2000000000 CHDOO0O0OO0OO00O00OOOCC

@ E CONTROL DATA
CORPORATION

CONTROL DATA®
1700 COMPUTER SYSTEMS

1700 MSOS 4
MS FORTRAN VERSION 3A/B
GENERAL INFORMATION MANUAL

REVISION RECORD

REVISION

DESCRIPTION

A

Manual released.

(7/14)

Publication No.

39519900

©

by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Publications & Graphics Division

4455 Eastgate Mall

La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

@

OO 0 O0.0.0 O

O O

OO OO0 000 C D

O

CONTENTS

O0000O000CC

1700 FORTRAN SYSTEM 4 DATA TRANSMISSION STATEMENTS
Product Configurations 1-2 FORMAT 4-1
Product Hardware Requirements 1-2 Formatted READ/WRITE 4-1
Output 1-2 Unformatted READ/WRITE 4-2
Compiler Optimizations 1-3 SETBFR 4-2
Card Formats ' 14 CALL READ/WRITE/
Source Programs 14 FREAD/FWRITE 4-2
Elements 1-5 ENCODE/DECODE Calls 4-3
Character Set 1-5 Additional Formatting Routines 4-3
Constants 1-6 FORTRAN /Monitor Run-Time Package 4-4
Integer 1-6 Accessing Mass Storage
Real 1-6 FORTRAN Files 4~-4
ANSI " 1-6 ‘
Variables 1-6 5 . ASSEM STATEMENTS
Array 1-7
Rur:~Anywhere Option 1-7 6 CONTROL STATEMENTS
ASA Option 1-7
~/ ASSIGN 6-1
2 REPLACEMENT STATEMENTS GO TO 6-1
O Unconditional 6-1
' Replacement Statement 2-1 Assigned 6-1
Arithmetic Expression 2-1 Computed 6-2
O Relational Expression 2-1 DO 6-2
logical Expression 2-2 IF 6-2
CONTINUE 6-3
O 3 SPECIFICATION STATEMENTS PAUSE 6-3
- STOP 6-3
DIMENSION 3-1
C) BYTE 3-1 7 PROGRAM AND SUBPROGRAM STATEMENTS
SIGNED BYTE 3-1
COMMON 3-1 SUBROUTINE . 7-1
O Type 3-2 CALL 7-1
EQUIVALENCE , 3-2 Functions 7-1
_ DATA 3-2 External 7-1
O EXTERNAL 3-3 : Statement 7-2
RELATIVE 3-3 ’ Reference 7-2
SINGLE 3-3 BLOCK DATA 7-2
O ' RETURN 7-3
END 7-3

39519900 A iii

8 PREDEFINED FUNCTIONS

Basic External Functions
Intrinsic Functions

APPENDIX A
Sta:.e;nents
APPENDIX B

ANSI Codes for the FORTRAN
Character Set

iv

APPENDIX C
Compilation Output and Options
APPENDIX D

Reference Manuals

39519900 A

O 00000

M
)

)

)

N0

AO OO 00O

OO0 0000 0COO0C

00 00000000

1700 FORTRAN SYSTEM 1

The 1700 Mass Storage FORTRAN system for the Control Data® 1700 computer provides a convenient
language for expressing mathematical and scientific problems in a familiar mathematical notation,

A set of FORTRAN statements to accomplish a particular task is accepted as a source program by the
FORTRAN compiler; the object program produced by the compiler contains the machine language com-
mands to solve the problem. Object programs may be run repeatedly with varying sets of data.

1700 Mass Storage FORTRAN is ASA FORTRAN with the ‘differences described in the following text.
Many programs written in ASA FORTRAN can be compiled by 1700 FORTRAN with little modification.
All Basic FORTRAN programs can be compiled correctly by 1700 FORTRAN,

The 1700 Mass Storage FORTRAN source language includes the following features:

° Constants and variables of types: ‘
Integer Real (floating-point)
Hexadecimal Double precision
Byte Single
Signed Byte ANSI

° Library functions

e Independently compilable subprograms

° Generalized subscript expressions

° Variable format for input/output control-
° Bit and byte manipulations

° Run-anywhere compile time option

° Mass storage language statements

° Double-precision floating-point package
The 1700 Mass Storage FORTRAN Version 3 product is composed of five basic elements:

A Variant FORTRAN Compiler — This compiler version has a larger number of overlays;
the largest overlay is approximately 8K, It requires more mass memory than the B variant

and is slower in compilation speed.

39519900 A 1-1

® B Variant FORTRAN Compiler — This compiler has fewer overlays than the A variant;
the largest overlay is approximately 16K. This variant is faster than the A variant, Both
compilers process source statements identically and generate identical object code.

e Re-entrant ENCODE/DECODE Run-Time — This run-time runs in the foreground and has
the characteristics for multiprogramming,

° Non-Re-entrant ENCODE/DECODE Run-Time — This run-time runs in the background and
has identical user interface as the Re-entrant ENCODE/DECODE run-time. This run-time
is designed for use in debugging programs to obtain the foreground.

® FORTRAN 1I/0 Run-Time — This run-time runs in the background and has more extensive
capabilities than the other two run-times,

PRODUCT CONFIGURATIONS

Several configurations are possible using the five elements of the product,

Only one variant of the compiler may be present in a given MSOS system, With the selected compiler,
Re-entrant ENCODE/DECODE Run-Time may be used (must be core-resident), Either Non-Re-entrant
ENCODE/DECODE Run-Time or FORTRAN I/0 Run-Time may be in the background, In addition, if
FORTRAN I/0 Run-Time is in the background, the non-duphcatwe functions present in Non-Re-entrant
ENCODE/DECODE can also be in the background.

Specific details of the configurations can be found in the MSOS Configuration Manual, CDC Publication‘
No, ’ :

PRODUCT HARDWARE REQUIREMENTS

The MSOS Reference Manual should be consulted for specific hardware options available (CDC Publica-
tion No, 60361500). '

The minimum system memory requirements for MSOS do not include any of the elements of Mass
Storage FORTRAN, If the A variant of the compiler is used, the minimum memory requirement is
24K, The B variant minimum is 32K, If the foreground ENCODE/DECODE run-time is used, the

additional memory requirement is 4K for single-precision floating-point, or 8K for double-precision
floating-point,

OUTPUT
Output selected‘by the programmer may include:

° Relocatable object program

39519900 A

ONORS

O C OO OO0 0000,

)

O O

v

Y 000

O

O

OO 000000 0OC

OO0 00000 O0

0 O

Source program listing plus diagnostics
Object program listing (binary and assembly code equivalent)

Load-and-go object program for immediate execution

Diagnostic messages are printed when the compiler detects actual errors and probable errors.

