
96769500

CONT~OL DATA
CO~ORt\TION

REAL-TIME OPERATING SYSTEM
VERSION 3
REFERENCE MANUAL

CONTROL DATA ®

CYBER 18 COMPUTER SYSTEMS

MODELS 10 AND 20

REVISION
A Manual Released.

(6/76)

Publication No.

96769500

© 1976
by Control Data Corporation

Printed in the United States of America

REVISION RECORD
DESCRIPTION

.-

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
La Jolla, California 92037

or use Comment Sheet in thE' hacl< of
this manual.

LIST OF EFFECTIVE PAGES

;-.Jew features, as well as changes, deletions, and ad­
ditions to information in tilis manual are indicated by
bars in the margins or by a dot near the page number

Page Revision SFCt

Cover -
Title Page -
ii A
iii ~
v A
vii A
viii A
1-1 A
1-2 A
1-3 A
2-1 A
2-2 A
2-3 A
2-4 A
2-5 A
2-6 A
2-7 A
2-8 A
2-9 A
2-10 A
2-11 A
3-1 A
3-2 A
3-3 A
3-4 A
3-5 A
3-6 A
3-7 A
3-8 A
3-9 A
3-10 A
4-1 A
4-2 A
4-3 A
4-4 A
4-5 A
4-6 A
4-7 A
4-8 A
5-1 A
5-2 A
5-3 A
6-1 A
6-2 A
6-3 A
6-4 A
6-5 A
6-6 A
6-7 A
6-8 A
6-9 A
6-10 A

tSoftware Feature Change

if the entire page is affected. A har h,v the page num­
her indicates paf,rination rather than contpnt has
changed.

Pag-e l1evision srct

6-11 A
7-1 A
7-2 A
8-1 A
A-I A
A-2 A
A-3 A
A-4 A
A-5 A
B-1 A
C-l A
C-2 A
C-3 A
D-l A
D-2 A
E-l A
E-2 A
E-3 A
E-4 A
E-5 A
F-l A
F-2 A
F-3 A
F-4 A
F-5 A
F-6 A
F-7 A
F-8 A
F-9 A
F-I0 A
F-11 A
F-12 A
F-13 A
F-14 A
F-15 A
Index 1 A
Index 2 A
Index 3 A
Comment Sheet -
Envelope -
Back Cover -

iii

PREFACE

This manual provides detailed functional descriptions of the
external characteristics of the CONTROL DATA® CYBER
18-10 Real-Time Operating System Version 3 (RTOS 3).

1774 Computer systems are still supported under the CYBER
18-17 System.

It is intended to be used by a programmer-analyst having a
basic knowledge of real-time multiprogramming operating
systems and familiar with the CYBER 18 Series of com­
puters and assembly language.

Refer to the 1700 MSOS 4 Reference Manual, CDC
Publication No. 60361500 for detailed descriptions of
drivers, disk addressing, addressing peripheral equipment,
magnetic tape recovery, device failures codes, 1536 analog
input analysis, 36x com munications options, and driver
coding structure.

The CYBER 18-17 System is equivalent to the old RCOS 2.2
operating system. The Control Data Models 1704, 1714, and

96769500 A

Publication

CYBER 18 Model 17 RTOS 3 Installation Handbook

CYBER 18 Model 17 RTOS 3 Assembler Reference Manual

1700 MSOS 4 FORTRAN Version 3A/B Reference Manual

Magnetic Tape Utility Processor Reference Manual

Small Computer Maintenance Monitor Reference Manual

1784 Computer Reference Manual

CYBER 18 Model 17 RTOS 3 Instant

CYBER 18 Model 17 RTOS 3 General Information Manual

1700 MSOS 4 Diagnostic Handbook

1700 MSOS 4 Macro Assembler Reference Manual

DRAFT Document Read and Format Translator
OCR Software Reference Manual

CCP Support Software 1 Reference Manual

RTOS 3 Ordering Bulletin

CYBER Cross Support System Reference Manual

Publication Number

96769570

96769540

60362000

91637300

39520200

88830301

96769530

96769520

60361800

60361900

48143900

88988400

96769550

96836000

This document is intended for use only as described in this document. Control
Data cannot be responsible for the proper functioning of undescribed features or
undefined parameters.

v

CONTENTS

eee'5f

1. SYSTEM DESCRIPTION 1-1 Request Descriptions 3-3

Features 1-1 READ/FREAD/WRITE/FWRITE Requests 3-4

System Components 1-1 INDIR Request 3-5

Monitor 1-1 SCHDLE 3-6

Job Processor 1-2 TIMER 3-6

Relocatable Binary Loader 1-2 MOTION 3-7

System Initializer 1-2 CORE 3-9

System Maintenance Routines 1-2 STATUS 3-9

Memory Requirements 1-2 EXIT 3-9

Monitor System 1-2 Request Restrictions 3-9

Job Area 1-2 Swapping Core 3-9

Compatibility 1-2 Standard System Input/Output Devices 3-9

MSOS 1-3
FORTRAN 1-3 4. JOB PROCESSOR 4-1

Macro Assembler 3 1-3 Protect Processor 4-1
CYBER Cross System 1-3 Manual Interrupt Processor 4-1

Job Control Statements 4-2
2. MONITOR 2-1 Manual Interrupt Subprograms 4-2

Interrupt Levels and Priorities 2-1 LOAD (*L) 4-4

Monitor Structure 2-1 Assign Logical Units 4-5

Request Entry Processor 2-1 Mark Logical Units Up/Down (M,*N) 4-5

Interrupt Stack, Extended Interrupt Stack, and Magnetic Tape Control 4-5

Scheduler Stack 2-3 Dump Core (*D) 4-5

Interrupt Handling 2-3 Insert Value into Core (*1) 4-5

Interrupt Trap 2-3 Punch Core (*P) 4-6

Common Interrupt Handler 2-4 Copy and Convert Data (*T) 4-6

Line 1 Interrupt Processor 2-4 Schedule Core Address (*S) 4-6

General Interrupt Processors 2-4 Job Cancel Routine (RCMJCN) 4-6

Line 0 Internal Interrupt Processor 2-4 Load Named File Subprogram (RCMLDF) 4-6

Dispatcher 2-5 Job Area Bounds 4-7

Manual Interrupt Processor 2-5 Manual Interrupt Conversion Routines 4-7

Input/Output Drivers 2-5 ASCII Field Decode Subroutine (RCMFLD) 4-7

Find-Next-Request (RCMFNR) 2-6 Binary to ASCII Decimal Subroutine (RCMHXD) 4-7

Complete Request (RCMPRQ) 2-6 Binary to ASCII Hexadecimal Subroutine

Error Flag Set-Up (RCMAKQ) 2-6 (RCMHXA) 4-8

Completion Routines 2-6 EBCDIC Conversion Routine (CVASEB) 4-8

Input/Output Hang-Up Errors 2-6
5. RELOCATABLE BINARY LOADER Device Error Routine 2-7 5-1

Dummy Driver 2-8 Features 5-1
Mass-Storage Resident Drivers 2-8 Memory Map 5-1
System Timekeeping Routines 2-8 Linkage Operations 5-1

Timer Request Processor 2-8 Transfer Address 5-2
Time-of-Day Program 2-8 Data and Common Declarations 5-2
Time/Date Function Program 2-8 Relocatable Binary Input 5-2
Calendar Progra m 2-9 Nonrelocatable Binary Input 5-2

System Start-Up 2-9 EOL Block 5-2
Volatile Storage 2-9 Control Blocks 5-2
Unprotect/Protect Com munication 2-10 Loading Relocatable Programs 5-2

Unprotected Entry Points 2-10 Loader Error Diagnostics 5-3
Protected Core-Resident Entry Point Linkage 2-10

System Common Organization 2-10 6. SYSTEM MAINTENANCE AND UTILITY
Protected Common 2-10 ROUTINES 6-1
Unprotected Common - Nonresident 2-11

System Library Editor (LIBEDT) 6-1

3. MONITOR REQUESTS 3-1 Library Tape Structure 6-1
File Header Label Structure 6-1

Entry for Requests 3-1 Operational Procedures 6-1
Threading 3-1 ADD and ADDP Statements 6-2
Queueing 3-1 Copy Statements 6-2

Input/Output Requests 3-1 Get Statement 6-4
Schedule and Timer Requests 3-3 List Statements 6-5

96769500 A vii

Set Statement
LIBEDT Error Messages

Relocatable Binary Tape Editor (SMART)
SMART Statements
Operator Messages

Source Tape Editor (SETUP)
Description
SETUP Statements
SETUP Control Statements
Errors
Examples

Magnetic Tape Utility Processor
Configuration Requirements
Features

Utility Assembler
Assembling Source Programs

A Glossary
B System Directory
C Communications Region

2-1 Monitor Block Diagram for User Programs
3-1 Request Threading Layout

3-1 Monitor Request Table
3-2 RTOS Driver Action for Motion Request

Parameters

viii

6-5
6-5
6-6
6-6
6-6
6-6
6-6
6-6
6-8
6-9
6-9
6-10
6-10
6-10
6-11
6-11

7. SYSTEM INITIAIJZATION

System Initializer
Control Statements
System Initialization Procedure

One Pass Initializing
Two Pass Initializing

System Loader

8. ENGINEERING FILE

Device Failure Handling
Device Failure Storage
Device Failure Listing (EFLIST)

APPENDIXES
A-I
B-1
C-l

D Physical Device Table
E ASCII Conversion Table
F Error Codes and Messages

INDEX

FIGURES
2-2 6-1 Library Tape Structure
3-3 6-2 User Library Structure

TABLES
3-2 4-1 Job Control Statements

6-1 File Header Label Format
3-8 6-2 SMART Functions

7-1
7-1
7-1
7-2
7-2
7-2
7-2

8-1

8-1
8-1
8-1

D-l
E-l
F-l

6-2
6-2

4-3
6-3
6-7

96769500 A

SYSTEM DESCRIPTION 1

The CONTROL DATA® Real-Time Operating System, Ver­
sion 3 (RTOS 3), is a modular core-resident real-time moni­
tor for the CYBER 18-10 and CYBER 18-20 Computer
Systems.

RTOS 3 provides a real-time, mUltiprogramming environ­
ment for user programs in a minimal amount of core. The
ability to control execution of user programs, process
requests, and handle internal and external interrupts on a
priority basis enables RTOS to form the nucleus of a process
control, communications, or batch terminal system.

RTOS 3 is compatible with and is based on a subset of the
CYBER 18 Mass Storage Operating System (MSOS). Drivers
for input/output devices that are provided with MSOS may
also be used with RTOS 3. A job processing capability is
provided that allows asse mbly, loading, and' execution of
nonresident programs. A set of utility programs is also
provided.

FEA TU RES

o The Real-Time Operating System monitor is compatible
with the MSOS monitor.

o Any standard MSOS driver may be used with the
monitor.

o Interrupt handling is on a priority basis and provides for
up to 16 interrupt lines. The status of interrupted
programs is automatically saved in the interrupt stack.

o Schedule requests to initiate programs are threaded
together and dispatched according to priority. Sixteen
program priority levels are provided. There is no limit
to the number of programs that may run at the same
priority level.

o Input/output requests for a device are threaded by the
monitor, according to request priority. The correspond­
ing driver for the device is called to process the
request.

• Functional logical unit numbers are assigned to
input/output devices. User programs may thus be
written independent of the actual input/output device
that is used.

o Input/output device errors are recorded in the physical
device table for the device. A message is output to the
user requesting action. If the error is not corrected, it
is reported to the calling program.

• A manual interrupt processor is provided, which inter­
prets and executes operator control statements entered
from the comment device. This basic capability allows
loading and execution of absolutized programs.

96769500 A

• A system restart routine is provided, which is loaded
with the resident monitor, to initialize the scheduler
stack, request threads, etc.

• A set of system library programs is provided that can be
called by a file name, including the following:

-Utility assembler (ASSEM)

-Relocatable binary loader (see section 4)

-System library editor (LIB EDT) (see section 5)

-Magnetic tape utility processor (MTUP)

-Reloadable binary tape editor (SMART)

-Source tape editor (SETUP)

o Other programs are provided that may be optionally
core-resident manual interrupt subprograms providing
the following features:

-Assign logical units to devices.

-Mark a logical unit up/down.

-Dump/change core in hexadecimal.

-Punch absolute record from core.

-Copy data and/or convert mode.

-Position magnetic tape.

SYSTEM COMPONENTS

The CYBER 18-10 Real-Time Operating System, Version 3,
includes the following modules:

o Monitor (real-time executive)

o Job processor

o Reloca table binary loader

o System initializer

o System maintenance routines

MONITOR

The monitor is the real-time executive of the Real-Time
Operating System. It includes the following sub modules:

e Internal and external interrupt handler

• Scheduler and dispatcher

• Monitor request entry routine

• Monitor request processors

1-1

• Input/output drivers

• Driver find-next-request and complete-request subrou­
tines

• Device error routine

• System data tables

The RTOS monitor is essentially the same as the monitor of
the 1700 MSOS, excluding mass-storage features.

JOB PROCESSOR

The loading and execution of nonresident programs are
features of the job processor. This is provided by a
combination of resident manual interrupt subprograms,
which execute operator requests, and system library pro­
grams.

RELOCATABLE BINARY LOADER

This program is executed as a job and is used to load, link,
and absolutize relocatable binary programs generated by the
CYBER 18 utility assembler, 1700 Macro Assembler, or 1700
MS FORTRAN. It is compatible with the MSOS relocatable
binary loader.

SYSTEM INITlALIZER

This module is used to install RTOS from the relocatable
binary object programs on magnetic tape or binary punched
cards. Provision to punch out the absolutized system to
magnetic tape is included. The system may also be
absolutized in two passes to load the entire available core, if
a separate magnetic tape unit is provided for output.

SYSTEM MAINTENANCE ROUTINES

RTOS includes a complete set of programs that are executed
as jobs including:

• Utility assembler (ASSEM)

• System library editor (LIBEDT)

• Relocatable binary tape editor (SMART)

• Source tape editor (SETUP)

• Magnetic tape utility. processor (MTUP)

MEMORY REQUIREMENTS

RTOS is designed to require the minimal amount of core
memory consistent with providing compatibility with MSOS

1-2

interfaces. Detailed memory requirements for individual
programs may be obtained from the CYBER 18-10 and 18-20
RTOS Installation Handbook and/or the program listings.

MON ITOR SYSTEM

RTOS for the CYBER 18-10/20 requires variable amounts of
core memory for resident programs and data, which include:

• System data (SYSDAT) with expanded monitor stacks
and tables

• Monitor, with request processors for Read, Write,
STATUS, EXIT, TIMER, SCHDLE, CORE, MOTION, and
INDIR

• Load file-by-name routine

• Alternate device handler

• System restart routine

• Calendar and time-of-day routine

• Input/output drivers supporting the conversational dis­
play terminal, card reader, line printer, and magnetic
tapes

JOB AREA

The job area must have the following minimum size to run
the corresponding programs. If a manual interrupt subpro­
gram or other nonresident program is also to be included in
the job area at the same time, then core for such programs
must be added (approximate):

Relocatable binary loader, plus four
words per entry point, plus the length

Words

of program to be loaded 1150

Assembler plus four words per symbol
in source (including loader)

System initializer (one-pass mode,
see section 7)

System library editor

Relocatable binary tape editor

Engineering file list and set

COMPATIBILITY

4200

3000

1300

600

1600

The RTOS monitor (RTM 3) is essentially a subset of the
MSOS monitor, which does not utilize mass storage. The
compatibility of RTOS with other CYBER 18 software
products is described in the following sections.

96769500 A

MSOS

Software that is core-resident and that runs under MSOS
may be run under RTOS, with the following limitations:

• \lass storage features are not provided.

• The system directory structure is not same as MSOS.

• Requests from part 1 (above 32K) are not allowed.

o Preset entry points may not be entered. from unprcr
tected memory.

• A core-resident entry point table is not provided (use
presets).

• The device error routine does not provide for alternate
devices.

• The engineering (diagnostic) file is core-resident and
si mpli fied.

• The protect processor (optional) is simplified.

o There is no provision for partitioned core.

• LOADER, GTFILE, SPACE, and RELEAS request
processors are not provided.

Any :\1S0S driver may be added to an RTOS-based system,
except those that make implicit use of mass memory. See
section 4.

96769500 A

FORTRAN

Programs compiled using CYBER 18 \1ass Storage FOR­
TRAN may be loaded by the RTOS relocatable binary loader
and executed under RTOS. The core-resident FORTRAN
run-time routines may be loaded with the FORTRAN job.

MACRO ASSEMBLER

The utility assembler provided with RTOS accepts the same
statements and generates the same code as the 1700 Macro
Assembler. However the following capabilities are not
provided:

• Macro instructions (MAC, EMC)

• Variable field definitions (VFD)

• Scaled decimal constants (DEC)

• Enable/disable character addressing (ECA, DCA)

• Conditional statements (IF A, IFC, ElF)

• Use of special characters to terminate alpha strings
(ALF " msg.)

CYBER CROSS SYSTEM

Programs assembled and linked using the CYBER Cross
System Support Software in a CYBER 70 Computer may be

. loaded and executed under RTOS.

1-3

MONITOR 2

The monitor performs two basic functions:

• Interfaces functional programs with hardware

• Assigns system resources to tasks by priority

The following features enable the monitor to perform these
functions:

o Sixteen levels of program priority - System compo­
nents, including input/output equipment. are allocated
on a priority basis.

• Highly interruptible structure - Interrupts are inhibited
for short intervals only.

o Monitor structure, which allows the computer system to
be time-shared by an unrestricte_d number of programs.

• Re-entrant structure - Monitor programs may be
interrupted, called by the interrupt program. and
resumed without loss of continuity.

Interrupts are handled by a common routine that saves the
interrupted program's registers and priority level in a stack.
For interrupts from line 0, the internal interrupt processor is
entered directly. The internal interrupt processor handles
abnormal conditions, such as memory parity and unprotected
monitor calls. Monitor calls are passed to processing
modules, Which perform the required action; calls requiring
input/output action are queued on a priority basis.

INTERRUPT LEVELS AND
PRIORITIES

A variety of devices may be attached to the 15 possible
external interrupt lines available with the interrupt/data
channel. Interrupts signify the occurrence of some external
event and vary in importance. The computer responds to the
interrupt on a priority basis. Priorities are assigned to each
interrupt at installation time.

Interrupts on any interrupt line are recognized only if (1) the
interrupt system is enabled and (2) the bit in the interrupt
mask register (M register), which corresponds to the inter­
rupt line, is set to 1. Each interrupt line is assigned a
specific priority and an associated interrupt response rou­
tine. The priority levels are from 0 (low) to 15 (high). This
priority level is an index to a table of interrupt masks
(MASKT), which is included in SYSDAT. When an interrupt
occurs, the interrupt handler records the current state of
the A, Q, I, P, R1. R2, R3. and R4 registers, overflow, and
priority level in the interrupt stack. Control is then given to
the interrupt response routine at the specific interrupt
priority level. After the interrupt has been serviced, the
interrupted program can be restored to execution at its
original state by restoring the registers from the interrupt

96769500 A

&h-,IViViMS

stack. When interrupts occur, the hardware recognizes the
lowest line number first. Mask table entries for unused
interrupt lines are set to O.

When programs make monitor requests, two priority systems
are used: request and completion priority. The request
priority determines how a request is to be queued with
respect to other requests that are already queued (the higher
the request priority. the closer to the front of the queue).

After a request has been completed, the completion priority
defines the level at which execution takes place (i.e., after
I/O is complete. the completion address is scheduled at the
level defined by the completion priority).

Background programs have the lowest priority and are
executed at priority levels 0 and 1. Priority declarations
from background jobs are ignored. Main processing· can be
performed at levels 0 and 1, and I/O completion routines are
always executed at level 1. All foreground programs should
operate at level 3 or above to avoid being affected by the
background programs (levels 0 and 1) and the job processor
(level 2).

Each driver has a defined operating priority. If a request is
made to a driver by a program operating at or above the
driver's priority level, the request is not initiated until all
previously scheduled or interrupted programs at or above the
driver's level have been executed. Conversely, if a request
is made to a driver by a program operating below the
driver's priority, the requesting program is temporarily
suspended and the I/O driver is given control immediately.

MONITOR STRUCTURE

The monitor, in part, is made up of request modules, the
common interrupt handler, the dispatcher, and I/O drivers.
Figure 2-1 illustrates their functional relationships.

The following sections describe core-resident routines in the
operating system.

REQUEST ENTRY PROCESSOR

When a program makes a monitor request, the monitor
stores the registers of the requesting program, examines the
request for conformity with system constraints, and trans­
fers control to the required processor. The request's
parameter list defines the type of request, I/O devices
required, priority. etc.

After a request has been queued, control returns to the
requesting program if no higher priority program is waiting
to run. However. if the program that performs the request
has a higher priority. it is executed immediately.

2-1

EXTERNA L INTERRUPlS ,
MONITOR

COMMON
INTERRUPT
HANDLER

I/O FEEDBACK

EQUIPMENT TO USER

DRIVERS PROGRAM

f
I

USER REQUEST REQUEST REQUEST EXIT TO
PROGRAM ~. ENmy ----. PROCESSOR ~ EXIT r-r+ USER
REQUEST PROCESSOR PROCESSOR PROGRAM

; 1 I
I I
I I
L.. ____ UP TO 16 ~ ___ ...J

REQUESTS

STARTS
SCHEDULED
PROGRAM

USER
PROGRAM DISPATCHER
FINISHED RESTORES

INTERRUPTED
PROGRAM

Figure 2-1. Monitor Block Diagram for User Programs

2-2 96769500 A

INTERRUPT STACK, EXTENDED INTERRUPT STACK,
AND SCHEDULER STACK

The interrupt stack (INTSTK) and extended interrupt stack
(EXTSTK) consist of a waiting list of programs that have
been interrupted by higher priority programs. The program
status information is ordered on a last-in, first-out (LIFO)
basis.

The interrupt stack and extended interrupt stack are
contained in SYSDAT and are made up of five-word and
four-word entries, respectively, one for each priority level
used in the system. The stack entry contains the following:

o
1

2

3

4

15 14

ovi

Q REGISTER

A REGISTER

I REGISTER

P REGISTER

PRIORITY LEVEL

where OV is the overflow status.

o

The extended interrupt stack entry contains the following:

o
1

2

3

15 o

REGISTER Rl

REGISTER R2

REGISTER R3

REGISTER R4

The scheduler list (SCKSTK) is the waiting list of programs
that have been requested by a scheduler request. It is
ordered by priority on a first-in, first-out (FIFO) basis within
each priority. When a program is taken off the list, the next
program threaded becomes the top of the list. Refer to the
SCHDLE and TIMER requests in section 3 for the schedule
request format.

The scheduler list is contained in SYSDAT and is composed
of four-word entries. The entry stack contains the follow­
ing:

o
1

2

3

15

96769500 A

o

SCHEDULER CALL

STARTING ADDRESS

THREAD TO NEXT CA LL

Q REGISTER

This entry may be from a primary or secondary scheduler
call as a result of a request completion or a system
directory scheduler call. If the size of the scheduler list is
insufficient for the system load, the location ERRCNT in
the scheduler/dispatcher program (RCMSCD) will be non­
zero. If this overflow occurs some scheduler calls are lost.

The scheduler list is also used for timer requests that are
threaded, not with the scheduler calls, but within the counts,
tenths, seconds, or minutes threads whose tapes are con­
tained in the timer request processor, TMINT. The entry
format differs in word 3, which is used to count down the
units of the timer request.

INTERRUPT HANDLING

External interrupts transfer computer control to the com­
mon interrupt handler or to the internal interrupt handler.
When an interrupt is received, the hardware transfers
control to the corresponding interrupt trap, saving the
program address and overflow status. Interrupts are only
received if the M-register bit, which corresponds to the
interrupt line number, is set to 1.

INTERRUPT TRAP

The com mon interrupt handler can be entered from any of
the interrupt lines. Each line has a four-word interrupt trap.
The trap region begins at location 10016 and ends at location
13F 16'

Each trap entry is of the form:

o
I

2

3

15 o
ENTRY

RTJ- ($FE)

pI

pp

{RTJ- ($F8) FOR LINE o}

Where:

Entry is the program address applicable at the
time of the interrupt.

contains the address of the common interrupt
handler.

contains the address of the internal interrupt
processor.

PI is the priority associated with this interrupt
line.

pp is the address of the primary processor that
is to service the interrupt.

2-3

The overflow status is preserved in bit 15 of word 0 in 32K
mode. Each interrupt trap is assembled in the SYSDAT
program and is under complete control of the user. For
example, the common interrupt handler may be bypassed
simply by changing the second location of the four-word
interrupt trap. Unused lines are assigned to the invalid
interrupt processor, INVINT.

COMMON INTERRUPT HANDLER

The common interrupt handler (RCMCIH) responds to inter­
rupts for all lines except line O. When entered after an
interrupt, the common interrupt handler resets the overflow
indicator, inhibits the interrupts, and stacks (in the interrupt
stack) the information required to save the interrupted
program. (See section 2.)

The address of the next available entry in the interrupt
stack is saved in location B816•

The interrupt priority level is established after the required
information is saved. Priority is used as an index to the
interrupt mask table (MASKT), and the M register is set to
the value of the corresponding mask. After the mask has
been loaded into the M register, the common interrupt
handler enables the interrupt system and exits to the
primary processor, with memory index I set to the address of
the interrupt trap.

The two primary interrupt response routines provided as
standard modules are the internal interrupt processor
(RCMIIP), for interrupts occurring only on interrupt line 0,
and the external interrupt processor (LINI V 4), for interrupts
occurring on line 1. All remaining line numbers use their
own individual interrupt processors.

LINE 1 INTERRUPT PROCESSOR

The LlNl V 4 interrupt processor (entry" point LINI V 4) handles
interrupts from the input/output devices on interrupt line 1.
When only one device is on line I, the general interrupt
response type is used in lieu of program LINIV4.

