@5) SONTROL DATA
| CORPORATION

60471200

CYBER CROSS SYSTEM
VERSION 1

BUILD UTILITIES
REFERENCE MANUAL

CONTROL DATA®
NOS 1
NOS/BE 1

REVISION RECORD

REVISION DESCRIPTION
A Manual released
(4/76)
B Manual Update (ECO 06420)
(6/76)
C Corrections on pages 3-2 and 3-11
(11/77)
D Manual revised to incorporate CYBER Cross NOS Ré.
(8/79)
E Manual revised to change above references from Ré to R5.
(2/80)
F Manual revised to incorporate on-line console removal and all PSRs to level 528.
(10/80) Manual title changed from CYBER Cross System, Version 1 Link Editor and Library

Maintenance Programs Reference Manual. This revision obsoletes all previous editions.

Publication No.

60471200 Address comments concerning this

manual to:

CONTROL DATA CORPORATION

ERS 1, O, Q AND X ARE NOT USED. Publications and Graphics Division
REVISION LETTERS P. 0. Box P
Anaheim, California 92803

© 1976, 1977, 1979, 1980

by Control Data Corporation or use Comment Sheet in the back of

. . . . this manual.
Printed in the United States of America

ii

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins
or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than
content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV

Cover -

Title Page

ii thru ix

1-1 thru 1-3

2-1 thru 2-6

3-1 thru 3-3

4-1 thru 4-11

5-1 thru 5-10

6-1 thru 6-10

A-1/A-2

B-1 thru B-12

C-1 thru C-5

D-1 thru D-3

E-1/E-2

F-1thrufF-4

G-1 thru G-6

H-1 thru H-4

I-1 thru I-7

Index-1 thru
Index-7

Comment Sheet

Mailer

Back Cover -

T B B T B B B T B B B By B I

60471200 F iii/fiv

PREFACE

This manual was formerly called the CYBER Cross Link
Edit/Library Maintenance Reference Manual. Under its
new form and title, this manual describes five CYBER
Cross System build utilities which aid in generating load
files for a CONTROL DATA 255X Network Processor Unit
(NPU). Such a load file contains the on-line system for an
network processing unit. The load files are of two types:

e A Communications Control Prograrﬁ (CCP) used
as a part of a NOS Network,

® A Communications Control INTERCOM (CCI) used
as a part of a NOS/BE Network.

These utilities are run on a CYBER host (6000, CYBER 70
series, or CYBER 170 series) under the NOS or NOS/BE
operating systems. It is assumed that the reader is
familiar with the command structure of these operating
systems.

The utilities described in this manual are:

e The library maintenance utility (MPLIB) used with
CCI that allows the user to generate a new library
of object code modules. While this utility could
be used with CCP, the current installation
procedures do not use it.

e The Expand utility used with CCP that has two
functions:

(1) 1t allows a user to generate a variant input
for the application programs and hardware of
NPU. (See the glossary for the use of the
term application.)

(2) It provides variant inputs for the NOS
load-file generator utility.

e The Autolink utility used with CCP generates
input directives for the Link utility.

e The Link utility (MPLINK) assigns space for
modules and links modules together. This utility
produces a memory image load module file that
can later be converted to a load file. The utility
is used with both CCP and CCIL.

e The Edit utility (MPEDIT) allows the user to
initialize values in the memory image load
module. The utility is used with both CCP and
CCIL

The memory image load module file that is produced for
an NPU by these utilities is composed of object code
modules that were initially generated by one of three
CYBER Cross programs:

e The CYBER Cross PASCAL compiler

) ’ The CYBER Cross macroassembler

e The CYBER Cross microassembler

60471200 F

Therefore, to fully use the capabilities of the utilities, the
reader of this manual should be familiar with the
following concepts:

e Installation procedures using a NOS or NOS/BE
operating system.

e The CYBER Cross version of the PASCAL
compiler.

e The CYBER Cross
microassemblers.

macroassemblers and

| CONVENTIONS USED

Throughout this manual, the following conventions are
used in the presentation of statement formats, commands
and request formats, operator type-ins, and diagnostic
messages:

ALN Uppercase letters indicate words, acronyms,
keywords, or mnemonics required by the
network software as input to it, or produced as
output.

aln Lowercase letters identify variables for which
values are supplied by a console operator, a
programmer using batch input, or by the system
itself.

... Ellipses indicate omitted entities that repeat
the form and function of the last entity given
(exception: in PASCAL statements, ellipses are
indicated by ..).

[1 Square brackets enclose entities that are
optional. If omission of an entity causes the use
of a default value, the default is noted.

f Braces enclose entities from which one must be
{ chosen.

An underscore indicates a control character
(examples: carriage return is CR, line feed is
LF, and space is SP). If a space is required in a
command, it is indicated as SP. Spaces shown
in a command are normally placed there only
for convenience in separating the parameters;
they are not required.

All numbers are given in decimal notation unless
otherwise specified. Hexadecimal numbers in text are
given a subscripted 16, for instance, CO000;¢4.
Hexadecimal parameters in commands require the display
code designator, the dollar sign ($), for example, $C000.

RELATED MANUALS

Additional information on the CYBER Cross system and
the CCP and CCI installation procedures can be found in
the following documents that are available from Control
Data Corporation, Literature and Distribution Services,
308 North Dale Street, St. Paul, Minnesota, 55103.

vi

Publication Title

NOS Version 1
Reference Manual, Volume 1 of 2

NOS Version 1 Installation Handbook

Update Version 1
Reference Manual

NOS Version 1 System Maintenance
Reference Manual

Netwark Products
NAM Version 1 Network Definition
L anguage Reference Manual

NOS/BE Version 1
Reference Manual

NOS/BE Version 1 Installation Handbook

CYBER Cross System PASCAL Compiler

Reference Manual

CYBER Cross System Microassembler

Reference Manual

CYBER Cross System Macroassembler

Reference Manual

Publication Number

60435400
60435700

60449900

60455380

60480000

60493800
60494300

96836100

96836400

96836500

This product is for use only as described in this
document. Control Data cannot be responsible
for proper functioning of undescribed features or

parameters.

60471200 F

CONTENTS

1. INTRODUCTION

Library Maintenance (MPLIB)

System Variant Generator (Expand)

Autolink

Linking Utility (MPLINK)

Editor (MPEDIT)

Inputs to the Utilities
General Command Format for the Utilities
General Data Format Input to the Utilities

Outputs from the Utilities

2. LIBRARY MAINTENANCE PROGRAM, MPLIB

Introduction
MPLIB Inputs
MPLIB Directives File
MPLIB Object Code File
MPLIB Old Library File
MPLIB Output Files
New Library File
Library Listings
Executing MPLIB
MPLIB Directives
*ALL, Add All the Object Code File Programs
to the New Library
*PUT, Adds Programs to the Library from
the Object Code File
*DEL, Deletes Programs from the Library
*SUP, Suppresses Copying Programs from
the Object Code File to the Library
*LST, List a Library
*END, End the Library Building Operation
MPLIB Error Messages

3. VARIANT DEFINITION HANDLING UTILITY,
EXPAND

Introduction
Executing Expand
Syntax of Expand Variant Definition Parameters
VRD, Defines a CCP Variant
Examples of VRD Definitions
LFD, Defines a CCP Load File Variant
Examples of CCP Load File Definitions
Expand Error Messages

4. AUTOLINK UTLILITY

Introduction
CCP Application Program Types
Autolink Inputs
Autolink Input Directives
Autolink Input Modules
Outputs from Autolink
Executing Autolink
Autolink Input Files
Input Directives File
Object Code Module File
Library File
Autolink Output Files
Output Directives File
Listing File

60471200 F

v
e

NINNNRNNRNN N Pt bt bt b e et et s e
VIV W VIR b bt bt et bt ot bt et [V P PP

NII\’N

R
o\

»
N

ks
—

A A W N
WANWRN N = b e

T
ot

»
1
—

4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3

Fatal Error Message File
Executing Autolink
Autolink Directives
Passive MPLINK Directives
Active Autolink Directives
Comments for Directives
APPL, Specifies Applications
CORESIZE, Specifies the Memory Size of
the Variant Build
DEF, Specifies the Applications to be
Included in the Build
DEFBASE, Specifies Base Applications that
Must be Included in Every Build
MOD, Specifies Where a Module can be
Located during a Build
PAGEREG, Specifies Page Register Number
PAGESIZES, Specifies the Size of a Page
RESERVE, Specifies a Reserved Area of
Memory
BUF SPSIZE, Specifies Memory Sizes for
the Buffer Space Report
RPT, Specifies an Autolink Report
Autolink Reports
BUF SP, Buffer Space Report
DIR, Output Directives Report
MAP, Memory Address Map Report
INFO, Input Directives Report
Special Considerations for Using Autolink
Interrelationship of the APPL, DEF, and
MOD Directives
Duplicate Modules .
Minimizing the Number of Output Directives
Autolink's Method of Selecting a L.ocation
for a Module
Phase 1, Assigning Space to Paged Modules
Phase 2, Assigning Space in Main Memory
Phase 3, Assigning Space for Reverse-
Loaded Modules
Phase 4, Assigning Space to Sequence
Applications in Main Memory
Phase 5, Assigning Space for FILL Modules
Phase 6, Assigning Space for the Last
Application
Autolink Messages
Informative Messages
Fatal Errors

5. LINK UTILITY, MPLINK

Introduction
NPU Addressing
Page Addressing Mode
Absolute Addressing Mode
Specifying a Memory Address
Address Functions
Abbreviating Address Specification
Address Assignment
MPLINK Inputs
MPLINK Directives File
MPLINK Object Code Input File
MPLINK Output Files
Memory Image Load Module File (ABSOLMP)
Symbol Table (SYMTAB) File
MPLINK Listings
Executing MPLINK

bbhl.'-\b-l-\b
[V S R VU R VTR VY RV

=
+)
n

ol
w

4-5
4-6
4-6

4-6

4-6
4-6
4-6
4-6
4-8
4-8
4-8
4-8

4-9

4-10

4-10
4-10
4-10

4-11

4-11
4-11

4-11
4-11
4-11
4-11

A A A A
MWW AWMWANNN bt ot o ot ol

vii

MPLINK Directives 5-5 MPEDIT Outputs 6-1
Summary of MPLINK Directives 5-7 Executing MPEDIT 6-1
MPLINK Directive Parameters 5-7 MPEDIT Program Syntax 6-2

MPLINK Directive Parameter Names 5-7 MPEDIT Syntax 6-2
MPLINK Directive Overlay Identifier MPEDIT Keywords 6-2
Parameter 5-7 MPEDIT Reserved Words 6-2
MPLINK Memory Address Parameters 5-7 MPEDIT Local Symbols 6-3
*_, Specifies Modules to be Linked 5-7 MPEDIT External Symbols 6-3
*RL, Specifies Modules to be Reverse Linked 5-8 MPEDIT Literals 6-4
*CB, Defines Linking Boundary 5-8 MPEDIT Address Functions 6-4
*LL, Defines a Lower Limit for Linked /START, Field Start Address Function 6-4
Modules 5-8 /LENGTH, Field Length Address Function 6-4
*UL, Defines an Upper Limit for Linked JENTRY, Entry Point Address Function 6-4
Modules 5-8 /VFD, Variable Field Definition Address
*SYSID, Identifies the System Load File 5-8 Function 6-4
*QOVLY, Specifies Overlay Areas and the MPEDIT Expressions 6-4
Modules in an Overlay 5-9 Operand Expressions 6-4
*ENT, Defines Entry Points 5-9 Address Expressions 6-5
*SYN, Defines External Synonyms 5-9 MPEDIT Program Structure 6-5
*COR, Defines NPU Memory Size 5-9 Constant Declaration Part 6-5
*LIB, Specifies Library File 5-9 Requesting the Optional Form of the
*VE, Equates a Variable to an Expression 5-9 Initialized L.oad Module File 6-5
*DSTK, Allocates a Stack Area for Recursive/ Variable Declaration Part 6-5
Reentrant PASCAL Programs 5-9 Array Declaration Part 6-6
*DVAR, Allocates a Dynamic Variable Area Assignment Section 6-6
far PASCAL Programs 5-10 L_ocal Assignment Section 6-7
*COM, Defines a Blank Common Area for Address Assignment Section 6-7
Macroassembler Programs 5-10 FOR Statement 6-7
*DAT, Defines the Labeled Common Area 5-10 ‘Composite Statement 6-7
*DMP, Generates the Memory Image L_oad Module Empty Statement 6-8
File Hexadecimal L isting 5-10 Comments 6-8
*END, Last MPLINK Directive 5-10 Requesting a TRACE Operation 6-8
MPLINK Error Messages 5-10 Requesting the SYMTAB Listing 6-8
Requesting the Initialized Load Module
File Listing 6-8
6. EDIT UTILITY, MPEDIT 6-1 MPEDIT Diagnostics 6-8
MPEDIT Error Messages 6-10
Introduction 6-1
MPEDIT Inputs 6-1
APPENDIXES

A Character Set A-1 F Relocatable Object Code File Format F-1

B Utility Diagnostic Messages B-1 G Autolink Utilities Examples G-1

C Glossary and Mnemonics C-1 H Link Utility Examples H-1

D Memory Image Load Module File Format D-1 I Edit Utility Examples I-1

E Optional Memory Image Load Module File ‘

Format . E-1
INDEX
FIGURES

1-1 Producing a CCP Downline Load File 1-2 5-3 Sample MPLINK (Partial) Memory Map Sorted

2-1 Format of an MPLIB Library File 2-2 by Module Name 5-5

2-2 Sample MPLIB Library Listing 2-3 5-4 Sample MPLINK Memory Map Sorted by Entry

4-1 Autolink Logical Flow 4-2 Name (Partial) 5-6

4-2 Example of MOD Directives 4-7 6-1 MPEDIT Program Format 6-2

4-3 Sample Buffer Space Report for a CCP Run 4-8 6-2 MPEDIT Program Flow 6-3

4-4 Sample Memory Map Report for a CCP Run 4-9 6-3 Examples of MPEDIT Constant, Variable,

4-5 Autolink Sequence of Locating and Link and Array Declarations 6-6

Modules] 4-10 6-4 Methods of Packing an NPU Array 6-8

5-1 Page Register Selection 5-2 6-5 Partial MPEDIT Trace Listing 6-9

5-2 MPLINK Procedural Flow 5-4 6-6 Partial MPEDIT SYMTAB Listing (Sorted by

Entry Name) 6-10

viii 60471200 F

4-1 CCP Application Names
4-2 Summary of Autolink Directives

60471200 F_

TABLES

4-1 5-1
4-4

Summary of MPLINK Directives

5-7

INTRODUCTION

This manual describes five utility programs used to build
the memory image load module file, and to maintain the
object code library file for 255X Network Processor Unit
(NPU) on-line programs. These utilities are normally used
in conjuction with the standard CCP or CCI installation
procedures described in the NOS and NOS/BE Installation
Handbooks. The utilities are called and executed
automatically from those installation procedures. The
utilities are:

® A library maintenance program (MPLIB) used only
with CCI

® A system variant handler (Expand) used only with
CCP

e An Autolink auxiliary for the Link utility used
only with CCP

e A Link utility (MPLINK) used with both CCP and
CCI

e An Editor utility (MPEDIT) used with both CCP
and CCI

All the utilities execute on a CYBER host computer
operating under NOS or NOS/BE.

Figure 1-1 shows the logical flow of the utilities in
producing a downline load file for a CCP system.

LIBRARY MAINTENANCE (MPLIB)

This utility uses object code from a previous library or
from one of the CYBER Cross compilers or assemblers to
generate a new library file. The library consists of object
code and a directory to all the modules on the libraries.

SYSTEM VARIANT GENERATOR
(EXPAND)

Several hardware and software variables must be specified
to customize a CCP load file for a given NPU
configuration in a network. Expand has two parts: a
variant definition section, and a section that aids the NOS
load file generator utility in building the CCP load file.

As shown in figure 1-1, the variant definition section
operates with a user-supplied file, called USERBPS, to
generate a temporary new program library and a set of
updated autolink directives. i

The load file generator section supplies variant definitions
to the NOS load file generator utility, That utility
converts the initialized CCP memory image load file
module produced by the link Editor into a CCP load file
that can be downline loaded from the host into an NPU.
As shown in figure 1-1, the initialized load module file is
one of the inputs used to produce the load file for CCP.

60471200 F

AUTOLINK

Autolink uses a set of input directives to generate
MPLINK input directives for CCP. Autolink simplifies
module assignment and maximizes the amount of space
that is assigned to message processing buffers.

Autolink also gives information about the amount of
buffer space that would be available for various
combinations of application packages (such as combi-
nations of TIPs) located in an NPU with a given memory
size.

NOTE

Application programs are defined for CCP
and CCI as well as for the host. In this
manual, an application program (called an
application) executes in the NPU. (See
the glossary for the use of the term
application.)

LINKING UTILITY (MPLINK)

MPLINK assigns space, and links together all the modules
that are to used in a build operation, that is, all the
modules that are to be a part of the load file. Each
module is assigned an execution space on a memory image
load module file, which (after initial values are assigned)
can be converted to the load file for the NPU.

EDITOR (MPEDIT)

After MPLINK generates a memory image load module
file (ABSOLMP and a symbol table file (SYMTAB)), the
Editor utility initializes values in selected variables. The
variables to be initialized; and the initialization values are
specified by an MPEDIT program which uses a
PASCAL-like syntax.

INPUTS TO THE UTILITIES
There are two types of inputs to the utilities:

o Directive files. These directives are normally
arranged into a batch input file.

e Other files. The most important of these files
consist of object code modules which are built
into the on-line CCP or CCI system.

GENERAL COMMAND FORMAT FOR THE UTILITIES

The command inputs to the utilites are in the form of
directives. The general form of any directive is a
command identifier (keyword) followed by a set of

parameters:

KEYWORD, param 1, param 2, ..., param n

1-1

CORRECTIONS TO
MP EDIT PROGRAM

IDENTIFIES
USER BPS USER VARIANT
VARiaNT 0 s NAME __{pARAMETER
J/ a\
IVRgy ”"’O/v N g
CORRECTIONS CONTAINS SOURCE
COMBINED | MODULES, DECKS
PROGRAM | AND BUILD UTILITY
LIBRARY | DIRECTIVES DECKS
TEMPORARY
NEW)
PROGRAM ‘/ro(
LIBRARY /4'4'0
I‘?Schvs
FROM CYBER CODE_FILE S SEEIENR:TES
CROSS ASSEMBLER Y DIRECTIVES
AND PASCAL

COMPUTER \

<
<O,
)

ccP
COMBINED LOCATES AND
BINARY LINKS CCP MODULES
LIBRARY
cce
LOAD
FILE
MEMORY IMAGE READY FOR
MODULE LOAD LFG DOWNLINE
FILE (ABSOLMP) DIRECTIVES LOADING
SYMBOL
TABLE FILE
% (SYMTAB)
»
%
INITIALIZES
VALUES IN LOAD A
MODULE FILE A%
MEMoﬁy 00“\'2
IMAGE LOAD W OTHER UPDATED
(INITIALIZED) LOAD MODULE
TYPE FILES
(OVERLAYS MUX
LEVEL CODE)
M-1083

Figure 1-1. Praoducing a CCP Downline Load File

60471200 F

Parameters are separated by commas. Parameters usually
specify values (such as the size of an NPU memory, or
files (such as an application program name).

GENERAL DATA FORMAT INPUT TO THE UTILITIES

The data inputs to the utilities are modules in object code
format that are generated by the CYBER Cross PASCAL
compiler, by the CYBER Cross macroassembler, or by the
CYBER Cross microassembler. At the time of use, the
object code modules can be separate files newly produced
from one of the assemblers or compilers, separate files
read from magnetic tape or mass storage, or selected
records.read from a program library.

OUTPUTS FROM THE UTILITIES

When used with NOS installation techniques, the principal
output from the Expand/Autolink/Link/Editor utilities is
an initialized memory image load module on mass storage
in the host computer. This load module can then be
converted by the Expand utility and the Load File
Generator (LFG) into a downline loading, formatted file.

60471200 F

A similar use of the Link/Editor utilities operating under
NOS/BE produces an initialized memory image load
module on mass storage in the host computer. This load
module can then be converted into a downline loading
formatted file.

Optional outputs from various utilities include load maps,
listings of all modules, buffer space reports, and
diagnostic reports.

The principal output from the library maintenance utility
is a new, indexed library of the selected on-line NPU
modules in object code format. All program libraries are
held on the CYBER host's mass storage. Object code
modules selected from any library are used to build a new
load file for the on-line CCI system, The library
maintenance utility could be used to build a new CCP
library.

Another output of the library maintenance program is a
directory to the programs on the library, together with
information about these programs.

LIBRARY MAINTENANCE PROGRAM 2

INTRODUCTION

The library maintenance program, MPLIB, can be used
with CCP or CCI, but currently is used only with CCI,
The utility uses a set of directives operating on a set of
object code files to generate a new library. Two files are
normally used:

® An object code file which contains the object code
for modules that are to be added to the new
library, or which are to replace existing object
code modules by the same name which are already
on the old library. This file is required. If there
is no old library, the modules on the file create a
library.

e The old library file. This file, though optional, is
normally always present.

The user has the option of ordering listings of the new
and/or the old libraries.

MPLIB INPUTS

The library maintenance program requires two files: a-

directives file and the object code file which contains the
modules used to generate the library. If a library has
already been built, MPLIB also requires the old library file.
There are also several calling parameters that are
associated with the library maintenance utility. These
parameters are discussed in the Executing MPLIB
subsection.

MPLIB DIRECTIVES FILE

This file contains the directives in the order in which they
are to be executed. The directives are of three types:

e Those which cause modules to be selected for the
library, or deleted from an existing library.

® A directive that allows the operator to order a
listing of the new and/or the old library.

e A directive to terminate the library maintenance
operation.

The default name of this file is INPUT.

MPLIB OBJECT CODE FILE
This file contains the object code of modules that:

e Are used to construct a new library for the first
time

o Replace existing modules of the same name on the
old library (the new library contains these modules)

60471200 F

The relocatable object code format of these modules is
given in appendix F. Object programs that replace old
programs of the same name are added to the new library
at the same relative position as the replaced module.
New object code programs that were not on the previous
library are added to the end of the new library in the
order in which they occur on the object file. MPLIB adds
a directory record to this file.

The default name of this file is LGO.

MPLIB OLD LIBRARY FILE

This file was created by a previous run of MPLIB. Note
that once a library file has been created, it cannot be
modified by MPLIB. The method of modifying a library
file is to create a new file.

The format of a library file is shown in figure 2-1. The
first record of the file consists of the file name and the
library directory. Each program in the library has an
entry in the directory. Following this is the object code
of each program. Each program is contained in a single
record; the records appear in the same sequence as their
entries in the directory.

The default name of this file is OLDLIB,

MPLIB OUTPUT FILES

MPLIB provides two output files: the new library file and
an optional listing of the new and/or the old library file.

NEW LIBRARY FILE

The new library file has the same format as the old library
file; however, it contains additional modules and
substituted modules (as specified by the directives), and
lacks modules which the directives have deleted.

Default name of the new library is NEWLIB.

LIBRARY LISTINGS

The optional new and old library listings are requested by
an MPEDIT directive. If the directive is used, the listing
file is sent to the output file. The user can order printed
copies of the file using the techniques described in the
NOS/BE Reference Manual.

A library listing consists of a program names, program
lengths, and program entry points for each of the
programs on the library. A sample listing is shown in
figure 2-2.

If both the new and the old library listings are ordered,
the old library is the first part of the output file and the
new library is the second part.

LIBRARY FILE FORMAT

FORMAT OF PROGRAM NAME
AND ENTRY POINT RECORD

FORMAT OF OBJECT PROGRAM INFORMATION
(IN THE PROGRAM NAME AND ENTRY POINT RECORD)

OBJECT PROGRAM n CARD IMAGES).

59 4

NOTE: AN OBJECT PROGRAM IS ONE
i LOGICAL RECORD, WITH A
MAXIMUM SIZE OF 4,992
SIXTY-BIT WORDS (312 OBJECT

NOTES: 1. WORD 1 CONTAINS THE SIX-CHARACTER
NAME AND THE LENGTH OF THE PROGRAM
IN 16-BIT WORDS.

2. WORD 2 CONTAINS THE LENGTH OF THE
OBJECT PROGRAM IN 60-BIT WORDS.

- 8 53 41 41 ¥ 20 23 15 0
. oBsECT PROGRAM 1 INFORMATION | , [l o [l s [s | 6 o t::ngHm
Egggc“;glm”:sggo OBJECT PROGRAM 2 INFORMATION
L]
. 5 0
END OF RECORD hd 2 OBJECT PROGRAM SIZE (60-BIT)
OBJECT PROGRAM n INFORMATION
< END-OF-TABLE WORD®
ECT PROGRAM 1 I 50 3 29 23 17 11 5 0
OBl i
| 3 0]3| a]|es] s
| ,
END OF RECORD : 50 3 20 23 17 1 5 o
-4 FORMAT OF OBJECT PROGRAM A 0 alc2]a|ou]ls] s
OBJECT PROGRAM 2 r OBJECT CARD IMAGE 1 (NAM) . "
i (16 SIXTY-BIT WORDS) : .
1 OBJECT CARD IMAGE 2 . .
i . (RBD OR ENT OR EXT, ETC.) . .
END OF RECORD | < 59 3 29 23 17 11 5 0
i ® n (] | 2] 3] ca]es]| oo
= OBJECT CARD IMAGE n (XFR)
|
.|

3. WORDS 3 THRU n CONTAIN THE SIX-

o CHARACTER NAMES OF ENTRY POINTS

END OF FILE . ALL ONES

ALL ZEROS

IN THE PROGRAM. NOTE THAT A
PROGRAM MAY HAVE NO ENTRY POINTS.

(END-OF-TABLE WORD)

M-1084

Figure 2-1. Format of an MPLIB Library File

EXECUTING MPLIB

The utility is executed by attaching the MPLIB permanent
file, and then using the name call statement (see the
NOS/BE Reference Manual).

Five parameters are associated with the MPLIB name call
statement. All of these parameters specify files. Format
of the statement is:

MPLIB [,1fn1,1fn2,1fn3,1fn4,1fn5.]

where Ifnl is the object code input file name (default
name is LGO); Ifn2 is the input directives file name
(default name is INPUT); Ifn3 is the output listing file
name (default name is OUTPUT); Ifn4 is the old library
file name (default name is OLDLIB); and 1fn5 is the name
of new library file created by the MPLIB run (default
name is NEWLIB).

The parameters are positional. Therefore, if a parameter
is omitted, its delimiting commas must be retained. If a
call uses all default parameters, all commas are omitted.
Such a default call is terminated with a period to indicate
the lack of delimiting commas. For example:

MPLIB.

This call produces:

2-2

® anew library, NEWLIB (1fn5)

e from an old library, OLDLIB (lfn 4), and an object
‘code input file, LGO (1fnl)

e as commanded by the directives file, INPUT (Ifn2)

e with any listings output to the listing file,
OUTPUT (Ifn3).

Example 2:

MPLIB,,,O0LDOBJ,NEWOBJ.
This call uses default parameters for the object and
directives files, and for the listing file. It names the new
and old libraries, however. The call produces:

e anew library, NEWOBJ (ifn5)

e from an old library, OLDOBJ (Ifn 4), and an object
code input file, LGO (Ifnl)

e as commanded by the directives file, INPUT (1fn2)

e with any listings output to the listing file,
OUTPUT (Ifn3).

