39520600

G2 reoraToN

FILE MANAGER
VERSION 1

REFERENCE MANUAL

CONTROL DATA®
MASS STORAGE OPERATING SYSTEM

REAL TIME OPERATING SYSTEM

REVISION RECORD

REVISION DESCRIPTION

A Manual Released.

4/174)

B Glossary and Index added; PSR changes 2762 and 2763 incorporated.

(1/175)

C PSR 3491 incorporated,

(10/75)

D Manual revised for MSOS 5,

(9/76)

Publication No.
39520600

Additional copies of this manual inay be .
obtained from the nearest Control Data
Corporation sales office,

© 1974, 1975, 1976
by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall

La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

New features, as well as changes, deletions, and ad-
ditions to information in this manual are indicated by
bars in the margins or by a dot near the page number

LIST OF EFFECTIVE PAGES

Page

Revision

srct

if the entire page is affected. A bar by the page num-
ber indicates pagination rather than content has
changed.

Cover
Title Page
ii

iii

@ @
O
=

©0

G 80t e e ? L W o W
[e e e
=] 13

Y
NN
N o=

3=-23

DOOoUUODUUDUDUDUOUDUDDUDUUDUDUUDY DO DD DO OO 0D 00U OO EEOD !

Page

Revision

srct

3-24
3-25
3~-26
3-27
3-28
3-29
3-30
3-31
3-32
3~-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3~42
3-43
3-44
4-1

4-7

B-3

B-5
B-6
B-7
B-8
B-9
B-10
B-11
C-1

C-3

Tsoftware Feature Change

39520600 D

YouUoououogououuobopouobouoboogooyyooDUoDUY DUy oODooOoDogyY

iiie

LIST OF EFFECTIVE PAGES (CONTINUED)

Page

Revision

srct

C-4

F-1

F-3
G~1
Index~1
Index-2

Comment Sheet
Back Cover

vAvloA-NeReRoR-AvE-A-ieN-N-N-R-B-R-R-R-E-R-R-N-A-A-A-E-N-N- -l

Page

Revision

srct

tSoftware Feature Change

39520600 D

PREFACE

The CYBER 18/1700 File Manager is a general purpose file management system consisting of a resi-~'
dent supervisor (operating under MSOS Version 5) and a set of mass storage resident request processors.

The system allows definition of variable- or fixed-length records. Records may be stored sequen-
tially, by key values (indexes), or to specific locations on mass storage previously assigned by the
File Manager. Records may be retrieved (for use in updating, or to be removed from the file) sequen-
tially, by use of key values, or from a specific location on mass storage previously assigned by the
File Manager.

File Manager space is predefined (at system initialization) and cannot be expanded or diminished.
Space released by removal of records or files remains available to the File Manager for assignment
of new files.

It is assumed that users of this manual are familiar with CYBER 18/1700 MSOS 5.

The following CYBER 18/1700 manuals contain additional information useful to File Manager users:

Publication Publication No.
MSOS 5 Reference Manual 96769400
Mass Storage FORTRAN Version 3A/B Reference Manual 60362000
Macro Assembler Reference Manual 60361900

39520600 D v

CONTENTS

1 INTRODUCTION

2 GENERAL FILE FEATURES

2.1

2.2
2.3
2.4
2.5
2.6

2.8

3 FILE
3.1

3.2

39520600 D

Storage and Retrieval

2.1.1 Sequential
2.1.2 Indexed
2,1.3 Direct
2.1.4 Variations

File Request

Record Format

Update Protection
Unprotected File Requests
Requirements and Limitations

2,6.,1 Maximum Record Length

2.6.2 Expected Number of Records with Different Key Values

2.6.3 Parameter Limitations

2.6.4 Restrictions When Using More than One Logical Unit for File Space

Space Allocation

2.7.1 File Space Allocation
2.7.2 File Space Audit
2,7.3 Core Allocation

File Validity Check

REQUEST DESCRIPTIONS AND CALLS
Specification Requests -

3.1.1 Define File (DEFFIL)

2 Define File Indexed (DEFIDX)

3 Lock File for Protected Programs Only (LOKFIL)
4 Unlock File for Protected Programs Only (UNLFIL)
5 Release File (RELFIL) ' -

6 Examples of Specifications Requests

Sequential Requests

3.2.1 Store Sequential Record (STOSEQ)
3.2.2 Retrieve Sequential Record (RTVSEQ)
3.2.3 Examples of Sequential Requests

NN N NN NN D D

1 I 11
0 0 0 =1

V]
1
(=]

2-11
2-11

3.3 Indexed Requests 3~-22

3.3.1 Store Indexed Record (STOIDX) 3-22
3.3.2 Retrieve Indexed Record (RT VIDX) 3-24
3.3.3 Examples of Indexed Requests 3-27
3.3.4 Retrieve Indexed-Ordered Record (RTVIDO) 3-29
3.3.5 Example of Indexed-Ordered Request 3-32
3.4 Direct Requests 3-34
3.4.1 Store Direct Record (STODIR) 3-34
3.4.2 Retrieve Direct Record (RTVDIR) 3-35
3.4.3 Examples of Direct Requests 3-38
3.5 Assembly Language Communication with the File Manager 3-40
3.5.1 Calling Sequences without Use of Macros 3-40
3.5.2 Use of FLDF Macros 3-41
3.5.3 A Macro to Test Request Indicator Bits on Return from a File 3-44

Manager Call

4 TIME REQUIREMENTS 4-1

4,1 Access Rate Equations 4-2
4.1.1 Summary of Access Equations 4-2

4.1.2 Summary of Disk/Drum Transfer Rates 4-3

4,1.3 Access Rate Equations for Disk 4-4

4.1.4 Access Rate Equations for Drum 4-5

4.2 Example of Access Rate Calculations 4-6

4.3 Minimization of Time Required for Initial File Access 4-7
Appendix A Glossary A-1
Appendix B File Structure B-1
Appendix C Storage Requirements for File Structure C-1
Appendix D Access Rates for File Structure ’ D-1
Appendix E FIS, FRB, KIS, and File Space Pool Dumps E-1
Appendix F File Structure Illustrations F-1
Appendix G File Manager Error Message G-1
Index Index~1

FIGURES

2-1 Status Word (REQIND) 2-4
2-2 Example of File Space Pool and File Space Test 2-10
3-1 Schematic Representation of Indexed-Ordered, Indexed-Linked File Example 3-32

° viii 39520600 D

3-1

39520600 D

TABLES

Summary of File Manager Request Calls

ix

INTRODUCTION R

ARG T P AN X AR PP TSR MR T A Y I L 2k

The CYBER 18/1700 File Manager is a general-purpose file management package consisting of a
request supervisor and a collection of request processors. The supervisor (FILMGR) resides in core;
the request processors reside on mass storage. Core requirements are minimized by bringing in
individual request processors only as they are needed.

The File Manager creates and maintains either sequential or indexed files. Records in indexed files
may be index~ordered (i.e., numerically ordered within the index) or index~linked (i.e., several
records may have the same key value). Also, the user may define additional methods of linking (e.g.,
ring indexed). Records in some files may be variable in length and may be added, replaced, or removed
at any time after the file has been defined and before it is released. Other files (i.e., index~linked)
must have uniform~length records.

A sequential file is one in which each new record is added immediately following the last record
stored in the file. These records must be retrieved in the same sequence in which they were stored;
records cannot be retrieved at random. Thus, they are retrieved on a FIFO basis.

An indexed file is one in which each record has an identifier or key (surname, social security number,
pure number, etc.). These records are stored sequentially with a key value; records with the same
key value are linked together (index-linked). These records may be retrieved sequentially or a specific
record may be retrieved by using its key value.

If the actual mass storage address of a record is found by a prior retrieval, that record may be subse-

quently stored or retrieved directly using the mass storage address. This is an efficient method
for retrieving, updating, and restoring frequently used records.

39520600 D 1-1/1-2 @

GENERAL FILE FEATURES 2

L N _'_A_.Ev— ! T 5 T w!z:wx‘x. SRR ORRRE) ORGSR R T ERCTNETH |

2.1 STORAGE AND RETRIEVAL

The File Manager stores and retrieves information in three basic ways:

o Sequential
[Indexed
o Direct

In addition, variations for storage and retrieval are provided by combinations of the preceding and
special options. The variations are:

o Indexed-ordered

] Indexed-linked

To utilize mass storage efficiently, files are normally composed of a series of file record blocks (see
Appendix B). A new file record block is assigned whenever a new record is added to the file, and

the current lost record block of that file is too small to receive it. The series of record blocks is
indexed by a file information segment (FIS), and all FISs are in turn indexed by the file directory,
which acts as a master index to all files. To the user, it appears that each new record is filed
sequentially in the designated file; however if direct access to files is made using the mass storage
address, the user discovers that actual record blocks may be widely scattered over the logical unit
holding the files.

NOTE

Because of the one~word mass storage
sector address, large storage disk units
(e.g., the storage module drive with the
50-megabyte disk) have more than 32K
sectors and must therefore be divided

into several pseudo disks, each composed
of 32K sectors and each with its own logi-
cal unit number. Since the logical unit is
one of the file parameters, it is possible
that different files may be spread over a
number of logical units (a single file is
always on the same logical unit, however).
Storage and retrieval time are comparable
on all pseudo disks.

39520600 D 9-1e

2.1.1 SEQUENTIAL

In sequential access, records are stored one at a time immediately following the last record stored
and are retrieved one at a time in the same order they were stored, starting from the beginning record
of the file.

Sequential access is best suited for retrieving all records on 2 FIFO basis. It is not suifed to retriev-
ing a particular record since all preceding records must first be retrieved.

NOTE
1. All files may be accessed sequentially.

2. If a record is retrieved, the mass
storage address of the record is
returned to the user. The user then
has the option of retrieving that
record directly, using the mass storage
address.

2.1.2 INDEXED

Indexed access is best suited for access of a specific record. Each record may be indexed by one and
only one key, The key may be one or more words in length. Since all files are sequential, an indexed
file may be termed indexed-sequential. Indexed access is only possible from an indexed file.

A particular record can be stored and retrieved via a key. Each record key value can be translated

into an index which can provide relatively quick access to the record. Indexed files require extra file
space for the keys and key directories.

2.1.3 DIRECT

Direct access is best suited for frequently accessed records. A record must have been stored in a
sequential or indexed file by a sequential or indexed store before it can be referenced directly.

Direct procedures are normally used in updating records and in forming list structures. Since the
File Manager provides record pointers for all records, all the files may be accessed directly.

2-9 39520600 D

2.1.4 VARIATIONS

21.41 INDEXED-ORDERED

When the indexed-ordered option is selected, indexed records can be retrieved in a manner similar to
sequential retrieval. However, instead of a FIFO basis, records are retrieved starting at the record
with the lowest numeric key value (or the key value specified in the first of the repeated index-ordered
retrieve) and continuing through to the record with the highest numeric key value. When this type of
access is used, a sort of the key values is done; therefore, the key value must be one word in length.
It is recommended that key values for an indexed-ordered file include only non-negative values.

21.4.2 INDEXED-LINKED

In an indexed file, each record normally has a unique key value. However, if the indexed-linked option

is selected, records with the same key value are linked together in either a LIFO or FIFO manner. The
records are linked by allocating two words of each record for the linking record pointer. The retrieval
of these records is an example of a list structure and is described in detail in Section 3,3. ILIFO or FIFO
linking is specified by the user when a file is defined as indexed.

2.1.4.3 LIST STRUCTURES

Records may be retrieved as though they were part of a list structure by using the record pointers
supplied by the File Manager and the direct method of retrieval. The user may form complex list
structures by linking forward, backward, ring, sublist, etc. A record may be a member of an
indefinite number of lists as long as two words for a record pointer are reserved in the record for
each list. An example of a list structure is an indexed-linked file.

2.2 FILE REQUEST

Since the File Manager Executive (FILMGR) is core-resident and the individual request types are
defined as File Manager entry points, the user program can make direct (utility type) calls to execute
the needed operation.

The four types of file requests are described in Section 3. They are:

° Specification — Specification requests provide for:
-Defining a file (DEFFIL)
-Defining an indexed file (DEFIDX)

39520600 D 9-3

-Locking a file (LOKFIL)

~Unlocking a file (UNLFIL)

~Releasing a file (RELFIL)
. Sequential (STOSEQ, RTVSEQ)

e Indexed (STOIDX, RTVIDX, RTVIDO) These three file requests are used to
store and retrieve records.

) Direct (STODIR, RTVDIR)

The File Manager executes a request at the caller's priority level, If, however, the File Manager is
executing a previous request, the request is queued by its priority level and is not executed until the
currently active request and any higher level waiting requests have been executed.

Associated with each request are a 12-word temporary buffer and one indicator word. The buffer holds
information used to process the file request; upon completion of the request, the indicator word con-
tains request execution status information. Each bit of the indicator word which is non-zero signifies
an abnormal occurrence. If bit 15 is non-zero, the request has been rejected because of errors
denoted in the other bits; if bit 15 is a zero but other bits are non-zero, the request has been com-
pleted with an irregular occurrence (for example, an end of file has occurred). Note that bit 14 is

a common bit for rejecting a request due to invalid parameters in a request. If the entire indicator
word is zero, the request terminates normally. All error bits are shown in Figure 2-1,

- - v
L/ ‘/‘/ ol
161413121110 9 8 7 6 5 4 3 2 1 0

L FILE DEFINED/NOT DEFINED
FILE LOCKED/NOT LOCKED
LONG STORE OR SHORT READ
END OF FILE (EOT) .
MORE RECORDS HAVE SOME KEY VALUES

RECORD REMOVAL OR DOES NOT EXIST
MASS STORAGE ERROR
\— NO MORE I'ILE SPACE
—— STORE DIRECT ADDRESS NOT IN FILMGR'S DISK SPACE
lL— WRONG FILE COMBINATION
L FILE DEFINED/NOT DEFINED AS INDEXED
L— INDEX~ORDERED FILE BUT KEY LENGTH # WORD
——— UNPROTECTED REQUEST TO CHHANGE A PROTECTED FILE
‘\—— REQUEST REJECTED DUE TO ILLEGAL PARAMETER LIST
‘—— REQUEST REJECTED BECAUSE ONE OR MORE OF THE FOLLOWING:

NOTES: 1. BIT 14, 13, 12, 11, 10, 8, 7, 5, OR 0 IS SET.

2, BIT 4 1S SET FOR STOIDX AND THE FILE IS NOT ORIGINALLY LINKED
IN THE DEFIDX REQUEST.

3. BIT 2 IS SET FOR STOSEQ OR STOIDX (I.E., RECORD IN recbuf IS
LONGER THAN maxrl),

4. BIT 118 SET I'OR RELFIL, STODIR, LOKFIL (FILE LOCKED); OR UNFIL
(FILE NOT LOCKED); OR RTVSEQ, RTVIDX, RTVIDO, RTVDIR (ATTEMPT
TO RETRIEVE FROM LOCKED FILE WITHOUT FILE COMBINATION).

Figure 2-1. Status Word (REQIND)

0 2-4 , 39520600 D

2.3 RECORD FORMAT

Each variable-length record is composed of three sections: header word, record pointers, and data
words.

HEADER WORD

The first word of each record is reserved exclusively for the header word. The File Manager sets
this word to the total length of the record when this record is stored. Once a record is defined, its
length (and consequently the header word) cannot be changed.

NOTE

When storing and retrieving a record, the number of
words in a record must include the header word.

RECORD POINTERS

A record pointer is a two-word mass~storage address which points to another record on mass storage.
The first word is the sector location of the file record block in which this record resides. The

second word contains the word the record starts in, If a file is indexed-linked, the second and third
words are reserved for the record pointer, which points to the last record that was stored with the
same key value. This is the same format as the recptr parameter passed back to the user from
STOSEQ and STOIDX requests (see Section 3). The pointer words are used in all records, but are a
part only of index-linked records. For all types of record storage and retrieval, the pointer is made
available to the user.

DATA WORDS

Each record may have zero or more data words, which contain the actual record information. The
information may be binary or ASCII,

2.4 UPDATE PROTECTION

Whenever a record is to be updated, the user must first retrieve the record and lock the file with a
unique file combination. Subsequently, the updated record is stored and the file is unlocked with the
same file combination, utilizing the store direct request (refer to Section 3). More than one record
may be retrieved, updated, and restored as long as the same file combination that was used to lock

the file is supplied. Note that the file should not be locked for an extended period of time because
other users, who may also wish to update records, cannot access the file until it is unlocked., Thus a
retrieval, which attempts to lock an already locked file with a different combination is queued; it cannot
be executed until the file is unlocked.

39520600 D (2-5

If a number of files are to be locked, it is advisable to lock and unlock the files in a given sequence.
For example, lock files in ascending numerical order and unlock them in descending numerical order.

A retrieval without a file combination or storing a new record is permitted on a locked file with the
understanding that one or more records of that file are in the process of being updated. Note that an
update into an unlocked file or a locked file using an incorrect file combination results in a file request
error. ’

The file combination must necessarily be unique so that no two requests use the same file combination.
This can be accomplished by using the ASSIGN statement in FORTRAN or the RTJ instruction in
Assembly language.

2.5 UNPROTECTED FILE REQUESTS

Unprotected programs are assumed not to be error-free; therefore, certain restrictions have been
placed on unprotected file requests.

An unprotected file request cannot update a record in a file because it cannot use the store direct
"request, This restriction is imposed because the File Manager has no way to check the validity of the
record pointer in the store direct request. The restriction is mitigated by the assumption that
background programs primarily retrieve records (for example, data reduction, analysis, etc.) and
that records can always be retrieved, updated, and stored as new records in another unprotected file.

Since updates cannot be done, file locking is illegal for unprotected file requests. Note that unprotected
file requests may not store records into or remove records from files that were defined by protected
programs.

NOTE

If there is not enough allocatable core for both the
File Manager and Job Processor modules, file
requests from background can hang batch processing
indefinitely.

2.6 REQUIREMENTS AND LIMITATIONS

The File Manager requires certain information to establish the file structure and imposes limitations
on those files.

2.6.1 MAXIMUM RECORD LENGTH

The effective maximum record length and file record block length are determined as a function of the
maximum record length specified by the define file request for each file. It places a maximum limit

9-6 39520600 D

%o/

on the length of records for that file, and also establishes a block of sector(s) that will be allocated
when the first record is stored into the file. Subsequent records are stored into this block until it is
full, then another equal block of sector(s) is automatically allocated. This process is continued as long
as there is mass memory space available. Thus a file record block may contain one or more records
(see Appendix B).)

File record blocks require a three~word header. For this reason, the effective maximum record
length is equal to the specified maximum record length if the specified maximum record length plus 3 is
equal to an integral multiple of 96. Otherwise, the effective maximum record length is equal to the
least integer value n such that

1) n is greater than the specified maximum record length, and
2) N = 96*m - 3 for some positive integer m,

- Thus, specified maximum record length values of 3, 93, and 94 would result in effective maximum
record lengths of 93, 93, and 189 respectively.

2.6.2 EXPECTED NUMBER OF RECORDS WITH DIFFERENT KEY VALUES

The expected number of records with different key values is specified by the define file indexed

(DEFIDX) request parameter numekv (refer to Secﬁon 3) for each indexed file. Note that if a file

is not indexed-linked, this is equivalent to the number of records in the file after the file is fully l
established by adding records. The expected number of records with different key values establishes

the structure of the indexed directories. A relatively accurate estimate is important if the number of
expected key values exceeds 8, 464.

Too low an estimate may result in more mass storage accesses per indexed request, while too high an
estimate may result in excessive core allocation for the indexed directories per indexed request.

2.6.3 PARAMETER LIMITATIONS

The following limitations are necessary:

File number range 1 through 32,767

Record length range 1 through 32,767

Number of expected records

(with different key values) range 1 through 32,767

Key value length range 1 to 63 words

File combination range 1 through 16, 383 |

Key value range for indexed-
ordered files 0 through 32,767

39520600 D 2-7

CAUTION

Users are warned that programs making File Manager
requests which contain relative parameters will not
execute properly in partitioned core or at addresses

above ENDOV4, the top of partition 0 (normally 8000 1 6)'

2.6.4 RESTRICTIONS WHEN USING MORE THAN ONE LOGICAL UNIT FOR FILE SPACE

The File Manager initializes the file space pool for every File Manager logical unit at the same time.
This initialization occurs when the first define file request is encountered after an operating system
is built, The initialization of a file space pool for a given logical unit involves writing the file space
pool thread on that unit in the first sector which is available for File Manager use.

CAUTION

1. At the time the first define file request is executed,
all logical units which are to be used (now or later)
for file storage must be operating.

2. 'The disk pack mounted on a drive at the time the first
define file request is executed must be mounted on
that drive when the File Manager uses that unit for
storage.

2.7 SPACE ALLOCATION

2.7.1 FILE SPACE ALLOCATION

File space is allocated by the define file request for file records or by the define file indexed request
for file indexed directories. Provision is made to return file space by the release file request and the
retrieve/remove requests. Returned file space is not released for other users; it remains under the |
control of the File Manager. Note that:

° .Every record in a file must be on the same logical unit.
® Every indexed directory for a file must be on the same logical unit.
. Logical units for files must be mass memory devices.

The first time a define file request is encountered after a 1700 operating system with the File Manager
is built, a file space list and a file space pool are constructed for each logical unit that has available
file space. The File Manager tests the value of the SYSDAT FILMGR core location FIDSEC. The value
of FIDSEC is zero until after the first define file request is encountered.

2-8 39520600 D

A file space list is composed of one or more blocks of available space. Each block is a threaded
sequence of segments of mass memory such that each segment has the same length in sectors as every

other segment in the block.

For example, there may be a block of all available two-sector segments. At the time the system is
built, the user determines what blocks (i.e., what available segment lengths) are to be included in the
file space list. All available file space which lies in a segment of a length other than those included in

the file space list is included in a file space pool.

The advantage of keeping as much of the available

file space as possible in the file space list is that available space there can be allocated much more

quickly than can space in the file space pool.

The disadvantage of having too many blocks in a file

space list is that two words of core (in SYSDAT) are used for each block.

