
o
o
o

'~

o
11.

&J c:\ CONT~OL DATA
\::I r::J CO~ORl\TION

0---
o
o
o
o
o

c
o
o
o
'0

o
o
o

o
n

CONTROL DATA®
1700 COMPUTER SYSTEMS

1700 MSOS 4
MS FORTRAN VERSION 3A/B
GENERAL INFORMATION MANUAL

REVISION RECORD
REVISION DESCRIPTION

A Manual released.
(7/74)

, ..
." ", - . -

' .. ,. - "

I

~

Publication No.
39519900

<0

by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:_

Publications 8. Graphics Division
4455 Eastg3.te Mall
La Jolla. California 92037

or use Comment Sheet in the back of
this manual.

c

C,
_./"

o

c

C~

c
c~

c
c.~

C--'.,
./

c
c

o
o
o
o CONTENTS

1)

o
o 1 1700 FORTRAN SYSTEM 4 DATA TRANSMISSION STATEMENTS

o Product Configurations 1-2 FORMAT 4-1
Product Hardware Requirements 1-2 Formatted READ/WRITE 4-1

Output 1-2 Unformatted READ/WRITE 4-2

o Compiler Optimizations 1-3 SETBFR 4-2
Card Formats 1-4 CALL READ/WRITE/
Source Programs 1-4 FREAD/FWRITE 4-2

o Elements 1-5 ENCODE /DECODE Calls 4-3
Character Set 1-5 Additional Formatting Routines 4-3
Constants 1-6 FORTRAN /Monitor Run-Time Package 4-4

o Integer 1-6 Accessing Mass Storage
Real 1-6 FORTRAN Files 4-4

ANSI 1-6
Variables 1':"6 5 ASSEM STATEMENTS
Array 1-7
Run -Anywhere Option 1-7 6 CONTROL STATEMENTS
ASA Option 1-7

ASSIGN 6-1
2 REPLACEMENT STATEMENTS GO TO 6-1

o Unconditional 6-1

Replacement Statement 2-1 Assigned 6-1

Arithmetic Expresslon 2-1 Computed 6-2

o Relational Expression 2-1 DO 6-2

Logical Expression 2-2 IF 6-2
CONTINUE 6-3

o 3 SPECIFICATION STATEMENTS PAUSE 6-3
STOP 6-3

DIMENSION 3-1
BYTE 3-1 7 PROGRAM AND SUBPROGRAM STATEMENTS

SIGNED BYTE 3-1
COMMON 3-1 SUBROUTINE 7-1

o Type 3-2 CALL 7-1

EQUIVALENCE 3-2 Functions 7-1

DATA 3-2 External 7-1

o EXTERNAL 3-3 Statement 7-2

RELATIVE 3-3 Reference 7-2

SINGLE 3-3 BLOCK DATA 7-2

o RETURN 7-3

END 7-3

o
o

39519900 A ill

o

PREDEFINED FUNCTIONS

Basic External Functions
Intrinsic Functions

APPENDIX A

Statements

APPENDIX B

tv

ANSI Codes for the FORTRAN
Character Set

APPENDIX C

8-1 Compilation Output and Options C-l
8-2

APPENDIXD

Reference Manuals D-l
A-I

B-1

39519900 A

C

c
Q

c
q

c'

r' _

('
'-.

c

C.'

(:,'

c
C.'

o
o
o

o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
n

1700 FORTRAN SYSTEM

4

The 1700 Mass Storage FORTRAN system for the Control Data® 1700 computer provides a convenient
language for expressing mathematical and scientific problems in a familiar mathematical notation.

A set of FORTRAN statements to accomplish a particular task is accepted as a source program by the
FORTRAN compiler; the object program produced by the compiler contains the machine language com­
mands to solve the problem. Object programs may be run repeatedly with varying sets of data.

1700 Mass Storage FORTRAN is ASA FORTRAN with the differences described in the following text.
Many programs written in ASA FORTRAN can be compiled by 1700 FORTRAN with little modification.
All Basic FORTRAN programs can be compiled correctly by 1700 FORTRAN.

The 1700 Mass Storage FORTRAN source language includes the following features:

• Constants and variables of types:

Integer

Hexadecimal

Byte

Signed Byte

• Library functions

• Independently compilable subprograms

• Generalized subscript expressions

Real (floating-point)

Double precision

Single

ANSI

• Variable format for input/output control-

• Bit and. byte manipulations

• Run-anywhere compile time option

• Mass storage language statements

• Double-precision floating-point package

The 1700 Mass Storage FORTRAN Version 3 product is composed of five basic elements:

1

• A Variant FORTRAN Compiler - This compiler version has a larger number of overlays;
the largest overlay is approximately BK. It requires more mass memory than the B variant
and is slower in compilation speed.

39519900 A 1-1

•

•

•

•

B Variant FORTRAN Compiler - This compiler has fewer overlays than the A variant;
the largest overlay is approximately 16K. This variant is faster than the A variant. Both
compilers process source statements identically and generate identical object code.

Re-entrant ENCODE/DECODE Run-Time - This run-time runs in the foreground and has
the characteristics for multiprogramming.

Non-Re-entrant ENCODE/DECODE Run-Time - This run-time runs in the background and
has identical user interface as the Re-entrant ENCODE/DECODE run-time. This run-time
is designed for use in debugging programs to obtain the foreground.

FORTRAN I/O Run-Time - This run-time runs in the background and has more extensive
capabilities than the other two run-times.

PRODUCT CONFIGURATIONS

Several configurations are possible using the five elements of the product.

Only one variant of the compiler may be present in a given MSOS system. With the selected compiler,
Re-entrant ENCODE/DECODE Run-Time may be used (must be. core-resident). Either Non-Re-entrant
ENCODE/DECODE Run-Time or FORTRAN I/O Run-Time maY'be in the background. In addition, if
FORTRAN I/O Run-Time is in the background, the non-duplicative functions present in Non-Re-entrant
ENCODE/DECODE can also be in the background.

Specific details of the configurations can be found in the MSOS Configuration Manual, CDC Publication
No.

PRODUCT HARDWARE REQUIREMENTS

The MSOS Reference Manual should be consulted for specific hardware options available (CDC Publica­
tion No. 60361500).

The minimum system memory requirements for MSOS do not include any of the elements of Mass
storage FORTRAN. If the A variant of the compiler is used, the minimum memory requirement is
24K. The B variant minimum is 32K. If the foreground ENCODE/DECODE run-time is used, the
additional memory requirement is 4K for single-precision floating-point, or 8K for double-precision
floating-point.

OUTPUT

Output selected by the programmer may include:

• Relocatable objeot program

1-2 39519900 A

c'
c

c
c
c
C'"

-.~.

c

l ___ .

c

c
c
c
c'

o
o
o
o
o

o
o
o
o

c
o
o
o
o
o
o
o
o
o

•
•
•

Source program listing plus diagnostics

Object program listing (binary and assembly code equivalent)

Load-and-go object program for immediate execution

Diagnostic messages are printed when the compiler detects actual errors and probable errors.