60471200 F

MPLIR DIPECTIVES

*ALL. : COPY ALL CF LGO- : SCFLIB
*LST,NEW. . SCFLIR
*END. . SCFLI®

NEW LIBRAPY
PPCGRAM LENGTE ENTPY POINTS

ZERCX cCsac ZERCX PBPSWI 0013 PBPSWI 81Ivo20

! _ BIVC4O
BEGINX cO0E BECINYX paPUTP 0017 PRPLTP 8IV050
: 81c230
PEINTR co04cC PEINTR PBGETP 0011 PRGETP 81C250
. : #1C400
JUFPS e JUFPS PRSTPM co13 PRSTPH 8IC41C
, BIC420
ACDRES €014 cIeapD UNLECCK 00CF LNLOCK BIC43C
CCPLEV RINTXT
ccPeYe ouLocK 0011 cuLlCcK v BINCCS
sneRLe RPIN1LO
ADDRES PRRTCO occe prRTCO 2INIGC
CCPVER : BIN1RC
ACDRSU GENTRY 0C4B CENTRY BIN&SLC
BISTID
PRLNOO co02% PRLMNOO QEXIT 001E€ QEXTT 8ISTRI
BISTRS
PALNCL CC1F PRLAC] BUFMAL cC7¢ PRRELC FISTRC
PRREL]
PELNO2 CO1F FPLNO2 © PRGET] INSTA? 0147 eIx10C
A PBRELZ BIX14C
PBLNC3 CC1F PRINO3 . 2IC10C
LISTSR c028 FBLSGE BIC21C
PELNOA 002¢C ~ BeLAOE PELSPU €IY35¢C
RYCLAS
PELNCS CC1F PRLNCH PRSTCP 001¢ PBSTCP RICCON
_ BICVER
PRCETC LY PRCETC PBSLY ¢CC7? PBSLY 8IBLTH
BITERM
PBPUTC cce7 FEFPLTC PTTPIN 0C24 PTTPIN i gI1C200
. RIN23C
PRCALL CCCE PECALL PESCLA co2r FESCLA BIN2SC
' -~ BIT10C
FASTCR cc22 FASTCP MCDMST GOCE FILTS . BIX130
FILTO : BIX15C
PBFILE coze PeCF rILTO. © RIX160
PEEF _ FPILTS PYX17G
FILTY BYXIRC
PTILFT scac PILNT PILT3 21x190
MILTE ®Ix20C
FBAFAS 0012 PRAFAS FILTA RIX210
’ RIX24C
PBLMAS 000¢C FRLFAS ASPLSE ccee . BIX250
8IX30C
PRCMAS 00CF PRCYAS HSPRUI 00CF rece9 BIX320
HINSPT 8IX350
PBSMAS coec PBSKAS +TERM2 , BIX44C
_ AT X45C
PBBEXI 00CF PBREXI HS2PRU c14C H2ISPT , BIERRC
8IT001
PRAEXI 000¢ PRAEXI HSPRUT 0270 HXTPT eI1DC09
ENTTPT :
PRSETP 0022 PBSETP HIATPT TPST78 o1C1 B27TPT
H2PTPT R37TPY
PBCLRP 000¢ PBCLRP :
HSPMGS 000¢ NAKHNS ~ BSCMSG 0020 ACKCHS
pecome 001F PBCOMP ACKHNS ACKINS
EOTBNS
PRRDPG 0o01c¢ _ PRRDPE - INPST? 0210 BISTAR WACKBM
8IDISC TTIC8NS
BIENTR prscer
81E010 ENGBNS
NAKBNS

Figure 2-2. Sample MPLIB Library Listing

60471200 F , A 2-3

2-4

PDEXIT
PDSTTR
PLTEKM
CLCIAG
GLDMUX
PTFSGU
PTFSCa
PICELM
PTTYML
PTTIYT1
PTIYTC
Prawal
PARTN
PASKER
PALNRA
PNRVFS
PMTECC
PrCHFL
PNGTCR
PATCPS
PAOLE"
PNDISC
PASMTE
PESMWL
PrSFOI
PHCONF
PALNCN
FATMLE
PADELE
PNENAR
PKCISA

PMLINE,

cC4cC
0282
0011
06RF
Gc12

€03

(g4
Coee
cner

cees

[a]
<
]
-

[#)
—
-~
—

Cots
02¢ca
C1af
c2fr
GoC9
GO6F
c1cs

roFs

PREXIT
PDSTTR
‘PCTERM
CLCIAG
cLCruy
FIMSOL
PTKSCe
PTCELY
FTITYML
PTIYTI
PTIYTC
PAAMAL
PNRIN

FraSKPRE
PRLARS
PARYP S
FrTCCL
PRCEEL
PrCTCP
FATCRS
PALLTC
FACTSC
PRSHTR
PASFUL
PANSIMD]
PNCONF
PALACN
PAINMLE
PMDELE
PNENAB
PACISE

PALINF

Figure 2-2. Sample MPLIB Library L isting (Contd)

PNTMLD
PNCNTL,
PNLCR

PNSTAT
PNILNS
PN2LNS
PNLNST
PNITHL
PNTMLS
PARRDC
PMIBKD
#ACVLO
PRCVLE
PNOVLT
PAERCE
PAPSTA
PRASTA
PESMCE

CCFRUG

PRCLE

PPDISP

PELCAD
PRILL

PPHALT
PBFCN

T1CTIME
TCSTAR
1CSTGP
PIDTBL

MAINS

0098

005¢
0026
002F
co77
005C
cer?
0OSF
0092
€128
CCe7?
cl1g
£09s
CC1a
cc27
cos2
212¢
c12¢
0g621
coz¢

CCet

PNTMLD
PNCNTL
PNLCR
PNSTAT
PNILNS
PNZLNS
PNLAST
PNITML
PNTMLS
PNFPDC
PNIRRC
PACVLD
PACVLE
PNCVLY
PRFRCE
PMNESTA
PARSTA
PNSHGE
CLEELG
PECLR
PRCISP
PRLCAP
FETLL
PREALT
PEFCN
TCTIME
TCSTAR
TCSTCP
PICTBL
MAINS

60471200 F

MPLIB DIRECTIVES

There are six MPLIB directives. Four of them are directly
concerned with chosing the programs that form the new
libary. One of them selects the optional listings. One of
them terminates the directives list. Except for the
terminating statement, the directives can occur in any
order.

All directives begin with an asterisk (¥); any directive can
be terminated with an optional period. The general form
of an MPEDIT directive is:

*DIRECTIVENAME [,parameter.]

All directives begin in column 1 of a Hollerith coded card
or card image.

If there are no directives in the directive file, the old
library is copied to the new library without alteration.

*ALL, ADD ALL THE OBJECT CODE FILE PROGRAMS
TO THE NEW LIBRARY

The *ALL directive causes MPLIB to copy all of the
programs on the object code file to the new library file.
It is used to create a new library for the first time. It can
also be used for adding a set of new modules (such as a
terminal interface package) to an existing library.

Format of the directive is:

*ALL[.]

*PUT, ADDS PROGRAMS TO THE LIBRARY
FROM THE OBJECT CODE FiLE

The *PUT directive has two formats:

e One form adds a single program (module) from the
object code file to the new library file.

e The other form adds a sequence of programs from
the object code file to the new library file.

The directive is used to select programs for inclusion in
the new library. It is also used to replace programs on the
old library file with programs of the same names from the
object code file. The utility can be used in the latter
manner to update a program library.

The single program format of the directive is:

*PUT,mod [.]
where mod is the program name. It starts with a letter.
If the name exceeds six characters (letters or numbers),

MPLIB discards the seventh and following characters. The
names on the old library are no longer than six characters.

If a program is replaced with a new version of the

program, the new program has the same place in the new

library index and in the library file.

The series program format of the directive is:
*PUT,mod1-mod2[.]

where modl is the name of the first program in the object

code sequence, and mod2 is the name of the last program

in the sequence. Names are truncated to six characters as
necessary. If the programmer wishes to replace a series

60471200 F

of programs on the old program library, the names of all
programs in the sequence must be identical to the new
names. This form of the directive is particularly useful
for adding new applications to a library, or replacing
applications where the modular structure of the
application has not changed.

Note that a dollar sign ($) symbol can be substituted for
the name of the first or last program on the cbject code
file.

*DEL, DELETES PROGRAMS FROM THE LIBRARY

The *DEL directive suppresses copying the specified
program or programs from the old library to the new
library. There are two forms of the directive. The single
program deletion format is:

*DEL,mod(.]

where mod is the program name. If the name exceeds six
characters, MPLIB discards the seventh and following
characters.

The series program deletion format is:
*DEL,modl-mod2[.]

where modl is the first of the programs to be deleted
during copying, and mod2 is the last program to be deleted
in the sequence. All programs on the library index
between (and including) the named programs are deleted.
(A listing of the old library can be produced by a *LST
directive to find the order of programs on the library.)

Note that a dollar sign ($) symbol can be substituted for
the name of the first or last program on the library file.

*SUP, SUPPRESSES COPYING PROGRAMS FROM
THE OBJECT CODE FILE TO THE LIBRARY

The *SUP directive is used only in conjunction with the
*ALL directive. It allows the user to suppress copying of
the specified program or programs from the object code
file to the new library. There are two forms of the
directive. The single program suppression format is:

*SUP,mod [;]
where mod is the program name. If the name exceeds six

characters, MPLIB discards the seventh and following
characters.

The multiprogram suppression format is:
*SUP,modl-mod2[.]

where modl is the first of the programs to be deleted

during coping, and mod2 is the last program to be deleted

in the sequence. All programs on the object code file
between (and including) the named programs are deleted.

Note that a dollar sign ($) symbol can be substituted for
the name of the first or last program on the object code
file.

*LST, LIST A LIBRARY

The *LST directive is used to request a listing of the new

library or a listing of the old library. Formats for these
requests are:

2-5

*_ST,OLDL.] for the old library listing
*LST,NEW [.] for the new library listing

If both listings are requested, the old library occurs first
on the output file.

*END, END THE LIBRARY BUILDING OPERATION

The *END directive terminates the directives file. Form
of the directive is:

*ENDL.]

MPLIB ERROR MESSAGES

Library maintenance error messages are listed in table
B-1 of appendix B. The action that should be taken when

these messages appear is also given in that table.

60471200 F

VARIANT DEFINITION HANDLING UTILITY, EXPAND

INTRODUCTION

Expand is a special purpose utility which provides a
simplified user interface to the CCP installation process.

Two directives are used to describe the NPU variants (see
glossary) and the CCP downline load file.

The CCP user provides an indirect access permanent file
called USERBPS which contains the CCP variant
definitions for the system to be installed. This utility
expands the USERBPS configuration definitions into a set
of directives used by the appropriate build step. Two
types of definitions are found on USERBPS:

e VRD, a variant definition. This expands
corrections to the update input decks (see figure
1-1 and the NOS Installation Handbook).

e LFD, a load file definition. This expands the Load
File Generator utility directives for the load file
generation build step (see figure 1-1 and the NOS
Installation Handbook).

EXECUTING EXPAND

Expand is called automatically by the appropriate CCP
installation build steps. The user must, however, know the
form of the variant definitions entered in USERBPS.

The variant parameters file (USERBPS) can contain any
number of CCP variant and load file definitions. The user
must supply a variant name (see figure 1-1) for each
variant to be processed.

During the variant build step, the user specifies the
variant name. The Expand utility is automatically called
to search USERBPS for the specified variant name. The
utility uses the associated definition to generate a set of
Update directives. These expanded definitions are used to
generate input for the Autolink and MPEDIT utilities,
which are described elsewhere in this manual. Note that
CCP installation build steps also call Autolink and
MPEDIT automatically.

SYNTAX OF EXPAND VARIANT
DEFINITION PARAMETERS

The general definition format is:

keyword=type, parameterl=valuel,...,parametern=valuen.

Some parameters optionally take multiple values.
Multiple values are separated by slashes.

The following rules apply to all USERBPS definitions:

e The keyword identifies the type of definition
(VRD or LFD).

e Blanks are ignored.

e All definitions terminate with a period.

60471200 F

3

e Omitted parameters do not need delimiting
commas.

e If a definition requires two or more lines, the first
nonblank character of each continuation line is a
plus sign (+).

e All values for a parameter must appear in a single
line.

@ The first nonblank character of a comment line is
an asterisk (*),

VRD, DEFINES A CCP VARIANT

Format of the VRD definition in USERBPS follows. Note
that the order of the last three parameters must be as
shown (NP, CP, and TR).

VRD=vn, VT=vl[/v2/v3], SZ=xK, TS=[t1/t2/.../tIn, NL=n,
+ NP=id, CP=id, TR=pal-idl/pa2-id2/..../pan-idn.

VRD identifies the entry as a variant definition and
specifies the variant name. The name 1is a three-
character string used by the CCP variant build step to
create unique, permanent file names.

VT specifies variant type. One value is required; two
others are optional:

vl - is required, its values can be F, L or R where
F indicates a front-end 255X; the unit includes
a HIP but no LIP.
L indicates a local 255X; the unit includes a HIP
and a LIP.
R indicates a remote 255X; the unit includes a
LIP but no HIP.

v2 - is optional; its value is D indicating the variant
should include on-line diagnostic support
modules.

v3 - is optional; its value is T indicating the variant

is a test build. A test build includes modules
for TIPDEBUG, TESTGEN, TUP (the variable
TOTUP is set to 1), and CONSOLE.

Examples of VT parameters are:

VT=L/D/T Specifies a test build for a local NPU with

diagnostics.

VT=F/D Specifies a normal build for a front end
NPU with diagnostics.

VT=R Specifies a normal build for a remote NPU

without diagnostics.

SZ specifies the variant memory size. Allowable values
are:

65K 65,536 words of memory
81K 81,920 words of memory
96K 98,304 words of memory
128K 131,072 words of memory

The SZ memory size must not conflict with the
corresponding NPU definition in the network definition
language, NDL (see the Network Definition Language
Reference Manual).

TS specifies the TIPs to be included in this variant. TS
can assume up to ten independent values.

indicates the ASYNC TIP is included.

indicates the ASYNC extended option (ASYNCEXT)
is included.

indicates the HASP TIP is included.

indicates the Mode 4 TIP is included.

indicates the X.25 TIP with PAD subTIP is included.
is reserved for future use.

indicates a Userl TIP is included (TIP provided by
user).

indicates a User2 TIP is included (TIP provided by
user).

indicates a User3 TIP is included (TIP provided by
user).

indicates a User4 TIP is included (TIP provided by
user).

~@XZI M>»

"W N

Examples of the TS parameter are:

TS=A/E/M NPU has the Mode 4 TIP, and the
ASYNC TIP with extentions.
TS=H/X NPU has the HASP TIP and the X.25

TIP with PAD subTIP.

TS=A/E/M/X/1 NPU has both normal and extended
versions of the ASYNC TIP, the Mode
4 TIP, the X.25 TIP with the PAD
subTIP, and one user-written TIP
designated as user TIP 1.

NL specifies maximum number of 255X lines (ports) to be
configured for this variant. The associated nl decimal
value ranges between 1 and 254.

NP specifies the NPU node ID for this NPU. The
associated np decimal value ranges between 2 and 255.
The value must not conflict with the corresponding NPU
definition in the network configuration file, NCF, which
was generated during installation by network definition
language directives.

CP specifies the host coupler decimal ID if the variant
type is front-end (F) or local (L). CP is omitted for
variant type remote (R). The cp value must not conflict
with the corresponding coupler statement in the network
configuration file, NCF, which was generated during
installation by network definition language directives.

TR specifies the trunks if the variant type is local (L) or
remote (R). TR is omitted for variant type front-end (F).
Two values are required for each trunk: port address (pa)
in hexadecimal, and the three-character variant name of
the NPU at the other end of the trunk. All trunks are
specified by one TR parameter. Value pairs are separated
by slashes (/). An NPU can have one to eight trunks. For
example:

TR=1-RM1/2-RM2/3-RM3
specifies a local variant with three trunks. These are

connected at ports 1, 2, and 3 to remote NPUs RM1, RM2,
and RM3 respectively.

3-2

EXAMPLES OF VRD DEFINITIONS

Example 1:
VRD=EX1, VT=L/D, 5Z=81K, TS=A/M, NLL=100, NP=11,
CP=2, TR=1-RM1/2-RM2,

This defines:

® A local NPU with 81,920 words of memory having
an NPU ID of 11 and a coupler node ID of 2.

e This normal build includes two TIPS (Mode 4 and
normal ASYNC) and on-line diagnostics.

e Two remote NPUs are attached. Remote NPU
RM1 is connected through trunk port 1. Remote
NPU RM2 is connected through trunk port 2.

e No more than 100 lines can be connected to this
NPU.

Example 2:
VRD=EX2, VT=R/T, SZ=81K, TS=A/E/M/X, NL=127,
NP=23, TR=3-L81.

This defines:

e A remote NPU with 98,304 words of memory
having an NPU ID of 23.

e This test build includes four TIPs: HASP, X25 with
PAD suwTIP, and both normal and extended
versions of ASYNC., On-line diagnostics are
omitted.)

e This remote NPU is connected on trunk port 3 to a
local NPU with variant name L81.

e No more than 127 lines can be connected to this
NPU.

Example 3:

VRD=EX3, VT=F/D/T, SZ=128K, TS=A/E/M/H/X,
NL=127, NP=30, CP=15.
This defines:

e A front-end NPU with 131,072 words of memory
having an NPU ID of 30, and a coupler node ID of
15.

e No remote 255X units are connected to this NPU.,

® This test build includes all five standard TIPs and
on-line diagnostics.

e No more than 127 lines can be connected to this
NPU.

LFD, DEFINES A CCP LOAD

FILE VARIANT
The format of an LFD statement in USERBPS is:

LFD=gn, LM=vv1-p2lidl/..../vvn-p2lidn.

LFD identifies this entry as a load file definition, and
specifies the load file name (gn). The gn value is a
three-character string used by build step CCPGLF to
create a unique permanent file name for the output file
(see the NOS Installation Handbook).

60471200 F

LM specifies the CCP variant load modules to include in

this load file. The multiplex subsystem firmware (phase 1) -

and dump bootstrap load modules are automatically
included in every load file. The on-line diagnostics and
remote 255X dump/load overlay load modules are
automatically included if files ZDGN and/or ZREM are
present.

The associated vvi-p2lidi value consists of two parts: (1)
vvi is the three-character name of a variant load module
(permanent file name = Zvvv) generated by the CCP
variant build step; (2) p2lidi is the three character name
specified for this variant as the phase 2 load ID in the
corresponding NPU statement in the network con-
figuration file.

One wvi-p2lidi value is required for each variant to be

included in the load file. Successive vvi-p2lidi values are
separated by slashes (/).

EXAMPLES OF CCP LOAD FILE DEFINITIONS
Example 1:
LFD=EX4, LM=EX1-N11/EX2-N23/EX3-N30.

defines a load file containing the variants created in the
three VRD variant definition examples given previously.

NOTE
In LFD examples, p2lidi naming follows
the load file generator convention: the
name starts with the letter N and is
followed by the two-digit NPU node ID.
Example 2:
LFD=EX5, LM=EX3-N30.

This defines a load file containing the variant shown in the
third VRD example given previously.

60471200 F

EXPAND ERROR MESSAGES

All error messages generated by the Expand utility are
written to the file specified by the fourth parameter of
the Expand name call statement. If no file name is
specified in that parameter, error messages are written to
the file with the local name, ERMSGF. During a variant
build or a load file generation, errors are written to the
output file. The messages appear on the listing from that
build step.

Each. error message indicates the problem type (for
example, a USERBPS file error or a macro text file
error). In some cases, the erroneous text is also copied
into the error message.

An error message has one to three lines:
o The first line is the text line. It contains the text
passed to the Expand utility from the build
procedure step.

e The second line specifies the primary USERBPS
line of a variant or load file definition.

e The third line is an associated variant definition.
Some error messages omit one or more of these lines.
In some cases, an arrow occurs underneath the text line of
an error message. Any text to the right of the arrow was
not processed by Expand at the time it detected the

error. For example:

LN = EX3

In this case, the error occurred either in the symbol LN or
in the equal sign. Expand had not processed the EX3
symbol.

The Expand utility error messages are shown in table B-2

of appendix B. The action to be taken when these
messages appear is also given in that table.

3-3

AUTOLINK UTILITY 4

INTRODUCTION

Autolink generates the MPLINK directives for CCP. It
simplifies MPLINK use and provides an optimized MPLINK
input directives file. By optimizing the location of
executable modules in NPU, Autolink provides the
maximum number of buffers. These buffers can be
assigned for message processing purposes.

If standard CCP installation procedures are used, this
program _is generated by the build procedures from the
release tapes; its use is generally invisible to the system
installer.

CCP APPLICATION PROGRAM TYPES

A CCP application program (normally called an
application) is a group of modules working together to
perform some major system function. There are two
types of CCP applications:

e Base applications that must be included in every
CCP system. Most of these applications are
located in an unpaged area in main memory. One
of them, the service module, is located in the
paged area of main memory. Parts of the service
module that cannot fit on this page are located in
the paged area of main memory.

e Terminal interface packages (TIPs). This category
also includes the host interface package (HIP) and
the link interface package = (LIP). These
applications are normally located in the paged
area of extended memory, although individual
application modules can be included in paged or
unpaged main memory.

Table 4-1 relates the standard CCP applications names to
the common names for these applications

The NPU memory is paged. Current page length for CCP
is 8192 words. CCP uses one page located at address
2000, 4; all other pages are imaged at this page, but are in
fact located in extended memory (addresses higher than
65,536). Having all modules of an application located on
the same computer page speeds processing. Autolink
allows the user to specify that a module is to be loaded on
the same page as its application; Autolink can locate
other modules elsewhere to optimize buffer space or to
avoid page overflow. Paging and the associated
addressing problems caused by paging are discussed in
detail in the Link utility section of this manual.

AUTOLINK INPUTS
There are two types of Autolink input files: directives and
object code files for the directives to act upon. These are
shown in figure 4-1.

Autolink Input Directives

The user specifies the linking operations to be performed
by a series of input directives to Autolink (this is

60471200 F

TABLE 4-1. CCP APPLICATION NAMES

Name Common Name/Function

ASYNC Asynchronous Terminal Interface
Package

ASYNCEXT Extended Asynchronous Terminal
Interface Package

BASESYS Base System Modules

CONSOL NPU Console Package

HASPTIP HASP Terminal Interface Package

HIP Host Interface Package

LIP Link Interface Package

INITIAL Initialization Routines

IVT Interactive Virtual Terminal
Common Routines

MODE4 Mode 4 Terminal Interface Package

OLDSYS On-line Diagnostics

PIBUF2 Buffer Space

PIDTBL ID Table (this is always the last
application specified)

SVMODULE Service Module

TUP Test Utilities Package

X25L2 X.25 TIP Level 2 (Frame Handling)

X25L3 X.25 TIP Level 3 (Packet Handling)

X25PAD PAD SubTIP for the X.25 TIP

X25TIP X.25 Terminal Interface Package

automatic if the standard system is used). The directives
are contained on an input file. Four types of directives
exist:

e Directives specifying the size and paging
characteristics of the NPU memory. Reserved
areas can also be specified (the characteristics of
areserved area are discussed later).

e Directives defining the applications and
associated modules to be used in the build. These
directives also specify whether the module must
be loaded on the same page as the other modules
of the application.

—

AUTOLINK

oLD

LIBRARY INPUT
AUTOLINK S MODULES (NDEXED, FILES
VES OCA
DIRECT! (RELOCATABLE) OBIECT CoDe
MODULES -
OPTIONAL)

MPLINK
DIRECTIVES

FILE

LISTING

FATAL
ERROR
MESSAGE

"

/ —
P | ~
ERROR
BUFFER INPUT
SPACE :iv:onv DIRECTIVES DIRECTIVES ’;‘ESSAGES
REPORT REPORT REPORT DIAGNOSTICS

M-1085

Figure 4-1. Autolink Logical Flow

e Directives defining the optional Autolink reports.

e Passive MPLINK directives. These directives are
not processed by Autolink, but are saved and are
copied into the output file Autolink generates for
MPLINK.

Autolink Input Modules

Modules are input to Autolink from special object code
files (see figure 1-1). These files can be the direct output
of a Cross assembler or compiler, or a library file created
by the CCP installation procedures. In either form, the
object code is relocatable. The format of this relocatable
code is given in appendix F.

OUTPUTS FROM AUTOLINK

The principal Autolink output is a file of directives for
MPLINK. The other outputs are the Autolink reports and
a fatal error file (see figure 2-1). The reports are:

Buffer space report
Output directives report
A memory map

An input directives report

EXECUTING AUTOLINK

The CYBER Cross System must be installed for Autolink
to be executed. Autolink's name call statement is of the
form:

ALKOVL(files)

If the user follows the installation procedures given in the
NOS Installation Handbook, the input files necessary for
Autolink's proper operation should be available at Autolink
execution time.

AUTOLINK INPUT FILES

Inputs are presented to Autolink on three input files:

o The input directives file (required)

® An object code file which contains modules
(required)

e An object code library file (optional)

INPUT DIRECTIVES FILE

This file contains the directives necessary to generate the
MPLINK directives file. The MPLINK directives contain
all control information needed by the Link utility to
produce the memory image load module (ABSOLMP) file
and the symbol table (SYMTAB) file. These two files are
the required inputs to the Edit utility. See figure 1-1.

60471200 F

OBJECT CODE MODULES FILE

This file of object code modules contains all the modules
that are to be linked. These modules are the output of a
CYBER Cross System compiler or assembler.

LIBRARY FILE

This optional file contains the object code for modules
that are grouped into a library. The function of this file is
identical to that of the object code module file; the
library provides a second source of object modules.

AUTOLINK OUTPUT FILES
There are four types of Autolink output files:
e Output directives file
e Fatal error message file
e Listings files

e Temporary file for saving passive MPLINK
directives

The output directives file is normally left as an on-line
mass storage file so that it can be used as the input to the
MPLINK utility.

Information generated by fatal error processing is stored
in the fatal error message file. If no fatal error occurs,
this file is empty.

The user can select optional reports, the output directives
file, or a listing file contain one or more reports.

A temporary file is used to save the passive MPLINK
directives until they are needed in producing the output
directives file. The contents of the file are not available
to the user.

OUTPUT DIRECTIVES FILE -

This file contains the MPLINK directives that are
generated by the Autolink processing its own input
directives. The passive directives that were used as
inputs to Autolink are copied to the MPLINK directives
file. The Autolink output file is used as the directives
input to MPLINK.

Any fatal error prevents generation of the output
directives file.

LISTING FILE

This file contains any operator-requested reports, as well
as any informative messages generated during Autolink
processing. Informative ~messages are either warnings
that indicate non-fatal input directive error, or provide
diagnostic information about the fatal error.

Fatal errors that occur during the MPLINK directives
generation prevent reports; fatal errors that occur during
report generation can result in a partial report. The
partial report information is not reliable.

60471200 F

FATAL ERROR: MESSAGE FILE

This file's message specifies the cause of the fatal error
and contains diagnostic © comments. Standard CCP
installation procedures copy the fatal error file to the
output file and normally terminate the variant build step.

EXECUTING AUTOLINK

Autolink is executed through the name call statement:
ALKOVL(files). If the user follows the installation
procedures given in the NOS Installation Handbook, the
input files necessary for Autolink's proper operation
should be available, and rewound at Autolink execution
time.

Autolink's name call statement contains eight file names.
The names must appear in the order given. If a name is
omitted, its delimiting commas must remain. Format of
the Autolink name call statement is:

ALKOVL(1fn1,1fn2,1fn3,1fn4,lfn5,1fn6,1fn7,1fn8)
where the file names are defined as follows:

Ifnl - the name of the file containing the input
directives to Autolink. Default is TAPEL

1fn2 - the name of the file containing the main
object code input. Default is TAPE2.

Ifn3 - the name of the file containing the object
code library. This is the secondary object
code input and is optional. Default is TAPE3.

