CONTROL DATA
[comroration

CORPORATION

1700 MSOS 4
FILE MANAGER VERSION 1
SOFTWARE REFERENCE MANUAL

REVISION RECORD

REVISION

DESCRIPTION

A Muanual Released
(4/74)

Publication No.
39520600

Additional copies of this manual may be obtained
from the nearest Control Data Corporation
sales office.

© 1974
by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:
Control Data Corporation
Small Computer Development Division
4455 Eastgate Mall

La Jolla, California 92037
or use Comment Sheet in the back of
this manual.

2.1

(93]

DN NN
oW N

2.8

3 FILE
3.1

3.2

39520600

CONTENTS

INTRODUCTION

GENERAL FILE FEATURES

Storage and Retrieval

2.1.1 Sequential
2.1.2 Indexed
2.1.3 Direct
2.1.4 Variations

File Request
Record Format
Update Protection

Reguirements and Limitations

2.6.1 Maximum Record Length

2.6.2 Expected Number of Records with Different Key Values

2.6.3 Parameter Limitations

2.6.4 Restrictions When Using More Than One Logical Unit for File Space

Space Allocation

2.7.1 File Space Allocation
2.17.2 File Space Audit
2.7.3 Core Allocation

File Validity Check

REQUEST DESCRIPTIONS AND CALLS

Specification Requests

3.1.1 Define File

3.1.2 Define File Indexed

3.1.3 Lock File for Protected Programs Only
3.1,4 Unlock File for Protected Programs Only
3.1.5 Release File

3.1.6 Examples of Specifications Requests

Sequential Requests

3.2.1 Store Sequential Record
2.2 Retrieve Sequential Record
2.3

3.
3. Examples of Sequential Requests

e
i
—

| |
—_

1 U)
L w NN =

NN N NN N (3] [\
[i
'

N o N
] 1 |
(=23} [I

i 1
~3 (=PI =2}

N NN NN NN
)]
@ 0 ~3

2-10

| |
-

WoWw W W W W W
1)
W e

|
[=2 I

iii

3.3

3.4

4 TIME

4.1

4.2

4.3
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Index

Figure
2-1

iv

Indexed Requests

3.3.1 Store Indexed Record

3.3.2 Retrieve Indexed Record

3.3.3 Examples of Indexed Requests

3.3.4 Retrieve Indexed-Ordered Record
3.3.5 Example of Indexed-Ordered Request

Direct Requests

3.4.1 Store Direct Record
3.4.2 Retrieve Direct Record
3.4.3 Examples of Direct Requests

Assembly Language Communication with the File Manager

3.5.1 Calling Sequences without Use of Macros
3.5.2 Use of FLDF Macros

3.5.3 A Macro to Test Request Indicator Bits on Return from a File
Manager Call

REQUIREMENTS

Access Rate Equations

4.1.1 Summary of Access Equations

4.1.2 Summary of Disk/Drum Transfer Rates
4.1.3 Access Rate Equations for Disk

4.1.4 Access Rate Equations for Drum

Example of Access Rate Calculations

Minimization of Time Required for Initial File Access
File Structure
Storage Requirements for File Structure
Access Rates for File Structure
FIS, FRB, KIS, and File Space Pool Dumps
File Structure Illustrations

File Manager Error Message

FIGURES

Example of File Space Pool and File Space Test

Schematic Representation of Index-Ordered, Indexed-Linked File Example

A-1
B-1
C-1
D-1
E-1
F-1

Index-1

39520600

E-1

E-3

Table
B-1
B-2

39520600

File Information Segment Structure

File Record Block Structure

Key Information Segment Structure

FORTRAN Code Example

Example of FIS Directory

FIS Block Example

FRB Example Sequential File

KIS Directory for File 97, A Sample File

Key Values, Scatter Codes, and Corresponding KIS Pointers
KIS and Corresponding Record

Three KISs and Their Corresponding Records

File Space Pool

File Structure Flow Logic for Storage/Retrieval Methods
File Structure for Indexed-Linked File with LIFO-Linking

File Structure for Indexed-Ordered File

TABLES

Number of KIS Blocks as a Function of Number of Expected Key Values

Expected Number of KIS Overflow Blocks as Related to Expected

and Actual Key Values

D-5
D-6

D-6

v/vi

INTRODUCTION 1

The 1700 File Manager is a general-purpose file management package consisting of a request
supervisor and a collection of request processors. The supervisor resides in core and the request
processors on mass storage; core requirements are minimized by bringing in individual request
processors only as they are needed.

The File Manager creates and maintains either sequential or indexed files. The records in any file
may be variable in length and may be added, replaced, or removed at any time after the file has been
defined and before it is released.

A sequential file is one in which each new record is added immediately following the last record
stored in the file, These records must be retrieved in the same sequence in which they were stored
and cannot be retrieved at random. Thus, they are retrieved on a FIFO basis,

An indexed file is one in which each record has an identifier or key (surname, social security number,
ere Thege recarde are ainred ceanentiniic with a0 kev valne: venarde with the anme bpv vqing mav ke
linked together. These records may be retrieved sequentially or a specific record may be retrieved
by using its key value.

39520600 1-1/1-2

GENERAL FILE FEATURES 2

2.1 STORAGE AND RETRIEVAL

The File Manager stores and retrieves information in three basic ways:

° Sequential
° Indexed
° Direct

In addition, variations for storage and retrieval are provided by combinations of the preceding and
special options. The variations are:

° Indexed-ordered

° Indexed-linked

2.1.1 SEQUENTIAL

In sequential access, records are stored one at a time immediately following the last record stored
and are retrieved one at a time in the same order they were stored, starting from the beginning of the
file.

Sequential access is best suited for retrieving all records on a FIFO basis. It is not suited to

retrieving a particular record since all preceding records must first be retrieved.

NOTE

All files may be accessed sequentially.

2.1.2 [INDEXED

Indexed access is best suited for access of a specific record. Each record may be indexed by one and
only one key. The key may be one or more words in length. Since all files are sequential, an indexed
file may be termed indexed-sequential. Indexed access is only possible from an indexed file,

A particular record can be stored and retrieved via a key., Each record key value can be translated

into an index which can provide relatively quick access to the record. Indexed files require extra file
space for the keys and key directories,

39520600 2-1

2.1.3 DOIRECT

Direct access is best suited for frequently accessed records. A record must have been stored in a
sequential or indexed file by a sequential or indexed store before it can be referenced directly.

Direct procedures are normally used in updating records and in forming list structures. Since the
File Manager provides record pointers for all records. all the files may be accessed directly.

2.1.4 VARIATIONS

2.1.41 INDEXED-ORDERED

When the indexed-ordered option is selected, indexed records can be retrieved in a manner similar to
sequential retrieval. However, instead of a FIFO basis, records are retrieved starting at the record
with the lowest numeric key value (or the key value specified in the first of the repeated index-ordered
retrieve) and continuing through to the record with the highest numeric key value. When this type of
access is used, a sort of the key values is done; therefore, the key value must be one word in length,
1t is recommended that key values for an indexed-ordered file include only non-negative values.

2142 INDEXED-LINKED

In an indexed file, each record normally has a unique key value, However, if the indexed-linked option

is selected, records with the same key value are linked together in either a LIFO or FIFO manner. The
records are linked by allocating two words of each record for the linking record pointer. The retrieval
of these records is an example of a list structure and is described in detail in Section 3.3, LIFO or FIFO
linking is specified by the user when a file is defined as indexed,

2143 LUIST STRUCTURES

Records may be retrieved as though they were part of a list structure by using the record pointers
supplied by the File Manager and the direct method of retrieval. The user may form complex list
structures by linking forward, backward, ring, sublist, etc. A record may be a member of an
indefinite number of lists as long as two words for a record pointer are reserved in the record for
each list. An example of a list structure is an indexed-linked file.

2-2 39520600

2.2 FILE REQUEST

The four types of file requests are described in Section 3. They are:

® Specification — Specification requests provide for:
-Defining a file
-Defining an indexed file
-Locking a file
-Unlocking a file

-Releasing a file

° Sequential
. Indexed These three file requests are used to store and retrieve information.
] Direct

The file manager executes a request at the caller's priority level. If, however, the File Manager is
executing a previous request, the request is queued by its priority level and is not executed until the
currently active request and any higher level waiting requests have been executed.

Associated with each request are a 12-word temporary buffer and one indicater weord., The buffer is
used to process the file request; the indicator word denotes the status of the file request upon completion.
Each bit of the indicator word which is non-zero signifies an abnormal occurrence. If bit 15 is
non-zero, the request is rejected because of errors denoted in the other bits; if bit 15 is a zero but

other bits are non-zero, the request is completed with an irregular occurrence (for example, an
end-of-file has occurred). Note that bit 14 is a common bit for rejecting a request due to invalid
parameters in a request. If the entire indicator word is zero, the request terminates normally.

2.3 RECORD FORMAT

Each variable-length record is composed of three sections: header word, record pointers, and data
words.

HEADER WORD

The first word of each record is reserved exclusively for the header word. The File Manager sets
this word to the total length of the record when this record is stored. Once a record is defined, its
length (and consequently the header word) cannot be changed.

NOTE

When storing and retrieving a record, the number of
words in a record must include the header word.

39520600 2-3

RECORD POINTERS

A record in an indexed-linked file includes a record pointer., A record pointer is a two-word
mass-storage address which points to another record on mass storage., The first word is the sector
location of the file record block in which this record resides. The second word contains the word the
record starts in. If a file is indexed-linked, the second and third words are reserved for the record
pointer, which points to the last record that was stored with the same key value. This is the same
format as the recptr parameter passed back to the user from STOSEQ and STOIDX requests (see
Sections 3.2, 1 and 3.3.1).

DATA WORDS

Each record may have zero or more data words, which contain the actual record information. The
information may be binary or ASCII.

2.4 UPDATE PROTECTION

Whenever a record is to be updated, the user must retrieve the record and lock the file with a unique
file combination, subsequently storing the updated record and unlocking the file with the same file
combination, utilizing the store direct request (refer to Section 3.4). More than one record may be
retrieved, updated, and restored as long as the same file combination that was used to lock the file

is supplied. Note that the file should not be locked for an extended period of time because other users,
who may also wish to update, cannot access the file until it is unlocked. Thus a retrieve, which
attempts to lock an already locked file with a different combination, is queued and cannot be executed
until the file is unlocked.

If a number of files are to be locked, it is advisable to lock and unlock the files in a given sequence.
For example, lock files in ascending numerical order and unlock them in descending numerical order,

A retrieve without a file combination or a store of a new record is permitted on a locked file with the
understanding that one or more records of that file are in the process of being updated. Note that an
update into an unlocked file or a locked file using an incorrect file combination results in a file request
error,

The file combination must necessarily be unique 8o that no two requests use the same file combination.

This can be accomplished by using the ASSIGN statement in FORTRAN or the RTJ instruction in
Assembly language.

2.5 UNPROTECTED FILE REQUESTS

Unprotected programs are assumed not to be error-free; therefore, certain restrictions have been
placed on unprotected file requests.

2-4 39520600

An unprotected file request cannot update a record in a file because it cannot use the store direct
request, This restriction is imposed because the File Manager has no way to check the validity of the

record pointer in the store direct request. The restriction is mitigated by the assumption that
r

Lackoraun 4 nro
DACKgrouna programs prim

)
’
that records can always be retrieved, updated, and stored as new records in another unprotecte

alily ITLIICVT ITCUIUS {(1UL CAaiiiplT, Udua iCuu

imarily ratricove rooords far examnle data reduction. analvsgis. ate
T clion, anaiysis, €ic,

Since updates cannot be done, file locking is illegal for unprotected file requests. Note that unprotected
file requests may not store records into or remove records from files that were defined by protected
programs.

NOTE

If there is not enough allocatable core for both the
File Manager and Job Processor modules, file
requests from background can hang batch processing
indefinitely.

2.6 REQUIREMENTS AND LIMITATIONS

The File Manager requires ceriain information to establish the file structure and imposes limitations
on those files.

2.6.1 MAXIMUM RECORD LENGTH

The effective maximum record length and file record block length are determined as a function of the
maximum record length specified by the define file request for each file. It places a maximum limit
on the length of records for that file, and also establishes a block of sector(s) that will be allocated
when the first record is stored into the file. Subsequent records are stored into this block until it is
full, then another equal block of sector(s) is automatically allocated. This process is continued as long
as there is mass memory space available. Thus a file record block may contain one or more records
(see Appendix B, especially Section B. 2. 2).

The effective maximum record length is equal to the specified maximum record length if the specified
maximum record length plus 3 is equal to an integral multiple of 96. Otherwise, the effective maximum

record length is equal to the least integer value n such that

1) n is greater than the specified maximum record length, and

2) N = 96*m - 3 for some positive integer m,

Thus, specified maximum record length values of 3, 93, and 94 would result in effective maximum
record lengths of 93, 93, and 189 respectively.

39520600 2-5

2.6.2 EXPECTED NUMBER OF RECORDS WITH DIFFERENT KEY VALUES

The expected number of records with different key values is specified by the define file indexed
(DEFIDX) request parameter numekv (refer to Section 3. 1) for each indexed file., Note that if a file
is not indexed-linked, this is equivalent to the number of records in the file. The expected number of
records with different key values establishes the structure of the indexed directories. A relatively
accurate estimate is important if the number of expected key values exceeds 8,464.

Too low an estimate may result in more mass storage accesses per indexed request, while too high an

estimate may result in excessive core allocation for the indexed directories per indexed request.
(Refer to Section A.4.4.)

2.6.3 PARAMETER LIMITATIONS

The following limitations are necessary:

File number range 1 through 32,767
Record length range 1 through 32,767
Number of expected records

(with different key values) range 1 through 32,767
Key value length range 1 to 63 words
File combination range 1 through 32,767
Key value range for indexed-

ordered files 0 through 32,767

CAUTION

Users are warned that programs making File Manager
requests which contain relative parameters will not
execute properly in partitioned core or at addresses

above 8000 16°

2.6.4 RESTRICTIONS WHEN USING MORE THAN ONE LOGICAL UNIT FOR FILE SPACE

As noted in Section 2.7.2, the File Manager initializes the file space pool for every File Manager
logical unit at the same time. This initialization occurs when the first define file request is
encountered after a 1700 operating system is built. The initialization of a file space pool for a given
logical unit involves writing the file space pool thread on that unit in the first sector which is available
for File Manager use. This procedure necessitates the following warnings to the user.

2-6 39520600

CAUTION

1. At the time the first define file request is executed,
all logical units which are to be used, now or later,
for file storage must be operating.

[\

The disk pack mounted on a drive at the time the first
define file request is executed must be mounted on
that drive when the File Manager uses that unit for
storage.

2.7 SPACE ALLOCATION

2.7.1 FILE SPACE ALLOCATION

File space is allocated by the define file request for file records or by the define file indexed request
for file indexed directories. Provision is made to return file space by the release file request and the

retrieve /remove requests, Note that:

. All a file's records must be on one logical unit,
. All a file's indexed directories must be on one logical unit.
° Only logical units which are mass memory devices are currently allowed.

The first time a define file request is encountered after a 1700 operating system with the File Manager
is built, a file space list and a file space pool are constructed for each logical unit that has available
file space. The File Manager tests the value of the SYSDAT FILMGR core location FIDSEC. The value
of FIDSEC is zero until after the first define file request is encountered.

A file space list is composed of one or more blocks of available space. Each block is a threaded
sequence of segments of mass memory such that each segment has the same length in sectors as every
other segment in the block.

For example, there may be a block of all available two-sector segments. At the time the system is
built, the user determines what blocks (i.e., what available segment lengths) are to be included in the
file space list. All available file space which lies in a segment of a length other than those included in
the file space list is included in a file space pool. The advantage of keeping as much of the available
file space as possible in the file space list is that available space there can be allocated much more
quickly than can space in the file space pool. The disadvantage of having too many blocks in a file
space list is that two words of core (in SYSDAT) are used for each block.

Consider the following example. The user determines that the file space list is to be composed of

. A block of segments one sector long,
° A block of segments two sectors long, and
] A block of segments four sectors long.

39520600 2-7

Suppose at a given time there are file space segments of various lengths: one sector, two sectors,
three sectors, four sectors, six sectors, eight sectors, 20 sectors, and 10,000 sectors. The file
space list and the file space pool are represented in Figure 2-1.

The efficiency of the File Manager can be optimized by determining, at the time the system is built,
what file space lengths will be used. If only a small number of different lengths are needed, a block
for each of these lengths can be included in the file space list. For example, suppose only segments
of one sector, two sectors, and four sectors are to be allocated for file space. A block for each of
these lengths in the file space list requires only six words of core storage in SYSDAT.

Refer to Appendix A for details concerning file space requirements. Remember that space must be
allocated for key directories and key information segment blocks as well as for file records when using
indexed files.

2.7.2 FILE SPACE AUDIT

When there is insufficient file space to define a new file or to store another record in a given file, the
File Manager will indicate this condition to the requestor. In many cases, it is desirable to know when
file space is running low before all the file space is gone. Files which are no longer in use could then
be released to make additional space. A user early-warning program may be written to monitor the
ratio of available space and total space for each logical unit. These parameters are located in the

FILMGR SYSDAT parameter area. For example, for File Manager logical unit 1 we may find in
SYSDAT:

LUE1 NUM

NUM
NUM X AVAILABLE FILE SPACE
NUM y TOTAL FILE SPACE

Thus, one could calculate for logical unit one:

- (LUE1 + 2)

P = (TUET 73

=£
y

giving the ratio of file space available to original file space for this logical unit. Location LUE1 is the
same location as that of FSLIST in Figure 2-1.

2.7.3 CORE ALLOCATION

The individual file request processors (e.g., store sequential), the information segment for a file
(FIS — see Section A, 2), and its indexed directory (KIS — see Section A, 4) are placed in allocated
core. Each item will remain in core to conserve mass memory accesses, as long as it enjoys
sufficient usage by the File Manager user(s). Once a certain item has not been utilized for a period
of time, its core will be released and the next use of it will require a mass memory transfer.

