CYBER 18 /1700 S AR
Seminars designed EDUCATION

MSOS to help improve @5
performance and CONTROL DATA

AN ALYSIS Broductivity.

S . SEMINAR

eminar Number QA4020 DIVISION
Volume 1

A ,:::moo
TR S [—.
NS NN NN e
AN lMl ﬁ// *\\\ N) %’// T e
; \\\‘»\\ '/,\‘.%“ X 7 z;/?

1 ’«\\? » -

', A N2

/'/"/ & Sl % e
7 "r 7 00 o o0oo0vo0
(‘ \ 7 L)

\\
b
A
\ !\ 77
-l
J
D)
4 -
//)
&7
2

- CQURSE:NO.-QA4020-1
CYBER 18/1700 MSOS ANALYSIS

STUDENT HANDOUT
VOLUME 1

REVISION B

For Training Purposes .Cnly
Control Data Corporation

PROPRIETARY NOTICE

The ideas and designs set forth in this
document are the property of Control Data
Corporation and_are not to be dissemi-
nated, distributed, or otherwise conveyed
to third persons without the express
written permission‘ of Control Data
Corporation.)

REVISION RECORD

REVISION | DESCRIPTION

Tm — ——— - 1
(11-22-78) Manual Release '
B
(02-01-79) Update Manual
C
(06-05-80) Update Manual

Publication No.
QA4020-1

REVISION LETTERS I, O, Q AND X ARE NOT USED

CYBER 18/1700 MSOS ANALYSIS

Address comments concerming
this manual to:

CONTROL DATA CORPORATION
National Coordinator .

5001 West 80th Street . ..
Bloomington, Minnesota 55437

1978,1979,1980, 1982 Attn: Curtis Vicha
©COPYRIGHT Cg{rTl:Shl;sDé;é\ngRPORATION 1982 or use Comment Sheet iI"l the

back of this manual.

(> CYBER 18 MSOS ANAI\,YSIS.
STUDENT HANDOUT
GENERAL CONTENTS

SECTION
GENERAL DESCRIPTION
RESOURCE DATA
COURSE CHART
COURSE OUTLINE

LESSON GUIDES

lesson 1 Introduction to Mass Storage Operating System
Version 5 (MSOS 5)

Lesson 2 CYBER 18 Hardware
Lesson 3 | Software Overview
Lesson 4 System Flow

Q Lesson 5 Scheduler

‘ Lesson 6 Introduction to System I/O
Lesson 7 Drivers
Lésson 8 Memory Allocation
Lesson 9 Volatile Storage
Lesson 10 Timer Package
Lesson 11 Loader Tables
Lesson 12 Debugging
Lesson 13 Introduction to Job Processor
MSOS TEST

iv

PAGE

vii

viii

1-1
2-1
3-1
4-1
5-1
6-1
7-1
8-1
9-1
10-1
11-1
12-1
13-1

O

|
|
|
f
i
i
|

| COURSE TITLE: CYBER 18 MSOS Analysis

' COURSE NUMBER: QA4020 :

GENERAL DESCRIPTION

P
|
i
|
i
!

' COURSE LENGTH: 5 days

DESCRIPTION:

This course is designed to provide the system programmer with an in-depth study of
the MSOS Operating System. The subject matter includes system initialization
routines, SYSDAT, system flow, monitor, I/O routines and loader tables., The
operating system will be studied at the flowchart and code level,

PREREQUISITES:

Satisfactory completion of Assembly Language (QA3060) and Advanced Coding (QB4030)".§

OBJECTIVES:

Upon successful completion of this course the student should have achieved the
following:

Gained a familiarity with the resource material available to the system
analyst.

Learned the terminology used in the listings and manuals about MSOS.

Understanding of the system flow and use of the major system tables.

Understand the basic components of a driver and understand the system
provided subroutines for drivers (FNR, MAKQ, COMPRQ, ALTDEV). il

Be able to describe the function of the major request processofs (Scheduler,
RW, SPACE).

Be able to describe Interrupt Processing.
Be able to study system listings.

Know how to find important system information in a dump of memory and
mass memory.

NOTE TO STUDENTS

The purpose of this Student Guide is, first, to be a teaching aid and, secondly, to
supply information that is not included in the other manuals given out in the class.
Therefore, when a subject is in another manual, a reference will be made to that

material and it will not be duplicated here.

We welcome your comments on the Student Guide., We would appreciate examples
charts or flow charts that you feel might improve the Student Guide.

Please send all such suggestions to:

Education Services

ASE, MNAO02B

Control Data Corporation

P.O. Box O

Minneapolis, Minnesota 55440

vi

O

RESOURCE DATA

STUDENT MATERIALS:

CYBER 18 MSOS Analysis Student Handout
VOLUME 1 Student Handout
VOLUME 2 Listings
VOLUME 3 Glossary
CYBER 18 MSOS Analysis Study Dump
MSOS Version 5 Reference Manual
MSOS Version 5 Instant
MSOS Version 5 Diagnostic Handbook
MSOS Version 5 File Manager Reference Manual
Software Peripheral Drivers Reference Manual

vii

QA4020-1
QA4020-3
96769400
96769430
96769450
39520600
96769390

A

—~
@,
COURSE CHART
MSOS ANALYSIS

HOUR DAY 1 DAY 2 DAY 3 .DAY 4 DAY 5
INTRODUCTION SYSTEM FLOW ~
-I TO MASS STORAGE
! OPERATING SYSTEM VZ
LOADER
VERSION 5ANALYSIS COMMON SCHEDULER DRIVER TABLES
INTERRUPT
HANDLER
2 CYBER 18
HARDWARE
INTRODUCTION DEBUGGING/
TO SYSTEM 1/0 TRACING
_ Y | PROCEDURES
DISPATCHER TABLES MEMORY
ALLOCATION
READ,/WRITE "
REQUEST JOB
PROCESSOR PROCESSOR
CYBER 18 |f=momnm= ———————-
SOFTWARE ‘ _
5 OVERVIEW , VOLATILE
REQUEST , STORAGE
ENTRY/ DRIVERS ¥
EXIT REVIEW
TIMER
6 PACKAGE

O

O

IT.

III.

COURSE OUTLINE
MSOS ANALYSIS

Introduction to CYBER 18 Mass Storage Operating System
Version 5 (MSOS 5)

A'

B.

Overview of MSOS 5

Introduction to MSOS ‘S Analysis

1. Materials available on MSOS
2. Class introduction
3. Overview of outline

CYBER 18 Hardware

A.

CYBER 18 Configurations

1. CYBER 18-10M Computer System
2. CYBER 18-20 Processor

3. CYBER 18 Cartridge Drive
Example GConfiguration

1. CYBER 18 Features (MACRO)
2, Memory word

Input/Output Instructions

1. Return from INP or OUT

2. Disk addressing

Panel Mode Operation

1. Function Control Register
2. FCR Table

Software Overview

A.

Terms and Concepts

1. Compile, load, execute process
2, Types of programs
3. Background/foreground

Priority Structure

1., Priority scheme
2. Interrupts
3. Priority level

ix

(1 hr.)

(1 hr.)

(4 hrs.)

V.

VI.

COURSE OUTLINE (Continued)

C. Queues for CP Usage

1. Interrupt Stack
2. Scheduler's Queue

D. The Libraries

1. Program Library
2. System Library
3. LIBEDT

E. System Initialization

System Flow

A. Common Interrupt Handler

1. Interrupt trap
2. Changing priority

B. Dispatcher

1. Scheduler's queue

C. Request entry/exit

1. Indirect request
2. MONI

Scheduler

A. System Directory Call

B. Pseudo Interrupt

Introduction to System I/0

A. System Standard Logical Units

B. Physical Device Tables

1. PHYSTAB
2. LOG 1A
3. LOG 2

4, LOG1

C. Read/Write Request Format

(6 hrs.)

(\)

(2 hrs.)

(2 hrs.)

O

O

VII.

VIII.

IX.

COURSE OUTLINE (Continued)
Drivers | (4 hrs.)
A. Driver Review
B. Initiator
C. Continuator
D. Error Section
E. Common Subroutines for all Drivers
Memory Allocation ' (2 hrs.)
A, Core Allocator
B. Space Driver (SPACDR)
C. Request for Space
D. RELEAS Request

E. SPACE Request Processor

F. SUBCOR
Volatile Storage | | (1 hr.)
TIMER Package (1 hr.)

A, TIMER Requests

B. TIMER

C. DIAGNOSTIC TIMER

LOADER Tables | (1-1/2 hrs.)
A, LOADER Functions

B. Background Program Layout

C. LOADER Blocks

D. Example Program

xi

XII.

XIII.

X1V,

COURSE OUTLINE (Continued)
Debugging/Tracing Procedures
Introduction to Job Processor

MSOS Test and Review

xii

(1-1/2 hrs.)
(1-1/2 hrs.)

(1-1/2 hrs.)

@

)

C

O.

LESSON GUIDE 1
INTRODUCTION TO MASS STORAGE OPERATING SYSTEM VERSION 5 (MSOS 5)

LESSON PREVIEW:

This lesson is a general introduction to the study of MSOS., The student will be
introduced to the resources needed by the systems analysts to maintain the system
such as SIMs, PSRs, Data Sheets, etc. The objective and course outline will be
gone over so that everyone is aware of the purpose and scope of course.

REFERENCES:

MSOS RM pv/vi

TRAINING AIDS:

Barckground Material
Visuals VI-1 through VI-12

PROJECTS:

Study questions-1

OBJECTIVES:

At the completion of this lesson, the student will be able to:
1. Know where to find information about the Operating System.
2. Know where to go to get assistance.

3. Know how to submit a PSR and how to find out if the problem exists in other
places.

4. Gain an understanding of the objectives and scope of this class.

1-1

EXAMPLE OF DATA SHEET

CONTROL DATA® CYBER 18

MASS STORAGE OPERATING SYSTEM VERSION 5 (MSOS 5)

G2

CONTROL DATA
CORPORATION

MSOS PROTECTED PROGRAMS (FOREGROUND)
MONITOR
Constants/Tables
Request Processors
1/0 Device Kernels/Drivers
Interrupt Handlers
Dispatcher
Memory Managers
1]
———— L - - - - - - - — - . - - -
{ | 1 1 H T 1
1
Utilities I Foreground -
On-Line Debug Job File I RTRAN 32/v8 Vaor Mag Tape
System Checkout Processor Manager ! e i Applications utilities
Engineering File 1 ackage Programs Processor
T 1] !
i 1 1
Recovery :
Library : |
Ediing | | (de5;99M9 i
|
|
MS0S UNPROTECTED PROGRAMS 'L
(BACKGROUND) ~ b=m=======------—oo-- 1
s i i g 1
|
Batch
! Tape/ . cosy ' RPG II/ i
Reé:i)rc‘:::;ble gr:;lkgp;z\gt Disk/ Inst:lil':hon (source Macro E FORTRAN Processing
Loader aid) Uhtﬂllza Maintenance data Assembler | | Compiler User
ilities compression) ‘ Batch Jobs

The CONTROL DATA CYBER 18 Mass Storage Operating
System Version 5 (MSOS 5) is a multiprogramming system
designed to support a variety of applications requiring
dedicated system utilization, batch processing, and pro-
gram checkout features in a real-time environment.

MSOS 5 regulates all multiprogramming on the basis of
priority level assigned to a particular operation, whether
the operation is program execution or input/output. The
system queues for input/output data transmission and
program execution by priority level, with no restriction on
the number of requests which may be queued at a given
time. The program selected for execution is the one with
the highest priority level. It remains in execution until
completed unless a higher priority level program is sched-
uled. The lower priority level is then suspended until the
higher priority interrupt program is completed.

Sixteen hardware interrupts are used to maximize input/
output efficiency and to allow concurrent input/output
and computation.

The program protect feature of the hardware is used to
segregate central memory into two functional entities—
protected memory and unprotected memory.

Protected memory (the foreground) is reserved for ex-
ecuting the operating monitor and any user’s real-time
high priority application programs. Unprotected memory
(the background) is used for execution of batch job
processing and program checkout. MSOS § can swap
(move) the contents of unprotected memory to mass
storage, and make the area protected memory for use by
foreground programs.

MSOS 5 is extremely modular in design and provides the
user considerable flexibility to perform system modifica-
tion and update.

The MSOS 5 System features the following main capa-

bilities:

* MONITOR-The real-time executive for MSOS 5. The
monitor is the interface to other programs and systems
resources on a priority basis. It is modular and para-
meters can be set for a variety of hardware and soft-
ware configurations.

The monitor contains request processors for the following:
1/0—~READ/WRITE/FREAD/FWRITE/MOTION
Program Scheduling—SCHDLE/SYSCHD
Time Delays—TIMER/TIMPT1
Memory Allocation— SPACE/RELEAS/PTNCOR
Enable/Disable Scheduling Mass Memory Programs —
DISCHD/ENSCHD
Background Requests—STATUS/CORE/EXIT/GTFILE/
LOADER

¢ JOB PROCESSOR—Responsible for monitoring back-
ground programs running in unprotected memory.
Interface is provided for batch stream, unattended
jobs or for interactive, operator-controlled jobs. The job
processor controls compilers, MACRO assembler, and
numerous background utility functions.

* FILE MANAGER-General purpose file management
package. It creates and maintains both sequential and
indexed files. It offers sequential, indexed, and direct
methods of record retrieval, as well as variations of

1-2

WV1-1)

9

@

O

these. The file manager may be used by protected and
unprotected programs.

SOFTWARE PRODUCT SET
FORTRAN 3A/B RPG Il
AUTRAN 3 FILE MANAGER
TIMESHARE 3 MAGNETIC TAPE .
IMPORT UTILITIES PROCESSOR
GRAPHICS 1/0 DRIVERS

MINIMUM HARDWARE REQUIREMENTS

CDC® CYBER 18 Computer with 16,000 words main
memory for MSOS 5

Console device (teletype, CRT)

Input device (paper tape, cards, magnetic tape)

Output device (paper tape, cards, magnetic tape)

Minimum 512,000 words mass storage for MSOS 5

Specitications are subject to change without notice

CONTROL DATA SALES OFFICES ARE LOCATED IN
PRINCIPAL CITIES THROUGHOUT THE WORLD
DATA SYSTEMS MARKETING

BOX 0, MINNEAPOLIS, MINNESOTA 55440
TELEPHONE: (612) 853-5195 TWX: 910-576-2978

201,321 LITHOINUS.A. 7/76

1-3

(V1-2)

G

DATE SUBMITTED
MO. DAY YEAR

CONTROL DATA
CORPORATION

PROGRAMMING SYSTEMS REPORT

91024

REFERENCE NO
(SUBMITTER)

INSTALLATION
CODE

DATE REC. BY PSR COORD

CDC PSR NUMBER

m o

Customer Name

Customer Phone {include Area or Country

Zoxm

and City Codes)

Customer Address

Control Data Contact Name

Control Data Location (Code)

Control Data Contact
Signature

<TB-COZ-—

—“ZmZm—AP>» A0

COMPUTER QPERATING SYSTEM (actually used)

Name

SUBMITTER PRIORITY

criticaL £

Version

Product Number

PSR Code-Level

URGENT

SERIOUS

MINOR

Has job runon a

previous level? Name

PRODUCT being reported on (give full name. as COBOL § under NOS1)

oOoodd

INFO

D Yes Level

Version

PSR Code Level

(I

Product Number

T For critical PSRs be

Has CEM service been contracted
for this product?

YES [:] NO D

sure to follow procedures
noted on the reverse side
of this form

INQUIRY TYPE
O 1. Error (Support Materials Enclosed)
d 2 Suggestion for Improved Efficiency (SIE),
[3. Request for Software Modification (RSM)

SUPPORT MATERIALS

O card Deck] Dump Tape
O Listing O suggested Fix (Cards)
O pata Tape O Typeout

O other

m>DmI

—

SUGGESTED PROBLEM DESCRIPTION (Limit of 70 Cl

s Including €

AAAAA LA A A A AAANAAMAMAAAADAAAAAAAAAAAANDAANAAAANANAAAMMS AALAANAALAAALLAALAALALMALLLLD

Blanks (132 characters for 3000L}} — BE CONCISE

A A A A)

- 1

70

mo<—

IMuw <V-COZ=-

MOD—-v Muamgmay Z0 wW20-—-H40CD~-wnwZ-—~

AA1901 REV. 12/77

MASTER

1-4

@

©

Please complete the form

1.
2.

. Enter appropriate customer and Control Data name,

12

.

INSTRUCTIONS FOR FILLING OUT THIS PROGRAMMING SYSTEM REPORT (PSR) FORM — ONLY ONE PROBLEM
PER FORM

A PSR form should be used to report any of three types of inquires to CONTROL DATA CORPORATION in regard to standard software products.

Type 1 An error inquiry: the software does not work according to the published reference manual(s).

Type 2 A suggestion for improved efficiency (SIE); suggested change which does not affect the external features of the product; i.e.,

shorter or faster code.

Type 3 Request for Software Modification (RSM): a request for a change in the way the software product works which will

require user adjustments and a change in the reference manual(s).

THE FORM MUST BE TYPED (IF NOT, IT WILL BE REJECTED).

g to the ing inst

Enter date submitted/mailed to Control Data.
Enter st i f ber — any bination of six ch Use of this field is optional; if not filled in, CDC PSR Coordination will
use the metered number on the form as the i refi b

. Enter four-ch C 1 ion Code (VIM, FOCUS, ECODU or other user-group code) or, for Control Data installations, an abbreviated

Facility Code.

. Do not type in the DATE REC. BY PSR COORD. or CDC PSR NUMBER blocks.

and

tanh:

number informati The form should be signed by the lacal Control
Data representative.

. Enter Computer number, operating system and product identification. For example. computer number could be: CYBER 173, S/N 614.
. Check the appropriate Submitter Priority of this inquiry (see descnpnons below far guldelmes concemmg priority). There is no commitment

that Control Data will assign the same priority to the problem; . gross di

ity ities will be questioned.

Critical {CRITICAL PSR PROCEDURES MUST BE FOLLOWED), Use for system down: frequent (more than 1 per day) system
crashes: major projects stalled through software probl etc. R ber, this is your estimation of problem criticality
— to get CDC to handle the problem as critical, it is necessary that established critical PSR procedures be followed, e.g.,
for CDC CYBER 70/170 the local CDC representative must agree regarding criticality and then must TWX/Telex PSD Field
Support {who then get Central Support to accept or reject the critical request). For 3000L systems, contact the 3000L
PSR Coordinator.

Urgent Regular system crashes {more than 1 per week): substantial user difficulties. High probability of serious problems (such as
bugs in error recoveries, etc.).

Seri Probil: that definitely need to be fixed at once, but for some reasop are below Urgent or Critical. For example, a PSR
belongs in this category if the problem can be circumvented, if a local or temporary fix is available. or |f it is an urgent
prablem that only occurs rarely or under unusual circumstances.

Minor 1 i ies or irregularities that need- to be corrected in the system (Minor refers only to the urgency). Items of
inconvenience or of minor or primarily local should preferably be in this category.
information Errors in coding hni and d ion; nonconformity to standards.

Many problems may seem Critical or Urgent. Therefore the foillowing tests may be helpful in classification of the problem:

® If you will wait for a full test of the corrective code (a corrective code rel) rather than impl an uncertified response, the problem
is less than Critical and should probably be Serious rather than Urgent.
® |f you will i to tol a problem rather than quickly generate a new system after tested ive code is ilable, the priority

should be Minor or Information.

® {f your distribution of PSRs by category places more than 10% to 15% in the critical and urgent categories. you should re-examine your
use of these priorities.

. Check the Type of Inquiry being submitted. (Refer to the first paragraph of this page for determination of proper Typs.)
. Check the type of support materials being submitted with the inquiry. More

supporting ials will facilitate our isolating the cause
of the problem — when feasible/appropriate, please include a system dump tape (core dumps) as part of the materials.

. Entera ise d iption of the probl — which may be used in the PSR index. Since this suggested index entry may be used by others in

I iously reported probl it is important that the d. iption be and specific. The entry is limited to 70 characters, includ-
ing amboddod blanks (132 characters for 3000L).

. Please type the i mquuy description starting at the top of the form so that we will have the maximurm amount of space available for answering the

inquiry. A pl iption of the probi and related symptoms should be entered to facilitate location and correction thereof. If avail-
able/appropriate. we encourage suggssted corrective code be submitted as a card deck. (For more than 20 lines of code.) When this is done, we
will list the cards and publish them as part of the inquiry.

In order to resubmit any PSR for further consideration, please place the following in the Suggested Problem Description area: “This PSR is a
resubmittal of PSR ABCXXXX". Please restate the problem and your reason for resubmittal.

Submit all copies of the form to Control Data’s local representative, who will sign the PSR and submit it to the appropriate location:

CDC CYBER 70/170 3000L SYSTEMS SYSTEM 17/1700

PSR COORDINATION . PSR COORDINATION, ARH280 PSR COORDINATION

215 MOFFETT PARK DRIVE 4201 LEXINGTON AVENUE NORTH 4455 EASTGATE MALL
SUNNYVALE, CALIFORNIA 94086 ST. PAUL, MINNESOTA 55112 LA JOLLA, CALIFORNIA 92037

1-5

(V1-4)

EXAMPLE

CYBER 18
PROGRAMMING SYSTEM
REPORT

AUGUST 31+ 1978

© 1978 Control Data Corporation

SUMMARY
132
SECTION T - 51 PAGES
SECTION II - 2 PAGES
SECTION III - bO PAGES
SECTION IV = 0 PAGES
- b PAGES

SECTION V

@ 9 CONTROL DATA
CORPORATION

000001

1-6

(V1-5)

-

TABLE OF CONTENTS
SUNMARY LEVEL 132
SECTION I
PAGE NO. PSR _NO. OPERATING SYSTEN PRODUCT/PROGRAN
NSOS N
-1 5459 nsos 4.2 THINT
Asos s
-2 : 5455 nsos S.0 scnn
3 S4kb nsos 5.0 ILOAD
l-\ 54k? nS0S 5.0 DTINER
1-5 54b8 nsos S.0 0DEBUG
i-b 5477 nsos 5.0 scnn
1=-? 5481 nsos 5.0- JOUPVY
1-8 5uas nsos 5.0 IoupPvy
-1 S48k nsos 5.0 IouPvy
1-10 5488 nsSos 5.0 Ioup |
3-11 5497 nsSos 5.0 EDTLP
1-12 5493 nsSos 5.0 SyYscop
3-13 5517 nsos S.0 EESORT
3-14 5521 nsos S.0 DTINER
ITO0S
3-15 5456 IT0S l.2/2.0
1-3b 5460 IT0S 3.2 UTIL
=17 54k2 ITOS l.2 BATC
1-18 5476 IT0S 1.2 DSORT
1=-19 5492 IToS 1.2 EDITOR
1-20 549y ITO0S 1.2
1-2} 5499 . ITOS 1.2 CUARER
l-2¢d ' 5518 IT0S 1.2 SYSDAT
}-23 5520 ITOS 1.2 UTIL
l-24 5522 IT0S 1.2 UTIL
3-25 5523 IT0S 1.2 UTIL
l-2b 5524 ITO0S l.2 UTIL
1-27 5525 ITOS 1.2 TIL 06
}-28 552 IToS 1.2 BATCH DRIVER
1-29 5527 ITO0S 1.2 DSORT
1-30 5529 ITO0S .
RPGII
3-31 548y ITOS 1.2 RPGII
3-32 5490 ITO0S J.2 RPGII
1-33 5530 IT0S 1.2 RPGII 2.0
000002

@

1-7 ~ ' (V1-6)

i temen

- @D

, CONTROL DATA
CORPORATION

PROGRAMMING SYSTEMS REPORT 17477

AEFERENCE NO. | INSTALLATION] DATE REC. BY PSR COC PSR NUMSER
RATE spamiTER | (sUsMITTOR) cOOF 13- /- ¢
07 26 18 21001 FCL /22728 S4k?

C

\

f _Charles L, Myers

’
E
I
N
Q
v
1
c R Custorner Name Customer Adcicess
s| O _ Keith Weber LILOPS wucd (4
I Control Data Contact Name Controi Deta Locstion (Code) a Contact Squu'v
R | compuTER OPERATING SYSTEM PRODUCT/PROGRAM SUBMITTOR PRIORITY
"l' Cyber NAME-VERSION-PSR CODE LEVEL NAME-VERSION-PSR CODE LEVEL 0 Criticat’ X Minor
N{ -18/10M |MSOS 5.0 126 (Deck Name) DTIMER 5.0 a s"."!"" O tnto.
G INQUIRY TYPE SUPPORT MATERIALS Q Serious
H 1 Error (Support Materisis Enclosed) 8 Cerd Deck Oump Tape G Other TFor criticat PSR1 be sure to ;
13 2. Suggestion for Improved Etficiency (SIE) Listing Suggested Fux {Carde) follow procedures noted on
R 3. Requert for Software Modificstion (RSM) [Dets Tape Typeout the rgverse 1109 ot thiy for
E YSUGGESTED PROBLEM DESCRIPTION ILimet of 70 Ch I 9 Er d Bienks {132 cherscrers for JOOOL)) - BE CONCISE
L Module "DTIMER" does not test end 0 table rl
-1 70
The DTIMER module terminate processing of "DGRTAB" on any negative value rather than on
the specific value $FFF? as specified. This causes a problem when the PHYSDT resides T
Y
above $8,000. [4
E
'
N
Q
V]
|
R
Y (\
[d et
€
R

MmMO—~n MuIMCMY 20 VWZO0--0CI<AnZ~—-

AA 1901 Rev 3778

MASTER 000014

1-8 (V1-7)

<«3-COZxX-

CONTROL DATA

@DEWSRIN pROGRAMMING SYSTEMS REPORT 84282 /0F
:Aoﬂ :u‘a'ma:t; u::a(u;:t :o INSTALLATION DAY u/:calbv q; 6t:oolm COC PSR NUMBER
giE” PLY3PS / 5hbk
; 733~ 7=3
s h12-§53-43u42
M Cumomer Nome Cummamer Phong (ncivse Ares o Coumry
T ong Crty Cocenl,
Y Comomer Addrons * 4
’ Payl §itz PLYDLS ol LT
£ Contrei Dota Comtact Rame Certrol Oaws Locanen (Code) Conrol Doty Conact
COoMPUTER OPERATING SYSTEM (actually weed! SUBMITTER PRIORITY
System 1?7 |™™ nses D cameact
| vermen 5.0 PSR Cose-Lovel 1319 G URGENT
Product Number E] SERIOUS
D MINOR
PROOUCT rapored on | #ull nermve 88 COSOL 5 vnger NOS 1)
e wome - TLOAD O wo
A
M D Yoo Lovet Yermon PSR Code Lovel 1 10
” t
: D no Prosuct Number o ok pres s
'14 :'."c-!um:u-nm "SD “OD :'ﬂ:.:':'m:m
WQUIAY TYPE SUPPORT MATERIALS
N 1 Errer (Susson Motensis Encimed) 3 cord Dok Oumo Tape C Other
3 2 Segpmnon ter (SIE) G teung O sugoested Fin (Carde
R [1 3 Request tor Sotrwere Modrication (RSM) {7 Oeta Tope 3 Typeout
€ SUGGESTED PROSLEM OESCRIPTION {Lumet of 70 Charscters inchatng Embedded Bisnks (132 charscters for J000L)! - BE CONCISE

.............

Attt b b

Aedhnidn b

range of $7F80 to $?FFF.
Suggested code:

ILoAD DCK/ I-H
DEL/ 1}
NAM ILOAD
DEL/ 47,749

XWD3 SAM NXWDHy
SUB =X#?7F30
SAM NXWDM
CLR A

—
" .
-f
3
b
b
3
b
3
b
b
b
3
b
3
b
b
b
3
3
S
3
3
b
P
3
b
b
b
b
b

-System initializer loader is not compatible with system loader in
treatment of Fortran Compiler generated relocatable address in the

DECK-I» 018 MSOS 5.0

RELOC. ADDR. GR. OR E@. ¢?FAD are ASSUMED TO
MEAN BACKWARD RELOCATION -- THE FORTRAN
COMPILER GENERATES SUCH RELOCATABLE ADDRESSES
ON INDEXED VARIABLES.
RELOCATION MAY BE OBTAINED BY MAKING THE VALUE
AT NXwS3+2 SMALLER

LARGER BACKWARD

THIS VALUE IS STRICTLY ARBITRARY

BIT 15 OF THESE VALUES MUST
BE SET TO CAUSE 1b BIT ADDR. ARITH.
TO GENERATE AN END AROUND CARRY.

70

AAISOY mEV 18/7Y

000013

mOQ-—m PURMCmE RO WEO--OCHIANET~ BMNT LKI-CORX~ Me<-

1-9

(V1-8)

EXAMPLE

@ CONTROL DATA ‘
CORPORATION SOFTWARE AVAILABILITY BULLETIN

Distribution List For

CDC CYBER 18/System 17/1700
Bulletin No. 56

July 14, 1977

PSR CORRECTIVE CODE
MSOS 5 AND MSOS 5 PRODUCT SET
(Level 110-118)
A, ABSTRACT
Corrective code for PSRs contained in summaries 110 through 118 is available for the follow-
ing products in the forms of COSY corrections for program changes and relocatable binary
object code for changed programs.
1. MSOS 5 (Product no. A325/A305-01)
2, FORTRAN 3A under MSOS 5 (Product no. A325/A305-02)
3., FORTRAN 3B under MSOS 5 (Product no, A325/A305-03)
4, File Manager 1 under MSOS 5 (Product no, A325/A305-04)
5, Peripheral Drivers 1A under MSOS 5 (Product no, A325/A305-08)
6. Peripheral Drivers 1B under MSOS 5 (Product no. A325/A305-09)
7. Peripheral Drivers 1C under MSOS 5 (Product no, A325/A305-10)
8., RPG II 1 under MSOS 5 (Product no, A325/A305-12)
B. PUBLICATIONS
There are no new manuals published for this release.
C. ORDERING INFORMATION
Licensed software products and their update materials are available only to customers who
have entered into a contractual agreement with Control Data for the use of the specific soft-

ware products,

1, New software products must be covered by a license agreement which lists each product
explicitly.

2, Update materials should be ordered by completing the Request for Software Product
Update Materials form attached to this bulletin, Information for completing this form
is contained in the following paragraphs and in the system summary table at the end
of this section, The completed form should be sent to the local sales representative.
a. Media desired is,normally either:

e M7-556 (7-track magnetic tape at 556 bpi)
K e M7-800 (7-track magnetic tape at 800 bpi)t
e M9-800 (9-track magnetic tape at 800 bpi)
e CD (punched cards)
b. SOFTWARE PRODUCT NUMBER may be selected from column 2 in the system

summary table and should correspond to the product number listed in the
licensing agreement with Control Data,

t Required for CDC CYBER 18-10M, 18-20, and 18-30 systems when 7-track media is desired.

1-10

(V1-9)

—.

O

O

Distribution List For

CDC CYBER 18/System 17/1700
Bulletin No. 56

Page 2

¢, DESCRIPTION is the product name shown in column 1 of the system summary table;

the modules listed under the product name should not be entered on the Update
Material Request form.

UPDATE/RELEASE LEVEL DESIRED is found in column 3 of the system summary
table under Nominal Release Level Identifier,

e, UPDATE/RELEASE LEVEL CURRENTLY AT SITE refers to the level of release
materials already being used or the latest level previously shipped to your site;
this information will enable Software Manufacturing and Distribution to determine
exactly what materials are needed to bring the software product up to the desired
code/release level,

For example, suppose a gite received a software sysiem on 9-track tapes at the
initial release level 110 and now wishes to have the latest available materials for
the MSOS system and Peripheral Drivers 1B, Based on information in the system
summary table, the Request for Software Product Update Materials form should show:
Update/Releage Level
Media Software Currently
Desired Product Number Description Desired at Site
M9 A325/A305-01 MSOS 5 118 110
M9 A325/A305-09 Peripheral Drivers 1B 118 110

f, ' System type refers to the mainframe (for example, 1700, System 17, CDC CYBER 18).

g. COSY corrections are not part of the standard operating system and must be specified,
if desired, for each product. If COSY corrections are desired, the customer must
have the latest COSY available, The level of the latest COSY can be determined by
referring to column 4 of the system summary table,

If COSY corrections are not specified, only the relocatable binary object code will be
sent,
MSOS 5,0 SYSTEM SUMMARY TABLE - (LEVEL 110-118)
Applicable Nominal Latest New COSY
Product Release COSY Features Re-
Numbert Level Available at Level | sequenced
Product Name A325 or A305 Identifier is at Level 118 at Level
MSOS 5 -01 118 110 No 110
FORTRAN 3A -02 118 102 No 102
FORTRAN 3B -03 118 102 No 102
File Manager 1 -04 118 110 No 110
Macro
Assembler 3 -06 110 110 No 110
Peripheral .
Drivers 1A -08 118 110 No 110
Peripheral
Drivers 1B -09 118 110 No 110
Peripheral
Drivers 1C -10 118 110 No 110
Magnetic Tape
Utility 2 -11 110 106 No 106
RPGII1 =12 118 108 No 108
Sort/Merge 1 -13 110 108 No 108
tA325 product numbers refer to the products offered with the optional Central Enhance-
ment and Maintenance Service (CEM Services).

1-11

(V1-10)

CDC CYBER 18/1700

PRODUCT SUPPORT HOTLINE - by J. Michael Birch

Inquiries and problems. concerning CYBER18 or 1700 products should be directed to the
La Jolla HOTLINE at extension 6328, LJLOPS or by TWX to HOTLINE, LJLOPS.

This service is primarily for the use of PSD field analysts requiring central support for
CYBER18 software. However, it may also be used for inquiries regarding status of CYBER18
PSR, status of orders placed with LJLOPS s/w manufacturing and hardware problems not
resolvable by normal local CE and Tech support channels. Questions regarding product plans
and development schedules will be routed to the LJILOPS Business Office. Schedule and
other business problems regarding established accounts should be referred directly to the
designated manager.

The HOTLINE is not for customer use. It is intended to provide a single controlled inter-
face for technical inquiries from CDC personnel outside the La Jolla Division. Direct calls
to development programmers and others disrupt normal activities and may result in con-
flicting answers or failure to follow up. Such persons have been asked to redirect their
calls to the HOTLINE. Also, the person supposedly an ‘expert’ on the subject may not be
available or the problem may require evaluation by more than one person. The basic
procedure is as follows:

HOTLINE PROCEDURE OUTLINE

1. Customer describes problem to PSD Field Analyst.

2. PSD Field Analyst investigates and clarifies problem.

3. PSD Field Analyst TWX's/calls HOTLINE ext 6328 LJLOPS.

4. HOTLINE Coordinator receives TWX/answers phone.

5. HOTLINE Coordinator records inquiry and assigns [.D. no.

6. HOTLINE Coordinator routes inquiry to support Analyst.

7. Support Analyst records problem details.

8. Support Analyst investigates problem and determines response.

9. HOTLINE Coordinator sends response by TWX.

10. HOTLINE Coordinator notes if follow-up required or closes inquiry.

To help the service function smoothly please use the following guidelines:

HOTLINE GUIDELINES

HOTLINE is for PSD Field Analysts et al, not customer.
Be specific and concise. TWX's are preferred to calls.

" Undated inquiries should be separately identified.
Identify the affected product properly (ITOS, RPGIi etc.)

Provide your name, facility code, customer site etc., to the Coordinator.

g L bdR

1-12 ' (V1-11)

O

CDC CYBER 18/1700 (Continued)

Q 6. Do not ask to speak to specific individuals.
7. ‘Inquiries not responded to within 48 hours will be acknowledged by the Coordinator.

8. Specify the previous inquiry no. if applicable.
We are presently relocating and improving the HOTLINE phone system as well as attempting
to improve our procedures and add staff. Your comments and suggestions are welcomed and,

together with any complaints re HOTLINE service, may be addressed to J. Michael Birch,
Manager, Product Support LILOPS or George R. Olson, Manager, Systems I&E LJLOPS.

O

1-13 (V1-12)

BACKGROUND INFORMATION

Manuals
File Manager Reference Manual ' 39520600
Cyber 18 Computer Systems 96767850
Installation Handbook (V4) 39520900

Literature Distribution Catalog

Other
PSR/PSR Summaries
Software Information Memo (SIM)

Programming Systems Information (PSI)
(For CDC personnel only)

NOTE: The January issue has an index of all articles published up to that time.
Feature Abstract Memorandum (FAM)

Software Availability Bulletin (SAB)

O

Data Sheets

Hot Line - Phone: 714/452-6328 (for CDC Analyst)
| TWIX: LJLOPS

Listing of your SYSDAT

Dump of your system (Memory & Disk Tables)

NOTE: The Software Availability Bulletin will tell you which version of the
manual goes with your version of the O.S.

Manuals may be ordered from Literature Distribution Services (LDS)
(612/292-2100)

C»

1-14

O

STUDY QUESTIONS-1

What is a PSR?

Where do you order DATA Sheets ?

Where would you look for an article a new release of the Operating System?

If you were asked to give a presentation on a new piece of hardware where would
you look for a summary of its characteristics that would be in a form suitable to

hand out to the listeners ?

If you are not using the latest version of a system, where do you look to find ouf
what version of the manuals apply to your system?

What are your objectives in taking this class?

Ql-1 Ql-1

)

@

—

N—.

LESSON GUIDE 2
CYBER 18 HARDWARE OVERVIEW

LESSON PREVIEW:

This lesson covers the hardware information necessary to understand the software,
The student should be familiar with most of this information, therefore it is included
as background information, and for your review, Test your knowledge by going over
the study questions.,

REFERENCES:

MSOS RM pp. 1-3 thru 1-7, Appendix L
CYBER 18 Computer System Summary, Chapters 1,5,6,7

TRAINING AIDS:

Visuals V2-1 through V2-3

PROJECTS:

Study questions - 2

OBJECTIVES:

1., Student should be able to describe under what conditions an interrupt is
responded to by the CPU and what exactly happens when one is responded to,.

2. The student should be able to describe the elements of a typical
configuration,

3. The student should be aware of how the INP/OUT instructions work.

4, Describe the type of information found in the FCR?

2-1

e
.\ -

@

O

O

A

EXAMPLE OF DATA SHEET

CONTROL DATA®
CYBER 18-10M COMPUTER SYSTEM

G2

CONTROL DATA
CORPORATION

FEATURES

General-purpose digital processor, using
micraprogrammed architecture

Accommodates 32K through 128K bytes
macro main memory

Main memory effective read/write cycle time

of 750 nanoseconds

e Powerful instruction repertoire
e Eight addressing modes for accessing main

memory

e Main memory word and region protection
e Main memory parity detection, optional error

correction

® Direct memory access
® [ntegral flexible disk drive for diagnostic load-

ing (Optional use as system peripheral.)

2-2

Automatic program load (deadstart) facility
for loader type peripherals

Integral real-time clock

Modular design, CPU and controllers on 11"
x 14" PC boards for ease of handling

High reliability and ease of maintenance
through state-of-the-art technology and ad-
vanced diagnostic capability

RS232-C compatible 1/O interface for con-
sole display or TTY

Priority-oriented interrupt system with sixteen
levels of interrupts

Optional breakpoint controller
Wide range of peripherals supported

Cabinet, operator's panel, power distribu-
tion, and power supplies included

DESCRIPTION

The CDC® CYBER 18-10M is a general-purpose, 16-bit proc-
essor. Execution of macro programs stored in MOS main
memory is controlled by micro-level programs stored in micro
memory. ROM micro memory is provided for execution of the
basic CDC 1700 instruction set and the additional enhanced
instructions, including character and field manipulation, index-
ing, micro memory referencing, autodata transfer, and main
memory paging control. Arithmetic is one’s complement,
signed, fixed-point hardware and/subtract/multiply/divide.

Addressing Modes
The following eight addressing modes are provided for
maximum flexibility:

e Absolute e Constant

o Indirect e Storage

& Relative e Storage Indirect
o Relative Indirect e Field

Instruction Repertoire
CYBER 18-10M incorporates the basic CDC 1700 instruction
set and additional enhanced instructions not previously avail-
able. This repertoire includes one, two and three word (two 8
bit bytes per word) instructions and is flexible for increased
programming efficiency. Instruction groups include the follow-
ing:

Transfer

Logical

Stop

Shift

Interrupt

Generate Parity

Character/Field Manipulation
- Execute Micro Code Sequence

Arithmetic

Jump

Decision

Input/Output

Memory Paging Control
Some instructions are immediate (literal), resulting in a saving
of operand storage and execution time. Multiword instructions,

such as indirect addressing, are a means of addressing loca-
tions which cannot be accessed directly.

Registers

The 18-10M provides 15 registers, including four general-
purpose registers to support the enhanced instruction set, and
four special-purpose registers used exclusively for machine
control.

