
r.:I K:\. CONTI\.OL DATA
\::I c:I CORPORi\TION

FILE MANAGER
VERSION 2
REFERENCE MANUAL

CDC@ OPERATING SYSTEM:

96768040

INTERACTIVE TERMINAL-ORIENTED SYSTEM

REVISION RECORD
REVISION DESCRIPTION

01 Prereleased edition
(4/77)

A Manual released. This manual All p.rli ti om;

(6/77)

B Manual revised to incorporate ITOS 1.1 information. Section 2 also revised to incorporate format chan!!es.

(10/77)

C Manual revised to incorporate ITOS 1.2 information. Pages ii, iii, v, 2-1, 2-5, 2-6, 2-12, 2-14, 2-18, 2-21, 2-26,

(1/78) B-4, B-5, C-l, D-3, F-l, F-4, 1-3, K-l, Index-I, and Index-2 are chan!!ed. Pa!!es 2-6.1 and B-4.1 are added.

Publication No.

96768040

REVISION LETTERS I, 0, Q AND X ARE NOT USED

© 1977, 1978
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
La Jolla, California 92037
or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Cover -- 1-3 C
ii thru vii C 1-4 B
viii B J-l A
1-1 B K-l C
1-2 A L-l C
1-3 B M-l B
1-4 A Index-l C
1-5 B Index-2 C
1-6 A Comment sheet C
1-7 A Cover --
1-8 B
2-1 C
2-2 B
2-3 B
2-4 B
2-5 C
2-6 C
2-6.1/2-6.2 C
2-7 thru 2-11 B
2-12 C
2-13 B
2-14 C
2-15 thru 2-17 B
2-18 C
2-19 B
2-20 B
2-21 C
2-22 thru 2-25 B
2-26 C
2-27 B
2-28 C
A-I B
A-2 A
B-1 B
B-2 B
B-3 A
B-4 C
B-4.1/B-4.2 C
B-5 C
B-6 thru B-13 A
C-l C
C-2 B
C-3 thru C-14 A
D-l B
D-2 A
D-3 C
D-4 B
D-5 A
D-6 A
D-7 B
B-1 A
F-l C
F-2 A
F-3 B
F-4 C
G-l B
H-l A
1-1 B
1-2 B

96768040 C iii/iv

PREFACE

The CDC® CYBER 18 File Manager 2 is a general purpose
file management system that operates under the Interactive

I Terminal-Oriented System (ITOS), Version 1.2.

Most of the examples in this manual are written in
CYBER 18 Mass Storage FORTRAN, Version 3. It is
assumed that users of this manual are familiar with that
language.

Familiarity with the Mass Storage Operating System (MSOS),
Version 5, will be helpful in reading this manual, though not
essential, since terms used are defined in a glossary
(appen9ix A).

96768040 C

The following CYBER 18 manuals contain additional
information useful to file manager users:

Publication Publication Number

Mass-Storage Operating System (MSOS) Version 5
Reference Manual

MSOS Version 5 Ordering Bulletin

Mass Storage FORTRAN Version 3A/B Reference Manual

Macro Assembler Reference Manual

Interactive Terminal-Oriented System (ITOS) Version 1
Reference Manual

96769400

96769490

60362000

60361900

96768290

CDC manuals can be ordered from Control Data Literature and Distribution Services,
8001 East Bloomington Freeway, Minneapolis, MN 55420

This product is intended for use only as described in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or parameters.

v/vi

CONTENTS

1. GENERAL FILE MANAGER FEATURES 1-1 Record Recovery Following System Failure 1-5
Limitations 1-5

Summary 1-1 System-Reserved Words; End-Of-File and
Record Deletion Codes 1-5

Hardware Requirements 1-1 Automatic Volume Checking; Volume Disabling 1-5
Software Requirements 1-1
File Manager Support of Existing Software 1-1
Functions 1-1 2. FILE REQUEST DESCRIPTIONS
Use of Mass Memory Space 1-1 AND CALLS 2-1
Organization of Modules 1-1 Specification Requests 2-1
File Storage 1-1 Create File (CREATE) 2-1
Key Storage 1-1 Clear File (CLEAR) 2-3

File Types 1-1 Delete File (DELETE) 2-4
Sequential Files 1-1 Open File (OPENFL) . 2-4
Indexed Files 1-2 Close File (CLOSFL) 2-6.1 B

File Requests 1-3 Lock File (LOKFIL) 2-7
Request Types 1-3 Unlock File (UNLFIL) 2-8
Request Buffer 1-3 Get File Control Block (GETFCB) 2-8
Status Indicator Word 1-3 Update File Control Block (UPDFCB) 2-10

File Identification 1-3 Reduce File Space (REDUCE) 2-12
Relative Record Number 1-4 Rename File (RENAME) 2-12
File Open and Close 1-4 Enable/Disable Volume (VOLUSE) 2-13
Update Protection 1-4 Record Accessing Requests 2-13
System Executive Close of All Files Store New Records Sequentially (PUTS) 2-13

Opened by a Particular User 1-4 Store New Indexed Record (WRITER) 2-15
File Manager Interceptor Module 1-4 Read Specific Record (READR) 2-16
Request Processors 1-5 Retrieve Next Record (GETS) 2-18

Reentrant Request Processors 1-5 Store Updated Record (UPREC) 2-21
Serial Request Processors 1-5 Delete Record (DELREC) 2-25

Volume Labeling, Enabling, Disabling 1-5 Compress File (COMFIL) 2-26

APPENDIXES

A Glossary A-1 H Addition of File Space to
an Installed System H-1

B File Structure B-1
Summary of File Manager Request Calls 1-1

C Key Index Structure C-1
J System Failure and Job Processor

D File Manager Operation Parameters and
Error Messages Related to Improper
Use of File Manager J-1

Main-Memory-Resident Tables D-1

K Recovery Techniques K-1
E Volume Label Description E-1

L Storage of File Control Blocks
F Status Indicator Word F-1 Within User Space L-1

G Reentrant/Serial Request Processors G-1 M File Space Management M-1
,-

INDEX

FIGURES

1-1 Example of Pyramid of Partitions 1-2 2-5 Example of FCB Retrieval for a
-- 1-2 Example of Reentrant Processor Queuing 1-6 Particular Open File (FORTRAN) 2-11

1-3 Example of Serial Processor Queuing 1-7 2-6 Example of GETFCB,UPDFCB Requests
2-1 Sector-Aligned and Non-Sector- with FCB Specified by FCB Index

Aligned Records 2-2 (FORTRAN) 2-11
2-2 Create File Request Example (FORTRAN) 2-4 2-7 Store New Records Sequentially Example
2-3 Open File Request Example (FORTRAN) 2-7 (FORTRAN) 2-15
2-4 Lock, Unlock File Requests Example 2-8 Store New Indexed Record (WRITER)

(FORTRAN) 2-9 Example (FORTRAN) 2-16

96768040 C vii

2-9 Example of READR Record Retrieval B-4 Assembly List of Name Array,
by Key Value (Non-Primary Key) 2-17 FSDR Routine B-7

2-10 Example of READR Request with Access B-5 Example of File Definition Directory Entries B-8
by Relative Record Number (FORTRAN) 2-19 B-6 Example of File Control Blocks B-I0

2-11 Example of READR Request with Access B-7 Example of File Records Including
by Key Value (FORTRAN) 2-20 Records Marked as Deleted B-12

2-12 GETS Request Example, Access by C-l Key Index Storage C-3
Relative Record Number (FORTRAN) 2-22 C-2 Example of Key Index Storage C-4

2-13 Example of Repeated GETS Request, C-3 Key Index Demonstration Routine
Access by Key Value, Initial Positioning (FORTRAN) C-9
by READR (FORTRAN) 2-23 C-4 Example of FCB for Indexed File C-I0

2-14 Example of File Records Retrieved by C-5 Example of Key Index Blocks C-I0
Code in Figure 2-13 :\ 2-24 C-6 Example of Indexed File Records C-14

2-15 UPDREC Example (FORTRAN) 2-25 D-l User Control Table D-2
2-16 Example of DELREC Request (FORTRAN) 2-27 D-2 Main Memory File Control Block Tables D-3
2-17 Compress File Example (FORTRAN) 2-28 D-3 Sample FCB Subset Control Table D-3
A-I A Disk Pack A-2 D-4 Sample Mass Memory Unit Table and
B-1 Location of Main File Control Structures Volume Information Tables D-4

on a Volume B-1 D-5 Sample File Space Limits Table D-5
B-2 File Definition Directory Structure B-3 D-6 Sample Record Lock Table D-5
B-3 File Structure Demonstration Routine D-7 Sample Processor Control Tables D-6

(FORTRAN) B-6 L-1 FCB Storage Within -User Space
(FOR TRAN Example) L-l

. TABLES

F-1 Status Indicator Word (istat) F-l 1-2 Summary of File Manager Request
F-2 Status Indication Numbers F-2 Calling Lists 1-2
G-l Reentrant/Serial Request Processors G-1 1-3 Constant-Sized Arrays ~-2
1-1 Summary of File Manager Requests: 1-4 Summary of idata Array (Initial Values) 1-3

Mnemonics Definitions, File Open/Close 1-5 Number of Records Accessed by
Requirements 1-1 Individual Requests 1-4

1-6 Values Stored by File Manager Available to
User on Completion of Request 1-4

viii 96768040 B

SUMMAtlV

HARDWARE REQUIREMENTS

Files must be maintained on a direct access mass memory
device, not on magnetic tapes.

SOFTWARE REQUIREMENTS

D The file :-nanager runs under ITOS 1.1. Partitioned main
memory must be included in the system, but it is not
necessary to include the partitioned main memory driver.
Allocatable :nain memory is not used by the file manager.
The file :-nanflger uses protected blank common. Therefore,
protected blank common may not be used by non-file

D manager programs.

FILE MANAGER SUPPORT

OF EXISTING SOFTWARE

RPG II, version 1.1, running under ITOS 1 and Sort/Merge 2,
is supported by rile Manager 2. Job processor files, pseudo
tapes, Ti m eshare 3, and the background edi tor, which depend
on File \1anager 1, are not supported by File Vlanager 2.

FUNCTIONS

The file manager can be used by protected programs and by
unprotected programs either in the background or in the
ITOS user area. File manager users can create and maintain
sequential and indexed files. Records within these files may
be retrieved according to relative order within a file or
according to an identifier or key value. A given file may be
indexed by up to four keys. The file manager provides for
deletion of a record, updating of a record, and deletion of an
entire file. A file can be locked or particular records within
a file can be locked by a user to prevent concurrent use by
another file user.

USE OF MASS MEMORY SPACE

File manager space is predefined at system initialization.
Space used by a deleted file is available to the file manager
for a new file. Space used by deleted records can be used
for new records if the file is compressed. Mass memory
space defined for file storage cannot be used for other
system purposes. In a given system, mass memory file space
is usually not expanded or diminished. There are, however,
procedures for expanding or diminishing file space. These
procedures are described in appendix H.

ORGANIZATION OF MODULES

The file manager consists of a main-memory-resident file
manager executive, a set of main-memory-resident request
processors and support subroutines, a set of mass-resident

I request processors, and an interceptor module that must be
in main memory whenever a program makes a file manager

96768040 B

1

request. File manager parameters and tables are diS(~lJs')erj ~
in appendix D. Also see rile Menager Interceptor :vJor1lJle
and Request Processors later in this section.

FILE STORAGE

The files reside on mass memory together with information
describing how to find information regarding a specified file
(file definition directory) and how to find a record within u
file (file control block table). These structur'es are
described in appendix B.

KEY STORAGE

Indexed files require additional-pointers. For a given key on
a given file, these pointers are stored in conjunction with a
pyramid of partitions. Each partition is a linearly ordered
set of disjoint intervals of key values such that the union of
these intervals is the range of the partition. For example, if
records are stored according to the key, age in years, a
typical pyramid of partitions with corresponding pointers
can be represented schematically as shown in figure 1-1. In
this figure, both end points of each interval are indicated.

In an actual file manager file index structure, only the right­
hand endpoint of each interval is stored. In figure 1-1, the
highest block of the pyramid contains the intervals (0
through 20), (21 through 30), (31 through 35), (36 through 43),
and so forth. In the figure, the dashed lines show the path of D
a file manager search for all records for age 28.

This figure is only a schematic representation' of the index
structure used by the file manager. The actual details of
the file index structure are described in appendix C. The
purpose of this example is to show the user that file
manager indexed files are set up to be particularly efficient
when retrieving all file records for a given key in order.
This structure is not particularly efficient for retrieval of a
large set of particular records as specified by key values
tha t are not in order.

The pyramid structure for each key is disjoint from all other
pyramids for that file. Thus, if another key for the file
represented in figure 1-1 is weight, there would be no
information regarding weight in the age pyramid in
figure I-I, except in the file records in the bottom Ii ne of
the figure.

FILE TYPES

SEQUENTIAL FILES

A sequential file is one in which each new record is added
immediately following the last record stored in the file.
Records within a sequential file may be retrieved consecu­
tively in the order stored, or a particular record may be
retrieved by specifying its position within the file; that is,
the relative record number.

1-1

RECORD
AGE = 28

I
I
I •

RECORD
AGE = 28

RECORD
AGE = 28

NOTE: DASHED LINES SHOW PATH OF FILE MANAGER SEARCH FOR ALL
RECORDS FOR AGE 28.

Figure 1-1. Example of Pyramid of Partitions

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

INDEXED FILES For example, if state abbreviation is a key, the following
key values might occur:

An indexed file is one in which each record has at least one
associated attribute or key (surname, social security num­
ber, age, sex, record number, etc.). In File Manager 2, a file
may have up to four keys. Each key may range in length
from one to twenty-nine bytes (eight to 232 bits). Each key
value must be stored within its associated record. (The
position of storage within the record is described in Create
File (CREATE), section 2.) Multiple occurrences of any key
value are permitted for each key except the primary key
(the first key defined for that file), which must have unique
values.

For each key for a given file, an index is set up so that
records may be retrieved in numeric order according to the
binary representation of the key values. For keys of more
than two bytes, numeric order means that order achieved by
considering each key value a binary number written as the
concatenation of the bytes of the key value with the first
bytes being most significant. This means that records with
BCD keys may be retrieved in numeric order and records
with EBCDIC or ASCII keys may be retrieved in alphabetic
order of the key values.

1-2

MN (Minnesota)

CA (California)

MO (Missouri)

CO (Colorado)

These have two-byte ASCII representations as follows:

MN = 4D4E16

CA = 4341 16

MO = 4D4F 16

CO = 434F16

~)Glti8()-lO A

In numeric order, these key values are:

4341 16 = (CA)

434F16 = (CO)

404E16 = (MN)

404F 16 = (MO)

Another example is the last name of a group of people:

SMITH

JONES

MEAD

JaNE

If left-justified, these have ASCII representations as follows:

SMITH = 534016, 495416, 482016

JONES = 4A4F 16' 4E4516, 532016

MEAD = 405416, 414416, 202016

JaNE = 4A4F 16' 4E4516 , 202016

In numeric order, these key values are:

JaNE = 4A4F 16' 4E4516, 202016

JONES = 4A4F 16' 4E4516, 532016

MEAO = 405416, 414416, 202016

SMITH = 534016 , 495416, 482016

However, if right-justified, the keys have ASCII represen­
tations as follows:

SMITH = 205316, 404916, 544816

JONES = 204A16, 4F4E16, 455316

MEAD = 202016, 405416 , 414416

JaNE = 2020 16, 4A4F16, 4E4516

In numeric order these key values are:

JaNE = 202016, 4A4F 16' 4E4516

MEAD = 202016, 405416 , 414416

JONES = 204A16, 4F4E16, 455316

SMITH = 205316, 404916 , 544816

A schematic example of the index structures generated to
enable retrieval by key value order is included in figure 1-1.
Details of this structure are found in appendix C.

File Manager 2 indexed files are also sequential files in that
each new record is added immediately following the last
record stored in the file. The position of each record within
an indexed file is known according to relative record
number. Thus, File Manager 2 indexed files are indexed­
sequential files.

96768040 B

Records may be retrieved from an indexed file in one of the
following manners:

o All records corresponding to a given key value may be
retrieved.

• A set of records may be retrieved in order according to
numeric representation of key values.

• A specific record may be retrieved according to storage
position within the file.

• A set of records may be retrieved in the order they
were stored within the file.

FILE REQUESTS

REQUEST TYPES

There are two types of file requests - file specification
requests and record accessing requests. These requests are
described in section 2 under Specification Requests and
Record Accessing Requests, respectively. File requests are
summarized in figure 1-1.

REQUEST BUFFER

Associated with each use of a particular file is a 24-word
request buffer used to process the request. The same
request buffer must be used for a sequence of requests
referring to the same file. This buffer is used by the file
manager to process requests, to save information between
related requests, and to pass back information to the caller.
The buffer may not be altered by the user between
successive file manager calls. This buffer is normally within
the user's program. For an unprotected user program, the
buffer must be in unprotected main memory.

STATUS INDICATOR WORD

Also associated with each request is a status indicator word.
Upon completion of the request, the status indicator word
contains request execution status information. Each bit of
the indicator word that is nonzero signifies an abnormal
occurrence. If the entire word is zero, the request has been
completed normally. If bit 15 is nonzero, the request has
been rejected because of errors denoted in the other bits. If
bit 15 is zero, but other bits are nonzero, the request has
been completed with an irregular occurrence (for example,
end-of-file is detected). All indicator bits are shown in
figure F-1.

FILE IDENTIFICATION

Each file is identified at the time of its creation by a file
name and a file owner. Both the file name and file owner
are specified as ASCII strings of eight characters each.

A volume is a single physical unit of a peripheral storage
device; for example, a removable disk cartridge, a disk pack,
or a nonremovable disk cartridge. For each volume used in a Il
system, a file identification (concatenated name/owner U
ASCII string) identifies a unique file. In order to access a
file, a user must know the file's identification string. Two
or more files on a volume may have the same name if they
have different owners specified. A user may wish to define
a file's owner name to be eight ASCII blanks
(202016,~02016,202016,202016) if more than one user is to
use tHe fIle.

1-3

RELATIVE RECORD NUMBER

A relative record number is assigned by the file manager to
each new record stored in a file. Relative record number
defines the position of a record within a file. This number is
a 24-bit number stored as a right-adjusted three-byte field
in a two-word array. The left byte of the first word is
always zero. The first word contains a positive 8-bit
number (n). The second word contains a positive 16-bit
number (m). Then, if r is the relative record number:

r = n x 65536 + m

where 0 < m < 65535

The relative record number, r, may be thought of as the
ordered pair (n,m).

Examples:

Relative record number 65,540 = (0001 16, 000416)

Relative record number 35 = (000016, 002316)

FILE OPEN AND CLOSE

A user must gain permission to access a file each time he
uses it. This is done by a file manager open request. When
accesses to the file have been completed by a user, he
performs a file manager close request to relinquish per­
mission to use the file at this time.

UPDATE PROTECTION

Locking and unlocking procedures are included in the file
manager to prevent two users from simultaneously updating
the same record and thus losing part of the updated data.
The following situation can occur if locking is not used:
user A retrieves record n of a given file. User B then
retrieves record n of the same file. User A now modifies
word 10 of the record and stores it back into the file.
User B then modifies word 12 of record n and stores the
record back into the file. Since the copy of record n re­
trieved by user B does not contain the modified word 10, the
original value of word 10 is in record n after user A and
user B have completed their updates. Locking and unlocking
are used to prevent this situation.

A set of one or more records may be locked by a user or an
entire file can be locked. Any record in a locked file or in a
locked set of records cannot be retrieved, updated, or
deleted by another user. A new record cannot be stored into
a locked file by another user. A user may wish to lock an
entire file when generating a report from the file, when
dumping the file to magnetic tape, or when performing some
other function tha t cannot allow any changes to the file
during its operation.

Whenever a set of one or more records is to be updated, the
user must retrieve and lock the records and subsequently
store and unlock the records using an update record request.
Only one set of records of a given file may be locked by a
single user at anyone time. This restriction is made to limit
the main memory space required for file manager tables.
After a user has locked a set of records in a file, his next
retrieve or store request for that file automatically unlocks
the locked records. A retrieve request that attempts to lock
a locked record is rejected. The rejected request may be
repeated until the retrieve is successful.

1-4

NOTE

Extreme care should be used when em­
ploying record locks in which records in
two or more files must be used concur­
rently. Suppose user A retrieved and
locked record m of file M, user B re­
trieved and locked record n of file N,
user A repeatedly issues a retrieve re­
quest for record n, and user B repeatedly
issues a retrieve request for record m.
If both user A and user B repeatedly issue
a retrieve request for their needed rec­
ords without giving up after a certain
number of rejects and unlocking their
records, both users will wait indefinitely
as there is no way to grant ei ther of the
requests.

SYSTEM EXECUTIVE CLOSE OF
ALL FILES OPENED BY A

PARTICULAR USER

A special file manager interface to the system executive
allows the executive to request that a set of files opened by
a particular user be closed. The system executive, while
monitoring one or more user programs, may thus close all
files left open by an aborted user. The set of files to be
closed is identified by one of the following:

o The beginning and ending main memory addresses of the
space occupied by the user program.

• A unique user identification code assigned to the user
by the system executive at the time the user's open file
requests were intercepted by the system executive.

o The volume on which the files reside (all open files on a
given volume may be closed in this way).

FILE MANAGER INTERCEPTOR

MODULE

A special request interceptor module is used to intercept all
file manager request calls. This module redirects the file
manager requests to the main-memory-resident request
supervisor. There are two versions of this module - a
reentrant version, FMCEPT, and a nonreentrant version,
FMENTP.

If any main-memory-resident program uses the file manager,
a copy of the reentrant interceptor module, FMCEPT, must
be included in main memory.

A mass-resident program that runs in foreground-allocatable
main memory must link to FMCEPT if it contains any
reentrant code. Otherwise, it must have the nonreentrant
interceptor module, FMENTP, included as a part of its
absolutized load. If FMENTP is used, the program must
declare all file manager request names as relative externals.
(An example of such a program is shown in figure 2-6.)

A mass-resident program that runs in partitioned main
memory must have the nonreentrant interceptor module,
FMENTP, included as a part of its absolutized load. A
partitioned main memory program need not declare file
manager request names as relative externals.

%7!18040 A

. -

A background program that uses the file manager is
automatically linked to the interceptor module, FMENTP, in
the program library at the time the program is loaded. Such
a background program should not declare file manager
request names as relative.

REQUEST PROCESSORS

There are two types of file manager request processors - re­
entrant processors and serial processors.

REENTRANT REQUEST PROCESSORS

The reentrant request processors are indicated in
figure G-I. Each reentrant processor is main-memory­
resident. The set of reentrant processors can concurrently
process one request for each volume in the system. For a
given volume, if a reentrantly executable request is made
for th~ volume while another reentrant request is being
processed for that volume, the new request is queued
according to the priority of the request. Requests are then
processed according to the queue. An example of the
queuing is shown in figure 1-2.

SERIAL REQUEST PROCESSORS

An indication as to which request processors are serial is
contained in figure G-I. Each serial processor is mass­
memory-resident and executes in partitioned main memory.
The manner of executing and queuing serially executable
requests is the same as executing and queuing reentrantly
executable requests on a single volume. An example of the
queuing is shown in figure 1-3.

VOLUMfE LABELING, ENABLING" DISABLING

n A volume is a removable disk cartridge, a disk pack, or a
U nonremovable disk cartridge. The label on a volume is a

table of information written on the volume. The label
format is described in appendix E. Labeling is a procedure

~
for initializing the label on a volume so that the volume can
be used by the file manager. Labeling software is external
to the file manager. Labeling for the system volume
(SYSVOL) is performed by the system initializer. Labeling
for other volumes is performed using the ITOS UTIL
command INIT. Labeling is described in the ITOS reference
manual.

Enabling a volume is a procedure for notifying the system
that a volume is mounted and ready for use by the file
manager. Similarly, disabling is a procedure that disables
use of a volume by the file manager so that the volume may
be removed or shut down. The file manager provides the
request processor, VOLUSE (see Enable/Disable Volume
(VOLUSE), section 2), which performs the volume enabling
and disabling functions. The VOLUSE request is to be used
only by system utility programs.

RECORD RECOVERY FOLLOWING
SYSTEM FAILURE

The file manager includes a procedure for record recovery in
case of system failure. A similar scheme is used for key
information structure recovery. A description of the file
manager recovery procedures is contained in appendix K.

96768040 B

LIMITATIONS

The following limitations exist:

• If n = number files on a volume, then

1<n<2047.

• If q = record length in bytes, then

1 :: q :: 32,766 = 215 -2.

• If r = maximum number records in a file, then

1 :: r :: 16,777,215 = 224 -1.

• If k = key value length in bytes, then

1 < k < 29

(see the Key Storage section).

SYSTEM-RESERVED WORDS;
END-Of-FILE AND RECORD

DELETION CODES

To signify that a file record has been deleted, the file
manager stores a record-deleted code into the first word of
the record. This code is determined at the time of system
installa tion. It is usually an infrequently used ASCII code
(see Main-Memory-Resident File Manager Operation Instal­
lation Parameters, appendix D).

To denote the last record in a file, the file manager stores
an end-of-file code into the first two words of the next
record space available after the last record in the file. This
end-of-file code is a system installation parameter, usually
an infrequently used ASCII code (see Main-Memory-Resident
File Manager Operation Installation Procedure, appendix D).

To avoid false detection of deleted records and ends-of-file,
the user must design his record format so that the above
codes can never occur as data in the first two words of a
record. Any random binary data may therefore never be
stored in the first two words of a record.

AUTOMATIC VOLUME CHECKING;

VOLUME DISABLING

The file manager provides the interface for periodic
automatic checks of each volume in current use by the file
manager. The file manager interface consists of periodic
scheduling of the system ordinal, MNTCHK. If MNTCHK is
in a system, it is scheduled at system startup and at timed

1-5

~
I

en

co
en
-:J
CTl
co
o
~
o
:>

Com- Requests Currently
Headlng Reentrant Request Prl- pletion Being Processed
Processor Request Time ority Volume Time

Time Volume I Volume 2 Volume a
LOKFIL Uo tot 9 I ts

UNLFIL UI tl la 2 t7 to Uo -- --
PUTS U2 t2 a a t9 tl Uo UI --
UPDATE Ua ta 7 a tt t2 Uo UI U2

LOKFIL U4 4 0 a t3 Uo UI U2

PUTS Us ts a a t4 Uo UI U2

UNLFIL Us ta s I

UPDATE U7 tlo 4 I
ts -- UI U2

PUTS Ua tll 0 2
ts -- UI U2

tto < tl < t2 • • • < tll

ttTo simpUfy this example, not all completion
t7 -- -- U2

times are included.

"-
ta U6 -- U2

t9 U6 -- Us

tlO U6 -- Us
I

tu U6 Ua U5

Figure 1-2. Example of Reentrant Processor Queuing

9
REENTRANT
PROCESSORS

Pri-
Volume I ority

--
--
--
--
--

--

--

--

--

--

U7 4

U7 4

-

Queues

Volume 2

--
--
--
--
--

--

--

--

--

--

--

--

Pri- Pri-
ority Volume 3 ority

--
--
--
U3 7

U3 7
U4 0

U3 7
U4 0

Us a
U3 7

U4 0

Us a
U3 7
U4 0

!

Us a
I

U3 7
U4 0

U3 7
U4 0

U3 7
U4 0

U3 7

U4 0

(0

en
-."J
en
00
o
~
o
:>

t-'
I

-."J

Request Serial Request
Processor Request Time

CREATE Uo tot

OPENFL U1 tl

OPENFL U2 t2

OPENFL U3 t3

WRITER U4 t4

CLOSFL Us t6

OPENFL U6 t8

tto < t1 < t2 ••• < t11

(

Priority

9

13

8

7

0

8

6

/

SERIAL
PROCESSORS

Completion
Volume Time

1 ts

2 t7

3 t9

3 tt

3

3

1

ttTo simplify this example, not all completion times are
Included.

/

~r:~u:J r:L~:J
Requests Currently
Being Processed

Time Volume 1 Volume 2 Volume 3 Request

i

to Uo -- -- --
I

I

tl Uo -- -- U1

t2 Uo Ul
U2

t3 Uo Ul
U2
U3

t4 Uo U1
U2
U3
U4

ts -- Ul -- U2
U3
U4

t6 -- U1 -- U2
Us
U3
U4

t7 -- -- U2 Us
U3

I U4

t8 -- -- U2 Us
U3
U6
U4

t9 -- -- Us U3
U6
U4

'------~-

Figure 1-3. Example of Serial Processor Queuing

CL~:J
Queue

Volume Priority

2 13

2 13
3 8

2 13
3 8

3 7

2 13
3 8
3 7
3 0

3 8
3 7
3 0

3 8
3 8
3 7
3 0

3 8
3 7
3 0

3 8
3 7
1 6
3 0

3 7
1 6
3 0

intervals thereafter. The ordinal MNTCHK is part of ITOS.
I The functions of MNTCHK are to ascertain that each

volume in use is mounted and ready and that the volume
name on the label matches the volume name in the file

I manager main memory table for that volume. If a volume
does not pass these tests, it is lOl:!ically disabled by
MNTCHK. (See appendix E for volume !8.bel description and
appendix D for volume information table descriptio~.)

1-8

Similarly, the file manager provides the interface for
automatic volume disabling in the event of a mass memory
input/output error on the volume. When such an I/O error is
detected in performing file manager input/output, the file
manager checks for the existence of the system ordinal,
DISMNT. The ordinal DISMNT is a part of ITOS. Functions 0
of DISMNT are to request closure of all open files on the
volume and to print a message on the comment device.

I

96768040 B

FILE REQUEST DESCRIPTIONS AND CALLS 2

SPECIFICATION REQUESTS

CREATE FILE (CREATE)

A file must be created before it can be opened for storage
and retrieval. A file cannot be created if a file with the
identical name and owner is already defined on the same
volume. A file may be recreated if it was previously deleted
or renamed.

A file may be specified to have sector-aligned records. If
this option is selected, each record starts at the first
physical word of a sector. (In this case, if the record length
is not an integral multiple of the sector length, the words
between the end of a record and the start of the next sector
are unused.) If records are not to be sector-aligned, mass
memory space is assigned so that one record follows the
next with no space in between. Sector alignment of records
minimizes access time when randomly positioned records
are being retrieved and updated. However, depending on
record length, sector alignment of records may not make
efficient use of mass storage space. See figures 2-1 and
A-1.

A file may be specified to have essentially binary data. If
this option is selected, the control information for the file is
updated on mass memory often each set of one or more new
records is stored into the file so that the control information
always correctly reflects the number of records in the file.
Further, a binary data file may not be compressed since
binary data may be mistaken for the record deleted code
used by the system (see Delete Record and Compress File in
section 2 and the FURDEL parameter description in
appendix D).

