
CYBER 18/1700
MSOS
ANALYSIS
Se:minar NUIIlberQA4020

Vo!uIIle 1

Seminars designed
to help improve
performance and
productivity.

APPLICATIONS
& SOFTWARE
EDUCATION

~~ CONTR"OL DATA

SEMINAR
DIVISION

CG.U:S-SE;· . .NO.·:-'<lA4020-1
." ~ , ~ - '.. I ~- ."" ," ••

CYSSR 18/1700 MSOS ANALYSIS

STUDENT HANDOUT

VOLUME 1·

REVISION 8

For Training Purposes .Only

Control Data Corporation

PROPRIETARY NOT1CE

The ideas and designs set forth in this
document are the property· of Control Data

Corporation an.d~ ar! ,no!. to be dissemi·

nated, distr~but.ed, ~r .. o!herwise conveyed
to third persons, wi~~ut the express
written permission of Control Data
Corporation.

REVISION RECORD
REVISION

A
(11-22-78) Manual Release

B
(02-01-79) Update Manual

C
(06-05-80) Update Manual

1"":" 1

Publication No.

QA4020-1

REVISION LETTERS I, 0, a AND x ARE NOT USED

CYBER 18/1700 MSOS ANALYSIS

1978,1979,1980,1982
©COPYRIGHT CONTROL DATA CORPORATION 1982

All Rights Reserved

DESCRIPTION

,""'i

~

.. . '.

.. " " 'A w~ _. "

.....

. , ~

, .. ,. . . "

r~,

.,",

Address commen ts concerning
this manual to:

CONTROL DATA. CORPORATION
National Coordinator.
5001 West 80th Street
Bloomington, Minne~ota 55437
Attn: Curtis Vicha .

or use Comment Sheet in the
back of this manual.

C)

0

SECTION

CYBER 18 MSOS ANALYSIS

STUDENT HANDOUT

GENERAL CONTENTS

GENERAL DESCRIPTION

RESOURCE DATA

COURSE CHART

COURSE OUTLINE

LESSON GUIDES

Lesson' 1 Introduction to Mass Storage Operating System
Version 5 (MSOS 5)

Lesson 2 CYBER 18 Hardware

Lesson 3 Software Overview

Lesson 4 System Flow

Lesson 5 Scheduler

Lesson 6 Introduction to System I/O

Lesson 7 Drivers

Lesson 8 M emory Allocation

Lesson 9 Volatile Storage

Lesson 10 Timer Package

Lesson 11 Loader Tables

Lesson 12 Debugging

Lesson 13 Introduction to Job Processor

MSOS TEST

iv

PAGE

v

vi~

viii

ix

1~1

2~1

3~1.

4-1

5-1

6-1

7-1

8-1

9-1

10-1

11-1

12-1

13~J

o

o

GENERAL DESCRIPTION

COURSE TITLE: CYBER 18 MSOS Analysis

COURSE NUMBER: QA4020

. COURSE LENGTH: 5 days

DESCRIPTION:

This cour~e is designed to provide the system programmer with an in-depth study of
the MSOS Operating System. The subject matter includes system initialization
routines, SYSDAT, system flow, monitor, 1/0 routines and loader tables. The
operating system will be studied at the flowchart and code level.

PREREQUISITES:

Satisfactory completion of Assembly Language (QA3060) and Advanced Coding (QB4030r.

OBJECTIVES:

Upon successful completion of this course the student should have achieved the
following:

1. Gained a familiarity with the resource material available to the system
analyst.

2. Learned the terminology used in the listings and manuals about MSOS.

3. Understanding of the system flow and use of the major system tables.

4. Understand the basic components of a driver and understand the system
provided subroutines for drivers (FNR, MAKQ, COMPRQ, ALTDEV) •

. 5. Be able to describe the function of the major request processors (Scheduler,
RW, SPACE).

6. Be able to describe Interrupt Processing.

7. Be able to study system listings.

8. Know how to find important system information in a dump of memory and
mass memory.

v

o

o

o

NOTE TO STUDENTS

The purpose of this Student Guide is I first, to be a teaching aid and, secondly, to
supply information that is not included in the other manuals given out in the clas s.
Therefore, when a subject is in another manual, a reference will be made to that
material and it will not be duplicated here.

We welcome your comments on the Student Guide. We would appreciate examples
charts or flow charts that you feel might improve the Student Guide.

Please send all such suggestions to:

Education Services
ASE, MNA02B
Control Data Corporation
P.O. Box 0
Minneapolis, Minnesota 55440

vi

C)

o

G

RESOURCE DATA

STUDENT MATERIALS:

CYBER 18 MSOS Analysis Student Handout
VOLUME 1 Student Handout
VOLUME 2 Listings
VOLUME 3 Glossary

CYBER 18 MSOS Analysis Study Dump
MSOS Version 5 Reference Manual
M SOS Version 5 Instant
M SOS Version 5 Diagnostic Handbook
MSOS Version 5 File Manager Reference Manual
Software Peripheral Drivers Reference Manual

vii

QA4020-1
QA4020-3
96769400
96769430
96769450
39520600
96769390

o

HOURI DAY 1

INTRODUCTION

1 I TO MASS STORAGE
OPERATING SYSTEM
VERSION 5 ANALYSIS

2 CYBER 18
HARDWARE .

l!J <!

41
CYBER 18
SOFTWARE

5 OVERVIEW

6

7

o
COURSE CHART
MSOS ANALYSIS

DAY 2 DAY 3

SYSTEM FLOW ./

t /
COMMON

SCHEDULER

INTERRUPT
HANDLER ,/

I --------------
INTRODUCTION /

I TO SYSTEM I/O

DISPATCHER / TABLES ,

l---- -- ---------
READ/WRITE/

REQUEST
PROCESSOR

I
REQUEST /

EN TRY/ DRIVERS j

EXIT

o

.DAY 4 DAY 5

DRIVER/
LOADER
TABLES

DEBUGGING/
TRACING --------.

PROCEDURES)

MEMORY I
\
\ ALLOCATION
\

\
\

JOB ----J
PROCESSOR

VOLATILE
STORAGE

REVIEW

TIMER
PACKAGE

COURSE OUTLINE

0 MSOS ANALYSIS

I. Introduction to CYBER 18 Mass Storage Operating System (1 hr.)
Version 5 (MSOS 5)

A. Overview of MSOS 5

B. Introduction to MSOS 5 Analysis

1 • Materials available on MSOS
2. Class introduction
3. Overview of outline

I I. CYBER 18 Hardware (1 hr.)

A. CYBER 18 Configurations

1 • CYBER 18-10M Computer System
2. CYBER 18 -20 Processor
3. CYBER 18 Cartridge Drive

B. Example Configuration

1 • CYBER 18 Features (MACRO)

C) 20 Memory word

C. Input/Output Instructions

1 • Return from INP or OUT
2. Disk addres sing

D. Panel Mode Operation

1 • Function Control Register
2. FCR Table

III • Software Overview (4 hrs.)

A. Terms and Concepts

1 • Compile I load I execute process
2. Types of programs
3. Background/foreground

B. Priori ty Structure

1 • Priority scheme
2. Interrupts
3. Priority level

C)

ix

COURSE OUTLINE (Continued)

C. Queues for CP Usage

1 . Interrupt Stack
2. Scheduler's Queue

D. The Libraries

1 . Program Library
2 • S ys tern Library
3. LIBEDT

E. System Initialization

IV. System Flow

A. Common Interrupt Handler

1 . Interrupt trap
2. Changing priority

B. Dispatch.er

1 . Scheduler's queue

C. Request entry / exi t

1 . Indirect request
2. MONI

V. Scheduler

A. System Directory Call

B. Pseudo Interrupt

VI. Introduction to System I/O

A. System Standard Logical Units

B. Physical Device Tables

1. PHYSTAB
2. LOG lA
3. LOG 2
4. LOG 1

C. Read/Write Request Format

x

o

(6 hrs.)

(2 hrs.)

(2 hrs.)

C)

xi

COURSE OUTLINE (Continued)

XII. Debugging/Tracing Procedures

XIII. Introduction to Job Processor

XIV. MSOS Test and Review

xii

(I -1/2 hrs.)

(I -1 /2 hr s •)

(1-1/2 hrs.)

C)

C)

C)

LESSON GUIDE 1

INTRODUCTION TO MASS STORAGE OPERATING SYSTEM VERSION 5 (MSOS 5)

LESSON PREVIEW:

This lesson is a general introduction to the study of MSOS. The student will be
introduced to the resources needed by the systems analysts to maintain the system
such as SIMs, PSRs, Data Sheets, etc. The objective and course outline will be
gone over so that everyone is aware of the purpose and scope of course.

REFERENCES:

MSOS RM pv/vi

TRAINING AIDS:

Background Material

Visuals VI -1 through VI -12

o PROJECTS:

Study questions-l

OBJECTIVES:

At the completion of this lesson, the student will be able to:

1. Know where to find information about the Operating System.

2. Know where to go to get assistance.

3. Know how to submit a PSR and how to find out if the problem exists in other
places.

4. Gain an understanding of the objectives and scope of this class.

1-1

EXAMPLE OF DATA SHEET

CONTROL DATA® CYBER 18 ~~
MASS STORAGE OPERATING SYSTEM VERSION 5 (MSOS 5) CONTR.OL DATA

CORPO~T10N

MSOS PROTECTED PROGRAMS (FOREGROUND)

MONITOR
Constants/Tables

Request Processors
I/O Device Kemels/Drivers

Interrupt Handlers
Dispatcher

Memory Managers

I I 1---------~-----------T-----------I---------,
Utilities

On-Une Debug
System Checkout
Engineering File

I

Ubrary
Editing

r

Relocatable
Binary
Loader

Job File
Processor Manager

I I I
I

Recovery
(debugging

aid)

MSOS UNPROTECTED PROGRAMS
(BACKGROUND)

Breakpoint Tape/ Installation
(debugging Disk/ File

Mise. aid)
Utilities

Maintenance

The CONTROL DATA CYBER 18 Mass Storage Operating
System Version 5 (MSOS 5) is a multiprogramming system
designed to support a variety of applications requiring
dedicated system utilization, batch processing, and pro­
gram checkout features in a real-time environment.

MSOS 5 regulates all multiprogramming of1 the basis of
priority level assigned to a particular operation, whether
the operation is program execution or input/output. The
system queues for input/output data transmission and
program execution by priority level, with no restriction on
the number of requests which may be queued at a given
time. The program selected for execution is th.e one with
the highest priority level. It remains in execution until
completed unless a higher priority level program is sched­
uled. The lower priority level is then suspended until the
higher priority interrupt program is completed.
Sixteen hardware interrupts are used to maximize input/
output efficiency and to allow concurrent input/output
and computation.

The program protect feature of the hardware is used to
segregate central memory into two functional entities­
protected memory and unprotected memory.

Protected memory (the foreground) is reserved for ex­
ecuting the operating monitor and any user's real-time
high priority application programs. Unprotected memory
(the background) is used for execution of batch job
processing and program checkout. MSOS 5 can swap
(move) the contents of unprotected memory to mass
storage, and make the area protected memory for use by
foreground programs.

FORTRAN 3.2AlB
Multiprogramming

Package

Foreground"
User

Applications
Programs

Mag Tape
Utilities

Processor

L _________________ ,

1-----~----~--------, I •

COSY
: Batch
I RPG 11/ Processing

(source Macro I FORTRA~
data Assembler : Compiler User

compression) I Batch Jobs

1-2

I

MSOS 5 is extremely modular in design and provides the
user considerable flexibility to perform system modifica­
tion and update.

The MSOS 5 System features the following main capa­
bilities:
• MONITOR-The real-time executive for MSOS 5. The

monitor is the interface to other programs and systems
resources on a priority basis. It is modular and para­
meters can be set for a variety of hardware and soft­
ware configurations.

The monitor contains request processors for the following:
I/O - READ/WRITE/FREAD/FWRITE/MOTION
Program Scheduling-SCHDLE/SYSCHD
Time De/ays-TIMER/TIMPT1
Memory Allocation - SPACE/RELEAS/PTNCOR
Enable/Disable Scheduling Mass Memory Programs­
DISCHD/ENSCHD
Background Requests - STATUS/CORE/EXIT IGTFILEI
LOADER

• JOB PROCESSOR-Responsible for monitoring back­
ground programs running in unprotected memory.
Interface is provided for batch stream, unattended
jobs or for interactive. operator-controlled jobs. The job
processor controls compilers, MACRO assembler, and
numerous background utility functions.

• FILE MANAGER-General purpose file management
package. It creates and maintains both sequential and
indexed files. It offers sequential, indexed, and direct
methods of record retrieval, as well as variations of

(VI-I)

o

these. The file manager may be used by protected and
unprotected programs.

SOFnNAREPRODUCTSET
FORTRAN 3A1B RPG II
AUTRAN 3 FILE MANAGER
TIMESHARE 3 MAGNETIC TAPE .
IMPORT UTILITIES PROCESSOR
GRAPHICS 110 DRIVERS

MINIMUM HARDWARE REOUIREMENTS
CD~ CYBER 18 Computer with 16.000 words main

memory for MSOS 5
Console device (teletype. CRT)
Input device (paper tape. ·cards. magnetic tape)
Output device (paper tape. cards. magnetic tape)
Minimum 512.000 words mass storage for MSOS 5

Specifications are subject to change without notice

CONTROL DATA SALES OFFICES ARE LOCATED IN
PRINCIPAL CITIES THROUGHOUT THE WORLD

DATA SYSTEMS MARKeTING

201,321 LITHO IN U.S.A. 7(76

BOX O. MINNEAPOLIS. MINNESOTA 55440
TELEPHONE: (612) 853-5195 TWX: 910-576-2978

1-3 (V1- 2)

I";:l K::\ CONTI\OL DATA
\::I r::J CORfORf,TION PROGRAMMING SYSTEMS REPORT 91024

DATE SUBMITTED I r--------------------------------,
REFERENCE NO I INSTALLATION I DATE REC BY PSR COORD II CDC PSR NUMBER

P
E

I
N
Q

U
I
R
Y

S
T
A
T
E
M
E
N
T

F
R
o
M

MO DAY YEAR

Customer Name

Customer Address

(SUBMITTER) CODe

Customer Phone (Include Area or Country
and City Codes)

Control Data Contact Name Control Data Location (Code) Control Data Contact
Signature

COMPUTER OPERATING SVSTEM (actually used)

Name __ _

Version __________________ PSR Code-Level _________________________ _

Product Number __ _

Has job run on a
PRODUCT being reported on (give full name. as COBOL 5 under NOS 1)

previous level?
Name _______________ . __ _

D Ves Level Version _______________________ PSR Code Level ______________________ _

D NO Product Number __ _

Has CEM service been contracted
for thIS product?

VESD

INQUIRY TYPE SUPPORT MATERIALS

SUBMITTER PRIORITY

D
D
D
D
D

CRITICAL t
URGENT

SERIOUS

MINOR

INFO

t For critical PSRs be
sure to follow procedures
noted on the reverse side
of this form.

HO, Error (Support Materials Enclosed) 0 Card Deck 0 Dump Tape o Other
E 0 2. Suggestion for Improved EffiCiency (SIE)_ 0 Listong 0 Suggested Fix (Cards)
Rr-____ U_·_3_R_e_Q_ue_s_tf_o_rS_o_ft_w_a_re_M_o_d_'fl_ca_tl_on __ (R_S_M_) __________ ~~O __ ' _D_at_a_T~ap_e _____ O __ T~yp~e_o_ut __________________ ~ ______________________ -4

E SUGGESTED PROBLEM DESCRIPTION (limit of 70 Characters Including Embedded Blanks (132 characters for 3000LII - BE CONCISE

L~.l.~~ ... ~ ... ~ ... ~ .. ~ ... ~ ... ~tt~ ... ~O .. ~ .. o~ .. ~· .. ~tt!~tt~! .. ~ .. !~ .. !~tt~!,,~·tt~~ t'
70

AA t 901 REV. 12/77

MASTER

T
y
p
E

I
N
Q
U
I
R
Y

P
E
R

I
N
S
T
R
U
C
T
I
0
N
S

0
N

R
E
V
E
R
S
E

S
I
D
E

(Vl-3)

o

C·I

o

(J

INSTRUCTIONS FOR FILLING OUT THIS PROGRAMMING SYSTEM REPORT (PSR) FORM - ONLY ONE PROBLEM
PER FORM

A PSR form should be used to report any of three types of inquires to CONTROL DATA CORPORATION in regard to standard software products.

Type 1 An error inquiry: the software does not work according to the published reference manual(s).

Type 2 A suggestion for improved efficiency (51 E); suggested change which does not affect the external features of the product; i.e.,
shorter or faster code.

Type 3 Request for Software Modification (RSM): a request for a change in the way the software product works which will
require user adjustments and a change in the reference manual(s).

THE FORM MUST BE TYPED (IF NOT, IT WILL BE REJECTED).

Please complete the form according to the following instructions:

1. Enter date submitted/mailed to Control Data.

2. Enter submitter reference number - any combination of six characters. Use of this field is optional; if not filled in. CDC PSR Coordination will
use the metered number on the form as the submitter reference number.

3. Enter four-character customer Installation Code (VIM. FOCUS. ECODU or other user-group code) or. for Control Data installations. an abbreviated
Facility Code.

4. Do not type in the DATE REC. BY PSR COORD. or CDC PSR NUMBER blocks.

5. Enter appropriate customer and Control Data name. address and telephone number information. :The form should be signed by the local Control
Data representative.

6. Enter Computer number. operating system and product identification. For example. computer number could be: CYBER 173. SIN 614.

7. Check the appropriate Submitter Priority of this inquiry (see descriptions below for guidelines concerning priority). There is no commitment
that Control Data will assign the same priority to the problem; however. gross disparity between priorities will be questioned.

Critical

Urgent

Serious

(CRITICAL PSR PROCEDURES MUST BE FOLLOWED). Use for system down; frequent (more than 1 per day) system
crashes; major projects stalled through software problems. etc. Remember. this is your estimation of problem criticality
- to get CDC to handle the problem as critical. it is necessary that established critical PSR procedures be followed. e.g .•
for CDC CYBER 70/170 the local CDC representative must agree regarding criticality and then must TWX/Telex PSD Field
Support iwho then get Central Support to accept or reject the critical request!. For 3000L systems. contact the 3000L
PSR Coordinator.

Regular system crashes (more than 1 per wee~); substantial user difficulties. High probability of serious problems (such as
bugs in error recoveries. etc.).

Problems that definitely need to be fixed at once. but for some reason are below Urgent or Critical. For example. a PSR
belongs in this category if the problem can be circumvented. if a local or temporary fix is available. or if it is an urgent
problem that only occurs rarely or under unusual circumstances. .

Minor Inconsistencies or irregularities that need' to be corrected in the system (Minor refers only to the urgency). Items of
inconvenience or of minor or prima;ily local consequence should preferably be in this category.

Information Errors in comments. coding techniques. and documentation; nonconformity to standards.

Many problems may seem Critical or Urgent. Therefore the following tests may be helpful in classification of the problem:

• If you will wait for a full test of the corrective code (a corrective code release) rather than implement an uncertified response. the problem
is less than Critical and should probably be Serious rather than Urgent.

• If you will continue to tolerate a problem rather than quickly generate a new system after tested corrective code is available. the priority
should be Minor or Information.

• If your distribution of PSRs by category places more than 10% to 15% in the critical and urgent categories. you should re-examine your
use of these priorities.

8. Check the Type of Inquiry being submitted. (Refer to the first paragr,!lph of this page for determination of proper Type.)

9. Check the type of support materials being submitted with the inquiry. More .complete supporting materials will facilitate our isolating the cause
of the problem - when feasible/appropriate. please include a system dump tape (core dumps) 'as part of the materials.

10. Enter a concise description of the problem - which may be used in the PSR index. Since this suggested index entry may be used by others in
locating previously reported problems. it is important that the description be accurate and specific. The entry is limited to 70 characters. includ­
ing embedded blanks (132 characters for 3000L).

11. Please type the inquiry description starting at the top of the form so that we will have the maximum amount of space available for answering the
inquiry. A complete description of the problem and related symptoms should be entered to facilitate location and correction thereof. If avail­
able/appropriate. we encourage suggested corrective code be submitted as a card deck: (For more than 20 lines of code.) When this is done. we
will list the cards and publish them as part of the inquiry.

12. In order to resubmit any PSR for further consideration. please place the following in the Sugg,sted Problem Description area: ''This PSR is a
resubmittal of PSR ABCXXXX". Please restate the problem and your reason for resubmittal.

Submit all copies of the form to Control Data's local representative. who will sign the PSR and submit it to the appropriate location:

CDC CYBER 70/170
PSR COORDINATION
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

3000L SYSTEMS
PSR COORDINATION, ARH280
4201 LEXINGTON AVENUE NORTH
ST. PAUL, MINNESOTA 55112

1-5

SYSTEM 17/1700
PSR COORDINATION
4455 EASTGATE MALL
LA JOLLA, CALIFORNIA 92037

(Vl-4)

EXAMPLE

CYBER'1S

PROGRAMMING SYSTEM

REPORT

AU GU ST 3]"]'97!

o 1978 Control Data Corporation

SUMMARY

SE CTION I
SECtION II
SECTION III
SECTION IV
SE CTION V

132

- 51 PA GES
2 PAGES

bO PAGES
o PA GES
b PA GES

r;l c:\ CONT"OL DATA
\::I r:::-I CORPOR{\TION

000001

1-6

.r)
\'-.

(Vl-5)

0
TABLE OF CONTENTS

SU"~ftY LEVEL 132

SECTION I

PAGE NO. PSR NO. OPERATING SYSTE" PRODUCT IPROGRA"

"SOS &f

1-1 S&fSCf "SOS &f.2 T"INT

"SOS S

1-2 S&fSS "SOS S.O SC""
lr-3 S'tbb "SOS S.O ILOAD
1- &f S&fb7 "SOS S.O DTmER
l-S S&fb6 "SOS S.O ODEBUG
1-b S&f77 "SOS S.O SC""
1-7 S&f61 "SOS S.O- IOUPV&f
1-6 S&f6S "SOS S.O IOUPV &f
lr-Cf 5 &f6b "SOS S.O IOUPV&f
1-10 S&ft.! "SOS S.O IOUP
1-11 S&fCf7 "SOS S.O EDTLP
1-12 S&f'16 "SOS S.O SYSCOP
1-13 SS17 "SOS S.O EESORT
1-1&f SS21 "SOS S~O DTI"ER

0 ~
l-lS S&fSb ITOS 1.2/2.0
1-lb S&fbo ITOS 1.2 UTIL
1-17 S&fb2 IT OS 1.2 BATC
1-16 S&f7b ITO S 1.2 DSORT
l-1Cf S&f'2 ITOS 1.2 ED ITOR
1-20 S&f'J&f 1TOS 1.2
1-21 S&fCfCf ITOS 1.2 CWAREQ
1-22 SS16 ITOS 1.2 SYSDA T
1-23 SS20 ITOS 1.2 UTIL
1-2&f SS22 ITOS 1.2 UTIl
1-2S SS23 ITOS 1.2 UTIl
1-2b S S2&f ITOS 1.2 UTIL
1-27 SS2S 1TOS 1.2 TSlOG
1-26 SSa. ITOS 1.2 BATCH IRIYER
1-2Cf SS27 ITOS 1.2 DSORT
1-30 SSact ITOS

RPGII

1-31 5 1f6&f ITOS 1.2 RPGII
1-32 5 &fCfO ITO S 1.2 ftPGII
1-33 5531 ITOS 1.2 RPGII 2.0

000002

c~

1-7 (V1- 6)

T~~
~ CONTRPlMTA PROGRAMMING SYSTEMS REPORT 17477
f CORfOP.<\T1ON I AEFEAENCE NO. I'HIT~F TION I DATE "fe. IV"" COOf"D. II--COC~:-..... -NUM8-"""E~A-I-2-= ":"_':""':'_":"'d-=--
I e.~TE ~~~MlilIR I SUIMITTOR I 'AnI ~ T
~ 07 26 78 ..,.., 1V11 reI. 7/27/78 .Ii&lL..?
u
I F Oa,rl •• L. It;r'T' lll3 MiCb,l!gp pr lryip.p c.l a~SC4~ ~ 1

: ~ C.·=t~-;'bU - --LJUlPS - 'iti>!&:
T M ContrOl D.u Contact NemeCoi ~-'-Ii-"'~Dec.I~"":'Loa-~tioft-I~Code~~1 ------- eom,.,. Cont~"-'Ij'.
~ ~-CO-M~.P~UT~E~A~I~~~~~~EA-A-T-'-NG--SV-~--E-M~~~~~~~~;~~D~~~~~~R~OG~A-A-M----~~~~~S~ue~M~'TT~O~A~~~'O~A~'~TY--~
~ Cyber I NAME·VEASION·PSA COOE LlYEL NAME·YERSION·I'$A CODE lEVEL 0 Ctitic .. ' at Minor

G
N ~-..;;l;,;;.8.:./;;.lOM;.;;.~:.:MS:;.OS;.;...:.S:.:..~0...;1;;2;.;6;..... ____ ~~(:;:;De:;:;ck;;:;;;;..;.N;,;:_~)~DT~IMD~~S~'.;;O~ ___ -f 0 lkgln' 0 In'o.

r INQUIAV TYPE SU~T MATERIALS 0 wioul

H § t ErrOf lSupport "terie's Endo.cll LJ Card DIck § Ouft'CI Tepe . Ii 0ttIef 'FOf critic-' PSAI ~ IU'. to
E 2. Sugg.niOn 'or Improwed EffICiency ISlE) 0 Lming Fax IC.dIl follow procedur .. rIOted on
R 3. AeQloIftI '0' $ott-I Modification (AWl 0 Diu TIIPI Typeout rtIt , __ "dot 0' , 'o,m.
E

L
SUGGESTED PROBLEM DESCRIPTION ILlmlt of 70 ~n Includtnl E~ • .,11,1132 dWec" ... IOf lOOOLII - IE CONCISE

,~\l,e, ;'~~~': !if,., pqt. ~"t. 15 ,~4 ,ot, IJG1!f2 ,el " R5Of!t;,ly ... , . , • , , , . , • , , . , .. 0 , •

t ro
The M'IM!1l lIOdule tera1nat. proe ... 1ng of ''DGln'AB'' 011 .!!!% Delativ. value rather than on

the .pec1f1c value $FPll ... pacified. Thi. eaua •• a probl .. whan the PHYSM' rea ides
T

above $8,000.
Y

" E

I
N
Q

U
I
R
Y C',
" E
R

I
N
S
T
R
U
C
T
I
0
N
S

0
N

A
E
V
E
A
S
E

S
I
0
E

AA t to1 A", 3n&

MAITD 000014

1-8 (VI-7)

()

o

C)

,

-

<iI~CONT~l DATA
CORfORc'\TION PROGRAMMING SYSTEMS REPORT 84282 /t)f

DATlsu.",nID I "IfIIlINCE NO I INSTALLAtiON I DA17111~'" n COOIIO II coe 1'$11 NU.,.111I
110 DoAY YUII f*I:!j,'g'" PLY~'S ' .. , 6 S&fbb

, 1:S--'-.j
II ill2-SS3-!t3!t2 0 .. c-__

C-"--1 __ A_., c-r,

T _c.,.,c
y c-..... r; (~lr , PI!.!l ~jtz PL.YOll
E

c:- o.c. c-__ c- o.u Law_lc-l c-roIOIurc-ac·
I

COllI"" TIll OfOIllAliNG nsn .. 1«1, _I SU ... ITHII ",!OIU'"

N MS1)S 0 CIIITIUL t
Q System 1.7 .. -
u It_ 5.0 c:-·L l1.ct 0 UIIGlNT
I

~ ..
~ - SlIIIOUS

Y

0 M'NOII

5 '--. I"I'OOUCT, ~ Oft I __ c:oeOL '_!tOtI'

0 T _ ' __ L.~AI ""0
A

0 T Y_L_ --- It_ ,..IIC:-L_ llO
E
M 0 "0

tl .. ~.~ ..
E "-t-..-

..... 10 _____

N ... CIM_._ YlSO 1100
_ ... __ .•

T

__ ..-.ct'
01_

NIQU.IIY nM

I
SU"I'OIIT MATlII'ALS

H ~ I I ... fa-.. .--"l_edl U c.ntO_ o Du"'P'_ o Otfte<

E 1 _ ... '-- lfhcoortcy fSIE, C L •• "'II o "'--Ied'" fe:-

A r J l II_'., Softw ... Modrfoca II$M. [10 ... ,_ UT_
E SUGGESTIO I'ROtIUM DIIC'UI'lION fL_ 01 70 ~ '-' l~ 1-. 1132 __ JOOOlIl II COtIC'Sf

L ~''; , ... , , , , , , , ,. , , , , . , , ,., , , , 1.1 ••• 111 ••• 111 I •• " II I I I •
70

System in1t1alizer loader is not compatible with system loader in
treatment of Fortran Compiler generated relocatable address in the
range of • 7Fao to .7FrrF •

Suggested code:

IL·OAD)CKI I,H
'ELI 1
HA" ILOA' IECK-n Ola "SOS 5.0
'ELI 7&f7,7&fct - ~ELOC. A'IR. GR. Oft E,f. .7rraO are ASSU"E' TO - r£AH BACKWA~ ~ELOCATION -- THE FORTRAN - CO"PILER GENERATES SUCH RElOCATABLE AI~RESS[S -. ON I~EX(I VARIABLES. LARGER BACICWAQ - ftELOCATION MAY BE OBTAINEP BY MAICING THE VALUE - AT NXWS3+2 SMALLER

NXWl3 SAM NXWI&f
SUB -X.7FaO THIS VALUE IS STItICTLY AJtBIT.RAJV
SAM HXWI&f
CLR A BIT 1.5 OF THESE VALUES MUST - BE SET TO CAUSE l.b BIT A)PR. AItITH. - TO GENERATE ~N E~ AROU~ CARRY.

..... eeI. .." '."7 000013

1-9

1
y ,
E

I ..
Q

U ,
II
Y

,
(
II

,
N
S
T
II
U
C
T
I
o ..
I

o
N

II
1
It
(
II

• I

• I
o
1

(V1- 8)

EXAMPLE

&J 1::\ CONTR.OL DATA
\::I r::J CORPORATION SOFTWARE AVAILABILITY BULLETIN

Distribution List For
CDC CYBER 18/System 17/1700
Bulletin No. 56
July 14. 1977

PSR CORRECTIVE CODE
MSOS 5 AND MSOS 5 PRODUCT SET

(Level 110-118)

A. ABSTRACT

Corrective code for PSRs contained in summaries 110 through 118 is available for the follow­
ing products in the forms of COSY corrections for program changes and relocatable binary
object code for changed programs.

1. MSOS 5 (Product no. A325/A305-0l)

2. FORTRAN 3A under MSOS 5 (Product no. A325/A305-02)

3. FORTRAN 3B under MSOS 5 (Product no. A325/ A305-03)

4. File Manager I under MSOS 5 (Product no. A325/A305-04)

5. Peripheral Drivers IA under MSOS 5 (Product no. A325/ A305-08)

6. Peripheral Drivers IB under MSOS 5 (Product no. A325/ A305-09)

7. Peripheral Drivers IC under MSOS 5 (Product no. A325/A305-10)

8. RPG II I under MSOS 5 (Product no. A325/A305-12)

B. PUBLICATIONS

There are no new ma.."1uals published for this release.

C. ORDERING INFORMATION

Licensed software products and their update materials are available only to customers who
have entered into a contractual agreement with Control Data for the use ot the specific soft­
ware products.

1. New software products must be covered by a license agreement which lists each product
explicitly.

2. Update materials should be ordered by completing the Request for Software Product
Update Materials form attached to this bulletin. Information for completing this Corm
is contained in the Collowing paragraphs and in the system summary table at the end
oC this section. The completed Corm should be sent to the local sales representative.

a. Media desired is. normally either:

• M7-556 (7-track magnetic tape at 556 bpi)

• M7-S00 (7-track magnetic tape at 800 bpi)t

• M9-S00 (9-track magnetic tape at 800 bpi)

• CD (punched cards)

b. SOFTWARE PRODUCT NUMBER may be selected from column 2 in the system
summary table and should correspond to the product number listed in the
licenSing agreement with Control Data.

t Required for CDC CYBER IS-10M, lS-20, and lS-30 systems when 7-track media is desired.

1-10

o

(VI-g)

o

Distribution List For
CDC CYBER 18/System 17/1700
Bulletin No. 56
Page 2

c. DESCRIPI'ION is the product name shown in column 1 of the system summary table;
the modules listed under the product name should not be entered on the Update
Material Request form.

d. UPDATE/RELEASE LEVEL DESIRED is found in column 3 of the system summary
table under Nominal Release Level Identifier.

e. UPDATE/RELEASE LEVEL CURRENTLY AT SITE refers to the level of release
materials already being used or the latest level previously shipped to your site;
this information will enable Software Manufacturing and Distribution to determine
exactly what materials are needed to bring the software product up to the desired
code / release level.

For example, suppose a site received a software system on 9-track tapes at the
initial release level 110 and now wishes to have the latest available materials for
the MSOS system and Peripheral Drivers lB. Based on information in the system
summary table, the .Request for Software Product Update Materials form should show:

Media
Desired

M9
M9

Software
Product Number

A32S/A30S-01
A32S/A30S-09

Description

MSOS S
Peripheral Drivers IB

Update /Release Level

Desired

118
118

Currently
at Site

110
110

f. System type refers to the mainframe (for example. 1700, System 17, CDC CYBER 18).

g. COSY corrections are not part of the standard operating system and must be specified,
if desired, for each product. If COSY corrections are desired, the customer must
have the latest COSY available. The level of the latest COSY can be determined by
referring to column 4 of the system summary table.

U COSY corrections are not spec,uiedi only the relocatable binary object code will be
sent.

MSOS S.O SYSTEM SUMMARY TABLE - (LEVEL 110-118)

Applicable Nominal Latest New COSY
Product Release COSY Features Re-
Numbed Level Available at Level sequenced

Product Name A~25 or A305 Identifier is at Level 118 at Level

MSOS 5 -01 118 110 No 110

FORTRAN 3A -02 118 102 No 102

FORTRAN 3B -03 118 102 No 102

File Manager 1 -04 118 110 No 110

Macro
Assembler 3 -06 110 110 No 110

Peripheral
Drivers IA -08 118 110 No 110

Peripheral
Drivers IB -09 118 110 No 110

Peripheral
Drivers IC -10 118 110 No 110

Magnetic Tape
Utility 2 -11 110 106 No 106

RPG II I -12 118 108 No 108

Sort/Merge 1 -13 110 I 108 No 108

t A325 product numbers refer to the products offered with the optional Central Enhance-
ment and Maintenance Service (CEM Services). . • I

1-11 (VI-I0)

CDC CYBER 18/1700

PRODUCT SUPPORT HOTLINE - by J. Michael Birch

Inquiries and problems. concerning CYBER18 or 1700 products should be directed to the
La Jolla HOTLINE at extension 6328, LJLOPS or by TWX to HOTLINE, LJLOPS.

This service is primarily for the use of PSD field analysts requiring central support for
CYBER18 software. However, it may also be used for inquiries regarding status of CYBER18
PSR, status of orders placed with LJLOPS s/w manufacturing and hardware problems not
resolvable by normal local CE and Tech support channels. Questions regarding product plans
and development schedules will be routed to the LJLOPS Business Office. Schedule and
other business problems regarding established accounts should be referred directly to the
designated manager.

The HOTLI N E is not for customer use. It is intended to provide a single controlled inter­
face for technical inquiries from CDC personnel outside the La Jolla Division. Direct calls
to development programmers and others disrupt normal activities and may result in con­
flicting answers or failure to follow up. Such persons have been asked to redirect their
calls to the HOTLINE. Also, the person supposedly an 'expert' on the subject may not be
available or the problem may require evaluation by more than one person. The basic
procedure is as follows:

HOTLINE PROCEDURE OUTLINE

1. Customer describes problem to PSD Field Analyst.

2. PSD Field Analyst investigates and clarifies problem.

3. PSD Field Analyst TWX's/calis HOTLINE ext 6328 LJLOPS .

.4. HOTLINE Coordinator receives TWX/answers phone. ..

5. HOTLINE Coordinator records inquiry and assigns I.D. no.

6. HOTLINE Coordinator routes inquiry to support Analyst.

7. Support Analyst records problem details.

8. Support Analyst investigates problem and determines response.

9. HOTLINE Coordinator sends response by TWX.

10. HOTLINE Coordinator notes if follow-up required or closes inquiry.

To help the service function smoothly please use the following guidelines:

HOTLINE GUIDELINES

1. HOTLINE is for PSD Field Analysts et ai, not customer.

2. Be specific and concise. TWX's are preferred to calls.

3. Undated inquiries should be separately identified.

4. Identify the affected product properly (I TOS, RPGII etc.)

5. Provide your name, facility code, customer site etc., to the Coordinator.

1-12 (VI-II)

o

o

o

o

CDC CYBER 18/1700 (Continued)

6. 1;>0 not ask ~o speak to specific individuals.

7. Inquiries not responded to within 48 hours will be acknowledged by the Coordinator.

8. Specify the previous inquiry no. if applicable.

We are presently relocating and improving the HOTLINE phone system as well as attempting
to improve our procedures and add staff. Your comments and suggestions are welcomed and,
together with any complaints re HOTLINE service, may be addressed to J. Michael Birch,
Manager, Product Support LJLOPS or George R. Olson, Manager, Systems I&E LJLOPS.

1-13 (V1-12)

BACKGROUND rnFORMATION

Manuals

File Manager Reference Manual

Cyber 18 Computer Systems

Installation Handbook (V4)

Literature Distribution Catalog

Other

PSR/PSR Sum maries

Software Information Memo (S1M)

Programming Systems Information (PSI)
(For CDC personnel only)

39520600

96767850

39520900

NOTE: The January issue has an index of all articles published up to that time.

Feature Abstract Memorandum (F AM)

Software Availability Bulletin (SAB)

Data Sheets

Hot Line - Phone: 714/452-6328 (for CDC Analyst)

TWIX: LJLOPS

Listing of your SYSDA T

Dump of your system (Memory & Disk Tables)

NOTE: The Software Availability Bulletin will tell you which version of the
manual goes with your version of the O.S.

Manuals may be ordered from Literature Distribution Services (LDS)
(612/292-2100)

1-14

(;
./

o

o

o

STUDY QUESTIONS-1

1 • Wha tis a P SR ?

2. Where do you order DATA Sheets?

3. Where would you look for an article a new release of the Operating System?

4. If you were asked to give a presentation on a new piece of hardware wher.e would
you look for a summary of its characteristics that would be in a form suitable to
hand out to the listeners?

5. If you are not using the latest version of a system I where do you look to find out
what version of the manuals apply to your system?

6. What are your objectives in taking this class?

Q1-1 Q1-1

o

LESSON GUIDE 2

CYBER 18 HARDWARE OVERVIEW

LESSON PREVIEW:

This lesson covers the hardware information necessary to understand the software.
The student should be familiar with most of this information, therefore it is included
as background information, and for your review. Test your knowledge by going over
the study que stions •

REFERENCES:

MSOS RM pp. 1-3 thru 1-7 , Appendix L
CYBER 18 Computer System Summary, Chapters 1,5, 6, 7

TRAIN IN G AIDS:

Visuals V2-1 through V2-3

PROTECTS:

Study que stions - 2

OBJECTIVES:

1. Student should be able to describe under what conditions an interrupt is
responded to by the CPU and what exactly happens when one is responded to.

2. The student should be able to describe the elements of a typical
configuration.

3. The student should be aware of how the INP lOUT instructions work.

4. Describe the type of information found in the FCR?

2-1

c)

C)

o

(j

o

EXAMPLE OF DATA SHEET

CONTROL DATA®
CYBER 18-10M COMPUTER SYSTEM

FEATURES

• General-purpose digital processor, using
microprogrammed architecture

• Accommodates 32K through 128K bytes
macro main memory

• Main memory effective read/write cycle time .
of 750 nanoseconds

• Po~erful instruction repertoire
• Eight addressing modes for accessing main

memory

• Main memory word and region protection

• Main memory parity detection, optional error
correction

• Direct memory access
• Integral flexible disk drive for diagnostic load­

ing (Optional use as system peripheral.)

2-2

~~
CONT~OL DATA
CO~OR(\TION

• Automatic program load (deadstart) facility
for loader type peripherals

• Integral real-time clock

• Modular design, CPU and controllers on 11 "
x 14" PC boards for ease of handling

• High reliability and ease of maintenance
through state-of-the-art technology and ad­
vanced diagnostic capability

• RS232-C compatible I/O interface for con­
sole display or TIY

• Priority-oriented interrupt system with sixteen
levels of interrupts

• Optional breakpoint controller

• Wide range of peripherals supported

• Cabinet, operator's panel, power distribu­
tion, and power supplies included

DESCRIPTION
The CDC1) CYBER 18-10M is a general-purpose, 16-bit proc­
essor. Execution of macro programs stored in MOS main
memory is controlled by micro-level programs stored in micro
memory. ROM micro memory is provided for execution of the
basic CDC 1700 instruction set and the additional enhanced
instructions, including character and field manipulation, index­
ing, micro memory referencing, autodata transfer, and main
memory paging control. Arithmetic is one's complement,
signed, fixed-point hardware and/subtract!multiply/divide.

Addressing Modes
The following eight addressing modes are provided for
maximum flexibility:

• Absolute • Constant
• Indirect • Storage
• Relative • Storage Indirect
• Relative Indirect • Field

Instruction Repertoire
CYBER 18-10M incorporates the basic CDC 1700 instruction
set and additional enhanced instructions not previously avail­
able. This repertoire includes one, two and three word (two 8
bit bytes per word) instructions and is flexible for increased
programming efficiency. Instruction groups include the follow­
ing:

• Transfer
• Logical

• Stop
• Shift
• Interrupt
• Generate Parity
• Character/Field Manipulation
•. Execute Micro Code Sequence

• Arithmetic

• Jump
• Decision
• Input/Output
• Memory Paging Control

Some instructions are immediate (literal), resulting in a saving
of operand storage and execution time. Multiword instructions,
such as indirect addressing, are a means of addressing loca­
tions which cannot be accessed directly.

Registers
The 18-10M provides 15 registers, including four general­
purpose registers to support the enhanced instruction set, and
four special-purpose registers used exclusively for machine
control.

Register Functions
A (16 bit) - Principal arithmetic register; data register

during I/O operations
Q (16 bit) - Auxiliary arithmetic register; peripheral ad-

dress register during I/O operations
P (15 or 16 - Program address register

bits)

X (16 bits)­
Y (16 bits)-

M (16 bits)­
B (16 bits)-
1(16 bits)-

1,2,3,4,-
(16 bits)

LB, U8-
(16 bits)
MFP-
(64 x 9 bits)

Storage data register
Address register; hold temporary results

during address computation
Interrupt mask register
Breakpoint address register
Indexing, accumulation, and loop control

register
Indexing, accumulation, and loop control

registers

Lower and upper bound registers for unpro­
tected area

Memory page file

Program Protection
CDC CYBER 18-10M offers two modes of protection from
damage which may be caused by programs accessing mem­
ory outside their own region. Traditional word level protection
of the 1700 Series allows individual words to be declared
protected by setting a bit in memory associated with that word.
A second means of protection uses upper and lower bounds to
define an unprotected region. This has the same effect as
word protection, except that a large unprotected area can be
defined more quickly.

Main Memory System
CDC CYBER 18-10M features high-speed dynamic MOS LSI
storage elements. Each word in memory consists of two data
bytes, one protect, and one parity bit. Memory is organized as
a single bank with two ports - CPU and DMA.

Storage capacity is expandable from 32K to 128K bytes by the
simple insertion of individual PC boards. CDC CYBER 18-10M
includes no main memory; however, up to two card slots are
provided to accept any mixture of 32K and 64K byte MOS
memory array boards (Options 1882-16 and 1882-32). The
effective memory cycle time at either port is 750 nanoseconds;
however, the memory processes simultaneous requests from
both ports with an average effective cycle time of 600
nanoseconds.

Interrupt System
CDC CYBER 18-10M firmware emulates 16 levels of vectored
interrupt. This system consists of 15 levels of external interrupt
and one internal interrupt.