2-8 39520600

CORE (SYSDAT)

MASS STORAGE

f_A_\ NS
gp— Y
) i !
POOL POOL POOL
BLOCK OF POOL BLOCK OF POOL BLOCK OF
THREE- BLOCK OF EIGHT- BLOCK OF 10, 000~
SECTOR SIX-SECTOR SECTOR 20-SECTOR SECTOR
SEGMENTS SEGMENTS SEGMENTS SEGMENTS SEGMENTS
FSPOOL m [_’ r—’ m [_“ r‘"
3 3 8 20 10, 000
|-
‘- [
' [
o L |
FSLIST
LIST LIST LIST
ADDRESS BLOCK OF BLOCK OF BLOCK OF
OF FSPOOL ONE-SECTOR TWO-SECTOR FOUR-SECTOR
NUMBER OF SEGMENTS SEGMENTS SEGMENTS
SECTORS
AVAILABLE
TOTAL >
SECTORS
IN FILE
SPACE
FOR THIS
LOGICAL
UNIT
1
F]
1
Figure 2-1. Example of File Space Pool and File Space Test
39520600 2-9

The time period for each of the above is a system parameter determined when the 1700 operating
system is built,

2.8 FILE VALIDITY CHECK

To minimize mass memory 1/0 traffic, the File Manager allows file information to remain in
allocatable core until a time-out occurs, at which time the information is updated on mass storage.

CAUTION

Abnormal system stops and autoloads can destroy
this information and will eventually cause fatal file
errors.

If the system contains a File Manager, a file validity check is performed each time the system is
autoloaded. The check is preceded by the message:

CHECKING FILES -

on the system comment device, and consists of a trace of all file spacé threads on mass storage, If
the threads are found to be valid an OK is printed. If any errors are found the user is given the option
of continuing with the autoload or purging all system files (i.e., reverting all File Manager tables to
a condition prior to the loading of any files), If this option is selected the files would have to be
reloaded from a user-written backup dump,

2-10 39520600

FILE REQUEST DESCRIPTIONS AND CALLS

w

All file request calls to the File Manager may be written as FORTRAN type calls or as Assembly
language macros as in the following descriptions. The Assembly language call format, without the
use of macros is described in Section 3,5,

CAUTION

Programs making File Manager requests which
contain relative parameters will not execute
properly in partitioned core or at addresses above
8000¢.

3.1 SPECIFICATION REQUESTS

Specification descriptions and calls are discussed in the following order:

° Define file
° Define file indexed
° Lock file

° Unlock file

° Release file

3.1.1 DEFINE FILE

A file must be defined before any information can be stored or retrieved. A file cannot be defined if it
is already defined. However, the file could be redefined if it had been previously released (refer to
release file in this section).

The define file request specifies:

o The file number of the file being defined (permitting other requests to reference this file)

° A value to determine the length in words of each block of file space which is allocated to a
file when needed. This value also places an upper limit on the length of any record in a
file. Any attempt to exceed this limit results in an error (refer to Section 2.6).

. A logical unit where the file's records will be stored

39520600 3-1

A temporary buffer for processing the request

An indicator word, denoting the request's status upon completion

The FORTRAN format for the define file call is as follows.

CALL DEFFIL (filnum, maxrl, lu, regbuf, reqind)

Where:

filnum is the file number; it contains a positive integer specifying the file to be defined.

maxrl is the maximum record length; to be used for determining the effective maximum
record length and file record block length. It contains a positive integer.
See Sections 2.6.1 and 3.1.1.

Iu is the logical unit; it contains a positive integer specifying where the file's
records are to be stored.

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (see below).

The Assembly language macro format is as follows:

DEFFIL filnum (Produces a call with an absolute address for filnum)
DEFFIL* filnum (Produces a call with a relative address for filnum, as for a
run-anywhere program)

The parameter filnum is defined as in the FORTRAN call. Note that to use the macro call, an FLDF
macro call must be included in the program, as described in Section 3.5. 2.

The following is a list of the file request indicator bits. This list is referenced for the reqind
parameter in each of the request calls.

0

© o N O N B W N

—
(=]

File defined/not defined

File locked/not locked

Long store or short read

End-of-file encountered

At least one more record exists with the same key value
Record does not exist or has been removed

Unused

Mass storage error

No more file space left

Attempt to store direct outside File Manager's disk space

File combination incorrect

39520600

11 File already defined/not defined as indexed

12 Key length not one for indexed-ordered file

13 Unprotected file request attempt to change a protected file
14 File request illegal
15 File request rejected; this bit is set whenever

Bits 14, 13, 12, 11, 10, 8, 7, 5, or 0 are set
Bit 4 is set for STOIDX if the file has not been defined as linked
Bit 2 is set for STOSEQ/STOIDX

Bit 1 is set for RELFIL, UNLFIL, STODIR, LOKFIL (already locked), RTVSEQ,
RTVIDX, RTVIDO, and RTVDIR (attempt to remove from locked file without the
combination).

An Assembly language macro to test specified bits of the request indicator word is described in
Section 3. 5. 3.

3.1.2 DEFINE FILE INDEXED

Define indexed is used to further define, as indexed, those files which have already been defined by a
call to DEFFIL. A file must be defined indexed before any information can be stored or retrieved via
an indexed key. Normally, if a file is to be indexed, this request is made immediately after it is
defined.

If the records of a file are to be ordered by key value, the key length of the record must be one word.

A file cannot be defined indexed if it is not defined, if it is already defined indexed, or if records have
already been stored sequentially into it. An unprotected program cannot define indexed a file which was
defined by a protected program.,

The FORTRAN format for the define file indexed call is as follows:
CALL DEFIDX (filnum, numekv, keylth, lu, reqbuf, reqind)

Where: filnum is the file number; it contains a positive integer specifying the file to be defined
as indexed.

numekv is the number of expected key values; it contains a positive integer estimating
the number of records with different key values to be stored in the file.

39520600 3-3

keylth is the key length word, with the indexed options:

Bits 0 through 5 Length of the key
6 through 12 Reserved
13 1 FIFO linking (bit 15 must be set).

If this bit is not set and bit 15 is
set, LIFO linking is implied.

14 1 Indexed-ordered file
15 1 Indexed-linked file
Iu is the logical unit; it contains a positive integer specifying where the file's

indexed directories are to be stored.

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process a request.

regind is the file request indicator word; the File Manager sets
indicator bits to one and clears the rest to zero (see reqgind parameter in
Section 3. 1).

The Assembly language macro format is as follows:

DEFIDX filnum (Produces code with an absolute parameter address)
DEFIDX* filnum (Produces a relative parameter address as for a run-anywhere
program)

The parameter filnum is defined as in the FORTRAN call, Note that to use the macro call, an FLDF
macro call must be included in the program, as described in Section 3.5, 2,

3.1.3 LOCK FILE FOR PROTECTED PROGRAMS ONLY

A file may be locked by protected programs when it is possible that more than one program may be
attempting to update the same file.

A file cannot be locked if it is not defined, if it is already locked, or if the lock file request is issued
on a protected file by an unprotected program. An alternate method of locking a file is provided in the
retrieve request (refer to Sections 3.2, 3.3, and 3.4).

The lock file request specifies:

° The file number of the file being locked
° The file combination required to store in this file
° A temporary buffer for processing this request

° An indicator word, denoting request's status upon completion

34 39520600

The FORTRAN format for lock file call is as follows:
CALL LOKFIL (filnum,filcom, reqgbuf, reqind)

Where: filnum is the file number; it contains a positive integer identifying the file being locked.

filcom is the file combination with the remove option; hits 0 through 14 contain a
non-zero number which must be used in subsequent store or remove requests;
bit 15 is not used.

reqgbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (refer to the reqind
parameter in Section 3. 1).

The Assembly language macro format is as follows:

LOKFIL filnum (Produces a call with an absolute address for filnum)
LOKFILX* filnum (Produces a call with a relative address for filnum, as for a
run-anywhere program)

Tha vavametor flnur
The parameter filnum

is defined &= In the FORTRAN call, Note that ¢ use the m i FiDr

iz Vil E PO BN 5 990 LU IHIACIU Cdad, WL © sl

macro call must be included in the program as described in Section 3, 5. 2,

3.1.4 UNLOCK FILE FOR PROTECTED PROGRAMS ONLY
A file may be unlocked when there are no further updates to be done. The same file combination that
was used to lock the file must be used to unlock it. An alternate method of unlocking a file is provided

in the store direct request (refer to Section 3.4).

A file cannot be unlocked if it is not defined or not locked, if the combination is incorrect, or if an
unprotected program attempts to unlock a file defined by a protected program.

The unlock file request specifies:

° The file number of the file being unlocked

. The file combination used to previously lock the file

° A temporary buffer for processing the request

° An indicator word, denoting the request's status upon completion

39520600 3-5

The FORTRAN format for unlock file call is as follows:

CALL UNLFIL (filnum,filcom, reqbuf, reqind)

Where: filnum is the file number; it contains a positive integer identifying the file being
unlocked.
filcom is the file combination; bits 0 through 14 contain a non-zero number which is

identical to the combination that was used to lock the file; bit 15 is not used.

reqgbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqgind is the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (refer to the reqind
parameter in Section 3. 1).

The Assembly language macro format is as follows:

UNLFIL filnum (Produces a call with an absolute address for filnum)

UNLFIL* filnum (Produces a call with a relative address for filnum, as for a
run-anywhere program)

The parameter filnum is defined as in the FORTRAN call. Note that to use the macro call, an FLDF
macro call must be included in the program as described in Section 3, 5. 2,

3.1.5 RELEASE FILE
A file may be released when there is no further use for it. This results in all the space reserved for its
data records, and any information associated with indexing, being returned for future utilization by other

files.

A file cannot be released if it is not defined or if it is locked. An unprotected program cannot release a
file defined by a protected program.

The release file request specifies:

. The file number of the file being released
° A temporary buffer for processing the request
° An indicator word, denoting the request's status upon completion

The FORTRAN format for release file call is as follows:

CALL RELFIL (filnum, reqbuf, reqind)

3-6 39520600

Where: filnum is the file number; it contains a positive integer specifying the file to be
released.

reqbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.
reqind is the file request indicator word; the File

1 cQue QI4, i I LIe Malla

a
indicator bits to one and ciears the rest to zero
parameter in Section 3. 1).

The Assembly language macro format is as follows:

RELFIL filnum (Produces a call with an absolute address for filnum)

RELFIL* filnum (Produces a call with a relative address for filnum, as for a
run-anywhere program)

The parameter filnum is defined as in the FORTRAN call. Note that to use the macro call, an FLDF
macro call must be included in the program as described in Section 3. 5. 2.

3.1.6 EXAMPLES OF SPECIFICATIONS REQUESTS

As a part of a computer system to aid a law enforcement agency, a first offense file is defined. The
record format is to be as follows:

Word Contents

1 Header

2-25 Name

26-28 Date of first arrest
29-30 Time of first arrest
31 Violation code

Note that a record length of 31, a factor of 93, is used. By setting the maximum record length to 93,
the maximum record length and the effective maximum record length are equal. Thus, no space is
wasted in the mass memory storage of the file records.

Periodically, the contents of the first offense file are to be written on magnetic tape, The FORTRAN
code shown in Example 1 is used to define the file initially as well as to re-initialize the file after each
transfer of its contents to tape.

Note that a release file request occurs before the file is defined. Therefore, when the file is defined it
will contain none of the previously stored records.

The file records are to be accessed by license number, expressed as four ASCII words. Note that the
license number is not part of the data in the record, but that its length in words is specified as the key
length when the file is defined as indexed. An estimate of 1, 000 first offenses will be recorded in the
file before the file is cleared and re-defined. Thus, NUMEKV = 1000,

39520600 3-7

EXAMPLE 1:

N N AN

C

INTEGER REQBUF{12}.REQIND
DIMENSION IOBUF{58}

RELEASE THE FIRST OFFENSE FI;E
IFLNUM=20
CALL RELFIL{IFLNUM.REQBUF,REAQIND}
CHECK FOR ERRORS
IFf {REQIND.LT.U0¥ 60 TO 100D
DEFINE THE FIRST OFFENSE FILE
MAXRL=93
LOAD A-REGISTER WITH FILES LOGICAL UNIT.
SAVE IN LOCAL VARIABLE. LU.
LDA =XIFLU

STA LU

ASSEM $CD00-+IFLU+%b800-LU

IFLU~ AN EXTERNAL.

CALL DEFFIL {IFLNUM.MAXRL.LU.REQBUF.REQIND}

CHECK FOR ERRORS
IF {REQIND.LT.0} GO TO 1000

DEFINE FILE TO BE INDEXED BY LICENSE NUMBER

KEYLTH=4
NUMEKV=1000

CALL DEFIDX {IFLNUM.NUMEKV.KEYLTH-LU.REQBUF.REQIND}

IF {REQIND.LT.0) 60 TO 1000

1000 CALL SETBFR{IOBUF.58}

WRITE {4-30003} IFLNUM.REQIND
FOLLOW ERROR EXIT PATH

. . .

3000 FORMAT {SHFILE ~IS5.8H ERROR $.%4}

39520600

The FORTRAN code shown in Example 2 illustrates the proper method for determining a file combination
so that uniqueness is guaranteed. The figure also shows acceptable call statements to lock and unlock a
file. This code must be part of a protected program according to File Manager restrictions.

EXAMPLE 2:

INTEGER REQBUF{12}.,REQIND.FILCOM
DIMENSION IOBUF{58}.

IFLNUM=IBASE+303
C NOTExxONLY THIS METHOD SHOULD BE USED TO GENERATE FILE
C COMBINATIONSx*x
2000 ASSIGN 2000 TO FILCOM

CALL LOKFIL{IFLNUM.FILCOM.REQBUF REQIND}

IF {REQIND.LT.3} 50 TO 100C

C UPDATE FILE

CALL UNLFIL{IFLNUM.FILCOM.REQBUF.REQIND}
IF {REQIND.LT.0} 60 TO 1000

1000 CALL SETBFR{IOBUF.58}
WRITE {4.30003 IFLNUM.REQIND
C FOLLOW ERROR EXIT PATH

3000 FORMAT {SHFILE.IS5.8H

39520600 3-9

The FORTRAN code for a part of the files initialization procedure for a given system is shown in
Example 3. The first define file request is used as a test to see if the file has been previously defined.
If so, the information in the file will be used before the file is released and re-defined. If not, initial
condition records are stored in the file,

EXAMPLE 3:

DIMENSION IREABF{12}.I0BUF{58)}

IFLNUN=5
MAXRL=93
Lu=38
CALL DEFFIL{IFLNUM.MAXRL.LU+IREQBF,IREQID?}
C WAS FILE PREVIOUSLY UNDEFINED
IF {AND{IREQID,1}.EQ.0} GO TO 1000
C FILE WAS PREVIOUSLY DEFINED
C CHECK FOR FILE ERRORS
IF {AND{IREQID.#0418}-NE.O} 60 TO 5000
C NO FILE ERRORS. PROCEED TO USE
C INFORMATION IN FILE

C OLD FILE INFORMATION HAS BEEN USED.

C RELEASE AND RE-DEFINE FILE 5
CALL RELFIL{IFLNUM.IREQBF,IREQID}
IF {IREQID.LT.O0} GO TO 5000
CALL DEFFIL {IFLNUM.MAXRL-LU-IREQBF.IREQRID}
IF {IREQID.LT.0} GO TO 5000

C STORE INITIAL CONDITIONS RECORDS INTO FILE

1000 .

C PRINT ERROR MESSAGE
5000 CALL SETBFR{I0BUF.58}
WRITE {4,000} IFLNUM.IREQID
6000 FORMAT {bH FILE. I5-.8H ERROR $.%U}

3-10 39520600

3.2 SEQUENTIAL REQUESTS

3.2.1

STORE SEQUENTIAL RECORD

Records may be stored sequentially in a file once it is defined. A record is always stored as the last
record of the file, with its record pointer returned to the caller so that the record may be accessed

directly (refer to Section 3.4). A sequential store is permitted in a locked file with an indication being
given that the file was locked.

The length of the record cannot exceed the specified maximum record length (refer to Section 2.6). A
record cannot be stored sequentially if the file is indexed or if it is not defined. An unprotected
program cannot store a record in a file which is defined by a protected program.

The store sequential record request specifies:

The file number of the file where the record is being stored

A buffer for returning the record pointer

A buffer of information to be stored as the record

A temporary buffer for processing the request

An indicator word, denoting the request's status upon completion

The format for store sequential record call is as follows:

CALL STOSEQ (filnum, recptr, recbuf, reclth, reqbuf, reqind)

Where:

39520600

filnum

recptr

recbuf

reclth

is

is

is

is

is

-
1]

the file number; it contains a positive integer identifying the file into which a
record is being stored.

the record pointer; it is a two-word array, set by the File Manager, which
contains the record pointer of where the record was stored.

the record buffer; it is an array of reclth words containing the record to be
stored.

the record length; it contains a positive integer specifying the length of the
record.

the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

the file request indicator word; the File Manager sets zer
indicator bits to one and clears the rest to zero (refer t
parameter in Section 3. 1).

o
=
® o
]
[
R}
.
5
o

3-11

The Assembly language macro format is as follows:

STOSEQ filnum, recbuf, reclth (Produces a call with an absolute address for each
parameter)
STOSEQ* filnum, recbuf, reclth (Produces a call with a relative address for each

parameter, as for a run-anywhere program)

The parameters filnum, recbuf, and reclth are defined as in the FORTRAN call, If the reclth
parameter is blank, the current record length is left unchanged. Note that to use the macro call,
an FLDF macro call must be included in the program, as described in Section 3.5, 2,

CAUTION

The File Manager assumes that the three words
preceding the record buffer are part of the user's
program. To optimize storing time, the contents
of these three words are temporarily altered to
contain the FRB header words whenever the File
Manager writes the first record in an FRB to mass
memory (refer to A,3). After the transfer occurs,
the File Manager restores the original contents of
the three words.

