CONTROL DATA

CORPORATION

®

4

T

laYea ™ ™ A A
CUNIRUL UATA

1700 COMPUTER SYSTEMS

-
|

pZ

1700 MSOS 4 MACRO ASSEMBLER
REFERENCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
A Original printing for Macro Assembler Version 3.0 and MSOS Version 4.0.
(4/72)
B General revision and update for compatibility with MSOS 4.1. Appendix D added.
(3/74)

Publication No.

60361900

Additional copies of this manuai
may be obtained from the

nearest Control Data Corporation
sales office.

© 1972, 1974
by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:
Control Data Corporation

Small Computer Development Division
4455 Eastgate Mall

La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

PREFACE

The Macro Assembler for the CONTROL DATA® 1700 Computer System is a 3-pass
assembler which can convert source language input including macro instructions to

relocatable output and generate list output. The source programs are written with

symbolic machine, pseudo, and macro instructions.

Macro definitions may be defined by the user within the source program, or they may
be placed on a separate macro library.

Input is from the standard input device, binary output is to the standard output device,
and list output is to the standard list device.

The following describe functions occurring in each pass of the assembler.

Pass 1

Programmer defined macros are processed and appropriate tables are built.
Whenever a macro instruction is encountered, the macro skeleton with actual
parameters substituted is inserted into the source input on the mass storage device.
The source input is copied onto the mass storage device.

Sequence numbers of the input source images are checked.

Pass 2

Each source image on the mass storage device is read and pass 2 errors are
listed as they occur,

Conditional assembly pseudo instructions are processed.

Symbol and external tables are built.

Pass 3
Each image is read and pass 3 errors are listed.

List and relocatable binary output are generated according to the input options.

TABLST

TABLST prints and punches the entry points and external images. The transfer

image is punched.

An EOF image is output to the next load-and-go sector on mass storage.

A symbol table listing is given.

60361900A iii

XREF

XREF creates and prints the cross-references lists.

Refer to the 1700 Mass Storage Operating System (MSOS) 4 Reference Manual equipment
configuration for the minimum hardware required by the Macro Assembler,

It i
Following is a list of 1700 MSOS manuals.

Description

1700 MSOS 4 Reference Manual

1700 MSOS 4 Mass Storage FORTRAN
Version 3 A/B Reference Manual

1700 MSOS 4 Computer System Codes

1700 MSOS 4 Macro Assembler
General Information

1700 MSOS 4 Mass Storage FORTRAN
General Information

1700 MSOS 4 Small Computer Maintenance
Monitor Reference Manual

1700 MSOS 4 Instant

1700 MSOS 4 File Manager Version 1
Reference Manual

1700 MSOS 4 Release Bulletin
1700 MSOS 4 Installation Handbook

1700 MSOS 4 Small Computer Maintenance
Monitor Instant

1700 MSOS 4 Ordering Bulletin
1700 MSOS 4 General Information

iv

Pub. No.

60361500

60362000
60163500

39519800

39519900

39520200
39520500

39520600
39520800
39520900

39521700
39521900
39522400

60361900B

CHAPTER 1

CHAPTER 2

CHAPTER 3

60361900B

CONTENTS

PREFACE

INSTRUCTION FORMAT

f—t

.1
.2

Source Program
Source Statement
1.2.1 Location Field

1.2.1 Remarks

1.2.3 Instruction
1.2.4 Address Field
1.2.5 Comment Field
1.2.6 Sequence Field

MACHINE INSTRUCTIONS

2.1

NN NN
. e e
DU W N

Storage Reference Instructions

2.1.1 Address Modes

2.1.2 Absolute Addressing

2.1.3 Relative Addressing

2.1, 4 Constant Addressing

2,1,5 Data Transmission Instructions
2.1.6 Arithmetic Instructions

2,1.7 Logical Instructions

2.1.8 Jump Instructions

Register Reference Instructions
Inter-Register Instructions
Shift Instructions

Skip Instructions

Negative Zero/Overflow Set

PSEUDO INSTRUCTIONS

3.1

w
.
w

Subprogram Linkage
3.1.1 NAM

3.1.2 END

3.1.3 ENT

3.1.4 EXT/EXT:*
Data Storage

3.2.1 BSS

3.2,2 BZS

3.2.3 COM

3.2.4 DAT
Constant Declarations
3.3.1 ADC/ADC:*
3.3.2 ALF

3.3.3 NUM

3.3.4 DEC

3.3.5 VFD
Assembler Control
3.4.1 EQU

3.4.2 ORG/ORG*

-
— =
1 -
-

e e
1 [}
COCO DN DN DN = = =

[\
]
—

NN NN NN
[

= b bt bt st (D CC ST OO W L=

U RN O

w
1
-

1 LI |]] [|
= O =130 U B B NN =

L RS R B |

o

p—

WWWWWWWWWwWWwWwwWwwWwwwww
1

1
—
B w w

CHAPTER 4

CHAPTER 5

APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

vi

3.4.3 IFA
3.4.4 EIF
3.4.5 OPT
3.4.6 MON
3.5 Listing Control
3.5.1 NLS
3.5.2 LST
3.5.3 SPC
3.5.4 EJT
MACROS
4,1 Macro Pseudo Instructions
4,1.1 MAC
4,1,2 EMC
4,1.3 LOC
4.1.4 IFC
4.2 Macro Skeleton
4.3 Macro Instruction
4.3.1 Parameters
4.4 Macro Library

ASSEMBLER OUTPUT

5.1

MNEMONIC INSTRUCTION CODES

PROGRAMMING CONSIDERATIONS

Control Options
5.1.1 P Option

5.1.2 X Option
5.1.3 L Option
5.1.4 C Option
Assembly Listing

.1 Error Listing

(SIS}

2

2.2

2.3 Sample Program
2.4 Sample Listing

ASCII CODES

MACRO ASSEMBLER ERRORS

Cross-Reference Listing

3-15
3-16
3-17
3-17
3-18
3-18
3-18
3-18
3-18

'S
|
—

rhs#-»hrbﬂ?uh»b»h»&
e DO DN DN DD e

o

W
[}
ot

[$) 6 E NS NS NS NS NS)]
]
N S L G I S B e

[}
[

U(:}tp>

I
[

60361900B

INSTRUCTION FORMAT 1

1.1 SOURCE PROGRAM

The number of independent subprograms comprising a source program is limited only
by available space. Each subprogram may be assembled independently, or several

may be assembled as a group. The main subprogram of a group is the one to which
initial control is given; it need not be the first subprogram. The last subprogram

of a group must be followed by the MON pseudo instruction indicating the end of assem-
bly and return to the operating system,

Communication between subprograms is effected by the subprogram linkage pseudo
instructions and by the use of common and data storage.

At execution time, the entry point named in the END pseudo instruction specifies the
entry point to which initial control passes. A jump to the dispatcher or an exit
request (1700 MSOS Reference Manual) signals return of control to the operating
System upon job completion. EXIT or a jump to the dispatcher must be the

last statement to be executed.

1.2 SOURCE STATEMENT

A source statement consists cof location, instructions, address, remarks, and se-
quence fields. The first four fields may not exceed 72 characters; within that limi-
tation they are free field. The sequence field is used when the source image is 80
characters; it is restricted to columns 73 through 80.

Each field is terminated by a tab ($B; parer tape only), carriage return (end of state-

ment mark), or blanks, Any number of klanks may separate fields, A carriage re-
turn is always the end of statement mark on paper tape.

1.2.1 LOCATION FIELD

The location field of a source statement must begin in column 1.

This field is used to specify a labeled (label starting in column 1) or an unlabeled (blank
or tab in column 1) statement.

The statement label is a symbolic name consisting of from 1 to 6 alphanumeric char-
acters; the first must be alphabetic., Characters in excess of six are ignored. A 2-
character name makes the most efficient use of storage and assembly time.

Examples:
LOOP1 Legal
123456 Illegal; first character is numeric
P1 Legal
A123456 Legal; only A12345 is processed

60361900B 11

1.2.2 REMARKS

An asterisk in column 1 of the location field specifies that the source statement is a
remark. Comments, written in columns 2 through 72, are printed with the assembly
list output but have no effect on the object program. An asterisk elsewhere in the
location field is illegal. Remarks may also follow the address field of any instruction.
There must be at least one blank separating the address field from the remarks.

1.2.3 INSTRUCTION

This field begins to the right of the location field and must be separated from it by at
least 1 blank character or a tab. If the location field contains no label (blank or tab
on column 1), the operation code may begin in column 2,

The operation code field contains the three-letter instruction codes for machine and
pseudo instructions; or it contains macro instructions which may be up to 6 characters.
Certain instructions may be followed by a 1-character terminator.

The mnemonic instruction codes listed in Appendix A are described i
Computer Reference Manual.

o

1.2.4 ADDRESS FIELD
The address field begins to the right of the operation code field, separated from it by
at least 1 blank character or a tab. It is terminated by a blank or tab, or by the
72nd character of the source statement. Exceptions are the macro instructions which
may have a continuation line and the pseudo instruction ALF (section 3.3.2).
This field contains an address expression consisting of an operand or string of oper-
ands joined by arithmetic operators; or it may contain a series of operands separated
by commas. An operand may be any of the following:

Symbolic name

Numeric constant

One of the special characters: * A Q M 0 I B

Symbolic Operand

A symbolic name used as an operand in the address field must be defined in one of
the following ways.

Label in the location field of any machine instruction
Label in the location field of any macro instruction

Label in the location field of constant declaration pseudo instructions:
ADC, ALF, NUM, DEC, VFD

Symbolic name in the address field of the pseudo instructions: EXT,
COM, DAT, BSS, BZS, EQU

1-2 60361900B

A defined symbolic name references a specific location in memory. It may be re-
locatable or absolute. A relocatable symbol refers to a location that may be relocated
during loading.

Storage is divided into three areas: program, data, and common. These areas are
defined at assembly time and the initial location of each is set to a relocation address
of zero. The object code produced by the assembler contains addresses which are
modified by a relocation factor to produce the actual address in memory.

A symbol is program relocatable if it references a location in the subprogram, data
relocatable if it references a location in data storage, and common relocatable if it
references a location in common storage. All other symbols are absolute. A symbol
is made absolute by equating it to a number, an arithmetic expression, or another
absolute symbol.

In all cases a symbolic label and a symbol defined by BSS or BZS take the relocation
and value of the current location counter. The location counter of a program is
originally program relocatable, however, its relocation may be changed by the ORG
instruction.

An address expression which includes more than one operand must reference only one
relocatable area. Terms of different relocation types must reduce to one relocatable
area or to an absolute address. When the address mode of an instruction is made
one-word relative bv an asterisk terminator, the relocation type of the address ex-
pression must agree with the type of the current location counter.

A symbolic operand may be preceded by a plus or a minus sign. i1 preceded by a plus
or no sign, the symbol refers to its associated value; if preceded by a minus, the
symbol refersto the ones complement of its associated value. When an expression
contains more than one symbol, the final sign of the expression is the algebraic sum
of the operands.

Example:

RT relocation type of current location counter: P program relocatable, C common
relocatable, D data relocatable, and A absolute address.

RT Label Operation Address

COM COM1, COM2

DAT DAT1, DAT2

EQU D(1), E(3), G(E-D), H($1000), I(DAT1)
P BZS A,B,C
P BZS J,K(10)

The symbols D, E, G, and H are absolute; DAT1,DAT2, and I are data relocatable;
COM1 and COM2 are common relocatable; A, B, C, J, and K are program relocatable.

P START ADC 0

P LDA* START

P STA * DAT1 (Error)
P STA* COM1 (Error)

60361900A 1-3

’I.‘he errors resulted because the relocation types of the symbols in the address
field do not match that of the location counter, and the one-word relative address
mode was requested by an asterisk terminator,

RT Label Operation Address
P LDA+ (Not an error)

Relocations need not match when mode is two-word absolute.

P LDA START (O.K., relocations match)
P LDA COM1 (Not an error)

Assembler changes this instruction to two-word absolute because relocations do not
match, but no error is indicated.

P LDA COM2-DAT1+COM1-D+E-COM2+START-K+DAT?2

This address expression results in a common relocation type; all other relocations
cancel out (refer to address expressions).

ORG DATI1

ORG changes the relocation of the location counter to data.

D LDA* START (Error)
D STA* DAT2+9
ORG*

ORG* returns the location counter to original relocation.

P LLDA* START (Not an error)
ORG H

A LDA START (Error)

A STA* DAT1 (Error)

A LDA* $1001

A STA- B
ORG*
END

Numeric Operand

A numeric operand in the address field may be decimal or hexadecimal. A decimal
number is represented by up to five decimal digits and must be within the range
+32767, A hexadecimal number is represented by a dollar sign and not more than
four hexadecimal digits in the range *7FFF. (Hexadecimal operands in the NUM
pseudo instruction may be in the range +FFFF.)

Numeric operands in the address field may be preceded by a plus or a minus sign. If
a plus or no sign is specified, the binary equivalent of the number is the value used;
a minus means the one's complement of the binary equivalent is the value.

A numeric operand has no relocation type; it is always absolute.

1-4 60361900B

An address expression may be a single operand or a string of operands joined by the
ith ic

- Subtraction
* Multiplication
/ Division

Arithmetic operators may not follow each other without an intervening operand. Paren-
theses are not permitted for grouping terms.

The asterisk has an additional meaning as an operand. When it is used as the mul-
tiplication operator (refer to special characters), it must be immediately preceded by
an operand which may be another asterisk. When the asterisk is used as an operator,
only one of its associated operands may be relocatable.

