
CYBER 18-20 ARITHMETIC LOGIC 

SUPPLErvlENTARY REFERENCE MANU AL 



PLATO@ is a registered trademark of 
Control Data Corporation. 

Pub. No. 76770502 

Copyright@ 1978, 1979, 1983, 1984 
by Control Data Corporation. 

All rights reserved. No part of this material may be 
reproduced by any means without permission in 
writing from the publisher. Printed in the United 
States of America. 



CONTENTS 

BLOCK 1: ALU REGISTERS 

AL U Functional Areas, 1-1 
ALU Working Registers, 1-10 
ALU Organization, 1-13 
ALU Operation, 1-14 
ALU Output Selector 3Jld Register- Data Paths, 1-21 
ALU Register Data Paths, 1-27 
Prog'I'ess Check, 1-29 

BLOCK 2: MICROINSTRUCTION DECODING 

ALU Control Field Functions, 2-1 
ALU Control Fields, 2-20 
ALU Control Field Operations, 2-23 
ALU Data Flow and Operating Modes, 2-31 
Arithmetic Operations, 2-32 
Progress Check, 2-41 

BLOCK 3: ARITHMETIC AND LOGIC OPERATIONS 

AL U Operations, 3-1 
ALU Instruction Example, 3-13 
ALU Logic Diagram Data FLow, 3-20 
Macroarithmetic Instruction Execution (Text), 3-22 
Macroarithmetic Instruction Execution (Exercise), 3-51 
Progress Check, 3-53 

iii 



Block 1 

AL U Registers 



ALU Functional Areas 

One of the major components of a central processing unit is the arithmetic logic unit, 
or ALU module. This is the part of the computer that performs the actual arithmetic 
and logic operations. This text introduces the ALU module in the CYBER 18-20 
microprocessor; it describes the basic operation, the components, and the data flow of 
the ALU module. 

Basic ALU Operation 

The ALU module can perform two basic arithmetic operations, add and subtract; it can 
check sixteen-bit words for positive or negative signs, zero, and overflow; and it can 
make logical comparisons between two operands, The module that does these arith­
metic and logic operations is found in slot M of the microprocessor chassis (see figure 
1-1 ). 

The ALU module operation consists of: 

• Selecting two sixteen-bit words, one from the A-input selector and one from 
the B-input selector. 

• Combining the words based on the function code portion of the microinstruc­
tion (ALU control). 

• Delivering the result to main memory, the interrupt system, I/O, panel inter­
face, or one of several destination registers; the output also may be shifted 
by the output selector (S3). 

This process is shown in figure 1-2. 

1-1 



-I N 

~ ..... 
CJQ s:: 
~ -I 
~ o 
a 
j:l:) ...... o· 
;:s 
o 
'"*l 

> 
~ 
c: 
S· 
s:: 
'"'C 
n 
=::r 
j:l:) 
CIl 
f!1. 
CIl 

~~ ,u~~!~~?:~t~~~Yf~~~~27~=:··j?,. ~'1' 
F.t9 . t:P~~ ,.{(t:=l "r.:::l cd·t:5 0 If s til 

'i,~.~.·~· +-~;;d:':~6.-'O~-~ ¢T~.} 
:,' !:~J c;:~ DO 0 ~.~ .. .c:::~l~ t:::? ~/. "1' 
!m .. ' . ~,--' """",,,.,.' .~~ ~~ ... ".~.~~.'7"" •. ,--. "' 
,!:,.:.b'~:·'~I.d. Ol=?~~.: ~"~.' 'l'c::;;::J .. ~, n !!. " ' .. ' ""... . I,' :\'.--; .' .' •• ' '!i 
i' "r.::j' c:::t" O· . t::::l t::::),1 . .. t:::) • t:::l ; O· . c··· 

'!~.!:}~s .. : '.' "'ci,J. "·-.:.·o"·:o::.: .. Pj p. :: ···.:.'::'.~'!·.:o·~t:s-~0i;6ij 
':i'i'C:::lJ.oJ t:::i~ yO~ ~~. ci.~t=f' C::Jj.Q\'~' 

1~;l:~~.J;:.'··~.:~~.-:~.~O;~~ .• ' ..• ~~.~~~. 
: 6 oP~~~~~1.,~QC-?~~~) ~ .. ~O~' I. 90C~.~I~ o~,~.9 __ . 8L, -~9SH:p .. , ul I ,._. __ ._._l~_"" __ -L_ ... 

16 K/3:2 K.memory I ~ I 
board (main) up to --+-. ~. 

I A/O Peripheral I I 
__ controller m 

options 

,~ 
~ 
c: 
~ 
(1) 

f{S. 
CIl 
.-+ 
(1) 
""'! 
I"J) 



ALU Functional Areas 

16-bit output 

ALU control 
--~ 

field of MIR 
ALU 

A source B source 
selector Sl selector S2 

" 

I I 
16-bit input 16-bit input 

Figure 1-2. ALU Module Operation 

Components of Logic Board* 

Six working registers and two files provide temporary storage of sixteen-bit words 
within the microprocessor as shown in figure 1-3. 

Any of the registers or files can be selected as a sixteen-bit input to the ALU. With 
the exception of I, the registers can also receive the results of an ALU operation, if 
the microinstruction so specifies. ALU operation results can also be sent to external 
equipment or memory. 

The following describes the functional areas of the ALU (as shown in figure 1-4): 

• Selectors Sl and S2 provide the controlled gating of sixteen-bit words to the 
ALU from various data sources within the processor. 

• Selector S3 provides controlled gating for the sixteen-bit output of the ALU 
to a number of possible destinations within the processor . 

• ALU performs all arithmetic and logic operations. 

* A distinction should be made between the ALU logic module and the ALU. The 
ALU module refers to all logic functions contained on the ALU logic board. The 
ALU refers to the four integrated circuit chips which perform the arithmetic and 
logic operations. It will be referred to as the adder in this text. 

1-3 



AL U Registers 

AB register (memory interface) -------. 
o register (I/O-TTY) -----.. 

Transform -----.. 

Main CPU 
tri-state bus ---+---1 

* File 1 is optional 

Notes: 

Adder (16) 

Optional 
tri-state 

bus 

S300 panel interface 

SM register 

and mask 
register 

(SMI 

module) 

Main CPU 

L..---f.-- tri-state bus 
Bit generator 

L-___ ~_ (from control 2) 

N/K registers 
(from control 2) 

1. The numbers inside the selector blocks indicate the selector position. 

2. The numbers in parentheses indicate the width of registers and seiectors. 

Figure 1-3. ALU Module Block Diagram 

1-4 



ALU Functional Areas 

- Output selector 

-Adder 

- Input selectors 

- Files 

- Working registers 

Figure 1-4. ALU Functional Areas 

• The working registers (I, P, A, F, X and Q) provide temporary storage of data 
to and from the ALU and other areas of the microprocessor organization . 

• File 1 (256 words) and file 2 (32 words) provide storage of sixteen-bit words. 
File 1 is addressed by the K register and file 2 is addressed by the N register. 

Typical Data Flow 

The contents of the ALU control field of the microinstruction being executed deter­
mine the general data flow through the ALU. A microinstruction, containing ALU 
control information, is encoded from a 1700 instruction by transform. After the 
microinstruction is formed it will be executed to perform an arithmetic or logic 
operation. For example, after being encoded into the microinstruction register, a 
1700-type register reference instruction causes the contents of a working register in 
the ALU to be read, modified, or replaced. Two examples show data paths that can 
be taken with a typical 1700 instruction emulation. 

Example 1 

A 1700 add to A register operation (F = 8) requires that the sixteen-bit word contained 
in the A register be added to a sixteen-bit word from a specified memory location. 
Two steps take place in this operation-address modification and execution. Since this 
is a storage reference instruction, the address in memory from which the data is read 
must be formed. Figure 1-5 represents this first step. Assume that (P + 1) is the operand. 

1-5 



ALU Registers 

Data 

Note: 

Memory 
array 

Data 
interface 

T ri -state bus 

Memory 
address 
control 

Macroinstruction 
increases P register --~ 

contents by 1 

Original 16-bit P reg. 
memory address 16-bit 

Sl 

Data (16-bit word) is 
present from memory 

address just read 

---Effective address 

Adder 

A source 
selector 

Destination 
selector 

1. Increment the contents of the P register, and use this as the memory address. 

Figure 1-5. Memory Address Formation 

The contents of the P register are selected by S I and gated into the adder, to be incre­
mented by I through microinstruction control. The new address is transferred through 
the output selector to memory address control. The contents of the specified memory 
location is read and made available to the tri-state bus. Figure 1-6 shows the second 
step of the add to A register operation. 

The contents of memory must be added to the contents of the A register by combining 
the two sources in the adder. The result is gated through the output selector back to 
the A register. The A register now contains the result of adding its original contents 
to the contents of the memory address read. 

On completion of the add instruction, microprogramming jumps to read next instruc­
tion (RNl) programming. The next 1700-type instruction is read from memory and 
transform processing begins. 

1-6 



Combined contents I 
of A register and 

memory address to 
be placed in A 

M i croi nstruction 

specifies an add -+-------~ 
operation 

Note: 

A source 
selector 

A reg. 
16-bit 

S1 

ALU Functional Areas 

J 
( ') Destination 

selector ---r----

Adder Data from 
memory 

(16-bit word) 

B source 
selector 

Tri-state bus 

1. Data from memory is added to contents of A register and placed back into A register. 

Figure 1-6. Memory Address Contents Added to A Register Contents 

Example 2 

Figure 1-7 shows another example of data flow. A 1700 increase A instruction (F = 0, 
F 1 = 9) is demonstrated. 

1-7 



AL U Registers 

J 
Increase A instruction 

(09~) 

Main 
memory 

To microinstruction 
register decoding 

Control signals 

Contents of A -

53 

Adder 

Destination 
selection 

52 

t::. 
field 

contents 

'-----------------------;---------------~~ 
( Delta field sign 

extended of increase 
A 1700 instruction 

! 
I 
I 

File 

Contents 

A 
register 

of A register ~ 
added to '\ 

t::. field 
contents 

Figure 1-7. Data Flow for Increase-A Instruction 

1-8 



ALU Functional Areas 

111is instruction causes the contents of the A register to be increased by whatever num­
ber value is contained in the delta field of the 1700 instruction. In the execu tion of 
the 1700 increase A instruction, the instruction is first read from memory and then 
decoded, using transform. The delta field of the instruction is transferred through the 
delta translator and made available to the shared output lines of file I. Once the micro­
instruction has been formed; it causes the contents of the A register to be added to the 
delta field contents. The result is immediately available at the output seiector, where 
it is gated back to the A register. The A register now contains its original contents plus 
the /':, field contents of the increase A 1700 instruction. Again, RNI programming is 
entered and the next 1700 instruction processing begins. 

Summary 

Table 1-1 summarizes the information presented in this reading. 

TABLE 1-1 
Summary of ALU Functional Areas 

Location Purpose Components Data Flow 

Slot M of micro- Data transfers • Selectors S I, S2, Based on the macro-
processor chassis Arithmetic and S3 instruction 

logic functions, • Adder I 
I I 

i.e., addition, sub- • Working registers 
traction~ overflow, (I~P,F,X,A,Q) 

logical compari- • File 1, file 2 
sons, sign checks 

1-9 



ALU Working Registers 

Let's review some of what you know about the CYBER 18. You know that control 
provides the sequencing of events necessary to execute instructions, that main memory 
provides the storage necessary for 1700-type instructions and the data needed to exe­
cute a program, and that the ALU handles all arithmetic and logic operations and 
data transfer within the processor organization. This reading focuses on the 
registers used in ALU operations. 

Register Descriptions 

Registers in the ALU allow the main program to transfer six teen-bit words from one 
area of the processor, such as memory, to another, or from the processor organization 
to some peripheral device. These registers also can contain the operands for arithmetic, 
logic, or shift operations. There are six such registers; each is sixteen bits wide, and is 
called a working register. (Refer to figure 1-8.) 

The ALU contains additional storage in the form of two file registers, which are actually 
small memories consisting of addressable RAMs. These file registers (file 1 and file 2) 
store sixteen-bit data words or hold constants (a constant is information assumed to be 
fixed or invariable that may be referenced in a given operation or calculation). 

Figure 1-8 shows the location of each register in the ALU organization. The following 
describes each register and the two files. When the microprocessor acts as a 1 700 
emulator, these registers are defined as follows: 

I Register. Input to register I comes directly from the output of selector S 1. This 
selector enables data on the tri-state bus to be stored directly in register I and simulta­
neously input to the adder for some other operation. This operation is particularly 
useful in configurations using macromemory. The sixteen-bit output of the I register 
is available to selector S 1. 

P Register. This sixteen-bit register receives data from selector S3 and output to the 
A input of the adder via S 1. In computer emulation configurations, it normally con­
tains the macroprogram instruction counter (1700 P register). 

A Register. The sixteen-bit A register may be used for data shifts, either by itself or 
in conjunction with the Q register as a double-length shift register. The shift function 
is independent of the adder and S3. This general-purpose register inputs from S3 and 
outputs to the A input of the adder via S 1. This register is used as the 1 700 A register. 

1-10 



ALU Working Registers 

AB register (memory interface) _----, 
D register (I/O-TTY) ----.... 

r------ S300 breakpoint controller 

Main CPU 

three-state bus 

Transform ----.e 

* Fiie 1 is optional 

Notes: 

Adder (16) 

Optional 

tri-state 

bus 

Micromemory 

SM register 

and mask 

register 

(SMI 

module) 

Main CPU 

'--_-+-_ three-state bus 
Bit generator 

L..-__ +-_ (from control 2) 

N/K registers 

(from control 2) 

1. The numbers inside the selector blocks indicate the selector position. 
2. The numbers in parentheses indicate the width of registers and selectors. 

Figure 1-8. ALU Module Block Diagram 

F Register. This sixteen-bit, general purpose register receives its input from selector 
S3 and outputs to the adder through either selector Sl or selector S2. Selector Sl 
takes data contained in the F register and places it into the adder using input A, 
whereas selector S2 will cause the B input to the adder to be used. The F register also 
serves as an entry register for the File 1 or File 2 registers when they have been selected 
as destination registers of an ALU operation. 

X Register. The X register is a sixteen-bit, general purpose register that receives its 
information through selector S3. The X register output is gated through selector S 1 
to the A input of the adder and through selector S2 to the B input of the adder. 

1-11 



ALU Registers 

Q Register. The sixteen-bit Q register is a general purpose register used as an input to 
the adder via selector S2. The Q register may be shifted left or right independent of 
the adder during Q/ A shifts. The A register will also be used in conjunction with a shift­
ing operation during F, A, B field shift operations. This register is used as the 1 700 Q 
register. 

File 1 Register. This general-purpose word-length memory contains 256 sixteen-bit 
words addressed by the contents of the K register located on control 2. The output of 
File I shares a tri-state bus with the output of the delta translator or transform. A 
status mode bit selects either the file I output or the delta translator. The data is sent to 
adder input A via S I and/ or to input B via S2. 

File 2 Register. File 2 contains thirty-two sixteen-bit words addressed by the lower 
five bits of the N register. It delivers its output to adder input B via 52 and/or to 
adder input A via 51. File 2 is intended as a source for constants, but may be used 
as a general purpose file. The function control register (FCR) is contained in two 
addresses of this file. 

Summary 

A summary of A, Q, P, I, X, and F register characteristics is found in table 1-2. 

TABLE 1-2 
A, Q, P, I, X and F Register Characteristics 

Input Output Characteristics and 
Register From To Capabilities Related Functions 

I 
A S3 Sl Shift right or left with Hold LSB during double-

or without Q register, word length shift with Q 
independently of ALU register 

Q S3 S2 Shift right or left with Hold MSB during double 
A register indepen- length shift with A register 
dently of ALU Shift right or left in conjunc-

tion with destination register 
(A, P, X, F) through adder 

P S3 Sl Holding register May hold the software 
instruction counter for 

Sl Sl Holding register 
I emulation 

May hold the software 
instruction for emulation 

X S3 SL S2 Holding register May be used for transferring 
information to I/O section 

F S3 Sl, S2 
Fl, F2 Holding register Hold data being stored in 

FI or F2 

1-12 

I 
i 



ALU Organization 

DIRECTIONS: After each of the following statements, write the name of the ALU 
functional block to which it corresponds. 

1. This functional block selects one sixteen-bit data source from eight possible data 
sources available as input to the B side of the adder: __________ _ 

2. This functional block normally controls macromemory addressing by acting as a 
program instruction r-ounter: ___________ _ 

3. Although not a register, this block can store up to 256 sixteen-bit words and is 
addressed by the K register located on the control 2 module: 

4. An adder output can be gated to one of five working registers from this func-
tional block: ___________ _ 

5. Constants normally are contained in this functional block of the ALU modu1e: 

6. This functional block can shift the output data from the ALU: 

7. A data word from the tri-state bus can be gated into this functional block with-
out passing through the adder: ___________ _ 

8. In conjunction with the Q register, this functional block of ALU may be used as a 
double-length shift register: ___________ _ 

9. The output of the N/K registers of control 2 may be used as a data input to 
the ALU. This functional block determines whether that data source will be 
gated to the ALU: __________ _ 

10. Data can be gated from the ALU organization to transform by these functional 
blocks: ___________ _ 

ANSWERS 

1. Selector S2 2. P Register 3. File I 4. Selector S3 5. File 2 6. Selector S3 
7. I Register 8. A Register 9. Selector S2 10. Selectors S I, S2, S3 

1-13 



ALU Operation 

The heart of any computer is the part that does the computing-the arithmetic logic 
unit. This adder provides for all arithmetic and logic operations ~he computer per­
forms. This text explains the basic construction and organization of the adder and the 
look-ahead carry generator. The path data takes as it passes through the adder will 
also be examined. 

Organization of the ALU 

The basic adder is represented in figure 1-9. Control signals decoded from the micro­
instruction F field control the adder and determine the type of arithmetic or logical 
operation to be performed. From selectors S I and S2, the adder accepts two sixteen­
bit data words on which the operation will occur. After thc microinstruction function 
is determined, the two operands obtained from the selectors may be added, subtracted, 
logically compared, and so forth. The sixteen-bit result of this operation is available 
immediately to selector S3, the SMI module, or both. 

Selector S3 

16-bit output .-------- SMI module 

~ 

Arithmetic ----.. 
function 

16-bit words 

Serector S1 Selector S2 

Figure 1-9. Basic Adder with Carry Generator 

1-14 



ALU Operation 

The complete adder consists of two logic blocks, the adder, consisting of four inte­
grated circuit adder chips, and a look-ahead carry generator. (Refer to figure 1-10.) 
The carry generator monitors the four adder bit groups; each bit group is four bits 
wide. If a carry results from a four-bit group of the adder during an add, the carry 
generator is notified. This allows high speed carries between four-bit groups of the 
adder. The carry generator is not used in logic operations. 

4 4 4 4 
------- - - ------ --, 

M 

I Look-ahead carry generator I- 0 
I 

I M .~ I 
I -- r:: 

GEN 3 t I 
GEN 0 N~ I t 

I 1 
t 

~ I ! ~ ! PROP 0 '" .~ PROP ~ U 
~ U 

~-~ GEN 1 GEN 2 I I ~ 8 ~P1 PROP 2 I I I I U I 

SB I :LUO~ALU~ I ALU04-ALU-07 ALU08-ALU11 ALU12-ALU15 

A B A B A B 

t 
-------

'------

". "'". --- , "' .... "' .... 
0 3 4 7 8 11 12 15 0 3 4 7 8 11 12 

0 I 2 3 I I 0 2 3 

A source B source 
data word data word 

Figure 1-10. The Two Blocks of the ALU 

LS B 

" 
15 

Each of the four adder chips is able to perform arithmetic and logic operations on data 
from two separate four-bit data sources. In combination, the four chips provide 
arithmetic and logic operations on two sixteen-bit data input words. The adder chip 
used in the arithmetic unit is shown in figure 1-11. 

1-15 



ALU Registers 

ANSI MIL STD 806 

8 X~Y 

8 
ACC 3 16 

8 
4 GOO 

7 
CIN E 14 4 <331 5 

2 
AO ALU CR 

94820 
16 6 

A1 L9 G ALU 
XXX 

A2 P 
16 

A3 FO A 
8 
4 

BO Fl 2 

B1 F2 
B 

A=B 
B2 F3 G (A,B>15) 

B3 Cn P (A,B=15) 

Figure 1-11. Four-Bit Adder 

Table 1-3 shows the arithmetic and the logic operations that the adder chip can per­
form. As an example, when pin 8 (mode select) of the ALU chip is low, arithmetic 
operations are specified, and a high input causes logic operations to be performed. The 
definition of each signal into the ALU chip is as follows: 

• CIN. If the preceding four-bit group generates a carry (G) output, a carry-in is 
brought through the look-ahead circuit into the next higher adder chip. 

• P. Propagate (pin 15) outputs if the result of an arithmetic operation per­
formed by this chip does not allow a carry into the four-bit group this chip is 
monitoring. 

• G. A generate signal indicates that the result of an arithmetic operation by this 
adder chip produced a carry-out condition. 

• COUTo This signal is not used by the CYBER 18-20 system adder configuration. 
• E. When the equality output is high, both the four-bit A input and the four-bit 

B input are equal in quantity. 

Additional information on the adder chip is available in the logic· circuits manual. 

1-16 



ALU Operation 

Look-Ahead Carry Generator 

The look-ahead carry generator monitors each adder chip during an arithmetic opera­
tion to determine if a carry is to be generated to a particular four-bit group. The genera­
tor also determines whether the carry can be absorbed by the next four-bit data group 
of adder or must be passed to a subsequent group. The three conditions of the adder 
that are controlled by the look-ahead carry generator are as follows. 

