
CONTROL DATA
CORPORATION

OAK RIDGE ALGOL COMPILER FOR 1604
PRELIMINARY PROGRAMMER'S MANUAL

CONTROL DATA CORPORATION
3330 HILLVIEW AVENUE e PALO ALTO, CALIFORNIA

JULY 1963 SPD-02

JULY 1963

THE OAK RIDGE ALGOL COMPILER
for the

CONTROL DATA CORPORATION
1604 - Preliminary Programmer's Manual

CONTROL DATA CORPORATION
3330 HILLVIEW AVE.

PALO ALTO, CALIFORNIA

SPD - 02

Printed in United States of America

)

This document was prepared by the Mathematics

Division of Oak Ridge National Laboratory and is

reproduced here exactly as it was received.

iii

I.

II.

III.

IV.

v.

VI.

VII.

VIII.

A.

B.

c.

D.

E.

F.

CONTENTS

Introduction ~
Language Restrictions
Modes of Operation of the Compiler

Input-Output and Intermediate Tape

.......................

.
Tlle External Declaration
Standard Procedures
Error Checking and Diagnostics
Running Programs,

APPENDICES

Adjuncts to Algol 6o ••••••••••••••••••••••••••••••••••• la •

Hardware Representation
. " Structure of Procedure Calling Sequence

Internal Representation of Strings • • 4' ••••••••••••••••••••

Program Efficiency • •••••••••••••••••••• 41: •••••••••••••••••

Controversial Features of Algol 6o

iv

1

2

5

5

16

16

17

19

2)

1

THE OAK RIDGE ALGOL COMPHER FOR THE CONTROL DATA CORPORATION
1604 - PRELIMINARY PROGRAMMER'S MANUAL

L. L. Bumgarner

ABSTRACT

This document is a preliminary programmer's manual
for use of the Control Data 16o4 Algol Compiler. The com­
piler was constructed by the Programming Research Group of
the Mathematics Division in cooperation with Control Data
Corporation. A knowledge of Algol 60 is assumed. Included
are descriptions of input-output facilities and details for
operation under the monitor system.

I. Introduction

This document is to serve as a programmer's manual for the

Algol compiler constructed as a cooperativ~ project by Control Data

Corporation and the M9.thernatics Division of Oak Ridge National Laboratory.

The compiler is designed for the Control Data 1604 and 16o4-A computers.

The document is preliminary in that the compiler is not thoroughly tested

and may undergo further development.

The reader is assumed to be familiar with Algol 6o. The

defining descriptions are the two reports on Algol 6o available in the

following references:

1. P. Naur et al, "Report on the Algorithtnic Language Algol 6o,"
~·Assoc.~·~-,] (196o), No. 5, 299-314.

2. P. Naur et al, "Revised Report on the Algorithtnic Language
Algol 6o," ~· Assoc. Comp. M9.ch., §. (1963), No. 1, 1-17.

The second report clears up certain ambiguities that appeared in the

first report. The reports are not easy reading for the novice. The

following expositions are more readable:

2

1. Baumann, Bauer, Feliciano and Sa.melson, Introduction to
Algol, Prentice-Hall, Inc. (to be published in late 19b'3).

2. Bottenbruch, H., "Structure and Use of Algol 6o," Jour.
Assoc. Comp. ~., .2. (1962), No. 2, 161-221, and ORNE'-3148.

The Baumann publi~ation also contains the revised Algol 6o report.

Throughout this document various examples of statements and

declarations appear without the semicolon which is always required for

separating them. This is to avoid the implication that the semicolon is

part of the statement or the declaration. In sentences, a comma or period

may appear where a semicolon or other delimiter would be indicated in the

context of a program.

Word delimiters rendered in bold-face type in the Algol report

are herein indicated by underlining.

II. Language Restrictions

The compiler correctly handles programs written in Algol 6o

subject to the :following restrictions.

1. The use o:f an integer label ~ !!!. actual para.meter will

cause an incorrect program to be compiled.

2. A GO TO statement with an undefined switch designator as

the c1.esignational expression will cause incorrect operation of the :final

program.

3. ~restrictions:

(a) The exponentiation expression x f y will have type

real unless x is of type integer and y is a non-negative integer constant.

This differs slightly :from the definition in the Algol report but will

generally cause no difficulty.

3

(b) In the construction

< if clause > < simple arithmetic expression >

else < arithmetic expression >

the arithmetic expressions must have the same type, or else an incorrect

program will be compiled. For example, in the statement

x := if a < b then z else w

z and w should both be declared real or both integer.

(c) In a procedure call (procedure statement or function

call) each actual parameter having an arithmetic value must have the same

type as the corresponding formal parameter in the procedure declaration.