In FORTRAN, the create file request has the following
form:

CALL CREATE (reqbuf,idata,istat)

Where:

reqbuf is the file request buffer, a 24-word array used by the
file manager in processing the request (see Request
Buffer, section 1).

idata is a 24-word array containing the information needed
to create the file. Words within the idata are as
follows:

idata(l) - idata(4)

idata(5) - idata(8)

idata(9) - idata(12)

idata(13)

96768040 C

File name, eight ASCII char­
acters (name may contain
blanks)

File owner, eight ASCII
characters (name may con­
tain blanks)

Name of the volume on
which the file is to be de­
fined; eight ASCII char­
acters. The value of
idata(9) must not be 202016•

Record length in bytes:

1 ~ idata(13) ~ 32,766

If idata(13) is an odd inte­
ger, the actual record length
includes an odd number of
bytes for purposes of trans­
fer to magnetic tape, etc.
However, on mass memory
the record length is an even
number of bytes (the small­
est even number of bytes
that includes the whole rec­
ord). The start of a record
is always the left-hand byte
of a word.

idata(14) - idata(15) Maximum number of records
to be stored in file; the
format of idata(14) and
idata(15) is that of a rela­
tive record number as de­
fined in Relative Record
Number, section 1.

idata(16) Specifies options selected
for file

bit 0 File type

o Sequential file

1 Indexed file

bits 1-7 Unused

bit 8 Binary data indicator

bits 9-13

bit 14

bit 15

idata(17)

o Records do not contain
essentially binary data

1 Records contain essen­
tially binary data

Unused

Meaningful only if the file is
indexed

o Records are presented
randomly with respect
to primary key

1 Records are presented
in order with respect to
primary key

·Sector-aligned option

1 All records are sector­
aligned

o Otherwise

Length of key 1 (primary
key) in bytes:

1 ~ idata(17) ~ 29

2-1

I

2-2

FILE A FILE B

~ECTOR _ _ _ _ _ _ _ _ } RECORD 1 SECTOR
n

~ _______ } RECORD 1

SECTOR } RECORD 2

~ - - - - - - - } RECORD 3

SECTOR
n+l f- _ _ _ _ _ _ } RECORD 2 n+l

SECTOR ___ ____ _ SECTOR
n+2

} RECORD 3
n+2

~------

NONSECTOR-ALIGNED RECORDS SECTOR-ALIGNED RECORDS

NOTE: TO RETRIEVE RECORDS 1, 2, AND 3 SEQUENTIALLY AS A GROUP OF TIffiEE FROM

idata(18)

idata(19)

idata(20)

idata(21)

FILE A REQUffiES THE SAME TIME AS TO RETRIEVE RECORDS 1, 2, AND 3
SEQUENTIALLY AS A GROUP FROM FILE B. HOWEVER, TO RETRIEVE RECORD 2,
THEN RECORD 3, THEN RECORD 1, EACH RECORD INDIVIDUALLY WOULD REQUffiE
ADDITIONAL TIME WHEN ACCESSING RECORDS IN FILE A. TO RETRIEVE A RECORD
THAT OVERLAPS TWO OR MORE SECTORS, EACH SECTOR IS RETRIEVED INDIVIDUALLY
BY THE MASS MEMORY DRIVER. AFTER EACH RETRIEVAL, THE PART OF THE
RETRIEVED SECTOR THAT INTERSECTS THE RECORD IS TRANSFERRED TO THE
USER'S BUFFER. IF TWO SECTOR-ALIGNED RECORDS HAVE UNUSED WORDS BETWEEN
THEM ON MASS MEMORY, THERE WILL BE THE SAME NUMBER OF UNUSED WORDS
BETWEEN THEM IN THE USER'S BUFFER WHEN THESE RECORDS ARE RETRIEVED.

Figure 2-1. Sector-Aligned and Non-Sector-Aligned Records

Byte position in key 1. For
key starting in left byte:

idata(18) = 2 x n + 1

For key starting in right
byte:

idata(18) = 2 x n + 2

Where: n is number words
preceding key 1 in the
record.

For example, for the pri­
mary key starting in the left
byte of word 4:

idata(18) = 2 x 3 + 1 = 7

Length of key 2 in bytes
(same limits as for key 1
idata(17»

Byte position of key 2 (com­
puted as for key 1, idata(18»

Length of key 3 in bytes
(same limits as for key 1,
idata(17»

idata(22)

idata(23)

idata(24)

Byte position of key 3 (com­
puted as for key 1, idata(18»

Length of key 4 in bytes
(same limits as for key 1,
idata(17»

Byte position of key 4 (com­
puted as for key 1, idata(18»

istat is the file request status word as defined in Status
Indicator Word, section 1 (see also error
considerations below).

In assembly language, the create file request has one of the
following forms:

EXT* CREATE

RTJ
ADC

CREATE
reqbuf or

EXT

RTJ
ADC

CREATE

CREATE
reqbuf

The use of CREATE as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

96768040 B

An error is indicated on the return from a call to CREATE if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

o A mass memory error occurred (bit 5 is also set).

o File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• The file name/owner string is not unique (bit 10 is also
set).

• There is insufficient space in the mass memory file
definition directory for this file (bit 11 is also set). If
an unused file is present in the system, it may be
deleted to provide additional directory space. The
deleted file must have the same scatter code as the new
file if the new file is to utilize the empty directory
entry left by the deleted file (see appendix B).

• Insufficient mass :nemory file space exists for the file's
records (bi t 12 is also set). If an unused file exists in
the system, it may be deleted to provide additional file
space.

• Volume specified for the file is not mounted and ready
(bi t 13 is also set).

• File request is illegal (bit 14 is also set). This implies
one or more of the following has occurred:

- Record length is not in the required range.

- Maximum number of records is not in the required
range.

- Length of one or more keys is not in the required
range.

- Position of one or more keys is not totally within the
record.

- Primary key is not specified but key 2, 3, or 4 is
specified.

- No keys are specified, but the indexed file is specified.

An example of a create file request is shown in figure 2-2.

CLEAR FILE (CLEAR)

A file may be cleared when there is no further use for the
records currently in the file. Functionally, a clear file
request is equivalent to a delete file request followed by a
create file request. Executing the clear file request is
faster, however, than executing a delete followed by a
create request.

A file may not be open to any user when it is cleared. This
means that a file cannot be locked when it is being cleared.
If a user wishes to periodically dump a file's contents to
another medium such as magnetic tape and then delete those
dumped records from the file, he must ensure that no
records are stored into the file after the dump has started
and before the clearing has been completed. If the user does
not do this, data may be lost. One way to prevent any data
loss is for the user to provide his own protection system.
This method is illustrated in the Lock File (LOKFIL) section.

96768040 B

In FORTRAN, the clear file request has the following form:

CALL CLEAR (reqbuf,idata,istat)

Where:

reqbuf is the file request buffer, a 24-word array used by the
file manager in processing the request (see Request
Buffer, section 1).

idata is a 12-word array containing the information needed
to define the file to be cleared. Words within idata
are as follows:

idata(l) - idata(4)

idata(5) - idata(8)

idata(9) - idata(12)

File name (eight ASCII
characters)

File owner name (eight
ASCII characters)

Name of the volume on
which the file is defined
(eight ASCII characters); if
idata(9) = 0 or idata(9) =
2020XEl (two ASCII blanks),
the ore manager performs a
search to locate the entry
for the specified file and
returns the corresponding
ASCII volume name in
idata(9) through idata(l2).

istat is the file request status word as defined in Status
Indicator Word, section 1 (also see error
considerations below).

In assembly language, the clear file request has one of the
following forms:

EXT*

RTJ
ADC

CLEAR

CLEAR
reqbuf or

EXT

RTJ
ADC

CLEAR

CLEAR
reqbuf

The use of CLEAR as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to CLEAR if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

o The file is currently open to one or more users (bi t 0 is
also set).

• The file could not be located (bit 1 is also set).

o A mass memory error occurred (bit 5 is also set).

• File manager data structures on mass memory or in
main memory contain one or more errors (bit 5 and
bit 14 are also set).

• The volume specified for the file is not mounted and
ready (bit 13 is also set).

2-3 I

C ~F~FPVE SPACE FOR FILE REQUE~T HUFFER AND FILt INFOPMATIO~ ~UFF~P
INTfGEP REORUF(2_)
DIMENSION IDATA(24)
FILE NAME • F-12 C SET

C SfT
C SET
C

FTLf OWNER = ED C;MIT~. VOLUt.1E NAME = VI
RECORD LENGTH • _8 HYTE~ (=2- WORDS)
IDATA(13)·.a

C
C

~ET MAXT~UM NUMRER PECORDS TO 500.
II"lATA(14)·O

C IDATA(15)~SOO

C StT FILE TYPE INDEXF.D WITH RECORDS TO HE PPES~~TED AT RA~D()M. RECORO~
C ~OT ~ECTOR-ALIANED.
C IOATAClb)z$OOOl
(PPIMARY KEy TO BE STORED I~ RYT~S ~-7·

C TDATA(17)~3

C rDATA(18).S
C SECnNDARY KEY TO RE STORED IN 8YTE e
r.
C

IDATA (19)1=1
IDATA(20)=8
r)ATA IDATA/ttF-12 ED s~ITH"'''Vl

1 4 0 01

.
CALL CREATE (REQBUF,IDAT~.ISTAT)

C CHECK FnR ERRORS
IF CISTAT.NE.O) GO TO 9000

Figure 2-2. Create File Request Example (FORTRAN)

DELETE FILE (DELETE)

A file may be deleted when there is no further use for it.
Deletion of a file permits reuse of its mass memory record
storage space and reuse of its directory entry by the file
manager. If the file is indexed, its index storage space on
mass memory is also freed for use by the file manager.

A file may be deleted only if it is currently not open to any
uscr.

In FORTRAN, the delete file request has the following form:

CALL DELETE (reqbuf,idata,istat)

Where:

reqbuf is the file request buffer, a 24-word array used by the
file manager to process the request (see Request
Buffer, section 1).

idata is a 12-word array containing the information needed
to define the file to be deleted. Words within idata
are as follOWS:

idata(1) - idata(4)

idata(5) - idata(8)

idata(9) - idata(12)

I 2-4

File name (eight ASCII char­
acters)

File owner name (eight
ASCII characters)

Name of the volume on
which the file is defined
(eight ASCII characters); if
idata(9) = 0 or idata(9) =
2020.16 (two ASCII blanks),
the nre manager performs a
search to locate the entry
for the specified file and
returns the corresponding
ASCII volume name in
idata(9) through idata(12).

istat is the file request status word as defined in Status
Indicator Word, section 1 (also see error
considerations below).

In assembly language, the delete file request has one of the
following forms:

EXT·

RTJ
ADC

DELETE

DELETE
reqbuf or

EXT

RTJ
ADC

DELETE

DELETE
reqbuf

The use of DELETE as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to DELETE if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

• The file is currently open to one or more users (bit 0 is
also set).

• The file could not be located (bit 1 is also set).

• A mass memory error occurred (bit 5 is also set).

• File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• The volume is specified for the file that is not mounted
and ready (bit 13 is also set).

OPEN FILE (OPENFL)

To gain access to a given file, the user must execute a file
manager open file request, specifying the particular file.
More than one user may access a given file at one time.

96768040 B

In order to open a file, the following conditions must hold:

o The file must have been created.

o The volume containing the file must be mounted and
ready.

o The file must not be locked.

o The file must not be open to this user.

If records are to be retrieved from an indexed file by a given
key, that key must be specified in the open request.

Access permission is obtained for either file compression,
special file processing or record retrieval and storage. When
the file manager grants permission for file compression or
special processing, it automatically locks the file. This
locking ensures that other users cannot retrieve or store
records for this file during the compression permission for
record retrieval and storage, the user has the following
options with regard to locking:

o The entire file may be automatically locked at the time
the aC'cess permit is granted. When a file is locked by a
user, no other user can access the file.

o A record is automatically locked at the time the user
retrieves it from the file. (In this case the record is
automa tically unlocked when the next file access
request is made.)

o No auto rna tic locking is to be performed. If the user
selects this option, he may still perform file locking,
but must do it by one or more requests distinct from the
open file request.

No record locking can be performed if the third option is
selected. When opening a file for record retrieval, the file
request specifies the number of records to be retrieved in
each retrieve record request made to the file. This number
of records applies to all GETS requests and to all READ R
requests except for those READR requests that specify a
particular key of an indexed file. If record locking is to be
performed for an indexed file that is to be accessed by a
key, the number of records per retrieval must be one. If a
file is open to more than one user, the number of records per
retrieval and the locking option need not be the same for the
different users.

In compressing a file, a compress file request is repeatedly
executed until the entire file has been compressed. By
compressing only a portion of a file on each request, other
file manager requests may be queued and executed between
successive compression calls (see Reentrant Request Proces­
sors; Serial Request Processors, section 1). When opening a
file for compression, the open file request specifies the
number of file records to be processed in each compress file
request execution. This number should be chosen according
to the amount of buffer space available in the user's
program (see the Compress File Request (COMFIL), section).

. If an indexed file is to be compressed, the number of records
to be processed in each compression execution is one.

I
If a file is open for special processing, it may be accessed
the same as if it had been opened for record retrieval and
storage in which records are to be retrieved by relative
record number (see idata (13) description below). While in
this processing mode, the file's control information on mass
memory is not periodically updated as new records are

96768040 C

stored into the file. Further, the control information is not
updated on mass memory if the file is closed by system
executive close of all open files for a particular user;
however, the control information is updated if the file is
closed by the user that opened the file. This special
processing mode is intended for use by system file manager
utility programs.

In FORTRAN, the open file request has the following form:

CALL OPENFL (reqbuf,idata,istat)

Where:

reqbuf is the file request buffer, a 24-word array used by the
file manager to process the request; it must be set
to all binary zeroes by the caller. An exception to
this is described in appendix L.

After being initialized by the file manager, this
buffer is used by tpe file manager for subsequent
accesses for this file.

idata is a 15-word array containing the information needed
to define the file to be opened. Words within idata
are as follows:

idata(1) - idata(4)

idata(5) - idata(8)

idata(9) - idata(12)

idata(13)

File name (eight ASCn
characters)

File owner name (eight
ASCn characters)

Name of volume on which
the file is defined (eight
ASCn characters); if
idata(9) = 0 or idata(9) =
2020 (two ASCn blanks),
the fiPe manager performs a
search to locate the entry
for the specified file and
returns the corresponding
ASCII volume name in
idata(9) through idata(12).

Access indicator

o Access for record
retrieval and storage
requested when records
are to be retrieved by
relative record number

1,2,3, Access for record
or 4 retrieval and stor-

age requested
where records are
to be accessed by
key 1, key 2, key 3,
or key 4, respec-
tively.

-1 Access for file
compression.

-2 Access for special
processing

2-5

idata(14)

idata(15)

Number of records to be
retrieved in each retrieve
record request. (If records
for a specific key value are
to be retrieved from an
indexed file and record
locking is indicated, only
one record may be retrieved
per retrieval request; that
is, idata(14) must equall.)

Or the number records to be
processed during each exe­
cution of a compress file
request (must be 1 if com­
pressing an indexed file).

Lock indicator

o No automatic locking is
to be performed

> 0 A record is to be auto­
matically locked at the
time it is retrieved

< 0 The entire file is to be
automatically locked at
the time the access
permit is granted

NOTE

The value of idata(15) is
ignored if the file is opened
for compression or for
special processing.

istat is the file request status word as defined in Status
Indicator Word, section 1 (see also status
considerations below).

In assembly language, the open file request has one of the
following forms:

EXT*

RTJ
ADC

OPENFL

OPENFL
reqbuf or

EXT

RTJ
ADC

OPENFL

OPENFL
reqbuf

The use of OPENFL as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

Request status considerations (istat) are as follows:

o OPENFL returns bit 0 = 1 and bit 15 = 0 if the file is
currently open to another user.

e OPENFL returns bit 2 = 1 and bit 15 = 0 if the file was
locked as a part of the open file request.

• OPENFL sets bit 15 (rejecting the request) if:

The file request was to open for compression and some
other user currently has the file open (bit 0 is also
set). t

I

-The file request was to open for record access with
file lock and some other user currently has the file
open (bit 0 is also set). t

-The file is already open to this user (bit-O is also set).

-The file could not be located (bit 1 is also set).

-The file was locked at the time the request was made
(bit 2 is also set). t

-A mass memory error occurred (bit 5 is also set). This
error may have occurred when the file was previously
open and record recovery was not possible because of
the timing of the failure. (See Record Recovery
Following System Failure, section 1.) If the bit 5 error
indication is not accompanied by a MASS MEMORY
I/O message on the comment device, the error
occurred when the file was previously open. In this
case it may be possible to manually restore the file on
mass memory by use of ODEBUG. Otherwise, it is
necessary to delete and recreate the file.

- File manager data structures on mass memory or in
main memory contain one or more errors (bit 5 and
bit 14 are set).

-The request is for record access, not compression.
When the file was last closed, a compression had been
initiated but not completed. This compression must be
completed before the file can be opened for record
access (bit 9 is also set). The user should open the file
for compression and finish up compression before
proceeding.

-The maximum number of concurrent open files
permitted to a single user has already been granted to
this user (bit 11 is also set).

-The maximum number of open file permits that can be
granted to all users in the system has been obtained
(bit 12 is also set). In this case, if bit 11 is zero, the
request may be retried after a delay.

-The volume specified for the file is not mounted and
ready (bit 13 is also set).

-The request is illegal (bit 14 is also set). This implies
one or more of the following has occurred:

The value of idata(14) is invalid.

The indexed file and idata(13) exceed the number
of keys for the file.

The definition of idata(13), idata(14), idata(15) is
inconsistent.

The number of records to be accessed (idata(14»
multiplied by the record length is greater than
32,767.

An example of an open file request is shown in figure 2-3.

tThe request may be repeated after a delay. (See the note in Update Protection, section 1.)

2-6 96768040 C

CLOSE FilE (ClOSH)

A close file request is the procedure used to relinquish a
user's access permission for the file. A file should be closed
when a user no longer needs to access it. It is important that
this be done so that other users can open files as needed.
(The maximum number of simultaneous open files is
discussed in Main-Memory-Resident File Manager Operation
In st alla tion Parameters, appendix D.)

A file may be closed only if it is currently open to the
requestor of the close. A file closed to one user may, at the
same time, be open to other users.

96768040 C

If the file has been locked by the user, .it is automatically
unlocked at the time of the close. If a set of records within
the file has been locked by this user, these records are
automatically unlocked at the time of the close. (Records
locked by another user are not unlocked.) An indication of
any file or record unlocking perfor med during a close file
request is relayed to the user via the status indicator word.

In FORTRAN, the close file request has the following form:

CALL CLOSFL(reqbuf,istat)

2-6.1/2-6.2 •

DIMENSION NRUF(24).JAUF(?4)
~IMfNSION NOATA(lS).JOATAClS)

C PRESfT REQUEST BUFFERS TO ALL ZEROES
DATA NfiUF.JRI/F 148*01

C PRESET REQUEST INFORMATION RUFFERS
C FOR FILE N.l RECORD IS TO 8f RETRIEVED AT A TIME ACCORDING TO THE
C PRI~ARV KEV. EACH PECORD wILL BE LOCKED AS IT J~ RETPIfVf~.

nATA NDATA I"F ILE N ZQX389 ". "VOLUME 1" d tl .11
C FOR FILE J.3 RECORDs ARE TO RE RETRIEVED pER RfTRIEVAL REQUEST.
C ~ECORDLOCKING Is TO BE pEqFORMED. RETRIEV~L IS TO BE Ry RELATIvE
C RECORO NUMBER.

nATA JDATA I"FILE J ZQX389 "."VOLUME 1".0.3.11
C ~EQUEST PERMISSION TO ACCESS FILE N

CALL OPENFL (N8UF.NDATA.NSTAT)
C TEST FOR REJECT

IF (NSTAT.LT.O) GO TO AOOO
C RfQI.IEC;T PERMISSION TO ACCESs FILE J.

CALL OPENFL (J8UF.JDATA.JSTAT)
C TEST FOR REJECT

IF (JSTAT.LT.O) GO TO 801 0
C NOTE- SUBSEQUENT REQUESTS WHICH ACCESS FILE N MUST USE NBUF AS THE
C REQUEST BUFFER. REQUESTS WHICH ACCESS FILE J MUST USE JBUF AS
C THE REQUEST BUFFER.

Figure 2-3. Open File Request Example (FOR TRAN)

Where:

reqbuf is the file request buffer. a 24-word array. This must
be the same array as the one used in opening the
file. Contents of reqbuf may have been altered by
the file manager in performing file access requests.
but contents of reqbuf must not have been altered
by the user.

istat is the file request status word as defined in Status
Indicator Word. section 1 (see also status
considerations below).

In assembly language. the close file request has one of the
following forms: .

EXT*

RTJ
ADC

CLOSFL

CLOSFL
reqbuf or

EXT

RTJ
ADC

CLOSFL

CLOSFL
reqbuf

The use of CLOSFL as an absolute external or as a relative
external is discussed in File Manager Interceptor Module.
section 1.

Request status considerations Os tat) are as follows:

• Bit 2 is set if the file was unlocked by the close file
request.

• Bit 3 is set if a set of locked records was unlocked by
the close file request. (These records were ini tially
locked by requestor of the close.)

CLOSFL sets bit 15 (rejecting the request) if:

• A mass memory error occurred (bit 5 is also set).

96768040 B

• File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• The file request buffer (reqbuf) was altered by the user
before the close file request (bit 13 is also set).

LOCK FILE (LOKFIL)

In some situations. the user may wish to lock an entire file
to temporarily prevent access to the file by other users.
Some situations that warrant file locking are listed in
Update Protection. section 1. in the discussion of file locks.

A file may be locked under the following conditions:

• The user has opened the file.

• The file is not open to any other user.

• The file was not opened for record locking.

In FORTRAN. the lock file request has the following form:

CALL LOKFIL (reqbuf.istat)

Where:

reqbuf is the file request buffer. a 24-word array. This must
be the same array as the one used in opening the
file. Contents of reqbuf may have been altered by
the file manager in performing file access requests.
but contents of reqbuf must not have been altered
by the user.

istat is the file request status word as defined in Status
Indicator Word. section 1 (see also error
considerations below).

In assembly language, the lock file request has one of the
following forms:

EXT· LOKFIL EXT LOKFIL

RTJ LOKFIL RTJ LOKFIL
ADC reqbuf or ADC reqbuf

The use of LOKFIL as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to LOKFIL if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

o The file is currently open to another user (bit 0 is also
set).

o Record locking was indicated when the file was opened
(bit 3 is also set).

• The file request buffer (reqbuf) was altered by the user
before the lock file request (bit 13 is also set).

• The file was closed by an executive forced file close
due to hardware failure or operator shutdown of the
volu me (bi t 13 is also set).

A lock file request is shown in figure 2-4.

UNLOCK FILE (UNLFIL)

A file :nay be unlocked when the user no longer needs to
have it locked. This enables other users to regain access to
the file. A file may be unlocked by the same user who
locked the file.

In FORTRAN, the unlock file request has the following
form:

CALL UNLFIL (reqbuf,istat)

Where:

reqbuf is the file request buffer and is a 24-word array. This
must be the same array as the one used in opening
the file. Contents of reqbuf may have been altered
by the file manager in performing file access
requests, but contents of reqbuf must not have
been altered by the user.

istat is the file request status word as defined in Status
Indicator Word, section 1 (see also error
considerations below).

In assembly language, the unlock file request has one of the
following forms:

EXT·

RTJ
ADC

UNLFIL

UNLFIL
reqbuf or

EXT

RTJ
ADC

UNLFIL

UNLFIL
reqbuf

The use of UNLFIL as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

I 2-8

An error is indicated on the return from a CAll to UN LFIL if
bit 15 of istat is set. The particular error condition(s) Ilr'e
indicated in istat as follows:

• The file is not curl'ently locked by the user (bi t 2 is alsn
set).

• The file request buffer (reqbuf) was altered by the user
before the unlock file request (bit 13 is also set).

• The file was closed by an executive forced file close
due to hardware failure or operator shutdown of the
volume (bit 13 is also set).

An unlock file request is included in the exampl·~ in
figure 2-4.

GET FILE CONTROL BLOCK (GETFCB)

A file control block (FCB) is an array associated with a file.
It is stored on mass memory. The array contains infor­
mation such as file name, file owner, file type, location of
data records, and so forth. The format of the FCB is shown
in File Control Block Table, appendix B.

The get file control block request is intended for use only by
system level utility programs. There are two ways to
specify the file for which the FeB is to be retrieved:

• An FCB may be retrieved for a pArticular open file. In
this case, the file is defined by the contents of the file
request buffer, reqbuf, corresponding to the open file
request.

o An FCB may be retrieved according to its relative
position in the set of FCBs on Ii particular volume. This
relative position is the FCB index number in the file
definition directory as defined in File Control Block
Table, appendix B. For this method of FCB retrieval,
the file need not be open.

Using the second method of FCB specification, all the FCBs
on a given volume may be retrieved by successive repe­
titions of a get FCB request. The first request specifies
that the FCB index equals 1. Before each repetition of the
request, the FCB index is incremented by one, until the file
manager rejects the request due to an out-of-range FCB
index for that volume.

In FORTRAN, the retrieve file control block request has the
following form:

CALL GETFCB (reqbuf,volnam,index,fcbbfr,istat)

Where:

reqbuf is the file request buffer, a 24-word array used
to process the request. If retrieval is
requested for a particular open file, reqbuf
must be the same array as the one used in
opening the file. Contents of reqbuf may have
been altered by the file manager in performing
file access requests, but contents of reqbuf
must not have been altered by the user.

volnam is an array of four words containing volume nnme
(eight ASCII characters). If the first word of
the array volnam is zero, the FCB to be
retrieved is for the open file defined by the
file request buffer, reqbuf.

96768040 B

"

C THIS CODE INCLUDES A USER-DfvISED DATA PROTECTION SYSTEM
C TO PRtVENT LOST DATA BETWEEN FILE DUMP TO TAPE AND FIL~ CLEARING.
C THI~ EXAMPLE INCLUDES LOKFIL. UNLFIL. AN~ CLEAR RE~UESTS.

C

C

C

C

C

C
C
C
C
C
C
C
C

C

C

C

r.

DIMENSION IBUF(24).IDATA(24)
DATA IBUF/24 0 01

DIMENSION ITEMPC_)
nATA IFLAG I~0021/. ITIME/ll

DtT~RMINE LOCATION OF STATEMENT 200. STORE INTO ICOMP FOR LATER USE.
ASSIGN ,200 TO ICOMP
CALL OPENFL (IRUF.IDATA.ISTAT)
IF (ISTAT.LT.O) GO TO 9700

TE~T TO ~FE IF TIME FOR TAPt DUMP

.
LOCK FILE IN PREPARATION FOR DUMPING TO MAG TAPE

CALL LOKFIL (IRUF.ISTAT)
TEST FOR REJECT

IF (ISTAT.LT.O) GO TO 9ROO
OIlMP RECORDS TO MAG TAPE

. .
AFTfR DUMPING TO MAG TAPE. PECORDS NOW ON MAG TAPE MAY qE CtEARED
FROM FILE. FILE IS NOT OPEN TO ANY OTHER USER AT THI~ TIME
RECAlJ~E FILE IS LOCKED.
SET WORD $47 OF MAIN MEMORY TO PREVENT ~TORAGE OF RECOROS DURING THE
OIIMP AND CLEAR OPERAT ION. ANY PPOGRAM c; TOP I NS PECORDS I NTO THE
FILE SHOULD CHECK WORD $47. A RECORD SHOULD RE ~TOREO ONLY WHEN
WORD '47 IS ZERO. THIs AVOIDS LOSING A pECORD STOREO hETWEEN THE
MAG TAPE DUMP AND THE CLEAR.

ASSEM 50A01.$6047
UNLOCK FILE TO ALLO~ CLEAR FILE REQUEST TO EXECUTE.

CALL UNLFIL (IBUF.ISTAT)
IF (ISTAT.LT.O) GO TO 9AI0

CLOSE FILE TO PER~IT CLEAR REQUEsT TO EXECUTE
CALL CLOSFL (IBUF.ISTAT)
IF ISTAT.LT.O) GO TO 9820

200 CALL CLEAR (IBUF,IDATA.ISTAT)
TEST FOR REJECT

IF (ISTAT.LT.O) GO TO 9850
CLEAR WORD '47 TO ALLOW RECORD STORAGE INTO FILE.

ASSEM $OAOO,$6047

• C WAS REQUEST REJECTED BECAUSE FILE Is OPEN TO ANOTHER USER
~850 IF (AND(ISTAT.l).EQ.O) 6~ TO 9910

C YES. FILE WAS OPEN TO ANOTHER USER.
C DELAY 1 SECOND AND TRY AGAIN
C STATEMENT 200 IS COMPLETION LOCATION FOR TIMER REQUEST.

CALL TIMER (ICO~P.IFLAG.ITIME,ITEMP)
CALL OISPAT

•

Figure 2-4. Lock, Unlock File Requests Example (FORTRAN)

index is used only if the first word of the array volnam
is nonzero. In this case, index is the relative
position of the FCB on the volume specified,
and the value of index must be such that
1 < index < 2047. (The position of the FCB
inaex in the file definition directory is given in
File Definition Directory, appendix B.)

fcbbfr is the file control block buffer to receive the
block to be retrieved. This buffer must be 96
words in length.

96768040 B

istat is the file request status word as defined in
Status Indicator Word, section 1 (see also error
considerations below).

2-9 I

In assembly language, the get file control block request has
one of the following forms:

EXT*

RTJ
ADC

GETFCB

GETFCB
reqbuf or

EXT

R1J
ADC

GETFCB

GETFCB
reqbuf

The use of GETFCB as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return of a call to GETFCB if
bit 15 of istet is set. The particular error condition(s) are
indicated in istat as follows:

• A mass memory error occurred (bit 5 is also set).

• File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are set).

• The FCB index is out of range for the specified volume
(bi t 12 is also set).

• The first word of array volnam is nonzero and the
volume specified is not mounted and ready (bit 13 is
also set).

• The first word of array volnam is zero and the file
request buffer (reqbuf) was altered by the user before
the retrieve FCB request (bit 13 is also set).

• The first word of array volnam is zero and the file was
closed by an executive forced file close due to hardware
failure or operator shutdown of the volume (bit 13 is
also set).

• The FCB index is not a positive integer (bit 14 is also
set).

Examples of get file control block requests are shown in
figure 2-5 and figure 2-6.

UPDATE FILE CONTROL BLOCK (UPDFCB)

This request may be used in conjunction with the get file
control block request as described in the Get File Control
Block (G ETFCB) section; however, it is not necessary to
retrieve a file control block (FCB) before updating it. This
request is intended for use only by system level utility
programs. The portion of an FCB not used by the file
manager may be updated by the use of this request. The
portion that may be updated consists of words 38 through 96
of the FCB. (The format of the FCB is contained in File
Control Block Table, appendix B.) In this portion of the FCB
a utility program may store file creation date, retention
period, file description, and so forth.

The FCB to be updated is specified in the same manner that
the FCB to be retrieved by a GETFCB request is specified
(see the Get File Control Block (GETFCB) section).