COMPILER OPTIMIZATIONS

1700 Mass Storage FORTRAN is a multiple-pass compiler which produces highly optimized code, The
optimizations are listed below:

39519900 A

Common subexpressions, including subscripts, within or between arithmetic expressions
are identified and computed only once. ’

Subexpressions are computed at the lowest DO loop level.

Subscripts being acted upon by DO loop induction variables are computed recursively.
Index registers are optimally assigned.

One word relative addressing is used where possible,

Storage is allocated to maximize relative addressing.

All simple FORTRAN-provided functions are inserted in-line; for example, IABS or AND,

A comprehensive analysis of IF statements is made. A transfer from the IF statement to.
the label of the next statement is recognized in the generated code. In a logical IF, the
computations are structured to determine the truth value with the least computation.

The analysis and computation of arithmetic expressions are accomplished in an order which
minimizes both the amount of code generated and the execution time,

Division by a real constant is accomplished through multiplication by the reciprocal of the
constant, : '

For integer variables, multiplication and division by a constant which is a power of two is
accomplished through shifting., When numbers are raised to integer constant powers, in-
line raultiplication is used wherever it increases efficiency. '

The values in the A, Q, and I registers are retained and may be used later,

A flow analysis of the program is made; common subexpressions and index register
assignments are carried through the flow.

CARD FORMATS

The initial statement card format is:

Columns Content

1-5 Blank or statement label

6 ‘ Blank or 0

7-72 Statements

73-80 Identification and sequencing

The continuation card format is:

Columns Content

1-5 Blank

6 Any character other than 0 or blank
7-72 Continuation statement

73-80 Identification and sequencing

Up to five continuation cards are allowed for a statement,

The comment card format is:

Columns Content
1 ' C -~ comment designator
2-72 , Comments

73-80 Identification and sequencing

SOURCE PROGRAPMS

A source pfogram may be a main‘program or a subprogram, Source programs must be compiled
separately but may be run together. All specification statements must be placed at the beginning of
the source program. ’

Data values may be entered by DATA declarations, Specific storage areas may be reserved by
COMMON statements for reference by subprograms and the associated main program. EQUIVALENCE

allows the programmer to overlay the same storage locations with variables and arrays during program.

execution,

The mode of a variable, integer or real, may be defined by a type declaration or by the form of the
variable itself.

1-4 _ 39519900 A

J

/
®

0

a

2

OO

SNONONY

(
\

D

OO

®

/
3

aNa e

v

O 0)

O C

L4

O O

D000 0000000 CDODOO0OOO0OO0OO0O

Arithmetic operations include: addition, subtraction, multiplication, division, and exponentiation,

Logical statements may include relational and logical operators,

Control statements may alter the sequential execution of instructions unconditionally or dependent upon

the value of an expression,

Input/output operations transmit data between the computer storage and external equipment. Conversion
and editing specifications permit great diversity in input/output formats,

ELEMENTS

CHARACTER SET

Alphabetic:
Arabic numerals:

Special characters:

39519900 A

A through Z
0 through 9

+

w N o N ¥)

.= =R

> @ VA o

Blank

Equal sign

Plus

Minus

Asterisk

Slash

Left parenthesis
Right parenthesis
Comma

Decimal point
Currency symbol
Apostrophe or single quote
Exclamation point
Quotation marks
Number sign
Percent sign
Ampersand
Colon

Semicolon

Less than
Greater than
Question mark
Commercial at
Opening bracket
Reverse slant
Closing bracket
Circumflex
Underline

1-5

CONSTANTS

Integer, real, hexadecimal, and ANSI constants are variable. Each type has a different mathematical
s_ignificance and a different internal representation., The type of constant is determined by the form in
which it is written or by the context,

INTEGER

Integer constants are always exact representations of integer values with a range in magnitude of from
0 to 215-1, They may assume positive and negative values,

Integer constants may be represented in decimal form (0-9) or hexadecimal form (0-9, A-F), When
hexadecimal representation is used, the integer value must be preceded by a dollar sign ($).

REAL

Real constants are approximations of real numbers with a range in magnitude of from 0 to 2128. They

may assume positive and negative values. Significance is one part in eight million. Single- and
double~precision real capability is provided. '

ANSI

The FORTRAN characters and their corresponding American National Standards Institute (ANSI) codes
are listed in Appendix B,

VARIABLES

Variables are alphanumeric identifiers which represent specific storage locations, Simple and sub-
scripted variables are rncognized. A variable may be designated as a byte of another variable through
a BYTE or SIGNED BYTE statement. Such a variable is treated as a signed or unsigned integer when
used in the body of the program,

When a variable is not declared by a type statement, it is assumed integer if the initial character is
1, J, K, L, M, or N, If the variable begins with another alphabetic character, it is assumed real,

1-8 ' 39518900 A

O O C

-

)
N
-

O O

ORONG

(

O C D

D0 0000

) (\

®

A

<

O 0O 00 0 C

OO0 00000000 CHOOOO0OO

ARRAY

An array represents a block of successive storage locations for variables. Each element of the array
is referenced by the array name plus 1, 2, or 3 subscripts in the following forms (¢ and d are unsigned
integer constants and m is a simple integer or byte variable):

d c*m
m c¥*m+d
mazxd

A reference to an array must contain the number of subscripts specified in the DIMENSION statement,
Examples of subscripted variables:

A (LJ)

C (14)

BA (J + 3,5)
Q (I-1,J,2*K)

RUN-ANYWHERE OPTION

Selection of this option results in an object program which will run correctly anywhere in allocatable
core, independent of the location at which it is loaded.

ASA OPTION

This option provides ASA compatibility., When this option is selected, two words of storage are allocated
for integers, only one of which is used, (See SINGLE statement.)

39519900 A 1-7/1-8

D00 UOUO0OLOLUULL JULVLLULUUULUULUOU

v

O O O C

OCOO0OO0OO0O000OOCDODOO0O0O00O

)

=
—

REPLACEMENT STATEMENTS 2

REPLACEMENT STATEMENT

r==e

The value of the expression, e, is assigned to the variable identifier, r; e is an arithmetic expression,

ARITHMETIC EXPRESSION

Any simple or subscripted variable, constant, or function may be an arithmetic expression., These
“entities may be combined by using the following arithmetic operators to form other arithmetic

expressions:
*k exponentiation + addition
* multiplication - subtraction
/ division

RELATIONAL EXPRESSION
e ope,
A relational expression is true if the arithmetic expressions e; and ey satisfy the relation specified by

the operator, op; otherwise the relation is false. e and e, must be of the same type.

