CONTROL DATA

CORPORATION

m
CONTRNOD! NDATAS
VUINITIRVL UAITA

1700 COMPUTER SYSTEMS

1700 MSOS 4
MS FORTRAN VERSION 3A/B

REFERENCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
A Original printing of Mass Storage FORTRAN Version 3, 0 for MSOS Version 4, 0,
5/72
B This printing includes double precision floating point package.
1/73
C Revision for MSOS 4
7/74

Publication No.
60362000

©1972, 1973, 1974
by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation

Small Computer Development Division

4455 Eastgate Mall
La Jolla, California 92037
or use Comment Sheet in the back of

this manual.

i i
W N

2.1
2.2

[I W]
= W

3.1

w w
LW N

4.1

4.2

60362000 C

CONTENTS

INTRODUCTION

Related Documentation

Product Elements

Product Configurations

Product Hardware Requirements

DATA FORMAT

Data Elements
Data Types

Integer Type Data

Single Type Data

Byte Type Data

Signed Byte Type Data

Real Type Data

Double Precision Type Data

0 NN
SR]
N =

NN NN
NN NN

[I S U

Symbolic Names
Data Names

EXPRESSIONS

Arithmetic Expressions

3.1.1 Rules for Forming Arithmetic Expressions
3.1.2 Order of Evaluation
3.1.3 Mixed Mode

Relational Expression
Logical Expression

3.3.1 Formation of Logical Expression
3.3.2 Order of Evaluation

STATEMENTS

lassification

4.1.1 Executable Statements
4.1.2 Nonexecutable Statements

Statement Format

iii

5 EXECUTABLE STATEMENTS

5.1 Assignment Statements

5.1.1 Arithmetic Assignment Statement
5.1.2 Label Assignment Statement

5.2 Control Statements

cnmmmcngnm

[\

2.

[N

N NN

1
2
3
.4
5
6
7

GO TO Statements

Arithmetic IF Statement
Logical IF Statement

CALL and RETURN Statement
CONTINUE Statement
Program Control Statements
DO Statement

5.3 1/0 Statements

OltJ’!UIU‘UIU‘U‘Sﬂ

W W wWwwWwwww

.3,

1/0 Devices

Mass Storage Files

OPEN Statement

READ and WRITE Statements
Auxiliary 1/0 Statements

Tape Records and Blocks

Mass Storage Records and Sectors
Printing of Formatted Records

5.4 ASSEM Statement

6 NONEXECUTABLE STATEMENTS

6.1 Specification Statements

6.1.

Soo:
- e

[2, BTN VU V]

1

DIMENSION Statement
COMMON Statement
EQUIVALENCE Statement
Type Statements

Byte Statements

6.2 DATA Statement
6.3 FORMAT Statement

W W WwwWwwww:ww

iv

WO W ~3 O O bW

Field Descriptors

Field Separators

Numeric Conversion
Alphanumeric Conversion
Editing Specifications

New Record Specifications
Blank Field Specification
Repeated Format Specifications
Format Specification in Arrays

5-1

5-1
5-2

5-3

5-4
5-7
5=7
5-8
5-8

5-9
5-18

5-18
5-18
5-18
5-20
5-28
5-30
5-32
5-33

5-34

6-1

6-1
6-2
6-4
6-6
6-7

6-9
6-11

6-12
6-12
6-13
6-20
6-21
6-23
6-24
6-25
6-27

60362000 C

PROCEDURES AND SUBPROGRAMS

7.3.1 Intrinsic Function
7.3.2 Basic External Function

Function Subprogram
SUBROUTINE Subprogram
EXTERNAL Statement
RELATIVE Statement
CALL Statement

RETURN Statement

Block Data Subprogram

COMPILATION AND EXECUTION

8.3 Program Operating Procedures

7
7.1 Arguments
7.1.1 Actual
7.1.2 Dummy
7.2 Statement Function
7.3 Supplied Functions
7.4 Subprograms
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
8
8.1 Compilation
8.2 Execution
9

FORTRAN MULTIPROGRAMMING

9.1 Re-entrant FORTRAN
.1

9.

© W W W WO
P b e e e e

T OO W

Priorities
Re-entrancy
FORTRAN Library

FORTRAN READ/WRITE Statement Processor
FORTRAN/Monitor Run-Time Interface (FORTRA)

Encode/Decode
Run-Anywhere Programs

9.2 Format Specifications

O O O O 0w
NN

2.

.2,

[BTNV R

6

FORMAT Statement

Format Conversion

Conversion Specifications
Editing Specifications

Special Character Specifications
Repeated Format Specifications

9.3 FORTRAN READ/WRITE Statement Processor

9.3.1 WRITE Statement
9.3.2 READ Statement
9.3.3 Statement Processor
9.3.4 CALL SETBFR

60362000 C

9-2
9-2
9-3
9-3
9-3
9-4

9-4

9-4
9-5
9-5
9-10
9-11
9-12

9-12

9-12
9-12
9-13
9-13

9.4

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I

Appendix J

Appendix K
Appendix L
Appendix M
Appendix N
Appendix O

Index

vi

9.3.5 Restrictions
9.3.6 Format Errors
9.3.7 1/0 Errors

ENCODE/DECODE Calls

9.4.1 ENCODE

ENCODE Macro

DECODE

DECODE Macro
ENCODE/DECODE Error Detection

9.4.
9.4,
9.4,
9.4,
9.4.6 Additional Formatting Routines

S O W N

FORTRAN/Monitor Run-Time Package

9.5.1 READ/WRITE Calling Sequence

9.5.2 Scheduler and Timer

9.5.3 Miscellaneous Calling Sequences

9.5.4 Buffered Input/Output
Communication Between FORTRAN and Assembly Language Programs
Table Capacities
Single-Precision Floating-Point Package
Double-Precision Floating-Point Package
Coding Hints
Hardware Requirements
Arrays
ASCII Codes
Load Map Comment Feature
Optimizations
FORTRAN Character Set
FORTRAN Compilation Errors
FORTRAN Execution Errors
FORTRAN Miscellaneous Errors
MS FORTRAN Reserved Word List

9-13
9-15
9-15

9-15

9-16
9-17
9-17
9-19
9-19
9-20

9-23
9-24
9-27
9-29
9-31
A-1
B-1
c-1
D-1
E-1
F-1
G-1
H-1
I-1
J-1
K-1
L-1
M-1
N-1
o-1

Index-1

60362000 C

Table
5-1
7-1
7-2
7-3
7-4
7-5
7-6
G-1

60362000 C

FIGURES

Data

Common Block

Array Successor Function a +A * (b-1) +A * B * (c-1)

TABLES

DO Statement Parameters

Subdivision of Procedures and Subprograms
Permissible Arguments for Functions and Subprograms
Intrinsic Functions

Basic External Functions

Basic External Functions, Predetermined Results

Differences Between Function and Subroutine Subprograms

Value of a Subscript

2-2
6-3
G-3

5-11
7-2
7-4
7-6
7-8
7-9

7-10

G-2

vit/viii

INTRODUCTION

This publication describes the features of the 1700 Mass Storage FORTRAN Version 3 language for the
CONTROL DATA® 1704/1714/1774/1784 computers.

It is assumed that the reader has some knowledge of an existing FORTRAN language and the 1700 Mass
Storage Operating System (MSOS) Version 4.

Mass Storage FORTRAN, with the use of a compile time option, is a subset of ANSI X3.9-1966
American National Standard FORTRAN. All FORTRAN source decks written according to the
guidelines provided by this document will be compiled properly.

This manual contains the information necessary to produce 1700 Mass Storage FORTRAN programs.

CAUTION

Control Data Corporation intends the user of this product
to exercise only those features, specifications, and
parameters described in this document. Any use of
adjunct code and/or undefined parameter values is done
so at the user's risk.

1.1 RELATED DOCUMENTATION

Related manuals in which the FORTRAN user may find additional information are:

Control Data Manuals Publication Number
1700 MSOS 4 Reference Manual 60361500
1700 MSOS 4 Macro Assembler Reference Manual 60361900
1700 MSOS 4 Computer System Codes 60163500
1700 MSOS 4 Macro Assembler General

Information 39519800
1700 MSOS 4 Mass Storage FORTRAN

General Information Manual 39519900
1700 MSOS 4 Small Computer Maintenance

Monitor Reference Manual 39520200
1700 MSOS 4 Instant 39520500

60362000 C 1-1

Control Data Manuals Publication Number

1700 MSOS 4 File Manager Version 1

Reference Manual 39520600
1700 MSOS 4 Installation Handbook 39520900
1700 MSOS 4 Small Computer Maintenance

Monitor Instant 39521700
1700 MSOS 4 General Information Manual 39522400

1.2 PRODUCT ELEMENTS
The 1700 Mass Storage FORTRAN Version 3 product is composed of five basic elements:

) A Variant FORTRAN Compiler -~ This compiler version has a larger number of overlays;
the largest overlay is approximately 8K. It requires more mass memory than the B
variant and is slower in compilation speed.

° B Variant FORTRAN Compiler — This compiler has fewer overlays than the A variant;
the largest overlay is approximately 16K. This variant is faster than the A variant. Both
compilers process source statements identically and generate similar object codes.

° Re-entrant ENCODE/DECODE Run-time — This run-time library runs in the foreground and
has the characteristics for multiprogramming described in Chapter 9.

° Non-Re-entrant ENCODE/DECODE Run-time — This run-time library runs in the
background and has identical user interface as the re-entrant ENCODE/DECODE run-time
library as described in Chapter 9. This run-time library is designed for use in debugging
programs to run in the foreground.

° FORTRAN I/0O Run-time — This run-time library runs in the background and has the
capability described in this manual (except Chapter 9). In general, it has more extensive
capability than the other two run-times.

1.3 PRODUCT CONFIGURATIONS

Several product configurations are possible using the five elements of the product.

Only one variant of the compiler may be present in a given MSOS system. With the selected compiler,
the re-entrant ENCODE/DECODE run-time may be used (must be core-resident). Either the
non-re-entrant ENCODE/DECODE or FORTRAN 1/0 run-times may be in the background. In addition
if the FORTRAN 1/0 run-time is in the background, the non-duplicative functions present in the
non-re-entrant ENCODE/DECODE can also be in the background.

»

Specific details of the configurations can be found in the MSOS Customization Manual, CDC
Publication No. 88860300,

1-2 60362000 C

1.4 PRODUCT HARDWARE REQUIREMENTS

The MSOS 4.1 Reference Manual, CDC Publication No. 60361500, should be consulted for the specific
hardware options which are available.

- de crmmmier? et mand . £ . REC PGPy S
.lllU luluuuuu.l uyuu:xu e

mory requirements for MSOS do not include any of the elemenis of Mass
Storage FORTRAN, If the A variant of the compiler is used, the minimum memory requirement is

24K. The B variant minimum is 32K. The foreground ENCODE/DECODE run-time requires an
additional 4K of memory for single-precision floating-point or 8K for double-precision floating-point,

60362000 C 1-3/1-4

DATA FORMAT 2

—

2.1 DATA ELEMENTS

A data element is a single-valued unit of data which may be uniquely referenced. It may be any of the
six types outlined in the following section. A data element may occupy part of a word (byte), a full word
(integer or single), two full words (real), or three full words (double precision)., The value of a data
element may be altered during program execution.

The following expression contains six data elements.

3.6 * ALPHA * SINI(X) - BE’II‘A(7) + D *x 2

—1| 1T |

Data elements

2.2 DATA TYPES

1700 MS FORTRAN recognizes six types of data:
Integer
Single
Real
Double precision
Byte
Signed byte

Operations with data elements inust take into account their type, since each has its own mathematical
significance and word structure.

The type of a data element is indicated either by the first letter of its symbolic name or by a
specification statement. Data types are shown in Figure 2-1.

Based on the six data elements in the preceding example, the data types are:

3.6 * ALPHA * SIN(X) - BETA(7) + D *H 2
l I | l ! I
Real Real Function Real Double Integer
constant variable array precision constant
variable variable

60362000 C 2-1

Single

Integer
Constant

Byte

Integer

Integer Variable

Signed Byte

Integer
Subscripted
Variable

Real
Constant

Real
Real Variable

Real
Subscripted
Variable

Double
Precision
Constant

Double Double

Precision Precision
Variable

Double
Precision
Subscripted
Variable

Figure 2-1. Data Types and Subdivisions

60362000 C

2.2.1 INTEGER TYPE DATA

An integer is a whole number expressed without a decimal point. It may be used as a subscript, an
exponent, or in calculations that do not involve fractional parts. An integer occupies 16 bits of storage.
or one 1700 computer word. The most significant bit is the sign bit,

b
Ul
et

Sign

1
The range of integer in magnitude is 0<lnl<2

5

There are three integer types:

60362000 C

Constant

Variable

-1,

The value of an integer constant is stated explicitly in an expression. In

1700 MS FORTRAN,

Hexadecimal

Octal

Equivalent decimal,

Decimal

Integer

123
239
8405

integer constants may be

Decimal integer constants consist of one to five
decimal digits. ¥ the range of O<|n|< 2157 ig exceeded,
a diagnostic is provided. Leading zeros are ignored.

Hexadecimal integer constants are distinguished from
decimal integer constants by a $ sign immediately
preceding the string of digits, Hexadecimal integer
constants consist of one to four hexadecimal digits.

If this maximum is exceeded, the constant is treated
as zero and a compiler diagnostic is provided.
Leading zeros are ignored.

An octal integer constant consists of one to five octal
digits. Its use is restricted to PAUSEn and STOPn
statements in which n is an octal constant,

hexadecimal, and octal integers are:

Hexadecimal Octal

Equivalent Equivalent
$7B 173
$EF 357

$20D5 20325

An integer identified by a symbolic name (Section 2.4) and capable of
assuming a range of values during program execution is an integer variable.
It may be designated a simple integer variable to distinguish it from an
integer subscripted variable.

SINGLE, BYTE, and SIGNED BYTE data types are subsets of the integer

variable.

) Subscripted This type of integer is a symbolic name with one, two, or three associated
Variable subscripts enclosed in parentheses, It is used to reference elements in an
array (Appendix G) of successive memory locations. The name is typed
integer by alphanumeric format (Section 2.4) or by declaration (Section
2.1.4). The subscripts must be integer constants, integer variables, or
integer expressions. Permissible forms of subscripts are

Form Example

(i) (N

(c) (3)

(ixd) (I+5)

(c*i) (3*1)

(c*ixd) (3*1+5)

i Integer variable
c

d) Integer constants

*

Arithmetic operator; multiplication

+ Arithmetic operator; addition or
positive value

- Arithmetic operator; subtraction or

negative value

Before an array can be used in a program, its name and dimensions must
be declared in a DIMENSION, COMMON, or TYPE statement (Section
6.1.4). When so declared, .the substripts are the actual dimensions of
the array.

2.2.2 SINGLE TYPE DATA

This data type is the same as an integer variable. Dimension information may be given. When the
ANSI option has been declared, appearance of a name in a SINGLE statement declares that each data
element specified occupies a single storage unit.

2.2.3 BYTE TYPE DATA

A byte is an integer part (16 bits or less) of an integer variable. It is unsigned and may assume
positive and zero values. To assume negative values the byte must be a full integer word (16 bits).

2-4 60362000 C

NOTE

When byte or signed byte integer parts of integer
variables are used in subprogram parameter strings,
the address of the integer variable is passed to the
subprogram (not a redefined integer part address as
defined by the BYTE or SIGNED BYTE declaration),
The subprogram will then obtain the complete integer
variable value when the byte parameter is referenced.

2.2.4 SIGNED BYTE TYPE DATA

A signed byte of an integer word may assume positive, negative, and zero values. In the special case
where a signed byte is one bit, it has the value +0 or -0.

NOTE

When byte or signed byte integer parts of integer
variables are used in subprogram parameter strings,
the address of the integer variable is passed to the
subprogram (not a redefined integer part address as
defined by the BYTE or SIGNED BYTE declaration).
The subprogram will then obtain the complete integer
variable value when the byte parameter is referenced.

2.2.5 REAL TYPE DATA

A real data element can have a fractional part as well as an integer part and is always expressed with a
decimal point. It is used in calculations that require decimal approximations.

A real number occupies 32 bits or two 1700 words.

15 14 7 6 0
Word 1 S EXPONENT MSP
2 LEAST SIGNIFICANT PART OF COEFFICIENT
Where: S is the sign bit

MSP is the most significant part of the coefficient

The approximate range of a real number is 10~3% |n|<1039. Precision is approximately seven
decimal digits. (Refer to Appendix C.)

60362000 C 2-5

There are three real types:

[} Constant The value of a real constant data element is expressed by an integer part,
a decimal point, and a fractional part, in that order. It may be followed
by the letter E and an optionally signed exponent representing a power of
ten. In the following examples, n is the integer part, d the decimal
(fractional) part, and s the exponent representing a power of 10. (Refer
to the Constant description for doubie precision iype, page 2-7.)

Form Example

n.d 345.67

.d .34567

n. 34567.

.dEzs .34567E+5

n.Eis 34567. E-05
n.dE+s 345.67E-03

) Variable A real variable data element is identified by a symbolic name (Section 2.3).

It is capable of assuming a range of values during program execution. A
real variable is designated a simple real variable to distinguish it from a
real subscripted variable.

° Subscripted A real subscripted variable is a symbolic name with one, two, or three
Variable subscripts enclosed in parentheses. It is used to reference the elements
in an array of memory locations. The name is typed real by alphanumeric
format (Section 2.4) or by declaration (Section 6.1.4). The subscripts
must be integer (constants, variables, or expressions). Permissible
forms of subscripts are

Form Example

(1) @

(c) 3)

(ixd) (I+5)

(c*i) (3*1)

(c*ixd) (3*1+5)

i Integer variable

Z} Integer constants

* Arithmetic operator: multiplication
+ Arithmetic operator: addition or

positive value

- Arithmetic operator: subtraction or
negative value

2-6 60362000 C

2.2.6 DOUBLE PRECISION TYPE DATA

A double precision data element can have a fractional part as well as an integer part and is always
expressed with a decimal point. It is used in calculations that require decimal approximations of more
accuracy than that obtainable with the use of a single precision data element.

A double precision number occupies 48 bits or three 1700 words.

15 14 7 6 0
Word 1 S EXPONENT MSP
2 INTERMEDIATE PART OF COEFFICIENT
3 LEAST SIGNIFICANT PART OF COEFFICIENT
Where: S is the sign bit

MSP is the most significant part of the coefficient

The approximate range of a double-precision number is 10‘39<ini< 10°?, Precision is approximately
11,5 decimal digits. (Refer to Appendix D.)

The double precision types are:

[Constant The value of a double-precision constant data element is expressed by an
integer part, a decimal point, and a fractional part followed by the letter D
and an optionally signed exponent representing a power of ten. A constant
with a decimal point, but without an exponent, is classed as a real constant.
In the following examples, n is the integer part, d the decimal (fractional)
part, and s the exponent representing a power of 10.

Form Example

n.dDzs 345.67D-03

.dD+s .34567D+5

n.D+s 34567.D-05

n.d 838.8607 (real)

n.d 838.8608 (real)

.d . 08388607 (real)

.d . 08388608 (real)

n. -8388607. (real)

n, -8388607.0 (real)
° Variable A double-precision variable data element is identified by a symbolic name

(Section 2.3). It is capable of assuming a range of values during program
execution. A double-precision variable is designated a simple
double-precision variable to distinguish it from a double-precision
subscripted variable.

60362000 C 2-7

° Subscripted A double-precision subscripted variable is a symbolic name with one, two,
Variable or three subscripts enclosed in parentheses. It is used to reference the
elements in an array of memory locations., The name is typed by
declaration (Section 6.1.4). The subscripts must be integer constants,
variables, or expressions. See Section 2.2.4 for permissible forms of
subscripts.

2.3 SYMBOLIC NAMES

Both type of symbolic names consist of one to six alphanumeric characters, the first of which must be
alphabetic:

® Data names — Reference simple variables, arrays, the elements of an array, bytes, and
data blocks

° Procedure names — Reference statement functions, intrinsic functions, external functions,
subroutines, and certain external procedures

2.4 DATA NAMES

A data name identifies any of the variable data elements described in this section. It also references
a data block. In the absence of an explicit declaration, type is implied by the first letter of the name:
I, J, K, L, M, and N imply type integer?; any other letter implies type real.

Example:
Integer Variable Real Variable
IOTA A65302
MATRIX BETA
J C
K2804 ALPHA (7)

T Byte and signed byte are always considered integer variable.

2-8 60362000 C

EXPRESSIONS 3

An expression is a set of data elements combined by operators and parentheses to produce, upon
execution, a single-valued result, An expression can be a single data element, a constant, or a
variable, or it can be a complex string of data elements and operators nested with parentheses.

There are three kinds of expressions: arithmetic, relational, and logical, and each has its own
operators,

3.1 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of arithmetic operators and data elements which, when
evaluated by execution, produce a single numerical value. Both the expression and its data elements
identify integer, real, or double-precision values. Byte and signed byte are synonymous with type
integer.
Arithmetic operators + Addition or positive value

- Subtraction or negative value

* Multiplication

/ Division

** Exponentiation

Arithmetic data elements Constants
Simple or subscripted variables

Function references (refer to Chapter 7)

3.1.1 RULES FOR FORMING ARITHMETIC EXPRESSIONS
Consecutive arithmetic operators are not allowed in an expression., If a minus sign is used to indicate
a negative data element, the sign and the element must be enclosed in parentheses if preceded by an

operator.

B*A/(-C)
A*(-C)

60362000 C 3-1

As in ordinary mathematical notation, parentheses may be used to indicate grouping, but they may not
be used to indicate multiplication,

Any arithmetic data element or expression may be raised to a positive or negative integer element or
expression.

M**N
(X+Y)**1
(A+B)**(-J)

IVAL**(K+2)

Only a positive real or double-precision data element or expression can be raised to a real or
double-precision power.

ALPHA**3.2
(X+Y)**A
(A+B)**(C+3)

Because of truncation, integer expressions cannot be commuted. 1*J/K may not yield the same resuilt
as J/K*I, as the following example shows.

4*3/2=6 but 3/2*4=4

A data element with a zero value may not be raised to a power valued as zero: thus, any expression
that becomes 0**0 when evaluated is illegal.

All data elements in an arithmetic expression must have mathematically defined values before the
expression can be evaluated.

3.1.2 ORDER OF EVALUATION

Evaluation begins with the innermost expression and proceeds outward in parenthetical expressions
within parenthetical expressions.

Evaluation proceeds according to the following hierarchy of operators in an expression without
parentheses or within a pair of parentheses.

** Exponentiation Level 1
/ Division }
Level 2
* Multiplication
+ Addition }
13
- Subtraction Leve

3-2 60362000 C

3.1.3 MIXED MODE

Integer, real, and double-precision quantities may be used in the same arithmetic expression. In such
a mixed mode expression, those parts involving purely integer (or real) operations are computed in the
integer (or real) mode and the results are converted to real or double-precision. In those parts of the
expression involving integer and real quantities, the integer is converted to real; in thos

expression involving integer, reai, and doubie-precision quantiities, the integer and reai are converted
to double-precision. Then the entire expression is computed in the real or double-precision mode.

. 0
m
n
3
‘n
o
=
-
>
D

Example:
D is double precision, R is real, I and J are integers.
Dx1/J + R/I: I/J and I%%2 involve only integer quantities. They are
I calculated in the integer mode to produce the intermediate
11 ' ,—lf_- integer results I1 and I2.
R1 12 is converted to real value R1.
\ X 2]
_Rii R and R1 involve only real quantities. They are calculated
I in the real mode to produce the intermediate real result R2.
D1 D2 I1 and R2 are converted to double precision values D1 and D2.
vl 1
B5-Di + D2 The in double -precision mode.
Example:

For the following statements

I = 4*3/2
J = 32%4
K = 4.0D0*3/2

the results are: 1 J K
6 4 4

3.2 RELATIONAL EXPRESSION

Two arithmetic expressions of the same data type may be combined with a relational operator to form
a relational expression, The value of the expression will be true or false depending on the relation.

Relational Operators) Meaning

. EQ. Equal to

.NE, Not equal to

.GT. Greater than

.GE, Greater than or equal to
.LT. Less than

.LE. Less than or equal to

60362000 C 3-3

Examples:

(A+B).LE.(C+D)
1. EQ. J(K)
(3.*BETA+VALUE).NE.(ALPHA-44, 8)

In 1700 MS FORTRAN, a relational expression is used only within the context of a logical IF statement
(Section 5. 2, 3).

3.3 LOGICAL EXPRESSION

A logical expression is a combination of relational expressions and logical operators such that
evaluation of the expression produces a result of true or false.

Logical Operators Meaning

.NOT. Logical negation
.AND. Logical conjunction
.OR. Logical disjunction

In 1700 MS FORTRAN, a logical expression is used only within the context of a logical IF statement
(Section 5. 2,3). Logical variables are not allowed in 1700 MS FORTRAN.

3.3.1 FORMATION OF LOGICAL EXPRESSION

If RE1 and RE2 are relational expressions, the logical operators can be defined as follows:

.NOT.RE1 False only if RE1 is true
RE1.AND.RE2 True only if RE1 and RE2 are both true
RE1.OR.RE2 False only if RE1 and RE2 are both false

.NOT. may appear only in the following combinations with . AND. or with .OR.:

RE1.AND..NOT.RE2
RE1.OR..NOT.RE2

34 60362000 C

A.LE.B.AND.C.EQ.D

F.GT.16..0R.G.GE.3. 14

ALPHA.LE.BETA. AND..NOT.GAMMA. EQ. BETA
.NOT. (A.NE. B) which is the same as A. EQ.B

3.3.2 ORDER OF EVALUATION
Within a logical expression, operators are evaluated in the following order:

.NOT.
.AND.
.OR.

60362000 C 3-5/3-6

STATEMENTS

4.1 CLASSIFICATION

Statements are the basic steps in a FORTRAN program. In general, statements are executable or
nonexecutable.

4.1.1 EXECUTABLE STATEMENTS

Executable statements perform calculations, direct control of the program, and transfer data. Types
of executable statements are

Asgsignment
Control

1/0

4.1.2 NONEXECUTABLE STATEMENTS

Nonexecutable statements provide the compiler with information regarding data structure and storage.
Nonexecutable statements are

Specification

Data initialization
Format

Function defining

Subprogram

4.2 STATEMENT FORMAT

Statements are written in 72-column lines, A statement begins on the initial line and may be continued -

to additional lines. Up to five continuation lines are permitted per statement. The letter C in the first
column identifies a comment line which does not affect the program; it is used as an editing convenience.

60362000 C

The use of the 72 columns is the same for punched card and paper tape input; however, for paper tape,
column 72 indicates a carriage return which serves as a field separator marking the end of an input

line.

Blanks may be used freely to improve the appearance of the program, subject to the restrictions on

continuation lines.

In writing statements, the columns are used as follows:

Column

1 through 5

7 through 71

72

73 through 80

Description

Statement label

Continuation
indicator

Statement field

Carriage return

User application

Use

If a statement is to be referenced in a program (such as in
control transfer), it is given a number from 1 to 32,767 as
a statement label. Otherwise, these columns are blank.

Where a statement extends beyond one line, additional lines
are flagged as continuation lines by placing a character
other than zero or blank in column 6. When column 6 is
used, the line must contain some useful information or the
compiler assumes the programmer made an error.

The FORTRAN statement is written in columns 7 through
72 for punched card input and in columns 7 through 71 for
paper tape input.

A carriage return symbol is placed in column 72 for every
line of paper tape input to indicate the end of line.

The programmer uses these columns to sequence source
cards; the compiler ignores these columns.

60362000 C

EXECUTABLE STATEMENTS 5

An executable statement causes the program to perform an action such as the assignment of a value, the
transfer of control, or the transfer of data. Executable statements are

Assignment
Control
1/0

5.1 ASSIGNMENT STATEMENTS

An assignment statement gives a variable numerical value. The value may be the result of calculation.
or it may be assigned by the programmer. Assignment statements may be

Arithmetic assignment

Label assignment

5.1.1 ARITHMETIC ASSIGNMENT STATEMENT

An arithmetic assignment statement assigns a value of a constant, expression, or variable to another
variable.

The format is

Where: Vv is the simple or subscripted variable

= is the assignment symbol which directs the program to compute the value of the
expression on the right and place that value in the storage location designated by the
variable on the left

e is the arithmetic expression
Examples:

I=1+1
ALPHA = BETA*DELTA + SIN (X)
JOTA (K) = IVAL* *2 + IFOX (Y)

60362000 C 5-1

If the arithmetic assignment statement involves mixed mode, the data type of e may be converted
according to the rules:

If v type is:

Integer
integer
Integer
Real

Real
Real

Double precision
Double precision
Double precision

Definition of Rules

Assign
Fix/Dfix

Float
Dflt

Single
Double

And e type is:

Integer

neal
Double precision

Integer
Real
Double precision

Integer
Real
Double precision

The assignment rule is:

Assign

Fix and assign
Dfix and assign
Float and assign

Assign
Single and assign

Dfit and assign
Double and assign
Assign

Transmit the value, without change, to v.

Truncate any fractional part of the value and transform that result to the form of an
integer,

Transform the value to the form of a real number.

Transform the value to the form of a double-precision number.

Truncate the value to form a real number.

5.1.2 LABEL ASSIGNMENT STATEMENT

Express the value in the form of a double-precision number.

A label assignment statement gives a variable the numerical label of another statement in the same
program. Any subsequent statement with that variable automatically references the statement whose
label is assigned. With READ and WRITE statements, this feature permits selection of several
possible formats based on program execution,

The format is:

Where: k

ASSIGN k TO i

assign statement

is the statement label referencing a statement in the same program unit as the

i is an integer variable called the assign variable

60362000 C

Example:

25 ASSIGN 20 TO IOTA

50 ASSIGN 30 TO IOTA

.

WRITE (3,I0TA) LIST
20 FORMAT (...)
30 FORMAT (...)

In the preceding example, if the program sequence includes statement 25 but skips 50, the WRITE is
executed according to the FORMAT labeled 20; if the program sequence skips the statement labeled 25
but includes 50, the WRITE is executed according to the FORMAT labeled 30,

An assign variable is also used in conjunction with an assigned GO TO statement. After execution of an
assignment statement, subsequent execution of an assigned GO TO statement transfers control to the
statement identified by the assigned label, provided there was no intervening redefinition of that lahel.
Used in this manner, the label must identify an executable statement.

An assign variable may be in common (Section 6.1,2) or it may be an actual argument in a procedure
reference (Chapter 7). In these cases, it continues to function as an assign variable in the related
program units. Thus, FORMAT statements and labels may be passed between program units,

Once it is defined in an ASSIGN statement, an integer variable may not be referenced in any statement
other than an assigned GO TO statement or a formatted READ or WRITE statement until it is redefined.

5.2 CONTROL STATEMENTS

Program execution normally proceeds from statement to statement as they appear in a program,
Control statements can be used to alter this sequence or cause a number of iterations of a program
section., Control may only be transferred to an executable statement. A transfer to a nonexecutable
statement results in a program error, which is usually recognized during compilation. With the DO
statement, a predetermined sequence of instructions can be repeated any number of times by
incrementing a simple integer variable after each iteration.

Statements to which control is transferred must have statement labels and they must reference
executable statements within the same program as the control statement. This restriction does not
apply to the assigned GO TO. The types of control statements are

GO TO RETURN
Arithmetic IF CONTINUE
Logical IF Program Control
CALL DO

60362000 C 5-3

521 GO TO STATEMENTS

GO TO statements transfer control unconditionally to a statement with a label whose reference is fixed
or to a statement whose label is selected during execution of the program. GO TO statements may be

Unconditional GO TO
Assigned GO TO
Computed GO TO

UNCONDITIONAL GO TO STATEMENT

Execution of this statement causes the statement identified by the label to be executed next.

The format is:

GO TO k
Where: k is the statement label
Example:
GO TO 10

5 DIF = DIF - SUM
10 SUM = SUM + 1

In this program sequence, the GO TO statement causes control to skip statement 5 and execute
statement 10 and those following in sequence until control is altered again. Statement 5 is not executed
unless it is referenced by some other control statement in the program.

ASSIGNED GO TO STATEMENT

This statement acts as a many-branch GO TO.
The formats are:

GO TO i
GO TO i, (k;,....k)

Where: i is an integer variable reference called an assign variable

ki are optional statement labels which may be included for the programmer's convenience;
they are not used by the compiler.

60362000 C

o
|
FS

Before an assigned GO TO statement is executed, the current value of i must have been assigned by an
ASSIGN statement. Control transfers to the statement identified by that statement label to be executed
next. The i must be assigned in either the program unit of the GO TO or in ancther program unit where
i was passed as an actual parameter or wag in common,

The same integer variable reference used in the ASSIGN statement may be used in a subsequent
arithmetic expression if it is re-equated to a value prior to its use in that expression,

Examples:
Format 1
ASSIGN 15 TO K
GO TO 60
15 K=9
L = (I**2) + K
100 ASSIGN 20 TOK
GO TO 60

60 CONTINUE

GO TOK
20 CONTINUE

When the program executes the ASSIGN statement, K has the statement label value 15.
Control moves to the next statement which causes a jump to statement 60, CONTINUE,

The program executes the statements following 60 in sequence until it reaches GO TO K. Since K
previously has been assigned the value 15, control jumps to statement 15,

Statement 15 equates K to the value 9.

The following statement uses this value (9) of K in an arithmetic expression. (The variable reference
is re-equated to a value and then used in an arithmetic expression,)

In the next statement, the program assigns 20 to K.
The next step causes a jump to 60, CONTINUE.

The program goes through the steps following 60 until it reaches GO TO K. As K has been assigned the
statement label value 20, control jumps to statement 20, CONTINUE, and proceeds in sequence.