In FORTRAN, the update file control block request has the
following form:

CALL UPDFCB (reqbuf,volnam,index,fcbbfr,istat)

I 2-10

Where:

reqbuf is the file request buffer, a 24-word array. If the
FCB to be updated corresponds to a partiC1lblr
open file, this must be the same array as the
one used in opening the file. Contents of
reqbuf may have been altered by the file
manager in performing file access requests,
but contents of reqbuf must not have been
altered by the user.

volnam is an array of four words containing the volume
name (eight ASCII characters). If the first
word of the array volnam is zero, the FeB to
be updated is for the open file defined by the
file request buffer, reqbuf.

index is ignored if the first word of the arrliY volnarn is
all binary zeroes. If the first word of the
array volnam is nonzero, index is the relative
position of the FCB on the volume specified,
and the value of index must he such that
1 < index < 2047. (The position of the FeB
inaex in the file defini tion directory is gi ven in
File Definition Directory, appendix [3.)

fcbbfr is the file control brock buffer. This buffer must
be 96 words in length. Words 38 thl'Ough 91
are written to the FCB on mass memory.

istat is the file request status word as defined in
Status Indicator Word, section 1 (see also erl'or
considerations below).

In assembly language, the update file control block request
has one of the following forms:

EXT* UPOFCB

RTJ UPDFCB
ADC reqbuf

or

EXT

RT.J
ADC

UPOFCB

UPDFCB
reqbuf

The use of UPDFCB as an absolute external or as a relative
exte~nal is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return of a call to UPDFCB if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

• A mass memory error occurred (bit 5 is also set).

• File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• The FCB index is out of range for the volume specified
(bit 12 is also set).

• The first word of array volnam is zero and the file
request buffer (reqbuf) was altered by the user before
the UPDFCB request (bit 13 is also set).

• The first word of array volnam is nonzero and the
volume specified is not mounted and ready (bit 13 is
also set).

• The first word of array volnam is zero and the file was
closed by executive forced file close due to hardware
failure or operator shutdown of the volume (bit 13 is
also set).

96768040 B

96768040 B

•
INTEGER DAYRUF(24),DAYDAT(ls),DSTAT.VOL(4) .DAYfCA(96)
DATA DAYBUF 12400/. DAYDAT/IIDAYFILE UTILUC\EP".1I5YSVOL 11,0,('.-11
04TA VOL(I)/OI

C RECHJf.ST ACCESS TO DAY fILE. REOllES T SPEC I F I Es RECORD ACCESS DES I REO
C AND FILE LOCK DESIRED AT TIME OF GAINING ACCESS PER~IT

CALL OPENFL(OAYRuF.DAYDAT.oSTAT)
If (DSTAT.LT.O) GO TO 8000

.
C RETRIEVE FCB FOR DAy FILE. VOL(l)=O. FCB WILL AE STORED IN DAYfCB
C ARRAY. IDUM WILL BE IGNORED BY FILE MANAGER SINCE VOL(I)=O

CALL GETFCB <OAYBlJF, VOL, I DUM. DAyfCB. I GST A T)

IF (IGSTAT.LT.O) GO TO R020

Figure 2-5. Example of FCB Retrieval for a Particular Open File (FORTRAN)

C PURPOSE OF THIS CODE IS TO RETRIEVE EACH fCB ON A VOLUME,
C pqOCESS IT. AND UPDATE THE FC8 IF NECESSARY.
C THIS PROGRAM RUNS IN ALLOCATABLE ~AIN ~E~ORY.
C THIS PROGRAM LINKS TO THE NON-REENTRANT INTERCEPTOR fMENTP.
C A BINARY COPY OF FMENTP Musi BE INCLUDED AT THf TIME THIS PROGRAM IS
C LOADED. THE FOLLOWING RELATIVE EXTERNALS ARE DECLARED TO ALLOW
C PROPER LINKING TO FMENTP.

RELATIVE GETFC8. UPDFCB
INTEGER ABUF(24).VOL(4).AFC8(96)
DATA VOL I"PACK ONE"I

C INITIALIZE FCB INDEX
INDF'CB=1

C RETRIEVE FCB FOR FILE WITH FCB INDEX = INDFC~
15 CALL GETFCB (ABUF.VOL.INDFCB.AFCB.ISTAT)

C WAS FCB INDEX OUT OF RANGE
IF (ANO(ISTAT.$lOOO).NE.O) GO TO 9800

C TEST FOR REJECT DUE TO ERROP OTHER THAN FCB INDEX RANGE
IF (ISTAT.LT.O) GO TO 9600

C FCR tNDEx CORRESPONDS TO A CREATED FILE
C HAS THIS FILE BEEN DELETED
C IF FlqST WORD OF NA~E-OWNER STRING IS ZERO. FILE HAS BEEN DELETED.

IF (AFCR(2s).EQ.0) GO TO 250
C TEST AFCB(sO) TO SEE IF FILE CONTAINS ANY MESSAGF TO BE PRINTED ON
C COMMENT DEVICE

150 IF (AFCB(sO).EQ.O) GO TO 200
C GO PRINT MESSAGES

.
C RE-SET MESSAGE COUNTER FOR COMMENT DEVICE

AFCB(sO)=O
CALL UPDFC8 (ABlJF.VOL.INDFCB,AFCB.ISTAT)
IF (ISTAT.LT.O) GO TO 9700

200 CONTINUE
C INCREMENT INDFCB

250 INOFCB=INDFCB+l
C RETRIEVE NEXT FCB

GO TO 15
C PROCESS COMPLETE

9HOO CONTINUE

Figure 2-6. Example of GETFCB,UPDFCB Requests with FCB Specified by FCB Index (FORTRAN)

2-11

• The FCB index is not a positive integer (bit 14 is also
set).

An example of the UPDFCB request is included in
figure 2-6.

REDUCE FILE SPACE (REDUCE)

A previously created file can be modified to con: lin fewer
records with the reduce file request. The file must meet the
following four requirements:

• The file must be closed.

• The file must be sequential.

o The new number of records must be less than the
number the file was orginally defined to contain when
the file was created.

BOThe new number of records must be greater than or
equal to the number of currently-existing records in the
file.

I

In FORTRAN, the reduce file request has the following
form:

CALL REDUCE (reqbuf,idata,istat)

Where:

reqbuf is the file request buffer, a 24-word array used by the
file manager to process the request

idata is a 14-word array containing the information needed
to define the file to be modified. Words within
idata are as follows:

idata(l) - idata(4) File name (eight ASCII
characters)

idata(5) - idata(8) File owner name (eight
ASCII characters)

idata (9) - idata(12) Name of the volume on
which the file is defined
(eight ASCII characters); if
idata(9) = 0 or idata(9)
= 202016 (two ASCII blanks),
the file manager performs a
search to locate the entry
for the specified file and
returns the corresponding
ASCII volume name in
idata(9) through idata(12).

istat is the file request status work as defined in Status
Indica tor Word, section 1 (see also error
considerations below).

In assembly language, the reduce file request has one of the
following forms:

EXT*

RTJ
ADC

2-12

REDUCE

REDUCE
reqbuf

or

EXT

EXT
ADC

REDUCE

REDUCE
reqbuf

The use of REDUCE as an absolute external or as a relative I
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to REDUCE
if bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

• The file is currently open to one or more users (bit 0 is
also set).

• The file could not be located (bit 1 is also set).

• The file is not a sequential file (bit 2 is also set).

• The new number of records is greater than specified for
the file, is zero, is negative, or is less than the number
of records currently existing in the file (bit 3 is also
set).

• A mass memory error occurred (bit 5 is also set).

• File manager data structures on mass memory or in
main memory contain one or more errors (bit 5 and
bit 14 are also set).

• The volume specified for the file is not mounted and
ready (bit 13 is also set).

RENAME FILE (RENAME)

The rename file request permits the concatenated file
name/file owner string for an existing file to be changed. A
file must be closed to all users at the time it is being
renamed. The new name/owner string must be unique for
the volume on which the file resides.

In FORTRAN, the rename file request has the following
form:

CALL RENAME (reqbuf,idatallewnam,istat)

Where:

reqbuf is the file request buffer, a 24-word array used
by the file manager to process the request.

idata is a 12-word array containing the information
needed to define the file to be renamed.
Words within idata are as follows:

idata(l) - idata(4)

idata(5) - idata(8)

idata(9) - idata(12)

Current file name
(eight ASCII characters)

Current file owner
name (eight ASCII char­
acters)

Name of volume on
which file is defined
(eight ASCII char­
acters). If idata(9) = 0
or idata(9) = 2020
(two ASCII blanks), th8
file manager searches a
directory to locate the
entry for the specified
file and returns the
corresponding ASCII
volume name in idata(9)
through ida ta(12).

96768040 C

newnam is an eight-word array specifying the new file
name/owner string. Words within newnam are
as follows:

newnam(l) through
newnam(4)

newnam(5) through
newnam(8)

New file name (eight
ASCII characters)

New file owner name
(eight ASCII characters)

istat is a file request status word as defined in Status
Indicator Word, section 1 (see also error
considerations below).

In assembly language, the rename file request has one of the
following forms:

EXT* RENAME

RTJ
ADC

RENAME
reqbuf or

EXT

RTJ
ADC

RENAME

RENAME
reqbuf

The use of RENAME as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to RENAME
if bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

• The file is currently open to one or more users (bit 0 is
also set).

• The file could not be located (bit 1 is also set).

• A mass memory error occurred (bit 5 is also set).

• File manager data structures in main memory or on
mass memory contain one or more errors (bits 5 and 14
are also set).

• The new file name/owner string is not unique (bit 10 is
also set).

o Insufficient file definition directory (FDD) space exists
(bit 11 is also set). (Renaming the file does make
available the directory entry space previously used for
this file, but the new name/owner string may not hash
into that space. Refer to File Definition Directory,
appendix B, for further information on the directory.)

• The volume for this file is not mounted and ready
(bit 13 is also set).

ENABLE/DISABLE VOLUME (VOLUSE)

This request is intended for use only by system utility
programs. Its functions are to enable or disable use of a
volume as described in Volume Labeling, Enabling, Disabling,
section 1.

In FORTRAN, the enable/disable volume request has the
following form:

CALL VOLUSE (reqbuf,volnam,vlunit,istat)

96768040 B

Where:

reqbuf is the file request buffer, a 24-word array.

volnam is a four-word array containing either of the
following:

For enabling:

For disabling:

volume name (eight ASCII
characters).

binary zeroes in volnam (1);
other words of the array,
arbitrary values.

vlunit is the file manager unit number of the drive
containing the volume; this is not the same as
the system logical unit number.

istat is the file request status word as defined in
Status Indicator Word, section 1 (see also error
considerations below).

In assembly language, the enable/disable volume request has
one of the following forms:

EXT* VOLUSE

RTJ
ADC

VOLUSE
reqbuf or

EXT

RTJ
ADC

VOL USE

VOLUSE
reqbuf

The use of VOLUSE as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to VOLUSE if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

• The first word of the array volnam is nonzero and the
volnam array does not match the name on the volume
label (bit 1 is also set).

• A mass memory error has occurred (bit 5 is also set).

• The first word of the array volnam is nonzero and the
drive specified by vlunit already has a volume enabled
(bit 13 is also set).

RECORD ACCESSING REQUESTS

A brief summary of the request calls and parameter lists is
to be found in appendix I. A chart of status bits and their
meanings is contained in appendix F.

The number of records accessed by the individual requests
varies. For some it is a constant. For others it is a user­
supplied number, sometimes supplied with the record
accessing request itself, and sometimes supplied by the user
when the file is opened. A summary of the number of
records accessed by the various requests is shown in
figure 1-4.

STORE NEW RECORDS SEQUENTIALLY (PUTS)

The PUTS request stores one or more records into a file
immediately following any existing file records. The PUTS
request may be used for an existing sequential file that is

2-13

open to the user. PUTS may not be used for an indexed file.
The number of records to be stored is specified in the
request. (This number is independent of the number of
records per retrieval as specified in the OPENFL request.)
For each group of records stored, the relative record number
of the first record of the group is passed back to the caller.
This relative record number may be subsequently used in a
READR request for record retrieval.

In FORTRAN, the store new record sequentially request has
the following form:

CALL PUTS (reqbuf,recbuf,numrec,istat)

Where:

reqbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file. Contents of reqbuf may have been altered by
the file manager in performing file access requests,
but contents of reqbuf must not have been altered
by the user. On completion of the request, words
15, 16, and 17 of reqbuf are defined as follows:

reqbuf(15)

reqbuf(16),
reqbuf(17)

Number of records actually stored by
the file manager.

Relative record number of the first
record stored (as defined in Relative
Record Number, section 1).

recbuf is the record buffer containing records to be stored
by this request plus two words following the last
record to be stored. These final two words are
used by the file manager.

2-14

The length of recbuf is determined as follows. Let

b = Length of recbuf

n = Number of records to be stored

r = Record length in words

s = Number of words per section for volume
containing this file

Then, if records in the file are not sector-aligned:

b=nxr+2

If records are sector-aligned:

b = n x ril x s + 2

Where: r y 1 = the least integer greater than or
equal to y.

For example, if n = 3, r = 189, and s = 96, and the
records are sector-aligned:

b = 3 x fl:: 1 x 96 + 2
= 3 x 2 x 96 + 2

= 578

NOTE

If the records are sector-aligned and
the record length is not an integral
multiple of sector length, the record
buffer must contain unused words
between records corresponding to
unused words on mass memory. For
example, suppose a file has sector­
aligned record of 93 words and the
sector length is 96 words. If 3
records are to be stored, the first D
record is transferred from words 1
through 93 of the record buffer;
record 2 is transferred from words 97
through 189; record 3 is transferred
from 193 through 285. Words 94
through 96, 190 through 192, and 286
through 288 of the record buffer are
unused.

numrec is the number of records to be stored by this
request.

istat is the file request status word as defined in
Status Indicator Word, section 1 (also see
status considerations below).

In assembly language, the store new records sequentially
request has one of the following forms:

EXT* PUTS

RTJ PUTS or
ADC reqbuf

EXT

RTJ
ADC

PUTS

PUTS
reqbuf

The use of PUTS as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

Status considerations (istat) are as follows:

• The file is currently locked by the user (bit 2 is set).

• Insufficient room exists in file to store all numrec
records (bit 12 is set). (See reqbuf(15).)

PUTS sets bit 15 (rejecting the request) if:

• A mass memory error occurred (bit 5 is also set).

• The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• Insufficient room exists in the file to store any records
(bit 12 is set).

• The file request buffer, reqbuf, was altered by the user
before the PUTS request (bit 13 is also set).

• The file was closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

An example of the PUTS request is shown in figure 2-7.

96768040 C

'~ -

C PlIppoSE OF THIS CODE IS TO C;TORE A NEw RECORD INTO A SEQU£~TIAL FILE.
DIMENSION IRUF(24).IDAT(}S).INP(34)
DATA IAUF/24001

C UC;Ep qECORDS ARE 30 WORDS LONG. NOT SECTOP-ALIGNED. RfSf~VE 32
C wORDS FOR RECORD BUFFER.

INTEGER USEREC(32)
COMMON INP

.
CALL OPENFl(IRUF,IDAT.IC;TAT)
IF (ISTAT.lT.O) GO TO Y500

.
C TRANSFER NEW USER"S IDENTIFICATION. STATUS CODE, AND BILLING CODE
C FROM INPUT BUFFER TO FILE RECORO RUFFER.

00 100 I=ltJO
100 uSEPEC(I)- INP(I+4)

C STOPf NEW IJSER RECOqD INTO FILE
f.ALL PUTS(IRUF,USEREC.l.ISTAT)

C TEC;T FOR REJECT
IF (ISTAT.lT.O) GO TO 9000

Figure 2-7. Store New Records Sequentially Example (FORTRAN)

STORE NEW INDEXED RECORD (WRITER)

This request is si milar to the PUTS request described in the
Store New Records Sequentially (PUTS) section with the
following important differences:

o WRITER stores a new record into an indexed file.

o In a WRITER request, in addition to record storage, the
file manager updates the file key structure with the key
value(s) associated with the new record.

o Only one new record may be added to a file with a given
WRITER request.

To execute a WRITER request, the file to be accessed must
be open to the user. Each new record added to an indexed
file is stored sequentially; that is, the new record is stored
immediately following any existing file records.

In specifying the value of the new record's primary key, the
user must specify a value distinct from all other primary key
values previously specified for the file. A nonunique
primary key value causes rejection of the request.

On completion of the request, the relative record number of
the new record is passed back to the caller.

In FORTRAN, the write new indexed record request has the
following form:

CALL WRITER (reqbuf,recbuf,keyval,istat)

Where:

reqbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file. Contents of reqbuf may have been altered by
the file manager in performing file access requests,
but contents of reqbuf must not have been altered
by the user.

96768040 B

On completion of the request, reqbuf(16),reqbuf(17)
is the relative record number of the record stored
(as defined in Relative Record Number, section 1).

recbuf is the record buffer containing the record to be
stored by this request plus two words at the end of
the buffer that are used by the file manager. The
length of recbuf is determined as in the Store New
Records Sequentially (PUTS) section, with the
number of records, n, equal to 1.

keyval is an array containing the left-justified key value of
the primary key. The first word of keyval contains
the first two bytes of key value. For example, if
the key value was contained in byte 2 of the
record, key value 351h would appear as xy3516 in
the record but as 35wz in keyval, where x and y
are unknown digi ts in th% record and wand z are
any random digits.

istat isthe file request status word as defined in Status
Indicator Word, section 1 (see also error
considerations below).

In assembly language, the store new indexed record request
has one of the following forms:

EXT*

RTJ
ADC

WRITER

WRITER
reqbuf

or

EXT

RTJ
ADC

WRITER

WRITER
reqbuf

The use of WRITER as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

The status consideration {is tat) is the following: the file is
currently locked by this user (bit 2 is set).

2-15 I

WRITER sets bit 15 (rejecting the request) if:

• The primary key value is not unique (bit 4 is also set).

• -\ mass memory error has occurred (bit 5 is also set).

• File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• The primary key value contained in the record is not the
same as that in the keyval array (bit 9 is also set).

• There is insufficient room in the key index structure to
store the keys. The record was stored. but it cannot be
retrieved by key value (bit 11 is also set).

• Insufficient room exists to store the record (bit 12 is
also set).

• The file request buffer. reqbuf. was altered by the user
before the WRITER request (bit 13 is also set).

• The file was closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bi t 13 is also set).

An example of a WRITER request is shown in figure 2-8.

READ SPECIFIC RECORD (READR)

The user may specify a particular set of records to he
retrieved with the READR request. Execution of the
READR request requires that the file be open to the user.

If a sequential or indexed file was opened for record access
by relative record number. the number of records specified
in the open request may be retrieved by a READR request
by specifying the relative record number of the first record
of the set. This relative record number may have been
obtained when the record was initially stored (PUTS or
WRITER request) or when the record was previously re­
trieved (READR or GETS request). On completion of the
request. the number of records actually retrieved is iJlissed
back to the caller.

If an indexed file was opened for record access by key vJllue,
-one record may be retrieved according to the key value
specified. Specifically. the record retrieved has a key valu(~
defined as follows:

Let ks = Key value specified

K = Set of all key values for which there is at
least one record in the file

kr = Key value of record retrieved

C PU~POSE OF' THIS CODE IS TO ~TO~E NEw TE~T ~ESULTS ~ECOpn INTO
C INDExED FILE

I 2-16

C RECO~D LENGTH IS 31 WO~OS.
C RECO~O FOR~AT I~ A$ FOLLO~~-
C WORDS CONTENTS
C
C
C
C

I-IS PATIENT NAME
1~-20 sOCIAL SECURITy NUMBER ePRI~ARY ~Fy)

21-31 TEST RESULTS
INTEGER PRMKf.Y(5),sS(5).pAT~AMel~)
DIMENSION J8UF(24),JREC(3J).~DATA(lS).NTRA~(11).ITOT(1111
COMMON SS.PATNAM.N~ES.NTRAN
nATA ~OATA IIiFILE J ZQlr389 "."VOLllJ04E 1".Od.OI
DATA JHUF 124 0 01

C OBTAI~ ACCES5 TO FILE J
CALL OPENF'L eJBIJF,JDATA.JSTATI
IF (JSTAT.LT.O) GO TO HOI0

C ~TORE SOCIAL SECURITY NUMBER (],O ASCI I C"'A~ACT~QC;) IN RECO~O ALJFFF:~
C AND IN P~MKEY ARRAY.

DO 100 ISS-1.5
ISTO~=SSCISS)
PRMK[vCISS)aISTOR
JRECeISS+15)=tSTOR

100 CONTINUE
C STORE PATIENT NAME IN RECORn

no 200 J=lt15
200 JRECeJ)=PATNAMeJ)

C STORf LAB TEST CODES ANO TEST RESULTS I~ RECO~O AUF'F[R.
C NRE~ = NUM~E~ OF REC;ULTS

NF=NRE5
no 300 N=l.NF'

]00 JREC(N+20)2NT~ANeN)
C STORE NEW RECORD INTO FILE J. INDEXF:D Hy SOCIAL SECIIRITv NUMftE~.

C-LL WRITER (JBUF,JREC'PRMKEY,~RSTAT)
IF (JRSTAT.LT.O) GO TO A090

Figure 2-8. Store New Indexed Record (WRITER) Example (FORTRAN)

96768040 B

Then kr = The least key value, k, such that there is a
record in the file corresponding to k and
k :: ks. In set notation,

kr = min (k:k e: K and k :: ks)

Order within a set of key values is defined in Indexed Files,
section 1.

For a primary key, the definition of k uniquely defines the
record retrieved. For a key other thran a primary key, kr
may correspond to a set of more than one record. In this
case, the first record stored in the file with key value k is
the one retrieved. An example of record retrieval by a
nonprimary key is shown in figure 2-9.

Records in File Key Value Record Retrieved

Relative Key Record
Number Value

Specified Relative Key
in Request Record No. Value = k

=k s

1 50 ,2 8 2
2 74 34 11 35
3 74 0 6 0
4 18 36 10 37
5 21 38 1 50
6 0 39 1 50
7 7 50 1 50
8 2 73 2 74
9 2

10 37
11 35

Figure 2-9. Example of READR Record Retrieval
by Key Value (Non-Primary Key)

r

The READR request may be used in conjunction with the
retrieve next records (GETS) request, described in the
Retrieve Next Records (GETS) section. In this case, the
user may think of the READR request as a request that
positions the file to a record with a particular relative
record number or to a particular record according to key
value. For example, the file in figure 29 could be positioned
to record 8, or to the record with the least key value greater
than or equal to two or to any other record specified by the
user. Once positioned, subsequent records may be read from
the file in order according to key value or in order according
to relative record number by a GETS request.

A file may be positioned to the record with the lowest key
value by specifying a key value of all binary zeroes in the
READR request. A file may be positioned to the first
record stored in the file by specifying a relative record
number of one in the READR request.

In FORTRAN, the retrieve specific record request has the
following form:

CALL READR (reqbuf,recbuf,recspc,istat)

Where:

reqbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file. Contents of reqbuf may have been altered by
the file manager in performing file access requests,

96768040 B

but contents of reqbuf must not have been altered
by the user. On completion of the request, words
15, 16 and 17 of reqbuf are defined as follows:

reqbuf(15) Number of records actually retrieved
by the file manager.

reqbuf(16),
reqbuf(17)

Relative record number of the first
record retrieved (defined in Relative
Record Number, section 1).

recbuf is the record buffer to receive any records retrieved.
The length of recbuf is the number of words
required to contain the records retrieved plus any
unused words between retrieved records if the
records are sector-aligned.

The length of reqbuf is determined as follows. Let

n = Number records to be retrieved

r = Record length

s = Number of words per sector

Then if u is the length of recbuf:

u = (n-I) x ffl x s + r for sector-aligned
records

u = n x r for non-sector-aligned records.

For example, suppose n = 3, r = 189, and s = 96, and
records are sector aligned.

Then u = 2 x f198:1 x 96 + 189 = 573

Where r y 1 is the least integer greater than or equal
to y.

recspc is the record specifier, an array containing either a
relative record number or a left-justified key
value.

If the file was opened for retrieval by relative
record number, recspc is a two-word array con­
taining the relative record number of the first
record of the set of records to be retrieved.
(Relative record number format is defined in
Relative Record Number, section 1.)

If the file was opened for retrieval by key value,
recspc is an array initially containing the key value
specified k as defined above. This key value must
be left-jusflfied in the array recspc. (An example
of a left-justified key value is included in the
description of the keyval array, in the Store New
Indexed Record (WRITER) section.)

On completion of a READR request specifying a
key value, the array recspc contains the key value,
k , of the record actually retrieved. This key value
if also left-justified in the array.

2-17

NOTE

This array recspc must not be equiva­
lenced with the key value in the record,
since the file manager may alter the value
of recspc.

It is necessary to shift bytes within a key
value stored in the array recspc before
comparing with a key value stored in the
record buffer if the key length is an odd
number of bytes and the key is right­
justified in the record buffer.

istat is the file request status word as defined in Status
Indicator Word, section 1 (see also error
considerations below).

In assembly language, the read specific record request has
one of the following forms:

EXT*

RTJ
ADC

READR

READR
reqbuf or

EXT

RTJ
ADC

REA DR

READR
reqbuf

The use of READR as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

Status considerations (istat) are as follows:

o

o

o

•

The file is currently locked by this user (bit 2 is set).

Retrieval is by relative record number and one or more
of the records are marked as deleted (bit 4 is set). The
contents of the deleted records have been stored in the
buffer, recbuf. By testing the first word of each
record, the user may determine which records are
deleted records. The first word of a deleted record has
the value of the external FMRDEL. (See File
Identification, section 1; Main-Memory-Resident File
Description Parameters, appendix B; and figure 2-10.)

End-of-file is reached before the number of records
specified could be retrieved (bit 8 is set). At least one
record is retrieved if bit 15 is zero. An end-of-file
indication implies an insufficient number of records in
the file to satisfy the conditions specified in the reqbuf
and recspc arrays. If retrieval is by key value, no
record in the file has a key value greater than or equal
to the key value specified by the user. If retrieval is by
relative record number, there are not enough records in
the file starting at the record number in recspc to
retrieve the number records specified in the OPENFL
request (see also request rejections below).

The specified key value, k~, does not equal k , the key
value retrieved (bit 9 is set). r

NOTE

To test whether or not a record for key
value k is in the file, it is necessary to
test forSthe simultaneous setting of bits 8
and 15 as well as testing for the setting of
bit 9. (See end-of-file status discussed
previously in this section.)

2-18

READR sets bit 15 (rejecting the request) if:

• A mass memory error has occurred (bit 5 is also set).

• The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• Record locking was requested, but the maximum
number record locks in the system are currently in use
(bit 6 is also set; the request may be delayed and
retried).

o The record is locked by another user (bit 7 is also set;
the request may be delayed and retried if care is taken
to avoid the situation described in the note in Update
Protection, section 1).

o End-of-file was reached before any records are
retrieved (bit 8 is also set).

o The file request buffer .. reqbuf, was altered by the user
before the READR request (bit 13 is also set).

o The file was closed by an executive forced file close
due to hardware failure or operator shutdown of the
volume (bit 9 is also set). I

• The relative record number was specified in recspc
as 0,0 (bit 14 is also set).

Examples using the READR request are shown in
figures 2-10 and 2-11. An example of READR used in
conjunction with a GETS request is shown in figure 2-13.

Differences between the READR request and the GETS
request are listed in the Retrieve Next Records (GETS)
section.

RETRIEVE NEXT RECORD (GETS)

The GETS request retrieves a set of records from a file open
to the user. The number of records retrieved is as specified
in the OPENFL request. Record locking on retrieval is
performed if it was specified in the OPENFL request.
Records retrieved are in order by relative record number if
the file was opened for retrieval by relative record number.
The retrieved records are in order by key value if the file
was opened for retrieval by key value.

For retrieval by relative record number, the file may be
positioned to a particular record by a previous READR call
that specifies a relative record number. For retrieval by
relative record number, if no READR call is executed
between the OPE NFL request and the first GETS request,
the first GETS request retrieves a set of records starting
with the first record stored in the file. Subsequent GETS
requests using the same request buffer retrieve records
immediately following the last record retrieved by a GETS
request .

For retrieval by key value, the file may be positioned to a
particular key value by a previous READR request. If no
READR request is executed between the OPENFL request
and the GETS request, the first GETS request retrieves a set
of records starting with the first record stored of the
records with the lowest key value for the key specified in
the OPENFL request. Subsequent GETS requests using the
same request buffer retrieve records in order by key value,
and within a key value by order of storage.

96768040 C

C PURPOSE OF THIS ROUTINE IS TO RETRIEVE THE FIR~T 3 FILE RECORDS STOR~O
C AFTER RECORD 9~.999 WAS STOpFD.

OIMENSION JBUF(24).JDATA(lS).IDEL(3)
INTEGER RLRCNM(2)

C SET RELATIVE RECORD NUMBER = 100.000 a 1-65536 + 3_4&4
DATA PLRCNM 11.$86AOI

C FILE 15 TO BE OPEN FOR RETRIEVAL OF 3 RECORO~ pER REaUEST
nATA JDATA IUFILE J ZQX389 ".uVOLIJ~E 1".0.3.11
DATA JBUF 124-01

C RECORD LENGTH Is 31. RESERVE SPACE FOR 3 RECORDS.
DIMENSION JREC(9l)
INTEGER FMRDEL

C DECLARE DELETE CODE AN EXTERNAL
fXTERNAL FMRDEL

C INITIALI1E DELETE FLAGS
DATA IDEL 13-01

C ORTAIN ACCESS TO FILE J
CALL OPENFL(JRUF.JDATA.J~TAT)

C TE~T FOR REJECT
IF (J5TAT.LT.O) 60 TO 9000

C RETRIEvE 3 RECORDS. STARTING WITH PECORD NUMR~q 100.000.
CALL READ~ (JRUF.JREC'~LPCNM.JSTAT)

C TEST FOR REJECT
IF (JSTAT.LT.O) GO TO 9050

C AT LEAST ONE RECORD ~AS RETRIEVED
C WA5 END-OF-FILE REACHED BEFOpE ALL 3 RECO~D5 ~ERE READ

IF (AND(JSTAT.,0100).NE.O) GO TO ~50
CALL 3 RECORDS WERE RETRIEVE~. ARE ALL OF THE~E NON-DELETED RECORD~

IF (AND(JSTAT.,0010).EQ.0) GO TO 500
C NO. AT LEAST ONE OF THESE ~ECORDS WAS PREVIOll~LY DELETED.
C TE5T TO sEE wHICH RECORD(S) wERE DELETED. SET FLAGS ACCORDINGLY

DO 400 10-0.2
IDPl=ID+l
IF (JRECfID-31+1) .EQ.FMPDEL) IDELflnpl)=l

400 CONTINUE
60 TO 500

C END-OF-FILE DETECTED.DETERMINE ITS POSITION.
C THIRD RECORD IS REYOND END OF FILE

450 IDEL(3)=l
C WAS ~ECOND RECORD BEYOND END OF FILE

IF (JBUF (15) .EQ.l) IDEL (2) =1
500 CONTINUt::

C PROCE~S THIS SET OF RECORDS

Figure 2-10. Example of READR Request with Access by
Relative Record Number (FOR TRAN)

When there are not enough records to satisfy a GETS
request, an end-of-file indication is returned to the caller.
The number of records actually retrieved is also passed to
the caller. If a GETS request results in an end-of-file
indication and this same GETS request is repeated, the first
execution of the GETS after the end-of-file retrieves a set
of records at the beginning of the file; that is, the set of
records that would be retrieved by this GETS if no READR
preceded it. After this cycle back to the beginning of the
file, subsequent GETS requests are processed as usual.' The
end-of-file indication occurs only on the request for which
there are not enough records. For that request no records at
the beginning of the file are retrieved. The GETS request is
similar to the READR request as described in the Read
Specific Record (READR) section with the following
differences:

than one record may be retrieved for each GETS
request executed. For a nonprimary key, any record
that is not the first record stored for a given key value
cannot be retrieved by a READR request. Such a
record can be retrieved by a GETS request.