The user's program may be in a multiprogramming
environment, In this case, if the record buffer is
at the beginning of the program and the three words
preceding the record buffer extend beyond the user's
program, the three words could overlap another
program or core storage, such as a core allocation
thread which might be used before the original
contents are restored.

3.2.2 RETRIEVE SEQUENTIAL RECORD

Record(s) may be retrieved sequentially from a file once it is defined and at least one record has been
previously stored into the file. (The file may have been defined by either a protected or an unprotected
program.) Each record in the file may be retrieved sequentially by repeatedly executing one RTVSEQ
call (see Section 3, 2. 2) until an end-of-file indication is given. If there are n records in a file, the
first RTVSEQ call will retrieve the first record that was stored into the file, the nth RTVSEQ call will
retrieve the last record that was stored into the file, and the n + 1st RTVSEQ call will produce an
end-of-file indication. For each of the n calls, one record is retrieved along with its corresponding
record pointer, so that the record may be accessed directly (see Section 3.4). If there are no records
in the file, the first call will produce an end-of-file indication.

3-12 39520600

General information for retrieve sequential records is as follows:

e It is not necessary to retrieve all the records from the file.

° The first and subsequent records can be re-retrieved by a new call or by re-initializing the
current call record pointer.

CAUTION

Parameters of a repeated RTVSEQ call cannot be
altered between calls.

For update purposes, a file may be locked with a file combination as a record is retrieved or a record
may be retrieved from a previously locked file (see Section 3. 1.3) if no file combination is specified

or if the same file combination that was used to lock the file is specified. These retrieved and updated
record(s) may be restored into the locked file via the store direct record call (see Section 3.4. 1), again
only if the same file combination is used. Note that a sequential retrieve without a file combination is
permitted from a locked file with an indication being given by the File Manager that the file was locked.
Provision is also made for removing a record from a non-indexed file as it is retrieved. The first part
of a record of any desired length may he retrieved with an indication made that there was a short
retrieve,

A record may be retrieved, but cannot be removed from an indexed file using a retrieve sequential
request., A record is not retrieved sequentiaily if the record was previously removed from the file
(however, subsequent records which exist may be retrieved by repeating the same call), A record
cannot be retrieved if the file is not defined, An unprotected program may retrieve, but cannot
remove, a record from a file which was defined by a protected program.

The retrieve sequential record request specifies:

° The file number of the file from which the record is being retrieved

° The file combination, if the file is to be locked, or the record that is to be retrieved from
a locked file

° Whether the record is to be removed from the file

° A buffer for returning the record pointer

° A buffer for receiving the record to be retrieved

° A temporary buffer for processing the request

° An indicator word, denoting the request's status upon completion.

The format for retrieve sequential record call is as follows:

CALL RTVSEQ (filnum,filcom, recptr, recbuf, reclth, reqbuf, reqind)

39520600 3-13

Where: filnum is the file number; it contains a positive integer identifying the file from which
the record is to be retrieved.

filcom is the file combination with the remove option: bits 0 through 14 contain a
non-zero number (if the file is or is to be locked), specifying the combination
(which is or is to be) used to lock the file; bit 15 set to a one indicates that
the record is to be removed from the file.

recptr is the record pointer; it is a two-word array set by the File Manager, which
contains the record pointer from where the record was retrieved. Initially,
both words must be set to zero by the requester.

recbuf is the record buffer; it is a non-preset array of reclth words, where the File
Manager transfers the retrieved record.

reclth is the record buffer length; it contains a positive integer specifying the length
of the record buffer.

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (refer to the reqind
parameter in Section 3. 1).

The Assembly language macro format is as follows:

RTVSEQ filnum, recbuf (Produces a call with an absolute address for each parameter)
RTVSEQ* filnum, recbuf (Produces a call with a relative address for each parameter,

as for a run-anywhere program)

The parameters filnum and recbuf are defined as in the FORTRAN call. Note that to use the macro
call, an FLDF macro call must be included in the program, as described in Section 3.5.2,

3.2.3 EXAMPLES OF SEQUENTIAL REQUESTS

A computerized supermarket stores the orders of its customers in the new orders file, sequentially in
the order in which the orders are phoned in. The FORTRAN code in Example 4 is part of the code
executed each time a new order is entered into the computer system. Note that the record data is
stored beginning at word 2 of the record to allow for the header word.

3-14 39520600

EXAMPLE 4:

COMMON INPBUF{284}
DIMENSION IRECPT{c}.IREAQBF{12},IRECBF{285}
DIMENSION IDATA{28U4}
C TRANSFER CUSTOMER NAME.LOCATION CODE-
C ROUTE NUMBER. AND ITEMS ORDERED FROM INPUT
C BUFFER TO RECORD BUFFER
DO 100 I=1.28Y4
100 IDATA{I}=INPBUF{I}
C STORE RECORD INTO NEW ORDERS FILE
IFLNUM=5
CALL STOSEQ{IFLNUM,IRECPT.IRECBF.285,IREQRBF.IREQID}
C CHECK FOR ERRORS
IF {IREQID.LT.O0} GO TO 9000

In the next oxnmrﬂp the new orders file degerihed in Examnle 1 is nrgcesseﬂ to list all orders to he
delivered on a given route. The records in the file are retrieved sequentially. When a record i f und
which corresponds tu the given delivery route, the record is removed from the new vrders file an

stored in the routed orders file.

The tests for end-of-file and previous record removal appear before any checks on the contents of the
record buffer, since it must first be ascertained that a record was actually retrieved. Records are
removed via direct retrieval, using the record pointer returned from the File Manager in the

sequential retrieve call. Note that the remove option code, bit 15 of the third parameter in the retrieve
direct calling list, is set to one to indicate that record removal is requested.

39520600 3-15

EXAMPLE 5:

DIMENSION IRECPT{2)}.IREABF{12},IRECBF{245}
C RETRIEVE RECORD FROM NEW ORDERS FILE
IRECPT{12=0
IRECPT{2}=0
10 IFLNUM=S
CALL RTVSEQ{IFLNUM.0-.IRECPT.IRECBF,285-IREABF,IREQID}
C CHECK FOR ERRORS
IF {IREQID.LT.O0} GO TO 9000
C HAVE ALL RECORDS IN FILE BEEN READ
IF{AND{IREQID.83INE.D} GO TO 500
C WAS RECORD PREVIOUSLY REMOVED
IF{AND{IREQID %203.NE.O} GO TO 10
C IS ROUTE DIFFERENT FROM THE DELIVERY ROUTE
C BEING LISTED
IF {IRECBF{15}.NE.IROUTE} GO TO 10

C ROUTE MATCHES DELIVERY ROUTE BEING LISTED
C REMOVE RECORD FROM NEW ORDERS FILE
20 CALL RTVDIR{IFLNUM.%$8000.IRECPT-IRECBF.285,IREQBF.IREQRID}
IF {IREQID.LT.0} 6O TO 9000

C PRINT INFORMATION ON DELIVERY ROUTE LIST

C STORE RECORD IN ROUTED ORDERS FILE
IFLNUM=17
CALL STOSEQ{IFLNUM.IRECPT.IRECBF.285.IREQBF.IREQID}
C CHECK FOR ERRORS
IF {IREQID.LT.0} GO TO 9000
C GO0 READ NEXT RECORD
GO TO 10
500 CONTINUE

3-16 39520600

3.3 INDEXED REQUESTS

3.3.1 STORE INDEXED RECORD

Records may be stored indexed in a file once it is defined as indexed. A record is stored in the file via
its key value with its record pointer being returned to the caller so that the record may be accessed
directly (refer to Section 3.4). An indexed store is permitted in a locked file with an indication made
that the file was locked.

If a file was defined indexed-linked (refer to Section 3. 1. 2) more than one record may have the same
key value. The record pointer of the last record to be stored (LIFO) or the next record to be stored
(FIFO) with this key value is stored in the second and third words of the record. For indexed-linked
files, each record must have these two words reserved exclusively for this use. Indexed-linked records
must be at least three words long.

General information for store indexed records is as follows:

° The length of the record cannot exceed the specified maximum record length (refer to
Section 2, 6),

s If the file is not indexed-lined, not more than one record with the same key value can Le
stored,

. A record cannot be stored indexed if either the file is undefined or the file is not defined
as indexed.

° An unprotected program cannot store a record in a file which was defined by a protected
program.

. If a record is the first to be stored into an indexed-linked file with FIFO linking, the

specified record length becomes the fixed record length for all subsequent records stored
in the file. If the record is not the first and the file is indexed-linked with FIFO linking,
the specified record length must be less than or equal to the length specified for the first
record. (Even though the specified length of subsequent records may be less than the
length of the first record, the fixed length will be used in storing all subsequent records.)

CAUTION

The store indexed request processor assumes that
three words preceding and one word following the
record buffer are part of the user's program.,

The reason why the three words preceding the record buffer must be part of the user's program is
explained in the cautionary note in Section 3.2.1. The word following the record buffer must be part
of the user's program because as each record is stored into a file defined to have FIFO linking, the
File Manager creates an extra record which reserves the space to be used for storing the next record.
Thus, the pointer to the next record to be stored is immediately available for storage in words two and
three., The extra record is stored with a header word containing $8000 which signifies that the record
is an extra record created by the File Manager for a FIFO-linked file,

39520600 3-17

The value $8000 is temporarily stored into the word following the record buffer. After the record is
transferred, the original contents of this word is restored. As for the three words preceding the
buffer, the caution is necessary to prevent possible problems in a multiprogramming environment,

The store indexed record request specifies:

The file number of the file where the record is being stored

The key value of the record being stored

A buffer for returning the record pointer

A buffer for information to be stored as the record

A temporary buffer for processing the request

An indicator word denoting the request's status upon completion

The FORTRAN format for store indexed record call is as follows:

CALL STOIDX (filnum, keyval, recptr, recbuf, reclth, reqbuf, reqind)

Where:

filnum

keyval

recptr

recbuf

reclth

regbuf

reqind

is

is

is

is

is

is

is

the file number; it contains a positive integer identifying the file into which
a record is to be stored.

the key value; it is an array of keylth words (refer to Section 3. 1, 2)
containing the key value of the record.

the record pointer; it is a two-word array set by the File Manager, which
contains a record pointer to where the record was stored.

the record buffer; it is an array of reclth words containing the record to be
stored.

the record length. It contains a positive integer specifying the length of the
record. If the record is the first to be stored into an indexed-linked file with
FIFO linking, reclth becomes the fixed record length for all subsequent
stores. If it is not the first store into the file, reclth must be less than or
equal to the length of the first record. (Even though reclth may be less than
the length of the first record, the fixed length will be used in storing all
subsequent records).

the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (refer to the reqind
parameter in Section 3. 1).

The Assembly language macro format is as follows:

STOIDX

STOIDX*

3-18

filnum, keyval, recbuf (Produces a call with an absolute address for each
parameter)
filnum, keyval, recbuf (Produces a call with a relative address for each

parameter, as for a run-anywhere program)

39520600

The parameters filnum, keyval, and recbuf are defined as in the FORTRAN call, Note that to use the
macro call, an FLDF macro call must be included in the program, as described in Section 3.5. 2.

3.3.2 RETRIEVE INDEXED RECORD

Records may be retrieved indexed from a file once the file is defined as indexed and at least one
record has previously been stored indexed in the file. The file may have been defined by either a
protected or an unprotected program. A record is retrieved from the file via its key value with its
record pointer being returned to the caller so that the record may be accessed directly (refer to
Section 3.4).

For update purposes, a record may be retrieved and the file locked with a file combination. More
records may be retrieved from the locked file only if the same or no file combination is used. These
retrieved and updated records may be restored in the locked file via the store direct record call, only
if the same file combination is used. An indexed retrieve, which attempts to lock an already locked
file with a different combination, is queued and not executed until the file becomes unlocked.

An indexed retrieve without a file combination is permitted from a locked file with an indication being
given that the file was locked. Provision is also made for removing a record from a file as it is
retrieved. The first part of a record of any desired length may be retrieved with an indication being
given that there was a short retrieve.

If a record is retrieved and at least one more record with the same key value exists (which implies the
file is indexed-linked), an indication is given that more records exist with the same key value. The
continued execution of the RTVIDX call retrieves all the records with this key value, Following these
retrievals, an end-of-link indication is returned in bit 4 of the parameter reqind to signify the end

of the indexed-linked records with the same key value, Once such a repeated retrieve is initiated,
new records which may be added to the link during this sequence of retrieves are ignored.

General information for retrieve indexed record is as follows:

o It is not necessary to retrieve all the index-linked records.

] The first and subsequent records with the same key value can be re-retrieved by a new call
or by re-initializing the current call (refer to the recptr parameter).,

° A record cannot be retrieved indexed if the record was previously removed from the file.

° A record cannot be retrieved indexed if either the file or the key was not defined.

° An unprotected program cannot remove a record from a file which was defined by a protected
program,

° Records in an indexed-linked file must be a minimum of three words in length.

CAUTION

Parameters of a repeated RTVIDX call cannot be
altered between calls unless a record with a
different key is to be retrieved.

39520600 3-19

The retrieve indexed request specifies:

The number of the file from where the record is being retrieved

The key value of the record

The file combination if the file is to be locked or the record is to be retrieved from a locked

file

Whether the record is to be removed from the file

A buffer for returning the record pointer

A buffer for receiving the record to be retrieved

A temporary buffer for processing the request

An indicator word denoting the request's status upon completion

The format for retrieve indexed record call is as follows:

CALL RTVIDX (filnum,keyval, filcom, recptr, recbuf, reclth, regbuf, reqind)

Where:

3-20

filnum

keyval

filcom

recptr

recbuf

reclth

regbuf

reqind

is

is

is

is

is

is

is

is

the file number; it contains a positive integer identifying the file from which
a record is to be retrieved.

the key value; it is an array of keylth words containing the key value of the
desired record (see Section 3. 1. 2).

the file combination with the remove option; bits 0 through 14 contain a
non-zero number (if the file is or is to be locked) specifying the combination
(which is or is to be) used to lock the file; bit 15 set to one indicates that the
record is to be removed from the file,

the record pointer; it is a two-word array set by the File Manager, which
contains the record pointer from where the record was retrieved. If the file
is indexed-linked, both words must initially be set to zero by the requestor.

the record buffer; it is a non-preset array of reclth words, where the File
Manager transfers the retrieved record.

the record buffer length; it contains a positive integer specifying the length of
the record buffer.

the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (refer to the reqind
parameter in Section 3.1).

39520600

The Assembly language macro format is as follows:

RTVIDX filnum, keyval, recbuf

The parameters filnum, keyval, and recbuf are defined as in the FORTRAN call,

(Produces a call with an absolute address for each
parameter)
Produces a call

parameter, as fo

wssdtbe n mnladlcin A AT oo £ m L
Witll a 1Tlaltlvet auUuicod L0 ©alli
r a run-anywhere program)

Note that to use the

macro call, an FLDF macro call must be included in the program, as described in Section 3. 5. 2,

3.3.3 EXAMPLES OF INDEXED REQUESTS

A computer system in a medical clinic includes in its files a patient data file, indexed by social security

number,

The FORTRAN code in Example 6 shows how a record is stored indexed into the file.

The

patient's social security number is in words 1, 2, and 3 of the array ISOCSC. The key value is not part

of the record data in this case.

EXAMPLE 6:

DIMENSION IREQBF{1c},IRECBF{31}
DIMENSION IRECPT{2}.ISOCSC{3}

C PATIENT DATA HAS BEEN STORED IN IRECBF.
C STORE RECORD IN FILE.

IFLNUM=15

CALL STOIDX{IFLNUM,ISOCSC-IRECPT.IR

C CHECK FOR ERRORS
IF {IREQID.LT.0} GO TO 5000

39520600

ECBF.31,IREQBF.IREQID}

3-21

A hospital laboratory computer system includes an indexed-linked file of laboratory test results. Each
record in the file consists of the laboratory results for a given test for a given patient. The file is
indexed by the patient's social security number. All the records for a given patient are FIFO-linked.
The FORTRAN code in Example 7 is part of a program used to print a laboratory report on a given

patient as requested by a physician. The retrieve indexed request is repeated until all records for the
patient have been retrieved.

EXAMPLE 7:

DIMENSION IREQBF{12},IRECBF{31}.,IS0CSC{3}.IRECPT{E}

. .

C SOCIAL SECURITY NUMBER IS IN ISOCSC ARRAY
C PROCEED TO PREPARE LAB REPORT ON PATIENT

IFLNUM=25

C ZERO OUT RECORD POINTER ARRAY TO INDICATE

C THE START OF A LOOP TO RETRIEVE ALL RECORDS FOR THIS KEY VALUE
IRECPT{1}=0
IRECPT{2}=0

10 CALL RTVIDX{IFLNUM-ISOCSC.0.IRECPT.IRECBF+31,IREQBF.IREQID}
C CHECK FOR ERRORS
IF{IREQID.LT.O0} GO TO 9000

C WAS RECORD PREVIOUSLY REMOVED-
IF {AND{IREQID$20}-NE.O} GO TO 10
C PROCESS DATA FROM THIS RECORD FOR REPORT

C 6O BACK TO READ NEXT RECORD
C WAS THIS THE LAST RECORD FOR THIS PATIENT
100 IF {AND{IREAQID.$10}.EQ.0} GO TO 500
Go TO 10

500 CONTINUE

3-22 39520600

3.3.4 RETRIEVE INDEXED-ORDERED RECORD

Records may be retrieved indexed-ordered from a file once the file has been defined and it has been
defined as indexed-ordered and at least one record has been previously stored indexed in the file. The
file may have been defined by either a protected or an unprotected program, Each record in the file
may be retrieved indexed-ordered by repeatedly executing one RTVIDO call until an end-of-file
indication is given, If it is desired to retrieve records commencing with the record with a specific
numeric key value, or if this record does not exist, the first record with a larger key value, the key
value parameter has been set to a number less than the smallest key value, the first RTVIDO call will
retrieve the record in the file that has the lowest numeric key value, the nth RTVIDO call will retrieve
the record in the file that has the highest numeric key value, and the n + 1st RTVIDO call will produce
an end-of-file indication. For each of the n calls, one record is retrieved, along with its key value and
the corresponding record pointer so that the record may be accessed directly (see Section 3.4), If
there are no records in the file, the first call will produce an end-of-file indication,

General information for retrieve indexed-ordered record is as follows:

° It is not necessary to retrieve all the records from the file.

