. 96768040

@ CONTROL DATA
CORPORATION

FILE MANAGER
VERSION 2
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
INTERACTIVE TERMINAL-ORIENTED SYSTEM

REVISION RECORD

REVISION DESCRIPTION
01 Prereleased edition
(4/77)
A Manual released. This manual obsoletes all previous editions
(6/77)
B Manual revised to incorporate ITOS 1.1 information. Section 2 also revised to incorporate format changes.
(10/77)
C Manual revised to incorporate ITOS 1.2 information. Pages ii, iii, v, 2-1, 2-5, 2-6, 2-12, 2-14, 2-18, 2-21, 2-26,
(1/78) B-4, B-5, C-1, D-3, F-1, F-4, I-3, K-1, Index-1, and Index-2 are changed. Pages 2-6.1 and B-4.1 are added.

Publication No.

96768040

REVISION LETTERS |, 0, @ AND X ARE NOT USED

© 1977, 1978

by Control Data Corporation

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphies Division
4455 Eastgate Mall

La Jolla, California 92037

or use Comment Sheet in the back of

Printed in the United States of America this manual.

ii

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV. PAGE REV

)
m
<

PAGE PAGE

by
m
<

Cover

ii thru vii
viii

1-1

I-3

I-4

J-1

K-1

L-1

M-1

Index-1

Index-2
Comment sheet
Cover

DD b pd ok ok ek ped S DD W W OO U O

aoQwQQEmQ

.1/2-6.2
thru 2-11

13-

W

5 thru 2-17

- -]

w

o

2-21

2-22 thru 2-25
2-26

2-27

2-28

A-1

A-2

B-1

B-2

B-3

B-4
B-4.1/B-4.2
B-5

B-6 thru B-13
C-1

Cc-2

C-3 thru C-14
D-1

D-2

D-3

D-4

D-5

D-6

D-7

E-1

F-1

F-2

F-3

F-4

G-1

H-1

I-1

-2

WHerWQWEPQPEEFPWQFPUPTOPQQAQPEWPrHAQWQAEQWEQWARAEQQQAEIEWQWE>E T EQO |

96768040 C ifi/iv

PREFACE

The CDC® CYBER 18 File Manager 2 is a general purpose Familiarity with the Mass Storage Operating System (MSOS),
file management system that operates under the Interactive Version 5, will be helpful in reading this manual, though not
B Terminal-Oriented System (ITOS), Version 1.2. essential, since terms used are defined in a glossary

Most of the examples in this manual are written in (appendix A).

CYBER 18 Mass Storage FORTRAN, Version3. It is

assumed that users of this manual are familiar with that The following CYBER 18 manuals contain additional
language. information useful to file manager users:
Publication Publication Number

Mass-Storage Operating System (MSOS) Version 5

Reference Manual 96769400

MSOS Version 5 Ordering Bulletin 96769490

Mass Storage FORTRAN Version 3A/B Reference Manual 60362000

Macro Assembler Reference Manual 60361900

Interactive Terminal-Oriented System (ITOS) Version 1
Reference Manual 96768290

CDC manuals can be ordered from Control Data Literature and Distribution Services,

8001 East Bloomington Freeway, Minneapolis, MN 55420

This product is intended for use only as described in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or parameters.

96768040 C v/vi

CONTENTS

1. GENERAL FILE MANAGER FEATURES

Summary
Hardware Requirements
Software Requirements
File Manager Support of Existing Software
Functions
Use of Mass Memory Space
Organization of Modules
File Storage
Key Storage
File Types
Sequential Files
Indexed Files
File Requests
Request Types
Request Buffer
Status Indicator Word
File Identification
Relative Record Number
File Open and Close
Update Protection
System Executive Close of All Files
Opened by a Particular User
File Manager Interceptor Module
Request Processors
Reentrant Request Processors
Serial Request Processors
Volume Labeling, Enabling, Disabling

A Glossary
File Structure

C Key Index Structure

D File Manager Operation Parameters and
Main-Memory-Resident Tables

E Volume Label Description
Status Indicator Word

G Reentrant/Serial Request Processors

1-1 Example of Pyramid of Partitions
1-2 Example of Reentrant Processor Queuing
1-3 Example of Serial Processor Queuing
2-1 Sector-Aligned and Non-Sector-
Aligned Records
2-2 Create File Request Example (FORTRAN)
2-3 Open File Request Example (FORTRAN)
2-4 Lock, Unlock File Requests Example
(FORTRAN)

96768040 C

T
KR

R e e e e e e e e
W R GO O OO CO DD b b b b b e e e

e
[3 I3 O NN

Record Recovery Following System Failure

Limitations

System-Reserved Words; End-Of-File and
Record Deletion Codes

Automatie Volume Checking; Volume Disabling

2. FILE REQUEST DESCRIPTIONS
AND CALLS

Specification Requests
Create File (CREATE)
Clear File (CLEAR)
Delete File (DELETE)
Open File (OPENFL) -
Close File (CLOSFL)
Loek File (LOKFIL)
Unlock File (UNLFIL)
Get File Control Block (GETFCB)
Update File Control Block (UPDFCB)
Reduce File Space (REDUCE)
Rename File (RENAME)
Enable/Disable Volume (VOLUSE)
Record Accessing Requests
Store New Records Sequentially (PUTS)
Store New Indexed Record (WRITER)
Read Specific Record (READR)
Retrieve Next Record (GETS)
Store Updated Record (UPREC)
Delete Record (DELREC)
Compress File (COMFIL)

APPENDIXES

A-1

H Addition of File Space to
an Installed System

I Summary of File Manager Request Calls

O

System Failure and Job Processor
Error Messages Related to Improper
Use of File Manager

K Recovery Techniques

L Storage of File Control Blocks
Within User Space

M File Space Management

INDEX

FIGURES

e
BN <l XY

NITDI\D
3 N

2-9

2-5 Example of FCB Retrieval for a
Particular Open File (FORTRAN)

2-6 Example of GETFCB,UPDFCB Requests
with FCB Specified by FCB Index
(FORTRAN)

2-7 Store New Records Sequentially Example
(FORTRAN)

2-8 Store New Indexed Record (WRITER)
Example (FORTRAN)

™o
Hroo oo b
USSR IR s UL
DO DO DD b= = ek ik b et = 00 00 3 b D GO e e
DU ODUNWLWWNNDD

MNNNNNN?MNNMNNN

H-1

vii

F-1
F-2

I-1

viii

Example of READR Record Retrieval
by Key Value (Non-Primary Key)

Example of READR Request with Access
by Relative Record Number (FORTRAN)

Example of READR Request with Access
by Key Value (FORTRAN)

GETS Request Example, Access by
Relative Record Number (FORTRAN)

Example of Repeated GETS Request,
Access by Key Value, Initial Positioning
by READR (FORTRAN)

Example of File Records Retrieved by
Code in Figure 2-13 \

UPDREC Example (FORTRAN)

Example of DELREC Request (FORTRAN)

Compress File Example (FORTRAN)

A Disk Pack

Location of Main File Control Structures
on a Volume

File Definition Directory Structure

File Structure Demonstration Routine
(FORTRAN)

Status Indicator Word (istat)

Status Indication Numbers

Reentrant/Serial Request Processors

Summary of File Manager Requests:
Mnemonics Definitions, File Open/Close
Requirements

B-4
2-17
B-5
2-19 B-6
B-7
2-20
C-1
2-22 C-2
C-3
2-23 C-4
C-5
2-24 C-6
2-25 - D-1
2-27 D-2
2-28 D-3
A-2 D-4
B-1 D-5
B-3 D-6
D-7
B-6 L-1
- TABLES
F-1 I-2
F-2
G-1 I-3
I-4
I-5
I-1
1-6

Assembly List of Name Array,
FSDR Routine

Example of File Definition Directory Entries

Example of File Control Blocks

Example of File Records Including
Records Marked as Deleted

Key Index Storage

Example of Key Index Storage

Key Index Demonstration Routine
(FORTRAN)

Example of FCB for Indexed File

Example of Key Index Blocks

- Example of Indexed File Records

User Control Table

Main Memory File Control Block Tables

Sample FCB Subset Control Table

Sample Mass Memory Unit Table and
Volume Information Tables

Sample File Space Limits Table

Sample Record Lock Table

Sample Processor Control Tables

FCB Storage Within User Space
(FORTRAN Example)

Summary of File Manager Request
Calling Lists
Constant-Sized Arrays
Summary of idata Array (Initial Values)
Number of Records Accessed by
Individual Requests
Values Stored by File Manager Available to
User on Completion of Request

www
= 00 ~3

[ST)

[} | U
>

I
W WM =W
= oo

i
[X3 3, TN

= gougyg UUIUOOOO QQw

1
—

12
12

96768040 B

GENERAL FILE MANAGER FEATURES 1

SUMMARY

HARDWARE REQUIREMENTS

Files must be maintained on a direct access mass memory
device, not on magnetic tapes.

SOFTWARE REQUIREMENTS

The file manager runs under ITOS 1.1. Partitioned main
memory must be included in the system, but it is not
necessary to include the partitioned main memory driver.
Allocatable main memory is not used by the file manager.
The file manager uses protected blank common. Therefore,
protected blank common may not be used by non-file
manager programs.

FILE MANAGER SUPPORT
OF EXISTING SOFTWARE

RPG 1I, version 1.1, running under ITOS 1 and Sort/Merge 2,
is supported by File Manager 2. Job processor files, pseudo
tapes, Timeshare 3, and the background editor, which depend
on File Manager 1, are not supported by File Manager 2.

FUNCTIONS

The file manager can be used by protected programs and by
unprotected programs either in the background or in the
ITOS user area. File manager users can create and maintain
sequential and indexed files. Records within these files may
be retrieved according to relative order within a file or
according to an identifier or key value. A given file may be
indexed by up to four keys. The file manager provides for
deletion of a record, updating of a record, and deletion of an
entire file. A file can be locked or particular records within
a file can be locked by a user to prevent concurrent use by
another file user.

USE OF MASS MEMORY SPACE

File manager space is predefined at system initialization.
Space used by a deleted file is available to the file manager
for a new file. Space used by deleted records can be used
for new records if the file is compressed. Mass memory
space defined for file storage cannot be used for other
system purposes. In a given system, mass memory file space
is usually not expanded or diminished. There are, however,
procedures for expanding or diminishing file space. These
procedures are described in appendix H.

ORGANIZATION OF MODULES

The file manager consists of a main-memory-resident file
manager executive, a set of main-memory-resident request
processors and support subroutines, a set of mass-resident
request processors, and an interceptor module that must be
in main memory whenever a program makes a file manager

96768040 B

request. File manager parameters and tables are discussed
in appendix D. Also see File Menager Interceptor Module
and Request Processors later in this section.

FILE STORAGE

The files reside on mass memory together with information
describing how to find information regarding a specified file
(file definition directory) and how to find a record within a
file (file control block table). These structures are
described in appendix B.

KEY STORAGE

Indexed files require additional-pointers. For a given key on
a given file, these pointers are stored in conjunction with a
pyramid of partitions. Each partition is a linearly ordered
set of disjoint intervals of key values such that the union of
these intervals is the range of the partition. For example, if
records are stored according to the key, age in years, a
typical pyramid of partitions with corresponding pointers
can be represented schematically as shown in figure 1-1. In
this figure, both end points of each interval are indicated.

In an actual file manager file index structure, only the right-
hand endpoint of each interval is stored. In figure 1-1, the
highest block of the pyramid contains the intervals (0
through 20), (21 through 30), (31 through 35), (36 through 43),
and so forth. In the figure, the dashed lines show the path of
a file manager search for all records for age 28.

This figure is only a schematic representation of the index
structure used by the file manager. The actual details of
the file index structure are described in appendix C. The
purpose of this example is to show the user that file
manager indexed files are set up to be particularly efficient
when retrieving all file records for a given key in order.
This structure is not particularly efficient for retrieval of a
large set of particular records as specified by key values
that are not in order.

The pyramid structure for each key is disjoint from all other
pyramids for that file. Thus, if another key for the file
represented in figure 1-1 is weight, there would be no
information regarding weight in the age pyramid in
figure 1-1, except in the file records in the bottom line of
the figure.

FILE TYPES

SEQUENTIAL FILES

A sequential file is one in which each new record is added
immediately following the last record stored in the file.
Records within a sequential file may be retrieved consecu-
tively in the order stored, or a particular record may be
retrieved by specifying its position within the file; that is,
the relative record number.

1-1

ﬂ

0

31-35 36-43

LEVEL 4
30-30
LEVEL 3
LEVEL 2
T . T 29-29 LEVEL 1
] ! [
I ! l
¥ v ¥
RECORD RECORD RECORD
AGE =28 AGE = 28 AGE = 28

NOTE: DASHED LINES SHOW PATH OF FILE MANAGER SEARCH FOR ALL

RECORDS FOR AGE 28.

Figure 1-1. Example of Pyramid of Partitions

INDEXED FILES

An indexed file is one in which each record has at least one
associated attribute or key (surname, social security num-
ber, age, sex, record number, ete.). In File Manager 2, a file
may have up to four keys. Each key may range in length
from one to twenty-nine bytes (eight to 232 bits). Each key
value must be stored within its associated record. (The
position of storage within the record is described in Create
File (CREATE), section 2.) Multiple occurrences of any key
value are permitted for each key except the primary key
(the first key defined for that file), which must have unique
values.

For each key for a given file, an index is set up so that
records may be retrieved in numeric order according to the
binary representation of the key values. For keys of more
than two bytes, numeric order means that order achieved by
considering each key value a binary number written as the
concatenation of the bytes of the key value with the first
bytes being most significant. This means that records with
BCD keys may be retrieved in numeric order and records
with EBCDIC or ASCII keys may be retrieved in alphabetic
order of the key values.

1-2

For example, if state abbreviation is a key, the following
key values might oceur:

MN (Minnesota)
CA (California)
MO (Missouri)

CO (Colorado)

These have two-byte ASCII representations as follows:

MN = 4D4E16
CA = 434116
MO = 4D4F16
Cco = 434F16

Ju768040 A

In numeric order, these key values are:
4341, =(CA)
434F . = (co)
4D4E o = (MN)

4D4F16 =(MO)

Another example is the last name of a group of people:
SMITH
JONES
MEAD
JONE

If left-justified, these have ASCII representations as follows:
SMITH = 534D16, 495416, 482016

JONES =4A4F. ., 4E45 532016

16’ 16’

MEAD = 4D5415, 414446, 20204

JONE =4A4F. ., 4E45 202016

16’ 16’

In numeric order, these key values are:

JONE =4Ad4F_ ,, 4E45

16° 20206

16’

JONES = 4A4F16’ 4E4516, 532016

MEAD =4D54 414416, 202044

16’

SMITH =534D 49544, 482016

16’

However, if right-justified, the keys have ASCII represen-

tations as follows:

SMITH = 205316, 4D4916’ 544816
JONES = 204A16, 4F4E16, 455316
MEAD = 202016’ 4D54¢, 41444
JONE = 202016, 4A4F16, 4E4516

In numeric order these key values are:

JONE =2020. ., 4A4F 4E45,

16’ 16’ 6
MEAD = 202016, 4D5416’ 4144,
JONES = 204A16’ 4F4E16, 455316
SMITH = 205316, 4D4916, 544816

A schematic example of the index structures generated to
enable retrieval by key value order is included in figure 1-1.
Details of this structure are found in appendix C.

File Manager 2 indexed files are also sequential files in that
each new record is added immediately following the last
record stored in the file. The position of each record within
an indexed file is known according to relative record
number. Thus, File Manager 2 indexed files are indexed-
sequential files.

96768040 B

Records may be retrieved from an indexed file in one of the
following manners:

© All records corresponding to a given key value may be
retrieved.

© A set of records may be retrieved in order according to
numeric representation of key values.

® A specific record may be retrieved according to storage
position within the file.

® A set of records may be retrieved in the order they
" were stored within the file.

FILE REQUESTS

REQUEST TYPES

There are two types of file requests — file specification
requests and record accessing requests. These requests are
described in section 2 under Specification Requests and
Record Accessing Requests, respectively. File requests are
summarized in figure I-1.

REQUEST BUFFER

Associated with each use of a particular file is a 24-word
request buffer used to process the request. The same
request buffer must be used for a sequence of requests
referring to the same file. This buffer is used by the file
manager to process requests, to save information between
related requests, and to pass back information to the caller.
The buffer may not be altered by the user between
successive file manager calls. This buffer is normally within
the user's program. For an unprotected user program, the
buffer must be in unprotected main memory.

STATUS INDICATOR WORD

Also associated with each request is a status indicator word.
Upon completion of the request, the status indicator word
contains request execution status information. Each bit of
the indicator word that is nonzero signifies an abnormal
occurrence. If the entire word is zero, the request has been
completed normally. If bit 15 is nonzero, the request has
been rejected because of errors denoted in the other bits. If
bit 15 is zero, but other bits are nonzero, the request has
been completed with an irregular occurrence (for example,
end-of-file is detected). All indicator bits are shown in
figure F-1.

FILE IDENTIFICATION

Each file is identified at the time of its creation by a file
name and a file owner. Both the file name and file owner
are specified as ASCII strings of eight characters each.

A volume is a single physical unit of a peripheral storage
device; for example, a removable disk cartridge, a disk pack,
or a nonremovable disk eartridge. For each volume used in a
system, a file identification (concatenated name/owner
ASCII string) identifies a unique file. In order to access a
file, a user must know the file's identification string. Two
or more files on a volume may have the same name if they
have different owners specified. A user may wish to define
a file's owner name to be eight ASCI blanks
(202016,202016,202016,202016) if more than one user is to
use the file.

1-3

RELATIVE RECORD NUMBER

A relative record number is assigned by the file manager to
each new record stored in a file. Relative reccrd number
defines the position of a record within a file. This number is
a 24-bit number stored as a right-adjusted three-byte field
in a two-word array. The left byte oi the first word is
always zero. The first word contains a positive 8-bit
number (n). The second word contains a positive 16-bit
number (m). Then, if r is the relative record number:

r=nx65536+m

where 0 <m < 65535

The relative record number, r, may be thought of as the
ordered pair (n,m).

Examples:

Relative record number 65,540 = (0001 [l0041

16’ Y

Relative record number 35 = (000016, 002316)

FILE OPEN AND CLOSE

A user must gain permission to access a file each time he
uses it. This is done by a file manager open request. When
accesses to the file have been completed by a user, he
performs a file manager close request to relinquish per-
mission to use the file at this time.

UPDATE PROTECTION

Locking and unlocking procedures are included in the file
manager to prevent two users from simultaneously updating
the same record and thus losing part of the updated data.
The following situation can ocecur if locking is not used:
user A retrieves record n of a given file. User B then
retrieves record n of the same file. User A now modifies
word 10 of the record and stores it back into the file.
User B then modifies word 12 of record n and stores the
record back into the file. Since the copy of record n re-
trieved by user B does not contain the modified word 10, the
original value of word 10 is in record n after user A and
user B have completed their updates. Locking and unlocking
are used to prevent this situation.

A set of one or more records may be locked by a user or an
entire file can be locked. Any record in a locked file or in a
locked set of records cannot be retrieved, updated, or
deleted by another user. A new record cannot be stored into
a locked file by another user. A user may wish to lock an
entire file when generating a report from the file, when
dumping the file to magnetic tape, or when performing some
other function that cannot allow any changes to the file
during its operation.

Whenever a set of one or more records is to be updated, the
user must retrieve and lock the records and subsequently
store and unlock the records using an update record request.
Only one set of records of a given file may be locked by a
single user at any one time. This restriction is made to limit
the main memory space required for file manager tables.
After a user has locked a set of records in a file, his next
retrieve or store request for that file automatically unlocks
the locked records. A retrieve request that attempts to lock
a locked record is rejected. The rejected request may be
repeated until the retrieve is successful.

1-4

NOTE

Extreme care should be used when em-
ploying record locks in which records in
two or more files must be used concur-
rently. Suppose user A retrieved and
locked record m of file M, user B re-
trieved and locked record n of file N,
user A repeatedly issues a retrieve re-
quest for record n, and user B repeatedly
issues a retrieve request for record m.
If both user A and user B repeatedly issue
a retrieve request for their needed rec-
ords without giving up after a certain
number of rejects and unlocking their
records, both users will wait indefinitely
as there is no way to grant either of the
requests.

SYSTEM EXECUTIVE CLOSE OF
ALL FILES OPENED BY A
PARTICULAR USER

A special file manager interface to the systein executive
allows the executive to request that a set of files opened by
a particular user be closed. The system executive, while
monitoring one or more user programs, may thus close all
files left open by an aborted user. The set of files to be
closed is identified by one of the following:

© The beginning and ending main memory addresses of the
space occupied by the user program.

® A unique user identification code assigned to the user
by the system executive at the time the user's open file
requests were intercepted by the system executive.

© The volume on which the files reside (all open files on a
given volume may be closed in this way).

FILE MANAGER INTERCEPTOR
MODULE

A special request interceptor module is used to intercept all
file manager request calls. This module redirects the file
manager requests to the main-memory-resident request
supervisor. There are two versions of this module - a
reentrant version, FMCEPT, and a nonreentrant version,
FMENTP.

If any main-memory-resident program uses the file manager,
a copy of the reentrant interceptor module, FMCEPT, must
be included in main memory.

A mass-resident program that runs in foreground-allocatable
main memory must link to FMCEPT if it contains any
reentrant code. Otherwise, it must have the nonreentrant
interceptor module, FMENTP, included as a part of its
absolutized load. If FMENTP is used, the program must
declare all file manager request names as relative externals.
(An example of such a program is shown in figure 2-6.)

A mass-resident program that runs in partitioned main
memory must have the nonreentrant interceptor module,
FMENTP, included as a part of its absolutized load. A
partitioned main memory program need not declare file
manager request names as relative externals.

967638040 A

A background program that uses the file manager is
automatically linked to the interceptor module, FMENTP, in
the program library at the time the program is loaded. Such
a background program should not declare file manager
request names as relative.

REQUEST PROCESSORS

There are two types of file manager request processors — re-
entrant processors and.serial processors.

REENTRANT REQUEST PROCESSORS

The reentrant request processors are indicated in
figure G-1. Each reentrant processor is main-memory-
resident. The set of reentrant processors can concurrently
process one request for each volume in the system. For a
given volume, if a reentrantly executable request is made
for the volume while another reentrant request is being
processed for that volume, the new request is queued
according to the priority of the request. Requests are then
processed according to the queue. An example of the
queuing is shown in figure 1-2.

SERIAL REQUEST PROCESSORS

An indication as to which request processors are serial is
contained in figure G-1. Each serial processor is mass-
memory-resident and executes in partitioned main memory.
The manner of executing and queuing serially executable
requests is the same as executing and queuing reentrantly
executable requests on a single volume. An example of the
queuing is shown in figure 1-3.

VOLUME LABELING, ENABLING, DISABLING

A volume is a removable disk cartridge, a disk pack, or a
nonremovable disk cartridge. The label on a volume is a
table of information written on the volume. The label
format is described in appendix E. Labeling is a procedure
for initializing the label on a volume so that the volume can
be used by the file manager. Labeling software is external
to the file manager. Labeling for the system volume
(SYSVOL) is performed by the system initializer. Labeling
for other volumes is performed using the ITOS UTIL
command INIT. Labeling is deseribed in the ITOS reference
manual.

Enabling a volume is a procedure for notifying the system
that a volume is mounted and ready for use by the file
manager. Similarly, disabling is a procedure that disables
use of a volume by the file manager so that the volume may
be removed or shut down. The file manager provides the
request processor, VOLUSE (see Enable/Disable Volume
(VOLUSE), section 2), which performs the volume enabling
and disabling functions. The VOLUSE request is to be used
only by system utility programs.

RECORD RECOVERY FOLLOWING
SYSTEM FAILURE

The file manager includes a procedure for record recovery in
case of system failure. A similar scheme is used for key
information structure recovery. A description of the file
manager recovery procedures is contained in appendix K.

96768040 B

LIMITATIONS

The following limitations exist:

o If n = number files on a volume, then
1 <n< 2047.

® If q =record length in bytes, then
1<q< 32,766 =2 -2.

e If r = maximum number records in a file, then

1<r<16,777,215 = 224 -1.

o If k = key value length in bytes, then

1<k<29

(see the Key Storage section).

SYSTEM-RESERVED WORDS;
END-OF-FILE AND RECORD
DELETION CODES

To signify that a file record has been deleted, the file
manager stores a record-deleted code into the first word of
the record. This code is determined at the time of system
installation. It is usually an infrequently used ASCII code
(see Main-Memory-Resident File Manager Operation Instal-
lation Parameters, appendix D).

To denote the last record in a file, the file manager stores
an end-of-file code into the first two words of the next
record space available after the last record in the file. This
end-of-file code is a system installation parameter, usually
an infrequently used ASCII code (see Main-Memory-Resident
File Manager Operation Installation Procedure, appendix D).

To avoid false detection of deleted records and ends-of-file,
the user must design his record format so that the above
codes can never occur as data in the first two words of a
record. Any random binary data may therefore never be

~ stored in the first two words of a record.

AUTOMATIC YOLUME CHECKING;
VOLUME DISABLING

The file manager provides the interface for periodic
automatic checks of each volume in current use by the file
manager. The file manager interface consists of periodie
scheduling of the system ordinal, MNTCHK. If MNTCHK is
in a system, it is scheduled at system startup and at timed

9-1

V 0¥089.96

REENTRANT
PROCESSORS
Com- Requests Currently Queues
Heading |Reentrant|Request | Pri- pletion Being Processed
Processor | Request | Time ority| Volume |Time Pri- Pri- Pric
Time| Volume 1 }Volume 2 |Volume 3 | Volume 1 | ority [Volume 2 | ority | Volume 3 jority
LOKFIL Up tot 9 1 ts
UNLFIL U, ty 13 2 ty to Uy -- - - - -
PUTS Ug to 8 3 tg ty Uy Uy - - -— -—
UPDATE Ug tg 7 3 tt t2 Up Uy Uy - - -
LOKFIL Ug t4 0 3 tg Uy Uy Uy - - Ug 7
PUTS Us te 8 3 ty UO Uy Uy - _— Us 7
Uy 0
UNLFIL Ug tg 6 1
ts - Uy U, - -- Ug 7
UPDATE Uy ti0 4 1 Uy 0
PUTS U t 0 2)
8 11 te - Uy U, - - Ug 8
Usg 7
Tt0<tl<t2...<tll Uy 0
ty - - Uy - - Ug 8
t1To simplify this example, not all completion U, 7
times are included. Uy 0
t8 U6 - Uz - - U5 8
Ug 7
Uy 0
tg Ug - Ug -- - Ug 7
U, 0
ti0 Ug - Us Uq 4 - Ug 7
Uy 0
t1y Ug Ug Us U, 4 -- Ug 7
Uy 0

Figure 1-2. Example of Reentrant Processor Queuing

V 0¥089.96

L-1

SERIAL
PROCESSORS

—
— = B

Request
Processor

Serial
Request

Request
Time

Priority

Volume

Completion
Time

Time

Requests Currently

Being Processed

Queue

Volume 1

Volume 2

Volume 3

Volume

Priority

CREATE
OPENFL
OPENFL
OPENFL
WRITER
CLOSFL
OPENFL

tot

9
13

8
7
0
8
6

e WOW W W N s

ts
ty
tg
Tt

to

Uy

t1

Ug

13

t2

Uo

13

Up

13

-3

ftp<typ<ta...<t

t1To simplify this example, not all completion times are

included.

—
w

ts

U

tg

tg

W s W W e W W W ww W WWloweoww| wowih|wowih|wimd| N

S D O ;M 3 O N | OO 30w S =3 0

Figure 1-3. Example of Serial Processor Queuing

intervals thereafter. The ordinal MNTCHK is part of ITOS. Similarly, the file manager provides the interface for

B The functions of MNTCHK are to ascertain that each automatic volume disabling in the event of a mass memory
volume in use is mounted and ready and that the volume input/output error on the volume. When such an 1/0 error is
name on the label matches the volume name in the file detected in performing file manager input/output, the file

l manager main memory table for that volume. If a volume manager checks for the existence of the system ordinal,

] does not pass these tests, it is lorically disabled by DISMNT. The ordinal DISMNT is a part of ITOS. Functions

H§ MNTCHK. (See appendix E for volume .abel description and of DISMNT are to request closure of all open files on the

appendix D for volume information table descriptioq.) volume and to print a message on the comment device.

1-8 96768040 B

FILE REQUEST DESCRIPTIONS AND CALLS

SPECIFICATION REQUESTS
CREATE FILE (CREATE)

A file must be created before it can be opened for storage
and retrieval. A file cannot be created if a file with the
identical name and owner is already defined on the same
volume. A file may be recreated if it was previously deleted
or renamed.

A file may be specified to have sector-aligned records. If
this option is selected, each record starts at the first
physical word of a sector. (In this case, if the record length
is not an integral multiple of the sector length, the words
between the end of a record and the start of the next sector
are unused.) If records are not to be sector-aligned, mass
memory space is assigned so that one record follows the
next with no space in between. Sector alignment of records
minimizes access time when randomly positioned records
are being retrieved and updated. However, depending on
record length, sector alignment of records may not make
efficient use of mass storage space. See figures 2-1 and
A-1.

A file may be specified to have essentially binary data., If
this option is selected, the control information for the file is
| updated on mass memory often each set of one or more new
records is stored into the file so that the control information
always correctly reflects the number of records in the file.
Further, a binary data file may not be compressed since
binary data may be mistaken for the record deleted code
used by the system (see Delete Record and Compress File in
section 2 and the FURDEL parameter description in
appendix D).

In FORTRAN, the create file request has the following
form: .

CALL CREATE (regbuf,idata,istat)
Where:

regbuf is the file request buffer, a 24-word array used by the
file manager in processing the request (see Request
Buffer, section 1).

idata is a 24-word array containing the information needed
to create the file. Words within the idata are as
follows:
idata(1) - idata(4) File name, eight ASCII char-
acters (name may contain
blanks)

idata(s) - idata(8) File owner, eight ASCI
characters (name may con-
tain blanks)

Name of the volume on
which the file is to be de-
fined; eight ASCII char-
acters. The value of
idata(9) must not be 202016.

idata(9) - idata(12)

idata(13) Record length in bytes:

1 < idata(13) < 32,766

96768040 C

idata(14) - idata(15)

idata(16)

bit 0

bits 1-7

bit 8

bits 9-13

bit 14

bit 15

idata(17)

1

If idata(13) is an odd inte-
ger, the actual record length
includes an odd number of
bytes for purposes of trans-
fer to magnetic tape, etc.
However, on mass memory
the record length is an even
number of bytes (the small-
est even number of bytes
that includes the whole rec-
ord). The start of a record
is always the left-hand byte
of a word.

Maximum number of records
to be stored in file; the
format of idata(14) and
idata(15) is that of a rela-
tive record number as de-
fined in Relative Record
Number, section 1.