The slash, used as the division operator, must be between two operands. The operand

which followg mav not he zero or relocatable,

An external name mav he nged 1n an addregss exnression onlv as a singlie operand.
Arithmetic operators preceding or following an external operand are illegal,

Example:
NAM EXAMPL
COM A,B
EQU C(1), D(5)
EXT G

BZS E(10), F
START LDA D-C/5+%%2
ADD A-B/2

ADD E+5
STA G
END

The first asterisk in the LDA instruction refers to the value of the current location
counter.

The following instructions are illegal assuming the same pseudo instructions precede
the START.

START LDA D-C*%5+2 *5 has no intervening operator
ADD A-2/B Division by relocatable operand
ADD E*F Both operands are relocatable
STA G+5 An external must stand alone

60361900A 1-5

The hierarchy for the evaluation of arithmetic expressions is:

/ or * Evaluated first
+ or - Evaluated next

Expressions containing operators at the same level are evaluated from left to right.
The expression

A /B+C*D

is evaluated algrebraically as
A/BHCXD)

and not as any of the following:

(A)(D) A A
B+C (B+CX(D) B+(C)(D)

Parentheses may not be used for grouping operands. The algrebraic expression
(A-D)B+C/E)
must be specified
A*B+A*C/E-D*B-D*C/E
The following expression is illegal.
(A-D)*(B+C/E)
Division in an address expression always yields a truncated result; thus, 11/3=3. The
expression A*B/C may result in a value different from B/C*A. For example, if A=4,

B=3, and C=2 then

A*B/C=4%3/2=6 but
B/C*A=3/2%4=4

All expressions are evaluated modulo 215_1. An address expression consisting solely
of numeric operands is absolute. If an expression contains symbolic operands, the
final relocation for the expression is determined by the relocations of the symbolic
operands. If the relocation of the operands is expressed by the following terms, the
final relocation is the algebraic sum of the relocation terms.

+ P Positive or negative program relocation

+C Positive or negative common relocation

+D Positive or negative data relocation

The relocation must reduce to one of the relocation terms or to zero. If zero, the
location is absolute.

1-6 60361900A

Example:

Source Statements Relocation Formula
COM A,B
DAT C,D
EQU E(1), F(D)

STRT LDA B+C-E*2-A-D +C+D-C-D=0 (absolute)
LDA B+D-F+STRT-A-C +C+D-D+P-C-D=P-D (illegal)
LDA B+D-E+STRT-A-C +C+D+P-C-D=P (program)
LDA B-D-A +C-D-C=-D (negative data)

Special Characters

Special characters may be used as operands in the address field of a source statement.
Their definition may not be changed by the user. The three classes of special char-
acters are storage, register, and index.

Class Character Referenced Location
Storage { * Current location counter
orag I Location FFIS
A A register
C ke Q Q register
Registe: M Mask register
0 Destination registers
Q Index 1, Q register
Index { I Index 2, location FFqg
B Index 1 plus index 2

Storage class characters (*, [) reference storage locations. The asterisk refers to the
location of the current instruction. For a word instruction, an asterisk references the
location of the first word. Special character I refers to location FF1g. I is the only
indexing character that may stand alone as an operand with storage reference instructions.
It may not be defined as a location symbol in a program.

'Ihe reg@ster class characters (A, Q, M, and 0) are used only with inter-register transfer
instructions. They refer to the A, Q, and M (mask) registers. Character 0 sets the
destination registers to zero (section 2. 5).

Examples:
Instruction Function
SET A,Q,M Set A, Q, and mask registers to ones
TRA Q Transfer contents of A register to Q register
LAM M Transfer logical product of A and mask register to mask

register

60361900A 1-7

Index class characters (Q, I, and B) are used in conjunction with an address expression to
refer to the index registers. Any one character may follow an address expression; it is
separated from the expression by a comma with no intervening blank., Indexing may be used
only with storage reference instructions.

Q) Coantenta nf Q recigter are added +0 contonta Af +ha avnrogaian 6 Farae

A=A L ULILTIILS UL ¢ L Tglioves ail T auutTu vuU o Lunivcllivo vi ovic CA.IJJ. CoOol1lVULl LU 10 11
the actual address

1 Contents of location FF;g are added to contents of address expression
to form the actual address

B Contents of Q register are added to address expression and this sum is

added to contents of FFg to produce the actual address

Examples:

Address Field Function

LLOC1,B Legal Contents of registers Q and FFj1g and the contents
of LOC1 are added to produce the actual address

s sl Il1legal Character following first comma is assumed to be
index character

TAG2,Q,1 Illegal Only one index notation allowed

Q Illegal Unless Q has been previously defined as a location
symbol or is being used with the inter-register
transfer instruction, it must follow a location symbol

TAG3,I Legal Contents of FFs and TAG3 are added to produce

the actual address

1.2.5 COMMENT FIELD

The address field is followed by the comment field which is used for remarks. Re-
marks do not affect the object code, but are printed as part of the list output. The
comment field terminates at column 72, or with a carriage return (paper tape). Blanks
are permitted in the comment field.

1.2.6 SEQUENCE FIELD

When the input image is 80 characters, columns 73 through 80 are available for se-
quencing; 73 through 75 may be used for program identification, 76 through 80 for a
sequence number,

Sequence numbers are checked for errors only if the input image is 80 characters.
Each sequence number must be greater than or equal to the previous sequence number,
The value of a character in the sequence number is in ASCII code except that a blank
is treated as zero.

1-8 60361900A

MACHINE INSTRUCTIONS 2

“

Machine instructions represented by a three-letter mnemonic code are divided into six
classes.

Group A storage reference Shift
Group B storage reference Skip
Register reference Inter-register transfer

Storage reference instructions result in one or two machine words, depending on
modification. Other machine instructions result in one machine word.

The function of each machine instruction is discussed in detail in the 1700 Computer
Reference Manual. Appendix A lists the machine instructions in the order in which
they are discussed in this chapter.

2.1 STORAGE REFERENCE INSTRUCTIONS

Group A and B storage reference instructions use storage addresses as operands or as
operand addresses. Group B instructions include jump instructions and may not usc
the constant mode of addressing.

2.1.1 ADDRESS MODES

Group A storage reference instructions allow three modes of addressing: absolute,
relative, and constant. Group B does not allow the use of the constant mode, but is
otherwise the same as Group A.

Special characters designate the mode of addressing, the number of words for the
instruction, and indirect addressing.

Character Description

e

* Asterisk as the last character of operation code specifies relative
addressing in a one-word instruction

- Minus as the last character of operation code specifies absolute
addressing in a one-word instruction

+ Plus as the last character of operation code specifies absolute
addressing in a two -word instruction

= Equal sign as the first character in address field preceding a
constant indicates constant addressing; the instruction is always
two words)

0 Parentheses enclosing the address expression indicate indirect
addressing

60361900B 2-1

If no character is specified as a terminator to the operation code, two-word relative
addressing is assumed with the following exceptions.

1. If a constant is specified, the constant mode is assumed.

2. If the relocation type of the address expression differs from the relocation
type of the location counter, two-word absolute addressing is assumed.

3. If a nonrelative external is referenced, absolute addressing is assumed.

The machine language format resulting from a storage reference instruction is illustrated
as follows.

First word:

P lalai L N

f 4-bit operation code is described in 1700 Computer Reference Manual

r Specifies relative addressing

d Specifies indirect addressing

q Index register 1 flag; specifies adding contents of Q register to address

i Index register 2 flag; specifies adding contents of storage register FFyg
to address

A 8-bit field; may be relative or absolute address for one-word instructions.
When zero, indicates two-word instruction.

Second word (when used):

15 0
[c |
c 16-bit field for constant addressing or relative address. When it contains

relative address, bit 15 is the sign.

b Indirect address bit
m Memory address

Address expressions are evaluated modulo 215-1,

2-2 603619500A

2.1.2 ABSOLUTE ADDRESSING

The value of the address expression of a one-word absolute instruction must be non-

rclocatable. The evaluated result is stored in 8 bits of the machine word. If this
value is greater than 256, it is flagged as an error. If the 8-bit A field is zero,
two machine words are assumed regardless of the operation code terminator; no error
message is printed. Tf the address expression is enclosed in parentheses for indircct
addressm R blt 10 of the first word is set to 1.

Examples:

One Word, Direct

Instruction:
LDA- e
Machine Word:

15 11 10 9 8 7 0
| LDa [o|0]o]0] e]

One Word, Indirect

Instruetion:
ADQ- (e)

Machine Word:

11 9 8 7 0

Cava o1 oT0] e]

The value of the address expression of a two-word absolute instruction is stored in
the least significant bits of the second word. If the expression is enclosed in paren-
theses for indirect addressing, bit 15 of the second word is set to 1. The indirect
address bit 10 in the first word is always set to 1 when two-word absolute addressing
is specified whether the address express1on is specified as indirect or direct. This
indicates that the address expression is in the second word. The 8-bit A field of the
first word is set to zero for two-word instructions.

Examples:

Two Word, Direct

Instruction:
EOR+ e
Machine Words:

15 11 10 9 8

LEOR |o]1|0[0|7 00 Q|

15 14

Lo] e

__Jo

60361900A 2-3

Two Word, Indirect

Instruction:
AND+ (e)
Machine Words:

8
0 | 00 |

15 14 0
L

2.1.3 RELATIVE ADDRESSING

When one-word relative addressing is specified, the value of the current location
counter is subtracted (16-bit ones complement arithmetic) from the evaluated address
expression. The result is placed in the 8-bit A field., If the value of the result

is outside the range *7F g, an error condition is flagged. An error condition is
also flagged if the relocation type of the address expression differs from that of the
location counter. If the 8-bit A field is zero, two words are assumed regardless of
the operation code terminator. No error message is printed for this condition.

Examples:

One Word, Direct

Instruction:
AND?* e
Machine Word:

15 11 10 9 8 7 0
| AND]1]0{0]0] e-*

——J

One Word, Indirect

Instruction:
MUI* (e)
Machine Word:

15 11 10 9 8 7
[woi |11 oo

L__‘O

2-4 60361900A

In the expression e-* the asterisk indicates the value of the current location counter.

When a two-word instruction is specified, the value of the current location counter
plus one is subtracted (using 16-bit 1's complement arithmetic) from the value of
the address expression to obtain the 16-bit second word. If the relocation type of the
address expression differs from that of the location counter and the address does not
reference an external, thc assembler forces a two-word absolute instruction. If the
address expression is an external reference, the instruction is absolute or relative
depending on the definition of the external.

Examples:

Two Word, Direct

Instruction:
LDQ e
Machine Words:

15 11_10 9 8 1 0
| LDQ [1]o]o]o 00]
15 0

Two Word, Indirect

Instruction:
LDA (e)
Machine Words:

15 11 10
1

8 17 0
] LDA [1] 0

o] o] o]

15 0

[|]

In the expression, e-*-1, the asterisk indicates the value of the current location counter.

60361900A 2-5

2.1.4 CONSTANT ADDRESSING

Constant addressing may be used only for Group A storage reference instructions.
Constants in the address field are preceded by an equal sign and a one-letter code.
A constant may be one of the following:

Code Type Meaning

A aa 2 alphanumeric characters

N + ddddd 5-digit decimal number with or without a leading sign

N + $hhhh 4—d?git hexadecimal number preceded by $, with or without

a sign

X e Address expression evaluated modulo 215.1

X (e) Address expression evaluated modulo 219-1, with bit 15 set
Examples:

DVI =N$1000 (Hexadecimal constant)

ADD =N-12345 (Decimal constant)

LLDA =AXY (ASCII constant)

AND =XTAG1+5 (Address expression constant)

An instruction containing a constant in the address field results in two machine words.

Example:

Instruction:
DVI =nc (n is the code, ¢ is the constant)
Machine Words:

15 11 10 9 8 7 0
| bvi oJofo] o] 0 |
15 0

L c |

2.1.5 DATA TRANSMISSION INSTRUCTIONS

STQ (F=4) Store Q. Store the contents of the Q register in the storage location
specified by the effective address. The contents of Q are not altered.

STA (F=6) Store A. Store the contents of the A register in the storage location
specified by the effective address. The contents of A are not aitered.

2-6 60361900B

SPA (F =
LDA (F =
LDQ (F =

7)

C)

E)

Store A, Parity to A. Store the contents of the A reglster in the storage
}.u;,atxuu nycu.u.u:u uy’ the effective addr ess. Clear A if the number of

<
1 bits in A is odd. Set A equal to 0001, ¢ if the number of 1 bits in A
i -ontents of re not altered if the write into storage is

o]
Q
ot
[}
[¢]
o+
=

Load A. Load the A register with the contents of the storage location
specified by the effective address. The contents of the storage loca-
tion are not altered

Load Q. Load the Q register with the contents of the storage location
specified by the effective address., The contents of the storage loca-
tion are not altered.

2.1.6 ARITHMETIC INSTRUCTIONS

All the following arithmetic operations use one's complement arithmetic.

MUI (F =
DT {F =
ADD (F =
SUB (F =
RAO (F =
ADQ (F =

60316900B

2)

oy
e

8)

9)

D)

F)

Multiply Integer. Multiply the contents of the storage location, speci-
fied by the effective address, by the contents of the A register, The
32-bit product replaces the contents of Q and A, the most significant
bits of the product in the Q register.

5
nl\/lrn-a IIITL\—:()HI 111\/1114—: fr\u combined contentg n Tb‘\o (1 ﬁv’vﬁ X v‘{\:rtc:?{\r/\':

by the contents of the effective address. The Q register contains the
rmost \lmnlh(ant rnf«. hetare nvn‘nvwrr |f a 1A= h‘lf r-nvndanﬁ vc lr\f\Nnrl
into A, the sign bit of A must be extended throughout Q. The quotient
is in the A register and the remainder is in the Q register at the end
of the divide operation.