60362000 C 5-5

Format 2

ASSIGN 10 TO JUMP

10 RESULT = RATE * AMOUNT
The program first assigns the value 10 to JUMP.

It proceeds in sequence until it encounters the GO TO JUMP statement. Since JUMP was assigned the
value 10, control transfers to statement 10,

The list of labels (5, 10,20) serves only as a check on JUMP, the variable reference. The second form
operates in the same manner as the first; the list is optional.

COMPUTED GO TO STATEMENT

This form of the GO TO statement is an n-branch control transfer in which a sequence of statement
labels is followed by an integer variable whose value at execution serves as an ordinal designation of
the label which defines the transfer.

The format is:

GO TO (kl’kz’k3' ces ,kn),l

Where: k is the statement label

i is an integer variable reference; for proper operation, i must not be specified by an
ASSIGN statement

The statement identified by statement label k; is executed next. Assume j is the value of i at the time
of execution. If j s 1, statement label k; is executed next. If j= n, statement label kj is executed next.

Example:
N=3

.

GO TO (100,101,102, 103),N

N is 3 and the statement number 102 is the selected control transfer.

5-6 60362000 C

5.2.2 AKi
An arithmetic IF statement is a three-branch transfer on an arithmetic expression.
The format is
k., k
IF (e)k,, 2 k3
Where: e is an arithmetic expression

k is an executable statement label. If the evaluation of e is
- Control is transferred to k
0 Control is transferred to k2
+ Control is transferred to k3
Example:
IF (IOTA-6) 3,6,9

If the evaluation of the expression IOTA-6 produces a negative result, control transfers to the
statement labeled 3; if zero, to 6; if positive, to 9.

5.23 LOGICAL IF STATEMENT
A logical IF statement is a two-branch transfer on a logical expression.
The format is:

IF (e) s

Where: e is the logical or relational expression; upon execution of this statement, if

true Statement s is executed
false The sequence of statements following the logic IF is continued.

s is any executable statement except a DO statement or another logical IF statement

60362000 C

5-7

Examples:

IF (A.EQ. 10..AND. B .EQ. 5.) GO TO 3
IF (X.GT.Z) Y = SIN (X)/2
IF (1,EQ.J) IF (L + 2) 100, 200, 300

5.2.4 CALL AND RETURN STATEMENTS

The CALL and RETURN statements establish communication between a main program and subroutines.
These statements are explained in Section 7. 4.

5.2.5 CONTINUE STATEMENT

The CONTINUE statement is most frequently used as the last statement in a DO loop (Section 5.2.7) to
avoid terminating on GO TO or IF statements, which are illegal termination statements in DO loops.

The format is:
CONTINUE

When CONTINUE is the terminating statement of a DO loop, it causes repetition of the loop. In any
other position, it serves as a do-nothing statement passing control to the next statement,

5.2.6 PROGRAM CONTROL STATEMENTS

Program control statements are STOP, PAUSE, and END.

STOP STATEMENT

This statement terminates execution of the program. Normally it is used at the end of a program. It
may be used to terminate execution when an abnormal condition occurs.

When this statement is executed, the word STOP and any octal digits following it appear on the output
comment device, in five-digit form.

The formats are:

STOP
STOP n

Where: n is one to five octal digits

5-8 60362000 C

PAUSE STATEMENT

This statement temporarily halts the execution of a program to permit checking of intermediate results,
The operator enters a carriage return to resume execution with the statement immediately following
PAUSE.

When this statement is executed, the word PAUSE and any octal digits following it appear on the output
comment device, in five-digit form.

The formats are:

PAUSE
PAUSE n

Where: n is one to five octal digits

END STATEMENT

This statement marks the physical end of a program or subprogram. It is executable in the sense that
it affects return from a subprogram in the absence of a RETURN statement, but it may not have a label.

The format is:

END

5.27 DO STATEMENT

A DO statement makes it possible to repeat a group of statements a designated number of times using
an integer variable whose value is progressively altered with each repetition, The range of repetition
is called the DO loop. Minimally, the DO loop consists of the DO statement with its parameters and a
final statement whose label is referenced by the DO statement.

The formats are:

DOni= m;,mg
DOn i =my,wg, 1y

Where: n is the label of the terminal statement of the loop.

i is a positive integer variable called the control variable. With each repetition, . its
value is altered progressively by the increment parameter mg. Upon exiting from
the range of a DO, the control variable remains defined as the last value acquired
in execution of the DO. It does not matter if the exit results from satisfying the
DO or by execution of 2 GO TO or IF.

60362000 C 5-9

m, s the initial parameter, the value of i at the beginning of the first loop.

my is the terminal parameter; when the value of i surpasses the value of mg, DO

execution is terminated and control goes to the statement immediately following
the terminal statement.

m, is the increment parameter; the amount i is increased with each repetition.

<

The parameters m; and my must be unsigned integer constants, or unsigned non-subscripted integer

variables. If mg has the value 1, it may be omitted (first form above). None of these parameters may
be redefined during the execution of the DO.

5271 DO LOOP STRUCTURE
The general form of a DO loop is:

DOni = m;,mg, m3
Statement 1
Statement 2
Statement 3

n Terrr.xinal statement
The range of the loop extends from the DO statement through the terminal statement, inclusively.
Statement 1, the first statement in the range of the DO, must be an executable statement.
Statements 1, 2, 3... may contain inner DO loops. This is called nesting and is explained below.

Table 5-1 shows how relationships among the DO statement parameters affect execution of a DO. The
label n references the terminal statement of the DO loop, which must be an executable statement in the
same program unit as the DO statement and must follow it.

The terminal statement may not be any of the following:

GO TO

Arithmetic IF

RETURN

STOP

PAUSE

DO

Logical IF (if it contains any of the preceding forms)

ASSEM (if terminal statement label is imbedded within)

5-10 60362000 C

Table 5-1,

DO Statement Parameters

M1 M2 M3 EXAMPLE ACTION
Integer Integer | Integer I=1,9,2 Control variable is initialized.
constant | constant! constant | 1=9,1,2 DO loop is executed at least once,
i=9,1,-1
I=5,6,~-1 Control variable is incremented.
1=5,5
Integer Integer | Integer I=1,9,N Completion test is made to see if loop is to
constant | constant| variable I=9,1,N be executed again.
1I-1,9,-N
1=9,1,-N
Integer Integer | Integer 1=2,d,2 Control variable is initialized.
constant variable | constant I=5,J,-2
1=5,J
Integer Integer | Integer I=4,J,K Completion test is made to see if loop is to
constant variable | variable 1=10,J,-K be executed.
Integer Integer Integer I-J.K, 2
variable variable | constant I=K,dJ,-2
I=K,J Loop is executed,
Integer Integer | Integer I=M1, M2,N Control variable is incremented.
variable variable | variable I=-M1, M2, -N
Integer Integer | Integer 1+J,10,K
variable constant | variable I=J,6,-K
Integer Integer Integer 1=J,5,2
variable constant | constant 1=J,3,-2
1=J,10
Example:

The following progra c¢~iz.lates the sum of all odd numbers and the sum of all even numbers in the
range of 1 to 100.

25

60362000 C

I0DD = 0

IEVEN = 0

DO251=1, 99, 2

IODD = IODD + I

d=1+1

IEVEN = IEVEN +J

CONTINUE

The first two steps zero out the counters for the odd and the even numbers.

The DO statement initiates

a loop that begins at the index value of 1 and increments in steps of 2. This series provides the odd
numbers. The J =T +1 statement provides the series of even numbers by adding a 1 to each of these
values. The operation of this DO loop is tabulated in the following chart.

Loop | I |[IODD=IODD+I | (store) J=I+1 |(store) | IEVEN=IEVEN+J | (store)
1|1 1=0+1 (1) 2=1+1 | (2) 2=0+2 2
2 |3 4-1+3 4) 4=3+1 | (4 6=2+4 (6)
3|5 9=4+5 9 6=5+1 | (6) 12=6+6 (12)
4 | 7] 16=9+7 (16) 8=7+1 | (8) 20=12+8 (20)

A

’Successive values® “Progressive ‘Sequence ’Progressive®
of control variable addition of of even addition of
I which is the odd numbers numbers even
sequence of odd numbers

numbers

5272 DECREMENTED DO LOOP

When decrementation is desired in a DO loop, the following form applies:

Where the value of the incremental parameter mg is established in a preceding statement and m, >m

Example:

DO n,
i

=m, ,m,-mg

To find the value of N factorial (N!):

5-12

10

15

READ(1,5) N
FORMAT (I2)

FACT = 1.0

K=1

DO10I=N, 2, -K
FACT = FACT*I
WRITE (3,15) FACT
FORMAT (F10.0)

9

60362000 C

5.27.3 NESTED DO LOOPS

DO loops may be included within DO loops as long as no inner range overlaps with any outer range.
However, two or more DO loops may share the same terminal statement. DO loops may be nexted up
to 10 deep.

If D1, D2, and D3 are DO statements and T1, T2, and T3 are the associated terminal statements, ther

ar 1
the following nested structures of DO loops are permitted:

D1 D1 D1
— D2 D2 D2
D3 r—D3
T2
T3
D3
T2 ;—
TT L ¢ & 711, L3
T2, ;
T3 L m

Example:

This example may be used to test Fermat's Last Theorem with combinations of integer values up to
1000, The theorem states that the equation
Tt e

is not valid for positive integer values of X, Y, and Z when n is an integer greater than 2.

60362000 C 5-13

Letting I, J, K equal X, Y, Z to imply integer values, the test may be programmed as follows:

100
13

Example:

PROGRAM FERMAT

DO 13 N =3, 1000
DO 131 =1, 1000

DO13J =1, 1000

DO 13K =1, 1000
IF (I**N+J**N-K**N) 13, 7,13
WRITE (3,100) I, J, K, N

FORMAT (6HEUREKA/415)
CONTINUE

If a loan is repaid in N monthly payments with each payment equal to P and with an interest rate of R,
the total repaid, S, is given by:

P

R

1
1 -
(@ +R)N>

The following program calculates the sums repaid for monthly payments of 24, 30, and 36 months in

amounts of $20, $30, $40, and $50 at interest rates 6%, 7%, 8%, 9%, and 10%.

This would print out the sums, five to a line, according to the five interest rates.

5-14

10
20
40
30

DIMENSION SUM (5)
DO 30 N =24, 36, 6

DO 20 J = 20, 50, 10

DO101 =6, 10
R = 1*0. 01

SUM (I-5) = J/R*(L. -1. /((1. +R)**N))
WRITE (3,40) (SUM(K), K=1,5)

FORMAT (5F10.2)
CONTINUE

60362000 C

The following tabulation shows how the cycling proceeds through the DO loops, with the innermost loop
varying the most rapidly and the outermost loop varying the least rapidly.

Months Amouni Raie Months Amount Rate
24 20 . 06 30 40 .06
(.07 .07

.08 .08

.09 .09

.10 1 .10

30 .06 50 .06

.07 .07

.08 .08

.09 .09

.10 1 1 .10

40 .06 36 20 .06

.07 .07

.08 .08

.09 .09

.10 L .10

50 06 30 06

Ui o Ui

. 08 .08

.09 .09

] J .10 .10
30 20 .06 40 .06
.07 .07

.08 .08

.09 .09

J.__ .10 _L .10

30 .06 50 .06

[.07 07

.08 .08

.09 .09

\ .10 ! .10

5274 DO LOOP TRANSFER

Control can be transferred within a DO loop by means of an IF or a GO TO statement, provided neither
is used as a terminal statement.

The label of a terminal statement in a series of more than one DO statement may not be used in any GO

TO or arithmetic IF statement that occurs anywhere but in the range of the most deeply contained DO
that has that terminal statement,

60362000 C 5-15

Example:

This example may be used to test 100 values for sign and accumulate three sums: negative, zero, and
positive values.

DIMENSION IOTA (100)
READ (1,10) (IOTA(), I=1,100)
10 FORMAT(10I5)
INEG = 0
IZERO = 0
IPOS = 0
DO 501 =1,100 DO
IF (IOTA(T)20, 30, 40 IF
20 INEG = INEG + IOTA(D) -—
GO TO 50 GO TO
30 IZERO =IZERO + IOTA(T -
GO TO 50 GO TO

40 IPOS = IPOS + IOTA(D) -—
50 CONTINUE

5275 EXTENDED RANGE OF A DO

If control can be transferred out of a DO loop and returned, the DO is said to have an extended range.
More specifically, a DO has an extended range if it containg a GO TO or arithmetic IF that can pass
control outside the range of the DO and there is a GO TO or arithmetic IF outside the range of the DO
that can return control into the range of the DO.

Control can be transferred from an inner DO loop to the outer DO loop that contains it. Control cannot
initially pass from an outer DO loop into an inner DO loop.

5-16 60362000 C

Example:

This example may be used to compare two arrays of numbers and print out all sets of equivalent

values.

30

40

10
50

DO50TI=1,20 outer DO —— W —
DO30J=1,20 inner DO ——
IF(A(1).EQ.B(J))GO TO 40 transfer

CONTINUE -_—

GO TO 50

WRITE(3, 10)A(I), B(J)

GO TO 30

FORMAT(F8.5,3H = ,F8.5)

CONTINUE

Control can be transferred out of a DO loop or nest of DO loops and returned, provided the indexing
parameters are not altered and control is transferred back to the range of the same DO loop from which
the exit was made.

Example:

60362000 C

DO 66 I-1, 21,3

ALPHA=SQRT(X)\ ~ library routine for
square root of X

DO 33 J=1, 10
BETA=D?]NOM(Y) AFUNCTIO!\I DENOM(A)
. RETURN '
—=33 CONTINUE

CALL GAMMA (7) SUBROU’{‘INE GAMMA (W)
next statement RETURN.
GO TO 17

66 CONTINUE =—

17 WRITE (3, 18)ALPHA, BETA,Z -—

18 FORMAT (3F10.5)
GO TO 66

5.3 1/0 STATEMENTS

I/0 statements are classified as data transfer statements and auxiliary I/0 statements. The first type
is the READ and WRITE statements which read records from an external unit into core and write
records out of core onto an external unit. Under the second type, BACKSPACE, REWIND, and
ENDFILE affect the position and check the status of external magnetic tape files; basic functions
(Section 7.3.2) check the status of I/0O devices. The following section applies only to the FORTRAN

I/0 run-time package. Consult Chapter 9 for the I/O statements that are used with other run-time
packages.

The logical units defined for the various 1/O operations are those defined for the MSOS system in which
Mass Storage FORTRAN operates. Logical units for specific devices are likely to vary from system to
system. Standard FORTRAN units should be used as much as possible:

Logical Unit Number Description

1 Standard Input Device

2 Standard Binary Output Device
3 Standard Print Output Device
4

Standard Output Comment Device

5.3.1 1I/O DEVICES

The Mass Storage FORTRAN product supports all I/0 devices present in MSOS 4. The MSOS Reference
Manual should be consulted for specific devices.

5.3.2 MASS STORAGE FILES
There are two distinct methods of using files in MSOS 4. The use of file manager files is discussed in

Chapter 4 of the MSOS 4 Reference Manual. The material presented here applies only to FORTRAN
files and must not be confused with files created via the File Manager.

Mass storage files are assigned to the scratch area of the mass storage device and are not retained
after execution of a job. (Permanent files in the program library may not be defined or manipulated

by FORTRAN I/O statements.) Files to be read in to or written out of mass storage must be preceded
by an OPEN statement that defines the file.

5.3.3 OPEN STATEMENT
This statement provides for parameters to describe each mass storage file to be used by the program.
The formats are:

OPEN k,i,j,u,x
OPEN Kk,i,j,u

5-18 60362000 C

Where: ke is the integer name of the mass storage file to be defined; integer constant or

i is the number of sectors per record; minimum record length is one sector; integer
constant or variable,

j is the maximum number of records in the file; integer constant or variable.
u is the logical unit number to which file k is assigned; integer constant or variable.
X is the starting section addressT for file k on logical unit u; positive integer constant

or variable. The sector address will be assigned relative to the start of mass
memory scratch.

If any of the above variables are omitted, the starting sector address is to be assigned at execution
time. Subsequent mass storage files are assigned sequentially.

NOTE

If x is omitted for one mass storage file in a program,
it must be omitted for all mass storage files in that
program.

If x is specified for one mass storage file in a
program, it must be specified for all mass storage
files in that program.

Attempting to read or write a file on mass storage without defining the file by an OPEN statement
results in an execution-time diagnostic and program termination. The syntax legality of the values
specified by OPEN is checked at compile time.

Examples:
OPEN 35, 2, 50, 5, 1
This statement defines a file referenced as 35. This file uses two sectors per record and consists of

50 records maximum (100 sectors). The file is assigned to logical unit 5 and starts at the location of
the first sector relative to the start of the mass memory scratch area.

OPEN 36, 1, 250, 5, 101

This statement defines a file referenced as 36. This file uses one sector per record and consists of
250 records maximum (250 sectors). The file is assigned to logical unit 5 and starts at the location of
sector 101 (relative to the start of the mass memory scratch area), which means that file 36
immediately follows file 35.

tThe maximum number of data words in a sector is 94, since two words of each sector are for
addressing that sector.

60362000 C 5-19

The following diagram shows the arrangement and significance of the parameter values for examples.

FILE 35 (k)

FILE 36 (k)

LOGICAL UNIT 5 (u)

First Record
(i=2)

Second Record
(i=2)

50th Record ‘
(i=2) l

SECTOR 1 (%)
SECTOR 2
SECTOR 3
SECTOR 4

SECTOR 99
SECTOR 100

First Record {

(i=1)
Second Record {
i=1

249th Record {
i=1)

250th Record {
i=1)

SECTOR 101 (x)

SECTOR 102

.
.

.

SECTOR 349

SECTOR 350

5.3.4 READ AND WRITE STATEMENTS

Maximum humber
of records in 35

@ =50

Maximum number
of records in 36

G = 250)

The READ and WRITE statements transfer data lists between core and external devices.
may include the names of variables, arrays, and array elements. The named elements are assigned
Arrays in a list may be transferred with

values on input, and their values are transferred on output.

an implied DO of the forms:

ml,mz,m3
':ml,m

2

These lists

The parameters i,m;, my,mg are defined exactly as they are for the DO statement (Section 5. 2).
An implied DO does not reference a terminal statement; the range is the array to which it is applied.

5-20

60362000 C

Example:

READ (7, 10) (A (D, I=1,4)
10 FORMAT (F 10.86)

has the same effect as:

DO 20 1=1,4
20 READ (7,30) A (I)
30 FORMAT (F 10.6)

Both of these examples read the first value of four records into array elements A(1), A(2), A(3), and
A (4). I integer variables in an input list appear as subscripts elsewhere in the list, they must appear
as input variables before they appear as subscripts unless they have been previously defined.

Example:
READ (7) 1,J, ALPHA (1,J)

Data records are written in binary or ASCII. Because binary records are coded within the computer,
format cannot be selected. Such records are referred to as unformatted, and they are used with
magnetic tape and mass storage devices. ASCITI records are used for man/machine communication

and format must be specified. Such records are cailed formatted and can be transierred by READ

and WRITE statements only when controlled by FORMAT statements (Section 6.3). In the explanations
that follow, two forms of each READ/WRITE statement are given; the first applies to non-mass storage
files; the second applies to mass storage files. For the ANSI option, unformatted I/O will transmit two
words per integer list element. If the integer list element was typed SINGLE, then only one word is
transmitted per integer list element,

Formatted READ

The format of this statement has two variations.
The first causes the input of the next record from the unit identified by lu (logical unit).
The format is
READ (lu,f) list
Where: lu is the integer constant or non-subscripted variable reference used to identify the

logical unit. 1700 MS FORTRAN assigns logical unit numbers to reference standard
MSOS logical units as follows:

1 = Standard input (contained in $F9)

2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $FB)

4 = Standard comment (contained in $FC)

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number.

60362000 C 5-21

NOTE

MSOS logical units 1 through 4 cannot be referenced
by FORTRAN programs unless they are also MSOS
standard logical units. Actual logical unit assignments
vary from system to system.

f is the format specification (Section 6. 3).

label is the statement label of a FORMAT statement. The identified statement
must appear in the same program unit as the I/O statement.

array is the array name which must conform to the specifications in
Section 6.3.

assign is an assigned variable; the statement label assigned must be a format
specification. The variable assigned may be a dummy argument or,
if it is in common, it may come from another program unit.

list is a series of variables separated by commas.
The information is scanned and converted according to the format specification identified by f.

The resulting values are assigned to the elements specified by the list, If the list is not present,
READ (lu,f), spaces over one record.

Example:

READ (5,20) A,B,C
20 FORMAT (3F10.6)

These statements read in three floating-point values from logical unit 5 according to the FORMAT
labeled 20. This specifies field widths of 10 positions with 6 decimal places.

The second format causes input of the nth record from mass storage file k.
The format is

READ (k(n),f) list

Where: k is the mass storage file
n is the nth record from mass storage file k
f is the format specification (see Section 6. 3).

label is the statement label of a FORMAT statement. The identified statement
must appear in the same program unit as the I/O statement.

array is an array name which must conform to the specifications in Section 6. 3.

5-22 60362000 C

assign is an assigned variable; the statement label assigned must be a format
specification. The variable assigned may be a dummy argument or,
if it is in common, it may come from another program unit.

list is a series of variables separated by commas.

file must have been opened by a previous OPEN statement.

The information is scanned and converted as specified by the format specification identified by f. The

If the file is not on a mass storage device, the request is ignored. If f specifies H (Hollerith)
conversion, the record is read into the storage locations of the FORMAT statement replacing the
H part of f.

Example:
OPEN 40,1,200,5

READ (40(12),10) X
10 FORMAT (50A1)

file 40 from logical unit 5 intc array X which

tc
0 ASCII characters according to the FORMAT

‘tThese statements read the twelfth record of mass storag
has been previously dimensioned. The record contains 5
labeled 10.

Formatted WRITE

The format of this statemen: has two variations.
The first writes the next record on the unit identified by lu (logical unit).
The format is
WRITE (lu,f) list
Where: iu is the integer constant or non-subscripted variable reference used to identify the
logical unit. 1700 MS FORTRAN assigns logical unit numbers to reference standard

MSOS logical units as follows:

1 = Standard input (contained in $F9)

2 = Standard binary output (contained in $FA)

3 = Standard list output (contained in $FB)

4 = Standard comment (contained in $FC)

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number.

60362000 C 5-23

NOTE

MSOS logical units 1 through 4 cannot be referenced

by FORTRAN programs unless they are also MSOS
standard logical units. Actual logical unit assignments
vary from system to system.

f is the format specification (See Section 6.3).

label is the statement label of a FORMAT statement. The identified statement
must appear in the same program unit as the I/O statement.

array is an array name which must conform to the specifications in
Section 6. 3.

assign is an assigned variable; the statement label assigned must be a format
specification. The variable assigned may be a dummy argument or,
if it is in common, it may come from another program unit.

list is a series of variables separated by commas. The list specifies a sequence of
values which are converted and positioned according to the format specified by f.
The list may be omitted if f specifies /, nX, or nH conversion. If f does not
contain /, X, or H editing characters and the list is omitted, a line of blanks is
assumed.

Example:

WRITE (9,20) A,B,C
20 FORMAT (3F10.6)

These statements write the floating-point numbers from locations A, B, and C on logical unit 9.
The second format writes record n on mass storage file k.
The format is

WRITE (k(n),f) list

Where: k is the mass storage file
n is the nth record from mass storage file k
f is the format specification (see Section 6.3).
label is the statement label of a FORMAT statement. The identified statement

must appear in the same program unit as the I/O statement.

array is an array name which must conform to the specifications in
Section 6. 3.

assign is an assigned variable; the statement label assigned must be a format
specification. The variable assigned may be a dummy argument or,
if it is in common, it may come from another program unit.

5-24 60362000 C

list is a series of variables separated by commas. The list specifies a sequence of values
which are converted and positioned according to the format specified by f. The list
may be omitted if { specifies /, nX, or nH conversion. If f does not contain
/, X, or H editing characters and the list is omitted, a line of blanks is assumed.
if k(n) is not iarge enough to accommodatie the converied data, truncation occurs.
Example:
WRITE (55(2),10)A
10 FORMAT (F10.2)

These statements write the floating-point number from location A into the second record of mass
storage file 55. The file must have been opened by a previous OPEN statement.

Unformatted READ

The format of this statement has two variations.
The first form of the statement causes the input of the next record from the unit identified by lu.
The format is

READ (lu) list

Where: lu is the integer constant or non-subscripted variable reference used to identify the
logical unit. 1700 MS FORTRAN assigns logical unit numbers to reference standard
MSOS logical units as follows:

1 = Standard input (contained in $F9)

2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $FB)

4 = Standard comment (contained in $FC)

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number.

NOTE

MSOS logical units 1 through 4 cannot be referenced
by FORTRAN programs unless they are also a MSOS
standard logical unit. Actual logical unit assignments

vary from system to system.

60362000 C 5-25

list is a series of variables separated by commas. If list is specified, these values are
assigned to the sequence of elements specified by the list. The sequence of values
required by the list may not exceed the sequence of values from the unformatted
record. If the file is on a mass storage device, the request is ignored.

Examples:
READ (1) (A(I), I=1,100)
This statement reads a record from unit 1 into the storage areas specified in the DO implied list.
READ (6)
This statement skips the next record on logical unit 6. Unit 6 cannot be a mass storage device.
The second form of the statement inputs the nth record from mass storage file k.
The format is
READ (k(n)) list

Where: k - is the mass storage file
n is the nth record from mass storage
list is a series of variables separated by commas. If list is specified, these values are
assigned to the sequence of elements specified by the list. The sequence of values
required by the list may not exceed the sequence of values from the unformatted
record.
Example:
READ (31 (9)) X

This statement reads the ninth record of the mass storage file 31 into storage location X.

Unformatted WRITE

The format of this statement has two variations.

The first form of the statement creates the next record on the unit identified by lu from the sequence of
values specified by the list.

5-26 60362000 C

The format

is

WRITE (lu) list

/here:

Example:

iu

list

is the integer constant or non-subscripted variable reference used to identify the
logical unit. 1700 MS FORTRAN assigns logical unit numbers to re
MSOS logical units as follows:

=3
[0
L]
1)
3
[¢]
(]
2}
a
5
3
£
£

1 = Standard input (contained in $F9)

2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $FB)

4 = Standard comment (contained in $FC)

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number,

NOTE

MSOS logical units 1 through 4 cannot be referenced

by FORTRAN programs unless they are also MSOS
standard logical units. Actual logical unit assignments
vary from system to system.

is a series of variables separated by commas. The list may not be empty.

DIMENSION A (80), B (4)
WRITE (2) A, B

These statements write one record of two blocks on logical unit 2.

The second form writes record n on mass storage file k.

The format

is

WRITE (k(n)) list

Where:

60362000 C

k

n

list

is the mass storage file
is the nth record from mass storage file k

is a series of variables separated by commas. The list may not be empty. If the
number of words in the list exceeds the record size specified for k, an execution
time diagnostic is given and the program terminates.

5-27

Example:

DIMENSION A(10)
OPEN 22, 1, 500, 8

WRITE (22(100)) A

These statements write ten words from array A into the 100th record of mass storage file 22 on logical
unit 8.

5.3.5 AUXILIARY I/O STATEMENTS
Auxiliary I/0 statements are applicable only to files residing on magnetic tape.

REWIND Statement

This statement positions the unit identified by lu at its loadpoint.
The format is
REWIND lu

Where: lu is the integer constant or non-subscripted variable reference used to identify the
logical unit. 1700 MS FORTRAN assigns logical unit numbers to reference standard
MSOS logical units as follows:
1 = Standard input (contained in $F9)
2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $FB)
4 = Standard comment (contained in $FC)

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number.

NOTE

MSOS logical units 1 through 4 cannot be referenced
by FORTRAN programs unless they are also a MSOS
standard logical unit. Actual logical unit assignments
vary from system to system.

5-28 60362000 C

BACKSPACE Statement

This statement causes the unit identified by lu to go back to the beginning of the preceding block, If
the unit identified by lu is positioned at its load point, an error diagnostic is printed and the program

1%, rror adlag SLIC Is DEIINLE

is terminated. If a record contains n blocks of data, then n BACKSPACEs must be specified to skip
backwards over that record.

The format is

BACKSPACE lu

ENDFILE Statement

This statement causes an endfile record to be recorded on the unit identified by lu. The endfile record
is a unique record signifying a demarcation of a sequential file. The EOF function (Table 7-4) is used
to determine if an endfile record has been encountered during execution of a READ statement. After
reading an ENDFILE and before reading again from that unit, a test must be made for the END FILE
using the EOF function.

The format is

ENDFILE lu

Where: lu is the integer constant or non-subscripted variable reference used to identify the
logical unit. 1700 MS FORTRAN assigns logical unit numbers to reference standard
MSOS logical units as follows:
1 = Standard input (contained in $F9)
2 = Standard binary output (contained in $FA)
3 = Standard list output (contained in $¥B)
4 = Standard comment (contained in $FC)

Logical units 5 through 99 reference actual assigned MSOS logical units of like
number.

NOTE

MSOS logical units 1 through 4 cannot be referenced
by FORTRAN programs unless they are also a MSOS
standard logical unit. Actual logical unit assignments
vary from system to system.

60362000 C 5-29

Example;

WRITE(7) (X(I), I=1,100) ~ (record 1)
WRITE (7) (Y(D, I=1,50) (record 2)
WRITE (7) A, B, C (record 3)
WRITE(7)I,J, K, L, M, N (record 4)
ENDFILE 7

BACKSPACE 7

REWIND 7

This sequence of auxiliary I/O statements would write and move the tape of logical unit 7 as illustrated.

ENDFILE 7
Load}
l L | (Record Point 1
kRecord4) k—3) (Record 2) « (Record 1)
| EOFLN,M,L,K,J,1.[C,B,A[.[Y(50),... Y@, YO).[X(100),......X3),X2),X(1) []
REWIND 7]
‘-—' BACKSPACE 7

5.3.6 TAPE RECORDS AND BLOCKS

Tape records and blocks may be binary or ASCII. Binary tape records (paper or magnetic tape) are
composed of 85-word blocks. The first word of a binary block, the control word, is followed by 84 data

words. Records may be one per block or extend over several blocks. A block may not contain more
than one record.

The control word is zero for all blocks except the last, where it equals the number of blocks in the
record.

ASCII tape records (paper or magnetic tape) are composed of blocks with a maximum of 68 words.
Each block is one record. Output statements which write more than 68 words (136 characters) in a
record are truncated to 68-word records. Input statements which read more than 68 words (136
characters) result in diagnostics and program termination.

Paper Tape

A binary block is preceded by a header word which contains the block size in one's complement form.
It is followed by a checksum word. The checksum added to the sum of the data words and the header
word equals zero. Overflow is ignored when computing the checksum,

Example:

WRITE (2) (A(I), I = 1,250)

5-30 60362000 C

This requesi produces a record on paper tape with the foliowing format.

Header word

Control word = 0

84 words of data

Checksum

Header word

Control word =0

84 words of data

Checksum

Header word

Control word =3

82 words of data
plus 2 empty words

Checksum

Block 2

Block 3

An unformatted (binary) read transmits one record with the format produced by an unformatted (binary)

write. The header word and checksum are not transmitted to the buffer.

Magnetic Tape

All binary blocks and ASCII blocks on magnetic tape are followed by a record gap.

ASCII is converted to extended BCD before output on magnetic tape and converted from extended BCD
to ASCII when input from magnetic tape.

Example:

DIMENSION A(100)
WRITE (6) (A(I), I=1,100)

60362000 C

This request produces the following binary record on magnetic tape.

Control word =0

First 84 words of Block 1
data from A (85 words)

Record gap

Control word =2

Remaining 16 words Block 2
of data from A plus (85 words)
68 empty words

Record gap

If no list is specified, the binary read request skips one block. Regardless of the length of the
record, only the number of words specified in each list is transmitted; the remainder of the record
is skipped.

5.3.7 MASS STORAGE RECORDS AND SECTORS

Mass storage records may be binary or ASCII. Binary records on disk or drum are composed of
96-word sectors. The control word (first two words of a sector) is followed by 94 data words. Records
may be one per sector or may extend over several sectors. A sector may not contain more than one
record.

Mass storage ASCII records are subject to the same restrictions as ASCII records on tape. Each
record may contain a maximum of 68 words (136 characters). Statements which output more than
68 word records cause the record to be truncated to 68 words. Statements that input records
exceeding 68 words result in a diagnostic and program termination.

Example:

DIMENSION A(150), B(180)
OPEN 2,2,25,5,1

WRITE (2(5))A

WRITE (2(6))B

5-32 60362000 C

These requests produce the following binary records on disk or drum.

Control word = 0

Record 5 Sector 8
(94 words of binary
data from array A)

Control word = 2

(56 words of binary

Sector 9
data from array A)
Control word =0
Record 6 Sector 10

(94 words of binary
data from array B)

Control word =2

(86 words of binary Sector 11
data from array B)

A binary read transmits the number of words specified in the list; the list must not specify more words
than the record contains. If no list is specified, the binary read request is ignored.

5.3.8 PRINTING OF FORMATTED RECORDS

The first character of a formatted record is not printed if the print unit is the FORTRAN line printer.
The first character which can appear as a single Hollerith character (for example, 1HO), determines
vertical spacing on I/O printer units as follows:

Character Vertical Spacing Before Printing
0 Two lines

1 To first line of next page

+ No advance

Other One line

Consult the MSOS Reference Manual for specific characteristics of each character output device driver.

60362000 C 5-33

5.4 ASSEM STATEMENT

The ASSEM statement provides communication with the operating system or the core-resident
programs, or in-line coding (not possible with FORTRAN statements). With ASSEM, in-line code can
be compiled in the form of absolute constants, relative address constants, and absolute address
constants. Each parameter generates one word (16 bits) of code, except for statement labels and

control indicators.
The format is
ASSEM Py+Pgs- Py

Where any p; may be

1. Hexadecimal constant of the form
$HH...H

where each H is a hexadecimal digit (up to 4 digits).

2. Absolute address constant of the form
+AA...A(c)

3. Self-relative address constant of the form
AA. . .A(©)

4. .nl ce nj

where n; through n; is the statement label, j <5 of the next p,.