Specifies options selected
for file

File type

0 Sequential file

1 Indexed file
Unused

Binary data indicator

0 Records do not contain
essentially binary data

1 Records contain essen-
tially binary data

Unused

Meaningful only if the file is
indexed

0 Records are presented
randomly with respect
to primary key

1 Records are presented
in order with respect to
primary key

-Sector-aligned option

1 All records are sector-
aligned

0 Otherwise

Length of key 1 (primary
key) in bytes:

1 < idata(17) < 29

2-1

2-2

FILE A FILE B

SECTOR RECORD 1 SECTOR RECORD 1
n n
SECTOR RECORD 2 SECTOR RECORD 2
n+l L e e - — — = — — n+1
RECORD 3 .
SECTOR| _ _ _ _ _ _ _ 4 SECTOR RECORD 3
n+2 n+2
NONSECTOR-ALIGNED RECORDS SECTOR-ALIGNED RECORDS
NOTE: TO RETRIEVE RECORDS 1, 2, AND 3 SEQUENTIALLY AS A GROUP OF THREE FROM

idata(18)

idata(19)

idata(20)

idata(21)

FILE A REQUIRES THE SAME TIME AS TO RETRIEVE RECORDS 1, 2, AND 3
SEQUENTIALLY AS A GROUP FROM FILE B, HOWEVER, TO RETRIEVE RECORD 2,
THEN RECORD 3, THEN RECORD 1, EACH RECORD INDIVIDUALLY WOULD REQUIRE
ADDITIONAL TIME WHEN ACCESSING RECORDS IN FILE A, TO RETRIEVE A RECORD
THAT OVERLAPS TWO OR MORE SECTORS, EACH SECTOR IS RETRIEVED INDIVIDUALLY
BY THE MASS MEMORY DRIVER. AFTER EACH RETRIEVAL, THE PART OF THE
RETRIEVED SECTOR THAT INTERSECTS THE RECORD IS TRANSFERRED TO THE

USER'S BUFFER, IF TWO SECTOR-ALIGNED RECORDS HAVE UNUSED WORDS BETWEEN
THEM ON MASS MEMORY, THERE WILL BE THE SAME NUMBER OF UNUSED WORDS
BETWEEN THEM IN THE USER'S BUFFER WHEN THESE RECORDS ARE RETRIEVED,

Figure 2-1. Sector-Aligned and Non-Sector-Aligned Records

Byte position in key 1. For idata(22) Byte position of key 3 (com-
key starting in left byte: puted as for key 1, idata(18))
idata(18) =2xn+1 idata(23) Length of key4 in bytes
(same limits as for key 1,
For key starting in right idata(17))
byte:
idata(24) Byte position of key 4 (com-

idata(18) =2 xn +2 puted as for key 1, idata(18))

Where: n is number words

preceding keyl in the istat is the file request status word as defined in Status

record. Indicator Word, section1l (see also error
considerations below).

For example, for the pri-

mary key starting in the left

byte of word 4: In assembly language, the create file request has one of the

following forms:
idata(18) =2x3+1=7

EXT* CREATE EXT CREATE
Length of key 2 in bytes
(same limits as for key 1 : : : :
idata(17)) RTJ CREATE RTJ CREATE

ADC regbuf or ADC regbuf
Byte position of key 2 (com-
puted as for key 1, idata(18)) :
Length of key3 in bytes The use of CREATE as an absolute external or as a relative
(same limits as for key1, external is discussed in File Manager Interceptor Module,
idata(17)) section 1.

96768040 B

An error is indicated on the return from a call to CREATE if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

© A mass memory error occurred (bit 5 is also set).

o File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set). :

o The file name/owner string is not unique (bit 10 is also
set).

o There is insufficient space in the mass memory file
definition directory for this file (bit 11 is also set). If
an unused file is present in the system, it may be
deleted to provide additional directory space. The
deleted file must have the same scatter code as the new
file if the new file is to utilize the empty directory
entry left by the deleted file (see appendix B).

® Insufficient mass memory file space exists for the file's
records (bit 12 is also set). If an unused file exists in
the system, it may be deleted to provide additional file
space.

® Volume specified for the file is not mounted and ready
(bit 13 is also set).

® File request is illegal (bit 14 is also set). This implies
one or more of the following has occurred:

-Record length is not in the required range.

-Maximum number of records is not in the required
range.

-Length of one or more keys is not in the required
range.

-Position of one or more keys is not totally within the
record.

-Primary key is not specified but key 2, 3, or 4 is
specified. :

~No keys are specified, but the indexed file is specified.

An example of a create file request is shown in figure 2-2.

CLEAR FILE (CLEAR)

A file may be cleared when there is no further use for the
records currently in the file. Functionally, a clear file
request is equivalent to a delete file request followed by a
create file request. Executing the clear file request is
faster, however, than executing a delete followed by a
create request.

A file may not be open to any user when it is cleared. This
means that a file cannot be locked when it is being cleared.
If a user wishes to periodically dump a file's contents to
another medium such as magnetic tape and then delete those
dumped records from the file, he must ensure that no
records are stored into the file after the dump has started
and before the clearing has been completed. If the user does
not do this, data may be lost. One way to prevent any data
loss is for the user to provide his own protection system.
This method is illustrated in the Lock File (LOKFIL) section.

96768040 B

In FORTRAN, the clear file request has the following form:

CALL CLEAR (regbuf,idata,istat)

Where:

reqbuf is the file request buffer, a 24-word array used by the
file manager in processing the request (see Request
Buffer, section 1).

idata isa 12-word array containing the information needed
to define the file to be cleared. Words within idata
are as follows:

idata(1) - idata(4) File name (eight ASCII
characters)

idata(5) - idata(8) File owner name (eight
ASCII characters)

idata(9) - idata(12) Name of the volume on
which the file is defined
(eight ASCI characters); if
idata(9) =0 or idata(9) =
2020, . (two ASCII blanks),
the dFe manager performs a
search to locate the entry
for the specified file and
returns the corresponding
ASCIl volume name in
idata(9) through idata(12).

istat isthe file request status word as defined in Status
Indicator Word, sectionl (also see error
considerations below).

In assembly language, the clear file request has one of the
following forms:

EXT* CLEAR EXT CLEAR
RTJ CLEAR o RTJ CLEAR
ADC regbuf ADC regbuf

The use of CLEAR as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to CLEAR if

bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

® The file is currently open to one or more users (bit 0 is
also set).

o The file could not be located (bit 1 is also set).

© A mass memory error occurred (bit 5 is also set).

o File manager data structures on mass memory or in
main memory contain one or more errors (bit 5 and

bit 14 are also set).

® The volume specified for the file is not mounted and
ready (bit 13 is also set).

2-3

C RFSFRVE SPACE FOR FILE REQUEST HUFFER AND FILE INFORMATINN BUFFER

INTFGER REQBRUF (24)
DIMENSION [DATA(24)
SET FILE NAME = F=12

IDATA(13)=43

INATA(14)=0
1DATA(15)=500

NOT SECTOR-ALIGNED.
IDATA(l16)=%0001

IDATA(17)=3
IDATA(]18)=5

10aTA(19) =]
1IDATA(20)=8

NATA 1DATA/WWF=12
1 e/

[] .

SET MAXIMUM NUMRER RECORDS TO S00.

ED SMITHu,nvV]

SET FILF OWNER = ED SMITHs VOLUME NAME = V1

SET PECORD LENGTH = 48 RYTES (=24 WORDS)

SET FILE TYPE INDEXFD WITH RECORDS TO HE PRESFNTED AT RANDOMs RECORDS

PRIMARY KEY TO BE STORED IN RYTES 5-7-

SECONDARY KEY TO RE STORED IM BYTE 8

WeltAs0De500+3000]) a3eSe]l Ry

CALL CREATE (REQBUF+IDATALISTAT)

C CHECK FOR ERRORS
IF (ISTAT.NE.O) GO 70 9000

Figure 2-2. Create File Request Example (FORTRAN)

DELETE FILE (DELETE)

A file may be deleted when there is no further use for it.
Delation of a file permits reuse of its nass memory record
storage space and reuse of its directory entry by the file
manager. If the file is indexed, its index storage space on
mass memory is also freed for use by the file manager.

A file may be deleted only if it is currently not open to any
user.

In FORTRAN, the delete file request has the following form:
CALL DELETE (regbuf,idata,istat)
Where:

regbuf is the file request buffer, a 24-word array used by the
file manager to process the request (see Request
Buffer, section 1).

idata isa 12-word array containing the information needed
to define the file to be deleted. Words within idata
are as follows:
idata(1) - idata(4) File name (eight ASCII char-
acters)

idata(s) - idata(8) File owner name (eight
ASCII characters)

Name of the volume on
which the file is defined
(eight ASCII characters); if
idata(9)=0 or idata(9)=
2020,, (two ASCII blanks),
the fle’e manager performs a
search to locate the entry
for the specified file and
returns the corresponding
ASCIl volume name in
idata(9) through idata(12).

idata(9) - idata(12)

1 24

istat isthe file request status word as defined in Status
Indicator Word, sectionli1 (also see error
considerations below).

In assembly language, the delete file request has one of the
following forms:

EXT* DELETE EXT DELETE
RTJ DELETE RTJ DELETE
ADC regbuf ADC regbuf

. . . .
. .
.

The use of DELETE as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to DELETE if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

® The file is currently open to one or more users (bit 0 is
also set).

® The file could not be located (bit 1 is also set).

® A mass memory error occurred (bit 5 is also set).

® File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14

are also set).

® The volume is specified for the file that is not mounted
and ready (bit 13 is also set).

OPEN FILE (OPENFL)
To gain access to a given file, the user must execute a file

manager open file request, specifying the particular file.
More than one user may access a given file at one time.

96768040 B

In order to open a file, the following conditions must hold:
o The file must have been created.

o The volume containing the file must be mounted and
ready.

o The file must not be locked.

o The file must not be open to this user.

If records are to be retrieved from an indexed file by a given

key, that key must be specified in the open request.

Access permission is obtained for either file compression,
special file processing or record retrieval and storage. When
the file manager grants permission for file compression or
special processing, it automatically locks the file. This
locking ensures that other users cannot retrieve or store
records for this file during the compression permission for
record retrieval and storage, the user has the following
options with regard to locking:

© The entire file may be automatically locked at the time
the aceess permit is granted. When a file is locked by a
user, no other user can access the file.

o A record is automatically locked at the time the user
retrieves it from the file. (In this case the record is
automatically unlocked when the next file access
request is made.)

o No automatic locking is to be performed. If the user
selects this option, he may still perform file locking,
but must do it by one or more requests distinet from the
open file request.

No record locking can be performed if the third option is
selected. When opening a file for record retrieval, the file
request specifies the number of records to be retrieved in
each retrieve record request made to the file. This number
of records applies to all GETS requests and to all READR
requests except for those READR requests that specify a
particular key of an indexed file. If record locking is to be
performed for an indexed file that is to be accessed by a
key, the number of records per retrieval must be one. If a
file is open to more than one user, the number of records per
retrieval and the locking option need not be the same for the
different users.

In compressing a file, a compress file request is repeatedly
executed until the entire file has been compressed. By
compressing only a portion of a file on each request, other
file manager requests may be queued and executed between
successive compression calls (see Reentrant Request Proces-
sors; Serial Request Processors, seetion 1). When opening a
file for compression, the open file request specifies the
number of file records to be processed in each compress file
request execution. This number should be chosen according
to the amount of buffer space available in the user's
program (see the Compress File Request (COMFIL), section).

" If an indexed file is to be compressed, the number of records
to be processed in each compression execution is one.

If a file is open for special processing, it mayﬁe accessed
the same as if it had been opened for record retrieval and
storage in which records are to be retrieved by relative
record number (see idata (13) deseription below). While in
this processing mode, the file's control information on mass
memory is not periodically updated as new records are

96768040 C -

stored into the file. Further, the control information is not
updated on mass memory if the file is closed by system
executive close of all open files for a particular user;
however, the control information is updated if the file is
closed by the user that opened the file. This special
processing mode is intended for use by system file manager
utility programs.

In FORTRAN, the open file request has the following form:
CALL OPENFL (regbuf,idata,istat)
Where:

regbuf is the file request buffer, a 24-word array used by the
file manager to process the request; it must be set
to all binary zeroes by the caller. An exception to
this is described in appendix L.

After being initialized by the file manager, this
buffer is used by the file manager for subsequent
accesses for this file.

idata isa 15-word array containing the information needed
to define the file to be opened. Words within idata
are as follows:

idata(1) - idata(4) File name (eight ASCI
characters)

idata(5) - idata(8) File owner name (eight
ASCII characters)

Name of volume on which
the file is defined (eight
ASCII characters); if
idata(9) =0 or idata(9) =
2020, . (two ASCI blanks),
the fllf;e manager performs a
search to locate the entry
for the specified file and
returns the corresponding -
ASCII volume name in
idata(9) through idata(12).

idata(9) - idata(12)

idata(13) Access indicator

0 Access for record
retrieval and storage
requested when records
are to be retrieved by
relative record number

,2,3, Access for record
or4 retrieval and stor-
age requested
where records are
to be accessed by
key 1, key 2, key 3,

or key 4, respec- H

tively.

-1 Access for file |
compression. ;

-2 Access for special :
processing

idata(14) Number of records to be
retrieved in each retrieve
record request. (If records
for a specific key value are
to be retrieved from an
indexed file and record
locking is indicated, only
one record may be retrieved
per retrieval request; that
is, idata(14) must equal 1.)

Or the number records to be
processed during each exe-
cution of a compress file
request (must be 1 if com-
pressing an indexed file).

idata(15) Lock indicator

0 No automatie locking is
to be performed

>0 A record is to be auto-
matically locked at the
time it is retrieved

< 0 The entire file is to be
automatically locked at
the time the access
permit is granted

NOTE

The value of idata(15) is
ignored if the file is opened
for compression or for
special processing.

istat is the file request status word as defined in Status
Indicator Word, sectionl (see also status
considerations below).

In assembly language, the open file request has one of the
following forms:

EXT* OPENFL EXT OPENFL
RTJ OPENFL o RTJ OPENFL
ADC regbuf ADC regbuf

The use of OPENFL as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

Request status considerations (istat) are as follows:

o OPENFL returns bit 0 =1 and bit 15 =0 if the file is
currently open to another user.

e OPENFL returns bit 2 =1 and bit 15 = 0 if the file was
locked as a part of the open file request.

T

OPENFL sets bit 15 (rejecting the request) if:

The file request was to open for compression and some
other user currently has the file open (bit 0 is also
set). t

-'i’he file request was to open for record access with
file lock and some other user currently has the file
open (bit 0 is also set).

-The file is already open to this user (bit-0 is also set).
-The file could not be located (bit 1 is also set).

-The file was locked at the time the request was made
(bit 2 is also set). t

-A mass memory error occurred (bit 5 is also set). This
error may have occurred when the file was previously
open and record recovery was not possible because of
the timing of the failure. (See Record Recovery
Following System Failure, section 1.) If the bit 5 error
indication is not accompanied by a MASS MEMORY
I/O message on the comment device, the error
occurred when the file was previously open. In this
case it may be possible to manually restore the file on
mass memory by use of ODEBUG. Otherwise, it is
necessary to delete and recreate the file.

-File manager data structures on mass memory or in
main memory contain one or more errors (bit 5 and
bit 14 are set).

-The request is for record access, not compression.
When the file was last closed, a compression had been
initiated but not completed. This compression must be
completed before the file can be opened for record
access (bit 9 is also set). The user should open the file
for compression and finish up compression before
proceeding,

-The maximum number of concurrent open files
permitted to a single user has already been granted to
this user (bit 11 is also set).

-The maximum number of open file permits that can be
granted to all users in the system has been obtained
(bit 12 is also set). In this case, if bit 11 is zero, the
request may be retried after a delay.

-The volume specified for the file is not mounted and
ready (bit 13 is also set).

-The request is illegal (bit 14 is also set). This implies
one or more of the following has occurred:

The value of idata(14) is invalid.

The indexed file and idata(13) exceed the number
of keys for the file.

The definition of idafa(l:i), idata(14), idata(15) is
inconsistent.

The number of records to be accessed (idata(14))
multiplied by the record length is greater than
32,767,

An example of an open file request is shown in figure 2-3.

The request may be repeated after a delay. (See the note in Update Protection, section 1.)

96768040 C

CLOSE FILE (CLOSFL)

A close file request is the procedure used to relinquish a
user's access permission for the file. A file should be closed
when a user no longer needs to access it. It is important that
this be done so that other users can open files as needed.
(The maximum number of simultaneous open files is
discussed in Main-Memory-Resident File Manager Operation
Installation Parameters, appendix D.)

A file may be closed only 'if it is currently open to the

requestor of the close. A file closed to one user may, at the
same time, be open to other users.

96768040 C

If the file has been locked by the user, it is automatically
unlocked at the time of the close. If a set of records within
the file has been locked by this user, these records are
automatically unlocked at the time of the close. (Records
locked by another user are not unlocked.) An indication of
any file or record unlocking performed during a close file
request is relayed to the user via the status indicator word.

In FORTRAN, the close file request has the following form:

CALL CLOSF1{reqbuf,istat)

2-6.1/2-6.2 o

DIMENSION NBUF (24) « JBUF (24)
NPIMENSION NDATA(15)+uDATA(]15)
C PRESET REQUEST BUFFERS TO ALL ZEROES
DATA NBUF +JBIIF /4840/
PRESET REQUEST INFORMATION RUFFERS
FOR FILE Ne] RECORD IS TO BF RETRIEVED AT A TIME ACCORDING TO THE
PRIMARY KEY, EACH RECORD WILL BE LOCKED AS IT IS RETRIEVEN.
DATA NDATA /wFILE N ZGX389 ", ,uyQi UME 11ne]lelel/
FOR FILE Je3 RECNRDS ARE TO RE RETRIEVED PER RETRIEVAL REQUEST.
RECORD LOCKING IS TO BE PERFORMED. RETRIEVAL IS TO BE By RELATIVE
RECORD NUMBER,
DATA JDATA /9FILE J 2Z2QX389 euyOLUME 1"40e391/
C REQUEST PERMISSION TO ACCESS FILE N
CALL OPENFL (NBUF +NDATAWNSTAT)
C TEST FOR REJECT
IF (NSTAT.LT.0) GO TO 8000
C RENUEST PERMISSION TO ACCESS FILE J.
CALL OPENFL (JBUF+JDATALJSTAT)
C TEST FOR REJECT
IF (JSTAT.LT.0) GO TO 8010

onon

o000

C NOTE- SUBSEQUENT REQUESTS WHICH ACCESS FILE N MUST USE NBUF AS THE
C REQUEST BUFFER. REAQUESTS WHICH ACCESS FILE J MUST USE JBUF AS
c THE REQUEST BUFFER.
. L]
Figure 2-3. Open File Request Example (FORTRAN)
Where: ® File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
regbuf is the file request buffer, a 24-word array. This must are also set).
be the same array as the one used in opening the
file. Contents of reqbuf may have been altered by o The file request buffer (regbuf) was altered by the user
the file manager in performing file access requests, before the close file request (bit 13 is also set).
but contents of reqbuf must not have been altered
by the user.

LOCK FILE (LOKFIL)
istat isthe file request status word as defined in Status

Indicator Word, sectionl (see also status In some situations, the user may wish to lock an entire file
considerations below). to temporarily prevent access to the file by other users.
Some situations that warrant file locking are listed in

In assembly language, the close file request has one of the Update Protection, section 1, in the discussion of file locks.

following forms: .
A file may be locked under the following conditions:

EXT* CLOSFL EXT CLOSFL

. . . . ® The user has opened the file.
RTJ CLOSFL or RTJ CLOSFL o The file is not open to any other user.
ADC regbuf ADC regbuf

. . . . ® The file was not opened for record locking.

In FORTRAN, the lock file request has the following form:

The use of CLOSFL as an absolute external or as a relative

external is discussed in File Manager Interceptor Module, CALL LOKFIL (reqbuf,istat)

section 1.

Request status considerations (istat) are as follows: Where:

reqbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file. Contents of reqbuf may have been altered by
the file manager in performing file access requests,
but contents of reqbuf must not have been altered
by the user.

@ Bit 2 is set if the file was unlocked by the close file
request.

® Bit 3 is set if a set of locked records was unlocked by
the close file request. (These records were initially
locked by requestor of the close.)

istat isthe file request status word as defined in Status
Indicator Word, sectionl (see also error
considerations below).

CLOSFL sets bit 15 (rejecting the request) if:

® A mass memory error occurred (bit 5 is also set).

96768040 B 2-7 I

In assembly language, the lock file request has one of the
following forms:

EXT* LOKFIL EXT LOKFIL
RTJ LOKFIL or RTJ LOKFIL
ADC regbuf ADC regbuf

. .

The use of LOKFIL as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to LOKFIL if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

® The file is currently open to another user (bit 0 is also
set).

© Record locking was indicated when the file was opened
(bit 3 is also set).

® The file request buffer (reqbuf) was altered by the user
before the lock file request (bit 13 is also set).

® The file was closed by an executive forced file close
due to hardware failure or operator shutdown of the
volume (bit 13 is also set).

A lock file request is shown in figure 2-4.

UNLOCK FILE (UNLFIL)

A file may be unlocked when the user no longer needs to
have it locked. This enables other users to regain access to
the file. A file may be unlocked by the same user who
locked the file.

In FORTRAN, the unlock file request has the following
form:

CALL UNLFIL (regbuf,istat)
Where:

regbuf is the file request buffer and is a 24-word array. This
must be the same array as the one used in opening
the file. Contents of regbuf may have been altered
by the file manager in performing file access
requests, but contents of regbuf must not have
been altered by the user.

istat isthe file request status word as defined in Status
Indicator Word, sectionl (see also error
considerations below).

In assembly lahguage, the unlock file request has one of the
following forms:

EXT* UNLFIL EXT UNLFIL
RTJ UNLFIL or RTJ UNLFIL
ADC regbuf ADC regbuf

The use of UNLFIL as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

1 2-s

An error is indicated on the return from a call to UNLFIL if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

® The file is not currently locked by the user (bit 2 is also
set).

® The file request buffer (reqbuf) was altered by the user
before the unlock file request (bit 13 is also set).

® The file was closed by an executive forced file close
due to hardware failure or operator shutdown of the
volume (bit 13 is also set).

An unlock file request is included in the exampl2 in
figure 2-4.

~

GET FILE CONTROL BLOCK (GETFCB)

A file control block (FCB) is an array associated with a file.
It is stored on mass memory. The array contains infor-
mation such as file name, file owner, file type, location of
data records, and so forth. The format of the FCB is shown
in File Control Block Table, appendix B.

The get file control block request is intended for use only by
system level utility programs. There are two ways to
specify the file for which the FCB is to be retrieved:

® An FCB may be retrieved for a particular open file. In
this case, the file is defined by the contents of the file
request buffer, regbuf, corresponding to the open file
request.

e An FCB may be retrieved according to its relative
position in the set of FCBs on a particular volume. This
relative position is the FCB index number in the file
definition directory as defined in File Control Block
Table, appendix B. For this method of FCB retrieval,
the file need not be open.

Using the second method of FCB specification, all the FCBs
on a given volume may be retrieved by successive repe-
titions of a get FCB request. The first request specifies
that the FCB index equals 1. Before each repetition of the
request, the FCB index is incremented by one, until the file
manager rejects the request due to an out-of-range FCB
index for that volume.

In FORTRAN, the retrieve file control block request has the
following form:

CALL GETFCB (regbuf,volnam,index,febbfr,istat)

Where:

regbuf is the file request buffer, a 24-word array used
to process the request. If retrieval is
requested for a particular open file, regbuf
must be the same array as the one used in
opening the file. Contents of regbuf may have
been altered by the file manager in performing
file access requests, but contents of reqgbuf
must not have been altered by the user.

volnam is an array of four words containing volume name
(eight ASCII characters). If the first word of
the array volnam is zero, the FCB to be
retrieved is for the open file defined by the
file request buffer, regbuf.

96768040 B

THIS CODE INCLUDES A USER-DEVISED DATA PROTECTION SYSTEM
TO PREVENT LOST DATA BETWEEN FILE DUMP TO TAPE AND FILE CLEARING.
THIS EXAMPLE INCLUDES LOKFILs UNLFILe AND CLEAR REAQUESTS.
DIMENSION IBUF (24)+IDATA(24)
DATA 1BuUF/24%0/

[aEeNe]

DIMENSION ITEMP (&)
DATA IFLAG /%0021/+ ITIME/1/

C DETFRMINE LOCATION OF STATEMENT 200, STNRE INTO ICOMP FOR LATER USE.
ASSIGN 200 TO ICOMP
CALL OPENFL (IRUF+IDATALISTAT)
IF (ISTAT.LT.0) GO TO 9700

C TEST YO SEE IF TIME FOR TAPE DUMP

L] L]
C LOCK FILE IN PREPARATION FOR DUMPING TO MAG TAPE
CALL LOKFIL (IRUFsISTAT)
C TEST FOR RFJECT
IF (ISTAT.LT.0) GO TO 9AR00
C DUMP RECORDS TO MAG TAPE

L] []

[] L]
C AFTER DUMPING TO MAG TAPEe« PECORDS NOW ON MAG TAPE MAY RE CLEARED
C FROM FILE, FILE IS NOT OPEN TO ANY OTHER USER AT THIS TIME
C RECAUSE FILE IS LOCKED.
C SET WORD $47 OF MAIN MEMORY TO PREVENT STORAGE OF RECORDS DURING THE
C DUMP AND CLEAR OPERATION. ANY PROGRAM STORING RECORDS INTO THE
C FILE SHOULD CHECK WORD $47. A RECORD SHOULD RE STORED ONLY WHEN
C WORD %47 IS ZERO, THIS AVOIDS LOSING & RECORD STORED BETWEEN THE
C MAG TAPE DUMP AND THE CLEAR,

ASSEM $0A0)+$L047

C UNLOCK FILE TO ALLOW CLEAR FILE REQUEST TO EXECUTE.

CALL UMLFIL (IBUF+ISTAT)
IF (ISTAT.LT.0) GO TO 9810

C CLOSE FILE TOo PERMIT CLEAR REQUEST TO EXECUTE
CALL CLOSFL (IBUFsISTAT)
IF ISTAT.LT.0) GO TO 9820

200 CALL CLEAR (IBUF,IDATA+ISTAT)

C TEST FOR REJECT
IF (ISTAT.LT.0) GO TO 9850

C CLEAR WORD $47 TO ALLOW RECORD STORAGE INTO FILE.
ASSEM $0A00,%L047

. .
C wAS REQUEST REJECTED BECAUSE FILE IS OPEN TO ANOTHER USER
9850 IF (AND(ISTAT+}).EQ.0) 6n TO 9910
C YES. FILE WAS OPEN TO ANOTHER USER.
C DELAY 1 SECOND AND TRY AGAIN
C STATEMENT 200 IS COMPLETION LOCATION FOR TIMER REQUEST.
CALL TIMER (ICOMPIFLAGSITIMEITEMP)
CALL DISPAT
L] L]

[L

Figure 2-4. Lock, Unlock File Requests Example (FORTRAN)

index is used only if the first word of the array volnam febbfr is the file control block buffer to receive the
is nonzero. In this case, index is the relative block to be retrieved. This buffer must be 96
position of the FCB on the volume specified, words in length.
and the value of index must be such that
1 < index < 2047. (The position of the FCB istat is the file request status word as defined in
index in the file definition directory is given in Status Indicator Word, section 1 (see also error
File Definition Directory, appendix B.) considerations below).

96768040 B 2-9 @

In assembly language, the get file control block request has
one of the following forms:

EXT* GETFCB EXT GETFCB
RTJ GETFCB or R’I J GET.FCB
ADC regbuf ADC regbuf

The use of GETFCB as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return of a call to GETFCB if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

® A mass memory error occurred (bit 5 is also set).

® File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are set).

e The FCB index is out of range for the specified volume
(bit 12 is also set).

® The first word of array volnam is nonzero and the
volume specified is not mounted and ready (bit 13 is
also set).

e The first word of array volnam is zero and the file
request buffer (regbuf) was altered by the user before
the retrieve FCB request (bit 13 is also set).

e The first word of array volnam is zero and the file was
closed by an executive forced file close due to hardware
failure or operator shutdown of the volume (bit 13 is
also set).

® The FCB index is not a positive integer (bit 14 is also
set).

Examples of get file control block requests are shown in
figure 2-5 and figure 2-6.

UPDATE FILE CONTROL BLOCK (UPDFCB)

This request may be used in conjunction with the get file
control block request as described in the Get File Control
Block (GETFCB) section; however, it is not necessary to
retrieve a file control block (FCB) before updating it. This
request is intended for use only by system level utility
programs. The portion of an FCB not used by the file
manager may be updated by the use of this request. The
portion that may be updated consists of words 38 through 96
of the FCB. (The format of the FCB is contained in File
Control Block Table, appendix B.) In this portion of the FCB
a utility program may store file creation date, retention
period, file description, and so forth.

The FCB to be updated is specified in the same manner that
the FCB to be retrieved by 8 GETFCB request is specified
(see the Get File Control Block (GETFCB) section).

In FORTRAN, the update file control block request has the
following form:

CALL UPDFCB (regbuf,volnam,index,fcbbfr,istat)

B 2-10

Where:

regbuf is the file request buffer, a 24-word array. If the
FCB to be updated corresponds to a particular
open file, this must be the same array as the
one used in opening the file. Contents of
regbuf may have been altered by the file
manager in performing file access requests,
but contents of regbuf must not have been
altered by the user.

volnam is an array of four words containing the volume
name (eight ASCI characters). If the first
word of the array volnam is zero, the FCB to
be updated is for the open file defined by the
file request buffer, regbuf.

index is ignored if the first word of the array volnam is
all binary zeroes. If the first word of the
array volnam is nonzero, index is the relative
position of the FCB on the volume specified,
and the value of index must he such that
1 < index < 2047. (The position of the FCB
index in the file definition directory is given in
File Definition Directory, appendix B.)

febbfr is the file control block buffer. This buffer must
be 96 words in length. Words 38 through 93
are written to the FCB on mass memory.

istat is the file request status word as defined in
Status Indicator Word, section 1 (see also error
considerations below).

In assembly language, the update file control block request
has one of the following forms:

EXT* UPDFCB EXT UPDFCB
RTJ UPDFCB RTJ UPDFCB
ADC regbuf ADC regbuf

.
.

The use of UPDFCB as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return of a call to UPDFCB if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

® A mass memory error occurred (bit 5 is also set).

® File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

® The FCB index is out of range for the volume specified
(bit 12 is also set).

o The first word of array volnam is zero and the file
request buffer (regbuf) was altered by the user before
the UPDFCB request (bit 13 is also set).

e The first word of array volnam is nonzero and the
volume specified is not mounted and ready (bit 13 is
also set).

e The first word of array volnam is zero and the file was
closed by executive forced file close due to hardware
failure or operator shutdown of the volume (bit 13 is
also set).