The type of the formal parameter is that designated in the specification

part if it appears there. If a formal parameter representing an arithmetic

quantity does not appear in the specification part, it is asswned to be

specified ~· This incidentally means that a parameter can appear in

the value part and not in the specification part (contrary to the Algol 6o

requirement). It follows that a specification is required only in the

case where an arithmetic parameter must be treated as having integer type,

but full use of specifications is desirable for descriptive purposes and

for optimization.

Caution. Restriction (c) is more likely to cause errors than

the other restrictions. It is very easy to write P(l,2) when the parameters

of P are specified real, but incorrect coding will result. The call

P(l.0,2.0) works correctly.

4. Standard procedure names (see section VI) used ~ parameters

in procedure calls will cause an incorrect program to be compiled. A call,

therefore, such as

4

P(sin)

is incorrect. Note, however, that a call of the type

Q(sin(x))

causes no trouble. The case P{sin) can be programmed in another way.

Make the declaration

The call

is then correct.

real procedure sin 1 (t); ~ t;

sin 1 := sin (t) •

P(sin 1)

5. Arrai~ called Ez value are not handled. If .~n array

identifier appears in both value part and specification part, the effect

will be the srune as if it appeared only in the specification part; that

is, it will be treated as if called by name.

6. "Dynrunic" ~ arrays are not handled. This means that all

~ arrays are treated as having constant subscript bounds; this constitutes

one possible interpretation of the Algol 60 report. An ~ array may be

declared with variable subscript bounds, but only one allocation of storage

will be made, and if the bounds change, this will be ignored.

7. Recursive procedures are not handled. This restriction

encompasses all cases of a function designator appearing in the actual

parameter part of a call of the same function, unless that function is a

standard function. Thus f(f(x)) is not pennitted in general, but

sin(sin(x)) is allowed.

5

III. Modes of Operation of the Compiler

There are two distinct modes of operation: ALGO and ALDAP.

ALGO is a compile-and-execute mode in which the two phases

cannot be separated. The Algol program is translated into a machine

language program in core memory, and execution of the program innnediately

and automatically follows. There is no assembly program phase.

ALDAP makes use of the CODAP-1 assembly program facilities. It

is possible to compile procedures separately and reference them from an

Algol program. The procedures may be written in either Algol or CODAP-1.

This provision is made possible with the aid of the external declaration

discussed in section V.

The ALGO mode provides significantly faster compilation than

the ALDAP mode. The target programs produced iu the two modes are

essentially the same. In the ALGO mode, program checkout may be done at

the Algol language level. In the ALDAP mode, checkout may also be done

at the machine and assembly language levels, and modifications may be ma.de

at these levels.

IV. Input-Output and Intermediate Tape

There are six standard procedures for input-output, five for

intermediate tape, and three for checking tape conditions. Two declarations,

format and list, are additions to the language.

Input-Output

The input-output procedures are: READ, PRINT, WRITE, ;E'UNCH,

INPur, and OUTPUT.

6

READ

The READ procedure is used to input numbers and Boolean values.

A READ statement has the form

READ (Vl, V2, ••• , Vn)

where n is any positive integer and each Vk is a variable. For example,

the statement

READ (X, Y, A[l), B[l))

will input values into the four variables listed. For inputing values

into an array, a statement such as the following might be used:

for I := 1 steJ? 1 until 100 do READ (A[I]) .

Each value read by the READ procedure must be either a legal

Algol number (although an E may be substituted for the symbol 10 if desired)

or a plus or minus sign. If read into a Boolean variable, a non-negative

number or a plus sign is interpreted as false; a negative number or a minus

sign is interpreted as true.

With the READ procedure, tbe type of a number on a data card

does not have to be the same as the type of the variable to which it is

assigned. Any necessary type conversions are done automatically. If N

is the next number in the data, the statement

READ (V)

is equivalent to the statement

V := N .

The data cards are free field. The number of values per card,

the length of numbers, and the number of spaces are arbitrary. A comma,

however, must follow each number, including the ~ ~ .£!! ~ ~

data card. --

7

The READ procedure will input data from the standard input

medium only.

Lists and the List Declaration

The input and output procedures described in the rest of this

section, as well as the binary read and write procedures, make use of the

concept of a list. A list(l) is a sequence of expressions. An e:xample

is

U + V, C [0], if B ~ X else Y •

It may be inconvenient in some cases to write down all of the

expressions explicitly. The loop e:x:,pression(l) may be used as a short-

hand device in a list. It is an Algol-like construction of which the

following is an example:

for I := 1 step 1 until 1000 £!£ A[I]

This is equivalent to the list

A[l], A[2), ••• , A[lOOO) •

The entity following £!£ in a loop expression may itself be a list, but

this list must be enclosed in parentheses if it contains more than one

member.

