowed since Fl is a format
identifier and t(E20. 6)' is a format.

(41, "(6H TABLE),;

(51, t(lHO, 9X, lOE 10. 2)', for I:= 1 step 1 until
lOOdoA[I]); -. - -

(51, '(6E20. 6),, A, B, C, D, E, F);

52

21 INTERMEDIATE TAPE PROCEDURES

Five intermediate tape procedures use magnetic tape for auxiliary storage,
programmer units 1-49.

BINREAD (M, list);

BINWRITE (M, list);

BACKUP (M)

BINWRITE (M, list)

ENDFILE (M);

REWIND (M);

Writes one logical record of binary information on the logical tape unit M.
The logical record consists of the data defined as list. If the list is omitted,
a logical record con''lining no information is written.

BINREAD (M, list)

Reads one logical record of binary information from logical unit M. If the
list is omitted, the tape moves over the record without transmitting infor­
mation. If a BINREAD list does not require all the values in the record,
the additional information is lost and the tape moves to the beginning of the
next logical record. If the list is longer than the values on the record, an
error diagnostic occurs and the program is terminated.

Example:

BINREAD (6, for I:= 1 step 1 until 1000 do A [I)>;

BINWRITE (X+ Y, a, b, c +d/ e, for I:= n, n+ 1 while n~m t 2 do AR [1]);

ENDFILE (M)

Writes an end-of-file mark on the specified logical tape unit M.

REWIND (M)

Rewinds logical tape unit M to the load point.

BACKUP (M)

Backspaces the logical tape unit M one logical record of binary information
or one physical record of BCD information.

53

EOF (M)

22 TAPE CHECKING PROCEDURES

The following boolean procedures check the magnetic tape condition.

EOF (M)

READERR (M)

WRITERR (M)

Yields the value true if logical unit M encountered an end-of-file condition
on the previous read operation, or the previous write operation encount­
ered an end-of-tape condition. Otherwise, the value is false.

Example:

if EOF (6) then go to ALARM;

READERR (M)

Yields the value true if the previous read operation on logical unit M pro­
duced a parity error; otheiwise, the value is false. READERR should not
be used to test a READ procedure operation, since READ automatically
rereads several times in case of errors terminating the program if
necessary.

WRITERR (M)

Yields the value true if the previous write operation on logical unit M pro­
duced a parity error; otheiwise, the value is false.

23 PAGE

Causes the standard output unit, 51, to begin a new page; it uses no
parameters.

55

MCS CARD

24 CONTROL CARDS

COOP Monitor control cards listed below govern compilation and execution.
They begin with a 7-9 punch in column 1 and terminate with a period.

~ COOP, ace, Id, s/u1/u2 , time, lines, n.

7
9 ALGO.

7
9 ALDAP,P1 ,P2, ••• , P.

n
7
9 EXECUTE, t.

7
9 BINARY,u.

7
9 FTN,m,n,u or FORTRAN,m,n,a.

Control cards read within a subsystem are not punched in column 1. The
subsystem control cards are:

EOP

END

FINIS

LIB name

The master control system card, COOP, precedes every program run
under control of the COOP Monitor system. A 7-9 punch in column one
is followed in column two by:

COOP, ace, id, S/u1/u2,time,lines,r.

ace account number

id identification

u1 load-and-go; 56 is standard

u2 57, auxiliary memory tape

time time limit in minutes for job

lines maximum number of lines printed output

57

r recovery key for dumps on standard output unit

0 or blank

1

2

3

4

5

Examples:

octal console dump

octal console and numbered common

octal console, labeled common, and
program

octal console, numbered and labeled
common

octal console and all memory

octal console and all memory
except monitor region

COOP, 52462, MOOS, S/56/57,4,1000,5.

COOP, A-3021, DSD, S/12/57,5,500,3.

COOP, 6B100, DEC, S/34/57/4,1500,4.

58

ALGO

ALDAP

2 5 COOP CONTROL CARDS

Control Data ALGOL 60 programs can be compiled in two different modes
using the COOP Monitor system. ALGO which is the standard mode for
compilation is simpler, faster, and more suitable for the major number
of ALGOL programs. For programs not suited to the ALGO mode, the
more general ALDAP mode can be used.

This mode is selected by a card with a 7-9 punch in column 1, followed
by ALGO. in columns 2-6. The ALGO mode always executes the source
program.

This mode is selected by a card with a 7-9 punch in column 1, followed
by ALDAP, P 1 , .•. , P n' beginning in column 2.