96768040 B

96768040 B

[] L]

L] L]

INTEGER DAYBUF (24) yDAYDAT(15) +DSTATWVOL (4) «DAYFCB(96)

DATA DAYBUF /24%0/+« DAYDAT/MDAYFILE UTILUSERYHSYSVOL "e0469~1/

DATA voL(l)/0/
C REQUEST ACCESS TO DAY FILE. REQUEST SPECIFIES RECORD ACCESS DESIRED
C AND FILE LOCK DESIREDO AT TIME OF GAINING ACCESS PERMIT

CALL OPENFL (DAYRUYF+DAYDATSDSTAT)

IF (DSTAT.LT,0) GO TO 8000

C RETRIEVE FCB FOR DAY FILE. VOL(1)=0. FCB WILL BE STORED IN DAYFCB
C ARRAY. IDUM WILL BE IGNORED BY FILE MANAGER SINCE VOL(1)=0

CALL GETFCB (DAYBUFsVOL s IDUMsDAYFCBsIGSTAT)

IF (IGSTAT.LT.0) GO TO 8020

Figure 2-5. Example of FCB Retrieval for a Particular Open File (FORTRAN)

PURPOSE OF THIS CODE IS TO RETRIEVE EACH FCB ON A VOLUME,
PROCESS I1Te AND UPDATE THE FCB IF NECESSARY.
THIS PROGRAM RUNS IN ALLOCATABLE MAIN MEMORY,
THIS PROGRAM LINKS TO THE NOM=REENTRANT INTERCEPTOR FMENTP.
A BINARY COPY OF FMENTP MUST BE INCLUDED AT THF TIME THIS PROGRAM IS
LOADED. THE FOLLOWING RELATIVE EXTERNALS ARE NDECLARED TO ALLOW
PROPER LINKING TO FMENTP,
RELATIVE GETFCB,s UPDFCB
INTEGER ABUF (24),VOL (4) +AFCB(96)
DATA VOL /%“PACK ONEwW/
C INITIALIZE FCB INDEX
INDFCB=1
C RETRIEVE FCB FOR FILE WITH FCB INDEX = INDFCH
15 CALL GETFCB (ABUFsVOLsINDFCB«AFCBISTAT)
C WAS FCB INDEX OUT OF RANGE
IF (AND(ISTAT+$1000).NE.O) GO TO 9800
TEST FOR REJECT DUE TO ERROP OTHER THAN FCB INDEX RANGE
IF (ISTAT.LT.0) GO TO 9600
FCB TNDExXx CORRESPONDS TO A CREATED FILE
HAS THIS FILE BEEN DELETED
IF FIRST WORD OF NAME-OWNER STRING IS ZEROs FILE HAS BEEN DELETED.
IF (AFCB(25).E0,0) GO To 250
TEST AFCB(50) TO SEE IF FILE CONTAINS ANY MESSAGF TO BE PRINTED ON
COMMENT DEVICE
150 IF (AFCB(50),.,EQR.0) GO TO 200
C GO PRINT MESSAGES

O0O0OOOO0O0O

OO0 (9]

oo

L] L]
C RE-SET MESSAGE COUNTER FOR COMMENT DEVICE
AFCB(50)=0
CALL UPDFCB (ABUFsVOL+INDFCByAFCBeISTAT)
IF (ISTAT.LT.0) GO TO 9700
200 CONTINUE
C INCREMENT INDFCB
250 INDFCB=INDFCBe¢]
C RETRIEVE NEXT FCB
G0 TO 15
C PROCESS COMPLETE
9800 CONTINUE
L] L]

Figure 2-6. Example of GETFCB,UPDFCB Requests with FCB Specified by FCB Index (FORTRAN)

© The FCB index is not a positive integer (bit 14 is also
set).

An example of the UPDFCB request is ineluded in
figure 2-6.

REDUCE FILE SPACE (REDUCE)

A previously created file can be modified to con:1in fewer
records with the reduce file request. The file must meet the
following four requirements:

o The file must be closed.
© The file must be sequential.

© The new number of records must be less than the
number the file was orginally defined to contain when
the file was created.

o The new number of records must be greater than or
equal to the number of currently-existing records in the
file.

In FORTRAN, the reduce file request has the following
form:

CALL REDUCE (reqbuf,idata,istat)
Where:

regbuf is the file request buffer, a 24-word array used by the
file manager to process the request

idata isa 14-word array containing the information needed
to define the file to be modified. Words within
idata are as follows:

idata(1) - idata(4) File name (eight ASCII
characters)

idata(5) ~ idata(8) File owner name (eight
ASCII characters)

idata (9) - idata(12) Name of the volume on
which the file is defined
(eight ASCII characters); if
idata(9)=0 or idata(9)
= 2020, . (two ASCII blanks),
the file manager performs a
search to locate the entry
for the specified file and
returns the corresponding
ASCIl volume name in
idata(9) through idata(12).

istat is the file request status work as defined in Status
Indicator Word, sectionl (see also error
considerations below).

In assembly language, the reduce file request has one of the
following forms:

EXT* REDUCE EXT REDUCE
: : or . .

RTJ REDUCE EXT REDUCE

ADC regbuf ADC regbuf

The use of REDUCE as an absolute external or as a relative |
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to REDUCE
if bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

© The file is currently open to one or more users (bit 0 is
also set).

o The file could not be located (bit 1 is also set).

e The file is not a sequential file (bit 2 is also set).

e The new number of records is greater than specified for
the file, is zero, is negative, or is less than the number
of records currently existing in the file (bit 3 is also
set).

© A mass memory error oceurred (bit 5 is also set).

o File manager data structures on mass memory or in

main memory contain one or more errors (bit5 and
bit 14 are also set).

o The volume specified for the file is not mounted and
ready (bit 13 is also set).

RENAME FILE (RENAME)

The rename file request permits the concatenated file
name/file owner string for an existing file to be changed. A
file must be closed to all users at the time it is being
renamed. The new name/owner string must be unique for
the volume on which the file resides.

In FORTRAN, the rename file request has the following
form:

CALL RENAME (reqbuf,idatapewnam,istat)
Where:

regbuf is the file request buffer, a 24-word array used
by the file manager to process the request.

idata is a 12-word array containing the information
needed to define the file to be renamed.
Words within idata are as follows:
idata(1) - idata(4) Current file name
(eight ASCH characters)
idata(5) - idata(8) Current file owner
name (eight ASCII char-
acters)

Name of volume on
which file is defined
(eight ASCII char-
acters). If idata(9) =0
or idata(9)= 2020
(two ASCII blanks), t?ig
file manager searches a
directory to locate the
entry for the specified
file and returns the
corresponding ASCII
volume name in idata(9)
through idata(12).

idata(9) - idata(12)

96768040 C

newnam is an eight-word array specifying the new file
name/owner string. Words within newnam are
as follows:

New file name (eight

newnam(1) through
ASCII characters)

newnam(4)

New file owner name

newnam(5) through
(eight ASCII characters)

newnam(8)

istat is a file request status word as defined in Status
Indicator Word, sectionl (see also error
considerations below).

In assembly language, the rename file request has one of the
following forms:

EXT* RENAME EXT RENAME
RTJ RENAME RTJ RENAME
ADC regbuf ° ADC regbuf

.
.

The use of RENAME as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to RENAME
if bit 15 of istat is set, The particular error condition(s) are
indicated in istat as follows:

e The file is currently open to one or more users (bit 0 is
also set).

o The file could not be located (bit 1 is also set).
® A mass memory error occurred (bit 5 is also set).

e File manager data structures in main memory or on
mass memory contain one or more errors (bits 5 and 14
are also set).

o The new file name/owner string is not unique (bit 10 is
also set).

o Insufficient file definition directory (FDD) space exists
(bit 11 is also set). (Renaming the file does make
available the directory entry space previously used for
this file, but the new name/owner string may not hash
into that space. Refer to File Definition Directory,
appendix B, for further information on the directory.)

@ The volume for this file is not mounted and ready
(bit 13 is also set).

ENABLE/DISABLE VOLUME (VOLUSE)

This request is intended for use only by system utility

programs. Its functions are to enable or disable use of a

volume as described in Volume Labeling, Enabling, Disabling,

section 1.

In FORTRAN, the enable/disable volume request has the
following form:

CALL VOLUSE (reqgbuf,volnam,vlunit,istat)

96768040 B

Where:
regbuf is the file request buffer, a 24-word array.

volnam is a four-word array containing either of the
following:

volume name (eight ASCII
characters).

For enabling:

For disabling: binary zeroes in volnam (1);
other words of the array,

arbitrary values.

vlunit is the file manager unit number of the drive
containing the volume; this is not the same as
the system logical unit number.

istat is the file request status word as defined in
Status Indicator Word, section 1 (see also error
considerations below).

In assembly language, the enable/disable volume request has
one of the following forms:

EXT* VOLUSE EXT VOLUSE
RTJ VOLUSE or RTJ VOLUSE
ADC regbuf ADC regbuf

The use of VOLUSE as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to VOLUSE if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

® The first word of the array volnam is nonzero and the
volnam array does not match the name on the volume
label (bit 1 is also set).

o A mass memory error has occurred (bit 5 is also set).

o The first word of the array volnam is nonzero and the
drive specified by vlunit already has a volume enabled
(bit 13 is also set).

RECORD ACCESSING REQUESTS

A brief summary of the request calls and parameter lists is
to be found in appendix I. A chart of status bits and their
meanings is contained in appendix F.

The number of records accessed by the individual requests
varies. For some it is a constant. For others it is a user-
supplied number, sometimes supplied with the record
accessing request itself, and sometimes supplied by the user
when the file is opened. A summary of the number of
records accessed by the various requests is shown in
figure I-4.

STORE NEW RECORDS SEQUENTIALLY (PUTS)

The PUTS request stores one or more records into a file
immediately following any existing file records. The PUTS
request may be used for an existing sequential file that is

open to the user. PUTS may not be used for an indexed file.
The number of records to be stored is specified in the
request. (This number is independent of the number of
records per retrieval as specified in the OPENFL request.)
For each group of records stored, the relative record number

of the first record of the group is passed back to the caller. -

This relative record number may be subsequently used in a
READR request for record retrieval.

In FORTRAN, the store new record sequentially request has
the following form:

CALL PUTS (reqgbuf,recbuf,numrec,istat)

Where:

regbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file. Contents of regbuf may have been altered by
the file manager in performing file access requests,
but contents of regbuf must not have been altered
by the user. On completion of the request, words
15, 16, and 17 of regbuf are defined as follows:

reqbuf(15) Number of records actually stored by

the file manager.
reqbuf(16), Relative record number of the first
reqbuf(17) record stored (as defined in Relative
Record Number, section 1).
recbuf is the record buffer containing records to be stored
by this request plus two words following the last
record to be stored. These final two words are
used by the file manager.
The length of recbuf is determined as follows. Let
b = Length of recbuf
n = Number of records to be stored
r = Record length in words

s = Number of words per section for volume
containing this file

Then, if records in the file are not sector-aligned:
b=nxr+2

If records are sector-aligned:
_ r
b=nx [s‘] xs+2

Where: [y] = the least integer greater than or
equal to y.

For example, if n=3, r =189, and s = 96, and the
records are sector-aligned:

b=3x |18 |x 96+ 2
96
=3x2x96+2

=578

2-14

NOTE .

If the records are sector-aligned and
the record length is not an integral
multiple of sector length, the record
buffer must contain unused words
between records corresponding to
unused words on mass memory. For
example, suppose a file has sector-
aligned record of 93 words and the
sector length is 96 words. If 3
records are to be stored, the first
record is transferred from words 1
through 93 of the record buffer;
record 2 is transferred from words 97
through 189; record 3 is transferred
from 193 through 285. Words 94
through 96, 190 through 192, and 286
through 288 of the record buffer are
unused.

numree is the number of records to be stored by this
request.

istat is the file request status word as defined in
Status Indicator Word, section1 (also see
status considerations below).

In assembly language, the store new records sequentially
request has one of the following forms:

EXT* PUTS EXT PUTS
RTJ PUTS or RTJ PUTS
ADC regbuf ADC regbuf

. . .
. . . .
. . .

The use of PUTS as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

Status considerations (istat) are as follows:

o The file is currently locked by the user (bit 2 is set).

o Insufficient room exists in file to store all numrec
records (bit 12 is set). (See reqgbuf(15).)

PUTS sets bit 15 (rejecting the request) if:

® A mass memory error occurred (bit 5 is also set).

® The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14

are also set).

® Insufficient room exists in the file to store any records
(bit 12 is set).

e The file request buffer, regbuf, was altered by the user
before the PUTS request (bit 13 is also set).

® The file was closed by executive foreed file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

An example of the PUTS request is shown in figure 2-7.

96768040 C

C PURPNSE OF THIS CODE IS TO STORE A NEW RECORD INTO A SEQUENTIAL FILE.
DIMENSION IBUF (24)+IDAT(15)+INP(34)
DATA IBUF/2420/
C USER RECORDS ARE 30 WORDS LONGs NOT SECTOR=ALIGNED.
C WORDS FOR RECORD BUFFER.
INTEGER USEREC(32)

RESERVE 32

COMMON INP
. °

CALL OPENFL(IBUF¢IDATISTAT)
IF (ISTAT.LT.0) GO TO 9500

. .
C TRANSFER NEW USER"S IDENTIFICATIONs STATUS CODEs AND BILLING CODE
C FROM INPUT BUFFER TO FILE RECORD BUFFER,
DO 100 I=1,30
100 USEREC(I)= INP(I¢4)
C STORF NEW UISER RECORD INTO FILE
CALL PUTS(IBUF sUSEREC+14ISTAT)
C TEST FOR REJECT
IF (ISTAT.LT.0) GO TO 9000

Figure 2-7. Store New Records Sequentially Example (FORTRAN)

STORE NEW INDEXED RECORD (WRITER)

This request is similar to the PUTS request described in the
Store New Records Sequentially (PUTS) section with the
following important differences:

o WRITER stores a new record into an indexed file.

o In a WRITER request, in addition to record storage, the
file manager updates the file key structure with the key
value(s) associated with the new record.

o Only one new record may be added to a file with a given
WRITER request.

To execute a WRITER request, the file to be accessed must
be open to the user. Each new record added to an indexed
file is stored sequentially; that is, the new record is stored
immediately following any existing file records.

In specifying the value of the new record's primary key, the
user must specify a value distinct from all other primary key
values previously specified for the file. A nonunique
primary key value causes rejection of the request.

On completion of the request, the relative record number of
the new record is passed back to the caller.

In FORTRAN, the write new indexed record request has the
following form: .

CALL WRITER (reqbuf,recbuf,keyval,istat)
Where:

regbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file. Contents of regbuf may have been altered by
the file manager in performing file access requests,
but contents of regbuf must not have been altered
by the user.

96768040 B

On completion of the request, reqbuf(16),reqbuf(17)
is the relative record number of the record stored
(as defined in Relative Record Number, section 1).

recbuf isthe record buffer containing the record to be
stored by this request plus two words at the end of
the buffer that are used by the file manager. The
length of recbuf is determined as in the Store New
Records Sequentially (PUTS) section, with the
number of records, n, equal to 1.

keyval is an array containing the left-justified key value of
the primary key. The first word of keyval contains
the first two bytes of key value. For example, if
the key value was contained in byte 2 of the
record, key value 351 would appear as xy35 6 in
the record but as 35W% in keyval, where x z}nd y
are unknown digits in t}l% record and w and z are
any random digits.

istat isthe file request status word as defined in Status
Indicator Word, sectionl (see also error
considerations below).

In assembly language, the store new indexed record request
has one of the following forms:

EXT* WRITER EXT WRITER
RTJ WRITER or RTJ WRITER
ADC regbuf ADC reqgbuf

The use of WRITER as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

The status consideration (istat) is the following: the file is
currently locked by this user (bit 2 is set).

2-15 I

WRITER sets bit 15 (rejecting the request) if:

The primary key value is not unique (bit 4 is also set).
A mass memory error has occurred (bit 5 is also set).

File manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

The primary key value contained in the record is not the
same as that in the keyval array (bit 9 is also set).

There is insufficient room in the key index structure to
store the keys. The record was stored, but it cannot be
retrieved by key value (bit 11 is also set).

Insufficient room exists to store the record (bit 12 is
also set).

The file request buffer, regbuf, was altered by the user
before the WRITER request (bit 13 is also set).

The file was closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

An example of a WRITER request is shown in figure 2-8.

INDEXED FILE

RECORD LENGTH IS 31 wORDS.

RECNORD FORMAT IS AS FOLLOWS-
WORDS CONTENTS

1-15
16-20
21=31

PATIENT NAME

OOOOOOO0O0

TEST RESULTS

READ SPECIFIC RECORD (READR)

The user may specify a particular set of records to he
retrieved with the READR request. Execution of the
READR request requires that the file be open to the uscr.

If a sequential or indexed file was opened for record access
by relative record number, the number of records specificd
in the open request may be retrieved by a READR request
by specifying the relative record number of the first record
of the set. This relative record number may have been
obtained when the record was initially stored (PUTS or
WRITER request) or when the record was previously re-
trieved (READR or GETS request). On completion of the
request, the number of records actually retrieved is passed
back to the caller.

If an indexed file was opened for record access by key value,
one record may be retrieved according to the key value
specified. Specifically, the record retrieved has a key value
defined as follows:

Let k_ = Key value specified

s

K =Set of all key values for which there is at
least one record in the file

kr = Key value of record retrieved

PURPOSE OF THIS CODE IS TO STORE NEW TEST RESULTS RECORD INTO

SOCIAL SECURITY NUMBER (PRIMARY kFyY)

INTEGER PRMKEY(S)eSS(5)«PATNAM(1S)
OIMENSION JBUF (24) ¢ JREC(33) «JDATA(15) «NTRAN(I1)«ITOT(11])

COMMON SS+PATNAMINRES«NTRAN
NATA UDATA /“FILE J 2ZQx389
DATA JHUF /24%0/

C OBTAIN ACCESS TO FILE J
CALL OPENFL (JBIF s JDATAGUSTAT)
IF (JSTAT.LTY.0) GO TO 8010

C STORE SOCIAL SECURITY NUMBER QO ASCII CHARACTFOS)

C AND IN PRMKEY ARRAY,
DO 100 ISS=]1.5
1STOR=SS (ISS)
PRMKEY (ISS)=ISTNR
JREC(ISS+15)=1ISTOR
100 CONTINUE
C STORE PATIENT NAME IN RECORD
no 200 J=1.15
200 JPEC(J)=PATNAM(J)

WeNYOLUME 1"e0ele0/

IN RECORD BUFFER

C STORE LAB TEST CODES AND TEST RESULTS IN RECORD BUFFER.

C NREG = NUMHER OF RESULTS
NF=NRES
NO 300 N=1oNF
300 JREC(N+20)=NTRAN(N)
C STORE NEW RECORD INTO FILE e
CALL WRITER
IF (JRSTAT.LT.0) GO TO 8090

INDEXED By SOCIAL SECURITY NUMBRER,
(JBUF s JREC s PRMKEY s URSTAT)

Figure 2-8. Store New Indexed Record (WRITER) Example (FORTRAN)

B 216

96768040 B

Then k, = The least key value, k, such that there is a
record in the file corresponding to k and
k> ks' In set notation,

k., =min (k:k€K and k iks)

Order within a set of key values is defined in Indexed Files,
section 1. .

For a primary key, the definition of k uniquely defines the
record retrieved. For a key other than a primary key, k
may correspond to a set of more than one record. In thi§
case, the first record stored in the file with key value k _ is
the one retrieved. An example of record retrieval by a
nonprimary key is shown in figure 2-9.

Records in File Key Value Record Retrieved
- Specified .
Relative . Relative Key
Record Key n R_eguest Record No. | Value = k
Number Value s r
1 50 2 8 2
2 74 34 11 35
3 74 0 6 0
4 18 36 10 37
5 21 38 1 50
6 0 39 1 50
7 7 50 1 50
8 2 73 2 74
9 2
10 37
11 35

Figure 2-9. Example of READR Record Retrieval
by Key Value (Non-Primary Key)

The READR request may be used in conjunction with the
retrieve next records (GETS) request, described in the
Retrieve Next Records (GETS) section. In this case, the
user may think of the READR request as a request that
positions the file to a record with a particular relative
record number or to a particular record according to key
value. For example, the file in figure 29 could be positioned
to record 8, or to the record with the least key value greater
than or equal to two or to any other record specified by the
user. Once positioned, subsequent records may be read from
the file in order according to key value or in order according
to relative record number by a GETS request.

A file may be positioned to the record with the lowest key
value by specifying a key value of all binary zeroes in the
READR request. A file may be positioned to the first
record stored in the file by specifying a relative record
number of one in the READR request.

In FORTRAN, the retrieve specific record request has the
following form:

" CALL READR (regbuf,recbuf,reespe,istat)
Where:
regbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the

file. Contents of reqbuf may have been altered by
the file manager in performing file access requests,

96768040 B

but contents of reqgbuf must not have been altered
by the user. On completion of the request, words
15, 16 and 17 of regbuf are defined as follows:
reqbuf(15) Number of records actually retrieved
by the file manager.

reqbuf(16), Relative record number of the first

reqbuf(17) record retrieved (defined in Relative
Record Number, section 1).

recbuf is the record buffer to receive any records retrieved.
The length of recbuf is the number of words
required to contain the records retrieved plus any
unused words between retrieved records if the
records are sector-aligned.

The length of regbuf is determined as follows. Let
n = Number records to be retrieved
r = Record length

s = Number of words per sector

Then if u is the length of recbuf:

u = (n-1) x |-s£] x s + r for sector-aligned
records
u = nxr for non-sector-aligned records.

For example, suppose n = 3, r = 189, and s = 96, and
records are sector aligned.

Then u=2x [%g X 96 + 189 = 573

Where [y]is the least integer greater than or equal
toy.

reespe is the record specifier, an array containing either a
relative record number or a left-justified key
value.

If the file was opened for retrieval by relative
record number, recspe is a two-word array con-
taining the relative record number of the first
record of the set of records to be retrieved.
(Relative record number format is defined in
Relative Record Number, section 1.)

If the file was opened for retrieval by key value,
recspe is an array initially containing the key value
specified k_ as defined above. This key value must
be left-justc‘lfied in the array recspe. (An example
of a left-justified key value is included in the
description of the keyval array, in the Store New
Indexed Record (WRITER) section.)

On completion of a READR request specifying a
key value, the array reespe contains the key value,
k , of the record actually retrieved. This key value
if also left-justified in the array.

NOTE

This array recspe must not be equiva-
lenced with the key value in the record,
since the file manager may alter the value
of recspe.

It is necessary to shift bytes within a key
value stored in the array recspe before
comparing with a key value stored in the
record buffer if the key length is an odd
number of bytes and the key is right-
justified in the record buffer.

istat isthe file request status word as defined in Status
Indicator Word, sectionl (see also error
considerations below).

In assembly language, the read specific record request has
one of the following forms:

EXT* READR EXT

.

READR

RTJ READR RTJ READR
ADC regbuf ADC regbuf

. . .
.

The use of READR as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

Status considerations (istat) are as follows:
o The file is currently locked by this user (bit 2 is set).

o Retrieval is by relative record number and one or more
of the records are marked as deleted (bit 4 is set). The
contents of the deleted records have been stored in the
buffer, recbuf. By testing the first word of each
record, the user may determine which records are
deleted records. The first word of a deleted record has
the value of the external FMRDEL. (See File
Identification, section 1; Main-Memory-Resident File
Description Parameters, appendix B; and figure 2-10.)

© End-of-file is reached before the number of records
specified could be retrieved (bit 8 is set). At least one
record is retrieved if bit 15 is zero. An end-of-file
indication implies an insufficient number of records in
the file to satisfy the conditions specified in the regbuf
and recspe arrays. If retrieval is by key value, no
record in the file has a key value greater than or equal
to the key value specified by the user. If retrieval is by
relative record number, there are not enough records in
the file starting at the record number in reespe to
retrieve the number records specified in the OPENFL
request (see also request rejections below).

e The specified key value, k_, does not equal kr’ the key

value retrieved (bit 9 is setﬁi
NOTE

To test whether or not a record for key
value ks is in the file, it is necessary to
test for the simultaneous setting of bits 8
and 15 as well as testing for the setting of
bit 9. (See end-of-file status discussed
previously in this seetion.)

2-18

READR sets bit 15 (rejecting the request) if:
e A mass memory error has occurred (bit 5 is also set).

® The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

® Record locking was requested, but the maximum
number record locks in the system are currently in use
(bit 6 is also set; the request may be delayed and
retried).

© The record is locked by another user (bit 7 is also set;
the request may be delayed and retried if care is taken
to avoid the situation described in the note in Update
Protection, section 1).

o End-of-file was reached before any records are
retrieved (bit 8 is also set).

o The file request buffer, reqgbuf, was altered by the user
before the READR request (bit 13 is also set).

© The file was closed by an executive forced file close
due to hardware failure or operator shutdown of the
volume (bit 9 is also set).

® The relative record number was specified in reespe

as 0,0 (bit 14 is also set).

Examples using the READR request are shown in
figures 2-10 and 2-11. An example of READR used in
conjunction with a GETS request is shown in figure 2-13.

Differences between the READR request and the GETS
request are listed in the Retrieve Next Records (GETS)
section.

RETRIEVE NEXT RECORD (GETS)

The GETS request retrieves a set of records from a file open
to the user. The number of records retrieved is as specified
in the OPENFL request. Record locking on retrieval is
performed if it was specified in the OPENFL request.
Records retrieved are in order by relative record number if
the file was opened for retrieval by relative record number.
The retrieved records are in order by key value if the file
was opened for retrieval by key value.

For retrieval by relative record number, the file may be
positioned to a particular record by a previous READR call
that specifies a relative record number. For retrieval by
relative record number, if no READR call is executed
between the OPENFL request and the first GETS request,
the first GETS request retrieves a set of records starting
with the first record stored in the file. Subsequent GETS
requests using the same request buffer retrieve records
immediately following the last record retrieved by a GETS
request.

For retrieval by key value, the file may be positioned to a
particular key value by a previous READR request. If no
READR request is executed between the OPENFL request
and the GETS request, the first GETS request retrieves a set
of records starting with the first record stored of the
records with the lowest key value for the key specified in
the OPENFL request. Subsequent GETS requests using the
same request buffer retrieve records in order by key value,
and within a key value by order of storage.

96768040 C

C PURPOSE OF THIS ROUTINE IS TO RETRIEVE THE FIRST 3 FILE RECORDS STORFOD

C AFTER RECORD 994999 WAS STORFD.

DIMENSION JBUF (24) + JDATA (15),IDEL (3)

INTEGER RLRCNM(2)

C SET RELATIVE RECORD NUMBER = 100,000 = 1%65536 + 34464

DATA RLRCNM /]1+$86A0/

C FILE IS 70 BE OPEN FOR RETRIEVAL OF 3 RECORDS PER REQUEST

DATA JUDATA /wFILE J 2Qx389
DATA JBUF /24%0/

HeVOLUME 1%"e0e301/

C RECORD LENGTH IS 31. RESERVE SPACE FOR 3 RECORDS.

DIMENSION JREC(93)
INTEGER FMRDEL
C DECLARE DELETE CODE AN EXTERNAL
FXTERNAL FMRDEL
C INITIALIZE DELETE FLAGS
DATA IDEL /3%0/
C OBTAIN ACCESS TO FILE J

CALL OPENFL (JBUF+JDATAWJSTAT)

C TEST FOR REUJECT
IF (JSTAT.LT.0) GO TO 9000

C RETRIEVE 3 RECORDSs STARTING WITH RECORD NuUMBFR 100,000,

CALL READR (JRUF+JREC+RLRCNMsJSTAT)

C TEST FOR REJECT
IF (JSTAT.LT.0) GO TO 9050

C AT LEAST ONE RECORD wAS RETRIEVED

C WAS END-OF—-FILE REACHED BEFORE ALL 3 RECORDS WERE READ

IF (AND(USTAT+$0100) ,NE,O0) GO TO 450

C ALL 3 RECORDS WERE RETRIEVED, ARE ALL OF THESE NON=DELETED RECORDS

1F (AND(JUSTAT+$0010).EQR.0) GO TO 500

C NOs AT LEAST ONE OF THESE RECORDS WAS PREVIOQUSLY DELETED.
C TEST TO SEE WHICH RECORD(S) WERE DELETEDe SET FLAGS ACCORDINGLY

DO 400 ID=0,2

I1DP1=1ID¢1

IF (JREC(ID#31+1)EQ.FMRDEL)
400 CONTINUE

GO TO 500

IDEL(IDP]1) =1

C END-OF~FILE DETECTED.DETERMINE ITS POSITION.

C THIRD RECORD IS REYOND END OF FILE

450 IDEL(3)=]

C wWAS SECOND RECORD BEYOND END OF FILE
IF (UBUF(15),,EQ.1) IDEL(2) =1

500 CONTINUE
C PROCESS THIS SET OF RECORDS

Figure 2-10. Example of READR Request with Access by
Relative Record Number (FORTRAN)

When there are not enough records to satisfy a GETS
request, an end-of-file indication is returned to the caller.
The number of records actually retrieved is also passed to
the caller. If a GETS request results in an end-of-file
indication and this same GETS request is repeated, the first
execution of the GETS after the end-of-file retrieves a set
of records at the beginning of the file; that is, the set of
records that would be retrieved by this GETS if no READR
preceded it. After this cycle back to the beginning of the
file, subsequent GETS requests are processed as usual. The
end-of-file indication oceurs only on the request for which
there are not enough records. For that request no records at
the beginning of the file are retrieved. The GETS request is
similar to the READR request as described in the Read
Specific Record (READR) section with the following
differences:

© When retrieval is by key value, only one record may be
retrieved for each READR request executed, but more

96768040 B

than one record may be retrieved for each GETS
request executed. For a nonprimary key, any record
that is not the first record stored for a given key value
cannot be retrieved by a READR request. Such a
record can be retrieved by a GETS request.

When retrieval is by relative record number, a READR
request can retrieve records starting at any relative
record number. A GETS request by relative record
number must start at record 1 of the file or at the
record set immediately following the record set read by
either a previous GETS request or a previous READR
request.

When retrieval is by key value, a READR request may
specify any key value, but a GETS request must start
with records of lowest key value or with the records
following those retrieved by a previous GETS or READR
request.