Each device on line 1 is checked for a set interrupt status.
If a device has interrupted, LINI V 4 enters the driver
continuator for that device (the location of the driver
continuator is in word 2 of the physical device table, refer
to appendix C) and the driver continues or completes the
input/output operation. If no device on line 1 has inter­
rupted, a ghost interrupt is assumed and control is returned
to the Dispatcher.

The physical device table address for all line 1 devices must
be listed in the SYSDAT table, LNITV4, so that devices on
line 1 can be identified.

Example:

LNITV4 ADC
ADC
NUM

P1711
P1777R
$FFFF END OF TABLE

The interrupt respons"e type described under General Inter­
rupt Processors is used in lieu of program LlNIV4 when only
one device is on line 1.

2-4

GENERAL INTERRUPT PROCESSORS

Individual interrupt processing routines are used for
interrupt lines that are assigned to only one device. These
routines consist of setting Q to the address of the physical
device table for that device and then transferring control to
the driver continuator.

Example:

R17331 LDQ
JMP*

=XP73310
(P73310+2)

The address of the interrupt response routine (RI7331) is
contained in word 3 of the interrupt trap for the interrupt
line.

If several devices are assigned to one interrupt line, the
interrupt processor must identify the device (usually by
reading the status on each device) that interrupted. For
some special devices the interrupt processing routine is an
integral part of the driver. The address in word 3 of the
trap is then set to the address of the processor for this
specific interrupt.

LINE 0 INTERNAL INTERRUPT
PROCESSOR ~

The internal interrupt processor (RCMIIP) handles all inter­
nal interrupts on line 0: parity, power failure, and program
protect.

Pow. r Failu r.!

A power failure interrupt is diagnosed by the absence of
parity or program protect faults. When this fault occurs, a
diagnostic message is printed on the comment unit:

PW (power failure)

Interrupts are inhibited and the system hangs on a 18FF 16
instruction.

Memory Parity

A memory parity interrupt is diagnosed from a test of the
parity skip instruction. When this fault occurs, a diagnostic
message is printed on the comment unit:

PE (memory parity)

Interrupts are inhibited and the system hangs on a 18FF 16
instruction.

Program Protect

The program protect switch must be ON and the optional
protect processor (RCMPRO) is required. A program
protect interrupt is diagnosed from a test of the program
protect skip instruction. When this fault occurs, the protect
processor is entered to examine the system conditions and

96769500 A

validity of the protect violation. If the violation is legal, an
exit is made to the dispatcher to allow execution to
continue. Illegal violations cause job termination with a
diagnostic message. See section 5.

If a protect fault occurs and the protect processor is not
present, a diagnostic message is printed on the teletype­
writer:

PF (protect fault)

Interrupts are inhibited and the system hangs on a 18FF 16
instruction.

DISPATCHER

When a program or program element reaches the logical end
of its execution, it terminates by jumping to the dispatcher
(JMP- ($EA)) or using the EXIT request. The function of
the dispatcher is to determine which program is to execute
next. There are only two candidates that can be considered:
the top entry in the interrupt stack and the top of the
scheduler list. The program with the highest priority is
placed in execution. If the two programs have equal
priorities, the program placed in execution is from the
interrupt stack.

When the program to be started is from the interrupt stack,
its A, Q, I, RI, R2, R3, and R4 registers and overflow
condition are restored to their state at the time of the
interrupt. The M register is set to the state defined by the
program priority level.

If control is given to a program on the scheduler list, Q is
set with the contents of the fourth word of the list entry
(the original Q in scheduler calls, an error indication in I/O
calls, or the contents of E816 for timer calls) and the mask
or M register is set to correspond to the new priority as
contained in word I of the scheduler list entry. The other
registers and overflow are arbitrary. The interrupt system
is enabled before the program is placed in execution.

RTOS is compatible with the re-entrant FORTRAN
scheduler/dispatcher, which may be substituted in nonstand­
ard systems. Refer to the MSOS Reference Manual.

MANUAL INTERRUPT PROCESSOR

The manual interrupt processor (RCMINT) responds to
interrupts generated by the use of the manual interrupt
button. The program prints the message MI on the system's
comment output device and requests input of the desired
operation from the comment input device.

NOTE

The response to the MI typeout is required
to terminate a level 3 loop in MINT.
System programs running below level 3
are suspended until the reply to the MI
typeout is en~ered.

96769500 A

The entry is of two basic forms: preceded or not preceded
by an asterisk. Entries preceded by an asterisk are
associated with manual interrupt job subprograms (see
section 5).

megal entries cause an EROS error message.

Entries not preceded by an asterisk cause the scheduling of a
named program file from the system library. The Q register
contains the location of the input data character string.

Manual interrupts entered while a request is being processed
are ignored. However, a manual interrupt request may be
processed during execution of a job: i.e., to re-assign logical
units (*K) or dump core (*D). After processing the request,
J is typed and *C is entered to allow the job to resume
execution.

INPUT/OUTPUT DRIVERS

Each device in the system is associated with a device driver,
which is the only piece of software that is allowed to give
direct commands to the device. The driver controls
execution of the read, write, and motion requests that are
passed to the monitor by the user programs.

Each driver normally has three entries: initiator, continu­
ator, and time-out (error). Variable parameters relating to
the device and the driver's working storage are contained in
the physical device table, in a format common to all drivers
(refer to appendix D). Functionally, the initiator initializes
the working storage in the physical device table and initiates
input/output on an idle device; the continuator drives the
device to perform the actual requested task. If the
diagnostic timer detects a device hang-up (lost interrupt), a
timer entry is entered.

Whenever a program requires input or output (I/O) for data
it is processing, it makes a monitor request to effect the
desired transfer. The monitor queues the request for
processing by an I/O driver. A driver may handle more than
one device of the same type, but requires a separate
physical device table for each device.

When a request is queued, the request processor R W
determines if the driver is available. If the driver is not
busy, its initiator is scheduled, and the request exit
processor returns to the caller.

The tape motion requests are handled in a similar way
through the TI4 motion request processor.

Upon entry to the initiator, a call is made to the find-next­
request routine, which decodes the requestor's parameter
list and places the information in the physical device table.
The driver initiates the I/O operation and selects some
interrupt condition (EOP, data, etc.). A diagnostic clock
value is also set in the physical device table and an exit
made to the dispatcher.

When the I/O device completes the operation, an interrupt is
generated. When the interrupt mask allows the interrupt,
the program that is currently executing is stopped, its
registers and overflow states are stored in the interrupt

2-5

stack, and control is given to the interrupt response routine,
which enters the driver's continuator entry point. The driver
acknowledges the interrupt and performs the I/O command
or, if the request is complete, the complete request routine
is called, followed by a jump to the initiator.

If there is a hardware malfunction and the device fails to
give an interrupt at the end of an operation, the time-out
entry is scheduled by the diagnostic timer routine when the
clock value in the physical device table has expired (if a
timer is present in the system). The driver uses the
RCMAKQ routine to set the error flags and calls the device
error logging routine. If the logical unit number is not that
of a diagnostic logical unit, the alternate device handler
may be called by a jump or by a scheduler request. If the
request was performed on a diagnostic logical unit, the
complete request routine is called, instead of the alternate
device handler, followed by a jump to the initiator part of
the driver. The diagnostic clock is set negative when a
device is inactive.

FIND NEXT REQUEST (RCMFNRI

The find-next-request (RCMFNR) subroutine is used by all
driver initiator modules to find the next request for a device
and to fill the physical device table with information from
the request. FNR is entered by an indirect return jump
through 8516 with the core address of the physical device
table entry in the I register.

Device Sh a red

RCMFNR scans the logical unit table, starting with logical
unit 1, to locate other logical units related to the same
device. When a logical unit with a waiting request is
encountered, it initiates the input/output device in the same
manner as unshared devices. The lowest numbered logical
unit with a request waiting for that device has the highest
priority. If no requests are waiting on a device, it exits to
the caller at the address of the call plus one.

Device Not Shared

RCMFNR examines the queue to obtain the next request. If
none exists, it exits to the caller at the address of the call
plus one. If another request is found, it updates the queue,
fills the physical device table, and returns to the caller at
the address of the call plus two. Upon return, the I register
is unchanged and the A, Q, and overflow registers are
destroyed.

COMPLETE REQUEST (RCMPQRI

The complete request (RCMPRQ) subroutine is entered by an
indirect return jump through 8616 from input/output drivers
to complete requests. This causes interrupts to be inhibited
and the completion address to be scheduled with the error
field from the physical device table, replacing the error
indicator (v field) of the I/O request parameter list for

2-6

logical units that do not share devices. Q is set negative if
an error occurs. The request parameter list (which contains
a request code designating it as an I/O calI) is interpreted as
a secondary scheduler call by setting bit 15 of the first word
to 1. The scheduler resets it to 0, and the device is released
from its reque~(assignment. When the driver has completed
the request, control is given to the dispatcher. The
dispatcher then passes control to the highest priority
interrupted program or scheduled program. The latter might
be the completion address if one was specified and is the
highest priority program awaiting execution.

The complete request is entered by a return jump to
RCMPRQ, which terminates the request by executing the
following:

1. Resets the diagnostic clock counter (EDCLK) to
FFFF 16

2. Transfers the error field in the physical device table
(ESTA Tl) to the v field of the request

3. Clears the operation-in-progress bit (EREQST)

4. Clears the thread and returns to the driver if there is no
completion address (C = 0)

5. If there is a completion address, schedules the comple­
tion address, passing any error condition in Q and in the
v field of the request, and returns to the driver.

ERROR FLAG SET-UP (RCMAKQI

The RCMAKQ subroutine is used by the drivers to set up the
v field of the logical unit word of the request and to place
the address of the last valid data into the last word of the
caller's buffer in the case of a short data transfer.

COMPLETION ROUTINES

The completion address specified in the parameter list is
scheduled when the I/O operation has been completed. Upon
entry to the completion routine, the Q register contains the
error status, if any, of the I/O operation, and the A register
contains the address of the parameter list. If an error has
occurred, the Q register is negative (bit 15 = 1) and should
be tested by the completion routine. Thus, the original
state of the registers at the time of the monitor request is
not preserved. The priority level is that specified by the
completion priority in the monitor request parameter list.

Completion routines that are in unprotected core are always
executed at priority level 1. Upon completion of an I/O
request, the request parameter specifying the number of
words is returned to the user's request stack. This allows
changes to this parameter by drivers (OCR devices).

INPUT/OUTPUT HANG-UP ERRORS

\n input/output hang-up error occurs when a driver fails to
Jet a completion interrupt on an operation that it initiated.

96769500 A

The diagnostic timer detects hang-ups. The driver estab­
lishes a time differential (in increments of seconds) for each
inp~t/output operation; upon differential expiration a hang­
up ~s assumed. This differential is entered in the physical
device table slot for the device. The diagnostic timer then
decrements the time differential each time the module is
set into execution. When the differential becomes negative
after decrementing, a hang-up is assumed. If the time
differ~nti~l is negative before decrementing. either the
operation IS complete or no operation has occurred.

When a hang-up occurs, the diagnostic timer accesses the
physical device table entry for that device to obtain the
driver core location to be executed in case of a hang-up.
T~is ~ocation is executed by a SCHDLE request at the same
prIorIty level as the driver. Q contains the core address of
the physical device table entry for the device. The driver
takes any necessary action to clear the device involved in
the hang-up. If recovery is not possible, it transfers control
to the alternate device handler. The parameters passed are
the logical unit number and error code.

Initially, the diagnostic timer is operated after system start­
up. Thereafter, it is periodically reactivated by a TIMER
request. The frequency of operation is dependent on a
parameter internal to the diagnostic timer program (nor­
mally 1 second).

The devices to be supervised by the diagnostic timer are
specified by a table of physical device table addresses. This
table (DGNTAB) is included in the SYSDAT program.

DEVICE ERROR ROUTINE

The RTOS device error routine RCMERR is compatible with
the. MSOS alternate device handler, but does not provide for
aSSIgnment of alternate logical units and accepts only RP or
CU after the error message is typed. The optional RTOS
alternate device handler RCADEV may be substituted for
RCMERR and is fully compatible with the MSOS alternate
device handler.

When a driver detects an irrecoverable failure of an
associated driver, the following actions take place:

1.

2.

The driver sets the error field in bits 15 through 13 at
word 9 (ESTATl) of the physical device table for the
device.

The controller hardware is cleared and an error word·
set in the Q register.

15 6 5 o

LOGICAL UNIT ERROR CODE

3. The driver transfers control to the device error routine
by a jump or a scheduler request, with the error word in
the Q register.

96769500 A

Then the error routine outputs the following message:

L,lu FAILED ec ssss

ACTION

Where:

lu is the logical unit number of the failed device.

ec is the error code.

ssss is the hardware status (hexadeci maI).

The operator must respond to the error with one of the
following and press RETURN.

RP Directs the request to repeat

CU Reports the error to the requesting program;
the device is allowed to continue processing
requests.

cot

DUt

DDt

Causes any future programs calling the device
to be informed of the failure upon completion;
the error is reported to the calling program
and the device is marked down. No subsequent
attempt is made to operate this device.

Activates CU and terminates the current job
being processed.tt

Activates CD and terminates the current job
being processed.tt

Mass storage device drivers do not use the alternate device
handler. The comment device must never be marked down.
because it is required to bring devices back up once they are
operational. Refer to the MSOS Diagnostic Handbook for a
complete list of error and status codes. Typical error codes
include:

o Input/output hang-up (diagnostic timer)

1

2

Lost data

Alarm

3 Parity error

4 Checksum error

5 Internal reject

6 External reject

If a downed device is requested by a program, the
completion address is always scheduled with an error; i.e.,
bit 15 is set to 1.

tNot valid for RCMERR;' valid for RCADEV

ttIf the RTOS job cancel routine RCMJCN is resident'

2-7

This device may be marked up or down using the MARKLU
routine (see section 5).

DUMMY DRIVER

The dummy driver is required in RTOS to allow units to be
marked down by providing a dummy alternate logical unit.

The dummy driver may be used in systems where it is useful
to slew I/O requests by completing the request without
error. For example. by assigning the standard print output
to the dummy logical unit. physical output is avo.ided.

MASS-STORAGE RESIDENT
DRIVERS

Standard drivers released with MSOS have the capability to
operate from core or mass memory residency. RTOS does
not allow the drivers to be mass-storage resident.

SYSTEM TIMEKEEPING ROUTINES

The timer package. which is located within the monitor.
functions in conjunction with the system hardware timer (for
accurate time delays). The system can execute timer
requests (RCMT8). compute time of day (RCMTOD). com­
pute date (RCMCAL). and provide auxiliary time/date
calendar functions (SETIME).

TIMER REQUEST PROCESSOR

The timer request processor (RCMT8) is used to process
scheduler requests that are to be executed following a time
delay. Delays may be specified in increments of counts.
tenths of seconds. seconds. and minutes. Four threads are
maintained for the requests. one for each type of increment.
The top of each of these threads is contained within the
RCMT8 program. with the threaded requests located in the
scheduler list. The timing delay is not designed to be
precise. but to provide for a delay of at least the specified
number of increments. In addition to the specified delay.
the portion of the increment remaining to be counted down
is also added to the delay.

Example:

1. A program is scheduled for a delay of 10 seconds.

2. The seconds counter within the RCMT8 program is 40
counts into the next second (60 counts per second).

3. The increment quantity word of the request is decre­
mented each time the seconds counter expires. The
first decrement operation will occur in 20 counts.

4. The increment quantity word is decremented until it is
negative. In this example the request is moved to the
scheduler list thread after 10 full seconds plus the 20
counts remaining in the seconds increment portion at
the start of the timer request.

2-8

5. In this example a request for a delay of 0 seconds would
be executed 20 counts later.

To control the system scheduler overhead. the number of
timer requests that can expire on the same count interrupt
is a SYSDAT parameter (NSR). If more delays expire than
the quantity allowed. the requests are rethreaded to the
counts thread for servicing on the next count interrupt.

TIME-OF-DAY PROGRAM

The system time-of-day program (RCMTOD) is a resident
program that is initiated during system start-up and keeps
system wall clock time based on the time value entered
during the system start-up sequence. The TOO program
operates by making 3O-count timer requests to update the
time. The time parameters are kept in the SYSDAT
program. A user can cause an immediate time update by
making the subroutine call:

RTJ+ TOO or

CALL TOO

The routine is re-entrant and preserves all the caller's
registers.

The following entry point time information is available:

HORTO

MINTO

SECON

CONTA

HORMIN

TOTMIN

Hour (integer)

Minute (integer)

Second (integer)

Count (integer)

Military time (integer)

Total day minutes (integer)

At the beginning of each new day. the time/date function
program is scheduled to update the system date.

TIME/DATE FUNCTION PROGRAM

The time/date function program (SETIME) is used to set and
print the system date and time. The program is loaded and
executed as a nonresident job and is used to enter a
date/time value or to print the current date/time. It may be
loaded directly (*L) or by file name SETIME.

The date/time is entered as

mmddyyhhmm

Entering a carriage return only prints the current date and
time without change.

The following is the entry point date information .available
that is kept in the SYSDAT program:

YERTO

MONTO

DAYTO

Year (integer)

Month (integer)

Day (integer)

96769500 A

AYERTO

AMONTO

ADAYTO

Example:

MI

SETIME

Year (ASCII)

Month (ASCII)

Day (ASCII)

ENTER DATE/TIVIE MMDDYYHHMM

0401761035

DATE: 1 APR 76

J
*C

TIME: 1035:00

If the date/time has not been initially entered, it is printed
as:

DATE: ** *** ** TIME: ****:**

The SETIME program requires that entry point AYERTO be
a preset entry (see Protected Core-Resident Entry-Point
Linkage, section 2) if SETIME is nonresident.

CALENDAR PROGRAM

The system calendar program RCMCAL is a core-resident
routine that is called by the time-of-day program at
midnight once each day. Its function is to update the date
information retained in the SYSDAT data program.

SYSTEM START-UP

The system may be restarted by a master-clear-run opera­
tion. This causes the restart routine to be executed. It is
assumed that the core-resident system is still intact.

The restart routine is normally core resident at the end of
the resident system. The restart routine performs the
following tasks:

1. Resets monitor threads, lists, and pointers

2. Sets up the allocatable core area table, located in
SYSDAT

3. Protects and unprotects all appropriate core locations
and types PP if the proctect processor is included in the
system

4. Schedules the diagnostic timer and time-of-day pro­
grams

5. Prints a message on the comment device that contains
the current system PSR level

96769500 A

6. Transfers control to the system idle loop

The following is a typical output on the comment device
after system restart:

RTOS 3.0 102 010875

Where:

RTOS 3.0 is the system identification (12 characters).

102 is the system PSR level.

010875 is the system build date (month, day, year).

To load the absolutized resident system from the system
tape (or punched cards), the bootstrap loader must be
entered manUally into high core and executed. Refer to the
CYBER 18-10 and 18-20 RTOS Installation Handbook.

VOLATILE STORAGE

Volatile storage (VOLBLK) is the storage area located in
SYSDAT that is reserved for the allocation of small blocks
of data storage for re-entrant routines (may operate at more
than one level at the same time). At least three locations
must be requested and all system interrupts disabled prior to
entry at VOLA and VOLR.

The volatile storage area acquired must be released at the.
same priority level at which it was acquired. The requesting
program and its possible accompanying program sequence
must not go to the dispatcher prior to the release of the
volatile storage area.

A request for more volatile storage than is available
constitutes a catastrophic condition. The volatile storage
assignment program enters OVFVOL with the following in
the A and Q registers:

A Amount of overflow in words

Q Base address of the interrupt stack

OVFVOL clears the M register and writes OV on the
comment device. No further action can be taken and the
system hangs (18FF16 instruction). The OV error is caused
by incorrect set-up or use of the system.

The size of VOLBLK is a SYSDAT parameter. A block of
storage is assigned with the entry point VOLA and released
with the entry point VOLR. Both entry points are entered by
an RTJ with interrupts inhibited.

The standard RTOS size for VOLBLK is 10 levels, with 18
words per level.

On entry to VOLA, the block size (minimum of three words)
is contained in the word following the RTJ. VOLA assigns
specified locations and fills the first three locations of the
block with the contents of Q, A, and I as follows.

2-9

CONTENTS OF Q

CONTENTS OF A

CONTENTS OF I

REMAINDER OF

START OF
BLOCK IN
REGISTER I
ON EXIT

~-----------------STORAGE REQUESTED
END OF
BLOCK

On exit from VOLA. the I register contains the memory
location of the contents of the Q register.

Example:

A subroutine is entered with 1 in A. 2 in Q. and 3 in I. Eight
words of volatile storage are requested as intermediate
storage.

ENTRY NUM 0 SUBROUTINE ENTRY

EQU VOLA ($BB)

EQU VOLR ($BA)

lIN 0

RTJ- (VOLA)

NUM 8

LDA* ENTRY

EIN 0

STA- 3.1

lIN 0

LDA- 3.1
STA* ENTRY

RTJ- (VOLR)

ElN 0

JMP* (ENTR Y)

INHIBIT INTERRUPTS

GET RETURN
ADDRESS

SA VE IN VOLA TILE
PROCESS
CALL

RESTORE RETURN
ADDRESS

RETURN. REGISTERS
RESTORED

On return from VOLA. a block of eight volatile storage
locations is assigned.

LOCATION + 0

1

2

3

4

7

2-10

15 4 3

ORIGINAL CONTENTS OF Q 0

ORIGINAL CONTENTS OF A 0

ORIGINAL CONTENTS OF I 0

RETURN ADDRESSt

TEMPORARY STORAGE

tSA VED BY REQUESTING PROGRAM

o

0 1 0

0 0 1

0 1 1

The I register contains the core location represented by
LOC. The contents of A and Q are the same as an entry to
VOLA. On entry to VOLR. I must contain LOC. On return
from VOLR. the eight locations of volatile storage have
been released. The contents of the A. Q. and I registers are
replaced with the contents of the first three locations of the
released block.

UNPROTECT /PROTECT
COMMUNICATION

UNPROTECTED ENTRY POINTS

Programs in protected core may not be entered from
unprotected core with the exception of the following:

• Monitor calls - RTJ- ($F4)

• MI subprogram calls - RTJ- ($CO). RTJ- ($EE).
RTJ- ($F3)

• Exit to the Dispatcher - JMP- ($EA)

PROTECTED CORE-RESIDENT ENTRY.
POINT LINKAGE

RTOS provides the MSOS features of allowing a nonresident
program to be loaded and linked to core-resident entry
points by using the table of presets instead of the MSOS
CREPO and CREPl tables.

In the system data program. preset entry points are
specified by a three-word ASCII name. followed by the
address of a protected entry point. Unprotected programs
may not call routines that have entry points in the preset
table.

This allows nonresident programs to reference the specified
resident routines. If jobs are run unprotected. they may only
read from the protected resident programs or data tables.
Users must specify the preset table by re-assembly of the
system data program SYSDAT.

SYSTEM COMMON ORGANIZATION

The MSOS provides for use of both blank and labeled
common areas. Blank COMMON cannot be preset with data.
Labeled COMMON can be preset with a DATjORG sequence
in assembly language or a block data subprogram in
FORTRAN. '{'he system handling of COMMON differs for
protected and unprotected programs.

PROTECTED COMMON

For resident programs. one blank common area can be
reserved in the system. This area must be assigned during

96769500 A

system initialization and is restricted in size to the common
block declaration of the first program declaring COMMON.
All programs subsequently loaded that declare COMMON
refer to this blank common block.

The common block is located in the highest locations of
memory.

Labeled COMMON is located in one or more memory blocks
and is created during system initialization •.

o

Resident System.

f-- - - - - - - -
Block A - Labeled COMMON

~ - - - - - - -
Res ident System

f-- - - - -- - - ~

Block B - Labeled COMMON

Allocatable Core

Job Area
Optionally Unprotected

System Blank COMMON
FFFF

96769500 A

UNPROTECTED COMMON-NONRESIDENT

For nonresident programs, one blank common area and one
labeled common area may be specified. These common
areas are different areas than those allocated for protected­
resident programs. The com mon areas specified are
assigned in the job area with the programs loaded. Blank
COMMON is defined at the highest address of the job area.
If the protect processor is used, these common areas are
~nprotected.

o
Resident System

(Unprotected) Labeled COMMON

I- - - - - - ---

Nonresident. Programs

(Unprotected) Blank COMMON

j
System Blank COMMON

FFFF~ ________________________ ~

Job Area:
unp rotec ted/
protected

2-11

MONITOR REQUESTS 3

f E;

Requests are used in programs to instruct the monitor to
perform operations such as reading, writing. and program
scheduling. Each calling sequence contains an indirect
return jump to the monitor entry and a list of parameters.

RTOS provides for 16 monitor requests; each has an entry
point Txx, where xx is the request code (1 through 16).

The request code is used as an index to a table of request
processor entry point addresses. All request processors are
entered with the location of the request parameter list in
the A register and exit is made by a jump to the request exit
entry point. Request codes 0, 7, 13, and 16 through 25 are
reserved for MSOS use.

RTOS does not provide the MSOS part 1 (65K) requests. The
d bit in the monitor request parameter list is ignored and the
Part 1 indirect request is provided so that programs written
to run (optionally) in MSOS part 1 also runs under RTOS.
RTOS allows absolute, relative, or indirect addresses to be
specified.

Table 3-1 lists the requests provided by RTOS that are a
subset of those provided by MSOS.

ENTRY FOR REQUESTS

Programs make monitor requests by calling the monitor
entry. The calling sequence format is:

RTJ- ($F4)

THREADING

The fixed communication region loca­
tion which contains the address of the
request entry processor.

Parameters

Requests to the monitor that use input/output drivers or
requests to allocate core must wait in a queue for
processing. These requests are processed on a priority basis
(FIFO within priority).

Example:

The five following requests are initiated by a program.

