
r,l c:\ CONT~OL DATA
\!:I r:::J CO~O~TION

MACRO ASSEMBLER
REFERENCE MANUAL

CDC®

60361900

MASS STORAGE OPERATING SYSTEM

INTERACTIVE TERMINAL-ORIENTED SYSTEM

REVISION RECORD
REVISION DESCRIPTION

A Original printing for Macro Assembler Version 3.0 and MSOS Ve,rsion 4. O.

(4/72)

B General revision and update for compatibility wi th MSOS 4. 1. Appendix D added.

(3/74)

C Revised to add a new Chapter 5 and the Glossary and incorporate PSR chan!1es 1950 and 3249.

(5/75)

D Revised to reflect MSOS 4.3 changes.

tlO/75)

E Revised to reflect MSOS 5 changes. Appendixes E and F addp.rl
(8/76)

F Manual undated to reflect correct nublication numbers for related manualR

<1/77)

G Manual revised to reflect ITOS 2.0 release.

(1/79) revised.

Publication No.
60361900

Additional copies of this manual
may be obtained from the
nearest Control Data Corporation
sales office.

© 1972. 1974. 1975, 1976. 1977, 1978
by Control Data Corporation

Printed in the United States of America

The front cover, title page, and pages iii/iv and vi have been

Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

------ii--~

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number If the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Cover -- 6-3 thru 6-6 C

Title Page -- Glossary-1 E

ii G Glossary-2 E

iii/iv G A-1 E
v E A-2 A
vi G A-3 B
vii thru ix E A-4 thru A-10 E
1-1 thru 1-3 E B-1 E
1-4 B C-1 E
1-5 A C-2 thru C-4 A
1-6 A D-1 B
1-7 D D-2 B
1-S A E-1 thru E-3 E
2-1 E F-1 E
2-2 E F-2 E

2-3 thru 2-5 A Index-1 thru
2-6 thru 2-S B Index-4 E
2-9 thru 2-27 E Comment
3-1 D Sheet G
3-2 B Cover --
3-3 A
3-4 A
3-5 B
3-6 B
3-7 D
3-S D
3-9 thru 3-12 B
3-13 C
3-14 B
3-15 B
3-16 A

3-17 D
3-1S E
4-1 E
4-2 B
4-3 D
4-4 D
4-5 A
4-6 thru 4-9 B
4-10 C
5-1 E

5-2 E
5-2.1 E
5-3 thru 5-6 C
5-7 E
5-S E
5-9 thru 5-15 C
6-1 E
6-2 D

60361900 G iii/iv

PREFACE

The Macro Assembler for the CONTROL DATA® CYBER 18/1700 Computer Systems is a
three-pass assembler that can convert source language input, including macro instructions.
to relocatable output and generate list output. The source programs are written with sym­
bolic machine, pseudo, and macro instructions.

Macro definitions may be defined by the user within the source program. or they may
be placed on a separate macro library.

Input is from the standard input device. binary output is to the standard output device.
and list output is to the standard list device.

The following describe functions occurring in each pass of the assembler.

Pass 1

Programmer-defined macros are processed, and appropriate tables are built.
Whenever a macro instruction is encountered. the macro skeleton with actual
parameters substituted is inserted into the source input on the mass storage device.

The source input is copied onto the mass storage device.

Sequence numbers of the input source images are checked.

Pass 2

Each source image on the mass storage device is read, and pass 2 errors are
listed as' they occur.

Conditional assembly pseudo instructions are processed.

Symbol and external tables are built.

Pass 3

Each image is read, and pass 3 errors are listed.

List and relocatable binary outputs are generated according to the input options.

TABLST

TABLST prints and punches the entry points and external images. The transfer
image is punched.

An EOF image is output to the next load-and-go sector on mass storage.

A symbol table listing is given.

60361900 E v

XREF

XREF creates and prints the cross-references lists.

This macro assembler operates under the Mass Storage Operating System (MSOS).
Version 5. and the Interactive Terminal-Oriented System UTOS). Version 2.

Refer to the Mass Storage Operating System (MSOS) 5 Reference Manual equipment
configuration for the minimum hardware required by the Macro Assembler.

It is assumed that users of this manual are familiar with MSOS.

Following is a list of related publications.

Description

MSOS 5 Reference Manual

Mass Storage FORTRAN Version 3
A I B Reference Manual

1700 Computer System Codes

Small Computer Maintenance Monitor
Reference Manual

MSOS 5 Instant

1700 MSOS 5 File Manager Version 1
Reference Manual

MSOS 5 Release Bulletin

MSOS 5 Installation Handbook

Small Computer Maintenance
Monitor Instant

MSOS 5 Ordering Bulletin

Interactive Terminal-Oriented System
(ITOS) Version 2 Reference Manual

Interactive Terminal-Oriented System
(ITOS) Version 2 Installation Handbook

Publication No.

96769400

60362000

60163500

39520200

96769430

39520600

96769440

96769410

39521700

96769490

96769240

60475200

This product is intended for use only as described in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or undefined
parameters.

I

I

____ 60361900_G _____________________ _

CONTENTS

HiM el

PREFACE v

CHAPTER 1 INSTRUCTION FORMAT 1-1
1.1 Source Program 1-1
1.2 Source Statement 1-1

1. 2. 1 Location Field 1-2
1. 2. 2 Remarks 1-2
1. 2.3 Instruct ion 1-2
1. 2-.4 Address Field 1-2. 1
1. 2.5 Comment Field 1-8
1. 2.6 Sequence Field 1-8

CHAPTER 2 MACHINE INSTRUCTIONS 2-1
2. 1 Storage Reference Instruct ions 2-1

2.1.1 Address Modes 2-1
2.1.2 Absolute Address ing 2-3
2.1. 3 Relative Addressing 2-4
2.1. 4 Constant Addressing 2-6
2.1.5 Data Transm iss ion Instructions 2-6
2.1. 6 Ar ithmet ic Instruct ions 2-7
2.1. 7 Logical Instruct ions 2-8
2.1. 8 Jump Instructions 2-9
2.1. 9 Type 2 Storage Reference 2-10

2.2 Register Reference Instructions 2-10.7
2.3 Inter-Register Instructions 2-12

2.3. 1 Type 1 Inter-Register Instructions 2-12
2.3.2 Type 2 Inter-Register Instructions 2-14

2.4 Shift Instruct ions 2-14
2.5 Skip Instructions 2-15

2.5.1 Type 1 Skip Instructions 2-15
2.5.2 Type 2 Skip Instructions 2-17

2.6 Decrement and Repeat 2-18
2.7 Field Reference Instructions 2-19
2.8 Miscellaneous Instructions 2-20
2.9 Negative Zero/Overflow Set 2-26

CHAPTER 3 PSEUDO INSTRUCTIONS 3-1
3. 1 Subprogram Linkage 3-1

3.1.1 NAM 3-1
3.1.2 END 3-1
3.1.3 ENT 3-2
3.1.4 EXT/EXT~:~ 3-2

3.2 Data Storage 3-4
3.2. 1 BSS 3-4
3.2.2 BZS 3-4
3.2.3 COM 3-5
3.2.4 DAT 3-6

60361900 E vii

3.3 Constant Declarations 3-7
3.3.1 ADC/ADC~:c 3-7
3.3.2 ALF 3-7
3.3.3 NUM 3-9
3.3.4 DEC 3-10
3.3.5 VFD 3-11

3.4 Assembler Control 3-13
3.4.1 EQU 3-13
3.4.2 ORG/ORG* 3-14
3.4.3 IFA 3-15
3.4.4 ElF 3-16
3.4. 5 OPT 3-17
3.4.6 MON 3-17

3.5 Listing Control 3-18
3. 5. 1 NLS 3-18
3.5.2 LST 3-18
3. 5.3 SPC 3-18
3.5.4 EJT 3-18

CHAPTER 4 MACROS 4-1

4.1 Macro Pseudo Instructions 4-l
4.1.1 MAC 4-1
4.1. 2 EMC 4-2
4.1. 3 LOC 4-2
4.1. 4 IFC 4-2

4.2 Macro Skeleton 4-3
4.3 Macro Instruction 4-4

4.3.1 Parameters 4-4
4.3.2 Examples 4-6

CHAPTER 5 STANDARD MACRO LIBRARY 5-1

5.1 Creating the Library 5-1
5.2 Modifying the Library 5-2
5.3 Programs in the Macro Library 5-2

5.3.1 Formatt ing Macros 5-2
5.3.2 File Manager Macros 5-3
5.3.3 Monitor Request Macros 5-8
5.3.4 Other Macros 5-14

CHAPTER 6 ASSEMB LER OUTPUT 6 -1

6.1 Control Opt ions 6-1
6.1.1 P Option 6-1
6.1. 2 X Option 6-1
6.1.3 L Option 6-1
6.1. 4 C Option 6-1
6.1. 5 M Option 6-2

6.2 Assembly Listing 6-2
6.2.1 Error Listing 6-2
6.2.2 Cross-Reference Listing 6-3
6.2.3 Sample Program 6-4
6.2.4 Sample List ing 6-4

---------vii i---------------------------------- ---- ------------------------- ----------~ -----6 0361900E ----

GLOSSARY

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

INDEX

MNEMONIC INSTRUCTIONS CODES

PROGRAMMING CONSIDERATIONS

ASCII CODES

MACRO ASSEMBLER ERRORS

INSTRUCTION CODES

MACRO LIBRARY

TABLES

Type 2 Storage Addressing Relationships

60361900 E

Glossary-l

A-I

B-1

C-l

D-l

E-l

F-l

Index-1

2-10.4

ix

INSTRUCTION FORMAT

1.1 SOURCE PROGRAM

The number of independent subprograms comprising a sou~ce program is limited only
by available space. Each subprogram may be assembled Independ:ntly, or several,
may be assembled as a group. The main subprogram of a group IS the one to WhICh
initial control is given; it need not be the first subprogram. The last subprogram

1

of a group must be followed by the MON pseudo instruction indicating the end of assem­
bly and return to the operating system.

Communication between subprograms is effected by the subprogram linkage pseudo
instructions and by the use of common and data storage.

At execution time, the entry point named in the END pseudo instruction specifies the entry
point to which initial control passes. A jump to the dispatcher or an exit request (see the
MSOS reference manual) signals return of control to the operating system upon job comple­
tion. EXIT or a jump to the dispatcher must be the last statement to be executed.

1.2 SOURCE STATEMENT

A source statement consists of location, instructions, address, remarks, and sequence
fields (see figures 1-1 and 1-2). The first four fields may not exceed 72 characters; within
that limitation they are free field. The sequence field is used when the Source image is 80
characters; it is restricted to columns 73 through 80.

Each field is terminated by a tab ($B; paper tape only), carriage return (end of statement
mark) or blanks. Any number of blanks may separate fields. A carriage return is always
the end-of-statement mark on paper tape.

1 72 73 75 76 80

/ I
SEQUENCE

LSEQUENCE
~ NUMBER

~--- I..-pROGRAM
ADDRESS

___ INSTRUCTION

"-- LOCATION

~ COMMENTt IDENTIFIER

TERMINATORt: MAY BE A TAB,
CARRIAGE RETURN, OR BLANK

t Blanks are permitted in remarks without terminating the field. It can be terminated
only by a carriage return or by reading column 72.

Figure 1-1. Normal Instruction, Free Field Format

60361900 E 1-1

1 2 72 73 80

/
COMMENT (BLANKS PERMITTED) SEQUENCE

Figure 1-2. Comment

1.2.1 LOCATION FIELD

The location field of a source statement must begin in column 1.

This field is used to specify a labeled (label starting in column 1) or an unlabeled (blank
or tab in column 1) statement.

The statement label is a symbolic name consisting of from one to six alphanumeric charac­
ters; the first must be alphabetic. Characters in excess of six are ignored. A two­
character name makes the most efficient use of storage and assembly time.

Examples:

LOOP1 Legal

123456 Illegal; first character is numeric

PI Legal

A 123456 Legal; only A 12345 is processed

1.2.2 REMARKS

An asterisk in column 1 of the location field specifies that the source statement is a
remark. Comments, written in columns 2 through 72, are printed with the assembly
list output but have no effect on the object program. An asterisk elsewhere in the
location field is illegal. Remarks may also follow the address field of ai1Y instruction.
There must be at least one blank separating the address field from the remarks.

1.2.3 INSTRUCTION

This field begins to the right of the location field and must be separated from it by at least
one blank character or a tab. If the location field contains no label (blank or tab on
column 1)" the operation code may begin in column 2.

The operation code field contains the three-letter instruction codes for machine and pseudo
instructions" or it contains macro instructions which may be up to six characters. Certain
instructions may be followed by a one-character terminator.

The mnemonic instruction codes are listed in appendix A.

1-2 60361900 E

1.2.4 ADDRESS FIELD

The instruction field begins to the right of the operation code field. separated from it by at
least one blank character or a tab. It is terminated by a blank or tab or by the 72nd char­
acter of the source statement. Exceptions are the macro instructions. which may have a
continuation line. and the pseudo instruction ALF (section 3.3.2). The field may not neces­
sarily contain an address (e. g •• for some skip instructions it may contain a constant deSig­
nating the number of words to be skipped).

This field contains an expression consisting of an operand or string of operands joined by
arithmetic operators. or it may contain a series of operands separated by commas. An
operand may be any of the following:

Symbolic name

Numeric constant
One of the special characters: ~~ A Q MOl B

Symbolic Operand

A symbolic name used as an operand in the address field must be defined in one of
the following ways.

Label in the location field of any machine instruction

Label in the location field of any macro instruction

Label in the location field of constant declaration pseudo instructions:
ADC. ALF. NUM. DEC. VFD

Symbolic name in the address field of the pseudo instructions: EXT.
COM. DAT. BSS. BZS. EQU

60361900 E 1 -2. 1

A defined symbolic name references a specific location in memory. It may be re­
locatable or absolute. A relocatable symbol refers to a location that may be relocated
during loading.

Storage is divided into three areas: program, data, and common. These areas are
defined at assembly time and the initial location of each is set to a relocation address
of zero. The object code produced by the assembler contains addresses that are
modified by a relocation factor to produce the actual address in memory.

A symbol is program relocatable if it references a location in the subprogram, data
relocatable if it references a location in data storage, and common relocatable if it
references a location in common storage. All other symbols are absolute. A symbol
is made absolute by equating it to a number, an arithmetic expression, or another
absolute symbol.

In all cases a symbolic label and a symbol defined by BSS or BZS take the relocation
and value of the current location counter. The location counter of a program is
originally program relocatable; however, its relocation may be changed by the ORG
instruction.

An address expression that includes more than one operand must reference only one
relocatable area. Terms of different relocation types must reduce to one relocatable
area or to an absolute address. When the address mode of an instruction is made
one-word relative by an asterisk terminator" the relocation type of the address
expression must agree with the type of the current location counter.

A symbolic operand may be preceded by a plus or a minus sign. If preceded by a plus
or no sign. the symbol refers to its associated value; if preceded by a minus, the
symbol refers to the ones complement of its associated value. When an expression
contains more than one symbol. the final sign of the expression is the algebraic sum
of the operands.

Example:

RT=relocation type of current location counter: P=program relocatable" C=common
relocatable" D=data relocatable" and A=absolute address.

RT

p
p

Label Operation

COM
DAT
EQU
BZS
BZS

Address

COM1"COM2
DAT1"DAT2
D(1),E(3)" G(E-D)" H($1000)" F(DATl)
A.B.C
J" K(10)

The symbols D, E. G, and H are absolute; DAT1" DAT2, and F are. data relocatable;
COM1 and COM2 a,re common relocatable; A. B" C. J. and K are program relocatable.

p
p
p
p

60361900 E

START ADC
LDA*
STA*
STA*

o
START
DAT1
COM1

(Error)
(Error)

1-3

The errors "resulted because the relocation types of the symbols in the address
field do not match that of the location counter, and the one-word relative address
mode was requested by an asterisk terminator.

RT Label Operation Address

p LDA+ (Not an error)

Relocations need not match when mode is two-word absolute.

p
p

LDA
LDA

START (0. K. I relocations match)
COM 1 (N ot an error)

Assembler changes this instruction to two-word absolute because relocations do not
match, but no error is indicated.

p LDA COM2-DATl+COMI-D+E-COM2+START-K+DAT2

This address expression results in a common relocation type; all other relocations
cancel out (refer to address expressions).

ORa DATI

ORa changes the relocation of the location counter to data.

D LDA~c START (Error)
D STA::c DAT2+9

ORa*

ORa::c returns the location counter to original relocation.

p

A
A
A
A

LDA::c
ORa
LDAi,c
STA):~

LDA::c
STA­
ORa~c

END

START
H
START
DATI
$1001
B

(Not an error)

(Error)
(Error)

Numeric Operand

A numeric operand in the address field may be decimal or hexadecimal. A decimal
number is represented by up to five decimal digits and must be within the rang~
± 32767. A hexadecimal number is represented by a dollar sign and not more than
four hexadecimal digits in the range ± 7FFF. (Hexadecimal operands in the NUM
pseudo instruction may be in the range ±FFFF.)

Numeric operands in the address field may be preceded by a plus or a minus sign. If
a plus or no sign is specified, the binary equivalent of the number is the value used;
a minus means the one's complement of the binary equivalent is the value.

A numeric operand has no relocation type; it is always absolute.

1-4 60361900B

)

)

Address Expression

An address expression may be a single operand or a string of operands joined by the
following arithmetic operators.

+ Addition

Subtraction

* Multiplication

/ Division

Arithmetic operators may not follow each other without an intervening operand. Paren­
theses are not permitted for grouping terms.

The asterisk has an additional meaning as an operand. When it is used as the mul­
tiplication operator (refer to special characters), it must be immediately preceded by
an operand which may be another asterisk. When the asterisk is used as an operator,
only one of its associated operands may be relocatable.

The slash, used as the division operator, must be between two operands. The operand
which follows may not be zero or relocatable.

An external name may be used in an address expression only as a single operand.
Arithmetic operators preceding or following an external operand are illegal.

Example:

NAM
COM
EQU
EXT
BZS

START LDA
ADD
ADD
STA
END

EXAMPL
A,B
C(1), D(5)
G
E(10), F
D-C/5+**2
A-B/2
E+5
G

The first asterisk in the LDA instruction refers to the value of the current location
counter.

The following instructions are illegal assuming the same pseudo instructions precede
the START.

START LDA
ADD
ADD
STA

60361900A

D-C':<*5+2
A-2/B
E':<F
G+5

':<5 has no intervening operator
Division by relocatable operand
Both operands are relocatable
An external must stand alone

1- 5

The hierarchy for the evaluation of arithmetic expressions is:

/ or ~:~ Evaluated first
+ or - Evaluated next

Expressions containing operators at the same level are evaluated from left to right.
The expression

A/B+C*D

is evaluated algrebraically as

A/B+(C)(D)

and not as any of the following:

A A (A)(D)
B+C (B+C)(D) B+(C)(D)

Parentheses may not be used for grouping operands. The algrebraic expression

(A-D)(B+C/E)

must be specified

A *B+A ~'<C /E-D~(B-D*C /E

The following expression is illegal.

(A - D)*(B+C /E)

Division in an address expression always yields a truncated result; thus, 11/3=3. The
expression A':~B/C may result in a value different from B/C~~A. For example, if A=4,
B=3, and C=2 then

A':<B/C=4*3/2=6 but
B / C ':<A = 3 /2 ':<4 = 4

All expressions are evaluated modulo 215 _1. An address expression consisting solely
of numeric operands is absolute. If an expression contains symbolic operands, the
final relocation for the expression is determined by the relocations of the symbolic
operands. If the relocation of the operands is expressed by the following terms, the
final relocation is the algebraic sum of the relocation terms.

± P Positive or negative program relocation

± C Positive or negative common relocation

± D Positive or negative data relocation

The relocation must reduce to one of the relocation terms or to zero. If zero, the
location is absolute.

1-6 60361900A

(

(

Example:

Source Statements

STRT

COM
DAT
EQU
LDA
LDA
LDA
LDA

Special Characters

A,B
C,D
EO), F(D)
B+C-E*2-A-D
B+D-F+STRT-A-C
B+D-E+STRT-A-C
B-D-A

Relocation Formula

+C+D-C-D=O (absolute)
+C+D-D+P-C-D=P-D (illegal)
+C+D+P-C-D=P (program)
+C-D-C=-D (negative data)

Special characters may be used as operands in the address field of a source statement.
Their definition may not be changed by the user. The three classes of special char­
acters are storage, register, and index.

Class Character Referenced Location

{ * Current location counter
I Location FF 16

Storage

{
A A register
Q Q register
M Mask register
0 Destination registers

Register

{
Q Index 1, Q register
I Index 2, location FF 16
B Index 1 plus index 2

Index

Storage class characters (~:~, 1) reference storage locations. The asterisk refers to the
location of the current instruction. For a two word instruction, an asterisk references the
location of the first word. Special character I refers to value FF16. I is the only
indexing character that may stand alone as an operand with storage reference instructions.
It may not be redefined in a program. It may be used anywhere the value FF 16 is used.

The register class characters (A, Q, M, and 0) are used only with inter-register transfer
instructions. They refer to the A, Q, and M (mask) registers. Character 0 sets the
destination registers to zero (section 2.5).

Examples:

Instru ction

SET A,Q,M

TRA Q

LAM M

60361900D

Function

Set A, Q, and mask registers to ones

Transfer contents of A register to Q register

Transfer logical product of A and mask register to mask
register

1-7

Index class characters (Q, I, and B) are used in conjunction with an address expression to
refer to the index registers. Anyone character may follow an address expression; it is
separated from the expression by a comma with no intervening blank. Indexing may be used
only with storage reference instructions.

Q Contents of Q register are added to contents of the expression to form
the actual address

I Contents of location FF 16 are added to contents of address expression
to form the actual address

B Contents of Q register are added to address expression and this sum is
added to contents of FF 16 to produce the actual address

Examples:

Address Field

LOCl,B

, , I

TAG2,Q,I

Q

TAG3,I

Legal

Illegal

Illegal

Illegal

Legal

1.2.5 COMMENT FIELD

Function

Contents of registers Q and FF 16 and the contents
of LaC 1 are added to produce the actual address

Character following first comma is assumed to be
index character

Only one index notation allowed

Unless Q has been previously defined as a location
symbol or is being used with the inter-register
transfer instruction, it must follow a location symbol

Contents of FF 16 and TAG3 are added to produce
the actua~ address

The address field is followed by the comment field which is used for remarks. Re­
marks do not affect the object code, but are printed as part of the list output. The
comment field terminates at column 72, or with a carriage return (paper tape). Blanks
are permitted in the comment field.

1.2.6 SEQUENCE FIELD

When the input image is 80 characters, columns 73 through 80 are available for se­
quencing; 73 through 75 may be used for program identification, 76 through 80 for a
sequence number.

Sequence numbers are checked for errors only if the input image is 80 characters.
Each sequence number must be greater than or equal to the previous sequence number.
The value of a character in the sequence number is in ASCII code except that a blank
is treated as zero.

1-8 60361900A

~)

~ACHINIE IN'STRUCTIONS 2

Machine instructions represented by a three-letter mnemonic code are divided into six basic
classes and six additional classes of enhanced instructions.

BASIC CLASSES

Group A storage reference

Group B storage reference

Register reference

ENHANCED INSTRUCTION CLASSES

Type 2 storage reference

Field reference

Decrement and repeat

Shift

Skip

Inter-register transfer

Type 2 skip

Type 2 inter-register transfer

Miscellaneous

Storage reference instructions result in one or two machine words, depending on modification.
Other machine instructions result in one machine word.

Appendix A lists the machine instructions in the order in which they are discussed in this
chapter and also defines groups A and B storage reference instructions.

2.1 STORAGE REFERENCE INSTRUCTIONS

Group A and B storage reference instructions use storage addresses as operands or as
operand addresses. Group B instructions include jump instructions and may not use the
constant mode of addressing. Type 2 storage reference instructions use the enhanced two
or three-word format. These may be 8- or 16-bit address.