Register Functions

A (16 bit) — Principal arithmetic register; data register
during //O operations
Q (16 bit) — Auxiliary arithmetic register; peripheral ad-
dress register during 1/O operations
P (150r16— Program address register
bits)

X (16 bits)— Storage data register

Y (16 bits)— Address register; hold temporary results
during address computation

M (16 bits)— Interrupt mask register

B (16 bits) — Breakpoint address register

1 (16 bits) — Indexing, accumulation, and loop control
register

1,2,3,4,— Indexing, accumulation, and loop control

(16 bits) registers

LB,UB— Lower and upper bound registers for unpro-

(16 bits) tected area

MFP — Memory page file

(64 x 9 bits)

Program Protection

CDC CYBER 18-10M offers two modes of protection from
damage which may be caused by programs accessing mem-
ory outside their own region. Traditional word level protection
of the 1700 Series allows individual words to be declared
protected by setting a bitin memory associated with that word.

* Asecond means of protection uses upper and lower bounds to

2-3

define an unprotected region. This has the same effect as
word protection, except that a large unprotected area can be
defined more quickly.

Main Memory System

CDC CYBER 18-10M features high-speed dynamic MOS LSI
storage elements. Each word in memory consists of two data
bytes, one protect, and one parity bit. Memory is organized as
a single bank with two ports — CPU and DMA.

Storage capacity is expandable from 32K to 128K bytes by the
simple insertion of individual PC boards. CDC CYBER 18-10M
includes no main memory; however, up to two card slots are
provided to accept any mixture of 32K and 64K byte MOS
memory array boards (Options 1882-16 and 1882-32). The
effective memory cycle time at either portis 750 nanoseconds;
however, the memory processes simultaneous requests from
both ports with an average effective cycle time of 600
nanoseconds.

Interrupt System

CDC CYBER 18-10M firmware emulates 16 levels of vectored
interrupt. This system consists of 15 levels of external interrupt
and one internal interrupt.

Certain conditions such as an illegal instruction, a memory
parity error, or a power failure generate an internal interrupt.
External interrupts occur when a computer peripheral device
has finished an I/O operation or requires attention. The inter-
rupt system will handle up to 16 interrupts in a flexible and
efficient manner.

Real-Time Clock

The real-time clock is an integral part of the CDC CYBER
18-10M, and provides a macro-level interrupt at a program-
mable interval. The real-time clock appears as a COC CYBER
18 peripheral to the macro program.

Input/Output Capability

CDC CYBER 18-10M contains nine card slots for peripheral
controllers. Three levels of interface are provided for the pe-
ripherals: Direct Memory Access (DMA), Auto Data Transfer
(ADT), and AQ.

e
N

O

The DMA channel pemmits direct transfer of data between the
peripherals and main memory. The DMA channel supports
four devices and permits data transfer rates up to 2,800,000
bytes per second.

ADT provides pseudo DMA transfers of data blocks between
main memory and those peripherals designed to accommo-
date ADT.

At the macro level each transfer appears as DMA; however,
each transfer is controlled at the micro level by the emulator in
micro memory. Data transfer rates up to 160,000 bytes per
second are possible. Three ADT devices are supported.

The AQ channel provides data transfers between CPU regis-
ters and peripherals. The transfers are macro-program con-
trolled. CDC CYBER 18-10M supports a maximum of four AQ
devices. AQ data transfer rates are software dependent.

One additional I/O interface is included for the operator con-
sole device. This interface is both KSR 33/35 TTY compatible
and RS232-C compaﬁble.

Program Deadstart

Loading programs into main memory is provided by this fea-
ture. Data is input bit-serially from the deadstart program
loading device.

Operator’s Panel
An operator’s panel is also included, and is used to initiate
operation of the processor and deadstart device.

PACKAGING

CDC CYBER 18-10M includes a low-profile, free-standing
cabinet with integral table top. The processor chassis, with
peripheral controllers, power supply module, and power distri-
bution are contained within the cabinet. Individual CPU and
peripheral controller PC cards are 11 x 14 inches.

CONFIGURATION

Basic configuration includes a cabinet with operator’s panel, a
basic processor, a flexible disk drive and controller, an 1/O
controller to support the operator console, and power supply
(no main memory is included).

Minimum system configuration consists of 32K bytes main
memory, a load device such as a card reader, and a comment
device such as a conversational display terminal.

SOFTWARE

Supporting software includes Mass Storage Operating Sys-
tem (MSOS), Real-Time Operating System (RTOS), and In-
teractive Terminal Operating System (ITOS). Both MSOS and
RTOS are real-time, multiprogramming operating systems,
with 16 program priority levels.

RTOS

. . . resides within the CPU memory and has no mass storage
requirements. It includes a monitor (subset of MSOS) which
occupies less than 1500 words of main memory, exclusive of
drivers and optional features.

MSOS

... supports applications requiring dedicated system utiliza-
tion, batch processing, and program checkout features in a
real-time environment. Its modular design provides flexibility
in system updating or modification.

ITOS

. . . provides an environment in which a terminal user operates
with an on-line data base, using interactive application pro-
grams. ITOS Release 1 operates in conjunction with MSOS
5.0.

MAINTENANCE FEATURES

Self-test and echo mode tests are included for troubleshooting
the basic processor and optional controllers.

The system is also supported by the Operational Diagnostic
System (ODS). This maintenance system includes diagnostic
software with fault isolation capability, Diagnostic Decision
Logic Tables (DDLT’s) and detailed repair procedures. These
tools produce a highly effective and efficient maintenance
system.

OPTIONS AND PERIPHERALS

e Processor Options

1875-1 Breakpoint Controller
1875-2 Breakpoint Pane!
1882-16 MOS Memory Expansion, 32K bytes
1882-32 MOS Memory Expansion, 64K bytes
1874-1 Memory Error Correction (ECC)
e Cable Options

1827-950 Line Printer, 50 ft. (15.24 m)

1829-915 Card Reader, 15 ft. (4.57 m)

1843-950 Modem Cable, 50 ft. (15.24 m)

e Peripheral Controller Options

1828-1 Card Reader/Line Printer Controller

1828-2 Card Reader/Line Printer/
Communications/
Line Adapter Controller

1833-4 Cartridge Disk Controller

1843-1 Dual Channel Synchronous/
Asynchronous

. Communications Line Adapter

1843-2 Eight Channel Communications Line
Adapter

1862-1 Paper Tape Reader/Punch Controller

e Peripheral Options

1811-1 Conversational Display Terminal

1811-2 Operator Console

1827-7 Impact Printer, 70 Ipm, Matrix

1827-30/31 Line Printer, 300 Ipm

1827-60 Line Printer, 600 Ipm

1829-30 Card Reader, 300 cpm

1829-60 Card Reader, 600 cpm

1860-1,2,3,4 Tape subsystem, 7 and 9 tracks,
25 ips, 800 bpi NRZI (expandable to
4 tapes)

1860-5,6 Tape subsystem, 9 track, 50 ips,
800 bpi NRZI and 1600 bpi Phase Encode
(expandable to 4 tapes)
1865-2 Flexible Disk Drive (second unit)
1866-12 Cartridge Disk Drive, 4.4 million words
1866-14 Cartridge Disk Drive, 8.8 million words
1888-1 Power Transformer, 220 VAC/120 VAC

2-4

SPECIFICATIONS

Type: General-purpose 16-bit processor
Organization: Register/file oriented

Hardware Accumulators: 7

Index Registers: 7

Addressing Modes: 8

Arithmetic: One's complement

Priority Interrupt Levels: 16 macro

Macro Memory Type: Dynamic MOS LSI RAM
Macro Memory Size: 32K to 128K bytes

Macro Memory Cycle Time: 750 nsec effective (2 bytes
I/O Ports: 8 (4 DMA, 4 AQ)

Direct Memory Access: Four devices; up to 2,800,000 bytes
per second

Auto Data Transfer: Four devices; up to 160,000 bytes per
‘ second

AQ Data Transfer: Four devices

Real-Time Clock: Programmable macro interrupt

Physical

Height: 29 in. (73.66 cm)
Width: 61 in. (154.94 cm)
Depth: 31in. (78.74 cm)
Weight: 475 Ibs. (215.460 Kg)

Power

Source: 104 to 127VAC, 1 phase, 3 wire
49.010 60.6 HZ (198 to 235VAC, 1 phase,
w/Option 1888-1)

Consumption: 2.4KVA

Environmental

Operating Temperature: 50°F to 95°F (10°C to 35°C)
Humidity: 20% to 80% R.H. (noncondensing)

Heat Dissipation: 2064 KCAL/HR (4508 BTU/HR)
Altitude: —1000 to 8000 feet

e N\

Specifications subject to change without notice

DATA SYSTEMS MARKETING
Box 0

Minneapolis, Minnesota 55440

201,333 LITHOINUSA. 2777

2-5 -

CONTROL DATA®
CYBER 18-20 PROCESSOR

G2

CONTROL DATA
CORPORATION

The CDC® CYBER 18-20 is a general purpose micropro-
grammable, 16-bit processor. Execution of macro pro-
grams stored in MOS main memory is controlled by
micro-level programs stored in micro memory. ROM
micro memory is provided for execution of the basic
CDC 1700 instruction set and the additional enhanced
instructions, including character and field manipulation,
indexing, micro memory referencing, autodata transfer,
and main memory paging control. Read/write micro mem-
ory is available for user microprogramming requirements.
Arithmetic is one’s complement, signed, fixed-point hard-
ware add/subtract/multiply/divide.

FEATURES

e General purpose digital processor, using microprogram-
mabile architecture

e Accommodates 32K through 262K bytes macro main
memory

e Main memory effective read/write cycle time of 750
nanoseconds

Micro instruction cycle time of 168 nanoseconds
Powerful instruction repertoire

Eight addressing modes for accessing main memory
Main memory word and region protection

Main memory parity detection with optional automatic
single-error correction and double-error detection

¢ Direct memory access

¢ High-speed 1/0 data transfer for integral peripheral
controllers

e Automatic program load (deadstart) facility for loader
type peripherals

¢ Integral real-time clock

¢ Modular design, CPU and controllers on 11" x 14" PC
boards for ease of handling

* High reliability and easy maintainability through state-
of-the-art technology and advanced diagnostic
capability

¢ 1/0 communications interface for teletypewriter or RS
232-C compatible display terminal

e Priority oriented interrupt system with sixteen levels
each of micro and macro interrupts

e Optional breakpoint controller
e Basic processor supports wide range of peripherals

s Cabinet, operator’s panel, power distribution, and
power supplies included

e Optional read/write micro memory

CONFIGURATION .

The basic configuration includes a cabinet with operator’'s
panel, a basic processor, an I/0 controller to support the
communications console, and power supply (no main
memory is included).

It operates in a minimum system configuration of the
CYBER 18-20 processor, 32K bytes main memory, a load

device such as a card reader, and a comment device such
.as a conversational display terminal.

SOFTWARE

Supporting software includes Mass Storage (MSOS) and
Real Time (RTOS) Operating Systems. Both MSOS and
RTOS are real-time multiprogramming operating systems
with 16 program priority levels.

Hardware interrupts are used to maximize input/output
efficiency. All 1/0 requests are processed on a software
priority basis. A program protect system is used to main-
tain system integrity. -

RTOS resides within the CPU memorv and has no mass
storage requirements. Includes a monitor (subset of
. MSOS) which occupies less than 1500 words of main
memory, exclusive of drivers and optional features.

MSOS supports applications requiring dedicated system
utilization, batch processing, and program checkout
features in a real-time environment. Its modular design
provides flexibility in system updating or modification.

PACKAGING

CYBER 18-20 includes a low-profile, free-standing cabinet
with integral table top. The processor chassis with pe-
ripheral controllers, power supply module, and power
distribution are contained within the cabinet. Individual
CPU and peripheral controller PC cards are 11 x 14 inches.

MAINTENANCE FEATURES

Self-test and echo mode tests are included for trouble-
shooting the basic processor and optional controllers.
The system is also supported by controlware diagnostics
included in the Operational Diagnostic System (ODS).

Tests are performed while using Diagnostic Decision
Logic Tables (DDLT’s) and special maintenance pro-
cedures that isolate and correct the fault. These features
provide maximum efficiency in system maintenance.

OPTIONS AND PERIPHERALS
e Processor Options

1870-1 512 Instruction Micromemory -
1870-2 2048 Instruction Micromemory

1874-1 ECC MOS Array, 196K bytes

1875-1 Breakpoint Controller

1875-2 Breakpoint Panel

1882-16 MOS Memory Expansion, 32K bytes
1882-32 MOS Memory Expansion, 65K bytes

* Cable Options
1827-950 Line Printer, 15.24m (50 ft.)
1829-915 Card Reader, 4.57m (15 ft.)
1833-950 Storage Module Driver, 15.24m (50 ft.)
1843-950 Modem Cable, 15.24m (50 ft.)
1843-901 Terminal Adapter

e Peripheral Controller Options

1828-1 Card Reader/Line Printer Controller
1832-4 NRZI Magnetic Tape Controller

1833-1 Storage Module Drive Interface

1833-2 Storage Module Drive Interface (dual CPU)
1833-3 Control Unit for storage module

1833-5 Flexible Disk Drive Controller

1843-1 Dual Channel Synchronous/Asynchronous

Communications Line Adapter

e Peripheral Options

1811-1 Conversational Display Terminal

1827-30/31 Line Printer, 300 LPM

1829-30 Card Reader, 300 CPM

1829-60 Card Reader, 600 CPM

1860-72 Tape Transport, 7 track, 25 IPS (up to 4
drives per controller)

1860-92 Tape Transport, 9 track, 25 IPS (up to 4
drives per controller)

1860-200 Tape Drive Installation Kit (upper)

1860-201 Tape Drive Installation Kit (lower)

1865-1 Flexible Disk Drive (unit 0)

1865-2 Flexible Disk Drive (unit 1)

1867-10/11 Storage Module Drive (25 M byte)

1867-20/21 Storage Module Drive (50 M byte)

1887-4 Cabinet

1888-1 Power Transformer, 220 VAC/120 VAC

1888-2 Power Transformer, 120 VAC/220 VAC

1890-1 200 UT Emulation

1890-2 2780 Emulation

1890-3 3780 Emulation

65119-1 Line Printer, 600 LPM

ADDRESSING MODES—CYBER 18-20 provides the fol-
lowing eight addressing modes for maximum flexibility:

Absolute

Indirect

Relative

Relative Indirect

Constant

Storage

Storage Indirect

Field

MACRO INSTRUCTION REPERTOIRE

CYBER 18-20 incorporates the basic CDC 1700 instruc-
tion set and additional enhanced instructions not pre-
viously available. This repertoire includes one, two, and
three word instructions and is flexible for increased pro-
gramming efficiency. Instruction groups include the
following:

Transfer

Logical

Stop

Shift

Interrupt

Generate Parity

Character/Field Manipulation

Execute Micro Code Sequence

Arithmetic

Jump

Decision

Input/Output

Memory Paging Control

Some instructions are immediate (literal), resulting in a
saving of operand storage space and execution time.
Multi-word instructions, such as indirect addressing, are a
means of addressing locations which cannot be accessed
directly.

287"

(i

-

'~

REGISTERS

The CYBER 18-20 processor provides fifteen registers.
The seven traditional registers are used in execution of
the normal CDC 1700 instruction set; four general-purpose
registers have been added to support the enhanced in-
struction set. Four special-purpose registers are used
exclusively for machine control.

REGISTER FUNCTION

A (16 bit) Principal arithmetic register; data register
during /0 operations

Q (16 bit) Auxiliary arithmetic register; peripheral ad-
dress register during I/0 operations

P (150r Program Address Register

16 bits)

X (16 bit) Storage data register

Y (16 bit) Address register; holds temporary resuits
during address computation

M (16 bit) Interrupt mask register

B (16 bit) Breakpoint address register

I (16 bit) Indexing, accumulation, and loop control "

register
B (16 bit) Breakpoint address register

1,2,3,4, Indexing, accumulation, and loop control
(16 bit) registers

LB, UB Lower and Upper bound registers for unpro-
(16 bit) tected area

MPF Memory page file

(64 x 9 bits)

PROGRAM PROTECTION

CYBER 18-20 offers two modes of protection from damage
which may be caused by programs accessing memory
outside their own region. Traditional word level protection
of the 1700 Series allows individual words to be declared
protected by setting a bit in memory associated with that
word. A second means of protection uses upper and lower
bounds to define an unprotected region. This has the
same effect as word protection, except that a large un-
protected area can be defined more quickly.

INTERRUPT SYSTEM

CYBER 18-20 firmware emulates the 16 levels of vectored
interrupt featured on the 1700 Series Computers. This
system consists of 15 levels of external interrupt and one
internal interrupt.

Certain conditions such as an incorrect instruction, a
memory parity error, or a power failure will generate an
internal interrupt. External interrupts occur when a com-
puter peripheral device has finished an 1/0 operation or
requires attention. The strength of the interrupt scheme
is the ability to handle a significant number of interrupts
in a flexible and efficient manner.

2-8

MAIN MEMORY SYSTEM

CYBER 18-20 features high-speed dynamic MOS LS
storage elements. Each word in memory consists of two
data bytes, one protect, and one parity bit. Memory: is
organized as a single bank with two ports—CPU and DMA.

Storage capacity is expandable from 32K to 262K bytes
by the simple insertion of individual PC boards. CYBER
18-20 includes no main memory; however, four card slots
are provided to accept any mixture of 32K and 65K byte
MOS memory array boards (Options 1882-16 and 1882-32).
The effective memory cycle time at either port is 750
nanoseconds; however, the memory processes simul-
taneous requests from both ports with an average effec-
tive cycle time of 600 nanoseconds.

Double-error detection and automatic single-error cor-
rection, for up to 196K bytes, is provided as Option 1874-1.

INPUT/QUTPUT CAPABILITY

CYBER 18-20 contains 10 card slots for peripheral con-
trollers. Three levels of interface are provided for the
peripherals: Direct Memory Access (DMA), Auto Data
Transfer (ADT), and AQ. :

The DMA channel permits direct transfer of data between
the peripherals and main memory, by-passing the CPU
entirely. The DMA channel supports four devices and
permits data transfer rates up to 1,400,000 words per
second.

ADT provides pseudo DMA transfers of data blocks be-
tween main memory and those peripherals designed to
accommodate ADT. At the macro level each transfer ap-
pears as DMA; however, each transfer is controlled at the
micro level by the 1700 emulator in micro memory. Data
transfer rates up to 80,000 words per second are pos-
sible. Ten ADT devices are supported.

The AQ channel provides data transfers between CPU
registers and peripherals. The transfers are macro-
program controlled. CYBER 18-20 supports a maximum
of nine AQ devices. AQ data transfer rates are software
dependent.

One additional 1/0 interface is included for the operator

input device. This interface is both ASR/KSR 33/35 TTY
compatible and RS232-C compatible.

PROGRAM DEADSTART

Loading programs into main memory and read/write
micro memory is provided by this feature. Data is input
bit-serially from the deadstart program loading device.

REAL-TIME CLOCK

The real-time clock is an integral part of the CYBER 18-20,
and provides a macro-level interrupt at a programmable
interval. The real-time clock appears as a CYBER 18 pe-
ripheral to the macro program.

OPERATOR'S PANEL

CYBER 18-20 includes an operator's panel to initiate
operation of the processor and deadstart device.

SPECIFICATIONS

Type: General-purpose, microprogrammable, 16-bit
processor

Organization: Register/file oriented

Hardware Accumulators: 7

Index Registers: 7

Addressing Modes: 8

Arithmetic: One's complement; two's complement avail-

able with RAM micromemory
Priority Interrupt Levels: 16 micro and 16 macro
Macro Memory Type: Dynamic MOS LSI RAM

Macro Memory Size: 32K to 262K bytes without ECC; 32K
to 196K bytes with ECC
Macro Memory Cycle Time: 750 nsec effective (2 bytes)
Micro Instruction Word Length: 32 bits
Micro Memory Type: TTL ROM,TTL RAM available
Micro Memory Size: 1024 instruction ROM; 512 to 4096
instruction RAM available
Micro Memory Cycle Time: 168 nsec with up to 4 parallel
operations
Direct Memory Access: Four devices; up to 1,400,000
words per second
Auto Data Transfer: Ten devices; up to 80,000 words per
second
AQ Data Transfer: Nine devices
Serial Data Transfer: TTY and RS232-C compatible
Real-Time Clock: Programmable macro interrupt
Physical —
Height: 73.66 cm (29 inches)
Width: 164.94 cm (61 inches)
Depth: 78.74 cm (31 inches)
Weight: 215.460 kg (475 pounds)
Power—
Source: 104 to 127 VAC, 1 phase, 3 wire
49.0 to 60.6 HZ (198 to 235 VAC, 1 phase, w/
Option 1888-1)
Consumption: 2.4 KVA
Environmental —
Operating Temperature: 10°C to 35°C (50°F to 95°F)
Operating Humidity: 20% to 80% RH (non-condensing)
Heat Dissipation: 2064 KCAL/HR (4508 BTU/HR)

Specitfications subject to change without notice.

CONTROL DATA SALES OFFICES ARE LOCATED IN
PRINCIPAL CITIES THROUGHOUT THE WORLD
DATA SYSTEMS MARKETING
BOX 0, MINNEAPOLIS, MINNESOTA 55440
TELEPHONE: (612) 853-5195 TWX: 910-576-2978

201,323 Litho in U.S.A. 7/76 2 _.9

O

CONTROL DATA® CYBER 18

CARTRIDGE DISK SUBSYSTEM (1833-4 CONTROLLER

AND 1866-12/1866-14 DRIVE)

G2

CONTROL DATA
CORPORATION

iy |
i

I
Hllllll!mIH‘i!illllm“gm%ﬂ

iy
nmml{;‘
i

IMPORTANT FEATURES
® Compact modular design
® Up to four drives per CPU I/O port
e Up to 18 million words, on-line
® One fixed and one removable cartridge

GENERAL DESCRIPTION

The CDC® CYBER 18 1833-4, 1866-12/14 Cartridge Disk Sub-
system provides both data and programming mass storage for
the central computer system. It consists of a CDC 1833-4
Cartridge Disk Controller and 1866-12 and/or 1866-14 Car-
tridge Disk Drives. These drives can be intermixed in any
combination with up to four drives per controller. Using four
1866-14 double-density drives provides on-line storage of 35
million bytes. One removable cartridge per drive permits un-
limited off-line storage.

The drives (1866-12 and 1866-14) can store 4.4 million bytes
and 8.8 million bytes respectively. Each drive employs one
fixed disk plus one interchangeable cartridge. Information is
stored on two oxide-coated surfaces of each disk. Movable
head positioning is performed by a closed-loop, proportional
servo system which controls a voice-coil linear actuator. The
average track-move time is 35 milliseconds.

The 1833-4 Controller consists of a single module which
mounts inside of the CPU chassis. The controller interfaces to
one direct memory access port and can control a maximum of
four disk drives connected-in daisy-chain fashion.

e Up to 2.2 million words. per cartridge
® Seek overlap for fast data access

® CPU autoload capability

® Self-test features

® Powerful diagnostics

OPERATION

This cartridge disk subsystem permits read, write, and data-
compare functions to be performed on large amounts of file
data. In addition, a special auto-load function permits
deadstart loading of disk data from any drive into the CPU
main memory. The subsystem accepts multiple seek com-
mands from software and overlaps the seeking operations
among drives. Once selected, the data transfer between the
disk and CPU memory takes place via a high-speed, direct
memory access data path. Data transfer rate is 312,000 8-bit
bytes per second, Checkword generation and checking is
automatic and provides confidence in data accuracy.

Controls and Indicators—

Operator controls are minimal and conveniently located on the
front of the drive unit. Removal and installation of the inter-
changeable disk cartridge is easily accomplished from the top
of the unit.

PACKAGING

The controller mounts inside the CDC CYBER 18 CPU chassis
and requires no external power source. A cable connects from

2-10

the CPU to the first drive unit, with daisy-chain connection
between additional drives. Drive units are compact and mount
on a pedestal base. Each drive unit contains its own power
supply and cooling facilities. Construction is modular and sub-
assemblies are easily accessible for convenient maintenance
and adjustments.

CONFIGURATION

The subsystem includes a 1833-4 Controller, a 20-foot cable
between the controller and first drive, and 10-foot cables be-
tween adjacent drives. Each drive connects individually to an
AC power source. This subsystem operates in a minimum
system configuration of a CDC CYBER 18 processor with
operator's panel, 32K bytes of main memory, and a comment
device such as a display terminal.

SOFTWARE

Supporting software includes the Mass Storage (MSOS)
Real-Time (RTOS) and Interactive Terminal (ITOS) Operating
Systems. Both MSOS and RTOS are real-time, multi-
programming operating systems with 16 program priority
levels. :

Hardware interrupts are used to maximize input/output effi-
ciency. All 1/O requests are processed on a software priority
basis. And a program-protect system is used to maintain sys-
tem integrity.

RTOS resides within the CPU memory, has no mass storage
requirements, and includes a monitor (subset of MSOS) which
occupies less than 1500 words of main memory exclusive of
drivers and optional features.

MSOS supports applications requiring dedicated system utili-
zation, batch processing, and program checkout features in a
real-time environment. Its modular design provides flexibility
in system updating or modification.

ITOS provides an environment in which a terminal user oper-
ates with an on-line data base, using interactive application
programs. ITOS Release 1 operates in conjunction with MSOS
5.0.

MAINTENANCE

The 1833-4/1866 Cartridge Disk Subsystem is supported by a
number of maintenance features. Four self-test modes of the
controller, initiated by powerful diagnostic software, permit
rapid fault detection and isolation. In addition to diagnostic
software, Diagnostic Decision Logic Tables (DDLT's) and de-
tailed maintenance procedures make up the total CDC
CYBER 18 Operational Diagnostic System (ODS). These fea-
tures provide maximum efficiency in maintaining the system.

DATA SYSTEMS MARKETING (‘\

201,496 LITHOINUS.A 3/77

O

SPECIFICATIONS

Performance—
Recording Density: 220 bpi
Sector Size: 192 18-bit bytes
Sectors Per Track: 29

Tracks Per Surface: 200 plus 4 spares (1866-12)
400 plus 8 spares (1866-14)

Surfaces Per Disk: 2 _

Head Positioning Time: 7 milliseconds (one-track move)
70 milliseconds (maximum move)
35 milliseconds (average)

Rotational Speed: 2400 rpm

Average Latency: 12.5 milliseconds

Transfer Rate: 312,000 bytes per second

‘Disk Cartridge—

Diameter: 14 inches (35 cm)
Coating: Magnetic oxide
Configuration: One fixed/one removable

Operator Controls—

Switches/Indicators: Start/Stop
Fault
Spindle Stop

Physical— (p
Height: 34 inches (86 cm) '
Width: 18.5 inches (46 cm)

Depth: 29.75 inches (74 cm)

Weight: 275 pounds (125 kg)

Power Requirements—

Per Drive: 120 volts, 7 amps, 60 Hz, single phase 198-275
volts, 3.5 amps nominal, 50 Hz, single phase

Environmental—

Operating Temperature: 60°F to 90°F (116°C to 32°C)
Operating Humidity: 10 to 80% R.H., noncondensing

Specifications subject to change without notice.

Box 0
Minneapolis, Minnesota 55440

2-11

¢l-¢

(T-2n)

DISK DRIVES
MAX. = 8, MIN. = 1

B

DISK PACKS
ON LINE
OFF LINE

VOLUME (VL)

FLEXIBLE DISKS
(FLOPPIES)

NOT AVAILABLE
EXCEPT AT
MASTER T

|

CARD READER

CARD PUNCH

MIN. 0
(IF MT PRESENT)

“SPOOLING” TO PRINTER

LINE PRINTER
MIN. = 1

OPTIONAL

CYBER 18
CONFIGURATION MASTER
MIN. 1
OP. CONSOLE MAX. 17
CYBER 18
MEMORY:) cr
MIN. 64K BYTES
MAX. 256K BYTES — P
TERMINALS
: MAGNETIC TAPE
|
|
| MIN. = 0 MAX. 4
(IF CARD READER
' PRESENT)

O

WORK
STATION

O

CYBER 18 FEATURES
(MACRO)

16 BIT OPERAND IN MEMORY

(2 BITS, 1 FOR PARITY,

1 FOR PROGRAM PROTECT)

MEMORY SIZE: 64K TO 262K BYTES

7 PROGRAMMABLE REGISTERS
(A,Q,M,R1,R2,R3,R4)

ONE’'S COMPLEMENT ARITHMETIC

INTEGER ADD, SUBTRACT, MULTIPLY
AND DIVIDE

16 INTERRUPTS

CYCLE TIME OF 750 NSEC./WORD

2-13

CYBER 18 MEMORY WORD
177 16 15 0
A
L PARITY BIT, ODD PARITY
— PROGRAM PROTECT

TYPES OF DATA STORED IN MEMORY

* INSTRUCTIONS
1,2,3 WORDS USED FOR AN INSTRUCTION
MUST BE IN MEMORY TO BE ABLE TO BE EXECUTED

* NUMBERS

* INTEGERS

15 0

L SIGN BIT

0 = POSITIVE NUMBER
1 = NEGATIVE NUMBER

* FLOATING POINT
FP ARE MANIPULATED BY SOFTWARE SUBROUTINES

* CHARACTERS (IN ASCIl)

CH. 0 CH. 1

15 0

2-14

(V2-2)

C

0049 POO2F
P0030
P0O031
P0032
P0033
POO34
P0035
P0036
P0037
P0038
P0039
POO3A
P0O03B
P0030
P0O0O3D
POO3E
POO3F
PO0O4O

B142
434y
4546
4748
HOUA
4B4C
4pLE
4F50
5152
5354
5556
5758
595A
3132
3334
3536
3738
3920

INSTRUCTION EXAMPLE

0035

0035 P0013 0481
0035 P0O1l4 COF6
0036

0036 P001l5 048A
0036 P001l6 COF4
0037

0037 P0O01l7 o04D3
0037 P0018 COF9
0038

0038 P0019 045cC
0038 PO0O1A €000
0038 P0O01B 000B P
0039 :
0039 POOlC 04Ab6
0039 P001D €000
0039 POOlE FFEC
0040

0040 POO1F O0U4F5
0040 P0O020 COOO
0040 P0021 FFFO
0041

0041 POO22 O046F
0041 P0O023 €000
0041 POO24 8012 P

LR1%® BUFF1
LR2% BUFF1, 1
LR3* (ABUF1),?2
LR4+ BUFF1, 3
"LRA BUFF1, 4
LRQ (ABUF1), A
LRI+ (ABUF1),Q

CHARACTER REPRESENTATION

CHAR ALF

X ABCDEFGHIJKLMNOPQRSTUVWXYZ
123456789%

2-15 (V2-3)

INPUT/OUTPUT INSTRUCTIONS

INP
DATA —» A
- OR
STATUS—» A
ouT
DATA A —»
OR

FUNCTION A —»

Q CONTAINS THE PERIPHERAL

DEVICE'S ADDRESS

—
S

-
D

2-16

@

O

RETURN FROM INP OR OUT

INP TAG — *
- «+—— NORMAL RETURN

Q TAG - «——— INTERNAL REJECT
' - «— EXTERNAL REJECT

INP MACHINE INSTRUCTION

A

[}

02 :
1

O

2-17

DISK ADDRESSING

SECTOR
(96 WORDS)

TRACK
(200/SURFACE)*

CYLINDER
(200/SURFACE)*

*FOR THE 1866-12

2-18

—_—

@

PANEL MODE OPERATION (CYBER 18 ONLY)

ESC

O ® - TR r <

BLUE KEY
FUNCTION CONTROL (CHANGE VALUE OF DIGIT)
DISPLAY 0
DISPLAY 1
HALT PROCESSOR
START PROCESSOR
RETURN TO CONSOLE MODE
RUN, DO NOT RETURN TO CONSOLE MODE

FORMAT OF J ENTRY

J

DIGIT

xx_ G EG. J O 2 G
NEW VALUE ‘ SET DIGIT 0 TO 2
OF DIGIT I.LE. SELECT | TO

DISPLAY OR CHANGE

FORMAT OF L & K ENTRY

LG DISPLAY SELECTED REGISTER OR
KG } MEMORY LOCATION (= P)
LhhhhG ENTER “hhhh"” VALUE TO SELECTED
KhhhhG REGISTER OR MEMORY |

NOTE: IF MORE THAN 4 h'S ENTERED,
THE LAST 4 WILL BE TAKEN; IF
LESS THAN 4, THE ONES TYPED
WILL BE HIGH ORDER BITS

2-19

/"\
\

PANEL MODE
FUNCTION CONTROL REGISTER (FCR)

COMMENTS DEVICE HAS 2 MODES
1. CONSOLE MODE
2. PANEL MODE | :

ESC GO TO PANEL MODE

@ OR G GO TO CONSOLE MODE

PURPOSE OF PANEL MODE IS TO GIVE THE OPERATOR A METHOD

OF LOOKING AT OR MANIPULATING THE FCR. THE OPERATOR MAY

THEN DETERMINE STATUS OF THE CONTROL PROCESSOR, SELECT

PROCESSOR FUNCTIONS AND LOOK AT OR CHANGE MEMORY/REGISTERS.

MAY BE USED FOR SYSTEM DEBUGGING.

STATUS

HAS OVERFLOW OCCURRED? (= SNO, SPE INSTRUCTIONS) : C
IS A PROTECTED INSTRUCTION BEING EXECUTED?

HAS THE PROTECT FAULT SWITCH BEEN SET?
(< SNF, SPF INSTRUCTIONS)

HAS THE PARITY ERROR SWITCH BEEN SET?
(< SPE, SNP INSTRUCTIONS)

IS THE INTERRUPT SYSTEM ACTIVE?
IS THE AUTO-START ENABLED?

IS MICRO RUNNING?

IS MACRO RUNNING?

2-20

S

FUNCTIONS

SELECT STEP MODE

SET PROTECT SWITCH

SELECT MULTI-LEVEL INDIRECT ADDRESSING
SELECTIVE STOP (< TO SLS INSTRUCTION)
SELECTIVE SKIP (= SWS, SWN INSTRUCTIONS)
BREAKPOINT (IF BREAKPOINT BOARD IS PRESENT)

DISPLAY/CHANGE

MEMORY
A

NOTE: CANNOT ACCESS R1-R4

T X =20

2-21

@

C

N\

STUDY QUESTIONS - 2

What type of thing causes an interrupt?
Under what conditions does the CPU respond to an interrupt?

What does it mean to take status on a device? What type of information is
received?

What happens'when a parity error is detected?

How long will the CPU execute after a power failure?
How is a sector addressed on a disk?

What is the A/O Channel?

What conditions cause a Protect Violation?

Where would I find the meaning of the STATUS bits for a particular device?

Q2-1

@,

O

O

LESSON GUIDE 3
SOFTWARE OVERVIEW

LESSON PREVIEW:

This lesson will discuss the priority scheme and system methods used to implement the
system; i.e. interrupts, MASKT, PRLVL, interrupt stack, scheduler's queue. Terms and
concepts basic to the understanding and discussion of the subjects to be covered in later
lessons will be reviewed. The details of the libraries, software organization, and core and
mass memory will also be discussed.

REFERENCES:

Glossary
Listing of SYSDAT and INSTALL
OBJECTIVES:
At the completion of this lesson, the student will be able to:
1. Understand the significance of the priority scheme.
2. Discuss the details of maintaining the priority scheme.
3. Explain the purpose of the interrupt stack and scheduler's queue.
4. Discuss the system terms that are necessary to understand the operating system.
5. Describe the flow from a user program to the operating system and back to the user.

6. Obtain information from a dump of core or disk.

p .

COMPILE, LOAD, EXECUTE PROCESS

RELOCATABLE BINARIES
(OBJECT CODE)

f

f

SOURCE
DECK

COMPILE

" LISTING

LOAD

e IN CORE
e ON DISK
.. 8 ON TAPE.
ETC.

ABSOLUTIZED
BINARIES

EXECUTE

"

e-¢

IDLE(PR=-1)

(O
e
. 4
AT
\{jf Jq‘f'c:% N)%? ' - o
4 S, A PRIORITY SCHEME
N ?C/
-r
&
\;ﬁ
2
>
P
C(PR=10)
JMP—(DISP)
B(PR=6) B
| SCHDLE D5
| JMP — (DISP)
l ID(PR=5)
|
|
| JMP — (DISP)
A(PR=4) | A
| | I
| I I
! [
| | |
|
| ' :
[
I | |

E

[re—11
SCHDLE F,7

JMP — (DISP)
F(PR=7)

JMP — (DISP)

A

JMP — (DISP)

b\\,;:-\'7

‘\
o & O
(&) W
S

-t

PRIORITY STRUCTURE
* {6 PRIORITY LEVELS

‘e PRIORITY LEVEL CHANGED IN 'M' REGISTER AND PRLVL

'UNCOMPLETED' 'SCHEDULED'
PROGRAMS NEW PROGRAMS
INTERRUPT STACK SCHEDULER QUEUE
— 9| Sworls |
s oaleeg 1000
1008 8
4 4
| {008
— 1004 {0
- ‘ . . _
FFFF
{000 6

372.7

O 0 | O

oraLe

sl
14
et
RGP N 2t
veum
QT&)&&MA@:WJ bt
Ot
bnd g [6 I8 100 S L LN I A I I
Yopswers =y bg L V[0 V(e [[olafo [T[T T]?
L
9
G
L4
€
S_Kﬁ/ 2
NGIQ b
0
}=

€ v 6 9 L 8 6 O It 2t € v Gt

T T et el ol el o
2
| - 379V1 MSYW

g«:J \:\: ;
,A | «»d o ™Y S_wj%.,% 333?,9)

O e R Te

3-5

BASIC INTERRUPT STACK
CYBER 18 HAS TWO!