Ifnd - the name of the output directives file.
Default is TAPE4.

Ifn5 - the name of the reports file. This file
contains all reports and informative
messages. Default is TAPES,

ifné - the name of the provisional file that stores
the passive MPLINK directives. Default is
TAPESG.

1fn7 - the name of the fatal error file. The file is
generated only in the case of a fatal error.
Default is TAPE7.

1fn8 - the name of the error file. Default is TAPES.

AUTOLINK DIRECTIVES

Autolink directives are of two types:

e Passive MPLINK directives that are not used by
Autolink but are copied into the output directives
file.

e Active Autolink directives, which are processed
by Autolink to form an output directives file or a
report, or both. Some of these directives specify
the modules to be selected from the input object
code files and how they are to be used in the
build. Other directives specify the report or
reports which Autolink is to generate.

PASSIVE MPLINK DIRECTIVES

Passive MPLINK directives allow the user to insert
MPLINK directives directly; they are copied unaltered
into the output directives file.

The group of passive MPLINK directives which Autolink
can use is:

e *COM which defines the blank common area

e *COR which defines the size of the NPU memory
to be used for the build

e *DAT which defines the labeled common area for
PASCAL tables

e *DSTK which defines the PASCAL
reentrant/recursive routines stack area used by
MPLINK

e *DMP which orders a hexadecimal dump of the
load file image

e *DVAR which defines the dynamic area for
PASCAL variables

e *ENT which defines an entry point for a module

e *LIB which defines the library file used to resolve
unsatisfied externals

® *SYN which defines a synonym for a module name
or entry point

® *SYSID which defines the system name and header
record for the load file

These directives are described in detail in the Link utility
section of this manual. Other MPLINK directives cannot
be used by Autolink.

ACTIVE AUTOLINK DIRECTIVES

Active Autolink directives are processed by Autolink and,
in most cases, generate MPLINK directives for the output
file. A directive consists of a directive name followed an
equal sign and a parameter list:

DIRNAME = parameter list
Blanks are ignored.
Active Autolink directives are summarized in table 4-2.
The order of the directives is significant:

e APPL directives must be entered before MOD
directives. APPL directives define the
applications to be used in the build. The order of
entering APPL directives with respect to one
another has an effect which is explained in the
Special Considerations for Using Autolink
subsection. The last application must be PIDTBL.

e RPT=INFO turns on the input directives report.
Any input directives entered ahead of this
directive are omitted from the report; all
directives following the RPT=INFO directive are
included.

e MOD directives must follow all other directives.
The order of entering MOD directives with
respect to one another has as effect as explained
in the Special Considerations for Using Autolink
subsection.

4-4

TABLE 4-2. SUMMARY OF AUTOLINK DIRECTIVES

Directive Description

APPL Defines names of all applications
that can be used in any system
build.

BUFSPSIZE Specifies the memory sizes to be
used in the buffer space report;
that is, several trial computer
sizes can be used.

CORESIZE Specifies the memory size of the
NPU which is to receive the build.

DEF Specifies the applications to be
used in this build.

DEFBASE Specifies base applications which
must be used in every build.

MOD Defines the module name, and asso-
ciates the module with one or more
applications.

PAGES1ZES Specifies the size of a page
(currently, CCP cannot use more
than one size).

PAGEREG Specifies page register number.

RESERVE Specifies reserved areas of main
memory.

RPT Specifies reports to be generated
as part of Autolink run.

rpx=BUFSP specifies the buffer
space report.

rpx=DIR specifies the output
directives report.

rpx=MAP specifies a main memory
map.

rpx=INFO specifies a list of
the input directives and
application lengths.

NOTE

If the order of the MOD directives is the
same as the order of the modules in the
object code input file, the execution speed
of MPLINK is greatly increased.

Comments for Directives
Comments can appear anywhere in the input directives
file. Comments are delimited in the usual PASCAL
syntax fashion:

e The comment starts with an ASCII underscore ().

This is the same as the bent arrow (®» in CDC
graphics.

60471200 F

e The comment ends with an ASCII question mark
(?). This is the same as the down arrow &) in CDC

graphics.

APPL, Specifies Applications

The APPL directives identify the applications that
comprise the system. An application consists of a group
of modules performing a set of related functions. The
group is identified by the single application name.

Only one application name is used in each application
directive. Every application referenced by a MOD
directive must have an APPL directive. No more than 60
applications can be defined.

The format of an APPL directive is:
APPL =zappl [(ADDR = $nnnn)]

where app!l is the user supplied name of the application. It
consists of one to six letters and digits. ADDR is an
optional parameter specifying a starting address ($nnnn)
for the application in hexadecimal.

The last application directive to be entered must be
PIDTBL. The order of entering other APPL directives
with respect to one another is explained in the Special
Considerations for Using Autolink subsection.

CORESIZE, Specifies the Memory Size of the Variant Build

This directive specifies the memory size of the variant
build for the NPU. The format of the directive is:

CORESIZE=n

where n is the memory size. Allowable values are: 64K
(65,536 words of memory), 80K (81,920 words of memory),
96K (98,304 words of memory), and 128K (131,072 words
of memory). Default value is 128K.

DEF, Specifies the Applications to be Included in the Build

This directive allows the user to select applications for a
variant build from the full set of applications specified by
APPL directives. Any application specified by an APPL
that is not included in a DEF directive is ignored. Format
of the directive is:

DEF =appl

where appl is an application name. It must be the same as
the name for the application used in an APPL directive.

DEFBASE, Specifies Base Applications
that Must be Included in Every Build

CCP requires some applications in every build. These
base applications must not appear in DEF directives. Base
applications are not included as optional applications in
the buffer space report; however, the size of DEFBASE
applications is calculated during that report's generation.
Format of the directive is:

DEFBASE = app!

60471200 F

where appl is an application name. It must be the same as
the name used for the application in the APPL directive.

MOD, Specifies Where a Module
can be Located during a Build

This directive specifies the type of location available to a
module during a variant build., Autolink handles up to 600
MOD directives.

MOD directives must follow all other directives. Each
MOD directive associates a module with at least one
application. All modules used in the build must have a
MOD directive.

Autolink generates an informative message if a MOD
directive is issued for a module not available in one of the
object code input files. Autolink generates a fatal error
message if a MOD directive is issued for such a module
belonging to a defined application.

Note that a module directive can be carried on two or
more physical lines as defined in the syntax rules given
previously.

The MOD directive consists of a name followed by a
parameter list enclosed by parentheses. The parameters
are separated by commas, and can appear in any order.
Format of the MOD directive is:

MOD=modname (P=p,ADDR=addr ,FILL, TH=tophat,
APPL=appll/appl2/.../appln)

where modname specifies the name of the module as it
appears in the object code file. Only the first six
characters of the name are significant.

P - Specifies the type of paging to be used:

P - indicates a pageable module. If a module is (1)
pageable and (2) not specifically assigned a load
address (ADDR parameter), then the module is
located at the next available page address of the
associated application, if possible. Otherwise,
the module is located at the next available main
memory address of its application.

NP - indicates a non-pageable module. NP is the
default value for the P parameter.

F - indicates a module that is forced to reside with
the paged portion of its associate application.
An application cannot be assigned to a given
page unless all its F-designated modules can fit
on that page.

R - indicates a reverse-loaded module; that is, space
is reserved for the module based on a fixed
ending address rather than a fixed beginning
address. Unless otherwise specified, the ending
address of the first R module in the directives
file is the highest available main memory address
(FFFEj1g). Ending addresses of subsequent R
modules start at a address one less that the
beginning address of previous R module.

ADDR - specifies the module is to located at an absolute
address.
addr is the absolute hexadecimal ($aaaa) address. For
R modules, addr is the ending address; for all
other modules, addr is the starting address. A
fatal error results if one ADDR module
overflows into the region assigned to another
ADDR module. If the ADDR parameter is
omitted, Autolink allocates a location according
the requirements of other parameters.

4-5

FILL - indicates that the module need not be loaded in
association with its application; rather, the module can be
used to fill empty locations throughout main memory or
paged memory that result from specifying reserved areas
and absolute addresses, after assigning space for other
some other types of modules (the filling operation is
perfomed after several other types of processing have
already been performed). Only if P=P can a FILL module
be used to fill empty space on a page.

TH - indicates a tophat module. A tophat module is
normally a module that is called by several other
modules. To minimize the code required to locate a
tophat module's entry point, a small auxiliary piece of
code is compiled with the module. This tophat code sets
the page registers when other modules call this module. If
a tophat module is located in a main memory, this
operation is not necessary, so the tophat auxiliary code is
discarded. Otherwise, if a tophat module is paged, the
tophat code is located in main memory to set the page
registers.

tophat - is the name of the pageable module as it
appears in the object text file. Only the
first six characters are significant.

APPL - specifies the names of all associated applications.
There must be at least one APPL in every MOD directive.

appl - is the name of an application as it appears in
the APPL directive.

An example of a series of MOD directives is given in
figure 4-2.

PAGEREG, Specifies Page Register Number

If specified, this directive indicates the decimal page
register number to be used for extended memory
addresses. If no PAGEREG directive is included in the set
of autolink directives, no page registers are explicitly
included in the MPLINK directives. Format of the
directive is:

PAGEREG =n

where n is the decimal page register number. For the
CCP system, page register 0 is used, and it designates the
page starting at 2000;¢.

PAGESIZES, Specifies the Size of a Page

This directive specifies the size of each page in pageable
memory. Currently, CCP requires that all pages be of the
same size. The format of the directive is:

PAGESIZES=s1

where sl is the selected page size in K words (K=1024).
The allowable values are 2K, 4K, 8K, and 16K. Default
value is 8K.

RESERVE, Specifies a Reserved Area of Memory

This directive prohibits Autolink automatically locating
modules in the specified area. However, Autolink can
locate modules in a reserved area if an ADDR parameter
in a MOD directive specifies that the module should be
located in a reserved area. Each reserved area requires a
separate RESERVE directive. Format of the directive is:

4-6

RESERVE=addrb,addre

where addrb is the lower boundary of the area in
hexadecimal ($aaaa); and addre is the upper boundary of
the area in hexadecimal ($aaaa).

BUFSPSIZE, Specifies Memory Sizes
for the Buffer Space Report

This directive specifies the NPU memory size, or sizes, to
be used in the buffer space report (see the form of the
report in the Autolink Reports subsection). If BUFSPSIZE
is not specified, the report is generated only for the
memory size specified by the CORSIZE directive. Format
of the directive is:

BUF SPSIZE=s1,s2,...sn

where si is the memory size to be included in the report.
Allowable values are: 64K (65,536 words of memory), 80K
(81,920 words of memory), 96K (98,304 words of memory),
and 128K (131,072 words of memory).

RPT, Specifies an Autolink Report

This directive specifies a report to be generated by
Autolink. Four reports are possible. Format of the
directive is:

RPT=rpt

where rpt specifies one of the reports: BUFSP, DIR, MAP,
or INFO. BUFSP specifies the buffer space report, DIR -
specifies the output directives report, MAP - specifies a
memory map report, and INFO - specifies the input
directives report. The position of this card determines
the content of the report: only directives that follow the
card are included in the report.

AUTOLINK REPORTS

Autolink generates four optional reports, each of which
can be selected by an RPT directive. If the BUFSPSIZE
directive is used, it determines the size of memory for the
buffer space report.

BUFSP, BUFFER SPACE REPORT

This report indicates the amount of main memory space
available for assigning to buffers for a given NPU build.
Buffer space is used for processing message traffic.

The report format is governed by the BUFSPSIZE
directive. BUFSPSIZE specifies all the memory sizes that
are to be used while generating the report. A report
includes all combinations of CCP applications that can fit
into a permitted build configuration. For each of these
combinations and memory sizes, the report gives the
amount of space available for buffers. Note that the base
applications do not explicitly appear in the report;
however, the space used by these applications is
calculated in generating the report data.

Since the report requires considerable computation time,

it should not be generated as a routine matter. A partial
buffer space report is shown in figure 4-3.

60471200 F

60471200 F

MOD = PNSWML(P = F, ADDR = $2000, APPL = SVMODULE)
MOD = PNAWAIT (P = P, APPL = SVMODULE)

Hoe o o

PNDSTAT(P = NP, APPL = SVMODULE)

.

MOD = PGDSTAT(P = P, FILL, TH = PNDSTAT, APPL = SVMODULE/BASESYS)

MOD = PIDTBL(P = NP, APPL = PIDTBL)

MOD = GLOBL$(P = NP, ADDR = $ODAO, APPL = BASESYS)
MOD = PIBUF2(P = R, ADDR = $FFFE, APPL = PIBUF2)
MOD = PBREAD(P = R, APPL = CONSOL)

MOD = MAINS(P = R, APPL = INITIAL)

MOD = R4MLIN(P = NP, FILL, APPL = MODE 4)
MOD = R4M4CC(P = NP, FILL, APPL = MODE 4)
= R4M4TP(P = P, APPL = MODE4)

MOD = PTMD4TIP(P = F, APPL = MODE &)

MOD = PTASNOPS(P = F, APPL = ASYNC/ASYNCEXT)
MOD = R4ASYT(P = P, APPL = ASYNC/ASYNCEXT)

P, APPL
P, APPL

ASYNC/ASYNCEXT)

MOD = R4ASYI(P
= ASYNC/ASYNCEXT)

MOD = ASYMSG(P

The first set of modules specified (which is also the order of the modules on the object code input file) is
from the service module. The leading module specifies (P = F) that this module must reside on the main memory
page (starting address = 2000;g) with other F designated service module routines. Since this is the first
MOD statement, the beginning of this module is located at the beginning of the specified page. The second
service module program can be paged anywhere.

PNDSTAT, also a part of the service module, is not pageable; therefore, it must be located in main memory other
than at the main memory page (locations 2000j¢ through 3FFFy1g). The last service module program specified

in the example is PGDSTAT. It can be paged, and must be vectored (using a tophat) to PNDSTAT. Since it is
tied to PNDSTAT, that module cannot be pageable. The module can be used to fill holes in main memory, or on
any page. Note that PGDSTAT is also a part of the base system application.

PIDTBL is the module belonging to the last application. It is nonpageable. PIDTBL must be loaded as the
assigned space above the last main memory sequential application; that is, normally, it is the application just
below the beginning of the buffer area.

GLOBL$ is a module that is assigned a specific address (ODAO)g). It cannot be paged, and is a part of the
base system.

PIBUF2 begins the modules in the reverse loading q . The

q ends with MAINS.

PIBUF2 defines the vector to the area used for buffers. The vector is at the upper end of main memory. The
actual buffer space exists below the reverse-loaded modules, and normally above the last of the sequentially
loaded modules (the last application in this sequence is PIDTBL). The application name is PIBUF2.

PBREAD is also reverse-loaded. It is part of the console application package. The last address of PBREAD is
one less that the first buffer word address.

MAINS is the last reverse-loaded module. Some of the reverse-loaded programs are not used during the normal
on-line CCP processing, but are part of the initialization needed when CCP is configured after the downline
load file is sent to the NPU. The buffer area is not determined until Autolink finishes its executiom.

The Mode 4 TIP has both pageable and nonpageable portions. It starts with two nonpageable modules, R4MRIN and
R4M4CC. Both of these can be used to fill holes in main memory. The first pageable Mode 4 module, R4M4TP,
preferably will be located at the beginning of its own page, since it is the first nonservice module specified
by a P = P MOD directive. Only one of the Mode 4 modules must- be located on the same page as its other modules
(P = F), that is, the Mode 4 worklist handler, PTMD4TIP.

The pageable Asynchronous and Asynchronous Extended TIP modules must be linked together on the same page, or in
main memory. The TIP entry routine, PTASNOPS, indicates that is must reside on the same page as the other F
modules (P = F) for these related TIPs. Some of the remaining modules are designated as pageable; others are
required to be nonpageable.

Figure 4-2. Example of MOD Directives

PII2 I RIS 2SI L4232 222222222222 R 2222 22 22122222222 2

* * » * * *® * * * *
*MODEG *HASPTISHLIP #ASYNC *ASYNC ** 65 * BC * 9 * 128 =
* * * * » L3 * * * *
SERRR AR RARER R R AR AR BEARRE R AR RS SARRDRERSESA R R LR AR R R R AR SR SRR SR F RS
* X * X * X * X * X ¥k cee ¥k === &]13]13¢ % 30974 *
* * X . X . X s X 3 == & 5454 % 21687 * 31825 *
* X * * X LI ¢ * X % === % 3610 * 19852 * 31183 »
* * * X * X * X 2 ——= ¥ 11921 #* 2745C * 32034 =
s X * X * LI ¢ * X % ww= & =ee ¥ 18482 % 31280 *
* * X * LI { LI § ** === ¥]0531 * 26764 * 32131 *
* X * * L I ¢ * X 8 —== & 845 * 24929 % 31489
* * * * X LI ¢ 4 ee= 16998 * 32340 * 32340 »
* X « X * X * * X $% —ee F —ee 14487 ¢ 32325 @
* * X L * LI { % <== % 4805 * 23038 * 33176 *
* X * * X * * X == o 49€] * 21203 ¥ 32534
* * s X . * X % == & 13272 * 28801 * 33385
* X s X * * * X 4 ee= * 3I3ES5 # 19833 * 32631 *
* + X * * * X % ——= & 11882 * 28115 * 33482 *
* X * * * * X % -== ¥ QGG * 26280 * 3284C *
* * * » * X $% ~-- * 18349 * 33691 ¥ 33691 *
8 X * X * X * X * 3 woe * ee= & 13136 % 30974
» * X s X LI ¢ * ¥4 we= & E454 ¢ 21687 % 31825 *
s X * L | LI * 3 == * 3610 * 19852 * 31183 *
* * * X LI * 2 == ¥ 11621 * 27450 * 32034 *
* X * X * + X * ¥ —== ¥ === ¥ 18482 ¥ 31280 *
» s X * . X * 3 =~ & 10531 % 26764 * 3213]1
* X » * * X * 8 == % 8645 * 24929 * 31489 »
* * * * X * %% ~—= & 16098 * 3234C * 32340 *»
* X * X * X * * % —== % 7739 ¥ 23801 * 33534 *
* * X L I 4 * * % «o= % 15937 * 298C1 * 34385 »
* X * * X * * #F == % 14240 ¢ 29159 ¢ 33743
* * s X * * 3 —== ¥ 22653 % 34594 % 34594 *
* X * X * * * *$ === & J2850 * 28878 * 33840 *
* * X * * * *F -~ % 21283 % 34691 ¥ 34691 *
. X * * * * % == & 19317 % 34049 * 34049 »
SEERESERREEE A SEARERRRRBRE SRR DRI RS RS RNR SRR B ER SRR SRR KR E SN S S 58

=== »s INSUFFICIENT BUFFER SPACE

LINKGEN COMPLETED

Figure 4-3. Sample Buffer Space Report for a CCP Run
(partial report only)

DIR, OUTPUT DIRECTIVES REPORT

This report generates a copy of all the directives that
Autolink generates for MPLINK. The directives are in the
order in which they appear in the MPLINK input file. An
output directives report is shown in appendix H as the
MPLINK input directive file.

MAP, MEMORY ADDRESS MAP REPORT

This report produces two listings:

e One listing gives the names and starting addresses
of all modules in ascending address order.

e The other listing gives the names and starting
addresses of all modules in alphabetical module
name order.

This report is similar to the maps produced by MPLINK,
and is a convenience when the user does not plan to run
MPLINK immediately following Autolink. A sample
report is shown in figure 4-4.

4-8

INFO, INPUT DIRECTIVES REPORT

This report lists input directives and application lengths.
Only those directives that follow the RPT=INFO directive
in the input file are included in this report. A sample
report is shown in appendix G.

SPECIAL CONSIDERATIONS
FOR USING AUTOLINK

This subsection discusses four aspects of using Autolink:

e The interrelationship of the APPL, DEF, and MOD
directives

e Requirements imposed on modules used by two or
more applications

¢ A method for minimizing the number of MPLINK
directives that are generated

e Autolink’s method of locating modules in a build

60471200 F

CYBER MINI CROSS SYSTEM - LINK EDITOR =~

MODULE MEMORY MAP ~ SORTED BY MODULE ADDRESS

MODULE *ANDDRESS* *MODULE* . *ADDRESS*
7ERQOX nged PNLNBA 4148
DRINTR 010N PNSGAT 4135
JUMPS 0149 PNCEFI 42AF
ADDRES ulcd PNCECN 4448
SLNBLS NDAD PNSTOR 44%E
IsPOLD iF®8 PTAFOU 44270
PACALL - 1FR8) PTARET 4428
PALNCU 1F93 R4ASY] 4404
PILNDL - 1FC4 ASYMSG 47A8
PRAMAS 1FED ASYLFM 4731
PNS MWL 2000 PTAPSP 473E
ONAWAIL 21412 AASCST 433C
PNRTN 21R7 AAEBCD 437
PNSMBA 21¢c1 AACAPL 493C
PNRVRS 2217 ATAPLA 497¢C
ONTLCD 2230 ABAPLA 4937
PNQREL 27A AASTAP 49+ C
PNGTCY 294 - AASRAP 4A3C
ANTCRS ?22¢¥9) ASTDAS . 4ATC
ONNL TC 2346 AE3CDA @AFC
PNRCWA 2432 AEAPLA 437¢C
PNCISC 24% 3 AAFAPL 47T
PNS™TO IZIat . ACAPLA 4C3C
PNSMIR 2529 A7TOE® 4C3¢C
PNSMNT 2566 PBLNCE «CFC
ONLLC 265C PTICTCH N34
PNLNCN T2 OJRETJ 49%%5
PNTMLE 2429 PTSV1L 4954
PMDELE 2F 70 PISV2L 4030
PNENAS 1077 PTRTIL 4096
PNuUISA 31183 PTRT2L 4I3F
PNL INE 2:CA PTREGL 4DAG
PNTMLY 34AF PBTWLE 4536
PNILLS 35C3 PBOBLK 4F4F
PNLLST 3044 PBQ18L 4ET8
PNANTL 372¢ PTINIT 4F81
ONLCR 374D PTIVTC £c2
PNSTAT 1756 PasLJ 4E78
ONILNS 3706 PGDSTA 4ct2
PN2LNS 3RtE PBMLIA 5377
DNLNST 391% FGSWIT £134
ONLTHML 33F5 PALNO?2 5208
PNTHMLS 3AFA PBLNO3 527
PNBRDC 3BFE PBLNOS 5306
PN1BRD 3062 PBFILE 5325
PNOVLD - 3e7C PBLMAS 5350
PNFRCE 3FGA PBOMAS 535D
ONOVLTY 3FC1 PBRSMAS 5368
SNOVLD 4000 PBBEXI 5377
PNPSTA 4089 PBAEX!I 5385

MODULE *ADDRESS* *MOOULE® *ADDRESS*
PRSETP 5393 PN2DLT 58D
PBCLRP 5385 PN2FUL 6305 -
pBCOMP 53C1 PNROUT 6051
PBRNPG 53€E0 - PNDIRA 60AF
PRPSWI 53F1 PNDIRD 6134
P3PYTP 5408 ’ PNQUEU 617¢E
PBGETP 5622 PNDEQU 6104
PRSTOM 9433 PBFMAH 6235
UNL 9CK 5446 PBTUAH 6320
QuLOCK 5455 P1TOAH 6387
PBRTCD 5466 ' PBTOAD 54 0F
QENTRY 5471 PMMLEH 6470
QEXIT 548C PTMSCA 6494
AYFMAL 540A PBCLKI 6514
LISTSR 5550 P8100M 652F
P33T0P 5578 PBDELE 65 3E
PTTPIN 5588 PBINSE 6570
MODMST 5582 PBUPDA 66F3
PBLNO4 2659 PBTMRS 6751
P3LNO7 5645 PRTICK 6818
PBLNCO 5681 PaTOQU 6883
PBLN10O 5€RD PBTOSR 6800
PBLNL11 56C9 PBTADE 6956
PALN12 56D5 PBTIMA . 69A2
?8LN13 56E1 PB16AD 69E9
PBLN14 SHED PBLCAY 6A21
P3LN15 5AFa PBTIND - 6805
PBMEMA 5705 PBLLEN 6B8F
pBLCBP 5732 PBLLRM 6830
PRMIN STSF PNBMPS 6C137
PBMAX 577F PMCOIN 6C59
PBSTRI 579F PBCOIN 6C8E
pacorPyY S57€= PMCORY 6C DE
PRPUTY 5878 PBSCLA 1297
PROLTX 58C8 PMYOLP 72C6
PBPAGE Y923 PTCLAS 74A5
PBXFER 5988 PMTISE 7664
PB1RAD 5980 PTLMUX 7689
PR1BAI 5A24 PBSWLE 76C0
PBlECTO 5AD8 PBINTP 76C8
PBBFAV 3Co05 - PRUPAB 7604
PBADJU 5C7C PBONAB 7607
PNL1SRC 2060 PRLOSTY 76F5
PN1GTP 5DA% PBHORE 76FF
PN1ADOD 5008 parIrPO 7740
PNIDLT 5E23% PBIIPD 7758
PNLFUL 5E8A PTBACK © TT9F
PN2SRC 5£82 PTBREA 77ED
PN2GTI S5EDE PTSTRT 784F
PN2ADD 5F38 PTSTOP 7892

Figure 4-4. Sample Memory Map Report for a CCP Run

INTERRELATIONSHIP OF THE APPL,
DEF, AND MOD DIRECTIVES

APPL directives specify all the applications that can be
used in a NPU build.

DEF directives specify all the applications that are to be
included in a given build. To specify a different build, it
is necessary to change only the DEF directives in the
input directives file.

Each application used in a build must have at least one
module defined for it by a MOD directive; that is, at least
one MOD directive specifies that application in its APPL
= appl parameter. If an application is not included in a
given build (that is, it is not defined by a DEF directive),
that application does not need to have any MOD directives
specifying it.

60471200 F

DUPLICATE MODULES

When a module is used by two or more applications, that
module's MOD directive must specify all the applications.
Using the same MOD name in two MOD directives causes
a fatal error.

A module is loaded for one application only; it is not
duplicated for other applications. If a module with a
tophat is located on a page, the tophat (relocation vector)
is retained. If a module with a relocation vector is
located in a nonpaged area, the module name is included
in the DELETED TOPHAT MODULE LIST, which is one of
Autolink's informative messages.

4-9

MINIMIZING THE NUMBER OF OUTPUT DIRECTIVES

Whenever possible, Autolink creates an output directive to
MPLINK in the form *L,modi-modj. This statement
directs MPLINK to start linking the module named modi
following the previously linked module, and to continue
linking consecutive modules as they appear on the input
object code file until the module called modj is linked.
This requires that both the Autolink and the Link utilities
use the same input object code file. Otherwise, a nonfatal
€rror Occurs.

AUTOLINK'S METHOD OF SELECTING
A LOCATION FOR A MODULE

Autolink uses the following algorithm to maximize the
amount of buffer space:

e Paged modules are assigned space first.

e Next, modules with main memory addresses and
their associated modules are assigned space.

e Next, modules that are to be reverse-loaded are
assigned space starting at the upper end of
assignable main memory (location FFFE)g), or at
the address specified.

e The remaining applications are assigned space in
the largest free area in main memory.

e FILL modules are located in the main memory
holes and in page holes.

e The last application (which must be PIDTBL) is
located at the end of the sequential applications.

e Buffer space is computed.

The specific steps used by Autolink in each of these
phases are described below.

Figure 4-5 shows this sequence.

Phase 1, Assigning Space to Paged Modules

First, Autolink locates modules assigned to a page by the
MOD directive's P=P parameter. If an application is the
only user of this module, that application is located on the
same page.

Next, any remaining applications with an NC parameter
are assigned locations on free pages. Applications which
are non-exclusive users of a P=P module are located on
free or nonreserved pages.