2.1.1 ADDRESS MODES

Group A storage reference instructions allow three modes of addressing: absolute, relative,
and constant. Group B does not allow the use of the constant mode, but is otherwise the
same as group A.

Special characters designate the mode of addressing, the number of words for the
instruction, and indirect addressing.

Character

+

60361900 E

Description

Asterisk as the last character of operation code specifies relative
addressing in a one-word instruction

Minus as the last character of operation code specifies absolute
addressing in a one-word instruction

Plus as the last character of operation code specifies absolute
addressing in a two -word instruction

2-1

Character

()

Description

Equal sign as the first character in address field preceding a
constant indicates constant addressing; the instruction is always
two words

Parentheses enclosing the address expression indicate indirect
addressing

If no character is specified as a terminator to the operation code, two-word relative
addressing is assumed with the following exceptions.

1. If a constant is specified, the constant mode is assumed.

2. If the relocation type of the address express ion differs from the relocation type of the
location counter, two-word absolute addressing is assumed.

3. If a nonrelative external is referenced, absolute addressing is assumed.

The machine language format resulting from a storage reference instruction is illustrated
as follows.

First word:

15

f

r

d

q

i

f

11 10 9 8 7

I r I· d q 1

4-bit operation code is defined below

Specifies relative addressing

Specifies indirect addressing

o
A

Index register 1 flag; specifies adding contents of Q register to address

Index register 2 flag; specifies adding contents of storage register FF 16 to address

8-bit field; may be relative or absolute address for one-word instructions. When
zero, indicates two-word instruction.

Second word (when used):

15

c

o
c

16-bit field for constant addressing or relative address. When it contains relative
address, bit 15 is the sign.

15 14 o
m .

b Indirect address bit

m Memory address

Address expressions are evaluated modulo 2 15 _1.

2-2 60361900 E

(~

I

I

2.1.2 ABSOLUTE ADDRESSING

The value of the address expression of a one-word absolute instruction must be non­
relocatable. The evaluated result is stored in 8 bits of the machine word. If this
value is greater than 256~ it is flagged as an error. If the 8-bit .6. field is zero~
two machine .words are assumed regardless of the operation code terminator; no error
message is printed. If the address expression is enclosed in parentheses for indirect
addressing~ bit 10 of the first word is set to 1.

Examples:

One Word~ Direct

Instru ction:

LDA- e

Machine Word:

15 11 10 9 8 7
LDA 10 10 I 0 0 I

o
e

One Word~ Indirect

Instruction:

ADQ- (e)

Machine Word:

15 11 10 9 8 7 o
ADQ

1
0 I 1 I 0 0 I e

The value of the address expression of a two-word absolute instruction is storep in
the least significant bits of the second word. If the expression is enclosed in paren­
theses for indirect addressing~ bit 15 of the second word is set to 1. The indirect
address bit 10 in the first word is always set to 1 when two-word absolute addressing
is specified whether the address expression is specified as indirect or direct. This
indicates that the address expression is in the second word. The 8-bit .6. field of the
first word is set to zero for two-word instructions.

Examples:

Two W ord~ Direct

Instruction:

EOR+ e

Machine Words:

15 11 10 9 o
I EOR 1 0 11 I 0 00

15 14 o
I 0 I e

60361900A 2-3

I

I

I

Two Word, Indirect

Instruction:

AND+ (e)

Machine Words:

15 11 10 9 8 7 o
AND 10 11 o 0 I 00

15 14 o
1 I e

2..1.3 RELATIVE ADDRESSING

When one-word relative addressing is specified, the value of the current location
counter is subtracted (16-bit ones complement arithmetic) from the evaluated address
expression. The result is placed in the 8-bit ~ field. If the value of the result
is outside the range ± 7F16' an error condition is flagged. An error condition is
also flagged if the relocation type of the address expression differs ,from that of the
location counter. If the 8-bit ~ field is zero, two words are assumed regardless of
the operation code terminator. No error message is printed for this condition.

Examples:

One Word, Direct

Instruction:

AND':c e

Machine Word:

15 11 10 9 8 7 o
I AND I 1 1 0 1 0 10 1 e-*

One Word, Indirect

Instru ction:

MUI':c (e)

Machine Word:

15 11 10 9 8 7 o
MUI I 1 I 1 0 0

2-4 60361900A

j

In the expression e- ~:{ the asterisk indicates the value of the current location counter.

When a two-word instruction is specified, the value of the current location counter
plus one is subtracted (using 16-bit l's complement arithmetic) from the value of
the address expression to obtain the 16-bit second word. If the relocation type of the
address expression differs from that of the location counter and the address does not
reference an external, the assembler forces a two-word absolute instruction. If the
address expression is an external reference, the instruction is absolute or relative
depending on the definition of the external.

Examples:

Two Word, Direct

Instru ction:

LDQ e

Machine Words:

15 11 10 9 8 7
I LDQ I 1 I 0 I 0 I 0 I

15

Two Word, Indirect

Instruction:

LDA (e)

Machine Words:

15 11 10 9 8 7
I LDA [1 I 1 o I 0 I

15

o
00

o

o
00

o

In the expression, e- ~:{-1, the asterisk indicates the value of the current location counter.

60361900A 2-5

2.1.4 CONSTANT ADDRESSING

Constant addressing may be used only for Group A storage reference instructions.
Constants ·in the address field are preceded by an equal sign and a one-letter code.
A constant may be one of the following:

Code Meaning

A aa 2 alphanumeric characters

N ±ddddd 5-digit decimal number with or without a leading sign

N ±$hhhh 4-digit hexadecimal number preceded by $, with or without
a sign

x e Address expression evaluated modulo 2 15 _1

x (e) Address expression evaluated modulo 2 15 _1, with bit 15 set

Examples:

DVI =N$1000 (Hexadecimal constant)

ADD =N-12345 (Decimal constant)

LDA =AXY (ASCII constant)

AND =XTAGl+5 (Address expression constant)

An instruction containing a constant in the address field results in two machine words.

Example:

Instruction:

DVI =nc (n is the code, c is the constant)

Machine Words:

15 11 10 987 o
I DVI I 0 I 0 o I 0 I o

15 o
c

2.1.5 DATA TRANSMISSION INSTRUCTIONS

STQ (F=4)

STA (F=6)

2-6

Store Q. Store the contents of the Q register in the storage location
specified by the effective address. The contents of Q are not altered.

Store A. Store the contents of the A register in the storage location
specified by the effective address. The contents of A are not altered.

60361900B

l

SPA (F = 7)

LDA (F = C)

LDQ (F = E)

Store A, Parity to A. Store the contents of the A register in the storage
location specified by the effective address. Clear A if the number of
1 bits in A is odd. Set A equal to 0001 16 if the number of 1 bits in A
is even. The contents of A are not altered if the write into storage is
aborted because of parity error or protect fault.

Load A. Load the A register with the contents of the storage location
specified by the effective address. The contents of the storage loca­
tion are not altered.

Load Q. Load the Q register with the contents of the storage location
specified by the effective address. The contents of the storage loca­
tion are not altered.

2.1.6 ARITHMETIC INSTRUCTIONS

All the following arithmetic operations use one's complement arithmetic.

MUI (F = 2)

DVI (F = 3)

ADD (F = 8)

SUB (F = 9)

RAO (F = D)

ADQ (F = F)

60316900B

Multiply Integer. Multiply the contents of the storage location, speci­
fied by the effective address, by the contents of the A register. The
32-bit product replaces the contents of Q and A, the most significant
bits of the product in the Q re gister.

Divide Integer. Divide the combined contents of the Q and A registers
by the contents of the effective address. The Q register contains the
most significant bits before dividing. If a 16-bit dividend is loaded
into A, the sign bit of A must be extended throughout Q. The quotient
is in the A register and the remainder is in the Q register at the end
of the divide operation.

The OVERFLOW indicator is set if the magnitude of the quotient is
greater than the capacity of the A register. Once set, the OVERFLOW
indicator remains set until a Skip On Overflow (SOV) or Skip On No
Overflow (SNO) instruction is executed.

Add to A. Add the contents of the storage location, specified by the
effective address, to the contents of the A register.

The OVERFLOW indicator is set if the magnitude of the sum is
greater than the capacity of the A register. Once set, the OVERFLOW
indicator remains set until a Skip On Overflow (SOV) or Skip On No
Overflow (SNO) instruction is executed.

Subtract From A. Subtract the contents of the storage location,
specified by the effective address, from the contents of the A register.
Operation on overflow is the same as for an Add to A instruction.

Replace Add One in Storage. Add one to the contents of the storage
location specified by the effective address. The contents of A are
not altered. Operation on overflow is the same as for an Add to A
instruction.

Add to Q. Add the contents of the storage location, specified by the
effective address, to the contents of the Q register. Operation on
overflow is the same as for an Add to A instruction.

2-7

2.1.7 LOGICAL INSTRUCTIONS

The AND (AND with A) instruction achieves its results by forming a logical product. A
logical product is a bit-by-bit multiplication of two binary numbers according to the
following rules:

OxO=O
o x 1 = 0

Example:

1 x 0 = 0
1 x 1 = 1

0011 Operand A
x 0101 Operand B

0001 Logical Product

A logical product is usedJ in many casesJ to select only specific portions of an operand
for use in some operation. For exampleJ if only a specific portion of an operand in
storage is to be entered into the A registerJ the operand is subjected to a mask in A.
This mask is composed of a predetermined pattern of Os and Is. Executing the AND
instruction causes the operand to retain its original contents only in those bits which
have Is in the mask in A.

The EOR (Exclusive OR with A) instruction achieves its result by forming an exclusive
OR. Executing the EOR instruction causes the operand to complement its original con­
tents only in those bits which have Is in the mask in A. An exclusive OR is a bit-by-bit
logical subtraction of two binary numbers according to the following rules:

Exclusive OR

A B

1 1
1 0
0 1
0 0

Example:

AND (F = A)

EOR (F = B)

2-8

x

A 'T" B

0
1
1
0

0011 Operand A
0101 Operand B

0110 Exclusive OR

AND with A. Form the logical productJ bit-by-bitJ of the contents of
the storage location specified by the effective address and the contents
of the A register. The result replaces the contents of A. The con­
tents of storage are not altered.

Exclusive OR with A. Form the logical difference (exclusive OR)J
bit-by-bitJ of the contents of the storage location specified by the
effective address and the contents of the A register. The result
replaces the contents of A. The contents of storage are not altered.

60361900B

2.1.8 JUMP INSTRUCTIONS

A Jump (JMP) instruction causes a current program sequence to terminate and initiates a
new sequence at a different location in storage. The program address register, P, pro­
vides continuity between program instructions and always contains the storage location of
the current instruction in the program.

When a Jump instruction occurs, P is cleared and a new address is entered. t In the
Jump instruction, the effective address specifies the beginning address of the new pro­
gram sequence. The word at the effective address is read from storage and interpreted
as the first instruction of the new sequence.

A Return Jump (RTJ) instruction enables the computer to leave the main program, jump
to some subprogram, execute the subprogram, and return to the main program via
another instruction. The Return Jump provides the computer with the necessary informa­
tion to enable returning to the main program. Figure 2-1 shows how a Return Jump
instruction can be used.

MAIN
PROGRAM

"

EFFECTI\'E

SUBPROGRAM
,0,

PROGRAM P
MAIN) r

COMPUTER STORES P+1/P+2 HERE
ADDRESS '------L------r----.:..;:..-.....J

p+11~ __________________________ -J 002616 1
ST

INSTRl:CTION OF SUBPROGRAM

p+2~1 __________________________J

- - - - LAST INSTRUCTION OF Sl"BPROGR1\M

Figure 2 -1. Program Using Return Jump Instruction

t Jumps or return jumps from unprotected to protected storage cause a fault, but the
address that is saved in the trap location is the destination address (i. e., the address
of the next sequential main program instruction).

60361900 E 2-9

An RTJ instruction is executed at main program address P. The computer jumps to
effective address 002516 and stores P+1 or P+2 (depending on the address mode of RTJ) at
this location. Then the program address counter P is set to 002616 and the computer starts
executing the subprogram. At the end of the subprogram, the computer executes a jump
instruction (JMP) with indirect addressing. This causes the computer to jump to the address
specified by the subprogram address 002516 (P+ 1 or P+ 2 of the main program). Now main
program execution continues at P+ 1 or P+2.

JMP (F = 1)

RTJ (F = 5)

Jump. Jump to the address specified by the effective addresses. This
effectively replaces the contents of program address counter P with the
effective address specified in the JMP instruction.

Return Jum~. Replace the contents of the storage location specified by the
effechve ad ress with the address of the next consecutive instruction. The
address stored in the effective address is P+ 1 or P+2, depending on the
addressing mode of RTJ. The contents of P are then replaced with the
effective address plus one.

2.1.9 TYPE 2 STORAGE REFERENCE

FORMAT:

P

P+l

P+2

NOTE

Instruction formats for enhancements to the instruc­
tion repertoire are upward-compatible with the
existing 1704/14/84 computer

15

F=O

F4

.....

,
12 11 a 7 6 5

F1=4 r i

t
rOt

Ra

,
3 2

Rb

F5 l::. (a-bit address)t

I
16-bit address, if l::. = 0

I

L Instruction mode

Instructlon

o

Type 2 storage reference instructions ar.e identified by F field = 0, Fl = 4, and the r, i, Ra,
and Rb fields are not all zero. (If these fields are all zero, the instruction is anEIN.) This
instruction is made up of two words if l::.:f0 or three words etherwise. The type 2 storage
reference instructions contain four parts: instruction field (F4), instruction mode field (F5),
addressing mode fields (delta, r, i, and Ra), and the Rb register. From these, two operands
(A and B) are specified for executing the instruction.

The F4 determines the instruction (e. g., add, subtract, etc.); F5 determines the instruction
mode.

t Addressing mode field

2-10 60361900 E

F5

o
1

2

3

Mode

word processing, register destination

word processing, memory destination

character proces.sing, register destination

character processing, memory destination

F5 is not used for subroutine jumps and subroutine exit. The register/memory destination
bit of F5 is not used for compare instructions.

The address ing mode requires four fields:

Address ing Mode

Eight or 16-bit address. II ;'0, 8-bit; II =0, 16-bit with the address in
word P+2

r

i

Ra

Relative address

Indirect address

Index register

Type 1 storage instructions allow indexing by one or two regi8ter~. (I and/or Q); type 2 .
allows indexing by anyone of seven registers (1, 2, 3, 4, Q, A, or n.
The addressing mode fields determine the effective address fer operandA; the Rb register
and the instruction mode field (F5) determine the address for operand B. For character
addressing, the effective address (operand A and the Rb register) are combined to generate
the actual character effective address. Operand B is always the A register for character
addressing.

CAUTION

For character addressing, a selection of absolute
(r=O), no indirect (i=O), no index register (Ra=O),
and no character register (Rb=O) results in an EIN
instruction.

Unspecified combinations of F4, F5, and Rb are reserved for future expansion.

Addresses are defined below:

• Instruction address: The address of the instruction being executed, also called P

• Indirect address: A storage address that contains an address rather than an operand.
There is no multi-level indirect addressing for type 2 storage reference instructions.

• Base address: The operand address after all indirect addressing.has been accom­
plished but before modification by an index register. The base address is the effective
address if no indexing is specified.

• Effective address: The final address of the operand

• Indexing: If specified, the contents of the Ra register are added to the base address
to form the effective address. Indexing occurs after indirect addressing has been
completed.

60361900 E 2-10.1

The computer uses the 16-bit ones complement adder during indexing operations.
Consequently, index register contents are treated as signed quantities (bit 15 is the
sign bit).

• Registers: The Ra and Rb registers are defined as follows:

Register

None
1
2
3
4
Q
A
I

~
o
1
2
3
4
5
6
7

Type 2 storage reference instructions have eight types of addressing modes:

• Eight-bit absolute - (r=O, i:::o,6.IO)

The base address equals delta. The sign b it of delta is not extended. The contents of
index register Ra, when specified, are added to the base address to form the effective
address.

• Eight-bit absolute indirect - (r:::O, i=l, 6. 10)

The eight-bit value of delta is an indirect address. The sign bit of delta is not
extended. The contents of this address in low core (addresses 0001 to OOFF) are the
base address. The contents of index register Ra, when specified,' are added to the
base address to form the effective address.

• Eight-bit relative - (r=l, i=O, 6. :f0)

The base address is equal to the instruction address plus one, P+l, plus the value of
delta with sign extended. The contents of index register Ra, when specified, are added
to the base address to form the effective address.

If no indexing takes place, the addresses that can be referenced in the eight-bit rela­
tive mode are restricted to the program area. Delta is eight bits long; thus the com­
puter references a location between P-7E16 and P+8016 inclusive.

• Eight-bit relative indirect - (r=l, i=l, 6.10)

The address of the second word of the instruction, P+l, plus the value of delta with
sign extended is an indirect address. The contents of this address are the base
address. The contents of index register Ra, when specified, are added to the base
address to form the effective address.

• Absolute constant - (r=O, i=O, 6. =0)

The address of the third word of the instruction P+2, is the base address. The contents
of the index register Ra, when specified, are added to the base address to form the
effective address. Thus, when Ra is not specified, the contents of P+2 are the value
of the operand.

Note that there is no immediate operand condition (i. e., indexing is specified and the
instruction is read-operand type) as there is for type 1 storage reference addressing.

• Sixteen-bit absolute - (Storage) (r:::O, i=l, 6. =0)

The base address equals the contents of P+2 plus P+2. The contents of index register
Ra, when specified, are added to the base address to form the effective address.

2 -1 0.2 60361900 E

Sixteen-bit relative - (r=l, i=O, ~ =0)

The base address equals the contents of P+2 plus P+2. The contents of index register
Ra, when specified, are added to the base address to form the effective address.

• Sixteen-bit relative indirect - (r=l, i=l. ~ =0)

The address of the third word of the instruction. P+2. plus the contents of the third
word of the instruction are an indirect address. The contents of this address are the
base address. The contents of index register Ra, when specified, are added to the
base address to form the effective address.

Table 2-1 summarizes the eight addressing modes. ~, r. i. and Ra are specified as is the
effective address and the address of the next instruction.

SJE
(F4=5. F5=0, Rb=O)

SJr
(F4=5. F5=0. Rb r)

60361900 E

Subroutine/Jump Exit.. The contents of P are replaced with the
effective address. This instruction can be used as a jump or sub­
routine exit. For example. if ~ =1, and Ra has been set up by a
previous subroutine jump, control ,is returned following that sub­
routine jump. Subroutine jumps save the address of the last word of
the instruction. rather than the next instruction so that the subroutine
jump exit may be a two-word instruction (~ is nonzero) rather than
three.

For example. the following program makes a subroutine jump at
location 1000. The A register contains 1002 upon entry to subroutine
SUB. Upon SUB's completion, it exits to location 1003.

1000 0446 SJA+ SUB
1001 5000
1002 2000
1003

2000

2020
2021

0430
5001

SUB . ..

SJE-

CAUTION

...

•
1" A

Since Rb=O" a selection of absolute
(r=O). no indirect (i=O). and no index
register (Ra=O) result in an EIN
instruction.

NOTE

In the following instructions, Rb has
the numeric value corresponding to
the alphanumeric R: 1 1,
2 2. 3 3. 4 4, 5 Q.
6 A. 7 I.

Subroutine Jump. Loads the r register with the address of the last
word of thiS instruction (i. e •• P+1 for delta not zero: P+2 for delta
zero). The contents of P are then replaced with the effective address.

2-10.3

TABLE 2-1. TYPE 2 STORAGE ADDRESSING RELATIONSHIPS

Address of
Next

Addressing Modes Delta r i Ra Effective Address (EA) Instruction

8-B it Absolute :f0 0 0 0 Il P+2
0 0 1 ~+(1) P+2
0 0 2 ~+(2) P+2
0 0 3 ~+(3) P+2
0 0 4 ~+(4) P+2
0 0 5 ~+(Q) P+2
0 0 6 ~+(A) P+2
0 0 7 ~+(I) P+2

8-Bit Absolute Indirect :f0 0 1 0 (~) P+2
0 1 1 (~)+(1) P+2
0 1 2 (~)+(2) P+2
0 1 3 (~)+(3) P+2
0 1 4 (~)+(4) P+2
0 1 5 (~)+(Q) P+2
0 1 6 (~)+(A) P+2
0 1 7 (6)+(I) P+2

8-B it Relative t :f0 1 0 0 P+l+~ P+2
1 0 1 P+1+~+(1) P+2
1 0 2 P+l+~+(2) P+2
1 0 3 P+l +~+(3) P+2
1 0 4 P+l+~+(4) P+2
1 0 5 P+l+~+(Q) P+2
1 0 6 P+l+~+(A) P+2
1 0 7 P+l+~+(I) P+2

8-Bit Relative Indirectt :f0 1 1 0 (P+l +~) P+2
1 1 1 (P+l +~)+(1) P+2
1 1 2 (P+1 +~)+(2) P+2
1 1 3 (P+l +~)+(3) P+2
1 1 4 (P+l +1l)+(4) P+2
1 1 5 (P+l +~)+(Q) P+2
1 1 6 (P+l +~)+(A) P+2
1 1 7 (P+l +~)+(I) P+2

Absolute Constant =0 0 0 0 P+2 P+3
0 0 1 P+2+(1) P+3
0 0 2 P+2+(2) P+3
0 0 3 P+2+(3) P+3
0 0 4 P+2+(4) P+3
0 0 5 P+2+(Q) P+3
0 0 6 P+2+(A) P+3
0 0 7 P+2+(I) P+3

NOTE: () denotes contents of.

t For these addressing modes~ delta is sign extended.

2-10.4 60361900 E

TABLE 2-1. TYPE 2 STORAGE ADDRESSING RELATIONSHIPS (Continued)

Addressing Modes

16-Bit Absolute
(Storage)

16-Bit Relative

16-Bit Relative
Indirect

ARr
(F4=8, F5=0, Rb--r>r)

SBr
(F4=9, F5=0, Rb--t>~

ANr
(F4=A, F5=0, Rb-t>r)

AMr
(F4=A, F5=1, Rb-t>p)

60361900 E

Address of
Next

Delta r i Ra Effective Address (EA) Instruction

=0 0 1 0 (P+2) P+3
0 1 1 (P+2)+(1) P+3
0 1 2 (P+2)+(2) P+3
0 1 3 (P+2)+(3) P+3
0 1 4 (P+2)+(4) P+3
0 1 5 (P+2)+(Q) P+3
0 1 6 (P+2)+(A) P+3
0 1 7 (P+2)+(I) P+3

=0 1 0 0 P+2+(P+2) P+3
1 0 1 P+2+(P+2)+(1) P+3
1 0 2 P+2+(P+2)+(2) P+3
1 0 3 P+2+(P+2)+(3) P+3
1 0 4 P+2+(P+2)+(4) P+3
1 0 5 P+2+(P+2)+(Q) P+3
1 0 6 P+2+(P+2)+(A) P+3
1 0 7 P+2+(P+2)+(P P+3

=0 1 1 0 (P+2+(P+2» P+3
1 1 1 (P+2+(P+2»+(l) P+3
1 1 2 (P+2+(P+2»+(2) P+3
1 1 3 (P+2+(P+2»+(3) P+3
1 1 4 (P+2+(P+2»+(4) P+3
1 1 5 (P+2 +(P+2))+(Q) P+3
1 1 6 (P+2+(P+2»+(A) P+3
1 1 7 (P+2 +(P+2))+(I) P+3

Add Register. Adds (using one's complement arithmetic) the contents
of the storage location specified by the effective address to the con­
tents of the r register. Operation on overflow is the same as for
the ADD instruction. The contents of storage are not altered.

Subtract Register. Subtracts (using one's complement arithmetic)
the contents of the storage location specified by the effective address
from the contents of the r register. Operation on overflow is the
same as for the ADD instruction. The contents of storage are not
altered.

AND Register. Forms the logical product (AND), bit by bit, of the
contents of the storage location specified by the effective address
and the contents of the r register. The result places the contents of
the r register. The contents of storage are not altered.