• When retrieval is by key value, only one record may be
retrieved for each READR request executed, but more

96768040 B

o When retrieval is by relative record number, a READR
request can retrieve records starting at any relative
record number. A GETS request by relative record
number must start at record 1 of the file or at the
record set immediately following the record set read by
either a previous GETS request or a previous READR
request.

• When retrieval is by key value, a READR request may
specify any key value, but a GETS request must start
with records of lowest key value or with the records
following those retrieved by a previous GETS or READR
request.

2-19 I

~ PURPOSE OF THIS CODE IS TO RETRIEVE RECORD wITH LEAST P~I~ARV KEy
C VAllIE GREATER THAN OR EQUAL TO 12.

DIMENSION NRUF(24).NDATA(1S).NREC(96)
DATA NRUF 124.01

C ~PErIFv ACCESS Hy KEy 1. NO LOC~ING
nATA NDATA IUFILE N GETOOR u,"SYSVOL20 Il d.l.01

C SPfCIFy I(Ey VALUE 12.
DATA KEvl/121
DATA MAXTRY/3001
DIMENSION ITEMP(~)
DATA IFLAG I$On21/. ITI~E/1I

C DETfR~INE LOCATION OF STATEMENT 200. STORE INTO ICOMP FOR LATER lJSE.
A~SIGN ?oo TO ICO~P

C OATAIN ACCESS TO FILE N
r.ALL OPENFL (NAIJF.NDATA.NSTAT)
IF (NSTAT.LT.O) GO TO 8000

C RETRIEVE RECORD. NOTE THAT THE NAME KEVI ~lIST APPFAR IN THE. PARAMfTER
C LIST OF THf CALL. NOT THE CON~TANT 12. ~INCf T~E FILE MANAGER MAy
C CHANGE THE VALuE OF KEvl.
C INITIALIZE NUMBER RETRIALS. (NTRy:rNUMAER RfToIALS DUE TO ~fcoRn LOCI\
C hY ANOTHFR USER.)

~TRy=O

cno CALL REAOR ("lAuF.NREC.KEyl,NSTAT)
IF ("l5TAT.GE.O) GO TO 500

C T~~T FOR LOC~ Ay ANOTHER USER
IF (AND(NSTAT.$OOkO).EQ.O) GO TO 2~0

C ~FcOpn LOCKED Hv ANOTHER IJC;EI~. DELAV 1 ~fCONI) AND PfTPV.
C HAVF ~AlC HIUM NlJM~ER qETRIALS BEFN MADE ALREADy

IF (NTRY.GE.~AXTRV) GO TO 9092
C INCRF~ENT NUMBER RETRIALS

NTRy=NT'-y+l
C DFLAV ONE SECOND
C INITIATE TI~ER CALL.
C STATE~~NT 200 Is COMPLETIO"l LOCATIO"l FOR TIMER pEQUEST.

CALL TIMER (ICOMP.IFLAG.ITIME.ITEMO)
CALL DIsPAT

C ~IT 1~ OF ISTAT IS ~ET. TE~T FOR fND OF FILE.
250 IF (ANO(NSTAT.,0100).NE.O) r,0 TO 3~0

C OTHFR ERROR DETECTED
(;0 TO 9100

C NO RECORD IN FILE WITH PRIMARY KEY VALUE GREAT~R THAN OR EQUAL TO 12.
C PRINT MESSAGE

350 CONTINuE:

•
GO TO 900

C RECORD RET~IEvED. PROCESS R~CORO.
500 CONTINlJl:.

C GO ON TO NEXT PROCfDURE
900 CONTINUE

Figure 2-11. Example of READR Request with Access by Key Value (FORTRAN)

• When retrieval is by relative record number and all the
records in a file are to be retrieved, successive
executions of a READR request require the uscr to
increment the relative record number between READR
calls. This incrementing is done by the file manager,
not the user, when accomplishing the same purpose with
successive executions of a GETS request. (Execution
time is approximately the same when using READR as
when using GETS for this purpose.)

of a READR request to position the file followed by
repeated execution of a GETS request is faster than
repeated execution of a READR request. This is
because for each READR request, the file manager
makes a search starting at the beginning of the key
structure. Such a search involves mass memory
transfers. For a GETS, this search is not made.

• When retrieval is by key value and a large number of
records in the file are to be retrieved in order, the use

I 2-20

In FORTRAN, the retrieve next records request has the
following form:

CALL GETS (reqbuf,recbuf,keyval,istat)

96768040 B

Where:

reqbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file. The contents of reqbuf may have been altered
by the file manager in performing file access
requests, but contents of reqbuf must not have
been altered by the user. On completion of the
request, words 15, 16 and 17 of reqbuf are defined
as follows:

reqbuf(15)

reqbuf(16),
reqbuf(17)

Number records actually retrieved by
file manager.

Relative record number of the first
record retrieved (defined in Relative
Record Number, section 1).

recbuf is the record buffer to receive retrieved records. The
required length of recbuf is determined as for the
length of recbuf in the READR request (see the
Read Specific Record (READR) section).

keyval is an array that is ignored if retrieval is not by key
value. If retrieval is by key value, the array keyval
must initially contain zero or the left-justified key
value stored by the user in the array, recspc, in the
READR call preceding the GETS request. On
completion of the GETS request, the array keyval
contains the key value, left-justified, of the last
record retrieved. If a GETS request is repeatedly
executed, the user must not alter the contents of
the array keyval between successive executions.

NOTE

It is necessary to shift bytes within a key
value stored in the array keyval before
comparing with a key value stored in the
record buffer if the key is right-adjusted
in the record buffer.

istat is the file request status word as defined in Status
Indicator Word, section 1 (see also error
considerations below).

In assembly language, the retrieve next records file request
has one of the following forms

EXT*

RTJ
ADC

GETS

GETS
reqbuf or

EXT

RTJ
ADC

GETS

GETS
reqbuf

The use of GETS as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

Status considerations (istat) are as follows:

o The file is currently locked by this user (bit 2 is set).

• Retrieval is by relative record number and at least one
retrieved record is marked as deleted (bit 4 is set).
Contents of deleted records are included in the buffer
recbuf. By testing the first word of each record, the
user may determine which records are deleted records.
The first word of a deleted record has the value of the
external, FMRDEL. (See File Identification, section 1;

96768040 C

Main-Memory-Resident Volume Description Param­
eters, appendix B; and figure 2-10.) This indication
cannot occur when access is by key value; that is, a
deleted record is never retrieved by key value since its
pointer was deleted from the key index.

o End-of-file is reached before the number of records
specified could be retrieved (bit 8 is set). At least one
record was retrieved if bit 15 is zero. (See also request
rejections below.)

GETS sets bit 15 (rejecting the request) if:

o A mass memory error has occurred (bit 5 is also set).

o The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• Record locking was requested, but the maximum
number record locks in the system are currently in use
(bit 6 is also set; the request may be delayed and retried
a finite number of times).

o The record is locked by another user (bit 7 is also set;
the request may be delayed and retried if care is taken
to avoid the situation described in the note in Update
Protection, section 1).

o End-of-file was reached before any records were
retrieved (bit 8 is also set).

o The file request buffer, reqbuf, was altered by the user
before the GETS request (bit 13 is also set).

o The file was closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

Examples using the GETS request are shown in figures 2-12,
2-13, and 2-14.

STORE UPDATED RECORD (UPDREC)

To store an updated record into a file, the record must have
been first retrieved by a READR request or a GETS request.
Before the UPDREC request, either the file must be locked
or the record to be updated must be locked as retrieved.

A key value for a record in an indexed file may not be
changed by an UPDREC request. If a record's key value
must be changed, this may be done by a delete record
request (see the Delete Record Request (DELREC) section)
followed by a WRITER request (see the Store New Indexed
Record (WRITER) section).

The number of records stored by the execution of an
UPDREC request is one if the preceding GETS or READR
request accessed the file by key value. In this case, the
preceding READR or GETS request must retrieve only the
record to be updated. .

If the preceding GETS or READR request accessed the file
by relative record number, the number of records stored by
each UPDREC execution is the number of records specified
for retrieval in the OPENFL request.

If an end-of-file indication occurred on the retrieval
preceding the UPDREC, the file manager updates only those
records that precede the end-of-file. The file manager
ignores the number of records specified in the OPENFL
request in this case. (The number of records actually

2-21

C PURPOSE OF THIS ROUTINE IS TO RETRIEVE SEQUENTIALLY EACH RECORD OF
C FILE J. PRINTI~G THE CONTENTS OF EACH RECOPD AFTER RETRIEVAL.

DI~ENSION J~UF(24).JDATA(15).JREC(96)
DATA J8UF 124i!t01
OATA JDATA I"FILE J RXT436 1."SYSVOL20".0.1.01
DATA MAXTRY 13001
nIMENSION ITEMP(4)
DATA IFLAG 1$0021/. ITIMF./11

C DETERMINE LOCATION OF STATEMf~T 200. STOPE INTO ICOMP FOR LATER IJSE.
ASSIGN 200 TO ICOMP

C OBTAIN ACCESS TO FILE J
CALL OPE NFL (JAUF.JDATA.JSTAT)
IF (JSTAT.LT.O) GO TO 9000

C INITTALIZF NUMHER OF RETRIALS. (NTRV=NUMgEP RETRIALS DUF TO pECORD
C LOCK ~y ANOTHER USER)

190 ~'TRY=O
200 CALL GETS (JBUF.JREC.JDUM.JSTAT)

IF (JSTAT.GE.O) GO TO 500
C TEST FOR LOCK BV ANOTHER lJSER

TF (A~D(JSTAT.~OOAO).EQ.O) GO TO 250
C HAVE MA~IMUM NUMBER RETRIALS BEEN MADE ALREADy

IF (NTRV.GE.~AXTRV) GO TO 9092
C INCRfMENT NUMHER RETRIALS

NTRV=NTRV+l
C I~ITJ~TE TIM~R CALL.
C RECORO LOCKED By ANOTHER USER. OELAy 1 SECONO AND RETRY.
C STATE~ENT 200 IS COMPLETION LOCATION FOR TIMEQ REQUEST.

CALL TIMER (JCOMP.IFLAr,.ITIME.ITEMP)
CALL DISPAT

C BIT 15 OF ISTAT IS SET. TEST FOR END OF FILE.
250 IF (AND(JSTAT.$OlOO).NE.O) GO TO 5000

C OTHF.R ERROR DETECTED
(i0 TO 9100

C PRINT RECORD CONTENTS
500 CONTINUE

C TEST FOR RECORD DELETION
JF (AND($OOI0.JSTAT).NE.O) GO TO 190

C RECOpD NOT DELETED. CONTINUE WITH PRI~TING

G() TO 190
C END-OF-FILl REACHED. PROCESSING ~OMPLETE

5000 CONTINUE

•

Figure 2-12. GETS Request Example, Access by Relative Record Number (FORTRAN)

retrieved is stored in the request buffer on the preceding
retrieval.)

updated and the UPDREC call. The contents of
reqbuf must not have been altered by the user. In
executing the preceding retrieval, the file manager
stores the number records retrieved in word 15 of
reqbuf and a relative record number in words 16
and 17 of reqbuf. This is the relative record
number of the first record of the set of records to
be updated. Other words of reqbuf are dependent
on this relative record. number. Therefore, the user
may not modify words 16 and 17 of reqbuf even if
he only wishes to modify a proper subset of the
records retrieved.

If some of the records retrieved in the preceding retrieval
are marked as deleted records, these records are written
back to the file by the UPDREC request in the same manner
as nondeleted records.

In FORTRAN, the store updated record request has the
following form:

CALL UPDREC (reqbuf,recbuf,istat)

Where:

reqbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file and in retrieving the record(s) to be updated.
No file manager call may reference this buffer
between the retrieval of the record(s) to be

2-22

recbufisthe record buffer containing records to be stored
by this request. The length of recbuf is determined
as for the PUTS request (see the Store New
Records Sequentially (PUTS) section), except that
the two extra words are not needed at the end of
the buffer.

96768040 B

'.

96768040 B

C PIIRPOC;E of THI S CODE I S TO P~ I NT A REPO~T OF T'"iOSE RECORDS IN FILE. J
C WHICH CO~RESPOND TO Ar,E5 2 THROUGH 4 YEA~S. AGE IS STOPED I~
C YEARC; IN KEY VALuE 2.
C (AGr Ie; STORED IN BYTE 10 OF EACH RECORO.1
C FOUR RECORDS ARE TO BE RE. TR J E VEO FOR EACH GfTC; RFCHlES T. ~ECORO
C LfNr,TH IS 31 WORDS.
C AN F~A~PLE SHOwING WHICH RECO~OS WOULD AE PETcyFvF.n F~O~ A
C rlYPOTHETICAL FILE By THE USE OF THIS COOE IS SHOWN IN FIGURE 2-14.

nIMFNSION JBUF(241.JREC(124).JUATA(15)
C SET liP JDATA TO ACCESS FILE RY KEy 2 WITH NO PECORD LOCKING

nATA JOATA /"FILE J ZQX3tiQ VOLlIME 1".2.4.01
C TOTAL NUMBER ~ECOROS rOR EACH AGE IS COMPUTEO.

TNTFGER TOTREC(4). AGEP~T .RETPEV
C INITIALI7F. TOTAL RECORDS FOR ALL AGES

nATA TOTpEC /4001
C SET MA(I~U~ RETRIALs WHILE wAITING FO~ IINLOCK Ry OTHEW U~ER = hO
C PETcIALS

C
C

C
C
C

C

C
C

C

C

C
C
C
C

C
C

C
C

C

C

C

C

C

C

OATA MAXTRY/bO/. NTRy/OI
nIMENSION ITEMP(4)
DATA IFLAG /~0021/. ITIME/l/
CALL OPENFL (JBUF.JDATA.JSTATI
I~ (JC;TAT.LT.O) GO TO 9QOO

INITIALIIE IAGE. (KEy vALUE: AGE IN YEA~e;) TO TWO
LEFT ADJUST AGE IN IAGf

IAGE=$700
Rff)IIEST PETRIEVAL OF ONE RECORD. NOTE THAT PFAD~ IC,NORES NIIMHE~

QECocOS'SPECIFIEO I~ OPEN REOUEST SINCE ACCESS IS BY ~EY VALUE..
THIe; CEAOP CALL POSITIONS THE FILE FOP THf ~IQST GETS CALL.

ASSIGN 200 TO PET~EV
200 CALL READR (JAUF.JREC.JAGE.ISTAT)
Tfe;T FOP PEJfCT
2~o IF (ISTAT.LT.O) GO TO R~O

PETPIEVAL COMPLETED.
Rf-INITIALIIE NUMRfQ RETRIALS

""T~V=()
INITJALIIE NUMBER RECORDS PROCESSED FOR THIS cETPIEVAL

NPROC=O
HAVE ALL RECORDS FROM THIS PETRIEVAL REEN PROCFSSED
27~ IF (NPROC.GE.JBUF(l~» GO TO 500
AT Lf AST O"-lE MORE RECORD Mile; T ~E PROCE SSED
NO "-IEED TO TEST FOR DELETED RECORD SINCE RETRIFVAL WAS HY KEy VALUE
AND REQUEST wAS COMPLETED WITHOUT ERROR
COMPuTE POSITION OF RECORD WORD ~ IN RU~F[R

TSD NPROc 031+5
OATAIN RIGHT-ADJUSTEU AGE. FROM RECORD.
NOTE THAT AGE RETRIEVEu (AGERET) MAy NOT HE THF SAME AS KfYAGE

AGFPET = AND(JREC(15).'FF)
WAS ~EY VALUE OF THIS RECORn FIVE OR LAPGEP. IF S0. ALL REouI~fO

RECORDS HAVE HEEN PETRIEVED AND PROCESSEO.
t~ (AGERfT.GE.51 GO TO ~OO

INCRfMENT APPROPRIATE TOTAL
TOTREC(AGERET)aTOTREC(AGERET)+1

PRINT RF.PORT OF RECORD

I"-ICPEMENT NUMBER RECORDS PRocESSED
NPROC=NPROC+l

GO RACK TO PROCESS NEXT RECOPD
GO TO 275

wAS THERF AN END-OF-FILE HmYCATION
500 IF (AND(ISTAT.SOIOO).NE.O) GO TO MOO
hOO Ae;C;IGN b~O TO RETREV
650 CALL GETS (JBIIF. JR£C, I AGE. I ST A Tl

GO TO 250
REPORT PRINTING COMPLETE
~OO CONTINuE

Figure 2-13. Example of Repeated GETS Request, Access by Key Value,
Initial Positioning by READR (FORTRAN) (Sheet 1 of 2)

2-23 I

C ~fLINQUISH ACCESS PER~IT TO FILf J.
CALL CLOSFL (JAUF.ISTAT)
IF (ISTAT.LT.O) 60 TO q99~
GO TO 950

C REAOR REQUEST REJECTED OR 6fT'5 REQUEST QI='OIJFST RFJFCTEI)
850 CO"lTINtiE

C WAC; PEJECT DUE TO SO~E FRROP
IF (ANDCISTAT.S6020).NE.O) GO TO 99Q5

C ~AS T~fRE AN END-OF-FILE INDICATION
IF (A"IDIISTAT.SOIOU)."IE.O) GO TO dOO

C ~EQUE~T WAS REJECTED BECAU'5E RECORD TO ~F ACCfC;~fD I~ LOC~En.
C HA~ PEQUEST BEEN RETRIED NMAX TIMES

IF (NTRY.GE.MAXTRY) GO TO 9010
NTRV=NTRY+l .

C RETRV RFADP REQUEST OR RETRV GETS REQU~~T AFTFQ l-SECOND dELAY
CALL TIMER (HETREV.IFLAG.ITIME,ITEMP)
CALL DISPAT

C PROCFDURE COMPLETE
'i50 CONTINUE

Figure 2-13. Example of Repeated GETS Request, Access by Key Value,
Initial Positioning by READR (FORTRAN) (Sheet 2 of 2)

Records in File

Relative Key
Record Value
Number (Key 2)

Request in Relative Record No. Initial Contents Execution Figure 2-13 of Records Retrieved of KEY2

1 0 READR 4 2
2 0
3 1 GETS 1st 5,6,7,8 3
4 3
5 3 GETS 2nd 9,10,11,12 4
6 4
7 4
8 4
9 4

10 4
11 4
12 6
13 8
14 8
15 8
16 9
17 9
18 9
19 9
20 9

Figure 2-14. Example of File Records Retrieved by Code in Figure 2-13

istat is the file request word as defined in Status Indicator EXT· UPDREC EXT
Word, section 1. (See also error considerations
below.)

RTJ UPDREC RTJ

Contents of
KEY2 Array

on Completion

3

4

6

UPDREC

UPDREC
In assembly language, the store updated record request has ADC reqbuf or ADC reqbuf
one of the following forms:

I 2-24 96768040 B

The use of UPDREC as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to UPDREC
if bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

• A mass memory error has occurred (bit 5 is also set).

• The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• Neither the file nor the records to be updated are
locked (bit 7 is also set).

• The file request buffer, reqbuf, was altered after the
completion of the preceding retrieval before this
UPDREC call (bit 13 is also set).

• The file was closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

• The preceding retrieval was by key value and more than
one record was retrieved (bit 14 is also set). The
number of records retrieved is governed by the pre­
ceding OPENFL request. The OPENFL request gives an
error indication if record locking or file locking is
specified for access by key value and the number
records specified is greater than one. However, the
UPDREC request can be made with no lock indication in
the preceding OPENFL request if the file is locked
between the OPENFL request and the UPDREC request.

In this case, the previous OPENFL request would give
no error indication if the number records specified
exceeds one. It is in this way that this bit 14 error
indication can be generated.

An example of FORTRAN code using the UPDREC request
is shown in figure 2-15.

DELETED RECORD (DELREC)

Only one record may be deleted per delete record request.
Each execution of a DELREC request must be preceded by
either a GETS request that retrieves only one record, or a
READR request that retrieves only one record. The single
record retrieved by the preceding GETS or READR request
is the record deleted by the DELREC request.

Either the file must have been previously locked or the
record to be deleted must have been locked on retrieval.

In deleting a record from a file, the file manager stores the
record delete code, FMRDEL, in word 1 of the record buffer
and then stores the record back into the file. (More
information on the code FMRDEL may be found in Main­
Memory-Resident Volume Description Parameters,
appendix B.) In addition, if the file is indexed, the record's
pointers are deleted from the file's key indices.

In FORTRAN, the delete record request has the following
form:

CALL DELREC (reqbuf,recbuf,istat)

C PURPOSE OF THIS CODE IS TO CHANGE WORDS IFIRST THROUGH ILAST OF RECORD
C WITH RELATIVE RECORD NUMBER IRNM.

96768040 B

C NEW VALUES ARE PASSED VIA COMMON IN ARRAY CHGREC.
rNTEG~R CHGREC(96)
COM~ON IRNM.IFIRST.ILAST.CHGREC
DIMENSION KBUF(24).KDATA(lS).KREC(96),IPNM(2)
DATA KBUF 124*01
DATA KDATA I"FILE K PALMER "."SYSVOL20 11 .0.1.-11

C OBTAIN ACCESS TO FILE K. REQUEST RECORD ACCF~5 8y HtLATIVE
C RECORD NUMBER. SINGLE RECORD RETPIEVAL AND FILE LOCKING.

CALL OPENFL (KBUF.KDATA,K5TAT)
IF (KSTAT.LT.O) GO TO B900

C RETRIEVE RECORD IRNM
CALL READR (KBUF.KREC.IRNM.ISTAT)
IF (ISTAT.lT.O) GO TO 8950

C CHANGE RECORD
C STORE INDICES IN 'lOCAL STORAr,E

KFIRST=IFIRST
KlA5T=IlAST
00 400 INDaKFIRST.KLAST

400 KREC(IND)~CHGREC(IND)
C STORE REcORD BACK INTO FILE.

CALL UPDREC (KBuF.KREC.KSTAT)
IF (KSTAT.LT.O) GO TO S970

Figure 2-15. UPDREC Example (FORTRAN)

2-25

Where:

reqbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in the retrieval
of the record to be deleted. Contents of reqbuf
may not be altered between completion of the
preceding record retrieval and the ini tia tion of the
delete record request.

recbuf is the record buffer containing the record to be
deleted. (Length is the length of the record.) Upon
completion of the request, the first word of this
buffer contains the record deleted code, FMRDEL.

istat is the file request status word as defined in Status
Indicator Word, section 1. (See also error
considerations below.)

In assembly language, the delete record request has one of
the following forms:

EXT*

RTJ
ADC

DELREC

DELREC
reqbuf

or

EXT

RTJ
ADC

DELREC

DELREC
reqbuf

The use of DELREC as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to DELREC if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

o A mass memory error has occurred (bit 5 is also set).

• The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

• Neither the file nor the record to be deleted is locked
(bit 7 is also set).

• The file manager is unable to delete one or more of
record's key values from the key structure because one
or more errors exist in the key structure (bit 11 is also
set).

I. The file request buffer, reqbuf, was altered after the
completion of the preceding retrieval before this
DELREC call (bit 13 is also set).

• The file is closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

• . More than one record was retrieved by the retrieval
preceding the DELREC call (bit 14 is also set).

An example of FORTRAN code using the DELREC request is
shown in figure 2-16.

COMPRESS FILE (COMFIL)

A file should be compressed when space for more records is
needed in the file and some records have been marked as
deleted.

2-26

Compression of a given file involves physically moving the
nondeleted records together, writing over any records that
have been marked as deleted. This allows more new records
to be stored into the file. If the file is indexed, the
associated key structures are rebuilt during compression.

Before compressing a file, an access permit must be
obtained to compress the file. This involves executing an
OPENFL request (see the Open File (OPENFL) section). The
file manager locks the file at the time the compression
access permit is granted.

To compress a file, the user must repeatedly execute a
COMFIL request. Each execution causes a set of the
records in the file to be compressed. The size of the set is
the number specified in the OPENFL request. (The size
must be one record for an indexed file.) When an end-of-file
indication has been received, the entire file has been
compressed. The reason for requiring a series of COMFIL
calls instead of only one to compress the entire file is that
in this way other file manager requests may be interspersed
between the COMFIL calls in the request processor queues
(see Reentrant Request Processors; Serial Request
Processors, section 1). This avoids holding out other file
manager users for a long period of time during file
compression.

In FORTRAN, the compress file request has the following
form:

CALL COMFIL (reqbuf,recbuf,istat)

Where:

reqbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file for compression. It must not have been altered
by the user.

recbuf is the record buffer used by the file manager for
temporary storage of records to be compressed.
The length of recbuf is determined as for the PUTS
request (see the Store New Records Sequentially
(PUTS) section), except that four extra words are
needed by the file manager at the end of the buffer
instead of only two extra words. For example,
using the symbols defined in the Store New Records
Sequentially (PUTS) section, suppose n = 3, r = 189,
and s = 96, and records are sector-aligned. Then
let b' = the size of recbuf for a COMFIL request.

Then b' = 3 x rWl x 96 + 4

= 576 + 4 = 580

Wherer y 1 is the least integer greater than or equal
to y.

istat is the file request startup word as defined in Status
Indicator Word, section 1. (See also error
considerations below).

In assembly language, the compress file request has one of
the following forms:

EXT*

RTJ
ADC

COMFIL

COMFIL
reqbuf

or

EXT

RTJ
ADC

COMFIL

COMFIL
reqbuf

96768040 C

C PURPOSE OF THIS CODE IS TO RETRIt:Vt:: EACH RECORD FROM A ""~ ILING
C LIST FILE AND DELETE THOSE ~ECOHOS WHICH SHOW DATE OF LAST PIJ~CHASt:
C bEFORE A SPECIFIED YEAR.
C
C
C
C
C
C
C
C
C

RECORD FORMAT FOR FILE "MAILLIST"

~ORD CONTENTS

1-4 CUSTOMER IDENTIFICATION CODE
~-44 ADDRESS
4~ YEAR OF LAST PURCHASE CASCII)

DIMENSION IHQBUF(24),IODATAC1S),lREC~FC45)
DATA IRQBUF/24~OI

C ~RESET IODATA TO SPECIFY RETRIEVAL BY RELATIV~ RECORD NU~H~R, UNf
C RECORD PER RETRIEVAL, wITH RECORU LOCKING.

DATA IODATA /"MAILLISTIt,"MIDSOUTH",IIVOLUME l",O,bll
C ~HESFT PURGE DATE TO ASCII CODE FOR 1972

DATA IYEAR/$37321
C OHTAIN ACCESS PERMIT TO RETRIEVE 1 RECORD Pt::R REQUEST FRO~
C MAILING LIST FILE wITH RECORD ACCESS HY RELATIV~ o~ECORU NuM~~~.
C RECORD LOCKING IS SPECIFIED IN IODATA.

CALL OPENFLCIRQBUF,IODATA,IOSTAT)
C TEST FOR REJECT

IF (IOSTAT.LT.O) GO TO 9000
C RETRIEVE ONE RECOHD

110 CALL GETS(IRQAUF,IREC~F,lUUM,lGSTAT)
C TEST FOR REJECT

IF (IGSTAT.LT.O) GO TO 9020
C TEST FOR PRFVIOUS DELETION Of Rt::CORD

IF (ANDCIGSTAT,$lO).NE.O) 60 TO 110
C IS THIS RECORD TO REMAIN IN FILE

IF CIRECBF(45).GE.IYEAk) GO TO 110
C THIS ~ECORD IS FOR CUSTOMER WITH LAST PURCHASI:. PfH0R TO S"-i:.CIFIt.D
COATE. DELETE THIS RECORD.

CALL DELRECCIRQBUF,IRECHF,IOSTAT)
IF (IDSTAT.LT.O) GO TO 9300

C GO HACK TO RETRIEVE NExT RECORD
GU TO 110

C DISTINGUISH END-OF FILE FROM OTHEH ERRU~S
9020 IF CAND(IGSTAT,$OlOO).NE.O) GO TO ~OOO

C END OF PROCESS
5000 CONTINUE

CALL CLOSFL (I~QBUF,ICSTAT)
IF (ICSTAT.LT.O) GO TO 9500

•

Figure 02-16. Example of DELREC Request (FORTRAN)

The use of COMFIL as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

• An end-of-file has been reached. The file should now be
closed (bit 8 is also set).

A status indication is that the file is currently locked by this
user if bit 2 of istat is set.

An error is indicated on the return from a call to COMFIL if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

• A mass memory error has occurred (bit 5 is also set).

• The file manager data structures on mass memory or in.
main memory contain one or more errors (bits 5 and 14
are also set).

96768040 B

• The file request buffer, reqbuf, was altered by the user
before this COMFIL call (bit 13 is also set).

• The file was closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

An example of a FORTRAN subroutine that performs file
compression using the COMFIL request is shown in
figure 2-17.

2-27

•

2-28

SU8POUTINE COMPR~ (NAME.IOWNER.IVOL,RECLEN.ALIGN.INDEXD.ERRFLI.
1 ERRFL2)

C PURPOSE OF THIS SUBROUTINE IS TO COMPRESS FILE wITH NAME. O~NER
C AND VOLUME PASSED IN SUBROUTI~E PARAMETER Ll~T. PECLEN IS RECORD
C LEN~TH. ALIGNsO FOR NON-SECTOR-ALIGNED RECORDS. =1 FOR SECTOR-ALIGNED
C RfCOPOS.

INTEGER RECLEN.ALIGN,RECBUF(964).REQLEN.ERRFLG
INTEGER EPRFL1.ERHFL2
DIMENSION NAME(4).IOWNER(4).IVOL(4).IDATA(1~).IRUF(24)
nATA IDATA(}3)/·11

C IDATA(lS) NEED NOT BE PRESET. AS IT IS IGNORED WHEN FILE IS OPENED
C FOR COMPRESSION.
C INITIALIZE ERPOR FLAGS

ERRFLl=O
ERRFL2=O

C TEST FOR RECORD LENGTh WITHIN RANGE ALLowED
IF (RfCLEN.GT.960) GO TO 9000

C MOVE PASSED FILE NAME. OWNER. AND VOLUME TO IDATA ARRAy
00 20 1=1.4
IDATA(I)=NAME(I)
IDATA(I+4)=IOWNER(I)
IDATA(I+h)=IVOL(I)

20 CONTINUE.
C OPEN FILE FOR COMPRESSIO~
C COMPIITE NUMBER RECORDS WHICH wILL FIT INTO Rf.C~IIF.
C COMPUTE REQUIRED LENGTH FOR ONE ~ECORD.
C I F I NDE XED FILE. NUMBER RECORDS PER C()MF I L CALL ~I'S T HE O"lE.

IF (INDExD.EQ.O) GO TO 100
NUMREC=l
~O TO 300

C ARE RECORDS NOT SECTOR-ALIGNED
100 JF (ALIGN.EO.O) GO TO 200

C RFCORDS ARE SECTOR ALIGNED
C SECTOR LENGTH IS 96 WORDS.