TABLE 1-3 
ALU Function Selection 

Function Select Signals ALU Operation 

Arithmetic 
Logical ALUM = 0 

ALUS3-2 ALUS2-2 ALUSI-2 ALUSO-2 ALUM = 1 Cn = Low Cn = High 
(pin 3) (pin 4) (pin 5) (pin 6) (pin 8) (No Carry) (No Carry) 

0 0 0 0 F=A Not Used 

0 0 0 1 F=AB 

0 0 1 0 F=A+B 

0 0 1 1 F=l 

0 1 0 0 F=A+B 

0 1 0 1 F=B 

0 1 1 0 F=A® B 

0 1 1 1 F=A+B 

1 0 0 0 F=AB 

1 0 0 1 F=A® B 

1 0 1 0 F=B 

1 0 1 1 F=A+B 

1 1 0 0 F=O 

1 1 0 1 F=AB Not Used 

1 1 1 0 F=AB 

1 1 1 1 F=A 

0 1 1 0 A- B-1 A-B 

1 0 0 1 A+B A+B+l 

1 1 1 1 A A+l 

1-17 



ALU Registers 

Carry. A carry is generated by a group of four bits when an arithmetic operation is 
performed and a logic I must be carried into the next group. For example: 

~Carry --......... 
MSB 1 "LSB 
r----..;0-"-1-1-0--'-A word-~ 

0100 _Bword_~ 

1 0 1 1 

Group B 

-Result­
of add 

o 1 1 1 

Group A 

Generate. A generate signal occurs when an arithmetic operation is performed result­
ing in a carry by a four-bit group that cannot be absorbed in that group. This signal 
is sent from the ALU chip to the carry generator. For example: 

Generate 

MSB 1 ,.---- Carry ~,.;:---..:..-,--~_L_S...,B 

~
OOO -Aword- 1100 

o 0 0 0 -Bword- 0 1 0 0 
'------~ 

o 0 0 1 Result- 0 0 0 0 

Group B of add Group A 

Propagate. A propagate signal is generated to the carry generator when an arithmetic 
operation results in all 1 s and there is, therefore, no place for a carry to the group to be 
absorbed. Any carry into this group would be forced into the next group able to 
absorb the carry. 

Propagate Generate 

~/Carrv 

I ~~~~ I-A word 
1 1 0 1 0 1-8 word 

..,.--Carry -.......... 

'No '"" LSB 

101 0 -A word- o 1 o 0 

o 1 0 1 -Bword- 1 1 0 I I 

1 1 0 1 -Result o 0 0 0 -Result- 000 1 

Group C Group B of add Group A 

Figure 1-12 shows a typical add operation demonstrating the adder functions using 
look-ahead carry. In this example, a total of sixteen bits from two sources is added. 
The contents of each four-bit ALU chip is shown and the signals interfacing to the 
look-ahead carry generator are indicated. 

1-18 



ALU Operation 

Carry in Gen 

'-.P-

PROP 
M lSB n SB 

o 1 0 0 
000 0 

o 1 0 1 

Group 0 

101 0 
o 1 0 1 

000 0 

Group C 

WlU 1 1 1 0 

001 0 

Group B 

o 1 1 0 - A words 
o 1 0 0 - B words 

101 0 

Group A 

-Result 
of add 

Figure 1-12. Typical Additive Operation Using Look-Ahead Carry 

Each individual group above functions as follows: 

• Group A. No carry is produced by the first group. Since a carry generated 
by this group is absorbed in the group, a generate is not produced. If a carry 
were brought into this group, it could be absorbed; therefore, a propagate 
signal would not originate from this group. 

• Group B. A generate signal is produced by group B since a carry is produced. 
Normally, the carry would be carried to group C and absorbed. 

• Group C. A carry from group B normally would be allowed into group C and 
absorbed. However, a carry cannot be absorbed by this group; this results in 
group C's producing a propagate signal, which in turn results in the carry's 
being forwarded to the next group able to absorb it. 

• Group D. Group D absorbs the carry originated by group B. Since a carry can 
be absorbed by this group, a propagate signal will not be produced. Because 
no carry is generated by the group, no generate signal occurs. 

1-19 



ALU Registers 

Data Form 

Data is not always in its true form as it passes through the ALU module. It is impor­
tant to note where the data is in its true form and where it is false or in complement 
form. Figure 1-13 represents the general flow of data through the ALU section. Data 
is always true as it enters the input selectors from various microprocessor sources. 
Data is always inverted as it leaves the input selector; thus, it enters the adder as false 
or complemented data. The adder output data is also in its complemented form. The 
output is either made available to the status mode interrupt in this form or is recomple­
mented as it passes through selector S3 and is available in true or complemented form. 

Summary 

True 

ctJ 
False 

cp 
I 

True 

False 

Adder 

Note: 

False 

S2 

True 

1. May substitute the word complement for false. 

Figure 1-13. Data Inversion Through ALU 

In basic terms, the adder consists of four integrated circuit adder chips and one look­
ahead carry generator. Two sixteen-bit word inputs are available to the adder from 
selectors S 1 and S2. The adder is controlled by a function input derived from the micro­
instruction in execution and produces an output to either the SMI module or selector S3. 

The look-ahead generator monitors each adder chip to determine whether a carry is to 
be generated to a particular four-bit group. It controls three basic conditions: carry, 
generate, and propagate. 

Data enters the adder and leaves it in its complemented form. 

1-20 



ALU Output Selector and Register Data Paths 

By now, you know the purpose of most of the functional areas on the ALU module. 
One area still to be discussed is selector 3. This selector can both select the destination 
of the ALU output and shift the output right or left. This reading describes selector 
3 and reviews the working areas of the ALU already studied. 

ALU Review 

The functional areas of the ALU discussed so far and their purposes are as follows: 

• Working Registers. The working registers-six in all-are used for sixteen-bit 
word transfers through the microprocessor organization. In the ALU these 
registers are used as temporary storage registers to hold operands for, or the 
results of, an arithmetic operation. Two of these registers (A and Q) can shift 
their contents left or right either individually or in combination. 

• File Registers. The two file registers (or, more accurately, memories) extend 
the storage capabilities of the ALU module. File 1 can store 256 sixteen-bit 
words, which are available to the ALU input selectors; File 2 can store 32 
sixteen-bit words, which are generally provided as constants to the processor 
organization. 

• Input Selectors 51 and 52. These selectors provide sixteen-bit inputs to the 
A and B inputs of the adder. The source of these inputs is controlled by the 
.A~ and B fields of the microinstruction under execution. 

• Adder Along with the look-ahead carry generator, the adder proper provides 
the arithmetic and logic capabilities for the microprocessor. Two sixteen-bit 
operands can be added, logically ANDed, ORed, or exclusive ORed. Data 
destined for I/O, memory, and most destination registers pass through adder. 

Destination Selection and Shifting (S3) 

The output of the adder can be gated directly to the status mode or mask registers of 
the status mode interrupt module, or it can be made available to some other destina­
tion through selector S3 of the ALU module. Selector S3 can transfer the adder output 
to a number of destinations within the microprocessor organization, and it can also 
shift that output right or left before the transfer. 

The destinations for selector S3 output are as follows: 

• Working registers A, P, X, F, or Q 
• IXT register of transform 

1-21 



ALU Registers 

• Macromemory address and data logic 
• I/O via the I/O-TTY module 
• Panel in terface 

The destination of the output depends on the 0, 0', and 0" decoding of the micro­
instruction 0 field. (Refer to figure 1-14.) 

IMI F 

1315 25 31 

I A I BID I T I SF I S I c I -- ~ 
Destination 

control 
'---------+----t Destination selection 

Shift 
control 

Shift selection 
~--~---~ 

r Adder 

Figure 1-14. Selector S3 Control 

} 
Selector 

S3 

Shifting of sixteen-bit words through the output selector is accomplished by a shift 
register that may cause data from the adder to be shifted left one place, right one place, 
left eight places end around, or straight through. The type of shifting operation that 
takes place is determined by C' decoding of the C field in the microinstruction being 
execu ted. Refer to table 1-4. 

1-22 



ALU Register Data Paths 

TABLE 1-4 
C' Shift Formats* 

C' Codes Mnemonics Actions 

1 1 1 0 0 0 0 RQLXN The Q register and one desti-
I I or I nation register (P, A, F, or X) 

1 1 1 0 0 0 1 provide a double-length regis-
ter. The combined register 
is shifted left one bit posi-
tion. The arithmetic logic 
unit sign bit complement is 
entered at the least significant 
bit of the Q register. 

1 1 1 0 0 1 I RQRIE Shift the combined destina-
tion and Q registers right one 
bit; enter I (0) in the sign 
position of destination 
register. 

1 1 I 0 0 I 0 RQROE Shift the combined destina-
tion and Q registers right one 
bit; enter 1 (0) in the sign 
position of destination 
register. 

1 1 1 0 1 0 0 
I 

RLOE Shift the destination register 
I left one hit; enter 1 (0) in 

the lowest bit position. 

1 1 I 0 1 0 1 RLIE Shift the destination register 
left one bit; enter 1 (0) in 
the lowest bit position. 

1 1 1 0 1 1 0 RROE Shift the destination register 
right one bit; enter 1 (0) in 
the lowest bit position. 

1 1 0 1 1 1 1 RRIE Shift the destination register 
right one bit; enter 1 (0) in 
the lowest bit position. 

*Format 1, bit 19 = 0 

1-23 



ALU Registers 

Examples of typical operations that the ALU can perform using selector S3 follow. 

Example A. The partial contents of the microinstruction register are shown in figure 
1-15. The C' decoding of the C field indicates that the Q register and one destination 
(P, A, F, or X) specified by the A and D fields are used as a double length register. 
This combined register is shifted left one bit position. In the process, the least signi­
ficant bit (LSB) of Q is replaced by the complement of the most significant bit (MSB) 
of adder. The MSB of the P register ends off into the bit bucket. Figure I-I 5 shows an 
example of the data contained in P and Q before and after shifting. 

16-bit shifted -output to P reg. 

End off 

ALU 

16-bit word---::::..-
P A F x 

C 

11100001 

Coding causes left 
shift operation 
to take place 

Most significant bit of Q 

t---- is transferred to position 
of shifted contents 

After shift 

From ALU MSB 

Original data 

Figure 1-15. Double-Length Register Shift (P and Q) 

1-24 



ALU Register Data Paths 

Example B. Another example of a shift instruction is shown in figure 1-16. The con­
tents of the microinstruction register shown specifies that the destination register called 
for by the A and D field is shifted right one bit position. In the example, the X register 
is shifted and a 1 or 0 is entered in the most significant bit position of X. The bit 
originates from MIR31 of the microinstruction register. A right shift causes the LSB 
of the sixteen-bit operand to be ended off into the bit bucket. , 

A D SF C' 

I I 111 0 I 111 0 I lot 1110110 I 

31 

16 bit shifted 
output to X re g. -

X reg. sh if ted 

MIR31-------------

X reg. 

I 

') LSB 

/ ... 
~---- -S3------

Shift r--

J 

ALU 

I 

~ ; .( ) ( S2 

L 
.. 

P A F 

Figure 1-16. Single Register Right Shift 

1-25 

I 

End 0 ff 

g 

16-bit word 

'\ . ..... 
X Q 

16-bit 

Least significant bit 
goes end off 



ALU Registers 

Example C. A straight transfer without a shift results if the C field does not contain 
the conditions shown in table 1-4. Figure 1-17 shows the partial contents of a micro­
instruction specifying a straight transfer. This arithmetic field calls for an add operation 
of two operands. One is contained in the F register and the other is an address of file 2. 
The address of file 2 is specified by the N register located on the control 2 module. 
Through selector S3, the result of the add is transferred both to the X register and the 
AB interface of macromemory. The data flow through the ALU module is shown. 

F A B D 

---'---

Add 
ALU 

Fi!e 2 

Address specified { 
by N register 16-bit 

contents I--...:...;;....;;.;..:.~ 

'------' 
P A 

~ 
F 

16-bit 
source 

Macromemory 
interface 

X Q 

16-bit 
desti-

nation 

Figure 1-17. Data Add and Transfer Paths 

Summary 

Selector S3 of the ALU module transfers the adder output to its destination without a 
shift or shifts that output left or right before the transfer. The D field of the micro­
instruction controls the destination; the C field controls the shifting. 

1-26 



ALU Register Data Paths 

DIRECTIONS: Answer each question as indicated. 

1. Describe the purposes of the look-ahead carry generator associated with the ALU. 

2. The four-bit add operation performed below would result in the following (circle 
the letters of ALL answers that apply): 

ADD 
o 

MSB 

,.----Carry from 
previous group 

o 0 

o 

LSB 

a. A propagate signal being generated 
b. A generate signal being generated 
c. A carry-in being absorbed from previous group 

3. Which field of the microinstruction controls one bit position shifting of the sixteen-
bit data output from ALU? _____ _ 

DIRECTIONS: Mark the following statements T for true or F for false. 

ANSWERS 

4. An adder chip is capable of performing arithmetic and logic opera­
tions on sixteen-bit operands from two separate data sources. 

5. Shifting that must be performed as part of a multiply or divide 
operation is done by output selector S3. 

6. Selector S3 can gate a sixteen-bit output to all of the working 
registers located on the ALU module. 

1. To detect a carry being generated by a four-bit group, to detect a propagate signal 
from a group, to pass a carry from one group to the next. 2. band c 3. C field 
4. F 5. T 6. F 

1-27 



PROGRESS CHECK 

QUESTIONS 

1. The ___ pegister cannot peceive the pesult of an ALU operation. 

a. A 
b. I 
c. Q 
d. X 

2. Which working register supplies its output to both selectors SI and S2? 

a. A register 
b. Q register 
c. P register 
d. X register 

3. How many adder chips are contained in the CYBER 18-20 ALU? 

a. 2 
b. 4 
c. 8 
d. 16 

4. What microinstruction field controls a shift opepation at selector S3? 

a. A 
b. B 
c. C 
d. D 

:). w~nat ALU iogic function gates the pesult of 311 arithmetic operation to its 
destination? 

a. Selectop Sl 
b. Selector S2 
c. Selector S3 
d. File 2 

6. What working register peceives infopmation directly froIn the tri-state bus without 
the information first passing through the adder? 

a. I pegistep 
b. F pegister 
c. Q pegister 
d. X register 



ALU Registers 

7. What pin on the adder chip se leets whet her all arithmetic or Logic operation is 
perforlned? 

a. 8 
b. 17 
c. 7 
d. 15 

8. The and ___ registers may he used for shifting data. 

a. A, Q 
b. P, I 
c. I, X 
d. F, P 

9. The function of the file 2 register is to __ _ 

a. hold 256 sixteen-bit words 
b. store contents 
c. be used as an adder 
d. be used as a shift register 

10. The output selector S3 can be __ _ 

a. shifted by control signals originating from the ALU control field of the 
microinstruction 

b. gated to registers on the SMI Inodule 
c. shifted using control signals decoded from the microinstruction C field 
d. gated to any of six working registers contained on the ALU module 

1-30 



Progress Check 

ANSWERS 

l. Correct Answer: b 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, pag'e 1-3. 

2. Correct Answer: d 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page I-II. 

3. Correct Answer: b 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM:, page 1-15. 

4. Correct Answer: c 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, 

pages 1-22 and 1-23. 

5. C orrect Answer~ c 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 1-2I. 

6. Correct Answer: a 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, 

pages 1-10 and I-II. 

7. Correct Answer: a 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 1-16. 

8. Correct Answer: a 
Resource: Text: CYBER 18-20 Arithlnetic Logic SRM, page 1-10. 

9. Correct Answer: b 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 1-12. 

10. Correct Ansvler: n u. 

Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 1-22. 

1-31 



Block 2 

Microinstruction Decoding 



ALU Control Field Functions 

Each field of a microinstruction provides part of the overall control for the microproc­
essor. This reading explains the ALU control operations contained in bits 2 through 
15 of the microinstruction. 

The ALU Control Field 

In the CYBER 18, the contents of ALU control field are initially encoded from the 
1700 instruction presently being executed (see figure 2-1). The ALU control field con­
sists of four sub fields (see figure 2-2). 

L...-___ T_r_a_nsor-f_or_m ___ ...... l, .. ·-- 1700 instruction 

2 15 

ALU control -
Figure 2-1. Encoding of ALU Control Field 

2 F 6 7 A 9 10 8 1213 0 15 

Function 
A 

8 I Destination I 
source _ . source 

Figure 2-2. ALU Control Subfields 

The purpose of each field for arithmetic and logic operations is as follows: 

• F operation or function 
• A A source of operand 
• B B source of operand 
• D Destination of operand 

The ALU control field also can perform shift and scale operations. In such instances, 
the ALU control field format is that shown in figure 2-3. 

2-1 



Microinstruction Decoding 

2 6 7 8 9 10 11 12 13 15 

F 

Figure 2-3. ALU Control Field Format for Shift and Scale Operations 

The purpose of each subfield of ALU control for a shift or scale operation is: 

• F Operation (shift or scale) 
• R Righ t shift 
• L Left shift 
• A A-register shift 
• A/Q A- and Q-register shift* 
• SC Shift control 

Arithmetic and Logical Control-F Field 

The F field is five bits in length and controls the adder itself (see figure 2-4). 

F I A B D 

Destination 

control Adder 
Function 

~ 
A source B source 

Figure 2-4. The ALU F Field 

Arithmetic or logic control operations are controlled by code in the F field. Table 2-1 
represents all arithmetic operations controlled by the F field, while table 2-2 represents 
all logic operations. In table 2-2, - B means the same as B. 

* Note: Macro shift instructions should not be confused with micro shift instructions. 
When A and Q registers are shifted with the macroinstruction, the most significant 
bit is in Q and the least significant bit is in A (Q/ A). The micro level shift holds the 
most significant bit in A and the least significant bit in Q (A/Q). 

2-2 



F Codes 

1 0 I 0 0 

000 

o 101 

100 I 

o I I 0 

100 

o I 

1 I 0 I I 

Mnemonics 

SUB 

ADD 

SUBT 

ADDT 

SUB-* 
SUB-C* 

ADD+* 

SUB-T 

SUB-TC* 

ADD+T* 

TABLE 2-1 
Arithmetic Operations 

ALU Control Field Functions 

Operations 

Subtract B input from A input. 

Add A and B inputs. 

Subtract with an overflow test. 

Add with an overflow test. 

Perform A-B-I input (two's complement only). 
A-B with forced carry-in (one's complement 
only). 

Perform A +B+ I (forced carry-in). 

Perform SUB- with an overflow test (two's 
complement only). 
A-B with forced carry-in (one's complement 
only). 

Perform ADD+ with an overflow test. 

*If split adder mode is selected, the most significant (upper) adder performs an 
ADD or SUB without forced carry-in. Forced carry-in is defined as an uncon­
ditional hardware logical I (used for two's-complement arithmetic) gated to the 
(hardware) adder carry-in input. 

2-3 



Microinstruction Decodi~g 

F Codes Mnemonics 

0 1 1 o 0 ZERO 

0 1 1 1 0 AeB 

0 1 1 0 1 Ae -B 

0 1 1 1 1 A 

o 1 000 -Ae B 

0 1 010 B 

0 1 o 0 1 EOR 

0 1 o 1 1 A+B 

001 o 0 -Ae -B 

001 1 0 -EOR 

001 o 1 -B 

o 0 1 1 1 A+ B -

00000 -A 

00010 -A+B 

o 0 0 0 -A+-B 

o 0 0 1 lONE 

I 

TABLE 2-2 
Logic Operations 

A input 0011 
Bit Result 

o 0 0 0 

000 1 

o 0 1 0 

o 0 1 1 

0 100 

0 1 o 1 

0 1 1 0 

0 1 1 1 

1 000 

1 001 

1 010 

1 
1 0 1 1 

o 0 

o 1 

o 

B input 0101 

I 

The arithmetic operations listed in table 2-1 operate on single precision operands, or 
sixteen-bit data words and use the ALU module previously described. An option is 
available to add a second ALU module to perform double precision arithmetic. This 
means the computer would be able to handle two sixteen-bit words together as though 
they were a single 32-bit word. This option is not present in the CYBER 18 configura­
tion being used. An additional option present in the CYBER 18 is coded into F field 
and is called an overflow test, that is, the sign bit of the two inputs to the ALU is com­
pared with the sign of the result. If the sign has changed an error has occurred which 

2-4 



ALU Control Field Functions 

sets a status mode bit, indicating that the result is not consistent. The status mode over­
flow bit is set to I when an overflow occurs and must be reset to 0 by a microinstruction. 

A Field 

During arithmetic or logic operations, A-field bits 7 through 9 specify the input to 
selector S I and thus the A side of the adder. (See figure 2-5.) 

F A B D t 
~ 

Adder 

"'- B source 
A field 
select Selector S-l 

) Jt \ \ 
A sources 

Figure 2-5. The Adder A Field 

2-5 



Microinstruction Decoding 

Table 2-3 contains the A codes and their descriptions. 

A Codes Mnemonics 

000 F2* 

001 P 

010 I 

all X 

100 A 

101 F 

110 FI * 

III MEM** 

TABLE 2-3 
A-Input Operations 

Operations 

Use the contents of the file 2 register as the A source 
input. The current value of the N register is used 
to address register file 2. If the value of N is 
changed in the current microinstruction, its initial 
value is used to reference the file register. F2 must 
not have been written during the previous 
instructions. 

Use the contents of the P register as the A source. 

Use the contents of the I register as the A source. 

Use the contents of the X register as the A source. 

Use the contents of the A register as the A source. 

Use the contents of the F register as the A source. 

Use the contents of the optional file 1 register or 
external source as the A source. The current value 
of the K register is used to address register file 1. 
If the value of K IS changed in the current mIcro-
instnlction, the initial value of K is used to refer­
ence the file register. SM III controls the selection 
of FI/extemal. FI must not have been written 
during the preceding microinstruction. 

Obtain data read from macromemory and use it as 
the A source. 

* Restriction: The value of the addressing register (N or K) cannot have been 
modified by a C' increment or decrement command in the preceding micro­
instruction. 