Relational operators:

2-1

. EQ, equal to

.NE, not equal to

.GT, greater than

.GE, greater than or equal to

. LT, less than

. LE. less than or equal to
39519900 A

LOGICAL EXPRESSION

e ope,op...ope

A logical expression is formed with lggical operators and logical elements (ei), and is either true or

false.
Logical operators:

. OR.

. AND,
Logical primary
Logical factor

Logical element

logical disjunction
logical conjunction
A relational expression

A logical primary or ,NOT. followed by a logical primary where .NOT, is
logical negation

A logical primary or a construct of one of the following two forms enclosed in
parentheses: : :

1) logical primary .,AND, logical factor
2) logical primary .OR. logical factor-

39519900 A

v

(
v

O

Y O

)

O OO0

il

2000000 0CO0O0CDODO0OO0O0000O00OCCC

SPECIFICATION STATEMENTS 3

DIMENSION
DIMENSION vl, v2, coes Vn
Storage locations are reserved for the array identifiers, v,, which may be subscripted with up to three

unsigned integers. The number of locations reserved is cémputed from the DIMENSION statement and
type of array, The arrays will not necessarily be assigned consecutive blocks of storage.

BYTE
BYTE (xl ’yl (cl = dl))l eoe l(xn’yn (cn = dn))
Where: X, is bits ¢, through di of ‘A
‘ ¥, is an integer variable, integer array, or an integer array element

A and di are integer constants in the range: 15 > c,= dlz 0

A variable may be designated as a byte of another variable or array with this statement. Sucha
variable is treated as an unsigned integer when used in the body of the program.

SIGNED BYTE

SIGNED BYTE (x ,¥, (¢, =d Mseeus(x .y (e =d)

Same as BYTE except bytes are treated as signed integers only.

39519900 A

COMMON
COMMON/name/vl,vz, seesV
Where: name identifies a common block (blank for blank common)
vy is a variable name, array name, or subscripted array identifier

Common locations are assigned to the identifiers for reference by independently compiled programs
and subprograms. Values in labeled common (name is not blank) may be preset by a BLOCK DATA
subprogram, Dimensioning information may be supplied.

One block of labeled common and one block of blank common may be declared for a program.

- TYPE
type Vir Vgre s eV
Where: type is INTEGER, REAL, or DOUBLE PRECISION
v, is a variable name, array name, or funétion name

‘1

This statement declares the type of the identifier, It overrides’or confirms the type implied by the
first character of the identifier and may supply dimension information,

EQUIVALENCE
EQUIVALENCE (a1’b1"")’ (az',bz,...),...

Storage may be shared by two or more entities, The names 2 bi,‘. .+ may be variable names or array
element names,

No more than one element in an EQUIVALENCE group may appear in a COMMON statement, No element
may be a formal parameter,

DATA

DATA vl/dl/.v /d /.....V /d /

Where: \A is a list containing names of variables, arrays, array elements, and implied
DO loops
d1 is a constant, signed or unsigned, or Hollerith text

~8=2 39519900 A

N
/

O O C

./
- IS

S

L3

~
/

O O«

O O

r

D

(

o000

J

(
‘,

sNoNoNaNe

N,
g

OO 000000 CC

N

00 000000 COo

This statement defines initial values of variables or array elements, A one-to-one correspondence must
exist between the list items and the constants., A constant may be preceded by k* to indicate that the
constant is to be specified k times. Apostrophes may be used to enclose a constant. In this case, the
ANSI code for the symbols in the constant are stored into the corresponding variable,

EXTERNAL

EXTERNAL namel,namez, o ,na.men

This statement specifies the parameter names to be external procedure names.

RELATIVE

RELATIVE namel, namez, ooy na.men

This statement specifies the parameter names to be external procedure names. When the run-anywhere
option is selected, all references to this procedure will be made relative. Relative externals may not
be passed as parameters to subprograms,

.

SINGLE

SINGLE vl’VZ""’vn

Specifies variables v, as one-word integers., Dimension information may also be specified. This
statement is used if the ASA compile time option is selected,

39519900 A ' 3-3/3-4

OO OO0 LCUUCUL LU LULUYUUOLUCL

(OO0 00000000 CUC

\
}
7

00 000 00O0C

DATA TRANSMISSION STATEMENTS 4

Data may be transferred within the computer and between the computer and peripheral equipment with
the following statements,

FORMAT

FORMAT (specl, SPEC_yeeey specn)

2

Where: spec, is conversion of editing specification listed below

Editing specifications and BCD conversion specifications may be included in programs. Format
specifications can be compiled into a program or read into an array at object time.

Conversion specifications:

rEw.d Floating-point with exponent

rFw.d Floating-point without exponent

rDw.d Double-precision floating-point with exponentiation
rlw or Iw, d Decimal integer

r$w or Zw Hexadecimal conversion

TAw Alphanumeric

rRw Alphanumeric

Editing specifications:

wX - Intra-line spacing
wH ANSI heading and labeling
/ Begin new record
* or ' ANSI heading and labeling
39519900 A 4-1

FORMATTED READ/WRITE

READ(i,n)l
WRITE(i, n)l
Where: i is the logical unit number
n is the FORMAT statement specifying how to move data

is the list of variables to be transmitted

These statements transmit physical records, containing up to 120 characters, between the computer and
logical unit i according to statement n which may represent one of the following:

® The label of a FORMAT statement

) An array name

° An asgsign variable or formal parameter which has been assigned the label of a FORMAT
statement

UNFORMATTED READ/WRITE

READ(i)1

WRITE((i)1
These statements transmit a binary record to or from logical unit i, One logical record is produced
from each READ or WRITE statement. A logical record may consist of several physical records. The

parameters have the same meanings as in formatted READ/WRITE, ENCODE/DECODE and other
formatting routines aid the programmer in formatting his own data when necessary.

SETBFR
A call tb SETBFR provides the re-entrant FORTRAN I/O package with information regarding where to

store the program's I/O requests and corresponding data, It is used in conjunction with FORTRAN 1/0
requests which are in the foreground.)

CALL READ/WRITE/FREAD/FWRITE

In addition to the formatted READ, WRITE and the unformatted READ/WRITE, the FORTRAN pro-
grammer can perform 1700 MSOS 4 monitor calls to perform read or write requests by use of the
FORTRAN run-time package. These FORTRAN calls have the following forms:

4-2 39519900 A

O 0O O

£l

-t

O®

YO 0O«

i
§

O Q0000000

9

O0O000O000OC

C

00 00000000

CALL READ
CALL WRITE
CALL FREAD
CALL FWRITE

The CALL READ and CALL WRITE statements permit word addressing of mass memory devices as well
as sector addressing. (Only sector addressing of mass memory is possible with the FORTRAN READ/

WRITE statements.)