Certain conditions such as an illegal instruction, a memory
parity error, or a power failure generate an internal interrupt.
External interrupts occur when a computer peripheral device
has finished an I/O operation or requires attention. The inter­
rupt system will handle up to 16 interrupts in a flexible and
efficient manner.

Real-Time Clock
The real-time clock is an integral part of the CDC CYBER
18-10M, and provides a macro-level interrupt at a program­
mable interval. The real-time clock appears as a CDC CYBER
18 peripheral to the macro program.

Input/Output Capability
CDC CYBER 18-10M contains nine card slots for peripheral
controllers. Three levels of interface are provided for the pe­
ripherals: Direct Memory Access (DMA), Auto Data Transfer
(ADT), and AQ.

o

(\
\ I

\....../

(
'~

~)

C)

o

The DMA channel permits direct transfer of data between the
peripherals and main memory. The DMA channel supports
four devices and permits data transfer rates up to 2,800,000
bytes per second.

ADT provides pseudo DMA transfers of data blocks between
main memory and those peripherals designed to accommo­
date ADT.

At the macro level each transfer appears as DMA; however,
each transfer is controlled at the micro level by the emulator in
micro memory. Data transfer rates up to 160,000 bytes per
second are possible. Three ADT devices are supported.

The AQ channel provides data transfers between CPU regis­
ters and peripherals. The transfers are macro-program con­
trolled. CDC CYBER 18-10M supports a maximum of four AQ
devices. AQ data transfer rates are software dependent.

One additional I/O interface is included for the operator con­
sole device. This interface is both KSR 33/35 TTY compatible
and RS232-C compatible.

Program Deadstart
Loading programs into main memory is provided by this fea­
ture. Data is input bit-serially from the deadstart program
loading device.

Operator's Panel
An operator's panel is also included, and is used to initiate
operation of the processor and deadstart device.

PACKAGING
CDC CYBER 18-10M includes a low-profile, free-standing
cabinet with integral table top. The processor chassis, with
peripheral controllers, power supply module, and power distri­
bution are contained within the cabinet. Individual CPU and
peripheral controller PC cards are 11 x 14 inches.

CONFIGURATION
Basic configuration includes a cabinet with operator's panel, a
basic processor, a flexible disk drive and controller, an I/O
controller to support the operator console, and power supply
(no main memory is included).

Minimum system configuration consists of 32K bytes main
memory, a load device such as a card reader, and a comment
device such as a conversational display terminal.

SOFTWARE
Supporting software includes Mass Storage Operating Sys­
tem (MSOS), Real-lime Operating System (RTOS), and In­
teractive Terminal Operating System (ITOS). Both MSOS and
RTOS are real-time, multiprogramming operating systems,
with 16 program priority levels.

RTOS
... resides within the CPU memory and has no mass storage
requirements. It includes a monitor (subset of MSOS) which
occupies less than 1500 words of main memory, exclusive of
drivers and optional features.

MSOS
... supports applications requiring dedicated system utiliza­
tion, batch processing, and program checkout features in a
real-time environment. Its modular design provides flexibility
in system updating or modification.

ITOS
· .. provides an environment in which a terminal user operates
with an on-line data base, using interactive application pro­
grams. ITOS Release 1 operates in conjunction with MSOS
5.0.

MAINTENANCE FEATURES
Self-test and echo mode tests are included for troubleshooting
the basic processor and optional controllers.

The system is also supported by the Operational Diagnostic
System (ODS). This maintenance system includes diagnostic
software with fault isolation capability, Diagnostic Decision
Logic Tables (DOLTs) and detailed repair procedures. These
tools produce a highly effective and efficient maintenance
system.

OPTIONS AND PERIPHERALS·
• Processor Options

1875-1 Breakpoint Controller
1875-2 Breakpoint Panel
1882-16 MOS Memory Expansion, 32K bytes
1882-32 MOS Memory Expansion, 64K bytes
1874-1 Memory Error Correction (ECC)

• Cable Options
1827-950 Line Printer, 50 ft. (15.24 m)
1829-915 Card Reader, 15 ft. (4.57 m)
1843-950 Modem Cable, 50 ft. (15.24 m)

• Peripheral Controller Options
1828-1 Card Reader/Line Printer Controller
1828-2 Card Reader/Line Printer/

1833-4
1843-1

1843-2

Communications/
Line Adapter Controller
Cartridge Disk Controller
Dual Channel Synchronous/
Asynchronous
Communications Line Adapter
Eight Channel Communications Line
Adapter

1862-1 Paper Tape Reader/Punch Controller
• Peripheral Options

2-4

1811-1 Conversational Display Terminal
1811-2 Operator Console
1827-7 Impact Printer, 70 Ipm, Matrix
1827-30/31 Line Printer, 300 Ipm
1827-60 Line Printer, 600 Ipm
1829-30 Card Reader, 300 cpm
1829-60 Card Reader, 600 cpm
1860-1,2,3,4 Tape subsystem, 7 and 9 tracks,

1860-5,6

1865-2
1866-12
1866-14
1888-1

25 ips, 800 bpi NAZI (expandable to
4 tapes)
Tape subsystem, 9 track, 50 ips,
800 bpi NRZI and 1600 bpi Phase Encode
(expandable to 4 tapes)
Flexible Disk Drive (second unit)
Cartridge Disk Drive, 4.4 million words
Cartridge Disk Drive, 8.8 million words
Power Transformer, 220 VAC/120 VAC

SPECIFICATIONS
Type: General-purpose 16-bit processor
Organization: Register/file oriented
Hardware Accumulators: 7
Index Registers: 7
Addressing Modes: 8
Arithmetic: One's complement
Priority Interrupt Levels: 16 macro
Macro Memory Type: Dynamic MOS LSI RAM
Macro Memory Size: 32K to 128K bytes
Macro Memory Cycle lime: 750 nsec effective (2 bytes

I/O Ports: 8 (4 DMA, 4 AQ)
Direct Memory Access: Four devices; up to 2,800,000 bytes

per second
Auto Data Transfer: Four devices; up to 160,000 bytes per

second

AQ Data Transfer: Four devices
Real-lime Clock: Programmable macro interrupt

Physical
Height: 29 in. (73.66 cm)
Width: 61 in. (154.94 cm)
Depth: 31 in. (78.74 cm)
Weight: 4751bs. (215.460 Kg)

Power
Source: 104 to 127VAC, 1 phase, 3 wire

49.0 to 60.6 HZ (198 to 235VAC, 1 phase,
w/Option 1888-1)

Consumption: 2.4KVA

Envi ronmental
Operating Temperature: 50°F to 95°F (10°C to 35°C)
Humidity: 20% to 80% R.H. (noncondensing)
Heat Dissipation: 2064 KCAL/HR (4508 BTU/HR)
Altitude: -1000 to 8000 feet

Specifications subject to change without notice

201,333 LllliO IN U.S.A. 2/77

DATA SYSTEMS MARKETING
Box 0

Minneapolis, Minnesota 55440

2-5

o

o

o

o

CONTROL DATA@
CYDER 18·20 PROCESSOR

The CDC® CYBER 18-20 is a general purpose micropro­
grammable, 16-bit processor. Execution of macro pro­
grams stored in MOS main memory is controlled by
micro-level programs stored in micro memory. ROM
micro memory is provided for execution of the basic
CDC 1700 instruction set and the additional enhanced
instructions, including character and field manipulation,
indexing, micro memory referencing, autodata transfer,
and main memory paging control. Read/write micro mem­
ory is available for user microprogramming requirements.
Arithmetic is one's complement, signed, fixed-point hard­
ware add/subtract/multiply/divide.

FEATURES
• General purpose digital processor, using microprogram­

mabie architecture
• Accommodates 32K through 262K bytes macro main

memory
• Main memory effective read/write cycle time of 750

nanoseconds
• Micro instruction cycle time of 168 nanoseconds
• Powerful instruction repertoire
• Eight addressing modes for accessing main memory
• Main memory word and region protection
• Main memory parity detection with optional automatic

single-error correction and double-error detection
• Direct memory access

2-6

~~
CONTR.OL DATA
CORj'OR{\T10N

• High-speed I/O data transfer for integral peripheral
controllers

• Automatic program load (deadstart) facility for loader
type peripherals

• Integral real-time clock
• Modular design, CPU and controllers on 11" x 14" PC

boards for ease of handling
• High reliability and easy maintainability through state­

of-the-art technology and advanced diagnostic
capability

• I/O communications interface for teletypewriter or RS
232-C compatible display terminal

• Priority oriented interrupt system with sixteen levels
each of micro and macro interrupts

• Optional breakpoint controller
• Basic processor supports wide range of peripherals
• Cabinet, operator's panel, power distribution, and

power supplies included
• Optional read/write micro memory

CONFIGURATION
The basic configuration includes a cabinet with operator's
panel, a basic processor, an I/O controller to support the
communications console, and power supply (no main
memory is included).

It operates in a minimum system configuration of the
CYSER 18-20 processor, 32K bytes main memory, a load

device such as a card reader, and a comment device such
,as a conversational display terminal.

SOFTWARE
Supporting software includes Mass Storage (MSOS) and
Real Time (RTOS) Operating Systems. Both MSOS and
RTOS are real-time multiprogramming operating systems
with 16 program priority levels.

Hardware interrupts are used to maximize input/output
efficiency. All I/O requests are processed on a software
priority basis. A program protect system is used to main­
tain system integrity ..

RTOS resides within the CPU memorv and has no mass
storage requirements. Includes a monitor (subset of

, MSOS) which occupies less than 1500 words of main
memory, exclusive of drivers and optional features.

MSOS supports applications requiring dedicated system
utilization, batch processing, and program checkout
features in a real-time environment. Its modular design
provides flexibility in system updating or modification.

PACKAGING
CYBER 18-20 includes a low-profile, free-standing cabinet
with integral table top. The processor chassis with pe­
ripheral controllers, power supply module, and power
distribution are contained within the cabinet. Individual
CPU and peripheral controller PC cards are 11 x 14 inches.

MAINTENANCE FEATURES
Self-test and echo mode tests are included for trouble­
shooting the basic processor and optional controllers.
The system is also supported by controlware diagnostics
included in the Operational Diagnostic System (ODS).

Tests are performed while using Diagnostic Decision
Logic Tables (DOLT's) and special maintenance pro­
cedures that isolate and correct the fault. These features
provide maximum efficiency in system maintenance.

OPTIONS AND PERIPHERALS

• Processor Options
1870-1 512 Instruction Micromemory
1870-2 2048 Instruction Micromemory
1874-1 ECC MOS Array, 196K bytes
1875-1 Breakpoint Controller
1875-2 Breakpoint Panel
1882-16 MOS Memory Expansion, 32K bytes
1882-32 MOS Memory Expansion, 65K bytes

• Cable Options
1827-950 Line Printer, 15.24m (50 ft.)
1829-915 Card Reader, 4.57m (15 ft.)
1833-950 Storage Module Driver, 15.24m (50 ft.)
1843-950 Modem Cable, 15.24m (50 ft.)
1843-901 Terminal Adapter

• Peripheral Controller Options
1828-1 Card Reader/Line Printer Controller
1832-4 NRZI MagnetiC Tape Controller
1833-1 Storage Module Drive Interface
1833-2 Storage Module Drive Interface (dual CPU)
1833-3 Control Unit for storage module
1833-5 Flexible Disk Drive Controller
1843-1 Dual Channel Synchronous/Asynchronous

Communications Line Adapter

• Peripheral Options
1811-1 Conversational Display Terminal
1827-30/31 Line Printer, 300 LPM
1829-30 Card Reader, 300 CPM
1829-60 Card Reader, 600 CPM
1860-72 Tape Transport, 7 track, 25 IPS (up to 4

1860-92

1860-200
1860-201
1865-1
1865-2
1867-10/11
1867-20/21
1887-4
1888-1
1888-2
1890-1
1890-2
1890-3
65119-1

drives per controller)
Tape Transport, 9 track, 25 IPS (up to 4
drives per controller)
Tape Drive Installation Kit (upper)
Tape Drive Installation Kit (lower)
Flexible Disk Drive (unit 0)
Flexible Disk Drive (unit 1)
Storage Module Drive (25 M byte)
Storage Module Drive (50 M byte)
Cabinet
Power Transformer, 220 VAC/120 VAC
Power Transformer, 120 VAC/220 VAC
200 UT Emulation
2780 Emulation
3780 Emulation
Line Printer, 600 LPM

ADDRESSING MODES - CYBER 18-20 provides the fol­
lowing eight addressing modes for maximum flexibility:

Absolute
Indirect
Relative
Relative Indirect
Constant
Storage
Storage Indirect
Field

MACRO INSTRUCTION REPERTOIRE
CYBER 18-20 incorporates the basic CDC 1700 instruc­
tion set and additional enhanced instructions not pre­
viously available. This repertoire includes one, two, and
three word instructions and is flexible for increased pro­
gramming efficiency. Instruction groups includ'e the
following:

Transfer
Logical
Stop
Shift
Interrupt
Generate Parity
Character/Field Manipulation
Execute Micro Code Sequence
Arithmetic
Jump
Decision
Input/Output
Memory Paging Control

Some instructions are immediate (literal), resulting in a
saving of operand storage space and execution time.
Multi-word instructions, such as indirect addressing, are a
means of addressing locations which cannot be accessed
directly.

o

o

REGISTERS
The CYBER 18-20 processor provides fifteen registers.
The seven traditional registers are used in execution of
the normal CDC 1700 instruction set; four general-purpose
registers have been added to support the enhanced in­
struction set. Four special-purpose registers are used
exclusively for machine control.

REGISTER FUNCTION
A (16 bit) Principal arithmetic register; data register

during I/O operations
Q (16 bit) Auxiliary arithmetic register; peripheral ad­

P (15 or
16 bits)

X (16 bit)
Y (16 bit)

dress register during I/O operations
Program Address Register

Storage data register
Address register; holds temporary results
during address computation

M (16 bit) Interrupt mask register
B (16 bit) Breakpoint address register
I (16 bit) Indexing, accumulation, and loop control'

register
B (16 bit) Breakpoint address register
1, 2,3, 4, Indexing, accumulation, and loop control
(16 bit) registers
LB, UB Lower and Upper bound registers for unpro-
(16 bit) tected area
MPF Memory page file
(64 x 9 bits)

PROGRAM PROTECTION
CYBER 18-20 offers two modes of protection from damage
which may be caused by programs accessing memory
outside their own region. Traditional word level protection
of the· 1700 Series allows individual words to be declared
protected by setting a bit in memory associated with that
word. A second means of protection uses upper and lower
bounds to define an unprotected region. This has the
same effect as word protection, except that a large un­
protected area can be defined more quickly.

INTERRUPT SYSTEM
CYBER 18-20 firmware emulates the 16 levels of vectored
interrupt featured on the 1700 Series Computers. This
system consists of 15 levels of external interrupt and one
internal interrupt.

Certain conditions such as an incorrect instruction, a
memory parity error, or a power failure will generate an
internal interrupt. External interrupts occur when a com­
puter peripheral device has finished an I/O operation or
requires attention. The strength of the interrupt scheme
is the ability to handle a significant number of interrupts
in a flexible and efficient manner.

2 ... 8

MAIN MEMORY SYSTEM
CYBER 18-20 features high-speed dynamic MOS LSI
storage elements. Each word in memory consists of two
data bytes, one protect, and one parity bit. Memory is
organized as a single bank with two ports-CPU and DMA.

Storage capacity is expandable from 32K to 262K bytes
by the simple insertion of individual PC boards. CYBER
18-20 includes no main memory; however, four card slots
are provided to accept any mixture of 32K and 65K byte
MOS memory array boards (Options 1882-16 and 1882-32).
The effective memory cycle time at either port is 750
nanoseconds; however, the memory processes simUl­
taneous requests from both ports with an average effec­
tive cycle time of 600 nanoseconds.

Double-error detection and automatic Single-error cor­
rection, for up to 196K bytes, is provided as Option 1874-1.

INPUT/OUTPUT CAPABILITY
CYBER 18-20 contains 10 card slots for peripheral con­
trollers. Three levels of interlace are provided for the
peripherals: Direct Memory Access (DMA), Auto Data
Transfer (ADT), and AQ.

The DMA channel permits direct transfer of data between
the peripherals and main memory, by-passing the CPU
entirely. The DMA channel supports four devices and
permits data transfer rates up to 1,400,000 words per
second.

ADT provides pseudo DMA transfers of data blocks be­
tween main memory and those peripherals designed to
accommodate ADT. At the macro level each transfer ap­
pears as DMA; however, each transfer is controlled at the
micro level t3y the 1700 emulator in micro memory. Data
transfer rates up to 80,000 words per second are pos­
sible. Ten ADT devices are supported.

The AQ channel provides data transfers between CPU
registers and peri pherals. The transfers are macro­
program controlled. CYBER 18-20 supports a maximum
of nine AQ devices. AQ data transfer rates are software
dependent.

One additional I/O interlace is included for the operator
input device. This interlace is both ASR/KSR 33/35 TTY
compatible and RS232-C compatible.

PROGRAM DEADSTART
Loading programs into main memory and read/write
micro memory is provided by this feature. Data is input
bit-serially from the deadstart program loading device.

REAL-TIME CLOCK
The real-time clock is an integral part of the CYBER 18-20,
and provides a macro-level interrupt at a programmable
interval. The real-time clock appears as a CYBER 18 pe­
ripheral to the macro program.

OPERATOR'S PANEL
CYBER 18-20 includes an operator's panel to initiate
operation of the processor and deadstart device.

SPECIFICATIONS
Type: General-purpose, microprogrammable, 16-bit

processor
Organization: Register/file oriented
Hardware Accumulators: 7
Index Registers: 7
Addressing Modes: 8
Arithmetic: One's complement; two's complement avail-

able with RAM micromemory
Priority Interrupt Levels: 16 micro and 16 macro
Macro Memory Type: Dynamic MOS LSI RAM·
Macro Memory Size: 32K to 262K bytes without ECC; 32K

to 196K bytes with ECC
Macro Memory Cycle Time: 750 nsec effective (2 bytes)
Micro Instruction Word Length: 32 bits
Micro Memory Type: TIL ROM,TIL RAM available
Micro Memory Size: 1024 instruction ROM; 512 to 4096

instruction RAM available
Micro Memory Cycle Time: 168 nsec with· up to 4 parallel

operations
Direct Memory Access: Four devices; up to 1,400,000

words per second
Auto Data Transfer: Ten devices; up to 80,000 words per

second
AQ Data Transfer: Nine devices
Serial Data Transfer: TIY and RS232-C compatible
Real-Time Clock: Programmable macro interrupt
Physica/-

Height: 73.66 cm (29 inches)
Width: 154.94 cm (61 inches)
Depth: 78.74 cm (31 inches)
Weight: 215.460 kg (475 pounds)

power-
Source: 104 to 127 VAC, 1 phase, 3 wire

49.0 to 60.6 HZ (198 to 235 VAC, 1 phase, wi
Option 1888-1)

Consumption: 2.4 KVA
Environmenta/-

Operating Temperature: 10°C to 35°C (50°F to 95°F)
Operating Humidity: 20% to 80% RH (non-condensing)
Heat Dissipation: 2064 KCAL/HR (4508 BTU/HR)

Specifications subject to change without notice.

201,323 Litho in U.S.A. 7176

CONTROL DATA SALES OFFICES ARE LOCATED IN
PRINCIPAL CITIES THROUGHOUT THE WORLD

DATA SYSTEMS MARKETING
BOX 0, MINNEAPOLIS, MINNESOTA 55440

TELEPHONE: (612) 853-5195 TWX: 910-576-2978

o

o

o

CONTROL DATA® CYBER 18 <S~
CARTRIDGE DISK SUBSYSTEM (1833-4 CONTROLLER
AND 1866-12/1866-14 DRIVE)

CONT~OL DATA
CORPOR{\TION

IMPORTANT FEATURES

• Compact modular design

• Up to four drives per CPU I/O port

• Up to 18 million words, on-line

• One fixed and one removable cartridge

GENERAL DESCRIPTION
The CDC® CYBER 181833-4,1866-12/14 Cartridge Disk Sub­
system provides both data and programming mass storage for
the central computer system. It consists of a CDC 1833-4
Cartridge Disk Controller and 1866-12 and/or 1866-14 Car­
tridge Disk Drives. These drives can be intermixed in any
combination with up to four drives per controller. Using four
1866-14 double-density drives provides on-line storage of 35
million bytes. One removable cartridge per drive permits un­
limited off-line storage.

The drives (1866-12 and 1866-14) can store 4.4 million bytes
and 8.8 million bytes respectively. Each drive employs one
fixed disk plus one interchangeable cartridge. Information is
stored on two oxide-coated surfaces of each disk. Movable
head positioning is performed by a closed-loop, proportional
servo system which controls a voice-coil linear actuator. The
average track-move time is 35 milliseconds.

The 1833-4 Controller consists of a single module which
mounts inside of the CPU chassis. The controller interfaces to
one direct memory access port and can control a maximum of
four disk drives connected,in daisy-chain fashion.

• Up to 2.2 million words, per cartridge

• Seek overlap for fast data access

• CPU autoload capability

• Self-test features

• Powerful diagnostics

OPERATION
This cartridge disk subsystem permits read, write, and data­
compare functions to be performed on large amounts of file
data. In addition, a special auto-load function permits
deadstart loading of disk data from any drive into the CPU
main memory. The subsystem accepts multiple seek com­
mands from software and overlaps the seeking operations
among drives. Once selected, the data transfer between the
disk and CPU memory takes place via a high-speed, direct
memory access data path. Data transfer rate is 312,000 8-bit
bytes per second. Checkword generation and checking is
automatic and provides confidence in data accuracy.

Controls and Indicators-
Operator controls are minimal and conveniently located on the
front of the drive unit. Removal and installation of the inter­
changeable disk cartridge is easily accomplished from the top
of the unit.

PACKAGING
The controller mounts inside the CDC CYBER 18 CPU chassis
and requires no external power source. A cable connects from

2-10

the CPU to the first drive unit, with daisy-chain connection
between additional drives. Drive units are compact and mount
on a pedestal base. Each drive unit contains its own- power
supply and cooling facilities. Construction is modular and sub­
assemblies are easily accessible for convenient maintenance
and adjustments.

CONFIGURATION
The subsystem includes a 1833-4 Controller, a 20-foot cable
between the controller and first drive, and 10-foot cables be­
tween adjacent drives. Each drive connects individually to an
AC power source. This subsystem operates in a minimum
system configuration of a CDC CYBER 18 processor with
operator's panel, 32K bytes of main memory, and a comment
device such as a display terminal.

SOFTWARE
Supporting software includes the Mass Storage (MSOS)
Real-lime (RTOS) and Interactive Terminal (ITOS) Operating
Systems. Both MSOS and RTOS are real-time, multi­
programming operating systems with 16 program priority
levels.

Hardware interrupts are used to maximize input/output effi­
ciency. All I/O requests are processed on a software priority
basis. And a program-protect system is used to maintain sys­
tem integrity.

RTOS resides within the CPU memory, has no mass storage
requirements, and includes a monitor (subset of MSOS) which
occupies less than 1500 words of main memory exclusive of
drivers and optional features.

MSOS supports applications requiring dedicated system utili­
zation, batch processing, and program checkout features in a
real-time environment. Its modular design provides flexibility
in system updating or modification.

ITOS provides an environment in which a terminal user oper­
ates with an on-line data base, using interactive application
programs. ITOS Release 1 operates in conjunction with MSOS
5.0.

MAINTENANCE
The 1833-4/1866 Cartridge Disk Subsystem is supported by a
number of maintenance features. Four self-test modes of the
controller, initiated by powerful diagnostic software, permit
rapid fault detection and isolation. In addition to diagnostic
software, Diagnostic Decision Logic Tables (DDLT's) and de­
tailed maintenance procedures make up the total CDC
CYBER 18 Operational Diagnostic System (ODS). These fea­
tures provide maximum efficiency in maintaining the system.

SPECIFICATIONS
Performance­
Recording Density: 220 bpi
Sector Size: 192 18-bit bytes
Sectors Per Track: 2·9
Tracks Per Surface: 200 plus 4 spares (1866-12)

400 plus 8 spares (1866-14)
Surfaces Per Disk: 2
Head Positioning lime: 7 milliseconds (one-track move)

70 milliseconds (maximum move)
35 milliseconds (average)

Rotational Speed: 2400 rpm
Average Latency: 12:5 milliseconds
Transfer Rate: 312,000 bytes per second

Disk Cartridge­
Diameter: 14 inches (35 cm)
Coating: Magnetic oxide
Configuration: One fixed/one removable

Operator Controls­
Switches/Indicators: Start/Stop

Fault
Spindle Stop

Physical.:.-
Height: 34 inches (86 cm)
Width: 18.5 inches (46 cm)
Depth: 29.75 inches (74 cm)
Weight: 275 pounds (125 kg)

Power Requirements-
Per Drive: 120 volts, 7 amps, 60 Hz, single phase 198-275

volts, 3.5 amps nominal, 50 Hz, single phase

Environmental-
Operating Temperature: 60°F to 90°F (116°C to 32°C)
Operating Humidity: 10 to 80% R.H., noncondensing

Specifications subject to change without notice.

DATA SYSTEMS MARKETING
Box 0

Minneapolis, Minnesota 55440

2-11
201.496 LITHO IN U.S.A. 3/n

N
I

I--'
N

<-
N

I--'

n
'----"

DISK DRIVES
MAX. = 8, MIN. = 1

DISK PACKS
ON LINE
OFF LINE
VOLUME (VL)

FLEXIBLE DISKS
(FLOPPIES)

NOT AVAILABLE
EXCEPT AT
MASTER T

o

CYBER 18
CONFIGURATION

CYBER 18
MEMORY:

MIN. 64K BYTES
MAX. 256K BYTES

1---

CARD READER. MIN. 0

MASTER
MIN. 1

OP. CONSOLE

TERMINALS

MAX. 17

MAGNETIC TAPE

MIN. = 0

(IF CARD READER
PRESENT)

MAX. 4

(IF MT PRESENT)

o

WORK

LP STATION

"SPOOLING" TO PRINTER

CARD PUNCH

LINE PRINTER
MIN. = 1

OPTIONAL

o

o

o

CYBER 18 FEATURES
(MACRO)

• 16 BIT OPERAND IN MEMORY
(2 BITS, 1 FOR PAR ITY,
1 FOR PROGRAM PROTECT)

• MEMORY SIZE: 64K TO 262K BYTES

• 7 PROGRAMMABLE REGISTERS
(A,Q,M,R 1 ,R2,R3,R4)

• ONE'S COMPLEMENT ARITHMETIC

• INTEGER ADD, SUBTRACT, MULTIPLY
AND DIVIDE

• 16 INTERRUPTS

• CYCLE TIME OF 750 NSEC./WORD

2-13

CYBER 18 MEMORY WORD

17 16 15 a

L L PARITY BIT, ODD PARITY

PROGRAM PROTECT

TYPES OF DATA STORED IN MEMORY

* INSTRUCTIONS

1,2,3 WORDS USED FOR AN INSTRUCTION

MUST BE IN MEMORY TO BE ABLE TO BE EXECUTED

* NUMBERS

* INTEGERS

15 a

L SIGN BIT
a = POSITIVE NUMBER
1 = NEGATIVE NUMBER

* FLOATING POINT

FP ARE MANIPULATED BY SOFTWARE SUBROUTINES

* CHARACTERS (IN ASCII)

I CH.O CH.1

15 a

2-14

o

('12 -2)

0

0

0049 P002F 4142
P0030 4344
P0031 4546
P0032 4748
P0033 494A
P0034 4B4C
P0035 404E
P0036 4F50
P0037 5152
P0038 5354
P0039 5556
P003A 5758
P003B 595A
P0030 3132
P0030 3334
P003E 3536
P003F 3738
po040 3920

INSTRUCTION EXAMPLE

0035 LRl:~ BUFFI
0035 POO13 0481
0035 poo14 cOF6
0036 LR2:~ BUFFl,l
0036 POO15 048A
0036 poo16 cOF4
0037 LR3:~ (ABUFl),2
0037 POO17 0403
0037 POO18 COF9
0038 LR4+ BUFFl,3
0038 POo19 045c
0038 POOIA COOO
0038 POOIB OOOB P
0039 LRA BUFFl,4
0039 POOIC 04A6
0039 POOIO COOO
0039 POOlE FFEC
0040 LRQ (ABUFl),A
0040 POOIF 04F5
0040 P0020 cooo
0040 P0021 FFFO
0041 LRI+ (ABUFl),Q
0041 P0022 046F
0041 P0023 COOO
0041 po024 8012 P

CHARACTER REPRESENTATION

CHAR ALF X,ABCOEFGHIJKLMNOPQRSTUVWXYZ
12 3 4 5 67 8 9 :~

2-15 (V2 -3)

INPUT/OUTPUT INSTRUCTIONS

INP

OUT

DATA -.A
OR

STATUS--.A

DATA
OR

FUNCTION

A ---.

Q CONTAINS THE PERIPHERAL
DEVICE'S ADDRESS

w E

2-16

(~)

c'

o

C) TAG

RETURN FROM INP OR OUT

INP TAG - *

• NORMAL RETURN

INTERNAL REJECT

EXTERNAL REJECT

INP MACHINE INSTRUCTION

02

2-17

TRACK
(200/SURFACE)*

CYLINDER
(200/SURFACE)*

DISK ADDRESSING

A

*FOR THE 1866-12

2-18

SECTOR
(96 WORDS)

o

o

o

PANEL MODE OPERATION (CYBER 18 ONLY)

I ESC I BLUE KEY

J FUNCTION CONTROL (CHANGE VALUE OF DIGIT)

L DISPLAY 0

K DISPLAY 1

H HALT PROCESSOR

I START PROCESSOR

@ RETURN TO CONSOLE MODE

G RUN, DO NOT RETURN TO CONSOLE MODE

FORMAT OF J ENTRY

J x x G E.G. J 0 2 G
/, J' \

DIGIT NEW VALUE SET DIGIT 0 TO 2
OF DIGIT I. E. SE LECT I TO

DISPLAY OR CHANGE

FORMAT OF L & K ENTRY

LG }

KG

LhhhhG

KhhhhG

NOTE:

DISPLAY SELECTED REGISTER OR

MEMORY LOCATION (0: P)

ENTER IIhhhh" VALUE TO SELECTED

REGISTER OR MEMORY

IF MORE THAN 4 h'S ENTERED,
THE LAST 4 WILL BE TAKEN; IF
LESS THAN 4, THE ONES TYPED
WILL BE HIGH ORDER BITS

2-19

PANEL MODE

FUNCTION CONTROL REGISTER (FCR)

COMMENTS DEVICE HAS 2 MODES

1. CONSOLE MODE

2. PANEL MODE

IESCI GO TO PANEL MODE

o OR G GO TO CONSOLE MODE

PURPOSE OF PANEL MODE IS TO GIVE THE OPERATOR A METHOD
OF LOOKING AT OR MANIPULATING THE FCR. THE OPERATOR MAY
THEN DETERMINE STATUS OF THE CONTROL PROCESSOR, SELECT
PROCESSOR FUNCTIONS AND LOOK AT OR CHANGE MEMORY/REGISTERS.
MAY BE USED FOR SYSTEM DEBUGGING.

STATUS

HAS OVERFLOW OCCURRED? (0: SNO, SPE INSTRUCTIONS)'

IS A PROTECTED INSTRUCTION BEING EXECUTED?

HAS THE PROTECT FAULT SWITCH BEEN SET?
(0: SNF, SPF INSTRUCTIONS)

HAS THE PARITY ERROR SWITCH BEEN SET?
(0: SPE, SNP INSTRUCTIONS)

IS THE INTERRUPT SYSTEM ACTIVE?

IS THE AUTO-START ENABLED?

IS MICRO RUNNING?

IS MACRO RUNNING?

2-20

C)

o

o

I FUNCTIONS I
SELECT STEP MODE

SET PROTECT SWITCH

SELECT MULTI-LEVEL INDIRECT ADDRESSING

SELECTIVE STOP (o: TO SLS INSTRUCTION)

SELECTIVE SKIP (o: SWS, SWN INSTRUCTIONS)

BREAKPOINT (IF BREAKPOINT BOARD IS PRESENT)

IDISPLAY/CHANGEI

MEMORY

A

Q

M

x
P

NOTE: CANNOT ACCESS R1-R4

2-21

C)

o

(J

o

C)

1.

2.

3.

STUDY QUESTIONS - 2

What type of thing causes an interrupt?

Under what conditions does the CPU respond to an interrupt?

What does it mean to take status on a device? What type of information is
received?

4. What happens 'when a parity error is detected?

5. How long will the CPU execute after a power failure?

6. How is a sector addres sed on a disk?

7. What is the A/a Channel?

8. What conditions cause a Protect Violation?

9. Where would I find the meaning of thOe STATUS bits for a particular device?

Q2-1

o

(~
~'

CJ

0

o

LESSON GUIDE 3

SOFTWARE OVERVIEW

LESSON PREVIEW:

This lesson will discuss the priority scheme and system methods used to implement the
system; i.e. interrupts, MASKT, PRLVL, interrupt stack, scheduler's queue. Terms and
concepts basic to the understanding and discussion of the subjects to be covered in later
lessons will be reviewed. The details of the libraries, software organization, and core and
mass memory will al,so be discussed.

REFERENCES:

Glossary
Listing of SYSDAT and INSTALL

OBJECTIVES:

At the completion of this lesson, the student will be able to:

1. Understand the significance of the priority scheme.

2. Discuss the details of maintaining the priority scheme.

3. Explain the purpose of the interrupt stack and scheduler's queue.

4. Discuss the system terms that are necessary to understand the operating system.

5. Describe the flow from a user program to the operating system and back to the user.

6. Obtain information from a dump of core or disk.

3 -1

SOURCE
DECK

COMPILE

COMPILE, LOAD, EXECUTE PROCESS

O RELOCATABLE BINARIES
(OBJECT CODE)

\ I
----------------~~~------------~

ASSEM
FTN

LISTING

LOAD

3-2

• IN CORE
• ON DISK

~~ ON TAPE.
ETC.

ABSOLUTIZED
BINARIES

EXECUTE

o

W
I
W

o ..9
~
~c,

r

.:.; ~
'''~: r- Y;>-

1 J~ "2.>." ~J.-,
\ C;")- (' ~9.
\: C''o ~ c.:;.. ~ .~~
~ 7c/ i.. -r

~ u

IDLE(PR=-1)

~.
s-,

-=3
:::;5
+

A(PR=4)

B(PR=6)
:

o

PRIORITY SCHEME

C(PR=10)

I]P-IolsPI

B

SCHDLE D,5
JMP - (DISP)

101PR=51

1
JMP - (DISP)

A

E

SCHDLE F,7
JMP - (DISP)

F(PR=7)

I I
JMP - (DISP)

A

JMP - (DISP)

110 LEIPR=':'1 I

o

\)
I I)0 lA\ .-C: ~
-- I _

-~ L-\ C7 0 (J)
~.J5 • ('1
h r "'() C'V
~'-' :>. s:
~ --£\
~

-+

"

f
f

w
I
~

(J

PRIORITY STRUCTURE

• 46 PR IORITY LEVELS

• PRIORITY LEVEL CHANGED -IN 1M' REGISTER AND PRL V L

'UNCOMPLETED'
PROGRAMS

INTERRUPT STACK

--"1 91 5 (JJorJ.o

~/V Q.,\\~

--t
4

- 1

, SCHEDULED'
NEW PROGRAMS

SCHEDU LER QUEUE

4000

400 8

1008

--a. 400 40

FFFF
4000 6

372.7

o o

o

o

--

LIJ
..J CD
m

o
<t ,.....
1-'

0')

o ---
N
....
....

o

r'

~c}'"
-> Q-;

. '1 ~
\Y) .s:::..;. .

~-+--
3 <:s,

J~

-- 0 -C\Jrc') ~ 10 U) r-- CD 0) 0 - C\J rc') ~ 10 I _ ... __

- ---
- --

a ~ 0

- - C)

.- ---
0 c> a

.~

0 ~ a

-' --
0 c) <:;)

0 c~) C" .;;.~.,

<::)
(:) c:

- - --
a 0 01
a c a

- --' -

a c::J a
I

3 -5

o --

BASIC INTERRUPT STACK
CYBER 18 HAS TWO!
(AN EXTENDED STACK)

o
I-
0.
::>

H

t\5
OOV

\Q\"~ ~

* SYSDAT

3-6

4

3

2

1

o

t

o

COUNT ($88)* =
NEXT
AVAILABLE
POSITION \ Y\' \ V\\C}{i(LJV~' S~a0\(

'\

PRLVL ($EF)* =
CURRENT
PRIORITY

(OVERFLOW \)11

e I PRIORITY LEVEL

P 'f Q.,,\

I
II v

A
II

a II

WORD

o

~;",J

0

EXTENDED
INTERRUPT STACK
FOR REGISTERS R1-R4

(/)

2:
0
t:
(/)

0
Q.

~
C.)

«
l-
(/)

In
t-

O
I-
Q.
;:)

~«"
~

o~
",0

3-7

~-----.-----

EXTSTK =
NEXT AVAILABLE
POSITION

4 CONTROL POINT

3 R4.

2 R3

1 R2

o R1

1
WORD

SCHEDULER'S QUEUE - A LIST OF ALL
PROGRAMS WAITING TO GO INTO
EXECUTION FOR THE FIRST TIME

v'tf\ •
t1 /c

.-----r---or--....., p
2000 KG 7

C
11f 4000

FFFF

4000

3500

3 -8

c

·(1 ;1ft·{ .
(v f{lv

c

o

LIBRARIES

1. PROGRAM LIBRARY

• BACKGROUND

*BATCH

0 2. SYSTEM LIBRARY

• FOREGROUND

SYSTEM PROGRAMS
FILE MANAGER

o
3-9

TWO LIBRARIES

PROGRAM LIBRARY - BACKGROUND

2 TYPES OF ENTR I ES

• PROGRAMS IN RELOCATABLE BINARY FORM

• FILES
DATA .
PROGRAMS IN ABSOLUTIZED BINARY FORM

SYSTEM LIBRARY - FOREGROUND

2 TYPES OF ENTRIES

• CORE RESIDENT}

• MASS MEMORY

3-10

ABSOLUTIZED BINARY FORM

o

o

o

o

C)

PROGRAM LIBRARY

HOW TO ACCESS ENTRIES IN THE LIBRARY

PROGRAMS

1.

2.

FILES

UNDER *BATCH

EXAMPLE:

*JOB, USELIB, CDCIJ, EXECUTE PROGRAM

*EXLIB

67 89

LOADER MACRO

1. GTFILE MACRO

2. DIRECT MASS MEMORY READ

3 -11

PROGRAM LIBRARY

HOW TO PUT SOMETHING IN THE LIBRARY:

PROGRAMS

~~ JOB, EX 2 , CDC I J ,
~~FTN

PUT A PROGRAM AS PROGRAM ON THE PROGRAM LIBRARY

O?T LXC
PROGRAM
WRITE

100 FORMAT
END

MON
~~LIBEDT

~~K, I 8, P 8

6
7
8
9

FILES

DATA

6
7

8
9

. WRITE2
(3,100)
(~ / / / / THIS IS ANOTHER EXAMPLE ////~)

*JOB, DATAF, CDCIJ, PUT DATA FILE IN LIBRARY

*LIBEDT

*K, 110

*N, ABC", A

DATA CARDS

DATA CARDS

*Z

3 -12

o

C
·--..

'\
.. /

o

0,

o

PROGRAM IN ABSOLUTE FORM

~~ JOB, EX 2, CDC I J ,
~~FTN

OPT LXC
PROGRAM
WRITE

100 FORMAT
END

MON
~~ L I BEDT
~~ K, 18, P 8
~~p , F
~~ N, W R I T E 2, , , B
~~DL

~~ L I BEDT
~~ R, W R I T E 2, F

PUT A PROGRAM AS A 'FILE ON THE PROGRAM LIBRARY

WRITE2
(3,100)
(~ / / / / THIS IS ANOTHER EXAMPLE////~)

HOW TO FIND OUT WHAT IS IN PROGRAM LIBRARY

*JOB,LISTLB, CDCIJ, LIST PROGRAM LIBRARY

*LIBEDT

*DL

*2

3 -13

fFFF~FFHFFFf
FFFFFFFFHFFF
HFFFFFFHFFF
FFF
FFF
FfF
FFfFFFFFFFFf
FFFFFFFFFFFF
FFFfFFFFfHF
FrE-

-.f.U:
~
FFF
FFF
FFF

fTh 3.38 CUPT • LlCJ

1
2
3

-
100

PAObf'lA"
.AITf.
FONMAT
EhD

FTN 3.3~ CCPT • LIC)

EXT£kf'lAL5.
w8~TP "d"HU

,.TIIl 3.3a '''''T • UC)

TTTTTTTTTTTTT
TTTTTTTTTT TTl
TTTTTTTTTTTTT

TfT
TTT
TTl
TTT
TTT
TTl
ttl
rtt
~
TTT
TTT
TTT

IIAlTEl

•• UTE1
,3,1001
c· / / / / /

.RlTU

••••• LIS T 0 ~ 5'.. 8 0 L 5

EXTEFi".LS I

TYPE

~&"I"I l",TEGEk.'",. 0002
Q6StP lhTE6ER.Fh~.0Q2J

liNN UEEf£.t.U.EEf.f· OX 1.1.1.

"' EEEEt.fEEtt.EfE lXl)1;1.1.

.. "'" .. "' .. EEEEEt.EEr.t.r.c.f. X.U 1.1.1-......... ""' .. U£ lAA .lAX

... "' ... "' ... ,.",fIII f£f U.l)l;lA .

WI"..."'" tEE 1.1.1 1.1.1. U..E!Et.EEEf.tE IXU.l " NN" HEEtHEt.f.t:E It.U

III,.." ~...... ""'N t.f.t!Ef.t:.EHt,£1! lAAXA tt.£ AAX "AX ... ~ ~!~ AXJ Ul

"'"' ,.,.."... '!!'! rill' XXX
~"N "'''' .. HEEt.t.EEt.c.ff.E XXI. 4lA
h hNH Et.EEEUEt:.c.r.c.f X,.,.. 1.1.1.

.. "' ... ~h" EEEEEEtf.t.t.f.EE 1.1..1. 1.1.1.

PAilE DATE' OI/31/h

T"15 IS AN EAAMPL£ I / I I / / ••

PA6E 2 .DATE.I. OIl/lll7t! Tl"'t.: hZ2

C)
PA6£ 3 DATU 01131118 TIMEI 1422

3 -14

o

o

LABELED STATEMENTS

LABEL

100
WRITEI

:~ L I BEDT
LIB

IN

:~ L, WR I TEl
IN

:~WR I TEl

/ / / / /
STOP

:~ L I BEDT
LIB

IN

::R, WR I TEl
IN

ADDRESS REFERENCED BY STATEMENT NB

0008 1,3
0000 1

THIS IS AN EXAMPLE / / / / / /

3 -15

ll· \
=-T

~
f'~ 3.38 '~PT &_~XC) .tlRlTU

.RITt2
-,l.l.D 0)

PAGt J

SYST~"

1)ATE: Ots/31/7c

1

" 3

p"OGF<A~
.~RIlE

loa FOHMAT
FNfJ

C.' / I / I TtU5 15 (;TttER f.1..AMP&.f ./11/·) ..
..RIJU

faR06RAJI4. LEN6ItLJOD20-1 ~

E~TE~!'~/'~S
QaST~ QE-(JI~l

\
·llbEDl

Lit ..

.IN

«P"
.",llf.i
"'''(,/11'>1
.c.;~c.:l.1.L
4IttCfII"'­
iJe~lJbll

'flE:k~"
.'-ibOf 1(;
Q~{\).

gt4(,.ur...l
wEtFGE'l
"bM#aGT
,. ~Pcur.
~~STO~

"c"~""u
P~fo!A&h

Of' 1 F"'",
J.lbf'.!a
~P.Tk."
-wSf.AF.l
OtlE).pC,

-f.LuTt-o
CCp.t~FP

-L>hLD~Y
wcPid',S

IN

7000
?OCCI

.:IIH· b
~11?
11FS
?JOe
73f.S '4.f
ISoC
?S~t-
7~Fl'
764£
1t:ft-
77;:14
7798
.,?AA
77f.'J
7Alf
8Z5f
~?i.J.