**Restriction: If the macromemory READ command was not given in the 
preceding microinstruction, all 1 's are input to the A source. If the B source 
is a prime code, the B source data also is input to S 1. This command is 
restricted to a microinstruction, with type A, B, or C execu tion time. 

The A field also can have a different meaning if the S field of the microinstruction 
equals 1010 or a Ill. This causes A' coding to be interpreted as shown in table 2-4. 

2-6 



A' Codes Mnemonics 

000 SMI 

001 Ml 

010 SM2 

all M2 

100 A*RB 

101 A* 

110 X* 

111 Q* 

ALU Control Field Functions 

TABLE 2-4 
A' Input Operations 

Operations 

Use the contents of SM register I as the A source. 

Use the contents of interrupt mask register 1 as the 
A source. 

Use the contents of SM register 2 as the A source. 

Use the contents of interrupt mask register 2 as the 
A source input. 

Use the contents of the double-precision A register, 
shifted right eight bits with end-around carry, as 
the A source. The A * register remains unshifted. 

Use the contents of the double-precision A * register 
as the A source. 

Use the contents of the double-precision X* register 
as the A source. 

Use the contents of the double-precision Q* register 
as the A source. 

*The A' codes are specified by the S field equal to a 1 1 1 or 1 a 1 O. 

2-7 



Microinstruction Decoding 

B Field 

During arithmetic and logic operations, the B field, bits 10 through 12, control the 
input to S2 and thus the B side of the adder. (See figure 2-6.) 

F A B o 

Adder 

/ 
Selector 52 

B field A source 

select 

JJ \\ 
B sources 

Figure 2-6. The Adder B Field 

Coding translations available for the B field are the B codes and B' codes. B' coding is 
specified if the S field of the microinstruction equals 1000. Note that a code of 00 I 
in the B field is expanded by bits 28 and 29 of the microinstruction and this enables 
the contents of the N or K register to selector S2. As long as there is no conflict, the 
outputs from the Nand K registers may be used in conjunction with commands or 
constants in the C field. The Band B' codes are given in tables 2-5 and 2-6, 
respectively. 

2-8 



ALU Control Field Functions 

TABLE 2-5 
B Input Operations 

MIR28-
B Codes MIR29 Mnemonics Operations 

I 000 I F2* I Use the contents of the file 2 register as the B I 
source. The value of the N register, before the 
instruction is executed, is used to address 
register file 2. If the value of N is changed in 
the current microinstruction, its initial value 

I 
is used to reference the file register. F2 must 
not have been written during the previuus 
instruction. 

001 1 1 Zero The B source is all zeros. 

001 1 a N** Use the contents of the N register as the B 
source. Since N is an eight-bit register, this 
source uses N as the upper eight bits and zeros 
as the lower bits. 

001 a 1 K** Use the contents of the K register as the B 
source. Since K is an eight-bit register, the 
upper bits are zeros and K serves as the lower 
eight bits. 

I N,K** I 
I 

001 a a Use the contents of the Nand K registers as I the B source, These registers are combined 
I with the N register as the upper eight bits of 
I source and with K as the lower eight bits. 

010 BG Use the contents of the BG generator as the 
B source. The generator has only one bit set 
to 1, and the position of the bit in the BG 
register is specified either on value in the N 
register or by a number in the C field, depend-
ing on the state of the controlling SM register 
bit. 

all x Use the contents of the X register as the B 
source. 

100 Q Use the contents of the Q register as the B 
source. 

I 
101 F Use the contents of the F register as the B 

source. 

2-9 



Microinstruction Decoding 

TABLE 2-5 (cont'd.) 

MIR28-
B Codes MIR29 Mnemonics 

110 Fl 

111 MEM*** 

Operations 

This code is similar to F2, but it uses the con­
tents of optional file 1 register addressed by 
(K) or an external source as the B source 
input. SM 111 controls the selection of F 1/ 
external. F I must not have been written 
during the preceding microinstruction. 

This code obtains data read from macro­
memory and uses it as the B source. 

*Restriction: The value of the addressing register (N or K) cannot have been 
modified by a C increment or decrement command in the preceding micro­
instruction. 

**The most significant sixteen bits of the 32-bit processor are zeros. These 
codes control only the two lower-order eight-bit bytes in the sixteen least 
significant bits of the B source input in a 32-bit processor. 

***Restriction. If the macromemory READ command was not gIven In the 
preceding microinstruction, all ones are input to the B source. Exception: 
If the A source is a prime code; the A prime code source data is input to S2. 
This command (MEM) is restricted to a microinstruction with type A, B, or 
C execution time. 

2-10 



B' Codes* 

000 

001 

010 

011 

100 

101 

1 1" ~_ 
I IV VI 

111 

Mnemonics 

OPEN 

CRTJ 

INRO 

INRS 

MMU 

MML· 

Tloo.T'T" A ".". 
11'1 1 1\.' T 

TABLE 2-6 
B' Codes 

ALU Control Field Functions 

Operations 

Transfer the complement of the RTJ register to the 
twelve least significant bits of S2. Transfer is to 
the four most significant bits of S2. 

Input data/status from the I/O channel. 

Input to S2 I/O response signals. 

Transfer the upper sixteen bits of data from the 
micromemory to the X register in the microproc­
essor. The 32-bit processor transfers the total 32-
bit word. The F field must make a reference to 
the B source. The address is specified by transform 
or NK. The D field must be an NOP. (See micro­
memory operand references section for further 
details.) 

Transfer the lower sixteen bits of data from the 
micromemory to the X register in the sixteen-bit 
processor. This code is not operative in a 32-bit 
processor. 

Use the contents of the intermpt address encoder 
as the B source. The output of this encoder 
represents the complement of the interrupt address 
of the highest priority interrupt line that is active 
having its corresponding mask bit set. 

*The B' codes are specified by the S field equal to 1000. 
**Restriction: An INTU test command must be given in the preceding micro­

instruction. 

2-11 



Microinstruction Decoding 

D Field 

Bits 13 through 15 specify the destination of infonnation from the ALU organization. 
The two sources of this information are: 

• Selector S3 
• Selector S 1 

F A B D~ c 

t 
~ ___ ~~t~':: ___ : 

Shift 

S lR1 lL1 La 
L1 Left 1 place 
R1 Right 1 place 
La Left a places 
S Straight transfer 

Adder 

Figure 2-7. D Destination 

The D destinations are given in table 2~ 7. 

2-12 



D Codes Mnemonics 

000 NOP 

001 p* 

010 I 

all 0 

100 F1 ** 

101 A 

110 x 

III F 

TABLE 2-7 
D-Code Transfers 

ALU Control Field Functions 

Operations 

Do not transfer data to any destination. 

Transfer output of S3 to P, AB (macromemory 
address buffer register). 

Transfer output of S I to I, AB. 

Transfer output of 83 to Q, AB. 

Transfer output of S3 to F register, AB, and write this 
data in file 1 at the address specified by K at the com-
pletion of this instruction. 

Transfer output of S3 to A, AB. 

Transfer output of S3 to X, AB. 

Transfer output of S3 to F, AB. 

*If a D-field command to load AB is issued in the next microinstruction following 
the microinstruction with this command, the transfer to AB is inhibited. 

**Data is written into the file 1 register during the first part of the next micro­
instruction, taking advantage of the updated value of K from this microinstruc­
tion. The next microinstruction must not specify a read of file 1. 

D' destinations are specified by the D field whenever the S field of the microinstruc­
tion equals 100 1 or 1010. Table 2-8 gives the D' destinations. 

D" and double D (DD) destinations are required when double precision arithmetic is 
performed. Since this option is not present in our configuration, D" coding is not 
used. 

2-13 



Microinstruction Decoding 

TABLE 2-8 
D' Code Transfers 

D' Codes Mnemonics Operations 

000 10D Transfer the output of S3 to the I/O data register. 

001 lOA Transfer the output of S3 via the I/O data register to 
the I/O address register. This destroys the contents 
of the I/O data register. 

010 MMU Transfer the output of S2 to the upper sixteen bits 
of micromemory in the sixteen-bit processor, or 
transfer the output of S2 to the 32-bit word in micro-
memory in the 32-bit processor. (See micromemory 
operand reference section for further details.) 

011 I MML I Transfer the output of S2 to the lower sixteen bits 
of micromemory location in the sixteen-bit processor, 
or transfer the output of S2 to the 32-bit word in 
micromemory in the 32-bit processor. (See micro-

I 
memory operand reference section for further details.) 

I I 100 'U1 T .. " ..... ., .. "' .. +1-." " .. + ..... + "j:' AT TT +" ....... ".,1, .. "'n-~n+"' .. 1 U.I..1 .I..1aUi).1'-'.1 UI'-' VU'"l'U," VI I"l..LV ,"V Ula".l1o.. .1'-'&"'"'-'.1 .1. 

101 SM1 Transfer the output of ALU to SM register 1. 

') I 110 M~ I Trans~er the output o~ AL~ to ~ask regIster 2. 

I 111 SM2 I Transter the output ot ALU to SM register 2. 
~. - .~~dL~ ______ ~~I __ ~~ ______ ~~~~~ ________ - ____________ ~ 

Note: Outputs to the mask and SM registers are direct from the ALU and are not 
shiftable. 

2-14 



ALU Control Field Functions 

Shift Operations 

The ALU control field can contain shift and scale control infonnation. A shift opera­
tion is performed if the F subfield equals 11110. This function causes the remaining 
subfields of the ALU field to assume a different meaning than they did for arithmetic 
and logic operations. These bit meanings are shown in figure 2-8. 

2 

1 1 1 0 

. 
Shift 

6 7 8 9 11 12 

II ~ 

L=
I · Shif~ control s~ch as 

sign extenSion 
and end-around carry 

If 0, shift A register 
If 1, shift A/Q register 

Data , 
Left 

Data 

" Qinh+ 
III~II" 

combination 

A Q 

t 

Figure 2-8. ALU Control Sub field Meanings for Shift and Scale Operations 

The type of shift performed is determined by the coding of bits 7 through 12 of the 
microinstruction, while the amount of shift depends on the number contained in the 
N register. The two types of shift performed are an A register shift and an A/Q 
register shift. During a shift operation, the adder is not used. Table 2-9 defines 
shift operations. 

2-15 



Microinstruction Decoding 

I 

Bit Codes 

789 

1 o 0 

1 o 0 

1 o 0 

o 1 0 

0 1 0
1 

o 1 0 
I 

1011 

I 
o 11 

I 
o 11 

I 
o 1 1 

o 

11 12 

o 0 

o 1 

1 0 

o 0 

0 1 

1 0 

o 0 

0 1 

1 0 

o 0 

0 

Mnemonics 

AROE 

ARSE 

AREA 

ALOE 

ALIE 

ALEA 

AQROE 

AQRSE 

AQREA 

AQLOE 

AQLEA 

I 

TABLE 2-9 
Shift Operations 

Operations 

A is right-shifted (N) bits, with 0 entered as the 
most significant bit. 

A is right-shifted (N) bits, with sign extension. 

A is right-shifted (N) bits, with end-around 
carry. 

A is left-shifted (N) bits, with 0 entered as the 
least significant bit. 

A is left-shifted (N) bits, with 1 entered as the 
least significant bit. 

A is left-shifted (N) bits with end-around car ry 

A/Q is right-shifted (N) bits, with 0 entered as 
the most significant bit in A. 

A/Q is right-shifted (N) bits, with sign extension. 

A/Q is right-shifted (N) bits, with end-around 
carry. 

A/Q is left-shifted (N) bits, with 0 entered as the 
least significant bit in Q. 

A/Q is left-shifted (N) bits, with end~around 
carry. 

Note: (N) =:; Contents of register N. 

2-16 



ALU Control Field Functions 

Scale Operations 

Most computers operate with a fixed range of numbers. For example, the CYBER 18 
has only 16 bits of data, with values ranging from 0000 to FFFF 16' When data has a 
decimal (radix) point, it is very important to keep track of the placement of the point. 
On very large numbers, only the most significant digits may be used. A common 
method used by scientists and engineers to keep track of the radix point and to repre­
sent very large numbers is called scientific notation. This form consists of two parts: 
the most significant digits represented as a value between 1 and 9 and the exponent, 
which specifies the position of the radix point. The number represented is equal to 
the significant digits multipled by the exponent. For example, the value 186,00010 
could be represented as 1.86 x 105. 

A similar method of notation called floating pOL~t arithmetic is used in scientific COffi-

puter data. The most significant digits are represented as a fractional value of 0.1 2 
with an exponent to specify the radix point position. For example, the value 1010.1 2 
could be represented as .10101 x 24. With this method, the radix point for all data 
is always at the same position in the computer register. The purpose of the scale 
operation is to convert integer (whole) numbers into normalized floating point (frac­
tional) numbers with exponents. 

Scale operations are similar to shift operations, but the scale is stopped when the upper 
two bits of "A," bits AOO and AO 1, are not equal. (The scale point is normally between 
bits 0 and 1 of the A register.) The maximum number of bits to scale is contained in 
the N register and, on completion of the scale, N is decremented by the number of 
shifts necessary to scale the number. The scale operation is performed as follows: 

1. Processor logic checks N for zero and scale point of the A register (bits 0 and 1) 
for unlike bits . Tf N lC 7PTn nT c('~lp "n;nt;c c~t;cf;prl ; P A()() -:i= A()l c;:hiftinu ic;: 

.a..a.~'.LUII ~"'.&." - ... u"' ........ "" t"" ........... .a.u u ........... u ...... "' ..... , .... -., .... _- , .... _ ... , ................................. 0 .... ..... 

terminated. 

2. If shifting is terminated, continue at step 4; if not, continue at step 3. 

2-17 



Microinstruction Decoding 

3. The N register is decremented, followed by a one-bit position shift in A or A/Q 
as specified in the A and B instruction fields. Processing continues from step 1. 

4. Following the termination of scale (an extended timing operation), the execution 
of remaining field codes (M, D, S, C, T) is completed. The next instruction is 
selected by the normal sequence control codes. 

Note: If the number being scaled is comprised of all O's or all 1 's (i.e., the 
number cannot be scaled), then the scale operation is terminated when N = FE 16 
(after passing through N = 0). To avoid executing the microinstruction before the 
scale operation is completed, N should be at least equal to the number of bits in 
the word to be scaled. 

The type of scale operation is coded in bits 7 through 12 of the microinstruction in the 
same manner as the shift operation, and allows the same left shift options. When the 
N register is zero, the scale' operation is terminated and the next microinstruction is 
executed. All scale operations are performed when the F code equals 11111. The 
scales are given in table 2-10. 

Bit Code 

789 11 12 

0 1 0 o 0 

I ~ I ~ 1010101 

o 010 

o 1 0 0 

o 1 I 1 0 

Mnemonic 

SLOE 

C'lT ~ 

SLEA 

SDLOE 

SDLEA 

TABLE 2-10 
Scale Operations 

Operation 

A is scaled left, with 0 entered as the least signi-
ficant bit. 

I ... ~----- _£: 
I f\. IS scal~d 1~1 t, WIth 1 entered as the least SIgnI­

ficant bit. 

A is scaled left, with end-around carry. 

A/Q is scaled left, with 0 entered as the least 
significant bit in Q. 

A/Q is scaled left, with end-around carry. 

2-18 



ALU Con trol Field Functions 

Summary 

Table 2-11 summarizes the four sub fields found in the ALU control field when it con­
trols arithmetic and logic operations. 

Fields 

F 

A 

B 

D 

TABLE 2-11 
Summary of ALU Control Field Functions 

Arithmetic and Logic Operations 

Purposes. Bits Operations 

Operation of 2-6 Listed in tables 2-1; 2-2 
function 

A source 7-9 Listed in tables 2-3; 2-4 

B source 10-12 Listed in tables 2-5, 2-6 

Destination 13-15 Listed in table 2-7 

The ALU control field also can be used for shift or scale operations, in which case the 
following sub fields occur: 

Fields 

F 

R 

L 

A,A/Q 

SC 

TABLE 2-12 
Summary of ALU Control Field 

Shift or Scale Operations Functions 

Purposes Bits Operations 

Operation, 2-6 Must be a 11110 or 11111 
shift or scale 

Right shift 7 

Left shift 8 Listed in tables 2-8, 2-9 

Register or 9 
shift 

Shift control 11-12 

2-19 



ALU Control Fields 

DIRECTIONS: This exercise presents several examples of the ALU control field. 
Analyze these examples, and detennine the correct answer to each question. 

1. 1 01 00 010 I 00 0 11 I 
ALU CONTROL FIELD 

Given the contents of the ALU control field, detennine 
the final contents of Q after instruction execution. 

2. 11001 1 00 011 110 I 
ALU CONTROL FIELD 

Would the operation perfonned by the ALU control field 
,.."ne-a ,,~ ""a .. f1"n, "'''~rl1+1''n +" ha ... anar'3tar1?W}",? 
vUUO>v U.U Vyv.l.l.lvn vV.lH.~.lLo.lVH LoV V"" 5"".l.l"".l.U,"""U. " .... J • 

3. I 00011 001 011 001 I 
ALU CONTROL FIELD 

Given the contents of the ALU control field and the P and 
and X registers, determine the final contents of the P 
register after instruction execution. 

i 

4. 100101 101 100 011 

ALU CONTROL FIELD 

Given the contents of the ALU control field and the F and 
Q registers, detennine the final contents of the Q register 
after instruction execution. 

2-20 

MSB LSB 

I =\ 00l 

Q= 100 1 I 

MSB LSB 

A=I o 0 

X=(O 000 

MSB LSB 

P = 11 o 0 1 I 
MSB LSB 

X= I 1 I 

MSB LSB 

I i 

F = 11 I 1 o I 
MSB LSB 

Q=IO o 1 0 



ALU Control Fields 

MSB LSB MSB LSB 

5. 111110 101 010 0001 N= I 000 A=/O o 1 01 

ALU CONTROL FIELD MSB LSB 
I 

Given the contents of the ALU control field, the N Q= / 1 1 
register, and A and Q registers, determine the final 

I 

contents of the A/Q register combination. 

MSB LSB MSB LSB 

6. 111111 011 000 0001 N=/() A - I f\ f\ II III 
~ . I ~ r~ I v v v 

vI I ~ I 

ALU CONTROL FIELD MSB LSB 

Given the contents of the ALU control field, the N Q= I 0 I 1 01 
register, and A and Q registers, determine the final 
contents of the A/Q register combination. 

2-21 



Microinstruction Decoding 

ANSWERS 

1. Q= 1 100 11 

2. NO-no overflow condition is generated for a subtract when both operands have the 
same sign or for an add when both operands have a different sign. 

3. P = I 111 1 1 

4. Q=( 1 1 0 1 I 
MSB LSB 

5. A= 11 1 1 01 

MSB LSB 

Q=IO 1 0 1 I 

6. A=IO 1 1 01 

Q=IOOOOI 

2-22 



ALU Control Field Operations 

You are familiar with the various functional portions of the ALU module: the working 
registers, files, input and output selectors, and, most important, the adder itself. You 
are also familiar with the ALU control field of the microinstruction and you know that 
each sub field of ALU control provides operational control information for some func­
tional area of the ALU module. This reading provides an understanding of how each 
sub field determines sources of input data, destination of output data, and control of 
shift operations. 

Three of the four subfields of ALU control provide data control. These are the A, B, 
and D subfields. If the F field specifies an arithmetic or logic operation, the A and B 
field provide the data source to the adder, while the D field determines a destination 
for output from the adder. When a shift or scale operation is specified, the A and B 
fields contain shift control information. The D field is not used for these operations. 

ALU control information contained in the MIR is decoded on the control 1 module, 
which sends control information to the ALU module. Each data control field will be 
examined in turn to see how field decoding interfaces with the ALU module. 

A Field 

The A field (bits 7, 8, and 9 of MIR) provide control information to the ALU as shown 
in fionrp "'-Q ........... ..Lbt0..4..L"" a.- J. 

The function contained in the F field causes the A field to be interpreted as follows: 

• Data source selection for arithmetic and logic operations 
• Shift select information for shift and scale operations 

Data source selection is decoded by A-field bits. Signals (S 1 SO, SIS 1, and S 1 S2) that 
provide this selection originate from control 1. These signals provide the data selection 
to the A source of adder. A source selection, which occurs in selector S 1, consists of 
sixteen 8 to 1 multiplexers as shown in figure 2-10. There are eight possible data 
sources for selector S 1. Each stage of S 1 is able to gate one bit from these sources. 
A' decoding of the A field (S = 0111 or 1010) causes some data source on the tri-state 
bus to be enabled as A source bus data (BUSOO-BUS 15). 

2-23 



Microinstruction Decoding 

If a shift or scale is specified by the function code (F field), shift control information 
is contained in the A field. A shift control multiplexer located on control 1 decodes 
bits of the A field and generates (;ontro1 signals to the A and Q registers of ALU. The 
control signals force right or left shifts for the A register or the A/Q register combina­
tion. Figure 2-10 shows that data to the A and Q registers originates from selector S3. 
The shifted output of A and Q is made available to selector Sl and S2, respectively. 

Afield 
decoding 

Source 
selection 

l ) 1 A register 
Shift .... ------' 

-~--­control 

Figure 2-9. A-Field Decoding 

2-24 

Selector S2 

1 



Control 1 

A field B field 
----------r-------------~--------------

8 9 Micruinstruction 

----------~--~~~----~--------------

SlS0 

SlSl 

SlS2 

I I I 
...-

A' 
Bus 

Control r--
Enable 

S field ~ BP 

orl0l0) _ (S~Ollllll .~ 

M!R09 

MIR08 

MIRO? 

Enable A/O shift 

Multi­
plexer 

Shift 

control 

MI R30 ---------' 

sourc 

SC t SH I FT -----...... 