COMP'ILER OPTIMIZATIONS

1700 Mass Storage FORTRAN is a multiple-pass compiler which produces highly optimized code. The
optimizations are listed below:

•

•

Common subexpressions, including subscripts, within or between arithmetic expressions
are identified and computed only once.

Subexpressions are computed at the lowest DO loop level.

• Subscripts being acted upon by DO loop induction variables are computed recursively.

• Index registers are optimally assigned.

• One word relative addressing is used where possible.

•
•
•

•

•

•

•
•

39519900 A

Storage is allocated to maximize relative addressing.

All simple FORTRAN-provided functions are inserted in-line; for example. lABS or AND.

A eomprehensive analysis of IF statements is made. A transfer from the IF statement to
the bbel of the next statement is recognized in the generated code. In a logical IF, the
computations are structured to determine the truth value with the least computation.

The analysis and computation of arithmetic expressions are accomplished in an order which
minimizes both the amount of code generated and the execution time.

Division by a real constant is accomplished through multiplication by the reciprocal of the
constant.

For integer variables, multiplication and division by a constant which is a power of two is
accomplished through shifting. When numbers are raised to integer constant powers, in­
line r:lultiplication is used wherever it increases efficiency.

The values in the At Q. and I registers are retained and may be used later.

A flow analysi~ of the program is made; common subexpressions and index register
assignments are carried through the flow.

1-3

CARD FORMATS

The initial statement card format is:

Columns

1-5

6

7-72

73-80

The continuation card format is:

Columns

1-5

6

7-72

73-80

Content

Blank or statement label

Blank or 0

Statements

Identification and sequencing

Content

Blank

Any character other than 0 or blank

Continuation ,statement

Identification and sequencing

Up to five continuation cards are allowed for a statement.

The comment card format is:

Columns

1

2-72

73-80

SOURCE PROGRA'~J\S

Content

C -- comment designator

Comments

Identification and sequencing

A source program may be a main program or a subprogram. Source programs must be compiled
separately but may be run together. All specification statements must be placed at the beginning of
the source program.

Data values may be entered by DATA declarations. Specific storage areas may be reserved by
COMMON statements for reference by subprograms and the associated main program. EQUIVALENCE
allows the programmer to overlay the same storage locations with variables and arrays during program
execution.

The mode of a variable, integer or real, may be defined by a type declaration or by the form of the
variable itself.

39519900 A

c

c

l '-. __ ..

c
c

c
c

c
c·

o
()

()

o
o
o
o
o
o

o
o
o
o
o
o
o
'0

o

Arithmetic operations include: addition, subtraction, multiplication, division, and exponentiation.
Logical statements may include relational and logical operators.

Control statements may alter the sequential execution of instructions unconditionally or dependent upon
the value of an expression.

Input/output operations transmit data between the computer storage and external equipment. Conversion
and editing specifications permit great diversity in input/output formats.

ELEMENTS

CHARACTER SET

Alphabetic:

Arabic numerals:

Special characters:

39519900 A

A through Z

o through 9

Blank
Equal sign

+ Plus
Minus

* Asterisk
/ Slash
(Left parenthesis
) Right parenthesis

Comma
Decimal point

$ Currency symbol
Apostrophe or single quote
Exclamation point

" Quotation marks
Number sign
% Percent sign
& Ampersand

Colon
Semicolon

< Less than
> Greater than
? Question mark
@ COlllmercial at
[Opening bracket
\ Reverse slant
] Closing bracket

1\ Circumflex
Underline

1-5

CONSTANTS

Integer, real, hexadecimal, and ANSI constants are variable. Each type has a different mathematical
significance and a different internal representation. The type of constant is de~rmined by the form in
which it is written or by the context.

INTEGER

Integer constants are always exact representations of integer values with a range in magnitude of from
o to 215_1. They may assume positive and negative values.

Integer constants may be represented in decimal form (0-9) or hexadecimal form (0-9, A-F). When
hexadecimal representation is used, the integer value must be preceded by a dollar sign ($).

REAL

Real constants are approximations of real numbers with a range in magnitude of from Oto 2128• They
may assume positive and negative values. Significance is one part in eight million. Single- and
d~uble-precision real capability is provided.

ANSI

The FOR THAN characters and their corresponding American National Standards Institute (ANSI) codes
are listed in Appendix B.

VARIABLES

Variables are alphanumeric identifiers which represent specific storage locations. Simple and sub­
scripted variables are rrJcognized. A variable may be designated as a byte of another variable through
a BYTE or SIGNED BYTE statement. Such a variable is treated as a signed or unsigned integer when
used in the body of the program.

When a variable is not declared by a type statement, it is assumed integer if the initial character is
I, J, K. L, M, or N. If the variable begins with another alphabetic character. it is assumed real.

1-6 39511900 A

!"

~/

C~:

C)
-

C'I
t'

C:

C

C

C

C

C
(~

l __ ."
C
r-"
~

C

c'
c'
c
C,"

-c~

c
c'

o
o
o
o ARRAY

o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

An array represents a block of successive storage locations for variables. Each element of the array
is referenced by the array name plus 1. 2. or 3 subscripts in the following forms (c and d are unsigned
integer constants and m is a simple integer or byte variable):

d c* m

m c*m:i:d

m:i:d

A reference to an array must contain the number of subscripts specified in the DIMENSION statement.

Examples of subscripted variables:

A (I,J)

C (14)

BA (J +3,5)

Q (I-1.J,2*K)

RUN.ANYWHERE OPTION

Selection of this option results in an object program which will run correctly anywhere in allocatable
core, independent of the location at which it is loaded.

ASA OPTION

This option provides ASA compatibility. When this option is selected. two words of storage are allocated
for integers. only one of which is used. (See SINGLE statement.)

39519900 A 1-7/1-8

C'
Ci

~

c:
C>

c

C',

C

C

C

C'

C

C."

C"

C~

C

~

o
o
o
o ..

o
o
o
o
o
()

o
C)
o
o
o
o
o
o
o
o

REPLACEMENT STATEMENTS 2

REPLACEMENT STATEMENT

r = e

The value of the expression, e, is assigned to the variable identifier, r; e is an arithmetic expression.

ARITHMETIC EXPRESSION

Any simple or subscripted variable, constant, or function may be an arithmetic expression. These
. entities may be combined by using the following arithmetic operators to form other arithmetic
expres sions:

** exponentiation + addition

* multiplication subtraction

/ division

RELATIONAL EXPRESSION

A relational expression is true if the arithmetic expressions el and e2 satisfy the relation specified by
the operator, OPt otherwise the relation is false. e l and e2 must be of the same type.