AND Memory. Forms the logical product (AND), bit by bit, of the
contents of the storage location specified by the effective address and
the contents of the r register. The result replaces the contents of
the storage location specified by the effective address. The original
contents of the storage location (specified by the effective address)
replace the contents of the A register. The contents of the r register -
are not altered unless r is the A register. Memory is locked until
completion of the instruction. This instruction is useful for memory­
to-memory communication between CPUs.

2-10.5

LRr
(F4=C" F5=0" Rb~r)

SRr
(F4=C" F5=1" Rb--.r)

LCA
(F4=C" F5=2" Rb=
character flag+index)

SCA
(F4=C" F5=3" Rb=
character flag+index)

ORr
(F4=D" F5=0" Rb--.r)

OMr
(F4=D" F5=1, Rb-t>r)

CrE
(F4=E" F5=0, Rb--t>r)

CCE
(F4=E, F5=2, Rb=
character flag+index)

2-10.6

Load Register. Loads the r register with the contents of the storage
location specified by the effective address. The contents of storage
are not altered.

Store Register. Stores the contents of the r register in the storage
location specified by the effective address. The contents of the
r re gister are not altered.

Load Character to A. Loads bits 0 through 7 of the A register with
a character from the storage location specified by the sum of the
effective address and bits 1 through 15 of the Rb register. Bit 0=0
of the Rb register specifies the left character (bits 8 through 15) of
the storage location; bit 0=1 specifies the right character (bits 0
through 7). Bits 8 through 15 of the A register are cleared to zero.
The contents of storage are not altered.

Store Character from A. Stores bits 0 through 7 of the A register
into a character of the storage location specified by the sum of the
effective address and bits 1 through 15 of the Rb register. Bit 0=0
of the Rb register specifies the left character (bits 8 through 15) of
the storage location; bit 0=1 specifies the right character (bits 0
through 7). The contents of the A register and the other character
of storage are not altered.

OR Register. Forms the logical sum (inclusive OR)" bit by bit, of
the contents of the storage location specified by the sum of the effec­
tive address and the contents of the r register. The result replaces
the original contents of the r register. The contents of storage are
not altered.

OR Memory. Forms the logical sum (inclusive OR)" bit by bit" of
the contents of the storage location specified by the effective address
and the contents of the r register. The result replaces the contents
of the storage location specified by the effective address. The origin­
al contents of the storage location (specified by the effective address)
replace the contents of the A register. The contentl;; of the r register
are not altered unless r is the A register. Memory is locked until
completion of the instruction. This instruction is useful for memory­
to-memory communicat ion between ,CPUs.

Compare Register Equal. If the contents of the r register and the
contents of the storage location specified by the effective address are
equal" this instruction skips one location; otherwise" the next instruc­
tion is executed. The contents of the r register and storage are not
altered.

Compare Character Equal. If bits 0 through 7 of the A register and
the character of the storage location specified by the sum of the
effective address and bits 1 through 15 of the Rb register are equal,
the instruction skips one location; otherwise the instruction executes
the next instruction. Bit 0=0 of the Rb register specifies the left
character (bits 8 through 15) of the storage location; bit 0=1 specifies
the right character (bits 0 through 7). The contents of the A register
and storage are not altered.

CAUTION

Each compare instruction assumes that
a one-word instru ct ion follows it.

60361900 E

2.2 REGISTER REFERENCE INSTRUCTIONS

Register reference instructions use the address mode field for the operation code.
Register reference instructions are identified when the upper four bits (15 through 12)
of an instruction are as.

Format:

15

I 0

SLS (Fl = 0)

INP (Fl = 2)

OUT (Fl = 3)

60361900 E

12 11 8 7 0

0 0 0 I F1 I ~

J,

J

Instruction Address modifier

Selective Stop. Stops the computer if this instruction is executed
when the selective stop switch is on. On restart, the computer exe­
cutes the instruction at P + 1. This becomes a~pass instruction
when the selective stop swit,ch is off.

Input to A. Reads one word from an external device into the A regis­
ter. The word in the Q register selects the sending device. If the
device sends a reply, the next instruction comes from P + 1. If the
device sends a .reject, the next instruction comes from P + 1 +~,
where delta is an eight-bit signed number. If an internal reject
occurs, the next instruction comes from P + ~ •

Output from A. Outputs one word from the A register to an external
device. The word in the Q register selects the receiving device. If
the device sends a reply, the next instruction comes from P + 1. If
the device sends a reject, the next instruction comes from P + 1 + L\,
where delta is an eight-bit signed number. If an internal reject occurs,
the next instruction comes from P + A •

2 -1 O. 7

\

~

INA (F1 = 9) . Increase A. Replaces the contents of A with the sum of the initial
contents of A and delta, where delta is treated as a signed number with
the sign extended into the upper eight bits. Operation on overflow is
the same as for an add-to-A instruction.

ENA (F1 =A) Enter A. Replaces the contents of the A register with the eight-bit
delta, sign extended.

NOP (F 1 = B) No Operation. This is a pas s instruction (no oper at ion is performed).

ENQ (F1 = C) Enter Q. Replaces the contents of the Q register with the eight-bit
delta, sign extended

INQ (F1 = D) Increase Q. Replaces the contents of the Q register with the sum of the
initial contents of Q and delta, where delta is treated as a signed number
with the sign extended into the upper eight bits. Operation on overflow
is the same as for an add-to-A instruction.

The following instructions (F1 equals 4, 5, 6, 7, or E) are legal only if the program protect
switch is off or if the instructions themselves are protected. If an instruction is illegal, it
becomes a selective stop and an interrupt on the program protect fault is possible (if
selected).

o Protect switch on - Selective stop unless the instruction is protected

.. Protect switch off - Normal instruction execution (no program protection)

EIN (F1 = 4)

IIN (F1 = 5)

SPB (F1 = 6)

CPB (F1 = 7)

Enable Interrupt. Activates the interrupt system after one instruction
following EIN has been executed. The interrupt system must be
active and the appropriate mask bit set for an interrupt to be
recognized.

Inhibit Interrupt. Deactivates the interrupt system. If interrupt
occurs during execution of this instruction, the interrupt is not recog­
nized until one instruction after the next EIN instruction is executed.

Set Program Protect Bit. Sets the program protect bit in the
address specified by the Q register.

Clear Program Protect Bit. Clears the program protect bit in the
address specified by the Q register.

EXI (F 1 = E) Exit Interrupt State. This instruction is used to exit from any interrupt
state. Delta defines the interrupt state from which the exit is taken. At
the time an interrupt occurs, the value of P is stored in the interrupt

60361900 E

trap location assigned to that particular interrupt state. This value is
called the return address since it enables return to the next unexecuted
instruction after interrupt processing. The EXI instruction automatically
reads the address containing the return address, then jumps to the return
address. In addition, if the computer is in 32K mode, this instruction
also sets the OVERFLOW indicator to the state of bit 15 in the return
address. This bit records the state of the OVERFLOW indicator when the
interrupt occurred. In 65K mode, this instruction does not reset the
OVERFLOW indicator.

2-11

2.3 INTER- REGISTER INSTRUCTIONS

There are two types of inter-register instructions: basic (type 1) and enhanced (type 2).

2.3.1 TYPE 1 INTER-REGISTER INSTRUCTIONS

These instructions cause data from certain combinations of two origin registers to be sent
through the adder to any combination of destination registers. Various operations, selected
by the adder control lines, are performed on the data as it passes through the adder.

Format:

Operand 1

Adder Control Lines! QPe:and 2

I 1
15 12 11 8 5 4 3 2 ·1 0

o Fl=8

T~est~atio~
registers

Logical product

Exclusive OR __ ---I
Origin
registers

If bit 0 in an inter-register instruction is set (M is the destination register) and the instruc­
tion is not protected, it is a program protect violation and becomes a nonprotected selective
stop instruction. The program protect fault bit is set and interrupt occurs.

The origin registers are considered as operands. There are two kinds.

• Operand 1 may be:

- FFFF (bit 5 is 0)
- The contents of A (bit 5 is 1)

• Operand 2 may be:

- FFFF (bit 4 is 0 and bit 3 is 0)
- The contents of M (bit 4 is 0 and bit 3 is 1)
- The contents of Q (bit 4 is 1 and bit 3 is 0)
- The inclusive OR, bit-by-bit, of the contents of Q and M (bit 4 is 1 and

bit 3 is 1)

The following operations are possible.

• Exclusive OR (LP = 0 and XR = 1) - The data placed in the destination
registers is the exclusi ve OR, bit-by-bit, of operands 1 and 2.

• Logical product (LP = 1 and XR = 0) - The data placed in the destination
registers is the logical product, bit-by-bit, of operands 1 and 2.

• Complement logical product (LF = 1 and XR = 1) - The data placed in the
destination registers is the complement of the logical product, bit-by-bit,
of operands 1 and 2.

2-12 60361900 E

(

"--

'-

• Arithmetic sum (LP = 0 and XR = 0) - The data placed in the destination
registers is the arithmetic sum of operands 1 and 2. The OVERFLOW
indicator operates the same for an add-to-A instruction.

Inter-Register Mnemonics

Set to Ones

Clear to Zero

Transfer At

Transfer M t

Transfer Qt

Transfer Q + M t

Transfer Complement A t

Transfer Complement M t

Transfer Complement Q t

Transfer Complement Q + M t

Transfer Arithmetic Sum A, M

Transfer Arithmetic Sum A, Q

Transfer Arithmetic Sum A, Q + M

Transfer Exclusive OR A, M

Transfer Exclusive OR A, Q

Transfer Exclusive OR A, Q + M

Transfer Logical Product A, M

Transfer Logical Product A, Q

Transfer Logical Product A, Q + M

SET (F 1 = 8, bits 7 through 3 = 10000)

CLR (F1 = 8 , bits 7 through 3 = 01000)

TRA (F1 = 8 , bits 7 through 3 = 10100)

TRM (F1 = 8 , bits 7 through 3 = 10001)

TRQ (F1 = 8" bits 7 through 3 = 10010)

TRB (F1 = 8, bits 7 through 3 = 10011)

TCA (F1 = 8 , bits 7 through 3 = 01100)

TCM (Fl = 8 , bits 7 through 3 = 01001)

TCQ (F1 = 8 , bits 7 through 3 = 01010)

TCB (F1 = 8 , bits 7 through 3 = 01011)

AAM (F1 = 8 , bits 7 through 3 = 00101)

AAQ (F1 = 8 , bits 7 through 3 = 00110)

AAB (F1 = 8 , bits 7 through 3 = 00111)

EAM (F1 = 8 , bits 7 through 3 = 01101)

EAQ (F1 = 8 , bits 7 through 3 = 01110)

EAB (F1 = 8 , bits 7 through 3 = 01111)

LAM (F1 =- 8 , bits 7 through 3 = 10101)

LAQ (F 1 = 8 , bits 7 through 3 = JP.llO)

LAB (F1 = 8 , bits 7 through 3 = 10111)

CAM (F1 = 8 , bits 7 through 3 = 11101)

CAQ (F1 = 8, bits 7 through 3 = 11110)

CAB (F1 = 8 , bits 7 through 3 = 11111)

Transfer Complement Logical Product A, M

Transfer Complement Logical Product A, Q

Transfer Complement Logical Product A, Q + M

NOTE

The + implies an inclusive OR.

tThe use of bit 7 is optional; it may be a 1 or a O. The assembler uses bit 7 = O.

60361900 E 2-13

2.3.2 TYPE 2 INTER-REGISTER INSTRUCTIONS

Format:
15

F=O

12 11

Fl=7

8 7

Ra

~

543 2 o

F2a=O Rb

Ln
ri in re o g g ister

estination register

Type 2 inter-register instructions are identified when the F field is zero_ the F1 field is
equal to seven" and the F2 a_ Ra" and Rb fields are not all zero. (If these fields are all zero"
the instruction is CPB).

Type 2 inter-register instructions contain three parts: an operation field (F2 a) and two regis­
ter fields (Ra and Rb). The F2a field determines the operation (i. e. _ transfer). The Ra
and Rb fields specify two operands.

XFr R
(F2 a=O" Ra---.r_ Rb~R)

Transfer Register. Transfers the contents of the r register
to the R re giste r.

NOTE

Ra---.r and Rb---.R means register 1-..1_
2---.2_ 3---.3_ 4~4_ ~Q_ 6~A_ and
7---.1.

2.4 SHIFT INSTRUCTIONS

The shift instructions shift A, Q, or A/Q left or right the number of places specified by the
five-bit shift count. Right shifts are end-off with sign extension in the upper bits. Left
shifts are end-around. The maximum long-right or long-left shift is IF 16 places.

Format:

15 12 11 8 7 6 5 4 o

o 0 0 0 Pl=F

1 = Sh ift left Shift count __ --I

o = Shift right

1 = Shift A

1 = Shift Q

2-14 60361900 E

Example: Shift A right two places - OF42.

15 12 11

I 0 I Fl=F

0 0 0 0 1 1

Shift Mnemonics

ARS (F1 = FI bits 7 through 5 = 010)

QRS (F1 = FI bits 7 through 5 = 001)

LRS (F1 = FI bits 7 through 5 = 011)

ALS (F1 = FI bits 7 through 5 = 110)

QLS (F1 = FI bits 7 through 5 = 101)

LLS (F1 = FI bits 7 through 5 = 111)

2.5 SKIP INSTRUCTIONS

1

8 7 6 5 4

1
I I I I

0 1 0

A Right Shift

Q Right Shift

0 0 0

Long Right Shift (QA)

A Left Shift

Q Left Shift

Long Left Shift (QA)

0

I
1 0

There are two types of skip instructions: basic or type 1 and enhanced or type 2.

2.5.1 TYPE 1 SKIP INSTRUCTIONS

Skip instructions result in one machine word: a 12 -bit operation code and a four-bit unsigned
skip count. The first four bits of the operation code field are set to zero, the next four bits
contain the skip instruction code 0001, and the last four bits contain a unique identifier, F2,
for each skip instruction. The expression in the address field of the instruction is evaluated
modulo 215-1.

This expression may be absolute or relocatable. If absolute, the value of the expression is
the skip count. If relocatable, the value of the skip count is obtained by subtracting (16 -bit
one's complement arithmetic) the value of the current location counter plus one from the
expr.ession. The skip count is then placed in the last four bits of the machine word. The
final value of the skip count must not exceed four bits or an error message is printed. If the
expression is relocatable l the relocation type of the expression must match the relocation
type of the location counter or an error results.

Format:
15 12 11 8 7 6 5 4 3 0

I F=O I F1=1 I F2 I SK

, Jl It
f

Jl
f •

Instruction (F)

1
Skip instruction

1
(F2)

Subinstruction (F1) Skip count

When the skip condition is met l the skip count plus one is added to P to obtain the
address of the next instruction (e. g. I when the skip count is zero, go to P + 1). When

60361900 E 2-15

the skip condition is not met, the address of the next instruction is P + 1 (skip count
ignored). The skip count does not have a sign bit.

SAZ (F2 = 0)

SAN (F2 = 1)

SAP (F2 = 2)

SAM (F2 = 3)

SQZ (F2 = 4)

SQN (F2 = 5)

SQP (F2 = 6)

SQM (F2 = 7)

SWS (F2 = 8)

SWN (F2 = 9)

SOV (F2 = A)

SNO (F2 = B)

SPE (F2 = C)

SNP (F2 = D)

SPF (F2 = E)

SNF (F2 :;; F)

2-16

Skip if A is positive zero (all bits are 0)

Skip if A is not positive zero (not all bits are 0)

Skip if A is positive (bit 15 is 0)

Skip is A is negative (bit 15 is 1)

Skip if Q is positive zero (all bits are 0)

Skip if Q is not positive zero (not all bits are 0)

Skip if Q is positive (bit 15 is 0)

Skip if Q is negative (bit 15 is 1)

Skip if selective skip switch is set

Skip if selective skip switch is not set

Skip on overflow. This instruction skips if
an overflow condition is sensed. This instruc­
tion clears the OVERFLOW indicator.

Skip on no overflow. This instruction skips
if an' overflow condition is not present. This
instruction clears the OVERFLOW indicator.

Skip pn storage parity error. This instruc­
tion skips if a storage parity error occurredj
it clears the Storage Parity Error Interrupt
signal and the PARITY FAULT indicator.

Skip on no storage parity error.

Skip on program protect fault. The program
protect fault is set by:

• A nonprotected instruction attempting to
write into an address that is protected

• An attempt to execute a protected
instruction immediately following a
nonprotected instruction, unless an
interrupt caused the instruction
sequence

• Execution of any nonprotected instruc-
tion affecting interrupt mas k or enables

The program protect fault is cleared when it
is sensed by the SPF instruction. The program
protect fault cannot be set if the program pro­
tect system is disabled.

Skip on no program protect fault.

60361900 E

2.5.2 TYPE 2 SKIP INSTRUCTIONS

Format:

15

F=O

"-

12 11 8 7

Fl=O

4 3 o

F2 SK

LSk" lp count

ifier and
n

Register ident"
'--- skip instructio

"- Subinstruction

Instructl on

Type 2 skip instructions are identified when the F and Fl fields are both zero and the F2 and
SK fields are not both zero.

CAUTION

If these fields are both zero, the instruction
is an SLS.

Type 2 skip instructions contain two parts: operation field (F2) and skip count (SK). The F2
field determines the operation (i. e., skip on register 1, 2, 3, or 4 if zero, nonzero, positive,
or negative). A, Q, and I cannot be used to determine the skip condition. The skip count
specifies how many locations to skip if the skip condition is met.

When the skip condition is met, the skip count plus one is added to the P register to obtain
the address of the next instruction (e. g., when the skip count is one, go to P+2). When the
skip condition is not met" the address of the next instruction is P+1 (skip count ignored).
The skip count does not have a sign bit.

SrZ SK
(F2 =0, 4,8, or C
corresponds to
r=4,1,2" or 3)

SrN SK
(F2 =1, 5" 9" or D
corresponds to
r=4" 1,2" or 3)

60361900 E

NOTE

In the following four skip instructions" F2 is
a combined register designation (i. e., upper
two bits are register with 02=4" 12 =1, 102=2"
112 =3) and instruction value (i. e., lower two
bits with 02=skip if 1, 12 =skip if not 0, 102 =
skip if posltive" and 112 =skip if negative).

Skips if the r register is a positive zero (all bits are zero).

Skips if the r register is not a positive zero (not all bits are zero).

2-17

SrP SK
(F2 =2,6, A, or E
corresponds to
r=4,1,2, or 3)

SrM SK
(F2 = 3, 7, B, or F
corresponds to
r=4, 1, 2, or 3)

Skips if the r register is positive (bit 15 is zero).

Skips if the r register is negative (bit 15 is a one).

2.6 DECREMENT AND REPEAT

These enhanced instructions are specified when the F field is zero, the FI field is equal to
six, bit 4 is zero, and the Ra and SK fields are both not zero.

CAUTION

If both the Ra and SK fields are zero, the
instruction is an SPB.

Decrement and repeat instructions contain two parts: register field (Ra) and skip count (SK).
The register field specifies which register is to be decremented by one and checked for the
skip condition. The skip count specifies how many locations to repeat (go backwards) if the
skip condition is met.

When the skip condition is met, the skip count is subtracted from the P register to obtain
the address of the next instruction (e. g., when the skip count is one, go to P-l). When the
skip condition is not met, the address of the next instruction is P+1. The skip count does not
have a sign bit.

Format:

15 12 11 8 7 5 4 3 0

F=O Fl=6 Ra 0 SK

LSkiP count

,-Register used

"-Subinstruction

'- Instruction

Note that Ra corresponds to r in the instruction mnemonic with 1~1., 2~2, 3~3, 4~4,
5-.Q, 6--..A, and 7--.1.

DrP SK
(Ra=1,2,3,4,5,6, or 7)
(r=l, 2, 3,4, Q, A, or I)

2-18

Decrement and Repeat if Positive. Decrements by one the
contents of the r register. Operation on overflow is the same
as for the ADD instruction. Repeat (go backwards) SK locations
if the contents of the r register are positive (bit 15 is zero);
otherwise, execute the next instruction.

60361900 E

2.7 FIELD REFERENCE INSTRUCTIONS

The enhanced instructions provide the ability to reference fields within a word rather than
the whole word itself.

Format:

15 12 11 8 7 6 5 3 2 o

P F=O F1=5 r* i* Rall' F3a

P+1 FLDSTR FLDLTH-l fj. (8-bit address) t

P+2 16 -bit address, if.6. = 0

L Length of field - 1

- tar in S t g bit of field

Field reference instructions are identified when the F field is zero, the F1 field is equal to
five, and the r, i, Ra, and F3a fields are not all zero.

CAUTION

If r, i, Ra, and F3a fields are all zero, the
instruction is an lIN.

Field reference instructions contain four parts: operation field (F3a), addressing mode
fields (delta, r, i, and Ra), FLDSTR, and FLDLTH-l fields. The F3a field determines the
operation (e. g., load, store, etc.). The addressing mode fields are defined exactly as the
type 2 storage reference instructions.

FLDSTR defines the starting bit of the field: FLDSTR=O means the field starts at bit 0;
FLDSTR=15 means the field starts at bit 15. FLDLTH-l defines the length of the field minus
one; FLDLTH-1=0 means the field is one bit long; FLDLTH-l=15 means the field is 16 bits
long. Note that is FLDLTH-1 =0, the field reference instructions become bit reference
instructions.

A field starts at the bit specified by FLDSTR and includes FLDLTH contiguous bits to the
right of that bit. No field may cross a word boundary (i. e., FLDSTR -FLDLTH-1 must be
greater than or equal to zero); e. g., if FLDSTR=O, the field length must be one bit long
(FLDLTH-1=0).

SFZ
(F3a=2)

Skip if Field Zero. If the contents of the specified field of the storage location
specified by the effective address are zero (all bits are zero), the instruction
skips one location; otherwise, it executes the next instruction.

t Addressing mode

60361900 E 2-19

SFN
(F3a=3)

LFA
(F3a=4)

SFA
(F3a=5)

CLF
(F3a=6)

SEF
(F3a=7)

Skip if Field Not Zero. If the contents of the specified field of the storage loca­
tion. specified by the effective address is nonzero (not all bits are zero), the
instruction skips one location; otherwise, it executes the next instruction.

CAUTION

Each skip field instruction assumes that a
one-word instruction follows it.

Load Field. Loads the A register, right-justified, with the contents of the
specified field of the storage location specified by the effective address. All
other bits of the A register are cleared. The contents of storage are not altered.

Store Field. Stores the contents of the field from the A register, right-justified,
into the specified field of the storage location specified by the effective address.
All other bits of storage are unchanged. Memory is locked until completion of
the instruction. The contents of the A register are not altered.

Clear Field. Clears (sets all bits to 0) the specified field of the storage location
specified by the effective address. All other bits of storage are unchanged.
Memory is locked until completion of the instruction.

Set Field. Sets to all ones the specified field of the storage location specified by
the effective address. All other bits of storage are unchanged. Memory is
locked until completion of the instruction.

2.8 MISCELLANEOUS INSTRUCTIONS

This is a set of enhanced instructions. These instructions are identified when the F field is
zero, the Fl field is equal to a decimal eleven (hexadecimal B), bit 4 is zero, and the Ra and
F3 fields are not both zero.

CAUTION

If both Ra and F3 are zero, the
code specifies an NOP instruction.

All of the miscellaneous instructions are privileged instructions; i. e., they cannot be exe­
cuted by an unprotected program and will cause a program protect violation instead.

Format:

15 12 11 8 7 543 o

F=O Fl=B Ra 0 F3

Lop eration

i.- Register

i..-

Instruction set (miscell) aneous)

2-20 60361900 E

Miscellaneous instructions contain two parts: operation field (F3) and register field (Ra).

If Ra is nonzero, the F3 operation can select up to 16 miscellaneous instructions with regis­
ter Ra used to specify an operand. If Ra is zero, the F3 operation field can select up to 15
more miscellaneous instructions without any explicit operand specified.

LMM
(F3=1, Ra=O)

LRG
(F3 =2, Ra=O)

60361900 E

Load Micro Memory. Loads a block of 32-bit micro-memory words into
read/write micro memory from the 16-bit CYBER 18/1700 storage memory.