Then Autolink calculates the length of any applications
which have not yet been located on a page. If an
application will not fit on any one page, part of it is
placed on the page with the largest assignable space. The
rest of it is assigned to main memory.

Finally, Autolink sorts the pageable filler modules (Mod
parameters P=P and FILL) modules by length. Starting
with the largest module, Autolink attempts to locate that
module in the largest free space in paged memory. This
process continues until all the modules are either located
or put aside because paged space was not large enough to
hold them.

4-10

START SPACE
ALLOCATION

v
ASSIGN -PAG?I_ ONE - 8196-WORD PAGE STARTING
APPLICATIONS AT 200016
TO PAGES OTHER PAGES ARE 8196 WORDS LONG AND
START AT 10000g, 120001¢, 140001g,...UP
7O 1E0001g (DEPENDING ON MEMORY SIZE)
A4
ASSIGN
APPLICATIONS
BELOW FFFFig
(NON-PAGED)
v
ASSIGN
REVERSE -USUALLY STARTS
LOADED AT FFFEqg
MODULES
¥
ALL OTHER

APPL TO LARGEST
OPEN AREA BELOW
FFFF1g

A 4

FILL MODULES

TO HOLES IN

MAIN MEMORY AND
PAGED MEMORY

+
LAST ‘- STARTS AT WORD FOLLOWING LAST
APPLICATION WORD OF PREVIOUSLY LOADED
{PIDTBL) SEQUENTIAL APPLICATION IN MAIN
MEMORY
v
ASSIGN
BUFFERS
) 4
GND
M-1089

Figure 4-5. Autolink Sequence of Locating
and Link Modules

Phase 2, Assigning Space in Main Memory

This main memory space assignment phase occurs after
page space assignment is completed.

Applications with specific addresses (ADDR = addr) are
assigned space in the order in which they appear in the
APPL directives. A module associated with two or more
applications is located with the first application
encountered, not in the order of the MOD directive's
APPL parameter. Within an application, modules are
located in the order in which they appear in the input
directives file.

A module with the MOD parameter FILL is not located
during this phase.

If a module overlaps into space already assigned to a

module (ADDR parameter is specified) during this phase, a
fatal error occurs.

60471200 F

Phase 3, Assigning Space for Reverse-Loaded Modules

-Reverse-loaded modules are specified by MOD parameter
P=R. Space is assigned to these modules in the same
order in which they are encountered in the input
directives file. The ending address of the first module
encountered is located at a fixed or a specified main
memory address. The next module's ending address is
assigned to the word preceding the previous
reverse-loaded module's starting address. This process
continues until all the reverse-located modules are given
space in one contiguous group.

The ending address given to the set of reverse-loaded
modules is determined in one of two mutually exclusive
ways:

e The MOD directive for the first reverse-loaded
module in the directives input file is given a
specific address in the ADDR parameter
(example: PIBUF2 is the first reverse loaded
module; its directive specifies ADDR = $FFFE).
This address is the ending address of the module
rather than the starting address.

e No address is specified for the first
reverse-loaded module in the directives file. In
this case, the highest assignable main memory
address is used (FFFE}g) as the ending address of
the module.

If one reverse-loaded module overlaps another (as could be
the case if a reverse-loaded module is given an ADDR
parameter), a fatal error occurs.

Phase 4, Assigning Space to Sequence
Applications in Main Memory

This phase assigns space for all those modules belonging to
applications specified in a DEF directive, but which (1)
are not assigned addresses, (2) are not FILL modules, and
(3) are not exclusively associated with the last application.

The first application in the input directives file is assigned
space starting at the beginning of the largest unassigned
area in main memory. All the modules associated with
that application are located contiguously in the order in
which the MOD directives appeared in the input directives
file. When the first application is finished, space is
assigned for the next application in the same manner,
starting at the next word in main memory. This process
continues until all modules in all applications (except the
last application, PIDTBL) are assigned space.

At the end of this stage, a sequential set of applications
fits into the area selected. During this phase, if any
module overflows the end of that area, a fatal error
occurs.

Phase 5, Assigning Space for FILL Modules

At this stage of the process only two types of module
remain to be located: FILL modules (designated by the
FILL parameter of the MOD directive) and modules that
are exclusively associated with the last application. FILL
modules are assigned space in main memory in any
unassigned area large enough to accommodate them. If
all the FILL modules cannot be located, a fatal error
occurs.

60471200 F

Phase 6, Assigning Space for the Last Application

The only remaining modules are those exclusively
associated with the last application, PIDTBL. Its module
lengths are added to calculate a single application length.
Its address is set to the word following the ending address
of last forward-loaded module.

AUTOLINK MESSAGES

Two types of messages are generated during Autolink
operations:

e Certain nonfatal errors generate an informative
message specifying events of interest to the user,
but events which do not stop Autolink processing.
These messages are copied to the listing file.

e Fatal errors generate a fatal error message; it is
copied to the fatal error file. A fatal error also
generates informative messages that are copied to
the listing file.

INFORMATIVE MESSAGES

Informative messages are copied to the output listing
file. Such messages are preceded by the directive that
was being processed when the error or processing step
occurred. The general format of these messages in the
listing file is:

Directive
Program scan pointer address
Message text

The informative and nonfatal error messages are listed in
table B-3 of appendix B. The type of action that should be
taken when the messages appear are also given in that
table.

FATAL ERRORS

A fatal error generates the message FATAL ERROR for
the fatal error file. Autolink processing stops except to
prepare the diagnostic information that is copied to the
output listing file. This consists of two parts:

e Diagnostic comments

® A message specifying the fatal error type. Most
fatal error messages are concerned with a
directive error. This type of error message is
treated the same as an informative message: the
fatal error message is preceded by the directive
which was being processed when the error
occurred. The general format of these fatal error
messages in the listing file is:

Directive
Program scan pointer address
Fatal error message

The fatal error messages are given in table B-4 of

appendix B. The type of action that should be taken when
the messages appear is also given in that table.

4-11

LINK UTILITY

INTRODUCTION

The Link utility (MPLINK) uses an input directives file and
an input object code file to generate two principal outputs
(see figure 1-1):

e A memory image load module file consisting of
object code modules. The local file name (ifn) for
this file is ABSOLMP. The file's modules are
located in memory image order; that is, they have
the abpsolute addresses they would have if they
loaded into an NPU. Initializable variables have
the same values that they have on the object code
input file. These variables are initialized later to
selected values by the Edit utility.

s A symbol table (Ifn = SYMTAB) consisting of the
module names and entry points.

The Edit utility uses both these files plus its own input
directives to generate an initialized version of the
memory image load module file. This load module can
then be used to generate the downline load files used by
the host to load a CCP or CCI system into an NPU.

If standard CCP installation procedures are used, this
program is generated by the build procedures from the
release tapes; its use is generally invisible to the system
installer (see the NOS and NOS/BE Installation Handbooks).

The MPLINK input directives file can be :
e User-supplied

o Generated by SCF procedures during a standard
CClI installation

o Generated by Autolink procedures during a
standard CCP installation

The Link utility supplies special output listings including
memory maps, symbol lists, input directives, and a
hexadecimal listing of the memory image file.

NPU ADDRESSING

MPLINK assigns each module to an execution area in main
memory, in extended memory, or in an overlay area of
main memory. To uniquely address 128K (131,072) words,
an 18-bit address is provided (only 17 bits of the address
are used). However, when paging registers are used, an
11-bit address will locate any word on a 2K (2048) word
physical page. The remaining seven high-order bits are
used to designate the logical page. Note that both CCP
and CCI use an 8K (8196) word logical page.

The NPU has two addressing modes: paged and absolute.

In either mode, the operating system calculates a 16-bit
address for each memory reference.

60471200 F

e In the absolute mode, the 16-bit value is the
effective address in the range 0000 - FFFF 4.

e In the page address mode, the page registers are
used to achieve an effective 1B-bit memory
address in the range 0000 - 3FFFFj4 (only the
range 0000-1FFF ¢ is used).

PAGE ADDRESSING MODE

In page address mode, the NPU memory is subdivided into
physical pages, each of which is 2K words long. The
location of a word within a page requires an 11 bit address
(range 000 - 7FF)¢) and is called the page displacement.
Page displacement is the least significant bits of an NPU
address.

Each page is assigned a unique identification (range 00 -
7F1g) called the page number. The page number uses the
most significant bits of an NPU address.

Page displacement taken together with page number gives
an 18-bit addressing capability.

During page addressing mode, a page number is associated
with one of the 32 hardware paging registers (range 00 -
1F16). This requires five bits of the address, and is
handled by an MPLINK directive that associates the page
numbers with the page registers. Page register selection
(five bits) together with page displacement (11 bits) gives
the normal 16 bits of memory address referencing.

There are two sets of 32-page registers. Either set (0 or
1) can be active at any one time. The set being used is
selected by the executing program. Figure 5-1 correlates
the 18-bit address to page register and page displacement.

MPLINK assumes that all memory address specifications
are in the page address mode. Therefore, each address
specification has four distinct components:

Page displacement
Page number

Page register
Page register set

ABSOLUTE ADDRESSING MODE

The Link and Edit utilities do not support an absolute
addressing mode directly. However, the default mode
causes MPLINK to generate a program that effectively is
an absolute addressing mode. In this case, address
assignments are made entirely from page register set 0.

In default mode, the page register contents are the same
as the page register numbers; that is, page register 0 has a
zero value, page register 1 has a 1 value, ete. The
resulting address resolution provides the same addresses
that would be generated if absolute addressing mode was
used,

5-1

16-BIT ADDRESS REFERENCE VALUE

17

18-BIT EFFECTIVE ADDRESS
10 [

PAGE REGISTER POINTS TO A 15 10 0

;’;ﬁ:ﬂigﬁsﬁg:}&fg?g PAGE REGISTER PAGE DISPLACEMENT = b ———oe e —— I

CURRENTLY IN EFFECT. T I
|

PAGE REGISTER I PAGE REGISTER I

ReG SET 0 | Reg SET 1 |

0 PAGE NUMBER] 0 PAGE NUMBER |
- — ——J

1 PAGE NUMBER 1 PAGE NUMBER :

[] [J [] [] l

° ° e ° |

® [] [[J '

|

31 PAGE NUMBER 3 PAGE NUMBER |

I

|

i

|

r..——-—-.._.__.._-l

PAGE NUMBER

PAGE DISPLACEMENT

M-1086

Figure 5-1. Page Register Selection

SPECIFYING A MEMORY ADDRESS

The memory address is specified in three parts:

Number
of Bits Address Part
18 An effective address consisting of a page
number plus page displacement
5 page register
1 page reqister set

Format of the address is:
effective address:page register:register set

Note that address parts are separated by colons. Each
part is a numerical value in one of seven formats:

e A decimal constant. This is preceded by a sign if
necessary. Examples: 10, -734.

@ A positive hexadecimal constant. This is preceded
by a dollar sign ($). Examples: $2000, $4FAC.

e A linked module name

e An entry point name

® Anoverlay area name

e A local variable name

® An address function
A previously linked module name with an explicit address
assignment, a defined entry point name, a defined overlay
area name, a defined local variable name, or an address
function can be used as any part of the specified address.

The effective address associated with any one of these
names represents the numerical address value.

5-2

Address Functions

MPLINK provides five functions that can be used with an
operand or an address expression to generate a part of an
address. The functions are requested by means of
keywords. If this method is used, specification must have
the following format:

/keyword (name)

where name identifies a module, an entry point, or an
overlay. The allowable keywords are:

Keyword Value Returned by the Function

PGDISP 11-bit page displacement

PGNUM 7-bit page number

PGREG 5-bit page register

PGSET 1-bit page register set

ovID Last two characters of the overlay name

in which the overlay module resides
For example:

/PGNUM(PNSMWL) - returns the 7-bit number of the
page used by the service module
(PNSMWL)

Address functions can be used only if the module, entry
point, or overlay has been explicitly, named and the
assignment of the address related to the name has
preceded the reference.

Examples of a full address specification are:
e $13B75:$A:1
The 18-bit effective address is composed of a
page number = 2734, and a page displacement of
37516~

Page register 10 is to be used.
Page register set 1 is to be used.

60471200 F

e MODA:/PREG(MODB):1

The 18-bit effective address is taken from the
starting execution address of MODA.

The page register where MODB is located is to be
used.

The page register set to be used is 1.

o $1A45:/PREG(MODA):/PGSET(MODB)

The 18-bit effective address is composed of a
page number (3), and a page displacement of
04514

The page register where MODA is located is to be
used.

The page register set where MODB is located is to
be used.

Abbreviating Address Specification

It is not always necessary to specify the second (page
register) and third (page register set) parts of the memory
address. If only the first part of the address is specified
(either as a constant or an address function), the page
register is equal to the page number portion of the
effective address (upper seven bits), and the page register
set is assumed to be the same as in the previous memory
address specification. For example:

$421F:8:0
$421F:8
$421F::0
$421F

All specify the same address: the page displacement is
21F)¢, the page number is B, the page register is 8, and
the page register set is 0.

Addresses are specified similarly if an address function is
used. For examples MODA is equivalent to
MODA:PREG(MODA):PGSET(MODA).

ADDRESS ASSIGNMENT

MPLINK maintains an internal location counter for the
four-component memory address. The location counter
(which is used to assign space within the memory image
file) is initially set to zero. The components are updated
automatically as the memory image file is generated.
Specifying a memory address within a link or overlay
directive is the only method used by the Link or Edit
utilities to explicitly assign an address.

As 16-bit words of a module's object code are moved into
the memory image load module file (possibly with address
resolution), the words are assigned consecutive memory
addresses. If assigning the next address causes a memory
page overflow condition, the internal location counter is
adjusted to the first word (displacement = 0) of the next
consecutive page. At the same time, the page register
value is incremented by one.

Note that memory page overflow is not an error condition
unless the resultant page register value is greater than 31,
or the page number is greater than 127.

Unless MPLINK is given a specific load address for linking
a module, the memory address assigned to a module is the
next available memory address held. in the internal
location counter.

60471200 F

An area of memory which is designated as an overlay area
can have several different module groupings for the area.
Such a module grouping is called an overlay. On-line CCP
or CCl execution of these different groupings occurs at
different times. .

Each overlay has a unique, two-letter identifier. If the
user does not specify the identifier, MPLINK assigns the
next alphabetic character in sequence (range AA through
ZZ) when the next overlay is built. The binary equivalent
of the identifier is returned to the user with each OVID
keyword assignment.

The first overlay module of an overlay group is assigned
the memory address at the start of the overlay area.
Subsequent overlay modules of the same group are
assigned space directly following the previously linked
overlay module. MPLINK assigns overlay modules in this
fashion until the next *L directive with an explicitly
declared address occurs (the *L directive declares the
overlay name). The user must explicitly declare all
overlays using this directive.

MPLINK INPUTS

The user must supply MPLINK with two input files: one
file contains directives, the other file contains object
code modules. The user has the option of supplying a
library file in addition to, or instead of, the object code
module file. The MPLINK procedural flow is shown in
figure 5-2. Typical MPLINK use is given in the examples
in appendix H.

MPLINK DIRECTIVES FILE
This file can be generated in one of three ways.

e CCP: The simplest way is to use the Autolink
utility. Autolink solves many of space assignment
problems that the user would otherwise have to
solve by repeated trials.

o CCI: The installer uses the SCF procedures with
the standard installation processes.

e FEither: The user can generate his own file of input
directives using the MPLINK directives described
later in this section.

In all cases, the directive file is the first input file
presented to MPLINK.

MPLINK OBJECT CODE INPUT FILE

The required input file contains the object code modules
to be included in the build. If Autolink was used, the same
object code file must be presented to Autolink and to
MPLINK.

These modules in this file were previous put in this form
by a CYBER Cross assembler or compiler (macro-
assember, microassember, or PASCAL compiler - see the
appropriate CYBER Cross language reference manual).
The format of this relocatable object code is given in
appendix F.

Optionally, in CCI, the input modules file can be a library
file version of the modules in object code. This file was
previously produced by MPLIB. The library file is always
presented to MPLINK as the NEWLIB file. The library is
used by MPLINK to resolve all unsatisfied external
references.

5-3

MPLINK prdd
DIRECTIVES ODULES®

~—

Y

MPLINK

\ 4
_—

SYMTAB
{SYMBOL

TABLE)

MEMORY IMAGE
LOAD MODULE
FILE (NON-
INITIALIZED)
(ABSOLMP)

OLD LIBRARY
{OPTIONAL}

LISTING

*SAME OBJECT CODE FILE AS
WAS USED FOR AUTOLINK INPUT.

MEMORY IMAGE
LOAD MODULE
FILE
HEXADECIMAL

MEMORY MAP
SORTED BY
MODULE NAME

INPUT
DIRECTIVES

MEMORY MAP
SORTED BY
ADDRESS

ENTRY POINTS
SORTED BY
ENTRY NAME

ENTRY POINTS
SORTED BY
ADDRESS OR
VALUE

M-1087

Figure 5-2. MPLINK Procedural Flow

Note that any object code file must be rewound prior to
delivery to MPLINK; MPLINK does not rewind the files
automatically.

MPLINK OUTPUT FILES

Three types of output files are produced by MPLINK.

e memory image load module file (ABSOLMP)

e system table (SYSTAB)

e listings
MEMORY IMAGE LOAD MODULE FILE (ABSOLMP)
The file contains all the object code modules specified by
the MPLINK directives. In this absolute memory image
file:

® All modules are assigned to a specific execution
address

® All modules are assigned to a selected page
register

e All relocatable addresses are converted to
absolute addresses

e All external references are resolved

e All overlay modules are grouped in specified
overlay areas

5-4

SYMBOL TABLE (SYMTAB) FILE

The SYMTAB file contains the entire set of entry symbols
and module names defined by MPLINK. Each entry has a
value (either a memory address, a displacement, or a
constant), a field start location, and a field length.

MPLINK LISTINGS

MPLINK automatically produces five listings; a sixth
listing can be produced at the user's option. The listings
are:

e A copy of the input directives file.

e A module memory map sorted by module name. A
sample partial listing is shown in figure 5-3.

® A module memory map sorted by module address.

® An entry symbol list sorted by entry name. A
sample partial listing is shown in figure 5-4.

® An entry symbol list sorted by address.
® A hexadecimal list of the memory image load file

(optional). This is requested by the *DMP
directive.

60471200 F

CYBER MINI CROSS SYSTEM - LINK EDITOR -
MODULE MEMORY MAP - SORTED BY MODULE NANME
MODULE *ADDRESS* *MODULE* ;‘ADDRESS* . *MODULE¥* *ADDRESS# *MODULE* *ADDRESS*

AACAPL 493C PBCOMP 53C1 PB20OPO TATD PINIT FBAF
AAEAPL 4BFC PBCOPY 57EE PBPROP TALS PINWIN F124:
AAEBCD 48FC PBDELE 653 PBPSHI 53F1 ' PIPROT FO6TF
AASBAP 4A3C PBDLTX 56C8B PaPUTP 5408 PISIIC F605
AASCST 488C -PBDNAB 7607 PBPUTY 5878 PITMRS FEOS
AASTAP 49FC PBFILE 5325 PBABLK 4E 4F PIWLIN FBF8
ABAPLA 498C PBFMAD TFB4 P3Q1BL 4E78 PLCBIN 1605C:205C
ACAPLA 4C3C PBFMAH 8235 . PBROPG 53E0 PLIOST 162€0:22C0
ADDRFS 3150 PBFRNC TAY4 PBRTCD 5466 PLIPML 1621A:2214A
AEAPLA 4B7C PBGETP 5422 PBSCLA 7297 PLIPTC 1600622006
AFBRCDA 4AFC PRHALT 8036 PBSETP 5393 PLIP 162F2322F2
ASCE26 1339C:339¢C PBHDRA T6FF PBSLY 4EDSB PLREAD 160D0D3:200D
ASCE?29 1535C:33%8C PBIIPO 7758 ’ PBSMAS 5368 PLTKOP 16000:2000
ASTDAS 4ATC PRILL 803F PBSTOP 5578 PMCORY 6CDE
ASYFKR 11729:3729 PBINSE 6570 PBSTPM 5433 PMCOIN 6C59
ASYLFM 4781 PBINTP 7628 PBSTRI 579F PMMLEH 6470
ASYMSS 47AR PBINTR 0100 PBSWLE T6C0O PMT1SE 7664
ATAPLA 497C PBICPO 7956 PBTICK 6818 PMWOLP 72C6
A128E8B 153DC:33DC PBLCRP 5732 PBTIMA 69A2 PNAMAL 2198
ATTO6P 4C8C PBLCBT 6A21) PBTINO 6805 - PNBMPS 6C37
BEGINX Fe71 - PBLLEN 688F PBTMRS 67%1 PNBRDC 3BFE
BUFMAL 54DA PBLLRM 6820 PBTOAD 640F PNCECN 4448
CLEANY 1622132271 PBLMAS 5350 PBTOAH 6320 PNCEFI 42AE
£BCAL12 1551C:351C PBLNKD 7c01 . PBTODE 6956 PNCNTL 372¢
E26ASC 1549C:349C PBLNKU 7345 PBTOQU 6883 PNCONF 1590223902
£29ASC 1541C:361C PBLNOO 1F38 PBTOSR 680D PNDELE 2F 7D
FCSRCS £59C:1353C PBLNO1 1FC4 PBTWLE 4E 36 PNDEQU 61D%
5L0BLS CDAD PBLNO? 52C8 PBUPAB 76D4 PNDIRA 60AF
HASPMS 858E PBLNO3 52E7 PBUPDA 66F3 PNDIRD 6134
HSPTC3 1558E:358¢E PRLNO4 3699 PBXFER’ .5988 PNDISA 3118
HSR4IP RECA PBLNOG 4CFC PB10O0OM 652F PNDISC 2458
HSR4GTIT L4F6B:2F68 PBLNO7 56A5 PBleAaD 69E9 PNDLTC 2346
HSR&TP 150£4:30F4 PBLNOS 5306 P818AD 598D PNENAB 3077

IC 16010:2010 PBLNO9 5631 pB188I 5A2A PNFRCE 3F9A
I[SPOLD 1F58 PBLN1O 563D PB18CO 5408 PNGTCB 2294
JUMPS 0140 PBLN11 56C9 PGOSTA 4EE2 PNLCR 3760
LIPSMA 848C PBLN1?Z 5605 PGHALT 17D47:3D47 PNL INE 32CA
LISTSR 5550 PBLN13 56E1 PGIVTC 15E5C33€E5C PNLLCN 265C
MAINS F659 PBLN14 56ED - PGSWIT 5184 PNLLIN TADA
MODMS T 5582 PBLN15 56F9 PIAPPS FC77 PNLLLI TE66
PBADJU 5C7C PBLOAD 8045 PISUF1 FB22 PNLLLO TECB
PBAEXI 5385 PBLOST T6F5 PIBUF2 FF98 PNLLRC 7DEE
OBAMAS 1FED PBMAX 57TTF PIDTBL . B68F PNLLRE 7039
PBBEXI 5377 PBMEMSB 5705 PIFR] F99A PNLLSN 1058
PBBFAV 5C05 PBMIN 575F PIGETA FB A& PNLLST 3644
PBCALL 1F8D PBMLIA 5077 . PIINIT FC37 PNLLTC 7F0C
PBCLKI 6514 - PBMON' 8085 PILCBS . F849 PNLNBA T 4148
PBCLRP 5385 PBOMAS 5350 PILINY FD63 PNLNCN 27€2
PBCLR - 801D PBPAGE 5928 PILMY F6ES PNLNST _ 391E
PBCOIN 6CBE PBPIPO 7740 PINMLIA FE9T PNOVLD 4000

Figure 5-3. Sample MPLINK (Partial) Memory Map Sorted by Module Name

EXECUTING MPLINK Appendix H gives examples of executing MPLINK.

MPLINK is executed by attaching the MPLINK permanent
file (local file name is MPLINK), and then executing the MPLINK DIRECTIVES

file name call statement MPLINK.
All MPLINK processing is controlled by the MPLINK

Three optional parameters are available with the MPLINK directives entered in the input directives file. The
file name call statement: general format of a directive is:
MPLINK(D=infile,R=outfile,CSET=cset) *dirname,

paraml,...,parami [paramj...paramn] comment

where D is the logical file which presents the input
directives to MPLINK. Default is INPUT. R is the logical
file that receives the listings. Default is OUTPUT. CSET
is the host display code set to be used. CSET = 63 selects
the CDC 63-character display code set; this is the default
value. CSET = 64 selects the CDC 64-character display
code set.

60471200 F ’ 5-5

FENTRY*#Q JA%®ADDPESS/VALVE**BIT S/L*

AATAPL
AACDAD
AACDPT
AACORR
AAEAPL
AAERCD
AANREA
AATUTP
AARFAT
AAS3RP
AASTAP
A3 APLA
ACAPL

AT ARTO
ACAUTD
ACCAPL
ACTASF
ACLTRR
ACDELM
ACEAPL
ACTBCD
AleLL

ACEPL

ACKMSG
ACKPT?
ACLIH?
ACLIM]L
AZPBLI
ACSROSB
ACPCLR
ACPEVE
AfPICS
ACPTOW
ACPLR1
ACPORL
ACPCMA
ACPONS
ACTPRMA
ACRITT
ANDRES
ADDRLC
ADDRSU
‘ADEADT
ADST1

ADST?2

AEABLS
AEAPL

AEASCI
AEATTN
ACATT1

VWOV O™ VINODPEDDEIPEPDRE > T OB >0V DIXDD>DDUOD > D

ENTRY: Name of the entry symbol.

CYRER MINI CRUSS SYSTEM -~ LINK EODITOR -

ENTRY SYMBNL LIST - SORTED BY ENTRY NAME

401¢ AFAUT1
0600 AEAUT2
G~0GH AFAUT 3
438¢ AEBLS
“3FC AFCHR1
48FC AECINI
0L07 AECIN2
no03 AECIN3
0604 AFCING
4A3C AECKMD
43EC AECTI1
493¢ ATCOD2
106€0236¢0 AECSS
2078 BECSLL
ning AFCSL 1
20C4 AECSL?
11¢R7: 3687 AFE INT
2601 AZEIN?
00?2 AEETND
0C0? AEEING
2001 AZFLL
20%0 AEELT1
0601 AEFLTS
asae AEE2L
1763 ACFOT]
nga AEESL
0AaCh AEESL2
0701 AEINDT
ory> BEINT
BT AT M3T
2000 AESED]
3050 AESLL
~re) AES110
10D AES15C
3059 AFS151
vdeC AES330
nces AES301
2C1L0 AEXBLS
600A AEXDLM
o150 AEXDT A
015F AEXPTO
7160 AEXSOT
0314 AE4XOL
0001 AEGXIN
0002 ATDLET
4744 ATDLZ
11709:3709 AINPLB
46T AINPS B
4769 AISPT1
4775 AISPTS

R/A: Entry type; R=relocatable, A=absolute, L=local.

ADDRESS/VALUE:

Address of the entry or its value.

less, true address appears.
10000;¢ and a page address of 2000;¢.

BIT S/L: Field start position/field length.

the rightmost.

5-6

Both start and length have a range 0-Fj¢.

VPP NVOHORDDVXORNTVVIDVNVNOTILVIVOALNNTIDNOVDAANDNDOODNDON VIOV VOID

SENTRY®#R/A*SADDRESS/VALUF**BIT S/L*

©648
464E
4654
4584
466D
46DA
460C
46E7
456E9
45A8
46C0
.46A0
116D7:3
&75F
4774
@77¢C
46F5
46F7
4702
4704
45C%
45CF
45EQ
45F1
45F8
4780
4782
4583
458C
455F
473C
4570
4658
4668
4662
5674
4672
4635
463A
4624
462F
4604
4TA7
4792
0003
0001
000E
0000
4405
4524

It is up to six letters and numbers long.