(When F field equals 1111 X) 

These signals originate 
from D field of 

microinstruction {

Gate A 

Gate 0 

Next 
stage 

o Mode SO 

o Mode Sl 

S303 

Next 
stage 

A 
register 

FOO 
100 

POO 

XOO 

AOO 

DEL TAOO 

BUSOO 
F200 

FOl 

!01 
POl 

XOl 

AOl 

DELTAOl 

BUSOl 

F201 

ADO 

AOl 

A02 

A03 

A04 

A05 

A06 

/\07 

A08 

Figure 2-10. A Source Selection 

2-25 

Control Field Operations 

ALU Module 

S303 

Next 
stage 

Selector 
Sl 

(bit 0) 

Selector 
Sl 

(bit 1) 

16 Total 

0 
register 

5100 
to adder 

S101 
to adder 

000 

001 

002 

003 

004 

005 

006 

007 

008 



Microinstruction Decoding 

B Field 

The B field of ALU control (bits 10, 1 I, and 12) determines the source of data to the 
B source of the adder, as shown in figure 2-11. 

F A B 0 

I 
B field 

decoding 

I 

Selector S1 

Shift 

control 

A register n ____ :_ ... "" ... I U It:YI;)lCI 

MSB MSB LSB 

End-around carry 

Figure 2-11. B-Field Decoding 

Data source selection is decoded by B-field bits. Either B or B' decoding determines 
the source of data. B decoding selects ALU register sources while B' decoding (which 
occurs when S = 1000) selects a sixteen-bit data source from the tri-state bus to 
selector S2 of ALD. (Refer to figure 2-12.) 

During shift or scale operations of the A register, bits 11 and 12 provide shift control 
to the MSB or LSB of the A register. During shift operations using the A/Q register 
combination, the LSB and MSB of A and Q are controlled by shift control. Shift 
control bits are interpreted as follows: 

Bit 11 

o 
1 
o 

Bit 12 

o 
o 

Result 

o is entered in MSB or LSB of A or Q registers 
End-around carry of A or A/Q register 
Sign ex tension of LSB of A register 

2-26 



Controi 1 

__ ~~~~ ___ ~~~ ____ ~~~2_~ 
I 
I 

--------~--T__r~-------~ 
S2S0 

S2S1 

5252 

B' 

B' 
control 

S field = BP ~n"bl" 

I 

MIR12 

MIR11 Shift 
control 

A reg. 00 

A reg. 15 

Oreg. 00 
I 
I 

Oreg. 15 
I .1 
I 

ALU 00 
I ., 
I 
I 

ALU15 -j 

Bus 

source 

Next stage 

OMSBSR 
OLSBSL 

ALSBSL 

AMSBSR 

S301 

L-_________ < From ALU.---4 
module 

LSB of 
,A register 

5308 

Control Field Operations 

ALU Module 

F200 
NO 

BGOO 
XOO 

000 
FOO 

DEL TAOO 
BUSOO 

F201 
Nl 

orn1 
OUUI 

XOl 
001 

FOl 
DEL TAOl 

BUS01 

ADO 

A01 

A02 

A03 

A04 

A05 

A06 

A07 

A08 5308 

LSB of 
o register 

Selector 

S2 

Selector 
S2 

16 
total 

S200 
to adder 

S201 
to adder 

000 

001 

002 

003 

904 

005 

006 

007 

008 

Figure 2-12. B Selection 

2-27 



Microinstruction Decoding 

Shift control monitors the LSB and MSB of the A and Q registers to decide whether 
bits should be carried from the A register to Q during right shifts or Q register to A 
during left shifts. Remember that shift control provides the correct bit information 
to the least and most significant bit positions of the A and Q registers during shift 
operations. 

D Field 

Figure 2-13 represents the control exercised by the D field of the microinstruction. 

16-bit data words 

I 
Selector S3 

C field 1----------
Shift 

shift control 

1 

c±J 
I p I I A I I F I X I Q J 

1 1 1 1 1 - - - -

Figure 2-13. D-Field Destination Control 

2-28 

D field 
decoding 

D 
register 
enables 

l 
D' en abies 

, 
0' 
ations destin 



Control Field Operations 

The decoded D field enables a sixteen-bit data word to a destination register. Bits 13, 
14, and 15 are decoded as either D or D' codes. D codes gate the output of selector S3 
or S 1 to one of the working registers on ALU, while D' codes provide gating to destina­
tions in the microprocessor that are not part of ALU. Figure 2-14 is a representation 
of the logic used to decode the D field and the enabling signals supplied by this decoding. 

The D field of ALU control is not used during A register or A/Q register shift opera­
tions. However, selector S3 is supplied with a shift network used during arithmetic 
operations such as multiply and divide. Figure 2-14 shows this shift network. It is 
controlled by C field contents to provide left and right shifts or straight transfer of ALU 
output data. The output of the shift network is made available to selector S3 and 
gated to some destin::Jtion controlled by the D field contents. 

Summary 

The A field either selects a source of data or provides shift select information. It 
selects a source through selector SIan ALU. During shift operations, a multiplexer on 
cantrall will decode it and generate shift control signals to A and Q registers. 

The B field determines the source of B data to the ALU or provides shift select infor­
mation. The source of B data is either an ALU register, or some external source avail­
able to selector S2. In a shift or scale operation, the B field provides control of MSB 
and LSB of the A and Q registers. 

The D field enables an output to a destination either within the ALU or outside it. 

2-29 



Microinstruction Decoding 

Control 1 

B field r------
I 

'-------

D field 

J13 I 
14 15 I 

I 
I 
I 
I 
I 

Gate Q 
~ 

Gate X 

-- --
-S = 1001 or 1010 

~ f-- D 
Gate F 

decoding 
Gate A 

multiplexer 
Gate P L 

Gate I 

Gate 10 DAT 

L-.-
Gate 10 ADR 

'-- D' Gate Ml 

decoding Gate M2 

-S = 1001 or 1010 
multiplexer 

Gate SM1 
I 

Gate SM2 

--------------------------------~ 

Co ntrol2 

--MIR20-M 
Shift 

IR23-
L8EA 

I 

C' 
--iviiR25-iviiR27 - decoding 

S300 
T S301 

I I I 

-

ALU Module 

I-f ,~--~ 

X I 
t 

J F I I 
t 

A 1 
1 

L-..f P 1 
f 

J I I I 
t 

16-bit 
data words 

t Selector S3 
----------

I Shift 

1 

Figure 2-14. D-Field Decoding 

2-30 

{

Right shift 1 
Left shift 1 
Left shift 8 
Straight transfer 



ALU Data Flow and Operating Modes 

DIRECTIONS: Answer the following questions, using T for true or F for false. 

1. If the F field of ALU control equals 11111, A source information is 
decoded from the A field of the microinstruction. 

2. Only one function code is required to shift the A register contents 
and gate the result to the A source of the adder. 

1. Wh~n th~ F field of a microinstruction equaling 11110 is ex~cut~d; 
bit 10 of the B field has no meaning. 

4. B' decoding selects a data source to the B side of adder other than a 
working register. 

5. The contents of the microinstruction C field determine whether B or 
B' decoding takes place. 

---- / 6. The D field contents control the output of the adder for a right shift, 
left shift, or straight transfer. 

ANSWERS 

7. An A and Q register shift does not require a destination field to be 
specified in the microinstruction. 

8. During a shift A operation, the least significant bits and most significant 
bits of both the A and Q registers are monitored by the shift control 
multiplexer. 

1. F 2. F 3. T 4. T 5. F 6. F 7. T 8. F 

2-31 



Arithmetic Operations 

You are familiar with microinstruction coding--but not how programs are written and 
intrepreted. In this reading, a number of microinstruction programs that perform 
arithmetic operations are analyzed to see what actual activity is generated by the 
microinstruction code. 

Format of Microinstruction Program Listing 

A microprogram in the CYBER 18 emulates 1700 macroinstructions. Just one micro­
instruction or a series of microinstructions may be required to emulate a 1700 instruc­
tion, depending on the microoperations required. Table 2-11 is a representation of a 
typical microprogram. 

2-32 



a b 
~ .. ---

!..oc_~ro.~ 

TABLE 2-11 
Microinstruction Listing 

c d -----F ., C 

Arithmetic Operations 

e f 
.-- -'-

"' CG!4!!t'l' 

1617 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
1638· • 
16~q ~~ T C ~ EO" E co t S T [ It F..... • 
1"'''0 
16-'1 •••• , ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

1l;ftZ • 81 ORG IoX·Z+"F."IIEFl 
lr. .. ~ II DII. 5 .. E? e ..... C +STQ B Q F tlRTTE ~FFIDqF" BTU STOllE (QJ, CHeCK IF ElzFF 

16"0; 01111 ORr. 1o.·?+NEMREFl 
lb .. t> I 8118 '1tE1 ........ - 8 Q " ,,"IT' E'F"I'lRFF BTU STOIIF (01, CHfCI( IF "AzFF 

16"" on .cn 10651 " + suo- P ME" P FZWIt PHI J !iIYH, 11+1 TO p, GOTO "NT 
16"" 0119 .cn loose 8 - suP- P ME" P RNI J PH TO P, GO TO ~Nt 

a. Specifies micromemory instruction location (in hexadecimal). The PIMA 
column contains three digits. The first is the page address; the second two 
are the micromemory address within a page. The T column specifies the 
upper 32-bit word when T = 0; T = 1 specifies the lower 32-bit word. 

b. The contents in hexadecimal of the 32-bit instruction located at T PIMA. 

c. The arithmetic subfields are represented with their mnemonic contents. 
Operation, data sources, and destination of output are specified. 

d. The Sand C fields contain the microprocessor operations that take place 
during instruction execution. Mnemonics are used to represent this 
operation. 

e. The MT field represents the operation contained in the M (mode) and T 
(test) field of the microinstruction. Of the three characters, the first repre­
sents M field contents while the other two represent T field operations. 

f. COMMENT is a summary of the microinstruction stating approximately 
what the microinstruction is accomplishing. 

2-33 



Microinstruction Decoding 

The series of microinstructions represented in table 2-11 emulate a 1700 store Q regis­
ter function (macroinstruction F field = 4). The explanation of the microcoding is 
divided in the listing under a series of headings. Each heading describes part of the 
operation that takes place during a microinstruction execution as follows: 

T Since each micromemory instruction pair is sixty-four bits in 
length, a 32-bit upper and lower instruction exist at one 
address. If T = 0, the upper 32-bit word is selected; if T = I, 
the lower word is selected. 

P /MA The three-digit address specifies the page and pair address 
within the page of memory that is read. 

MICRO-MEM The contents of the memory location (thirty-two bits) speci­
fied by P/MA is displayed. 

ALU CONTROL A sumnlary of ALU control is contained under F, A, B, and 
D sub fields. 

Sand C Microprocessor control operations are represented in these 
fields in mnemonic code. 

MT A summary of operations specified by the :Lvi and T fields is 
represented in mnemonic code. 

COMMENT A statement explains what the particular microinstruction is 
accomplishing. 

Reading a Listing 

It is important to understand how to read instruction listings, since most computer 
instruction sets are written in a way similar to those in table 2-11. To interpret an 
instruction listing, refer to figure 2-15, where an example of a logical operation per­
formed by the microprocessor is given. 

CARD VALUE T PIMA MICRO-MEt1 LOCATION F A B D C MT COMl1ENT DIAGNOSTICS 

LOGICAL OPERATIONS EXAUPLE 

9 000 5326 0000 EOR A Q x x = (Q) EOR (A) 
10 000 48DE 2000 -A X X COliPLE~lENT X 
11 001 4AE3 0000 -B Q Q COMPLEf04-ENT Q 

CARD VALUE T PIMA MICRO-MEM LOCATION F A B D C MT COMHENT DIAGNOSTICS 

Figure 2-15. Example of a Logic Operation 

2-34 



Arithmetic Operations 

The micromemory address (PIMA) is 000. The first instruction at that address (upper 
thirty-two bits) is 5326 000016. The ALU control mnemonics show that the opera­
tion that takes place is an exclusive OR of the A and Q register. The result of the 
exclusive OR is placed in the X register. The comment field states that the X register 
contents equals the result of an exclusive OR of Q register contents and A register 
contents. Figure 2-16 represents the contents of the ALU control field during this 
operation. 

~ 
532616 

~ 
M F A B D 

o 1 o 1 001 I 1 o 0 100 1 1 oJ==== ALU control 

Figure 2-16. Exclusive OR Instruction Execution 

Each field has the following content: 

M A sequential instruction is addressed following the execution of the cur­
rent instruction. 

F This field indicates an exclusive OR takes place using an A source sixteen­
bit word and a B source sixteen-bit word. 

A The A source specified is the A register. 

B The B source specified is the Q register. 

D The D field contents causes the result of the exclusive OR operation to be 
gated to the X register. 

The next sequential microinstruction located at address 000 lower executes next. This 
instruction when executed causes the A source (X register) to be complemented and 
returned to X. The final instruction (address 001) upper causes the B source (Q register) 
contents to be complemented and returned to Q. 

2-35 



Microinstruction Decoding 

Scale Operation Example 

Figure 2-17 demonstrates a scale operation. The microinstnlctions that perform this 
scale are at memory address 006 and address 007. You might recall that a scale per­
forms a shift operation that stops the shift when the two bits at the scale point in the 
A register are not equal. The scale point normally is specified as being between bits 
o and I in the A register. The maximum number of bits to be scaled is contained in the 
N register. On completion of the scale, the N register contains the original specified 
maximum minus the number of shifts necessary to position the number so the bits at 
the scale point are unequal. 

CARD VALUE T P /MA 

CARD VALUE T P/~.A MICRO-MEM LOCATION F A B D C MT COl1MENT DIAGNOSTICS 

60 SCALE EXAMPLE ONES COMPLEMENT ARITH}IETIC 16 BIT NP 

62 006 D8D8 1020 N = 32 Sl:.T MAXIMUM SHIFT 
63 006 1EDO 2800 E SDLEA N = 32 - NUMBER OF SHIFTS 

65 SCALE EXAMPLE TWOS COMPLEl1ENT ARITHMETIC 32 BIT NP 

67 007 D8D8 1040 N = 64 SET MAXIMUM SHIFT 
68 007 7FC8 2800 E SMOE N = 64 - Nm1BER OF SHIFTS 

CARD VALUE T P/MA MICRO-~.EM LOCATION F A B D C MT COl1MENT DIAGNOSTICS 

Figure 2-17. Example of Scale Operation 

Examine the two instructions at address 006. Tne upper one is shown in figure 2-i8. 

2-36 



I 
Sequential 

Logical 
zero 

Arithmetic Operations 

X register 

08081020 

B 0 

X register micro­
instruction 

NOP next Value in 
C field 

NOP 

is N-register 
contents 

Figure 2-18. N Register Value Set to 3210 (20 16) 

N register 
value 

This upper instruction places the value of the C field into the N register upon execu­
tion. N equals thirty-two or the maximum number of shifts for the A/Q register 
combination. 

The lower instruction shown in figure 2-19 scales the A/Q register combination with 
end-around carry. After the scale point has been reached or thirty-two shifts have 
taken place without finding a scale point, the upper instruction at the next address 
called for in the microprogram is read. 

7EDO 2000 

F 

1 1 1 1 o 0 0 0 0 000 

Scale A/Q Upper instruction 
operation register of next pair 

Sequential Left End-around NOP 
shift carry 

Figure 2-19. Scale Operation 

2-37 



Microinstruction Decoding 

More Examples 

Figure 2-20 shows an add to the A register operation. Actually, two microinstructions 
must be executed to complete this operation. The first instruction forms the effective 
address (EA) of main memory, from which data is read. The second instruction per­
forms the add operation of memory contents and the A register. The result of the add 
is stored in A. The second microinstruction also determines the next microinstruction 
to be executed in the program. 

CARD VALUE T PIMA MICRO-ME.M LOCATION F A B D C MT COllMENT 

1701 
1702 
1703 
1704 
1705 

* *** ** * * * * ** * * * ** * * * * * * * ** * * * * ** * * * ** * * ** ** * * *** ** ** * * *** * *** ** ** * * * * * ** '" ** ** * * 

* ADD TO A REGISTER F = 8 

1706 090 ORG aX*2+MEMREF1 
1707 090 6C79 2300 G +ADD SUB- P MEM P READ U READ (FA) , P+1 TO P 
1708 091 B33D 4058 C ADDT A MEM A RNI A+(J::A) TO A, GO TO RNI 

1710 090 ORG 8X*2+MEMREF1 
1711 1 090 B31D 2058 C - ADDT A X A INI J A + EA (1M. OPR. ) TO A 

Figure 2-20. Add to A Register Routine 

2-38 



Arithmetic Operations 

Each of the two instructions is analyzed in turn, that is, the upper instruction at address 
090, and at 091. The instruction at address 090 is broken down into its respective fields 
in figure 2-21. 

M F 

t 
Sequential 
instruction 

t 
P 

register 

Perform A-8 
with forced carry-in 

Memory 

data 

6C79 2300 

+ • P No NOP 
register significance 

Execute upper Read contents 
instruction of of formed memory 

next pair address as data 
in next operation 

Figure 2-21. Effective Address Use 

A summary of each field also is given. The M field contains 01 bit combination, indi­
cating a sequential instruction is the next executed. ALU control calls for an A source 
minus B source operation with a forced carry-in. A result is the formation of an up­
dated 1700 program count. Thc address contained in AB addresses the data to be 
added to A in the next instruction. The T field contents causes the next instruction 
address' upper instruction to be executed next. The S field specifies that a read of 
data contained at the main memory address stored in AB takes place. 

The breakdown of the second instruction in this sequence is shown in figure 2-22. 
Again, a summary of each field is given. The instruction performs operations as 
follows: The M field (M = 10) specifies a jump; that is, the next microinstruction 
to be executed is not in sequence. The next instruction referenced is that whose 
address is contained in the C field of the present instruction. ALU control contents 
does an add of the A register and memory contents, with the result of the add placed 
in A. The T field specifies that the lower instruction of the next pair will be refer­
enced with the C field containing the address of the next instruction pair. 

2-39 



Microinstruction Decoding 

Jump to 
address 

specified 
in C field 

A 
register 

Add with overflow 
test 

Memory 
data 

B330 4058 

A 
register 

No 
significance 

Lower instruction 
of next pair 

NOP 

Jump address of 
next microinstruction 

pair 

Figure 2-22. Add Memory Data to A Register 

Summary 

Correct interpretation of instruction listings is not a difficult process. Instruction list­
ings can become a good troubleshooting aid for computer technicians, allowing them 
to interpret processor failures. In this reading, you have examined a number of listings 
involving various types of operations. Do not continue to the next activity unless you 
understand what kind of information is found under each of the following headings: 

• T 
• PIMA 
• MICRO-MEM 
• ALU Control 
• Sand C 
• MT 
• COMMENTS 

2-40 



PROGRESS CHECK 

QUESTIONS 

1. What ALU control field identifies the arithnletic or logic operation to be performed? 

a. A 
b. B 
c. D 
d. F 

2. What microinstruction field controls selector Sl when it is used to gate information 
to "I"? 

a. A 
b. B 
c. C 
d. D 

3. What D field code gates the result of an arithmetic operation to "X"? 

a. 000 
b. 010 
c. 110 
d. III 

4. What three select signals determine the IS-bit data source through selector Sl? 

a. SlS0, SlS1,SlS2 
b. GATEQ, GATEX, GATEF 
c. S300,S301,S302 
d. S2S0, S2S1,S2S2 

5. When the F field equals 11110, the information contained in MIR bit positions 7, 8, 
and 9 is used to ---

a. specify an A source input to selector Sl 
b. control the direction of a shift operation and the registers to be used in the 

shift operation 
c. control the number of bits to shift during a scale operation 
d. select the type of logic operation to be performed 

6. What circuit controls the number of bit positions to be shifted? 

a. File 2 
b. File 1 
c. "N" 
d. "I" 

2-41 



Microinstruction Decoding 

7. What is the maximUIn number of shifts that ('an take place when the 0, A/Q" 
combination is used? 

a. 8 
b. 16 
c. 24 
d. 32 

8. What field in a microinstruction listing contains information that ex-plains what a 
particular microinstruction is accomplishing? 

a. Comment 
b. MT 
c. AL U control 
d. T 

9. When B' decoding is used, the source of data selected is __ _ 

a. a working register 
b. file 1 
c. file 2 
d. a data source on the tri -state bus 

10. What F field code causes the A source to the adder to be complemented during a 
logic operation? 

a. 00000 
b. 00101 
c. 01100 
d. 10100 

2-42 



Progress Check 

ANSWERS 

1. Correct Answer: d 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 2-2. 

2. Correct Answer: d 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 2-13. 

~ Correct Answer: c <J. 

Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 2-13. 

4. Correct Answer: a 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, 

pages 2-23 through 2-25. 

5. Correct Answer: b 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, 

pages 2-15 and 2-16. 

6. Correct Answer: c 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, page 2-15. 

7. Correct Answer: d 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 2-37. 

8. Correct Answer: a 
Resource: Text: CYBER 18-20 Arithlnetic Logic SRM, page 2-37. 

9. Correct Answer: d 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, page 2-26. 

10. Correct Answer: a 
Resource: Text: CYBER 18-20 Arithmetic Logic SRlVf, page 2-4. 

2-43 



Block 3 

Arithmetic and Logic Operations 



ALU Operations 

You are already familiar with the operation of each functional area of the ALU and 
with the data flow paths through it This reading familiarizes you with each functional 
block on the ~ALU at a logic level. 

Read the explanation of the various logic figures and then examine carefully each one's 
operation. Figure 3-1, a block diagram of the ALU module, will help you to under­
stand the relationships among logic blocks in the ALU. The functional areas to be 
examined in this reading are: 

• P register (as an example of a typical working register) 
• A register with shift control 

• File 2 
• Selector S 1 
• Adder with look-ahead carry 
• Selector S3 with shift control 

P Register 

Six working registers are contained on the ALU module: I, P, A, F, X, and Q. These 
registers serve as temporary storage and data transfer registers. Except for the A and 
Q registers, which are capable of shift operations, all working registers operate 
similarly. 

The P register is typical of a working register. It consists of D-type flip-flops, half of 
which are represented in the logic diagram in figure 3-2. Data input, which comes from 
selector S3, is gated into P whenever a GATE P signal is present. This signal is decoded 
from the D field of the microinstruction. The Q, or true, output of each P register 
flip-flop is available to selector Sl as a source of data to the A input of the adder. 