° The record with the lowest key value or of a specified key value (and subsequent ordered
records) can be re-reirieved by a new call or by re-initializing the current call (refer to
the recptr parameter),

® For update purposes, a record may be retrieved and the file locked with a file combination.
More records may be retrieved from the locked file only if the same or no file combination
is used. These retrieved and updated records may be restored in the locked file via the
store direct record call (refer to Section 3.4) only if the same file combination is used. An
indexed-ordered retrieve, which attempts to lock an already locked file with a different
combination, is queued and not executed until the file becomes unlocked.

. An indexed retrieve without a file combination is permitted from a locked file with an
indication made that the file was locked. Provision is also made for removing a record
from a file as it is retrieved. The first part of a record of any desired length may be
retrieved with an indication made that there was a short retrieve.

° If a record is retrieved and at least one more record exists with the same key value (which
implies the file is indexed-linked), an indication is made that more records exist with the
same key value. The continued execution of the RTVIDO call retrieves all the records with
this key value. Following these retrievals the File Manager proceeds as before.

° A record cannot be retrieved indexed-ordered if either the file or the key was not defined.
Moreover, an unprotected program cannot remove a record from a file which was defined by
a protected program,

CAUTION

Parameters of a repeated RTVIDO call cannot be
altered between calls.

39520600 3-23

The retrieve indexed-ordered request specifies:

The file number of the record from where the record is being retrieved

A buffer for returning the key value

The file combination, if the file is to be locked or the record is to be retrieved from a
locked file

Whether the record is to be removed from the file

A buffer for returning the record pointer

A buffer for receiving the record to be retrieved

A temporary buffer for processing the request

An indicator word denoting the request's status upon completion

Records in an indexed-linked file must be a minimum of three words in length

The format for retrieve indexed-ordered record call is as follows:

CALL RTVIDO (filnum, keyval, filcom, recptr, recbuf, reclth, reqbuf, reqind)

Where:

filnum is the file number; it contains a positive integer identifying the file from which
a record is to be retrieved.

keyval is the key value; it contains an integer equal to the lowest numeric key value
desired, otherwise it contains a positive integer specifying the numeric key
value of the desired record. Keyval will be set to the key value of the
retrieved record by the File Manager,

filcom is the file combination with the remove option; bits 0 through 14 contain a
non-zero number (if the file is or is to be locked) specifying the combination
(which is or is to be) used to lock the file; bit 15 set to one indicates that the
record is to be removed from the file.

recptr is the record pointer; it is a two-word array set by the File Manager, which
will contain the record pointer from where the record was retrieved.
Initially, both words must be set to zero by the requestor.

recbuf is the record buffer; it is a non-preset array of reclth words, where the File
Manager transfers the retrieved record.

reclth is the record buffer length; it contains a positive integer specifying the length of
of the record buffer.

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (refer to reqind parameter
in Section 3. 1).

39520600

The Assembly language macro format is as follows:

RTVIDO

RTVIDO*

filnum, keyval, recbuf

filnum, keyv

M

al, rechuf

(Produces a call with an absolute address for each
parameter)

(Produces a

n p
()
[}

parameter, a

kel
[x]
(*]
g
2]
]
8

The parameters filnum, keyval, and recbuf are defined as in the FORTRAN call. Note that to use the
macro call, an FLDF macro call must be included in the program, as described in Section 3.5. 2.

3.3.5 EXAMPLE OF INDEXED-ORDERED REQUEST

The results of a psychological test have been coded and stored into an indexed-ordered file called the
results file, Each record in the file contains test results for one subject. Each record is indexed
by the age of the subject. All records for subjects with the same age are FIFO-linked. The age
groups are ordered by the key value age. A schematic diagram of the contents of the file is shown

in Figure 3-1,

J. J. JONES »| M. BAILEY . . o| B. ALsPAcH
AGE 17 AGE 17 AGE 17
D. DAY o| L. PHILLIPS | L. | B. SUBERI
AGE 18 AGE 18 AGE 18
C. H. SEDQWICK L. E. ROVNER A. L. SHENK
jr—— — * o ——
AGE 70 AGE 70 AGE 70

Figure 3-1.

39520600

Schematic Representation of Indexed-Ordered, Indexed-Linked File Example

3-25

The FORTRAN code in Example 8 shows part of a program to do a statistical analysis on the resuits
from all subjects with ages 25 through 35. The record pointer array is initially set to zero. Each set
of calls for a given value of IJAGE retrieves the results for all subjects with that age. If there are no
subjects with that age, the first record for a larger age will be retrieved. To be sure that only records

for subjects aged 25 to 35 are included in the data to be analyzed, a test is made on IAGE after a record
is retrieved.

EXAMPLE 8:

DIMENSION IRECPT{2}.IREQBF{12}.IRECBF{31}

C INITIALIZE TOTALS FOR STATISTICAL CALCULATIONS-

IFLNUM=100

IAGE=25

IRECPT{1}=0

IRECPT{22=0

10 CALL RTVIDO{IFLNUM.IAGE.O-IRECPT.IRECBF.31.IREQBF.IREQID}

C CHECK FOR ERRORS

IF{IREQID.LT.0} 6O TO 9000
C HAS RECORD BEEN REMOVED

IF{AND{IREQID.%20}.NE.O} 6O TO 10

¢ CHECK THAT AGE IS WITHIN SPECIFIED RANGE
IF {IAGE. GT. 35} GO TO kOO

¢ PROCESS DATA FOR THIS RECORD
ITOT1 =ITOT1 + IRECBF{lc}
ITOTE =IT0TE + IRECBF{L3}

ITOT10 =1TOT10 + IRECBF{2l}
C GO BACK TO READ NEXT RECORD

G0 TO 1C
C PRINT STATISTICAL RESULTS

600 CONTINUE

3-26 39520600

3.4 DIRECT REQUESTS

3.4.1 STORE DIRECT RECORD

Records may be stored directly in a file once it is defined and the file has been locked by a retrieve
request. A record is stored in the file through a record pointer previously provided when the record
was either stored or retrieved by non-direct methods. The function of the store direct request is to
update records.

General information for the store direct record is as follows:

An update can be done only if the same file combination is supplied that was used to lock the
file. This request also permits the file to be unlocked after the record has been updated
and stored.

A record cannot be stored directly if the file was not defined, not locked, or if the file
combination is incorrect,

An unprotected program cannot store direct because of the possibility of destroying a
protected file by using an incorrect record pointer.

The store direct record request specifies:

The number of the file where the record is being stored
The file combination previously used to lock the file
Whether the file should be unlocked

A buffer containing the record pointer

A buffer of information to be restored as the record

A temporary buffer for processing the request

An indicator word, denoting the request's status upon completion

The FORTRAN format for store direct record call is as follows:

CALL STODIR (filnum, filcom, recptr, recbuf, regbuf, reqind)

Where:

39520600

filnum is the file number; it contains a positive integer identifying the file in which a
record is to be stored,

filcom is the file combination and the file unlock option. Bits 0 through 14 contain a
non-zero number which is identical to the combination that was used to lock
the file; bit 15 set to one indicates that the file will be unlocked,

recptr is the record pointer. It is a two-word array containing a pointer to where the
record is to be stored.

recbuf is the record buffer; it is an array of reclth words containing the record to be
stored.

3-27

regbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (refer to the reqind
parameter in Section 3.1).

The Assembly language macro format is as follows:
STODIR filnum, recbuf (Produces a call with an absolute address for each parameter)

STODIR* filnum, recbuf (Produces a call with a relative address for each parameter, as
for a run-anywhere program)

The parameters filnum and recbuf are defined as in the FORTRAN call. Note that to use the macro
call, an FLDF macro call must be included in the program, as described in Section 3.5. 2.

3.4.2 RETRIEVE DIRECT RECORD
The function of the retrieve direct request is to provide:

° A fast method of retrieving frequently accessed records

. A method for retrieving records linked together by their record pointers in the user's own
list structure

Records may be retrieved directly from a file once the file is defined and at least one record has been
stored in the file. The file may have been defined by either a protected or an unprotected program, A
record is retrieved from the file through a record pointer previously provided when the record was
either stored or retrieved by non-direct methods (refer to Sections 3.2 and 3. 3).

General information for retrieve direct record is as follows.

° The user may form any number of complex list structures as long as they conform to the
File Manager file structure. One list structure is provided for indexed-linked files.

° For LIFO-linked files, the record pointer of the last stored record with the same key value
is stored by the File Manager in the second and third words of the record currently to be
stored (see Section 3.3.1). These records may then be retrieved directly on a LIFO basis
by referencing the second and third words of the last retrieved record as the record pointer.
The end of the list is signified by the record pointer being zero (second and third words both
zero). For the FIFO-linked files, the File Manager stores the record pointer of the next
record with the same key value to be stored in the second and third words of the record
currently to be stored, These records may then be retrieved directly on a FIFO basis by
referencing the second and third words of the last retrieved record as the record pointer.
The end of the list is signified when the request indicator for the retrieve direct request
indicates that the record does not exist (see Section 3.4,2). This condition occurs because
the File Manager sets the removed flag in the extra record (See Section 3.3.1).

3-28 39520600

For update purposes, a record may be retrieved and the file locked with a file combination.
More records may be reirieved from ihe iocked file only if the same or no file combination
is used. These retrieved and updated records may be stored into the locked file via the
store direct record call, again only if the same file combination is used. Note that a direct
retrieve, which attempts to lock an already locked file with a different combination, is
queued and is not executed until the file becomes unlocked.

A direct retrieve without a file combination is permitted from a locked file with an
indication made that the file was locked. Provision is also made for removing a record
from a non-indexed file as it is retrieved (caution should be exercised on removing records
which are part of a list structure). The first part of a record of any desired length may be
retrieved with an indication made that there was a short retrieve.

A record may be retrieved but cannot be removed from an indexed file using a retrieve
direct request. A record is not retrieved directly if the record was previously removed
from the file. A record cannot be retrieved if the file is not defined., An unprotected
program cannot remove a record from a file which was defined by a protected program,

The retrieve direct record request specifies:

[»]

The number of the file from where the record is being retrieved

The file combination, if the

locked file

ey

ile is to be locked or th

racar
TeCoY

.
-
n
-
[e)
o
]
3
e+
(]
e
0]
%
[
(o8
-
"y
(o]
8
[}

Whether the record is to be removed from the file
A buffer containing the record pointer

A buffer for receiving the record to be retrieved
A temporary buffer for processing the request

An indication word, denoting the request's status upon completion

The FORTRAN format for retrieve direct record call is as follows:

CALL RTVDIR (filnum, filcom, recptr, recbuf, reclth, reqbuf, reqind)

Where:

39520600

filnum is the file number; it contains a positive integer identifying the file from which
a record is to be retrieved.

filcom is the file combination with the remove option; bits 0 through 14 contain a
non-zero number (if the file is or is to be locked) specifying the combination
(which is or is to be) used to lock the file; bit 15 set to one indicates that the
record is to be removed from the file,

3 . ia a twn_wwnand aveayr ann baiminas tha manned ~nfod.
the record pointer; it is a two-word array containing the record pointer

pointing to the record to be retrieved,

[
(0]

recbuf is the record buffer; it is a non-preset array of reclth words, where the File
Manager transfers the retrieved record.

reclth is the record buffer length; it contains a positive integer specifying the length
of the record buffer,

3-29

reqgbuf is the file request buffer; it is a non-preset array of 12 words which the File
Manager uses to process the request.

reqind is the file request indicator word; the File Manager sets zero or more request
indicator bits to one and clears the rest to zero (refer to the reqind
parameter in Section 3. 1).

The Assembly language macro format is as follows:
RTVDIR filnum, recbuf (Produces absolute code)
RTVDIR* filnum, recbuf (Produces a call for a run-anywhere program)

The parameters filnum and recbuf have the same definitions as in the FORTRAN call. Note that to use
the macro call, an FLDF macro call must be included in the program as described in Section 3. 5. 2.

3.4.3 EXAMPLES OF DIRECT REQUESTS

In a hospital system a file called the patient file has been defined by a protected program. Patient
records have been stored into the file.

The FORTRAN code in Example 9 is part of a protected program. In the program the file is searched
for a given patient record. The file is then locked. This is necessary before the direct store request.
The record is updated and stored back into the file via a direct store request. The file is also unlocked
by the direct store request,

Note that if the code in Example 9 were part of an unprotected program, the patient file could not be
updated, since the store direct request would then be illegal. Even if the patient file were defined as
indexed, and if the key of the found record were known, a store indexed request could not be used to
store the updated record since the original record would still be in the file. The original record could
not be removed by a retrieve indexed request from an unprotected program.

EXAMPLE 9:

INTEGER FILNUM+FILCOMRECPTR.RECBUF.RECLTH,REQBUF \REQIND PATLOC
DIMENSION RECPTR{2}.RECBUF{41}.REQBUF{12}

C RETRIEVE DESIRED RECORD FROM FILE 10
FILNUM = 10

C SET THE FILE COMBINATION TO ZERO {NO FILE COMBINATION}

FILcom = O

C CLEAR RECORD POINTER TO INITIALIZE THE RETRIEVE REQUEST
RECPTR{1} = O
RECPTR{2} = O

3-30 39520600

EXAMPLE 9 (Continued):

C USER TO RETRIEVE A RECORD 4l WORDS LONG
RECLTH = M1

C RETRIEVE RECORDS SEQUENTIALLY FROM FILE 1D LOOKING FOR

C PATIENT RECORD

1000 caLl RTVSEQ{FILNUNFILCOMRECPTR 2 RECBUF ~RECLTH+

REQBUF .REQIND}

C GO TO 9998 IF SEQUENTIAL RETRIEVE ERROR
IF {REQIND.NE.O} 6O TO 9998

THE RECORD FORMAT IS THE RECORD LENGTH IN WORD 1~ TWO Tuwo-
WORD RECORD POINTERS IN WORDS 2 THRU S5+ THE PATIENT LOCAT-
ION IN WORD b+ THE MEDICATION CODE IN WORD 7. AND PATIENT
DATA IN WORDS & THRU 41

o N o N o NN o NN o NN o Wi o BN o TN o |

IF PATIENT LOCATION DOES NOT MATCH. CHECK NEXT RECORD
IF {RECBUF{b}.NE.PATLOC} 6O TO 1000

PATIENT RECORD WITH THE GIVEN PATIENT LOCATION FOUND

GENERATE UNIQUE FILE COMBINATION TO LOCK FILE

NOTExxONLY THIS METHOD SHOULD BE USED TO GENERATE FILE COMBINATIONSxx
2000 ASSIGN 2000 TO FILCOM

[TN o NN o BN o SN Te Y

a2l el alNal

LOCK THE FILE FOR UPDATE

CALL LOKFIL{FILNUM,FILCOM,REQBUF REQIND}
G0 TO 9997 IF LOKFIL ERROR

IF {REQIND.NE.O} 6O TO 9997

~

N NN NN

UPDATE PATIENT RECORD WITH MEDICATION CODE
RECBUF {73 = MEDCOD
C SET FILE COMBINATION TO UNLOCK THE FILE AFTER THE UPDATE
FILCOM = FILCOM + 48000
C STORE UPDATED RECORD FOR PATIENT DIRECTLY BACK INTO FILE 10
CALL STODIR{FILNUM.FILCOM.RECPTR.RECBUF.REABUF REQIND}
C 60 TO 9996 IF DIRECT STORE ERROR

IF {REQIND.NE.D} GO TO 999b

39520600 3-31

In Example 5 we had an example of a direct retrieve request used to remove a record from a non-indexed
file. Note in this example that if file 5 had been an indexed file, the direct retrieve request could not
have been used to remove the record. If file 5 were indexed and if the key value were contained in the
record data, the key value could be extracted from the record and used to retrieve and remove the
desired record by means of a retrieve indexed request.

Statement 20 in the code listed in Example 5 would be changed in the case of an indexed file. The
corresponding FORTRAN code for an indexed file is shown in Example 10,

EXAMPLE 10:

C REMOVE RECORD FROM NEW ORDERS FILE.
C KEY VALUE IS CONTAINED IN
C WORDS 41 AND 42 OF RECORD
20 CALL RTVIDX{IFLNUM.IRECBF{41}.48000.IRECPTIRECBF,
285.IREQ@BF.IREQID}
C CHECK FOR ERRORS
IF{IREQID.LT.0} 6O TO 9000

3.5 ASSEMBLY LANGUAGE COMMUNICATION WITH
THE FILE MANAGER

3.5.1 CALLING SEQUENCES WITHOUT USE OF MACROS

Calling sequences written in Assembly language which are intended to communicate with File Manager
subprograms may have the following form, where flrgst is the name of a File Manager routine, and
flrgst is declared as an external in the user's program,

LOC RTJ flrgst

LOC+1 (RTJ flrgst is a two-word instruction)
LOC+2 Address of argument 1

LOC+3 Address of argument 2

LOC+4 Address of argument 3

L(;C+N Address of argument N

LOC+N+1 Program resumes

3-32 39520600

3.5.2 USE OF FLDF MACROS

Macros from the macro library, as described in Sections 3.1, 3. 2, 3.3, and 3.4, may be used to
generate File Manager calls. When one or more macro is used in a program to make a File Manager
call, an FLDF macro call must be included in the program unit, The FLDF macro does not generate
executable code; therefore the call to F LDF must be positioned in the program sc that it will not be
executed. For example, it could be placed in a subprogram before the first entry point, at the end of a
program, or within the body of the program preceded by a jump instruction to bypass the nonexecutable
code in the macro., The format of the FLDF macro call is as follows:

FLDF filnum, maxrl, lu, numekv, keylth, filcom, reclth

The parameters are defined as in Sections 3.1, 3. 2, 3.3, and 3.4. Each parameter in the calling list
may be a constant or a variable. If it is a variable and its value is required by a File Manager call, the
specific value must be included in the macro call or stored into the variable location prior to the
corresponding macro call. If the lu position in the calling list is blank, the logical unit is set to 8,

the normal library unit. An example of an FLDF call follows:

FLDF FILNUM, MAXRL,,250, 1, 0, RECLTH

3.5.3 A MACRO TO TEST REQUEST INDICATOR BITS ON RETURN FROM A FILE
MANAGER CALL

The file status macro, STATFL, provides the user with an easy method of getting the request indicator
word, masking specified error conditions, and giving control to a specified error routine if errors

are present. A file status of zero implies that no errors occurred on the last file request. Forms of
the macro call are as follows:

STATFL fn, mk, bd
STATFL fn
STATFL fn, mk
STATFL fn, mk, bd
Where: fn is the file number
mk is the mask that is used to form the logical product with the request indicator,

(f mk is left blank, only the status is placed in the A register.) The
terminator, such as the dash (-) in the fourth example, determines the
addressing mode used on the AND instruction and may be a -, +, *, or blank,

bd is the program label where control is given if the logical product of mk and the
request indicator is non-zero. If bd is left blank, no code will be generated
to test the request indicator status. In this case the logical product of the
request indicator and the mask is left in the A register at the end of the
macro and may be tested by the user.

