CYBER 18-20 ARITHMETIC LOGIC

SUPPLEMENTARY REFERENCE MANUAL

PLATO® is a registered trademark of
Control Data Corporation.

Pub. No. 76770502

Copyright® 1978, 1979, 1983, 1984
by Control Data Corporation.

All rights reserved. No part of this material may be
reproduced by any means without permission in
writing from the publisher. Printed in the United
States of America.

CONTENTS

BLOCK 1: ALU REGISTERS

ALU Functional Areas, 1-1

ALU Working Registers, 1-10

ALU Organization, 1-13

ALU Operation, 1-14

ALU Output Selector and Register Data Paths, 1-21
ALU Register Data Paths, 1-27

Progress Check, 1-29

BLOCK 2: MICROINSTRUCTION DECODING

ALU Control Field Functions, 2-1

ALU Control Fields, 2-20

ALU Control Field Operations, 2-23

ALU Data Flow and Operating Modes, 2-31
Arithmetic Operations, 2-32

Progress Check, 2-41

BLOCK 3: ARITHMETIC AND LOGIC OPERATIONS

ALU Operations, 3-1

ALU Instruction Example, 3-13

ALU Logic Diagram Data Flow, 3-20

Macroarithmetic Instruction Execution (Text), 3-22
Macroarithmetic Instruction Execution (Exercise), 3-51
Progress Check, 3-53

iti

Block 1
ALU Registers

ALU Functional Areas

One of the major components of a central processing unit is the arithmetic logic unit,
or ALU module. This is the part of the computer that performs the actual arithmetic
and logic operations. This text introduces the ALU module in the CYBER 18-20
microprocessor; it describes the basic operation, the components, and the data flow of

the ALU module.

Basic ALU Operation

The ALU module can perform two basic arithmetic operations, add and subtract; it can
check sixteen-bit words for positive or negative signs, zero, and overflow; and it can
make logical comparisons between two operands. The module that does these arith-
metic and logic operations is found in slot M of the microprocessor chassis (see figure

1-1).
The ALU module operation consists of’

® Selecting two sixteen-bit words, one from the A-input selector and one from

the B-input selector.
® Combining the words based on the function code portion of the microinstruc-

tion (ALU control).
® Delivering the result to main memory, the interrupt system, I/O, panel inter-
face, or one of several destination registers; the output also may be shifted

by the output selector (S3).

This process is shown in figure 1-2.

1-1

1

‘I-1 aIn3rg

SISSeyD) JW UT 1TV JO UO1e00]

]‘“—:’ °mac:,m'¢mc;)o %o

mc:::mih:::f 'C:‘DOE:J‘:]C‘E:J L“:‘th:::) c::) r:::

t

—— 16 K/32 K memory

board (main) up to
L 128 K maximum

Memory interface (address)

Memory interface (data)

Breakpoint controller

Micromemory (2 K or 512)

Micromemary (2 K or 512)

Transform

Control 1

Control 2

———! Arithmetic logic unit

Status mode interrupt

I/O-TTY controller

A/Q

A/QDMA

A/Q-DMA

AlQ

A/Q Peripheral

t—————— controller
| A/GDMA_

‘ —— options
A/Q P

Open

A/Q-DMA

[AQ

Open

avivvlvg{o|a|3|d|D|H| M A T|WIN]AJH[S|LIN|AIMIX][A]Z]D

191413u3p!

uogntsod

pieog

s10)s189y TV

ALU Functional Areas

16-bit output

Destination
selector S3

ALU control
field of MIR

ALU

B source
selector S2

A source
selector S1

16-bit input 16-bit input

Figure 1-2. ALU Module Operation

Components of Logic Board*

Six working registers and two files provide temporary storage of sixteen-bit words
within the microprocessor as shown in figure 1-3.

Any of the registers or files can be selected as a sixteen-bit input to the ALU. With
the exception of I, the registers can also receive the results of an ALU operation, if
the microinstruction so specifies. ALU operation results can also be sent to external
equipment or memory.

The following describes the functional areas of the ALU (as shown in figure 1-4):

o Selectors S1 and S2 provide the controlled gating of sixteen-bit words to the
ALU from various data sources within the processor.

® Selector S3 provides controlled gating for the sixteen-bit output of the ALU
to a number of possible destinations within the processor.

® ALU performs all arithmetic and logic operations.

* A distinction should be made between the ALU logic module and the ALU. The
ALU module refers to all logic functions contained on the ALU logic board. The
ALU refers to the four integrated circuit chips which perform the arithmetic and
logic operations. It will be referred to as the adder in this text.

1-3

ALU Registers

AB register (memory interface) e—————— —————— S300 panel interface
D register (1/O-TTY) «=————¢
Transform ——————¢ [
Selector S3 (16)
0 2 1 3
SM register
R1
Is Jrijufus and mask
register
To . (SMI
Micromemory
Adder (16
transform er (16) and transform module)
A input B input 1
Optional
Selector S1 (16) tri-state Selector S2 (16)

) 72145306 bus 60354127 Main CPU

Ma'" CPU 1] ' L | tistate bus
tri-state bus Bit generator
T (from control 2)
— - N/K registers
File 1] File 2 {from control 2)
256 32
| l

| P A F X Q
L1 t i i i $
* File 1 is optional
Notes:
1. The numbers inside the selector blocks indicate the selector position.

2. The numbers in parentheses indicate the width of registers and selectors.

Figure 1-3. ALU Module Block Diagram

ALU Functional Areas

S3 <+—— QOutput selector
Adder < Adder
S1 S2 <« Input selectors
File 1 File 2 -—— Files
i P A F X Q <~— Working registers

Figure 1-4. ALU Functional Areas

e The working registers (I, P, A, F, X and Q) provide temporary storage of data
to and from the ALU and other areas of the microprocessor organization.

e File 1 (256 words) and file 2 (32 words) provide storage of sixteen-bit words.
File 1 is addressed by the K register and file 2 is addressed by the N register.

Typical Data Flow

The contents of the ALU controi fieid of the microinstruction being executed deter-
mine the general data flow through the ALU. A microinstruction, containing ALU
control information, is encoded from a 1700 instruction by transform. After the
microinstruction is formed it will be executed to perform an arithmetic or logic
operation. For example, after being encoded into the microinstruction register, a
1700-type register reference instruction causes the contents of a working register in
the ALU to be read, modified, or replaced. Two examples show data paths that can
be taken with a typical 1700 instruction emulation.

Example 1

A 1700 add to A register operation (F = 8) requires that the sixteen-bit word contained
in the A register be added to a sixteen-bit word from a specified memory location.

Two steps take place in this operation—address modification and execution. Since this

is a storage reference instruction, the address in memory from which the data is read
must be formed. Figure 1-5 represents this first step. Assume that (P + 1) is the operand.

1-5

ALU Registers

Data {16-bit word) is
present from memory
address just read

Tri-state bus

Memory M;(rjnory
address .
arra "\ ~———Effective address
Data v control

Data Destination
. S3
interface selector

Macroinstruction
increases P register ———» Adder
contents by 1

A source
selector
Original 16-bit P reg.
memory address 16-bit
Note:
1. Increment the contents of the P register, and use this as the memory address.

Figure 1-5. Memory Address Formation

The contents of the P register are selected by S1 and gated into the adder, to be incre-
mented by 1 through microinstruction control. The new address is transferred through
the output selector to memory address control. The contents of the specified memory
location is read and made available to the tri-state bus. Figure 1-6 shows the second
step of the add to A register operation.

The contents of memory must be added to the contents of the A register by combining
the two sources in the adder. The result is gated through the output selector back to
the A register. The A register now contains the result of adding its original contents

to the contents of the memory address read.

On completion of the add instruction, microprogramming jumps to read next instruc-

tion (RNI) programming. The next 1700-type instruction is read from memory and
transform processing begins.

1-6

ALU Functional Areas

Combined contents
of A register and

~N
memory address to
be placed in A { Qa2 > Destination

selector

Microinstruction

specifies an add Adder Data from
operation memory

T t (16-bit word)

A source B source
selector selector

Tri-state bus

A reg.
16-bit
Note:
1. Data from memory is added to contents of A register and placed back into A register.

Figure 1-6. Memory Address Contents Added to A Register Contents
Example 2

Figure 1-7 shows another example of data flow. A 1700 increase A instruction (F =0,
F1=9) is demonstrated.

1-7

ALU Registers

Increase A instruction

(09 A)
Delta
Y Main
7~ IXT memory [
Destination
S3 selection
To microinstruction
register decoding
Control signals Adder
p——
S2
Contents of A — A
I field
I contents
G .
I
Q Delta field sign |
extended of increase |
A 1700 instruction | File
I 1
|
] Contents
A of A register
register azd;d|:|° \
ie

contents

Figure 1-7. Data Flow for Increase-A Instruction

1-8

ALU Functional Areas

This instruction causes the contents of the A register to be increased by whatever num-
ber value is contained in the delta field of the 1700 instruction. In the execution of
the 1700 increase A instruction, the instruction is first read from memory and then
decoded, using transform. The delta field of the instruction is transferred through the
delta translator and made available to the shared output lines of file 1. Once the micro-
instruction has been formed, it causes the contents of the A register to be added to the
delta field contents. The result is immediately available at the output selector, where

it is gated back to the A register. The A register now contains its original contents plus
the 4 field contents of the increase A 1700 instruction. Again, RNI programming is
entered and the next 1700 instruction processing begins.

Summary

Table 1-1 summarizes the information presented in this reading.

TABLE 1-1
Summary of ALU Functional Areas
Location Purpose Components Data Flow
Slot M of micro- | Data transfers e Selectors S1, S2, |Based on the macro-
processor chassis | Arithmetic and S3 instruction
logic functions, & Adder

i.e., addition, sub- | ® Working registers
traction, overflow, (I,P,F. X, A, Q)
logical compari- File 1, file 2

sons, sign checks

ALU Working Registers

Let’s review some of what you know about the CYBER 18. You know that control
provides the sequencing of events necessary to execute instructions, that main memory
provides the storage necessary for 1700-type instructions and the data needed to exe-
cute a program, and that the ALU handles all arithmetic and logic operations and

data transfer within the processor organization. This reading focuses on the

registers used in ALU operations.

Register Descriptions

Registers in the ALU allow the main program to transfer sixteen-bit words from one
area of the processor, such as memory, to another, or from the processor organization
to some peripheral device. These registers also can contain the operands for arithmetic,
logic, or shift operations. There are six such registers; each is sixteen bits wide, and is
called a working register. (Refer to figure 1-8.)

The ALU contains additional storage in the form of two file registers, which are actually
small memories consisting of addressable RAMs. These file registers (file 1 and file 2)
store sixteen-bit data words or hold constants (a constant is information assumed to be
fixed or invariable that may be referenced in a given operation or calculation).

Figure 1-8 shows the location of each register in the ALU organization. The following
describes each register and the two files. When the microprocessor acts as a 1700
emulator, these registers are defined as follows:

I Register. Input to register I comes directly from the output of selector S1. This
selector enables data on the tri-state bus to be stored directly in register I and simulta-
neously input to the adder for some other operation. This operation is particularly
useful in configurations using macromemory. The sixteen-bit output of the I register
is available to selector S1.

P Register. This sixteen-bit register receives data from selector S3 and output to the
A input of the adder via S1. In computer emulation configurations, it normally con-
tains the macroprogram instruction counter (1700 P register).

A Register. The sixteen-bit A register may be used for data shifts, either by itself or
in conjunction with the Q register as a double-length shift register. The shift function
is independent of the adder and S3. This general-purpose register inputs from S3 and
outputs to the A input of the adder via S1. This register is used as the 1700 A register.

1-10

ALU Working Registers

AB register {(memory interface) +——o8o— —————— S300 breakpoint controller
D register (1/O-TTY) -—mx—9¢
Transform +————¢ r
Selector S3 {16)
0 2 1 3 SM reai
T >V register
IS 1R1 1 Li I L8 and mask
register
To . (SMI
Micromemory
transf Adder (16)
ranstorm and transform module)
A input B input t
Optionat
Selector 81 {18) tri-state Selecior 52 {16)

' 72145306 bus 60354127 Main CPU
Main CPU j [I three-state bus
three-state bus Bit generator

j (from controi 2)
. - N/K registers
File 1| File 2 (from control 2)
256 32

>
n
x
o

[P

L4 T 1 3 $

* File 1 is optional

Notes:

1. The numbers inside the selector blocks indicate the selector position.

2. The numbers in parentheses indicate the width of registers and selectors.

Figure 1-8. ALU Module Block Diagram

F Register. This sixteen-bit, general purpose register receives its input from selector
S3 and outputs to the adder through either selector S1 or selector S2. Selector Sl
takes data contained in the F register and places it into the adder using input A,
whereas selector S2 will cause the B input to the adder to be used. The F register also
serves as an entry register for the File 1 or File 2 registers when they have been selected
as destination registers of an ALU operation.

X Register. The X register is a sixteen-bit, general purpose register that receives its
information through selector S3. The X register output is gated through selector S1
to the A input of the adder and through selector S2 to the B input of the adder.

ALU Registers

Q Register. The sixteen-bit Q register is a general purpose register used as an input to
the adder via selector S2. The Q register may be shifted left or right independent of

the adder during Q/A shifts. The A register will also be used in conjunction with a shift-
ing operation during F, A, B field shift operations. This register is used as the 1700 Q
register.

File 1 Register. This general-purpose word-length memory contains 256 sixteen-bit
words addressed by the contents of the K register located on control 2. The output of
File 1 shares a tri-state bus with the output of the delta translator or transform. A
status mode bit selects either the file | output or the delta translator. The data is sent to
adder input A via S1 and/or to input B via S2.

File 2 Register. File 2 contains thirty-two sixteen-bit words addressed by the lower
five bits of the N register. It delivers its output to adder input B via S2 and/or to
adder input A via S1. File 2 is intended as a source for constants, but may be used
as a general purpose file. The function control register (FCR) is contained in two
addresses of this file.

Summary

A summary of A, Q, P, I, X, and F register characteristics is found in table 1-2.

TABLE 1-2
A, Q, P, I, X and F Register Characteristics
Input | Output Characteristics and
Register | From | To Capabilities Related Functions
A S3 | S1 Shift right or left with | Hold LSB during double-

or without Q register, word length shift with Q
independently of ALU | register

Q S3 S2 Shift right or left with | Hold MSB during double
A register indepen- length shift with A register
dently of ALU Shift right or left in conjunc-

tion with destination register
(A, P, X, F) through adder

P S3 S1 Holding register May hold the software
instruction counter for
emulation

I S1 S1 Holding register May hold the software
instruction for emulation

X S3 S1.S2 | Holding register May be used for transferring
information to I/O section

F S3 | Si,82

F1, F2 | Hoiding register Hold data being stored in

F1 or F2

1-12

ALU Organization

DIRECTIONS: After each of the following statements, write the name of the ALU
functional block to which it corresponds.

1. This functional block selects one sixteen-bit data source from eight possible data
sources available as input to the B side of the adder:

2. This functional block normally controls macromemory addressing by acting as a
program instruction counter:

3. Although not a register, this block can store up to 256 sixteen-bit words and is
addresscd by the K register located on the control 2 module:

4. An adder output can be gated to one of five working registers from this func-
tional block:

5. Constants normally are contained in this functional block of the ALU module:

6. This functional block can shift the output data from the ALU:

7. A data word from the tri-state bus can be gated into this functional block with-
out passing through the adder:

8. In conjunction with the Q register, this functional block of ALU may be used as a
double-length shift register:

9. The output of the N/K registers of control 2 may be used as a data input to
the ALU. This functional block determines whether that data source will be
gated to the ALU:

10. Data can be gated from the ALU organization to transform by these functional
blocks:

ANSWERS

1. Selector S2 2. P Register 3. File 1 4. Selector S3 5. File2 6. Selector S3
7. I Register 8. A Register 9. Selector S2 10. Selectors S1, S2, S3

1-13

ALU Operation

The heart of any computer is the part that does the computing—-the arithmetic logic
unit. This adder provides for all arithmetic and logic operations the computer per-
forms. This text explains the basic construction and organization of the adder and the
look-ahead carry generator. The path data takes as it passes through the adder will
also be examined.

Organization of the ALU

The basic adder is represented in figure 1-9. Control signals decoded from the micro-
instruction F field control the adder and determine the type of arithmetic or logical
operation to be performed. From selectors S1 and S2, the adder accepts two sixteen-
bit data words on which the operation will occur. After the microinstruction function
is determined, the two operands obtained from the selectors may be added, subtracted,
logically compared, and so forth. The sixteen-bit result of this operation is available
immediately to selector S3, the SMI module, or both.

Selector S2

16-bit output SMI module

ALU look-ahead carry generator
Arithmetic Adder
. EE——
function
16-bit words
Selector S1 Selector S2

Figure 1-9. Basic Adder with Carry Generator

1-14

ALU Operation

The complete adder consists of two logic blocks, the adder, consisting of four inte-
grated circuit adder chips, and a look-ahead carry generator. (Refer to figure 1-10.)
The carry generator monitors the four adder bit groups; each bit group is four bits
wide. If a carry results from a four-bit group of the adder during an add, the carry
generator is notified. This allows high speed carries between four-bit groups of the
adder. The carry generator is not used in logic operations.

| F Look-ahead carry generator L"‘ [} !
l ™ £ I
b GENG | | 7 ¥ S| _GEN3 2 |
I = PROPG |c 5 PROP 2 © !
oz 2 GEma GEN2 l
S S PROP 1 PROP 2 !
' [— |
mss | ALUOO-ALUO3 ALU04-ALU-07 ALUOB-ALUTT ALUI12ALUIS | o
A B A 8 | _ _ A B A B
0 34 78 11 12 15 0 34 78 1 12 15
0 1 2 3 0 1 2 3
A source B source
data word data word

Figure 1-10. The Two Blocks of the ALU

Each of the four adder chips is able to perform arithmetic and logic operations on data
from two separate four-bit data sources. In combination, the four chips provide

arithmetic and logic operations on two sixteen-bit data input words. The adder chip
used in the arithmetic unit is shown in figure 1-11.

ALU Registers

ANSI MIL STD 806
le |5 |4 |3
X0 X1 X2 X3 g [x=v
8 lacc 3|8
7 4 GO0
~—CIN Ej -5_; G31
2 ALU 16 6
0 CR|—© 6 |
;OA 94820 !
Bgar 9 gpll '\ ALU |'
XXX
Aga2 P2
19 I TR 16
9 wpd Ril, SRR
10 7012 4
-1_030 F1o— =1 210
22 11 R RE 12
<< 9 B1 F2 jo— 200,
22,], (8 4
20 13 1 A=B 17
—q 82 F3po— =] GP—L (A,B>15)
— pP— (A,B=15
8483 Cn ()

Figure 1-11. Four-Bit Adder

Table 1-3 shows the arithmetic and the logic operations that the adder chip can per-
form. As an example, when pin 8 (mode select) of the ALU chip is low, arithmetic
operations are specified, and a high input causes logic operations to be performed. The
definition of each signal into the ALU chip is as follows:

e CIN. If the preceding four-bit group generates a carry (G) output, a carry-in is
brought through the look-ahead circuit into the next higher adder chip.

® P. Propagate (pin 15) outputs if the result of an arithmetic operation per-
formed by this chip does not allow a carry into the four-bit group this chip is
monitoring.

® G. A generate signal indicates that the result of an arithmetic operation by this
adder chip produced a carry-out condition.

® COUT. This signal is not used by the CYBER 18-20 system adder configuration.

® E. When the equality output is high, both the four-bit A input and the four-bit

B input are equal in quantity.

Additional information on the adder chip is available in the logic circuits manual.

1-16

ALU Operation

Look-Ahead Carry Generator

The look-ahead carry generator monitors each adder chip during an arithmetic opera-
tion to determine if a carry is to be generated to a particular four-bit group. The genera-
tor also determines whether the carry can be absorbed by the next four-bit data group
of adder or must be passed to a subsequent group. The three conditions of the adder
that are controlled by the look-ahead carry generator are as follows.