REQLEN= (RECLEN/96)096
IREM= RECLEN-REQLEN
IF (IREM.GT.O) REOLEN= REQLEN+96
NUMREC = 960/REQLEN
GO TO 300

C RfCOROS ARE NOT sECTOR-ALIGNED
200 NUMREC = 960/RECLEN

C STORE NUMBER RECORDS INTO IOATA ARRAy.
300 JDATA(14)=NUMREC

CALL OPE NFL (IBUF.IDATA.ISTAT)
IF (ISTAT.LT.O) GO TO 9000

500 CALL COMFIL (IAUF.RECBUF.ISTAT)
IF (ISTAT.GE.O) GO TO 500

C TEsT FOR END-OF-FILE
IF (AND(ISTAT.SOI00).NE.0) GO TO YOO

C OTHER ERROR. PASS ERROP FLAG ijACK TO CALLER IN FRPFll PARAMETEP
f.RRFL1=I5TAT

900 CALL CLosFL (I8UF.ISTAT)
ERPFL2=ISTAT
RETURN

Figure 2-17. Compress File Example (FORTRAN)

96768040 C

D

GLOSSARY A

BACKGROUND - Processing with relatively low priority
that is executed in unprotected main memory as
foreground processing permits. Background priority
levels are 0, 1, and 2.

BYTE - Basic unit of data; specifically for CDC CYBER 18
computers, a byte is eight bits, either bits 0 through 7
of a word or bits 8 through 15 of a word.

CLEAR - To clear a bit is to cause its value to become
zero.

CYLINDER - A set of tracks in a drum or disk that can be
read without repositioning the read/write heads (see
figure A-I).

EXECUTIVE - See System executive.

FCB - See File control block.

FCBT - File control block table.

FOB - File definition block.

FDD - File definition directory.

FDS - File definition segment.

FIAT - File control block index allocation table.

FILE - A collection of related-records treated as a unit.

FILE CONTROL BLOCK (FCB) - The set of definition and
control parameters for a file.

FILE DEFINITION DIRECTORY - A collection of pointers;
for each file on a volume, there is one pointer, each
pointing to the file control block for the file.

FOREGROUND - Processing that is time-critical.
Foreground processing is executed in protected main
memory.

INDEX - An ordered set of pointers.

KEY - Specific attribute of a record, such as age,
birthdate, social security number, etc.

KIB - Key information block.

KIS - Key information segment.

MODULO (MOD) -:- A function such that if x = r (mod k),
there exists an integer n such that x = n. k + r.

PAR TITION - A collection of subsets of a set such that any
pair of subsets are disjoint and the union of all the
subsets is the entire set.

PROTECTED MAIN MEMORY - That part of main memory
that is protected from erroneous storage or entry by
unprotected programs. Attempted storage into a
protected word or transfer of control to a protected

96768040 B

instruction by an instruction in unprotected main
memory causes a protect violation interrupt.

PROGRAM LIBRARY - A set of commonly used routines
available to background programs.

RECORD - A set of data that is input or output at one
time.

RELATIVE RECORD NUMBER - Position of the record
within a file, expressed as an ordered pair of integers
(n,m). A relative record number is stored in a two-word
array with n stored in the first word and m in the
second word of the array. If the relative record number
r = (n,m), then

r = n x 65,536 + m

Where: 0 ~ m ~ 65,535 and

o < n < 255

That is, m is a 16-bit (two-byte) positive integer
and n is an eight-bit (one-byte) positive integer.

SCATTER CODE - A function that maps the integers into ~
a specified subset; for example, the integer's modulo n
is a hash code where n is any positive integer. See File
Definition Directory section of appendix B for use of
the scatter code.

SECTOR - One of the equal parts of a disk track (see
figure A -1). A set of words on a drum defined by
software to be a sector for drum/disk software compat­
ibility, even though sectors do not exist physically on a
drum.

SET (BIT) - Causes the bit to have a value of one.

SYSTEM EXECUTIVE - A set of program modules that
controls the operation of other programs within the
system.

TRACK - One of the concentric rings on a disk such that
the entire ring (track) of data passes a read/write head
every time the disk completes one revolution (see
figure A -0.

UCT - User control table.

UNPROTECTED MAIN MEMORY - That area of main
memory used by background programs (see Protected
main memory).

USER AREA - A block of partitioned main memory that is
controlled by the ITOS executive and used to execute
user programs under ITOS control. This area is
unprotected memory based on the setting of the protect
boundS registers and page registers (see the ITOS 1
Reference Manua!). User programs execute at a
priority level controlled by the ITOS executive.

VOLUME - A single physical unit of a peripheral storage
device; a volume that can be used for file manager file
storage is a removable disk cartridge, a disk pack, a
nonremovable disk cartridge, or a drum.

A-I

A-2

~ __ --_...J./" DISKS

,---- ~ (, , r-----------
l-:::~~= = =: ---~-,..k'--....

CYLINDE@j-R...DISK

~SECTOR

r~\ . TRACK

Figure A-l. A Disk Pack

ACCESS ARM
II CONTAINING

READ/WRITE
READS FOR
EACH DISK
SURFACE

96768040 A

FILE STRUCTURE B

Associated with each created file is a file control block
(FCB) that contains the file's definition and control param­
eters. File control block (FCB) structure is described in the
File Control Block Table section. The FCBs for the files on
a given mass memory volume are stored together on that
volume in a table called the file control block table (FCBT).
Each FCB within this table has an FCBT index.

The FCB for a given file may be found on mass memory if
the file's FCBT index is known. To ascertain the FCBT
index for a given file, a search may be made in the file
definition directory (FDD). There is an FDD on each volume
used in the system. Each FDD contains a pointer to an FCB
for each file located on the particular volume. File
definition directory structure is described in the File
Definition Directory section. Information needed to access
the FDD for a given volume is found in main memory, as
described in the :\1ain-\1emory-Resident Volume Description
Parameters section.

In addition, on each volume, there is a file control block
index allocation table (FIAT) used in assigning an FCB index
to a file when it is created. The FIAT structure is described
in the File Control Block Index Allocation Table section. An
example of the above structures appears in the File
Structure Example section.

"MIN-MEMORY -RESIDENT VOLUrJlE
DESCRIPTION PAnAMEYlElltS

~
When a volume is .TIounted and ready for use, volume file
control parameters are stored into words 1 through 19 of the
volume information table (see figure 0-4). The following
parameters are from the volume label as described in
appendix E:

Mnemonic

VIFDDM

VIFDDL

VIMAXF

VICURF

VINFDB

VINXTB

VIWPS

VINAME

96768040 B

Parameter Definition

File defini tion directory address,
most significant bits

File definition directory address,
least significant bits

Maximum number of files per­
mitted for a volume (defined at
the time of system installation
or volume initialization)

Current number of files existing
on the volume

Number of blocks in the file def­
inition directory

Next block available for overflow
in the file definition directory

Number of words in each sector
on this volume

Volume name; four words; eight
ASCII characters

The location of the main file structures on a volume is
shown in figure B-1.

SECTOR ADDRESS
'" VILBLM,VILBLL

SECTOR ADDRESS
'" (VILBLM,VILBLL+l)
'" (VIASDM,VIASDL)

SECTOR ADDRESS
'" (VIFDDM,VIFDDL)

SECTOR ADDRESS
'" (0, VINFDB)
+ (VIFDDM,VIFDDL)

SECTOR ADDRESS
'" (O,VIMAXF) + (O,VINFDB)
+ (VIFDDM,VIFDDL)

VOLUME
LABEL

FILE SPACE
DIRECTORY

FILE
DEFINITION
DIRECTORY
(FDD)

FilE
CONTROL
BLOCK
TABLE
(FCBT)

FCB INDEX
ALLOCATION
TABLE (FIAT)

1 SECTOR

VIASDS
SECTORS

}

VINFDB
SECTORS

)

VIMAXF
SECTORS

} 1 SECTOR

Figure B-1. Location of Main File Control Structures
on a Volume

IrllE DIEIFINIYION DlntECYOnV

The file definition directory for a given volume contains one
file definition segment (FDS) for each file on that volume.

The FOSs are grouped into blocks so that all FOSs in a given
block are for files with the same scatter code. The scatter
code for a file is defined as follows. A file on a given
volume is determined uniquely by its file name/file owner
character string as defined in File Identification, section 1.

_ Let (n. I i=I,2,3,4) be the file'S name where each n. is the
binary} representation of two ASCII characters.} Let
(w. I i=I,2,3,4) be the file owner's name where ea~h w. is
th~ binary representation of two ASCII characters. Let
MIN FOB be the number of blocks in the file definition
directory's main part. (The value of MINFDB is dependent
on the maximum number of files permitted on the volUme.
The formula for MINFDB appears later in this section.)
If c is the scatter code for the file, then:

c = 1 + t [(n. + w.)] (mod MINFDB)
i=1 } }

where the summation is computed as a 16-bit positive
integer with the overflow handled as in a CDC CYBER 18
computer; that is, bit 15 is considered a part of the number
and not a sign bit; overflow handling is such that
FFFF I6 +1=1.

B-1

For example, suppose the file name is FILE A (Ieft­
justified), the file owner is SMITH Heft-justified), and
MIN FOB = 10016• Then:

n1 = 464916 wI = 534016

n2 = 4C4516 w2 = 495416

n3 = 2041 16 w3 = 482016

n4 = 202016 w 4 = 202016
L

and:

c = 1 + r ~ (nj + w j) J (mod 10016)

= 1 + [0701 16] (mod 10016)

= 1 + 01 16 = 0216 = 210

This file would be grouped with other files with scatter
code 210.

Each file definition segment (FOS) has the following format:

Word

1 through 4

5 through 8

9

Contents

File name, eight ASCII characters

File owner, eight ASCII characters

File control block table index

The FOSs are grouped by scatter code into file definition
blocks (FOBs). Each block is one sector long and consists of
a one-word header together with as many existing FOSs for
that scatter code as can fit into the block. Let NUMFOS be
the maximum number of FOSs per FOB. Then:

where VIWPS is number of words per sector (see the Main­
Memory-Resident Volume Description Parameters, ap­
pendix B). The header of each FDB contains the index to an
overflow block if there are more than NUMFDS files with
this scatter code. Otherwise, the header contains 000016•

The number of FDBs in the file definition directory's main
part is:

MINFDB = rVIMAXFltt
NuMFDSI

The file manager allows a .maximum of fMINFDB /41 file
definition overflow blocks. The maximum number of FDSs
in the FDD is:

This provides ample directory space for VIMAXF files with a
normal scattering of file name/owner strings.

Location of the FDD on a volume is shown in figure B-1.
Structure of the FDD is shown in figure B-2.

I t ly J = The greatest integer less than or equal to x.

ttr y 1 = The least integer greater than or equal to x.

B-2

NOTE

In a system including ITOS, a dump of the
file definition directory may show the
existence of files that were not created
by any system user. ITOS creates a
number of files for its own use.

FILE CONTROL BLOCK TABLE

The file control block table (FCBT) consists of one file
control block (FCB) for each file on the volume. A
maximum of VIMAXF FDBs are contained in the table. The
FCBT immediately follows the space allowed for the file
definition directory on the volume. Therefore, the sector

... address of the FCBT is the sum of the ordered pairs
(VIFDDM, VIFDDL) and (0, VINFDB). (See figure B-1 and
the Main-Memory-Resident Volume Description Parameters
section.) Each FCB is one sector long; thus the length of the
FCBT is VIMAXF sectors. The range of the FCB index is
from one to VIMAXF.

When a file is created, thirty-tl)ree words are stored into the
file's FCB. These words are defined as follows (words 6
through 10 are modified as the file is used):

Word Mnemonic

1 RECLEN

2 TDATRM

3 TDATRL

4 DATBAM

5 DATBAL

6 FCBINO

Definition

Record length in words

Maximum number of records,
most significant bits

Maximum number of records,
least significant bits

Sector address of first rec-
ord, most significant bits

Sector address of first rec-
ord, least significant bits

FCB indicators as follows:

Bit 15 Record alignment
indicator

o Records need
not be sector­
aligned

1 Records must
be sector­
aligned

Bit 14 Storage mode for
indexed file

o Records pre­
sented and
stored ran­
domly with
respect to
primary key

96768040 8

FILE
DEFINITION
DffiEcrORY
(FDD)
MAIN PART

96768040 A

FDB1
(SCATTER
CODE = 1)

FDB2
(SCATTER
CODE = 2)

FDBn
(SCATTER
CODE = n)

FDBMINFDB
(SCATTER
CODE =
MINFDB)

HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

• • • • • •
HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

• • • • • •

• • •
HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

• • •
• • •

HEADER

NAME
OWNER

• • •

FCB INDEX

NAME
OWNER
FCB INDEX

• • • • • •

HEADER

} FDS

NAME
OWNER
FCB INDEX

} FDS

NAME

OWNER
FCB INDEX

• • • • • •
HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

• • • • • •

• • •

Figure B-2. File Definition Directory Structure

FDB
OVERFLOW1
(SCATTER CODE
= SCATTER CODE
OF BLOCK THAT
OVERFLOWED)

FDD
OVER-
FLOW
PART

FDB
OVERFLOW2

B-3

1 Records pre- II TNKEYM Total number. of key index
sented and blocks, most significant bits
stored in
order with 12 TNKEYL Total number of key index
respect to blocks, least significant bits
primary key

13 KEYBAM Key index sector address,
Bit 13 Open/close indicator most significant bits

0 File closed 14 KEYBAL Key index sector address,
least significant bits

1 File open
15 LENKYI Length of key number 1 in

Bit 12 File compression bytes
indicator

16 POSKYI Byte,position of key num-
0 File not cur- ber 1

rently being
compressed 17 LENKY2 Length of key 2 in bytes

1 File currently 18 POSKY2 Byte position of key 2
being com-
pressed 19 LENKY3 Length of key 3 in bytes

Bit 11 File special process- 20 POSKY3 Byte position of key 3
ing indicator

21 LENKY4 Length of key 4 in bytes
0 File not cur-

rently open for 22 POSKY4 Byte position of key 4
special pro-
cessing 23 TSFILM Total sectors allocated for

file, most significant bits
1 File currently

open for special 24 TSFILL Total sectors allocated for
processing file, least significant bits

Bit 8 Binary data indicator NOTE

0 File does not con- The file has been deleted
tain essentially only if word 25 contains all
binary data binary zeroes.

1 File contains 25 NAME12 File name, characters 1
essentially binary and 2
data

26 NAME34 File name, characters 3
Bit 0 File type and 4

0 Sequential file 27 NAME56 File name, characters 5
and 6

1 Indexed file
28 NAME78 File name, characters 7

7 NEDATMt Number of existing records, and 8
most significant bits

29 OWNR12 Owner name, characters 1
8 NEDATLt Number of existing records, and 2

least significant bits
30 OWNR34 Owner name, characters 3

9 LINKFM Next free key index block, and 4
most significant bits of
block number 31 OWNR56 Owner name, characters 5

and 6
10 LINKFL Next free key index block,

least significant bits of 32 OWNR78 Owner name, characters 7
block number and 8

tThe ordered pair (NEDATM, NEDATL) includes any record marked as deleted that has not been written over by file
compression.

B-4 96768040 C

33 BYTLEN Record length in bytes. This
is the originally specified
length and, therefore, may
be either an odd or even
number of bytes.

Words 34 through 37 of the file control block are used only
during file compression. These words are defined as follows:

Word

34

96768040 C

Mnemonic

PRSRNM

Definition

Relative record number of
the last processed record,
most significant bits

Word

35

36

37

Mnemonic Definition

PRSRNL Relative record number of
the last processed record,
least significant bits

NEWRNM Relative record number of
the last record in a set of
compressed records, most
significant bits

NEWRNL Relative record number of
the last record in a set of
compressed records, least
significant bits

B-4.1/B-4.2 0

!
Whenever a sequential file is open, the first ten words of its
FCB reside in main memory. Words 9 and 10 are required
because of the manner in which FCB subsets are moved
int%ut of FCBs (see Main-Memory-Resident File Control
Block Tables in appendix D). Whenever an indexed file is
open, the first twenty-two words of its FCB reside in main
memory.

A five-word header is appended to an FCB when the FCB is
in main memory. A main memory FCB header is composed
of the following:

Word Mnemonic Definition

1 FILEID File identifier

Bits 0-10 FCB index

Bits 11-15 File manager
unit number.
(This is an in-
dex into the
volume infor-
ma tion table in
main memory.
It corresponds
to the drive on
which the vol-
ume is mounted.
It is not a sys-
tem logical
unit number.)

2 FCBFLG FCB flag

Bits 0-7 Number of cur-
ren t file users
(number of users
to which file is
currently open)

Bits 8-15 Unused

3 FILOCK File lock flag (if nonzero,
contains user identification)

4 NUMSET Number of sets of locked
records in the file (not cur-
rently used)

5 NUMNEW Number of new records
stored on mass memory
since file control block was
updated on mass memory

FILE CONTROL BLOCK INDEX
ALLOCATION TABLE

The location of the file control block index allocation table
(FIAT) on a volume is shown in figure B-1. The FIAT is a bit
table used to control the assignment of file control blocks
within the file control block table (FCBT). The FIAT
occupies a sector of mass memory, but only the first
VIMAXF bits are used.

96768040 C

The correspondence of bits in the FIAT to FCBs in the FCBT
is as follows:

Corresponding
FIAT Word Bit FCB Index

1 15 1
1 14 2

1 0 16
2 15 17
2 14 18

At the time of system installation, all bits in the FIAT are
zeroed. When a bit in the FIAT is one, it signifies that the
corresponding file control block defines a file that has been
created and has not been deleted. When a new file is
crea ted, the file manager searches the FIAT for the first
zero bit. It sets this bit to one and uses the corresponding
FCB for the file.

FILE STRUCTURE EXAMPLE

A FORTRAN program, FSDR, was written to demonstrate
the file structures generated on mass memory for a set of
sample files. The demonstration routine was written to give
an example of each of the following:

• A file definition directory including an overflow file
definition block

• File control blocks

• File records including records marked as deleted

Routine FSDR is shown in figure B-3. To generate an
overflow file definition block, a number of files with the
same scatter code were generated. The number of files with
the same scatter code must exceed the number of file
definition segments (FDSs) that can be stored in one file
definition block (FDB). The number of FDSs per FDB was
computed as follows. The system installation parameter,
VIWPS (number of words per sector on this volume),
equals 96. Therefore, NUMFDS, the number of FDSs per file
definition block, is computed from the formula in the File
Definition Directory section as follows:

NUMFDS = l (VIW:S-1) J

l ~ J = l;} J = 10

Thus, more than 10 files with the same scatter code must be
generated to cause the use of a file definition overflow
block.

The formula for a file's scatter code is given in the File
Definition Directory section. For a file with file name
n" n2, .n3' ~4 and owner w1, w2, w3, w4, the scatter
code c IS aefmed as follows:

c= [~ (mod MINFDB) + 1

B-5

B-6

PROGRAM FSDH
C FILE STRUCTURE DEMONSTRATION ROUTINE.
C CREATE 20 SEQUENTIAL FILES, 13 wITH SAME SCATTER COOt.
C STOkE 5 RECORDS INTO EACH FILE. DELETE A RECOkD IN E~L~ OF THt
C FIRST 5 FILES.

DI~ENSION NAME(20)
DATA NAME/" A~-$G70Po1°P,S-?VI$OV9J308 C D E F G H "I
DIMENSION I~Y~UFC2~),IUATA(c~),IREC(~2) .IktCN(2),IOuATA(1~)

DATA IDATA I" tI,"SVSVOL ",lb.O,bOO,O.tI*OI
DATA IODATA/" ","SYSVOL ".0.1.-11

C INITIALIZE STATUS INDICATORS
DATA ISTAT,IOSTAT.IPSTAT,ICSTAT/~oOI

DATA IHSTAT,ID$TAT/2°01
C FOR RE.CORD RETRIEVAL PkECEDING RECOHD uELETION.
C SET FIRST wORD OF RELATIVE ~ECO~U NUM~t~ TO ltRO.

DATA IRECN(1)/01
DO 1000 -NFILE=l ,20

C STOkE FIRST TwO CHARACTEkS OF FILE NAMt INTO OEFINITION AUkAY~
IDATACl)= NAME(NFILE)
IODATA(1)=NAMECNFILE)
CALL CREATE (IHQI'::!IJ"91DATAdSTAT)
IF CISTAT.lT.O) GO TO 900U

C INITIALIZE REuUtST HUFFER
DO 2u 1= 1,~4

20 IRQHUFCI)=O
CALL OPENFL (IHYhU",IODATA.IuSTAT)
IFCIOSTAT.lT.O) GO TO 9UOO

C PkEPARE RECO~D HUFFER
DU 200 1=1,40
IHEC(I)=NAME(NFILE)+I-l

~OO CONTINUE
CALL PUTS CIRQ~UF.IR[C,~,IPSTAT)

IF (IPSTAT.LT.O) (,0 TO '1000
C DELI:. Tt:: RECOHD "f'..F IL!:." IF NF ILt Lt:.SS THAN OR U.lUAL TO F I \J~.

IF (NFIlE..GT.~) GO TO 9UO
C STORE NFIlE INTO SECOND WO~U u .. ~E.LATIV[kECU~u NuM8ER.

IRECN(2)=NFILE
C HETRIEVE RECORD TO ~E. UELETEO

CALL RE ADR (I Fo(lJbUF. HH:. C tl RE Cr'h IRS TAT)
IF (IRSTAT.LT.O) GO TO 9000

C Dt:.LETE RETHIEVED ~t:.COR()

CALL UELHEC CIRQHU~.IH~C,lOST~T)

IF (IDSTAT.lT.O) GO TO 9UOO
900 CALL CLOSFL CI~Q8UF,ICSTAT)

IF CICSTAT.lT.O) GU TO 9000
1000 CONTINUE

GO TO 9090
~ooo CONTINUE

C P~INT E~ROR MESSAGE
WRITE (12,700U) ISTAT,IO~TAT,IP~TAT,I~STAT,IUSTAT,ILSTAT,

1 (IHQHUFClw),Iw=1.24)
CALL ClOSFl CIHYBUF.IC~TAT)
GO TO 9095

C DEMONSTRATION ~OUTINE COMPLETt

9090 ~RITE (12.1u10)
909~ CONTINUE

CALL PGMOUT
7000 FORMAT (5X,1HISTAT =,$4,1

1 5X.1HIOSTAT=,$4,1
2 ~X,7HIPSTAT=.~4,1

3 5X,7HI~STAT=,$4,1

4 5X,7HIUSTAT=,$~,1

~ 5X,1HICSTAT=,$4./~X,7HIR~~UF=,~~,123(~x,~~./)

7070 FORMAT (5X.*T~t:.NTY ~lLES Ck~ATtD.)

!:.ND

Figure B-3. File Structure Demonstration Routine (FORTRAN)

96768040 A

For the system used in the demonstration, VIMAXF (number
of files permitted on the volume) equals 1024. Therefore,
using the formula in the File Definition Directory section:

MINFDB = rVIMAXF 1
NOMFbS = PWl = 103

If file 1 and file 2 are two files in this system such that the
name of file 1 is:

the owner of file 1 is:

the name of file 2 is:

and the owner of file 2 is:

then the scatter code for the two files is equal only if there
exists an integer m such that:

4 4

E E
i=1 i=1

= m x 103, (= m x 6716),

Each file in routine FSDR was constructed with an owner
string of all ASCII blanks and a name string of all ASCII
blanks except the first two characters.

The first two characters of the first file name are defined to
be blank, A (equals ASCII code 204116), The first two
characters of the next twelve file names are generated by
adding multiples of 6716 to 204116 and selecting those sums
that represent legitimate ASCII cliaracters.

The first two characters of each file name are stDred in the
NAME array (figures B-3 and B-4). For example:

204116 + 3416 x 6716 = 352D16

=ASCII code for 5-

204116 + A16 x 6716 = 244716

=ASCII code for $G

96768040 A

3 0002 0002 .00001 O~G "AHE
0002 20 .. 1 HUM 8257
0003 3520 NUH 13613
0004 2 .. 47 HU" CJ287
0005 3730 HUH 14128
0006 2840 NUH 10311'
0007 2A50 HU" 10ft3?
00118 2C53 HU" 11347
OOOCJ 2021 HUM 11«';53
OOOA 2E5S HUH 11862
0008 2F24 H~ 12068
ooae 305'1 NUH 12377
DaiiD 3CJ33 HUH 14643
OOOE 332A HlM 130CJft
OOOF 4220 HU" 16q28
0010 4320 HUH 17184
0011 4420 NUH 17440
0012 .. 520 Hlm 17696
0013 .. 620 HUH 17q52
0014 4720 N~ 18208
0015 4820 HUH 18464

Figure B-4. Assembly List of Name Array, FSDR Routine

After running the FSDR routine, the location of the file
definition directory (FDD) is obtained from the main
memory volume information table for this volume. (See the
sample in figure D-4.) The sector address of the FDD is
(0,7017). Portions of the FDD as dumped by ODEBUG are
shown in figure B-5.

The address of the file control block (FCB) table is
determined by the formula in figure B-1 using the value of
VINFDB from the appropriate main memory volume infor­
mation table (see the sample in figure D-4). In the system
used in the example, VINFDB equals 8116, Thus, the sector
address of the FCB table is:

(0,701716) + (0, 8116) = (0, 709816),

The first six files created by the routine, FSDR, have FCB
indices C516, C716, C~.l..6' C916, CA16, and CB16,
respectively. (Refer to FIJB numl5er 5416, figure B-5.)

The sector addresses of the FDBs for these files are
709816 + C5 t6 = 715D1 fl'. 715F 16' 716016, 716116, 7162 16,
and 716316, respectIvely. These FCBs are shown
in figure B- 6.

Words 4 and 5 of each FCB give the sector address of the
first record of the file (see the FCB format in the File
Control Block Table section).

The sector address of the first record of each of the first six
files created by the FSDR program may be obtained from
the FCBs shown in figure B-6. For example, file A has
sector address (l,314D).

Using these addresses, the file records for these files are
dumped as shown in figure B-7. Records deleted in the
FSDR routine are indicated in the figure.

B-7

-,

SECTOR -'0000
ADDRESS 0000

2020
2020
0000
0000
0000
0000
0000
0000
0000
0000

SECTOR 0000
ADDRESS -. 0000

FDB HEADER; ZERO ---+100 u 01

1011
50~2
0018
2020
0000
0000
0000
0000
0000
0000
0000
0000
0000
1042
~0~2
0008

't64F 453u
53'tl 4F~5
OOAF 0000
0000 0000
0000 OOou
0000 OOUO
OOUO 0000
0000 0000
0000 OOUO
0000 0000
0000 0000
0000 0000

IMPLIES NO OVERFLOW ~~~~
BLOCK FOR TillS SCATTER ~2~0""'2~0""'-"""""~-~""";"....J

2020
20 0

CODE 0000

SECTOR

0000
0000
0000
0000
0000
0000
0000

ADDRESS +OOUO
FDB HEADER CONTAINS -+ 100681

2020
Ot!O

UOOO
0000
0000
0000
0000
0000
0000
0000
10bA
5052 4641 5230
003A I 41St! 54 !::I 2
2020 009F I 20"1

3631 ~0t!0 t!020 20~0
5420 ~U20 2020 2020
0000 UUOO 0000 0000
0000 ouoo UOOO 0000
0000 0000 0000 0000
0000 UUUO UOOO 0000
0000 UOOu 0000 0000
OUOO OUIlO 0000 0000
0000 UOOO 0000 0000
0000 0000 0000 0000
0000 UOOO 0000 0000
OOUO 0000 0000 0000

3131 2020 2020 2020
't141:: ~3t!0 2020 2020
2020 2020 2020 2070 ~f-

6816• TIDS IMPLIES FDB
NUMBER 6816 (SECTOR
6816 OF FDD) CONTAINS
OVERFLOW BLOCK FOR
THIS SCATTER CODE.