The OVERFLOW indicator is set if the magnitude of the quotient is
greater than the capacity of the A register. Once set, the OVERFLOW
indicator remains set until a Skip On Overflow (SOV) or Skip On No
Overflow (SNO) instruction is executed,

Add to A, Add the contents of the storage location, specified by the
effective address, to the contents of the A register.

The OVERFLOW indicator is set if the magnitude of the sum is

greater than the capacity of the A register. Once set, the OVERFLOW
indicator remains set until a Skip On Overflow (SOV) or Skip On No
Overflow (SNO) instruction is executed.

Subtract From A. Subtract the contents of the storage location,

specified by the effective address, from the contents of the A register,
Operation on overflow is the same as for an Add to A instruction,

Replace Add One in Storage. Add one to the contents of the storage

location specified by the effective address. The contents of A are

not altered Operatlon on overflow is the same as for an Add to A
instruction.

Add to Q. Add the contents of the storage location, specified by the

effective address, to the conients of the Q register. Operation on

overflow is the same as for an Add to A instruction.

2.1.7 LOGICAL INSTRUCTIONS

The AND (AND with A) instruction achieves its results by forming a logical product. A
logical product is a bit-by-bit multiplication of two binary numbers according to the
following rules:

0x0=0 1x0=0
0x1=0 1x1=1
Example:

0011 Operand A
x 0101 Operand B

0001 Logical Product

A logical product is used, in many cases, to select only specific portions of an operand
for use in some operation. For example, if only a specific portion of an operand in
storage is to be entered into the A register, the operand is subjected to a mask in A,
This mask is composed of a predetermined pattern of O0s and 1s. Executing the AND
instruction causes the operand to retain its original contents only in those bits which
have 1s in the mask in A,

The EOR (Exclusive OR with A) instruction achieves its result by forming an exclusive
OR. Executing the EOR instruction causes the operand to complement its original con-
tents only in those bits which have 1s in the mask in A, An exclusive OR is a bit-by-bit
logical subtraction of two binary numbers according to the following rules:

Exclusive OR

A B A+ B
1 1 0
1 0 1
0 1 1
0 0 0

Example:

0011 Operand A
x 0101 Operand B

0110 Exclusive OR

AND (F = A) AND with A, Form the logical product, bit-by-bit, of the contents of
the storage location specified by the effective address and the contents
of the A register. The result replaces the contents of A. The con-
tents of storage are not altered.

EOR (F =B) Exclusive OR with A. Form the logical difference {exclusive OR),
bit-by-bit, of the contents of the storage location specified by the
effective address and the contents of the A register. The result
replaces the contents of A, The contents of storage are not altered.

9-8 603619008

2.1.8 JUMP INSTRUCTIONS

A Jump (JMP) instruction causes a current program sequence to terminate and initiates a
new sequence at a different location in storage. The program address register, P, pro-
vides continuity between program instructions and always contains the storage location of
the current instruction in the program.

When a Jump instruction occurs, P is cleared and a new address is entered.* In the
Jump instruction, the effective address specifies the beginning address of the new pro-
gram sequence. The word at the effective address is read from storage and interpreted
as the first instruction of the new sequence.

A Return Jump (RTJ) instruction enables the computer to leave the main program, jump
to some subprogram, execute the subprogram, and return to the main program via
another instruction. The Return Jump provides the computer with the necessary informa-
tion to enable returning to the main program. Figure 2-1 shows how a Return Jump
instruction can be used.

MATN
PROGRAM SUBPROGRAM
r Al s N
MAIN] EFFECTIVE
PROGRAM ;p RT. ARDRESS = 000, CONPI'TER STORFES P+1/P+2 HERFE
ADDRESS J 16
— ———->"""16
6, $
N/
P+1 0026 ST
1611 INSTRUCTION OF SUBPROGRAM
T
©,
®
\ 4
————— LAST INSTRUCTION OF SUBPROGRAM

Q

b — = — — < JMP | INDIRECT ADDRESS=002516

Figure 2-1. Program Using Return Jump Instruction

*Jumps or return jumps from unprotected to protected storage cause a fault, but the
address that is saved in the trap location is the destination address (i.e., the address
of the next sequential main program instruction).

60361900B 2-9

A Return Jump instruction is executed at main program address P, The computer jumps
to effective address 0025, and stores P + 1 or P + 2 (depending on the address mode of
RTJ) at this location. Then the program address counter P is set to 0026, and the
computer starts executing the subprogram., At the end of the subprogram, the computer
executes a Jump instruction (JMP) with indirect addressing. This causes the computer
to jump to the address specified by the subprogram address 0025, (P + 1 or P + 2 of
the main program). Now main program execution continues at P+ 1 or P + 2,

JMP (F =1) Jump. Jump to the address specified by the effective address. This
effectively replaces the contents of program address counter P with
the effective address specified in the Jump instruction.

RTJ (F = 5) Return Jump. Replace the contents of the storage location specified

by the effective address with the address of the next consecutive
instruction. The address stored in the effective address is P + 1
or P + 2, depending on the addressing mode of RTJ, The contents
of P are then replaced with the effective address plus one.

2.2 REGISTER REFERENCE INSTRUCTIONS

Register reference instructions use the address mode field for the operation code.
Register reference instructions are identified when the upper four bits (15 through 12)
of an instruction are Os.

Format:

15 12 11 8 7 0

0 0 0 O F1

|- —t —
v

Instruction Modifier (4)

SLS (F1=0) Selective Stop. Stops the computer if this instruction is executed
when the selective stop switch is on, On restart, the computer exe-
cutes the instruction at P+1., This becomes a Pass instruction
when the selective stop switch is off.

INP (F1=2) Input to A, Reads one word from an external device into the A regis-
ter. The word in the Q register selects the sending device. If the
device sends a Reply, the next instruction comes from P+1. If the
device sends a Reject, the next instruction comes from P+1 +A,
where delta is an eight-bit signed number, If an internal Reject
occurs, the next instruction comes from P+ A . Refer to the 1700
Computer Reference Manual.

OUT (F1=3) Output from A. Outputs one word from the A register to an external
device. The word in the Q register selects the receiving device. If
the device sends a Reply, the next instruction comes from P+1, If
the device sends a Reject, the next instruction comes from P+1+ A,
where delta is an eight-bit signed number. If an internal Reject occurs,
the next instruction comes from P+ A. Refer to the 1700 Computer
Reference Manual.

2-10 60361900B

INA (F1=9) Increase A, Replaces the contents of A with the sum of the initial
contents of A and delia, where deita is treated as a signed number with
the sign extended into the upper eight bits. Operation on overflow is
the same as for an Add to A instruction.

ENA (F1=A) Enter A. Replaces the contents of the A register with the eight-bit

delta. <i
uuuuu s S

NOP (F1=B) No Operation. This is a Pass instruction (no operation is performed).
Compares to Selective Stop instruction with the STOP switch off.

ENQ (F1=C) Enter Q. Replaces the contents of the Q register with the eight-bit
delta, sign extended.

INQ (F1=D) Increase Q. Replaces the contents of Q with the sum of the initial con-
tents of Q and delta, where delta is treated as a signed number with
the sign extended into the upper eight bits. Operation on overflow is
the same as for an Add to A instruction.

The following instructions (F1 equals 4, 5, 6, 7, or E) are legal only if the program
protect switch is off or if the mstructmns themselves are protected (refer to the 1700
Computer Reference Manual). If an instruction is illegal, it becomes a selective stop
and an interrupt on program protect fault is possible (if selected).

) Protect swi

T
(O S R RO

EIN (F1=4) Enable Interrupt. Activates the interrupt system after one instruction
following EIN has been executed. The interrupt system must be
active and the appropriate mask bit set for an interrupt to be
recognized.

IIN (F1=5) Inhibit Interrupt. Deactivates the interrupt system. If interrupt
occurs during execution of this instruction, the interrupt is not recog-
nized until one instruction after the next EIN instruction is executed.

SPB (F1=6) Set Program Protect Bit. Sets the program protect bit in the
address specified by Q.

CPB (F1=7) Clear Program Protect Bit. Clears the program protect bit in the
address specified by Q.

EXI (F1=E) Exit Interrupt State. This instruction must be used to exit from any
interrupt state. Delta defines the interrupt state from which the
exit is taken (see 1700 Computer Reference Manual), At the time an
interrupt occurs, the value of P is stored in the interrupt trap loca-
tion assigned to that particular interrupt state. This value is called
the return address as it enables return to the next unexecuted instruc-

tion after interrupt processing. The EXI instruction automaucall:,

reads the address containing the return address, then jumps to the
return address. In addition, if the computer is in 32K mode, this
instruction also sets the OVERFLOW indicator to the state of bit 15

in the return address. This bit records the state of the OVERFLOW
indicator when the interrupt occurred. In 65K mode this instruction
does not reset the OVERFLOW indicator. Refer to the 1700 Computer
Reference Manual for an explanation of the overflow condition in

65K mode.

603619008 9-11

2.3 INTER—REGISTER INSTRUCTIONS

These instructions cause data from certain combinations of two origin registers to be
sent through the adder to any combination of destination registers. Various operations,

selected by the adder control lines, are performed on the data as it passes through the
adder.

Format:
Operand 1
Adder Control Lines Operand 2
r —rh Il [4 A Al
15 12 11 8 7 6 5 4 3 2 1 0
L} X
0 F1=8 A MJ}A M
plr Q Q
. v _ v)
Logical Product——i T * Destination
Registers
Exclusive OR Origin
Registers

If bit 0 if an Inter-register instruction is set (M is the destination register) and the
instruction is not protected, it is a program protect violation and becomes a non-protected
Selective Stop instruction. The Program Protect Fault bit is set and interrupt occurs.
See the 1700 Computer Reference Manual for additional information.

The origin registers are considered as operands. There are two kinds.
e Operand 1 may be:

- FFFF (bit 5 is 0) or
- The contents of A (bit 5 is 1)

e Operand 2 may be:

- FFFF (bit 4 is 0 and bit 3 is 0) or

- The contents of M (bit 4 is 0 and bit 3 is 1) or

- The contents of Q (bit 4 is 1 and bit 3 is 0) or

- The inclusive OR, bit-by-bit, of the contents of Q and M (bit 4 is 1 and

bit 3 is 1)
The following operations are possible.

e Exclusive OR (LP =0 and XR = 1) — The data placed in the destination
register(s) is the exclusive OR, bit-by-bit, of operand 1 and operand 2.

e Logical Product (LP = 1 and XR = 0) — The data placed in the destination
register(s) is the logical product, bit-by-bit, of operand 1 and operand 2.

e Complement Logical Product (LP = 1 and XR = 1) — The data placed in the

destination register(s) is the complement of the logical product, bit-by-bit,
of operand 1 and operand 2.

2-12 60361900B

Arithmetic Sum (LP = 0 and XR = 0) — The data placed in the destination

register(s) is the arithmetic sum of operand 1 and operand 2. The
OVERFLOW indicator operates the same for an Add to A instruction.

INTER-REGISTER MNEMONICS

CLR (F1
TRA (F1

= 8, bits 7 through 3 = 01000)

= 8, bits 7 through 3 = 10100)

TRM (F1 = 8, bits 7 through 3 = 10001)

TRQ (F1
TRB (F1
TCA (F1
TCM (F1
TCQ (F1
TCB (F1
AAM (F1
AAQ (F1
AAB (F1
EAM (F1
EAQ (F1
EAB (F1
LAM (F1
LAQ (F1
LAB (F1
CAM (F1
CAQ (F1

CAB (F1

Note: The "+'" implies an inclusive OR.

= 8, bits 7 through 3 = 10010)
= 8, hits 7 through 3 = 10011)
= 8, bits 7 through 3 = 01100)
= 8, bits 7 through 3 = 01001)
= 8, bits 7 through 3 = 01010)
= 8, bits 7 through 3 = 01011)
= 8, bits 7 through 3 = 00101)
= 8, bits 7 through 3 = 00110)
= 8, bits 7 through 3 = 00111)

= 8, bits 7 through 3 =01101)

= 8, bits 7 through 3 = 01110)
= 8, bits 7 through 3 = 01111)
= 8, bits 7 through 3 = 10101)
= 8, bits 7 through 3 = 10110)
= 8, bits 7 through 3 = 10111)
= 8, bits 7 through 3 = 11101)
= 8, bits 7 through 3 = 11110)
= 8, bits 7 through 3 =11111)

Set to Ones

Clear to Zero

Transfer Ax*

Transfer Mx*

Transfer @

Transfer Q + M

Transfer Complement A

Transfer Complement M3

Transfer Complement Q*

Transfer Complement Q + Mx*
Transfer Arithmetic Sum A, M
Transfer Arithmetic Sum A, Q
Transfer Arithmetic Sum A, Q+ M
Transfer Exclusive OR A, M
Transfer Exclusive OR A, Q
Transfer Exclusive OR A, Q@ + M
Transfer Logical Product A, M
Transfer Logical Product A, Q
Transfer Logical Product A, Q + M
Transfer Complement Logical Product A, M
Transfer Complement Logical Product A, Q

4 NT
T

1 + A 0O
Transfer Complement Logical Product A, Q + M

“The use of bit 7 is optional; it may be a 1 or a 0, The assembler uses bit 7 = 0,

60361900B

2.4 SHIFT INSTRUCTIONS

The Shift instructions shift A, Q, or QA left or right the number of places specified by

the five-bit shift count.
Left shifts are end-around.