TABLE 1-3
ALU Function Selection
Function Select Signals ALU Operation
Arithmetic
Logical ALUM=0
ALUS3-2 | ALUS2-2 | ALUSI-2 | ALUSO-2 | ALUM =1 Cn=Low Cn = High
(pin 3) (pin 4) (pin 5) (pin 6) | (pin 8) (No Carry) (No Carry)
0 0 0 0 F=A Not Used
0 0 0 1 F=AB
0 0 i 0 F=A+B
0 0 1 1 F=1
0 1 0 0 F=A+B
0 1 0 1 F=B
0 1 1 0 F=A®B
0 1 1 1 F=A+B
1 0 0 0 F=AB
1 0 0 1 F=A®B
1 0 1 0 F=B
1 0 1 1 F=A+B
1 1 0 0 F=0
1 1 0 1 F=AB Not Used
1 1 1 0 F=AB
1 1 1 1 F=A
0 1 1 0 A-B-1 A-B
1 0 0 1 A+B A+B+1
1 1 1 1 A A+l

ALU Registers

Carry. A carry is generated by a group of four bits when an arithmetic operation is
performed and a logic 1 must be carried into the next group. For example:

Carry
mss | | N LsB

0110 [|[=—Aword—— 1110

0100 +——B word —— 1001

1011 Result 0111
Group B of add Group A

Generate. A generate signal occurs when an arithmetic operation is performed result-
ing in a carry by a four-bit group that cannot be absorbed in that group. This signal

is sent from the ALU chip to the carry generator. For example:

Generate
Carr
MSB 1 Y I~ ﬂ] LSB
0000 A word ——] 1100
0000 le——B word —— 0100
0001 Result 0000
Group B of add Group A

Propagate. A propagate signal is generated to the carry generator when an arithmetic
operation results in all 1s and there is, therefore, no place for a carry to the group to be
absorbed. Any carry into this group would be forced into the next group able to

absorb the carry.

Propagate Generate
Carry
MSB ﬂ 1‘/ “No* Carry\ n | LsB
1] 0 71 0 A word 1010 <+—A word — 0100
1010 <+~——B word 0101 -—B word— 1101
1101 <«———Result 0000 +—Resut—= 0001
Group C Group B of add Group A

Figure 1-12 shows a typical add operation demonstrating the adder functions using
look-ahead carry. In this example, a total of sixteen bits from two sources is added.
The contents of each four-bit ALU chip is shown and the signals interfacing to the
look-ahead carry generator are indicated.

MSB

ALU Operation

Carry in Gen
PROP
N (1 ss
0100 1010 0100 0110 <«——A words
0000 0101 1110 0100 <—B words
0101 0000 0010 1010 “—Result
Group D Group C Group B Group A of add

Figure 1-12. Typical Additive Operation Using Look-Ahead Carry

Each individual group above functions as follows:

® Group A. No carry is produced by the first group. Since a carry generated
by this group is absorbed in the group, a generate is not produced. If a carry
were brought into this group, it could be absorbed; therefore, a propagate
signal would not originate from this group.

e Group B. A generate signal is produced by group B since a carry is produced.
Normally, the carry would be carried to group C and absorbed.

® Group C. A carry from group B normally would be allowed into group C and
absorbed. However, a carry cannot be absorbed by this group; this results in
group C’s producing a propagate signal, which in turn results in the carry’s
being forwarded to the next group able to absorb it.

® Group D. Group D absorbs the carry originated by group B. Since a carry can
be absorbed by this group, a propagate signal will not be produced. Because
no carry is generated by the group, no generate signal occurs.

1-19

ALU Registers

Data Form

Data is not always in its true form as it passes through the ALU module. It is impor-
tant to note where the data is in its true form and where it is false or in complement
form. Figure 1-13 represents the general flow of data through the ALU section. Data
is always true as it enters the input selectors from various microprocessor sources.

Data is always inverted as it leaves the input selector; thus, it enters the adder as false
or complemented data. The adder output data is also in its complemented form. The
output is either made available to the status mode interrupt in this form or is recomple-
mented as it passes through selector S3 and is available in true or complemented form.

True
S3
False
Adder
False False
y N\
S1 S2
!
True True
Note:

1. May substitute the word complement for false.

- Figure 1-13. Data Inversion Through ALU

Summary

In basic terms, the adder consists of four integrated circuit adder chips and one look-
ahead carry generator. Two sixteen-bit word inputs are available to the adder from
selectors S1 and S2. The adder is controlled by a function input derived from the micro-
instruction in execution and produces an output to either the SMI module or selector S3.

The look-ahead generator monitors each adder chip to determine whether a carry is to
be generated to a particular four-bit group. It controls three basic conditions: carry,
generate, and propagate.

Data enters the adder and leaves it in its complemented form.

1-20

ALU Output Selector and Register Data Paths

By now, you know the purpose of most of the functional areas on the ALU module.
One area still to be discussed is selector 3. This selector can both select the destination
of the ALU output and shift the output right or left. This reading describes selector

3 and reviews the working areas of the ALU already studied.

ALU Review

The functional areas of the ALU discussed so far and their purposes are as follows:

e Working Registers. The working registers—six in all—are used for sixteen-bit
word transfers through the microprocessor organization. In the ALU these
registers are used as temporary storage registers to hold operands for, or the
results of, an arithmetic operation. Two of these registers (A and Q) can shift
their contents left or right either individually or in combination.

e File Registers. The two file registers (or, more accurately, memories) extend
the storage capabilities of the ALU module. File 1 can store 256 sixteen-bit
words, which are available to the ALU input selectors; File 2 can store 32
sixteen-bit words, which are generally provided as constants to the processor
organization.

e Input Selectors S1 and S2. These selectors provide sixteen-bit inputs to the
A and B inputs of the adder. The source of these inputs is controlled by the
A and B fields of the microinstruction under execution.

® Adder Along with the look-ahead carry generator, the adder proper provides
the arithmetic and logic capabilities for the microprocessor. Two sixteen-bit
operands can be added, logically ANDed, ORed, or exclusive ORed. Data
destined for I/O, memory, and most destination registers pass through adder.

Destination Selection and Shifting (S3)

The output of the adder can be gated directly to the status mode or mask registers of
the status mode interrupt module, or it can be made available to some other destina-
tion through selector S3 of the ALU module. Selector S3 can transfer the adder output
to a number of destinations within the microprocessor organization, and it can also
shift that output right or left before the transfer.

The destinations for selector S3 output are as follows:

o Working registers A, P, X, F, or Q
e IXT register of transform

1-21

ALU Registers

e Macromemory address and data logic
e /O via the I/O-TTY module
e Panel interface

The destination of the output depends on the D, D’, and D’ decoding of the micro-
instruction D field. (Refer to figurc 1-14.)

1315 25 31
M_FJa[B[D]T[sF[S| ¢]
—— i . e, co—
Destination
control Destination selection Selector
b ———— — — — ——
Shift selection S3

Shift

control

Adder

Figure 1-14. Selector S3 Control

Shifting of sixteen-bit words through the output seiector is accompiished by a shift
register that may cause data from the adder to be shifted left one place, right one place,
left eight places end around, or straight through. The type of shifting operation that
takes place is determined by C* decoding of the C field in the microinstruction being
executed. Refer to table 1-4.

1-22

TABLE 1-4

C’ Shift Formats*

ALU Register Data Paths

C’ Codes

Mnemonics

Actions

RQLXN

RQRIE

RQROE

RLOE

RLIE

RROE

RR1E

The Q register and one desti-
nation register (P, A, F, or X)
provide a double-length regis-
ter. The combined register

is shifted left one bit posi-
tion. The arithmetic logic
unit sign bit complement is
cntered at the least significant

bit of the Q register.

Shift the combined destina-
tion and Q registers right one
bit; enter 1 (0) in the sign
position of destination
register.

Shift the combined destina-
tion and Q registers right one
bit; enter 1 (0) in the sign
position of destination
register.

Shift the destination register
left one bit; enter 1 (Q) in
the lowest bit position.

Shift the destination register
left one bit; enter 1 (0) in
the lowest bit position.

Shift the destination register
right one bit; enter 1 (0) in
the lowest bit position.

Shift the destination register
right one bit; enter 1 (0) in
the lowest bit position.

*Format 1, bit 19=0

1-23

ALU Registers

Examples of typical operations that the ALU can perform using selector S3 follow.

Example A. The partial contents of the microinstruction register are shown in figure
1-15. The C decoding of the C field indicates that the Q register and one destination
(P, A, F, or X) specified by the A and D fields are used as a double length register.

This combined register is shifted left one bit position. In the process, the least signi-
ficant bit (LSB) of Q is replaced by the complement of the most significant bit (MSB)
of adder. The MSB of the P register ends off into the bit bucket. Figure 1-15 shows an
example of the data contained in P and Q before and after shifting.

A D SF C
001 001 0 11100001
P reg. P reg.

16-bit shifted ___/~

output to P reg.

—

Coding causes left
l=— shift operation
to take place

\

Most significant bit of Q
+—— is transferred to position

3 % of shifted contents
16-bit word——
P A F

X MSB Q

16-bit

16-bit

J

N

l LSB

0110011001100110

9’\1\\\\\&\\\\\3\\

End off

P 0011001100110011

After shift
Q|110011001100110X
From ALU MSB

Jd 0110011001100110 Original data

Figure 1-15. Double-Length Register Shift (P and Q)

1-24

ALU Register Data Paths

Example B. Another example of a shift instruction is shown in figure 1-16. The con-
tents of the microinstruction register shown specifies that the destination register called
for by the A and D field is shifted right one bit position. In the example, the X register
is shifted and a 1 or O is entered in the most significant bit position of X. The bit
originates from MIR31 of the microinstruction register. A right shift causes the LSB
of the sixteen-bit operand to be ended off into the bit bucket.

s
A D SF c
110 110 0 1110110

—— —_—— ‘,_—-r.

r._l
|

4 \ /ksl——\End off
J — §3~= == @
Shift

ALU

3T 32D 16-bit word

16 bit shifted
output to X reg. /
~N
p——
P A F X Q
16-bit
X reg. shifted 0110011001100110
MIR 31 Least significant bit

goes end off

1100110011001100

S

Figure 1-16. Single Register Right Shift

X reg.

1-25

ALU Registers

Example C. A straight transfer without a shift results if the C field does not contain
the conditions shown in table 1-4. Figure 1-17 shows the partial contents of a micro-
instruction specifying a straight transfer. This arithmetic field calls for an add operation
of two operands. One is contained in the F register and the other is an address of file 2.
The address of file 2 is specified by the N register locdted on the control 2 module.
Through selector S3, the result of the add is transferred both to the X register and the
AB interface of macromemory. The data flow through the ALU module is shown.

F A B D
11000(101(000j110
—— mm—
Macromemory
interface
(N
Shift
Add
ALU
File 2 \ S1 S2)‘_‘—
Address specified
by N register 16-bit
contents \
P A F X Q

16-bit | 16-bit

desti-
source nation

L _
Figure 1-17. Data Add and Transfer Paths
Summary

Selector S3 of the ALU module transfers the adder output to its destination without a
shift or shifts that output left or right before the transfer. The D field of the micro-
instruction controls the destination; the C field controls the shifting.

1-26

ALU Register Data Paths

DIRECTIONS: Answer each question as indicated.

1. Describe the purposes of the look-ahead carry generator associated with the ALU.

2. The four-bit add operation performed below would result in the following (circle
the letters of ALL answers that apply):

— Carry from
’ previous group
1 1 6 O
ADD —
0 1 1 0
MSB LSB

a. A propagate signal being generated
b. A generate signal being generated
¢. A carry-in being absorbed from previous group

3. Which field of the microinstruction controls one bit position shifting of the sixteen-
bit data output from ALU?
DIRECTIONS: Mark the following statements T for true or F for false.

4. An adder chip is capable of performing arithmetic and logic opera-
tions on sixteen-bit operands from two separate data sources.

5. Shifting that must be performed as part of a multiply or divide
operation is done by output selector S3.

6. Selector S3 can gate a sixteen-bit output to all of the working
registers located on the ALU module.

ANSWERS

1. To detect a carry being generated by a four-bit group, to detect a propagate signal
from a group, to pass a carry from one group to the next. 2. band ¢ 3. C field
4. F 5. T 6.F

1-27

PROGRESS CHECK

QUESTIONS
1. The register cannot receive the result of an ALU operation.
a. A
b. I
c. Q
d. X

2. Which working register supplies its output to both selectors S1 and S2?

a. A register
b. Q register
c. P register
d. X register

3. How many adder chips are contained in the CYBER 18-20 ALU?

a. 2
b. 4
c. 8
d. 16

4. What microinstruction field controls a shift operation at selector S3?

A

oo

B
C
D

destination?

Selector S1
Selector S2
Selector S3
File 2

N S

6. What working register receives information directly from the tri-state bus without
the information first passing through the adder?

[register

F register
Q register
X register

peoe

1-29

ALU Registers

10.

What pin on the adder chip selects whether an arithmetic or logic operation is
performed?

a. 8

b. 17

e. 7

d. 15

The and registers may be used for shifting data.

a. A, Q

b. P, I

c. L X

d. P

The function of the file 2 register is to

hold 256 sixteen-bit words
store contents

be used as an adder

be used as a shift register

geEe

The output selector S3 can be

®

shifted by control signals originating from the ALU control field of the
microinstruction

gated to registers on the SMI module

shifted using control signals decoded from the microinstruetion C field
gated to any of six working registers contained on the ALU module

T

1-30

ANSWERS

1. Correct Answer:
Resource:

2. Correct Answer:
Resource:

3. Correct Answer;
Resource:

4. Correct Answer:
Resource:

5. QCorrect Answer:
Resource:

6. Correct Answer:
Resource:

7. Correct Answer:
Resource:

8. Correct Answer;
Resource:

9. Correct Answer:
Resource:

10. Correct Answer:

£ S v

Resource:

b
Text:

Text:
Text:

Text:

c
Text:

Text:

Text:
Text:
Text:

Text:

Progress Check

CYBER 18-20 Arithmetic Logic SRM, page 1-3.

CYBER 18-20 Arithmetic Logic SRM, page 1-11.

CYBER 18-20 Arithmetic Logic SRM, page 1-15.

CYBER 18-20 Arithmetic Logic SRM,
pages 1-22 and 1-23.

CYBER 18-20 Arithmetic Logic SRM, page 1-21.

CYBER 18-20 Arithmetic Logic SRM,
pages 1-10 and 1-11.

CYBER 18-20 Arithmetic Logic SRM, page 1-16.

CYBER 18-20 Arithmetic Logic SRM, page 1-10.

CYBER 18-20 Arithmetic Logic SRM, page 1-12.

CYBER 18-20 Arithmetic Logic SRM, page 1-22.

1-31

Block 2

Microinstruction Decoding

ALU Control Field Functions

Each field of a microinstruction provides part of the overall control for the microproc-
essor. This reading explains the ALU control operations contained in bits 2 through

15 of the microinstruction.

The ALU Control Field

In the CYBER 18, the contents of ALU control field are initially encoded from the
1700 instruction presently being executed (see figure 2-1). The ALU control field con-

sists of four subfields (see figure 2-2).

Figure 2-1. Encoding of ALU Control Field

2 F 67 A 910 B 1213 D 15
Function A B Destination
source source

Figure 2-2. ALU Control Subfields

The purpose of each field for arithmetic and logic operations is as follows:

F operation or function
A A source of operand

B B source of operand

D Destination of operand

The ALU control field also can perform shift and scale operations. In such instances,
the ALU control field format is that shown in figure 2-3.

2-1

Microinstruction Decoding

. RL:/Q'ZSC%////%

Figure 2-3. ALU Control Field Format for Shift and Scale Operations

The purpose of each subfield of ALU control for a shift or scale operation is:

F Operation (shift or scale)
R Right shift
L Left shift

A A-register shift
A/Q A- and Q-register shift*
SC Shift control

Arithmetic and Logical Control—F Field

The F field is five bits in length and controls the adder itself (see figure 2-4).

F A B D
— —
/‘ Destination
Function .
control Adder
A source B source

Figure 2-4. The ALU F Field

Arithmetic or logic control operations are controlled by code in the F field. Table 2-1
represents all arithmetic operations controlled by the F field, while table 2-2 represents
all logic operations. In table 2-2, -B means the same as B.

* Note: Macro shift instructions should not be confused with micro shift instructions.
When A and Q registers are shifted with the macroinstruction, the most significant
bit is in Q and the least significant bit is in A (Q/A). The micro level shift holds the
most significant bit in A and the least significant bit in Q (A/Q).

2-2

ALU Control Field Functions

TABLE 2-1
Arithmetic Operations
F Codes Mnemonics Operations
10100 SUB Subtract B input from A input.
11000 ADD Add A and B inputs.
10101 SUBT Subtract with an overflow test.
11001 ADDT Add with an overflow test.
10110 SUB-* Perform A-B-1 input (two’s complement only).
SUB-C* A-B with forced carry-in (one’s complement
only).
11010 ADD+* Perform A+B+1 (forced carry-in).
10111 SUB-T Perform SUB- with an overflow test (two’s
complement only).
SUB-TC* A-B with forced carry-in (one’s complement
only).
11011 ADD+T* Perform ADD+ with an overflow test.

*If split adder mode is selected, the most significant (upper) adder performs an
ADD or SUB without forced carry-in. Forced carry-in is defined as an uncon-
ditional hardware logical 1 (used for two’s-complement arithmetic) gated to the
(hardware) adder carry-in input.

2-3

Microinstruction Decoding

TABLE 2-2
Logic Operations

F Codes Mnemonics | A input 0011 B input 0101

Bit Result
01100 ZERO 0000
01110 AeB 0001
01101 Ae-B 0010
01111 A 0011
01000 -AeB 0100
01010 B 0101
01001 EOR 0110
01011 A+B 0111
00100 ~-Ae-B 1000
00110 -EOR 1001
00101 —-B 1010
00111 A+ -B 1011
00000O0 -A 1100
00010 ~-A+B 1101
00001 —A+ —B 1110
00011 ONE 1111

The arithmetic operations listed in table 2-1 operate on single precision operands, or
sixteen-bit data words and use the ALU module previously described. An option is
available to add a second ALU module to perform double precision arithmetic. This
means the computer would be able to handle two sixteen-bit words together as though
they were a single 32-bit word. This option is not present in the CYBER 18 configura-
tion being used. An additional option present in the CYBER 18 is coded into F field
and is called an overflow test, that is, the sign bit of the two inputs to the ALU is com-
pared with the sign of the result. If the sign has changed an error has occurred which

ALU Control Field Functions

sets a status mode bit, indicating that the result is not consistent. The status mode over-
flow bit is set to 1 when an overflow occurs and must be reset to 0 by a microinstruction.

A Field

Dun'hg arithmetic or logic operations, A-field bits 7 through 9 specify the input to
selector S1 and thus the A side of the adder. (See figure 2-5.)

Adder

__Aﬂg__. \ B source
seloct Selector S-1

A sources

Figure 2-5. The Adder A Field

2-5

Microinstruction Decoding

Table 2-3 contains the A codes and their descriptions.

TABLE 2-3
A-Input Operations
A Codes Mnemonics Operations

000 F2* Use the contents of the file 2 register as the A source
input. The current value of the N register is used
to address register file 2. If the value of N is
changed in the current microinstruction, its initial
value is used to reference the file register. F2 must
not have been written during the previous
instructions.

001 P Use the contents of the P register as the A source.

010 I Use the contents of the I register as the A source.

011 X Use the contents of the X register as the A source.

100 A Use the contents of the A register as the A source.

101 F Use the contents of the F register as the A source.

110 Fi* Use the contents of the optional file 1 register or
external source as the A source. The current value
of the K register is used to address register file 1.
If the value of K is changed in the current micro-
instruction, the initial value of K is used to refer-
ence the file register. SM111 controls the selection
of F1/external. F1 must not have been written
during the preceding microinstruction.

111 MEM** Obtain data read from macromemory and use it as
the A source.

*Restriction: The value of the addressing register (N or K) cannot have been
modified by a C’ increment or decrement command in the preceding micro-
instruction.

**Restriction: If the macromemory READ command was not given in the
preceding microinstruction, all 1’s are input to the A source. If the B source
is a prime code, the B source data also is input to S1. This command is
restricted to a microinstruction, with type A, B, or C execution time.

The A field also can have a different meaning if the S field of the microinstruction
equals 1010 or 0111. This causes A’ coding to be interpreted as shown in table 2-4.