The CALL FREAD and CALL FWRITE statements may be used by a background program to transfer
binary information to or from mass memory. - (The FORTRAN unformatted READ/WRITE statements
cannot be used by a background program to access mass memory if the standard FORTRAN library rou-

tines are used.)

These calls do not refer to a FORTRAN FORMAT statement, but require that the user do his own for-
matting. The routines described in the next sections aid the programmer in formatting data.

ENCODE/DECODE CALLS

CALL DECODE (v,n,c,l
CALL ENCODE (v,n,c,1)

Where: v is the starting address
n is the FORMAT statement spécifying how to move data or array name
c is the number of variables to ENCODE/DECODE
1 is the list of variables to be transmitted

These statements transmit information, under FORMAT specifications, from one area of internal stor-
age to another, ’ :

ADDITIONAL FORMATTING ROUTINES

HEXASC Converts a number to the ANSI characters corresponding to the digits in the
hexadecimal form of the number

HEXDEC Converts a number to the ANSI éharacters corresponding to the digits in the
decimal form of the number

ASCII Converts ANSI characters to a numoer, assuming the ANSI characters represent
hexadecimal digits

39519900 A 4-3

DECHEX
AFORM
RFORM

FLOATG

Converts ANSI characters to a number, assuming the ANSI characters represent
decimal digits

Converts a word containing two ANSI characters to two words each containing a
character left-justified blank-filled

Converts a word containing two ANSI characters to two words each containing a
character right-justified zero—ﬁlled

Converts a floating-point number to ANSI characters including the sign, decimal
point, and the exponent of the numoer

FORTRAN/MONITOR RUN-TIME PACKAGE

The FORTRAN/Monitor run-time package enables the FORTRAN programmer to make certain monitor
requests, obtain monitor parameters, and execute I/0O commands. The calls to READ, WRITE,
FREAD, and FWRITE, as discussed earlier, are a part of the run-time package. The other FORTRAN
monitor requests are as follows:

CALL SCHEDL

CALL TIMER

CALL RELESE

Schedules a requested program at a requested priority

After a specified time interval, schedules a requested program at a requested
priority :

Returns memory to the core allocator

" In addition to the monitor calls, the run-time package provides the FORTR_AN programmer with access
to the following routines:

LINK
DISPAT
ICLOCK
OUTINS
INPINS

ICONCT

OCONCT

ENDFILE

4-4

Obtains the value in the Q register for use by the FORTRAN program
Transfers control to the dispatcher

Obtains the value of the system clock

Performs output via the 1705 Interrupt/Data Channel

Performs input via thé 1705 Interrupt/Data Channel

Performs a connect to the 1750 DCB terminator and then inputs from a device
connected to the 1750

Performs a connect to the 1750 DCB terminator and then inputs from a device
connected to the 1750

ENDFILE lu causes the recording of an endfile record on the unit identified by Iu.

39519900 A

O

S

NN O0O0O00OC YO0 0 000

DR

a

REWIND REWIND lu positions the unit identified by lu at its load point.

-

BACKSPACE BACKSPACE lu causes the unit identified by lu to go back to the beginning of the
preceding record.

Mass Storage FORTRAN files may be created and accessed by a FORTRAN program. These files are
assigned to the scratch area of the mass storage device and are not retained after execution of a jobh.
(They are not to be confused with File Manager files as described in the 1700 MSOS 4 Reference Manual

or with permanent files in the program library.)

To create a mass storage file, an OPEN statement must be executed. The OPEN statement has the
following form:

9,
@
O
O
O
O ACCESSING MASS STORAGE FORTRAN FILES
O
O
O
OPEN k,1,,u,x
O Where: k is the name of the file
i is the number of sectors per record
j is the maximum number of records in the file
u is the logical unit to which file is assigned
X is the starting sector address for the file (optional)

To access the file, alternate fqrms of the FORTRAN READ/WRITE statements are used. The alternate
forms are as follows:

READ (k(n), f)1

O

O

O WRITE k(o). 1
O

O

O

O

O

O

Where: k is the name of the mass storage file
n is the record number
f is the format specification, which may be the label of a FORMAT statement, an
array name, or a variable which has been assigned the label of a FORMAT
statement
1 is the list of variables to be transmitted
4-5/4-6

39519900 A

O

D00 COUCLLUUL JLULUUVULULUUUU

.

O O O C

2000000000 CHDOOO0O0OO0OO0O

ASSEM STATEMENTS 5

Assembly language instructions may be inserted in-line in a 1700 FORTRAN program by use of ASSEM
statements, The inserted instructions are specified by the FORTRAN programmer in the following

forms;

' Hexadecimal constants which may represent code to be executed or actual constants

References to statement labels within the program
References to variables within the program
References to externals declared by the program

Indirect addressing indicators

ASSEM statements may be used to generate calling sequences to the operating system and to access the
core communication region.

5-1/5-2

39519900 A

VOO UULULOLULLLLUL JUUUULUULULUULU

TN

DO000000000CHOOO0OO0OO0O00O0OC

CONTROL STATEMENTS 6

The following statements may be used to alter the sequential execution of instructions.

ASSIGN

ASSIGN k TO 1
Where: k is the statement label
i is the integer variable name (assign variable)

A label assignment statement stores the location of a statement label into a variable.

|

GO 10

UNCONDITIONAL
GO TOn

Control transfers to the statement identified by n.

ASSIGNED
GOTOior GOTO, (k ,k_,...,k)
i 2 m
Where: i is the integer variable name (assign variable)

is the optional statement labels which may be included for the programmer's
convenience; they are not used by the compiler. ‘

.ki

Before an assigned GO TO statement is executed, the current value of i must be previously assigned by
an ASSIGN statement. Control transfers to that assigned location. The i may be assigned in either the
program unit of the GO TO or in another program unit where i was passed as an actual parameter or

was in COMMON,

39519900 A . 6-1

COMPUTED
GO TO (i, Kps « v, Kpp),
Where ky is the statement label
i is the integer variable reference

Control transfers to statement kj.

DO
DO statements provide repetitive operation and incrementing.
DOni= m;,my or DO N i= m,, my, my

Where: n is the statement number at the end of a sequence of instructions which begins
with the DO statement

i is a simple integer variable i
my is an integer constant or simple integer variable
The initial value of 1 is m,;. The value of i is incremented by mg each time. The sequence is repeated

until i surpasses the value of m,. If mg is omitted, it is assumed to have the value 1. A DO loop may
include other DO loops. : ‘

IF

IF statements transfer control conditionally depending on the value of an arithmetic or logical
expression.