5. Control indicator for relative address constants which are to be other than self-relative
of the form

*
6. Relative address constant which is other than self-relative of the form

*AA...A(c)

~3

Relative indirect address constant which is other than self-relative of the form

*(AA...A(C))

In2, 3, 6, and 7, AA...A may be a variable, an array name, or a statement label. The c is an integer
constant greater than zero designating an element within the array if AA...A is an array name.
External names are permitted only in forms 2 and 3 and, if used, must be declared in an EXTERNAL
statement (Section 7.4.3).

The ASSEM statement produces a string of successive constants in the program in the order specified.
Hexadecimal constants can be used to specify data or instructions. When used to generate instructions,
the operation code, indirect flags, relative flags, indices, and delta value are coded in hexadecimal,
The self-relative address constant produces a value equal to the distance between the location of the
variables in the program and the location to the address constant (the positive direction is from smaller
to larger address).

5-34 60362000 C

Relative address constants, other than self-relative (forms 6 and 7), are special forms to create calling
sequences to the operating system (refer to the 1700 MSOS Reference Manual). They are created as
distance relative to the last occurrence of the control indicator (form 5). These address constants,

along with associated control indicators, must appear on the same or consecutive ASSEM statements
(no intervening FORTRAN statements are allowed).

(form 5) has been encountered.

Forms 6 and 7 are illegal if no control indicator

Example 1.

DIMENSION K(3)

ASSEM $C0C5,$6400, +K(1)

These statements produce the equivalent of the following code at the point of the ASSEM statement:

Operation Code Address
LDA- $C5
STA+ K
Example 2.
ASSEM .12,8C800,K(2)

This statement produces the equivalent of the following code:

Statement Label Operation Code Address

12 LDA K+1

The address (K+1) in this example is relative to the current location counter. The statement label may

be referenced from anywhere within the bounds of the program unit, except as a DO loop statement
terminator.

60362000 C 5-35

Example 3.

This example shows how an operating system request can be generated with the ASSEM statement.

For the macro instruction

FREAD

l,ca,sa,wc,m,cp,a,x,d

the macro assembler generates the following command sequence output:

15 14 13 12 11 10 9 8 7 4 3 0
Word 0 RTJ — ($F4)
1 0 d rc X rp cp
2 ca
3 thread
4 ec m a 1
5 wc or wca
6 sa
If the following values are assigned
Parameter Meaning Value
d Part 1 request indicator 0
rc Request code 4
rp Request priority 0
cp Completion priority 1
ca Completion address Statement label 1000
thread Value 0
ec Error code upon 0
completion of request
m Mode 0
a, 1 Pointer to unit I,$F9 (unit is system input)
wc Word count ICOUNT
sa Starting address ISTART

5-36

60362000 C

And if x is 1, then

Completion address

ca + address of WORD1

(wca) + address of WORD1

If sa is enclosed in parentheses, it produces an indirect address for the starting address.

(sa) location of starting address = (sa)+(address of WORD1),

The parameter list begins at the statement label 1001, An ASSEM statement simulates the macro
instruction FREAD with the parameters previously described in either of two ways:

1. Using a relative address to reference the starting address:

ASSEM $54F4,*,.1001,$0901,*1000,$0,$08F9, *(ICOUNT), *ISTART

2. Using a relative indirect address to reference the starting address:

ASSEM $54F4,*,.1001,$0901, *1000,$0,$08F9, *(ICOUNT), *(ISTART)

60362000 C

5-37/5-38

NONEXECUTABLE STATEMENTS 6

Nonexecutable statements provide the compiler with information regarding data structure and storage;
they perform no action in the execution of a program. Nonexecutable statements are as follows:

Specification

Data initialization

FORMAT

Function defining (refer to Chapter 7)
Subprogram (refer to Chapter 7)

6.1 SPECIFICATION STATEMENTS

Specification statements specify type, word structure, and storage for variables. These statements
are as follows:

DIMENSION

COMMON

EQUIVALENCE

EXTERNAL (refer to Chapter 7)
RELATIVE (refer to Chapter 7)

Type
Byte

6.1.1 DIMENSION STATEMENT

Before an array can be used in a program, sequential storage locations must be reserved for all its
elements, usually through the DIMENSION statement.

The format is:

DIMENSION v_(i.), v, (i,), -+ -,V (i)

60362000 C 6-1

Where: v is an array name

i is one, two, or three subscripts giving the maximum dimensions of the array (refer
to Appendix G for a detailed treatment of arrays).

Example:
For an array IOTA with three rows, four columns, and five planes, the statement would be

DIMENSION 10TA (3, 4, 5)

6.1.2 COMMON STATEMENT

Through the COMMON statement, variables in a subprogram (Section 7. 4) reference the same storage
locations as variables in the main program. In this way, the subprogram can make use of data blocks
that are a part of the main program without the use of dummy arguments.(Section 7. 1).

The format is:

COMMON /x/a_,a_,....,a
1"2 n

Where: x is a symbolic name identifying a block of storage. This block is called a labeled
common block; only one such block may appear in a program. If x is missing, the
block is referred to as a blank common block; the pair of slashes may be omitted.
Only one blank common block may appear in a program.

a is a list of simple variables and arrays (subscripted and unsubscripted)., These are
stored sequentially in each block in the order of their appearance.

Although a program may only have one labeled common block and one blank common block, variables
and arrays can be assigned to these blocks by any number of COMMON statements, both labeled and
blank. In addition, a single COMMON statement may contain labeled and blank assignments in any
order. In all cases, the lists are stored in appropriate blocks in the order of their appearance. A
list a; may not contain formal arguments. If a nonsubscripted array name appears, the dimensions
must be defined by a DIMENSION statement in that program unit. Arrays may be dimensioned in the
COMMON statement by a subscript string following the array identifier. If an array is dimensioned
in both a COMMON statement and a DIMENSION statement, a compiler diagnostic results.

Items in labeled common may be preset with initial values in the BLOCK DATA subprogram
(Section 7.4.7).

Consult the MSOS Reference Manual for system organization when blank and/or labeled common is used
in a system.

The length of a common block is determined by the number and type of the list identifiers. The length
of common block AB in Figure 6-1 is the sum of the length of the items in the labeled blocks. LIST is

6-2 60362000 C

+0

+250

+262

+362

+382

+432

+442

Figure 6-1.

the only integer array; and, assuming it is type SINGLE, each element requires only one word. The
other arrays are real and require two computer words for each element.

in block AB is 442.

Another block of common is formed from the elements in blank or unlabeled common: A1, B1, C1,
D, E, and F. The length of blank common depends on the dimensions of A1, B1, C1, and E which are
are not specified in the COMMON statements. If no DIMENSION statement appears for any of these

Block AB

X(5, 5, 5)

125 elements
250 words

AB@, 3)

6 elements
12 words

LIST (100)

100 elements
100 words

A (10)

10 elements,
20 words

B(5,5)

25 elements
50 words

C()

5 elements
10 words

identifiers, they are assumed to be simple variables.

60362000 C

Common Block

The total number of words

Example:

COMMON/AB/X(5, 5, 5), AB(2, 3), LIST(100)
COMMON/AB/A(10)/AB/B(5, 5), C(5)
COMMON//A1, B1,C1,D(10, 10)

The various program units executed together need not declare the same size common storage block,
but the first program unit to be loaded must declare the largest block.

To meet ANSI standards, a real data element and an integer data element must occupy the same
number of storage units to accommodate mixed-mode extensions of common through the
EQUIVALENCE statement. To maintain ANSI compatibility, 1700 MS FORTRAN includes the ANSI
option of allocating two words of storage for each integer data element. Only the first word is used in
computation. If an integer is type SINGLE (Section 6.1.4), it always occupies one word of storage.

6.1.3 EQUIVALENCE STATEMENT

This statement makes it possible for different variables in a single program to reference the same
storage location. The difference between COMMON and EQUIVALENCE is that COMMON assigns
variables in different programs to the same storage locations, whereas EQUIVALENCE assigns
variables in the same program to the same locations.

The format is:

EQUIVALENCE @ ,b.,...), (@,.by,...) . os @ b))

Where: @,,b,,...) is an equivalence group of two or more simple variables or subscripted array

i
elements sharing a single location

A multisubscripted array element can be represented as a singly subscripted variable with the
formula

a + A*b-1) + A*B*(c-1)

which gives the ordinal location on an element with subscript (a, b, c) in an array whose maximum
dimensions are (A, B, C). The formula is explained in Appendix G.

Example:

If an array element of a three-dimensional array were to be referenced with a gingle-dimensional array
element:

DIMENSION 1(3, 4, 5), K(60)
EQUIVALENCE ((1, 1, 1), K(1))

6-4 60362000 C

then element I (2,1,4) may be referenced as K(38) by using the array successor function.
2 + 3%(1-1) + 3*4*(4-1) = 38

The manner in which storage is allocated to equivalenced arrays depends on whether the storage area
is a common block or not. The EQUIVALENCE statement does not rearrange common, but arrays
may be defined as equivalent so that the length of the common biock is extended.

Y g

However, the origin of a common block may not be changed by an EQUIVALENCE statement. When
two variables or array elements share storage because of the effects of EQUIVALENCE statements,
both their symbolic names may not appear in COMMON statements in the same program, because
COMMON stores elements in serial order as they appear, making it impossible for any two elements
to share the same storage.

Examples:

If two arrays, not in common, are equivalenced according to the following definitions:
INTEGER A, B, C
DIMENSION A(3), B(2), C(4)
EQUIVALENCE (A(3), C(2))

Then storage locations are assigned as follows:

L A(1)

L+1 A@) C()
L+2 A@3) C@®)
L+3 c(@)
L+4 C(4)
M B(1)

M+1 B(@)

However, when one of the arrays in common is used in an EQUIVALENCE statement

COMMON A(3), B(2)
EQUIVALENCE (B(2), C(2))

storage locations are assigned as follows:

L A{D
L+1 A(2)
L+2 A(3)

L+3 B(1) c(1)
L+4 B(2) C2)
L+5 Cc@3)
L+6 C(4)

60362000 C 6-5

EQUIVALENCE statements may be written

EQUIVALENCE (Ay,B)
EQUIVALENCE (Ay, By)

where the variable names or the array element names are paired. Up to 51 EQUIVALENCE statements
of this form are permissible. This limits the number of equivalenced names to 102, More variable or
array element names can be used if multiple names are included in one EQUIVALENCE statement. The
maximum number is 100 names in a statement of the form EQUIVALENCE (Al’ Az, AS" vey A98’ Agg,
AIOO)' The number of statements must be reduced if this form is used.

An optimum declaration is six statements of the paired form with one statement of the multiple name
form, resulting in the equivalencing of 112 names.

Formal parameters specified in SUBROUTINE or FUNCTION statements may be referenced in
EQUIVALENCE statements (Section 7.4).

6.1.4 TYPE STATEMENT

To override or confirm implicit typing of a symbolic name, a type statement is used. It may supply
dimension information for arrays.

The format is

t vl,v2,... ,vn
Where: t is INTEGER, REAL, DOUBLE PRECISION, or SINGLE
' is a variable name, function name, array name, or an array declarator

1

If a symbolic name appears in a SINGLE statement the associated data is typed as integer. Dimension
information may be given. When the ANST option has been declared, appearance of a name in a
SINGLE statement declares that each data element specified occupies a single storage unit.

Examples:
INTEGER ALPHA (Over-ride)
REAL BETA (Confirming)

DOUBLE PRECISION DELTA (Over-ride)

SINGLE IOTA (3, 6) (Confirms the integer type and gives dimensions of the
array named)

6-6 60362000 C

Byte statements make it possible to reference a segment of an integer variable.

The format is
t (al,b1 (cl=d1)), ce ,(an,bn(cn=dn)

Where: t is BYTE or SIGNED BYTE
a is the name of the byte (either an integer variable or an integer array)

b is the integer from which a is derived (integer variable, integer array, or an integer
array element)

c/d are upper and lower bits of b that define a as illustrated:

bits

b, a full integer word » L15I][c [////////////Ad'] OI

a, the byte defined by w» c id
bits ¢ and d

¢ and d are positive integer constants with the range
152¢c=2d=0

All arrays must be previously dimensioned (Appendix G).

The simplest forms of the byte statements are the cases where a is an integer variable and b is an
integer variable or an integer array element.

Example:

BYTE (I, J(3) (15=T))

Array J
1)
2)
(3)
)

Element J3y— (15[/77777/222///17] o}
i |
|

|
!
|
1
'

e

G0

Byte I is defined as the segment from bit 15 to bit 7 of the third
element of array J

Byte I

60362000 C 6-7

When a is an integer array, b must be an integer array or an integer array element.

Examples:

1. With b an array:

DIMENSION K(7), IOTA (5)
BYTE (IOTA(1), K(1) (10=5))

K1) [15] [V Z7Z51 0] I0TA (1) [@OVZZ7Z75]
—_— ‘

K@) Q5] 72777 B 10] 10TA 2) [ZA5]
e 4

Ke) D5 TopZAsl 0] 10TA 5) [OEZZA5)
T }

2. With b an array element:

DIMENSION J(3), L(5)

BYTE (J(2), L(3) (8=5))

L3) [15] [s 7 5] Tol J(@2) 18 Y7/ 5]
w

If a; is an array name, then each element of the array will be such a byte of the corresponding element
of bj. The statement acts as an EQUIVALENCE, extending the size of by as much as is necessary to
accommodate aj; the number of byte statements permissible follows the same rules as the

EQUIVALENCE statements.

If t is BYTE, a, will be treated as a positive integer. The exception is if ci =15 and di = 0. In this

case, ai is treated as signed.

If t is SIGNED BYTE, a; is treated as a signed integer. A signed byte of a single bit will be treated as
zero. The byte is stored in one's complement form. The high order bit is thus a sign bit. In both

cases, a will be type integer.

6-8

60362000 C

A byte variable or array is treated as an integer variable or array in the list of an I/0 statement, as an

argument for an intrinsic function, or as a parameter in the subroutine or function statement calls.

Formal parameters specified in SUBROUTINE or FUNCTION statements may be referenced in BYTE
statements (Section 7. 4).

6.2 DATA STATEMENT

The DATA statement is used to assign constant values to variables or arrays at the time of
compilation; therefore, it is not executable.

The format is

DATA kl/dl/’kz/dz/’ c ,kn/dn/

Where: k is a list containing names of variables, arrays, array elements, and implied DO loops.

d is a list of optionally signed numeric constants or literal constants, any of which may
be preceded by J*. When the form J* appears before a constant, it indicates that the
constant is to be repeated J times. J must be an integer constant. There must be a
one-to-one correspondence between the list-specified items and the constants.

If an array or elements of an array are to be assigned values by a DATA statement, the array must
have been previously dimensioned and each element may be listed separately in the DATA statement.

The DATA statement may be used with labeled common (only in a BLOCK DATA subprogram, Section
7.4.7) but not with blank common. The list k may not include byte or dummy arguments (Section 7. 1).
Values assigned may be redefined during execution, but not by a DATA statement, since its action
terminates at compile time.

Arrays may be assigned values with an implied DO of the form:

(A(I),I=1112) or (AM),T=1 ,1 ,1))

(AQ, J).I=ll,l2),J=ll,lz) or ((A(,J),1=1,1,,1,, J=11,12,13)

(A, d, K),I=ll, 12), J=11, l2), K=ll, 12) or (((A(,J, K), I=11, 12,13, J=11,12, 13) K=11,12,l3)
For each k;

A is the name of a previously defined array.

I,J,K are the names of integer variables. The order of the subscripts must be maintained.
Constants are not allowed as subscripts.

60362000 C 6-9

ll is a non-zero positive integer constant for initial value; may not be greater than limit

value.

12 is a non-zero positive integer constant for limit value; may not be greater than the
array's previously defined dimension.

13 is an optional non-zero positive integer constant for increment value; equals 1 if not
expressed.

Implied DO loop examples:

DATA (A@),1=1,5) /1.0,2.0,3.0,4.0,5.0/
DATA ((A(, J),1=1, 3, 2),J=1,5,2) /2%1.0,2%2.0,3.0, 4.0/
DATA (A(0),1=1, 10, 2), (B(J), J=1, 4) /9¥ABCD'/,K/8/

If the implicit type of a variable does not agree with its declared type, for example, (REAL 1), then a
DATA statement assigning a value to that variable must appear after the type is declared.

Examples:
Tllegal DATA 1/3.5/
REAL1
Legal REAL 1
DATA 1/3.5/

LITERALS IN DATA STATEMENT

Numeric constants are right-justified with leading zeros and literal constants are left-justified with
trailing blanks.

The simple general form is:
DATA R,1/'AAAA’,'BB'/
This stores $4141 $4141 into R and $4242 into 1.
The alternate equivalent form is:
DATA R/'AAAA'/,1/'BB'/
There must be a matching total set of data for the total elements specified.

Tllegal DATA R,1/'AAAA'/
Legal DATA R,1/'AA','B'/

This stores $4141 $2020 into R and $4220 into I.

6-10 60362000 C

DATA K(1), (2), (3)/ 3*'AB'/
DATA 1/ 3*'AB'/

or
DATA (I(K), K=1, 3)/3*'AB'/

This stores $4142 $4142 $4142 into array I.

Blank within quotes, as well as other legal characters allowed by the compiler except another quote,

will be stored in their corresponding ASCII hexadecimal value.

6.3 FORMAT STATEMENT

The following section applies to the FORTRAN I/ 0O run-time package only.

Formatted READ and WRITE statements must be accompanied by a FORMAT statement which defines
the field and data type of each element in the I/ O list. The whole set enclosed in parentheses is the

format specification.
The format is:

FORMAT (qltlzltzzz tnznqn)

Where: q is a set of one or more slashes or is empty
t is a field descriptor or a group of field descriptors

2z is a field separator which is either a comma or a slash

Some representative combinations of the FORMAT statement form are the following:

(9 ! b % t Z3 Y4 Zy %)
(315 , E10.,2 , 2F10.4)
// 5F10.5, 311 /10110 , Ei12.,6)
(3A3 , Al , 3R3 , Ri1 /)
(1HO , 5E12,6 , S3HEND)

The FORMAT statement is nonexecutable. It must appear in the same program unit as the I/ O

statement and it must have a statement label. The label may be assigned in an ASSIGN statement.

The assign variable and label can be from a different program unit. The type of field descriptor
determines the type of specification. A conversion specification contains field descriptors for
converting information; an editing specification contains field descriptors for editing information

60362000 C

6.3.1 FIELD DESCRIPTORS

The format field descriptors are of the following forms:

rFw.d Single-precision floating-point without exponentiation
rEw.d Single-precision floating-point with exponentiation
rDw.d Double-precision floating-point with exponentiation
riw Decimal integer conversion
r$w or rZw Hexadecimal conversion
rAw Alphanumeric conversion
rRw Alphanumeric conversion
thth, e ,hn Heading and labeling Editing
oX Spacing factor specifications
Asterisk *String of ASCII characters*

or
Quote 'String of ASCII characters'

1. The symbols F, E, D, 1,$,Z,A, R, H, and X are the conversion codes; they indicate the manner
of conversion and editing between the internal and external representation.

2. wand n are non-zero integer constants representing the width of the field in the external
character string.

3. dis an integer constant representing the number of digits in the fractional part of the external
character string.

4. r, the repeat count, is an optional non-zero integer constant indicating the number of times to
repeat the succeeding basic field.

5. Each hi is one of the characters in the FORTRAN character set.

For all descriptors other than Hollerith literals, the field width must be specified. For descriptors
of the form w.d, the d ‘must be specified, even if it is zero. Furthermore, w must be greater than
or equal to d. The number of characters produced by an output conversion should not exceed the

field width. If so, data is not transferred and the output field is filled with asterisks.

The phrase basic field descriptor will be used to signify the field descriptor unmodified by r.

6.3.2 FIELD SEPARATORS

The format field separators are the slash and the comma. A series of slashes is also a field separator.

The field descriptors or groups of field descriptors are separated by a field separator.

6-12 60362000 C

6.3.3 NUMERIC CONVERSION

The numeric field descriptors Iw, Fw.d, Ew.d, Dw.d, Zw and $w are used to specify the I/O of integer,
real, and double-precision data. The following rules apply to all numeric conversions.

1. Leading blanks : her blanks are zeros. Plus signs may be omitied. A

a
field of blanks is zero.

2. In input conversion of floating-point numbers, a decimal point in the input field overrides the
decimal point specification in the FORMAT statement.

Examples:

Values punched
in card (b =
blank or space) bbb3b-b.234b5bbb

A

FORMAT 5, F8.32, 13

3. In numeric output conversions, the output field is right-justified and blanks are inserted if the
number of characters produced by the conversion is less than the specified field width,

Examples:

Value stored —{654321E 02}—

FORMAT 10.5 ——_7/
5
I AN .

Printed as bb65. 43210 sxxrxl[65] 74321

4, 1If the conversion produces a negative value, the output field will be signed. A positive value will
be unsigned, except for the exponent in an E or D conversion which will always be signed.

5. If the number of characters produced is greater than the field width, the data is not transferred
and the output field is filled with asterisks.

6.3.3.1 INTEGER CONVERSION

The specifications for integer conversion are Iw for decimal and $w or Zw for hexadecimal.

t Only asterisks are printed because the number is too large for the field.

60362000 C 6-13

Iw INPUT

Iw specification is used to input decimal integer values. The input field consists of an integer subfield
and may contain only the characters #, -, 0 through 9, or blank. When a sign appears, it must
precede the first digit justified in the specified variable.

Blanks are interpreted as zeros. The value is stored right-justified in the specified variable.
Example:

Values punched on card ‘8 7 6. lé 4 3“2 10 §i3 4 5 6J

FORMAT 213, .I!i_,J 15

Read as 876 543 2101 23456
Iw OUTPUT

Iw specification is used to output decimal integer values; the corresponding list element must be a

decimal integer quantity. The output quantity occupies w output record positions right-justified in
the field w as

Asd,. . .,d
Where: A is a possible blank fill
s is the sign; minus if negative, blank or suppressed if positive.
d,...,d are the most significant decimal digits of the integer (maximum absolute

value is 32,767).

If the field w is larger than the number required, the output quantity is right-justified with blank fill
on the left. If the field is too short, it is filled with asterisks.

Example:

Values stored

876 543 2i01 23456
FORMAT u216, 17, 18
Printed as bbb 876 bbb 543 bbb2101 bbb23456"

6-14 60362000 C

$w OR Zw INPUT

$w or Zw specification is used to input hexadecimal integer values. The input field w consists of a
string of hexadecimal integer characters; blanks are interpreted as zero.

Example:
Values punched b 456,9AAbF
on card ‘—_'_ i
FORMAT $4, z_r"» $2
Read as 456 9AA F

$w OR Zw OUTPUT

$w or Zw specification is used to output hexadecimal integer values. The output quantity occupies w
output record positions right-justified in the field w. It is an unsigned hexadecimal integer value,
with a maximum absolute value of FFFF.

Example:

Values stored 09AB
FORMAT ;6, z7, $8

Printed as ‘ob 09AB bbb 38CD'bbbb 99FF'

k=%
o
PLQ
©
L5

6.3.3.2 REAL CONVERSION
The specifications for real conversion are Fw.d and Ew. d.
Fw.d INPUT

The field descriptor Fw.d indicates that the external field occupies w positions, the fractional part of
which consists of d digits. The field is scanned from left to right and embedded blanks are interpreted
as zeros.

The basic input field consists of an optional sign followed by a string of digits which may contain a
decimal point. If the decimal point is present, it will override the d specification of the field
descriptor.

60362000 C 6-15

Example:

Values punched 87654876543876543287654328765432
on card 1 |] Y i
FORMAT F5.3 F6,4 F1,5 F7,7 F7.0

3 1 I I
Read as 87,654 87,6543 87,65432 . 8765432 8765432.’

Fw.d OUTPUT

The basic output field occupies w positions, The corresponding list element must be a floating-point
quantity which will appear as a decimal number, right-justified in field w with possible leading
blanks, as

As xl, ceey xn
Where: A is a possible blank fill
s is the sign; minus if the number is negative, blank or omitted if the
number is positive
X reeon Xy is a string of digits containing a decimal point. The number of digits

to the right of the decimal point is specified by d in the Fw.d. If d
is zero, the digits to the right of the decimal point do not appear.
d may contain a maximum of 19 digits.

If the field is too short to accommodate the number, asterisks fill the output field. If the field w is
longer than required, the number is right-justified with blank fill to the left.

Example:
Values stored - 87654E+02, ,876543E+02, . 8765432E+02, ,8765432E+07,
FORMAT %3 F8.4 F9.5 F9,0
Printed as b 87._'67% b 87.’<T43\‘l @.’m%k b 876545\.
Ew.d INPUT

The number in the input field w is converted to a floating-point number and stored. The total number
of characters in the input field is specified by w. The field i8 scanned from left to right and
embedded blanks are interpreted as zeros.

6-16 60362000 C

The basic input field consists of an optional sign followed by a string of digits which may contain a
decimai poini. The basic field may be foliowed by an exponent of one of the following forms:

® Signed integer constant
° E followed by an integer constant
® followed by a signed integer constant

The value of the exponent must not exceed +39 after normalization of the input field. The normalized
number is the mantissa and the characteristic.

+1,327
Permissible combinations:

+1.327E-04 Integer fraction exponent
-32.721 Integer fraction

+328E+5 Integer exponent
.629E-1 Fraction exponent

+136 Integer only

. 0782 F

raction only

Normalized as Mantissa Characteristic
L1327 E -03
-.32721 E +02
.328 E + 08
.629 E -01
.136 E + 03
. 762 E-01

A decimal point in the input number will always override d. The field length specified by w in Ew, d
should always be the same as the length of the input field containing the input number. When it is not,
incorrect numbers may be read, converted, and stored. The field w includes the significant digits,
signs, decimal point, E, and exponent.

60362000 C 6-17

Example:

Values punched 87654 E 028765432E 028765432E 02 87654. E 02
on card i) i I
FORMAT £9.2 Ell.4 EI1.7 El0

; 432’E 02 .8765432E 02

Read as 876,54 E 02 876.5 87654. E 02

Ew.d OUTPUT

For output, floating-point numbers in storage are converted to the FORTRAN character form. The
field occupies w positions in the output record; the corresponding floating-point number appears
right-justified in the field as

As0.x_,...,x Etee 0= ee< 39
1 n
Where: A is a possible blank fill
s is the optional sign: minus if negative, blank or suppressed if positive
xl, - ,xn are the n most significant rounded digits of the value of the output data
ee are the digits of the exponent

Field w must be long enough to contain the specified number of digits, signs, decimal point, and
exponent. For E conversion, w must be greater than or equal to d+7. The maximum number of
digits in d is 19. If field w is too small to contain the output value, asterisks fill the field. If the
field is longer than the output value, the number is right-justified with blank fill to the left.

Example:
Values stored .87654E 02, ,8765432E 03, _.8765E 07,

FORMAT E12,5 E10,2 E15.10

Printed as ’uo.,8765%E+02‘ Y §‘7iE+OQ '.,87650000()OE+(77‘

6-18 60362000 C

6.3.3.3 DOUBLE-PRECISION CONVERSION

The specification for double-precision conversion is Dw, d.

Dw.d INPUT

The number in the input field w is converted to a double-precision floating-point number and stored.

The total number of characters in the input field is specified by w. The field is scanned from left
to right and embedded blanks are interpreted as zeros.

The basic input field consists of an optional sign followed by a string of digits which may contain a
decimal point. The basic field may be followed by an exponent of one of the following forms:

™ Signed integer constant
[D (or E) followed by an integer constant

[D (or E) followed by a signed integer constant

The value of the exponent must not exceed +39 after normalization of the input field. The normalized
number is the mantissa and the characteristic.

Permissible combinations:

+1.327D-04 Integer fraction exponent

-32.1721 Integer fraction

+328D+5 Integer exponent

.629D-1 Fraction exponent

+136 Integer only

. 0762 Fraction only

Normalized as Mantissa Characteristic
L1327 D-03
-.32731 D + 02

.328 D +08
.629 D-01
.136 D +03
. 762 D-01

A decimal point in the input number will always override d. The field length specified by w in Dw. d
should always be the same as the length of the input field containing the input number. When it is not,

60362000 C 6-19

incorrect numbers may be read, converted, and stored. The field w includes the significant digits,
signs, decimal point, D, and exponent.

Example:
Values punched \87654D 02, 8765432D 02, 8765432D 02, 87654.D 02,
on card
—Y —y —_—
FORMAT D9. 2 Dil.4 Di1.7 D02
D10.2
Read as 876.54D 02 876.5432D 02 .8765432D 02 87654.D 02

Dw.d OUTPUT

For output, double-precision floating-point numbers in storage are converted to the FORTRAN
character form. The field occupies w positions in the output record; the corresponding double
precision floating point number appears right-justified in the field as:

Aso.xl,...,anﬂ:dd 0=dd< 39
Where: A is a possible blank fiil
8 is the sign; minus if negative, blank or suppressed if positive
Xp1o-o0X o are the n most significant rounded digits of the value on the output
data
dd are the digits of the exponent

Field w must be long enough to contain the specified number of digits, signs, decimal point, and
exponent. For D conversion, w must be greater than or equal to d+7. The maximum number of
digits in d is 10. If the field w is too small to contain the output value, asterisks fill the field.

If the field is longer than the output value, the number is right-justified with blank fill to the left.

Example:

Values stored .87654D 02 \» 8765432D 02, .8765D 07,

FORMAT D12.5 D10.2 D15.8

Printed as /30, 87654D702" | /AA0.87DT02" | A0.87650000D707

634 ALPHANUMERIC CONVERSION

Aw and Rw specify I/ O of alphanumeric data. The internal representation is ASCII. Refer to
Appendix H for ASCII code.

6-20 60362000 C

Awl/O

On input, the Aw specification accepts as list elements any two Hollerith characters. If the field
width w is two or more, the rightmost two characters from the external input field are stored as
the list element. If w equals one, the character from the external input field is left-justified in
storage with a trailing blank.

The A conversion outputs w Hollerith characters from a two-character list element. If w is two or
more, the two characters from memory appear right-justified in the external output field preceded
by blanks. If w equals one, the leftmost character from memory is stored in the output field.

Rwl/O
This specification is the same as the Aw specification with the following exceptions.

° On input, if w equals one, the character taken from the external input field is
right-justified in storage with a leading hexadecimal 00,

[On output, if w equals one, the rightmost character from memory i8 stored in
the output field.

Examples:
Aw Input Rw_Input
Values punched NPUT INPUT
on card
FORMAT 2A2, Al 2R2, R1
R |
Stored as [I N[P Ujo 0T
Aw Output Rw Output
Values stored ([OoUJT P[U T[S b] [0 U]T P]U T]Sh]
1__L._.J R S—
FORMAT 3A3, Al FAE, 1
Printed as bPOUHLTPHhUTT boUubTPDPUTD

6.3.5 EDITING SPECIFICATIONS

between characters and lines, skip records, and begin new records.
nH INPUT
On input, the H specification is used to place Hollerith characters in a pre-existing format. Then is

an unsigned integer specifying the number of characters to the right of H that are to be placed in the
format.

60362000 C 6-21

Unlike the A and R specifications, the characters input by an H specification are not stored in
memory to be referenced by a symbolic name; instead, they are placed in a FORMAT statement already
established in the source program. A READ instruction referencing this FORMAT statement will
obtain a set of characters from an input device, such as a punched card, and place them in the
FORMAT specification, replacing characters previously established.
Example:
The source program contains the instruction

READ (1, 15)

15 FORMAT (22HREPLACE THIS STATEMENT)

When this instruction is executed with the following input card

[DETERMINATION OF SIGMA

the heading DETERMINA TION OF SIGMA is placed into FORMAT 15, replacing the character set
REPLACE THIS STATEMENT.

Subsequently, the output statement
WRITE (3, 15)

would produce the printed line
DETERMINATION OF SIGMA.

The number of characters in the H input must exactly equal the number of characters pre-established
in the FORMAT. If necessary, blanks can be used to balance out the input. It is immaterial what

characters appear in the original source program FORMAT. In the preceding example, the instruction
could be written

READ (1, 15)
15 FORMAT (2ZHA A AA AAAAAAAAAAAAAAAAAA)

The value of the H input specification lies in the flexibility it gives in varying a FORMAT
specification at time of execution.

nH OUTPUT
This specification provides for the output of any set of Hollerith characters, including blanks, in
the form of comments, titles, and headings. n is an unsigned integer specifying the number of

characters to the right of H that will be transmitted to the output record. H denotes a Hollerith
field.

6-22 60362000 C

Examples:
Source program

WRITE (3, 20)
20 FORMAT(28H BLANKS COUNT IN AN H FIELD.)

produces output record

BLANKS COUNT IN AN H FIELD.
Source program

A=1,5

WRITE(3,30)A

30 FORMAT(6H LMAX=, F5.2)
produces output record

LMAX=1.50

LITERAL FREE-FIELD 1/O

The literal free-field descriptor causes Hollerith information to be read into or written from the
characters specified between two delimiters. The delimiters may be asterisks or single quotes. If
the delimiters are asterisks, then embedded asterisks are not allowed. If the delimiters are single
quotes, then embedded single quotes are not allowed.

Example:

WRITE (3, 20)

20 FORMAT (* THIS IS A FREE FIELD FORMAT#*)
or 20 FORMAT (' THIS IS A FREE FIELD FORMAT')

produces the output record

THIS IS A FREE FIELD FORMAT

6.3.6 NEW RECORD SPECIFICATIONS

A slash, signalling the end of an ASCII record, may appear anywhere in a FORMAT statement. It need
not be separated by commas. A slash at the end of a FORMAT causes a record to be skipped, since

the end of the list itself signals the end of a record, Likewise, a slash at the beginning of a FORMAT
skips a record since the initiation of the list is itself a new record. Multiple slashes can be used to

skip a number of records; however, the repeat specification does not apply to the slash. N slashes in

the middle of a FORMAT skips N-1 records since the first slash merely signals a new record. N slashes
at the beginning or end of a FORMAT list skips N records.