(AN EXTENDED STACK)

UP TO 15 STACK POSITIONS

COUNT ($B8)* =
NEXT
AVAILABLE

POSITION {n m\c,v‘m()\- Sxac}((

PRLVL ($EF)* =
CURRENT
PRIORITY

(OVERFLOW BT

* SYSDAT

4 [9 [PRIORITY LEVEL
\"d 3 P Y'Q_b&
o\E \0° 2 N
\
1 A)}
0 0 "
WORD

nexd

EXTENDED

INTERRUPT STACK BEREEES

FOR REGISTERS R1-R4 —
A
g
o EXTSTK = -
-
= NEXT AVAILABLE
e POSITION
¥
Q
b4
-
[/,]
24
(@]
-
a.
>
4| CONTROL POINT
< 3 R4
N 2 R3
)¢ 1 R2
0 R1
WORD

SCHEDULER'S QUEUE — A LIST OF ALL
PROGRAMS WAITING TO GO INTO
EXECUTION FOR THE FIRST TIME

- \
o
ANOOKess or ToP OF Seked. 3\«4&\ Gﬁgq\)
SCHTOP | 2000
- ﬁ.4'[7
’(zv[."/"
, i J
/(.,ft)
p
2000 Q0 [re |7
C
- oo™y e I
g“ g I e O REG [rime @] LK
| (“;\\ L (‘7(5)3._().. i]
HANTAY
0 h% ~
oK o<
\! },».//
\é‘f’g
;U‘)j . Cc,t
by Q}pvx 3500 1
- A F}\"K Q\
Q%@‘*\\ ‘ Q}’Q;I’(J'QO\:)\ FFFF
Q 7,
Q7\\ (\,Q\Yﬁ\
NN
@Q/ oY
¥ 4000 5
3500

O

LIBRARIES

1. PROGRAM LIBRARY
e BACKGROUND
*BATCH
2. SYSTEM LIBRARY
e FOREGROUND

SYSTEM PROGRAMS
FILE MANAGER

3-9

TWO LIBRARIES

PROGRAN LIBRARY — BACKGROUND

2 TYPES OF ENTRIES
e PROGRAMS IN RELOCATABLE BINARY FORM

e FILES
DATA S :
PROGRAMS IN ABSOLUTIZED BINARY FORM

O

SYSTEM LIBRARY — FOREGROUND

2 TYPES OF ENTRIES

e CORE RESIDENT
ABSOLUTIZED BINARY FORM
e MASS MENMORY

3-10

PROGRAM LIBRARY
HOW TO ACCESS ENTRIES IN THE LIBRARY
PROGRAMS

1. UNDER *BATCH
EXAMPLE:
*JOB, USELIB, CDCIJ, EXECUTE PROGRAM
*EXLIB '
6
784
2. LOADER MACRO

FILES

1. GTFILE MACRO
2. DIRECT MASS MEMORY READ

3-11

PROGRAM LIBRARY
HOW TO PUT SOMETHING IN THE LIBRARY:

PROGRAMS

*JOB,EX2,CDCIJ, PUT A PROGRAM AS PROGRAM ON THE PROGRAM LIBRARY
RFTN

OPT LXC
PROGRAM . WRITE2
WRITE (3,100) ,
100 FORMAT (¥ / / / / THIS IS ANOTHER EXAMPLE ////%)
END
MON
XLIBEDT
®K,18,P8
%L,WRITE2
®DpL
%7
®LIBEDT -
%R, WRITE2 . ,)
4 ’ C/’
6
7
*g FILES
DATA
*JOB, DATAF, CDClJ, PUT DATA FILE IN LIBRARY
*LIBEDT
*K, 110
*N, ABC,,, A
DATA CARDS
DATA CARDS
*Z
6
7
8
9

3-12

PROGRAM IN ABSOLUTE FORM

®*JOB,EX2,CDCIJ, PUT A PROGRAM AS A FILE ON THE PROGRAM LIBRARY
XFTN »
OPT LXC
PROGRAM WRITE2
WRITE (3,100)
100 FORMAT (¥ / / / / THIS IS ANOTHER EXAMPLE ////%)
END
MON
®LIBEDT
®K,18,P8
®P,F
“N,WRITE2,,,B
DL ,
::Z
RLIBEDT
*R,WRITE2,F

s
. :vZ

6
7
89

HOW TO FIND OUT WHAT IS IN PROGRAM LIBRARY
*JOB,LISTLB, CDClJ, LIST PROGRAM LIBRARY
“*LIBEDT

*DL

*Z

6789

3-13

Put A pRoskan In Tne (BROGRAM)LIBRARY

JUBsFINEXoCDCIJe ,/‘\\
1700 »ASS STURAGE GPERATING SYSTER VERSIUN 5,0 DATE OF mUN: 08/31/78 . SYSTEM IUI ITuS J.2 UeMu SYSTE k\ |
"
FEFFFEFFEFFFF TTITTITTITTITTIY . NNN NN EEEEEELELEEEE: KRX XA
FFFFFFFFFFFFF TYITTITITITITY NNN NNN EEEELEEEELEEE XXX X&X
FEFFFFFFFFFFF TITTTTITITTIONT LT NN EEEEELEELLELE AR ARX
FFF TIT Dodusese [t tEE XAX AR
FFF 77 NNNNN NNN EEE AXX XXK -
FFF TT¥ NN [T eEE ARX XXX
FFFFFFFFFFFF "y NN NN NN EEEEELEEEELE XXX2X
FFEFFFFFFFFF Y NNN NNN NNN ELEEREEELEEE 2xx
FEFFFFFFFFFF T NN NN NNN EEEEELEERLEE XKAXA
FFE e] NN (333 AXK AAR
_£re; jand RN NN EEE XX} XXX
hidd haad L NN j144 XX XXX
FFF TTT NN NNN EEEEELEEECELE XX AXX
FFF 7Y NNN NNN ELEEEEEELRREE XK& AXX .
FFF ’ TTT L NNN ECEEEELERLEEE RR& RAR
oFTIN
F*N 3.38 (UPT = LXC) WRITEL PAGE 1 DATE: 08s31/7 TImE:]e22
1 PROLRAN wRITEL
2 wRITE (391001
3 100 FORMAT (®* 77777 THIS IS AN EXAMPLE / 7 /7 /7 /7 7 *) /
3 EnD
FTN 3438 (CGFT = LXC) whiTE] PAGE 2 .DATE3. 0u/31/78 Timt: le22

BROGRAM LEMGIM S0024 L. __3&)
EXTERNALS . (\~)
“BSTP QBuIN? -

FIN 3,38 (OPT & LAC) WRITE) PAGE 3 DATE: 08/31/78 TImE: 1e22

qooof LIST OF SYMBOLS eseee

EXTERMNALS ¢

conccasee

NAME TYPE ADDKESS REFERENCED BY STATENENT N8 1

GOUINI INTEGERFNe 0002
a8sIpP INTEGERSFNa. 0023

3-14

@

N

LABELED STATEMENTS

LABEL

100
WRITEL

“LIBEDT
LIB

IN

®K, 18
IN

XL,WRITEl
IN

o
%7

*WRITEL

AV AN AV
STOP

RLIBEDT

LIB
IN

%R, WRITEL
IN

«
®z

ADDRESS REFERENCED BY STATEMENT NB

0008 1,3
0000 1

THIS IS AN EXAMPLE / [/ [/ [/ [/

3-15

JOB sEX29CDCIue. PUT_A PROGRAM_AS A FILE DN _TnE -PROGRAM_LIBRARY ﬂ

3700 MASS STORAGE OPERATING SYSTEM WERSION 5,0

§

¥
TN

$

DATE OF RUN: B8/31778 SYSTE? K\

FIN 3.3E (UFT = LX0)

2 WHN -

100

MR1TE2
PROGHAM WRITEZ
WRITE £3+100)
FORMAT (e
FND

ETIN 3.3b (OPT_=_LXC)

PROGRAM LENETH S0020_{ 32)

ExTEENMALS

QESTF Q&WIN]

%

®LIBEDT
L1t

AN

*KelBoFE
iw

CPoF
wnllEC
GHULIN]
GECELL
QBCHb
QeERNbU
CEERRE
WsDF 10
(<1 Yed §
QHLUN]
WRFOET
CuMAGT
TJePCUN
#SSTOF
Cotehis
PAHLEBN
Qe IFwr
L6FS
QRTHRAN
&BEAF]
QuE xbPo
FLOTN
COMNFP
DELDMY
GEFkmS

IN

700¢C
T020
I0ks
7117
T1FS
730¢
T3ES
PLY 11
1560
T59¢
75F¢
T64F
TeEe
T2k
7798
TTAL
T7E9
TA1lF
825F
8204
£3%¢
85Dé
£708
8704

DECA=1ID mUs
DECK=1L_hpS

DECK=1D .#06

DECK=1D ™07
VECK=1L HUB
DECK=1D hoo
DECK=1D #10
DECK=1D #11
DECK=1D h12
DECh=1D #13
DECK=1D K14
DECK=1D #16
DECK=ID h17
DECK=1D 612
DECK=ID #01
DECK=1D hoe
DECK=1D +03
DECK=1D m1B
DECK=10D H19
DECK=ID Hlé.
DECA=1D 615

-DECK=1D K19

deCa=1n S7¢

WR1JEZ

FTN 3.3 RUNTIME
EIN 3.3_RUNTIME
FIN 3,3 RUNTIME
FIh 33 RUNTIME
FTN 343 RUNTIFE
FTM_343 RUNTINE

FIn
FIN
FIN
FIn
FTh

‘FIN

FIM
Fin
fIn

3.3
3.3
3.3

303

3.3
3.2
3.3
3.3
3.3

FIN 3623

£IN

3.3

FIN_3,3

Fin

33

FIN 363

FIn

343

RUNTIME

RUNTINME

HUNTImME
RUNTINME
RUNTIME
RUNTIME
HUNT It
RUNTIME.
RUNTIME
RUNTINE
RUNTIME
RUNTIME
RUNTIME
RUNTIME
RUNTIME

FIN 3.3 _RUNTINE.
RPGIT 240

3-16

.1 DATE:

/7 7 7 7 TH1S 1S ANGTRER EXAMPLE ////%)

£ DATE: 08/31/78

SUMMAKRY=117
SUnmaRy=142
SummARY=11¢
SurmakY=102
SUMMARY=]02
SUMFARY=116
SURMMARY=116
SUMMARY=]0¢
SUMmAKkY=116
SU”P-ARY,._I 1 7
SUMMARY=117
SurmaRY=126
SUnMAKY=]126
SUMMARY=]111
SUMMARY=]06
SUmmAKkY=106
SUMMARY=]115
SUMMARY=102
SUKMARY=102
SUMMARY=112
SUmrARY=]1]e
SUMMARY=102
SUMMAKY=]126

- ENIER]TEZ 20198
O m

*DL
LIbmAC SECT.
ASSEW SECT.
ASS]IV StCT,
PASS] SECT.
PASS? SECT.
Pass3 SECT,.
TaBLST SECT.
AREF StCT.
MACSKL SECT,
MACRUS SECT,
FIn SECT,
EXIT¥F SECT.
PALCHK SECT,
ASCOPT SECT,
PRGNAN SECT,
PAOGNBK SECT,
DATE SECT,.
TIME SECT.
FTIN3ALl SECT,
FIN3AZ SECT.
HBMZEN] SelLle
BMIN] SECT.
BMINZ . SECT.
BMIN3 SeCT.
STakl SECT.
. PRINT SECT.
<::> —v aR1TEe SECT,
FIN]
' IN
.2
U dobbl- ~
I { -
IN
ORewk]TEZoF
N
"2

@

£L59
0C71
0C71
oCcT?
0CA3
0CBD
£CE2
0CF7
-9D08
oF79
QF 8A
0F8A
OF8A
ofF 8a
OF8A
0FBA
QFBA
OF 8A
QF 93
1004

cuin
3067
30b1
3098
2bCc2
2DC2
3085

FiLt
FILE
FILE
FILE
FILE
FiLE
FilLt

FILE
FILE

riwc
FILE
FILE .
FILt

.FILL‘f/

3-17

3ILIBEDT

*DL
LItsmaC
ASSEM
ASSIM
Pass]
PASSE
PASS3
TAELST
XKEF
MACSKL
MACKOS
£FIN .
EAITF
PABCHK
ASCUPT
PHONAM
PAGNBK
DATE .
Timt
FTIN3AL
FIN3AZ

SECT,.
SECT.
SECT.
StCT.

SECTs

SECT.
SECT.
SECT.
SeCl.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT,
SECT.
SECT.
SECT,
SECT.
SECT,.

0CSy
214
0CT1
0CT7
0CA3
oCBL
octez
0CF?7
0008
oF 79
OF pA
0fFBA

DFaA

OFBA
OFBA
0F8A

DFBA.

of 84

LIST OF PROGRAM LIBRARY

FILE

FlLE

FILE
FILE
FliLt
FILE
FILE

0F93 ._FILE

1004

FILE

EXAMPLE

3-18

o~

FIN3A3
FIN3AS
-FINIAS
FIN3E]
£Tn3C)
FIN3D)
FTN3E)
FTN3F)
FTINIER
READ
#RITE
FREAD
FewRITE
SCHEDL
JIMEK
DiIsFaY
Dise
LINK
1CLoCK
INPINS
OUTINS
RELESL
ICONCY
VCONCT
MEFREF
<114 3¥1
Q9FKUP
Wbuwkzl
1611 91
WHUFzF
RETAD
QSAvE
LBAE
AES
SQFT
QuS6
SI6N
QBLFIX
Q&FX
QBLFLY
B8FLOT
IFIX
FLOAT
DF1x
L8OFLY
DFLT
£XP
ALOG
Tanm
SIN
cus
ATAN
PARABS
©CBIF KM
GBFS
veTran
QBUIN]
GBUNIT
YBSK1p
QBCEND

SECT
SECY.,
SECT,
SECT,
SECT,
SECT,.
SECT,
SECT,
SECT,
SECT,
SECT.
SECT,
SECT.
SECT,
SECT.
SECT.
SECT.
SECY
SECT,
StCT.
StCT.
SECT.
SecT,
SECT.
StCT,
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT,
StCT.
SECT.
SECT,
SECT.
SECT,.
SECT.
SECT,
SECT.
SECT.
SECT.
SECT,.
SECY.
SECT.
-SECT.
SECT,
SECT,
SECT,
SECT.
SECT.

SELT,

SECT,
SECT,
SECT,
SECT,
SECT.

302C
1057
1080
1043
1125
1157
11F17
125¢C
1242
12FD
12FL
12FD

12FD

12FD
12FD
12F0D
12FD
12FD
12FD
12FD
12FD

12FD -

12FD
12FD
130C
130C
130C
1311
1311
1311
1311
131
1319
1319
131E
1326
1326
1328
.132s
1328

1328
1320
1323
328
1328
-1331
133y
1340
1347
1347
1350
1358
135D
4363
13s¢C
13E8
13E8
13ES8

Ccw e e
SSre

FILE
FILE
FILE
FILE
FlLt
FILE
FILE
FILE
FlLe

3-19

RBCHMRY
QBCMP]
RBDFAD
WBLENS
RECEND
Q8bINE
Q86LOCh
QBRWRU
QBINTE
GBHE Gk
QACLKE
QBRINT
Lb1BUF
WRFLG
GBERRM
GBFERN
QEBEREM
QEDFNF
QuDF IN
QBQTOM
QBOThM
QEOX
LHBMOVE
Qeoy
9602
GBUWUN]
QBQUNZ
QEQUN3
Q8FOGET
QBFPUT
GB8LOCF
Q8I6w
QBMALT
QBEOTT
*I-T%1- 144 §
WBGFLE
QBGWND
EOF
Jock
Qarst
RABPSEN
QB8STF
QESTHN
Q8COom1
QBFANL
QBEXP1
RBEXPS
WBEXFT
REEXP2
QB0GET
SETbFR
ENCODE
JECODE
CUMMON
1SAVE
JGETCH
GETCH
IPACK
JPDATE
DECPL

SECT,.
SECT.

SECT.
SECT,
SECT.
SECT,
SECT,
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT,
SECT,
SECT.
SECT,
SECT,
SECT,
SECT.
SECT.
SECT,
S5ECT.
SECT.
SECT,
SECT,
SECT,
SECTa
SECT.
SECT,.
SECT.
SECT.
SECT,.
StCl.
SECT.
SECT.
SECT.
SECT.
SECT,
S£C1..
SECT,
SECT.
SECT,
SECT.
SECT.
SECT.
SECT,

SECL..

SECT,
SECT.
SECT.

SeCT.
SECT.
SECT,
SECT.
SECT.
SECT.
SECT.

43F2
13F7
A3F2
13F7
13F7
1401
1401}
1401
1601
1401
1601
1401
1401
1401
Je0C
140C
140C
1418
l4lb
1421
142}
1421
de21
621
BUY-3
le28
1428
1428
142E
142t
142E
142E

- 1a36

1430
143C
143C
143C
143C
leas
1446
Aoed
1645
1449
14459

. 14590

1457
145
le5t
145E.
1a68
LYY
3146C

- desC

1473
1473
1477
1677
147C
1482
lag6

INIBR
SPACEX
. HOLRTH
QUOTE
DCHX .
HAASC
AFRMOT
RFRMOT
AFRMIN
RFRMIN
—ASCHA
HXDC
FLOTIN
FOUT
£0UT .
EWRITE
=INITLY
RESTRE
FORMTR
CHCNY
Q80F1
WBOLFL
QBOFX .
HEXAST
HEXDEC
" aSC1l
DECHEX
AF ORM
-RFOKRN
FLOATG
FLOT
HFLOT
JFALT
SFALT
~DPERNL
NXTOP
FPEROR
FROCHA
SPECOV
FLOFOF
FIXFOFP

Q8LxP] |

w8DXPY
DOUT

LULIST..

LISTK
OPSORT
HGNRD
EESURT
£osY

LLCOSY
CYFT

J0UP

JoUPVs
DTLE .
LSKTAP
LIBILD

- L181DO

HELPEK
SYED

SECT.
SECIL,
SECT.
SECT.

- SECT.

SECT,.
SECT,.
SECT,
SECT.
SECT.
SECT.
SECT,

StCTa.

SECT,
SECT.
SECT.
SECT.
SECT.

- SECT.

SECT,.

. SECTs .

5eCT.
SECT.
SECT,
SECT,
StECT.

- SECT.

SECT,.

SECTs

SECT,
SECT.
SECT,
SECT.
SECT.
SECT.
SECT.
SECT,
SECT,

SELT.
St(T.
SECT.
SECT.
SECT.
SECT.
SECT,.
S5tCT.
SECT.
SECT.
SECT.
SECT,
SECT.
StCT.
SECT,
SECT.
SECT.
SECT.

SECT.

14BB
1690
1495
1495
149D
14a%
pLYY
1480
le8%
1488
d4Cy
14C6
14CE
14De
14DC
14E6
A4tE
1eEE
14F 0
1a4FC
1502
1507
1508
1511
151e
1518
152¢
1525
1524A
15¢2F
1534
163¢
154t
1540
1566
1546
156t

156¢

154¢
154¢
3546
1553
653
1553
15587
1580
158C
1586C
15aC
15Ce
1613
161E
‘1628
162F
164C
1656
1673
1677
1682
16k8

FILE
FILE

FILE
FILE

SKFILE SECT.
SILP SECTe
81 SECT.
SMDMP] SECT,.
WFSMD] SECT,
SMDMFT SECT,
MFSMDT SECT,
TSLUG SECT.
ULBUFF SECT.
MNUPKO SECT,
.SUERCV SECTa
GETCHR SECT,
.PUTCHK .SECTa
CREATE SECT.
CLEAR SECT.
DELETE SECT.
_OPENFL SECT.
CLOSFL SECT.
LOKFIL SECT.
UNLFIL SECT.
6ETFCH SECT.
WUPDFCE SECT,

ARENAME SECT..

PUTS SECT,
®WRITER SECT.
READR SECT,
GETS . SECT.
UPUREC SECT.
DELREC SECT.
COmFIL SECT,
VOLUSE SECT.
REDUCE SECT,
-USER]D SECT.
SYmSGF SECT,
SYMENU SECTS
PROCED SECT.
-UTIL SECT.
UTBATC SECT,.
VTDISC SECT.
UTHOST SFCT,
UTSET. SECIL,
JTPRIN SECT,
UTBATS SECT.
UTDISP SECT.
YTFLUS SECT,
UTINIT SECT.
UTDEFI SECT.
UTSTAT SECT.
UTDELE SECT.
VUTCLEA SECTe
UTLIST StCT,.
UTRENA SECT,
YTCOKM . SECT,
UTMOUN SECT,
UTDISM SECT.
UTSAYE SECT,

.UTPURG __SECT,

UTCOMP SECT,

-UTDUMP. . SECT,

3=20

UTRELO SECT,

. 168BC

16E9
16F)
176
A1T74E
1751

1759

179D
1763
17¢te6
17F8
1835
1835
183a
183A
1834
183A
183a
163A
1634
1834
834

A63A.

1834
1834
1834
16834
1834A
183a
183a

. 1B3A

1634
1Be3
185%
19FD
JAO0E

JAl2

1AAG
1803
1813

- 3821

162E
184C
iveD
.iBse
1899
18AS
1880
1EDB
18E1
1BL7
1C02
acoc
1C10
i1C19
ical
1cecC
1C7«
1C70
1C88

FILE
FILE
FILt

FlLt
FILt
FILE
FILE

FILE
FILE
FILE
FILE

. FILE

FILE
FILE
FIlLE
FILE

FILE
FILE
FILE
FILE
FILE
FILE
FILE

FILE

Flit
FILt
FILt
FILE
FILE
FILE
FiLt
FILE
FILE
FILE
FiLt

UTCOPY
UTLOAD
UTOKLLD
JIRMLD
ED1TOR
RMUOPM

" RPGMUZ

RPGMU3
KPGMUS
HMUCLO
RMUCSE
RPGSK(
RPGESM]
RPESMHZ
RPGSM3
RPESke
RPESHS
RPESME

RPGSM?

RPGSME
REGSHY
RPG11
RPERX
RPGYY

RAP6GZ2Z

CATLOC
LATSEEG
RPGFIL
RYCNTK
ROJUMF
R9SGTH
ROSGIX
RYCKSO
ROMUNC
ATTCAR
ROBRAK
ROROOT
YOFFCB
Y9FDC]
*9CMST
Y9MMST.
YGINVK
YoMHLD
YSDETL
Y9TOTL
YOLSTR
Y90O0TT
YSTOTTY
YSEOTT
¥Y8LLSO
YOCARA
YOMARA
YYUDAT
YYUDAY
XOUYEK
YOUMTH
YOFOI &
97810
¥OCHDY
Y9INTA

SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT
SECT.
SECT.
SECT.
SECT.
SECT.
SECI,
SECT,
SECT.,
SECT.
SECT.
SECT.
SECT.
SECT.,
SECT,
SECT,.
S5E£CT,
SECT.
SECT.
SECT.
SECT.
SECT,
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECTS
SECT,
SECT.
SECT.
SECT.
SECT.
SECT,
SECT.
SECT.
SECT.
SECT.
SECT«
SECT.
SECT.
SECT.
SECT.
SECT,
SECT.
SECT.
SECT.
SECT.

iCF2
1020
1067
1087
1E23
1E8B0
AEFS
1F28
AF7A
1FAF
IFE3
2087
2049
2081
20E1
20E9
20EC
2102
211D
2120
213D
2145
2185
2145
2145
2146
2145
214D
214D
2140L
214D
21D
214D
2140
214D
2140
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157

FiLE
FILE
FILE
FILE
FILE
FILe
FILE
FILE
FILE
FILE
FI1LE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILt

3-21

YQITLP
YoLAHD
YOMMOY
YONSBK
Y9FAGE
Y9TROT
YSINVFP
Y9DSEC
YSFiSE
POSSPE
POSSKE
POSSPA
_POSSKA
R9OCOU
ROKECP
HSTANF
-R9TFLG
Y9aPF X
Y9ASPC
Yocoum
YODTPT
YYFDFK
YSFIPR
YOF1PT
YOFLFT
YOFETL
Y9FPTk
YGFSSA
YOHIND
YYHNUN
Y4 1BUF
YORALS
YOKAFF
YOPSFG
_YORECF
YSRF Tk
YYTOF]
YoVF1)
Y9 XRPF
YOXETE

DMPILK

YOTRCE
YQERCE
Y9IREG

SECT.
SECT.
SECT.
StCT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECTe
SECT,
StCTe.
SECT,
SECT.
SECT.
SECT.
SECT,.
SECT,.
StlT.

SECTa.

SECT.
SECT,
SECT.
SECT.
SECT,
SECT,.
SECT,
SECT,.
SECT,
SECT.
SECT,.
StCT.
SECT,.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT,
SECT,
SECT,

ROEKTN. _SECT,

YSLABL

YOFTINX .

YOFSTL
ROUSEK
ROUNIT
RyrODE
ROPORT
RIEDTI
RYEDT?
ROEDT3
RYEDTS
ROKPRT
ROINTEB
HOCLIN
RYNTIN

SECT.
SECT.,
SECT.
StCl.
SECT,
.SECT.
SECT,
-S6CT,
SECT.
SECT.
SECT.

. SECT.

SECT.
SECT,
SECT.

2157
2157
21587
2157
2157
2157
2157
2187

- 2157

2157
2157
2157
2157
2157
21587
2157
2157
2157
2157
2157
2157

2157

2157
2157
2157
2157
2157
2157
2157
2157

.2157

2157
2157
2157
2157
2157
2187
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157
2157

. 2157

2197
2157

-2157

2157
2157
2157
2169.
2169
2169
2169

ROVIND
-HROQUSND
KOMR 1
ROFCIR
RISTTS
KOMLFV
ROREPT
RORYST
R9ACC]
YACCle
YACCLO
RYACIS
RYAC2S
RYAC3S
HOACIN
RoaC2n
. #H9AC3N
ROFPUF
RYUPOF
RYINK2
RYINFF
RS INFM
ROPONT
RYCMCL
YEKRSw
ROFTSw
RovORT
RGOVSe
ROFTIM
ROFFCh
ROCFIL
RONFCh
RYPROGL
ROMKSH
RYMPRFR
ROLRSH
RORYFS
ROELTK
KYF kMK
ROATAX
&KGACX]
YACAAN
RYSAVE
&SREST
~RYFLOw
BYFLOW
NGFLUN
STRACE
SYSKSE
RYEXIT
ROFSTL
ROELOC
RYTRCE
ROTHOT
KYINLK
FOLEL
ROGTL
ROMT W
“YShYX
RALLYX

-5tCY.
SECT.
SECT.
SECT.
SECTa
StCT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
StCTe
SECT.
SECT.
SECT,
StCT.
StCT.
SECT.
BECT.
SECT.
SECT.
SECT.
SECT.
StCT.
StCl.
SECT.
StCT,
SECT.
SECT.
SgCT.
SECT.
SECT.
SECT.
SECT.
StCT.

SECT.

SELT.
SECT.
SteCl,
SECT.
StCTs
SECT,
SECT.
StCT.
StCT.
SECT.
$tCl,
SECT,
SECT,
SECT,
SECT,
- StCT.
SECT.
SECT,
SECT,
SECT.

216%
2169

2169

2169
2169
2169
2169
2169
2169
2les
2169
2169
2169
2169
2169
2169
2169
2169
2169
2169
2169
2169
23168
2le¢
2169
2109
216s%
2169
2169
2169
2169
2169
2169
2169
2169
2169
2169
2169
2169
23065
2165
2169
2178
2178
217F
217F
217F
21lbe
2189
2197
219C
2142

2145 .

2188
218k
21C5
21C5
21CA
<1CE
21C¢E

ROMYBX
ROMIBX
ROMVE
KGLEY
ROSBY
ROMIE
ROMY R
ROFTNX
CVASLED
RSFLDL
RYSOGH
ROUNPK
SUBKFL
SUBREL
SUBKMY
SUBRLW
SUBRML
SUBKRIN
SUBKAY
CATFIL
SwITCH
RBDPCH
RBDSFG
KBOUFIL
MOUNT
TRACEK
DSOUKT
SMCHON
SMCEDT
SMCSKT
SHMCIMG
SMCF MG
VTEST)
vTESTE
YTEST3
VTESTe
VTESTS
VTIESTG
VTImELS
Jin
FMEHR
REXLCZ:
JIvEIN
TIMELT
PROG].
PROG3
PRUGS
PRUGE
TIelT
PROG2
PROGE
PROG2A
INy _
PROGT
PROGGA.
OMNZ
JECH1E
TeUPLT
TWANLZ
TOPUKG

3-22

S,
SECT,
SECT.
SECT,
SECT.
SECT,
StCT.
SECT.
5:CT.
SECT,
SECT.
SECT,
StCle
SECT.
SECT,
SECT,
SECT.
SECT,
SECT.
SECT,
SECT.
SECT.

SECT,
SECT.
SECT.
StCTa
StCT.
StCl.
SECT.
SECT.
SECT.
SECT,
SECT,

--SECT.

SECT,
SELT.
SECT,
SECT.
SECT.
SECT.

SECT.
SECT.
SECT.

. SECI.

SECT.
StECTs

. SECT,.

SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SELT.
StCT,
SECl..

SECT,

23Cct
21CE
21CE
21CE
21CE
21Ct
21D4
2108
21tS
21EA
21F0
21F¢6
21FC
2201
2208
2208
22086
220F
2216
221 FILE
2231 FILE
2235
2238 .
2239 FILE
22«4A FILE
22%8 FILE
e25D FILE
22EE FILE
2306 _FILE
2317 FILE
2310 FILE
2322 FILE

2320 FILE

2347 FILt
2368 FILE
238D FILE

2360 FILE

23F0 FILE
2412 FILE
2624 FlLE

2438

2«42 FILE
2662

26070 FILE
249F FILE
26Db FILE
25AC FILE
2518 _ FlLE
2536 FILE

2551 __FILE

25DC FILE
2617
2618 FlLE
2677 FILE
269 FILE
2505
2517
2578
258&

FQULST
JecorY
TQSETL
TUGENL
TATINF
TQURUF
TarouT
TersOoT
TQGCHK

- TQSCHkK
TuCLXY
TQUPXY

.TQRECD

TQIDCD
-JQAaJAX
TQUsKK
~TuSTIkG
TQFRAT

JREDIT
TO6ENC

JQbCoD
Tecvhe
JQCYHD

-Jacvax
JuLvonm
TaTOaY
JwrTRX
TulDCD
TUZGEN
TUSELC
JanaLl
TesLS™
TuKraDR
Teag]®
JQRTAX
TUSETS
JGSETC
TOUSER
JuCUNT
TOQLERT

il b athd

HOSELF

TurLPF
Turbre
JOSRCH
TUSORT
- &0607C
TwDeTE
JLTIvt
TQ2CUN
TeCcCr)
Teccr2
JUCCH]
TOPRTA
TQZTEC
TQZT1IN
Ju2BUF
TCZROU
JezZKse
JU26Lr

SECY, -
SECT.
SECT.
S€CT.
SECT.
SECT,.
SEC1.
SECT.
SECT.
SECT,
SECT.
SECT.
SECT.
SECT,
SECT.
SECT.
StL1,
SECT.
SECT.
SELT.
SECT.
SECT.
SECY,
BECl
SECT.
SECT.
SECT.
SECT,
SECT.
SECT.
SECT,
SECT,
SECT,
SECT,
SECT.
SECT.
SECT.
SECT.
SECT.
SECT.
SElle
SECT,
SECT.
SECT,
SECT,
SECT.
SECT.
seCl,
SECT,
StCT.
StCT.
SECT,
SECT
SECT.
SECT.
SECT.
SECT.
SECT,.
SECI,
SECT.

[

258
2508

. 26ED

2708
2708
270b
2708
2708
2708
2708
2708
2708
2724
2757
2715¢E
2765
2776
2760
2766
2TAE
2TAE
27AcE
2TAE
[XIAE
27AE
2AB2
27bs
27E0
27FD
2609
2864
286y
2879
2876
2879
287t
-2880D
2880
28Lb
28Eb

- 291C

294z
296t
296E
2985
-2E6C
2AB2
2482
29AE
2hl1C
250L%
2996
2C47
2902
27FD
27FD
eTFo
-2TFD
27FL

FILE

FlLE
FILE

3-23

JR2SCH
TQzCRY
IQZUXY
TusnLl
TWZINF
T@DMP»
TWZHLF
TO2SEL
TeZnie
TQPRTZ
JQFKTS
ToPSL]1
TurkSEL
TQLLCH

LTEC
TOUTIL

JuPSL)
TQSPRD
BENCH]
BENCHZ
COMPL
TXLIST
8I0R
FGDSCr
TRUMPK
T@ZSoe
LOGTEC
BMIENT
BMZENT
8MIN]

BrINZ
BMIN3

_START
PRINT
wR1TE2

FINI
IN

*Z

SECT.
SECT.
SECT.
SECTS
SECT.
SECT.
SECT.
SECT.
StCT,
SECT,
SECT.
SECT,
SECT,
StCle
SECT.
SECT.
SECT,
SECT.
SECT.
StCT.
S5tCTe
SECL.
SECY,
SECT.
SECT.
SECT,
SECT.
StCT.
SECT,
SECT.
StCT,
SECT.
StCT.
SECT.

237D

27FD
27FD
2ATE
2A85
2AbY
-7 Y-1V)
2805
28DY
F3-1X-}
2C14
2C30
2C«2
2AKS
2Ce65
2F 9F
2001
2E62
2A58
2AD6
2ALD

" 2850

289E
a9
2A89
2F90
3194
2tza
2076
3007
3081
309E
2bc2
20¢c2

. 3005

FlLt
FILE
FILE.

FILE
FILE
FILt
FlLt
ElLE

FILE
FILt
FILE
FlLt
FILE
FILL

FILE

SYSTEM LIBRARY

SYSTEM MACROS INITIATE PROGRAMS IN THE SYSTEM LIBRARY

SCHDLE c, p, x, d ALLOCATABLE CORE
SYSCHD c,p PART 1

HOW TO PUT A PROGRAM IN THE SYSTEM LIBRARY

®J0OB,SYSLIB,CDCIJ, PUT A PROGRAM ON THE SYSTEM LIBRARY
XFTN

OPT LXR

SOURCE PGM

THIS PGM MUST BE

WRITTEN IN A :
SPECIAL FORM TO RUN IN ALLOCATABLE
CORE

MON

XLIBEDT

®K,18,P8
):M, 311 2)M)N

::DM
::z

HOW TO DUMP SYSTEM LIBRARY

*JOB, LSTLIB, CDCIJ LIST SYSTEM LIBRARY
*LIBEDT
*DM
*Z
67
89

3-24

O

LIBEDT CONTROL STATEMENTS

MANIPULATE PROGRAM LIBRARY

*L,epn ADD/REPLACE PROGRAM
*Nonwqwym ADD/REPLACE FILE -

“*R,n,F | REMOVE PROGRAM OR FILE
*DL LIST CONTENTS OF PROGRAM

LIBRARY DIRECTORY

MANIPULATE SYSTEM LIBRARY

*A,or,s,nd, REPLACE PARTITION PROGRAM

*M,or s,d,M,N REPLACE SYSTEM LIBRARY ENTRY
*DM LIST SYSTEM LIBRARY DIRECTORY
_*S,or,v,m SET CORE REQUEST PRIORITY

3-25

corPY

*T,i,mi,o,mo,n,f
*F

*FOK

MISCELLANEOUS

*P,n,R/P,Sa

*K,lu,Plu,Llu

*U

*V,lum

*Z

COPY
TERMINATE *T

TRANSFER FOR *T

—\
LOAD, COMBINE AND PRODUCE Q
ABSOLUTE RECORD

CHANGE STANDARD UNITS

GET CONTROL STATEMENTS FROM
COMMENTS DEVICE

GET CONTROL STATEMENTS FROM 1U
TERMINATE LIBEDT

e

{
\

3-26

1°92-¢

~

O 10 C

JUB,CDCI1J**LIST CKEPT TABLE EXAMPLE TO ILLUSTRATE CREPTO AND CREPT1 .
L700 HASS STORAGE OPERATING SYSTEM VERSION 5.0 DATE OF RUN: 01/30779 SYSTEM iD: ARNFAC 18-20 (07/711/7%)
cceececcececcce DODDODLDDDDOD cceceeccecce TIRIIILRLIRIEI JJd
ccccecCecececcec oD0DODDOUDBLD cceceeecceccece TLRIILIIRRNNE JJddJ
cceecececccceccec pDpDODODOLOLOD cceeccecceececce IXIIRRRINENII JJaJ
ccc ccc Dobd obo cce ccc 111 Jdd
ccce DOD bpD cce 111 JadJ
ccce DoD uoo ccce It JJdJ
ccc 00D DDD ccc I JJd
ccc DDD DDD ccc 111 Jdd
cce DoD P ccc Ikl JJdg
ccce 000 00D ccc | It JJdJ
cce DDO 00D cce I JaJ
ccce ccc DOD DOD ccc cce Il Jdd JJd
ccccececcceccc Doo0oLDLLDODODD ccceeceecccccecc TITIITLITONINE JUJJIJIdIIIGd
ccecccecececc DODDDDLDDDDUOD cceceececcccece ITITLRITINNNE JJIJIJJI SIS
cceeceecceccecce DODDDDDODDDD cceeececcce ISERINNRNOREE! JIJSJIIIIdd

*ASSEH

CREPT PAGE 1 DATE: 01/30/79

0001 NAM CREPT LIST CREPT TABLE ~
0002 ENT BEGIN I\
0003 P0O0OO 0B0OO BEGIN NOP

0004 EXT SCHTOP IS IN CREPT1

0005 EXT LOG1A IS IN CREPTO

0006 EXT DUMMY2

0007 *# NOTE- THIS IS A DO-NOTHING PROGRAM

0008 * ITS SOLE PURPOSE IS TO LIST THE

0009 * CORE RESIDENT ENTRY POINT TABLE

0011 POOOLl C400 X LDA+ LOG1A
PO002 7FFF X
0012 P0003 C400 X LDA+ DUHHY2
PO004 7FFF X
0013 PODO5 C400 X LDA+ SCHTDP
PO006 7FFF X
0014 END BEGIN
PGH= 0007 { 7) COM = 0000 0) DAT = 0000 (0)

3-26.2

CREPT PAGE 2
(:)*** SYHMBOL TABLE *#%

BEGIN 0002 DuHMHY2 0006 I 0000 LOG1A

#*CTOsPLEASE TYPE %t AFTER LOADER ERROR E10
*CTO0sTHIS WILL CAUSE LOADER TO LINK WITH CREPT
¥Ls 8 ‘
CREPT 6800 LIST CREPT TABLE

*X

E10

DUMHKY?2

LGGlA

SCHTOP

o

3-26.3

0005

DATE: 01/30/79

SCHTOP

0004

ENTRY PDINT TASBLE -

TSLSIZ
TOD
XHALC
RSMUX1
RIHUXS
READRC
MRECAD
MICSUB
VERIFY
STDINP
UNPSRT
L1829
FILE4
FHPAOL
HONTO
FMPAQ9
FMPLO3
FMPLO7
DUNNY2
WTREAD
TSCNAC
REAREQ
STRLEN
MMA HA X
GTNXUH
LOG1A
CPFET
CPMOD
PARAME
ECCALG
MASCON
TSMEND
SCHSTK
TSIPRC
DUMALT
N15
LRGUSR
HAS300
PGMIN
ECORE
FMPA10
FHPAl4
FMPALS8
FMPL12
FHPL16
MAXCOP
TSPAGE
UNPIOF
TSULBF
RESTOR
CNDRIV
TSEXIT
USE
HP1234
K65T12
NXUM
SMDCPA
VOLEND

31CC
3EOB
2A90
0000
0007
47FC
4972
0022
00AS8
000A
6800
02CcC

3F8C -

09CC
1676
0A2D
6220
5008
00D2
30A2
2642
279E
FB3D
OALE
2A17
0438
3476
33F8
3771
52C6
5652
OAC4
03D8
2BDF
0002
0000
0A31
5580
30EA
3ACS
0A39
0A78
OAAb
623A
6092
001E
097C
3F7E
272A
0062
5158
316F
T7FFF
3813
7FFF
0A21
54CA
03D8

P1829
MAKQ
ADEVY
R9NUX2
R9NUX6
COonMl8
DATFHT
NSTACK
DISHMNT
UNPTIHN
TSUSER
L1860
CPREL

" FMPAQZ2

FMPAOG
ASAY
FHPLO%
FMPLOSB
UNPEND
RHUCLO
THRLVL
TSCHAN
TSATCH
CLRTCU
51827
YOoLA
MIINP

- XMAT

EFDATA
RDPTV4
COMPV4
JPCHGE
LsSTLOC
ADNSHP
RCOVER
TSHMER
HA
IDLE
MHREL
RDISP
FMPALL

" FHPALS

FHPALS
FHPLL3
UCTABL
LOBDTB
FNPFLG
LRTABL
SYFAIL
COHMPRQ
CUCNST
SYSYER
IDLER

NDISP

MIBUF

JPRET1
UZ2INIT
OuUTPV4

073F
3882
3BEO
0002
00C1
TFFF
0000
0005
008D
3F7D
CAF4
0489
330DF
0907
0A20
385C
61F4
5D94
ATFF
0007

0004 .