P,Q,R,S,T

N

E

96769500 A

The addresses of the five
parameter lists

The logical unit specified
for each request

The physical device table
address for the device cor­
responding to logical unit N
(appendix D)

"g- bel 'd .J "m ;u;;;;;;;;' ;; ·"t'

LOG2 The logical unit table (ap­
pendix D)

Parameter lists P ~ R S T

Completion priority 8 1 844

Request priority 3 9 041

In this example, request T has a lower request priority than
P, Q, and S. If request T is made before P, Q, and S, it is
started and completed before the others are processed.
Assume that request S is not active at this time.

When a request has been threaded, control returns to the
address following the request if no request with a higher
priority is waiting to run. The user can, therefore, continue
processing while the input/output requested is in progress.
If the program cannot continue until completion of the
input/output request, it should exit to the dispatcher and
allow other programs to run until the completion address is
scheduled; that is, it should not loop while waiting for
completion by testing the request thread for O.

NOTE

Requesters that loop on the request
thread at priorities 2 and above can cause
serious interference with monitor func­
tions and inhibit system real-time per­
formance.

In figure 3-1, note that the requests are threaded by request
priority rather than completion priority. Completion priori­
ties are meaningless if no completion address is specified.

QUEUEING

INPUT/OUTPUT REQUESTS

Input/output requests are queued by logical unit number.
Requests for the same logical unit are queued on a thread in
the third word of the parameter list. This word contains the
first word address of the parameter list of the next request
(0 for unqueued requests). The beginning of each queue is
identified by an entry in the table of logical units (L002),
which contains the address of the first word of the
parameter list of the first request. The end of the queue is
identified by FFFF16 in the third word of the parameter list
for the last request in the queue.

Unprotected requests may be changed or destroyed between
the time parameters are checked and threaded and the time
drivers act upon them. To prevent the system from
malfunctioning when the parameters are changed, unpro­
tected parameter lists are temporarily protected prior to

3-1

TABLE 3-1. MONITOR REQUEST TABLE

Request Request Program
RTOS/MSOS Request Type RTOS Usage Handling Code Mnemonic

Request

0 System directory schedule Not allowed -
1 READ Normal read Allowed RCMRW

2 WRITE Normal write Allowed RCMRW

3 STATUS I/O request status Allowed RCMT3

4 FREAD Formatted read Allowed RCMRW

5 . EXIT Unprotected exit Allowed RCMT5

6 FWRITE Formatted write Allowed RCMRW

7 LOADER Relocatable loader Not allowed -
8 TIMER Schedule program with delay Allowed RCMTMI

9 SCHDLE Schedule program Allowed RCMDSP

10 SPACE Allocate core Not allowed -

11 CORE Unprotected core bounds Allowed RCMT11

12 RELEAS Release core Not allowed --
13 GTFILE Access files Not allowed -
14 MOTION Tape motion Allowed RCMT14

15 TIMPTI Schedule directory program with Not allowed -
delay in part 1.

16 INDIR Part 1 indirect Allowed RCMONI

17 PTNCOR Allocate partitioned core Not allowed -

18 SYSCHD Schedule directory program Not allowed -
19 DISCHD/ Disable/enable directory scheduling Not allowed -

ENSCHD

2O} 21
22

Reserved for future MSOS use Not allowed -23
24
25

3-2 96769500 A

P +0

Second request 2

in thread

5

Q +0

First request 2

in thread

5

R +0

la.st request 2

in thread

5

S+O

Request not 2

in thread

5

T +0

Request 2

in progress

5

l 3 I 8

n

-.

I 9 I 1

P

l o_~

$FFFF

I 4 I 4

I $0000

I 1 I 4

$FFFF

E +0

-.

5

6

12

LOG2 + 0

LOG2 + N

LOG2 + M

N

T

NUMLU

Q

lu assigned
address of
request

Figure 3-1. Request Threading Layout

parameter checking. The protected parameter list is then
threaded normally. On completion (or if the job is
terminated), the parameter list is unprotected.

SCHEDULE AND TIMER REQUESTS

Since system programs make many scheduler and timer
requests and cannot conveniently wait for a request to be
completed before making a new one, parameter lists from
these requests are moved to a list and similarly threaded to
input/output requests.

After a request has been threaded, control returns to the
address following the request. Schedule requests made for a
priority that is higher than the current running priority
interrupt the requesting program and the scheduled program
is executed.

96769500 A

If the list for scheduler and timer requests is filled when a
new request is made, the sign bit of Q is set to 1; otherwise
it is set to o.

Bit 15 o Request is accepted

1 Request is rejected

Bits 14 through 0 Unchanged

When the stack is full, new requests are rejected until space
is available.

REQUEST DESCRIPTIONS

The requests available with RTOS are applicable to both
resident and nonresident programs.

3-3

The mnemonic names correspond to the MSOS request macro
instructions but RTOS does not support the use of a macro
assembler. Otherwise, the request parameters and calling
sequences are identical to those for MSOS.

RTOS ignores the d-bit field provided for MSOS part 1 (65K
absolute) requests; i.e., RTOS handles requests as if d were
set to o.

READ/FREAD/WRITE/ FWRITE

READ/WRITE instructions transfer data between the speci­
fiedinput/output device and core. The word count specified
in the request determines the end of the transfer.
FREAD/FWRITE requests read/write records in a specific
format for each device.

The request codes are 1 (READ), 2 (WRITE), 4 (FREAD), and
6 (FWRITE). The calling sequence generated by the macro is
as follows:

o
1

2

3

4

5

15 14 13 12 11

Old I rc

v Iml a I

9 8 7 4 3 o
RTJ- ($F4)

Ix I rp I cp
c

thread
Iu

n

s

The field descriptions for the READ/WRITE/FREAD/­
FWRITE requests are the same except for parameter n:

rc The request code

thread The thread location used to point to the next
entry or the threaded list. It must be initially
set to 0 and is reset to 0 upon completion.

v The error code passed to the completion
address in bits 15 through 13 of Q and set "in
the request by the system at completion

Detailed parameter descriptions for the requests are:

3-4

lu is the logical unit, an ordinal in the physical
device table (appendix D) that may be modi­
fied by parameter a.

c is the completion address of the core location to
which control is transferred when an I/O
operation is completed. If omitted, no com­
pletion routine is scheduled and control is
returned to the interrupted program. The
notation (c) represents an index to the system
library directory, indicating the program to be
executed upon com"pletion of the requested I/O
operation.

Completion routines are operated by threading
the I/O requests on the scheduler thread. A

three-bit code in the v field of the fourth word
of the request indicates the completion status:

15 14 13 Description

0 0 0 No error condition detected by
driver; the number of words re-
quested read or written; device
not ready

0 0 1 No error

0 1 0 No error; fewer words read than
requested

0 1 1 No error

1 0 0 Error condition

1 0 1 Error condition

1 1 0 Error condition

1 1 1 Error condition

When control is returned to the completion
address, these bits are set in similar positions
in Q and in word 9 of the physical device table
(appendix D). If less than n words were
transferred on a read, the location following
the last word filled is placed in the last word
of the user's buffer.

An end-of-file can be verified by checking
bit 11 of word 12 in the physical device table
via a STATUS request.

NOTE

Use of the v field to designate
specific device status (e.g., end­
of-tape, successful after recov­
ery, etc.) is dependent on the
driver (section 4).

s is the starting address, the address of the first
block location to be transferred (see param­
eter x).

n is the number of words to be transferred.

(n) The number of words to be transferred is
determined by parameter x.

o The minimum information is transferred
(one word or one character), depending on
the device.

NOTE

For FREAD and FWRITE, n can'"
not be O. Some devices signal 0
words as an illegal request.

m is the mode; it determines the operating condi­
tion (binary/ASCII) of a driver.

96769500 A

1 Data is converted from ASCII to external
form for outpu't. from external form to
ASCII for input.

o Data is transferred as it appears in core
or on an I/O device.

rp is the request priority (15 through 0. with 0 as
the lowest) with respect to other requests for
this device. This request establishes the order
in the I/O device queue. It is automatically 0
for unprotected requests.

cp is the completion priority (15 through 0). the
level at which the sequence of the code
specified by parameter c is executed. It is
automatically 1 for unprotected requests. (See
Interrupt Levels and Priorities. section 2. for
an explanation of priority levels.)

a is the absolute/indirect indicator for the logical

x

unit.

o The first parameter (Iu) specifies the
logical unit.

1 lu is a signed increment (-1FF16 ~ lu s
1FF16) that is added to the address of the
first word of the parameter list to ob"tain
the core location containing the logical
unit number.

2 lu is the address of the core location
number (Iu S 3FF 16).

is the relative/indirect indicator; this parameter
affects parameters c. s. and n as shown here.
Because of the wrap-around feature. computed
addresses may be before or after the para­
meter list.

(c) is indirect

o or blank and
c is direct

o or blank and
s is direct

o or blank and
(s) is indirect

;. 0 or not blank
and c is direct

x is meaningless and c rep­
resents an' index to the sys­
tem directory.

c is the completion address.

s is the starting address. If
the request is on mass mem­
ory. the mass memory ad­
dress follows the request.

s is a core location that
contains the starting ad­
dress. If the request is on
mass memory. the mass
memory address follows the
core location that contains
the starting address.

c is a positive increment
that is added to the address
of the first word of the

96769500 A

d is

.,. 0 or not blank
and 5 is direct

.,. 0 or not blank
and (5) is
indirect

n is direct

x is 0 or blank
and (n) is
indirect

x is 0 or blank
and (n) is
indirect

parameter list to form the
completion address.t

s is a positive increment
added to the address of the
first word of the parameter
list to form the starting
address. If the request is on
mass memory. the mass
memory address follows the
request.

s is a positive increment
added to the address of the
parameter list to form the
address of a location con­
taining another positive in­
crement. If the request is
on mass memory. the loca­
tion containing the second
increment is immediately
followed by two words which
contain the mass memory
device.

x is meaningless and n is the
length of the block to be
transf erred.

n is the core location con­
taining the block size.

n is a positive increment
added to the address of the
first word of the parameter
list to obtain the location
containing the block size.

the part 1 request indicator that is ignored.

Mass Memory Address Format:

15 14 o

MSB OF MS ADDRESS

LSB OF MS ADDRESS

The mass storage address specifies a mass memory word
address (READ/WRITE) or a mass memory sector (96-word
size) address (FREAD/FWRITE); return is to the location
following the mass-storage address.

INDIR REQUEST

The INDIR request allows indirect execution of any other
request as determined by the parameter list referenced by p.

tIf bit 15 is set for (n) or (s). incrementing continues indirect
until bit 15 is not set.

3-5

The calling sequence is:

15 14 o
RTJ- ($F4)

1 p

Where:

P is the address of the first word of the parameter
list of any other request; bit 15 is set to 1 by
enclosing the address in parenthesis.

To be compatible with programs that can run in MSOS part
I, an alternate form of the parameter list is provided with
the request code 16.

15 14 13 9 8 0

RTJ- ($F4)

.01 rc I 0 ~
p

SCHDLE

Programs are queued on a priority basis through the use of
the SCHDLE request. A program requested by SCHDLE is
executed only when it is the oldest waiting task with the
highest priority. All programs specified by SCHDLE
requests are entered by a simple jump and exited by a jump
to entry point DISP or by an EXIT request. The value in the
Q register is passed to the requested program on entry.

The SCHDLE request code is nine and the calling sequence
is:

15 14 13 9 8 7 4 3 0

1
0

RTJ- ($F4)

0 I d I rc I x 10 • tOI p

1 c

Where:

c is the address to be executed as described under
parameter x.

P is the priority level of the program; for unprotected
programs, p is 1.

x is the relative/indirect indicator.

(c) is indirect

3-6

x is meaningless and c represents
an index to the system directory.
The entry referred to by the
index specifies the program.

o or blank and
c is direct

f. 0 or not blank
and c is direct

c is the location to be executed.

c is a positive increment added
to the address of the first word
of the parameter list to obtain
the execution location. Because
IS-bit arithmetic is used, the
execution location may be before
or after the SCHDLE request.

f. 0 or not blank (c) indirect is illegal.

d is the part 1 request indicator that is ignored.

Example:

RTJ- ($F4)

ADC $1300+LEVEL

ADC X-*-1

EQU LEVEL(4)

On execution, location X is scheduled at level 4. X is
specified relative to the parameter list so that this code
may be used in a run-anywhere program.

If a new program is at a priority level higher than the
current level, the request is not queued but is immediately
executed.

If the program priority level is less than or equal to the
current level, the parameter list of the request is moved to
a reserved core area for the scheduler list and threaded first
by priority and second on a FIFO basis within priority.

The queuing subroutines make entries to the list and the
dispatcher removes entries.

When an input/output request is completed, the driver
causes the completion routine to be executed by threading
the input/output request directly to the scheduler list. This
process avoids filling the reserved core area with
input/output completion addresses.

The system directory table must be set up by the user if
system directory scheduler calls are used. This directory is
a simple table of absolute addresses of program starting
locations arranged in index order. The entry point name of
the first location in the table must be RAT (routine address
table), corresponding to system directory index O. See
appendix B.

TIMER

The TIMER request is a delayed SCHDLE request. Through
the use of TIMER, a SCHDLE request is made after a
specified time delay.

96769500 A

The request code is eight and the ~alling sequence is:

o
I

2

15 14 13

Old I rc

9 8 7

RTJ- ($F4)

I x I
c

t

4 3 o

u I p

Where:

c is the completion address to be executed.

p is the priority level of the program.

x is the relative/indirect indicator.

(c) is indirect x is meaningless and c represents
an index to the system directory.
The entry referred to by the
index specifies the program.

o or blank and
c is direct

c is the location to be executed.

1= 0 or not blank
and c is direct

c is a positive increment added
to the address of the first word
of the parameter list to obtain
the executive location. Because
of memory wrap-around, the ex­
ecution location may be before
or after the TIMER request.

is the time delay.

u is the units of delay; this parameter determines the
units in which the time delay t is measured.

o or blank

I

2

3

t is the basic unit of the ti ming
device (counts).

t is measured in tenths of a second.

t is measured in seconds.

t is measured in minutes.

d is the part I request indicator that is ignored.

TIMER requests are stacked in the schedule request list but
are not threaded with them. Instead, they are threaded
together on the basis of time until activation. When the
delay for a TIMER request has expired, a SCHDLE request is
made with Q to the contents of location E8 (the core clock
counter) at the time the SCHDLE request was made. An
external parameter in SYSDAT specifies the number of
simultaneous TIMER expirations permitted to prevent loss of
interrupts if time is insufficient to process the number of
TIMER requests expiring at one time.

96769500 A

MOTION

The MOTION control request is used to control motion and
end-of-file processing.

The MOTION control request code is 14 and the calling
sequence is:

o
I

2

3

4

15 14 13 12 11 10 9 8 7

RTJ- ($F4)

Old I rc I x I
c

thread

v Iml a I
r I pI I p2 I

4 3 o

rp I cp

Iu

p3 I dy

Where:

d is the part I request indicator that is ignored.

rc is the request code.

x is related only to the completion address.

rp is the request priority.

cp is the completion priority.

c is the completion address.

thread is the thread location used to point to the next
entry of the threaded list. It must be set
initially to 0 and is reset to 0 upon completion.

v is the error code setting.

m

a

is the mode.

A ASCII

B Binary

is the absolute/indirect indicator for the logical
unit.

lu is the logical unit.

r is the repeat function indicator (when set to 0).

PI' are the motion control parameters; each of these
P2,P3 results in a specific action that is defined in

table 3-2. Up to three motion commands may
be defined in a MOTION request; they are
executed in the sequence Pl' P2' P3. The first
command with a value of 0 terminates the
request.

3-7

TABLE 3-2. RTOS DRIVER ACTION POR MOTION REQUEST PARAMETERS

Code Description MT CR LP CDT

0 First zero terminates processing the request X X· X X

1 Backspace one record X

Do nothing X X X

2 Write one end-of-file mark X

Punch one end-of-file mark

Page eject: reset line count X X

Punch leader

Do nothing X

3 Rewind to loadpoint X

Set pointer to start of tape

Do nothing X X X

4 Rewind and unload: terminates request X
..

Terminates processing the request X

Sequence count goes to zero: terminates request X

Reset line count: terminates request X

Set pointer to start of tape: terminate this request

Do nothing

5 Skip one file forward X

Slew cards to end-of-file X

Do nothing X X

6 Skip one file backward X

Do nothing X X X

7 Advance one record X

Do nothing X X X

Key: MT Magnetic tape
CR Card reader
LP Line printer
CDT Conversational Display Terminal

3-8 96769500 A

dy . is the density parameter.

o No change

2 :~~ :::}
3 200 bpi

4 1600 bpi

External rejects result when
an illegal density selection
is attempted; e.g., if tape is
not at load point.

One MOTION control request can be repeated for magnetic
tape. In this case all of the parameters are the same as in
the preceding MOTION request, except for the last word,
which is generated as follows:

15 14 12 11 o

I r I PI n

Where:

r is the repeat function indicator that is set to 1.

p is the motion code.

n is the number of times to be executed, not to exceed
4,095. .

CORE

The CORE request code is 11 and the calling sequence is:

15 14 13 980

rc
RTJ- ($F4) I

10 •• ---------------+.0

This request is used to set or determine the bounds of the
available job area (that portion of core not occupied by a
program or data for a job, see section 4). If the A and Q
registers are 0 when the request is made, the current upper
bound is returned in A and the lower bound in Q. To set the
bounds, the request is made with the upper bounds in A and
the lower bounds in Q. Both values must be in the job area,
and the upper must be greater than the lower. megal values
are ignored. Each new request replaces the parameters
from the previous request. When an *Z is entered via the
job processor, the entire job area is made available ag:ain.

STATUS

The STATUS request is used to determine the status of an
input/output device by accessing information from the
physical device table for the specified logical unit.

96769500 A

The STATUS request code is 3 and the calling sequence is:

o
1

2

15 14 13

o 101
o •

11 10 9 8 7 o
RTJ- ($F4)

rc 1 0 10 • .. 0
.. 01 a 10 1 lu

0

Where:

lu is the logical unit; it is the same as for read/write
requests.

o is the third word of the calling sequence; it must
always be O.

a is the absolute/indirect indicator, the same as the
corresponding indicator for read/write requests.

Following execution of the STATUS request, the A register
contains the hardware status reply that is word 12 of the
physical device table, the Q register contains word 8 of the
physical device table (refer to appendix D), and the I
register contains the last core address stored on a data
transmission (word 11 of the physical device table minus
one).

EXIT

NOTE

Since RTOS is a multiprogramming
system, caution should be exercised in
interpreting the results of the STATUS
request. Since requests are executed on a
priority basis, if more than one program is
using a logical unit, it is difficult to
determine which of the last operations
created the status.

The EXIT request is equivalent to a jump to the dispatcher.
Control returns to the job processor when the job is
completed.

The EXIT request code is five and the calling sequence is:

15 14 13 980

rc
RTJ- ($F4) I

1 0 •• --------------.... 0

The EXIT request processor checks for completion of all
programs and input/output requests running at levels 0, I,
or 2. If these have all been completed, the processor

3-9

schedules the job processor, which requests a new control
statement and types J, except in batch mode (see section 4).
If the EXIT request processor is entered at level 2 or above
or if all jobs have not yet completed, it simply exits to the
dispatcher.

The protect processor causes unprotected jumps to the
dispatcher (i.e., JMP- (EA» to be handled as EXIT
requests. Jobs that are run without using the protect
processor must terminate via EXIT requests or control is not
returned to the job processor on completion. Jobs that are
written according to the rules for manual interrupt sub­
programs specified in section 4 may exit directly to the job
processor on completion.

REQUEST RESTRICTIONS

Certain restrictions apply to the use of all requests executed
from unprotected core. Violation of these restrictions
results in job termination. If these restrictions are violated
by requests from protected core, unpredictable results occur
since li mited error checking is performed.

• Invalid addresses - Addresses must be valid for the
requesting program. A program in unprotected core
cannot have interrupt or control information addresses
in protected core. An example of a control information
address· is the address of an area of core from or to
which a block is to be transferred.

• Illegal logical unit - The logical unit number must be
legal. Logical unit numbers of 0 or greater than the
largest available logical unit number defined in the
LOGIA table are illegal.

• megal control information - Requests must not contain
illegal control information (any information than can
cause destruction of part of the system). For example,
a READ into protected core is illegal if the calling
program is unprotected.

• Busy requests - All input/output requests are threaded,
using the third word of the parameter list. A given
input/output request cannot be repeated until it is taken
off the thread (completed). An attempt to repeat a
busy request in protected core is not processed.
Instead, control returns to the caller at the normal

3-10

place and the Q register is set negative to avoid delays
at high priority levels. An attempt to repeat a busy
request by an unprotected program results in job
termination.

SWAPPING CORE

Swapping is a process in which the contents of unprotected
core are stored on mass storage to make more unprotected
core available for assignment by SPACE requests. This
MSOS feature is not provided by RTOS.

STANDARD SYSTEM
INPUT jOUTPUT DEVICES

The logical units of the devices listed are stored into the
stated core locations. If these locations are used in system
requests, changing equipment does not require reassembly.

Core FORTRAN
Device Location L~ical Unit

Standard input device F9 l6 1

Standard binary output FA16 2
device

Standard print output FB16 3
device

Output comment device FC16 4

Input comment device FD16

Mass-storage scratch B3l6 (not used)

System library (tape) C2 l6

In FORTRAN read/write statements, logical units I, 2, 3, or
4 indirectly refer to the standard logical units shown above.
The operator can change these values via the job processor
(refer to section 4). Therefore, all programs can address
these particular units indirectly or determine their numbers
by interrogating the communications region.

96769500 A

j

JOB PROCESSOR 4

to!';; .MW

The Real-Time Operating System (RTOS) provides a simple
but effective interface for loading and executing non­
resident programs. A job is a nonresident program or a main
program and associated subprograms in absolute form that is
executed at a low prio'rity level (0 or 1) in the job area of
core. This is the core area remaining after all resident
programs, allocatable core, and resident common data has
been loaded or reserved. The job area corresponds to the
MSOS unprotected core area.

PROTECT PROCESSOR

Jobs may be run protected or unprotected. The optional
RTOS protect processor, PROTEC, must be resident and the
program protect switch' must be on to run unprotected jobs.
This mode is useful for debugging jobs. Unprotected jobs
may only communicate with protected programs via the
following:

RTJ- (C016) Binary to ASCII decimal conversion

RTJ- (Cl
16

) Binary to ASCII hexadecimal conver-
sion

RTJ- (F316) Manual interrupt processor entry

RTJ- (F416) Monitor request entry

JMP- (EA16) Jump to dispatcher

The completion priority in monitor requests originating from
unprotected core is forced to levelland the request priority
to level O. This provides compatibility with the MSOS
protect processor.

The following instructions are treated as do nothing instruc­
tions if executed in unprotected jobs:

lIN Inhibit interrupts

EIN Enable interrupts
....

SPB SET protect bit

CPB Clear protect bit

EXI Exit interrupt state

The protect processor is entered, if resident, from the
restart program to unprotect the job area, and from the
internal interrupt handler if a protect fault interrupt occurs.
The condition causing the protect fault is examined. If it is
unreasonable, the program that caused the protect fault
interrupt is terminated.and a diagnostic message is typed:

IRnn, hhhh

Where: nn is the error code (see appendix F).

hhhh is the location of the instruction causing the
protect fault.

96769500 A

.", ".,;

If the protect switch is off or if the protect processor is not
used~ jobs are treated in the same way as resident programs
by the monitor. No checking is performed. The protect
pr.ocessor is not required to use the RTOS relocatable binary
loader, assembler, or other RTOS utility and maintenance
routines.

NOTE

The RTOS protect processor is used to
execute undebugged user programs. When
executing standard RTOS utility routines
(library edit, set time/date, etc.), the
protect switch must be off so that the
routines may store into protected core.

MANUAL INTERRUPT PROCESSOR

Jobs are controlled by statements entered via the manual
interrupt processor. When the manual interrupt button is
pressed, the processor responds by typing MI and makes a
monitor read request to the conversational display terminal.
The processor runs at level 3 and hangs in . a loop wh~le
waiting for input, which suspends job processing. .

The operator enters a statement of up to 26 characters,
terminated by a carriage return. If this statement begins
with an asterisk, then the manual interrupt processor exits
to the corresponding manual interrupt subprogram. The
address of the manual interrupt input buffer is passed in the
Q register to the subprogram.

If the statement entered does not begin with an asterisk, it
is assumed to be a file name. The read-file-by-name
program RCMLDF is used to 'find, load, and execute the
named program file.

Invalid statements are indicated by the message: ER05.
Invalid parameters in statements are indicated by the
message: ER04.

The addresses of up to 26 subprogram entry points (MIASUB
through MIZSUB) are stored in a vector table corresponding
to the initial letter (A through Z) of the manual interrupt
entry used to call each SUbprogram. If the subprogram is not
in core, the address is set to 7FFF and the corresponding
manual interrupt entries are invalid. Provision is made to
load nonresident manual interrupt subprograms and set up
the corresponding entry in the manual interrupt vector
table.

On completion, the manual interrupt subprogram returns
control to the manual interrupt processor, which types J or
ERnn if an error was detected and requests a new control
statement.

If a job is scheduled into execution, the manual interrupt
subprogram exits to the dispatcher. Control returns to the
manual interrupt processor when the job is completed.

4-1

JOB CONTROL STATEMENTS

All control statements (table 4-1) begin with an • and are
followed by a letter that identifies the subprogram entry
point.

If the subprogram is not resident, it must be loaded by name
or by using the *L command and then executed to place its
address in the manual interrupt vector table.

Users may add subprograms for *F, *0, or *H statements.
The remaining entries are reserved for expanding RTOS
functions. The parameters used in the statements are:

lu The logical unit

n The number of files

start

end

base

hhhh

m

p

ec

file

recs

The starting core address

The ending core address

The base core address (added to the start and
end)

A hexadecimal value

The mode:
A ASCII
B Binary
E EBCDIC

The priority level
N Not executed

The error code, 0 through 62;
63 or above = all

The file number

The number of records

*V directs the job processor to read subsequent control
statements from the input device.