60362000 C 6-23

Examples:

These examples refer to the reading of records. They apply equally to output statements,

FORMAT(I2/F10.5) Reads two records in succession

FORMAT(12//F10.5) Reads first record, skips second record, and reads the
third record

FORMAT(12////F10.5) Reads one record, skips three, and reads the fifth

FORMAT(I2, F10,5/) Reads one record and skips one record

FORMAT(12/F10.5//) Reads one record with 12, reads a second record with

F10.5, and then skips two records

FORMAT(///F10.5) Skips three records and reads a fourth with F10,5

6.37 BLANK FIELD SPECIFICATION

The general form of this specification is nX, where n is the number of blank spaces to be skipped on

input or the number of blanks to be inserted in output.
Examples:
nX INPUT

The following values are to be read from a card:

X = 0,54321
Y = 3.25
1 = 4321

The input statements

READ(1,20)X,Y,I
20 FORMAT(F10,5, 5X, F5.2, 10X, I10)

will interpret the input card as follows:

10 11 15 16 20 21 30 31

1
|/l 54321' 5X | 325

6-24

60362000 C

nX OUTPUT

The following values are to be printed out.

IOTA =7
ALPHA = 13.6
BETA = 1462.37

The output statements

WRITE(3,44)I0TA, ALPHA, BETA
44 FORMAT(12,6X,F6.2,7X,E12,5)

prints out

12 F6.2 77X E12.5
[IIllllllllllllllllll'lllllllIll|
7 13.60 0.14623E+04

6.3.8 REPEATED FORMAT SPECIFICATIONS

Any format specification may be repeated by using a positive integer repetition constant r as follows:

r (spec)
Where: spec is any conversion specification except nX or nH.
Example:

WRITE (3,10) I,K,A,B,C
10 FORMAT (12,12, F8.4,F8.4,F8.4)

could be written

WRITE (3,10) I,K, A,B,C
10 FORMAT (212, 3F8.4)

Only one level of group repeat is allowed; group repeats may not be nested.
When the format control reaches the last outer right parenthesis of the specification, a test is made to
determine if the I/0 list is exhausted. If it is, control terminates. If another list element is specified,

control returns to the group repeat specification terminated by the last preceding outer right parenthesis.
If no repeat specification exists, control returns to the first left parenthesis of the specification.

60362000 C 6-25

Examples:

READ(1,10)N1, N2, A1, A2, M1, M2, Bl
10 FORMAT (212, 2F6. 2)

Firstcard (N1 [N2 | A1 [A2

Second card (MIIMZ | Bl l

READ(1,11)N1, N2, A1, A2, B1, B2
11 FORMAT @2I2, (2F6. 2))

First card (Nl |N2 | Al l A2

Second card (B1 l B2]

READ(1,12)N1, N2, Al, A2, B1, B2
12 FORMAT (212, 2(F6.2))

First card (N1 l N2 l Al I A2
Second card (Bl |
Third card (B2 |

READ(1, 13)N1, N2, A1, A2, M1, M2, L1, L2
13 FORMAT((212), 2F6.2)

First card (Nl | N2 l
Second card ﬁl | M2 l
I

Third card (L1 | L2

6-26 60362000 C

6.3.9 FORMAT SPECIFICATION IN ARRAYS

The formatted READ and WRITE statements may contain an array name in place of the reference to a
FORMAT statement label. When an array is referenced in such a manner, the first part of the
information contained in the array, taken in the natural order, must constitute a valid format
specification. There are restrictions on the information contained in the array following the right

L EOWY 1gn

PR £ ar PR,

parenthesis that ends the format specification. The format specification which is to be inserted in the
array has the same form as that defined for a FORMAT statement; that is, it begins with a left
parenthesis and ends with a right parenthesis, The format specification may be inserted in the array
by use of a READ statement together with the A format or by use of a DATA statement, If the ANSI
option is used, the integer array containing the format must be typed SINGLE,

Example:

DIMENSION IFMT (40)

READ (1,20) (IFMT (1), I=1,40)
20 FORMAT (40A2)

READ (1,IFMT) A

(1H1,5X, 'OBJECT A TIME A FORMATTING'/6X, F6.2)

60362000 C 6-27/6-28

PROCEDURES AND SUBPROGRAMS 7

e .

A FORTRAN program consists of a main program with or without auxiliary procedures and subprograms.
Auxiliary sets of statements are used to evaluate frequently used mathematical functions, to perform
repetitious calculations, and to supply data specifications and initial values to the main program. 1700
MS FORTRAN provides six procedures and subprograms:

° Statement function
° Intrinsic function
° Basic external function

° External function
° External subroutine

° Block data subprogram

The intrinsic function and the basic external function are furnished with the system. They are used to
evaluate standard mathematical functions. The others are user-defined. The statement function and
intrinsic function are compiled within the main program, the basic external function is furnished with
the system, and the others are compiled separately. The first five are referred to as procedures,
since each is an executable unit that performs its set of calculations when referenced. The first four
are called functions; they return a single result to the point of reference. The last three are
subprograms; they are user-defined and are compiled independently. The block data subprogram
supplies specifications and initial values to labeled common. Table 7-1 outlines these categorical
divisions.

Use of procedures and subprograms is determined by their individual capabilities. If the program
requires the evaluation of a standard mathematical function, then an intrinsic function or a basic
external function is used (Tables 7-3 and 7-4). If a single nonstandard computation is needed
repeatedly, a statement function is inserted in the program. If a number of calculations are required
to obtain a single result, a function subprogram is written; if a number of calculations are required to
obtain an array of values, a subroutine is written. When the program requires initial values in labeled
common, a BLOCK DATA subprogram is used.

60362000 C 7-1

a-L

0 00029€09

Table 7-1. Subdivision of Procedures and Subprograms

STATEMENT INTRINSIC BASIC EXTERNAL EXTERNAL EXTERNAL BLOCK DATA
FUNCTION FUNCTION FUNCTION FUNCTION SUBROUTINE SUBPROGRAM
User-defined Compil er-defined User-defined

Compiled within the referencing

program

Not compiled
— LIBRARY —

Compiled externally to the referencing program

PROCEDURE: Any defined calculation that can be referenced and which will exchange values between
reference and definition through a list of arguments.

EXTERNAL PROCEDURE: A procedure defined externally
to the program unit that references it.

FUNCTION: A procedure that supplies a single result to be used at the point

of reference.

EXTERNAL FUNCTION: A function
defined externally to the program
unit that references it.

SUBPROGRAM: A user-defined set of statements compiled
independently of the program unit which references it or to
which it supplies specifications and initial values.

PROCEDURE SUBPROGRAM: An
external procedure that is defined by
FORTRAN statements.

SPECIFICATION
SUBPROGRAM:
A subprogram
without reference
that supplies
specifications and
initial values to
labeled common.

7.1 ARGUMENTS

711 ACTUAL

Procedures exchange values with referencing programs through argument lists. Arguments in the list
of a referencing program are called actual arguments since they represent actual values relative to the
referencing program,

7.1.2 DUMMY

Arguments listed in the procedure definition are called dummy arguments since they serve to exchange
values between the reference list and the procedure calculations. Because of one-to-one correspondence,
actual arguments and dummy arguments must agree in order, number, and type. A list of arguments
that can be used with functions and subroutines is given in Table 7-2.

7.2 STATEMENT FUNCTION

A statement function is defined by a single statement in the program unit in which it is referenced. It
must precede the first executable statement of the program unit and follow the specification statements,
if any. During compilation, the statement function definition is compiled once at the beginning of the
program; a transfer to this definition is generated whenever the statement function reference appears
as an operand in an expression.

The format is:

fag,a5,...52)7

Where: f is the symbolic name of the function
a is a dummy argument (at least one must be included)
e is a defining arithmetic expression

The statement function is referenced by the appearance of its symbolic name followed by a list of actual
arguments in an arithmetical or logical expression. Execution of the statement function calculation
returns a single value to the reference.

Example:
The following program calculates various parameters of a set of circles (one to ten). Input is an array

of diameters (DIAM). The calculations include the determination of area, arc length, and circumference.
These are given by statement functions at the beginning of the program which are referenced as needed.

60362000 C

Table 7-2. Permissible Arguments for Functions and Subprograms

L

ACTUAL ARGUMENTS FORMAL ARGUMENTS
Constant Variable
STATEMENT Variable
FUNCTION Array element

Arithmetic expression

INTRINSIC (Refer to Table 7-3)
FUNCTION
BASIC EXTERNAL (Refer to Table 7-4)
FUNCTION
Constant Variable
Variable Array name
Array element External procedure name
EXTERNAL FUNCTION
Array name
Any expression (May not appear in
The name of an external procedure COMMON or DATA
A BYTE or SIGNED BYTE variable if statement)
1. It is passed as an integer (16 bit) variable or array,
and
2. It is specified as BYTE or SIGNED BYTE in the
EXTERNAL SUBROUTINE FUNCTION or SUBROUTINE definition.

For subroutine only:
The name of the current procedure.

D 00029€09

Note: Actual arguments and their corresponding formal arguments must agree in order, type, and number,

PROGRAM CIRCLE

DIMENSION DIAM (10)
AREA (RADIUS) = 3,14159 * RADIUS * RADIUS =—
ARC (D, THETA) = 0.5 * D * THETA «————
|——CIRCUM (D) = 3.14159 * Dwe

i :
I—»x CIRCUM (DIAM())

L > v = ARC(DIAM(I), ANGLE)
L~ 7 = AREA(AH])
END

Explanation: The first reference is contained in the statement:
X=CIRCUM(DIAM (1))

in which the subscript I has been determined by calculations in the program. This reference places
the actual argument DIAM(I) in the statement function:

CIRCUM(D)=3,.14159*D

via the dummy argument D. The calculation is made and a single value for CIRCUM is returned to
the referencing statement. The next reference supplies two actual arguments, DIAM(I) and ANGLE,
to the statement function for ARC through the dummy arguments D and THETA., A single value for
ARC is returned to the referencing statement.

The third reference uses an arithmetic expression, A+I, for an actual argument. This enters the
statement function calculation for AREA through the dummy argument RADIUS. A single value for
AREA is returned to the referencing statement.

7.3 SUPPLIED FUNCTIONS

To evaluate frequently used mathematical functions, 1700 MS FORTRAN supplies predefined calculations
as well as references to library routines contained in the system. The predefined calculations are
called intrinsic functions, and the references to the library routines are called basic external functions.

The intrinsic function inserts simple sets of calculations into the object program at compile time.

The basic external function deals with more complex evaluations by inserting a reference to a library
routine in the object program. The names of the supplied functions, their data types, and permissible
arguments are predefined (Tables 7-3 and 7-4). References using these functions must adhere to the
format defined in the tables. The type of a supplied function cannot be changed by a type statement.

60362000 C 7-5

Table 7~3.

Intrinsic Functions

INTRINSIC

NUMBER OF SYMBOLIC TYPE OF TYPE OF
FUNCTIONS DEFINITION ARGUMENTS NAME ARGUMENT FUNCTION
Absolute ja| 1 ABS Real Real
value IABS Integer Integer
DABS Double Double
Float Conversion from integer 1 FLOAT Integer Real
to floating point DFLT Integer Double
Fix Conversion from 1 IFIX Real Integer
floating point to integer DFIX Double Integer
Transfer Sign of ag times |a1| 2 SIGN Real Real
of sign ISIGN Integer Integer
The sign of 0 is +, DSIGN Double Double
Obtain most significant part of 1 SNGL Double Real
double-precision argument
Express single-precision argument 1 DBLE Real Double
in double-precision form
Logical sum | Form the bit by bit 2 OR Integer Integer
logical sum of a, and
a,-
Exclusive Complement those bits 2 EOR Integer Integer
OR of ay which are one in
ay.
Logical Form the bit by bit 2 AND Integer Integer
product logical product of aj
and as.
Complement | Complement a1 1 NOT Integer Integer
7-6 60362000 C

7.3.1 INTRINSIC FUNCTION

An intrinsic function is a compiler-defined set of calculations that is inserted in the referencing
program at compile time. If the set involves only a few machine instructions, it is inserted in the
program every time the reference appears. This method is called in-line code. The intrinsic functions
IABS, OR, EOR, AND, and NOT produce in-line code. If the set of instructions needed to evaluate the
intrinsic function is lengthy, it is compiled once at the beginning of the program; then a transfer to this
set of calculations is generated whenever the function is referenced.

The intrinsic function is referenced by the appearance of the function name with appropriate arguments
in an arithmetic or logical statement. A list of intrinsic functions is given in Table 7-3, The name of
an intrinsic function listed in this table must satisfy all of the following requirements:

1. The name must not appear in an EXTERNAL or a RELATIVE statement (Sections 7.4.3
and 7.4.4), an array name or an array element, or be the name of a statement function
(Section 7.2).

2, The name must not appear in a type statement (Section 6.1.4) declaring it to be other
than the type specified in the table.

3. Every appearance of the name must be followed by a list of arguments enclosed in

parentheses, unless the name is in a type statement.

The use of an inirinsic function 1 one program unit preciudes the use of its name as the name oI a
different entity in another program unit in that same program. If a user-defined subprogram has

the same name as an intrinsic function, the name of the subprogram must be further defined by a type
declaration (Section 6.1.4) or by an EXTERNAL statement (Section 7.4.3).

7.3.2 BASIC EXTERNAL FUNCTION

A basic external function is a call on one of the predefined library routines included with the system.
These library routines are used to evaluate standard mathematical functions such as sine, cosine,
square root, etc. When a reference to a basic external function appears in an expression, the com-
piler identifies it and generates the calling sequence in the object program. A basic external function
is referenced by the appearance of the function name with appropriate arguments in an arithmetic or
logical statement. A list of basic external functions is given in Table 7-4.

NOTE

The compiler does not generate the calculations for
a basic external function; it generates the call to the
library routine for that particular function in the
object program. At execution time, illegal values
input to the basic external functions in Table 7-4
will give predetermined results (Table 7-5).

60362000 C

Table 7-4., Basic External Functions

BASIC
EXTERNAL NUMBER OF SYMBOLIC TYPE OF TYPE OF
FUNCTION DEFINITION ARGUMENTS NAME ARGUMENT FUNCTION
Exponential ea 1 EXP Real Real
DEXP Double Double
Natural log (a) 1 ALOG Real Real
logarithm DLOG Double Double
Trigonometric| sin (a) 1 SIN Real Real
sine DSIN Double Double
Trigonometric| cos (a) 1 COS Real Real
cosine DCOS Double Double
Hyperbolic tanh (a) 1 TANH Real Real
tangent
1/2
Square root (a) 1 SQRT Real Real
DSQRT Double Double
Arctangent arctan (a) 1 ATAN Real Real
DATAN Double Double
End of file EOF (a) 1 EOF Integer Integer
check on Check previous read
unit a on unit a for end-of-file.
2 is returned if none.
1 is returned if EOF.
Floating- IFALT (a) 1 IFALT Integer Integer
point fault If a is 0, overflow is
tested. If a is 1, divide
fault is tested. If a is 2,
underflow is tested. A
2 is returned if the
condition has not
occurred, a 1 otherwise|
Parity error IOCK (a) 1 IOCK Integer Integer
check on Check previous read or
unit write on unit a for parityj
error. 2 is returned if
none. 1 is returned if
parity error occurred.
7-8 60362000 C

Table 7-5. Basic External Functions, Predetermined Results

BASIC EXTERNAL

F UNCTION ARGUMENT VALUE RESULT
SIN or COS /2] > 22 0
EXP /Z/ > 88.02968 o
ALOG Z<0 w
SQRT Z<0 -J/z7
DSIN or DCOS /Z/ > 221 0
DEXP /Z/> 88.02968 ©
DLOG Zs0 w
DSQRT Z<0 -V/z/

7.4 SUBPROGRAMS

Subprograms are used to implement programming capability beyond the limitations of supplied functions
and the statement function Although written az o subset of anothei plugrain, lhe subprogram 1s
compiled separately; it has its own independent variables, and its use is not limited to communication
with the program for which it was written. Procedure subprograms handle routine calculations unique
to the user; specification subprograms are used to enter values into labeled COMMON and to supply such
program information as is given by DIMENSION, DATA, EQUIVALENCE, and COMMON statements.

Procedure subprograms may be function or subroutine. In both cases, a series of FORTRAN statements
is used to perform a calculation in conjunction with another program that calls it into operation.
Subprograms are called either by the appearance of the name in an arithmetic or logical statement
(function subprogram) or by a CALL statement (subroutine subprogram). Distinctive features of
procedure subprograms include the ability to pass array names and external procedure names as
arguments (Section 7.4.3). A BYTE or SIGNED BYTE may become an argument in a reference to a
subprogram. The user is reminded that only the address of the BYTE or SIGNED BYTE is passed to

the subprogram.

A subprogram returns control to a calling program through one or more RETURN statements or by an
assigned GO TO statement, whose assign variable has been defined by an ASSIGN statement in the
subprogram or in the calling program. If the ASSIGN statement is in the calling program, the assign
variable must be passed as an actual argument or be in common.

Because they are independent programs, procedure subprograms must terminate with an END statement
to signal to the compiler that the physical end of the source program has been reached. An END

statement causes a return to the calling program and may replace a final RETURN statement.

Formal arguments specified in SUBROUTINE or FUNCTION statements may be referenced in
EQUIVALENCE statements and BYTE statements.

60362000 C 7-9

Example:

INTEGER FUNCTION TEST6 (A, B)
INTEGER A(10), B(10)

BYTE (IA2, A(2) (15=13))
EQUIVALENCE (M, B(3))

N=M+]IA2
TEST6 = N - [IA2
END

The fundamental differences between a function and subroutine subprogram are given in Table 7-6.

There is one type of specification subprogram, the block data subprogram.

Table 7-6., Differences Between Function and Subroutine Subprograms

FUNCTION SUBROUTINE
Passes a value back to the Does not pass a value back to the
calling statement calling statement
Referenced by the name appearing Referenced by a CALL statement
in an arithmetic or logical
statement
Must have one or more arguments Need not have any arguments
Name is typed by first letter or by No type associated with name
the type designation appearing
before the word FUNCTION

7 .41 FUNCTION SUBPROGRAM
A function subprogram is a collection of FORTRAN statements headed by a FUNCTION statement and
written as a separate program to perform a set of calculations when its name appears in an arithmetic

or logical expression in the referencing program.

The format is

t FUNCTION f(al,az,. .. ,an)
Where: t is the type designation: INTEGER, REAL, DOUBLE PRECISION, or empty
f is the symbolic name of the function to be defined

a, are dummy arguments which may be variable names, array names, or external
1
procedure names

7-10 60362000 C

The function subprogram accepts arguments from the referencing program through the argument list
and through common. It returns a single value through the function name. The function name must be
assigned a value by appearing at least once in the subprogram as a variable on the left side of an

arithmetic statement or by appearing in the list of an input statement.

When a function reference is encouniered in an expression, control transfers to the function
subprogram indicated. When RETURN or END is encountered in the function subprogram, control
returns to the statement containing the function reference, or an assigned GO TO statement transfers
control to an indicated statement.

Example:
Referencing Program Function Subprogram
PROGRAM IMPED FUNCTION VECTOR (X,Y)
. Z=SQRT (X*X+Y*Y)
. IF (2)2,2,3
. 2 VECTOR=0,
RESULT=VECTOR (A, B) GO TO 5
. o\ 3 VECTOR=Z
. 5 RETURN
. END
END

The function subprogram is referenced by the appearance of the name and list in the statement
RESULT=VECTOR (A, B)

The values represented by the actual arguments A and B are communicated to the subprogram through
the dummy arguments X and Y.

The function subprogram can also return results through its arguments and/or through common.,

The first calculation in the subprogram involves the appearance of a secondary reference: SQRT. This
reference passes the calculated value in the parentheses to the basic external function for obtaining a
square root. The result is returned to the subprogram and placed in storage location Z, Z is then
tested to see if it is positive. If not, function name VECTOR is equated to zero and that value is
returned to the reference; if it is positive, function name VECTOR is equated to that positive value and
returned to the reference.

The following example shows how a function subprogram can establish a value for the function name by
using an input statement rather than an arithmetic statement.

60362000 C 7-11

Example:

Referencing Program Function Subprogram
PROGRAM INPUT ——INTEGER FUNCTION FUNCT (1)
INTEGER TFUNCT READ {1,1) FUNCT
J = FUNCT (1) ‘<— 1 FORMAT (12)
WRITE (3,1) J RETURN
1 FORMAT (15) END
STOP
END

Since the subprogram is intended to deal with integer values and its name is implicitly real, the name
is typed integer in the referencing program and in the FUNCTION statement of the subprogram. The
subprogram is referenced by the statement

J = FUNCT (1)
which arbitrarily passes the constant 1 as an actual argument. It enters the subprogram through
dummy argument I in the FUNCTION statement but is never used. This step is performed solely to
satisfy the requirements of a function subprogram. The subprogram reads in the value from a card

and stores it in the location designated by the name of the function subprogram, where it is available
to the referencing program which stores it in J and then prints it out.

7 .4.2 SUBROUTINE SUBPROGRAM

A subroutine subprogram is a collection of FORTRAN statements headed by a SUBROUTINE statement
and written as a separate program to perform a set of calculations when called by a referencing
program,

The formats are:

SUBROUTINE s

SUBROUTINE s(a_,a_,...,a)
12 n
Where: s is the symbolic name of the subroutine to be defined
a is a dummy argument; it can be a variable name, array name, or external

procedure name
A CALL statement transfers control from the calling program to the subroutine. A RETURN or END

statement returns control to the next executable statement following the CALL statement in the
referencing program, or an assigned GO TO statement transfers control to an indicated statement,

7-12 60362000 C

The subroutine subprogram accepts arguments from the calling program and/or through common. It
can return cne or movre results through its arguments and/or through common.

Example:
Referencing Program Subroutine Subprogram
PROGRAM TENSOR r— SUBROUTINE MATRIX
COMMON/BLK1/X(20, 20y, COMMON/BLK1/A(20, 20),
* Y (20,20, Z (20, 20) * B(20, 20), C(20, 20)
CALL MATRIX DO 10I=1,20
Next statement DO 10d =1,20
. X =0.0
. DO 20K =1,20
STOP 20 X =X + A(I,K)*B(K,J)
END —10C(I1,d) =X
RETURN
END

The referencing program reserves storage for three successive arrays in labeled common. It is
assumed that two of these arrays, X and Y, have values stored in them before the CALL statement

is reached. The CALL statement transfers control to the subroutine without passing any arguments,
The subroutine performs the matrix multiplication of the first two arrays and stores the results in the
third. Control is returned to the next statement after the CALL in the referencing program. The
subroutine obtains the values for its calculations from the labeled common block and returns the
results it derives to the same labeled common block.

7 .43 EXTERNAL STATEMENT

The name of an external procedure (basic external function, function subprogram, or subroutine
subprogram) can be passed as an argument to a procedure subprogram (function or subroutine)
provided that name has been first declared in an EXTERNAL statement.

The format is:
EXTERNAL vV _,v_,...,v
1’2 n

Where: vi is an external procedure

Use of this statement enables the compiler to distinguish the address of an external procedure from
that of an ordinary variable.

Once the name of the external procedure is passed through a dummy variable of the subprogram, it
operates as a procedure in the subprogram just as it would in the calling program.

60362000 C 7-13

Examples:

Referencing Program Subprograms
PROGRAM ROTATE I_FUNCTION CDC (A, B)
. CDC= -~ - - -
EXTERNAL SIN, COS,CDC RETURN

. END
‘ e
%

. I
CALL ANGLE (X, SIN,Y) _
. SUBROUTINE ANGLE (PHIL, TRIG, C)

CALL ANGLE (R, COS, S) c=rhic W) ~
. RETURN
| END

OMEGA =T+RADIAN (BETA, CDC)

.

4

[FUNCTION RADIAN (ALPHA, Z}ETA)
END — |

RADIAN=ZETA (D,G)

RETURN ’ }
| END @

The referencing program declares three external procedures in the EXTERNAL statement. SIN and
COS are basic external functions in the system library and CDC is a user-written function subprogram.
This declaration makes it possible to pass these names as arguments to subprograms where they can
operate as procedures and evaluate variables in the subprograms.
The first subprogram reference in PROGRAM ROTATE is
CALL ANGLE (X,SIN,Y)
The name SIN is passed to the dummy argument TRIG in SUBROUTINE ANGLE.

The appearance of the name TRIG in the statement

C = TRIG (W)

7-14 60362000 C

imakes thai siatement the equivaient of
C - SIN (W)

and the basic external function SIN is called into oper

a
jo
o
¢
£
I
=
-
b2

The next reference is a call to the same subroutine
CALL ANGLE (R.COS.S)
This time the name COS is passed through the dummy argument TRIG and the statement
C = TRIG (W)
becomes the equivalent of
C =COS (W)
which calls into operation the basic external function for COS using the argument W,
The final reference is the appearance of the external function name RADIAN in the statement
OMEGA =T - RADIAN (BETA ,CDC)

The name CDC is passed through the dummy argument ZETA in the subprogram FUNCTION
RADIAN.

The appearance of ZETA in the statement
RADIAN = ZETA (D,G)
makes it the equivalent of
RADIAN = CDC (D.G)
which references the user-written subprogram FUNCTION CDC.
The actual arguments D and G are passed through the dummy arguments A and B. This
subprogram calculates a value for CDC and returns it to the radian subprogram. From here

it is returned to the referencing program.

The following example illustrates a use of a function reference as an argument which does not require
declaration in an EXTERNAL statement. -

60362000 C 7-15

Example:

Referencing Program Subprogram

PROGRAM SIGMA ——‘ evaluated Il 1

. SUBROUTINE GAMMA (A, 1'3, C)

.

CALL GAMMA (X, SQRT (BETA),Y) RETURN

. END
END

In the CALL statement, SQRT is not itself an argument; the function SQRT (BETA) is evaluated
first and the result is passed as an argument to the dummy variable B in the subroutine. Thus,
SQRT need not be deciared in an EXTERNAL statement.

7.4.4 RELATIVE STATEMENT

The RELATIVE statement declares a name to be an external procedure name.
The format is:

RELATIVE vl,v sV oseae,V

2’3" 'n
Where: vi is an external procedure name

Appearance of a name is a RELATIVE statement declares that name to be an external procedure name.
When the run-anywhere option has been selected, appearance of a name in a RELATIVE statement will
cause all references to this procedure to be made in a way which preserves the run-anywhere
characteristic. An external procedure name which is to be passed as an actual argument to a

procedure subprogram cannot appear in a RELATIVE statement. (It would appear in an EXTERNAL
statement,)

7.4.5 CALL STATEMENT
Subroutines are referenced by the appearance of a CALL statement in the referencing program.
The formats are:

CALL s

CAL
Ls (al,az, an)

7-16 60362000 C

Where: s is the name of the subroutin

L
oy
o
et
33
Q
el
0
D
2

a is an actual argument

The name may not appear in any specification statement in the calling program except in an EXTERNAL
or a RETLATIVE statement,

The CALL statement transfers control to the subroutine named. When a RETURN or END statement
is encountered in the subroutine, control returns to the next executable statement following the CALL

in the referencing program. If the CALL statement is the last statement in a DO loop, looping
continues until the DO is satisfied.

7.4.6 RETURN STATEMENT

This statement marks the logical end of a procedure subprogram; it returns control to the calling
program.

7.47 BLOCK DATA SUBPROGRAM

Initial values can be entered into the elements of the labeled common block at compile time with the

block data subprogram. This is a nonexecutable subprogram composed of specification statements, a
DATA statement, and an END statement.

The first statement of this subprogram must be
BLOCK DATA
It is followed by the specification statements:

COMMON

EQUIVALENCE

DIMENSION

Type statements
These specification statements are followed by the DATA statement which enters initial values into
one or more elements of labeled common. If an element in a common block is being given an initial

value, specification statements for the entire block must be included. Elements in unlabeled common
may not be given initial values by the block data subprogram.

60362000 C 7-17

Example:

BLOCK DATA

COMMON/ENTER/A, C,D,1,K
DIMENSION A(4), B(4), C(5), D(2), I(3), J(3), K(2)
EQUIVALENCE (A, B), (I, J)
DATA A(1), A(2), A@3), A(4)/1.1,2.2,3.3,4.4/,C(1), C(2), C(3), C4), C(5)/
*1.1,2.2,8.83,4.4,5.5/,D(1),D(2)/10.1,10. 2/,1(1), I(2), I(3), K(1), K (2)/
*1,2,3,4,5/

Explanation:

7-18

The DIMENSION statement reserves storage for the following arrays.

A1)
A(2)
A@)
A4)

B(1)
B(2)
B(3)
B(4)

c@)
C(2)
C@)
C(4)
C)

D(1)
D(2)

I(1) J() K1)
1(2) J(2) K@)
13) IB3)

The COMMON statement enters arrays A,C,D,I,K, in that order in the common block labeled

ENTER.

The EQUIVALENCE statement enters arrays B and J into the labeled common block to share
storage with arrays A and I.

The DATA statement enters the following values into the designated locations of the labeled

common block:

ENTER

A(2)
A(3®)
A(4)

A1)

B(1)

fury

oy
-

e
-

B(2)

oy
-

B(3)

WY

-
-l

B(4)

c

-
-

C(2

<
-

C(3) =

C4)

C(5) <

Y
-

D(1) =

D(2)
I(1)
1(2)
1(3)
K(1)
K(2)

..
DN Ot 0O DD o

[

e
<

J()

P
-

e —
-

J(2)

A A A

-«

-l

J@)

-

p—y

Gl WO OU B WNH B WN

-

60362000 C

COMPILATION AND EXECUTION 8

“

8.1 COMPILATION

The user provides the source programs. 1700 MS FORTRAN will continue compiling source programs
until it encounters a statement of the following form:

AMON

MON must be in character positions 2, 3, and 4 immediately preceded by a blank (A) in character
position 1. This statement must immediately follow the END statement which marks the physical
end of a source program unit. The MON statement returns control to the operating system.

The OPT statement allows the user to select options from the standard input device. The selected
options may exist in three ways:

1, L, X, P options assumed with omission of OPT card,

2. OPT card with desired options after column 5.

3. No options specified by OPT card. This permits options to be entered through the standard

input comment device.

OPT must be in character positions 2, 3, and 4 immediately preceded by a blank in column 1. Options
must be preceded by a blank in column 5. The options may begin any column after column 5.

The options are:

Relocatable binary object program output on standard binary output device.

L Source program listing (contains the generated statement numbers) on the standard list
device.

A Object code listing on the list device.

M Condensed object code listing on the list device, Listing contains generated statement
numbers and first word of object code generated by each statement.

R Run-anywhere object code. This option allows a program to be executed anywhere in
allocatable core.

60362000 C 8-1

CAUTION

Programs compiled with the R option will not execute
properly in partitioned core or at addresses above $8000.
In addition, programs compiled with the R option which
call user-written subroutines must not declare formal
parameters located in Part 1. For example:

PROGRAM

EXTERNAL IPART1

°
.

CALL SUB (PARTI)

°
.
)

END

will not execute properly if the R option is used and
IPARTI1 is in Part 1 memory.

K ANSI FORTRAN compatibility; integers occupy two 1700 computer words

X Relocatable binary object program placed on the load-and-go file. Disk or drum is used
for load-and-go.

Unrecognized parameters and blanks are ignored. Compiler diagnostics are provided on the list
device regardless of the options selected. Compilation error diagnostics are in Appendix L. A fatal
diagnostic prevents generation of any object code.

The following examples illustrate the output from the various options for a small test program.
OPTION L

Note that full compilation is not done. Only a statement syntax check is made.
] PRNAGRAM FTNOPT

FxaMPLE FOR FORTRAN COMPILER OPTIONS

[aNeNal

IMENSTION A(S) o1 (H)
N0 1 TI=145
I(1Dh)=1183/A(11)
1 CONTINUE
CaLL SUREXMAA,I)
J=KsbHO(
TF(FUNEXNM(64G)) 10420410
1r Go To 20
20 CONTIwNuF
END

—~ D20 DNTNS 0V

—

8-2 60362000 C

OPTIONS LA

1 PRAGRAM FTNOPT
c
c EXAMPLE FOR FORTRAN COMPILER OPTIONS
C
2 DIMENSTON A4S)e1(5)
3 NO 1 Il=z1.5
4 I(ID=T1#3/A(11)
5 1 CONTINUE
6 CALL SUREXM{A+I)
7 JzK*6aC
A TF(FUNEXNM (409)) 10020410
9 10 Go TO 20
10 20 CONTINUE
11 END
nO0O0 0000 NAWM FTNOPTY
0000 1819 FYNOPT JMP® ,00001
€001 wvona A RSS 10
NOOR NOOS 1 RSS 5
no1G Cco01 S RSS 1
0011 0002 0on3e CON 3
0012 4001 J RSS 1
0013 0001 K 3ss 1
0016 0006 vonss CON 6
015 0002 c RSS 2
0017 41CE 41CF, CON 16846
CO01R 6666 CON 26214
3 0019 nani «00001 ENA |
0014 KRFS STA® 11
6 001B 0An2 «00006 ENA ?
no1C 28F3 MUIs 11
001D 6R2C STA® ,0000S
0P1E C€8F) LDA® 17
001F 28F1 MUI®* 0003$
0020 6824 STAs ,0Nn006
0021 5400 RTJe FLOAY
0022 TFFF
f023 No4A P ADC «00006
0024 5400 RTJe FLOY
0n2% TFFF
0026 FA4Q CON =147}
0027 0049 P ADC «+000085
902R TFFE P ADC A -2
0029 5400 RTJe QANFIX
002A TFFF
202R E8F6 LDGe IT .
002C 6ADD sSTAs | =190

60362000 C

11
11

PROGRAM LENGTH $006F

02N
002F
002F
0030
0031
60132
0033
00
0035
0036
no37
N03AR
€039
003A
cn3R
003C
003D
CO03E
003F
0040
0041
0042
0043
LIZ XS
noes
n0s6
noav
1048
0049
0044
nos&n
0040
NO&E
n000

oPTS = AL

EXTERNALS
QBQFIX FLCT

Negz
NAQS
98ED
N1
18ES
5400
TFFF
0001
no0nR
S5CER
nol14
SCFC
9N&n
0018
N0AR
SCES
2019
SCE®
F400
N04R
SCeR
68CF
%400
TFFF
ro1?
CoaCs
n108
1R0nS
nool
0ony
0002
8400
TFFF
0000

RBSTP FLOAT

1o
«00005
«0N0NG6
e 00007
20

79)

RAO#
ENA
SUB#
SAM
JMP @
RTJe

ADC
ADC
RTJe
ADC
RTy®
CON
ADC
ADC
RTJ#»
ADC
RTJ®
CON
ADC
RTJ®
STA»
RTJe

ADC
CON
SA2
JMP e
BSS
BSS
BSS
RTye

END

11
I1

1
00004
SURE XM

A

1

(FLOAT)
0006%
(FLOT)
-25279
c
«00007
(FLOAT)

K .
(FLOT)
-7167
«00007
(0BQF IX)
J
FUNEXM

41CE.,
-16186

20

SUBEXM FUNE XM

60362000 C

OPTIONS LM

Note condensed object code listing. This form is useful when the list device is a teletype.