39520600 3-33/3-34

TIME REQUIREMENTS 4

In this section, the access rate equations are given in terms of the number of accesses for each
storage/retrieval method and the transfer rate for the mass memory device. Next, an example
illustrates the calculation of the access rates. The equations for the number of accesses and transfer
rates are derived in Appendix C from the definition of the file structure in Appendix A and the
characteristics of the mass memory devices (disk and drum).

DEFINITIONS
The following terms will be used in this section:

. Seek time — The time required for the disk arm to travel from a given disk cylinder to the
disk cylinder to be accessed. (A drum has no seek time.)

. Latency — The time required ior a mass memory device to iravei irom the daia to be
accessed to the read heads within a given track.

To the definitions given in Sections B.1.1 and B. 3.1, the following symbol definitions are added:

. AR — Access rate

. NA — Number of accesses

° TR — Transfer rate

. SS — For sequential store

° NSR — For next sequential retrieve
° ASR — For any sequential retrieve
. IS — For indexed store

. IR — For indexed retrieve

° DS — For direct store

. DR — For direct retrieve

) DK — For disk

. DKR — For disk read
. DKW — For disk write
. DM — For drum

° f(ro) — Remove option function (a one if the record is to be removed, otherwise zero)

39520600 4-1

° SEEK — Average seek time of the disk

° TAT — Average latency of mass memory device

° LAT — Maximum latency of mass memory device

. TWR — Transfer word rate of mass-memory device
° IUNF — Initial usage for non-indexed file

. IUIF — Initial usage for indexed file
° TUNF — Terminal usage for non-indexed file
. TUIF — Terminal usage for indexed file

. NFISSS — Number of file information segments with the same scatter code

ASSUMPTIONS

The access rate equations are approximations in that they assume the File Manager software is in core
and its overhead is negligible, and that the initial and terminal usage (see Sections C.1.4 and C.1.5) of
a file can be neglected if a fairly large number of records are accessed. Note that it is also assumed
that the record lengths-are small (e.g., RL = 93) for the disk transfer rates, that there are no key
information segment overflow blocks (to simplify the derivation), and that the assumptions of Section
B.1.2 are true.

4.1 ACCESS RATE EQUATIONS

The access rate for any of the storage/retrieval methods is found by taking the product of the number of
accesses required by that method and the transfer rate of the mass memory device, i.e.,

AC = NA - TR

4..1 SUMMARY OF ACCESS EQUATIONS

The equations in this section are derived in Appendix C. Note that some of the access rate equations in
this section give access rates for record storage. These equations assume that any needed space will
be available in the file space list. If this is not the case, additional accesses from the file space pool
will be necessary to obtain the space. These additional accesses may significantly add to the number of
accesses. To maximize use of the file space list and thereby minimize the number of file space pool
accesses, refer to Section 2.7.1.

The following summary is based on derivations from Section C.1 and assumptions from the beginning of
this section.

4-2 39520600

Number of accesses to store a sequential record as a part of a lnop to store all the

sequential records in one file record block:

RL
= + c——
NASS 1 MAXRL

Number of accesses to retrieve the next sequential record:

=1+
NA g = 1 *firo)

Average number of accesses to retrieve any sequential record:

NR
NAASR =3 + f(ro)

Number of accesses to store an indexed record as a part of a loop to store all the indexed

records in a file record block:

RL
A = 3+————
NAs MAXRL

Number of accesses to retrieve an indexed record:

= + .
NAI R 2 +2.f(ro)

Number of accesses to store a direct record:

Number of accesses to retrieve a direct record:

NADR = 1+ f(ro)

4.1.2 SUMMARY OF DISK/DRUM TRANSFER RATES

The following derivations are from Section C.2 with assumptions from the beginning of this section.

1.

39520600

Average transfer rate for disk read:

~ o} — - i H
TRDKR 123 6 (RL 1) mllllSSCOndS/acceSS

Average transfer rate for disk write:

TRDKW ~ 148 +% (RL - 1) milliseconds/access

4-3

3. Average transfer rate for drum:

TRDM = 8 +.008 .- RL milliseconds/access

4.1.3 ACCESS RATE EQUATIONS FOR DISK

From Sections 4.1.1 and 4.1.2:

1. Access rate of sequential store as a part of a loop to sequentially store records in the file:

RL 50
ARsspk ~ (1 ¥ MAXRL) (148 *o6 RL- 1’)

2. Access rate of next sequential retrieve:

25
AR ok ™ (1 + f(ro)) (123 +5¢ RL- 1))

3. Access rate of any sequential retrieve:
NR 25
AR ~ — w— -
ASRDK (2 f(m)) (123 ¥ 96 (RL 1))

NOTE

In equations 4 and 5 it is assumed that the length of
any KIS block does not exceed 96 words. The time to
access one word on disk is 12.8 microseconds. The
time to access one word on drum is 8 microseconds.
If the KIS block size is large, the total access rate
may be significantly increased.

Consider the extreme case of a KIS block size equal
to 12,000 words: Refer to Section B.4.3.5. The
time needed to access all words in the KIS block
would be 154 milliseconds if using a disk, or 96 mil-
liseconds if using a drum.

4, Access rate of indexed store as a part of loop of indexed stores:

RL 50
ARispk ~ <3 * M) (148 * 96 BL- 19

5. Access rate of indexed retrieve as a part of a loop of indexed retrieves:
AR ~ {2 +2 - f(ro)) (123 28 (RL - 1)
IRDK 96

4-4 395620600

6.

Access rate of direct store:

50
~ + wsan -

Access rate of direct retrieve:

- 25 -
AR i ™ ((1 = f(ro)) (123 + 5 (BRL 1))

4.1.4 ACCESS RATE EQUATIONS FOR DRUM

From Sections 4.1.1 and 4.1.2:

1,

39520600

Access rate of sequential store as a part of a loop of sequential stores:

_ RL .
ARsopm ~ (1 * MAXRL) (8 + . 008 RL)

Access rate of next sequential retrieve:

ARy oo = (L+f(ro) (8 +.008 * RL)

Access rate of any sequential retrieve:

NR
ARASRDM = (T + f(ro)) (8 +.008 * RL)

Access rate of indexed store as a part of a loop to store indexed records:

_ RL
ARISDM = (3 + MAXRL)(S +.008 * RL)
Access rate of indexed retrieve:

AR oy = (2+2°(ro) (8+.008 RIL)

Access rate of direct store:

ARDSDM = 8+,008 *RL

Access rate of direct retrieve:

AR ooy = (L+f(ro) (8+.008 - RL)

4.2 EXAMPLE OF ACCESS RATE CALCULATIONS

One hundred records are retrieved, indexed, updated, and stored direct on disk. What is the time
required if the record length is 19 words?

. . 25 -
From Section 4.1, 3, equation 5: ARIRDK ~ (2 + 2*f(ro)) (123 + 9% (RL 1))

25
~ (2 +0) (123 +35 (19 - 1))
~ 256 MS/IS

From Section 4,1, 3, equation 6: A ~ 148 + -:—g (RL - 1)

RDSDK
50
=~ 148 + % {19 - 1)

=157 MS/DS

Therefore, the total time (T)
required for this example is: T = 100 (256 + 157)

T =41.3 seconds

4.3 MINIMIZATION OF TIME REQUIRED FOR INITIAL FILE ACCESS

The access times in Sections 4.1.3, 4.1.4, and 4. 2 do not include accesses due to the initial usage of
a file as described in Section C.1.4. These may be significant if a large number of different files are
accessed. To minimize the number of initial accesses, the following procedure may be incorporated

into system initialization.

The search to obtain a file's FIS can be minimized if the files are first defined in a particular sequence.
This can be done by placing the FISs of the files with the same hash code in the same FIS block; there
are 47 FIS pointers in the FIS directory and 17 FISs in the FIS block. Assuming a system has less

than 800 (47 x 17 = 799) files, all the FISs with the same hash code can be placed in the same FIS block
by defining the files in the following order:

1. Files 1,48, 95,. . . , 7583 (17 defines)
2. Files 2,49, 96, . . . , 754 "
3. Files 3,50, 97,. . . , 755 "
47, Files 47, 94, 141, ., . . , 799 (17 defines)

If there are more than 800 files, a similar procedure can be developed.

4-6 39520600

If a user wishes to define the files dynamically, an initialization program can define them as explained
above and then release them, Since the space for F1S blocks is not re-used, the order will then be
determined and the number of accesses (two) to retrieve any FIS will be minimized.

39520600 4-7/4-8

FILE STRUCTURE A

Each defined file has a file information segment (FIS) that points to file record blocks (FRBs). An FRB
contains file records and can be searched sequentially to access desired record(s). Alternately, a key
information segment (KIS) can be used via the FIS to access one record randomly without searching
through all the records. This appendix discusses each of these structures in detail.

Al FILE INFORMATION SEGMENT STRUCTURE

The file information segment (FIS) structure, located on mass memory, is composed of one FIS
directory and zero or more FIS blocks (see Figure A-1). Information to/from this structure is
obtained via five core-resident parameters:

° FIDSEC is the FIS directory's sector address.

° NWFISD is the number of words in the FIS directory (multiple of 96).

° FIBLSA is the sector address of the last FIS block.

° FIBNIX is the index to the next available location in FIBLSA.

° NWFISB is the number of words in a FIS block (multiple of 96).

FIS FIS FIS FIS FIS
DIRECTORY BLOCK BLOCK BLOCK BLOCK

FIDSEC >

A 4

A 4

—» FIS |}

FIS

[)

} NWFISB

NWFIsD{ | FIS
POINTER

L = FIS

FIBLSA
FIBNIX

Figure A-1, File Information Segment Structure

39520600 A-1

A.1.1 FILE INFORMATION SEGMENT DIRECTORY

The FIS directory of NWFISD words is created on mass memory when the first file is defined. Its
sector address is given by the core-resident parameter FIDSEC. The directory is composed of:

° A two-word header, which contains the sector address of the first FIS block (a zero
indicates there are no FIS blocks) and a word reserved for future use

° Up to l-(NWFISD -2)/ 2] two-word FIS pointers

Utilizing the file number, modulo L(NWFISD-Z)/Z_] , for a scatter code, each pointer points to the first
FIS with a scatter code corresponding to the pointer's relative position in the FIS directory. If a FIS
pointer (both words) is zero, there are no FISes for that particular scatter code. The FIS pointer has
the same format as a record pointer (see Section 2. 3).

A.1.2 FILE INFORMATION SEGMENT BLOCK

A FIS block of NWFISB words is created on mass memory whenever space is needed to store a newly
defined FIS. Its sector address is given either by the FIS directory (if it is the first FIS block) or by a
previously allocated FIS block. The block is composed of:

° A header word, containing the sector address of the next FIS block (a zero indicates there
are no more FIS blocks)
° Up to | (NWFISB - 1)/16] FISs (see Section A.1.3)

There are also two core-resident parameters, FIBLSA and FIBNIX, which give the sector address of
the last FIS block and the index to the next available location in the last FIS block respectively.

A.1.3 FILE INFORMATION SEGMENT

A 16-word FIS is stored into a FIS block whenever a file is defined; its two-word mass memory address
is given by a FIS pointer in either the FIS directory (if it is the first FIS with a particular scatter code)
or a previously stored FIS, Note that once a file is defined, its FIS exists permanently, even if the

file is released. A FIS is composed of the following:

Word Mnemonic Description
0 SANFIS Sector address of next FIS with the same scatter code (if zero, there are

no more FISs for this particular scatter code)

1 IXNFIS Index into SANFIS to next FIS with the same scatter code

T Where |x] is the greatest integer less than or equal to x. (see Section B.4.2).

A-2 39520600

Word Mnemonic Description

2 FILENO File number

3 FRBFSA Sector address of the first file record block (a zero indicates there are
no file record blocks)

4 NRLFRB Number of records stored in the last FRB
5 FRBLSA Sector address of the last file record block
6 FRBNIX Index to the next available location in FRBLSA
7 KIDSEC Key information segment (KIS) directory's sector address (a zero indicates
there is none)
8 KIDSIZ KIS directory's size in sectors
9 KIBSIZ KIS block size in sectors (a zero indicates the file is not indexed)
10 KEYLTH Key length in words (a zero indicates the file is not indexed)
11 NUMEKV Number of expected key values (a zero indicates the file is not indexed)
12 FIFORL Fixed record length for indexed-linked FIFO file (a zero indicates that the
file is not indexed-linked FIFOQ)
13 NUMFRB Number of file record blocks currently assigned to the file
ia FRBSLA File record block size in sectors (bits 0 through 8)
FISIND FIS indicator with the following definition:
Bit 13 is 0 File is indexed-linked LIFO.
1 File is indexed-linked FIFO.
Bit 14 is 0 File is not indexed-ordered.
1 File is indexed-ordered.
Bit 15 is 0 File is not indexed-linked.
1 File is indexed-linked.
15 FISFLG FIS flag with the following definition:

Bits 0 — 6 Logical unit for allocating FRBs
Bits 7 — 13 Logical unit for allocating the KIS directory and KIS blocks

Bit 14 is 0 Defined by an unprotected program
1 Defined by a protected program

Bit 15 is 0 File is released.
1 File is defined.

39520600 A-3

A six-word header is appended to a FIS when the FIS is in core. A core FIS header is composed of the

following:

Word Mnemonic
0 ANCFIS
1 SECFIS
2 IDXCHC
3 ADRKID
4 FILCOM
5 FILCLK

Description
Address of next core-resident FIS (a zero indicates this is the last)
Sector address of the FIS

Index and change flags with the following definition:

Bit 0 is 0 FIS has not been changed.
1 FIS has been changed.

Bit1lis 0 KIS directory has not been changed.
1 KIS directory has been changed.

Bits 7 — 15 Index to start of FIS from start of sector
Core address of KIS directory
File combination (zero if file not locked)

File clock (used for releasing FIS after a period of no activity)

A.2 FILE RECORD BLOCK STRUCTURE

The file record block (FRB) structure, located on mass memory, is composed of zero or more FRBs

for each file (Figure A-2).

Information to/from this structure is obtained via five parameters of the

file's FIS (see Section A, 1.3, words 3, 4, 5, 6, and 14):

A4

FRBFSA
NRLFRB
FRBLSA
FRBNIX
FRBSIZ

is
is
is
is

is

the sector address of the first FRB.

the number of records stored in the last FRB.

the sector address of the last FRB.

the index to the next available location in FRBLSA.

the file record block size.

39520600

_ FRB FRB

FRR
FRBFSA > 0 = - =
> 0
NUMREC NUMREC 0 X
FRBSIZ 4 b NRLFRB
RECORD;
J
.
FRBLSA
FRBNIX

Figure A-2. File Record Block Structure

A2V FILE RECORD BLOCK

An FRB of FRBSIZ sectors is created on mass memory whenever space is needed to store a new
record. Its sector address is given either by the FIS (if it is the first FRB in a file) or by a previously
allocated FRB. The size of an FRB, FRBSIZ, is specified by the computation of:

\
[3 + MAXRL]
96
Where: MAXRL is the maximum record length of any record to be stored in the file.

The block is composed of:
° A three-word header containing:

-The sector address of the last FRB (a zero indicates the first FRB)

-The sector address of the next FRB (a zero indicates there are no more FRBs for this
file)

-The number of records stored in this FRB (a zero indicates that this is the last FRB and
reference should be made to NRLFRB)

° Zero or more variable or fixed length records

TWhere [x] is the least integer greater than or equal to x.

39520600

There are also three other FIS parameters, NRLFRB, FRBLSA, and FRBNIX, which give the number

of records stored in the last FRB, the sector address of the last FRB and the index to the next available
location in the last FRB respectively, of each file.

A.2.2 FILE RECORD

A file record, or simply a record, of variable or fixed length is stored/retrieved into an FRB whenever
a legal file request is given. Its length, variable or fixed, depends on the type of file: not indexed-
linked or indexed-linked with or without FIFO linking. Its access depends on the type of file: indexed
or not indexed. In general, a record is composed of:

° A header word containing:
~-The total length of the record in bits 0 through 14
-The removed flag in bit 15 (the record has heen removed from the file if bit 15 is one)

° A two-word record pointer if the file is indexed-linked

° Zero or more data words
The total record length is given by:
RL = 1 + NRPW + NDW

Where: RL is the total record length.

NRPW is the number of record pointer words (zero if not indexed-linked, two if
indexed-linked).

NDW is the number of data words.
If the record is an extra record created by the File Manager to reserve space for storage of a

subsequent FIFO-linked record, the header word will contain $8000 and no useful information will

have been stored in the remainder of the record. The length of this record will be specified by FIFORL
in the associated file's FIS.