2-19 §

L PURPQOSE OF THIS CODE IS TO RETRIEVE RECORD WITH LEAST PRIMARY KEY
C VALNE GREATER THAN OR EQUAL TO 12.
DIMENSION NBUF (24) +NDATA(15) «NREC(96)
DATA NBUF /24%0/
C SPECIFY ACCESS BY KEY lo NO LOCKING
NATA NDATA /WFILE N GETOOR te"SYSVOL20M"414140/
C SPFCIFyY KEy VALUE 12,
DATA KEY1Z12/
DATA MAXTRY . /300/
NIMENSION ITEMP (4)
DATA IFLAG /%0021/s 1TIMEZL/
C DETFRMINE LOCATION OF STATEMENT 200. STORE INTO ICOMP FOR LATER tISE.
ASSIGN 200 TO I1COMP
C ORTAIN ACCESS 10 FILE N
CALL OPENFL (NBIFoNDATAWNSTAT)
IF (NSTAT.LT.0) GO TO 8000
RETRIEVE RECORD. NOTE THAT THE NAME KEY] MUST APPEAR IN THE PARAMETER
LIST OF THE CALLs NOT THE CONSTANT 12+ SINCE THE FILE MANAGER MAY
CHANGE THE VALUE OF kEvl, .
INITIALIZE NUMBER RETRIALS. (NTRYZNUMBER RETwIALS DUE TO RECORD LOCK
hY AMOTHFR USER,)
NTRY=0
200 CALL READR (NBUF «NRECIKEY1oNSTAT)
IF (NSTAT.GE.O0) GN TO S00
C TFST FNR LOCKk BY ANDTHER USER
IF (AND(NSTAT+$0060).EQ.,0) GO TO 250
C RFCopN LOCKED BY ANOTHER USER. DELAY 1 SECOND AND RETPY,
C HAVF MAxIMUM NUMRER RETRIALS BEFN MADE ALREADY
IF (NTRY.GE.MAXTRY) GO TO 9092
C INCRFMENT NUMBER RETRIALS
NTRY=NTKY+]
C OFLAY ONE SECOND !
C INITIATE TIMER CALL.
C STATEMENT 200 IS COMPLETION {{OCATION FOR TIMER REQUEST.
CALL TIMER (ICOMPeIFLAGeITIMESITEMO)
CALL DISPAT
C BIT 15 OF ISTAT IS SET, TESTY FOR END OF FILE.
250 IF (AND(NSTAT.%0100).NE,0) GO TO 350
C OTHFR ERROR DETECTED
GO TO 9100
C NO RFCORD IN FILE WITH PRIMAPY KEY VALUE GREATER THAN OR EQUAL TO 12,
C PRINT MESSAGE
350 CONTINUE

e NeXaNaKe]

L] L]
GO TO 900
C RECOPD RETRIEVED. PROCESS RFCORD.
500 CONTINUE
. L]

C GN ON TO NEXT PROCEDURE
900 CONTINUE

Figure 2-11. Example of READR Request with Access by Key Value (FORTRAN)

® When retrieval is by relative record number and all the of a READR request to position the file followed by
records in a file are to be retrieved, successive repeated execution of a GETS request is faster than
executions of a READR request require the user to repeated execution of a READR request. This is
increment the relative record number between READR because for each READR request, the file manager
calls, This incrementing is done by the file manager, makes a search starting at the beginning of the key
not the user, when accomplishing the same purpose with structure. Such a search involves mass memory
successive executions of a GETS request. (Execution transfers. For a GETS, this search is not made.
time is approximately the same when using READR as
when using GETS for this purpose.) In FORTRAN, the retrieve next records request has the

following form:
® When retrieval is by key value and a large number of
records in the file are to be retrieved in order, the use CALL GETS (reqbuf,recbuf keyval,istat)

l 2-20 96768040 B

Where:

regbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file. The contents of regbuf may have been altered
by the file manager in performing file access
requests, but contents of regbuf must not have
been altered by the user. On completion of the
request, words 15, 16 and 17 of regbuf are defined
as follows:
reqbuf(15) Number records actually retrieved by

file manager.

regbuf(16), Relative record number of the first
reqbuf(17) record retrieved (defined in Relative
Record Number, section 1).

recbuf is the record buffer to receive retrieved records. The
required length of recbuf is determined as for the
length of recbuf in the READR request (see the
Read Specific Record (READR) section).

keyval is an array that is ignored if retrieval is not by key
value. If retrieval is by key value, the array keyval
must initially contain zero or the left-justified key
value stored by the user in the array, reespe, in the
READR call preceding the GETS request. On
completion of the GETS request, the array keyval
contains the key value, left-justified, of the last
record retrieved. If a GETS request is repeatedly
executed, the user must not alter the contents of
the array keyval between successive executions.

NOTE

It is necessary to shift bytes within a key
value stored in the array keyval before
comparing with a key value stored in the
record buffer if the key is right-adjusted
in the record buffer.

istat isthe file request status word as defined in Status
Indicator Word, sectionl (see also error
considerations below).

In assembly language, the retrieve next records file request
has one of the following forms

EXT* GETS EXT GETS
RTJ GETS or RTJ GETS
ADC regbuf ADC reqgbuf

The use of GETS as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

Status considerations (istat) are as follows:
o The file is currently locked by this user (bit 2 is set).

® Retrieval is by relative record number and at least one
retrieved record is marked as deleted (bit 4 is set).
Contents of deleted records are included in the buffer
recbuf. By testing the first word of each record, the
user may determine which records are deleted records.
The first word of a deleted record has the value of the
external, FMRDEL. (See File Identification, section 1;

96768040 C

Main-Memory-Resident Volume Description Param-
eters, appendix B; and figure 2-10.) This indication
cannot occur when access is by key value; that is, a
deleted record is never retrieved by key value since its
pointer was deleted from the key index.

o End-of-file is reached before the number of records
specified could be retrieved (bit 8 is set). At least one
record was retrieved if bit 15 is zero. (See also request
rejections below.)

GETS sets bit 15 (rejecting the request) if:
© A mass memory error has occurred (bit 5 is also set).

o The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

o Record locking was requested, but the maximum
number record locks in the system are currently in use
(bit 6 is also set; the request may be delayed and retried
a finite number of times).

o The record is locked by another user (bit 7 is also set;
the request may be delayed and retried if care is taken
to avoid the situation described in the note in Update
Protection, seetion 1).

o End-of-file was reached before any records were
retrieved (bit 8 is also set).

o The file request buffer, reqbuf, was altered by the user
before the GETS request (bit 13 is also set).

o The file was closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

Examples using the GETS request are shown in figures 2-12,
2-13, and 2-14.

STORE UPDATED RECORD (UPDREC)

To store an updated record into a file, the record must have
been first retrieved by a READR request or a GETS request.
Before the UPDREC request, either the file must be locked
or the record to be updated must be locked as retrieved.

A key value for a record in an indexed file may not be
changed by an UPDREC request. If a record's key value
must be changed, this may be done by a delete record
request (see the Delete Record Request (DELREC) section)
followed by a WRITER request (see the Store New Indexed
Record (WRITER) section).

The number of records stored by the execution of an
UPDREC request is one if the preceding GETS or READR
request accessed the file by key value. In this case, the
preceding READR or GETS request must retrieve only the
record to be updated.

If the preceding GETS or READR request accessed the file
by relative record number, the number of records stored by
each UPDREC execution is the number of records specified
for retrieval in the OPENFL request.

If an end-of-file indication occurred on the retrieval
preceding the UPDREC, the file manager updates only those
records that precede the end-of-file. The file manager
ignores the number of records specified in the OPENFL
request in this case. (The number of records actually

[a N g}

DATA JBUF /24%0/

DATA JDATA /nFILE J RXT436
DATA MAXTRY /300/

DIMENSION ITEMP(4)

DATA IFLAG /300217 ITIME/1l/
C DETERMINE LOCATION OF STATEMENT 200,

ASSIGN 200 To ICOMP
C ORTAIN ACCESS TO FILE J

CALL OPENFL (JBUF+JUDATAJSTAT)

IF (JSTAT.LT.0) GO TO 9000
C INITTALIZF NUMBER OF RETRIALS.
C LOCK BY ANOTHER USER)
190 MTRY=0

200 CALL GETS (JBUF«JRECsJDUMJSTAT)

IF (JSTAT.GE.O0) GO TO SO0
C TEST FOR LOCK By ANOTHER USER

IF (AND(JSTAT+%$0080) ,EQ.0) GO TO 250

PURPOSE OF THIS ROUTINE IS TO RETRIEVE SEQUENTIALLY EACH RECORC OF
FILE Jo PRINTING THE CONTENTS OF EACH RECOPD AFTER RETRIEVAL.
DIMENSION JBUF (24) «JDATA(15) + JREC(96)

NeNSYSVOL20M"40s140/

STORE INTO ICOMP FOR LATER USE.

(NTRY=NUMBER RETRIALS DUF TO RECORD

C HAVE MAXIMUM NUMBER RETRIALS BEEN MADE ALREADY

IF (NTRY.GE.MAXTRY) GO T0 9092

C INCRFMENT NUMBER RETRIALS
NTRY=NTRY+1

C INITIATE TIMER CALL.

C RECORD LOCKED BY ANOTHER USER.

c

DELAY 1 SECOND AND RETRY.

STATEMENT 200 IS COMPLETION LOCATION FOR TIMER REQUEST.

CALL TIMER (ITCOMPsIFLAGITIMEsITEMP)

CALL DISPAT

C BIT 15 OF ISTAT IS SET. TEST FOR END OF FILE,

250 IF (AND(JUSTAT.$0100) ,NE.O) GO TO 5000

C OTHFR ERROR DETECTED
GO TO 9100
C PRINT RECORD CONTENTS
500 CONTINUE
C TEST FOR RECORD DELETION
IF (AND(30010+JSTAT) .NE.O)

C RECORD NOT DELETED. CONTINUE WITH PRINTING

G0 T0o 190

C END-OF=-FILE REACHED, PROCESSING COMPLETE

5000 CONTINUE

Figure 2-12. GETS Request Example, Access by Relative Record Number (FORTRAN)

retrieved is stored in the request buffer on the preceding
retrieval.)

If some of the records retrieved in the preceding retrieval
are marked as deleted records, these records are written
back to the file by the UPDREC request in the same manner
as nondeleted records.

In FORTRAN, the store updated record request has the
following form:

CALL UPDREC (regbuf,recbuf,istat)
Where:
reqgbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file and in retrieving the record(s) to be updated.

No file manager call may reference this buffer
between the retrieval of the record(s) to be

2-22

updated and the UPDREC call. The contents of
reqgbuf must not have been altered by the user. In
executing the preceding retrieval, the file manager
stores the number records retrieved in word 15 of
regbuf and a relative record number in words 16
and 17 of regbuf. This is the relative record
number of the first record of the set of records to
be updated. Other words of regbuf are dependent
on this relative record.number. Therefore, the user
may not modify words 16 and 17 of regbuf even if
he only wishes to modify a proper subset of the
records retrieved.

recbuf isthe record buffer containing records to be stored

by this request. The length of recbuf is determined
as for the PUTS request (see the Store New
Records Sequentially (PUTS) section), except that
the two extra words are not needed at the end of
the buffer.

96768040 B

96768040 B

OO0 oO0O0O0n

(@]

OO0 (g}

[N el

PURPNSE OF THIS CODE IS TO PRINT A REPORT OF THOSE RECORDS IN FILE J

WHICH CORRESPOND TO AGES 2 THROUGH 4 YEARS. AGE IS STORED IN
YEARS IN KEY VALUE 2,
(AGF IS STORED IN BYTE 10 OF EACH RECORD.)
FOUR RECORDS ARE TO BE RETRIEVED FOR EACH GETS RFQUEST, RECORD
LENGTH IS 31 WORDS.
AN FyAMPLE SHOWING WHICH RECNRDS wWOULD BE RETRIFVED FROM A
HYPOTHETICAL FILE By THE USE OF THIS CODE IS SHOWN IN FIGURE 2-14.
NIMENSION JBUF (24) + JREC(124) + JUATA(15)
SET uP JDATA TO ACCESS FILE BY KEY 2 WITH NO RECORD LOCKING
NATA JDATA /UWFILE J ZQX389 MenyOLUME 1"e244¢0/
TOTAaL NUMBER RECORDS FOR EACH AGE IS COMPUTED.
INTEGER TOTREC(4)e AGEPFT +RETREV
INTTIALIZ7F TOTAL RECORDS FOR ALL AGES
DATA TOTREC /400/
SEYT MAXIMyUM RETRIALS WHILE wAITING FOR | NLOCK By QOTHER (SER = 60
RETRIALS
DATA MAXTRY/60/« NTRY/O0/
NIMENSION ITEMP(4)
DATA IFLAG /7%0021/« ITIMEZLl/
CALL OPENFL (JBUF+JUDATA«JSTAT)
IF (JSTAT.LT.0) GO TO 9900
INITTIALIZE 1AGEe (KEvy VALUE= AGE IN YEARS) TO TWO
LEFT ADJUST AGE INM IAGE
1AGE=%200
REQUEST RETRIEVAL 0OF ONE RECNRD. NOTE THAT RFADR IGNORES NIMBER
RECNRDS "SPECIFIED IN OPEN RFQUEST SINCE ACCESS IS BY KEY VALUE.
THIS QEADR CALL POSITIONS THE FILE FOR THE FIRST GETS CALL.
ASSIGN 200 TO RETREV
200 CALL READR (JUBUFeJURECIAGESISTAT)
TEST FOR REJFCT
250 IF (ISTAT.LT.0) GO TO 850
RETRIEVAL COMPLETED.
RE-INITIALIZE NUMRER RETRIALS
NTRY=0
INITIALIZE NUMBER RECORDS PROCESSED FOR THIS QETRIEVAL
NPROC=0
HAVE ALL RECORDS FROM THIS RETRIEVAL 8EEN PROCFSSED
279 1F (NPROC.GE.JBUF(15)) GO TO S00
AT LEAST ONE MORE RECORD MuST BE PROCESSED

NO NEED TO TEST FOR DELETED RECORD SINCE RETRIFVAL WAS HY KEY VALUE

AND RFQUEST WAS COMPLETED WITHOUT ERROR

COMPIITE POSITION OF RECORD WORD S IN BUFFER
153 NPROC#®31+5

ORTAIN RIGHT=ADJUSTED AGE FROM RECORD.

NOTE THAT AGE RETRIEVED (AGERET) MAY NOT HBE THF SAME AS KEYAGE
AGFRET = AND(JREC(IS) «$FF)

WAS KEY VALUE OF THIS RECORD FIVE OR LARGER. [IF S0Os ALL REQUIRED

RECORDS HAVE BEEN RPETRIEVED AND PROCESSED.
IF (AGERFET.GE.S) GO TO 800

INCREMENT APPROPRIATE TOTAL
TOTREC(AGERET)=TOTREC(AGERET) +1

PRINT RFPORT OF RECORD

. L]

INCREMENT NUMBER RECORDS PROCESSED
NPROC=NPROC+1

GN BACK TO PROCESS NEXT RECORD
GO T0 275

WAS THERF AN END=-OF=FILE INDICATION

S00 IF (AND(ISTAT+$0100).NE.O) GO TO 800

600 ASSIGN 650 TO RETREV

650 CALL GETS (UBUFeJRECSIAGESISTAT)
GO YO 250

REPORT PRINTING COMPLETE

300 CONTINUE

Figure 2-13. Example of Repeated GETS Request, Access by Key Value,
Initial Positioning by READR (FORTRAN) (Sheet 1 of 2)

2-23 1

HELINQUISH ACCESS PERMIT TO FILE J.
CALL CLOSFL (JBUF+ISTAT)
IF (ISTAT.LT.0) GO TO 9994
GO TO 950
READR REQUEST REJECTED NR GETS REQUEST oFAUFST RFJFCTED
850 CONTINUE
WAS PEJECT DUE TO SOME FRROR
IF (AND(ISTAT+$6020),NE.O) GO TO 9995
THERE AN END=OF=FILE INDICATION
IF (AND(ISTAT,$0100) NE.O) GO TO 800
RENUEST WAS REJECTED BECAUSE RECORD TO BF ACCESSED IS LOCKED.
HAS REQUEST BEEN RETRIED NMAX TIMES
IF (NTRY,GE.MAXTRY) GO TO 9010
NTRY=NTRY+])
RETRY RFADP REQUEST OR RETRY GETS REQUEST AFTFQ
CALL TIMER (RETREVsIFLAG.ITIME.ITEMP)
CALL DISPAT
PROCFDURE COMPLETE
950 CONTINUE

wAS

1=SECOND DELAY

Figure 2-13. Example of Repeated GETS Request, Access by Key Value,
Initial Positioning by READR (FORTRAN) (Sheet 2 of 2)

Records in File
Relative Ke . R ips Contents of
Record Valg e F}‘Q.equeszt—llr;3 Execution I;eéatxvedR;cO{q No;j lmtl:rl gggtzents KEY?2 Array
Number (Key 2) lgure ol Hecords Relrieve on Completion
1 0 READR 4 2 3
2 0
3 1 GETS 1st 5,6,7,8 3 4
4 3
5 3 GETS 2nd 9,10,11,12 4 6
6 4
7 4
8 4
9 4
10 4
11 4
12 6
13 8
14 8
15 8
16 9
17 9
18 9
19 9
20 9
Figure 2-14. Example of File Records Retrieved by Code in Figure 2-13
istat is the file request word as defined in Status Indicator EXT* UPDREC EXT UPDREC
Word, sectionl. (See also error considerations
below.) : : : :
RTJ UPDREC RTJ UPDREC
In assembly language, the store updated record request has ADC regbuf or ADC regbuf
one of the following forms: . . .
224 96768040 B

The use of UPDREC as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to UPDREC
if bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

® A mass memory error has oceurred (bit 5 is also set).

® The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

® Neither the file nor the records to be updated are
locked (bit 7 is also set).

o The file request buffer, reqgbuf, was altered after the
completion of the preceding retrieval before this
UPDREC call (bit 13 is also set).

o The file was closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

© The preceding retrieval was by key value and more than
one record was retrieved (bit 14 is also set). The
number of records retrieved is governed by the pre-
ceding OPENFL request. The OPENFL request gives an
error indication if record locking or file locking is
specified for access by key value and the number
records specified is greater than one. However, the
UPDREC request can be made with no lock indication in
the preceding OPENFL request if the file is locked
between the OPENFL request and the UPDREC request.

oo

INTEGER CHGREC(96)

COMMON IRNMeIFIRSTsILAST+CHGREC

In this case, the previous OPENFL request would give
no error indication if the number records specified
exceeds one. It is in this way that this bit 14 error
indication can be generated.

An example of FORTRAN code using the UPDREC request
is shown in figure 2-15.

DELETED RECORD (DELREC)

Only one record may be deleted per delete record request.
Each execution of a DELREC request must be preceded by
either a GETS request that retrieves only one record, or a
READR request that retrieves only one record. The single
record retrieved by the preceding GETS or READR request
is the record deleted by the DELREC request.

Either the file must have been previously locked or the
record to be deleted must have been locked on retrieval.

In deleting a record from a file, the file manager stores the
record delete code, FMRDEL, in word 1 of the record buffer
and then stores the record back into the file. (More
information on the code FMRDEL may be found in Main-
Memory-Resident Volume Description Parameters,
appendix B.) In addition, if the file is indexed, the record's
pointers are deleted from the file's key indices.

In FORTRAN, the delete record request has the following
form:

CALL DELREC (regbuf,recbuf,istat)

PURPOSE OF THIS CODE IS TO CHANGE WORDS IFIRST THROUGH ILAST OF RECORD
WITH RELATIVE RECORD NUMBER IRNM,
NEW VALUES ARE PASSED VIA COMMON IN ARRAY CHGREC.

NIMENSION KBUF (24) +KDATA(15) +KREC(96) s IRNM(2)

DATA KBUF /24#0/
DATA KDATA /"FILE K PALMER

WegYSVNL20"eNale=1/

C OBTAIN ACCESS TO FILE K. REQUEST RECORD ACCFSS BY kELATIVE
C RECORD NUMBERs SINGLE RECORD RETRIEVAL AND FILF {OCKING.

CALL OPENFL (KBUF +KDATA(KSTAT)

IF (KSTAT.LT.0) GO TO 8900
C RETRIEVE RECORD IRNM

CALL READR (KBUF ¢KREC+IRNMsISTAT)

IF (ISTAT.LT.0) GO TO 8950
C CHANGE RECORD
C STORE INDICES IN LOCAL STORAGE
KFIRST=IFIRST
KLAST=ILAST
NO 400 IND=KFIRSTsKLAST
400 KREC(IND)=CHGREC(IND)
C STORE RECORD BACK INTO FILE.

CALL UPDREC (KBUF ¢KRECeKSTAT)

1F (KSTAT.LT.0) GO TO 8970

Y L]
. .
. .

Figure 2-15. UPDREC Example (FORTRAN)

96768040 B

Where:

regbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in the retrieval
of the record to be deleted. Contents of regbuf
may not be altered between completion of the
preceding record retrieval and the initiation of the
delete record request.

recbuf isthe record buffer containing the record to be
deleted. (Length is the length of the record.) Upon
completion of the request, the first word of this
buffer contains the record deleted code, FMRDEL.

istat isthe file request status word as defined in Status
Indicator Word, section 1. (See also error
considerations below.) .

In assembly language, the delete record request has one of
the following forms:

EXT* DELREC EXT DELREC
RTJ DELREC or RTJ DELREC
ADC regbuf ADC regbuf

. . .

The use of DELREC as an absolute external or as a relative
external is discussed in File Manager Interceptor Module,
section 1.

An error is indicated on the return from a call to DELREC if
bit 15 of istat is set. The particular error condition(s) are
indicated in istat as follows:

© A mass memory error has occurred (bit 5 is also set).

o The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

o Neither the file nor the record to be deleted is locked
(bit 7 is also set).

® The file manager is unable to delete one or more of
record's key values from the key structure because one
or more errors exist in the key structure (bit 11 is also
set).

® The file request buffer, regbuf, was altered after the
completion of the preceding retrieval before this
DELREC call (bit 13 is also set).

® The file is closed by executive forced file close due to
hardware failure or operator shutdown of the volume
(bit 13 is also set).

¢ More than one record was retrieved by the retrieval
preceding the DELREC call (bit 14 is also set).

An example of FORTRAN code using the DELREC request is
shown in figure 2-16.

COMPRESS FILE (COMFIL)

A file should be compressed when space for more records is
needed in the file and some records have been marked as
deleted.

2-26

Compression of a given file involves physically moving the
nondeleted records together, writing over any records that
have been marked as deleted. This allows more new records
to be stored into the file. If the file is indexed, the
associated key structures are rebuilt during compression.

Before compressing a file, an access permit must be
obtained to compress the file. This involves executing an
OPENFL request (see the Open File (OPENFL) section). The
file manager locks the file at the time the compression
access permit is granted.

To compress a file, the user must repeatedly execute a
COMFIL request. Each execution causes a set of the
records in the file to be compressed. The size of the set is
the number specified in the OPENFL request. (The size
must be one record for an indexed file.) When an end-of-file
indication has been received, the entire file has been
compressed. The reason for requiring a series of COMFIL
calls instead of only one to compress the entire file is that
in this way other file manager requests may be interspersed
between the COMFIL calls in the request processor queues
(see Reentrant Request Processors; Serial Request
Processors, section 1). This avoids holding out other file
manager users for a long period of time during file
compression.

In FORTRAN, the compress file request has the following
form:

CALL COMFIL (regbuf,recbuf,istat)
Where:

regbuf is the file request buffer, a 24-word array. This must
be the same array as the one used in opening the
file for compression. It must not have been altered
by the user.

recbuf is the record buffer used by the file manager for
temporary storage of records to be compressed.
The length of recbuf is determined as for the PUTS
request (see the Store New Records Sequentially
(PUTS) section), except that four extra words are
needed by the file manager at the end of the buffer
instead of only two extra words. For example,
using the symbols defined in the Store New Records
Sequentially (PUTS) section, suppose n= 3, r = 189,
and s = 96, and records are sector-aligned. Then
let b' = the size of recbuf for a COMFIL request.

Then b’ =3xP§£—] X 96 + 4

=576 + 4 =580

Wheref y]is the least integer greater than or equal
toy.

istat isthe file request startup word as defined in Status
Indicator Word, section 1. (See also error
considerations below).

In assembly language, the compress file request has one of
the following forms:

EXT* COMFIL EXT COMFIL
R’i‘J COIV]FIL or RTJ COMFIL
ADC regbuf ADC regbuf

. . . .
. . . .
. .

96768040 C

PURPOSE OF THIS CODE IS TO RETRIEVE EACH RECORD FROM A MATLING .
LIST FILE AND DELETE THOSE WECORDS WHICH SHOW DATE OF LAST PURCHASE
BEFORE A SPECIFIED YEAR,

RECORD FORMAT FOR FILE 'MAILLIST*

WORD CONTENTS

-4 CUSTOMER IDENTIFICATION CODE
5=44 ADDRESS
45 YEAR OF LAST PURCHASE (ASCII)

sNoNeNaNoNoNoRsNoNeNoNe]

DIMENSION [RQGBUF (24) »IODATA(15) ¢ JRECHF (45)
DATA IRQBUF/24%0/
FPRESET JODATA TO SPECIFY RETRIEVAL BY RELATIVE RECORDO NUMHERe UNE
RECORD PER RETRIEVALy WITH KECORD LOCKING.
DATA IODATA /OMAILLIST"s"MIDSOUTH" +"VOLUME 1%404191/
C PRESFET PURGE DATE TO ASCII COLE FORrR 1972
DATA IYEAR/$3732/
OBTAIN ACCESS PERMIT TO RETRIEVE 1 RECORD PER REQUEST FrOM
MATILING LIST FILE WITH RECORD ACCESS BY RELATIVE WRECORD NUMKEW,
RECORD LOCKING IS SPECIFIED IN IODATA,
CALL OPENFL (IRQBUF «IODATA»IOSTAT)
C TEST FOR REJECT
IF (IOSTAT.LT.0) GO TO 9000
C RETKIEVE ONE RECOKD
110 CALL GETS(IRGBUF+IRECBF »I10UMs IGSTAT)
C TEST FOR REJECT
IF (IGSTAT.LT.0) GO TO 9020
C TEST FOR PRFVIOUS DELETION OF RECORD
IF (AND(IGSTAT+$10).NEL.O) GO TO 110
C IS THIS RECORD TO REMAIN IN FILE '
IF (IRECBF (45) «GE.IYEAK) GO TO 110
C THIS RECORD IS FOR CUSTOMER WITH LAST PURCHASE PRIOR TO SHECIFIED
C DATE. DELETE THIS RECORD.
CALL DELREC(IRQBUF s IRECHBF ¢+ IDSTAT)
IF (IDSTAT.,LT.0) GO TO 9300
C GO HACK TO RETRIEVE NEXT RECORD
GO TO 110
C DISTINGUISH END=OF FILE FROM OTHER ERRUKS
9020 IF (AND(IGSTAT#$%0100)eNEL.U) GO TO 5000

o0

[eEaNe]

L] L]

C END OF PROCESS

5000 CONTINUE
CALL CLOSFL (IRQBUFICSTAT)
IF (ICSTAT.LT.0) GO TO 9500

[] L
Figure2-16. Example of DELREC Request (FORTRAN)
The use of COMFIL as an absolute external or as a relative ® An end-of-file has been reached. The file should now be .
external is discussed in File Manager Interceptor Module, closed (bit 8 is also set).

section 1.
® The file request buffer, regbuf, was altered by the user

A status indication is that the file is currently locked by this before this COMFIL eall (bit 13 is also set).

user if bit 2 of istat is set.
® The file was closed by executive forced file close due to

An error is indicated on the return from a call to COMFIL if hardware failure or operator shutdown of the volume
bit 15 of istat is set. The particular error condition(s) are (bit 13 is also set).

indicated in istat as follows:
An example of a FORTRAN subroutine that performs file

& A mass memory error has occurred (bit 5 is also set). compression using the COMFIL request is shown in
figure 2-17.
e The file manager data structures on mass memory or in
main memory contain one or more errors (bits 5 and 14
are also set).

96768040 B 9-97

2-28

OO0

OO0

sl aNeKa]

SUBPNUTINE COMPRS (NAME ,TOWNERsIVOL ¢RECLEN+ALIGNS INDEXDERRFL1
1 ERRFL2)
PURPOSE OF THIS SUBROUTINE IS TO COMPRESS FILE WITH NAMEs OWNER
AND VOLUME PASSED IN SUBROUTINE PARAMETER L1ST., RECLEN IS RECORD
LENGTH. ALIGN=0 FOR NON-SECTOR-ALIGNED RECORDSs =1 FOR SECTOR=ALIGNED
RECORDS.
INTEGER RECLEN+ALIGN<RECBUF (964) ¢ REQLENJERRFLG
INTEGER ERRFL1+.ERRFL2
DIMENSION NAME (4) s IOWNER (4) o IVOL (4) +IDATA(15) s TRUF (24)
NATA IDATA(13) /v :
IDATA(15) NEED NOT BE PRESETs AS IT IS IGNORED WHEN FILE IS OPENED
FOR COMPRESSION.
INITIALIZE ERROR FLAGS
ERRFL1=0 ‘
ERRFL2=0
TEST FOR RECORD LENGTH WITHIN RANGE ALLOWED
IF (RECLEN.GT.960) GO TO 9000 .
MOVF PASSED FILE NAMEs OWNER,s AND VOLUME TO IDATA ARRAY
DO 20 I=1l+4
IDATA(I)=NAME (1)
IDATA(I+4)=]JOWNER(I)
IDATA(I+&6)=1vOL(])
20 CONTINUE
OPEN FILE FOR COMPRESSION
COMPUTE NUMBER RECORDS WHICH wILL FIT INTO RECSUF,
COMPYTE REQUIRED LENGTH FOR ONE RECORD.
IF INDEXED FILE, NUMBER RECORDS PER CNOMFIL CALL MIST BE ONE,
IF (INDEXD.,EQ.0) GO TO 100
NUMREC=1
60 TO 300
ARE RECORDS NOT SECTOR-ALIGNED
100 IF (ALIGN.EQ.0) GO TO 200
RFCORDS ARE SECTOR ALIGNED
SECTOR LENGTH IS 96 WORDSe.
REQLEN= (RECLEN/96)#96
J1REM= RECLEN=-REQLEN
IF (IREM.GT.0) REQLEN= REQLEN+96
NUMREC = 960/REALEN
GO TO 300
RECORDS ARE NOT SECTOR=ALIGNED
200 NUMREC = 960/RECLEN
STORE NUMBER RECORDS INTO IDATA ARRAY.
300 IDATA(14)=NUMREC
CALL OPENFL (IBUF+IDATALISTAT)
IF (ISTAT.LT.0) GO TO 9000
500 CALL COMFIL (IBUFeRECBUFISTAT)
IF (ISTAT.GE.0) GO TO 500
TEST FOR END=OF=FILE -
IF (AND(ISTAT+$0100),NE.0) GO TO 900
OTHER ERROR. PASS ERROR FLAG BACK TO CALLER IN FRRFL1 PARAMETER
ERRFL1=1ISTAT
900 CALL CLOSFL (IBUFsISTAT)
ERPFL2=ISTAT
RETURN

Figure 2-17. Compress File Example (FORTRAN)

96768040 C

GLOSSARY A

BACKGROUND - Processing with relatively low priority
that is executed in unprotected main memory as
foreground processing permits. Background priority
levels are 0, 1, and 2.

BYTE - Basic unit of data; specifically for CDC CYBER 18

computers, a byte is eight bits, either bits 0 through 7
of a word or bits 8 through 15 of a word.

CLEAR - To clear a bit is to cause its value to become
zero.

CYLINDER - A set of tracks in a drum or disk that can be

read without repositioning the read/write heads (see
figure A-1).

EXECUTIVE - See System executive.

FCB - See File control block.

FCBT - File control block table.

FDB - File definition block. .

FDD - File definition directory.

FDS ~ File definition segment.

FIAT - File control block index allocation table.

FILE - A collection of related-records treated as a unit.

FILE CONTROL BLOCK (FCB) ~ The set of definition and
control parameters for a file.

FILE DEFINITION DIRECTORY -~ A collection of pointers;
for each file on a volume, there is one pointer, each
pointing to the file control block for the file.

FOREGROUND - Processing that is time-critical.
Foreground processing is executed in protected main
memory.

INDEX - An ordered set of pointers.

KEY - Specific attribute of a record, such as age,
birthdate, social security number, ete.

KIB - Key information block.
KIS - Key information segment.

MODULO (MOD) ~ A funetion such that if x =r (modk),
there exists an integer n such thatx=n.k+r.

PARTITION - A collection of subsets of a set such that any
pair of subsets are disjoint and the union of all the
subsets is the entire set.

PROTECTED MAIN MEMORY - That part of main memory
that is protected from erroneous storage or entry by
unprotected programs. Attempted storage into a
protected word or transfer of control to a protected

96768040 B

instruction by an instruction in unprotected main
memory causes a protect violation interrupt.