Both of this values are given in bits.

AISP4C
AISPSE
ALARM1
ALARM?
ALARM3
ALCAPL
ALCCRA
ALEAPL
ALEBCD
ASASCI
ASAUTO
ASCE26
607 ASCE29
ASCINT
ASDISC
ASSLL
AsseoL
ASXPT
ASX501
ASYNCE
As2761
ATAPLA
ATELL
ATEPL
ATPDI2
- AT®DIS
ATOD16
ATPDIB
ATPPR1
ATPPRYG
AUCAPL
AUCORA
AUEAPL
AUEBCD
AVASCE
AVASCP
AVBTTO
AVCNTR
AVCORE
AVCORR
AVCRLF
AVCRNS
AVEBCD
AVEBCE
AVEOLS
AVEOLT
AVEOTM
AVEOTP
AVINTA
AVIS4C

VOO RDOODRRNRVNVODODVDODOOVOODIN OO VORIV ODOTVE»TD

4512
44FA
0001
0002
0003
4C7¢
4ABC
4BaC
483C
0022
0018

HENTRY*$R/AS*ADDRESS/VALUE**BIT S/L*

1539C:339C

1535C2335C
176C
0003
0004
0001
0002
0005
1534
0020
497C
0000
0000
11318:3318
1133F1333F
1136313363
11387:3387
11203:3203
112F2:32F2
4C3C
4ATC
487¢C
4AFC
1172923729
1€50
1ET4
1€30
1173433734
" 1ESE
1€52
1E50
LESF
1174A23744A
1€29
. 1E20
47AB
1658
1E60
1E54

If a local entry, the slash (/) is omitted.

Addresses are a displacement from the first word of the file.

Fi7
T:7

¢ If address is 64K (65,536) or
If address is above 64K, two addresses appear as shown: true:paged. For example 10000:2000 has a true address of

Figure 5-4. Sample MPLINK Memory Map Sorted by Entry Name (Partial)

Por start position, bit 15 is the leftmost bit, bit 0 is

60471200 F

where An * indicates the beginning of a MPLINK
directive. dirname is the name of the directive. paraml
is a parameter. The first parameter is separated from the
directive name by a comma, Additional parameters are
separated from one another by commas. Some parameters
are optional; optional parameters are enclosed in brackets

,param . Parameter types are discussed below. Specific
parameters are defined in the descriptions of individual
directives. A period (.) terminates the command portion
of the MPLINK directive. Comments start after the
period and include all characters until the * which starts
the next directive.

An example of an MPLINK input directives file is given in
appendix H.

SUMMARY OF MPLINK DIRECTIVES

Table 5-1 summarizes the MPLINK directives.

MPLINK DIRECTIVE PARAMETERS

There are three general types of paramters:
® A name; it can be the the name of:

- amodule

- an entry point in a module

- a synonym equating an entry point to an
external

- the system being built

- an overlay area

- alocal variable

® An overlay identification

e A memory address

MPLINK Directive Parameter Names

A parameter name must begin with a letter. It can
contain any number of following letters or numbers;
however, only the first six characters are used by
MPLINK. Therefare, all unique names must differ in their

first six characters. Identical names lead to an MPLINK
error.

For the purposes of parameter names, the dollar sign ($) is
considered to be a number.

MPLINK Directive Overlay ldentifier Parameter

An overlay identifier always consists of two letters. If an
identifier is not assigned in a directive statement,
MPLINK generates its own overlay identifiers.

MPLINK Memory Address Parameters

The allowable forms of memory addressing were discussed
earlier in this section.

" *L, SPECIFIES MODULES TO BE LINKED

This directive links modules. The standard form of the
Link directive is:

*_,mod,addr.

60471200 F

TABLE 5-1. SUMMARY OF MPLINK DIRECTIVES

Name Function

*CB Defines the upper boundary for
linking programs.

*COM Defines the blank common area used by
macroassembl er modules.

*COR Defines the size of the combined main
and extended NPU memories.

*DAT Defines a common data area for PASCAL
global variables.

*DMP Produces the hexadecimal listing of
the memory image load file.

*DSTK Defines a stack area to be used for
PASCAL reentrant/recursive procedures.

*DVAR Defines a dynamic variable area for
use with PASCAL variables.

*END Last statement of the input
directives file; ends the file.

*ENT Associates a memory address with an
entry point name.

*L Links one or more modules, or links
all the unlinked modules on a library
file.

*LIB Defines the library file used to

resolve unsatisfied externals.

*LL Specifies a lower limit memory
address; modules cannot be located-
below this address.

*OVLY Identifies and establishes the limits
of an overlay area.

*RL Links reverse-~loaded modules, with
the module ending address specified
in the directive.

*SYN Equates an arbitrary name with an
entry point name or a defined module
name .,

*SYSID Specifies the name for the build.

*UL Specifies an upper limit memory
address; modules cannot be located
above this address.

*VE Assigns a variable expression value
to a local variable.

This causes MPLINK to locate object code module, mod,
at starting address, addr. As it is located, other linking
operations also occur: addresses are absolutized and
externals are resolved.

5-7

There are five alternate ways of writing a Link directive:
e *_,mod.

Links the object code module (mod) starting at the
word following the last word of the module most
recently linked by MPLINK. Note that if trailing
parameters are omitted, their delimiting commas
can also be omitted.

e *L_,addr.

Links all object code modules in the object code
input file except those which are expressly linked
by other *L directives. The modules are linked in
the order in which they occur on the input object
code file. The first module encountered starts
linking at the specified address (addr). Note that
the delimiting commas for the omitted mod
parameter must be retained.

e *_,modl-mod2,addr.

Links all the modules starting with modl
extending through mod2 on the object code input
file. modl is located at the specified address.
The other modules are located in order following
that module. If either modl or mod2 cannot be
located, an error occurs.

o *_,modl-mod2.

Same as the previous form, except modl is
located at the address following the last word of
the module previously linked.

e *,

Links all object code modules in the input object
code file except those which are expressly linked
by other linking (*_,parameters, or *RL)
directives. The modules are linked in the order in
which they occur on the input object code file.
The first module encountered starts at the word
following the last word of the module most
recently linked.

*RL, SPECIFIES MODULES TO BE REVERSE LINKED

The reverse linking directive locates a module so that the
last word of the module is placed in the specified address.
There are two alternate farms for the directives

e *RL,mod,addr.

Links the module so that the last word is placed in
addr.

e *RL,modl-mod2,addr.

Links a series of modules on the object code input
file, starting with modl and extending through
mod2. The last word of mod2 is located at addr.
The module ahead of mod2 is linked next, with its
last word immediately preceding the first word of
mod2. Other modules are linked similarly until all
modules in the sequence (including modl) are
linked. If either modl or mod2 cannot be found on
the object code input file, an error occurs.

*CB, DEFINES LINKING BOUNDARY

This boundary directive prohibits linking programs above
the specified address. Format of the directive is:

5-8

*CB,addr.

More than one *CB directive can be used in the directives
file. If a second (or subsequent) *CB,addr is used, the
second address becomes the new boundary value. If a
*CB,0 directive is used, the boundary is remaved.

Programs that are prevented from being linked by the
*CB,addr directive are subsequently linked by the link all
(*L) directive unless (1) a *L has already been used or (2)
there is no *L directive in the input directives file. In
either of these cases, the unlinked modules are linked
following the last program linking.

*LL, DEFINES A LOWER LIMIT
FOR LINKED MODULES

This directive prohibits any module from being located
below a given address in memory. If a module's starting
address is less than the specified address, processing is
halted and a fatal error message is generated. Format of
the directive is:

*_L ,addr.

Since *LL is positional (that is it applies only to linking
directives that follow it in the directives file), more than
one *LL directive can be included in the file. In this case,
if *LL,addr2 follows *Ll,addrl, the specified lower
threshold is changed to addr2 for the remaining
directives. To cancel a lower limit, the user enters the
directive:

*_L,0.

*UL, DEFINES AN UPPER LIMIT
FOR LINKED MODULES

This directive prohibits any part of any module from being
located above a given address in memory. If a module's
ending address is greater than the specified address,
processing is halted and a fatal error message is
generated. Format of the directive is:

*UL,addr.

Since *UL is positional (that is it applies only to linking
directives that follow it in the directives file), more than
one *UL directive can be included in the file. In this case,
if *UL,addr2 follows *UL,addrl, the specified upper limit
is changed to addrZ for the remaining directives. To
cancel an upper limit, the user enters the directive:

*UL,0.

*SYSID, IDENTIFIES THE SYSTEM LOAD FILE

This directive establishes a user supplied name for the
load file. The system name and the optional text are
placed in the memory resident header record of the load
file.

Format of the directive is:

*SYSID,name[,text].
If the SYSID is not specified in a directive, the load file
will not have a memory resident header record. In such a
case, if a *L directive includes a module with the name

LOADER, that module is placed at the head of the load
file.

60471200 F

The optional text is any string of letters or numbers up to
a total of 48 characters.

*OVLY, SPECIFIES OVERLAY AREAS AND
THE MODULES IN AN OVERLAY

This directive has two purposes:
e It defines the limits of an overlay area.

e It specifies the modules that are to be a part of
the overlay. An overlay consists of all modules
defined by *L directives which follow one overlay
directive and which precede the nrext overlay
directive or the *END directive.

Format of the *OVLY directive is:
*0OVLY,name,ovlyid,addrb,addre.

where name is the overlay name (normally six letters or

numbers). Note that the overlay name has the attributes

of a defined entry point. ovlyid is the two-letter overlay

identifier. addrb is the beginning address of the overlay

area; and addre is the ending address of the overlay area.

In using the *OVLY directive, the user should observe
these rules:

e A memory image load module file can have no
more than ten overlay areas.

® An *L directive which specifies the overlay area
name as its starting address designates its first
module as the start of that overlay.

e Overlay areas cannot overlap.

*ENT, DEFINES ENTRY POINTS

This directive assigns a four-component memory address
to a user-assigned name. The name is used to resolve
like-named external references. The name must not be
the same as an entry point in an already linked module.
Format of the directive is:

*ENT,name,addr.

*SYN, DEFINES EXTERNAL SYNONYMS
This directive equates an arbitrary name to a declared
entry point name or defined module name. The equated
name is to be used for resolving external references.
Format of the directive is:

*SYN,namel,name2.
where namel is the name of a declared entry point or a
defined module; and name2 is the name to be associate
with namel. At every occurence of namel in the object
code, name? is substituted.
*COR, DEFINES NPU MEMORY SIZE
This directive defines the size of the NPU memory for

which the load file is being generated. Format of the
directive is:

60471200 F

*COR,addr.

where addr specifies one of the four legal CCP or CCI
memory sizes. These are:

$FFFF - 65,536 words
$13FFF - 81,920 words
$17FFF - 93,302 words
$1FFFF - 131,072 words

If addr is omitted, a default value of $FFFF is used. This
is equivalent to an address specification of $FFFF:$1F:0;
that is, FFFF ¢4 is the last address of memory, memeory
page 31 holds that address, and address register set O is
used for that range of addresses.

*LIB, SPECIFIES LIBRARY FILE

This directive specifies the library file which MPLINK
uses to resolve unsatisfied externals during the linking
process. Format of the directive is:

*_IB.

The library file is always presented to MPLINK with the
local file name of NEWLIB,

*VE, EQUATES A VARIABLE TO AN EXPRESSION

This directive assigns the value of the specified expression
to the named variable. Format of the directive iss

*VE,nam:=exp.

where nam creates a local variable of that name. exp can
have any of the following formats:

naml

constant
naml+constant
naml+nam2
naml-constant
naml-nam?2

naml and nam2 can be local variables or entry points
which are absolute, or have been previously absolutized.

*DSTK, ALLOCATES A STACK AREA FOR
RECURSIVE/REENTRANT PASCAL PROGRAMS

This directive allocates the area that is used by all
reentrant and recursive PASCAL programs to save
processing parameters when a call is made to a program
which has not completely finished processing. Format of
the directive is:

*DSTK,addrb,addre.

where addrb is the starting address of the area and addre
is the ending address.

The programmer can choose a starting address in any part
of main memory that is not be used for other purposes
(buffers, programs, globals, or other reserved areas).

*DVAR, ALLOCATES A DYNAMIC VARIABLE AREA
FOR PASCAL PROGRAMS

This directive allocates the dynamic variable area used by
all PASCAL programs. The area is accessed by the
PASCAL standard procedure NEW. NEW is a variable
space allocation routine; it automatically allocates space
for a variable based on the type of variable (see the
CYBER Cross PASCAL Compiler Reference Manual).

Format of the directive is:
*DVAR,addrb,addre.

where addrb is the beginning address of the area and addre
is the ending address.

The programmer can choose a starting address in any part
of main memory that is not be used for other purposes
(buffers, programs, globals, or other reserved areas).

*COM, DEFINES A BLANK COMMON AREA
FOR MACROASSEMBLER PROGRAMS

This directive allocates a blank common area that is
referenced by macroassembler modules. Format of the
directive is:

*COM,addrb,addre.
where addrb is the starting address of the area and addre
is the ending address.
*DAT, DEFINES THE LABELED COMMON AREA
This directive defines the labeled common area. PASCAL
global variables are assigned to this area, and
macroassembler programs can reference this area.
Farmat of the directive is:

*DAT,addrb,addre.

where addrb is the starting address of the area and addre
is the ending address.

5-10

The programmer can choose a starting address in any part
of main memory that is not be used for other purposes
(buffers, programs, globals, or other reserved areas).

PASCAL global variabies are defined in an object code
module named GLOBL$. The appearance of GLOBLS in an
*L directive takes precedence over a *DAT directive.

*DMP, GENERATES THE MEMORY IMAGE LOAD
MODULE FILE HEXADECIMAL LISTING

This directive causes MPLINK to generate an output file
consisting of a hexadecimal dump of the memory image
load module file. The listing is sent to the file named
OUTPUT. Format of the directive is:

*DMP.

*END, LAST MPLINK DIRECTIVE

This directive must end the MPLINK input directives file.
It also specifies the address of the first instruction to be
executed after the load file is downline-loaded into the
NPU. Format of the directive is:

*END,addr.

where addr is a hexadecimal number or an entry point
name. Default for address is location 0.

MPLINK ERROR MESSAGES

If an error occurs during an MPLINK run, an error
message is delivered to the output file. The messages are
preceded by a leading-up arrow. If the error is a
recognized syntax error, the up-arrow is followed by the
character that was being processed when the error
occurred. Table B-5 in appendix B lists the MPLINK error
messages, and the action which the user should take in
response to the message.

60471200 F

EDIT UTILITY

INTRODUCTION

The Edit utility is used to initialize values in specified
variables of the CCP or CCI absolutized modules.

The MPEDIT utility requires three inputs:

e The non-initialized memory image load module
file (APSOLMP) output of MPLINK. This is the
file to be initialized

e The symbol table file (SYMTAB) output of
MPLINK. This is used to locate the modules to be
initialized.

e The MPEDIT directives that control the
initialization. This extensive file of directives is
called an MPEDIT program throughout this
section. The program is similar in format to a
CYBER Cross PASCAL program; that is, it
consists of a declaration/definition part followed
by a group of executed statements. The user
should be familiar with PASCAL compiler
requirements and syntax (see the CYBER Cross

PASCAL Compiler Reference Manual).
N

If a standard CCP or CCI build procédure is used, the
MPEDIT program is available from the CCP or CCI
program library. The program is generated by the build
procedures from the release tapes (see figure 1-1).

The output of MPEDIT is an initialized version of the
memory image load module file. This file can be
converted to a downline-load file for an NPU.

MPEDIT also supplies several optional output listings.

The MPEDIT utility section contains the following
subsections:

e A description of the input files required

e A description of thé output files: the required
memory image load module file, and the optional
listings

o - The method of executing the MPEDIT program

e The structure of the MPEDIT program

e Error message discussion

Addressing for the MPEDIT utility follows the rules
specified in the MPLINK utility section.

MPEDIT INPUTS
MPEDIT requires two files produced by MPLINK:

e . The memory image load module. file (ABSOLMP).
The file structure is shown in appendix D.

60471200 F

e The symbol table file (SYMTAB). This file
contains every entry symbol ' defined during
MPLINK, together with the symbol's absolute
location in the memory image file.

MPEDIT also requires. the MPEDIT program. The syntax
of this program is described in detail in the remainder of
this section. A sample of parts of an MPEDIT program is
given in appendix L.

MPEDIT OUTPUTS

The MPEDIT utility produces two standard outputs:

e A memory image load module file with the
specified variables initialized.

NOTE

A variable can take the form of a
declared constant, a variable, or a field
within an array. Fields in arrays are
restricted to 16 bits (one contiguous NPU
word) in length.

e A listing of the MPEDIT input program. Any
syntax errors encountered in. this program are
indicated on this listing.

Four optional outputs are also supplied:

e A specially formatted memory image load module
file, tailored for downline loading on an NPU.
Format of this load file is given in appendix E.
This is not the downline-load file for CCP or CCI,
but is a required input to generate that file. That
load file itself is generated by the CCP or CCI
installation procedures.

® A trace listing of the MPEDIT assignments that
were made.

e A listing of the symbol table (SYMTAB) which
includes local symbols that were introduced during
the MPEDIT phase.

® A hexadecimal listing of the memory image load
module.

EXECUTING MPEDIT

MPEDIT is executed by attaching the MPEDIT permanent
file, and then executing the name call statement MPEDIT
(see the appropriate NOS or NOS/BE Reference Manual).

Three optional parameters are available with the MPEDIT
call statement:)

MPEDIT(D=infile,R=out file,CSET=cset)

6-1

where D is the local file which presents the input
directives to MPEDIT. Default is INPUT. R is the local
file that receives the listings. Default is CQUTPUT. CSET
is the host display code set to be used. CSET = 63 selects
the CDC 63-character display code set; this is the default
value. CSET = 64 selects the CDC 64-character display
code set.

Appendix I shows examples of executing MPEDIT.

Note that the user must rewind the ABSOLMP and
SYMTAB files prior to entering this utility; MPEDIT does
not rewind the files before using them.

MPEDIT PROGRAM SYNTAX

The statements which comprise an MPEDIT program are
similar to PASCAL statements (see the CYBER Cross
Compiler Reference Manual) with some restrictions and
extentions. A typical extention allows an expression on
the left side of a VALUE statement. The evaluted
expression specifies the address which receives the
assigned value. Comments are permitted as in PASCAL
statements. Appendix I show selected sections of an
MPEDIT program.

As in a PASCAL program, an MPEDIT program has two
parts which occur in the order given:

e A definition/declaration section
® An assignment (initialization) section
The program ends with a terminator.

The sections of the program are shown in figure 6-1. The
MPEDIT flow is shown in figure 6-2.

The definition/declaration section consists of three parts
that must occur in the order given:

s A constant definition part
e A variable definition part
e An array definition part

The assignment section consists of one or more composite
statements. One composite assignment statement is
required for the memory resident portion of CCP or CCI;
one additional composite assignment statement is required
for each overlay to be edited. If overlay statements are
present, they must precede the memory resident
statement. The memory resident statement must be
present even if it is an empty statement (empty
statements are defined later).

The MPEDIT terminator is a period () immediately

following the END statement of the memory resident
assignment statement.

MPEDIT SYNTAX

MPEDIT program uses the following syntax elements:
o Keywords that designate the part of the program
or operation to be performed by the assignment
section

e Reserved symbols used to order the optional
outputs

6-2

PROGRAM STRUCTURE

CONST n
Constant Definition Part

VAR (1)
Variable Declaration Part

ARRAY (1)
Array Declaration Part

OVERLAY overlay identifier (2)
BEGIN

Assignment Section

END;

BEGIN (3)

Assigmment Section
END.

(1) oOptional

(2) oOptional composite statement; can be
repeated for every overlay that requires
editing up to the maximum number defined
for the link edit,

(3) Composite statement; Memory Resident
Partition.

Figure 6-1. MPEDIT Program Format
. o Local symbols used for equating constant locally,
or specifiying a local variable

e External symbols in MPEDIT always have an array
attribute

e Literals
® Address functions

e Expressions

MPEDIT KEYWORDS

The following keywords are reserved for MPEDIT controls:

CONST VAR ARRAY BEGIN END
OVERLAY FOR TO DO OF
CHAR DIV MOD

These control words have the same definitions in the
PASCAL compiler.

MPEDIT RESERVED WORDS

MPEDIT assigns specific output option request meanings
to the following reserved symbols:

/TRACE /OMP$ [ESLS$ /NAMS$

MPEDIT assigns specific address meanings to the
following reserved symbols:

/PGDISP /PGNUM /PGREG /PGSET
/START JLENGTH /VFD

/ENTRY

60471200 F

INPUT -

FILES
MPEDIT
\ 4
C Y
\.
INITIALIZED
MEMORY (MAGE il
LOAD MODULE
FILE
g
- ”~ . N N
- /7 | AN
- / | AN
e i N
V4 \
¥ + >
k_\
MEMORY IMAGE
INITIALIZED
TRACE SYMTAB ::)LAED MODULE LISTINGS
(HEXADECIMAL)
M-1090

Figure 6-2. MPEDIT Program Flow

These symbbls must be used only to perform the desired
MPEDIT functions. The functions are discussed later in
this section.

MPEDIT LOCAL SYMBOLS

Local symbols are used to equate a constant in the
constant definition part of the program or to declare a
local variable.

A Local symbol is defined by a slash (/) followed by one to
six letters and/or digits. The first character must be a
letter. The dollar sign ($) is considered to be a digit. The
following are valid local symbols:
/ABCDEF [A6 /MAIN$4 I

A local symbol can have more than six letters or digits.
MPEDIT, however, truncates the symbol at the seventh
character, and discards that character and all that
follow. The wuser cannot, therefore, define two local
symbols such as /ABCDEFG and /ABCDEFH. MPEDIT
treats both of these as /ABCDEF.

MPEDIT EXTERNAL SYMBOLS

External symbols are used during. array processing. The
symbols refer to arrays in the SYMTAB load file produced
by MPLINK. An external symbol consists of one to six
letters and/or digits. The first character must be a
letter. The dollar sign ($) is considered to be a digit. An
external symbol cannot be one of the keywords defined
earlier. The following are valid external symbols:

A36F MAIN$ GLOBL$ UTOPARAM (treated as UTOPAR)

60471200 F

An external symbol can have more than six letters or
digits. MPEDIT, however, truncates the symbol at the
seventh character, and discards that character and all
that follow. The wuser cannot, therefore, define two
external symbols such as [ABCDEFG and /ABCDEFH.
MPEDIT treats both of these as /ABCDEF.

External symbols can be qualified by other external
symbols. To do this, the user separates the external
symbols by a period. A single external symbol can be
progressively qualified by additional external symbols, as
shown in the examples:

‘A36F.FIELD
GLOBL$.RECORD.FIELD

where:

e The first external symbol specifies a location on
the memory image file.

e Intermediate external symbols (if any) specify a
displacement from the previous location (for
instance, the start of a record in the global
variables).

e The final external specifies a field as:

- A displacement from the start of the previous:
external symbol

- A start bit position for a field
- A field length (in bits)

This method of qualification is identical to that used in
the PASCAL syntax.

MPEDIT LITERALS

A literal can be a decimal number (a sequence of decimal
digits), or a hexadecimal number (a sequence of
hexadecimal digits preceded by a $). Internally, literals
are represented as 16-bit quantities. Larger quantities
are illegal.

Signed literals are allowed (the leftmost bit is a sign bit).
A negative literal forces the complement of the 16-bit
quantity. If a literal is represented by less than 16 bits,
the unused left bits are packed with binary zeros.
Examples of legal literals are:

123 $147 -$F

MPEDIT ADDRESS FUNCTIONS

MPEDIT provides nine functions that can be used within
operand or address expressions to generate an address.
The functions are executed by a reserved word in the form
/xxxxx. Five of these functions are also available with
MPLINK (see address functions in MPLINK):

/PGDISP /PGNUM /PGREG
/PGSET JoviD

In addition, MPEDIT defines four more address functions:

/START /LENGTH /[ENTRY
IVFD

As in the MPLINK case, the function takes the format:

[xxxxx (name)

/START, Field Start Address Function
The /START function has the farmat:

/START(external)
The function returns the start position in bits (range 15-0)
of a field relative to the start of a variable word. For
example:

/START(FIELDX)
generates a bit position of 9 as the start of FIELDX:

15 9 0

FIELDX

/LENGTH, Field Length Address Function
The /LENGTH function has the form:
/LENGTH(external)

The function returns the value of the field length (in bits)
minus 1. A single bit field has a value of zero; a full word
field has a valuve of 15. PASCAL fields cannot exceed
word length, nor can a field start in one word and
overflow into the next.

Example: the length of FIELDX in the example above is

requested with /LENGTH(FIELDX). The address function
would return a value of 10.

6-4

Example: to find the terminal class field (BSTCLASS)
start position and length in the base terminal control
block (TCB) descriptor table, the following MPEDIT
statements are used:

DGTCBFDT [51.DDF STRT

1= [START(BSTCI_ASS);
DGTCBFDT [51.DDFLNTH :

/LENGTH(BSTCLASS);

/ENTRY, Entry Point Address Function

This function accepts a module name as a parameter, and
generates the address of the module's associated entry
point. The /ENTRY function has the form:

JENTRY (external)

Example: To locate the entry point and the page number
of the service module in CCP, the following MPEDIT
statements include address functions:

. BYPRADDR

BYWLCB [BOSMWL] H
.BYPAGE :

BYWLCB [BOSMWL]

ENTRY (PNSWML) 3
PGNUM (PNSWML) ;

[]
NN

/VFD, Variable Field Definition Address Function

The /VFD function uses three parameters (address/

displacement, field start, and field length) to generate the

location and length of a field in the memory image load

module file.

The format of the /VFD specification is:
/VFD(addr/disp,fidstrt,fldingth)

where addr/disp defines ‘the absolute address of the word

holding the field in the memory image load file; fldstrt

defines the start bit position of the field within the word

(range 15-0); and fldingth defines the length of the field

(in bits) minus 1 {range 0-15).

The address expression A, where A is an external, is
equivalent to the expression:

IVFD(A,/START(A),/LENGTH(A))
or more completely:

/VFD(A:PGREG(A):/PGSET(A),/START(A),/LENGTH(A))

MPEDIT EXPRESSIONS
Two types of expressions are used:
e Operand expressions

o Address expressions

Operand Expressions

An operand expression produces a single 16-bit binary
value. An expression is a valid combination of:

constants (which are interpreted as 16-bit integers)
local variables

functions

unqualified external symbols

60471200 F

These are joined together by arithmentic operators (+, -,
* DIV, and MOD), and are grouped within parentheses to
specify the order in which the operations are to be
performed. An evaluated external symbol is represented
by its address/displacement value. Qualified address
~values can be accessed using the address evaluation
functions given in MPLINK and MPEDIT, above.

In an operand expression, an external symbol cannot be
subscripted, even if it is declared in an array. The NPU
performs all arithmetic in one's complement mode so that
results are unique.

Examples of operand expressions are:

GLOBLS$
(/PGREG(MOD)+$F21) DIV /START(GLOBLS$)

Address Expressions
An address expression has one of two forms:
e A /VFD address function call

e A single external symbol. The symbol can be
qualified. If this form is used, symbols that are
declared in arrays must be properly subscripted;
that is, the subscript expressions must be operand
expressions with values that fall within the
expected range.