A.3 KEY INFORMATION SEGMENT STRUCTURE

The key information segment (KIS) structure, located on mass memory, is composed of:

° One KIS directory

. Zero or more KIS blocks for each file with a key defined area (see Figure A-3)

A-6 39520600

Information to/from this structure is obtained via five parameters of the file's FIS (words 7 through

directory's sector address.

is the KIS directory's size in sectors.

11):
® KIDSEC 1is the KIS
[KIDSIZ
° KIBSIZ

° KEYLTH is
° NUMEKYV is

KIDSIZ 9

is the KIS block's size in sectors.

KIS DIRECTORY

HEADER

the key length.

the number of expected key values.

FIRST KIS BLOCK

FOUR-WORD |

KIS BLOCK

0

POINTER

NO. OF KISs

KIS BLOCK
POINTER

KIS BLOCK

FOINTER

39520600

Figure A-3.

iTH KIS BLOCK

1 upe

KIS OVERF LOW BLOCK

I B

NO. OF KISs

0

NO. OF KiSs

KIS j

LAST KIS BLOCK

0

NO. OF KISs

Key Information Segment Structure

A.3.1 KEY INFORMATION SEGMENT DIRECTORY
The KIS directory of KIDSIZ sectors is created on mass memory whenever a file is defined to have a
key (i.e., indexed). Its sector address is given by the parameter KIDSEC. The size of the KIS
directory, KIDSIZ, is specified by the computation of

[4 + sRNEKV) /96)]

Where: SRNEKV is the square root of the number of expected key values (see Section 3.1.2).

The directory is composed of a four-word header, containing:

Word Mnemonic Description
0 KIDCLK KIS directory clock
1 NUMKIB Number of KIS blocks
2 KIBFSA First sector address of linked KIS blocks
3 KIBLSA Last sector address of linked KIS blocks

and up to KIBSIZ * 96 - 4 KIS block pointers. Utilizing the given key value to produce a scatter code,
each KIS block pointer contains a one-word sector address of a KIS block with a scatter code
corresponding to the pointer's relative position in the KIS directory. If a KIS block pointer is zero,
there is no KIS block for that particular scatter code.

A.3.2 KEY INFORMATION SEGMENT BLOCK

A KIS block of KIBSIZ is created on mass memory whenever space is needed to store a file's record
with a new key value. Its sector address is given by the corresponding KIS block pointer in the KIS
directory of the file., The size of a KIS block, KIBSIZ, is specified by the computation of

[3 + (2 * NUMPTR + KEYLTH) - SRNEKV}
96

Where: NUMPTR is the number of record pointers in each KIS. The value of NUMPTR is one
for a LIFO linked or unlinked file. The value is two for a FIFO linked file.

KEYLTH is the key length (in words).

SRNEKV is the square root of the number of expected key values.

A-8 39520600

The block is composed of:

A three-word header containing:

-The sector address of the KIS block allocated before this one (a zero indicates the first
KIS block)

-The sector address of the first KIS overflow block (a zero indicates there are no KIS
overflow blocks)

-The number of KISs in the KIS block
Up to l(KIBSIZ * 96 - 3)/(2 - NUMPTR + KEYLTH)J KISs

NOTE

An indexed-ordered file will cause each KIS block to be
ordered by key value. The ith KIS block will contain key
values in the range:

i-1
NKISB

NUMEKV ()< KEYVAL < NUMEKV (

NKISB)

Where: NUMEKYV is the number of expected key values,
NKISB is the number of KIS blocks.
KEYVAL is the key value.

A3.21 KEY INFORMATION SEGMENT OVERFLOW BLOCK

A KIS overflow block, KIBSIZ, is created on mass memory whenever a KIS block becomes filled,
either because the number of expected key values was exceeded or the key values do not scatter

uniformly.

Its sector address is given by either its KIS block or by a previously allocated KIS

overflow block. The block has the same format as a KIS block and is composed of:

39520600

A three-word heading containing:
-The sector address of the KIS block allocated before this one.

-The sector address of the next KIS overflow block (a zero indicates there are no more
KIS overflow blocks]

~The number of KISs in the KIS overflow block
Up to L(KIBSIZ .96 - 3)/(2 * NUMPTR + KEYLTH)J KISs

In an indexed-ordered file, which is not indexed-linked, KIS blocks other than the first and last will not
have overflow blocks. The first KIS block will have associated overflow blocks only if one or more
records with negative key values are stored. The last KIS block will have associated overflow blocks
only if one or more records with key values exceeding NUMEKV are stored. If overflow blocks are

created for an indexed-ordered file, the order of the KISs with respect to key value is maintained in
the KIS blocks and the KIS overflow blocks.

A.3.3 KEY INFORMATION SEGMENT

A KIS of 2 - NUMPTR + KEYLTH words is stored into a KIS block whenever a legal indexed file request
is given to store a record with a new key value., Its access is achieved by searching the proper KIS
block. A KIS for a LIFO-linked file record is composed of:

. A record pointer that points to the last record stored using the same key value

° A KEYLTH word array containing the key value
A KIS for a FIFO-linked file record is composed of:

° A record pointer that points to the first record stored using the same key value
° A record pointer that points to the last record stored using the same key value

° A KEYLTH word array containing the key value

A.3.4 ALLOCATION OF SPACE WITHIN THE KEY INFORMATION STRUCTURE

The File Manager is designed so that the size of the KIS directory is dependent on the number of
expected key values, NUMEKV. We have seen that

wwictsp - [SENEKV £4] o,

For values of NUMEKV less than or equal to 922(=8464), 96 words (one sector) are used as the KIS
directory. For NUMEKV values between 8,465 and 32,767, the KIS directory has a length of 192 words
or two sectors. The hash code technique for scattering the key values into the KIS blocks is as follows:

Let
{KEYVAL(i); i=1,2,3,...KEYLTH}

be the set of words comprising the key values for a given record. Let NEKISD equal the number of
entries in the KIS directory (either 92 or 188), then H, the hash code for the record, is computed as

KEYLTH
H = E KEYVAL(i) (mod NEKISD)

i=

A-10 39520600

EXAMPLE:
Suppose a file is indexed with a key of location code (let KEYLTH = 2 and NUMEKV = 10,000) and a
record is to be stored with the location code LJ11 ($ = a hexadecimal number), then the key value in

ASCII is: o

KEYVAL(l) = 4C4A

16
KEYVAL(2) = 313116
then
KEYLTH
H= E KEYVAL) (mod NEKISD)
i=
2
= E KEYVAL(i) (mod 188)
i-1 i

= 7D7316| (mod 188)

32,123 (mod 188) = 16

If the number of actual key values exceeds 8,464, the value of NUMEKYV must also exceed 8, 464 so that
192 words (two sectors) will be used for the KIS directory; thus minimizing the number of KIS overflow
blocks. Fewer KIS overflow blocks implies fewer mass-memory accesses in retrieving a record from
the file.

On the other hand, if the actual number of key values is small and the estimate, NUMEKV, exceeds
8,464, the full 192 words will be used needlessly for the KIS directory; taking up 96 extra words of

core each time the KIS directory is read in from mass memory. (The KIS directory for a given file
is in core whenever an indexed file request is made for that file.)

In addition, the value of NUMEKV helps to determine the length of the KIS blocks since

l\/NUMEKVJ = SRNEKV

is the number of entries in each KIS block. Thus, too large a value of NUMEKV would result in
unnecessarily long KIS blocks. Too small a value of NUMEKYV results in KIS blocks that are too short,
causing the creation of KIS overflow blocks. See Figures B-1 and B-2 for examples of key information
segment structures dependent on the relationship between the number of expected key values and the
number of actual key values.

39520600 A-11/A-12

STORAGE REQUIREMENTS FOR FILE STRUCTURE

In this section, the equations for minimum/maximum storage limits are given so a particular file
structure's storage requirements may be approximated. An example illustrates the calculation of the
minimum/maximum storage limits, Finally, the equations are derived from the definition of the file
structure given in Appendix A,

B.1 STORAGE LIMIT EQUATIONS

B.1.1 DEFINITIONS

Mnemonic
MAXRL
SRNEKV

KEYLTH
RL
NR

NWFg
NWF,

NWFMIN

NWFpmax
NF

nf
NWFS
NUMPTR

39520600

Description

Maximum record length of ith file

Square root of the expected number of records with different key values (NUMEKV)
of ith file

Key length of ith file
Length of record in ith file

Number of records in ith file., Note that the number of records in a FIFO-linked file
includes an extra record for each key stored

Number of words in ith sequential file
Number of words in ith indexed file
Minimum number of words in ith file
Maximum number of words in ith file
Number of defined files

Number of defined, but not released, files
Number of words in the file structure

Number of pointers in each KIS for an indexed file

B.1.2 ASSUMPTIONS

In some casces the storage limit equations are approximations that give a minimum and maximum range
for the file structure. In other cases an exact computation of the file structure is given.

For storage efficiency, the maximum record length (MAXRL) should be an integer multiple of the
record length (RL). Furthermore, the maximum record length should be of the form:

96

Where:

m -3

m is a positive integer. Relaxation of these restrictions may be investigated via
Section B.3.3.3.

For calculation convenience the record length is assumed to be constant for any particular file. If
this assumption is not true for a file, an average record length may be used. However, caution must
be used so that this average record length does not violate any of the assumptions and restrictions on
which the file structure is based.

B.1.3 SUMMARY OF STORAGE LIMIT EQUATIONS

From the derivations in Section B.3 and with the assumptions from Section B, 1. 2,

1.

The number of words in the file record blocks is:

NR - RL]
‘RB' ‘ N AL L
NWFRB (MAXRL + 3) [XRL

The minimum storage limit for an indexed file is:

MAXRL * 98
NWF 1N (MAXRL 95

)(RL . NR) + SRNEKV2 (KEYLTH + 2 - NUMPTR)
+4 . SRNEKV + 4

The maximum storage limit for an indexed file is:

MAXRL + 3

2
/ . SRNEKV”™ (KEYLTH + 2 . NUMPTR
N“FMAX < (XRL >(RL NR>+ MAXRL + SR (

+ SRNEKV(95 - KEYLTH + 190 - NUMPTR + 99) + 9507
The minimum storage limit for the file structure is:

nf
96 - NF
> P 7
NWFS 96 + 17 t 2 NWFMIN

i=1

39520600

5. The maximum storage limit for the file structure is:

nf
96(NF + 16)

NWFS = 96 +
17

+ z N—WFMAX

i =1
i 4

B.2 EXAMPLE OF MINIMUM/MAXIMUM STORAGE LIMIT CALCULATIONS

The following is a hypothetical file structure

Where: NF =nf = 2 (one non-indexed and one indexed file)
File 1 contains MAXRL 93 words
RL 31 words
NR 1880 records
File 2 contains MAXRL 93 words
RL 93 words
NR 1880 records
KEYLTH 8 words
SRNEKV 50 words

NUMPTR 1 word

NWFRB, = NWFRB'
(1) (1)
_ NR - RL
= (MAXRL + 3) [MAXRL"

1880 .« 31
= 96 [93 “

=60,192

MAXRL + 98

2
2 . R
NWF NG (MAXRL " 95) RL - NR + SRNEKV® (KEYLTH + 2 - NUMPTR)

+4 - SRNEKV + 4

93 + 98 2
z(—9§+—9§) (93 - 1880) + 50° (8 + 2 - 1) + 4(50) + 4

AY

> 217,834 words

39520600 B-3

MA
NWF XRL + 3) (RL - NR) + MAXRL + SRNEKV? (KEYLTH + 2 - NUMPTR)

MAX(2) (MAXRL

+ SRNEKV (95 - KEYLTH + 190 - NUMPTR + 99) + 9507

93 +3 2
93 (93 - 1880) + 93 +50 (8B+2 1) +50 (958 + 190 - 1 + 99)

+ 9507

A

< 282,530

nf

NWFS 296+?_6'TNE+Z NWF

1 MIN

i=1

2
%6 + NWF + NWF

2 96 +
17 MIN(1) MIN(2)

2 277,151 words

nf
96(NF + 16) z
NWFS S 96+ ————+ NWF |\«

i=1

96(2 + 16)
T MWk P M vax(g)

< 96
< 343,078 words

Since the absolute minimum storage requirement (NWFS AM) for this data structure would be:

nf
z RL, - NR,
i i

i=

NWF

SA M

RLl . NR1 + RL2 . NR2

31 -1880 + 93 - 1880
= 233,120 words

The extra file storage needed for this example would be between 19% and 47% of the absolute minimum
storage requirement,

B4 39520600

B.3 DERIVATION OF STORAGE LIMIT EQUATIONS

B.3.1 DEFINITIONS

To the definitions given in Sections of B. 1. 1, the following are added:

Mnemonic
NWFISD
FIDSIZ
NWFISB\n
NWFISB pax
FIBSIZ
NFISB
NFFISB
NWFIS
FRBSIZ
NWFRB
NRFRB
NFRB
NWFRB N
NWFRBMAX
NWFRB'
NWKISD

MIN
NWKISD

MAX
KIDSIZ
NWKISB pIN
NWKISB 14 ¢
NWKISB
KIBSIZ
NKISB
NWFISB
NWFRB,

NWKISD;

39520600

Description
Number of words in the FIS directory
FIS directory size in sectors
Minimum number of words in FIS blocks
Maximum number of words in FIS blocks
FIS block size in sectors
Number of FIS blocks
Number of FISs in one FIS block
Number of words in a FIS
FRB size in sectors {see Section A. 2} of the ith file
Number of words in a FRB of ith file
Number of records in a FRB of the ith file
Number of file record blocks in the ith file
Minimum number of words in FRBs of the ith file
Maximum number of words in FRBs of the ith file
Desirable number of words in FRBs of the ith file
Minimum number of words in KIS directory of the ith file
Maximum number of words in KIS directory of the ith file
KIS directory size in sectors (see Section A, 3) of the ith file
Minimum number of words in KIS blocks of the ith file
Maximum number of words in KIS blocks of the ith file
Number of words in a KIS block of the ith file
KIS block size in sectors of the ith file
Number of KIS blocks in the ith file
Number of words in FIS blocks
Number of words in FRBs of the ith file

Number of words in KIS directory of the ith file

Mnemonic Description

NWKISB; Number of words in KIS blocks of the ith file
NKKISB; Number of KISs in one KIS block for the ith file
SRNEKV [JWER_V_J

NUMAKV Number of actual key values.

8.3.2 INTEGER FUNCTION THEORY

If x is any real number, then

L=
[x]

Furthermore, it is noted that

the greatest integer less than or equal to x

the least integer greater than or equal to x

x-1l<|x)=sxs[x]<x+1

and

=1 1=

where n and m are positive integers.

B8.3.3 COMPUTATIONS

Computations are carried out to find minimum/maximum storage limit equations for the following,

which is expressed as a function of a file's parameters:

. File information segment directory

. File information segment blocks

. File record blocks for the ith file

. Key information segment directory for the ith file
° Key information segment blocks for the ith file

B-6

39520600

B.3.31 COMPUTATION FOR FILE INFORMATION SEGMENT DIRECTORY

Computations are carried out for the storage size of the FIS directory. Note that NWFISD is a File
Manager parameter and is defined to be 96.

8.3.3.2 COMPUTATIONS FOR FILE INFORMATION SEGMENT BLOCKS
The number of words in all FIS blocks is computed as follows:

NWFISB = 288 - NFISB

_ NF
- 288 [NFFISB]

_ — NF

= 288 hNWFISB -1 J]
NWFIS

NF

= 988 |——-—
88 288 - IJ]
16

- NF
= 288 - e]

5

NF
288 - 17

NWFISB

I

B.333 COMPUTATIONS FOR FILE RECORD BLOCKS

Computations are carried out for three cases: the minimum, maximum, and desirable maximum
storage limits for the file record blocks of the ith file. The results are obtained from the following
information:

From Section A. 3: FRBSIZ - | 3XMAXRL] _ |3 + MAXRL + 95 |
| 96 I 96
Since there are 96 words per sector: NWFRB = FRBSIZ * 96
If it is assumed that the record length is
constant for any particular file then
-3
(from Section A, 2): NRFRB = %—

39520600 B-7

Note that if the record length is not constant for any particular file, an average record length may be

used, as long as there is a large number of records in the file.

NR

By definition: NFRB = NRFRB

MINIMUM LIMIT

NWFRB = NWFRB - NFRB

MIN
NR
= NWFRB - [NRFRB]

NR
NWFRB + — &
> NWFRB * SorRB
NR
lNWFRB -3 J
RL

= NWFRB -

NR
NWFRB - 3
RL

2 NWFRB .

NWFRB
NWFRB -3

)(RL - NR)

- (1 +NWFRB 3>(RL NR)

(1 ¥ FRBSIZ 96 - 3) (RL - NR)

3
= (RL - NR)
(|3+MAXRL+95J.96_3
2 3 (RL - NR)
/3+M.AX?L 95).96_3}

) (1 * FARRL T 55)(RL NR)

MAXRL + 98

NWFRBy N MAXRL + 9

(RL * NR)

39520600

MAXIMUM LIMIT

NWFRB

39520600

MAX

< NWFRB (

< NWFRB <

{

NWFRB -

NWFRB -

NWFRB -

NWFRB

NWFRB -

NWFRB -

NWFRB -

NFRB

rNR

| NRFRB |

[NR +

NRFRB -1
NRFRB

_(NR+

NRFRB -1
NRFRB

N RFRB

NR—I +1)

NR~1

|NWFRB 3J +1

NRB - i
A D Y

+

(FRB RL —é"

NR -1

(NWFRB RL - 2)

RL(NR - 1)

NWFRB

NWFRB - RL -2

NWFRB - RL - 2

RL + 2

1+
(NWFRB - RL -2

)(RL * NR

RL + 2

1+
(FRBSIZ - 96 - RL - 2

RL + 2

:
)

)(RL *NR - RL) + NWFRB

\

!