Consider the following example.

The user determines that the file space list is to be composed of

° A block of segments one sector long,
® A block of segments two sectors long, and
° A block of segments four sectors long.

Suppose at a given time there are file space segments of various lengths: one sector, two sectors,
three sectors, four sectors, six sectors, eight sectors, 20 sectors, and 10,000 sectors. The file
space list and the file space pool are represented in Figure 2~-2,

The efficiency of the File Manager can be optimized by determining, at the time the system is built,
what file space lengths will be used. If only a small number of different lengths are needed, a block

for each of these lengths can be included in the file space list.

For example, suppose only segments

of one sector, two sectors, and four sectors are to be allocated for file space. A block for each of
these lengths in the file space list requires only six words of core storage in SYSDAT.

Refer to Appendix B for details concerning file space requirements. Note that space must be
allocated for key directories and key information segment blocks as well as for file records when using

indexed files.

2.7.2 FILE SPACE AUDIT

When there is insufficient file space to define a new file or to store another record in a given file, the

File Manager will indicate this condition to the requestor.
file space is running low before all the file space is gone,

be released to make additional space. A user early-warning program may be written to monitor the
ratio of available space and total space for each logical unit. These parameters are located in the
FILMGR SYSDAT parameter area. For example, for File Manager logical unit 1 we may find in

SYSDAT:

LUE1

39520600 D

NUM
NUM
NUM
NUM

X

AVAILABLE FILE SPACE
TOTAL FILE SPACE

In many cases, it is desirable to know when
Files which are no longer in use could then

2-9

CORE (SYSDAT)

f""}\ﬁ

FSPOOL

MASS STORAGE

FSLIST

ADDRESS
OF FSPOOL

NUMBER OF
SECTORS
AVAILABLE

TOTAL
SECTORS
IN FILE
SPACE
FOR THIS
LOGICAL
UNIT

A
s IR
POOL POOL POOL
BLOCK OF POOL BLOCK OF POOL BLOCK OF
THREE- BLOCK OF EIGHT- BLOCK OF 10, 000~
SECTOR SIX-SECTOR SECTOR 20-SECTOR SECTOR
SEGMENTS SEGMENTS SEGMENTS SEGMENTS SEGMENTS
3 8 20 10,000
|-
'_1 [
. '
! '
l—
LIST LIST LIST
BLOCK OF BLOCK OF BLOCK OF
ONE-SECTOR TWO-SECTOR FOUR~SECTOR
SEGMENTS SEGMENTS SEGMENTS

Figure 2-2. Example of File Space Pool and File Space Test

39520600 D

Thus, one could calculate for logical unit one:

_(LUE1+2) _ x
1 (LUE1+3) y

giving the ratio of file space available to original file space for this logical unit., Location LUE1 is the
same location as that of FSLIST in Figure 2-2.

2.7.3 CORE ALLOCATION

The individual file request processors (e.g., store sequential), the information segment for a file
(FIS — see Appendix B), and its indexed directory (KIS — see Appendix B) are placed in allocated
core. Each item will remain in core to conserve mass memory accesses, as long as it enjoys
sufficient usage by the File Manager user(s). Once a certain item has not been utilized for a period
of time, its core will be released and the next use of it will require a mass memory transfer,

The time period for each of the above is a system parameter determined when the operating
system is built.

2.8 FILE VALIDITY CHECK

To minimize mass memory 1/0 traffic, the File Manager allows file information to remain in
allocatable core until a time-out occurs, at which time the information is updated on mass storage.

CAUTION

Abnormal system stops and autoloads can destroy
this information and will eventually cause fatal file
errors,

If the system contains a File Manager, a file validity check is performed each time the system is
autoloaded. The check is preceded by the message:

CHECKING FILES -

on the system comment device, and consists of a trace of all file space threads on mass storage, If
the threads are found to be valid an OK is printed. If any errors are found the user is given the option
of continuing with the autoload or purging all system files (i.e., reverting all File Manager tables to

a condition prior to the loading of any files), If this option is selected the files would have to be
reloaded from a user-written backup dump.

39520600 D 2-11

2-12

CAUTION

When the File Manager is installed with more than one
mass memory unit, all mass memory units must be
operating when the File Manager is used for the first
time after initialization of the system, The File Man-
ager writes file threads on each unit at this time,
Thereafter, the same disk pack must remain on each
mass memory unit as when the File Manager was first
used or file errors will occur, even if files are not
defined on those units.

39520600 D

FILE REQUEST DESCRIPTIONS AND CALLS 3

All file request calls to the File Manager may be written as FORTRAN type calls or as Assembly
language macros as in the following descriptions, The Assembly language call format, without the
use of macros is described at the end of Section 3. ‘

In each of the following sections, three examples of each type of call are given: the FORTRAN call
(including the parameter list) and two assembly language calls (the first in absolute format and the
second in relative format). In both cases, only the first word of the parameter list is given, since
the coding of the user program may select the form of assembly language (usually macro) call. In the
latter case the first parameter is normally the address of the parameter list. In all cases, the user
program must set up all the parameters listed in the FORTRAN call.

Error considerations are returned to the user by means of the request status word (required parameter).
In most cables where the status does not equal 0, bit 15 is set (see figure 2~1) indicating that the

request was rejected. If rejection was generated by a bad parameter in the request, bit 14 is also

set. In other cases the individual error bits are set together with bit 15,

A summary of all File Manager request calls is given in table 3-1.

CAUTION

Programs making File Manager requests which
contain relative parameters will not execute
properly in partitioned core or at addresses
above ENDOV4,

3.1 SPECIFICATION REQUESTS

Specification descriptions define a file, determine if it can be used at this time, and release files.
The calls are discussed in the following order:

° Define file (DEFFIL)

. Define file indexed (DEFIDX)

o Lock file (LOKFIL)

° Unlock file (UNLFIL)

° Release file (RELFIL)

39520600 D 3-1e

TABLE 3-1, SUMMARY OF FILE MANAGER REQUEST CALLS

File Initialization, Restriction, and Status

Type
Instruction | InstructionT Parameters Supplied by User 11
Define a DEFFIL filnum Arbitrary, File number (27FFF) is assigned
normal file by user
maxrl Maximum length of record in the file
lu Logical unit (identification of disk or pseudo disk)
where file is stored
reqbuf 12-word buffer (normally assigned within the user
program; however, may be anywhere so long as
protect value is same as user program)
reqind Free status word following request
Define an DEFIDX filnum, lu, Same as in DEFFIL above
indexed regbuf, and
file reqind
F
numekv Number of different key values for all records to be
filed in the indexed file (a single alphanumeric key
value identifies the record. This must be a pure
numeric if the user desires the index-ordered
capability.)
keylth Number of alphanumeric 16-bit words in key (= 63),
Also flags to show index-ordered or index-linked,
Lock a file LOKFIL filnum, reqbuf, Same as in DEFFIL above
and reqind
filcom File combination (an arbitrary number =7FFF)
This instruction is executed only by protected programs,
Unlock a UNLFIL filnum, filcom, Same as in LOKFIL above,
file regbuf, and
reqind
This instruction is executed only by protected programs.
Release a RELFIL filnum, regbuf, Same as in DEFFIL above
file and reqind

This instruction releases space for use by other file only.

TEach of these instructions can be written in FORTRAN (e.g., CALL DEFFIL), or as an assembly
language macro (e.g., DEFFIL from an absolute program, DEFFIL* for a relative program).

TTParameter lists may be defined to be constants (e.g., a set of labels with the labels equated to
constant values) or as addresses where the parameter values may be found (e.g., indirect
relative, or absolute addresses where the parameter values are stored).

© 3-2

39520600 D

TABLE 3-1,

SUMMARY OF FILE MANAGER REQUEST CALLS (Continued)

Record Instructions

indexed
record

recptr, reclth,
reqbuf,
and reqind

filcom

recbhuf

Type
Instruction | InstructionT Parameters Supplied by User {1
’ Store a STOSEQ filnum, reqbuf, Same as in DEFFIL on the preflious page
sequential reqind
d
recor recptr Two-word label where File Manager stores mass
storage address of pointer to record
recbuf Buffer where record is currently stored in main
memory (in user program)
reclth Length of recbuf
Retrieve a RTVSEQ filoum, recptr, Same as in STOSEQ above
sequential reclth, regbuf,
record reqind
filcom Same as in LOKFIL on the previous page
recbuf User-supplied buffer where retrieved record is to be
written in main memory (in user program)
Store an STOIDX filnum, reqbuf, Same as in DEFFIL on the previous page
indexed reqind
record recptr, reqbuf, Same as in STOSEQ above
and reclth
keyval Key for this record, Must be equal to keylth
(including blanks)
Retrieve an | RTVIDX filnum, keyval, Same as in STOIDX above

Same as in LOKFIL above

User-supplied buffer where retrieved record is to be
written in main memory (in user program)

39520600 D

T Each of these instructions can be written in FORTRAN (e.g., CALL DEFFIL), or as an assembly
language macro ‘e, g., DEFFIL from an absolute program, DEFFIL* for a relative program),

T1 Parameter lists may be defined to be constants (e. g., a set of labels with the labels equated to
constant values) or as addresses where the parameter values may be found (e. g., indirect
relative, or absolute addresses where the parameter values are stored).

TABLE 3-1, SUMMARY OF FILE MANAGER REQUEST CALLS (Continued)
Record Instructions
Type
Instruction | InstructionT Parameters Supplied by User {1
Retrieve an | RTVIDO Same parameters as RTVIDX above
:)T;Z};; d keyval Must be purely numeric to use this retrieval mode
record
Store an STODIR filnum, recptr, Same as in STOSEQ above, but recptr is known and
_ updated recbuf, and its value must be supplied
\;U record reqind
Retrieve a RTVDIR Same parameters as in RTVSEQ above, but recptr is known and its
file value must be supplied
directly

TEach of these instructions can be written in FORTRAN (e. g., CALL DEFFIL), or as an assembly
language macro (e,g., DEFFIL from an absolute program, DEFFIL* for a relative program).

TTParameter lists may be defined to be constants (e, g., a set of labels with the labels equated to
constant values) or as addresses where the parameter values may be found (e, g., indirect
relative, or absolute addresses where the parameter values are stored).

3.1.1 DEFINE FILE (DEFFIL)

A file must be defined before any information can be stored or retrieved. A file cannot be defined if it
is already defined. However, the file could be redefined if it had been previously released (refer to

release file in this section).

The define file request specifies:

° The file number of the file being defined (permitting other requests to reference this file)

. A value to determine the length in words of each block of file space which is allocated to a
file when needed. This value also places an upper limit on the length of any record in a
file. Any attempt to exceed this limit results in an error,

° A logical unit where the file's records will be stored
° A temporary buffer for processing the request
° An indicator word, denoting the request's status upon completion (figure 2-1)

@3-4

39520600 D

e The FORTRAN format for the define file call is:
CALL DEFFIL (filnum, maxri, lu, regbuf, reqind)

Where: filnum is the file number; it contains a positive integer specifying the file to be defined.

maxrl is the maximum record length; to be used for determining the effective maximum
record length and file record block length. It is a positive integer.

Tu is the logical unit; it confains a positive integer specifying where the file's
records are to be stored.

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request status word; at the end of request processing the File Manager
sets the indicator bits as appropriate. If no bits are set, the request was
completed without error. The request processor checks for errors, and in
most cases rejects the request. The status word is available to the user for
discovering the cause of request rejection,

 NOTE

Limits for various parameter values
are set forth in section 2,

The Assembly language macro format is:

DEFFIL filnum . . . Produces a call with an absolute address for the parameter list. ‘

DEFFIL* filoum , . . Produces a call with a relative address for the parameter list,
as for a run~anywhere program)

Note that to use the macro call, an FLDF macro call must be included in the program, as described
at the end of this section.

Error considerations (reqind) are as follows:

° DEFTFIL sets bits 14 and 15 (rejecting the request) if:
15
-maxrlz2 =1

=lu=<0

39520600 D 3-5 e

-lu is not a mass memory device
~filnum < 0

° DEFFIL sets bit 15 (rejecting the request) if:
~filnum has already been defined (bit 0 is also set)
~-A mass memory error occurs (bit 7 is also set)

~No more file space is available (bit 8 is also set)

3.1.2 DEFINE FILE INDEXED (DEFIDX)

This request continues the defining process by specifying that a file which has already been defined by

a DEFFIL call, A file must be defined indexed before any information can be stored or retrieved

using an indexed key. Since a file cannot be defined as indexed if records have already been sequentially
stored into it, this request should be made immediately after the file is initially defined.

A file cannot be defined indexed if it is not defined, if it is already defined indexed, or if records have
already been stored sequentially into it. An unprotected program cannot define indexed a file which was
defined by a protected program.

If the records of a file are to be ordered by key value, the key length of the record must be one word.

The FORTRAN format for the define file indexed call is:

CALL DEFIDX (filnum, numekv, keylth, lu, reqgbuf, reqind)
Where: filnum is the file number; it contains a positive integer specifying the file to be defined
as indexed.

numekv is the number of expected key values; it contains a positive integer estimating
the number of records with different key values to be stored in the file.

keylth is the key length word, with the indexed options:

Bits 0 through 5 Length of the key in words (563)
6 through 12 Reserved
13 ' 1 TFirst-in/first-out (FIFO) linking (bit 15 must be

set). If this bit is not set and bit 15 is set, last~
in/first-out (LIFO) linking is implied.

14 1 Indexed-ordered file
15 1 Indexed-linked file

©3-6 39520600 D

lu is the logical unit; it contains a positive integer specifying the disk that stores
the file's indexed directories and records.

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process a request.

reqind is the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.

/’l‘ﬂe Assembly language macro format is as follows:

DEFIDX filnlum . .. Produces a call with an absolute address for the parameter list
DEFIDX* filnum . .. Produces a call with a relative address for the parameter list,
as for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program, as described
at the end of this section. :

Error considerations (reqind) are as follows:

' DEFIDX sets bits 14 and 15 (rejecting the request) if:
=filnum < 0.
~numekv < 0.
~lu is not 2 mass memory device.
~lu is illegal.
=FIFO is selected but indexed-linking is not selected.
° DEFIDX sits bit 15 (rejecting the request) if:
=filnum is released or not defined (bit 0 is also set).
-A mass memory error occurs (bit 7 is also set).
-No more file space is available (bit 8 is also set).

=The file has records stored sequentially before the file is defined as indexed or the file
is already indexed (bit 11 is also set).

-keylth does not equal one word for an indexed-ordered file (bit 12 is also set).

~The file is protected (bit 13 is also set).

3.1.3 LOCK FILE FOR PROTECTED PROGRAMS ONLY [LOKFIL)

A file may be locked by protected programs when it is possible that more than one program may be
attempting to update the same file.

39520600 D 3-7 @

A file cannot be locked if it is not defined, if it is already locked, or if the lock file request is issued
on a protected file by an unprotected program. An alternate method of locking a file is provided in the
I retrieve requests (the alternate method is the usual way of locking files during updating of records).

The lock file request specifies:

. The file number of the file being locked
° The file combination required to store in this file
] A temporary buffer for processing this request

l ° An indicator word, denoting request's status upon completion (Figure 2-1),

The FORTRAN format for lock file call is as follows:
' CALL LOKFIL (filnum, filcom, regbuf, regind)

Where: filnum is the file number; it contains a positive integer identifying the file being locked.

filcom is the file combination with the remove option; bits 0 through 14 contain a
non-zero number which must be used in subsequent store or remove requests,
I as well as in the unlocking request; bit 15 is not used.

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.

The Assembly language macro format is as follows:

LOKFIL filnum . . . Produces a call with an absolute address for the parameter list
LOKFIL* filnum . . . Produces a call with a relative address for the parameter list, as
for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program as described
at the end of this section,

Error considerations (reqind) are as follows:

. LOKFIL sets bits 14 and 15 (rejecting the request) if filnum < 0,

. LOKFIL sets bit 15 (rejecting the request) if:
-filmim is not defined or is released (bit 0 is also set).
~The file is locked with a different combination (bit 1 is also set).
-An unprotected program is making the request (bit 13 is also set).

3-8 39520600 D

3.1.4 UNLOCK FILE FOR PROTECTED PROGRAMS ONLY (UNLFIL)

A file may be unlocked when there are no further updates to be done. The same file combination that
= was used to lock the file must be used to unlock it. An alternate. method of unlocking a file is provided
in the store direct request.

=~ A file cannot be unlocked if it is not defined or not locked, if the combination is incorrect, or if an
unprotected program attempts to unlock a file defined by a protected program.

The unlock file request specifies:

* The file number of the file being unlocked
° The file combination used to previously lock the file
e A temporary buffer for processing the request

. An indicator word, denoting the request's status upon completion (Figure 2-1).

The FORTRAN format for unlock file call is as follows:
CALL UNLFIL (filnum, filcom, reqbuf, reqind)
Where: filnum is the file number; it contains a positive integer identifying the file being

unlocked.

filcom is the file combination; bits 0 through 14 contain a non-zero number which is
identical to the combination that was used to lock the file; bit 15 is not used.

reqbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

- reqind is the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.

~ The Assembly language macro format is as follows:
UNLFIL filnum . .. Produces a call with an absolute address for the parameter list
N UNLFIL* filoum . .. Produces a call with a relative address for the parameter list, as

for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program as described
at the end of this section.

39520600 D 3-9

Error considerations (reqind) are as follows:

. UNLFIL sets bits 14 and 15 (rejecting the request) if filnum < +0,
. UNLFIL sets bit 15 (rejecting the request) if:

~filnum is not defined or released (bit 0 is also set).

~The file is not locked (bit 1 is also set).

-The file is locked with another combination (bit 10 is also set).

-An unprotected request tried to unlock the file (bit 13 is also set).

3.1.5 RELEASE FILE (RELFIL)
A file may be released when there is no further use for it. All the space reserved for the file's data
records, as well as all information associated with the file's indexing, is returned to the File Manager

for future utilization by other files. The space is not returned to the disk manager for general use.

A file cannot be released if it is not defined or if it is locked. An unprotected program cannot release a
file defined by a protected program.

The release file request specifies:

° The file number of the file being released
° A temporary buffer for processing the request
' ' An indicator word, denoting the request's status upon completion (figure 2-1)

The FORTRAN format for release file call is as follows:

CALL RELFIL (filnum, regbuf, reqind)
Where: filnum is the file number; it contains a positive integer specifying the file to be
released.

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

I reqind is the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.

The Assembly language macro format is as follows:

RELFIL filnum Produces a call with an absolute address for the parameter

RELFIL* filnum Produces a call with a relative address for the parameter list, as
for a run-anywhere program

3-10 39520600 D

Note that to use the macro call, an FLDF macro call must be included in the program as described
later in this section.

Error considerations (reqind) are as follows:

° RELFIL sets bits 14 and 15 (rejecting the request) if filnum < 0.
° RELFIL sets bit 15 (rejecting the request) if:

~filnum is released or not defined (bit 0 is also set).

~The file is locked (bit 1 is also set).

-A mass storage error occurs (bit 7 is also set).

~An unprotected request attempts to release the protected file (bit 13 is also set).
If a mass memory occurs while trying to release the FRBs and FIS threads, the message
F.M. ERROR

is delivered to the comment device.

3.1.6 EXAMPLES OF SPECIFICATIONS REQUESTS

As a part of a computer system to aid a law enforcement agency, .a first offense file is defined. The
record format is to be as follows:

Word Contents

1 Header

2-25 Name

26-28 Date of first arrest
29-30 Time of first arrest
31 Violation code

39520600 D 3-11

Note that a record length of 31, a factor of 93, is used. By setting the maximum record length to 93,
the maximum record length and the effective maximum record length are equal. Thus, no space is
wasted in the mass memory storage of the file records.

Periodically, the contents of the first offense file are to be written on magnetic tape. The FORTRAN
code shown in Example 1 is used to define the file initially as well as to re-initialize the file after each

transfer of its contents to tape.

Note that a release file request occurs before the file is defined. Therefore, when the file is defined it
will contain none of the previously stored records.

The file records are to be accessed by license number, expressed as four ASCII words. Note that the
license number is not part of the data in the record, but that its length in words is specified as the key

length when the file is defined as indexed. An estimate of 1, 000 first offenses will be recorded in the
file before the file is cleared and re-defined. Thus, numekv = 1000,

EXAMPLE 1:
Program Comments

INTEGER REABUF{12},REQIND

DIMENSION IOBUF{S58} Reserves space for file buffer,
. status word, and I/0 buffer
. (for error message)

C RELEASE THI; FIRST OFFENSE FILE
IFLNUM=20 Specifies file number
CALL RELFIL{IFLNUM.REQBUF.REQINDZ}

C CHECK FOR ERRORS

IF {REQIND.LT.0} GO ‘TO 1000 Checks status of file after
last use

C DEFINE THE FIRST OFFENSE FILE

MAXRL=93 Defines record length (optimum)
C LOAD A-REGISTER WITH FILES LOGICAL UNIT- IFLU- AN EXTERNAL.
C SAVE IN LOCAL VARIABLE. LU. Executes in assembly language
C LDA =XIFLU
C STA LU

ASSEM %C000.+IFLU~%b6A00-LU

3=-12 39520600 D

A}

Program

CALL DEFFIL {IFLNUM.MAXRLALU.REQBUF.REQINDZ}
C CHECK FOR ERRORS
IF {REQRIND.LT.O0} G0 TO 1000
C DEFINE FILE TO BE INDEXED BY LICENSE NUMBER
KEYLTH=Y4
NUMEKV=1000
CALL DEFIDX {IFLNUM.NUMEKV.KEYLTH.LU-REQBUF.REQIND}

IF {REQRIND.LT.DB} GO TO 1000

1000 CALL SETBFR{IOBUF.58}

WRITE {4-3000} IFLNUM.REQIND
C FOLLOW ERROR EXIT PATH

3000 FORMAT {SHFILE +IS5.8H ERROR %.s54}

Comments
Defines file (sequential) i

Is file defined as requested ?

Changes to indexed file before
entering any records

Is file indexed as requested ?