PROGRAM LIBRARY - A set of commonly used routines
_available to background programs.

RECORD ~ A set of data that is input or output at one
time.

RELATIVE RECORD NUMBER - Position of the record
within a file, expressed as an ordered pair of integers
(n,m). A relative record number is stored in a two-word
array with n stored in the first word and m in the
second word of the array. If the relative record number
r = (n,m), then

=nx85536+m
Where: 0 < m < 65,535 and ~
0 <n< 255

That is, m is a 16-bit (two-byte) positive integer
and n is an eight-bit (one-byte) positive integer.)

SCATTER CODE - A function that maps the integers into

a specified subset; for example, the integer's modulo n
is a hash code where n is any positive integer. See File
Definition Directory section of appendix B for use of
the scatter code.

SECTOR - One of the equal parts of a disk track (see
figure A-1). A set of words on a drum defined by
software to be a sector for drum/disk software compat-
ibility, even though sectors do not exist physically on a
drum. i

SET (BIT) ~ Causes the bit to have a value of one.

SYSTEM EXECUTIVE - A set of program modules that
controls the operation of other programs within the
system.

TRACK - One of the concentric rings on a disk such that
the entire ring (track) of data passes a read/write head
every time the disk completes one revolution (see
figure A-1).

UCT - User control table.

UNPROTECTED MAIN MEMORY - That area of main
memory used by background programs (see Protected
main memory).

USER AREA - A block of partitioned main memory that is
controlled by the ITOS executive and used to execute
user programs under ITOS control. This area is
unprotected memory based on the setting of the protect
bounds registers and page registers (see the ITOS 1
Reference Manual). User programs execute at a
priority level controlled by the ITOS executive.

VOLUME - A single physical unit of a peripheral storage
device; a volume that can be used for file manager file
storage is a removable disk cartridge, a disk pack, a
nonremovable disk cartridge, or a drum.

. N
(\: Rt SE PR ACCESS ARM
‘L‘___,‘:____ < ¥ CONTAINING
= L READ/WRITE
e T READS FOR
T z EACH DISK
Yt o SURFACE
R
= = =
CYLINDER DISK
<
& __» SECTOR

[@\———' TRACK

Figure A-1. A Disk Pack

96768040 A

FILE STRUCTURE B

Associated with each created file is a file eontrol block
(FCB) that contains the file's definition and control param-
eters. File control block (FCB) structure is deseribed in the
File Control Block Table section. The FCBs for the files on
a given mass memory volume are stored together on that
volume in a table called the file control block table (FCBT).
Each FCB within this table has an FCBT index.

The FCB for a given file may be found on mass memory if
the file's FCBT index is known. To ascertain the FCBT
index for a given file, a search may be made in the file
definition directory (FDD). There is an FDD on each volume
used in the system. Each FDD contains a pointer to an FCB
for each file located on the particular volume. File
definition directory structure is deseribed in the File
Definition Directory section. Information needed to access
the FDD for a given volume is found in main memory, as
described in the Main-Memory-Resident Volume Description
Parameters section.

In addition, on each volume, there is a file control block
index allocation table (FIAT) used in assigning an FCB index
to a file when it is created. The FIAT structure is described
in the File Control Block Index Allocation Table section. An
example of the above structures appears in the File
Structure Example section.

MAIN-MEMORY -RESIDENT VOLUME
DESCRIPTION PARAMETERS

When a volume is mounted and ready for use, volume file
control parameters are stored into words 1 through 19 of the
volume information table (see figure D-4). The following
parameters are from the volume label as described in
appendix E:

Mnemonic Parameter Definition

VIFDDM File definition directory address,
most significant bits

VIFDDL File definition directory address,
least significant bits

VIMAXF Maximum number of files per-
mitted for a volume (defined at
the time of system installation
or volume initialization)

VICURF Current number of files existing
on the volume

VINFDB Number of blocks in the file def-
inition directory

VINXTB Next block available for overflow
in the file definition directory

VIWPS Number of words in each sector
on this volume

VINAME Volume name; four words; eight

ASCII characters

96768040 B

The location of the main file structures on a volume is
shown in figure B-1,

mreee
. H
H
VOLUME
SO gsgre] vsecron
SECTOR ADDRESS FILE SPACE VIASDS
= (VILBLM,VILBLL+1}) DIRECTORY SECTORS
= (VIASOM,VIASDL)
R
FILE
SECTOR ADDRESS DEFINITION L VINFDB
= {VIFDDM,VIFDDL) ?FISS?TORY SECTORS
FILE 1
SECTOR CONTROL
SN sLocK [SECTORS
+ (VIFDD|
{ M,VIFDDL) ot
J
SECTOR ADDRESS FCB INDEX
={0,VIMAXF) + (0,VINFDB) ALLOCATION 1SECTOR
+ (VIFDDM,VIFDDL) TABLE (FIAT)

Figure B-1. Location of Main File Control Structures
on a Volume

FILE DEFINITION DIRECTORY

The file definition directory for a given volume contains one
file definition segment (FDS) for each file on that volume.

The FDSs are grouped into blocks so that all FDSs in a given
block are for files with the same scatter code. The scatter
code for a file is defined as follows. A file on a given
volume is determined uniquely by its file name/file owner
character string as defined in File Identification, section 1.

Let (n, | i=1,2,3,4) be the file's name where each n. is the

binary representation of two ASCII characters. Let
(w, | i=1,2,3,4) be the file owner's name where each w. is
the binary representation of two ASCII characters. et

MINFDB be the number of blocks in the file definition
directory's main part. (The value of MINFDB is dependent
on the maximum number of files permitted on the volume.
The formula for MINFDB appears later in this section.)
If ¢ is the seatter code for the file, then:

4
e=1+ 2 [(n; +w)] {mod MINFDB)
i=1

where the summation is computed as a 16-bit positive
integer with the overflow handled as in a CDC CYBER 18
computer; that is, bit 15 is considered a part of the number
and not a sign bit; overflow handling is such that
FFFF1 6t 1=1.

B-1

[

For example, suppose the file name is FILE A (left-
justified), the file owner is SMITH (left-justified), and
MINFDB = 10016' Then:

n, = 4649, w, = 534D, ¢
n, = 4C45,, w, = 4954,
ng = 20414 wq = 4820,
n, = 20204, wy = 2020,
L
and:
4
e=1+ l=):1 (n; +wy) [(mod100,¢)

=1+ [D7D116] (mod 100,)

=1+ D1,.=D2

16 = D2 = 210

This file would be grouped with other files with seatter
code 210.

Each file definition segment (FDS) has the following format:

Word Contents
1 through 4 File name, eight ASCII characters
5 through 8 File owner, eight ASCII characters
9 File control block table index

The FDSs are grouped by scatter code into file definition
blocks (FDBs). Each block is one sector long and consists of
a one-word header together with as many existing FDSs for
that scatter code as can fit into the block. Let NUMFDS be
the maximum number of FDSs per FDB. Then:

NUMFDS = l(VIWPS-l

where VIWPS is number of words per sector (see the Main-
Memory-Resident Volume Description Parameters, ap-
pendix B). The header of each FDB contains the index to an
overflow block if there are more than NUMFDS files with
this scatter code. Otherwise, the header contains 000016'

The number of FDBs in the file definition directory's main
part is:

MINFDB = [VIMAXF'[TT

The file manager allows a.maximum of [MINFDB /4] file
definition overflow blocks. The maximum number of FDSs
in the FDD is:

VINFDB = MINFDB + [_MlNFDB]

This provides ample directory space for VIMAXF files with a
normal scattering of file name/owner strings.

Location of the FDD on a volume is shown in figure B-1.
Structure of the FDD is shown in figure B-2.

v Lyl = The greatest integer less than or equal to x.
[Y] = The least integer greater than or equal to x.

B-2

NOTE

In a system including ITOS, a dump of the
file definition directory may show the
existence of files that were not created
by any system user. ITOS creates a
number of files for its own use.

FILE CONTROL BLOCK TABLE

The file control block table (FCBT) consists of one file
control block (FCB) for each file on the volume. A
maximum of VIMAXF FDBs are contained in the table. The
FCBT immediately follows the space allowed for the file
definition directory on the volume. Therefore, the sector
.address of the FCBT is the sum of the ordered pairs
(VIFDDM, VIFDDL) and (0, VINFDB). (See figure B-1 and
the Main-Memory-Resident Volume Description Parameters
section.) Each FCB is one sector long; thus the length of the
FCBT is VIMAXF sectors. The range of the FCB index is
from one to VIMAXF.

When a file is created, thirty-three words are stored into the
file's FCB. These words are defined as follows (words 6
through 10 are modified as the file is used):

Word Mnemonic Definition

1 RECLEN Record length in words

2 TDATRM Maximum number of records,
most significant bits

3 TDATRL Maximum number of records,
least significant bits

4 DATBAM Sector address of first rec-
ord, most significant bits

5 DATBAL Sector address of first rec-
ord, least significant bits

6 FCBIND FCB indicators as follows:

Bit 15 Record alignment
indicator

0 Records need
not be sector-
aligned

1 Records must
be sector-
aligned

Bit 14 Storage mode for
indexed file

0 Records pre-
sented and
stored ran-
domly with
respect to
primary key

96768040 B

FILE
DEFINITION

DIRECTORY

(FDD)
MAIN PART

96768040 A

FDB;
(SCATTER
CODE = 1)

FDBg
(SCATTER
CODE = 2)

FDB,
(SCATTER
CODE = n)

FDBMINFDB
(SCATTER

CODE =
MINFDB)

4

4

7

4

HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

eee
(XX]

HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

HEADER

NAME
OWNER
FCB INDEX

NAME

OWNER
FCB INDEX

L] L]
* *
. L

HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

HEADER

NAME
OWNER
FCB INDEX

NAME
OWNER
FCB INDEX

Figure B-2. File Definition Directory Structure

FDB
OVERFLOW;
(SCATTER CODE
} = SCATTER CODE
OF BLOCK THAT
OVERFLOWED)

FDB

| OVERFLOW,

FDD
OVER-~
FLOW
PART

B-3

1 Records pre- 11 TNKEYM Total number of key index
sented and blocks, most significant bits
stored in
order with 12 TNKEYL Total number of key index
respect to blocks, least significant bits
primary key

13 KEYBAM Key index sector address,
Bit 13 Open/close indicator most significant bits

0 File closed 14 KEYBAL Key index sector address,

least significant bits

1 File open

15 LENKY1 Length of key number 1 in
Bit 12 File compression bytes
indicator
16 POSKY1 Byte position of key num-

0 File not eur- ber 1
rently being
compressed 17 LENKY2 Length of key 2 in bytes

1 File currently 18 POSKY2 Byte position of key 2
being com- ‘
pressed 19 LENKY3 Length of key 3 in bytes

Bit 11 File special process- 20 POSKY3 Byte position of key 3
ing indicator
21 LENKY4 Length of key 4 in bytes

0 File not cur-
rently open for 22 POSKY4 Byte position of key 4
special pro-
cessing 23 TSFILM Total sectors allocated for

file, most significant bits

1 File currently
open for special 24 TSFILL Total sectors allocated for
processing file, least significant bits

Bit 8 Binary data indicator NOTE

0 File does not con- The file has been deleted
tain essentially only if word 25 contains all
binary data binary zeroes.

1 File contains 25 NAME12 File name, characters 1
essentially binary and 2
data

26 NAME34 File name, characters 3
Bit 0 File type and 4
0 Sequential file 27 NAMES56 File name, characters 5
and 6
1 Indexed file
28 NAME78 File name, characters 7
7 NEDATMt Number of existing records, and 8
most significant bits
29 OWNR12 Owner name, characters 1
8 NEDATLt Number of existing records, and 2
least significant bits
30 OWNR34 Owner name, characters 3
9 LINKFM Next free key index block, and 4
most significant bits of
block number 31 OWNRS56 Owner name, characters 5
and 6
10 LINKFL Next free key index block,
least significant bits of 32 OWNRT78 Owner name, characters 7

bloek number

and 8

fThe ordered pair (NEDATM, NEDATL) includes any record marked as deleted that has not been written over by file
compression.
B-4 96768040 C

33

BYTLEN Record length in bytes. This Word Mnemonic
is the originally specified
length and, therefore, may 35 PRSRNL

be either an odd or even
number of bytes.

Words 34 through 37 of the file control block are used only 36 NEWRNM
during file compression. These words are defined as follows:
Word Mnemonic Definition
37 NEWRNL
34 PRSRNM Relative record number of :

96768040 C

the last processed record,
most significant bits

Definition

Relative record number of
the last processed record,
least significant bits

Relative record number of
the last record in a set of

compressed records, most

significant bits

Relative record number of
the last record in a set of

compressed records, least

significant bits

B-4.1/B-4.2

Whenever a sequential file is open, the first ten words of its
FCB reside in main memory. Words 9 and 10 are required
because of the manner in which FCB subsets are moved
into/out of FCBs (see Main-Memory-Resident File Control
Block Tables in appendix D). Whenever an indexed file is
open, the first twenty-two words of its FCB reside in main
memory.

A five-word header is appended to an FCB when the FCB is
in main memory. A main memory FCB header is composed
of the following:

Word Mnemonic Definition

1 FILEID File identifier
Bits 0-10 fCB index
Bits 11-15 File manager

unit number.
(This is an in-
dex into the
volume infor-
mation table in
main memory.
It corresponds
to the drive on
which the vol-
ume is mounted.
It is not a sys-
" tem logical
unit number.)

2 FCBFLG FCB flag

Bits 0-7 Number of cur-
rent file users
(number of users
to which file is
currently open)
Bits 8-15 Unused .

3 FILOCK File lock flag (if nonzero,
contains user identification)

4 NUMSET Number of sets of locked
records in the file (not cur-
rently used)

5 NUMNEW Number of new records

stored on mass memory
since file control block was
updated on mass memory

FILE CONTROL BLOCK INDEX
ALLOCATION TABLE

The location of the file control block index allocation table
(FIAT) on a volume is shown in figure B-1. The FIAT is a bit
table used to control the assignment of file control blocks
within the file control block table (FCBT). The FIAT
occupies a sector of mass memory, but only the first
VIMAXF bits are used.

96768040 C

The correspondence of bits in the FIAT to FCBs in the FCBT
is as follows:

Corresponding
FIAT Word Bit FCB Index
1 15 1
1 14 2
1 0 16
2 15 17
2 14 18

At the time of system installation, all bits in the FIAT are
zeroed. When a bit in the FIAT is one, it signifies that the
corresponding file control block defines a file that has been
created and has not been deleted. When a new file is
created, the file manager searches the FIAT for the first
zero bit. It sets this bit to one and uses the corresponding
FCB for the file.

FILE STRUCTURE EXAMPLE

A FORTRAN program, FSDR, was written to demonstrate
the file structures generated on mass memory for a set of
sample files. The demonstration routine was written to give
an example of each of the following:

® A file definition directory including an overflow file
definition block

o File control blocks
e - File records including records marked as deleted

Routine FSDR is shown in figure B-3. To generate an
overflow file definition block, a number of files with the
same scatter code were generated. The number of files with
the same scatter code must exceed the number of file
definition segments (FDSs) that can be stored in one file
definition block (FDB). The number of FDSs per FDB was
computed as follows. The system installation parameter,
VIWPS (number of words per sector on this volume),
equals 96. Therefore, NUMFDS, the number of FDSs per file
definition block, is computed from the formula in the File
Definition Directory section as follows:

NUMEDS = [(VIWPS—I) J

- [52)] - (%] -

Thus, more than 10 files with the same scatter code must be
generated to cause the use of a file definition overflow
block. ’

The formula for a file's scatter code is given in the File
Definition Directory section. For a file with file name
ny Ny, Ng, N and owner Wi, W, Wg, Wy, the scatter
code ‘¢ is'defined as follows:

4
= [2 p+wy)] (mod MINFDB) + 1
i=1

PROGRAM FSDR
FILE STRUCTURE DEMONSTRATION ROUTINE.
CREATE 20 SEQUENTIAL FILES, 13 WITH SAME SCATTER CODE.
STOKRE 5 RECORDS INTO EACH FILE. DELETE A RECORD IN EaACh OF Tht
FIRST S FILES.
DIMENSION NAME (20)
DATA NAME/" AS=$G70 (M#PS=2,V/$0Y933%8 C D E F G H v/
DIMENSION IRUBUF (24) 91DATA(Z4) 9 IREC(42) v IRECN(2) s IOUATA(LS)
DATA IDATA /¢ NeNSYSVOL "elbeUs60090e8%0/
DATA 10DATA/Y WeNSYSVOL "elels=1/
C INITIALIZE STATUS INDICATORS
DATA ISTAT.IOSTATeIPSTATSICSTAT/4%0/
DATA IRSTAT.IDSTAT/2%0/ :
C FOR RECORD RETRIEVAL PRECEDING KECORD UELETION,
C SET FIRST WORD OF RELATIVE RECORD NUMBER TO ZrRrO,
DATA IRECN(1)/0/
DO 1000 ‘NFILE=1,20
C STOKWE FIRST TwWO CHARACTEKS OF FILbk NAME INTO DEFINITION AKKAYS
IDATA(l)= NAME(NFILE)
TODATA(1)=NAME (NFILE)
CALL CREATE (IRQBUF9IDATAsISTAT)
IF (ISTAT.LT.0) GO TO 9000
C INITIALIZE REQUEST BUFFER
DO 2u I= le24
20 IRQRHUF(1)=0
CALL OPENFL (IRGbUF s IODATACIUSTAT)
IF(I0STAT.LT0) GO TO 9000
C PKEPARE RECOKRD HUFFER
DU 200 T=1440
IREC (1) =NAME(NFILE)+[~-1
200 CONTINUE
CALL PUTS (IRQUBUF¢IRECeSyIPSTAT)
IF (IPSTAT.LT.0) GO TO 9000
C DELETE RECOKD UNFILE"™ [F NFILE LESS THAN OR EGQUAL TO FlvVt.
IF (NFILELGT.S) GO TO 900
C STORE NFILE INTO SECONU WORD UF RELATIVE RECUORD NUMBER.
IRECN(2)=NFILE
C WETRIEVE RECORD TO Bt DELETED
CALL READR (IRQBUF «JRECsJRECHIRSTAT)
IF (IRSTAT.LT.0) GO TO 9000
C DELETE RETRIEVED KECORD
CALL DELREC (IRQBUF ¢ IRKECYIDSTAT)
IF (IDSTATLLT.0) GO TO 9000
900 CALL CLOSFL (IRQBUF¢ICSTAT)
IF (ICSTAT.LT.0) GO TO 9000
1000 CONTINUE
GO TO 9090
9000 CONTINUE
C PRINT ERROR MESSAGE
WRITE (129700U) ISTATeIOSTATeIPSTATeIRSTATWIUSTATICSTAT,
1 (IKQBUF (Iw) o Iw=1¢24)
CALL CLOSFL (IRQUBUF+ICSTAT)
60 TO 9095
C DEMONSTRATION ROUTINE COMPLETE

9090 WRITE (l247070)
9095 CONTINUE
CALL PGMOUT
7000 FORMAT (SXe7HISTAT =9%4e/
5XsTHIOSTAT= 9344/
SX e THIPSTAT=9%4¢/
SXeTHIRSTAT=ed49/
SXeTHIDSTAT= 9549/
SXeTHICSTAT=934e/5Xs THIRUBUF=9349/23(0Xe%44/))
7070 FORMAT (SXe®TWENTY FILES CREATED®)
END

OO0 O0O

U & W

Figure B-3. File Structure Demonstration Routine (FORTRAN)

96768040 A

For the system used in the demonstration, VIMAXF (number
of files permitted on the volume) equals 1024. Therefore,
using the formula in the File Definition Directory section:

_ VIMAXF _ 1024 _
MINFDB = [N‘UMFUS] = [Tﬂ" = 103
= 6716

If file 1 and file 2 are two files in this system such that the
name of file 1 is:

n, ,n, ,n, ,n
11y 17 Ty

the owner of file 1 is:

W, W, , W, ,W
1 1,y "1 71

1 4

the name of file 2 is:
Ny, ,Ny ,Ny , N
22y 2302
and the owner of file 2 is:

Wy , Wo , Wy , W
21 22 23 24

then the scatter code for the two files is equal only if there
exists an integer m such that:

4 4

Z (ny +wy) - Z (ny +w,)
P 1 1 . 1 1
i=1 i=1

=mx103,(=mx 6716).

Each file in routine FSDR was constructed with an owner
string of all ASCII blanks and a name string of all ASCIL
blanks except the first two characters.

The first two characters of the first file name are defined to
be blank, A (equals ASCII code 2041,.). The first two
characters of the next twelve file names are generated by
adding multiples of 67, . to 2041 6 and selecting those sums
that represent legitimalge ASCII c]har-acters.

The first two characters of each file name are stored in the
NAME array (figures B-3 and B-4). For example:

204116 + 3416 X 6716 = 352D16

=ASCII code for 5-
204116 + A16 X 6716 = 244716

=ASCII code for $G

96768040 A

3 0002 0002 «00001 ORG NAME

0002 2061 NUM 8257
0003 352D NUM 13613
0004 2447 NUM 9287
0005 3730 NUM 164128
0006 284D NUM 10317
0007 2AS50 NUM 10832
0098 2CS3 NUM 11347
g009 2021 NUM 11553
000A 2ESB . NUM 11862
0008 2F2& NUM 12068
000C 3059 NUM 12377
00dD 3933 NUM 14643
000E 332A NUM 13098
003F 4220 NUN 16928
0010 4320 NUM 17186
0011 4420 NUM 176440
0012 &S20 NUM 17696
0013 &620 NUM 17952
0014 4720 NUM 18208
0015 4820 NUM 186464

Figure B-4. Assembly List of Name Array, FSDR Routine

After running the FSDR routine, the location of the file
definition directory (FDD) is obtained from the main
memory volume information table for this volume. (See the
sample in figure D-4.) The sector address of the FDD is

(0,7017). Portions of the FDD as dumped by ODEBUG are

shown in figure B-5.

The address of the file control block (FCB) table is
determined by the formula in figure B-1 using the value of
VINFDB from the appropriate main memory volume infor-
mation table (see the sample in figure D-4). In the system
used in the example, VINFDB equals 8116. Thus, the sector
address of the FCB table is:

(0’701716) +(0, 8116) = (0, 709816)'

The first six files created by the routine, FSDR, have FCB
indices C5.,, C7,,, C8.., C9.., CA,., and CB,,,
respectivelyEG(Referwto Fﬂé numt}eer 54161,6figure B—5.)16
The sector addresses of the FDBs for these files are
7098, . + C5,, = 715D 715F16’ 7160 7161 7162

and 16 716526, respégtively. Theslee’ FCle Saire sholv@r;
in figure B-6.

Words 4 and 5 of each FCB give the sector address of the
first record of the file (see the FCB format in the File
Control Bloek Table section).

The sector address of the first record of each of the first six
files created by the FSDR program may be obtained from
the FCBs shown in figure B-6. For example, file A has
sector address (1,314D).

Using these addresses, the file records for these files are

dumped as shown in figure B-7. Records deleted in the
FSDR routine are indicated in the figure.

B-7

B-8

SECTOR —$0000 7017
ADDRESS 0000 5052 464F 453u 3631 2020 2020 2020)
X 2020 0078 5341 4F55 5420 2020 2020 2020
2020 2020 OUAF 0000 0000 VL0 0000 0000
0000 0000 0000 000U 0000 OUOU U000 0000
0000 0000 0000 00LU 0000 0000 0000 0000
0000 0000 0000 00U0 0000 UUUO 0000 0000 > FIRST FDB
0000 0000 00U0 0000 0000 0000 000U 0000 IN FDD
0000 0000 0000 0000 0UGO0 UUV0 0000 0000
0000 0000 0000 0000 0000 O0UVO 0000 VOO
0000 0000 0000 0000 0000 0V00 0000 0000
0000 0000 0000 0V0DU 0000 0000 0000 0000
SECTOR 0000 0000 0000 000U ©O0VO 0000 0000 0000)
ADDRESS —» 0000 7042
o o SR Sest e ms e e
2 3 20¢
IMPLIES NO OVERFLOW 5054 2020 0095 [4720 2020 2020 20202020 FDS FOR FILE G, FCB
BLOCK FOR THIS SCATTER (55202020 2020 0008 [0000 00000000 0000 INDEX = D8
CODE 0000 0000 0000 00OUU 0000 0000 0000 0000 . 16
0000 0000 0000 00U0 0000 U000 0000 000U
0000 0000 0000 00UO 0000 0000 0000 00UV > FDB NUMBER 2C, .
0000 0000 0000 0000 0000 OUOU G000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 000OQ 0000 0000 0000
0000 0000 0000 0000 000U O0VOO 0000 0000
SECTOR ~ 0000 0000 0000 000u ‘0000 0000 0000 0000 J
ADDRESS —p0gu0 706A
FDB HEADER CONTAINS —»[0068 5052 4641 5230 3137 2020 2020 2020
68,. THISIMPLIES FDB 2020 003A [4152 5452 414t 5320 2020 2020
UM ER 6816 (SECTOR — Eee B o o e e Pootlel— 1noax oo o reP
6816 OF FDD) CONTAINS 020 2020 2020 2020 00C7 [2447 2020 2020 16
OVERFLOW BLOCK FOR 020 2020 2020 2020 2020 00Cs [3730 2020 FDS FOR FILE 5-; FCB
THIS SCATTER CODE, 2020 2020 2020 2020 2020 2020 00C9 [284D > INDEX = C7
2020 2020 2020 2020 2020 O0O0CA 1 16
2020 2020 2020 2020 2020 2020 FDB NUMBER 5416
202020 2020 2020 2020 2020
2020 2020 20202020 2020}t DS FOR FILE -i; FCB
SECTOR 0000 0000 G000 0000 0000J -INDEX=CD16
ADDRESS —»0000 7074
. —>[000] 5052 4649 4E30 3133 2020 2020 2020
fﬁ;ﬁ;gﬁ%‘,z}fnl%&ow 2020 . 0012 [4820 2020 2020 2020 2020 2020} FDS FOR FILE H; FCB
E020_2u20_ 0009 [Gv00 0000 0000 0000 0000 INDEX = D9
BLOCK FOR THIS SCATTER G900 0000 0000 0000 0000 0u00 0000 0000 16
CODE. 0000 0000 00VUO 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 000U
0000 0000 O0LUY 000U 0000 0000 0000 0000 FDB NUMBER 5E, o
0000 0000 0000 0000 000U VOO0 0000 0000
0000 0000 0000 00UL 0000 UVUOO 0000 0000
0000 0000 0000 0000 0000 000U 0000 00600
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 000U 0000 0000 0000
- Figure B-5. Example of File Definition Directory Entries (Sheet 1 of 2)

96768040 A

SECTOR —»0000 707D
ADDRESS 0000 5052
2020 0077

FDS FOR FILE B

2020°)
5

00vLy0 0000 0000 000U 0000
0000 0000 0000 O0O0OY 0000 0000 WOOO wvOOO

~ 000u 0000 0000 00QUO 0000 QUOU 0000 w0OUO
0000 0000 0000 w0OUU 0000 0000 0VUO0 0OOOL
0000 0000 (©OO0O O0OOU 0000 WOQOUL 0000 0000
0000 0000 0000 OOQUU 0000 0QOUO 0VOOU 0000
0000 0000 oOOuu 0000 0000 O0OULO 0000 oOUVOO
0000 0000 0000 000U 00UL WUO0 (0000 w00V
0000 0000 0000 OOOUL 0000 0000 00VOO 000D
0000 0000 0000 OOUU 0000 w©OOO OULOU OOOOJ

> FDB NUMBER 67,

0000 T7O7E
. FDB HEADER; ZERO —p000 2E56 2020 2020 2020 2020 2020 2020
IMPLIES NO MORE OVER- 2020 O00CE @gFz24 _202U 2020 2020 2020 2020
2020 2020 QOCF | 3059 2020 2020 2020 202 FDS FOR FILE 0Y

20 2020 2020 00Lu | 3933 2020 2020 2020 FDS FOR FILE 93
20 2020 2020 2020 0O0D) [332A 2020 2020
020 2020 2020 202u 2020 00be [0000 0000 FDB NUMBER 68 (OVER-
0000 0000 - 0000 OOUU 0000 OVUVUA VOUG 0000 FLOW BLOCK FOR FDB 54)
. 0000 0000 0000 O0GUU 0000 0000 0VOL 9000
0000 0000 0000 0000 0000 OUUOO 000U 00UO B
0000 0000 0000 0000 000G UVOO 000U 0000 FDS FOR FILE 3*
0000 0000 0000 0QOLU 0000 OOV 0O0UD 0LUOD .
" S 0000 0000 0000 000U 0000 0000 000v 0000

SCATTER CODE

FLOW BLOCKS FOR THIS E
0

Figure B-5. Example of File Definition Directory Entries (Sheet 2 of 2)

96768040 A B-9

B-10

0000
ooous
(]
0000
2041
oolo
0000
0000
0000
0000
0000
0000
0000
0000
0008
0000
0000
3520
0010
0000
0000
0000
0000
0000
0000
0000
0000
0008
0000
0000
2447
0010
0000
0000
0000
0000
0000
0000
0000
0000
0008
0000
0000
3730
0010
0000
0000
0000
0000
0000
0000
0000

7150
0000
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000
T15F
0000
0000
0000
2020
0000
0000
0000
0000
0000

0000 -

0000
0000
7160
0000
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000
7161
0000
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000

0258
0000
0000
2020
0000
000V
0000
0000
0000
0000
0000
0000

0258
0000
0000
2020
0000
0000

0000 ~

0000
0000
0000
0000
(A

0258
0000
000v
2020
0000
0000
0000
0000
0000
0000
0000
0000

0258
0000
0000
2020
0000
0000
0000
0000
0000
00vo
0000
0000

[CUul_3I40] voou 0000 0005)
00U0 0000 0000 000U 00OV
00U0 0000 00UV U©OLO 0032
2020 2020 2020 2020 2020
0000 0000 0UVO O0OVO 0000
000U 0UV00 0000 0000 00UO
000uv 0000 0000 0000 0000
00UL 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0005
0000 0000 0000 0000 0000
0000 0000 0000 0000 0032
2020 2020 2020 2020 2020
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
000U 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
000U 0000 0000 0000 0000
0001 _3614] 0000 0000 0005)
0000 0000 0000 ©QUO 0000
0000 0000 0000 0000 0032
202u 2020 2020 2020 2020
0000 0000 0000 00060 000U
0000 0000 0000 0000 0000
0000 UV00 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 00UO
0000 0000 0000 0000 0000
000U 0000 0000 0000 0000
0000 - 0000 0000 0000 0000
D001 36647] 0000 0000 0005
0000 0000 0000 0000 0000
0000 0000 0000 0000 0032
2020 2020 2020 2020 2020
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 U000 0000 0000
000U 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0U00 0000
0000 0000 0000 00CO 0000
0000 0000 0000 0000 0000

SECTOR ADDRESS OF FIRST RECORD

FCB FOR FILE A

SECTOR ADDRESS OF
FIRST RECORD

FCB FOR FILE 5-

SECTOR ADDRESS OF
FIRST RECORD

FCB FOR FILE $G

SECTOR ADDRESS OF
FIRST RECORD

FCB FOR FILE 70

Figure B-6. Example of File Control Blocks (Sheet 1 of 2)