IF (0) k;, ko, kg
Where: e is an arithmetic expression
k1 is a statement label

Control transfers to kl if the value of e is negative, to k2 if the value is zero, and to ka if the value is
positive, v

IF () s
Where: - 1 is a logical expression
8 is any executable statement except a DO or another logical IF statement
6-2 . © 39519900 A

&

O O

@)

-

ONONORONONG

A OO0 T D

o 00

@

-

0’0 C C

OO0 O0OO0OO0O0CDHDOO0O0OO0OO0OO0O

O O 0O O

‘Ifl is false, 8 is executed as though it were a CONTINUE statement. If1l is true, statement s is
- executed.

CONTINUE
CONTINUE

This 18 a no-operation instruction which may be given a statement number for reference. It is frequent-
ly used to terminate a DO loop. :

PAUSE

PAUSE
PAUSE v

Where: v is an octal number with a maximum value of 77777
The PAUSE statement halts a program temporarily. The word PAUSE and the value of v, if present,

are printed on the output comment device. A carriage return entered by the operator resumes execu-
tion with the statement immediately following the PAUSE statement,

STOP

STOP
STOP v

Where: v is an octal number with a maximum value of 77777

The STOP statement terminates the execution of a program, The word STOP and the value of v, if
present, are printed on the output comment device. '

39519900 A o 6-3/6-4

OO U UCOOLUULLLULLLLUULULULULULULLLUYU

.

D000 0000000 CDHODOOO0ODO0OD0OD0O0OO0OO0OC

-

PROGRAM AND SUBPROGRAM STATEMENTS 7

SUBROUTINE
SUBROUTINE name (PyPgs+vesPyp)
Where: name is the alphanumeric identifier
Py " is a formal parameter (optional)

The first statement in a subroutine defines it. A subroutine may return resulting values through formal
parameters.

CALL
CALL name (cl. Copeeny cn)
Where: name is the alphanumeric identifier
c is an actuél parameter
Control transfers from a program or subprogram to subroutine name with actﬁal parameters, c,, re-
placing formal parameters, ;s in the subroutine parameter list. The actual pa. i:meters may be vari-

ables, array names, array element names, constants, arithmetic expressions, or external subprogram
names,

FUNCTIONS

EXTERNAL
FUNCTION name (pl, Poseeey pn)
Where: name is the alphanumeric identifier
p; . is a formal parameter (optional)

This must be the first statement in a function subprogram, A function returns a single value as a
result.

39519900 A Y=

STATEMENT

name (91'92' ves ,pn)=e

Where: name is the alphanumeric identifier
P; is a formal parameter
e is an arithmetic expression involving 'pi

This statement defines the value of name, which is inserted in the code wherever name is used as an
operand in an expression. The expression e may contain references to library functions, other state-
ment functions, or function subprograms.

The statement function name may not appear in a DIMENSION, EQUIVALENCE, or COMMON
statement. '

REFERENCE
name (Cy,Cg,...,Cg)
Where: name is an alphanumeric identifier

c, is an actual parameter

When the statement function appears as an operand in an expression, control transfers to the named
function. Control returns to the statement containing the function reference and the value returned is
associated with the function identifier. A function reference may be used anywhere that a variable
identifier may be used. ‘ '

Actunl parameters may be variables, array names, array element names, constants, arithmetic .
expressions, or external subprogram names.

BLOCK DATA

BLOCK DATA

Block data subprograms are used to enter initial values into elements of labeled common blocks. This
special subprogram contains only specification statements. BLOCK DATA must be the first statement in
this subprogram.

If an entity of a particular common block is being given an initial value in such a subprogram, a complete
‘set of specification statements for the entire block must be included, even though some of the elements
of the block do not appear in DATA statements. Initial values may be entered into more than one block

in a single subprogram. ‘

7-2 , 39519900 A

O O O

-

O O O

O O O

))

oy O

OO OO0

O O

C

a

O O O

-

OO 000000 CDODOOO0O0OO0OOO

O O

RETURN

RETURN
This statement signals the end of logic flow within a subroutine or function and returns control to the

calling program., More than one RETURN statement may appear within a single subroutine or function
subprogram, If RETURN is omitted, the END statement serves as a RETURN statement.

END
END

This statement marks the bhysical end of a program, subroutine, or function,

-

39519900 A v v 7-3/7-4

OO CUCOOOLLLLUL LULULLULUULUULULOL

C

-

O O O

¥

PREDEFINED FUNCTIONS

BASIC EXTERNAL FUNCTIONS

The following functions may be referenced in any program or subprogram,

-

OO0 000000 CHDOO0O0O0OO0Oo

0 O

Number of Symbolic Type of
Function Definition Arguments Name Argument Function
Exponential et 1 EXP Real Real
DEXP Double Double
Natural loge(a) 1 ALOG Real Real
logarithm DLOG Double Double
Trigonometric sin (a) 1 SIN Real " Real
sine DSIN - Double Double
Trigonometric cos (a) 1 CcOs Real Real
cosine DCOS Double Double
Hyperbolic tanh (a) 1 - TANH Real Real
tangent
1/2
Square root (a) 1 SQRT Real Real
DSQRT Double Double
Arctangent arctan (a) 1 ATAN Real Real
DATAN Double Double
End of file Check previous 1 EOF Integer Integer
check on unit a read on unit a
for end-of-file,
2 is returned if
none. 1l is re-
turned if EOF.
8-1

39519900 A

Function

Floating point
fault ‘

' Parity error
check on unit

o - Number of Symbolic Type of
Definition Arguments Name Argument Function

If a is 0, over- 1 IFALT Integer Integer
flow is tested.

" If a'is 1, divide

fault is tested.

If a is 2, under-

flow is tested.

A 2 is returned if
the condition has

“not occurred, a l

otherwise.