3163
28F7
519C
0324
38C9
O4EA
0AO1
4D09
7FFF
3FB6
0024
0972
2405
0069
3360
38AB
1007
2B55
34ES
0A51
0A92
0AAC
62A2
OCE2
01A5
7FFF
0D96
0187
3882
5122
3738
100C
7FFF
3F75
3FA9
7FFF
7FFE

MIB 3EE3

LOCF 378D
THDS 7FFF
R9MUX3 0003
PBATOO0 083C
JBCNFG 3FAS
VOLEBLK 0255
TSTLOC 0A29
SECTOR 7F80
N14 0000
FUNSHR 4B4l
118331 40D8
RCTY 34C7
FMPAO3 09EC
FHPAO7 0AZ28
FHPLO1 5F5A
FHPLO5 6584
FMPLO9 6120
JPSTY4 0046
SLICER 287A
ERRMSG 3F74
STRSEC 0ADaA
PGLUNT 3122
CNTHAR 1683
Iup 3F80
CONCU 512D
SHTCH 3F8F
JBFLY4 0000
FBASY4 7FFF
FMSAVA 0ABA
INPTV4 3F81
FINDRQ 380D
"MPFLAG 0170
TSLOFF 0007
UPLOHM 3827
CONSLU 0004
REL 3ACO
MASKT 0145
SPACE 176E
NUMCP 0005
-FRPA12 OAS5D
FHPAl6 OA99
FMPL10 6581
FHMPL14 657D
FMPL18 5F2D
UPBDTB 0194
SKALND 5023
LSIZv4 0488
OFNSHP 2A55

N1l 0000
TSHUSR 0A44
HI 3E54

FILEl 3F 89
K65710 7FFF
IPRCC 3837
CARDRD 375F
FMUFCB 4698
LUNAME 0494

3-26.4

FNR
BSMD
REQXT
ROHUX4
PBATO1
RELBYQ
DGNTASB
THRTHD
TSQPRI
QGMINTX
TSLUNT
P83310
MINTO
BRKPT
FMPAOS
K65COR
FMPLOG
DUMNY1
RELS1A
TSLMSB
SCHTODP
BSYEFS
SYSLVL
CYLTRK
518277
NABS
NMONI
DouT
HTBFEC
JPFLV4
MASEXT
ALCLGH
DATSEP
STRBAS
TSFNCP
CONTCU
IP1
LIBET
SABS
TK7RH
FMPA13
FHPAL7
MTB3FSO
8usy
FMPL1S
PKEYV4
JBCNCL
PGHINT
I10unMNY
SYSSEG
NTSUSR
MOV
JPRET
NXUC
NUHLU
JLGOVS
RELFIL
ONTIHE

380D
4F51
34D8
0004
08BA
55AF
048C
3DOF
0003
7FFF
3125
0580
1679
0070
0A28
7FFF
S5FF3
00CB
3F79
31CA
34E5
4006
3236
51E9
032D
3781
3499
7FFF
09CB
0054
5580
19F7
002F
F0OO
333C
4E3D
3847
3F77
3789
7FFF
0A68
0AA3
0359
0973
6227
7FFF
3F92
310F
4DB4
ooes
0303
3FC5
1688
0AlD
0014
C03F
7FFF
0A38

C

~

O

DENXUC
USKNPG
EFSTOR
COMREQ
SHAPAR
JPT13
CPADD
CPCHK
PORTS
JLLUV 4
SETFNS
TSAREA
HORMIN
N12
LSTOUT
AYERTO
L18277
MHEF
ESHD
BUFFE
QSAY
ALTDAI
ALCORE
LBATIN
NRERLE
FSLINMT
SYUTIL
CHAIN
PCORE
MMAT
DATFLG
STH3VY4
TSNABL
RMUCFT
AMQONTO
KKSPLU
EXTSTK
LOG1
S1811T7
JCRDV4
ODEBUG
LOADSD
HNTCHK
JPLOAD
DENSHP
FSCTNE
T2
LSTPRT
RAXSEC
ALTERR
AUTON
PTNALC
BAITOS
QPASHD
RMUCFO
HWINIT
FMMGIU
FMMOSF
FC8SCT
IDLCTR

2Ah6A
5200
0094
579a
0AF9
0031
3447
33Cs
Q7FA
1684
5019
096F
1&67C
0000
0009
1672
0275
4p22
4EBF
1670
38A6
54ED
38F3
0543
0oDC3
OFEC
0CAF
3160
04BA
0Al17
4E49
1408
2640
0006

1673

0A30
0205
044D
5AAB
0038
0077
0607
0086
0023
2A5C
001E
36A7
0003
0168
0477
0838
7FFF
0001
0A3F
0005
7FFF
000A
0006
0ECO
10E1

FSTIHE
TSHSEC
SHTSIH
AMINTX
PRO
SAVLU
DAYTQO
MmaLC
PHFOV
STLPV4
FMEOFC
TSVFTN
SBATOU
PTNREL
N7
LVLSTR
ECXIT
DONE
HONI
MINT
VINPY4
TDFUNC
LOADIN
RLSECU
TOTHIN
TSINTR
L000
XHREL
TRVEC
CONTA
TBLADR
POLCHK
PARTBL
SHDGOR
INVINT
N13
OVFVOL
L0G2
LUABS
XHMMOD
TSI0C1
MASERR
TSTASK
XHBLOK
ONNXUC
LMTSIM
ONNXUN
AUTOBT
SYSID
TK7HWEF
N4
ACPTSBE
RQULINA
HKSTAT
TSPORT
SIMRSY
FMNRCO
FHMFCBS
FSLEND
THRTYP

10F 8
2808
0318
3F13
3838
3689
1677
2810
38A8
3A2C
5F82
288C
0348
7FFF
0000
0950
5391
4E26
3499
3E54
3F86
0093
3F90
5013
167D
3112
0120
2AE2
3F72
1678
10F 4
5180
096E
S4EF
0483
0000
38E6
0462
3771
2AE A
3262
5684
2648
2646
2908
033¢C
29E2
00C4
0174
7FFF
0001
0975
0A33
0A43
OAC4
7FFF
0010
0DC 4
1063
10F1

ABSPAR
RQLLIN
JOBPRO
EMPSRT
ASC
SEEK9
M1811T
MIPRD
SPCEV4
LIKDUHM
CPTBLN
JOBENT
sSYscoe
SYSHMON
N8
L1827
FILEZ2
CPDEF
YERTO
Loop
CDRDSH
FHSCOH
BGNMON
PRTCDR
INTSTK
EPDORTS
€18331
AREAC
DHADD
SHDGD1
SEKDON
NIPROC
LIBEDTY
UNLDCK
CLFRIO
INIPRT
cce
MAKEQ
NFNR
NSHP
TSIbC2
CALTHD
BATLST
TSOFFM
TSATTC
EMPSTP
T4

T9
UBPROT
TK7DAT
N6
cpTBLZ
RETIHE
RMUDBPN
TSPEND
FHMRDEL
UCTLEN
FHMMOIF
NMLUTB
THCODE

44DE
0A32
0015
10F5
34B4
5033
5AEQ
008C
7FFF
5210
0013
000E
00 7E
3037
0000
0308
3F 84
3395
1675
3464
7FFF
4428
2540
0A2B
0185
0838
4E 24
1788
43F5
54EF
5093
3837
0000
482E
467F
5977
0974
3882
380D
0425
3300
0958
00 0E
0A34
313C
10F6
3647
3555
0191
7FFF
0000
0072
0A39
0000
OAF4
S5E 81
00B4
0006
1064
0008

3-26.5

EXPIRE
TSCKPH
cosars
SYSDAY
RY
CPTBL
ISMD
FLIST
SETBND
DEVERR
MS1ZvY4
CLRINT
FMBRRN
N5

N9
51860
ENDOV4
118117
NANEV4
JPSHT
XMTEND
TINCPS
CLRDAS
TSB8GIN
SHPSEC
INSTLU
TIHEC
SECONM
UPTOD
MSAY
BATINP
KI8SEC
EFLIST

-PROTEC
TSPHIN

T5CKnU
LOG
BEGIN
JKIN

AFILVY

SCHLNG
MASDRYV
PLENTH
TERMLU
PTYERR
T1

Tb6

LTSUSR
{ BPROT
NBRLIN
N1O

PRONMTR
FILOAD
RMUCSH
TSUEND
FHMMOSU
MAXLOC
FHFCBI
PCTABL
DMICOD

2643
2BAB
7C00
3131
36 A7
098F
4008
1681
3383
33E0
FFFE
4r29
4707
0000
0000
030E
263F
5B1E
004D
3F88
0Al15
603cC
5196
2B78
0A2D
0006
0005
167A
3E05
38A7
000D
0003
00Al
001C
30ED
23CF
4C47
56300
3F91
0058
0060
54FD
000D
0005
3848
36A7
36A7
0030
0192
0004
0000
3E08
0A3E
0001
0824
000A
0209
OElE
107D
10F3

BUFF
TODLYL
CHRSFG
T17
SBATIN
FMPAOS
DATBAS
TSHMFLG
XHMRSY
TsCLL®
TsLCuP
PGMOUT
CPSET
TO
T1l6
ALVOL
RTNCOR
LEND
NOG30A
CONVER
‘T8
RIBX

SCHERR,

SPASH

BATCLU
AUTFS

COUTv4
FHCCOMP
MMREAD
INSLOK
GETNXT
FSHARE
EFLOCK
GETLOS
WANTOR
CLRSKN
CKOVRL
DRICHK
SELFLG
SHDCPS
LTOFDR
ETRMNL

110C
5016
167F
176E
033C
0AOS8
0000
2645
2494
Z2BA3
3133
316C
341C
36A7
3766
38C9
396F
3AS5E
3A70
3CC9
3D51
3EE4
3FB1
3F85
3F7F
3F82
3FbBC
443 A
4518
4658
4806
4B38
4CAB
4E28
4F50
5048
S51CF
51C8
511F
54D0
54F6
5808

CGHOST
NSCHED
FMASK
N1
LBATOU
FHPLLL
TSURTN
ONNSHP
XHMRTN
TSPHCK
ATTACH
TSLICE
DISPXX
CKTHRD
CABS
VOLR
ICORE
SHAPON
SCH
ALTSUSB
T15
RELFLE
JOBIND
FILE3
PRORET
AUTFA
OLDUHP
FHCOMRE
MMHRIT
FMCHKO
HRTBAK
DHWSUS
EFCOVL
CSHD
BSHD 4
SEKCHK
CLRSTS
MSBLSB
FFILBF
SHDACP
MPDVCK
CTRHMNL

1670
167E
1680
0362
050D
6166
26EOQ
29E9
2AEb
28C5
3139
320D
34E6
3735

37C9

38DE
3943
3A5D
3AES
303C
3D51

3F34 .

3F76
3F88
3F87
3F83
3FFE
442C
451C
46D3
4904
4C18
4D08
4E2A
4F70
5028
5190
51F7
54C5
54E9
54F9
5862

ADAYTD
PSIZV4
QesTP
N2
FMPLO2
FMPLL1S
TIMSLC
OFNXUC
TSCLDK
UNPTBL
TSLLSB
Tsuscp
T16
RPMASK
ALLIN
OFVOL
T12
guTPUT
NCHPRQ
THINT
DTMER
JOBSTR
TRANY
RECDV
JBPROE
AUTFB
coBOoP
FHPPRO
LOKCHK
FHCOVL
COMSEQ
DuMUL
CDUMMY
E18331
ALMERR
SEKCOM
CLRTDA
CLRACR
FILSHD
SHDGCU
MPDRIV
ICDNSL

1674
0488
1682
0246
64 A2
5F4A
28C3
2A4E
2B73
2C53
31C8
3253
3555
372F
37E2
38Eé6
3A80D
3A22
36882
3051
3DE3
3EB7
3F72
3F78
3F73
3F B4
4183
43E9
45DC
45E1
4G BE
4C26
40B5
4EBF
4F B0
5092
51 8A
51A2
54C7
54ED
54F8
5824

3-26.6

HORTO
0DBSIZ
T10
51829
FHPAOS
FMPL17
TSACTY
DENXUM
TSRFTN
SLICUP
TS XERR
EXTREG
T19
TlL4
PHFAIL
REQALC
SHAPCK
SPACE4
ALTDEY
TIMEUP
DTIMER
PARBY4
UNPID
LPTRS
TRNYEC
JBCFGZ
FMSHAP
CKUADR
REMLOK
PUTREC
LOCKFL
CEFDTA
EDUMMY
EGHOST
XSHD
SEKIN?P
DASTAT
SHDSTS
SHDCPG
SMDRDR
ITRMNL

1678
0369
176E
0334
09FA
50C8
2641
2463
2898
3130
3158
336F
35€8
3755
3887
38F3
3ACE
3A56
3BEO
3096
3DE3
3F7A
3F7C
3F8E
3F 76
3F98
43F5
44ED
454F
4711
4813
4007
4DB6
4F36
4FCE
5091
51A8
51AE
54DE
54F1
568

TN

)
-/

_

L°92-¢

O

JUB s JOHNsCI D

v

1700 HASS STURAGE UOPERATING SYSTEHM VERSIUN 5.0

*KoP8
¥ASSEN

JaJ
JJJ
JJJd
JJJ
JJyJ
JJJ
JJJd
JJJ
JJdJd
JJdJd
JJdJ
JJd JJdJ
NE R NIRR NN NNN]
JIJJJISIIIIIY
FRRNENNNNER

000000s0000

0080000000000
UB00DoLOLVYDOD
030 0000
0oo 00UoD
oo 000ulo
000 000 000D
000 000 ouOo
000 VoG 000
0300U0D uoo
00000 0oD
0000 000
0000000000V00D
000000000UGB0O
00000000000

HHH
HHH
HHH
HHH
HHH
HHH

O

MASS MEMORY RESIDENT EXAMPLE
DATE OF RUN: 01/30/79

HHH
HHH
HHH
HHH
HHH
HHH

HHHHHHHHHHHHH
HHHHHHHHHHHHH
HHHHHHUHHHHHHY

HHH
HHH
HHH
HHH
HHH

. HHH

HHH
HHH
HHH
HHH
HHH
HHH

NNN
NNN
NNN
NNNN
NNNNN
NNNNN
NNN N
NNN
NNN
NN
NNN
NNN
NNN
NNN
NNN

SYSTEM [0

NNN

NNN

NN

NNN

NNN

N NNN
NN NNN
NNN NNN
NNN NNN
NNNNNN
NNNNN
NNNN

NNN

NNN

MNN

ARNFAC

18-20

G

(07/11/78)

0001

0002

0004
0005
0006

0008
0009
0010
0011

0013
0014
0015
001s
0017
0018

0020
0021

0022
0022
0022
0022

0022.

0022

0023
0024
0024
0024
0024

0024
0024

0025
0026

0027
0027
0027
0027
0028
0029
0030

P00OO
POCO1
P00C2

P00OO3
P0004
P0005
POO0O6
P0O007
POQO8
P0O009
POOCA

o olek:)
PooOOC
POOGD
POOOE
POOOF
POO10
POO11l
P0O12
POO13
POO14

POOQ15
POO1l6
P0OO17
P00O18
P0O0O19

CONTIN

C8FE
6800
004C

54F4
0D66
0007
0000
1004
000D
G0OS5D
14EA

54F4
0966
0007
0000
18F9
0004
00 4B
14EA
C&600
0043

0486
EOQO
0044
1810
0C00

nx

* 4 H B #*

#* O B

CONTIN

REPLY

CHECK

PAGE 1 DATE: 01/30/79
NAM - CONTIN DECK ID CAL INTERACTIVE PAUSE (:)
EXT DUMMY2

EXAMPLE DF A MASS MEMORY RESIDENT
SYSTEM LIBRARY PROGRAM (*M) USING
SYSTEM REQUESTS

THE PURPOSE OF THIS PROGRAM IS

TC READ CHARACTERS FROM THE STANDARD
INPUT UNIT AND RESPOND TO DIFFERENT
INPUT CHARACTER PATTERNS.

IF THE INPUT CHARACTERS HERE

*YES® OR YNO® THE PROGRAM *PNDYES®

IS SCHEDULED :

IF *END® MAS INPUTs THE PROGRAM TERMINATES.
IF ANYTHING ELSE IS TYPED INy

IT IS CONSIDERED GARBAGE

NUH SCBFE FIRST HWORD ADDRESS
STA REL+*2 CORE RELEASE ADDRESS

FHRITE 44REPLY~-*+1,CONMSG—%*+5,CONSIZ, 9696991 (\
. |

JMP - {3EA) . JUMP TO DISPATCHER
FREAD 3F9SCHECK=*+13]1BUF=%+59BUFSIZ9969691s1

JMpP- {SEA) JUHP TO DISPATCHER

L DA IBUF FIRST 2 CHARS OF SCREEN ENTRY
CAE NG HAS NO KEYED

JHP ¥ TRYES IF NOT TRY YES

ENG 0 0 MEANS WO

SCHDLE (DUMHY2)+6 IF S0 SCHEDULE KO aAND EXIT

3-26.8

~

O

0030
0030
0030
0031
0032

0033
0033
0033
0033

0033
0633

0034
0035
0035
0035
0035
0036
0037

0638
0038
0038
0G38
0039
0040
0041
0041
0041
0041
0042

0043

0044
0044
0044
0044
0045
0046

0047
0047
0047
0047
0048
0049
0049
0049
0049

POO1A
P0OO0O18
PoO1C
P001D
POC1E
POOLF

P0O020
PO021
P0022
P0023
P0024
P0025
P002S
P0027

P0OZs8
P0029
P002A
P0028
Poo2C
PO02D

POO2E
POO2ZF
P0030
PO031
P0032

P0033
P0O34
P0035
POO36
PO037
PO038
P0OO39

P0OO03A
PO038
PO03C
P303D
POO3E
POO3F

PO0O40
PO0O41
P0042
P0043

POO44
PO0O45
POO46
P0047

CONTIN

54F4.

1206
FFFF
0152
1800
002D

S54F 4
0D66
7FE1l
0000
1004
0007
0067
14EA

0486
EOQCO
0033
180D
csoo0
0028

0486
EQCCO
002E
1807
cCco1

54F4
1206
801C
1800
0015
€800
001E

0486
€000
0023
1812
€800
0019

0486
EOQO
O01lE
180C

54F 4
0066
0007
0060

X

NOTSHD

TRYES

TRYEND

PEND

DATE: 01/30/79

IF NOT SCHEDULED
JUMP TO RELEASE CORE

49 CONTIN=#+1 4NOTUSG—*+59NOTSIZ 99696941

PAGE 2
SQN NOTSHD
JHP REL
FHRITE
JHP- {SEA)
CAE YES
JHP¥* TRYEND
LDA IBUF+1
CAE YES+1
JHP* TRYEND
ENQ 1
SCHDLE {(DUMHY2) 6
JHP REL
LDA IBUF
CAE END
JHP* ERROR
LDA IBUF+1
CAE "END+1
JHP¥ ERRDR

WAS YE KEYED

IF NOY TRY END

GET NEXT 2 CHARS UF SCREEN ENTRY

HAS S KEYED

IF NOT TRY END
1 MEANS YES .
IF S0 SCHEDULE YES AND EXIT

JUMP TO RELEASE CORE
FIRST 2 CHARS OF SCREEN ENTRY

HAS EN KEYED

IF NOT OUTPUT ERGOR ARD RETRY
GET NEXT 2 CHARS

HAS D KEYED

IF NOT OUTPUT ERROR AND RETRY

FHRITE 49REL=%+1oENDMSG-*+45,ENDSIZs3696991

3-26.9

0049
0049

0050
0051
Gost

cos1

0051
0052
c052
0052
g052

0052
0052

0e53
0054

0055
0C56

0057
gos8

0059

0060
cCel

POO48
PO0D49
POO4aA
P0OO48

P004C
PCO4D
POO4E

POO4F
POO50
PO0QS51
PO052
P0O53
POQ54
PQO55
POO56
PO057
POO58
P0O059
PO05aA

POO0O58
POGSC
PJ050D
POOSE
POQS5F

- PO060

POOS61
PO062
POQo63
POCo4
PO065S
PGOb6
PO067
POQ68
P00b9
POO6A
POO68
P0OOs6C
PO0O6D

PQO6E
POOoF
PO0O70
POO7L
PQ0O72
POO73
PQ074
P0Q75
PO076
PO0O77
P0Q78
POC79

CONTIN

1004
cgoB
0038
l4EA

54F 4
1301
coo¢

S4F 4
CDe66
7FB2
QooL
1004
000F
001lE
14EA
2020
2020
2020
2020
0004
4E4F
2020
5945
5320
45 4E
4420
4152
4520
594F
5520
5245
4144
59240
544F
2043
4F4E
5449
4ES55
4540
000D
5¢ 45
504C
5620
5741
5320
4E4F
542C
3A4E
4F3a
2C34A
5945
£334a

POUT
REL

ERROR

I8UF

ND
YES
END

CONMSG

ERRMSG

PAGE 3 " DATE: 0Ol/3C/79

O
JHP - {SEA) JUMP TO DISPATCHER
RELEAS 0970 RELEASE CORZ AND JUmP T3 OSISPATCHER
FHRITE 49CONTIN=%+413ERRMSG~*¢54EZRRSIZ29y96969,y1
JHP- {SEA) JUMP TO DISPATCHER
ALF *,] * .
EQU BUFSIZ{(*-1BUF}
ALF 24ND =
ALF *9YES *

—.
ALF *y END = . <¢)
ALF *,ARE YOU READY TO CONTINUEa*
EQU CONSIZ{(»-CONMSG)
ALF %5 REPLY HAS NOT 3N0O293YSS3H3END:®

O

{3-26.10

0062
0063

0064
0065

0066
0067

PGH=

POO7A
POO78
POO7C

PQO7D
POQ7E
POO7F
P0080
POO81
P0O082
Po0O83
PO084
Po085
P008S
POO87

P0o088
P0089
POOBA
P008B
POoaC
POOBD
POOBE

008F

CON

2C3A
454E
443 A
00OF
594F
5520
4841
5645
204E
4F57
2046
494E
4953
4845
4420
0008
4E4F
5420
5343
4845
4455
4C45
4420
0007

{

TIN

ENDMSG

NOTMSG

143)

COn

PAGE 4 ODATE: 01/30/79

EQU ERRSIZ(#-ERRMSG) :
ALF ¥ YOU HAVE NOW FINISHED#*
EQU ENDSIZ(*-ENDMSG)

ALF ¥y NOT SCHEDULED*

EQU NOTSIZ{%-MNOTHSG)

END

0000 ¢ c) DAT = 0000 { 0)

3-26.11

¢1-92-¢

CONTIEN PAGE 5 DATE: 0L/30/79

**¥ S Y H B CL T Ad L E *¢¢

BUFSIZ 0055 CHECK 0026 COUNHSG 0059 CUNSIZ 0060 CUNTIN 0022
ERRMSG 0061 ERROR 0052 ERRSIZ 0062 1 0000 13UF 0054
PEND 0049 POUT 0050 REL 0051 REPLY 0024 TRYEND 0043

*LIREDT
L8

IN

*Ky18
IN

*M330y99H

CONTIN 0000 DECK ID CAL INTERACTIVE PAUSE
IN

*7
*KyPU8h
®ASSEM

ourMY2
NOD
TRYES

00u2
00556
0035

END
NOTHSG
YES

0058
0065
0us7

ENDMSG 0063 ENDSIZ

NOTSHO

0033

NOTS1Z

U0obL4
00066

PNCYES PAGE 1 0ATE: Q1730779

gQol NA® PNCYES ODECX ID PROCEZSS NG AND YES

0002 . EXT ounnyl

00C3 PQOQO C8FE NUM SC8FE #IRST WGRD AODRESS

0GC04 PQQJCL 6800 STA REL*2 CIRE RELEZA3SE ADDRESS
P0OQ02 .COLC

0Cc0s PQQ03 Cl5¢ S3In PYES 8> NON O THEN PRICESS YES

GO0o FHRITZ 49CONSCO=3+ L 4NOMSG=2+534N3SIZs9096991

00GCo PQO0Q4 54F4
Q0Qe POGOS OD&s
0000 POQQ6 0007
PQOC7 0000
0006 PQO08 1004
0Qdué PQOO9 COoOC
PQQGOA O001lA
0C07 POQOB l4Ea JMP - {SEA) JUMP TO DISPATCHER
aQ0s CONSCD SCHDLE tOUmMMYl) 46 RE-SCHEDULS 19N POOGRAM
3008 PQOQC S4F4
0008 PQQOD 1206
3008 PQOOQE FFFF X
Q09 POQOF 1806 J mp REL JUMP TO RELEASE LORE
P20Q10 QQO0C :
Qolo ' PYES FHRITE 490UT=2¢)L 3 YESNHSG=2+5,Y2S51259690951
001C PCOLLl S54F4 N .
Q010 POCl2 0QL&6 - -
0010 PQOOL3 QQGC7
PQQL4 000Q
0010 PQOLS 10Q+4
0010 PQUOLld QOQF
POQl7 Q019
COll POQOLl3 1l4€A JRP- (SEA) JUmMP TO DISPATCHER
Q012 ouT SCHOLZ (DUMMYl)s6 REZ=-SHEDULE ®MAIN PROGRAN
0012 PQQlY9 54F4
0012 POOlAs 1208
CCl2 POQls &00E X . .
Qa1L3 REL RELEAS Q4T,50 RELEASE CORE AND JUMP TQ DJISPATCHER
Q013 POQLlLC 54F4 ’
gCl3 POOLO 14801
Q013 POQLE Q0G0
Q0Ll4 POQLF 414t NOMSS ALF 2, ANSHER AGAIN HWHEN REAQYS®
P302C 5357 '
PO021 4552
P0022 2041 ,
PQQ023 474} . °
PQQ24 494E.
PQO2S 2057
PO02&s 4845
POGC27 4£20
PUC28 5245
P0029 4alas
PQQ2A 5820
QC13 cgocC Su NCSIZ(*=NCOMSG)
0Cls PO025 S3«F LF x,YOQU HAYE CONTIMUED » wSLl 30Nc e
, PQQ02C S52¢C - :
POJ2C 484l :

<
m
w
X
w
(4]
> m

PNOYES PAGE 2 DATE: ©1/30/79

POO2E 5645

PO0O2F 2043 <:>

PO030 4F4E

PO0O31 5449

PO032 4E55

P0O033 4544

P0O034 202C

P0035 2057

PO036 454C

P0O037 4C20

PO038 444F

P0039 4E45
0017 000F EQU YESIZ{*-YESHSG)
0018 END

PGr= 003a { 58) C0OM = 0000 ¢ 0) DAT = 0000 ¢ 0)

3-26-14

w
1

N
(o)}
1

—
o

O O

PNUYLES PAGE 3 DATE: 01730779

**x S Y H 13 OL T A B L E #%¢

CONSCD 0008 ODumMHYl 0002 I 0000 NUMSG 0014 NOSIZ 0015 uur
YESMSG 0O0l6

*LIBEDT '
LIs

IN

*Ko18
IN

¥Hy3leesNH
PNOYES 0ULOO DECK ID PROCESS NO AND YES
IN

*7
*CTO2AFTER THE PAUS CONTROL STATEHENT, PLEASE CHANGE
*CTOSSTANDARD IMPUT UMIT TO 4 (#*Ks14)
#CTO,D0 A HANUAL INTERRUPY *2Z
*CTO.AND SCHEDULE *COUNTIN® BY DOING
*CTOsA HI = 54,3046
*CTUyTHANK YOQU
*PAUS

0olL2

PYES

0010

REL

0013 YESIZ

0017

—

O

O

SYSTEM INITIALIZATION
CONTROL STATEMENTS

BUILD SYSTEM LIBRARY DIRECTORY

*Y CORE RESIDENT
*¥YM MASS MEMORY RESIDENT

PROGRAM LOADING

*L . PART 0 CORE RESIDENT -
. epe
*LP PART 1 CORE RESIDENT .
e 1 .
*M PART 0 MASS MEMORY RESIDENT (TO RUN IN
ALLOCATABLE CORE)
*MP PART 1 MASS MEMORY RESIDENT (TO RUN IN
PARTITIONED CORE)
*S PATCH EXTERNALS
*D 7 DEFINE LABELED COMMON BASE

STANDARD UNIT MANIPULATION

s *C MEMORY MAP LIST UNIT
*| INPUT UNIT
*Q MASS MEMORY UNIT
*U READ CONTROL STATEMENTS FROM
COMMENT UNIT
*y READ CONTROL STATEMENTS FROM)
INPUT UNIT ')
DISK UTILITY
*G WRITE ADDRESS TAGS
*H RUN SURFACE TEST
MISCELLANEOUS
* COMMENT CARD
* T TERMINATE
O

3-28

STUDENT PROJECT - 3
~N .
Q Using the core dump answer the following questions:

1. What was the priority of the system when the dump was taken?

2. Is there anything on the Interrupt Stack? If yes, how many programs and
what are their priorities ? S‘\"QG(K Ssrw\\ \<§ ‘\vo -)\r'm % no Qeuu% on s ac(’\

3. Are there any programs wa1t1ng to go into, execution for the first time? q
Setenuie sTack Tpp = $303 Tovad ok Brecspac | peatondB Y [j@ctl‘;’\om ol woicp

W sl
4, What was the contents of the M -Register? \V\"w “ ?"g ¢ of sl 5.
\OW//W\Q' M oA fo prLut (gfho 5\/&4{ v HEQR
5. Have any programs in the System Library been scheduled since Auto Load
time? |5 COMVM%O\A addice Aled o yess ern toan

6. Are there any dummy entries in the System L1brary'p s
pumme wlm& Wheo geckor addices buz W&é A Héua(((/ atend. gee /OFE-7

7o W t d Logi i t th ?
7 hat were the standard Logical Units a e time Qf tﬁ; iﬂggp 7 l,asm) ‘Cﬁ wn & 3

8. From the INSTALL listing draw the core layout for that system.

\oeu \’)\/{3

W\mi 4 L' LJ}J(J V('W

O | MM*”” gtodt
‘ /{){?ff’ HL/;“«UD

dy fubray

9, Was background in Part 0 or Part 1°?

3-29

TN

STUDY.QUESTIONS - 3

(N : TRUE or FALSE
.
1. Run-where-loaded programs can run in PART 0. ; , (,T/ F
[J { 134 Ia ful ,%‘(/ fv '
2. Run-anywhere programs can run in PART 1. m“‘g g //:»,ur'vﬁ’f l“{’f 2 (£y
3. One can not use two word relative instructions in PART, . (H/J 4) T (F
T b 03 il Ul hocend, ,uw" W AN
4. Partitioned core is reserved for background. \(o w2 T (F
‘\ N —
D p . -
5. Background can be in either a.lloc‘a%able or partl%noned core. < @ F
6. Programs in the System Library may be stored in Relocatable O /\
or Absolutized form. Yyt be ahastol L, (A iué“"“' - T (F
/é (/(/L/ {Vb ” /(l/ . NN /
7. We can compile FORTRAN programs in the foreground. T @j

MULTIPLE CHOICE

1. In the foreground we can do the following (choose more than one)

£ (i >‘ \[\ AR 1
COMPILE h\ \ 19y AL lfl\ a\/!!‘ '-'(N) { '?
Load — MA &W U 2 \L (){/‘ _ v
Debug My wrirke ey L

Use the INP/OUT instructions %@1\”“4’"‘""

Add or delete programs from the System Library
Execute

Request space in allocatable core

—

2. Which of the following can be 1n@o’nAecE core_J L
A vy J
T‘fa System Library Programs (*L) ("l TUSHISPILS A

System Library Programs (*LP)
Data Buffers (PTNCOR)
SYSDAT
o) SPACE
@) Background

,U/’ N

3. Auto Load does some of the '_following, which ones?

Sets the protect bits for the foreground
Reads in the Core Resident Programs
Sets up the various areas on the disk
Builds the core image area on disk

e a(efe)

Al 4 c’[ﬂ M: (I

@

Q3-1

Match the following terms with the characteristics that best suit it from the column on the
right (more than one may apply to more than one term).

1. Process Program i 1) \\6 3 ¢ e

2. Job A C D

3. System Library | 3 ? 5) 7C— a. background

4. User A)\(b) 0 € b. foreground

5. Run-anywhere Programs @?)‘ﬁ LL ¢ Partl

6. Theyg-bit 1 (1@ Y d. Part0

7. System Program fb) fo)L e. Priority greater than 2
8. Program Library W, %Z~ f‘

9. . Loader H

N
(//@/ /ﬂl

11. Driver 2 \ c. O

10. Compiler @ s

5

Q3-2

\\ //

LESSON GUIDE 4
SYSTEM FLOW

LESSON PREVIEW:

This lesson will discuss in detail the common interrupt handler, the dispatcher, and the
request entry/exit.

REFERENCES:

Listings of SYSDAT, NDISP, COMMON, and NMONI

OBJECTIVES:
At the completion of this lesson, the student will be able to:

1. Discuss the function and significance to the system of the common interrupt handler,
the dispatcher, and MONL

2. Read system listings.

INTERRUPT FLOW

OpED p

LINE PROCESSOR

Al 4

ey O@PRI-C')I;TT; OF LINE E&:Eéoa II\JCTQEMRha?J':T LINE .
_BIL__(AL_L_IN_) TO | HANDLER ~ | TO | PROCESSOR l
FROM TRAP -~ SAVE RUNNING | ~WHO
PROGRAM
- INTERRUPTED?
- CHANGE PRIORITY OF SYSTEM
' ro|
OPERATING y
sysTEm |EXT Tl priveR
'DISPATCHER'
v - READ
- CHOOSES
NEXT PROGRAM FROM DATA OR
| $ | - SERVICE
ALARM
INTERRUPT | | SCHEDULER (\mTE ReupT)
STACK QUEUE

O

*’f\'\'\ v \’\XXMQLE (8

INTERRUPT TRAP AREA W\a\w\a WleoA\ \ﬁ COM v oY

wier m(p*‘ hawndler.

13F
13E INTERRUPTS MAY BE NESTED :
13D LINE 15 16 DEEP
13¢
4
Y
/ /]
/

~
107 FOUR CORE LOCATIONS RESERVED
106 FOR EACH INTERRUPT LINE:

> LINE 1 . I

105 — WORD 4 — ADDRESS OF INTERRUPT PROCESSOR S;ga catmetys
104 2 — WORD 3 — PRIORITY LEVEL FOR LINE ,
103 — WORD 2 — RTJ TO INTERRUPT HANDLER
102
100 |

J 0

(/UHF M TMT fceUrine .
HARDWARE:

e DISABLES INTERRUPTS

e STORES P OF INTERRUPTED PROGRAM IN
WORD 1 :

e TRANSFERS CONTROL TO WORD 2

SOFTWARE: '

e WORD 2 CONTAINS RTJ TO COMMON INTERRUPT HANDLER For THG ‘M"“"Q"‘Q%J hne
e INTERRUPT HANDLER SAVES REGISTERS OF INTERRUPTED

PROGRAM OVERFLOW AND SETS NEW MASK FROM PRIORITY

LEVEL IN WORD 3, ENABLES INTERRUPTS, AND TRANSFERS

CONTROL TO INTERRUPT PROCESSOR FOR THAT LINE (FROM

ADDRESS IN WORD 4)
e INTERRUPT PROCESSOR OR DRIVER MUST EXIT THROUGH

DISPATCH TO RESTORE INTERRUPTED PROGRAM

4-3

@

COMMON INTERRUPT HANDLER

ALLIN ENTERED FROM TRAP LINE 1-15
(INTERRUPTED PROGRAM)
SAVE
REGISTERS Q R1
(INTSTK) A R2 EXTENDED
EXTSTK | R3 STACK
() P | R4 —
‘ PRLVL
UPDATE
COUNT TOP OF NEXT STACK POSITION

v

SET NEW FROM WORD 2 TRAP

PRLVL | O

EIN +
SET NEW | FROM MASK TABLE
MASK
/
*— — — — — — — — — INTERRUPT CAN OCCUR HERE o
IF HIGHER PRIORITY WAITING- "
INTERRUPT HANDLER WILL GO .,
JUMP TO ON INTSTK N
LINE
PROCESSOR |
) A\e
3 [LINE PROCESSOR*
VIA WORD 3 OF TRAP 2 PRIORITY*
1 | RTY - (FE)
*OF INTERRUPTING PROGRAM 0 .

4-4

~

COMMON INTERRUPT HANDLER

PROGRAM FUNCTION

The functions of the interrupt Handler are to save the machine register by placing them in
the interrupt stack, set the mask for the new priority level, enable the interrupts, and
transfer control to the primary processor for the interrupt line.

ENTRY INTERFACES

Calling Sequence: The program is called from the interrupt trap locations 10014 through
13F14. Four words are used per line.

OP ADDRESS

NUM 0 P-register saved in word one of the interrupt trap location by
hardware.

RTJ- ($FE) Give control to Common Interru\pt Handler.

NUM "level" Priority level associated with this interrupt. A number
between 0 and 15. The larger number corresponds to the
higher level.

ADC "line Line proéessor routine to service the interrupt line.

processor" ’

Entry Conditions: Interrupts are inhibited, and the P is saved in the interrupt trap location
for this line. This is normally done by hardware but a user may simulate these conditions and
generate a psuedo-interrupt. The routine is given control by the return jump following the
interrupt trap location.

EXIT INTERFACES

Exit Conditions: The interrupt handler will exit to the line processor with the following
conditions.

a. The priority level will be set to, the level associated with this interrupt.
b. The mask register, M, will be set to the mask for this priority level.
c. Interrupts will be enabled.

d. The I-register will contain the location associated with the interrupt line; i.e., for
interrupt line, L, I will contain 10074 + 4%*L.

DESCRIPTION

The interrupt handler saves the register A, Q, and I, the priority level of the interrupted Q>
program, and the P-register, by placing them in the interrupt stack. The interrupt stackis a
push-down, pop-up stack with five words allocated to each entry. A maximum of 16 entries is
possible. The registers are saved in the following format.

0 Q-saved ‘ Q register saved

1 A -saved A register saved

2 I-saved I register saved

3 P-saved Overflow

4 Priority level Priority level before the interrupt

After saving Q in the interrupt stack, the address of the current entry to the interrupt stack
is held in ! while A, I, and the priority level are saved in the stack. For CYBER 18 systems,
registers R1, R2, R3, R4 are saved and the setting of the overflow flip-flop is tested and
saved with the priority level. The interrupt stack base counter, COUNT, is incremented by
five to point to the next entry in the stack. The return address is retrieved from the
interrupt trap location and is saved in the interrupt stack. The address of the trap location is
stored in I, the new priority level is stored in $EF and the mask register, M, is set using the
corresponding entry in the mask table. Interrupts are enabled and control is transferred to
the primary processor routine specified by the third word after the trap location.

The mask table, MASKT (located in SYSDAT), contains an entry for each priority level. The (‘\‘
M-register will always be loaded from the entry in MASKT corresponding to the desired -
priority level. Those interrupt lines that may not interrupt a program of level n are said to be

of a lower or equal priority level and their mask bits must be zero for this level and all levels

above. Several lines may have the same priority level.

RESTRICTION

The interrupt has not been acknowledged upon exit. The line processor routine must perform
this operation.

o

COMMON
PROTECT MOVE P
FAULT? TO $0100
SET UP INTSTK PUT $0102
(Q) ——» XQ IN IPROC
(A) ———= XA (TO FAKE INT
OVERFLOW AND ON LINE 0)

PRIVL —= XPL

(1) ——— Xi

UPDATE COUNT

l ENTRY POINT
IN NIPROC

SET NEW
PRIORITY LEVEL
AND MASK

:

EIN

| —=TRAP
- Q—=PROCESSOR .

PROCESSOR
ADDR IN WD3 OF
TRAP)

LIN1V4

LA
@”\&W 2

DA N
RTINS PV I
(0\{\\g : ,u\jﬂrog&y\&g)“(\ W

s ‘&<\ W \\

\l A\
/
|

w

NO @
YES

NO
LINE #
LINE 1
T0Q A |
YES
LN1
CLEAR |
CHKDEVl
PICKUP PDT
———————p| ADDRESS OF
NEXT DEVICE
gnaz ———p
INPUT
- DEVICE SCHEDULE
STATUS =
PRIORITY=4

Q~—~=PDT

CONTINUATOR

U

CONVERT LINE
NUMBER TO ASCII
AND STORE IN
BUFFER

"~

6-¥%

~~
SCHEDULER

< o >TYES BlINTERRUPTED
ENPTY?

NO

O

DISPATCHER

S RESTORE

PROGRAM
HIGHEST T ON TOP

FIND HIGHEST
ENTRY IN
SCHEDULER'S
QUEUE

PRIORITY

- Q >Q\N/TSTK?

SCHTOP

YES

——»<0F SCHDLE>———»

SET NEW
PRLVL

O

EXIT TO
PROGRAM
FROM INTSTK
OR SCHSTK

| 1

NEW MASK

EXIT INT

THRU 4

$ 104

RELEASE
SCHSTK
POSITION

TOPMT

DISPATCHER

INTERNAL SYMBOLS

SCHSTC Routine to initiate a program when taken from the scheduler thread

DISP Start of Program Dispatcher

COMEXT Defined by an EQU and determines the interrupt trap slot location to be used as
a common exit

SCHTOP Top of the schedulers thread

DISPATCHER FUNCTION

Whenever a program terminates, it will give control to the Program Dispatcher*. The
Program Dispatcher decides which program shall be initiated next. It could be a program
previously interrupted and waiting on the interrupt stack, or a program that has been
scheduled and is waiting in the scheduler thread. The highest priority program is then
initiated by the Program Dispatcher and control given to it.

ENTRY INTERFACES
Entered via a jump to entry point DISP.

EXIT INTERFACES

If control is given to the program that was previously interrupted, the A-, Q-, I~, and
M-registers (CYBER 18, R1-R4), and the overflow are restored to their previous condition, as

well as priority level. Interrupts are enabled, and control returns to the location at which the
interrupt originally occurred.

If control is given to a program on the scheduler thread, A will contain the address of the
scheduler thread entry, Q will contain the fourth word of the entry (the original Q in

. scheduler calls, or an error indication in I/O calls, or coreclock ($E8) in timer calls), priority
level and M will contain the mask associated with the priority level, and I and overflow will
be in arbitrary configuration. Interrupts are enabled.

INTERNAL DESCRIPTION

After the program is entered, a test is made to determine whether the priority of the highest
interrupted program is greater than or equal to the priority of highest program waiting in the
scheduler thread. If the interrupted program is to be resumed, the return address is stored in
the common exit and I and A are restored. Then, the interrupt stack base is adjusted down by
5 and stored in COUNT, and the priority level restored into the cell containing priority
level. The mask associated with this level is transferred into M (which restores M), and then
Q is also restored. Control is returned to the interrupted program by an EXI instruction

which enables interrupts and jumps to the address in word O of that Interrupt Trap Region
(Overflow is restored in some systems).

®
Protected programs may also terminate with a RELEAS request which jumps to the
Program Dispatcher.

4-10

O

O

If the program of highest level is on the scheduler thread, the priority specified in the h1ghest
thread entry (the address of this entry is in SCHTOP) is placed into the cell containing
priority level, and the associated mask placed into M. Then SCHTOP is updated pointing now
to the next entry in the thread. If there is no other entry, it contains -0.

Next, a test is made whether the scheduler thread entry was a primary scheduler's request
(i.e., not resulting from a completed I/O call or an expired timer call) and is therefore, in the
scheduler's stack.

If yes, the scheduler stack position is added to the thread of "empties" and the address to
which control is to be given is stored in the common exit. Then the address of the entry is
put into A and the fourth word of the call into Q. Control is transferred with an EXI
instruction which enables interrupts and transfers control to the address in location $104.

If the scheduler thread entry resulted from an I/O or Timer call (that is, it was a secondary
scheduler request), the specified completion location may be relative. If it is, the absolute
address is determined and the address stored in the common exit. Then the third word of the
entry (containing the thread) is set to 0 as an indication that the call is completed and could
be made again. A and Q are loaded and Control is transferred as above.