Relational operators:

• EQ. equal to

.NE. not equal to

.GT. greater than

.GE. greater than or equal to

• LT. less than

• LE. less than or equal to

39519900 A 2-1

LOGICAL EXPRESSION

e 1 op e 2 op · .• op en

A logical expression is formed with logical operators and logical elements (e.), and is either true or
. 1

false. ,

Logical operators:

• OR.

• AND.

Logical primary

Logical factor

Logical element

2-2

logical disjunction

logical conjunction

A relational expression

A logical primary or • NOT. followed by a logical primary where . NOT. is
logical negation

A logical primary or a construct of one of the following two forms enclosed in
parentheses:

1) logical primary ~ AND. logical factor

2) logical primary . OR. logical factor

3951"00 A

C_~"

C'
C: ./

"
f'\
\
""'./

V

C:

C:
~

~j'

C,I

C~

('
'-.-'

r"
I

c:

r
\.... ...

c
c·

()

o
o
()

o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
()

SPECIFICATION STATEMENTS

DIMENSION

DIMENSION v , v
2

, ••• , v
1 n

Storage locations are reserved for the array identifiers, v., which may be subscripted with up to three
unsigned integers. The number of loc~tions reserved is c6mputed from the DIMENSION statement and
type of array. The arrays will not necessarily be assigned consecutive blocks of storage.

BYTE

BYTE(X
1

'Y1(c =d1», ... ,(x,y (c =d»
1 n n n n

Where: is bits c. through d. of y.
1 1 1

is an integer variable, integer array, or an integer array element

c. and d. are integer constants in the range: 15 ~ c ~ d ~ 0
1 1 1 1

A variable may be designated as a byte of another variable or array with this statement. Such a
variable is treated as an unsigned integer when used in the body of the program.

SIGNED BYTE

Same as BYTE except bytes are treated as signed integers only.

3

39519900 A 3-1

COMMON

COMMON/name/v 1 ' v 2' • • • , v n

Where: name identifies a common block (blank for blank common)

Vi is a variable name, array name, or subscripted array ide~tifier

Common locations are assigned to the identifiers for reference by independently compiled programs
and subprograms. Values in labeled common (name is not blank) may be preset by a BLOCK DATA
subprogram. Dimensioning information may be supplied.

One block of labeled common and one block of blank common may be declared for a program.

TYPE

type

Where: type is INTEGER, REAL, or DOUBLE PRECISION

v.
1

is a variable name, array name, or function name

This statement declares the type of the identifier. It overrides or confirms the type implied by the
first character of the identifier and may supply dimension information.

EQUIVALENCE

EQUIVALENCE (a
l

, b
l

, •.•), (a
2

, b
2

, •••), •••

Storage may be shared by two or more entities. The names a., b., ••• may be variable names or array
1 1

element names.

No more than one element in an EQUlV ALENCE group may appear in a COMMON statement. No element
may be a formal parameter.

DATA

Where:

3-2

is a list containing names of variables, arrays, array elements, and implied
00 loops

is a constant, signed or unsigned, or Hollerith text

39519900 A

c

c'

c

c'
C~

C:'"

c'

o
o
o
o
o
o
o
o
o
o

c
o
o
o
o
o
o
o
o
o
n

This statement defines initial values of variables or array elements. A one-to-one correspondence must
exist between the list items and the constants. A constant may be preceded by k* to indicate that the
constant is to be specified k times. Apostrophes may be used to enclose a constant. In this case, the
ANSI code for the symbols in the constant are stored into the corresponding variable.

EXTERNAL

EXTERNAL name ,name
2

, ••• , nrune
1 n

This statement specifies the parameter names to be external procedure names.

RELATIVE

RE LA TIVE name
l

, name , ••• , name
2 n

This statement specifies the parameter names to be external procedure names. When the run-anywhere
option is selected, all references to this procedure will be made relative. Relative externals may not
be passed as parruneters to subprogrruns.

SINGLE

SING LE vI' v 2' • • • , v n

Specifies variables v. as one-word integers. Dimension information may also be specified. This
statement is used if the ASA compile time option is selected.

39519900 A 3-3/3-4

/--.....

L)

C

C'
r' '--'

c
C'
('
'-.. ..• '

('
..........

(~

C-~'

C~

('
'--....

c­
C~~'

r'~ '_.,

(~)

o
o
o
o
o
o
o
o
o

o
o

o
o
o
o
o
o
o
n

DATA TRANSMISSION STATEMENTS

Data may be transferred within the computer and between the computer and peripheral equipment with
the following statements.

FORMAT

FORMAT (spec!, spec
2

, ••• , spec
n

)

Where: spec
i

is conversion of editing specification listed below

Editing specifications and BCD conversion specifications may be included in programs. Format
specifications can be compiled into a program or read into an array at object time.

Conversion specifications:

rEw.d

rFw.d

rDw.d

rIw or Iw.d

r$wor Zw

rAw

rRw

Editing specifications:

wX

wH

/

* or '

39519900 A

Floating-point with exponent

Floating-point without exponent

Double-precision floating-point with exponentiation

Decimal integer

Hexadecimal conversion

Alphanumeric

Alphanumeric

Intra-line spacing

ANSI heading and labeling

Begin new record

ANSI heading and labeling

4

4-1

FORMATTED READ/WRITE

READ(i.n)1

WRITE(i, n)l

Where: i

n

is the logical unit number

is the FORMAT statement specifying how to move data

is the list of variables to be transmitted

These statements transmit physical records, containing up to 120 characters, between the computer and
logical unit i according to statement n which may represent one of the following:

• The label of a FORMAT statement

• An array name

• An assign variable or formal parameter which has been assigned the label of a FORMAT
statement

UNFORMATTED READ/WRITE

READ(i)1

WRITE(i)1

These statements transmit a binary record to or from logical unit i. One logical record is produced
from each READ or WRITE statement. A logical record may consist of several physical records. The
parameters have the same meanings as in formatted READ/WRITE. ENCODE/DECODE and other
formatting routines aid the programmer in formatting his own data when necessary.

SETBFR

A call to SETBFR provides the re-entrant FORTRAN I/O package with information regarding where to
store the program's I/O requests and corresponding data. It is used in conjunction with FORTRAN I/O
requests which are in the foreground.

CALL READ/WRITE/FREAD/FWRITE

In addltLon to the formatted READ, WRITE and the unformatted READ/WRITE, the FORTRAN pro­
grammer can perform 1700 MSOS 4 monitor calls to perform read or write requests by use of the
FORTRAN rWl-time package. These FORTRAN calls have the following forms:

4-2 39519900 A

c:

('"
" '

c'
c

c
r
I

c'
C
~'

' -,/

c:-

c

o
o
o
o
o
o
o
o
o
o
Il U
o
o
o
o
o
o
o
o
o
(j

CALL READ
CALL WRITE
CALL FREAD
CALL FWRITE

The CALL READ and CALL WRITE statements permit word addressing of mass memory devices as well
as sector addressing. (Only sector addressing of mass memory is possible with the FORTRAN READ/
WRITE statements.)