- RL) + NWFRB

96

< |3+MAXRL+95J . 96 - RI

RL + 2

1+

|'3

+ MAXR

96

L-|-96-RL-2

(RL - NR - RL) + FRBSIZ * 96

3 + MAXRL + 95J

)(RL *NR - RL) +|_ 5%
2/

(RL'NR-RL)+|_

3+ MAXRL +95 |

96

RL + 2 3 + MAXRL + 95
1+ . - .
* 3 + MAXRL (RL - NR - RL) +(96) %
22822 2) . 96 - RL - 2
96
RL + 2
= 1+ . -
(TR TR Ty)(RL NR - RL) + MAXRL + 98
MAXRL + 3
< . -
NWFRB . (MAXRL . RL) (RL * NR - RL) + MAXRL + 98

DESIRABLE MAXIMUM LIMIT

The maximum limit provides for the likelihood of an extremely bad choice for the record length
parameter (RL). However, if this parameter is chosen carefully, storage will be conserved and a
more desirable maximum limit can be computed and used to approximate the storage requirement.

The record length should be chosen such that the term

NWFRB -3
RL

is (or is slightly less than) an integer. This implies that the record length is a factor of (NWFRB - 3},
or

RL*n = NWFRB -3

= FRBSIZ - 96 -3

:|-3+MA;ZRL+95J_96_3

) "3+MAXRL].96_3
9

where n is a positive integer.

If the maximum record length
(MAXRL) is of the form: MAXRL = 96 *m -3

where m is a positive integer,

then RL - n 96 * m -3

I

MAXRL

B-10 39520600

Thus, if the record length is a factor of the maximum length, storage space is conserved and the
following desirable number of words can be utilized:

NWFRB' = (MAXRL + 3) * NFRB

NP 1
(MAXRL +3) - — !
RFRB

NR
(MAXRL + 3) - [|-FRBSIZ - 96 - 3

RL .
NR 1]
= (MAXRL + 3) - l—ﬁ—%] . 96 -3J
X RL

NR - RL
(MAXRL =+ 3) [MAXRI:I
B3%24 COMPUTATIONS FOR KiS DIRECTORY

The number of words in the KIS directory is the number of sectors in the KIS directory, KIDSIZ,
multiplied by 96.

NWKISD = KIDSIZ - 96

The number of sectors in the directory must be large enough to accommodate four header words plus
one word for a pointer to each KIS block needed for the file.

The number of KIS blocks needed for the file is NKISB, thus:

KIDSIZ = [i;T;IiB-I and NWKISD = I-ﬂ%lsli-' . 96

The File Manager is designed so that the number of KISs in each KIS block is equal to the number of
KIS blocks; that is,

NKKISB = NKISB
Also by design of
the File Manager, NUMEKV = NKISB * NKKISB
= NKISB2
or, NKISB = |_ JVNUMEKV J = SRNEKV

39520600 B-11

Therefore, NWKISD _ |'4 + SRNEKV] . 96

96
But SRNEKV e SRNEKV]) [4 + SRNEKV + 95J _ 99 + SRNEKV
’ 96 96 96 96
Therefore, NWKISD, = SRNEKV +4 s NWKISD s SRNEKV + 99
= NWKISD

B335 COMPUTATIONS FOR KEY INFORMATION SEGMENT BLOCKS

_ i’3 + (KEYLTH + 2 - NUMPTR) + SRNEKV

From Section A.4, NWKISB 56 I .

Thus, the minimum length for a KIS block occurs when both KEYLTH and NUMEKV are small and the
file is not indexed-linked.

Suppose KEYLTH =1
NUMPTR =1

NUMEKV = 2

1]

then, NWKISB 96

The maximum length for a KIS block occurs when KEYLTH and NUMEKYV are assigned their maximum
values and the file is FIFO index-linked.

If KEYLTH = 63
NUMPTR = 2
NUMEKV = 32,767

then, NWKISB = 12,000

The expected number of KIS blocks is dependent on the expected number of key values (NUMEKYV) and
on the actual number of key values (NUMAKV). The relationship for the case NUMAKV = NUMEKYV is
shown in Table B-1. The number of KIS overflow blocks depends on how NUMEKYV relates to the actual
number of key values and on whether or not the key values scatter uniformly.

B-12 39520600

Table B-1,

Expected Key Values

Number of KIS Blocks as a Function of Number of

LENGTH OF
KIS BLOCK
FOR FILE
NEKISD = WITH
SRNEKV = MAXIMUM KEYLTH =4
NUMBER OF KiSs EXPECTED | NUMBER OF LENGTH AND NO
IN EACH KIS NUMAKV = |NUMBER OF { ENTRIES IN OF KIS INDEX-
BLOCK NUMEKV* |KIS BLOCKS | KIS DIRECTORY | DIRECTORY LINKING
1 1 1 92 96 96
1 2 2 92 96 96
1 3 3 92 96 96
9 91 91 92 96 96
9 93 92 92 ac 9¢
9 94 92 92 96 96
92 8,464 92 92 96 384
92 8,465 93 188 192 384
92 8,466 94 188 192 384
92 8,559 187 188 192 384
92 8,560 188 188 192 384
92 8,561 188 188 192 384
181 32,766 188 188 192 768
181 32,767 188 188 192 768
*NUMAKYV = Number of actual key values
NUMEKV = Number of expected key values
39520600 B-13

In the following discussion we will assume uniform scattering. Let NUMAKYV be the number of actual
key values and NEKISD be the maximum number of entries in the KIS directory, then, NUMAKV/
NEKISD is the number of expected key values with the same scatter code. Since SRNEKV KISs can
appear in one KIS block, when NUMAKV/NEKISD is less than or equal to SRNEKV, the number of KIS

overflow blocks is zero. Let NEKISO denote the number of KIS overflow blocks. Then for NUMAKV/
NEKISD < SRNEKV, we have

NEKISO = 0

For NUMAKV/NEKISD > SRNEKV, we have

NUMAKV
NEKISO = ([NEKISD - SRNEKVJ - 1) NEKISD + NUMAKV (mod NEKISD)
Note that NUMAKV/NEKISD is the expected number of keys per scatter code; SRNEKV is the number of
keys per KIS block; and NEKISD is the number of scatter codes. Also, when NUMAKV/NEKISD is less
than SRNEKYV, there will be one KIS block for each of the NEKISD scatter codes.

See Table B-2 for some examples of the relationship between the expected number of KIS overflow

blocks and key values and the actual number of key values.

Table B-2. Expected Number of KIS Overflow Blocks as Related to
Expected and Actual Key Values

SRNEKV = EXPECTED EXPECTED

NUMBER OF KEYS NUMBER OF | NUMBER OF KIS

NUMAKYV | NUMEKV | NEKISD PER KIS BLOCK KIS BLOCKS OVERFLOW BLOCKS

1 1 92 1 1 0
92 92 92 9 92 0
8,464 8,464 92 92 92 0
32,767 32,767 188 181 188 0
100 1 92 1 92 8
100 16 92 4 92 8
100 8,464 92 92 92 0
9,000 1 92 1 92 8,908
9,000 8,464 92 9 92 92
9,000 32,767 188 181 188 0

B-14 39520600

B.3.4 EQUATIONS

The equations for calculating the minimum/maximum storage limits for non-indexed and indexed files,
as well as the total minimum storage limits for the file structure are given.

B.3.41 STORAGE LIMITS FOR NON-INDEXED FILE

From Appendix A:

and from Section B.3.3.3
(assuming the desired
maximum limit):

NWF _ = NWFRB,
S i

NR * RL
NWF = (MAXRL + 3) - [MAXRL]

B.3.4.2 STORAGE LIMITS FOR INDEXED FILE

From Appendix A:

and from Section B,3.3.3
(assuming the desired
maximum limit) and
Sections B,3.3.4 and
B.3.3.5 (assuming
NUMAKYV = NUMEKV):

NWFI = NWFRBi + NWFISDi + NWKISBi

- ~

NK * KL 4 + SRNEKV |
= + . +
NWF| = (MAXRL + 3) l N ' =

96 + SRNEKV - 96 -

[SRNEKV * (KEYLTH + 2 - NUMPTR) + 3]
9% I

B.3.43 TOTAL STORAGE LIMITS FOR FILE STRUCTURE

From Appendix A:

and from Sections
B.3.3.1and B.3.3.2:

39520600

nf
NWFS = NWFISD + NWFISB + z NWFi

i=1

nf
Mo -—
NWFS = 96 + 288 - I%f:l + Z NWF,

i=1

B-15/B-16

ACCESS RATES FOR FILE STRUCTURE C

(Refer to Section 4. 1, 1 for definition of symbols.)

C.1 ACCESS EQUATIONS FOR STORAGE/RETRIEVAL METHODS

The access equations for the sequential, indexed, and direct storage/retrieval methods, as well as the
initial and terminal usage of the files are calculated using the definition of the file structure given in
Appendix A.

C.1.1 ACCESSES FOR SEQUENTIAL METHOD

STORE

A sequential store requires one access for storing the record, plus one extra access for storing a file
record block pointer, if the record is the first record in the file record block. Thus, to store all the
records in a file record block, one more store than the total number of records in the file record
block is required. The number of accesses for storing a sequential record is minimized when all the
records in a given file record block are stored in loop. Within such a loop, the number of accesses for
storing a sequential record is computed as follows:

_ NRFRB + 1
NAgs ~ " NRFRB
= 1+ —-—.1
NRFRB
= 1 +————1
[NWFRB -3 J
RL
1
= 1+ .
FRBSIZ - 96 - 3
RL
1
=1+ |'3 + MAXRL'I
== .96 -3
9 6 J
RL.

39520600 C-1

If the assumptions in Section B. 2., 2 are true, then

1
NA e —
ss ' [MAXRL
RL
RL
NA S 3 U
Ss " MAXRL

Note that if the record length (RL) equals the maximum record length (MAXRL), two accesses are

required for each sequential store. However, as the limit of RL/MAXRL approaches zero, only one
access is required.

XETRIEVE

A sequential retrieve requires one access for retrieving the next sequential record, plus one extra

access if the record is being removed. Therefore the number of accesses for the next sequential
retrieve is given by:

NANSR = 1 + f(ro)

Note that the average number of accesses to retrieve any record in a sequential file is given by:

_ NR
NAASR =3 + f(ro)

C.1.2 ACCESSES FOR THE INDEXED METHOD

STORE

An indexed store requires one access for retrieving the desired key information segment block and one
access to update it with the proper information, plus the number of accesses required for a sequential
store (Section C.1.1) to store the record. Therefore the number of accesses for storing one indexed
record as a part of a loop to store all the indexed records in one file record block is given by

RL
A = 34—
NArs 3 * MAXRL

c-2 39520600

RETRIEVE

An indexed retrieve requires one access for retrieving the desired key information segment block and
one access for retrieving the record, plus two extra accesses if the record is being removed.
Therefore the number of accesses for an indexed retrieve is given by:

NAIR = 2+ 2+ f(ro)

C.1.3 ACCESSES FOR THE DIRECT METHOD

STORE

A direct store requires one access for updating the record. Therefore the number of accesses for a
direct store is given by:

NA =1

ns
7S

RETRIEVE

A direct retrieve requires one access for retrieving the record, plus one extra access if the record is
being removed. Therefore the number of accesses for a direct retrieve is given by:

NADR = 1+ f(ro)

C.1.4 ACCESSES DUE TO THE INITIAL USAGE OF A FILE

NON-INDEXED

access is designated an initial usage of the file structure. This requires one extra access to read in
the file information segment directory. Furthermore, if there have been no accesses via file requests

If there have been no accesses via file requests of the file structure for a period of time, the next

39520600 Cc-3

of a particular file for a period of time, the next access to this file is designated an initial usage of the

file. Assuming that the file numbers scatter uniformly, the number of FISs with the same scatter
code is given by:

_ J—_NF
NFISSS - (NWFISD - 2)
2

Since NWFISD equals 96 (see Section B.3.3.1), then

NF
NFISSS = I;;I

On the average, the expected number of FISs to be accessed to find the FIS corresponding to a given
file number is given by

[+

This gives an upper bound on the number of file information segment blocks that must be accessed to
read in a given file information segment.

r r 1
1 NF | _ |NE
2 47 94

Therefore, the expected number of accesses for an initial usage of a non-indexed file is given by:

NF
NAong < 1% [Q-I

INDEXED

If there have been no accesses via indexed file requests of a particular indexed file for a period of time,
the next indexed access to this file is designated an initial indexed usage of the file. This requires one
extra access to read in the key information segment directory. Furthermore, if the indexed file has not
been accessed for a period of time by non-indexed methods, extra accesses are also required as in the
non-indexed case. Therefore, the number of accesses for an initial usage of an indexed file is given by:

NF
Nl < 2 [E'Z]

C 39520600

Note: In this section it has been assumed that the user has not followed the file access time optimization

)

procedure described in Section 4.3. If the user has foliowed this optimization procedure, aii the fiies
with one scatter code will be stored in one FIS block. If the procedure has been followed and if the
number of files is less than or equal to

/ Maximum number of scatter codes \ . { Maximum number of FISs that can be \
(represented in FIS directory) (contained in one FIS)

=94 - 18 = 1,598

then the expression

<]

in the equations of this section can be replaced by the value 1.

C.i.5 ACCESSES DUE TO THE TERMINAL USAGE OF A FilE

NON-INDEXED

If the file structure is not accessed for a period of time, one extra access is required to write out the
file information segment directory (if it has changed). Furthermore, if a particular file is not used for
a period of time, one extra access is required to write out the file information segment (if it has
changed). Therefore the number of accesses for the terminal usage of a non-indexed file is given by

NATUNF < 2

INDEXED

If a particular indexed file is not accessed for a period of time, one extra access is required to write
out the key information segment directory (if it has changedj, Furthermore, if the indexed file has not
been accessed by non-indexed methods, extra accesses are also required as in the non-indexed case.
Therefore the number of accesses for the terminal usage of an indexed file is given by:

NA <
T S S

39520600 c-5

C.2 DISK/DRUM AVERAGE TRANSFER RATE

C.2.1 DISK AVERAGE TRANSFER RATE

The average transfer rate of the 853 disk is quite complex when word addressing is utilized. However,
approximations can be made if the number of words that are to be read or written is small (e.g.,
RL < 93). With this assumption, the average transfer rate for a disk read or write is given by *:

—_— —= RL - 1
~ SEE —
TRr K+ TAT LATDK(5)

RL - 1
~ 110 + 13 + 25

25
- 4+ — - 114
TRDKR 123 % (RL - 1) milliseconds/access

and

o . T RL -1
TRDKW ~ SEEK + LATDK + LATDK +2 LATDK ()

96
~ 110+13+25+2.25(RL'1)
96
TR ~ 148 + 20 (RL - 1) milliseconds/access
DKW 96)

Note that the above assumes that the software overhead is negligible.

C.2.2 DRUM AVERAGE TRANSFER RATE

The average transfer rate of the 1751 drum is the sum of the average latency and the word transfer
times. Therefore:

TR

DM LATDM + TWRDM - RL

TR

i

DM 8 +.008 * RL milliseconds

*The derivation of these approximations is not proven here because of space considerations. For
larger records (RL > 93), the transfer rates may be modestly or substantially increased.

C-6 39520600

FIS, FRB, KIS, AND FILE SPACE POOL DUMPS D

One sequential and one indexed file are defined in the FORTRAN code in Figure D-1, Three records
are stored into the sequential file, file number 256. Each data word contains the record number for
each sequential record. Four records are stored into the indexed file, file number 97, Each data word
of the record with the key value AA)g contains the value A4 and each data word of the record with the
key value BB;¢ contains the value Byg. Similarly, the record with the key value CC 4 is filled with
C1gs and the record with the key value DD is filled with Dygs.

PROGRAM EXAMPL
DIMENSION IREQBF{12},IRECBF{93}.I0BUF{58} IRECPT{2}
C DEFINE FILE NUMBER 25b {=4100)}

IFLNUM=25Sk

C LOGICAL UNIT 8 IS THE DISK
LU=8

C T OPTIMIZE USE 0F FILEC SPACE IN FILE BLOCKS, LET MAYPL=937=9L«1-7}
MAXRL=93

CALL DEFFIL{IFLNUM.MAXRL.LU-IRE@BF,IREQID}
C CHECK FOR ERRORS
IF {IREQID.LT.0} GO TO SOOD
C DEFINE FILE NUMBER 97
IFLNUM=97?
MAXRL=93
CALL DEFFIL {IFLNUM.MAXRL.LU-IREQBF.IREQRID}
C CHECK FOR ERRORS
IF {IREQID.LT.O0} 6O TO 5000
C DEFINE FILE 97 AS AN INDEXED FILE WITH A ONE-WORD KEY AND
400 EXPECTED KEY VALUES
KEYLTH=1
NUMEKV=40D0
CALL DEFIDX{IFLNUM-NUMEKV.KEYLTH.LU-IREQBF IREQID}
C CHECK FOR ERRORS
IF {IREQID.LT.O0} GO TO 5000
C STORE 3 RECORDS INTO SEQUENTIAL FILE {FILE NUMBER 25k}
IFLNUM=E3k
C EACH RECORD HAS 31 WORDS
D0 100 IREC=1-3
C LET CONTENTS OF EACH DATA WORD OF THE RECORD BE THE RECORD NUMBER.
C NOTICE THAT NOTHING IS STORED IN THE FIRST WORD OF A RECORDAS THIS

Figure D-1. FORTRAN Code Example (Sheet 1)

39520600 D-1

(ol e NN al

WORD IS RESERVED FOR USE BY THE FILE MANAGER.
DO 50 IwORD=2.31
50 IRECBF{IWORD}=IREC
CALL STOSEQ{IFLNUM.IRECPT.IRECBF.31,IRERBF,IREGID}
CHECK FOR ERRORS
IF {IREQID.LT.O0} GO TO 5000
100 CONTINUE
STORE FOUR RECORDS INTO FILE 97- WITH KEYS=$AA.$BB+%C(. AND %DD»
RESPECTIVELY. LET EACH DATA WORD OF THE RECORD WITH KEY VALUE $AA
CONTAIN THE VALUE $A. LET EACH DATA WORD OF THE RECORD WITH KEY
VALUE $BB CONTAIN THE VALUE $B. SIMILARLY. THE RECORD WITH KEY

C VALUE $CC IS TO BE FILLED WITH %C#S. AND THE RECORD WITH KEY VALUE
C 8DD IS TO BE FILLED WITH s$D#S.
C INITIALIZE KEY VALUE AND DATA WORD VALUE.