The loop expression

!9!, I := 1 step 1 until 1000 do (A[I], B[I])

is equivalent to the list

A[l], B[l), A[2], B[2], ••• , A[l000], B(lOOO] •

1 See Appendix A for syntactical definition.

8

The loop expression

for I := 1 st:l?_ 1 until 10 ~ (A[I], for J := 1

step 1 until 20 ~ B[I,J])

is equivalent to the list

A[l], B[l,l], B[l,2], ... , B[l,20] ,

A[2], B(2,l], B[2,2], ... ' B(2,20] ,

....................................
A[lO], B[lO,l], B[l0,2], ••• , B[l0,20] •

A list may be given a name through a list declaration. A list

declaration has the fonn

list identifier := list •

Examples are:

list L := X, A + B

list M := for I := 1 step 1 until N do A[I] •

A list identifier may itself appear in a list. One of the above examples

might be written with the aid of the following declaration:

~ L := for J := 1 step 1 until 20 ~ B[I,J] •

The loop expression is then

for I := 1 step 1 until 10 do (A[I], L) •

A list declaration obeys the same rules of syntax and scope as do other

declarations.

PRINT

The PRINT procedure is used to output numbers in a simple, rigid

manner. A PRINT statement has the form

9

PRINT (list) ,

where list is described above. An example of a PRINT statement is

PRINT (A, if' N = 0 then S ~ T) •

A PRINT statement always puts out at least one line printer

image. A line may contain up to 6 numbers, each of' which is in scientific

notation with 10 decimal places. Each number is right-justified in a field

of 20 columns. (The format is 6E20.10.) The above PRINT statement will

output two numbers in the first forty spaces, and the rest of the line

will be blank. A PRINT statement such as

PRINT (for I := 1 step 1 until 10 do A[I])

will output one line of' 6 numbers followed by one line of 4 numbers.

Single spacing between lines is automatic.

The PRINT procedure always outputs on the standard output

medium.

WRITE

The WRITE procedure is used to output strings. Examples of

WRITE statements are:

WRITE ('TABLE')

WRITE (if D < 0 ~ 'TRUE' ~ 'FALSE') •

Each parameter must be a string expression (see Appendix A for definition

of string expression). There may be any number of parameters, but each

string will appear on a separate line. If a string is too long to go on

one line, it will be continued on the next line. Lines are single spaced.

Each WRITE statement causes at least one line printer image to be put out.

The WRITE procedure always outputs on the standard output medium.

10

PUNCH

The PUNCH procedure is used to output numbers on punched cards

in a form which can be input by the READ procedure. Each number punched

will be followed by a comma. Each card punched may contain up to four

numbers. Each number will be of type real, but since the READ procedure

makes any necessary type conversions this is unimportant. A PUNCH state-

men·~ has the same form as a PRINT statement. Each PUNCH statement causes

at least one card image to be put out.

The PUNCH procedure always outputs on the standard punch medium.

Formats and the Format Declaration

The two input and output procedures remaining to be described

make use of formats. The formats are exactly those used in Fortran, and

readers unfamiliar with Fortran will find it necessary to refer to the

Control Data Fortran-62 Reference Manual for details on the use of

formats.

A format is treated as a string. Formats will be written,

for example, as follows:

' (6E20. 10) '

'(lHO, 9X, 5HTABLE, I3)' •

Note that the parentheses are part of the format, and both parentheses

and string quotes ~ required.

As will be indica~ed below, a format string may appear

explicitly in an INPUT or OUTPUT statement. If the same format string

is used more than once, however, it may be convenient to give it a name

through a format declaration. A format declaration has the form

format Identifier :='(Fortran format)' •

Examples are:

11

format F := '(6E20.10)'

format G := '(lHO, 9X, 5HTABLE, 13)'

A format declaration obeys the same rules of syntax and scope as do other

declarations.

Format identifiers may be used as parameters, and format is a

specifier.

INPUT

The INPUT procedure is used to input numbers and Hollerith

information in accordance with Fortran-type formats. An INPUT statement

has one of the forms

where:

INPUT (M,F,list)

INPUT (M,F)

(1) M is the logical unit designation. M may be any arithmetic

expression. If it is not integral-valued, the action

M := entier (M + 0.5)

will take place.

(2) F is a format expression. It may be an actual format

string, a format identifier, a conditional format expression, or any

variable which contains the starting address of a format string.

Caution. In the case of a conditional format expression, format strings

and format identifiers should not be mixed. For example, (a) and (b)

below are permitted, but (c) will cause an incorrect program to be

compiled:

12

(a) .!:.!. B then '(E20.7)' ~ '(E20.6)'

(b) if B then Fl else F2

(c) if B ~Fl~ '(E20.6)' •

(3) list is as defined previously. Of course for INPUT all

expressions must be variables.

The following are examples of an INPUT statement:

INPUT (50, '(4E20.8)', N, for I := 1 steE 1 until N do A[I]) •

INPUT (.!:.!.A< B ~ M else N, F, X, Y, Z) •

Each INPUT statement causes at least one card to be read.