2-6

ALU Control Field Functions

TABLE 2-4
A’ Input Operations
A’ Codes | Mnemonics Operations

000 SM1 Use the contents of SM register 1 as the A source.

001 M1 Use the contents of interrupt mask register 1 as the
A source.

010 SM?2 Use the contents of SM register 2 as the A source.

011 M2 Use the contents of interrupt mask register 2 as the
A source input.

100 A*R8 Use the contents of the double-precision A register,
shifted right eight bits with end-around carry, as
the A source. The A* register remains unshifted.

101 A* Use the contents of the double-precision A* register
as the A source.

110 X* Use the contents of the double-precision X* register
as the A source.

111 Q* Use the contents of the double-precision Q* register

as the A source.

*The A’ codes are specified by the S field equalto0 1 1 1orl1 0 1 0.

2-7

Microinstruction Decoding

B Field

During arithmetic and logic operations, the B field, bits 10 through 12, control the
input to S2 and thus the B side of the adder. (See figure 2-6.)

Adder

g

A source ;
Selector S2 B field
select

B sources

Figure 2-6. The Adder B Field

Coding translations available for the B field are the B codes and B’ codes. B’ coding is
specified if the S field of the microinstruction equals 1000. Note that a code of 001
in the B field is expanded by bits 28 and 29 of the microinstruction and this enables
the contents of the N or K register to selector S2. As long as there is no conflict, the
outputs from the N and K registers may be used in conjunction with commands or
constants in the C field. The B and B’ codes are given in tables 2-5 and 2-6,
respectively.

ALU Control Field Functions

TABLE 2-5
B Input Operations

MIR28-
B Codes | MIR29 | Mnemonics Operations

000 F2* Use the contents of the file 2 register as the B
source. The value of the N register, before the
instruction is executed, is used to address
register file 2. If the value of N is changed in
the current microinstruction, its initial value
is used to reference the file register. F2 must
not have been written during the previous

instruction.
001 11 Zero The B source is all zeros.

001 10 N** Use the contents of the N register as the B
source. Since N is an eight-bit register, this
source uses N as the upper eight bits and zeros
as the lower bits.

001 0! K** Use the contents of the K register as the B
source. Since K is an eight-bit register, the
upper bits are zeros and K serves as the lower
eight bits.

001 00 N,K** Use the contents of the N and K registers as
the B source. These registers are combined
with the N register as the upper eight bits of
source and with K as the lower eight bits.

010 BG Use the contents of the BG generator as the

B source. The generator has only one bit set
to 1, and the position of the bit in the BG
register is specified either on value in the N
register or by a number in the C field, depend-
ing on the state of the controlling SM register
bit.

011 X Use the contents of the X register as the B
source.

100 Q Use the contents of the Q register as the B
source.

101 F Use the contents of the F register as the B
source.

2-9

Microinstruction Decoding

TABLE 2-5 (cont’d.)

MIR28-
B Codes | MIR29 | Mnemonics Operations

110 F1 This code is similar to F2, but it uses the con-
tents of optional file 1 register addressed by
(K) or an external source as the B source
input. SM111 controls the selection of F1/
external. F1 must not have been written
during the preceding microinstruction.

111 MEM *** This code obtains data read from macro-
memory and uses it as the B source.

*Restriction: The value of the addressing register (N or K) cannot have been
modified by a C increment or decrement command in the preceding micro-
instruction.

**The most significant sixteen bits of the 32-bit processor are zeros. These
codes control only the two lower-order eight-bit bytes in the sixteen least
significant bits of the B source input in a 32-bit processor.

***Restriction: If the macromemory READ command was not given in the
preceding microinstruction, all ones are input to the B source. Exception:
This command (MEM) is restricted to a microinstruction with type A, B, or
C execution time.

ALU Control Field Functions

TABLE 2-6
B’ Codes

B’ Codes* | Mnemonics Operations

000 OPEN

001 CRTI Transfer the complement of the RTJ register to the
twelve least significant bits of S2. Transfer is to
the four most significant bits of S2.

010 INRO Input data/status from the I/O channel.
011 INRS Input to S2 I/O response signals.

100 MMU Transfer the upper sixteen bits of data from the
micromemory to the X register in the microproc-
essor. The 32-bit processor transfers the total 32-
bit word. The F field must make a reference to
the B source. The address is specified by transform
or NK. The D field must be an NOP. (See micro-
memory operand references section for further
details.)

101 MML - Transfer the lower sixteen bits of data from the

micromemory to the X register in the sixteen-bit
processor. This code is not operative in a 32-bit
processor.

wx Use the contents of the interrupt address encoder
as the B source. The output of this encoder
represents the complement of the interrupt address
of the highest priority interrupt line that is active
having its corresponding mask bit set.

P

D
Q
=
]
o
2
o
>

[SPURN

*The B’ codes are specified by the S field equal to 1000.
**Restriction: An INTU test command must be given in the preceding micro-
instruction.

Microinstruction Decoding

D Field

Bits 13 through 15 specify the destination of information from the ALU organization.
The two sources of this information are:

e Selector S3
o Selector S1

1 F Al oV 77774 ¢

S—— ‘,—/
Selector S3
Shift
Is R, fu i
L1 Left 1 place
R1 Right 1 place
L8 Left 8 places
S Straight transfer
Adder

Figure 2-7. D Destination

\)

The D destinations are given in table 2-

2-12

ALU Control Field Functions

TABLE 2-7
D-Code Transfers
D Codes | Mnemonics Operations

000 NOP Do not transfer data to any destination.

001 p* Transfer output of S3 to P, AB (macromemory
address buffer register).

010 I Transfer output of S1 to I, AB.

011 Q Transfer output of S3 to Q, AR,

100 F1** Transfer output of S3 to F register, AB, and write this
data in file 1 at the address specified by K at the com-
pletion of this instruction.

101 A Transfer output of S3 to A, AB.

110 X Transfer output of S3 to X, AB.

111 F Transfer output of S3 to F, AB.

*If a D-field command to load AB is issued in the next microinstruction following
the microinstruction with this command, the transfer to AB is inhibited.
**Data is written into the file 1 register during the first part of the next micro-
instruction, taking advantage of the updated value of K from this microinstruc-
tion. The next microinstruction must not specify a read of file 1.

D’ destinations are specified by the D field whenever the S field of the microinstruc-
tion equals 1001 or 1010. Table 2-8 gives the D’ destinations.

D’ and double D (DD) destinations are required when double precision arithmetic is
performed. Since this option is not present in our configuration, D> coding is not

used.

2-13

Microinstruction Decoding

TABLE 2-8
D’ Code Transfers

Operations

Transfer the output of S3 to the I/O data register.

Transfer the output of S3 via the I/O data register to
the I/O address register. This destroys the contents
of the I/O data register.

Transfer the output of S2 to the upper sixteen bits
of micromemory in the sixteen-bit processor, or
transfer the output of S2 to the 32-bit word in micro-
memory in the 32-bit processor. (See micromemory
operand reference section for further details.)

Transfer the output of S2 to the lower sixteen bits
of micromemory location in the sixteen-bit processor,
or transfer the output of S2 to the 32-bit word in

micromemory in the 32-bit processor. (See micro-
memory operand reference section for further details.)

Transfer the output of ALU to SM register 1.
Transfer the output of ALU to mask register 2.

Transfer the output of ALU to SM register 2.

D’ Codes | Mnemonics

000 I0OD

001 I0A
010 MMU
011 MML
100 M1

101 SM1

110 M2

i1i SM2

shiftable.

Note: Outputs to the mask and SM registers are direct from the ALU and are not

ALU Control Field Functions

Shift Operations

The ALU control field can contain shift and scale control information. A shift opera-
tion is performed if the F subfield equals 11110. This function causes the remaining
subfields of the ALU field to assume a different meaning than they did for arithmetic
and logic operations. These bit meanings are shown in figure 2-8.

2 6 7 8 9 11 12
A
// 11110 Rl LD sc///
% AQp7 %
-y " N —
Shift !
L_' Shift control such as
sign extension
and end-around carry
L - If 0, shift Aregister
If 1, shift A/Q register
combination
A Q
Data
Vd
Left
Data
Riah+
Right

Figure 2-8. ALU Control Subfield Meanings for Shift and Scale Operations

The type of shift performed is determined by the coding of bits 7 through 12 of the
microinstruction, while the amount of shift depends on the number contained in the
N register. The two types of shift performed are an A register shift and an A/Q
register shift. During a shift operation, the adder is not used. Table 2-9 defines
shift operations.

2-15

Microinstruction Decoding

TABLE 2-9
Shift Operations
Bit Codes
Mnemonics Operations

7 8 9111 12

10000 AROE A is right-shifted (N) bits, with O entered as the
most significant bit.

100 01 ARSE A is right-shifted (N) bits, with sign extension.

100/ 10 AREA A is right-shifted (N) bits, with end-around
carry.

010,00 ALOE A is left-shifted (N) bits, with 0 entered as the
least significant bit.

01001 ALIE A is left-shifted (N) bits, with 1 entered as the
least significant bit.

010/ 10 ALEA A is left-shifted (N) bits, with end-around carry.

101,00 AQROE A/Q is right-shifted (N) bits, with O entered as
the most significant bit in A.

101 01 AQRSE A/Q is right-shifted (N) bits, with sign extension.

101j10 AQREA A/Q is right-shifted (N) bits, with end-around
carry.

01100 AQLOE A/Q is left-shifted (N) bits, with O entered as the
least significant bit in Q.

01i1j10 AQLEA A/Q is left-shifted (N) bits, with end-arcund
carry N

Note: {N) = Contents of register N.

2-16

ALU Control Field Functions

Scale Operations

Most computers operate with a fixed range of numbers. For example, the CYBER 18
has only 16 bits of data, with values ranging from 0000 to FFFF{¢. When data has a
decimal (radix) point, it is very important to keep track of the placement of the point.
On very large numbers, only the most significant digits may be used. A common
method used by scientists and engineers to keep track of the radix point and to repre-
sent very large numbers is called scientific notation. This form consists of two parts:
the most significant digits represented as a value between 1 and 9 and the exponent,
which specifies the position of the radix point. The number represented is equal to
the significant digits multipled by the exponent. For example, the value 186,000
could be represented as 1.86 x 10~.

similar method of notation called floating point arithmetic is used in scientific com-

puter data. The most significant digits are represented as a fractional value of 0.19
with an exponent to specify the radix point position. For example, the value 1010.1,
could be represented as .10101 x 24, With this method, the radix point for all data

is always at the same position in the computer register. The purpose of the scale
operation is to convert integer (whole) numbers into normalized floating point (frac-
tional) numbers with exponents.

Scale operations are similar to shift operations, but the scale is stopped when the upper
two bits of “A,” bits A00 and AO1, are not equal. (The scale point is normally between
bits 0 and 1 of the A register.) The maximum number of bits to scale is contained in
the N register and, on completion of the scale, N is decremented by the number of
shifts necessary to scale the number. The scale operation is performed as follows:

1. Processor logic checks N for zero and scale point of the A register (bits O and 1
point ig satisfied, i.e., A0Q % AO1 shifting is

LAV Siii2%22

for unlike bits. If N is zero or scale
terminated.

2. If shifting is terminated, continue at step 4; if not, continue at step 3.

2-17

Microinstruction Decoding

3. The N register is decremented, followed by a one-bit position shift in A or A/Q
as specified in the A and B instruction fields. Processing continues from step 1.

4. Following the termination of scale (an extendcd timing operation), the execution
of remaining field codes (M, D, S, C, T) is completed. The next instruction is
selected by the normal sequence control codes.

Note: If the number being scaled is comprised of all 0’s or all 1’s (i.e., the
number cannot be scaled), then the scale operation is terminated when N = FE ¢
(after passing through N = 0). To avoid executing the microinstruction before the
scale operation is completed, N should be at least equal to the number of bits in
the word to be scaled.

The type of scale operation is coded in bits 7 through 12 of the microinstruction in the
same manner as the shift operation, and allows the same left shift options. When the
N register is zero, the scale operation is terminated and the next microinstruction is
executed. All scale operations are performed when the F code equals 11111. The
scales are given in table 2-10.

TABLE 2-10
Scale Operations
Bit Code
Mnemonic Operation
789111 12
(010(00 SLOE A is scaled left, with O entered as the least signi-

ficant bit.

010{01 SL1E A is scaled left, with 1 entered as the least signi-
ficant bit.

01010 SLEA A is scaled left, with end-around carry.

011100 SDLOE A/Q is scaled left, with O entered as the least
significant bit in Q.

011]10 SDLEA A/Q is scaled left, with end-around carry.

ALU Control Field Functions

Summary

Table 2-11 summarizes the four subfields found in the ALU control field when it con-
trols arithmetic and logic operations.

TABLE 2-11
Summary of ALU Control Field Functions
Arithmetic and Logic Operations

Fields Purposes . Bits Operations
F Operation of 2-6 Listed in tables 2-1, 2-2
function
A A source 79 Listed in tables 2-3, 2-4
B B source 10-12 Listed in tables 2-5, 2-6
D Destination 13-15 Listed in table 2-7

The ALU control field also can be used for shift or scale operations, in which case the
following subfields occur:

TABLE 2-12
Summary of ALU Control Field
Shift or Scale Operations Functions

Fields Purposes Bits Operations
F Operation, 2-6 Mustbea 11110o0r 11111
shift or scale
R Right shift 7
L Left shift 8 Listed in tables 2-8, 2-9
AA/Q Register or 9
shift

SC Shift control 11-12

2-19

ALU Control Fields

DIRECTIONS: This exercise presents several examples of the ALU control field.
Analyze these examples, and determine the correct answer to each question.

MSB LSB
1. 10100 010 100 O11 I=]1100
ALU CONTROL FIELD
Given the contents of the ALU control field, determine Q=]0011
the final contents of Q after instruction execution.
MSB LSB
2. 11001 100 011 110 A=(1100
ALU CONTROL FIELD
Coso on oventiow condiion o beenerated2Whys
MSB LSB
3. 00011 001 011 001 P=[1001
ALU CONTROL FIELD MSB LSB

Given the contents of the ALU control field and the P and X=]11111
and X registers, determine the final contents of the P
register after instruction execution.

MSB LSB
4. 00101 101 100 011 F=]1110
ALU CONTROL FIELD MSB LSB

Given the contents of the ALU control field and the F and Q=10010
Q registers, determine the final contents of the Q register
after instruction execution.

2-20

ALU Control Fields

MSB LSB MSB LSB
11110 101 010 000 N=j00011 A=10010
ALU CONTROL FIELD MSB LSB
Given the contents of the ALU control field, the N Q=]1111

register, and A and Q registers, determine the final
contents of the A/Q register combination.

MSB LSB MSB LSB
11111 011 000 000 N=!01111 A-;000¢0
ALU CONTROL FIELD MSB LSB
Given the contents of the ALU control field, the N Q=j0110

register, and A and Q registers, determine the final
contents of the A/Q register combination.

2-21

Microinstruction Decoding

ANSWERS

1. Q={1001

2. NO-no overflow condition is generated for a subtract when both operands have the
same sign or for an add when both operands have a different sign.

3. P=11111

4. Q=]1101

MSB LSB

5. A=|1110

Q=10101

Q=710000

2-22

ALU Control Field Operations

You are familiar with the various functional portions of the ALU module: the working
registers, files, input and output selectors, and, most important, the adder itself. You
are also familiar with the ALU control field of the microinstruction and you know that
each subfield of ALU control provides operational control information for some func-
tional area of the ALU module. This reading provides an understanding of how each
subfield determines sources of input data, destination of output data, and control of
shift operations.

Three of the four subfields of ALU control provide data control. These are the A, B,
and D subfields. If the F field specifies an arithmetic or logic operation, the A and B
field provide the data source to the adder, while the D field determines a destination
for output from the adder. When a shift or scale operation is specified, the A and B

fields contain shift contro! information. The D field is not used for these operations.

ALU control information contained in the MIR is decoded on the control 1 module,
which sends control information to the ALU module. Each data control field will be
examined in turn to see how field decoding interfaces with the ALU module.

A Field

The A field (bits 7, 8, and 9 of MIR) provide control information to the ALU as shown

in fioure 2-9
in figure 2-9.
The function contained in the F field causes the A field to be interpreted as follows:

o Data source selection for arithmetic and logic operations
e Shift select information for shift and scale operations

Data source selection is decoded by A-field bits. Signals (S1S0, S1S1, and S1S2) that
provide this selection originate from control 1. These signals provide the data selection
to the A source of adder. A source selection, which occurs in selector S1, consists of
sixteen 8 to 1 multiplexers as shown in figure 2-10. There are eight possible data
sources for selector S1. Each stage of S1 is able to gate one bit from these sources.

A’ decoding of the A field (S= 0111 or 1010) causes some data source on the tri-state
bus to be enabled as A source bus data (BUS00-BUS15).

2-23

Microinstruction Decoding

If a shift or scale is specified by the function code (F field), shift control information
is contained in the A field. A shift control multiplexer located on control 1 decodes
bits of the A field and generates control signals to the A and Q rcgisters of ALU. The
control signals force right or left shifts for the A register or the A/Q register combina-
tion. Figure 2-10 shows that data to the A and Q registers originates from selector S3.
The shifted output of A and Q is made available to selector S1 and S2, respectively.

F A B D
Adder
A field
decoding
_ Source
selection Selector S1 Selector S2

A register Q register
e 5

control

Figure 2-9. A-Field Decoding

2-24

Control Field Operations

1
|
Control 1 H ALU Module
i
A field B field
F 7 8 9] Microinstruction
S51S0
S151
2 4
5152
! FOO ‘
100
POQ ==—~——— Selector 5100
X00 S$1 to adder
A
Bus A00 .
| (bit 0}
Control - ey 1 DELTAQO
source : BUS00
#; Enable F200
S field = BP
(S=0111
or 1010) ? * 1
1 FO1
107 eom—n—
PO1————1 Selector
Next X0l — 51 | s
stage to adder
! AQ1 —————— »
! DELTAOT it 1)
H BUSO1
M!R09 Q Mode SO F201 ——
Multi- 16 Total
MIROS plexer Q Mode S1 H
MIRO7 A Mode SO
Shift !
A Mode S1
Enable A/Q shift ———] ONO! —+—°9—j {Control 1) QMSBR
} (Control 1)
r AMSBR I
MIR30 S300 —— — AQC 5300 —— — Q00
—_— 5301 — A L—aot s301— Q t—ao
SC + SHIFT 5302 register AO2 $302 — register Q02
$303 —— — A03 $303 — — Q03

$304 —— l—l A04 S304 —— Qo4

(When F field equals 1111X)

$305 A l—aA05 S305-1— Q Qo5

5306 —— register AC6 $306 —— register Qo6

S307 —4— | A07 S307 - ——a07
-

ey
&

[t

A Q |
$308 —+— A08 S308 —A-J Qo8

register

Gate A >—0 \\A\

These signals originate
from D field of
microinstruction

1
]
1
i
1
§
]
1
1
'
i
1]
‘
1
1
]
1
[
]
[]
]
[l
1
]
1
]
i
]
]
]
[}
1
1
)
1
1
]
)
1
i
[
1
t
i
Gate Q >
[]

Next Next
stage stage

Figure 2-10. A Source Selection

2-25

Microinstruction Decoding

B Field

The B field of ALU control (bits 10, 11, and 12) determines the source of data to the
B source of the adder, as shown in tigure 2-11.

F A B D
Adder B field
decoding
Selector S1 Selector S2 Sourc'e
selection
Shift
(control
A register C register
MSB LS8 MSB LSB

End-around carry

Figure 2-11. B-Field Decoding

Data source selection is decoded by B-field bits. Either B or B’ decoding determines
the source of data. B decoding selects ALU register sources while B’ decoding (which
occurs when S = 1000) selects a sixteen-hit data source from the tri-state bus to
selector S2 of ALU. (Refer to figure 2-12.)