96768040 A

96768040 A

0000
voo8
0000
0000
284D
00lo0
0000
0000
0000
0000
0000
0000
0000
0000
0008
0000
0000
2AS0
0010
0000
0000
0000
0000
0000
0000
0000

T162
0000
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000
7163
0000
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000

0258
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000

0258
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000

SECTOR ADDRESS OF FIRST RECORD

0000
0000
2020
0000
0000
0000
0000
0Quo
0000
0000
0oV

0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
00Vo

0000
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000

0005
0000‘W
0032
2020
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
2020
0000
0000
0000
0000
000V

0000

0000
0000

0000

0000

2020
0000

0000

0000
0000
0000
0000
0000
0000

0000
0000
09000
2020
0000
0000
0000

-0000

0000
0000
0000
0000

0000
0000
0000
2020
0000
0000
0000
0000
0000
0000
0000
0000

0005)
0000
0032
2020
0000
0000
0000
0000
0000
0000
0000
0000)

FCB FOR FILE (M

SECTOR ADDRESS OF
FIRST RECORD

FCB FOR FILE *P

Figure B-6. Example of File Control Blocks (Sheet 2 of 2)

B-11

B-12

FILE
RECORDS
FOR
FILE

A

FILE
RECORDS
FOR

FILE 5-

-FILE

RECORDS
FOR
FILE $G

FILE
RECORDS
FOR

FILE 70

"000) 314D .
igigﬁg;é¥f355534ésse 20422043 2044 2045 2046 2047 2048
- - [2049 _204A__204B__204C__204D 204E_ 204F 205

051 2052 2053 2054 2055 2056 2057 205
205E 2
END-OF-FILE 2061 2062 2063 2064 2065 2066 2067 206
CODE ~——» SFGF SFSF 0000 0000 0000 0000 0000 0000
L 0000 0000 0000 0000 0000 0000 O00VO 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0001 35El
RECORD 2 — [SESE__ 3536 353A 3538
MARKED AS. 53D 353t 353F 3540 3541 3542 3543 3544
DELETED 545 3546 3547 3548 3549 354A 354B 3540

540D 354FE 356F 3550 3551 3552 3553 3554

SFSF S5F5F 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0OUO 0000 0000 0000 0000

0000 ogoo 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0001 3614 -

44 2648 2449 244A 244B 244C 264D D44E]

44F 2450 2451 2452 2453 2454 2455 2456| -
RECORD3 __ BF5F 2458 2459 _245A 2458 _245C 2650 _245E
MARKED AS 45F 2460 2461 2462 2463 2464 2465 2466
DELETED Ba67T 2468 2469 246A 246B__246C__ 2460 R46E

SFSF GFS5F 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 00U0 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

000} 3647 -

[B730__373] 3732 3733 3734 3735 3736 3737

3738 3739 J373A 3738 373C 373 373€ 373F

740 3741 3742 3743 3744 3745 3746 3747

RECORD 4 — > [SESE 3749 _374A 3748 374C_ 374D 3T4E _ 374F|
MARKED AS 37503751 3715 53 3754 37155 37156 3757
DELETED SFS5F SFSF 0000 0000 0000 0000 0000 0000
: 0000 0000 0000 O0OUO 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 - 0000 O00VU 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

Figure B-7. Example of File Records Including Records Marked as Deleted (Sheet 1 of 2)

96768040 A

0001 367A
FILE 284D 2B4E_ 2B4F 2850 26851 2852 2853 2854
RECORDS 2855 2856 2857 2858 2659 285A 2858 285C
FOR 2850 2B5E 285F 2860 2861 2862 2863 2864
2865 2866 2867 2868 2869 286A 2868 __2B6C
FILE M r »{SESE 286E 286F 2870 2871 2872 2873 2874
RECORD 5 SF5F GFGF 0000 0000 0000 0000 0000 0000
MARKED AS 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
DELETED 0000 0000 0000 O0OUL 0000 0000 0000 000U
0000 0000 000U 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000V 0000 0000 0000 0000

0001 36AD
2A50 _2A51 2A52 2A53_ 2A54 2A55 2A56 2AG7]

FILE RECORDS FOR FILE *P
(NO RECORDS DELETED IN THIS FILE)

2A58 2A59 2A5A

2A5B 2A5C 2AS5D 2AS5E 2AS5F

2A60 2A61 2A62 2A63 2A64 2A65 2A66 2a67
2A68 2A69 2A6A 2A6B 2A6C 2A6L 2A6E 2A6F
2AT0 2AT1 2AT2 2AT3 2AT4 2ATS 2AT6 2A77
5F5F 5SFSF 0000 0000 0000 0000 0000 0QUOU
0000 0000 0000 0O0O0 O0OCO 0OCOO0 0000 0OOCGO
0000 0000 o00CO 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 . 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 00OV 0000 0000 oOOCO

Figure B-7. Example of File Records Including Records Marked as Deleted (Sheet 2 of 2)

96768040 A

B-13

KEY INDEX STRUCTURE C

The general method of key index storage is described in Key
Storage, section 1. An indexed file has from one to four
keys. Each key defined for a file has its own key index. All
the key indices for a given file make up that file's key index
structure. For each record stored into an indexed file, a key
information segment (KIS) is stored into the lowest level of
the key index. This KIS points directly to the record. The
KISs in the lowest level are ordered by key value. The
lowest level is called a sequence set for the key. The KISs
in each level of an index are grouped together in key
information blocks (KIBs). Each KIS in an upper level of an
index points to a KIB in the next lowest level. The highest
level of a key index contains only one KIB.

The format of a KIS and the format of a KIB are shown in
the Key Information Block section. Storage within a key
index is discussed in the Storage Within a Key Value section.
Retrieval by key value is discussed in the Retrieval by Key
Value section. Location of the key index structure on mass
memory is discussed in the Key Index Control Parameters
section. An example of a Key index structure is given in the
Key Index Example section.

KEY INDEX CONTROL PARAMETERS

The parameters that control a file's key index structure are
contained in words 9 through 22 of the file's file control
block as defined in the File Control Block Table section.
The ordered pair (TNKEYM,TNKEYL) is the total number of
key information blocks allocated, not the current number of
blocks used. The ordered pair (KEYBAM,KEYBAL) is the
beginning sector address of the key index structure.

KEY INFORMATION BLOCK

A key information block consists of a six-word header
together with a set of KISs. The format of a KIB header is
as follows:

Word Mnemonic Description

1 NUMKIS Number of KISs in this KIB.

~ The ordered pair (NKIBNM,
NKIBNL) is meaningful only
for KIBs in the lowest level of
the key index structure. For
the lowest level, (NKIBNM,
NKIBNL) is a relative KIB
number pointing to the KIB on
this level with the set of key
values following the key values
in this KIB. If (NKIBNM,
NKIBNL) = (0,0), this is the
KIB with the highest key val-
\\ ues stored in the file.

2 NKIBNM <
3 NKIBNL

(" The ordered pair (PKIBNM,
PKIBNL) is the relative KIB
4 PKIBNM number pointing to the KIB in
5 PKIBNL < the next highest level that
contains the KIS pointing to
L this KIB.

96768040 C

6 KIBTYP KIB type
0 Highest level block for
this key

1 Intermediate level block

2 Lowest level block for
this key

The format of each KIS is as follows:
o Key value (left-justified).

© A three-byte relative record number pointing to a
record or a three-byte relative KIB number pointing to
a KIB in the next lowest level of the key index
structure.

If KEYLEN equals key length in bytes, and KISLEN is the
length of a key information segment, then:

_ | KEYLEN
KISLEN = |-—r-—-| +2

Where [y] is the least integer greater than or equal to y.

The length of a key information block is the system
installation parameter, KIBSEC (see the Main-Memory-
Resident File Manager Operation Installation Parameters,
appendix D). Each KIB in the system is KIBSEC sectors
long. The number of KISs that fit into a key information
block is computed as follows. Let VIWPS equal the number
of words per sector for the volume on which the file resides.
Then if KISKIB equals the maximum number of KISs that fit
into a KIB:

KISKIB = LKIBSEC-VIWPS-BJ

Where |y] is the greatest integer less than or equal to y.

STORAGE WITHIN A KEY INDEX

When a new record is stored into an indexed file, a key
information segment (KIS) is stored into a key information
block (KIB) in the sequence set for each key index for the
file. The file manager may have to shift other KISs within a
KIB, so that the KISs remain in order by key value. The KIS
pointing to the KIB is modified if necessary. It may be
necessary to create a new sequence set KIB in which to
store a new KIS. In this case, the original full KIB is split so
that half the existing KISs in the block remain in that KIB
and half are moved to the new KIB. An odd number of KISs
are split so that the new KIB has one fewer KIS than the old
KIB. An exception to the halfway split occurs in the
primary key index for an indexed file for which the user
specified that records would be presented in order by
primary key value. For such a file, only the new KIS is
stored in the new sequence set KIB. A second exception to
the halfway split occurs when a split at the halfway point
would cause KISs for the same key value to be split between
two KIBs. In this case, the KISs for the same key value are
stored into the same KIB if possible. (The second type of

exception is illustrated in figure C-2; see the index for 11
records stored, the index for 13 records stored, and the
index for 16 records stored.) Whenever a new sequence set
KIB is created, a new KIS is stored in the level above the
sequence set to point to the new KIB. Blocks in levels above
the sequence set are split in the same way. When a split
oceurs in the highest level of an index, a new level is
created.

The KIB stored at the start of the key index structure has a
relative KIB number (0,1). The KIB stored immediately
following KIB (0,1) is KIB (0,2), ete. The highest level KIB
for the primary key is always stored in KIB (0,1). If a
secondary key exists for the file, the highest level KIB for
the secondary key is always stored in KIB (0,2). Similarly, if
key 3 exists its highest level KIB is stored in KIB (0,3), and if
key 4 exists its highest level KIB is stored'in KIB (0,4).

Storage within a key index is illustrated in figure C-1. An
example of key index storage is shown in figure C-2. In this
example, KIBSEC equals 1, VIWPS equals 96, and KEYLEN
equals 29 bytes. Therefore:

KISLEN = 2 + P}] =17 g

. 96-6 | _] 90
KISKIB = '_TTJ "[T"_l

= 5 (there are 5 key information segments per
key information block).

Another example of key indices is given in the Key Index
Example section. The secondary key in that example has the
same set of key values as shown in figure C-2. KIBs in the
Key Index Example section split in a different way than
shown in figure C-2 because KIBSEC has a different value in
that section.

RETRIEVAL BY KKEY VALUE

It may be observed from figure C-1 and the example in
figure C-2 that for a key index with n levels, it is
necessary for the file manager to search n key information
blocks to find the pointer to the first record with a given
key value. If there is no record for the specified key value,
the number of searches required to determine this is less

C-2

than or equal to n. If there is a record with a higher key
value, the file manager makes all n searches, as the file
manager is designed to find the next record as ordered by
key value when the specified key value is missing.

KEY INDEX EXAMPLE

A FORTRAN program, KIDR, is included to demonstrate the
key index structure generated on mass memory for a sample
file with two keys. The indexed file EXAMPLE is created by
KIDR (see figure C-3). Program KIDR then stores 16
records into the file. Primary key values for these 16
records are 10016, 200 6’ 300, ., ete. The secondary key
values for the "16 stored " records are shown in
figure C-2; that is, the secondary key values are 6, 16, 10, 7,
and so forth.

After executing the KIDR routine, the file control block
(FCB) for the EXAMPLE file is dumped, as shown in
figure C-4. In general, an FCB is located by examining the
file definition directory on the appropriate volume. In
locating the FCB for file EXAMPLE, it was known that no
file has been deleted since the system was initialized.
Therefore, the index of file EXAMPLE's FCB within the FCB
table is obtained from the main memory volume information
table parameter VICURF. Using the location of the key
index structure in the FCB in figure C-4, the key index
blocks are dumped, as shown in figure C-5. Words 9 and 10
of the FCB indicate the next available key information block
(KIB) is KIB (0,5). This means there are four existing KIBs.
Each KIB is three sectors long, since the value of KIBSEC
for this system is 3. The key index structure for this file is
obtained by dumping

3 sectors _
4 KIBs x —<E- - 12 sectors

starting at the sector address of a key index of 1,708. These
12 sectors are shown in figure C-5. The key index for the
primary key consists of KIB (0,1) and KIB (0,3). The key
index for the secondary key consists of KIB (0,2) and
KIB (0,4).

The location of the EXAMPLE file records is obtained from

the file control block in figure C-4. The file's records are
dumped as shown in figure C-6.

96768040 B

r)
HEADER| KIS | KIS KIS
KIB - KIB KIB
— ' =) z =
) HEADER|KIS [KIS| @ o @ HEADER| KIS { KIS ¢ o o HEADER KIS
/ KIB KIB KIB
~ la [2 A 7 A N\ oy "4 %
o HEADER |KIS | KIS HEADER] KIS |KIS e o e I|HEADER|KIS KIS
[] L] L]
/ KIB KIB %
= — - D "
N HEADER KIS | KIS —» HEADER| KIS | KIS —e o eop{HEADER|KIS KIS
V FILE . FILE
RECORD FILE RECORD RECORD
r s e — 2} ’
~
FIRST RECORD (BY SECOND RECORD AS LAST RECORD AS
STORAGE ORDER) OF ORDERED BY KEY VALUE ORDERED BY KEY:VALUE
THE RECORDS WITH AND WITHIN KEY VALUE AND WITHIN KEY VALUE
~ LOWEST KEY VALUE BY STORAGE ORDER BY STORAGE ORDER

~

96768040 A

Figure C-1. Key Index Storage

LEVELn

LEVEL
n-1

LEVEL
n-2

LEVEL 1

C-3

C-4

THE FOLLOWING NOTATION REPRESENTS A KIB:

{Bi [n1]n2ing | nglns|

WHERE: (0,1) IS THE RELATIVE KIB
NUMBER AS NUMBERED
WITHIN KIBs FOR THIS
KEY.
hy IS THE HEADER.

ny, Dy, ng, 04, ng ARE KISs WITH KEY VALUES
OF ni, n2, ng, n4, ns,
RESPECTIVELY.

THE FOLLOWING NOTATION REPRESENTS A FILE
RECORD:

=]

WHERE: (0,r) IS THE RELATIVE RECORD NUMBER OF
THE RECORD.

Relative Record
Number (0,r)

Key Value (n)

0.1
0,2)
(0,3)
{(0,4)
(0, 5)
(0, 6)
0.7
(0, 8)
(0,9
(0, 10)
(0,11)
(0,12
(0,13)
(0, 14)
(0, 15)
(0, 16)

[~
[~ -]

CODRODOND IO 3O

- PFigure C-2. Example of Key Index Storage (Sheet 1 of 5)

96768040 A

NUMBER OF
RECORDS
STORED KEY INDEX
{hif 6 | | |]| iEvEL2
1
o6 | | | | LEVEL1
[ma]26]] LEVEL2
2 :
ha[6] 1 LEVEL 1
[b1] 16] .] LEVEL2
3 d
2|6 LEVEL 1
[naf 16}] LEVEL2
4
[pef6]7]10[16]] LEVEL1

Figure C-2. Example of Key Index Storage (Sheet 2 of 5)

96768040 A C~5

NUMBER OF

" RECORDS
STORED KEY INDEX
|h1| 16| . | LEVEL 2
5
(o 56 7] 10[18 - LEVEL 1
SRR
[ha] 7J26]] LEVEL 2
6 h3| 5[6 |7 h] 8 T10[16] LEVEL 1
gim AeTs
[ha] 7116 1 LEVEL 2
7
h3|5]6]6]7 BE llol 16| LEVEL 1
it cicith
[na] 7 16} | LEVEL 2
8
hg|5|6|6]7]7 [hzl s|10|16 LEVEL 1
e G)
Figure C-2. Example of Key Index Storage (Sheet 3 of 5)
C-6

96768040 A

NUMBER OF

RECORDS
STORED KEY INDEX
® [] ®
® ® []
o ® []
LEVEL 2
10 Lhzl 8 |1o|1o]15l1e| LEVEL 1
Iﬂ/EIEIEi_I
forf 7 Jrofrs] | | LEVEL 2
11 6161717 |h4| 8 l 9 |10|10| | Eglmuel | | | LEVEL 1
-/ Eﬁ‘ Ao Y
[] []
L []
] []
LEVEL 2
13 hg 5[6| [7]7] [na]8fs]o]o] | [bs[rofro] |] fn2]isfte] | | | rEVELL
Figure C-2. Example of Key Index Storage (Sheet 4 of 5)
96768040 A

C-7

NUMBER OF

RECORDS
STORED KEY INDEX
LEVEL 2
M (71 {1 Tn2f1s[e] T] LEVEL 1
g dh &g
. []
L4 []
L4 .
LEVEL 3
16 LEVEL 2
i 5|6|6|6|—|P‘3|7| (haf8fe] | LEVEL1

E N L F R F A

Figure C-3. Example of Key Index Storage (Sheet 5 of 5)

C-8 . 96768040 A

PROGRAM KIDR
KEY INDEX DEMONSTRATION ROUTINE
PURPOSE OF THIS PROGRAM IS TO CREATE AN INDEXED FILE AND
STORE 16 RECORDS IN FILE.
KEY VALUES FOR PRIMARY KEY ARE $100,%200+33000ETC,
KEY VALUES FOR KEY 2 CORRESPOND TO KEY VALUES IN EXAMPLE
IN FIGURE C=2,
RECORD. FORMAT
WORD CONTENTS
1 LEFT BYTE OF WURD 1 IS UNUSED
1=-15 KEY 2 (KEY 2 STARTS IN RIGHT BYTE OF WORD 1)
le KEY 1
RESERVE SPACE FOR FILE REWUEST BUFFER AND FILE INFORMATION BUFFER
INTEGER REQBUF (24)
DIMENSION IDATA(24)+I0DATA(15)
SET FILE NAME = EXAMPLE
SET FILE OWNER= 49504
VOLUME IS SYSvOL
SET RECORD. LENGTH = 32 BYTES (16 WORDS)
SET MAXIMUM NUMBER RECORDS TO 500,
SET FILE TYPE INDEXED wITH RECORDS PRESENTED IN ORDER WITH RESPECT
TO PRIMARY KEYes RECORDS NOT SECTOR=~ALIGNED,
PRIMARY KEY IS STORED IN BYTES 31-32
SECONDARY KEY IS STORED IN BYTES 2-30
DATA IDATA /'EXAMPLE 49504 SYSVOL '93290950095400192931929920
1 4nQ/
DATA IODATA /'EXAMPLE 49504 SYSVOL *90el00/
DIMENSION KEYVL2(16)
DATA KEYVL2 /6316910979598 969T7910915199899969999/
INTEGER RECBUF (18) ‘
DATA RECBUF /18#0/¢ KEY1l/0/
C INITIALIZE STATUS INDICATORS
DATA ISTAT»IOSTAT»IWSTATICSTAT/4%0/
C CREATE INDEXED FILE
CALL CREATE (REQBUFsIDATA9ISTAT)
IF (ISTAT.NE.O) GO TO 9000
C INITIALIZE REQUEST. BUFFER
00 20 I= 1.24
20 REQBUF(1)=0
CALL OPENFL (REQBUF¢IODATA+IOSTAT)
IF (IOSTAT.LT.0) GU TO 9000
C STORE 16 INDEXED RECORDS INTO FILE
D0 1000 IND=1s16
C PRIMARY KEY VALUE = RECORD NUMBER # $]100
KEYl = KEYl + $0100
RECBUF (16) = KEY1
C PICK UP SECONDARY KEY VALUE FROM KEYVLZ ARRAY,
RECBUF (15)= KEYVL2(IND)
CALL WRITER (REWBUFsRECBUFKEY1yIWSTAT)
IF (INSTAT.LT.0) GO TO 9000
1000 CONTINUE
CALL CLOSFL (REQBUF,ICSTAT)
IF (ICSTAT.LT.0) GO TO 9000
GO TO 9090
C PRINT ERROR INFORMATION AND EXIT,.
9000 CONTINUE
WRITE (12¢7000) ISTATsIOSTATeIWSTATsICSTATIKEY1sREQBUF
GO TO 9095
9090 WRITE (12+7070)
C DEMONSTRATION ROUTINE COMPLETE
9095 CONTINUE
CALL PGMOUT
7000 FORMAT (SXeTHISTAT =4%44/
SXeTHIOSTAT=9%49/
SXeTHIWSTAT=984y/
SXeTHICSTAT=9%49/
SXeTHKEY]1 =¢349/THREQBUF=9%4¢/23(5X9%549/))
7070 FORMAT (SX"SIXTEEN INDEXED RECORDS STORED®)
END

OO0OOO00O0O0OOOO0

[sNeNeRoNoNoNae NN}

£ W -

Figure C-3. Key Index Demonstration Routine (FORTRAN)

96768040 A

KIB HEADER;

0000
0010
0000
001D
4558
0020
0000
0000
0000
0000
0000
0000
0000

INDICATES 1 KIS IN

THIS KIB

C-10

SECTOR ADDRESS OF FIRST RECORD = (1, 3D00)

SECTOR ADDRESS OF
KEY INDEX = (1, 3D54)

INDICATES HIGHEST LEVEL BLOCK FOR THIS KEY

>

7172

0000 O1F4 0000 0010

0005 0000 0054 0002 001F

0002 0000 O0OLO 0000 0000 0000 0150

414D S04C 4520 36439 3530 3420 2020

0000 0000 0000 0000 0000 0000 0000

0000 0000 00OOCO 0000 0000 0000 0000

0000 0000 0000 O00VU0 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 00VU0 0000

0000 0000 OOuO 0000 0000 0000 0000

0000 0000 0000 0000 000¢ 0000 0000

0000 0000 0000 0000 0000 0000 0000

- Figure C-4. Example of FCB for Indexed File

0001 3D54
o001 00000000 __00U0__0000_ 0000] 1000 0000}
{0003) 0000 0000 oOOUU 0000 0000 G000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 000V 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 O0OuLU 0000 0000 0000 0000
0000 0000 0000 00UV 0000 000U 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 00UV 0000 0000 0000 0000
0001 3D55
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 G000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0LVOO 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0UO0 0000 0000
0000 0000 0000 00u0 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0O0U0 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0001 3056 :
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000U 0000 0OVUO 0000 0000
0000 0000 0000 000U 0000 0000 0000 0000
0000 0000 0000 0O0VO 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000L 0000 0000 0OUO 0000
0000 0000 0000 O0OUU 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 00U0O 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

LEVEL 1, PRIMARY KEY

Figure C-5. Example of Key Index Blocks (Sheet 1 of 4)

KIS WITH KEY VALUE =

100016; POINTER TO KIB

IN NEXT LOWEST LEVEL
=0,3)

KIB (0, 1)

96768040 A

KIB HEADER; FIRST —p

WORD INDICATES 1

KIS IN THIS KIB; WORD

6 INDICATES HIGHEST
LEVEL FOR THIS KEY,

96768040 A

0001 3057

0001 0000 0000 0000 0000 0000] 0000 00007
0000 0000 0000 0000 0O0UO 0U00 w0OUO 00
0000 0000 0000 0000 1000 0000 0004] 0000
0000 0000 000C O00VUO 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 QOUO 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 000C 0000 OOOUL. 0000
0000 0000 0000 0000 0000 0000 00OOO 0000
0000 0000 0000 0000 0000 0000 0000 o0O00O
0000 0000 0000 O0OOL 0000 0000 0000 O0OOCO
0001 3058

0000 0000 0000 00VU0 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000vu . 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 OO0OC 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 Q000 0000
0000 0000 0000 0000 0000 0000 0000 O0O0UVLO
0000 0000 0000 0000 0000 0QUOO 0000 0000
0000 0000 0000 0000 0000 0000 000U 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0001 3D59

0000 0000 0000 0OUO 0000 0000 0000 o0O0VO
0000 0000 OOOU 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0OVUO 0000
0000 0000 0000 0OUL 0000 0000 00OC 0000
0000 0000 0000 0000 0000 0000 000U o0000
0000 0000 0000 O0OCL 0000 00600 0000 0000
00u0 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000u 0000 0000 0000 0000
0000 0000 0000 OOUVO 0000 0000 O00OVO 00UVLO
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 OOOOJ

f NOTE THAT KEY VALUE IS LEFT JUSTIFIED IN KIS

LEVEL 1, SECONDARY KEY

KIS WITH KEY VALUE

=16 (=1016)T; POINTER
TO KIB IN NEXT LOWEST
LEVEL = (0, 4)

> KIB (0, 2)

Figure C-5. Example of Key Index Blocks (Sheet 2 of 4)

Cc-11

0001 3D5A
KIB HEADER; FIRST —¥[010 0000 0000 0000 0001 0002] 0100 0000 KIS WITH KEY VALUE
WORD INDICATES 16 KiSs - [§001] 0200 0000 0002] 0300 0000 0003 | 0600 =100. . RELATIVE
IN THIS KIB; WORDS 4 AND [0000 0004 | 0500 0000 0005] 0600 0000 0006 16’
5 INDICATE KIS IN KIB 0700 0000 0007 | 0800 0000 00081 0900 0000 RECORD NUMBER
(0, 1) POINTS TO THIS KIB; [0002 | UA00 0000 000A [0800 0000 000B] 0C00 POINTER = (0, 1)
’ 5% 10000 | 000C | 0000 0000 000D] OEO0 _ 0000 ooo;:_J
WORD 6 INDICATES THIS _,[0F00__0000__000F | 1000__0000 0010] 0000 0000
IS LOWEST LEVEL OF 0000 0000 0000 0000 0000 0000 0000 0000
THIS KEY. 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
KIS WITH KEY VALUE 0000 0000 0000 0000 0000 0000 0000 0000
= F0016, RELATIVE 0001 3D58
RECORD NUMBER 0000 0000 0000 0000 oogo 0000 0000 0000
_ 0000 0000 0000 0000 0000 0000 0000 0000
POINTER = (0, F, o) 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000U 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 > KIB (0.3
0000 0000 0000 0000 0000 0000 0000 0000 0,3)
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0001 305C
0000 0000 0000 0009 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0GOU 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000U 0000 0000 Q000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 - 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

LEVEL 2 (LOWEST LEVEL), PRIMARY KEY

Figure C-5. Example of Key Index Blocks (Sheet 3 of 4)

C-12

96768040 A

0001 3D5D
KIB HEADER —»{00]10 0000 0000 0000 0002 0002] 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
KIS WITH KEY VALUE 5, =—®10,,,0 0000 0000 0000 0500 0000 0005 [0000
RELATIVE RECORD NUM- 0000 0000 0000 0000 0000 0000 0000 0000
BER POINTER = (0, 5) 0000 0000 0000 0000 0000 0600 0000 0001
0000 0000 0000 OOUU OOLO 0000 0000 . 0000
0000 000U 0000 0000 0600 0000
0007 | 0000 0000 0000 0000 0000 0000 0000
G000 0000 0000 OOUU 0000 0000 0000 0600
0000 000E | 0000 000U 000G 0000 0000 0000
0000 G000 0000 _0000 0000 0000 0000 0000
0700 0000 0004 0000_ 0000 0000 0000 0000
0001 305 __ ___ " T T T T T T
+ —»foooo 0000 0000 0000 _0000 0000 0000 0000
0000 0700 0000 0008 0000 0000 0000 0000
0000 0000 0000 000U 0000 0000 0000 0000
0000 0000 0800 0000 0006 [0000 0000 O00VO0
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0800 0000 000C [0000 0000C
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0900 0000 0008 [0000
0000 0000 0000 0000 0000 0000 0000 000C
000 0000 0000 0000 0000 0900 0000 000D
0000 0000 0000 0000 0000 0000 0000 0000
T 0000__0000_ 0000 0000 0000 0000 0900 0000
0001 _3DSF
+ —»{000F] 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0900
0000 0010 [0000 0000 000G 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0A00 0000 0003[0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 UA0O0 0000 0009 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 OF00 0000 000A JOO0O0 0OUO0 0000
KIS WITH KEY VALUE —»|0000 0000 0000 0000 0000 0VO0D 0000 0000
=16 (= 10,), RELATIVE 0000 0000 0000 1000 000U 0002({ 0000 0000
16 0000 0000 0000 O00U0 0000 0000 0000 0000 J

RECORD NUMBER POINTER
=0,2)

LEVEL 2 (LOWEST LEVEL), SECONDARY KEY

T DASHED LINES INDICATE A SECTOR BOUNDARY WITHIN A KIS

Figure C-5. Example of Key Index Blocks (Sheet 4 of 4)

96768040 A

> KIB (0, 4)

RECORD 1; PRIMARY KEY

0001 3000
VALUE = 100, ; SECONDARY [5900 0000 0000 0000 0000 0000 0000 000
KEY VALUE = 6 000 0000 0000 0000 0000 0000 0006 {0
RECORD 2 000 0000 0000 0000 0000 0000 0000 0000
000 0000 0000 0000 0000 0000 0010 0200

RECORD 3

RECORD 16 PRIMARY 0000

KEY VALUE = 1000, ,

SECONDARY KEY VALUE
=9,

000 0000 0000 0000 0OOUO 0000 0000 0000
000 0000 0000 0000 0000 0000 000A 0300
000 0000 0000 0000 0000 0000 0000 000
0000 0000 0000 0000 0000 0000 0007 040
0000 0000 0000 0000 000U 0000 0000 000
000 0000 0000 0000 0000 0000 0005 050
[0000 0000 0000 0000 0000 000U 0000 0000
0000 __0000__0000__00U0__0000__0U000__0008__ 0600
0001 3p01
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0006 0700
0000 0000 0000 0000 0000 0000 0000 - 0000
0000 0000 0000 0000 0000 0000 0007 0800
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 O00VA 0900
0000 0000 0000 000U 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 O000F 0A00
0000 0000 0000 0OUO 0000 0000 0UO0 0000
0000 0000 0000 0000 0000 0000 0009 0BOU
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 00VO 0000 0000 0008 0CO0
0001 3002
0000 0000 0000 0000 0000 000G 0000 0000
0000 0000 0000 0000 0000 0000 0009 0DOO
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0006 OEO00
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0O0VO 0000 0009 OF00
0000 0000 0000 0000 0000 0000 0600
0000 0000 0000 0000 0000 0000 0009 [)Y000]
5FS5F__SFSF | 3030 3030 3030 3030 3330 3720
20204 2020 2020 2020 2020 2020 2020 2020
2020 | 2020 2020 2020 2020 2020 2020 2020
2020 | 2020 2020 2020 2020 2020 2020 2020

END-OF-FILE CODE

Figure C-6. Example of Indexed File Records

96768040 A

FILE MANAGER OPERATVION PARAMETERS AND
MAIN-MEMORY-RESIDENT TABLES

The file manager requires a set of parameter values and
main memory tables that are initialized at the time of
system installation and are dependent on the particular
installation. These parameter values and tables are con-
tained in the file manager portion of SYSDAT. This
appendix describes these parameters and tables. Further
information on the determination of the initial parameter
values may be found in the MSOS ordering bulletin.

MAIN-MEMORY-RESIDENT FILE MANAGER
OPERATION INSTALLATION PARADMETERS

The following installation parameters affect the operation
of the file manager. Each is an entry point in the file
manager area of SYSDAT, evaluated by an equate. Values
of these parameters vary from one system to another.