Format:

Right shifts are end-off with sign extension in the upper bits,
The maximum long-right or long-left shift is 1F places,

15 12 11 8 7 6 5 4 0
0 0 0 O P1=F
4 Yy)
1 = Shift Left Shift
0 = Shift Right Count
1 = Shift A
1=ShiftQ———l
Example: Shift A right two places — 0F42,
15 12 11 8 7 6 5 4 0
0 F1=F
o 0o 0 01 11 1 0 1 0 0 0 0 1 o

SHIFT MNEMONICS

ARS (F1 = F, bits
QRS (F1 = F, bits
LRS (F1 = F, bits
ALS (F1 = F, bits
QLS (F1 = F, bits
LLS (F1 = F, bits

2-14

7 through 5 = 010)

7 through 5 = 001)

7 through 5
7 through 5
7 through 5

7 through 5

]

n

011)
110)
101)

111)

A Right Shift

Q Right Shift

Long Right Shift (QA)
A Left Shift

Q Left Shift

Long Left Shift (QA)

60361900B

2.5 SKIP INSTRUCTIONS

Skip instructions result in one machine word: a 12-bit operation code and a 4-bit

unsigned skip count. The first four bits of the operation code field are set to zero,

the next four hite cgntain +lqe altin ingtruction code 0001 and +the lagt+ four bitg con-
LIIT 1l LIVl Wilo Lulivalil il POLY LD LI UL LLAULL LUUT VUV L, aild LIIT 1aoi 1uul vivto Cull

tain a unique identifier, F2, for each skip instruction, The expression in the

addrogcg fiald of th " evaliiatad mndnla 2 -1
aGGIrCSSs 11€.G O i uaic & 1.

ig
i 15 TVa

,.
Q

U oiiivaua v

This expression may be absolute or relocatable., If absolute, the value of the expres-
sion is the skip count. If relocatable, the value of the skip count is obtained by sub-
tracting (16-bit one's complement arithmetic) the value of the current location counter
plus one from the expression. The skip count is then placed in the last four bits of
the machine word. The final value of the skip count must not exceed four bits or an
error message is printed. If the expression is relocatable, the relocation type of the
expression must match the relocation type of the location counter or an error results.

Format:

15 12 11 8 7 6 5 4 3 0
[v J v i v T v D)
Instruction (F) , Skip Instruction f
(F2) i
Subinstruction (F1) Skip Count

When the skip condition is met, the skip count plus one is added to P to obtain the
address of the next instruction (e.g., when the skip count is zero go to P + 1). When
the skip condition is not met, the address of the next instruction is P + 1 (skip count
ignored). The skip count does not have a sign bit.

SAZ (F2 =0) Skip if A is positive zero (all bits are 0)

SAN (F2 =1) Skip if A is not positive zero (not all bits are 0)
SAP (F2 = 2) Skip if A is positive (bit 15 is 0)

SAM (F2 = 3) Skip is A is negative (bit 15 is 1)

SQZ (F2 = 4) Skip if Q is positive zero (all bits are 0)

SQN (F2 = 5) Skip if Q is not positive zero (not all bits are 0)
SQP (F2 = 8) Skip if Q is positive (bit 15 is 0)

SQM (F2=1) Skip if Q is negative (bit 15 is 1)

SWS (F2 = 8) Skip if selective skip switch is set

SWN (F2 = 9) Skip if selective skip switch is not set

603619008 2-15

SOV (F2 =A) Skip on Overflow. This instructions skips if
an overflow condition is sensed. This instruc-
tion clears the OVERFLOW indicator.

SNO (F2 = B) Skip on No Overflow. This instruction skips
if an overflow condition is not present. This
instruction clears the OVERFLOW indicator.

SPE (F2

C) Skip on Storage Parity Error. This instruc-
tion skips if a storage parity error occurred;
it clears the Storage Parity Error Interrupt
signal and the PARITY FAULT indicator.

SNP (F2

D) Skip on No Storage Parity Error,

SPF (F2 = E) Skip on Program Protect Fault., The pro-

gram protect fault is set by:

e A nonprotected instruction attempting to
write into an address that is protected.

e An attempt to execute a protected
instruction immediately following a
nonprotected instruction, unless an
interrupt caused the instruction
sequence,

e Execution of any nonprotected instruc-
tion affecting interrupt mask or enables.

The program protect fault is cleared when it

is sensed by the SPF instruction. The program
protect fault cannot be set if the program pro-
tect system is disabled. (Refer to the 1700
Computer Reference Manual.)

SNF (Fs = F) Skip on No Program Protect Fault.

2.6 NEGATIVE ZERO/OVERFLOW SET
Negative zero and/or overflow set can be caused by two characteristics of the computer:
e The computer has a one's complement subtractive adder.
e Multiplication and division are done with positive numbers only. Therefore,
a sign correction occurs, if required, before and after the multiplication

or division symbols.

Arithmetic operation that produce a negative zero result and/or set overflow in the
computer are:

e Addition (-0) + (-0) = (-0)

e Subtraction (-0) - (+0) = (-0)

2-16 60361900B

e Multiplication

e Division

60361900B

Where:

N#£0

R = Remainder

(+0) x (-N) = (-0)
(-N) x (+0) = (-0)

£ = -0, R = (-0)
(-0) _ - (-
.(_.) = (+0), R = (-0)

g-_l(;I))_ = (-0), R = (+N) overflow set

%—(D)I))" = (-0), R = (-N) overflow set

%;—f%l =(-2), R =(-0)
(2N - (12), R - (-0)
, R = (+0) overflow set
R = (+0) overflow set

R = (-0) overflow set

R = (-0) overflow set

2-17/2-18

PSEUDO INSTRUCTIONS 3

4 R

Pseudo instructions conirol the assembler, provide subprogram linkage, control output
listing, reserve storage, convert data, and so on.

Pseudo instructions may be placed anywhere in a source language subprogram. How-

ever, OPT or NAM must be the first statement of a subprogram and MON or END
must be the last statement.

3.1 SUBPROGRAM LINKAGE

These instructions identify and link subprograms; a symbolic name in the location field
is ignored.

3.1.1 NAM
NAM identifies a source language subprogram and must be the first statement of the

YL 41 P By S T 1 et I . P ST U S /\T‘\’T‘ fmon bl ip) A E\ —
--‘.._1._",5;_1 Tie -‘,»_._“/ LIl assciinoicl COnLro: i,':‘t‘-_nl-’.iij TNSTrUCLIon e b \STULIUIL G T o ,lLi__L/

precede it,
The format is
NAM S

S An optional symbolic name of the subprogram which is printed as
part of the assembly list output.

3.1.2 END

END must be the last statement of a source language subprogram. If END terminates
a subprogram assembled separately or the last subprogram of a group, MON follows
END. Otherwise END is followed by NAM or OPT,.

The format is
END S
S An optional symbolic name of an entry point to the first subprogram
to be executed. If specified, s must be defined as an entry point

in the subprogram to which control passes. This entry point may bhe
in the same subprogram as the END statement or in a subprogram

loaded at the same time.

Example:
END START

START is the location of the first statement to be executed.

60361900B 3-1

3.1.3 ENT

The ENT instruction lists the symbolic names of entry points which may be referenced
from other subprograms.

The format is

ENT S1559s 443 5p

11

s, Entry points listed in the address field of ENT and must be defined in

" the subprogram containing the ENT instruction. s; must not refer to
to a location outside the subprogram, common storage, or data
storage.

Example:

NAM PROG1

ENT ENT1,ENT2 (Legal)
ENT1 LDA XYz1
ENT2 STA XYZ2

ENT ENTX (Illegal; ENTX not defined)

END ENT1

3.1.4 EXT/EXT*

The EXT instruction lists the symbolic names of entry points in external subprograms
which may be referenced from this subprogram.

The format is

EXT S1s59s+¢+55p

Si Entry points in the address field of EXT, which must be symbols defined
in the subprograms they reference. sj must not refer to symbols in
the same subprogram.

Example 1:

NAM

EXT ENTI1,ENT2 (Legal)
ENT3 LDA XYZ

COM ENTS5

EXT ENT3 (Illegal; ENT3 is same subprogram)
EXT ENT4 (Legal)

EXT ENTS5 (Illegal; ENT5 in common storage)
EXT ENT1 (Legal; defined in same way as above)
END

60361900B

Example 2:
EXT ENTI1,ENT2

.
LDA ENT1

This reference to ENT1 results in the following two machine words.

15 11 10 9 8 7 0
[pa JoJiJoJo] 00 |
15 0
| external link B

External link is a pointer to the location of ENT1 used by the loader at load time.

The EXT* instruction is the same as EXT except that s; are absolute locations in EXT
and references to s; are made relative in EXT*,

The format is

EXTx* S1s89s.4,8,

The plus terminator cannot be used with an operation code when the address references
a relative external entry point. It is also illegal to enclose an external in parentheses
in the address field of an ADC instruction (section 3.3.1).

Examples:

EXT* NAMEI, NAME2, NAME3
LDA NAME1
LDA+ NAMEI1 (Illegal)

LDA (NAME2)
ADC (NAME3) (Ilegal)
EXT* NAME1, NAME2

60361900A 3-3

This reference to NAME1 results in the following two machine words.

[15 LDA [111]1?)|31317 00 OJ

wn

external link

s
(]

External link is a pointer to the location of NAME1l used by the loader at load time.

3.2 DATA STORAGE

The following instructions allocate data storage. BSS and BZS assign storage local to
the subprogram in which they appear. COM and DAT assign data common to any
number of subprograms. Symbolic names in the location fields of data storage instruc-
tions are ignored.

3.2.1 BSS

The BSS instruction assigns symbolic names to segments of storage within the instruc-
tion sequence of the subprogram,

The format is
BSS Sl(el),sz(ez),...,sn(en)

$j name Symbolic name which defines the first location of the
named segment.

omitted When omitted from a subfield, a segment is assigned with
the length e but no name is assigned to the segment.

e; expression Corresponding expressions of the symbolic name which
defines the length of the segment in words. Segments
are assigned contiguously to form one block of data
starting at location sj. The size of the block is equal
to the sum of the sizes of the segments. e; are eval-
uated modulo 219-1 and must be absolute.

0 The associated symbolic name is assigned to the next
segment which in effect assigns two names to that segment.

omitted The length is assumed to be one computer word.
symbolic Must be previously defined; can be assigned by an EQU
name instruction.

3.2.2 BZS

This statement functions in the same way as the BSS, except that the specified storage
locations are set to zero.

The format is
BZS sl(el),sz(ez),...,sn(en)

3-4 60361900A

Example:

NAMS3

3.23 COM

The COM instruction

{Assign 3 words to NAM4)
(Assign 5 words, set to zero,
to NAMS)

(Assign 1 word to NAMI1; assign
9 words to NAM2)

(Illegal; NAM3 already assigned)
(Assign 1 word to NAMSB, assign
4 words to unnamed segment)
(Assign 1 word to NAMT)

(Assign 2 words, set to zero, to
NAM10)

(Illegal; NAMS8 already assigned)
(Assign the same word to LOC1 and
LOC2)

NAM
LDA XYZ1

BSS NAM4(3)

BZS NAMS5(5)

BSS NAMI1, NAM2(9)

BSS NAMS3

BSS NAMS, (4)

BSS NAM?7

EQU NAMS(4), NAMY(2)
BZS NAM10(NAM8-NAMO9)
BSS NAMS(NAMI0-1)

BSS L.OC1(0), LOC2

END

than one subprogram.

The format is

COM

60361900B

sl(el), 52(62). .

Si name

omitted

(=

omitted

.»splen)

i expression

symbolic

name

names and defines segments in a block of storage common to more

Symbolic name which defines the first location of
the named segment.

When omitted from a subfield, a segment is
assigned with the length e but no name is assigned
to the segment.

Corresponding expressions of the symbolic name
which defines the length of the segment in words.
Segments are assigned contiguously to form one
block of data starting at location s;. The size
of the block is equal to the sum of the si%gs of
the segments. e; are evaluated modulo 2-72-1 and

i
must be absolute.

The associated symboiic name is assigned to the
next segment which in effect assigns two names
to that segment.

The length is assumed to be one computer word.

Must be previously defined; can be assigned by
an EQU instruction.

If a program includes more than one COM statement, they define consecutive segments
of common storage in the order of their appearance. The area used by common
storage is assigned by the loader at load time to locations outside the program area,
Data in common storage cannot be preset by the ORG pseudo instruction.

Example:

NAM

COM NAM4
NAM3 STA XYZ1
COM NAM7($1EF), NAMS
EQU NAMI1(6), NAM2(2)
COM NAM5(NAM1-NAM2)
COM NAM6(NAM3) (Illegal)

END

3.2.4 DAT

The DAT instruction reserves area for common storage which is assigned within the
program area and may be preset with data or instructions by using the ORG pseudo
instruction (section 3.4.2).
The format is

DAT silej).syleg),...rspley)

Si name Symbolic name which defines the first location of the
named segment.

omitted When omitted from a subfield, a segment is assigned
with the length e but no name is assigned to the
segment.
= expression Corresponding expressions of the symbolic name which

define the length of the segment in words. Segments

are assigned contiguously to form one block of data
starting at location sy. The size of the block is equal
to the sum of the sizes of the segments. e; are
evaluated modulo 215-1 and must be absolute.

0 The associated symbolic name is assigned to the next
segment which in effect assigns two names to that
segment.

omitted The length is assumed to be one computer word.

symbolic Must be previously defined; can be assigned by an

name EQU instruction.

3-6 60361900B

3.3 CONSTANT DECLARATIONS

These pseudo instructions introduce constant values into the instruction sequence.