1 PROGRAM FTNOPT
C
c EXAMPLE FOR FBRTRAN COMPILER OPTIONS
C
2 DIMENSTON A{S)e1(5)
4 I(1Dh) =T1w3/A(11)
5 1 CONTINUE
6 CALL SUREXM{A.I)
7 JzK*baC
[IF(FUNFXNM(449)) 10,20510
9 10 Go TO 20
10 20 CONTINUE
11 END
3 0019 0A01} «00001 ENA 1
4 n01R nan? 00004 ENA 2
s no2n NRE2 1 RAQ® I
6 0032 Sa4no0 RYJe SUREXM
7 no36 SCER RTJ® (FLOAT)
a 0043 5400 RTJe FUNFXM
9 004R 189S 10 JMP® 20
11 0nan 5400 20 RTJe 0QBSTP
11 0000 0000 END 0
PROGRAM LENGTH $004F (79)
0PYS = LM
EXTERNALS

Q8QFIX FLCT NBSTP FLOAY SUBEXM FUNEXM

60362000 C

OPTIONS LAR

Note that no program relocatable addresses are generated; hence, the program can run in allocatable

core,

—

- DODNINS LN

eNaXe]

oono

nooo
0001
NOOR
no10
0011
0012
0013
00lae
N01%
2017
0018
np19
V01A
001R
n01C
no1p
nnlE
001F
7020
0021
on22
00?73
nea24
0025
6026
noa27
no28
0n29
0OPA
002R
002C
0020
002E
nazF
2030
Vo031
no32

PROGRAM FTNOPT

EXAMPLE

FOR FORTRAN

SRS

CcoOMPT)
coMeILF

DIMENSTON A4S)e1(5)

D0 1 113145
I(Il)=aT1e3/A(11)
1 CONTINUE

CaLlL SUBEXMtA.I)

J=K+haC

TF(FUNFXV(649)) 10020010
10 6o TQ0 20
20 CONTINUE

END
nooo NAW FTNOPT

«00001

1816 FYNOPT JUMP® ,00002
nona A RSS 10
3008 ¢ BSS L)
nool It ASS 1
nNo3 00n3e CON 3
0001 J ass 1
J001 K BSS 1
0006 0ones COAN [
npo2 (o RSS 2
41CE 41CE, CON 16846
666K CON 26214
58n2 «000N2 RTY® ,00005
FFES ADC «+00001
091 «0000S RSS 1
CRFF LDA® ,00008
RBFC ADD® ,L,0000S
6RFC STAe ,00008
na0) ENA 1
6REF STAs 11
nan? «0NN06 ENA 2
2B8ED MUTe® 11
AR2C STae ,00007
CRER LDAs 11
28FR MUI® 00013¢
6A2A STAs ,00008
5400 RTues FLOAT
TFFF
R027 ADC «00008
R40N RTJe FLOT
TFFF
SFA4 CON 24484
ne?e ADC « 00007
7FNO ADC A
8400 RTJe QBQGFIX
TFFF
EBNE LDGes 11
6ADT STAs 1

ER OPTIONS

-2

60362000 C

11
11

PROGRAM LENGTH $005%

0033
0G34
003S
0036
0037
003A
g03°
n034A
d03R
003C
oo3n
003F
003F
0040
0041
0042
0043
0044
no4s
0046
0047
0048
0049
rosA
NO4R
004C
004N
004E
904F
9050
n0S1
0053
0054
0000

OPTS = RAL

EXTERNALS
Q8QFIX FLOT

60362000 C

osnc
A0S
98nA
n13l
18ES
Ss40n
TFEF
FFCe
FFCF
SCER
FFD&
SCFC
S9ne
TFN4
2010
SCFS
FFCF
5CE6
SEa40
nooR
SCF8
ARC9
5400
TFFF
FFcR
cocs
010%
1805
0oot
7001
noo0n2
5400
TFFF
0000

QasTp

FLOAT

lo
«00007
«00008
«000N9
20

8%)

RAQ#»
ENA
SUR#
SAM™
JMP#
RTJe

ADC
ADC
RTJ®
ADC
RT U
CON
ADC
ADC
RYJ#
aADC
RTJ®
CON
ADC
RTJe
STAs
RTJe

aDpC
COAN
SAZ
JMP®
BSS
BSsS
RSS
RTJe

END

I1

00006
SURE XM

A

! .
(FLOAT)

00068
(FLOT)
22996

c

400009
(FLOAT

K

(FLOT
24128
«00009
(Q8QF IX)
J
FUNEXM

41CE.
-16186
L3
20
1
1
2
casTP

SUBEXM FUNEXM

OPTIONS LAK

This form allocates two words of memory for each integer. The actual executable code only uses
one of the two words.

8-8

-

1

_DODNIPANSWLN

C

0000
0000
0001
000R
0015
0017
0018
0014
001¢
001N
001F
0020
0021
9022
0023
0026
0025
0026
0027
0028
0029
0024
0028
no2¢C
002D
c02F
002F
0030
0031
0032
0033
0034
0035
0036
0037

PROGRAM FTNBPT
EXAMPLE FOR FORTRAN COMPILER OPTIONS

DIMENSTON A4S)eI(5)

NN 1 11s1,5
I(1l)=1103/78(1])
1 CONTINUE

CAaLL SUBEXM{As1)

JEK*68C

IF(FUNEXV (449)) 10420410
10 GO T0 20
20 CONTINUE

END
2000 NAM FYNOPT
1821 FTINOPT JUMPe® 00001
vNnaA A BSS 10
nona I RSS 10
non2 11 RSS 2
0003 0003¢ CON 3
noo2 J 8SS ?
noo2 K BSS 2
noo6 Vooes CON 6
0007 c B8SS 2
41CE 41CE, CON 16846
6666 CON 2h21a
nap1 «00001 ENA 1
68F2 STAs 11
0AQ2 «00004 ENA 2
28Fn MUIe 11
682F STA» ,00008
0aQ2 ENA F]
28ED MUI® I1
682D STA® 00006
CBREPR LDAes 11
2REC MUI® 0003%
6R2R STA# ,00007
5400 RTJe FLOAT
TFFF
nose P ADC «00007
5400 RYJe FLOT
TFFF _
FAan CON =147}
noss P ADC «00006
TFFE P ADC A
8400 RTJe QBQFIX
TFFF
F81E LOG® ,00005
LY.} STAs |

-2

=290

60362000 C

o

11
11

0038
0039
0034
003R
003C
003N
003E
n03F
0040
0041
0042
0043
0044
00458
0046
0047
N04R8
0049
004A
0048
004C
004D
004E
N04F
0050
0051
0052
0053
0054
0055
0056
0057
0059
005A
0000

benc
0AQS
98nA
0131
18€6
5400
TFFF
0001
noor
SCER
no1c
SCEC
9040
001n
nos?
SCES
001A
SCE6
E4p0
0057
SCER
68CA
56400
TFFF
nN01F
Cocs
0l06
1806
0001
0001
nool
0002
5400
TFFF
0000

oo

PROGRAM LENGTH $0058

OPTS = KAL

EXTERNALS
Q8OQFIX FLOY

60362000 C

QgsTp

FLOAT

10
«0N00S
« 00006
¢ 00007
«00008
20

91)

RAQ#
ENA
SUB#
SAM
JMP#
RTJe

ADC
ADC
RTJU®
ADC
RTJ®
CON
ADC
ADC
RTJ#
ADC
RTJ®
CON
aDC
RTJ®
STae
RTJe

ADC
CON
SAZ
JMP e
RSS
8SS
B8SS
ASS
RTJe

END

11
8

Il

1
«00004
SUREXM

A

1

(FLOAT)
00068
(FLOT)
-25279
c

«00008
(FLOAT)
K

(FLOT)
-7167
«0N008
(QRQF IX)

J

FUNE XM

41CE.,
=1618¢

6
20

N =8 b pun

Q8STP

SUREXM FUNEXM

8-9

OPTIONS LX

Note that the full compilation has taken place.

1 PROGRAM FTNOPT

e XaXa]

EXAMPLE FOR FORTRAN COMPILER OPTIONS

DIMENSION A(S)s1(5)
00 1 111,45
T(ID)aTte3/a(l])
1 CONTINUE
CALL SUBEXM{A+I)
JEK*6al
IF(FUNEXM (4649)) 10420,10
10 Go To 20
20 CONTINUE
END

- DODNPIPASLIN

—

PROGRAM LENGTH %004F (79)
OPTS = LX

EXTERNALS
QBQFIX FLCT 08STP FLOAT SUBEXM FUNEXM

OPTIONS PX

Note that no listing output is generated, but full compilation has occurred with object and load and go
output.

OPTS = PX

8.2 EXECUTION

When option P is selected, a punched output is generated containing the binary object program. This
output may be loaded by MSOS. This form may also be loaded by the system initializer. When option
X is selected, the binary object program is output as a load-and-go file on disk or drum. It can be
loaded and executed in the same run as the compilation.

Upon completion of the load, any unsatisfied external references in the object program are satisfied
from the program library.

Execution time error messages are listed in Appendix M.

8-10 60362000 C

8.3 PROGRAM OPERATING PROCEDURES

his section outlines the method of compiling and executing a FORTRAN program under 1700 MSOS.
To illustrate the step-by-step interaction between the operator and the system, typical values are
selected for the parameters. It is assumed the system is without a timer.

m
Py

The following logical unit designations are made.

Device Unit No.
Card punch 11
Card reader 10
Mass storage device 8
Printer 12

The FORTRAN deck is placed in the card reader with the system control cards around it as shown in
the following illustration:

{/ DATA DECK (IF ANY)

4{’7 SOURCE DECK FOLLOWS

(/ PROGRAM TESTA

/OPT LAPX

RFTN
%K,110,L12,P11

*JOB,FTNRUN, 000101

60362000 C 8-11

The JOB card is utilized in the job processor to begin a new background job. The next card assigns the
I/0 units. In this example, it specifies standard input from the card reader, list output to the printer,
and binary output to the card punch. The *FTN card calls in the compiler to compile the source deck.
The OPT card is read by the compiler, in this case list, list assembly code, punch relocatable binary,
and put binary on the load and go file are the options selected. The compiler then reads in the source
seck and compiles the program. The MON card after the source deck releases the compiler and returns
control to the job processor. The *LGO card instructs the job processor to load the object code for the
program: along with any object library routines necessary to execute the program. It is assumed in
this example that the program reads in the data deck during execution. After execution, control is re-
turned to the job processor which reads in the *U card and returns control to the teletype.

8-12 60362000 C

FORTRAN MULTIPROGRAMMING 9

e

This chapter discusses the use of the re-entrant ENCODE/DECODE and non-re-entrant ENCODE/
DECODE run-time packages. These packages have, in general, reduced capability from the FORTRAN
1/0 run-time discussed in other chapters with an extension in the interface capability to MSOS monitor
requests. The features throughout this section are to be used with one word integer-type variables
wherever integer-type variables are used.

The re-entrant and non-re-entrant packages have an identical user interface. This duplication of
capability allows inital program debugging in the background using the non-re-entrant version with a
transfer to the re-entrant version for execution in the foreground.

The intrinsic functions defined in Table 7-3 and the basic external functions defined in Table 7-4 are also
operable with the ENCODE/DECODE run-times.

9.1 RE-ENTRANT FORTRAN

Two characteristics of FORTRAN programs which execute in a multiprogramming environment are:

. Priority levels can be assigned to the different programs executing in the computer.

° The monitor and standard FORTRAN library are re-entrant.

?.1.1 PRIORITIES

Assigning different priorities to the programs in memory permits the monitor (the basic portion of

1700 MSOS which allocates the use of the computer on a priority basis) to determine the order in which
programs execute. When a program asks the monitor to initiate an 1/0 request, control may be given
to another program to execute, rather than waiting for completion of the I/O request. Upon completion
of the request, if the completion priority is higher than the current executing program, control returns
to the program which made the 1/0 request. The program currently executing is interrupted, and the
monitor retains all pertinent information at the point of interruption. When control is eventually
returned to this program of lower priority, all pertinent information saved upon interruption is restored.
if the completion priority of the I/O request is not higher than the currently executing program, the
completion of the I/0 request is processed at a later time according to its priority. The process can be
cascaded to the depth allowed by the monitor. In the standard release system levels 4, 5, and 6 are
defined as re-entrant FORTRAN levels.

60362000 C 9-1

9.1.2 RE-ENTRANCY

A program which can be interrupted and re-entered by another program of high priority level is called
re-entrant. Re-entrant programs require all pertinent information be saved upon interruption and
restored when execution is resumed.

All programs or subprograms that may run at more than one level concurrently must be re-entrant.
The FORTRAN library falls into the re-entrant category since it can be called from more than one
priority level.

9.1.3 FORTRAN LIBRARY

All routines in the FORTRAN library use a scratch area in the communications region of the monitor
(locations $C5 to $E5) for intermediate results. Interruption of a FORTRAN program by another
FORTRAN program requires storing and restoring this scratch area into and from volatile storage in
the monitor. Thus, n levels of interrupts by FORTRAN programs result in n-1 copies of the scratch
area in volatile storage.

FORTRAN
Scratch 1

FORTRAN
Scratch 2

: Volatile
Storage

FORTRAN
Scratch n-1

(Next available location in Volatile Storage)

End-of-Volatile storage {

It is not desirable for n to assume large values since larger core requirements for the monitor
restrict the amount of core available for user programs. Limiting the priority levels of FORTRAN
programs to three or four levels restricts the number of interrupts FORTRAN programs can have.
This holds the requirements on volatile storage to a reasonable size.

9-2 60362000 C

9.1.4 FORTRAN READ/WRITE STATEMENT PROCESSOR

In order to implement the FORTRAN READ/WRITE statement as part of a re-entrant statement

processor, a deviation from the ANSI standard FORTRAN specifications was made for the following
reasons:

® The size of the input/output buffer to be reserved in the statement processor is dependent
upon the largest message for input/output by any FORTRAN program.

) Since the statement processor is re-entrant, either the buffer is stored in volatile storage
on interruption (again requiring a large amount of volatile) or interrupts are inhibited until
the complete buffer is input/output. Since several milliseconds are required to inhibit
interrupts, this method would defeat the purpose of a multiprogramming system.

To resolve the preceding objections, the FORTRAN READ/WRITE statement processor places the
responsibility of providing an input/output buffer upon the FORTRAN programmer. Also, since control
is not returned to the FORTRAN program until a READ/WRITE statement has been completely
processed, there is no chance of the user destroying the message by attempting to do more READ/
WRITE processing into his buffer. This negates the necessity of storing and restoring his buffer.

Re-entrancy places a further restriction on the READ/WRITE statement. The FORMAT statement may

designate only one input record {80 card columns) per READ statement.
1 o4 X

9.1.5 FORTRAN/MONITOR RUN-TIME INTERFACE (FORTRA)

The monitor has provisions to request a mass storage READ/WRITE or an unformatted READ/WRITE,
schedule the execution of a new program, schedule the execution of a new program after a time
increment has elapsed, release core after execution of the current program is completed, etc. For the
FORTRAN programmer, however, communication with the monitor is only possible through the
FORTRAN/monitor run-time package. This package has entry points which generate specific requests
to the monitor when called by a FORTRAN program. Thus, when a CALL READ is made with the logical
unit equal to mass storage and the mass storage addresses are provided, the run-time package
generates the necessary calling sequence to the monitor, then makes the input request and returns to

the user's program.

CALL READ, CALL WRITE, CALL FREAD, and CALL FWRITE, which are entry points to the
FORTRAN/monitor run-time package, are direct requests to the monitor. The READ/WRITE
FORTRAN statements are used specifically for reads or writes with a FORTRAN FORMAT statement.

9.1.6 ENCODE/DECODE
If the FORTRAN/monitor run-time interface is used to transfer the record, ENCODE/DECODE provides

the programmer with the capability to convert ASCII characters to hexadecimal data (DECODE) or to
convert hexadecimal data to ASCII characters (ENCODE).

60362000 C 9-3

With the FORTRAN/monitor run-time interface, ENCODE/DECODE, and the READ/WRITE statement
processor, the FORTRAN programmer has the full capabilities of data input/output and has sufficient
control over the problem to achieve correct results in a multiprogramming real-time environment.

9.1.7 RUN-ANYWHERE PROGRAMS

So that FORTRAN programs can execute properly in allocatable core, a run-anywhere option was added
to the FORTRAN compiler, removing all absolute address references from the compiled program.

CAUTION

Users are warned that programs compiled with the
run-anywhere (R) option will not execute properly in
partitioned core or at addresses above $8000.

9.2 FORMAT SPECIFICATIONS

Data transmission between storage and an external unit requires a call to an I/O routine (READ,
WRITE, etc.) and may require a FORMAT statement. The I/O call specifies the input/output device,
the process, and a list of data to be transmitted. No FORMAT statement is required to transmit binary
information, and a direct call to an I/O routine may be made. With ASCII information, a FORMAT
statement specifies the type of conversion to be made on the data before or after transmission.

9.2.1 FORMAT STATEMENT

The FORMAT statement contains the specifications relating to the internal/external structure of the
corresponding data elements.

FORMAT(specl, . e ,k(specm, Lel), specn, cal)
Where: spec is a format specification
k is an optional repetition factor which must be an unsigned integer constant

FORMAT statements are nonexecutable and may appear anywhere in the program.

9-4 60362000 C

9.2.2 FORMAT CONVERSION

The data elements in I/0 lists are converted from external to internal or from internal to external

representations according to conversion and editing specifications in the FORMAT statement. The
FORMAT statement may contain both conversion and editing specifications. The format conversion
specifications are:

Ew.d Floating-point conversion with exponent Limited to output
Dw.d Double-precision floating-point with exponent specifications only
Fw.d Floating-point conversion without exponent

Iw or Iw.d Decimal integer conversion
$w or Zw Hexadecimal integer conversion
Aw Alphanumeric conversion

Rw Alphanumeric conversion
The format editing specifications are:

wX Intra-line spacing
xH Heading and labeling

Asterisk *String of ASCII Characters*
or
Quote 'String of ASCII Characters'

/ Line-feed/new record

Both w and d are unsigned integers. w specifies the field width (the number of character positions in
the record) and d specifies the number of digits to the right of the decimal within the field.

9.2.3 CONVERSION SPECIFICATIONS
Dw.d OUTPUT

This specification converts double-precision floating-point numbers in storage to ASCII characters,
including an exponent for output. The field occupies w positions in the output record with d digits as

60362000 C

the most significant part of the fraction. The corresponding floating-point number will appear
right-justified in the field as:

+, xxxxxxD:tee

Where: 0<ces39
Let: A contain -1276.45 or .001276450D0
And: FORMAT(D15.4)

Result: AAAAA-.1276D+04 or
AAAAAA. 1276D-02

Ew.d OUTPUT
This specification converts floating-point numbers in storage to ASCII characters, including an exponent
for output. The field occupies w positions (minimum 6) in the output record with d digits (#0) as the most
significant part of the fraction. The corresponding floating-point number appears right-justified in the
field as:

+. XXXXXXtee

Where: 0Osee<39

The fractional portion of the number contains a maximum of six digits. If the field width is too short to
accommodate the number, an asterisk appears in the most significant position to indicate an error.

Let: A contain -67.32 or . 06732
And: FORMAT(E10. 3)
Result: A-.673E 02 or

AA.GT3E-01
Let: A contain -67,32 or . 06732
And: FORMAT(ET. 3)

Result: *,.6E 02 or
* 6E-01

Fw.d OUTPUT

This specification converts floating-point numbers in storage to ASCII characters, excluding an exponent
for output. The field occupies w positions in the output record with d digits to the right of the decimal.
The corresponding floating-point number appears right-justified in the field as:

., . X.X. .. X,

-5 +5 . .
The range of the internal number represented must be from 10 ~ to 10 -1. If this range is exceeded,
the field is filled with asterisks and no error flag is returned as in Section 9.4.3. If the field width

9-6 60362000 C

is too short to accommodate the number, an asterisk appears in the most significant character position
to indicate the error.

Let: A contain +32. 694
And: FORMAT(F17. 3)
Result: A32.694

Let: A contain -32767.0
And: FORMAT(F7. 3)
Result: *2767.0

Fw.d INPUT

This specification converts ASCII characters in storage to a floating-point number and scales the string

of integer digits by 10-d. The field occupies w positions in the input record; a decimal point in the

input record causes the d portion of the conversion specifications to be ignored. With d = 0, both fields
must be specified to indicate no scaling. The range of the internal number represented must be from

1075 to 10%5-1.

Let:

Result:

And:
Result:

And:
Result:

Iw, Iw.d OUTPUT

INPUT = A(1) = A9.

A@) - 35

Where: A contains ASCII characters

FORMAT(F4.2)
9.35
INPUT = A(l) =A-

AQ2) = 52
A()=.3

FORMAT(F6.3)
~-52.3

INPUT = A(l) =A9

A@)=.5

A@3) =20

A@4) =n-

A(5) = 50

A(6) = 60
FORMAT(2F6.2)
9.520 and

-50.36

-d e od s .
This specification converts integer values to ASCII characters with 10 ~ scaling if d is specified. The
magnitude of the integer number must be from 1079 to 10*5-1, If the field is wider than required, the

60362000 C

output quantity is right-justified and blank-filled.

the most significant character position to indicate the error.

Let:

Let:
And:
Result:

Iw INPUT

This specification converts ASCII characters to an integer value.

N contain 301
FORMAT(I5)

AA301

N contain -336
FORMAT(I5. 3)
-.336

from —(2+l5-1) to 2+15—1.

Let:
And;
Result:

Let:
And:
Result:

INPUT = 1905
FORMAT (14)
N = 1905

INPUT =0,9.3,8,0,2

FORMAT (611)
N(1) = 00 N(4) = 08
N(2) = 09 N(5) = 00
N(3) = 03 N(6) = 02

$w or Zw OUTPUT

This specification converts a hexadecimal integer value in storage to ASCII characters for output.
If the field width is too short, an asterisk is inserted
The magnitude of the internal number represented must be

field occupies w positions in the output record.
in the most_significant character position.

from -2*1°-1) to 2+15_1,

Let:
And:

Result:

Let:
And:

Result:

9-8

N contain 03A2 16
FORMAT ($6) or FORMAT (Z6)
AN03A 2

N contain 83A216

FORMAT ($3) or FORMAT (Z3)
*A2

If the field width is too short, an asterisk appears in

The magnitude of the number must be

The

60362000 C

$w or Zw INPUT

This specification converts ASCII characters in storage to a hexadecimal integer value. The magnitude
of the internal number represented must be from -(2+15-1) to 2+15-1,

Let: INPUT = 00AB
And: FORMAT ($2) or FORMAT (Z2)

Result: N contains AB as a hexadecimal integer value
Aw OUTPUT

This specification is used to output ASCII characters. w characters/word are picked up, starting with
the leftmost character, and stored in the output buffer. If the field width is greater than two, an error
return occurs.

Let: N(1) = Ca
N(2) = NX
N(3) = =A
N(4) = YA
N(5) = 1A
And: FORMAT (A1,A2,3A1)

Result: CNX =Y1

Let: N(1) = CN
N(2) = 1=
N(@3) = Y1
And: FORMAT(3A1)
Result: Cly
Aw INPUT

This specification accepts as list elements any set of eight-bit characters including blanks. The
internal representation is ASCII; the field width is w characters. If w exceeds two, an error return
occurs. w characters are picked up as a left-justified ASCII word; the remaining spaces are

blank filled.

Let: INPUT = CNXYYZ
And: FORMAT (6A1)
Resuit: N(1) = CA N(4) = YA

N(2) = NA N(5) = YA
N(3) = XA N(6) = Z A
Let: INPUT = CNXYYZ
And: FORMAT (2A2, 2A1)

Result: N(1)=CN N(3)=Ya
N(2)=XY N@4)=2Za

60362000 C 9-9

Rw OQUTPUT

This specification is the same as Aw specification except that the output quantity represents the
rightmost quantity. If the field width is greater than one, an error return results.

Let: N(1) = 0A and N(2) = 0B
0 = 8 bits of zeros
And: FORMAT(2R1)
Result: AB
Rw INPUT

With this specification the input quantity goes to the designated storage location as a right-justified
zero-filled word. If w is greater than one, an error return results.

Let: INPUT = AB

And: FORMAT(2R1)

Result: N(1) = 0A
N(2) = 0B
0 = 8 bits of zeros

9.2.4 EDITING SPECIFICATIONS

wX OUTPUT/INPUT

This specification may be used to include w blanks in an output record or to skip w characters on input
to permit spacing of input/output quantities.

Let: = -32.576
And: FORMAT (3X, F7.3)
Result: AAA-32.576

wH OUTPUT/INPUT

This specification provides for the output of any set of eight-bit characters, including blanks in the form
of comments, titles, and headings. w is an unsigned integer specifying the number of characters to the
right of the H that are transmitted to the output record as ASCII characters. The H field may be used to
read a new heading into an existing H field.
FORMAT (3X, SHLABEL, 1X, 4HFORA, 6HOUT PUT)
Result: AAMLABELAFORAQUTPUT
FORMAT(H11, HHNEWAHEADING)

Result: NEWAHEADING

9-10 60362000 C

QUOTE OR ASTERISK 1/0

The asterisk field descriptor causes Hollerith information (excluding asterisks) to be read in

aGa 1Nto or

written from the characters specified between two asterisk delimiters. The single quote field
descriptor causes Hollerith information (excluding single quotes) to be read into or written from the

onharnantans ananifiad haturnan 4« ainagla st Y

Coaraciers speciiied oeiween Lwo singie guote delimiters.
Examples:

WRITE (3, 20)
20 FORMAT(*ATHIS IS A HOLLERITH STRING*)
Result: THIS IS A HOLLERITH STRING

WRITE (3, 30)
30 FORMAT('ATHIS IS A HOLLERITH STRING')
Result: THIS IS A HOLLERITH STRING

NEW LINE

The slash, which signals the end of a line, may occur anywhere in the specification iist. This generates
a new line into the output record.
FORMAT(1X, 6HLINEA1, //THALINEA3)

RESULT ALINEAl
ALINEA3

9.25 SPECIAL CHARACTER SPECIFICATIONS

If a special character appears as the first character in the output record, the following interpretation is
made:

1 Top-of-form

0 Line feed

FORMAT(1H1, 15X, 12HTOP-OF-FORMA)
The run-time converts the first character of the output buffer: if it is an ASCII code for 0 ($ 30) to an
ASCI code for a line feed ($0D), and if it is an ASCIH code for 1 ($31) to an ASCII code for a top of

form ($0C). This technique does not require the use of the FORTRAN line printer logical unit to
interpret form control.

60362000 C 9-11

9.2.6 REPEATED FORMAT SPECIFICATIONS

Any FORMAT specifications may be repeated by using an unsigned integer constant repetition factor (k)
as follows:

k (spec)
Where: spec is any conversion specification. The level of repetitions is limited to one.

Thus, (kl(--—-kz(—--—))) is an error.

But (ky----), -——-kz(--——), —---k3(--——)) does not result in an error return.

9.3 FORTRAN READ/WRITE STATEMENT PROCESSOR

Input/output FORTRAN control statements (READ/WRITE) transfer information between core storage
and external peripheral devices connected to the computer.

9.3.1 WRITE STATEMENT

WRITE(i,n) L

transfers information from storage locations given by identifiers in the list (L) to a specified peripheral
device (i) according to the FORMAT statement (n).

WRITE(10,20) A, B, C
20 FORMAT(3F10. 6)
WRITE(10, 30)
30 FORMAT(33H THIS STATEMENT HAS NO DATA LIST.)

9.3.2 READ STATEMENT

READ(i.n) L

transfers one record of information from a specified peripheral device (i) to storage locations named by
the list (L) identifiers according to the FORMAT statement (n).

READ(10,20)X,Y, Z
20 FORMAT(3F10. 6)
READ(10, 30)
30 FORMAT (33H(message)) where 33 blank spaces must appear between the H and the
terminating parenthesis.
READ(10,40)(Z(K),K=1,8)
40 FORMAT(F10. 4)

9-12 60362000 C

9.3.3 STATEMENT PROCESSOR

The statement processor (Q8QIO) serves as an interface between the FORTRAN READ/WRITE statement,
the format processor (ENCODE/DECODE), and the input/output processor (1700 Monitor READ/WRITE
request processor). It allows the FORTRAN programmer to use the READ/WRITE statements as
defined by FORTRAN with the following exceptions:

° The user must supply a buffer in which the format processing takes place.

. Eighteen temporary locations immediately preceding the buffer contain the calling sequence
to the monitor for read/write processing and information for re-entrancy.

° Only one RECORD/READ statement on input may be executed; the FORMAT statement may
specify only 80 columns of data for card input.

° The RECORD/WRITE statement on output may be as long as the space in the buffer allows
with the following limitations: if the programmer has not specified a new line after 150
characters have been packed into the buffer, a carriage return is automatically inserted
into the message and continues to be inserted every 150 characters until the FORMAT
processing is complete.

'Y Noncompatible with ANSI FORTRAN option; no two-word integer values (K option).

9.3.4 CALL SETBFR

In order to communicate the starting location and the length of the user's buffer to Q8QIO, an entry
point called SETBFR is provided. The call to transmit the information need only be made once and
must precede any READ/WRITE statement. However, if the user's program makes a call to the
dispatcher or a call to either ENCODE/DECODE, then a call to SETBFR must again be made prior to
any READ/WRITE statement.

CALL SETBFR(buffer, length)

The first 18 words of the buffer contain the calling sequence for the I/0 request and information for
re-entrancy. The remainder contains the input/output message.

9.3.5 RESTRICTIONS

Length is the total length of the buffer which includes the 18 words needed by Q8QIO. This scratch
area of 18 words has the following format:

Word 1 Last word address (LWA) of buffer
2 Request code for READ/WRITE
3 Completion address

4 Thread

5

Logical unit

60362000 C 9-13

Word 6 Message length

7 First word address (FWA) of message
8 Sector address MSB (unformatted READ/WRITE)
9 Sector address LSB (unformatted READ/WRITE)

10 Q register of user

11 Return address of user's program

12 I register of user

13 READ/WRITE flag (ICODE)

14 LIST address

15 Total number of variables in LIST

16 ENCODE/DECODE—READ/WRITE flag (DEFLAG)

17 FORTRAN FORMAT flag

18 I register for restoring volatile

19 User's I/O message begins here

The greatest restriction on implementing the READ/WRITE statement processor was placed on the input

side. This restriction limits each READ statement to request one input record or 80 columns of data
for card input.

READ(10, 20)(X(1, J), I=1, 10), J=1, 20)
20 FORMAT(10F8. 4)

This example results in an error since the request specifies 20 cards of input. However, the following
executes correctly:

DO 30 J 1,20

READ(10, 20)(X(, J), I=1, 10)
20 FORMAT(10F8. 4)
30 CONTINUE

Unformatted READ/WRITE may be performed by use of the re-entrant READ/WRITE statement
processor.

READ(i)L transfers one record of information directly from the device (i) into the storage locations
named by the list (L) identifiers.

WRITE (i)L. transfers information from the storage locations named by the list (L) identifiers to the
device (I).

If the device is mass storage, words 8 and 9 of the buffer specified by CALL SETBFR must contain the
sector address.

Unformatted READ/WRITE is not implemented in the non-re-entrant READ/WRITE statement
processor.

9-14 60362000 C

9.3.6 FORMAT ERRORS

To determine if a format error occurred during processing of a READ/WRITE statement, the
programmer may follow the READ/WRITE statement with a call to the function subroutine IOERR. An
error is indicated if the function value is -1.

IF(IOCERR(0). EQ. -1)GO TG 1000,

or IERROR=IOERR(0).
(and IERROR may be tested later)

9.37 1/O ERRORS

To determine if a hardware failure occurred during an I/O operation, the programmer may follow the
READ/WRITE statement with a call to the function subroutine IRWERR:

IF@RWERR(0). LT0) GO TO 1000

or JERROR = IRWERR(0)
(and JERROR may be tested later)

The negative value of the function indicates that an I/O error occurred on the last READ/WRITE
operation. This function is implemented only for the re-entrant ENCODE/DECODE run-time.

9.4 ENCODE/DECODE CALLS

The ENCODE/DECODE package gives the FORTRAN programmer the ability to transfer information
under FORMAT specifications from one area of storage to another. For example, to transfer a
floating-point number from a variable data list into an output buffer area with an F format specification,
the programmer would use an ENCODE call to accomplish the conversion from floating-point
representation to ASCII characters and pack the output buffer. ENCODE ‘DECODE functions use the
ENCODE/DECODE run-time routines. Therefore, the formatting capabilities are as described in this
chapter.