The CALL FREAD and CALL FWRITE statements may be used by a background program to transfer
binary information to or from mass memory. ' (The FORTRAN unformatted READ/WRITE statements
cannot be used by a background program to access mass memory if the standard FORTRAN library rou­
tines are used.)

These calls do not refer to a FORTRAN FORMAT statement, but require that the user do his own for­
matting. The routines described in the next sections aid the programmer in formatting data.

ENCODE/DECODE CALLS

CALL DECODE (v, n,c, 1)
CALL ENCODE (v, n, c, 1)

Where: v is the starting address

n is the FORMAT statement specifying how to move data or array name

c is the number of variables to ENCODE/DECODE

is the list of variables to be transmitted

These statements transmit information, under FORMAT specifications, from one area of internal stor­
age to another.

ADDITIONAL FORMATTING ROUTINES

HEXASC

HEXDEC

ASCII

39519900 A

Converts a number to the ANSI characters corresponding to the digits in the
hexadecimal' form of the number

Converts a number to the ANSI characters corresponding to the digits in the
decimal form of the number

Converts ANSI characters to a numoer, assuming the ANSI characters represent
hexadecimal digits

4-3

DECHEX

A FORM

RFORM

FLOATG

Converts ANSI characters to a number, assuming the ANSI characters represent
decimal digits

Converts a word containing two ANSI characters to two words each containing a
character left-justified blank- filled

Converts a word containing two A~SI characters to two words each containing a
character right-justified zero-filled

Converts a floating-point number to ANSI characters including the sign, decimal
point, and the exponent of the numoer

FORTRAN/MONITOR RUN-TIME PACKAGE

The FORTRAN/Monitor run-time package enables the FORTRAN programmer to make certain monitor
requests, obtain monitor parameters, and execute I/O commands. The calls to READ, WRITE,
FREAD, and FWRITE, as discussed earlier, are a part of the run-time package. The other FORTRAN
monitor requests are as follows:

CALL SCHEDL Schedules a requested program, at a requested priority

CALL TIMER After a specified time interval, schedules a requested program at a requested
priority

CALL RELESE Returns memory to the core allocator

In addition to the monitor calls, the run-time package provides the FORTRAN programmer with access
to the following routines:

LINK

DISPAT

ICLOCK

OUTINS

IN PINS

ICONCT

OCONCT

ENDFILE

4-4

Obtains the value in the Q register for use by the FORTRAN program

Transfers control to the dispatcher

Obtains the value of the system clock

Performs output via the 1705 Interrupt/Data Channel

Performs input via the 1705 Interrupt/Data Channel

Performs a connect to the 1750 DCB terminator and then inputs from a device
connected to the 1750

Performs a connect to the 1750 DCB terminator and then inputs from a device
connected to the 1750

END FILE lu causes the recording of an endftie record on the unit identified by Iu.

39519900 A

C.
-'

c

C~

C~

C·
.'

c.~·

c

u
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

REWIND REWIND lu positions the unit identified by lu at its load point.

BACKSPACE BACKSPACE lu causes the unit identified by lu to go back to the beginning of the
preceding record.

ACCESSING MASS STORAGE FORTRAN FILES

Mass Storage FORTRAN files may be created and accessed by a FORTRAN program. These files are
aSSigned to the scratch area of the mass storage device and are not retained after execution of a job.
(They are not to be confused with File Manager files as described in the 1700 MSOS 4 Reference Manual
or with permanent files in the program library.)

To create a mass storage file, an OPEN statement must be executed. The OPEN statement has the
following form:

OPEN k. i. J. u. x

Where: k is the name of the file

i is the number of sectorS per record

is the maximum number of records in the file

u is the logical unit to which file is assigned

x is the starting sector address for the file (optional)

To access the file, alternate forms of the FORTRAN READ/WRITE statements are used. The alternate
forms are as follows:

READ
WRITE

Where: k

n

f

1

39519900 A

(k(n).1)l
(k(n). 1)1

is the name of the mass storage file

is the record number

is the format specification, which may be the label of a FORMAT statement, an
array name, or a variable which bas been assigned the label of a FORMAT
statement

is the 11st of variables to be transmitted

4-5/4-6

c
c'
c
c
c
c

l,-- .. ,

C

C
C

C.'

C

c'
c~

('~

c
('

u
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
n

ASSEM STATEMENTS

*eae

Assembly language instructions may be inserted in-line in a 1700 FORTRAN program by use of ASSEM
statements. The inserted instructions are specified by the FORTRAN programmer in the following
forms:

•
•
•

Hexadecimal constants y.rhich may represent code to be executed or actual constants

References to statement labels withi~ the" program

References to variables within the program

• References to externals declared by the program

• Indirect addres sing indicators

5

ASSEM statements may be used to generate calling sequences to the operating system and to access the
core communication region.

39519900 A 5-1/5-2

(~'

c
c
c~

c
c
c
c
c
c

l
C

C

C

C

C

C.'
c~

("

('

c~

o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

CONTROL 5T A TEMENT5

The following statements may be used to alter the sequential execution of instructions.

ASSIGN

ASSIGN k TO 1

Where: k is the statement label

1 Is the integer variable name (assign variable)

A label aSSignment statement stores the location of a statement label into a variable.

GO TO

UNCONDITIONAL

00 TOn

Control transfers to the statement identified by n.

ASSIGNED

GO TO i or 00 TO i. (k., k
2

, ... , k)
1 m

Where: i is the Integer variable name (assign variable)

is the optional statement labels which may be included for" the programmer's
convenience; they are not used by the compiler.

6

Before an assigned 00 TO statement is executed. the current value of i must be previously assigned by
an ASSIGN statement. Control transfers to that assigned location. The i may be assigned in either the
program unit of the GO TO or in another program unit where i was passed as an actual parameter or
was in COMMON.

39519900 A 6-1

COMPUTED

Where is the statement label

i is the integer variable reference

Control transfers to statement ki•

DO

DO statements provide repetitive operation and incrementing.

Where: n is the statement number at the end of a sequence of instructions which begins
with the DO statement

is a simple integer variable

mi is an integer constant or simple integer variable

The initial value of i is m1• The value of i is incremented by m3 each time. The sequence is repeated
untn i surpasses the value of m2• If m3 is omitted, it is assumed to have the value 1. A DO ioop may
include other DO loops.

IF

IF statements transfer control conditionally depending on the value of an arithmetic or logical
expression.

Where: e is an arithmetic expression

is a statement label

Control transfers to kl if the value of e is negative, to k2 if the value is zero, and to k3 if the value is
positive.

IF (1) s

Where: 1 is a logical expression

s is any executable statement except a 00 or another logical IF statement

6-2 39519900 A

c'
c
c
c

c

C~

c
c
c

c

c

o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o

o
o

If lis false, s is executed as though it were a CONTINUE statement. If lis true, statement s is
executed.