.b3Cit
B~04
.!!7.oa
S7011

OEC~-IO ~~. FT~ 3.3 ~UNTI~E
JI£Cr\-lL bQ~ f..l.A . ..J...J~
.OECK-ID · 06 ~lh 3.3 ~IJHT 1ME
OEC~-lO ~07 ~T'" 3.3 ~U~Tl~E
OECK-lv t;~b FTr. 3.3 RUNll~f
DECK-10 _h09 f'T3.3 .. ~UNll~£
~ECK-ID~lO Fl~ 3.3 ~U~Tl~E
j)tCK~.lD._J1l1_ 'Fl~ 3.3 . .AUNT 114E.
Of.CK-IO ~12 fl~ 3.3 kUNTIME
DEC~-lO ~13 Fl ~.3 RU~TI~E
OECK-IO ~l4 FTh 3.3 AUNT1~E
:DECK-ID t'll6 '1'11'. 3.3 RUNTIME
OECK-IO hI? fT~ 3.3 ~U~TIMt
DECK-IO ~12 FTh 3.3 RUNTj~E_
DECK-IO "01 ~TN 3.3 RUNTIME
DECK-JD tlCI~ FTN-1.3 RUNTI ... E
DECK-IO ~03 ~lh 3.3 RUNTIME
DECK-10 nlB Flh-3.3 RUNT1ME
OfCK-IO ~l~ Fl~ 3.3 RU~TIME
.DEC"~.lD '»14. -flh -3.3 toIUNT lMf
~EC~-lO ul& fl~ 3.3 RUNTIME