Error message preparation
(display status word in hexa-
decimal format)

Format for error message i

The FORTRAN code shown in Example 2 illustrates the proper method for determining a file combination
so that uniqueness is guaranteed. The figure also shows acceptable call statements to lock and unlock a
file. This code must be part of a protected program according to File Manager restrictions.

EXAMPLE 2:

Program

INTEGER REQBUF{12}.REQIND.FILCOM
DIMENSION IOBUF{58%}.

IFLNUM=IBASE+303
C NOTExxONLY THIS METHOD SHOULD BE USED TO GENERATE FILE
C COMBINATIONSxx)
00D ASSIGN 2000 TO FILCOM

39520600 D

Comments

See comments in example 1.

3-13

Program Comments

CALL LOKFIL{IFLNUM.FILCOM.REQBUF.REQIND}
IF {REQIND.LT.D} 60 TO 1000

C UPDATE FILE

CALL UNLFIL{IFLNUM.FILCOM.REQBUF.REQIND}
IF {REQIND.LT.0} 60 TO 1000

1000 CALL SETBFR{IOBUF.58}
WRITE {4-30003 IFLNUM.REQIND
C FOLLOW ERROR EXIT PATH

3000 FORMAT {5HFILE.I5.8H ERROR %.5Uu}

The FORTRAN code for a part of the files initialization procedure for a given system is shown in
Example 3. The Example 3 program uses the information already in the file; releases it, checks
for file usage error, and redefines the file only if no error exists. The first define file request is
used as a test to see if the file has been previously defined. If so, the information in the file will
be used before the file is released and redefined. If not, initial condition records are stored in the
file.)

EXAMPLE 3:
Program Comments
DIMENSION IREQBF{12},I0BUF{58} See comments in example 1,
IFLNUM=5
MAXRL=93
LU=8

CALL DEFFIL{IFLNUM.MAXRL-LU-IREQBFIREZID}

C WAS FILE PREVIOUSLY UNDEFINED
IF {AND{IREQID.1}.EQ.0} GO TO lOOO Checks bit 0 of status word
(file undefined)

3-14 39520600 D

Program

C FILE WAS PREVIOUSLY DEFINED
C CHECK FOR FILE ERRORS
IF {AND{IREQID.%0418}.NE.D0} 60O TO 5000

C NO FILE ERRORS+ PROCEED TO USE
C INFORMATION IN FILE

C OLD FILE INFORMATION HAS BEEN USED.
C RELEASE AND RE-DEFINE FILE 5
CALL RELFIL{IFLNUM.IREQBF.IREQID}
IF {IREQID.LT.0} GO TO 5000
CALL DEFFIL {IFLNUM.MAXRL.LU.IREQBF.IREQID}
IF {IREQID.LT.0} GO0 TO 5000
C STORE INITIAL CONDITIONS RECORDS INTO FILE

1000 .

C PRINT ERROR MESSAGE
5000 CALL SETBFR{IOBUF.53}
WRITE {4.L0003} IFLNUM.IREQID
L00D FORMAT {bH FILE. I5-8H ERROR $.%U4}

3.2 SEQUENTIAL REQUESTS

3.2.1 STORE SEQUENTIAL RECORD (STOSEQ)

Comments

Checks bits 10, 4, and 3 of status
word (wrong combination, non-
unique key, end~-of-file)

Operator specifies initial con-
ditions for each record and
stores them with STOSEQ
requests

Records may be stored sequentially in a file once it is defined. A sequential record is always stored
as the last record of the file; its record pointer is returned to the caller so that the record may be
accessed directly. A sequential store is permitted in a locked file; the status word indicates that the

file was locked.

The length of the record cannot exceed the specified maximum record length (maxrl). A
record cannot be stored sequentially if the file is indexed or if it is not defined, An unprotected
program cannot store a record in a file which is defined by a protected program.

39520600 D

3-15

The store sequential record request specifies:

. The file number of the file where the record is being stored

o A buffer for returning the record pointer

. A buffer of information to be stored as the record

° A temporary buffer for processing the request

® An indicator word, denoting the request's status upon completion (Figure 2-1).

The format for store sequential record call is:

CALL STOSEQ (filnum, recptr, recbuf, reclth, regbuf, reqind)

Where: filnum

' recptr
" recbuf

reclth

regbuf

reqind

is

is

is

is

is

is

the file number; it contains a positive integer identifying the file into which a
record is being stored. '

the record pointer set by the File Manager. It is a two~word array which
contains the mass storage address of the record just stored.

the record buffer; it is an array of reclth words containing the record to be
stored.

the record length; it contains a positive integer specifying the length of the
record.

the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.

The Assembly language macro format is:

STOSEQ
STOSEQ*

filnum . .. Produces a call with an absolute address for the parameter list

filnum . .. Produces a call with a relative address for the parameter list, as

for a run-anywhere program)

If the reclth parameter is blank, the current record length is left unchanged. Note that to use the macro
call, an FLDF macro call must be included in the program, as described later in this section.

3-16

CAUTION

The File Manager assumes that the three words
preceding the record buffer are part of the user's
program. To optimize storing time, the contents
of these three words are temporarily altered to
contain the FRB header words whenever the File
Manager writes the first record in an FRB to mass
memory (Appendix B). After the transfer occurs,
the File Manager restores the original contents of
the three words.

39520600 D

CAUTION

The user's program may be in a multiprogramming
environment. In this case, if the record buffer is
at the beginning of the program and the three words
preceding the record buffer extend beyond the user's
program, the three words could overlap another
program or core storage, such as a core allocation
thread which might be used before the original
contents are restored.

Error considerations (regqind) are as follows:

° STOSEQ sets bitsv 14 and 15 (rejecting the request) if:
~filnum < 0
~recptr does not point to an address in FILMGR's space
-Record length < 0
e STOSEQ sets bit 15 (rejecting the request) if:
~The file is not defined or released (bit 0 is also set)
~The record exceeds maxrl (bit 2 is also set)
-A mass storage error occurs (bit 7 is also set)
~There is no more file record space to store records (bit 8 is also set)
~The file is defined as indexed (bit 11 is also set).
~-An unprotected program attempts to store a record in a protected file (bit 13 is also set).

3.2.2 RETRIEVE SEQUENTIAL RECORD (RTVSEQ)

Record(s) may be retrieved sequentially from a file once the file is defined and at least one record has
been stored into the file. (The file may have been defined by either a protected or an unprotected
program.) Each record in the file may be retrieved sequentially be repeatedly executing one RTVSEQ
call until an end-of-file indication is given., If there are n records in a file, the first RTVSEQ call will
retrieve the first record that was stored into the file, the nth RTVSEQ call will retrieve the last record
that was stored into the file, and the n + 1st RTVSEQ call will produce an end-of-file indication. For
each of the n calls, one record is retrieved along with its corresponding record pointer, so that the
record may be accessed directly. If there are no records in the file, the first call will produce an
end-of-file indication.

39520600 D 3-17 4

General information for retrieve sequential records is as follows:

° It is not necessary to retrieve all the records from the file.

° The first and subsequent records can be re-retrieved by a new call or by re-initializing the
current call record pointer.

A file should be locked with a file combination when a record is retrieved for updating. Such records
may be retrieved from a previously locked file if the same file combination that was used to lock the
file is specified. These retrieved and updated record(s) may be restored into the locked file via the
store direct record call using the same file combination. Note that sequential retrievals without a file
combination are permitted from a locked file; however, the status word indicates that the file was
locked. A record may be removed from a non-indexed file as it is retrieved. The first part of a
record of any desired length may be retrieved; however, the status word indicates that a short record
was retrieved.

A record may be retrieved, but cannot be removed from an indexed file using a retrieve sequential
request. A record is not retrieved sequentially if the record was previously removed from the file;
however, subsequent records which exist may be retrieved by repeating the same call. A record
cannot be retrieved if the file is not defined. An unprotected program may retrieve, but cannot
remove, a record from a file which was defined by a protected program, '

The retrieve sequential record request specifies:

° The file number of the file from which the record is being retrieved

° The file combination, if the file is to be locked, or the record that is to be retrieved from
a locked file

° Whether the record is to be removed from the file
° A buffer for returning the record pointer

° A buffer for receiving the record to be retrieved
° A temporary buffer for processing the request

° An indicator word, denoting the request's status upon completion (Figure 2-1).

" CAUTION

If a RTVSEQ call is repeatedly executed as a part of a
loop, the File Manager uses the information left in the
request buffer and the record pointer at the end of one
call as information for the next call in the loop. Hence,
these parameters must not be changed between calls in
the loop. The contents of the record buffer may be
changed between calls as the user desires. The record
length may be changed if the user wishes to vary the
number of words retrieved.

3-18 39520600 D

The format for retrieve sequential record call is as follows:

CALL RTVSEQ (filnum,filcom, recptr, recbuf, reclth, reqbuf, reqind)

Where: filnum

filcom

recptr

recbuf
reclth
reqbuf

reqind

is

is

is

is

is

the file number; it contains a positive integer identifying the file from which
the record is to be retrieved.

the file combination with the remove option; bits 0 through 14 contain a
non-zero number (if the file is or is to be locked), specifying the combination
(which is or is to be) used to lock the file; bit 15 set to a one indicates that
the record is to be removed from the file.

the record pointer set by the File Manager. It is a two-word array that con-
tains the mass storage address of the record just retrieved. Initially, both
words must be set to zero by the requester.

the record buffer; it is a non-preset array of reclth words, where the File
Manager transfers the retrieved record.

the record buffer length; it contains a positive integer specifying the length
of the record buffer.

the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

the file request status word. At the end of request processing the File
Manager sets the indicator bits as appropriate.

The Assembly language macro format is:

RTVSEQ
RTVSEQ*

filoum . .. Produces a call with an absolute address for the parameter list

filnum . . . Produces a call with a relative address for the parameter list as

for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program, as described

later in this section.

Error considerations (reqind) are as follows:

° RTVSEQ sets bits 14 and 15 (rejecting the request) if:

~filnum < 0

-recptr < 0

° RTVSEQ sets bit 15 (rejecting the request) if:

~filnum is released or not defined (bit 0 is also set).

~The user attempts to remove a record from a locked file without the proper combination
(bit 1 is also set).

39520600 D

3-19

~End-~of-file is detected (bit 3 is also set).
~A mass storage error occurs (bit 7 is also set).
-The user attempts to remove a record from an indexed file (bit 11 is also set).

-~-An unprotected request tries to remove a record from a protected file (bit 13 is also set).

RTVSEQ sets bit 1 (but does not reject the request) if the size of the record read was less than the
full record length. RTVSEQ sets bit 5 (but does not reject the request) if the record has been removed.

If a mass memory error occurs while attempting to release space, the message
F.M. ERROR 1 ' .

is delivered to the comment device.

3.2.3 EXAMPLES OF SEQUENTIAL REQUESTS
A computerized supermarket stores the orders of its customers in the new orders file, sequentially in
the order in which the orders are phoned in, The FORTRAN code in Example 4 is part of the code

executed each time a new order is entered into the computer system. Note that the record data is
stored beginning at word 2 of the record to allow for the header word.

EXAMPLE 4:

Program Comments

COMMON INPBUF{284}

DIMENSION IRECPT{2}.IRE®BF{12},IRECBF{285} 285-word output buffer reserved.
DIMENSION IDATA{284} T
EQUIVALENCE {IDATA{1},IRECBF{2}} Data starts at word 2 of buffer to

reserve word 1 for header.

C TRANSFER CUSTOMER NAME.LOCATION CODE.
C ROUTE NUMBER. AND ITEMS ORDERED FROM INPUT
C BUFFER TO RECORD BUFFER
DO 100 I=1.28Y4
100 IDATA{I}=INPBUF{I}
C STORE RECORD INTO NEW ORDERS FILE
IFLNUN=5
CALL STOSEQ{IFLNUM-IRECPT.IRECBF.285,IRE@BF,IREQID}
C CHECK FOR ERRORS
IF {IREQID.LT.O0} 6O TO 3000 9000 is label of user's error
recovery program.

3-20 | 39520600 D

In example 5 the new orders file described in Example 4 is processed to list all orders to be

delivered on a given route. The records in the file are retrieved sequentially. When a record is found
which corresponds to the given delivery route, the record is removed from the new orders file and
stored in the routed orders file.

The tests for end-of-file and previous record removal appear before any checks on the contents of the
record buffer, since it must first be ascertained that a record was actually retrieved. Records are
removed via direct retrieval, using the record pointer returned from the File Manager in the

sequential retrieve call. Note that the remove option code, bit 15 of the third parameter in the retrieve
direct calling list, is set to one to indicate that record removal is requested.

EXAMPLE 5:

Program Comments

DIMENSION IRECPT{2}.IREQBF{12}.IRECBF{285}
C RETRIEVE RECORD FROM NEW ORDERS FILE

IRECPT{1}=0D ‘ Record pointer must initially
IRECPT{2}=0 be set to 0.
10 IFLNUM=5

CALL RTVSEQ{IFLNUM,DO.IRECPT.IRECBF.285.IREQBF.IREQID}

C CHECK FOR ERRORS
IF {IREQID.LT.0} GO TO 9000 ' 9000 is identifier of error
' recovery routine.

C HAVE ALL RECORDS IN FILE BEEN READ
IF{AND{IREQID.BINE.D} GO TO 500 Checks status bit 3 (end= I
of-file)
C WAS RECORD PREVIOUSLY REMOVED
IF{AND{IREQID $20%.NE.O} 60 TO 10 Checks status bit 5 l
C IS ROUTE DIFFERENT FROM THE DELIVERY ROUTE
C BEING LISTED
IF {IRECBF{15}.NE.IROUTE} GO TO 10 User data formatted]

C ROUTE MATCHES DELIVERY ROUTE BEING LISTED
C REMOVE RECORD FROM NEW ORDERS FILE
20 CALL RTVDIR{IFLNUM.$8000,IRECPT-IRECBF 285, IREGBF,IREQID}
IF {IREQID.LT.D} GO TO 9000 Checks status bit 15 to find
' if record is to be removed;
9000 also removes record
routine.

C PRINT INFORMATION ON DELIVERY ROUTE LIST

39520600 D ‘ 3-21

Program Comments

C STORE RECORD IN ROUTED ORDERS FILE
IFLNUM=17
CALL STOSEQ{IFLNUM.IRECPTIRECBF285,IREQBFIREQID}
C CHECK FOR ERRORS
IF {IREQID.LT.O0} GO TO 9000
C GO READ NEXT RECORD
60 To 10
500 CONTINUE

3.3 INDEXED REQUESTS

3.3.1 STORE INDEXED RECORD (STOIDX):

Records may be stored indexed in a file once it is defined as indexed. A record is stored in the file by
its key value; its record pointer is returned to the caller so that the record may be accessed directly.
An indexed store is permitted in a locked file; the status word that is returned indicates the file was
locked.

I a file was defined indexed-linked more than one record may have the same key value. The second
and third words of the record are reserved for mass storage address of the linked record. In last-in/
first-out (LIFO) mode, this is the address of the previous record; in first-in/first-out (FIFO) mode,
this is the address where the next linked record will be stored. Since each indexed-linked record must
have these two words reserved for the linking pointers, indexed-linked records must be at least three
words long.

General information for store indexed records is as follows:

15
° The length of the record cannot exceed the specified maximum record length (27 - 1),
° If the file is not indexed-linked, not more than one record with the same key value can be
stored.
) A record cannot be stored indexed if either the file is undefined or the file is not defined

as indexed.

® An unprotected program cannot store a record in a file which was defined by a protected
program.

° If a record is the first to be stored into an indexed-linked file with FIFO linking, the
specified record length becomes the fixed record length for all subsequent records stored
in the file. If the record is not the first and the file is indexed-linked with FIFO linking,
the specified record length must be less than or equal to the length specified for the first
record. (Even though the specified length of subsequent records may be less than the ,
length of the first record, the fixed length will be used in storing all subsequent records.)

3-22 39520600 D

CAUTION

The store indexed request processor assumes that
three words preceding and one word following the
record buffer are part of the user's program.

The reason why the three words preceding the record buffer must be part of the user's program is
explained in the cautionary note in the Store Sequential Record section, The word following the record
buffer must be part of the user's program because as each record is stored into a file defined to have
FIFO linking, the File Manager creates an extra record which reserves the space to be used for
storing the next record. Thus, the pointer to the next record to be stored is immediately available
for storage in words two and three. The extra record is stored with a header word containing $8000
which signifies that the record is an extra record created by the File Manager for a FIFO-linked file.

The value $8000 is temporarily stored into the word following the record buffer. After the record is
transferred, the original contents of this word is restored. As for the three words preceding the
buffer, the caution is necessary to prevent possible problems in a multiprogramming environment.

The store indexed record request specifies:

The file number of the file where the record is being stored

The key value of ' the record being stored

A buffer for returning the record pointer

A buffer for information to be stored as the record

A temporary buffer for processing the request

An indicator word denoting the request's status upon completion (Figure 2-1).

The FORTRAN format for store indexed record call is:

CALL STOIDX (filnum, keyval, recptr, recbuf, reclth, regbuf, reqind)

Where:

39520600 D

filnum

keyval

recptr

recbuf

reclth

is

is

is

is

is

the file number; it contains a positive integer identifying the file into which
a record is to be stored.

the key value; it is an array of keylth words -
containing the key value of the record.

the record pointer set by the File Manager. It mustbe numeric for index-
ordered records; otherwise it may be alpha~-numeric. It is a two-word array
which contains the mass storage address of the record just stored.

the record buffer; it is an array of reclth words containing the record to be

stored.

the record length. It contains a positive integer specifying the length of the

record.

If the record is the first to be stored into an indexed-linked file with

FIFO linking, reclth becomes the fixed record length for all subsequent

stores.

If it is not the first store into the file, reclth must be less than or

3-23

equal to the length of the first record. (Even though reclth may be less than
the length of the first record, the fixed length will be used in storing all
subsequent records).

reqgbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.

The Assembly language macro format is:

STOIDX filnum . .. Produces a call with an absolute address for the parameter list
STOIDX* filnum . . . Produces a call with a relative address for the parameter list, as
for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program, as described
later in this section.

Error considerations (reqind) are as follows:

' STOIDX sets bits 14 and 15 (and rejects the request) if:
~filnum < 0.
~The record length > three words.

° STOIDX sets bit 15 (aind rejects the request) if:
-The file is released or has not been defined (bit 0 is also set).

-The record is too long or (FIFO index-linked files only) the record is not the standard
length of the first FIFO record (bit 2 is also set).

-More than one record has this key and the file was not defined as index~linked (bit 4 is
also set).

~-A mass memory error occurs (bit 7 is also set).

~There is no more file record space to store records (bit 8 is also set).
-The file was not defined as indexed (bit 11 is also set).

-An unprotected program attempts to store a record in a protected file (bit 13 is also set).
If the file is locked, the request is executed but bit 1 is set.

If more records have the same key value for an index-linked file, the request is executed but bit 4 is set.

3.3.2 RETRIEVE INDEXED RECORD (RTVIDX)

Indexed records may be retrieved using that index (key value) after the file is defined as indexed and at
least one record has been stored in the file. The file may have been defined by either a protected or
an unprotected program. A record is retrieved from the file by means of ifs key value. The mass
storage address of the record is returned to the caller so that the record may be accessed directly.

3-24 39520600 D

For update purposes, a record may be retrieved and the file locked with a file combination. More
records may be retrieved from the locked file only if the same or no file combination is used. These’
retrieved and updated records may be restored in the locked file using the store direct record call;

the same file combination must be used. An indexed retrieval, which attempts to lock an already
locked file with a different combination, is queued; the request is not executed until the file is unlocked
by the combination that currently locked it.

An indexed retrieval without a file combination is permitted from a locked file; however, the status
board indicates that the file was locked. Provision is also made for removing a record from a file as
it is retrieved, The first n words of an n + m word record may be retrieved; if this is done, the status
word indicates a short record was retrieved.

If a record has a non-unique key value (i.e., the file has index~linked records), the status word
associated with the retrieval indicates that other records have the same key. To retrieve all the
records in the same key value series, the requesting program should repeat the RTVIDX call (using
the same key value) until the status word indicates no more records exist in this link. After a repeated
retrieval starts (to retrieve all records with the same key), any new records being concurrently added

to the link are ignored.

General information for retrieving indexed record is as follows:

° It is not necessary to retrieve all the index-linked records.
] The first and subsequent records with the same key value can be re-retrieved by a new call
- or by re-initializing the current call (refer to the recptr parameter).
° A record cannot be retrieved indexed if the record was previously removed from the file.
° A record cannot be retrieved indexed if either the file or the key was not defined.
° An unprotected program cannot remove a record from a file which was defined by a protected
program,
. Records in an indexed-linked file must be a minimum of three words in length.

The retrieve indexed request specifies:

° The number of the file from where the record is being retrieved

° The key value of the record

° The file combination if the file is to be locked or the record is to be retrieved from a locked
file

° Whether the record is to be removed from the file

) A Dbuffer for returning the record pointer

'y A buffer for receiving the record to be retrieved

) A temporary buffer for processing the request

° An indicator word denoting the request's status upon completion

39520600 D 3-25

CAUTION

If a RTVIDX call is repeatedly executed to retrieve all
records with the same key value from an indexed-linked
file, the File Manager uses the information left in the
request buffer and the record pointer at the end of one
call as information for the next call. Hence, these
parameters may not be altered between calls in the loop.
If a record with a different key value is to be retrieved,
the key value should be changed and the record pointer
set to zero. The record length and record buffer con-
tents of RTVSEQ may be changed if the user desires,

The format for retrieve indexed record call is:

CALL RTVIDX (filnum,keyval, filcom, recptr, recbuf, reclth, regbuf, reqind)

Where: filnum

keyval

filcom

recptr

recbuf

reclth

reqgbuf

reqind

is

is

is

is

is

the file number; it contains a positive integer identifying the file from which
a record is to be retrieved.

the key value; it is an array of keylth words containing the key value of the
desired record :

the file combination and the remove option; bits 0 through 14 contain a non-
zero number specifying the combination; bit 15 set to one indicates that the
record is to be removed from the file. The combination is used to remove/
retrieve from a locked file or to lock the file while retrieving so that no other
user disturbs the records being updated.

the record pointer set by the File Manager. It is a two-word array which
contains the mass storage address of the retrieved record., X the file is
indexed=-linked, both words must initially be set to zero by the requestor.

the record buffer; it is a non-preset array of reclth words, where the File
Manager transfers the retrieved record.

the record buffer length; it contains a positive integer specifying the length of
the record buffer. .

the file request buffer; it is a non-preset array of 12 words which the File

Manager uses to process the request.