~020 2020 2020 OOC~ I 35~U ~02u 2020 2 0 ;,,) 1411~

;)O~O 2020 2020 202U
020 t!020 2020 2020
020 2020 2020 20cO
020 2020 2020 2020

;JA::'O 2020 2020 2020
~ 2C53 2020 2020
aOt!o oocci 2021 20~0

SECTOR ~020 2020 OOCU I OOOU
ADDRESS ~0000 1014

FDB HEADER; ZERO -+[[[[1 5052
. IMPLIES NO OVERFLOW ;:;2..:.~~~~~. "::~;";;~"';~";;;'~..I
BLOCK FOR TInS SCATTER 0000 0000
CODE. 0000 0000

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

4649 4E30
4820 20~0
0009 0000
0000 0000
0000 0000
0000 0000
000'0 0000
0000 0000
0000 OOUO
0000 0000
0000 0000
0000 0000

00C7 I 24,.7 2020 2020
2020 OOCtiJ 3730 2020)1 c020 ~o~o 00C9 ~
2020 2020 2020 OOCA
2020 2020 2020 2020
2020 2020 2020 2020
2020 c020 2020 2020 ~
0000 0000 0000 0000

~

3133 20~0 2020 ~020
20~0 2020 2020 2020
0000 0000 0000 0000
0000 OUOO 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

Figure B-5. Example of File Definition Directory Entries (Sheet 1 of 2)

B-8

FIRST FDB
IN FDD

FDS FOR FILE G, FCB
INDEX = D8

16

FDB NUMBER 2C
16

FDS FOR FILE A; FCB
INDEX = C5

16
FDS FOR FILE 5-; FCB
INDEX = C7

16
FDB NUMBER 54

16
FDS FOR FILE -!; FCB
INDEX = CD

16

FDS FOR FILE H; FCB
INDEX = D9

16

FDB NUMBER 5E
16

96768040 A

SECTOR -+0000 701D FDS FOR FILE B
ADDRESS 0000 5052 4&4f-

2020 0011 It ~o
020 2020 0003 0000 OOOu

0000 0000 0000 0000 UOOO
OOOu 0000 0000 OOOU 0000
0000 0000 0000 0000 0000

FDB NUMBER 67
16 OOOU 0000 0000 0000 OOOU

0000 0000 OOOU oouO 0000
0000 0000 OOUO 0000 0000
0000 0000 0000 UOOO 0000
0000 0000 0000 0000 0000
0000 0000 0000 UOOO 0000
0000 . 101E

FDB HEADER; ZERO ~ 2E5& 20i!0 20~U 2U~0 2020
IMPLIES NO MORE OVER- 202U OOCE 2F24 202U 2020 2020

FLOW BLOCKS FOR TIDS 2020 2020 OOCF 30~9 2020 202 FDS FOR FILE OY
020 2020 2020 OOUu 2020 ~02 FDS FOR FILE 93 SCATTER CODE 020 2020 2020 2U20 2020 202
020 2020 2020 202U 0000 0000 FDB NUMBER 68 (OVER-

0000 0000 . 0000 OOUO UOUO 0000 FLOW BLOCK FOR FDB 54)
0000 0000 0000 OOUU OOUO 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 OOOU OOOU 0000 FDS FOR FILE 3*
0000 0000 0000 OOOU 0000 0000
0000 0000 0000 oouu OOOU 0000

Figure 8-5. Example of File Definition Directory Entries (Sheet 2 of 2)

96768040 A B-9

SECTOR ADDRESS OF FIRST RECORD

0000 715U l
0008 0000 0258 raoul JI!tQI OOOU 0000 0005
UOOO 0000 0000 oouo 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 UOOO 0032
2041 2020 2020 2020 c020 l020 2020 2020
0010 0000 0000 0000 0000 0000 oouo 0000
0000 0000 0001> 0000 0000 0000 0000 0000 FCB FOR FILE A
0000 0000 0000 OOOU 0000 0000 0000 0000
0000 0000 0000 OOOU 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 SECTOR ADDRESS OF 0000 715F i
0008 0000 025H 10001 :JSE11 0000 0000 0005 FIRST RECORD
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0032
3520 2020 2020 2020 2020 2020 2020 2020
0010 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

FCB FOR FILE 5-0000 0000 0000 . 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 OOOU 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

SECTOR ADDRESS OF 0000 7160 i
OOOti 0000 0258 10001 36141 0000 0000 0005 FIRST RECORD
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0032
2447 2020 2020 202U 20"20 2020 2020 2020
0010 0000 0000 0000 0000 0000 0000 0000
0000 0000 0001> 0000 0000 0000 0000 0000 FCB FOR FILE $G
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 SECTOR ADDRESS OF
0000 11b1 i FIRST RECORD 0008 0000 025~ 100 01 36411 0000 0000 0005
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 003Z
3730 2020 2020 2020 20~0 20~O ~020 2020
0010 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 FCB FOR FILE 70 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 OOUO 0000 0000 0000 0000 0000
0000 0000 0000 OOUO 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

Figure B-6. Example of File Control Blocks <Sheet 1 of 2)

B-IO 96768040 A

SECTOR ADDRESS OF FIRST RECORD
0000 1162 ,
U008 0000 0258 12221 367AI 0000 0000 ooos
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 U032
2840 2020 2020 2020 2020 2020 2020 2020
0010 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 FCB FOR FILE (M

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 oouo 0000 0000 0000 0000
OOOU 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000- 0000
0000 7163 I

SECTOR ADDRESS OF

0008 0000 0258 (QQOl 36Am OOOU 0000 0005 FIRST RECORD
0000 0000 0000 OOOU 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0032
2ASO 2020 2020 2020 2020 l020 2020 2020
0010 0000 0000 0000 0000 0000 OOUO 0000
0000 0000 0000 0000 .0000 0000 0000 0000 FeB FOR FILE *p
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 OOOU 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

Figure 8-6. Example of File Control Blocks (Sheet 2 of 2)

'-

96768040 A B-11

B-12

FILE
RECORDS
FOR
FILE
A

FILE
RECORDS
FOR
FILE 5-

·FILE
RECORDS
FOR
FILE $G

FILE
RECOR~

FOR
FILE 70

RECORD 1 MARKED 0001 3140
AS DELETED --+ SESE 2042

END-OF-FILE
CODE

{

RECORD2
MARKED AS.
DELETED

{

RECORD3
MARKED AS
DELETED

RECORD 4
MARKED AS
DELETED

2049
2051
2059
2061

---+ 5F5F
0000
0000
0000
0000
0000
0000
0001

:441
44F
ESE
45F
467

204A
2052
205A
2062

2448
2450
2458
2460
2468

2043
2048
2053
2058
2063
0000
0000
0000
0000
0000
0000
0000

2449
24S1
2459
2461
2469
0000
0000
0000
0000
0000
0000
0000

2044 2045 2046· 2047
·204C 204D 204E 204F
2054 2055 2056 205"7
205e 2050 205E 205F
2064 2065 2066 2067
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

244A 2448 244C 2440
2452 2453 2454 2455
245A 2458 245C 2450
2462 2463 2464 Z465
246A 2468 246C 2460
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 oouo
0000 0000 OOOU 0000
0000 0000 0000 0000
0000 0000 0000 0000

3744 3746
374C 374E
3754 3756
0000 0000
0000 0000
0000 0000
0000 0000
0000 OOOU
0000 OOUO
0000 0000

Figure B-7. Example of File Records Including Records Marked as Deleted (Sheet 1 of 2)

204
205
205
206
206
0000
0000
0000
0000
0000
0000
0000

244E
2456
245E
2466
246E
0000
0000
0000
0000
0000
0000
0000

96768040 A

,-

''''-- -

FILE
RECORDS
FOR
FILE M

{
I

RECORD 5
MARKED AS
DELETED

FILE RECORDS FOR FILE *p
(NO RECORDS DELETED IN THIS FILE)

0001 367A
128,.U
2855
2850
2865
SESE
5F5F
0000
0000
0000
0000
0000
0000

{::::
l2ASO

·2AS8
2A60
2A68
2A10

0000
0000
0000
0000
0000
0000

284E
2856
28SE
2866
286E
SFSF
0000
0000
0000
0000
0000
OuOO
36AO

.2AS1
2A59
2A61
2A69
2A71
5F5F
0000
0000
0000
0000
0000

. 0000

284F
2851
285F
2867_
286F
0000
0000
0000
0000
0000
0000
0000

2AS2
2ASA
2A62
2A6A
2A12
0000
0000
0000
0000
0000
0000
0000

28~0 2851 2852 2853
2858 2859 285A 2858
2860 2861 2862 2863
2868 2869 286A 2868
2810 2811 2812 ~813
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
OOOU 0000 0000 0000

2A~3 2A54 2ASS 2A~b

2A!:iB 2A~C 2A~O 2ASE
2Ab3 2A64 2A6~ 2A66
2A68 2AbC 2A60 2A6E
2A73 2A14 2A75 2A16
0000 0000 0000 OOUO
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
OOUO 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

Figure B-7. Example of File Records Including Records Marked as Deleted (Sheet 2 of 2)

96768040 A

2854
28~C
2864
286C
2874
0000
0000
0000
OOOU
0000
0000
UOOO

2AS1
2ASF
2Ab1
2A6F
2A71
0000
0000
0000
0000
0000
0000
0000

B-13

::>

'-"

KEY INDEX STRUCTURE C

The general method of key index storage is described in Key
Storage, section 1. An indexed file has from one to four
keys. Each key defined for a file has its own key index. All
the key indices for a given file make up that file's key index
structure. For each record stored into an indexed file, a key
information segment (KIS) is stored into the lowest level of
the key index. This KIS points directly to the record. The
KISs in the lowest level are ordered by key value. The
lowest level is called a sequence set for the key. The KISs
in each level of an index are grouped together in key
information blocks (KIBs). Each KIS in an upper level of an
index points to a KIB in the next lowest level. The highest
level of a key index contains only one KIB.

The format of a KIS and the format of a KIB are shown in
the Key Information Block section. Storage within a key
index is discussed in the Storage Within a Key Value section.
Retrieval by key value is discussed in the Retrieval by Key
Value section. Location of the key index structure on mass
memory is discussed in the Key Index Control Parameters
section. An example of a key index structure is given in the
Key Index Example section.

KEY INDEX CONTROL PARAMETERS

The parameters that control a file's key index structure are
contained in words 9 through 22 of the file's file control
block as defined in the File Control Block Table section.
The ordered pair (TNKEYM,TNKEYL) is the total number of
key information blocks allocated, not the current number of
blocks used. The ordered pair (KEYBAM,KEYBAL) is the
beginning sector address of the key index structure.

KEY INFORMATION BLOCK

A key information block consists of a six-w'ord header
together with a set of KISs. The format of a KIB header is
as follows:

Word Mnemonic Description

1 NUMKIS Number of KISs in this KIB.

The ordered pair (NKIBNM,
NKIBNL) is meaningful only
for KIBs in the lowest level of
the key index structure. For
the lowest level, (NKIBNM,

2 NKIBNM
NKIBNL) is a relative KIB

3 NKIBNL number pointing to the KIB on
this level with the set of key
values following the key values
in this KIB. If (NKIBNM,
NKIBNL) = (0,0), this is the
KIB with the highest key val-
ues stored in the file.

(The ordered pair (PKIBNM.
PKIBNL) is the relative KIB

4 PKIBNM number pointing to the KIB in
5 PKIBNL the next highest level that

contains the KIS pointing to
this KIB.

96768040 C

6 KIBTYP KIB type

o Highest level block for
this key

1 Intermediate level block

2 Lowest level block for
this key

The format of each KIS is as follows:

o Key value (left-justified).

o A three-byte relative record number pointing to a
record or a three-byte relative KIB number pointing to
a KIB in the next lowest level of the key index
structure.

If KEYLEN equals key length in bytes, and KISLEN is the
length of a key information segment, then:

KISLEN = r KEY2LEN 1 + 2

Where ryl is the least integer greater than or equal to y.

The length of a key information block is the system
installation parameter, KIBSEC (see the Main-Memory­
Resident File Manager Operation Installation Parameters,
appendix D). Each KIB in the system is KIBSEC sectors
long. The number of KISs that fit into a key information
block is computed as follows. Let VIWPS equal the number
of words per sector for the volume on which the file resides.
Then if KISKIB equals the maximum number of KISs that fit
into a KIB:

KISKIB = lKIBSEceVIWPS-6J
KlSLEN

Where lyj is the greatest integer less than or equal to y. 0

STORAGE WITHIN A KEY INDEX

When a new record is stored into an indexed file, a key
information segment (KIS) is stored into a key information
block (KIB) in the sequence set for each key index for the
file. The file manager may have to shift other KISs within a
KIB, so that the KISs remain in order by key value. The KIS
pointing to the KIB is modified if necessary. It may be
necessary to create a new sequence set KIB in which to
store a new KIS. In this case, the original full KIB is split so
that half the existing KISs in the block remain in that KIB
and half are moved to the new KIB. An odd number of KISs
are split so that the new KIB has one fewer KIS than the old
KIB. An exception to the halfway split occurs in the
primary key index for an indexed file for which the user
specified that records would be presented in order by
primary key value. For such a file, only the new KIS is
stored in the new sequence set KIB. A second exception to
the halfway split occurs when a split at the halfway point
would cause KISs for the same key value to be split between
two KIBs. In this case, the KISs for the same key value are
stored into the same KIB if possible. (The second type of

C-l

exception is illustrated in figure C-2; see the index for 11
records stored, the index for 13 records stored, and the
index for 16 records stored.) Whenever a new sequence set
KIB is created, a new KIS is stored in the level above the
sequence set to point to the new KIB. Blocks in levels above
the sequence set are split in the same way. When a split
occurs in the highest level of an index, a new level is
created.

The KIB stored at the start of the key index structure has a
relative KIB number (0,1). The KIB stored immediately
following KIB (0,1) is KIB (0,2), etc. The highest level KIB
for the primary key is always stored in KIB (0,1). If a
secondary key exists for the file, the highest level KIB for
the secondary key is always stored in KIB (0,2). Similarly, if
key 3 exists its highest level KIB is stored in KIB (0,3), and if
key 4 exists its highest level KIB is stored-in KIB (0,4).

Storage within a key index is illustrated in figure C-l. An
example of key index storage is shown in figure C-2. In this
example, KIBSEC equals 1, VIWPS equals 96, and KEYLEN
equals 29 bytes. Therefore:

KISLEN = 2 + r ¥ 1 = 17

KISKIB l ~ J = l ~ J
= 5 (there are 5 key information segments per
key information block).

Another example of key indices is given in the Key Index
Example section. The secondary key in that example has the
same set of key values as shown in figure C-2. KIBs in the
Key Index Example section split in a different way than
shown in figure C-2 because KIBSEC has a different value in
that section.

RETRIEVAL BY I{EY VALUE

It may be observed from figure C-1 and the example in
figure C-2 that for a key index with n levels, it is
necessary for the file manager to search n key information
blocks to find the pointer to the first record with a given
key value. If there is no record for the specified key value,
the number of searches required to determine this is less

C-2

than or equal to n. If there is a record with a higher key
value, the file manager makes all n searches, as the file
manager is designed to find the next record as ordered by
key value when the specified key value is missing.

KEY INDEX EXAMPLE

A FORTRAN program, KIDR, is included to demonstrate the
key index structure generated on mass memory for a sample
file with two keys. The indexed file EXAMPLE is created by
KIDR (see figure C-3). Program KIDR then stores 16
records into the file. Primary key values for these 16
records are 10016' 20016' 30016' etc. The secondary key
values for the 16 stored records are shown in
figure C-2; that is, the secondary key values are 6,16,10, 7,
and so forth.

After executing the KIDR routine, the file control block
(FCB) for the EXAMPLE file is dumped, as shown in
figure C-4. In general, an FCB is located by examining the
file definition directory on the appropriate volume. In
locating the FCB for file EXAMPLE, it was known that no
file has been deleted since the system was initialized.
Therefore, the index of file EXAMPLE's FCB within the FCB
table is obtained from the main memory volume information
table parameter VICURF. Using the location of the key
index structure in the FCB in figure C-4, the key index
blocks are dumped, as shown in figure C-5. Words 9 and 10
of the FCB indicate the next available key information block
(KIB) is KIB (0,5). This means there are four existing KIBs.
Each KIB is three sectors long, since the value of KIBSEC
for this system is 3. The key index structure for this file is
obtained by dumping

4 KIBs x 3 sectors
KIB = 12 sectors

starting at the sector address of a key index of 1,708. These
12 sectors are shown in figure C-5. The key index for the
primary key consists of KIB (0,1) and KIB (0,3). The key
index for the secondary key consists of KIB (0,2) and
KIB (0,4).

The location of the EXAMPLE file records is obtained from
the file control block in figure C-4. The file's records are
dumped as shown in figure C-6.

96768040 B

o

KIB
~

HEADER KIS KIS KIS

~B~~B .- ,.---~

HEADER KIS KIS • • • HEADER KIS KIS

~./ ~~ KIB
1\

~.
, , "*'

HEADER KIS KIS HEADER KIS KIS

\
• •

/KIB \ KIB r--. ~

HEADER KIS KIS ~ HEADER KIS KIS

TI~ ,~CORD \ I
FILE RECORD

I
,.

FffiST RECORD (BY SECOND RECORD AS
STORAGE ORDER) OF ORDERED BY KEY VALUE
THE RECORDS WITH AND WITHIN KEY VALUE
LOWEST KEY VALUE BY STORAGE ORDER

\

\

I--

\.

KIB
1""

• • • HEADER KIS

~
r ~

• • • HEADER KIS KIS

j
•

• •• HEADER KIS KIS

LAST RECORD AS
ORDERED BY KEY' VALUE
AND WITHIN KEY VALUE
BY STORAGE ORDER

Figure C-l. Key Index Storage

96768040 A

,

LEVEL n

LEVEL

n-l

LEVEL
n-2

LEVELS
n-3,

n-4,
000,2

LEVEL 1

C-3

C-4

THE FOLLOWING N<Y1'ATION REPRESENTS A KIB:

WHERE: (0,1) IS THE RELATIVE KIB
NUMBER AS NUMBERED
WITHIN KIBsFOR.TH1S
KEY.

IS THE HEADER.

Dl' D2' DS' D4' DS ARE KISs WITH KEY VAJ,UES
OF Dl. D2. DS. D4. DS.
RESPECTIVELY.

THE FOLLOWING NCYrATION REPRESENTS A FILE
RECORD:

WHERE: (0. r) IS THE RELATIVE RECORD NUMBER OF
THE RECORD.

Relative Record
Number (0, r)

(0,1)
(0,2)
(0,3)
(0,4)
(0,6)
(0,6)
(0,7)
(0,8)
(0,9)
(0,10)
(0,11)
(0.12)
(0,13)
(0,14)
(0~15)

(0,16)

Key Value (D)

6
16
10
7
5
8
8
7

10
15
9
8
9
8
9
9

Figure C-2. Example of Key Index Storage (Sheet 1 of S)

96768040 A

96768040 A

NUMBER OF
RECORDS
STORED

1

2

3

4

KEY INDEX

LEVEL 2

LEVEL 1

LEVEL 2

LEVEL 1

LEVEL 2

LEVEL 1

LEVEL 2

LEVEL 1

Figure C-2. Example of Key Index Storage (Sheet 2 of 5)

NUMBER OF
RECORDS
STORED

5

6

7

8

C-6

KEY INDEX

LEVEL 2

LEVEL 1

LEVEL 2

. LEVEL 1

LEVEL 2

LEVEL 1

LEVEL 2

LEVEL 1

Figure C-2. Example of Key Index Storage (Sheet 3 of 5)

96768040 A

NUMBER OF
RECORDS
STORED

•
•
•

10

11

•
•
•

13

96768040 A

•
•
•

•
•
•

KEY INDEX

•
•
•

•
•
•

Figure C-2. Example of Key Index Storage (Sheet 4 of 5)

LEVEL 2

LEVEL 1

LEVEL 2

LEVEL 1

LEVEL 2

LEVEL 1

C-7

NUMBER OF
RECORDS
STORED

14

16

C-8

•
•
•

KEY INDEX

LEVEL 2

LEVEL 1

•
•
•

LEVEL 3

LEVEL 2

LEVELl

Figure C-3. Example of Key Index Storage (Sheet 5 of 5)

96768040 A

\
'-...

96768040 A

C
C
C
C
C
C
C
C
C

P~OGRAM KIDR
KEY INDEX DEMONSTRATION ROUTINE
PURPOSE OF THIS PROGRAM IS TO CREAT~ AN INDEXED FILE AND
STORE 16 RECORDS IN FIL~.
KEY VALUES FOR PRIMARY KEY ARE $100,S200.S300.~TC.
KEY VALUES FOR KEY 2 COkRESPOND TO KEY VALUES IN EXAMPLE
IN FIGURE C-2.
RECO~D. FORMAT

WORD CONTENTS

C 1 LEFT BYTE OF WOkU 1 IS UNUSED
C 1-15 KEY 2 (KEY ~ STARTS IN RIGHT dYTE OF wORD 1)
C 16 KEY 1 .
C ~ESERV~ SPACE FOR FILE REQUEST BUFFER AND FILE INFORMATIO~ 8UFFE~

INTEGER REQ8UF(24)
DIMENSION IDATA(24).IOOATA(15)

C SET FILE NAME = EXAMPLE
C SET FILE OWNER= 49504
C VOLUME IS SYSVOL
C SET RECORD. LENGTH = 32 ~YT~S (16 WORDS)
C SET MAXIMUM NUMBER ~ECOkDS TO 500.
C SET FILE TYPE INDEXED WITH RECORDS PRESENTED IN ORDER WITH RES~ECT
C TO PRIMARY KEY. RECOkDS NOT SECTOR-ALIGNED.
C PRIMARY KEY IS STORED IN BYTES 31-32
C SECONDARY KEY IS STORED IN BYTES 2-30

DATA IDATA /'EXAMPLE 49504 SYSVOL ',32.0.500,S4001,2,31,29,~,
1 4*0/

DATA 10DATA /'EXAMPLE 49504
DIMENSION KEYVL2(16)

~YSVOL

DATA KEYVL2 /6,16,lO.1,5.ijJ6,1,10.15.9,8.9.6,9,9/
INTEGER RECBUF(18)
UATA RECBUF /lS*O/, KEYI/O/

C INITIALIZE STATUS INDICATORS
DATA ISTAT.IOSTAT.IwSTAT,ICSTAT/4*0/

C CREATE INDEXED FILE
CALL CREATE (REQBUF.IDATA,ISTAT)
IF (ISTAT.NE.O) GO TO 9000

C INITIALIZE REQUEST ~UFFER
DO 20 1= 1,24

20 REQBUF U) =0
CALL OPENFL (REQBUF,IODATA,IOSTAT)
IF (IOSTAT.LT.O) GO TO 9000

C STORE 16 INDEXED RECORDS INTO FILE
00 1000 IND=1.16

C PRIMARY KEY VALUE = RECO~D NUM8ER ° 5100
KEY1 = KEY1 + $0100
RECBUF(16) = KEYl

C PICK UP SECONDARY KEY VALUE FROM KE~VL2 ARRAY.
RECBUF(1S)= KEYVL2(IND)
CALL WRITER (REYBUF,RECBUF,KEY1,IWSTAT)
IF (IWSTAT.LT.O) GO TO ~OOO .

1000 CONTINUE
CALL CLOSFL (REQBUF,ICSTAT)
IF (ICSTAT.LT.O) GO TO 9000
GO TO 9090

C PRINT ERROR INFORMATION AND EXIT.
9000 CONTINUE

WRITE (12,1000) ISTAT,IOSTAT.IWSTAT,ICSTAT.KEYl,REQBUF
GO TO 9095

9090 WRITE (12.1010)
C D~MONSTRATION ROUTINE COMPLETE

9095 CONTINUE
CALL PGMOUT

1000 FORMAT (5X,1HISTAT =,54,/
1 5X,1HIOSTAT=,$4,/
2 5X,1HIWSTAT=,S4,/
3 5X,1HICSTAT=,'4,/

·4 5X,1HKEYl =,S4,/1HREQBU'=,S4,/23(5X,S4,/)
7070 FORMAT (5X,*SIXTEEN INDEXED RECORDS STOREDO)

END

Figure C-3. Key Index Demonstration Routine (FORTRAN)

C-9

KIB HEADER;

0000
0010
0000
0010
4558
0020
0000
0000
0000

·0000
0000
0000
0000

INDICATES 1 KIS IN
TIDSKIB

C-10

7172
0000
0005
0002
4140
0000
0000
0000
0000
0000
0000
0000
0000

01F4
0000
0000
504C
0000
0000
0000
0000
0000
0000
0000
0000

SECTOR ADDRESS OF FIRST RECORD = (I, 3DOO)

0000
0002
0000
3420
0000
0000
0000
0000
OOUO
0000
0000
0000

0010
001F
0150
2020
0000
0000
0000
0000
0000
0000
0000
0000

SECTOR ADDRESS OF
KEY INDEX = (1, 3D54)

. Figure C-4. Examp~e of FCB for Indexed File

INDICATES IDGHEST LEVEL BLOCK FOR TmS KEY

0001 3054
--+ 001 0000 0000 oouo 0000 0000 10UO 0000 KIS WITH KEY VALUE =

003 0000 0000 ooou '0000 0000 0000 0000 1000
16

; POINTER TO KIB
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 IN NEXT LOWEST LEVEL
0000 0000 0000 0000 0000 0000 0000 0000 = (0,3) 0000 0000 0000 0000 . 0000 0000 0000 0000
0000 0000 0000 OOuu 0000 0000 0000 0000
0000 0000 0000 ooou 0000 0000 0000 0000
0000 0000 0000 OOOU 0000 0000 UOOO 0000
0000 0000 OUOO OOUO 0000 0000 0000 0000
0000 0000 0000 0000 OOUO 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0001 3055
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 UUOO 0000 0000
0000 0000 0000 0000, 0000 0000 0000 0000 KIB (0,1)
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 000.0 0000' 0000 0000 0000 0000
0000 0000 0000 Oouo 0000 0000 0000 0000
0000 0000 0000 OOUO 0000 0000 0000 0000
0001 3056
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 ooou 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 OOOU 0000 0000 oouO 0000
0000 0000 0000 OOOU 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 OOOU 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

LEVEL I, PRIMARY KEY

Figure C-5. Example of Key Index Blocks (Sheet 1 of 4)

96768040 A

0001 3057
KIB HEADER; FIRST 0001 0000 0000 0000 0000 0000 0000 KIS WITH KEY VALUE
WORD INDICATES 1 0000 0000 0000 0000 OOUO 0000 0000 = 16 (=1016) t; POINTER
KIS IN TInS KIB; WORD 0000 0000 0000 0000 1000 0000 0004
6 INDICATES mGHEST 0000 0000 0000 0000 0000 0000 0000 TO KIB IN NEXT LOWEST

LEVEL FOR TmS KEY. 0000 0000 0000 0000 0000 0000 0000 LEVEL = (0,4)
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 OOOU .
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 OOUO 0000 0000 0000
0000 0000 0000 OOOU 0000 0000 0000
0001 3058
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 OOOU . 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 KIB (0,2)
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 UOOO 0000 0000
0000 0000 0000 OOUO 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 OOOU 0000
0000 0000 0000 OOOU 0000 0000 0000 0000

-- 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0001 3059
0000 0000 0000 OOUO 0000 0000 0000 0000

'- OOOU 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 OOOU 0000 0000 0000 0000
0000 0000 0000 OOUO 0000 0000 OOUO 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

'-.

LEVEL 1, SECONDARY KEY

"-.

t NOTE THAT KEY VALUE IS LEFT JUSTIFIED IN lOS

Figure C-S. Example of Key Index Blocks (Sheet 2 of 4)

'--

- ',-

96768040 A C-ll

KIB HEADER; FIRST 000 KIS WITH KEY VALUE
WORD INDICATES 16 KISs 0400 = 10016' RELATIVE
IN THIS KIB; WORDS 4 AND 0006
5 INDICATE KIS IN KIB 0000 RECORD NUMBER

(0, 1) POINTS TO TIDS KIB; oeoo POINTER = (0, 1)
OOOE

WORD 6 INDICATES THIS 0000
IS LOWEST LEVEL OF 0000
THIS KEY. 0000

0000

KIS WITH KEY VALUE 0000
0000 = F00

16
, RELATIVE

RECORD NUMBER 0000 0000 0000 0000 0000 0000

POINTER = (0, F 16) 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

KIB (Of 3) 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

0000 ooo~ (}OOO 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0.000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

LEVEL 2 (LOWEST· LEVEL), pmMARY KEY

Figure C-5. Example of Key Index Blocks (Sheet 3 of 4)

C-12 96768040 A J

3050
KIB HEADER 000 0000 0000 0002 ·0002 0000 0000

KIS WITH KEY VALUE 5, 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0500 0000 0005 0000

RELATIVE RECORD NUM- 0000 0000 0000 0000 0000 0000 0000 0000
BER POINTER = (0, 5) 0000 0000 0000 0000 0000 0600 0000 0001

0000 0000 0000 0000 0000 0000 0000 0000
0000 OOOU 0000 0000 0600 0000
0007 0000 0000 0000 0000 0(100
0000 0000 0000 0000 0000 0600
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0700
0001 305E

..2 <!.!La _ O~ 0 _ O~ ~ £E..O.!.. ..!.O a 0

t -'0000 0000 00000000 0000-0000 0000000
0000 0700 0000 OOO·~ 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

0 0000 0800 0000 0006 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0800 0000 oooe 0000 0000 KIB (0,4)
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0900 0000 0008 0000
0000 0000 0000 0000 0000 0000 0000 0000

0 0000 0900 0000 0000
0000 0000 0000 0000 0000

t 0000 0000 0000 0000 0000 0000 0900 0000
000i-305F--- ----- - --

t OOOF 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0900
0000 0010 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

"- OAOO 0000 0003 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
000 OAOO 0000 0009 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
a 00 0000 OFOO 0000 OOOA 0000 OOUO 0000

KIS WITH KEY VALUE 0000 0000 0000 0000 0000 0000 0000 0000

= 16 (= 1016)' RELATIVE 0000 0000 0000 1000 0000 0002 0000 0000

RECORD NUMBER POINTER
0000 0000 0000 0000 0000 0000 0000 0000

= (0,2)

LEVEL 2 (LOWEST LEVEL), SECONDARY KEY

"-- t DASHED LINES INDICATE A SECTOR BOUNDARY WITHIN A KIS

Figure C-5. Example of Key Index Blocks (Sheet 4 of 4)

'-
96768040 A C-13

C-14

RECORD 1; PRIMARY KEY
VALUE = 100

16
; SECONDA

KEY VALUE = 6

0001 3000
~~OOO 0000

0000 0000
0000
0000

RECORD 2 ---+

RECORD 3 ---+

RECORD 16 PRIMARY
KEY VALUE = 1000

16
,

SECONDARY KEY VALU
= 9.

~

E

0000 0000 0000
0000 0000 0000
0-000 0000 0000
0000 0000 0000
0000 0000 0000
pOCO 0000 0000
pOCO 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0001 3001
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
'0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0001 3002
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
SF5F SF5F I 3030
2020~ 2020 2020
2020 2020 2020
2020 2020 2020

END-OF-FILE CODE

0000 0000 0000
0000 0000 0000
OOUU 0000 OOOU
0000 0000 0000
0000 OOUO 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 OOOU 0000
0000 0000 0000
0000 0000 OOOU
0000 0000 UOOO

0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0'000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
3030 3030 3030
2020 2020 2020
2020 2020 2020
2020 2020 2020

Figure C-6. Example of Indexed File Records

0000 OO~O
OOOb ;0'"1"00
0000 0000
0010 0200
0000 0000
OOOA 0300
0000 0000
0007 040()
0000 0000
0005 0500
0000 0000
0008 0600

0000 0000
0006 0700
0000 0000
0007 0800
OOOU 0000
OOOA 0900
0000 0000
OOOF OAOO
0000 0000
0009 O~OO
0000 0000
0008 oeoo

0000 0000
0009 0000
0000 0000
0006 OEOO
0000 0000
0009 OFOO
0000 0000
0009 iiooo
3330 3720
2020 c020
20CO 2020
2020 2020

96768040 A

o

"-

IFllE MANAGrEel OPrEEtAiDON PARAMETERS AND
MAIN-MEMORY -RESIDENT TABLES

The file manager requires a set of parameter values and
main memory tables that are initialized at the time of
system installation and are dependent on the particular
installation. These parameter values and tables are con­
tained in the file manager portion of SYSDAT. This
appendix describes these parameters and tables. Further
information on the determination of the initial parameter
values may be found in the MSOS ordering bulletin.

rll'lAIN-MrEMOnV -neSIDfCNY IFILr: MANAGER

OPL:llAiION INSTALLATION PARAMEYIERS

The following installation parameters affect the operation
of the file manager. Each is an entry point in the file
manager area of SYSDAT, evaluated by an equate. Values
of these parameters vary from one system to another.

Mnemonic Description

FMRDEL Record-deleted code, used by the file
manager to mark deleted records. This is
usually an infrequently used ASCII code;
for example, (5E5E

16
).

FMEOFC

FMMOSU

NOTE

Users must define their record
formats so that the value of
FMRDEL can never occur as a
data value for the first word of a
record.

End-of-file code. The file manager stores
the value of FMEOFC into the first word
and into the second word of the space
where the next new record would be
stored in a file. The value of FMEOFC
must be different from the value of
FMRDEL. Usually an infrequently used
ASCII code; for example, (5F5F 16) is
used as the value of FMRDEL.

NOTE

Users must define their record
formats so that the value of
FMEOFC can never occur as a
data value in the first two words
of a record.

Maximum number of open sequential files
permitted a single file manager user

FMMOIU Maximum number of open indexed files
permitted a single file manager user

FMNRCD Maximum number of new records that
may be stored into a file before the file
manager automatically updates the file
control block on mass memory to reflect
the new number of records in the file

96768040 B

KIBSEC

ANOFPU

NTSUSR

Length of a key information block in
sectors

Maximum average number of open files
per user

Maximum number of simultaneous users of
file manager

MAXCOP Maximum number of concurrent open files
in the system

ANRLPU Average number of record locks per user

U5lER CONTROL YAB~

The user control table (VCT) consists of a six-word entry for
each file access permit currently in effect. Each access
permit corresponds to a user-file combination. If a given
user has n files open, there are n entries in the UCT for
that user. If a given file is currently open to q users, there
are q entries in the UCT for that file. Entries in the UCT
are not ordered. The maximum number of entries in the
UCT is the value of MAXCOP (see the Main-Memory­
Resident File Manager Operation Installation Procedures
section). The address of the UCT is UCTABL within the file
manager area of SYSDAT (see figure D-1). When an open
file request is made and an entry space is needed in the
UCT, the file manager selects the first entry space with a
zero-value first word. If no entry space is available in the
UCT, the OPENFL request is rejected. When a file is closed
to a user, the corresponding UCT entry is cleared. The
format of each UCT entry is shown in figure D-1.