Note that the INPUT procedure does not make type checks between

the data and the program variables. A floating point number, for example,

is stored as such regardless of the type of the variable to which it is

assigned.

Caution. It is strongly recormnended that not both READ and INPUT be used

in the same program. Each buffers ahead one card image. Furthermore,

each INPUT statement causes at least one card image to be read while a

READ statement may not cause a new card image to be read. Mixing the two

statements will require quite careful use of blank cards in the data to

allow for the buffering.

OUTPUT

The OUTPUT procedure is used to output numbers and Hollerith

information in accordance with Fortran-type formats. An OUTPUT statement

has one of the forms

OUTPUT (M,F)

OUTPUT (M,F,list)

13

where M, F, and list are as indicated above. The following are examples

of OUTPUT statements:

OUTPUT (51, '(5HTABLE)')

OUTPUT (51, '(1H0,9X,10El0.2)' 1 f2.!:. I := 1 step 1 until 100 do A[I]) •

Each OUTPUT statement causes at least one line printer image to

be put out.

Intermediate Ta~e Procedures

There are five standard procedures for making use of magnetic

tape for auxiliary storage:

BINREAD

BINREAD, BINWRITE, ENDFILE, REWIND and BACKUP •

A BINREAD statement has one of the forms

BINREAD (M, list)

BINREAD (M)

where M and list are the same as for INPUT. Each BINREAD statement

causes the designated unit to move forward one logical record, reading

in binary format into the variables of the list. If no list appears in

the statement, the tape simply moves one logical record. If fewer

variables appear in the list than are on the record, only those values

are read and the tape moves on to the end of the record. If more

variables appear in the list than are on the record, this is treated as

an error and the program is terminated.

The following is an example of a BINREAD statement:

BINREAD (6, for I := 1 step 1 until 1000 do A[I]) •

BINWRITE

A BINWRITE statement has the form

BINWRITE (M, list)

where M and list are the same as for OlJrPUT. Each BINWRITE statement

causes the values of the list expressions to be written in one logical

record in binary format on the designated unit.

ENDFILE

An ENDFIIE statement has the form

ENDFILE (M)

where M is a unit designation as before. The statement causes an end­

of-file record to be written on the designated unit.

REWIND

A REWIND statement has the form

REWIND (M)

where M is a unit designation as before. The statement causes the

designated unit to be rewound to the load point.

BACKUP

A BACKUP statement has the form

BACKUP (M)

where M is a unit designation as before. The statement causes the desig­

nated unit to be backspaced one logical record of binary information or

one physical record of BCD information.

Tape-Checking Procedures

The checking procedures are: EOF, READERR, and WRITERR. These

are Boolean procedures.

15

EOF

An EOF call has the form

EOF (M)

where M is a logical unit designation as before. It yields the value

~ if the previous read operation encountered an end-of-file or the

previous write operation encountered an end-of-tape; otherwise it yields

the value false.

READE RR

An ex.ample of the use of an EOF call is:

if EOF(6) then goto ALARM .

A READERR call has the form

READERR (M)

where M is a logical unit designation as before. It yields the value

~ if the previous read operation produced a parity error; otherwise

it yields the value false.

READERR should not be used for testing the operation of a READ

statement. The READ procedure has its own facilities for checking,

making multiple attempts in case of errors, and terminating the program

if necessary.

WRITE RR

A WRITERR call has the form

WRITERR (M)

where M is a logical unit designation as before. It yields the value

~ if the previous write operation produced a parity error; otherwise

it yields the value false.

16

V. The External Declaration

An external declaration is required for each nonstandard

library procedure or procedure compiled separately from the calling

program, whether in Algol or CODAP-1. Standard Algol procedures are

described in Section VI. Note that a CODAP-1 subroutine must take

account of the special structure of the Algol calling sequence as

described in Appendix C. Fortran subroutines cannot be called from an

Algol program, and Algol procedures cannot be called from a Fortran

program.

The external declaration has one of the following forms:

external Il, ••• ,In

~external Il, ... , In

integer external Il, ••• ,In

Boolean external Il, ••• ,In

where each Ik is an identifier and n is any positive integer. A type

declarator preceding the declarator external signifies a function pro­

cedure having that type. Note that no information about parameters

appears in an external declaration. See Appendix A for syntactical

definition.

In the ALGO mode, LIB cards must be included in the job deck

for nonstandard library routines, in addition to the external decla­

rations. Details are found in Section VIII.

VI. Standard Procedures

Certain procedures are used without being declared. These

include the standard functions listed in the Algol 6o report and the

input-output and intermediate tape procedures. The complete list is as

17

follows:

ABS READ

SIGN PRINT

SQRT WRITE

SIN PUNCH

cos INPUT

ARC TAN OUTPUT

LN BINREAD

EXP BINWRITE

ENTIER END FILE

EOF REWIND

READE RR BACKUP

WRITERR

These procedures are global to the program. They behave as

though declared in a fictitious block surrounding the entire program.