A Register 

Figure 3-3 is a logic representation of another type of working register. This register 
not only can store a data word but also can shift its contents. The A register (like the 
Q register), is a set of four shiftable register ICs controlled by AMODESO and 
AMODESI enabling signals. These signals originate in the decoding of the A and B 
fields of the microinstruction when an arithmetic or shift operation takes place. Input 
from selector S3 to the A register flip-f1ops occurs when a GATE A signal is present. 
The output from A is available to selector S 1 as an A source input to the adder. 

3-1 



Arithmetic and Logic Operations 

During a shift operation, data contained in the A register is shifted internally either 
right or left with serial-by-bit inputs to and from each four-bit shiftable register Ie as 
indicated. During A/Q register shifts, the MSB (left shift) and LSB (right shift) of Q 
are also enabled to the respective bit position of A to allow for serial end-around oper­
ations during combined register shifts. 

File 2 

Figure 3-4 is a logic diagram representation of file 2, an addressable RAM memory with 
thirty-two sixteen-bit locations. File 2 consists of eight RAM chips having sixteen 
addressable locations, each able to store four bits of information. Addressing for file 2 
originates from the lower five bits of the N register (N3 through N7). N3 selects an 
upper or lower set of four RAM chips while N4 through N7 determine which of the 
sixteen locations of that four-chip group is being referenced. Data available to file 2 
is the F register data and is written into file 2 whenever WEF2 is low at the write 
enable input (WE). The contents of an F2 location can be used as a data source for 
selector S I or S2, depending on the arithmetic operation taking place. The data out­
put is available whenever the enable (E) signal is low at the chip input. 

Selector 81 

Selector S I consists of sixteen separate multiplexers, each used to select one bit of a 
sixteen-bit word. Eight word sources are available to selector S1. Figure 3-5 shows four 
of the sixteen S 1 multiplexers. The select enables (S I SO through S 1 S2) control which 
of the eight sources will be made available at the multiplexer output. These enables are 
created from the decoded A field of the microinstruction. The Q output of selector S 1 
is made available to the A source inputs of the adder for arithmetic and logical opera­
tions. Figure 3-5 also shows a four-bit portion of the I register. This is the only work­
ing register of the ALU which does not receive its input from output selector S3. Both 
data input to the I register and data output from the I register are gated through 
selector S 1. 

Adder With Look-Ahead Carry 

The adder with look-ahead carry generator is shown in figure 3-6. The adder is made 
up of four adder chips. Each chip is able to process four bits of data from two separate 
sixteen-bit data sources (A Source S 1 and B Source S2). The internal data process is 
determined in the adder chips by four adder Select inputs (ALUO through ALUS3) and 
adder mode control (ALUM) originating in the decoding of the F field on control 1. 
The data output of each adder chip (FO through F3) is available to selector S3 for 
shifted or nonshifted data flow to some destination. The adder output may also be 
gated directly to the status mode interrupt module (SMI). The carry-in generator chip 

3-2 



ALU Operations 

monitors the propagate output and the generate output from each adder chip. These 
two signals cause the carry-in generator to produce the necessary carry inputs to adjoin­
ing adder chips during arithmetic operations. 

Selector S3 

Once data is available at the output of the adder, selector S3 may perform one of four 
operations (figure 3-7) on that data by enabling: 

• Direct transfer inputs DOA and DOB 
• Shift left one place inputs D lA and D 1 B 
• Shift right one place inputs D2A and D2B 
• Shift left eight places inputs D3A and D3B/ 

A logic diagram representation of eight bits of selector S3 is shown in figure 3-8. 

Selector S3 consists of eight separate multiplexers, four of which are represented in 
figure 3-8. Select signals S3S0 and S3S 1 are used to enable one of four possible input 
sources. (Refer to the truth table which demonstrates the sources enabled to selector 
outputs by these select signals.) The select signals originate in the decoded C field 
(MIR20 through MIR31) of the Inicroinstruction. Data output from selector S3 is 
made available to the working r~gisters, the microprocessor tri-state bus, and I/O logic. 

Summary 

Table 3-1 summarizes the logic level of each part of the ALU's functional block diagram. 

TABLE 3-1 
ALU Block Diagram at Logic Level 

Parts Purposes Components 

P register Like other working regis- 16 D-type flip-flop 
ters, this register provides 
temporary storage and data 
transfer. Output available 
to selector S 1. 

A register with shift Like the Q register, can Four shiftable register ICs 
control store a data word or 

shift its content. Out-
put available to selector 
S1. 

3-3 



Arithmetic and Logic Operations 

TABLE 3-1, Cont. 
ALU Block Diagram at Logic Level 

Parts Purposes Components 

File 2 Addressable RAM memory Eigh t RAM chips 
with thirty-two sixteen-bit 
locations. Output available 
to selector S 1 or S2. 

Selector Sl Selects each bit of a sixteen- Sixteen multiplexers 
bit word. Output made 
available as A source input. 

Adder with look-ahead Processes data from A and Four adder chips 
carry generator B sources. Output made 

I 
One carry generator 

available to selector S3. 

Selector S3 Shifts or directly transfers Eight separate multi-
input. Output available 

I 
plexers 

I 
to working registers, micro-
processor tri-sta te bus, and 
I/O logic. 

3-4 



ALU Operations 

AB register (memory interface) ------. ...------ 5300 breakpoint controller 

Main CPU 
threfH:tMe hue; 

D register (I/O-TTY) _----e 
Transform -----. 

To 

* File 1 is optional 

Notes: 

Adder (16) 
Micromemory 

SM register 
and mask 
register 

(SMI 

moduiei 

Main CPU 
L..-_--+ __ three-state bus 

6il generalOr 
L..-__ --+ __ (from control 2) 

N/K registers 
(from control 2) 

1. The numbers inside the selector blocks indicate the selector position. 
2. The numbers in parentheses indicate the width of registers and selectors. 

Figure 3-1. ALU Module Block Diagram 

3-5 



Arithmetic and Logic Operations 

Gate P 

S300 0 Q POO 
CP FF 

r-<> C a N/C 

S301 0 J;l POl 
CP FF 

~ C Q N/C 

S302 0 g P02 
CP FF 

H C n N/C 

S303 o Q P03 
CP FF 

......a C n N/C 

.,.~ ,~ I I I 

I 

!1 I 
I 

J 
F!ip-f!ops P04 through P11 

S312 0 Q P12 
CP FF 

......a C Q N/C 
I 

S313 0 9 P13 
CP FF 

~ C Q N/C 

5314 0 a P14 
CP FF 

~ C Q N/C 

S315 0 Q P15 
CP FF 

.~ C <I N/C 

l +5 ~ Power-up clear 

Figure 3-2. P Register 

3-6 



so 
H 

H 

l 

l 

Control 1 

Sl Mode 
..... 

H Parallel load , 
L Shift right idown) ....... , 
H Shift left (up) 

l Hold 

During a right shift of A/O, 

the least significant bit of 
o (0 15) will be available 
when end-around carry is 

J 

A/O, 
of 0 

During left shift of 

most significant bit 
(000) will be 

available here. 
>--AlSBSl 

Destination field >-­
decoding cause 

selector S3 output to 

be gated to A. 

Gate A 

I 

. 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

AMODESO 

! AMODESl 

+ AMSBSR 
CIR Sl SO 

~OO PO 00 

S301 Pl 01 

S302 P2 02 

S303 P3 03 

CP r-f
C1L 

~ l 
"'-" CIR Sl SO 

S304 PO 00 

S305 P1 01 

S306 P2 02 

S307 P3 03 

r Cil 
CP 

l 1 
I...., CIR S1 SO 

S308 PO 00 

S309 P1 01 

S310 P2 02 

S311 P3 03 

c: Cil 

CP 

, 1 
- CIR S1 SO 

S312 PO 00 

S313 Pl 01 

S314 P2 02 

S315 P3 03 

Cil 

~ CP 

Figure 3-3. A Register and Control Signals 

3-7 

ALU Operations 

AlU Module 

MSD 

AOO 

AOl 

A02 

A03 

A04 

A05 

AD6 

A07 

A08 

A09 

Al0 

All 

A12 

A13 

A14 

A15 

LSD 



Arithmetic and Logic Operations 

Gate F l 
5300 - i""- D 0 r-- FOO 

....-- CP 
C 0 

5301 - i""- D 0 -F01 
....-- CP 

C 0 

5302 -- D 0 r-- F02 
....-- CP 

C 0 

5303 -- D 0 -F03 
~ CP 

C 0 

5304 - i""- D 0 r-- F04 
~ CP 

C IT 

S305 - i""- D 0 r-- F05 
....-- CP 

C Q 

I IIIII _Ir-- 0 Q r-- F06 5306 

~ CP -
C 0 

5307 - --- 0 0 ~F07 
'--- CP 

I 
C 5 

I 

-- ..... WEF2 .,. 

N3 or ...... 
N3-1 .,. 

t 
Next 
stage 

I 
I 

Next 
stage 

N7- AO RAM 

N6- A1 ao 
N5- A2 01 
N4_ A3 02 p--

00 03 t>-
01 
02 
03 
WE 
E 

I I 
I I 

N7- AO RAM 

N6 - A1 00 

N5 - A2 01 

N4 - A3 02 0--1-

00 03 ~ 
01 
02 
03 ,.. 
WE ,., 
E 

I I 
I I 

N7 - AO RAM 

N6 - A1 00 

N5 - A2 01 
N4 - A3 02 P---

00 "' ... P=-U,J 

01 
02 
03 

- WE ,. 
E 

I I 
I I 

N7 -1 AO RAM I 

N6 ~ A1 
00 

N5 A2 01 

N4 A3 P-~ 02 
00 03 P-
01 
02 
03 
WE 
E 

I I 
I I 

N7 - AO RAM 

N6 - A1 00 :::> 

N5 - A2 01 0 

1\ ,J4 - A3 

8 RAM chips total 

Figure 3-4. File 2 with Control Signals 

3-8 

-
~-

J--

~r--

F200 

F201 

F203 

F202 

F204 

F205 

F206 

F207 



SlS0 
SlSl 
SlS2 

S1S0 
S1S1 
S1S2 

Gate I 

........ 

, 

~ 
( 

., 

ALU Operations 

T 1 I 1 1 
F201 S2 Sl SO F203 S2 SlS0 

P01- P03-

X01-~ MUXO S101 X03-~ MUX 0 

A01 
(bit 1) A03 (bit 3) 

Qf-- I-- Or- r-
F01-I- F03 =f-

S103 

DELTA01 DELTA03 
BUS01-I- BUS03 -r 

LDFFO~ L D FFOr-
CP r--- CP 

~IC ! n ,---1\1',.. 
PlfC iQ ~N/C '41 ""''-' 

T I 
F200 

T I 
F202 

I 
S2 S1S0 S2 S1S0 

POO- P02--
I""""'"" MUX 0 ~'--S100 : MUXO XOO-~ X02-

AOO 
(bit 0) 

A02 (bit 2) 

S102 

FOO-~ 0 F02-- Q 
DELTAOO DELTA02 

BUSOO-~ BUS02--

L DFFO~ LDFF O -

CP ~ CP 
-;:;uc C J Q ~ N/C -=:-:<l C i Q ~ N/C 

PU 

I 

Adder 

~ AO 

"" A1 
---(l A2 

{g 
A3 
BO 

Selector S2 B1 
(B source) B2 

B3 

Figure 3-5. Selector SI with Control Signals 

3-9 



Arithmetic and Logic Operations 

I II 
XOX1 X2X3 
ACC Ef-- A=8 

Carry in 0 
CIN CR r----- Carry 

5103--( AO G 
GEN out 0 

5102 A1 PROP 
5101--( A2 ALU P 

5100 A3 
5203----( SO FO P----- ALU 03 

5202 B1 F1 P----- ALU 02 
5201----( 82 F2 P----- ALU 01 

S200 B3 F3 P----- ALU 00 

I II 
XOXl X2X3 
ACC E f-- A=B 

Carry in 1 CIN CR f----=-- Carry 
Carry in 3 

5107---( AO G GEN out 1 
(control 1) 

5106 Al 

5104 5105---( A2 ALU P PROP 

A3 
5207---( SO FOP- ALU07 

5206 Bl F1 P- ALU06 
5205---( B2 F2P- ALU05 

S204 B3 F3P- ALU04 '- CIN 

GO 

Gl 
G2 

1... -----c G3 

I II ~---< PO 
F<f'1 

P2 
XOXl X2X3 "-f-< P3 
ACC E r--- A=B 

Carry in 2 CIN CR r--- Carry 
5111---<l AO GEN out 2 

A1 G 5110 PROP 
51~ A2 ALU P 

510B A3 
5211----C BO FOP-- ALU 11 

I I I 5210 B1 F1 p--- ALU 10 I I 
I I I I I I S"'u~----c 82 F2P-- ALU09 I I 

5208 ,83 

ALU53.--+~-4--~4-~------------------------------~ 

AlUS2 9-~---4~~4--+------------------------~~~ 
ALU51.-_+------~~_+--------------------------_. 

F3P-- ALU08 

II 
ALUro~1-------~_r--------------------~~JL~ 

ALUM __ ~-----------e~-----------------------i 
Carry in 3 .--+------------------------------~ 

5115 
(Control 1) 5114 

5113 
5112 

5215 
5214 

5213 

S212 

XOXl X2X3 
ACC E 

CR 

G 
ALU P 

FO 
Fl 
F2 
F3 

A=B 
Carry 

GEN out 3 

PROP 

ALU 15 
ALU14 
ALU 13 
ALU12 

Figure 3-6. Adder with Look-Ahead Carry 

3-10 

G 

P 

co-
CIN 

Cl "'"-

C2f-

I 
I 

--

GEN 
(control 1) 

PROP 0 
(control 1) 



ALU Operations 

S3S1 S3S0 

Sl SO 

{ 
Straight transfer DOA 

Upper Left shift one input D1A OA 

half Right shift one input D2A OA 

Shift left eight places D3A 

J 
Straight transfer DOB 

Lower Left shift one input D1B OB 

half l Right shift one input =iD2B OBi 
Shift left eight places D3B 

I I 
Figure 3-7. Selector S3 Shifting Multiplexer 

3-11 



Arithmetic and Logic Operations 

Control 2 ALU 

SJSO 

SJSl 

ALUOO DOA 
ALUOl 

or 
ALU08 

ALUOl 
ALU02 

MIR25-MIR27 ALUOO 

decode ALU09 
D3B 

---------------------------------------~ 
ALU02 DOA 

SlSO 

L L 
L L 
L H 
L H 
H L 
H L 
H H 
H H 

Truth table for 
select multiplexer 

Inputs 

DOA D1A D2A D3A 

H X X X 
L X X X 
X H X X 
X L X X 
X X H X 
X X L X 
X X X H-
X X X L 

Outputs 

QA QA 

H L 
L n 

H L 
L H 
H L 
L H 
H L 
L H 

Figure 3-8. 

ALU03 D1A 

ALUOl D2A 

ALU 10 D3A 

ALU03 DOB 

ALU04 D1B 

ALU02 D2B 

ALU 11 
D3B 

ALU04 DOA 

ALU05 D1A 

ALU03 D2A 
ALU12 D3A 

ALU05 DOB 

ALU06 D1B 

ALU04 D2B 

ALU13 D3B 

1 
ALU06 
ALU07 

ALU05 

ALU14 

ALU07 

ALU08 

ALU06 

ALU 15 

To remaining SJ 
multiplexers 

Selector S3 with Shift Control 

3-12 

QA N/C 

QA SJOO 

OB N/C 

Os SJOl 

@ 

QA N/C 

QA S302 

OB N/C 

Os SJ03 

® 

QA N/C 

QA SJ04 

OB N/C 

Os SJ05 

C 

S306 

Os S307 

@ 



ALU Instruction Example 

In this reading, you look at the decode process for the ALU control field and the signals 
that result from this decode. The ALU control field is decoded on the control I module. 
Control signals are made available to the ALU to form data paths to the ALU, control 
specific adder operations on that data, and determine the destination of the results. 

Decoding the ALU Control Field 

Decoding of the ALU control field is a simultaneous operation; that is, enables are 
supplied to the various functional areas of the ALU at the same time so that the follow­
ing occurs in one operation: 

• Data is made available to the ALU 
• The adder manipulates this data 
• Selector S3 provides a destination for the results 

A typical add operation is shown in figure 3-9. The operands to be added are indicated 
by the microinstruction A and B fields, with the result of this add placed in a destina­
tion specified by the D field. Each sub field of this instruction is examined to reveal 
the decode method used. The signals resulting from the decode are located in the ALU 
logic diagrams along with the functional areas they control. The first subfields to be 
examined will be the A and B fields, since they supply the source of operands for 
arithmetic and logical operations. 

2 F 6 7 
A 

9 10 B 12 13 D 15 

I 000 I o 0 I o 0 I 001 I 
Add P reg. Q reg. P reg. 

Figure 3-9. Add Operation of P and Q. Result to P 

3-13 



Arithmetic and Logic Operations 

A-Field Decoding 

The A field decoder (figure 3-10) monitors bits 7, 8, and 9 of the MIR. The decoder 
provides enable signals (SIS0-1 through SIS2-1) to the select inputs of selector SI of 
the ALU to determine the A source of data. Decoding is accomplished using three 
OR functions enabled by either TO (high) or AP (low). AP is present when A' decod­
ing is specified (S field = 0111 or 1010). A' decoding specifies that data to the A 
source originates from the SMI module via the tri-state bus. When the AP signal to the 
decoder is low and MIR07 through MIR09 are logic 1 's, the memory data bus is 
enabled as the data source through selector S 1. 

Turu LO page 6 of the ALU logic diagrams and locate selector S 1. Four multiplexers, 
L5, L6, M5, and M6, control the four most significant bit sources of selector S1. There 
are eight separate data sources present at each multiplexer input. Multiplexer outputs 
(pin 6) are connected directly to the adder chip L9 (page 6, location C7). Note also 
that the I register flip-flops provide a data source to selector S 1 and receives input from 
the selector SI output (pin 5). Other mUltiplexers that make up selector Sl are located 
on pages 9, 12, and 15 of the logic diagrams. 

MM07 

MM08 

API + TO 
---_--.MIR 07 u --

Q MIR 07 
t---~I 

I 

D Q'MIR 08 

ALU 

SlS2>-{>-SlS2-1 

CP _ MIR 08 
C Qr-~-----r~ __ ~ 

SlSl >-{>-SlSl-l 

D-SlSO>-{>-SlS0-1 J 

Decode 

Figure 3-10. A-Field Decoder 

3-14 

To 
selector 

Sl 



ALU Instruction Example 

B-Field Decoding 

The B field (bits 10 through 12) is decoded in much the same way as the A field. (Refer 
to figure 3-11.) Three OR functions interpret the contents of the MIR B field. The 
OR function outputs (S2S0-1 through S2S2-1) control data source to the B side of the 
ALU. ENABLE S2 signal is generated to enable selector S2's lower and/or upper eight 
bits, respectively. This allows eight bits from two sources through the selector to form 
a sixteen-bit output (ZERO, N, K, N-K). 

Turn to page 7 of the ALU logic diagrams and locate multiplexers L 7, L8, M7, and M8. 
These four multiplexers control the four most significant bit inputs to the ALU B 
~OlJTCe, Control signals 8280-1 throug..~ S2S2-1 determine 'Nhich source data '.viIl be 
used. The multiplexers are enabled (E input) whenever the ENABLE S2 signal from 
page 18 is present. The ENABLE S2 signals are provided as follows: 

• ENABLE S2-1 enables the eight MSB's through S2 (N register) if MIR bit 29 
is present (WORD 1) . 

• ENABLE S2-2 enables the eight LSB's through S2 (K register) if MIR bit 28 
is present (WORDO). 

Selector S2 consists of a total of sixteen multiplexers located on pages 7, 10, 13, and 16 
of the logic diagrams. One data source to selector S2 which is significant is the bit gen­
erator (BG). The bit generator is located on the control 2 module and its main func­
tion is to generate a 1 bit at any position in a word as input to the B side of the ALU. 
Control to drive the bit generator is derived either from microinstruction bits (MIR27 
through MIR31) or from the lower five bits of the N register (N03 through N07). 
BGGPO and BGGPI enable the bit generator output to either the lower eig..ht-bit word 
group or the upper eight-bit word group. 

3-15 



Arithmetic and Logic Operations 

MIR 
register ALU 
I I 
I I 
I 

MM10 MIR 10 
5252>-----{::>o--S252o 1 MIR 10 

MM11 MIR 11 
5251 >-----{::>o--525101 MIR 11 

To 
selector 

MM12 
5250 >-----{::>o--52SO-1 

S2 

BP+TO>------+~~.a 

>---------------- Enable S2 

Figure 3.,.11. B-Fie1d Decoder 

F-Field Decoding 

F field decoding provides control for ALU arithmetic and iogicai operations. However, 
if the F field (bits 2 through 6) should contain either 11110 or 11111, decoding of the 
A and B fields will control shifting of the A and Q registers. The arithmetic and logical 
decoder is shown in figure 3-12. When decoded, MIR02 through MIR06 supply con­
trol signals to the adder chips located on the ALU module. 

Refer to page 15 of the logic diagrams. At location C7, one of the four ALU chips is 
represented. In an earlier learning activity, adder operation was explained. All that 
will be said here is that ALU80-2 through ALU83-2 signals select the operation (such 
as an add) which will be performed on four bits of data per adder IC from two different 
sources. Note the data inputs to the adder. Four bits are supplied through selector 82 
and four through selector 81. The adder chip also monitors CARRYIN when an add 
on a previous chip results in the generation of a carry condition. The output of the 

3-16 



ALU Instruction Example 

adder chip is four data bits and three control signals. PROP and GEN are monitored by 
the look-ahead carry generator (page 18) while the A = B condition results when A 
source data equals B source data. The combination of four adder chips and one look­
ahead carry generator controls all arithmetic and logical operations except shift. The 
remaining adder chips are located on pages 6, 9, and 12 of the logic diagrams, while 
the look=ahead carry generator is on page 18. 