...DECK--10 1.19 Flh .3.3--RUNIJH£­
~~~-1~ S~6 RPGll~.O 

3 -16 

SUM"".fcY-ll7 
..iUMMf< l~.J. 41Z 
SOfiII.ARY-116 
SU""""AkY-ID2 
SU~"'ARY-l~2 
5L1f1t .... ARY~l16 
SUMMAHY-116 
$~M.RY-I02 
SUMMAkY-11c 
S~fr.ARY_~117 
SlIM"'.kY-117 
.sU"~AFcY~~b 
SUfot",AkY-ll6 
SUM"'ARY-lll 
SUM ... ARY-I06 
SU,."'AkY-106 
SUMMARY-lIS 
.sUM"'ARY-l02 
SUMM"RY-I02 
SUM ... ARY-ll2 
SLIM",A~"-11_ 
.5l1MMAkl'~gZ 
Stlfilf.lAkY-126 



0 
~ •• R1TfZ •• ,t! 
IN 

'''OL 
~lb""AC. St.CT .. "59 
ASSt"" S~CT. OC11 
ASSJ'" St.CT. OC7l 
"'ASSI St.CT. oe77 flLi:. 
PASS2 SE.CT. OCA3 I'll-£. 
PASS3 SECT. oceD f'ILt. 
~&LST ~t.CT. ..oC~2 -F-t~f 
XttE.F ~~CT. OCF7 FILE 
".CSf(L St.CT. .. 008 ..f'lL~ 
"'AC~05 ~~C.T. OF79 FIL.t:. 
.rHo. Sf.Cl. .oF8A 
EXIT"" SECT. OFSA 
~AbCt'1"" SECT. .oFSA 
ASCOPT 'SECT. C)F8A 
P~GhA~ St.CT. -4F8A 
flAbN&k SECT. Of8A 
DATE. SECT. ~F8A 

Tl ... E SECT. OFSA 
Flt\3Al S1:.C1. ..oFIj.) -f.l~E. 
~TN3A2 SECT. '1004 rIl.E 

> 
. ~ 

J:S,.,.?t.~J .:»t:.Ll. ..:u/O . .r .lL.~ 
ts~lt..l st.eT. 30&7 FI&..E. 
cfo'll~~ .SEC1. .,3Doi F 11.E -
BI"IJN3 st:.eT. 30~t; FI&..l 
STAhl .~t.Cl. 20C2 
fo/il.INT ~t:CT. 20C2 .f.l~ / 

0 
-. .. HI TEe St.CT. -lOd~ 

f'lhl 
IN 

-2 
'~l.E.u. -

.LIB 

IN 

"fC •• klTE~.F 
lJa. 

-2 

3-17 



tUBE.Of 
·DL 
L.l~""AC SECT. 
:aSSEM "SEct. 
"551'" SECT. 
~ASSl SlCT. 
PAS~2 . .sf. CT. 
PASS) SE.CT. 
1 AcL.!;1 SEC1A 
XkEF Sf::CT. 
.+l.C~KL StCl. 
"'4CkO~ !»ECT. 

JJ,. . St.CT. 
£AITF 5E.('T. 
~AGCH~ SECT .. 
ASCOPT StE.CT. 
PkG~M'! ~t.CT .. 
PAGNbFt &£CT. 
uATE.. St.CT. 
TIME. SE.C,. 
FTN3Al SE.CT .. 
f'TfII3A? "SECT. 

EXAMPLE 

LIST OF PROGRAM LIBRARY 

OC~'J 
-tC71 
OC71 
OC77 FIL.E 
OCA3 .f:ll.E. 
~C&V fIL.£ 
QCt:.c fIL.E. 
tleF7 FILE. 
0008 fIL.l:. 
OF79 fIL.E. 
~Fb" 
Of8A 

-DFEsA 
OF6A 
.oF&A 
OF8A 
.DFaA. 
OF8A 
DF.93 _ . .F1L.E 
1004 FIL.E. 

3 -18 



0 F.3lGA3. 5£.C..1. ~lJ2~ FlU QaCNP~ .5£.Cl..- 4.3f.7 
-=-'+l3A4 "6ECT 1'057 t='ILE GSCMPl SECT. 13f1 

·:FJtt3AS SEC!.. .lOb-O E".lU. il8Df.AO .s£..CL. .l3F1 
F1N3bl SECt .. lOA3 FIL.l "~wEI'I:S SECT. 13F7 f.ltt3CJ ~tcr ... 1125 f" ll.l R£C£td) ~tCl .. l.3F7 
FTN3L>1 SECT. 1197 FIL.£. Q8blhe SECT. 1401 
FTN3f:.l .sECT .. IlF7 FlU "&LOCb SE.Cl .. 1401 
VTN3Fl SECT. 125C fIL.E Q8J(~~U SECT. 1401 
fTt.3Ek StCT. l2A2 FJLl QSlfoljT~ S£.CT. 1401 
WE.AO S£.CT. 12FLJ Q8E1£. Gfl !alCT. 1401 
..IIHITE SECT .. 12FJJ liBCLktI Sf-Cl .. 1401 
~REA[l SECT. 12fD ,g8Rl .. T SECT. 1401 
F"~ITf SECT .• 12FO .wbIbUF .5£.CT .. 14111 
SCtfEDL SECT. 12FO -tlRFLG SECT. 1.01 
IlMEk SECT .. 12FD ."8£RRM SECT~ ~.OC 
OISP,.1 SECT. 12FO "SF E.~". ft£.CT. 14UC 
~lS" SE.CT. J.2F.o ~aEkE." 5£.C1. 140C 
LI*"fI,. seCT. 12FO QSOFhF SECT. 1.18 
lCLOCf\ ~fCT 12FD Q~DFl" S£.CT. 1416 
INPINS ~fCT • t?FO Q8QTO~ SECT. 1421 
OUTl.hS .SeCT .. 12FO "&QTk'" SECT. 1421 
R(~(!.L StCT. lZFLJ . QfiQ) SECT. 1421 
1CONC! .:5£.CI .. 12F.D .gef40Yf SECT • 142.1. 
~C-otf<:T ~-C'. IPFO ~eov S£CT. ~421 ... SF-ftE;' . ..5£.CT .. ..130C Ci&QZ Sf CT • .J42l WS.-f(u.- S£.CT. 130C "bwU~1 S£.CT. 1.28 
Q9F-KUP .5f.CT. 130C Q&QUN2 ~ECT • 1.ZP 
wb"'t~l ~tCT. 1311 ~~QU"'3 SE.CT. 1.28 
ueC1Z~ Sf.CT .. \311 QaFGET SECT .. 142E 
"'h~F~F ~EC1. 1311 QaF"PuT SECT. 142£ RE1AD SECT .. 1311 Q8L.OCf Sf.CT. 142E. QSAvl S£.CT. 1311 Q81G.., S£.CT. 142£ 

..QoAI:: .sf.CT. 1319 "~"'AbT ~ECT .. .l43b 
AcS SECT. 1319 Q6e-OTT StCT. l • .:sb SQf-T SECT .. l31E WtSlJt:JCI\ SlCl ... 143C 

0 Qt1S(' ~tCT. 13?b W8c"FLf St.CT. 143C .SIStI: SECT. 132b QaQwNO SECl.. .143C QEs(,lF!X SECT. 132b £OF SECT. 1.3( 
.Q~FJ .sECT .. ·132es .lOCK 'sECl .. .1 .... 
"Es~FL.T Sf CT. 13?e; QBP5tE:. ~£'CT. 1 •• C; 
~-1;~n SUI.. :£328 ~8F'SE!t &££1..~ ~"iW ·lfI" SECT. 1328 QaSTP S£Cl. "1 •• 9 FLlIJ.T ~E.CT .. 132= Q6ST.,.fIi Sf.CT. 144C; DFIX SECT. 132es .gSCO"" 1 SECT. 1449 
--'tBttfLl steT. ..l.32~ Q8F<.ANC SfeT .. 1450 DFLT SECT. 1328 QaE.XPl SECT. 1.57 UP SECT. ·1331 QSElP9 SECT .. 14SE 4LOG ~ECT. 133~ ... e£x~T SECT. 1.~t. 
T~I\I ... ·aECT. -13"0 Qti£'XF'2 5£C1-4. ...l45£._ 51,... ~f.CT. 1347 gaQG£.T ~E.CT. 1 .. b8 cos ·SECT. 1347 SE.Tbf~ SECT .. ...l4bB AlAN SECT. 1350 £HCOOE S£.CT. 1.bC 
~AkAb5 S£.CT. -135& JJECOOf. .s£..C..I... ...140C WSlff*'fiC ~ECT. 1350 tOM~OP\ St.CT. 1.73 
"bFS S£Cl .. ·.3b3 lSAVE SECT .. l473 
WtsT~"N ~ttT. 139C. 1&ETCto St.CT. 1417 Q&wlt\I !>ECT~ ~3E8 hElCM SECT .. 1477 "tiUhIl SE.CT. 13E& IPACI< "SECT. 1.7C 
iI~5tKl~ $ECT. 13E8 'JPtJATE. Sf. C T ... 14&2 
~b'ENC SECT. '4~rc: OECPL SECT. 1.Sb 

o 

3 -19 



_21iDiR... SECL :14aa 5Kfll.-E SECT.- If>ElC ~llE C) SPAC£Jt S£CT .. 1-90 SILP .sECT. 16E9 
.1'JOU~ltt .5£CL .1495 .is I SECt • 16Fl f'U.£. 

QUOTe. SECT. 1495 5MD,..Pl Sf-CT. 17.0 
DCHX. Se.CT .. .1490 .""511401 ~ECT. 174E flL~ 
f1)'ASC SECT. 14"5 SMO"f'T !tEC;. 1751 
AFR ... C,T SECT. ~4"b MF-S,..OT Sf-CT. 17!)'- FlLl:. 
RFRMOl SECT. 14BO TSL()b SECT. 1790 FILl:. 
AFRMlh Sf-CT. .l4~S ULBUFF ~ECT. 17b3 fIL.E 
RF$( ... IN SEC'l. 14se · ... NUPkO "s~CT. 17E6 fILE 

-ASCt1A Sf.Cl~ .l4CiI .. SUE!f(C" .SECT. 17F8 
-mDC 5lCT. 14C6 {;ETCt;R SECT. 1835 
. f'1.0Tlt- Sf.CT .. 14CE . PUTCHk .SECT • 1835 
fOUT SECT. 140. CH~ATE 5f-CT. 183A 

..£OUT .. SI:.CT~. l4DC CLlAR SECT • le3A 
·£wHITE StCT. 14E6 DELETE SECT. 18lA 

..;lNITU SE.CT .. l4t.S .OPENF1. .sECT. l83A 
RESTRE SECT. 14E8 CLOSFL SECT. 183A 
f'Ok"'li< SlCl. 14FO LOKFIl SECT. .1&3A 
~t1C~T SECT. 14Ft Ot.lFIL StCT. 163A 
Q8QfI · SECl. 1502 6ETFC~ St.CT. 183A 
Q8(JFL SECT. 1~O7 .~PDFc.c ~f.Cl. ltt3A 
-Q80FX. · SEtT •. 1508 . REhA"'f- ..5fCT •.. ..l8.3A . 
~ •• St S€-Cl ... l~li 1'UTS -srCT ~ 183A 
. HEX[)lC SE.CT • 1510 • RITEk Sf-CT • 18lA 
ASCII !tE CT. 151~ ~f.AD~ SECT. 183. 
. O£Ct1lX S~CT .. 152C GETS _ "sE.CT. 18::S~ 
AFOH,. Sf:.CT. 1525 UF'LJREC St.CT. 183A 

-RFOF< ... · SE.Cl~ 152A .DEl..HEC SECT • .l&3A 
FlClATG SE:CT. 152F COfllFIL SECT. 183A 
-E~OT_ .!tEeT .. 153_ VOL USE SECT. .183A 
"FlOT SeCT. 1~l4 REDUCE SECT. 16;'. 

...JFAll SECT • 1 !:» .. t, .USEklD !ll:.CT .. .18 .. 3 fILE. 
SFAlT SECT. lS4b SYfI!SGF SECT. 18~5 FIlt. 

.4)PEF(~C .5£CT .. 1546 SYMENU Se.CT. .l9fD FILl 
~XTOP SECT. lS4e PHOCED SECT. lAOE FIL.E 

C' ~flEROR Se.CT. lS.t .UTIl S£.CT •. .~AIZ . f I~t. 
PHOC"'t\ SECT. lS4{ UT&"TC &lCl •. lAA4 fILl:. 

..sPECOfJ SE.CT .. 154t ·lITOI~C SECT .. 1803 FlLE. 
Fl()FOF SECT. 1S .. t- UTt-IOST SFCl. 1813 FILl 
E..1JtfOf ~ 1546 1JTS£l. .5£tL .lB21 Ell£ 
QS[;XP1. SECT. 1553 JTF'foc]~ SEC1. lti2E FIL€ 
"~OXfJCj Sat:.C.T. !:»5~ lJTbl.T~ SECT. 18"C FILE 
DOUT SECT. 1553 -UTOISP SECT. IttcD f 1&.1:. 
.LULIST .. SEC-T .. l!a.S7 ~TF.LUS ,:SEC1. .1&8t) fILE 
l.ISTf< StCT. 1580 UTINIT SECT. 18'19 FILl:. 
:OPSORT SECT. 158C UlDEfI SECT. 18A9 FILE 
.... Gt'lRD SECT • 1S6C UT~TAT ~ECT. 18t:lU FILl 
.Ef.SORl SI:.'T~ ~SAC UTDElE SECT. ~eDb .fILE 
. COsy SECT • .15(.. -UlCLf.A .SlCT. 18E1 Fl~l 
·LCOSY !tECT. te13 UTLIST '&t:.CT. 1~l7 fILl:. 
erFT !lECT. 161£ UTkEId. SECl. 1C02 f J&.f: 
lOUP .bECT. -1b2fl ".n.co~~ ._ .SEC1. lCOC flu.... 
IOUPV4 SlCT. 162F fILE LJTf40Uh SECT. 1CI0 FILE 
DTl'" St:.CT. l& .. C UTOIS,,", .~EC1 .. 1C19 fILE. 
lJ~~TAP !lECT. lbS4 FILE UTS~ve. SE.CT. 1C21 fILl:. 
.LIHILD SlCT. 1673 . UTfJUF<& -.Sl1:1. lCt)C fll.E 
Ll£:1IDO ~ECT. 1677 FJL£ UTCO"'P SECT. lC74 fIll 
tiELPU( SECT. 1682 FlU .lJTDUMP. _ .sECT .. 1C7l> FILE 
St:ED SECT. 16&ts UT(O(E.L.O SECT. lC8S FILt:. 

o 
3-20 



0 UT~OP~ SEC],. lCf2 .:F.1ll .l'~ll..P SEC! .. -2157 
UTlO.-u SECT. 1DZO FIL.E ..,9lAttD SECT. clS7 
uTOkl.[" Sf-CT. 10b7 fIl.E "9MMOY SECT. .2157 
ulk"'L.CI SE.CT. lDF7 FILE. Y9NSQ~ StCT. 2157 
ED1TOR .sleT. 1£23 fll..E. 1'9F-AbE SECT .. 2157 
5(MUuF',.. &EC1. lEBO fILE. Y9T~OT SECT. 2157 
R~G"'U2 SEC! ... .lEF6 F.llE 1'91NYF SECT .. ·.2157 
RF'SMU3 SECT. lF2B FIL.E. Y90SE' !:tE.CT. 2157 
ffPGMU. SECT .. ..lF7A FILE. Y9FbSl:. SECT. . 2157 
"MUCL.O !>ECT. 1FAF FIL.E. POSSF'f\ SECT. 2157 
-RMUCS. "SfCT .. If£3 F..lU,. ..POSSK8 SE.Cl .. ~lS7 

RPGS"'" SECT. 2087 FIL.l:. POSSflA Sf CT. 2157 
RPG5~1 SECT. 20A9 fllE. -POSSKA .!>E.Cl. 21!:!7 
.. flGSfii\2 SECT • 2081 FIL.E. R90CO() SECT. 21~7 
RPGSI".3 SE.CT. 20E1 FIL.E R9kECP S~CT. 2157 
ftP(:;SIoI. SEC1~ 20E9 FIL.E. R9TAhF ~E.CT. 2157 
ltP.6Sfo!5 SECl1 20Et F.lL.E -R9Tf.LG SECT. .2157 
~P6S"e StCl. 2102 fIL.E. 'Y9APF ). SECT. 2157 

.. ~P6S"''' SECT • 2110 fIL.E. .,9ASPC SECT. 2151 
RPGSME' SE.CT. 2120 FIL.E. y'9COlJ~ SE.CT. 2157 
Rf'.bS"y ~E.CT. 2130 FIL.l:. Y90TPT ·SE:.CT. 2157 
RPGII SECT. -2145 Y~FO"'i( &~'T. 2157 
~G.J '5ECl .. :u.s Y9F1PR. ..bECT ... 2157 
~~(:;y, ~EC1. 2145 Y9FIPl SECT. 2157 

. RP(;'22 Sf-CT • Z1 .. 5 Y9FL ... 1 SE.CT. 2157 
CATL.Ol StCT. 2149 Y9FFTL ~ECT. 2157 
l:ATS~G ~ECT. Z14t; YCiFP1H S~C1. 2157 
Fc"'GFIL Sf-CT. 2140 Y9FSSI~ SEtTe 2157 
RCJCt-oTfo( SECT. 2140 Y9HIND SlCT. 2157 
~9~U""F' S1ECT. 2141J yCjHhU~ SECT. 2157 
.R9SGTc ~ECT • 2140 Y'11f:iUF SECT. .2157 
RCiSGIX SECT. 214u Y9"'~L~ SECT. 2157 
R9CKSb Sf:.CT. 2140 Y9KAF-F SECT. 2157 
R9MUNC' SECT. 214u Y9F-SFG SE.CT. 2157 
.AT TCt"Il\ SE.CT. 2140 _Y9~ECf ~tCT. 2157 

0 fC9BRAtr: SECT. 2140 Y9RF-Tfl SECT. 2157 
fic9FcOOl SECT .. Zl~7 Y9TOF'l SECT. 2157 
Y9~FC6 SECT. 2157 Y9VFll SE.CT. 2157 
Y~FOC1 SECT. Z157 Y9X~PF SECT. 2157 
..,9CfltST SfC~ .. 4157 Y9X~1E Sf-CT. 2157 
:Y9~tolST. SECT .. -Z157 ..DMPJ.L1L . .sE Cl4 ZlS! 
yr,lN~K SE.CT. 2157 "9THCE SE.CT. 2157 
Y§rfolHL-U SE.CT. 2157 Y9ERC(· Sf CT. 2157 
YiOETL SECT. 21S7 Y9IFfE6 SE.CT. 2157 
Y9TOTL SfCT. 21S7 R9fkTN.JtCl .. .2157 
"9LSTR St.tT. 2157 Y9LA~L Sf CT. 2157 
Y~OOTT Sf:.Cl .. 2157 l'9FTN). . SlCT. 2157 
YCJTOT1 '&ECT. 2157 Y9FSTL SECT. 2157 
Y .. £OTT SECT. 2157 R9USE.k -SlCl. 2157 
"9"LSQ SECT. Z157 ~9UNIT --SECT. . -21~7 
~9c.RA SECT .. 2157 R~"'OOE . .st.Cl. 2157 
Y9MAFtl. '&E.C1. 2157 ~9PO~T "SE.CT. 2157 
YClUOaT SECT. -2157 R9E.Oll . .!tt.Cl. .2157 
Y'1UDIoY SECT. 2157 fotCjEDT2 SE.CT. l1!)7 
~9UYU< SECT. 2157 R9EDT3 SECT. 2157 
Y9lJ~'H SE.CT. 2157 ft'ltOl. St.CT. 2157 
"Y9F[,'l [4 SECT~ 2157 .R9kfo-kT . ..sECT. .21e9. 
~9TeIO SECT. 2157 R91~Tb SECT. 2169 
• 9~¥ SECT,. 2157 ...JtSiCL1N .sECT • 2169 
WlilNTA S~CT. 2157 R«.It1T1N SE.CT. 21er, 

3 -21 



~9VINO -Stel. ~16§t Jl9,.V.Bl. 'sEC!... ZlCE C -fo(9USfliO SECT. -2169 ~9Hl~X SECT .. ~ICE 
k9 ... ~1 ... SECT. .21b9 R9Mve SECT ... 21CE 
H9FC'" SECT. 2169 k9Le'r St.CT. 21CE 
R9ST'~ S~CT. 21b9 R9S8Y $£CT ... 21C£ 
tot9t1LF.J SlCT. 21b9 ~9f!41t' SEC'. Zltt. 
R9REPT SE.CT. 2169 R9~V. StCT .. .2104 
f.t9P.YST SECT. 2169 R9FTfliX SECT. 2108 
f(~ACC1 SECT. Z1b9 CVASlb St:.CT. 21lS 
'rACC1e SECT. 2Ib9 R9FlDL SECT,. 21EA 

_YACC1(l SECT. 2169 iC~99~b SEC1 .. .2lF.D 
~~ACl~ SECT. 216~ R9Uf'.:Pf( SECT. 21F6 
R~AC2S SECT. 2169 .sU8wFL .st.CT. .2lFC 
R9AC3S SlCT. 2169 SU14REC: St.CT. 2201 
f(9AC1f11 St.CT. 2169 SUbkJII.~ S£CT~ 2208 
R9AC2" StCT. 216<, SUf4Rl'-" SECT. 2208 

. .tt9AC3t-; SECT. .2169 .SUBRML SECT. 2208 
~9F'PUF SECT. 2169 SUbRlh SECT. 220F 
P9lJPO .. SE.CT. 2169 SUBkA'" SECT. 2216 
R91~k2 Sl:CT. 21c9 C.ATFIL SECT. 221E FILE. 
t(9.1 Nt-f- StCT.: 21c9 S~ITCH SECT. 2231 fILE 
k9INF-~ "sECT .. 2169 R8DPCt1 SEct. 2235 

"R9PON' "SECt. 02169 JUW.S£6.. ..if.tL_. 2235. 
FILt f.t~C"CL SECT& 2109 ~~~FIL SE.CT. 2239 

YEkR~. St.CT. 2169 MOU~T SECT. 22 .. A FILt:. 
R9F'~. ~t:.CT. 21b9 TkliCEf< SECT. 22~~ FILE 
f<'1VS.T st.eT. 2169 050"1 St.CT ... 2250 F1LE. 
kCJOY~" St.CT. 2169 S~C""ON SlCT. 22f.E FILE. 
R9FT1~ SlCT. :llb9 SMCEDT St.CT~ 2306 . F .lL.E 
fl'9FFCt-. SE.CT. 2169 SMCS"T SECT. 2317 f"ILE 
M9CFll St.Cl. 2169 S,",CI"'b SE.CT. 2310 .fILE 
k9NFC~ St.CT. 216'1 SMCF ... C:r SlCT. 2322 FILE. 
R'IPf«;[· SECT. .216'1 VTEST1 S£CT~ 232b F1LE. 
H9,",kS. StCT. 21b9 "TEST2 St.CT. 2347 FILl 
R'IMP.J.-Fi SECT. 2169 .vTf.ST3 .. SlC1. 23bEs FIL.E. 
R9L~S_ SECT. 2169 VT£.ST. !tECT. 23&0 f XU:. C' k9fo(Y"'~ SECT .. 21b9 YT£ST~ SECT. 2380 FIll 
R9t-LTk SE.CT. 216'1 VTESTb SE.CT. 23FO FILE 
j('1Fkf"!t< SlCT. .2169 MTI.-slS SECT .. 2412 F1LE. 
~9ACA' SEC1. .ei.~ ~l~ ~f.C.T .. Z.2A fILl 
«9ACXl $tel' .. ~169 E.M£.ka w:i.. ..242a 
YA(;A)'r-. SECT. 2169 ;'EXl;C2· SECT. 243~ 
R9SI.Vl st.Cl .. .217S .11"'E11 SECT. 2 .. 42 F1L:E. 
f(9FlEST .!aECT. 2178 tI~E.IT SECT .. 2462 
.~'JFlO ... S£.Cl .. 217F PROG1. .5fCI.. 247.0 .E1J.£. 

fJCJFLCJ .. ·SfCT. 21"1F PHOG3 SECT. .249F -¥JL£. 
-..N9Fl~. SE.CT .. 217F Pk06~ St.CT .. -24lJb flLE 
5THACE 5lCT. 21& .. PkOGt- . SECT. 25AC FILl 
..$YSt<S6 5lCT • 21t'9 TIt-IT 5£.CT. 251B - F..lLf. 
fl~EJ(Il SECT. 2197 ~F'cOG2 SECT. 2S3t4 T'ILf 
~9fSTL $tCT1 219C flkOb4t SlCl. 2591 ... _.F ..lLf... 
~'JELOC SECT. 21A2 PROC:r2" SEtTo 2SDC 'FILE 
R'ITRC~ SlCT. -21.5 . lN~ _ SECT .. 2617 
R~T~O'T Sf CT. 2188 f'kOG7 SECT. 261& ·f ILl 
tc~J MJt-. St.Cl. 218E PkOC:r4A. SECT. 2677 FILE 
ft~Lt:.L StCT. 2IeS OMN2 S£CT~ 2t1A9 'FILE 
R96TL SECT. ZICS t£Ct11e. SE.,CT. 2~O5 
~9"'I. SECT. 21C' TCJU"'llT St:.CT. 2~17 
~95~YX f.ECT. 21Cf tw~1..Z SE.CL_ 257.9 
M9LbYX SECT. 2ICE TQPUkG SE:.Cl. 2586 

3 -22 



0 ~UI..S! .5£Cl .. - ~S8E :!QZSCH ~ ..21F.D-
·TwCOF-'Y SEel. 250b lQZCXY -sECT .. 21fD 
19SEIl .5f.CI.. . 2.6ED lJU.1J.ll' .~l .. Zlf.D 
i"'GE~L ~ECT. 270b T"'~t'SL[; SfC.T. 2A7" 
i~Tlhr Si:.CT .. ~7.oc T&.lZINf St.Cl .. .2.8~ 
1QU~UF ~ECT. 270b iwD"''''~ SECT. 2Ab'1 
TQf(OUT SECl. .270b TWZHLF SECT. 21lbU 
TW"'SClT S~CT. 2708 '~ZSEL ~ECT. 2805 
TQGCt'tk Sf CT. .2708 TwZ~LF-' Sf CT. 2EW'J 
Tf.lSCHk SECT. 2708 '''Pf(TZ SlCT. Zr:St.C 
lwcL.Jl.Y SlCl .. ...270b I"PklS ~lCT. ~C14 
T~UPJl.Y Sf CT. 270b TOPSLl Sf CT. 2C3U 

.TQRECO SECl. -2724 T" ... ~t:.L SlCT. 2C42 
TOI0CD SECT. 2157 T"OLC'" SECT. 2A~9 

_~QA-.lA). SECT .. 275E . ..21EC -St:.Cl. 2CeS fl1..i:. 
T~U"'H~ SECT. 27b~ T{,WTIL SE.CT. 2F9F fILl 

_1~SlkG -Sf..Cl ... 271,. . ]wP.sLl JafCT .. -2DOl :.f.lu.. 
TQPHfI,T StCT. 27~O TOSf;HO SECT. 2Eb2 

. 1wEOl T SECT .. 27be tiEhChl SECT • 2AB8 fILE 
""lOGENC SEC.T. 27AE @ENC"2 StCT. 2A06 FILl 
lODceD SECT. 27~E CO,",PL St:.CT. 2At.D FIL.l 
Tw,;v.,p ~ECT. 27A~ l~LI~T SlCT. Zc!:)u Fl1..t. 
%QCYHD ...:S£..CL :27AE B10R .5ECL .2S9E £lLf 
.~~~AW -=S£.C1. ~7.£ ~~[)sc,.. -SECT. ~.@" 
1w(. VL", Sf CT. 27 AI:: HlDl"lfo'~ SECT. ZA~'I 
TwT()~'f SEC1. 2At:S2 TwZSO~ SEC'. 2F'1(J 
.l'wP"TR). SECT. .:27f:1cs LO&1EC St.CT • .31'14t FILE. 
''''LOCtI SECT. 27EO ~M1ENl SECT. 2[;2A FILL 
Tw2.bt.h SEC.l. -27FLJ 8~2t.t'lT St.CT. 207b Fl~t. 
T"'SEL.C SECT. 2&0';' ~MINl SECl. 30b7 FIL.L 
l'''''-Ai,JL' .st.CT. ~ts.t. _£I'" I h2 SEC.T • 3081 FIL.E 
T~SLS· St.CT. 28b'1 8~lN3 ~lCT. 309b FIL~ 
T~~Aon SfC'. ~879 _.ST A~l SE.CT. 2UCZ 
l"~~I" SECT. 2M7~ PAlh' st.C'. 20C~ 
lQkTI\X SEC. T. 2879 afilTt.2 !lECT .. . ..30,,5 f.1Lt. 

0 Tf.lSET~ SEC,. 287f-
1"5ETC Sf-ct. -2880 F1Nl 
T~UM:~ SlCT. 2ebu Ih 
lwClIfI,l SECT. 2~1Jb 
TQLHn ~ECT. 2~£i:s ·Z 
lLLt .... ~ ~ 
~OSELt: . ""5feT. i!91C 
1 "t-:L.Pf St.Cl. 2t,/4t~ 

lwHU ..... St.CT. 29b" 
~~SRCH SECT. 29bE 
T~SO~T SteT. 298~ 

. ,"OGOTC SECT. ,2t.bC '*'ILf. 
TwO~Tt:. StCT. 2A~? 

. :JwT J~t Sf-CT • 2AB2 
TQZCOr. St:CT. 29AE 
TwCC~l St.CT. 21l1C flU:. 
T"CCf.'2 SECT. Z9UCj Fl1..E 

. .l~CCfo' 1 Sf C1. -2~9b 
19PkTA "S£CT. 2C4t7 
19Z1EC 5E.CT. 29D2 
7"ZTI~ SECT. 27FO 
1.w2tsUF Sf CT. 27fO 
l'~Zf((llJ SECT. 27FO 
l"c.z~~c ~EC1~ ·27FD 
t(~Zuc.t'! St.CT. 21Fu 

o 

3-23 



SYSTEM LIBRARY 

SYSTEM MACROS INITIATE PROGRAMS IN THE SYSTEM LIBRARY 

SCHDLE 

SYSCHD 

c, p, x, d 

c, p 

ALLOCATABLE CORE 

PART 1 

HOW TO PUT A PROGRAM IN THE SYSTEM LIBRARY 

:~JOB"SYSLIB"CDCIJ" PUT A PROGRAM ON THE SYSTEM LIBRARY 
:~FTN 

OPT LXR 
SOURCE PGM 
THIS PGM MUST BE 
WRITTEN IN A 
SPECIAL FORM TO RUN IN ALLOCATABLE 
CORE 
MON 

:~ L I BEDT 
:~K" 18" P 8 
:~ M" 31" " , M" N 
::DM 
::z 

HOW to DUMP SYSTEM LIBRARY 

*JOB, LSTLIB, CDCIJ LIST SYSTEM LIBRARY 

*LIBEDT 

*DM 

*Z 

3 -24 

o. 

CI 

o 



o 

o 

o 

LIBEDT CONTROL STATEMENTS 

MANIPULATE PROGRAM LIBRARY 

*L,epn 

'*R,n,F 

*DL 

ADD/REPLACE PROGRAM 

ADD/REPLACE FI LE . 

REMOVE PROGRAM OR FILE 

LIST CONTENTS OF PROGRAM 
LIBRARY DIRECTORY 

MANIPULATE SYSTEM LIBRARY 

* A,ar ,s,n,d, 

*M,ar s,d,M,N 

*DM 

*S,ar,v,m 

REPLACE PARTITION PROGRAM 

REPLACE SYSTEM LIBRARY ENTRY 

LIST SYSTEM LIBRARY DIRECTORY 

SET CORE REQUEST PRIORITY 

3-25 



o 

COPY 

*T,i,mi,o,mo,n,f COPY 

*F TERMINATE *T 

*FOK TRANSFER FOR *T 

MISCELLANEOUS 

*P,n,R/P,Sa LOAD, COMBINE AND PRODUCE l~' 
ABSOLUTE RECORD 

*K,lu,Plu,Llu CHANGE STANDARD UNITS 

*U GET CONTROL STATEMENTS FROM 
COMMENTS DEVICE 

*V,lu,m GET CONTROL STATEMENTS FROM 1U 

*Z TERMINATE LIBEDT 

3-26 



,w 
'I 
N 
Q) 

/ 
t-' 

(; ,.~ o 
JllB,COelJ, •• UST CI(EPT TABLE EXAMPLE TO ILLUSTRATE CREPTO AND CREPTl 

1100 HASS STORAGE OPERATING SYSrE~ VERSION 5.0 DArE UF RUN: 01/30/79 SySTEH 10: ARHFAe 18-20 

*ASSl:H 

eeeeeceeeee 
eeeeceeeeceee 
eeceeeeeeeeee 
eee eee 
eee 
eec 
eee 
eec 
eee 
eec 
eee 
eee eee 
eeeeeeeeeeeee 
eeceeeeeeceee 
eeceeeeeeee 

000000000000 
OOOOOOOOOOUOO 
OOOO()OODUOOOO 
DOD ODD 
000 000 
OlJO UOO 
ODD ODD 
ODD ODD 
DOD DUO 
DOD 000 
DOD 000 
000 ODD 
0000000000(1)0 
0000000000000 
OOOOOOOOOOIlO 

eeeeeeeeeee 
eeceeceeeecec 
eeeeeeeeeeeee 
eee eee 
eee 
eec 
eee 
eee 
eee 
eee 
eee 
eee eee 
eeeeeeeeeeeee 
eeeeeeeeeeeee 
eeeeeeceeee 

11IIIIlIlllfI 
1111111111111 
1111111111111 

III 
III 
111 
III 
III 
III 
III 
III 
III 

IIIllllIIll1I 
IIIIlIIIIlII( 
IIIIIIIIIIIII 

JJJ 
JJJ 
JJJ 
JJJ 
JJJ 
JJJ 
JJJ 
JJJ 
JJJ 
JJJ 
JJJ 

JJ J JJJ 
JJJJJJJJJJJJJ 
JJJJJJJJJJJJJ 
JJJJJJJJJJJ 

/~ 

~-) 
\ 

(07/11l7d) 



CREPT 

0001 
0002 
0003 POOOO OBOO 
0004 
0005 
0006 
0007 
0008 
0009 

0011 POOOI C400 
POOOZ 7FFF 

0012 POO03 C400 
POO04 7FFF 

0013 POO05 C400 
POO06 7FFF 

0014 

PGH= 0007 ( 

X 
X 
X 
X 
X 
X 

PAGE 1 DATE: 01/30/79 

NAH CREPT 
ENT BEGIN 

LIST CREPT TABLE 

SeGIN NOP 
EXT 
EXT 
EXT 

* • 
* 

NOTE-

LDA+ 

LOA+ 

LDA+ 

END 

SCHTOP IS IN CREPTl 
LOGIA IS IN CREPTO 
DUHI'1Y2 
THIS IS A DO-NOTHING PROGRAM 
ITS SOLE PURPOSE IS TO LIST THE 
CORE RESIDENT ENTRY POINT TABLE 

LOGIA 

DUHMY2 

SCHTOP 

BEGIN 

7J COM = 0000 ( 0) OAT = 0000 ( 

3-26.2 

OJ 

C) 

o 

o 



CREPT PAGE 2 

c=).*. S Y H B 0 L TAB L E *** 

BEGIN 0002 DUHHY2 0006 I 0000 LOGIA 

.CTO,PlEASE TYPE *E AFTER LOADER ERROR EIO 
*CTO~THIS WILL CAUSE lOAuER TO LINK WITH CREPT 
·L~8 

*x 
CREPT b800 LIST CREPT TABLE 

ElO 
DUHHY2 
LOGIA ' 
SCHTOP 

o 

(~\ 
_../ 

3-26.3 

DATE: 01/30/79 

0005 SCHTOP 0004 



ENTRY POINT TABLE -
TSlSIZ 3ICC P1829 073F MIS 3EE3 FNR 3aOO 
TOO 3EOS MAKQ 3862 LOCF 3F80 BSHD ItF51 0 XHALC 2A90 ADEV 3BEO rHOS 7FFF REQXT 3408 
R9J1UXI 0000 R 9HUX2 0002 R91'1UX3 0003 R9t1UX4 0004 
R9HUX5 0007 R9HUXb 0001 P BATaO c83C PSATOI 08SA 
READRC 47FC C QMM18 7FFF JBCNFG 3FA8 RELBYQ 55AF 
ttRECAO 4972 DATFHT 0000 VOLBLK 0255 DGNTAB 048C 
HICSUS 0022 NSTACK 0005 TSTlOC OA29 THR THO 300F 
VERIFY 00A8 OISHNT ooso SECTOR 7F80 TSQPRI 0:)03 
STDINP OOOA UNPTIH 3F7D Hllt 0000 QHINTX 7FFF 
UNPSRT 6800 TSUSER OAF4 FUNSHR 4B41 TSLUNT 3125 
L1829 02CC LI860 0489 118331 4008 P83310 0580 
FILE4 3F8C CPREL 33DF RCTV 34C7 MINTO 1679 
FI'tPAOl 09CC FHPA02 0907 FKPA03 09EC BRKPT 0070 
MONTO 1676 FJoIPAOb OA20 FHPA07 OAZ8 FMPA08 GA2S 
Ft1PA09 OA20 ASAV 385C F HPL01 5F5A K65COR 7FFF 
FHPL03 6220 FMPL04 61F4 FHPL05 65B4 FHPL06 5FF3 
FMPL07 50DS FMPL08 5094 FHPl09 6120 DUMMYI GOCS 
OUHHY2 0002 UNPENO A7FF JPSTV4 0046 RElSIA 3F79 
WTREAO 30A2 RMUCLO 0007 SLICER 2S7A TSLHSS 31CA 
TSCNAC 2642 THRLVL 0004 . ERRMSG 3F74 SCHTOP 34E5 
REAREQ 279E TSCHAN 31b3 STRSEC OADA BSYEFS 4006 
STRLEN FB30 TSATCH 28F7 PGlUNT 3122 SYSlVL 3236 
HMAHAX 0.1.16 ClRTCU 519C CNTHAR 1683 CVLTRK 51E9 
GTNXUH 2A17 S1827 0324 lUP 3F80 S18217 0320 
LOGIA 0438 VOLA 38C9 CONCU 5120 NABS 3781 
CPFET 3476 HIINP 04E" SWTCH 3F8F NMONI 3499 
CPMOD 33FB . XMAT OAOI J BFLVIt 0000 DOUT 7FFF 

(~ PARAHE 3771 EFDATA 4009 FBASY4 7FFF HTBFEO O.9CB 
ECCAlG 52C6 RDPTV4 7FFF Ff'1SAYA OASA JPFLV4 005/t 
HASCON 5652 COHPV4 3F86 INPTV4 3F81 HASEXT 55 SO 
TSMEND OAC4 JPCHGE 002A FINDRQ 3BOO ALCLGH 19F1 
SCHSTK 0308 LSTLOC 0972 . HPFLAG 0170 DATSEP 002F 
TSIPRC 2BDF ADNSHP 2A05 TSlOFF 0007 STRBAS FOOO 
DUHALT 0002 ReQVER 0069 UPLOHH 3827 TSFHCP 333C 
HI5 0000 TSt1HER 3360 CONSLU 0004 CQNTCU 4E3D 
LRGUSR OA3l HA 38AS REL 3ACO IPI 3847 
HAS 300 5580 IDLE 1007 MASKT 0145 LI BET 3F77 
PGMIN 30EA HHREL 2855 SPACE 176E SASS 3789 
ECORE 3AC5 ROISP 34E5 NUMCP 0006 TK7RH 7FFF 
FHPAIO OA39 FMPAll OA51 - FHPA12 OA50 FHPAl3 OAbS 
FHPA14 OA7S . FHPA15 OA92 F tiP A16 OA99 FHPA17 04A3 
FHPA18 OAA6 FMPA19 OAAC FHPLlO 6581 t1T8FSO 0359 
FJ1PL12 623A F ttPL13 62A2 FMPL14 6570 BUSY 0913 
FMPL16 6092 UCTASL OCE2 FHPL18 5F2D FHPL19 6227 
HAXCOP OOIE LOBOTS 01A5 UPBOTB 0194 PKEYV4 1FFF 
TSPAGE 097C Ft1PFLG 7FFF SKAlND 5023 JBCNCL 3F92 
UNPIOF 3F7E LRTABl 0096 LSIZY4 04B8 PGHINT 310F 
TSULBF 272A SYFAll 0187 OFNSHP 2A55 I D UHMY 4DB4 
RESTOR 0062 C Ot1PR Q 3882 NIl 0000 SYSSEG 0085 
CNDRIV 5158 CUCNST 5122 TSHUSR OA44 NTSUSR O:) 03 
T SE XI T 316F SYSYER 3738 HI 3E54 HOV 3FC5 
USE 7FFF IDLER IODC FILEl 3F89 JPRET 1688 
MPl234 3813 NDISP 7FFF Kb5T10 7FFF NXUC OAlO 
K65T12 7FFF I"tlBUF 3F75 IPROC 3837 NUHLU 0014 

C~' NXUH OA2l JPRETI 3FA9 CARDRO 375F JLGOV4 003F -) 
SHOCPA 54CA U2II'IIT 7FFF FMUFCB 4698 RElFIL 7FFF 
VOLEND 0308 OUTPV4 7FFF LUNAHE 0494 ONTIHE OA3B 

3-26.4 

------- -~- - -~ ----



DENXUC 2AbA FSTIME lOF8 ABSPAR 440E EXPIRE 2&43 
USKNPG 5200 TSWSEC 260e RQLLIH OA3l TSCKPM lBAS 

0 EFSTOR 009A SHTSIH 031B JOBPRO 0015 COBOPS 1COO 
COHREQ 579A A,"UNTX 3F13 EMPSRT lOF5 SYSOAY 3131 
SWAPAR OAF9 PRO 3838 ASC 3484 RW 3bA7 
JPT13 0031 SAVLU 3689 SEEK9 5033 CPTBL 098F 
CPAOD 3447 DAYTO 1677 M1a1l T 5AEO 15110 4008 
CPCHK 33Cb MHAlC 2810 HIPRO ooae FLIST 1681 
PORTS 07FA PWFOV 38A8 SPCEV4 7FFF SETBNO 3383 
JLLUV4 1684 STLPV4 3AZC LIKDUt1 5210 DEVERR 3fiEO 
SETFNS 5019 FHEOFC 5F82 CPT8lN 0013 MSIZV4 FFFE 
TSAREA 096F TSYFTN ZBSC JOBENT OOOE CLRINT 4F29 
HORHIN 167C SBATOU 0348 SYSCOP 007E FMBRRN 4707 
N12 0000 fTNREL 7FFF SYSMON 3037 N5 0000 
LSTOUT 0009 N7 0000 H8 0000 N9 0000 
AYERTO 1672 LVL5TR 0950 L1827 0308 S1860 030E 
L18277 0275 ECXIT 5391 FILE2 3F8A ENDOVIt 2b3f 
HMEF 4022 DONE ItE26 CPDEF 3395 11811 T 5B1E 
ESMO 4EBF MONI 3499 YERTO 1675 NAHEY4 0040 
BUFFE 1670 hINT 3E54 LOOP 3A64 JPSHT 3F8a 
QSAV 38A6 VINPV4 3F8b CDRDSH 7FFF XHTENO OA15 
ALTDAI 54ED TDFUNC 0093 FHSCOH 4lt28 II "CPS 003C 
ALeORE 38F3 LOAOIN )F90 BGNMON 2b40 CLRDAS 5196 
LBATIN 0543 RLSECU 5013 P RTCDR OAlB TSSGIN 2B78 
NRERLE ODC3 TOTHIN 1670 I NTSTK 01B5 SHPSEC OA2D 
FSLIMT OFEC TSINTR 3112 EPORTS 083B INSTLU 0006 
SYUTIL OOAF LOOO 0120 C16331 4E2A TIMEC 0005 
CHAIN 3160 XHREL 2AE2 AREAC 1788 SECON 167A 
PCQRE 04BA TRVEC 3F72 DWAOD Ita F5 UPTDD 3E05 

O· MMAT OA11 CONTA 1678 SHDGDl 54Ef '"'SA V 38A7 
DATFLG 4E49 TBLADR 10F4 SEKDOH 5093 BATINP 0000 
STHSV4 lA08 POLCHK 51BO NIPROC 3837 KISSEe 0003 
TSNABL 2640 PARTBL 09bE LISEDT 0000 EFLIsr OOAl 
RMUCFT 0006 SHDGDR 54EF UNLOCK 482E ·PROTEC ODIC 
AMQNTO 1673 INYIHT 0483 CLFRIO 467F TSPHlt .... 30EO 
HKSPLU CA30 N13 0000 INIPRT 5977 TSCKJ"tU 23CF 
EXTSTK 0205 OVFVOL 38E6 CCP 0974 LOG 4C47 
LOGI 0440 LOG2 0462 HAKEQ 3S82 BEGIN b800 
SlBllT 5AAB LUABS 3771 NFNR 3800 JKIN 3F91 
JCROV4 0038 XHMOD 2AEA NSWP OA25 AFILV4 005S 
ODE BUG 0077 TSIOC1 3262 TSIOC2 3300 SCHLHG 0060 
LOADSD 0007 HASERR 5684 CAL THO 095B HASDRV 54FD 
I'tI'4TCHK OOBb TSTASK 2648 BATLST aOOE PLENTH 0000 
JPLOAD 0023 XHBLOI( 2646 TSOFFH OA34 TERrtLu 0005 
DE NSHP 2A5C ONNXUC 2908 TSATTC 313C PTYERR 3848 
FSCTNE OOlE LMTSIM 033C EHPSTP 10F6 II 3bA7 
T2 36A7 ONNXUM 29E2 T4 36A7 Tb 36A7 
lSTPRT 0003 AUTOST 00C4 T9 3555 LTSUSR 0030 
HAXSEC 0168 SYSID 0174 UBPROT 0191 LSPROT 0192 
ALTERR 0477 TK7wEF 7FFF TK70AT 7FFF HBRlIN 0004 
AUTON 083B N4 0001 N6 0000 H10 0000 
PTNALC 7FFF ACPTBE 0975 CPTSLZ 0072 PROt1TR 3E08 
BAITOS 0001 ROULIH OA33 RETIHE OA39 FIlOAO OA3E 
QPASWD OA3F kKSTAT OA43 RHUOPN 0000 RMUCSH 0001 
RMUCFO 0005 TSPORT OAC4 TSPENO OAF4 TSUEND OS24 

0 
HWINIT 7FFF SIMRSV 7FFF FMRDEL 5E 81 FMMOSU OODA 
FMI'IOIU OOOA FMNRCD 0010 UCTLEN 00B4" HAXLOC 0309 
FMI'10SF 0006 FHFCBS ODC4 F HMOI F 0006 FHFCBI OEIE 
FC 85 CT OECO FSlEND 1063 HMLUTB 1064 PCTABL 1070 
I DL CT R lOEI THRTYP lOF 1 TMCODE 0008 DHICOD lQF3 

3-26.5 



BUFF 110e CGHOST 1670 ADAYTD 1674 HORTO 1b18 
TODlVL 5016 NSCHEO 167E PSIZV4 0488 OD8SIl 0369 
CHRSFG 167F FJ'tASK 1680 QaSTP 1b82 TIO 17bE 
TI7 176E HI 0362 N2 0246 S1829 0334 C) SBATIN 033C lBATOU 0500 FHPL02 64A2 FHPA04 09FA 
FHPA05 OA08 F HPL11 6166 FHPl15 5F4A FHPl17 50C8 
DATSAS 0000 TSURTN 26EO TIHSLC 28C3 T5ACTV 2641 
TSHFLG 2645 ONNSHP 29E9 OFNXUC 2A~E DENXUM 2Ab3 
XHRSV 2A94 XHRTN 2AE6 TSCLOK 2873 TSRFTN 2898 
TSCLL2 28A3 TSPHCK 28C5 UNPTBL 2C53 SLICUP 3130 
TSLCUP 3133 ATTACH 3139 TSLLSB 31CS TSXERR 3158 
PGMOUT 3IbC TSLICE 3200 TSUSCP 3253 EXTREG 33bF 
CPSET 341C DISPXX 34E6 T1B 3555 T19 35E8 
TO 36A7 CKTHRO 3735 RPHASK 372F T14 3755 
T16 3766 CASS 37C9 ALLIN 37E2 PHFAIL 3887 
ALVOL 38C9 VOLR 380E OFVQL 38E6 RECALC 3aF3 
RTNeOR 39bF lCORE 39A3 T12 3A8D SWAPCK 34CE 
LEND 3A5E SHAPON 3A50 OUTPUT 3AZ2 SPACE4 3A56 
NOG30A 3A70 5CH 3AE5 NCHPRQ 3882 ALTDEV 3BEO 
CONYER 3CC9 AlTSUS 3D3C T HI NT 3051 TIHEUP 3096 
T8 3051 T15 3051 OTMER 30E3 DTIHER 3DE3 
HIBX 3EE4 RELFLE 3F34 JQBSTR 3ES7 PARBV4 3F7A 
SCHERR. 3FBl JOBIND 3F7B TRANV 3F72 UNPIO 3F7C 
SPASM 3F85 FILE3 3F8B RECDV 3F78 LPTRS 3F8E 
BATCLU 3F7F PRORET 3F87 JBPROE 3F73 TRNVEC 3F76 
AUTF9 3F82 AUTFA 3F83 AUTFB 3F84 J8CFGZ 3F98 
COUTV4 3FOC OLDUHP 3FFE casap 4183 FHSWAP 43F5 
FHCOHP 443A FHCOHE 442C FHP PRO 43E9 CKUADR 44ED 
MMREAD 4518 HHHRIT 451C LOKCHK 450C REMLOK 4&4F 
I NSLOK 465B FMCHKQ 460.3 FMCQVL 45E1 PUTREC 4711 ---) GETNXT 4806 WRTBAK 4904 COMSEQ ~9BE LOCKFL 4813 (~ 
FSHARE 4838 DHSUB 4C1B o HHUL 4C26 CEFDTA 4007 
EFlOCK 4eAS EFCOVL 4D08 COUMMY 4085 EDUMHY 4086 
GETlOS 4E28 CSHD 4E2A E 18331 4EBF EGH05T 4F3b 
WANlOR 4F50 BSHD4 4F70 ALHERR 4F60 XSMD 4FCE 
CLRSKN 5048 S EKCHK 502S SEKCOH 5092 SEKINP 5091 
CKOVRL 51CF CLRSTS 5190 CLRTDA 518A DASTAT 51AB 
DRICHK 51ca I'ISBLS8 51F7 CLRACR 5lA2 SHOSTS 51AE 
SELFLG 511F FFILBF 54e5 FILSHO 54C7 SHDCPG 540E 
SMDCPS 54DO SMOACP 54E9 S MOGCU 54ED SMDROR 54Fl 
LTOFDR 54F6 HPDVCK 54F9 HPDRIV 54FB IJRt1NL 5b8E 
ETRMi'lL 5808 CTRHNL 5862 ICONSL 5B24 

3-26.6 



() 

JUB,JOHN,CIU 
1100 HASS STORAGE OPERATING SYSTEH VERSION 5.0 

W 
·1 
N 
(j) 

.""-J *' K, P 8 
+ASSlH 

JJJ 
JJJ 
JJJ 
JJJ 
JJJ 
JJ J 
JJJ 
JJJ 
JJJ 
JJJ 
JJJ 

JJJ JJJ 
JJJJJJJJJJJJJ 
JJJJJJJJJJJJJ 
JJJJJJJJJJJ 

00000000000 
OOOOOOOUOOOOO 
OOOOOOUOUUUUO 
(JiJO 0000 
UOO OOUOO 
000 oouuno 
000 000 000 
000 000 OUO 
000 UOO oUO 
OOOOUO UOO 
00000 lIOO 
0000 000 
oooooouooouoo 
OOOOOOOOOUOOO 

OOOUOOOOUOU 

o o 
MASS MEMORY RESIDENT EXAMPLE 
DATE OF RUN: 01/30/79 SYS TEH (0: ARHFAC 16-20 (Ullll/7tH 

tiHH tuiH HNN NNN 
UHti HHH HNN NNN 
HI-Hi HHti NNN NHN 
H'iH HHH NHNN HNto! 
HUH HUH HNNN~I I'll'll" 
HltH WIU NNNNto!N HNIi 
IttHf Hti UH tUiH H liH HNN HHN NNN 
HHHHHHIIHHHHHH NN'" NNH NNN 
mttHUtiutHHliHHH Ntm NNN NNN 
HrtH HHIi I'll'll" HNNHHH 
WtH HtiH NNN HHNH:i 
HHH Htili HNN HHH:i 
HIm HHIi NHN NNN 
WHt Htili HNN HNrot 
HHH titiH HNN HNN 



0001 
0002 

0004 
0005 
0006 

0008 
0009 
0010 
0011 

0013 
0014 
0015 
0016 
0017 
0018 

CONTIN 

0020 POOOO CBFE 
0021 POOOI b800 

P0002 004C 
0022 
0022 P0003 5ltF4 
0022 P0004 00b6 
0022 P0005 0007 

P0006 0000 
0022. P0007 1004 
0022 poooa 0000 

P0009 0050 
0023 POOOA 14EA 
0024 
0024 POOOS 54F4 
0024 POOOC 0966 
0024 POOOO 0007 

POOOE 0000 
0024 POOOF 18F9 
0024 paOLO 0004 

POOll 0048 
0025 POOl2 14EA 
0026 POOl3 C500 

P0014 0043 
0027 
0027 POOl5 048b 
0027 POOlb Eoao 
0027 P0017 004lt 
0028 POOLS 1810 
0029 P0019 oeoo 
0030 

** 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

CONTIN 

REPLY 

CHECK 

PAGE 1 DATE: 01/30/79 

NAt1 
EXT 

CONTIN 
DUMHY2 

DECK ID CAL INTERACTIVE PAUSE C=) 

EXAMPLE OF A MASS MEMORY RESIDENT 
SYSTEM LIBRARY PROGRAM '*M) USING 
SYSTEM REOUESTS 

THE PURPOSE OF THIS PROGRAM IS 
TO READ CHARACTERS FROM THE STANDARD 
INPUT UNIT AND RESPOND TO DIFFERENT 
INPUT CHARACTER PATTE~NS. 

IF THE INPUT CHARACTERS HERE 
'YES' OR 'NO' THE PROGRAM 'PNOYES' 
IS SCHEDULED 
IF 'END' HAS INPUT, THE PROGRAM TERMINATES. 
IF ANYTHING ELSE IS TYPED IN, 
IT IS CONSIDERED GARBAGE 

HUH 
STA 

scaFE 
REL+2 

FIRST WORD ADDRESS 
CORE RELEASE ADDRESS 

JMP- ($EAl JUMP TO DISPATCHER 
FREAD $F9,CHECK-*+1,IBUF-*+5,BUFSIl,,6,6,I,I 

JMP­
LOA 

(SEA) 
ISUF 

CAE NO 

JHP* TRYES 
ENe 0 
SCHDLE (OUMHY21,o 

3-26.8 

JUMP TO DISPATCHER 
FIRST 2 CHARS OF SCREEN ENTRY 

HAS NO KEYED 

IF NOT TRY YES 
o MEANS NO 
IF SO SCHEDULE NO AND EXIT 



CaNTIN PAGE 2 DATE: 01/30/79 

0 0030 POOIA 54F4. 
0030 POOl8 120b 
0030 POOIC FFFF X 
0031 P001D 0152 SON NOTSHD IF NOT SCHEOULED 
0032 POOLE 1800 JHP REL JUMP TO RELEASE CORE 

POO1F 0020 
0033 NOTSHD F wR I TE 4~CONTIN-*+I,NOTMSG-*+5,NOTSIZ"6,6,,r 
0033 P0020 54F4 
0033 P0021 0066 
0033 P0022 7FEI 

POO23 0000 
0033 P0024 1004 
0033 POO25 0007 

P0020 0067 
0034 POO27 14EA JrtP- (SEA) 
0035 TRYES CAE YES HAS YE KEYED 
0035 POO28 0486 
0035 POOl9 Eooa 
0035 P002A 0033 
0036 POOlS 1800 JHP* TRYEND IF NOY TRY END 
0037 P002C caoo LOA IBUF+l GET NEXT 2 CHARS OF SCREEN ENTRY 

POOZD 0028 
0038 CAE YES+1 WAS S K Et EO 
0038 P002E 0486 
0038 POO2F Eooa 
0038 P0030 OOZE 
0039 P0031 1807 JMP* TRYENO IF Nor TRY EliD 

0 0040 P0032 oeOl ENQ 1 1 MEANS YES 
0041 SCHDLE C)UMMYZ) ~6 IF SO SCHEDULE YES AND EXIT 
0041 P0033 54F4 
0041 POO34 1206 
0041 P0035 80lC X 
OO~2 POO30 1800 J I1P REL JUMP TO RELEASE CORE 

POO37 0015 
0043 P0038 C800 TRYEND LOA IBUF FIRST 2 C~ARS OF SCREEN ENTRY 

POO39 OOIE 
0044 CAE END WAS EN KEYED 
0044 P003A 0486 
0044 P003S EOOO 
0044 POO3C 0023 
0045 P003D 1812 JHP* ERROR IF NOT OUTPUT EROOR AND R~TR y 
0046 PQ03E ceoo LOA IBUF+l GET NEXT 2 CiARS 

P003F 0019 
0047 CAE "END+1 HAS 0 KEYED 
0047 POO40 0486 
0047 P0041 EOOO 
0047 P0042 OOIE 
0048 P0043 180C JMP* ERROR IF NOT OUTPUT ERROR AND RETRY 
0049 PEND F WR ITE 4~REL-.+l,ENOMSG-*+5,ENDSIZt,b,6,tI 
0049 POO44 54F4 
0049 P0045 00b6 
0049 POO46 0007 

P0047 0000 

C) 
3-26.9 



CONTIN PAGE 3 OAT:: 01/30/79 

0049 POO48 1004 0 
OO~9 POOit9 0008 

POOItA 0038 
0050 POO4B 14EA POUT JMP- « SEA) JU~P TO DISPATCH~R 
0051 REi.. RE1.EAS O~T, 0 RELEASE CO~E AND JUMP To3 :JISPATCH=~ 
0051 POO4C 54F't 
0051 PC04D IS01 
0051 P004E 0000 
0052 ERROR F~RlrE ~~COHTIN-.+1,ERRMSG-.+5,ERRSIZ"o,6"I 
0052 POOItF S4FIt 
0052 POO50 ODbb 
0052 P0051 7FB2 

?OO52 0000 
0052 POO53 1004 
0052 poasit OOOF 

POO55 OOlE 
0053 POO56 14EA J,;P- (SEAl JUMP TO DISPATCHER 
0054 POO57 2020 IBUF A1.F ., * POOS8 2020 

POO59 2020 
POO5A 2020 

0055 0004 EQU BUFSIZ{*-IBUF) 
0056 POO5B ~E-CtF NO ALr .,NO • 

POO5C 2020 
0057 POO50 5945 YES ALF .,YES * 

POO5E 5320 
(="1 0058 POOSF 45'tE END ALF *,END * 

POO60 ~'tZO 
0059 POObl 4152 COHMSG A1.F .,ARE YOU READY TO COP4TliiUE.* 

POOb2 't520 
POO63 594F 
P0064 5520 
POOo5 5245 
POOb6 4144 
POO67 5920 
POOb8 544F 
POOb9 2043 
POO6A 'tF4E 
POOb6 5449 
POO6C 4E55 
POO6D 4540 

OObO 0000 EQU CONSIZ'·-CONfltSG) 
0061 POObE 5245 E RRMS G AlF *,REPLY WAS NOT :HO:,:YES:,:ENO:. 

POOoF 504C 
POO70 5920 
POO71 5741 
POO72 5320 
POO73 4E4F 
POO74 5420 
POO75 3A'tE 
POO76 4F3A 
1'0077 2C3A 
?OO78 5945 ,:-J 1'0079 533A \-,." 

3-26.10 



CONTIN PAGE It DATE: 01/30/79 

0 POO7A 2C3A 
P0078 454E 
POO7C 443A 

0062 OOOF EeU ERRSIZ(*-ERRHSGl 
0063 POO70 594F ENDMSG ALF *,YOU HAVE NOH FINISHED* 

POO7E 5520 
P007F 4841 
POO8D 5645 
POO8l 204E 
POD82 4F57 
P0083 2046 
P0084 494E 
PODe5 4953 
POO86 4845 
POOS7 4420 

0064 0008 Eeu ENDSIZ(*-ENOt1SGl 
0065 PQ088 4E4F NOTHSG AlF *, NOT SCHEDULED. 

POO89 5420 
POO8A 5343 
POD8S 4845 
poose 4455 
POO8D 4C45 
POOSE 4420 

006b 0007 EQU NOTSIZ(*-NOTHSG) 
0067 END 

0 PGH= 008F ( 143) COM = 0000 ( 0) OAT = 0000 « 0) 

3-26.11 



W 
I 

N 
Q) 

I 
t-' 
N 

cOIn I t~ PAGE 5 

••• S Y H I) (1 L 

BUFSll U055 
ERRMSG 00('1 
PEND UOlt9 

·lIB~IH 
LIB 

IN 

+K,19 
IN 

.H,30,,,/1 
CUI ... TI N nooo 

IN 

*/ 
*K,PtI 
.ASSEI1 

r--\ 
\J 

TAd l E ••• 

CHECK 
ERROR 
POUT 

0026 
U052 
UU5U 

CUNliS G 
ERKSII 
REL 

0059 
0062 
0051 

l:UNSll 
1 
REPLY 

Uf:CK 10 CAL INTERACTIVE PAUSE 

UATt: 01/30/79 

0060 CWHIM 
oouo 13UF 
0014 r~YENO 

OOll 
005" 
00'13 

(~) 

OUr1HYl 
NU 
TRYl:S 

OOlJl 
00,)(' 
UO]5 

END 
NOTI1SG 
YES 

0058 
OObS 
0057 

ENOHSG U063 ENUSll 
HOTSHU 003J NUJSIl 

OObit 
OObb 

o 



PAGE 1 DATE: 01/30/79 

00001 \'4A/"I Pf'4C'YES QEC~ I Ij PROCESS MO AHO Y:5 
0002 ExT O.UMI1Yl 
0003 POOOO CaFE HUf1 SC8FE FIRST WORD AJORESS 
000"t POOOl 0800 5TA REL·Z CJ~E ~EL.SA.SE ADDRESS 

P0002 .C01C 
OC05 POO03 015C S·~tIt PYES C) 1'40N a THEl'4 PROCESS Y=5 
0000 F;.tRIT: "t,CONSCu-*+1~Nu~SG-*·5,HaSIz"o,o,,1 
OOCo POCO" 5~FIt 

OOOe pooos 0000 
0000 POOOb 0007 

POO07 0000 
0000 poooe 1001t 
OOub POOO9 OOOC 

POOOA 0011. 
0007 poaQS lltEA JI'tP- (SEAl JU"P TO DISPATCHER 
0008 COHSCO SCHOLE routI\r!Y 1) ,b RE-SCHEOUL5 ~19H P90GRAM 
0008 poaoc 51tF"t 
0008 poaOD 120b 
aooa POOOS FFFF x 
0009 POOOF 1800 Jr!P RE L. JUMP TO RELEASE CORE 

paOLO OOOC 
0010 pyas FWKITE It.QUT-*·l,YES~SG-*.5~YEStz"b.b~,1 
0010 POOli 5ltFIt 
0010 POO12 OObo 
0010 POOl3 0007 

POO14 0000 
0010 POOl5 lOo~ 

0010 POOlb OOOF 

'0 POO17 0019 
0011 1'0018 14EA JMP- (SEA) JUMP TO DISPATCHER. 
0012 OUT SCHOL: (DUM~Yl).o R~-SHEOUL: ~AIHPROGRAI1 

0012 POO19 5"tFLt 
OOlZ POO1A lZOb 
0012· P.0015 aOOE: x 
0013 RE L. REl..EAS 09T,0 RELEASE' ca~E AND JUMP TO DISPATCH;~ 
0013 POOle 5ltFIt 
OOl3 ?OOl.:l 1001 
0013 POOLE 0000 
00 lit POO1F 41ltE NOMS~ ALF .,AHS"ER AGAIN WHEN ;(eAJY$ 

pooze 5357 
POO21 4552 
?OOZZ 2041 
P002) -47ltl 
POOZlt 494E. 
POOZ5 2057 
POOlo 1t8Jt5 
1'0027 ltE20 
POOlS 5Z45 
pooze; 't14lt 
POOZA 5920 

0015 ecoc cQU NCSIZ($-KO"'SCi) 
uClo POO2S 59~F YES MS \i A~F *~ YOU HAVE CC~TINUED t ... :LL 00)'4:. 

POOle 5520 
?OOZ: 4541 

0 
j-25-13 



PNOYcS 

POOlE 5645 
P002F 2043 
P0030 4f4E 
P0031 5449 
P0032 'tE55 
P0033 <4544 
P0034 202e 
P0035 2057 
P0036 454C 
P0037 4e20 
P003S 444F 
P0039 4E45 

0017 OOOF 
0018 

PGt1= 003A ( 58) 

PAGE 2 DATE: 01/30/79 

EQU 
END 

YE S I Z' *-Y E SH SG ) 

COM = 0000 , 0) OAT = 0000 , 0) 

3-26-14 

o 

o 



o 
P NUYl S 

••• S Y H 1\ 0 L TAB L E +.+ 

CONSCO 0008 DUMMYl 0002 
Yf:SI1SG 0016 

*LIBEOT 
L(B 

IN 

*K,IH 
IN 

PAGE j 

0000 NUHSG 

tH.ll",H 
PNOYES 0000 

II~ 

DECK 10 PROCESS NO AND YES 

+1 
+cro .. AFTEl{ THE PAU'i CONfROL STATEHENT, PLEASE CIiANGE 

w +crU.STANOARU INPUT UNIT TO ~ (tK,14) 
I *r.TU,OO A HANUAL INTERRUPT .Z 
N terO,AND SCHEDULE 'CUNTIN' BY DOING 
en .crOtA HI = 5,30,6 
~ +CTU,THA~K toU 
()l ·PAUS 

o () 
"-J 

DATt:: 01/30/79 

0014 NUSll 0015 UUT 0012 PYES 0010 REL 0013 YES Il 0017 



C) 



C) 

SYSTEM INITIALIZATION 

CONTROL STATEMENTS 

BUILD SYSTEM LIBRARY DIRECTORY 

*y CORE RESIDENT 

*YM MASS MEMORY RESIDENT 

o PROGRAM LOADING 

*L PART 0 CORE RESIDENT" 
('vC!.{) 0 

*LP PART 1 CORE RESIDENT 
cXQ...~ 1-

*M PART 0 MASS MEMORY RESIDENT (TO RUN IN 
ALLOCATABLE CORE) 

*MP PART 1 MASS MEMORY RESIDENT (TO RUN IN 
PARTITIONED CORE) . 

*S PATCH EXTERNALS 

*0 : DEFINE LABELED COMMON BASE 

Cj 

3-27 



o 

STANDARD UNIT MANIPULATION 

? *C MEMORY MAP LIST UNIT 

*1 INPUT UNIT 

*0 MASS MEMORY UNIT 

*U READ CONTROL STATEMENTS FROM 
COMMENT UNIT 

*V READ CONTROL STATEMENTS FROM 0 INPUT UNIT 

DISK UTILITY 

*G WRITE ADDRESS TAGS 

*H RUN SURFACE TEST 

MISCELLANEOUS 

* COMMENT CARD 

*T TERMINATE 

o 
3-28 



STUDENT PROJECT - 3 

o U sing the core dump answer the following questions: 

1. What was the priority of the system when the dump was taken? 

2. Is there anything on the Interrupt Sta k? If yes I how many programs and 
what are their priorities? S+a.d< S\cM\ ',f -\-o~o :: ~ \.c~ ~ ~ V\o ~~0~ 0\1\ dock 

3. Are there any programs waiting to go into ... execution for the first time? 'i 
S'c.KC:rJt.llG- s"P1C.k"\DP -:- ~g03 -:";'\-'(..~\ ~~ h-'1cc;.f(JU-- \oca~oY\ ,~~ doccr-hollllo' A.JOIS:~ I 

V\ 0 W ~ ~ '3 \ e, ","1-v f- >" cR, (.£ sl,< 
4. What was the contents of the M -Re;Jister? r' _ a..o f 0 (.I . 

~ ~v.r.,Nl-,Nt c..crVte,i~ P r\-o v? IL L- V L 1 ~ ;f\ o~ s yh~'{ \ t/ l-\ f ~ ~ 
5. Have any programs in the System Library been scheduled since Auto Load 

time? IS COI'Y\ ~;)(e~oV' C{c:,td..t&i(..1 BlteJ tI'\ yc~;-- {~ rCtAA 

6. Are there any dummy entries in the System Library? 8' 
D(AYr\V\\l-) OAA~~~,w 4-tc,l-or d.c;t:L·t£-.(,A Iou-\-V\o ~iI\Ct+~, L{t;L{clily a*·.e~I\c)\· ~ /0 e-7 

·7 It What were the standard Logical Units at the time of the dump?? \ \ \ I 
(=9 -fa ,"3-T-O OJ. (,{ "11- S 

8. From the INSTALL listing draw the core layout for that system. 

o 

9. Was background in Part 0 or Part 1 ? 

3-29 



o 

o 



o 

STUDY. QUESTIONS - 3 

TR UE or FALSE 

1. Run-where-loaded programs can run in PART O. r . 
!' [11 I.; /' t(--' 

/;tP~~)lq·( lil,1 l' , - 1..).;,( ... "" 
Z. Run-anywhere programs can run in PART 1. Y1/\i.l<l' ((1/ ' i,U",{/.{ j~~ ,..l..' 

3. One can not u~~Jwo word relative in,struc, tionsl,in PARTl ,l· t " ,b.J, I,·· I) J Tev, 

~:-;:r~ne~::re is reserv~~~~G;_~\-YIJH)h-\W-~~~'-AJ:'~Glo,jJ T (~ .... 
5. Background can be in either allod~l'~~e or partM~n~d core:--:- (2) -; 
6. Programs in the System Library may be stored in Relocatable 

or Absolutized form. . YV\iL0+ ~t oj.}!Y}{(/I/£{ l,t f[A;11 ~1( d,t ((jL&<;!'--
---------- yllYZl /Lbt-- I/bt r. (( 1/ ' 

7. We can compile FORTRAN programs in the foreground. 

MULTIPLE CHOICE 

1. In the foreground we can do the following {choose more than one} 

) r't JJ. rJ.- J fl/v (' r \ ",., " f 1'[< " !, ; (}, .. \) ," 

~
a ~~a~~~E __ tir~~~tLtJ'- U\\ ~ \1> ~·U)\ \\\jiUj All.'" tv,,) ",'j I;·S • C 

Cj Debug . n ,otlvi W--J'\~ UJ{,I.(,1L
,d'LcL 

} Use the INPjOUT instructions qa,.,(I.JA{, ""J 
e) Add or delete programs from the System Library 

ClJ Execute 
~ Request space in allocatable core 

2. Which of the following can be in~t_i~iQI1.~~~ \ ~ 
7 Di~.' .,,1 I "'L,\, l'\J'~'" tj.\ () U/,A i.J _ ~::i:~~ System Library Programs (*L) (A~1l .I.Vjv, \, \ ~\ 

OJID System Library Programs {*LP} V U.I\ \ -

Q Data Buffers (PTNCOR) 
d) SYSDAT 
e) SPACE 

C9 Background 

3. Auto Load does some of the .following, which ones? 

~ 
d} 

Sets the protect bits for the foreground 
Reads in the Core Resident Programs 
Sets up the various areas on the disk 
Builds the core image area on disk 1 fJ .f 

/~{ C( (Cd 

Q3-1 

,,11 0 
T ~ ('-.~J 
T ~) 

\ ,), ... ' 



Match the following terms with the characteristics that best suit it from the column on the 
right (more than one may apply to more than one term). 

1. Process Program I¢V 'P I '0 ') L S 

2. Job A C) 0 

3. System Library'fj ) p) rr-: L 

4. User fr) V C\ 0) f:: 
) 

5. 

6. 

7. 

8. 

10. 

11. 

Run-anywhere Programs 

? The~~-bit A (~ ') L- ') E 
System Program "f.~) f, 0 )--L 

Program Library ~1 \ f.1/ 

Loader f1 
Compiler ~ I~ ~~,o ,gP 

Driver [) C-. 0 ~ 
I::') I ) 

a. background 

b. foreground 

c. Part 1 

d. Part 0 

e. Priority greater than 2 

Q3-2 

c 



o 

LESSON PREVIEW: 

LESSON GUIDE 4 

SYSTEM FLOW 

This lesson will discuss in detail the common interrupt handler, the dispatcher, and the 
request entry/exit. 

REFERENCES: 

Listings of SYSDAT, NDISP, COMMON, and NMONI. , 

OBJECTIVES: 

At the completion of this lesson, the student will be able to: 

1. Discuss the function and significance to the system of the common interrupt handler, 
the dispatcher, and MONI. 

2. Read system listings. 

4-1 



crJAJctJ -p 
. 0 \ 
(,tM~ -Offu PR 

~ 
I 

N 

() 

LINE PROCESSOR --------
IORITY OF LINE PROCESSOR 

Fffj:-1AL1.IN) --------

FROM TRAP 

INTE·RRUPT FLOW 

COMMON LINE 
INTERRUPT 
HANDLER TO PROCESSOR 

..... SAVE RUNNING 
PROGRAM ---WHO 

INTERRUPTED? 
.... CHANGE PRIORITY OF SYSTEM 

OPERATING 
XITTO DRIVER SYSTEM' 

'DISPATCHER 
, 

CHOOSES 
NEXT PROGRAM FROM 

READ 
DATA OR 

. 
I I 

~ SERVICE 
ALARM 

INTERRUPT SCHEDULER (\ /'ITt Y<.r<{,1l"T) 

STACK QUEUE 

() ~-

~ ) 



C) 

o 

o 

13F 

13E 

130 

13C 

/ 
/ 

3 

2 

1 

0 

107 

106 

105 

104 

10 

10 

10 

10 

~ 

~ 

J 
~ 

/ / 
~ 

WH~ I'-~ -r.t-rr 
HARDWARE: 

INTERRUPT TRAP AREA ma \\',~ wlecA, ~'j C6V\A V\Il 0., 
\\'\ \-e,nrucp ~ ha V\J le.r . 

LINE 15 

LINE 1 

LINE 0 

INTERRUPTS MAY BE NESTED 
16 DEEP 

FOUR CORE LOCATIONS RESERVED 
FOR EACH INTERRUPT LINE: 

- WORD 4 - ADDRESS OF INTERRUPT PROCESSO~Ic7O reI ~~~S 
- WORD 3 - PRIORITY LEVEL FOR LINE 

- WORD 2 - RT J TO INTERRUPT HANDLER 

- WORD 1 - P 

• DISABLES INTERRUPTS 
• STORES P OF INTERRUP-TED PROGRAM IN 

WORD 1 
• TRANSFERS CONTROL TO WORD 2 

SOFTWARE: 

• WORD 2 CONTAINS RTJ TO COMMON INTERRUPT HANDLER FOI'<. ,ti"G \£ .... '1 (J(,t(,LA(J4(JJ t'.u.. 
• INTERRUPT HANDLER SAVES REGISTERS OF INTERRUPTED 

PROGRAM OVERFLOW AND SETS NEW MASK FROM PRIORITY 
LEVEL IN WORD 3, ENABLES INTERRUPTS, AND TRANSFERS 
CONTROL TO INTERRUPT PROCESSOR FOR THAT LINE (FROM 
ADDRESS IN WORD 4) 

• INTERRUPT PROCESSOR OR DRIVER MUST EXIT THROUGH 
DISPATCH TO RESTORE INTERRUPTED PROGRAM 

4-3 



ALLIN 

SAVE 
REGISTERS 
(lNTSTK) 
(EXTSTK) 

UPDATE 
COUNT 

SET NEW 
PRLVL 

EIN + 
SET NEW 
MASK 

COMMON INTERRUPT HANDLER 

ENTERED FROM TRAP LINE 1-15 

(INTERRUPTED PROGRAM) 

Q 
A 
I 
P 
PRLVL 

R1 } R2 EXTENDED 
R3 STACK 
R4 -----

TOP OF NEXT STACK POSITION 

FROM WORD 2 TRAP 

FROM MASK TABLE 

\L 
- - - - - -- - - INTERRUPT CAN OCCUR HERE v~· 

I F HIGHER PRIORITY WAITING- c--)~~ 

JUMP TO 
INTERRUPT HANDLER WILL GO ~v; 
ON INTSTK 

LINE 
PROCESSOR 

1\fl{\ ~ 
3 LINE PROCESSOR* 

VIA WORD 3 OF TRAP 2 PRIORITY* 

1 RTJ - ($FE) 
*OF INTERRUPTING PROGRAM a p 

4-4 

C) 

o 



o 

o 

COMMON INTERRUPT HANDLER 

PROGRAM FUNCTION 

The functions of the interrupt Handler are to save the machine register by placing them in 
the interrupt stack, set the mask for the new priority level, enable the interrupts, and 
transfer control to the primary proc::essor for the interrupt line. 

ENTR Y lNTERF ACES 

Calling Sequence: The progr~m is called from the interrupt trap locations 10016 through 
13F16. Four words are used per line. 

OP ADDRESS 

NUM 

RTJ-

NUM 

ADC 

° 
($FE) 

"level" 

"line 
processor" 

P-register saved in word one of the interrupt trap location by 
hardware. 

Give control to Common Interrupt Handler. 

Priority level associated with this interrupt. A number 
between ° and 15. The larger number corresponds to the 
higher level. 

Line processor routine to service the interrupt line. 

Entry Conditions: Interrupts are inhibited, and the P is saved in the interrup~ trap location 
for this line. This is normally done by hardware but a user may simulate these conditions and 
generate a psuedo-interrupt. The routine is given control by the return jump following the 
interrupt trap location. 

EXIT INTERFACES 

Exit Conditions: The interrupt handler will exit to the line processor with the following 
condi tions. 

a. The priority level will be set to. the level associated with this interrupt. 

b. The mask register, M, will be set to the mask for this priority level. 

c. Interrupts will be enabled. 

d. The I-register will contain the location associated with the interrupt line; i.e., for 
interrupt line, L, I will contain 10016 + 4*L. 

4-5 



DESCRIPTION 

The interrupt handler saves the register A, Q, and I, the priority level of the interrupted 
program, and the P-register, by placing them in the interrupt stack. The interrupt stack is a 
push-down, pop-up stack with five words allocated to each entry. A maximum of 16 entries is 
possible. The registers are saved in the following format. 

0 Q - saved Q register saved 

1 A - saved A register saved 

2 I - saved I register saved 

3 P - saved Overflow 

4 Priority level Priority level before the interrupt 

After saving Q in the interrupt stack, the address of the current entry to the interrupt stack 
is held in ! while A, I, and the priority level are saved in the stack. For CYBER 18 systems, 
registers R1, R2, R3, R4 are saved and the setting of the overflow flip-flop is tested and 
saved with the priority level. The interrupt stack base counter, COUNT, is incremented by 
five to point to the next entry in the stack. The return address is retrieved from the 
interrupt trap location and is saved in the interrupt stack. The address of the trap location is 
stored in I, the new priority level is stored in $EF and the mask register, M, is set using the 
corresponding entry in the mask table. Interrupts are enabled and control is transferred to 
the primary processor routine specified by the third word after the trap location. 

C) 

The mask table, MASKT (located in SYSDAT), contains an entry for each priority level. The r_ ,) 
M-register will always be loaded from the entry in MASKT corresponding to the desired \. / 
priority level. Those interrupt lines that may not interrupt a program of level n are said to be 
of a lower or equal priority level and their mask bits must be zero for this level and all levels 
ab.ove. Several lines may have the same priority level. 

RESTRICTION 

The interrupt has not been acknowledged upon exit. The line processor routine must perform 
this operation. 

4-6 



o 

ALLIN 

o 

o 

COMMON 

SET UP INTSTK 
(a) • XQ 
(A) • XA 
OVERFLOW AND 

PRIVL ---- XPL 
(I) • XI 
UPDATE COUNT 
WDO--.XR 

SET NEW 
PRIORITY LEVEL 
AND MASK 

EIN 

.4-7 

MOVE P 
TO $0100 

PUT $0102 
IN IPROC 
(TO FAKE INT 
ON LINE 0) 

ENTRY POINT 
IN NIPROC 



LINE # 
TO O,A 

RAO-I 

NO 

LlNE1V4 

CLEAR I 

CHKDEV 

PICKUP PDT 
ADDRESS OF 
NEXT DEVICE 

INPUT 
DEVICE 
STATUS 

a-PDT 

4-8 

C) 
NO 

ENO 2 

o 



~ 
I 

CD 

o .0 

DISPATCHER 

-" 
SCHEDULER • YES I RESTORE < Q,,> .• INTERRUPTEOI 

EMPTY? PROGRAM 

NO HIGHEST t ON TOP 

NO' 
FIND HIGHEST 'PRIOR-ITY 

ENTRY IN OF SCHDL 
SCHEDULER'S Q >~STK? 

QUEUE 

SCHTOP 

YES SET NEW 
PRLVL 

NEW MASK 

YES 

o 

EXIT TO 
PROGRAM 

FROM INTSTK 
OR SCHSTK 

EXIT INT 
THRU 
$404 

RELEASE 
SCHSTK 
POSITION 

TOPMT 



DISPATCHER 

INTERNAL SYMBOLS 

SCHSTC Routine to initiate a program when taken from the scheduler thread 

DISP Start of Program Dispatcher 

COMEXT Defined by an EQU and determines the interrupt trap slot location to be used as 
a common exit 

SC HTOP Top of the schedulers thread 

DISPATCHER FUNCTION 

Whenever a program terminates, it will give control to the Program Dispatcher*. The 
Program Dispatcher decides which program shall be initiated next. It could be a program 
previously interrupted and waiting on the interrupt stack, or a program that has been 
scheduled and is waiting in the scheduler thread. The highest priority program is then 
initiated by the Program Dispatcher and control given to it. 

ENTRY mTERFACES 

Entered via a jump to entry point DISP. 

EXIT INTERFACES 

o 

If control is given to the program that was previously interrupted, the A-, Q-, I-, and 
M-registers (CYBER 18, RI-R4), and the overflow are restored to their prev:ious condition, as CI 
well as priority level. Interrupts are enabled, and control returns to the location at which the 
interrupt originally occurred. 

If control is given to a program on the scheduler thread, A will contain the address of the 
scheduler thread entry, Q will contain the fourth word of the entry (the original Q in 
scheduler calls, or an error indication in I/O calls, or coreclock ($E8) in timer calls), priority 
level and M will contain the mask associated with the priority level, and I and overflow will 
be in arbitrary configuration. Interrupts are enabled. 

mTERNAL DESCRIPTION 

After the program is entered, a test is made to determine whether the priority of the highest 
interrupted program is greater than or equal to the priority of highest program waiting in the 
scheduler thread. If the interrupted program is to be resumed, the return address is stored in 
the common exit and I and A are restored. Then, the interrupt stack base is adjusted down by 
5 and stored in COUNT, and the priority level restored into the cell containing priority 

level. The mask associated with this level is transferred into M (which restores M), and then 
Q is also restored. Control is returned to the interrupted program by an EXI instruction 
which enables interrupts and jumps to the address in word 0 of that Interrupt Trap Region 
(Overflow is restored in some systems). 

* Protected programs may also terminate with a RELEAS request which jumps to the 
Program Dispatcher. 

4-10 



C) 

o 

o 

If the program of highest le·vel is on the scheduler thread, the priority specified in the highest 
thread entry (the address of this entry is in SCHTOP) is placed into the cell containing 
priority level, and the associated mask placed into M. Then SCHTOP is updated pointing now 
to the next entry in the thread. If there is no other entry, it contains -0. 

Next, a test is made whether the scheduler thread entry was a primary scheduler's request 
(i.e., not resulting from a completed I/O call or an expired timer call) and is therefore, in the 
scheduler's stack. 

If yes, the scheduler stack posi tion is added to the thread of "empties" and the address to 
which control is to be given is stored in the common exit. Then the address of the entry is 
put into A and the fourth word of the call into Q. Control is transferred with an EXI 
instruction which enables interrupts and transfers control to the address in location $104. 

If the scheduler thread entry resulted from an I/O or Tinier call (that is, it was a secondary 
scheduler request), the specified completion location may be relative. If it is, the absolute 
address is determined and the address stored in the common exit. Then the third word of the 
entry (containing the thread) is set to 0 as an indication that the call is completed and could 
be made again. A and Q are loaded and Control is transferred as above. 

4-11 



~ 

• I-' 
N 

o 

DISP. ~ .... 

RESTORE 
REG 

FM STACK 

NEW TOP 
INT STACK 

AT CONT 

~ 
EXI $104 ... 

~ 

DiSpATCHER 

GET ADDH 
TOP OF INT 
STACK (5) 

STH AT 
COMMON EXIT 

$104 

~ 

1-..... lIN 

YES 

.. 
~ I---

GET O,9FL AND 
"P" FMINT 

STACK 

~ 
PLACE 

PRI. LEV. 
AT SEF 

STORE 
ABSO. ADDR 

AT $104 

t 
THREADTIDS 
POSITION ON 

EMPTY 

~ 

... NO 
~ 

~ 

(' 
\._) 

~ 
GET TOP 

SCIl STACK 

seH 
lID 

NEW MASK 
IN "M" 

PRIMARY 
CII RE 

YES .. 
RELEASE 

STACK 
POSITION 

... 
~ 

r--

NO 
~ 

GET PRIOR'Y 
TOP OF 

SCH STACK 

_t_ 
COl\IPARE 
\\1TII PRI. 
INT STACK 

i 
GET ~[ASK 

SETTING FOR 
TIDS PRI 
LEVEL 

.. 
UPDATE 
TOP OF 

SCII STACK 

o 



o 

o 

ADD ENTRY 
TO 
EMPTIES THREAD 

COMPLETION 
ADDRESS 
TO $0104 

POINTER TO 
LAST ENTRY ON 
INTSTK TO a 

SCHSTC 

-SET NEW PRLVL 
SET NEW MASK 
UPDATE SCHTOP 

COMPLETION 
ADDRESS 
TO A 

SCHIA 

COMPLETION 
ADDRESS 
TO $0104 

CLEAR THREAD 
WD IN REOUEST 

ADDR 
PARAMETER 
TO A 
FREEO TO a 

NO 

NDISP - DISPATCHER SECTION 

ENA 0 

ADD COMP ADDR 
TOA 
15 BIT ARITH 

ADDRESS OF 
DIRECTORY 
ENTRY 
TOO 

DISCH 

ADDRESS OF 
DIRECTORY 
ENTRY 
TO a 

4-13 

RESINT 

ADDR PARM 
~O A 

CLEAR BIT 15 
OF WOO 

STORE RETURN 
LOCATION IN 
$0104 

RESTORE I 
RESTORE PRLVL 
RESTORE OVERF 

UPDATE POINT 
TO INTSTK 

RESTORE A 

SET NEW MASK 

RESTORE a 

IN DIRECTORY 

SET BIT 15 
OFWDO 
IN DIRECTORY 



FOR EXAMPLE: 

0022 P003B 54F4 
0023 P003C 1200 
0024 P003D 0040 P 
0025 P003E 54F4 
0026 P003F OAOO 
0027 po040 54F4 
0028 P0041 0401 
0029 P0042 0049 P 
0030 po043 0000 

P0044 1009 
P0045 0023 

0031 P0046 0002 P 

GENERAL FORMAT OF A SYSTEM REQUEST 

o 

1 

2 

3 

SCHPRT 

PRINT 

RTJ - ($F4) 

0\ D I RC I X I RP I CP 
..-REQUEST CODE (RC) 

WORD 
0 COMPLETION 
1 ADDRESS 

THREAD WORD 

Q WORD 

RTJ- C$F4) SCHEDULE PRINT AT PRIORITY 0 
NUM $1200 BIFORE EXIT, TO DROP PRIORITY 
ADC PRINT BACK TO O. 
RTJ- C$F4) 
NUM $AOO EXIT REQUEST 
RTJ- C$F4) 
NUM $0401 PRINT,CP=l RP=O 
ADC COMPPR COMPLETION ADDRESS 
NUM 0,$1009,35 35 WORDS ON THE TTY 

ADC BUF FWA BUFFER 

4-14 

o· 



o 

o 

PROT. OR UNPROT. TO, T1, T2, T4, T6 
SCHDLE 
READ/WRITE,FREAD/FWRITE 
TIMER 
INDIR READ/WRITE 
MOTION 
TEMPT1 

PROTECTED ONLY 
SPACE 
RELEASE 
PTNCOR 
SYSCHD 
DISCHD/ENSCHD 

NM0NI 

UNPROTECTED ONLY 
CORE 
LOA~ 
GTFILE 
STATUS 
EXIT 

T9 

SCHEDULER 

Ta 

TIMER 

T10 

SPACE 

T12 

RELEASE 

'-------- ETC. 

4-15 

V<O.-A+\fL,e... e 'E:. SO~ T 

EXIT 
TO CALLER 

REQXT 

BIT 15 OF Q: 

0: REQUEST WAS' 
ACCEPTED 

1: REQUEST WAS 
REJECJ"ED 



~ 

• ~ 
0) 

o 

M0NI 

GET 10 
WORDS 

VOLATILE 

MOVE SOME 
PARAMS INTO 

VOLATILE 

ENTERED VIA RTJ - ($F4) 
I \ { e EC~c.t<.2-C- li6 '(;1..{t{) ~ \o.R- '(..e..-e~'\ iYO./{\ T 

,: MiL{) ~(".e~~ out.5~ 1~.seK' 9 vol.. 

YES .I FIND WORD 0 
, OF ACTUAL 

GET 
REQUEST 

CODE 

GET 
REQ PRO 

CODE 

GO- TO 
REQUEST 

PROCESSOR 

NO 

PARAM LIST 
• 

CLEAR BIT .5 .-----._-..... 
USE 

SCHEDULER 
REQ CODE 

(I) = VOLATILE 
(A) = ADDR OF PARAM LIST 

() o 



o 

9 

8 

7 

6 
,r-"\ 
c.;' 

5 

4 

3 

2 

1 

1+0 

o· 

MONI GETS VOLATILE 

STORAGE FOR EACH REQUEST 

RC 

POINTER TO PARAM 

PRIORITY 

RETURN 

I 

A 

Q 

4-17 

VCCP 

VIO lM-A-L1-ltk-krr~~J 
C\t\ c;\ J \J ot o1rll2 I~\ 0(..\'( 

VTMP -\~~~ 

VTDS (oV\'p. Clul d;1 

VPTR 

VPL 

VR 

VI 

VA 

VQ 



MONITOR ENTRY AND EXIT FOR REQUESTS 

INTERNAL SYMBOL DEFINITIONS 

VR 

VPTR 

ZERO 

ONEBIT 

RCSCHD 

LPMSK 

VTMP 

AMONI 

v 

AREQXT 

MONI 

RCTV 

REQXT 

Relative location in volatile containing the user program's return 
address. (Equals 3.) 

Relative location in volatile containing the pointer to the user 
program's parameter list (5). 

A location in the communication region containing a zero. ($22). 

The first location of a table constructed so that entry n contains 2n. 
This is normally $ 23 • 

The code for the scheduler reque st (9). 

The first location of a table constructed such that entry n contains 
2n -l. This is normally location 2. 

Relative location in volatile containing the request code (7). 

A location in the communication region containing the location of 
this program. This is normally location $F4. 

The number of words of volatile allocated per request (l 0) • 

A location in the communication region containing REQXT (request 
exit). ,This is normally $89. 

The subroutine entry point to the Request Entry Processor. 

The Request Code transfer vector containing the names TO through 
T30· 

Common Exit -for monitor requests. 

PROGRAM FUNCTION 

User programs generate requests for various functions such as I/O, core allocation, 
and scheduling. All of these requests are processed by the Request Entry Processor. 
Its function is to reserve volatile storage, save the registers A, Q, P, and I in 
volatile storage, and give control to one of the request processor routines TO ••• T3 0, 
depending upon the request code, RC, in the user's calling sequence. 

4-18 

o 



ENTRY INTERFACES' 

o Entered from protected programs as a result of a monitor call. Entered from unpro­
tected program s via IPROC. 

0 

EXIT INTERFACES 

The Request Entry Processor gives control to the request processors, TO through T30 , 
with specific information in the registers. Each request processor upon entry can 
assume the following: 

REGISTER 

A 

Q 

I 

LOCATION 

(I) + 0 

(I) + 1 

(I) + 2 

(I) +3 

(I) + 4 

(I) + 5 

MNEMONIC 

VQ 

VA 

VI 

VR 

VPL 

VPTR 

CONTENTS 

AI4-0 is the location of the parameter 
list. If AIS = 0, then the reference to the 
parameters in the call was direct. Other­
wise, AI5 = 1/ and the reference was 
ind:irect (an INDIR reque st) • 

Absolute address of the request processor 
being executed. 

I contains the location of a ten (10) 
word block of volatile storage. 

T~e user's Q-register is saved here. 

The user's A-register is saved here. 

The user l s I -register is saved here. 

The return address of the user. If this 
was an indirect call, then the return 
address has been incremented by one (1) 
to give the correct return address. 
Otherwise I this was a d:irect call and the 
return address must be adjusted by the 
request processor. 

Not set by the Request Entry Processor. 
Intended to hold the request priority level. 

The location of the user l s parameter list. 
This is in the accumulator A. See dis­
cussion of A above. 

4-19 



LOCATION MNEMONIC 

(I) + 6 VTDS 

. (I) + 7 VTMP 

(I) + 8 VID 

(I) + 9 VCCP 

(Continued) 

Not set by the Request Entry Processor. 
It is intended to contain the top of the 
stack for the desired logical unit • 

A temporary storage cell containing the 
request code I RC. 

Control Point Number (ITOS) 

4-20 

,~ L) 

r , 
\. ' ,--j 



RETURN TO REQUESTER 

CJ Control will be returned to the next instruction with the registers A, Q, and I 
restored. Overflow will not be saved. Interrupts will be enabled and the priority 
level will be the same as upon entry. 

o 

INTERNAL DESCRIPTION 

The Request Entry Processor handles all monitor requests made by the user program. 
The user enters the Request Entry Processor via an indirect return jump to MONI. 
The Request Entry Processor inhibits all interrupts, saves the ·user l s registers Q I A, 
I, and return address in an area unique to this request, and then enables interrupts. 
The Request Entry Processor is re-entrant beyond this point, and works only with the 
data area unique to this request. The I-register is used to hold the address of this 
unique area which is called volatile storage. The location of the parameter list is 
then stored in volatile. If this request has an indirect reference to the parameter 
list, the return addres s to the program is adjusted to return control to the next 
sequential instruction. If this indirect call was made as the result of the completion 
of an I/O operation, the registers are adjusted to make this look like a scheduler 
call since the request code in the user l s request parameter list may not be altered. 
Control is then given to the request processor specified by the request code. 

RESTRICTIONS 

The I-register must be conserved throughout the request processor called since it 
contains the address of volatile storage. Each request processor must be re-entrant 
since it runs at the requestor1s level. When each request processor finishes, it 
must return the volatile core storage by jumping to REQXT • 

NOTE: 

Address 

]MP- (AREQXT) Addre s s of reque st exit. 
REQXT is contained in 
AREQXT. 

The IIMINI MONITOR REQUEST ENTRYII is identical in every way with 
this module with a single exception: it is equipped to handle only 
13 requests. 

4-.4.1 



MONI 

MONI 

SAVE, RETURN,VR 
PARAMETER, VPTR 
COMPLETION, VTDS 
WOO, PTRS, VPL 

ON EXIT FROM MONI VOLATILE STORAGE CONTAINS: 

VQ 
VA 
VI 

VR 
VPL 

VPTR 
VTDS 
VTMP 

VID 

CALLER'S Q 
CALLER'S A 
CALLER'S I 
RETURN (1ST WD AFTER CALL) 
WD 0 OF PTRS 
ADDRESS OF PARAMETERS 
WD 1 OF PTRS 
REQUEST CODE 
INDIRECT FLAG 

NO 

UPDATE 
PARAMETER POINTER 
RETURN 
SET VID 

ASC 

UPDATE 
COMPLETION 
CALL 

NO 

CLEAR SECONDARY 
FLAG; 
FORCE SCHEDULE 
CALL 

MSECA 

SAVE RC IN VTMP 
A-. PARAMETERS 
I--VOLATILE 

TO-T30 

REPA 

REPI 

VCCP IF SECONDARY SCHEDULE; CALL RC#) 

(1) POINTS TO VOLATILE; (A) POINTS TO PTR LIST 

CLEAR 
VID 

UNPACK 
REQUEST 
CODE 

/ 

o 

(
~' 

0./\ 

CI 



~ 
( 
N 
W 

(j 
,~-

ENTRY POINT T16 

EXTERNAL ASC 

T16 

o 

T16 

ENTERED ONLY FROM MONI ON PART 1 INDIRECT 
REQUESTS. 

ENTRY POINT IN MONIo 

'. 

NO 

UPDATE 
RETURN 
SET VID 

UPDATE POINTER 
~ YES I TO PARAMETERS 

(VTDS VPTR) 

A a NEW PTR 

LIST 

() 



n ,--.-/ 

4:-24 



STUDY QUESTIONS - 4 

() 
1. How can you tell if the scheduler stack is full? 

2. 

3. How can the DISP tell if a scheduler request was primary or secondary? 

IF ICH)'O;Z \S w'Y(.'" .I'oOUJ\liJoftfJ 8£ SLI"icJ, S\-ztc{{ jJ;\.Q~d{\ :: \ 0 

4. What are the functions of the Common Interrupt Handler? 

C' \IJr(/)/\,.,J ,"(0 
" -\~r 12 {. Ip 1 

lYlt. \ I 
So»~ S~J\~ oC\ "~" \",I,i\ ZJ,),t"{,;~1':' I O~i/\ 5( ,-t} ~,(') -( /llf', '\.I ~/Y\ 

( 
\ 17 II~., ' ' .-;'...) , V' 

:)?A· !p{)LC> Y)'r \ 0 n ~ ;'( .. '/ '-. '. ~'U ' 

o 
. ju/VVl y.? ,0 COr(ec.f P y'OLe, ~~.{)r ' . 

5. What interrupts are recognized on LINEO and what action takes place for each? 

6. 

I. /\~ 
;) i!J..,U'('~ 

9o~ \v. / 0 o~(1, ~~;~~y-; 1~"3; ~l'IIO\ cPYJ. ",.A\~ ~o-(( 10, ,tn'O ( 
~ I () I ' ) ,. , " , ,:..-- I ~' . I _ 0 \ (A t 

I VII 0 ~\ I t-OV C{ ~::: U..I\l'r\..Vj D SA· tvD 1o\I!..,lW\ , v) ~'\ 

",! 1,\ 1 (1 • 1 {~\, o 11,~c,l/ Ift j 

~~) ~ L L ~ <'.; ~ ,!,} t·'~ " . . 

Q4-1 



o 



o 

o 

LESSON PREVIEW: 

REFERENCES: 

Listing of scheduler, T9. 

TRAINING AIDS: 

PROJECTS: 

OErEC TIVES: 

LESSON GUIDE 5 

SCHEDULER 

(!) r). \ 1101- {ca.\~ :: (\.\) OYl-- \ V1 s 1> Lk v~id 

or,Jll\&L Cd!jA OV\~ he.- 0\1\ sJv. s \-c«::.~ 1.J 
~ .. (tJ.-U~. ~ .... ·u:..:eJ,,_ L-()O (.) =-\0 U-d tJ_. 

o llU--- \ovO V~J\ \- I V\ \-0 co ( S CJ..,\I\ (P-<: S ",C-f J 
Ct t'~ ~(' ~'\ . 

At the completion of this course, the student will be able to: 

1. Determine the events generated by SCHDLE. 

2. Discuss the significance of the scheduler in MSOS. 

5-1 



FROM MONI 

T9 

MOVE PARAMS 
INTO SCH STK 

THREAD ONTO 
SCHEDULER 
THREAD 

ORIGINAL 
USER a! 

EXIT TO CALLER 
VIA REaXT 

YES 

IN WORD 1 
OF PARAMS 

COMPARE 
CP = PRLVL 

DIRCAL 

PUT REQXT ON 
INTERRUPT STACK 

SET NEW 
PRLVL I­

M MASK 

( SYSFAIL ) 
JMP TO 
SCHEDULED 
PROGRAM 
(SOFTWARE INTERRUPT) 

SCHERR 

SET USER'S 
BIT 15 OF a 
TO NEGATIVE 

Y Q.Q,. O-C~ e-f ~J, 
'(CL~~~ ~ 

5-2 

YES 

SET CP INTO 
SYS DIR 

YES 

NO 

RC = 0 

MIGHT BE 
USER PGM 
OR DRIVER 
INITIATOR 

JMP RW 
REa PROC 
LU = 1 

SPACE 

TOMPT IS TOP OF 
EMPTIES 

SCHTOP IS TOP OF 
SCHEDULER a 

}lea, ,t' 6000 

)~ ~ Ljoc?u 

lJ ~ -C). 000 

(~"1p 5 F r-~ 

Q ~ l~ ~ 0 r!)O 

ix\-rs Eooo 
rSI-~~_ 

0?I~.r-

\,--/-
.--.-~ .. -~--

, K65COR 



SCHEDULER r-', 
U SYMBOLS 

o 

TIO Entry point of SPACE request 

SCHTOP Location in NDISP containing location of top entry in schedule stack 

FUNCTION 

In a given system, numerous requets for the execution of programs at specific priority levels 
may be generated. Specifically, these requests are generated when: 

a. an I/O request has been completed, 

b. a specified time interval has elapsed, 

c. core has been allocated, 

d. System Director SCHDLE request has been executed. 

These requests are called Secondary Scheduler Requests. Requests may also be made by any 
program directly. They are called Scheduler Requests or Primary Scheduler Requests. 

It is the function of the Scheduler Request Processor to: 

a. cause the immediate execution of a requested program if it is of a higher priority 
level than the requesting (current) program, or 

b. thread the request by priority and within a priority by first-in-first-out, if its priority 
is the current priority. 

If the requested program is mass lllemor'y resident, the Scheduler Request Processor will 
cause allocation of core for this program and transfer of the program from mass memory. 
After the program has been transferred, a Scheduler Request is made, which results in a. or b. 
above. 

Whenever a program terminates, the Program Dispatcher will select the next program to be 
run, either from the top of the scheduler thread or the interrupt stack. 

ENTRY INTERFACES 

.Progrm is entered from the Request Entry Processor. The calling (requesting) program must 
have interrupts enabled. 

5-3 



EXIT INTERFACES 
I".~ 

The program exits either to the requested program (completion address), if the level ~) 
is higher than the current one, or to the request exit. 

In the first case, the priority level, I and the return address leading to the request 
exit are saved in the proper positions of the interrupt stack and its base adjusted. 
A, Q, and I are saved in volatile, which is not released until the requested program 
terminates. I contains the base of volatile storage, when control is given to the 
reque sted program. 

Interrupts are enabled and the requested priori~y level and mask set. 

In the second case th,e request has been threaded. Control goes to REQXT to restore 
the registers for the reque stor and enable interrupts. 

INTERNAL DESCRIPTION 

All Scheduler Requests are identified by the request entry processor, which also 
allocates a sufficient amount of volatile storage for reentrancy purposes. Then con­
trol is given to the Scheduler Request Processor (Symbol T9). Interrupts are enabled 
and I contains the base address of the allocated volatile storage. Volatile is 
organized in the following manner: 

(I)" + 0 contains Q 
(I) + 1 contains A 
(I) + 2 contains Priority Level of Request 
(I) + 3 contains Return Address 
(I) + 4 contains. I 
(I) + 5 contains Pointer to Reque st Parameter List 
(I) + 6 contains First Word of Request (Temp.) 
(I) + 7 contains Second Word of Request (Temp.) 

etc. 

First, the return address is adjusted by two locations unless the call was indirect, in 
which case it had already been-adjusted. by the Request Entry Processor. Then word 1 
and 2 of the call are stored in volatile temporarily. If the call is a directory call 
control is given to DIRCAL. If not a directory call, a test is made to see if the 
requested program is of higher level than the current one, in which case control 
transfers to HILVL. 

Otherwise, a test for a primary call (SCHDLE request) is made and only then, if it is 
not a directory call, not of a higher level and not a secondary call, is a position in 
the Scheduler Stack obtained and the reque st transferred from volatile (I) + 6 and 
(I) + 7 into the stack. 

The current priority level and I are saved in the interrupt stack and the interrupt 
stack base address count is ~ncremented by 0. The request exit is stored as the 
return address since upon return from the program volatile must be restored as well C) 
as A and Q. Then the requested priority level and the associated mask are set and 
control is given to the new" GO TO" Address. 

5-4 



o 

o 

ell( Gc,G 0 • 
SCHEDULER ~A€-K 

8 

AFTER AUTOLOAD 
iOi 4 

SCHTOP = FFFF 

TOMPT= ~OOO ~o~o 

~OO C 

~008 

Q 

THREAD 
ADDR 

RC=9 CP ~004 

4000 

5-5 

0 
FFFF 

0 
0 

~O~8 

0 
0 
0 

~0~4 

0 
0 
0 

4040· 
0 
0 
0 

~OOC 

0 
0 
0 

~OO8 

0 
0 
0 

.004 
0 
0 



t008 

4010 

4014 

SCHTOP = 4000 40~8 

-
TOM,.P.T = 1044 Q 

4004 
PGM 

~oo C 6 

FFFF 

4008 
Q Q 

THREAD FFFF 
ADDR TAG 

RC=9 CP ~oo 4 2 
Q 

.OOC 
ADDR 

4000 8 

5-6 



(J 

o 

UPDATE RETRN ADDR 
MOVE REQ PARM TO 
VTPE,VTMP 

CLEAR THREAD 
IF SECONDARY 
CALL 

ABSOLUTIZE 
COMPLETION 
ADDRESS 

PUT REQXT 
ON INTSTK 
SET NEW MASK 

.AND PRLVL 

FREEQ TO Q 
ADC PARAMETERS 
TO A 

ABSOLUTIZE 
COMPLETION 
ADDRESS 

MOVE REQ PARM TO 
SCHSTK UPDATE 
EMPTIES THREAD 

YES 

~ 
~------__ ~ __ ---------SCHED2 

STORE FREEQ 
THREAD ENTRY 
TO THREAD OF 
FULLS 

SET USERS 
Q POSITIVE 

\..J 

5-7 

GET ADDRESS OF 
SYSTEM DIRECTION 
ENTRY 

CLEAR THREAD 
IN REQUEST 
IF SECONDARY 
CALL 

SET COMP 
PRIORITY IN 
DIRECTORY 

MOVE FREEQ 
TO DIRECTORY 



~) -. ../ 



o 

LESSON PREVIEW: 

LESSON GUIDE 6 

INTRODUCTION TO SYSTEM I/O 

This lesson covers the Physical Device Table, LOGI, LOGIA, and LOG2 tables. The T/W 
Request Processor is also discussed. Emphasis will be placed on dump analysis as a method of 
determining the state of a given peripheral device. 

REFERENCES: 

Chapters 1 and 2 of Software Peripheral Drivers RM 
Listing of SYSDAT and RW 

TRAINING AIDS: 

PROJECTS: 

1. Student Project - 6 ' 

2. Study questions - 6 

OBJECTIVES: 

At the completion of this lesson, the student will be able to: 

1. Understand the function and purpose of Physical Device Table, LOG2, LOGIA, LOG!. 

2. Find the Physical Device Table in a dump for a particular logical unit. 

3. Interrupt the information in the dump concerning I/O. 

4. Understand and discuss the major functions of the RW processor. 

6-1 



C) 

SYSTEM STANDARD LOGICAL UNITS 

LUN 1 SPACE DR IVER 

LUN 2 DUMMY 

LUN 3 DUMMY 

LUN 4 COMMENT DEVICE 

? 5 --------LUN 6 MT 

PSEUDO TAPE MY1~ 'cApe.- S~){1' 
I~ 

LUN- 7 LJ 
LUN 8 LIBRARY UNIT 

LUN 9 PRINTER (LIST) 

LUN 10 CR (STANDARD INPUT) 

LUN 11 STANDARD OUTPUT 

LUN 12 FORTRAN LIST UNIT 

6-2 



o 

o· 

PHYSICAL DEVICE TABLE 

Each device has a physical equipment table that contains the interfacing information 
specified by the user to the device. It contains the entry adresses to the driver 
responsible for operating the device, the station address that tells the driver which 
device to use, and the information which allows the driver to fulfill the current 
request. The table contains at least 16 words for a device. Words 0 through 15 
have a standard function for all devices. Additional words are added for use by the 
output message buffer package and special use by drivers. Drivers written in Kernal 
form have an additional eight specified words (words 16 through 23). Additional 
words for these kernal drivers begin at word 24. 

The physical device tables are included in SYSDAT (the system and parameters 
program) • 

6-3 



pw...(..-\rx,,) (,Lt-u./€,t .. ~ 

'" 0. V Q... J,€(\ {4 

WORD 
o 

1 

[: 
15 

t 1 ( 0 1 0 0 1 J o{ 0 0 0 01 
DRIVER INITlA TOR ADDRESS 

DRIVER CONTINUATOR ADDRESS 

DRIVER I/O HANG-UP DIAGNOSTIC ADDRESS 
~ 

V().9~w\~)~ W~~-0\S\O ) 
l.~"" +q~J cIX.n,\\:-D GNOSTIC CLOCK ~'3MVO TOe 3J 

LOGICAL UNIT CURRENTLY ASSGNED TO THIS DEVICE 

CURRENT REQUEST PARAMETER LtST LOCATION 

CONVERTER , EQUIPMElot"T CODE 1 STATION CODE 

REQUEST STA TUB BITS 

STATUS BITS 

CURRENT LOCATION FOR DRIVER 

LAST LOCATION +1 FOR DRIVER qi1J;~~~ 
. . . .. 

LAST EQUIPMENT STATUS READ --_. 

DRIVER LENGTH 

MASS STORAGE ADDRESS OF DRIVER 

USED FOR RE-ENTRANCY BY FNR. MAKQ, COMPRQ 

I 

6-4 

T 

EDlN 

EDeN 

EDPGM I?\Z~ -\-'Yn e. OCA -\­
ac\cA( Q.,S S 

EDCLK 

ELU 

EPrR 

EWES 

EREQST 

ESTATl 

ECCOR 

ELSTWD 

ESTAT2 

MASSEC 

RETURN 

STANDARD 
FOR ALL 
DEVICE 

. t:dt- ,/!f..(.,! cCt. f· 'Y'~.~~.z..... . 
4-1c.C-,UC4--' . 

OPTIONAL BY 

DMV1 

o 

o~ 



o L0G1A 

L0G ~ 

LARGEST LEGAL LUN 
PHYSTB ADDR FOR LUN ~ 

PHYSTB ADDR FOR LUN 2 
PHYSTB ADDR FOR LUN 3 

~ 
PHYSTB ADDR FOR LUN N 

LARGEST LEGAL'LUN 
ALTERNATE FOR LUN 1 

ALTERNATE FOR LUN 2 
ALTERNATE FOR LUN 3 

~ 
ALTERNATE .FOR LUN N 

LARGEST LEGAL LUN 
TOP OF THREAD LUN ~ 

TOP OF THREAD LUN 2 
TOP OF THREAD LUN 3 

~ 
TOP OF THREAD LUN N 

LOGICAL UNIT TABLES 

6-5 

~ I ~ \<{ G~ \ \o~{/~ 
d r( uC ri'o (~ 
s cJ.~.(:,J 0(,\ l \!-, 



C:I 

READ/WRITE REQUEST FORMAT 

RTJ - ($F4) 

0 D ~,C 2~ 4, 6 I X I RP I cp 

0 
COMPL ADDR 1 

THREAD 0 

ERR 
0 0 0 

Q M o A I LUN 
I I 0 

0 NO. WORDS (n) 1 

c 
0 c:: FWA (~) 1 .-' 

FOR EXAMPLE: 
t 

0013 P002F 54F4 START RTJ- C$F4) INITIATE FREAD 
0014 P0030 0201 NUM $0201 READ, CP=l RP=O 
0015 P0031 0038 P ADC CO~1PRD COMPLETION ADDRESS 
0016 P0032 0000 NUM 0,$100C THREAD,LUN CR=12,ASCII 

P0033 100C 
0017 P0034 0028 NUM 40 ONE CARD TO READ 
0018 P0035 0002 P ADC BUF FWA BUFFER AREA 

c' 

6-6 



0 

c 

PROCESSOR FOR READ, WRITE FORMAT READ, FORMAT WRITE 

ENTRY INTERFACES 

The Request Processors (TO, Tl, T4 and T6) are entered from the Request Entry 
Processor with the A, Q and I and Volatile set up as shown below. 

REGISTER 

A 

Q 

I 

VOLATILE STORAGE 

(1) + 0 

(I) + 1 

(I) + 2 

(I) + 3 

(I) + 4 

(I) + 5 

(I) + 6 

(I) + 7 

(I) + 8 

EXIT INTERFACES 

Exit to the Driver: 

MNEMONIC 

VQ 

VA 

VPL 

VR 

VI 

VPTR 

VTPE 

VTMP 

VID 

CONTENTS 

A14 -0 is the location of the parameter 

list. If A
15 

=0, then the reference to 

the parameters in the call was direct. 

Otherwise I A
15 

= I, and the reference 

was indirect. 

Absolute address of the request processor 

being executed. 

I contains the location of an 9 -word block 

of volatile. 

Q saved by Request Entry Prqcessor. 

A saved by Request Entry Processor. 

Used to hold reques,t priority level. 

P -register saved by Request Entry Proces­
sor. If indirect all, P is already incre­
mented by 1 for proper return address. 

The I -register saved by REP. 

Used to hold the user's parameter list 
location, also in A above. 

Used to hold the preceding thread location. 

A temporary used to hold logical unit 
number. 

The dri ver will be scheduled if the device associated with this logical unit is not busy. 
The Q register upon entry to the driver Initiator will contain the location of the physical 
device table entry for the device. 

6-7 



(j) 

I 
co 

(_J 

JoOY1 
:::r L.{ V'f\ rj) 

\aGIc.- ~ 

MONI 

R/W 
REQ 
PROC. 

READ/WRITE 
REQ. PROC. 

() 
\ _/ 

THREAD 
LOG 2 
TABLE 

L(;1etj 

l~vtlra.A 
.<1 J:Lf. rJL 
tp;p; t I7At-
",\.._\,~~ 

NO 

SETS WORD 
5 PHSTAB 

SCHEDULE 
DRIVER 

INIT 
Inl i{a tot 

i 

REQUEST 
EXIT 

() 



o Exit to the User: 

The request processor returns control to the REQXT where the volatile storage is 
released and control is returned to the caller. 

Upon return to the user, the registers A, I, and Q14-0 w'ill be restored. If Q15=1, 
the th-read location in the parameter list is not zero, implying that this request is 
already on some other thread. In this case, no action will be taken on this call. 
This action is apparent only to protected callers. 

Scheduling of the Completion Addres s, C 

Control will be returned to the Completion Address C at level CP when the I/O 
requested has finished or if the device is down and no alternate exists. Q will con­
tain word 3 of the parameter list. The high order bits of Q will contain the error code 
v. 

INTERNAL DESCRIPTION 

Requests are threaded onto the logical unit according to Request Priority. If the as­
sociated device is not assigned to a logical unit and is operational, the driver for 
the device is called; or, if the device has failed and has no alternate, the completion 
address is scheduled with an error code indicating failure returned to the completion 
address. Subroutine ALTSUB I in the Alternate Device Handler I is used to obtain the o al ternate logical unit if required. 

NOTE: THE *MINI* RW PROCESSOR * module is identical to this module. 
If the *MINI ERROR PROCESSOR*module is used, ALTSUB simply 
returns to the caller. 

REQUEST CODE ZERO 

The zero request code is used to cause mass storage reads which result from SCHDLE 
requests. For example I if a mass storage resident program is scheduled I the SCHDLE 
request processor passes the system directory entry to the SPACE proc.essor for alloca­
tion of space.. The SPACE processor then passes the system directory entry to this 
processor to effect a transfer of the program from mass storage. The apparent request 
code carried in the system directory entry is zero. 

6-9 



REQXT 

CHECK THREAD 
WORD IN 
REQUEST 

GET LU# 

J'W'iY\ feQLlj'1.) 

THREAD TO 
LOG2 TABLE 

SCHEDULE 
DRIVER 

YES 

6-10 

UPDATE RETN 
IF NECESSARY 

OUTPUT 
MSG 
LU X DOWN 

SCHEDULE 
COMPLETION 
ADDRESS 

o 



o 

o. 

o 

PARAMETER 
ADDRESS 
TO a 

WD8 PDT 
TOA 
VID TO a 

REaUEST PRIORITY 
TO VPL, 
RC TO A 

EIN 

LU#TO 
VTMP 

6-11 

UPDATE 
RETURN 

LIBRARY 
LU#TO a 

ADC PTRS 
Toa 

UPDATE 
RETURN ADDRESS 



ADC PDT 
TO a 

liN 

• NO 

YES 

YES 

STORE ORIG 
LU IN ELU 

liN 

CLEAR 
ELU 

6-12 

CKTHD 

EIN 

SET THREAD 
WD =-0 

CKTHD 

liN 

CLEAR BIT15 
USERS a 

UPDATE RETURN 
IF MM AND 
MM ADDRESS 
FOLLOWS RETUR"! 

THO 

SET CALLERS 
a NEGATIVE 

o 



o 

O. 

(--.. 
~I 

NO 

ADC LOG2 +LU-2 
TO a REG 

SAVE a 
REENT 

POINTER TO 
NEXT ENTRY 
TO a 

liN 

liN 

THREAD REaUEST 
BETWEEN VTPE 
AND NEXT (a) 

EIN 

LU#TO a 

6-13 

SAVE a 
REENT 

THONXT 

POINTER TO 
PRECEDING ENTRY 
(a) TO VTPE 
REENT -.a 

EIN 

POINTER TO 
TOP ENTRY 
TOA 

RP OF NEXT 
ENTRY TO A 

POINTER TO 
NEXT ENTRY 
TO a 



liN 

STORE ASCII LU NO 
IN 
OWN MSG 

SET BITS 
WOO PDT 
(MSG FLAG BIT) 

CLEAR THREAD 
IN LOG2 

LOG2+LU =-0 

YES 

G01 

SET ERROR BITS 
IN V FIELD 
OF REQUEST 

6-14 

LU#~A 

SET SEC FLAG 
(BIT 15 WOO 
REQUEST) 

liN 

YES ,CLEAR REQ 
THREAD 

o 

c> 



o 
vI. 

4. 

5. 

6. 

7. 

8. 

o 

C"" 
) 

STUDENT PROJECT-6 

ph~o hv6 =-; UJoro \'9-
From the dump I find the last status taken on the line printer I what does it tell 

you? goo,C\ -::: 0o~ V2ead.~ ~(' Jo \0..) i2.eQ~. . rt ~ I r I L"Fr- r::: 
) J ' \ . ~'i \ d \'1 0 Y ,- J I ..... 1-

'J6 .- 06 c 
Was there any I/O in progress when the dump was taken? 4,o/.,~\ -r. 0 \ ~ go cJ,u Q./ 

, 
What is the maximum logical unit number in the system? ~ \ ~ 

Are ther~ any shared devices? Which ones are they? \ \;'1 \.,1; 
DlA'mYM{ \ \\~ \ fA 'AC, \V\ (l6 ) L\!J~ P (\\\\-~( {) 

Are 'lny devices marked down? ~ 0 \ I \ 
I ow\;( ~o'{ [L (0 0'( l \ \...L.\ o\oVJ Y\ ~ Ct(~e" wr \-t~(lA\ :.c"\ s. \l)\" \ ~ ~'. 

What is the Alternate device for the comments device? I ~ 

Is the driver for the line printer core resident in t, his system? If not I was it in ~ 

core when the dump was taken? f"'~~ \-a.-b ~I \\ y\L )0r IV) \e, -:'/ ~(,t~\ uJOY 0 ~ 0 .\~ 
'{\ o~ \ v, 'lV\ \lV\ . 

What is the address for initiator portion of the system disk driver? 

~h~\-~~. --
~~~ 