4-11

AR

- DISPATCHER

i

GET ADDR
, ,) GET TOP
DISP . |—» TOP OF IN1 » 1IN > SCH STACK
STACK (5)
STR AT VES GET PRIOR'Y
COMMON EXIT TOP OF
$104 SCH STACK
RESTORE GET OVFL AND COMPARE
REG “P' FM INT 0 WITH PRI.
FM STACK STACK , INT STACK
l YES +
NEW TOP PLACE NEW MASK GET MASK
INT STACK PRI LEV, e IN "M SETTING FOR
AT CONT AT SEF THIS PRI
LEVEL
STORE UPDATE
EXI $104 ABSO. ADDR TOP OF
AT $104 SCH STACK

THREAD THIS . RELEASE
POSITION ON —— STACK
EMPTY POSITION

)

N

O

O

o

NDISP — DISPATCHER SECTION

RESINT
POINTER TO ves | STORE RETURN
DISP LAST ENTRY ON IIN LOCATION IN
INTSTK TO Q $0104
SCHSTC Y
.SET NEW PRLVL NO RESTORE |
SET NEW MASK vEs | RESTORE PRLVL
UPDATE SCHTOP RESTORE OVERF
Y
UPDATE POINT
TO INTSTK
RESTORE A
\ \
SCHSEC
ADD ENTRY SET NEW MASK EXI
T0
EMPTIES THREAD RESTORE Q THRU 30104
\ y
]
COMPLETION COMPLETION
ADDRESS ADDRESS ENA 0 ':OD";’\R PARM
TO $0104 TOA :
SCHIA ¥ \
COMPLETION ADD COMP ADDR
ADDRESS TOA
TO $0104 15 BIT ARITH
Y
CLEAR THREAD
WD IN REQUEST
\
ADDR
| PARAMETER EXI
TOA THRU $0104
FREEQ TO Q
ADDRESS OF
CLEAR BIT 15
ENABLE DIRECTORY OF WDO REQXT
REQ e
Toa IN DIRECTORY
DISCH
ADDRESS OF SET BIT 15
T0Q IN DIRECTORY

4-13

FOR EXAMPLE:

0022
0023
0024
0025
0026
0027
0028
0029
0030

0031

PO03B
PO03C
PO03D
POO3E
POO3F
POOUO
POOUL
POO42
POOU3
POOLY
POOUS
POOLG

SUFYL
1200
0o04o P
S4Fy
0A00
S4UFY
o401
oobg p
0000
1009
0023
0002 P

GENERAL FORMAT OF A SYSTEM REQUEST

SCHPRT

PRINT

RTJ - ($F4)
REQUEST CODE (RC)
RP | CP |~

D|RC X WORD
(o} COMPLETION
1 ADDRESS

THREAD WORD

Q WORD

RTJ- (S$FW) SCHEDULE PRINT AT PRIORITY 0
NUM $1200 BIFORE EXIT, TO DROP PRIORITY
ADC PRINT BACK TO O.
RTJ- (S$FWD
NUM $A00 EXIT REQUEST
RTJ- (S$FLD
NUM $0401 PRINT,CP=1 RP=0
ADC COMPPR COMPLETION ADDRESS
NUM 0,5$1009,35 35 WORDS ON THE TTY
ADC BUF FWA BUFFER

4-14

O

O

\/ea)xlrwue,

2T SonrT
PROT. OR UNPROT. TO, T1, T2, T4, T6
SCHDLE
READ/WRITE,FREAD/FWRITE
TIMER
INDIR READ/WRITE
MOTION
TEMPT1
T9
PROTECTED ONLY :
SPACE
RELEASE s EXIT
PTNGOR CHEDULER TO CALLER
SYSCHD
DISCHD/ENSCHD
T8
~ NMONI TIMER REQXT
T10 . BIT 15 OF Q:
UNPROTECTED ONLY . 0: REQUEST WAS"
CORE SPACE ACCEPTED
é??:ﬁﬂ_ 1: REQUEST WAS
STATUS REJECTED
EXIT T12
RELEASE
ETC.

4-15

MONI
ENTERED VIA RTJ - (§F4)

GET 10 BEWae HE mmﬂ E@l@ﬁm%@ﬂ¥

WORDS S needs acer puksde Hsell = vel.

VOLATILE |

MOVE SOME
PARAMS INTO
VOLATILE

91~v

BIT 15 SET . [FIND WORD 0
of OF ACTUAL
PARAM LIST

(REQ CAN HAVE

NO ONLY ONE LEVEL
INDIRECT)
GET NO /m
REQUEST |¢ se&c\)&? Y
CODE BIT 15 SET OF RC WORD
YES |
CLEAR BIT {5
GET USE
REQ PRO |e SCHEDULER
COfE REQ CODE
GO TO (I)= VOLATILE
REQUEST (A) = ADDR OF PARAM LIST
PROCESSOR

I+0

MONI GETS VOLATILE
STORAGE FOR EACH REQUEST

RC

POINTER TO PARAM

PRIORITY

RETURN

4-17

VCCP

VID e —$r—Care

7 Ad o(t ol aic\\-e ‘\Og oij*f
VIMP Y&y

VTDS (o - addr
VPTR

VPL

VR

VI

VA

va

MONITOR ENTRY AND EXIT FOR REQUESTS

INTERNAL SYMBOL DEFINITIONS

VR
VPTR

ZERO

ONEBIT

RCSCHD

LPMSK

VITMP

AMONTI

\%

AREQXT

MONI

RCTV

REQXT

O

Relative location in volatile containing the user program's return
address. (Equals 3.)

Relative location in volatile containing the pointer to the user
program's parameter list (5).

A location in the communication region containing a zero., ($22).

The first location of a table constructed so that entry n contains 2n.
This is normally $23.

The code for the scheduler request (9).

The first location of a table constructed such that entry n contains .
2%.1, This is normally location 2.

Relative location in volatile containing the request code (7).

A location in the communication region containing the location of
this program, This is normally location $F4,

The number of words of volatile allocated per request (10). NP

A location in the communication reglon containing REQXT (request
exit), - This is normally $B9.

The subroutine entry point to the Request Entry Processor.

The Request Code transfer vector containing the names T through
T30.

Common Exit for monitor requests,

PROGRAM FUNCTION

User programs generate requests for various functions such as I/O, core allocation,
and scheduling, All of these requests are processed by the Request Entry Processor.
Its function is to reserve volatile storage, save the registers A, Q, P, and I in
volatile storage, and give control to one of the request processor routines Tj...T3(0,
depending upon the request code, RC, in the user's calling sequence,

4-18

O

O

ENTRY INTERFACES -

Entered from protected programs as a result of a monitor call. Entered from unpro-
tected programs via IPROC.

EXIT INTERFACES

The Request Entry Processor gives control to the request processors, T through T30,

with specific information in the registers.,

assume the following:

REGISTER

A

LOCATION
O +o0
@ +1

@ +2

() +3

() +4

(I +5

MNEMONIC

VQ
VA

VI

VPL

VPTR

Each request processor upon entry can

CONTENTS

Aj4.0 is the location of the parameter
list. I Ajg5 = 0, then the reference to the
parameters in the call was direct, Other-
wise, Aj5 =1, and the reference was
indirect (an INDIR request).

Absolute address of the request processor
being executed.

I contains the location of a ten (10)
word block of volatile storage.

- The user's Q-register is saved here.

The user's A-register is saved here.

The user's I-register is saved here.

The return address of the user, If this
was an indirect call, then the return
address has been incremented by one (1)
to give the correct return address.
Otherwise, this was a direct call and the
return address must be adjusted by the
request processor.

Not set by the Request Entry Processor.
Intended to hold the request priority level,

The location of the user's parameter list.
This is in the accumulator A, See dis-
cussion of A above,

4-19

LOCATION

(I + 6

(I) + 8

(Iy + 9

MNEMONIC

VTIDS

VTMP

VID

VCCP

(Continued)

. f\)
Not set by the Request Entry Processor. &’
It is intended to contain the top of the
stack for the desired logical unit.
A temporary storage cell containing the
request code, RC.
Control Point Number (ITOS)
o
N

4-20

RETURN TO REQUESTER

Control will be returned to the next instruction with the registers A, Q, and I
restored., Overflow will not be saved, Interrupts will be enabled and the priority
level will be the same as upon entry, '

INTERNAL DESCRIPTION

The Request Entry Processor handles all monitor requests made by the user program.
The user enters the Request Entry Processor via an indirect return jump to MONI,
The Request Entry Processor inhibits all interrupts, saves the 'user's registers Q, A,
I, and return address in an area unique to this request, and then enables interrupts.
The Request Entry Processor is re-entrant beyond this point, and works only with the
data area unique to this request, The I-register is used to hold the address of this
unique area which is called volatile storage. The location of the parameter list is
then stored in volatile, If this request has an indirect reference to the parameter
list, the return address to the program is adjusted to return control to the next
sequential instruction. If this indirect call was made as the result of the completion
of an I/O operation, the registers are adjusted to make this look like a scheduler
call since the request code in the user's request parameter list may not be altered.
Control is then given to the request processor specified by the request code.

RESTRICTIONS

The I-register must be conserved throughout the request processor called since it
contains the address of volatile storage. Each request processor must be re-entrant
since it runs at the requestor's level, When each request processor finishes, it
must return the volatile core storage by jumping to REQXT.

Label Op Address
JMP - (AREQXT) Address of request exit.
REQXT is contained in
AREQXT.
NOTE: The "MINI MONITOR REQUEST ENTRY" is identical in every way with

this module with a single exception: it is equipped to handle only
13 requests.

4-21

MON!

[/ VOLA __\

MONI

GET 10 wDS
VOL SAVE QA,I
I--VOLATILE

SAVE, RETURN, VR
PARAMETER, VPTR
COMPLETION, VTDS
WDO, PTRS, VPL

INDIRECT

NO

BIT SET

ON EXIT FROM MONI VOLATILE STORAGE CONTAINS:

vQa
VA

Vi

VR
VPL
VPTR
VTDS
vVTMP
VID

vcee

CALLER'S Q
CALLER'S A
CALLER'S |

RETURN (1ST WD AFTER CALL)

WD 0 OF PTRS

ADDRESS OF PARAMETERS

WD 1 OF PTRS

REQUEST CODE

INDIRECT FLAG

(1) POINTS TO VOLATILE; (A) POINTS TO PTR LIST

4-22

REPAZ

UPDATE

RETURN
SET VID

PARAMETER POINTER

ASC *

UPDATE
COMPLETION
CALL

CLEAR SECONDARY
FLAG;

FORCE SCHEDULE
CALL

MSECA {

SAVE RC IN VTMP
A—= PARAMETERS
| —=VOLATILE

TO-T30

REPA %

CLEAR
viD

REPI|

UNPACK
REQUEST
CODE

IF SECONDARY SCHEDULE; CALL RC#

O

e~

O O

T16
ENTRY POINT T16 ENTERED ONLY FROM MONI ON PART 1 INDIRECT
REQUESTS. _—
| ARURESTS.
EXTERNAL ASC ~ ENTRY POINT IN MONI.

YES

FIRST

INDIRECT

UPDATE
RETURN
SET VID

UPDATE POINTER
TO PARAMETERS

{(VTDS VPTR)

A —3p NEW PTR

LIST

$H3LSID3Y
SHITIVI NHNL3Y
ITILVTOA ASV3IT3H

. \ Y10A /

ET TE R
anvs € NI 1X03Y

ERNLF R NI3

4~24

STUDY QUESTIONS - 4

il (FREF)

1. How can you tell if the scheduler stack is full? TC s ,r Free Uit &‘LD’U

2. Define primary and secondary scheduler request.

P veaitins W v schedubs Svack Whow con e 1) eee @b (?
e s

>

g 3
< A = -t P w
A Sompwtite eli % Aoud et adhcd b Koo Lysh
4

3. How can the DISP tell if a scheduler request was primary or secondary ?

'

! ‘ Vo ¢
iF Aoy, 15 with boumdares of sdhed chuck Man =|°

4, What are the functions of the Common Interrupt Handler?

(' i 6‘1"1(1 |
\QO(/M,Mf Hol O A e
Swe < /xa } U MI?Y\OV\LU (gl UM

oA WAL] \“(

my To Cotack proasol
5. What interrupts are recogmzed on LINEO and what action takes place for each”

\Qz)«u x Vol Wéw» Lyvpr. L \C % Crad el wiif W‘«H g LY
bl i) 0 C4
montbor ascuames DSA mmw , 0

6. Why does a Request Processor need to exit through REQXT ?

N@eob U«)&(L‘l(ﬂ« { ' i oA ‘ &‘ X
i \ 3) Pyt e s N ”"»‘ '\"/ {]
Wf&b %‘y‘? (,(’_,Q.(;: coie. Veta (b (,{Lf:;.b COmpLi iy TA"'H \ /

,L(/(< ALt M«() i\ ('\U'Q/ 7 asdts (00 FD ;o
\7\/‘0&(/# ?Mk UJ% &3(06 o’ 4 Z P }‘?'// p/ ’Z‘["é’/ /{/([lLV?f’\ﬂ /Hﬂﬂt

s e e

U)% {)‘v’O »Lj(“;(' \, HLedlE 8

(04 ¢ -

, Ly TS L \(
Mo~ 'Somd@t% LYoy 7 =7

e ol Sasaths movory pokd
\

ot

~ . 5;;: T { Y 3 [U I “\.a .
hine @ mQ wloo @0 e 6 (\
O o L plon AR e oo
ﬁ U(d ; . i) .>

[EPERY
DR sy m,, _/’\/-,.u{ WrtHs

| Vires e LEDM

Q4-1k

—

LESSON GUIDE 5
SCHEDULER

LESSON PREVIEW:

The basic functions of the scheduler will be discussed.,

MSETes \TeEme 0N ScdeVUlEL ‘b”\“\(\-c—k'

. A
SO{’S“‘\\L-‘Jwi"”Q‘/ \V\(‘*e(‘(f&k/{? “‘ \{\' W L(Q/\\ﬂﬁ (C) ‘ YDVLQ(I{—Z((.
com sod . otdunals
adwzses
REFERENCES:
Listing of scheduler, T9. O rAagl (CCQ.((/L’ D appr. \n Sys (_,tbm;,,q
ochvndl cam op SM/ 2n 3&(\[g \g_,(_(/@v 14
TRAINING AIDS: e, sre Bpa) wor) Nous .
ﬂ Ay Kﬁﬂ?ug\\“ t'v\\nD coin. Cdwn (Q,c_ :_Cua()
oy Al
PROJECTS:
OBJECTIVES:

At the completion of thi_s course, the student will be able to:
1. Determine the 'events generated by S'CHDLE.

2. Discuss the significance of the scheduler in MSOS,

FROM MON!

T9

NO

cp >
PRIORITY OF
CALLER?

PRIMARY

STACK
POSITION
AVAIL?

BIT 15 SET

IN WORD 1
OF PARAMS

YES

COMPARE
CP = PRLVL

CK TOMPT

INTO SCH STK

MOVE PARAMS

Y

K

SCHEDULER
THREAD

-

THREAD ONTO

SCAE DS~

ORIGINAL
USER Q!

VIA REQXT

EXIT TO CALLER

DIRCAL

SET CP INTO
SYS DIR

ALREADY
THREADED?

DISABLED

HILVL

YES

PUT REQXT ON
INTERRUPT STACK

Y

SET NEW
PRLVL +
M MASK

\j
JMP TO
SCHEDULED
PROGRAM
(SOFTWARE INTERRUPT)

PARTITION . K65COR

1

I

|

SCHERR |
I

SET USER'S P RW
BIT 15 OF Q O —— REQ PROC
TO NEGATIVE I e
|
MIGHT BE -
USER PGM SPAC
OR DRIVER
INITIATOR

TOMPT IS TOP OF
EMPTIES

SCHTOP IS TOP OF
SCHEDULER Q

\g_ sehed.

[lea, € booo
sdh @ Uooo
4 -—2A 00Q E—

Yo o &@&5\
4 Q : - (omp SFFE ‘?/7 =4

X @&6&« A

Q=1 6ovo

w5 Eooo
rSFEFF

T gFEr

e o

“io00

O

SCHEDULER

SYMBOLS

T10 Entry point of SPACE request

SCHTOP Location in NDISP containing location of top entry in schedule stack
FUNCTION |

In a given system, numerous requets for the execution of programs at specific priority levels
may be generated. Specifically, these requests are generated when:

a. anl/O ;equest has been completed,

b. a specified time interval has elapsed,

c. core has been allocated,

d. System Director SCHDLE request has been executed.

These requests are called Secondary Scheduler Requests. Requests may also be made by any
program directly. They are called Scheduler Requests or Primary Scheduler Requests.

It is the function of the Scheduler Request Processor to:

a. cause the immediate execution of a requested program if it is of a higher priority
level than the requesting (current) program, or

b. thread the request by priority and within a priority by first-in-first-out, if its priority
is the current priority.

If the requested program is mass m'emor'y resident, the Scheduler Request Processor will
cause allocation of core for this program and transfer of the program from mass memory.
After the program has been transferred, a Scheduler Request is made, which results in a. or b.
above.

Whenever a program terminates, the Program Dispatcher will select the next program to be
run, either from the top of the scheduler thread or the interrupt stack.

ENTRY INTERFACES

Progrm is entered from the Request Entry Processor. The calling (requesting) program must

have interrupts enabled.

5-3

EXIT INTERFACES

-
The program exits either to the requested program (completion address), if the level N
is higher than the current one, or to the request exit,

In the first case, the priority level, I and the return address leading to the request
exit are saved in the proper positions of the interrupt stack and its base adjusted,
A, Q, and I are saved in volatile, which is not released until the requested program
terminates, I contains the base of volatile storage, when control is given to the
requested program.,

Interrupts are enabled and the requested priority level and mask set,.

In the second case the request has been threaded, Control goes to REQXT to restore
the registers for the requestor and enable interrupts.

INTERNAL DESCRIPTION

All Scheduler Requests are identified by the request entry processor, which also
allocates a sufficient amount of volatile storage for reentrancy purposes. Then con-
trol is given to the Scheduler Request Processor (Symbol T9)., Interrupts are enabled
and I contains the base address of the allocated volatile storage. Volatile is
organized in the following manner: ' :

(Iy + 0 contains Q (\
(I) + 1 contains A ' -
(I) + 2 contains Priority Level of Request
(I) + 3 contains Return Address
(I) + 4 contains.I
() + 5 contains Pointer to Request Parameter List
(I) + 6 contains First Word of Request (Temp.)
() + 7 contains Second Word of Request (Temp.)
) etc.

First, the return address is adjusted by two locations unless the call was indirect, in
which case it had already been-adjusted by the Request Entry Processor., Then word 1
and 2 of the call are stored in volatile temporarily, If the call is a directory call
control is given to DIRCAL. If not a directory call, a test is made to see if the
requested program is of higher level than the current one, in which case control
transfers to HILVL.,

Otherwise, a test for a primary call (SCHDLE request) is made and only then, if it is
not a directory call, not of a higher level and not a secondary call, is a position in
the Scheduler Stack obtained and the request transferred from volatile (I) + 6 and

() + 7 into the stack,

The current priority level and I are saved in the interrupt stack and the interrupt

stack base address count is incremented by @ The request exit is stored as the

return address since upon return from the program volatile must be restored as well C‘:
as A and Q. Then the requested priority level and the associated mask are set and

control is given to the new "GO TO" Address.

5-4

O

@u GMCJO‘ 8

SCHEDULER STACK

AFTER AUTOLOAD

SCHTOP = FFFF

TOMPT = 1000

Q

THREAD

ADDR

RC=9 CP

0
FEFF
0
0
1018
0
1014 0
0
1014
0
1040 0
0
1010
0
100C 0
0
100C
0
1008 0
0
1008
0
1004 0
0
1004
0
1000 0

5-5

SCHTOP = {000

 TOMPT = 1014

Q

THREAD

ADDR

CcP

ol

2]
"

©

1008
1018
1010
1014
1048
1040
Q
1004
PGM
100C
FFFF
1008
Q
FFFF
TAG
1004
Q
100C
ADDR
1000

5-6

@

®

UPDATE RETRN ADDR
MOVE REQ PARM TO
VTPE, VTMP

CLEAR THREAD
IF SECONDARY

CALL

ABSOLUTIZE
COMPLETION
ADDRESS

Y

DIRECTORY

GET ADDRESS OF
P» SYSTEM DIRECTION

CALL

PUT REQXT
ON INTSTK
SET NEW MASK
-AND PRLVL

ABSOLUTIZE
COMPLETION
ADDRESS

FREEQTO Q
ADC PARAMETERS
TO A

COMPLETION
ADDRESS

EMPTIES THRD

MOVE REQ PARM TO
SCHSTK UPDATE
EMPTIES THREAD

e

STORE FREEQ
THREAD ENTRY
TO THREAD OF
FULLS

!

SET USERS
Q POSITIVE

REQXT

SCHED2

SYSFAIL

5-7

ENTRY

Y

CLEAR THREAD
IN REQUEST

IF SECONDARY
CALL

SCHED
DISABLED OR
THD #0

SET comP
PRIORITY IN
DIRECTORY

& SET USERS Q
POSITIVE

SCHED2

MOVE FREEQ
TO DIRECTORY

PART1
REQ

K65COR

SAVLU
(a=1)

TN

9

o

O

LESSON GUIDE 6
INTRODUCTION TO SYSTEM I/0

LESSON PREVIEW:

This lesson covers the Physical Device Table, LOG1, LOG1A, and LOG2 tables. The T/W
Request Processor is also discussed. Emphasis will be placed on dump a.naly51s as a method of
determining the state of a given peripheral device.

REFERENCES:

Chapters 1 and 2 of Software Peripheral Drivers RM
Listing of SYSDAT and RW

TRAINING AIDS:

PROJECTS:

1.

2.

Student Project - 6 °

Study questions - 6

OBJECTIVES:

At the completion of this lesson, the student will be able to:

1.

2.

3.

4.

Understand the function and purpose of Physical Device Table, LOG2, LOG1A, LOG1.
Find the Physical Device Table in a dump for a particular logical unit.
Interrupt the information in the dump concermng I/0.

Understand and discuss the major functmns of the RW processor.

6-1

SYSTEM STANDARD LOGICAL UNITS

LUN 1

LUN 2
LUN 3
LUN 4

LUN 6
LUN 7
LUN 8
LUN 9
LUN 10
LUN 11
LUN 12

SPACE DRIVER

DUMMY

DUMMY

COMMENT DEVICE

MT

PSEUDO TAPE MN(Tape S\mu,@ax'(ﬂ('
LIBRARY UNIT

PRINTER (LIST)

CR (STANDARD INPUT)

STANDARD OUTPUT

FORTRAN LIST UNIT

6-2

@

PHYSICAL DEVICE TABLE

Each device has a physical equipment table that contains the interfacing information
specified by the user to the device. It contains the eniry adresses to the driver
responsible for operating the device, the station address that tells the driver which
device to use, and the information which allows the driver to fulfill the current
request, The table contains at least 16 words for a device, Words 0 through 15
have a standard function for all devices, Additional words are added for use by the
output message buffer package and special use by drivers, Drivers written in Kernal
form have an additional eight specified words (words 16 through 23), Additional
words for these kernal drivers begin at word 24,

The physical device tables are included in SYSDAT (the system and parameters
program).

6-3

A PHYSICAL DEVICE TABLE Q
7. o & ¢
W ° Y
Qé‘f TR z\\)
N\
J . =~ {é; , R)3&? \}43-“ ;\L . ‘\))\}J
¢ RO SN
‘ X & R N 5@ jEy
{s
_
g O 11 10 9l 8 7 4 3 o S¥YMBOLIC
WORD [NAME —
0 1(o1oo1ooooo ELVL
1 DRIVER INITIATOR ADDRESS EDIN
el odiwe, = 2 DRIVER CONTINUATOR ADDRESS EDCN
o W = v
haue Snte 3 DRIVER 1/O HANG-UP DIAGNOSTIC ADDRESS EDPaM ©'¥RO4 Yime oud
— address |
Vol e W gec sVo
4 U Uon ok cau DBAGNOSTIC CLOCK —wf&e?oc 37 | EDCLK
\ 5| LOGICAL UNIT CURRENTLY ABSIGNED TO THIS DEVICE | ELU STANDARD
RUW ntesset W A FOR ALL
VPR E S, To kg CURRENT REQUEST PARAMETER LIST LOCATION EPTR DEVICE
"‘”"’Q‘& @ / 7 CONVERTER | EQUIPMENT CODE | STATION CODE | EWES
> Glied o '7 8 REQUEST STATUS BITS EREQST
Fud o ”\ wust g STATUS BITS ESTAT1
P (o
10 CURRENT LOCATION FOR DRIVER ECCOR !
:\? P
o3 11 LAST LOCATION +1 FOR DRIVER /Zﬂ(g/ | ELSTWD y
NNE__ g T . -y
N . LAST EQUIPMENT STATUS READ ESTAT2 fast Arewrelerres
k) atelica -
3 DRIVER LENGTH MASLGN
wed ”‘C‘& ‘6 [1 MASS STORAGE ADDRESS OF DRIVER MASSEC
£ e
y ok 15 USED FOR RE-ENTRANCY BY FNR, MAKQ, COMPRQ | RETURN !
Maa rerte . Y
OPTIONAL BY
DRIVER

7) OJMU)’“L a 6(./&6(/)

f\(\(\zu(d‘ﬂ alyo wu’”& o e

8) (QQuM‘ /0+0XMG W w\«a\ms lnva rtRues

7

cumently f\ivmk .

& @ia&-lm .
|

6-4

O LeG4A [LARGEST LEGAL LUN
PHYSTB ADDR FOR LUN 1
PHYSTB ADDR FOR LUN 2

PHYSTB ADDR FOR LUN 3

2
PHYSTB ADDR FOR LUN N

-

LGG { LARGEST LEGAL LUN ubxfﬁf/
ALTERNATE FOR LUN 4 | drece

scllol on
ALTERNATE FOR LUN 2

\H 5\’\6 (’0\ 0 \

B tpown” B ALTERNATE FOR LUN 3
01“”((’ , g '
\ = vt
| Yewa ALTERNATE FOR LUN N
§ down 2y 1234 X e 2\
ISR <\\C\' o R P g AT e
LOG 2 LARGEST LEGAL LUN
SUC\QMUJ ‘mac TOP OF THREAD LUN {
e caden U TOP OF THREAD LUN 2
NMMQ((AQ TOP OF THREAD LUN 3
i ¢
TOP OF THREAD LUN N

LOGICAL UNIT TABLES

6=5

i\
\
A .E_
s 2
e
=

FOR EXAMPLE:

0013
0014
0015
0016

0017
0018

POO2F
P0030
PO031
P0032
P0033
PO034
P0O035

S54FL
0201
0038
0000
100¢C
0028
0002

READ/WRITE REQUEST FORMAT

RTJ - ($F4)
RC =
01D} 1246 |X]|RP

o | | zﬂéﬁ

COMPL ADDR 2
f\ét‘
THREAD 0
oj{0 O
ERR Im{o A | LUN
11 o (O
9 NO. WORDS (n)
o ,
9 < Fwa)]
‘; MY)
/ ' g
START | RTJ- C(S$FID INITIATE FREAD
S NUM $0201 READ, CP=1 RP=0
P g ADC COMPRD COMPLETION ADDRESS
NUM 0,%100cC THREAD,LUN CR=12,ASCII
NUM Lo ONE CARD TO READ
P ADC BUF FWA BUFFER AREA

6-6

PROCESSOR FOR READ, WRITE FORMAT READ, FORMAT WRITE

C" ENTRY INTERFACES

The Request Processors (T0, T1, T4 and T6) are entered from the Request Entry
Processor with the A, Q and I and Volatile set up as shown below,

REGISTER CONTENTS .
A . A14-0 is the location of the parameter
list., If A15=0, then the reference to

the parameters in the call was direct.

Otherwise, A, _ = 1, and the reference

15
was indirect.

Q Absolute address of the request processor
being executed. |

I , I contains the location of an 9-word block

of volatile.

VOLATILE STORAGE MNEMONIC

O

0 vVQ Q saved by Request Entry}Processor.

I +1 VA A saved by Request Entry Processor.

I+ 2 VPL Used to hold request priority level.

(I + 3 VR P-register saved by Request Entry Proces -
sor. If indirect all, P is already incre-
mented by 1 for proper return address.

I+ 4 VI The I-register saved by REP.

(I + 5 VPTR Used to hold the user's parameter list
location, also in A above.

(I) + 6 VTPE Used to hold the preceding thread location.

@+ 7 VTMP A temporary used to hold logical unit
number.

(1) + 8 VID

EXIT INTERFACES
Exit to the Driver:
C The driver will be scheduled if the device associated with this logical unit is not busy.

The Q register upon entry to the driver Initiator will contain the location of the physical
device table entry for the device. ”

8-9

don

JUrnp
Table v~

MONI

R/W THREAD
B4 REQ [—P LOG2
PROC. TABLE

READ/WRITE we

ih&\m:c&
REQ. PROC. achedd
f,f@;wﬁ'

)

SETS WORD
5 PHSTAB

!

SCHEDULE
DRIVER

INIT
/Vﬂﬂm r

P

y REQUEST

EXIT

C

Exit to the User:

The request processor returns control to the REQXT where the volatile storage is
released and control is returned to the caller.

Upon return to the user, the registers A, I, and Q4.9 will be restored. If Qj5=1,
the thread location in the parameter list is not zero, implying that this request is
already on some other thread. In this case, no action will be taken on this call.
This action is apparent only to protected callers.

Scheduling of the Completion Address, C

Control will be returned to the Completion Address C at level CP when the I/0
requested has finished or if the device is down and no alternate exists. Q will con-
tain word 3 of the parameter list. The high order bits of Q will contain the error code
V.

INTERNAL DESCRIPTION

Requests are threaded onto the logical unit according to Request Priority. If the as-

sociated device is not assigned to a logical unit and is operational, the driver for

the device is called; or, if the device has failed and has no alternate, the completion

address is scheduled with an error code indicating failure returned to the completion

address. Subroutine ALTSUB, in the Alternate Device Handler, is used to obtain the
alternate logical unit if required.

NOTE: THE *MINI* RW PROCESSOR* module is identical to this module,
If the *MINI ERROR PROCESSOR* module is used, ALTSUB simply
returns to the caller.

REQUEST CODE ZERO

The zero request code is used to cause mass storage reads which result from SCHDLE
requests. For example, if a mass storage resident program is scheduled, the SCHDLE
request processor passes the system directory entry to the SPACE processor for alloca-
tion of space. The SPACE processor then passes the system directory entry to this
processor to effect a transfer of the program from mass storage. The apparent request
code carried in the system directory entry is zero.

6-9

CHECK THREAD
WORD IN
REQUEST

'

%&UO (A)D(%ﬂ) GET LU#

Ww (@Q@L@XF

UPDATE RETN
IF NECESSARY

‘f‘(y&qa dw% Mﬁ«,f{mﬁ C’\W f(f‘i
e, alforator

copuok e o NO I

C\
t .

-)
e

THREAD TO
LOG2 TABLE

OUTPUT SCHEDULE
MSG ———» COMPLETION | .
LU X DOWN ADDRESS v \
RS
mg;w\ cho,
REQXT

DRIVER
BUSY
NO

SCHEDULE
DRIVER

REQXT

)

6-10

PARAMETER
ADDRESS
TO0Q

T0,T1,T2,
T4,T6,RW

UPDATE
RETURN

R1 /

REQUEST PRIORITY
TO VPL,
RCTO A

EIN

DIRECTORY

RWUSER

KTHD

CHECK THREAD WD
' ACCEPT REQ
F ZERO

LUABS
RETURN WITH
LU#INQ

SAVLU

Y
A

LIBRARY
LU#TO Q

<

WD8 POT B LU# TO
o vTMP
viDTO Q

CLASS CODE

INDIRECT
= MM CODE

REQUEST

\d

ADC PTRS
TOQ

STARTING

A

HDSTR

6-11

ADDRESS
INDIRECT

R2

UPDATE
RETURN ADDRESS

()

ADC PDT
TO Q

1IN

ELU

RELESV

REQXT

YES

STORE ORIG
LU IN ELU

_SCHEDULE
DRIVER

CKTHD

EIN

SET THREAD
WD=-0

CKTHD

1IN

'

CLEAR BIT15
USERS Q

THDUSE

RETURN WITH
LU#IN Q

UPDATE RETURN
IF MM AND

MM ADDRESS
FOLLOWS RETURN

6-12

THD

SET CALLERS
Q NEGATIVE

‘REQXT

)

)

THREAD CHANGED

NO

ADC LOG2 +LU-2 o 1N SAVE Q
TO Q REG - REENT
THONXT ¥
POINTER TO
PRECEDING ENTRY
(Q) TO VTPE
REENT —» Q
\
EIN
y
POINTER TO POINTER TO
f{;‘éif IIN TOP ENTRY NEXT ENTRY
TO A TOQ
REXT ENTRY RP OF NEXT RP OF NEW
T0Q ENTRY TO A > RP OF NEXT

RCTHD Y

THREAD REQUEST
BETWEEN VTPE
AND NEXT (Q)

EIN

LU#TOoQ

ALTSUB

RETURN WITH
Q=LU OR ALT
Q=0 DOWN

6-13

BW

CLEAR THREAD
IN LOG2

LOG2+LU = -0

STORE ASCII LU
IN
DWN MSG

10 -
REQUEST
BUSY

NO

YES

GO1

BIT8 WDON\YES
PDT SET

LU#=IA

SET BITS8
WDO PDT
(MSG FLAG BIT)

SET ERROR BITS
IN V FIELD
OF REQUEST

6-14

RETURN WITH
ASCIHl FOR LU
IN A

comp
ADDRESS=0

‘CLEAR REQ
THREAD

SET SEC FLAG
(BIT 15 WDO
REQUEST)

!

N

SCHEDULE COMP
Q=COMP PTR

)

STUDENT PROJECT-6

Phyp et =7 cworo V-

From the dump, find the last status taken on the line printer, what does it tell
you? ftOO‘xQ'—' FOP React '(nr JJ o R ea
(3 d(} C«{A \Oé (’\ 15 “0 rr’(‘

Was there any 1/0 in progress when the dump was taken? Aooon <0 élga e

What is the maximum logical unit number in the system? $ \i8 ' \\:\(:g‘lf.ﬂ
o

i . E ‘C\'i\}’j W
Are there any shared devices? Which ones are they? \
’)

Dy T MAY TRES) LWE pewkel

Are any dev1ces marked down'> 0 .
atoo‘« Sov oo G or 1% O\OUJS? WA aqe Writlow sehe ok R o 7
What is the Alternate device for the comments device? |

Is the driver for the line printer core resident m this system? If not, was it in
core when the dump was taken? P»\lﬁi\rd/() gg \y‘.ﬂ_ \orm ﬁer -> lwb({\lf wWorn= 0 ﬁ\'xm

(A%
What is the address for initiator portlon of the system dlsk driver? ot v

6-15

O

Yo Yo cllech M eree

p‘/aj) "ﬁ" - ‘-’VV\ .

STUDY QUESTIONS - 6
O

1. How can you tell if a driver 1_5 busy? ELU Len o\ ww\‘ woed - C(\SO \@Q& W\\WJ\' L
W 1s pvoces singy or Roak voq. Sek by RO priocesser. .

2. How does a driver get put into execution?

STLEOULED By RW YeQuest pyocgssor el

3. What is the function of the LOGI table? LisTs ACTER nales foraw device . N2fls

. IF LU powwn [up/swarE0.
4. How are requests ordered in the LOG2 thread?
REQRUEST Pryowi Ty [t RP F\Fo 1

5. ° What happens if a driver is working on a priority 0 request and a request of priority 10
is put in the LOG 2 thread? DrwER FIMSHES REQUEST gl prionty O n
qoes Yo work on prory Jo RERUEST .

6. How can a driver be busy if he can be executing aztl your program can be making o &
requests to the system? (g prver \S acrue tr Wae wenk o Aata ans Yer \s
Uy Over way qo he puenTUiE To gllowd oTHEr prRoGrawms TO van .

7. . How does a driver know when the operation is complete?

TGET Epp ofF PERATON ANTERRuet (FLiq)
9 8. At what prioirity does the RW processor run?)
BT ShmeE P\’&\OW"Y VYs Yo P ROq RW N
9. How many times is MONI entered due to a RW request and why? A

10. Does RW set any words inxihe PHYSTB? If so, under what conditiorﬁ? .
SET &Lt To \ndiwade oo (eQueeh) HeTluw on ek Aevice

11. If RW does not schedule the driver, how will the driver e‘(‘er get into execution to fi;:d
our request on LOG2? \3noier requat o +he parvicedge oo wenll -
a a\vxq’(’o scRedutle. alr Aviver. Yo wnwy/ may ot |oose orginal nzazug‘\"
Ov 12. How does the RW find the driver's address so that he can schedule it?

Lagia =2 PHysTHRB woro 4 which tonkams Ariver inibiator addrecs,

lrg\\vx@ on \-z?(o ,,w!: “W«reaak

) wen driver 1o Vbusy can wever \Y‘S‘.&(SV ﬁ“"‘%}\
e lop & Weaak 1 coauent oawy Trandled

> \>. CALLS wonm ol only | C‘_’awx 3 Aiklewent \O\aw
) Schheduls Yo Avwe

1\“\3@ \})\}) 2) S hedade. com ()\Szwinow /é]dél(ess ok prog et 3«&06/ d vaces l C&éyh
l// A : aboried

@@‘ 3) Pert L down Wesderges . sclodule, L& Aown wassage

3

\\‘0(

/LAAQ& /MZ-»W‘@%S Druer LMM adlees 0-(.Q_.)iecu!”'UQJ w{/\o i@kes Cav e

OQ 5</Q{JMJQ*V‘3 ‘\'p\g, Avwie .

Q6-1

s

Q

LESSON GUIDE 7
DRIVERS

LESSON PREVIEW:

4

The lesson will introduce the general structure of a driver under MSOS, ' The class

will study the subroutines provided by the system for all drivers and will examine
an example driver, ’ ‘

REFERENCES:

Software Peripheral Drivers RM Chapter 1 & Z/MSOS 5 pp. 2-8 and 2-9, Appendix C
Listing of a driver

TRAINING AIDS:

PROJECTS:

Study Questions=~7

OBJECTIVES:

At the completion of this lesson, the student will be able to:
1. Discuss in detail the structure of a driver under MSOS.
2, Discuss in detail the functions of FNR, COMPRQ, MAKEQ, ALTDEV.

3. Trace the flow of events as a result of an I/O request.

7-1

=L

pot
o
MAKEQ COMPR
L S o S S — .
|] 1! |
| ERROR BITS 1! CLEAR LUN |
| WORD 9 &(0,(77 1| Womo 4wy WORD § — |
| PHYSTB [- PHYSTB .
| | [
| 4
i ¥ } N i I v 2
| i .
| DEVICE ERR N | " PUT ERR BITS CLR BIT 15 I INITIATOR (Entered by being scheduled)
OT READY ! IN REQUEST PHYSTB <
| BIT 15 SET BIT 13 SET | WORD 4 WORD 8 -« | (Q) = PHYSTB
| : | I » DISP
1 |
] For Q CP Complete
: Y $: ! FM PHYSTS 4 : REQUEST SELECT
Word 9 FNR SET CLOCK > == DISP
| SHORT READ -~ tw:+;uP§T IN (! Loy comp SCHEDULE | FOUND? INTERRUPTS
BIT 14 SET - | y COMPL |
| (SHORT READ) i
1 I | PHYSTB WORD 4
| To Compute N Words Read | | Thread Witl !
L __________________ i] Be Cleared by i
i DIsP |
| CLEAR THREAD 1 INPUT OR OUT. THIS
- REQUEST
:_ : PUT BATA T RESET CLOCK
l_ ———— o —— —— amn m— s — — v —— — — —I ‘— — — — v - - — — — — —— - — — — —l
| COMMON INTERRUPT HANDLER N LINE PROCESSOR | CONTINUATOR
1 11 1
| SAVE SET NEW ! | (Q) = PHYSTB J
1 REGISTERS PRLVL I | 1 ool
| INTER- OF SET NEW ! FIND PHYSTB | ! “F U Uers
| RUPT o |INTER- o MasK ! AL FOR DEVICE b1 ACKNOWLEDGE DATA OR MAK‘iO RESELECT | o co
I LINES »"|RUPTED =1 JUMP TO) INT? (FM LOGIA)] INTERRUPT ALARM? INTERRUPTS
1-15 PROGRAM PROCESSOR | | i o ¥
I IN FOR THAT | | | 4
| INTSTK LINE P TAKE STATUS) *
! Via Word 3 | : |
of Trap
__________ ——d I~ To Ercor COMPLETE
—————————————————— REQUEST *
RESTORE : :
INTERRUPTED Exit to ERROR ‘g' wore 2Quat?
PROGRAM Frogram - ‘ To INIT+1 For Next Request <] & To FA/R
INTSTK or
Highest on Top SCHSTK
FIND HIGHEST FIORITY ATTEMPT TO o] SETBIT 14 N e . | SET LUN ERROR
- CORRECT ERROR[7] WORD 8 PHYSTB[o "1 cope IN @ >
ENTRY IN OF INTSTK T W PALVL e u"goa WORD 9 PHYSTB
SCHSTK SCHTOP 25.0 - e g
| 9“\&((\L !
. | I i
ARY OTHER,_ NO 1
PRIMARY RELEASE SCHSTK | LUN WANT
CALL? POSITION TOPMT | LUN WANT D -?;"(‘;': to §NITH :
i N To DISP |
| NO | Also Unthreads CK LOG1A 1
] From LOG2 CK LOG2 |
! |
: - STUFF PHYSTB |
PARAM ADDR | PUT LUN IN |
1 LOG2 = rwaBUF - PHYSTB WORD 5 |
1 N WORDS |
| ' |
L Return ~@ 0 Execute Driver J

€-L

@

DRIVER INITIATOR

e

(ENTERED FROM
SCHEDULE REQUEST

] o - A
P{u \i/\' BY RW) Sf\‘“i\ ,‘-KM&' cone (ea. giwer
v@pq ﬁ \ STQ- 1 (Q) = PHYSTB ADDR (o) a\ww‘ﬁ {odie e Yhin
P o & CALL) RTJ - (AFNR)
o /

JMP - (ADISP) |

FOUND.