M! R 02 --+----t~____! 

M I R 03 -4---4-----1 
~--

M I R 06 ----1----f 

MI R 02----1---~ 
~--

M I R 05 -+---il--ll--l 

MI R 04 -e------i 
~--

ALU 

ALUS3 -----{:>o--ALUS3-2 

ALUS0 -----{:>o--ALUSO-2 

ALUM -----{:>o-- ALUM 

ALUS2 -----{:>o--ALUS2-2 

ALUS1 -----{:>o-- AL US 1-2 

Figure 3-12. F-Field Decoder for Arithmetic and Logical Operations 

D-Field Decoding 

D field decoding gates output data from the adder, selector S3, or selector Sl to some 
destination register. The destination register may be one of six working registers on 
the ALU module, the I/O data registers on the SMI module, or the macromemory 
buffer register. Figure 3-13 represents part of the decoding mechanism for the D field 
(bits 13, 14, and 15). It consists of two multiplexers; one is used when D decoding is 

3-17 



Arithmetic and Logic Operations 

called for; the other, 0' decoding. (0' decoding is specified when the OP signal is 
present; that is, when S equals 1001 or 1010.) Enabling signals are provided to the 
destination registers, depending on the O-field contents. Some of the enables sup­
plied to the ALU module can be seen on page 7 of the logic diagrams (location A8). 
The GA TEQ and GA TEX signals from the decoder are inverted and supplied to the 
logic components which make up the Q and X registers. These signals enable selector 
S3 's output to either the Q or X registers when present. 

MUX ao 15 
N/C 

94830 14 11 76 so L9 01 GATE PI @] MIR 15-B 

@] MIR 14-8 51 02 
13 

I]] MIR 13-8 52 Q3 12 

04 
11 245 

GATE II 
GATE 1-/ 90 

05 
10 

G1 I]] DPP-8 

G2A Q6 

0 GAi'EclliP 3 

G2B 07 4 91 
GATE 0/ 

[2] CiSHiFTCli< 5 J2 

I]] DP-8 
GATE/XT 

GATED 10 
MUX ao 15 82 

GATEIODATI 12 
94830 14 282 72601 11 89 so Kl0 01 GATEIOADRI 13 L10 

GATE FI 

51 02 

52 
5 

246 [2] ANSHFTCLK 227 GATEMll 4 GATE AI 

Gl 05 10 45 
GATESM11 

@] DPP-B G2A 84 
GATEM21 

G2B 07 
263 

GATESM21 
289 

GATE Xi 

@] SAV"EAs 

~ GATET 
0" 6 o MC' 

CONREFMEMI ~73~ __ +-+-~ 

'-------------t-=5~L5i:>9960.::..6 -1--SAVEAB ~ 
@] PUR----+-+!!dS~-QI 

(5 8 
g;>=_..;;;~"",/9_ WEFI 

Figure 3-13. D-Field Decoder 

3-18 



ALU Instruction Example 

Summary 

This text has shown how the ALU control field is decoded, the resulting control signals 
generated, and the functional areas of the ALU affected by these control signals. It 
should be apparent how the control section of the microprocessor interfaces with the 
ALU to provide control of arithmetic and logical operations. The next learning acti­
vity will contain a closer analysis of the ALU logic diagrams to show how the ALU 
performs its various operations. 

3-19 



ALU Logic Diagram Data Flow 

DIRECTIONS: The following questions are referred to at selected stops in the accom­
panying audiotape. They are intended to be completed by you as you play the tape. 
Answer each question by filling in the blanks or picking the best answer from a choice 
of answers. 

1. (a) What enable signal provides gating of output data from selector S3 into the 
X register? (b) From which field of the microinstruction does this enable 
originate? ____________________________________________________ __ 

2. Pin 7 of logic term JK8 (page 7 of ALU logic diagrams) is labeled Q04. (a) From 
which logic term does this signal originate? (b) What is its purpose? 

3. (a) What is the logic term number and pin number of the signal that supplies data 
bit 4 to thc R~'f chip, term G3? (b) What worldng register does this logic term 
represent? ____________________________________________________ __ 

4. Assume the following conditions: 1. Selector Sl select signals enable pin 1 of 
each multiplexer as the data input source. 2. All working registers equal FFFF 
hexadecimal. If the output of selector S 1 is as indicated below, \vhich logic term 
or terms would you most likely suspect of failure? 

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

t t t t t t t t t t t t t t t t 
IB~t Selector S1 ~~I 

t 
Data input = FFFF 16 

5. Why does the signal from logic term ALU08, pin 13 (page 12 of the logic diagrams), 
go to four different multiplexer components of selector S3? 

3-20 



ALU Logic Diagram Data Flow 

ANSWERS 

1. (a) GATEX signal, (b) originates from D-field decoding of microinstruction 
2. (a) JK7 on page 10 of the logic diagrams, (b) The Q04 signal is available to JK8 to 
allow bit shifting during a left-shift operation. The most significant bit of JK7 (Q04) 
would be shifted into the least significant bit position of JK8, that is, Q03. 
3. (a) Logic term H4, pin 11, (b) the F register of the ALU 
4. The data is enabled to pin 1 of selector S3 multiplexers in the X register. Because 
bit lOis a logic 0 at selector Sl 's output, either the flip-flop representing bit 10 of 
the X register (term E4, page 13) is not set or the selector Sl multiplexer (term F5, 
page 12) has failed to transfer the correct data. 
5. There are four types of data transfefs peffonn~d by sd~(.;tur 53: a one-place righi­
shift, a one-place left-shift, an eight-place left-shift, and a straight transfer operation. 
Each ALU output goes to the four selector S3 inputs that allow these transfer condi­
tions. 

3-21 



Macroarithmetic Instruction Execution (Text) 

The CYBER 18 computer, an emulation processor, emulates the operations performed 
by a 1700 computer. The emulation process can be broken down into two major 
activities: 

• Decode the 1700 macroinstruction into a microcode and a micromemory 
address. 

• Decode the resulting microinstructions to enable operations which emulate 
those performed by the macroinstructions. 

Through examples, this learning activity demonstrates the emulation process. Micro­
code, which produces microprocessor gating, closely duplicates the 1700 instructions 
of a 1700 computer. For example: first, a 1700 read memory instruction generates 
the microcode; this, in turn, generates a macromemory read command; as a result, 
contents of a memory location are placed into a designated working register. The 
basic process used to emulate a 1700 read memory instruction is demonstrated in 
figure 3-14. 

The 1700 instruction is first read from main memory by a read command contained in 
the microinstruction labeled "1." It is then gated to the transform module of the 
processor by a transform command in the microinstruction labeled "2." Three main 
operations are performed by the transform, with control of these operations derived 
from the bit arrangement of the 1700 instruction. The three operations performed are 
as follows. 

A. Microaddress Formation. This address will depend upon the function code of 
the 1700 macroinstruction. The address selected will contain the emulation 
program for that instruction. 

B. MIR Encoding. The MIR encode will result in a new ALU control field. When 
decoded, this controls the formation of an effective address for main memory, 
from which an operand will be read. It also contains the address of the next 
microinstruction. 

c. Delta Translation. The delta field of the 1700 instruction is made available to 
an ALU source (either A or B) and may be used in operand address formation as 
immediate data or as extended operation code. 

3-22 



! 

Macroarithmetic Instruction Execution 

® 

,. 

,. i"'--- r' 

Data Main memory 
1700 instruction bus 

Control interface 

MIR 31 

Read 11 

Transform -GITMAK/XT 

I 0 

© I 
Delta field 
translation 

Micromemory 

----------------------
Emulation 

routine 
v - ~ 

Control sequencing 

to next microinstruction 

® l' MiR 

ALU control I GETMAK/XT 

1 
Early emulation 

processing 

0 MIR 

J 

Control next set 
of microprocessing 

31 

J 2 

31 

I 3 

Figure 3-14. Basic Emulation Process for a 1 700 Read Memory Operation 

3-23 

~ 

\ 
I 



Arithmetic and Logic Operations 

Assume, for the sake of our example, that a memory reference 1700 instruction has 
been read. Once the effective address of main memory has been formed and its con­
tents read, a third microinstruction (number 3) is formed by reading a micromemory 
location. This read is forced by an enable from the second microinstruction (number 
2). Microinstruction number 3 (its address determined by the function code of the 
1700 instruction being emulated) commands the contents read from main memory 
into a specific working register. Another part of the same microinstruction contains 
information used to locate and read the next address of micromemory. That micro­
memory location may contain an instruction that is part of the 1700 emulation or the 
beginning of an RNI routine that will read the next 1700 macroinstruction to be 
executed (similar to instruction number 1). The number of emulation microinstructions 
(number 3 and beyond) in an emulation routine is determined by the complexity of the 
1700 instruction being emulated. 

Sequence of Emulation Activities 

A 1700 instruction ultimately controls selection of its own emulation microprogrammed 
routine. Because of this, the transform process (steps 1, 2, and 3) performed by the 
microprocessor will vary depending on the function code of the 1700 instruction being 
emulated. To understand the complete emulation of an instruction, it is necessary to 
analyze each of the six steps involved in the emulation process: 

1. Form the address of the next macroinstruction to be emulated. 
2. Read the macroinstruction to be emulated. 
3. Select transform options. 
4. Perform the transform of the macroinstruction. 
5. Execute the emulator program in micromemory. 
6. Return to step 1. 

Typical of many emulations is the 1700 LOAD Q (LDQ) instruction. When executed, 
it places the contents of a macromernory location into the Q register of ALU. The 
steps used to emulate the 1700 LOAD Q instruction are as follows. 

Step 1. Form the address of the next macroinstruction to be executed. 

This first step is executed prior to reading any macroinstructions. The microinstruction 
used to accomplish this is contained in micromemory address 05816' This address is 
read as part of the previous emulation or initial start-up. When read, the instruction at 
address 058 16 will increment the P register by 1 to form the macromemory address 
from which the macroinstruction to be emulated will be read. During this increment, 
the address will also be entered into AB register in macromemory. Additionally, this 
same microinstruction will point to the next micromemory address to be read, as 
shown in figure 3-15. The M-field contents cause the next sequential address, or the 
lower thirty-two bits of address 058 16 to be read. 

3-24 



Macroarithmetic Instruction Execution 

The microinstruction in execution is the last 

t I~ one of the previous emulation process. Its 
S,-_ ---i. ____ ~. C field contains the address of the RNI 

sequence. 

Micro­
memory 

MIR 

-=-~811 ~ -= .... ·.:d _I 6 C 7 9 0 0 0 0 

Upper A ..... \. 
f' P register 

M field indicates '. ~ :'<~\~::~;. ~:r: :oddress 
sequential micro- ... :-...!.:.:.t.i:~~~'«.-.~~ of next 

memory address. macro-

Figure 3-15. Increment to Address 
of Next Macroinstruction (P = P + 1) 

instruction 
to be 
emulated. 

Step 2. Read the macroinstruction to be emulated. 

Step two of the emulation process shown in figure 3-16 begins when the sequential 
address of micromemory is read and the microinstruction contained there is gated 
into the MIR. The ALU control field of this instruction perfonns no operation, 
although the M field does indicate that the next instruction read from micromemory 

will be sequential. 

The T, S, and C fields generate control signals that initiate the reading of the 
macroinstruction to be emulated and the testing (T field) used to detect the presence of 
interrupts. The presence of an interrupt is the only reason why this instruction 
would not read memory at this time; the T field of the microinstruction checks for 
this condition. If an in terrupt does exist l the microprogram sequences immediately 
to a microaddress that will process the interrupt condition before performing the 
transform command. Assuming that no interrupt condition is present, sequencing 
is done to ~ead in the transform microinstruction. 

The C field of this instruction contains the transform command (GETMAKjXT) that 
both causes memory data (1700 code) to be entered into IXT and initiates the trans­
form process. (Within the transform hardware, the decoded level GATEIXT is used 
to enter registers and start processes.) 

3-25 



Arithmetic and Logic Operations 

Read lower instruction at address ___ -----, 
as indicated by M field of last 
instruction. 

Next microinstruction will be ./ 
sequential as specified by the M 
field. 

Micro­
memory 

NOP 

Read contents of macromemory, 
and place the 1700 instruction on 
the CPU tri-state bus inputs. 

MIR 

condition in processor. If it exists, 
program will exit to process 
interrupt condition before 
resuming present operation. 

Figure 3-16. Initiate a Read 1700 Instruction from Main Memory 
and Test for Interrupt 

Step 3. Select transform options. 

Once the 1700 LOAD Q instruction is contained in IXT, the next microinstruction of 
the RNI sequence will be read from micromemory. This instruction contains in its C 
field the transform operation information required for the next operation. A 
GETMAK/XT transform indicates that the address of the next microinstruction pair to 
be read from micromemory will be formed as a result of an MA transform. An MA 
transform will control selector S5 in forming the microaddress. The upper sixteen bits 
of the instruction shown in figure 3-17 will be replaced by the results of an MIR­
encoding operation performed on the macroinstruction being emulated. This operation 
is demonstrated in step four. 

3-26 



Address determined by 
M field of previous 
microinstruction. 

Micro­
memory 

Execute upper 
instruction of 
next micro­
instruction pair. 

Macroarithmetic Instruction Execution 

Present contents of ALU 
control will be replaced 
during this operation by 
MI R encoder. Execution 
time extended to allow 
completion. 

A GETMAK/XT transform will be 
performed. The next microinstruction 
is forced partially from the 1700 
instruction and the lower half of 
this instruction. 

Figure 3-1 7. Select Transform Options (per LDQ) 

Step 4. Perform the transform of the macroinstruction. 

Many activities occur at the same time while the transform operation takes place. 
First, the micromemory address that contains the LOAD Q emulation program is 
formed. The formation of this address depends upon what function code bits of 
the 1700 instruction are being emulated and whether or not that instruction specifies 
indirect addressing. The transform specified here is a GETMAKjXT transform. 

A second operation performed in this step is the encoding of the macroinstruction 
into the most significant sixteen bits of the MIR. This control information, when de­
coded, will begin the formation of an effective address for macromemory referencing. 
From this effective addressed location will come the operand destined for storage in 
the Q register. The MIR encoder output is determined, as MA was, by the function 
code of the macroinstruction and its F 1 field. 

Another operation performed in step 4 is delta field translation. The 1700 instruction 
being emulated in this example specifies that the effective address of memory is the 
delta field number. During transform, the delta field is monitored by the delta trans­
lator. This translator transfers the lower eight bits of IXT and supplies an additional 
eight bits depending on the sign bit of the 1700 delta field. These sixteen bits are sent 
to the ALU module to form the macromemory address. Observing figure 3-18, then, 
it can be seen that the ALU control field of MIR supplies the control to ALU that uses 
the delta field contents of the 1700 instruction as the next macromemory address. 