The user identifier in word 1 of a UCT entry is one of the
following:

o A unique user identification code assigned to the user
by the ITOS executive at the time an open file request 0
was intercepted by the ITOS executive.

o The address of the user's request buffer.

The latter definition of user identifier is used whenever an n
open file request is not intercepted by the ITOS executive. it

The file identifier in word 2 of a UCT entry is defined in
figure D-1. The file manager unit number in bits 11 through
14 is not the system logical unit number. It is an index into
the file manager volume information table, where the first
volume entry in the table has the index value 1. For further
information, see the Main-Memory-Resident File Control
Block Tables section.

MAIN-MEMORY -RESIDENT FILE
CONTROL BLOCK TABLES

File control block format is given in the File Control Block
Table, appendix B. As noted in appendix B, a certain portion
of a file's file control block (FCB) must reside in main

D-1

.. USER CONTROL TA~L~
•

THE USEH CONTHOL TA~Lt (UCT) K~E~S AN UP-TO-UATE HtCUkU OF
~HICH FILES AH~ OP~N bY WHICH USERS. TH~ UCT ~ONTAIN~
MAXCOP b-WORU USER/OPEN FILE ENTHIES. A b-_OHU tNTHY CON­
TAINS THE FOLLOWING INFORMATION. wORD 1

WORD 2
USEH ID~NTIFIEH .. PS~UDO FILE IOENTIFIER .. ~IT 15 PSEUOO LOCK FLAG

• ..
• ..
•

=1. FILE USE.H~ LOCKEU OUT. MAIN
M~MORY IS SWAPPEO. SWAPPtU
AR~A INCLUDES FCb INfOHMATION
FOH THIS FIL~, ANU TM~HE IS
INSUFFICIE.NT SPACE TO OU~LICATE.
THIS INFORMATION IN UNSWAPPE.U
AREA.

=O,'NO HEASON TO LOCK OUT USEHS DUE
TO MAIN MEMOHY SWA~.

•
•

bITS 14-11 fILE MANAGER LOGICAL UNIT NUMb~H
bITS 10-00 INDEX OF FCB IN FCB TAbLt

• FCB CORE. ADDRESS
WORD 3
\IIORD 4
WORD 5
WORD b

FILE. SPACE LIMITS TAbLE ENTHY ADDRESS, 0 IF NON~
FCb SUbSET ADDHE.SS

• CONTHOL POINT OF USER (CAN B~ CHANGED) ..
ENT MAXCOP MAX NO. OF CDNCU~RENT O~ENS PfRMITTE.O
EYU MAXCOP(ANOFPU"NTSUSH)

•
ENT UCTLEN
EQU UCTLEN(MAXCOP"b) LENGTH OF UCT

•
ENT UCTABL UCT

UCTA~L bZS UCTABL(UCTLEN)

Figure D-l. User Control Table

memory when the file is open to a user. The specific portion
of the FCB required in main memory depends on whether the
file is sequential or indexed. The required FCB words for
each type of file are specified in File Control Block Table,
appendix B. Usually required FCB words reside in main
memory outside user space. There is a provision for user­
space-resident FCB portions, however. This is described in
appendix L. For FCBs not stored in user space, two tables
exist in the FMTABL portion of SYSDAT to contain required
portions of FCBs. One table is for sequential files, and one
is for indexed files (see figure D-2).

FCBs in these tables are not ordered. When a new table
entry is needed, the file manager uses the first entry with a
zero first word. No duplicates occur in these tables; that is,
if a file is open to more than one user, its FCB appears only
once in the tables.

If two or more users have opened a given file and each user
has provided for FCB storage within his own user space, the
set of FCB words that can be modified must be stored in one
commonly used buffer. The FCB words that can be modified
are the five-word header together with words 6 through 10
of the FCB (see File Control Block Table, appendix B).
These words are referred to as the file's shared subset.
When necessary, the file' manager stores a file's shared
subset into the subset control table. A sample subset
control table from the file manager portion of a sample
SYSDAT is shown in figure D-3. There are no duplicates in
this table. Entries are not ordered. An entry in this table is
empty if its first word is zero.

A file manager user may elect to store FCB words for an
open file within his own user space as described in
appendix L. When such a file manager user is swapped out,

D-2

the system executive causes an entry to be stored into the
subset control table to enable another user to open the file
while the original file user is swapped out. If an entry
already exists in the subset control table for this file, or if
the necessary FCB words already reside in a file manager
FCB table, the entry is not made. If no empty entry space is
available, a pseudo file lock bit is set to prevent another
user from opening the file while the original user is swapped
out. (See figure D-l, word 2 description.)

MASS f\,'lEMORY UNITS TABU:;
VOLUME INlrORPAAilON YABLI2S

The mass memory units table is an index to the volume
information tables. A sample mass memory units table and
a sample set of volume information tables are shown in
figure D-4.

FILE SPACE LIMITS TABLE

The file space li mi ts table is used to ensure tha t all mass
memory requests for a file are made within the boundaries
of the file. A sample file space limits table is shown in
figure D-5. An entry is empty if the first two words are
zero. Entries in this table are not ordered. There are no
duplicate entries.

RECORD LOCK TABLE

The record lock table is used to maintain a record of locked
file records. A sample record lock table is shown in

96768040 A

,

'--

figure D-6. The value of MAXLOC is a system installation
parameter. Entries in this table are not ordered. A zero
first word indicates an unused entry. When a new entry is
needed, the file manager uses the first entry space with a
zero first word.

request queuing is described in Reentrant Request
Processors; Serial Request Processors, section 1. There is
one processor control table that queues all serial requests.
In addition, there is one processor control table to queue
reentrant requests for each volume in the system used by
the file manager. For example, a system with file space on
two volumes would require a total of three processor control
tables; a system with file space on three volumes would
require a total of four processor control tables, etc. Sample
processor control tables for a system with file space on two
volumes is shown in figure D-7.

PROCESSOR CONTROL TABLES

The request processor control tables are used in queuing and
processing file manager requests. The general method of

..
0

0

0

0

0

*
0 ..
0

ENT
EwU

0

E<.IU ..
t::NT

FMFCd5 ~L!:i

*
0

0

0

0

0

0

0

*
0

ENT
EQU

0

Eau
0

ENT
FMFcBr RZS

•
•
• ..
0 ..
•
0 ..
G-

o
ENT
EQU

0

Euu
0

ENT
FCBSCT f:lZS

96768040 C

SEQUENTIAL FILt CUNTROL 8LOCK TA8L~

THIS TA~LE IS UStu FUR STUkAGt OF THt FCh,S UF OPtNtu
SEflUENTIAL F IU:.S FOR WhICH A U~E.R SPACr. f"Ch RlIFFEk w{.S
NOT PHUVIOUJ fiY THE USb~ whEtII THE:. FILt .~A~ OfJEI\t:.U.

THIS TARLE CONTAINS ROUM FOR FMMOSF SE~U~NTIAL fILt FC~S.
EACH FeB (wITH ITS hEAOt:.HI IS 15 ~OkUS LUNG. A ~c~ SPAC~
IN THE TAdLE IS FREE FUR U5t:: IF ITS fIHST WURD IS z~~u.
wORUS 14 A~D 15 OF EACH FC~ Sl-'~C~ Ak~ kt~uIR~O b~CAUSE OF
THE MANNER IN wHICH Fed SU~SETS ARE M0VEO I~TO/OUT UF FC~S •

FMMOSF MAX NO. OF O~EN SEQ. FILE Fed SPACES
FMHOSF(2 0 NTSUSRI

FMSLEN(FMMUSF 0 151 LE:.NGTH O~ T hdLt:.

FMFC8S SEQUENTIAL FCb lAbLE
FMFC8S(FMSLENI SEYUENTIAL FCh TAblE

INDEXED FILE CONTPOL HLOC~ TA~Lf

THis TARLE IS USEO FOR STORAGE OF TH~ FCB.s OF OPENED
INDEXED FILES FOR wHICH A USEP SPACE FCB &uFF[P wAS NOT
PROVIDED BY THE USER WHEN THE FILE WAS OPENED.

THIS TARLE CONTAIN~ ROOM FOR F~MOIF INDExfO FILE FCBS.
EACH FCB (wITH ITS HEADER) Is ?7 WORDS LONG. A FCA SPACE
IN THE TABLE IS FREE FOR USE IF ITS FIRST WORD IS 7ERO.

F~~OIF MAX NO. OF OPEN INDEXEO FILE FCB SPACES
FMMOIF(2°NTSUSR)

FMOLEN(FM~OIF·21) lENGTH OF TABLE

FMFCBI INDExED FCR TAHlE
FMFCBI(F~OlENI INOlX[D FCR TARLE

Figure D-2. Main Memory File Control Block Tables

FCB SU~SET CONTROL TABLE

EACH ~NTRY I~ THE FC~ SU~SET CONTRUL TABLE (FSCT)
CORRESPONDS TO AN OPEN FILE. THE ENTRY FOR A GIVEN FILE:.
CONTAINS THAT SUBSET OF THE FILE"S FC~ WHICH IS SUt:jJtCT
TO CHANGE WHILE A FILE IS OPEN. AN OPEN FILE wILL 11AVE
A~ ENTRY IN THE F~CT IF AND ONLY IF THERE IS ~O fNT~Y IN
THE FILE MA~AG~R MAIN MEMORY FCB TA8LES FO~ THAT FILtANu
ONE OR BOTH UF THE FOLLOWINu CONDITIONS MOLuS-

(A) THE NECESSARY FeB WOROS FOR THIS FILt AKE CUkRENTLY
STORED IN TwO OR MORE USER SPACES •

(b) THE NECESSA~Y FCB ~ORUS ARE STONED IN U5Ek S~ACt
FOR A SWAPPlU OUT USER.

FSCTNE NO. OF FSCT EtIITRY SPACfS
FSCTNE(NTSUSR*ANOFPU)

FSCflN(FSCTNE*lOI LENGTH OF T~E FStT

FCbSCT
FCBSCT(FSCTL~1 FSCT

Figure D-3. Sample FCB Subset Control Table

D-3

D-4

*
*
*
*
*
*
*
*
*

MASS ME~ORY LOGICAL UNIT TA8LE

THE MASS MEMORY LOGICAL UNIT TABLE r~ USED TO OEFINE THE
ADDRESSES OF THE VOLUME INFORMATION TABLES. THE FIRST WOPi)
OF THIS TABLE DEFINES THE NUMBER OF VOLUME INFOR~ATION
TABLES IN THE SYSTEM. EACH VOLUME DEFINED VIA THE VOLUME
INFORMATION TABLE MAY BE USED BY THE FILE MANAGER FOR FILES.

ENT MMLUTR MAS~ MEMORY LOGICAL UNIT TABLE

MMLUTB ADC
ADC
ADC

NUMMLU EQU

NUMMLU NUMBER OF vOLUME INFORMATION TABLE~
VITOI VOLUME INFORMATION TABLE NO. 1
VIT02 VOLUME INFORMATION TABLE NO. 2
NUMMLU(*-MMLUTB-I)

*
*
VITOI NUM ~8008

o

•

ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 96
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0
ADC 0

VIT02 NUM S800D
o ADC

ADC
AOC
AOC
AOC
AOC
ADC
ADC
AOC
AOC
AOC
AOC
AOC
AOC
AOC
AOC
ADC
AOC
AOC
ADC

o
o
o
o
o
o
o
o
o
o
o
96
o
o
o
o
o
o
o

VOLUME INFORMATION TABLE NO.

O. VISLUN - SYSTEM LOGICAL UNIT NU~AER
1. VINAME - VOLIJME NAME - CHARACTERS 1 AND 2
2. *0*000 - VOLUME NA~E - CHARACTERS 3 AND 4
3. 0000*0 - VOLUME NA~E - CHARACTERS 5 AND ~
4. 00*000 - VOLUME NAME - CHARACTERS 7 AND B
5. VINMBR - VOLUME NUMRER (2 ASCII CHARS)
6. VIBMSM - BEGINNING OF MANAGEABLE SPACE -MSR
7. VIBMSL - BEGINNING OF MANAGEABLE SPACE -LSB
8. VIASDM - AVAILABLE ~PACE DIRECTORy - MSA
9. VIASDL - AVAILABLE SPACE DIRECTORY - LSB

10. VJASDS - , SECTORS IN AVAIL SPACE DIR.
11. VILBAM - LAPGEST ALOCK OF SPACE AVAIL. -MSA
12. VIL8AL - LARGEST ALaCK of SPACE AVAIL. -LSB
13. VIWPS - WORD~/SECTOR FOR VOLUME
14. VIFDDM - FILE DEFINITION DIRECTORY ADDR-MSA
15. vtFDDL - FILE DEFINITION DIRECTORY ADDR-LSA
16. VIMAXF - MAx. NO. OF FILES PERMITTED
17. VICUPF - CURRENT NO. OF FILES ON VOLUME
18. VINFDB - NUMRER OF RLOCKS IN FILE DEF. DIR.
19. VINXTB - NEXT AVAILABLE BLOCK IN F.D.R.
20. VINOOF - NUMAER OF OPEN FILES ON vOLUME
21. VILBLM - VOLUME LABEL SECTOR - MSB
22. VILBLL - VOLUME LABEL SECTOR - MSB

VOLUME INFORMATION TABLE NO. 2

o. VISLUN - SYSTEM LOGICAL UNIT NUMBER
1. VINAME - VOLU~E NAME - CHARACTERS 1 AND 2
2 •••• 000 - VOLUME NAME - CHARACTERS 3 AND 4
3. 000000 - VOLUME NAME - CHARACTERS 5 AND 6
4 •• 0 •••• - VOLUME NAME - CHARACTERS 1 AND 8
5. VINMBR - VOLUME NUMBER (2 ASCII CHARS)
6. VIBMSM - BEGINNING OF MANAGEABLE SPACE -MSB
1. VIBMSL - BEGINNING OF MANAGEABLE SPACE -LSB
8. VIASDM - AVAILABLE SPACE DIRECTORY - MSB
9. VIASDL - AVAILABLE SPACE DIRECTORY - LSB

10. VlASOS - , SECTORS IN AVAIL SPACE DIR.
11. VILBAM - LARGEST BLOCK OF SPACE AVAIL. -MSB
12. VILBAL - LARGEST BLOCK OF SPACE AVAIL. -LSB
13. VIWPS - WORDS/SECTOR FOR VOLUME
14. VIFDDM - FILE DEFINITION DIRECTORY ADDR-MSB
15. VIFDDL - FILE DEFINITION DIRECTORY ADDR-LSB
16. VIMAXF - MAX. NO. OF FILES PERMITTED
11. VICURF - CURRENT NO. OF FILES ON VOLUME
18. VINFDB - NUMBER OF BLOCKS IN FILE DEF. DIR.
19. VINXTB - NEXT AVAILABLE BLOCK IN F.D.R.
20. VINOOF - NUMBER OF OPEN FILES ON VOLUME

Figure D-4. Sample Mass Memory Unit Table and Volume Information Tables

96768040 B

*
*
*
*
*
*
*
*
*
*
*
*
* "- ENT

ENT
EQU
EQU

*
FSLIMT BZS

EQU
'-

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

t::NT
EQU

*
EQU

*
E.NT

LRTABL BZS
*

ENT
NRERLE NUM

""--

96768040 A

FILE SPACE LIMITS TA~LE

THIS TABLE MAINTAINS A RECOHD OF TH~ ~EGINNINij WORD ADDRESS
AND ENDING WORD ADDRESS • 1 FOR EACH OPEN FILE THAT HAS ITS
FCB IN USER SPACE. THIS TAYLE HAS MAXFSL*4 WORD eNTRY
SPACES. EACH FOUR ~ORD ENTRY SPACE HAS THE FOLLOwING lNFOR­
MATION WHEN IN USE:

WORD 1
WORD "2
wORD 3
WORD 4

STAHT WORD ADDRESS, MSB
START WORD ADDRESS, LSB
ENOING WORO ADDRESS • 1, MS~
ENDING WORD ADDRESS. 1, LSB

FSLIMT FILE SPACE LIMITS TABLE
FSLEND FILE SPACE LIMITS TABLE ENDING ADDRESS
MAXFSLC~TSUSR*ANOFPU) NUMBER OF ENTRIES
FSLLENCM~XFSL*4) LEN6TH

FSLIMTCFSLLEN)
FSLENDC*-l)

Figure D-5. Sample File Space Limits Table

HECORD LOCK TA~LE

THIS TABLE MAINTAINS A RECORD OF THE. RECORD LOCKS IN EFFECT.
THIS TABLE HAS MAXLOC 5-WORO E~TRY SPACES, THUS MAXLOC LOCKS
MAY BE IN EFfECT CONCURHENTLY. EACH ENTRY SPACE CONTAINS
THE FOLLOWING FIVE wORDS.

WORD 1
WORD 2
WORD 3
WORD It
WORD 5

PSEUDO FILE IDENTIFIER
1ST WORD OF RECORD,S RELATIVE RECORD NUMBEH
2ND WORD OF RECORO.S RELATIVE HECOHD NUM~EH
NUMBEH Of LOCKED RECORDS IN SET
USER IDENTIFIER (Of LOC~ING USER)

A NON-ZERO 1ST WORD INDICATES THAT AN ENTRY SPACt:: IS IN USE.

MAXLOC MAX NO. OF CONCURRENT RECORD LOCKS
MAXLOCCNTSUSH*ANRLPU)

LRTLENCMAXLOC*S) TABLE LENGTH

LRTABL LOCKE.D RECORD TABLE
LRTABLCLRTLEN) LOCKED RECORD TABLE.

NRERLE
o NUMbER OF RESERVED RECORD LOCK ENTRY SPACtS

Figure D-6. Sample Record Lock Table

D-5

D-6

•
*
*
*
tt

tt

PROCESSOR CONTROL TABLE

THE PROCESSOR CONTROL TABLE IS USED TO DEFINE THE ADDRESSES
OF THE REQUEST PROCESSOR CONTROL TABLES. THE FIRST wORD OF
THE TARLE CONTAINS THE ADDRESS OF THE TAaLE TO ~E USED FOR
PROCESSING SERIALLY EXECUTED REQUESTS. THE REMAINING WORDS
CONTAIN THE ADDRESSES OF TABLES TO BE FOR PROCESSING REEN­
TRANTLY EXECUTABLE REQU~STS. IN FM LOGICAL UNIT NUMBER ORDER

ENT PCTABL PROCESSOR CONTROL TABLE

PCTA~L ADC
ADC
ADC

RPCTO-l
RPCTl-l
RPCT2-1

SERIAL PROCESSING CONTROL TARLE
REENTRANT PROCEsSING CONTROL TARLE.
REENTRANT PROCESSING CONTROL TARLE,

NO. 1
NO.2

EQU LENSCR(20) LENGTH OF SCRATCH AREA OF RPC TARLE

RPCTO

tt

* RPCTI

SPC
NUM
ADC
ADC
ADC
ADC
ADC
ADC
ADe
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
SPC
8ZS

NUM
ACC
ADC
AOC
ADC
ADC
ADC
Anc
AOC
ADC
ADC
ADC
ACC
ADC
ADC
ADC
ADC
ACC
AOC
AOC
ADC
AOC
ADC
ADC
BlS

SERIAL PROCESSING CONTROL TARLt
1
o
o
o
o
o
o
$5400
o
o
o
,')

o
o
o
o
o
o
o
o
o
o
o
o
o
1
RPSCO(LENSCR)

1. RPLOGU - LU NO. OF MM DEVICE
2. RPAREO - ACTIVE REQUEST FLAG, 0 IF NONE
3. RPWAIT - START OF WAITING REa. QUEUE,
4. RPRLEV - REQUEST PRIORITY LEVEL (CUR REO)
5. RPRBF4 - REQBUF ADDREsS - FIRST FOUR WOHDS
6. RPLTEA - LOCK TABLE ENTRY ADD~ESS (ARSOLUTE)
7. RPRTNJ - RETURN JUMP TO XQT PROCESSOR
5. RPPADR - PROCESSOR ADDRESS
9. RpFCBA - FCB ADDRESS FOR FILE

10. RPRBMP - REQBUF ADDRESS - MAIN PART
11. RPPFPl - REQUEST PARAMETER ADDRESs, FIRST+l
12. pppFp2 - REQUEST PARAMETER ADDREss. FI~ST+2
13. RpPFP3 - REQUEST PARAMETER ADDRESS. FIRST+3
14. RPPFp4 - REQUEST PARAMETER ADDREss. FIRST+4
15. RPMREQ - MONITOR REQUEST CODE WORD
16. RPMRPI - COMPLETION ADDRESS
17. PPMRP2 - THREAD WORD
18. RPMRP3 - LOGICAL UNIT FOR 1/0
19. RPMRP4 - NUMBER OF wORDS
20. RPMRP5 - START CO~E ADDRESS
21. RPMRP6 - MASS MEMORY ADDRESS, MSB
22. RPMRP7 - MASS MEMORY ADDRESS. LSB
23. RPRCPT - CONTROL POINT FOP 1/0 REQUESTS
24. RPRETN - SAVED RETURN ADDRESS

SCRATCH AREA OF ~PC TARLE

REENTRANT'PROCESSING CONTROL TABLE, NO.

1 1. RPLOGU - LU NO. OF MM DEVICE
o 2. RPAREa - ACTIVE REQUEST FLAG. 0 IF NONE
o 3. RP~AIT - START OF WAITING REQ. QUEUE.
o 4. RPRLEV - REQUEST PRIORITY LEVEL (CUR PEO)
o S. RPRBF4 - REQAUF ADDRESS - FIRST FOUR WORDS
o 6. RpLTEA - LOCK TABLE ENTRY ADDREss (ABsOLUTE)
$5400 7. RPRTNJ - RETURN JUMP TO XQT PROCESSOR
o 8. RPPAOR - PROCESSOR ADDRESS
o 9. RPFCBA - FCB ADDREss FOR FILE
o 10. PPRBMP - REQ8uF ADDRESS - MAIN PART
o 11. RPPFPl - REQUEST PARAMETER ADDREss. FIRST+l
o 12. RPPFP2 - REQUEST PARAMETER ADDRESS. FIRST+2
o 13~ RPPFP3 - REQUEST PARAMETER ADDREss. FIRST+3
o 14. RPPFP4 - REQUEST PARAMETER ADDREss. FIRST+4
o 15. RPMREQ - MONITOR REQtJEST CoDE WORD
o 16. PPMRPI - COMPLETION ADDRESS
o 17. RPMRP2 - THREAD ~ORD
o 18. RPMRP3 - LOGICAL UNIT FOR 1/0
o 19. RPMRP4 - NUMBER OF WORDS
o 20. RPMRP5 - START CORE ADDRESS
o 21. RPMRP6 - MASS MEMORY ADDRESS. MSB
o 22. RPMRP7 - MASS MEMORV ADDPESS. L~B
o 23. RPRCPT - CONTROL POINT FOR 1/0 REQUESTS
o 24. RpPETN - SAVED RETURN ADDREss
RPSCl(LEN~CR) SCRATCH AREA OF RPC TA~LE

Figure D-7. Sample Processor Control Tables (Sheet 1 of 2)

96'168040 A

'-.

96768040 B

RPCT2

•
•

NU~

AOC
ADC
ADC
ADC
AOC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
RZS

REENTRANT PROCESSING CONTROL TAHLE. NO. 2

2
o
o
o
o
o
$5400
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
RPSC2(LENSCR)

1. RPLOGU - LU NO. OF ~M DEVICE
2. PpAREQ - ACTIVE PEQlJfST FLAG, 0 IF NONE
3. RPWAIT - START OF WAITING REQ. QUEUE.
4. RPRLfV - REQUEST PRIORITY LE.VEL (CUR REa)
5. RPR8F4 - REa~uF ADDRESS - FIRST FOUR WORDS
6. RPLTEA - LOCK TABLE fNTRY ADDRESS (ABSOLUTE.)
7. RPRTNJ - RETURN JU~P TO XQT PROCESSOR
8. RPPADR - PROCESSOR ADDRESS
9. RPFCBA - FCB ADDRESS FOR FILE

10. RpRB~P - REQAuF AODRESS - MAIN PART
11. RPPFP1 REQUEST PARA~ETER ADDREsS. FIPST+1
12. RPPFP2 - REQUEST PARA~ETER ADDRESS. FIRST+2
13. RPPFp3 - REQUEST PARAMETER ADDREsS. FI~ST+3
14. RPPFP4 - REQUEST PARAMETER ADDRESS. FIRST+4
15. PPMREQ - MONITOR RfaUEST CODE WORD
16. RPMRPl - COMPLETION ADDRESS
17. PPMRP2 - THREAD WORD
1R. RpMRP3 - LOGICAL UNIT FOR 1/0
19. RPMRP4 - NUMBER OF WORDS
20. PP~RP5 START COPE ADDRESS
21. PPMRP6 - MASS MEMORY ADDRESS. MSR
22. RPMRP7 - MASS MEMORy ADDRESS. LSB
23. RPRCPT - CONTROL POINT FOR 1/0 REQUESTS
24. RPRETN - SAVED RETURN ADDRESS

SCRATCH AREA OF RPC TARLE

Ol:r·'l ~t.to' 3 1. ~PLnr,1J .. LlJ NO. I)~ "' ... OEVTr.~

trr ? ~P~QFQ - ACTIVE Rf'U=~T ~L~Gt ~ TF NO~E
arr ~ ~. ~PWAIT - START OF ~~rTTNG PEr.. QUElJ~.
~rc: C ft. RP~LFV - PE!)US:ST p~IOqrrY LEVEL cr,lJP. c;,:").

~"r ~ 5. RpqnF4 - P~Q~UF aOCQF~~ - FIQST FOUP WC2~S
Arr ~ ~. ~PLTfA - LOCK TA~LE fNT~Y AODRESS (AR~CLUT~
arr .c4~" 7. ~poT~J • ~=TuoN JUMP TO XQT FQo~rSSOR

!rr ~ A. RpnA~R - PQOCfS~OR ~O~RESS
~rr ~ q. QPi-r.~A • F~~ AonPfSS FOR FTlE
arT r t". PP"8 t1P ~ RC'QRtlf' Anf1~~'-;S - ~4IN P"~T

err ~ 1t. QPPFP! • ~~~U~~T PAqAM[Tf.Q ArOQ~SS. FIRST+l
arc 12. QP~FP' • Qf~Uf.~T PARAHETEQ ArOPE~S, FI~~T.2

arr 1~. ~PP~F~ - PEnUEST paqA~ETEP 40DR~SS, FIRsr.~
~rr n 14. QPPFP4 R~OU~ST PA~A~~T~Q 4GOR~~S. FIRST.4
Arc " 1~. ~PW~~~ - Mn~IToq ~~QU~ST cnnE wnp~

err ~ 16. RP~QPl - r.OHPlETtON AnO~ESS

Arr n t7. ~P~QP? - THREAD W090
arr ~ l~. ~P~RPl - LOGrC~l UNIT FOP llC
arr ~ 1q. QP~oP4 • NIJ~~~Q OF WOoDS
err ~ ?". QPNPP~ • ST~P~ COR~ A~np€~~

~rr ~ ?t. qp~Pp~ - MASS ~MO~Y A[CPESS. ~S~
~rr n ?? QP~QP' • MASS ~~~n~Y ~on~E~~, lS~

arc ry ,~. ~P~CP~ - (ONTQOL POINT FOP 110 ~~QU€STS
~"'r ~ ? ... Rpr.fTN .. SAVED t!ETIJR~1 AOORES~
P7~ oCc:'r."1(l~N~rp) "CR~TCI-I A",~a OF' RPr, TA~LF

Figure 0-7. Sample Processor Control Tables (Sheet 2 of 2)

I

I

I

0-7

VOLUME LABEL DESCRIPTION E

The label for a volume is stored in the first sector of the 22 VLBMS2 Sector address of start of
volume. The entire first sector is reserved for the volume space to be used by file man-
label although only 34 words are used. These 34 words are ager, least significant bits
defined as follows (word 1 resides in the first physical word
of the sector): 23 VLASDM Sector address of available

'-''''' space directory, most signifi-
cant bits

Word Mnemonic Definition
24 VLA,SDL Sector address of available

1 VLFLG1 Volume initialize flag 1 space directory least signifi-

(preset to 140016) cant bits

2 VLFLG2 Volume initialize flag 2 25 VLASDS Number sectors in available
,-

(preset to 006016) space directory

3 VLNAME Volume name, ASCII charac-
26-27 VLLBA Sector address of the largest

ters 1 and 2 block of space available
,- (32-bit number)

4 Volume name, ASCII char- 28 VLWPS Number of words per sector acters 3 and 4 on this volume
''----

5 Volume name, ASCII char- 29 VLFDD1 Sector address of .the file acters 5 and 6 definition directory, most

6 Volume name, ASCII char- significant bits
'-----

acters 7 and 8 30 VLFDD2 Sector address of the file

7 VLNMBR Volume number (two ASCII definition directory, least

characters) significant bits

8-12 VLSER Volume serial number 31 VLMAXF Maximum number of files per-

U 0 ASCII characters) mitted for volume

32 VLCURF Current number of files
13-16 VLSEC Volume security code existing on volume

(eight ASCII characters)
33 VLNFDB Number of blocks in the file

"---- 17-20 VLDATE Date of volume creation definition directory

(eight ASCII characters) 34 VLNXTB Next block available for
overflow in the file definition

'- 21 VLBMS1 Sector address of start of directory
space to be used by file man-
ager, most significallt bits 35-96 Reserved for future use

'-

96768040 A E-1

STATUS INDICATOR WORD F

TABLE F-l. STATUS INDICATOR WORD (istat)

Requestst

Bit
~:l CQ~CQ ~ ~ Ct:I ~ a a:l ~~ ...::l ~:l :s a ~ Set E-o ~E-o ~ ~ rz rz aU rtl ~ ~ ~ rz <: <t:~ z 00. ~~ <t: :::::> ::> 00. E-o Cl 00. ~ ~
~ ~...::l ~ 0 ~ ...::l E-oCl Z Cl ...:l E-t oa <t: E-o Cl ...::l :s
~ ...::l~ 0.. ~ 0 z ~o.. ~ ~ 0 :::::> ~ ~ 0.. ~ 0
U UCl 0 U ~ :::::> 0::> ~ ~ > 0.. ~ ~ 0 => 0 U

0 7 9 25 7 7

1 8 8 8 8 33

2 10 17 27 51 28 28 28 28

3 18 26 53

4 34 37 37

5 1 1 1, 11, 1 1 1 1 1 1 1 1 1 1 1 1
or or or or or or or or or or or or or or or
11 11 12 11 11 11 11 11 11 11 11 11 11 11 11

6 38 38

7 39 39 40 40 41

8 43

9 13 35 44
or
49 I

10 2 2

11 3 14 47 36 50

12 4 , 15 29 30 31

13 5 5 5 19 19 19 21, 5 5 24 19 19 19 19 19 19 19
or or or 22, or or or or or or
20 20 20 or 23 20 20 20 20 20 20

14 6 11 11 11 11 11 11 11 11 11 11 11 11 11 11
or or or or or
16 32 52 45 46 I

15 Request rejected

tThe numbers listed under each request are the status indication numbers, which are defined in table F-2.