Initially, the Q register contains the number of 32-bit micro-memory words
to be transferred. (If Q equals 0, no words are transferred.) Register 1
contains the starting address of micro memory:

15 13 12 9 8 1 0

I 000 Page Micro-address

a. Bits 13 through 15 must be zero.

b. Bits 9 through 12 specify the micro page.

c. Bits 1 through 8 specify the micro-memory address.

d. Bit 0 specifies the upper (0) or lower (1) micro instruction.

Register 2 contains the starting address of storage memory.

This instruction is interruptible after storing each 32 -bit micro-memory
word. Registers 1, 2, and Q are incremented/ decremented to allow the
restart ing of the instruct ion after any interruption. Therefore, upon com­
pletion of the instruction, these registers do not contain their original
values, but the following:

Q "'4!lI---.()
RI ~ (Rl)i + (Q)i
R2 .. (R2)i + 2>:~(Q)i

Where i denotes the initial value before execution.

Load Registers. Registers 1, 2, 3, 4, Q, A, I, and M and the OVERFLOW
indicator are loaded with the contents of nine storage locations beginning at
a storage location specified by the contents of the contents of the next loca­
tion, P+1, as follows:

«(P+l»+1) --. 1
«(P+1»+2) --. 2
«(P+l»+3) --. 3
«(P+l»+4) --. 4
«(P+l»+5) --. Q
«(P+l »+6) --. A
«(P+1»+7) --. I
« (P+ 1 »+8) ---. M

Bit 15 of «(P+1»+9) ---. OVERFLOW

The contents of the storage location specified by the contents of the next
location are then decremented by a decimal ten; that is,

«P+l»-$A ---. (P+1)

2-21

SRG
(F3=3, Ra=O)

SIO
(F3=4, Ra=O)

Note that any data stored in location «P+1» or bits 0 thro:ugh 14 of location
«(P+1»+9) may be extracted before the execution of the LRG instruction via
the address (specified by the contents of the contents of the next location).

The contents of the nine storage locations are not altered, and the next
instruction is executed at location P+2 0. e., the LRG instruction is a two­
word instruction).

Store Registers. The contents of the storage location specified by the con­
tents of the next location, P+1, is first incremented by a decimal ten; that is:

«P+1»+$A --t> (P+1)

Then, the contents of registers 1, 2, 3, 4, Q, A, I, and M and the
OVERFLOW indicator are stored in nine storage locations beginning at a
storage location specified by the contents of the incremented address as
follows:

(1) I> «P+1»+1
(2) ---i>- «P+1»+2
(3) ~ «P+1»+3
(4) ... «P+1»+4
(Q) II- «P+1»+5
(A) ... «P+1»+6
(I) .. «P+1»+7

(M) I> «P+1»+8
(OVERFLOW) . ~ bit 15 of «P+1»+9

After the storing is completed, the OVERFLOW indicator is cleared.

Note that location «P+l» and bits 0 through 14 of location «P+1»+9 can be
used to store a program address, priority level, parameter address, or
other data after the execution of the SRG instruction via the address (speci­
fied by the contents of the contents of the next location).

The contents of the registers are not altered, and the next instruction is
executed at location P+2 (i. e., the SRG instruction is a two-word
instruction) •

Set/Sample Output or Input. For output, one word from the A register is
output to an external device. The word in the Q register selects the
receiving device.

For input, one word from an external device is input to the A register. The
word in the Q register selects the sending device.

This instruction permits tranmission to/from peripheral devices. The
Q register is defined as follows:

15 11 10 9 7 6 4 3 1 0

Q 0 0 0 0 0 II! Port !position! Mode 101

a. Bits 11 through 15 and bit 0 must be zero.

b. Bits 7 through 10 contain the port number of the device with bit 10
always a one. Port numbers are analogous to the A/Q Ilo equipment
numbers and thus cannot conflict with them.

2-22 60361900 E

(

SPS
(F3 =5 1 Ra=O)

DMI
(F3=6 1 Ra=O)

c. Bits 4 through 6 contain the device's position on the port. These bits
may also be mode bits if some or all of the position bits are not
required.

d. Bits 1 through 3 contain the mode in which the device is to operate.
Bit 3 is always the set/sample condition bit: if it is Lone data word
is output; if zero l one data word is input.

Sample Position/Status. Inputs to the A register the position and the status
of an I/O device that has caused a macro interrupt. The word in the Q
register selects the device. This instruction also provides for clearing the
macro interrupt generated by the I/O controller. The Q register is defined
as follows:

15 11 10 9 7 6 0

Q 0 0 0 0 0 11 I Port I 0 0 0 0 0 0 0

a. Bits 0 through 6 and 11 through 15 must be zero.

b. Bits 7 through 10 contain the port number of the I/O device with bit 10
always a one. Port numbers are analogous to the A/Q I/O equipment
numbers and thus cannot conflict with them.

Upon completion of the instruction l the A register contains the following:

15 12 11 8 7 5 4 2 1 0

A I 0 0 0 0 Status I 0 0 0 Iposition I 0 0 I
a. Bits 0 through 11 5 through 71 and 12 through 1 5 are zero.

b. Bits 2 through 4 contain the device's pos ition.

c. Bits 8 through 11 contain the least significant four bits of the data input
lines. If these four bits of status information are insufficient l the
device I S controller may provide for the transfer of additional status bits
using the SIO instruction.

Define Micro Interrupt. Defines the use of one of the 12 available micro
interrupts. (The use of micro interrupts 12 through 15 is restricted to
internal use.)

This instruction allows enabling/ disabling of a micro interrupt and defining
it for auto-data transfer (ADT) or for a special usage.

The Q register selects and enables/ disables the micro interrupt and is
defined as follows:

15 14 4 3 o

Q Ixl 0 0 0 0 0 0 0 0 0 0 0 I U IN T I
a. Bit 15 enables or disables the micro interrupt: If bit 15 is a one l the

micro interrupt is enabled; if it is zero l the micro interrupt is disabled.
(If the micro interrupt is disabled l the A register is not utilized.)
InitiallYI following a master clear l all 12 micro interrupts are disabled.

60361900 E 2-23

b. Bits 4 through 14 must be zero.

c. Bits 0 through 3 contain the micro interrupt number (0 through 13).
Note that 12 through 15 are not available for use, and if used, the
instruction is treated as a non-operation.

The A register defines the micro interrupt for auto-data transfer or for a
special usage and is defined as follows:

15 14

A x ADT table or page/micro­
memory address

o

a. IT bit 15 is a zero, auto-data transfer is selected and bits 0 through 14
contain the auto-data transfer table address. The address must be
within the lower 32K of main memory.

There are four possible types of auto-data transfer tables for a particu­
lar micro interrupt.

1. Single A/Q device
2. Multi-A/Q devices
3. Clock device
4. Single 01" multi-devices

b. If bit 15 is a one, the special usage is selected and a jump is made to
the upper micro instruction of the page/micro memory in bits 0 through
14. It is assumed that a section of micro memory has been previously
loaded and that it must process the micro interrupt properly and return
control to the current macro instruction address (P) by jumping to the
lower micro instruction of micro-memory address 3E 16 in micro-page
zero.

Registers P, A, and Q and all of file 2 must not be altered, and return
must be within 12.5 microseconds.

CAUTION,

The micro function, SUB-, must not be used.

Bits 0 through 15 of the A register are defined as follows for this special
usage:

15 12 11

A 1 000 Page

a. Bit 15 must be one.

8 7

Micro-memory
address

b. Bits 12 through 14 must be zero.

c. Bits 8 through 11 spec·ify the micro page.

o

d. Bits 0 through 7 specify the micro-memory address.

2-24 60361900 E

CBP
(F3=7, Ra=O)

GPE
(F3=8, Ra=O)

GPO
(F3=9, Ra=O)

ASC
(F3=A, Ra=O)

LUB R
(F3=0, Ra-t>R)

LLB R
(F3=1, Ra-t>R)

EMS R
(F3 =2, Ra~R)

60361900 E

CAUTION

Extreme caution should be exercised in the
utilization of this option, since it provides
an escape from CYBER 18/1700 emulation.

Clear Breakpoint Interrupt. Clears the macro breakpoint interrupt. This
interrupt occurs when the following conditions are true:

a. The macro breakpoint (reference and/or storage) is externally
selected.

b. The macro breakpoint interrupt option is externally selected.

c. The CPU recognizes a breakpoint condition and generates a macro
breakpoint interrupt.

The macro programmer than has the responsibility to clear (CBP instruc­
tion) and process the interrupt.

Generate Character Parity Even. Sets or clears bit 7 of the A register to
cause the parity of bits 0 through 7 to be even. The rest of the contents of
the A register are not altered.

Generate Character Parity Odd. Sets or clears bit 7 of the A register to
cause the parity of bits 0 through 7 to be odd. The rest of the contents of
the A register are not altered.

Scale Accumulator. The A register is shifted left (end-around) until bits
14 and 15 of the A register are different. Upon completion of the instruc­
tion, register 1 contains the number of places that the A register was
shifted. (This number may range from zero through 1410' inclusive.) If
the A register is plus zero (000016 or FFFF16)' no shifting is done and
register 1 contains minus zero (FFFF 16).

Load Upper Unprotected Bounds. Loads the upper unprotected bounds
register from the contents of the R register.

Load Lower Unprotected Bounds. Loads the lower unprotected bounds
register from the contents of the R register.

Execute Micro Sequence. Transfers machine control to the upper micro
instruction of the page/micro-memory address in bits 0 through 15 of the
R register. It is assumed that a section of micro memory has been pre­
viously loaded and that it should return control to the next macro-instruction
address (P+1) by jumping to the lower micro instruction of micro-memory
address 3E16 in micro-page zero.

Registers P, A, and Q and all of file 2 should not be altered, and return
must be within 12.5 microseconds (or the micro sequence must be inter­
ruptable). Bits 0 through 15 of the R register are defined as follows:

15 12 11

R 000 0 Page

8 7

Micro-memory
address

o

2-25

a. Bits 12 through 15 must be zero.

b. Bits 8 through 11 specify the micro page.

c. Bits 0 through 7 specify the ,micro-memory address.

CAUTION

Extreme caution should be exercised in
the utilization of this instruction, since
it provides an escape from CYBER 18/1700
emulation.

2.9 NEGATIVE ZERO/OVERFLOW SET

Negative zero and/ or overflow set can be caused by two characteristics of the computer:

• The computer has a one's complement subtractive adder.

• Multiplication and division are done with positive numbers only. Therefore,
a sign correction occurs, if required, before and after the multiplication
or division symbols.

Arithmetic operations that produce a negative zero result and! or set overflow in the
computer are:

• Addition

• Subtraction

• Multiplication

• Division

Where: N I 0
R = Remainder

2-26

(-0) + (-0) = (-0)

(-0) - (+0) = (-0)

(+0) x (-N) = (-0)

(-N) x (+0) = (-0)

(-0) x (+N) = (-0)

(+N) x (-0) = (-0)

~:~) = (-0), R = (+0)

~~y) = (-0), R = (-0)

~-O» = (+0) R = (-0)
-N '

(+N) _
(+0) - (-0), R = (+N) overflow set

~:~ = (-0), R = (-N) overflow set

(-2N) "(+N) = (-2), R = (-0)

60361900 E

60361900 E

~:~V) == (+2), R == (-0)

(+0)
(+0) == (-0), R == (+0) overflow set

(+0) (-0) == (+0), R == (+0) overflow set

(-0)
(+0) == (+0), R == (-0) overflow set

(-0) (-0) == (-0), R == (-0) overflow set

2-27

PSEUDO INSTRUCTIONS 3

Pseudo instructions control the assembler, provide subprogram linkage, control output
listing, reserve storage, convert data, and so on.

Pseudo instructions may be placed anywhere in a source language subprogram. How­
ever, OPT or NAM must be the first statement of a subprogram and MON or END
must be the last statement.

3.1 SUBPROGRAM LINKAGE

These instructions identify and link subprograms; a symbolic name in the location field
is ignored.

3.1.1 NAM

NAM identifies a source language subprogram and must be the first statement of the
subprogram. Only the assembler control pseudo instruction OPT (section 3.4.5) may
precede it.

The format is

NAM

3.1.2 END

s c
s An optional symbolic name of the subprogram which is printed as

part of the assembly list output.

C A comment starting in column 27 up through column 72 (up to 46 charac­
ters may be printed) printed by the loader when the program is loaded
and also printed by some other programs.

END must be the last statement of a source language subprogram. If END terminates
a subprogram assembled separately or the last subprogram of a group, MON follows
END. Otherwise END is followed by NAM or OPT.

The format is

END s

s

Example:

I
/
i

An optional symbolic name of an ~ntrypoint to the first (subprogram)
to be executed. If specified, s must be-'defined as an "entry 'point .' ,,'
in the subprogram to which control passes. This entry point may be
in the same subprogram as the END statement or in a subprogram
loaded at the same time.

END START

START is the location of the first statement to be executed.

60361900 D 3-1

3.1.3 ENT

The ENT instruction lists the symbolic names of entry points which may be referenced
from other subprograms.

The format is

Example:

ENTl
ENT2

s· 1
Entry points listed in the address field of ENT and must be defined in
the subprogram containing the ENT instruction. si must not refer to
to a location outside the subprogram, common storage, or data
storage.

NAM
ENT
LDA
STA

ENT

PROG1
ENT1,ENT2
XYZl
XYZ2

ENTX

END ENTl

(Legal)

(Illegal; ENTX not defined)

3.1.4 EXT / EXT*

The EXT instruction lists the symbolic names of entry points in external subprograms
which may be referenced from this subprogram.

The format is

Example 1:

ENT3

3-2

Entry points in the address field of EXT, which must be symbols defined
in the subprograms they reference. si mllS t not refer to symbols in
the same subprogram.

NAM
EXT
LDA
COM
EXT
EXT
EXT
EXT

END

ENT1,ENT2
XYZ
ENT5
ENT3
ENT4
ENT5
ENTl

(Legal)

(Illegal; ENT3 is same subprogram)
(Legal)
(Illegal; ENT5 in common storage)
(Legal; defined in same way as above)

60361900B

Example 2:

EXT ENT I, ENT2

LDA ENT1

This reference to ENT 1 results in the following two machine words.

15 11 10 9 8 7 o
LDA 00

15 o
external link

External link is a pointer to the location of ENT 1 used by the loader at load time.

The EXT~:c instruction is the same as EXT except that si are absolute locations in EXT
and references to si are made relative in EXT*.

The format is

The plus terminator cannot be used with an operation code when the address references
a relative external entry point. It is also illegal to enclose an external in parentheses
in the address field of an ADC instruction (section 3.3. 1).

Examples:

EXT~:c NAMEl, NAME2, NAME3
LDA NAME 1
LDA+ NAMEI (Illegal)

LDA (NAME2)
ADC (NAME3) (Illegal)

EXT* NAMEl, NAME2

LDA NAMEI

60361900A 3-3

.This reference to NAME 1 results in the following two machine words.

15 11 10 9 8 7 o
LDA 00

15 o
external link

External link is a pointer to the location of NAME1 used by the loader at load time.

3.2 DATA STORAGE

The following instructions allocate data storage. BSS and BZS assign storage local to
the subprogram in which they appear. COM and DAT assign data common to any
number of subprograms. Symbolic names in the location fields of data storage instruc­
tions are ignored.

3.2.1 BSS

The BSS instruction assigns symbolic names to segments of storage within the instruc­
tion sequence of the subprogram.

The format is

3.2.2 BZS

si name

omitted

Symbolic name which defines the first location of the
named segment.

When omitted from a subfield, a segment is assigned with
the length e but no name is assigned to th~ segment.

ei expression Corresponding expressions of the symbolic name which
defines the length of the segment in words. Segments
are assigned contiguously to form one block of data
starting at location s l' The size of the block is equal
to the sum of the sizes of the segments. ei are eval­
uated modulo 215 _1 and must be absolute.

o

omitted

symbolic
name

The associated symbolic name is assigned to the next
segment which in effect assigns two names to that segment.

The length is assumed to be one computer word.

Must be previously defined; can be assigned by an EQU
instru ction.

This statement functions in the same way as the BSS, except that the specified storage
locations are set to zero.

The format is

BZS

3-4 60361900A

'-

Example:

NAM
NAM3 LDA XYZI

BSS NAM4(3) (Assign 3 words to NAM4)
BZS NAM5(5) (Assign 5 words, set to zero,

to NAM5)
BSS NAMl, NAM2(9) (Assign 1 word to NAMl; assign

9 words to NAM2)
BSS NAM3 (Illegal; NAM3 already assigned)
BSS NAM6, (4) (Assign 1 word to NAM6, assigrl

4 words to unnamed segment)
BSS NAM7 (Assign 1 word to NAM7)
EQU NAM8(4), NAM9(2)

BZS NAMI0(NAM8-NAM9) (Assign 2 words, set to zero, to
NAMI0)

BSS NAM8(NAMIO-l) (Illegal; NAM8 already assigned)
BSS LOCl(O), LOC2 (Assign the same word to LOC 1 and

LOC2)

END

3.2.3 COM

The COM instruction names and defines segments in a block of storage common to more
than one subprogram.

The format is

COM

60361900B

e· 1

name

omitted

expression

o

omitted

symbolic
name

Symbolic name which defines the first location of
the named segment.

When omitted from a subfield, a segment is
assigned with the length e but no name is assigned
to the segment.

Corresponding expressions of the symbolic name
which defines the length of the segment in words.
Segments are assigned contiguously to form one
block of data starting at location s 1. The size
of the block is equal to the sum of the sit5s of
the segments. ei are evaluated modulo 2 -1 and
must be absolute.

The associated symbolic name is assigned to the
next segment which in effect assigns two names
to that segment.

The length is assumed to be one computer word.

Must be previously defined; can be assigned by
an EQU instruction.

3-5

If a program includes more than one COM statement, they define consecutive segments
of common storage in the order of their appearance. The area used by common
storage is assigned by the loader at load time to locations outside the program area.
Data in common storage cannot be preset by the ORG pseudo instruction.

Example:

NAM
COM

NAM3 STA

3.2.4 OAT

COM
EQU
COM
COM

END

NAM4
XYZ1
NAM7($lEF), NAM8
NAM1(6), NAM2(2)
NAM5(NAM1-NAM2)
NAM6(NAM3) (Illegal)

The DAT instruction reserves area for common storage which is assigned within the
program area and may be preset with data or instructions by using the ORG pseudo
instruction (section 3.4.2).

The format is

3-6

name

omitted

Symbolic name which defines the first location of the
named segment.

When omitted from a subfield, a segment is assigned
with the length e but no name is assigned to the
segment.

expression Corresponding expressions of the symbolic name which
define the length of the segment in words. Segme~ts

o

omitted

symbolic
name

are assigned contiguously to form one block of data
starting at location s l' The size of the block is equal
to the sum of the sizes of the segments. ei ar_e
evaluated modulo 215-1 and must be absolute.

The associated symbolic name is assigned to the next
segment which in effect assigns two names to that
segment.

The length is assumed to be one computer word.

Must be previously defined; can be assigned by an
EQU instruction.

60361900B

3.3 CONSTANT DECLARATIONS

These pseudo instructions introduce constant values into the instruction sequence.

3.3.1 ADCj ADC~

The ADC / ADC* instruction evaluates numerical constants or address expressions and
inserts the results in line. When ADC is followed by an asterisk" the evaluated
address expressions are made relative to the current location counter. The reloca­
tion type of the expression must be the same as that of the location counter. The
value of the locations counter is subtracted from the value of the evaluated expression
(16-bit one IS complement arithmetic) and the result is the 16-bit address constant.

The format is

s ADC

s

e 1" e 2" (e3)"···,, en

Symbolic name in the location field which is as­
signed to the first constant in the address field.

Numerical constant or address expression to
be evaluated. The result is evaluated modulo
215 _1. Bit 15 is set if the expression is
enclosed in parentheses. The results corres­
ponding to e1" e2, •.. , en are stored in con­
secutive storage locations.

Note: Indirect addressing cannot be specified in the ADC* statement.

3.3.2 ALF

The ALF instruction translates a message into ASCII format.

The format is

s ALF

s

n

60361900 D

n, message

Symbolic name in the location field which is as­
signed to the first constant in the address field.

Unsigned integer specifying the number of words
to be stored; 2n equals the number of charac­
ters. Excess characters are treated as a
remark. (The ALF statement, including the
message, will not be processed beyond the 72nd
character of the source image.) If the mes­
sage is less than 2n characters, the unused
portion of the specified area is blank filled.

3-7

Noninteger character which signals the end of
the message. When n is a special terminating
character, the storage of the message ter­
minates the first time this character is
encountered in the message if it occurs
before the 72nd character. If the character
just prior to n is the first character of a
word, a blank is placed in the second char­
acter to complete the word.

A character message is stored into consecutive locations in the instruction sequence.
The message is converted to ASCII characters (Appendix C) and stored two 8-bit
characters per word.

The following typewriter control characters may be input with the ALF statement.

Code Meaning Hexadecimal Value

:R Carriage return D

:T Horizontal tab 9

:L Line feed A

:B Bell 7

:F Top of form C

:V Vertical tab B

These codes are converted to a single output character with the corresponding hexa­
decimal value and are counted as one character in determining the value of n, when
n is an integer character count. A colon is an 8 to 5 key punch code with the ASCII
value of 3A 16.

A symbolic name in the location field is assigned to the first word to the message.

Example:

The following source language statements

ALF
NAMI ALF

ALF
NAM2 ALF

4, EXAMPLE 1
• , EXAMPLE 2
6, EXMP3 :TEXMP4:R
4, EXMP5

are translated into machine words.

3-8 60361900 D

Location

NAMI

NAM2

Character

Left

E
A
P
E
E
A
p
E
L\

L\
E
M
3
E
M
4
E
M
5
L\

Right

X
M
L
1
X
M
L
2
L\

L\
X
P

tab
X
P

carriage return
X
P
L\
L\

In this example ..6. is a blank. Three dots indicate blanks fill in the words between
EXAMPLE2 and EXMP3. This is because the special terminating character, .,
does not occur in the message before the 72nd character. If, in the example, n is
in column 13, then 25 words of blanks are used to fill the words between
EXAMPLE2 and EXMP3.

3.3.3 NUM

The NUM instruction defines numeric constants.

The format is

s NUM k1,k2, ••• kn

s Symbolic name in the location which is assigned to the first
constant in the address field.

k.
1

60361900B

Specified integer constants stored into consecutive locations
in the instruction sequence. Each constant may be a decimal
integer within the range ± 32767, or a hexadecimal integer
preceded by a $ within the range ± 7FFF. The constant may
be signed; if it is not signed, the constant is assumed to be
positive. When the sign is minus, the one's complement of
the number is used.

3-9

Examples:

The following source language statements

1,2,3, $A
NAM1

NUM
NUM +14, -10, -$13B, $7FF

are translated into machine words.

Location Contents

0001
0002
0003
OOOA

Location

NAM1

Contents

OOOE
FFF5
FEC4
07FF

3.3.4 DEC

The DEC instruction converts decimal constants into fixed-point binary.

The format is

s DEC

s Symbolic name in the location which is assigned to the first constant
in the address field.

ki Specified integer constants stored into consecutive locations in the
instruction sequence. It is a signed decimal integer followed by a
decimal and / or binary scaling factor. The decimal scaling factor
consists of the letter D followed by a signed or unsigned decimal
integer. The binary scaling factor is the letter B followed by one or
two signed or unsigned decimal digits. The form of a constant in
the address field may be

fDdBb

which is equivalent to the algebraic expression

f. 10d. 2b

The fixed-point binary number resulting from the conversion
must have a maJ!nitude less than 2 15 . If the result of scaling is
greater than 2 15: 1, an error diagnostic is printed.

A symbolic name in the location field is assigned to the location of the first constant.

Example:

The source language statements

NAM1

NAM2
NAM3

DEC
DEC
DEC
DEC
DEC

35D-1B6
-35B6
32760B-4
32761D-5B15, +625D-2B3
10D3

are converted to machine words.