VII. Error Checkins_ ~ Diagnostics

In a complete compilation the compiler makes two passes on the

Algol source program. If errors which the compiler cannot correct are

detected in the first pass, then the second, or translation, pass will

not be made. The following types of errors are detected:

1. syntactical error

2. undeclared identifier

3. identifier declared twice in the same block head

4. misspelled delimiter (corrected in many cases)

5. missing escape symbol (corrected unless both are missing
for the same delimiter, in which case the delimiter is
treated as an identifier).

18

The program listing and any diagnostics always appear on the

standard output medium. In the case of a syntactical error, a message

will appear in the program listing one or several lines below the error.

The location of the error in the program will be further pinpointed in

the line of symbols immediately below the error message. This line will

be a short portion of the program with the last symbol in the line being

the one which indicates the error. For example, a declaration might be

out of place as follows:

x :=a + b ; 'INTEGER' K ;

**** LAST CHARACTER INDICATES SYNTACTICAL ERROR.

x := a + b; INTEGER

In some cases the line below the message may differ slightly from the

corresponding string of symbols above; for example, an identifier might

be rendered by !dent. It is possible for a single syntactical error to

cause more than one diagnostic.

A few syntactical errors are corrected by the compiler, and

a message is put out to this effect. An example is a semicolon

innnediately preceding ~·

According to the comment conventions of Algol, any string of

symbols following end and not containing ~' else or a semicolon is

treated as connnent. As a result, the omission of one of these symbols

following end does not always cause an error in compilation but will

cause a portion of the program to be skipped over by the compiler. Thus,

)

19

for example, in

x :=a+ bend for i := 1 step 1 •••

the FOR statement will be skipped at least in part. The compiler will

put out a caution message in this and some other cases, but it will not

change the program.

If an identifier is not declared (or possibly declared in the

wrong place}, a message is put out below the program listing together

with the undeclared identifier.

The compiler does not check the type of identifiers. Therefore,

such errors as a Boolean variable in an arithmetic expression, or the

brackets of a subscripted variable replaced by parentheses, are not

detected, and an incorrect program may be compiled.

VIII. Runnin~ Programs

The Algol program is punched on cards in the hardware represen­

tation described in Appendix B. The format is essentially free field:

spaces have no significance except within escape symbols and string

quotes. Only the first 72 columns, however, ~ interpreted Ez the

compiler. The remaining columns may be used for identification purposes.

Care must be taken when a string is continued onto the next card, as ~

continuati£!! will begin ,!!! column l· The program listing will have the

same furmat as the cards.

In the following discussion the symbol ¢ signifies the letter

O where necessary for emphasis, and the symbol 1:::i. signifies a 7-9 punch

in card column 1.

20

ALGOL Control System

The compiler operates under the ALGOL Control System. This

system is a subordinate control routine of the Master Control System of

the CO-OP Monitor Programming System. ALGOL is quite similar to the

subordinate control routine COOP.

ALGOL is called with an MCS (Master Control System) card having

ALGOL punched beginning in column 2. Other details of this card are

available in other documents. It should be noted in selecting a

standard recovery procedure that the concept of COMMON is not used in

Algol.

Following the MCS card will be a control card giving

instructions to the control routine ALGOL. It will name one of the

following routines: ALGO, ALDAP, EXECUTE or BINARY. These will be

described in the following paragraphs.

EOP Card

The EOP (end-of-program) card has the characters 'E¢P' punched

in 'columns 10-14.

In the ALGO mode, one EOP card must be used to terminate the

program.

In the ALDAP mode, one EOP card must be used to terminate each

Algol program or Algol procedure being compiled separately.

Compile and Execute: ALGO

The ALGO mode of running an Algol program is the simplest and

the fastest. It will be the more suitable for a large number of programs.

Unless the programmer has special reasons for using the ALDAP mode, the

ALGO mode is recommended.

21

The Algol program must be self-contained except for standard

procedures and library procedures on the library-systems tape. The job

deck must have the following cards ln the specified order:

1. MCS control card.

The subordinate control routine name must be ALQ¢L.

2. ALGOL control card.

This will appear as

MLQ¢.

(The period is required on every control card.)

). LIB cards.

If necessary. One LIB ca.rd is required for each non­
standard library procedure called in the program, namely
those declared external. The format of a LIB card is
as follows: the characters LIB punched in columns 10-12
and the name of a library entry point beginning in
column 20.

4. PROGRAM card.

If desired. This may be used to identify the program.
Its format is described in the next paragraph.

5. Algol program deck.

6. EOP card.

7. Data.

If required.

PROGRAM Card

The PROGRAM card is optional. It is useful for identification

purposes, and in the ALDAP mode it serves to name the program entry

point.