Check previous . 1 IOCK Integer Integer
read or write on ‘ :

unit a for périty

error. A 2is

returned if no

parity error

occurred, Al

is returned if

parity error did

occur, '

INTRINSIC FUNCTIONS

When the following functions are referenced, in-line code is generated. They may not be passed as a

subprogram parameter,

Function
Absolute

" value

Float

Fix

Transfer
of sign

Number of Symbolic Type of

Definition Arguments Name Argument Function
la] : 1 ABS ~ Real Real
IABS Integer Integer
DABS Double Double
Conversion 1 FLOAT Integer Real
from integer DFLT Integer Double
to real '
Conversion 1 IFIX Real Integer
from real ’ DFIX Double Double
to integer
Sign of a, 2 SIGN Real Real
times | a4 l ISIGN Integer Integer
DSIGN " Double Double

39519900 A

®

O

OO

£

O O O

O

O

)«)

)

OO O 0O D0 OO0

By

4

v

ONONOCEONONONEG

ONONONONONONCHONONONGEDNONONG

Function

Inclusive
OR

Exclusive
OR

Logical
product

Complement
Obtain most sig-
nificant part of
double-precision

argument

Express single

precision argu-

ment in double
precision form

39519900 A

Definition

Inclusive OR
of Iand J

Exclusive OR
oflandJ

- Logical prod-

uct of I and J

Complement
(NOT) of I

Number of

Arguments

2

Symbolic
Name

OR(L,J)
EOR(1,J)
AND(1,J)
NOT(T)

SNGL

DBLE

Type of
Argument Function
Integer Integer.
Integer Integer
Integer Integer
Integer Integer
Double Real
Real Double

8-3/8-4

OO0 0000 LLLULULL JUJLVLUULULULULULUY

O O O C

-

OO0OO0OO0OO0OO0O0O0CHOOOO0OO0OO

O O

ASSEM 9‘1’8‘2" .o ,an

ASSIGN n, TO i

BACKSPACE i

BLOCK DATA

BYTE (x,,y,(¢;=d}),.... %,y (c =d)
CALL name (cl,cz, cee ,cn)
COMMON/zm.me/v1 WoreensV,
CONTINUE

DATA v/d‘l/ , vz/dz/ yees ,vn/dn/

v

DIMENSION v_,V_,...,
1'°2 n

DOni=m , m_, m

1’ 72" 3
DOni =m1,m2,—m3
END
ENDFILE lu

EQUIVALENCE (al’bl"")' (a2'b2" S I

EXTERNAL 1xame1.nmne2 yeoe ,namen :
FORMAT (spec 1reee
FUNCTION name (pl.pz, ves .pn)
GOTOn
GO TOi

GO TOi, (nl,nz,. .o ,nm)

39519900 A

RELATIVE name

SINGLE i

k(specm... .),specn,...)

STATEMENTS A

GO TO (nl,nz.. coam)€
IF (e) nl.nz.n3

IF(1)s

OPEN

PAUSE

PAUSE n .

r=e

READ (i) 1

READ (i,n) 1

name, nam en

1: 2’ sy
RETURN

REWIND i -

SIGNED BYTE (x1=y1(c1 = dl)). oo (}xn = yn(cn = dn»
1'i2' ces ’in

STOP

STOPn

SUBROUTmE pame (pl,pz, .o .pn)
type vl,vz, cee ,vn

WRITE (i) 1

WRITE (i,n) 1

A-1/A-2

OO C O LOLLLLLUCL JUULUULULLUULUUUU

O00000000COCOHDOO0OO0OO0OO0CO0O0OC

ANSI CODES FOR THE FORTRAN CHARACTER SET

Bit Configuration

0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010

39519900 A

Symbol

.

@ O =3 O o W N = O N

Bit Configuration

0111011
0111100
0111101
0111110
0111111

~ 1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101

v Symbol

~ VvV

a8 W PO Yo Z 2R "m0 O0W >

.Bit Configuration ..

1010110
1010111

71011000 -

1011001
1011010

Bit Configuration

1011011
1011100

-1011101 -

1011110

1011111

39519900 A

o O O

OHONONONONONS

)

—

oy Y O

SOOI EG

OO N

N
:

OO0 00000000 CCDOOO0OO0O00000CCcC

COMPILATION OUTPUT AND OPTIONS | C

The 1700 Mass Storage FORTRAN compiler allows a variety of compilation options for user needs. Any
combination may be used. The following defines the available options.

L
A
M

P

—

Source program listing with syntax checking of source code.
Object code listing with assembly language equivalences.

Condensed object code listing indicating the first object code statement generated
for each source statement.

Run-anywhere option allows for generation of code using relative addressing for -
execution in allocatable core.

ANSI FORTRAN compatibility; integers occupy two words.

Ielocatable object code placed on mass memory load-and-go file for immediate
execution. : ' '

! |
Relocatable object code output to output media for retention,

All compilation processes check for syntax errors and comprehensive diagnostics are printed.

The following examples illustrate the éompiler operation and listing.

L ggtton '

Note that full compilation is not done, only a statement syntax check.

1

=OODNIPNSIN

— g

39519900 A

oo

PROGRAM FTNOPT
EXAMPLE FOR FORTRAN COMPILER OPTIONS

DIMENSTION A4S)eI(S)
00 ! 11=)1,5
I(II)al1I®3/8(1])
1 CONTINUE:
CALL SUBEXM{AsI)
JuK*6el)
IF(FUNEXNM (449)) 10920410
10 Go TO 20
20 CONTINUE
END

Options LA

—)
DO DRI NN

. C
e
C

¥

0000
0000

0001
000R

© 0010

0011
0012
0013
0014

0015

0017
0018
0019
001A
0018
001C
001D
001F
001F
0020
0021
oo2e
0023
0026
002%
0026
0027
0028
0029
002A
00er
002C

PROGRAM FTNOBPTY

DIMENSTON A{S)eI(5)

00 1 Ile].5
STl mIIR3/74(11)

"1 CONTINUE

CALL SUBEXM{&s1)

JEK+68C
_ IF(FUNEXM (449)) 10420410
10 6o TO 20
20 CONTINUE

END
0000 NAM FTNOPT
1919 FTNOPT UMP® ,00001
n0oA A - . BSS: 10
nons I BSs .S
001 I1 RSS |
0003 0003s CON 3
0001 J BSS |
0001 K RSS 1
0006 Vooss CON 6
9002 (o BSS _ 2
4}CE “1CE, CON 16846
6666 . COAN 26216
0AQ1 00001 ENA 1
68FS A STA® I1
0AQ2 eN0004 ENA 2
28F3 MUI® 1T
682¢C .. STA® ,00005
CaFi LDAs 1T
28rF1 MUI® 0003S
682A STA® ,00006
5400 RTJe FLOAT
TFFF :
004A P aDc « 00006
5400 RTJe FLOT
IFFF _
FA&D CON =1471
noao P ADC 000005
TFFE P ADC A
5400 RTJe¢ GBOFIX
TFFF
EaE4 LDQe I}
Y]] STA® 1