TO FNR A REQUEST?

YES
FNR RETURN
TO CALL +2

NO

?HYS‘(&-\\Q PO RESS \&

» TODISP ‘W I

MOVE SOME
PARAMS INTO
PHYSTB

————— » SOME DRIVERS
HERE JUMP TO

!

CONTINUATOR

SET UP
EQUIPMENT
FOR I/0

le START MOTION

Y

SELECT
INTERRUPTS

!

SET CLOCK
WORD
PHYSTB WORD 4

» EXIT TO DISP TO
WAIT FOR INT.

FOR DTMER

tosh Ay e & asSuwe

P-4

SHARED

CK FOR OTHER
LUN'S USING
SAME DEVICE

CVYCLE LGG1A

A

CK FOR REQ
WAITING ON
THAT LUN

CK L@G2 QUEUE

L. (94 . }\,
”)’i‘/»f\/()j/u' u(‘ \J(\@\J
L 4 J&\i“ ‘Jk\ A
A"‘é}({J'Vj

NO

LOG2 FOR
LU = -0

>{ CALL +1)

Y

MOVE PARAMS UNTHREAD
INTO PHYSTB > REQUEST
FM L#G2
e PARAM ADDR FM L@G2 l
e FWA + N FM REQ
EXIT TO
CALL +2
TO EXECUTE
DRIVER

EXIT TO
CALL +1
NO
SET LUN
YES IN PHYSTB
WORD 5

O

FIND NEXT REQUEST FOR DRIVER (FNR)
FUNCTION

The function of this subroutine is to find the request which should be processed
next by a driver for a device, It performs as much of the Physical Device Table
set-up associated with each new request (or part of a request) as is common to all
I/O drivers.

ENTRY INTERFACES

Entered via a return jump to entry point FNR with the physical device table slot
address in I, ’

EXIT INTERFACES

If there are no more requests for action by a device, the subroutine returns to the cal\+A
driver at the location following the Return Jump which called the subroutine,

If more action is required, the subroutine returns to the driver at the second location (el ra
past the Return Jump with the following conditions:

The I-register is undisturbed,
The A, Q, and Overflow registers are not restored.

The physical device table slot is set with the information specifiéd in the
description of the table in the‘ERS} ?

INTERNAL DESCRIPTION

The top request on the logical unit thread is removed from the thread and its parameter
list address and absolutized I/O List first and last +1 addresses are placed in the
assigned physical device table, Program control is then returned to the driver.

At some later time, when the driver has completed the last I/O action required by

that request and has received an interrupt (if applicable) indicating completion of the
last action, the driver calls the Complete Request for Driver subroutine, thereby
completing the processing of the request,

If the device is shared by several logical units, the Complete Request for Driver
subroutine sets the logical unit word in the physical device table to FFFF. TUpon
finding that a device is assigned to the logical unit FFFF. . the Find Next Request
for Driver subroutine searches the Logical Unit Table for]tge highest priority (i.e.,
lowest number) Logical Unit which requires the available device,

This provides sharing of devices by several user routines. However, no request,
once started, is interrupted; only upon completion of each request is a higher priority
requirement executed,

RO

IIN

ENR

SAVE RETURN ADDR
JIN PDT AND

PICK UP LAST
LU EXAMINED

CLEAR ECCOR

FROM ECCOR
INTO Q+A

-0

y
st
MAX

NO

" INCREASE
ECCOR & Q
BY 1

THIS LU
ASSIGNED TO
EVI

PICK UP LU
FROM ECCOR

N

IIN

EIN

NO

STORE LU

RESTORE FINDRQ

7-6

CAA

GET TOP OF
THREAD FROM
LoG2

RETURN TO
CALL+1

ENR

OP OF THREAD TO NEXT REQ TO TOP
EDTR NEXT REQ A EIN SET REQ IN PROG
LUF TO Q BIT IN EREQST

CLEAR
ESTATI EXCEPT
FOR MM BIT

o\ SET ECCOR AND
+2 ‘ ELSTWD YES DIRECTORY

FROM DIRECTORY CALL

'

RC TO Q
MODE TO BIT3
OF A

INA 1 INA 1 INA 1 l

SET MODE,
FORMAT & WRITE
BITS IN ESTATI

ADC PTRS

T0Q
SET ECCOR

' | AND ELSTND YES b
CALL +2 FROM REQST
"y
SABS
SET P NABS

CALL ELSTWD | '
+2 START ADDR
T0

7-7

8-4

Y

CONTINUATOR (ENTERED FROM INT. PROC. FOR

ACKNOWLEDGE
INTERRUPT

adonow\ dogs Lok ¢
@‘(\\(/B \O‘f'DUﬁ‘."\L \U\(\"o {)(ec(,{,(—\@‘v'\
loe ¢ arcae e AN \V\\Q(«W¥

LINE, VIA WORD 2 PHYSTB
(A) = PHYSTB)

JMP
YES >l SggleL&Rr 5 INTO ERROR
SECTION
CK ALARM
STATUS BIT
Tngﬁlxn'r CK DATA
STATUS BIT TOO
YES p- MAKQ > C@MPRQ
NO | CK PHYSTB SET ERR ' COMPLETE
WORDS 10 & 11 BITS REQUEST
RESET CLOCK JMP TO
INITIATE +1
{ (TO FNR)
EXIT '
RESELECT > TO
INTERRUPTS DISP (WAIT FOR

NEXT INTERRUPT)

) @

6-4

ERROR SECTION

O

ENTERED FROM CONTINUATOR OR -
DTMER (VIA WORD 3 PHYSTB)

¥

SET BIT 14
WORD 8

l

MAKQ

l

IDLE CLOCK

Y

PUT LUN IN
Q

Y

PUT ERROR CODE
IN Q BITS 5-0

l

JMP TO ALTDEV

Q=

I~ Y- T SR N CR S

LUN ERROR
CODE
TIMER EXPIRATION
REJECT 0
PAYi
ALARM o 0t 3

PARITY ERROR N\
CKSUM ERROR
INTERNAL REJECT
EXTERNAL REJECT

MAKEQ

SAVE RETURN
IN PDTS
MAKER PICKUP REQUEST
CODEX @ = O

NSHORT

STILL

HARDUARE
ERROR

SHORT READ

INCREMENT
CURRENT
CORE LOCATION

NEXT AVAIL. LOC.
T0 END OF USER'S

SET ERROR
BIT IN @
{BIT 15}

YES

NOERR

DEVICE
READY

0

STORE ERROR
BITS IN
Wy 9 POYT

SET NOT READY
BIT IN @
{BIT 13}

‘ CALLER

7-10

BUFFER AND LASTPIS
SHORT READ BIT T0 @

iBIT 14 I

O

COMPLETE REQUEST FOR DRIVER ROUTINE |
EXTERNAL SYMBOLS
COMPRQ Entry point
FUNCTION

The functions of this subroutine are to initiate completion requests to the Scheduler
for threaded I/O requests and to perform other housekeeping details upon completion
of an I/O action by an I/O device driver,

ENTRY INTERFACES

COMPRQ is entered via a return jump with the physical device table address for the
device in I,

EXIT INTERFACES

The contents of the I register are not disturbed., The contents of the 4, Q, and
Overflow registers are destroyed. Interrupts are enabled.

INTERNAL DESCRIPTION

The routine is entered from an I/O device driver via a Return Jump to COMPRQ
Interrupts are immediately inhibited,

The Diagnostic Clock cell in the Physical Device Table is set idle,

For Logical Units which do not share devices, the completion address, if not zero,
is scheduled with the error field from the Physical Device Table replacing the V
field of the I/0O request parameter list, The request parameter list, which contains
a request code designating it an I/O call, is flagged as a secondary scheduler

call by setting bit 15 of the first word (field I) to "one". The scheduler later resets
it to "zero". The device is not released from its logical unit assignment,

For Logical Units which share devices, completed threaded requests are treated like
requests to ordinary Logical Units., The device is then assigned to a pseudo Logical

Unit, FPFP16 assignment,

The subroutine exits to the location following the Return Jump which called it,

7-11

¢l-4

COMPLETE REQUEST

- SUBROUTINE USED BY ALL DRIVERS TO COMPLETE REQUEST

RTJ - (AC@MPR)

¥ JMP* INIT+1
END
IDLE
CLOCK

l—l WORD 4 PHYSTB

MOVE ERR BITS
TO WORD 3
OF REQUEST

FROM WORD 9 PHYSTB

BIT 15-13
CLEAR
ANY
THREAD
MPL?
cd WORD
(REQ WAS
UNTHREADED ~ EXIT TO
SCHEDULE . BY FNR) DRIVER
COMPLETION (CALLER)
ADDRESS SET BIT 15 OF FIRST '

I | WORD OF PARAM STRING TO INDICATE SECONDARY REQUEST

"]

CLEAR BIT 15 ZERO LUN
WORD 8 YES » WORDS5
PHYSTB LoG1 PHYSTB

OP. COMPLETE BIT

%

S

S

COMPLETE REQUEST

SET DIAGROSTIC
+ CLOKX 1DLE

'EDCLX = =0’

LACE WITH SAME

PHYSTB
PICK UP
COMPLET10N
=)
T 0
% Sr’xééusé { ADDR. OF REQUEST

AND HDW ERROR
BITS OF EREQST

TO A
TO FORCE SClLEDULE—-j
OF COMP. ADDR. ERROR WORD

INDIR REQUEST
TO SCHEDULE

IIN

COMPLETION

SHARE A
DEVICE

B k

|

7-13

AQSTK
-
Ao Y &
, \%y N\
\\ NS
AQOUT

1IN

ALAQ-1

RAD
BLSYAQ

RTNGET

PLACE ADC PDT

s CURRENT USER

SAVE ADC PDT
GET POINTER TO
AQSTACK TO Q

SAVE DRIVERS I
RETURN
PRIORITY
IN AQSTCK

\'4

A\ 4

.DBIVZRSI

DRIVERS PRIORITY

0

0

0

RETURN

DRIVERS 1

DRIVERS PRIORITY

7-14

N

AQIN

IN GOTAQ

RETURN
TO

O

ALAQ-—-2

IIN

BUSYAQ

LDQ ITAQ

RETURN

CALLER

ADC PDT
THIS DRIVER|
TO A

7-15

ADC PDT
Q
EIN
RETURR
10
CALLER
DOIT
USE STACK ENTRY
TO SETUP SCIED
REQ, ASSIGN NEW
DEVICE TO COTAQ
ZERO THE STACK ENTRY
RESET
x.gi'r AQOUT
™ ZERQO
NO
INC AQOUT R
BY 3
ADC NEWPDT
T0 Q
: \
SCHEDULE
NEXT
USER
RESTORE RLAQ
ADC PDT Q
RETURN
T0

(1 = poT
(.17l3K) ™ ApdRESS

.

fovE PRTS

D1713K-1

¥271i3ks=
PDT ADDRESS

SELECT WRITE NOIE.
INT ON DATA. ALARA

CLEAR COonp SYITCH l
COREIN = START ADDR

N

@

P+ 1 :;GEEEE>
P +2

S13BZY .=
PDT ADDRLSS

o
-
m
>
]

YES ~Revpoard

TO ThPWD

DISP

CORE = D |
LASTPI = 0

noTIoN

A = 87F
*NULL CHaR!

x

@ = Eucs
] L 0

flODE,

S$i3nody = sapor
SELECT KLYBOARD nodE
A = o& {EOP INTY

k

OUTPUT CHAR
IN A

SET

TInEouT
VALUE

TAKE STATUS
AND SavE

7-16

——()

o)

D1713K-2

- GET STATUS
c1713K VoD AND
- SAVE
A=2 NO PARITY
ERROR
YES
.‘- | A) 3
LOKNXT
Q=2 —i CLEAR
W1713K, Q=0
Q=ADDR. PDT
INITIATOR
NO
' $13MOD=%0400
YES CLR INT
CMPLET FLAG = 0 NO

YES

<<

YES

NO

YES

Ml

S13MOD

MOTION

NO

YES

@

SELECT INT
ON DATA,
ALARM

=

TAGIT1

FLAGIT =1

i RQAQ i

Q = EWES

| = ADDR. PHYSTAB -
FLAGIT =0

SCHEDULE Mi-
AT DRIVER PRIORITY

CLR INT
CLR INT SELECT INT
SELECT INT ON DATA
ON EOP, ALARM ALARM

RLAQ
DA‘I>

e

D1713K—3

NF READ

CLEAR INTERRUPTS
NO INT, ON DATA-ALARM

FORMATT} SELECT READMODE
YES

RuLL counT>SNC
=0

NULL COUNT
=1
/ MAKEQ \
CMPLET CLEAR INT. TAKE STATUS
EDCLK = -1 AND SAVE

RLAQ / CMPRQ \

1 = PDT ADDR.
$1382ZY = 0
CMPLET
CLEAR SETCD1 =
| ADC DONE
RESTORE A
SETCD2
SETCD1 LU+ERROR CODE
TO ERRCOD
SET ERRTAB
A=5 MAKEQ
ERROR ‘INTERNAL
REJECT’
A=6
ERROR ‘EXTERNAL
+1 REJECT’
EDCLK = -1
$13B2Y = 0
SETCD1

ALTDEV

7-18

pe

)

O

D1713K-4

ENA 3

INPUT CHECK
CHARACTER PARITY PARITY 'CODE FOR
WITH SPA FRROR PARITY ER2'
NO ’
NOPAR
STRIP PARITY
AND SAVE
DATA IN @
CANCEL
SET PASS
AND CANCEL
Y SUITCH
DROP LOWER
CASE BIT
)
I
TO A
4 TOSTO
AND WITH STORE IN
CURRENT CURRENT
WORD VORD
RESET 0 A
UPPER/LOWER b°§;
SHITCH
YES
v
NO NOW
UPPER
YES CLEAR PASS,
g:’;gé: 2 LOWER }
gsg;g:sw KORL = 13t WoRD
WORD SET USERS
BUFFER TO
OFFfr
-
A
RESET oUTRUT RAO FLAG
EXIT ;ﬁic” €0T INT ‘WD 1b*

7-19

EXI

D1713K-5

ENA . MNO ENa 15T CHaAR
FIRST CHAR | FORMATTER>— AND LIKE rogd
BIT . BITS

YES

Q@ =0 IF)
UNFORNATTED

RESET
SWITCH
8ORD

. ' A
<G> T g
NO
RESET £
LINE FEED {1—3@> g
SUITCH .
: NOCONT
LINE FEED ECREMENT
. NY
CHAR To 4 anceLs SYE CANCEL w

OTRT _COUNT

?

NOSPCC

‘DATA CHAR
ITO Aa @

NO

SUBSTITUTE
$7F

ENA
. CANCEL
™ COUNT
LINE FEED v G6O0TCR
. RESET
SUITCH
|_WoRD
NOCR
0
SR o LI Bk
yrpcRs ‘\\EQFD TOEROR
YES
INCREMENT
CURRENT
WORYD
E Y
Jfo 4
SET
CONPLETION
SUITCH

7-20

O

D1713K—6

QEEEEB

SWITCH

RESET HOTION|

‘NXTﬂCR} : ;

s

GET PARAMETER
STRING
@ = NEXT PARM

TOPFRM

SET MOTION SUITCHé N\
. INULL COUNT

=7

YES

4"EEEEI", YES

NO

SAVE REMAINING
PARARETERS

N

W = So0C

£1713K

TOP OF FORM

_NO

@

| *TINE oUT ERR*

7-21

ALTDEV ALTDEV IS ENTERED FROM A DRIVER VIA A JUMP
INSTRUCTION, BUT IMMEDIATELY RESCHEDULES

ITSELF TO RUN AT PRIORITY 14.

MARK
DEVICE
DOWN

RETHREAD
REQUEST TO
TOP OF THRD

NO

— — _ 3] Linn FAILED xx
FWRITE ACTION L,14 FAILED 02

ALT,22

YES RETHREAD
REQUEST TO
TOP OF THRD

RESCHEDULE
DRIVER
INITIATOR

“cu”

/ compRa \ ©/ MONI\

TERMINATE RESCHEDULE
FAILED DRIVER

REQUEST INITIATOR
/ COMPRQ \ FNR

REQ

REQUEST FOUND \,

) W
N & o W
N W &
X \'\‘3} & &

/ FIND MARK
NEXT] DEVICE
DOWN

@

STUDY QUESTIONS - 7

1. What system routines are common to all drivers? FNR MukeQ ,W COHT
ALTOE YV gADsu) (omeeq
2. What is the function of the INIT portion of a driver? C@W\‘OQQ
ANTH AR THE REQUEST. \F MOME - PRuWER (OE> TO DISPATCHER
3. When is the requestors thread word threaded to the LOG2 and when is it
unthreaded, when is it cleared? TWREADED By RUJ | UMTHREZWOED WBY ‘—NK)
CLEWQED BY (OMPLETE REQUEST
4, Who passes control to each of three divisions of the driver? -
5. What are the first three instructions of every driver, why?
6.‘ Who clears bit 15 of word 8 in PHYSTB? & ma\\(a&a (1C rzau.aol 1S 46~‘;\</‘32..
(LEWRED By COmPLEIC LeauesT
7. How does MAKEQ know if error has occurred? | ‘ BTES
e Epvow O CEe. BIT 4 Looreo & iNOC .
8. Who schedules the completion address" 2 \Wewn {Lﬁu W\A—'\q \—\aw @Qﬁ% CReuLs T
CO(Y\\D\-&S&/ ceBuesr amddos Yoo Mm comp lhion ackdeess.
9, What is the function of the continuator portion of the drlver'?
Beho wie Aogea Mo \\\k(\fwxosr(.)
L{) 2 Jisions OF DRI\VER (,U\\O Pases (,Ow\'\’o_&
< —
T ToR SCHEOULE o (schedoded Yo @)
COV\“‘Y\’\’\ ua Yo A\ \{X\(Mo{" Lo t\O\-'LDC@55‘9\"
T oo handler DABGROSTIC TIMER
§) STG-T SAVES PhysTé AcoREsS)

O

RS- ENR ExpecTs TO FIMD PMYSTAR WOOL (ML
TME- D N0 ot V(Q(,Lu)r

FNYZ) (elume Yo call 44 & o wo (L
Cd“ 12 W ‘Q‘OV"“("'\ oo el b{,@gx

' \OYL\'UQX S Osc/(‘uz dadac 5§a<,/(«? > = \03 2 A«Q\‘ma d\,/

Q7-1

LESSON GUIDE 8
Q MEMORY ALLOCATION

'LESSON PREVIEW:

This session will give a detailed presentation of the two dynamic memory alloecation
schemes under MSOS. The drivers and swapping schemes associated with each will
also be discussed, '

REFERENCES:

Pages 2-15 and 2-16 of MSOS 5 RM
Listings of SPACE, RW, DCORE, ALCORE, and SYSDAT

TRAINING AIDS:

Visuals V8=~1 through V8-6,

O PROJECTS:

OBJECTIVES:
At the completion of this lesson, the student will be able to:
1., Describe the allocation algorithm for allocatable core and Partitioned core,

2. Establish the parameters for the Space Allocator and PTNCOR Allocator
(LVLSTR, PARTBL)

3. TUnderstand the significance of the RP parameter in the System Directory,

8-1

‘Q Qou mé?cwoka Q\(\OA/ \o\au» oca\\ocd\.a&o\p_ Sr
W\/W/\ %OCA ad\('@‘(a\\OCcf‘\d\GL‘L w_ WM* \'Q/QIM-H/ 1.

C
MASS MEMORY PROGRAM
ALLOCATTBLE CORE
L‘ T USiEE oF etk
E FWA :WO ov. <:>f vk wuoroN .
<\ wo ¥-1
FWA NUM $ C8FE CacC«a\h, Fuh o(-:_\ﬂa&.
STAx REL+2
|
|
|
|
|
|
! COMPLETE O
< ' 1/0 BEFORE
' ' RELEASING
| CORE
|
|
|
| .
REL RTJ— ($F4)
NUM $1801 §_
NUM 0o [>T BIT seT
ﬂHe?wQ Q,y*’J('o

DIsPATCHER, WETER WEL. REQUEs

)

8-2 (vg-1)

SPACE, PTNCOR, RELEAS, SWAPPING AND RESTART
GENERAL BACKGROUND

Many modules are nonresidents, i.e., they are not kept in core, Therefore, when
they are operated, it is necessary to read them in from the library. There is an area
reserved for this purpose, the size of which varies from system to system, Each
nonresident program, prior to operation, must be assigned space in this area and
read into it, Similarily, when a nonresident program completes its function, it must
cause the area allocated to it to be restored to the block of empty space available
for allocation to other nonresident programs, The SPACE, PTNCOR and RELEAS
requests deal with these operations.

If it is necessary to allocate space in the nonresident area and insufficient space
is available, it may be possible to preempt that area of core used for job processmg.
The procedure involved is called swapping.

For purposes of allocating core space in as simple a manner as possible, the area to
be allocated is treated as an I/O device. This pseudo device is operated by a
pseudo controller (the core allocator) which is operated via a driver (SPACDR). The
SPACE and RELEAS requests take the place of READ and WRITE requests in this .- '
situation, In order for this operation to work smoothly, the pseudo device is always
considered to be logical unit #1. This is true for all systems, The modules to be
discussed in this lesson are:

CORE ALLOCATOR

SPACDR

SPACE REQUEST PROCESSOR
- SUBCOR

CORE ALLOCATOR

EXTERNAL SYMBOLS

LVLSTR Level start table
LEND Level end
CALTHD Core allocator thread

INTERNAL SYMBOLS

MINSIZ Minimum allocatable area (assembled as 2)

MAXNO Largest single precision positive number

8=-3

7-8

DCORE

SECURE &
ABSOLUTIZE

PARAMETERS

SET BIT
150F Q

l

COMPLETE
REQUEST
WITH ERR
FIELD SET

FLAG SWAP
LIST

EXIT TO
DISP

DCORE

GO TO ALCORE

THREAD
TO LOG 2

WAIT ON
INT

WRITE UNPRO
CORE ON DISK

UNPRO
ON DISK

PLACE ADDR IN S:HTS,;’;
SPACE CALL LUN 1
BACK TO
FNR
YES LOCK OUT

JOB PRO

Y

EXTEND ALCORE
TO INCLUDE
UNPRO CORE

v

READ IN
MASS MEM

THREAD ON
LOG 2

SET SWAP

SWITCH

)

O

@

.

G-8

O
O

REQ
AREA TO
LARG

ALCORE

SET Q=0
REQ NOT |[<4——
¢ ACCEPT.

LOOK FOR | l

AVAILABLE CORE :
" 1 BACK TO
: DCORE

A

NO SET Q=-1 >

SET Q
ADDR OF
ALLOC CORE

Scheduling a mass memory resident system directory program causes the following O
operations to be executed,

1. 'Space is assigned in the allocatable core area.
2. The program is read into core from mass memory.

3. The starting address of the program, i.e., the start of the assigned core
area, is scheduled at the requested priority.

All mass memory resident system directory programs that are to be run in allocatable
core must be written to be "run anywhere" (using relative addressing, etc.) since
the program amy be assigned different core areas on successive operations., The
mass memory programs that are to run in partitioned core must be absolutized
relative to a particular partition and then run at that address only.

FUNCTION OF THE PROGRAM

The Core Allocator module allocates core to programs which are mass memory
"resident. It also allocates core to programs which require additional temporary
working area at execution time, '

The Core Allocator is required in the monitor on all systems which have a mass
memory in allocatable core.

9

C

The Core Allocator accept returned areas of core and, if possible, combines the
returned area with adjacent areas. .

Requests for core allocation are stacked by request priority and core is allocated
on a priority basis; i.e., the higher priority programs have access to more of the
allocatable core,

COMPREHENSIVE PROGRAM DESCRIPTION

The Core Allocator threads together all the pieces of available core memory.
Initially there is one piece of core which is the entire area. As allocations are
made, the available area gets broken up into many pieces. As pieces are returned,
they are regrouped into as few pieces as possible, The thread of available pieces
is arranged in ascending address order,

ORGANIZATION OF CORE

Part 0 is divided into two areas:
Area 1) the core resident programs constants; Area 2) the allocatable area,

8-6

PART O

LEND
AREA 1 AREA 2
CORE ALLOCATABLE AREA
RESDENT < LEVEL 0 —»
AND |<.— LEVEL 1 >
DATA | ¢——— LEVEL 14 -
«4+——— LEVEL 15 >
0 TOP OF CORE AVAILABLE
TO THE ALLOCATOR
O. CORE MEMORY IS INITIALIZED AS FOLLOWS:
CALTHD N TOP OF THREAD
ADDRES
Al N A
length of core
FFFFIG end of thread
AVAIL- N
ABLE
CORE
Y

8-7 (v8-2)

INDIVIDUAL PIECES OF ALLOCATED CORE ARE ORGANIZED AS:

Location Contents
A=2 N+2
A-1 A
A A
N Allocated Area
of length N
A+N-1 +

After an allocation has been made, core memory appears as shown below:

CALTHD | N
Ag
A
A
Ve
7
/7
7
7
END OF P
"AVAILABLE CORE"
THREAD

TOP OF THREAD

ni

Ay

Y,

8-8

Actual length of area

Location of area

A
n Allocated area of n

1 words starting at A1
\ 4
A

Available area of N-n

N-n < ords starting at Ay
Y

(V8-3)

Area 2 is allocated by the core allocator according to the request priority in the
parameter list, A fixed amount of the available core is available to each priority
level, Higher priority levels have access to more of the core than lower priorities.
This has the effect of guaranteeing that many low priority programs cannot use an
area set aside for a high priority program. An area can always be available to a
higher level by restricting the area available to lower levels, The core allocator
also selects the core from the smallest available piece, This has the effect of
minimizing the number of pieces of core that are twoo small to be usable. The
technique uses the small leftover pieces first while leaving the big pieces for
future requests.

The core allocator stores two control words into the allocated core area, The first
word, located at "A-2" always contains the requested length N, plus 2, and
represents the actual length of the allocated area, The second word, located at
"A-1", always contains the address of the area, A,

CORE ALLOCATION LOGIC

The subroutine, REQALC, (request allocation) actually does the analysis to select
the available area of memory. The logic is discussed below. REQALC is called by
the Core Allocator Driver with the parameters, requested length and level.

If the requested length is larger than the area available to the requested level,
then REQALC immediately returns with a zero parameter to the driver.

Otherwise, a search of all available core is made to select that piece which has
the following properties:

1. The piece must contain N+2 words available to the requested level,

2. The remaining piece (after N+2 words are allocated) is smaller than the
corresponding piece of all other allocatable areas,

If no such piece is found, then the parameter, -1, is returned to the Core Allocator
Driver, Otherwise, the optimal piece is broken into two or three parts, and the
thread of available core is strung through the leftover piece. The leftover pieces
are restricted to being larger than MINSIZ so that they can-contain the thread
information,

CORE RETURN LOGIC
The subroutine RTNCOR does the analysis to combine the return piece of core with

the already available pieces, RTNCOR is entered from the RELEAS request processor
(SPACDR).

8-9

A search is made to find the first piece of available core which is below the returned C\
piece. The returned piece is threaded into its proper position (the available core -
thread is ordered by ascending core location).

A check is made to see if the returned piece touches its lower and/or upper neighbor,
If so, the adjacent pieces are combined into one piece and the thread is updated.

TABLES

LVLSTR This table contains 17 cells and is located in the system table
module, The first 16 cells are indexed by priority level, Each entry
contains the core address of the first cell allocatable to programs
with request priorities of the level represented by the index. The
last cell contains the address of the last cell in the area which is
controlled by the core allocator,

8-10

Avallable to
Requested
Area

CORE ALLOCATION PIECES

BEFORE

TOP OF THREAD

N
A1

NN

FFFFi16

NOTE:

AFTER
TOP OF THREAD
N
Aq
\ '/ .
/ .
—f«l— [S ———
A, N2
A
A
|
Ag N3
N
/ (
AN NN
FFFFyg

THE REQUESTED PIECE HAS BEEN REMOVED.

8-11

PIECE #1 LIES BELOW THE AREA AVAILABLE
TO THE LEVEL AND PIECE #2 REMAINS AFTER

‘Plece #1

Allocated to
Request for

Piece #2

(v8-4)

ADC PDT
TO I

31 STPRV4

LOCATION OF

REQ PRIORITY
T0Q
#WDS TO A

REQUEST TO
Q AND TEMP

ONE

WAIT
THREAD
MT

MOVE WAIT THREAD
TO NEXT ENTRY
SET Q,A TO POINT
TO TOP ENTRY

Y

. SETQ

BKD IN PTI
OR SWAPS

NEGATIVE o

SET BOTTOM

INHIBITED

-0

THRDIT
PUT TOP ENTRY
ON LOG2 THREAD

8-12

ADC PDT
TO !

NOG1

THRDIT
PUT THIS
REQ BACK ON

LOG2 THREAD
SWAPS TOP OF
INHIBITED THREAD SAME
CLEAR ELU
TIMED OUT
SINCE LAST
SWAP
NOGS
SET UP LENGTH
AND START
OF BKD IN REQ
MONI
FWRITE BKD TO DISK SET SPASW
COMPLETION=NOG20 WAITING TO —>
CP OF DRIVER SWAP FLAG
STLPV4
SET UP
LEVEL 2 LOOP
STLPV4
CLEAR YES SET LOOPFG
—B WAITING TO SWAP : LOS':) FG 0
FLAG
SET SWAPON
— FLAG SCHEDULE
LOOPEN CP=2
STLPV4

8~13

ADDRESS OF SPACE
OBTAINED TO PQ

DCORE

DIRCAL

CORE
ALLOCATED

NO

SETUP SYS DIR
TO READ IN PGM

OF CALL AND START ADDRESS
WD9 OF PDT TO WD1 IN DIREC
ADC PDT ADC PDT
TO | ToQ
m COMPLETION ADDR
IS WDO OF THE
- DIRECTORY PGM
A REQ PLACE NEW
ON BOTTOM REQUEST ON
wAIT
PUT POINTER TO PLACE NEW MARK NEW
NEW REQ IN —> REQUEST ON }——» REQUEST AS
REQ ON BOTTOM BOTTOM END OF THREAD

8fl4

O

THRDIT

DCORE

ADDR NEW ENTRY
TO TEMPL

NEW RP TO REQP

N/

ADC
10G2 + CORELU -2

T0 Q

THDNXT

THRDIT

UPDATE TOP
OF ALLOCATABLE

POINTER TO PREVIOUS
TO THDX

?| POINTER TO NEXT
TO Q

THIS REQUEST

\ 4

PLACE NEW ENTRY
OR THREAD
AFTER TADX
UPDATE START SETUP PSEUDO
OF LEVEL 0 THREAD AT
SAVE PREVIOUS BEGINNING OF
START IN TEMPL "BKD"
RTNCOR

) |

8-15

RETURN BKD
TO ALLOCATABL

N m

SET ELV
=]

DCORE

ENTERED ON COMPLETION OF SPACE REQUEST TO RESTORE BACKGROUND

/ MONI \

FREAD BKD
BACK IN
COMP=NOG33

REL1

STORE $14EA
IN LOOP TO
TURN OFF
LEVEL 2 LOOP

f

RESTORE TEMPL
TO LVLSTR
RESTORE END

OF ALLOCATABLE

;

RESET TIME
SINCE LAST SWAP

l

CLEAR PROTECT
BITS IN
BACKGROUND

l

CLR
SWAPON

SWAPCK — SAVE A,Q

8-16

)

SPACDR

EXTERNAL SYMBOLS

LEND

LOGIA

- CALTHD

RTNCOR

CORE

LVLSTR

SWAPAR

UNPIO

SPASW

1L.OG2

REQALC

AREAC

Address of last locatibn in the area controlled by the core allocator,
Logical unit table containing PHYSTB addresses for each logical unit,
Core allocator thread, |

Entry to core allocator for releasing space,

PHYSTB entry for the core allocator,

Level sfart table, |

Mass storage address of area where unprotected core contents
are saved during swap, Filled by the initializer,

Count of number of unprotected I/0 calls pending.

A switch in TRANV used.to inform the protect processor that a swap
is desired, » :

Logical unit table containing thread tops for all logical units.
Entry to the core allocator for allocation of space.

Start address of block controlled by the core allocator,

INTERNAL SYMBOLS

INTVAL

PRI

Number of seconds between swaps, When no timer package used,
this should be set to -1 (assembled as 1).

Priority level of core allocator (assembled as 7).

SWAPCK ENTRY POINTS

SWAPCK is the entry point to a subroutine used by the job processer and library

' edit programs to count down the UNPIO unprotected I/O counter and restart the

space driver if it is waiting to swap and UNPIO is zero.

FUNCTION OF THE PROGRAM

SPACDR serves as the driver for the core allocator and as the request processor
for RELEAS requests, In this capacity it makes all decisions in the area of swapping
and stacking calls for space. '

8-17

SPACE REQUEST

RTJ - | ($Fa4)

DRC=10 | | RP | CP

COMPL

THREAD

Q

NO. WORDS

8-18

PRIORITY
OF BLOCK

< FWA OF
BLOCK
PASSED
BACK IN Q

(V8 -5)

(M

"REQUESTS FOR SPACE

Requests for space comes from two sources; namely, schedule calls for
nonresident system directory programs and SPACE requests,

SYSTEM DIRECTORY FORMAT

The scheduler gives control to SPACDR when a system directory request for a mass
memory resident program is made, SPACDR determines the starting address of the
program, based upon the areas of core that are currently available and enters this
address in word 1, S, of the System Directory éntry, The format for the system
directory is shown below:

WORD 15 14

9 87 4 3 0 7 words per entry

0

D

: in the Directory
RC 0 RP
cp for Mass Memory

S : _Resident Programs

MMA (29-15)

D g W N =L O

MMA (14-0)

RC

RP

CP

THREAD

is the request code for the System Directory and is zero.

is the request priority used in the allocation of core memory. RP is
a number from 0 to 15, (Set by the LIBEDT *S statement)., RP=) to
3 is reserved for use by the Job Processor.,

is the completion priority at which the mass memory resident program
will be scheduled after the read is complete, CP is set for the
Scheduler and is obtained from the requesting program's scheduler
call,

is the starting Core address of the program and also the first
location of the allocated core., This is set by the core allocator,

is the thread location used to point to the next entry on a threaded
list, This directory entry will be placed on the following threads:

8-19

THREAD NAME POSITION DETERMINED BY WHEN

Core Allocator : RP after scheduling

Mass Memory I/0O Driver RP after allocation

Scheduler CP after Mass Memory
‘ Read

The thread location is set non-zero by the Core Allocator Request
Processor and is cleared to zero on completion,

Q . is the parameter passed from the requesting program to the
requested program,

N is the length in words of this program on mass memory.

MMA is a double-length word containing the mass memory address of this
program, The first word contains the most significant 15 bits., The
second word contains the least significant 15 bits,

SPACE REQUESTS

The user program may make a Monitor request for allocating core, The core area
will be allocated to the requesting program and must be returned by the requesting
program before it will be reassigned to another program, The list of parameters is
as follows: : : '

1

15 14 98 7 43 0
PARAM=0 | 0 RC x| RP cP

B W N
E'>)

RC is the space request code and is equal to 10,
X is a relative/absolute indicator, modifying C.
RP is the request priority, the relative priority of this request used to

determine the position on the core allocator thread and also to
determine area of core allowable, RP is a number from 4 to 15.

8-20

O

CP ' is the completion priority, the level at which control will be
returned to C.

@] specifies the completion address, Control will return to C after the
allocation has been made, or if allocation is impossible,

THREAD is the thread location used to point to the next entry on a threaded
list, This monitor request will be placed on the following threads:

THREAD NAME POSITION DETERMINED BY WHEN

Core Allocator | RP after request

Scheduler CP after allbcation

The thread must initially be zero, and is reset to zero on complefion.

Q contains the address of the area allocated and is in the Q register
when conirol is given to the completion address, C. If allocation
is impossible Q will be set negative,

N is the number of words requested,
INTERNAL DESCRIPTION OF ALLOCATION

The Space Driver SPACDR is operated by a SCHDLE request from the request processor
(just like any other driver). It uses subroutine FNR for new requests and uses the
Core, Allocator Subroutine, CORALC, to obtain the space required, If sufficient

space is available then COMPRQ is used to complete the request., Q will be set to
the address of the allocated area when the completion address for the space

request is scheduled via COMPRQ, If it is impossible for sufficient space to be
available and swapping is in effect then the completion address will be scheduled
with Q set negative denoting an error. Errors of this type due to system directory
calls cause the system directory call to be ignored but cannot be detected by the
caller as no completion address is available.

If sufficient space is not available then an attempt is made to swap, the request

is rethreaded and the driver is set "not busy." If core is released before swapping
is effected, then the space driver will be reentered and the request will be
completed if sufficient space is available, Otherwise the request will be processed
after the core swap area is released, For swapping to be executed the following
conditions must all be true,

1. The completion priority is greater than 2. This is necessary since

programs of level 2 and below are not operated after a swap since they
might involve job processing,

8-21

2,
3.

4,

If any of these conditions are not fulfilled, the request is put back on the core

A swap is not already in effect.

A suitable time interval, since the last swap has passed,

No unprotected I/0O is in progress,

request thread just before SPACDR exits to the dispatcher,

Additionally, in the case of condition 4, SPASW is set non=-zero so that the
protect processor will schedule SPACDR whenever UNPIO-0 and the allocator is

not busy.

If the above conditions for swap are fulfilled, then the following operations occur:

1,

-

At the completion of these operations the space driver is marked "not busy" and
the request that caused the swap is rethreaded to the top of the LOG2 request
thread, When the swap transfer to mass storage is completed, the space driver

A write is started which transfers the contents of unprotected core to a

designated area on mass storage. This area is set up at system

initialization,

A loop is scheduled at level 2 to lock out all programs at that level and

below,

The LVLSTR table and LEND are updated to reflect the additional space

available for allocation,

SWAPON is set to one, to indicate a swap has occurred.

resumes as follows:

1.

When enough space is released so that the area is again available for job processing
(the SPACE request made above is completed) the above procedures are reserved

The core allocator is entered to release the space just made available;

The area is protected,

A space request for the swapped area is added to the wait list for threading

on the allocator thread at completion of SPACDR processing.

A new attempt is made to allocate the space to the call which caused the

swap.

and the job is resumed as if no swap occurred,

8-22

C

c

NOTE: For swapping to combine the allocatable "unprotected" areas, the
space request processor must be the last resident module.

The priority level of the space driver is determined by the completion priority

set in Word 0 of the CORE physical device table, It is usually set to seven (7).
When a swap occurs the space driver must set all the protect bits in the unprotected
core area. To do this requires 6.6 microseconds per location. Thus, for an
"unprotected" area of size 10K the driver level will be busy in this loop for
approximately 66 milliseconds when a swap is requested or released.

The space driver rethreads a request back on to the allocator thread if it is not
possible to allocate enough space for the request at that time, No attempt is made
to process lower priority requests even though they may require less space. The
exception to this rule is if the request to be rethreaded has a completion priority of
less than three (3)., These requests are put on a wait thread temporarily and then
an attempt is made to allocate space to the next request on the allocator thread.
When any other requests have been processed requests on the wait thread are
returned to the allocator thread.

On completion of job processing, routine JOBEND in the Manual Interrupt Processor
is entered to cause a core swap, This is done by making a special Space request
that can only be satisfied at the given request priority by a core swap. The special
area so allocated is released when the job processor is requested, This area
occupies only four cells for the allocator thread at the end of the "unprotected area”.