6-15

o

c'

(---.., ,

,-./

?

0

) ,

1.

2.

3.

4.

5.

6.

7 •.

8.

9.

10.

11.

12.

STUDY QUESTIONS - 6

How can you tell if a drivE1l" ~ busy? EL(A lap (Ct \. u.,.v.~ \- uJOrt~C a \~O \eQe'a W\I1.:l-\ LlA.
,\- IS \0VOc.a....<" .. 51 ~ b"Or -\Z'\(), Y'QQ. Se-t- '0 '1 '«..t/..; ~ VtOCC;..<;SOr~. '

How does a driver get put into execution?
s:'-l-'t cOCA L~ 0 -fj Y Y'-LV '(Q. ~ lJ..e <:::,\- 'f> Y""Qce $..:;3 0 «-. _
What is the function of the LOG 1 table? L\STS Vi <.. TF- v2.. V\ a \e.) ~r ~ ~u, c...-C..., \...e (\ s

I\=" LeA. OOWV\ I (,(f / Sl-\tqI?.EO,

How are requests ordered in the LOG 2 thread? .]
Y<.Ea~6s\ fI"L\ol{t.\\'f [LUI'\!+IN. y<.p \=\Fo

What happens if a driver is working on a priority 0 request and a request of priority 10
is put in the LOG 2 thread? \)'a.\VEvt. ,F\~\s\-\e'"~ I'2.EQt..l.zSs\" 0.-\ P ,("Lonk(D t-k~
~ DQ.';. ~ WO('.{- OW'"\. ~ r\or\~~ \0 \ZEQU.G.S,,\·

How can a driver be busy if he can be execl..\ting ~d your program can belma~ng P l-
requests to the system? U)\.\\~c., '{)\,\ue(\.S ac.-huQ... \\- \M.~ \..Val" foe- ,Aa\-O- h-CVt'\ oS \-er \0
Oc:c.uy· (\),(\ve.-r \lY\a'1 ~o -\-0 D\S:P\4-rc..H i.S\"L. "Tc::J .:;r\I"c.v OT!-tG-V0 f(lOC(raV't",s. Ie:> 'rUt) .

How dqes a driver know when the operation is complete?
\\ <; ~T5 EIJ'-\O or- OPEaJT\LOt~ \N,"""TG rc..vtu,'P' (FL..f1Q)

At what prioirity does the RW processor run? .
Y-11" S~ VV\ ~ f'<2. \ O!(LI 'y 'AS Y0c.A'(L 'P <2..01 ~e.V-tr VY)

How many times is MON! entered due to a RW request and why? 1-

Does RW set any words i~ the PHYSTB? If so, under what conditio:qs? i'I '
5E\S 6l...LA. \0 \V\t!\,Cctk... 0- '(e.a.~~, \S }1C-,tVO Oh ~C~;- o~<?U(c\"...J
If RW does not schedule the driver, how will the driver ever get into execution to find
our request on LOG2? vqV10W-Q.,\ r'..e4UJ2"'+ +z, +t'~ Fcu\-tu,Ui'o r .::;;Ulu(c.R.- L.i.' •• .Jtll .~~ +

agel \V\ to s~ctu..fk- '1& ~'("\ ver· yOCA 1M Vt'i I W\C{~ v).?\- lO.::?Je. o'('j(V)Q' '\-<?'~Lt0,)
How does the RW find the driver's address so that he can schedule it? .
la;t'A '=? ~\4y5\T=1~ Woro 1... \A.Jh,ck, LOV'l~a\Vl> cAy--\ve.,l("' 1~,liQbr C4!,~\d(e.ss.

MaGS AA£W10("~ C'l2-\J~r" hM Qc;{ClW61 0-\ .Qi.ew\-we.,. w~<.? ~tlkts CD <e.­

b (sJte~V'j V\Q, o\v"tk~ .

Q6-1

LESSON PREVIEW:

LESSON GUIDE 7

DRIVERS

The lesson will introduce the general structure of a driver under MSOS. The class
will study the subroutines provided by the system for all drivers and will examine
an example driver.

REFERENCES:

Software Peripheral Drivers RM Chapter 1 & o/MSOS 5 PP. 2-8 and 2-9, Appendix C
Listing of a driver

TRAINING AIDS:

C) PROJECTS:

Study Que stions - 7

OBJEC TIVES:

At the completion of this lesson, the student will be able to:

1. Discuss in detail the structure of a driver under MSOS.

2. Discuss in detail the functions of FNR, COMPRQ, MAKEQ, ALTDEV.

3. Trace the flow of events as a result of an I/O request.

7-1

'-l
I

N

>

~
~-{QQ~ DRIVER REVIEW

W\j:-~
MAKEa COMPR

r---- -------------lr~---r--~-----~------I

ERROR BITS I 7
WORD 9 \ ~e
PHYSTB tv

DEVICE ERR
BIT 15 SET

SHORT READ
BIT 14 SET

NOT READY
BIT 13 SET

LWA+1 PUT IN
LWA BUF
(SHORT READI

To Compute N Words Read II L __________________ J I

IDLE CLOCK
WORD 4 PHT

PUT ERR BITS
IN REaUEST
WORD 4

YES

CP Complete

SCHEDULE
COMPL

Thread Will
Be Cleared by
DISP I

I
I

CLEAR THREAD 1-1------------'
L ___________ _

-~---- ---------- r----------------., i COMMON INTERRUPT HANDLER I LINE PROCESSOR I

I I I
I SAVE SET NEW I I
I REGISTERS PRLVL I I
I INTER- OF SET NEW I I

RUPT INTER- I--~*-~M~A~S~K~--~~~~<Q
I LINES RUPTED JUMP TO I
I 1 - 15 PROGRAM PROCESSOR
I IN FOR THAT I
I INTSTK LINE I TAKE STATUS

L Via Word 3 I I I
"DISPATCHER L _ _ _ of Tr~ __ -' I I \

-=-==-=::"";;;;;::"=''''''i. L _________________ _

~ YES .1 SET NEW PRLVL
NEW MASK

Exit to
Program
From
INTSTK or
SCHSTK

EXIT INT
THRU $104

fLuJ
lli!M!Q!! (Entered by being scheduled I

(al = PHYSTB
r-----------------------------------~ ... DISP

FNR

CONTINUATOR

(al = PHYSTB

ACKNOWLEDGE
INTERRUPT

ERROR

ATTEMPT TO
CORRECT ERROR

INPUT OR OUT­
PUT DATA

To Error

SET CLOCK

PHYSTB WORD 4

YES

<; ~J I.A~ tAu..\,:;

MAKEa

~ I/..e

NO

SELECT
INTERRUPTS

RESET CLOCK

RESELECT
INTERRUPTS

DISP

DISP

COMPLETE
REaUEST

It \fV\Orc. (.tc{l.U~~~
To INIT+l For Next Request 'd 0 IJ fN(,

MAKEa
SETS a BITS
WORD 9 PHYSTB

SET tuN ERROR
CODE IN a

r---------------------------,
FNR t 5~Ct\~

o

RELEASE SCHSTK
~POSITION TOPMT

c;
, /'

FM
LOG2

ANY OTHER NO 8
LUN WANT ~ Return to NIT+1
HIS DEVICE? To Go
~ ToDISP

CK LOOlA
CK LOG2

STUFF PHYSTB
PARAM ADDR
FWA BUF I • I :~~S;~N~~RD 5
N WORDS

o Executa Driver ------- ---------

C)

......:J
I

W

() o c)
(ENTERED FROM

DRIVER INITIATOR SCHEDULE REQUEST

BY RW) . ~\(5 \ ~U'A \ C 01"- (fA. ()\ {\vce ", -':=-- -
;\J \A'-'

~i' ~' X'r '\j)v .

If--' j)' C '\
.jf',! : (U , CALL \ rjJ ,~,J) J
~{t

TO FNR

STQ - I (Q) = PHYST~ ADDR !,;o.\V\iO <,\') &t\WU.Lr: toul.(S t~hQ. thi\
RTJ - (AFNR)
JMP - (ADISP)

"-- '(Y\ os\ 0' ~ \ U Q (S a So Su. W-V

TO CALL +2

MOVE SOME
PARAMS INTO

PHYSTB

SETUP
EQUIPMENT

FOR I/O

SELECT
INTERRUPTS

SET CLOCK
WORD

PHYSTB WonD 4

FOR DTMER

NO

PHys\\-\ \0 \':\\)0 ru:;ss \S

TO DISP \ \'\ "I-

- --~SOME DRIVERS
HERE JUMP TO
CONTINUATOR

Ie START MOTION

I-----~ EXIT TO DISP TO
\VAIT FOn INT.

'-J
I
~

n
'- ."

CK FOR OTHER
LUN'S USING
SAME DEVICE

ef~-

CYCLE L0GIA

CK FOR REQ
WAITING ON

THAT LUN

CK LOO2 QUEUE

I' . . 0
1

A f' (' oj_L0%\(.. .\
C/Y/'It..r.,y .. r..rL .c ~ ; , l'-" I , \ ,.I , \J'!J1",y i:

_y{~i'.,.JJz.. \j\.J>\ "
'\~,l~¥i' J "·V '\

FNR

EXIT TO
CALL +1

NO

YES

NO

YES

SET LUN
IN PHYSTB

WORD 5

()

MOVE PARAMS
INTO PHYSTB

• PARAM ADDR FM L0G2
• FWA + N FM REQ

UNTHREAD
REQUEST
FM L0G2

EXIT TO
CALL +2

TO EXECUTE
DRIVER

()

o

o

u

FIND NEXT REQUEST FOR DRIVER (FNR)

FUNCTION

The function of this subroutine is to find the request which should be processed
next by a driver for a device. It performs as much of the Physical Device Table
set-up associated with each new request (or part of a request) as is common to all
I/O drivers. .

ENTRY INTERFACES

Entered via a return jump to entry point FNR with the physical device table slot
address in I.

EXIT INTERFACES

If there are no more requests for action by a device, the subroutine retur~s to the ('al\+-1-
driver at the location following the Return Jump which called the subroutine.

If more action is required, the subroutine returns to the driver at the second location [~\\ t-~
past ~he Return Jump with the following conditions:

The I-register is undisturbed.

The A, Q, and Overflow registers are not restored.