CONTINUE

CONTINUE

This is a no-operation instruction which may be given a statement number for reference. It is frequent­
ly used to terminate a 00 loop.

PAUSE

PAUSE
PAUSE v

Where: v is an octal number with a maximum value of 77777

The PAUSE statement halts a program temporarily. ,The word PAUSE and the value of v, if present,
are printed on the output comment device. A carriage return entered by the operator resumes execu­
tion with the statement immediately following the PAUSE statement.

STOP

STOP
STOP v

Where: v is an octal number, with a maximum value of 77777

The STOP statement terminates the execution of a program. The word STOP and the value of v, if
present, are printed on the output comment device.

39519900 A 6-3/6-4

C~

C

C

c'
c
c
c
c

[
(~

c
c
c
c
c
c'~

C~';~

c
c'

o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
-0

o

PROGRAM AND SUBPROGRAM STATEMENTS 7

pi

SUBROUTINE

SUBROUTINE name (Pl' P2' • •• ,Pn)

Where: name is the alphanumeric identifier

Pi is a formal parameter (optional)

The first statement in a subroutine defines it. A subroutine may return resulting values through formal
parameters.

CALL

Where: name is the . alphanumeric identifier

is an actual parameter

Control transfers from a program or subprogram to subroutine name with actual parameters, c., re­
placing formal parameters, Pp in the subroutine parameter 11st. The actual pa .. ~meters may ~ vari­
ables, array names, array element names, constants, arithmetic expressions, or external subprogram
names.

FUNCTIONS

EXTERNAL

FUNCTION name (Pl' P2' • • • , Pn)

Where: name is the alphanumeric identifier

is a formal parameter (optional)

This must be the first statement in a function subprogram. A function returns a Single value as a
result.

39519900 A

STATEMENT

Where: name

e

Is the alphanumeric identifier

is a formal parameter

is an arithmetic expression Involving p.
1

This ~tatement defines the value of name, which is inserted in the code wherever name is used as an
operand in an expreSSion. The expression e may contain references to library functions, other state­
ment functions, or function subprograms.

The statement function name may not appear In a DIMENSION, EQUIVALENCE, or COMMON
statement.

REFERENCE

Where: name is an alphanumeric identifier

is an actual parameter

When the statement function appears as an operand in an expreSSion, control transfers to the named
function. Control returns to the statement containing the function reference and the value returned is
aSSOCiated wlththe function identifier. A function reference may be used anywhere that a variable
Identifier may be used.

Aotual parameters may, be variables, array names, array element names, constants, arithmetic .
expressions, or external subprogram names.

BLOCK DATA

BLOCK DATA

Block data subprograms are used to enter initial values into elements of labeled common blocks. This
special subprogram contains only specification statements. BLOCK DATA must be the first statement in
this subprogram.

If an entity of a particular common block is being given an initial value in such a subprogram, a complete
set of specification statements for the entire block must be included, even though some of the elements
of the block do not appear in DATA statements. Initial values may be entered into more than one block
in a single subprogram.

7-2 39519900 A

o
o
c'
o
o
c
o

c

[

c
c~

c

c
c·

c
c'

o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
'0

'0

o
o

RETURN

RETURN

This statement signals the end of logic flow within a subroutine or function and returns control to the
calling program. More than one RETURN statement may appear within a single subroutine or function
subprogram. U RETURN is omltted, the END statement serves as a RETURN statement.

END

END

This statement marks the physical end of a program, subroutine, or function.

39519900 A 7-3/7-4

C~,I

o
o
c:,
C:I

CI

C'

C

c'
('
"-/

L,
C~~

(~
'------, ,

c
C

C

c·
C'~

C,'

c·

o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
'0

o

PREDEFINED FUNCTIONS

BASIC EXTERNAL FUNCTIONS

The following functions may be referenced in any program or subprogram.

Number of Symbolic
Function Definition Arguments Name

Exponential
a 1 EXP e

DEXP

Natural log (a) 1 A LOG
logarithm

e
DLOG

Trigonometric sin (a) 1 SIN
sine DSrN

Trigonometric cos (a) l' COS
cosine DCOS

Hyperbolic tanh (a) 1 TANH
tangent

Square root (a)
1/2

1 SQRT
DSQRT

Arctangent arctan (a) 1 ATAN
DATAN

End of fUe Chec k previous 1 EOF
check on unit a read on unit' a

for end-of-file.
2 is returned if
none. 1 is re-
turned if EOF.

39519900 A

8

Type of
Argument Function

Real Real
Double Double

Real Real
Double Double

Real Real
Double Double

Real Real
Double Double

Real Real

Real Real
Double Double

Real Real
Double Double

Integer Integer

8-1

c -"

Number of Symbollc Type of
Function peflnitlon Arguments Name Argument Function

Float lng pol nt If a is 0, over- I IFALT Integer Integer
fault flow is tested.

If ais l,"divide c
fault is tested.
If a is 2, under-
flow is tes ted. c
A 2 is returned if
the condition has
not occurred, a I c
otherwise.

Parity error Chec k' previous I lOCK Integer Integer
check on unit read 0 r write on

unit a for parity
error. A 2 is
returned if no
parity error
occurred. Al c
is returned if
parity error did
occur. [

INTRINSIC FUNCTIONS

When the followLng functions are referenced, in-line code is generated. They may not be passed as a c
subprogram parameter.

Number of Symbolic Type ·of c
Function Definition Arguments Name Argument Function

Absolute I a I I ABS Real Real c'
value IABS Integer Integer

DABS Double Double c
Float Conversion I FLOAT Integer Real

from integer DFLT Integer Double
to real c

Fix Conversion 1 IFIX Real Integer
from real DFIX Double Double c
to integer

Transfer Sign of a2 2 SIGN Real Real
of sign times I a1 I ISIGN Integer Integer

c'
DSIGN Double Double

8-2 39519900 A c
c·

o
o
o
o Number of Symbolic Type of

Function Definition Arguments Name Argument Function

inclusIve Inclusive OR 2 OR(I,J) Integer Integer
OR of I and J o
Exclusive Exclusive OR 2 EOR(I,J) Integer Integer
OR of I and J o
Logical Logical prod- 2 AND(I,J) Integer Integer
product uct of I andJ o
Complement Complement 1 NOT (I) Integer Integer

(NO'6 of I o
Obtain most slg- 1 SNGL Double Real
nificant part of o
double-precislon

o argument

Express slngle 1 DBLE Real Double
precision argu-
ment in double
precision form o

o
o
o
o
o
o
o
'0

o
39519900 A 8-3/8-4

o

· :.,
~ .'. ,

(~',1

CI

C
(')
'-'"

CI

CI

C:

C'

c~

c

l
C~

C

C

c'
c
c
C'"
C',~

u
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
'0

o
o

STATEMENTS

ASSIGN n1 TO I

BACKSPACE I

BLOCK DATA

BYTE (X1 'Y1(C1=d1)' •••• x .Y (c = d » , n n n n

CALL name (C1 ,c2 '··· ,Cn)