*U directs the job processor to read subsequent control
statements from the comment device.

*J (or *JOB) enters the job processor at level O.

MANUAL INTERRUPT SUBPROGRAMS

The manual interrupt processor provides for up to 26
subprograms. These subprograms are called by entering a
manual interrupt control statement that begins with an
asterisk followed by a letter (A through Z). This letter
uniquely identifies the subprogram and is used as an index to
a vector table of subprogram entry point addresses.

Manual interrupt (MI) subprograms may be part of the
resident system or loaded from the system tape and
executed as jobs. If executed as a job and the protect
processor is present, the protect switch must be off.

4-2

The vector table contains permanent entries for those
manual interrupt subprograms that are included in the
resident system. Manual interrupt subprograms loaded as
nonresident jobs store their entry point address into the
manual interrupt vector table. The subprogram can then be
called from the manual interrupt processor as if it were
resident. When the job is cancelled, the entry point
addresses for the nonresident subprograms are deleted. An
attempt to execute a subprogram that is not in core causes
the manual interrupt processor to type the error message
ER05 and exit.

To provide the option of allowing manual interrupt subpro­
grams to be resident or nonresident, the MI subprograms all
begin with the following code, which calls the manual
interrupt set-up routine at entry point MIENTX.

NAM progrm

ENT progrm, MIxSUB

progrm ENQ nn Manual interrupt
vector index

RTJ- ($F3) Call manual inter­
rupt setup.

JMP* MIEXIT Exit to the manual
interrupt proces-
sor, print J.

MIxSUB NOP 0 Entry from the
manual interrupt
processor

Reserved for *x
statement

MIEXIT ENQ -1

($F3)

Print J.

RTJ-

Where:

Exit to the manual
interrupt proces­
sor.

progrm is the manual interrupt subprogram name
and file name. It is one to six characters.

x

nn

is the key character.

is the index to the manual interrupt vector
table.

o A
1 B

25 Z

MIxSUB is the entry point name called from the
manual interrupt processor. x is the key
character, A through Z.

$F3 is the location of the address of the manual
interrupt processor entry MIENTX, which
is used to set up the manual interrupt
vector table, then returns control to the
subprogram.

96769500 A

(

(

TABLE 4-1. JOB CONTROL STATEMENTS

Statement MI Vector Sub- Function Table Index Program

*ADF,lu,n or *ADR,lu,n 0 POSIT Advance n files/records.

*BSF ,lu,n or *BSR,lu,n 1 POSIT Backspace n files/records.

*C 2 RCMLDC Continue.

*D,start,end,base 3 DUMP Dump core.

*EOF,lu 4 POSIT Write end-of-file.

*F 5 - User subprogram

*G 6 - User subprogram

*H 7 - User subprogram

*1 ,start ,hhhh,hhhh, hhhh,hhhh,hhhh 8 INSERT Insert 1 to 5 values.

*J or *JOB 9 RCMLDC Enter job processor.

*K,Ilu.Plu.Llu,Mlu.Clu.Slu 10 ASSIGN Assign logical unit.

*L.lu,file,hhhh 11 RCMLDC Load program.

*M.lu 12 MARKLUt Mark logical unit up.

*N.lu 13 MARKLUt Mark logical unit down.

*O.lu.ec 14 EFLISTt List/set code in engineering file.

*p .start,end.base 15 PUNCHt Punch core.

*Q 16 RSCMEX Execute SCMM.

*REW.lu or *RWU.lu 17 - Reserved.

*S,start.p 18 RCMLDC Schedule

*T .lu, m ,lu, m ,recs,files 19 COpyt Copy data.

*U 20 RCMCHG Read statement from comment
device.

*V.lu 21 RCMCHG Read statement from input device.

*WRON .lu or *WROF ,lu 22 MAGSIM Turn write ring on or off on magnetic
tape simulator.

*X 23 RCMLDC Execute program.

*y 24 - Reserved

*Z 25 RCMLDC Cancel job.

tSubprogram is not "resident and must be loaded.

96769500 A 4-3

The I register is set to the address of the manual interrupt
input buffer upon entry to MIxSUB. The MI subprogram
must then decode the ASCII input statement stored in this
buffer using the standard conversion routines provided in the
manual interrupt subprocessor. The MI subprogram may use
the first three words for data storage after initial setup.

Manual interrupt subprograms that require setup of more
than one entry are coded as follows:

MARKLU

MIMSUB

MARKLX

MINSUB

MIEXIT

NAM

ENT

ENQ

RTJ-

JMP*

Nap

ENQ

RTJ-

JMP*

Nap

ENQ

RTJ-

END

MARKLU

MARKLU ,MIMSUB,MINSUB

13

($F3)

MARKLX

0

14

($F3)

MIEXIT

0

-1

($F3)

MARKLU

Initial entry

Set up *M entry.

Go to set up next
entry.

Entry from *M in-
put

Secondary entry

Set up *N entry.

Exit to manual in-
terrupt processor,
print J.

Entry from *N in-
put

Print J.

Exit to manual in­
terrupt processor.

The jump following the RTJ- ($F3) must be a one-word
instruction as MIENTX obtains the address of the manual
interrupt entry as the calling address plus 2.

On completion, MI subprograms exit to the manual interrupt
processor to get the next control statement. If no error
occurred:

ENQ

RTJ-

-1

($F3)

Print J.

Exit to the manual
interrupt proces­
sor.

If an error occurred, nn is a two-digit number:

4-4

LDQ

RTJ-

=Ann

($F3)

Print ERnn.

Exit to the manual
interrupt proces­
sor.

If the subprogram has scheduled a job:

JMP- ($EA) Exit to the dis­
patcher.

More than one subprogram may use the same manual
interrupt entry statement provided that they are not
required to be in core at the same time. For example, two
*F subprograms could be written and stored on the system
library with different file names. It is possible to write the
subprograms so that the letter(s) following the first letter
after the • designates the desired function. For example,
entries *BSF and *BSR transfer control to a common routine
corresponding to *B. This subprogram checks the fourth
character for F (file) or R (record).

NOTE

The RTOS manual interrupt processor
executes subprograms at level 3. ·Jobs
initiated via an *X or from the library are
executed at level O. On completion of a
job, the optional EXIT request processor
RCMT5 returns control at level o. Thus a
request to dump core (*0) is executed at
level 3 if it is made immediately following
a manual interrupt, or at level 0 if made
following completion of a job.

LOAD,(· L)

This manual interrupt subprogram is always resident. It is
used to load nonresident background and foreground pro­
grams. Input must be a single absolutized formatted binary
record. The control statement format is:

*L,lu,file,hhhh

Where:

lu is the input logical unit. If omitted, the standard
input device is used.

file is the number of files to be advanced over (after
rewind). If omitted, the input unit is not
moved.

hhhh is the starting address for the load. If omitted,
the next available address in the job area is
used and incremented by the number of words
actually read.

NOTE

Always enter *z before loading a new
program or set of programs to initialize
the starting load address to the beginning
of the job area. After loading is com­
plete, J is typed. To execute the program.
and level 0 beginning at the starting ad­
dress of the load, enter *X. Refer to the
Schedule Core Address section below for
foreground programs.

96769500 A

ASSIGN LOGICAL UNITS

This manual interrupt subprogram is always resident. The
control statement format is:

*K ,Ilu,Plu,Llu, Mlu,Clu,Slu

Where:

lu is the logical unit number (decimal).

I is the standard input unit (F9 l6).

P is the standard binary output unit (F A16).

L is the standard list unit (FB
16

).

M is the output comment unit (FC16).

C is the input comment unit (FD16).

S is the system libr~ry unit (C2 l6).

*K is used to assign specific logical units to the low-core
cells reserved for the standard system functional units.

The parameters are not ordered but must be separated by
commas. Invalid logical unit numbers and attempts to assign
read-only units for output or write-only units for input are
rejected.

MARK LOGICAL UNITS UP/DOWN
I*M, *N)

This manual interrupt subprogram is loaded from the system
library by pressing manual interrupt and entering:

MARKLU

The control statement format is:

*M,lu Mark the logical unit up.

*N,lu Mark the logical unit down.

where lu is the logical unit number (decimal).

This statement is used to make an input/output logical unit
available (up) or unavailable (down) for. requests. When a
logical unit is marked down, all requests for it are
completed immediately with error indication and without
attempting to process the request.

MAGNETIC TAPE CONTROL

This manual interrupt subprogram is resident.

The control statement formats are:

*REW,Iu Rewind.

*EOF,lu Write end-of-file mark.

96769500 A

*AOF ,lu,n Advance n files.

*BSF ,lu,n Backspace n files.

* AOR,lu,n Advance n records.

*BSR,lu,n Backspace n records.

*RWU,lu Rewind and unload.

Where:

Iu is the logical unit number (decimal).

n is the number of files or records (decimal).

Requests for invalid logical unit numbers are rejected.

DUMP CORE (*0)

This manual interrupt subprogram is resident.

The control statement format is:

*D,start,end,base

Where:

start is the starting core address.

end is the ending core address.

base is the base core address.

All addresses and values dumped are in hexadecimal.

*0 is used to dump the contents of the system output device
from the starting to ending address specified. If a base
address is specified, it is added to both the starting and
ending addresses. If the ending address is not specified, one
location is dumped.

The comma preceding the starting address is optional.

INSERT VALUE INTO CORE (*1)

This manual interrupt subprogram is resident.

The control statement format is:

*I,start,hhhh,hhhh,hhhh,hhhh,hhhh

Where:

start is the starting core address.

hhhh is the hexadecimal value to be entered.

*1 is used to enter one to five hexadecimal values starting at
a specified address.

The comma preceding the start address is optional.

4-5

PUNCH CORE (*P)

This manual interrupt subprogram is nonresident and may be
loaded from the system library by pressing manual interrupt
and entering:

PUNCH

The control statement format is:

* P .start.end.base

Where:

start is the starting core address.

end is the ending core address.

base is the base core address.

It is used to output a formatted binary record to the
standard punch unit from the buffer specified by the starting
and ending addresses. If a base address is specified, it is
added to both the starting and ending addresses. If the
ending address is not specified. the request is rejected.

The comma preceding the starting address is optional.

COpy AND CONVERT DA TA (*T)

This manual interrupt subprogram is nonresident and may be
loaded from the system library by pressing manual interrupt
and entering:

COpy

The control statement format is:

*T .ilu.imode.olu.omode.nr .nf

Where:

ilu is the input logical unit number.

imode is the A. B. E input mode.

olu is the output logical unit number.

omode is the A. B. E output mode.

nr is the number of records (decimal)

nf is the number of files (decimaI).

The mode is specified as:

A Data is converted from internal ASCII to external
BCD or vice versa (seven-track units only).

B Data is tra~sferred in binary mode.

E Data is converted from internal ASCII to EBCDIC
or vice versa (nine-track units only).

4-6

The mode is used to copy data from the standard input
logical unit to the standard punch output logical unit until
the number of records or the number of files specified is
reached or an error occurs. The number of records and files
copied is typed on the standard list device.

SCHEDULE CORE ADDRESS (*S)

. This manual interrupt subprogram is always resident. The
control statement format is:

*S,hhhh,p

Where:

hhhh is the starting address.

P is the priority level, 0 to F. If blank. it is level
o.

The specified address is scheduled at the specified level. and
control returns to the manual interrupt processor.

NOTE

No reasonability checks are made on this
statement.

JOB CANCEL ROUTINE (RCMJCN)

This resident routine is used to terminate jobs running at
level 0 or 1. It is called via the manual interrupt *z
statement.

RCMJCN runs at level 3 and executes the following func­
tions:

• Removes any entries in the interrupt stack for level 0,
1, or 2 programs by setting the return address to the
address of the dispatcher

• Removes timer and scheduler requests that have com­
pletion priorities of 2 or below

• Deletes any pending I/O requests having completion
priorities of 0, 1. or 2 and waits for those I/O requests
that are in progress to be completed

LOAD NAMED FILE SUBPROGRAM
(RCMLDF)

This is a resident subprogram that is called from the job
processor (manual interrupt processor). It is used to load a
named absolute program file from the system library
magnetic tape into core.

The format of the statement is:

pgm.hhhh,p

96769500 A

Where:

pgm is a four- to eight-character program file name.

hhhh is the starting address for the load (it may be left
blank).

p is the execution priority.

N Load but do not execute.

Blank

Xq

O-F

Use priority level O.

Execute and pass q to the program in
the Q register.

Execute at priority level p.

The system library logical unit is rewound and searched for a
file header with a name that matches the specified name.

The system library search may be terminated by pressing
manual interrupt.

This feature may only be used with a system library tape
that was prepared using the RTOS system library editor
routine LIBEDT. Refer to section 6.

To load a program file that does not have a file header, use
the magnetic tape control subprograms to position the tape;
load and execute the program using the *L statement.

Example:

*REW,6

*K,16

*L,6,10

*X

Rewind logical unit 6.

Set input unit to logical unit 6.

Advance 10 files and load from logi­
cal unit 6.

Execute

JOB AREA BOUNDS

The job area is defined by the following low-core cells (same
as MSOS):

EC Temporary end of job area plus one

ED Temporary start of job area minus one

F6 Initialized end of job area plus one

F7 Initialized start of job area minus one

The temporary-start and end-of-job area pointers are used
to track the next available core address as successive loads
are made into the job area. These pointers are reset to the
initialized values by entering an *Z statement.

96769500 A

MANUAL INTERRUPT CONVERSION
ROUTINES

The following subroutines are available to manual interrupt
subprograms and jobs. Entry is allowed from unprotected or
protected programs via an address in low core.

ASCII FIELD DECODE SUBROUTINE
(RCMFLDI

This subroutine obtains the next field of an ASCII buffer
(hexadecimal or decimal) and produces a binary value. The
calling sequence is:

I = Address of ASCII buffer

Q = 1 (decimal) or 0 (hexadecimal)

RTJ- ($EE)

The I register is set to the address that contains the starting
field at which processing is to begin. If bit 15 is set to 1,
the lower portion of the address is processed; if bit 15 is 0,
the upper portion is processed.

The Q register indicates the type of field to be processed
(decimal or hexadecimal). If it is set to 1, the field to be
processed is decimal; if set to 0, the field to be processed is
hexadeci mal.

Upon exit from this routine the Q register is set as follows:

Q = -1 megal character in the field

+1 A null (FF16) or blank character (2016) was
encountered

o A comma (2C16) was encountered

Upon exit from this routine the A register is set as follows:

A = The value in the field converted to binary, or

FFFF16 to indicate that there was nothing in the
field (, ,), or

The illegal ASCII character that was in the field.

BINARY TO ASCII SUBROUTINE
(RCMHXDI

This subroutine converts a binary integer value to a two­
word ASCII representation of the decimal value. The calling
sequence is:

A = Binary value (0 to 9999)

RTJ-

4-7

On exit, the Q register contains the thousands and hundreds
ASCII digits and the A register contains the tens and units
ASCII digits.

BINARY TO ASCII HEXADECIMAL
SUBROUTINE (RCMHXA)

This subroutine converts a binary value to a two-word ASCII
representation of the hexadecimal value. The calling
sequence is:

A = Binary value (0 to FFFF 16)

RTJ- (Cl 16)

On exit, the Q register contains the most significant ASCII
hexadecimal bytes and the A register contains the least
significant ASCII hexadecimal bytes.

4-8

EBCDIC CONVERSION SUBROUTINE
(CVASEB)

This subroutine is used to convert ASCII data to EBCDIC and
vice versa. The calling sequence is:

RTJ+ CVASEB

ADC buffer

NUM n

Where:

buffer is the address of the data.

n is the number of words to be converted. To
convert from EBCDIC ro ASCII, n must be the
complement of the number of words to be
converted.

96769500 A

RELOCATABLE BINARY LOADER 5

.,.\.,. "a wi ,

The relocatable binary programs produced by the RTOS
utility assembler are loaded by the relocatable binary
loader. It is loaded as an absolute binary program and
relocates itself into the available high locations of the job
area. Input is loaded into the available low locations of the
job area.

Input to the loader consists of relocatable binary format
records of variable length with a maximum of 120 char­
acters from any peripheral device in the system. EOL
statements and control statements for the job processor are
also in the form of format records. These format records
begin with an asterisk and terminate with a carriage return
(or space if input is from a card reader); they are stored in a
buffer internal to the loader in ASCII code.

Before input to the loader is read from the standard input
device, status is checked on the previous input operation. If
error-free, the loader reads the next block; if not, the loader
issues a message and may terminate the operation. Loader
output consists of memory maps and error messages on the
system output comment device.

FEA TU RES

MEMORY MAP

A memory map, output during the loading process, contains
the data and common storage locations (if used) and the
name and core location of each program loaded. The map is
formatted as follows:

DShhhh

CShhhh

xxxxxx hhhh

xxxxxx hhhh

xxxxxx hhhh

Where:

The starting location of data storage
(labeled common)

The starting location of common
storage (blank common)

The name and starting location of the
first program

The name and starting location of the
next program

xxxxxx is the program name.

hhhh is the hexadecimal location.

96769500 A

LINKAGE OPERATIONS

The loader carries out two linkage operations: the first
when an external name is found to match the entry point
name in an ENT input block entry, and the second when an
external name is found to match the external name in an
EXT input block entry.

During a loading procedure, the loader generates a table of
external and entry point names in which each four-word
entry is formatted as follows:

1

2

3

4

15 14

A SIX-CHARACTER NAME

I ADDRESS (15 BITS)
L SIGN BIT

o

The tables for external and entry point names occupy
sequential locations toward 0000, immediately in front of
the loader. A memory location within the loader contains
the length of the table, and the tables are expanded
backward in storage. The table length is limited only by the'
amount of core required for command sequence storage.

Characters form a name from a seven-bit ASCII code. Bits
8 and 15 of each word containing part of a name are not
used. If the sign bit of the fourth word is:

o Entry is an entry point name and address.

1 Entry is an external name and link address.

Link addresses are pointers that string together instructions
using the same external name. The 15-bit address of each
instruction using an external name points to the 15-bit
address of the previous instruction using that name. The
address of the first instruction in the program to use this
external name is placed in the loader table as that external
name's link address.

When the loader matches an external name with a previously
loaded entry name, each location containing a link address
for the external name is replaced. Within the original
source program, there are four ways to reference an
external name in the address field of instruction:

Absolute and direct

Absolute and indirect

Relative and direct

Relative and indirect

5-1

The type of linkage is determined by the use of the external
name in the original source language. If it is used with
either type of absolute addressing, bits 14 to 0 of each
location containing a link address for this name are set to
the value of the entry point address for this name. Bit 15 of
this location is not changed by patching in absolute values.
If the external name is used with relative direct or indirect
addressing, bits 15 to 0 of each location containing a link
address for this name are set to the signed value of the
increment, which must be added to the program counter to
determine the entry point address.

Linkage is the same at every location containing a link
address for a given external name. The entry in an EXT
block containing this external name determines whether it is
for relative or absolute addressing. If the first word of this
entry has a sign bit of:

o Linkage is for absolute addressing.

1 Linkage is for relative addressing.

TRANSFER ADDRESS

After an EOL block is processed, the loader leaves the
address of the last transfer name in location E4 of the
communications region.

DATA AND COMMON DECLARATIONS

The RTOS relocatable binary loader absolutizes programs
beginning at the start of the job area. The labeled common
data (DAT), if any, is followed by the command sequence
storage. Blank common data (COM) is assigned at the high
end of the job area and is overlaid by the loader itself.

RELOCATABLE BINARY INPUT

Blocks of ASCII are identified by an asterisk (00101010) in
bits 15 through 8 of the first word. If these bits are
anything else, relocatable binary is assumed.

The driver verifies that the block is read correctly for the
input device.

The loader recognizes relocatable binary blocks by the type
indicator field in bits 15 through 13 of the first word of the
block. If the loader is unable to recognize the indicator, it
does not process the block. The following block types are
defined:

~ Indicator Description

NAM 001 Name block

RBD 010 Command sequence block

BZS 011 Zero storage block

ENT 100 Entry point block

5-2

~

EXT

Indicator

101

Description

External name block

XFR 110 Transfer address block

If the loader is unable to recognize the indicator, it does not
process the block.

Input for a single relocatable binary program must begin
with a NAM block and terminate with an XFR block. There
must be only one NAM block and one XFR block. The EXT
blocks must follow the RBD blocks; RBD, BZS, and ENT
blocks may be in any order. If input consists of several
relocatable binary programs, the NAM block of the third
program must follow the XFR of the second, etc.

NONRELOCATABLE BINARY
INPUT

Input to the loader may not always be relocatable binary
blocks. It may be in ASCII format (e.g., EOL, system
control statements).

If bits 15 through 8 of the first word in the block are set to
the ASCII code for an asterisk (00101010), information is
stored in the input buffer in ASCII code. The end of a
nonrelocatable binary input record is the internal code for a
blank or a carriage return.

EOl BLOCK

The EOL block, which marks the end of loader input,
contains an asterisk followed by a T in the first word, as
shown below. The normal procedure for termination implies
that the operation has been error free.

The following is the core image of the EOL block:

* = 00101010 1 T = 01010100

CR = 00001101 I NOT USED

NOT USED

CONTROL BLOCKS

Control blocks are similar to the EOL block and are stored
in the loader's buffer in ASCII code. They are not fixed in
length and are terminated by a blank or carriage return.
These blocks are handled by the job processor rather than
the loader. The loader transfers control to the job
processor, giving it the address of the input buffer in A. *L
and *X are examples of operating system control informa­
tion blocks.

LOADING RELOCATABLE
PROGRAMS

First load and execute the relocatable loader using the *L
and *X statements or by entering the file name LOADER.

96769500 A

The loader moves itself in the highest available locations of
the job area (except for the ·XN option), and the relocatable
binary programs are absolutized in the lowest available
locations of the job area. The loader entry point table is
built back from the start of the loader.

When the loader has been read into core, the job processor
types J. To set up the relocatable binary programs on the
input device, enter one of the following:

* X Load and execute

·XL Load, save absolutized program, and execute

·XA Load and save absolutized program

·XR

·XN

Load only (for library edit)

Load and save absolutized program; loader
remains in lower core

When a file mark or EOL block is encountered during
loading, an end condition results. When an EOL (·T) block is
encountered, loading is complete. When a file mark is
sensed, FM is typed by the loader. '

96769500 A

The operator may continue loading by putting another
program on the sy~m input device and typing a carriage
return, or type ·T~ to inform the loader that loading is
complete.

When loading is complete, any unlinked externals are typed.
The program is then written on· the binary output device (if
the ·XL, ·XN, or ·XA option was chosen). The job is
executed automatically (if .X or ·XL was chosen) or control
.is returned to the system (OX A or ·XN).

LOADER ERROR DIAGNOSTICS

A loader error occurs if the addressing modes for referenc­
ing the external name EXTNAM are not the same in both
PROGA and PROGB. An error indication is given by the
loader, and the loading operation terminates.

Error messages appear on the console immediately following
the name and base address of the relocatable binary program
loaded. For unrecoverable errors, the loader terminates
operation following the error printout. Refer to appendix F.

5-3

SYSTEM MAINTENANCE AND UTILITY ROUTINES 6

fj MM Wif>· 5 A 44¢. .9. Wi

SYSTEM LIBRARY EDITOR (LIBEDT)

The library editor is a run-anywhere program that is
designed to build and maintain absolute library tapes. When
used with the job processor and/or relocatable binary loader,
the system library editor has the following capabilities:

• Library creation

• Adding to the library

• Library maintenance

• Copying the library or parts of the library

• Listing the library

Programs contained on library tapes may be loaded by using
the same file name as specified for the loading of a named
absolute program file (see Load Named File Subprogram
(RCMLDF) in section 4).

LIB EDT may be used with one magnetic tape drive for
creating. adding, or listing the library. Functions such as
copying or deleting require two magnetic tape drives.

The library editor executes under the RTOS job processor
and is used with the relocatable binary loader. The primary
function of the editor is to process and create library tapes
containing labeled files that correspond to absolute load
modules. The job processor requires the labeled file
structure if file names are used to load programs. Labeled
files may be intermixed with unlabeled files. Care must be
taken to properly position such files before using LIBEDT.

LIBRARY TAPE STRUCTURE

The structure of library files on the library tape is
illustrated in the following figures. Figure 6-1 illustrates a
system library including the RTOS system loader and an
image of the saved resident system (output by the system
initializer).

Note that absolute program module 4 is not preceded by a
file header label. This is proper since module 4 cannot be
loaded with a load-named-file (RCMLDF) statement. *L
must be used instead. Also, module 4 cannot be deleted or
replaced by LIBEDT.

When the library tape is listed, module 3 is listed as
unlabeled.

Figure 6-2 illustrates a user library that does not include the
RTOS system.

Program files containing header labels may be loaded by file
name or by statement. Program files that do not contain
file header labels cl;lnnot be loaded by file name. All files
are recorded in formatted binary.

96769500 A

- >. ¥e%¥ e#;;;;I;.; ¥·'-Hiw;*a.# il;S "1';; .. +;': ;, ·4 .,,' : ..

FILE HEADER LABEL STRUCTURE

The file header label contains information necessary for
program loading and maintenance. The structure of the
header label is similar to the ANSI standard file label HDR1.

The fields in the file header label (HDRl) are arranged as
shown in table 6-1.

The file header label generated by the system library editor
contains appropriate values as defined in all optional fields.
Only fields 1 through 8 and 11 are used by the job processor
and the system library editor.

OPERATIONAL PROCEDURES

The system library editor creates or updates a library tape.
The list of functional procedures included is:

• Add a program to the library or create a new library
containing a program.

• Copy the library or portions of the library to a new
library.

• Change standard logical units for the system library and
punch unit with LIBEDT.

• Get a program from LIBEDT. The specified file is
loaded and may be used with an add function.