The parameters to an ENCODE/DECODE call are as follows:

buffer is an area to ENCODE into or DECODE from; always contains information in ASCII form.

iform is an assigned variable when the statement label assigned is the statement number which
represents the associated FORMAT statement.

n equals the number of variables to ENCODE/DECODE.
list equals the first word of the data list to input/output; always contains data in hexadecimal
form.

60362000 C 9-15

9.41 ENCODE

ENCODE transmits n machine-language elements of the variable list according to FORMAT into locations
starting with the first word in BUFFER. Up to 150 ASCII characters (one line) are stored in consecutive
locations for output.

ASSIGN 99 TO IFORM
CALL ENCODE (IBUF, IFORM, 3, LIST)
99 FORMAT(3)

Where: LIST(1) = $0023, LIST(2) = $FFFE, LIST(3) = $001A

Then: IBUF(1) = $2033, IBUF(2) = $3520, IBUF(3) = $2D31,
IBUF(4) = $2032, IBUF(5) = $3600

If IBUF is output on the teletypewriter, the following results:
A357-1726

NOTE

In the preceding example the ASSIGN statement is used
as the only way to set a variable (IFORM) equal to a
statement number. The request also specifies that
three variables are to be converted as three ASCII
characters for a total of nine ASCII characters. Since
each computer word contains two characters, IBUF
must be dimensioned as a five-word data block. When
the number of ASCII characters is odd, the last
character on the teletypewriter results in no output.

ASSIGN 99 TO IFORM
99 FORMAT(5H LINE, 12, 3H X =,F5.2, 3H Y =,F5.2, 3H Z =,F5.2/)
K=1
DO 30 11,3
LIST(I)=I
DO 20 J=1, 3
20 FLIST(J) = DATA(L J)
CALL ENCODE (IBUF(K), IFORM, 4, LIST)
30 K=K+16

The preceding example illustrates the mixing of floating-point with integer variables for ENCODE/
DECODE calls. By equivalencing the floating-point variable name to the second entry of the integer

9-16 60362000 C

array, mixed values can be entered into the table. IBUF has been packed one line at a time (less than
150 characters per call) with a line feed indicated as the last character; however, the total number of
characters packed in IBUF is 96. The following results when output:

LINEAIAX= 1. 00AY= 1. 00AZ=A1.00

LINEA2AX=0,52AV= 3,.42A7=-1.50

LENGAATV. SAAL S TLANL

LINEA3AX=24. 50AY=-0. 25AZ=50. 20

9.4.2 ENCODE MACRO
The ENCODE subroutine may be called in assembly language by calling the ENCODE macro as follows:

ENCODE A,B,C.D,E, (absolute)
or
ENCODE* A.B,C,D,E (relative)

Parameters A, B, C.D correspond directly with the respective parameters in a FORTRAN call, as shown
above. Parameter E is the address of an error routine to which control is given. If E is blank no test
for error conditions is made. (See Section 9.4.5.)

943 DECODE

DECODE transmits n consecutive ASCII characters according to the FORMAT from locations starting
with the first word in BUFFER to the variable list as n machine-language elements.

ASSIGN 99 TO IFORM
CALL DECODE (IBUF, IFORM, 10, LIST)
99 FORMAT(10I3)

In the preceding example, the ASSIGN statement is used as the only way to set a variable (IFORM) equal
to a statement number. Also, the request specifies that ten integer values be stored in LIST as
hexadecimal numbers. IBUF must contain 15 words of ASCI characters since a total of 30(10*I3)
characters with two characters per word were requested.

ASSIGN 99 TO IFORM
CALL DECODE (IBUF, IFORM, 5, LIST)
99 FORMAT (3(2X, 215))

here: Five integer values are stored in LIST as hexadecimal integers even though the FORMAT

specifies six integer values; that is, skip two characters, pick up the next five characters
twice, and repeat this format twice.

60362000 C 9-17

ASSIGN 99 TO IFORM

CALL DECODE (IBUF, IFORM, 20, LIST)
99 FORMAT(3(312, 1X, 213))

NOTE
Even though 15 integers were specified in the FORMAT
statement, a repeat of the FORMAT starting with the

first specification within the parenthesized expression

is executed to complete the conversion of the LIST
parameters.

ASSIGN 99 TO IFORM
CALL DECODE (IBUF, IFORM, 0, 0)
99 FORMAT (28H (message))

Where: 28 ASCII characters are transmitted from IBUF to IFORM.

NOTE

This is a way of editing FORMAT statements without
recompiling.

DIMENSION FLIST(10), LIST(20)
EQUIVALENCE (FLIST, LIST)

ASSIGN 99 TO IFORM

CALL DECODE (IBUF, IFORM, 10, LIST)
99 FORMAT (212, 8F10.3)

Where: The first two variables are integer values and the remaining eight are floating-point.
NOTE
Ten variables were specified even though the floating-
point variables occupy two words per variable.
9-18

60362000 C

9.4.4 DECODE MACRO

The DECODE subroutine may be called from an assembly language program by calling the DECODE
macro as follows:

DECODE A,B,C,D,E (absolute)
or
DECODE* A,B,C,D,E (relative)

Parameters A,B,C, and D correspond to the respective parameters in a FORTRAN call, as shown above.
Parameter E is optional and may be left blank. If defined, E defines the address of an error routine to
which control is given when errors are detected.

9.4.5 ENCODE/DECODE ERROR DETECTION

When calling the ENCODE/DECODE package as subroutines, the error flag returned in the A register is
lost. However, when calling the ENCODE/DECODE package as function subroutines, the error flag

(= -1) returned may be tested for FORMAT errors except Fw.d output. The A register equals +0 on
correct formatting of results.

CALL ENCODE (IBUF, IFORM, N, LIST)

In this example the ENCODE call is a subroutine call and the error flag (= -1) returned could not be
tested.

NFLAG = ENCODE (IBUF, IFORM, N, LIST)
IF (NFLAG. EQ. -1) GO TO 1000
or IF (ENCODE(IBUF, IFORM, N, LIST). EQ. -1) GO TO 1000

In this example, the ENCODE call is a function subroutine call and NFLAG is set to the value returned
by ENCODE to be tested later in an IF statement, or the error flag returned in the A register can be
directly tested in an IF statement. In the function subroutine call, ENCODE/DECODE should be
declared in a type statement as INTEGER; otherwise, the compiler treats the results returning from
ENCODE/DECODE as floating point.

CAUTION

When ENCODE or DECODE is used in an implied DO
loop, termination will occur immediately upon format
conversion errors. Subsequent conversions within
the loop will not ocecur.

60362000 C 9-19

9.4.6 ADDITIONAL FORMATTING ROUTINES

Additional formatting routines have been added to enable the FORTRAN programmer to format one
variable at a time to save execution time needed for interpretation of FORMAT. The features in this
section are to be used with one word integer type variables whenever integer type variables are used.

HEXASC and HEXDEC
CALL name(variable, buffer)

Where: name is HEXASC — Converts a hexadecimal integer to ASCII characters.

HEXDEC — Converts a hexadecimal integer to a decimal integer in
ASCI characters.

variable is the location of the hexadecimal integer.

buffer is the location of a two-word buffer to contain the converted integer in hexa-
decimal form (HEXASC); or the location of a three-word buffer to contain
the converted integer in decimal form (HEXDEC).

Example 1:
DIMENSION LIST (10),IBUF(30)
J=1
DO 101=1, 10
CALL HEXDEC(LIST(I),IBUF(J))

10 J=J+3

This call is comparable to an Iw FORMAT specification for output except that the resulting field is
zero-filled, not blank-filled, as 1-1,2,3,...,10;J=1,4,7,...,28, and the subroutine HEXDEC fills IBUF
with integer values from LIST.

J=1

DO 10 I=1, 10

CALL HEXASC(LIST(I),IBUF(J))
10 J=J+2

The subroutine HEXASC fills IBUF with ASCII values from LIST.

9-20 60362000 C

Example 2:
If IVAL = 258,
then CALL HEXASC(IVAL,IBUF(1))

results in IBUF(1) = $3031
IBUF(2) = $3032

and CALL HEXDEC(IVAL, IBUF(1))
results in IBUF(1) = $3030

IBUF(2) = $3032

IBUF(3) = $3538

HEXASC and HEXDEC Macros

The above subroutines may be called from assembly language programs by making these macro calls:

HEXASC A,B (absolute)
or
HEXASC* A,B (relative)

HEXDEC A,B (absolute)
or
HEXDEC* A,B (relative)

Where: A is the address of the variable.

B is the address of the buffer (two words HEXASC, three words HEXDEC).

ASCIH and DECHEX

CALL name(buffer, variable)

Where: name is ASCI — Converts two words of ASCII characters in BUFFER to a
hexadecimal integer.

DECHEX — Converts three words of a decimal integer in ASCI characters
in BUFFER to a hexadecimal integer.

buffer is the starting location containing the ASCII representation of the integer.

variable is the location of the converted integer.
Example 1:
DIMENSION IBUF(25), LIST(10)

=1

60362000 C 9-21

K=1
DO 10I=1,5
CALL ASCI(IBUF(J), LIST(K))
J=J+2
K=K+1
CALL DECHEX(IBUF(J), LIST (K))
J=J+3
10 K=K+1

This example assumes that words 1, 6, 11, 16, and 21 in IBUF are hexadecimal and words 3, 8, 13, 18,
and 23 in IBUF are decimal. The calls are comparable to $w and Iw FORMAT specification (input),
respectively.

Example 2:

If IBUF(1) = $3030
IBUF(2) = $3033
IBUF(3) = $3035

then CALL ASCII(IBUF (2), IVALUE)
results in IVALUE = $305 = 773

and CALL DECHEX(IBUF(1), IVALUE)
results in IVALUE = 305

ASCH and DECHEX Macros

The above subroutines may be called in assembly language by calling the appropriate macro as follows:

ASCO A,B (absolute)
ASCI* A,B (relative)
DECHEX A,B (absolute)
DECHEX* A, B (relative)
Where: A is the buffer address (two words for ASCH and three words for DECHEX)

B is the variable address

AFORM and RFORM

CALL name(buffer, variable)
Where: name is AFORM — Converts a word containing two ASCII characters to two words
each containing a character left-justified blank-filled

RFORM — Converts a word containing two ASCII characters to two words
each containing a character right-justified zero-filled.

buffer is the location containing two ASCII characters

variable is two words containing the resultant of AFORM/RFORM

9-22 60362000 C

Example:

DIMENSION LIST (2), IBUF(10)

DO 10 I=1, 10
CALL RFORM(IBUF(I), LIST)
IF(LIST(1). EQ$2E) GO TO 20
IF(LIST(2). EQ. $2E) GO TO 20
10 CONTINUE
20 .

In this example, LIST is being scanned for an ASCII period. AFORM/RFORM are comparable to Aw
and Rw respectively, and are used on an input record.

FLOATG
CALL FLOATG (variable, buffer)

Where: variable is a two-word floating-point variable

buffer is a six-word output buffer containing the floating-point representation with its
exponent in ASCII characters: +. XXXXXXEzee (this is equivalent to Ew.d
FORMAT specification with d=6 and 0< ee<+39)

FLOATG Macro

The subroutine may also be called in assembly language by using a macro call as follows:

FLOATG A,B (absolute)
FLOATG* A, B (relative)
Where: A is the address of a floating-point variable

B is the address of a buffer (six words)

9.5 FORTRAN/MONITOR RUN-TIME PACKAGE

The FORTRAN/monitor run-time package was written to give the FORTRAN programmer a means of
communicating with the 1700 monitor. It is necessary for the programmer to make certain monitor
requests, obtain monitor parameters, or execute I/O commands.

60362000 C 9-23

The monitor requests are:

READ

WRITE
FORMAT-READ
FORMAT-WRITE
SCHEDULER
TIMER

RELEASE Memory

The READ, WRITE, FORMAT-READ, and FORMAT-WRITE requests were provided as a supplement
to the FORTRAN READ/WRITE statement processor (Q8QIO).

The 1700 monitor request for FORMAT-READ or FORMAT-WRITE has a different interpretation than
the FORTRAN formatted records.

Consult the MSOS Reference Manual for device driver characteristics with READ, FREAD, WRITE,
and FWRITE calls.

9.5.1 READ/WRITE CALLING SEQUENCE
CALL name(lu, buffer, length, completion, flag, temp)

Where: name is READ, WRITE, FREAD, or FWRITE
Iu is the mode and logical unit
buffer is an area in memory where data is read into or written from

length is the number of words to be read or written. If this is a mass storage logical
unit, then length is the name of a three-word table containing:

LENGTH(1) Number of words
LENGTH(2) Mass storage address (bits 30 through 15)
LENGTH(3) Mass storage address (bits 14 through 0)

NOTE

Calls from background for READ or WRITE mass
storage requests must ensure that LENGTH(3) does
not access scratch sector 0. LENGTH(3) must be
2 96 words.

9=-24 60362000 C

MODE AND LOGICAL UNIT

The logical unit of the device or a core location containing the logical unit number is in bits 9 through 0
of lu. If bit 11 equals 0, then bits 9 through 0 are the actual logical unit. If bit 11 equals 1, then bits
9 through 0 are a core location containing the logical unit. The mode indication is bit 12 (= 1 ASCII;

= 0 unformatted or binary). The core locations containing the standard input/output logical uni

1
he standard input/output logical uni
defined in the monitor are detailed as follows:

P

Core lu
Location;g Formatig Meaning Mode
F9 18F9 Input medium ASCI
08F9 Input medium Binary
FA 18FA Output punch medium Asco
08FA Qutput punch medium Binary
FB 18FB Output list medium ASCI
FC 18FC Output comment ASCI
FD 18FD Input comment ASCII
c2 08C2 Mass storage Binary?t
lu Format
15 13 12 11 10 9 0
m a lu
Where: m is the mode (used only on devices capable of both modes).
1 ASCH mode
0 Binary mode
a is 0 Actual logical unit number
2 A core location containing the logical unit number

lu is the logical unit (as defined for the MSOS configuration).

COMPLETION LOCATION AND FLAG PRIORITY

When I/0 has finished, control is returned to the completion location assigned at the time of the request.

The completion location may be a statement label in the same program (FLAG = 0). In FORTRAN, the
only way to set a statement label as a completion location is with the ASSIGN statement.

tWhen writing ASCII information on mass storage the mode is ignored.

60362000 C 9-25

ASSIGN 100 TO INCOMPL
CALL FWRITE(LU,IBUF, LENGTH, ICOMPL, FLAG, TEMP)

100 CONTINUE

The completion location may be a program residing in the system library (FLAG =1). An EXTERNAL
statement is used to correctly define the name of the program in the system library and the loader inserts
the index to the system directory as the completion location.

EXTERNAL NAME1
FLAG=$100

CALL FWRITE(LU,IBUF, LENGTH,NAME1, FLAG, TEMP)
The completion location may be the name of another program in core (FLAG = 2). An EXTERNAL

statement is used to define the name of the program correctly.

NOTE

The completion location may never be a subroutine.

EXTERNAL NAME1
FLAG=$200

CALL FWRITE(LU,IBUF, LENGTH,NAME1, FLAG, TEMP)

The flag priority is a word containing a completion priority (level 0 through 15) in bits 3 through 0, a
request priority (level 0 through 15) in bits 7 through 4, and a completion location flag in bits 11 through
8. If bit 15 is set, the actual buffer address can be found in the location specified in the calling sequence.

15 14 12 11 8 7 4 3 0
if f r'p cp
Where: if is the indirect flag (8 or 0),
f is the flag (0, 1, or 2),

rp is the request priority (level 0 through 15),
cp is the completion priority (level 0 through 15),

9-26 60362000 C

Example:

ASSIGN 10 TO IBUF
IBUF=IBUF+2
IFLAG=$8012

CALL FWRITE(LU,

I) G)
10 FORMAT(50H THIS I F AN INDIRECT BUFFER ADDRESS)

NOTE
In the preceding example the address IBUF was
updated two words to remove "(50H' from the
message. Also an even number of characters does
not include the terminating).

Alternatively, the FORMAT statement may be written as

10 FORMAT ('ATHIS IS AN EXAMPLE OF AN INDIRECT BUFFER ADDRESSA')

NOTE

The alternative form also requires that the address
IBUF be updated by two words to skip over the compiler
generated "(50H" in the buffer.

Example: (direct buffer address)
DIMENSION IBUF(4), ITEMP(8)
DATA IBUF /'AMESSAGE'/, LENGTH /4/
IFLAG = $12
CALL FWRITE (LU, IBUF, LENGTH, ICOMPL, IFLAG, ITEMP)

Temporary Locations

An eight-word area (TEMP) is needed for building the calling sequence to the monitor.

9.5.2 SCHEDULER AND TIMER
REQUESTS

In a given system, numerous requests for the execution of programs at specific priority levels may be
generated. Specifically these requests are generated when:

° An I/0 request has been completed

) A specified time interval has elapsed

60362000 C 9-27

. Core has been allocated/released

° A mass storage request has been executed

Requests may also be made directly by making a scheduler call. It is the function of the scheduler
request processor to:

N Cause the immediate execution of a program if it is of a higher priority level t

e n the
current program

° Thread the request by priority and on a FIFO basis if its priority is lower than the current
priority.

If the requested program is mass storage resident, the scheduler request processor causes allocation
of core for this program and transfer of the program from mass storage. After the program has been

transferred, a scheduler request is made, which results in one of the above.

Whenever a program terminates, the dispatcher selects the next program to be run, either from the
top of the scheduler thread or the interrupt stack.

CALLING SEQUENCE

CALL SCHEDL(l, flag, parameter,temp)

Where: 1 is the requested program to be scheduled at the completion priority.

flag is a packed word with the completion priority in bits 3 through 0 and a flag
in bits 11 through 8. The flag interpretation is:

15 12 11 8 7 4 3 0
0= —0 f 0e —» 0 cp

f is the flag

0 L is a statement label
1 L is an index to the directory
2 L is an external core-resident main program

cp is the completion priority (levels 0 through 15)

parameter is a positive integer may be passed to the scheduled program. The
scheduled program obtains the parameter by calling the integer function
LINK,

temp is a four-word area in which the scheduler call is generated. After the
scheduler call is complete, this area is available for other use,

CALL TIMER(}, flag, time, temp)

Where: 1 is the program to give control at priority CP after the time interval has
expired.

9-28 60362000 C

flag is a packed word containing the completion priority in bits 3 through 0, a
unit of time code in bits 7 through 4, and a flag in bits 1

@ 34 2L Owgas

iz i1 4 3 0

[
[5)]
o
-3

0« ’ »0 f d cp

f is the flag

0 L is a statement label
1 L is an index to the directory
2 L is an external core-resident main program

d is the unit of time

0 Counts of system time base
1 0.1 second
2 1,0 second
3 1.0 minute

cp is the completion priority
time is the time interval to delay before scheduling the program, 1, at level CP.
At the end of the time interval, the core clock {contents of ceil $ES8) is

passed to the requested program as a parameter. Toc obtain this parameter
the integer function LINK must be called.

temp is a four-word area in which the timer call is generated. After the call has
been executed, this area is free for other use.

9.5.3 MISCELLANEOUS CALLING SEQUENCES

LINK
N = LINK (0)
N is set to:
® The passed parameter from a scheduler call if LINK is called at the start of the scheduled
program.
° The value of the core clock if LINK is called at the start of the program called by a TIMER
request.
° The error flag at the completion of 1/0 if LINK is called at the completion location.
DISPATCHER

CALL DISPAT or CALL DISP

Control is given to the dispatcher in the monitor to start the next highest priority program.

60362000 C 9-29

CORE CLOCK
The integer function ICLOCK obtains the value of the clock: I=ICLOCK(0)
I contains the current value of the clock (memory location $E8).

RELEASE OF ALLOCATED CORE

All programs that have been allocated core (either allocatable or partition) must return memory to the
core allocator when they are finished. This includes all mass-storage-resident programs.

CALL RELESE (main)

Main is the name of the main program and must be compiled as the last executed statement in the
program. No further program statements will be executed following CALL RELESE.

OUTPUT COMMANDS VIA THE A/Q CHANNEL

CALL OUTINS (IOUTAQ)

Where: IOUTAQ is a three-word table

IOUTAQ(1) is loaded into the Q register. Should contain converter,
equipment, and station codes or the channel addresses
for a connect command.

IOUTAQ(2) is loaded into the A register. Contents vary depending upon
the device selected.

IOUTAQ(3) is a flag word which contains the following information after
the call

0 No reject
1 Internal reject
2 External reject

INPUT COMMANDS VIA THE A/Q CHANNEL

CALL INPINS(IINAQ)

Where: IINAQ is a three-word table

IINAQ(1) is loaded into the Q register. Should contain converter,
equipment, and station codes or the channel addresses
for a connect command.

IINAQ(2) is after the call, contains the data or status obtained on
input.

IINAQ(3) is a flag word which contains the following information
after the call

0 No reject
1 Internal reject
2 External reject

9-30 60362000 C

CONNECT THE 1750 DATA AND CONTROL TERMINAL AND INPUT

CALL ICONCT(IINAQ)
Refer to input commands via the A/Q channel for the calling sequence interpretation.

CONNECT THE 1750 DATA AND CONTROL TERMINAL AND OUTPUT

CALL OCONCT(IOUTAQ)

Refer to output commands via the A/Q channel for the calling sequence interpretation.

9.5.4 BUFFERED INPUT/OUTPUT

There are many ways of accomplishing asynchronous 1/0 operation (for example. reading/writing
from one buffer while executing from another) with programming techniques. The following example
demonstrates how this may be accomplished,

DIMENSION DATA(100, 2), TEMP (4)

ASSIGN 100 TO ISTART

1, IPRIOR=4
CALL SCHEDL(ISTART, IPRIOR, 0, TEMP)
CALL DISPAT
100 KX=1
ASSIGN 200 to ICOMPL

2, CALL READ(LU,DATA(1,KX), 100, ICOMPL, IPRIOR, TEMP)
3. CALL DISPAT
4. 200 IF(LINK(0).NE. 0) GO TO 300

IX=KX

KX=3-KX

CALL READ(LU,DATA(1,KX), 100, ICOMPL, IPRIOR, TEMP)

[}

6. . COMPUTE WITH DATA(1, JX)
7. CALL DISPAT

8. 300 CONTINUE
END

60362000 C 9-31

Following is an explanation of the preceding coding.

1.

2,

3.
4.
5.

9-32

Make a scheduler call to set the priority level of the program.
Initialize a READ of n words (<100 words) into DATA(1,KX) where KX=1,

NOTE

The first word address is DATA(1) and the priority
level for this READ is the same as the program,

Make a dispatcher call. Another program is given control until the I/O is complete.
The completion location (200) tests for errors in reading the input data.

Initialize a second READ of n words (< 100 words) into DATA (1, KX) where KX=2.

NOTE

FWA is DATA(101) and the completion priority
must be at the same level as the program
priority level.

Execute the data in the filled buffer where JX indicates which buffer is filled.
When execution of DATA(1, JX) is complete, call the dispatcher,

If the filling buffer (KX) is complete, control goes to the completion address where the
buffers are switched and the sequence of operations is restarted, However, if the filling
buffer (KX) is incomplete, control remains with another lower priority program, while
1/0 is in progress, before returning to the completion address.

60362000 C

COMMUNICATION BETWEEN FORTRAN A
AND ASSEMBLY LANGUAGE PROGRAMS

L

THE FORM OF THE CALLING SEQUENCE

Calling sequences written in assembly language which are intended to communicate with FORTRAN-
generated subprograms must have the following form, where SUB has been previously declared as an
external.

LOC RTJ SUB

LOC+1 (RTJ SUB is a two-word instruction)
LOC+2 Address of argument 1

LOC+3 Address of argument 2

LOC+4 Address of argument 3

LOC+N+ 1 Address of argument N
LOC+N+ 2 Program resumes

When a function subprogram returns a floating-point value, the result is placed in locations $00C5 and
$00C6 (and $00C7 for double-precision).

The result of an integer function is left in the A register.

Addresses of arguments occur in consecutive locations following the RTJ command, one cell per
address, in the order that the arguments appear in the actual parameter list which should be the same
subprogram definition. Subroutines need not necessarily have arguments.

FORTRAN calls to assembly language subroutines must recognize the argument passing sequence as
previously described. The arguments must have the same order as their use and are assembled in the
form as previously shown. When a call to a routine outside of a FORTRAN program is made and I/0
is performed, a priority problem may be encountered. In such a case the priority of FORTRAN I/O
and other devices used should be examined to determine if a higher priority device has interfered.

ABSOLUTE ADDRESSES

All arguments in common will be in the calling sequence as absolute addresses. In a non-run-anywhere
program, all arguments are absolute.

RELATIVE ADDRESSES

Relative addressing is only used in programs compiled under the R option.

60362000 C A-1

All arguments which do not fall into the category for absolute addresses are represented in the calling
scequence as relative addresses. The self-relative address (which is what is meant by a relative
address in a calling sequence) is computed by subtracting the location of the self-relative address in
the calling sequence, say LOC+3, from the address of the corresponding argument, say argument 3,
and setting bit 15 to 1.

Nl ko 12
UILLY LT 1.

2o Yo arm argiith Aan

1~ PRV PROUE ~F . 4+ 11 dlcnmisale AV mn i o s maas A T e ke AL o T

1UW UIUCL DIW Ul dll Al gUulliCiil {12 LITUUgEL V) dre necessdry L ucsiglindie Lie duuress
absolute or relative. Thus, in calling sequences, bit 15 is used as a flag to distinguish between the
two addressing modes.

Bit 15 is 0 if argument address is absolute,

Bit 15 is 1 if argument address is relative
The address returned from a floating-point calling sequence is absolute,

FORTRAN assumes that all assembly language routines save and restore the Q and I registers.

A-2 60362000 C

TABLE CAPACITIES B

FORTRAN TABLE LIMITS

Up to 2,340 compiler-generated and user symbols are allowed.

Up to 10 nested DO loops are allowed.

The maximum number of declared subscripts is 150,

The maximum number of continuation cards allowed per statement is five.

No more than 30 parenthesis levels are allowed.

The number of unique dummy argument index constant pairs must not exceed 50.
The number of subroutine arguments may not exceed 50,

Literals in DATA statements are limited to 387 characters.

Up to 51 EQUIVALENCE relations are allowed.

The number of compiler-generated words may not exceed 300 per source statement, or else a compiler
table overflow error F,100 will be generated.

60362000 C B-1/B-2

4
Z

GLE-PRECISION FLOATING-POINT PACKAGE C

{50

The single-precision floating-point package used by 1700 FORTRAN is described in this appendix. The
package also can be used by an assembly-produced program.

Two similar floating-point packages are called by the same name (FLOT); one is re-entrant and the
other is not. Both packages are usable by run-anywhere programs. The re-entrant package must
operate in protected core; the other package may operate anywhere.

Each floating-point number requires two consecutive words of 1700 storage. The first word (most
significant bits) is the one that is addressed. Normalized floating-point format is as follows:

Word 1 Word 2
15§ 14 716 0 i5 4]
T |¢——— Exponent ——»}¢—— Normalized Coefficient —
Sign

A floating-point number x is in the range given in the following example and is significant to one part
in eight million.

1 1

1 23
217 (122 ax < 2T (127

If the most significant word is zero (16 bits of zero or one), a floating-point zero is assumed.
COEFFICIENT

-23
The coefficient consists of a 23-bit number n, 1-2 , >In| > 0. The high-order bit position of the
first word is the coefficient sign bit. A zero denotes a positive coefficient and a one denotes a

negative coefficient. When the coefficient is negative, the entire floating-point number, exclusive
of the sign bit, is stored in complement form.

EXPONENT
The floating-point exponent is an eight-bit quantity ranging from 00 to FFlG‘ Through biasing by 804,
this range expresses both positive and negative exponents. The biasing is accomplished according to

the following rules:

1. If the floating-point number is negative, complement the entire floating-point word and
remember that the number is negative. The exponent is now in a true biased form.

60362000 C Cc-1

2. If the biased exponent is equal to or greater than 8016, subtract 8016 to obtain the true

exponent, If less than 8034, subtract 7F 4 to obtain the true exponent. (Observe the
algebraic rules for subtraction.)

3. Separate the coefficient and exponent. If the true exponent is negative, move the binary
point left the number of bit positions indicated by the true exponent. I the exponent is
positive move the binary point right the required number of places.

4. The coefficient has now been converted to fixed binary. The sign of the coefficient will be
negative if the original floating-point number was complemented in step 1. The sign bit
must be extended if the quantity is to be placed in a register.

5. Convert the quantity to decimal representation by using the Powers method.

Example 1:

Floating point number BFBF FFFF

IN BINARY 1011 1111 1011 1111 (FFFF)

NEG ¢« COMPLEMENT: 0100 0000 0100 0000 (0000)
EXTRACT EXPONENT: 100 0000 0

CONVERT TO HEX: 804¢

UNBIAS: 80
-80

016

NORMALIZED COEFFICIENT EQUALS
.100 00005 (0000)

NO BINARY POINT MOVEMENT NEEDED USING POWERS RULES
.1x2~l4ox2-2+0x2734+. +Ax2 ™"

DOING ARITHMETIC
L1/240+0+. +0

ANSWER = -.510

C-2 60362000 C

Example 2:

Floating point number 3BCC 0000
BINARY = 0011 1101 1100 0000 (0000)
011 1101 1

EXPONENT = 7B16
7B

=7F
-4

MOVE BINARY POINT LEFT 4 PLACES

.100 0000 (0000)
.0000100 0000
. 0x2- Lrox2-2+0x2 3 +0x2~4+1x2-5+,

1]

ANSWER = == = .031251

Example 3:

Floating point number 44CO 0000
BINARY 0100 0100 1100 0000 (0000)
Exponent 100 0100 1

89
-80

+ 9
MOVE BINARY POINT RIGHT 9 PLACES

.100 0000 (0000)
100 0000 00.

1x28+0x2T+. +0x20 Lo0x2"1+,.......+Ax2™D

ANSWER = 28 = 25619

60362000 C

CALLING SEQUENCE

FLOT uses an interpretive calling sequence. Neither calling sequence saves Q or I, nor uses the
communication cells. In the re-entrant cases, the communication cells must be saved upon entrance
to a program unit and restored upon exit (it is the user's responsibility to save these communication

cells). The interpretation is on a string of four-bit bytes, where the leftmost four-bit byte represents
the first operation. The resnective operands, if fhey exist, are in the same order as the bvtes. with

operatior cspecllve erange, I U\ exX1isy, Wil SailiC UGEr aSs il OyiesS, wild

one operand per byte. As many operations as desired may exist, but the last one must be the
terminator of a four, The pseudo accumulator is retained between calls to FLOT.

Example:

RTJ

address of FLOT

03] 0% | 03] 04
A
Ag
Ay
Ag
Ag

user's program

resumes

The calling sequence was designed to minimize core requirements, including core used to set up the
calling sequence,

OPERATIONS

The following operations are used by the floating-point package.

4-Bit
Operation Code Meaning
FEND 4 End of calling sequence. This operation terminates the calling
sequence, No operand needed.
CHMD 5 Change mode of operation. All operand addresses following this

operation code in the calling sequence are made relative if the
preceding addresses were absolute, or absolute if the preceding
addresses were relative. Addresses are initially absolute. No
operand is needed.

C-4 60362000 C

4-Bit

No index. The succeeding operands do not have indexing increments,

NIDX supersedes any preceding INDX and is superseded by any

following INDX. NIDX is assumed initially, No operand is needed.

Floating complement. The pseudo accumulator is complemented.
No operand is needed.

Floating subtract. The contents of the effective operand address is
subtracted from the pseudo accumulator and the result is left in the
pseudo accumulator,

Floating multiply. The pseudo accumulator is multiplied by the
contents of the effective operand address and the result is left in the
pseudo accumulator,

Floating divide. The pseudo accumulator is divided by the contents
of the effective operand address and the result is left in the pseudo

Floating load. The floating-point number in the corresponding
effective operand address is transferred to the pseudo accumulator.
Floating store. The floating-point number is iransferred irom the
pseudo accumulator to the corresponding effective operand address.

Floating add. The contents of the effective operand address is added
to the pseudo accumulator and the sum is left in the pseudo

Operation Code Meaning
NIDX 6
FCOM 7
FSUB 8
FMPY 9
FDIV A16

accumulator.
FLDD B 16
FIST D

16

FADD E16

accumulator.
INDX F16

Index. The operand corresponding to INDX is used to increment the
operand of the following operations: FLDD, FLST, FADD, FSUB,
FMPY, and FDIV. Each succeeding INDX supersedes the last. No
index is initially assumed.

Operation codes 0, 1, 2, 3, and C16 are not used.

ABSOLUTE ADDRESSING

If unprotected core is in the lower bank, the operand address may be a direct or indirect absolute
address. As in the 1700, all indirect addressing will be executed before indexing. However, only one
level of indirect addressing is allowed. If unprotected core is in the upper bank, indirect addressing

is illegal.

RELATIVE ADDRESSING

The operand address, bits 14 through 0, is relative to self. If bit 15 is set, the addressing is
relative-indirect to one level of indirectness if unprotected core is in part 0. The relative address is
computed by subtracting the calling sequence operand address from the actual operand address, bit

15=0.

60362000 C

Example:
X = -((A(D) + B(I) * C(I)) + (D(J) * E (J))

Assume TEMP, X, J, D, and E are absolutely addressed and the other operands relatively addressed.
The call to FLOT would look like the following.

RTJ FLOT

absolute address J

absolute address D

absolute address E

Dig| 5 Fig Bys
absolute address TEMP

relative address I

relative address A

Eig| 9 7 6

relative address B

relative address C
5 | Ei6 | Dis 4
absolute address TEMP

absolute address X

FAULT CONDITIONS

At any time during execution, fault conditions are flagged by a communications cell, If a fault
condition has been encountered, bit 15 will be set for exponent overflow, bit 14 for a divide fault, and
bit 13 for exponent underflow. The device fault bit is set for division by zero. An exponent overflow/
underflow bit is set whenever the exponent of an arithmetic operation is not within range.