- the file request status word. At the end of request processing, the File

Manager sets the indicator bits as appropriate.

The Assembly language format is:

RTVIDX
RTVIDX*

filmmm . .. Produces a call with an absolute address for the parameter list

filoum . .. Produces a call with a relative address for the parameter list, as

for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program, as described

later in this section.

® 3-26

39520600 D

Error considerations (reqind) are as follows:

° RTVIDX sets bits 14 and 15 (rejecting the request) if:
-filnum = 0.
~The record < 3 words in length.
° RTVIDX sets bit 15 (rejecting the request) if:
-The file is released or not defined (bit 0 is also set).
~-The user attempts to remove the record from a locked file (bit 1 is also set).
-The record is removed or does not exist (bit 5 is also set).
-A mass storage error occurs (bit 7 is also set).
-The file is not indexed (bit 11 is also set).

-An unprotected program attempts to remove a record from a protected file (bit 13 is also set).

RTVIDX sets bit 1 but executes the retrieval request if the file was locked. If a mass memory error
occurs while attempting to release space, the message

F.M. ERROR 1
is delivered to the comment device.

RTVIDX sets bit 2 but executes the request if less than the full record was requested to be read,

3.3.3 EXAMPLES OF INDEXED REQUESTS

A computer system in a medical clinic includes in its files a patient data file, indexed by a special
file security number, The FORTRAN code in Example 6 shows how a record is stored indexed into
the file. The patient's file security number is in words 1, 2, and 3 of the array ISOCSC. The key
value is not part of the record data in this case.

EXAMPLE 6:

Program Comments

DIMENSION IRE@BF{12}.IRECBF{31}
DIMENSION IRECPT{2}.ISOCSC{3}

C PATIENT DATA HAS BEEN STORED IN IRECBF.
C STORE RECORD IN FILE.
IFLNUM=15

CALL STOIDX{IFLNUM-ISOCSC-IRECPT-IRECBF.31.IREQBF.IREQID}
C CHECK FOR ERRORS
IF {IRERID.LT.0} GO TO 5000 5000 is label of storage error

‘recovery program.

39520600 D 3-27 @

A hospital laboratory computer system includes an indexed-linked file of laboratory test results. Each
record in the file consists of the laboratory results for a given test for a given patient. The file is

l indexed by the patient's file security number. All the records for a given patient are FIFO-linked.
The FORTRAN code in Example 7 is part of a program used to print a laboratory report on a given
patient as requested by a physician. The retrieve indexed request is repeated until all records for the
patient have been retrieved.

EXAMPLE 7:

Program Comments

DIMENSION IREQ@BF{12},IRECBF{31},IS0CSC{3}.IRECPTI{C}

C SOCIAL SECURITY NUMBER IS IN ISOCSC ARRAY
C PROCEED TO PREPARE LAB REPORT ON PATIENT

IFLNUM=2S

C ZERO OUT RECORD POINTER ARRAY TO INDICATE

C THE START OF A LOOP TO RETRIEVE ALL RECORDS FOR THIS KEY VALUE
IRECPT{1}=0
IRECPT{22}=0

10 CALL RTVIDX{IFLNUM-IS0CSC.0.IRECPT.IRECBF+31,IRE@BF-IREQID}
€ CHECK FOR ERRORS
I IF{IREQID.LT.0} 6O TO 9000 9000 is label of retrieval error
recovery program,

€ WAS RECORD PREVIOUSLY REMOVED-
| IF {AND{IREQID.$20}.NE.OF GO TO 10 Status word, bit 5
C PROCESS DATA FROM THIS RECORD FOR REPORT

C GO BACK TO READ NEXT RECORD

! C WAS THIS THE LAST RECORD FOR THIS PATIENT Status word, bit 4
100 IF {AND{IREQID.%10}.E@.0} GO TO 500
G0 TO 10
! 500 CONTINUE Last record in line already
retrieved

3-28 39520600 D

3.3.4 RETRIEVE INDEXED-ORDERED RECORD (RTVIDO)

Records may be retrieved indexed-ordered from a file once the file has been defined and it has been
defined as indexed-ordered and at least one record has been previously stored indexed in the file.
(Index-ordered key values are pure numerics only.) The file may have been defined by either a pro-
tected or an unprotected program. Each record in the file may be retrieved indexed-ordered by
repeatedly executing one RTVIDO call until an end-of-file indication is given, If itis desired to
retrieve records commencing with the record with a specific numeric key value (or if this record does
not exist, the first record with a larger key value), the first RTVIDO call retrieves the record in the
file that has the first numeric key value higher than the one specified. "The nth RTVIDO call retrieves
the record in the file that has the highest numeric key value, and the n + 1st RTVIDO call is rejected.
The status word indicates an end-of-file condition as the cause of the rejection. For each of the n calls,
one record is retrieved. The record's key value is returned in keyval; the corresponding record
pointer is returned in recptr so that the record may be accessed directly. If there are no records in
the file, the first call produces an end-of-file indication. I the user program requires retrieval of
all the records in the file, keyval should be set to the lowest possible value (e.g., 1).

General information for retrieving indexed-ordered record is as follows:

° It is not necessary to retrieve all the records from the file.
° The record with the lowest key value or the record with a specified key value (as well as
all subsequent ordered records) can be re~retrieved either by a new call or by re-initializing

the current call (refer to the recptr parameter).

° For update purposes, a record may be retrieved and the file locked with the file combina-
tion, More records may be retrieved from the locked file only if the same or no file
combination is used. These retrieved and updated records may be restored in the locked
file using the store direct record call; the same file combination must be used. An
indexed-ordered retrieval which attempts to lock an already locked file with a different
combination is queued; the new request is not executed until the file is unlocked.

° An indexed retrieval without a file combination is permitted from a locked file; however,
the status word indicates that the file was locked. Provision is also made for removing a
record from a file as it is retrieved. The first n words of an n + m word record may be
retrieved; however, if this is done, the status word indicates a short record was retrieved.

° If a record is retrieved and at least one more record exists with the same key value (which
implies the file is indexed-linked), the status word indicates that more records exist with |
the same key value. The continued execution of the RTVIDO call retrieves all the records
with this key value. Following these retrievals the File Manager proceeds as before.

o A record cannot be retrieved indexed-ordered if either the file or the key was not defined.
Moreover, an unprotected program cannot remove a record from a file which was defined
by a protected program,

The retrieve indexed-ordered request specifies:

° The file number of the record from where the record is being retrieved
~ ° A buffer for returning the key value