COMMON/namely 1 ' v 2' • • • ,v n

CONTINUE

DIMENSION v I' v2 '··· ,vn

END

ENDFILE lu

EXTERNAL name1,name2 , ••• ,namen

FORMA T (spec
1

, •.• , k(spec , •••), spec , •••)
m n

FUNCTION name (PI ,P2' ••• ,Pn)

GOTOn

GOTOi

39'519900 A

IF(1)s

OPEN

PAUSE

PAUSE n

r=e

READ (i) 1
I

READ (l,n) 1

RELATIVE name
1

,name2 , ••• ,namen

RETURN

REWIND i

STOP

STOPn

type VI' v 2 ' •• • , v n

WRITE (1) 1

WRITE (i, D) 1

A

A-l/A-2

',1 ;'.' •

. . ~ ~ ',' .;,

C'

C"

C'

C I

C,

C:

C

C

C

C

L.l

c=
c
C'

c
c
C'

C-,~

C'

C'

0

0

0
...

0 ANSI CODES FOR THE FORTRAN CHARACTER SET B

0

0

0
Bit Configuration Symbol Bit Configuration Symbol

0100000 SP 0111011

0 0100001 0111100 <
0100010 " 0111101

0 0100011 * 0111110 >

0100100 $ 0111111 ?

C) 0100101 % 1000000 @

0100110 & 1000001 A

C
0100111 1000010 B

0101000 1000011 C

0101001 1000100 D

0101010 * 1000101 E

0 0101011 + 1000110 F

0101100 1000111 G

0 0101101 1001000 H

0101110 1001001 . I

0 0101111 / 1001010 J

0110000 0 1001011 K

0 0110001 1 1001100 L

0110010 2 1001101 M

0 0110011 3 1001110 N

0110100 4 1001111 0

0 0110101 5 1010000 p.

0110110 6 1010001 Q

0 0110111 7 1010010 R

0111000 8 1010011 S

'0 0111001 9 1010100 T

0111010 1010101 U

0
39519900 A B-1

0

.. Bit Configuration ,. Symbol

1010110 V

1010111 W

'101100'0 X

1011001 Y

10l~O,10 Z

;' Bi-2

Bit Configuration Symbol

1011011 (

1011100 \
1011101

1011110 1\

1011111

39519900 A

c'
c

c

l
'-.'-'

c

c~

c
C~

C-,"

C

o
o
o
o
o
o
o
o
o
o
n
U
o
o
o
o
o
o
o

o
()

COMPILATION OUTPUT AND OPTIONS C

The 1700 Mass Storage FORTRAN compiler allows a variety of compilation options for user needs. Any
comblnation may be used. The follOWing defines the available options.

L Source program listing with syntax checking of source code.

A

M

R

K

Object code llsting with assembly language equivalences

Condensed object code llsting indicating the first object code statement generated
for each source statement.

Run-anywhere option allows for generation of code using relatlve addressing for
executlon in allocatable core.

ANSI FORTRAN compatibility; Integers occupy two words.

x Helocatable object code placed.on mass memory load-and-go file for immediate
executlon.

I

P Relocatable object code output to output media for retention.

All compilation processes check for syntax errors and comprehensive diagnostics are printed.

The following examples illustrate the compiler operation and listing.

L Option

Note that full cumpilation is not done, only a statement syntax check.

1

~
~
4
5
6 ..,
A
9

\0
11

39519900 A

PROGRAM FTN8PT
c
C FWAMPLE FOA FDRTRAN CO~PILER OPTIONS
C

OIME~stO~ A~5).1(5)
DO 1 I 1-1,5
1(11)_11*3/*(11)

1 CONTINUE'
CALL StleE)(MiA,I)
J-t<·6*C
IF(FUN!.~(4.9») 10.20,10

10 GO TO 20
20 CONTINUE

ENO

C-l

Options LA

c
0,'· C EXAMPI.E 'FOR FeRTRAN COMPILEr;) OPTIONS

C
? OtMENstO~ AiS),ICS)
~ DO 1 11-1.5
4 JCIHaII.)/A(JI)
~tONTINUE

. ~ CAI.L SU8£XMiA,I)
7 JcK.6*C
A IF(FUNtX~t4.9) 10,20.10
q 1~ GO TO 20

10 ?O CONTINUE
11 END

«'000 0000 ~At-t FTNOPT
0000 1'31Q FTNOPT JMP. .00001
0001 OOOA A' ass 10
ODOR 000.5 1 ass 5

'o'oi 0 0001 II RSS 1
0011 0003 0003' CO~ 3
0012 0001 J BSS 1
0013 0001 t< RSS \
0014 OOOflJ 0006' CON 6
0015 0002 C ass 2
0011 '+lCE ttt CE. CO~ 1~846
0018 66"6 CO" 2~21~

3 OOlq OAol .00001 ENA 1
001A "BF5 STA- II

4 0018 OA02 .00004 ENA 2
ODIC 28F3 MUI- II
ODin 682C STA- .00005
001F C8Fl LOA- II
00 IF 28Fl MUI- 0003S
0020 6B;?A STA- .00006
0021 5400 PTJ. FLnAT
0022 7FFF
0023 004A P ADC .00006
0024 C;400 RTJ. FLOT
002C; 1FFF
OO?" FA40 CON -1471
0021 tl04Q P ADC .OOOOS
OOttA 1FFE P AOC A -2
002Q 540" RTJ. Q8QFlx
002A 7FFF
002P FAE'4 LOQ- II
002C 6Ano STA- I -i,t)

C-2 39519900 A

c'
C'

C:
.'

C~

c'

l '- .'

c

c

/" .~ \

(~

0

0 .
0 S 0020 OaF? 1 RAe* II

OO?E OAO~ ENA S . (\02F 9AF.0 sue* II
0030 0131 SA~ 1

0 (\031 18F.Q JMP* .on004
6 0032 5400 RTJ. SUf'E)cM

0033 7FFF

0
0034 0001 P Aoe A
0035 noo~ P Aoe t ., 003" 5Cf'B PTJ* (FLOAT J
0037 0014 P Aoe 00065

0 n03R '"'CFe RTJ* (FLOT)
003Q Q040 CON -2527q
003A 001e; p AOC C
OO]~ "04P. P Aoe .00001

0 OOlC ~eEr; RTJ* (FLOAT
n030 0013 P AOC K
003E C;CE6 RTJ* (FLOT)

0
OO]F f400 COh -7161
0040 004P P AOC .nOOOl
0041 SCE'S RTJ* (QAQFIX')
0042 6aCF STA* J

0 8 004'1 ~400 RTJ. FUNE)cM
0044 1FFF
0045 1')011 p Aoe 41CE.