3-27 



Arithmetic and Logic Operations 

" " 1700 Loa instruction 

Delta 
translator 

(EOO3) 

~~~ •• ~ ':',:"}":~i contents for 
:~ 0 ,' .. ::.,x F1 on ALU 

MA 

~ ~"" 16-bitA 

o :' 
~"' ___ £~~~~~~16~)' module, 

'-r-.......... ~~~.,.... 

register 
F1 of macro-

"~.-::. ,,-! • 

".::;' Micro-

memory 

OOC(16) 
This is micromemory - - - -
address where load a 
emulation program is 
contained. 

Determines partial 

, ":. / MA transform 
': ' result. 

\w: ',., '. 'l Effective address 

. , < ~.~:,~: ~' .:\.~"/~~~ , ~f f~r~:;'~:%y 
. , "';~:;:~:'t~if;l?~~~2rit ... __ ._~ wh ich contents 

destined for the 
Q register 'wA/i!! 
originate. 

Figure 3-18. Transform of a 1700 LOAD Q Instruction 

3-28 



Macroarithmetic Instruction Execution 

PIMA register 

Micro­
memory 

09C16 

M field calls for 
sequential addressing. 

T field specifies that 
upper instruction of 
next instruction pair 
will be read next. 

MIR 

First 
instruction 
of load Q 

j emulation 
program. 

Read 
effective 
address of 
memory 
(=0003) 

P register 
........... contents 

plus 1 to P 
to form 
next 1700 
instruction 
address. 

Figure 3-19. Execution of Emulation Program 
from Micromemory 

Step 5. Execute the emulation program in micromemory. 

It is now possible to use the LOA.D Q emulation program stored in micromemory, The 
contents of microaddress 09C are gated into MIR by the C field of the previous 
instruction (see figure 3-19). The ALU control field of this new instruction forms 
the incremented address (P = P + I) that selects the next macroinstruction for 
emulation. The LDQ operand read command is contained in the S field of the 
same instruction. Information contained at the operand's macroaddress will be 
placed onto the tri-state bus. It will be gated into the Q register when the next 
microinstruction is executed. It should be noted that the microinstruction 
presently in execution also determines the next microinstruction to be read. For 
this (LDQ) routine, the microinstruction will be the upper 32-bit instruction at the 
next sequential address, that is, 09D. 

3-29 



Arithmetic and Logic Operations 

PIMA register Contents of PIMA are incremented 

o 9 D \.------ by PS/MAC register as a result 
L..-.. ____ :--_....J I of T and M field contents of previous 

Micro­
memory 

microinstructions. 

9 FOB 4 0 5 8 

Place memory 
contents 
previously 

Jump to the RNI ~q.~ .. ~ read through 
sequence to obtain 4 ...... ~~ the A source 
the next 1700 of ALU into 
instruction. the Q register. 

Figure 3-20. Complete LOAD Q Emulation 
and Jump to RNI Sequence 

Step 6. Complete emulation; go to RNI sequence. 

The final operation required to complete a LOAD Q operation is placing the operand 
obtained from memory into the Q register. Figure 3-20 demonstrates this operation, 
performed by the upper instruction contained in the address 09D. The ALU control 
field of the instruction gates memory data from the tri-state bus to the A source of the 
ALU. The D field of ALU control places the information into the Q register. 

The second function of the instruction is to specify the address of micromemory that 
will be read next. The content of the C field (058) is that address. 058 is the begin­
ning address of the RNI sequence that began our emulation process. The emulation of 
the 1700 LOAD Q instruction is complete. The RNI sequence will now provide the 
processor with a new macroinstruction to be emulated, and the process just analyzed 
will be repeated. 

3-30 



Macroarithmetic Instruction Execution 

Review of Sequence 

The basic sequence of events you have just followed is demonstrated in figure 3-21. 
When the RUN switch is pressed, the first operation is the formation of a macromemory 
address that contains the first macroinstruction. Once that instruction is read, the 
emulation process occurs. This process varies depending upon the type of macroinstruc­
tion being emulated, for example, storage reference, register reference, interregister, or 
skip. Once the emulation process has been completed, the RNI sequence again occurs 
in order to locate the next macroinstruction to be executed. 

Execute 1700 
emulation program 

Perform macro­
instruction transform 

Perform RN I sequence 
~. ___ .~ for next macroinstruction 

Microprocessor 
start command 

Figure 3-21. Sequence of Events in Emulation Process 

Read macro­
instruction 

Because an emulation process is somewhat complex, it is extremely difficult to demon­
strate the complete operation. A close approximation of an entire emulation is shown 
in figure 3-22, which demonstrates an ADD to A operation. The sequence of opera­
tions occurs from top to bottom. 

3-31 



Arithmetic and Logic Operations 

P 

0000 

The 1700 instruction specifies that 
the contents of the memory location 
specified in ~ should be added to the 
A register contents. 

MA 

\. .. 

T field forces upper /" 
instruction of next 
pair to be read. 

A jump is specified 
to the address 
contained in the 
C field. That address 
is the beginning of 
the RNI sequence. 

1700 instruction 
~.~~ "0' .:;: •• : "0· ... : •• °

0 
,0 • 

(BOCO) 

16 bit delta (~) 
field becomes 
effective address 

:"':':'.:...:.:..~~iJl •• ~ of operand to be 
read from memory 
(goes to F1 output 
of ALU). 

Instruction 
2 

Increment address 
(P = P+1). 

Instruction 
4 

Next micromemory 
address (RNI) 

Add memory 
.:.:...:.....:.:..:..:.:j~~~~~.--.. ~ contents to A 

register contents. 
The result is gated 
to the A register. 

Figure 3-22. ADD to A Register Emulation Process 

3-32 



:Macroarithmetic Instruction Execution 

The emulation begins with the reading of the macroinstruction from memory and 
gating it into the IXT and IXT' registers. This is done during the RNI microroutine. 
A second microinstruction containing the transform command is read during RNI. 
The upper sixteen bits of this instruction are not gated into MIR; instead, the output 
of the MIR encoder is used to provide the arithmetic control information. 

At the same time that this occurs, a microaddress is formed for the PIMA register that 
will select the emulator program. The delta translator also is active at this time. It 
interprets the lower eight bits of the macroinstruction and generates a resultant sixteen­
bit output to the F 1 (file 1) output on ALU. The microinstruction decodes the ALU 
control information obtained from the MIR encoder to form or begin to form (depend­
ing on address modifiers r, ind, Q, and I) and an effective address for main memory, 
since the macroinstruction being emulated (ADD) is a memory reference instruction. 

The next step is to gate the first micromemory instruction of the ADD emulator pro­
gram into MIR. The first instruction (number 3 on figure 3-22) reads the effective 
address of main memory and determines the next microinstruction to be executed. In 
the example demonstrated it is the instruction at 09116. The second microinstruction 
read from micromemory (number 4 on figure 3-22) will add the contents of memory to 
the A register contents, placing the result of the ADD back into the A register. This 
same microinstruction a!:;o directs the microprogram to exit to the RNI routine at 
address 058 16 of micromemory. 

It is possible to follow the emulation of any 1700 instruction if the operation of trans­
form is understood. Included in this activity is a theory of transform operation. Given 
in this section are a series of tables and figures which demonstrate the various transform 
operations available for the various 1700 instruction types. By analyzing the type of 
1700 instruction and determining the type of transform taking place, it is possible to 
find the micromemory address, the output of the MIR encoder and delta conversion 
selected. Once these are known, it is only necessary to locate a program listing that 
shows the emulation programs and their micromemory addresses. The decoding of 
the emulation program is accomplished by determining the contents of each micro­
instruction field contained in this program. 

Theory of Operation 

The 1700 transform with read-only micromemory is used to emulate the Control Data 
1700 computer instruction repertoire when it is combined with the basic microproc­
essor (MP) to form the 1700 enhanced processor. The emulation process includes both 
hardware and firmware for more efficient operation. 

3-33 



Arithmetic and Logic Operations 

The firmware r-onsists mainly of many microcode subroutines that emulate 1700 
macroinstructions; therefore, it is also called the 1700 emulator. For each 1700 
macroinstruction, there exists a corresponding subroutine required to emulate it. 
To start the emulation, the macroinstruction is read out from macromemory by a 
portion of the microprogram. The macroinstruction is then decoded by hardware; 
this hardware decoder is called the transform. The transform provides the micro­
program with the capability to select patterns of bits from the registers and the data 
transmission path of the MP to form the micromemory address. This micro-
memory address selects the appropriate microcode subroutine to emulate the 
macroinstruction. More than one transform operation may be required to completely 
emulate a macroinstruction. The transform also sets the parameters, generates the 
microcode needed for the arithmetic and logical operation (refer to MIR Encode) 
during the emulation process, and sets the contents of the Nand K registers. 

There are three types of transforms: 

• MA transform 
• K or N transform 
• Combined MA and K transform 

The transform commands are coded in the C field of the microinstruction as TMA/j, 
TK/j, TN/j, GETMAK/j, and GETMAK/XT. The letter j is decoded from the lower 
four bits (MIR28 through MIR31) of the microinstruction register for the MA 
transform and the lower three bits (MIR29 through MIR31) for the K and N trans­
form. These bits specify the selector position of selector S5 (MA transform) and 
of selector S8 (K and N transform). Table 3-21ists the operations that result when 
the above transform commands are executed. Figure 3-23 is the block diagram of the 
1700 transform module. 

3-34 



Macroari thmetic Instruction Execution 

TMA/j 

TMAK/j 

GETMAK/j 

PG3 

MAO t----+--- MMOO-MM31 

MM24· 
MM31 

To 
selector S6 

TN/j 
TK/j 

TMAK/j 
GETMAK/j 

BUSOO·BUSI5 

MIR24·MIR31 

To 
KIN registers 

II ,---I --------i 

To 
selector 
SI or S2 

'--------MIR24·MIR31 

S2 (8 LSBI 

Load 
(GETMAK/XT GETMAK/j) 

Load 
GATEXTMIR 

Data from 
memory 
(16 bits) 

(8 LSB) 

Delta field of 1700 instruction 

Figure 3-23. 1700 Transform Module Block Diagram 

Mnemonics 

TMA/j 

TK/j 

TN/j 

TMAK/j 

GETMAKfj t 

TABLE 3-2 
Transform Operations 

Operation 

Obtain next microinstruction pair from the address specified by 
MA transfonn (selector SS), setting j. 

Set K register to value specified by K transform (selector S8), 
settingj. 

Set N register to value specified by N transfonn (selector S8), 
setting j. 

An MA and K transfonn is executed based on the value of j. 

1 . Output data from macromemory is gated into the 
instruction transfonn (lXT) register. 

2. An MA and K transfonn is executed based on the value 
ofj. 

GETMAK/XT t 1. Output data from macromemory is gated into the IXT 
and IXT' registers. 

2. One of eight MA transfonns is executed based on the 
macroinstruction loaded into the IXT register (selected 
from selector SS, positions 8 through 15). The K reg­
ister is al ways transformed from S8, position 7. 

3. The most significant 16 bits of the microinstruction 
register (MIR) are loaded with a micro command encoded 
from the macroinstruction residing in the IXT register. 
This operation is referred to as MIR transform (XT/MIR). 
The least significant 16 bits of MIR are loaded from micro­
memory. 

t These commands must be executed in the microinstruction following a read 
command. 

3-35 

To 
MIR 



Arithmetic and Logic Operations 

IXT Register 

The IXT register is a sixteen-bit register that holds the macroinstruction currently being 
emulated. The IXT register consists of D-type flip-flops A3, J2, C5, and B5. It receives 
its input directly from macromemory DFMOI through DFMl6 (DFMOI is the least 
significant bit and DFMl6 is the most significant bit). The output of the IXT register, 
100 through 115 (100 is the most significant bit and 115 is the least significant bit), is 
sent to selector S5, selector S8, the delta translator, and MIR encode to be trans­
formed. The IXT register output is also sent to GETMAK/XT decoder to generate the 
proper control signals for selector S5 during a GETMAK/XT operation. The IXT 
register is loaded by executing a macromemory read microinstruction followed by a 
microinstruction with a GETMAK/j or GETMAK/XT in the C" field. Refer to the 
GATEIXT signal in the control 1 module. Otherwise, IXT can be loaded by executing 
a microinstruction with C' code equal to Ollxxxx to generate a general-purpose strobe 
at time T4. Refer to the GATEBKP signal in control 2. 

IXT' Register 

The IXT' register is an eight-bit register that holds the least significant eight bits (delta 
field) of the 1700 macroinstruction. The IXT' register is utilized mainly for emulation 
of 1700 enhanced instructions that have doubleword format. The IXT' register consists 
of D-type flip-flops C4 and B4, which receive their inputs directiy from macromemory 
DFMOI through DFM08. The data from macromemory is gated into the IXT' register 
by GATE XTMIR, which is generated only during the GETMAK/XT command. The 
output of the IXT' register is sent to selectors S5 and S8 to be transformed. 

Selector S5 

Selector S5 is an eight-bit wide selector that is used to form micromemory addresses. 
It consists of 16-to-l multiplexers L2, L3, L4, L5, L7, L9, LIO, and L12, which 
allow sixteen different micromemory address (MA) transforms to be specified. The 
eight-bit transformed MA specifies one of the 256 64-bit micromemory words within 
a page. The selector position is determined by the letter j of TMA/j, TMAK/j, and 
GETMAKfj, or, depending upon the macroinstruction, via transform hardware 
(GETMAK/XT command). 

Figure 3-24 shows sixteen different MA transforms. MA transforms 0 through 7 and 
9 through 12 are used to emulate 1700 enhanced instructions. MA transforms 8 
through 15 are used to emulate the basic 1700 instructions. The l's and O's are 
generated by handwiring to +5v or ground, respectively. Other patterns of bits are 
derived from registers IXT, IXT', the lower eight bits of selector S2, and special 
conditions such as protect violation or indirect address mode, which are decoded 
from the macroinstruction. Table 3-3 lists the different MA transforms applied for 

3-36 



Macroarithmetic Instruction Execution 

different types of macroinstructions and for different addressing modes. Whenever the 
GETMAK/XT command is executed, one of the eight MA transforms (8 through 15) 
is selected, based on the macroinstruction being emulated. Tables 34, 3-5, and 3-6 
show the MA transforms for the basic 1700 storage reference instructions (F =1= 0), basic 
1700 register reference instructions, and interregister reference instructions, respectively. 
The MA transforms for the enhanced instructions are selected via XT IF 1 MA transform 
13. The position-select signals, S5-S0 through S5-S3, of selector S5 are described in the 
following section. 

Instruction j Value Transform output 

0 3 4 6 

XT/INT 0 
11 I ~ 1 I 1 I 1 1 L~~) I At I 

XT/IR2 1 I 0 1 I 1 I 1 
Ixr I 0 (11-12) 

XT/F3A 1 11 o I 
1 I 1 

XT/OEST 3 0 I 0 11 I 

XT/F3* 4 
XT' 

(11-15) 

5 [ 0 I 0 I 0 I 0 I 0 I 
XT/F2 6 I 1 I 0 I 1 I o I Ixr 

(8-9) 

XT/52 
I S2, LO'w·.;er 8 bits 

7 I (08 through 15) 

t A = (IXT = 0500) +S209 
= liN instruction or false attempt 

B = (Fl-00xx) + MULTI LEVEL INOI RECT MODE 
C = Protect violation 
0= (A' = 0) + B 

0 

IXT' 
(13-15) 

IXT' 
(13-15) 

I 0 I 0 

IA~= I 0 

Instruction j Value 

XT/SK 8 

XT/SH or 9 
XT/ORP 

XT/IR or A 
XT/F3 

XT/F or B 
XT/F4 

XT/IM or C 
XT/SKIP 2 

XT/Fl 0 

XT/Fl * E 

XT/FM F 

Figure 3-24. MA Transforms 

3-37 

Tr;ln~fnrm ('UJ!~I.!t 

0 3 6 

I 1 I 1 o I Ixr I 0 
(08-;1 i I I I I 

I 1 
I 

0 1 
I 

1 I 0 I 
Ixr 

(08-10) 

I I I 0 I 
Ixr 

(12-15) 

I 1 0 0 I 
IXT' 

0 
(00-03) 

I I iXT' 

I 1 1 I 1 
(08-11) 

I 0 
F= 

I 
IXT IA~= 

0 (04-07) 

I 1 0 I 1 I 0 I 0 I Btl 
IXT 

(06-07) 

j I I I Ct I ot I 1 0 I 1 I 1 0 



Arithmetic and Logic Operations 

TABLE 3-3 
MA Transform Applications 

Instruction MIR28-MIR31 = j Application 

XT/INT 0 Micro/macro interrupt 

XT/IR2 I Interregister type 2 instruction 

XT/F3A 2 Field instruction 

XT/DEST 3 Register destination 

XT/F3 4 Miscellaneous instruction 

5 Not used 

XT/F2 6 F2 (address mode) for enhanced instruction 

XT/S2 7 Selector S2 (lower eight bits); normally used 
for the breakpoint panel 

XT/SK 8 Skip instruction 

XT/SH or 9 Shift instruction, or decrement and repeat 
XT/DRP instruction 

XT/IR or A Interregister instruction with M not the origin, 
XT/F3 or miscellaneous instruction 

XT/F or B F (OP CODE) field, or OP CODE for storage 
XT/F4 reference type 2 and field instruction 

XT/IM or C Interregister with M origin, or skip instruction 
XT/SKIP2 type 2 

XT/FI D FI (address mode) field 

I XTiFl I E I Alternate F I field 

XT/FM F Miscellaneous FIfield 

3-38 



Macroarithmetic Instruction Execution 

TABLE 34 
1700 Storage Reference Transforms During GETMAK/XT Operation 

FI 
Mode (Binary) Hexadecimal Delta Instruction MIR Transform 

Absolute 0000 0 I ;to XT/F ~ ~ X,AB 
~-- ..... -- -vUWSU111t -0 XT/FI P + 1 ~ P, AB 

Absolute 0001 ;to XT/F ~ + (OOFF) - X, AB 
Constant =0 XT/Fl* P+l~P,AB 

Absolute DOlO ;to XT/F ~+ (Q) ..... X, AB 
Constant =0 XT/Fl* P + 1 ..... P, AB 

Absolute 0011 ;to XT/FM ~ + (DOFF) ..... X, AB 
Constant =0 XT/Fl* P + 1 ..... P, AB 

Indirect DIDO 4 ;to XT/FI* ~ -X, AB 
Storage =0 XT/Fl* P + I ~ P, AB 

Indirect 0101 5 ;to XT/F1* ~ .. X, AB 
Storage =0 XT/Fl* P + 1 - P, AB 

Indirect 0110 S ;to XT/F1* ~ - X, AB 
Storage =0 XT/Fl* P + 1 ..... P, AB 

Indirect 0111 ;to XT/F1* ~ .... X, AB 
Storage =0 XT/F1* P + 1 - P, AB 

Relative 1000 8 ;to XT/F P + ~(SE)*~ X, AB 
IS-bit relative =0 XT/F1 P + 1 ~ P, AB 

Relative 1001 9 #0 XT/Fl P + ~SE) - X, A8 
IS-bit relative =0 XT/Fl P + 1 ,...p. AB 

Relative 1010 A ;to XT/F1 P + ~(SE) - X. AB 
IS-bit relative =0 XT/F1 P + 1 - P, AB 

Relative 1011 B ;to XT/F1 P + ~SE) ..... X, AB 
IS-bit relative =0 XT/F1 P + 1 ..... P, AB 

Relative indirect 1100 C #0 V,.."/01* P + ll(SE) -;.. X, AB .a.J./.L . .a. 

Relative indirect =0 XT/FM P + 1 - p. AB 

Relative indirect 1101 D ;to XT/F1* P + ~SE) ~ X, AB 
Relative indirect =0 XT/FM P + 1 ~ P, AB 

Relative indirect 1110 E ;i0 XT/F1* P + ~(SE) ..... X. AB 
Relative indirect =0 XT/FM P + 1 - P, AB 

Relative indirect 1111 F ;to XT/F1* p + ~SE) - X, AB 
Relative indirect =0 XT/FM P + 1 - P, AB 

* SE = Sign Extended 

3-39 



Arithmetic and Logic Operations 

TABLE 3-5 
1700 Register Reference Transforms During GETMAK/XT Operation 

Fl (Binary) Instruction MIR Transform Comment 

0000 XT/Fl NOP Selective stop (A=O) 
Instruction enhanced (A/O) 

0001 XT/SK P+ 1 ~ P, AB Skip 

0010 XT/Fl P + A(SE) ~ F, AB Input to A 

0011 XT/Fl P + A(SE) ~ F, AB Output from A 

0100 XT/Fl NOP Enable interrupt (A=O) 
Instruction enhanced (A/O) 

0101 XT/FI NOP Inhibit interrupt (A=O) 
Instruction enhanced (A/O) 

0110 XT/FI Q~X,AB Set program protect (A=O) 
Instruction enhanced (A/O) 

0111 XT/F1 Q~X,AB Clear program protect (A=O) 
Instruction enhanced (AfO) 

1000 t t In terregister 

1001 XT/F1 P+ 1 ~P, AB Increase A 

1010 XT/FI P+ 1 ~P,AB Enter A 

1011 XT/Fl NOP Pass (A=O) 
Instruction enhanced (A/O) 

1100 XT/FI P+ 1 ~ P, AB Enter Q 

1101 XT/F1 P + 1 ~ P, AB Increase Q 

1110 XT/F1 A(lNT) ~ X, AB Exit interrupt 

1111 XTjSH IA~F Shift 
I I I 

t See 1700 Interregister Transforms. 

3-40 



Macroarithmetic Instruction Execution 

Select Signals 55-SO through 55-53 

During TMA/j, TMAK/j, and GETMAK/j transform operations, position select signals 
S5-S0 through S5-S3 directly correspond to MIR28 through MIR31. During the 
GETMAK/XT transform operation, select signals S5-S0 through S5-S3 are generated 
based on the microinstruction being emulated. Multiplexer K 12 selects one of the 
above cases depending upon the state of the GETMAK/XT signal at K 12-1. The out­
put of the IXT register is first decoded to select the MA transform according to figure 
3-25 for the storage reference instructions (F =1= 0) and according to figure 3-26 and 
table 3-5 for the register reference instructions and interregister reference instructions 
(F = 0) during the GETMAK/XT operation. The F = 0 signal at pin 1 of multiplexer 
D10 selects the MA transforms as follows: 

F = 0 low 

F = 0 high 

S5-S0 through S5-S3 are generated from the 
storage reference instruction 
S5-S0 through S5-S3 are generated from the 
register reference and interregister reference 
instructions 

The MA transform selection shown in figure 3-26 is performed simultaneously by the 
combination circuit. These flow charts are used to show the selection conditions 
rather than the sequential steps in selecting the MA transforms. 

(Storage 
reference) 

F*O 
Yes 

F 1 = 4 + 5 + 6 + 7 and ~ = 
DON'T CARE or 

Fl = C + D + E + F and ~ * 0 

Fl = C + D + E + F and 
~=O 

No 

Fl = 0 and ~ = 0 
Fl = 8 and ~ = 0 

Fl = 9 + A + Band 
= DON'T CARE 

No 

F 1 = 0 + 1 + 2 and ~ * 0 
Fl = 8 and ~ *0 

XT/Fl * 
(S5-S0 - S5-S3 = 1110) 

Yes XT/FM 
(S5-SO - S5-S3 = 1111) 

XT/Fl 
(S5-S0 - S5-S3 = 1101) 

XT/F 
(S5-S0 - S5-S3 = 1011 ) 

Figure 3-25. MA Transform Selection 
For 1700 Storage Reference Instructions 

3-41 



Arithmetic and Logic Operations 

TABLE 3-6 
1700 Interregister Transforms During GETMAK/XT Operation 

Instruction Condition 

XT/IR M not origin register (T 1 2 =1= 0) 
XT/IM M is origin register (112 = 0) 

MIR Transform Conditions 
(MIR Fields) 

Origin Destination 
F A B D 

Bits Bits Bits Bits LP XR A Q M A Q M 
2-6 7-9 10-12 13-15 18 19 110 III 112 113 114 115 

ADDT - - - a a x x a x x X 
11001 

AB - - - 1 a x x a x x X 
01110 

A+B - - - a 1 x X a x x X 
01001 

(-A) + - - - 1 1 X X a x x X 
(-B) 
00001 

ADD+ P regis- Zeros P reg- X X X X 1 X X X 
11010 ter 001 001 ister t 

001 
- Ones - - X X a X a X X X 

110 
- A regis- - - X X 1 X a x X X 

ter 100 
I Ones I I vi v I v I 0 I 0 XI X I X I - I - -I I ""I 1"'- I 1"'- I I I I I 

110 

- - Q regis- - X X X 1 a X X X 
ter 100 

NOP X X X X a 0 0 0 
- - - 000 

A reg-
ister~t 

X X X X a 1 X X 

- - -
101 

Q reg- x X X X a a 1 x 
ister t - - - all 

- - - F regis- X X X X a a a x 
ter 111 

t NOP if protect violation detected. 

3-42 



Macroarithmetic Instruction Execution 

F=O 
No 5torage ...------

reference 

Yes XT/5K 
>------ (55-SO - 55-53 = 1000) 

Yes XT/5H 
>------ (55-SO - 55-53 = 1001) 

Yes XT/IR 
(55-SO - 55-53 = 1010) 

Yes XT/IM 
(55-50 - 55-53 = 1100) 

XT/F1 
(55-SO - 55-53 = 1101) 

Figure 3-26. MA Transform Selection for 1700 Register Reference and 
Interregister Reference Instructions 

Selector S8 

Selector S8 is an eight-hit wide selector that is used to choose between a maximum of 
eight different sources for loading the Nand K registers. Figure 3-27 shows eight 
KIN transform assignments. The O's are generated by directly connecting to ground. 
Other bit patterns are derived from the lowest eight bits (S208 through S215) of 
selector S2, the IXT and IXT' registers, and the lowest eight bits (MIR24 through 
MIR31) of the microinstruction register. 

Selector S8 consists of eight 8-to-l multiplexers, Kl, K2, K3, K4, K5, K6, K7, and K9, 
which are enabled only when the S8ENABLE signal at pin 7 is low. The S8ENABLE 
signal is high to disable S8 during the clear N register (CLRN), clear K register 