During shift or scale operations of the A register, bits 11 and 12 provide shift control
to the MSB or LSB of the A register. During shift operations using the A/Q register
combination, the LSB and MSB of A and Q are controlled by shift control. Shift
control bits are interpreted as follows:

Bit 11 Bit 12 Result
0 0 0 is entered in MSB or LSB of A or Q registers
1 0 End-around carry of A or A/Q register
0 1 Sign extension of LSB of A register

2-26

Control Field Operations

Figure 2-12. B Selection

£
N
~3

Control 1 ALU Module
_Afield___ Bfield _Dfild
10 11 12 h H
............... 4 i
$250 : >
5251 :
$252 :
2 T *
! |
F200
NO—— Selector
B’ ! BGOO s2
X00——
1 Q00 S200
&_.. 8’ [0 L — to adder
DELTAOO
control Bus BUS00 ——
— !
source |
1 >
S field = BP Fnahle
¢ |
)
: F201
8Go1 Nt ——— Selector
Next stage X01 S2
Qo1 3 S201
— to adder
MIR12 DELTAO1
: BUSO1 —
1
MIR11 Shift QMSBSR 16 |
control QLSBSL total :
[}
A reg. 00 J' ALSBSL
A reg. 15— ! AMSBSR
]
e { Qreg. 00 :
1
Qreg. 15 B : S300 A P—A00 S300 Q pP—Qo0
ALU 00 ————i ! 301 registerL_ agy 5301 ——— "eISL 564
]
ALU 15 ————i : S302 P AQ2 §302 — Q02
1
! $303 —— — A03 $303 o —— Q03
i
? |
: y Carry Carry
[}
]
! S304 A A04 $304 Q Qo4
1 i i
_From ALU $305 | register A0S $305 [register Q05
* module :
1 S306 — A06 S306 — Q06
1
: S307 p— AQ7 S307 —— Q07
[}
| r l-—.
i
: Carry Carry
E
: S308 A A08 S308 m———mtj Q Qo8
: register register
}
] N
|
i
} LSBof LSB of
:A register Q register

Microinstruction Decoding

Shift control monitors the LSB and MSB of the A and Q registers to decide whether
bits should be carried from the A register to Q during right shifts or Q register to A
during left shifts. Remember that shift control provides the correct bit information
to the least and most significant bit positions of the A and Q registers during shift
operations.

D Field

Figure 2-13 represents the control exercised by the D field of the microinstruction.

Lrfafefo]

16-bit data words D field

decoding

Selector S3

‘C field ———gh_if.;——_-
shift control

ALU l

D’ enables

T
D

destinations

’

1 171 171 11 171

4 -~ 4 _é register

enables

Figure 2-13. D-Field Destination Control

2-28

Control Field Operations

The decoded D field enables a sixteen-bit data word to a destination register. Bits 13,
14, and 15 are decoded as either D or D’ codes. D codes gate the output of selector S3
or S1 to one of the working registers on ALU, while D’ codes provide gating to destina-
tions in the microprocessor that are not part of ALU. Figure 2-14 is a representation

of the logic used to decode the D field and the enabling signals supplied by this decoding.

The D field of ALU control is not used during A register or A/Q register shift opera-
tions. However, selector S3 is supplied with a shift network used during arithmetic
operations such as multiply and divide. Figure 2-14 shows this shift network. Itis
controlled by C field contents to provide left and right shifts or straight transfer of ALU
output data. The output of the shift network is made available to selector S3 and

gated to some destination controlled by the D field contents.

Summary

The A field either selects a source of data or provides shift select information. It
selects a source through selector S1 on ALU. During shift operations, a multiplexer on
control 1 will decode it and generate shift control signals to A and Q registers.

The B field determines the source of B data to the ALU or provides shift select infor-
mation. The source of B data is either an ALU register, or some external source avail-
able to selector S2. In a shift or scale operation, the B field provides control of MSB
and LSB of the A and Q registers.

The D field enables an output to a destination either within the ALU or outside it.

2-29

Microinstruction Decoding

Control 1 ALU Module
B field D field t
===l 1
i 13 14 15 !
b |
)
i o
! |
1
L
Gate X s
D
decodin Gate F) F
muel(t:?m:exir Gate A E‘
—_— ——)
— 5= 1001 or 1070 Gate P
1
!)
i
Gate 10 DAT ! ‘—‘@_4
Gate 10 ADR 1
e
o p— ——-Eq
decoding Gate M2 b
multiplexer [—
—S=1001 or 1010—————+ Gate SM1____
Gate SM2
]
|
! 16-bit
data words
Control 2
s R Y e
i S301 Shift — .
——— MIR20-MIR23 ——] SNift Left shift 8
LBEA Straight transfer
Adder
MiR25-MiR27 —f ¢
{1274 Z/ decoding

Figure 2-14. D-Field Decoding

2-30

ALU Data Flow and Operating Modes

DIRECTIONS: Answer the following questions, using T for true or F for false.

1. If the F field of ALU control equals 11111, A source information is
decoded from the A field of the microinstruction.

2. Only one function code is required to shift the A register contents
and gate the result to the A source of the adder.

3. When the F field of a microinstruction equaling 11110 is executed,

bit 10 of the B field has no meaning.

4. B’ decoding selects a data source to the B side of adder other than a
working register.

5. The contents of the microinstruction C field determine whether B or
B’ decoding takes place.

" 6. The D field contents control the output of the adder for a right shift,
left shift, or straight transfer.

7. An A and Q register shift does not require a destination field to be
specified in the microinstruction.

8. During a shift A operation, the least significant bits and most significant
bits of both the A and Q registers are monitored by the shift control
multiplexer.

ANSWERS
1.F 22F 3.T 4 T 5.F 6 F 7.T 8 F

2-31

Arithmetic Operations

You are familiar with microinstruction coding—-but not how programs are written and
intrepreted. In this reading, a number of microinstruction programs that pcrform
arithmetic operations are analyzed to see what actual activity is generated by the
microinstruction code.

Format of Microinstruction Program Listing

A microprogram in the CYBER 18 emulates 1700 macroinstructions. Just one micro-
instruction or a series of microinstructions may be required to emulate a 1700 instruc-
tion, depending on the microoperations requircd. Table 2-11 is a representation of a
typical microprogram.

2-32

Arithmetic Operations

TABLE 2-11
Microinstruction Listing

a b c d e f

e, —— — P —
CARD VALUE T P/MA NICRO-NFN LacaYron F a -]) < [[34 CQMNENT
’6" .‘...ll.......‘.....'.l..‘..'.....l'l'.l..'..'.'...‘....I...‘l...“l‘.....“.;‘.
1638 . .
1639 . rSTCRE 8 REGISTYTCR Fxh .
1640 . .
1661 PSP AT U U I U ST IT S I IUIUIT TSIV IISUTNISTIITIISIINIIITIIIICIIIIEIISESY
1642 (11) ORG LXP2 OMEMREFY
1663 0 088 S&E7 6484 G +STQ 8 Q f WRTTE EFFAODRFF RATU STORE (Q)y CHCCK IF EA=FF
1645 8an ORG &X®24MEMREFY
1b46 1 088 SGE7 848k G - 8] F WOITF EFFANRFF BTU STORF (Q), CHECK TF FAzFF
1642 9 089 AC79 4650 8 ¢ sup- P HEM P F2W? RNT J SAVFT, P+1 TO P, GOTO ®NT
1649 1 089 AC79 4058 B - SuUrR- P MEM P LU ¢ J fe1 7O P, GOTO RNI

a. Specifies micromemory instruction location (in hexadecimal). The P/MA
column contains three digits. The first is the page address; the second two
are the micromemory address within a page. The T column specifies the
upper 32-bit word when T = 0; T = 1 specifies the lower 32-bit word.

b. The contents in hexadecimal of the 32-bit instruction located at T P/MA.

The arithmetic subfields are represented with their mnemonic contents.
Operation, data sources, and destination of output are specified.

g‘,u

d. The S and C fields contain the microprocessor operations that take place
during instruction execution. Mnemonics are used to represent this
operation. .

e. The MT field represents the operation contained in the M (mode) and T
(test) field of the microinstruction. Of the three characters, the first repre-
sents M field contents while the other two represent T field operations.

f. COMMENT is a summary of the microinstruction stating approximately
what the microinstruction is accomplishing.

2-33

Microinstruction Decoding

The series of microinstructions represented in table 2-11 emulate a 1700 store Q regis-
ter function (macroinstruction F field = 4). The explanation of the microcoding is
divided in the listing under a series of headings. Each heading describes part of the
operation that takes place during a microinstruction execution as follows:

T Since each micromemory instruction pair is sixty-four bits in
length, a 32-bit upper and lower instruction exist at one
address. If T =0, the upper 32-bit word is selected; if T =1,
the lower word is selected.

P/MA The three-digit address specifies the page and pair address
within the page of memory that is read.

MICRO-MEM The contents of the memory location (thirty-two bits) speci-
fied by P/MA is displayed.

ALU CONTROL A summary of ALU control is contained under F, A, B, and
D subfields.

Sand C Microprocessor control operations are represented in these
fields in mnemonic code.

MT A summary of operations specified by the M and T fields is
represented in mnemonic code.
COMMENT A statement explains what the particular microinstruction is

accomplishing.

Reading a Listing

It is important to understand how to read instruction listings, since most computer
instruction sets are written in a way similar to those in table 2-11. To interpret an
instruction listing, refer to figure 2-15, where an example of a logical operation per-
formed by the microprocessor is given.

CARD VALUE T P/MA MICRO-MEM LOCATION F A B D s c MT COMMENT DIAGNOSTICS
7 LOGICAL OPERATIONS EXAMPLE
9 0 o000 5326 0000 EOR A Q X X = {(Q) EOR (A)

10 1 000 48DE 2000 ~A X X COMPLEMENT X

11 0 001 4AE3 0000 -B Q Q COMPLEMENT Q

CARD VALUE T P/MA MICRO-MEM LOCATION F A B D s c MT COMMENT DIAGNOSTICS

Figure 2-15. Example of a Logic Operation

2-34

Arithmetic Operations

The micromemory address (P/MA) is 000. The first instruction at that address (upper
thirty-two bits) is 5326 000014. The ALU control mnemonics show that the opera-
tion that takes place is an exclusive OR of the A and Q register. The result of the
exclusive OR is placed in the X register. The comment field states that the X register
contents equals the result of an exclusive OR of Q register contents and A register
contents. Figure 2-16 represents the contents of the ALU control field during this
operation.

/ 532616 \

M F A B D -
01 01001 100 100 110ﬁ
ALU control

Figure 2-16. Exclusive OR Instruction Execution

Each field has the following content:

M A sequential instruction is addressed following the execution of the cur-
rent instruction.

F This field indicates an exclusive OR takes place using an A source sixteen-
bit word and a B source sixteen-bit word.

The A source specified is the A register.

>

B The B source specified is the Q register.

D The D field contents causes the result of the exclusive OR operation to be
gated to the X register.

The next sequential microinstruction located at address 000 lower executes next. This
instruction when executed causes the A source (X register) to be complemented and
returned to X. The final instruction (address 001) upper causes the B source (Q register)
contents to be complemented and returned to Q.

2-35

Microinstruction Decoding

Scale Operation Example

Figure 2-17 demonstrates a scale operation. The microinstructions that perform this
scale are at memory address 006 and address 007. You might recall that a scale per-
forms a shift operation that stops the shift when the two bits at the scale point in the
A register are not equal. The scale point normally is specified as being between bits

0 and 1 in the A register. The maximum number of bits to be scaled is contained in the
N register. On completion of the scale, the N register contains the original specified
maximum minus the number of shifts necessary to position the number so the bits at
the scale point are unequal.

CARD VALUE T P/MA

CARD VALUE T P/MA MICRO-MEM LOCATION F A B b S C MT COMMENT DIAGNOSTICS
60 * SCALE EXAMPLE ONES COMPLEMENT ARITHMETIC 16 BIT NP
62 0 006 D8D8 1020 N = 32 SET MAXIMUM SHIFT
63 1 o006 7EDO 2800 E SDLEA N = 32 - NUMBER OF SHIFTS
65 * SCALE EXAMPLE TWOS COMPLEMENT ARITHMETIC 32 BIT NP
67 0 007 D8D8 1040 N = 64 SET MAXIMUM SHIFT
68 1 007 TFC8 2800 E SMOE N = 64 - NUMBER OF SHIFTS
CARD VALUE T P/MA MICRO-MEM LOCATION F A B D s o} MT COMMENT DIAGNOSTICS

Figure 2-17. Example of Scale Operation

Examine the two instructions at address 006. The upper one is shown in figure 2-18.

2-36

Arithmetic Operations

01100 011|000 0000| 00100000
| 1 l I
. 1 Lower l
Logical X register micro- NOP
zero instruction
Sequential X register NOP next Value in N register
C tield value
is N-register
contents

Figure 2-18. N Register Value Set to 3210 (2016)

This upper instruction places the value of the C field into the N register upon execu-
tion. N equals thirty-two or the maximum number of shifts for the A/Q register
combination.

The lower instruction shown in figure 2-19 scales the A/Q register combination with
end-around carry. After the scale point has been reached or thirty-two shifts have
taken place without finding a scale point, the upper instruction at the next address
called for in the microprogram is read.

7EDO 2000

S C

0000 0000000-0_-|

o1} 1111110

|

Scale A/Q Upper instruction
operation register of next pair
Sequential Left End-around NOP
shift carry

Figure 2-19. Scale Operation

2-37

Microinstruction Decoding

More Examples

Figure 2-20 shows an add to the A register operation. Actually, two microinstructions
must be executed to complete this operation. The first instruction forms the effective
address (EA) of main memory, from which data is read. The second instruction per-
forms the add operation of memory contents and the A register. The result of the add
is stored in A. The second microinstruction also determines the next microinstruction
to be executed in the program.

1701
1702
1703
1704
1705

1706
1707
1708

1710
1711

VALUE

090

T

oo

P/MA

090
091

090

MICRO-MEM

6C79 2300 G
B33D 4058 C

B31D 2058 C

LOCATION F A B D s C MT COLIMENT

ERRRRE AR AR R AR AR R AR R AR R R AR R AR R R AR KRR R R R AR R AR KRR AR AR AR AR R AN R AR AR R R AR
* *
* ADD T O A REGISTER F =8 *
*

*
L L L L T T T T T Ty

ORG 8X*2+MEMREF1
+ADD SUB- P MEM P READ u READ (FA), P+1 TO P
+ ADDT A MEM A RN1 J A+(EA) TO A, GO TO RNI

ORG 8X*2+MEMREF1
- ADDT A X A INI J A + EA (IM. OPR.) TO A

Figure 2-20. Add to A Register Routine

2-38

Arithmetic Operations

Each of the two instructions is analyzed in turn, that is, the upper instruction at address
090, and at 091. The instruction at address 090 is broken down into its respective fields
in figure 2-21.

6C79 2300

M F A B D T SF S C

01]10110}001|111/001|001(0]0011,00000000

¥ ¥ ' t
Sequential P P No NOP
instruction register register significance

Perform A-B Memory Execute upper Read contents
with forced carry-in data instruction of of formed memory
next pair address as data

in next operation

Figure 2-21. Effective Address Use

A summary of each field also is given. The M field contains 01 bit combination, indi-
cating a sequential instruction is the next executed. ALU control calls for an A source
minus B source operation with a forced carry-in. A result is the formation of an up-

adA A AD ~AA4 tha Aot t~ hn
dated 1700 program count. The address contained in AB addresses the data to be

added to A in the next instruction. The T field contents causes the next instruction
address’ upper instruction to be executed next. The S field specifies that a read of
data contained at the main memory address stored in AB takes place.

The breakdown of the second instruction in this sequence is shown in figure 2-22.
Again, a summary of each field is given. The instruction performs operations as
follows: The M field (M = 10) specifies a jump; that is, the next microinstruction

to be executed is not in sequence. The next instruction referenced is that whose
address is contained in the C field of the present instruction. ALU control contents
does an add of the A register and memory contents, with the result of the add placed
in A. The T field specifies that the lower instruction of the next pair will be refer-
enced with the C field containing the address of the next instruction pair.

2-39

Microinstruction Decoding

B33D 4058

M F A B D T SF S c

10({117001y100j1t111101/010{0] 0000 01011000

Jump to A A N[Jump address of
address register register significance next microinstruction
specified pair
in C field
Add with overflow Memory Lower instruction NOP
test data of next pair

Figure 2-22. Add Memory Data to A Register

Summary

Correct interpretation of instruction listings is not a difficult process. Instruction list-
ings can become a good troubleshooting aid for computer technicians, allowing them

to interpret processor failures. In this reading, you have examined a number of listings
involving various types of operations. Do not continue to the next activity unless you

understand what kind of information is found under each of the following headings:

o T

e P/MA

e MICRO-MEM
e ALU Control
e Sand C

e MT

e COMMENTS

2-40

PROGRESS CHECK

QUESTIONS

1. What ALU control field identifies the arithmetic or logic operation to be performed?

O T
mMowe

2. What microinstruction field controls selector S1 when it is used to gate information
to "I"?

pueEe
oOwe

3. What D field code gates the result of an arithmetic operation to "X"?

a. 000
b. 010
c. 110
d. 111

4, What three select signals determine the 16-bit data source through selector S1?

a. SIS0, S1S1, S1S2

b. GATEQ, GATEX, GATEF
e. S300, S301, S302

d. S2S0, S2S1, S2S2

5. When the F field equals 11110, the information contained in MIR bit positions 7, 8,
and 9 is used to

a. specify an A source input to selector S1

b. control the direction of a shift operation and the registers to be used in the
shift operation

c. control the number of bits to shift during a scale operation

d. select the type of logic operation to be performed

6. What circuit controls the number of bit positions to be shifted?

File 2
File 1
"N"

"I"

R

Microinstruction Decoding

7. What is the maximum number of shifts that can take place when the "A/Q"
combination is used?

8
16
24
32

BT

8. What field in a microinstruction listing contains information that explains what a
particular microinstruction is accomplishing?

a. Comment

b. MT
c. ALU control
d. T

9. When B' decoding is used, the source of data selected is

a. a working register
b. file 1
c. file 2
d. a data source on the tri-state bus

10. What F field code causes the A source to the adder to be complemented during a
logic operation?

a. 00000
b. 00101
c. 01100
d. 10100

W
N
)

ANSWERS

1.

[S]
.

[
o=

Correct Answer:

Resource:

Correct Answer:

Resource:

Correct Answer:

Resource:

Correct Answer:

Resource:

Correct Answer:

Resource:

Correct Answer:

Resource:

Correct Answer:

Resource:

Correct Answer:

Resource:

Correct Answer:

Resource:

Correct Answer:

Resource:

Text:
Text:
C

Text:

Text:
Text:

Text:
Text:
Text:
Text:

Text:

Progress Check

CYBER 18-20 Arithmetic Logic SRM, page 2-2.

CYBER 18-20 Arithmetic Logic SRM, page 2-13.

CYBER 18-20 Arithmetic Logic SRM, page 2-13.

CYBER 18-20 Arithmetic Logic SRM,
pages 2-23 through 2-25.

CYBER 18-20 Arithmetic Logic SRM,
pages 2-15 and 2-16.

CYBER 18-20 Arithmetic Logic SRM, page 2-15.

CYBER 18-20 Arithmetic Logic SRM, page 2-37.

CYBER 18-20 Arithmetic Logic SRM, page 2-37.

CYBER 18-20 Arithmetic Logic SRM, page 2-26.

CYBER 18-20 Arithmetic Logic SRM, page 2-4.

2-43

Block 3

Arithmetic and Logic Operations

ALU Operations

You are already familiar with the operation of each functional area of the ALU and
with the data flow paths through it. This reading familiarizes you with each functional
block on the ALU at a logic level.

Read the explanation of the various logic figures and then examine carefully each one’s
operation. Figure 3-1, a block diagram of the ALU module, will help you to under-
stand the relationships among logic blocks in the ALU. The functional areas to be
examined in this reading are:

P register (as an example of a typical working register)
A register with shift control

File 2

Selector S1

Adder with look-ahead carry

Selector S3 with shift control

P Register

Six working registers are contained on the ALU module: I, P, A, F, X, and Q. These
registers serve as temporary storage and data transfer registers. Except for the A and
Q registers, which are capable of shift operations, all working registers operate
similarly.

The P register is typical of a working register. It consists of D-type flip-flops, half of
which are represented in the logic diagram in figure 3-2. Data input, which comes from
selector S3, is gated into P whenever a GATE P signal is present. This signal is decoded
from the D field of the microinstruction. The Q, or true, output of each P register
flip-flop is available to selector S1 as a source of data to the A input of the adder.

A Register

Figure 3-3 is a logic representation of another type of working register. This register
not only can store a data word but also can shift its contents. The A register (like the
Q register), is a set of four shiftable register ICs controlled by AMODESO and
AMODES]1 enabling signals. These signals originate in the decoding of the A and B
fields of the microinstruction when an arithmetic or shift operation takes place. Input
from selector S3 to the A register flip-flops occurs when a GATE A signal is present.
The output from A is available to selector S1 as an A source input to the adder.