P 1 through P n are arbitrary length parameters each beginning with
one of the following letters:

L,A, P,E,B,S,O,I,R,N

The meaning of each parameter may be modified by adding =n (n being
an integer)

59

Parameter
beginning
with action

L List source program on unit 51

A List assembly on unit 51

P Punch binary cards on unit 52

E Prepare load and go tape on
unit 56

B Punch BCD CODAP cards on
unit 52

S Change size of assembler symbol
table to 2048 words

0 Assign unit 47 as translator
overflow tape (required only for
very large programs)

R suppress assembler reference
table

N suppress assembler null listing

It use logical unit 50 as input

EXECUTE,m,n,k.

using= n

list source program on unit
n (1 < n S 49)

list assembly on unit
n (1 < n S 49)

punch binary cards on unit
n (1 < n S 49)

Prepare load and go tape on unit
n (1 < n S 49, or n=56)

punch BCD CODAP cards on unit
n (1 < n S 49)

Change size of symbol table ton if
n is greater 1024

assign unit n as overflow tape
(1 < n ~ 49)

use logical unit n as input

After an ALDAP compilation or after loading an execution only binary
deck, the EXECUTE statement transfers control to the object program.
A 7-9 punch is contained in column 1, followed by EXECUTE,m,n,k.
beginning in column 2.

m time limit in minutes

n logical input unit; the standard scratch unit 56 is assumed
if n is zero or blank

k memory map key; a map will not be produced if k is
not zero or blank

trr this parameter is missing logical 50 is assumed.

60

BINARY ,n,k.

When a BINARY statement is encountered, the relocatable binary deck
following it is transmitted from standard input medium, 50, to logical
unit n. A memory map will not be produced if the memory map key, k,
is not zero or blank. Standard scratch unit 56 is assumed if n is zero
or blank.

FTN,m,n,u.

FORTRAN 62, Control Data publication number 506a
or FORTRAN 63 number 529.

61

EOP

END

FINIS

LIB

PROGRAM

26 COMPILER CONTROL CARDS

EOP is punched in columns 10-14. In the ALGO mode, an EOP card
terminates the program. In the ALDAP mode, an EOP card terminates
each ALGOL program or procedure compiled separately.

Each FORTRAN subprogram and each CODAP subprogram is terminated
by END, punched beginning in column 1 O.

FINIS terminates compiling and assembly operations. FINIS begins
in column 10.

A card with LIB in columns 10-12, as well as, an external declaration
within the program is required for each non-standard library procedure
called in a program compiled in the ALGO mode. The name of a library
entry point begins in column 20 of each LIB card. This library routine
must be on the master tape.

A PROGRAM card is optional and may be used for identification. In the
ALDAP mode, it names the program entry point. The format is free
field; any combination of alphanumeric characters can follow
PROGRAM.

SOURCE DECK

Control Data ALGOL 60 source programs are punched on cards with the
hardware representation described in Appendix B. The format is free
field from column 1 to 72, except within strings quotes. Columns
73-80 are not interpreted by the compiler, these may be used for
sequence numbering and identification.

63

27 EXAMPLES OF EXECUTION

ALGO COMPILATION
AND EXECUTION

ALGO provides a simple and fast mode of compiling and executing
an ALGOL program. Input cards for the ALGO mode are arranged
in the following order. The use of non-standard library procedures
and LIB cards is optional.

L
,r

_(data

{ 'EOP'

L
}!__

_(ALGOL program

i PROGRAM name

_(LIB label

_(~ ALGO.

/7 COOP, ace, id, S/u1/u2 , time, lines, r.
9

65

.......

I-

.......

._.

.......

1--1

(with external declaration
of procedure label)

Examples:

LOAD and GO

/
7

(data

(1EOP1

F y r PROGRAM SMPL

_GALGO.
/7

9 COOP, 5/2-A,LOL,S/56/57, 6, 1500,5.

/
y

I data

(1EOPt

L y r PROGRAM CMPT

(LIB BESSEL

(~ALGO.
/7

9 COOP, 001,XS,S/56/57,4,1200,3.

66

f.-J

1--1

I-

I-

I-

1-1

1--1

1-1

1-1

LOAD and GO with
Non-Standard Library
Procedure Bessel in
source deck

contains external
declaration of
BESSEL

ALDAP COMPILATION
AND EXECUTION

ALDAP provides a more varied, slower mode which allows compilation
only, compilation and execution, and execution with independently compiled
or assembled procedures. Input cards for the ALDAP mode programs are
arranged in the following order:

~
)'_

(
(~ EXECUTE, t.

[FINIS

_(1EOP1

{ 1EOP1

/ y

i ALCOL procedure Bessel

{ 1EOP1

/
y

_(ALGOL program

{ PROGRAM entry

_G ALDAP,L,P,E.