0
n046 Coce; cot-.. -161 86
0047 (\105 SAl 5

9 0048 1805 10 JMP* 20
004Q 0001 .00005 ASS 1
004A 0001 .00006 ass 1
004R 0002 .00007 BSS 2

11 004" 5400 20 RTJ. G8STF
004E 7FFF

0 11 oono 0000 END 0

PROGRAM LENGTH S004F lq)

0 OPTS • AL

E)(TER~'ALS

0 Q8QFI)(FLOT CHJSTP FLOAT SUBEX'" FUNExM

0

0

0

0
·0

0 39519900 A C-3

0

. 9>t1OO8 LM

Note condensed object code llstlng. This form is useful when the Hst device Is a Teletype.

t

2
3

• S
6
7
e
9

J t\
, t

]

4
!
6
7
8
9

11
11

PROGRAM.

c
c
c

ontq
001~
oo~,.,

003?
003"
on.']
C04A
0040
0000

LENC;T~

OPTS • LM

E)(T£RNALS
Q8Q'J~ FLOT

PA"GRA~ FTNePT

EXAMPLE FOR FeRTRAN tOMPILE~ OPilONS

DIMENSIONAiS).ICS~
no 1 It-,.!'
1(11).11*3/*(11)

1 CONTINUE
CALL $lJaEXM.A,I)
JaK·6-C
tF(FUNEX~(4.9» 10.20,10

I/) GO TO 20
~" CO~T I Nlif

ENn

I)AOI .oooni ENA 1
OA"-2 .00004 ENA 2
08£2 1 AAO- II
!;400 ATJ. SUBEXM
!!Jcre . RTJ* (FLOAT
5400 RTJ •. FUN[JeM
180S 10 JMP- 20
t;400 20 ATJ. Q8~TP
0000 END t)

'004' 7Q'

QASTP FL.OA'''' SUBE)(M FUNEWM

)

c_=:

C:

C·
~

('
'.~. "

•

C

C

C

C

C'
{ , .. ~"

('

l
'-..,

(~.

~.,

C
C·

C~

C,"

C
C~'

C'"
",

39518900 A
C~,

('
,-,'

()

o
o
o
c)
o
o
o
o

o
o
o
o
o
o
o
o
o
o
C)

Options LAR

Note that no program relocatable addresses are generated; hence. the program is able to run in
allocatable core.

PROGRAtol F'TNt1PT
C
C fXAMPLE FOR F'eRTRAN COMPILER OPTIONS
C

2 OI~£~5'O~ A~5).I(5)
3 00 1 It-l.5
4 t (Il).lt*3/&(11)
5 1 CONTINUE
~ CALL SUAFX~(AtI)
7 JR~.6*C
A IF'(FuNF.'X"(4.9)J 10.20,10
q 10 GO TO 20

to 20 CONTINUE
t 1 ENn

0000 (l000 NAfi' FTNOPT
.00001

(\000 lAlq F'TNOPT JMP- .00002
0001 nOOA A BSS 10
!lOOq ooor; I BSS 5
COlO 0001 It RSS 1
0011 (\00' 0003' CO~ 3
"01? 0001 J RSS 1
001~ 0001 K ass 1
0014 0006 "006' CO~ 6
n01r; 0002 C ass '2
.: 017 4JCE 4tlCE. CO~ 16846
COl8 6666 COt.; 26214
001Q 5802 .onOO2 ATJ- .00005
001A F'F'ES AOC .00001
nOIR 1)001 .00005 RSS 1
OOlC C8FE LOA- .0000t;
0010 S8Fe ADO- .0000'3 -i
COlE 6AFC ST'A- .00005

:4 OOlF OAnl ENA 1
0020 68EF

"'"
STA- II

39519900 A C-5

/---,

~.j

C'
I'~

~ ... "

.. 0021 nAO;» .00006 ENA 2
C~ I)02~ leEn Mute t!

"023 , ,6J~2C STA- .00007
0024 C8EP. "LDA- II
oo~r; 29EF! MUI- 0003S ~"
n02" 6~2A STA- .00008 ~./

00i'7 54no RT-J. FLOAT
(to?R 7FFF

c:' oo?,q ~O2'7 _DC .00008
OO;!A S40n RT-J.· 'LnT
002R' 7FFF
002C 5FA4 co~ 244S4 C 002n flO?2 ADC .00007
(\02E 7F·no "DC A -2
OO~F ~400 RT-J •. C8QF!.

(~ n030 7FFF
0031 ESOF. LOg- II
003t! -'An7 5T-- I' -i,~

~ f)Ge3 OBOC 1 RAO- II
C~ Of134 nAor; ENA IS

003~ 980A sue- II
OO~" (H:.!l SAt' 1
0037 18Eq JMP. .00006 C~ 6 0039 5400 RT-J. SUPEX ...
«'03Q 7'FF
003A F'C6 ADC A

(' OOlA F'FCF ADC I ., OOle C;CEQ RTJ· (FLOAT)
003n FFn6 ADC 0006$

l 003E' SCEC PTJ. (FLaT ,
003F S9n4 COh 22996 '-. .. '

0040 "'04 ADC' C
0041 "010 ADe .00009 c:' n04? SCES RTJ., (FLOAT
0043 'FeF ADe f(

0044 SCE6 RT-J· (FLOT)
004-; 5E40 CO~ 24128

C~ 004" "00P. ADC .00009
0047 5CFA RTJ. CQ8QfIX;
0048 6~C9 STA. " J

/------8 004'9 5400 RT-J+ FUNEXM
\.--' 004A 7'Fir

004R FFCR ADe 41CE.
004C COCI5 co~ -16186 C' 0040 1)105 SAZ S

Q 004F l~nr; 10 JMP. 20
004F 0001 .00007 RSS 1
OO!)O 0001 .00008 BSS 1 C-' 0051 0002 .ooooq 8SS 2

11 00S3 541)0 20 RT-J+ QASTP
00S4 7FFF

C 11 0000 QOon END n

PROGRAM L.ENt1TH too!;1S e~)

OPTS • RAL C",
EXTERNALS
QaQ'!. FL.OT Q~STP FL.OAT SUREX""- FU~E.M C~-

C-6 39519900 A C

C'

()

0

0

0
2ftlons LAK

This form allocates two words of memory for each lnteger. The actual executable code only uses one
of the two words. C)

1 PROGRAM FTNGPT

0 e
e EXAMPLE FOR FeRTRA~ COMPILE~ OPTIONS
C

~ DI~E~SION AiSI,I(S)

0 3 DO 1 tl.',S
4 l(tl).11*3/1(11)
-; 1 CONTINUE

0 ~ CALL. SUBt:J(M(A.II
7 Jat<·6oe
A IF(FUNE)(~(4.9» 10,20,10
9 10 GO TO LtO

0 10 20 CONTINUE
11 END

0
0000 0001) NA~ FTNOPT
0000 lA21 FTNOPT JMP* .00001

0
~OOI noD A A ass 10
O~OR U004 I ass 10
0015 '>002 tI ass 2
0011 0003 0003' CO~ 3
0018 0002 J. BSS it.
OOIA 0002 t< 8SS 2
OOIC 1)006 0006' CO~ 6