3.3.1 ADC/ADC*

The ADC/ADC* instruction evaluates numerical constants or address expressions and
inserts the results in line., When ADC is followed by an asterisk, the evaluated
address expressions are made relative to the current location counter. The reloca-
tion type of the expression must be the same as that of the location counter. The
value of the locations counter is subtracted from the value of the evaluated expression
(16-bit one's complement arithmetic) and the result is the 16-bit address constant.

The format is

s ADC €1 €q, (e3), RPN
s Symbolic name in the location field which is as-
signed to the first constant in the address field.

e, Numerical constant or address expression to
be evaluated, The result is evaluated modulo
215-1, Bit 15 will be set if the expression is

enclosed in parentheses (indicating an
indirect reference). The results corres-
ponding to e, €0, ..., e, are stored in con-

secutive storage locations.

Note: Indirect addressing cannot be specified in the ADC* statement.

3.3.2 ALF
The ALF instruction translates a message into ASCII format.
The format is

s ALF n, message

s Symbolic name in the location field which is as-
signed to the first constant in the address field.

n Unsigned integer specifying the number of
words to be stored; 2n equals the number of
characters.

If n is an integer, 2n characters of the mes-
sage are stored, Excess characters are
treated as a remark., (The ALF statement,
beyond the 72nd character of the source
image,) If the message is less than 2n char-
acters, the unused portion of the specified
area is blank filled,

60361900B 3=17

Noninteger character which signals the end of
the message. When n is a special terminating
character, the storage of the message ter-
minates the first time this character is
encountered in the message if it occurs
before the 72nd character. If the character
just prior to n is the first character of a
word, a blank is placed in the second char-
acter to complete the word.

A character message is stored into consecu-
tive locations in the instruction sequence.
The message is converted to ASCII charac-
ters (Appendix C) and stored two 8-bit
characters per word.

The following typewriter control characters may be input with the ALF statement,

Code Meaning Hexadecimal Value

‘R Carriage return D

:T Horizontal tab 9

:L Line feed A

:B Bell 7

:F Top of form C
Vertical tab B

These codes are converted to a single output character with the corresponding hexa-
decimal value and are counted as one character in determining the value of n, when
n is an integer character count. A colon is an 8 to 5 key punch code with the ASCII

vatue of 3A 16

A symbolic name in the location field is assigned to the first word to the message.

Example:

The following source language statements

ALF 4, EXAMPLE1
NAM1 ALF ., EXAMPLE2

ALF 6, EXMP3: TEXMP4:R
NAM2 ALF 4, EXMP5

are translated into machine words.

3-8

60361900B

Character

Location Left Right

E X
A M
P L
E 1

NAM1 E X
A M
P L
E 2
A A
A A
E X
M P
3 tab
E X
M P
4 carriage return

NAM2 E X
M P
5 A
A A

In this example A is a blank. Three dots indicate blanks fill in the words between
EXAMPLE2 and EXMP3. This is because the special terminating character, .,
does not occur in the message before the 72nd character, If, in the example, n is
in column 13, then 25 words of blanks are used to fill the words between
EXAMPLE2 and EXMP3,

3.3.3 NUM
The NUM instruction defines numeric constants,
The format is

s NUM kl’k2""kn

s Symbolic name in the location which is assigned to the first

constant in the address field.
k. Specified integer constants stored into consecutive locations

integer within the range * 32767, or a hexadecimal integer

in the instruction sequence. Each constant may be a decimal

preceded by a $ within the range *=7FFF, The constant may

be Si nad: if it i not gsioned +lne constant ig agcsumed to he
gu.cu, il 1v IS 00y Signed, i Consialiu 1o assuined O oc

positive, When the sign is minus, the one's complement of
the number is used.

60361900B

Examples:
The following source language statements

NUM 1,2,3,8A
NAM1 NUM +14,-10, -$13B, $7FF

are translated into machine words.

Location Contents Location Contents
0001 NAM1 000E
0002 FFF5
0003 FEC4
000A 07FF
3.3.4 DEC

The DEC instruction converts decimal constants into fixed-point binary.
The format is
s DEC k1, ko, ..., kp

[Symbolic name in the location which is assigned to the first constant
in the address field.

ki Specified integer constants stored into consecutive locations in the
instruction sequence. It is a signed decimal integer followed by a
decimal and/or binary scaling factor. The decimal scaling factor
consists of the letter D followed by a signed or unsigned decimal
integer. The binary scaling factor is the letter B followed by one or
two signed or unsigned decimal digits. The form of a constant in
the address field may be

fDdBb
which is equivalent to the algebraic expression
£ 109. 2P
The fixed-point binary number resulting from the conversion
must have a magnitude less than 215, "If the result of scaling is
greater than 21521, an error diagnostic is printed.
A symbolic name in the location field is assigned to the location of the first constant.

Example:

The source language statements

DEC 35D-1B6
NAM1 DEC -35B6

DEC 32760B-4
NAM2 DEC 32761D-5B15, +625D~-2B3
NAM3 DEC 10D3

are converted to machine words.

3-10 60361900B

Location

NAM1
NAM2
NAM3

3.3.5 VFD

Contents of Bits 15 through 0

0000000011100000
1111011100111111
0000011111111111
0010100111101111
0000000000110010
0010011100010000

The VFD (variable field definition) instruction assigns data to consecutive locations in the
instruction sequence without regard for computer words. Data is stored in bit strings

rather than word units;

it may be numeric constants, ASCII characters, or expressions.

A symbolic name in the location field is assigned to the first word of data.

The format is

s VFD mlnl/vl,mznzlvz, ...,mnnn/vrl

s name
m,
i
N
A
X

60361900B

Symbolic name which defines the first location of the
named segment.

Specifies the mode of the data,

When the value of the data is a numeric constant, the mode
is specified as N and the number of bits must not be great-
er than 16. If n is larger than necessary, the value is
right justified in the field and the sign extended in the
remaining high order bits, If n is less than is required,
the value is truncated and the least significant bits are
stored. The value, v, is a decimal integer or a hexadeci-
mal integer preceded by a dollar sign. Integers may be
signed or unsigned; if the sign is omitted, the number is
assumed to be positive. A decimal number must be within
the range *32767 and a hexadecimal integer within the
range +7FFF,

When v is string of characters, m must be A and n must
be a multiple of 8. The number of characters in the string
should be equal to n/8 including embedded blanks, The
last character must be followed by a blank or a comma.
The characters are converted to ASCII code and stored as
in the ALF instruction (section 3. 3. 2).

When v is an expression, m must be X and n must be less
than or equal to 16. If n is less than 16, the final value of
the expression may be relocatable or absolute. It is eval-
uvated modulo 24°-1 =TFFFg. If the final value is absolute
and n exceeds the size required, the value is right justi-
fied in the field, If absolute and n is less than the required
size, the value is truncated and the least significant bits
are stored in the field. If the final value is relocatable,

n must equal 15 and the expression must be positioned so
that it will be stored right justified at bit position 0 of the
computer word.,

If n equals 16, the expression must be absolute; it is
evaluated using 16-bit one's complement arithmetic. If a
symbol is used in a 16-bit expression, bit 14 of the value
of the symbol is extended to bit 15 and therefore the cal-
culation of the value of the symbol is accurate only to
214-1, For example, if the symbol A is equated to the
value -1, the value of A in the symbol table is 7FFE16
but the value used in the 16-bit calculation of this

symbol is FFFEs. Numeric operands used in a 16-bit
expression may ée 16 bits in magnitude,

n, Number of bits to be allocated
vy Value of the data
Examples:

1, Source language statements

NAM

VFD N3/1,X5/6-4,A16/XY,X4/NAM1-NAM2
BSS NAM2(3), NAM1

END

result in machine words
Word Contents

15 12 7 0
1 [0 0 1Jo 0o o 1 0Jo 10 1 100 o |
15 1 3 0
2 b1 o 1 1 00 1] o o1 1]o 0 o0g

2. Source language statements

NAM }
VFD Ng/-1,A8/L,N1/0,X15/NAMI1
BSS NAM1

END

result in machine words

Word Contents

15 7 0
1 [1 1 1 1 1 1 1 0 0 1 0 01100
15 14

e

2 fo] loc of NAM1

3-12 60361900B

3. Source language statements

NAM

EQU A(-1), B(2)

VFD X16/A,X16/B,X16/$TFFF*2
END

result in machine words

Word Contents

15 0
1 |1 1 1 1 1 1 1 1 1 111 1 11 0]
15 0
2 |o 0 0 0 0 0 0O O O O OO O 0 1 o|
15 0
'3' il i i i i i i i 1 i i i i i i \ii

3.4 ASSEMBLER CONTROL

The assembly process is controlled or modified by these pseudo instructions. A
symbolic name in the location field is ignored except where specifically noted.

3.4.1 EQU
The EQU instruction equates each symbolic name to the expression value,
The format is
EQU Sl(el)’ sz(ez).....sn(en)
S name Symbolic name s is equated to the value e;.

e expression Any symbolic operand used in the expression must
be previously defined and not external to the

subprogram in which the EQU statement appears.
e; are evaluated modulo 215-1 and must be absolute.

omitted The expression is assumed to be zero.

603619008 3-13

Example:

NAM EXAMPL

PICKUP LDA XYZ1

NAMS ADD XYZ2
EQU NAM3($4F), NAM4(-39)
EQU NAMT7(NAMS6-1)

EQU NAMS(STORE) (Illegal)
STORE STA XYZ3

EQU NAMY(STORE) (Legal)

END

3.4.2 ORG/ORG*

The ORG statement specifies an address expression to which the current location
counter is set.

The format is
ORG e

e expression The expression, e, is evaluated modulo 215.1 and
the location counter is set to the resultant value.
The value of the expression may be program or data
relocatable, or absolute; if relocatable, it must be
positive. Any symbolic operands in the expression
must have been previously defined.

The instructions following an ORG statement are assembled into consecutive locations
beginning at the location of the evaluated address expression, e. This sequence may
be changed by another ORG, or terminated by an ORG* statement. Within the range
of a data relocatable ORG any reference to an external symbol is illegal.

ORG*
This instruction is used to return to the normal instruction sequence previously
interrupted by an ORG. More than one ORG may be specified without an intervening

ORG*; however, when an ORG* does occur, the location counter is reset to the value
it had prior to the first ORG.

3-14 60361900B

Example:

NAM1

NAM2

NAM3

3.4.3 IFA

The IFA instruction assembles a set of coding lines only if a specified condition is true.

JMP* NAMS3

ORG NAM1
(sequence of code beginning at NAM1)

ORG*

(resume sequence of code at NAM2+1)
JMP* NAM4

ORG ORG1

(sequence of code beginning at ORG1)

ORG ORG3
(sequence of code beginning at ORG3)

ORG*
(resume sequence of code at NAN3+1)

END

The format is

S

IFA €1,C, e

s

(¢]

60361900B

The symbolic name in the location field is used as an identifying tag only;
it is not defined as a location symbol within the program. If specified, the
first 2 characters of the identifier, s, must match the first 2
characters of the symbolic name in the address field of the corre-
sponding EIF. 1If s is blank in an IFA statement, it must also be
blank in the corresponding EIF.

The expressions e; and ey are evaluated modulo 219-1 and must
result in an absolute value. Any symbolic name in either expression
must have been previously defined.

the conditions specified by ¢ exist between e1 and ey, the code is
assembled; if the condition does not exist, the code following the IFA
statement is skipped until a corresponding EIF statement is encountered.

The following conditions may be specified by c,

Condition Meaning
EQ e, = ey
NE € # ey
GT e, > e,
LT e1 < e2

3.4.4 EIF

The EIF instruction signals the termination of an IFA or IFC instruction (section 4.1.4)
when coding lines are skipped as a result of an untrue condition. When the condition
in the IFA or IFC is true, EIF is ignored.

The format is

EIF s
s The symbolic name, s, in the address field establishes the
correspondence between an IFA or IFC and an EIF instruction.
The first 2 characters of s must be the same as the first 2
characters in the location field of the corresponding IFA or IFC.
An EIF with a blank address field terminates an unlabeled IFA or
IFC,
Example:
NAM
LOC1 BSS A(20), B(10), C(2)
EQU NAMI1(10), NAM4(B), NAM2(2)
NAM3 IFA NAMI1, EQ, NAM2+8
OP1 SAZ 1
EIF NAM3
IFA NAMI1, GT, NAM2+8
OP2 SAZ 2
EIF
END

60361900A

OP1 is assembled and OP2 is skipped if the value of NAM1 equals the value of NAM2+8;

OP1 is skipped and OP2 is assembled if the value of NAM1 is greater than the value of
NAM2+8; both OP1 and OP2 are skipped if the value of NAM1 is less than the value of
NAM2+8.

3.4.5 OPT

The OPT pseudo instruction signals the input of control options to the assembler.

The format is
OPT

When OPT appears, the assembler requests input of control options by typing
OPTIONS

The following control options are entered in any order on the teletypewriter. Imbedded

spaces and illegal characters are ignored. A carriage return signals the end of control
options input.

Option Meaning
L iList ouiput on siandard iist device
P Punchi ouipui vu standard punch aevice
P P
X Execute output on mass storage device
M List called macro skeletons
A Abandon all remaining assemblies and return control to operating system

Ilu Input from unit lu. Reads instructions until the END statement is
encountered, then returns to the standard input device; lu may be any
ASCII or BCD input device.

C List cross references at end of assembly listing.

OPT is not a part of the source language program. It is used strictly for control of the
assembler and has no code associated with it.