Unnecessary swapping is thus avoided when the job processor is not in use,
Excessive swapping on temporary overloads during job processing can be avoided
by setting the minimum interval between swaps, INTVAL appropriately. Table
LVLSTR must be set up very carefully noting that programs that are not independent
cannot be assigned to the same request priority; i.e., they must have separate
allocatable areas in which to run, It is not sufficient to provide a total allocatable
area at one request priority sufficient for only two dependent programs, since one
of the programs could be assigned to the middle of this area, leaving insufficient
area for the other program,

8=-23

RELEAS REQUEST = - Q
MONITOR REQUEST FOR RETURNING CORE
All programs that have been allocated core memory, must return the allocated core
to the Core Allocator, when they are finished. This includes all mass memory -

resident programs.,

The calling sequence is shown below,

15 14 9 8 7 1 0
PARAM+0 0|D RC X 0 R
+1 C
RC . is the request code twelve (12) for returning core.
X is an absolute/relative indicator,
R is the return control indicator, If R=0, control is given to the -’
dispatcher after core is returned, This is the value of R to be used
when a program returns the core in which it resides, Since the core
will be reallocated, the program residing in it may be destroyed.,
, . ~
Thus, control is not returned to the program but to the Dispatcher C/
instead. Otherwise R-1 control is given to the user at the next
instruction,
Cc specifies the area being returned.

IC 5 0, X is ignored and C 4" 0 is the absolute core address of
the area being returned, (Absc;'lute direct)

IcC 5 = 1 and X = 0, the C. , - 0 is the location that contains the
absollute core address of thé ‘area being returned. (Absolute indirect)

IC _=1andX =0, then C.,, - 0 is a 15-bit relative address which
wheii added to the address o% %he parameter list gives the core address
of the area being returned, (Relative, direct)
Note that relative indirect is not allowed.

Notes on returning core:

User programs must return each piece of core which they have been allocated,

Otherwise the piece of core will remain allocated indefinitely. Each piece must
be returned once only.

8-24

o

RELEAS REQUEST

RTJ -

($F4)

ORC=12

0

t |~

FWA

T |

ADDRESS OF
CORE AREA

BEING RELEASED

t=1

- EXIT TO DISPATCHER

t=0
RETURN TO PGM

8=-25

(V8-6)

9¢-8

RELEASE
CORE PROC

AREA
IN ALLOC
CORE

NO

REQUEST EXIT

YES

GENERATE
SCHED REQ TO
RELEASE CORE

YES

FLAG
RETURN TO
PGM

EXIT DISP ¢

NO

@

O

Ti12

RELEASE REQUEST PROCESSOR ENTERED AT PRIORITY OF CALLER

UP DATE
RETURN IF

DIRECT REQ

MAKE RETURN
TO DISPATCHER

ADD DISTANCE

IO WD O

8-27

A check is made to determine if the area of core being returned belongs to the O
allocatable area, If the area of core being returned is outside the allocatable area, —
then the request is ignored and control does not come back to the user, but

instead goes to the Dispatcher. Using this feature all programs, whether mass

memory or core resident, can be written identically, At the end of a program,

the RELEAS request is made with R, the return indicator, set to zero, and C

specifying the start of the program. For core resident programs no core is returned

and conirol goes to the dispatcher, For mass memory resident programs, the core

is returned and control is given to the dispatcher. The coding for both core

resident and mass memory resident routines is the same,

~

O

SPACE REQUEST PROCESSOR

The SPACE Request Processor is entered in the same manner as the R/W Processor.
Its purpose is to set necessary parameters (logical unit number, etc.) so that the
R/W Processor can complete processing of the request. In addition, this processor
contains the block of core controlled by the Core Allocator and the restart program,

EXTERNAL SYMBOLS

CKTHRD Routine in R/W Processor which checks for non-zero thread.

SAVLU Location in R/W Processor to which the SPACE Request
Processor exits,

RPMASK Mask for request priority.

IDLE The level -1 idle loop.

INTERNAL SYMBOLS
AVCORE Size of the allocatable core area.
RESTART ROUTINE

Since this program is operated once immediately after AUTO LOAD, it is located in
the block to be controlled by the core allocator,

It is entered via the following procedure when the system is on mass storage.

1. MASTER CLEAR the machine,

2., Depress the AUTO LOAD button on the mass storage device.

3. Depress the RUN switch, This causes the machine to execute a program
which reads the resident portion of the system from mass storage. When
this is done, the program jumps to the address specified in location 1,
which is the address of the restart program.,

The restart program performs the following operation before jumping to the idle loop.
1. Protects all locations which must be protected and unprotects all others.
2., Enables the timer interrupt and initiates the diagnostic timer if present.

3. Requests that the protect switch be activated.

- 8-29

The 1573 LINE SYNCH,

Timing Generator (timer) is assumed to be interfaced via a 1750 Data and Control
Terminal (DCT) that is assigned to Equipment No. 8. It is started by an output
with A=A000, . and Q= 0400 . If this output results in a reject, the following
message w1l]16be printed on e output comment device:

TIMER R]J

This message will occur if the Timer is not present or if the 400hZ power supply
is switched off or the equipment code assigned to the DCT is not 8.

The message SET PROGRAM PROTECT is then typed to request that the: operator
set the protect switch to ON.

This module can be used to replace SPACDR and Core Allocator with the savings
of approximately 350 cells.

Certain restrictions are attendant on the use of SUBCOR,
1. No swapping is available,

2. RELEAS requests must be given in an order precisely in reverse of the
allocations.

3. Arequest for space which exceeds the limits of allocatable core will
never be given, If one is attempted, SUBCOR will hang in a 1 cell loop.

830

LESSON GUIDE 9
' (4 VOLATILE STORAGE

LESSON PREVIEW:

Volatile storage assignment will be discussed.

REFERENCES:

Listings of SYDAT, ALVOL, and OFVOL.,

TRAINING AIDS:

Q PROJECTS:

OBJECTIVES:
At the completion of this lesson, the student will be able to:
1. Discuss volatile storage assignments.
2. Understand the function of VOLBLK.

3. Trace events in ALVOL and OFVOL.

O

9-1

VOLATILE STORAGE ASSIGNMENT

.
C
Volatile storage (VOLBLK) is the storage area located in SYSDAT that is reserved for
the allocation of small blocks of data storage for reentrant routines.

Volatile storage is available only to protected programs. At least three locations must
be requested and all system interrupts disabled prior to entry at VOLA and VOLR,

The volatile storage area acquired must be released at the same priority level at
which it was acquired. The requesting program and any accompanying program
sequence must not go to the dispatcher prior to the release of the volatile storage area.

A request for more volatile storage than is available constitutes a catastrophic condi-
tion. The volatile storage assignment program enters OVFVOL with the following in
the A and Q registers:

A Amount of overflow in words
Q Base address of the interrupt stack
OVFVOL clears the M register and writes OV on the comment device. No further action

can be taken and the system hangs (18FF) g instruction). The OV error is caused by
incorrect set-up or use of the system.

A block of storage is assigned with the entry point VOLA and released with the entry C3
point VOLR. Both entry points are entered by an RTJ with interrupts inhibited. '

On the entry to VOLA, the block size is contained in the word following the RTJ. VOLA
assigns specified locations and fills the first three locations of the block with the
contents of Q, A, and I as follows:

Start of block in | or exit
CONTENTS OF Q

CONTENTS OF A

CONTENTS OF |

REMAINDER OF

STORAGE REQUESTED

End-of-block

On exit from VOLA, the I register contains the address of the start of the assigned
block.

On return from VOLA, a block of eight volatile storage locations has been assigned
and words O through 2 have been filled. The program stores word 3 and later uses the
remaining words.,

. Location 15 | 4
LOC + 0 ORIGINAL CONTENTS OF Q
1 ORIGINAL CONTENTS OF A
2 |ORIGINAL CONTENT OF I 0 1 1
3 |RETURN ADDRESS (SAVED BY REQUESTING PROGRAM)
4

o|lo|lw
O|=|=
- |lOolo

OClOo|Oo|N

TEMPORARY STORAGE

.
L

7

The I register contains the core location represented by LOC. The contents of A and
Q are the same as an entry to VOLA. On entry to VOLR, I must contain LOC. On
return from VOLR, the eight locations of volatile storage have been released. The
contents of the A, Q and I registers are replaced with the contents of the first three
locations of the released block.

9-3

VOLA

2,

A
"54/ \%
C A,«QZ{

VOLR

ALVOL

SAVE Q
IN VO

ENOUGH
VOLATILE IOR
THIS REQ

SAVE A IN VA

1IN VI

SETITO

POINT TO VOLATILE

'

UPDATE VOLATL
UPDATE RETURN
RESTORE A,Q

!

VOLA

RESTORE A,Q,

UPDATE VOLATL

VOLR

OVFVOL

OFVOL

OVFVOL e

CLEAR
M REG

OUT PUT
e ov
ON TTY

HANG

LESSON GUIDE 10
C" TIMER PACKAGE

LESSON PREVIEW:

The TIMER requests and DIAGNOSTIC TIMER of the TIMER Package will be discussed.

REFERENCES:
Listings of TMINT and TIMER

TRAINING AIDS:

Q PROJECTS:

OBJECTIVES:

To stildy all the functions and programs of the TIMER package.

)

10-1

\ﬁ‘ AN
W
(2O
\v‘“\ ‘:\\B \)
TIMER REQUEST Ny
AN
R
\ Vv
RTJ - ($F4) Y
TYPE AN
RC=8 OF cP
v 1~ UNITS
COMPL
NUMBER OF UNITS
i \\/
Lol
TIME IS MEASURED IN UNITS (COUNTS) R
0 - BASIC COUNT (60/CPS) ™~ v '\ﬁ N
I /

1 - 1/10 SEC (6 X BASIC) 0 P o
2 - SEC (10 X 1 CT) \\39 Ny \(U

3 - MIN (60 X 2 CT)

TIMED INTERRUPT 1/60 SEC TO 32,768 MIN

10-2

TIMER PACKAGE

COMPONENTS
. The TIMER package is made up of two modules:

TIMER PACKAGE-
DIAGNOSTIC TIMER

The former processes TIMER requests, timer interrupts and delay expiration. The
latter processes I/O hangups.

EXTERNAL SYMBOLS USED BY TIMER PACKAGE

SCHERR Used to exit if the schedule stack is full
TIMACK Acknowledge code for time interrupts

EXTERNAL SYMBOLS USED BY DIAGNOSTIC TIMER

‘The starting address label for each PHYSTB entry, to be 1nterrogated by this module,
is declared as an external symbol, :

TIMER REQUEST PROCESSING
Entry Interface.

Entered from the monitor entry for requests via a jump. "I" contains location of
volatile, and "A" contains location of the request.

Exit Interface‘s

Exit is made to SCHERR if no schedule stack space remains open. Exit is made to
request exit after the request has been added to an appropriate stack.

Internal Operation

On entry, the request processor translates the completion address and attempts to
fill an empty schedule stack entry with a SCHDLE request at the level specified in
the TIMER request. If no empty exists, exit is made to SCHERR.

The newly filled schedule stack entry is then threaded to one of 4 lists, depending on

the "U" parameter. The caller's delay time is added to the stack entry as the "Q"
parameter, Exit is then made to the request exit.

10-3

TIME INTERRUPT AND EXPIRATION PROCESSING
N

k._/"

After the interrupt is acknowledged, each of the counters for the 4 lists are examined
to see if one count for that list has expired. If not, the respective count is decre-
mented and exit is made to the dispatcher. If the count is expired, it is reset and
the threaded list corresponding to that counter is examined. The delay in each
member of the list is decremented. Those delays which are decremented to zero
cause SCHDLE requests which result in operation of the concerned program. When
this process is complete, the next counter is decremented, etc.

If the acknowledge of the time interrupt is rejected, the program will exit to the
dispatcher.

DIAGNOSTIC TIMER OPERATION

This module is operated periodically as the result of a TIMER request generated by
itself. The first TIMER request is made in the startup routine at AUTO LOAD time.

On entry, this module decrements the clock cell (in PHYSTB) of each non-idle device
in the table DGNTAB, If the clock cell becomes minus, the device is assumed to be
hung up and the error entry to the driver is scheduled. When this process is complete
for each device, the module makes a TIMER request, to cause its next execution, and
exits to the dispatcher.

INTERNAL SYMBOLS USED BY THE TIMER PACKAGE

These symbols are defined via EQU pseudo operation and can be easily deduced from
the listing.

INTERNAL SYMBOLS USED BY THE DIAGNOSTIC TIMER

EDCLK Index to diagnostic clock in each PHYSTB entry
EDPGM Index to location of error routine in each PHYSTB entry
SECOND Number of timer pulses per second

DELAY Number of seconds between successive operation of the diagnostic timer

DTVAL Priority level at which the diagnostic timer operates. (Asseinbly value
is 13).

NUMPU Number of physical devices.

10-4

G-0T1

TIMER
REQUEST
ABSOLUTIZE
EXTRACT MAKE SCH
UP DATE - COMP ADDR - REQ R et
RETURN STORE IN >) '
VTMP (WD7) PRIORITY SAME PRIOR'Y
PLACE THREAD GET TIIREAD PLACE SCH YES
N TompT [WD OF < REQ WD 1 OF
EMPTY . EMPTY SLOT
' NO
Y l
PLACE ADDR OF STR COMP GET UNITS ~ SET "Q"

EMPTY SLOT WD 6 » ADDR .\\’D 2 > COUN’I: FM :l‘HE
VOLI\TILE E:ﬂ!’r‘ SLOT TIMER RhQ
[
SAVE IN GET FWA PLACE ADDRl ON
-VOLATILE > OF EMPTY »1 THREAD CORRES
WORD 7 SLOT TO UNIT8 _]
PICK UP N PLACE IN SET USERS
o e v D 4 OF L BT o
I Fanam EMPTY SLOT -y PlellV!:.

\:'r:o' vz
HE

AN

ALLER .
v

EXIT REQXT

u:m TO \

.
™,
~

O

C

LESSON GUIDE 11
O LOADER TABLES

LESSON PREVIEW:

This lesson is designed to exhibit the detailed LOADER functions. In addition, the
student will be introduced to a relocatable program format.

REFERENCES:

Chapter 12 of MSOS 5 RM

TRAINING AIDS:

O. . PROJECTS:

1, Student Project - 11
2. Study Questions - 11

OBJECTIVES:

At the completion of this lesson, the student will be able to:
1. Understand the LOADER'S FUNCTIONS.

2. Interpret object code.

11-1

MAJOR LOADER FUNCTIONS

LOGATE§ 'THE PROGRAM TO BE LOADED

MAKES RELOCATABLE ADDRESSES ABSOLUTE
- PROGRAM RELOCATABLE

- BLANK COMMON RELOCATABLE

- LABEL COMMON RELOCATABLE

LINKS EXTERNALS

RECORDS LOAD MAP _
RECORDS ENTRY POINT TABLE
TRANSFERS CONTROL

11-2

@

MSOS LOADERS

-~)
e BACKGROUND LOADER (*L) YIELa,ﬂmWLC éw\k souTiz s \T [THE
welece cono ‘mw
e LIBEDT LOADER (*P) {Aewcm%u: Qm%‘(o.w\c_,. oy

e SYSTEM INITIALIZER (*L,*LP,*M,*MP)

11-3

ALY CUMA W gv@&@&c},waq
l}O\&\;A glﬁfw ae u,{}\(\/t/o&o(fv Yo (,OCa'é"Lonﬁ
reQuiveds \05 \ ocdox - -

BACKGROUND PROGRAM LAYOUT

LWA OF —
BACKGROUND T

LOADER

FWA OF
BLANK
COMMON v

RUN TIME ROUTINES
(ROUTINES BROUGHT <

IN FROM PROGRAM
LIBRARY BECAUSE
OF EXTERNALS)

PGMB

FWA OF LABELLED
COMMON (DAT) IF
PROGRAM B
DECLARED IT

FWA OF
BACKGROUND

PGMA

11-4

BLANK COMMON
OVERLAYS
LOADER

O

R‘@O Comw e\ WO‘”Z'*

)

HEADER

©

" TYPE 3 BITS

v L\ LUDV‘AS AC&\‘%

LOADER BLOCKS
GENERAL FORMAT

TYPE 050
MAX. 60 WORDS
NAM 001 NAME BLOCK «0“\‘/1 5 .1
RBD 010 COMMAND SEQUENCE RErxaldolc Buwavy Fata
BZS 011 ZERO STORAGE
ENT 100 ENTRY POINT
EXT 101 EXTERNAL NAME . Lo}
XFR 110 TRANSFER ovby 1 FW‘X‘S ° \ o
ereuntdde ¥
pn?a\"&w“-
*T TERMINAL LOAD FROM THIS MEDIA
(Su(o
P
sul
g
ntd s p o
o
./&Q\Jv(
n‘\ﬂ,d;,'

11-5

9-11

JORGIOADFY LENCT 0,
1700 »ACS CTCRPAGF OPFRATIMNG SYSTFM VFRCIOM G0

KPR, O
NASSEM
rooy
nono 99009
P000?
Ppoo2
$0003
PO0O&
P0O00S
P0006
PoQo7
Po00D
P0009
P00OA
0003
[
() 000P

Ll
LLtrLLLLtt

Lie
(ERARREERENENN
L

Lreeeeentt

nitM

2020 Mee
4120
AH4F
204F
4654
4849
&FaT
2050
&D4F
472
LiLD

(LRR} oM

ASSFVMULY | ANGUAGE FYXAMPIF FOR LOADFR -BL OCKS

DATF QOF PIUN: 10/29/7F CYSTEM 1Nt

annano0Nnnn AAABAAAAAAA DULDLHTTIAL)) FFFFFFFFFFFFF
onnaNnONNNNON AMAAAAAAABAAR PANNERPNHADNN FFFFFFFFFFFFE
000N0NNNNNNNN AAAAAAAAAANAA LD LLHLOITG L FFFFFFFFFFFFFE
noo 0000 AMA AMA nrn nnpn FFF
000 nnnon Apa AAR ren nnn FFF
000 noeNoON ABA AAA Pon npn FFF :
onn ann 000 AAAAAPAAAAAAA nnn nnon FFFFFFEFFFFF
oen 000 000 BAAMBAAAAAAAA non nnn FFFFFFFFFFEE
onn 000 000 AAARAAAAAAAAA)] nnn FFFEFEFFFFFF
aoonnn noo ARA AAA npn nnn FFF
onnnn non YY) AAp ~rpn npn FFF
0neo noon ARA AAA rPn nnhn FFF
oConneo0nNnnNon AAA LYY NPNPRPNNNENDD FFFFFFFFEFFFE
NONNONNNONNNO AAA (YY) PRDPPRNDHNNHND FFFFFFFEFFFFE
00000000000 AAR AAA nPRANPNPPANODD FFFFFFFFFFFFF

PAGF 1 PATFL 10/2Q/70

MAM PYM DUMMY PGM - FIRST PGM WIFED OUT BECAUSE OF 6769

ALF ®#+ A DO NOTHING PROGRAM®

FND

= 0000 (0

DAY = poo0 (0)
)

JTNS 1,7 NEYO SYSTEME

(n3/7)15/770)

Xxy
xxx
nxx
XXX XXX
Yax XXX
XXX XXX
XxXxyx
Y XX
XXXXX
AXX XXX
XYy Xx¥
xux XX
xxx X¥X
xxx XXX
xxx XXX

XX
XX ¥
XXX

L= 1T

O
—

MATN PAGFE . DATE: 10/20/79
nnpy MAM MAIN ‘ | OADFR PLNCK FXAMP|E
nono FNT MBIN TELY ASSFM AND | OADFP THF SYM MAY. RF
onn3 4 RFFFPFNCFN EPOM ODTSTRF THF PROGKEAM
nnona FXT CLFAR TFLL ASSFM THAT CLFAP IS DPFEFINFD FLSFEWHFEF
ngoe » _ ;
nape XY THIS IS THF MATN PROGRAM
non7 . . .
annA Popon 0F13 MAIN FNO 19 SFT UP DABRBMFTFHS IN A fMN 0
nona poappt COPO 1 DA =¥i.

Ppnn? NpYe P

0010 Prop3 Sa0D X PTJ CLFBP CAlL THF SURROUTINF
__ Poans TFFF X
onyy » :
nN1> PANDE ACNY FND 9 SFT UP PARAMFTFRS IN A AMD Q AGAJN
0013 PanPR COOD) - DA =XM
___. PoonT no2pa P)
nN14 Ponnp R&nn X RTJ+ CLFAR CaLL VT AGAIN WITH NFW PARAMFTFRS
__ . P0ona9 nors Xx
noIs »
LLETS b v .
nnyr L USF ¢OM AND DAT
nn)A o
nnto . L A
nn>p nopo C roM FX(yn)
no21 nnno D naT FY2(s)
onp> . .
0023 PonpA NCN9 FNO -9
nn24 PAONR COND 1.DA =XFX
~ . Ppoec nopo €
. 00> Pooob S400 X PTJ+ CLFAR
PODNF NONO X
nnoe * .
ang7 - ANOTHFR FXAMPLF NF A CALL TO SUKRPOUTTMF
onznA o
nnpa FXT CAT
no3p o [
0n21 PonOF C4ND thA+ Fx
Poecle nong €
0N PANYY REOD STAs FX?
PANY? noro N
N2 PAnla S400 X - PTJes €AY
POn)4A TFFF X
0034 PONIS J4FA JHP- (£FA)
nnas A . . .
N03¢ PnOYF DNYA PSS L(P0)eM(YD) THFSF ARF THF APFAS THF €IR It €| FAP
- Pon2A DOEA
nnay ®
nnap FND MATN
PGM= npp (®) COM = nona 1) NAT = nnoR (s

b,

O

@,

(u) wuuu = vy (v) UUUY 3 wuy

UNd
(Usn=0) HLINET 103

#17aAVXa NV ASAM *a 37l YSh
(Lvd) sAnl* lanvo

(Vi) =dnl

Le*clcu*venlund 1*Ysn® 1dnLd ‘e FISL-E ¥
0 AN 1V

LvD UnN3

Adllhvdall> ¥ 40 41dnvxd NV Lvd wnunN

yl/ocd/vl 33alvud 1 dYVd
(v) vuuL = Lwd (0)} vuuy = WO

UN4
Nivn U1 Wbilldd (v} ednulr LIXd

153l Livy +dnt®

1541 1iX4 nos

1= ONI
NOLLOal>e) a4 Ol v 410N JVad Obas +d1S 1luy

1inN1 0 und

NULLOSAS L vi> ~i AvagdV 40 vad lile lvilog +vis
dadit dUUV Nl dd il 33915 VIl gavaddvn Clg ddl U AN av31)
@
dnlitvaalls ant S1 4add way

daivo b Ol N0 ava i) Uy dAs a4V av i lo g
adddito v ava i) Ul o dAnlinudand 3441 avi) "V

8L/62/701 :3\vd 1 39vd

tul)

duuy
B7J7
yauy
1799
S 7UL
dviv
vy
T
v7uc
tEN]Y
vari
o Vuuuy
Yy
6uul
Yoy

a ovul

Loy
e&&u

c@:c

Y

(e)

EEB]
d Yy
vurl
<LV
FENT)
a VJuu
Vu»y
Vuvu
d L4uuy
Vv 79
JYuuv

ELERR

cluv

tlvv s
Uldug
WUvy
juddd
Judug
Jududg
audud
Juuud
ovlua
duduva
Luvud
Yydud
aulda
yUula
rvlud
c<Uvug
Lyuud

ccmcu

duuy

vulud
[UV IVEC]
wdoud
Lyuvy
JJdUVva
alulg
yylud
tvudd
duvud
Lluvud
vuuuag

LUul
sJylu
U4cc

7000
000

790V
LAT)
yuou
YUy
vuuy
duuy
m:cc

LJyvu
YyOuUv
SUuu
LATIVIY)
[XVEVIY]
Zuuvy
mccc

11-8

6-T1

O

Ty -
nh! Tn0n NIMPY F01 - BFIPCT BeM WIPFE OUT BFCANCE OF 7P
MATM 010 LOARER O) if v FXAMDYF
ClFap In4s THY SHPLOUTIME TN CLFAD A BUFFFD
“raT TN4LFE AR EYLAD]E CF A CHODOLTINF
oy '

FNTFY POINT-TePLF o .
sHaCNM AFF A
BHHBNAT 000
CLEAR 7044 uATM 7010 AT 704F

JUST AN FXAMOIF
noed azen «— FRoM ODEBUG

----- W e e

L-Mmlnkna'gﬂdx}ﬂ(u‘dAlAA cﬂ SCRATCH

pvmpP of cone

TaNM0 2020 4170 a64F 204F 4F%4 4PA9 &FAT 2080
T00P ®P4F 4757 414D 0000 1AF9 COOO 0030 1A0]
T01n NC1IY Codn TNP26 RaDN TN44A NCO9 CO0O TNAA
T01P R4DD TNG& nCNQ €CONO AFFE 5400 7044 CADO
7020 AFFE £4DP TAOR ®4an0 TN&4F J4FA 00nNO DOPO
TJ07P apeo ponp 00NN 0NOO QGODN OGOOD 0NN NOCQ
7030 ANAN NOOD NAND DNOO NONDAP NOON noaa DNOD
7030 npnNe OANO nanp OAND aNON 0POD O0nn NOQOD
040 fnnn 0pNN annn 0000 TNRIF A40D T040 0A0Q
T04R fEO0 AFF& NDFF 0177 1400 T704R 1CFe 7078
T05n R4Fs 4CHY TASA 0NPD 1009 0ONA T0%9 14Fp

7058 ICF6 206A BR&JF 5420 AV14F 2045 SR4Y1 4DR0

d J

L
—
|—J
]

—

Symble,
wAm

nAAr ANPN ARANR NNEO
nnen rooo

aoep e— aoelae H
ThNh AnAn Dann N0
nNOD APPA ONON ODDGO
00NN anan 0app opon
0RpO epAp NOND NONN
panN ponp DOOD noNp
0RAA Npan 000D pene
peOn oann 0pe0 onne
annn conp 0OPO 0000
6O0N ponp 0ODOD NONG
ponNn Anpn 0000 poO0
o000 orna nopo anon
€ff§ nenn anono oono
1000 0non 2020
AR49 " 4F4T */20'50
0onn npnn anonn ooqo
0000 0Npoo 0ON0D 0O0DP
anon nnnn onnn oono
00NN nonn 0DDD DOOD
onon noon 0000 npoo
npoao nopn 0000 0000
nnoo npon nono nooo
nooon annn nnoo anoon
0non nano 0000 00nn
0000 naonn onao neno
A2CF

0onon nnoo
nooo noon nnoo oonn
co0n paonn 0000 NOOO
onno oapnn 00DO o0DO
oono nnon onop oone
nonn noon nooon npoon
npoo noon anno nooo
nonn annp nono onoo
onng nonn onon noop
nnAN fonn DODO DOON
0000 nanp 0onon aonn
azno i
nnna nons nn2la 4041
coon 2020 4CA&F L) 44
2045 EP4)] 4DEQ ACLS

noere

Mono Merrn

ponn

oenn nnep
rpoen npnn
open nonn
npon onon
rnnn nonn
neen npon
o000 onoo
npan oonn
0oan 00no0
fopn 0000
0000 nonp
annn noan

e
P

4120 444F- anpD

RP4F 4782
0000 onnn
0onno nonn
nonn anno
0000 o0nnn
noon nann
nono nono
0000 npop
onoo o0ono
onn0 anno
oeoer onon
0000 nnnn
0000 noon
no00 o0nno
0000 noon
00nn 0o0on
0000 anno
n0n0 anoon
nonn naoo
0000 on0no
nooo nonn
anan nonop
onoo opoan
4LO4F 2020
485D P04
2020 2n2n

nann

annn
nnopn
ronD
naoo
nooo
0npo
nnono
nroo
nono
onnn
nfoo

onee

204E
414N
nano
noon
onon
nnon
oono
nonn
nonn
ocon
nono
nnno

noon
nnoo
nono
0000
onon
eono
0000
onpo
ooon
nono
nooo
noen

nnng
4CaF
7020

mDUM.p

114
/4

T
’)(\,’,f
cnon
nepon
neee
repn
rnhnp
neee
nonn
nnne
tnrn
TEE
nonr
fane
arpn
opnn
nnnn
nnap
[LLAN AN
anrn
npop
nann
nrnn
RpEp
anre
nnan
onnn
Y
npeo
nneo
noern
enen
onpn
nnnp
nnen
onne
Antn
nnne
anon
pnrnn
nonp
opnn
oneo
rroe
nnpn
nonn
Annp
anep
fnnn
cnen
rnnn
onne
nnnn
frpa
nppn
cnen
ennn
fpoep
rnen
et

PEIAY A
e
nirnn
onnn
onen
nnnp
rppn
(AN aX1)
nenn
RO}
1mnny
ncra
coon
nnpo
nnnn
nonp
onan
nnpo
0oenn
oenn
ooon
nonn
Ny
ana
nenn
onnn
opop
nnen
nroon
oonn
oean
penp
onnn
ftonn
nron
apry
436
onon
nono
[t
fonn
npon
oenn
oepp
oconn
nnno
cenn
npon
A2N6
Lnay
nonon
rnoon
reon
opnp
nopp
ronn
noon
roenn
fean
renn

apo0
rrnn
noen
npnn
LA
nnnn
nnnq
nenn
rrnn

nnnn
foon
nonpn
f0AN
anon
nenp
nnnn
neno
nnoo
apno
fnno
nnon

4LOLF
foon
nono
onnp
nnno
neon
ronn
nonn
noon
nonn
nnnn
fpnon

€420
nonn
noon
noen
onan
fono
nopo
nnpe
anron
nnnp
nnon
nnren

4O4LF
nonnp
nean
fnnn
opnn
nnnn
ronn
napn
npnan
renp

~neen

Pann
npooe
nnen
onno
nooe
nane
nape
neon
nnpn

nel3l
im0
LY
Rapn
onoo
nono
o000
nono
nnno
0noo
(I
nonpo

2020
noon
noon
onoo
onoo
ppon
onnp
neno
nnon
nanon
0nno
onno

2070
none
anon
apno
nono
anen
npoe
onnn
onnp
nnno
npon
anpe

202n
nnen
none
oonn
noon
nonp
onnn
nnnpe
nope
nonp
nnnp

Nnon
rane
oorp
none
nore
none
rnnnp
ronne
nnpe

conn
no>#r
npona
TFFF
noern
onoen
0onna
0000
nooe
opnn
nonn
rone

ecoon
noon
apnon
onnp
onnn
ooon
conp
nonn
nopp
opnn
opne
ponn

0014
fonn
neoe
onen
nnon
onen
onnp
nonn
noon
neon
onnp
nnoo

ponpe
hone
noono
onnp
nonn
noen
nnep
npon
nonr
noee
raee

2020
nnnn
onnoo
nnnp
0nen
ropo
opnn
oenn
LGN

nnye
Lapn
f2n
J4F &
npoon
nann
nonn
nnnn
oono
oono
noon

nonoe

onno
ooon
o000
onno
noon
oeoon
aono
oQoo
nonn
noon
neno
onno

s3ar
nanon
pono
nooo
noon
nonn
nann
onnp
aoon
nonn
0eon
onon

nonn
nonn
nonn
ronn
nnpo
nnnn
noanp
nnnn
nnon
onpnn
tpon

2020
onne
nnnn
nonn
nonn
cpnp
nnann
onnn
annn

anonn
nona
cenn
anno
nnon
nnon
0nnn
onno
nnoo
nnno
nnon
nnna

nnon
noan
noon
nnno
nonn
onnn
anon
nnno
oono
anon
anpn
nono

4541
nonn
nnno
nnpon
anno
nann
apnn
nonn
oono
nann
noon
nnnn

nnen
nonn
[
onnn
npnn

LG

nonpn
nnop
nnonp
nonn
pnnn

2020
nnnn
nann
nnpoon
rpone
nnnn
nann
nnnn
none

R&0D
ncoa
nooon
oanon
nono
nnoo
onon
0000
onna
nono
anno
nnoo

CLLT)
0o0n0
nooo
nnoo
0000
noon
pnon
nooo
nnon
noao
nooon
nnon

K220
nnoo
nnoo
nnoo
onon
0pno
nnno
nonn
onoo
noro
nnpn
nono

nono
fonn
nooo
nonn
npan
nnoo
onpQ
nnnon
onnn
nnnr;/j e,
anot.

I1-11

npnn
nenp
20en
anno
B440
+orc
202p
anen

neen

anpn
onoo
nnnn
annn
anon
nenn
4080
REND
onnn
onnp
nono
onno
npnn
nann
onno
aoon
pnpp
nnen
fnoo
ApEN
0onn
nnnn
nnnn
onpn
annon
nnno
noen
foen
nonn
nnon
nenn
nnnn
cnep
noon
annn
anpn
nnnp
apop
nnon
onnn
nopn
nnpn
nnap
nnnpn
annp
2nep
noop
oner
2000
snon
noaep

nonn
Kirdal
npan
nnan
LF 45
HEL A
020
noep
oopo
penn
opno
nnnn
nnon
nnop
Azne
1001
oponn
enon
nooo
0000
noon
nnno
0onno
oonp
oonn
noo0
nono
any
434C
nonn
0000
ponn
0opnn
nonn
o000
oonn
o000
o000
nnno
nooo
Irha
2020
nono
anonn
nonn
nooon
neoon
ooon
nnnp
oenn
nnon
opon
npon
azno
onan
nnon
Y1)
2620
2020
oran

nnop

nnpp
2000
oney
LEED
onnp
)
orno
[AXANAN})
onnp
oeno
annp
npon

AOND
DFF
annn
enno
noon
nnoo
nonn
nnop
0000
0000
onno
nonn

4541
nonn
06000
nnpo
oonn
oerno
onnn
npon
roon
nonn
onnn
nonn

2020
nonp
nnnn
nepno
fnnn
nnono
nannp
nonn
nnon
pron
neon
npnn

nnpnn
2020
4120
2000
napoe
nE DO

nnnp

onep
S4up
LF 2N
20720
nono
nooo
onen
nnon
nono
nooo
nonn
aoon

anoo
nnlR
nnono
onoo
oono
nooo
nooo
anpno
0000
0nno
npoo
0non

5270
noono
nono
onoon
0000
onno
0000
onoo
oonn
onna
anno
0000

2020
nono
nono
nono
nono
nooon
aonp
naoo
opoo
noop
oone
nnnQ

no12
414F
€258
2020
nnrpn
nnen

oenp

L4360
4520
42860
202n
appn
oong
opnn
nopo
oone
oconn
oonn
npon

6400
0172
0000
0000
nono
noon
0000
0000
poon
nonon
0000
0000

000N
0000
0000
0000
0000
onon
0000
0000
noon
nono
0000
nonn

0000
onoo
npno
annn
onop
noono
onnn
nuno
oo0n
nonn
onon
noon

4341
2065
4952
2020
neno
nann

nonn

Y]
&35
4T A
2n2p
nnnn
opan
nono
anan
npon
nnnn
onno
onnp

pons
1400
onon
oeo0o

oonn

aonn
onnn
nonn
onnn
onnn
0600
onno

00nn
0pnn
oonn
oonn
onnn
0000
00no
nono
or0n
oono
rono0
nonn

oono
onon
ceon
f00n
nenn
oonn
annn
anno
onno
anne
coon
noon

420
eng)
4FBR
020
annp
rean

npan

PP
420D
8220
202n
nnona
nnoan
onnn
nonn
nneo
nono
nnnn
annn

0010
nnona
nono
LY
annn
L)
oonn
nona
0000
00np
0000
nonn

0000
nooon
oono
nonn
nono
nono
nonn
onnn
0000
oona
noon
nonon

onnn
nann
nonp
nonn
onon
nnon
npnn
00np
nonn
0onpn
nnon
nonn

2020
4hen
Q4410
2020
nonn
nnnnp

coen

onnn
aFey,
4120
2020
nnon
opnp
nnon
oqaon
npap
opono
nann
oonn

nADD
1CFS
0o0p
onno
nooo
nono
onnon
noero
npoo
0000
onon
oneon

aonn
onon
oneo
oneo
0onno
onon
onno
onpo
nnpon
oonn
nono
aooon

onnn
onoa
nono
0000
oono
nooo
nnon
oeon
pono
onnon
noon
annn

oonn
Lces
YW
2020
nono
oron

LI
nonrg
nnon
ropn
nnnr
pPnNnN
annp
["\LII
onrna
Anan
arac
nnnn
annn
nnon
npnp
frpe
nonn
nonn
rnnp
nppn
ARNEN
nnpn
annp
npep
npna
noon
nnnn
npnp
nnpnn
pann
nppn
norn
neno
rnen
nono
opnn
noen
fnnn
nnon
fonn
npen
anpn
nhnn
fAen
annn
Y
PAT

nnne
onrp
nnnp
npon
apnp

nnrp

pnre

onrnp
nnapn

npon
nnpn

orap
onnap
renn
roon
fpnn
ronn
APNA
1nnn
1rnQ
L]
[]
npon
onnn
onon
rnop
oonn
onnp
onno
nono
azhe
4141
oonn
nopn
annp
onon
noonn
nonn
oonn
nnnon
neop
nonn
anro
aznr
2nh2n
npon
onnn
nonn
nnop
nopo
oceen
nonp
faon
eopn
onnn
nnnn
Aaprn

FFFFE

ronn
npon
nnnp
ronp
nenp
npnp
ronn
fHnpn
nopngp
nene
nnpn

npnp
tron
tron
nhnnn
ornn
rneo

nron
npno
CLoOn
rpnn
ronn
nonn
onnn
onpn
nnnn
nonn
nnnn
nonn

LY 3-1)}
fnnn
nono
nnnp
nonn
nonn
nnan
nnan
nnnn
annn
onnn
fonn

2n2n
nonn
annn
nonp
ronnp
ooon
nenn
rong
acnn
nnon
nnna
ADOD

71¢a
npnp
npnn
nopn
tonn
npnn
nonp
onen
fpna
nprpon
npnn
nrnan

nuno
norn
onpp
nonp
onnp
oorn

nnop
1000
T
nnnp
anan
nono
npop
onno
onoo
anno
noon
anoo

2020
nnoo
0noo
nneo
noon
nono
too00
onen
0000

0000

onoo
npnn

2020
0ooon
nnon
noeo
nnon
neno
nonn
nono
nonp
npno
nonro
oonp

nNFCF
nongp
onon
nnon
npen
nangp
npope
apon
ooope
noon
nnpo
opop

npnp
npee
nhnn
apen
nonn
neep

A XA
nnne
r4raa
noon
nnern
opop
noen
nnnon

dpoen

onnp
npeo
noen

nono
nooon

nnnn

onon
nonn
nonoo
nonn
noop
onep
onnn
oorn
annp

oonep
ooen
onon
noen
onpn
nonn
nono
onnp
nonp
oonn
conn
noern

ooor
oorn
noop
fnoen
none
noen
noon
noern
ooep
ofnp
onon
nonn

renn
nnnn
nenAn
nann
tpno
nnon

4cny
14F8
noAp
nono
nnon
npon
nono
nnon
nnoo
noon
oono
noon

o0ono
oonn
00nn
oono
boon
onno
ononn
ocoo0n
nonn
cano
onoo
oonn

ononn
nooo
onon
oono
0noo
apno

anan

annn
noon
onnp
nono
onnp

onnn
nron
npnn
nono
onnn
onno
ocono
naon
nooo
npnn
opnn
nonn

nnnn
nnnn
nonn
npnn
noan
nnnn

1nan
1CFah
sa4)
nonn
npnn
nnnn
nnno
nnnn
anno
onon
nnne
anon

nopo
0nnn
oopo
oono
nono
00nn
0nno
onpn
nnng
nnnn
onon
00nn

nonon
anon
0nno
anna
anonn
nono
nnno
nono
nooo
onnp
fonn
annn

0noo
annp
onnn
nano
onon
onnn
nonn
npnn
nonn
nnop
nrnp
nonn

rnnn
roon
noon
nnon
nonp
nonp

nnno
2naA
4nsn
nono
nnno
nnno
0nno
onoe
nnoo
nooo
noon
ooon

0noo
0000
o000
0000
nnno
0000
nono
nnnn
0000
nOno
0000
0000

0noo
nnoo
L
nono
nnon
o000
anoo
anno
nnoo
nnoo
onnn
nnoo

nono
~fo00
nnnQ
onno
fnon
nonp
conn
nnon
nnoon
nonn
onon
npon

STUDENT PROJECT - 11

Using the dump, answer the following questions:

1.

Draw the core layout after the programs are loaded.

How many programs are included in the relocatable binary file?
How many RBD blocks were needed for the first program?

What are the names of the externals referenced in the program?

What is the transfer address and where is it in the program?

11-12

STUDY QUESTIONS - 11

What is an unsatisfied external ?

Where does the background loader search for externals and in what order?
Where does the LIBEDT loader search for externals ?

How do you detect a LOADER error?

Where are the LOADER BLOCKS created?

Can the LOADER be called from foreground ?