) The file combination, if the file is to be locked or the record is to be removed from a B
locked file

~~~~~ 39520600 D ) 3~29



° Whether the record is to be removed from the file

° A buffer for returning the record pointer

. A buffer for receiving the record to be retrieved

° A temporary buffer for processing the request

° An indicator word denoting the request's status upon completion

° Records in an indexed-linked file must be a minimum of three words in length
CAUTION

If a RTVIDO call is repeatedly executed to retrieve
records starting with a given key value, then the
information left in the request buffer, the key value,
and the record pointer at the end of a call are used
by the File Manager for the next call. Hence,

these parameters must not be altered between
successive calls. The record length and record
buffer contents of RTVSEQ may be changed if the
user desires. ‘

The format for retrieve indexed-ordered record call is:
CALL RTVIDO (filnum, keyval, filcom, recptr, recbuf, reclth, reqgbuf, reqind)

Where: filnum is the file number; it contains a positive integer identifying the file from which
a record is to be retrieved.

keyval is the key value, it contains an integer equal to or less than the lowest numeric
key value desired (but greater than any smaller keyval for a record not to be
retrieved). Otherwise keyval contains a positive integer specifying the
numeric key value of the desired record. Following the retrieval, keyval
contains the actual key value of the retrieved record.

filcom is the file combination and the remove option; bits 0 through 14 contain a non-
zero number specifying the combination; bit 15 set to one indicates that the
record is to be removed from the file. The combination is used to remove/
retrieve from a locked file or to lock the file while retrieving so that no
other user disturbs records being updated.

recptr is the record pointer set by the File Manager. It is a two-word array which
will contain the record pointer (mass storage address) of the record.
Initially, both words must be set to zero by the requestor.

recbuf is the record buffer; it is a non~-preset array or reclth words, where the File
Manager transfers the retrieved record.

reclth is the record buffer length; it contains a positive integer specifying the length
of the record buffer.

3-30 39520600 D



reqgbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.

The Assembly language macro format is:

RTVIDO filnum . .. Produces a call with an absolute address for the parameter list

RTVIDO* filnum . .. Produces a call with a relative address for the parameter list, as
for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program, as described
later in this section.

Error considerations (reqind) are as follows:

° RTVIDO sets bits 14 and 15 (rejecting the request) if:
~filnum < 0.
-reclth < 0.

~reclth < three words if this is an index-linked file.

° RTVIDO sets bit 15 (rejecting the request) if:
-The file is released or not defined (bit 0 is also set).

~The file is locked and an attempt is made to remove a record using the wrong combination
(bit 1 is also set).

-A mass memory error occurs (bit 7 is also set).
~The file is not indexed-ordered (bit 11 is also set).

-An unprotected program attempts to remove a record from a protected file (bit 13 is also
set).

RTVIDO sets bit 1 but executes the request if‘ the file is locked with combination filcom. RTVIDO sets
bit 2 but executes the request if less than the full record is requested. RTVIDO sets bit 3 but executes
the request if end of file is found.

If a mass memory error occurs while attempting to release space, the message

F.M. ERROR 1

is delivered to the comment device.

39520600 D 3-31 06



3.3.5 EXAMPLE OF INDEXED-ORDERED REQUEST

The results of a psychological test have been coded and stored into an indexed-ordered file called the
results file. Each record in the file contains test results for one subject. Each record is indexed
I by the age of the subject. All records for subjects with the same age are FIFO index-linked. The age

groups are ordered by the key value age. A schematic diagram of the contents of the file is shown
in Figure 3-1.

J. J. JONES > M. BAILEY | .. »| B. ALSPACH
AGE 17 AGE 17 AGE 17
v
D. DAY | T. PHILLIPS | . | B. SUBERI
AGE 18 AGE 18 AGE 18
C. H. SEDQWICK | L. E.ROVNER A. L. SHENK
AGE 70 " AGE 70 > oot »1 AGE 70

Figure 3-1. Schematic Representation of Indexed-Ordered, Indexed-Linked File Example

3-32 39520600 D



The FORTRAN code in Example 8 shows part of a program to do a statistical analysis on the results
from all subjects with ages 25 through 35. The record pointer array is initially set to zero. Each set
of calls for a given value of IAGE retrieves the results for all subjects with that age. If there are no
subjects with that age, the first record for a larger age will be retrieved. To be sure that only records
for subjects aged 25 to 35 are included in the data to be analyzed, a test is made on IAGE after a record
is retrieved.

EXAMPLE 8:
Program Comments
DIMENSION IRECPT{2},IREAQBF{12},IRECBF{31}

C INITIALIZE TOTALS FOR STATISTICAL CALCULATIONS-

ITOT1=0 Declares 11 buffers, one
ITOT1L=0 for each age group
IFLNUM=100

IAGE=25

IRECPT{1}=D
IRECPT{2}=0
10 CALL RTVIDO{IFLNUM.IAGE+O0.IRECPT-IRECBF,31.IREQBF.IREQID}
C CHECK FOR ERRORS .
IF{IREQID.LT.0} 6O TO 9000 9000 is identifier of error

C HAS RECORD BEEN REMOVED recovery routine.
IF{AND{IREQID,%20}.NE.O} GO TO 10 Checks bit 5 to find end of

C CHECK THAT AGE IS WITHIN SPECIFIED RANGE linked records

IF {IAGE. GT. 35} 60 TO LOO
C PROCESS DATA FOR THIS RECORD

ITOT1 =ITOT1 + IRECBF{l2}

ITOTE =ITOTE + IRECBF{l3}

ITOT10 =ITOT10 + IRECBF{21}
C 60 BACK TO READ NEXT RECORD

GO TO 10
C PRINT STATISTICAL RESULTS

LOO0 CONTINUE

39520600 D 3-33



3.4 DIRECT REQUESTS FEAN ST

3.4.1 STORE DIRECT RECORD (STODIR) .

The function of the store direct request is to update records. Records may be stored directly in a file
once it is defined and the file has been locked by a retrieve request. A record is stored in the file
using the record pointer previously provided when the record was either stored or retrieved by non-
direct methods.

General information for the store direct record is as follows:

An update can be done only if the same file combination is supplied that was used to lock the
file. This request also permits the file to be unlocked after the record has been updated
and stored.

A record cannot be stored directly if the file was not defined, not locked, or if the file
combination is incorrect.

An unprotected program cannot store direct because of the possibility of destroying a
protected file by using an incorrect record pointer.

The store direct record request specifies:

Ty

The number of the file where the record is being stored
The file combination previously used to lock the file
Whether the file should be unlocked

A buffer containing the record pointer

A buffer of information to be restored as the record

A temporary buffer for processing the request

An indicator word, denoting the request's status upon completion (Figure 2-1).

The FORTRAN format for store direct record call is:

CALL STODIR (filnum, filcom, recptr, recbuf, reqbuf, reqind)

Where:

3~34

filnum is the file number; it contains a positive integer identifying the file in which a
record is to be stored.

filcom is the file combination and the file unlock option. Bits 0 through 14 contain a
non-zero number which is identical to the combination that was used to lock
the file; bit 15 set to one indicates that the file will be unlocked.

recptr is the record pointer. It is a two-word array containing a pointer to the mass
' storage address where the record is to be stored.

recbuf is the record buffer; it is an array of reclth words containing the record to be
stored.

39520600 D



reqgbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.
The Assembly language macro format is:

STODIR filnum . .. Produces a cdll with an absolute address for the parameter list
STODIR* filnum . ., . Produces a call with a relative address for the parameter list, as
for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program, as described
later in this section.

Error considerations (reqind) are as follows:

° STODIR sets bits 14 and 15 (rejecting the request) if filoum = 0,
° STODIR sets bit 15 (rejecting the request) if:
-A file is released or not defined (bit 0 is also set).
-A file is not locked (bit 1 is also set).
-A mass memory error occurs (bit 7 is also set).
~The address for storing the record is not in FILMGR's disk space (bit 9 is also set).
-A file is locked with the wrong combination (bit 10 is also set).
-An unprotected program attempts to store into a protected file (bit 13 is also set).

3.4.2 RETRIEVE DIRECT RECORD (RTVDIR])

The function of the retrieve direct request is to provide:

e . A fast method of retrieving frequently accessed records

° A method for retrieving records linked together by their record pointers in the user's own
list structure

Records may be retrieved directly from a file once the file is defined and at least one record has been
stored in the file. The file may have been defined by either a protected or an unprotected program. A
record is retrieved from the file through a record pointer previously provided when the record was
either stored or retrieved by non-direct methods

39520600 D 3-35 @



General information for retrieve direct record is as follows.

The user may form any number of complex list structures as long as they conform to the
File Manager file structure. One list structure is provided for indexed-linked files.

For LIFO-linked files, the record pointer of the last stored record with the same key value
is stored by the File Manager in the second and third words of the record currently to be
stored. These records may then be retrieved directly on a LIFO basis by referencing the
second and third words of the last retrieved record as the record pointer. The end of

the list is signified by the record pointer being zero (second and third words both zero).
For the FIFO~linked files, the File Manager stores the record pointer of the next record
with the same key value to be stored in the second and third words of the record currently
to be stored. These records may then be retrieved directly on a FIFO basis by refer-
encing the second and third words of the last retrieved record as the record pointer. The
end of the list is signified when the request indicator for the retrieve direct request indi-
cates that the record does not exist. This condition occurs because the File Manager sets
the removed flag in the extra record. '

For update purposes, a record may be retrieved and the file locked with a file combination.
More records may be retrieved from the locked file only if the same or no file combination
is used. These retrieved and updated records may be stored into the locked file via the
store direct record call, only if the same file combination is used. Note that a direct
retrieve which attempts to lock an already locked file with a different combination is
queued; it is not executed until the file is unlocked with the current file combination.

A direct retrieve without a file combination is permitted from a locked file; however, the
status word indicates that the file was locked. Provision is also made for removing a
record from a non-indexed file as it is retrieved (caution should be exercised on removing
records which are part of a list structure). The first part of a record of any desired
length may be retrieved; however, the status word indicates that there was a short record
retrieval.

A record may be retrieved but cannot be removed from an indexed file using a retrieve
direct request. A record is not retrieved directly if the record was previously removed
from the file. A record cannot be retrieved if the file is not defined, An unprotected
program cannot remove a record from a file which was defined by a protected program.

The retrieve direct record request specifies:

3-36

The number of the file from where the record is being retrieved

The file combination, if the file is to be locked or the record is to be retrieved from a
locked file

Whether the record is to be removed from the file .
A buffer containing the record pointer

A buffer for receiving the record to be retrieved

A temporary buffer for processing the request

An indication word, denoting the request's status upon completion (Figure 2-1).

39520600 D



The FORTRAN format for retrieve direct record call is:
CALL RTVDIR (filnum, filcom, recptr, recbuf, reclth, reqgbuf, reqind)
Where: filnum is the file number; it contains a positive integer identifying the file from which

a record is to be retrieved.

filcom is the file combination and the remove option; bits 0 through 14 contain a
non-zero number specifying the combination; bit 15 set to one indicates that
the record is to be removed from the file. The combination is used to
remove/retrieve from a locked file, or to lock the file while retrieving so
that no other user disturbs the records being updated.

recptr is the record pointer; it is a two~word array containing the record pointer mass-
storage address of the record to be retrieved.

recbuf is the record buffer; it is a non-preset array of reclth words, into which the
File Manager transfers the retrieved record.

reclth is the record buffer length; it contains a positive integer specifying the length
of the record buffer. '

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqgind is the file request status word. At the end of request processing, the File
Manager sets the indicator bits as appropriate.

The Assembly language macro format is:

RTVDIR filnum . .. Produces a call with an absolute address for the parameter list
RTVDIR* filoum. .. Produces a call with a relative address for the parameter list, as
for a run-anywhere program

Note that to use the macro call, an FLDF macro call must be included in the program as described
later in this section.

- Error considerations (reqind) are as follows:

° RTVDIR sets bits 14 and 15 (rejecting the request) if:
=filnum = 0,
-Record length = 0 words

° RTVDIR sets bit 15 (rejecting the request) if:
~The file is released or not defined (bit 0 is also set).

~The user program attempts to remove the record without the correct file combination
- (bit 1 is also set).

-A mass memory error occurs (bit 7 is also set).
~The user program attempts to remove an indexed file (bit 11 is also set).

-An unprotected program attempts to remove the record from the protected file (bit 13
- is also set).

39520600 D 3-37 @



If the file is to be locked, RTVDIR sets bit 1 and executes the request. If the record requested is
shorter than the stored record, RTVDIR sets bit 2 and executes the request.

If a mass memory error occurs while attempting to release space, the message
F.M. ERROR 1

is delivered to the comment device.

3.4.3 EXAMPLES OF DIRECT REQUESTS

In a hospital system a file called the patient file has been defined by a protected program. Patient
records have been stored into the file.

The FORTRAN code in Example 9 is part of a protected program. In the program the file is searched
for a given patient record. The file is then locked. This is necessary before the direct store request.
The record is updated and stored back into the file via a direct store request. The file is also unlocked
by the direct store request.

Note that if the code in Example 9 were part of an unprotected program, the patient file could not be
updated, since the store direct request would then be illegal. Even if the patient file were defined as
indexed, and if the key of the found record were known, a store indexed request could not be used to
store the updated record since the original record would still be in the file. The original record could
not be removed by a retrieve indexed request from an unprotected program.

EXAMPLE 9:

Program Comments

INTEGER FILNUMAFILCOM.RECPTR,RECBUF,RECLTH.REQBUFREQIND PATLOC
DIMENSION RECPTR{2}+RECBUF{H41}.REQBUF{12}

C RETRIEVE DESIRED RECORD FROM FILE 10
FILNUM = 10

C SET THE FILE COMBINATION TO ZERO {NO FILE COMBINATION}

FILCOM = O
C CLEAR RECORD POINTER TO INITIALIZE THE RETRIEVE REQUEST
RECPTR{1} = 0O
RECPTR{2} = O
C USER TO RETRIEVE A RECORD 4l WORDS LONG
RECLTH = 4l
C RETRIEVE RECORDS SEQUENTIALLY FROM FILE 10 LOOKING FOR
C PATIENT RECORD
1000 CALL RTVSEQ{FILNUM.FILCOM.RECPTR+RECBUF.RECLTH.

REQBUF -REQIND}
C GO TO 9998 IF SEQUENTIAL RETRIEVE ERROR
IF {REQIND.NE.OF 6O TO 9318 More than one error recovery

routine is needed.

© 3-38 39520600 D



Program Comments

THE RECORD FORMAT IS THE RECORD LENGTH IN WORD 1.+ Tuwo Tuwo-
WORD RECORD POINTERS IN WORDS 2 THRU 5. THE PATIENT LOCAT-
ION IN WORD b~ THE MEDICATION CODE IN WORD ?. AND PATIENT
DATA IN WORDS 8 THRU 4l

A O " AN AN

IF PATIENT LOCATION DOES NOT MATCH. CHECK NEXT RECORD
IF {RECBUF{E}.NE.PATLOC} 60 TO 1000

PATIENT RECORD WITH THE GIVEN PATIENT LOCATION FOUND

GENERATE UNIQUE FILE COMBINATION TO LOCK FILE

NOTE**ONLY THIS METHOD SHOULD BE USED TO GENERATE FILE COMBINATIONSxx
2000 ASSIGN 2000 TOo FILCOM

A Y NN NN

N N NN

LOCK THE FILE FOR UPDATE

CALL LOKFIL{FILNUM.FILCOM.REQBUF.REQIND}
C 60 TO 9997 IF LOKFIL ERROR
IF {REQIND.NE.D¥} GO TO 9997

OO NN

UPDATE PATIENT RECORD WITH MEDICATION CODE
RECBUF {7} = MED(COD
C SET FILE COMBINATION TO UNLOCK THE FILE AFTER THE UPDATE
FILCOM = FILCOM + %8000
C STORE UPDATED RECORD FOR PATIENT DIRECTLY BACK INTO FILE 10
CALL STODIR{FILNUM.FILCOM.RECPTR.RECBUF.REQRBUF.REQIND}
C GO TO 9996 IF DIRECT STORE ERROR
IF {REQIND.NE.D¥} 6O TO 999b

39520600 D 3-39



In Example 5 we had an example of a direct retrieve request used to remove a record from a non-indexed
file. Note in this example that if file 5 had been an indexed file, the direct retrieve request could not
have been used to remove the record. If file 5 were indexed and if the key value were contained in the
record data, the key value could be extracted from the record and used to retrieve and remove the
desired record by means of a retrieve indexed request.

Statement 20 in the code listed in Example 5 would be changed in the case of an indexed file, The
corresponding FORTRAN code for an indexed file is shown in Example 10.

EXAMPLE 10:

C REMOVE RECORD FROM NEW ORDERS FILE.
C KEY VALUE IS CONTAINED IN
C WORDS 41 AND 42 OF RECORD
20 CALL RTVIDX{IFLNUM-IRECBF{41}.,48000,IRECPT,IRECBF,
285+ IREQBF-IREQID}
C CHECK FOR ERRORS
IF{IREQID.LT.0} GO TO 9000

3.5 ASSEMBLY LANGUAGE COMMUNICATION WITH
THE FILE MANAGER

3.5.1 CALLING SEQUENCES WITHOUT USE OF MACROS

Calling sequences written in Assembly language which are intended to communicate with File Manager
subprograms may have the following form, where flrgst is the name of a File Manager routine and
flrgst is declared as an external in the user's program.

LOC RTJ flrgst

LOC+1 (RTJ flrgst is a two-word instruction)
LOC+2 Address of argument 1

LOC+3 Address of argument 2

LOC+4 Address of argument 3

LO.C+N Address of argument N

LOC+N+1 Program resumes

3-40 : ' 39520600 D



3.5.2 USE OF FLDF MACROS

Macros from the macro library, described earlier, may be used to generate File Manager calls.
When one or more macro is used in a program to make a File Manager call, an FLDF macro call
must be included in the program unit. The FLDF macro does not generate executable code; there-
fore the call to FLDF must be positioned in the program so that it will not be executed. For example,
it could be placed in a subprogram before the first entry point, or at the end of a program, or within
the body of the program preceded by a jump instruction to bypass the nonexecutable code in the macro.
The format of the FLDF macro call is:

FLDF filnum, maxrl, lu, numekv, keylth, filcom, reclth

Each parameter in the calling list may be a constant or a variable name., I it is a variable name, it
must correspond to the actual value desired, as in an EQU statement, and not to the location containing
the desired value. The macro defines the locations by affixing two letters to the front of the file num~
ber parameter (filnum). For this reason, filnum cannot be more than four characters long. The
macro places the values of the appropriate locations into the FLDF calling list. The locations defined
by the macro are as follows:

Parameter Location Comments
filnum FN filnum'
maxrl MR 'filnum'
lu LU'filnum'
numekyv NK'filnum'
keylth KL'Yilnum'
filcom FC'filnum'
reclth RL:ﬁlnum: These are initially equal to 12, 0, and 0;
regbuf RB'filnum' therefore they need not be specified in
recptr Rl? filnun: the FLDF macro call (above) since they
reqind RI'filnum are fixed constants.

Where: filnum is the four-character file number parameter

To change a parameter's value, the value of the contents of the corresponding macro-defined location
must be changed. Recptr is initially set to zero by the macro. Thereafter, the user must set recptr to
zero for requests that require it. If more than one file is defined, more than one macro may be used.
Otherwise, the values of the parameters in the FLDF macro must be changed to correspond to the new
file. Whenever a File Manager request is made, all the values needed by the request must have been
previously stored in the corresponding locations defined by the macro. I the lu parameter in the FLDF
calling list is blank, the logical unit is set to 8, the normal library unit,

The following is an example of a program making File Manager requests using two files with the
corresponding FLDF macros. The macro expansion is included in the following listing:

39520600 D 3-41



Program Comments

* DEFINE A FILE DEFINE A FILE
CONT DEFFIL 1
EXT DEFFIL
T{RTJ*' DEFFIL

ADC FN14MR14LUL~RBLARIL, Defined by MAC FLDF , (below)

NOTE

The same parameters used to establish

a call using the CALL FORTRAN request
must also be used here; e.g., for DEFFIL,
the parameter list must be filnum, maxrl,
lu, regbuf, regind. For STOSEQ, the
parameter list must be filnum, recptr,
recbuf reclth. reqbuf reqind. Param-
eters that generate macro code must be
in the defining statement and must be
separated by commas in that statement;
however, parameters that do not generate
macro code and that follow after all other
parameters that do generate such a code
may be omitted. All parameters are
included in the ADC sequence.

* TAKE STATUS OF THE FILE i ate
CSTATEL 1L STATUS A FILE Parameter list; fw, mk, bd
: (see below)
(LDA RIL fn parameter
IFC aNE 4
AND MASK STATUS ml parameter
4 EIF
IFC aNEa
SAZ 2 NOTHING TRUE
JMP h JUMP TO BD IF ANY TESTED] bd parameter
LEIF STATUS BITS ARE SET

* STORE SEQUENTIALLY INTO THE FILE
STOSEQ 1.BUFIN.2Y4

[EXT STOSER \
1FC 2Y44NE 4 Only the reclth needs to generate

LDA =X24 code. Other parameters are
STA RL1 constants.
T{ EIF
RTJ+ STOSE@ STORE IN
SEQUENTIAL
FILE 1

LADC FNLaRPL+BUFIN4RL1LaRBL4RIL

T Macro expansion

® 3-42 ‘ 39520600 D



Program

* DEFINE A FILE
DEFFIL 2
EXT DEFFIL
RTJ+ DEFFIL

ADC FN2aMR241LU24RB24RI2

14

Equ NUMEKV
L

X DEFINECSKELETON PARAMETER LIST FOR FILE 1

FLDF 1+9343424042Y4
FiNY ADC 1
MRY ADC 93

IFC 1EQa
LUl ADC a

EIF

IFC - aNE4
LUL ADC

4 EIF

RBL BZS RB1L{12%}
RI1 BZS RIL{1}

NK1L  ADC 3
KLL  ADC 1
FCL  ADC O
RLL ADC 24
LRPL  ADC 0.0

* DEFINE SKELETON PARAMETER LIST FOR FILE 2
?UHEKV

MAC2 FLDF 2193104110431
FN2 ADC 2

MR2 ADC 93

IFC 1EQa
LUz ADC a

EIF

IFC aNE4
Lu2 ADC

14 EIF

RB2 BZS RB2{12}
RIZ2 BZS RI2{1}

NK2 ~ ADC  NUM
KL2  ADC 1
FC2  ADC O
RL2  ADC 31,
| RP2 ~ ADC 04D
END '

1 Macro expansion

39520600 D

DEFINE A FILE

Comments

If lu is undefined, lu8 is
assigned.

12 word processing buffer

Status word must initially
be zeroed,

Two word record pointer

See comments for file 1 skeleton .

3-43 o



3.5.3 A MACRO TO TEST REQUEST INDICATOR BITS ON RETURN FROM A FILE

MANAGER CALL

The file status macro, STATFL, provides the user with an easy method of getting the request indicator
word, masking specified error conditions, and giving control to a specified error routine if errors

are present, A file status of zero implies that no errors occurred on the last file request. Forms of
the macro call are as follows: ’

STATFL
STATFL
STATFL
STATFL

Where: In

mk

bd

B 3-44

fn, mk, hd

fn

fn, mk

fn, mk, bd