I'.
~COOP, acc,id,S/u1/u21 time, lines,r.

67

data

~

1--

.....

.......

.......

1--

.....

~

1-1

1-1

Con tains 'external'
ation of Bessel declar

ALDAP

Examples

Load and Go with object language procedure

data

object procedtL.."I? language

FINIS

1EOP1

PROGRAM FXIT

~COOP, 624,RL,S/56/57,41 2000,5.

terminated by
two TRA cards

Two TRA cards can be produced during compilation of the procedure
by terminating the source language procedure deck with two 'EOP'
cards. If a second TRA card is not produced during the procedure
compilation, it can be inserted by the programmer for this run.

The ALGOL source program FXIT must contain an external
declaration of the object language procedure.

68

ALDAP

Load and Go with PROCEDURE COR

£-
I

(~ EXECUTE,3.

f FINIS

1EOP1

('EOP'

l PROCEDURE COR

('EOP1

{ PROGRAM DOT

_G ALDAP, 1 1 E.

/7
9 COOP, H6-3,MOE,S/56/57,51 500,5

data

I-

I-

I-

.........

I-

1-1

1--'

µ

f--1

c ontains external
eclaration of
ROCEDURE COR

d
p

Independent compilation of PROCEDURE OPRT

_e FINIS

{ 1EOP1

{ 1EOP'

~ x..
[PROCEDURE OPR T I-

{~ ALDAP,L,P. 1---

/~COOP, 8142, BSH, S/56/571 5, 1000, 5.

1--'

I-

69

.........

ALDAP

Load and Go, replacing a standard library procedure

data

FINIS

1EOP'

1EOP1

PROGRAM TEMP -------+-+-If------ Contains external
declaration of replaced
procedure

object language library
procedure replacement

7
9 BINARY 1 56.

~COOP, 19421 1 TOE,S/56/57,4,2000, 5 .
t- _G EXECUTE, 101 56 •

I- (FINIS

(END or 'EOP'

d
CODAP subprograms in the form
of subroutines may be assemble
with an ALDAP completion con­
taining external declarations fo
the CODAP subprograms. Neith
a CODAP or FORTRAN subrout
may have a transfer card, sine
the ALGOL program always ha

r
er

ine
e
sa

transfer card.

(END

L
E_

(CODAP source deck

(EOP

L y

[ALGOL source program

(END

/
Y-

CODAP source deck

_G ALDAP,L,E=56.

/1
9 COOP, 659,AS,S/56/57/4,500,6.

70

I-'

.......

.....

~

1--'

I-

1--l

I-

1--'

I'-'

28 FORTRANSUBPROGRAMS

The procedures FORTRAN, FORTRANF, FTN and FTNF designate
FORTRAN compiled subroutines and functions to be executed with an
ALGOL program.

FORTRAN (name(list));

FTN (name(list));

FORTRANF (name(list));

FTNF (name(list));

Name refers to a FORTRAN subprogram name, and list is the list
of actual parameters required by the FORTRAN subprogram (function).
The subprogram name must be declared external.

FORTRAN AND FORTRANF procedures refer to FORTRAN-62 sub­
programs. FTN and FTNF refer to FORTRAN - 63 subprograms.

Labels, switches, and standard functions cannot be used as actual
parameters. Array names may not appear as actual parameters, but an
actual parameter consisting of an array name with subscripts corre­
sponding to the first array element will satisfy a FORTRAN subroutine
which has an array name as a formal parameter. The DIMENSION
statement must indicate the size of the ALGOL array.

Example of an array used as a parameter to a FORTRAN subroutine:

ALGOL program

FORTRAN
subroutine

begin array A[l :10, 6:10];

external SUB;

.
FORTRAN (SUB(A[l,6])); .
END

SUBROUTINE SUB(A)

DIMENSION A(l0,5) .
END

71

ALGOL programs may be compiled before or after FORTRAN programs
for the same job.

7
9 EXECUTE, 5, 56.

FINIS

1EOP 1 or END

'EOP' 7
9 EXECUTE,5,56.

FINIS
ALGOL source program

END

FINIS END

FORTRAN source subprogram FORTRAN source subprogram

~COOP, A3-02, HM, S/56/57 /, 5, 1000, S.
FINIS

'EOP'

ALGOL source program

~ ALDAP,L1 E=S6.

7 9 COOP, A3-02,HM,S/56/57/,5,1000,5.

Execution Only
L

,)'

(data

L
'--

_C object deck

(~ EXECUTE 2. f-l

17
9 COOP, A3-02, HM, S/56/57/, 5, 1000, 5.