“'EXAMPLE FOR FORTRAN COMPILER OPTIONS

=2

39519900 A

®

/

OO

Y

O O

o O

(

e

s

"

o OO

\
7

C

D0 00000000 CDODOO0OO0O000O0V00 o0

5 0020
002E
002F
0030

: 0031

6 0032
0033
0034
0035

T 0036
2037
003R
0039
0034
003R
003C
003D
003E
003F
0040
0041
0042

8 0043
0046
0045
0046
0047

9 0048
0049
0044

_ 004R

11 004D
004E

11 _ 0000

PROGRAM LENGTH $004F (

oPTS = AL

EXTERNALS
QB8QFIX FLOT

39519900 A

Dare
0A0S
98F0
0131
18E9
5400
TFFF
0001
Noo0R
SCFB
0014
SCEC
9040
001%
nO4R
5CES
0012
SCE6
€400
004P
SCe8
6ACF
$6400
TFFF
nov7
cocs

n105

1805
0001
0001
0002
5400
TFEF
0000

lo
« 00005
«00006
«00007
20

79)

RACH
ENA
suBe
SAM
JMP &
RTJe

ADC
aADC
RTU®
ADC
RTJ®
CON
aDC
ADC
RTJe
aADC
RTJ®
CON
ADC
RTJ®
STA®
RTJe

ADC
CON
SA2
JMP &
BSS
8ss
BSS
RTJe

END

Il
It

1
¢ 00004
SURE XM

A

1

(FLOAT)
00068
(FLOT)
=25279
c

«00007
(FLOAT)

K .
(FLOT)
000007
(QRQF 1X)
J
FUNEXM

41CE.
=1618¢

.8
20

1

1

2
Q8STF

QASTP ~ FLOAT SUBEXM FUNEXM

- Options LM

Note condensed object code listing. This form is useful when the list device is a Teletype.

1

D2 O0DNPRNEGWDN

-

o DNPrPNRE> W

- pma
L

- C

0019
001R
0020
0032
0036
0043
€048
004D
0000

PRNGRAM FTNBPT

EXAMPLE FOR FORTRAN COMPILER OPFIONS =
DIMENSION A{5)s1(S5) |

NO 1 11=1,58
I(1D)alte3/a(l
1 CONTINUE
CALL SUREXMAA,
JaKebaC
IF (FUNEXN (449)
10 60 T0 20
20 CONTINUE
END
naQ1 000001
0A02 000004
DBE?2 1
5400
5CFB
5400 :
1805 10
85400 20
0000

PROGRAM.LENGTH $004F (79)

0PYTS = LM

EXTERNALS

Q8arlIx FLot -

C-4

GBSTP FLOAT SUBEXM FUNEXM

8]
I
) 10420910
ENA ' 1
ENA 2
RAO® 11
RTJe SUBEXM
"RTJ® (FLOAY)
RTJe . FUNEXM
JMPe 20
RYJe. QBSTP
. END.]

39519900 A

0O

.

L]

ONONONONG

/
\

DIRG

—

(

sNeNaNe

Y 0

ONe

)

Y
s

O

O

OO0 000C0O0COoC D

O

O000000O0

tions LAR

Note that no-program relocatable addresses are generated; hence, the program is able to run in

allocatable core.

OO0

~OOIBINPIPR O WN

b o

0000

0000
0001
2009
0010
0011
012
00113
nolée
2015
1017
0018
0019

001A
nO1R
001cC
0010
COIE
001F
0020

“

39519900 A

PROGRAM FTNOPT

EXAMPLE FOR FORTRAN COMPILER OPTIONS

DIMENSTON A(S)oI(5)

IF (FUNFXVM (409)) 10020010

NAN

JMP&»
BSS
BSS
ASsS
CON
ASS
8ss
CON
B8SS
CON
CON -
RTJe
aADC
ASS
LDAe
ADD#
STAs
ENA
STAs

N0 1 Il=1.S
1(11)a1te3/7A(11)
1 CONTINUE
CaLL SUBEXM(A+I)
JEK*6aC
10 Go T0 20
20 CONTINUE
END .
0000 :
«00001
1819 FTNOPT
0004 A
0o0ns 1
noonl Iy
0003 0p0as
0001 J
0001 K
0006 Upoes
0002 c
4)CE 41CE,
6666
5802 00002
FFES
0001 00005
C8FE
68FC
6AFC
nany
68EF

FTNOPT

+00002
10

N O o o () e (N

16846
26214
«00005
«00001

1
00005
«0000S
000005

11

‘n

0021
9027

no23 .

0024
0025
0026
0027
0028
0029
0024

Go2R:

002¢
no2n
002E
002F
0030
0031
0032
o83
0034
0035
036
0037
0038
0039
0034
0038
003C
0030
003€
003F
0040
0061
LD Y4
0043
0044
noas
0046
0047
0048
0049
0044
0048
004C
nN04D
006F
004F
5050
0051
0053
0054
0000

OPTS = RAL

EXTERNALS
Q8QFIX FLOT

nap?
28EN

682¢
CB8ER

28ER
6824
5400
TFFF
R027
5400
TFFF
SFA4
n022
7FDO
%400
TFFF
ESDFE
HANDT
Daoc
nans
98p4A
0131
18EQ
5400
TFFF
FFce
FFCF
SCER
FFNe
SCEC
S59N4
TFD4
nolo
SCES
FFCF
SCE6
SEs0
agoR
SCes
68CY
5400
TFFF
FFcR
cocs
105
1808
0001
0001
0002
S4n0
TFFF
9000

PROGRAM LENGTH 80055 (

QRSTP

+00006

10

000007
«00008
«00009

20

8s)

ENA
MUTe

STA®
‘LDA®

MUI®

STAe -

RTJe
ancC

RTJye -

COAN
ADC
ADC

RTJe,

LDGe
STA®
RAQ#
ENA

SuBe
SAV

JMP &
ATJe

ADC
ADC
RTJ#
ADC
RTy#
CON
ADC
ADC

RTJ®

ADC
RTY*
CON
ADC
RTJ®
STA»
RTJe

ADC .-

COMN
SAZ
JMPe
BSS
BSS
RSS
RTJe

END

2
11
000007
& SN
0003$
«00008
FLOATY

«00008
FLOT

24484
«00007
A

_QBQF1IX

11
I .
11
11

5

1
00006
SUREXM

1
(FLOATY)
00063
(FLOT
22996
c
«00009
(FLOAT)
K

(FLOT

- 24128

¢ 00009

(Q8QF IX)
J

FUNEXM
41CE,
~16186
5
20
1
1
2
QASTP

FLOAT SUREXM FUNEXM

oNe

9

4

/

)

-

I4

O

\

N

()

\

O O

Y

N

i

o

j

/

/\\

(

o

SNe

39519900 A

O 0

I, K

%

O O0CO00000000O0

@

O 00 00 O

N

—/

r

tions LAK

This form allocates two words of memory for each integer. The actual executable code only uses one
of the two words.