Examples:
e A

This is an address expression unless A was
declared in an array. In that case, the lack of
subscripts indicates it is an operand expression. It
could also be an operand expression if its usage
forced that conclusion; that is, it is on the
righthand side of an assignment statement.

e Afl2]
/VFD (MAINS,0,0)

e ARRAY A[l.5,1..5] OF 24;
CIl1..10] OF CHAR;

VAR/L; /2

AL/L,(/START(Q)-2)*/31.B.C [3]'address
expression'

MPEDIT PROGRAM STRUCTURE

CONSTANT DECLARATION PART

The first part of an MPEDIT program contains constant
declarations; this section is optional. Constant
declarations allow programmers to create synonyms for
literals. A local symbol that is defined as a constant
behaves as a true constant; its appearance is legitimate
wherever a literal is expected.

If a constant declaration part is present, it is preceded by
the keyword, CONST. The complete list of constant
declarations must follow that word.

Each declaration has the following format:

60471200 F

/symbol=expression;

that is, the declaration consists of a local symbol, an
equal sign, and a literal, or a previously defined,
constant. The declaration terminates with a semicolon.
Literal and previously defined constants can be signed.

It is possible to define a constant value as an expression
which itself is a mixture of constants, previously declared
local constants, and entry symbols which appear in
SYMTAB.

Examples are given in figure 6-3.

Requesting the Optional Form of the
Initialized Load Module File

The pseudoconstant /NAM$ is used in MPEDIT to request
the optional form of the initialized memory image load
file. That load file is especially formatted for downline
loading in the NPU. Format of the file is shown in
appendix E.

Any three-character identifier can be assigned to the
/NAMS$ definition. The identifier specified is placed in
the heading of the load file. An example of the /NAM$
definition is:

INAMS$:= OE2

The definition can appear anywhere in the CONST
definition part of the program.

NOTE

This alternate form is not the final
form of the load file that is
downline-loaded into an NPU to provide
the on-line CCP or CCIL Instead, as
shown in figure 1-1, the CCP or CCI
installation procedures use a load file
generating utility to process this
optional form of the memory image
load module file along with other load
files. After processing by the host's
load file generating utility, the
reformatted and combined load file can
be downline-loaded into an NPU,

VARIABLE DECLARATION PART

The next part of an MPEDIT program contains variable
declarations; this section is also optional. It allows
programmers to create local symbols for local variables.
These symbols exist only during the MPEDIT phase. All
such variables are 16-bit quantities that can be used in
one's complement arithmetic.

If the variable declaration part is present, it is preceded
by the keyword, VAR. That word is followed by the
complete list of local variable declarations.
Each declaration has the following format:

[symbol;

that is, the declaration consists of a local symbol followed
by a semicolon terminator.

Example of a variable declaractions are given in figure
6-3.

CONSTANT DECLARATIONS

CONST
/TRUE =13
/FALSE = 0;
/COUPLER = $0000;
/PORTO1L = $0100;
/PORTO02 = $0200;
/B0S1 =13
/B0S16 = /BOS1;
/BFLCDO = /BUFSZ0*2 - /J1LSTPAD;
/DBFSZE = /BECTLBK + (3*/SIZBECTLBK);

VARIABLE DECLARATIONS

VAR

/1

/13

/P

/IDTBL
/BZOWNER
/BZLNSPD
/BSCN
/BSPGWAIT

ARRAY DECLARATIONS

ARRAY
JZOPSBASE [BOCHWL..BODUMMY 1 OF 2;
DBPFCTBLE [1..DBLAST 1 OF 2;

CGTCBS [0..C4TCM1 1 OF /SIZTCB
VATCBAT [1..40 1 OF 3;

JGTESTABLE /FALSE../TRUE,/FALSE../TRUE,/FALSE../TRUE] OF 1;

NAMEN [1..20] OF CHAR;

Constants as decimal numbers

Constants as hexadecimal numbers

Constants as previously defined constants

Constants as arithmetic expressions

general loop index
general use variable
work pointer for program
table work pointer

local variables

sequence of elements defined by symbols;
numerically defined size

sequence of elements defined by symbols;
constant defined size

combination of both of the above
sequence of elements defined by
numbers; numerically defined size

sequence of element sets defined by
symbols; numerically defined size

sequence of elements defined by numbers;
elements packed two per NPU word.

Figure 6-3. Examples of MPEDIT Constant, Variable, and Array Declarations

ARRAY DECLARATION PART

The next part of an MPEDIT program contains array
declarations; this section is also optional. Array
declarations allow programmers to create external
symbols as arrays so that elements can be referenced by
an index. Any external symbol that is to be indexed must
be declared as an array.

If the array declaration part is present, it is preceded by
the keyword, ARRAY. That word is followed by the
complete list of array declarations.

A declaration can have either of two formats:
name [index] OF number;
name [index] OF CHAR;

In each case, the name is an external symbol, the index is
a range of numbers in PASCAL notation
(number..number), and the declaration is terminated with
a semicolon. Note that number itself can be an
expression. If the CHAR format is used, the array
corresponds to a PASCAL. packed array; that is, there are
two characters packed per NPU word.

6-6

Examples of array declarations are shown in figure 6-3.

ASSIGNMENT SECTION

There are two general types of assignment sections:
resident assignments and overlay assignments. All overlay
assignments must precede the resident assignment
section. The two types are identical except that each
overlay assignment section begins with:

OVERLAY overlay identifier
An assignment section consists of a single composite
statement which is delimited by the keywords BEGIN and
END. The composite statement consists of zero or more
statements which direct the MPEDIT actions to be
performed. There are five types of assignment
statements:

e Local assignment statements

® Address assignment statements

® FOR loop statement

60471200 F

® Anembedded composite statement
e Empty statement

Each statement (except the last) is terminated by a
semicolon.

An MPEDIT program must include an assignment section
for the memory resident programs, even if that section
consists of only one empty statement.

Selected portions of an assignment section for a CCP
MPEDIT program are given in appendix I,

Local Assignment Section

A local assignment section statement has the following
format:

local variable := operand expression
where := is the assignment operator.

MPEDIT evaluates the operand expression to find the
value, and places that value in the named local variable.
Examples of local address assignment statements are:

VAR /I; /% IK; /Iy

M= Nl /3:=0; /K := JLENGTH(X)
JL t= IVALUE(A.B)+C;

Address Assignment Section
An address assignment statement has the form:
address expression := operand expression

An address expression can take the form of an operand
expression (that is, the operand expression can appear on
the lefthand side of the assignment operator). In this
case, a /VFD with full-word attributes is implied.

Semantically, MPEDIT evaluates the righthand-side
operand expression, and replaces the value in the memory
image location specified on the lefthand side with this
new value.

If a 16-bit value is assigned to a smaller than 16-bit field,
the higher order bits are truncated.

As mentioned above, an address assignment statement can
have an operand expression on the lefthand side. For
example:

/1+1 := 0 is interpreted as /VFD(/1+1,15,15) := 0

MPEDIT is instructed to zero the full 16-bit word that
appears at location /I+l. Similarly, 1 := 0 would zero the
full word at memory image location 1.

Example:

VAR /I3

/1:=0

60471200 F

This sets the local variable /I to zero. To zero the word
at memory location /1, the lefthand side of the assignment
must be forced to look like an expression. This could be
done in any of the following three ways:

e +/l:=0
e (/D:=0
e /VFD(/1,15,15) :=

FOR Statement

The FOR statement in MPEDIT is entirely analagous to
the FOR ... TO statement in PASCAL. The statement
causes the indicated statement to be repeated, while a
progression of values is assigned to a control variable.
The basic form of the FOR statement is:

FOR control variable := initial operand expression
TO final operand expression
DO statement

The FOR ... TO statement assigns values for the control
variable in increasing order. The control variable must be
a local variable.

In the following example, the FOR statement causes
MPEDIT to set 256 successive locations, beginning at the
external symbol GLOBLS, with the value of the preceding
memory location's address:

VAR /I

FOR ./l := GLOBLS$
TO GLOBLS + $FF
DO (/ l) = / 1-1

Composite Statement

A composite statement is a sequence of statements (which
can include embedded composite statements) that are to
be executed in the order specified. A composite
statement is delimited by BEGIN and END. The format of
the statement is:

BEGIN
statement;
statement;

statement
END.

A composite statement is interpreted syntactically as a
single statement. It is used to delimit the entire
assignment section. It is also useful for specifying several
statements which are to be acted upon as a single
statement.

The example in figure 6-4 gives alternative ways of
packing an array.

6-7

METHOD 1

VAR /13

FOR }1 := 0 TO 49 DO
BEGIN
/VFD(GLOBLS$+/1,15,7) := $4D;
/VFD(GLOBL$+/1,7,7) := /1
END;
METHOD 2
VAR /1; /J; /K;

ARRAY GLOBL$ [0..99] OF CHAR;

/K := $4D;
FOR /I := 0 to 49 DO

BEGIN
/3 2= 2%/1;
GLOBL$ [/3 1 := /K
GLOBLS [/J+11 :=
END;

2

This example packs an array of 50 NPU (16~bit)
words starting at location GLOBL$. Value $4D
is placed in the upper half word, and the word
count (0 through 49) in the lower half word.

Figure 6-4. Methods of Packing an NPU Array

Empty Statement

The empty statement is analagous to the empty PASCAL
statement. It contains no infarmation; it can be used
anywhere that a statement is appropriate. The empty
statement exists so that a syntax error is not generated if
the user inadvertently enters a semicolon. This most
frequently occurs after the statement which preceded the
END statement in a composite statement.

Comments

Comments can be introduced in any position within a
statement that does not violate a keyword or a symbol.
Comments are delimited at the beginning by an ASCIH
underscore (this appears as a broken arrow in display
code), and at the end by an ASCI question mark (this
appears as a down arrow in display code). Any character
can be used within a comment except the delimiters.

Requesting a TRACE Operation

The pseudovariable /TRACE is used in MPEDIT to request
a trace listing. The trace listing presents the following
information

® The address or field that is initialized

e The value to be inserted into the field

6-8

e The previous contents of the full 16-bit word
holding the field (the field can be all or only a
part of that word)

e The current contents of the full 16-bit word after
the initializing value is inserted

e The line number of the MPEDIT program which
caused initialization of the field

Format of the pseudovariable requesting a trace listing is:
JTRACE := x;

If the value for /TRACE is 2 or greater, the listing is
produced. If /TRACE is assigned a value of 0 or 1, the
trace report for that /TRACE entry is not produced.
Default value for /TRACE is 2. The pseudovariable can
appear anywhere in the assignment section; however, only
those assignment statements that appear after the trace
request will be included in the listing. For this reason it is
customary to define the pseudovariables at the beginning
of the assignment section.

A partial trace listing is shown in figure 6-5.

Requesting the SYMTAB Listing

The pseudovariable /ESL$ is used in MPEDIT to request a
listing of the symbol table (SYMTAB). This report
includes the local symbols. The report is generated at the
end of an MPEDIT run. Format of the request is:

JESLS := x;

If the value of x is 2 or greater, the SYMTAB listing is
produced; if the value is 0 or 1, the listing is suppressed.
The default value far /ESLS$ is 0.

The request can appear anywhere in the assignment
section of the program. A sample partial SYMTAB listing
is shown in figure 6-6. The listing was requested by the
pseudovariable declaration:

/$ESL := 2;

Requesting the Initialized Load Module File Listing

The pseudovariable /DMP$ is used in MPEDIT to request a
listing of the initialized memory image load module file.
Format of the request is:

/DMP$:=x;

If the value of x is 2 or greater, the listing is produced; if
the value is 0 or 1, the listing is suppressed. Default value
for /DMP$ is 2. The request can appear anywhere in the
assignment part of the program.

The memory image load module file values are listed in

hexadecimal; the listing is generated at the end of a
MPEDIT run.

MPEDIT DIAGNOSTICS

Some types of statement faults cause errors from the
programmer's standpoint, but do not generate an error
message. Others can generate one or more error
messages. Any of the following types of statements fail:

e statement has an undefined identifier

60471200 F

578
579
580
581
582
595
600
601
€08
609
610
él1
612
613
617
618
519
629
621
622
£26
627
628
629
530
631
635
636
€37
LEL}
639
640
h44
645
646
647
648
649
653
654
655
656
657
658
662
663
664
665
666
667
471
672
673

A failed statement behaves functionally
statement.

VFD (300164,
VFD($001638,
VFD{$00167,
VFD($00168,
VFD($00169»
VFD(SOF6TES
VFD($01080,»
VFD($01081>»
VFD(3011A1»
VFD($011A0,
VFD($0119¢»
VFD($011A0»
VFD($01190,
VFD($011A0,
VFD($C11A9»
VFD(3011A8,
VFD($C11A6»
VFD($0114A8»
VFD(3011A5,
VFD(3011A8,
VFD(301181,
VFD($011R0,
VFD(3011AE,
VFD($01180»
VFD($011A0,»
VFD($01180,

"VFD(301189»

VED(30118B8,
VFD(3$C1186,
VFD(301188»
VFD(301185,
VFD(sC1138,
VFD($011C1»
VFD($011C0»
VFD($0118F,
VFED($011CO»
VFD($0118D»
VFD(3011CO0»
VFD{$011C9»
VFD($011C8,
VFD($C11C6»
VED(s011C8»
VFD($011C5,»
VFD(s$011C8,
VF0(3011D1>»
VFD($011D0»
VFD(3011CE,
VFD($01100»
VFD($011CDy
VFD(301100,
VFD($01231,
VFD($01230,
VFD($0122E,

statement

$F»
$F»
$F»
$Fy
$Fy
$F,
$F,
$F,
$F»
$8y
$F»
$E»
t7»
$F,
$F»
$8»
tF»
$Es
7,
$F»
$Fe
$8,
$F,
$E»
$7,
$F»
$Fo
$e,
$F»
$F»
$7»
$Fs
$F»
38
$F»
SE»
$7,
$F»s
$Fs
8,
tF»
$F»
$7,
$F»y
$F»
$8,
$F»
$E»
$7»
$F»
$F»
$8,
$F,

$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$8)
$4)
$5)
s7)
£0)
$F)
£3)
$4)
$5)

$7) .

$0)
$F)
se)
$4)
$5)
$7)
$0)
$F)
$8)
t4)
$5)
$7)
$£0)
$F)
$8)
$4)
$5)
$7)
$0)
$F)
$8)
$4)
$5)
$7)
$0)
$F)
$8)
$4)
$5)
$7)
$0)
$F)
$8)
$4)

causes
nonexistent memory location -

an

00963

0OOF 3
0032;
c000;
00003
F659;
00203
0005;
80933
0010;
0009;
0001;
0002;
00013
76D2;
000E ;
U00A;
00043
0002;
Unols;
5179;
00CA;
00083
0004
00053
0nol;
2189;
0004;
00023
0001;
00043
0001
69E5;
00003
000D ;
00013
0C01;
00013
B093;
0010;
Q00E 3
0001;
00063
0001;
3039;
002F 3
000F ;
0001;
00033
00013
653C;
000C;
00183

attempt

0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0010
2000
0210
0000
00090
0000
000F
0000
080E
0000
0000
0000
000A
0000
1404
0000
0000
0000
0004
000C
0204
0000
0000
0000
000D
0000
020D
0000
0000
0000
0010
0000
0210
0000
0000
0000
002F
0000
022F
0000

0000

0000

to

CYBER MINI CROSS SYSTEM - LINK EOITOR -

assign

FPIYIIIIIFTITITIFIITIIIIPIIPIIITIII T IIFTIITIITITITIFTIIIIIFII Y

0096
000F
0032
0000
0009
F659
0020
2003
3093
0010
4800
0210
0002
3210
7602
000E
5000
080E
0002
380
5179
0004
5800
1404
0095
9490A
2189
n004
5000
0294
0004
8204
69¢5
0000
6800
020D
0001
820D
8093
0010
7000
0210
0006
8210
3D39
002F
7800
022F
0003
822F
653C
000C
D8oo

statement has a bad field specification (overflows
word or has an illegal format)

statement has an out-of-range subscript

The

statements.

60471200 F

following

examples

like a null
show

failed

a

TRACE LIST

674
675
676
680
681
692
683
684
685
686
638
694
695
696
697
698
693
700
701
702
703
704
705
706
707
708
709
710
711
712
713
T14
715
716
nz
718
719
720
721
722
723
724
725
726
127
728
739
740
744
7465
746
750
751

VFO($01230,
VFD($01220D,
VFD($01230,
VFD($01150,
VFD($01165,
VFD($0116D,
VFD($011755
VFD($01170,
VFD($01185,
VFD($0118D,
VFD($01530,
VFD($01774,
VFO($017755
VFD($01776,
VED(301777,
VFD($01778,
VFD($01779,
VFD($01778,
VFD($01774,
VFD($0177C,
VFD($01770,
VFD('SO177E,
VED(SOL77F,
VED($01780,
VFD($01781,
VFD($01782,
VED($01783,
VFD($01788,
VFD($01789,
VFD(301784,
VFD($01788,
VED($0178C,
VFD($017805s
VFD($O178E >
VED($0178F,
VFD($01784,
VED($01785,
VFD($01786,
VFD($01787,
VFD($01790,
VFD($01791,
VFD($01792,
VFD($01793,
VFD(SO17A4s
VFD($017A5,
VFD(SOL7AT7,
VFD($01859,
VED($01859,
VFD($01867,
VFD($01867,
VFD($01867,
VFD($01883,
VFD($01888,

Figure 6-5. Partial MPEDIT Trace Listing

Example 1:

U=

where U is

statement.

Example 2:

VAR /I;

FOR h:

Mm:=0

$E»
$7»
$F»
$7,
7,
$7s
$7»
$7,
$7s
$7,
$F,
$F»
$F,
$F»
$F»
$Fs
$F»
$F»y
$Fe
$F
$F»
$F»
$Fo
$F»
$F»
$F»
$F,
$F,
$F»
SFo
$F»
tF»
$F»
$F»
$F»
$F»
$F»
$F»
$F»
$F»
$F
$F»
$F»

$F»

$Fs
$F»
$0»
$4s
$D»
$4,
$7s
$4»
$F»

$5)
s
3$0)
$7)
$7)
$7)
$7)
$7)
37)
$7)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$F)
$1)
$4)
$1)
$4)
$2)
$4)
$F)

= $100 TO $202 DO

L2 T I IR N IO R R NN DY N N U RN TN TN N I I N BT T B BN N RN R Y BN)

B0 B0 00 06 0 S8 60 68 68 46 40 G0 U6 06 65 eu 4 G0 S 46 60 G4 S8 0 86 60 S0 00 06 e eb 4 G5 S8 6F G4 S0 0 66 40 0 S8 48 0% e 8 8

"
[]

=
s=
s
3=
2=

00013
0001;
0001;
0003;
0001;
0003;
00023
0001;
00013
0001;
0004;
0002;
0001;
000D;
5AFD;
00F0;
00F0;
5D65;
00083
0002;
0001;
00103
8093;
0002;
00023
0000D;
6889;
20783
0078;
00083
413F;
0002;
0001;
00103
30933
0002;
0002;
000E;
76823
0014;
0014;
00083
444C;
0000;
0000;
0000;
00013
00083
0001;
0009;
00023
000F;
000€;

000C
0000
020C
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0C00
0000
0000
0000
0000
0000
0000
0000
0000
cCcoo0
0000
0000
0000
0000
0000
0000
0000
0000
0000
1000
0000

1000

1009
0000
0000

PIFTIITTIIIIIIITIITTITTITIFTIIIFPIIIITIIIFIFPITIIIFTIVIITIIY

020C
0001
820C
0003
0001
0003
0002
0001
0001
0001
0004
0002
0001
000D
6AFD
00F0
00F0
5065
0008
0002
0001
0010
8093
0002
0002
000D
6889
0078
0078
0008
413F
0002
0001
0010
8093
0002
0002
000¢
7682
0014
3014
0008
444C
0000
0000
0000
1000
1008
1000
1009
1049
000F
000€

an undefined identifier. This acts as an empty

6-9

CYBER MINI CROSS SYSTEM -~ LINK EDITOR -

folY SYMBIL LIST - SORTED B8Y ENTRY NAME

#ENTRY*#Q/7A*®ADDRESS/VALUE**BIT S/L*

SENTRYS*R/ASPADDRESS/VALUE*$BIT S/L*

*ENTRY#*SR7ASSADDRES S/ VALUE®#BIT S/L¢

AACAPL R 493C ADST2 A
AACDAD A 0000 AFABLS L3
AACODPT A vCo90 AEAPL R
AACORR » 48RC AEASC1 R
AAEAPL R 48FC AEATTN R
AAESCD R 48FC AEATTL R
AANRFA A ouo7 AEAUTY R
AAOUTP [0303 AEAUT2 R
AAREAD A oces AFAUT3 R
AASBAP R 4A3L AEBLS R
AASTAP ° 49FC AECHRL R
ABAPLA R 49RC AECINL R
ACAPL L3 116ED:3550 ASCINZ R
ACARTO A uo78 AECIN3 R
ACAUTO A 9061 AFCING R
ACCAPL A 9004 AECKMD R
ACCAPL L 3066 A5COD1 R
ACCASE R 11#37:234R7 AECDD2 R
ACCORR A 0003 AECSE R
ACCORR L 00c3 AECSLL R
ACDELM A 2002 AFCSLL R
ACE#PL L 0022 AECSLZ R
ACZAPL a ©cl2 AEE INL R
ACEBCD A 00C1 AEEIN2 R
ACESRCD L [Do | AEFIN3 R
ACELL 4 0Cu) AFEING R
ACEPL A 0991 AzELL P
ACKNSG R ASAE AcELT1 R
ACKPTR R 1068 AEELT3 R
ACLINH2 A Jnce AEEPL R
ACLIMT A CAD) AEEPT] R
ACPBLI A 0301 AEESL1 R
ACPBOB A 2002 AcESL2 R
ACPCLR A 000C AEINPT R
ACPEVF A 3000 AE INL . R
ACPICS A 0059 AEMBT R
ACPIOwW A 0060 AESEDI R
ACPLR1 R 1Ccco AESLL R
ACPOBL A 00%8 AES110 R
ACPOMA A 006C AES130 R
ACPONS A 0048 AES151 R
ACPRMA A 0010 AES300 R
ACRITT A 0004 AES301 R
ACRLF L 0003 AEXBLS R
ACR L 0001 AEXDL M R
ADDRES R 0150 AEXDTA R
ADDRLC L4 015F AEXPTO R
ADDRSU R 0160 AEXSOI R
ADEADT A 0014 AEAXDL R
ADSTL A 0001 AE&XIN R

0002 AIDLET A 0003
474A ATDLE A 0001
1170933709 AINPLB A 000E
46A7 AINPSS A 0000
4769 ATSPT1 R 4405
4775 AISPT6 R 4524
4648 AISP&C R 4512
464F ALISP4E R 44FA
4654 ALARML A 0001
4584 ALARM2 A 0002
4560 ALARM3 A 0003
46DA ALCAPL R 4C7¢C
460C ALCCRA R 4ABC
46E7 ALEAPL R 48BC
46€E9 ALEBCD R 483C
4580 ALF L 0002
%6C0 ANIL L 0000
46A0 ASASCI A 0022
1160733607 ASAUTO A 0018
&T5F ASCE?6 R 1539C:339¢C
4774 ASCE29 R 1535C2 335¢C
477C ASCINT R 176C
46F5 ASDISC A 0003
46F7 ASSLL A 0004
4702 ASSOL A 0001
£704 ASXPT [0002
45C5 ASXSOI A 0005
45CE ASYNCE R 1534
&5F0 AS2761 A 0020
45F1 ATAPLA R 497C
&5FAR ATELL A 0000 F:7
4780 ATEPL A 0000 117
4782 ATPDI2 R 1131833318
4583 ATPDIS R 1133F:333F
458C ATPDIS L 1136323363
455F _ATPDIS R 11387: 3387
473C ATPPR1 R 1120323203
4570 ATPPRS R 112F2332F2
4658 AUCAPL R 4C3C
4668 AUCCRA R 4A7C
4662 AUEAPL R 487C
4674 AUEBCD R SAFC
467A AVASCE R 1172933729
4635 AVASCP R 1E50
463A AVB7TO R 1E74
462A AVCNTR L] 1E30
462F AVCORE R 1173A:373A
4604 AVCORR R 1ESE
&TA7 AVCRLF R 1€52
4792 AVCRNAS R 1€50

Figure 6-6. Partial MPEDIT SYMTAB Listing (Sorted by Entry Name)

where only addresses $100 through $1FF are defined in the
load file. In this case, 259 assignment statements are
executed. The first 256 are valid; the last three fail.

If a failed statement or other error causes an error
message, the error message is delivered to the output
file. The messages are preceded by an up arrow. If the
error is a recognized syntax error, the up arrow is

6-10

followed by the character that was being processed when
the error occurred.

MPEDIT ERROR MESSAGES
Table B-6 in appendix B lists the MPEDIT error messages,

the message meaning, and the action which the operator
or programmer should take in response to the message.

60471200 F

CHARACTER SET

The CYBER host uses one of two character sets to the ® 63-character ASCII
CYBER Cross Build Utilities: ® 64-character ASCIH

These code sets are shown in table A-1.

60471200 F

4 0021LY09

TABLE A-1. 63/64 CHARACTER ASCII CODE

ASCII Hollerith | Extermal { ASCIHI ASCII Hollerith | External ASCII
cocC Graphic | Display Punch BCD Punch | ASCII cDC Graphic Display Punch BCD Punch ASCII
Graphic Subset Code (026) Code (029) | Code Graphic Subset Code (026) Code (029) Code
_— — ——————
't : 00tt 8-2 00 8-2 072 6 6 - 41 6 06 6 066
A A 01 1241 61 121 101 7 7 42 7 07 7 067
-] B 02 12-2 62 122 102 8 8 43 8 10 8 070
C C 03 12-3 63 12-3 103 9 9 44 9 1 9 o7
D D 04 12-4 64 124 104 + + 45 12 60 12-8-6 053
E E 05 125 65 125 105 - 46 1 40 1" 055
F F 06 12-6 66 126 106 * 47 11.8-4 54 11844 052
G G 07 12.7 67 127 107 / / 50 0-1 21 0-1 057
H H 10 12.8 70 12-8 110 ((51 0-8-4 34 1285 050
| | 1M 129 n 129 m)) 52 12.8-4 74 11.8.6 051
J J 12 1141 41 141 112 $ $ 53 11-8-3 53 11-8-3 044
K K 13 11.2 42 11-2 113 = = 54 8-3 13 8-6 075
L L 14 11-3 43 11-3 14 blank blank 55 no punch 20 no punch 040
M M 15 114 44 114 115 , {comma) , {comma) 56 0-8-3 33 0-8-3 054
N N 16 115 45 115 116 . {period) . (period) 57 12-8-3 73 12-8-3 056
(o} o] 17 116 46 116 117 = # 60 0-8-6 36 8-3 043
4 P 20 1.7 47 11-7 120 [[61 8-7 17 12-8-2 133
Q Q 21 118 50 11-8 121)] 62 0-8-2 32 11-8-2 135
R R 22 119 51 119 122 % % 631t 8-6 16 0-8-4 045
S S 23 0-2 22 0-2 123 * " (quote) 64 84 14 8-7 042
T T 24 0-3 23 0-3 124 nd _ lunderline) 65 0-8-5 35 0-8-5 137
V] V] 25 0-4 24 0-4 125 v ! 66 11O0or 52 12-8-7 or 041
\ \Y 26 0-5 25 0-5 126 11-8-2tt¢ 110ttt
w w 27 0-6 26 0-6 127 A & 67 0-8-7 37 12 046
X X 30 0-7 27 0-7 130) ! {apostrophe) 70 1185 55 85 047
Y Y 31 08 30 08 131 i ? 71 1186 56 0-8-7 077
2 4 32 0-9 31 09 132 < < 72 120 or 72 1284 or 074
0 0 33 0 12 0 060 12-8-2t 1t 120ttt
1 1 34 1 01 1 061 > > 73 11.8.7 57 0-8-6 076
2 2 35 2 02 2 062 < @ 74 86 15 8-4 100
3 3 36 3 03 3 . 063 2 \ 75 12-8-5 75 0-8-2 134
4 4 37 4 04 4 064 a ~{circumflex) 76 1286 76 11.8.7 136
5 5 40 5 05 5 065 | ;(semicolon) | :(semicolon) 77 12-8-7 77 1186 073

tTwelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line
mark is converted to external BCD 1632.
t1in installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch).
The % graphic and related card codes do not exist and translations from ASCII/EBCDIC % yield a blank (55g).
tttThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

"UTILITY DIAGNOSTIC MESSAGES

Each of the utilities described in this manual generates a
set of error and (in some cases) informational messages.
Some of these messages are sent to the output file (error
file), and others are sent to a special fatal error file.