C

KEYVAL=%$AA
IDATA= %A
IFLNUM=97
DO 200 IREC=1.H
DO 150 IWORD=2-93
150 IRECBF{IWORD}=IDATA
CALL STOIDX {IFLNUM.KEYVAL.IRECPT.IRECBF.93,IREQBF.IREQID}
CHECK FOR ERRORS
IF {IREQRID.LT.O0} GO TO 5000
INCREMENT KEY VALUE AND DATA WORD VALUE
KEYVAL=KEYVAL+%11
IDATA=IDATA+]
200 CONTINUE
GO0 TO 5010
PRINT ERROR MESSAGE
5000 CALL SETBFR{IOBUF.58%}
WRITE {4.6000} IFLNUM.IREQID
5010 CONTINUE
CALL RELESE{EXANMPL}
6000 FORMAT{SHFILE -IS5.8H ERROR $.%4}
END

Figure D-1, FORTRAN Code Example (Sheet 2)

39520600

After execution of the program, the FIS directory is dumped (as shown in Figure D-2),

SYSDAT core location FIDSEC is dumped to determine the location of the FIS directory.

FIDSEC is ZEA1 6’ therefore mass memory sector 2EA 16

6

The FILMGR

The value of

is dumped to obtain the FIS directory.

The first word of the FIS directory contains ZEB16 which points to the first FIS block. The scatter code

for file 256 is 256 lmnd 4'7\ = 21.

The 21st two-word entrv in the FIS directorv is 2ER- ~

LT a0 LLICC0L)

eiltly i

S=B16

indicatine
inaicaiing

that the FIS for fue 256 is to be found in secior 21:.316, word 1. The scatter code for file 37 is
The third entry in the FIS directory indicates that the FIS for file 97 is to be found at
sector 2EB;¢, word 1116'

97(mod 47) = 3.

39520600

02EA

000A 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
00006 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

Figure D-2

Example of FIS Directory

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

02€EB
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0011
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

The 288-word FIS block containing the FIS for file 256 and the FIS for file 97 is shown in Figure D-3.
The FIS header word contains a zero that indicates there are no more FIS blocks. The FIS for file 256
is found in words 116 through 1016 of the FIS block. Words 1116 through 2016 contain the FIS for file 97.

02EB
FIS HEADER WORD ———» 0000 0000 0000 0100 02EF 0003 0Q2EF 0060
FIS FOR FILE 256——#= 0000 0000 0000 0000 0000 0009 0001 0001
coo08 0000 0000 0061 02F0 0001 02F6 0060
FIS FOR FILE 97— 02FF 0001 0001 0001 0190 0000 0004 0001
CL08 | 0000 0000 0000 000O 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 GOOO

02EC
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 Q00O
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 Q000 0000 0000
Q000 0000 0000 0000 0000 0000 naoo 0000

02ED
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

Figure D-3. FIS Block Example

D~4 39520600

Words 3, 4, and 5 of the FIS for file 256 indicate that the file contents for this file are in sector 2EF 16+
Section ZEF ;. 18 Shown in Figure D~4. 'The three-word F'RB header indicates that this is the first FRB
and that there are no more FRBs. The remainder of the sector contains the three records stored in the
file and the first word of each record contains the record length.

02EF
FRB HEADER ——————3@»[0000 0000 0000] O0O1F 0001 0001 0001 0001
0001 0006 0001 0001 0001 0001 0001 0001
0001 0001 0001 0001 0001 0001 Q001 (0001
0001 0001 0001 0001 0001 0001 0001 o001
0001 0001 | O0l1F 0002 0002 0002 0002 0002
0002 0002 0002 Q0062 0002 0002 0002 0002
RECORD 2 —————|0002 0002 0002 0002 0002 0002 0002 0002
0002 0002 0002 0002 0002 0002 0002 0002
0002 | 001F 0003 0003 0003 0003 0003 0003
0003 0003 0003 0003 0003 0003 0003 0003
0003 0003 0003 0003 0003 0003 0003 0003
0003 0003 0003 0003 0003 0003 0003 (0003

RECORD 1 ———m————pp

RECORD 33—

Figure D-4, FRB Example Sequential File

File 97 is an indexed file. To find a record corresponding to a given key value, the KIS directory must
be examined. Word 7 of the FIS for file 97 indicates that the KIS directory is focated at sector 2FF
(refer to Figure D-3). The KIS directory is shown in Figure D-5. The directory header shows that
there are four linked KIS blocks, the first in sector 2F116 and the last in sector 2F716.

02EE
KIS DIRECTORY —D%OO 0004 02F1 02F7 l 0000 0000 0000 [O02F3
HEADER 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 000G 0000 0000
02F5] 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 6000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 [02F1] 0000 0000 0000 000G 0000
0000 0000 0000 0000 0000 0000 0000 0000

Figure D-5. KIS Directory for File 97, A Sample File

39520600 D-5

Figure D-6 shows four entries in the KIS directory and the key value, scatter code, and KIS block
pointer for each entry. The first KIS directory entry points to the KIS block with scatter code zero, as

opposed to the first FIS directory entry, which points to the first FIS with scatter code one.

K =
DECIMAL KIS
EQUIVALENT SCATTER POINTER
KEY OF KEY CODE = (FROM FIGURE
VALUE VALUE K(MOD 92) D-5)
AA
16 170 78 2F116
BB 187
16 8 3 2F3 16
CC
16 204 20 2F516
DD 1 7
16 22 37 2F7/16

Figure D-6. Key Values, Scatter Codes, and Corresponding KIS Pointers

The KIS block for key value AA16 is located in sector 2F 1,4, as shown in Figure D-7. The KIS block

header indicates that this is the first KIS block and that there are no KIS overflow blocks.

KIS in this KIS block, which is located in words 3 through 5 of the sector.
key value AA ¢ is stored in sector 2F0, starting at word 3. The record is also shown in Figure D-7.

D-6

There is one

It shows that the record with

02F0

FRB HEADER ———————»[0000 _ 02F2 _ 0001 | 005D O000A 000A 000A 000A
000A 000A 000A 000A 000A 0GOA 000A 000A
000A 000A ©000A 000A O00OA 000OA 000A 000A
000A 000A 000A 000A 000A 000A 00OA 0OOA
000A 000A 000A 000A ©000A O0QDA O0OA 00DA
000A 000A 000A 0OOA 000A 0COA 000A 000A
RECORD CORRE- ——»|000A 000A 000A 000A 000A 000A 000OA 000A
SPONDING TO KEY 000A 000A 000A O000A 000A 000A 000A 000A
VALUE AA, o 000A 000A 000A 000A O000A 000A 000A 00DA
000A 000A 000A 000A 000A 000A 000A 000A
000A 000A 000A 000A 000A 000A 000A 000A
|000A 000A 00DA 000A 000A 000A 000A 000A
KIS FOR KEY
02F1 VALUE AAjg
KIS BLOCK—————[0000 0000 0001 | 02FG 0003 0O0AA] 0000 0000
HEADER 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 000C 0000 0000 0000 0000
0000 0000 0000 000O 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
00060 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

Figure D-7. KIS and Corresponding Record

39520600

0090cs6¢€

Similarly, the KIS and the corresponding record for each of the key values BBIG’ CC16’ and DD16 are shown in Figure D-8,

02F2 02F5 §KIS
02F0 _02F4 _ 0001 | 005D 000B 00OB 000B 0O0OB [0:F3 0000 0001] 02F% 0003 00CC] 0000 0000
000B 000B 000B 000B 000B 000B 0008 000B 1600 0000 0000 0000 0000 0000 0000 0OOO
000B 0008 000B 000B 000B O0O0OB 0OOB 000B 1600 0000 0000 0000 0000 0000 0000 0OOO
000B 000B 000B 000B 000B 0O00B 000B O0OOB)00 0000 0000 0000 0000 0000 0000 0000
000B 000B 000B 000B 000B 00OB 000B 00OB)e00 0000 0000 0000 0000 0000 0000 0COO
000B 000B 000B 00OB 000B 00OB 000B 0GOB)06 0000 0000 0000 0000 0000 0000 0000
FRB (0008 000B 000B 000B 000B 00OB 000B 000B)00 0006 0000 0000 0000 0000 0000 0000
—>(000B 000B 000B 000B 000B 0O0OB 00OB 000B)00 0000 000G 0000 0000 0000 0000 (000
000B 000B 000B 000B 000B 000B 000B 0O0OB)00 0000 0000 0000 0000 0000 0000 0000
000B 000B 000B O00OB 000B 000B 000B 00OB)00 0000 0000 0000 0000 000D 0000 0000
000B 000B 000B (000B (0008 000B O0OB 000B)00 0000 0000 0000 0000 0000 0000 0000
000B __000B___000B _ 000B _ 000B _ 000B _ 000B _ 00OB ©00 0000 0000 0000 000G 0000 0000 0000
02F3 KISt 02F6
[02F1 0000 0001 | 02F2 0003 __00BB | 0000 0000 [LcF4 _ 0000 0000 | 005D 000D 000D 000D 0OOD
0000 0000 0000 0000 0000 0000 0000 0000 0D 000D 006D 000D 000D 000D 000D (OOD
0000 0000 0000 0000 0000 0000 0000 0000)LOD 000D 000D 000D 000D 000D 000D (00D
00060 0000 0000 0000 0000 0000 0000 0000 ILOD 000D 000D 000D 000D 000D 000D (00D
0000 0000 0000 0000 0000 0000 0000 0000 LOD 000D 000D 060D 000D 000D 000D (OOD
0000 0000 0000 0000 0000 0000 0000 0000 Fgg | /0D 000D 000D 00GD 000D 000D 000D 000D
0000 0000 0000 0000 0000 0000 0000 0000 —>| 10D 000D 000D 000D 000D 000D 000D (00D
0000 0000 0000 0000 0000 0000 0000 0000 0D 000D 000D 000D 000D 000D 000D 000D
0000 0000 0000 0000 0000 0000 0000 0000 0D 000D 000D 000D 000D 000D 000D 000D
0000 0000 0000 0000 0000 0000 0000 0000 :cOD 000D 000D 000D 000D 00OD 000D COOD
00060 0000 0000 0000 0000 0000 0000 0000 00D 000D 000D 000D 000D 000D 0GOD 000D
0000 0006 0000 0000 0000 0000 0000 0000 | 00D 000D 000D 000D 000D 000D 000D (COOD
02F4 02F7 1KIS
02F2 __02F6 _ 0001] 005D 000C 000C 000C 000C [i2Fs 0000 0001 | 02F6 0003 _ 00DD | 0000 G0OO
000C 000C 000C 000C 000C 000C 000C 000C 000 0000 0000 0000 0000 0000 0000 00OO
000C 000C 000C 000C 000C 000C 000C 000C 000 0000 0000 0000 0000 0000 0000 000D
000C 000C 000C 000C 000C 000C 000C 000C 600 0000 0000 0000 0000 0000 0000 ©ODD
000C 000C 000C ©000C 000C 000C 000C 000C 1000 0000 0000 0000 0000 0000 0000 0000
FRB_|000C 000C 000C ~ 000C ~ 000C ~ 000C 000C 000C 000 0000 0000 0000 0000 0000 0000 0000
000C 000C 000C 000C 000C 000C 000C 000C 000 0000 0000 0000 0000 0000 0000 0000
000C 000C 000C ©000C 000C 000C 000C 000C 1000 0000 0000 0000 0000 0000 0000 0000
000C 000C 000C 000C 000C 000C 000C 000C 1000 0000 0000 0000 0000 0000 0000 0000
000C 000C 000C 000C 000C 000C 000C 000C 000 0000 0000 0000 0000 0000 0OGO 0000
000C 000C 000C 000C 000C 000C 000C 000C 000 0000 0000 0000 0000 0000 0000 0000
Q00C 000C _ 000C 000C __ 000C _ G00C _ 000C _ 000C 00 0000 0000 0000 0000 0000 0000 0000

Figure D-8. Three KISs and Their Corresponding Records

After execution of the program shown in Figure D-1, the file space list and pool are dumped. In the
system used in this example, the file space list is composed of a block of 1-sector, 2-sector, and
3-sector segments. When dumped, the file space list is empty. The SYSDAT FILMGR word FSPOOL
contains 2F816; the first three words of this sector are shown below:

02F8
0000 0000 3FF2

A diagram of the file space pool is shown in Figure D-9. This figure may be compared with the other
file space pool example shown in Figure 2-1,

FSPOOL —P 0
1]
3FF216
POOL BLOCK
-t OF 3FF216—SECTOR
SEGMENTS
J

Figure D-9. File Space Pool

The first zero pointer indicates that there are no other segments of this length in the pool. The second
zero pointer indicates that there are no pool blocks of segments having a greater length. The third
word indicates that the length of this segment is 3FF2;, sectors.

D-8 39520600

FILE STRUCTURE ILLUSTRATIONS E

The following illustrations of the file structure are given:

E1 FILE STRUCTURE FOR STORAGE/RETRIEVAL METHODS

The flow logic for sequential, indexed, and direct storage/retrieval are illustrated in Figure E-1.

Note that all three share a common path, i.e., the flow logic through the FIS directory and the FIS
blocks. Once the file information segment is found, each proceeds on its separate path until the record
is retrieved,

E.2 FILE STRUCTURE FOR INDEXED-LINKED WITH LIFO-LINKING

The file structure for indexed-linked with LIFO-linking is illustrated in Figure E-2. Note that records
2, 6, and 8 have the same key value (B), records 1 and 5 have the same key value (C), records 3 and 4
have the same key value (D), and record 7 has a unique key value (A).

E.3 FILE STRUCTURE FOR INDEXED-ORDERED

The file structure for indexed-ordered files is illustrated in Figure E-3. This example assumes that
the number of expected key values is nine; therefore, there are three KIS blocks with each KIS block
having three key information segments. In the figure five records have been stored. Note that each
key information segment is stored in a particular KIS block and is ordered within that block by its key
value.

39520600 E-1

FIS FIS FIS
DIRECTORY BLOCK BLOCK
L 4
POINTER FIS OF —
{ iTH FILE ‘-1| !
| 1 .
> |
FIS iy !
!
. | .
.. 401
e ket b
| :
- e !
| IS s :
DIRECTORY BLOCK |
L..» - -- ———q :
F | \ | |
| N
| ! ' i
| KIS OF L
! | JTH RECORD | 1 |
KIS BLOCK | _ __J I
POINTER | |
P
I
I
P
|
!
.
[
FRB FRB FRE Pl
r—._.—] '_._.-’ _.—]. i_._. — —i ' i
| 1 | . i : :
: : | iTH RECORD :
! | | ' OF iTH FILE |q..
| | | .
: . . |
S U S
Notes: 1. =P Comimon flow logic
2, == =P Sequential flow logic
3. — — — = Indexed flow logic
1. = =..9 Direct flow logic
3, s=eseeeeeeeos Repeated logic
Figure E-1. File Structure Flow Logic for Storage/Retrieval Methods
39520600

KIS DIRECTORY

KIS BLOCK

KIS FOR
KEY VALUE B

KiS BLGOCK
POINTER

KIS FOR
KEY VALUE C

KIS FOR
KEY VALUE A

KIS DIRECTORY

KIS FOR
KEY VALUE D

FRB

RECORD 6
(KEY VALUE B)

RECORD 1
(KEY VAL

RECORD 7
(KEY VALUE A)

RECORD 8
(KEY VALUE B)

RECORD 3
(KEY VALUE D)

RECORD 4
(KEY VALUE D)

Figure E-2.

File Structure for Indexed-Linked File with LIFO-Linking

KIS BLOCK

KIS FOR
KEY VALUE &

KIS BLOCK
POINTER 1

FRB

RECORD ¢
(KEY VALUE 7)

KIS BLOCK
POINTER 2

KIS BLOCK
POINTER 3

RECORD 5
(KEY VALUE 4)

FRB
KIS BLOCK

RECORD 1
KIS FOR (KEY VALUE 5)
KEY VALUE 3 7_‘
KIS FOR RECORD 2
KEY VALUE 4[] (KEY VALUE 3)
KIS FOR L)

KEY VALUE 5

39520600

KIS BLOCK

RECORD 3
(KEY VALUE 2)

KIS FOR
KEY VALUE 7

Figure E-3.

File Structure for Indexed-Ordered File

E-3/E-4

FILE MANAGER ERROR MESSAGE

PRINTING ON
COMMENT DEVICE

MEANING

RECOVERY

F.M. ERROR 1

Irrecoverable mass memory
error occurred while space
was being returned to the
space pool. This error may
result in invalid space pool
threads and/or file space

being lost to the File Manager.

The user may autoload and
purge all system files, then
reload files from a user
written backup as described
in Section 2. 8.

39520600

F-1/F-2

COMMENT SHEET

MANUAL TITLE ___Control Data® 1700 System MSOS 4 File Manager

Version 1, Software Reference Manual

PUBLICATION NoO. ___39520600 REVISION ______A
FROM NAME:

BUSINESS

ADDRESS:

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number.

STAPLE

STAPLE

BUSINESS REPLY MAIL

FIRST CLASS
PERMIT NO. 333

LA JOLLA. CA,

NO POSTAGE STAMP NECESSARY IF MAILED !N U,S.A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

SMALL COMPUTER DEVELOPMENT DIVISION
4455 EASTGATE MALL

LA JOLLA, CALIFORNIA 92037

ATTN: PUBLICATIONS DEPARTMENT

STAPLE

|
!
I
|
1
l
|
|
l
|
|
I
I
|
I

CUT ALONG LINE

CONTROL DATA

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

	001
	002
	003
	004
	005
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	F-01
	replyA
	replyB
	xBack