The format of the card is free field. The characters

PR¢GRAM must appear followed by the program name.

22

Compile/Execute: ALDAP

The ALDAP mode is used to compile an Algol program or pro-

cedure to a relocatable binary or a CODAP-1 format. Execution is

optional. For compilation only, the program deck may consist of any

mixture of Algol programs and procedures, any number of which may be

in CODAP-1. If execution is desired, part or all of the program deck

may have been previously compiled, so that the deck may have Algol,

CODAP-1 and relocatable binary cards.

ALDAP Control Statement

The format of the ALDAP statement is:

MLDAP,L,B,n.

where

L is a program listing key,

B is a punched card output key,

n is a logical unit number.

A period may terminate the statement at any point, with remaining fields

treated as zero.

If the program listing key (L) is a 1, an assembled listing of

the CODAP-1 object code will be produced on the standard output medium.

If the key is zero or blank, no such listing will be produced. A listing

of the Algol program and any diagnostics will always be produced on the

standard output medium.

If the punched card output key (B) is a 1, a relocatable binary

deck will be produced on the standard punch medium. If the key is a 2,

a CODAP-1 symbolic deck will be produced on the standard punch medium.

If the key is a 3, both a symbolic deck and a relocatable binary deck

23

will be produced on the standard. punch medium, with the symbolic deck

appearing first. If the key is zero or blank, no deck will be produced.

The logical unit number (n) specifies the unit which is to be

the load-and-go tape if it is one of the integers 1-49 or 56. If n is

some other integer or blank, no load-and-go tape will be written. The

load-and-go tape is required when execution of the program is to follow.

Examples:

(a) MLDAP,1,1,56.

This statement will cause the Algol/CODAP-1 deck to be compiled, an

assembled listing to be produced on the standard output medium, a

relocatable binary deck to be produced on the standard punch medium,

and a load-and-go tape written on logical unit 56.

(b) MLDAP,l.

This statement will cause the Algol/CODAP-1 deck to be compiled, and an

assembled listing to be produced on the standard output medium.

Job ~: ALDAP Compilation/Executiol!.

For compilation only of an Algol/CODAP-1 program deck, the

job deck should contain the following cards in the specified order:

1. MCS control card.

With ALQ¢L as the subordinate control routine name.

2. ALGOL control card.

With the appropriate ALDAP control statement.

3. PROGRAM card.

If desired.

4. PROGRAM deck.

Any mixture of Algol and CODAP-1 programs and pro­
cedures, with all their subroutines except the

24

standard procedures and those on the library-systems
tape. ~ Algol program .2!:. procedure ~ !?!:,
terminated .E.il. !:!:!! EOP ~·

5. FINIS card.

This card contains the characters FINIS punched in
columns 10-14. It signals the end of all compilations.

For com;pilation ~ execution of an Algol/CODAP-1 program deck,

a load-and-go tape must be requested in the ALDAP control statement. If

no relocatable binary cards follow the last subprogram to be compiled,

then the program deck must be terminated by an EOP card which is ,!E

addition ~ the EOP card or END card (the latter for a CODAP-1

subprogram) which terminates the last program or procedure. The FINIS

card then follows this additional EOP card. An EOP card always causes

a TRA card image to be written on the load-and-go tape.

The control statements EXECUTE and BINARY may be used as

described in the "CO-OP Monitor Programmer's Guide". BINARY is useful

for loading a relocatable binary deck onto the load-and-go tape prior

to compilation of an Algol calling program, where the subprogram in

relocatable form might have the same name as a library routine. If the

Algol program preceded the relocatable deck, the library routine would

be fetched by the loader and an error indication given.

The CO-OP control statements LOAD and EXECUTER are not used

by ALGOL.

Examples

Each of the following examples describes a job deck which .
illustrates a different way of compiling and executing the same Algol

program. The program calls a library procedure with entry point named

25

BESSEL, and the program contains at least one other procedure. On the

MCS card only the first field is indicated, as the others may vary from

one installation to another.

Example 1

This job uses the ALa¢ mode.

LIB BESSEL

PR¢GRAM SAMPLE

Algol Program {with external declaration of BESSEL)

'E¢P'

Data

Example 2

This job uses the ALDAP mode, compiling the entire program at

once. The ALDAP control statement calls for an assembled listing, a

binary deck, and a load-and-go tape on logical unit 56. The execute

card gives a two minute time limit on the execution.

MLG¢L, ••••

MLDAP,1,1,56.

PR¢GRAM SAMPLE

Algol Program (with external declaration of BESSEL)

'E¢P'

'E¢P'

FINIS

tEXECUTE,2.

Data

26

Example 3

This job consists simply of the execution of the relocatable

program deck obtained in example 2.

6EXECUTE,2.