Mnemonic Description

FMRDEL Record-deleted code, used by the file
manager to mark deleted records. This is
usually an infrequently used ASCII code;
for example, (5E5E16).

NOTE
Users must define their record
formats so that the value of
FMRDEL can never occur as a
data value for the first word of a
record.

FMEOFC End-of-file code. The file manager stores
the value of FMEOFC into the first word
and into the second word of the space
where the next new record would be
stored in a file. The value of FMEOFC
must be different from the value of
FMRDEL. Usually an infrequently used
ASCII code; for example, (5F5F16) is
used as the value of FMRDEL.

NOTE
Users must define their record
formats so that the value of
FMEOFC can never ocecur as a
data value in the first two words
of a record.

FMMOSU Maximum number of open sequential files
permitted a single file manager user

FMMOIU Maximum number of open indexed files
permitted a single file manager user

FMNRCD Maximum number of new records that

may be stored into a file before the file
manager automatically updates the file
control block on mass memory to reflect
the new number of records in the file

96768040 B

KIBSEC

Length of a key information block in
sectors

ANOFPU Maximum average number of open files
per user

NTSUSR Maximum number of simultaneous users of
file manager

MAXCOP Maximum number of concurrent open files
in the system

ANRLPU Average number of record locks per user

USER CONTROL TABLE

The user control table (UCT) consists of a six-word entry for
each file access permit currently in effect. Each access
permit corresponds to a user-file combination. If a given
user has n files open, there are n entries in the UCT for
that user. If a given file is currently open to q users, there
are q entries in the UCT for that file. Entries in the UCT
are not ordered. The maximum number of entries in the
UCT is the value of MAXCOP (see the Main-Memory-
Resident File Manager Operation Installation Procedures

" section). The address of the UCT is UCTABL within the file

manager area of SYSDAT (see figure D-1). When an open
file request is made and an entry space is needed in the
UCT, the file manager selects the first entry space with a
zero-value first word. If no entry space is available in the
UCT, the OPENFL request is rejected. When a file is closed
to a user, the corresponding UCT entry is cleared. The
format of each UCT entry is shown in figure D-1.

The user identifier in word 1 of a UCT entry is one of the
following:

o A unique user identification code assigned to the user
by the ITOS executive at the time an open file request
was intercepted by the ITOS executive.

@ The address of the user's request buffer.

The latter definition of user identifier is used whenever an
open file request is not intercepted by the ITOS executive.

The file identifier in word 2 of a UCT entry is defined in
figure D-1. The file manager unit number in bits 11 through
14 is not the system logical unit number. It is an index into
the file manager volume information table, where the first
volume entry in the table has the index value 1. For further
information, see the Main-Memory-Resident File Control
Block Tables section.

MAIN-MEMORY-RESIDENT FILE
CONTROL BLOCK TABLES

File control block format is given in the File Control Block

Table, appendix B. As noted in appendix B, a certain portion
of a file's file control block (FCB) must reside in main

@ USER CONTROL TABLE
#*
@ THE USER CONTROL TABLE (UCT) KEEPS AN UP=TO=UATE RECUKD UF
o WHICH FILES AKE OPEN BY WHICH USERS. THE UCT CONTAINS
@ MAXCOP 6-WORD USER/OPEN FILE ENTRIES. A 6=#ORD ENTRY CON=
. TAINS THE FOLLOWING INFORMATION.
-]
J WORD 1 USER IDENTIFIER
o WORD 2 PSEUDO FILE IDENTIFIER
. BIT 15 PSEUDO LOCK FLAG
@ =1y FILE USEKS LOCKED OUT. MAIN
o MEMORY IS SWAPPED. SWAPPED
o AREA INCLUDES FCH INFORMATION
o FOR THIS FILEs ANU THEKE IS
. INSUFFICIENT SPACE TO DUPLICATE
® THIS INFURMATION IN UNSWAPPEL
. AREA,
“ =0y *NO KEASON TO LOCK OUT USERS DUE
» TO MAIN MEMORY SWAF,
. BITS l4=11 FILE MANAGER LOGICAL UNIT NUMBEK
o BITS 10-00 INDEX OF FCB IN FCB TABLE
® WORD 3 FCB CORE ADDRESS
o WORD & FILE SPACE LIMITS TABLE ENTRY ADDRESSy 0 IF NONE
o WORD 5 FCB SUBSET ADDRESS ,
» WORD 6 CONTROL POINT OF USER (CAN BE CHANGED)
L
ENT MAXCOP MAX NO. OF CONCURRENT OFENS PERMITTED
EQU MAXCOP (ANOFPU®NTSUSR)
*
ENT UCTLEN
EQU UCTLEN(MAXCOP®6) LENGTH OF UCT
»
ENT UCTABL ucT
UCTABL BZS UCTABL (UCTLEN)

Figure D-1. User Control Table

memory when the file is open to a user. The specific portion
of the FCB required in main memory depends on whether the
file is sequential or indexed. The required FCB words for
each type of file are specified in File Control Block Table,
appendix B. Usually required FCB words reside in main
memory outside user space. There is a provision for user-
space-resident FCB portions, however. This is described in
appendix L. For FCBs not stored in user space, two tables
exist in the FMTABL portion of SYSDAT to contain required
portions of FCBs. One table is for sequential files, and one
is for indexed files (see figure D-2).

FCBs in these tables are not ordered. When a new table
entry is needed, the file manager uses the first entry with a
zero first word. No duplicates occur in these tables; that is,
if a file is open to more than one user, its FCB appears only
once in the tables.

If two or more users have opened a given file and each user
has provided for FCB storage within his own user space, the
set of FCB words that can be modified must be stored in one
commonly used buffer. The FCB words that can be modified
are the five-word header together with words 6 through 10
of the FCB (see File Control Block Table, appendix B).
These words are referred to as the file's shared subset.
When necessary, the file manager stores a file's shared
subset into the subset control table. A sample subset
control table from the file manager portion of a sample
SYSDAT is shown in figure D-3. There are no duplicates in
this table. Entries are not ordered. An entry in this table is
empty if its first word is zero.

A file manager user may elect to store FCB words for an
open file within his own user space as deseribed in
appendix L. When such a file manager user is swapped out,

the system executive causes an entry to be stored into the
subset control table to enable another user to open the file
while the original file user is swapped out. If an entry
already exists in the subset control table for this file, or if
the necessary FCB words already reside in a file manager
FCB table, the entry is not made. If no empty entry space is
available, a pseudo file lock bit is set to prevent another
user from opening the file while the original user is swapped
out. (See figure D-1, word 2 description.)

MASS MEMORY UNITS TABLE;
VOLUME INFORMATION TABLES

The mass memory units table is an index to the volume
information tables. A sample mass memory units table and
a sample set of volume information tables are shown in
figure D-4.

FILE SPACE LIMITS TABLE

The file space limits table is used to ensure that all mass
memory requests for a file are made within the boundaries
of the file. A sample file space limits table is shown in
figure D-5. An entry is empty if the first two words are
zero. Entries in this table are not ordered. There are no
duplicate entries.

RECORD LOCK TABLE

The record lock table is used to maintain a record of locked
file records. A sample record lock table is shown in

96768040 A

figure D-6. The value of MAXLOC is a system installation
parameter. Entries in this table are not ordered. A zero
first word indicates an unused entry. When a new entry is
needed, the file manager uses the first entry space with a
zero first word.

PROCESSOR CONTROL TABLES

The request processor control tables are used in queuing and
processing file manager requests. The general method of

EACH FC8 (wITH ITS hEAOER)

LR I B

ENT FiMOSF
EQU FMHMOSF (2#NTSUSR)

EWU FMSLEN(FMMUSF#15)

ENT FMFCES
FMFC2S BLS FMFCBS(FMSLEN)

EACH FCB (wITH ITS HEADER)

LIRSS I NN

ENT FMMOIF
EQU - FMMOIF (2#NTSUSR)

EQU FHOLEN(FMMOIF®2T)
*

ENT FMFCBI
FMFCBY BZS FMFCBI(FMOLEN)

INDEXED FCA TAALE
INDEXED FCA TABLE

request queuing is deseribed in Reentrant Request
Processors; Serial Request Processors, section 1. There is
one processor control table that queues all serial requests.
In addition, there is one processor control table to queue
reentrant requests for each volume in the system used by
the file manager. For example, a system with file space on
two volumes would require a total of three processor control
tables; a system with file space on three volumes would
require a total of four processor control tables, etc. Sample
processor control tables for a system with file space on two
volumes is shown in figure D-7.

SEQUENTIAL FILE COUNTROL HLOCK TAKLE

THRIS TARLE IS USEU FUK STUKAGE OF Trk FCheS OF OPEntu
SEQUENTIAL FILES FOR WHICH A USER SPACL FCh HUFFEK WAS

NOT PRUVIDED BY THE USER whEN THE FILE wAS OPENED.

THIS TARBLE CONTAINS ROUM FOR FHMMOSF SEGUENTIAL FILE FCBSe.
IS 15 WOKUS LUNG. A FCB SkaCE
IN THE TASLE 1S FREE FOR USE IF ITS FIKST wWURD IS 2ERO,
WORDS 14 AND 15 OF EACH FCh SPACe Akt KEGUIRED BECAUSE OF
THE MANNER IN WHICH FCo SUBSETS ARE MOVED INTO/GUT OF FCBS.

MAX NOo. OF OFEN SEQ. FILE FCd SPACES

LENGTH OF TabLt
SEGUENTIAL FCb TAGLE

SEWUENTIAL FCh TABLE

INDEXED FILE CONTROL RLOCK TARLF

THIS TARLE IS USED FOR STORAGE OF THE FCBeS OF OPENED
INDEXED FILES FOR WHICH A USER SPACE FCB BUFFER WAS NOT
PROVIDED BY THE USER WHEN THE FILE WAS OPENED,.
THIS TABLE CONTAINS ROOM FOR FMMOIF INDEXED FILE FCHS.
IS 27 wORDS LONGs A FCB SPACE
IN THE TABLE IS FREE FOR USE IF ITS FIRST WORD IS ZERQ.

MAX NO. OF OPEN INDEXED FILE FCB SPACES

LENGTH OF TABLL

Figure D-2. Main Memory File Control Block Tables

T 0 R REOCEDCER S

FCB SUBSET CONTROL TABLE

EACH ENTRY IN THE FCB SUHSET CONTROL TABLE (FSCT)
CORRESPONDS TO AN OPEN FILE,
CONTAINS THAT SUBSET OF THE FILE"S FCB WHICH IS SUBJECT
TO CHANGE WHILE A FILE IS OPEN.
AN ENTRY IN THE FSCT IF AND ONLY IF THERE IS NO ENTRY IN
THE FILE MANAGLR MAIN MEMORY FCB TABLES FOR THAT FILE ANV
ONE OR BOTH OF THE FOLLOWING CONDITIONS HOLDS~
(A} THE NECESSARY FCB WORUS FOR THIS FILE ARE CURRENTLY
STORED IN TwO OR MORE USER SPACES,
() THE NECESSARY FCB WORDS ARE STORED IN USEK SPACE
FOR A SWAPPED OUT USER.

THE ENTRY FOR A GIVEN FILE

AN OPEN FILE wILL HAVE

ENT FSCTNE NO. OF FSCT ENTRY SPACES

EQU FSCTYNE (NTSUSR®ANOFPU)

EQU FSCILN(FSCTNE®10) LENGTH OF THE FSCT

.
ENT FCbSCT
FCBSCT BZS FCBSCT(FSCTLN) FSCT

Figure D-3. Sample FCB Subset Control Table

96768040 C

D-3

& % ¢ ¥ & & B

L2

MMLUTB

NUMM__U

#
#

VITOol

vVIT02

D-4

ENT

ADC
ADC
ADC
EqQU

NUM
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ApcC
ADC
ADC
ADC
ADC
ADC
apc
ADC
ADC
ADC
ADC

ADC
ADC

NUM
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

MASS MEMORY LOGICAL UNIT TABLE

THE MASS MEMORY LOGICAL UNIT TABLE IS USED TO DEFINE THE
ADDRESSES OF THE VOLUME INFORMATION TABLES. THE FIRST WORDH
OF THIS TABLE DEFINES THE NUMBER OF VOLUME INFORMATION
TABLES IN THE SYSTEM, EACH VOLUME DEFINED VIA THE VOLUME
INFORMATION TABLE MAY BE USED RY THE FILE MANAGER FOR FILES.

MMLUTR MASS MEMORY LOGICAL UNIT TABLE
NUMMLU NUMBER OF VOLUME INFORMATION TABLES
viTol VOLUME INFORMATION TABLE NO, 1
viTto2 VOLUME INFORMATION TABLF NO. 2

NUMMLU (#=MMLUTB=-1) .

VOLUME INFORMATION TABLE NO. 1

A
@
S
(=3
©

0. VISLUN = SYSTEM LOGICAL UNIT NUMBER

le VINAME = VOLUME NAME = CHARACTERS 1 AND 2
2. susnns — YOLUME NAME = CHARACTERS 3 AND 4
3. veatss = YOLUME NAME = CHARACTERS S AND %
4o vutude ~ YOLUME NAME -~ CHARACTERS 7 AND 8
Se VINMBR = VOLUME NUMBER (2 ASCII CHARS)

6¢ VIBMSM - BEGINNING OF MANAGEABLE SPACE -MSB
7. VIBMSL - BEGINNING OF MANAGEABLE SPACE -LSB
8¢ VIASDM = AVAILABLE SPACE DIRECTORY = MSB

9. VIASDL = AVAILABLE SPACE DIRECTORY - LS8
10. VIASDS - 3 SECTORS IN AVAIL SPACE DIR,

11« VILBAM = LLARGEST BLOCK OF SPACE AVAIL. =MSR
12« VILBAL - LARGEST BLOCK OF SPACE AyAIL, -LSB
6 13. VIWPS = WORDS/SECTOR FOR VOLUME

14. VIFDDM FILE DEFINITION DIRECTORY ADDR=-MSB
15. VIFDDL FILE DEFINITION DIRECTORY ADDR-LSH
16« VIMAXF MAx. NO. OF FILES PERMITTED

17 VICURF = CURRENT NO., OF FILES ON VOLUME

0O 0O DO VO OO0 OO S

18« VINFODB NUMBER OF 3LOCKS IN FILE DEF. DIR.
19. VINXTB NEXT AVAILABLE BLOCK IN F.D.R,

20+ VINOOF - NUMBER OF OPEN FILES ON yOLUME

21. VILBLM — VOLUME LABEL SECTOR - MSB

22. VILBLL - VOLUME LABEL SECTOR — MSB

VOLUME INFORMATION TABLE NO. 2

$800D0 0. VISLUN = SYSTEM LOGICAL UNIT NUMBER

0 le VINAME = VOLUME NAME = CHARACTERS 1 AND 2

0 20 ##adoe ~ YOLUME NAME = CHARACTERS 3 AND 4

0 3, voveve -~ VOLUME NAME - CHARACTERS 5 AND 6

0 4o wossas — YO UME NAME — CHARACTERS 7 AND 8

0 5. VINMBR = VOLUME NUMBER (2 ASCII CHARS)

0 6e VIBMSM = BEGINNING OF MANAGEABLE SPACE -MSB
0 Te VIBMSL = BEGINNING OF MANAGEABLE SPACE -LSH
0 8+ VIASDM = AVAILABLE SPACE DIRECTORY =~ MSB

0 9¢ VIASDL = AVAILABLE SPACE DIRECTORY = LSB

0 10 VIASDS = 8 SECTORS IN AVAIL SPACE DIR,

0 11s VILBAM = LARGEST BLOCK OF SPACE AvAIL. -MSB
0 12+ VILBAL = LARGEST BLOCK OF SPACE AVAIL., -LSB
96 13, VIWPS = WORDS/SECTOR FOR VOLUME

0 l4o VIFDDM - FILE DEFINITION DIRECTORY ADDR-MSB
0 15, VIFDDL = FILE DEFINITION DIRECTORY ADDR-LSB
0 16« VIMAXF - MAX. NO. OF FILES PERMITTED

0 17« VICURF = CURRENT NO. OF FILES ON VOLUME

0 18, VINFDB -~ NUMBER OF BLOCKS IN FILE DEF. DIR.
0 19. VINXTB = NEXT AVAILABLE BLOCK IN F.D.R.

0 20, VINOOF - NUMBER OF OPEN FILES ON VOLUME

Figure D-4. Sample Mass Memory Unit Table and Volume Information Tables

96768040 B

96768040 A

*
*
*
-3
L
*
*
*
»
*
*
*
*
ENT
ENT
EQU
eau
*
FSLIMT BZS
EQu
»
»
“
«
»
[]
L]
«
#*
*
<
L
*
L]
L]
ENT
EQU
L]
EQuU
L]
ENT
LRTABL BZS
[]
ENT
NRERLE NUM

FILE SPACE LIMITS TABLE

THIS TABLE MAINTAINS A RECORD OF THE BEGINNING WORD ADDRESS
AND ENDING WORD ADDRESS +] FOR EACH OPEN FILE THAT HAS 1ITS
FCB IN USER SPACE. THIS TAHBLE HAS MAXFSL#4 WORD ENTRY
SPACES. EACH FOUR WORD ENTRY SPACE HAS THE FOLLUWING INFOR~-
MATION WHEN IN USE:

WORD 1 START WORD ADDRESSs MSB
WORD 2 START WORD ADDRESS» LSB
WORD 3 ENDING WORD ADDRESS + 1y MSB
WORD 4 ENUDING WORD ADDRESS + 1l LSB

FSLIMT FILE SPACE LIMITS TABLE

FSLEND FILE SPACE LIMITS TABLE ENDING ADDRESS
MAXFSL (NTSUSR®ANOFPU) NUMBER OF ENTRIES

FSLLEN (MAXFSL®#4) LENGTH

FSLIMT (FSLLEN)

FSLEND (#=])

Figure D-5. Sample File Space Limits Table

RECORD LOCK TABLE

THIS TABLE MAINTAINS A RECORD OF THE RECORD LOCKS IN EFFECT,
THIS TABLE HAS MAXLOC S5=WORD ENTRY SPACESs THUS MAXLOC LOCKS
MAY BE IN EFFECT CONCURRENTLY, EACH ENTRY SPACE CONTAINS
THE FOLLOWING FIVE WORDS,.

WORD 1 PSEUDO FILE IDENTIFIER

WORD 2 1ST WORD OF RECORDsS RELATIVE RECORD NUMBER
WORD 3 2ND WORD OF RECORDsS RELATIVE RECORD NUMBER
WORD 4 NUMBER OF LOCKED RECORDS IN SET

WORD 5 USER IDENTIFIER (OF LOCKING USER)

A NON=ZERO 1ST WORD INDICATES THAT AN ENTRY SPACE IS IN USE.

MAXLOC MAX NOas OF CONCURRENT RECORD LOCKS
MAXLOC (NTSUSR®ANRLPU)
LRTLEN(MAXLOC#®#5) TABLE LENGTH

LRTABL LOCKED RECORD TABLE

LRTABL (LRTLEN) LOCKED RECORD TABLE
NRERLE
0 NUMBER OF RESERVED RECORD LOCK ENTRY SPACES

Figure D-6. Sample Record Lock Table

D-6

(IR IR IR AR IR I R R

PCTARL

RPCTO

RPCT1

ENT

ADC
ADC
ADC

EQU

SPC
NUM
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ApC
ADC
SpC
BZS

NUM
ADC
aADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
apc
ADC
ADC
ADC
ApC
ADC
ADC
ADC
ADC
ADC
ADC
BZS

PROCESSOR CONTROL TABLE

THE PROCESSOR CONTROL TABLE IS USED TO DEFINE THE ADDRESSES
OF THE REQUEST PROCESSOR CONTROL TABLESe. THE FIRST WORD OF
THE TABLE CONTAINS THE ADDRESS OF THE TABLE TO BE USED FOR
PROCESSING SERIALLY EXECUTED REQUESTS. THE REMAINING WORDS
CONTAIN THE ADDRESSES OF TABLES TO BE FOR PROCESSING REEN=-
TRANTLY EXECUTABLE REQUESTSs IN FM LOGICAL UNIT NUMBER ORDER

18+ RPMRP3 ~ LOGICAL UNIT FOR I/0

19. RPMRP4 = NUMBER OF WORDS

20+ RPMRPS -~ START CORE ADDRESS

21« RPMRP6 - MASS MEMORY ADDRESS. MSB

22« RPMRP7 = MASS MEMQORY ADDRESSe+ LSB

23+ RPRCPT = CONTROL POINT FOR I/0 REQUESTS

24+ RPRETN = SAVED RETURN ADODRESS
PSC1 (LENSCR) SCRATCH AREA OF RPC TABLE

PCTABL PROCESSOR CONTROL TABLE
RPCTO-1 SERIAL PROCESSING CONTROL TARLE
RPCT1-1 REENTRANT PROCESSING CONTROL TABLEs NO, 1}
RPCT2-1 REENTRANT PROCESSING CONTROL TABLEs NO. 2
LENSCR(20) LENGTH OF SCRATCH AREA OF RPC TABRLE

SERIAL PROCESSING CONTROL TARLE
1
0 le RPLOGU = LU NO« OF MM DEVICE
0 2. RPAREQ = ACTIVE REQUEST FLAGs 0 IF NONE
0 3. RPWAIT = START OF WAITING REQ. QUEUES
0 4¢ RPRLEV = REQUEST PRIORITY LEVEL (CUR REQ)
0 S« RPRBF4 - REQBUF ADDRESS = FIRST FOUR WORDS
0 6. RPLTEA = LOCK TABLE ENTRY ADDRESS (ABSOLUTE)
$5400 7« RPRTNJ = RETURN JUMP TO XQT PROCESSOR
0 5. RPPADR ~ PROCESSOR ADDRESS
0 9« RPFCBA - FCB ADDRESS FOR FILE
] 10. RPRBMP = REQBUF ADDRESS = MAIN PART
)] 11. RPPFP]1 = REQUEST PARAMETER ADDRESSs FIRST+l
0 12, PPPFP2 = REQUEST PARAMETER ADDRESSs FIRST+2
0 13 RPPFP3 = REQUEST PARAMETER ADDRESSs FIRST+3
0 14, RPPFP4 = REQUEST PARAMETER ADDRESSs FIRST+4
0 15. RPMREQ = MONITOR REAUEST CODE WORD
0 16« RPMRP1 ~ COMPLETION ADDRESS
0 17. RPMRP2 = THREAD WORD
0 18¢ RPMRP3 = LOGICAL UNIT FOR I/0
(] 19. RPMRP4 = NUMBER OF WORDS
0 20, RPMRP5 = START CORE ADDRESS
0 21« RPMRP6 = MASS MEMORY ADDRESSs MSB
0 22. RPMRPT -~ MASS MEMORY ADDRESSs LSB
0 23+ RPRCPT = CONTROL POINT FOR I/0 REQUESTS
0 24+ RPRETN = SAVED RETURN ADDRESS
1
RPSCO(LENSCR) SCRATCH AREA OF RPC TABLE

REENTRANT "'PROCESSING CONTROL TABLEs NO. 1
1 le RPLOGU = LU NOe. OF MM DEVICE
0 2e¢ RPAREQ =~ ACTIVE REQUEST FLAGe 0 IF NONE
0 3. RPWAIT = START OF WAITING REQ. QUEUE.
0 4¢ RPRLEV - REQUEST PRIORITY LEVEL (CUR REQ)
0 5. RPRBF4 = REQBUF ADDRESS = FIRST FOUR WORDS
0 6e¢ RPLTEA - LOCK TABLE ENTRY ADDRESS (ABSOLUTE)
$5400 7« RPRTNJ = RETURN JUMP TO XOT PROCESSOR
0 8+ RPPADR = PROCESSOR ADDRESS
0 9. RPFCBA = FCB ADDRESS FOR FILE
0 10. PPRBMP -~ REQRBUF ADDRESS = MAIN PART
0 1le RPPFP1 - REQUEST PARAMETER ADDRESSs FIRST+1
0 12+ RPPFP2 = REQUEST PARAMETER ADDRESSs FIRST+2
0 13. RPPFP3 - REQUEST PARAMETER ADDRESSs FIRST+3
0 14« RPPFP4 = REQUEST PARAMETER ADDRESSs FIRST+4
0 15. RPMREQ = MONITOR REQUEST CODE WORD
0 16+« RPMRP]1 - COMPLETION ADDRESS
0 17. RPMRP2 =~ THREAD WORD
0
0
0
0
0
0
0
R

Figure D-7. Sample Processor Control Tables (Sheet 1 of 2)

96768040 A

96768040 B

RPCT2

ocr

NUM
ApC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
apc
ADC
ADC
ADC
BZS

MM
pec
are
are
|- Ral
are
arg
pre
arc
Bre
ere
arc
are
are
ArC
are
are
are
are
erc
pre
ACC
AN
grr
p7<

REENTRANT

2 1.
0 2e
0 3.
0 4o
0 Se
0 6o
$5400 7.
0 8.
o 9.
0 10.
0 11.
0 12.
0 13.
0 14.
0 15,
0 16.
0 17.
0 18.
0 19.
0 20,
0 2l.
0 220
0 23,
0 24
R

PROCESSING CONTROL TAKLE. NO, 2

RPLOGU
RPAREQ
RPWAIT
RPRLEV
RPRBF 4
RPLTEA
RPRTNJ
RPPADR
RPFCBA
RPRBMP
RPPFP1
RPPFP2
RPPFP3
RPPFP&
RPMREQ
RPMRP]
RPMRP2
RPMRP3
RPMRP4
RPMRPS
RPMRP6
RPMRPT
RPRCPT
RPRETN

LU NO. OF MM DEVICE

ACTIVE REQUEST FLAGs 0 IF NONE
START OF WAITING REQ. QUEUE.
REQUEST PRIORITY LEVEL (CUR REQ)
REQAUF ADDRESS = FIRST FOUR WORDS

LOCK TABLE ENTRY ADDRESS (ABSOLUTE)

RETURN JUMP TO XQT PROCESSOR

PROCESSOR ADDRESS

FCB ADDRESS FOR FILE
REQRUF ADDRESS = MAIN PART
REQUEST PARAMETER ADDRESS
REQUEST PARAMETER ADDRESS»
REQUEST PARAMETER ADDRESS
REQUEST PARAMETER ADDRESS»
MONITOR REQUEST CODE WORD
COMPLETION ADDRESS

THREAD wORD

LOGICAL UNIT FOR I/0
NUMRER OF wORDS

START CORE ADDRESS

MASS MEMORY ADDRESSs MSB
MASS MEMQORY ADDRESSe+ LSB

FIRST+1
FIRSTe+2
FIRST+3
FIRST+4

CONTROL POINT FOR I/0 REQUESTS

SAVED RETURN ADDRESS

PSC2(LENSCR) SCRATCH AREA OF RPC TARLE

RFENTRANT

1.
,l
}.
5.
5.
6.
ey 7.
“.
9.
11.
1.
12.
1.
1,
1=..
16.
17.
18,
19,
’)“’
’1'
»2,
%,
b

1222 7 2 3 452D IW

Q@3O3 3 2:3I32.3 333

PRNACTESSING CONTROL TA3ILE, NO. ?

RPLAGY
RPARTN
RPWATIT
RPILFY
RPANFY
RPLTEA
RPITNY
RPADNR
eprcas
ppogup
RPPFPLY
oP=FP>
RPFEFEY
RPPFIY
RONRFN
RPMRPY
RPMRO?
RPMRPYX
Qpuopy
RpNDPG
RPMPPR
RPMRPY
RPIICPY
RPCFTN

1 4

44 v 90 ¢ 4 0

-
-
-
-
-

-

LU NOo NF UM DEVICE

ACTIVE REAUFST FLAG, @ TF NONE
START OF WATTING Pz, QUEUS,
RZIQUESTY PRIORTITY LEVEL (CUR FF7)
PTQRUF ADCRFSS - FIRST FOUR WCR2CS
LOCK TABLE £NTRY AQCCRESS (ARSCLUTZ
RZYUPN JUMP TO XQT FROCTSSOR

PROCESSOR ADNRESS

FOR ADDRESS FCOR FTLE
REQAUF ANNRESS - MAIN PARY
REAUEST PARAMETER ATDRESS,
PFAQUEST PARAMETER ACDRESS,
PENUEST PAQRAMETEP ADORESS,
REQUFST PARAMETFR AGORESS,
MANITOR RFAUIST CNNE WOPH
COMPLETTON ADCRESS

THREAD WORD

LNOGICAL UNIY FOP I/C
NUMAarR OF weeos

STARPY CORF ANPRESS

MASS WEMQOXY ACCRESS, MS?
MASS MIMORY ADORESS, LSA

FIRST+1
FIRSTe?
FIRST#R
FIRSTey

CONTROL POINTY FOP I/0 RFQUESTS

SAVED RETURMN ADDRESS

ECLI(LENSCP) “CRATCH AREA OF RPL TAALF

Figure D-7. Sample Processor Control Tables (Sheet 2 of 2)

.

VOLUME LABEL DESCRIPTION

The label for a volume is stored in the first sector of the
volume. The entire first sector is reserved for the volume
label although only 34 words are used. These 34 words are
defined as follows (word 1 resides in the first physical word
of the sector):

Word Mnemonic Definition
1 VLFLG1 Volume initialize flag 1
(preset to 1400, .)
16
2 VLFLG2 Volume initialize flag 2
(preset to 0060. .)
16
3 VLNAME Volume name, ASCII charac-
ters 1 and 2
4 Volume name, ASCII char-

acters 3 and 4

5 Volume name, ASCII char-
acters 5 and 6
6 Volume name, ASCII char-
acters 7 and 8
7 VLNMBR Volume number (two ASCII
characters)
8-12 VLSER Volume serial number

(10 ASCII charaecters)

13-16 VLSEC Volume security code
(eight ASCII characters)

17-20 VLDATE Date of volume creation
(eight ASCII charaecters)

21 VLBMS1 Sector address of start of
space to be used by file man-
ager, most significant bits

96768040 A

22

23

24

25

26-27

28

29

30

31

32

33

34

35-96

VLBMS2

VLASDM

VLASDL

VLASDS

VLLBA

VLWPS

VLFDD1

VLFDD2

VLMAXF
VLCURF
VLNFDB

VLNXTB

Sector address of start of
space to be used by file man-
ager, least significant bits

Sector address of available
space directory, most signifi-
cant bits

Sector address of available
space directory least signifi-
cant bits

Number sectors in available
space directory

Sector address of the largest
block of space available
(32-bit number)

Number of words per sector
on this volume

Sector address of the file
definition directory, most
significant bits

Sector address of the file
definition directory, least
significant bits

Maximum number of files per-
mitted for volume

Current number of files
existing on volume

Number of blocks in the file
definition directory

Next block available for
overflow in the file definition
directory

Reserved for future use

STATUS INDICATOR WORD

TABLE F-1. STATUS INDICATOR WORD (istat)

Requestsf
Bit) @ | om| = a | g | 81 8| o olol a
Set| & |E| & a2 2 o0 | =E]1 0| m ml = 2l a| g
< l<m z 1) [i o & <] 2 S5l v | = a 0] o
243 § S| &|2| 5213|8352 |35|&5/8(|3]|3
O loA o O | ja} oD -2 - > [V o &} D a O
0 7 9 25 7 7
1 8 8 8 8 |33
2 10 17 27 51 28 | 28 | 28 | 28
3 18 | 26 53
4 34 | 37 } 37
5 1 141,11, 1 1 1 1 1 1 1 1 1 1 1 1
or |or or or or |or for or or | or { or [Or [oOr {oOr |or
11 11 12 11 11 11 11 11 11 11 11 11 11 11 11
6 38 | 38
7 39 | 39 | 40 | 40 41
8 43
9 13 35 | 44
or
49
10 2 2
11 3 14 47 36 50
12 4 s 15 29 30 | 31
13 5 5 5 19 } 19| 19 21,] 5 5 124 (19 J 19 | 19 |19 {19 |19 | 19
or or or 22, or or | or | or or or
20 § 20} 20 or 23 20 § 20 | 20 | 20 |20 |20
14 6 | 11 11 11 11 1t 11 J11 f11 fj 1t |11 |11 {11 {11 | 11
or or or or | or
16 32 52 45 | 46
15 Request rejected
1tThe numbers listed under each request are the status indication numbers, which are defined in table F-2.