The physical device table slot is set with the information specified in the
description of the table in thelERSJ '(

INTERNAL DESCRIPTION

The top request on the logical unit thread is removed from the thread and its parameter
list address and absolutized I/O List first and last +1 addresses are placed in the
aSSigned physical device table. Program control is then returned to the driver.
At some later time, when the driver has completed the last I/O action required by
that request and has received an interrupt (if applicable) indicating completion of the
last action, the driver calls the Complete Request for Driver subroutine, thereby
completing the processing of the request.

If the device is shared by several logical units I the Complete Request for Driver
subroutine sets the logical unit word in the physical device table to FFFF. Upon
finding that a device is assigned to the logical unit FFFF the Find Next Request
for Driver subroutine searches the Logical Unit Table for lRe highest priority (i. e. I

lowest number) Logical Unit which requires the available device.

This provides sharing of devices by several user routines. However I no request,
once started, is interrupted; only upon completion of each request is a higher priority
requirement executed.

7-5

AD
PICK UP LAST

__ ~ LO EXAHINED
FROM ECCOR
INTO Q+A

. INCREASE
ECCOR & Q
. BY 1

YES

______ :LED ~
1UWPTS

HERE

NO

FNR

SAVE RETURN ADDR
IN PDT AND

I--~ CLEAR ECCOR

NO

STORE LV
IN ELU

JlESTORE FINDRQ

7-6

CET TOP OF
THREAD FROM

LOC2

NO

o

o

c

YES

0,

c"

OP OF THREAD TO
t----itt;D!R NEXT REQ A

Ug TO Q

YES

SET ECCOR AND
ELSTWD

FBDH DIRECTORY

SET ECCOR.
AND ELSTND
FROMB!QST

NABS

7-7

NEXT REQ TO TOP
SET REQ IN PROG
BIT IN EREQST

CLEAR.
ESTATI EXCEPT
FOR liM BIT

ac TO Q
}l)DE TO BIT3

OF ~

SET !l>DE,
FORMAT & WRITE
BITS IN ESTArI

""'-J
I
co

/-,
t /

ackow~ &~~a \\f\\{ .
011\&) YlYDu':)111..- \II\~'O ae~~IOV\

_ b, c' ttl.<4t. 0 (- (}JV\ \ V\ \e.r~ \-- ·
,ENTERED FROM INT. PROC. FOR

\ CONTINUATOR
LINE, VIA WORD 2 PHYSTB

ACKNOWLEDGE
INTERRUPT

YES

CKALARM
STATUS BIT

(A) = PIIYSTB)

SET ALARM
CODE IN A

TRANSMIT
DATA

CK DATA
STATUS BIT TOO

YES

CK PHYSTB
WORDS 10 & 11

RESET CLOCK

RESELECT
INTERRUPTS

EXIT
TO

MAKQ

SET ERR
BITS

DISP (WAIT Fon
NEXT INTERRUPT)

()

JMP
INTO ERROR

SECTION

C0MPRQ

COMPLETE
REQUEST

JMP TO
INITIATE +1

(TO FNR)

o

'-l
I

<.D

C) o
ERROR SECTION

ENTERED FROM CONTINUATOR OR -

DTMER (VIA WORD 3 PHYSTB)

SET BIT 14
WORD 8 ~ ,y

1'0'
J)J L
Ii J;' ·'f Ij\..

! VI If
;~ i)

f __

D-- -\ L[/'-/
~ (,rA../ \ ()VV

MAKQ

(Q) =
IDLE CLOCK

PUT LUN IN o TIMER EXPffiATION
Q

1 REJECT
I d lJ

i .Iip
2 ALARM) '0\.1\,\'

PUT ERROR CODE I 3 PARITY ERROR
~y9

IN Q BITS 5-0
4, CKSUM ERROR

5 INTERNAL REJECT

JMP TO ALTDEV 6 EXTERNAL REJECT

\
\

\
\

-~

c·

F·· .' I .: \'C/O

;l(/ ~ I f)'V
(, (i I ,U" .

ff' • - .
I r

djJ
JV i\i~)\ '

,l.(!,
t·'"
V

./

NOERR
STORE: E:RROR
BITS IN
IiJD 9 PDT

YES

MAKEQ

YES

NO

NEXT AVAIL.. L.OC.

'-----.....,~~r~~~ ~~~ u~~~;~ l\

SET ERROR
BIT IN Q
{BIT J.5}

SET NOT RCA»'!'
BIT IN Q
{BIT 1.3}

7-10

$HOn liEU 8IT TO Q

• • · ..
A

YES

INCR(MENT
CURRENT
CORE: LOCATION

o

o

o

o

COMPLETE REQUEST FOR DRIVER ROUTINE

EXTERNAL SYMBOLS

COMPRQ Entry point

FUNCTION

The functions of this subroutine are to initiate completion requests to the Scheduler
for threaded I/O requests and to perform other housekeeping details upon completion
of an I/O action by an I/O device driver.

ENTRY INTERFACES

COMPRQ is entered via a return jump with the physical device table address for the
device in I.

EXIT INTERFACES

The contents of the I register are not disturbed. The contents of the A, Q, and
Overflow registers are destroyed. Interrupts are enabled.

INTERNAL DESCRIPTION

The routine is entered from an I/O device driver via a Return Jump to COMPRQ.
Interrupts are immediately inhibited.

The Diagnostic Clock cell in the Physical Device Table is set idle.

For Logical Units which do not share devices, the completion address, if not zero I
is scheduled with the error field from the PhYSical Device Table replacing the V
field of the I/O requ'est parameter list. The request parameter list, which contains
a request code designating it an I/O call, is flagged as a secondary scheduler
call by setting bit 15 of the first word (field I) to lionel!. The scheduler later resets
it to II zero II • The device is not released from its logical unit assignment.

For Logical Units which share devices, completed threaded requests are treated like
requests to ordinary Logical Units. The device is then aSSigned to a pseudo Logical
Unit, FFFF 16 assignment.

The subroutine exits to the location following the Return Jump which called it.

7-11

......:J
I
I-'
N

o

COMPLETE REQUEST

SUBROUTINE USED BY ALL DRIVERS TO COMPLETE REQUEST

IDLE
CLOCK

-1 WORD 4 PHYSTB

MOVE ERR BITS
TO WORD 3

OF REQUEST

FROM WORD 9 PHYSTB
BIT 15-13

NO

RTJ - (AC0MPR)
JMP* INIT+l
END

CLEAR
THREAD

WORD

(REQ WAS
UNTHREADED
BY FNR)

EXIT TO
DRIVER

(CALLER)
SCHEDULE

COMPLETION
ADDRESS SET BIT 15 OF FmsT ~

WORD OF PARAM STRING TO INDICATE SECONDARY REQUEST

CLEAR BIT 15
WORDS
PHYSTB

OPe COMPLETE Bff

o

YES
ZERO LUN
WORDS
PIIYSTB

o

o

o

COMPLETE REQUEST

SET DIAGl~OSTIC
• CLOQC. IDLE

'EDeLl. • -0'

SET lIT 15 OF
NO WOO OF REQUEST ADDI. OF REQUEST

>-..:=--~ TO FORCE SCllED,tn \:l----"'II TO A
or aJHP. ADDI.. !UOR. WORD

D
----aEq IN PiDG

AND Hml EUOI.
IITS or EI.!QST

7-13

AQSTK)

AQOUT)

SAVE DRIVERS I
RETURN

PRIOP.ITI
IN AQSTCK

ALAQ-1

____ --IH--E-IN-~-....;:')~(DISF

JIETtJlW

DUVER.S I

DRIVElS PlUOlIT!

0

0

0

BETUBN

DJUVERS I

DlUVEBS PRIORITY

7-14

PLACE ADC PDT
CURlUl."l' USER

UJ GOTAQ

)

o

c

C)

C)

ALAQ-2

ADC PM'
THIS DRIVER

TO A

OOIT

7-15

USE STACK ~'lTRY
TO SETUP sellED
REQ. ASSIGN llEW
DEVICE TO C.oTAQ
ZERO THE STACK ENTRY

r~DTI TOQ

SCHEDULE
NEXT
usn

D1713K-1

CLCAR COMP S~ITCH
(OR£IN
StLtCT WRITt MOtt,
INT ON »ATA, ALARM

7-16

p

S13no~ • t!CCC!
sneCT nyeo.lP.~ no~t
A. • It. <top INn

()

D1713K-2

o

c)

7-17

I m ADDR. PHYSTAB
a 2 EWES
FLAGIT = 0

CMPLET

A=5
'INTERNAL
REJECT'

A~6

'EXTERNAL
REJECT'

D1713K-3

CLEAR INT.
EDCLK - -1

I ~ PDT ADDR.
S13BZY - 0

SETCD1 =
ADC DONE
RESTORE A

TAKE STATUS
AND SAVE

RLAO

LU+ERROR CODE

NF READ

CLEAR INTERRUPTS
INT. ON DATA-ALARM
SelECT READMODE

MAKEO

CMPRO

I-------I:-----f TO ERRCOD I-----C
SET ERRTAB

LOG

7-18

o

C)

D1713K-4

o

NO

NO

7-19

(lEU PASS.
CAHCEL , LOWE~

liITCH
Olt£ • lost WOIt»

SCT USCItS
BU .. ,.U TO .",."

YES

ReseT
LINt FE:n
SWITCH

LINt Ftn
CHAR TO A

D1713K-5

o

7-20

o

o

o

D1713K-6

RtStT MOTION GtT PAfCAnCTtR
.#--....... ~ t------.;::t.-~ STRING I----~IC

SWITCH d • NexT PARn

TOPfRM

SET MOTION
NUll COUNT

rNA 0
I----~ 'TIne OUT Cltlf'

7-21

YES

NO

SAVE RCnAINING
pARAnCTeRS

YES

MARK
DEVICE
DOWN

RETHREAD
REQUEST TO

TOP OF THRD

ALTDEV IS ENTERED FROM A DRIVER VIA A JUMP
INSTRUCTION, BUT IMMEDIATELY RESCHEDULES
ITSELF TO RUN AT PRIORITY 14.

___ {L,nn FAILED xx
ACTION

RETHREAD
REQUEST TO

TOP OF THRD

I

rL,14 FAILED 02
L ALT,22

MARK
DEVICE
DOWN

C~1

C'I
1.

2.

3.

4.

5.

6.

7."

8.

9.

o

STUDY QUESTIONS - 7
. \

What system routines are common to all drivers? I="N \Q) M ytKE"q -tN-\=\ €7t9~
"I ')

What is the function of the INIT portion of a driver?
vi LTO E V (ADEV) (OMIpv<.E:.~

') C~%~RQ.
I lANI\\Il.E'1rJ ,1\1;. R\::QU~:,T \1- NONE - }>'i<..\l£v<. ~OE.5 \0 D\Sf"{:rTCI~e~

When is the requestors thread word threaded to the LO G2 and when is it
unthreaded, when is it cleared? T\-\V(SV1-0~O €>~ RUJ) UN\~-\Il.~~V-10"Eo-81

CLE'AfLGD ~'1 t.OvY\,?LE'E. R~(QU,~S\

Who pas ses control to each of three divisions of the driver?

What are the first three instructions of every driver, why?

FNR..
)

Who clears bit 15 of word 8 in PHYSTB? \5 I V)~\("a ~ rC r-e GlJ-Q6l \ S. aG~ u':e. "
(L5~Q~ 0 1B.Cj CO vY\ tplG"\ Go- Qc QlA IS S "'T

How does MAKEQ know if error has occurred?e \T JLf WOr 0 6 I N\Q\Oi-YTGS
'r,-N.. ER.'{?.OVL (() cc.u \!t,E, 0 ~ ..

Who schedules the completion address? W.) 'v...Ct..MftJ.eA lV\l be(~OV) D++ta.. '\~"Qt..tM +.
lo'm1p'-e..k, ~e.&().QA~ V,cVhcJJaA ~Sc.-~cLui,ln~ 0+ C,OfY'\p le,h~ r'I acAJ,If..Q.ss - .
What is the function of the continuator portion of the driver?

'A c.\<\') C) UJ ~ tA ~ --\k. \ ~\ ~e:~"yLA.Af ~)

y) 3 v\,U\s\oV\~ OF D«\Vc" rU

--\ N \~\ Y\'O'R..

()J \ 0 fo,S.sR:.S Lo,,\ Y-ro l
U. t-\ c: O(.,~ \.., & (L, (. 3~,:Lu12tJ- ~1 ~ LU)

(,O\~<""\ ,Y'\ ~ C\ \0 '(" \ yd.e .. ',(Yl~~-t:) t- \ \ Y\.L.- ~ \: 1.9 cess {) r

\S '('{O <r '-'0.. Vi c\ lc.. '(~ \ 'A (, VI 0.$ "\ \ G "\\ (-1'\ S I"<.

S~\.JES f'r!r,!S"T'A£ \f!COfLESS)

5j..~Ec....1 S TO 'PI NO ~\,~ys-rA6 \C)\O~r't ,C'-t-:r.

NO ,{)to(.e..; v.Q\',l~~S
F {'\ (0 '(Q.\-u. (Vl;" 16 ca \ \ -\ 1. \ C .{\ D \{\'1 D (10

Ca ~ \ -\ c1 \\ '~W.i'(~" c'-- 'f.eiQ I.-~~

G) STq-.L
~ \3- ~~V<-

TM{J- \')\5 ~

07-1

o

C)

o

o
"LESSON PREVIEW:

.

LESSON GUIDE 8

MEMORY ALLOCATION

This session will give a detailed presentation of the two dynamic memory a1l0cation
schemes under M SOS. The drivers and swapping schemes as sociated with each will
also be discussed o

REFERENCES:

Pages 2-15 and 2-16 of MSOS 5 RM
Listings of SPACE, RW, DCORE, ALCORE, and SYSDAT

TRAINING AIDS:

Visuals V8-1 through V8-6.

o PROJECTS:

C';

OBJECTIVES:

At the completion of this lesson, the student will be able to:

10 Describe the allocation algorithm for allocatable core and Partitioned core.

2. Establish the parameters for the Space Allocator and PTNCOR Allocator
(LVLSTR, PARTBL)

3. Understand the significance of the RP parameter in the System Directory.

8-1

FWA

REL

MASS MEMORY PROGRAM
IN

ALLOCATABLE CORE

NUM

STA* REL+2

COMPLET,E
4-" ___ 1_ IIO BEFORE

RELEASING
CORE

RTJ- ($F4)

NUM $1801 "-

NUM 0 'T BIT SET
tf \ \ ~L,lj.:) (Z)I \ ~ to
t)\'~~A\(\-\fvt V)F\~(t \'\tl. ~~Q\;\tS.\

8-2 (V8 -1)

o

o

C)

SPACE, PTNCOR, RELEAS, SWAPPING AND RESTART

GENERAL BACKGROUND

Many modules are nonresidents, i. e., they are not kept in core. Therefore, when
they are operated, it is necessary to read them in from the library. There is an area
reserved for JhiS purpose, the size of which varies from system to system. Each
nonresident rogram, prior to operation, must be assigned space in this area and
read into it. Similarily, when a nonresident program completes its function, it must
cause the area allocated to it to be restored to the block of empty space available
for allocation to other nonresident programs. The SPACE, PTNCOR aI?-d RELEAS
requests deal with these operations.

If it is necessary to allocate space in the nonresident area and insufficient space
is available, it may be possible to preempt that area of core used for job processing.
The procedure involved is called swapping.

For purposes of allocating core space in as simple a manner as pos sible, the area to
be allocated is treated as an I/O device. This pseudo device is operated by a
pseudo controller (the core allocator) which is operated via a driver (SPACDR). The
SPACE and RELEAS requests take the place of READ and WRITE requests in this .­
situation. In order for this operation to work smoothly, the pseudo device is always
considered to be logical unit #1. This is true for all systems. The modules to be
discussed in this lesson are:

CORE ALLOCATOR
SPACDR
SPACE REQUEST PROCESSOR
SUBCOR

CORE ALLOCATOR

EXTERNAL SYMBOLS

LVLSTR

LEND

CALTHD

Level start table

Level end

Core allocator thread

INTERNAL SYMBOLS

MINSIZ

MAXNO

Minimum allocatable area (assembled as 2)

Largest single precision positive number

8-3

co
I
~

n

DCORE

SET BIT
15 OF Q

COMPLETE
RE~UEST
WITH ERR
FIELD SET

SECURE &
PARAMETERS ABSOLUTIZE

FLAG SWAP I-~
LIST

EXIT TO
DISP

WRITE UNPRO
CORE ON DISK

THREAD ON
LOG 2 .4

... GO TO ALCORE -
I

THREAD
TO LOG 2

PLACE ADDR IN
~ ~I SPACE CALL

SET UP
PHSTB
LUNl

WAIT ON
INT

SET SWAP
SWITCH

n

YES LOCKOUT
JOB PRO

BACK TO
FNR

EXTEND ALeORE
TO INCLUDE
UNPRO CORE

READ IN
MASS MEM

PGM

o

a:>
I

U1

t)
\.J

ALCORE

LOOK FOR
AVAILABLE CORE

SETQ
ADDR OF

ALLOC CORE

NO

o

SET Q=-l

SET Q=O
REQ NOT
ACCEPT.

BACK TO
DCORE

o

YES

Scheduling a mass memory resident system directory program causes the following (~)
operations to be executed.

1. . Space is assigned in the allocatable core area.

2. The program is read into core from mass memory.

3. The starting address of the program, i.e., the start of the assigned core
area, is scheduled at the requested priority.

All mass memory resident system directory programs that are to be run in allocatable
core must be written to be "run anywhere" (using relative addressing, etc.) since
the program amy be assigned different core areas on successive operations. The
mass memory programs that are to run in partitioned core must be absolutized
relative to a particular partition and then run at that address only.

FUNCTION OF THE PROGRAM

The Core· Allocator module allocates core to programs which are mass memory
. resident. It also allocates core to programs which require additional temporary
working area at execution time. .

The Core Allocator is required in the monitor on all systems which have a mass
memory in allocatable core.

The Core Allocator accept returned areas of core and, if possible, combines the
returned area with adjacent areas.

Requests for core allocation are stacked by request priority and core is allocated
on a priority basis; i. e., the higher priority programs have access to more of the
allocatable core.

COMPREHENSlVE PROGRAM DESCRIPTION

The Core Allocator threads together all the pieces of available core memory.
Initially there is one piece of core which is the entire area. As allocations are
made, the available area gets broken up into many pieces. As pieces are returned,
they are regrouped into as few pieces as possible. The thread of available pieces
is arranged in ascending address order.

ORGANIZATION OF CORE

Part 0 is divided into two areas:
Area 1) the core resident programs constants; Area 2) the allocatable area.

8-6

C'I

o

AREA 1 AREA 2

CORE
RESIDENT

PROGRAMS
AND

I~
DATA

~

o

PART 0

LEND

~
ALLOCATABLE AREA

1..- LEVEL 0 ..
1.- LEVEL 1 ..

LEVEL 14 ..
LEVEL 15 ,.,

..

TOP OF CORE AVAILABLE
TO THE ALLOCATOR

CORE MEMORY IS INITIALIZED AS FOLLOWS:

-
CALTHD N TOP 0

ADORES ~

~ N

FFFF
16

AVAIL-
ABLE
CORE

8-7

F THREAD

N

l

length of core
end of thre ad

(V8 -2)

INDIVIDUAL PIECES OF ALLOCATED CORE ARE ORGANIZED AS:

Location Contents

A-2 N + 2 Actual length of area

A-I A Loca tion of area

A i Allocated Area
N

1
of length N

A+N-l

After an allocation has been made, core memory appears as shown below:

CALTHD N

END OF

TOP OF THREAD

n .- Allocated area of n1 t words starting at J\ .

" " " " 1---------1 r
,/ N Available area of N-n

1 ,/ -n"-,/ ,/ t 1 words starting at A2

"AVAILABLE CORE"
THREAD .

8-8

o

('18-3)

c Area 2 is allocated by the core allocator according to the request priority in the
parameter list. A fixed amount of the available core is available to each priority
level. Higher priority levels have access to more of the core than lower priorities.
This has the effect of guaranteeing that many low priority programs cannot use an
area set ,aside for a high priority program. An area can always be available to a
higher level by restricting the area available to lower levels. The core allocator
also selects the core from the smallest available piece. This has the effect of
minimizing the number of pieces of core that are twoo small to be usable. The
technique uses the small leftover pieces first while leaving the big pieces for
future requests.

The core allocator stores two control words into the allocated core area. The first
word, located at IA-2" always contains the requested length N, plus 2, and
~epresents the actual length of the allocated area. The second word, located at
"A-I", always contains the address of the area, A.

CORE ALLOCATION LOGIC

The subroutine, REQALC, (request allocation) actually does the analysis to select
the available area of memory. The logiC is discus sed below. REQALC is called by
the Core Allocator Driver with the parameters, requested length and level.

If the requested length is larger than the area available to the requested level,
then REQALC immediately returns with a zero parameter to the driver.

Otherwise, a search of all available core is made to select that piece which has
the following properties:

1. The piece must contain N +2 words available to the requested level o

2. The remaining piece (after N +2 words are allocated) is smaller than the
corresponding piece of all other allocatable areas.

If no such piece is found, then the parameter, -1, is returned to the Core Allocator
Driver. Otherwise, the optimal piece is broken into two or three parts,' and the
thread of available core is strung through the leftover piece. The leftover pieces
are restricted to being larger than MINSIZ so that they can-contain the thread
information.

CORE RETURN LOGIC

The subroutine RTNCOR does the analYSis to combine the return piece of core with
the already available pieces. RTNCOR is entered from the RELEAS request proces sor
(SPACDR) •

8-9

A search is made to find the first piece of available core which is below the returned
piece. The returned piece is threaded into its proper position (the available core
thread is ordered by ascending core location).

A check is made to see if the returned piece touches its lower and! or upper neighbor.
If so, the adjacent pieces are combined into one piece and the thread is updated.

TABLES

LVLSTR This table contains 17 cells and is located in the system table
module. The first 16 cells are indexed by priority level. Each entry
contains the core addres s of the first cell allocatable to programs
with request priorities of the level represented by the index. The
last cell contains the address of the last cell in the area which is
controlled by the core allocator.

8-10

o

o

o

Available to
Requested
Area

A1

/

-

"

CORE ALLOCATION PIECES

AFTER BEFORE
TOP OF THREAD TOP OF THREAD

N

I
N

I

N1 A1 N1 t
AN

/
Aa

-- -- - - - -- - ----

A2 N2

A

A

~ a Na
N

FFFF16

NOTE: PIECE #1 LIES BELOW THE AREA AVAILABLE
TO THE LEVEL AND PIECE #2 REMAINS AFTER
THE REQUESTED PIECE HAS BEEN REMOVED.

8-11

. Piece #1

Allocated to
Request for
N2-2 Words

(V8-4)

ADC PDT
TO I

REa PRIORITY
Toa
#WDSTOA

MOVE WAIT THREAD
TO NEXT ENTRY
SET a,A TO POINT
TO TOP ENTRY

THRDIT

UT TOP ENTRY
ON LOG2 THREA

DeORE

STPRV4

. SETa
NEGATIVE

SET BOTTOM
--0

8-12

LOCATION OF
REQUEST TO
a AND TEMP

o

o

STLPV4

NOGS

ADC PDT
TO I

SET UP LENGTH
AND START
OF BKD IN REO

STLPV4
SET UP
LEVEL 2 LOOP

CLEAR
WAITING TO SWAP
FLAG

STLPV4

DeORE

SET SPASW
'WAITING TO
SWAP FLAG'

SET SWAPON
FLAG

8-13

YES

NOG1

THRDIT
PUT THIS
REO BACK ON
LOG2 THREAD

CLEAR ELU

SET LOOPFG
::;Co

ADDRESS OF SPACE
OBTAINED TO PQ
OF CALL AND
YVD9 OF PD-r:

ADC PDT
TO I

PUT POINTER TO
NEW REQ IN
REQ ON BOTTOM

DeORE

SETUP SYS DIR
TO READ IN PGM
START ADDRESS
TO WD1 IN DIREC

COMPLETION ADDR
IS WOO OF THE
DIRECTORY PGM

PLACE NEW
REQUEST ON
WAIT

PLACE NEW
REQUEST ON
BOTTOM

8-14

NO

ADC PDT
TO Q

MARK NEW
REQUEST AS
END OF THREAD

c

o

o

o

THIS REQUEST

ADDR NEW ENTRY
TO TEMPl

NEW RP TO r.EQP

UPDATE TOP
OF ALLOCATABLE

DeORE

THDNX'l'

ADC
LOG2 + COr..ELU -2 1---r---~

TOQ

OINTER TO PREVIO S
TO THDX

POINTER TO NEX'!
TOQ

PLACE NEW ENTRY
ON THREAD \.¢-____ _

AFIER TADX

UPDATE START
OF LEVEL 0

SAVE PREVIOUS
STAltr IN TEMPL

SET PB.OTECT
BITS IN

lWXG20tJND

8-15

SETUP PSEUDO
THREAD AT

BEGINNING OF
"BKD"

DeORE

ENTERED ON COMPLETION OF SPACE REQUEST TO RESTORE BACKGROUND

MONI

FREAD BKD
BACK IN
COMP=NOG33

~APCK H~ _____ --,

8-16

STORE $14EA
IN LOOP TO
TURN OFF
LEVEL 2 LOOP

RESTORE TEMPL
TO LVLSTR
RESTORE END
OF ALLOCATABLE

RESET TIME
SINCE LAST SWAP

CLEAR PROTECT
BITS IN.
BACKGROUND

CLR
SWAPON

c

C"

c

o

SPACDR

EXTERNAL SYMBOLS

LEND

LOGIA

CALTHD

RTNCOR

CORE

LVLSTR

SWAPAR

UNPIO

SPASW

LOG2

REQALC

AREAC

Address of last location in the area controlled by the core allocator.

Logical unit table containing PHYSTB addresses for each logical unit.

Core allocator thread.

Entry to core allocator for releasing space.

PHYSTB entry for the core allocator.

Level start table.

Mass storage address of area where unprotected core contents
are saved during swap. Filled by the initializer.

Count of number of unprotected I/O calls pending.

A switch in TRANV used. to inform the protect processor that a swap
is desired.

Logical unit table containing thread top s for all logical units.

Entry to the core allocator for allocation of space.

Start address of block controlled by the core allocator.

INTERNAL SYMBOLS

INTVAL

PRI

Number of seconds between swaps. When no timer package used,
this should be set to -1 (assembled as 1).

Priority level of core allocator (assembled as 7).

SWAPCK ENTRY POINTS

SWAPCK is the entry point to a subroutine used by the job processer and library
edit programs to count down the UNPIO unprotected I/O counter and restart the
space driver if it is waiting to swap and UNPIO is zero.

FUNCTION OF THE PROGRAM

SPACDR serves as the driver for the core allocator and as the request processor
for RELEAS requests. In this capacity it makes all decisions in the area of swapping_
and stacking calls for space.

8-17

SPACE REQUEST

,..------ PRIORITY
RTJ- ~ ($ F 4) OF BLOCK

0 RC= 10 RP

COMPL·

THREAD

Q

NO. WORDS

CP

8-18

~ FWA OF
BLOCK
PASSED
BACK IN Q

(V8 -5)

o

o

'-REQU£STS FOR SPACE

Requests for space comes from two sources; namely I schedule calls for
nonresident system directory programs and SPACE requests.

SYSTEM DIRECTORY FORMAT

The scheduler gives control to SPACDR when a system directory request for a mass
memory resident program is made. SPACDR determines the starting address of the
program I based upon the areas of core that are currently available and enters this
address in word 1, -S, of the System Directory entry. The format for the system
directory is shown below:

WORD 15 14

RC

RP

CP

S

o
1

2

3

4

5

6

THREAD

o IDI

0

987

RC
1

0
1

S

THREAD

Q

N

MMA (29-15)

MMA (14-0)

4 3

RP I
o

CP

7 words per entry
in the Directory
for Mass Memory
Resident Programs

is the request code for the System Directory and is zero.

is the request priority used in the allocation of core memory. RP is
a number from 0 to 15. (Set by the LIBEDT *S statement). RP=) to
3 is reserved for use by the Job Processor.

is the completion priority at which the mass memory resident program
will be scheduled after the read is complete. CP is set for the
Scheduler and is obtained from the requesting program 1 s scheduler
call.

is the starting Core address of the program and also the first
location of the allocated core. This is set by the core allocator.

is the thread location used to point to the next entry on a threaded
list. This directory entry will be placed on the following threads:

8-19

THREAD NAME POSITION DETERMINED BY WHEN

Core Allocator RP after scheduling

Mass Memory I/O Driver RP after allocation

Scheduler

Q.

N

MMA

CP after Mass Memory
Read

The threa.d location is set non-zero by the Core Allocator Request
Processor and is cleared to zero on completion.

is the parameter passed from the requesting program to the
requested program.

is the length in words of this program on mas s memory.

is a double-length word containing the mas s memory addres s of this
program. The first word contains the most significant 15 bits. The
second word contains the least significant 15 bits.

SPACE REQUESTS

0

The user program may make a Monitor request for allocating core. The core area l.'
will be allocated to the requesting program and must be returned by the requesting '-,)
program before it will be reassigned to another program. The list of parameters is
as follows:

PARAM=O

1

2

3

4

RC

x

RP

15 14 9 8 7 4 3 o

o I RC Ixl RP I CP

C

THREAD

Q

N

is the space request code and is equal to 10.

is a relative/absolute indicator, modifying C.

is the request priority, the relative priority of this request used to
determine the position on the core allocator thread and also to
determine area of core allowable. RP is a number from 4 to 15.

8-20

c

o CP

C

THREAD

THREAD NAME

Core Allocator

Scheduler

is the completion priority, the level at which control will be
returned to C.

specifies the completion address. Control will return to C after the
allocation has been made, or if allocation is impossible.

is the thread location used to point to the next entry on a threaded
list. This monitor request will be placed on the following threads:

POSITION DETERMINED BY WHEN

RP after request

CP after allocation

The thread must initially be zero, and is reset to zero on completion.

Q

N

contains the address of the area allocated and is in the Q register
when control is given to the completion address, C. If allocation
is impossible Q will be set negative.

is the number of words requested.

o INTERNAL DESCRIPTION OF ALLOCATION

()

The Space Driver SPACDR is operated by a SCHDLE request from the request processor
(just like any other driver). It uses subroutine FNR for new requests and uses the
Core. Allocator Subroutine, CORALC, to obtain the space required. If sufficient
space is available then COMPRQ is used to complete the request. Q will be set to
the address of the allocated area when the completion address for the space
request is scheduled via COMPRQ. If it is impossible for sufficient space to be
available and swapping is in effect then the completion address will be scheduled
with Q set negative denoting an error. Errors of this type due to system directory
calls cause the system directory call to be ignored but cannot be detected by the
caller as no completion address is available.

>- If sufficient space is not available then an attempt is made to swap, the request
is rethreaded and the driver is set "not busy. II If core is released before swapping
is effected, then the space driver will be reentered and the request will be
completed if sufficient space is available. Otherwise the request will be proces sed
after the core swap area is released. For swapping to be executed the following
conditions must all be true.

1. The completion priority is greater than 2. This is necessary since
programs of level 2 and below are not operated after a swap since they
might involve job proce s sing 0

8-21

2. A swap is not already in effect.

3. A suitable time interval, since the last swap has passed.

4. No unprotected I/O is in progress.

If any of these conditions are not fulfilled, the request is put back on the core
request thread just before SPACDR exits to the dispatcher.

Additionally, in the case of condition 4, SPASW is set non-zero so that the
protect processor will schedule SPACDR whenever UNPIO-O and the allocator is
not busy.

If the above conditions for swap are fulfilled, then the following operations occur:

1. A write is started which transfers the contents of unprotected core to (!)

designated area on mass storage. This area is set up at system
initialization.

2. A loop is scheduled at level 2 to lock out all programs at that level and
below.

3. The LVLSTR table and LEND are updated to reflect the additional space
available for allocation.

4. SWAPON is set to one, to indicate a swap has occurred.

At·the completion of these operations the space driver is marked "not busy l1 and
the request that caused the swap is rethreaded to the top bf the LOG2 request
thread. When the swap transfer to mass storage is completed, the space driver
resumes as follows:

1. The core allocator is entered to release the space just made available;

2. The area is protected.

3. A space request for the swapped area is added to the wait list for threading
on the allocator thread at completion of SPACDR processing.

4. A new attempt is made to allocate the space to the call which caused the
swap.

When enough space is releq,sed so that the area is again available for job processing
(the SPACE request made above is completed) the above procedures are reserved
and the job is resumed as if no swap occurred.

8-22

c'

NOTE: For swapping to combine the allocatable lIunprotectedll areas, the
space request processor must be the last resident module.

The priority level of the space driver is determined by the completion priority
set in Word 0 of the CORE physical device table. It is usually set to seven (7).
When a swap occurs the space driver must set all the protect bits in the unprotected
core area. To do this requires 6.6 microseconds per location. Thus, for an
lIunprotected" area of size 10K the driver level will be busy in this loop for
approximately 66 milliseconds when a swap is requested or released.

The space driver rethreads a request back on to the allocator thread if it is not
possible to allocate enough space for the request at that time. No attempt is made
to process lower priority requests even though they may require less space. The
exception to this rule is if the request to be rethreaded has a completion priority of
less than three (3). These requests are put on a wait thread temporarily and then
an attempt is made to allocate space to the next request on the allocator thread.
When any other requests have been processed requests on the wait thread are
returned to the allocator thread.

On completion of job processing, routine JOBEND in the Manual Interrupt Processor
is entered to cause a core swap. This is done by making a special Space request
that can only be satisfied at th~ given request priority by a core swap. The special
area so allocated is released when the job processor is requested. This area o occupies only four cells for the allocator thread at the end of the II unprotected area II •

Unnecessary swapping is thus avoided when the job processor is not in use.
Excessive swapping on temporary overloads during job processing can be avoided
by setting the minimum interval between swap s, INTVAL appropriately. Table
LVLSTR must be set up very carefully noting that programs that are not independent
cannot be assigned to the same request priority; i. e., they must have separate
allocatable areas in which to run. It is not sufficient to provide a total allocatable
area at one request priority sufficient for only two dependent programs, since one
of the programs could be assigned to the middle of this area, leaving insufficient
area for the other program.

8-23

RELEAS REQUEST

MONITOR REQUEST FOR RETURNING CORE

All programs that have been allocated core memory, must return the allocated core
to the Core Allocator, when they are finished. This includes all mass memory .
re sident program s •

The calling sequence is shown below.

PARAM+O

+1

RC

x

R

C'

15 14 9 8 7 1 0

olDI RC o
C

is the request code twelve (12) for returning core.

is an absolute/relative indicator.

is the return control indicator. If R=O, control is given to the' .
dispatcher after core is returned. This is the value of R to be used
when a program retUrns the core in which it resides. Since the core
will be reallocated, the program residing in it may be destroyed.
Thus, control is not returned to the program but to the Dispatcher
instead. Otherwise R-I control is given to the user at the next
instruction.

specifies the 'area being returned.

If CIS = 0, X is ignored and C L4 - 0 is the absolute core address of
the area being returned. (Absolute direct)

If C 5 = 1 and X = 0, the C 14 - 0 is the location that contains the
abso1ute core address of the area being returned. (Absolute indirect)

If CIS = 1 and X = 0, then C - 0 is a IS-bit relative addres s which
when added to the address ofihe parameter list gives the core address
of the area being returned. (Relative, direct)

Note that relative indirect is not allowed.

Notes on returning core:

User programs must return each piece of core which they have been allocated.
Otherwise the piece of core will remain allocated indefinitely. Each piece must
be returned once only.

8-24

C--'
I

RELEAS . REQUEST

RTJ- (.$F4)

0 RC=12 0 t .-.
--

FWA

o t
ADDRESS OF
CORE AREA
BE I NG RELEASED

t = 1
. EX IT TO DISPATCHER

t=O
RETURN TO PGM

C:
,/

8-25 (V8-6)

co
I

N
0)

c)

RELEASE
CORE PROC

NO

YES
~

GENERATE
SCIIED REQ TO
RELEASE CORE

EXIT DISP

(\~
'- /

REQUEST EXIT

NO

o

C)

..... -"
U

I!L!ASE REQUEST PROCESSOR ENTERED AT PRIOIUTY OF CALLER

UP DATE
RETURN IF

DIRECT ltEQ

l1AKE RETUlUi
TO DISP Al'CHER

____ SCHEDLE x.(~----l

() ,
MONI j

IEQXT - P O~TY~ DCO ~

8-27

A check is made to determine if the area of core being returned belongs to the 0
allocatable area. If the area of core being returned is outside the allocatable area, -"
then the request is ignored and control does not come back to the user, but
instead goes to the Dispatcher. Using this feature all programs, whether mass
memory or core reSident, can be written identically. At the end of a program,
the RELEAS request is made with R, the return indicator, set to zero, and C
speCifying the start of the program. For core resident programs no core is returned
and control goes to the dispatcher • For mass memory resident programs, the core
is returned and control is given to the dispatcher. The coding for both core
resident and mass memory resident routines is the same.

8-28

(J

o

C)

SPACE· REQUEST PROCESSOR

The SPACE Request Processor is entered in the same manner as the R/W Processor.
Its purpose is to set necessary parameters (logical unit number, etc.) so that the
R/W Processor can complete processing of the request. In addition, this processor
contains the block of core controlled by the Core Allocator and the restart program.

EXTERNAL SYl\I1BOLS

CKTHRD Routine in R/W Processor which checks for non-zero thread.

SAVLU Location in R/W Processor to which the SPACE Request
Processor exits.

RPMASK Mask for request priority.

IDLE The level -1 idle loop.

INTERNAL SYl\I1BOLS

AVCORE Size of the allocatable core ar.ea.

RESTART ROUTINE

Since this program is operated once immediately after AUTO LOAD, it is located in
the block to be controlled by the core allocator •

. Itis entered via the following procedure when the system is on mas s storage.

1. MASTER CLEAR the machine.

2. Depress the AUTO LOAD button on the mass storage device.

3. Depress the RUN switch. This causes the machine to execute a program
which reads the resident portion of the system from mass storage. When
this is done, the program jumps to the address specified in location 1,
which is the address of the restart program.

The restart program performs the following operation before jumping to the idle loop.

1. Protects all locations which must be protected and unprotects all others.

2. Enables the timer interrupt and initiates the diagnostic timer if present.

3. Requests that the protect switch be activated.

8-29

The 1573 LINE SYNCH.

Timing Generator (timer) is assumed to be interfaced via a 1750 Data and Control
Terminal (DCT) that is assigned to Equipment No.8. It is started by an output
with A=AOOO l 6. and Q=040016.. If this output results in a reject, the following
message will De printed on the output comment device:

TIMER RJ

This message will occur if .the Timer is not present or if the 400hZ power supply
is switched off or the equipment code assigned to the DCT is not 8.

The message SET PROGRAM PROTECT is then typed to request that the- operator·
set the protect switch to ON.

This module can be used to replace SPACDR and Core Allocator with the savings
of approximately 350 cells.

Certain restrictions are attendant on the use of SUBCOR.

1. No swapping is available.

2. RELEAS requests must be given in an order precisely in reverse of the
allocations.

3. A request for space which exceeds the limits of allocatable core will
never be given. If one is attempted, SUBCOR will hang in a 1 cell loop.

8-30

c

n
\... .. /

c

o

C)

LESSON PREVIEW:

LESSON GUIDE 9

VOLATILE STORAGE

Volatile storage assignment will be discussed.

REFERENCES:

Listings of SYDAT I ALVOL I and OFVOL.

TRAINING AIDS:

PROJECTS:

OBJECTIVES:

At the completion of this les son I the student will be able to:

1. Discuss volatile storage assignments.

2. Understand the function of VOLBLK.

3. Trace events in ALVOL and OFVOL.

9 -1

VOLATILE STORAGE ASSIGNMENT

Volatile storage (VOLBLK) is the storage area located in SYSDAT that is reserved for
the allocation of small blocks of data storage for reentrant routines.

Volatile storage is available only to protected programs. At least three locations must
be requested and all system interrupts disabled prior to entry at VOLA and VOLR.

The volatile storage area acquired must be released at the same priority level at
which it was acquired. The requesting program and any accompanying program
sequence must not go to the dispatcher prior to the release of the volatile storage area.

A request for more volatile storage than is available constitutes a catastrophic condi­
tion. The volatile storage assignment program enters OVFVOL with the following in
the A and Q registers:

A Amount of overflow in words

Q Base address of the interrupt stack

OVFVOL clears the M register and writes OV on the comment device. No further action
can be taken and the system hangs (18FF16 instruction). The OV error is caused by
incorrect set-up or use of the system.

C~I

A block of storage is assigned with the entry point VOLA and r~leased. with the entry (~
point VOLR. Both entry points are entered by an RTJ with interrupts inhibited. "---'

c
9 -2

o
On the entry to VOLA, the block size is contained in the word following the RTJ. VOLA
assigns specified locations and fills the first three locations of the block with the
contents of Q, A, and I as follows:

Start of block in I or exit

CONTENTS 0 F Q

CONTENTS OF A

CONTENTS 0 F I

REMAINDER OF

- ---
~--- -------- --

STORAGE REQUESTED
End-of-block

On exit from VOLA, the I register contains the address of the start of the assigned
block.

On return from VOLA, a block of eight volatile storage locations has been assigned
and words 0 through 2 have been filled. The program stores word 3 and later uses the
remaining words.

. Location

LOC + 0

1

2

3

4

7

15 43210

ORIGINAL CONTENTS OF Q 0 0 1 0

ORIGINAL CONTENTS OF A 0 0 0 1

ORIGINAL CONTENT OF I 0 0 1 1

RETURN ADDRESS (SAVED BY REQUESTING PROGRAM)

TEMPORARY STORAGE

The I register contains the core location represented by LOC. The contents of A and
Q are the same as an entry to VOLA. On entry to VOLR, I must contain LOC. On
return from VOLR, the eight locations of volatile storage have been released. The
contents of the A, Q and I registers are replaced with the contents of the first three
locations of the released block.

9-3

ALVOL

VOLA ENOUGH NO SAVE a VOLATILE lOR - OVFVOL - - INva
THIS REO

YES
,~

SAVE A IN VA
liN VI

"\ SET I TO ~'''\:)
POINT TO VOLATILE

"A':;j" ~
~~ ~, ~

~ ~~/ UPDATE VOLATL
~ i\

UPDATE RETURN ~~ \l

~~ RESTORE A,a

I .,

VOLA

VOLR
RESTORE A,a,1 - ---.. -UPDATE VOLATL

VOLR

OFVOL

OUT PUT
CLEAR - OV -- HANG - --.. • M REG

ON TTY

c

9-4

LESSON PREVIEW:

LESSON GUIDE 10

TIMER PACKAGE

The TIMER requests and DIAGNOSTIC TIMER of the TIMER Package will be discussed.

REFERENCES:

Listings of TMINT and TIMER

TRAINING AIDS:

o PROJECTS:

OBJECTIVES:

To study all the functions and programs of the TIMER package.

o
10-1

TIMER REQUEST

RTJ - ($F4)

TYPE
RC=8 OF CP

\) -i ~lS UNITS

COMPL

NUMBER OF UNITS

TIME IS MEASURED IN UNITS (COUNTS)

\' ' o - BASIC COUNT (60/CPS) '---- ~' \\ iJ

'tl

~p, t sy ,

~\ .. ' ~}\I \\j.) . ./ -} l. \ f " ,,~, \ ~ U ~ \,J
'(\~"r .(:\\ 'X)
\" v ' , u

\ Q

1 - 1/10 SEC (6 X BASIC)

2 - SEC (10 X 1 CT)

3 - MIN (60 X 2 CT)

TIMED INTERRUPT 1/60 SEC TO 32,768 MIN

c
10-2

c
TIMER PACKAGE

COMPONENTS

" The TIMER package is made up of two modules:

TIMER PACKAGE"
DIAGNOSTIC TIMER

The former processes TIMER requests I timer interrupts and delay expiration". The
latter processes I/O hangups.

EXTERNAL SYMBOLS USED BY TIMER PACKAGE

SCHERR Used to exit if the schedule stack is full

TIMACK Acknowledge code for time interrupts

EXTERNAL SYMBOLS USED BY DIAGNOSTIC TIMER

"The starting address label for each PHYSTB entry I to be interrogated by this module I
is declared a s an external symbol.