Relocatable Deck

Data

Example 4

This example is similar to example 2. Here the main program

and one of its procedures are to be compiled separately.

6A.LQ¢L,

.6A.LDAP,l,l,56.

Pf\¢GRAM SAMPLE

Algol Program (with external declaration of both BESSEL and the
procedure being compiled separately}

'E¢P'

Algol Procedure

'E¢P'

'E¢P'

FINIS

LSEXECUTE,2.

Data

In this example the procedure which was compiled separately

in example 4 is being compiled by itself, i.e., the calling program is

not in the deck at all. Of course there is no execution in this case.

' !
27

Note that no load-and-go tape is requested and only one EOP card is

used. There cannot be a PROGRAM card.

MLQ¢L, • • . •

MLDAP,1,1.

Algol Procedure

FINIS

EX§lIDJ?le 6

Here the procedure compiled by itself in example 5 appears in

the program deck in relocatable binary form, while the calling program

is in the Algol language.

6ALG¢L, ••••

MLDAP,1,1,56.

PR¢GRAM SAMPLE

Algol Program {with external declaration of both BESSEL and the
procedure in relocatable form)

'E¢P'

FINIS

t:EXECUTE, 2 •

Relocatable Deck

Data

The relocatable deck here must be terminated by two TRA cards. One of

these is generated by the compiler when it processes the EOP card which

must terminate the procedure for compilation, as in example 5. The

second TRA card can be obtained by using a second EOP card, as in

example 2. Alternatively, the second TRA card can be added to the

relocatable deck before execution. Note that this second TRA card

28

must not be used when the relocatable deck is loaded by a BINARY control

statement. This is illustrated in the next example.

Example 7

In this case the previously compiled procedure has the same

name as a routine on the library-systems tape.

MLG¢L,

lillINARY,56.

Relocatable Deck (terminated by one TRA card)

MLDAP,1,1,56.

PR¢GRAM SAMPLE

Algol Program (with external declaration of both BESSEL and the
procedure in relocatable form)

'E¢P'

'E¢P'

FINIS

&:XECUTE,2.

Data

The logical unit number on the BINARY control statement must agree with

that which specifies the load-and-go tape in the ALDAP control statement.

29

APPENDIX A

Adjuncts to Algol 6o

List Entities

The delimiter list is a declarator.

<list identifier>::=< identifier>

<loop expression>::=< for clause>< arithmetic expression>

< for clause > < loop expression >

< for clause > (< list >)

<list element>::=< arithmetic expression> I< loop expression> I

< list identifier >

<list>::=< list element> I< list>,< list element>

<list declaration>::= list< list identifier>:=< list>

Format Entities

The delimiter format is a declarator and a specifier.

<format identifier>::=< identifier>

< simple format expression > : := '(<Fortran format >1)' I

< format identifier >

<format expression>::=< simple format expression> I

< if clause > < simple format expression >

~ < format expression >

<format declaration>::= format< format identifier> :=<format expression>

1 For definition of Fortran format, see Control Data Fortran-62 Reference
Manual.

30

String Expression

<string expression>::=< string> I< if clause>< string>

else < string expression >

External Declaration

The delimiter external is a declarator.

<external identifier>::=< identifier>

<external list>::=< external identifier> I
< external identifier >, < external list >

< external declaration > : := external < external list > I
< type > external < external list >

31

APPENDIX B

Hardware Representation

One keypunch character is reserved as an "escape symbol",

which we shall here suppose is the apostrophe. This symbol is used to

delineate word delimiters and truth values, which are written in bold­

face type in Algol reference language and publication language and

indicated by underlining in this manual. The hardware representation

of a word delimi te;: such as begin is therefore 1 BEGIN' . No distinction

is made between upper and lower case letters in the hardware language.

The tranr.;li.teration rules for the non-word delimiters are

comprised in the following table. This assumes a 48 character hardware

set and is consistent with the usage in the ALCOR group. For some

characters alternatives are tolerated, as indicated.

Reference

<

=

>

/\

v

Hardware

'LS'

'LQ'

'EQ'

'GQ'

'GR'

'NQ'

'NOT'

'AND'

'OR'

Tolerated Hardware

'LESS'

'LSEQ', 'NOTGREATER' 1

'NOT GREATER'

'EQUAL'

'GREQ', 'NOTLESS',

'NOT LESS'

I GREA'l'ER'

' NTEQ I ' 'NOTEQUAL' '

'NOT EQUAL'

Reference

=--=)

-

10

x

T

+

.
'

·-.-
[

]

'
'

32

Hardware

'D1P'

'EQV'

*

**
II

t

=

(/

I>
II

II

Tolerated Hardware

'IMPLIES', 'IMPL'

'EQUIV'

'E'' 'T'

'POWER'

'DIV'

. ,

. =, . ·-

I (t

') '
In the case of the string quotes, the tolerated symbols are requi~ed for

the inner strings of a nest of strings.