3-1

Arithmetic and Logic Operations

During a shift operation, data contained in the A register is shifted internally either
right or left with serial-by-bit inputs to and from each four-bit shiftable register IC as
indicated. During A/Q register shifts, the MSB (left shift) and LSB (right shift) of Q
are also enabled to the respective bit position of A to allow for serial end-around oper-
ations during combined register shifts.

File 2

Figure 34 is a logic diagram representation of file 2, an addressable RAM memory with
thirty-two sixteen-bit locations. File 2 consists of eight RAM chips having sixteen
addressable locations, each able to store four bits of information. Addressing for file 2
originates from the lower five bits of the N register (N3 through N7). N3 selects an
upper or lower set of four RAM chips while N4 through N7 determine which of the
sixteen locations of that four-chip group is being referenced. Data available to file 2

is the F register data and is written into file 2 whenever WEF?2 is low at the write
enable input (WE). The contents of an F2 location can be used as a data source for
selector S1 or S2, depending on the arithmetic operation taking place. The data out-
put is available whenever the enable (E) signal is low at the chip input.

Selector S1

Selector S1 consists of sixteen separate multiplexers, each used to select one bit of a
sixteen-bit word. Eight word sources are available to selector S1. Figure 3-5 shows four
of the sixteen S1 multiplexers. The select enables (S1S0 through S1S2) control which
of the eight sources will be made available at the multiplexer output. These enables are
created from the decoded A field of the microinstruction. The Q output of selector S1
is made available to the A source inputs of the adder for arithmetic and logical opera-
tions. Figure 3-5 also shows a four-bit portion of the I register. This is the only work-
ing register of the ALU which does not receive its input from output selector S3. Both
data input to the I register and data output from the I register are gated through
selector S1.

Adder With Look-Ahead Carry

The adder with look-ahead carry generator is shown in figure 3-6. The adder is made
up of four adder chips. Each chip is able to process four bits of data from two separate
sixteen-bit data sources (A Source S1 and B Source S2). The internal data process is
determined in the adder chips by four adder Select inputs (ALUO through ALUS3) and
adder mode control (ALUM) originating in the decoding of the F field on control 1.
The data output of each adder chip (FO through F3) is available to selector S3 for
shifted or nonshifted data flow to some destination. The adder output may also be
gated directly to the status mode interrupt module (SMI). The carry-in generator chip

3-2

ALU Operations

monitors the propagate output and the generate output from each adder chip. These
two signals cause the carry-in generator to produce the necessary carry inputs to adjoin-
ing adder chips during arithmetic operations.

Selector S3

Once data is available at the output of the adder, selector S3 may perform one of four
operations (figure 3-7) on that data by enabling:

Direct transfer inputs DOA and DOB

Shift left one place inputs D1A and DIB
Shift right one place inputs D2A and D2B
Shift left eight places inputs D3A and D3B.

A logic diagram representation of eight bits of selector S3 is shown in figure 3-8.

Selector S3 consists of eight separate multiplexers, four of which are represented in
figure 3-8. Select signals S3S0 and S3S1 are used to enable one of four possible input
sources. (Refer to the truth table which demonstrates the sources enabled to selector
outputs by these select signals.) The select signals originate in the decoded C field
{MIR20 through MIR31) of the microinstruction. Data output from selector S3 is
made available to the working registers, the microprocessor tri-state bus, and I/O logic.

Summary

Table 3-1 summarizes the logic level of each part of the ALU’s functional block diagram.

TABLE 3-1
ALU Block Diagram at Logic Level
Parts Purposes Components
P register Like other working regis- 16 D-type flip-flop

ters, this register provides
temporary storage and data
transfer. Output available
to selector S1.

A register with shift Like the Q register, can Four shiftable register ICs
control store a data word or
shift its content. Out-
put available to selector
S1.

3-3

Arithmetic and Logic Operations

TABLE 3-1, Cont.

ALU Block Diagram at Logic Level

Parts

Purposes

Components

File 2

Selector S1

Adder with look-ahead
carry generator

Selector S3

Addressable RAM memory
with thirty-two sixteen-bit
locations. Output available
to selector S1 or S2.

Selects each bit of a sixteen-
bit word. Output made
available as A source input.

Processes data from A and
B sources. Output made
available to selector S3.

Shifts or directly transfers
input. Qutput available

to working registers, micro-
processor tri-state bus, and

I/0O logic.

Eight RAM chips

Sixteen multiplexers

Four adder chips
One carry generator

Eight separate multi-
plexers

3-4

ALU Operations

AB register (memory interface) «-————— S300 breakpoint controiler

D register (1/0-TTY) +~———¢ Ii

Transform <=—————¢

Selector S3 (16)
0 2 1 3 SM redi
register
LS lFH 1 L1 1 L8 and mask
register
Micromemory (
transforr Adder (16) P
ranstorm and transform moduie)
A input B input I
Optional
Selector S1 (16) tri-state Selector S2 (16)
' 72145306 bus 60354127 Main CPU
MainCPU | 1} 1 L | threestate bus
three-state bus — Bit generator

¢ (from control 2)
A N/K registers
(from control 2)

* File 1| File 2
256 32

— 1
! P A F X Q
I [1 i

* File 1 is optional

Notes:
1. The numbers inside the selector biocks indicate the selector position.
2. The numbers in parentheses indicate the width of registers and selectors.

Figure 3-1. ALU Moduie Biock Diagram

3-5

Arithmetic and Logic Operations

S300

S301

$302

S$303

8312

S§313

S314

S3156

Gate P
D QpF—P00
CP FF
—olC__ § N/C
D Q}b————PO1
cp FF
o|C Q N/C
D Q P02
cp FF
1%—0 C N/C
D PO3
cp FF
p—o|C T N/C
|
|
‘ |
P 4
:‘Jt ~” : :
D P12
CP FF
p—o0iC q N/C
D C P13
CP FF
—olc 0 N/C
Q P14
cp FF
olc T N/C
D P15
cp FF
—olC a N/C
+5 Power-up clear

Figure 3-2. P Register

Flin-flops P04 through P11

ALU Operations

decoding cause
selector S3 output to
be gated to A.

Figure 3-3. A Register and Control Signals

3-7

Control 1 |
odule
' ALU Modul
S0 | St | Mode
S | AMODESO
H H | Parallel Load 7 I
H | L | Shiftright (down) | > - AMODES! 1
i | mMSD
L | H | shiftleft (up) AMSBSR CIR S1 S0
L L Hold
- ' 5300 PO QO p—————— A0
|
' S301 P1 Q1 pmemee- AQ 1
I s302 P2 07] SNEEEEEENGY,
|
' S303 | P3 Q3 A03
l —CIL
I cpP
During a right shift of A/Q,
the least significant bit of '
Q (Q 15) will be available > }
when end-around carry is | £
specitied. i
| LCIR S1 SO
: S304 PO Qo AO4
I S305. P1 Q1 p——————— A0S
| s306 P2 Q2p————— 06
I S307 P3 Q3 A07
I —{ciL
| CcP
|
|
L)
I S1 SO
l —»ICIR ~
| s3os PO Qo A08
: S309 P1 Q1 p————— AQ9
| s310 P2 Q2 p—————A10
I S311 P3 Q3 A1l
—e{CIL
| cp
|
|
T
| {
I Lw|cir St SO
| s312 PO Qo Al2
i
I S313 P1 Q1 p————+ A13
During left shift of A/Q, | 5314 P2 Qzp — A4
most ?ggéf)ica.r:lt E;t of Q | $315 P3 Q3 p——————sA15
wi >
available here. ALSBSL l ciL
LSD
I cP
Destination field ~_ |
|
i

Arithmetic and Logic Operations

Gate F Ny —f A0 RAM
e
@ N6 — A1 ao
N5 —4 A2 Q1 p—
NG — A3 Q2 p—
$300 D Q }—F00 00 Q3 P
+— cp o
c a 02 — F200
03
— o WE F201
—_—C E
$301 D Q }—Fo L . F203
—{ CP ' ! F202
c Q N7 — AD RAM
N6 — A1 a P
NG — A2 al b
$302 D Q }— Fo2
— cP
c Q 00 Q3 p—
01
02
03
$303 D Q |—Fo3
—d WE
—cp Jt qd e
c Q ‘
]]
N7 —{ A0 RAM
N5 — A2 Q1 p—
$304 D Q |—Foa ne —| a3
—1 CP Q2 p—
c Qa 0o a3 pP—
o1
. 02 b— F204
$305 D Q }— FO5 4 %
—1 CP WE F205
- * —0 E
c a , ' F206
]]
— F207
N7 — A0 RAM
'\ gp 5 N5 — A2 a1 p-
00 a3 b
$307 D Q —Fo7 01
& 0
(o a
9 we
'P——“———o E
WEF2 >———4 ! !
N3 or ~ N7
N3 N6
Next NE
stage N4
Next .
stage ! !

8 RAM chips total

Figure 3-4. File 2 with Control Signals

3-8

ALU Operations

S150 >
$181 >—
S152 > 18 1
F201 S251S0 F203 1S2 5150
P01 Jo— P03 h—
X01—=] MUX Q $101 x03— Mux Q 5103
AO1 (bit ”6 AD3 (bit 3)6
FO1 FO3 —{-
DELTAO1 DELTA03
BUSO1 BUS03 —1
L DFFQ I— DFFQ}-
CP CP
<156 Sgac ' G—nic pUAC I Gr—N/C
N
S151>
$152> ?]
F200 [s2 5150 F202 S2 S1S0
P00 — P02 —
00— (“S.U)S)Q $100 x02—] MUX Q §102
¢)
FOO o] FO2 —- Q
DELTAO00 DELTA02
BUS00 BUS02 —
|ﬁ D FFQ - L—4 pFF Q-
cP _ | CP _
s5Ac ! O—n/e PUCIO N/C
Gate | >
Adder
o A0
—q A1
—9 A2
— A3
—9 80
Selector S2 9 B1
(B source) — B2
—q B3

Figure 3-5. Selector S1 with Control Signals

Arithmetic and Logic Operations

ALUS3
ALUSZ
ALUST
ALUSO

ALUM
Carry in 3

(Controi 1}

—
X0X1X2X3
- ACC El . A-B
Carryin0 lein CRL o Carry
5103 ———— AD Gb GEN _ out0

$102 ————— Al
S101 e———q A2

$100 ——— g A3

ALU p], PROP

$203 ——— BO 0 p——e ALUO3
$202 ——————d 81 F1 o—— ALUO2
S201 ————d g, F2 p————— ALUO1
S200 —(g3 F3 ALU 00
1
XOX1X2X3

ACC E }—— A-B

Carry in 1 CIN CRL___, Carry Carry in 3
5107 ————f AD G L GEN out1 {control 1)
$106 ———— g Al P
s105——gaz ALUp [PROP
104 ——— | A3
§207 ————ql BO Fojo+ ALUO7
——aal F1 - ALU 06
5205 ————d 82 F2jp—+ ALUO5
§204 ——————d 83 F3o—+ ALU 04
1
—1 |
X0X1X2X3
. ACC E |—s A-B
Carryin2 jciN CR| | carry
S111——q AO | GEN out 2
s110 ——————q| A1 G
S10——— o Az ALUp [PROP
$108 e A3
$211———a B0 FOp—s ALU 11
§210 —————q 81 F1jo— ALU 10
5209 ————0f B2 F2Pp— ALUOS
$208 —————Q 83 F3P— ALU 08
,
X0 X1 X2 X3
ACC € b—wa-g
CIN CR—— Carry
s115———A0 G b SEN out3
b
s114 5—0"3 :; aw, [_PROP |
$112 ——————gA3
5216 ———q 80 FO p—————s= ALU 15
$214 ——————}B1 Filp——= ALU14
5213 ————q B2 e ALU13
$212 ——————q83 F3p———— ALU 12

3-10

Figure 3-6. Adder with Look-Ahead Carry

GEN
{control 1}
PROP 0
{control 1)

ALU Operations

S3S1 S3S0
S1 SO

(Straight transfer DOA
Upper Left shift one input D1A OAr————
half) Right shift one input D2A QAl———

Shift left eight places D3A

(Straight transfer ———— DOB
Lower Left shift one input ————D1B B pF———

half Right shift one input ————{D28B [er:]
{ Shift left eight places D3B

Figure 3-7. Selector S3 Shifting Multiplexer

Arithmetic and Logic Operations

Control 2 ALU
S350
$351 L
MIR20-MIR23 LBEA 37 % 5300
decoding ALU 00— DOA QAb=N/C
MIR 31 ALU 01 D1A —_
or D2A QA S300
Qoo ALU 08 D3A asb-n/c
ALUO1 DoB —
S301
MIR 30 SIS ALU 02— D18 a8
MIR25-MIR27 ALU 00 D28 ®
decode ALU 09 D38 5301
S3+« S0
MIR 30 —
ST %0 §302
ALU 02 DOA QAl=nN/C
ALU 03———D1A —
ALUOl—{p2a A $302
ALU 10 D3A as}—n/C
ALU 03— DOB & 303
ALU 04 D1B
ALU 02 D28
ALU 11 D38 503
Truth table for
select multiplexer
Inputs Outputs l $304
St S0 :
s150 | DOA D1A D2A D3A| QA QA ALU 04— DOA QA}—-N/C
ALU 05 ID1A —
L H X X X |H L
. L v o ow e ALU 03 | D2A oA L S304
Ly L X X X (L H
LHf X H X X |H L ALU 12 | D3A QB = N/C
LH|] X L x Xx|L H ALU 05 DoB 3 S308
H L X X H X |H L ALU 06— D18
HL X X L X L H ALU 04 D2B @
~fHH | X X X H-|H L b3 =5
HH| X X X L |L H ALU13 38
St 56 5306
ALU 06 ——— DOA QAp=N/C
ALUO7 D1A —
ALU 05 p2a OA 306
ALU 14 D3A QB =~ N/C
ALU 07 DOB —
Aawos——]{pis 5307
-~ ALU 06 D28 ®
D38 -
ALU 15 S307
~
To remaining S3
multiplexers

Figure 3-8. Selector S3 with Shift Control

3-12

ALU Instruction Example

In this reading, you look at the decode process for the ALU control field and the signals
that result from this decode. The ALU control field is decoded on the control 1 module.
Control signals are made available to the ALU to form data paths to the ALU, control
specific adder operations on that data, and determine the destination of the results.

Decoding the ALU Control Field

Decoding of the ALU control field is a simultaneous operation; that is, enables are
supplied to the various functional areas of the ALU at the same time so that the follow-
ing occurs in one operation:

e Data is made available to the ALU
® The adder manipulates this data
e Selector S3 provides a destination for the results

A typical add operation is shown in figure 3-9. The operands to be added are indicated
by the microinstruction A and B fields, with the result of this add placed in a destina-
tion specified by the D field. Each subfield of this instruction is examined to reveal
the decode method used. The signals resulting from the decode are located in the ALU
logic diagrams along with the functional areas they control. The first subfields to be
examined will be the A and B fields, since they supply the source of operands for
arithmetic and logical operations.

F 67 » 910 B1213P2 15

11000 001 100 001

Add P reg. Q reg. P reg.

Figure 3-9. Add Operation of P and Q. Result to P

3-13

Arithmetic and Logic Operations

A-Field Decoding

The A ficld decoder (figure 3-10) monitors bits 7, 8, and 9 of the MIR. The decoder
provides enable signals (S1S0-1 through S1S2-1) to the select inputs of selector S1 of
the ALU to determine the A source of data. Decoding is accomplished using three
OR functions enabled by either TO (high) or AP (low). AP is present when A’ decod-
ing is specified (S field = 0111 or 1010). A’ decoding specifies that data to the A
source originates from the SMI module via the tri-state bus. When the AP signal to the
decoder is low and MIRO7 through MIRO09 are logic 1’s, the memory data bus is
enabled as the data source through selector S1.

Turu 1o page 6 of the ALU logic diagrams and locate selector S1. Four multiplexers,
L5,L6, M5, and M6, control the four most significant bit sources of selector S1. There
are eight separate data sources present at each multiplexer input. Multiplexer outputs
(pin 6) are connected directly to the adder chip L9 (page 6, location C7). Note also
that the I register flip-flops provide a data source to selector S1 and receives input from
the selector S1 output (pin 5). Other multiplexers that make up selector S1 are located
on pages 9, 12, and 15 of the logic diagrams.

ALU
AP/ + T0O >
— MIR 07 —
/D Qf——= ! -
MMmo7 CP _IMIR 07 S182>—>0—S182-1)
cC _Q
MIR 08
D Q ! - To
MMo8 — |cp _|lwimos S181 >—>c-— 5$181-1 selector
c Qa » s1
s MIR 09
Mmos — |ep le=ss D s1so>—>o—s1so-1
c_Q
i
I MIR
! register Decode

Figure 3-10. A-Field Decoder

3-14

ALU Instruction Example

B-Field Decoding

The B field (bits 10 through 12) is decoded in much the same way as the A field. (Refer
to figure 3-11.) Three OR functions interpret the contents of the MIR B field. The

OR function outputs (S2S0-1 through S2S2-1) control data source to the B side of the
ALU. ENABLE 82 signal is generated to enable selector S2’s lower and/or upper eight
bits, respectively. This allows eight bits from two sources through the selector to form
a sixteen-bit output (ZERO, N, K, N-K).

Turn to page 7 of the ALU logic diagrams and locate multiplexers L7, L8, M7, and M8.
These four multiplexers control the four most significant bit inputs to the ALU B
source. Control signals 8280-1 through 8282-1 determine which source data will be
used. The multiplexers are enabled (E input) whenever the ENABLE S2 signal from
page 18 is present. The ENABLE S2 signals are provided as follows:

e ENABLE S2-1 enables the eight MSB’s through S2 (N register) if MIR bit 29
is present (WORDI1).

e ENABLE S2-2 enables the eight LSB’s through S2 (K register) if MIR bit 28
is present (WORDO).

Selector S2 consists of a total of sixteen multiplexers located on pages 7, 10, 13,and 16
of the logic diagrams. One data source to selector S2 which is significant is the bit gen-
erator (BG). The bit generator is located on the control 2 module and its main func-
tion is to generate a 1 bit at any position in a word as input to the B side of the ALU.
Control to drive the bit generator is derived either from microinstruction bits (MIR27
through MIR31) or from the lower five bits of the N register (NO3 through NO7).
BGGPO and BGGP1 enable the bit generator output to either the lower eight-bit word
group or the upper eight-bit word group.

3-15

Arithmetic and Logic Operations

—N—

MM10—D Q}—MIR 10 R :

CcP _F—M”q 10 5252 >—

C Q
MM11—D Q —_—

C D— S251 >——>0——S2S1-1

c a To

selector

MM12—D Q { —_—

cP 3 §250 >—

C

S2
BP + TOD>-

1
=
oo’

-o
£
o
—
—

S
>
o

£
o)
iy
N

Enable S2

Figure 3-11. B-Field Decoder

F-Field Decoding

F field decoding provides control for ALU arithmetic and logical operations. However,
if the F field (bits 2 through 6) should contain either 11110 or 11111, decoding of the
A and B fields will control shifting of the A and Q registers. The arithmetic and logical
decoder is shown in figure 3-12. When decoded, MIRO2 through MIR06 supply con-
trol signals to the adder chips located on the ALU module.

Refer to page 15 of the logic diagrams. At location C7, one of the four ALU chips is
represented. In an earlier learning activity, adder operation was explained. All that
will be said here is that ALUSO-2 through ALUS3-2 signals select the operation (such

as an add) which will be performed on four bits of data per adder IC from two different
sources. Note the data inputs to the adder. Four bits are supplied through selector S2
and four through selector S1. The adder chip also monitors CARRYIN when an add
on a previous chip results in the generation of a carry condition. The output of the

3-16

ALU Instruction Example

adder chip is four data bits and three control signals. PROP and GEN are monitored by
the look-ahead carry generator (page 18) while the A = B condition results when A
source data equals B source data. The combination of four adder chips and one look-
ahead carry generator controls all arithmetic and logical operations except shift. The
remaining adder chips are located on pages 6, 9, and 12 of the logic diagrams, while

the look-ahead carry generator is on page 18.