• Set the values of the first word load address, last word
load address, and load transfer address.

The system library editor is generally used with the system
loader or relocatable loader ·when adding programs to the
library tape. The program to be added must be loaded by
the relocatable loader prior to executing LIBEDT or loaded
via the get function by LIBEDT. Since the library editor is
run-anywhere, it should be loaded above the program in
memory. Normal loading by file name ensures that LIB EDT
is loaded at the top of memory.

The system library editor may be loaded from the RTOS 3
system library by name as follows:

Press the manual interrupt button.

The system types: MI

Enter:

The system types:

LIBEDT

LIBEDT

IN

The message IN implies that the library editor is ready to
accept a function. These functions are described in the
following sections.

6-1

•
Jl

F F F F F F
I 1 1 I I I

L L L L L L
ABSOLUTE FILE ABSOLUTE ABSOLUTE FILE

E E E RTOS 3 E E E
HEADER PROGRAM PROGRAM RTOS 3 HEADER PROGRAM SYSTEM

SYSTEM RECORD MODULE RECORD MODULE MODULE
1\1 1\1 LOADER M M M 1\1

2 2 3 3
A 4 A A A A A

R R R R R R

K K K K K K
u

LLOAD POINT
"

Figure 6-1. Library Tape Structure

u

F F F F
I 1 I 1
L L L L

ABSOLUTE ABSOLUTE ABSOLUTE
E FILE E E FILE E

PROGRAM PROORAM PROGRAM
HEADER HEADER

MODULE MODULE MODULE
1\1 M 0 M M 2

2 0 1
A A A A

R R R R
K K K K

-)~

L LOAD POINT

..

Figure 6-2. User Library Structure

NOTE

Leading asterisks (*), if any, are ignored
in the control statements.

ADD AND ADDP STATEMENT

The ADD or ADDP statement instructs the system library
editor to add the absolute program currently in memory to
the library tape or scratch tape. The tape receiving the new
program must be mounted on the standard binary output
device.

The format of the add statement is

ADD,filename,DATE=yyjjj,Pnn,RA

ADDP ,filename,DATE=yyjjj,Pnn,RA

Where:

filename

6-2

is a one- to eight-alphanumeric character
file identifier, beginning with an alpha­
betic character from A to Z. Each file
name on the library must be unique.

DATE=yyjjj is the current date in Julian format.

yy is the current year.

Pnn

jjj is a three-digit Julian day.

is the running priority for the program.

nn is a priority specification from 0 to
15.

RA is a run-anywhere program.

If the ADDP format is specified, LIBEDT positions the
library tape past the last file, before writing the absolute
program. If the ADD format is used, LIBEDT does not
position the library tape before writing th~. absolut~ pro­
gram. The user is cautioned to properly pOSItion the hbrary
tape if the ADD format is used. Both the ADD and ADDP
functions terminate the library by writing two file marks.
The tape is positioned before the second file mark, permit­
ting subsequent add or copy functions.

COpy STATEMENTS

The copy statement allows a library tape to be copied to a
new tape. It requires two tape units and is designed to

96769500 A

TABLE 6-1. FILE HEADER LABEL FORMAT

Character Field Name Length Description Position

1 to 3 1 Label identifier 3 Must be HDR

4 2 Label number 1 Must be 1

5 to 12 3 File identifier 8 Any alphanumeric characters; the
first character must be alphabetic.
This field is used to identify the file.

13, 14 4 Load address 2 Four hexadecimal digits specifying
the load address of the first word.
If the load address is 0, the program
is assumed to be run-anywhere.

IS, 16 5 Length 2 Four hexadecimal digits specifying
the length of the program module

17, 18 6 Priority 2 Two hexadecimal digits specifying
the priority at which the program
runs

19, 20 7 Transfer address 2 Four hexadecimal digits specifying
the first word address to receive
control if different from the load
address

21 8 Reserved 1 Blank

22 to 27 9 Set identification 6 Any alphanumeric characters to
identify this set of files. This identi-
fication must be the same for all
files of a multifile set (optional).

28 to 31 10 File section number 4 The file section number of the first
header label of each file is 0001.
This applies to the first or only file
on a volume and to subsequent files
on a multifile volume. This field is
incremented by one on each subse-
quent volume of the file (optional).

32 to 35 11 File sequence number 4 Four numeric characters denoting
the sequence (i.e., 0001, 0002, etc.)
of files within the volume or set of
volumes. This field contains the
same number (optional) for all labels
of a given file.

36 to 39 12 Generation number 4 Four numeric characters denoting
the current stage in the succession
of one file generation by the next.
When a file is first created, its
generation number is 0001 (optional).

40, 41 13 Generation version 2 Two numeric characters distinguishing
successive iterations of the same
generation. The generation version
number of the first attempt to pro-
duce a file is 00 (optional).

42 to 47 14 Creation date 6 A space followed by two numeric
characters for the year, followed by
three numeric characters for the day
(001 to 366) within the year.

96769500 A 6-3

TABLE 6-1. FILE HEADER LABEL FORMAT (Continued)

Character
Position

48 to 53

54

55 to 60

61 to 73

74 to 80

Field

15

16

17

18

19

Name

Expiration date

Accessibili ty

Block count

System code

Reserved for
future use

facilitate library maintenance and the creation of special
forms of the library. There are three formats that perform
unique functions.

All variations of the copy function copy files from the
system library unit to the standard system output unit. The
output tape is terminated by two file marks, and on
completion of the function, the tape" is positioned between
the two terminating file marks. This positions the output
tape for subsequent add or copy functions and properly
terminates the library.

The format 1 copy function is:

·COPY

or ·COPYB

It is designed to copy one file from the system library unit
to the standard system output unit. The input tape is copied
from the current position to a file mark. The output tape is
terminated by a double file mark.

The COPYB alternative causes the output tape to be
positioned backwards one file before initiating the copy.
When used with the get and add functions, COPYB can be
used to create a library file consisting of a file name, the
absolutized loader, and the relocatable binaries of a program
without intervening file marks.

The format 2 copy function utilizes the file name specified
to terminate a copy operation. Its format is:

*COPY,filename

6-4

Length Description

6

1

6

13

7

Same format as field 9. This file
expires when today's date is equal to
or later than the date given in this
field. When this condition is satis­
fied, the remainder of this volume
may be overridden. To be effective
on multifile volumes, the expiration
date of a file must be less than or
equal to the expiration date of all
previous files on the volume (optional).

An alphanumeric character that indi­
cates restrictions on who may have
access to the information in this file.
A space means unlimited access; any
other character means special handling,
in a manner agreed between the inter­
change parties (optional).

Must be zeros.

Thirteen alphanumeric characters
identifying the operating system that
recorded this file (optional).

Must be spaces

Since the copy is controlled by file name, the input tape is
rewound prior to initiating the copy. Thus, all files from the
beginning of the input tape are copied up to, but not
including, the file specified or, if not found, to the
terminating double file marks.

The format 2 variation permits selective library copying
used in library maintenan~e. The format 3 copy function is
designed to copy selectively from the first file name
specified up to, but not including, the second file name
specified. Its format is:

·COPY,filename,filename

The input tape is rewound prior to copying. The output file
is not positioned before copying. To copy a library from a
specified file name to the end, a dum my file name should be
specified for the last file name. For example:

*COPY,LIBEDT,DUMMY

where DUMMY is not a file on the input library.

GET STATEMENT

The get function of the system library editor is designed to
load a named file from the system library unit. Once
loaded, the file may be added to the output unit via the add
function. The format of the GET statement is:

*GET ,filename

96769500 A

The get function may be used to load a fUe that is to be
added to another library or the same library. If the file is
added to the same library. then a different file name must
be specified in the add statement. Thus, the get and add
functions may be used to change the name of a file. (The
original file can be deleted by copying all files except the
file to be deleted.)

GET is used to create and maintain the system installation
tape. In addition, proper use of the get, add, and copy
functions permit the creation of a file that contains the file
name, relocatable loader, and relocatables. Although
greater in size, a. file of this type may be loaded and
executed in any area of memory.

The system library editor utilizes the standard system
logical units for the system library, system output, and
system list devices. The *K statement allows the user to
change the standard system library unit and/or the standard
system output unit. The *K statement pertains to LIBEDT
only and does not alter the system unit assignments. The
format of the *K statement is:

*K,Snn,Pnn·

Where:

S is the system library unit.

P is the system output unit.

Either S or P or both may be specified.

LIST STATEMENTS

The LIST statement produces a listing of all the file headers
on a library tape. This statement does not require any
parameters; its format is:

*LIST

The library tape must be mounted on the standard system
library unit. The list of file names is generated on the
system list device. The format of the listing is illustrated
below:

FILE ~AME LFWA LTRA LLEK PRT CDATE
0000 LIBEDT 0000 0000 0499 00 75031
0001 LOADER 0000 0000 04AF 00 75031
000: ASSEM 0000 0000 04AF 00 75031
OOOj SMART 0000 0000 04AF 00 75031
OOOL. SETl'P 0000 0000 04AF 00 75031
0005 POSIT 0000 0000 0072 00 75031
OOOt' ASSIGK 0000 0000 0031 00 75031
000- I~SERT 0000 0000 0021 00 75031
0008 Pt.:KCH 0000 0000 0045 00 75031
aooG M.A.RKLl' 0000 0000 0036 00 75031
00~0 Dl'~IP 0000 0000 0117 00 75031
0011 COpy 0000 0000 0199 00 75031
001: SETH-IT 0000 0000 04AF 00 75031
001: EFLJ:ST 0000 0000 04AF 00 75031

96769500 A

The column labeled LFWA represents the first word address
where the file is to be loaded. If LF W A is 0, then the file is
considered run anywhere. The column labeled LTRA
represents the execution (i.e., loader transfer) address. That
is, after the program is loaded, control is transferred to the
loader transfer address. If the LFWA is 0 then the LTRA
represents a positive increment that is added to the load
address computed by the system.

The column LLEN represents the length of the first record
following the header. When the file is run anywhere, the
load length is used to compute the load address. Run­
anywhere programs are loaded at the top of the system
minus the length. Column PRT represents the execution
priority and the CDATE represents the Julian creation date.

Because the relocatable binary program file consists of the
file header followed by the absolutized relocatable binary
loader followed by the actual relocatable binary programs.
the length in column LLEN is the same as for the loader.

SET STATEMENT

The set statement allows loader locations to be changed.
Locations E4 and ED are set by the loader after loading to
correspond with the following (location F7 is not changed by
the loader):

2 First word address of load

3 Last word address of load

4 Transfer address

The system library editor can be used to change these values
via the set command.

The format of ·SET is:

·SET .Fxxxx,Lxxxx, Txxxx

Where:

xxxx is a one- to four-digit hexadecimal number.

F is the first word address of the load.

L is the last word address of the load.

T is the transfer address.

Anyone or all of the above may be specified in a set
command.

The set command is intended primarily for debugging. In
general, the set function is utilized when erroneous informa­
tion is to be corrected or special circumstances require it.

L1BEDT ERROR MESSAGES

LIBEDT error messages describe the failure of a LIBEDT
function. Appendix F includes a list of the error codes and
their descriptions.

6-5

RELOCATABLE BINARY TAPE
EDITOR (SMART)

SMART (system to maintain a relocatable tape) allows the
user to update and maintain tapes containing relocatable
binary programs. Control statements are entered via the
conversational display terminal.

SMART STATEMENTS

SMART performs the input/output functions listed in table
6-2. An n in the table refers to a decimal digit and x refers
to a character in a symbolic name. Each statement must be
followed by a carriage return and a space precedes the
parameter.

OPERA TOR MESSAGES

If an invalid control statement or an inapplicable parameter
is used, ? ? is printed and control is returned to the user for
correction. Only the EX statement allows control to return
to RTOS.

When a file mark is sensed, SMART backspaces over the file
mark, halts the tape, prints FILE MARK, and returns control
to the user. A file mark does not necessarily mean an error
condition. The user may wish to backspace over a file mark
to permit the addition of programs within a file.

SOURCE TAPE EDITOR (SETUP)

SETUP (source edit tape update program) provides the
capability of creating and updating a magnetic tape file
containing one or more assembly language or DRAFT source
programs. It is assumed that the reader is familiar with
assembler source statements (refer to the RTOS Utility
Assembler Reference Manual) and/or with DRAFT source
statements (refer to the DRAFT Reference Manual).

SETUP operates under control of RTOS and is loaded as any
other binary program. Upon execution, the processor name
SETUP is displayed.

DESCRIPTION

Two types of statements are accepted by SETUP: assembly
language or DRAFT source statements and SETUP control
statements. All source statements are formatted and
written on the output master file. All control statements
are processed as such and never appear on the output tape.

Source statements conform to the format defined in the
RTOS Utility Assembler Reference Manual or in the DRAFT
Reference Manual.

The SETUP control statement functions are grouped as
follows:

• Those used for assigning input/output devices: master­
in, master-out

6-6

• Those used for update purposes: delete, insert, and end
update

• Those used as file control functions: close, copy,
position, list, sequence, no sequence, and exit

SETUP STATEMENTS

Source language statements are accepted by SETUP as free":
form statements and are formatted into fixed-form records
for output on magnetic tape. During an update, all source
language statements input from magnetic tape must be in
fixed form.

Free-Form Statements

Free-form statements, input from the conversational display
terminal, are formatted into fixed-form statements prior to
input. One or more blanks are used to separate the location,
operation code, address, and comment fields.

All information preceding the first end-of-field indicator is
left-justified into the location field. Data between the first
and second end-of-field indicators is left-justified into the
opcode field. Data between 'the second and third end-of­
field indicators is left-justified in the address field. All
remaining data up to the end-of-statement indicator is left­
justified in the comments portion of the record. One or
more spaces is required to separate the address field from
the comments.

An asterisk appearing as the first character of a statement
is considered, along with the remainder of the statement, as
a comment. The only formatting performed is left justifica­
tion into the output record, blank fill, and the addition of
identification and sequence numbers.

Input Statoments

Input statements have the following characteristics: a blank
is the end-of-field indicator for the location, operation code,
and address fields; consecutive blanks are treated as a single
blank except within the comments field; and a carriage
return is the end-of-statement indicator. For example:

LABEL OPCODE ADDRESS COMMENT

Thus, ORG $20DO indicates a blank location field while
TAG ORG $2000 illustrates the use of a location symbol.

Fixed-Form Statements

Each free-form statement is output as one fixed-form, 80-
character record consisting of the following:

Characters

1 to 6

8 to 13

Description

Location Field

Operation Code

96769500 A

Format Function

MI 1\ nn t Master Input

MOI\ nn Master Output

PIl\xxxxxx Position Input

PO 1\ XXXXXX Position Output

CP 1\ XXXXXX Copy Tape

LI List Input

LO List Output

TL Terminate Load

FM nn File Mark

CO Close Output

RI Rewind Input

RO Rewind Output

EX Exit to RTOS

t 1\ indicates a blank

96769500 A

TABLE 6-2. SMART FUNCTIONS

Description

Assigns the input tape to the logical unit specified by nne If
this statement is not used, input is assigned to the standard
input device.

Assigns the output tape to the logical unit specified by nne If
this statement is not used, output is assigned to the standard
output device.

Position input tape forward until the program name XXX xxx is
encountered. If a file mark is encountered before the specified
program name is found, the file mark message is displayed.

Position output tape forward until the program name XXXXXX

is encountered. Functions are identical to those of position
input.

Copies one or more consecutive programs from the input tape
onto the output tape. If XXX xxx is specified, all programs up
to but not including it are copied onto the output tape. When
the program name xxxxxx is encountered, the tape is back­
spaced over the record containing the name before control is
returned to the user. If xxxxxx is not used, only one program
is copied if a file mark is encountered before the program
name is found, and the file mark message is displayed.

Lists on the output comment device the names of all programs
within a file on the input tape and stops at the first file mark.
The file is searched until a NAM or EOL block is encountered.
If a N AM block is found, the program name is displayed on the
console. If an EOL block is found, *T is printed on the
console. All NAM and EOL blocks within the input file
are printed.

Lists on the console the names of all programs within a
file on the output tape. The functions are identical to those
of LI.

Writes an EOL (end of load) block on the output tape. An EOL
block consists of *T.

Writes a file mark on the tape associated with logical unit nne
The file mark is written where the tape is positioned.

Writes a file mark on the output tape, then rewinds and
unloads the tape. The file mark is written where the output
tape is positioned. Control is returned to the user when the
request has been initiated. Thus, the user may continue
operation while the tape is being rewound and unloaded.

Rewinds and unloads the input tape. Since control is returned
to the user when the request is initiated, operation may be
continued while the tape is rewinding.

Rewinds and unloads the output tape. The functions are
identical to those of RI.

Causes an exit from the SMART program and returns control
to RTOS.

6-7

Characters

15 to 30

32 to 72

75 to 80

Description

Address Field

Comment Field

Sequence Field

SETUP arranges each free-form statement into the above
format and assigns identification and sequence numbers if
desired. The first three characters of the name specified in
the NAM statement are used for identification.

SETUP CONTROL STATEMENTS

Control statements allow the user to assign devices. perform
updates. and accomplish certain file control functions. A
slash begins each statement and also separates portions of
the statements. while a carriage return terminates state­
ments.

An example of teletypewriter input is:

/=D/xxxnnnnn

Device Assignment Statements

These allow logical units to be assigned. An example of a
master-in statement is:

/=MI/nn

where nn is a two-digit decimal logical unit number.

This assignment of the input master tape to logical unit nn
must be made prior to an update and refers to the magnetic
tape unit containing the program to be updated. This
assignment is not required during the source program create
phase. If this statement is not used. input is assigned to the
standard binary input device.

The master-out statement is:

/=MO/nn

This assignment of output to logical unit nn must be made
prior to beginning the create/update. During a create or
update, this magnetic tape unit contains the new. updated
program. If this statement is not used. output is assigned to
the standard binary output device.

Update Statements

These statements refer to specific source records that are
not used during a create operation. Records must be
updated in ascending numerical order. A source record may
be referenced by only one update statement.

To delete one statement. use the form:

/=D/xxxnnnnn/xxxnnnnn

6-8

Where:

xxx is the identification number.

nnnnn is the sequence number of the record to be
updated.

Any source language statements that follow the delete
statement are written on the master output until another
control statement is found.

The insert statement is:

/=I/xxxnnnnn

The source language statements following this instruction
are inserted after statement number xxxnnnnn.

The end update statement is:

/=E

SETUP continues to copy and resequence the current
program from input master to output. When a new N AM
statement or a file mark is found on the input master. the
input tape is positioned to the preceding record gap. Since
more than one program can be updated without a full restart
of SETUP. this statement is required to correctly end each
update but does not terminate all operations.

File Control Statements

These statements allow the user to copy source programs
without updating. to position to a particular program. to
close files. and to exit to RTOS.

The copy control statement is:

/=CP/xxxxxx

It instructs the output master to copy the input master until
program name xxxxxx is found and to halt at the record gap
preceding the program NAM statement.

If no program name is specified. the entire input tape up to
a file mark is copied. and the tape is positioned at the
record gap preceding the file mark.

The copy process resequences the output tape unless the No
Sequence option is selected. If multiple programs are
copied. the identification sequence is restarted for each
program.

The position input/output master tape format is:

/=PI/xxxxxx or /=PO/xxxxxx

These statements position the master tape to the program
name xxxxxx and halt at the record gap preceding the
program NAM statement. This function positions' only in the
forward direction.

96769500 A

If no program name is specified, the assigned tape is
positioned at the record gap preceding the first rile mark on
the tape.

The close input master tape (CI) or output master tape (CO)
format is:

/=CI or /=CO

With CI, rewind tape to load point; write a file mark and
rewind the tape to load point.

The list instruction is:

/=LI or /=LO

It instructs the input master (LI) or output master (LO) to
list the N AM records on the standard list device. These
records are listed from the current position up to a file
mark, and the tape is positioned at the record gap preceding
the file mark.

SETUP enables the master-out file to be resequenced; the
sequence statement format is:

/=S

SETUP can also inhibit resequencing the master-out file,
thus maintaining the same identification and sequence
numbers as the input master. Added or replaced statements
are assigned blank sequence numbers. The no sequence
statement format is:

/=NS

If neither /=S or /=NS is specified, sequencing is enabled.

The normal exit to RTOS causes SETUP operations to be
terminated; it must be the last statement used. The format
is:

/=EX

ERRORS

In addition to the standard RTOS system error comments,
procedural errors may occur under SETUP. The following
are typed out during operation of SETUP if the conditions
are detected:

Message

SOl

96769500 A

Meaning

The meaning and action taken depend on the
control being processed.

• Delete or insert - A file mark or end-of­
tape reflective marker on the input tape
was encountered before the specified
statement was found. SETUP rewinds the
input tape, writes a file mark on the
output tape, and backspaces over it.

• Copy and position - A file mark or end-of­
t~pe reflective marker on the input tape
was encountered before the specified pro­
gram name was found. If processing a

Message Meaning

S02

copy statement, the input tape is rewound
to load point. If processing a position
statement, the designated tape is rewound
to load.

• List - The end-of-tape reflective marker
was detected before a file mark was
encoun teredo The tape is rewound to load
point.

An illegal control statement was input.

S03 The end-of-tape reflective marker was sensed
during an output to the master output tape.
SETUP backspaces to the NAM statement for
the program, writes a file mark, and back­
spaces over it.

To recover from the above errors, the teletypewriter bell is
rung and a new control statement is accepted. The
statement is processed according to its type and normal
processing continues.

EXAMPLES

The following SETUP examples assume that logical unit 6 is
on magnetic tape 0 and logical unit 7 is on magnetic tape 1.

Create PROGA via teletypewriter input. ,

Teletypewri ter
Input/Output

SETUP

/=MO/07

NAM PROGA

START ENA $13 LOAD A

END START

/=CO

/=EX

Action

SETUP is in control.

Assign magnetic tape 1 as
output master.

Format into fixed-form
records. Sequence beginning
with PROOOOOL Write on
output master (tape unit 1).

Write file mark on unit 1.
Rewind tape.

Exit to the RTOS System.

Using a tape containing two source programs (PROGA and
PROGB) followed by a file mark, reverse their order and
update PROGB.

Teletypewriter
Input/Output

SETUP

/=MI/06

Action

SETUP is in control.

Assign unit 0 as input
master.

6-9

Teletypewriter
Input/Output

/=MO/07

/=PIIPROGB

/=D/PR000003

/=E

/=CI

/=CP/PROGB

/=CI

/=CO

/=EX

Action

Assign unit 1 as output master.

Position input to second pro­
gram.

Delete third record of PROGB.

Complete transfer of records.
(Unit 1 now contains updated
PROGB as the first source pro­
gram.)

Rewind unit o.

Copy PROGA to unit 1 as second
program.

Close unit O.

Close unit 1.

Exit to the RTOS system.

MAGNETIC TAPE UTILITY
PROCESSOR (MTUP)

The magnetic' tape utility processor (MTUP) is a general­
purpose magnetic tape utility software product that may be
used with RTOS or MSOS operating systems.

The magnetic tape utility processor is designed to provide a
set of functional operations to process magnetic tape files
created on CDC or other standard equipment. The capabil­
ities of the magnetic tape utility processor encompass the
more complex record formats and labeling structures norm­
ally found in business data processing environments. It is
designed to:

• Provide standard ANSI magnetic tape labels.

o Provide a medium through which users may utilize a
CYBER 18 system to reduce the burden of input/output
processing on other systems, such as off-line printing of
listable tapes, initializing of tapes, etc.

• Provide a medium for data file manipulation of
CYBER 18 system-created tapes to augment other
CYBER 18 features: readable and understandable tape
dumps, blocking and unblocking of data files to improve
input/output efficiency, etc.

CONFIGURATION REQUIREMENTS

The magnetic tape utility processor runs under control of
RTOS with a minimum of 4K of available storage in the job
area. It is installed on the system library and loaded into
the job area by pressing the manual interrupt and entering:

MTUP

6-10

A conversational display terminal and two magnetic tape
transports are required. Tape to print functions require only
one transport. A printer is needed if the print and dump
functions are to be used extensively.

FEATURES

The capabilities of the magnetic tape 'utility processor
include:

• Dump - Print the tape in either hexadecimal or
character mode.

• Print - Print the standard listing from tape.

• Copy - Copy tape to tape.

• Verify - Verify data for equality on two tape files.

• Initialize - Write volume 1 tape headers with volume
serial numbers on any tape.

• Labels - Provision for writing and reading standard tape
labels and trailer records.

• Blocking - All functions of the package can process
blocked or unblocked records on either input or output.

• Record Formats - All functions of the system utility
processor can process the following record formats.

-Variable length unblocked records

-Variable-length blocked records

-Fixed-length records

-Fixed-length blocked records

- Undefined records; i.e., fixed- or variable-length
records that follow no standard or are intermixed.

• Positioning - The capability to position tapes to given
records, blocks, or records within a block using any
of the processing functions.

• Conversion - All functions can select any of the following
data conversion options:

-ASCII to EBCDIC

-EBCDIC to ASCII

-ASCII to BCD

-BCD to ASCII

-EBCDIC to BCD

-BCD to EBCDIC

• Selection - Select records for processing, based on
specified criteria (optional module).

For further information refer to the Magnetic Tape Utility
Processor Reference Manual.

96769500 A

UTILITY ASSEMBLER

The RTOS utility assembler provides the capability of
generating relocatable binary object programs from source
programs written in CYBER 18 assembly language. This
language is the same as 1700 Series macro assembly
language except that the following are not allowed:

• Macro instructions (MAC, EMC)

• Variable field definitions (VFD)

• Scaled decimal constants (DEC)

• Conditional statements (IFA, IFC, ElF)

• Use of special characters to terminate alpha strings
(ALF ., msg.)

For detailed information refer to the CYBER 18 RTOS
Assembler Reference Manual or the 1700 MSOS Macro
Assembler Reference Manual.