11-13

Qll-1

O

LESSON GUIDE 12
K DEBUGGING,/TRACING PROCEDURES

LESSON PREVIEW:

This lesson will outline the CYBER 18 Debugging/Tracing procedures

REFERENCES:

Chapter 10 of MSOS 5 RM

TRAINING AIDS:

PROJECTS:

OBJECTIVES:

At the completion of this lesson, the student should be able to analyze a system dump
for effective debugging.

12-1

TRACING PROCEDURES

PROCEDURE - REASON

This would clear all registers and inter-
rupts that are currently true.

Do not "Master Clear."

This will halt the main frame but it will
not destroy the registers.

Set the step/run switch to step.

This will contain the address of the next
instruction to be executed.

Save contents of the "P" register.

-

Display the M -Register (MASK) and
save the contents,

This will show what interrupt lines are
enabled and disabled.

This is the current software priority
unless some program is storing into this
location.

Sweep memory location EF} g (Current
Priority Level) and save the contents.,

This will contain the address of the "top
of the Interrupt Stack." This is a push-
down pop-up pointer.

Sweep memory location B8j g (top of
Interrupt Stack) and save contents.

C

Using the listing of SYSBUF, verify
that location ESj g contains an address
that falls within the BSS black labeled
INTSTK. If the interrupt stack over-

This check will verify that the "M"
register setting and software priority levels
are in parallel if the system is still opera-
tional. It is possible for the whole sys-

flowed go to step 8; otherwise go to
step 12.

tem to be wiped out.

8)

The current priority level from step 5
should now be used as an index to the
MASKT table found in the SYSBUF
listing. The word found should be the
same as the M-register from step 4.
If it is the same go to step 9; if not,
go to step 10.

o\

This step will help to determine if the
monitor is possibly wiped out, still in

control but partially destroyed, or if there

are priority problems,

EXAMPLE: EF16 =6

SFFFF
MASKT SFFFF
SFEQF
$FEEF
SFFFF
$E373
SODFF
$0777
$0747 Same O.K.
" M-Register=0777

12-2

TRACING PROCEDURES (Continued)

PROCEDURE

REASON

9)

The SYSBUTF listing is needed. The
problem is almost certain to be in the
Interrupt trap Region and the MASKT
table., The priority level for each line
number is declared in the third memory
location for a four word group starting
at location $100 and ending at loca-
tion $13F. Using these words as
indices to the MASKT table, verify
that the bit number corresponding to
the line number is a "1" for all
priorities lower and a "0" for all equal
and above. Correct any error and test
again., FINISH.

In this example line 1 interrupt was
enabled at its running priority, thus al-
lowing a priority 10 interrupts to interrupt
a priority 10 program which is not correct.
"A" should be $0005.

Line 0 100 XXX MASKT SFFFF

101 XXXX +1 SFFFF
102 00OF +2 SFFFF
103 XXXX +3 SFFFF
104 XXxXX +4 SFFFF
105 XXXX +5 SFFFF
106 000A +6 $0777
107 XXXX +7 $0848
108 XXXX +8 80747
109 XXXX +9 $0047
10A 000D +A $0007
10B XXXX +B $0005
+C $0005

+D $0001

+E $0001

+F $0001

$0000

10)

The address of the word found in

step 9. Once that address is calcu-
lated, sweep the contents of that
memory location to verify that it is the

same as the M-Register setting. If it -

is not, go to step 11, otherwise go to
step 19.

P008B NUM $777

201

+8B

28C and location 28C = 744 OK
28C = 744 Error

11)

There is not much to go on at this
pointas itis apparent that the execu-
tive system is no longer in control. The
MASKT table is either partiallywiped
out or completely changed and some
module has executed an illegalinstruc-
tion. An attempt to find the problem
could be made by going to step 19 but
do not count on tco much.

This is bad because core has beenchanged
and illegal instructions have been executed.
The interregister instructions where the "M"
register is the destination register has been
executed. Chances are control has been
transferred to some address that contained
constants which were executed as instruc-
tions. One could run a spot comparison of
memory versus what should bein memory to
centralize the changed area. This may or
may not supply a clue as to the source of
the problem.

12-3

TRACING PROCEDURES (Continued)

PROCEDURE

REASON

12)

Repeat the procedure specified in
step 8 only go to step 13 if they are
the same; otherwise go to step 14.

This will point out such things as the
state of the tables and whether the
monitor is in Control.

13)

There is really nothing to do here but
the system appears to be in good
shape for debugging. Go to step 19.

The tables appear to be intact and the
monitor still appears to be in control.
The problem should be found without
much trouble.

14)

Repeat the procedure specified in
step 10 only go to step 15 if the M-
register compares to core, otherwise
go to step 16.

This should supply enough information as
to whether or not the monitor is in control.
Regardless of the circumstances an
attempt to trace the problem or problems
will be attempted.

15)

Try to find out what program is
wiping out the MASKT table. If no
logical path is available go to
step 19.

All in all things look pretty good. The
executive system appears to be in
control but some program is storing in
the area occupied by the MASKT table.
It will be in protected core-so all that is

needed is to find it.

C

16)

Compare the contents of the M-
register with that of memory. If the
MASKT table is in core correctly go
to step 17, otherwise, go to step 18.

This will let the analyst know who is in
control.

17)

Correct the program that is currently
in execution as it appears that this
program has executed an interregister
instruction where the M-register was
the destination register. If the solu-
tion to the problem is not apparent
go to step 19.

The monitor appears to be in control but
the M -register has changed.

18)

It may be extremely difficult to find
the source of the problem as it
appears that the tables are wiped out,
monitor is not in control and an
illegal interregister instruction where
M is the destination register has been
executed. Spot checking core may
help but the system is in pretty bad
shape. If nothing else works go to
step 19.

Control was probably transferred to some
address containing data rather than execu-
table instructions where the data was
treated as instructions.

12-4)

O

TRACING PROCEDURES (Continued)

PROCEDURE REASON
19) Attempt to find out if it is possible There are several possible trouble spots
that an interrupt is being processed. when processing interrupts but most of
When the current priority level is them are quite easily detected and they
the same as a priority level speci- are not usually too difficult to correct.
fied in the interrupt trap region New drivers and physical equipment
(step 9), chances are good that an tables should be looked at quite carefully.
interrupt is being processed. If it
is go to step 20, otherwise go to
step 24.
20) Determine what line number interrupt | Most of the interrupt lines use the
is being processed by using the "Common Interrupt Handler" to preserve
memory map (SI Listing). Find the the state of the computer and do the house-
program called COMMON (Common keeping required to change from one
Interrupt Handler). The address priority to another. When common is by-
where common was loaded will con- passed for any line number, the Interrupt
tain the address of some location in Routine used by that line should be inter-
the interrupt trap region.. This rogated. When the line number is known,
address should pinpoint the interrupt | the analyst can check the "Interrupt
line currently being processed. Response Routine" for that line to find out
: just what devices operate under that line.
21) The absolute address of the "Inter- This could point to some error conditions
. rupt Response Routine" will be in the | such as having the interrupt cabled into
last word of the four word groupings the wrong line number or show where the
by the line number in the interrupt linkage from the interrupt trap region to
trap region. This address should the Driver for the device is broken.
point to some address‘ 1r.1 the SYSBUF. The "Interrupt Response Routine" should
Go to that address (Listings only , " ,) "
\ contain the "Physical Equipment tables
needed) and acquire the addresses }
of the Physical Equipment tables of a.ddresses for all devices processed by the
, .. line number.
all devices on this line.
22) Verify that all of the Initiator priority | INTERRUPT TRAP

levels in the "Physical Equipment
tables" and the continuator priority
level specified in the interrupt trap
region are the same. If they are the
same, go to step 24, otherwise go to
next step.

NAME MEMORY CONTENTS
Line 01 104
105 S4FE priority
cont.
106 000A
107 LYNEOQO1
address
in response
routine

12-5

TRACING PROCEDURES (Continued)

PROCEDURE REASON C
22) (Continued) INTERRUPT TRAP
NAME MEMORY CONTENTS
LYNEQ1L '
ADC TTY Physical Equip-
ment
ADC CRDRD ADDR of Table
ADC PTREAD
TTY NUM $230A
CRDRD NUM 120B Wrong priority
should be A
(12...)
23) Correct either the priority level in The error conditions should be known at
the interrupt trap and/or the priority this point. Make all the necessary cor-
or priorities in the Physical Equip- rections, SYSBUF if required and rebuild
ment tables. Be sure to check the system. Attempt run again. This is a
MASKT table if any levels are common trouble spot when addressing new
changed in the interrupt trap and drivers or.changing the priorities of the
correct accordingly. FINISHED. standard devices. ‘
™~
24) Check to see if the program being There are several possible trouble spots </‘
executed might possibly be a mass that could be caused by Mass Memory
memory resident program or the programs especially when they have not
result of a mass memory program been tested in a real time environment.
being executed. If it is not mass For Part O programs, they have address
memory resident go to step 31, constants preventing the program from
otherwise proceed to next procedure. | being run-anywhere, or releasing allocated
core without giving up control etc,
25) The next step is to Dump the Mass This should point to where the programs

Storage Systems Directory. The
address to start the dump is the con-
tents of memory location EBj g plus
the contents of memory location
E716. The last address is the con-
tents of location E6; 6

were last loaded.

EXAMPLE
LOC 14B 000, 332F 000, ~0123,0780,
0000, 0001
152 00lo, 221B, 0000, 0157,
0181, 0000, 0020
1590020, 2003, 0000, 0138,
04C0, | 0000, 00025
»Length

|'-—tBeginning address where

loads last time

C

Current operating priority level

12-6

C,

TRACING PROCEDURES (Continued)

PROCEDURE

REASON

26)

Is the program counter pointing to any
of the areas in allocatable partition
core., If it does not go to step 30,
otherwise continue.

Word 1 of the System Directory for each
entry will contain the address where con-
trol was transferred after the core was
allocated. This could show what program
is currently being executed.

27)

Verify that the program is operating
at the priority level assigned. This
can be verified by checking Bits 0-3
in the word 0 for the Directory entry
currently being checked, If it is
okay go to step 29.

The priority level should be checked to
the current priority level. If the priorities
are the same, there is probably a bug in
the program; otherwise the error should be
quite simple to trace and correct.

28)

Get a listing of the program currently
in operation. Check all I/O and
Space and PTNCOR Requests,
priorities specified for the comple-
tion addresses, whether the comple-
tion address in any point included

in the Mass Storage program being
checked. Except for some very
special cases the completion priori-
ties should be the same as the

~ priority level in the Systeém Directory

and the current running priority.
Correct discrepancies and restart.

This is again a common error spot. A
program could be initiated at a high
priority level, say seven, As the program
is being executed, it initiates an I/0
request with a completion priority of five,
Now the program is running at two different
priority levels which could cause some
problems,

29)

For programs running in allocatable
core, check the program for such
things as address constants, mode
of addressing, or other possible
bugs. Correct and reassemble
FINISHED.

It appears that the program was notwritten
as a run-anywhere program. When ad-
dressing any location in the main program
or subprograms the mode must be relative;
when addressing permanent core resident
programs the mode must be absolute and
address constants are taboo unless ADC*

30)

It is difficult to say where we are at
this time. Tracing through the
history of paths taken by the monitor
may offer some clue. Possible
trouble spots are monitor calls where
the mode of addressing is specified
incorrectly. The loader has no way
of checking these error conditions.
Proceed to next step.

EXAMPLES:

Relative (Incorrect)
RIT - (SF4)
NUM - $1305
ADC - PARA

Absolute (Correct)
RTT - (SF4)
NUM - $1205
ADC - PARA

12-7

TRACING PROCEDURES (Continued)

PROCEDURE REASON
30) Continued Sysdir (Correct) (for part O)
RT] - (SF4)
NUM - $1205
ADC - PARA
Example number 1 is incorrect as the
monitor will send control to the address
following the return jump and the contents
of the next location.

31) The address pointing to volatile Whenever a request is made to the moni-
storage will be needed to trace the tor, the Request Entry Processor will
history of the monitor events. The request a temporary storage area called
pointer to the next block of Volatile Volatile Storage. This temporary storage
Storage can be found in Memory area may contain valuable information
Location FO - Save this for future such as where the call (request) was

16 e
use. initiated and where the parameters used .
by the monitor could be found. This
information may point directly to the
trouble spot.

32) If there is a possibility of I/O hang- | It may be possible to determine at this C
up go to the next step but if it looks time that there is definitely some problem
as though the problem is definitely either Monitor Request or modes of ad-
software go to step number 37. dressing. If that is the case, there is

no reason to check for possible 1/0
hang-up.

33) - Find the LOG 2 table in SYSBUF. EXAMPLE:

Th1§ table should be dumped to LOG 2 23B 0009
verify that there are no requests 23C FFEFF
waiting to use a particular logical
\) . " 23D FFFF
unit., This table is the "top of
" . . , 23E FFFF
thread" waiting list for each logical
. —~——— » 23F 2137
unit. If they are all flagged as
240 FFFF
empty (FFFFj g proceed to step 35, 241 FEFF
otherwise, continue to next step. 947 FFFFE
243 -FFFF
244 FFFF
245 FFFF

12-8

— Logical Unit number 5 is threaded,
therefore, the device should be
marked as busy.

)

TRACING PROCEDURES (Continued)

PROCEDURE REASON
34) The LOG 2 table, as all Logical Unit EXAMPLE:
;Eﬂ;:; lsUfiierigebZ Xlg’glizliﬁnlt LOG2 23B 0009 LOGLA 280 0009
ste 33. et ag addresspfrom 23C FFFF 281 GORE
P93, 9 ‘ 23D FFFF 281 PPTRDR
entry 5 in the LOGIA table. This
. . 23E FFFF 284 TELPTR
will contain the address of the
. , 240 2137 ————-285 TTYKEY
Physical Equipment table. Now
, , . 241 FFFF 286 TTYPUN
verify that word 5 in the Physical
, . 242 FFFF 287 TTYRD2
Equipment table is other than 0. If
it is 0 then correct the driver. After 243 FFFF 288 CARD 40
, " . 244 FFFF 289 TPPDRI
the driver goes to "Complete ¥
Request" it must again go to FNR 0 TIYKEY NUM 120A
before giving up control. It appears 1 ADC INIT
that this was not what the driverdid. 2 ADC CONT
‘ 3 ADC ERROR
4 NUM - 0 -
5 ————> NUM 0
35) I1/0 hang-up possibilities still have | Using the drawing on step 34, the ad-
‘not been eliminated. Every Physical | dresses of the Physical Equipment tables
Equipment table in SYSBUF will have will be found in the LOGlA. Example.
to be checked verifying that none of CORE, PPTRDR, PPTPCH, and etc,, are
the devices are presently busy. If all absolute addresses of Physical Equip-
. none are busy proceed to step 37, ment tables. Each of these addresses +5.
otherwise correct and continue: will be the busy word and should be
zeroes for all devices unless I/O is in
process.
36) If the systerh had the timer but the When a controller sends an interrupt to

device was not timed and could be,
add the device to the Diagnostic
Timer Table. If there was no timer
a routine should be written to check
for 1/0 hang-up. Anyway it appears
that an interrupt was lost.

the computer which is not retained until
the driver acknowledges it or the driver
output/input a character and expects an
interrupt back when the controller is ready
for the next operation but the interrupt
does not come back, I/0 hang-up is
assumed. The device may never be
operated again. The diagnostic timer

will prevent this but not all devices are
timed.

12-9

TRACING PROCEDURES (Continued)

PROCEDURE

REASON

37) The following steps can be used to

find out what paths the monitor has
taken. First, find out if the last
request to start another program
(scheduler's call) was requesting
that program. This can be verified
by checking the last entry in the
interrupt stack. If the contents of
LOC B816+3 equal an address that
contains the same value as location
B9] g then the last request made was
higher. If that was the case go to
next step, otherwise go to step 39.

Whenever a program is scheduled up
(higher priority than the requesting pro-
gram), the requesting program is tempo-
rarily halted (pseudointerrupt) and the
requested program is placed into execu-
tion immediately.

EXAMPLE:

1) Interrupt Stack Pointer LOC B8j g
contains 4871 ¢g.

2) Address of the Request Exit Processor
can be found in LOC B9 g: It contains

107C16. =
(LOC B8) Q Value = 487;¢4
Q +3) A Value = 107C1 g<—

38)

Either the program requested was not
debugged completely or the absolute/
relative indicator (parameter X) in
the requesting program was incorrect
(most logical). If an error in the
requested program is suspected,
debug it, otherwise find out from
where the request was originated.
This will be an extension of step 37.
The contents of LOC B8j g+2 will
contain the starting address of the
volatile storage used to process

this request. That address +3 will
contain the return address for the
requesting program. With this infor-
mation the parameters could be
verified and corrected if in error.
Correct and Restart.

What probably happened was that the
address where control was sent was
specified as an absolute address when

it should have been relative or vice versa.
It also may have been a System Directory
Call and the program was not on the
Directory or vice versa.

EXAMPLE:

Interrupt Stack Pointer LOC B8) g contains
48716+

Interrupt Stack

4871 6 Q
250 | 2
I=3FF; ¢
3FF g «—— Volatile Storage
+3
402 2051

12-10

C\

@

TRACING PROCEDURES (Continued)

PROCEDURE 'REASON
38) Continued 204E 54F4
204F 1206
2050 3215 _|
2051
Return
Parameter List
15 987 430
A
B C
A = 0 the C is absolute
1 the C is relative
B = 1 Directory
39) The next problem is to find out Top of the Scheduler stack empty list is
whether the request was a primary LOC B4jg. It contains 4F6;¢.
scheduler call (request to start AT6 AT6 1206
another program) or a Secondary
) +1 4F7 23215
Scheduler call (start execution 277 < :
because of I/0O being completed.)
This can be checked by comparing Common Exit used by monitor is Loca -
the contents of an address calculated | tion 104;¢-
by getting the contents of Memory
LOC B4] g+l to the contents of mem- 104 3215
ory location 104; g (Common Exit) if This example shows that the call was a
they are the same, the call was a . :
. . primary call since LOC 4F7;¢ LOC con-
primary scheduler call: otherwise, ,
. tains the same value as LOC 104; .
it was a secondary call. Go to step
40 for a primary call. Go to step4l
for a secondary call.
40) An attempt should be made at this Pointer to Volatile Storage is location

time to find out from where the
request was initiated. If there

were no requests for volatile storage
which would wipe out the history
which leads back to the requestor,
the procedure will be quite simple:
otherwise, take a few stabs in the
dark or reinitialize the System.
Memory location FOj g will contain
the pointer to volatile storage.

FOpg. It contains 3FFjg.
" Volatile Storage

- 3FF
400
401
402 2651“—1
204E 54F4
204F 1306
2050 1136
2051 Return

12-11

TRACING PROCEDURES (Continued)

PROCEDURE

REASON

.40) Continued

The contents of that address +3
could point to the return address
following the call. Parameters
should be checked for the same
error conditions listed for step 38.
Correct and Restart.

41) When tracing down the original
requestor for I/O or CORE Allocation
there are two paths which may be
followed. If there is a listing of
Complete Request for Drivers avail-
able, look for the Label CE in the
assembly listing. Using the memory
map along with the listing figure out
the absolute address where CE can
be found. (It will contain a negative
number.) Go to the address speci-
fied by bits 0 - 14. This should be
checked out. When a listing of
Complete Request for Drivers is not
available use the same procedure

~ listed under step 40. The address
‘found in location 402 may point to
the address following the label
defined as CE. Once the parameter
list has been found, again check the
relative/absolute indicators.

Example - 1:
MEMORY MAP COMPLETE REQUEST

LISTING
PARAME 1329 P0040 NOP
vVOLA 1387 P0041 RTJ-
(AMONTI)
COMPRQ 13A8, PO042CE 0 O
13A8<———l
+42 '
13EA]1 g—>13EA AQ4F —
Excllding Bit 15 is address 204]11:‘16
l RTJ AMONI
204F - RC . X
Example - 2:
F0) g eontains 3FF16
Volatile
3FF
400
401
402 13EB ‘]

l—»This address minus 1
should equal CE. For
Example 1 from this
point.

12-12

)

C

LESSON GUIDE 13
Q JOB PROCESSOR

LESSON PREVIEW:

This lesson will introduce the JOB Processor and its related routines.

REFERENCES:

Listings of MINT, JOBPROC, MIPROC, JOBENT, and PARAME

TRAINING AIDS:

O PROJECTS:

OBJECTIVES:

At the completion of this lesson, the student will be able to discuss the Job Processor.

13-1

MINT

———

REQUEST
PARTITION
L)

RELEASE
PART O

SET. 5| sencoue |
nIe = i s (CPe3 b
ouTPUT SET 36 Wy INFUT L
nt NIINP MESSAGE
Yo v 2 SFFFF FRON TTY
nIlk
SET ‘§"F”"‘ . CLR
nIBX St . nie
oUTPUT
4POS (nsp)
ni3) SCHEDULE
o8 PROC hd z2 YES JBCNCL >
Ineres Cp=d
NO NO
niss
SET SCHEBULE
sK —>> JPCHGE CPe3
nIsx @ nrmwe
NO
CLR LOADER SET J?
IN CORE =3 Locrout
ES FLkG -3
4 nik
P YES 0
ug:wr 22 CR YES
3ET
NO
nivs
Gl e
R [} -
R SET nIsx > ‘E iR
N9
R YES
NO
niie
NO
TCH Sy QUTPUT
BATC JPOS
° ES

13-2

SCHEULE
JOBENT (P=C
e NIINP

@

SET
mnie

FILEl.@
PRESEN

YES

RELEASE
FILEY.@

SET START oF
AREA 3 TO
HICORE =5

SPACE REQUEST
FOR AREA)
T0 FORCE SHAP

A

SAVE START
FOR RELEASE
RESTORE AREA -}

INQ -1

CLEAR
JP IN CORE
FLAG .

o

13-3

. RELEASE
PARTITION 1lb

> NIk

RELEASE
PARTITION b

\
Ecau:sv PART 14

P=33 TO0 FORCE
ETTING OF
ROTECT BITS

A4

PARAME

PARAMETER YES
NABS 1IN > Loc
TO TNABS
NO
: N1
!
| WDO TO A
N PARAMETER
TOoQ
YES X BIT YES BIT 15
SET SETON Q
NO NO
NOW1
ADD BASE TO Q
_ |Base=0, x=0
T |=PARM, X=1
CLEAR BIT 15 OFQ
\
GET NUM OF
WORDS TO Q SETON Q
PARAMETER
‘CABS 1IN : . Loc TO
TCABS
COMP PARM DIRECTORY
TOQ CALL
C1
PARM LOC TO A COMP PARM + COMP PARM +
SET BIT 15 »1 ADC PARM TO ADC SYSDIR
IF NECESSARY TOQ
CAYT |
CLEAR BIT15
OF Q
IF SET
\
EIN

RETURN

Q = COMP ADDRESS

13-4

| N PARAMETER

TOQ

Q=#WwWDS

RETURN
T0
CALLER

REVIEW QUESTIONS MSOS

hed Wt Yags Physhed

1. The driver's execute at what priority levels? \‘\\@\/\é(w\w\,\ 7 (e4\0n of Yy linic L2y

2. At what priority is a mass memory program executed? uptEder VT 16 SCUED. V.
3. What happens if an unprotected program executes a release request and a mass

memory program is residing in that area? (AV\PV@L«/ . ?Y%rcwf\ % 2lecude v,zﬁzm
Cquest o probypmledk Lot TP i |

4, How does the R/W request processor determine if a driver is busy? TLA Worn

p\:i\r/ svaly =0 SN
5. When a driver completes one request, does it jump to the Dispatches? CLO@OX—O NQNL (eqQus
6. What determines@ area in allocatably/partition core that is allocated to a mass

memory program that is in the System Directory? Reguuot Ervov vy

7. What is the advantaﬁz\a of having a core resident p%ggf\ﬁﬂl in the system direc\gory? v)\\g OW\O()\YW
S YA vw
com .stE«a(iqu, w ook KV\OW\YC\% Vs address)) %fg{gm zm%w:\ \EYip \a¢ca}l)
8. If a priority 3 program makes a schedule request for a priority 5 program,‘%ho goes
' on what queue? 3 ques on \vﬂewwp* slac 4 PVW“*'"() S prograwm vumd.

9. What control statement to the system initializer determines the core resident
programs? \°ul 0= ¥l '
. Pl 4 = kL@
10. What determines the priority at which a timer request is threaded into the scheduler

stack? Qo Aom ’\“\w\cr \Wae oon AU - coumbs down Nz

11. How can a program cause itself to run at a lower priority? S%M*\k&@ a&r a \@UJ"-T
pronly € Tue B dupaTchen
12. What program determines the program to be put into execution after a program

completes execution? TASP@RTCher SELECTS ekl \y\\g\waL Pnom&s S MENASAR
13. How is the initiator portion of a driver put into execution? ScCueouLEo '

14. Who releases volatile that MONI obtains? Re@uest X\

15. What control statement determine the programs that are to be placed in the system
directory? Who receives these instructions? %y/U\M”" SysTEM wibializer
: Y tore
16. Who transfers control to the line processor for a'line after an interrupt has been

generated? Common wlervosy Namddor 2xcept e wlernal et hama
whndn Nend oy \\Muvg 4 . Y '
17. How does a completion address for a READ/WRITE request get scheduled? C@W\\PL@L
208y sl dules’ §

18. How does the diagnostic timer routine know which drivers he is to check? \
DAAGNOS T\ T TTHELE W Sys dal Ueor malse. 2nAT-L)
19. How does the error portion of a driver get into execution? (
S Aagqwoshe Xmer =) Wzl o erioe addbey
20. Under what conditions can a swap take place? y\—u .,v..‘.;E@;‘-:v::m;mi;:f?:{'”\'\”Zafif‘?lfk'é‘&
\ SUUf) = UA 266{&,&. L0 pronke >o. me, Adfetey a(f SN Vot swavo‘

21. How does the diagnostic timer routine know that a driver is in execution?

Qo = FEFF -—‘\\6\/\& V) £$0_«;u;\1’om/‘kr\0m o Hachon § Y uJor”«) ¢ oy

22. If DCORE is busy when a space request is made, what happens to the request?
e ; 0 (4
‘l@ga {(Q/‘;UQ‘MLQL (m‘“ on 4\[(%(5&'&(o Y

allpcdlor= Acwer

14-1

23.

24.

= 25.

26.

27.
28'

29.
30.

31

32.
X 33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

)

44,

REVIEW QUESTIONS MSOS (Continued)

Y
A
What is the function of the LOGIA table? ?[‘r}/ﬁ'ﬂ/}@ BODNESS
What does the "Q" register contain when control is returned from a request &/\ocessor,
if the request was accepted? W pPos\T\UE & Lw\,.alr gon ge,v\ to & bk 1S =% se T}

How can a programmer determine when his I/O request has been completed?

complele comtod Wl 2ew Yo Yaracd \word oc wol Schedale A cown p(w*’! on gddress
If the printer, which is usually logical unit 9 has been declared down, where does the
operating system look for an alternate? LOC‘ 1 e

Where can you look to determine the number of devices attached to interrupt line 1?
Line A Jaule
When should a program be written so that it is reentrant‘? Whem (& lS*La/wdA
vvssx\o hp bang Shawd ab Wk Pmov\ :
er wha con ition"or conditions will a scheduler requeth e rejected?
5 Yoo haue DS BLED SCF/Cmézﬂ/b/f‘ ORLIVGI C WnechRry Scif.
Under what condltlon or conditions will a READ/WRITE re€quest be rejected?
IF ouc Yhead ko / \Fowwe v down cond = allerval
What deterrnmf;s _ther?_ contar({c;l‘A w111k‘be transferred after a release request has been
executed? T S A
Thow tsek M}ér Wor) of code . FL‘LUMA\ Lo calor

How does MAKE(Q determine whether an I/O request has been completed with errors?

Aucha 2ror shalaa \n pWog e — o u

What bits are set by MAKEQ wheén an error condition arises?

XS/H/ 12 & ESTAT A Wovra.
What steps are followed by the scheduler request processor when a program is ‘ C
scheduled at a hlther pnorlty t}la.n the currentl{y runmng program" (

Yot o e ad " S L R 7% 4

VAL VAT \«Y \O \l\ﬁ—)"M(/W L-/~V\k~\4’\-)"”LL/\ “../ e \(/UVV‘ VAN N,

How does the system determine the number of 10g1ca1 units?
| word \a% fL) \og (A A fiten

Who puts information such’as S, %+n, a.nd opgratlon in progress in the physical device
table, and what programs use this information?

S =Swared vk Sk W Syskad \\L&O\aé
In what program do you find the code for the scheduler?

pupa<cner CNOSP]
How many processors are used when a schedule request is made for a mass rnernor

program? Scheduls / R / core allocator / rWw / AU SLevree / %, ﬁ,m Lo e /‘é/f

Where is Request Exit located?

~ o W 1
Mowbor TEWD oF MonMITv ‘(Z!ZQLUU{ } L”fiﬂ, ~-»~————E:QZ1M’\“ b
Who sets the new mask after a.n interrupt is generated and how does he determine) Qe %

Pids
what that setting should be? (pmmon Tind Wamdlox freey

When are interrupts ‘enable after the hardware has disabled them because of an
interrupt?

((“U/ Shedde curamt e ({rs,d W WA wmgtéw 2c Bl w\Jr O lile A

Who idles the clock word in a driver when I/O i5s compl with no'errors?

Complade YauLat COMRALT

Who idles the clock if an I/O error did occur?

Who zeroes the threadword in a READ/WRITE request, if no completion address was .
scheduled? If one was scheduled? {)

V& none seden ARBEED. COWpLETe \'L(’,auufr)
<C ‘)(/\/\ N 2(,("(7(\(\@ D’{ \\/{&\/\Qa()\ wO(/O\ WUJJ ‘:l)l\ SC(:‘(’AU/CG,

14-2 'J\-(;L. Lot e erhiliesar
/‘n/UM" (}‘(n .Q/LO n Q (UTJ‘J\{ \

N
“

45.

46.

47.

48.
49.
50.
51.
52.

53.

54.

REVIEW QUESTIONS MSOS (Continued)

1

What type of codmg must be used by mass memory programs that run in partition

core? That run in allocatable core?

oslite /" Py amepe /%b gt

How does a.core resident program pass control to a mass memory

their entry point be declared external? 5(/&0‘“}@ G Mo L wsstemnas
tple LB e gpeesTREC 2. szp€ meeded -

What type of addressing'do mass memory programs use when referencing core

resident programs? Why? /(s 50, e P Coe /zww(;;z/é pABpIe T o
WLo-LR. (2 4{,@6{/!0 e PNL. P ,{r Frerze) 9“ W,.»(,g,.&» A
What is the functlon of the mask table (MASKT) and who setsit up 1n1t1all d xww’r

oW whdl Tk vz etneelscedf bbbl « Sed wpp wn Lydah
What {)rogram must be customized by the user before building his system?

t program must be the last core temdent program in part O loaded and why?

W SPpce 2’\” (eelec. éa;f/m N wil gt WZ/&'/M”{ ezl 4, a

When are the request prlorltles set for mass memory programs?
?p aader ewddoh . "K%‘\w o oo \L\BE0 o wwacnd
ougne is used to add the assembler and compiler to the program libra.ry?
LYBEYDTY
What control statement is used when replacing a mass memory program to link the
core resident entry points used by the mass memory program? | 5pn5 %M
* M Xeo\ues
What is the purpose of the table of presegts? Where is the table located?
wedto wn O\m leck env vowts so canlee pied | 7« wwpmfyec{%d m x/ O AT
What is a source program?)
Sed ol wsbvuchions T e ompled
What is an object program?
Pvviram (oduwds \oy deemitic
What is an absolutized program? J -
Aodqam Yaak Wa bl Ltke 482 (drsites oo oF car o cececels
at is the diff erence between run én(l;ed% and i rwme-loadEd programs"

C ‘,{ ,cﬁ/"

/wUW\(

1at duetermlpnes the 1versk'\thbe placed in an operating system?
ot Aorces Tapniar - whal plupral Loreg e Woce w
Who initially sets the clock word in the physical device table? oo o -
OAYWGNOSIC TTIMEE WoRD £ 1z st Yy \mibedloy Porten of dover
What is the purpose of the MAKEQ routine? '
V‘Q‘“@%U\O\\—a\ﬂa _
What is the funct1on of the complete request routine? @o\,» /
Hoeew (l%sﬁm}(Qe dAegpatie cQ.QM;\. SJ\Q Ava. ¢ (ocls QRGN AL T
What is the function of the first 2'words of Physmal Device Table?
gfj‘i ¢ 0. 8 wrhoe dhwto s e fo en teesed wo@ues&
How does a driver know when he has transferred the desired number of words?
When ewow = Lotgtuea) +1
When a 'short read' takes place, how can the programmer determine how many words
were actually transferred? \.@A_u i © (Ca 74& Zirin At I~
aercl. woed | g7 fugtec ety Se€ /Y
Who notifies the operato(r a dev1ce is down and what responses may the operator make?
FOoEU alt AZO /V\(,\\((e =2 Conmasuny Sl teg Ry Wo

~ What two ways may a program be placed into execution? (Y
N A, . : r) l}u\
19(‘/(\1 dole ZX 0 é‘guc«a//& oo

14-3

1.

20

3.

4.

.5.

MSOS TEST

Which program(s) place entries in the interrupt stack:

a.
b.
c.

Dispatcher

Read/Write Request Processor

Common Interrupt Handler and Internal Interrupt Processor
Common Interrupt Handler and Scheduler

Which program(s) remove entries from the interrupt stack:

a.
b.

d.

Dispatcher .

Read/Write Request Processor

Common Interrupt Handler and Internal Interrupt Processor
Common Interrupt Handler and Scheduler

Requests threaded to the Scheduler's thread but not in the Scheduler Stack are:

a.
b,
C.
d.

Primary Scheduler calls
Timer calls

Secondary Scheduler calls
all of the above

Requests threaded in the Scheduler's Stack and to the Scheduler's Thread are:

C.
d.

Primary Scheduler calls
Timer calls

Secondary Scheduler calls
all of the above ‘

Requests threaded in the Scheduler's Stack but not to fhe Scheduler's Thread are:

Qe

C.
d.

Primary Scheduler calls
Timer calls

Secondary Scheduler calls
all of the above

How many entry points are there to the monitor:

Qe

C.
d.

one BT (mon)

two
three
sixty-nine

All hardware interrupts enter vial

a.
b.

&

the Interrupt Stack
Request Entry Processor
Dispatcher

the Interrupt Trap Region

14-4

C - 8. The address of the dispatcher can always be found in memory location:
) v

a. $F4
b. $FE
e, $BB
(a.) sEA
9. How many threads may the standard Timer Package have pointing into the Scheduler
Stack area: , S/J
four (oum
. three Al
c. two -
d. onme —_— .
Note: Use the following example to answer questions 10-19. DB
ASSEMBLY MACHINE CODE E@v \ 13) W()&U@ A &{Mo)r
RTJ - ($F4) 54F4
'NHM'$66\'$>OC% 0C46 000 \lopo oivo ©NDO
ADC (COMPL) 8007
ADC 0 0000
NUM $18FB 18FB
ADC (LENGTH) D213
ADC BUFF 5800
C) 10. What type of request is this:
: a. READ
b. - WRITE :
. FORMAT READ
FORMAT WRITE
11. What is the Request Priority:
V a. seven
four
c. five
d. three
12. = Number of words to be transfered:

(2)

(7 @ " The

C

can be found in location $D213.(5 I’

is illegal.

is $D213 words. '

can be found in location $5213. \EO \ 00O\
32K |

completion address:

is relative | &(«70 e

is absolute

is an index into the Program Directory
is an index into the System Directory
non of the above.

14-5

oovo OO \E

(77(:’) (g{\(nm 0(/' \
[(/C/L:) .

14. The logical unit number: N

N
is four
@ can be found in location $FB
c. is eight
d. 1is ASCI
15. How many parameter words are required in a R/W request for a non-mass storage
device:
a. two : ’
. four - -
six
. ten
16. The address of the Request Entry Processor can be found in location:
a. $18FB
b. $FB
c. $05 , N
$F4 Ynow| %v - Requesh 6\\W6 Procion
17. Which answer is true:

/7
a. this call is an indirect monitor call M M (AT wr \bL
b this call is a FORMAT READ REQUEST

@ this call is a direct monitor call

. the mode of addressing is relative X\O \\- \/Y\A,cdsf {QQ S&'\’

®

18. What will be the software priority when the completion address is entered:
a. four
b. five
six
. seven

19. The (a) field in the logical unit is set to:

a. zero
b, one
two
eight
20. One parameter may be passed when making a scheduler's call. How is this
accomplished:

through the Q-register

through the parameter list
c. through the communications region
d. through the I-register

)

14-6

21.

22.

23.

24.

25,

26.

27.

Which type of request is used to request allocatable core:

a. CORE
SPACE
c. RELEASE
d. GET FILE
Which request is not available @ot@rograms:
//l
a. CORE -
(b.) SPACE
. TIMER

d. SCHEDULER
Which requests are available to protected programs only:

a. SCHEDULER, TIMER, SPACE, RELEASE

b. CORE, LOADER, GET FILE, STATUS, EXIT
c. READ, WRITE, FORMAT READ, FORMAT WRITE
. SPACE, RELEASE

The entry point to the scheduler is:

a. TC ’
b. T4 : i
T9 S.//Q\p dulec g oe e u,ed& ke O K K
. Ti12

Which request is not re-entrant:

a. SCHEDULER A o%m ke \néw lfu,l \p% 1 O M\Jr

%‘I\z}ggs Salen \\a/\\ (Cea \PQ b Croctuon

d. RELEASE

What determines the AREA of allocatable core for a SPACE request:

a. running priority

Completion Priority
Request Priority
d. logical unit

How many parameter words are required for a TIMER call:

. two
b.} three
. four
d. six

14-7

28.

29.

31.

" 32.

33.

34.

L :
X
4 . \)\{\
If a TIMER call was just placed on the thread with the "u" field equal to one and the
"t" field equal to 15, how long will it be before it will be removed: K_/,

| X\h\fj \X\ |
Pty
WL Y

~.

@ between 1.5 and 1.6 seconds
b.

between 1.4 and 1.5 minutes
c. between 1.5 and 1.6 minutes
d. between 1.4 and 1.5 hours

What will cause a Scheduler's Request to be rejected by the Scheduler:

S S T ¢ ¢ 0
a. vincorrect request code (. CM'W\O& %Cg lo 5‘/& dedde

b. illegal address to transfer control to no Sl i ey @z ‘l‘(ﬁfjé‘(addres.
the thread word in the System Directory non zero
. all of the above

How can a program determine the first !address of core allocated following a SPACE
request: d@{mfu,@ oOn WO wiede (Paum .

a. in the word following the thread location in a SPACE request Mo 0 vl Yo ?"/4 w g
b. in the Q-register at the Completion Address
c. mass storage programs operating in Allocatable Core can get it with this coding

at its entry; NUM$CSFE

G all of the above

What does the monitor do to flag requests that have been rejected:

a. set the Q-register to -zero

b. store a -zero in the thread

c.) sets bit #15 of the Q-register to a one
. exits to the dispatcher

5

T TN

et ™~

How many parameter words are required for\’/;t SPACE ré\);uest:

N

a. four R —
(b) ftive

C. six

d. two

Which of the following tables is associated with threading:

@ LOG2

b. Interrupt Trap
c. Interrupt Stack
d. Volatile Storage

Which of the following is push down-pop up stack:

a. LOG2
b. Interrupt Trap

C? Volatile Storage
. driver

14-8

e 35.

36.

37.

38.

39.

40.

41.

In what area can the pointer to the System Directory be found:

- a. MONI

b. Scheduler
«— Program Directory
Communications Area
How many words are required for each entry in the Scheduler Stack:

a. three

four
. five

d. variable

How many words are required for each entry in the Interrupt Stack:

a. three
b. four
five

. variable
How many words are required for each entry in VolatilefStorage:

a. nine
b. four

five
variable but at least three

How many possible standard threads are there to the Scheduler Stack area:

a. two
four jk/!m‘f’h
c.) six ‘
. eight _ —_—

Which table is used to make; a device down:

a, Physical Device Table
'b.) LOGL
c. LOG2

%@ﬁ LOG1A

Which table contains the addresses of all Physical Device Tables:

a. LOG1
b. LOG2

(2) LOGIA
/ BUFFER

14-9

42.

43.

44.

45.

46.

The waiting list to use a logical unit is the:

g LOG]1 table
&’IQ LOG2 table
c.

LOGI1A table
d. WAIT table

Which table is used to prevent unprotected programs from using certain devices:

a. LOGI table

b. LOGI1A table

c. BUFFER table

d.\\ Physical Device Table

Which table dlo@@programs the use of certain reentrant protected
e

routines:

a. Physical Device Tables
Table of Presets

c. Entry Point Table

d. Program Directory

Devices are marked as busy by the:
@ Physical Device Tables
b. LOG?2 table

c. LOG]I table

d. LOGIA table

X

The current running priority is saved in the:

a. Physical Device Table
Dispatcher
... Interrupt Trap Region

b
c
Communications Region PQ (yL

14-10