is

is

is

the file number

the mask that is used to form the logical product with the request indicator,
(If mk is left blank, only the status is placed in the A register.) The
terminator, such as the dash (-) in the fourth example, determines the
addressing mode used on the AND instruction and may be a -, +, *, or blank.

the program label where control is given if the logical product of mk and the
request indicator is non-zero. If bd is left blank, no code will be generated
to test the request indicator status. In this case the logical product of the
request indicator and the mask is left in the A register at the end of the
macro and may be tested by the user.

39520600 D



TIME REQUIREMENTS 4

In this section, the access rate equations are given in terms of the number of accesses for each
storage/retrieval method and the transfer rate for the mass memory device. Next, an example
illustrates the calculation of the access rates. The equations for the number nf accesses and transfer
rates are derived in Appendix D from the definition of the file structure in Appendix B and the
characteristics of the mass memory devices (disk and drum).

DEFINITIONS
The following terms will be used in this section:

. Seek time — The time required for the disk arm to travel from a given disk cylinder to the
disk cylinder to be accessed. (A drum has no seek time.)

° Latency — The time required for a mass memory device to travel from the data to be
accessed to the read heads within a given track,

To the definitions given in Appendix C, the following symbol definitions are added:

. AR — Access rate

° NA — Number of accesses

° TR — Transfer rate

° SS — For sequential store

™ NSR — For next sequential retrieve
° ASR — For any sequential retrieve
° IS — For indexed store

° IR — For indexed retrieve

° DS — For direct store

° DR — For direct retrieve

. DK — For disk

. DKR — For disk read
° DKW — For disk write
) DM — For drum

° f(ro) — Remove option function (a one if the record is to be removed, otherwise zero)

39520600 D ' 4-1



° SEEK — Average seek time of the disk

° TAT — Average latency of mass memory device

' LAT — Maximum latency of mass memory device

° TWR — Transfer \;ford rate of mass-memory device

° IUNF — Initial usage for non-indexed file

. IUIF — Initial usage for indexed file

° TUNF — Terminal usage for non-indexed file

. TUIF — Terminal usage for indexed file

. NFISSS — Number of file information segments with the same scatter code
ASSUMPTIONS

-

The access rate equations are approximations in that they assume the File Manager software is in core
and its overhead is negligible, and that the initial and terminal usage (see Sections D.1.4 and D.1.5) of
a file can be neglected if a fairly large number of records are accessed. Note that it is also assumed
that the record lengths are small (e.g., RL = 93) for the disk transfer rates, that there are no key
information segment overflow blocks (to simplify the derivation), and that the assumptions of Section
C.1.2 are true.

4.1 ACCESS RATE EQUATIONS

The access rate for any of the storage/retrieval methods is found by taking the product of the number of
accesses required by that method and the transfer rate of the mass memory device, i.e.,

AC = NA - TR

4.1.1 SUMMARY OF ACCESS EQUATIONS

The equations in this section are derived in Appendix D. Note that some of the access rate equations in
this section give access rates for record storage. These equations assume that any needed space will
be available in the file space list. If this is not the case, additional accesses from the file space pool
will be necessary to obtain the space. These additional accesses may significantly add to the number of
accesses. To maximize use of the file space list and thereby minimize the number of file space pool
accesses, refer to Section 2.

The following summary is based on derivations from Appendix D and assumptions from the beginning of
this section.

1. Number of accesses to store a sequential record as a part of a loop to store all the
sequential records in one file record block:

RL
N = 4 ——
ASS 1 MAXR L

4-2 39520600 D



2. Number of accesses to retrieve the next sequential record:

=1+
NA op = 1 f(ro)
3. Average number of accesses to retrieve any sequential record:
NR
= — +
NA ASR 2 f(ro) |

4, Number of accesses to store an indexed record as a part of a loop to store all the indexed
records in a file record block:

RL
= 8§ 4+ ———
NAIS 3 MAXRL

5. Number of accesses to retrieve an indexed record:

NA = 2+2-f(ro
IR (ro)
6. Number of accesses to store a direct recordﬁ
A =

N - 1

7. Number of accesses to retrieve a direct record:
= 1+
NADR .1+ f(ro)

4.1.2 SUMMARY OF DISK/DRUM TRANSFER RATES
The following derivations are from Section D.2 with assumptions from the beginning of this section.

1. Average transfer rate for disk read:
KR

2
KR +—2 @®L - f
TRDKR =~ KR1 56 (RL - 1) ms/access

2. Average transfer rate for disk write:

KW

2
~ KW_+ (RL - 1) ms/access’

TRDKW = 1 96

T Approximate constant values are: Constant Symbol 853/854 Flexible Disk  SMD

KR1 123 344 39
KR2 25 167 17
KW1 148 511 56
KW2 50 334 34

39520600 D 4-3



3. Average transfer rate for drum:
TRDM = 8 +.008 - RL milliseconds/access

4.1.3 ACCESS RATE EQUATIONS FOR DISK

From above:

1. Access rate of sequential store as a part of a loop to sequentially store records in the file:

AR S P KW +KW2 RL 1Jr
SSDK MAXRL 1" 96 RL-D

2, Access rate of next sequential retrieve:
KR2 +
=~ + + L-1
ARNSRDK (1 f(ro)) (KR1 96 R ))
3. Access rate of any sequential retrieve:

KR
NR 2 T
AR \SRDK ~ ('fz— +f(r°)> (KRI "T96 (RL'l))

NOTE

In equations 4 and 5 it is assumed that the length of

any KIS block does not exceed 96 words. The time to
access one word on 853 disk is 12.8 microseconds. The
time to access one word on drum is 8 microseconds.

If the KIS block size is large, the total access rate

may be significantly increased.

Consider the extreme case of a KIS block size equal
to 12,000 words: Refer to Appendix B. The time
needed to access all words in the KIS block would
be 154 milliseconds if using an 853 disk, or 96 mil-
liseconds if using a drum,

TApproximate constant values are: Constant Symbol 853/854 I'lexible Disk ~ SMD

KRl 123 344 39
KR2 25 167 17
KW1 148 511 56
KWZ 50 334 34

4- 39520600 D



4, Access rate of indexed store as a part of loop of indexed stores:

KW
RL 2 t
ARispk ~ (3 * MAXRL) (le * 96 ®L- 1»

5. Access rate of indexed retrieve as a part of a loop of indexed retrieves:

A

KR2 +
=~ (2 +2 f(ro)) (KR1 + (RL - 1))

RIRDK 96

6. Access rate of direct store:

2 T
a2 + -
ARDSDK KW1 5 (RL-1)
7. Access rate of direct retrieve:
KR

2 +
AR ™ ((1 = f(ro)) (KRl +—5g— (RL - 1))

4.1.4 ACCESS RATE EQUATIONS FOR DRUM

From above:

1. Access rate of sequential store as a part of a loop of sequential stores:

- RL .
ARg o = (1 + MAXRL) ( 8 +.008 RL)

2. Access rate of next sequential retrieve:

AR\ cppm = 1+ £(ro) (8+.008 * RL)

3. Access rate of any sequential retrieve:

NR
T (T + f(ro)) (8 +.008 * RL)

T Approximate constant values are: Constant Symbol 853/854 Flexible Disk

SMD

KR1 123 344
KR2 25 167
KW 1 148 511
KW2 50 334

39520600 D

39
17
56
34

4-5



4, Access rate of indexed store as a part of a loop to store indexed records:

RL

ARispm (3 ' m) 8+ .008*RL)

5. Access rate of indexed retrieve:

AR v = (2% 2-f(ro)) (8 +.008 * RL)
6. Access rate of direct store:

ARDSDM = 8+.008 * RL
7. Access rate of direct retrieve:

ARpprnr = (1+£(ro) (8 +.008 - RL)

4.2 EXAMPLE OF ACCESS RATE CALCULATIONS

One hundred records are retrieved, indexed, updated, and stored direct on disk. What is the time
required if the record length is 19 words?

25
. ~ + . m———— -
I From above: _ ARIRDK =~ (2 + 2+{(ro)) (123 + % (RL 1))

25
~ (2 +0) (123 +§E. (19 - 1))

~ 256 MS/IS
F above: AR '*'148+5—0 RL -1
| From above: DSDK 96 )
50
~148 + == (19 - 1)
~157 MS/DS
Therefore, the total time (T)
required for this example is: T = 100 (256 + 157)

T =41.3 seconds

| 46 39520600 D



4.3 MINIMIZATION OF TIME REQUIRED FOR INITIAL FILE ACCESS

The access times derived above do not include accesses due to the initial usage of a file as described in
Appendix D. These may be significant if a large number of different files are accessed. To minimize
the number of initial accesses, the following procedure may be incorporated into system initialization.

The search to obtain a file's FIS can be minimized if the files are first defined in a particular sequence.
This can be done by placing the FISs of the files with the same hash code in the same FIS block; there
are 47 FIS pointers in the FIS directory and 17 FISs in the FIS block. Assuming a system has less

than 800 (47 x 17 = 799) files, all the FISs with the same hash code can be placed in the same FIS block
by defining the files in the following order:

1. Files 1,48, 95, ... ,753 (17 defines)
2. Files 2,49, 96, . .. , 754 "
3. Files 3,50, 97,. .. , 1755 "

47, TFiles 47, 94, 141, . . . , 799 (17 defines)

If there are more than 800 files, a similar procedure can be developed.

If a user wishes to define the files dynamically, an initialization program can define them as explained
above and then release them. Since the space for FIS blocks is not re-used, the order will then be
determined and the number of accesses (two) to retrieve any FIS will be minimized.

39520600 D 4-7/4-8






GLOSSARY Al

DEFFIL Define file request.

DEFIDX Define file as indexed request.

FIFO First-in/first out )

File A collection of related records treated as a unit

File request buffer An array of 12 words located in the user's program, which is used to

process a file manager request,

File request indicator A location specified by the user when making a file manager request,

~ word On return from the File Manager, each bit of this word indicates some
condition (e, g., an error) that occurred while the request was processed,
Refer to Section 3,1,1,

Filé space list One or more blocks of available mass memory space in which each seg-
ment within a given block has the same length, There is one file space
- for each file manager mass memory unit,

File space pool All available file space which is not included in the file space list, A
segment of space in the file space pool will have a length not included in
the file space list, There is one file space pool for each file manager
mass memory unit,

FILMGR The core-resident supervisor program of the File Manager
filnum File identifier
FIS File information segment; contains coded information identifying the file

and describing its structure and current condition,

FIS directory A set of pointers. Each entry points to the first of a set of FIS blocks on
mass memory; all the FIS blocks in the set are for files with a given file
number scatter code,

Header word The first word in a file record

Indexed file A file in which each record is stored according to a key (e, g., social
security number). A record in an indexed file may be retrieved by
indicating its key value,

Indexed-linked file An indexed file in which there may be more than one record for a given key

value (e.g., age). All records with the same key value may be retrieved
by specifying the key (e. g,, all records for persons age 25),

39520600 D A-1



Indexed-ordered file

KIS

KIS block

KIS directory

LIFO

Locked file
Togical unit
LOKFIL

MS Record
MSA
Parameter list

Pseudo disk

Record buffer

Record pointer

RELFIL
Retrieve
RTVDIR
RTVIDO
RTVIDX
RTVSEQ

Sequential file

e A-2

A file in which each record has a corresponding numerical key (for
example, code for date). In an indexed-ordered file, a set of records may
be retrieved by specifying an interval of key values (e.g., all records for
June 1972 through April 1973).

Key information segment; the KIS contains the key for a given file record.
If the file is indexed-linked, KIS contains one or two record pointers.

A group of KISs stored together on mass memory

A set of pointers; each entry points to a KIS block for a particular key
scatter code

Last-in/first-out

A file into which infbrmation cannot be written untilit is unlocked
Identification of peripheral device (true device or pseudo device)
Request to lock file

Mass storage

Mass storage address

List of parameters required by the File Manager request

Portion of a disk defined as a single logical unit (a pseudo disk is
usually composed of 32K contiguous sectors) '

A buffer specified by the user that will contain a file record

A two-word mass-storage address that points to a file record on mass
storage

Request to release a file

The process of finding a record and reaching it into core

Request to retrieve record using direct access

Request to retrieve record using index-ordered key value

Request to retrieve record using key value

Request to retrieve record sequentially

A file in which each new record is added immediately following the last

record stored in the file. These records must be retrieved in the same
sequence as they were stored.

39520600 D



STODIR

STOIDX

Store direct

STOSEQ

UNLFIL

39520600 D

Request to store a record at a specified mass storage
Request to store a record using a key value

A type of file manager request allowing file record updates
Request to store a record sequentially

Request to unlock a file

A-3






FILE STRUCTURE

Each defined file has a file information segment (FIS) that points to file record blocks (FRBs). An FRB

contains file records and can be searched sequentially to access desired record(s).

Alternately, a key

information segment (KIS) can be used via the FIS to access one record randomly without searching
This appendix discusses each of these structures in detail.

through all the records.

B.1 FILE INFORMATION SEGMENT STRUCTURE

The file information segment (FIS) structure, located on mass memory, is composed of one FIS

directory and zero or more FIS blocks (see Figure B-1).

This is a directory to records, not the

records themselves. For indexed files, a similar directory is kept in the KIS directory (discussed
below). Information to/from this structure is obtained via five core-resident parameters:

° FIDSEC is the FIS directory's sector address.
° NWFISD is the number of words in the FIS directory (multiple of 96).
° FIBLSA is the sector address of the last FIS block.
° FIBNIX is the index to the next available FIS, I
® NWFISB is the number of words in a FIS block (multiple of 96).
FIS FIS FIS FIS FIS
DIRECTORY BLOCK BLOCK BLOCK BLOCK
FIDSEC -3 > > - o o
< FIS }—
NWFISD{ { FIS FIs e [_’ - NWFISB
" |.POINTER
4
r—> FIS

FIBLSA

FIBNIX

39520600 D

Figure B-1. File Information Segment Structure



l B.1.1 FILE INFORMATION SEGMENT DIRECTORY

The FIS directory of NWFISD words is created on mass memory when the first file is defined. Its
sector address is given by the core-resident parameter FIDSEC. The directory is composed of:

° A two-word header, which contains the sector address of the first FIS block (a zero
indicates there are no FIS blocks) and a word reserved for future use

e Upto [(NWFISD - 2)/2] two-word FIS pointers

Utilizing the file number, modulo L(NWFISD—Z)/Z_] , for a scatter code, each pointer points to the first

FIS with a scatter code corresponding to the pointer's relative position in the FIS directory. If a FIS

pointer (both words) is zero, there are no FISes for that particular scatter code. The FIS pointer has
l the same format as a record pointer (see Section 2).

| B.1.2 FILE INFORMATION SEGMENT BLOCK

A FIS block of NWFISB words is created on mass memory whenever space is needed to store a newly
defined FIS. Its sector address is given either by the FIS directory (if it is the first FIS block) or by a
previously allocated FIS block. The block is composed of:

. A header word, containing the sector address of the next FIS block (a zero indicates there
are no more FIS blocks)

| ° Up to | (NWFISB - 1)/16] FISs (see Section B.1.3)

There are also two core-resident parameters, FIBLSA and FIBNIX, which give the sector address of
the last FIS block and the index to the next available location in the last FIS block respectively.

I B.1.3. FILE INFORMATION SEGMENT

A 16-word FIS is stored into a FIS block whenever a file is defined; its two-word mass memory address

is given by a FIS pointer in either the FIS directory (if it is the first FIS with a particular scatter code)

or a previously stored FIS. Note that once a file is defined, its FIS exists permanently, even if the
file is released. A FIS is composed of the following:

Word Mnemonic Description
0 SANTIS Sector address of next FIS with the same scatter code (if zero, there are

no more FISs for this particular scatter code)

1 IXNFIS Index into SANFIS to next FIS with the same scatter code

T Where |x} is the greatest integer less than or equal to x. (see Section C.4.2).

B-2 . 39520600 D



Word Mnemonic Description
2 FILENO File number

3 FRBFSA Sector address of the first file record block (a zero indicates there are
no file record blocks)

4 NRLFRB Number of records stored in the last FRB
5 FRBLSA Sector address of the last file record block
6 FRBNIX Index to the next available location in FRBLSA
7 KIDSEC Key information segment (KIS) directory's sector address (a zero indicates
there is none)
8 KIDSIZ KIS directory's size in sectors
9 KIBSIZ KIS block size in sectors (a zero indicates the file is not indexed)
10 KEYLTH Key length in words (a zero indicates the file is not indexed)
11 NUMEKV Number of expected key values (a zero indicates the file is not indexed)
12 FIFORL Fixed record length for indexed-linked FIFO file (a zero indicates that the
file is not indexed-linked FIFQ)
13 NUMFRB Number of file record blocks currently assigned to the file
14 FRBSIZ File record block size in sectors (bits 0 through 8)
FISIND FIS indicator with the following definition:
Bit 13 is 0 File is indexed-linked LIFO.
1 File is indexed-linked FIFO.
Bit 14 is 0 File is not indexed-ordered.
1 File is indexed-ordered.
Bit 15 is 0 File is not indexed-linked.
1 File is indexed-linked.
15 FISFLG FIS flag with the following definition:

Bits 0 — 6 Logical unit for allocating FRBs
Bits 7 — 13  Logical unit for allocating the KIS directory and KIS blocks

Bit 14 is 0 Defined by an unprotected program
1 Defined by a protected program

Bit 15 is 0 File is released.
1 File is defined.

39520600 D B-3 J



A six-word header is appended to a FIS when the FIS is in core. A core FIS header is composed of the

following:

Word Mnemonic
0 ANCFIS
1 SECFIS
2 IDXCHC
3 ADRKID
4 FILCOM
5 FILCLK

Description
Address of next core-resident FIS (a zero indicates this is the last)
Sector address of the FIS
Index and change flags with the following definition:

Bit0is 0 FIS has not been changed.
1 FIS has been changed.

Bit1 is 0 KIS directory has not been changed.
1 KIS directory has been changed.

Bits 7 — 15 Index to start of FIS from start of sector
Core address of KIS directory
File combination (zero if file not locked)

File clock (used for releasing FIS after a period of no activity)

§ B.2 FILE RECORD BLOCK STRUCTURE

The file record block (FRB) structure, located on mass memory, is composed of zero or more FRBs

for each file (Figure B-2).

Information to/from this structure is obtained via five parameters of the

file's FIS (see Section B.1.3, words 3, 4, 5, 6, and 14):

FRBFSA
NRLFRB
FRBLSA
FRBNIX

FRBSIZ

is
is
is
is

is

the sector address of the first FRB.

the number of records stored in the last FRB.

the sector address of the last FRB.

the index to the next available location in FRBLSA,

the file record block size.

39520600 D



FRB FRB FRB

FRBFSA > 0 < < >
> > 0
NUMREC NUMREC 0 -
FRBSIZ { - NRLFRB
RECORD;
—> ‘
-
FRBLSA
FRBNIX
Figure B-2. File Record Block Structure
B.2.1 FILE RECORD BLOCK ' i

An FRB of FRBSIZ sectors is created on mass memory whenever space is needed to store a new
record. Its sector address is given either by the FIS (if it is the first FRB in a file) or by a previously
allocated FRB. The size of an FRB, FRBSIZ, is specified by the computation of:

¥
[3 + MAXRL.l
96
Where: MAXRL is the maximum record length of any record to be stored in the file.

The block is composed of:
° A three-word header containing:

-The sector address of the last FRB (a zero indicates the first FRB)

-The sector address of the next FRB (a zero indicates there are no more FRBs for this
file) '

-The number of records stored in this FRB (a zero indicates that this is the last FRE and
reference should be made to NRLFRB)

° Zero or more variable or fixed length records

TWhere [x] is the least integer greater than or equal to x.

39520600 D B-5



There are also three other FIS parameters, NRLFRB , FRBLSA, and FRBNIX, which give the number
of records stored in the last FRB, the sector address of the last FRB and the index to the next available
location in the last FRB respectively, of each file.

I B.2.2 FILE RECORD

A file record, or simply a record, of variable or fixed length is stored/retrieved into an FRB whenever
a legal file request is given. Its length, variable or fixed, depends on the type of file: not indexed-
linked or indexed-linked with or without FIFO linking. Its access depends on the type of file: indexed
or not indexed. In general, a record is composed of:
° A header word containing:
-The total length of the record in bits 0 through 14
~The removed flag in bit 15 (the record has been removed from the file if bit 15 is one)

. A two-word record pointer if the file is indexed-linked

° Zero or more data words
The total record length is given by:
RL =1 + NRPW + NDW

Where: RL is the total record length.

NRPW is the number of record pointer words (zero if not indexed-linked, two if
indexed-linked).

NDW is the number of data words.
If the record is an extra record created by the File Manager to reserve space for storage of a
subsequent FIFO-linked record, the header word will contain $8000 and no useful information will

have been stored in the remainder of the record. The length of this record will be specified by FIFORL
in the associated file's FIS.

f———l = File removed

Length of record
Index-ordered [ SECTOR ADDR }

Points to next
linked record

el

pointer STARTING WORD OF RCD

DATA

B.3 KEY INFORMATION SEGMENT STRUCTURE

The key information segment (KIS) structure, located on mass memory, is composed of:

° One KIS directory

. Zero or more KIS blocks for each file with a key defined area (see Figure B-3)

B-6 39520600 D



Information to/from this structure is obtained via five parameters of the file's FIS (words 7 through
11):

. KIDSEC is the KIS directory's sector address.

'y KIDSIZ is the KIS directory's size in sectors.

° KIBSIZ is the KIS block's size in sectors.

° KEYLTH is the key length.

° NUMEKV is the number of expected key values.

KIS DIRECTORY FIRST KIS BLOCK
[ FOUR-WORD >
HEADER 0
KIS BLOCK NO. OF KISs
POINTER
KIDSIZ 7 KIS BLOCK
POINTER
KIS BLOCK
POINTER
iTH KIS BLOCK KIS OVERF LOW BLOCK
I B -
NO. OF KISs NO. OF KISs
KIS j
LAST KIS BLOCK

0
NO. OF KISs

Figure B-3. Key Information Segment Structure

39520600 D



l B.3.1 KEY INFORMATION SEGMENT DIRECTORY
The KIS directory of KIDSIZ sectors is created on mass memory whenever a file is defined to have a
key (i.e., indexed), Its sector address is given by the parameter KIDSEC. The size of the KIS
directory, KIDSIZ, is specified by the computation of
[(4 + SRNEKY) /96)|

Where: SRNEKYV is the square root of the number of expected key values (see Section 3.1.2).

The directory is composed of a four-word header, containing:

Word Mnemonic Description
0 KIDCLK KIS directory clock
1 | NUMKIB Number of KIS blocks
2 KIBFSA First sector address of linked KIS blocks
3 KIBLSA Last sector address of linked KIS blocks

and up to KIBSIZ * 96 - 4 KIS block pointers. Utilizing the given key value to produce a scatter code,
each KIS block pointer contains a one-word sector address of a KIS block with a scatter code
corresponding to the pointer's relative position in the KIS directory. If a KIS block pointer is zero,
there is no KIS block for that particular scatter code.

j B.3.2 KEY INFORMATION SEGMENT BLOCK

A KIS block of KIBSIZ is created on mass memory whenever space is needed to store a file's record