3-10 60361900B

Location

NAM1

NAM2

NAM3

3.3.5 VFD

Contents of Bits 15 through 0

000000001110000n
1111011100111111
0000011111111111
0010100111101111
0000000000110010
0010011100010000

The VFD (variable field definition) .instruction assigns data to consecutive locations in the
instruction sequence without regard for computer words. Data is stored in bit strings
rather than word units; it may be numeric constants, ASCII characters, or expressions.
A symbolic name in the location field is assigned to the first word of data.

The format is

s VFD

s

m.
1

60361900B

name

N

A

x

Symbolic name which defines the first location of the
named segment.

Specifies the mode of the data.

When the value of the data is a numeric constant, the mode
is specified as N and the number of bits must not be great­
er than 16. If n is larger than necessary, the value is
right justified in the field and the sign extended in the
remaining high order bits. If n is less than is required,
the value is truncated and the least significant bits are
stored. The value, v, is a decimal integer or a hexadeci­
mal integer preceded by a dollar sign. Integers may be
signed or unsigned; if the sign is omitted, the number is
assumed to be positive. A decimal number must be within
the range ±32767 and a hexadecimal integer within the
range ± 7FFF.

When v is string of characters, m must be A and n must
be a multiple of 8. The number of characters in the string
should be equal to n/8 including embedded blanks. The
last character must be followed by a blank or a comma.
The characters are converted to ASCII code and stored as
in the ALF instruction (section 3.3.2).

When v is an expression, m must be X and n must be less
than or equal to 16. If n is less than 16, the final value of
the expression may be relocatable or absolute. It is eval­
uated modulo 215 _1 =7FFF16 • If the final value is absolute
and n exceeds the size required, the value is right justi­
fied in the field. If absolute and n is less than the required
size, the value is truncated and the least significant bits
are stored in the field. If the final value is relocatable,
n must equal 15 and the expression must be positioned so
that it will be stored right justified at bit position 0 of the
computer word.

3-11

n.
1

v.
1

Examples:

1. Source langua.ge statements

If n equals 16, the expression must be absolute; it is
evaluated using 16-bit one's complement arithmetic. If a
symbol is used in a 16-bit expression, bit 14 of the value
of the symbol is extended to bit 15 and therefore the cal­
culation of the value of the symbol is accurate only to
214-1. For example, if the symbol A is equated to the
value -I, the value of A in the symbol table is 7FFE16 but the value used in the 16-bit calculation of this
symbol is FFFE16• Numeric operands used in a 16-bit
expression may De 16 bits in magnitude.

Number of bits to be allocated

Value of the data

NAM
VFD
BSS

N3/ I, X5/ 6-4, AI6/XY, X4/NAMI-NAM2
NAM2(3), NAMI

END

result in machine words

Word Contents

15 12 7
1 I 0 0 1 I 0 0 0 1 0 1 0 1

2
15 7

~ 1 0 1 1 0 0 1 I 0

2. Source language statements

NAM
VFD
BSS

N8/ -I I A8/L, Nl/0, XI5/NAMI
NAMI

END

result in machine words

Word Contents

15 7
1 11 1 1 1 1 1 1 0 I 0

15 14
2

1
0

1 loc of NAMI

3-12

0
0 1 1 0 0 0 I

;3 0
0 1 1

1
0 0 0 01

o
1 0 0 1 1 0 01

o

60361900B

3. Source language statements

NAM
EQU A(-I),B(2)
VFD X16 / A. XI6/B, X16 /$7FFF~:'2

END

result in machine words

Word Contents

15 0
1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01

15 0
2 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 01

15 0
3 L! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01

3.4 ASSEMBLER CONTROL

The assembly process is controlled or modified by these pseudo instructions. A
symbolic name in the location field is ignored except where specifically noted.

3.4.1 EQU

The EQU instruction equates each symbolic name to the expression value.

The format is

s· 1

e· 1

name Symbolic name si is equated to the value ei.

expression Any symbolic operand used in the expression must
be previously defined and not external to the
subprogram in which the EQU statement appears.
ei are evaluated modulo 2 15 _1 and must be absolute.

omitted An expression error is generated.

60361900 C 3-13

Example:

PICKUP
NAM6

STORE

NAM
LDA
ADD
EQU
EQU
EQU
STA
EQU

END

EXAMPL
XYZ1
XYZ2
NAM3($4F), NAM4(-39)
NAM7(NAM6-1)
NAM8(STORE)
XYZ3
NAM9(STORE)

(Illegal)

(Legal)

3.4.2 ORG/ORG*

The ORG statement specifies an address expression to which the current location
counter is set.

The format is

ORG e

e expression The expression, e, is evaluated modulo 2 15 _1 and
the location counter is set to the resultant value.
The value of the expression may be program or data
relocatable, or absolute; if relocatable, it must be
positive. Any symbolic operands in the expression
must have been previously defined.

The instructions following an ORG statement are assembled into consecutive locations
beginning at the location of the evaluated address expression, e. This sequence may
be changed by another ORG, or terminated by an ORG~:< statement. Within the range
of a data relocatable ORO any reference to an external symbol is illegal.

ORG~:<

This instruction is used to return to the normal instruction sequence previously
interrupted by an ORG. More than one ORO may be specified without an intervening
ORG~:<; however, when an ORO~:< does occur, the location counter is reset to the value
it had prior to the first ORO.

3-14 60361900B

Example:

BSS ORGl(10), ORG2, ORG3(5)

NAMI ENA o

NAM3

ORG NAMI
(sequence of code beginning at NAMl)

ORG~'
(resume sequence of code at NAM2+1)

NAM3 JMP~' NAM4

ORG ORGI
(sequ.ence of code beginning at ORGl)

ORG ORG3
(sequence of code beginning at ORG3)

ORG~~

(resume sequence of code at NAM3+1)

END

3.4.3 IFA

The lFA instruction assembles a set of coding lines only if a specified condition is true.

The format is

s IFA

s

c

60361900B

The symbolic name in the location field is used as an identifying tag only;
it is not defined as a location symbol within the program. If specified, the
first 2 characters of the -identifier, s. must match the first 2
characters of the symbolic name in the address field of the corre­
sponding ElF. If s is blank in an IF A statement. it must also be
blank in the corresponding ElF.

The expressions eland e2 are evaluated modulo 215 _1 and must
result in an absolute value. Any symbolic name in either expression
must have been previously defined.

If the conditions specified by c exist between e1 and e2. the code is
assembled; if the condition does not exist. the code following the lFA
statement is skipped until a corresponding ElF statement is encountered.

3-15

The following conditions may be specified by c.

Condition Meaning

EQ e l
= e 2

NE e l ~ e 2

GT e l > e 2

LT e l < e 2

3.4.4 ElF

The ElF instruction signals the termination of an lFA or lFC instruction (section 4. 1. 4)
when coding lines are skipped as a result of an untrue condition. When the condition
in the lFA or lFC is true, ElF is ignored.

The format is

ElF s

Example:

3-16

LOCI

NAM3
OP1

OP2

s The symbolic name, s, in the address field establishes the
correspondence between an lFA or lFC and an ElF instruction.
The first 2 characters of s must be the same as the first 2
characters in the location field of the corresponding lFA or lFC.
An ElF with a blank address field terminates an unlabeled lFA or
lFC.

NAM

BSS
EQU
lFA
SAZ
ElF
lFA
SAZ
ElF

END

A(20), B(10), C(2)
NAM1(10), NAM4(B), NAM2(2)
NAM1, EQ, NAM2+8
1
NAM3
NAMl, GT J NAM2+8
2 .

60361900A

OP 1 is assembled and OP2 is skipped if the value of NAM1 equals the value of NAM2+8;
OP 1 is skipped and OP2 is' assembled if the value of NAM1 is greater than the value of
NAM2+8; both OP 1 and OP2 are skipped if the value of NAM1 is less than the value of
NAM2+8.

3.4.5 OPT

The OPT pseudo instruction signals the input of control options to the assembler.

The format is

OPT P

where P is one or more of the control options listed below.

When only OPT appears, the assembler requests input of control options from the comment
device by typing:

OPTIONS

The following control options are entered in any order on the teletypewriter. Imbedded
spaces and illegal characters are ignored. A carriage return signals the end of control
options input.

Option

L

P

x

M

A

Ilu

C

Meaning

List output on standard list device

Punch output on standard punch device

Place object output on mass storage device (scratch area)

List called macro skeletons

Abandon all remaining assemblies and return control to operating system

Input from unit lu. Reads instructions until the END statement is
encountered, then returns to the standard input device; lu may be any
ASCII or BCD input device.

List cross references at end of assembly listing.

OPT is not a part of the source language program. It is used strictly for control of the
assembler and has no code associated with it.

OPT may precede any NAM instruction in any subprogram. If the first statement encoun­
tered is not OPT I standard options are assumed until END is encountered. If OPT is
encountered between the first statement of a program and the END statement, a diagnostic
is issued. The standard options are L, P, X, and C. Chapter 5 describes output result­
ing from the standard options.

3.4.6 MON

The MON instruction returns control to the operating system after the last subprogram has
been assembled.

60361900 D 3-17

The format is

MON

MON may be used only after the END statement. The location and address fields are
ignored. This statement is part of the source language program and is used strictly
for control of the assembler; no code is associated with it.

3.5 LISTING CONTROL

The following pseudo instructions control the printing of assembly output. The location
and address fields are ignored unless specified.

3.5.1 NLS

The NLS instruction inhibits list output.

The format is

NLS

Normally list output is enabled initially until an NLS occurs and then remains inhibited
until an LST instruction or the end of the program occurs.

3.5.2 LST

The LST instruction initiates list output after an NLS has inhibited it.

The format is

LST

3.5.3 SPC

The SPC instruction controls line spacing on the list output unit.

The format is

SPC e

e Number of lines to be skipped; the expression is eva'tuated modulo
2 15-1 and must be absolute. Mter the expression is evaluated, if
space count exceeds 60 lines, one line is skipped.

3.5.4 EJT

The EJT instruction causes page ejection during printing of the list output.

The format is

EJT

3-18 60361900 E

MACROS 4

An often used set of instructions may be grouped together to form a macro. Once a macro
is defined" it may be used as a pseudo instruction. The macro assembler includes two
types of macros.

Programmer defined Macros which must be declared by MAC pseudo instructions
immediately following the NAM image. Comment cards
may, however, be placed anywhere in the macro definition.

Library Definitions contained on the system library and may be
called from any subprogram.

4.1 MACRO PSEUDO INSTRUCTIONS

These pseudo instructions are used only within a macro definition.

4.1.1 MAC

The MAC instruction is required and names a macro and lists its formal parameters.
The location field contains the name used to call the defined macro. It may be any
name which is not a machine or pseudo instruction. It is not necessary that all parameters
be used within the macro.

The format is

s MAC

s A symbolic name in the location field is assigned to the first word of
the generated code.

Pi Symbolic names that are local to the macro definition and may be
used anywhere else in the program without ambiguity. The formal
parameters must conform to the following rules.

They must be symbolic names of 1 or 2 characters.

The parameter list must not extend beyond the 72nd character
of the line containing MAC.

The parameter list must terminate with a blank or the 72nd
character of the line.

Each parameter in the list is separated from the next by a comma.

60361900 E 4-1

4.1.2 EMC

The EMC instruction is required and signals the end of a macro definition. A symbolic
name in the location or address field is ignored. EMC is always the last instruction
in a macro definition.

The format is

EMC

4.1.3 LOC

The LOC instruction is optional and allows the use of the same symbols in macros and
programs to avoid doubly defined symbols. Symbols, other than formal parameters,
that are local to the macro being defined are listed in this instruction. Local symbols
have meaning only in the macro in which they are listed by LOC, thus allowing the
same symbols to be used elsewhere in the program without ambiguity.

The LOC instruction must immediately follow the MAC instruction. A symbol in the
location field of the LOC instruction is ignored.

The format is

4.1.4 IFC

s.
1

Local symbols in the address field which must conform to the
following rules.

They must be symbolic names of 1 or 2 characters.

The list cannot extend beyond the 72nd character of the line
containing the LOC instruction.

The list terminates with a blank or the 72nd character of the
line.

Each symbol in the list is separated from the next by a comma.

No local symbol in the list may be the same as a formal
parameter specified for the macro.

No more than 256 local symbols can be used in one program.

The IFC instruction is optional and allows a set of instructions within a macro
definition to be assembled only if a specified condition is true. This instruction
is meaningful only within the range of a MAC pseudo instruction.

4-2 60361900B

The format is

s lFC

s

a· 1

c

The symbol in the location field is an identifying tag used to establish
correspondence with the terminating ElF. An ElF terminates an lFC
when the first two characters of the symbol in the address field of ElF
are the same as the location symbol of the lFC, or when both symbols
are blank and it is the first ElF encountered.

Must. be a string of from 1 to 6 characters or a formal parameter
specified in the MAC statement. The character string should not
contain commas, blanks, or apostrophes. Two character strings are
equal when they contain the same characters in the same position and
are of the same length. Characters in excess of six are ignored.

Specified condition

Condition Meaning

EQ a1 = a2

NE a1 =F a2

If the condition specified exists between al and a2, the code is
assembled; if not, the code following the lFC is skipped until a
corresponding ElF pseudo instruction (section 3.4.4) is encountered.

Source language examples of macro definitions and instructions are
given in section 4.3.2.

4.2 MACRO SKELETON

A macro' skeleton is the set of instructions within a macro definition that is the proto­
type of the operations to be performed when the macro is called.

The instructions may be any machine or pseudo instruction except MAC:I LOC, EMC,
NAM" END" or MON. A macro skeleton may also contain macro instructions calling
other macros. A macro skeleton may not contain a macro instruction calling itself.
Formal parameters" enclosed in apostrophes" may appear anywhere in the instruction
format of a prototype instruction. Local symbols defined by a LOC statement may be
used anywhere in the macro skeleton; they also must be enclosed in apostrophes. The
only legal use of the apostrophe in a macro definition is to enclose formal parameters
or local symbols. Formal parameters that extend past the 72nd character into the
sequence field are ignored. Formal parameters in a comment statement signaled by
an ~:~ in column 1 are also ignored.

In addition to the formal parameters specified in the MAC pseudo instruction" a special
formal parameter (a period enclosed in apostrophes) may be used in the macro skele­
ton. It is replaced by the instruction terminator of the calling macro instruction
when a terminator is specified.

Let A, B" C" ••• be distinct arbitrary macro skeletons. A may contain a macro
instruction calling B, B a macro skeleton calling C, etc. Up to ten such successive
macro calls are allowed by the assembler. Further successive calls are ignored.

60361900 D 4-3

Example:

XYZ

'A'

MAC
LOC

LDA
'P2'
S'P4'Z
JMP'. '
ENA

EMC

Pl~ P2~ P3~ P4~ P5
A

'Pl' I
: ~~ ~ ~:~ -1 Mac ro skeleton
'P5'
1

4.3 MACRO INSTRUCTION

With a macro instruction~ the code generated from the named macro is inserted in the
instruction sequence beginning at the location of the macro instruction.

The format is

s A symbolic name in the location field is assigned to the first word of
the generated code.

N Symbolic name of the macro in the operation code field. It is the name
specified in the location field of the MAC statement of the macro definition
it calls. The macro name may be followed by one of the special termi­
nators +, -, or ,:~

Pi Symbolic names which are local to the macro definition and may be used
anywhere else in the program without ambiguity.

4.3.1 PARAMETERS

Actual

The actual parameters must' be listed in the same order as the formal parameters in
the MAC statement. The list of actual parameters must conform to the following rules.

4-4

Each parameter in the list is separated from the next by a comma.

The list is terminated with a blank or the 72nd character unless the 72nd character
is a comma.

The list may be continued onto the next line; if so, the last parameter on the first
line is terminated by a comma and a blank or the 72nd character.

The continuation line must contain the macro name in the operation code field. A
symbolic name in the location field is ignored.

An actual parameter containing embedded blanks or commas must be enclosed by
apostrophes.

60361900 D

The internal buffer for storage of actual parameters is 96 words long; this allows'
approximately three continuation lines. If the buffer overflows, an error message is
given.

Example:

The macro defined in the previous example as XYZ could be called by the following
macro instruction.

TAG1 XYZ~:'

XYZ~:'

SYMBl,STA, 'SYMB2,I',
Q, LABELl (Continuation line)

This macro instruction would generate the following code starting at location TAG 1.

TAG1

[nn

LDA
STA
SQZ
JMP~'
ENA

SYMBl
SYMB2,I
[nn-~:'-l
LABELl
1

NOTE

[nn is a unique identifier assigned at assembly time.

Actual parameters may be omitted from a macro instruction. An omitted (null)
parameter in the middle of the list· is indicated by its terminating comma only.
Parameters at the end of the list may be omitted with no indication.

Example:

XYZ MAC Pl,P2,P3,P4,P5,P6

The macro instruction with P2, P4, and P6 omitted in the actual parameter list
would be:

XYZ MUI" SYMB5" 3

Empty fields are allowed in all machine and pseudo instructions with the following
. exceptions.

ALF n, message (n must be specified)

EQU s(e)

} (If e is specified, s COM see)
DAT s(e) must be specified)

IFA el,c,e2 } (c must be specified) IFC al, c, a2

Actual parameters to be inserted into the value of a VFD instruction using mode A
must agree with the number of characters specified. A null actual parameter can
cause an error in the generated code unless the VFD allows for null parameters.

6036l900A 4-5

Example:

x MAC
VFD

P,Q,R
A8/'P',A8/'Q',A8/'R'

For the macro defined, the calling macro instruction must specify each actual parameter
as 1 character long. If an actual parameter is more than 1 character, an error message
is given. However, if an actual parameter is omitted, a code is generated and an error
results.

X
VFD

A"B
A8/A,A8/,A8/B

(Q is omitted)
(C ode generated)

If actual parameters might be omitted, the VFD instruction in the macro skeleton should
include empty subfields for each character.

Example:

The macro definition should be written:

x MAC
VFD

P,Q,R .
A8/'P', ,A8/'Q', ,A8/'R',

A calling sequence with no actual parameters generates the following code and no
error results.

VFD A8/" A8/, ,A8/,

4.3.2 EXAMPLES

The following examples show macro definitions and the code generated by macro instruc­
tions calling the defined macros.

1. Macro Definition

XYZ

'P4'

II

MAC
LDQ
LDA
'PI'
ADD
IFA
IFC
STA
LDA
ElF
ElF
EMC

a. Macro Instruction

CALLI XYZ

4-6

PI, P2, P3, P4, P5, P6
=N'P5', 'P6'
'P3'
'P2'
SYMB1
'P5', NE, 0
'PI', EQ, MUI
SYMB3
SYMB2

II

MUI, 'SYMB4, I', SYMB5, HERE, 3, I

60361900B

Generated Code

CALLI
HERE

11

LDQ
LDA
MUI
ADD
IFA
IFC
STA
LDA
ElF
ElF

b. Macro Instruction

=N3,I
SYMB5
SYMB4,I
SYMBI
3, NE, 0
MUI,EQ,MUI
SYMB3
SYMB2

11

(Condition satisfied)
(Condition satisfied)
(Assembled)
(Assembled)

CALL2 XYZ DVI, SYMB7, 'SYMB8, 1', THERE, 2

Generated Code

CALL2
THERE

11

2. Macro Definition

A
11

12

MAC
IFC
LDA
ElF
IFC
LDA
ElF
STA
EMC

LDQ
LDA
DVI
ADD
IFA
IFC
STA
LDA
ElF
ElF

=N2,
SYMB8, I
SYMB7
SYMBI
2, NE, 0
DVI,EQ,MUI
SYMB3
SYMB2

11

PI, P2, P3, P4
*, EQ, 'PI'
'P2'
11
*, NE, 'PI'
'P3'
12
'P4'

a. Macro Instruction

(Condition satisfied)
(Condition not satisfied)
(Not assembled)
(Not assembled)

A ~:c, NAMl, NAM2, NAM3

Generated Code

11 IFC ~:c, EQ, ~:c (Condition satisfied)
LDA NAMI (Assembled)
ElF 11

12 IFC ~~, NE, * (Condition not satisfied)
LDA NAM2
ElF 12
STA NAM3

60361900B 4-7

3. Macro Definition

JAN "MAC SY
IFC *, EQ, I. I
SAZ I
ElF
1Ft *, NE, I. I
SAZ 2
ElF
JMPI.I 'SYI
EMC

a. Macro Instruction

JAN* SYMBI

Generated Code

IFC *, EQ, * (Condition satisfied)
SAZ I (Assembled)
ElF (Ignored)
IFC *, NE, * (Condition not satisfied)
SAZ 2 (N ot assembled)
ElF (Skip term ina ted)
JMP* SYMBI

b. Macro Instruction

JAN SYMB2

Generated Code

IFC *,EQ, (Condition not satisfied)
SAZ I (Not assembled)
ElF (Skip terminated)
IFC *,NE, (C ondition satisfied)
SAZ 2 (Assembled)
ElF (Ignored)
JMP SYMB2

4. Macro Definition

IFEXMP MAC PI
Z IFC ~,c, EQ, 'PI'

NUM 2
ElF Z

Y IFC *, NE, 'PI I
X IFC 0, EQ, 'PI I

NUM I
ElF X

Y IFC 0, NE, 'PI'
NUM 0
ElF Y
EMC

a. Macro Instruction

IFEXMP -'-','

4-8 60361900B

Generated Code

Z IFC ~:~, EQ, ~:~

NUM 2
ElF Z

Y IFC ~:~, NE, ~:~

X IFC 0, EQ, ~:~

NUM 1
ElF X

Y IFC 0, NE, ~:~

NUM 0
ElF Y

b. Macro Instruction

IFEXMP 0

Generated Code

Z IFC ~:c, EQ, 0
NUM 2
ElF Z

Y IFC ~:~, NE, 0
X IFC 0, EQ, 0

NUM 1
ElF X

y IFC 0, NE, 0
NUM 0
ElF Y

c. Macro Instruction

IFEXMP

Generated Code

Z IFC ~:~, EQ,
NUM 2
ElF Z

y IFC ~:~, NE,
X IFC O,EQ,

NUM 1
ElF X

Y IFC 0, NE,
NUM 0
ElF Y

5. Macro Definitions

DEPTH1 MAC A
DEPTH2 'A',PARAMI
EMC

DEPTH2 MAC A,B
DEPTH3 'A',PARAM2
EMC

DEPTH3 MAC C,D
LDA 'c'
STA ID'
EMC

60361900B

(C ondition satisfied)
(Assembled)

(Condition not satisfied)
(Not assembled)
(Not assembled)
(Not assembled)
(Not assembled)
(N ot assembled)
(Skip terminated)

(Condition not satisfied)
(Not assembled)
(Skip terminated)
(C ondition satisfied)
(C ondition satisfied)
(Assembled)

(C ondition not satisfied)
(Not assembled)
(Skip terminated)

(C ondition not satisfied)
(Not assembled)
(Skip terminated)
(Condition satisfied)
(Condition not satisfied)
(N ot assembled)
(Skip terminated)
(Condition satisfied)
(Assembled)

4-9

6.

Macro Instruction

DEPTH1

Generated Code

DEPTH2
DEPTH3
LDA
STA

Macro Definition

B MAC
LOC
ALF
VFD
IFC
LDA
ElF

'I' INA
'K'
SAN
ENA

'LO' STA
EMC

Macro Instruction

B
B

Generated Code

NAM2

[nn

4-10

ALF
VFD
IFC
LDA
ElF
INA
NOP
SAN
ENA
STA

SYMB1

SYMB1, PARAM1
SYMB1, PARAM2
SYMB1
PARAM2

A, B, C, D, E, F, G, H, I, J, K
LO
'A', 'B'AERROR
'C'/'D',A16/'E'" ,A32/TEST
'G', EQ, SKIP
'H'

'J'
1
'LO'
-1
'F'

4, 1,N4, -l,XY, 'TEMP,I',SKIP, 'TEMP, I',
NAM2, 10, NOP

4,1 A ERROR
N4/-1,A16/XY" ,A32/TEST
SKIP, EQ, SKIP
TEMP, I

10
1
[nn
-1
TEMP, I

60361900C

STANDARD MACRO LIBRARY 5

. i 'Mf $' g

5.1 CREATING THE LIBRARY

LIBMAC is released as a separate library macro preparation routine. Input to this routine
is in the form of a set of macro definitions, each starting with a MAC statement and ending
with an EMC statement. The definitions for the macros may be obtained from a COSY tape.
All the macros are contained in one deck on the COSY tape with the deckname MACROS.
No extra modifications are needed to use the source code obtained from the COSY tape.
LIBMAC must appear in column I, following the set of macro definitions.