OPT may precede any NAM instruction in any subprogram. If the first statement encoun-
tered is not OPT, standard options are assumed until END is encountered. If OPT is
encountered between the first statement of a program and the END statement, a diagnostic
is issued. The standard options are L, P, X, and C. Chapter 5 describes output result-
ing from the standard options.

3.4.6 MON

The MON instruction returns control to the operating system after the last subprogram has
been assembled.

60361900B 3-17

The format is
MON
MON may be used only after the END statement. The location and address fields are

ignored. This statement is part of the source language program and is used strictly
for control of the assembler; no code is associated with it.

3.5 LISTING CONTROL

The following pseudo instructions control the printing of assembly output. The location
and address fields are ignored unless specified.

3.5.1 NLS
The NLS instruction inhibits list output.
The format is

NLS

Normally list output is enabled initially until an NLS occurs and then remains inhibited
until an LST instruction or the end of the program occurs.

3.5.2 LST
The LST instruction initiates list output after an NLS has inhibited it.
The format is

LST

3.5.3 SPC
The SPC instruction controls line spacing on the list output unit.
The format is

SPC e

e Number of lines to be skipped; the expression is evaluated modulo
215-1 and must be absolute.

3.5.4 EJT
The EJT instruction causes page ejection during printing of the list output.
The format is

EJT

3-18 603619008

MACROS 4

An often used set of instructions may be grouped together to form a macro. Once a
macro is defined, it may be used as a pseudo instruction. The 1700 Macro Assembler
includes two types of macros.

Programmer defined Macros which must be declared by MAC pseudo instructions
immediately following the NAM image. Comment cards
may, however, be placed anywhere in the macro definition.

Library Definitions contained on the system library and may be
called from any subprogram.

4.1 MACRO PSEUDO INSTRUCTIONS

These pseudo instructions are used only within a macro definition.

4.1.1 MAC

The MAC instruction is required and names a macro and lists its lormal parameters,
The location field contains the name used to call the defined macro. It may be any
name which is not a machine or pseudo instruction.

The format is

s MAC P1,Py,...,P,

s A symbolic name in the location field is assigned to the first word of
the generated code.

Pi Symbolic names which are local to the macro definition and may be
used anywhere else in the program without ambiguity. The formal
parameters must conform to the following rules.

They must be symbolic names of 1 or 2 characters

The parameter list must not extend beyond the 72nd character
of the line containing MAC

The parameter list must terminate with a blank or the 72nd
character of the line

Each parameter in the list is separated from the next by a comma

60361900B 4-1

4.1.2 EMC

The EMC instruction is required and signals the end of a macro definition. A symbolic
name in the location or address field is ignored. EMC is always the last instruction
in a macro definition,

The format is

EMC

413 LOC

The LOC instruction is optional and allows the use of the same symbols in macros and
programs to avoid doubly defined symbols., Symbols, other than formal parameters,
that are local to the macro being defined are listed in this instruction. Local symbols
have meaning only in the macro in which they are listed by LOC, thus allowing the
same symbols to be used elsewhere in the program without ambiguity.

The LOC instruction must immediately follow the MAC instruction, A symbol in the
location field of the LOC instruction is ignored.

The format is
LOC S$1559s 443 5p

s. Local symbols in the address field which must conform to the
following rules.

They must be symbolic names of 1 or 2 characters

The list cannot extend beyond the 72nd character of the line
containing the LOC instruction

The list terminates with a blank or the 72nd character of the
line

Each symbol in the list is separated from the next by a comma

No local symbol in the list may be the same as a formal
parameter specified for the macro

No more than 256 local symbols can be used in one program

4.1.4 IFC

The IFC instruction is optional and allows a set of instructions within a macro
definition to be assembled only if a specified condition is true. This instruction
is meaningful only within the range of a MAC pseudo instruction.

4-2 60361900B

The format is
S I¥C aj,c,ag

s The symbol in the location field is an identifying tag used to establish
correspondence with the terminating EIF. An EIF terminates an IFC
when the first two characters of the symbol in the addresgs field of EIF
are the same as the location symbol of the IFC, or when both symbols
are blank and it is the first EIF encountered.

aj Must be a string of from 1 to 6 characters or a formal parameter
specified in the MAC statement. The character string should not
contain commas, blanks, or apostrophes. Two character strings are
equal when they contain the same characters in the same position and
are of the same length. Characters in excess of six are ignored.

c Specified condition
Condition Meaning
EQ a; = ag
NE ay # ag

If the condition specitied exists between aj and a9, the code is
assembled; if not, the code following the IFC is skipped until a
corresponding EIF pseudo instruction (section 3.4.4) is encountered.

Source language examples of macro definitions and instructions are
given in section 4.3.2.

4.2 MACRO SKELETON

A macro skeleton is the set of instructions within a macro definition that is the proto-
type of the operations to be performed when the macro is called.

The instructions may be any machine or pseudo instruction except MAC, LOC, EMC,
NAM, END, or MON. A macro skeleton may also contain macro instructions calling
other macros. A macro skeleton may not contain a macro instruction calling itself.
Formal parameters, enclosed in apostrophes, may appear anywhere in the instruction
format of a prototype instruction. Local symbols defined by a LOC statement may be
used anywhere in the macro skeleton; they also must be enclosed in apostrophes. The
only legal use of the apostrophe in a macro definition is to enclose formal parameters
or local symbols. Formal parameters that extend past the 72nd character into the
sequence field are ignored. Formal parameters in a remark statement signaled by

an * in column 1 are also ignored,

In addition to the formal parameters specified in the MAC pseudo instruction, a special
formal parameter (a period enclosed in apostrophes) may be used in the macro skele-
ton. It is replaced by the instruction terminator of the calling macro instruction

when a terminator is specified.

Let A, B, C, . . . be distinct arbitrary macro skeletons. A may contain a macro

instruction calling B, B a macro skeleton calling C, etc. Up to ten such successive
macro calls are allowed by the assembler. Further successive calls are ignored.

603619008

Example:

XYZ MAC P1, P2, P3, P4, P5
LOC A
LDA 'P1'
'P2! 'P3!
S'P4'Z TAtT=sk-1 Macro skeleton
JMP'.! 'P5’
'A! ENA 1 ’
EMC

4.3 MACRO INSTRUCTION

With a macro instruction, the code generated from the named macro is inserted in the
instruction sequence beginning at the location of the macro instruction.

The format is
s N Pi,Po,...,Pq

s A symbolic name in the location field is assigned to the first word of
the generated code,

N Symbolic name of the macro in the operation code field. It is the name
specified in the location field of the MAC statement of the macro definition
it calls. The macro name may be followed by one of the special termi-
nators +, -, or *,

pi Symbolic names which are local to the macro definition and may be used
anywhere else in the program without ambiguity.

4.3.1 PARAMETERS
Actual

The actual parameters must be listed in the same order as the formal parameters in
the MAC statement. The list of actual parameters must conform to the following rules.
Each parameter in the list is separated from the next by a comma.

The list is terminated with a blank or the 72nd character unless the 72nd character
IS a comma,

The list may be continued onto the next line; if so, the last parameter on the list
is terminated by a comma and a blank or the 72nd character.

The continuation line must contain the macro name in the operation code field., A
symbolic name in the location field is ignored.

An actual parameter containing embedded blanks or commas must be enclosed by
apostrophes.

4-4 603619008

The internal buffer for storage of actual parameters is 96 words long; this allows
approximately three continuation lines. If the buffer overflows, an error message is
given.

he macro defined in the previous example as XYZ could be called by the following
macro instruction.

TAG1 XY Z3* SYMB1,STA, 'SYMB2,1',
XYZ* Q, LABELI1 (Continuation line)

This macro instruction would generate the following code starting at location TAGI.

TAG1 LDA SYMBI
STA SYMBZ2, I
SQZ [nn-%-1
JMP* LABELI1

[nn ENA 1
NOTE
[nn is a unique identifier assigned at assembly time.
Null
Actual paraineters may be omitted from a macro instruction. An omitted {nall)

parameter in the middle of the list is indicated by its terminating comma only.
Parameters at the end of the list may be omitted with no indication.

Example:
XYZ MAC P1, P2, P3, P4, P5, P6

The macro instruction with P2, P4, and P8 omitted in the actual parameter list
would be:

XYZ MUI, ,SYMBS5,, 3

Empty fields are allowed in all machine and pseudo instructions with the following
exceptions.

ALF n,message (n must be specified)

2811\1/[222; (If e is specified, s
DAT s(e) must be specified)

IFA e1,C, ey i o

IFC a1, c,ay } (c must be specified)

Actual parameters to be inserted into the value of a VFD instruction using mode A
must agree with the number of characters specified. A null actual parameter can
cause an error in the generated code unless the VFD allows for null parameters.

60361900A 4-5

Example:

X MAC P,Q,R
VFD A8/'P',A8/'Q', A8/ 'R!
For the macro defined, the calling macro instruction must specify each actual parameter
as 1 character long. If an actual parameter is more than 1 character, an error message

is given. However, if an actual parameter is omitted, a code is generated and an error
results.

X A,,B (Q is omitted)
VFD A8/A,A8/,A8/B (Code generated)

If actual parameters might be omitted, the VFD instruction in the macro skeleton should
include empty subfields for each character.

Example:
The macro definition should be written:

X MAC P,Q,R
VFD A8/ 'P'a :ABI .Q': :A8/ 'R':

A calling sequence with no actual parameters generates the following code and no
error results.

VFD ASI:;AB/: :As/’

4.3.2 EXAMPLES

The following examples show macro definitions and the code generated by macro instruc-
tions calling the defined macros.

1. Macro Definition
XYZ MAC P1, P2,P3,P4,P5,P6
LDQ =N'P5!, 'P6'
P4! LDA P3!
lPll lpzl
ADD SYMB1
IFA P5',NE, 0
11 IFC 'P1',EQ,MUIL
STA SYMBS3
LDA SYMB2
EIF
EIF 11
EMC

a. Macro Instruction

CALL1 XYZ MUI, 'SYMB4,1',SYMBS5, HERE, 3,1

4-6 60361900B

Generated Code

CALL1
HERE

LDQ
LDA
MUI
ADD

TV A
1L L3

IFC
STA
LDA
EIF
EIF

b. Macro Instruction

CALL2

XYZ

Generated Code

CALL2
THERE

2, Macro Definition

A MAC

I1 IFC
LDA
EIF

12 IFC
LDA
EIF
STA
EMC

LDQ
LDA
DVI
ADD
IFA

IFC
STA
LDA
EIF
EIF

=N3,1I
SYMB5
SYMB4, 1
SYMB1

3,NE, 0
MUI, EQ, MUI
SYMB3
SYMB2

11

{Condition satisfied)
{Condition satisfied)
(Assembled)
(Assembled)

DVI, SYMB7, 'SYMBS, I', THERE, 2

=N2,
SYMBS, I
SYMB7
SYMBI1
2,NE, 0
SYMB3
SYMB?2

11

P1, P2, P3, P4

*, EQ, 'P1'

|P2|
I1

*, NE, 'P1!'

IP3I
12
IP4I

a. Macro Instruction

A

Generated Code

I1

12

60361900B

IFC
LDA
EIF
IFC
LDA
EIF
STA

(Condition satisfied)

{0 Andition not csatiafiod)
VW WLALILVAVLL LIVUL DA lLiSLAV Wy
(Not assembled)

(Not assembled)

%, NAM1, NAM2, NAM3

%, EQ, *

(Condition satisfied)
{Accamhl nd)

WAoo TilivaT

(Condition not satisfied)

3.

4.

Macro Definition

JAN

Macro Definition

MAC
IFC
SAZ
EIF
IFC
SAZ
EIF
JMP',!
EMC

SY
* EQ, !
1

*, NE, l. 1
2

ISY '

Macro Instruction

JAN=*

Generated Code

IFC
SAZ
EIF
IFC
SAZ
EIF
JMP*

Macro Instruction

JAN

Generated Code

IFEXMP MAC

Z
Y
X

Y

a.