FLOATING-POINT ARITHMETIC WITH 23-BIT NUMBERS

A classic and straightforward technique is presented which is not limited to the size or type of the
number representation used.

C-6 60362000 C

Consider the double-precision floating point number:
F=fx§ ‘ (1)
where || lies in the range

1/2s< |f]| <1 - 2723 (2)

Assume that we have a machine with a word length of 16 bits and that the 32 bits in the double-length
word are divided in the following standard way:

9 bits 7 mOSF significant
bits of

binary point

16 least significant bits of f

The ieftmost biock of nine hits is divided into three parts-

. The first (leftmost) bit represents the sign of f.
. The second bit represents the sign of 8.

° The next seven bits represent the magnitude of 3.
This allows 23 bits for the representation of f. Assume that the binary point lies at the left of the 23
bits representing f so that the seven most significant bits of f are stored in the first word of the pair
and the 16 least significant bits of f are stored in the second word of the pair.
If
-7
lfl=c+dx2 (3)

where ¢ lies in the range

7

1/2<ec<l-2" (4)
and where d lies in the range
-16
1/2<d<1-2 (5)

then ¢ represents the seven most significant bits of f and d represents the 16 least significant bits
of f.

60362000 C C-7

FOUR ARITHMETIC OPERATIONS

We wish to consider the four basic arithmetic operations using double-precision floating-point numbers
of the form discussed. Consequently, in order to have notation for two operands, consider a second
double-precision floating-point number

a8
G=gx2®

-
(=]
~

where |g| lies in the range

-23

1/2slgl<1-2 (7
I

|g|=a+bx2—7 (8)

where a lies in the range

-7
1/2<a<l -2 (9)

where b lies in the range
1/2<b<1 - o716 (10)

then a represents the seven most significant bits of |gl and b represents the 16 least significant bits
of |g|.

Assume that the machine represents negative numbers using a one's complement system. Assume
that the procedure for changing the sign of a double-precision floating-point number is to perform a
bit-by-bit complement of the entire 32 bits (including the nine bits representing the sign and exponent).

Multiplication

F X G = (f X 2B) (g x 29)

=(signF><G)!f|><|g|sz+6 (11)

+6
The computational procedure is primarily concerned with the formation of |f| x lgl x 2P* % since
(sign F X G) can be recorded in advance and used later to apply the correct sign to the product. In
addition to recording (sign F X G), we record the exponents § and 6 after the product |f] X lgl is formed.
The following algorithm is proposed for multiplying F by G:
1. Determine and record (sign F X G).
2, Form |F| and |G|.

3. Record the leftmost nine bits of |F| and |Gl. This, in effect, records g and 4.

c-8 60362000 C

4. Shift the 23 bits of |f| and |g| left until each has the bit pattern

+ 15 most significant bits

@]

<

8 least significant bits 7 zeros D

If this procedure is followed, Ifl is no longer represented by (3) during the computation
in step 5 below, but has the form

-15
Ifl =C+Dx2 (12)

where C lies in the range

15
1/2<C<1-2 (13)

and D lies in the range

-8
0<D<1-2 (14)

Likewise g has the form

-1
gl =A+Bx2 (15)

where A lies in the range
-15
1/2<A<1-2 (16)

and where B lies in the range

05351-2'8 (17)
5. Use fixed-point operations in forming the product.
[fIx gl =(C+Dx2"1% (A +Bx 2719
=CA+(CB+DA)x2 15 +DpBx2730=ppx 2730
_ -15
=CA+(CB+DA)X 2 (18)

Notice that the term DB X 2'30 may be ignored, because once the product is placed back in
standard form, only 23 bits are retained. Notice also that (18) is written in such a way that it
exhibits the efficiency of the following choice of computational steps:

a. Form CA giving a double-length product.

b. Form CB and retain the most significant half of the double-length product.

c. Form DA.

60362000 C C-9

d. Add the most significant half of DA to the most significant half of CB.

e, Add the least significant half of CA to the sum obtained in (d). This result is the
second half of the double-length product, The firgst half of the double-length product
is the most significant half of CA which was formed in a.

6. Next, round and normalize the product obtained using (18) in step 5. Any adjustment in the
exponent B+ 8 which is necessary because of the normalization of If] x lgl must be
performed.

7. TFinally. pack the 23 bits of the normalized product and the nine bits representing the sign
and the adjusted exponent into two 16-bit words (in the standard way). If (sign F X G) is
negative, the two words must then be complemented to give the correct sign to the product.

Division
G _gx26
T £ (19)
fx2P
= (sign G X F) |%| x 20X B
And since the following is wanted:
g
'FI <1 (20)
scale the numerator and write:
IE
2 -B+1
§=(signG><F)Tfo26 B (21

Thus, propose the following algorithm for dividing G by F:

1.

2.

C-10

Determine and record (sign F X G).
Form |F| and |G|.
Record the leftmost nine bits of |F| and |G|. This, in effect, records g and 6.

Arrange the 23 bits of | f| to give the bit pattern

+ 15 most significant bits of |f | c

0 8 least significant bits 7 zeros D

and the 23 bits of |g| to give the bit pattern

+ 0 14 most significant bits of |g| A

0 9 least significant bits 6 zeros B

60362000 C

60362000 C

Thus, f is represented by (12), (13), and (14) as in the case of multiplication. However, in

this case

Tiaxs ¢ 4 o
1188 il ui€ range

1/4< As1/2 -2 15

and where B lies in the range

-9

0<B<l1-2

Use fixed-point operations in forming the quotient:

£
|2 _ A+Bx2715
1 C+Dx2_15
_ A—Bx°1j . f 1]
L c |_1+Dx2‘15J
C

2
= %+ %x2"15 - %— 2-15 2 2'30+é%—x2"30+...
C C C
2
A, (B AD .15, |AD® _BD| .30,
C C 2 C3

(23)

(24)

(25)

may be ignored because only 23 bits of the quotient are retained. Notice also that (25) is
written in such a way that it exhibits the efficiency of the following choice of computational

steps.

a.

b.

Form ~AD giving a double length product.

Divide -AD (as a double length dividend) by C.

C-11

AD
c. Form B - F(rounded to a single length),

d. Form the double-length dividend:

AD| _ .-15
A+ |B-=2]x

(The sign of the second term requires special attention.)
e, Divide this double length dividend by C.

I, To obtain the second half of the doublc-length quotient. the remainder resulting from
the division in the previous step must now he divided by C. This procedure is
efficient only on those machines which teature fixed-point multiplication that a
double-length product which can be used as a double-length dividend for fixed-point
division,
6. Next, round and normalize the quotient obtained using (25) and the procedure of step 5.
Any adjustment in the exponent which is necessary because of the normalization of

g
2
F

must be performed.

=~

Finally. pack the 23 bits of the normalized quotient and the nine bits representing the sign
and the adjusted exponent into two 16-bit words (in the standard way). If (sign F X G) is
negative. the two words must then be complemented to give the correct sign to the quotient,

Addition
F+G=1fx2B+gx20 (26)

The basic problem in floating-point addition is to adjust the exponent of F (or G) so that the
binary points are aligned before the addition takes place.

Let L represent a pair of cells which contain the larger of the two numbers F and G, and S

represent a pair of cells which contain the smaller of the two numbers. Assume that F is
larger than G if

B =26 27

and F is smaller than G if

B <6 (28)

C-12 60362000 C

Relative magnitudes of f and g, in case the exponents are equal, are of no concern.
convention, process the following algorithm for forming F + G.

4.

60362000 C

Record the leftmost nine bits of F and G.

according to (27) and (28).

W

Using this

Place fand g in L and S. If F is larger than G, then f goes into L; otherwise f goes into S
and g goes into L. The following bit patterns should be formed (here s means sign bit).

| + [s] s] 13 most significant bits |

1
binary point

+ | 10 least significant bits

5 sign bits

s s s 13 most significant bits

1
binarv point

10 least significant bits

6 sign bits

Shift S right |3-6| places and put a + bit at the beginning of each of the two words. If
| -6} = 23, then there is no need to continue since all significant bits in S will be lost.

+ |s | s ||B-8]| filler bits

binary point

Notice that the | B-6] filler bits between the binary point in S and the most significant

—

bit of the fraction are sign bits. This is mathematically correct in a one's complement
representation of negative numbers.

Add the second halves of L and S.

Cc-13

10.

11,

The first bit of this sum is c. If it is a one, there is actually a carry. However, it usually
is easier to add c (refer to step 6) than to test to see whether or not it needs to be added as
a carry bit in forming the sum of the first halves of L and S,

Add the first halves of L and S and add the carry bit obtained from step 5.

If e = 1 then an end-around carry must be performed. This means that a one is added at the
right end of the word produced in step 5. Since this might also produce a carry bit, the ¢

in the diagram (refer to step 5) must be cleared to zero before the end-around carry. If

a carry bit is again produced, then a one must be added at the right end of the word

produced in step 5. It can be shown that this last operation can never produce another
e =1,

If v =5 then v is a sign bit. If v # s then there has heen overflow during the addition and
v is the most significant bit of the sum. In the latter case, an adjustment of the exponent
will be necessary to give the correct answer,

Shift the second half of the sum left one place to clear out carry bit c. Then shift the
double length sum left (a) one place if v = s: (b) two places if v = s.

This leaves the sum in the following form:

s | 15 most significant bits of the sum

at least 8 bits of the sum sign bits

If the double-length sum was shifted one place left in step 7 (v # s) then the exponent must
be adjusted to take care of the overflow. This means adding one to the exponent 8 or §,
whichever is larger. (This will be the exponent of the sum.) If the double-length sum was
shifted two places left in step 7, no adjustment of exponent is necessary.

The form of the sum given by step 7 must be checked for normalization since it is possible
that several of the leading bits of the sum may be zero. (Cancellation occurs when two
numbers of opposite sign but nearly equal magnitude are added.) If the sum is not
normalized at this point appropriate adjustments in the exponents should be made.

If 23 left shifts are not sufficient for normalization then the sum should be made zero.

At this point the normalized sum may be rounded, although the extra coding involved may
not he worth the gain. If rounding is desired, then there are two cases to be considered
depending on the sign of the sum. These cases require that care be taken in handling any
carry bit produced by the rounding operations.

Now pack the 23 most significant bits of the sum, along with nine bits representing the sign
and exponent, into two 16-bit words (in the standard way). If the sign of the sum is
negative, then the first nine bits must be complemented before the packing takes place.

60362000 C

Subtraction
No special subroutine is necessary since
F-G=F+(-G)
and one merely complements G before entering the addition subroutine.

FAULT CONDITIONS

If exponent underflow is encountered, a floating-point zero results. If exponent overflow is
encountered, the largest word of the appropriate sign results. A divide check is treated as overflow.

REFERENCES

Robert T. Gregory and James L. Raney, ""Floating Point Arithmetic with 84-Bit Numbers",
Communications of the ACM, Volume 1, Number 1, January 1964.

60362000 C Cc-15/C-16

DOUBLE-PRECISION FLOATING-POINT PACKA

o

The double-precision floating-point package used by 1700 FORTRAN is described in this appendix.
The package can also be used by an assembly-produced program. For efficiency the package is not
run-anywhere.

There are two similar floating-point packages. They are called by the same name (DFLOT), but one is
re-entrant and the other non-re-entrant, Both packages are usable by run-anywhere programs. The
re-entrant package must operate in protected core. The non-re-entrant package may operate anywhere.

The non-re-entrant version of DFLOT utilizes temporary storage to perform its computations. The
re-entrant version utilizes volatile storage for temporary storage.

Each double-precision floating-point number requires three consecutive words of 1700 storage. The

first word, containing the most significant bits ig the one that is addressed, Normalized floating-
; 1ificant bite, is the one that ig addressed. Neormalized floating

iirst & W€ MOEL 5187 anti =

point format is as follows:

Word 1 15 14 76 0
[T Exponent (8 bits) r Normalized J
| S— Sign of number

Word 2 15 0
Coefficient]

Word 3 15

L___O

Of 39 bits

Thus the numbers, X, expressible are of the range -2127(1—2_39) <Xs 2127(1—2'39) and are

significant to one part in 549 billion. If the most significant word is zero (16 bits of zero or 1) a
floating-point zero is assumed.

COEFFICIENT

The coefficient consists of a 39-bit number n, 1-2739, 5 > 1/2. The high-order bit position of the
first word is the coefficient sign bit. A 0 denotes a positive coefficient and 1 denotes a negative
coefficient. When the coefficient is negative, the entire floating-point number, exclusive of the sign
bit, is stored in complement form.

60362000 C D-1

EXPONENT

The floating-point exponent is an eight-bit quantity with value ranging from 00 to FF 14- Through
biasing by 80714, this range expresses both positive and negative exponents,

CALLING SEQUENCE

DFLOT uses an interpretive calling sequence. Both the re-entrant and non-re-entrant calling
sequences save the Q, A. and I registers in temporary storage. The interpretation is on a string
of four-bit bytes, where the leftmost four-bit byte represents the first operation., Their respective
operands, if they exist, follow in the bytes' respective order, one word per byte.

As many bytes may exist as desired, but the last one must be 4. The double-precision pseudo
accumulator is not retained between calls to DFLOT.,.

Example:
15 . 11 A 07 L03 00
RT.I
address of DFLOT

01 02 O3 04
Ay
Ag
A4

03 Og 4
5
6

User's program resumes

The calling sequence was designed to minimize the amount of core needed, including core used to set up
the calling sequence.

OPERATIONS

A description of the following operations and their four-bit byte codes follows. Bytes 0, 1, 2, and 3
are considered 4 (FEND).

4-Bit
Operation Code Meaning
FEND 4 End of calling sequence. This operation terminates the calling

sequence. No operand needed.

D-2 60362000 C

4-Bit
Operation Code Meaning

CHMD

[92]

Change mode of operation. All operand addresses following this
operation code in ihe calling sequence are made relative if the
preceding addresses were absolute, or absolute if the preceding
addresses were relative. Relative references are assumed relative
to self. Addresses are initially absolute per call to DFLOT. No
operand is needed.

NIDX 6 No index. The succeeding operands do not have indexing increments.
NIDX supersedes any preceding INDX and is superseded by any
following INDX. NIDX is assumed upon entry. No operand is needed.

DFCOM 7 Double floating complement. The pseudo accumulator is complemented.
No operand is needed,

DFSUB 8 Double floating subtract, The contents of the effective operand address
is subtracted from the pseudo accumulator and the result is left in the
pseudo accumulator,

DFMPY 9 Double floating multiply. The pseudo accumulator is multiplied by the
contents of the effective operand address and the result is left in the

pseudo accumulator.
DFDIV A Double floating divide. The psendeo accumulator is divided by the

1o contents of the effective operand address and the result is left in the
pseudo accumulator.

DFLDD B1 6 Double floating load. The floating-point number will be loaded from
core and transferred to the pseudo accumulator located in temporary
storage.

DFLST D1 6 Double floating store. The double-precision floating-point number is
transferred from the pseudo accumulator and stored in core.

DFADD E1 6 Double floating add. The contents of the effective operand address is
added to the pseudo accumulator and the sum is left in the pseudo
accumulator.

INDX F 16 Index. The contents of the effective operand address is used to
increment the operand of the following operations: DFLDD, DFLST,
DFADD, DFSUB, DFMPY, and DFDIV. Each succeeding INDX
supersedes the last. No index is initially assumed.

Operation codes 0, 1, 2, 3, and Cig are not used.

ABSOLUTE ADDRESSING

The operand address may be a direct or indirect absolute address. As in the 1700, all indirect
addressing will be executed before indexing. Unlike the 1700, only one level of indirect addressing is
allowed.

60362000 C D-3

RELATIVE ADDRESSING

The operand address, bits 14 through 0, is relative to self. If bit 15 is set. the addressing is relative-
indirect to one level of indirectness. The relative address is computed by subtracting the calling
sequence operand address from the actual operand address, bit 13-0.

Example:

X = - (AD+BI)*C(N)+D(JI)*E(J)

Assume TEMP, X, J, D, and E are absolutely addressed, the other operands relatively addressed.
The call to DFLOT would look like the following:

RT.] DFLOT

Fi6 | Big | 7 | B

Absolute address of I
Absolute address of D
Absolute address of E

Dig 16 | Bis

Absolute address of
temporary cell TEMP

9

Relative address of I

Relative address of A
9 n 6

I'le

Relative address of B

Relative address of ¢
4

D

[;16 [)16

Absolute address of
temporary cell TEMP

Absolute address of X

FAULT CONDITIONS

At any time during execution, fault conditions are flagged by a communications cell (cell C81g5). If a
fault condition has been encountered, bit 15 will be set for exponent overflow, bit 14 for a divide fault,
and bit 13 for exponent underflow. The divide fault bit is set for division by zero. An exponent
overflow/underflow bit is set whenever the exponent of an arithmetic operation is not within range,

FLOATING-POINT ARITHMETIC WITH 39-BIT NUMBERS

A classic and straightforward technique is presented which is not limited to the size or type of the
number representation used,

D-4 60362000 C

Consider the double-precision floating-point number:

F=fx28

where |f| lies in the range

1/2 <

Assume that we have a machine with a word length of 16 bits

lf| < 1-2739

word are divided in the following standard way:

(2)

and that the 48 bits in the triple-length

9 bits

7 most significant
bits of £

binary point

16 intermediate significant bits of

16 least significant bits of f

The leftmost block of nine bits is divided into three parts-

The first (leftmost) bit represents the sign of f.

The second bit represents the sign of 3.

The next seven bits represent the magnitude of 8.

This allows 39 bits for the representation of f. We shall assume that the binary point lies at the left
of the 39 bits representing f so that the seven most significant bits of f are stored in the first word of
the three, and the 16 least significant bits of f are stored in the third word.

If we write

f|=c+ecix2 7 +dx2”

where c lies in the range

1/2<

-7
c<1-2

ci lies in the range

0<ci<l-2°

16

23

and where d lies in the range

0<d<1-2"

16

3)

4)

()

(6)

then ¢ represents the seven most significant bits of f, ci represents the 16 intermediate bits of f, and
d represents the 16 least significant bits of f.

60362000 C

FOUR ARITHMETIC OPERATIONS

We wish to consider the four basic arithmetic operations using double-precision floating-point numbers
of the form discussed. Consequently, in order to have notation for two operands, let us consider a
second double-precision floating-point number.

-
~—

where |g| lies in the range

1/2s gl <1 - 2"39 (8)
f

lgl=a+aix2 +bx2 2 (9)
where a lies in the range

1/2<a<1-2"" (10)
ai lies in the range

0<ai<1-2716 (11)
and b lies in the range

05b51-2'16 (12)

then a represents the seven most significant bits of |g|, ai represents the 16 intermediate significant
bits of |g|, and b represents the 16 least significant bits of |g|.

Assume that the machine represents negative numbers using a one's complement system. Assume that
the procedure for changing the sign of a double-precision floating-point number is to perform a bit-by-
bit complement of the entire 48 bits (including the nine bits representing the sign and exponent).
Addition

F+G=fx2P+gx26 (13)

The basic problem in floating-point addition is to adjust the exponent of F (or G) so that the binary
points are aligned before the addition takes place.

Let L represent three cells which contain the larger of the two numbers F and G, and S represent three
cells which contain the smaller of the two numbers. Assume that F is larger than G if

B=26 (14)
and F is smaller than G if

B<d (15)

D-6 60362000 C

The relative magnitudes of f and g, in case the exponents are equal, are of no concern. Using this

convention, process the foliowing algorithm for forming F + G:

1. Record the leftmost nine bits of F and G, This, in effect, records g and §.

2, Determine the sign of (8-§) and thus determine whether F is smaller or larger than G

according to (14) and (15).

3. Place fand g in L and S. If F is larger than G, then f goes into L; otherwise, f goes into
S and g goes into L. The following bit patterns should be formed (here s means sign bit):

[+ T [s 13 most significant bits |

binary point

L+ l 15 intermediate significant bits j

li i 11 least significant bits 4 sign bits —l

I |

| R 10 4 e Y S
L~ | 3 I 5 fo NiUsL sigilliivaiit bits

binary point

[16 intermediate significant bits I

I 10 least significant bits 6 sign bits 1

MSB]

s [

s [

LSB |

S

4, Shift S right | 3-6| places and put a + bit at the beginning of each of the three words. If
[B-8| =39, then there is no need to continue since all significant bits in S will be lost.

L+ l S I S B-8 | 'filler'" bits]

N |

MSB

ISB

LSB)

Notice that the Iﬁ—él filler bits between the binary point in S and the most significant bit
of the function are sign bits. This is mathematically correct in a one's complement

representation of negative numbers.

60362000 C

Add the LSB portions of L and S,

The first bit of this sum is c. If it is a one, there is actually a carry., However, it usually
is easier to add c (see step 6) than to test to see whether or not it needs to be added as a
carry bit in forming the sum of the ISB portions of L. and S.

Add the ISB portions of L and S and the carry bit from step 5.

cl

If C1 is set to one, we have a carry and we will add c1 to step 7 in forming the sum of the
most significant bits of L and S.

Add the MSB portions of L. and S and add the carry bit obtained from step 6.

If e = 1 then an end-around carry must be performed. This means that a one is added at
the right end of the word produced in step 5. Since this might also produce a carry bit,
the ¢ in the diagram (see step 5) must be cleared to zero before the end-around carry. If
a carry bit is again produced, then a one must be added at the right end of the word
produced in step 6. Since this might also produce a carry bit, the cl in the diagram (see
step 6) must be cleared to zero before the end-around carry. If a carry bit is again
produced, then a one must be added at the right end of the word above. It can be shown
that this last operation can never produce another e = 1,

If v = s then v is a sign bit. If v # s then there has been overflow during the addition and
v is the most significant bit of the sum. In the latter case, an adjustment of the exponent
will be necessary to give the correct answer.

Shift the LSB portion of the sum left one place to clear out carry bit c. Then shift the ISB
portion of the sum left one place to clear out the carry bit c1l. Then shift the LSB portion
of the sum one place and put the bit shifted off into the rightmost bit of the ISB portion of
the sum. Then shift the triple length sum left (a) one place if v = s; (b) two places if

v =8,

This leaves the sum in the following form:

s 15 most significant bits of the sum

16 intermediate significant bits of the sum

at least 8 bits of the sum sign bits

60362000 C

9, If the triple-length sum was shifted one place left in step 8 (v = s) then the exponent must be
adjusted to take care of the overflow, This means adding one to the exponent Bor 5,
whichever ig larger. (This will be the exponent of the sum.) If the double length sum was
shifted two places left in step 8, no adjustment of exponent is necessary,

10, The form of the sum given by step eight must be checked for normalization since it is
possible that several of the leading bits of the sum may be zerc. (Cancellation cccurs when
two numbers of opposite sign but nearly equal magnitude are added.) If the sum is not
normalized at this point, appropriate adjustments in the exponents should be made.

If 39 left shifts are not sufficient for normalization, then the sum should be made zero.

11, At this point the normalized sum may be rounded, although the extra coding involved may
not be worth the gain, If rounding is desired, then there are two cases to be considered
depending on the sign of the sum. These cases require that care be taken in handling any
carry bit produced by the rounding operations.

12, Now pack the 39 most significant bits of the sum, along with nine bits representing the sign
and exponent, into three 16-bit words (in the standard way). If the sign of the sum is
negative, then the first nine bits must be complemented before the packing takes place.

Subtraction
No special subroutine is necessary since
F-G=F+(-G)
and one merely complements G before entering the addition subroutine.
Multiplication
F X G = (f x 2P) (g x 29) (16)

+6
= (sign F X G) |f| x [g] x 2P

+4
The computational procedure is primarily concerned with the formation of £t x |g| X ZB since (sign

F X G) can be recorded in advance and used later to apply the correct sign to the product. In addition
to recording (sign F X G), we record the exponents 8 and 6 after the product |f| X |g| is formed. The
following algorithm is proposed for multiplying F by G:

1, Determine and record (sign F X G)

2, Form |F| and |G

3. Record the leftmost nine bits of [F| and |G|. This, in effect, records 8 and 6.

60362000 C D-9

4, Shift the 39 bits of |f| and |g] left until each has the bit pattern

+ 15 most significant bits Cand A

0 15 intermediate significant bits Ci and Ai

0 9 least significant bits 6 zeros D and B

If this procedure is followed, |f| is no longer represented by (3) during the computation
in step 5 below, but has the form:

f=c+Cix2 1 +px230 an

where C, Ci, and D lie in the following ranges:

- 15
21

sc<1-2 (18)

o<cici-271° (19)
-9

0<D<1-2 (20)

Likewise |g| has the form

-1 -30
lgl=A+Aix2 P +Bx27 21)

where A, Ai, and B lie in the following ranges:

2l ac1-271 (22)

o<Aig1-271 (23)
-9

0<B<l1-2 (24)

5. Use fixed-point operations in forming the product.

-1 -30 -15 -30
Ifix|g| =(C+Cix2 5+D><2) (A+Aix2 +Bx2)

-1 -30
CA +CAL + CiA) x 2 ™ + (DA + CiAi + CB) x 2
45 0

+ (DAi + CiB)x 2 ~ +DBX 276

-1 -30
CA+ (CAi + CiA) X 2 > + (DA + CiAi + CB) X 2 (25)

D-10 60362000 C

Notice that the terms (DAi + CiB) x 2-45 and DB x 2760 may be ignored, because once the
product is placed back in standard form, oniy 39 bits are retained. The following
computational steps are performed:
a. Form CA giving a double-length product,
. Form DA and retain the most significant half of the double-length product.
c. Form CiAi and retain the most significant half of the double-length product.
d. Form CiA giving a double-length product.
e. Add the most significant half of DA to the most significant half of CiAi.

—
M

Form CB and retain the most significant half of the double-length product.
g. Add the most significant half of DB to the sum obtained in (e).
h. Add the least significant half of CiA to the sum obtained in (g).

=
.

Form CAi giving a double-length product,

j. Add the least significant half of CAi to the sum obtained in (h). This result is the
least significant portion of the triple-length product.

k. Add the most significant half of CiA to CAi.

1. Add the least significant half of CA to the sum obtained in (k). This result is the
ntermediate signilicant portion of thie triple-length produci, The [irsi naii o1 tne
double-length product is the most significant half of CA which was formed above in
(a).

6. Next, round and normalize the product obtained using (25) in step 5. Any adjustment in the
exponent 3+ which is necessary because of the normalization of |f| x |g| must be performed,

7. Finally, pack the 39 bits of the normalized product and the nine bits representing the sign
and the adjusted exponent into three 16-bit words (in the standard way). If the (sign F X G)
is negative, the two words must then be complemented to give the correct sign to the

product.
Division
1 1
%=fo—:=(gx25)x<)
fx2P
1 -
= (sign GXF) X g XTX 26 A (26)
As a matter of fact, since we want:
g
l : |< 1, (27
scale the numerator and write:
1
. 2 -B+1
—g—= (sign GXF) x'gl X T X 26 B (28)

60362000 C D-11

Thus, propose the following algorithm for dividing G by F:

1. Determine and record (sign F X G).

2, Form |F| and |G]|.

3. Record the leftmost eight bits of |{F| and |G]. This, in effect, records 8 and §.

e _ £

. IS T o] PR S,
4, Arrange the 39 bits of || to give th

@
foid
=
T
)
-
p=
o]
=
=

+ 15 most significant bits of |f|

0 | 15 intermediate significant bits of |f|

0 9 least significant bits 6 zeros

Ai

and the 39 bits which represent the number 1.0 to give the bit pattern:

14 most significant bits of 1/2

0 15 intermediate significant bits of 1/2

0 | 10 least significant bits of 1/2 | 5 zeros

$2000 o
$0000 Y
$0000 €

5. Use fixed-point operations in forming the quotient.

=15
1 _a+y x2™P

+€ X2

30

15 30 A+ Ai X 2-15

A+Aix2 +Bx2
where: o = $2000
Y = $0000

< =$0000

-3
+BxXx2

0

(o] 1 aAi -15 1 aB -30
e — - — + - -, 2
A+A<'y A)XZ A<€ A)x

A

5 Ai~ -30
+(B-T) X2]]

(29)

60362000 C

60362000 C

Any terms beginning with 2745 are ignored because only 39 bits of the quotient are
retained. The following computational steps are performed:

a.

b.

Form —Ai2 giving a double-length product,

Divide -AiZ (as a double-length dividend) by A.
Ai2
Form B-T (rounded to a single length).

Form the double length-dividend:

1

Aix2 -30]

2
5. [(B-A}{)xz

(The sign of the second term requires special attention.)

Divide the double-length dividend by A and multiply the result by«. The multiply
is accomplished by shifting the result of the divide.

To obtain the second half of the double-length quotient, the remainder resulting
from the division in the previous step must now be divided by A.

Form o (the most significant bits of 1/2) and the result obtained from step e as a
double-length dividend.

Divide the double-length dividend by A. The result is the most significant bits
of the quotient,

Form the remainder of step h and the result of step f as a double-length dividend.

Divide the double-length dividend by A. The result is the intermediate significant
bits of the quotient.

Divide the remainder obtained in step j by A. The result is the least significant
bits of the quotient,

Next, round and normalize the three-word quotient using (29) and the procedure
of step 5. Any adjustment in the exponent which is necessary because of
normalization of

'—hlt\:h—l

must be performed.
The three-word quotient is then multiplied by |g|.

Next, round and normalize the product., Any adjustment in the exponent 8+6 which
is necessary due to the normalization must be performed.

Finally, pack the 39 bits of the normalized quotient and the nine bits representing
the sign and the exponent into three 16-bit words (in the standard way). If

(sign F X G) is negative, the three words must then be complemented to give the
correct sign to the quotient,

FAULT CONDITIONS

If exponent underflow is encountered, a floating point zero results, If exponent overflow is
encountered, the largest word of the appropriate sign results. A divide check is treated like an
overflow,

REFERENCES

Robert T. Gregory and James L. Raney, "Floating Point Arithmetic with 84-Bit Numbers",
Communications of the ACM, Volume 1, Number 1, January 1964.

D-14 60362000 C

CODING HINTS E

“

The constants in an arithmetic expression should be collected. For example,
X=Y+3.1%4,2

should be written
X=Y+13.02

Subexpressions, including a byte variable as constant in a DO loop, should be pulled out of the loop.
For example, the program

SUBROUTINE SUM
COMMON A(10), IC(10)
DATA B/3.4/
DO 1 T=1_ 10
A(M=0.0
DO 1J=1, 10
1 A(I) = (SIN(B) + FLOAT(I)) * FLOAT (IC(J)) + A(I)
RETURN
END

should be written

SUBROUTINE SUM
COMMON A(10), IC(10)
DATA B/3.4/
TEMP1 = SIN(B)
DO 2 I=1, 10
C=0.0
TEMP2 - FLOAT(I) + TEMP1
DO1J=1, 10
1 C = TEMP2 FLOAT(IC(J)) + C
2 A(I)=C
RETURN
END

60362000 C E-1

Only one dimensional array should be used. If two or three dimensions are desired, the programmer
should use the subscript functions given in Appendix G. For example, the program

SUBROUTINE TRANSF
COMMON A(10, 10), B(10, 10)
DO 1 J=1, 10
DO 1 1=1,10
1 A(I,J) = B(1.J) + 1.0
RETURN
END

should be written

SUBROUTINE TRANSF
COMMON A(100), B(100)
DO 1 1=1, 100
1A(I) =BT+ 1.0
DO 1 J=1, 10
ITEMP1 = 10 * (J-1)
DO11=1,10
ITEMP2 =1 + ITEMP1

1 A(ITEMP2) = B(ITEMP2) + 1,0
RETURN
END

Common subexpressions between two or more arithmetic expressions should be collected. For
example,

Y(I) = A+B + FUNCL(IBYTE)
Z(1) = A*FUNCY(IBYTE) + FUNC2(IBYTE)

where IBYTE is a byte variable, should be written

ITEMP1 = IBYTE

TEMP1 = A + FUNC1(ITEMP1)
Y(I)= B + TEMP1

Z(I) = TEMP1 + FUNC2(ITEMP1)

When a program references a multi-dimensional array, the FORTRAN compiler on occasion generates
a relocatable base address for an indexed variable which is intended to fall in front of data, common,
or the program. Since this relocatable address is expressed in 15 bits, the loader on a 16-bit load
has no way of knowing that this is not a forward relocation. To accommodate this, the loader assumes
that any relocatable address in the range 7F80 to 7FFF is intended as backward relocation. This
range can be changed by reassembly of the MSOS loader module RBDBZ1.

E-2 60362000 C

The user who has the double precision capability may write programs which require only single
precision., To avoid linkage to the double precision library, the external references to DOUT, Q8DXP1,
and Q8DXP9 must be satisfied. The user may write his own dummy routine with these references as
entry points or use the routine DBLDMY (deck ID K19) contained in the MS FORTRAN product set, and
load it with his programs. Refer to Section 2,2,6, Double Precision Type Data, and note the evaluation

£, Aanihl ial toanta +
for double precision constants to avoid an external reference to DFLOT.

60362000 C E-3/E-4

HARDWARE REQUIREMENTS

1. The minimum hardware configuration is:

FORTRAN 3.2A

Mass Memory Device
(.5 million words or more)
Card Reader
Teletypewriter
CDC 1700-Class CPU
Core Storage Increments*

Compiler core requirement is less
than 8,192 words,

Minimum MSOS 4 Operating System

core requirement is 9 2K
2, The typical configuration is:

FORTRAN 3. 2A

Mass Memory Device
(1.0 million words or more)
Teletypewriter
Card Reader/Punch
Magnetic Tape Devices
CDC 1700-Class CPU
Core Storage Increments*

Compiler core requirement is less
than 8,192 words.

Typical MSOS 4 Operating System
core requirement 19K**,

FORTRAN 3. 2B

Mass Memory Device
(.5 million words or more)
Card Reader
Teletypewriter
CDC 1700-Class CPU
Core Storage Increments*

Compiler core requirement is less
than 16, 200 words.