TIMER REQUEST PROCESSING

o Entry Interface"

Entered from the monitor entry for requests via a jump. II I II contains location of
volatile I and II All contains location of the" request.

Exit Interfaces

Exit is made to SCHERR if no schedule stack space remains open. Exit is made to
request exit after the request has been added to an appropriate stack.

Internal Operation

On entry I the request processor translates the completion address and attempts to
fill an empty schedule stack entry with a SCHDLE request at the level specified in
the TIMER request. If no empty exists I exit is made to SCHERR.

The newly filled schedule stack entry is then threaded to one of 4 lists I depending on
the II U II parameter. The caller's delay time is added to the stack entry as the "Q"
parameter. Exit is then made to the request exit.

1 0-3

TIME INTERRUPT AND EXPIRATION PROCESSING

After: the interrupt is acknowledged, each of the counters for the 4 lists are examined
to see if one count for that list has expired. If not, the respective count is decre­
mented and exit is made to the dispatcher. If the count is expired, it is reset and
the threaded list corresponding to that counter is examined. The delay in each
member of the list is decremented. Those delays which are decremented to zero
cause SCHDLE requests which result in operation of the concerned program. When
this proces s is complete, the next counter is decremented, etc.

If the acknowledge of the time interrupt is rej ected, the program will exit to the
dispatcher.

DIAGNOSTIC TIMER OPERATION

This module is operated periodically as the result of a TIMER request generated by
itself. The first TIMER request is made in the startup routine at AUTO LOAD time.
On entry, this module decrements the clock cell (in PHYSTB) of each non-idle device
in the table DGNTAB. If the clock cell becomes minus, the device is assumed to be
hung up and the error entry to the driver is scheduled. When this process is complete
for each device, the module makes a TIMER request, to cause its next execution, and
exits to the dispatcher.

INTERNAL SYMBOLS USED BY THE TIMER PACKAGE

These symbols are defined via EQU pseudo operation and can be easily deduced from
the listing.

INTERNAL SYMBOLS USED BY THE DIAGNOSTIC TIMER

EDCLK

EDPGM

SECOND

DELAY

DTVAL

NUMPU

Index to diagnostic clock in each PHYSTB entry

Index to location of error routine in each PHYSTB entry

Number of timer pulses per second

Number of seconds between successive operation of the diagnostic timer

Priority level at which the diagnostic timer operates. (Assembly value
is 13). ,

Number of physical devices.

10-4

......
o
I

01

o .0

TIMER
REQUEST

?
ABSOLUTIZE EX'rRACT

UP DATE- COMPADDR
RETljllN

... STonE IN ~ REQ

VTMP (WD7)
PRIOIUTY

I t

PLACE THREAD
GET TIIREAD PLACE sell

r-- ~ \VDOF +- REQ WD 1 OF
IN TOMPT

..,.

EMPTY . EM PTY SLOT

-if

PLACE ADDU OF STR CO~tP GET UNITS

E!\lPTY SLOT WD 6 r-.. ADoR WD 2 , COUNT FM TH E I--

VOL\TILE EMPTY SLOT TIMJ~n REQ

~
SAVE IN GET FWA PIJ\CE ADDR ON

·VOLATILE ~ OF EMPTY . THREAD CORRES -,. -~ f-

WOfiD7 SLOT TO UNITS

t
PLACE IN

PICK UP wn40F .. SET USEns
or l-;~l\i\iH

r -r-
. "\l" l'U!:)l'flVt:

£MIYfV SLOT
Ir..-.-.-. - - ~--~-_

MAKE SCH

~ ItEQ WITH
SAME PRIOR'Y

EMPTY
~ YES

ON sell
STACK

NO
I

'"" Ni~'~i
~l

o

~.~
,.r~.~~,
~ ~--..

!l~
rR~lJIlN TO'"
" ALLER.~

,:/C::Z/ /

~~.
",

~F.XIT nF.Q~

C~:

o
LESSON PREVIEW:

LESSON GUIDE 11

LOADER TABLES

This lesson is designed to exhibit the detailed LOADER functions. In addition, the
student will be introduced to a relocatable program format.

REFERENCES:

Chapter 12 of MSO S 5 RM

TRAINING AIDS:

o PROJECTS:

C)

1 • Student Proj ect - 11
2. Study Questions - 11

OBJECTIVES:

At the completion of this lesson, the student will be able to:

1. Understand the LOADER'S FUNCTIONS.

2. Interpret object code.

11--1

c

MAJOR LOADER FUNCTIONS

• LOCATES THE PROGRAM TO BE LOADED

• MAKES RELOCATABLE ADDRESSES ABSOLUTE

- PROGRAM RELOCATABLE

- BLANK COMMON RELOCATABLE

- LABEL COMMON RELOCATABLE C
& LINKS EXTERNALS

• RECORDS LOAD MAP

• RECORDS ENTRY POINT TABLE

• TRANSFERS CONTROL

c
1-1-2

o

MSOS LOADERS

• BACKGROUND LOADER (*L) Yl-ElQJ'1-\V~ 6GS \ \A.~~.Srurn (. <=:/ \ \" ") \\~iS.v
I(LA Y\£.\e.'(> 6:'~\ \-.10\ \-0 \-'\

• LIBEDT LOADER (*P) AE\"OCV\"T1'\0LE. ~yo~,(o.W'b OIf'\I_y

• SYSTEM INITIALIZER (*L,*LP,*M,*MP)

1.1 -3

jwt4,or fWM ''1\ pVO\.cG~J- ~O(~
vJ~ ~:1P U-M,~ltdv ~ loC~\'"tO~5
v-~\\'€(\ \oj \oo~ t"·

BACKGROUND PROGRAM LAYOUT

LWA OF
BACKGROUND

FWA OF
·BLANK
COMMON

RUN TIME ROUTINES
(ROUTINES BROUGHT
IN FROM PROGRAM
LIBRARY BECAUSE
OF EXTERNALS)

FWA OF LABELLED
COMMON (OAT) IF
PROGRAM B
DECLARED IT

FWA OF
BACKGROUND

LOADER

PGMB

PGMA

11-4

BLANK COMMON
OVERLAYS

LOADER

c

HEADER

o
TYPE 3 BITS

o

NAM

RBD

BZS

ENT

EXT

XFR

LOADER BLOCKS

GENERAL FORMAT

TYPE I 050

001 NAME BLOCK

MAX. 60 WORDS

,OV\\y1.

010 COMMAND SEQUENCE R GL~0l \-':;Llo\c.., 6l~Gl-'r7 Y'~)C-I.....
011 ZERO STORAGE

100 ENTRY POINT

101 EXTERNAL NAME P ~S \-0 'h'(~ ~
110 TRANSFER OV'lL.y i. 0\\'\ \c~ \ \VI e" ((Nt ~a~le... ::> t- '-CA'I

p racr rO- \f)'\ •

*T TERMINAL LOAD FROM THIS MEDIA

11-5

IY7 >u~
SU~

5lA0
IVL~ \:J flDCI

~ rO/'\'\
~e,t,L'

.......
t-'
I

(J)

JOP,I n"nr)f.rr-rT.I. A~C:;F~nl. Y I t\tmlll'f".lF F1Ct\ PI.F FOP '.(ll'nFn~1 Orf(~

i7nn ./I~c; ~~Trpj\r.F npl="JaTlw~ ~Y~Tn' vn>c;Tn'" s.n IlATF OF PUNt In/?Q/7P ~Y~T~M l~t JTns 1.~ nF O ~y~TFW.~

4!K.PP.IO
ftAc;C;FU

I" 1.1.1
ttl
Lll
Lt.1.
Itl
Ltl
11.1.
III
III
, Lt
~U
tllltLllllllL
lLU LLlLlllt l
lll.lLLU.I.I II L

n"~

nnoonoonooo
onnooooonooon
ononoooon"ooo
nnn onoo
('on nnnon
('00 nnnnoo
000 non ono
('(H1 000 noo
0('0 000 000
floonnn 000
oonon non
0000 noo
or.onn('ooooooo
O(loo(looonnoon

(10000000000

PI\r,F'

"AA"AAAAAAA I'l"nnnoml""no f:FFFFI:FFfFFFF
""A~"~"'A,.,aAAA I'ln",wopn"l'lono FFFFFFFFFFFfF.
,.,,.A',.,AAAAAftAA I'lNlIlnOI'lN'l'lnnn FFFFFFFFFFFFF.
A~A "itA N'n noo FFF
fA,., A "'AA PflO ono Fff

""A "ftA nno non FF.F
"AAAA_AAAAA~A nno nllo F.fF'Fft:f'ffFFF
""A"~"AAAA""A ,'nn nno t:FFr:F:F:FFF:FFF.
Io,,'\fI."A"AAAAA" nro nnn F.FF~FffFfr:r:F

'"'' '''A Ol'ln "nf) fFF
"IiA All" r.nn o flO FFf:' ,.It, "/11 flnn oon fF'F
f.AA AAft oonononnnrnoo FFFfFFFFF.FF'fE
""A itA" f)ponrmf)Onnn"o FFFFFFFFF'Fff:F.
1111" AAft nnnnf)nnpnOllO FJ:FF'fFFFF'FFF.F

f'\ATF I 1 (\ I~Q/7a

"Oftl
nnn~ ~oooo 2020

~I\~ nu~ OUMHi PGM - FIRST PGM WTPED OUT BECAUSE OF 6789
MC:r.

POOOl 4;20
"LF o. A 00 NOTHING PHOGRAHo

D0002 4/1ltF
POOOl 20AF
POOO& 4G~4
pooos ito/.o
P0006 &Fi.7
P0007 ~osn
P0009 1:;?4F
P0009 471:!~

PaOOA ,1i.e
0003 nm

f"-~~
\.)

ooop (11) COM ::: 0000 (0) D~T ::: 0000 (0 0)

)I)tv .)fX)(
X)fl(vx)t
)Of)()(JfX

)lXlf xxx
)flfX)Ot)(

vXX XX)f
XX)()f)f

)f)(X
XX)tXX

v)t)(XX)(
X)f)f XX'\(

xxx xxx
,onc x)tx
)f)ot XXX
)()O()OOt

a.. c)

(n::'I1C;/7 n l

0 0 0
~'IIH' PA(;J:" nAn: If'/,;,o/1Q

nnfl1 ~lfI'" MAIN InanFP Pl~rk FXA~PlE
non? FNT "'''1'' Tfll ~~~F~ ~~n InAnFP T~J:" ~y~ ~IY ~F

O('lfl1 • RFF'FPFNr.Fn F "OM (1IITe: TnF THF p~n'.;f.; A~.

ilonA F)(T CLF"AP TFtl A~~FU TJ.faT Ct.F4 D Ie; OFFJt.'FO Fl~F=:WHFPF

nOfl~ ..
onf'lo .-. THle: ,~ THF MATN PRO~PA,",

Onn1 •
on OR "0r:'''~ 0,-i3 '"'''TN FNP lCJ SF'T liP PAD8MF TFP~ IN A ,..10 ~
oona po"o, corn I n~ =Vl.

POO('l? n('l;" P
001n proo~ ~400 x PTJ r.lFAP CAl L THF ~IIRPOtJTJ"'F:

Pfl004 1FF'F' x
onli •
nnj, POflOC: f'lr~q F'tJll a ~FT UP PUlll"'FTFP~ IN A At,," fl ~r..A Jt-,
OOl~ PO"I''' ('Ofln 10#\ =XfoA

Poon7 nf'l?A P
nOl£ Pnnnp ~4fln ~ PTJ~ ('lFAP cal.l IT AOATN WITH NF~ PAPAMFTF'RS

PnnOQ 001'4 ~

no~~ ..
f'lnJ~ ..
OOJl .. "~f rOM "Nn OAT
nop:' 0

onla •
I-'

nn?('I 0001' C rnM F')(do)
I-' 00?1 onno 0 nAT ~)f';'(C;)

I on;:», ..
......:]

no?~ pnoOA ornCJ F~iQ ·a
on';'6 Pno('lp r('ll'o IDA =)(F)f

. pnnnr. nooo r.
. on?~ POOOO c;4on X PTJ. ClFIIR

pnnnF ('Inna)(
nn?,. ..
on;:»7 .. IINOTHFR FXA~PlF' ~F A ('ALL TO Stlf4POllTHJr
on,;,p •
00';'0 FXT f':l\T
on':\o ..
nn~l "nooF' CAnn I nA+ FW

P('Il'lf' nnfln r
f'n~,;, Pfl"Jl 10400 ~TA+ FX;:»

poo,;:» 0('11'0 n
OO':\~ ~nn~~ C;41'" X DT .. 1+ r.AT

port,. 7FFF)(
nO~4 pnnl~ 14FA ,1t~P- (~FA)

oo~~ •
00":1(- Pnnll- nl'14 PS~ l.(';'0).J4(1(l) TJ.fF~F APf. Tf.lF APF- I\~ THF ~IIQ ~ Tll r.t.FI\P

PM'';'A onf'''
nn::a7 •
nn~p F-N() ~A H'

Pr.;t.A~ I'n~1. c;.?) C('It.A e nnoJ\ (1 n) nllT = nnne: f t.,)

bl

0.-
~ <--t-_
- C
....
CI. ..

:t ~
1/

c. ~
~ c.
-~
'- c.:

f/".

Cl
c:.
c:.
c.

z
::
t-

~~ ...
! ...
t-U ...
L;.V
L. .;
'-~ ...
I/' c:

t­
..:V
..:
... :?
.iI

w. >
o <
c: .;. :. ,.
CoC!
c..
ell.
~ C.

c c ,..

t­
o-
c:
c:.

c.

t-
~
~--u.c.

I C

C. .•
,:1.11.
.... C:::L

v..-:

Q..

c c. ll" c. c. c: a. C\. c. ~ ll".
~ ~ c c c. ~ LI."" c:.~ U.
c. ~ c <. " c c:..- -: c <­
c '" c c " c c c. c·_

c. -C\.rr.ooO U ",...Cf'Oc;.
~c.c:~~c:~ccc:c:
cc.c..c:c:c..c:c.c:c:.c:
cc.c~cc~c:.c.c:.c.

Oc..c.Q.Cl.Q..QCQ..c.Q...

,-r\I"'~Ll"""
~c:.cc:cc.c:.
~c~CCCc:
c:ccc~ce

c:. 0
c. c.
ce
c:c..

c C\. . rr. -: . .-, ...
cc:c: cc
ccc:. cc:

c:

c:
c
c:.
c:

II

t­
c:
c:..

c

c
e
c
c.

a:
e
c
e

Cl ,...
" Q
C\.

" c:

t­
.C
.(..

11-8

t-t­
c<
~UC'L&.

t­.... ~ ...
"%.2.=a.

.«0,,"2.:£
Z U.

Q 11

t­
V

;:;~
Lt.C
tI (..' • --0
t 0: La.

Q..l....;
:t ... ~

. ., -:

Cl
~C!
C.V
(.: ~

c.
.c.
c
c

.... - (t c (t- c:. c co " eo 1"'. c: a. ll" - c. II 0..
'Yo c.. c. c. c c. Co LI. ~ ~ 1I C\ . .;;.;.; Ll ~ c.
• ..: (.. e c: e c c .; <- c. " 04.- c: c.. c: c.. c.
u-oc:e.-cc·--(\IILf04(\Lf~~C.

c:. .- (\ r -: Ii "'.,...:L 0 c a. '- Co Lt. ~ C:,_
C. .e c. c.. c: c. c. c: c c c c. c:. c: c. '-

-c. .c:; e c: c c c:. e c.. c:. c. c:. c:. c:. e e·,- c.
·c c:. c ~ c: c:. c. c c ~ c: c. c. c. c:. ~ c. ~
~ .0. C. c.. Co c. c.. c.. Q Q c.. ~ CI. ~ Q. '- CI. w.

1- C\. r. -0 .; ~ .;
c.ec:c.eec:.
c:cc:ccce
eceecee

--0 ~
. c. c:
c.c
ec:

LI " ,... . c e e
e c: c.
cce:

c...c
c: c.
e c:
ce:

()

o

-~ \ \

c: "---"
c.
c.
c

II

c

c:
c
c
e

'1
~
C
c..

c

c:.
c.

I-J
I-J
I

<..D

n
\, /

"1,. n

.. "

~ ... ,I

... ,. p.1

f'I 1="" P

('liT

7nnn
701('1
7(\4/.

7n/.r.

F~T~Y ~flT~T'T~PI~
.... .,rOt·
...... OI'T
rt F{lP

AFr./.
7(\(\P
70t.~

JIIS T IW F)f & P-Apj F
00r.; :-;;('n

o
n II~ V r (: ~ ~ - c' T JJ c. T f,.. r. ... I.IT P r r , 0 II T , ! r.' r. t .. I c: ~ 0 J:" I- 7 P
'." /I nf ,. IILfI(tr ~)(,u,p, r
fl,W <:11"'.'111 IT pu: Tfl ('I rllP 1\ r'IIf:'':'f:'ll

"'" r.'y!' nt, I-" rr:- II C:II"''''IIITTNF'

"'A,,,, 7010 CAT 70AF

If- f~t)m 00£ BuG
t w-" .' •• , "_

L~~~~ c:;cR A-TC,",

oumP Ot CO'Ae

70no ~O~f\ 1,1 ?O 444F ~04F 4FI;4 4P4Q 4F47 !,01;('I
700P c:.~1F 471;? 4t4n on no lRFq CoOO oo~n lAOl
7n1n (lrl~ rOflO 7O?f> c:.40n 7"44 flfOQ COflO 70~/i

701P ':;1. 00 7044 nf:OQ rnoo lFFf. C;400 7044 C40(l
70~n flFr:,.. "4nfl 7nnp ~/.OO 704F IAFA 0000 ooro
70~P onoo flflno OOflO f\OOO ooon ooon onno nonn
1010 0f\f\(I Oflon nnflO 000(\ oonp nooo nono nnoo
701R 01'0(\ ofln(l nllno onoo onon o r'!l) 0 oono noOO
7n4n I'Mln opon nqon I1n(lO 701J:'' "1.00 70AQ OAoO
704Q ,,(. fl n AJ:'rf. nnn fl17? }4PO 704Q lCF~ 70~C:;

7nl:;0 c;.I.F4 4rOl 1nc;p nl'''O 100Q OOOA 70c:.Q 14F~
701:;J(l('F" ~(I&" '11:;'-1 C;4?O 414F ~n4C:; t;R41 4n~n

o

ell

" A~~~ n(lnr onpo "ono ,..nff! Onrf' pnon nllon o(l~r

\ '0 I'.F'~J:" o(\('n "flno
(J!o\. N' 0""(1 ~~rn "'-AD~Vrr t:J

\.~,OvC .~)' -;-for:..t. ~ ooon nO'IO
'\V \..~ ,f" - f' n (I 0 f' non n n I' 0 no 0 (\

flr),,[tl~ ~~Du~
W- i\J' J,~/Ir/d nl'(lo nnnn nnn" nor'n

. fiji r\'t-
u rJ ri nnnn onpn rnl'l' nnnn

\Y.V:~"\ 1'(\f'(I nonn rnn(\ nonn
~~ nnoo (,fino nrnn nOf'n
U~· n~nr nrnn oonn nf'f'O

nnnf' nnnn rnon OO(ln
. nnor oonn oonp nonn

~it __ ~
'{'

onnn oonn
nl'no onop
nonn noon

nnnn ('Ofln nonn OflnO
n I' 0 fl " f' fl 0 " (\ n 0 fl n rl n
nnon OOfln nnfln (lnno
nonr f'noo onnn 0000
(Ion"
nonr
noon
no no
onoo
ooon
oono

or,oo
onoo
0(100
on on
nnfln
0000
0000

oonn
onno
oonn
nono
0000
nono
oonn

onnn
onoo
ooon
onoo
nooo
oonn
nooo

~';} ,y\~
.. .. ----------~- .. -----.- - -

Oflon ?n?o _ 41-,n- 44-4~' nnoo . ;Olof. ~
4F4_7 ~~-20C;0 ~;4~ 471:;; 4)A-n 'c.?:A~O:-,;;~j

~ (:,\ ~
I-\' to:..;

nnrn
nnoo
rnnn
(lilno <!.. ~~

I--'
t-'
I

I--'
o

~nnn

onnn
n(lno
nnl'lO
~noo

nO(ln
nnnn

\/pefV 01fiO . (OC;,O
J.' t" -flO"O
7y;1).81 L rnon

(IIrf111 - ~ 0 no
(lnnO

n

nnnn
nnnn
nnno
nnnn
nn"o
nnnn
nnoo
nop,:,
?nl:n
nnnn
A~AP

nooo op~n oono oo~n 0000 nooo oono
oono noon oono 000(\ onno nonn flOoO
onoo nnnn onoo 0000 oono 0000 on no
0(1"0 nono ooon nooo o~oo oonn onno
ooon 0000 0000 ooon ooon nonn oono
0('100 ~onn 0000 oono ooon on no nooo
oono nonn nooo nono 0000 onoo ooon
o('lno oono onoo 0000 0000 oono onoo
00(10 oono onoo 0000 001'0 oonn 0000
0000 (lnnn 0000 nono 0000 0000 0000
:l?rF~t _____

~o ?O;O ;oW
L,m-n-o-- (llinO onoo

noon
(,oon
oono
0000
0000
00(10
oonn
001'0
oonn
0000
~?flO

nonn
{lnoo
0000
onnn
oonn
nonn
onon
oonn
0"00
nnnn

onoo
0000
0000
ooor.
oono
oono
ooop
0000
nooo
oonn

oono
onoo
0000
oono
on no
ono(l
nooo
0000
0000
oono
ooon
oonn

onoo
onoo
nooo
onnn
oono
nooo
nono
nono
0000
nooo
oonn
0000

nono
oonn
onnn
nnon
oonn
oono
ooon
0000
oonn
ooon
on no
oonn

noon
nooo
0(100
PO on
0000
oono
onoo
onoo
0000
nooo
nooo
onoo

IO!JY

t1

'Iu-/-
trw r../ i

_(/lu-'
(;t.t[r\

nno~ nn(lc;
onnn i'n~n

?n41; r:;P4)

nn~4 4n41
4r4F 1.)64
4n~0 A(4r:;

404F
4~1:;i'

?n~o

;o?n
?04?
?n~"
nnuo
4CAF'
?0?0

o

-:-,.-:."
.., f'~. ,

1'''''''
0,.""
"(II''' ,.(\,..,.
r(l n (.

Of'"

1''''''' on/"ll'
60r:f\

lJ:"~J

n?"l
",6(11'

orr"
n(lnn
"oon
"(ltl(\
~I'I(I(I

nl'lrn
"n (1(1

onon
n""n
pp~('

orrr
nnno
nllnn
(,(lno
nnl'n
nl'lr"
I'nro
rl'fln
"n(l"
nn"(1
nnrn
onnr
"'(lr..."
no (IJ.

f'lnno
(1"0"
(lnon
n(lfln
pnr.I'
r"(lr
onno
"onn
"on"
nnro

""""
r"~n

"onn
(\onl'
no"n
I'",.n
nf'f'''

I'll""

1'''''('1

,. " I' "

"f,I'(I

(.• (. (~ ,

",':) '0
r' ;'('
n;· nfl
f'" (. 0

1'1'1'0

n'" ""
""'(\"
1'(\,.,0

(11'(1(1
"] ~r'1
11'01
fI(ro
''''(In
nn(ll'
nl,no
oonf'
onnn
nnoo
O(l(\n
p{,no
(lnon
nonn
~~n?

4""1
or on
0000

OOOf'
oo{'o
o"on
0(100

oron
Ol'nn
on no
(lnno
oron
~?r,

6161
O(lon
oono
{,poo
(lnOO
noon
flrnn
nrno
(I"(ln
(Innn
rrotl
nnoo
"?r,4
1o~41

(lono
pono
ppnn
fI (HI r
I'(\rf'
rnno
flnno

?r ?4'

,.,.nn
(l1'1l"
nO,II'
Ill' n(1

nnnf)
nno"
"rnll
r.I'nn

nnf'lo
rnnn
nn"o
roqn
onnn
nrnn
flnl'ln
nnnn
ooon
nnno
(\nno
nnoo

40AF'
f"flon
n(lon
000(\

n(lnn
Of'nn
"nnn
(\nnn
nnon
n(lnn
onnn
(lnnn

1:;4?0
nonn
f'onn
oonn
pnon
(\onn
nn(lO
"OPl'
n(lnn
"nnn
nnnn
0"1'"
I.OA~

,,"lin
ornn
rnno
nrl'n
nnnn
('"no
nnr'n

~O~(\

n(lf'"

oo(l(l
(\,,(10

nn"n
('(11'(1

"0(1(1

unon
n o,H'

Of);l

101"
1;/,0"

~/.rH'I

oono
onoo
O(lnn
oono
ooon
0000
('10"(1
o,lno

~n=,n

onnn
OOon
nooo
onon
0(100
nnno
o(,nn
flnpn
nnno
nonn
onon

i'n?fl
onO(l
ooon
floon
oonn
onro
O(lOO
onno
non(.
nnnn
nnnn
onn"

?n?n
nnlln
nnnn
nonn
nnon
onf',1
nnno
nortf'

~n-;.,.

,. II (I r
(l/l r (I

(I (I (\1'

onrr
ono(\
r flO(·

(111(\/1

nnpr

rnnn
OO?,.

('finO
7rF~

onro
0(1(10
onnn
nOfln
000(1
opno
onnn
(100(\

oonn
0000
o(lnn
onno
onno
0001'
(\onn
OOfln
nO(ln
nnnn
ooon
(lon"

0014
pnf'o
O(lnl'
onrn
on"o
onnn
onf'n
nnnn
nnnn
O(lnn
nnnn
nnnn

oonr
tiOf'(I
ono(l
nn(lr
O(l(ln
nnPfI
ol''''n
fiCIn"

('~nn ~r"n nnnn onnr
(f' n" , ,. " f' n (I " f\ n " f' r.
r r f\ ~ " (, I. 0 0 " n r ') ,. (I

;>,.?n

00(\0
flnoo
nool'
f'n(lO
rn(ln
flf'on
" f'nn
onnn

"nlf!..
~4nn

f'?n1
14~"
o(\no
nonn
oono
ooon
nnnn
onnn
nnoo
nooo

oonn
onon
0000
ooon
oonn
0('00
OOflO
0000
oono
onnn
"nno
onno

4 =,4r~
nl)on
pn(ln
nonn
ooon
onnn
(loon
onno
onon
O{lnn
npoo
nono

oonn
nnon
nnnn
rnno
nnn',
flnnn
nfl"n
n(lno

?n?n

(10""

nnoo
""n"
nonll
1'(10(\

oOl'n
onoo
0('1011

nnnn
non4
f:4nO
on on
onof'
onnn
nOnn
oonn
onoo
Oflon
(lonn
nooo

nnnn
ooon
oonn
nono
onl'"
"pon
on 1'''
noon
nn"o
1)00"
OOfln
nonn

4C;61
onon
oono
nnnn
onOQ
nnnn
nnnn
nnnn
nnno
nnno
nno,:,
oonn

on(\o
nnnn
flnnn
n"rt"
nonn
Of''' I'
nonl'
onol'

nonn (\on(l
n(ln" nnfll'
"flon (,nf' n

~n~n

onon
(lonn
onnn
"onn
on('ln
onnn
,'nnn
(Inoo

C;4(10
nco o
nooo
flOn(l
onoo
oono'
nnnn
0000
onno
nono
0000
oono

0000
0000
noon
0000
nooo
01'00
onoo
n,oon
nooo
noon
ooon
0000

~??o

nono
0000
nnon
nnon
oono
nnno
oonn
nnoo
nO(lo
nnon
noop

oono
onnn
nooo
nonn
nn'ln
nnon
(In(ln
nn,.o
(lnon
n"rr;~ eo,
nno,;, __)

I--'
I--'
I

I--'
I--'

o
'1 I' (\ n
nr-or
~(lr: n
n(\ fin
~/,hO

I. ~~C

~o~o

norn
rl

" (\ n
0(\(\0
IH'Ion
oonn
(lnnn
no()O
Oflno
60l;fl
I-"on
nonn
~~nn
')~no
,-,nno
nOnn
nnnn
nono
oonn
~ofln

oo"n
(lnon
~fI~n

nnon
~non

nnno
on(l~

nnnn
nnon
(lnl'n
nn"n
oonn
onfln
n(\fln
nnnn
rnen
(\oon
nno"
nflfln
on no
n(l"I'
nnnn
o(lnn
on no
oonn
noon
nnno
Oonn
~nc/'l

0(\0"
~n'·1="

~/'I~I'

'/"';'''

(\/)"r

fl(lnn
~.f?,..c,

n(llln
nnnn
I, F i.c,
I.,.. 41.

~O;:tO

pnf'ln
oopn
(lrnn
oonn
onno
nonn
no no
~?n"
100)
ooon
oono
nooo
ooon
oono
nooo
0000
00(\0
oono
flnOn
oonr:t
~?n7

434C
oonn
oono
flnOn
(loon
Oflnn
flonn
(lono
Onon
(l(\nn
nonn
onoo
l?nf:'
;:tn;:tn
01'00

nnoo
onon
on(\n
onnn
onoo
nnnn
o(,nn
no no
(\ono
nono
~?rO

onoo
nnno
4f,~n

~f·~n

;l(1~n

.(lr""

onflfl

norln
~n?n

~·nc:.4

"C,t:; ~

/'Ion"

Oflfln
flron
"onn
I'nnn
nr"n
nono
n(lnn

"nnn
OI"f"F
OOfln
('nn~
nnno
(\nnn
nono
nnoo
oono
~o('ln
(\noo
nonn

41;41
nnnn
noo~
nn('ln
onnn
(\(\00
('Ionn
nonn
"non
oonn
onnn
oonn

?n;:to
nt:'nn
onnn
npno
nnnn
nonn
nonn
nnon
pnnn
Oflno
or.nn
~nnn

nnnn
~O;:t"

41?n
~I':>n

0(, f' fl

"'. " ('I

nnnr

OflN"
C,/. 44 JJ

'f' ;:til
;:tn?n
on on
00110
nn(ln
nnno
onon
nnfln
onnn
onoo

onno
nOlA
nooo
non(l
Oflnn
0000
nnoo
nOflO
oonn
oono
n('lOO
onoo

r;??o
ooon
oonn
0000
00(l0
onoo
('1000
0000
ooon
onoo
oono
00(10

?n;:to
oono
nono
0000
0000
0000
onno
OOOfl
noon
onO(l
oonr
nnoo

OO}?
414F
C:;~&;'1

~n?r

nll(lO
(I',,>n

Ol'nl'

41"('
4c;~n

4:'6('

;:to?n
nnfln
001'0
onn"
nnflO
000(1
nnnn
OOflO
oono

(,~oo

0112
0000
0000
nono
oonn
0000
OOf'n
(loon
0000
oono
0000

oonn
0000
0000
00(l0
0000
ooon
OOOfl
0000
000('1
0000
(1000
oonn

OOf'n
(l00(l
0(101'
oono
ooon
0(l00
(lono
OIlOfl
00('10
ooon
ooon
no('It'l

4~AJ
;:t04C;
4?~?

?O~O

Oflno
(loon

nf.no

41:../·1

~1C,C:;

4~ 1.1
;:tn?o
nflno
onno
OflOO
ooon
nooo
0000
oono
0000

oonl;
1400
('IOno
OPOO
0000
oonn
0000
oonn
(lOOn
onon
onoo
onoo

0000
nooll
(lnno
ooon
0('100
oono
OflOO
ooon
no('lo
O(lno
nooo
flOOO

0000
0000
rooo
11000
nnoo
0000
000('1
nflOO
('Inoo
oono
(1 rlOo
0000

C:;4?O

~R41

4FC,~

?n?n
f,nnn
f. (\ n n

nnnn

~??O

4?r..,
~;:t~0

~o:>n

onflO
flnoo
nonn
nnnn
nn"n
oonn
nnnn
onno

0010
non4
onflO
OOlln
oono
onflO
oonn

cor'l

nnnn
t.~t:.L,

41~f)

?O~n

oonn
n"nn
noon
no no
nOO(l
n(lOO
nnnn
nnon

nAOO
lrFI;
OOfl(l
onno
onno
nnno
oonn

ooon O(lnn
oonn . 0000
O('ln~

oono
Ooon

0000
0000
0000
0000
oono
oono
on no
onnn
0000
o('lno
oonn
onon

onoo
nono
oonn
n(lnll
ooon
OflOO
nonn
onno
nnn('l
nnfln
on no
nnoo

?n?n
40c:;n
C,4'.0
?fl?n
nnnn
n,Inn

onoo
oono
0000

ooon
nnoo
on (1('1
0000
0000
(l000
onoo
0000
nnno
oono
('Ionn
oono

0000
('1000
oon('l
0000
ooon
0000
ooon
O(lon
oono
onoo
('\Olln
nnoo

OOflO
"r"e.,
4J.4C,

;:tn?U
fI

nnnri
r"(ln

0:
01'1' f·

(In'I''
nOIl'1
r·nf'n
'Hl'I r.

"n'In
nnnfl
A flt-,.
"nn"
nnnn
Arlie

n(ll'''

nnlln
n(lon
onor
nrOll
onnn
flflflf'
rnnll
nnl'n
f:'fl~n

nnpo
nnnfl
n(lfl(l
0!lOO
n(lnfl
nn(lll
onnn
onon
pnnn
OO(ln
nn('(\
"flnn
rncn
nnno
non/'l
nnflo
(In""
onO(l
('finn
ooro
nflPfl
on(ln
,,0f'I'
n""o
ooon
?flci.

nnnf'
(lorfl
"onll
""fl"
nl'nr
(Ion""
flnrr

('In"n

(I"""
""n,I
(lrl r"

prop

"" n" frnn
"flfln
flflnn
f'Onn
"l?J'l1'

1 0 'lfl

1rno
c;t:,C;'l

o"po
nnon
nn'ln
onno
poon
flonn
('Innn
onnn
nnOO
::-?flD
6 ~41

onoo
ooon
nnll"
('Innfl
nflnn
nonn
(1 1'1 nn
onon
0(100
flflno
onl'O
::-~nr

;:tn~o

Pilon
nnno
flflnn
oOO~
nnpn
flnnn
I'(lno
(lnon
('nl'n
(lrtnn
nnnn
'?f'''

, r'f"rf"

I'ono
opnn
nnnp
I'nnfl
n 1'1 '1(1

nrnl'
"I'nll
flnon
n,' n(1
(If'lor
(1(1 (10

"r""
,.,.. nIl

rrnl'
nnrl"
(lr"(1

rOf'n

nrn"
nr·n o

~"?n

rf'lnn
(loon
fl (If'"
nll(l"

on""
nnnn
nnno
(loon
onnn

~'?n
flonn
nnnn
nnno
nnno
nnon
n"fln
Oflnn
nono
nnon
nnnn
nOfln

~n?n

onnn
onno
"0111'1
nonn
nflflo
o"nn
(lnnn
Ill'nn
nnnr,
nl'fl"
nnnn

7) 1.0

O('lnn
nOnn
flflnn
,'nnn
nf'lnn
I'(\nn
nnfln
"""nn
n(11'''
n f'" n
nf'nn

('"n"
fI""1I
'1(\(\(1

on'lfl
fill n"
rIO r' fl

fln(lr
lnO(l
A14J:'
nnn(l
oonn
oonn
npno
('Inon
nonn
onoo
o('lon
O('lOll

?O?O
ooon

/If'll'\''
n (. f' f'
II', f. fl
oprn
Oor'fl
(I r, (I f'

L, t.J. 4

(, f'I n 1\

?,It.c:

oOlln
00"0

('IOn"
nn(\o
nt)no
:l('lP"
oon(l
00(10
oono

oono
0000

000('1 'oonn
00(10
oono
ooon
flOOn
0000
00(1(l
0000
oono
nooo

?n?n
00(l0
nooo
0000
nnoo
oflon
0000
oono
oon(l
nooo
nO(l('l
nOor

OfTF
onn('l
oonn
noon
nO(ln
nonll
nOfl(l
O('lnn
"opr
nnnn
OOflO
I'flnr

00"0
oonn
oono
onon
oflno
OO(l(l
oono
oo"n
onnn

(lonr
oorn
onon
oO(ln
onnn
nnon
00/'10
onor
onnfl
('10(10

('OflO
001'0

0('101'
norn
noo(l
f1l!(ln
ronf'
nO(ln
000"
001'(10
00(1(1
or. or
Ofl('n
(loon

f'f'nn
no()o
Ofln"

nnon
r·nnn
nnno

4rtll
14J:'t\
(lflRn
nooo
onnn
flOOfl
nnon
ooon
0000
noon
Oflno
n(lnn

('1000
onon
onno
nono
('loon
O(1no
O(1on
oonn
oonn
(lono
(lnon
0000

noon
ooon
(lOOO
oono
0000

00"0
'lnnn
nonn
(lflnn
onnn
nO(l1l

l(\on
1fJ'"1.
~R41

nnon
ornn
nnon
nnno
nnflO
0000
0000
nnno
nonn

~o,-,n
Donn
0000
oono
onno
0000
onnt)
fln(ln
ooor,
onno
ooon
oonn

nonn
ooon
nn(lO
oono
00"10

(l(\00 oo"n
('1000 nnoo
noOo . noo(\
Oflon
0000
nonn
(lflnO

(\non
oroo
noon
nnon
IIflno
onnn
('1000
noon
(1000
1'000
onno
flnon

ooon
onnn
onnn
nonn

on no
onnn
nonn
nnnn
onon
flflon
nonn
nnnn
nonn
ono"
Oflnfl
(1onn

rnno
ron"
f'!non
flnnn
n"flP
(lon(l

nnoo
;:tn4A
40C,0
n(lno
nnno
nnon
onoo
('Inoo
oono
0000
onnn
Oflno

0000
0000
onoo
0000
onn~
ooon
nooo
0000
nooo
n('lOO
0000
onno

nooo
nooo
0000
0000
(lnoo
0000
onno
0000
ooon
onno
nnno
OrtOO

floon
Ilnoo
oono
0000
flnon
nflnfl
(loon
oonn
nooo
nnon
rnon
o"n(l

o

1>'

STUDENT PROJECT - 11

Using. the dump, answer the following questions:

1 • Draw the core layout after the programs are loaded.

2. How many programs are included in the relocatable binary file?

3. How many RBD blocks were needed for the first program?

4. What are the names of the externals referenced in the program?

5. What is the transfer address and where is it in the program?

11-12

STUDY QUESTIONS - 11

o
1. What is an unsatisfied external?

2. Where does the background loader search for externals and in what order?

Where does the LIBEDT loader search for externals?

3. How do you detect a LOADER error?

4. Where are the LOADER BLOCKS created?

5. Can the LOADER be called from foreground?

u

o

11-13 Qll-l

LESSON PREVIEW:

LESSON GUIDE 12

DEBUGGING/TRACING PROCEDURES

This les son will outline the CYBER 18 Debugging/Tracing procedures

REFERENCES:

Chapter 10 of MSOS 5 RM

TRAINING AIDS:

c) PROJECTS:

G

OBJECTIVES:

At the completion of this lesson, the student should be able to analyze a system dump
for effective debugging.

12 -1

TRACING PROCEDURES

PROCEDURE

1) Do not "Master Clear."

2) Set the step/run switch to step.

3) Save contents of the "P" register.

4) Display the M -Register (MASK) and
save the contents.

5) Sweep memory location EF16 (Current
Priori ty .Level) and sa ve the contents.

6) Sweep memory location B816 (top of
Interrupt Stack) and save contents.

7) U sing the listing of SYSB1JF I verify
that location ES16 contains an address
that falls within the BSS black labeled
INTSTK. If the interrupt stack over­
flowed go to step 8; otherwise go to
step 12.

8) The current priority level from step 5
should now be used as an index to the
MASKT table found in the SYSBUF
listing. The word found should be the
same as the M -register from step 4.
If it is the same go to step 9; if not,
go to step 10.