ALU
——
{>c ALUS3 J‘>c ALUS3-2
MIR 02 N,
MIR 03 —_—
‘ ALUSO0-2
MIR 06 ALUSD
MIR 02
> ALUM >c ALUM
ALUS2 ALUS2-2
MIR 05
ALUST -—{>o—~ ALUS1-2
MIR 04
Figure 3-12. F-Field Decoder for Arithmetic and Logical QOperations
D-Field Decoding

D field decoding gates output data from the adder, selector S3, or selector S1 to some
destination register. The destination register may be one of six working registers on
the ALU module, the I/O data registers on the SMI module, or the macromemory
buffer register. Figure 3-13 represents part of the decoding mechanism for the D field
(bits 13, 14, and 15). It consists of two multiplexers; one is used when D decoding is

3-17

Arithmetic and Logic Operations

called for; the other, D’ decoding. (D’ decoding is specified when the DP signal is
present; that is, when S equals 1001 or 1010.) Enabling signals are provided to the
destination registers, depending on the D-field contents. Some of the enables sup-
plied to the ALU module can be seen on page 7 of the logic diagrams (location A8).

The GATEQ and GATEX signals from the decoder are inverted and supplied to the

logic components which make up the Q and X registers. These signals enable selector
S3’s output to either the Q or X registers when present.

Mux aojo8-n/c
MIR 158 1 o™ apd ‘2 U 76, Gaterr
MIR 14-B 215 azptd 1
MR 13.8 32 opii "
ot . 973:52‘ o2 — 25, catev/
) 31 P asp? GATE I-/ Q
0P8 idca osp—- 3
SATEIRT i N i smsoop@ms 9N, cATEQ
LGATED 10 aFTCIR - 2
WUX Gojptf—82,. GatEioDAT/ 12
1 sos;s‘? aip— 282 catei0aDR/ 13 ‘w oLl 89 GATEF/
s apine
Bl apliae .
sl 26 arewns ANSHFTCLK—’4 6 27, Garen
Sdc1 asfol®—25. Gatesmi/
opp8 ——————4qG2a -2 & catema
5 7 283 MMGATE")‘ ‘@ 3289
= G28B Q7 o———+ GATESM2/ 2 O GATE X/

SAVEAGEE
— 4
i3] SAVEAB———qs I L
2
L1° 738
. 1
3] cateT——e2dcr s [3] savear 13 R
[6] v Hdc gl 12
iy
LS BLKABFF
CONREFMEM/ >22 ids o}2—ntkasrr [8]
2 1o FF
3 | 73801
[1] 7 e
[13] stkas -dc G—nic
2qis
fi2) PUR_—_IW__,OS
w2)) FF
—_ 11 |- 73801
5] Té F K7

13

;

Figure 3-13. D-Field Decoder

saveas [i3]

WEF!

ALU Instruction Example

Summary

This text has shown how the ALU control field is decoded, the resulting control signals
generated, and the functional areas of the ALU affected by these control signals. It
should be apparent how the control section of the microprocessor interfaces with the
ALU to provide control of arithmetic and logical operations. The next learning acti-
vity will contain a closer analysis of the ALU logic diagrams to show how the ALU
performs its various operations.

3-19

ALU Logic Diagram Data Flow

DIRECTIONS: The following questions are referred to at selected stops in the accom-
panying audiotape. They are intended to be completed by you as you play the tape.
Answer each question by filling in the blanks or picking the best answer from a choice
of answers.

1. (a) What enable signal provides gating of output data from selector S3 into the
X register? (b) From which field of the microinstruction does this enable
originate?

2. Pin 7 of logic term JK8 (page 7 of ALU logic diagrams) is labeled Q04. (a) From
which logic term does this signal originate? (b) What is its purpose?

3. (a) What is the logic term number and pin number of the signal that supplies data
bit 4 to thc RAM chip, term G3? (b) What working register does this logic term

represent?

4. Assume the following conditions: 1. Selector S1 select signals enable pin 1 of
each multiplexer as the data input source. 2. All working registers equal FFFF
hexadecimal. If the output of selector Si is as indicated below, which logic term
or terms would you most likely suspect of failure?

EEEEEEEEEEEEREE
0 Selec:orS1 15

Data input = FFFF16

5. Why does the signal from logic term ALUOS, pin 13 (page 12 of the logic diagrams),
go to four different multiplexer components of selector S3?

3-20

ALU Logic Diagram Data Flow

ANSWERS

1. (a) GATEX signal, (b) originates from D-field decoding of microinstruction

2. (a) JK7 on page 10 of the logic diagrams, (b) The Q04 signal is available to JK8 to
allow bit shifting during a left-shift operation. The most significant bit of JK7 (Q04)
would be shifted into the least significant bit position of JK8, that is, Q03.

3. (@) Logic term H4, pin 11, (b) the F register of the ALU

4. The data is enabled to pin 1 of selector S3 multiplexers in the X register. Because
bit 10 is a logic 0 at selector S1’s output, either the flip-flop representing bit 10 of
the X register (term E4, page 13) is not set or the selector S1 multiplexer (term FS5,
page 12) has failed to transfer the correct data.

S. There are four types of data transfers peiforined by selecior 33: a one-piace right-
shift, a one-place left-shift, an eight-place left-shift, and a straight transfer operation.
Each ALU output goes to the four selector S3 inputs that allow these transfer condi-
tions.

3-21

Macroarithmetic Instruction Execution (Text)

The CYBER 18 computer, an emulation processor, emulates the operations performed
by a 1700 computer. The emulation process can be broken down into two major
activities:

® Decode the 1700 macroinstruction into a microcode and a micromemory
address.

e Decode the resulting microinstructions to enable operations which emulate
those performed by the macroinstructions.

Through examples, this learning activity demonstrates the emulation process. Micro-
code, which produces microprocessor gating, closely duplicates the 1700 instructions
of a 1700 computer. For example: first, a 1700 read memory instruction generates
the microcode; this, in turn, generates a macromemory read command; as a result,
contents of a memory location are placed into a designated working register. The
basic process used to emulate a 1700 read memory instruction is demonstrated in
figure 3-14.

The 1700 instruction is first read from main memory by a read command contained in
the microinstruction labeled ““1.”” It is then gated to the transform module of the
processor by a transform command in the microinstruction labeled ‘“2.” Three main
operations are performed by the transform, with control of these operations derived
from the bit arrangement of the 1700 instruction. The three operations performed are

as follows.

A. Microaddress Formation. This address will depend upon the function code of
the 1700 macroinstruction. The address selected will contain the emulation
program for that instruction.

B. MIR Encoding. The MIR encode will result in a new ALU control field. When
decoded, this controls the formation of an effective address for main memory,
from which an operand will be read. It also contains the address of the next
microinstruction.

C. Delta Translation. The delta field of the 1700 instruction is made available to
an ALU source (either A or B) and may be used in operand address formation as
immediate data or as extended operation code.

3-22

Macroarithmetic Instruction Execution

Data | Main memory
1700 instruction bus

]
Control interface \
7

MIR 31
Read 1
Transform e—GITMAK/XT
T O 1 MiR 31
ALU control GETMAK/XT 2
Deita field Early emulation
translation processing
Micromemory 0 MIR 31
3
@ Emulation
routine
/'__\ /l/
T Control next set
Control sequencing of microprocessing

to next microinstruction

Figure 3-14. Basic Emulation Process for a 1 700 Read Memory Operation

3-23

Arithmetic and Logic Operations

Assume, for the sake of our example, that a memory reference 1700 instruction has
been read. Once the effective address of main memory has been formed and its con-
tents read, a third microinstruction (number 3) is formed by reading a micromemory
location. This read is forced by an enable from the second microinstruction (number
2). Microinstruction number 3 (its address determined by the function code of the
1700 instruction being emulated) commands the contents read from main memory

into a specific working register. Another part of the same microinstruction contains
information used to locate and read the next address of micromemory. That micro-
memory location may contain an instruction that is part of the 1700 emulation or the
beginning of an RNI routine that will read the next 1700 macroinstruction to be
executed (similar to instruction number 1). The number of emulation microinstructions
(number 3 and beyond) in an emulation routine is determined by the complexity of the
1700 instruction being emulated.

Sequehce of Emulation Activities

A 1700 instruction ultimately controls selection of its own emulation microprogrammed
routine. Because of this, the transform process (steps 1, 2, and 3) performed by the
microprocessor will vary depending on the function code of the 1700 instruction being
emulated. To understand the complete emulation of an instruction, it is necessary to
analyze each of the six steps involved in the emulation process:

Form the address of the next macroinstruction to be emulated.
Read the macroinstruction to be emulated.

Select transform options.

Perform the transform of the macroinstruction.

Execute the emulator program in micromemory.

Return to step 1.

S AW~

Typical of many emulations is the 1700 LOAD Q (LDQ) instruction. When executed,
it places the contents of a macromemory location into the Q register of ALU. The
steps used to emulate the 1700 LOAD Q instruction are as follows.

Step 1. Form the address of the next macroinstruction to be executed.

This first step is executed prior to reading any macroinstructions. The microinstruction
used to accomplish this is contained in micromemory address 05814 This address is
read as part of the previous emulation or initial start-up. When read, the instruction at
address 0581 ¢ will increment the P register by 1 to form the macromemory address
from which the macroinstruction to be emulated will be read. During this increment,
the address will also be entered into AB register in macromemory. Additionally, this
same microinstruction will point to the next micromemory address to be read, as
shown in figure 3-15. The M-field contents cause the next sequential address, or the
lower thirty-two bits of address 058 ¢ to be read.

3-24

Macroarithmetic Instruction Execution

c The microinstruction in execution is the last
2 I one of the previous emulation process. Its
01011000 C field contains the address of the RNI

sequence.
Micro-
memory
MIR
:‘_o‘gsz@_':w 6C79 0000
Upper .
Increment
P register
by 1 to
M field indicates form address
sequential micro- of next
- memory address. macro-
: instruction
to be
emulated.

Figure 3-15. Increment to Address
of Next Macroinstruction (P=P+ 1)

Step 2. Read the macroinstruction to be emulated.

Step two of the emulation process shown in figure 3-16 begins when the sequential
address of micromemory is read and the microinstruction contained there is gated
into the MIR. The ALU control field of this instruction performs no operation,
although the M field does indicate that the next instruction read from micromemory

will be sequential.

The T, S, and C fields generate control signals that initiate the reading of the
macroinstruction to be emulated and the testing (T field) used to detect the presence of
interrupts. The presence of an interrupt is the only reason why this instruction
would not read memory at this time; the T field of the microinstruction checks for
this condition. If an interrupt does exist, the microprogram sequences immediately
to a microaddress that will process the interrupt condition before performing the
transform command. Assuming that no interrupt condition is present, sequencing
is done to read in the transform microinstruction.

The C field of this instruction contains the transform command (GETMAK/XT) that
both causes memory data (1700 code) to be entered into IXT and initiates the trans-
form process. (Within the transform hardware, the decoded level GATEIXT is used
to enter registers and start processes.)

3-25

Arithmetic and Logic Operations

Read lower instruction at address Read contents of macromemory,
as indicated by M field of last Micro- and place the 1700 instruction on
instruction. the CPU tri-state bus inputs.

) memory
\ ______ | MIR
058(16) Q» D8D8 B307

& NOP T field looks for interrupt
Next microinstruction will be / condition in processor. If it exists,
sequential as specified by the M program will exit to process
field. interrupt condition before
resuming present operation.

Figure 3-16. Initiate a Read 1700 Instruction from Main Memory
and Test for Interrupt

Step 3. Select transform options.

Once the 1700 LOAD Q instruction is contained in IXT, the next microinstruction of
the RNI sequence will be read from micromemory. This instruction contains in its C
field the transform operation information required for the next operation. A
GETMAK/XT transform indicates that the address of the next microinstruction pair to
be read from micromemory will be formed as a result of an MA transform. An MA
transform will control selector S5 in forming the microaddress. The upper sixteen bits
of the instruction shown in figure 3-17 will be replaced by the results of an MIR-
encoding operation performed on the macroinstruction being emulated. This operation
is demonstrated in step four.

3-26

Macroarithmetic Instruction Execution

Present contents of ALU
control will be replaced
during this operation by
MIR encoder. Execution
time extended to allow

Address determined by
M field of previous

microinstrpction. A GETMAK/XT transform will be

completion performed. The next microinstruction
Micro- o -.z:.' is forced partially from the 1700
memory NG instruction and the lower half of
this instruction.
0587
| __059_ _

Execute upper
instruction of
next micro-
instruction pair.

Figure 3-17. Select Transform Options (per LDQ)

Step 4. Perform the transform of the macroinstruction.

Many activities occur at the same time while the transform operation takes place.
First, the micromemory address that contains the LOAD Q emulation program is
formed. The formation of this address depends upon what function code bits of

the 1700 instruction are being emulated and whether or not that instruction specifies
indirect addressing. The transform specified here is a GETMAK/XT transform.

A second operation performed in this step is the encoding of the macroinstruction
into the most significant sixteen bits of the MIR. This control information, when de-
coded, will begin the formation of an effective address for macromemory referencing.
From this effective addressed location will come the operand destined for storage in
the Q register. The MIR encoder output is determined, as MA was, by the function
code of the macroinstruction and its F1 field.

Another operation performed in step 4 is delta field translation. The 1700 instruction
being emulated in this example specifies that the effective address of memory is the
delta field number. During transform, the delta field is monitored by the delta trans-
lator. This translator transfers the lower eight bits of IXT and supplies an additional
eight bits depending on the sign bit of the 1700 delta field. These sixteen bits are sent
to the ALU module to form the macromemory address. Observing figure 3-18, then,
it can be seen that the ALU control field of MIR supplies the control to ALU that uses
the delta field contents of the 1700 instruction as the next macromemory address.

3-27

Arithmetic and Logic Operations

.~ 1700 LDQ instruction
- (E0O03)

IXT register
[E OO 36 | Delta

T translator

F field
contents "\

16-bit A
contents for
F1 on ALU
module.

Selector

MA _+[100} 1110 |0

transform

Encoder is Determines partial
MA transform

result.

' controlled by ';M? 89n:0der
P/MA 7 register F field and -— 18t '(1‘6)
0 9 Cpe) F1 of macro-

instruction.

Micro-
-Tim.? 'l’_ Effective address
L ..99_0_(.16_)_ of main memory
This is micromemory is formed. from
address where load Q !

which contents
destined for the

Q register will

emulation program is
contained.

originate.

Figure 3-18. Transform of a 1700 LOAD Q Instruction

3-28

Macroarithmetic Instruction Execution

P/MA register Fi
Irst
L 09 916 instruction
. . of load Q

. emulation
Micro- program
memory MIR)

b o ———

Read
effective
address of
memory
(=0003)

far ocperan
U UL al

M field calls for
sequential addressing.

T field specifies that
upper instruction of P register
next instruction pair contents
will be read next. plus 1 to P
to form
next 1700
instruction
address.

Figure 3-19. Execution of Emulation Program
from Micromemory

Step 5. Execute the emulation program in micromemory.

It is now possible to use the LOAD Q emulation program stored in micromemory. The

contents of microaddress 09C are gated into MIR by the C field of the previous
instruction (see figure 3-19). The ALU control field of this new instruction forms
the incremented address (P = P + 1) that selects the next macroinstruction for
emulation. The LDQ operand read command is contained in the S field of the
same instruction. Information contained at the operand’s macroaddress will be
placed onto the tri-state bus. It will be gated into the Q register when the next
microinstruction is executed. It should be noted that the microinstruction
presently in execution also determines the next microinstruction to be read. For
this (LDQ) routine, the microinstruction will be the upper 32-bit instruction at the
next sequential address, that is, 09D.

3-29

Arithmetic and Logic Operations

P/MA register Contents of P/MA are incremented
[09D] by PS/MAC register as a result
- of T and M field contents of previous

microinstructions.

Micro-
memory

9F DB 4058

Place memory
contents
previously
read through
the A source
of ALU into
the Q register.

M field specifies a jump.

Jump to the RNI
sequence to obtain
the next 1700
instruction.

Figure 3-20. Complete LOAD Q Emulation

and Jump to RNI Sequence

Step 6. Complete emulation; go to RNI sequence.

The final operation required to complete a LOAD Q operation is placing the operand
obtained from memory into the Q register. Figure 3-20 demonstrates this operation,
performed by the upper instruction contained in the address 09D. The ALU control
field of the instruction gates memory data from the tri-state bus to the A source of the
ALU. The D field of ALU control places the information into the Q register.

The second function of the instruction is to specify the address of micromemory that
will be read next. The content of the C field (058) is that address. 058 is the begin-
ning address of the RNI sequence that began our emulation process. The emulation of
the 1700 LOAD Q instruction is complete. The RNI sequence will now provide the
processor with a new macroinstruction to be emulated, and the process just analyzed
will be repeated.

3-30

Macroarithmetic Instruction Execution

Review of Sequence

The basic sequence of events you have just followed is demonstrated in figure 3-21.
When the RUN switch is pressed, the first operation is the formation of a macromemory
address that contains the first macroinstruction. Once that instruction is read, the
emulation process occurs. This process varies depending upon the type of macroinstruc-
tion being emulated, for example, storage reference, register reference, interregister, or
skip. Once the emulation process has been completed, the RNI sequence again occurs
in order to locate the next macroinstruction to be executed.

Perform macro-
instruction transform

Execute 1700 Read macro-
emulation program instruction

Perform RNI sequence
for next macroinstruction

]

Microprocessor
start command

Figure 3-21. Sequence of Events in Emulation Process

Because an emulation process is somewhat complex, it is extremely difficult to demon-
strate the complete operation. A close approximation of an entire emulation is shown
in figure 3-22, which demonstrates an ADD to A operation. The sequence of opera-
tions occurs from top to bottom.

3-31

Arithmetic and Logic Operations

The 1700 instruction specifies that
the contents of the memory location Macro-
specified in A should be added to the 1700 instruction memory

A register contents. LRSI
\ (80CO)

Luooo Jooco | 110000 |)
el e e M'R .';n..

register ? ‘I 0011 L001 01000 Ilnstru1ction
i S C

GETMAK/XT

translator

16 bit delta (A)
field becomes
effective address
of operand to be
read from memory

F1 =0000

and (goes to F1 output
Fro of ALU).
31
H T T T T T—T T .
0000 10010000 |0 011 11000 111010011110 100111 0000 | 00101000 '“s"‘;“m"

\Add F1 Zero X
o A .

GETMAK/XT Form effective
address of operand

to be read from

Micro-
memory

memory.
“““““ 00 MIR 31
_______ W T T H T T 1 T] Instruction
______ lOlILlOHO :()01,:111 : 001 {001}0! 0011 ! 00000000 J 3

SUB_. P MEM P/

Read contents

of macroaddress
to tri-state bits.
increment address

T field forces upper/

instruction of next

pair to be read. 31 (P=P+1).
T T 7 —T7 T i
- 101 11001 110011111 1011000101 0000 | 01011000 | '"struction
A jump is specified r A e Yo 4

“ANADDT A MEM A

to the address
contained in the

C field. That address
is the beginning of
the RNI sequence.

Next micromemory

address (RNI)
Add memory

contents to A
register contents.
The result is gated
to the A register.

Figure 3-22. ADD to A Register Emulation Process

3-32

Macroarithmetic Instruction Execution

The emulation begins with the reading of the macroinstruction from memory and
gating it into the IXT and IXT’ registers. This is done during the RNI microroutine.
A second microinstruction containing the transform commanad is read during RNL
The upper sixteen bits of this instruction are not gated into MIR; instead, the output
of the MIR encoder is used to provide the arithmetic control information.

At the same time that this occurs, a microaddress is formed for the P/MA register that
will select the emulator program. The delta translator also is active at this time. It
interprets the lower eight bits of the macroinstruction and generates a resultant sixteen-
bit output to the F1 (file 1) output on ALU. The microinstruction decodes the ALU
control information obtained from the MIR encoder to form or begin to form (depend-
ing on address modifiers r, ind, Q, and I) and an effective address for main memory,
since the macroinstruction being emulated (ADD) is a memory reference instruction.

The next step is to gate the first micromemory instruction of the ADD emulator pro-
gram into MIR. The first instruction (number 3 on figure 3-22) reads the effective
address of main memory and determines the next microinstruction to be executed. In
the example demonstrated it is the instruction at 0911¢. The second microinstruction
read from micromemory (number 4 on figure 3-22) will add the contents of memory to
the A register contents, placing the result of the ADD back into the A register. This
same microinstruction also directs the microprogram to exit to the RNI routine at
address 0581 g of micromemory.