0 0010 ooot- e RSS 2
001F 4lCE 4lCE. CON 16946
0020 666~ CO~ 26214

3 0('21 OAI)I .ooont fNA 1

0 nOl2 ~BF'2 STA* t I
4 0023 OA02 .00004 ENA 2

0024 28F'O MUI* tI

C! 002~ 6B2F STA. .00005
002,., nAOi? EN4 2
0021 Z8EO ... ut* II
0028 6A20 ST4. .00006

0 002Q CBFP LOA* II
002A Z8EC ~ut* 0003S
002A ~A2P. STA* .00001

0
002e 5400 RTJ. FLOAT
0020 1FFF
o02E' t)0C;6 P ADC .00001
OOi?F' 5400 RTJ. FLOT

0 0030 7FFF
0031 FA40 CO~ -i471
0032 00~5 P ADC .00006
0033 7FFE' P ADC A -2

0 0034 5400 RTJ. C8llFI)(
0035 7FFF
0036 F81F LOG· .00005

0
0017 6A01 5TA. I -2.Q

0 39519900 A C-7

C)

(~)

C
('I
,~ .. /"

I!' nOlA nanc 1 RAO. II
OO'3Q (lAOS ENA 5 (~'
003A 9806 sue. II '
0038 n131 SA., 1 ..
OO'3C lAE'~ JMP. .00004

C', 6 003" 5400 RTJ. SUREXM
003F. 7FFF
003F 0001 P ~DC A
0040 OOOP. P ADC 1 C' ., 0041 SeEE' RT~. (FLOAT)
OO~? nOtr. p ADC 0006'
0043 C;CFC RTJ. (FLOT I

C 0044 q04" CO~ -2~279
004~ (\010 P ADC C
004~ OOS7 P ADC .00008
0041 scre; PTJ. (FlOAT)

C 0048 nOlA P ADC K
004Q ~CE6 RTJ- (FLOT I
004A F400 COh ·"167
004P nOS7 P ADC .00001' (' 004C SCE8 RTJ. CQRQ' I XI ,.,,'
0040 beCA STA. J

" 004f. 5400 PTJ. FUNEXM

~ n04F 1FFF
0050 flOtF P ADC 41CE. "-..

0051 toct; CO~ -16186
0052 010~ SAZ 6 (',

9 00!l)3 le06 10 JMP. 20
00~4 nOn1 .000n5 BSS 1
OOI)S nOOl .00006 ass I
0056 nOOl .0f)001 RSS 1

~'-. ' 00~7 00'02 .000n8 ass 2
11 005Q 5400 20 RTJ. Q85TP

005A "FFF (.--~,
11 0000 0000 F.ND 0 "-,

PROGRAM LFNC;TH ,o0-:;8 91)

OPTS • t<AL C"-'

EXT!RNALS r· Q8QFt)(FL.OT QR~TP FL.OAT SUREX'" FUNE"M
1\.., ..

C
r-'

(..

{'
"-

C"

(~-

C-8 39519900 A C~

c='

·CJ

o
o
o
o
o
C)

o
o

o
o
o
o
o
o
o
o
o
o
(j

Options LX

Note that the full compilatlon has taken place.

\

2
:1

•
5

" ..,
8
q

10
t 1

C
C
C

PAOGRA~ FTNePT

fWAMPLE FOR FeATAAN COMPILE~ OPilONS

DIMEhStO~ A45),I(S)
DO 1 It-l,S
t tIlhitltt]/A(II)
CONTINUE
CALL 5U8EKM.cA,I)
J-t<.6itC
IFtFUNEK~(•• 9)) 10.20.10

10 GO TO 20
2"- CONTINUE

ENO

P~OGAA~ LENATM 'on.F c ?q)

OPTS - L"

EKTERNAlS
Q8QFIX FLOT

Options Px

~8STP FLOAT SU8EX~ FUNEXM

Note that no Usting output is generated, but full compilation has occurred with object and load and go
output.

OPTS • PK

39519900 A C-9/C-IO

C:

•

c·
C/'

C

C
('

\','--.,..,'

C'
C.-··

C.~.'

c~"

c."'
c-
C_~'

o
o
o REFERENCE MANUALS o

o
o

Title Publication' Numbe r

o 1700 MSOS 4 Reference Manual 60361500

1700 MSOS 4 Macro Assembler
Reference Manual 60361900 o

1700 MSOS 4 Mass Storage FORTRAN

o Version 3 Reference Manual 60362000

1700 MSOS 4 Computer System Codes 60163500

1700 MSOS 4 Macro Assembler
General Information Manual 39519800 o

1700 MSOS 4 Small Computer Maintenance
Monitor Reference Manual 39520200

1700 MSOS 4 Instant 39520500

1700 MSOS 4 File Manager Version 1 o
Reference Manual 39520600

o 1700 MSOS 4 Installation Handbook 39520900

1700 MSOS 4 Small Computer Maintenance
Monitor Instant 3952170('

1700 MSOS 4 General Information Manual 39522400 o
o
o
o
o
o
o
o

39519900 A D-1/D-2

o

. '.~ ...
\ ' ., L' :',; , : ' •• ~', ~ ••

Co','

(\
,-.~"

(~~'

c'
c
c
('
' .. ~ ... ,

c
('

l

C~:'

(~
,-,,'

c
C~'

c
C."

(

('

0

0

0 ,

0

0

0

0

0

0

0

0 ~I ~I

0
0 1

~:
<I

0 BI

0

0

0

0

0

0

0
()

COMMENT SHEET

MANUALTITLE __ C_O_N __ T_R_O_L __ D_A_T_A __ ® __ 1_70_0 __ C_o_m_p_u_t_e_r_S~y_s_te_m __ s __ 1_70_0 __ M_S_O_S __ 4 ________________ __

Mass Storage FORTRAN Version 3A/B General Information Manual

PUBLICATION NO. __ 3_95_1_9_9_0_0 _________ REVISION __ A ____ -----------

FROM
NAME: __ __

BUSINE~
ADDRE~: __ __

COMMENTS: This form Is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please Include page number.

FOLD FOLD

---~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MAll
LA JOLLA, CALIFORNIA 92037

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

._---------------------------------._---~ :OLD FOLD

c
C
C:

C

C
r-,

......... _ .. '

c'

c
C-
c

c

o
o
o
II

o
f

o
o
o
o
o
o

[
o
o
o
o
o
o
o
o
o
(')

(./
CORPORATE HEADQUARTERS. P,O, BOX O. MINNEAPOL.lS. MINN. 55440 LITHO IN U.S.A.

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROU<3Ho,uT THE WORLD

c'

c
c
c

(

('

c:
l

<S~
CONTf\OL DATA CO~OR{\TION

C-,'

(