The procedure to execute LIBMAC is:

~:~JOB

J
~~K, Ilu, Plu
J
~:CLIBMAC

Where: I assigns the logical unit of input.

P assigns the logical unit output.

The library macro preparation routine outputs two files on the standard I/O device for bi­
nary output. One contains a macro directory; the other contains the macro skeletons. The
routine checks for errors and prints an error message along with the line containing the
error.

Binary output is in two sections: the macro skeleton file and the macro directory file. After
the skeleton file has been output, the message MACSKL END is output on the typewriter and
a carriage return must be typed to start output of the macro directory.

The output files are placed on the program library in two permanent files using the
MSOS ~ystem Initializer or library editor. The library editor is used to put the macros on
the program library.

The control statement

~:~N, MACROS", B

places the macro directory file on the program library.

The control statement

~:~N, MACSKL", B

places the macro skeletons on the program .library.

The following error codes are output by the macro library generator (LlBMAC). The format
is

LlBMAC ERROR nn .••

60361900 E 5-1

Where nn is one of the following codes:

Meaning

No MAC definition card

Address modifier on MAC card

Label field missing or incorrect

Illegal terminator after macro name

More than two characters in a MAC or LOC definition card

Invalid special character on MAC or LOC card

Duplicate parameter names on MAC and/or LOC card

Invalid special character in a parameter string on a MAC or LOC card

Address modifier on LOC card

No terminating apostrophe on macro skeleton record

Code

01

02

03

04

05

06

07

08

09

OA
OB Parameter name on macro skeleton record not previously defined on MAC

or LOC card

OC
OD
OE

Internal buffer exceeded; skeleton record too long

Macro definitions exceeded limit (currently 320 definitions allowed)

More than 65K or skeleton file defined

The line printed following the error code is the line in error. All errors are fatal.

5.2 MODIFYING THE LIBRARY

All modifications to the macro library require a new macro library to be generated. Macro
definitions may be added or removed from the old macro source deck. The new macro
library may be created uSing *LffiMAC.

S.3 PROGRAMS IN THE MACRO LIBRARY

The macros described in this section can be found in the macro library of a standard system.
Additional macros may be added according to the user's needs. The macro assembler re­
cognizes the macros in the library and converts them to their appropriate calling sequences.

5.3.1 FORMATTING MACROS

The formatting macros allow the programmer to transfer information from one area of stor­
age to another while changing the format or type class of the information. To change the
type of a single variable" the programmer may use a HEXASC" HEXDEC" ASCII, DECHEX"
or FLOA TG macro. Variable lists may be formatted using the ENCODE and DECODE
macros. (Refer to the MS FORTRAN Version 3A/B reference manual for further details.)

5-2 60361900 E

HEXASC and HEXDEC Macros

The HEXASC macro converts a hexadecimal integer to ASCII characters. HEXDEC converts
a hexadecimal integer to a decimal integer in ASCII characters. The macro calling sequence
is:

HEXASC a, b (absolute)
or

HEXASC~.c a, b (relative)

HEXDEC a, b (absolute)
or

HEXDEC* a, b (relative)

Where:· a is the address of the variable.

b is the address of the buffer (two words for HEXASC, three words for HEXDEC).

ASCII and DECHEX Macros

The ASCII macro converts two words of ASCII characters in BUFFER to a hexadecimal in­
teger. DECHEX converts three words of a decimal integer in ASCII characters in BUFFER
to a hexadecimal integer. The macro calling sequence is:

ASCII a, b
or

ASCII~:~ a, b

(absolute)

(relative)

DECHEX a, b (absolute)
or

DECHEX* a, b (relative)

60361900 E 5-2. 1 .

Where: a is the buffer address (two words for ASCII and three words for DECHEX).

b is the addres s of the variable.

FLOA TG Macro

FLOATG converts a tw o-word floating-point variable into its floating-point representation
with its exponent in ASCII characters: ±. xxxxxxE±ee. The macro calling sequence is:

FLOA TG a, b (abs olute)
or

FLOA TG~:~ a, b (relative)

Where: a is the address of a floating-point variable.

b is the address of a buffer (six words).

ENCODE AND DECODE MACROS

The DECODE macro transmits n consecutive ASCII characters according to FORMAT into
locations starting with the first word in BUFFER to the variable list as n machine-language
elements. ENCODE transmits n machine-language elements of the variable list according
to FORMAT into locations starting with the first word in BUFFER. Up to 150 ASCII char­
acters (one line) are stored in consecutive locations for output. The macro calling sequence
is:

ENCODE a, b, c, d, e, (absolute)
or

ENCODE~:~ a, b, c, d, e (relative)

DECODE a, b, c, d, e (absolute)
or

DECODE~:~ a, b, c, d, e (relative)

Where: a is the address of a buffer.

b is the address of the format.

c is the number of words to be transferred.

d is the address of the variable list.

e is the address of an error routine. If it is blank, no test for error conditions
is made.

5.3.2 FILE MANAGER MACROS

The following File Manager macros provide the programmer with a convenient method for
performing all the File Manager functions:

FLDF
DEFFIL and DEFIDX
LOKFIL and UNLFIL
RELFIL

60361900C 5-3

STOSEQ" STOIDX" and STODIR
RTVSEQ and RTVDIR .
RTVIDX and RTVIDO
STATFL

These macros allow the user to create and maintain sequential or indexed files. When a
file is no longer needed" its space may be released for other tas ks through the use of a
File Manager macro. These macros also provide an easy method for obtaining the request
indicator word which specifies errors that occurred on the last file request. (Refer to the
File Manager Reference Manual for further details.)

FLDF Macro

FLDF defines the parameters of a file so that they do not have to be in the calling sequence
of the other macros. The macro calling sequence is:

FLDF filnum" maxrl" lu" numekv" keylth" filcom" reclth

Where: filnum is the file number; it contains a positive integer specifying the file.

maxrl is the maximum record length; to be used for determining the effective
maximum record length and file record block length. It contains a
positive integer.

lu is the logical unit; it contains a positive integer specifying where the file's
records are to be stored.

numekv is the number of expected key values; it contains a positive integer esti­
mating the number of records with different key values to be stored in
the file.

keylth is the key length word"

Bits 0 through 5

6 through 12

13

14

15

with the indexed options:

Length of the key

Reserved

1 FIFO linking (bit 15 must be set).
If this bit is not set and bit 15 is set"
LIFO linking is implied.

1 Indexed-ordered file

1 Indexe'd -linked file

filcom is the file combination with the remove option; bits 0 through 14 contain a
nonzero number (if the file is or is to be locked) specifying the combin­
ation (which is or is to be) used to lock the file; bit 15 set to 1 indicates
that the record is to be removed from the file.

reclth is the record buffer length; it contains a positive integer specifying the
length of the record buffer.

DEFFIL and DEFIDX Macros

The DEFFIL macro defines a file; DEFIDX further defines a file as being indexed.

5-4 60361900C

The macro calling sequence is:

DEFFIL filnum (absolute)
or

DEFFIL~:c filnum (relative)

DEFIDX filnum (absolute)
or

DEFIDX~:c filnum (relative)

Where: filnum is the file number.

LOKFIL and UNLFIL Macros

The LOKFIL macro locks the file; UNLFIL unlocks the file. The macro calling sequence
is:

LOKFIL filnum (absolute)
or

LOKFIL~:C filnum (relative)

UNLFIL filnum (absolute)
or

UNLFIL~:C filnum (relative)

Where: filnum is the file number.

RELFIL Macro

The RELFIL macro releases the file so that space previously used by the file can be reused.
The macro calling sequence is:

RELFIL filnum (absolute)
or

RELFIL~:c filnum (relative)

Where: filnum is the file number.

STOSEQ, STOIDX, and STODIRMacros

There are three File Manager macros that are used to store a record:

• STOSEQ - Stores a record sequentially into a file

• STOIDX - Stores a record using an index into a file

• STODIR - Stores directly into a file

60361900C 5-5

The macro calling sequence .is:

STOSEQ filnum~ recbuf~ reclth (absolute)
or

STOSEQ~:c filnum~ recbuf; reclth (relative)

STOIDX filnum~ keyval~ recbuf (absolute)
or

STOIDX~~ filnum~ keyval~ recbuf (relative)

STODIR filnum~ recbuf (absolute)
or

STODIR~:c filnum~ recbuf (relative)

Where: filnum is the file number; it contains a positive integer identifying the file into
which a record is to be stored.

recbuf is the record buffer; it is an array of reclth words containing the record
to be stored.

reclth is the record length. It contains a positive integer specifying the length
of the record. If the record is the first to be stored into an indexed­
linked file with FIFO linking~ reclth becomes the fixed record length
for all subsequent stores. If it is not the first store into the file~ reclth
must be less than or equal to the length of the first record. (Even
though recl th may be less than the length of the first record~ the fixed
length will be used in storing all subsequent records.)

keyval is the key value; it is an array of keylth words containing the key value of
the record.

R TVSEQ and R TVDIR Macros

The R TVSEQ macro is used to retrieve a record sequentially from a file; RTVDIR is used
to retrieve a record directly from a file. The macro calling sequence is:

RTVSEQ filnum~ recbuf (absolute)
or

RTVSEQ~:c filnunl, recbuf (relative)

RTVDIR filnum~ recbuf (absolute)
or

RTVDIR~:c filnum~ recbuf (relative)

Where: filnum is the file number; it contains a positive integer identifying the file from
which the record is to be retrieved.

recbuf is the record buffer; it is a nonpreset array of reclth words~ where the
File Manager transfers the retrieved record.

5-6 60361900C

RTVIDX and RTVIDO Macros

The RTVIDX macro is used to retrieve a record using an index from a file. RTVIDO is
used to retrieve a record using an ordered index from a file. The macro calling sequence
is:

R TVIDX filnum, keyval, recbuf
or

R TVIDX':C filnum, keyval, recbuf

R TVIDO filnum, keyval, recbuf
or

R TVIDO* filnum, keyval, recbuf

(absolute)

(relative)

(absolute)

(relative)

Where: filnum is the file number; it contains a positive integer identifying the file from
which a record is to be retrieved.

keyval

recbuf

STA TFL Macro

is the key value; it contains an integer equal to the lowest numeric key
value desired; otherwise, it contains a positive integer specifying the
numeric key value of the desired record.

is the record buffer; it is a nonpreset array of reclth words, where the
file manager transfers the retrieved record.

STATFL provides the user with an easy method of getting the request indicator word,
masking specified error conditions, and giving control to a specified error routine if errors
are present. A file status of 0 implies that no errors occurred on the last file request.

The macro calling sequence is:

STATFL fn, mk, bd

STATFL fn

STATFL fn, mk

STATFL fn, mk, bd

Where: fn is the file number.

mk is the mask that is used to form the logical product with the request indicator.
(If mk is left blank, only the status is placed in the A register.) The ter­
minator, such as the dash (-) in the fourth example, determines the ad­
dressing mode used on the AND instruction and may be a -, +, ~:~, or
blank.

bd is the program label where control is given if the logical product of mk and
the request indicator is nonzero. If bd is left blank, no code is gen­
erated to test the request indicator status. In this case the logical product
of the request indicator and the mask is left in the A register at the end of
the macro and may be tested by the user.

60361900 E 5-7

~.l.3 MONITOR REQUEST MACROS

The following monitor request macros provide the programmer with a convenient method
for making requests to the monitor: -

READ, FREAD, WRITE, and FWRITE
INDIR

, TIMER
SCHDLE
MOTION
SPACE
RELEAS
DISCHD
ENSCHD
TIMPT1
PTNCOR
SYSCHD
CORE
LOADER
GTFILE
STATUS
EXIT

With these macros, the program may instruct the monitor to read, write, load, schedule pro­
grams, allocate, and release space and motion. Special MOTION request macros are also
included. Each macro performs one MOTION request. Refer to the MSOS reference manual
for further details.

READ, FREAD" WRITE, and FWRITE Macros

READ / WRITE instructions transfer data between the specified input/ output device and core.
The word count specified in the request determines the end of the transfer.

FREAD/FWRITE requests read/write records in a specific format for each device.

The macro calling sequence is:

READ I
FREAD lu, c, s, n" m, rp, cp, a, x" d
WRITE

FWRITE

Where: lu is the logical unit.

c

s

n

m

rp

cp

a

x

d

5-8

is the completion address.

is the starting address.

is the number of words to transfer.

is the mode.

is the request priority.

is the completion priority.

is the absolute/ indirect indicator for the logical unit.

is the relative/ indicator (affects parameters C" S" and N).

is the Part 1 request indicator (absolute parameter addresses).

60361900 E

INDIR Macros

The INDIR macro allows indirect execution of any other request, as determined by the para­
meter list referenced by p.

The macro calling sequence is:

INDIR p, i"

Where: p is the address of the first word of the parameter list of any other request; p
must not be enclosed in parentheses.

i is the indicator for the request used.

TIMER Macro

The TIMER macro is a delayed SCHDLE request. Through the user of TIMER" a SCHDLE
request is made after a specified time delay. The macro calling sequence is:

TIMER c, p" x, t" u" d

Where: c

p

is the completion address to be executed.

is the priority level of the program.

x is the relative/ indirect indicator.

SCHDLE Macro

Programs are queued on a priority basis through the use of the SCHDLE macro. A program
requested by SCHDLE is executed only when it is the oldest waiting task with the highest
priority. The macro calling sequence is:

SCHDLE c, p, x, d

Where: c is the address to be executed.

p is the priority level of the program; for unprotected programs, p is 1. Com-
pletion routines requested by unprotected programs are not executed until
the scheduled routine exits. If two programs are of equal priority" the one
in progress is continued.

x is the relative/ indirect indicator.

d is the Part 1 request indicator (absolute request parameters).

MOTION Macro

'rhe MOTION macro request is used to control motion and end-of-file processing. The
macro calling sequence is:

MOTION lu" c, PI' P2" P3' dy, rp" cp" a" x" d" m

60361900C 5-9

Where: lu is the log.ical unit.

c is the completion address.

PI ~ P2~ P3 are the motion control parameters. Up to three motion commands may
be defined in a MOTION request; they are executed in the sequence
Pl~ P2

'
P3· The first command with a value of zero terminates the

request.

dy is the density parameter.

rp is the request priority.

cp is the completion priority.

a is the absolute! indirect indicator for the logical unit.

x is only related to the completion address.

d

m

is set to 0 All parameters are processed as described.

1 A Part 1 request is indicated (c is a 16-bit absolute address
and must not equal R for the a parameter).

is the mode.

The following macros can also be used for MOTION requests; each macro can perform only
one MOTION request.

BSR~~ lu~ a, n, c, p

EOF~:c lu, a , n, c, p

REW~~ lu, a , n~ c, p

UNL* lu, a, n~ c, p

ADF~:c lu, a, n~ c, p

BSF* lu,a,n,c,p

ADR~:c lu, a, n, c, p

Motion code 1

Motion code 2

Motion code 3

Motion code 4

Motion code 5

Motion code 6

Motion code 7

MOT lu, a, n, c, p, m Used by each of the above macros to execute the motion

Where: ~:c specifies a relative completion address. If left blank, there is absolute com-
pletion (The macro computes the relative address constant.)

lu is the logical unit number of the device.

a is the absolute! indirect! relative indicator for the logical unit.

n is the number of iterations. If blank, 1 is assumed (not to exceed 4~ 095).

c is the completion address. If the macro call terminator is an ~:c, completion
is relative (only the label name is required). If the macro call terminator
is a blank, the completion is absolute. If c is left blank~ there is no
completion.

p is the priority level; defines both the request and completion priority. If left
blank I the priority is O.

m is the motion code.

All parameters are optional and may be left blank, with the exception of lu.

5-10 60361900C

SPACE Macro

SPACE is used by protected programs to allocate space in core. To operate mass storage
resident programs, the SPACE request processor must be used. The macro calling se­
quence is:

SPACE n, c~ rp, cp, x, d

Where: n is the number of words necessary.

c is the completion address to which control is transferred when core sp.ace is
allocated.

rp is the request priority (with respect to other SPACE requests). If space is
not available, requests are threaded together so that the oldest (highest
priority) is filled first when space becomes available. This priority is also
used as the index to the table L VLSTR to determine the starting address of
of allocatable core for the request priority. This has the effect of pro­
viding larger areas of core to SPACE requests with a higher priority level.

cp is the completion priority; the level at which the completion address is entered.

x is the relative/indirect indicator.

RELEAS Macro

The RELEAS macro is used to return to the system storage acquired by a SPACE macro.
The macro calling sequence is:

RELEAS s, t, x, d

Where: s is the starting address of the block to be released. If this address is not the
same as the address returned from a SPACE request, core space is not
released; however, an error does not occur.

t

x

d

is the exit indicator.

is the relative/ indirect indicator.

is the Part 1 request indicator.

DISCHD Macro

With the DISCHD macro, the scheduling of specific system directory programs can be dis­
abled for a period of time. The macro calling sequence is:

)

DISCHD c

Where: c is the index to the system directory.

60361900C 5-11

ENSCHD Macro

The ENSCHD macro enables the scheduling of system directory programs after they have
been disabled by a DISCHD macro. The macro calling sequence is:

ENSCHD·c

Where: c is the index to the system library.

TIMPTI Macro

The Part 1 TIMER macro must be used for scheduling system directory programs that are
loaded in Part 1. This request may also be used for Part 0. programs. The macro calling
sequence is:

Where: c is the index to the system directory.

p is the priority level of the program.

x has no meaning.

t is the time delay.

u is the units of delay. This parameter determines the units in which the time
delay is measured.

PTNCOR Macro

The PTNCOR macro is used to allocate a block of partitioned core. The macro calling
sequence is:

Where: n

c

p

rp

cp

x

d

is the number of words in block to be allocated.

is the completion address.

is the starting partition number; the number of the first partition in the block
to be allocated (partitions are numbered zero through fifteen).

is the request priority. This priority governs where this request will be
threaded on partition p's thread if more than one request is on the thread.

is the completion priority; the level at which the completion address is entered.

is the relative/ indirect indicator.

is the Part 1 request indicator.

SYSCHD Macro

Protected programs, which run in Part 1, must use this request to schedule a system di­
rectory program. It may also be used for Part 0 programs. The macro calling sequence
is:

SYSCHD c,p

5-12 60361900C

Where: c

p

CORE Macro

is the index to the system directory. The entry referred to by the index spec­
ifies the program.

is the priority level of the program.

This macro is used to set or determine the bounds of available unprotected core (that por­
tion of unprotected core not occupied by a program or data for a job). If the A and Q regi­
sters are 0 when the request is made, the current upper bound is returned in A and the
lower bound in Q. To set the bounds, the request is made with the upper bounds in A and the
lower bounds in Q. Both values must be in unprotected core and the upper value must be
greater than the lower. Illegal values result in job termination. Each new request replaces
the parameters from the previous request. At the beginning of a load, the entire unpro­
tected area is made available again.

The macro calling sequence is:

CORE

LOADER Macro

The LOADER macro is available to unprotected programs at level zero only. It is used to
execute the mass storage resident relocatable binary loader. The A register contains the
input logical unit if a relocatable binary program is being loaded. The Q register contains
the type of loading operation. Parameters must be in the A and Q registers at the time the
request is made.

The macro calling sequence is:

LOADER

GTFILE Macro

The GTFILE macro is used to access permanent files in the program library. The macro
calling sequence is:

GTFILE c, i, s, w P w2' x, rp, cp, d

Where: c

i

s

x

5-13

is the completion address.

is the address increment; a positive increment that is added to tre address of
the first word of the parameter list to form the address of the first of a
three-word block containing the ASCII name of the file.

is the starting address of the block into which the file, or portion of the file,
is to be retransferred.

is the relative/ indirect indicator.

60361900C

wI' w 2 are the first and last words, if only part of the file is required. These
parameters must be blank if the entire file is to be used.

rp is the priority of the mass storage requests needed to complete a GTFILE
request; it is always 0 for unprotected requests.

cp is the priority of the completion address, the level at which the completion
address is to be executed; it is always 1 for unprotected requests.

d is the Part 1 request indicator.

STATUS Macro

The STATUS macro is used to determine the status of an input/ output device by accessing
information from the physical device table for the specified logical unit. The macro
calling sequence is:

STATUS lu~ O~ a

Where: lu is the logical unit; an ordinal in the logical equipment tables modified by para­
meter a.

o is the third word of the calling sequence; it must always be O.

a is the absolute/indirect indicator.

EXIT Macro

This macro is used by unprotected programs to signal completion of a job or an interrupt
routine. When computation if completed, the request notifies the operating system. The
macro calling sequence is:

EXIT

5.3.4 OTHER MACROS

Each of the following macros perform a frequently used function:

VOLA
VOLR
CLOCK
DISP
BUFFER

These macros provide the programmer with a convenient method for allocating and re­
leasing volatile storage, obtaining a value for the real-time clock, exiting to the Dispatcher,
and creating a physical device table for the software buffer.

5-14 60361900C

VOLA Macro

VOLA allocates volatile storage. The macro calling sequence is:

VOLA a,b

Where: a is the number of words requested.

b is the return address.

VOLR Macro

VOLR releases volatile storage. The macro calling sequence is:

VOLR a, b

Where: a is the storage location of the return address.

b is the increment added to the return address.

CLOCK Macro

CLOCK picks up the value for the real-time clock from low core. The macro calling se­
quence is:

CLOCK a

Where: a is the storage address of the clock value. If a is blank" the value will be in the
A register only.

DISP Macro

DISP causes an exit to the Dispatcher. The macro calling sequence is:

DISP

BUFFER Macro

BUFFER creates a physical device table for the software buffer. The macro calling se­
quence is:

BUFFER a, b, c" d, e, f

Where: a is the least significant bits of the start of the buffer.

b is the least significant bits of the end of the buffer.

c is the most significant bits of the buffer.

d is the output logical unit.

e is the mass memory logical unit.

f is the character buffer size.

60361900C 5-15

ASSEMBLER OUTPUT

6.1 CONTROL OPTIONS

Four standard options determine the type of output from the assembler. All four are
automatically selected if no OPT statement is encountered before the first NAM.

Standard Opt ion Meaning

P Relocatable binary output on standard output unit

x Load and go; execute output loaded on a mass storage device.

L List output on standard list unit.

c List cross-references at end of assembly listing

Nonstandard Option

M List expans ion of macro code

6.1.1 P OPTION

Relocatable binary output is selected by the P option. The format is described in the
MSOS reference manual.

6

The standard output binary device is used for relocatable binary information. If the binary
output device is magnetic tape, the final relocatable program terminates with an EOL
record, ~:~T. If the binary output device is paper tape, a blank trailer terminates each
assembly.

6.1.2 X OPTION

If the X option is selected, relocatable binary output is placed on the mass storage unit
for subsequent loading and execution as described in the MSOS reference manual.

6.1.3 L OPTION

The L option results in an assembly listing described as follows.

6.1.4 C OPTION

The C option produces a cross-reference list that is printed at the end of the assembly list.

With the OPT pseudo instruction, any or all of the preceding options may be omitted.
OPT also provides options for listing macro skeletons and abandoning assembly.

60361900 E

6.1.5 M OPTION

The M option produces an expansion of all operand addresses and comment information
contained in any selected macro call used in a program.

6.2 ASSEMBLY LISTING

The assembly list, output to standard list output device, consists of 20 columns (including
spacing before printing) of information related to the source statement, followed by a
maximum of 80 columns listing the source statement.

Each page has a header containing the program name, page number, and date.