It is possible to follow the emulation of any 1700 instruction if the operation of trans-
form is understood. Included in this activity is a theory of transform operation. Given
in this section are a series of tables and figures which demonstrate the various transform
operations available for the various 1700 instruction types. By analyzing the type of
1700 instruction and determining the type of transform taking place, it is possible to
find the micromemory address, the output of the MIR encoder and delta conversion
selected. Once these are known, it is only necessary to locate a program listing that
shows the emulation programs and their micromemory addresses. The decoding of

the emulation program is accomplished by determining the contents of each micro-
instruction field contained in this program.

Theory of Operation

The 1700 transform with read-only micromemory is used to emulate the Control Data
1700 computer instruction repertoire when it is combined with the basic microproc-
essor (MP) to form the 1700 enhanced processor. The emulation process includes both
hardware and firmware for more efficient operation.

3-33

Arithmetic and Logic Operations

The firmware consists mainly of many microcode subroutines that emulate 1700
macroinstructions; therefore, it is also called the 1700 emulator. For each 1700
macroinstruction, there exists a corresponding subroutine required to emulate it.
To start the emulation, the macroinstruction is read out from macromemory by a
portion of the microprogram. The macroinstruction is then decoded by hardware;
this hardware decoder is called the transform. The transform provides the micro-
program with the capability to select patterns of bits from the registers and the data
transmission path of the MP to form the micromemory address. This micro-
memory address selects the appropriate microcode subroutine to emulate the
macroinstruction. More than one transform operation may be required to completely
emulate a macroinstruction. The transform also sets the parameters, generates the
microcode needed for the arithmetic and logical operation (refer to MIR Encode)
during the emulation process, and sets the contents of the N and K registers.

There are three types of transforms:

o MA transform
e K or N transform
o Combined MA and K transform

The transform commands are coded in the C field of the microinstruction as TMA/j,
TK/j, TN/j, GETMAK/j, and GETMAK/XT. The letter j is decoded from the lower
four bits (MIR28 through MIR31) of the microinstruction register for the MA
transform and the lower three bits (MIR29 through MIR31) for the K and N trans-
form. These bits specify the selector position of selector S5 (MA transform) and

of selector S8 (K and N transform). Table 3-2 lists the operations that result when
the above transform commands are executed. Figure 3-23 is the block diagram of the
1700 transform moduie.

3-34

Macroarithmetic Instruction Execution

Upper/lower To
memory I~ BUS00-BUS15 selector
data select S1orS2
PG3 — Read only —
MAO— memory MMOO-MM31 SM107-SM111
(aﬁ;npu}:!_ (1K x 32bits)| pmza. To
A7 MM31 - MIR
Micro- Delta
instruction —= MIR24-MIR31 translator (16 MsB)
register Enable)
To . MIR
To K/N registers 8 inputs encoder
selector S6 J E nabl
I(a bits) i {8 bits) 16 inputs
TMA/j MA TN/i
Decoder SEL transt K KN XTI F1 = 0000-
TMAK/j GETMAK/XT, anstorm IseL transform -
(selector S5) i (selector S8)| Fr=1m
GETMAK/j TMAKI
4 inputs] 16 inputs GETMAK/j {8 inputs) F1
decoder
1 4 inputs l
MIR24-MIR31
S2 (8 LSB)
Instruction
Load o1 transform IXT" o Load
{GETMAK/XT GETMAK/j) . GATEXTMIR
register {IXT}
(8LsB) l
Delta fieid of 1700 instruction
Data from
memory
(18 bits)

Figure 3-23. 1700 Transform Module Block Diagram

TABLE 3-2
Transform Operations
Mnemonics Operation
TMA/j Obtain next microinstruction pair from the address specified by
MA transform (selector S5), setting j.
TK/j Set K register to value specified by K transform (selector S8),
setting j.
TN/ Set N register to value specified by N transform (selector S8),
setting j.
TMAK/j An MA and K transform is executed based on the value of j.
GETMAK/j i 1. Output data from macromemory is gated into the
instruction transform (IXT) register.
2. AnMA and K transform is executed based on the value
of j.
GETMAK/XT f 1. Output data from macromemory is gated into the IXT

and IXT’ registers.

2. One of eight MA transforms is executed based on the
macroinstruction loaded into the IXT register (selected
from selector S5, positions 8 through 15). The K reg-
ister is always transformed from S8, position 7.

3. The most significant 16 bits of the microinstruction
register (MIR) are loaded with a microcommand encoded
from the macroinstruction residing in the IXT register.
This operation is referred to as MIR transform (XT/MIR).
The least significant 16 bits of MIR are loaded from micro-
memory.

i These commands must be executed in the microinstruction following a read

command.

3-35

Arithmetic and Logic Operations

IXT Register

The IXT register is a sixteen-bit register that holds the macroinstruction currently being
emulated. The IXT register consists of D-type flip-flops A3, J2, C5, and BS. It receives
its input directly from macromemory DFMO1 through DFM16 (DFMO1 is the least
significant bit and DFM16 is the most significant bit). The output of the IXT register,
100 through 115 (I00 is the most significant bit and 115 is the least significant bit), is
sent to selector S5, selector S8, the delta translator, and MIR encode to be trans-
formed. The IXT register output is also sent to GETMAK/XT decoder to generate the
proper control signals for selector S5 during a GETMAK/XT operation. The IXT
register is loaded by executing a macromemory read microinstruction followed by a
microinstruction with a GETMAK/j or GETMAK/XT in the C” field. Refer to the
GATEIXT signal in the control 1 module. Otherwise, IXT can be loaded by executing
a microinstruction with C’ code equal to 011xxxx to generate a general-purpose strobe
at time T4. Refer to the GATEBKP signal in control 2.

IXT’ Register

The IXT’ register is an eight-bit register that holds the least significant eight bits (delta
field) of the 1700 macroinstruction. The IXT’ register is utilized mainly for emulation
of 1700 enhanced instructions that have doubleword format. The IXT’ register consists
of D-type flip-flops C4 and B4, which receive their inputs directiy from macromemory
DFMO1 through DFMO08. The data from macromemory is gated into the IXT’ register
by GATE XTMIR, which is generated only during the GETMAK/XT command. The
output of the IXT’ register is sent to selectors S5 and S8 to be transformed.

Selector S5

Selector S5 is an eight-bit wide selector that is used to form micromemory addresses.
It consists of 16-to-1 multiplexers L2, 1.3, 14, L5, L7, L9, L10, and L12, which
allow sixteen different micromemory address (MA) transforms to be specified. The
eight-bit transformed MA specifies one of the 256 64-bit micromemory words within
a page. The selector position is determined by the letter j of TMA/j, TMAK/j, and
GETMAKY/j, or, depending upon the macroinstruction, via transform hardware
(GETMAK/XT command).

Figure 3-24 shows sixteen different MA transforms. MA transforms 0 through 7 and
9 through 12 are used to emulate 1700 enhanced instructions. MA transforms 8
through 15 are used to emulate the basic 1700 instructions. The 1’s and 0’s are
generated by handwiring to +5v or ground, respectively. Other patterns of bits are
derived from registers IXT, IXT’, the lower eight bits of selector S2, and special
conditions such as protect violation or indirect address mode, which are decoded
from the macroinstruction. Table 3-3 lists the different MA transforms applied for

3-36

Macroarithmetic Instruction Execution

different types of macroinstructions and for different addressing modes. Whenever the
GETMAK/XT command is executed, one of the eight MA transforms (8 through 15)

is selected, based on the macroinstruction being emulated. Tables 34, 3-5, and 3-6
show the MA transforms for the basic 1700 storage reference instructions (F # 0), basic
1700 register reference instructions, and interregister reference instructions, respectively.
The MA transforms for the enhanced instructions are selected via XT/F1 MA transform
13. The position-select signals, S5-SO through S5-S3, of selector S5 are described in the
following section.

¢
3
r
<
o

S

©

o

¥
32

3

£

5 ¢
m

XT/FM

Instruction | Value Transform output Instruction j Value Transform autput
o 1 2 3 4 7 2 3
] . TI IXT
XT/INT 0 L lol1| |1r1|“”[A. XT/SK 8 ’1l1!ol (0811) 0!
IXT
XT/IR2 1 tJ 0 L1 f1 l 1 l<11x-12) OJ XT/SH or 9 {110 I 1] 110 (OIE)R(TO) I
XT/DRP
XT/F3A 2 Ll T1 l 0] 1—1 1T “';(_Is) [XT/IR or A [1] 1 Lwi 0] (1';(15)
XT/F3
XT/DEST 3] R J 01 1J 11 ; { (1l§;5) XT/F or B [1 l 0 ! 0 l (0';(;;) {OJ
XT/F4
T [] IXT 1
XT/F3* 4 |1 Pj i X J XT/IM or c [1 1 l 11 I J
1141 ¥
L [(11-15) XT/SKIP 2 l l (08-11)
= IXT A=
5
[ololorololoLo[o] XT/F1 D‘0|1l l (0407} Jﬂ
XT/F2 6 [1 Iol1]0] (';;, [Aozlo—l XT/F1* E [llo T !0‘87l(oi;xg7)J
- r

IannnnEn

T A= (IXT = 0500) +5209
= |IN instruction or false attempt
B =(F1-00xx) + MULTILEVEL INDIRECT MODE
C = Protect violation
D=(A"=0)+B

Figure 3-24. MA Transforms

3-37

Arithmetic and Logic Operations

TABLE 3-3

MA Transform Applications

Instruction MIR28-MIR31 =j Application
XT/INT 0 Micro/macro interrupt
XT/IR2 1 Interregister type 2 instruction
XT/F3A 2 Field instruction
XT/DEST 3 Register destination
XT/F3 4 Miscellaneous instruction
5 Not used
XT/F2 6 F2 (address mode) for enhanced instruction
XT/S2 7 Selector S2 (lower eight bits); normally used
for the breakpoint panel
XT/SK 8 Skip instruction
XT/SH or 9 Shift instruction, or decrement and repeat
XT/DRP instruction
XT/IR or A Interregister instruction with M not the origin,
XT/F3 or miscellaneous instruction
XT/F or B F (OP CODE) field, or OP CODE for storage
XT/F4 reference type 2 and field instruction
XT/IM or C Interregister with M origin, or skip instruction
XT/SKIP2 type 2
XT/F1 D F1 (address mode) field
XT/Fi E Alternate F1 field
XT/FM F Miscellaneous F1 field

3-38

Macroarithmetic Instruction Execution

TABLE 34
1700 Storage Reference Transforms During GETMAK/XT Operation
F1
Mode (Binary) Hexadecimal Delta Instruction MIR Transform

Absolute 0000 0 #0 XT/F A -+ X,AB
Constant = XT/F1 P+1- P, AB
Absolute 0001 1 #0 XT/F A+ (00FF) » X, AB
Constant = XT/F1* P+1 +P,AB
Absolute 0010 2 #0 XT/F A+(Q) +X, AB
Constant =0 XT/F1* P+1-—+ P, AB
Absolute 0011 3 #0 XT/FM A+ (00FF) -+ X, AB
Constant S XT/F1* P+1 P, AB
Indirect 0100 4 #0 XT/F1* A =X, AB
Storage = XT/F1* P+1 - P, AB
Indirect 0101 5 #0 XT/F1* A +X, AB
Storage = XT/F1* P+1—+P, AB
Indirect 0110 6 #0 XT/F1* A —+X, AB
Storage = XT/F1* P+1-—+P,AB
Indirect 6111 7 #0 XT/F1* A -+ X, AB
Storage = XT/F1* P+1- P, AB
Relative 1000 8 #0 XT/F P + AGSE)* X, AB
16-bit relative = XT/F1 P+1-P,AB
Relative 1001 S #0 XT/F1 P + A(SE) = X, AB
16-bit relative = XT/F1 P+1—P,AB
Relative 1010 A #0 XT/F1 P + A(SE) - X, AB
16-bit relative = XT/F1 P+1-P,AB
Relative 1011 B #0 XT/F1 P + A(SE) - X, AB
16-bit relative = XT/F1 P+1- P,AB
Relative indirect 1100 o #0 XT/Fi* P+ ASE) = X, AB
Relative indirect = XT/FM P+1-+P,AB
Relative indirect 1101 D #0 XT/F1* P + ASE) -+ X, AB
Relative indirect = XT/FM P+1 - P, AB
Relative indirect 1110 E 70 XT/F1* P + A(SE) - X, AB
Relative indirect = XT/FM P+1 =P, AB
Relative indirect 1111 F #0 XT/F1* P + A(SE) = X, AB
Relative indirect = XT/FM P+1 -P, AB

* SE = Sign Extended

3-39

Arithmetic and Logic Operations

TABLE 3-5
1700 Register Reference Transforms During GETMAK/XT Operation
F1 (Binary) | Instruction MIR Transform Comment
0000 XT/F1 NOP Selective stop (A=0)
Instruction enhanced (A#0)
0001 XT/SK P+1->P AB Skip
0010 XT/F1 P+ A(SE) > F,AB| Inputto A
0011 XT/F1 P+ A(SE)—~F, AB Output from A
0100 XT/F1 NOP Enable interrupt (A=0)
Instruction enhanced (A%0)
0101 XT/F1 NOP Inhibit interrupt (A=0)
Instruction enhanced (A#0)
0110 XT/F1 Q—->X,AB Set program protect (A=0)
Instruction enhanced (A#0)
0111 XT/F1 Q->X, AB Clear program protect (A=0)
‘ Instruction enhanced (A%0)
1000 + + Interregister
1001 XT/F1 P+1—>P, AB Increase A
1010 XT/F1 P+1-P,AB Enter A
1011 XT/F1 NOP Pass (A=0)
Instruction enhanced (A%#0)
1100 XT/F1 P+1-P, AB Enter Q
1101 XT/F1 P+1->P,AB Increase Q
1110 XT/F1 A(INT) - X, AB Exit interrupt
1111 XT/SH A-F Shift

T See 1700 Interregister Transforms.

3-40

Ma“oanthﬁcuu Instruction Execution

Select Signals S5-S0 through S5-S3

During TMA/j, TMAK/j, and GETMAK/j transform operations, position select signals
S5-S0 through S5-S3 directly correspond to MIR28 through MIR31. During the
GETMAK/XT transform operation, select signals S5-SO through S5-S3 are generated
based on the microinstruction being emulated. Multiplexer K12 selects one of the
above cases depending upon the state of the GETMAK/XT signal at K12-1. The out-
put of the IXT register is first decoded to select the MA transform according to figure
3-25 for the storage reference instructions (F # 0) and according to figure 3-26 and
table 3-5 for the register reference instructions and interregister reference instructions
(F = 0) during the GETMAK/XT operation. The F = 0 signal at pin 1 of multiplexer
D10 selects the MA transforms as follows:

F=0Ilow S5-S0 through S5-S3 are generated from the
storage reference instruction

F = 0 high S5-S0 through S5-S3 are generated from the
register reference and interregister reference
instructions

The MA transform selection shown in figure 3-26 is performed simultaneously by the
combination circuit. These flow charts are used to show the selection conditions
rather than the sequential steps in selecting the MA transforms.

(Storage
reference)
F#0

Yes

1-1+2+3andA Oor
F1=4+5+6+7andA= XT/F1*
DON'T CARE or (S5-S0 - S5-S3 = 1110)
F1= C+D+E+FandA$0

F1= 3andA4=Oor
F1—C+D+E+Fand

XT/FM
(S5-S0 - §5-S3 = 1111}

F1= OandA 0

F1=8andA=0 XT/F1
F1=9+A+Band (S5-S0 - $5-S3 = 1101)
—DON'T CARE

F1= 0+1+2andA#0X XT/F

Ft=8and A#0 (85-S0 - §5-S3 = 1011)

Figure 3-25. MA Transform Selection
For 1700 Storage Reference Instructions

341

Arithmetic and Logic Operations

TABLE 3-6
1700 Interregister Transforms During GETMAK/XT Operation
Instruction Condition
XT/IR M not origin register (112 # 0)
XT/IM M is origin register (I112 = 0)
MIR Transform Conditions
(MIR Fields)
Origin Destination
F A B D
Bits Bits Bits Bits LP{XR|A Q M A Q M
2-6 79 10-12 13-15 | 18|19 | 110 | 111 | I12 | 113 | 114 | IIS
ADDT - — — 0] O X X 0 X X1 X
11001
A B — — — 110 X X 0 X X X
01110
A+B — - — 0 1 X X 0 X X | X
01001
-A)+ - — - 1 1 X X 0 X X | X
(-B)
00001
ADD+ | Pregis- | Zeros P reg- X X1 X X 1 X X | X
11010 | ter 001 | 001 ister T
001
- Ones - - X! X] 0 X 0 X X1 X
110
- A regis- - - X1 X 1 X 0 X X! X
ter 100
— - Ones — X| X X 0 0 X X1 X
110
— — Q regis- — X{ X X | 0 X X X
ter 100
_ _ _ NOP X| X1 X X 0 0 0 0
000
A reg- X| X| X X 0 1 X| X
_ _ _ ister)
101
Q reg- Xl X| X X 0 0 1 X
_ _ _ ister T
011
- - - Fregis-|] X| X X X 0 0 0 X
ter 111

T NOP if protect violation detected.

3-42

Macroarithmetic Instruction Execution

No Storage
reference

XT/SK
(56-S0O - S5-S3 = 1000)

XT/SH
(85-S0 - §5-S3 = 1001)

F1=8andI12= XT/IR

(M reglster not ongm) (S5-S0 - S5-53 = 1010)
F -8and 112#0 XT/IM
M reglster is orlgln) (S5-S0 - S5-S3 = 1100)

XT/F1
(S5-S0 - S5-S3 = 1101)

Figure 3-26. MA Transform Selection for 1700 Register Reference and
Interregister Reference Instructions

Selector S8

Selector S8 is an eight-bit wide selector that is used to choose between a maximum of
eight different sources for loading the N and K registers. Figure 3-27 shows eight
K/N transform assignments. The 0’s are generated by directly connecting to ground.
Other bit patterns are derived from the lowest eight bits (S208 through S215) of
selector S2, the IXT and IXT’ registers, and the lowest eight bits (MIR24 through
MIR31) of the microinstruction register.

Selector S8 consists of eight 8-to-1 multiplexers, K1, K2, K3, K4, K5, K6, K7, and K9,
which are enabled only when the SSENABLE signal at pin 7 is low. The SSENABLE
signal is high to disable S8 during the clear N register (CLRN), clear K register

(CLRK), and clear N and page register (CLRNP) commands, allowing all 0’s to be
loaded into the N or K register. The position select signals S8-S0 through S8-S2 are
generated by multiplexer H9.

343

Arithmetic and Logic Operations

Instruction j Value Transform output
0 7
S2, lowest 8 bits
XT/S2 0 (08-15)
IXT
XT/SHCNT 1 0{0|0] (11-15)
IXT
XT/FLDLTH 2 oj{ojo0|0]| (04-07)
IXT’
XT/RA 3 ojlo|o]o]o] (10-12)
IXT’
XT/RA* 4 ojojojojo}(os-10)
IXT
XT/RB 5 0jojojo|o] (13-15)
MIR, lowest 8 bits "
XT/MIR 6 (24-31)
IXT
XT/FLDSTR 7 ojojojo| (00-03)

Figure 3-27. K/N Transforms

Table 3-7 indicates that if MODEI11 is high (sequential address mode, MIR0O and
MIROI1 = 11), selector S8 will be at position 6 to allow MIR24 through MIR31 to
be loaded directly into the K or N register. If MODE1! is low and MIR28 is low,
S5-S2 through S5-SO correspond directly to MIR29 through MIR31. However, if
MODEI!1 is low and MIR28 is high (GETMAK/XT operation), K/N transform 7 is
selected for all combinations of MIR29 through MIR31.

TABLE 3-7
Position Select Signal Generation

MODE 11 | MIR28 | S5S2 S5S81 | S5S0

0 0 MIR29 | MIR30|MIR31
0 1 1 1 1
1 X 1 1 0

3-44

Macroarithmetic Instruction Execution

Selector S7

Selector S7 is a one-bit wide selector that allows up to sixteen different external and/or
internal conditions to be tested to determine which upper or lower microinstruction
to execute from the next microinstruction pair.