(CLRK), and clear N and page register (CLRNP) commands, allowing all O's to be 
loaded into the N or K register. The position select signals S8-S0 through 88-82 are 
generated by multiplexer H9. 

3-43 



Arithmetic and Logic Operations 

Instruction j Value 

XT/52 o 

XT/5HCNT 

o 
Transform output 

52, lowest 8 bits 
(08-15) 

1010101 (;~-~5) 

7 

XT/FLDLTH 2 1 0 10101 0 1 (~~7) 1 

XT/RA 

XT/RA* 

XT/RB 

XT/MIR 

XT/FLD5TR 

3 

4 

5 

6 

7 

MIR, lowest 8 bits· 
(24-31 ) 

IXT 
(00-03) 

Figure 3-27. KiN Transforms 

Table 3-7 indicates that if MODEll is high (sequential address mode, MIROO and 
MIROI = 11), selector S8 will be at position 6 to allow MIR24 through MIR31 to 
be loaded directly into the K or N register. If :MODE 11 is low and MIR28. is low, 
S5-S2 through 85-S0 correspond directly to MIR29 through MIR31. However, if 
MODEll is low and MIR28 is high (GETMAK/XT operation), K/N transform 7 is 
selected for all combinations of MIR29 through MIR3I. 

TABLE 3-7 
Position Select Signal Generation 

MODE 11 MIR28 S5S2 S5S1 S5S0 

0 0 MIR29 MIR30 MIR31 
0 1 1 1 1 
1 X 1 1 0 

3-44 



Macroarithmetic Instruction Execution 

Selector S7 

Selector S7 is a one-bit wide selector that allows up to sixteen different external and/or 
internal conditions to be tested to determine which upper or lower microinstruction 
to execute from the next microinstruction pair. 

Table 3-8 shows the conditions to be tested by the 1 700 emulator during the 
emulation process. 

The test bit is selected by the lowest four bits of the microinstruction register (MIR28 
through MIR31). The output BTU is sent to the T -field test multiplexer in the control 
2 module and is tested if the T field of the microinstruction contains a BTU command. 

Test Bit 

BTUOO 

102 

107 

106 

I 
INDOOFF 

SMI05L 
(PROTECT F AUL T) 

SELSTOP 

SELSKIP/ 

SMI08 
(PARITY ERROR) 

BTUOO 

DELTA'=O 

EA=OPER 

EVENPAR 

100 

MULTIND 

SMIOI+SM 108 

TABLE 3-8 
Emulation Test Conditions 

Operation 

Not assigned 

Execute upper microinstruction if 102 is 
al. 

Execute upper microinstruction if 107 is 
al. 

Execute upper microinstruction if 106 is 
al. 

Execute upper microinstruction if STORE 
OOFF (index I) status is true. 

Execute lower microinstruction if storage 
protect fault is detected. 

Execute lower microinstruction if selec-
tive stop switch is set. 

Execute lower microinstruction if selec-
tive skip switch is set. 

Execute lower microinstruction if storage 
parity error is detected. 

Not assigned 

Execute upper microinstruction if delta 
equals 0 (LXT8 through IXTI5=0). 

Execute lower microinstruction if the 
effective address equals the operand. 

Execute upper microinstruction if mem-
ory parity line is true (even parity). 

Execute upper microinstruction if 100 is 
al. 

Execute upper microinstruction if multi-
level indirect address mode is selected. 

Execute upper microinstruction if pre-
vious macromemory write cycle was 
aborted (caused either by parity error 
or protect fault). 

3-45 

Selector S7 
Pin Position 

8 0 

7 I 

6 2 

5 3 

4 4 

3 5 

2 6 

I 7 

23 8 

22 9 

21 10 

20 II 

19 12 

18 13 

17 14 

16 15 



Arithmetic and Logic Operations 

MIR Encode 

The 1700 instruction format is repeated here to help in understanding the signal 
mnemonics: 

10 13 14 17 18 115 

F I Fl 

During the GETMAK/XT command the macroinstruction is encoded to form the upper 
sixteen bits, MMOO through MM15, which can be loaded directly to the micro­
instruction register. These upper sixteen bits of MIR control the arithmetic functions 
for read next instruction (RNI) cycles and other required operations to provide more 
efficient execution. The types of MIR transform based on the macroinstruction 
being emulated are shown in tables 3-4, 3-5, and 3-6 for storage reference instructions, 
register reference instructions, and interregister instructions, respectively. Figures 
3-28 and 3-29 show the MIR transform selection for storage reference instructions 
and for the register reference instructions as flow charts. Table 3-6 shows the MIR 
transform for interregister reference instructions. 

The MIR transform selection is performed simultaneously by the combination circuit. 
Figures 3-28 and 3-29 show the selection conditions rather than the sequential steps 
in selecting the MIR transform. 

The 2-to-l multiplexers G6, E6, E5, and G5 select the rvUR transform either for 
storage reference instructions (F = 0 at multiplexer input pin 1 is low) or 
for register reference and interregister reference instructions (F = a at multiplexer 
input pin I is high). These multiplexers are enabled by the XTMIR signal, which is 
only generated during GETMAK!XT operationo If the protect violation is 
detected, the D field of MIR encode is set to 0000 (NOP). 

3-46 



Yes 

F 1 = 0 + 4 + 5 + 6 + 7 and 

~*O 

No 

F1 = DON'T CARE and 

~=O 

No 

F 1 = 1 I 3 and ~ * 0 

No 

F1 = 2 and ~* 0 

No 

F1 = 8 + 9 + A + B + C + 0 

" + E + F and d * 0 / 
,,'------" 

Yes 

Yes 

Yes 

Yes 

Macroarithmetic Instruction Execution 

Register 
reference 

~. X,AB 
(MIROO - MIR15 = 718E16 ) 

P + 1 + P; AB 

(MIROO - MIR15 = 744916 ) 

~ + (OOFF) + X, AB 
(MIROO - MIR15 = 718616 ) 

~ + (Q) + X, AB 
(MIROO - MIR15 = 71A616 ) 

P+~(SE)+ X, AB 
lUI Dnn _ UI D1 r:;: = '7nr:;:t: \ , ....... v'"' ......... .., 'V"'~16' 

Figure 3-28. MIR Transfonn 
of 1 700 Storage Reference Instructions 

3-47 



Arithmetic and Logic Operations 

No 

Yes 

v 

Yes 

Yes 

Storage reference 

NOPt 
(MIROO- MIR15= 
504016 or 504816) 

P + 1 + P, AB 
(MIROO - MIR15 = 744916 ) 

P+~(SE)+F,AB 

(MIROO - MIR15 = 707716) 

Q+X,AB 
(MIROO - MIR15 = 546616) 

~[INT] + X, AB 
(MIROO - MI R15 = 547616 ) 

A+F 
(MIROO - MIR15 = 690F16) 

I nterregister 
reference 

(see table 4-5) 

t NOP = The 0 field of the microinstruction must be 0 0 O. 

Figure 3-29. MIR Transform 
of 1700 Register Reference Instructions 

3-48 



Macroarithmetic Instruction Execution 

Delta Translator 

To emulate certain basic and enhanced 1700 instructions, the delta field of the 
macroinstruction must be modified before it is used in operations indicated by 
MIR transform. Table 3-9 shows the conditions and modified delta fields. 

The delta translator consists mainly of a combination of circuits that translates 
the delta field according to the types of macroinstructions being emulated, as in 
table 3-5. The 2-to-l multiplexers, A9, AIO, C9, and CIO, are enabled only when: 

• SMIII is not set (disable the FI output to selector SI or S2 and enable 
the output of the delta translator to S 1 or S2). 

• SM 1 07 is not set (disable decimal arithmetic correction logic). 
• F = 0 or F I = 1000 are low (not an interregister reference instruction). 

When an interregister reference instruction is emulated, the above multiplexers are 
disabled. This causes the delta (FFFF 16) to be sent to selector Sl or S2. The 
select signal at input pin I is generated as follows: 

SM213 • F = 0 • (F 1 = 0 + 1 + 6 + E) 

If the above select signal is high, it allows ~(SK) and ~(lNT) to be selected from 
position 1 of the multiplexers. !:!l and !:!leSE) are selected from position 0 
when the select signal is low. Status mode bit SM213 is set by the 
emulator only during emulation of enhanced instructions; i.e., type 2 storage 
reference instructions and field reference instructions. 

3-49 



Arithmetic and Logic Operations 

a. 

b. 

a. 

b. 

c. 

a. 

b. 

a. 

a. 

Conditions 

(F=O) (FI = Oxxx) 

Enhanced instructions: (F=O) 

(F=O) (FI = Ixxx) 

(F=O) (FI= 2 + 3) 

TABLE 3-9 
Delta Translations 

Delta (~ 

(FI = 4 + 5) (r = 0) t 
A = 0 0 0 0 0 0 0 0 108 109 Il 0 III Il2 Il3 Il4 115 

A(SE) (with sign extend) = 
C C C C C C C C 108 109 110 III Il2 113 Il4 115 

... ~ -Enhanced instructions: (F=O) (FI = 4 + 5) (r = D)t Constant = 108 

(F=O) (FI=l) A( SK) (for skip instruction) = 

(F=O) (FI=O + 6) o 0 0 0 0 0 0 0 0 0 0 0 112 113 Il4 115 

(F=O) (FI=E) A(INT) (for interrupt instruction = 
o 0 0 0 0 0 0 1 108 109 11 D III 112 113 114 115 

(F=O) (FI=8) A(FFFF) = 
1 I III 1 1 1 1 1 1 1 1 111 

t Refer to the CYBER 18 processor reference manual for type 2 storage reference instructions. enhanced 
instructions. and field reference isntructions. Flag r is the relative address flag represented by IXT'08. 

Read Only Micromemory 

The micromemory of the 1 700 transform module is a read only memory that has been 
preprogrammed with the 1 700 instruction emulator. This micromemory consists of 512 
64-bit words (two pages). Each word consists of two microinstructions that are 
referred to as upper (32 bit) and lower (32 bit). Each word in the micromemory is 
addressed by the memory address bits (MAO through MA7, PG3). The MAO through 
MA 7 specify one of 256 words (microinstruction pairs, 32-bit upper and 32-bit 
lower instruction within a page. The page (PG3) selects the page (page 0 or 1) in 
which the instruction resides. The output of the read only memory is coupled to 
the upper/lower memory data select where the sequence of selection (upper or 
lower) is determined in accordance with the emulation required. The selected 
instruction is transferred via the CPU three-state bus to the X register. 

3-50 



Macroarithmetic Instruction Execution (Exercise) 

DIRECTIONS: Mark the following questions T for true or F for false. 

1. The function code of the 1700 instruction being emulated forms part 
of the micromemory address containing the emulation program. 

2. The first operation normally performed during an emulation process is 
an RNI sequence. 

3. During the emulation of a 1700 storage reference instruction, the 
formation of an effective address is controlled by the output of the delta 
field decoder. 

4. The sixteen-bit output of the MIR encoder is determined by the 1700 
instruction's function code and address modifiers. 

5. When a 1700 storage reference instruction is emulated, the MA portion 
of the PIMA register will be equal to the F field of the 1700 instruction. 

DIRECTIONS: Complete the following statement. 

6. To be emulated, a 1700 instruction must first be gated into the IXT register. The 
microinstruction field that controls this gating is ___________ _ 

. ANSWERS 

1. T 2. T 3. F 4. T 5. F 6. C FIELD 

3-51 



PROGRESS CHECK 

QUESTIONS 

1. Addressing information needed to access melnory locations in file 2 originates froln 
the register. 

a. K 
b. N 
c. X 
d. PIMA 

2. D' decoding of the D field will occur if the S field of the microinstruction equals 

a. 0011 
b. 1000 
c. 1001 
d. 1111 

3. Which transform operation results in the formation of a new ALU control field in 
the MIR? 

a. RNI encoding 
b. Microaddress formation 
c. MIR encoding 
d. Delta translation 

4. A 1700 instruction is gated into the IXT register by a transform command contained 
in the field of a microinstruction. 

a. A 
b. S 
c. C 
d. T 

5. Information for "N" and "K" is selected from one of eight possible sources by 
selector ---

a. S2 
b. S5 
c. S7 
d. S8 

6. The read only micromemory containing the 1700 instruction emulator consists of 
___ pages. 

a. one 
b. two 
c. three 
d. four 

3-53 



Arithmetic and Logic Operations 

7. The B field of the microinstruction controls ---

a. selector Sl 
b. selector S2 
c. selector S3 
d. the adder 

8. When the RUN switch is pressed, the first operation performed is __ _ 

a. a transform operation 
b. execution of a micromemory emulation prograln 
c. decoding the ALU control field of the microinstruction 
d. reading a macromemory from memory 

9. Shift fWlctions in the A register are controlled by ___ enabling the signal(s). 

a. gate X 
b. gate P 
c. AMODE80 0 and AMODE80 1 
d. AP/+TO 

10. Which statement concerning field decoding is true? 

a. D field decoding determines the select inputs of selector 83 multiplexes 
b. The B source to the AL U is designated by the T field contents 
c. A' decoding of the A field enables data sources on the tri-state bus as A 

source data 
d. S field decoding normally controls micromemory address sequencing 

3-54 



Progress Check 

ANSWERS 

l. Correct Answer: b 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 3-2. 

2. Correct Answer: c 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, page 3-18. 

3. Correct Answer: c 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 3-22. 

4. Correct Answer: b 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, page 3-25. 

5. Correct Answer: d 
Resource: Text: CYBER 18-20 Arithmetic Logic SRM, page 3-43. 

6. Correct Answer: b 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, page 3-50. 

7. Correct Answer: b 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, page 3-15. 

8. Correct Answer: d 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, page 3-3l. 

9. Correct Answer: c 
Resource: Text: C YBER 18-20 Arithmetic Lo~c SRM, page 3-l. 

10. Correct Answer: c 
Resource: Text: CYBER 18-20 Arithmetic Lo~c SRM, page 3-14. 

3-55 



CYBER 18-20 ARITHMETIC LOGIC 

LEARNING GUIDE 

~~ 
CONT~OL 

DATA 



PLA TO@) is a registered tradeInark of 
Control Data Corporation. 

Pub. No. 76770502 

Copyright€> 1978, 1979 
by Control Data Corporation. 

All rights reserved. No part of this material may be 
reproduced by any means without permission in 
writing from the publisher. Printed in the United 
States of America. 

1/85 



CONTENTS 

INTRODUCTION, L-1 

BLOCK 1: ALU REGISTERS, L-3 

Learning Activities 

1-A AL U FWlctional Areas, L-4 
1-B ALU Working Registers, L-4 
1-C AL U Organization, L-4 
1-D AL U Operation, L-5 
1-E ALU Output Selector and Register Data Paths, L-5 
1-F ALU Data Flow, L-5 
1-G ALU Register Data Paths, L-6 
1-H Progress Check, L-6 

BLOCK 2: MICROINSTRUCTION DECODING, L-7 

Learning Activities 

2-A ALU Controi Fieid Functions, L-8 
2-B ALU Control Fields, L-8 
2-C ALU Control Field Operations, L-8 
2-D ALU Data Flow and Operating Modes, L-9 
2-E Arithmetic Operations, L-9 
2-F Progress Check, L-9 

BLOCK 3: ARITHMETIC AND LOGIC OPERATIONS, L-l1 

Learning Activities 

3-A ALU Operations, L-12 
3-B ALU Instruction Example, L-12 
3-C ALU Logic Diagram Data Flow, L-12 
3-D Macroarithmetic Instruction Execution (Text), L-13 
3-E Macroarithmetic Instruction Execution (Exercise), L-13 
3-F Progress Check, L-13 

L-iii 



INTRODUCTION 

The arithmetic logic unit does the actual work of the computer: 
adding, L-subtracting, and comparing quantities. In this unit, you 
study the operating details of the CYBER 18-20 ALU, its working 
registers, and the path taken by data as it goes through the ALU. 

You examine how a microinstruction's arithmetic code field is 
decoded, as well as the sequence of events in the AL U during 
instruction execution. 

Whenever you are asked to look at logic diagrams in this unit, those 
diagrams can be found in the CYBER 18-20 Logic Circuits Reference 
Manual. 

Resources 

• CDC 110 Terminal with disk drive. 

• PLA TO course disk ct -cpu2, 
Control Data Corporation, pub. no. 76773086. 

• Audiotape: HALU Logic Diagram Data Flow," 
Control Data Corporation, pub. no. 76362465. 

L-J 



BLOCK 1: ALU REGISTERS 

The main parts of the arithmetic logic unit (AL U) are described in 
this block. In addition, each working register and its function is 
described and explained. As you examine the AL U, you will follow 
the flow of data through it. 

L-3 



I-A ALU FUNCTIONAL AREAS 

This activity describes the basic operation, components, and data flow of the 
ALO. 

Objective 

• Identify the functional areas of the arithmetic logic unit (ALU), and name the 
AL U working registers. 

Resource 

Textl 
Reading 

CYBER 18-20 Arithlnetic Logic Supplementary Reference Manual, 
"ALU Functional Areas," pages 1-1 through 1-9. 

I-B ALU WORKING REGISTERS 

This activity describes the registers that are used in AL U operations. 

Objective 

• Identify the functional areas of the arithmetic logic wlit (ALU), and nallIe the 
AL U working registers. 

Resource 

Textl 
Reading 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"AL U \V orking Registers," pages 1-10 t.hrough 1-12. 

l-C ALU ORGANIZATION 

This exercise checks your understanding of each functional block on the AL U 
module. 

Objective 

• Identify the functional areas of the arithmetic logic unit (ALU), and name the 
AL U working registers. 

Resource 

Textl 
Exercise 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"ALU Organization," page 1-13. 

L-4 

" 



I-D ALU OPERATION 

This activity exalnines the basic construction and organization of the AL U and 
the look-ahead carry generator. 

Objective 

• Define the function of each ALU register. 

Resource 

Textl 
Reading 

CYBER 18-20 Aritlunetic Logic Supplementary Reference Manual, 
" AL U Operation," pages 1-14 through 1-20. 

l-E ALU OUTPUT SELECTOR AND REGISTER DATA PATHS 

This activity describes selector S3 and the oat:l paths it controls, a..'1d rcvic ..... Ts the 
working areas of the AL U. 

Objective 

• Follow the ALU register input and output data paths. 

Resource 

Textl 
Reading 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"ALU Output Selector and Register Data Paths," 
pages 1-21 through 1-26. 

I-F ALU DATA FLOW 

This activity explains the following types of data flow within the arithmetic 
logic rnodule: data transfer, arithmetic operations, logic operations, and shift 
operations. It also explains the ALU control field of the nlicroinstruction. 

Objective 

• Follow the ALU register input and output data paths. 

Resource 

CBE "ALU Data Flow" 
(PLATO course disk ct-cpu2) 

L-5 



I-G ALU REGISTER DATA PATHS 

This exercise checks your understanding of AL U register data paths. 

Objective 

• Follow the ALU register input and output data paths. 

Resource 

Textl 
Exercise 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"ALU Register Data Paths," page 1-27. 

I-H PROGRESS CHECK 

At this point you should check your understanding of the material in this block by 
answering the progress check questions. 

Resource 

Textl 
Exercise 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"Prog'ress Check," pages 1-29 and 1-30; answers, page 1-31. 

L-6 



BLOCK 2: MICROINSTRUCTION DECODING 

This block examines microinstructions in detail from a hardware 
viewpoint. The microinstruction's control field and the functions of 
each bit within the AL U control field are described. You study the 
ALU data flow and the various operating modes controlled by 
microinstru~tion control field hits. 

L-7 



2-A ALU CONTROL FIELD FUNCTIONS 

This activity lists the meaning of the bits that appear in the ALU control fields 
of a microinstruction. 

Objective 

• Identify the function of each bit in the ALU control field. 

Resource 

Textl 
Reading 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"ALU Control Field Functions," pages 2-1 through 2-19. 

2-B ALU CONTROL FIELDS 

In this exercise, you are shown several examples of ALU control fields and are 
asked questions concerning the effects they would initiate. 

Objective 

• Identify the function of each bit in the AL U control field. 

Resource 

Text! 
Exercise 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"ALU Control Fields," pages 2-20 through 2-22. 

2-C ALU CONTROL FIELD OPERATIONS 

This activity explains how each subfield deterlnines sources of input data, 
destination of output data, and control of shift operations. 

Objective 

• Identify the AL U input and output data paths that are active by examining 
the microinstruction control field. 

Resource 

Text! 
Reading 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"ALU Control Field Operations," pages 2-23 through 2-30. 

L-8 



2-D ALU DATA FLOW AND OPERATING MODES 

This exercise checks your understanding of control field operations. 

Objective 

• Identify the ALU input and output data paths that are active by examining 
the microinstruction control field. 

Resource 

Textl 
Exercise 

CYBER 18-20 Arithmetic Logic Supplelnentary Reference Manual, 
"ALU Data Flow and Operating Modes," page 2-31. 

2-E ARITHMETIC OPERATIONS 

This activity analyzes the mieroinst['uctioll l'l"ugeulIl iisling, showing how to 
interpret the steps performed by a microinstruction. 

Objective 

• Identify which arithmetic operation is being commanded, by examining 
microinstruction control field bits. 

Resource 

Textl 
Reading 

CYBER 18-20 Arithmetic Logic SuppleInentary Reference Manual, 
"Arithmetic Operations," pages 2-32 through 2-40. 

2-F PROGRESS CHECK 

At this point you should check your u11derst~"'lding of the material in this block by 
answering the progress check questions. 

Resource 

Textl 
Exercise 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"Progress Check," pages 2-41 and 2-42; answers, page 2-43. 

L-9 



BLOCK 3: ARITHMETIC AND LOGIC OPERATIONS 

In this block, you follow the sequence of events in the AL U logic 
diagrams during instruction execution. By the end of the block, you 
should be able to list the sequence of events that occurs during the 
execution of a macroarithmetic instruction. 

L-l1 



3-A ALU OPERATIONS 

This activity examines six functional areas of the arithmetic logic unit: the P 
register, the A register, file 2, selector Sl, ALU with look-ahead carry, and 
selector S3 with shift control. 

Objective 

• Describe the purpose of the AL U . 

Resource 

Textl 
Reading 

CYBER 18-20 Arithmetic Logic SuppleInentary Reference Manual, 
"ALU Operations," pages 3-1 through 3-12. 

3-B ALU INSTRUCTION EXAMPLE 

In this activity, you look at the decoding process for the ALU control field and 
the signals that result from this decoding. 

Objective 

• Follow an AL U instruction sequence through the logic diagrams. 

Resource 

Textl 
Reading 

CYBER 18-20 Arithmetic Logic Supplelnentary Reference Manual, 
"ALU LTlStruction Example," pages 3-13 through 3-19. 

3-C ALU LOGIC DIAGRAM DATA FLOW 

This tape helps you locate some of the more important functional areas that are 
part of the ALU and explains how these areas operate. To complete this 
activity, you need the logic diagrams for the ALU and a functional block diagranl 
with logic page references. As you listen to this audiotape, answer the questions 
found in the exercise activity. 

Objective 

• Follow an AL U instruction sequence through the logic diagrams. 

Resources 

Audio 

Textl 
Exercise 

"AL U Logic Diagram Data Flow" 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"ALU Logic Diagram Data Flow," pages 3-20 and 3-21. 

L-12 



3-D MACRO ARITHMETIC INSTRUCTION EXECUTION (TEXT) 

This activity describes the sequence of events occurring during the emulation of 
a 1700 macroinstruction. 

Objective 

• List the sequence of events that occurs during the execution of a 
macroarithmetic instruction. 

Resource 

Text/ 
Reading 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"Macroarithmetic Instruction Execution (Text)," 
pages 3-22 through 3-50. 

3-E MACROARITHMETIC INSTRUCTION EXE(;fTTTON (EXERCISE) 

This exercise checks your understanding of macroarithmetic instruction 
execution. 

Objective 

• List the sequence of events that occurs during the execution of a 
macroarithmetic instruction. 

Resource 

Text/ 
Exercise 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"Macroarithmetic Instruction Execution (Exercise)," page 3-51. 

3-F PROGRESS CHECK 

At this point you should check your understanding of the material in this block by 
answering the progress check questions. 

Resource 

Text/ 
Exercise 

CYBER 18-20 Arithmetic Logic Supplementary Reference Manual, 
"Progress Check," pages 3-53 and 3-54; answers, page 3-55. 

L-13 


	001
	002
	003
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-29
	1-30
	1-31
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-53
	3-54
	3-55
	_001
	_002
	_003
	_01
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_11
	_12
	_13