ASSEMBLING SOURCE PROGRAMS

Load the assembler using the *L and *X statements or by
entering the file name ASSEM. The assembler is loaded in
the job area and must be absolutized at the location where it
is to execute. When the assembler has been read into core,
it types OPT and waits for input of options.

Set up the source programs on the input and enter the
options desired. The following options may be input in any
order:

Control Character

L

D

F

P

96769500 A

Usage

The program listing is written
onto the standard list device
during pass 2 (the first 72 char­
acters of the list record).

When used with the L parameter,
the full list record is output: 72
characters on the first record
and the remaining characters on
the second (split line printout).

When used with the L parameter,
the entire list record is written
on one line.

The relocatable binary program
is written on magnetic tape.

Control Character

M

C

R

E

Control is returned to the sys­
tem.

Allows programs to be continu­
ously assembled without operator
intervention. Omission of this
parameter causes the assembler
to accept a new set of param­
eters after each assembly.

Rewinds all tapes and returns
control to the system.

Causes an end-of-Ioad (EOL)
block to be written on binary
output tape after each assembly.
Omission of this parameter
causes a default to a file mark
on the binary output. In either
case, the tape is backspaced over
the record.

A carriage return is the end-of­
message indicator.

The assembler then reads the source input (pass 1). The
name of the source program is typed on the comment device
at the start of pass 1. Source input is then read up to the
END statement, and pass 1 errors are typed out.

The input is then backspaced to the N AM card. (With card
input the operator must replace the source deck in the
reader.)

The assembler then rereads the source input (pass 2). List
output is produced if requested, and relocatable binary
output is punched if requested. Pass 2 errors are typed out.
The assembly is completed when the END statement is
reread.

If the C option was selected, the next program is assembled
from the source input. This continues until either a MON
card or end-of-file is read; control then returns to RTOS via
the exit request.

If the C option was not selected, the assembler types OPT
and requests input of new options before assembling the next
program.

When the assembler encounters either a MON statement or a
file mark, the message EOL REC is output to the console (if
the P option was specified). Entry of @ or any entry
other than *y ® causes the output tape to be back­
spaced so that subsequent output writes over the end-of-Ioad
record (EOL block or file mark, see option E).

6-11

SYSTEM INITIALIZATION 7

,~. ';'- . ,../

System initialization is the procedure that loads the Real­
Time Operating System (RTOS) programs, data, and other
resident routines into main (core) memory and activates the
monitor. Details of system initialization procedures are
provided in the CYBER 18-10 and 18-20 RTOS Installation
Handbook.

SYSTEM INITIALIZER

The system initializer loads the system programs into core
from relocatable binary cards or magnetic tape. Initializa­
tion begins at the lowest location (towards 0) of core. The
system initializer is provided as an absolute record on cards
or magnetic tape and is loaded into the upper locations of
available memory by a bootstrap loader.

The system initializer is composed of the following modules:
a loader module (RCMLDR), a punch module (RCMPDR), a
control module (RCMCON), and appropriate input drivers
(same as the MSOS system initializer).

If it is necessary to generate a new system initializer by
absolutizing these modules using the relocatable loader, then
the control module must be the first module read in and the
rest of the modules are loaded in higher core locations. All
modules are in run-anywhere form.

CONTROL STATEMENTS

The system initializer accepts the following control state­
ments.

*
This statement causes the system initializer to read the next
control statement from the INPUT device. This causes
initialization to begin if it is entered at the beginning of the
program, or to continue if it is typed after a pause.

*S

This statement assigns a hexadecimal value to an entry
name in the initializer loader table. There are two possible
formats to this statement:

*S,name,hhhh

*S,name,P

Where:

name is an entry na,me.

hhhh is the hexadecimal value being assigned to it.

96769500 A

.... 4,"

P assigns the current value of the location counter
plus one to the name.

*L,hhhh

This statement begins (or continues) loading programs from
the input device and absolutizing them in memory, beginning
at location hhhh. If hhhh is not specified, the current value
of the location counter (equal to 0 initially) is used. If hhhh
is omitted, the comma is also omitted.

*p

This statement is used to advance the output tape forward
one file. It may only be used in response to the READY
OUTPUT message when it is desired to skip past a copy of
the system loader (that has been copied to the output tape)
and write the system file as the second file on the tape.

*G

This statement is used to advance the input tape forward
one file. It may only be used in response to the READY
OUTPUT message and should be used only for the two-pass
mode with tape input to skip over the system initializer
program (file 1) after the input tape has been rewound for
pass 2.

*0

When this statement precedes the *L statement, the loader
information concerning the previous data block declaration
is deleted.

*T

This statement signals the end of the installation material to
the initializer.

*I,hhhh

This statement allows the converter-equipment code of the
initializer input device (card reader or tape unit) to be
specified as any four-digit hexadecimal value.

*O,hhhh

This statement allows the converter-equipment code of the
initializer output device (tape only) to be specified as any
four-digit hexadecimal value.

The initializer is waiting for a control statement from the
console whenever it has displayed the letter Q. It is also

7-1

waiting for a command when the program is first begun and
it has displayed SI. .

SYSTEM INITIALIZER
PROCEDURE

ONE-PASS INITIALIZING

Systems that include a job area and/or allocatable core area
that is sufficient to accommodate the system initializer
program and tables can be loaded in one pass.

In this mode of operation, programs are loaded directly into
core and the load map and entry point symbol table are
generated as the binary input is read in. When the end of
load statement (*T) is read, the message:

READY OUTPUT

is typed if an output magnetic tape unit is available. This
unit can be the same as the unit used to read the binary
input. Provision is made to optionally skip one file (*F) prior
to output of the absolutized system. The resulting system
file can be read back in by the system loader if core is
destroyed.

TWO -PASS IN ITlALIZING

If the applications program system is too large for available
core after loading the initializer, the resident programs
must be initialized in two passes, provided that a magnetic
tape unit is available for punch output (separate from the
input unit).

7-2

In this mode of operation the binary input is read once to
build an entry point symbol table and produce the load map.
The message:

END PASS 1 - READY OUTPUT

is then typed. The input is reread and each binary program
is loaded, absolutized, and then output to tape before
loading the next program into the same available core.
Finally, the absolute programs are read into core from the
output tape by the system loader.

The two-pass method avoids the entry point linkage restric­
tions that were originally imposed by the two-part system
initializer.

SYSTEM LOADER

A system loader is provided to load the absolutized system
from magnetic tape. Installation details for the system
loader are found in the CYBER 18-10 and 18-20 RTOS
Installation Handbook.

The RTOS system may be initialized on a host CYBER 18 or
1700 computer system and the absolutized magnetic tape
output may then be loaded on the actual CYBER system.
The RTOS system initializer does not provide for pupching
absolute binary cards directly. However, the system tape
produced by the initializer may be converted to cards and
the cards may then be loaded.

The system loader is loaded by the same (manually entered)
bootstrap as the system initializer. Typically, the loader is
set up as file 0 and the absolutized system as file 1 of the
system library tape.

96769500 A

ENGINEERING FILE 8

. '" p . ; 4 '.;s;¥ J,.,.j,a., ,;u;· ·,9",8 ';iMVIAH-

The engineering file preserves driver error information for
system maintenance. To save memory, RTOS utilizes
available space in the physical device tables.

DEVICE FAILURE HANDLING

When an input/output driver determines that an error
condition has occurred, it reports the error to the error
logging routine in RCMEFD. The re-entrant calling se­
quence is:

15 G 5 0

Q register: I ... ___ LO_G_I_CA_L_U_NI_T ___ .. I_E_RR_O_R_C_O_D_E-..I

I register: Set to the driver physical device table address.

The format to call the error logging routine is:

RTJ+ LOG.

An alternate version RCMEFM is used instead of RCMEFD
for systems with mass storage devices. For mass memory
failures, RCMEFM also logs the failure on the system
comment output device with the message:

MM ERR xx LU=yy S=ssss

Where:

xx is the error code.

yy is the logical unit.

ssss is the hardware status.

DEVICE FAILURE STORAGE

Words 13 and 14 of the physical device table are used by
RTOS to save the number of errors and the status after the
last error. In MSOS these words are used to designate the
mass-memory sector number and length for a mass-memory
resident driver, respectively.

WORn 13

WORn 14

96769500 A

15

Physical Device Table

10 9 o
ecode ERROR COUNT

STATUS ON LAST ERROR 1

fMttSg"I'rl¥§ ';wall! ;;;;;;;; §iU ":;;j"; i"i"; 'g,*·,·j4·:*¥g;'*t~).g,*g;k-··

If ecode = 3F16, then all errors are counted. The error count
is the number of errors that have occurred having a code
equal to the error code specified by ecode. When any error
occurs the last status is transferred from word 12 to
word 14.

DEVICE FAILURE LISTING (EFLlST)

A nonresident utility routine is provided that may be loaded
and executed under RTOS to print the engineering file. It is
loaded from the input unit using the *L statement or from
the system library by entering the file name EFLIST. After
loading and initial setup, the job processor types J.

To list the engineering file for logical unit lu without
resetting the error count, enter:

*O,lu

If lu is blank, all units are listed.

To set the error code to ec and reset the error count to 0 for
the specified lu, enter:

*O,lu,ec

ec is a decimal number from 0 to 62. If ec is greater than or
equal to 63, all errors are counted.

Engineering file data is typed in the following format:

LOGICAL UNIT nn description

STATUS ON LAST ERROR ssss

CURRENT STATUS cccc

nnnn ERRORS OF CODE ec

Where:

nn is the logical unit number.

description is obtained by decoding the physical device
table type code.

ssss is the status on the last error (of any type).

cccc is the current status (word 12).

nnnn

ec

is the number of errors that have been
counted.

is the error code that was counted.

If ALL, all errors were counted.

On completion, J is typed.

8-1

GLOSSARY A

The glossary is intended to assist in the communication of
facts and ideas related to information processing.

In all instances, a comparison has been made to the
American National Standards Institute (ANSI) glossary to
ensure consistency with standard nomenclature wherever
possible.

ABORT To terminate a program when a condition
(hardware or soft ware) exists from which the program
or computer cannot recover

ABSOLUTE BINARY PROGRAM - A program that must be
loaded according to specific logical addresses

ABSOLUTE PROGRAM A program composed of
command sequence storage information, which may be
loaded by a checksum loader

ADC - Analog-to-digital converter

AGENCY A composition of processors dedicated to
performing a single task

AMPLITUDE INACCURACY - (1) The relative amplitude
error of analog values; the maximum absolute allowable
error for the entire acquisition process (including cable
transmission) is related to the amplitude peak value. (2)
The accuracy a wave or alternating current value
maintains during its maximum departure from its zero
value

ANALOG CHANNEL - A channel that transmits an analog
quantity (a voltage) rather than a binary value. The
number of volts represents the value transmitted by the
channel.

ASSEMBLER A computer program that generates
machine instructions from symbolic input data by
translating symbolic operation coding into computer
operating instructions, assigning locations in storage for
successive instructions or computing absolute addresses
from symbolic addresses. An assembler generates
machine instructions from symbolic codes and produces,
as output, nearly the same number of instructions or
constants as were defined in the input.

ASSIGN - To reserve a part of a computing system for a
specific purpose (usually refers to an active part such as
an I/O device (e.g., tape unit)

ASYNCHRONOUS Not synchronous; not happening,
existing, or arising with a fixed-time correlation

AUTOLOAD To .place the resident routines of the
operating system in core storage

AUTRAN-DACS Automatic translator; a complete
software system for either batch-sequencing or continu­
ous process control, which can be configured, param­
eterized, and installed by the user. It is a flexible,

96769500 A

English-like language that allows a process engineer to
specify the process system and describe control actions
conveniently. It can be intermixed with FORTRAN
mathematical calculations. AUTRAN incorporates the
parameterization of the integral data acquisition and
control system.

BACK-UP STORAGE - Copies of permanent file images on
tape (as generated by the disk-to-tape program)

BA TCH - In MSOS, an object program running in a stacked
job manner; shares the central processing unit with the
priority program when a priority program is present and
executes only when the priority program is not in
control of the processor. Batch interrupts have lowest
priority in the interrupt processing priority scheme.

BENCHMARK A point of reference from which
measurements or comparisons for computer perform­
ance can be made

BIAS - A quantity added to the true exponent when packing
a floating point number. Bias permits expression of
both positive and negative exponents by positive num­
bers.

BUFFERING - Overlapping execution of one or more I/O
routines with the execution of the program that called
them

BYTE - A sequence of adjacent binary digits operated upon
as a unit and usually shorter than a word; within the
CYBER 18, a byte is eight bits.

CALIBRATION - Conversion of a quantity into measurable
units (engineering units)

CENTRAL MEMORY - Refers to the directly addressable
core storage of computers; abbreviated as CM

CHAINING - A system for reading or writing records in
which each record belongs to a list or group of records
and has a linking field for tracing the chain

CHECKSUM - A summation of digits or bits used primarily
for checking purposes and summed according to an
arbitrary set of rules

CIRCULAR BUFFER - Refers to a buffer mechanism that
allows write/read of data in a rotating manner; con­
trolled by in/out and limit pointers

CLOSED LOOP CONTROL A system capable of
repeatedly reading data values from an object, compar­
ing skew with desired values, and directly feeding back
information into the object to correct value read

COMMON An area of memory that may be shared
between batch subprograms; common may not be preset
with data.

A-I

COMPONENT A constituent part or ingredient; a
software component is ao basic logical software unit;
several components form a module.

CONCENTRATOR - A device connecting a set of input
lines with a set of output lines; the number of input
lines normally is greater than the number of output
lines.

CONTACT CLOSURE - A method of generating a signal by
opening a closed electrical connection; abbreviated
as CC

CONTROLLER - A hardware device that controls access
and data transfer to I/O units which are connected to it

CORE RESIDENT - The part of the operating system that
resides permanently in central memory; it contains the
code. various system tables. special buffers. etc. and
begins at absolute location zero in the CM; abbreviated
as CMR.

CORE SWAP - The contents of unprotected core is stored
on mass storage and unprotected core is protected and
made available for assignment by SPACE requests.

DAC - Digital-to-analog converter

DAISY CHAIN Refers to a hardware capability to
connect devices in series up to a maximum channel
length

DATA AREA - An area of memory that may be preset with
data at load time and shared between subprograms; both
batch and priority programs may have data areas.

DATA BLOCK - Equivalent to labeled common

DATA REDUCTION - The process of transforming data
into intelligible form by averaging. smoothing. adjust­
ing. scaling. and ordering experimental readings

DDC - Direct digital control

DESTRUCTIVE PROCEDURE A procedure that is
modified in place when executed. For example. a
return jump to a subroutine modifies the entry point;
therefore. the return jump and the subroutine are a
destructive procedure.

DIAGNOSTIC ROUTINE - A program or routine designed
to locate and explain errors in a computer routine or
malfunctions of a hardware component

DICHOTOMY - A division into two subordinate classes.
e.g •• all zero and all nonzero.

DIGITAL CHANNEL - A channel that is transmitting a
binary value rather than a voltage

DIGITAL INPUT SYNCHRONIZATION - The process by
which digital data input operations are synchronized
with external ° devices whose outputs change so that
sampling is not done while they are changing

DIGITAL-TO-ANALOG CONVERTER A device that
converts digital ° channel data to an analog signal;
abbreviated as DAC

A-2

DIRECT DIGITAL CONTROL A closed loop control
system in which the output depends directly on input
and computation (all in one frame time); abbreviated as
DOC

DIRECT STORAGE ACCESS - Method of accessing blocks
of data directly in CYBER 18 core memory by the
peripheral equipment. without using the A/Q channel;
abbreviated as DSA

DOUBLE BUFFERING - Two accessing elements that share
a buffer space; e.g •• processing data in one buffer while
data is being input to an alternate buffer

DRIVER - A program whose main function is to perform a
physical I/O transfer of data between one storage
medium and another (e.g •• between central memory and
mass storage, between central memory and magnetic
tape)

DSA - Direct storage access

END-OF-FILE - Information designating the termination
point of data or of a program

END-OF-FILE INDICATOR - A signal supplied by an input
or output unit that makes an end-of-file condition
known to the routine or operator controlling the device

EXECUTE
routine

To carry out an instruction or perform a

EXECUTION The process whereby the instructions
contained in a program direct the activities of the
central processing unit

EXTERNAL INTERRUPT - An interrupt that occurs as a
result of conditions within peripheral devices or their
immediate interfaces; interrupts that occur as a result
of conditions within a data channel are classified as
external or internal. according to specifications set
forth in the individual hardware system reference
manuals.

FIELD LENGTH - The number of central memory words
that a program occupies; abbreviated as FL

FILE ORDINAL - A number equated to a mass storage file
for the duration of the job

GHOST INTERRUPT - An unsolicited interrupt from a
peripheral device or an unused line

HALF-DUPLEX CHANNEL A channel capable of
transmitting and receiving signals, but only in one
direction at a time

HANG-UP - When a request is unable to be completed
because a peripheral device is not able to issue the
necessary interrupt. the condition is called an I/O
hang-up.

HOOK - Any piece of software that is embedded in the
operating system. whose presence serves only to gener­
ate or save information about the activities of the
operating system and whose presence in the operating
system is not essential to and does not alter the
functions of the operating system

96769500 A

HOUSEKEEPING - (1) Operations in a routine that do not
contribute directly to the solution of a problem, but
which are necessary to coordinate with the operation of
the computer (2) Those necessary steps of computer
operation that are common to nearly all instructions of
a particular computer

IFIPS - International Federation for Information Processing
Societies

INDEX SEQUENTIAL - A method of file organization in
which records are in a logical collating sequence,
according to a key that is part of every record; a
separate index or levels of indexes are maintained to
give the loclltion of certain records or segments of the
file. The records may be accessed sequentially in a
serial manner or directly in a random manner, through
the index structure.

INTERLEAVING A technique in multiprogramming
whereby segments of one program are inserted into
another program so that the two programs can be
processed si mul taneously

INTERLOCK - (1) To ensure that only one process at a
time can update something in a computer system (e.g.,
a system table) (2) The result of interlocking; the user
can obtain an interlock on a table, allowing him
exclusive access to that table

INTERNAL INTERRUPT - An interrupt occurring as a
result of conditions within the computer mainframe or
immediate interfaces

JOB TERMINATION Those activities necessary to
logically terminate job execution

LATCHING RELAY Refers to a type of relay with
contacts that remain in their last position if power fails
(a nonlatching type relay's contacts open if power fails);
in connection with contact closures, the term failsafe
refers to a failsafe condition for the external equip­
ment; i.e., the hardware that connects to the equip­
ment must be selected in such a way that no harm is
done to the external devices in the event of a power
failure.

LOADING - The process of transferring a program from
external devices to storage; in RTOS the relocatable
loader transfers a relocatable program to the first
sequential available positions in core.

LOGICAL UNIT - A number that identifies a specific I/O
. device or function

MAN-MACHINE COMMUNICATION - Software compo­
nents that establish communication between the operat­
ing system and the operators

MASS-STORAGE RESIDENT - That part of the system that
resides on mass storage and which is brought into core
when needed by the system

MASTER CLEAR - A switch that returns a computer or
peripheral devices to initial conditions; abbreviated as
MC

96769500 A

MEMOR Y PROTECT Hardware and software that
prevent batch programs from destroying priority or
operating system core storage

MODULUS - An integer that describes certain arithmetic
characters of registers, especially counters and accum­
ulators, within a digital computer; the modulus of a
device is defined by R for an open-ended device and
R -1 for a closed (end-around) device, where R is the
base of the number system used, and n is the number of
digital positions (stages) in the device. Generally,
binary devices with modulus 2 use twos complement
arithmetic; devices with modulus 2 -1 use ones comple­
ment.

NONREUSABLE PROCEDURE
destructive and noninitializing.

ODEBUG - On-Line Debug Package

A procedure that is

OPEN LOOP - A loop used to control a repeated operation,
but having no feedback for self-correcting action;
contrast with closed loop

ORDINAL - (1) A number that specifies the relative order
of an element (such as a word in a table in memory)
within a collection of items (i.e., all the words of the
table) (2) In assembly language coding, the ordinal of
the first element in a collection is 1.

ORIGIN - (1) The absolute address of the beginning of a
program or block (2) In relative coding, the absolute
address to which addresses in a region are referenced

OVERLAY PROCESSING - A technique for processing a
program whose total storage requirement for instruc­
tions exceeds available memory; the user divides the
program into elements that are brought into core at
different points of processing. When brought into core
memory, an element of an overlay program may occupy
the same storage locations as another element that was
previously executed.

PART 0 A user-defined block of contiguous memory
extending from location 0 up to the location ENDOV 4;
Part 0 must be less than 32,768 words.

PART 1 Part 1 is the block of contiguous memory
immediately following part 0 and extending to the
highest available core location, 65K (for MSOS only).

PARTITION - One of a number of segments of a given area
in core into which a mass-storage resident program may
be read and executed

POSITIONING TIME - The time required for the access
arm to move a selected track on a disk

POSTAMBLE - A group of special signals recorded at the
end of each block on phase encoded tapes for the
purpose of electronic synchronization

PREAMBLE - A group of special signals recorded at the
beginning of each block on phase encoded tapes for the
purpose of electronic synchronization

A-3

PRIORITY - A scheme for determining that a routine or
job is to be executed before another.

PRIORITY LEVEL - All programs are assigned a priority
level, which determines the use of the central proces­
sor. The highest program priority is 15; the lowest
is -1.

PROGRAMMING SYSTEMS REPORT - A form containing a
listing of code to replace or to be added to a specified
software component; form AA1901; abbreviated as PSR

PSR - Programming systems report

RE-ENTRANT - Programs that may be interrupted, called
by interrupting programs, and resumed at the point of
interruption without loss of continuity. A program may
be re-entrant to any level; an interrupted program
might be called again, etc.

RE-ENTRANT CODE - A code that does not alter itself
during execution. The same body of code may be used
concurrently by two or more processors. This feature
saves space as does a serially reusable subroutine. It
also saves time because there is no waiting. Re-entrant
subroutines rely quite heavily on the use of registers
especially for use in addressing so that each task has its
own data storage area and so that all valuable informa­
tion is stored if the processor is interrupted.

RELOCATABLE PROGRAM (OBJECT DECK) - A program
that includes control information regarding program
name, entries, externals, transfer address, and com­
mand sequence storage; it may be loaded anywhere in
absolute form by a relocating loader.

REQUEST PRIORITY The priority of a request with
respect to other requests; determines when the request
is processed

RESPONSE TIME The time interval between the
occurrence of an event and the perception of some
action at the source of the event

RUN-ANYWHERE Programs that execute properly
regardless of where they are executed in core memory;
all data internal to the program is referenced by
relative addressing.

SAMPLING RATE The rate at which collections of
physical quantities are made; e.g., if a pressure is
measured each microsecond, the sampling rate is 1000

. measurements per second or 1000 Hz (1 kHz)

SCALING - Changing the value of a quantity by a factor in
order to bring its range within prescribed limits

SECTOR MARKS Disk tracks that are marked off in
equidistant points for addressing purposes

SEQUENTIAL FILE - A file organized so that records are
processed one after the other in their physical se­
quence; the records mayor may not be in a logical
sequence. Access to the records is in a serial manner.

SEQUENTIAL FILE ACCESS - A process for obtaining
information from or placing information into a file

A-4

where the access time depends on the number of
undesired logical records that must be processed before
reaching the desired location in the file (also referred
to as serial access); a file on magnetic tape can only be
accessed sequentially.

SERIAL RECORDING - Consecutive recording of bits of
data on a single path (track)

SET POINT - Data output that informs the test object as
to what reference point it should start and maintain

SIGNAL CONDITIONING The transformation of an
analog signal so that it can be processed by an AID
converter

SLEW - To pass data until desired end of input pattern is
sensed

SPOOLING - A technique of transferring jobs and data
from one input device to another (usually a mass
storage file) for processing later

STACK - A stack may be either a pushdown or pop-up
stack. In a pushdown, pop-up stack all entries must be
contiguous.

SW AP AREA - A predefined area on mass memory where
jobs may be swapped

SWAPPING - The transfer of a program in unprotected
central memory to mass storage, making the area
available to the protected foreground

SYNCHRONOUS - Pertaining to a system in which all
operations and events are controlled by equally spaced
pulses from a clock

THREAD - A list of entries that each contain a pointer to
the next entry; e.g., logical unit thread

THROUGHPUT - The productivity of a computer based on
all aspects of an operation; throughput of computers is
often compared by calculating the amount of time
required by each computer to complete the same
processing.

TIME ACCURACY - A parameter defining the imposed
tolerance on intervals between point acquisition. Sig­
nals with scan frequencies s 800 Hz to be 0.1 % time
accurate; i.e., at f scan = 100 Hz, each time interval
(TI) should fall within the following limits:

10 milliseconds - 10 microseconds s TI s 10 milli­
seconds + 10 microseconds (or 9.99
milliseconds s TI s 10 milliseconds)

TRANSDUCER - A device for converting energy from one
form to another

UPDATE - (1) To mOdify a file with current information
according to a specified procedure (2) To modify an
instruction so that its operand address is changed by a
stated amount each time the instruction is performed

USER PROGRAM - An object program loaded and entered
under RTOS control; includes batch and priority
programs and library routines

96769500 A

USER'S EXECUTABLE CODE - That portion of a program
that represents steps that the computer performs; for
example, in FORTRAN, the GO TO statement results in
executable code.

USER'S WORKING AREA - That portion of a program that
results in storage for data prior to post-processing; for

96769500 A

example, in FORTRAN, the COMMON statement gener­
ates a working area.

WORST CASE That which gives maximum stress or
consumes maximum time; e.g., the pattern of Os and Is
in' storage that creates the greatest noise or the
maximum possible time between two significant pro­
gramming operations

A-5

SYSTEM DIRECTORY B

W& •

RTOS allows the user to add a customized system directory
that consists of a table of absolute program starting
addresses. Other programs may use the standard scheduler
request and specify an index to the system directory instead
of an actual address (refer to section 3).

table). The address of RAT is stored in location EBtS in low
core. Figure B-1 is an example of a system directory.