The error messages in this appendix are arranged by
utility type. The tables are:

60471200 F

TABLE

B-1
B-2
B-3
B-4
B-5
B-6

UTILITY

Library Maintenance

Expand

Autolink - Informational messages
Autolink - Fatal errors

Link

Edit

B-1

TABLE B-1. LIBRARY MAINTENANCE UTILITY ERROR MESSAGES

Message Text

Meaning/User Action

AN ATTEMPT WAS MADE TO WRITE TOO MANY PROGRAMS
TO THE NEW LIBRARY FILE

The library file is limited to 425 programs./
Delete nonused programs.

DEL DIRECTIVE DOES NOT HAVE A MATCH ON THE
OLD LIBRARY FILE

The specified program (or the first program of a
group) does not have a match on the old library
file./ Check the object code module names against
the directive parameter names.

1/0 ERROR - READING INTERMEDIATE LIBRARY FILE

The intermediate file could not be read./ Try
again. 1If error persists, call a system analyst.

I/0 ERROR - READING LGO FILE

The LGO file is not in the proper format, or has
been damaged./ Generate a new LGO file.

The old library file is not in the proper format,

I1/0 ERROR - READING OLD LIBRARY FILE
or has been damaged. The old library cannot be
used.

1/0 ERROR - WRITING INTERMEDIATE LIBRARY FILE The intermediate library file could not be

written. The space for temporary files was
exceeded, or there was an error in writing the
file./ Return unused local files and try again;
if second attempt fails, allocate more space for
temporary files.

I/0 ERROR - WRITING NEW LIBRARY FILE

The new library file could not be written. The
file may be write-protected, or it could exceed
the user's allocated file size, or there may be an
error in writing the file./ Try again after
checking protection of file. If error persists,
call a system analyst.

NAME FIELD ON DIRECTIVE CARD IS NOT
RECOGNIZABLE

Program names consist of one to six letters,
numbers, or $./ Check the directive name.
Correct as appropriate.

NEW LIBRARY ENTRY POINT TABLE OVERFLOW

The total number of entry points plus programs
(times 2) cannot exceed 4000./ Rewrite the
programs to have fewer entry points or larger
programs .

NO END-OF-TABLE WORD FOR ENTRY POINT TABLE
RECORD ON LIBRARY FILE

The old library file is not in the proper format or
has been damaged. The old library cannot be used.

NO XFR BLOCK FOR PROGRAM ON RANDOM LGO FILE

The LGO file is not in the proper format./ Try
again., If error persists, call a system analyst.

NON-ASCII (NOT $20-$5F) CHARACTER IN PROGRAM
NAME OR ENTRY POINT ON THE LGO FILE

The LGO file is not in the proper format, or has
been damaged./ Correct any format error; then try
again.

PUT OR SUP DIRECTIVE DOES NOT HAVE A MATCH
ON 1LGO FILE

The specified program (or programs) does not have a
match on the LGO file./ Check the object code
module names against the directive parameter names.

PUT OR SUP DIRECTIVE SECOND NAME DOES NOT HAVE
A MATCH ON LGO FILE

B-2

The name of the second program (mod2) in a modl-
mod2 parameter does not exist on the LGO file or
it preceeds the first program name (modl)./ Check
the order of modules in the LGO file. Use a
different range of modules, or reverse the names
in the parameter.

60471200 F

TABLE B-1. LIBRARY MAINTENANCE UTILITY ERROR MESSAGES (Contd)

Message Text

Meaning/User Action

PUT OR SUP SECOND NAME DOES NOT HAVE A MATCH
ON OLD LIBRARY FILE

The name of the second program (mod2)

in a modl-mod2 parameter does not exist on the old
library file or it preceeds the first program name
(modl)./ Check the order of modules in the
library. Use a different range of modules, or
reverse the names in the parameter.

TOO MANY PROGRAMS ON LGO FILE

The LGO file is limited to 425 programs./ Delete
nonused programs.

UNRECOGNIZABLE DIRECTIVE

The directive name is not *ALL, *PUT, *SUP, *DEL,
or *LST./ Check the directives file, and enter a
proper directive name.

TABLE B-2. EXPAND UTLILITY ERROR MESSAGES

Message Text

Meaning/User Action

EMPTY MACRO CALL FILE

An empty file was passed to Expand from the build
procedures./ Notify a NOS system analyst,

ERROR IN ASSOCIATED VARIANT DEFINITION

/The user should correct the error in the USERBPS
file, and rerun the build step.

ERROR IN MACRO CALL FILE

An erroneous file was passed to Expand from the build
procedures./ Notify a NOS system analyst.

ERROR IN MACRO TEXT FILE

Probably a section of expected text was not found in
the file. The file is generated from the EXPTEXT deck
on the CCP program library./ Notify a NOS system
analyst.

ERROR IN USERBPS FILE

/The user should correct the error in the USERBPS file
and rerun the build step.

INCOMPLETE SYMBOL

An end-of-line was found before the delimiter in the
USERBPS./ The user should correct the error in the
USERBPS file, and rerun the build step.

LINE TOO LONG AFTER SUBSTITUTION

When the symbol was substituted in the text line, an
overflow condition occurred. The file is generated
from the EXPTEXT deck on the CCP program library./
Notify a NOS system analyst.

NIL SYMBOL

No characters were found before the delimiter in the
USERBPS./ The user should correct the error in the
USERBPS file, and rerun the build step.

SYMBOL TOO BIG

The character string had more than ten characters in
the USERBPS./ The user should correct the error in
the USERBPS file, and rerun the build step.

60471200 F

B-3

TABLE B-3. AUTOLINK INFORMATIVE MESSAGES

NOTE:

Some Autolink messages are prefaced with one of two messages:
#*kdkk ERROR **¥ix
Fekkdk WARNING *isik

Message Meaning/Action to be Taken
AUTOLINK COMPLETED Informative message only./ No action is required.
AUTOLINK OUTPUT DIRECTIVES LIST Informative message only. This message is followed by the
directives which serve as input to MPLINK./ No action is
required.
DELETED TOPHAT MODULE LIST The listed modules had a tophat program that was deleted,

since the modules were located in main memory rather than
in paged memory./ No action; informative only.

EXCEEDS THE 18 COLUMN REPORT LIMITATION A BUFSP report has columns for all. applications to be
included in the build report, and for all the memory sizes
to be tested. A maximum of 18 columns can be fit on the
output report page. If the combination of APPL directives
and BUFSPSIZE sizes exceeds 18, this message is
generated./ Reduce the number of applications in the
build, or reduce the number of memory sizes for the report.

INVALID ADDRESS SPECIFICATION The address parameter in a MOD or RESERVE directive is not
valid./ Use a legal address: addresses should be within
memory size, and be expressed as a four-digit hexadecimal
value starting with a dollar sign ($).

INVALID (C/NC/ADDRESS) ATTRIBUTE While parsing an APPL directive, Autolink found an invalid
address parameter, or the right parenthesis was missing./
Correct the invalid parameter.

INVALID LIST FILE The list file is not named correctly, the first character
of the name is not a letter, or .the file is missing./
Correct the naming error, or make the file available.

INVAID MOD TERMINATOR In a MOD directive, the terminator should be a comma
except after modname (an opening parenthesis), or after
the last appl value (a closing parenthesis)./ Correct the
error.

INVALID OR MISSING LGO FILE The load-and-go file is not named correctly, the first
character of the name is not a letter, or the file is
missing./ Correct the naming error, or make the file
available.

INVALID P= PARAMETER In the MOD directive, the P parameter must take the value
of P, NP, F, or R./ Correct the error,

INVALID SECONDARY BINARY FILE The secondary binary file is not named correctly, the
first character of the name is not a letter, or the file
is missing./ Correct the naming error or make the file

available.

MORE THAN 60 APPLICATIONS DEFINED No more than 60 APPL directives are allowed./ Eliminate
the unnecessary APPL directives.

MORE THAN 60 DEF PARAMETERS The combined number of DEF and DEFBASE directives exceeds
60./ Eliminate the unnecessary directives.

MORE THAN 64 BUFSPSIZE PARAMETERS No more than 64 parameters can be associated with the
BUFSPSIZE directive./ Eliminate the unnecessary
parameters.

B-4 60471200 F

TABLE B-3. AUTOLINK INFORMATIVE MESSAGES (Contd)

Message

Meaning/Action to be Taken

MULTIPLE CORESIZE DIRECTIVES

ENTERED Only one CORESIZE directive can be entered with an input
directives file./ Select the correct CORESIZE directive
for the file, and eliminate the others.

NO APPLICATIONS GIVEN FOR THESE MODS: The list names the object code modules which have no

corresponding application./ Correct the error.

NO MOD DIRECTIVES FOR THESE OBJECT PGMS: The listed object code programs were found on the input

object code file, but were not named in a MOD directive./
Check the names, and add MOD (and other) directives if
these modules should be a part of the variant build.

NON-NUMERIC (HEX) DIGIT

A character is not recognized as a legitimate hexadecimal
digit in one of the following directives: BUFSPSIZE,
CORESIZE, PAGEREG, PAGESIZES, or RESERVE./ Correct the
error and reenter the directive file,

PAGE OVERFLOW FORCED BY USER

The F parameter in the MOD directive forces an application
length that requires more space than is allocated to the
page./ Change F modules so that fewer are forced to the
same page as their applications.

REPORTS REQUESTED BUT NO LIST FILE GIVEN The output file for reports was not specified in the

program name-call statement./ Correct the name-call
statement to specify an output file for the reports.

UNDEFINED APPLICATION NAME

The appl name specified in the APPL parameter of the MOD
directive was not specified in any APPL directive./ Use a
correct APPL parameter, or enter the correct APPL
directive.

TABLE B-4. AUTOLINK FATAL ERROR MESSAGES

NOTE:

Fatal error messages are prefaced with the message
EXECUTION TERMINATED DUE TO ERRORS
dekdededeh i ki FATAL ERRORS*iidkkiickik

Message

Meaning/Action to be Taken

CORSIZE GREATER THAN 128

Autolink detected a value greater than 128 in a
CORESIZE or BUFSPSIZE directive./ Correct the invalid
memory size parameter.

EOF ENCOUNTERED, CONTINUATION EXPECTED Additional MOD parameters were expected (APPL is

required; TH is required if P=P). Instead, an EOF was
detected in the directive./ Add the required
parameter, or parameters, to the directive.

INVALID DIRECTIVE TERMINATOR

In a MOD directive, a comma or blank followed an
application name, or a nonblank character followed the
right parenthesis terminator./ Correct the error, and
reenter the directive file.

INVALID INPUT DIRECTIVE

60471200 F

Format of input directive is not valid./ Correct the
input directive, and reenter the directive file.

TABLE B-4. AUTOLINK FATAL ERROR MESSAGES (Contd)

Message

Meaning/Action to be Taken

INVALID MOD NAME

While parsing a MOD directive, Autolink could not parse
the modname parameter. A modname consists of six (or
more) characters starting with a letter./ Correct the
error.

INVALID MOD SUBPARAMETER

In one of the parameters in a MOD directive, the
parameter name is not correct (must be P, ADDR, FILL,
TH, or APPL), or the = is missing, or a value is
illegal./ Correct the error.

INVALID OR MISSING INPUT DIRECTIVES FILE

The input directives file is not named correctly, the
first character of the name is not a letter, or the
file is missing./ Correct the naming error, or make
the file available.

INVALID OUTPUT DIRECTIVES FILE

The output directives file is not named correctly, the
first character of the name is not a letter, or the
file is missing./ Correct the naming error, or make
the file available.

INVALID REPORT TYPE REQUEST

An invalid report name was used in the RPT directive./
Use a valid name (BUFSP, DIR, MAP, or INFO).

INVALID RESERVE ADDRESS

The beginning and ending reserve addresses should be
separated by a comma./ Correct the error.

MAIN MEMORY EXCEEDED

The variant requires more then 64K words of main
memory, or addresses are assigned which prevent the
variant from being located within main memory./ Check
applications that have preassigned addresses. Delete
applications as necessary.

MODULE=xxxxx OVERLAPS ANOTHER MODULE
or
MODULE OVERLAP ERROR

When locating modules, Autolink detected that
addressed module space overlapped into nonaddressed
module space./ Adjust the lowest module address.

MORE THAN 32 PAGE SIZES

More than 32 parameters were used in one PAGESIZES
directive./ Use only one value per directive.

NO MODS DEFINED FOR THESE APPLICATIONS

This messages lists the APPL directives which have no
MOD directives naming them in an APPL parameter./
Delete the APPL directives, or add MOD directives with
these applications specified.

NO OBJECT TEXT FOR THESE MOD DIRECTIVES:
or
NO OBJECT TEXT FOR THESE REQUIRED MODS:

This message lists modules which should have been
present in the input object code file because they
were specified by MOD statements./ Remove the MOD
directives or include the object code for the modules
in the input object code file.

NON-MOD DIRECTIVE FOLLOWS MOD DIRECTIVE

At this stage in the input directives file, there
should be only MOD directives; all other directives
should have occurred earlier in the file./ If the
directive is valid, place it before the MOD directives.

PAGE REGISTER GREATER THAN 31

The page register parameter value in a PAGEREG
directive is greater than 31./ Change the parameter to
a legal value (range 0 through 31).

PAGE SIZE GREATER THAN 64

The pagesize parameter in a PAGESIZES directive is
greater than 64./ Change the parameter to a legal
value (2K, 4K, 8K, or 16K).

60471200 F

TABLE B-4. AUTOLINK FATAL ERROR MESSAGES (Contd)

Message) Meaning/Action to be Taken

Fkkkickk*WHILE LOADING FILLER MODULES Either more modules are being loaded than are
nnn MODULES REMAIN UNLOADED specififed by the MOD directive (index J is greater
XXXXXX than the module counter), or more main memory is
. needed (next address is greater than maximum address).
. Names of the modules are given; nnn is a decimal
. number; hhhhh addresses are given in hexadecimal./
XXXXXX Correct the problem by retrying. If the build
INDEX J = iiii MODCNTR = iiii attempt still fails, contact a systems analyst.
NEXTADR = hhhhh MAXADDR = hhhhh ’

TABLE B-5. MPLINK ERROR MESSAGES

Message Meaning/User Action

*DAT AND GLOBL$ CONFLICT MPLINK encountered both a *DAT directive and an object code
module called GLOBL$. The assigned GLOBL$ area exceeds the
area assigned by the *DAT directive./ The user can remove the
*DAT directive from the directives file, or he can increase the
area assigned by the directive.

*RL FORCES MOD BELOW ADDR 0 The *RL directive causes MPLINK to locate some part of a module
below the start of main memory./ The user should change the
*RL, directives.

ADDRESS TABLE OVERFLOW The combined number of addresses specified in all the
directives exceeds the maximum number permitted./ The operator
should revise the directives, perhaps using directives with a
range of items in the parameters such as *L,mod1l-mod2,addr,
rather than individual linking or reverse linking directives.
This can require more than one library building operation, or a
rearrangement of modules on the input object code file.

ASSIGNEMENT OPERATOR EXPECTED The expression evalauator expected the := operator in the *VE
directive but did not find one./ The users should correct the
directive. ’

BAD LGO OR NEWLIB FILE Either the input object code or the NEWLIB file is improperly
. formatted. An improper file may have been attached./ If this
is not the case, the user may need to generate another input
object code or NEWLIB file.

COMMA EXPECTED The expression evaluator encountered a directive with fewer

: ' required parameters than expected./ The user should check the
expression to assure that all the required parameters are
present, and are separated from the previous parameter or
directive name by a comma.

COMMON AREA EXCEEDED MPLINK found a blank common specification in an object code
module that exceeded the area allocated by the *COM
directive./ The user should increase the size of the blank
common area assigned by the *COM directive.

CURRENT LOWER LIMIT EXCEEDED During linking caused by a *RL directive, MPLINK attempted to
use a memory location below the word specified by the *LL
directive./ The user should change the *LL boundary, or insert
other directives to relocate the module (or group of modules)
that crossed the boundary. -

60471200 F B-7

TABLE B-5. MPLINK ERROR MESSAGES (Contd)

Message

Meaning/User Action

CURRENT UPPER LIMIT EXCEEDED

During a normal loading caused by a *L directive, MPLINK
attempted to use a memory location above that specified by the
*UL directive./ The user should change the *UL boundary, or
insert other directives to relocate the module (or group of
modules) that crossed the boundary.

DATA AREA EXCEEDED

MPLINK found a named, common specification in an object code
module that exceeded the area allocated by the *DAT
directive./ The user should increase the size of the common
area assigned by the *DAT directive, or decrease the number of
applications used.

DIRECTIVE TABLE OVERFLOW

MPLINK encountered too many directives in the input directives
file./ The user should comsolidate directives (for instance,
by using the directives with a range-type parameter such as
mod 1-mod 2) .

DUPLICATE ENTRY POINT

The entry point or module name (or at least the first six
characters of it) have been used in a previous entry point or
module name./ The user should rename one of the two
expressions to obtain a unique, six-character name.

DUPLICATE LOADER MODULE

MPLINK found at least two modules with the name LOADER./ The
user should eliminate duplicate LOADER modules; he should
retain only that module to be used at the head of the load file.

ENTRY POINT TABLE OVERFLOW

The combined number of entry point names, module names, and
synonyms exceeded the entry—point table capacity./ The user
could rewrite his programs to consolidate modules, or to use
fewer *SYN directives.

EXPRESSION TABLE OVERFLOW

The number of expressions appearing in the *VE directives
exceeds the allowable maximum./ The user should use fewer *VE
directives, and revise the input modules accordingly.

EXPRESSON VAL EXCEEDS $3FFF

The value encountered in a *VE directive is too large (value
range is O to $3FFF)./ The user should change the directive.

EXT IN EXPR NOT ABSOLUTIZED

An entry-point name (naml or nam2) appearing in a *VE directive
has not been previously absolutized./ The user should alter
the *VE expression, or the order in which directives are added,
so that the name is absolutized by the time MPLINK encounters
the *VE directive.

EXPRESSION OPERAND STACK OVERFLOW

The expression evaluator found too many operands during its
processing./ The user should restate the expression with
additional, nested parenthesis groupings.

IDENTIFIER EXPECTED

A valid name is expected in a *ENT, *OVLY, or *SYN expression,
and it was not supplied./ The user should insert a valid name
(a letter followed by a string of letters and/or digits) at the
appropriate place in the directive.

ILLEGAL DIRECTIVE

The keyword that names the directive is incorrect./ The user
should reenter the directive with the correct keyword.

ILLEGAL EOF ENCOUNTERED

A temporary MPLINK work file encountered an unexpected
end-of-file. This is an internal error./ Rerun MPLINK.

ILLEGAL SYMBOL

The expression evaluator found a symbol it could not
interpret./ The user should check the directive for symbols
that are not in the 63 or 64-character display code set (as
appropriate).

60471200 F

TABLE B-5. MPLINK ERROR MESSAGES (Contd)

Message

Meaning/User Action

INCORRECT GROUP SPECIFICATION

The module names specified by the modl-mod2 parameter in a *L
or *RI expression are not correct; that is, modl, mod2, or both
are incorrectly specified. The user should reenter the
directive with the correct module names as they appear on the
input object code or NEWLIB files. Alternatively, an incorrect
module name on those files should be changed.

INVALID ADDRESS (COMPONENT)

A directive has an invalid addr, or some component of an addr
is in error. The user should correct the address and reenter
the directive.

LOGICAL ADDRESS EXCEEDS $FFFF

An object code module is longer in 64K words and cannot be
fitted in the NPU./ The module should be divided into smaller
modules, or rewritten to reduce the number of words.

MAXIMUM GROUP SIZE EXCEEDED

In a range-type parameter (modl-mod2), the number of modules,
or the number of words in all of the modules, exceeds MPLINK's
ability to process the group./ The user should split the range
parameter between two or more directives, each with a smaller
mod 1-mod2 size.

MEMORY OVERFLOW

MPLINK assigned memory locations that do not exist in the

NPU./ The user should check the memory size assigned by the
*COR directive. If it is correct, the user can try reassigning
the link start locations. It is possible that there is not
enough memory for all the planned applications. The user could
remove some applications; alternatively, additional memory
should be purchased.

MISSING LEFT OR RIGHT PAREN

The expression evaluator found one of two errors: a left
parenthesis not followed by a right parenthesis, or a right
parenthesis that was not preceded by a left parenthesis./ In
either case, the user should modify the expression to include
the missing parenthesis, or to delete the unwanted parenthesis.

MOD ON LINK DIR NOT FOUND

The module specified by the mod parameter in a *L or *RL
directive could not be found on the input object code or
library file./ The user should check the module name and
correctly specify it, or add the missing module to the
appropriate file.

MODULE TOO LARGE

The specified module exceeds the size of MPLINK's external
buffer./ The user should recode the module to compress it, or
divide the module into two or more modules.

OPERAND EXPECTED

The expression evalauator expected an numeric value operand./
The user should revise the statement,

OVERLAY AREA LEN LESS THAN 0

In an OVLY directive, the ending address (addre) parameter is
smaller than the beginning address (addrb) parameter./ The
user should check the limits of the desired overlay size, and
enter the proper limits.

OVERLAY AREA TABLE OVERFLOW

Only ten overlay areas can be declared with *OVLY directives./
The user should rearrange his applications so that no more than
ten of them use overlays.

PERIOD EXPECTED

The expression evaluator expected the directive to be
terminated with a period but found another * instead./ User
should check to assure the directive is properly terminated
with a period.

PLUS, MINUS, OR PERIOD EXPECTED

60471200 F

In a variable directive (*VE), the expression evaluator
expected a plus, a minus, or a period in the exp parameter.
None of these was found./ The user should enter the correct
expression in the directive.

TABLE B-5. MPLINK ERROR MESSAGES (Contd)

Message

Meaning/User Action

SYNONYM TABLE OVERFLOW

Too many *SYN directives were entered./ The user should revise
his programs so he will have to declare fewer of these
name-equating operations.

TOO MANY LOCAL VARIABLES

Too many variables were declared by *VE directives./ The user
should recode to use fewer local variables.

UNDEFINED OR ILLEGAL INDENT

The name of an overlay is being illegally defined, or the
referenced name of an entry point in a *SYN or *ENT directive
is missing./ The user should use a correct overlay identifier
(range AA through ZZ), or should enter the correct entry-point
name on the *SYN or *ENT directive.

UNSATISFIED EXT TABLE OVERFLOW

MPLINK has encountered too many unsatisfied external
references, or forward external references. The user should
rearrange module sequencing to minimize forward references, or
he should delete some of the unsatisfied external references.

TABLE B-6. MPEDIT ERROR MESSAGES

Message Meaning/Programmer Action

(EXPECTED MPEDIT syntax requires that the next element of the statement
be an opening parenthesis.,/ The programmer should revise the
statement. :

) EXPECTED MPEDIT syntax requires that the next element of the statement
be a closing parenthesis./ The programmer should revise the
statement.

[EXPECTED MPEDIT syntax requires that an array statement has the form:
ARRAY size OF x. The array statement lacks the opening
square bracket around the size parameter./ The programmer
should revise the composite statement.

] EXPECTED MPEDIT syntax requires that an array statement has the form:

ARRAY size OF x. The array statement lacks the closing
square bracket around the size parameter./ The programmer
should revise the composite statement.

*%%% QUT OF RANGE

This occurs only in a trace listing. The previous statement
referenced an address that does not exist in the load file./
The programmer should revise the statement.

:= EXPECTED

MPEDIT syntax requires that the next element of the statement
be a defining operand./ The programmer should revise the
statement . >

; EXPECTED

MPEDIT syntax requires that this statement or declaration be
separated from the previous statement or declaration by a
semicolon./ The programmer should revise the statement.

= EXPECTED

MPEDIT syntax requires that the next element of the constant
definition be an equal sign./ The programmer should revise the
statement.

xxxxxx MULTIPLE ENTRY DEFINITION

B-10

A local symbol, array name, or overlay name has been defined
more than once. xxxxxx is the multiply defined name./ The

programmer should redefine one of the names, keeping in mind
that only the first six characters of the name are unique as
far as MPEDIT is concerned.

60471200 F

TABLE B-6. MPEDIT ERROR MESSAGES (Contd)

Message

Meaning/Programmer Action

ARRAY TABLE OVERFLOW

The number of arrays declared in the ARRAY section exceeds the
capacity of MPEDIT./ The programmer show revise his program to
include fewer arrays.

BEGIN EXPECTED

MPEDIT syntax requires that a composite statement begin with
the keyword BEGIN./ The programmer should revise the composite
statement.

COMMA EXPECTED

MPEDIT syntax requires that parameters in /VFD expressions and
array expressions be separated by commas./ The programmer
should revise the statement.

DIMENSION TABLE OVERFLOW

The total number of dimensions declared for all arrays within
the ARRAY section exceeds the capacity of MPEDIT./ The
programmer should revise his programs to include fewer arrays,
or reduce the dimensions in the existing arrays.

DO EXPECTED MPEDIT syntax requires that a FOR - TO statement be followed
with the keyword DO./ The programmer should revise the
statement.

END EXPECTED MPEDIT syntax requires that a composite statement terminate

with the END keyword./ The programmer should revise the
composite statement.

EXPRESSION OPERAND STACK OVERFLOW

The expression evaluator encountered too many operands during
evaluation./ The programmer can usually avoid this problem by
revising the statement with additional, nested parenthetical
groupings.

ILLEGAL ARITHMETIC OPERATOR

The expression evaluator expected one of the five legal
arithmetic operators: +, -, *, DIV, or MOD./ The programmer
should revise the statement.

ILLEGAL END

The keyword END is not permitted where it was found./ The
programmer should eliminate END from this position in the
program.

ILLEGAL KEYWORD

The only keywords recognized by MPEDIT are:

CONST VAR ARRAY
BEGIN END OVERLAY
FOR TO DO

OF CHAR DIV
MOD

The keyword found is not one of these./ The programmer should
change the program to use the desired legal keyword.

ILLEGAL SYMBOL IN EXPRESSION

The expression evaluator encountered a symbol that was not in
the CDC 63 or CDC 64 display code set (as appropriate)./ The
programmer should remove the undefined symbol, and substitute a
symbol defined in the proper character set.

2

ILLEGAL DIMENSION COUNT

The number of index values specified for an array in the
assignment section does not agree with the number of values
declared in the array declaration section./ The programmer
should revise the program to make the index values agree.

MISSING RIGHT PARENTHESIS

60471200 F

The expression evaluator found a left parenthesis that was not
followed by a right parenthesis./ The programmer should modify
the expression to include a right parenthesis, or to delete the
left parenthesis.

B-11

TABLE B-6, MPEDIT ERROR MESSAGES (Contd)

Message ’ Meaning/Programmer Action

NO ASSOCIATED LEFT PARENTHESIS The expression evaluator found a right parenthesis that was not
preceeded by a left parenthesis./ The programmer should modify
the expression to include a left parenthesis, or to delete the
right parenthesis.

NOT A LOCAL VARIABLE The indicated local identifier was not previously specified in
the VAR section./ The programmer should either declare the
variable in the VAR section, or specify an already declared
variable.