Minimum MSOS 4 Operating System

core requirement is 4 2K

FORTRAN 3. 2B

Mass Memory Device
(1.0 million words or more)
Teletypewriter
Card Reader/Punch
Magnetic Tape Devices
CDC 1700-Class CPU
Core Storage Increments*

Compiler core requirement is less
than 16, 200 words.

Typical MSOS 4 Operating System
core requirement 12. 5K**,

*Core requirements are based on the size of the Compiler used and the size of the MSOS operating

system configured.

**Typical operating system core requirements for 3. 2A versus 3. 2B are different because certain
nice-to-have MSOS features are usually not included in the 3. 2B system to allow 32K configuration.

60362000 C

F-1/F-2

ARRAYS G

An array is a block of sequential memory locations referenced by a single name. The name types the
elements of the array as integer or real (Section 2.4). Arrays are dimensioned in the mathematical
sense of having rows, columns, and planes. The magnitude of these dimensions is defined by the array

declarator, which is the array name followed by a set of numerical subscripts giving the maximum
dimensions.

Examples:
IOTA (50) One-dimensional array with 50 integer elements
BETA 4,6) Two-dimensional array with 24 real elements
ALPHA 4,3,5) Three-dimensional array with 60 real elements

Elements of arrays are stored by coclumns in ascending order of locaticn. The ordering of elements

in an array follows the rule that the first subscript varies most rapidly and the last subscript varies
least rapidly. In the array declared as A(3,3,3)

A111 A121 A131

Aoy Bagr Aoz

Agyr A321 B33

The planes are stored in order, starting with the first, as follows.

- L+24

A —~L A -‘L+3...A133

111 121

A, —L+1 A

211 —~1+4... A, L+25

221 233

—~ L+5...A,, 7 L+26

AgyT L¥2 Agqg 333

3

60362000 C G-1

For a given dimensionality, subscript declarator, and subscript, the value of a subscript pointing to

an array element and the maximum value a subscript may attain is indicated in Table G-1. A subscript
expression must be greater than zero.

The value of the array element successor function is obtained by adding one to the the entry in the

subscript value column. Any array element whose subscript has this value is the successor to the
original element. The last element of the arrav is the one who ubscri

o co o
elelinent iasti clely c array AT Vil vauls T Suis

subscript value and which has no successor element,

t value is the maximum

The sequential location of a particular element of a stored array is determined according to the
following:
Given the array defined by the declarator
AZ(A,B,C)
The ordinal location of element AZ(a,b,c) will be given by the formula
a+A=x*x(b-1)+A=*Bx(c-1)
Derivation of the formula is illustrated in Figure G-1.
Example:
To find the ordinal location of element B(2,3,4) in the array B(5,6,7)
2 +5%(3-1) +5 % 6 x (4-1) = 102

A subscript never may be less than 1 or greater than the maximum dimension declared for it. The

elements of one-dimension array BETA (I) may not be referred to as BETA (I,J) or BETA (1,J,K).
A diagnostic will be given if this is attempted.

The array name without subscripts references the entire array when it is used in an I/O list, as an
argument of a function or subroutine (Sections 7.4.1 and 7.4.2), or in a specification statement other
than DIMENSION (Section 6.1,1) or DATA (Section 6.2).

Table G-1. Value of a Subscript

MAXIMUM
SUBSCRIPT SUBSCRIPT SUBSCRIPT SUBSCRIPT
DIMENSIONALITY | DECLARATOR REFERENCE VALUE VALUE
1 (A) (a) a A
2 (A, B) (a,b) a+A*(b-1) A*B
3 (A,B,C) (a,b,c) a+A*(b-1) A*B*C
+A*B*(c-1)

Notes: (1) a, b, and c are subscript expressions.
(2) A, B, and C are dimensions.

G-2 60362000 C

0 00029€09

g-D

[-~

NN\

DN

AN

B

A*B*(c-1)

Figure G-1. Array Successor Function a + A * (b-1) + A * B * (c-1)

Before an array can be used in a program, its name and dimensionality must be declared in a
DIMENSION, COMMON, or type statement (Sections 6.1.1, 6.1.2, and 6.1.4).

Example:
Given the array ALPHA(3,4,4)
It will be declared for program use by any of the following:

DIMENSION ALPHA (3,4,4)
COMMON // ALPHA (3,4,4)
INTEGER ALPHA (3,4,4)

60362000 C

ASCll CODES H

“

The 1968 American Standard Code for Information Interchange (ASCII) is used by 1700 MSOS for
communication between the 1700 and external 1/0 devices. In addition to the code for the FORTRAN
character set, it includes code for control of the paper tape punch and the teletypewriter.,

ASCII code uses eight bits, the first of which is always 0; it is omitted in the following table. Bits
1 through 4 contain the low-order four bits of code for the character in that row. Bits 5, 6, and 7
contain the high-order three bits of the code for the character in that column,

BITS b7 b hoe O0O 001 O1O 011 1o0 101 110 111

b, b:z b, Py OLUMN 0 i 2 3 4 5 G i

} | | \ _|ROW

v G v U v NUL DLE | 5P] @ P . p
0 0 0 1 1 SCH DC1 ! 1 A Q a q
0 0 1 0 2 STX DC2 n 2 B R b r
0 0 1 1 3 ETX | DC3 # 3 C S c s
0 1 0 0 4 EOT | DC4 $ 4 D T d t

0 1 0 1 5 ENQ | NAK| % 5 E U e u
0 1 1 0 6 ACK | SYN & 6 F v f v
0 1 1 1 7 BEL | ETB| - 7 G w g w
1 0 0 0 8 BS CAN (8 H X h x
1 0 0 1 9 HT EM) 9 I Y i y
1 0 1 0 10 LF SUB * J Z j z
1 0 1 1 11 VT ESC + ; K [k {

1 1 0 0 12 FF FS , < L \ 1 !
1 1 0 i i3 CR GS - = M | m }
1 1 1 0 14 SO RS . > N ~ n ~
1 1 1 1 15 SI Us / ? o o o DEL

. ,

v

FORTRAN Character Set

60362000 C H-1/H-2

LOAD MAP COMMENT FEATURE |

The user may insert comments in the binary name block by using the name card comment feature.
This comment will appear on the load map to the right of the program name and load address.

The name card feature reserves columns 27 through 72 for comments by inserting a slash in column 26.
An alternate method of using this feature is to make a continuation card for the program name card

with the slash in column 7 and the comment immediately following the slash.

The comment field may follow any of the following statements: PROGRAM, SUBROUTINE, FUNCTION,
DOUBLE PRECISION FUNCTION, REAL FUNCTION, INTEGER FUNCTION, or BLOCK DATA.

If the slash is used, the 46 characters following the slash appear on the NAM block of the binary output.
neither the slash nor the comment appears on the source card, the binary NAM card ig blank.

U there is no slash, but comments appear on the card, a diagnostic is issued and the binary NAM card
contains blanks.

Examples:

1 15 26 10

PROGRAM NAME /99999999 SAMPLE NAME WITH ID (With comments)

Z 18

SUBROUTINE NAME(@A,B,C,D,E,F) (Without comments)
6

—17A CONTINUATION CARD MAY ALSO BE USED

60362000 C I-1/1-2

OPTIMIZATIONS J

1700 MS FORTRAN optimizations are listed as follows:

1. Index registers are optimally assigned.
2. Relative addressing is used where possible.
3. Storage is allocated to maximize relative addressing. For example, some arrays are put

into the middle of code and constants may be duplicated.
4, All simple FORTRAN-provided functions are inserted in-line (for example, IABS or AND).

5. A comprehensive analysis of IF statements is made. Code generated takes cognizance of
a transfer from the IF to the label of the next statement; and also if the statement is a GO
TO. In a logical IF, the computations are structured to produce the least amount of
computation for a determination of the expression's truth value,

6. Arithmetic expressions are analyzed and computed in an order which minimizes both the
amount of code generated and its execution time.

7. The compiler may reference the values in A, Q, and I (FFy¢) and make use of them. It
may even reference each of these values by two different names. For example, if I =0,
the compiler can reference both I and 0 as representing a value in the accumulator.

60362000 C J-1/3-2

FORTRAN CHARACTER SET K

FORTRAN uses alphanumeric and special characters.
Alphanumeric characters are the letters A through Z and digits 0 through 9.

The decimal system is used unless indicated otherwise; however, octal and hexadecimal numbers may
be used in certain instances.

Following is a list of characters.

ASCII ASCII Hollerith

Character Code Punch (026) Description
0 30 0 Digit) 1 2
1 31 1 Digit
2 32 2 Digit
3 33 3 D.xg*ft L Octal
4 34 4 Digit k Decimal
5 35 5 Digit
6 36 6 Digit

L (A —Q?gl—! - - = - - + Hexadecimal
8 38 8 Digit

.9 _ _ 39 __ 9 _ __._ _Digit . _T
A 41 12-1 Letter
B 42 12-2 Letter
C 43 12-3 Letter
D 44 12-4 Letter
E 45 12-5 Letter

_ F _ _ _46_ _ 12-6 _ _ Letter _ __ __ __ _ __ _ _4
G 47 12-7 Letter
H 48 12-8 Letter
I 49 12-9 Letter
J 4A 11-1 Letter
K 4B 11-2 Letter
L 4C 11-3 Letter
M 4D 11-4 Letter
N 4E 11-5 Letter
O 4F 11-6 Letter
P 50 11-7 Letter
Q 51 11-8 Letter
R 52 11-9 Letter
S 53 0-2 Letter

60362000 C K-1

ASCII ASCH Hollerith
Character Code Punch (026)

T 54 0-3

U 55 0-4

v 56 0-5

w 57 0-6

X 58 0-7

Y 59 0-8

z 5A 0-9

(space) 20 No punch

1 21 11-8-2
" 22 8-7

23 12-8-7
$ 24 11-8-3
% 25 0-8-5
& 26 8-2

' 27 8-4

(28 0-8-4
) 29 12-8-4
* 2A 11-84
+ 2B 12

, 2C 0-8-3
- 2D 11

. 2E 12-8-3
/ 2F 0-1

: 3A 8-5

; 3B 11-8-6
< 3C 12-8-6
= 3D 8-3

> 3E 8-6

? 3F 12-8-2
@ 40 0-8-7
[5B 12-8-5
N\ 5C 0-8-2

] 5D 11-8-5
A 5E 11-8-7
5F 0-8-6

Description

Letter

Letter

Letter

Letter

Letter

Letter

Letter

Blank
Exclamation point
Quotes
Number
Dollar
Percent
Ampersand
Apostrophe
Left parenthesis
Right parenthesis
Asterisk

Plus

Comma
Minus

Period

Slash

Colon
Semicolon
Less than
Equal
Greater than
Question

At

Left bracket
Reverse slash
Right bracket
Circumflex
Underline

60362000 C

FORTRAN COMPILATION ERRORS L

Message Significance

* {g }, code, no., part A compilation free of diagnostics will be syntactically correct. The
compilation will also be free of common semantic errors, such as
undefined variables in context requiring definition. If the detected
error prevents code from being generated in a reasonably accurate
manner, the error is considered fatal and compilation terminates.
When an assumption is made as to the intended meaning of a statement,
the diagnostic indicates the assumption. When possible, errors which
may not be fatal (e.g., an A in column 3) are flagged. A reference
to such a label (or the intended nonexistent label) would cause the
fatal error.

N Trivial error: only flagged. Example: not separating array
declarators in a dimension statement

F Fatal error
code Diagnostic number; see the following message for listing
of codes
no. Number of statements in error; appears only when
applicable
part Part of statement in error; appears only when applicable
variable Compilation error. When errors cannot be detected until all the

specification statements have been read and initially processed, the
error appears in this format. As the specification statements are
processed further, a few diagnostics can be printed. In these cases,
the variable causing the difficulty is printed. The diagnostic is
printed on the next line without a statement number reference since
it is no longer available.

*{? }, code

N Trivial error; only flagged. Example: not separating array
declarators in a dimension statement

F Fatal error

code Number of statements in error; appears only when applicable

60362000 C L-1

Message

(]

© o a3 O u »

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26

27

Significance

Field is not recognizable (illegal characters in field, such as 8 in
octal field).

Minimum range limit of a constant is exceeded,

More than six characters in a name

Maximum range limit of a constant is exceeded,

Exponent is missing in a constant,

Subscripted variable was not previously dimensioned,
Expression in an IF statement does not have initial parenthesis .
Incorrect FORMAT statement

Illegal use of the . NOT. operator

Dllegal operator or operand

Subprogram reference is illegal,

Labeled END card is illegal.

Number of arguments differs in references to the same subprogram,

Implied DO in DATA statement either contains wrong number of
subscripts or subscript is out of range.

Expression has an illegal termination,

Unmatched parentheses in an expression

Relational operator is missing,

Relational operator used illegally.

Asterisk is assumed.

Only one ** is allowed per parentheses level.

A variable and a subprogram name are interchanged,
Subprogram name does not appear in an EXTERNAL statement.
One or more DO loops terminate on an undefined statement label,
Tlegal subscript

Statement is syntactically correct.

This array was previously dimensioned in DIMENSION, COMMON,
or TYPE statement or previously defined in an EXTERNAL statement.
The previous dimensioning or defining is retained and the new ignored.

The field must be a variable or array name if processing a COMMON,
DATA, EQUIVALENCE, BYTE, or SIGNED BYTE statement; an
array name if processing a DIMENSION statement; or an array,
variable, or FUNCTION name if processing a type statement.

60362000 C

60362000 C

Message

28

29
30
32
34
35

36

37

38
39

Significance

Logical IF statement contains another logical IF, DO, DATA, or
FORMAT statement,

Name must be the name of an array.

Must be first statement of program unit.

A missing comma in this statement is assumed.

Illegal character in this statement is changed to a blank.

This line, which begins a statement, has other than zero or blank
in column 6; blank is assumed,

Too many labeled common blocks declared, continuation of the last
declared block is assumed.

The name in this COMMON statement is either a formal argument
or defined in a previous COMMON statement. The name is ignored.

Name specified as two different types. This specification is ignored.

This byte typed as other than an integer, or it is a formal argument.
The byte specification is ignored,

This byte previously specified as a different byte. The previous
specification is retained and this specification is ignored.

The bit specified is not within bounds of the 1700 word size,

Least significant bit in this specification is greater than the most
significant bit.

Name must be an external function or subroutine name,

Field must be a nonzero positive integer constant,

Array has more than three dimensions,

DATA statement contains too many constants for the space provided,

Statement has more than five continuation cards; excess cards are
ignored,

An insufficient number of constants is provided in this data statement,
Constant is not same type as corresponding data cell,
Statement redefines DO loop parameter,

Statement type is unrecognizable; or it follows an executable
statement,

Not defined
Statement label is meaningless; label is ignored.

Statement label previously defined; current label is ignored.

Message

66
67

68
69
70
71

72
73

74
75
78
79

80

81

82
83

Significance

Program name expected in this field.

Too many dimensions caused table overflow.

Symbol table overflowed; compilation terminates.
Statement label may not be zero.

No apparent exit from this program

Unclosed DO-implied list

Unformatted WRITE must have a list.

Name must be an integer variable or integer constant.
Name not implicitly an integer variable

A RETURN statement may appear only in a subroutine or function
definition. A STOP statement is assumed.

Superflous information in this statement is ignored.

This field on STOP card must have an octal number not greater than
77777. STOP is assumed.

Field must be a positive integer.
Field must be an integer variable,
Field must be a statement label,

This form of ASSEM argument cannot reference elements in
COMMON, EXTERNAL names, or subprogram arguments,

This type of statement may not terminate a DO loop,

This statement terminates a DO loop which is not the last DO
encountered,

This GO TO jumps to itself,
A program consisting of only an END card is illegal,
Label in a DO statement must reference a statement following it.

Maximum allowable number of nested DOs exceeded. The DO loop
may be implied in a DO list,

Subroutine argument table overflow; caused by large number of
declared parameters and unique references to these parameters.

This formal argument was previously specified as another formal
argument or the subprogram name.

Too many formal arguments caused a compiler table overflow.

The above name is not a variable or an array element.

60362000 C

Message Significance

84 Two elements of the same array or common block are assigned
to the same storage unit.

85 Blank common and formal arguments may not be initialized with

A

DATA statements,

87 An array element in a BYTE, SIGNED BYTE, DATA, or
EQUIVALENCE statement either has wrong number of subscripts
or subscript is out of range.

88 Too many EQUIVALENCE names caused a compiler table overflow,
89 At least two elements must appear in an EQUIVALENCE statement .
91 DATA statement field is not an integer, real, double precision, or

literal constant.

92 Missing terminating asterisk or quote in a literal string as
appropriate
100 Catastrophic table overflow; compilation is abandoned. If the

offending statement is arithmetic or a logical IF, the statement
should be breken inte two or more statements and the program
recompiled.

101 Two PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
statements in one program unit; the second is ignored.

103 Relative address argument in ASSEM statement requires an asterisk
at the end of the preceding instruction,

152 Arithmetic table overflow

60362000 C L-5/L1-6

The following error messages apply to the FORTRAN I/0 run-time only.

Message

1

1/0 RQST
statement no.
ffff

2

1/0 RQST
statement no.
ffff

2888

3

I/0 RQST
statement no.
ffff

g£88¢8

4

1/0 RQST
statement no.
XX

5

I/0 RQST
statement no,
XX

60362000 C

FORTRAN EXECUTION ERRORS

Significance

Error in a format statement; illegal character

in format statement

ffff The current decimal value of the for-
mat statement pointer

Illegal character in the input field,

fiff Current decimal value of format
statement pointer

gggg Current decimal value of input field
pointer

Input data exceeds limits of 1700 word:

Exponent >|391 OI

ffff Current decimal value of format
statement pointer

gggg Current decimal value of the input
field pointer

Attempt to read on a write unit or write on
a read unit

XX Decimal unit number of a device
used improperly

Read or write request after an end-of-file
has been read without first doing an EOF
check

XX Decimal unit number of a device
used improperly

Action/Result

Program terminates

Program terminates

Program terminates

Program terminates

Program terminates

M-1

Message

7

1/0 RQST
statement no.
Xx

8
1/0 RQST
statement no,
XX

9

1/0 RQST
statement no.
XX

10

I/0 RQST
statement no.
XX

12

1/0 RQST
statement no,
ffff

13
1/0 RQST
statement no.
frff

14

1/0 RQST
statement no.
XX

15

1/0 RQST
statement no.
XX

Significance
Write attempted on magnetic tape with no

write enable

XX The decimal unit number of a device
used improperly

Attempt to use logical unit number greater
than 99

XX The decimal unit number of a device
used improperly

Backspace at loadpoint

XX The decimal unit number of a device
used improperly

End of magnetic tape sensed

XX The decimal unit number of a device

used improperly

Illegal formatted input; more elements
are given than are contained in an input
record

ffff Current decimal value of format
statement pointer

Illegal list; a list is given but there are no
conversion codes in the format statement

ffff Current decimal value of format
statement pointer

File defined twice; more than one OPEN
request given for the same file

XX Decimal file number for a mass
storage device

Parameter negative or zero; one of the
parameters in an OPEN statement is
negative or zero

XX Decimal file number for a mass
storage device

Action/Result

To continue press

RETURN

Program terminates

Program terminates

To continue, press

RETURN

Program terminates

Program terminates

Program terminates

Program terminates

60362000 C

Message

16

1/0 RQST
statement no.
XX

17

1/0 RQST
statement no.
XX

18

1/0 RQST
statement no.
XX

19

1/0 RQST
statement no.
XX

60362000 C

Significance

Sector address too large; the starting
sector address or ending address exceeds

2151

XX Decimal file number for a mass
storage device

File not defined; a READ or WRITE request

was given for a file which was not defined
by an OPEN statement

XX Decimal file number for a mass
storage device

Logical unit not a mass storage device
XX Decimal file number for a mass

storage device

Record number in READ or WRITE request
incorrect. Resulting sector address is out
of the range of the file or it is zero

XX Decimal file number for a mass
storage device

Action/Result

Program terminates

Program terminates

Program terminates

Program terminates

M-3/M-4

FORTRAN MISCELLANEOUS ERRORS N

“

Message Significance
CORE OVFL More than 32, 767 cells of object code have been produced
*UD Undefined symbol in address field

UNDEFINED SYMS Undefined statement labels and variable names
name name name

*SO Scratch mass memory overflow

INPUT ERROR Request from comment device for input has returned on error. FORTRAN
will exit the job.

60362000 C N-1/N-2

The following symbols may not be redefined in user programs.

60362000 C

MS FORTRAN RESERVED WORD LIST

DABS
DATAN
DBLE
DCOS
DEXP
DFIX
DFLOT
DFLT
DLOG
DSIGN
DSIN
DSQRT
DSTORI1
DSTOR2

FLOAT
FLOT

Q8DFLT
Q8DFNF
Q8PKUP
Q8PREP
Q8PSE
Q8PSEN
Q8QBCK
Q8QD2D
Q8QD2F
Q8QD2I
Q8QEND
Q8QF2I
Q8QF2I
Q8QFLE
Q8QFIX
Q8QFLT
Q8QIZF
QBQINI
Q8QWND
Q8QX
Q8QX1
Q8QX2
Q8QX3
QBQRY
Q8QZ
Q8STP
Q8STPN
RSTOR1

0-1/0-2

Absolute addresses A-1
Addresses
Absolute A-1
Relative A-1
AFORM 9-22
Allocated core, release of 9-30
Alphanumeric conversion 6-20
Aw input/output 6-21
Rw input/output 6-21
Arguments
Actual 7-3
Dummy 7-3
Arithmetic assignment statements 5-1
Arithmetic expressions 3-1
Mixed mode 3-3
Order of evaluation 3-2
Rules for forming 3-1
Arithmetic IF 5-7
Arrays G-1
Format specification in 6-27
ASCIT 9-21
Codes H-1
ASSEM 5-34
Assigned GO TO 5-4
Assignment statements 5-1
Arithmetic 5-1
Iabel 5-2
Asterisk or quote I/O 9-11
Auxiliary I/0O statements 5-28
BACKSPACE 5-29
ENDFILE 5-29
REWIND 5-28
Aw input/output 6-20; 9-9

BACKSPACE 5-29
Basic external function 7-7
Blank field specification 6-24
nX input 6-24
nX output 6-25
BLOCK DATA 7-17
Block data subprogram 7-17
Blocks, tape 5-30

60362000 C

INDEX

Buffered input/output 9-31
Byte statements 6-7
Byte type data 2-4

CALL 5-8; 7-16
Calling sequences 9-13, 28, 29; A-1
Character set K-1
Character specifications, special 9-11
Coding hints E-1
Commands via the A/Q channel 9-30
Comment line 4-1
COMMON 6-2
Common block 6-3
Compilation {-1
Errors I-1
Computed GO TO 5-6
Constant
Double precision 2-7
Integer 2-3
Real 2-6
CONTINUE 5-8
Control statements 5-3
Conversion
Alphanumeric 6-20
Double-precision 6-19
Format 9-5
Integer 6-13
Numeric 6-13
Real 6-15
Specifications 9-5
Dw.d input 6-19
Dw.d output 9-5
Ew.d input 9-7
Ew.d output 9-6
Iw input 9-8
Iw, Iw.d output 9-7
Rw input/output 9-10
Zw input 9-9
Zw output 9-8
$w input 9-9
$w output 9-8

Index-1

Communication between FORTRAN nH output 6-22

and assembly language programs A-1 Quote or asterisk 1/0 9-11
Completion location 9-25 wH, wX input/output 9-10
Core clock 9-30 ENCODE/DECODE 9-3, 15

Error detection 9-19
Macros 9-17, 19

DATA 6-9 END 5-9
Literals in 6-10 ENDFILE 5-29
Data elements 2-1 EQUIVALENCE 6-4
Data format types Errors 9-15
Byte 2-4 Compilation L-1
Double precision 2-7 Execution M-1
Integer 2-3 Format 9-15
Real 2-5 Input/output 9-15
Signed byte 2-5 Miscellaneous N-1
Single 2-4 Ew.d input 6-16
Data types 2-4 Ew.d output 6-18; 9-6
DECHEX 9-21 Executable statements 4-1; 5-1
Decimal character set K-1 ASSEM 5-34
DECODE 9-3, 17 Assignment 5-1
Decremented DO loop 5-12 Arithmetic 5-1
Descriptors, field 6-12 Label 5-2
DFIOT D-1 Control 5-3
DIMENSION 6-1 Input/output 5-18
Dispatcher 9-29 Execution 8-10
DO 5-9 Errors M-1
Extended range 5-16 Expressions 3-1
Parameters 5-11 Arithmetic 3-1
DO loop 5-9 Logical 3-4
Decremented 5-12 Relational 3-3
Nested 5-13 Extended range of a DO 5-16
Structure 5-10 EXTERNAL 7-13

Transfer 5-15
Double precision

Constant 2-7 Fault conditions
Conversion 6-19 Double precision D-4, 14
Dw.d input 6-19 Single precision C-6, 15
Dw.d output 6-20; 9-5 Field descriptors 6-12
Floating point package D-1 Field separators 6-12
Subscripted variable 2-8 Flag priority 9-25
Type data 2-7 FLOATG 9-23
Variable 2-7 Floating point packages
Dw.d input 6-19 Double precision D-1
Dw.d output 6-20; 9-5 Single precision C-1
FLOT C-1
FORMAT 6-11; 9-4
Editing specifications 6-21; 9-10 Format
Literal free-field input/output 6-23 Conversion 9-5
New line 9-11 Errors 9-15
nH input 6-21 Statements 4-1

Index-2 60362000 C

Format specifications 9-4, 20
Repeated 9-12
Formatted READ 5-21
Formatted records, printing of 5-33
Formatted WRITE 5-23
FORTRA 9-3
FORTRAN
Character set K-1
Compilation errors L-1
Execution errors M-1
Library 9-1
Miscellaneous errors N-1
Multiprogramming 9-1
READ/WRITE statement processor
9-3, 12, 13
Re-entrant 9-1
Reserved word list O-1
Table limits B-1
FORTRAN/Monitor Run-time
Interface 9-2
Package 9-23
Function subprogram 7-10
Functions
Basic external 7-7
Intrinsic 7-7
Statement 7-3
Supplied 7-5
Fw.d input 6-15; 9-7
Fw.d output 6-16; 9-6

GO TO 5-4
Assigned 5-4
Computed 5-6
Unconditional 5-4

Hardware requirements 1-3; F-1
Hexadecimal character set K-1
HEXASC 9-20, 21

HEXDEC 9-20, 21

IF 5-7

Arithmetic 5-7

Logical 5-7
Input commands via A/Q channel 9-30
Integer

Constant 2-3

Subscripted variable 2-4

60362000 C

Type data 2-3
Variable 2-3
Integer conversion 6-13
Iw input 6-14; 9-8
Iw output 6-14; 9-7
iw.d output 9-7
Zw input 6-15; 9-9
Zw output 6-15; 9-8
$w input 6-15; 9-9
$w output 9-8
Intrinsic functions 7-6, 7
1/0, buffered 9-31
1/0 devices 5-18
I/0 errors 9-15
1/0 statements 5-18
OPEN 5-18
READ 5-20
Formatted 5-21
Unformatted 5-25
WRITE 5-20
Formatted 5-23
Unformatted 5-26
See also Auxiliary I/0 statements
Iw input/output 6-14
Iw,d output 9-7

Label assignment statement 5-2
Labeled common block 6-3
Library, FORTRAN 9-2
LINK 9-29
Literal free-field /O 6-23
Load map comment feature I-1
Logical expression 3-4
Formation 3-4
Order of evaluation 3-5
Logical IF 5-7
Logical units 9-25

Magnetic tape 5-31
Mass storage
Files 5-18
Records and sectors 5-32
Mixed mode 3-3
Mode 9-25
Multiprogramming, FORTRAN 9-1

Names, data 2-8
Nested DO loops 5-13

Index-3

New line editing specification 9-11
New record specifications 6-23
nH input 6-21
nH output 6-22
Nonexecutable statements 4-1; 6-1
DATA 6-9
FORMAT 6-11
Function defining 7-3
Specification 6-1
Subprogram 7-9
Numeric conversion 6-13
Double precision 6-19
Integer 6-13
Real 6-15
nX input 6-24
nX output 6-25

Octal character set K-1

OPEN 5-18

Operating procedures, program 8-11

OPT 8-1

Optimizations J-1

Order of evaluation
Arithmetic expressions 3-2
Logical expressions 3-5

Output commands via A/Q channel 9-30

Paper tape 5-30
PAUSE 5-9
Printing of formatted records 5-33
Priorities 9-1
Procedures and subprograms 7-1
Product
Configurations 1-2
Elements 1-2
Hardware requirements 1-3; F-1
Program control statements 5-8
END 5-9
PAUSE 5-9
STOP 5-8
Program operating procedures 8-11

Q8QI0O 9-13
Quote or asterisk I/O 9-11

Index-4

READ 5-20; 9-12
Formatted 5-21
Unformatted 5-25

READ/WRITE
Calling sequence 9-24
Statements 5-20; 9-12
Statement processor 9-3, 12

Real
Constant 2-6
Subscripted variable 2-6
Type data 2-5
Variable 2-6

Real conversion 6-15
Ew.d input 6-16
Ew.d output 6-18
Fw.d input 6-15
Fw.d output 6-16

Record
Mass storage 5-32
Tape 5-30

Re-entrancy 9-2

Re-entrant FORTRAN 9-1

Relational expression 3-3

RELATIVE 17-16

Relative addresses A-1

Release of allocated core 9-30

Repeated format specifications 6-25; 9-12

Requests 9-27

Reserved word list O-1

RETURN 5-8; 7-17

REWIND 5-28

RFORM 9-22

Run-anywhere programs 9-4
Run-time, FORTRAN/Monitor 9-3, 23
Rw input/output 6-20; 9-10

Scheduler 9-27

Sector, mass storage 5-32
Separators, field 6-12
Signed byte type data 2-5

Single precision floating point package C-1

Single type data 2-4
Special characters 9-11
Specification statements 6-1
Byte 6-7
COMMON 6-2

60362000 C

Sna
Spe

DIMENSION 6-1
EQUIVALENCE 6-4
EXTERNAL 7-13
RELATIVE 7-16
Type 6-6

cificationg
ciications

Blank field 6-24
Conversion 9-5
Editing 6-21; 9-10
New record 6-23

Repeated format 6-25; 9-12

Special character 9-11
Statement processor (Q8QIO)

Statements

Arithmetic assignment 5-1

Arithmetic IF 5-7
ASSEM 5-34
Assigned GO TO 5-4
Auxiliary I/0 5-28
BACKSPACE 5-29
BLOCK DATA 7-17
Byte 6-7

CALL 5-%; 7-16
Classification of 4-1
COMMON 6-1
CONTINUE 5-8
Control 5-3

DATA 6-9
DIMENSION 6-1
DO 5-9

END 5-9

ENDFILE 5-29
EQUIVALENCE 6-4
Executable 4-1; 5-1
EXTERNAL 7-13
Format 4-1
FORMAT 5-11; 9-4
FUNCTION 7-10
GO TO 5-4

1/0 5-18

Label assignment 5-2
Logical IF 5-7

Nonexecutable 4-1; 6-1

OPEN 5-18

OPT 8-1

PAUSE 5-9

Program control 5-8

READ 5-20; 9-12
Formatted 5-21
Unformatted 5-25

60362000 C

9-13

RELATIVE 7-16

RETURN 5-8; 7-17

REWIND 5-28
Specification 6-1
STOP 5-8

QITRRNITTING
DUDNNJU L LD

Type 6-6

7.1
=1

WRITE 5-20; 9-12

Formatted 5-23

Unformatted 5-26
Statement function 7-3

STOP 5-8

Subprograms 7-9
Block data 7-17
Function 7-10
Subroutine 7-12

Subroutine subprogram 7-12

Subscripted variable

Double precision 2-8

Integer 2-4
Real 2-5

Supplied functions 7-5
Basic externa! 7-7, %,

Intrinsic 7-6
Symbolic names 2-8

Table capacities B-1
Tape
Magnetic 5-31
Paper 5-30

Tape records and blocks 5-30

Timer 9-27
Type statements 6-6
Types, data 2-3

Unconditional GO TO 5-4
Unformatted READ 5-21
Unformatted WRITE 5-26

Variable

Double precision 2-7

Integer 2-3
Real 2-5
wH input/output 9-10
WRITE 5-20; 9-12
Formatted 5-23
Unformatted 5-26
wX input/output 9-10

2]
&

9

Index-5

Zw input 6-15; 9-9 $w input 6-15; 9-9
Zw output 6-15; 9-8 $w output 6-15; 9-8

Index-6 60362000 C

COMMENT SHEET

MANUAL TITLE MS FORTRAN Reference Manual
PUBLICATION NO. 60362000 REVISION c
FROM NAME:

BUSINESS

ADDRESS:

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number.

STAPLE

STAPLE

STAPLE

BUSINESS REPLY MAIL

FiRST CLASS
PERMIT NO. 333

LA JOLLA. CA,

NO POSTAGE STAMP NECESSARY iF MAILED !N U.S.A,

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION

SMALL COMPUTER DEVELOPMENT DIVISION
4455 EASTGATE MALL
LA JOLLA, CALIFORNIA 92037

ATTN: PUBLICATIONS DEPARTMENT

STAPLE

——— e e e L e e e e e e — —

CUT ALONG LINE

=

L % 1/2—
1-1/4

NTROL DATA

»> » CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

CONTROL DAT

OR P OR LT ION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS iN MAJOR CiTiES THROUGHOUT THE WORLD.

Lithe in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	A-01
	A-02
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02
	E-03
	F-01
	G-01
	G-02
	G-03
	G-04
	H-01
	I-01
	J-01
	K-01
	K-02
	L-01
	L-02
	L-03
	L-04
	L-05
	M-01
	M-02
	M-03
	N-01
	O-01
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	replyA
	replyB
	xBack