The SYSDAT program must be re-assembled and installed
with the system resident programs.

The directory consists of one-word entries, with the first
entry having the entry point name RAT (routine address

RTOS does not use internal system directory calls.

96769500 A

*
* USER-SUPPLIED SYSTEM DIRECTORY ADDED TO SYSDAT

* EQU
ADC
ADC
ADC

RA T(*),SLDIRY(*)
PROGO
PROG1
PROG 2

EXT PROGO
EXT PROG1
EXT PROG2

SYSTEM DIRECTORY INDEX 0
SYSTEM DIRECTORY INDEX 1
SYSTEM DIRECTORY INDEX 2

END OF SYSDAT

Figure B-1. System Directory Example

B-1

COMMUNICATIONS REGION C

,·EA A

The area of core from 0 to FF is used as a communications
area because it can be addressed directly by a one-word
instruction. Its contents are defined in table C-1; all
locations are protected except as noted.

MSOS uses the following locations for different purposes
than RTOS: CO, C1, E7, EE, and F3. The MSOS extended
core table is not required by RTOS. Refer to the MSOS
Reference Manual.

Options are provided to reduce core requirements by loading
RTOS stacks into low-core areas 47 through B2 and/or C3
through E7. Q.efer to the RTOS Installation Manual.

TABLE C-l. COMMUNICATIONS AREA CONTENTS

Location Contents

0 0001010000000000
1 Address of system restart routine
2 0000000000000000
3 0 01
4 0 011
5 0 0111
6 0 01111
7 0 01 1
8 0 01 1
9 0 01 1
A 0 01 1
B 0 01 1
C 0 01 1
D 0 01 1
E 00001 1
F 0001 1
10 001 1
11 01 1
12 1 1
13 1 10
14 1 100
15 1 1000
16 1 10000
17 1 10 0
18 1 10 0
19 1 10 0
1A 1 10 0
1B 1 10 0
1C 1 10 0
1D 1 10 0
1E 1 10 0
1F 1110 0
20 110 0
21 10 0
22 0 0
23 0 1
24 0 10
25 0 100
26 0 1000
27 0 10000
28 0 10 0
29 0 10 0
2A 0 10 0
2B 0 10 0
2C 0 10 0

96769500 A

Hexadecimal/
Equivalent

1400

0
1
3
7
F

IF
3F
7F
FF

IFF
3FF
7FF
FFF

1FFF
3FFF
7FFF
FFFF
FFFE
FFFC
FFF8
FFFO
FFEO
FFCO
FF80
FFOO
FEOO
FCOO
F800
FOOO
EOOO
COOO
8000
0000

1
2
4
8

10
20
40
80

100
200

C-1

Location

2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47-B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
CO
C1
C2
C3t

C4t
C5-E3
E4
E5
E6t
E7
E8
E9t
EA
EB
EC
ED
EE
FO
F1

TABLE C-l. COMMUNICATIONS AREA CONTENTS (Continued)

Contents

o 10 0
o 10 0
o 10 0
o 10 0
010 0
10 0
1 10
1 101
1 1011
1 10111
1 101 1
1 101 1
1 101 1
1 101 1
1 101 1
1 101 1
1 101 1
1 101 1
11101 1
1101 1
101 1
01 1
o 101
o 110
o 1001
o 1010

Reserved for user applications
Logical unit number of scratch unit
Top of thread of entries in schedule stack
Location of FNR
Address of complete request subroutine used by drivers
Address of MASKT
Core location of top of interrupt stack
Address of request exit
Address of volatile storage release routine
Address of volatile storage assignment routine
Address of absolutizing routine for logical unit
Address of S parameter absolutizing routine
Address of C parameter absolutizing routine
Address of N parameter absolutizing routine
R TOS binary to ASCII decimal subroutine (unprotected)
RTOS binary to ASCII hexadecimal subroutine (unprotected)
Logical unit number of the library unit
Most significant sector number of first program library
directory block
Least significant sector number of first program library directory block
Reserved for FORTRAN (unprotected)
Used for load-and-go (unprotected)
Reserved for FORTRAN (unprotected)
Length of system library directory
Address of LOG1A logical unit table
Real-time clock counter
Core address of extended core table
Location of dispatcher
Core location of system library directory
Temporary highest unprotected location + 1
Temporary lowest unprotected location - 1
R TOS ASCII field decode subroutine (unprotected)
Core location of first available volatile storage
Length of table of preset entry points

t Used by MSOS; always 0 in RTqS.

C-2

Hexadecimal/
Equivalent

400
800

1000
2000
4000
8000
FFFE
FFFD
FFFB
FFF7
FFEF
FFDF
FFBF
FF7F
FEFF
FDFF
FBFF
F7FF
EFFF
DFFF
BFFF
7FFF

5
6
9
A

96769500 A

TABLE C-1. COMMUNICATIONS AREA CONTENTS (Continued)

Hexadecimal/
Location Contents Equivalent

F2 Location of table of preset entry points
F3 RTOS MI subprogram set-up and error routine (unprotected)
F4 Location of entry for system requests
F5 Largest core location used
F6 Highest unprotected location +1 (end of job area +1)
F7 Lowest unprotected location -1 (start of job area -1)
Fa Address of internal interrupt processor
F9 Logical unit number of standard input device
FA Logical unit number of standard binary output device
FB Logical unit number of standard print output device
FC, Logical unit number of output comment device
FD Logical unit number of input comment device
FE Location of interrupt stacker program
FF Memory index register I (unprotected)

96769500 A C-3

PHYSICAL DEVICE TABLE D

The physical device tables are included in SYSOAT (the
system and parameters program).

RTOS utilizes words 13 and 14 (MASLGN and MASSEC) for
engineering file storage (drivers are not allowed to be mass­
storage resident under RTOS); otherwise, the definition of
these tables is identical to the MSOS definition.

96769500 A

t "

PHYSICAL DEVICE TABLE

Each device has a physical equipment table that contains the
interfacing information specified by the user to the device
(figure 0-1). It contains the entry addresses to the driver
responsible for operating the device, the station address that
tells the driver which device to use, and the information
that allows the driver to fulfill the current request. The
table contains at least 16 words for a device. Words 0
through 15 have a standard function for all devices.
Additional words are added for special use by drivers.

0-1

WORD 15 14 11 10 9 8 7 6 4 3 o
o 11 0 1 0 0 1 10 I 0 0 0 01
1 DRIVER INITIATOR ADDRESS

2 DRIVER CONTINUATOR ADDRESS

3 DRIVER 1/0 HANG-UP DIAGNOSTIC ADDRESS

4 DIAGNOSTIC CLOCK

5 LOGICAL UNIT CURRENTLY ASSIGNED TO THIS DEVICE

6 CURRENT REQUEST PARAMETER LIST LOCATION

7 CONVERTER I EQUIPMENT
CODE I STATION CODE

8 REQUEST STATUS BITS

9 STA TUS BITS t

10 CURRENT LOCATION FOR DRIVER

11 LAST LOCATION +1 FOR DRIVER

12 LAST EQUIPMENT STATUS READ tt

13 ERROR CODE 1 ERROR COUNT

14 STATUS ON LAST ERROR

15 TEMP AND FNR RETURN ADDRESS

~
~

~

-
tREFER TO WORD 8 DESCRIPTION

ttREFER TO THE 1700 MSOS DIAGNOSTIC HANDBOOK
ttt THESE WORDS CONTAIN CERTAIN ENGINEERING FILE ENTRIES

025-8

Figure 0-1. Physical Device Table

D-2

SYMBOLIC
NAME __-__

ELVL

EDIN

EDCN

EDPGM

EDCLK

ELU

EPTR

. EWES STANDARD
FOR ALL

EREQST DEVICES

ESTATI

ECCOR

ELSTWD

ESTAT2

MASLGNttt

MASSECttt

RETURN

OPTIONAL BY
DRIVER

I

96769500 A

ASCII CONVERSION TABLE
E

itfMf5fUMH·' 5fJg . ,'jiH'g! i4$1 ~9 ,;';51 ¥·#'f· sij:w¥'4·,·¢jtIIW ,.4;:WS ep,4if*UV&4'" 1SiVt x,¥h*g.f ;;;1AAf ·';;;:";£;;;;;;;';;;·t';':? -

The 1963 American Standard Code for Information Inter­
change (ASCII) is used by RTOS. ASCII code uses eight bits:
bit 8, which is always 0, is omitted in the table below.
Bits 1 through 4 contain the low-order four bits of code for

ASCII Bit
Symbol Configuration

NULL 000 0000

SOM 000 0001

EOA 000 0010

EOM 000 0011

EOT 000 0100

WRU 000 0101

RU 000 0110

BELL 000 0111

FEO 000 1000

HT/SK 000 1001

LF 000 1010

VTAB 000 1011

FF 000 1100

CR 000 1101

SO 000 1110

SI 000 1111

DCO 001 0000

DC1 001 0001

DC2 001 0010

DCa 001 0011

DC
4

(STOP) 001 0100

ERR 001 0101

SYNC 001 0110

LEM 001 0111

So 001 1000

Sl 001 1001

S2 001 1010

S3 001 1011

S4 001 1100

S5 001 1101

S6 001 1110

S7 001 1111

96769500 A

the character in that row. Bits 5 through 7 contain the high­
order three bits of the code for the character in that
column. The code is given in ascending sequence.

Hexadecimal Meaning Number

0 Null/idle

1 Start of message

2 End of address

3 End of message

4 End of transmission

5 Who are you

6 Are you

7 Audible signal

8 Format effector

9 Horizontal tab skip (punched card)

A Line feed

B Vertical tabulation

C Form feed

D Carriage return

E Shift out

F Shift in

10 Device control/data link escape

ll} 12· Device controls

13

14 Device control/stop

15 Error

16 Synchronous idle

17 Logical end of media
18 ""I

19

1A

1B Information separators
Ie

1D

IE

IF ..

E-1

6-Bit 6-Bit
Extended Extended

8-Bit BCD 8-Bit BCD
ASCII 026 029 Magnetic ASCII 026 029 Magnetic
Codes Punches Punches Tape Codes Punches Punches Tape

2016 No Punch No Punch 208 4016 0-8-7 8-4 378
21t 11-8-2 12-8-7 52 . 41 12-1 12-1 61

22 8-7 8-7 17 42 12-2 12-2 62

23t 12-8-7 8-3 77 43 12-3 12-3 63

24 11-8-3 11-8-3 53 44 12-4 12-4 64

25t 0-8-5 0-8-4 35 45 12-5 12-5 65

26t 8-2 12 00 (35)tt 46 12-6 12-6 66

27t 8-4 8-5 14 47 12-7 12-7 67

28 0-8-4 12-8-5 34 48 12-8 12-8 70

29t 12-8-4 11-8-5 74 49 12-9 12-9 71

2A 11-8-4 11-8-4 54 4A 11-1 11-1 41

2Bt 12 12-8-6 60 4B 11-2 11-2 42

2C 0-8-3 0-8-3 33 4C 11-3 11-3 43

2D 11 11 40 4D 11-4 11-4 44

2E 12-8-3 12-8-3 73 4E 11-5 11-5 45

2F 0-1 0-1 21 4F 11-6 11-6 46

30 0 0 12 50 11-7 11-7 47

31 1 1 01 51 11-8 11-8 50

32 2 2 02 52 11-9 11-9 51

33 3 3 03 53 0-2 0-2 22

34 4 4 04 54 0-3 0-3 23

35 5 5 05 55 0-4 0-4 24

tRefer to note 1 below.

ttRefer to note 3 below.

NOTES

1. To operate in 026 punched card mode, ASCII 63 options are selected. To operate in 029 punched card mode, ASCII 68
options are selected. These options are assembly-time options for each driver affected.

2. The CDC Standard 1.10.003 is supported by an assembly option. For CDC ASCII mode of operation, the card punches
12-8-2 and 12-0 are stored internally as 7B. The card punches 11-8-2 and 11-0 are stored internally as 7D. For
line printer operations, the internal codes 7B and 7D are converted to 58 and 5D to allow printing the hardware
compatible graphic characters [(left bracket) and] (right bracket).

3. Since 1832 magnetic tape controllers do not provide any code conversion, BCD code 00 is illegal and causes a noise
record or BCD code 35 is substituted for the illegal 00 code to prevent tape errors.

On tape write operations, .the ASCII codes 25
16

(%) and 26
16

(&:) are written as BCD 35
8

•

On tape read operations, the BCD code 35
8

is always translated to an ASCII $25 (%).

E-2 96769500 A

6-Bit 6-Bit
Extended Extended

8-Bit BCD 8-Bit BCD
ASCII 026 029 Magnetic ASCII 026 029 Magnetic
Codes Punches Punches Tape Codes Punches. Punches Tape

36 6 6 06 56 0-5 0-5 25

37 7 7 07 57 0-6 0-6 26

38 8 8 10 58 0-7 0-7 27

39 9 9 11 59 0-8 0-8 28

3.'\ 8-5 8-2 15 5A 0-9 0-9 31

3B 11-8-6 11-8-6 56 5Bt 12-8-5 12-8-2 75

3Ct 12-8-6 12-8-4 76 5Ct 0-8-2 0-8-2 36

3Dt 8-3. 8-6 13 5Dt 11-8-5 11-8-2 55

3Et 8-6 0-8-6 16 5E 11-8-7 11-8-7 57

3Ft 12-8-2 0-8-7 72 5Ft 0-8-6 0-8-5 32

tRefer to note 1 below.

NOTES

1. To operate in 026 punched card mode, ASCII 63 options are selected. To operate in 029 punched card mode, ASCII 68
options are selected. These options are assembly-time options for each driver affected.

2. The CDC Standard 1.10.003 is supported by an assembly option. For CDC ASCII mode of operation, the card punches
12-8-2 and 12-0 are stored internally as 7B. The card punches 11-8-2 and 11-0 are stored internally as 7D. For
line printer operations, the internal codes 7B and 7D are converted to 5B and 5D to allow printing the hardware
compatible graphic characters [(left bracket) and] (right bracket).

3. Since 1832 magnetic tape controllers do not provide any code conversion, BCD code 00 is illegal and causes a noise
record or BCD code 35 is substituted for the illegal 00 code to prevent tape errors.

On tape write operations, the ASCII codes 25
16

(%) and 26
16

(&) are written as BCD 35
8

,

On tape read operations, the BCD code 35
8

is always translated to an ASCII $25 (%).

96769500 A E-3

ASCII to EBCDIC t ASCII to EBCDIC ASCII to EBCDIC

o to IFtt 3E 3F 6F 5F 5F

20 40 40 3F 60 79

21 5A 41 Cl 61 81

22 7F 42 C2 62 82
23 7B 43 C3 63 83

24 5B 44 C4 64 84

25 6C 45 C5 65 85

26 50 46 C6 66 86
27 7D 47 C7 67 87

28 4D 48 C8 68 88

29 5D 49 C9 69 89

2A 5C 4A D1 6A 91
2B 4E 4B D2 6B 92

2C 6B 4C D3 6C 93

2D 60 4D D4 6D 94

2E 4B 4E D5 6E 95

2F 61 4F D6 6F 96

30 FO 50 D7 70 97

31 Fl 51 D8 71 98

32 F2 52 D9 72 99

33 F3 53 E2 73 A2

34 F4 54 E3 74 A3

35 F5 55 E4 75 A4

36 F6 56 E5 76 A5

37 F7 57 E6 77 A6

38 F8 58 E7 78 A7

39 F9 59 E8 79 A8

3A 7A 5A E9 7A A9
3B 5E 5B 4A 7B CO

3C CE 5C FA 7C 6A

3D 7E 5D CC 7D DO

3E EC 5E 6D FF Al

7F 3E

t All codes are in hexadecimal notation.

ttInvalid ASCII code; conversion is made to invalid EBCDIC code (3E).

E-4 96769500 A

EBCDIC to ASCII f EBCDIC to ASCII EBCDIC to ASCII

o to 2Ftt 7F 83 63 CAtCB 7F
3F 40 84 64 CC 5D
40 20 85 65 CD 7F
41 to 49tt 7F 86 66 CE 3C
4A 5B 87 67 CF 7F
4B 2E 88 68 DO 7D
4C 7F 89 69 Dl 4A
4D 28 8A to 90tt 7F D2 4B
4E 2B 91 6A D3 4C
4F 7F 92 6B D4 4D
50 26 93 6C D5 4E
51 to 59tt 7F 94 6D D6 4F
5A 21 95 6E D7 50
5B 24 96 6F D8 51
5C 2A 97 70 D9 52
5D 29 98 71 DA to Eltt 7F
5E 3B 99 72 E2 53
5F 5F 9A to AOtt 7F E3 54
60 2D Al 7E E4 55
61 2F A2 73 E5 56
62 to 69tt 7F A3 74 E6 57
6A 7C A4 75 E7 58
6B 2C A5 76 E8 59
6C 25 A6 77 EAtEBtt 7F
6D 5E A7 78 EC 3E
6Ett 7F A8 79 EDtEFtt 7F
6F 3F A9 7A FO 30
70 to 78tt 7F AA to BFtt 7F Fl 31
79 60 CO 7B F2 32
7A 3A Cl 41 F3 33
7B 23 C2 42 F4 34
7C 7F C3 43 F5 35
7D 27 C4 44 F6 36
7E 3D C5 .45 F7 37
7F 22 C6 46 F8 38
80 7F C7 47 F9 39
81 61 C8 48 FA 5C
82 62 C9 49 FB to FF 7F

t All codes are in hexadecimal notation.

ttInvalid EBCDIC code or no equivalent ASCII code; conversion is made to invalid ASCII code (7F).

96769500 A E-5

-

ERROR CODES AND MESSAGES F

L .. , , .. j",,," 'k .,'

The error codes and messages listed in tables F-I through
F-16 appear on the conversational display terminal when the
conditions they describe occur.

Error Code

EI

E2

E3

E4

E5

E6

E7

E8

E9

EIO

Ell

El2

E13

El4

SLEW

Q

SI

END PASSI

READY OUTPUT

96769500 A

TABLE F-l. SYSTEM INITIALIZER ERRORS

Description

Checksum error on input device

Incorrect *L,hhhh control statement. hhhh is below the last storage location or in the
common storage area.

Incorrect or out-of-order binary record

Incorrect common or data storage reservation

Memory overflow into symbol table; last program loaded is too long

Attempt to load program below top of existing programs

Data storage assigned beyond storage limit

Duplicate entry point

Insufficient core to absolutize a program during pass 2.

Unpatched external(s)

Illegal control statement

Two programs reference the same external name, one with relative addressing and the
other with absolute addressing.

Entry name thread broken while linking

External name thread broken while linking

Irrecoverable error condition (EI through E14). The program (program 1) preceding the program
containing the error (program 2) is loaded; program 2 is not loaded; the program following
program 2 writes over program 2.

Control statement is requested from teletypewriter. Enter * @ to read the next control
statement from input device.

System initializer is ready to accept first control statement from the conversational display
terminal. Enter * @ to read next control statement .from input device.

Indicates completion of...,eass 1 if two-pass mode was used. Rewind the input tape and
enter * @ or *G ~ •

System initializer is ready to punch output. Set up output tape and enter * @ or *F @

F-1

Message

ACTION

ALT,lu

LU ,luF AILED xx ssss

MI

OV

PE

PF

PP

PW

RTOS 3.0 xxx

F-2

TABLE F-2. SYSTEM ERRORS

Description

Follows the LU ,F AILED error message when device error routine is used or no alternate
exists

Respond to ACTION by typing on~ of the following:

CD Inform any future programs calling the device of failure by passing Q register
with bit 15 = 1 to their completion addresses. Error is reported to calling
program and device is marked down. No sUbsequent attempt is made to operate
this device.

CU Report error to requesting program and continue processing requests.

DO Activate CU and suspend job processing.

DU Activate CU and suspend job processing.

RP Repeat request.

Follows ACTION error message when alternate device handler is used and an alternate
exists.

lu is the logical unit of alternate device.

I/O driver cannot recover from error.

lu is the logical unit of failed device.

xx is the code indicating cause of failure.

ssss is the hardware status of failed device.

Manual input processor ready to accept input from the conversational display terminal

Overflow of volatile storage. System requires more volatile core than was provided in
SYSDAT. System hangs.

Parity error; system hangs.

Protect fault; system hangs.

Requests that PROGRAM PROTECT switch be set. Typed on system restart if protect
processor is present

Power failure; system hangs.

System identification typed on system restart

xxx is the system level SYSLVL (PSR summary level)

96769500 A

Message

MI

J

ER04

EROS

ER09

ERIO

ER14

ER20

TABLE F-3. JOB PROCESSOR ERROR CODES

Description

Manual interrupt processor is ready to a~cept input from the conversational display
terminal.

Job processor (manual interrupt processor) is ready to accept input from the
conversational display terminal.

Invalid parameters ·in the job control statement

Invalid job control statement; processing subprogram is not present

I/O error while searching the system library, terminates search

Specified file name not found on system library

Program to be loaded exceeds the size of available core

Irrecoverable I/O error

NOTE: The job processor expects a control statement following the ERnn error message (i.e., J is implied).

Diagnostic

IROO,hexnum

IROl,hexnum

IR02,hexnum

IR03,hexnum

IR04,hexnum

IR05,hexnum

IR06,hexnum

IR07,hexnum

IROS ,hexnum

IR09,hexnum

IRIO,hexnum

TABLE F-4. PROTECT PROCESSOR DIAGNOSTICS t

Description

Invalid request - The code 00 implies an unspecified error occurred in an unprotected
request located at the address specified by hexnum.

Invalid request code was specified in the request located at hexnum.

Invalid request at the address specified by hexnum. The request processor specified by the
request code is not contained in the system.

Invalid buffer and length specified at the address hexnum. The sum of the first word
address and length parameters of a read request extends beyond the top of unprotected
memory.

Invalid buffer address in a read request at hexnum. The request specified a buffer address
starting in protected memory.

Invalid buffer address specified in request located at hexnum. The buffer address is either
negative or results in memory wraparound.

Invalid length parameter in request located at hcxnum. Length specification is either 0
(formatted only) or negative.

Invalid completion address parameter in request at location hexnum. The completion
address specified is either negative or protected.

Invalid logical unit parameter in request located at hexnum. The logical unit parameter
is incorrect or specifies a device driver that is not included in the system.

Invalid motion control parameter(s) in request at location hexnum. P2, P3, or the density
specification is greater than 7 or incorre~t.

Invalid priority parameters in request located at hexnum. Priority must be 0 or 1 for
unprotected programs.

tThese diagnostics are given if the protect processor is resident and the protect switch is ON when an unprotected
program attempts to (illegally) jump or store into protected core.

96769500 A F-3

TABLE F-S. LOADER ERROR DIAGNOSTICS

Code Description

EOI Indicates an unrecoverable I/O error as a result of reading a block of input

E03 This is an unrecoverable error indicating an illegal input block or an input block out of order in the
relocatable binary program.

E04 Indicates faulty common or data storage block reservation. During a load operation, the first program
to declare common storage did not declare the largest amount. The loader continues to use the pre-
viously declared length.

EOS Indicates overflow of available memory during a load operation. This error occurs if the loader
attempts to assign data storage to, or to load a program into, an area of memory above that available.
The upper limit of available-core is the lowest address of either the common storage block reservation
or the loader's table.

EOS Results from attempting to load command sequence data, either in an RBD or a BZS block, below the
lower limit of available memory. If processing an RBD block, the loader resumes operation by reading
the next block of input. If processing a BZS block, the loader resumes operation by processing the next
entry in the current block of input.

E7 Results from overflowing the data storage block reservation while loading command sequence data from
either an RBD or a BZS block. If processing an RBD block, the loader resumes operation by reading
the next block of input. If processing a BZS block, the loader resumes operation by processing the next
entry in the current block of input.

E8 Indicates an illegal attempt to duplicate entry point names from several relocatable binary programs.
Externals reference only the first occurrence of the entry point. Following error printout, the loader
deletes any program attempting this illegal entry.

EIO Indicates an unlinked external (an external name in one program not matched by an entry point in any
program of the relocatable binary input) when loading is complete. The loader also prints the name of
the unlinked external and then resumes operation.

EI2 Indicates that the loader encountered two programs referencing the same external name, one using
absolute addressing and the other using relative addressing.

El3 The loader did not encounter a name for a transfer address during a loading procedure, or the name it
did encounter is not defined as an entry point name in the loader's table.

F-4 96769500 A

TABLE F-S. SYSTEM LIBRARY EDITOR ERRORSt

Message Description Action

LIBOI A ttempt to add a file header with a duplicate Delete old file or use a different name and
name of an existing file retry function.

LIB02 Reserved Use longer tape or start new library tape.

LIB03 Reserved List library and obtain correct names. Retry
function.

LIB04 Reserved Use a smaller Tape SCOPE system.

LIB05 Invalid command specified Correct and retry com mand.

LIB06 Invalid file name specified in ADD, COPY, or Use a correct name and retry command.
GET command

LIB07 Invalid decimal or hexadecimal number was Correct parameter and retry command.
specified.

LIB08 Invalid priority specified in ADD command Correct priority and retry command.
priority is greater than decimal 15.

LIB09 Invalid parameter was specified. Eliminate or correct parameter and retry
function.

LIBI0 An invalid date was specified in the ADD/ Correct the date and retry the add function.
ADDP statement.

LIB 11 A record larger than the size of available The record cannot be copied.
memory has been read and truncated by the
copy function. *' ;r~

LIB12 A parameter other than F, L, or Twas Correct parameter and retry function.
specified in the SET command.

LIB13 An inv8Iid hexadecimal number was specified Correct number and retry function.
in the SET command.

LIB14 An invalid logical unit number was specified Correct logical unit number and retry
in the *K command. function.

LIB15 The file specified in a GET command was Enter proper file name and retry function.
not found.

LIB16 The length of the program to be added was Load the program or use GET, LOADER and
zero (or negative). retry function.

tLiBEDT error messages describe the failure of a LIBEDT function.