Table 3-8 shows the conditions to be tested by the 1700 emulator during the
emulation process.

The test bit is selected by the lowest four bits of the microinstruction register (MIR28
through MIR31). The output BTU is sent to the T-field test multiplexer in the control
2 module and is tested if the T field of the microinstruction contains a BTU command.

TABLE 3-8
Emulation Test Conditions
Selector S7
Test Bit Operation Pin | Position

BTUOO Not assigned 8 0

102 Execute upper microinstruction if 102 is 7 1
al.

107 Execute upper microinstruction if 107 is 6 2
al.

106 Execute upper microinstruction if 106 is 5 3
al.

INDOOFF Execute upper microinstruction if STORE 4 4
‘00FF (index 1) status is true.

SM105/ Execute lower microinstruction if storage 3 S

(PROTECT FAULT) | protect fault is detected.

SELSTOP Execute lower microinstruction if selec- 2 6
tive stop switch is set.

SELSKIP/ Execute lower microinstruction if selec- 1 7
tive skip switch is set.

SM108 Execute lower microinstruction if storage 23 8

(PARITY ERROR) parity error is detected.

BTUO00 Not assigned 22 9

DELTA’=0 Execute upper microinstruction if delta 21 10
equals 0 (LXT8 through IXT15=0).

EA=OPER Execute lower microinstruction if the 20 11
effective address equals the operand.

EVENPAR Execute upper microinstruction if mem- 19 12
ory parity line is true (even parity).

100 Execute upper microinstruction if 100 is 18 3
al.

MULTIND Execute upper microinstruction if multi- 17 14
level indirect address mode is selected.

SM101+SM 108 Execute upper microinstruction if pre- 16 15
vious macromemory write cycle was
aborted (caused either by parity error
or protect fault).

345

Arithmetic and Logic Operations

MIR Encode

The 1700 instruction format is repeated here to help in understanding the signal
mnemonics:

10 I3 14 17 18 115

During the GETMAK/XT command the macroinstruction is encoded to form the upper
sixteen bits, MMOO through MM15, which can be loaded directly to the micro-
instruction register. These upper sixteen bits of MIR control the arithmetic functions
for read next instruction (RNI) cycles and other required operations to provide more
efficient execution. The types of MIR transform based on the macroinstruction

being emulated are shown in tables 34, 3-5, and 3-6 for storage reference instructions,
register reference instructions, and interregister instructions, respectively. Figures

3-28 and 3-29 show the MIR transform selection for storage reference instructions

and for the register reference instructions as flow charts. Table 3-6 shows the MIR
transform for interregister reference instructions.

The MIR transform selection is performed simultaneously by the combination circuit.
Figures 3-28 and 3-29 show the selection conditions rather than the sequential steps
in selecting the MIR transform.

The 2-to-1 multiplexers G6, E6, ES, and G5 select the MIR transform either for
storage reference instructions (F = 0 at multiplexer input pin 1 is low) or

for register reference and interregister reference instructions (F = 0 at multiplexer
input pin 1 is high). These multiplexers are enabled by the XTMIR signal, which is
only generated during GETMAK/XT operation. If the protect violation is

detected, the D field of MIR encode is set to 0000 (NOP).

-+

346

Macroarithmetic Instruction Execution

F=0 Yes Register
reference
No
F1=0+4+5+6+7and Yes A>X,AB
AF+0 (MIROO-MIR15=718E16)
No
/ F1= DON'T CARE and \ Yes P+1>P, AR
A=0 / (MIROO—MIR15=744916)
No
Yes A + (00FF) > X, AB

F = A$
1=1,3andA#0 (MIROO - MIR15 = 7186,4)

AN

No
_ Yes A+(Q)> X, AB
F1=2and 470 (MIR0O - MIR15 = 71A6,4)
No
F1=8+9+A+B+C+D \ Yes P+ A(SE) > X, AB
FErFadat0 g (MIROO - MIR15 = 705E, ;)

Figure 3-28. MIR Transform
of 1700 Storage Reference Instructions

3-47

Arithmetic and Logic Operations

Storage reference

NOPt
F1=0+4+5+8B {(MIROO - MIR15 =
5040, or 5048,)
P+1>P,AB
F1=1+9+A+C+D (MIROO-MIR15=744916)

P+ A(SE)> F, AB
(MIROO - MIR15 = 7077 .¢)

Q> X, AB
(MIR0O - MIR15 = 5466)

No
v A[INT] » X, AB
Fl=14 Db (MIR0O - MIR15 = 5476, ¢)
No

A>F
{MIROO - MIR15 = 690F

No
Yes Interregister
reference

(see table 4-5)

16/

Y NOP = The D field of the microinstruction mustbe 0 0 O.

Figure 3-29. MIR Transform
of 1700 Register Reference Instructions

348

Macroarithmetic Instruction Execution

Delta Translator

To emulate certain basic and enhanced 1700 instructions, the delta field of the
macroinstruction must be modified before it is used in operations indicated by
MIR transform. Table 3-9 shows the conditions and modified delta fields.

The delta translator consists mainly of a combination of circuits that translates
the delta field according to the types of macroinstructions being emulated, as in
table 3-5. The 2-to-1 multiplexers, A9, A10, C9, and C10, are enabled only when:

e SMI111 is not set (disable the F1 output to selector S1 or S2 and enable
the output of the delta translator to S1 or S2).

e SM107 is not set (disable decimal arithmetic correction logic).

e F=0orF1=1000 are low (not an interregister reference instruction).

When an interregister reference instruction is emulated, the above multiplexers are
disabled. This causes the delta (FFFF) to be sent to selector S1 or S2. The
select signal at input pin 1 is generated as follows:

SM213+«F=0+(F1=0+1+6+E)

If the above select signal is high, it allows A(SK) and A(INT) to be selected from
position 1 of the multiplexers. A and A(SE) are selected from position 0

when the select signal is low. Status mode bit SM213 is set by the

emulator only during emulation of enhanced instructions;i.e., type 2 storage
reference instructions and field reference instructions.

3-49

Arithmetic and Logic Operations

TABLE 39
Delta Translations

Conditions

Delta (4)

a. (F=0) (F1 = 0xxx)

A=0000000 0 I08 109 110 111 112 13 114 N5

b. Enhanced instructions: (F=0) (F1 = 4 + 5) (r = l))t

a. (F=0) (F1 = 1xxx)
A(SE) (with sign extend) =

b. (F=0) (F1=2 + 3) cccccccclos o9 110 111 12 113 114 115
e e’

c. Enhanced instructions: (F=0) (F1 = 4 + 5) (r = l))1 Constant = 108

a. (F=0) (F1=1)
b. (F=0) (F1=0 + 6)

A(SK) (for skip instruction) =

000000000000 I12113 114115

a. (F=0) (F1=E)

A(INT) (for interrupt instruction =
00000001108 109 110 111 112 I13 114 115

a. (F=0) (F1=8)

A(FFFF) =
1111111111111111

fRefer to the CYBER 18 processor reference manual for type 2 storage reference instructions, enhanced
Flag r is the relative address flag represented by IXT'08.

instructions, and field reference isntructions.

Read Only Micromemory

The micromemory of the 1700 transform module is a read only memory that has been
preprogrammed with the 1700 instruction emulator. This micromemory consists of 512
64-bit words (two pages). Each word consists of two microinstructions that are
referred to as upper (32 bit) and lower (32 bit). Each word in the micromemory is
addressed by the memory address bits (MAO through MA7, PG3). The MAO through
MA?7 specify one of 256 words (microinstruction pairs, 32-bit upper and 32-bit

lower instruction within a page. The page (PG3) selects the page (page O or 1) in
which the instruction resides. The output of the read only memory is coupled to

the upper/lower memory data select where the sequence of selection (upper or

lower) is determined in accordance with the emulation required. The selected
instruction is transferred via the CPU three-state bus to the X register.

3-50

Macroarithmetic Instruction Execution (Exercise)

DIRECTIONS: Mark the following questions T for true or F for false.

— 1. The function code of the 1700 instruction being emulated forms part
of the micromemory address containing the emulation program.

—— 2. The first operation normally performed during an emulation process is
an RNI sequence.

—— 3. During the emulation of a 1700 storage reference instruction, the
formation of an effective address is controlled by the output of the delta
field decoder.

— 4. The sixteen-bit output of the MIR encoder is determined by the 1700
instruction’s function code and address modifiers.

——— 5. When a 1700 storage reference instruction is emulated, the MA portion
of the P/MA register will be equal to the F field of the 1700 instruction.
DIRECTIONS: Complete the following statement.

6. To be emulated, a 1700 instruction must first be gated into the IXT register. The
microinstruction field that controls this gating is

-ANSWERS

. T 22T 3.F 4 T 5. F 6. CFIELD

3-51

PROGRESS CHECK

QUESTIONS

1.

Addressing information needed to access memory locations in file 2 originates from
the register.

e TP
IX2ZX

/MA

D' decoding of the D field will occur if the S field of the microinstruction equals

0011
1000
1001
1111

R S

Which transform operation results in the formation of a new ALU control field in
the MIR?

a. RNI encoding

b. Miecroaddress formation
e. MIR encoding

d. Delta translation

A 1700 instruction is gated into the IXT register by a transform command contained
in the field of a microinstruction.

a0 oe
HOwP

Information for "N" and "K" is selected from one of eight possible sources by
selector

a. S2
b. S5
c. S7
d. S8

The read only micromemory containing the 1700 instruction emulator consists of
pages.

a. one
b. two
c. three
d. four

3-53

Arithmetic and Logic Operations

7. The B field of the microinstruction controls

selector S1
selector S2
selector S3
the adder

RO

8. When the RUN switch is pressed, the first operation performed is

a. a transform operation

b. execution of a micromemory emulation program

c. decoding the ALU control field of the microinstruction
d. reading a macromemory from memory

9. Shift functions in the A register are controlled by enabling the signal(s).

a. gate X

b. gate P

c¢. AMODESO 0 and AMODESO 1
d. AP/+TO

10. Which statement concerning field decoding is true?

a. D field decoding determines the select inputs of selector S3 multiplexes

b. The B source to the ALU is designated by the T field contents

c. A'decoding of the A field enables data sources on the tri-state bus as A
source data

d. S field decoding normally controls micromemory address sequencing

3-54

ANSWERS

1. Correct Answer:
Resource:

2. Correct Answer:
Resource:

3. Correct Answer:
Resource:

4. Correct Answer:
Resource:

5. Correct Answer:
Resource:

6. Correct Answer:
Resource:

7. Correct Answer:
Resource:

8. Correct Answer:
Resource:

9. Correct Answer:
Resource:

10. Correct Answer:

Resource:

Progress Check

CYBER 18-20 Arithmetic Logic SRM, page 3-2.

CYBER 18-20 Arithmetic Logic SRM, page 3-18.

CYBER 18-20 Arithmetic Logic SRM, page 3-22.

CYBER 18-20 Arithmetic Logic SRM, page 3-25.

CYBER 18-20 Arithmetic Logic SRM, page 3-43.

CYBER 18-20 Arithmetic Logic SRM, page 3-50.

CYBER 18-20 Arithmetic Logic SRM, page 3-15.

CYBER 18-20 Arithmetic Logic SRM, page 3-31.

CYBER 18-20 Arithmetic Logic SRM, page 3-1.

CYBER 18-20 Arithmetic Logic SRM, page 3-14.

3-59

CYBER 18-20 ARITHMETIC LOGIC

LEARNING GUIDE

G2

CONTROL
DATA

PLATO® is a registered trademark of
Control Data Corporation.

Pub. No. 76770502

Copyright® 1978, 1979
by Control Data Corporation.

All rights reserved. No part of this material may be
reproduced by any means without permission in
writing from the publisher. Printed in the United
States of America.

1/85

CONTENTS

INTRODUCTION, L-1

BLOCK 1: ALU REGISTERS, L-3

Learning Activities

ALU Functional Areas, L-4

ALU Working Registers, L-4

ALU Organization, L-4

ALU Operation, L-5

ALU Output Selector and Register Data Paths, L-5
ALU Data Flow, L-5

ALU Register Data Paths, L-6

Progress Check, L-6

h-'b—‘b-'-‘r'—'t-l-lr—'i—-‘t—-'
TOoOTmmoQ W

BLOCK 2: MICROINSTRUCTION DECODING, L-7

Learning Activities

ALU Control Field Functions, L-8

ALU Control Fields, L-8

ALU Control Field Operations, L-8

ALU Data Flow and Operating Modes, L-9
Arithmetic Operations, L-9

Progress Check, L-9

PYPERY
HEOOWs

!

BLOCK 3: ARITHMETIC AND LOGIC OPERATIONS, L-11

Learning Activities

A ALU Operations, L-12

B ALU Instruction Example, L-12

-C ALU Logic Diagram Data Flow, L-12
D Macroarithmetic Instruction Execution (Text), L-13
E Macroarithmetic Instruction Execution (Exercise), L-13
F Progress Check, L-13

L-iii

INTRODUCTION

The arithmetic logic unit does the actual work of the computer:
adding, L-subtracting, and comparing quantities. In this unit, you
study the operating details of the CYBER 18-20 ALU, its working
registers, and the path taken by data as it goes through the ALU.

You examine how a microinstruction's arithmetic code field is
decoded, as well as the sequence of events in the ALU during
instruction execution.

Whenever you are asked to look at logic diagrams in this unit, those
diagrams can be found in the CYBER 18-20 Logic Circuits Reference
Manual.

Resources
e CDC 110 Terminal with disk drive.

¢ PLATO course disk ct-cpu2,
Control Data Corporation, pub. no. 76773086.

¢ Audiotape: "ALU Logic Diagram Data Flow,"
Control Data Corporation, pub. no. 76362465.

BLOCK 1: ALU REGISTERS

The main parts of the arithmetic logic unit (ALU) are described in
this block. In addition, each working register and its funetion is
described and explained. As you examine the ALU, you will follow

the flow of data through it.

L-3

1-A

1-B

1-C

ALU FUNCTIONAL AREAS

This activity describes the basic operation, components, and data flow of the
ALU.

Objective

e I[dentify the functional areas of the arithmetic logic unit (ALU), and name the
ALU working registers.

Resource -

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Reading "ALU Functional Areas," pages 1-1 through 1-9.

ALU WORKING REGISTERS
This activity describes the registers that are used in ALU operations.

Objective

e Identify the functional areas of the arithmetic logic unit (ALU), and name the
ALU working registers.

Resource
Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Reading "ALU Woerking Registers," pages 1-10 through 1-12,

ALU ORGANIZATION

This exercise checks your understanding of each functional block on the ALU
module.

Objective

¢ Identify the functional areas of the arithmetic logic unit (ALU), and name the
ALU working registers.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Exercise =~ "ALU Organization," page 1-13.

~

1-D

1-E

1-F

ALU OPERATION

This activity examines the basic construction and organization of the ALU and
the look-ahead carry generator.

Objective
* Define the function of each ALU register.
Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Reading "ALU Operation," pages 1-14 through 1-20.

ALU OUTPUT SELECTOR AND REGISTER DATA PATHS

This activity describes selector S3 and the data paths it controls and reviews the
working areas of the ALU.

Objective

¢ Follow the ALU register input and output data paths.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,

Reading "ALU Output Selector and Register Data Paths,"
pages 1-21 through 1-26.
ALU DATA FLOW
This activity explains the following types of data flow within the arithmetic

logic module: data transfer, arithmetic operations, logic operations, and shift
operations. It also explains the ALU control field of the microinstruction.

Objective
e Follow the ALU register input and output data paths.

Resource

CBE "ALU Data Flow"
(PLATO course disk ct-cpu?)

1-G

1-H

ALU REGISTER DATA PATHS

This exercise checks your understanding of ALU register data paths.
Objective

e Follow the ALU register input and output data paths.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Exercise "ALU Register Data Paths," page 1-27.

PROGRESS CHECK

At this point you should check your understanding of the material in this block by
answering the progress check questions.

Resource
Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Exercise "Progress Check," pages 1-29 and 1-30; answers, page 1-31.

BLOCK 2: MICROINSTRUCTION DECODING

This block examines microinstructions in detail from a hardware
viewpoint. The microinstruction's control field and the functions of
each bit within the ALU control field are described. You study the
ALU data flow and the various operating modes controlled by
microinstruction control field bits,

L-7

¥
>

2-B

ALU CONTROL FIELD FUNCTIONS

This activity lists the meaning of the bits that appear in the ALU control fields
of a microinstruction.

Objective
e [dentify the function of each bit in the ALU control field.
Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Reading "ALU Control Field Functions," pages 2-1 through 2-19.

ALU CONTROL FIELDS

In this exercise, you are shown several examples of ALU control fields and are
asked questions concerning the effects they would initiate.

Objective
¢ Identify the function of each bit in the ALU control field.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Exercise "ALU Control Fields," pages 2-20 through 2-22.

ALU CONTROL FIELD OPERATIONS

This activity explains how each subfield determines sources of input data,
destination of output data, and control of shift operations.

Objective

* Identify the ALU input and output data paths that are active by examining
the microinstruction control field.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Reading "ALU Control Field Operations," pages 2-23 through 2-30.

2-D

2-F

ALU DATA FLOW AND OPERATING MODES
This exercise checks your understanding of control field operations.

Objective

e Identify the ALU input and output data paths that are active by examining
the microinstruction control field.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Exercise = "ALU Data Flow and Operating Modes," page 2-31.

ARITHMETIC OPERATIONS

This activity analyzes the microinstruction prograwm listing, showing how to
interpret the steps performed by a microinstruction.

Objective

e Identify which arithmetic operation is being commanded, by examining
microinstruction control field bits.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Reading "Arithmetic Operations," pages 2-32 through 2-40.

PROGRESS CHECK

At this point you should check your understanding of the material in this block by
answering the progress check questions.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,

Exercise "Progress Check," pages 2-41 and 2-42; answers, page 2-43.

L-9

BLOCK 3: ARITHMETIC AND LOGIC OPERATIONS

In this block, you follow the sequence of events in the ALU logic
diagrams during instruction execution. By the end of the block, you
should be able to list the sequence of events that occurs during the
execution of a macroarithmetic instruction.

3-A

3-C

ALU OPERATIONS
This activity examines six functional areas of the arithmetic logic unit: the P

register, the A register, file 2, selector S1, ALU with look-ahead carry, and
selector S3 with shift control.

Objective
* Describe the purpose of the ALU.
Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Reading "ALU Operations," pages 3-1 through 3-12.

ALU INSTRUCTION EXAMPLE

In this activity, you look at the decoding process for the ALU control field and
the signals that result from this decoding.

Objective
¢ Follow an ALU instruction sequence through the logic diagrams.

Resource
Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Reading "ALU Instruction Example," pages 3-13 through 3-19.

ALU LOGIC DIAGRAM DATA FLOW

This tape helps you locate some of the more important functional areas that are
part of the ALU and explains how these uareas operate. To complete this
activity, you need the logic diagrams for the ALU and a functional block diagram
with logic page references. As you listen to this audiotape, answer the questions
found in the exercise activity.

Objective
¢ Follow an ALU instruction sequence through the logic diagrams.

Resources
Audio "ALU Logic Diagram Data Flow"
Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,

Exercise "ALU Logic Diagram Data Flow," pages 3-20 and 3-21.

L-12

3-D

MACROARITHMETIC INSTRUCTION EXECUTION (TEXT)

This activity describes the sequence of events occurring during the emulation of
a 1700 macroinstruction.

Objective

* List the sequence of events that occurs during the execution of a
macroarithmetic instruction.

Resource
Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,

Reading "Macroarithmetic Instruction Execution (Text),"
pages 3-22 through 3-50.

MACROARITHMETIC INSTRUCTION EXECIITION (EXERCISE)

This exercise checks your understanding of macroarithmetic instruction
execution.

Objective

e List the sequence of events that occurs during the execution of a
macroarithmetie instruction.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Exercise = "Macroarithmetic Instruction Execution (Exercise)," page 3-51.
PROGRESS CHECK

At this point you should check your understanding of the material in this block by
answering the progress check questions.

Resource

Text/ CYBER 18-20 Arithmetic Logic Supplementary Reference Manual,
Exercise "Progress Check," pages 3-53 and 3-54; answers, page 3-55.

L-13

	001
	002
	003
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-29
	1-30
	1-31
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-53
	3-54
	3-55
	_001
	_002
	_003
	_01
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_11
	_12
	_13