Column Contents

1 through 4 Card number; truncated from 5 to 4 decimal digits

5

6

7 through 10

11

12 through 15

16 through 1 7

18

19 through 98

Space

Relocation designator for location

P Program relocation
D Data relocation

Location in hexadecimal

Space

Machine word in hexadecimal

Relocation designator for word

P Program relocation
- P Negative program relocation
C Common relocation

-C Negative common relocation
D Data relocation

-D Negative data relocation
X External

blank Absolute

Space

Input source statement

Following the assembly list, the lengths of the program, common, and data are given in
hexadecimal and decimal values,

PGM = 0155(341) COM = 2BE(702) DA T = 0000(0)

The data length includes those areas reserved by DAT pseudo instructions.

6.2.1 ERROR LISTING

A list of errors occurring in passes 1 and 2 precedes the program listing on the standard
list 110 unit. If the L option is selected, errors in pass 3 precede the source line on
the list output. A decimal error count is printed at the end of each subprogram. If L is
not selected, error messages are output 0:1 the standard comment unit.

6-2 60361900 D

Format fo~ pass 1 and 2 error messages:

Column

1 and 2·

3 through 6

6 and 7

8 and 9

10 through 19

Contents

**

4-digit line number

**

2-character error code

****~:c**~:c**

Format for pass 3 error messages:

Column

1 through 6

7 and 8

9 through 18

Contents

*~:~****

2-character error code

The error codes and their meanings are given in Appendix D.

6.2.2 CROSS-REFERENCE LISTING

Cross-references are listed at the end of an assembly listing if the option C was specified
by the user. Cross-references will also be listed if no OPT statement was found, since
the C option is a default option.

The cross-references are divided into four functional parts:

1. Equivalences
2. Symbols
3. Externals
4. Symbols in alphabetical order

If cross-references are to be listed and there is not enough core to process all four parts
of the cross-references listing, then the assembler attempts to sort the symbol table
alphabetically. If there is not enough core to sort the symbol table alphabetically, the
symbol table is dumped.

The equivalences, symbols, and externals are listed according to the line number at which
they are· defined. In addition to the definition line number, the value or addres s and the
line numbers of all references to that symbol are given. The list of symbols in alphabetical
order includes all the symbols in the program. The number following each symbol is the
corresponding definition line.

60361900C 6-3

6.2.3 SAMPLE PROGRAM

The following source program results in the assembly listing in section 6.2.4.

XYZ

'P4'

11

MACRO

'A'

SYMBI
SYMB2

SYMB5
CALLI
SYMB4
CALL2
SYMB8
SYMB7

NAM
MAC
LDQ
LDA
'PI'
ADD
IFA
IFC
STA
LDA
ElF
ElF
EMC
MAC
LOC
LDA
'P2'
S'P4'Z
JMP'P5'
ENA
EMC
MACRO
MACRO
ADC
ADC
XYZ
ADC
XYZ
ADC
XYZ
ADC
ADC
END

6.2.4 SAMPLE LISTING

TEST2 ERS MACRO EXAMPLEX
Pl~P2.P3~P4~P5.P6
=N'P5'. 'P6'
'P3'
'P2'
SYMBI
'P5'~ NE~ 0
'PI' ~ EQ~ MUI
SYMB3
SYMB2

11

Pl~P2~P3~P4~P5.P6
A
'PI'
'P3'
'A'-:~-l

'P6'
1

SYMBl, STA~ 'SYMB2, I' ~
Q~ ::~~ LABELl
o
o
MUI, , SYMB5. ~ 3
o
MUI, 'SYMB4~ I'. SYMB5~ HERE~ 3~ I
o
DVl, SYMB7~ 'SYMB8, I', THERE, 2
o
o

The following assembly listing is output from the assembly of the source program in section
6.2.3.

0001 NAM TEST2 ERS MACRO EXAMPLEX
0002 XYZ MAC Pl~P2.P3,P4~P5.P6
0003 LDQ =N'P5' ~ 'P6'
0004 'P4' LDA 'P3'
0005 'PI' 'P2'
0006 ADD SYMBI
0007 IFA 'P5'.NE~ 0

6-4 60361900C

0008 11 IFC 'PI', EQ, MUI
0009 STA SYMB3
0010 LDA SYMB2
0011 ElF
0012 ElF 11
0013 EMC
0014 MACRO MAC P1,P2,P3,P4,P5,P6
0015 LOC A
0016 LDA 'PI'
0017 'P2' 'P3'
0018 S'P4'Z 'A '-*-1
0019 JMP'P5' 'P6'
0020 'A' ENA 1
0021 EMC
0022 MACRO SYMB1, STA, 'SYMB2, I',
0023 MACRO Q, ~:~, LABELl
0023 POOOO C800

POOOI 0006
0023 POO02 6900

POO03 0005
0023 POO04 0141
~:~ ,:~ ,:~ ,:~ ~:~ ~:~ UD ,:~ ,:~ ~:~ ,:~ ,:~ ,:~ ~:~ ,:~ ~:~ ,:~
>::::::;::::;::::::::::::::::'RL::::::::::::::!:::::!:::::::::::::::::::::::::::::::::::!:::

0023 POO05 1000
0023 POO06 OAOI
0024 POO07 0000 SYMBI ADC 0
0025 POO08 0000 SYMB2 ADC 0
0026 XYZ MUl, , SYMB5, ,3
0026 POO09 EOOO

POOOA 0003
0026 POOOB C800

POOOC 0009
0026 POOOD 2400

POOOE 0000
0026 POOOF 8800

P0010 FFE6

******J**********

0026 POOII 6400
POOl2 0000

0026 P0013 C800
P0014 FFE3

0027 POOl5 0000 SYMB5 ADC 0
0028 CALLI XYZ MUI, 'SYMB4, I', SYMB5, HERE, 3, I
0028 POOl6 EIOO

POOl7 0003
0028 POOl8 C800

POOl9 FFE8
0028 POOIA 2900

POOIB 0007
0028 POOIC 8800

P001D FFE9
******J**********
0028 POOlE 6400

POOIF 0000
0028 P0020 C800

P0021 FFE6
0029 P0022 0000 SYMB4 ADC 0

60361900C 6-5

0030 CALL2 XYZ DVI, SY'MB 7, 'SYMB8, I', THERE, 2
0030 P0023 FOOO

P0024 0002
0030 P0025 C900

P0026 0005
0030 P0027 3800

P0028 0004
0030 P0029 8800

P002A FFDC
0031 P002B 0000 SYMB8 ADC 0
0032 P002C 0000 SYMB7 ADC 0
0033 END

6-6 60361900C

Absolute address

Address field

ASCII

Assembler

Character mode

Clear

Comment field

Control options

Cross reference listing

Dispatcher

Enhanced machine
instructions

Fx

Free field

Hexadecimal

60361900 E

GLOSSARY

An address that is permanently assigned by the machine designer
to a storage location

Contains an address expression consisting of one or more oper­
ands joined by arithmetic operators

American National Standard Code for Information Interchange.
The standard code, using a coded character set consisting of
seven-bit coded characters (eight bits including parity check),
used for information interchange amount data processing systems,
communication systems, and associated equipment. The ASC II
set consists of control characters and graphic characters.

A program that prepares an object language program from a
symbolic (source) language program by substituting machine
instructions for symbolic instructions and by generating absolute
or relocatable addresses for symbolic addresses.

The eight-bit data mode. Characters are usually ASCII, seven
bits, right-justified in the eight-bit field.

The process of forcing all bits to zero

Printed after the address field of any instruction. The comments
have no effect on the object program.

Determines assembler outputs

An output of the macro assembler with four parts: equivalences,
symbols, externals, and alphabetized symbols

The module within the MSOS Monitor that determines the next
progr am to execute

The set of additional machine instructions added to the original
machine instructions by the micro-processor computer family
(CYBER 18/1700). Six new instruction types are available: type
2 storage "reference, type 2 skip, type 2 inter-register, field
reference, decrement and repeat, miscellaneous.

Field designators for machine instructions. There are seven
types: F and F1 through F6.

Fields of vary~g length as opposed to fixed fields that always
have the same number of bits in each specific field type. For
MSOS source language, free fields must be ended with a field
terminator: blank, carriage, return, or tab.

Pertaining to the number representation system having the base 16

Glossary-1

Indirect address

Index register

Interrupt mask

Library

Location field

Logical product

Machine instruction

Macro instruction

Macro skeleton

Monitor

Mon itor macros

One I S complement

Operand

Options

Program relocatable

Pseudo instruction

Relative address

Sequence field

Set

SK

Source language

Glossary-2

An address that spe cifies a storage location that contains either
a direct address or another indirect address.

A register whose contents may be used to modify addresses or for
other program-specified purposes. - Macro assembler uses A, Q,
I, and B for normal indexing and A, Q, I, and 1 through 4 for
enhanced instruction indexing. B is a pseudo register consisting
of Q+I.

A mask that defines the interrupt lines for the interrupts that are
allowed

An organized collection of standard, checked-out programs,
routines, and subroutines

Used to specify a labeled or unlabeled statement

A bit-by-bit multiplication of two binary numbers according to a
specific set of rules

An instruction the computer can recognize and execute

An instruction is a source language that is equivalent to a speci­
fied sequence of machine instructions

The set of instructions within a macro definition that is the proto­
type of the operation to be performed when the macro is called

The program that e~ercises overall CPU control under MSOS.
When initialization is completed and the system is ready for on­
line operation, control passes to the monitor, which then executes
programs according to prescribed or operator-directed
instructions.

Macro statements held in the macro library (see appendix F).

The base-minus-one complement of a numeral whose radix is two

That which is operated upon. An operand is usually identified by
an address part of an instruction.

See section 6.

Relocation determined by the location of the program load

Instructions that require translation prior to execution

The number that specifies the difference between the absolute
address and the base address

Used when the source image is 80 characters (columns 73 through
80)

Sets all bits to is

Skip count

A language that is an input to a given translation process

60361900 E

MNEMONIC INSTRUCTION CODES

*

BASIC MACHlNE lNSTRUCTIONS

There are six classes of basic (nonenhanced) machine instruction codes.

Storage reference, Group A

Storage reference, Group B

Register

Shift

Skip

Interregister transfer

Storage Reference Instructions

Group A

Group B

60361900 E

Operation Code

LDA

LDQ

ADD

SUB

ADQ

AND

EOR

MUI

DVI

STA

STQ

JMP

RTJ

RAO

SPA

Load A register

Load Q register

Definition

Add to the A register

Subtract from A register

Add to Q register

Perform logical AND with A register

Perform logical exclusive OR with A register

Multiply integer with A register

Divide integer into A register

Store A register

Store Q register

Unconditional jump

Return jump

Replace add one in storage

Store A register, return parity to A register

A

A-l

Register Instructions

Operation Code

SLS

INP

OUT
ENA

ENQ

INA

INQ

NOP

EIN

lIN

EXI

SPB

CPB

Shift Instructions

ARS

QRS

LRS

ALS

QLS

LLS

Skip Instructions

A-2

SAZ

SAN

SAP

SAM

SQZ

SQN

SQP

SQM

SWS

SWN

SOY

Definition

Selective stop

Input to A register

Output from A register

Enter A register

Enter Q register

Increase A register

Increase Q register

No operation

Enable interrupt

Inhibit interrupt

Exit interrupt state

Set program protect bit

Clear program protect bit

A right shift

Q right shift

Long right shift (Q and A combined)

A left shift

Q left shift

Long left shift (Q and A combined)

Skip if A=O

Skip if A~O

Skip if A is positive

Skip if A is negative

Skip if Q=O

Skip if Q~O

Skip if Q is positive

Skip if Q i~ negative

Skip if switch is set

Skip if switch is not set

Skip on overflow

60361900A

Operation Code

SNO

SPE
SNP
SPF
SNF

Definition

Skip on no overflow

Skip on storage parity error

Skip on no storage parity error

Skip on program protect fault

Skip on no program protect fault

Inter-Register Transfer Instructions

SET
CLR

TRA

TRM

TRQ

TRB

TCA

TCM

TCQ

TCB

AAM

AAQ
AAB

EAM

EAQ
EAB

LAM

LAQ

LAB

CAM

CAQ

CAB

Set specified register to ones

Clear specified register to zeros

Transfer A to specified register

Transfer M to specified register

Transfer Q to specified register

Transfer both (Q+M) to specified register

Transfer complement of A to specified register

Transfer complement of M to specified register

Transfer complement of Q to specified register

Transfer complement of both (Q+M) to specified register

Transfer arithIl}etic sum of A and M to specified register

Transfer arithmetic sum of A and Q to specified register

Transfer arithmetic sum of A and both (Q+M) to specified
register

Transfer exclusive or of A and M to specified register

Transfer exclusive or' of A and Q to specified register

Transfer exclusive or of A and both (Q+M) to specified
register

Transfer logical product of A and M to specified register

Transfer logical product of A and Q to specified register

Transfer logical product of A and both (Q+M) to specified
register

Transfer complement of logical product of A and M to
specified register

Transfer complement of logical product of A and Q to
specified register

Transfer complement of logical product of A and both (Q+M)
to specified. register

Note: + indicates an inclusive OR.

60361900B A-3

ENHANCED MACHINE INSTRUCTIONS

There are six classes of enhanced machine instruction codes:

Type 2 storage reference

Field reference

Type 2 skip

Decrement and repeat

Type 2 inter-register reference

Miscellaneous

Type 2 Storage Reference Instructions

Format:
15 12 11 8 7 6 5 3 2

P F=O F1=4 r i Ra Rb

P+1 F4 F5 A (8-bit address)

o

P+2 16-bit address. if ~ = 0

SJE

SJ1
SJ2
SJ3
SJ4
SJQ
SJA
SJI

ARI
AR2
AR3
AR4
ARQ
ARA
ARI

SB1
SB2
SB3
SB4
SBQ
SBA
SBI

Subrout ine Jump Exit

Subroutine Jump

Add memory to
register

Subtract memory
from register

R1~ Address of next instruction - 1. P ~ EA
R2......- Address of next instruction - 1. P ..- EA
R3.--Address of next instruction - 1. P .- EA
R4~Address of next instruction - 1. P .- EA
Q~ Address of next instruction - 1. P .- EA
A~ Address of next instruction - 1, P .- EA
I ~ Address of next instruction - 1. P .- EA

Rl~(Rl) + (EA)
R2~(R2) + (EA)
R3+--(R3) + (EA)
R4~(R4) + (EA)
Q~ (Q) + (EA)
A-+-- (A) + (EA)
I-+-- (I) + (EA)

Rl~(Rl) (EA)
R2~(R2) (EA)
R3+--(R3) (EA)
R4....-(R4) (EA)
Q~(Q) (EA)
A-+-- (A) (EA)
I+-- (n (EA)

tEA is the effective address; registers are 1 through 4 (labeled as R1 through R4), Q, A.
and I.

A-4 60361900 E

ANl Rl..-(Rl) • (EA)
AN2 R2+--(R2) • (EA)
AN3 AND memory

R34r--(R3) • (EA)
AN4 R4+--(R4) • (EA)
ANQ to register Q-+-- (Q) • (EA)
ANA A..- (A) • (EA)
ANI I-+-- (1) • (EA)

AMl EA..-(EA)i • (Rl),A .. (EA)i
AM2 EA+--(EA)i • (R2),A • (EA)i
AM3 AND register EA.--(EA)i • (R3), A .. (EA)i
AM4 EA+--(EA)i • (R4), A" (EA)i
AMQ to memory EA+--(EA)i • (Q), A .. (EA)i
AMA EA-+--(EA)i • (A), A .. (EA)i
AMI EA-+--(EA)i • (n,A • (EA)i

LRl Rl-+--(EA)
LR2 R2-+--(EA)
LR3 Load memory to R3-+--(EA)
LR4 R4+--(EA)
LRQ register Q+--(EA)
LRA A (EA)
LRI I .. (EA)

SRl EA-+--(Rl)
SR2 EA-+--(R2)
SR3 Store re gister to EA-+--(R3)
SR4 EA+--(R4)
SRQ memory EA (Q)
SRA EAIII (A)
SRI EA. (U

LCA Load char acter to Lsat of A '-CHRt (EA), Msat of A'- 0
A register

SCA Store character from CRR(EA) .- LSa of A
A register to memory

ORl Rl (Rl) v
OR2 R2. (R2) v
OR3 Inclusive OR memory R3111 (R3) v
OR4 R4. (R4) v
ORQ to register Q. (Q) v
ORA A. (A) v
ORI 1111 (1) v

OMl RlIII (EA)i v
OM2 R2 III (EA)i v
OM3 Inclusive OR register R3. (EA)i v
OM4 to memory R4 III (EA)i v
OMQ QIII (EA)i v
OMA Alii (EA)i v
OMI rill (EA)i v

t CRR is an e ight-b it character.
MSa is the most Significant eight bits of the register.
LSa is the least Significant eight bits of the register.
(EA)i is the initial contents of EA prior to execution.

60361.900 E

(EA)
(EA)
(EA)
(EA)
(EA)
(EA)
(EA)

(Rl), A •
(R2), A III
(R3), A III
(R4), A III

(Q), A·
(A), A III
(1), A.

(EA) it
(EA)i
(EA)i
(EA)i
(EA)i
(EA)i
(EA)i

A-5

C1E
C2E
C3E
C4E
CQE
CAE
CJE

Compare re gister
to lllemory equal

IF (R1). EQ. (EA), skip one location
IF (R2).'EQ. (EA), skip one location
IF (R3). EQ. (EA), skip one location
IF (R4). EQ. (EA), skip one location
IF (Q). EQ. (EA), skip one location
IF (A). EQ. (EA), skip one location
IF (n. EQ. (EA), skip one location

CCE Compare character from
A register to memory
equal

IF (LS8 t of A). EQ. (CHR of EA), skip one location

FJELD REFERENCE INSTRUCTIONS

Format:

P

P+1

P+2

SFZ

SFN

LFA

SFA

CLF

SEF

15 12 11 8 7 6 5 3 2 o t

F=O Fl=5 r i Ra F3a

FLDSTR FLDLTH-1 A

16-bit address, if A=O

Skip if field zero IF FLD(EA). EQ. 0, skip one locationt

Skip if field nonzero IF FLD(EA). NE. 0, skip one location

Load field to A A.- 0, FLD(A)'-FLD(EA)

Store field from A FLD(EA) .- FLD(A)

Clear field to zeros FLD(EA) .- 0

Set field to ones FLD(EA) .- 1

NOTE

The following four instruction types use
a single word as do the basic class instruc­
tions for F=O. However, the t:::.. field for
addressing is replaced by counter and
register fields. The register fields hold
an addre ss where it is needed.

t FLDSTR denotes the field start bit.
FLDLTH denotes the field length.
() denotes contents of.
EA denotes the effective address.
FLD denotes the field addressing.

A-6 60361900 E

$ 01 (Fl)(SK)

$00 - Do

$06 - L\

$07 - Do

$OBOO

Basic

Type 1 skip

SLS

SPB

CPB

NOP

Type 2 Skip Instructions

Format:

15 12 11 8 7

F=O Fl=O F2

4 3

Enhanced

Nothing comparable

$OO(Fl)(SK)

$ 06 (Ra/ O(SK)

$07(Ra/0)(O/Rb)

$ OB(Ra/ 0)(F3)

Skip
count

o

Type 2 skips

Decrement/ repeat

Type 2 inter-register

Mis ceUaneous

F2+SKfO (if 0, it is an SLS instruction)

S4Z
SIZ
S2Z
S3Z

S4N
SIN
S2N
S3N

S4P
SIP
S2P
S3P

S4M
SIM
S2M
S3M

Skip if register zero

Skip is register nonzero

Skip if register positive

Skip if register negative

IF (R4). EQ. 0, skip SK+l locations
IF (Rl). EQ. 0, skip SK+l locations
IF (R2). EQ. 0, skip SK+l locations
IF (R3). EQ. 0, skip SK+l locations

IF (R4). NE. 0, skip SK+l locations
IF (Rl). NE. 0, skip SK+l locations
IF (R2). NE. 0, skip SK+l locations
IF (R3).NE. 0, skip SK+l locations

IF (R4). GE. 0, skip SK+l locations
IF (Rl). GE. 0, skip SK+l locations
IF (R2).GE. 0, skip SK+l locations
IF (R3). GE. 0, skip SK+l locations

IF (R4). LT. 0, skip SK+l locations
IF (Rl). LT. 0, skip SK+l locations
IF (R2). LT. 0, skip SK+l locations
IF (R3). LT. 0, skip SK+l locations

Decrement and Repeat Instructions

Format:

DIP
D2P
D3P
D4P
DQp
DAP
DIP

15

60361900 E

12 11 8 7 5 4 3 o

F=O Fl=6 Ra I 0 I Skip I
count

Decrement and repeat
if positive

Rl ~ (Rl)-l, IF· (Rl). GE. 0, go back SK locations
R2 +--(R2)-1, IF (R2). GE. 0, go back SK locations
R3 III (R3)-1, IF (R3). GE. 0, go back SK locations
R4 III (R4)-1, IF (R4). GE. 0, go back SK locations

Q III (Q)-l, IF (Q). GE. 0, go back SK locations
A III (A)-I, IF (A). GE. 0, go back SK locations
I III (n -1, .& (0. GE. 0, go back SK locations

A-7

Type 2 Inter-Register Instructions

Format:
15 12 11 8 7 543 2 0 t

~--F-=-O~~----F-l=-7---r--R-a---rI-F-2-a'I---R-b~1

XFl
XF2
XF3
XF4
XFQ
XFA
XFI

Transfer register
to register

Rb Ra

R'" (Rl)" where R=L 2" 3" 4" Q" A" or I
R .. --(R2)" where R=L2"3"4"Q,,A,, or I
R 4 (R3)" where R=L 2" 3" 4" Q" A" or I
R ... (R4), where R=L 2" 3" 4" Q" A, or I
R (Q), where R=L 2" 3" 4"Q" A, or I
R 4 (A), where R=L 2" 3,4, Q, A, or I
R 4 (n I where R=1,2" 3" 4" Q" A" or I

Miscellaneous Instructions

Format:

15 12 11 8 7 5 4 3 0

F=O Fl=B Ra I 0 I F3

LMM Load micro memory

LRG Load registers

SRG Store registers

SIO Set! sample input or output

SPS Sample port I status
Ra=O

DMI Define micro interrupt

CBP Clear breakpoint interrupt

GPE Generate character parity even

GPO Generate character parity odd

ASC Scale accumulator

LUB Load upper unprotected bounds

} LLB Load lower unprotected bounds

EMS Execute micro sequence

RA registers 1 through 7

t F2a=0
R a values: 1-7

A-8 60361900 E

PSEUDO INSTRUCTIONS

There are six .classes of pseudo instructions.

Subprogram linkage

Data storage

Constant declaration

Assembler control

Listing control

Macro definition

Subprogram Linkage

Operation Code

Data Storage

NAM

END

ENT

EXT

EXT~'

BSS

BZS

COM

DAT

Constant Declarations

60361900 E

ADC

ADC':'

ALF

NUM

DEC

VFD

Definition

Identify source language subprogram

End source language subprogram

D~signate internal entry point names

Designate external entry point names

Designate relative external entry point names

Define a block of storage starting at symbol

Define a block of zero storage

Define a block of common storage

Define a block of data storage

Store address constants

Store relative address constants

Store an alphanumeric message

Store numeric constants

Convert and store decimal constazlts in fixed point format

Variable field definition and storage

A-9

Assembler Control

Operation Code

Listing Control

EQU
ORG

ORG):~

IFA

ElF

OPT

MON

NLS

LST

SPC

EJT

Macro Definition

A-10

MAC

EMC

LOC

IFC

Definition

Equate symbols to addresses

Defines origin for assembly of instructions following ORG

Terminate ORG

If condition is true, assemble following instructions

Terminate IF A (or IFC macro pseudo instruction)

Signal input of control options

Return control to operating system

Inhibit list output

Resume list output after NLS

Space lines on list output

Eject page on list output

Specify name of macro

End macro definition

Define local symbolic labels

If condition is true~ assemble following instructions
in macro

60361900 E

PROGRAMMING CONSIDERATIONS

CODING TECHNIQUES

The following limitations should be observed when coding programs to run under MSOS in
65K mode.