96768040 C

TABLE F-2. STATUS INDICATION NUMBERS

F-2

‘Status Causes
Indieation Request Meaning
Number Rejection

1 X A mass memory error occurred.

2 X The file name/owner string is not unique; that is, there is already a file on this volume with
the name/owner string specified.

3 X There is insufficient space in the specified volume's file definition directory for this file. If
an unused file is present on the volume, it may be deleted to provide additional directory
space. The deleted file must have the same scatter code as the new file if the new file is to
utilize the empty directory entry left by the deleted file (see File Definition Directory,
appendix B).

4 X Insufficient mass memory file space exists on the specified volume for the file's records. If
an unused file exists on the volume, it may be deleted to provide additional file space.

5 X The volume specified for the file is not mounted and ready.

6 X The file request is illegal. This implies one or more of the following has occurred:
® Record length not in the required range
® Maximum number of records not in the required range
® Length of one or more keys not in the required range
® Position of one or more keys not totally within the record
® Missing key specification (primary key not specified but key 2 is specified; key 2 not

specified, but keys 1 and 3 are specified, ete.)
® No keys specified, but indexed file specified

7 X The file is currently open to one or more users.

8 X The file could not be located.

9 X If bit 15 is zero, this file is currently open to another user, but this causes no apparent
problem.

If bit 15 is set, one of the following has occurred:

® TFile request was to open for compression and some other user currently has file open.
(Request may be retried after a delay.)

® File request was to open for record access with file lock and some other user currently
has file open. (Request may be retried after a delay.)

® File is already open to this user.

10 If bit 15 is zero, the file was locked as a part of this OPENFL request. If bit 15 is set, the
file was locked at the time this request was made.

11 X File manager data structures on mass memory or in main memory contain one or more errors.
(Both bit 5 and bit 14 of istat are set when this has ocecurred.)

12 X A mass memory error occurred. This error may have oceurred when the file was previously
open and record recovery was not possible because of the timing of the failure. (Refer to
appendix K.) If the bit 5 error indication is not accompanied by a MASS MEMORY 1/O mes-
sage on the comment device, the error occurred when the file was previously open. In this
case it may be possible to manually restore the file on mass memory by use of ODEBUG.
Otherwise, it is necessary to delete and recreate the file.

13 X This OPENFL request is for record access, not file compression. When the file was last
closed, a compression had been initiated but not completed. This compression must be com-
pleted before the file can be opened for record access.

96768040 A

-

TABLE F-2. STATUS INDICATION NUMBERS (Cont'd)

Status Causes
Indication Request Meaning
Number Rejection

14 X The maximum number of concurrent open files permitted a single user has already been
granted to this user.

15 X The maximum number of open file permits that can be granted to all users in the system has
been obtained. In this case, if bit 11 of istat is zero, the request may be retried after a delay.

16 X Illegal request. This implies one or more of the following has occurred:
® Value of idata(14) is invalid.
® Indexed file and idata(13) exceeds the number of keys for the file.
® Definition of idata(13), idata(14), idata(15) is inconsistent.
® TFile control block storage specified within user area; insufficient number of file control

block words were specified.

17 The file was unlocked by the close file request.

18 A set of locked records was unlocked by the close file request. (These records were initially
locked by the requestor of the close.)

19 X The file request buffer (reqbuf) was altered by the user before this file request.

20 X The file was closed by executive foreced file close due to hardware failure or operator shut-
down of the volume.

21 X The first word of array volnam is nonzero and the specified volume is not mounted and ready.

22 X The first word of array volnam is zero and the file request buffer (regbuf) was altered by the
user before the retrieve file control block request.

23 X The first word of array volnam is zero and the file was closed by executive forced file close
due to hardware failure or operator shutdown of the volume.

24 X The first word of array volnam is nonzero and the drive specified by vlunit already has a
volume enabled.

25 X The file is currently open to another user.

26 X Record locking was indicated when the file was open.

27 X The file is not currently locked by the user.

28 The file is currently locked by this user.

29 X The file control block index is out of range for the specified volume. (This includes the case

: of a file control block index equal to 1 and no files created on the volume.)

30 Insufficient room exists in the file to store all numrec records (see regbuf(15)).

31 X Insufficient room exists in the file to store the record.

32 z The file control block index not a positive integer.

33 X The first word of array volnam is nonzero, and the volnam array does not match the name on
the volume label.

34 X The primary key value is not unique; that is, a record already exists in the file with the
primary key value specified in the request.

35 X The primary key value contained in the record is not the same as that in the keyval array.

36 X There is insufficient room in the key index structure to store the keys. The record was stored,
but it cannot be retrieved by key value.

96768040 B F-3

TABLE F-2. STATUS INDICATION NUMBERS (Cont'd)

Status
Indication
Number

Causes
Request
Rejection

Meaning

37

Retrieval was by relative record number and one or more of the records are marked as
deleted. The contents of the deleted records have been stored in the buffer recbuf. By
testing the first word of each record, the user may determine which records are deleted
records. The first word of a deleted record has the value of the external FMRDEL. (See File
Identification, section 1; Main-Memory-Resident Volume Description Parameters, appendix B;

" and figure 2-10.)

38

Record locking was requested, but the maximum number of record locks in the system are
currently in use. (The request may be retried after a delay.)

39

The record is locked by another user. (The request may be delayed and retried if care is
taken to avoid the situation described in the note in Update Protection, section 1.)

40

Neither the file nor the records to be updated are locked.

41

An end-of-file has been reached. The file should now be closed.

42

End-of-file is reached before the number of records specified could be retrieved. At least
one record was retrieved if bit 15 is zero. End-of-file indication implies an insufficient num-
ber of records in the file to satisfy the conditions specified in reespe array. If retrieval is by
key value, no record in the file has a key value greater than or equal to the key value speci-
fied by the user. If retrieval is by relative record number, there are not enough records in
the file starting at the record number in reespe to retrieve the number records specified in
the OPENFL request. If end-of-file is reached before any records were retrieved, bit 15 is
also set.

43

End-of-file is reached before the number of records specified in the OPENFL request could
be retrieved. At least one record was retrieved if bit 15 is zero.

If end-of-file is reached before any records are retrieved, bit 15 is also set.

44

Record retrieval was by key value. The key value specified, ks’ does not equal kr’ the key
value retrieved.

To test whether or not a record for key value k_ is in the file, it is necessary to test for the
simultaneous setting of bits 8 and 15 as well as” testing for the setting of bit 9. (See status
indication number 42.)

45

The preceding retrieval was by key value and more than one record was retrieved. The num-
ber of records retrieved is governed by the preceding OPENFL request. The OPENFL request
gives an error indication if record locking or file locking is specified for access by key value
and the number of records specified is greater than one. However, the UPDREC request can
be made with no lock indication in the preceding OPENFL request if the file is locked be-
tween the OPENFL request and the UPDREC request. In this case the previous OPENFL
request would give no error indication if the number of records specified exceeds one. It is in

this way that this error indication can be generated.

46

More than one record was retrieved by the retrieval preceding the DELREC call.

47

Insufficient file definition directory space exists for the file's new name. (Renaming the file
does make available the directory entry space previously used for this file, but the new name/
owner string does not hash into that space. Refer to File Definition Directory, appendix B for
further information on the directory.)

48

Neither the file nor the record to be deleted is locked.

49

The relative record number was specified in reespe as (0,0).

50

The file manager is unable to delete one or more of the record's key values from the key
index structure because one or more errors exist in the file's key index strueture.

51

Operation is illegal for indexed files; legal only for sequential files.

52

The file header sector contains an error.

53

New number of records is either greater than the number defined for the file, is zero, is
negative, or is less than the number of records currently stored in the file.

F-4

96768040 C

REENTRANT/SERIAL REQUEST PROCESSORS

TABLE G-1. REENTRANT/SERIAL REQUEST PROCESSORS

File
Request
Mnemonic

Reentrant
Processor

Serial
Processor

Two Distinct Processors: Reentrant Processor
for Access by Relative Record Number; Serial
Processor for Access by Key Value

CREATE
CLEAR
DELETE
OPENFL
CLOSFL
LOKFIL
UNFIL
GETFCB
UPDFCB
RENAME
REDUCE
VOLUSE
PUTS
WRITER
READR
GETS
UPDREC
DELREC
COMFIL

T - B S

E T T

96768040 B

ADDITION OF FILE SPACE TO AN INSTALLED SYSTEM H

If more record space is needed for a given file, a new file
may be created with additional records permitted. Records
from the old file may then be retrieved from the old file and
stored into the new file. The old file may then be deleted.

If the file definition directory for a volume is full, but more
space exists on the volume on which file records could be
stored, the following steps may be taken to increase the
number of files the volume can hold (these steps are an
alternative to rebuilding the system):

1. Save the files on an external medium.

96768040 A

2. Modify the volume label (appendix E). For the system
volume, the utility ODEBUG may be used (refer to the
MSOS Reference Manual). For a nonsystem volume, a
file manager utility INIT can be used (refer to the ITOS
Reference Manual).

3. Restore the files to the volume.

If more file space is needed than is physically available in
the system, more mass storage may be purchased from your
Control Data representative (refer to the MSOS Ordering
Bulletin).

SUMMARY OF FILE MANAGER REQUEST CALLS

—

e ——

—

TABLE I-1. SUMMARY OF FILE MANAGER REQUESTS: MNEMONICS DEFINITIONS, FILE OPEN/CLOSE REQUIREMENTS

File must File must File lock {{e;:(ord
Mnemonic Request Description be open to be closed to 1le loc .0CK or
requestor all users required file I.°°k
required
CREATE Create a file
CLEAR Delete all records
in a file X
DELETE Delete a file X
OPENFL Obtain permission
to access file
(open file)
CLOSFL Relinquish permis-
sion to access file
(close file) X
LOKFIL Prevent other users
from obtaining file
access permits
(lock file) X
UNLFIL Allow other users
to obtain access
permits for previ-
ously locked file
(unlock file) X X
GETFCB Retrieve file con-
trol block t
[upDFCB Update file con-
trol block t
RENAME Modify file name/
owner string X
REDUCE Reduce number of
records in files X
VOLUSE Enable/disable use
of volume
PUTS Store new record(s)
in nonindexed file X
WRITER Store new indexed
record X
READR Retrieve specifie
record(s) X
GETS Retrieve next
record(s) X
UPDREC Update retrieved
record(s) X X
DELREC Delete a record X X
COMFIL Compress a file X X
1’The file must be open only if the file is specified by referencing a request buffer for a particular open file.

96768040 B

TABLE I-2. SUMMARY OF FILE MANAGER REQUEST CALLING LISTS

Mnemonic Calling List i d::zear?:ay Mlg; T:é?);tl‘ze
array
CREATE regbuf,idata,istat 24 -
CLEAR reqbuf,idata,istat - 12 -
DELETE regbuf,idata,istat 12 -
OPENFL regbuf,idata,istat 15 -
CLOSFL regbuf,istat - -
LOKFIL regbuf,istat - -
UNLFIL regbuf,istat) - -
GETFCB regbuf,volnam,index,febbfr,istat - -
UPDFCB regbuf,volnam,index,febbfr,istat - -
RENAME regbuf,idata,newnam,istat 12 -
REDUCE regbuf,idata,istat 14 . -
VOLUSE regbuf,volnam,vlunit,istat - -
PUTS regbuf,recbuf,numrec,istat - base1t+2
WRITER regbuf,recbuf keyval,istat - baself
READR regbuf,recbuf,reespe,istat - basezf
GETS regbuf,recbuf keyval,istat - basezﬁ
UPDREC regbuf,recbuf,istat ' - basezﬁ
DELREC regbuf,recbuf,istat - basezﬂ
COMFIL regbuf,recbuf,istat - basezﬂ +4
TBase is the number of words required for the records accessed. For sector-aligned records, base, must include any
;xélr:lgs;a}ﬁ)words in a sector intersected by an accessed record. (For sector-aligned records, base, is"a multiple of sector
ﬂBase is the number of words required for the records accessed. For sector-aligned records, base, must include any
unuséd words between accessed records, but base2 does not include unused words following the Iagt record accessed.

TABLE I-3. CONSTANT-SIZED ARRAYS

Parameter Number of Words'r
regbuf 24
volnam 4
index 1
febbfr 96
newnam 8
vlunit 1
numrec 1

TCon’stant for all requests using parameter.

96768040 B

.

TABLE [-4. SUMMARY OF idata ARRAY (INITIAL VALUES)

Request Word Definition
All that 1-4 File name
specify idata 5-8 File owner
9-12 Name of volume (idata(9) may initially be 0000, 4 or 2020, & for
CLEAR,DELETE,OPENFL, or RENAME)
(~ 13 Record length in bytes
14, 15 Number of records in file
16 File type
15 I 14 13 8 1 0
Sector- ———*
aligned
records
Records ! indexed
pres%nted th binary data
in order wi
CREATE < respect to
primary key
17 Length of key 1 (bytes)
18 Byte position, key 1
19 Length of key 2 (bytes)
20 Byte position, key 2
21 Length of key 3 (bytes)
22 Byte position, key 3
23 Length of key 4 (bytes)
- 24 Byte position, key 4
a 13 Access options:
15 14 0
| = |
File LRetrieval
compression method
R Retrieval
Value A Method
0 Relative
record no.
OPENFL 4 1 Key 1
2 Key 2
3 Key 3
4 Key 4
Other Invalid
14 Number of records to retrieve or compress per call
(see figure I-5)
15 Lock indicator
0 No locking
>0 Record locking
- <0 File lock
REDUCE 13-14 New number of records in file
96768040 C -3

TABLE I-5. NUMBER OF RECORDS ACCESSED
BY INDIVIDUAL REQUESTS

Number of Records

Request Retrieved or Written

WRITER One
PUTS Number specified in PUTS request
READR One, if access is by key value

Number specified in OPENFL request
otherwise

GETS Number specified in OPENFL request
(must equal 1 if access is by key value and
record loeking or file locking is specified)
COMFIL Number specified in OPENFL request
(must equal 1 for indexed file)

UPDREC | Number of records retrieved by the pre-
ceding READR or GETS request (must
equal 1 if preceding retrieval was by key
value)

DELREC | One

TThis assumes sufficient space for storage and suffi-
cient index structure space if needed.

TABLE I-6. VALUES STORED BY FILE MANAGER AVAILABLE TO USER
ON COMPLETION OF REQUEST

For key value
access only .
Request | reqbut(1s) reout(ie el
keyval recspe
Array Array

PUTS Number of Relative record

records number, first - - -

stored record stored
WRITER Number of Relative record

records number of rec- - ‘ - -

stored ord stored
READR Number of Relative record Left-justified

records number, first - key value of -

retrieved record stored record retrieved
GETS Number of Relative record Left-justified

records number, first key value of _ _

retrieved record retrieved last record

retrieved

CLEAR, Name of volume
DELETE, _ _ _ _ on which file was
OPENFL, found
RENAME,
REDUCE

96768040 B

~

SYSTEM FAILURE AND JOB PROCESSOR ERROR MESSAGES J
RELATED TO IMPROPER USE OF FILE MANAGER

SYSTEM FAILURE

A foreground program that does not run under ITOS control
can cause a system hang if the file manager detects an
illegal overlapping of parameters in a request calling list.
For example, if the record buffer and the request buffer
overlap, this is illegal. When an illegal overlap is detected,
the file manager transfers control to the main-memory-
resident program, SYFAIL. Program SYFAIL saves register
values and hangs on a 18FF16 instruetion.

NOTE

A foreground program that runs in parti-
tioned memory under ITOS control and
contains a parameter overlap error is
aborted by ITOS and does not cause a
system hang.

96768040 A

JOB PROCESSOR ERROR
MESSAGES

Error message JP02 is printed by the job processor on the
system main console when a background program attempts
execution of one of the following:

® A file manager request with parameters in the calling
list that overlap illegally (for example, record buffer
and request buffer overlap).

e A file manager request with a parameter in protected
main memory such that the file manager can store into
that parameter. (For example, a background program
with the request buffer in protected main memory
would result in a JP02 error.)

RECOVERY TECHNIQUES K

L LA AT DA i T

-

_ The following technique is used to prevent loss of new

records at the time of system failure. When a file closed to
all users is initially opened, the file manager modifies the
file's control information on mass memory to refleet the
open state of the file. Each time the file manager writes a

. set of records to mass memory, the file manager stores a

two-word end-of-file code (as defined by FMEOFC; see
Main-Memory-Resident File Manager Operation Installation
Parameters, appendix D) into the next record space fol-
lowing the written records. The current number of records
in a file is periodically updated in the file control infor-
mation on mass memory as new records are added to the
file. Whenever a file is closed to the last of a set of file
users, the file's control information on mass memory is
updated to reflect the current number of records in the file
and to reflect the closed state of the file.

If the system fails while a file is open, the next time the file
is opened for use the file manager detects that the file was
left in an open state. The file's record space is then scanned
for an end-of-file. The scan commences with the first
record space following the space required for the number of
records recorded in the file's file control block (FCB)
(appendix B) on mass memory. The length of the scan is
determined by the system parameter that specifies the
number of new records between periodic FCB updates. If an
end-of-file is found, the ecurrent number of records is
updated in the file control information, thus recovering the
last new records. If the system fails during a transfer of
new records to the file so that no end-of-file can be found
upon the next open of the file, these records cannot be
recovered. The existence of such irrecoverable data is
indicated to the opening user. (See error indication 12,
appendix F.)

A similar procedure provides for the recovery of the key
index structure accompanying an indexed file.

There is also a procedure to prevent loss of records if a

system failure occurs during file compression. File com-
pression is described in Compress File (COMFIL), section 2.

96768040 C

When a file is opened for compression, the file's control
information is modified on mass memory to reflect the
open-for-compression state of the file. As each set of
compressed records is written to mass memory, the number
of records processed and a two-word end-of-file is written
to mass memory in the next record space following the
compressed records. Periodically, the file's control infor-
mation on mass memory is updated to contain the number of
original file records processed and the net number of
compressed records. When the compression is completed,
the file's control information is updated on mass memory to
reflect the new current number of records in the file and to
delete the compression-in-progress status. If the system
fails before completion of the compression, the file manager
detects the previous compression-in-progress state when the
file is next opened.

If the system fails during file compression, file compression
can be resumed when a compression request is made by a
user. The file manager locates the number of records
processed and the end-of-file written within the file's record
space. It uses the number of records processed to resume
the compression process. However, if the system failure
occurs during a transfer of compressed records to the file so
that the end-of-file is not transferred to mass memory,
completion of compression is not possible. The existence of
such irrecoverable data is indicated to the opening user.
(See error indication 12, appendix F.)

The techniques described above are not utilized if the file
was opened for special processing or if the file. If the file is
a binary data file, the file control information on mass
memory is updated on mass memory as each set of one or
more new records is added to the file; thus, if a system
failure occurs while the file is open, no special recovery
techniques are needed to prevent loss of records. If a file is
open for special processing, the file control information on
mass memory is not periodically updated as new records are
added to the file. Further, no special record recovery
techniques are used when a file is first opened for processing
following a system failure that occurred while the file was
open for special processing.

STORAGE OF FILE CONTROL BLOCKS WITHIN USER SPACE

I

As specified in the File Control Block Table, appendix B, a
portion of a file's file control block (FCB) must be main-
memory-resident whenever the file is open. In most systems
that include the file manager, users usually elect to let the
file manager store main memory FCBs in file manager space
as deseribed in Main-Memory-Resident File Control Block
Tables, appendix D. However, in systems including ITOS,
terminal users and background programs may wish to store
FCBs in user space to conserve main memory resources.
FCB words stored in user space are stored in a buffer within
the user's program. To cause FCB words to be stored in user
space, the user must specify this storage when making the
OPENFL request. Instead of initializing the request buffer
in the OPENFL ecalling list to all zeroes as described in Open
File (OPENFL), section 2, the request buffer is initialized as
follows:

words needed by the file manager; that
is, 27 words (including file control block
header) for an indexed file or 15 words
(ineluding FCB header) for a sequential
file.

or
Number of words (not including five-word
header) to be retrieved from the FCB and
stored in the user's FCB buffer if more
than the minimum number of words are
to be stored into buffer. (Buffer must
allow room for 5-word header in addition
to words retrieved from the file control
block.)

NOTE

If word 13 of the request

Request buffer is nonzero but less
Buffer than the minimum number
Word Definition of words required by the file

manager, the OPENFL re-
1-9 All binary zeroes quest is rejected with
bits 14 and 15 of the status
10 Loecation of buffer to contain FCB indicator word set.
header and FCB words
11-12 All binary zeroes 14-24 All binary zeroes
13 Zero, if FCB buffer within user space A FORTRAN example of FCB storage within user space is
is to contain the minimum number of shown in figure L-1.
DTMENSION NBUF (24) ¢NDATA(13)
C FILE N IS INDEXED. RESERVE 22 WORDS FOR FCB,5WORDS FOR FCB HEADER.
INTEGER FCBBFR(27)
DATA NDATA /'FILE N SOWILLIA®s'VOLUME 1's1s141/
DATA NBUF /24%0/
C STORE ABSOLUTE ADDRESS OF FCBBFR INTO REQBUF (10)
C LDA =XFCBBFR
ASSEM $C000+FCBBFR
o STA+ NBUF+9
ASSEM $6400¢ +NBUF(10)
CALL OPENFL (NBUF ¢NDATAZNSTAT)
IF (NSTAT.LT.0) GO TU 9700
Figure L-1. FCB Storage Within User Space (FORTRAN Example)
96768040 C L-1

FILE SPACE MANAGEMENT ' M

Each volume containing file space contains an allocatable
file space directory. The location and maximum size of this
directory are given by words 8 through 10 (VIASDM, VIASDL
and VIASDS) of the volume information table for this
volume. (Refer to Mass Memory Units Table; Volume
Information Tables, appendix D, and figure D-4.) On the
systen volume, the allocatable space directory begins at
MAXSEC+1. On all other volumes, the directory begins
immediately following the volume label.

Each entry in the directory corresponds to a block of
available file space. An entry consists of four words defined
as follows:

Words Contents
1,2 Size of this block of available space

(a 32-bit number)

3,4 First sector of this block
(a 32-bit number)

The value FFFE1 is stored in the word following the last
entry in the direcpory.

The system volume is initialized by the SPACE program. All
other volumes are initialized by the file manager utilities.
At the time of initialization, there is one entry in the
directory.

The maximum number of entries in the directory is
determined at the time of system installation. The
maximum number of entries needed would occur when the
following situation develops:

1. The maximum number of files for this volume have been
defined with a remaining block of available space at the
end of the defined files.

2. Every other file is deleted, leaving an available block of
space between each pair of remaining files. Thus the
maximum number of entries is:

VIMAXF
—_—
The maximum size of the directory in sectors is:
-VIMAXF- tri 4 words 1 sector
pA entries X —gntry. * 96 words
= MZAE-F- X -2%- sectors
= ﬂ%é—)g sectors

96768040 B

This size is stored in VIASDS, word 10, of the volume
information table (see figure D-4). Words 6, 7, 11, and 12 of
the volume information table also refer to the available
space directory (see figure D-4).

File space is allocated by reserving n+l sectors each
time n sectors of file space are needed. The extra sector
is reserved for the header sector that precedes each file.
_The header sector has the following format:

Word Description
1 Header identifier containing the ASCII

characters AL (equal to 41 4C)

2-3 Size of this file in sectors (including
the header sector), a 32-bit number

4-5 Starting sector of this block of allo-
cated space (a pointer to the header
sector), a 32-bit number

6 Year (two ASCII characters)
Time
of file 7 Month (two ASCII characters)
space
alloca-) 8 Day (two ASCII characters)
tion

9 Time (binary representation of the four-
digit decimal 24-hour time in hours and
minutes as retrieved from the SYSDAT
word HORMIN)

10-13 File owner (eight ASCII characters)

Using the information in the header sector for each existing
file, a mass storage accounting program could be written.

Available space is managed as follows. When a file is added,
the first available block of sufficient size is used. The
directory entry for this block of available space is modified
to reduce the number of available sectors in this block by
the number of sectors allocated. This may temporarily
result in an entry in the directory referencing a block of
zero length. When a file is deleted, the number of sectors
released is added to the available space directory either by
inserting a new entry in the directory or by adding the
number of newly released sectors to the number of sectors
in an adjacent available space. At the time of file release,
the available space directory is compressed so that any
entries for zero length blocks are deleted and any entries for
adjacent blocks are combined.

i RS R A O s i L s S i St e SR S 2 s R SO T M iR

Addition of file space H-1

Arrays
constant sized -2
idata I-3

Automatic volume
checking 1-5, 1-8
disabling 1-8

CLEAR
clear file 2-3
CLOSFL
close file 2-6.1, 2-7
COMFIL
compress file 2-26, 2-27
Control block
get file (GETFCB) 2-8, 2-9, 2-10
rename file (RENAME) 2-12, 2-13
update file (UPDFCB) 2-10, 2-12
CREATE
create file 2-1, 2-2, 2-3

DELETE

delete file 2-4
DELREC

delete record 2-25, 2-26
Diminishing file space H-1
Disable volume 1-5, 1-8, 2-13
DISMNT system ordinal 1-8

Enable volume 1-5, 2-13
End-of-file 1-5

Error messages J-1
Expanding file space H-1

File control block
get file (GETFCB) 2-8, 2-9, 2-10
index allocation table B-5
main-memory-resident D-1, D-2
rename file (RENAME) 2-12, 2-13
storage L-1
table B-2, B-4, B-5
update file (UPDFCB) 2-10, 2-12
File definition directory (FDD) B-1, B-2
structure B-3
File identification 1-3
File manager
entry point SYSDAT D-1
error messages J-1
file storage 1-1
functions 1-1
installation parameters D-1
interceptor module 1-4, 1-5
key storage 1-1
locking 1-4
organization of modules 1-1
recovery K-1
request call summary I-1, I-2
support of existing software 1-1
system failure J-1
unlocking 1-4
use of mass memory 1-1

96768040 C

File open/close 1-4
requirements I-1
File request
request buffer 1-3
request types 1-3
status indicator word 1-3, F-1
File space
addition H-1
limits D-3
management M-1
use of mass memory 1-1
File structure
example B-5, B-7
location B-1
File types
indexed 1-2,1-3
sequential 1-1
FMCEPT reentrant interceptor module 1-4
FMENTP nonreentrant interceptor module

GETFCB
get file 2-8, 2-9, 2-10
GETS
retrieve next records 2-18 thru 2-21

idata array I-3

Indexed files 1-2, 1-3
storage C-1, C-2
structure 1-1, C-1

Interceptor modules
nonreentrant 1-4, 1-5
reentrant 1-4

Job processor error messages J-1

Key index
control parameters C-1
example C-2
information block C-1
retrieval C-2
structure 1-1, C-1

Key storage
file index structure 1-1, C-1
limitations 1-5
pyramid of partitions 1-1

Limitations 1-5
LOKFIL
lock file 2-7, 2-8

Main-memory-resident
control block tables D-1, D-2
description parameters B-1
installation parameters D-1
Mass memory
addition H-1
limits D-3
management M-1
space 1-1
volume information table D-3

1-4, 1-5

Index-1

MNTCHK system ordinal 1-5, 1-8
Nonreentrant interceptor module FMENTP 1-4, 1-5

OPENFL
’ open file 2-4, 2-5, 2-6

Processor control tables D-3

PUTS :
: store new records sequentially 2-13, 2-14
Pyramid of partitions 1-1

READR
read specific record 2-16 thru 2-18

Record accessing requests
delete record (DELREC) 2-25, 2-26
individual requests I-4
read specific record (READR) 2-16 thru 2-18
retrieve next records (GETS) 2-18 thru 2-21
store new indexed record (WRITER) 2-15, 2-16

store new records sequentially (PUTS) 2-13, 2-14

store udpated record (UPDREC) 2-21 thru 2-25
Record
deletion code 1-5
lock table D-3
recovery 1-5, K-1
REDUCE
reduce file size 2-12
Reentrant interceptor module FMCEPT 1-4
Reentrant requests 1-5, C-1
Relative record number 1-4
RENAME
rename file 2-12, 2-13
Request calls summary I-1, I-2
Request processor
control tables D-3
reentrant requests 1-4, 1-5, G-1
serial request 1-5, G-1
VOLUSE (enable/disable volume) 1-5

Serial requests 1-5, G-1

Index-2

Sequential files 1-1

Specification requests
clear file (CLEAR) 2-3
close file (CLOSFL) 2-6.1, 2-7
compress file (COMFIL) 2-26, 2-27
create file (CREATE) 2-1 thru 2-3
delete file (DELETE) 2-3, 2-4

enable/disable volume (VOLUSE) 1-5, 1-8, 2-13

lock file (LOKFIL) 2-7, 2-8)

open file (OPENFL) 2-4, 2-5, 2-6

unlock file (UNLFIL) 2-8
Status indicator word 1-3, F-1
System executive close 1-4
System failure J-1
System ordinals

DISMNT 1-8

MNTCHK 1-5, 1-8
System-reserved words

end-of-file 1-5

record deletion code 1-5

UNLFIL
unlock file 2-8
UPDFCB
update file 2-10, 2-12
Update protection 1-4
UPDREC
store updated record 2-21 thru 2-25
User control table D-1

Volume
checking 1-5, 1-8
disabling 1-5, 1-8, 2-13
enabling 1-5, 2-13
information table D-3
labeling 1-5, E-1
VOLUSE
enable/disable volume 1-5, 1-8, 2-13

WRITER
store new indexed record 2-15, 2-16

96768040 C

— — — —— — — — — — — e S enmn o— o — —

— At ——— — — —— — —— — — —

LONG_LINE

_CUuT A

— n S — mp — —— — — —— A ——— — — — — — — —— — —— —

COMMENT SHEET

MANUAL TITLE ___File Manager Version 2 Reference Manual

PUBLICATION NO. __96768040 REVISION _C
FROM NAME:

BUSINESS

ADDRESS:

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed -
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number.

STAPLE

STAPLE

STAPLE

° PERMIT NO. 333

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

FIRST CLASS

LA JOLLA, CA.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MALL

LA JOLLA, CALIFORNIA 92037

STAPLE

CUT ALONG LINE

CORPORATE HEADQUARTERS, P.0.BOX O, MINNEAPOLIS, MINNESOTA 55440 LITHO IN US.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