~-Q
~}­

~o
,yot'

~)-I

~~~ 

\.t'" ~J ~'!J 
)J 

~ 

REASON 

This would clear all registers and inter­
rupts that are currently true. 

This will halt the main frame but it will 
not destroy the registers·. 

This will contain the address of the next 
instruction to be executed. 

This will show what interrupt lines are 
enabled and disabled. 

This is the current softWare priority 
unless some program is storing into this 
location. 

This will contain the address of the Ittop 
of the Interrupt Stack." This is a push­
down pop -up pointer. 

This check will verify that the "M" 
register setting and software priority levels 
are in parallel if the system is s~ill opera­
tiona!. It is possible for the whole sys­
tern to be wiped out. 

This step will help to determine if the 
monitor is possibly wiped out, still in 
control but partially destroyed, or if there 
are priority problems. 

EXAMPLE: EF16 = 6 

$FFFF 
MASKT $FFFF 

$FEOF 
$FEEF 
$FFFF 
$E373 
$ODFF 
$0777 
$0747 Same O. K. 

M -Register=0777 

12-2 

C, 
./ 



o 

o 

o 

TRACING PROCEDURES (Continued) 

PROCEDURE 

9) The SYSBUF listing is needed __ The 
problem is almost certain to be in the 
Interrupt trap Region and the MASKT 
table. The priority level for each line 
number is declared in the third memory 
loca tion for a four word group starting 
at location $100 and ending at loca­
tion $13F. Using these words as 
indices to the MASKT table, verify 
that the bit number corresponding to 
the line number is a II 111 for all 
priorities lower and a II 0" for all equal 
and above. Correct any error and test 
again. FINISH. 

10) The address of the word found in 
step 9. Once that addres s is calcu­
la ted, sweep the contents of tha t 
memory location to verify that it is the 
same as the M -Register setting. If it 
is not, go to step II, otherwise go to 
step 19. 

11) There is not much to go on at this 
point as it is apparent that the execu­
tive system is no longer in control. The 
MASKT table is either partially wiped 
out or completely changed and some 
module has executed an illegal instruc­
tion. An attempt to find the problem 
could be made by going to step 19 but 
do not count on too much. 

REASON 

In this example line 1 interrupt was 
enabled at its running priority, thus al-
lowing a priority 10 interrupts to interrupt 
a priority 10 program which is not correct. 
IIA" should be $0005. 

Line 0 

P008B 

201 
+8 B 

100 XXXX 
101 XXXX 
102 OOOF 
103 XXXX 
104 XXXX 
105 XXXX 
106 OOOA 
107 XXXX 
108 XXXX 
109 XXXX 
lOA OOOD 
lOB XXXX 

NUM $777 

MASKT 
+1 
+2 
+3 
+4 
+5 
+6 
+7 
+8 
+9 
+A 
+B 
+C 
+0 
+E 
+F 

$FFFF 
$FFFF 
$FFFF 
$FFFF 
$FFFF 
$FFFF 
$0777 
$0848 
$0747 
$0047 
$0007 
$0005 
$0005 
$0001 
$0001 
$0001 
$0000 

Z8C and location 28C = 744 OK 
Z8C = 744 Error 

This is bad because core has been changed 
and illegal instructions have been executed. 
The interregister instructions where the "MII 
register is the destination register has been 
executed. Chances are control has been 
transferred to some address that contained 
constants which were executed as instruc­
tions. One could run a spot comparison of 
memory versus what should be in memory to 
centralize the changed area. This mayor 
may not supply a clue as to the source of 
the problem. 

12-3 



TRACING PROCEDURES (Continued) 

PROCEDURE 

12) Repea t the procedure specified in 
step 8 only go to step 13 if they are 
the same; otherwise go to step 14. 

13) There is really nothing to do here but 
the system a ppears to be in good 
sha pe for debugging. Go to step 19. 

14) Repeat the procedure specified in 
step 10 only go to step 15 if the M­
register compares to core, otherwise 
go to step 16. 

15) Try to find out what program is 
wiping out the MASKT table. If no 
logical pa th is a vailable go to 
step 19. 

1 6) Compare the con tents of the M­
register with that of memory. If the 
MASKT table is in core correctly go 
to step 17, otherwise, go to step 18. 

1 7) Correct the program that is currently 
in execution as it appears that this 
program has executed an interregister 
instruction where the M -register was 
the destination register. If the solu­
tion to the problem is not apparent 
go to step 19. 

18) It may be extremely difficult to find 
the source of the problem a s it 
appears that the tables are wiped out, 
monitor is not in control and an 
illegal interregister instruction where 
M is the destination register has been 
executed. Spot checking core may 
help but the system is in pretty bad 
shape. If nothing else works go to 
step 19. 

REASON 

This will pOint out such things as the 
state of the tables and whether the 
monitor is in Control. 

The tables appear to be intact and the 
monitor still appears to be in control. 
The problem should be found without 
much trouble. 

This should supply enough information as 
to whether or not the monitor is in control. 
Regardless of the circumstances an 
attempt to trace the problem or probl~ms 
will be attempted. 

All in all things look pre.tty good. The 
executi ve system appears to be in 
control but some program is storing in 
the area occupied by the MASKT table. 
It will be in protected core - so all tha t is 
needed is to find it. 

This will let the analyst know who is in 
control. 

The monitor appears to be in control but 
the M -register has changed. 

Control was probably transferred to some 
addres s containing data rather than execu­
table instructions where the data was 
treated as instructions. 

12-4 

c 

c 

c: 



o 

o 

TRACING PROCEDURES (Continued) 

PROCEDURE 

19) Attempt to find out if it is pos sible 
that an interrupt is ~eing processed. 
When the current priority level is 
the same as a priority level speci­
fied in the interrupt trap region 
(step 9), chances are good that an 
interrupt is being processed. If it 
is go to step 20, otherwise go to 
step 24. 

20) Determine what line number interrupt 
is being proces sed by using the 
memory map (SI Listing). Find the 
program called COMMON (Common 
Interrupt Handler). The address 
where common was loaded will con­
tain the address of some location in 
the interrupt trap region .. This 
address should pinpoint the interrupt 
line currently being proces sed. 

21) The absolute address of the "Inter­
rupt Response Routine" will be in the 
last word of the four word groupings 
by the line number in the interrupt 
trap region. This addres s should 
point to some addres s in the SYSBUF. 
Go to that address (Listings only 
needed) and acquire the addres ses 
of the Physical Equipment tables of 
all devices on this line. 

22) Verify that all of the Initiator priority 
levels in the "Physical Equipment 
tables" and the continuator priority 
level specified in the interrupt tra p 
region are the same. If they are the 
same, go to step 24, otherwise go to 
next step. 

REASON 

There are several possible trouble spots 
when processing interrupts but most of 
them are quite ea sily detected and they 
are not us ually too difficult to correct. 
New drivers and physical equipment 
tables should be looked at quite carefully. 

Most of the interrupt lines use the 
II Common Interrupt Handler" to preserve 
the state of the computer and do the house­
keeping required to change from one 
priority to another. When common is by­
pas sed for any line number, the Interrupt 
Routine used by that line should be inter­
rogated. When the line number is known, 
the analyst can check the "Interrupt 
Response Routine" for that line to find out 
just what devices operate under that line. 

This could point to some error conditions 
such as having the interrupt cabled into 
the wrong line number or show where the 
linkage from the interrupt trap region to 
the Driver for the device is broken. 

The "Interrupt Response Routine" should 
contain the II Physical Equipment tables" 
addresses for all devices processed by the 
line number. 

INTERR UPT TRAP 

NAME 

Line 01 

MEMORY 

104 
105 

106 
107 

CONTENTS 

54FE priority 
cont. 
OOOA 
LYNE01 
address 
in response 
routine 

12 -5 



TRACING PROCEDURES (Continued) 

_____________ P_Ro __ C_E_D_U_R_E ____________ +-______________ R~EA--S-O-N---------------~ 
22) (Continued) 

23) Correct either the priority level in 
the interrupt trap and/or the priority 
or priorities in the Physical Equip­
ment tables. Be sure to check the 
MASKT table if any levels are 
changed in the interrupt trap and 
correct accordingly. FINISHED. 

24) Check to see if the program being 
executed might possibly be a mass 
memory resident program or the 
result of a mass memory program 
being executed. If it is not rna s s 
memory resident go to step 31 , 
otherwise proceed to next procedure. 

25) The next step is to Dump the Mass 
Storage Systems Directory. The 
address to start the dump is the con­
tents of memory location EB16 plus 
the contents of memory location 
E716. The last address is the con­
tents of location E 61 6. 

INTERRUPT TRAP 

NAME 

LYNEOI 

MEMORY 

ADC TTY 

ADC CRDRD 
ADC PTREAD 

TTY NUM $230A 

CRDRD NUM 120B 

CONTENTS 

Physical Equip­
ment 
ADDR of Table 

Wrong priority 
should be A 
(12 •.. ) 

The error conditions should be known at 
this point. Make all the necessary cor­
rections, SYSBUF if required and rebuild 
system. Attempt run again. This is a 
common trouble spot when addressing new 
dri vers or .changing the priorities of the 
standard devices. 

There are several possible trouble spots C:' 
that could be caused by Mass Memory 
programs especially when they have not 
been tested in a real time environment. 
For Part 0 programs, they have address 
constants preventing the progra m from 
being run-anywhere, or releasing allocated 
core without giving up control etc 0 

This should point to where the programs 
were la st loaded. 

EXAMPLE 

LOC 14B 000, 332F 000, 0123, 0780, 
0000, 0001 

152 0010, 221B, 0000, 0157, 
0181, 0000, 0020 

159 ~0020, r-2003, 0000, 0138, 

o4fo. 0000, 00025 

,. Length 

4Beginning address where 
loads last time 

~Current operating priority level C 

12-6 



o 

o 

TRACING PROCEDURES (Continued) 

PROCEDURE 

26) Is the program counter pointing to any 
of tl1e area s in allocatable partition 
core. If it does not go to step 30, 
otherwise continue. 

27) Verify that the program is operating 
at the priority level assigned. This 
can be verified by checking Bits 0-3 
in the word 0 for the Directory entry 
currently being checked. If it is 
okay go to step 29. 

28) Get a listing of the program currently 
in operation. Check all I/O and 
Space and PTNCOR Requests, 
priorities specified for the comple­
tion addresses, whether the comple­
tion address in any point included 
in the Mass Storage program being 
checked. Except for some very 
special cases the completion priori­
ties should be the same a s the 
priority level in the System Directory 
and the current running priority. 
Correct discrepancies and restart. 

29) For programs running in allocatable 
core I check the program for such 
things as address constants, mode 
of addressing I or other possible 
bugs. Correct and reassemble 
FINISHED. 

30) It is difficult to say where we are at 
this time. Tracing through the 
history of paths taken by the monitor 
may offer some clue. Pos sible 
trouble spots are monitor calls where 
the mode of addres sing iss pecified 
incorrectly. The loader has no way 
of checking these error conditions. 
Proceed to next step. 

REASON 

Word 1 of the System Directory for each 
entry will contain the ~ddres s where con­
trol was transferred after the core was 
allocated. This could show what program 
is currently being executed. 

The priority level should be checked to 
the current pr~ority level. If the priorities 
are the same, there is probably a bug in 
the program; otherwise the error should be 
quite simple to trace and correct. 

This is again a common error spot. A 
program could be initiated at a high 
priority level, say seven. As the program 
is being executed, it initiates an I/O 
request with a completion priority of five. 
Now the program is running at two different 
priority levels which could cause some' 
problems. 

It appears that the program was not written 
as a run-anywhere program. When ad­
dres sing any location in the main program 
or subprograms the mode must be relative; 
when addres sing permanent core resident 
programs the mode must be absolute and 
address constants are taboo unless ADC* 

EXAMPLES: 

Rela ti ve (Incorrect) 
RJT - ($F4) 
NUM - $1305 
ADC - PARA 

Absolute (Correct) 
RTJ - ($F4) 
NUM - $1205 
ADC - PARA 

12 -7 



TRACING PROCEDURES (Continued) 

PROCEDURE 

30) Continued 

31) The address pointing to volatile 
storage will be needed to trace the 
history of the monitor events. The 
pointer to the next block of Volatile 
Storage can be found in Memory 
Location F0

16 
- Save this for future 

use. 

32) If there is a possibility of I/O hang­
up go to the next step but if it looks 
as though the problem is definitely 
software go to step number 37. 

33) .. Find the LOG 2 table in SYSBUF. 
This table should be dumped to 
verify that there are no requests 
waiting to use a particular logical 
unit. This table is the "top of 
thread II waiting list for each logical 
uni t. If they are all flagged as 
empty (FFFF 1 ~ proceed to step 35, 
otherwise, continue to next step. 

12-8 

REASON 

Sysdir (Correct) (for part 0) 
RTJ - ($F4) 
NUM - $1205 
ADC - PARA 

Example number 1 is incorrect as the 
monitor will send control to the address 
following the return jump and the contents 
of the next loca tion . 

Whenever a request is made to the moni­
tor, the Request Entry Processor will 
request a temporary storage area called 
Volatile Storage. This temporary storage 
area may contain valuable information 
such as where the call (request) was 
initiated and where the parameters used. 
by the monitor could be found. This 
information may pOint directly to the 
trouble spot. 

It may be pos sible to determine at this 
time that there is definitely some problem 
either Monitor Request or modes of ad­
dressing. If that is the case, there is 
no reason to check for possible I/O 
hang-up. 

EXAMPLE: 

LOG 2 23B 
23C 
23D 
23E 

r------..;..---.. ~ 23 F 
240 
241 
242 
243 
244 
245 

0009 
FFFF 
FFFF 
FFFF 
2137 
FFFF 
FFFF 
FFFF 
·FFFF 
FFFF 
FFFF 

""""- Logical Unit number 5 is threaded, 
therefore, the device should be 
marked a s busy. 

c 

C" 



o 

TRACING PROCEDURES (Continued) 

PROCEDURE 

34) The LOG 2 table I as all Logical Unit 
tables I is ordered by logical unit 
number. Using the example in 
step 33 I get an address from 
entry 5 in the LOGIA table. This 
will contain the address of the 
Physical Equipment table. Now 
verify that word 5 in the Physical 
Equipment table is other than O. If 
it is 0 then correct the driver. After 
the driver goes to II Complete 
Request ll it must again go to FNR 
before giving up control. It appears 
that this was not what the driver did. 

35) I/O hang -up pos sibilities still have 
not been eliminated. Every Physical 
Eq'uipment table in SYSBUF will have 
to be checked verifying that none of 
the devices are presently busy. If 
none are bw~y proceed to step 37 , 
otherwise correct and continue: 

36) If the system had the timer but the 
device wa s not timed and could be I 
add the device to the Diagnostic 
Timer Table. If there wa s no timer 
a routine should be written to check 
for I/O hang -up. Anyway it appears 
that an interrupt was lost. 

REASON 

EXAMPLE: 

LOG2 23B 0009 LOGIA 280 0009 
23C FFFF 281 CORE 
23D FFFF 281 PPTRDR 
23E FFFF 284 TELPTR 
240 2137 .-285 TTYKEY 
241 FFFF 286 TTYPUN 
242 FFFF 287 TTYRD2 
243 FFFF 288 CARD 40 
244 FFFF 289 TPPDRI 

f 
0 TTYKEY NUM l20A 
1 ADC INIT 
2 ADC CONT 
3 ADC ERROR 
4 NUM - 0 -
5 ~ NUM 0 

U sing the drawing on step 34 , the ad­
dresses of the Physical Equipment tables 
will be found in the LOG1A. Example 
CORE I PPTRDR I PPTPCH I and etc. I are 
all absolute addresses of Physical Equip­
ment tables. Each of these addresses +5. 
will be the busy word and should be 
zeroes for all devices unless I/O is in 
process. 

When a controller sends an interrupt to 
the computer which is not retained until 
the driver acknowledges it or the driver 
output/input a character and expects an 
interrupt back when the controller is ready 
for the next operation but the interrupt 
does not come back I I/O hang -up is 
assumed. The device may never be 
operated again. The diagnostic timer 
will prevent this but not all devices are 
timeq. . 

12-9 



TRACING PROCEDURES (Continued) 

PROCEDURE 

37) The following steps can be used to 
find out what paths the monitor has 
taken. First, find out if the last 
request to start another program 
(scheduler's call) was requesting 
that program. This can be verified 
by checking the last entry in the 
interrupt stack. If the contents of 
LOC 8816+3 equal an address that 
contains the same value as location 
8916 then the last request made was 
higher. If that was the case go to 
next step, otherwise go to step 39. 

38) Either the program requested was not 
debugged completely or the absolute/ 
relati ve indicator (parameter X) in 
the requesting program was incorrect 
(most logical). If an error in the 
requested program is suspected, 
debug it, otherwise find out from 
where the request wa s originated. 
This will be an extension of step 37. 
The contents of LOC 8816+2 will 
contain the starting address of the 
volatile storage used to process 
this request. That address +3 will 
contain the return addres.s for the 
requesting program. With this infor­
mation the parameters could be 
verified and corrected if in error. 
Correct and Restart. 

REASON 

Whenever a program is scheduled up 
(higher priority than the requesting pro­
gram), the requesting program is tempo­
rarily halted (pseudointerrupt) and the 
requested program is placed into execu­
tion immediately. 

EXAMPLE: 

1) Interrupt Stack Pointer LOC 881 6 
contains 4871 6 . 

2) Address of the Request Exit Processor 
can be found in LOC 8916: It contains 
107C16·~---------------------

(LOC 8816) 

(0 + 3) 

o 
A 

Value = 48716 

.Value = l07C16 

Wha t probably happened V'!a s that the 
address where control was sent was 
specified as an absolute addres~, when 
it should have been relative or vice versa. 
It also may have been a System Directory 
Call and the program was not on the 
Directory or vic e vers a • 

EXAMPLE: 

Interrupt Stack Pointer LOC 881 6 contains 
48716 . 

48716 
+2 

498 

3 FF 1 6 ...... :....-____ --1 

+3 

402 

Interrupt Stack 

o 
A 

I= 3FF16 

Volatile Storage 

~ 

12-10 

C" 
...... ' 



o 

o 

o 

TRACING PROCEDURES (Continued) 

PROCEDURE 

38) Continued 

39) The next problem is to find out 
whether the request was a primary 
scheduler call (request to start 
another program) or a Secondary 
Scheduler call (start execution 
because of I/O being completed.) 
This can be checked by comparing 
the contents of an address calculated 
by getting the contents of Memory 
LOC 8416+1 to the contents of mem­
ory location 10416 (Common Exit) if 
they are the same I the call was a 
primary scheduler call: otherwise I 
it was a secondary call. Go to step 
40 for a primary call. Go to step 41 
for a secondar:y call. 

40) An attempt should be made at this 
time to find out from where the 
request was initiated. If there 
were no requests for volatile storage 
which would wipe out the history 
which leads back to the requestor I 
the procedure will be quite simple: 
otherwise I take a few stabs in the 
dark or reinitialize the System. 
Memory location F016 will contain 
the pOinter to volatile storage. 

204E 
204F 

2050 
-2051 

15 

REASON 

~ 
Parameter List 

987 

C 

A = 0 the. C is absolute 
1 the C is relative 

8 = 1 Directory 

54F4 

1

1206

1 1
3215 J 
Return 

430 

Top of the Scheduler stack empty list is 
LOC 8416. It contains 4F616. 

4F6 4F6 
+1_ r-4F7 

4F7.....,J 

1206 
.3215 

Common Exit used by monitor is Loca­
tion 10416. 

t 
104 3215 

This example shows that the call was a 
primary call since LOC 4F716 LOC con­
tains the same value as LOC 10416. 

Pointer to Volatile Storage is location 
FO]. 6. It contains 3FF16. 

204E 
204F 
2050 

~2051 

Volatile Storage 

3FF 
400 
401 
402 ~I 

54F4 
1306 
1136 
Return 

12 -11 



TRACING PROCEDURES (Continued) 

PROCEDURE 

40) Continued 

The contents of that address +3 
could point to the return address 
following the call. Parameters 
should be checked for the same 
error conditions listed for step 38. 
Correct and Restart. 

41) When tracing down the original 
requestor for I/O ~r CORE Allocation 
there are two paths which may be 
followed. If there is a listing of 
Complete Request for Drivers avail­
able I look for the Label CE in the 
assembly listing. Using the memory 
map along with the listing figure out 
the absolute address where CE can 
be found. (It will contain a negative 
number.) Go to the address speci­
fied by bits 0 - 14. This should be 
checked out. When a listing of 
Complete Request for Drivers is not 
available use the same procedure 
listed under step 40. The address 
found in location 402 may point to 
the addres s following the label 
defined as CEo Once the parameter 
list ha s been found I again check the 
relati ve/absolute indicators. 

REASON 

Example - 1: 

MEMORY MAP COMPLETE REQUEST 
LISTING 

PARAME 1329 P0040 NOP 
VOLA 1387 P0041 RTJ-

(AMONI) 
COMPRQ 13A81 P0042CE 0 0 

13A8 .. 
+42 
13EA16~13EA A04F I 

Excl~ding Bit 15 is address 204F16 

~ 
I 

RTJ AMONI 

204F 
-I 

IRe Ixl 
I-

Example - 2: 

F016 contains 3FF16 

Volatile 

3FF 
400 
401 
402 r 13EB 'J 

c2This address minus 1 
should equal C E. For 
Example 1 from this 
point. 

12-12 

C 



G 
LESSON PREVIEW: 

LESSON GUIDE 13 

JOB PROCESSOR 

This lesson will introduce the JOB Processor and its related routines. 

REFERENCES: 

Listings of MINT I JOBPROC I MIPROC I JOBENT I and PARAME 

TRAINING AIDS: 

o PROJECTS: 

OBJECTIVES: 

At the completion of this lesson, the student will be able to discuss the Job Processor. 

() 

13 -1 



c 
13 -2 



o 

o 

SET 
MIB 

SET START OF 

SET 
Q = 3 

RELEASE 
FILE1,Q 

CLEAR 
JP IN CORE 
FLAG 

AREA 1 TO IE:----...., 
HICORE -5 

SPACt ReQUtST 
fOR ARtA 1, 

NO 

INQ -1 

NO 

RELEASE 
>---:::~PARTITION ),6 

RELEASE 
TO fORCt StiAP ~ ____ ..,PARTITION 16 

SAVE STA~T 
fOR RtlEASt 
ReSTORe ARf:A·1, I------~~ 

13 -3 



liN 

PARM LOC TO A 
SET BIT 15 
IF NECESSARY 

PARAME 

PARAMETER 
LOC 
TO TNABS 

GET NUM OF 
WORDS TO a 

COMP PARM + 
ADC PARM TO 

CAYT 

CLEAR BIT15 
OF a 
IF SET 

EIN 

WOO TO A 
N PARAMETER 
Toa 

COMP PARM + 
ADC SYSDIR 
Toa 

a· COMP ADDRESS 

13-4 

N PARAMETER 
Toa 

N2 

EIN 

c 

a-#WDS 



C.~) 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

0 11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 
('~> 
,-" 

REVIEW QUESTIONS MSOS 

\ 0 ckvl ~ \y \0 kyJ kv6 
The driver's execute at what priority levels? ~\ \ Q k( 't\A.CV\A 1- . \ ~ JP '~'" ~. :,CU() 

"j '( ft"~ \ 0 V\ 0 \ I~~ 1 ............. 

At what priority is a mass memory program executed? LU\\n-n=::()eX \, \s 5c('&0. ¥"Ii. 

What happens if an unprotected program executes a release request and a mass 
memory program is residing in that area? ()V\rvV\.e.<... . ~~a~ ~ -t~~ '(.J..e.~ 
'( Q.a.lA.JU) ~ : • p vvb )? YV \ e.c.A· f-ctl.,&' + :j'Po -I..'f..-'f.. . . 

How does the R/W request processor determine if a driver is busy? E lU\. ()JO(D \VI 

9~\fS~(J~ ~ 0 .. , 
When a driver completes one request, does it jump to the Dispatche,s? ~O~~O ~'-te.",~ 'f(?QUt:i-

What determines<i9 area in allocatabl~artition core that is al~ocated to a mass' 
memory program that is in the System Directory? {ZeQl.A.M~ fr\o( \~ . 

What is the advanta.~e of having a core resident p~:i~~ in the ~tem dir¢,ctory? .\~ OfCXd\\{l,v 
~Co.N\ sd,'\Q~ t".H~-al,t~ f(Y\OW\Y'') \~j aO-,;~~)V\~~ CFo~ l~~~ V-lt.\,,"r~'~(~) 
If a priority 3 program makes a sc11edule request for a priority 5 program, ~o g~s '- . 
on what queue? .3 ~ OV\ \Y,~el((u-'f\ 't;.~~ ~ fVlonha 5 'f'>"t)~ ralf1\' trL.V,W.). 

What control statement to the system initializer determines the core resident " 
programs? ~ ().A.. \ D -:. J(L . 

. p~~ ~ ~ fLf 
What determines the priority at which a timer request is threaded into the scheduler 
stack? ~v~O-rA .t\'Mt..'\ ~~ CUJV\ QV-..L - COUM~ JowV\ ~~ 

How can a program cause itself to run at a lower priority? S~~ '\~.d-~ C(;~ a,.... \coc;.JQ..'(" 
'P 'f\.,onL:J ~ :rM~ To D \.SpA ic..\\ G)'l.. 

What program determines the program to be put into execution after a program 
com~letes execution? '/\S~\4\c..I-\E.Q... S~LF-(.,T.s \{\..Q..)(\- ~\'3\\t.d~ ~non~ e~l('cV\IIA 

How is the initiator portion of a driver put into execution? SGt\E:;~V(Lc.O 

Who releases volatile that MON! obtains? RGcQLLt.J~ .. C 1'-\, 

What control statement determine the programs that are to be placed in the system 
directory? Who receives these instructions? *y;tAMr-t SYST{f:;YY\ \V\lha\~le("' 

. X- Y. w r-e-
Who transfers control to the line processor for a line after an interrupt has been ~ 

generated? C.O\fY)W\C)n \Y)\.e..(V~\- 'nw,'1c>ia..'t" .e$c.Q...~\- ~r \v\~I("'I\ct\ \y\~(("~-\- .(}...A;\cA 
W~\~ \~c.lQ.o,J \,vU. 0 . 

How does a completion address for a READ/WRITE request get scheduled? (dlVY)rle..k 
(~\-U?~~ S("Q..~ ~. \~ 

How does the diagnostic timer routine know which drivers he is to'check? \ ) 
t>\C-\y.VlO,)--'\<- ,\\Vf\.P...'( -r~!51.."f '\v) 5ys d.c.\- l~cCJ(,.I""-. 'I'IV1 lx,,:.- ~1.\"\1·\.t4 

H?w .~~e~, t~e error portion of a driver get into execution? 1._, ... ,., ..,~ (~ 
~--1t"f,l€d-~-\-- 0\ lo.. . \')<:OJ.\-\V ~\-1\")~(" ~:~J W ~\YI..1\ B R ... A ,or d.~ c,· ,C4:J 

~kd~;~t ;On!ti~~j' a ~ap';ke ~~/~,e? /~r~r~~~~r(~~~ W~ 
How does the diagno~tic timer rou. tine k70~~hat a driver is in execution? 

ctcoJc,:::. r~\=F / - \ ~ V\&r VA. t'f-ccuA\o\f"\hoWQ \v, ..e}C.Lc..~&'" \[ ~\f<" wo(d \!: 1-
If DeORE is busy when a space request IS made, what happens to the request? 

\~/" - A' n" J . Ii r I' \ l Cd) ( Jlr--; \ 0 , 10%":- 'f-~ fal 01.;..... 4 vCCu"O(.s Thf.R(,((/\ 

ut l ~.@(o(.or':. tA'flt/,er 

14-1 



23. 

24. 

.. ':7' 25 • 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

g 
44. 

REVIEW QUESTIONS MSOS (Continued) 

What is the function of the LOGIA table? f'ltYSTl46 'Ii'()Ot1_:~'S..s 

What does the "Q" register contain when control is returned from a request PFocessor, ) 
if the request was accepted? 'A ~O;;\T\UE ~ LuJ~~ ~O(A ~ ~ -6 ,1, w,~ b\\- IS ~ SE" T . 

How can a __ pro~ammer determine when his I/O request has been completed? I 
coVY\V'ltk \~o,0.TVJ\\\ UIV --\O~ ~('~ vJoro\ t'( tA)l(\ .s~~'\Q covnr~t10~ adJ (<2-55 
If the printer, which is usually logical unit 9 has been declared down, where does the 
operating system look for an alternate? LO~ 1. \oJJ,~ 

Where can you look to determine the number of devices attached to interrupt line I? 
L\V\e. ~ \o~ 

When shol:lld a ,IJrogram be writ,ten so that it is reentrant? l()~ \~ I ~~~ 
\POSS\\o,\\tc., (Q~. 'o(,\~ S~6" 0..\ YY\)J~,J'\~lL frvoV',,~c\ ~. 

UI?-d~l(.whatJcond,ition or conditions will a scheduler request 'ge rejected? 
5ta.cV\ ~LA \\ '\ t- lj ou- ~o-u (!.. Q) \ S V1 6L6.o SCf{(EIJ:.)(£t/ / /F Olc'£)IM! L tJ-LI2. ~ 4jC)~ £.c..-w. 
Under what conditi,on or conditions will a READ/WRITE req~est be rejected? \ 
:s::F /OC-{'(- ~,n.oe-l ~ 0 I \~ DhU lUL ~ rJ.OuJ V\ oLv\~ ~ -d.:. ~l{V\Cl ~ 
What determines where control will be transferred after a release request has been 
execu ted? \ b \'-\- ~~ c)J..6 f"{ \-G-O\LA- . 

jb \-r- '* ,)(J_. '0--t.)(~ wov-) ,,~ (C?~ .. , r'L~Vv\ \.0 CC{ \(Q.,y . 
How, does MAKEQ determine \whether an I/.O request has been completed with errors? 
~JCAt6 fZ...rro \' S ~{~--aA \ V\ ,0 ~~ \"t<--0 - \0 \ LlY.-
What bits arec\ set by MAKEQ when an error condition arises? 

\5/IY/13 't ES'\I11 1- lAjOx--ci\' . C 
What steps are followed by the scheduler request processor when a program is -' 

sC~~;(~~~ld ,~~. ::1:i9.hoer p\5iOlJ t~ ~ran /th~ ~~rrr,1~~~ r.lunn~~~~~.?~r,~:n ?" L. /1-' l r 
v\. \ ,,-,,\ \ \ "y{/V-.j' \ 1\1- ;;;. rCA (.1"<" ;;;d./' v,. L"~·"".I...>'-\. v' y V"'\ \ c-vv~" :... ' v-' \ " 

How does the system determine the number of logical units? 
\~~, I)JOfv\ \ O~ 1- \a~\ (1-\ ') \o~ '21- -\-vi}-&a 

Who puts information such) as S, <S+n, and operation in progress in the physical device 
table, and what programs use this information? 
S =S~arQJ ~\~ SeA- ~ W", Sys~(ol ~~lr\CVh 

In what program do y~:>u find the code for the scheduler? 
'b ).s PA \:c \\ E: (V C ~ O\S-P ] 

How many processors are used when a schedule request is made for a mass memory 

program? ;;.c~cl.u.&,! j!..uJ ( t{lr~. ol\Ocal-o,.- / .~I,(j I AA-t1 t~c~i-.!_W_ v;!:;::'j?t W1C/~ 
Where is Request Exit located? , t 'I (:ft'r:tl(j£S~L~ 1l'~;;;"-'-""'''"-~ 

VVlO~l\"o(' LEVJO OF MONl1o.;J Rf~l.tft~Y) ~ __ l._----,,-__ ~_ .. ~i~,:'1 \ 
Who sets the new mask after an interrupt is generated and how does he determine ( ~w4;.'., I. 

what that setting should be? (DI{Y\ '(I\OV\ '"'S:V'l-\' \\w.'\61v( f 0 

When are interrupts ('e~able after the hardware has disabled them because of an 
interrupt? 
(( (~~\( 5>\·aJA-. (;.{AN\RA,,\- U/l.t-v / 9:.,.\-'U...-(fJ Rei.A) rv~Ol.'lIl--<-;1 / lJ,u), hctoc('" Ll'\-r 0~~ 

Who idles the clock word in a driver when I/O i~ complE!t~ with no errors? -
\'OVV\ ~l!L~ '(~lJJ.,6} C~KQS.) 

Who idles the clock if an I/O error did occur? 

Who zeroes the threadword in a READ/WRITE request, if no completion address was 
scheduled? If one was scheduled? 

\ ~ V\ OIl.Q... 2..{:J.{)b JklClJ~;,!1i W\'Y\ ~LE~1' ~ . \CE;Ql;L(.6-t 

\ C )JJ 1'\0 ?,Orol"'~ r1 -tkQac\ U90lfu\ 'l£Uj ~i(0\- )J~ctt~ 

r l () ~ 14 -2'~'(~L. C ii~h'(VO" {{'CC (.'.(\,(;,;;';1/ 

~_i\ IliA ~ n c, (ltJIJ-IIJ' 
Inf~II"VI J ' Ii .'V fI X,-



C' 
45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

0 
55. 

56. 

57. 

cY 
59. 

60. 

61. 

l~63:) 

63. 

64. 

65. 

66. 

6'7. 

()',I 

REVIEW QUESTIONS' MSOS (Continued) 

What type of coding must be used by mass memory programs that run in partition 
core? That run in allocatable core? AI I. . /J '-_./ . I 

0-(kJtK-lW!- ~ 0A~~6LL, ~ 
How does a. core resident program pass control to a mass memory ? tt;an 
theirL~~tr'y point be declared e,xt.~rnal? 5~~ k-£ ~. No d ~~ 
~ -l UJCH.t! .. ,(.4 .t(!C,U7il(}-te... : -f' ~.u:p-c /?U!ed.c t;L . 

What type of addressing do mass memory programs use when referencing core 
resident programs? Why? CbfJ.,1-6&c/;:.c.:... f/'/U7 -' /lb1- (-,/ ,;' /- /~V11(p1'Zl.:1. ,~'£u..lk, 

( 
... /J.. .. .I LV/?J;' ?L9. ~,. I' - , .,;; I I.~ /'" 

~ !~ ~d ~/'-' 4';:~f!tte.."d;J-::.'C; . ~./c::? A.e;t.-,.k f..Lr1d"~ ~,a ."' .... ""'<../ p v~ 
What, is the function of the mask ~able (M~SKT) ~d ~l?-o~ sets it up initially? d .,~.t4r.,'''-;'- . 
-\.&.~ w\, \,dv{ ~~, ~ \ VU1~ .eAAtej:)t.t~! l v'\l{LJ;i.):f-.() " S:~··;t:-- vVf:J lPl ~!!(:.tl ~- , 
What prolgram must be customized by the user before building his system? 
C llO~a \ 
what program must be the last core resident program in part 0 loaded and why? 
¥};f,i.. S P !JC ~ k{a!.t.e.,,· .?d'l!~1.(dl::l<:~'.cV U}~t.e. !£,l:t:)~'~?fJ{fu~v{#/h?t-t>&r?L ae/i /!£~ 

When are the request priorities set fo~ ,xpass memory program.s? ~?t-'C:/..:;J c. 

\.4+ Aob d/4 -kr \a..w.1o... ~ '1'v\w ;(4 0- l VBt:v.) 60 V\\ \'/v\?V0 0\ . . 

What rouRne is used to add the assembler and compiler to the program library? 
L\ ~Ey)\ 

What control statement is used when replacing a mass memory program to link the 
core resident entry points used by the mass memory progr.am? Lop! D *M 

f;t.A \' .t.\Q \ U, (td 
What is the purpose of the table of prese~ts? Where is the table located? 
v0UcA t 6 Wl\ ~0 y-r;\e,c.\ G--I'I\ 'f 0 \ ,,~ ~:;. ;; '0 Cafi'\ b- v.A_!':} (? ~ LU"~ Vl:' ~c \.e J M m S'1 S D V1- '\ 
Wha t is a source program? 

SeA- 0& \\f\s.\--f(,,{C~O \() s to Vu. tIP lJ\~:)l ~ 0\-
What is an object program? ,~ 

PV1l(/sYMv\ (VWd.u...ct~. \o1j ~ .. ·tv\.(r{~ 
What is an absolutized program? r I·~ I, ;'"., .. ~ 6- j , 
. \P ~ (I tu./'f'- ~\tt {. \1\:1:1 ajyJ' t?CI.A~tl" a.. (J (.x./tv~~.J Q () ( r ccZ/1 

;:/.( ~~,,>(. ~_r:._ C& .. c 

~t is the ~fference between run. a.I\ywher~ and r~: jV?~!"e-loaded programs? 
'\ ~ I.LA..fA) -=- . V\. 0 P ~tt ct..'\1\1\ r L-CO(c(.Ad.{)0.... ,~(JY~ , I 

\J,N\ w'<\~ - '\.f)o.. d.1.. J. ~ )ftJ ~ ~Itv..~ ,,\. 
" at d.e,ter:IIllnes the ~~vers' fo be placed in an op~rating system? 

• > ~ 0 E· cJ0U-t CM \- -r \~~ - vV ~\ c.<. \- {V~f l (elL ll1 .. Ut (~ ~tr"'t \,-a,.,.(.,,~ tM 

Who i,nit~ally sets the clock word ~n the physical device table~ _". Q.,~f~~· 
.0 \ H~y)O~-nL \1'<'l~.x" L,U~:He..O ~. \ ~ ~eA ~ \ '1)\ ha ~ov 'f>O(\-l.P 1''1 o/, d C\v-t., 

What is the purpose of the MAKEQ routine? 
MttV<o.s. ~ ~ u ~\\-S \~ (~ . 
~at is the function of the complete re~uest r~utine? .' ~\r- -1 ( J 

1~('L .. h.,~p l Y'\(~ , c..QQG(,0.1 J..J..c«j'1 .... o-jhc c:f2rDc.J~'-1 S~~cJ./\J?Q, C WC.L.1 Q /..t·f\. .--,u:.,. 1--0-,-,r--
Whnt is the :Lunqt.ion ~.~ ~he \~rst 2 words of Physical Device Table? . . 
SG;~ c.lu.Q.Q.-<...- ( .. t~_Q, \, u...i 1'..Q.AQ.. dJ..A,<..)-e,~ M ~t..Q.,cL (;Ct.''C- .<.,..11 ; Ltv(.,f (..,1--..;.....0 (:;x.J...vt:-
How does a driver know when he has transferred the desired number of words? 

uJ1:r2.l y\ E.c..C.OVL";;. l OJ~<'./'C.~iJ + -i..., 
When a 'short read' takes place, how can the programmer determine how many words 
were actually transferred? \ ~+-U)d-'I C'- C9( (-Gtt{'-/!5;" ~~~,e'\·!v+d.A./l"\.~ •. /I~-J-

4.G-~(l. t..t/c7·tc) ,,;iI'" ,(t~:.(/. '.I·.'.~tc,<.... ,./C~~ ;L. Itc,'t /(t (J • (, i ~ ",~, (.... v / 
Who notifies the pperatoo a device is down and what re'sp~mses ~ay the ~perator make? 
PrOSv o..e.+-. C'~C;..() I /~\(("..I.,\tLlLA... :::'/;i C~S)L\'-\/"\Ov\-\- c,;~.C~,)K..Cc... ,\,~.\) ~~ 

What two ways maya program be placed into execution? ~ __ l~ 
.-t n.fJk. . Ot-\ 

O·C/t"--C tU.A .. S .... L rr- Me ~(,(..u!;)e . \).D 

14-3 



MSOS TEST 

1. Which program(s) place entries in the interrupt stack: 

a. Dispatcher 
b. Read/Wri te Request Processor 
c. Common Interrupt Handler and Internal Interrupt Processor 

@ Common Interrupt Handler and Scheduler 

Z. Which program(s) remove entries from the interrupt stack: 

a. Dispatcher 
b. Read/Wri te Request Processor 

~ 
Common Interrupt Handler and Internal Interrupt Processor 
Common Interrupt Haridler and Scheduler 

3. Requests threaded to the Scheduler's thread but not in the Scheduler Stack are: 

a. Primary Scheduler calls 
b. Tim er calls 

(8) Secondary Scheduler calls 
d. all of the above 

4. Requests threaded in the Scheduler's Stack and to the Scheduler's Thread are: 

c. 
d. 

Primary Scheduler calls 
Timer calls 
Secondary Scheduler calls 
all of the above . 

'5. Requests threaded in the Scheduler's Stack but not to the Scheduler's Thread are: 

a. 

® 
c. 
d. 

Prim ary Scheduler calls 
Timer calls 
Secondary Scheduler calls 
all of the above 

6. _How many entry points are there to the monitor: 

c. 

one 
two 
three 

d. sixty-nine 

7. All hardware interrupts enter via: 

a. 
b. 

the Interrupt Stack 
Request En try Processor 
Dispatcher 
the Interrupt Trap Region 

14-4 

.,/~"'\ 

'.\ 
\',,--"" 



8. The address of the dispatcher can always be found in memory location: 

a. 
b. 

$F4 
$FE 
$BB 
$EA 

9. How many threads may the standard Timer Package have pointing into the Scheduler 
Stack area: 

@ 
b. 

four 
three 

c. two 
d. one 

Note: Use the following example to answer questions 10-19. 

ASSEMBLY 
RTJ - ($F4) l 

MACHINE CODE 
54F4 

~ °-fOCYb 
ADC (COMPL) 
ADC 0 
NUM $18FB 
ADC (LENGTH) 
ADC BUFF 

10. What type of request is this: 

a. 
b. 

® 

READ 
WRITE 
FORMAT READ 
FORMAT WRITE 

11. What is the Request Priority: 

a. seven 
® four 

c. five 
d. three 

OC46 
8007 
0000 
18FB 
D213 
5800 

12. Number of words to be transfered: 

[

fa:) can be found in location $D213.~ -k 
Y. is illegal. 

c. is $D213 words. 0 ~ 
@ can be found in location $5213., \ t 0 \ 

D 3:;,.1, 
~ The completion address: 

a. is relative a)S absolute 
~. is an index into the Program Directory 
@ is an index into the System Directory 

e. non of the above. 

14-5 

I~ f~ IT =-0 

f (&to \ 0 ~-uev.lj.-, /LR. &. L(C() ~ 
Ov 00 \ l 00 0 I 1(/0 (/ I \ 0 

y~ n1(o l l../ Co c. _? (9 ceo () (f I 

[L-6.:;;; . 



14. The logical Wlit number: 

c. 
d. 

is four 
can be fOWld in location $FB . 
is eight 
is ASCII 

15. How many parameter words are required in a R/W request for a non-mass storage 
device: 

a. two 
four 
six 
ten 

16. The address of the Request Entry Processor can be found in location: 

a. 
b. 
c. e 

$18FB 
$FB 
$05 l 
$F4 YY\OVl\ \-Or _ 

17. Which answer is true: 

a. this call is an indirect monitor call 
b this call is a FORMAT READ REQUEST 

?c;) this call is a direct monitor call 
Yo the mode of addressing is relative X\Q ~\- VY\.{A.d~ \ze.. )(.-\-

18. What will be the software priority when the completion address is entered: 

a. 
b. 

G? 
four 
five 
six 
seven 

19. The (a) field in the logical unit is set to: 

a. 
b. 

~ 

zero 
one 
two 
eight 

20. One parameter may be passed when making a scheduler's call. How is this 
accomplished: 

c. 
d. 

through the Q-re gist er 
through the param eter list 
through the communications region 
through the I-register 

14-6 

r" 
\... .. 



, 21. Which type of request is used to request allocatable core: 

a. CORE 
® SPACE 

c. RELEASE 
d. GET FILE 

22. Which request is not available ~~t~rograms: 
~. ~/ a. CORE ------

~ SPACE 
c. TIMER 
d. SCHEDULER 

23. Which requests are available to protected programs only: 

a. SCHEDULER,TIMER,SPACE,RELEASE 
b. CORE, LOADER, GET FlLE, STATUS, EXIT 
c. READ, WRITE, FORMAT READ, FORMAT WRITE 

(!) SPACE,RELEASE 

24. The entry point to· the scheduler is: 

25. 

a. 
b. 

~ 

TC 
T4 
T9 
T12 

Which request is not re-entrant: 

a. SCHEDULER tP-.t O\-&~ iJ.A-L kuv,,/(eu\ ~ 'MOI\I 1--0 r 
~ ~~~S ,d,~k M \c.v\N~ \p~ JO'~ e'<L1C&W<J-\-

d. RELEASE 

26. What determines the AREA of allocatable core for a SPACE request: 

a. 

© 
d. 

running priority 
Completion Priority 
Request Priori ty 
logical unit 

27. How many parameter words are required for a TIMER call: 

d. 

two 
three 
four 
six 

14-7 



1 

J0 \.'\~ 
\. \ ~~\\r 1\ t\~ 

~0'V ~ 1Jf:'~ l 
2B. . If a TIMER call was just placed on the thread with the "u" field equal to one and the 

29. 

"t" field equal to 15, how long will it be before it will be removed: 

~ between 1.5 and 1.6 seconds 
~1l. between 1.4 and 1.5 minutes 

c. between 1.5 and 1.6 minutes 
d. between 1.4 and 1.5 hours 

What will cause a Scheduler's Request to be rejected by the Soheduler: 

a. vincorrect request code (CLA'\v'Io\' <teA -~o s~rct(~(~0,\.... 
b. illegal address to transfer control to Y\ 0 'sc...( c.t tft", V\~ ~d ((>(3 (t ( c:1. d clUA.,/J . 

~ the thread word in the System Directory non zero 
'Cr:' all of the above 

How can a program determine the first address of core allocated following a SPACE 

request: --\~ d~I(U2A/\(L~ f) ')~ lJJ\rl.O \'Vl.c·'ld.L \P{~C(C;J ~ , _ 

a. in the word following the thread location in a SPACE request ~;\l.d,.VI v O}J,AA .. crt.? v\ ~{A IA-- ~ 
b. in the Q-register at the Completion Address 
c. mass storage programs operating in Allocatable Core can get it with this coding 

at its entry; NUM$CBFE o all of the above 

31. What does the'monitor do to flag requests that have been rejec'ted: 

a. set the Q-register to -zero 
store a -zero in the thread 
sets bit =IF 15 of the Q-register to a one 
exits to the dispatcher 

,,,;::-::;;;:;;:-:--:-.,.._--...,,.,.\ 

How many parameter words are required for/~, SPACE r~~uest: 
\. ) 

a. four ... , ..... ----.-. ..--/ 

@ five 
c. six 
d. two 

33. Which of the following tables is associated with threading: 

c. 
d. 

LOG2 
Interrupt Trap 
Interrupt Stack 
Volatile Storage 

34. Whi~h of the following is push down-pop up stack: 

a. 
b. 

~ 

LOG2 
Interrupt Trap 
Volatile Storage 
driver 

14-8 



o 

35. In what area can the pointer to the System Directory be found: 

a. 
b. 

MONI 
Scheduler 
Program Direc tory 
Communications Area 

36. How many words are required for each entry in the Scheduler Stack: 

a. 

$. 
d. 

three 
four 
five 
variable 

37. How many words are required for each entry in the Interrupt Stack: 

a. 
b. 

$. 
three 
four 
five 
variable 

,.. 
38. How many words are required for each entry in Volatile Storage: 

a. nine 
b. four 

five 
variable but at least three 

39. How many possible standard threads are there to the Scheduler Stack area: 

a. two ---
~ 

four ~(P<--
six 
eight ---

40. Which table is used to make a device down: 

Physical Device Table 
LOGl 
LOG2 
LOGlA 

41. Which table contains the addresses of all Physical Device Tables: 

a. 
b. 

CV 
LOGl 
LOG2 
LOGlA 
BUFFER 

14-9 



42. The waiting list to use a logical unit is the: 

0J c. 
d. 

LOGI table 
LOG2 table 
LOGIA table 
WAIT table 

43. Which table is used to prevent unprotected programs from using certain devices: 

a. LOG 1 table 
b. LOG lA table 
c. BUFFER table 6 Physical Device Table 

44. Which table alIO~~rOgrams the use of certain reentrc:mt protected 
routines: ~/ 

a. Physical Device Tables 
@ Table of Presets 

c. Entry Point Table 
d. Program Directory 

45. Devices are marked as busy by the: 

fa) 
b. 
c. 
d. 

Physical Device Tables 
LOG2 table 
LOGI table 
LOGIA table 

46. The current running priority is saved in the: 

a. Physical Device Table 
h. Dispatcher 
c. Interrupt Trap Region C9 Communications Region P fL l V L 

14-10 

\ 

C~. 