B

All 16 bits of an address word are needed in order to address all of available core.
This means that bit 15 can no longer be used to indicate the conditions it can be used
for in a 32K mode system.

Multilevel indirect addressing cannot be used in 65K mode which signifies that instruc­
tions of the following form can no longer be used.

ADC
LDA+

(TAG)
(TAG)

If relative addresses are generated, the following instruction is allowed.

LDA (TAG)

The instruction

ADC (TAG)

is allowed in 65K mode if there are no storage instructions that make indirect reference
to this location and the program containing this expression is never loaded into
part 1 of a 65K system.

60361900 E B-1

ASCII CODES

The 1963 Control Data Subset of ASCn (CDC-~'rD 1.10.003. Revision C) is used by the
macro assembler. ASCII code uses eight bits; the eighth bit. which is always zero. is
omitted in the following table.

ASCII
Symbol

NULL

SOM

EOA

EOM

EOT

WRU

RU

BELL

FEO
HT/SK

LF

VTAB
FF
CR

SO

SI

DCO
DC1
DC2
DC3
DC

4
(STOP)

ERR

SYNC

LEM

60361900 E

Bit
Configuration

000 0000

000 0001

000 0010

000 0011

000 0100

000 0101

000 0110

000 0111

000 1000

000 1001

000 1010

000 1011

000 1100

000 1101

000 1110

000 1111

001 0000

001 0001

001 0010

001 0011

001 0100

001 0101

001 0110

001 0111

Hexadecimal
Number

o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

}

Meaning

Null/idle

Start of message

End of address

End of message

End of transmission

Who are you

Are you

A udible signal

Format effector

Horizontal tab/ skip (punched card)

Line feed

Vertical tabulation

Form feed

Carriage return

Shift out

Shift in

Device control/data link escape

Device controls

Device control/ stop

Error

Synchronous idle

Logical end of media

c

C-1

ASCII Bit Hexadecimal
Symbol Configuration Number Meaning

So 001 1000 18

Sl 001 1001 19

S2 001 1010 1A

S3 0-01 1011 1B Information separators
S4 001 1100 1C

S5 001 1101 1D

S6 001 1110 IE

S7 001 1111 IF

A 010 0000 20 VVord separator (space)

010 0001 21 Exclamation point

" 010 0010 22 Quotation mark

010 0011 23 Number

$ 010 0100 24 Dollar sign (hexadecimal)

% 010 0101 25 Percent

& 010 0110 26 Ampersand

I (APOS) 010 0111 27 Apostrophe

010 1000 28 Left parenthesis

010 1001 29 Right parenthesis

'" 010 1010 2A Asterisk ','

+ 010 1011 2B Plus

• (Comma) 010 1100 2C Comma

010 1101 2D Minus

010 1110 2E Decimal point or period

/ 010 1111 2F Slash

0 011 0000 30

1 011 0001 31

2 011 0010 32

3 011 0011 33

4 011 0100 34 Numhers
5 011 0101 35

6 011 0110 36

7 011 0111 37

8 011 1000 38

9 011 1001 39

011 1010 3A Colon

011 1011 3B Semi-colon

C-2 60361900A

ASCII Bit Hexadecimal
Symbol Configuration Number Meaning

< 011 1100 3C Less than

011 1101 3D Equals

> 011 1110 3E Greater. than

? 011 1111 3F Question mark
@ 100 0000 40 Each

A 100 0001 41

B 100 0010 42

C 100 0011 43

D 100 0100 44

E 100 0101 45

F 100 0110 46

G 100 0111 47

H 100 1000 48

I 100 1001 49

J 100 1010 4A

K 100 1011 4B

L 100 1100 4C

M 100 1101 4D Letters
N 100 1110 4E

0 100 1111 4F
p 101 0000 50

Q 101 0001 51

R 101 0010 52

S 101 0011 53

T 101 0100 54

U 101 0101 55

V 101 0110 56

W 101 0111 57

X 101 1000 58

Y 101 1001 59

Z 101 1010 5A

[101 1011 5B Left bracket

\ 101 1100 5C Reverse slant

] 101 1101 5D Right bracket

60361900A C-3

ASCII
Symbol

-
ACK

G)
ESC

DEL

Bit
Configuration

101 1110

101 1111

111 1100

111 1101

111 1110

111 1111

Hexadecimal
Number

5E

5F

7C

7D

7E

7F

Meaning

Up arrow (exponentiation)

Left arrow (replaced by)

Acknowledge

Unassigned control

Escape

Delete / idle

The numbers between 5F and 7C have no ASCII code assigned to them.

C-4 60361900A

MACRO ASSEMBLER ERRORS D

MESSAGE

******yy**********

ABS BASE ERR

**EX

INPUT ERROR

MASS STORAGE OVERFLOW

60361900B

SIGNIFICANCE

Format for pass 1 and 2 error messages

Where: xxxx is a 4-digit line number.

yy is a 2-character error code
(explained below).

Format for pass 3 error messages. If the L option
is selected, errors in pass 3 precede the source line
on the list output. If L is not selected, error mes­
sages are output on the standard comment unit •.

Assembler was loaded at a different location from
where it was absolutized.

Double defined symbol; a name in:

• The location field of a machine instruction
or an ALF, NUM, or ADC pseudo instruc­
tion; or

• The address field of an EQU, COM, DATA,
EXT, BSS or a BZS pseudo instruction.

Illegal expression, either:

• No forward referencing of some symbolic
operands; or

• No relocation of certain expression values; or

• A violation of relocation; or

• Illegal register reference; or

• A symbol other than Q, I, or B is specified.

An error was returned by driver when doing a Read.

Numeric or symbolic label contains illegal character.
The label is ignored.

Not enough room for input image on mass storage.

Macro call error,

• Illegal parameter list

• No continuation card where one was indicated.

D-l

MESSAGE

**MD

**MO

~:~~:~pp

D-2

SIGNIFICANCE

Macro definition error.

Overflow of load-and-go area; affects only X option.

Missing or misplaced NAM statement.

Illegal operation code, either:

• Illegal symbol in operation code field; or

• Illegal operation code terminator.

Numeric constant or operand value is greater than
allowed.

Error in previous pass of compilation assembly. See
output page immediately preceding first page of listing
for pass 1 or pass 2 error message.

Illegal relocation, either:

o Violation of relocation; or

• Violation of a rule for instructions that
requires the expression value to either
be absolute or have no forward referencing
of symbolic operands.

Sequence error - Tags instructions witb sequence
numbers that are out of order. This is not fatal and
is not counted in the number of errors reported at
the bottom of the symbol table. .

An undefined symbol in an address expression.

60361900B

INSTRUCTION CODES E

e Mti M

Most pseudo instructions may be placed anywhere in a source language subprogram.
Exceptions: The first statement of a subprogram must be OPT or NAM; the last statement
must be MON or END.

Subprogram LUikage

NAM s

END s

ENT s1' s2'.··

EXT s1' s2' •••

Data Storage

BZS s1(e1),s2(e2), .••

COM s1(e1),s2(e2), •••

DAT s (e), s (e), •••
1 1 2 '2

Constant Declarations

s ADC* e 1, •••

s ALF n, message

60361900 E

s is the symbolic subprogram name

Ends subprogram; s is the subprogram to be entered at this
point.

Entry points in this subprogram used by other subprograms

Entry points in other subprograms used by this subprogram
(absolute location)

Same as EXT except locations are relative

Allocates local subprogram data storage; si is the symbolic
name of the data block, ei is the symbolic name of the block
length in words.

Same as BSS except data block is zeroed at assignment time.

Allocates block of common storage; s. and e. are defined as
in BSS. 1 1

Allocates common block within the program area; si and ei
are defined as in BSS. Block words may be preset us ing
ORG instruct ion.

Set address to constant expression; s is name in location field,
ei are constants or address expressions, Ceil sets bit 15;
results are started in consecutive locations.

Same as ADC, except relative addressing is used.

Translates message to ASCII; s is name in location field, n is
number of words in message (2n is number of characters).
Number of characters is limited to the number of characters
available in the comment field of the source statement; i. e. ,
72-(location + instruction + address + 2).

E-l

s NUM ••• k i, •••

s DEC ••• k i, •••

s VFD ••• m.n./v., •••
1 1 1

Assembler Control

ORG e

EIF s

OPT

MON

Listing Control

NLS

LST

SPC e

EJT

Macro

EMC

E-2

Defines numeric constants; s is the name in t~e "location field, ki is
the specified integer with -7FFF16 s k s 7FFF16; results are
stored in consecutive locations.

Converts decimal constants to fixed point binary; s and k are defined
as in NUM instruction.

Variable field definition. Packs data as bit strings into consecutive
locations (computer word boundaries are ignored).

• s is the name in the location field

• mi specifies data mode (N = numeric constant in range ± 7FFF16'
A = character in eight-bit bytes, X = expression)

• n is the number of bits

• v is the value of data

Equates symbolic name to expression value; si is the symbolic
name, ei is the expression. .

Sets location counter to address generated by expression e
(absolute location).

Same as ORG but address is relative.

Assembles set of coding lines only if specified condition o.ccurs;
s is name in location field, el and e2 are expressions to be com­
pared, c is condition (EQ is =, NE is #:, GT is >, LT is <).

Terminates IFA or !FC statement if condition fails and coding lines
are skipped; s is the name in the location field.

Control options will be input to assembler

Returns control to the operating system

Inhib its list output

Initiates list output after NLS inhibits it.

Controls line spacing; e is number of lines to be skipped.

Eject page

Names the macro statement and lists its formal parameters; s is
symbolic name of macro, P. is symbolic name for a macro
parameter. 1

Ends the macro definition

60361900 E

60361900 E

Localizes parameters in macro so same symbol may be used in
macro and in programs; si corresponds to Pi in the MAC statement.
LOC must imm~diately follow MAC statement.

Allows condition internal to macro. Same as !FA in program except
only EQ or NE are allowed.

E-3

'* gJ

Formatting Macros

HEXASC/HEXASC~:~

HEXDEC/HEXDEC~:~

ASCII/ ASCII~:~

DE CHEX / DE CHEX~:~

FLOATG/FLOATG~:~

ENCODE/ENCODE~:~

DECODE/DECODE~:~

File Manager Macros

FLDF

DEFFIL

DEFIDX

LOKFIL

UNLFIL

RELFIL

STOSEQ

STOIDX

STODm

RTVSEQ

RTVDm

RTVIDX

RTVIDO

STATFL

60361900 E

MACRO LIBRARY F

HI __
aiMeiMe-WI

Converts hexadecimal to ASCII

Converts hexadecimal to decimal

Converts two ASCII characters to a hexadecimal integer

Converts three words of ASCII numbers to a hexadecimal integer

Converts two-word FP variable to FP with exponent in ASCII

Codes buffer in the format given (ASCIO

Decodes ASCII from buffer into variable list in machine code

_Defines parameters of file

Defines file

Additional definitions of the file

Locks the file

Unlocks the file

Releases file

Stores record sequentially in file

Stores re cord by index

Stores directly into a file

Retrieve sequential record

Retrieve record directly from file

Retrieve record by index

Retrieve record using ordered index

Finds status file and executes error routine if necessary

F-l

Monitor Request Macros

READ

FREAD

WRITE

FWRITE

INDIR

TIMER

SCHDLE

MOTION

SPACE

RELEAS

DlSCHD

ENSCHD

TIMPT1

PTNCOR

SYSCHD

CORE

LOADER

GTFILE

STATUS

EXIT

Read unformatted data (word mode) from 1/ a device

Read formatted data (sector mode) from I/O device

Write unformatted data (word mode) to I/O device

Write formatted data (sector mode) to I/O device

Allows indirect execution of another request

Delays scheduling of request

Queues requests for execution

Direct motion on an 110 device (e. g., seek on disk)

Allocates space in core for protected programs

Releases core space allocated by SPACE request

Disables specified System Directory program

Enables System Directory program disabled by DISCHD instruction

Schedules System Directory programs in parts 0 and 1 of the CPU

Allocates block of partitioned core

Schedules System Directory programs in part 0 or 1 for protected
programs

Sets or determines bounds of unprotected core

Executes MS resident relocatable binary loader for unprotected programs
executing at level zero

Accesses permanent files in the program library

Determines status of I/O device from checking physical device table

Signals job completion by an unprotected program

Miscellaneous Macros

VOLA

VOLR

CLOCK

DISP

BUFFER

F-2

Allocates volatile storage

Releases volatile storage

Finds real time

Causes current program to exit to dispatcher

Creates a physical device table for the software buffer

60361900 E

Absolute addressing 2-L 3
ADC/ ADC~'c 3-7; A-9
ADD arithmetic instruction 2-7
Address express ion 1-3 .. 5
Address field 1-2
Address modes 2-1.. 10.1

Absolute 2 -1.. 3
Constant 2-1.. 6
Relative 2-1. 4

ADQ arithmetic instruction 2-7
ALF 3-7; A-9
AMr 2-10.5
AND instruct ion 2 - 8
ANr 2-10.5
Arithmetic instructions 2-7

ADD 2-7
ADQ 2-7
DVI 2-7
MUI 2-7
RAO 2-7
SUB 2-7

Arithmetic operators 1-5
Arithmetic sum 2-13
ARr 2-10.5
ASCII codes Appendix C
ASCII formatting macro 5-2
Assembler Control 3-13; A-10

ElF 3-16
EQU 3-13
lFA 3-15
MaN 3-17
OPT 3-17
ORG/ ORG* 3-14

Assembler output 6-1
Assembler passes

Pass 1 v .. 6-2
Pass 2 v .. 6-2
Pass 3 v. 6-2

Assembly listing 6-2
Cross-reference 6-3
Error 6-2
Sample assembly 6-4
Sample source program 6-4

Asterisk 1-2, 5

BUFFER macro 5-15
BSS 3-4; A-9
BZS 3-4; A-9

60361900 E

INDEX

C option 6-1
CCE 2-10.6
CLOCK macro 5-15
COM 3-5
Comment field 1 - 8
Common storage 1-3
Complement logical product 2 -12
Constant addressing 2-1.. 6
Constant declarations 3-7; A-9

ADC/ ADC~~ 3-7
ALF 3-7
DEC 3-10
NUM 3-9
VFD 3-11

Control options. 6-1
C 6-1
L 6-1
P 6-1
X 6-1

CORE monitor request macro 5-13
CPB register reference instruction 2-11
CrE 2-10.6
Cross-reference listing 6-3

DAT 3-6; A-9
Data storage 1-3; 3-4; A-9

BSS 3-4
BZS 3-4
COM 3-5
DAT 3-6

Data transmiss ion instructions 2-6
LDA 2-7
LDQ 2-7
SPA 2-7
STA 2-6
STQ 2-6

DEC 3-10; A-9
DECHEX formatting macro 5-2
DECODE formatting macro 5-3
Decrement and repeat instructions 2-L 18
DEFFIL file manager macro 5-4
DEFIDX file manager macro 5-4
Diagnostics (see MSOS Diagnostic Handbook)
DISCHD monitor request macro 5-11
DISP macro 5-15
DVI arithmetic instruction 2-7

Index-l

EIF 3-16; A-10
EIN register reference instruction 2-11
EJT 3-18; A-I0
EMC 4-2; A-'10
ENA register reference instruction 2 -11
ENCODE formatting macro 5-3
END subprogram linkage 3-1; A-9
Enhanced instruct ions 2-1
ENQ register reference instructions 2 -11
ENSCHD monitor request macro 5-12
ENT subprogram linkage 3-2; A-9
EOR 2-8
Error codes 5-1
Error listing 6-2
EQU 3-13; A-IO
Evaluation hierarchy 1-6
Exclusive OR 2-8, 12
EXI register reference instruction 2-11
EXIT monitor request macro 5-14
EXT /EXT~:~ 3-2; A-9
External name 1 - 5

Field reference instructions 2-1, 19
File manager macros 5-3

DEFFIL 5-4
DEFIDX 5-4
FLDF 5-4
LOKFIL 5-5
RELFIL 5-5
RTVDIR 5-6
RTVIDO 5-7
RTVIDX 5-7
RTVSEQ 5-6
STATFL 5-7
STODIR 5-5
STOIDX 5-5
STOSEQ 5-5
UNFIL 5-5

FLDF file manager macro 5-4
FLOATG formatting macro 5-3
Formatting macros 5-2

ASCII 5-2
DECHEX 5-2
DECODE 5-3
ENCODE 5-3
FLOATG 5-3
HEXASC 5-2
HEXDEC 5-2

FREAD monitor request macro 5- 8
FWRITE monitor request macro 5-8

HEXASC formatt ing macro 5-2
HEXDEC formatting macro 5-2

!FA 3-15; A-10
!FC 4-2; A-10 .
lIN register reference instruction
INA register reference instruction
Index characters 1-7, 8
INDIR monitor request macro 5-9
INP register reference instruction
INQ register reference instruction
Instruction format 1-1

Source program 1-1
Source statement 1-1

Address field 1-2
Comment field 1-8
Instruct ion 1 -2
Location field 1-1
Sequence field 1-8

Inter-register instructions 2-12
Inter-register mnemonics 2-13
Inter-register transfer instructions

Jump instructions 2-9

L option 6-1
LCA 2-10.6
LIBMAC 5-1
Listing control 3-18; A-10

EJT 3-18
LST 3-18
NLS 3-18
SPC 3-18

LDA data transmission instruction
LDQ data transmission instruction
LOADER monitor request macro
LOC 4-2: A-10
Location field 1-1
Logical instructions 2-8
Logical product 2-12
LOKFIL file manager macro 5- 5
LRr 2-10.6
LST 3-18; A-10

MAC 4-1; A-I0
Machine instructions 2-1; A-I

Inter-register 2-12; A-3
Group A storage reference instructions
Group B storage reference instructions
GTFILE monitor request macro 5-13

2-1 Register reference 2-10; A-2
2-1 Shift 2-14: A-2

Skip 2-15; A-2
Storage reference 2-1; A-I

2-11
2-11

2-10.7
2-11

A-3

2-6
2-6
5-13

Index-2 60361900 E

Macro assembler errors Appendix D
Macro definition instructions A-I0
Macro instru ct ions 4-4

Actual parameters 4-4
Examples 4-6
Null parameters 4-5

Macro library 5-1
Creating 5-1
Modifying 5-2
Programs 5-2

Macro pseudo instructions 4-1; A-9
Macro skeleton 4-3
Macros 4-1

EMC 4-2
lFC 4-2
LOC 4-2
MAC 4-1

Miscellaenous instructions 2 -1,20
Mnemonic instruction codes Appendix A
MON 1-1; 3-17; A-I0
Monitor request macros 5-8

CORE 5-13
DISCHD 5-11
ENSCHD 5-12
EXIT 5-14
FREAD 5-8
FWRITE 5-8
GTFILE 5-13
INDIR 5-9
LOADER 5-13
MOTION 5-9
PTNCOR 5-12
READ 5-8
RELEAS 5-11
SCHDLE 5-9
SPACE 5-11
STATUS 5-14
SYSCHD 5-12
TIMER 5-9
TllViPTI 5-12
WRITE 5-8

MOTION monitor request macro 5-9
MUI arithmetic instruction 2-7

NAM subprogram linkage 3-1; A-9
Negative overflow/zero set 2-26
NLS 3-18; A-I0
NOP register reference instruction 2-11
NUM 3-9; A-9
Numeric operand 1-4

OMr 2-10.6
Operand 1-2. 1
Operation code field 1-2

60361900 E

OPT 3-17; A-I0
ORG/ORG* 3-14; A-I0
ORr 2-10.6
OUT register reference instruction 2-10.7

P option 6-1
Parenthesis 1-6
Parameters 4-4

Actual 4-4
Null 4-5

Programming considerations Appendix B
Program storage 1-3
Pseudo instructions 3-1; A-9

ADC/ ADC~:~ 3-7
ALF 3-7
BSS 3-4
BZS 3-4
COM 3-5
DAT 3-6
DEC 3-10
EIF 3-16
EJT 3-18
END 3-1
ENT 3-2
EQU 3-13
EXT /EXT>:~ 3-2
IFA 3-15
LST 3-18
MON 3-17
NAM 3-1
NLS 3-18
NUM 3-9
OPT 3-17
ORG/ORG~:~ 3-14
SPC 3-18
VFD 3-11

PTNCOR monitor request macro 5-12

RAO arithmetic instruction 2-7
READ monitor request macro 5-8
Register reference instructions 2-1, 10

CPB 2-11
EIN 2-11
ENA 2-11
ENQ 2-11
EXI 2-11
lIN 2-11
INA 2-11
INP 2-10.7
INQ 2-11
Nap 2-11
OUT 2-10.7
SLS 2-10.7
SPB 2-11

Index-3

Relative addressing 2-1. 4
RE LEAS monitor request macro 5-11
RE LFIL file m'anager macro 5- 5
Remarks 1-2
Return jump 2 - 9
RTVDIR file manager macro 5-6
RTVIDO file manager macro 5-7
R TVIDX file manager macro 5-7
RTVSEQ file manager macro 5-6

Sample listing 6-4
Sample program 6-4
SBr 2-10.5
SCA ' 2-10.6
SCHDLE monitor request macro 5-9
Sequence field 1-8
Shift instructions 2-14; A-2
SJE 2-10.3
SJr 2-10.3
Skip instructions 2-15; A-2
Slash 1-5
SLS register reference instruction 2-10.7
Source program 1-1
Source statement 1-1
SPA data transmission instruction 2-7
SPACE monitor request macro 5-11
SPB register reference instruction 2-11
SPC 3-18; A-10
Special characters 1-7

Index 1-8
Register 1-7
Storage 1-7

SRr 2-10.6
STA data transmission instruction 2-6
Statement label 1 -1
STATFL file manager macro 5-7
STATUS monitor request macro 5-14
STODIR file manager macro 5- 5
STOIDX file manager macro 5- 5
Storage characters 3-4
Storage reference instructions 2-1; A-1

Absolute addressing 2-3
Address modes 2-1
Ar ithmetic 2 -7
Constant addressing 2-6

Index-4

Data transmiss ion 2-6
Jump 2-9
Logical 2-8
Machine language format 2-2
Relative addressing 2-4

STOSEQ file manager macro 5- 5
STQ data transmission instruction 2-6
SUB arithmetic instruction 2-7
Subprogram linkage 3-1; A-9

END 3-1
ENT 3-2
EXT/EXT~:~ 3-2
NAM 3-1

Symbolic name 1-2, 3
Symbolic operand 1-2.1
SYSCHD monitor request macro 5-12

TABLST v
TIMER monitor request macro 5-9
TIMPT1 monitor request macro 5-12
Type 1 inter-register instructions 2-12
Type 1 skip instructions 2-15
Type 2 inter-register instructions 2-1, 14
Type 2 skip instructions 2-1
Type 2 storage addressing

relationships 2-10.4
Type 2 storage reference

instructions 2-1, 10

UNFIL file manager macro 5- 5

VFD 3-11; A-9
VOLA 5-15
VOLR 5-15

WRrrE monitor request macro 5-8

X option 6-1
XREF vi

60361900 E

COMMENT SHEET

MANUAL TITLE ____ Ma_c_r_o_A_s_s_e_m_h_l_e_r_R_ef_e_r_e_n_c_e_Ma __ nua_1 _______________ _

PUBLICATION NO. _____ 6_0_3_6_19_0_0 ______ REVISION _____ G __________ _

FROM
NAME: __ __

BUSINESS ADDRESS: ___ ___

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions. or general comments may
be made below. Please include page number.

STAPLE STAPLE

FOLD

--------------------------~-----------------~

BUSINESS REPLY MAl L
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MALL
LA JOLLA, CALIFORNIA 92037

FIRST CLASS
PERMIT NO. 333

LA JOLLA, CA.

--~

FOLD

STAPLE STAPLE

w
Z
.....
(:J

z
c
c:(... = (.)

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@:~
CONTI\.OL DATA CO~OR{\TION