1 " PROGRAM FTNGPTY
c
C EXAMPLE FOR FORTRAN COMPILER OPTIONS
c .
? DIMENSTON A{S)eI(S)
3 D0 1 11e1,5
4 IttDhelre3/zacln
s 1 CONTINUE -
6 CALL SUBEXM{AsI)
4 JEK*6aC
8 CIF(FUNEXM(4e9)) 10020410
9 10 Go Y0 20
10 20 CONTINUE
11 END
0000 0000 NAM FTNOPT
0000 1821 FTNOPT JMP® ,00001
0001 0NOQA A 8SS 10
000R 000A& 1 8Ss 10
00iS 0002 11 8ss 2
0017 0003 0003 (o018 3
0018 0002 J. BSS 2
001A 0002 K 8SS 2
001C 0006 0006¢ CON 6
001N 0002 c ass 2
001F &1CE 41CE, CON 16846
0020 6666 ~ CON 26214
3 0021 nAn) 200001 ENA 1
0022 68F2 STAs I1
4 0023 0A02 0000046 ENA 2
0024 28F0 MUI® 1Y
0025 6&82F - STA® ,00005
n026 Nap2 ENA 2
0027 28€D MUI® I1
0026 682D STA® ,00006
0029 CAFR LDa® 17
002A 2BEC MUT® 0003%
002R &R2R STA® ,00007
002C 5400 RTJes FLOATY
0020 TFFF
002F 00S6 P aDC «00007
N02F 5400 RTJe FLOT
0030 T7FFF _
0031 FA40 CON =147}
0032 0085 P ADC 200006
0033 T7FFE P aADC A -2
0034 Sé4nn RTJe QBOFIX
0035 TFFF
0036 FER1F LDG® ,00005
0037 6ADY STAe 1 «290Q
39519900 A ; c-7

A

11
11

PROGRAM LENGTH $0058 (

003R
0039
0034
6038
003C
003D
003E
003F
0040
0041
0047
0043
0044
0045
0046
0047
0048
0049
nosa
004R
004C
004D
004F
No&4F
0050
0051
0052
0053

0054

0055
0056
0057
0056
0054
nooo

OPTS = KAL

EXTERNALS
QBQFIX FLOT

nanc
0AQ0S
98na
0131
18¢€6&
5400
TFFF
0001
0o9oR
SCeR
no1c
SCEC
COLIY)
001D
0057
SCES
no1a
SCE#
F400
nos?
SCES8
6BCA
5600
TFFF
NO1F
cocs
0106
1806
nool
nool
nool
0on2
%400
TFFF
N000

10
«000NS
«00006
«00007
00008
20

91)

RAO»
ENA
sSuUBe
SAM
JMP &
RTJe

ADC
ADC
RTu®
ADC
RTJ®
CON
ADC
ADC
RTJ®
ADC
RTJe
CON
ADC
RTJs
STAw
RTJe

ADC
CON
SA2
JMP &
BSS
BSS
RSS
BSS
RTJe

END

11
11

1
000064
SUREXM

A
I .
(FLOATY)
00068
(FLOT
25279
C
«00008
(FLOATY
3

(FLOT)
=7167
«00008 .
(Q8QF I X)

J :

FUNEXM

41CE.
~16186

6
20

N) =it s

Q8STP

0ASTP FLOAY SUREXM FUNEXM

39519900 A

(/.\l
. i
N /

O

L]

,r‘—\
¢
~ /

OO

SNONG

5

N

—

N

a(_)

SNONESNS

OCOOO0OO0CO0OO0OO0OO0OCDOO0OO0O0000O00

/5\
N

Options LX
Note that the full compilation has taken place.
1 PROGRAM FTNOPT
C
' g EXAMPLE FOR FORTRAN COMPILER OPYIONS
2 DIMENSTON A4S)91(5)
3 D0 1 11=1,5
4 1tIl)mIte3/A(I])
s 1 CONTINUE '
6 CALL SUBEXM{A,I)
7 JaKebal
[} IF(FUNEXVM (448)) 10420010
9 10 Go To 2¢
10 20 CONTINUE
11 END
PROGRAM LENGTH $p04F 79)
OPTS & LX
‘EXTERNALS

Q8QFIX FLOT 08STP FLOAT SUBEXM FUNEXM

Options PX

Note that no listing output is generated, but full compilation has occurred with object and load and go -
output. :

OPTS = PX

39519900 A C-9/C-10

o O C U0 CLCLUUL JLULUULVUUULUU
S

~
v
——

O OO0 000O0O0

O O O C

3
7

OO0 O 000

O

REFERENCE MANUALS

Title

1700 MSOS 4 Reference Manual

1700 MSOS 4 Macro Assembler
Reference Manual

1700 MSOS 4 Mass Storage FORTRAN
Version 3 Reference Manual

1700 MSOS 4 Computer System Codes

1700 MSOS 4 Macro Assembler
General Information Manual

1700 MSOS 4 Small Computer Maintenance
Monitor Reference Manual

1700 MSOS 4 Instant

1700 MSOS 4 File Manager Version 1
Reference Manual

1700 MSOS 4 Installation Handbook

1700 MSOS 4 Small Computer Maintenance
Monitor Instant

1700 ~MSOS 4 General Information Manual

39519900 A

Publication Number

60361500
60361900

60362000
60163500

39519800

39520200
39520500

39520600
39520900

+-3952170¢
39522400

D-1/D-2

o0 U CUULCUUL JUUUUUUUUUU

OO 0000000 CUC

O 0 00000000

— e mm— e . S — G — —— —— > —— — - — —twm G — — —— —

LINE

— — — i ——— . —— —— — — —— — — — — — — — —

COMMENT SHEET

MANUAL TITLE CONTROL DATA® 1700 Computer Systems 1700 MSOS 4

Mass Storage FORTRAN Version 3A/B General Information Manual

PUBLICATION NO. 39519900 REVISION A

FROM NAME:

BUSINESS
ADDRESS:

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number.

E.O..E.D) FOLD
| " " | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

L]

BUSINESS REPLY MAIL ——

FIRST CLASS PERMIT NO. 8241 ‘] M!NNEAPOI.IS, MINN. []

]

POSTAGE WILL BE PAID BY r—

CONTROL DATA CORPORATION R

PUBLICATIONS AND GRAPHICS DIVISION]

2455 EASTGATE MALL]

LA JOLLA, CALIFORNIA 92037 B

]

L]

]

]

'OLb o FOLD

CUT ALONG LINE

sEeNe

O O

/

{

h-]

)

-

O O

......

O 0 0,000 000000000000 O0C

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 556440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

NG,

CONTROL DATA CORPORATION

LITHOINU.S.A,

sEoNoNoNaNe

)

)

4

e

)0

o0

N

2

N