96768040 C F-1

Status Causes
Indication Request

Number Rejection

1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x

9 x

10

11 x

12 x

13 x

F-2

TABLE F-2. STATUS INDICATION NUMBERS

Meaning

A mass memory error occurred.

The file name/owner string is not unique; that is, there is already a file on this volume with
the name/owner string specified.

There is insufficient space in the specified· volume's file definition directory for this file. If
an unused file is present on the volume, it may be deleted to provide additional directory
space. The deleted file must have the same scatter code as the new file if the new file is to
utilize the empty directory entry left by the deleted file (see File Definition Directory,
appendix B).

Insufficient mass memory file space exists on the specified volume for the file's records. If
an unused file exists on the volume, it may be deleted to provide additional file space.

The volume specified for the file is not mounted and ready.

The file request is illegal. This implies one or more of the following has occurred:

• Record length not in the required range

• Maximum number of records not in the required range

• Length of one or more keys not in the required range

• Position of one or more keys not totally within the record

• Missing key specification (primary key not specified but key 2 is specified; key 2 not
specified, but keys 1 and 3 are specified, etc.)

• No keys specified, but indexed file specified

The file is currently open to one or more users.

The file could not be located.

If bit 15 is zero, this file is currently open to another user, but this causes no apparent
problem.

If bit 15 is set, one of the following has occurred:

• File request was to open for compression and some other user currently has file open.
(Request may be retried after a delay.)

• File request was to open for record access with file lock and some other user currently
has file open. (Request may be retried after a delay.)

• File is already open to this user.

If bit 15 is zero, the file was locked as a part of this OPENFL request. If bit 15 is set, the
file was locked at the time this request was made.

File manager data structures on mass memory or in main memory contain one or more errors.
(Both bit 5 and bit 14 of istat are set when this has occurred.)

A mass memory error occurred. This error may have occurred when the file was previously
open and record recovery was not possible because of the timing of the failure. (Refer to
appendix K.) If the bit 5 error indication is not accompanied by a MASS MEMORY I/O mes­
sage on the comment device, the error occurred when the file was previously open. In this
case it may be possible to manually restore the file on mass memory by use of ODEBUG.
Otherwise, it is necessary to delete and recreate the file.

This OPENFL request is for record access, not file compression. When the file was last
closed, a compression had been initiated but not completed. This compression must be com­
pleted before the file can be opened for record access.

96768040 A

TABLE F-2. STATUS INDICATION NUMBERS (Cont'd)

Status Causes
Indication Request Meaning

Number Rejection

14 x The maximum number of concurrent open files permitted a single user has already been
granted to this user.

15 x The maximum number of open file permits that can be granted to all users in the system has
been obtained. In this case, if bit 11 of istat is zero, the request may be retried after a delay.

16 x Illegal request. This implies one or more of the following has occurred:

• Value of idata(14) is invalid.

• Indexed file and idata(13) exceeds the number of keys for the file.

• Definition of idata(13), idata(14), idata(15) is inconsistent.

• File control block storage specified within user area; insufficient number of file control
block words were specified.

17 The file was unlocked by the close file request.

18 A set of locked records was unlocked by the close file request. (These records were initially
locked by the requestor of the close.)

19 x The file request buffer (reqbuf) was altered by the user before this file request.

20 x The file was closed by executive forced file close due to hardware failure or operator shut-
down of the volume.

21 x The first word of array volnam is nonzero and the specified volume is not mounted and ready.

22 x The first word of array volnam is zero and the file request buffer (reqbuf) was altered by the
user before the retrieve file control block request.

23 x The first word of array volnam is zero and the file was closed by executive forced file close
due to hardware failure or operator shutdown of the volume.

24 x The first word of array volnam is nonzero and the drive specified by vlunit already has a
volume enabled.

25 x The file is currently open to another user.

26 x Record locking was indicated when the file was open.

27 x The file is not currently locked by the user.

28 The file is currently locked by this user.

29 x The file control block index is out of range for the specified volume. (This includes the case
of a file control block index equal to 1 and no files created on the volume.)

30 Insufficient room exists in the file to store all numrec records (see reqbuf(15».

31 x Insufficient room exists in the file to store the record.

32 z The file control block index not a positive integer.

33 x Th~ first word of array volnam is nonzero, and the volnam array does not match the name on
the volume label.

34 x The primary key value is not unique; that is, a record already exists in the file with the
primary key value specified in the request.

35 x The primary key value contained in the record is not the same as that in the keyval array.

36 x There is insufficient room in the key index structure to store the keys.
but it cannot be retrieved by key value.

The record was stored,

\'-- 96768040 B F-3

TABLE F-2. STATUS INDICATION NUMBERS (Cont'd)

Status Causes
Indication Request Meaning

Number Rejection

37 Retrieval was by relative record number and one or more of the records are ·marked as
deleted. The contents of the deleted records have been stored in the buffer recbuf. By
testing the first word of each record, the user may determine which records are deleted
records. The first word of a deleted record has the value of the external FMRDEL. (See File
Identification, section 1; Main-Memory-Resident Volume Description Parameters, appendix B;
and figure 2-10.)

38 x Record locking was requested, but the maximum number of record 10,cks in the system are
currently in use. (The request may be retried after a delay.)

39 x The record is locked by another user. (The request may be delayed and retried if care is
taken to avoid the situation described in the note in Update Protection, section 1.)

40 x Neither the file nor the records to be updated are locked.

41 x An end-of-file has been reached. The file should now be closed.

42 End-of-file is reached before the number of records specified could be retrieved. At least
one record was retrieved if bit 15 is zero. End-of-file indication implies an insufficient num-
ber of records in the file to satisfy the conditions specified in recspc array. If retrieval is by
key value, no record in the file has a key value greater than or equal to the key value speci-
fied by the user. If retrieval is by relative record number, there are not enough records in
the file starting at the record number in recspc to retrieve the number records specified in
the OPENFL request. If end-of-file is reached before any records were retrieved, bit 15 is
also set.

43 End-of-file is reached before the number of records specified in the OPENFL request could
be retrieved. At least one record was retrieved if bit 15 is zero.

If end-of-file is reached before any records are retrieved, bit 15 is also set.

D 44 Record retrieval was by key value. The key value specified, ks' does not equal kr' the key
value retrieved.

To test whether or not a record for key value k is in the file, it is necessary to test for the
simultarieous setting of bits 8 and 15 as well ass testing for the setting of bit 9. (See status
indication number 42.)

45 x The preceding retrieval was by key value and more than one record was retrieved. The num-
ber of records retrieved is governed by the preceding OPENFL request. The OPENFL request
gives an error indication if record locking or file locking is specified for access by key value
and the number of records specified is greater than one. However, the UPDREC request can
be made with no lock indication in the preceding OPENFL request if the file is locked be-
tween the OPENFL request and the UPDREC request. In this case the previous OPENFL
request would give no error indication if the number of records specified exceeds one. It is in
this way that this error indication can be generated.

46 x More than one record was retrieved by the retrieval preceding the DELREC call.

47 x Insufficient file definition directory space exists for the file's new name. (Renam ing the file
does make available the directory entry space previously used for this file, but the new name/
owner string does not hash into that space. Refer to File Definition Directory, appendix B for
further information on the directory.)

48 x Neither the file nor the record to be deleted is locked.

49 x The relative record number was specified in recspc as (0,0).

50 x The file manager is unable to delete one or more of the record's key values from the key
index structure because one or more errors exist in the file's key index structure.

51 Operation is illegal for indexed files; legal only for sequential files.

52 x The file header sector contains an error.

B 53 x New number of records is either greater than the number defined for the file, is zero, is
negative, or is less than the number of records currently stored in the file.

F-4 96768040 C

· REENTRANT /SERIAL REQUEST PROCESSORS G

TABLE G-l. REENTRANT/SERIAL REQUEST PROCESSORS

File Reentrant Serial Two Distinct Processors: Reentrant Processor
Request Processor Processor for Access by Relative Record Number; Serial

Mnemonic Processor for Access by Key Value

CREATE X

CLEAR X

DELETE X

OPENFL X

CLOSFL X

LOKFIL X

UNFIL X

GETFCB X

UPDFCB X

RENAME X

REDUCE X

VOLUSE X

PUTS X

WRITER X

READR X

GETS X

UPDREC X

DELREC X

COMFIL X

96768040 B G-l

ADDITION OF FILE SPACE. TO AN INSTALLED SYSTEM H

If more record space is needed for a given file, a new file
may be created with additional records permitted. Records
from the old file may then be retrieved from the old file and
stored into the new file. The old file may then be deleted.

If the file definition directory for a volume is full, but more
space exists on the volume on which file records could be
stored, the following steps may be taken to increase the
number of files the volume can hold (these steps are an
alternative to rebuilding the system):

1. Save the files on an external medium.

96768040 A

2. Modify the volume label (appendix E). For the system
volume, the utility ODE BUG may be used (refer to the
MSOS Reference Manual). For a nonsystem volume, a
file manager utility INIT can be used (refer to the ITOS
Reference Manual).

3. Restore the files to the volume.

If more file space is needed than is physically available in
the system, more mass storage may be purchased from your
Control Data representative (refer to the MSOS Ordering
Bulletin).

H-l

SUMMARY OF FILE MANAGER REQUEST CALLS

TABLE 1-1. SUMMARY OF FILE MANAGER REQUESTS: MNEMONICS DEFINITIONS, FILE OPEN/CLOSE REQUIREMENTS

File must File must Record
Mnemonic Request Description be open to be closed to File lock lock or

required file lock requestor all users
required

CREATE Create a file

CLEAR Delete all records
in a file X

DELETE Delete a file X

OPENFL Obtain permission
to access file
(open file)

CLOSFL Relinquish permis-
sion to access file
(close file) X

LOKFIL Prevent other users
from obtaining file
access permits
(lock file) X

UNLFIL Allow other users
to obtain access
permits for previ-
ously locked file
(unlock file) X X

GETFCB Retrieve file con-
trol block t

~

UPDFCB Update file con-
trol block t

RENAME Modify file name/
owner string X

REDUCE Reduce number of
records in files X I

VOL USE Enable/disable use
of volume

PUTS Store new record(s)
in nonindexed file X

WRITER Store new indexed
record X

READR Retrieve specific
record(s) X

GETS Retrieve next
record(s) X

UPDREC Update retrieved
record(s) X X

DELREC Delete a record X X

COMFIL Compress a file X X

tThe file must be open only if the file is specified by referencing a request buffer for a particular open file.

96768040 B 1-1

TABLE 1-2. SUMMARY OF FILE MANAGER REQUEST CALLING LISTS

Size of Minimum size
Mnemonic Calling List

idata array of recbuf
array

CREATE reqbuf, ida ta,ista t 24 -
CLEAR reqbuf,idata,istat 12 -

DELETE reqbuf,idata,istat 12 -
OPE NFL reqbuf, ida ta, ista t 15 -

CLOSFL reqbuf,istat - -
LOKFIL reqbuf,istat - -..
UNLFIL reqbuf,istat - -
GETFCB reqbuf, volnam,index,fcbbfr ,istat - -
UPDFCB reqbuf,volnam,index,fcbbfr,istat - -

RENAME reqbuf,idata,newnam,istat 12 -

I REDUCE reqbuf,idata,istat 14 -

VOL USE regbuf, volnam, vlunit,istat - -
PUTS reqbuf ,recbuf ,num rec, istat - base1

t +2

WRITER reqbuf ,recbuf ,keyval, ista t - base/

READR reqbuf ,recbuf ,recspc ,istat - base2
t

GETS reqbuf,recbuf,keyval,istat - base2
tt

UPDREC reqbuf, recbuf, is ta t - base2
tt

DELREC reqbuf ,recbuf, ista t - base2
tt

COMFIL reqbuf, recbuf, ista t - base2
tt +4

t Basel is the number of words required for the records accessed. For sector-aligned records, basel must include any
unused words in a sector intersected by an accessed record. (For sector-aligned records, basel is a multiple of sector
length.)

tt Base~ is the number of words required for the records accessed. For sector-aligned records, base
lt

must include any
unus d words between accessed records, but base2 does not include unused words following the la record accessed.

TABLE 1-3. CONSTANT-SIZED ARRAYS

Parameter Number of Wordst

reqbuf 24

volnam 4

index 1

fcbbfr 96

newnam 8

vlunit 1

numrec 1

tConstant for all requests using parameter.

1-2 96768040 B

Request

All that
specify idata

CREATE

OPENFL

REDUCE

96768040 C

TABLE 1-4. SUMMARY OF idata ARRAY (INITIAL VALUES)

Word

1-4

5-8

9-12

13

14,15

16

17

18

19

20

21

22

23

24

13

14

15

13-14

File name

File owner

Definition

Name of volume (idata(9) may initially be 000016 or 202016 for
CLEAR,DELETE,OPENFL, or RENAME)

Record length in bytes

Number of records in file

File type

15 14 13 8 1 0

I I ~ ~1
sector-~
aligned
records

Records
presented
in order with
respect to
primary key

Length of key 1 (bytes)

Byte position, key 1

Length of key 2 (bytes)

Byte position, key 2

Length of key 3 (bytes)

Byte position, key 3

Length of key 4 (bytes)

Byte position, key 4

Access options:

R
Value

o

1

2

3

4

Other

I Lindexed
binary data

o
. R I
LRetrieval

method

Retrieval
Method

Relative
record no.

Key 1

Key 2

Key 3

Key 4

Invalid

Number of records to retrieve or compress per call
(see figure 1-5)

Lock indicator

o No locking

> 0 Record locking

< 0 File lock

New number of records in file

1-3

Request

PUTS

WRITER

READR

GETS

CLEAR,
DELETE,
OPENFL,
RENAME,
REDUCE

1-4

TABLE 1-5. NUMBER OF RECORDS ACCESSED
BY INDIVIDUAL REQUESTS

Request Number of Records
Retrieved or Written t

WRITER One

PUTS Number specified in PUTS request

READR One, if access is by key value

Number specified in OPENFL request
otherwise

GETS Number specified in OPENFL request
(must equal 1 if access is by key value and
record locking or file locking is specified)

COMFIL Number specified in OPENFL request
(must equal 1 for indexed file)

UPDREC Number of records retrieved by the pre-
ceding READR or GETS request (must
equal 1 if preceding retrieval was by key
value)

DELREC One

tThis assumes sufficient space for storage and suffi-
cient index structure space if needed.

TABLE 1-6. VALUES STORED BY FILE MANAGER AVAILABLE TO USER
ON COMPLETION OF REQUEST

For key value

reqbuf(16) access only
reqbuf(15) reqbuf(17)

keyval recspc
Array Array

Number of Relative record
records num ber, first - -
stored record stored

Number of Rela tive record
records num ber of rec- - -
stored ord stored

Number of Relative record Left-justified
records num ber, first - key value of
retrieved record stored record retrieved

Number of Relative record Left-justified
records number, first key value of -retrieved record retrieved last record

retrieved

- - - -

idata(9)
idata(12)

-

-

-

-

Name of volume
on which file was
found

96768040 B

SYSTEM FAILURE AND JOB PROCESSOR ERROR MESSAGES
RELATED TO IMPROPER USE OF FILE MANAGER

J

SYSTEM FAILURE
A foreground program that does not run under ITOS control
can cause a system hang if the file manager detects an
illegal overlapping of parameters in a request calling list.
For example, if the record buffer and the request buffer
overlap, this is illegal. When an illegal overlap is detected,
the file manager transfers control to the main-memory­
resident program, SYFAIL. Program SYFAIL saves register
values and hangs on a 18FF 16 instruction.

NOTE

A foreground program that runs in parti­
tioned memory under ITOS control and
contains a parameter overlap error is
aborted by ITOS and does not cause a
system hang.

96768040 A

JOB PROCESSOR ERROR
MESSAGES

Error message JP02 is printed by the job processor on the
system main console when a background program attempts
execution of one of the following:

• A file manager request with parameters in the calling
list that overlap illegally (for example, record buffer
and request buffer overlap).

• A file manager request with a parameter in protected
main memory such that the file manager can store into
that parameter. (For example, a background program
with the request buffer in protected main memory
would result in a JP02 error.)

J-l

I

\

\
'-- .

\

'--

RECOVERY TECHNIQUES K

- Po,"{'

The following technique is used to prevent loss of new
records at the time of system failure. When a file closed to
all users is initially opened, the file manager modifies the
file's control information on mass memory to reflect the
open state of the file. Each time the file manager wri tes a
set of records to mass memory, the file manager stores a
two-word end-of-file code (as defined by FMEOFC; see
Main-Memory-Resident File Manager Operation Installation
Parameters, appendix D) into the next record space fol­
lowing the written records. The current number of records
in a file is periodically updated in the file control infor­
mation on mass memory as new records are added to the
file. Whenever a file is closed to the last of a set of file
users, the file's control information on mass memory is
updated to reflect the current number of records in the file
and to reflect the closed state of the file.

If the system fails while a file is open, the next time the file
is opened for use the file manager detects that the file was
left in an open state. The file's record space is then scanned
for an end-of-file. The scan com mences with the first
record space following the space required for the number of
records recorded in the file's file control block (FCB)
(appendix B) on mass memory. The length of the scan is
determined by the system parameter that specifies the
number of new records between periodic FCB updates. If an
end-of-file is found, the current number of records is
updated in the file control information, thus recovering the
last new records. If the system fails during a transfer of
new records to the file so that no end-of-file can be found
upon the next open of the file, these records cannot be
recovered. The existence of such irrecoverable data is
indicated to the opening user. (See error indication 12,
appendix F.)

A similar procedure provides for the recovery of the key
index structure accompanying an indexed file.

There is also a procedure to prevent loss of records if a
system failure occurs during file compression. File com­
pression is described in Compress File (COMFIL), section 2.

96768040 C

When a file is opened for compression, the file's control
information is modified on mass memory to reflect the
open-for-compression state of the file. As each set of
compressed records is written to mass memory, the number
of records processed and a two-word end-of-file is written
to mass memory in the next record space following the
compressed records. Periodically, the file's control infor­
mation on mass memory is updated to contain the number of
original file records processed and the net number of
compressed records. When the compression is completed,
the file's control information is updated on mass memory to
reflect the new current number of records in the file and to
delete the compression-in-progress status. If the system
fails before completion of the compression, the file manager
detects the previous compression-in-progress state when the
file is next opened.

If the system fails during file compression, file compression
can be resumed when a compression request is made by a
user. The file manager locates the number of records
processed and the end-of-file written within the file's record
space. It uses the number of records processed to resume
the compression process. However, if the system failure
occurs during a transfer of compressed records to the file so
that the end-of-file is not transferred to mass memory,
completion of compression is not possible. The existence of
such irrecoverable data is indicated to the opening user.
(See error indication 12, appendix F.)

The techniques described above are not utilized if the file
was opened for special processing or if the file. If the file is
a binary data file, the file control information on mass
memory is updated on mass memory as each set of one or
more new records is added to the file; thus, if a system
failure occurs while the file is open, no special recovery
techniques are needed to prevent loss of records. If a file is
open for special processing, the file control information on
mass memory is not periodically updated as new records are
added to the file. Further, no special record recovery
techniques are used when a file is first opened for processing
following a system failure that occurred while the file was
open for special processing.

K-1

STORAGE OF FILE CONTROL BLOCKS WITHIN USER SPACE L

As specified in the File Control Block Table, appendix B, a
portion of a file's file control block (FCB) must be main­
memory-resident whenever the file is open. In most systems
that include the file manager, users usually elect to let the
file manager store main memory FCBs in file manager space
as described in Main-Memory-Resident File Control Block
Tables, appendix D. However, in systems including ITOS,
terminal users and background programs may wish to store
FCBs in user space to conserve main memory resources.
FCB words stored in user space are stored in a buffer within
the user's program. To cause FCB words to be stored in user
space, the user must specify this storage when making the
OPENFL request. Instead of initializing the request buffer
in the OPENFL calling list to all zeroes as described in Open
File (OPENFL), section 2, the request buffer is initialized as
follows:

Request
Buffer
Word

1-9

10

11-12

Definition

All binary zeroes

Location of buffer to contain FCB
header and FCB words

All binary zeroes 14-24

words needed by the file manager; that
is, 27 words {including file control block
header} for an indexed file or 15 words
(including FCB header) for a sequential
file. or

Number of words (not including five-word
header) to be retrieved from the FCB and
stored in the user's FCB buffer if more
than the minimum number of words are
to be stored into buffer. (Buffer must
allow room for 5-word header in addition
to words retrieved from the file control
block.)

NOTE

If word 13 of the request
buffer is nonzero but less
than the minimum number
of words required by the file
manager, the OPENFL re­
quest is rejected with
bits 14 and 15 of the status
indicator word set.

All binary zeroes

13 Zero, if FCB buffer within user space
is to contain the minimum number of

A FORTRAN example of FCB storage within user space is
shown in figure L-1.

96768040 C

nTMENSION NBUf(24),NDATA(13)
C FILE N I S INDEXED. RESERVE 22 WORDS fOR fCB. 5 WORDS FOR FeB HEADER.

I~TEGE~ fCBBfR(27)
DATA NDATA l'fiLE N SGWILLIA','VOLUME 1'.1.1.11
DATA NBUF' 124*0/

C STORE ABSOLUTE AOO~ESS Of FCBBfR INTO REQBUf(lO)
C LOA =~fC8BfR

ASSEM $COOO,+fCBBfR
C STA+ NBUF+9

ASSEM $6400, +NBUF(10)
CALL OPE NfL (NdUf.NDATA,NSTAT)
IF' (NSTAT.LT.O) GO TO ~700

Figure L-1. FCB Storage Within User Space (FORTRAN Example)

L-1

IJ

fILE SPACE MANAGEMENT M

Each volume containing file space contains an allocatable
file space directory. The location and maximum size of this
directory are given by words 8 through 10 (VIASDM, VIASDL
and VIASDS) of the volume information table for this
volume. (Refer to Mass :\1emory Units Table; Volume
InfOl''llation Tables, appendix D, and figure D-4.) On the
system volume, the allocatable space directory begins at

a .\tAXSEC+1. On all other volumes, the directory begins
D immediately following the volume label.

Each entry in the directory corresponds to a block of
available file space. An entry consists of four words defined
as follows:

Words

I, 2

3,4

Contents

Size of this block of a vailable space
(a 32-bit number)

First sector of this block
(a 32-bit number)

The value FFFElh is stored in the word following the last
entry in the direcrory.

The system volume is initialized by the SPACE program. All
other volumes are initialized by the file manager utilities.
At the time of initialization, there is one entry in the
directory.

The maximum number of entries in the directory is
determined at the time of system installation. The
maximum number of entries needed would occur when the
following situation develops:

L The maximum number of files for this volume have been
defined with a remaining block of available space at the
end of the defined files.

2. Every other file is deleted, leaving an available block of
space between each pair of remaining files. Thus the
maximum number of entries is:

The maximum size of the directory in sectors is:

rrVIM~XFl entries x 4 words 1 seclorl
--entrY x 96 words

= rrVIM~XF 1 x ~l sectors

rVIMAxFl
4B sectors

96768040 B

This size is stored in VIASDS, word 10, of the volume
information table (see figure D-4). Words 6, 7, 11, and 12 of
the volume information table also refer to the available
space directory (see figure D-4).

File space is allocated by reserving n+l sectors each
time n sectors of file space are needed. The extra sector
is reserved for the header sector that precedes each file .

... The header sector has the following format:

Word

2-3

4-5

6
Time
of file 7
space
alloca- 8
tion

9

10-13

Description

Header identifier containing the ASCII
characters AL (equal to 41 4C 16)

Size of this file in sectors (including
the header sector), a 32-bit number

Starting sector of this block of allo­
ca ted space (a pointer to the header
sector), a 32-bit number

Year (two ASCII characters)

Month (two ASCII characters)

Day (two ASCII characters)

Time (binary representation of the four­
digit decimal 24-hour time in hours and
minutes as retrieved from the SYSDAT
word HORMIN)

File owner (eight ASCII characters)

Using the information in the header sector for each existing
file, a mass storage accounting program could be written.

Available space is managed as follows. When a file is added,
the first available block of sufficient size is used. The
directory entry for this block of available space is modified
to reduce the number of available sectors in this block by
the number of sectors allocated. This may temporarily
result in an entry in the directory referencing a block of
zero length. When a file is deleted, the number of sectors
released is added to the available space directory either by
inserting a new entry in the directory or by adding the
number of newly released sectors to the number of sectors
in an adjacent available space. At the time of file release,
the available space directory is compressed so that any
entries for zero length blocks are deleted and any entries for
adjacent blocks are combined.

M-l

re)4.9

Addition of file space H-l
Arrays

constant sized 1-2
idata 1-3

Automatic volume
checking 1-5, 1-8
disabling 1-8

CLEAR
clear file 2-3

CLOSFL
I close file 2-6.1, 2-7

COMFIL
compress file 2-26, 2-27

Control block
get file (GETFCB) 2-8, 2-9, 2-10
rename file (RENAME) 2-12, 2-13
update file (UPDFCB) 2-10, 2-12

CREATE
create file 2-1, 2-2, 2-3

DELETE
delete file 2-4

DELREC
delete record 2-25, 2-26

Diminishing file space H-l
Disable volume 1-5, 1-8, 2-13
DISMNT system ordinal 1-8

Enable volume 1-5, 2-13
End-of-file 1-5
Error messages J-l
Expanding file space H-l

File control block
get file (GETFCB) 2-8, 2-9, 2-10
index allocation table B-5
main-memory-resident D-l, D-2
rename file (RENAME) 2-12, 2-13
storage L-l
table B-2, B-4, B-5
update file (UPDFCB) 2-10, 2-12

File definition directory (FDD) B-1, B-2
structure B-3

File identification 1-3
File manager

entry point SYSDAT D-l
error messages J-l
file storage 1-1
functions 1-1
installa tion param eters D-l
interceptor module 1-4, 1-5
key storage 1-1
locking 1-4
organization of modules 1-1
recovery K-l
request call summary I-I, 1-2
support of existing software 1-1
system failure J-l
unlocking 1-4
use of mass memory 1-1

96768040 C

INDEX

File open/close 1-4
requirements I-I

File request
request buffer 1-3
request types 1-3
status indicator word 1-3, F-l

File space
addition H-l
limits D-3
management M-l
use of mass memory 1-1

File structure
example B-5, B-7
location B-1

File types
indexed 1-2, 1-3
sequential 1-1

FMCEPT reentrant interceptor module 1-4
FMENTP nonreentrant interceptor module 1-4, 1-5

GETFCB
get file 2-8, 2-9, 2-10

GETS
retrieve next records 2-18 thru 2-21

idata array 1-3
Indexed files 1-2, 1-3

storage C-l, C-2
structure 1-1, C-l

Interceptor modules
nonreentrant 1-4, 1-5
reentrant 1-4

Job processor error messages J-l

Key index
control parameters C-l
example C-2
information block C-l
retrieval C-2
structure 1-1, C-l

Key storage
file index structure 1-1, C-l
limitations 1-5
pyramid of partitions 1-1

Limitations 1-5
LOKFIL

lock file 2-7, 2-8

Main-memory-resident
control block tables D-l, D-2
description parameters B-1
installation parameters 0-1

Mass memory
addition H-l
limits 0-3
management M-l
space 1-1
volume information table D-3

Index-l

MNTCHK system ordinal 1-5, 1-8

Nonreentrant interceptor module FMENTP 1-4, 1-5

OPENFL
open file 2-4, 2-5, 2-6

Processor control tables D-3
PUTS

store new records sequentially 2-13, 2-14
Pyramid of partitions 1-1

READR
read specific record 2-16 thru 2-18

Record accessing requests
delete record (DELREC) 2-25, 2-26
individual requests 1-4
read specific record (READR) 2-16 thru 2-18
retrieve next records (GETS) 2-18 thru 2-21
store new indexed record (WRITER) 2-15, 2-16
store new records sequentially (PUTS) 2-13, 2-14
store udpated record (UPDREC) 2-21 thru 2-25

Record
deletion code 1-5
lock table D-3
recovery 1-5, K-l

REDUCE
reduce file size 2-12

Reentrant interceptor module FMCEPT 1-4
Reentrant requests 1-5, C-l
Relative record number 1-4
RENAME

rename file 2-12, 2-13
Request calls summary I-I, 1-2
Request processor

control tables D-3
reentrant requests 1-4, 1-5, G-l
serial request 1-5, G-l
VOLUSE (enable/disable volume) 1-5

Serial requests 1-5, G-l

Index-2

Sequential files 1-1
Specification requests

clear file (CLEAR) 2-3
close file (CLOSFL) 2-6.1, 2-7
compress file (COMFIL) 2-26, 2-27
create file (CREATE) 2-1 thru 2-3
delete file (DELETE) 2-3, 2-4
enable/disable volume (VOLUSE) 1-5, 1-8, 2-13
lock file (LOKFIL) 2-7, 2-8
open file (OPENFL) 2-4, 2-5, 2-6
unlock file (UNLFIL) 2-8

Status indicator word 1-3, F-l
System executive close 1-4
System failure J-l
System ordinals

DISMNT 1-8
MNTCHK 1-5, 1-8

System-reserved words
end-of-file 1-5
record deletion code 1-5

UNLFIL
unlock file 2-8

UPDFCB
update file 2-10, 2-12

Update protection 1-4
UPDREC

store updated record 2-21 thru 2-25
User control table D-l

Volume
checking 1-5, 1-8
disabling 1-5, 1-8, 2-13
enabling 1-5, 2-13
information table D-3
labeling 1-5, E-l

VOLUSE
enable/disable volume 1-5, 1-8, 2-13

WRITER
store new indexed record 2-15, 2-16

96768040 C

I

~-"

"

COMMENT SHEET

MANUAL TrrLE __ ~F~Jw']~e~M~a~n~a~g~e~r~Y~e~r~S~iQ~n~2~R~e~f~e~r~e~n~c~e~M~8un~u"a~I~ ________________________________ __

PUBLICATION NO. __ 9'-106,-,7...11o16Uo18~Q .. 4.w..Q _________ REVISION ___ C~ ____________ _

FROM
NAME: ___ _____

BUSINESS
ADDRE~: __ __

COMMENTS:- This form Is not intended to be used as an order blank. Your evaluation of this manual will be welcomed -
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number.

STAPLE STAPLE

FOLD

--~

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MALL
LA JOLLA, CALIFORNIA 92037

FIRST CLASS
- PERMIT NO. 333

LA JOLLA. CA.

--~

FOLD

STAPLE STAPLE

w
Z
...I

C
Z
Q
...I
<2:
I­
::::)
~

CORPORATE HEADQUARTERS, P.O. BOX 0, MIN~EAPOLIS, MINNESOTA 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~:?)
CONTI\.OL DATA CO~ORl\TION