96769500 A F-5

Message

SOl

S02

S03

TABLE F-7. BINARY TAPE EDITOR (SMART) ERRORS

Message Description

?? Invalid control statement and/or parameters

TABLE F-8. SOURCE TAPE EDITOR (SETUP) ERRORS

Description

The meaning and action taken depend on the control being processed:

Delete or Insert: A file mark or end-of-tape reflective marker on the input tape was encountered
before the specified statement was found. SETUP rewinds the input tape, writes a file mark on
the output tape, and backspaces over it.

Copy and Position: A file mark or end-of-tape reflective marker on the input tape was en­
countered before the specified program name was found. If processing a copy statement, the
input tape is rewound to load point; if processing a position statement, the designated tape is
rewound to load point.

List: End-of-tape reflective marker was detected before a file mark was encountered. The
tape is rewound to load point.

An illegal control statement was input.
,

The end-of-tape reflective marker was sensed during an output to the master output tape. SETUP
backspaces to the NAM statement for the program, writes a file mark, and backspaces over it.

TABLE F-9. MAGNETIC TAPE UTILITY PROCESSOR (MTUP) ACTION ERRORSt

Message Description Action

*DATA SET NAME: Label processing - Output volume DSN="xxxxx"
requires data set name if not available
from input.

*INVALID PARAM="xxx ••• " Characters within quotes are invalid and Enter corrected parameter.
*RETYPE PARM: -- may be corrected.

*MOUNT, OUTPUT, SCRATCH See initialize function (section 7). @ implies tape is ready; any other
character followed by cr implies
terminate initialize.

*NEXT: System has completed all prior requests Any utility operational or declarative
and can accept next request. statement

tThese messages require operator response before continuing.

F-6 96769500 A

TABLE F-9. MAGNETIC TAPE UTILITY PROCESSOR (MTUP) ACTION ERRORS (Continued)

Message Description Action

10 ERRORS CONTINUE: Verify function has located 10 consecu-
tive records in errors.

Type @ to terminate; type one char-
acter followed by ® to continue.

*VOLSER=nnnnnn: See initialize function (section 7). See initialize function.

VOLSER=nnnnnn Informative tape file just opened has None
'the specified volume serial number.

VOL NOT EXPIRED USE: Label processing - Output volume header @ implies do not use. U implies use
records are checked against the system ignoring expiration date.
date.

TABLE F-10. MAGNETIC TAPE UTILITY PROCESSOR SYSTEM ERRORSt

Descriptive Errors(l)

Message Description Action

FILE(S) NOT OPEN Required file is not open and specified Open file and re-enter function.
function cannot be executed.

*FUNCTION NOT AVAILABLE Attempted function is not available in Use another function if possible.
system. Function is not invalid; rather
the system was configured without the
requested module.

INCORRECT VOL MOUNT: Volume mounted does not contain Mount correct volume and type carriage
volume label, or header level sequence. return.
is incorrect; i.e., with multivolume files,
the wrong volume is mounted.

*INV ALID OPEN OR CLOSE File being opened or closed is already Open or close proper file, or close and
open or closed. re-open file.

*PARM NOT AVAILABLE Parameter is not available in system. Use another parameter if possible.
Parameter is not valid; rather the
system was configured without the
requested module.

Critical Errors(2)

Code Description Action

****COOO**** Data buffer link has been destroyed by Reload utility.
I/O malfunction or CPU malfunction.

1- Descriptive messages indicate the error and implicitly indicate that the previous function was not executed.

2. A critical message implies an error has occurred that prevents further utility processing.

tSystem error messages are always issued to the comment device.

96769500 A F-7

TABLE F-I0. MAGNETIC. TAPE UTILITY PROCESSOR SYSTEM ERRORS (Continued)

Serious Errors(3)

Code Description Action

****SOOO**** Available core has been filled. Free core by closing file.

****SOOI**** A ttempt to close file already closed. Close proper file.

****S002**** 1. Read end-of-file. Retry function.

2. Attempt to write on file not opened
for write.

3. I/O error; i.e., parity, read or write,
lost data, or alarm error.

****S003**** Variable length block does not match Close all files. Open input as undefined
actual length read, or variable read and dump records to locate erroneous
length is greater than specified block record. File cannot be processed as
size. variable length.

****S004**** Blocking has been requested and Re-open file with proper parameters.
specified block size is smaller than
specified record size.

****S005**** Variable size error detected prior to Attempt to re-execute function after
write. closing and re-opening all files. Possible

hardware malfunction.

****S006**** Fixed blocked error detected prior to Close file and re-open with proper
write. Record length is not specified. record size or dump file to locate

erroneous records.

****S007**** Labeled file sequence number in error. Mount proper volume and re-open.
(File is not opened.)

****S008**** Labeled file EOFI trailer label contains This file cannot be processed with
invalid information that does not standard labels.
correspond to header label 1-

****S009**** Labeled file is missing EOF trailer File cannot be processed as labeled.
labels.

****SOI0**** End of tape sensed on output file Close file with EOV and re-open after
(unlabeled) mounting new tape. Re-enter function

to complete processing.

****SOI1**** Double file mark sensed on input file. Close input file and mount next volume.
Processing terminates. Re-enter function to complete

processing.

****S012**** Invalid date Re-enter date function with proper date.

****SOI3**** Labeled volume sequence number incor- Mount proper volume and re-open file.
rect. This occurs after OPEN file is not
opened.

****S014**** ZERO LENGTH block specified in OPEN
file not opened

Re-open specifying proper block lE~ngth.

****S015**** Block or record length speCified is not a Re-open specifying even block and
multiple of two. File is not opened. record length. If either block or record

length is odd, the data cannot be
processed by the system.

3. Serious errors result from· improper specification of valid parameters, tape errors, etc.

F-8 96769500 A

TABLE F-IO. MAGNETIC TAPE UTILITY PROCESSOR SYSTEM ERRORS (Continued)

Warning Errors(4)

Code Description Action

xxxWOOOxxx Blocking not specified, but block size Open file with proper parameters, or
and record size have been specified continue.
differently in OPEN.

xxxWOOlxxx File count specified as zero. Re-enter function with proper param-
eters or continue.

xxxWOO2xxx Record count specified as zero. Re-enter function with proper param-
eters or continue.

xxxW003xxx Input and output record lengths have Re-enter function with proper param-
specified differently for copy. eters or continue.

4. Warning messages indicate that parameters are possibly inconsistent or that a possible processing error has occurred.

Message

ml**xx

********xx

OS

EX

IX

LB

OP

OR

OV

96769500 A

TABLE F-ll. ASSEMBLER ERRORS

Description

Format for pass 1 error messages

Ull is the record number on which error occurred.

xx is the type of error.

Format for pass 2 error messages

xx is the type of error.

Double defined symbol. A name in one of the following:

The location field of a machine instruction or an ALF, NUM, or ADC pseudo instruction

The address of an EAU, COM, OAT, EXT, BSS, or BZS pseudo instruction

has been used again in one of the above fields.

One of the following illegal expressions:

No forward referencing of some symbolic operands

No relocation of certain expression values

A violation of relocation

Illegal index register; specified by symbol other than Q, I, or B

Numeric or symbolic label contains illegal character. Label is ignored.

Illegal symbol in operation code field, or

Illegal operation code terminator

Numeric or symbolic operand in address expression contains illegal characters.

Numeric value is greater than allowed.

F-9

Message

RG

RL

SO

UD

Message

1
I/O RQST
statement no. ffff

2
I/O RQST

TABLE F-l1. ASSEMBLER ERRORS (Continued)

Description

Symbol other than A, Q, or M used in address field of inter-register instr~ction or same symbol
used more than once, or

Registers separated by other than a comma

Violation of relocation, or

Violation of a rule for instructions that require the expression value to be absolute or to have
no forward referencing of symbolic operands

Available storage for saving symbol name is exceeded; no more names may be defined.

Undefined symbol in an address expression

TABLE F-12. FORTRAN EXECUTION ERRORS

Description

Error in format statement; illegal character in
format statement

Illegal character in input field

Action

Program terminates.

Program terminates.

statement no. ffff gggg

3
I/O RQST
statement no. ffff gggg

4
I/O RQST
statement no. xx

5
I/O RQST
statement no. xx

6
I/O RQST
statement no. xx

7
I/O RQST
statement no. xx

8
I/O RQST
statement no. xx

9
I/O RQST
statement no. xx

F-IO

Input data exceeds limits of 1700 word;
exponent >39.

ffff is the current decimal value of format
statement pointer.

gggg is the current decimal value of input field
pointer. ~

Attempt to read on a write unit or write on a
read unit

Read or write request after end-of-file has been
read without first doing EOF check

Attempt to write EOF, to rewind, or to back­
space any unit other than magnetic tape unit

Write attempted on magnetic tape with no write
enable

Attempt to use logical unit number greater
than 30

Backspace at loadpoint

Program terminates.

Program terminates.

Program terminates.

Program terminates.

To continue, press RETURN.

Program terminates.

Program terminates.

96769500 A

TABLE F-12. FORTRAN EXECUTION ERRORS (Continued)

Message Description Action

10 End of magnetic tape sensed To continue, press RETURN.
I/O RQST
statement no. xx xx is the decimal unit number of device used

improperly.

11 Illegal binary input; WRITE (u) is illegal with no Program terminates.
I/O RQST list.
statement no. xx

xx is the decimal unit number of device used
improperly.

12 Illegally formatted input; more elements are Program terminates.
I/O RQST given than are contained in input record.
statement no. ffff

13 Illegal list; list is given but there are no con- Program terminates.
I/O RQST version codes in the format statement.
statement no. ffff

ffff is the current decimal value of format
statement pointer.

14 File defined twice; more than one OPEN request Program terminates.
I/O RQST is given for same file.
statement no. nn

15 Parameter negative or zero; one of parameters Program terminates.
I/O RQST in OPEN statement is negative or zero.
statement no. nn

16 Sector address too large; starting or ending Program terminates.
I/O RQST address exceeds 215-1.
statement no. nn

17 File not defined; READ/WRITE request given Program terminates.
I/O RQST for a file that was not defined by an OPEN
statement no. nn statement.

18 Logical unit not a mass storage device Program terminates.
I/O RQST
statement no. nn

19 Record number in READ/WRITE request Program terminates.
I/O RQST incorrect. Resulting sector address is out of
statement no. nn the range of the file or is zero.

nn is the decimal file number for mass
storage device.

96769500 A F-l1

Code

o

2

3

4

5

6

7

8

9

10

11

F-12

TABLE F-13. DEVICE FAILURE ERRORS

Error

Time-out error

Lost data

Alarm

Parity error

Checksum error

Internal reject

External reject

Compare

Illegal Hollerith punch

Sequence error

N on-negative record length

Read/write mode change

Description

Failure to interrupt within allotted time (required TIMER package)

Conversational Display Terminal: Operator failed to supply input
within allotted time. Ignore message and continue normally.

All Other Devices: Hardware failed to generate an interrupt within
the allotted time. Hardware maintenance required.

Data not transferred out of read register before next data word
appeared. Use CU option to continue without processing lost
record or abort the read option.

Indicates an abnormal condition

Repeat read request by typing RP in response to error message.
Take CU option to continue processing (bad record will be ignored)
or abort operation.

(FREAD binary) Sum of header word and data in a record did not
balance to zero when added to checksum word.

Attempt recovery by manually positioning the input medium to
the beginning of last record. Repeat read request by typing RP
in response to error message; otherwise, use the CU option.

I/O device did not send reply to computer within allotted time.

Computer cannot communicate with device. Check hardware address
switch and POWER ON switch. RP option may be used if problem
has been corrected.

I/O device is not ready to perform specified request.

Device is busy or not ready. If the device is not busy, check READY
switch. Attempt to continue by typing RP.

Hardware problem. Compare error occurs when faulty signal is
detected in area of the punch solenoid and echo amplifier circuits
during an echo check. Attempt to reread the last record using
the RP option or continue with error via the CU option.

Occurs when card reader has encountered punch sequence not comply­
ing with Hollerith-to-ASCII conversion table used by driver

Software recovery allows user to locate the illegal punch by setting
an ASCII? in buffer word for bad column. Select reply option
to continue or abort job and correct mispunched cards.

Cards within a record are not in sequential order.

Abort for read operation and restore sequential order to the record.

First word of formatted binary record is the complement of number
of record within record. Word may be a negative number indicating
that card read was not first card of record.

Attempt recovery using procedure for checksum error
(see code 4).

A switch from read or write mode

If MODE switch is allowable, repeat request using RP option.

96769500 A

{
\,

Code

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

96769500 A

TABLE F-13. DEVICE FAILURE ERRORS (Continued)

Error

7/9 punch error

No write ring

Not ready

Controller seek error

Drive seek error

Address

Protect fault

Check word error

Card output stacker full

Card input hopper empty

Card feed failure

Card jam

File error

Read error

Validation error

Description

A 7/9 punch in column 1 was read when an FREAD ASCII request
was specified.

Card Reader Recovery:

1. If colurim 1 is a 7/9 punch, no recovery. Abort operation
request is wrong mode.

2. If column 1 was misread, read card as for checksum error.

Attempt was made to write on magnetic tape without write
enabled or attempt was made to write on a file that was opened
to read only. Insert write ring and use RP option.

Device is not ready. Ready device and use RP option.

Not used

Controller has failed to obtain file address selected during read,
write, compare, or check word operation. Usually an indication
of a positioning error

Cylinder positioner has moved beyond legal limits of device during
load address, write, read, compare, check word check, or write
address function.

Illegal file address was obtained from computer, or controller has
advanced beyond limits of file storage.

Unprotected controller operation has attempted to write in a pro­
tected core location.

Controller logic has detected an incorrect checkword in data read
from file storage during a read, compare, or checkword operation.

Not used.

Empty output hopper. Single-cycle cards from transport area
into output stacker. Take last card in output hopper and put it
into input hopper ahead of unread cards. Reload memory. Use
RP option.

If read operation is completed, use CU option; otherwise, supply
more cards and take RP option.

Read ready station does not contain a card after a feed cycle has
occurred, and input hopper is not empty.

Card feed failure error can occur as result of warped or damaged
cards. If card reader can be made ready, tape RP option.

Card transport problem has occurred.

Not enough file space available for this request to pseudo tape
driver.

Not used

No file assigned to this logical unit (pseudo tape driver)

Error occurred in reading mass storage resident driver.

Frame punched does not compare with original data. Abort punch
operation.

F-13

Code

F-14

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

TABLE F-13. DEVICE FAILURE ERRORS (Continued)

Error

Short record

Line break

Data interrupt

End-of-operation

Wrong address

Repeated request due
to error

Incomplete request

Timing error

Incomplete directory call
or overlay read request

Guarded address

Timing error

External reject

External reject

Controller address error

Drive address error

No ID

Illegal density

Power failure

EOP error

Data error

Bad status

Mass memory buffer expired

Buffer transfer error

Description

Attempt was made to write a record short than standard noise
record length.

Not used

Line tsreak occurred while attempting to input.

Data interrupt occurred after reading 80 columns.

This error indicates a hardware failure possibly due to improper
card travel.

Reread card (see recovery procedure for code 4).

End-of-operation interrupt occurred prior to reading 80 columns.

Continuous failure may indicate card slippage in feeding.

Reread card as for code 4.

Reserved

Buffered data channel is using first word address other than
address sent by buffered driver.

Driver is attempting recovery.

Request was not successfully completed. Driver attempted to
repeat the request the maximum number of times.

Occurred while drum was busy

Due to irrecoverable error

Error on write

Occurred while drum was not busy

On output

On input

Controller address status not expected value

Drive address status not expected value

ID abort, no ID burst on PE tapes

Attempt to select illegal density

Power failure

EOP not set after interrupt

Data not set after interrupt

Bad status, an indeterminate error occurred

No more buffer space available (software buffer driver)

Mass memory error on buffer transfer (software buffer driver)

96769500 A

TABLE F-13. DEVICE FAILURE ERRORS (Continued)

Code Error Description

58 Paper tape record error System initializer paper tape reader driver has detected a record
of illegal length.

59 PE lost data Error in PE formatter that affected data transfer

60 Illegal motion Motion request contains an illegal code (8-F 16>.

\

96769500 A F-15

ADD statement 6-2
ADDP statement 6-2
ASCII

conversion table E-1, 3

,{ii'st,

field decode subroutine (RCMFLD) 4-8
ASSIGN 4-5
Assign logical units (*K) 4-5

t i

Binary-to-ASCII decimal subroutine (RCMHXD) 4-8
Binary-to-ASCII hexadecimal subroutine (RCMHXA) 4-8
BZS block 5-4

Calendar program 2-8
Common interrupt handler 2-4
Communications region' C-1
Completion routines 2-6
Control blocks 5-2
COpy 4-6
Copy and convert data (*T) 4-6
COPYB 6-4
COpy statement 6-2
CORE request 3-9
CV ASEB routine 4-8
C YBER Cross system 1-3

Data and common declarations 5-2
Device assignment statmeents 6-8
Device error routine 2-7
Device failure handling 8-1
Device failure listing (EFLIST) 8-1
Device failure storage 8-1
Dispatcher 2-5
Dum my driver 2-8
DUMP 4-5
Dump core (*D) 4-5

EBCDIC conversion routine (CV ASES) 4-8
EBCDIC to ASCII conversion E-4
EFLIST 8-1
Engineering file 8-1

device failure handling 8-1
device failure listing 8-1
device failure storage 8-1

ENT block 5-4
Entry for requests 3-1
EO L block 5-2
Error codes and messages F-1

assembler F-9
binary tape editor (SMART) F-6
device failure F-12
FORTRAN F-10
job processor F-3.
LIBEDT 6-5
loader F-4
magnetic tape utility F-6
protect processo,r F-3
source tape editor (SETUP) 6-6
system initializer F-1
system library editor F-5

96769500 A

INDEX

e· ... ' 96' 41 a i&

Error flag set-up 2-6
EXIT request 3-9
EXT block 6-5
ElCtended interrupt stack 2-3

File control statements 6-8
File header label structure 6-1, 3, 4
Find-next-request 2-6
Fixed-form statements 6-6
FORTRAN 1-3
FREAD request 3-4
Free-form statements 6-6
FWRITE request 3-4

General interrupt processors 2-4
Get statement 6-4

IN DIR request 3-5
Input/output

devices 3-9
hang-up errors 2-6
requests 3-1

Input/output drivers 2-5
complete request (RCMPRQ) 2-6
completion routines 2-6
error flag set-up (RCMAKQ) 2-6
find-next-request (RCMFNR) 2-6
input/output hang-up errors 2-6

Input statements 6-6
Insert value into core (*1) 4-6
Interrupt

levels 2-1
stack 2-3
trap 2-3

Interrupt handling 2-3
common interrupt handler 2-4
general interrupt processors 2-4
interrupt trap 2-3
line 1 interrupt processors 2-4
line 0 internal interrupt processors 2-4

Job area bounds 4-7
Job area memory requirements 1-2
Job cancel routine (RCMJCN) 4-6
Job control statements 4-2
Job processor 1-2; 4-1

job area bounds 4-7
job cancel routine (RCMJCN) 4-6
job control statements 4-2
load named file subprogram (RCMLDF) 4-6
manual interrupt conversion routines 4-7
manual interrupt processor 4-1
manual interrupt subprograms 4-2
protect processor 4-1

LIBEDT 6-1
LIBEDT error messages 6-5
Library tape structure 6-1

Index-l

Line 1 interrupt processor 2-4
Line 0 internal interrupt processor 2-4

memory parity 2-4
power failure 2-4
program protect 2-4

Linkage operations 5-1
List statement 6-5
Load (*L) 4-4
Loader error diagnostics 5-3
Loading relocatable programs 5-2
Load named file subprogram (RCMLDF) 4-7

Macro assembler 3 1-3
Magnetic tape control 4-5
Magnetic tape utility processor (MTUP) 6-10

configuraiton requirements 6-10
features 6-10

Manual interrupt conversion routines 4-7
CVASEB 4-8
RCMFLD 4-7
R(;MHXA 4-8
RCMHXD 4-7

Manual interrupt processor 2-5; 4-1
Manual interrupt subprograms 4-2

assign logical units 4-5
copy and convert data (*T) 4-6
dump core (*D) 4-5
insert value into core (*1) 4-5
magnetic tape control 4-5
mark logical units up/down (*M,*N) 4-5
punch core (*P) 4-6
schedule core address (*S) 4-6

Mark logical units up/down (*M,*N) 4-5
MARKLU 4-5
Mass storage resident drivers 2-8
Memory map 5-1
Memory parity 2-4
Memory requirements 1-2

job area 1-2
monitor system 1-2

Monitor 1-1; 2-1
device error routine 2-7
dispatcher 2-5
dum my driver 2-8
extended interrupt stack 2-3
interrupt handling 1-3
interrupt levels 2-1
interrupt stack 2-3
input/output drivers 2-5
manual interrupt processor 2-5
mass storage resident drivers 2-8
priorities 2-1
request entry processor 2-1
requests 3-1
scheduler stack 2-3
structure 2-1
system common organization 2-10
system memory requirements 1-2
system start-up 2-9
system timekeeping routines 2-8
unprotect/protect communications 2-10
volatile storage 2-9

MOTION request 3-7
MSOS 1-3
MTUP 6-10

Index-2

NAM block 5-2
Nonrelocatable binary input 5-6

control blocks 5-2
EOL 5-2

One-pass initialization 7-2
Operational procedures 6-1

Physical device table D-l
Power failure 2-4
Program protect 2-4
PROTEC 4-1
Protected common 2-10
Protected core-resident entry point linkage 2-10
Protect processor 4-1
PUNCH 4-6
Punch core (*P) 4-6

Queueing 3-1
input/output requests 3-1
schedule requests 3-3
timer requests 3-3

RBD block 5-3
RCMAL calendar program 2-9
RCMFLD routine 4-8
RCMFNR request 2-6
RCMHXA request 4-8
RCMHXD request 4-8
RCMPRQ request 2-6
RCMT8 timer request 2-8
READ request 3-4
RELEAS request 3-10
Relocatable binary input 5-2

BZS 5-4
ENT 5-4
EXT 5-5
NAM 5-2
RBD 5-3
XFR 5-5

Relocatable binary loader 1-2; 5-1
binary input 5-2
data and common declarations 5-2
error diagnostics 5-3
features 5-1
linkage operations 5-1
loading 5-2
memory map 5-1
nonrelocatable binary input 5-2
transfer address 5-2

Relocatable binary tape editor (SMART) 6-6
operator messages 6-6
SMART statements 6-6

Request entry processor 2-1
Requests

codes 3-2
CORE 3-9
descriptions 3-3
entry 3-1
EXIT 3-9
FREAD 3-4
FWRITE 3-4

96769500 A

INDIR 3-4
input/output 3-1
mnemonics 3-2
MOTION 3-6
queueing 3-1
READ 3-4
restrictions 3-9
RTOS usage 3-2
SCHDLE 3-6
schedule 3-3
swapping core 3-9
system I/O drivers 3-9
threading 3-1
TIMER 3-6
timer requests 3-3
WRITE 3-4

SCHDLE request 3-6
Schedule core address (*S) 4-6
Schedule request 3-3
Scheduler stack 2-3
SETIME function 2-9
Set statement 6-5
SETUP control statements 6-8

device assignment 6-8
file control 6-8
update 6-8

SETUP statements 6-6
fixed form 6-8
free form 6-6
teletypewriter input 6-6

SMART 6-6,7
Source tape editor 6-6

description 6-6
errors 6-9
SETUP control statements 6-8
SETUP statements 6-6

ST A TUS request 3-9
Swapping core 3-9
System common organization 2-10

protected common 2-10
unprotected common - nonresident 2-11

System components 1-1
System directory B-1
System initializer 1-2; 7-1
System initialization 7-1

control statements 7-1
initialization procedure 7-2
system initializer 7-1
system loader 7-2

System initialization control statements 7-1
* 7-1
*0 7-1
*F 7-1

96769500 A

*G 7-1
*1 7-1
*L 7-1
*0 7-1
*S 7-1
*T 7-1

System library editor (LIBEDT) 6-1
System loader 7-2
System maintenance and utility routines 6-1

magnetic tape utility processor 6-10
relocatable binary tape editor 6-6
source tape editor 6-6
system library editor 6-1
utility assembler 6-11

System maintenance routines 1-2
ASSEM 1-2
LIBEDT 1-2
MTUP 1-2
SETUP 1-2
SMART 1-2

System startup 2-9
System timekeeping routines

calendar program 2-8
time/date function program 2-9
time-of-day program 2-8
timer request processor 2-8

Threading 3-1
Time/date function program 2-8
Time-of-date program 2-8
TIMER request 3-3, 6
Timer request processor 2-8
Transfer address 5-2
Two-pass initialization 7-2

Unprotect/protect communication 2-10
protected core-resident entry point linkage 2-10
unprotected entry points 2-10

Unprotected common - nonresident 2-11
Unprotected entry points 2-10
Utility assembler 6-11

assembling source programs 6-11
configuration requirements 6-11

Volatile storage 2-9

WRITE request 3-4

XFR block 5-5

Index-3

COMMENT SHEET

MANUA L TITLE CONTROL DATA ® REAL-TIME OPERATING SYSTEM

VERSION 3 REFERENCE MANUAL

PUBLICATION NO. 96769500 REVISION

FROM NAME:

BUSINESS
ADDRESS:

A

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be
welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or
general comments may be made below. Please include page number to which your comment
applies.

STAPLE

STAPLE

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED !N U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

PUBLICATIONS AND GRAPHICS DIVISION

4455 EASTGA TE MALL

LA JOLLA, CALIFORNIA 92037

STAPLE I

-----------l
l=iRST CLASS

PER~AIT NO. 313

LA JOLLA CA.

---- - ----------~
FOLD

STAPLE

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINNESOTA 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

'.

~~
CONTI\.OL DATA COI\POf?<\TION