with a new key value. Its sector address is given by the corresponding KIS block pointer in the KIS
directory of the file, The size of a KIS block, KIBSIZ, is specified by the computation of

[3 + (2 * NUMPTR + KEYLTH) ° SRNEKV-I
2

Where: NUMPTR is the number of record pointers in each KIS. The value of NUMPTR is one
for a LIFO linked or unlinked file. The value is two for a FIFO linked file.

KEYLTH is the key length (in words).

SRNEKV is the square root of the number of expected key values.

B-8 39520600 D



The block is composed of:

° A three-word header containing:

-The sector address of the KIS block allocated before this one (a zero indicates the first
KIS block)

-The sector address of the first KIS overflow block (a zero indicates there are no KIS
overflow blocks)

-The number of KISs in the KIS block
° Up to I_(KIBSIZ * 96 - 3)/(2 - NUMPTR + KEYLTH)J KISs

NOTE

An indexed-ordered file will cause each KIS block to be
ordered by key value. The ith KIS block will contain key
values in the range:

i-1
NKISB

NUMEKV ( NKISB)

)< KEYVAL < NUMEKV (

Where: NUMEKV is the number of expected key values.
NKISB is the number of KIS blocks,
KEYVAL is the key value.

B.3.21 KEY INFORMATION SEGMENT OVERFLOW BLOCK

A KIS overflow block, KIBSIZ, is created on mass memory whenever a KIS block becomes filled,
either because the number of expected key values was exceeded or the key values do not scatter
uniformly. Its sector address is given by either its KIS block or by a previously allocated KIS
overflow block. The block has the same format as a KIS block and is composed of:

° A three-word heading containing:

-The sector address of the KIS block allocated before this one.

-The sector address of the next KIS overflow block (a zero indicates there are no more
KIS overflow blocks)

-The number of KISs in the KIS overflow block
° Up to |(KIBSIZ - 96 - 3)/(2 - NUMPTR + KEYLTH)J KISs

39520600 D



In an indexed-ordered file, which is not indexed-linked, KIS blocks other than the first and last will not
have overflow blocks. The first KIS block will have associated overflow blocks only if one or more
records with negative key values are stored. The last KIS block will have associated overflow blocks
only if one or more records with key values exceeding NUMEKV are stored. If overflow blocks are
created for an indexed-ordered file, the order of the KISs with respect to key value is maintained in
the KIS blocks and the KIS overflow blocks.

B.3.3 KEY INFORMATION SEGMENT

A KIS of 2 * NUMPTR + KEYLTH words is stored into a KIS block whenever a legal indexed file request
is given to store a record with a new key value. Its access is achieved by searching the proper KIS
block. A KIS for a LIFO-linked file record is composed of:

° A record pointer that points to the last record stored using the same key value

° A KEYLTH word array containing the key value
A KIS for a FIFO-linked file record is composed of:

° A record pointer that points to the first record stored using the same key value
° A record pointer that points to the last record stored using the same key value

° A KEYLTH word array containing the key value

B.3.4 ALLOCATION OF SPACE WITHIN THE KEY INFORMATION STRUCTURE

The File Manager is designed so that the size of the KIS directory is dependent on the number of
expected key values, NUMEKV. We have seen that

+
NWKISD = [ﬁlﬁ%{l + 96

For values of NUMEKYV less than or equal to 922( =8464), 96 words (one sector) are used as the KIS
directory. For NUMEKYV values between 8,465 and 32,767, the KIS directory has a length of 192 words
or two sectors. The hash code technique for scattering the key values into the KIS blocks is as follows:

Let

{KEYVAL(i); i=1,2,3,...KEYLTH}
be the set of words comprising the key values for a given record. Let NEKISD equal the number of
entries in the KIS directory (either 92 or 188), then H, the hash code for the record, is computed as
KEYLTH
H = KEYVAL(,) (mod NEKISD)
i
i=1

B-10 39520600 D



EXAMPLE:

Suppose a file is indexed with a key of location code (let KEYLTH = 2 and NUMEKYV = 10, 000) and a
record is to be stored with the location code LJ11 ($ = a hexadecimal number), then the key value in
ASCII is:

KEYVAL(1l) = 4C4A16
KEYVAL(2) = 313116
then
KEYLTH
H= E KEYVAL ) (mod NEKISD)
i =
2
= E KEYVAL (i) (mod 188)
i=1

= | 7p7
7 B16| (mod 188)

32,123 (mod 188) = 16

If the number of actual key values exceeds 8,464, the value of NUMEKV must also exceed 8,464 so that
192 words (two sectors) will be used for the KIS directory; thus minimizing the number of KIS overflow
blocks. Fewer KIS overflow blocks implies fewer mass-memory accesses in retrieving a record from
the file.

On the other hand, if the actual number of key values is small and the estimate, NUMEKYV, exceeds
8,464, the full 192 words will be used needlessly for the KIS directory; taking up 96 extra words of

core each time the KIS directory is read in from mass memory. (The KIS directory for a given file
is in core whenever an indexed file request is made for that file.)

In addition, the value of NUMEKYV helps to determine the length of the KIS blocks since

LVNUMEKVJ = SRNEKV

is the number of entries in each KIS block. Thus, too large a value of NUMEKV would result in
unnecessarily long KIS blocks. Too small a value of NUMEKV results in KIS blocks that are too short,
causing the creation of KIS overflow blocks. See Figures B-1 and B-2 for examples of key information
segment structures dependent on the relationship between the number of expected key values and the
number of actual key values.

39520600 D B-11






STORAGE REQUIREMENTS FOR FILE STRUCTURE cli

o U R I A L RIAS e LB T T T N T R I

In this section, the equations for minimum/maximum storage limits are given so a particular file
structure's storage requirements may be approximated. An example illustrates the calculation of the
minimum/maximum storage limits. Finally, the equations are derived from the definition of the file

structure given in Appendix B.

C.1 STORAGE LIMIT EQUATIONS

C.1.1 DEFINITIONS

Mnemonic
MAXRL
SRNEKV

KEYLTH
RL
NR

NWFgq
NWFI

NWFMIN

NWFpAX
NF

nf
NWF'S
NUMPTR

39520600 D

Description
Maximum record length of ith file

Square root of the expected number of records with different key values (NUMEKYV)
of ith file

Key length of ith file
Length of record in ith file

Number of records in ith file. Note that the number of records in a FIFO-linked file
includes an extra record for each key stored

Number of words in ith sequential file
Number of words in ith indexed file
Minimum number of words in ith file
Maximum number of words in ith file
Number of defined files

Number of defined, but not released, files
Number of words in the file structure

Number of pointers in each KIS for an indexed file



| C.1.2 ASSUMPTIONS

In some cases the storage limit equations are approximations that give a minimum and maximum range
for the file structure. In other cases an exact computation of the file structure is given.

J For storage efficiency, the maximum record length should be an integer multiple of the
record length (RL), Furthermore, the maximum record length should be of the form:

96 - m-3

Where: m is a positive integer. Relaxation of these restrictions may be investigated via
] Section C.3.3.3.

For calculation convenience the record length is assumed to be constant for any particular file. If
this assumption is not true for a file, an average record length may be used. However, caution must

be used so that this average record length does not violate any of the assumptions and restrictions on
which the file structure is based.

C.1.3 SUMMARY OF STORAGE LIMIT EQUATIONS
From the derivations in Section C.3 and with the assumptions from Section C.1.2.

1. The number of words in the file record blocks is:

: NR - RL'l
' = + » | —
NWFRB (MAXRL + 3) I—MAXRL
2, The minimum storage limit for an indexed file is:

MAXRL + 98 2
TTAvTT o or . + +2.
NWF ( MAXRL +9 5)(RL NR) SRNEKV" (KEYLTH NUMPTR)

+4 . SRNEKV + 4
3. The maximum storage limit for an indexed file is:

MAXRL + 3

2
NWFMAX < ( AL )(RL . NR)+ MAXRL + SRNEKV (KEYLTH + 2 . NUMPTR

+ SRNEKV(95 - KEYLTH + 190 - NUMPTR + 99) + 9507

4, The minimum storage limit for the file structure is:

nf
96 - NF z
W = + —
NWF'S 96 17 NWFMIN
i=1

c-2 , 39520600 D



5. The maximum storage limit for the file structure is:

nf

96(NF + 16)
e e 4
NWFS =< 9 T + 5 NWF
i=1

C.2 EXAMPLE OF MINIMUM/MAXIMUM STORAGE LIMIT CALCULATIONS §

The following is a hypothetical file structure

Where: NF = nf = 2 (one non-indexed and one indexed file)
File 1 contains MAXRL 93 words
RL 31 words
NR 1880 records
File 2 contains MAXRL 93 words
RL 93 words
NR 1880 records
KEYLTH 8 words
SRNEKV 50 words
NUMPTR 1 word
NWFRB = NWFRB'
(1) (1)
NR - RL
= (MAXRL + 3) [ MAXRL-I

1880 - 31
= 9% [ 93 -l

=60,192

MAXRL + 98

2 :
NW CNR 4 '
Fang) (MAXRL + 95) RL - NR + SRNEKV" (KEYLTH + 2 - NUMPTR)

+4 - SRNEKV +4

93 + 98 2
2(93+ 95) (93 - 1880) + 50° (8 + 2 - 1) + 4(50) + 4

> 217, 834 words

39520600 D C-3



MAXRL + 3) (RL - NR) + MAXRL + SRNEKV? (KEYLTH + 2 - NUMPTR)

NWF \ax(2) ( MAXRL

+ SRNEKV (95 - KEYLTH + 190 - NUMPTR + 99) + 9507

93 +3 2
< a3 (93 - 1880) +93 +50 (8+2+1) +50 (95 -8 + 190 -1+ 99)

+ 9507
< 282,530

nf
96 « NF

NWFS > gg + B NE z N

6+ 17 WE N

i=1

%2, \wr + NWF

= 96 +
17 MIN(1) MIN(2)

= 277,151 words

nf

96(NF + 16) z
i 17 i NWF 1ax
i=1

NWFS = 96

96(2 + 16)
T T Wk T W vax(g)

A

96

< 343,078 words

Since the absolute minimum storage requirement (NWFS AM) for this data structure would be:
nf
NWFSAM = Z RLi . NRi
i=1

RL1 . NR1+RL2 . NR2

31 -1880 + 93 - 1880
= 233,120 words

The extra file storage needed for this example would be between 19% and 47% of the absolute minimum
storage requirement.

C-4 39520600 D



C.3 DERIVATION OF STORAGE LIMIT EQUATIONS

C.3.1 DEFINITIONS

To the definitions given in Sections of C.1.1, the following are added:

Mnemonic Description
NWFISD Number of words in the FIS directory
FIDSIZ FIS directory size in sectors
NWFISBpn Minimum number of words in FIS blocks
NWFISByax Maximum number of words in FIS blocks
FIBSIZ FIS block size in sectors
NFISB Number of FIS blocks
NFFISB Number of FISs in one FIS block
NWFIS Number of words in a FIS
FRBSIZ FRB size in sectors (see Section B.2) of the ith file
NWFRB Number of words in a FRB of ith file
NRFRB Number of records in a FRB of the ith file
NFRB Number of file record blocks in the ith file
NWFRBpIN Minimum number of words in FRBs of the ith file
NWFRBMAX Maximum number of words in FRBs of the ith file
NWFRB' Desirable number of words in FRBs of the ith file
NWKISDMIN Minimum number of words in KIS directory of the ith file
NWKISDy 2 % Maximum number of words in KIS directory of the ith file
KIDSIZ KIS directory size in sectors (see Section B.3) of the ith file
NWKISB MIN Minimum number of words in KIS blocks of the ith file
NWKISByrax Maximum number of words in KIS blocks of the ith file
NWKISB Number of words in a KIS block of the ith file
KIBSIZ KIS block size in sectors of the ith file
NKISB Number of KIS blocks in the ith file
NWFISB Number of words in FIS blocks
NWFRBi Number of words in FRBs of the ith file
NWKISDi Number of words in KIS directory of the ith file

39520600 D



Mnemonic Description

NWKISB; Number of words in KIS blocks of the ith file
NKKISB; Number of KISs in one KIS block for the ith file
SRNEKV [\/WV“ J

NUMAKV Number of actual key values.

| C.3.2 INTEGER FUNCTION THEORY

If x is any real number, then

L=l
[x]

Furthermore, it is noted that

the greatest integer less than or equal to x

the least integer greater than or equal to x

x-1l<|x]=sxs[x}<x+1

and

- 1=

where n and m are positive integers.

] C.3.3 COMPUTATIONS

Computations are carried out to find minimum/maximum storage limit equations for the following,
which is expressed as a function of a file's parameters:

° File information segment directory

° File information segment blocks

° File record blocks for the ith file

[ Key information segment direétory for the ith file

. Key information segment blocks for the ith file

C-6 39520600 D



C.3.31 COMPUTATION FOR FILE INFORMATION SEGMENT DIRECTORY

Computations are carried out for the storage size of the FIS directory. Note that NWFISD is a File
Manager parameter and is defined to be 96.

NWFISD = 96

C.3.3.2 COMPUTATIONS FOR FILE INFORMATION SEGMENT BLOCKS

The number of words in all FIS blocks is computed as follows:

NWFISB 288 + NFISB

NF
= 288 . [NFFISB

NF
= 288 [ NWFISB —1_”
L NWFIS

_ NF
= 288 - 288—1—”
[ 16

- NF
= 288 287 ]

16

NF
288 17

]

NWFISB

C.3.3.3 COMPUTATIONS FOR FILE RECORD BLOCKS

Computations are carried out for three cases: the minimum, maximum, and desirable maximum
storage limits for the file record blocks of the ith file. The results are obtained from the following
information:

From Section B. 3: FRBSIZ = |_3 ! MAXRL-I = [3 * MAXRL + 95
96 96

Since there are 96 words per sector: NWFRB = FRBSIZ - 96

If it is assumed that the record length is

constant for any particular file then

(from Section B, 2): NRFRB = %%

39520600 D



W

Note that if the record length is not constant for any particular file, an average record length may be
used, as long as there is a large number of records in the file.

By definition:

MINIMUM LIMIT

NR

NFRB = SRFRB

NWFRB o = NWFRB - NFRB
NR
= NWFRB - [NRFRB]
NR
> NWFRB -t
- ) NR
- }\IWFRB LNWFRB —3J
RL
NR
> NWFRB ' FRB - 3
RL
NWFRB
(NWFRB 3)‘RL NR)
- (l +NWFRB 3)(RL NR)
= 1+ .
( FRBSIZ 9 - 3) (RL - NR)
= 3 (RL - NR)
|3 + MAXRL + 95J
- 96 - 3
96
3 RL - NR
3 + MAXRL + 95) /( )
96 -3
9%
= + .
(1 MAXRL + 95)(RL NR)
MAXRL + 98
FWIRByiN  ® MAxRL s UMD

39520600 D



MAXIMUM LIMIT

'
N FRBMAX

39520600D

= NWFRB * NFRB

NR
NWFRB - [_NRFRB-I

NR + NRFRB - 1
NWFRB - I_ NRFRB J

NR + NRFRB - 1)

< NWFRB ( NRFRE

NR -
NWFRB (N RFRD )

+1

)

[ RL(NR -1)
. 1
< NWFRB \NWFRB -RL-2

NR -1
NWFRB RL -

< NWFRB -

)

NR -1
NWFRB - ( FRB R =

_ NWFRB
NWFRB - RL - 2

)(RL *NR - RL) + NWFRB

Y RL +2
NWFRB - RL - 2

)(RL * NR - RL) + NWFRB

V +
1+ RL+2 )(RL + NR - RL) + FRBSIZ - 96

FRBSIZ : 96 - RL - 2

=/1+ RL + 2 \‘(RL.NR_RL)+I-3+MAXRL+95J

\ 3 + MAXRL + 95J 96
[ ” 96 - RL 2/

\

RL + 2 3 + MAXRL + 95 |

= (RL'NR—RL)+l . 96
( 3+MAXRL'|.96_RL_2 96 ]



/ RL + 2 3 + MAXRL + 95
+ . - + .
“ Lt B TMAXRL (RL - NR - RL) ( 96 ) 96
ST PARTY). 96 - RL - 2
\ 96
RL + 2

= 1+ . - + +

< AREL T T TR )(RL NR - RL) + MAXRL + 98

NWFRBMAX

S( MAXRL + 3

. - + +
MAXRL + 1 - RL) (RL * NR - RL) + MAXRL + 98

DESIRABLE MAXIMUM LIMIT

The maximum limit provides for the likelihood of an extremely bad choice for the record length
parameter (RL). However, if this parameter is chosen carefully, storage will be conserved and a
more desirable maximum limit can be computed and used to approximate the storage requirement.

The record length should be chosen such that the term

NWFRB -3
RL

is (or is slightly less than) an integer. This implies that the record length is a factor of (NWFRB - 3),
or

RL *n = NWFRB -3

= FRBSIZ * 96 - 3

+ +
_ |-3 MA;;RL 95J. 9 - 3

3 + MAXRL
—[ 96 -l 96 -3

where n is a positive integer.

If the maximum record length

(MAXRL) is of the form: MAXRL = 96 'm -3

where m is a positive integer,

then RL*n =96 +m-3
= MAXRL

g C-10 39520600 D



Thus, if the record length is a factor of the maximum length, storage space is conserved and the
following desirable number of words can be utilized:

NWFRB!' (MAXRL + 3) - NFRB

NR
(MAXRL + 3) - I‘m‘l

NR
(MAXRL + 3) - |- |_FRBSIZ - 96 - 3”

RL
NR ]
= (MAXRL + 3) * [él-l‘;fg—ﬁé-l . 96 —3|
L RL Jd

NR - RL
+3) ¢ |———
(MAXRL + 3) [- XRI:I

C.3.3.4 COMPUTATIONS FOR KIS DIRECTORY

The number of words in the KIS directory is the number of sectors in the KIS directory, KIDSIZ,
multiplied by 96.

NWKISD = KIDSIZ * 96

The number of sectors in the directory must be large enough to accommodate four header words plus
one word for a pointer to each KIS block needed for the file,

The number of KIS blocks needed for the file is NKISB, thus:

KIDSIZ = P—f—N;—;—I@.I and NWKISD = [4;1%%@] . 96

The File Manager is designed so that the number of KISs in each KIS block is equal to the number of
KIS blocks; that is,

NKKISB = NKISB
Also by design of
the File Manager, NUMEKV = NKISB * NKKISB
= NKISB2
or, NKISB =

| V/NUMEKV | = SRNEKV

39520600 D C-11



[4 + SRNEKV‘I
= [————]- 9

Therefore, NWKISD 96
But, SRNEKV < '-E_w'l _ |:1 + SRNEKV + 95J _ 99 + SRNEKV
96 96 96 9
Therefore, NWKISDMIN = SRNEKV +4 s NWKISD < SRNEKV + 99
= NWKISD

C.3.3.5 COMPUTATIONS FOR KEY INFORMATION SEGMENT BLOCKS

3 + (KEYLTH + 2 - NUMPTR) - SRNEKV
96

From Section B.4, NWKISB = I- * 96

Thus, the minimum length for a KIS block occurs when both KEYLTH and NUMEKYV are small and the
file is not indexed-linked.

Suppose KEYLTH =1
NUMPTR =1
NUMEKV = 2
then, NWKISB = 96

The maximum length for a KIS block occurs when KEYLTH and NUMEKYV are assigned their maximum
values and the file is FIFO index-linked.

If KEYLTH = 63
NUMPTR = 2
NUMEKV = 32,767

then, NWKISB = 12,000

The expected number of KIS blocks is dependent on the expected number of key values (NUMEKV) and
on the actual number of key values (NUMAKV). The relationship for the case NUMAKV = NUMEKYV is
shown in Table C-1. The number of KIS overflow blocks depends on how NUMEKV relates to the actual
number of key values and on whether or not the key values scatter uniformly.

C-12 39520600 D



Table C~1., Number of KIS Blocks as a Function of Number of
Expected Key Values

LENGTH OF
KIS BLOCK
FOR FILE
NEKISD = WITH
SRNEKYV = MAXIMUM KEYLTH =4
‘'NUMBER OF KiISs EXPECTED | NUMBER OF LENGTH AND NO
IN EACH KIS NUMAKYV = |[NUMBER OF | ENTRIES IN OF KIS INDEX -
BLOCK NUMEKVT KIS BLOCKS | KIS DIRECTORY | DIRECTORY LINKING
1 1 1 92 96 96
1 2 2 92 96 96
1 3 3 92 96 96
9 91 91 92 96 96
9 92 92 92 96 96
9 93 92 92 96 96
9 94 92 92 96 96
92 8,464 92 92 96 384
92 8,465 93 188 192 384
92 8,466 94 188 192 384
92 8,559 187 188 192 384
92 8,560 188 188 192 384
92 8,561 188 188 192 384
181 32,766 188 188 192 768
181 32,767 188 188 192 768
tNUMAKYV = Number of actual key values
NUMEKYV = Number of expected key values
39520600 D C-13




In the following discussion we will assume uniform scattering. Let NUMAKV be the number of actual
key values and NEKISD be the maximum number of entries in the KIS directory, then, NUMAKV/
NEKISD is the number of expected key values with the same scatter code. Since SRNEKV KISs can
appear in one KIS block, when NUMAKV/NEKISD is less than or equal to SRNEKYV, the number of KIS
overflow blocks is zero. Let NEKISO denote the number of KIS overflow blocks. Then for NUMAKV/
NEKISD < SRNEKV, we have

NEKISO = 0

For NUMAKV/NEKISD > SRNEKV, we have

NUMAKV
NEKISO = (I_NEKISD - SRNEKVJ - 1) NEKISD + NUMAKYV (mod NEKISD)
Note that NUMAKV/NEKISD is the expected number of keys per scatter code; SRNEKV is the number of
keys per KIS block; and NEKISD is the number of scatter codes. Also, when NUMAKV/NEKISD is less
than SRNEKYV, there will be one KIS block for each of the NEKISD scatter codes.

I See Table C~2 for some examples of the relationship between the expected number of KIS overflow
blocks and key values and the actual number of key values.

I Table C-2. Expected Number of KIS Overflow Blocks as Related to
Expected and Actual Key Values

SRNEKV = EXPECTED | EXPECTED

NUMBER OF KEYS NUMBER OF | NUMBER OF KIS

NUMAKV | NUMEKV | NEKISD PER KIS BLOCK KIS BLOCKS | OVERFLOW BLOCKS

1 1 92 1 | 1 0
92 92 92 9 92 0
8,464 8,464 92 92 92 0
32,767 32,767 188 181 188 0
100 1 92 1 - 92 8
100 16 92 4 92 8
100 8,464 92 92 92 0
9,000 1 92 1 92 8,908
9,000 8,464 92 9 92 92
9,000 32,767 188 181 188 0

C-14 39520600 D



C.3.4 EQUATIONS

The equations for calculating the minimum/maximum storage limits for non-indexed and indexed files,

as well as the total minimum storage limits for the file structure are given.

C.3.41 STORAGE LIMITS FOR NON-INDEXED FILE

From Appendix B: NWFS = NWFRBi

and from Section C.3.3,3
(assuming the desired
maximum limit):

MAXRL

NWF = (MAXRL + 3) - |-NR - RL]

C.3.42 STORAGE LIMITS FOR INDEXED FILE

From Appendix B: NWFI = NWFRBi + N‘WFISDi + NWKISBi
and from Section C.3.3.3
: . _ NR * RL 4
(assuming the desired NWF_ = (MAXRL + 3) * +
. s s 1 MAXRL
maximum limit) and

Sections C.3,3.4 and

C.3.3.5 (assuming ’ 96 + SRNEKV - 96 *
NUMAKYV = NUMEKV):

96

l'SRNEKV * (KEYLTH + 2 - NUMPTR) + 3]
|

C.3.4.3 TOTAL STORAGE LIMITS FOR FILE STRUCTURE

nf
From Appendix B: NWFS = NWFISD + NWFISB + z NWFi
i=1
nf
. NF

and from Sections NWFS = 96 + 288 - l-??_-l + Z NWF,
C.3.3.1and C.3.3.2: T !

1 =

39520600 D

C-15e






ACCESS RATES FOR FILE STRUCTURE D §

A R R R A DRI : 4 o AR R e T N A T R R

(Refer to Section 4 for definition of symbols.)

D.1 ACCESS EQUATIONS FOR STORAGE/RETRIEVAL METHODS i

The access equations for the sequential, indexed, and direct storage/retrieval methods, as well as the
initial and terminal usage of the files are calculated using the definition of the file structure given in
Appendix B.

D.1.1 ACCESSES FOR SEQUENTIAL METHOD f

STORE

A sequential store requires one access for storing the record, plus one extra access for storing a file
record block pointer, if the record is the first record in the file record block. Thus, to store all the
records in a file record block, one more store than the total number of records in the file record

block is required. The number of accesses for storing a sequential record is minimized when all the
records in a given file record block are stored in loop. Within such a loop, the number of accesses for
storing a sequent{al record is computed as follows:

_ NRFRB + 1
NAss ~ " NRFRB
= 1 + —.—.—1
NRFRB
=1 +——-———l
NWFRB - 3 J
.  RL
1
= 1t TrRBsiz - 96 -3
i RL
= 1+ 1
P“’__MRL] .96 -3
96 J
RL.. '

39520600 D D-1



If the assumptions in Section B. 2. 2 are true, then

1
NAgs =1+ [MAXRL
RL _
RL
NAgs = 1+ AXRL

Note that if the record length (RL) equals the maximum record length (MAXRL), two accesses are
required for each sequential store, However, as the limit of RL/MAXRL approaches zero, only one
access is required.

RETRIEVE

A sequential retrieve requires one access for retrieving the next sequential record, plus one extra
access if the record is being removed. Therefore the number of accesses for the next sequential
retrieve is given by:

NA qp = 1+f(ro)

Note that the average number of accesses to retrieve any record in a sequential file is given by:

NR
NAASR = + f(ro)

| D.1.2 ACCESSES FOR THE INDEXED METHOD

STORE

An indexed store requires one access for retrieving the desired key information segment block and one
access to update it with the proper information, plus the number of accesses required for a sequential
store (Section D, 1.1) to store the record., Therefore the number of accesses for storing one indexed
record as a part of a loop to store all the indexed records in one file record block is given by

RL
= -} ———
NAIS 3 MAXRL

D-2 39520600 D



RETRIEVE

An indexed retrieve requires one access for retrieving the desired key information segment block and
one access for retrieving the record, plus two extra accesses if the record is being removed.
Therefore the number of accesses for an indexed retrieve is given by:

NA . = 2+ 2+ f(ro)

" D.1.3 ACCESSES FOR THE DIRECT METHOD

STORE

A direct store requires one access for updating the record. Therefore the number of accesses for a
" direct store is given by:

NADS =1

RETRIEVE

A direct retrieve requires one access for retrieving the record, plus one extra access if the record is
being removed. Therefore the number of accesses for a direct retrieve is given by:

NADR = 1+ f(ro)

D.1.4 ACCESSES DUE TO THE INITIAL USAGE OF A FILE

NON-INDEXED
If there have been no accesses via file requests of the file structure for a period of time, the next

access is designated an initial usage of the file structure. This requires one extra access to read in
the file information segment directory. Furthermore, if there have been no accesses via file requests

39520600 D D-3



of a particular file for a period of time, the next access to this file is designated an initial usage of the
file. Assuming that the file numbers scatter uniformly, the number of FISs with the same scatter
code is given by:

NWFISD - z)

NFISSS = NE
(53

Since NWFISD equals 96 (see Section C.3.3.1), then

NF