I-'

f--J

72

ERROR CHECKING AND
DIAGNOSTICS

APPENDIX A

During the two pass compilation, the following types of errors are detected and listed
on the standard output unit.

syntactical errors

undeclared identifiers

identifiers declared more than once in the same block

misspelled delimiters

delimiters which cannot be interpreted by the compiler

missing escape symbols; if both are missing the delimiter is treated as an
identifier.

The following errors are not diagnosed:

number of array dimensions used differ from number declared

number of actual parameters differ from number of formal parameters
in a procedure call

type errors (simple variable used as subscripted variable)

SYNTACTICAL ERRORS

Syntactical errors are printed with a message to indicate the error and part of the
program immediately proceding the error. Example of a misplaced declaration
diagnostic:

x:=a+b; INTEGER K;

****LAST CHARACTER INDICATES SYNTACTICAL ERROR.

x:=a+b; INTEGER

A single syntactical error may cause more th.an one diagnostic. Syntactical errors
corrected by the compiler are noted in messages on the standard output unit.
Identifiers are often abbreviated as c1 , c2, ••• Cn, or ident, in diagnostic messages.

73

APPENDIX B

The keypunch apostrophe is reserved as the escape symbol which delineates ALGOL
delimiters. No distinction is made between upper and lower case letters in the hard­
ware language. The transliteration rules for the symbol delimiters assume a 48-
character keypunch and are consistent with the usage in the ALCOR group. In the
case of string quotes, the tolerated symbols are required for the inner strings of a
nest of strings. Delimiters which are underlined in this manual are punched with
escape symbols (begin is 'begin')

ALGOL Symbol

<
<

=
>

>

-c
/\

v

:::>

10

x

:=

[

]
c ,

Keypunch

'LS'

'LQ'

'EQ'

'GQ'

'GR'

'NQ'

'NOT'

'AND'

'OR'

'IMP'

'EQV'

*
**
II

$

=

<I
I>
II

II

Tolerated Keypunch

'LESS'

'LSEQ', 'NOT GREATER', 'NOT GREATER'

'EQUAL'

'GREQ', 'NOTLESS' 'NOT LESS'

'GREATER'

'NTEQ', 'NOT EQUAL', 'NOT EQUAL'

'IMPLIES', 'IMPL'

'EQUIV'

'E', 'T'

'POWER'

'DIV'

. '

.=, =

I (I

')I

75

APPENDIX C

Algol procedures (with n parameters) that are written in CODAP must have the
following type format:

p SLJ 0

LDA 6 0

STA Pl

LDA 6 1
Entry

STA P2

LDA 6 n-1

STA Pn

RTJ Pl

+ LDQ =077777

STL T
Picking up the first parameter

LDA 7 T

SLJ p } Exit

Pl BSS 1

SLJ Pl

P2 BSS 1

SLJ P2
Storage location for parameter

. links

Pn BSS 1

SLJ Pn

Upon entry to the procedure, index register 6 contains the address of a list of
consecutive parameters. These parameters must be stored in the locations
designated Pl through Pn in the illustration. All the parameter must be picked up

77

and stored before referencing any of them. The actual parameters take one of the
following forms:

SLJ

SLJ

0

0

ENA

RTJ

v
GL

The parameters are referenced by making a return jump to the appropriate location
Pl through Pn in the illustration. Upon return, the accumulator will contain an
address of a value, variable, procedure, string, switch or label (depending on the
actual parameter). Transferring to a switch element or label outside the procedure
must be accomplished by use of the 'goto' interpreter. The call of the interpreter
is made with the label address in the accumulator. The call is simply:

CALL AL16GOTO

78

APPENDIX D

The statement:

FORTRAN (name(Pl, P2, .•• Pn));

or expression:

FORTRANF (name(Pl, P2, •.• Pn));

Produces the following type subroutine (or function) call

ENA L(Pl) I address of Pl to A and

ENQ L(P2) address of P2 to Q

RTJ Name } call of subroutine (function)

+ ZRO P3

+ ZRO P4
addresses of P3 through

ZRO Pn
Pn

+ RTJ AL16ERR } error return

+ Normal return

The statement:

FTN (name(Pl, P2, •.. Pn));

or the expression:

FTNF (name(Pl, P2, •.• Pn));

produces the ·following type subroutine (or function) call

RTJ Name } call of subroutine (function)

+ ZRO Pl

ZRO P2

+ ZRO P3

ZRO Pn

+ Normal return

79

addresses of parameters

P 1 through Pn

CONTROL DATA
CORPORATION

8100 34th AVENUE SOUTH, MINNEAPOLIS 20, MINNESOTA

PUB NO . 60083400 Litho in