IFC
NUM
EIF
IFC
IFC
NUM
EIF
IFC
NUM
EIF
EMC

IFC
SAZ
EIF
IFC
SAZ
EIF
JMP

Macro Instruction

Pl

%, EQ, 'P1!
2

z

%, NE, 'P1"
0,EQ, 'P1'
1

X

0, NE, 'P1"
0

Y
IFEXMP

SYMBI1

*: EQ: *
1

-

%, NE, *
2

SYMB1
SYMB2

*, EQ,
%, NE,

SYMB2

(Condition satisfied)
{Assembled)

(Ignored)

(Condition not satisfied)
(Not assembled)

(Skip terminated)

(Condition not satisfied)
(Not assembled)

(Skip terminated)
(Condition satisfied)
(Assembled)

(Ignored)

60361900B

Generated Code

Z
Y
X

Y

IFC %, EQ, *
NUM 2
EIF z
IFC %, NE, *
IFC 0, EQ, *
NUM 1
EIF X
IFC 0, NE, *
NUM 0
EIF Y

b. Macro Instruction

IFEXMP 0

Generated Code

V4

allat

IFC %, EQ, 0
NUM 2
EIF z
IFC %, NE, 0
IFC 0,EQ,0
NUM 1
EIF X
IFC 0, NE, 0
NUM 0
EIF Y

c. Macro Instruction

IFEXMP

Generated Code

Z
Y
X

Y

IFC %, EQ,
NUM 2
EIF z
IFC %, NE,
IFC 0,EQ,
NUM 1
EIF X
IFC 0, NE,
NUM 0
EIF Y

5. Macro Definitions

DEPTH1

DEPTH2

DEPTH3

60361900B

MAC

A

DEPTH2 'A',PARAMI1

EMC
MAC

A,B

DEPTH3 'A', PARAM2

EMC

MAC
LDA
STA

EMC

C,D
Ic!
'D’

(Condition satisfied)
(Assembled)

(Condition not satisfied)
(Not assembled)
(Not assembled)
(Not assembled)
(Not assembled)
(Not assembled)

(Skip terminated)

(Condition not satisfied)
(Not assembled)

(Skip terminated)
(Condition satisfied)
(Condition satisfied)
(Assembled)

(Condition not satisfied)
(Not assembled)

(Skip terminated)

(Condition not satisfied)
(Not assembled)

(Skip terminated)
(Condition satisfied)
(Condition not satisfied)
(Not assembled)

(Skip terminated)
(Condition satisfied)
(Assembled)

Macro Instruction

DEPTHI1 SYMB1

Generated Code

DEPTH2 SYMBI1, PARAMI1
DEPTH3 SYMB1, PARAM?2
LDA SYMB1

STA PARAM2

6. Macro Definition

B MAC A,B,C,D,E,F,G,H,I,J,K
LOoC LO
ALF 'A', 'B'A ERROR
VFD 'C'/'D', A16/'E',,,A32/TEST
IFC 'G', EQ, SKIP
LDA 'H'
EIF
T INA !
'K' 1
SAN 'LO!
ENA -1
'LO! STA 'F!
EMC

Macro Instruction

B 4,1,N4,-1,XY,'TEMP,I', SKIP, 'TEMP, I',
B NAMZ, 10, NOP

Generated Code

ALF 4,1 A ERROR

VFD N4/-1,A16/XY,,,A32/TEST
IFC SKIP, EQ, SKIP
LDA TEMP, I
EIF

NAM2 INA 10
NOP 1
SAN [nn
ENA -1

[nn STA TEMP, I

4 .4 MACRO LIBRARY

LIBMAC is released as a separate library macro preparation routine. Input to this routine
is in the form of a set of macro definitions, each starting with a MAC statement and ending
with an EMC statement. The complete set of macro definitions to be input to the library

is terminated by the characters ENDMAC starting in column 1 of the source image.

The library macro preparation routine outputs two files on the standard 1/O device for
binary output. One contains a macro directory; the other contains the macro skeletons.
The routine checks for errors and prints an error message along with the line containing
the error.

4-10 603619008

Binary output is in two sections, the macro skeleton file and the macro directory file.
After the skelelon [ile has been outpui, the message MACSKI. END is output on the
typewriter and a carriage return must be typed to start output of the macro directory.

The output files are placed on the program library in two permanent files using the
system initializer or library editor of the 1700 MSOS.

The library editor of the 1700 operating system is used to put the macros on the
program library.

The control statement
*N, MACROS,,, B
places the macro directory file on the program library.
The control statement
*N, MACSKL,,,B
places the macro skeletons on the program library.

Refer to the 1700 MSOS Reference Manual for further information.

60361900B 4-11/4-12

ASSEMBLER OUTPUT 5

5.1 CONTROL OPTIONS

Four standard options determine the type of output from the assembler. All four are
automatically selected if no OPT statement is encountered before the first NAM,

Option Meaning
P Relocatable binary output on standard output unit.
X Load and go; execute output loaded on a mass storage device.
L List output on standard list unit.
C List cross-references at end of assembly listing.

5.1.1 P OPTION

Relocatable binary nutput is selected by the P option. The format is described in the

1700

1700 MSOS Refereince Manual.

The standard output binary device is used for relocatable binary information. If the binary
output device is magnetic tape, the final relocatable program terminates with an EOL
record, *T,. If the binary output device is paper tape, a blank trailer terminates each
assembly.

5.1.2 X OPTION

If the X option is selected, relocatable binary output is placed on the mass storage unit
for subsequent loading and execution as described in the 1700 MSOS Reference Manual.

5.1.3 L OPTION

The L option results in an assembly listing described as follows.

With the OPT pseudo instruction (section 3.4.5) any or all of the preceding options may
be omitted, OPT also provides options for listing macro skeletons and abandoning assembly.

5.1.4 C OPTION

The C option produces a cross-reference list which is printed at the end of the assembly
list (as described in section 5. 2.2).

60361900B 5-1

5.2 ASSEMBLY LISTING

The assembly list, output to standard list output device, consists of 18 columns of
information related to the source statement, followed by a maximum of 80 columns
listing the source statement.

Each page has a header containing the program name, page number, and date.

Column Contents
1 through 4 Card number; truncated from 5 to 4 decimal digits
5 Space
6 Relocation designator for location
P Program relocation
D Data relocation
7 through 10 Location in hexadecimal
11 Space
12 through 15 Machine word in hexadecimal
16 through 17 Relocation designator for word
P Program relocation
-P Negative program relocation
C Common relocation
-C Negative common relocation
D Data relocation
-D Negative data relocation

X External
blank Absolute

18 Space
19 through 98 Input source statement

Following the assembly list, the lengths of the program, common, and data are given in
hexadecimal and decimal values,

PGM = 0155(341) COM = 2BE(702) DAT = 0000(0)

The data length includes those areas reserved by DAT pseudo instructions.

5.2.1 ERROR LISTING

A list of errors occurring in passes 1 and 2 precedes the program listing on the standard
list I/O unit. If the L option is selected, errors in pass 3 precede the source line on
the list output. A decimal error count is printed at the end of each subprogram. If L is
not selected, error messages are output on the standard comment unit,

5-2 60361900B

Format for pass 1 and 2 error messages:

Column Contents
1 and 2 ok
3 through 6 4-digit line numbher
6 and 7 Aok
8 and 9 2-character error code
10 through 19 sk

Format for pass 3 error messages:

Column Contents
1 through 6 Aol
7 and 8 2-character error code
9 through 18 sk

The error codes and their meanings are given

5.2.2 CROSS—REFERENCE LISTING

Cross-references are listed at the end of an assembly listing if the option C was specified
by the user. Cross-references will also be listed if no OPT statement was found, since
the C option is a default option.

The cross-references are divided into four functional parts:

1. Equivalences

2. Symbols

3. Externals

4. Symbols in alphabetical order

If cross-references are to be listed and there is not enough core to process all four parts
of the cross-references listing, then the assembler attempts to sort the symbol table
alphabetically. If there is not encugh core tc sort the symbol table alphabetically, the
symbol table is dumped.

The equivalences, symbols, and externals are listed according to the line number at which
they are defined. In addition to the definition line number, the value or address and the
line numbers of all references to that symbol are given. The list of symbols in alphabetical
order includes all the symbols in the program. The number following each symbol is the
corresponding definition line.

60361200B 5-3

5.2.3 SAMPLE PROGRAM

The following source program results in the assembly listing in section 5.2.4.

NAM TEST2 ERS MACRO EXAMPLEX
XYZ MAC P1, P2, P3, P4, P5, P6
LDQ =N'P5', 'P§'
P4 LDA 'p3!
lPl' IP21
ADD SYMB1
IFA 'P5', NE, 0
I IFC 'P1', EQ, MUI
STA SYMB3
LDA SYMB2
EIF
EIF I
EMC
MACRO MAC P1, P2, P3, P4, P5, P6
LOC A
LDA 1P
IP2’ lP3|
S'P4'Z TA'-s-1
JMP'P5' P’
A" ENA 1
EMC
MACRO SYMB1, STA, 'SYMB2,1',
MACRO Q, *, LABEL1
SYMB1 ADC 0
SYMB2 ADC 0
XYZ MUI, , SYMBS, , 3
SYMB5 ADC 0
CALL1 XYZ MUI, 'SYMB4, I', SYMB5, HERE, 3,
SYMB4 ADC 0
CALL2 XYZ DVI, SYMB7, 'SYMBS8, I', THERE, 2
SYMBS8 ADC 0
SYMB?7 ADC 0
END

5.2.4 SAMPLE LISTING

The following assembly listing is output from the assembly of the source program in section
5.2.3.

0001 NAM TEST2 ERS MACRO EXAMPLEX
0002 XYZ MAC P1, P2, P3, P4, P5, P6

0003 LDQ =N'P5', 'P6'

0004 'P4' LDA 'P3!

0005 'P1' 'p2’

0006 ADD SYMB1

0007 IFA 'P5',NE, 0

5-4 60361900B

3 UD X sk
1Sk R L ek sheoskeosjestesiesle
P0005 1000

P0000 C800
P0001 0006
P0002 6900
P0003 0005
P0004

PO QACH
FUVYD Vvl

P0007 0000
Pooog 0000

P0009 EO000
PO0OOA 0003
P000OB C800
P000C 0009
P0O00OD 2400
POOOE 0000
POOOE 8800
P0010 FFE6

sestestestodeoie T ololokskolokskokok sk

0026
0026
0027
0028
0028
0028
0028

0028

P0011 6400
P0012 0000
P0013 C800
P0014 FFE3
P0015 0000

P0016 E100
P0017 0003
P0018 C800
P0019 FFES8
POO1A 2900
POCIB 0007
P001C 8800
P001D FFESQ

sestestoRok A J AesiokoRoR otk ok

0028
0028

0029

POO1E 6400
POO1F 0000
P0020 C800
P0021 FFE6
P0022 0000

603619008

I1 IFC
STA
LDA
EIF

mrm
nir

EMC
RC MAC
LOC
LDA
IPZY
S'P4'Z
JMP'P5!
'A! ENA
EMC

o
N>
@)
=

'P1', EQ, MUI
SYMB3
SYMB2

MACRO SYMBI1,STA,'SYMB2,1',
MACRO Q,*, LABEL1

SYMBI1 ADC
SYMNDBZ ADC

XYZ

SYMBS5 ADC
CALL1 XYZ

SYMB4 ADC

0

~

MUI, , SYMBS5,, 3

0
MUI, 'SYMB4,1I', SYMBS5, HERE, 3, [

0030
0030

0030
0030
0030
0031

0032
0033

CALL2
P0023 F000
P0024 0002
P0025 C900
P0026 0005
P0027 3800
P0028 0004
P0029 8800
P002A FFDC
P002B 0000 SYMBS
P002C 0000 SYMB7

XYZ

ADC
ADC
END

DVI, SYMBT7, 'SYMBS,I', THERE, 2

60361900B

MNEMONIC INSTRUCTION CODES

MACHINE INSTRUCTIONS

There are six classes of machine instruction codes.

Storage reference, Group A
Storage reference, Group B
Register

Shift

Skip

Interregister transfer

Storage Reference Instructions

Operation Code Definition
Group A LDA Load A register
LR Load @ register
ADD Add to the A register
SUB Subtract from A register
ADQ Add to Q register
AND Perform logical AND with A register
EOR Perform logical exclusive OR with A register
MUI Multiply integer with A register
DVI Divide integer into A register
Group B STA Store A register
STQ Store Q register
JMP Unconditional jump
RTJ Return jump
RAO Replace add one in storage
SPA Store A register, return parity to A register

60361900A

Register Instructions

Operation Code

SLS
INP

ENQ
INA
INQ
NOP
EIN
1IN
EXI
SPB
CPB

Shift Instructions

ARS
QRS
LRS
ALS
QLS
LLS

Skip Instructions

SAZ
SAN
SAP
SAM
sSQz

SQN
SQP
SQM
SWS

SWN
SOV

Definition
Selective stop
Input to A register
QCutput from A register
Enter A register
Enter Q register
Increase A register
Increase Q register
No operation
Enable interrupt
Inhibit interrupt
Exit interrupt state
Set program protect bit
Clear program protect bit

A right shift

Q right shift

Long right shift (Q and A combined)
A left shift

Q left shift

Long left shift (Q and A combined)

Skip if A=0

Skip if A#0

Skip if A is positive
Skip if A is negative
Skip if Q=0

Skip if Q#0

Skip if Q is positive
Skip if Q is negative
Skip if switch is set
Skip if switch is not set

Skip on overflow

60361900A

Operation Code Definition

SNO Skip on no overflow
SPE Skip on storage parity error
SNP Skip on no storage parity error
SPF Skip on program protect fault
SNF Skip on no program protect fault
Inter-Register Transfer Instructions
SET Set specified register to ones
CLR Clear specified register to zeros
TRA Transfer A to specified register
TRM Transfer M to specified register
TRQ Transfer Q to specified register
TRB Transfer both (Q+M) to specified register

TCA Transfer complement of A to specified register

TCM Transfer complement of M to

TCQ Transfer complement of to specified register

TCB Transfer complement of both (Q+M) to specified register

AAM Transfer arithmetic sum of A and M to specified register

AAQ Transfer arithmetic sum of A and Q to specified register

AAR Transfer arithmetic sum of A and both (Q+M) to specified
register

EAM Transfer exclusive or of A and M to specified register

EAQ Transfer exclusive or of A and Q to specified register

EAB Transfer exclusive or of A and both (Q+M) to specified
register

LAM Transfer logical product of A and M to specified register

LAQ Transfer logical product of A and Q to specified register

LAB Transfer logical product of A and both (Q+M) to specified
register

CAM Transfer complement of logical product of A and M to
specified register

CAQ Transfer complement of logical product of A and Q to
specified register

CAB Transfer complement of logical product of A and both (Q+M)

to specified register

Note: + indicates an inclusive OR.

60361900B A-3

PSEUDO INSTRUCTIONS

There are six classes of pseudo instructions.