Actually, the compiler can tolerate many other spellings of

word delilniters because of its facility for correcting misspellings.

The delimiter go to is accepted with or without the space

between the two words, but it is treated as a single delimiter: 'GOTO'

or 'GO TO'.

The compiler can also accept a 64 character hardware represen-

tation: the full set available on the line printer. In preparing

programs, overpunching is used on the 48 character keypunch in this case.

33

APPENDIX C

Structure of Procedure Calling Sequence

The following information is necessary for the user writing a

non-Algol procedure to be called from an Algol program. The calling

sequence differs from that found in many other languages.

The first word of the non-Algol procedure must lu;tve a simple

jump instruction in its upper half, and the exit line is provided by a

jump to this first word. The entry automatically causes the proper

return address to be placed in the address portion of the first half­

word.

Upon entry to the procedure, index register six contains an

address which is used to reference each parameter. To establish linkage

with the first para.meter, the instruction

LDA 6 0

is performed. This brings into the accumulator a word of one of the

following types:

1. SIJ 0 ENA V

2. SLJ 0 RTJ L

In case (1), Vis the address of the parameter. In case (2), L is the

starting address of a piece of coding for computing the address of the

para.meter and leaving it in the accumulator (if the parameter is an

expression, the address in the accumulator will be that of a temporary

containing its value). Case (1) always holds if the parameter is a

simple variable, string, array identifier, switch identifier, or

procedure identifier. In case (2) the same temporary will be used for

all the expressions.

Both cases can be provided :or by setting aside two locations

for each parameter in the procedure body and placing the instruction

SlJ *-1

in the upper half of each second location. Then after

LDA 6 0

mentioned above,

STA RESl ,

where RESl is the first reserved location for the first parameter, makes

the two locations into a closed subroutine. After this, the instruction

RTJ RESl

causes the address of the first parameter to be placed in the accumulator

anytime it is performed. This accommodates expressions called by name.

th In general, the K parameter is referenced as above, but

beginning with

LDA 6 (K - 1) •

This description does not apply to the standard procedures, each of

which has its own special calling sequence.

)

35

APPENDIX D

Internal Representation of Strings

The address representing a string is that of the first word of

string characters. Each left string quote is represented internally by

the word

00 •.• 03454 ,

and each right string quote by

00 .•• 05474 .

The characters of the string which are not string quotes are packed in

BCD eight characters per word. These words are in the natural order,

the first immediately following the left string quote and the last

immediately followed by the right string quote. If the last word before

a right quote is not full, the rest of that word is filled out with

zeros (not BCD blanks).

APPENDIX E

Program Efficiency

The following information may be of interest to programmers

desiring an efficient program:

1. The FOR statement is defined with more generality than

is useful in most programs. In particular, the

arithmetic expressions in the FOR clause are allowed

to change in value during execution of the FOR state­

ment. The compiler does not attempt to determine which

FOR statements make use of this flexibility and treats

all of them in the most general way. Therefore, in a

statement such as

!£!:. I :-= 1 step M + N until abs(A - B) do . . . ,
the expression M + N is evaluated twice for each iteration,

and the expression abs(A - B) is evaluated once for each

iteration. If M, N, A, and B do not change in the loop,

this is unnecessary. Such inefficiency can be avoided

by programming in a slightly different way. The above

example can be written as follows:

Tl := M + N ; T2 := abs(A - B) ;

for I := 1 step Tl until T2 do ••••

2. The concept of call by value is a device applied to pro­

cedures to eliminate unneeded flexibility in procedure

calls. If a parameter having a value is referenced more

than once in the procedure body and the flexibility of

call by name is not needed, then the program is more

37

efficient if the parameter is included in the value

part of the procedure heading. If such a parameter

is referenced only once, it is more efficient if it

is not included in the value part.

3. Array identifiers which are parameters should be specified.

APPENDIX F

Controversial Features of Algol 60

A few features of the language have been subject to more than

one interpretation. Fortunately, the vast majority of programs will not

involve these ambiguities, but for the few that do it will be necessary

to know what decisions the compiler makes. This appendix indicates these

decisions for the more controversial areas.

1. Side effects in function designators. The evaluation

of primaries in expressions is not strictly left to

right allowing for precedence rules. In particular,

the value of a variable in an expression is never

stored in a temporary simply to preserve its value

from change by the evaluation of a function desig­

nator in the expression. Otherwise, the evaluation

does proceed from left to right and according to

precedence rules, including the referencing of

formal parameters and the calculation of the address

of subscripted variables. All function designators

are evaluated in Boolean expressions.

2. Own variables and arrays in procedures. The own

quantities local to the body of a procedure which is

called from more than one point in a program record

the history of the procedure as opposed to a history

of each point of reference. In other words, only one

copy of the ~ quantities is preserved.

)

)