NFISSS = [47]

On the average, the expected number of FISs to be accessed to find the FIS corresponding to a given
file number is given by

2 [%ﬂ . [}%} [%]

This gives an upper bound on the number of file information segment blocks that must be accessed to
read in a given file information segment.

Therefore, the expected number of accesses for an initial usage of a non-indexed file is given by:

Y
< 1 —_—
NA L UNF * [94]

INDEXED

If there have been no accesses via indexed file requests of a particular indexed file for a period of time,
the next indexed access to this file is designated an initial indexed usage of the file. This requires one
extra access to read in the key information segment directory. Furthermore, if the indexed file has not
been accessed for a period of time by non-indexed methods, extra accesses are also required as in the
non-indexed case. Therefore, the number of accesses for an initial usage of an indexed file is given by:

NF
Mg = 27 I—Ei.l

D-4 V 39520600 D



Note: In this section it has been assumed that the user has not followed the file access time optimization
procedure described in Section 4.3. If the user has followed this optimization procedure, all the files
with one scatter code will be stored in one FIS block. If the procedure has been followed and if the
number of files is less than or equal to

Maximum number of scatter codes . Maximum number of FISs that can be
represented in FIS directory cpntained in one FIS

=94 - 18 = 1,598

then the expression

g

in the equations of this section can be replaced by the value 1.

D.1.5 ACCESSES DUE TO THE TERMINAL USAGE OF A FILE

NON-INDEXED

If the file structure is not accessed for a period of time, one extra access is required to write out the
file information segment directory (if it has changed). Furthermore, if a particular file is not used for
a period of time, one extra access is required to write out the file information segment (if it has
changed), Therefore the number of accesses for the terminal usage of a non-indexed file is given by

NATUNF < 2

INDEXED

If a particular indexed file is not accessed for a period of time, one extra access is required to write
out the key information segment directory (if it has changed)., Furthermore, if the indexed file has not
been accessed by non-indexed methods, extra accesses are also required as in the non-indexed case.
Therefore the number of accesses for the terminal usage of an indexed file is given by:

NAT UIF <3

39520600 D - D-5



lD.2 DISK/DRUM AVERAGE TRANSFER RATE

I D.2.1 DISK AVERAGE TRANSFER RATE

The average transfer rate of the 853 disk is quite complex when word addressing is utilized. However,
approximations can be made if the number of words that are to be read or written is small (e.g.,
RL < 93). With this assumption, the average transfer rate for a disk read or write is given by *:

S — RL -1
~ + LA
TRy q SEEK + LAT TDK( o )
RL - 1
~ + +
110 + 13 25( 5 )
TR 123+ 2 (RL - 1) milliseconds/access
DKR 96
and
TR ~ SEEK+TAT _+LAT.__+2-LAT (RL'I)
DKW DK DK DK 96
~ 110+13+25+2.25(RL"1)
96
TR ~ 148 + 20 (RL - 1) milliseconds/access
DKW 96

Note that the above assumes that the software overhead is negligible.

I D.2.2 DRUM AVERAGE TRANSFER RATE

The average transfer rate of the 1751 drum is the sum of the average latency and the word transfer

times. Therefore:

TRDM = LATDM + TWRDM +« RL
TRDM = 8+ ,008 * RL milliseconds

*The derivation of these approximations is not proven here because of space considerations. For
larger records (RL > 93), the transfer rates may be modestly or substantially increased.

39520600 D



FIS, FRB, KIS, AND FILE SPACE POOL DUMPS E

I o T gy ]

One sequential and one indexed file are defined in the FORTRAN code in Figure E-1. Three records
are stored into the sequential file, file number 256. Each data word contains the record number for
each sequential record. Four records are stored into the indexed file, file number 97. Each data word
of the record with the key value AAjg contains the value Ajg and each data word of the record with the
key value BBj4 contains the value Bjg. Similarly, the record with the key value CCjg is filled with
Cjgs and the record with the key value DDjg is filled with Djgs.

PROGRAM EXAMPL
DIMENSION IREQBF{12}.IRECBF{93},I0BUF{58},IRECPT{C}

C SET UP SEQUENTIAL FILE/3 RECORDS
C DEFINE FILE NUMBER 25k {=$100}

IFLNUN=25k
C LOGICAL UNIT & IS THE DISK
LU=8
C TO OPTIMIZE USE OF FILE SPACE IN FILE BLOCKS. LET MAXRL=93{=9bx1-3}
MAXRL=93

CALL DEFFIL{IFLNUM.MAXRL.LU-IRE@BF.IREQRID}
C CHECK FOR ERRORS
IF {IREQID.LT.D¥} GO TO 5000
C SET UP INDEXED FILE/4 RECORDS
C DEFINE FILE NUMBER 97
IFLNUM=97
MAXRL=93
CALL DEFFIL {IFLNUM.MAXRL.LU-IREQ@BFIREQID}
C CHECK FOR ERRORS
IF {IREQID.LT.0} 60 TO 5000
C DEFINE FILE 97 AS AN INDEXED FILE WITH A ONE-WORD KEY AND
C 400 EXPECTED KEY VALUES
KEYLTH=1
NUMEKV=400
CALL DEFIDX{IFLNUM.NUMEKV.KEYLTH.LU.IREQBF.IREQID}
C CHECK FOR ERRORS
IF {IREQRID.LT.O} GO TO 5000
C STORE 3 RECORDS INTO SEQUENTIAL FILE {FILE NUMBER 25k}
IFLNUM=25k
C EACH RECORD HAS 31 WORDS
D0 100 IREC=1.3
C LET CONTENTS OF EACH DATA WORD OF THE RECORD BE THE RECORD NUMBER.
C NOTICE THAT NOTHING IS STORED IN THE FIRST WORD OF A RECORD.AS THIS

Figure E-1. FORTRAN Code Example (Sheet 1) i

39520600 D E-1



N N NN

N N

WORD IS RESERVED FOR USE BY THE FILE MANAGER.
D0 50 IWORD=2.31
50 IRECBF{IWORD}=IREC
CALL STOSEQ{IFLNUM.IRECPT-IRECBF.31.IREQBF.IREQID}
CHECK FOR ERRORS
IF {IREQID.LT.O0F GO TO 5000
100 CONTINUE

STORE FOUR RECORDS INTO FILE 97~ WITH KEYS=%AA.%BB.%CC. AND %DD-
RESPECTIVELY. LET EACH DATA WORD OF THE RECORD WITH KEY VALUE %AA
CONTAIN THE VALUE %A. LET EACH DATA WORD OF THE RECORD WITH KEY
VALUE 4BB CONTAIN THE VALUE $B. SIMILARLY. THE RECORD WITH KEY
VALUE 5CC IS TO BE FILLED WITH $C#S~ AND THE RECORD WITH KEY VALUE
&DD IS TO BE FILLED WITH %D#S.
INITIALIZE KEY VALUE AND DATA WORD VALUE.

KEYVAL=%AA

IDATA= %A

IFLNUM=97

DO 200 IREC=1laY4

DO 150 IWORD=2.93
150 IRECBF{IWORD}=IDATA

CALL STOIDX {IFLNUM.KEYVAL.IRECPT-IRECBF,93,IREQBF.IREQID}
CHECK FOR ERRORS

IF {IREQID.LT.O0} GO TO 5000
INCREMENT KEY VALUE AND DATA WORD VALUE

KEYVAL=KEYVAL+511

IDATA=IDATA+1
200 CONTINUE

GO0 TO 5010

C PRINT ERROR MESSAGE

5000 CALL SETBFR{IOBUF 58}
WRITE {4.L000} IFLNUM.IREQID
5010 CONTINUE
CALL RELESE{EXAMPLZ}
LO0D FORMAT{SHFILE 2I5.8H ERROR %.%U}
END

Figure E-1, FORTRAN Code Example (Sheet 2)

39520600 D



After execution of the program, the FIS directory is dumped (as shown in Figure E-2). The FILMGR
SYSDAT core location FIDSEC is dumped to determine the location of the FIS directory. The value of
FIDSEC is 2EA 16° therefore mass memory sector 2EA1 6 is dumped to obtain the FIS directory.

The first word of the FIS directory contains 2EB16 which points to the first FIS block. The scatter code
for file 256 is 256 (mod 47) = 21. The 21st two-word entry in the FIS directory is 2EBg4, 1, indicating
that the FIS for file 256 is to be found in sector 2EB16’ word 1, The scatter code for file 97 is

97(mod 47) = 3. The third entry in the FIS directory indicates that the FIS for file 97 is to be found at

sector 2EB16, word 1116‘

02EA

[02e8]
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

39520600 D

000A
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
[02EB__ 0001]
0000 0000
0000 0000
0000 0000
0000 = 0000
0000 0000
0000 0000
Figure E-2.

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
00060

Example of FIS Directory

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

[02EB___ 0011]
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

9b=WORD MAIN
MEMORY SECTOR
r CONSTITUTES
ALL OF FILE
DIRECTORY




The 288-word FIS block containing the FIS for file 256 and the FIS for file 97 is shown in Figure E-3.
The FIS header word contains a zero that indicates there are no more FIS blocks. The FIS for file 256
is found in words 1 16 through 10 16 of the FIS block. Words 11 16 through 20 16 contain the FIS for file 97.

02EB
FIS HEADER WORD —»{ 0000 | 0600 0000 0100 02EF 0003 O02EF 0060
FIS FOR FILE 256——#{ 0000 _ 0000 0000 _ 0000 _ 0000 0000 0001 _ 0001
C008 | 0000 0000 0061 02F0 0001 O02F6 0060
FIS FOR FILE 97———»{02EE 0001 0001 0001 0190 0000 0004 0001
C408 | 0000 0000 0CO0O 0000 0000 0000 0000
0000 0000 0000 G000 0000 00CCO 0000 0000
0000 0000 0000 0000 ©0OOO QOO0 0GCO 0000
0000 0000 0000 0000 QGO0 0GOO 000G 0000
0000 0000 0000 0000 ©OOO OO0 0000 0000
0000 0000 0000 0000 0000 (OO0 Q000G QOGO
0000 0000 0000 0000 0000 0000 (QOOC 00GO
0000 0000 0000 0000 G000 0000 0000 0000

02EC
0000 0000 0000 0000 QOGO 0000 ©COO 0000
0000 0000 0000 0000 0000 0000 00GOGC  ©0OOO
0000 0000 0000 0000 GOOO GOOO 0000 0000
0000 000C 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 00GOO 00OO 0000
0000 0000 0000 0000 0OOO 0000 00GO 000CO
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0OOO 0000 QOO0
00060 0000 0000 0000 0000 0000 0000 0000

02ED
0000 0000 0000 0000 0000 (0000 0000 0O0CO
0000 0000 0000 0000 0000 06OO 0000 0000
0000 0000 0000 000C 0000 0000 0000 0000
0000 0000 0000 0000 0000 0COO 0000 0000
00600 000G 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 GOOO 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 Q00O
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 00COO 0000 0000 0000 0000

Figure E-3. FIS Block Example

E-4 39520600 D



Words 3, 4, and 5 of the FIS for file 256 indicate that the file contents for this file are in sector 2EF y¢.
Section 2EF16 is shown in Figure E-4, The three-word FRB header indicates that this is the first FRB

and that there are no more FRBs. The remainder of the sector contains the three records stored in the

file and the first word of each record contains the record length.

FRB HEADER —— >

RECORD 1 ——— b

RECORD 2 m—eeoeee

RECORD 3 —————1P»

File 97 is an indexed file.

02EF

RECORDS
IN FRB

0000 0000 0000] O00IF 0001 0001 0001 0001
0001 0001 0001 0001 0001 0001 0001 0001
0001 0001 0001 0001 0001 0001 0001 0001
0001 0001 0001 0001 0001 0001 0001 0001
0001 0001 [ O0IF 0002 0002 0002 0002 0002
0002 0002 0002 0002 0002 0002 0002 0002
0002 0002 0002 0002 0002 0002 0002 0002
0002 0002 0002 0002 0002 0002 0002 0002
0002 [ 00IF 0003 0003 0003 0003 0003 0003
0003 0003 0003 0003 0003 0003 0003 0003
0003 0003 0003 0003 0003 0003 0003 0003
0003 0003 0003 0003 0003 0003 0003 0003
Figure E-~4. FRB Example Sequential File

To find a record corresponding to a given key value, the KIS directory must

be examined. Word 7 of the FIS for file 97 indicates that the KIS directory is located at sector 2EE ¢

(refer to Figure E=-3).

39520600 D

KIS DIRECTORY ———»[0000

HEADER

02EE

0004 02F1  02F7 |
0000 0000 0000 _ 0000
0000 0000 0000 0000
02FS] 0000 0000 0000
0000 0000 000G 0000
0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 000G 0000
0000 0000 000G 0000
0000 0000 [02F1] oo00
0000 0000 0000 0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
6000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

0000

0000
0000
0000
0000
0000
0000

Figure E-5. KIS Directory for File 97, A Sample File

The KIS directory is shown in Figure E-5. The directory header shows that
there are four linked KIS blocks, the first in sector 2F 116 and the last in sector 2F71

6*

[o2F3
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000



! Tigure E-6 shows four entries in the KIS directory and the key value, scatter code, and KIS block
pointer for each entry. The first KIS directory entry points to the KIS block with scatter code zero, as
opposed to the first FIS directory entry, which points to the first FIS with scatter code one.

K=
DECIMAL KIS
EQUIVALENT SCATTER POINTER
KEY OF KEY CODE = (FROM FIGURE
VALUE VALUE K(MOD 92) D-5)
1
AA'16 170 78 2F 16
BB16 187 3 2F316
CC16 204 20 2F516
. DD16 221 37 2F716

Figure E-6.

Key Values, Scatter Codes, and Corresponding KIS Pointers

The KIS block for key value AA16 is located in sector 2F1,¢, as shown in Figure E-7. The KIS block

header indicates that this is the first KIS block and that there are no KIS overflow blocks.
It shows that the record with

KIS in this KIS block, which is located in words 3 through 5 of the sector.
l key value AAjq is stored in sector 2F0, starting at word 3. The record is also shown in Figure E-7,

02F0
FRB HEADER——————=[0000  02F2 0001 | 005D 000A 000A 0O00OA 000A
000A 000A 060A 000A O00OA 000A 000A 00DA
000A O00A 000A 000A 000A O000A 000A 000A
000A 000A 000A 000A 000A O000A 000A  0O00A
000A 000A 00COA 000A 000A 000A O000A 0O00A
000A Q00A 000A O000A 000A 000A 000A  000A
RECORD CORRE- ———»000A 000A COGA 000A 000A 000A 000A  0O0A
SPONDING TO KEY 000A 000A 000A 000A 000A 000A O000A  000A
VALUE AA; ¢ 000A 000A 000A O00A Q00DA 000A 0O00A  000A
000A 000A 000A 000A 000A 000A OO0DA  G0O0A
000A 0Q00A ©000A 000A O000A 000A 000A 0O00A
000A 000A 00CA  00OA 000A 000A 000A  000A
KIS FOR KEY
02F1 VALUE AApgq
KIS BLOCK——————=[0000 0000 0001 | 02F0 0003 _00AA] 0000 0000
HEADER 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 00006 0000 0000 000C 0000 0000
0000 0000 0000 0000 0000 (0000 0000 0000
0000 0000 0000 0000 0600 000G 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0006 0000 0006
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
Figure E-7, KIS and Corresponding Record

There is one

39520600 D



gpI0oay 3urpuodsaxio) I1ay], pue sSIY 9244l °g-F oInsigy

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 ©000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 ©0OCO 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0006 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 [ AQ00 _ £000 9420 | 1000 0000  §d20]
SN}
aooo aooo aooo aacoo aooo aooo aooo aooas
aooo Q000 Q000 4000 Q000 @060 4000 Q000
aooo Qo00 doo0 Q000 4000 Q000 Q000 Q000
Q@000 Q000 @000 Q000 @000 @000 400D AOBO
aoo0 4o00 Q000 4000 @000 @006 4000 Q000
gooo  4oo0  4oo0 4000 4000 4000 4000 4000
aoco 4oo0 4000 Q000 Q000 Q000 4000 Q000
Qao00 @000  @o00  QC00  4o00  .Q000 4000 Q000
gooo @000 G000 Q0G0 Q000 Q000 4000 4000
Qo060 4000 Q006 . Q000 @000 4000 4000 Q000
@000 Q000 Q000 Q000 @000 @000 4000 4000
Q000 4060 Q000 Q000  @S00 [ 0000 0000 ©420
0000 0000 0000 0000 0000 0000 0000 000G
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 QOGO 0000 0000
0000 0000 0000 0000 0000 0000 0000 000D
0000 0000 0000 0000 0000 0000 0000 00GO
0000 0000 0000 0000 0000 0000 0000 00O
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000  COOO
0000 0000 0000 0000 0000 Q000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 [DJ00 5000 %420 | 1000 0000  §d20]
SIAT
*g=d 2In81g ur UMOYS aI® wﬁQQ pue .wﬁoo 91

3000 0000 D000 D000 2000 D000 D000 0000
2000 2000 2000 2000 2000 2000 2000 2000
2000 2000 2000 2000 2000 2000 2000 2000
2000 2000 2000 2000 3000 2000 D000 2000
2000 2000 2000 2000 2000 2000 D000 D000
2000 2000 2000 2000 2000 2000 2000 2000
2000 2000 2000 2000 2000 2000 3000 2000
2000 2000 2000 2000 2000 2000 2000 D000
2000 2000 2000 2000 2000 2000 2000 2000
2000 3000 2000 2000 2000 2000 2000 2000
2000 2000 2000 3000 2000 2000 2000 2000
2000 2000 2000 2000 4s00 [1000 9420 2420
£420
0000 0000 0000 0000 0000 000G 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
Awm 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 [ 8900 $000  zd4z0 | 1000 0060  13z0]
9420 (8]
8000 €000 8000 9000 9000 ©000 ©000 8000
8000 €000 9000 9000 8000 8000 €000 8000
8000 8000 49000 8000 8000 8000 8000 8000
g000 9000 9000 8000 9000 €000 €000 €000
8000 8000 4000 4000 8000 4000 8000 4000
8000 €000 9000 9000 9000 €000 €000 8000
8000 8000 8000 8000 8000 9000 8000 8000
8000 8000 8000 8000 8000 8000 8000 8000
4000 8000 9000 8000 8000 g000 8000 q000
€000 9000 €000 9000 €000 9000 9000 9000
8000 8000 8000 8000 4000 8000 8000 8000
8000 9000 9000 9000 @s00 [T000 #Hd20 0420
5420

hd420

€420

——
gad

2420

dd sonfea L9y a8y} Jo yore 103 paooaa Surpuodsarios ay) pue §I3 oY} ‘Areruig

E-7

39520600 D



] After execution of the program shown in Figure E-1, the file space list and pool are dumped. In the
system used in this example, the file space list is composed of a block of 1-sector, 2-sector, and
3-sector segments, When dumped, the file space list is empty. The SYSDAT FILMGR word FSPOOL
contains 2F 816; the first three words of this sector are shown below:

02F8
0000 0000  3FF2

I A diagram of the file space pool is shown in Figure E~9. This figure may be compared with the other
file space pool example shown in Figure 2-2.

FSPOOL ——P 0
0
3FF2,
POOL BLOCK
- OF 3FF2,,-SECTOR
SEGMENTS
J
I Figure E-9. File Space Pool

The first zero pointer indicates that there are no other segments of this length in the pool. T.he second
zero pointer indicates that there are no pool blocks of segments having a greater length. The third
word indicates that the length of this segment is 3FF2,g sectors.

E-8 39520600 D



FILE STRUCTURE ILLUSTRATIONS F§

o - e - ]

The following illustrations of the file structure are given:

F.1 FILE STRUCTURE FOR STORAGE/RETRIEVAL METHODS

The flow logic for sequential, indexed, and direct storage/retrieval are illustrated in Figure F-1.

Note that all three share a common path, i.e., the flow logic through the FIS directory and the FIS
blocks., Once the file information segment is found, each proceeds on its separate path until the record
is retrieved.

F.2 FILE STRUCTURE FOR INDEXED-LINKED WITH LIFO-LINKING

The file structure for indexed-linked with LIFO-linking is illustrated in Figure F-2. Note that records
2, 6, and 8 have the same key value (B), records 1 and 5 have the same key value (C), records 3 and 4
have the same key value (D), and record 7 has a unique key value (A).

F.3 FILE STRUCTURE FOR INDEXED-ORDERED

The file structure for indexed-ordered files is illustrated in Figure F-3. This example assumes that
the number of expected key values is nine; therefore, there are three KIS blocks with each KIS block
having three key information segments. In the figure five records have been stored. Note that each
key information segment is stored in a particular KIS block and is ordered within that block by its key
value.

39520600 D R F-1



FIS FIS FIS

DIRECTORY BLOCK BLOCK
-
Y
gIOSINTER : —_
FIS OF =
: » iTH FILE _.': I
| 1 .
| - . |
> FIS 4 i |
bl
. | .
e e e d4 1
! e —m e e 1
! | :
! : KIS KIS '
| DIRECTORY BLOCK i
i Lor==s - i
|
| : | * B i
. I KIS OF T !
| v I JTHRECORD | 1 |
. KIS BLOCK | _ __ b
| POINTER | |
| .
. l l
! I
I (I
. |
! ||
l .
i |
o
3 FRB FRB FRB Lo
.»,_._._.I ——*F= ———fe |
. . . ] | ] I
| i | i P
. . ! I iTH RECORD :
| | | : OF iTH FILE |g.. |
| ! [ ,
' I '
S SN
Notes: 1. ———= Common flow logic

1

2, —+—-=® Sequential flow logic
3. = = —=p Indexed flow logic
4, =+« —-.9 Direct flow logic

5, ==e:eeeeeeees Repeated logic

Figure F-1. File Structure Flow Logic for Storage/Retrieval Methods

39520600 D



KIS DIRECTORY

KIS BLOCK

FRB

KIS BLOCK
POINTER

KIS DIRECTORY

\ 4

KIS FOR
KEY VALUE B

RECORD 5
(KEY VALUE C)

FRB

KIS FOR
KEY VALUE C

RECORD 6
(KEY VALUE B)

A 4

RECORD 1
(KEY VALUE C)

KIS FOR
KEY VALUE A

RECORD 7
(KEY VALUE A)

KIS FOR
KEY VALUE D

RECORD 8
(KEY VALUE B)

RECORD 2
(KEY VALUE B)

RECORD 3
(KEY VALUE D)

KIS BLOCK
POINTER 1

KIS BLOCK
POINTER 2

A 4

RECORD 4
(KEY VALUE D)

Figure F-2. File Structure for Indexed-Linked File with LIFO-Linking

FRB

KIS BLOCK
POINTER 3

39520600 D

KIS BLOCK
KIS FOR
KEY VALUE 2
FRB
KIS BLOCK
RECORD 1
KIS FOR (KEY VALUE 5)
KEY VALUE 3
KIS FOR RECORD 2

KEY VALUE 4

KIS FOR
KEY VALUE 5

(KEY VALUE 3)

RECORD ¢
(KEY VALUE 7)

KIS BLOCK

RECORD 3

. (KEY VALUE 2)

) 4

KIS FOR
KEY VALUE 7

Figure F-3. File Structure for Indexed-Ordered File

RECORD 5
(KEY VALUE {)







FILE MANAGER ERROR MESSAGE

G 1

PRINTING ON
COMMENT DEVICE

MEANING

RECOVERY

F.M. ERROR 1

Irrecoverable mass memory
error occurred while space
was being returned to the
space pool. This error may
result in invalid space pool
threads and/or file space
being lost to the File Manager.

The user may autoload and
purge all system files, then
reload files from a user
written backup as described
in Section 2.

Note also that the File Manager returns error information to the user program via reqind. This
status word is defined in Figure 2-1,

39520600 D






Access rates 4-1,2
Disk 4-4
Drum 4-5
Equations for 4-3,4,5,6
Examples of 4-6
File structure D-1

Combination, file
Example of 3-39
Uniqueness of 2-6

Data word 2-5
Define file call (DEFFIL) 3-4
Define file indexed (DEFIDX) 3-6

Direct requests. See store direct record and

retrieve direct record,
Examples of 3-28
Storage and retrieval 4-3
Direct storage 2-2
Direct storage access rates 4-5; C-3
Disk/drum transfer rates D-6
Disk read 4-3
Disk write 4-3
Drum 4-4

File information segment (FIS) B-2
Block B-2; E-4
Directory B-2; E-3
Header B-4
Storage size C-7
Structure B-1

File initialization D-3

File record block (FRB)
Example of E-5
Header block B-5
Length 2-6
Storage, size of C-7
Structure B-4,5

39520600 D

INDEX

P F 78 A WA ORI CAI R A AT MO SRR - TR RSN 1 YO S S NS T e i AN i o ROMLTS R  feod Xpa M, Tk oAt

File request 2-3,6; 3-1, See also direct, indexed,
sequential, specification, and unprotected file

requests,

File space audit 2-9

File space list 2-9; 4-2

File space pool 2-9; 4-2
Diagram of 2-10
Example of E-1

File structure
Access rates D-1
Examples of F-2,3
Requirements 2-6
Storage limits C-2, 3,15

File validity check 2-11

File record block (FRB) 3-16; C-2

Header word 2-5
File information segment B-4
File record block B-5
Key information segment B-9
Overflow block (KIBSIZ) B-9

Indexed file 1-1
Indexed requests
Examples of 3-27

Retrieve indexed-ordered record 3-29

Retrieve indexed record 3-24
Storage of 4-3; C-2; D-1,2,5
Store indexed record 3-22
Indexed storage 2-2; 4-5; C-15
Indicator word 2-4
Initial file access 4-7

Key 2-1

Key information segment (KIS)
Block B-8
Directory B-8; E-5
Header word B-9

Index-l e



Overflow block (KIBSIZ) B-9
Space allocation B-10,11
Storage size C-11

Structure B-6,7

Latency 4-1
Locked file 2-4; 3-16
Lock file request (LOKFIL) 3-7

Macros
FLDF 3-7,8,9,11,16,19, 26,31, 35,37,41
STATFL 3-41

Parameter Limitations 2-7

Record format 2-5
Record length 2-6; B-5,6
Record pointer 2-5
Record storage access rates 4-2
Release file (RELFIL) 3-10
Requests
DEFFIL 3-2
DEFIDX 3-6
LOKFIL 3-7
RELFIL 3-10
RTVIDO 3-29
RTVDIR 3-35
RTVIDX 3-24
RTVSEQ 3-17
STODIR 3-34
STOIDX 3-22
STOSEQ 3-15
UNLFIL 3-9
Without macros 3-40
Results file 3-32

e Index-2

Retrieve direct record (RTVDIR) 3-35

. Retrieve indexed-ordered record

(RTVIDO) 3-29

Retrieve indexed record (RTVIDX) 3-24
Retrieve sequential record RTVSEQ) 3-17
Sequential file 1-1
Sequential requests 2-2

Examples of 3-20

Retrieve sequential record 3-17

Storage of 2-2; 4-3,4,5: D-1,2

Store sequential record 3-15
Space allocation

Core allocation 2-8,11

File space allocation 2-8

File space audit 2-9

Key information structure B-10,11
Specification requests 3-1

Define file 3-4

Define file indexed 3-6

Examples of 3-11

Lock file 3-7

Release file 3-10

Unlock file 3-9
Store direct record (STODIR) 3-34
Store sequential record (STOSEQ) 3-15
Storage and retrieval., See direct, indexed, and

sequential

File structure F-2

Size C-1 ;
Store indexed record (STOIDX) 3-22
SYSDAT 2-8,9

Temporary buffer 2-4

Unlock file request (UNLFIL) 3-9
Unprotected file requests 2-6
Update protection 2-5

39520600 D



NG_LINE

Si

<

Bl

!

—— ——— e —— —— — — — ——— — — (—— —_ — — — — — — — — —— ——

COMMENT SHEET

MANUAL TITLE .CONTROL DATA® 1700 System MSOS 5 File.Manager

Version 1 Software Reference Manual

"PUBLICATION NoO. ___39520600 REVISION D
FROM NAME:

BUSINESS

ADDRESS:

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed -
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number.



STAPLE

STAPLE

STAPLE

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED !N U.S.A,

—— e - — —

POSTAGE WiLL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MALL

LA JOLLA, CALIFORNIA 92037

FIRST CLASS
PERM!IT NO. 333

LA JOLLA. CA,

CUT AILONG LINE

A



File Manager Version 1
TITLE: Reference Manual

PUBLICATION NO. 39520600
REVISION D

REASON FOR CHANGE:

Update for MSOS 5,

INSTRUCTIONS:

CONTROL DATA CORPORATION
TECHNICAL PUBLICATIONS DEPARTMENT
7801 COMPUTER AVENUE

MINNEAPOLIS, MINNESOTA 55435

DATE: 9/76

This manual obsoletes and replaces all previous editions.

AA3148




s






CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

LITHO IN US.A.