Subprogram linkage
Data storage
Constant declaration
Assembler control
Listing control

Macro definition

Subprogram Linkage

Operation Code Definition
NAM Identify source language subprogram
END End source language subprogram
ENT Designate internal entry point names
EXT Designate external entry point names
EXT:* Designate relative external entry point names

Data Storage

BSS Define a block of storage starting at symbol
BZS Define a block of zero storage

CcCOM Define a block of common storage

DAT Define a block of data storage

Constant Declarations

ADC Store address constants

ADC Store relative address constants

ALF Store an alphanumeric message

NUM Store numeric constants

DEC Convert and store decimal constants in fixed point format
VFD Variable field definition and storage

A-4 60361900A

Assembler Control

Operation Code Definition
EQU Equate symbols to addresses
ORG Defines origin for assembly of instructions following ORG
ORG* Terminate ORG
IFA If condition is true assemble following instructions
EIF Terminate IFA (or IFC macro pseudo instruction)
OPT Signal input of control options
AMON Return control to operating system

Listing Control

NLS Inhibit list output

LST Resume list output after NLS
SPC Space lines on list output
EJT Fject page on list output

Nlaovrey P tdinitiom
Macro betinition

MAC Specify name of macro

EMC End macro definition

LOC Define local symbolic labels

IFC If condition is true assemble following instructions
in macro

60361900A A-5

PROGRAMMING CONSIDERATIONS B

CODING TECHNIQUES

The following limitations should be observed when coding programs to run under 1700 MSOS
Version 4 in 65K mode.

All 16 bits of an address word are needed in order to address all of available core.
This means that bit 15 can no longer be used to indicate the conditions it can be used
for in a 32K mode system.

Multilevel indirect addressing cannot be used in 65K mode which signifies that instruc-
tions of the following form can no longer be used.

ADC (TAG)
LDA+ (TAG)

If relative addresses are generated, the following instruction is allowed.
LDA (TAG)
I'he 1nstruction
ADC (TAG)
is allowed in 65K mode if there are no storage instructions that make indirect reference

to this location and the program containing this expression will never be loaded into
part 1 of a 65K system.

60361900B B-1

ASCIl CODES

The 1963 Control Data Subset of ASCII (CDC-STD 1,10,003, Revision C) is used by the

1700 Macro Assembler.
is omitted in the following table.

ASCII
Symbol
NULL
SOM
EOA
EOM
EOT
WRTU
RU
BELL
FE,
HT/SK
LF
VraB
FF
CR
SO
SI
DC
DC
DC

60361900B

Bit Hexadecimal
Configuration Number
000 0000 0
000 0001 1
000 0010 2
000 0011 3
000 0100 4
000 0101 5
000 0110 6
000 0111 7
000 1000 8
000 1001 9
000 1010 A
000 1011 B
000 1100 C
000 1101 D
000 1110 E
000 1111 F
001 0000 10
001 0001 11
001 0010 12
001 0011 13
001 0100 14
001 0101 15
001 0110 18
001 0111 17

ASCII code uses eight bits; the eighth bit, which is always zero,

Meaning
Null/idle

Start of message
End of address

End of message
End of transmission
Who are you

Are you

Audible signal
Format effector
Horizontal tab/skip (punched card)
Line feed

Vertical tabulation
Form feed

Carriage return
Shift out

Shift in

Device control/data link escape

Device controls

Device control/stop
Error

Qurm e cn e o o 2 AT o
Dyncfll'ulluuﬁ 1Ulic

Logical end of media

ASCII Bit Hexadecimal

Symbol Configuration Number Meaning
S0 001 1000 18
S1 001 1001 19
82 001 1010 1A
S 001 1011 1B .
3 Information separators
S4 001 1100 1C
85 001 1101 1D
SG 001 1110 1E
S7 001 1111 1F
A 010 0000 20 Word separator (space)
! 010 0001 21 Exclamation point
" 010 0010 22 Quotation mark
010 0011 23 Number
$ 010 0100 24 Dollar sign (hexadecimal)
% 010 0101 25 Percent
& 010 0110 26 Ampersand
' (APOS) 010 0111 27 Apostrophe
(010 1000 28 Left parenthesis
) 010 1001 29 Right parenthesis
* 010 1010 2A Asterisk
+ 010 1011 2B Plus
, (Comma) 010 1100 2C Comma
- 010 1101 2D Minus
. 010 1110 2E Decimal point or period
/ 010 1111 2F Slash
0 011 0000 30)
1 011 0001 31
2 011 0010 32
3 011 0011 33
4 011 o100 34 [Numbers
5 011 0101 35
6 011 0110 36
7 011 0111 37
8 011 1000 38
9 011 1001 39
011 1010 3A Colon
H 011 1011 3B Semi-colon

C-2 60361900A

ASCII Bit Hexadecimal

Qorans i
[SA2931e]

@]
——

< 011 1100 3C Liess than

= 011 1101 3D Equals

> 011 1110 RED Greater than
? 011 1111 3F Question mark
@ 100 0000 40 Each

A 100 0001 41

B 100 0010 42

C 100 0011 43

D 100 0100 44

E 100 0101 45

F 100 0110 46

G 100 0111 47

H 100 1000 48

I 100 1001 49

! 100 1010 47

K 100 1011 4R

L 100 1100 4C

M 100 1101 4D { Letters

N 100 1110 4E

(@] 100 1111 4F

P 101 0000 50

Q 101 0001 51

R 101 0010 52

S 101 0011 53

T 101 0100 54

U 101 0101 55

v 101 0110 56

W 101 0111 57

X 101 1000 58

Y 101 1001 59

Z 101 1010 5A

| 101 1011 5B Left bracket
\ 101 1100 5C Reverse slant
] 101 1101 5D Right bracket

60361900A

ASCIL Bit Hexadecimal
Symbol Configuration Number

t 101 1110 5E
- 101 1111 oF
ACK 111 1100 7C

@ 111 1101 D
ESC 111 1110 TE
DEL 111 1111 TF

The numbers between

Meaning

Up arrow (exponentiation)
Left arrow (replaced by)
Acknowledge

Unassigned control
Escape

Delete/idle

5F and 7C have no ASCII code assigned to them.

60361900A

MACRO ASSEMBLER ERRORS

e —————EE————,

MESSAGE

xxxxyy**********

******yy**********

ABS BASE ERR

*xEX

INPUT ERROR

#%LB

MASS STORAGE OVERFLOW
$VIC

60361900B

SIGNIFICANCE

Format for pass 1 and 2 error messages

Where: XxXX is a 4-digit line number.

yy is a 2-character error code
(explained below).

Format for pass 3 error messages. If the L option
is selected, errors in pass 3 precede the source line
on the list output. If L is not selected, error mes-
sages are output on the standard comment unit.

Assembler was loaded at a different location from
where it was absolutized.

Double defined symbol; & name in:

® The location ileld oi a machiune wsiruction
or an ALF, NUM, or ADC pseudo instruc-
tion; or

® The address field of an EQU, COM, DATA,
EXT, BSS or a BZS pseudo instruction.

Iliegal expression, either:

° No forward referencing of some symbolic
operands; or

° No relocation of certain expression values; or

. A violation of relocation; or

° lllegal register reference; or

° A symbol other than Q, 1, or B is specified.
An error was returned by driver when doing a Read.

Numeric or symbolic label contains illegal character.
The label is ignored.

Not enough room for input image on mass storage.
Macro call error,

° Illegal parameter list

°® No continuation card where one was indicated.

MESSAGE SIGNIFICANCE

**MD Macro definition error.

MO Overflow of load-and-go area; affects only X option.
NN Missing or misplaced NAM statement.

*xOP Illegal operation code, either:

e Illegal symbol in operation code field; or

e Illegal operation code terminator.

#xQV Numeric constant or operand value is greater than
allowed.
kPP Error in previous pass of compilation assembly. See

output page immediately preceding first page of listing
for pass 1 or pass 2 error message.

**RL Illegal relocation, either:
® Violation of relocation; or
° Violation of a rule for instructions that
requires the expression value to either
be absolute or have no forward referencing
of symbolic cperands.

*XxSQ Sequence error — Tags instructions with sequence
numbers that are out of order. This is not fatal and
is not counted in the number of errors reported at
the bottom of the symbol table.

**xUD An undefined symbol in an address expression.

D-2 60361900 B

Absolute addressing 2-1,3
ADC/ADC* 3-7; A-4
Address expression 1-3,5
Address field 1-2
Address modes 2-1
Absolute 2-1,3
Constant 2-1,6
Relative 2-1,4
ALF 3-7; A-4
Arithmetic instructions 2-7
Arithmetic operators 1-5
ASCII codes Appendix C
Assembler control 3-13; A-5
EIF 3-16
EQU 3-13
IFA 3-15
MON 3-17
oPT 3-17
ORG/ORG* 3-14
Assembler output 5-1
Assembler passes
1 iii
2 iii
3 iii
Assembly ilsting 5-2
Cross reference 5-3
Error 5-2
Sample assembly 5-4
Sample source program 5-4

C option 5-1
COM 3-5; A-4
Comment field 1-8
Constant addressing 2-1,6
Constant declarations 3-7; A-4
ADC/ADC* 3-7
ALF 3-7
DEC 3-10
NUM 3-9
VFD 3-11

60361900B

INDEX

Control options 5-1
5 1

Koo
o Orn
»-4!-'-)—-

DAT 3-6; A-4
Data storage 3-4; A-4
BSS 3-4
BZS 3-4
COM 3-5
DAT 3-6
Data transmission 2-6
DEC 3-10; A-4

Diagnostics {scc 1700 MSOS Diagnostic

Handbook)

EIF 3-16; A-5
EJT 3-18; A-5
EMC 4-2; A-5
END 3-1; A-4
ENT 3-2; A-4
Error listing 5-2

EQU 3-13; A-5
Evaluation hierarchy 1-6
EXT/EXT* 3-2; A-4

IFA 3-15; A-5
IFC 4-2; A-5
Instruction format 1-1
Source program 1-1
Source statement 1-1
Address field 1-2
Comment field 1-8
Instruction 1-2
Location field 1-1
Sequence field 1-8
Inter-register 2-12
Inter-register transfer A-3

Index-1

Jump instructions 2-9

L option 5-1
Listing control 3-18; A-5
EJT 3-18
LST 3-18
NLS 3-18
SPC 3-18
LOC 4-2; A-5
Location field 1-1
Logical instructions 2-8
LST 3-18; A-5

MAC 4-1; A-5
Machine instructions 2-1; A-1

Inter-register transfer 2-12; A-3
Register reference 2-10; A-2

Shift 2-14; A-2
Skip 2-15; A-2
Storage reference 2-1; A-1

Macro assembler errors Appendix D
Macro definition instructions A-5

Macro instructions 4-4
Actual parameters 4-4
Null parameters 4-5
Examples 4-6

Macro library 4-10

Macro pseudo instructions 4-1; A-4

Macro skeleton 4-3
Macros
EMC 4-2
IFC 4-2
LOC 4-2
MAC 4-1

Mnemonic instruction codes Appendix A

MON 3-17; A-5

NAM 3-1; A-4

Negative overflow/zero set 2-16
NLS 3-18; A-5

NUM 3-9; A-4

Numeric operand 1-4

Operation code field 1-2
OPT 3-17; A-5
ORG/ORG* 3-14; A-5

Index-2

P option 5-1
Parameters 4-4

Actual 4-4

Null 4-5
Programming considerations
Pseudo instructions 3-1; A-4

ADC/ADC* 3-17

ALF 3-7

BSS 3-4

BZS 3-4

COM 3-5

DAT 3-6

DEC 3-10

EIF 3-16

EJT 3-18

END 3-1

ENT 3-2

EQU 3-13

EXT/EXT* 3-2

IFA 3-15

LST 3-18

MON 3-17

NAM 3-1

NLS 3-18

NUM 3-9

OPT 3-17

ORG/ORG* 3-14

SPC 3-18

VFD 3-11

Register reference instructions 2-10

Relative addressing 2-1,4

Sample listing 5-4
Sample program 5-4
Sequence field 1-8
Shift instructions 2-14; A-2
Skip instructions 2-15; A-2
Source program 1-1
Source statement 1-1
SPC 3-18; A-5
Special characters 1-7
Index 1-8
Register 1-7
Storage 1-7
Statement label 1-1

Storage reference instructions 2-1; A-1

Absolute addressing 2-3
Address modes 2-1
Arithmetic 2-7
Constant addressing 2-6
Data transmission 2-6

Appendix B

603619008

Jump 2-9

Logical 2-8

Relative addressing 2-4
Subprogram linkage 3-1; A-4

END 3-1

ENT 3-2

EXT/EXT* 3-2

NAM 3-1
Symbolic operand 1-3

60361900B

TABLST iii

X option 5-1
XREF iv

Index~-3

CUT ALONG LINE

T S S S s wmee emem G e e e St S e ettt e s it et s e e e et e mommrs. sttt
— —— — — —— — — — — ot G— t————- —or— ——— — ——— ot . oot s

PRINTED IN USA

AA3419 REV,

COMMENT SHEET

MANUAL TITLE Control Data 1700 Computer System 1700 MSOS 4

Macro Assembler Reference Manual

~ 60361900 s B

FROM: NAME:
BUSINESS

nncec:
AGUHEQG.

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation, Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

— e —mn S o —— ——— —— i ——— —— e S e et GEE e e S D G — — — —— —— —— ——— o—— — =

STAPLE

BUSINESS REPLY MAIL

FIRST CLASS
PERMIT NO. 333

LA JOLLA. CA,

NO POSTAGE STAMP NECESSARY IF MAILED !N U.S.A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

SMALL COMPUTER DEVELOPMENT DIVISION
4455 EASTGATE MALL

LA JOLLA, CALIFORNIA 92037

ATTN: PUBLICATIONS DEPARTMENT

STAPLE

CUT ALONG LINE

CONTROL DATA

A

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