OF EXPECTED MPEDIT syntax requires that an array statement has the form:
ARRAY size OF x. The array statement lacks OF following the
array size specification./ The programmer should revise the
composite statement.

OPERAND EXPECTED The expression evaluator expected an numeric value operand./
The programmer should revise the statement,

OUT OF RANGE The array index is not within the range declared for the array
in the ARRAY section./ The programmer should either increase
the declared range, or revise the erroneous statement.

PERIOD EXPECTED The program ends with a period after the final END statement.
None was found./ The programmer should revise the composite
statement.

STUFF TABLE OVERFLOW The number of editing values exceeds the internal capacity of
MPEDIT./ The programmer can present the editing information in
successive runs, recalling MPEDIT for each new section of the
editing operation.

TO EXPECTED MPEDIT syntax requires that a FOR statement be followed with
the keyword TO./ The programmer should revise the composite
statement,

B-12 60471200 F

GLOSSARY AND MNEMONICS - C

Absolute Address (NPU) -
The location of a word in NPU memory measured by
its displacement from word 0.

Application (CCP or CCI) -

A set of modules which are designed to be executed
together to perform a special function. In CCP and
CCl, applications include a HIP, a LIP (CCP only), any
of the standard or user-written TIPs, the base modules,
initialization routines, interactive virtual terminal
common routines (CCP only), on-line diagnostics, the
buffer space, the service module, and the test utilities.

Assignment Section -
The part of the MPEDIT program that contains the
statements which assign values to variables or fields.

Autolink -
A CYBER Cross utility program which generates an
input directives file for the MPLINK utility.

Base -
A set of programs that is used in every CCP or CCI
build.

Blank Common -
A common area used by macroassembler programs.

Buffer Space Report -
An optional autolink output. It reports the amount of
buffer space available as a function of the main
memory size, and the TIPs selected for a build.

Build -
The procedure of converting individual source code
modules into a linked set of object code modules in the
form of a load tape.

Directive -
A utility input statement specifying some utility
operation.

Directives Report -
An autolink report which lists the directives in the file
that is sent to MPLINK.

Dump Memory -
A hexadecimal listing of the memory image load
module file praduced by MPLINK.

Dynamic Variable Area -
An area used by the PASCAL NEW procedure. See the
PASCAL Compiler Reference Manual.

Edit Utility -
The utility (MPEDIT) which allows the user to
initialize values in the memory image load file. The
initialized memory image load file produced by the
Edit utility can be converted into an NPU load file.

Entry Point - i
A labeled statement in a module which other modules
can reference. In some cases, another program can
activate a module at the entry point.

60471200 £

Error Messages -

Messages generated by a utility specifying operations
which the utility could not perform. The failure could
be due to a syntax error, an overflow condition, or
other fault. Error messages are usually sent to the
output file. Error messages are of two types: fatal
errors that halt the utility, and nonfatal errors that
are noted, but allow the utility to continue processing.

Expand -
The build utility that expands variant definitions into
directives for the CCP variant build and load file
generator installation steps.

External Synonyms -
Statements equating module names and entry points
with local names.

Fatal Error File -
An autolink file containing the fatal error message
generated during an autolink processing phase.

Field - :

A sequence of continuous bits consistently used to
record similar information. For CCP and CCI, fields
range from 1 to 16 bits in length, and cannot cross
word boundaries,

Fill Module -
A module that can be assigned to fill holes in main
memory, or (in some cases) to fill a hole on a page.

Forced Page Module -
A module that must reside on the same page as the
paged portion of its application.

Information Report -
An autolink report listing the input directives and
application lengths.

Initialized Load File -
The load file that is generated by MPEDIT. It has the
same format as the MPLINK load file; however,
selected fields and variables have initial values.

Installation Procedures -
The CCP or CCI procedures that generate a load file,
which can be immediately downloaded into an NPU to
form the on-line system of that NPU,

Input Directives File -
A file containing the directives necessary to execute
the autolink, MPLINK, MPEDIT or MPLIB utilities.

Keyword -
A reserved word used by a utility for a specific
operation.

LGO File -
The load-and-go file. The file with this local name
contains relocatable object code modules.

Library -
A group of object code modules, together with an
index for those modules. The old library can be used
an an input to the autolink, MPLINK, MPEDIT and
MPLIB utilities. The MPLIB utility generates a new
library.

Library File -
A file created by MPLIB, The file contains object
code for all modules in the library, plus an index to the
modules.

Library Maintenance -
The function performed by MPLIB utility; that Iis,
generating a new library from a set of object code
modules, or generating a new library from the old
library, together with selected new object code
modules.

Link Utility -
The utility (MPLINK) which links object code modules
into into a memory image load module. MPLINK also
produces a symbaol table file. Both of these files are
used as input for the Edit utility.

Linking -
The process of (1) locating (assigning space) for object
code modules on a memory image load medule file, and
(2) resolving external calls in those modules with entry
points in other load file modules.

Listing File -
A utility output file. In most cases it contains user
requested reports.

Load File -
The host file holding a set of linked, edited,
absolutized object code modules. The file can be
downline-loaded into a specific NPU to form the
on-line system for that NPU. A different load file
(variant) is needed for each NPU to be loaded.

Memory Image Load Module File -
A file produced by the MPLINK utility. The load
module file contains the absolutized code for all
programs to be wused in the CCP or CCI build.
MPLINK's version of this file is not initialized;
MPEDIT initializes the file. A host load file generator
converts the initialized memory image load module
into a load file for CCP or CCIL

Memory Map -
An autolink or MPLINK report showing the main
memory location of every module in the build.

MOD Directive -
An autolink directive which identifies a module to be
included in an application package.

Modname -
The name of a module. Autolink uses the first six
characters of the name.

Module -
(1) An integral part of an application that has a name
and at least one entry point (a module is sometimes
called a routine or a program). Any module can be
selected to be used as part of an NPU build.
(2) See memory image load module file.

MPEDIT -
The editing utility that assigns values to variables in
the memory image load module file generated by
MPLINK.

MPLINK -
The utility that assigns space to modules on a memory
image load module file, and links the modules together
by equating external calls in one module to the
comparable entry point in another module.

Name Call Statement -
The statement that is executed by the host's operating
system to pass control of the computer to the program
(or utility) associated with that statement.

Object Code Input Files -
Input files containing modules in object code format.
Such files are used in all the utilities except the
expand utility.

Object File -
A utility input or output file containing cbject code for
modules.

Output Directives -
An autolink output file containing the MPLINK
directives used to link the system modules during an
MPLINK run.

Overlay -
A set of modules (application) that is not normally
resident in the NPU., When the overlay is to be
executed, it is loaded into a specific overlay area. The
modules which normally use that area cannot be used
until the overlay is ejected.

Overlay Area -
The part of an NPU that can be used to execute
overlay programs.

Package (CCP or CCI) -
A special class of applications that handle terminal,
host or link interfaces; for example, the terminal
interface packages (TIPs).

Page (logical) -
An 8196-word section of CCP or CCI memory. All
memory is paged. Memory up to 65K is executable at
the address given; memory above 65K is imaged at the
page beginning at 2000;¢.

Page (physical) -
A 2K (2048) word section of NPU memory.

Page Addressing -

The method of using an 18-bit address to locate a
module that is assigned to a pageable area of memory.
All modules assigned to the region above 65K are
accessed in page-addressing mode. Some of the area
below 65K is also page-addressed. In particular, in
CCP and CCI, an 8K page starts at address 2000;g.
All modules paged above 65K are imaged at this page.

Page Register -
A register that indexes one of the NPU physical pages.

Pageable Module -
A module that can be located on the application page,
or in main memory if the application's page is full.

Passive MPLINK Directives -
Directives not processed by autolink, but passed
directly to MPLINK in the output directives file.
These are : *COM, *COR, *DAT, *DSTK, *DMP,
*DVAR, *ENT, *LIB, *SYN, and *SYSID.

Program -
A module or a group of modules with related functions.

60471200 F

Report -
One of the reports that is associated with the
Autolink, Link, Edit, or Library Maintenance utility
programs.

Reverse Loaded -
A module that is located in main memory by assigning
the address given to the last word of the module.
Space is then reserved for all other words in the
module down to the first word.

Stack Area -
A reserved area in an NPU memory for use by
PASCAL recursive/reentrant procedures.

Terminal Interface Package (TIP) -
An application that handles the interface between the
NPU and a type of terminal, such as TTY terminals, or
Mode 4 terminals.

Tophat -
Indicates a tophat module. A tophat module is
normally a module that is called by several other
modules. To minimize the code required to locate a

60471200 F

tophat module's entry point, a small auxiliary piece of
code is compiled with the module. This tophat code
sets the page registers when other modules call this
module. If a tophat module is located in a main
memory, this operation is not necessary, so the tophat
auxiliary code is discarded. Otherwise, if a tophat
module is paged, the tophat code is located in main
memory to set the page registers.

User Build Parameters File -
A user file (USERBPS) which contains the CCP variant
load module definitions and the CCP load file
definitions. Expand uses the file to generate Update
directives based on the variant definition.

Variant -

The definition of a real set of hardware and software
for an NPU. The variant for an NPU defines the
memory size, the NPU type (local or remote), the TIPs
to be included in the build, and the maximum number
of lines that can be configured. The variant also
identifies the NPU, the host coupler (if any), and any
trunks used by the NPU.

*ALL

*CB
*COM
*COR

*DAT

*DEL

*DMP

*DSTK
*DVAR

*END

*ENT
>
*L.IB
*LL
*LST
*OVLY

*PUT

*RL

*SUP

*SYN
*SYSID
*UL

*WE

/DMP$
/ENTRY
JESLS$
/LENGTH
INAMS

/PGDISP

C-4

MNEMONICS

Copy all LLGO files to new library - MPLI
directive)

Upper boundary declaration - MPLINK

Define blank common area - MPLINK directive
Define 255x memory size - MPLINK directive
MPLINK

Define labeled common area -

directive
Delete module - MPLIB directive
labeled common MPLINK

Define area -

directive
Define stack area - MPLINK directive
Define stack area - MPLINK directive

End-of-directive-file directive - all build

utilities

Define entry point - MPLINK directive
Link modules - MPLINK directive
Define library file - MPLINK directive
Lower boundary declaration - MPLINK
List the library - MPLIB directive
Define overlay-area directive - MPLINK

Insert/replace module in MPLIB

directive

library -

Reverse-linking directive - MPLINK

Suppresses copying programs from the LGO
to the library - MPLIB

Define external synonym - MPLINK directive
System identification - MPLINK directive
Upper limit directive - MPLINK

Directive which assigns a value to a local
variable - MPLINK

List the load tape - MPEDIT statement
Address entry function - MPEDIT statement
List SYMTAB - MPEDIT statement

Field length function - MPEDIT statement

Generate the NPU load tape - MPEDIT
statement
Page displacement function - MPLINK/

MPEDIT statement

/PGNUM

[PGSET

/START

/TRACE
/VFD
ABSOLMP
ARRAY
BEGIN
BIP

BUF SIZE
BUF SP
ccp
CHAR
CONST
CORESIZE
CSET

D

DEF

DEFBASE

DIR
DIv

DO

END

FOR

GLOBL$
HIP
INFO
INPUT
LFG
LGO
LIP

Page resister number function -

MPLINK/MPEDIT statement

Page register set function - MPLINK/MPEDIT
statement

Field state location function - MPEDIT

statement

Trace of edit operations - MPEDIT statement
Variable field definition - MPEDIT statement
Absolute memory image load file

Array declaration command - MPEDIT

Begin statement - MPEDIT

Block interface package

Buffer space report directive - Autolink
Buffer space report - Autelink
Communications Control Program

Character mode, array declaration - MPEDIT
Constant declaration - MPEDIT

NPU memory size directive - Autolink

CDC code set variable

Input file parameter - MPLINK directive
Define applications - Autolink directive
Autolink

Define variant -

directive

applications

Output directives report - Autolink directive
Division operator - MPEDIT

Part of MPEDIT loop directive (FOR x TO y
DO...)

End statement of a composite statement -
MPEDIT

Part of MPEDIT loop directive (FOR x TO y
DO...)

CCP/CCI data base area

Host interface package

Input directives and application lengths report
Default input file

Load file generator - Expand

Load-and-go file

Link interface package

60471200 F

LOADER

MAP
MOD
MOD
MPEDIT
MPLIB
MPLINK
NEWLIB
OF
OUTPUT

OVERLAY

60471200 F

First record on a memory image load module
tape

Main memory map report - Autolink
Module directive - Autolink
Modulus operator - MPEDIT

Edit utility

Library maintenance utility

Link utility

New library file - MPLIB

Part of array declaration - MPEDIT
Default output file

Overlay identifier - MPEDIT

PAGESIZES Page size directive - Autolink

RESERVE
RPT

SVM
SYMTAB

- TIP

TO

USERBPS
VAR
VRD
X.25

Reserve main memory - Autolink directive
Report generator directive - Autolink
Service module

Symbol table file

Terminal interface package

Part of MPEDIT loop directive (FOR x TO y
DO...)

User build parameters file - Expand
Variable declaration - MPEDIT
CCP variant definition - Expand

A TIP

MEMORY IMAGE LOAD MODULE FILE FORMAT

This appendix describes the format of the memory image
load module file. It is an output of either MPLINK or
MPEDIT. The only difference between the two files is the
initialization of certain values. Format of the files is
identical.

MPLINK or MPEDIT builds the load module file from
object code programs and directives. The object code
programs can be on an LGO file or a library file, or, for
MPEDIT, a non-initialized memory image load module file
produced by MPLINK, If the object code programs are on
an input object code file, they have been previously
produced individually by a CYBER Cross macroassembler,
microassembler, or PASCAL compiler. Libraries,
likewise, are composed of object code programs produced
by these CYBER Cross compilers/assemblers. A library
has a directory for locating the modules easily.

Each program on the load module file has an execution
(load) address. This address is either specified, or equated
to zero, by the MPLINK utility. External references from
all programs can be resolved from a program library. The
user can also specify entry-point values (addresses).

FILE FORMAT

Figure D-1 shows the load module file format on the
highest level. On this level, the file consists of an
optional loader record, a partition for NPU-resident
programs, and partitions for each group of overlay
modules (assuming there are any optional overlays). The
resident load partition includes a system header record
followed by a series of record pairs, one pair for each
program in the on-line system. If there are overlay
partitions, each of these has a format similar to that of
the resident partition. The file is terminated with a
trailer record.

OPTIONAL LOADER RECORD

If the LLOADER record exists, it is the first record on the
load module file. This record is included only if an object
text file called LOADER is included in the library or input
object code files used as input by MPLINK. Format of
this header record is arbitrary.

RESIDENT LOAD PARTITION

This partition contains object code for every module in
the on-line NPU system. It does not contain any code for
overlay modules.

The partition has a system header, followed by a record
pair for every on-line module. The modules occur in the
same order in which they occur in NPU memory.

A record pair for a module consists of a module header

record followed by a record containing the object code for
the module.

60471200 F

System Header Record

Figure D-2 shows the format of the system header
record. This record is generated as the direct result of
the MPLINK directive: *SYSID,name(,text).

In this 30-word record the fields are:

¢ RECORD COUNT (word 1) is the number of
records in the resident partition. The number of
modules in this partition is:

Number(modules) = (records - 1)/2

e HEADER TYPE (word 2) is a system header (type
=0).

e MEMORY ADDRESS (words 2 and 3) is not used.

e NAME (words 4, 5, and 6) is the six-character
ASCII identifier specified by the name parameter
in the *SYSID directive.

o TEXT (words 7 through 30) is specified by the text
parameter in the *SYSID directive. Character
code is ASCII. Any characters not used are filled
with zeros.

Module Header Record

Figure D-2 shows the format of the module header
record. This record is generated by MPLINK at the time
modules are linked as the result of a *I_ or *RL directive.

In this 30-word record the fields are:

e WORD COUNT (word 1) is the number of 16-bit
words of object code in the following record.

e HEADER TYPE (word 2) is a module header (type
= 4).

s MEMORY ADDRESS (words 2 and 3) designates
the address of the module's first word. It has
three parts (see page addressing description in the
MPLINK section):

- PAGE NUMBER is the 7-bit logical page
number.

- PAGE REGISTER is the 5-bit page register ID.

- PAGE DISPLACEMENT is the 11-bit
displacement (in words) to the first word of
the module on the physical page.

e NAME (words 4, 5, and 6) is a six-character ASCII
identifier. It has one of the following formats:

- A PASCAL common area name: MAIN$ or
GLOBLS$

FILE FORMAT

LOADER RECORD
(OPTIONAL)

END OF RECORD

'y

RESIDENT LOAD
PARTITION

SYSTEM HEADER
RECORD

RESIDENT
LOAD LOAD
PARTITION PARTITION

END OF RECORD

OVERLAY AREA
LOAD PARTITION

—_——
| OVERLAY AREA
OVERLAY I HEADER RECORD
AREA 1 |
LOAD | END OF RECORD
PARTITION i SVERLAY 1
| HEADER RECORD
END OF RECORD |
| END OF RECORD
[
° : OVERLAY
° | IMAGE BLOCK
° . {OVERLAY 1)
END OF RECORD
OVERLAY
AREA m Y
LOAD °
PARTITION °
[]
END OF RECORD OVERLAY m

HEADER RECORD

LOAD PARTITION

MODULE 1
HEADER RECORD

END OF RECORD

MODULE 1
MEMORY IMAGE
RECORD

END OF RECORD

MODULE 2
HEADER RECORD

END OF RECORD

MODULE 2
MEMORY IMAGE
RECORD

END OF RECORD

MODULE n
HEADER RECORD

TRAILER
RECORD

END OF FILE

END OF RECORD

MODULE n
MEMORY IMAGE
RECORD

M-1085

Figure D-1. Format of an MPLINK or MPEDIT Output Load File

- The name associated with a PASCAL-

compiled program

- The name specified on the NAM card of a
macroassembled program

- The name of a microassembled program

e COMMENTS (words 7 through 30) is blank if this a
PASCAL-compiled madule. It is the comment (in
ASCIl characters) on the NAM card if this is a
macroassembled module.

Resident Module Record

This record consists of 16-bit words of object code.

OVERLAY LOAD PARTITION

There can be one to ten overlay partitions. Each partition
is separately identified, and occurs in the same order that
the overlay directives were entered in MPLINK,

An overlay partition contains object code for every
module in that overlay.

The partition has an overlay header, followed by a record
pair for every module in the overlay. The modules occur
in the same order in which they occur in NPU memory
when the overlay is moved into its execution area.

A record pair for an overlay module consists of an overlay
module header record followed by a record containing the
object code for the overlay module.

Overlay Area Header Record

Figure D-2 shows the format of the overlay area header
record. This record is generated as the direct result of
the MPLINK *OVLY directive.

In this 30-word record the fields are:
e RECORD COUNT (word 1) is the number of
records in this overlay partition. The number of
overlay modules in this partition is:

Number{modules) = (records - 1)/2

e HEADER TYPE (word 2) is an overlay area header
(type = 1).

60471200 F

BIT

WORD 1514 1110 76 0

1 WORD OR RECORD COUNT

2 o] HEADER Z nomor g | | Pace FiELDs
COLLECTIVELY
ARE THE

3 :{ngSTER PD?;!;’ELACEMENT MEMORY
ADDRESS

4 CHAR 1 CHAR 2

5 CHAR 3\ ame CHAR 4

6 CHAR § CHAR 6

7 CHAR 1

[]

. TEXT, COMMENTS,

. OR ZEROS

30 CHAR 48

HEADER TYPE (3 BITS)

0 - SYSTEM (RESIDENT PARTITION}
1 - OVERLAY PARTITION

2 - OVERLAY MODULE

4 RESIDENT MODULE

NOTE: THE LENGTH OF THE WORD IS ASSUMED TO BE

16-BITS (THE WORD SIZE OF THE TARGET NPU}
RATHER THAN 60 BITS (THE WORD SIZE OF THE
HOST COMPUTER GENERATING THE LOAD MODULE

FILE). M-1088

Figure D-2. Format of Load File Header Record

MEMORY ADDRESS (words 2 and 3) specifies the
first word of the overlay area. It has three parts:

- PAGE NUMBER is the 7-bit logical page
number.

- PAGE REGISTER is the 5-bit page register ID.

- PAGE DISPLACEMENT is the 1l-bit
displacement (in words) to the first word of
the module on the physical page.

NAME (words 4, 5, and 6) is the six-character
ASCII identifier specified by the name parameter
in the *SYSID directive.

TEXT (words 7 through 30) is not used. Characters
are filled with zeros.

Overlay Module Header Record

Figure D-2 shows the format of an overlay module header
record. This record is generated by MPLINK at the time
modules are linked as the result of a *L or *RL directive
following an overlay declaration.

In this 30-word record the fields are:

WORD 15 10 6 0
1 |o o
7] NUMBER TRANSFER
3 | PAGE PAGE DISPLACEMENT ADDRESS

REGISTER

s % PAGE
NUMBER STACK
L ADDRESS
(BEGIN)
5 | peqisTer | PAGE DISPLACEMENT

PAGE
6 NUMBER - STACK

Lz ADDRESS
(END)
7 | RecisTer | PAGE DISPLACEMENT
/ PAGE
8 NUMBER DYNAMIC
VARIABLE

PAGE AREA (BEGIN
9 REGISTER PAGE DISPLACEMENT ()

PAGE
10 NUMBER

DYNAMIC
VARIABLE
PAGE AREA (END)
n REGISTER PAGE NUMBER
12 0 0
[] L J

BIT 15 IN WORD 2 SET INDICATES THE
TRAILER RECORD. THIS BIT IS O IN A
HEADER RECORD.

NOTE: THE LENGTH OF THE WORD IS ASSUMED TO BE
16-BITS (THE WORD SIZE OF THE TARGET NPU)
RATHER THAN 60 BITS (THE WORD SIZE OF THE
HOST COMPUTER GENERATING THE LOAD MODULE
FiLE). M-1091

Figure D-3. Format of Load File Trailer Record

MEMORY ADDRESS (words 2 and 3) specifies the
address of the overlay module's first word when it
is in NPU memory. The address has three parts:

- PAGE NUMBER is the 7-bit logical page
number.

- PAGE REGISTER is the 5-bit page register ID.

- PAGE DISPLACEMENT is the 1l-bit
displacement (in words) to the first word of
the module on the physical page.

NAME (words 4, 5, and 6) is a six-character ASCII
identifier. It is the name associated with a
PASCAL -compiled program.

COMMENTS (words 7 through 30) is blank. The
characters are filled with zeros.

e WORD COUNT (word 1) is the number of 16-bit

words of object code in the following record.

e HEADER TYPE (word 2) is an overlay module

header (type = 2).

60471200 F

Overlay Module Record

This record consists of 16-bit words of object code.

TRAILER RECORD

The format of the trailer record is shown in figure D-3.

The use of the words is described on that figure.

OPTIONAL MEMORY IMAGE LOAD MODULE FILE FORMAT

The optional memory image load file for an NPU consists
of a single record. The file is generated by the
pseudoconstant /NAM$ in the MPEDIT utility.

The record begins with a prefix and a header as shown in
figure E-1. The data within the record is segmented.
Each segment is preceded by the first word address (FWA)
for which it is intended. Each segment is also preceded by
a length field. The length field indicates the number of
16-bit words in the data segment. The length can never
exceed 120 16-bit words.

The prefix is shown in figure E-2. It contains information
describing the creation of the record. Except for the first
60-bit word and the binary zero fill in the second 60-bit
word, all information in the prefix is in display code, with
blank fill, so that it can be printed. The prefix contains
exactly 15 60-bit words.

The header is one 60-bit word. It contains the record
name in display code, in bit positions 59 through 42. The
bit pattern of the remainder of the word is shown in figure
E-3.

The first word address and the length field formats are
shown in figure E-4 and E-5.

The data segment format is shown in figure E-6.

WORD 59 0
1 [v l
< PREFIX
15
16 HEADER
17 FWA DATA SEGMENT 1

LENGTH OF DATA SEGMENT 1

DATA SEGMENT 1

FWA DATA SEGMENT 2

LENGTH OF DATA SEGMENT 2

DATA SEGMENT 2

. 1

FWA DATA SEGMENT n

LENGTH OF DATA SEGMENT n

DATA SEGMENT n

M-1092

Figure E-1. Optional Load Module Record Format

60471200 F

E

59 47 41 35 29 23 17 0
1| 77008 | 00168 l 0
RECORD
2 NAME 0
3 DATE
4 TIME
5 OPERATING SYSTEM NAME I OPER. SYS. VERS.
6 LANGUAGE PROCESSOR NAME |LANG. PROC. VER.
7 | LANG. PROC. MOD. LEVEL l BLANK FILL
8 BLANK FILL
9 LANGUAGE PROCESSOR INFORMATION
10 OR
— BLANK FILL —
"
12
13 USER COMMENTS
14 OR
BLANK FILL —
15
M-1093
Figure E-2. Optional Memory Image Record
Prefix Format
59 41 35 23 0
RECORD NAME
(DISPLAY coDE) | © 77778 0
M-1094
Figure E-3. Optional Load Module Record
Header Format
59 4746 25 23 19 11 7 0
0 1 o Al O B C

A = HIGH-ORDER 2 BITS OF FIRST WORD ADDRESS (FWA)

MIDDLE 8 BITS OF FWA
LOW-ORDER 8 BITS OF FWA

O w
"

Figure E-4. Optional Memory Image Record

First Word Address Format

M-1096

59 7 0

0 LENGTH

LENGTH = NUMBER OF 1GBl:l' WORDS IN DATA SEGMENT
M-1097

Figure E-5. Optional Memory Image Record
Length Format

23 023 0 23 0
WORD 1 | woRD 2 WORD N
\\ -
I ~
| ~<
las 19 11 7 ~ .0
HIGH-ORDER LOW-ORDER
o | EIGHT BITS OF EIGHT BITS OF
16-BIT WORD 16-BIT WORD
ONE WORD OF DATA SEGMENT M-1008

Figure E-6. Optional Load Module Record
Segment Format

60471200 F

RELOCATABLE OBJECT CODE FILE FORMAT

RECORD BLOCK

The object text input to the autolink or link utilities is the
relocatable binary code generated by the CYBER Cross
System = translators: PASCAL compiler or macro-
assembler. The relocatable binary is represented in
record blocks of 960 bits of information: (i.e., sixteen
60-bit words of sixty 16-bit words).

The data portion of the record block is formatted
accordingly:

Word 1 (16-bit words) -
Bits 15 through 8 = module sequence number
Bits 7 through 4 = 5, the 7/9 binary card indicator
Bits 3 through 0 =0

Word 2 = the complement of the length of the data
portion in 16-bit words;

Word 3 to n = the object text block
Word 3 + n + 1 = the checksum

A record block will not exceed one card image, thus the
length of an object text block (words 3 to n, where n is the
length of the data portion, is 57 words or less. The
checksum immediately follows the last data word in the
record block; and if the data portion is less than 57 words,
the record block is padded to fill a complete 80-column
card image.

OBJECT TEXT BLOCK

The object text block, which contains the relocatable
binary information, is headed by a type of block indicator
field in bits 15 through 13 of the first object text word.
The following object text block types are defined:

Type Indicator Description

NAM 001 Name block

RBD 010 Command block sequence
BZS 011 Zero storage block

ENT 100 Entry point block

EXT 101 External name block
ENF 000 Entry field block

EXF 111 External field block

XFR 110 Transfer address block

The remainder of this first word contains a constant of
bits 6 and 4 set equal 1, and all other bits set equal 0.

A module's object text begins with a NAM block and
terminates with an XFR block. The ENT and EXF blocks
follow the RBD blocks. The RBD, BZS, ENT, and ENF
blocks may come in any order.

60471200 F

The following is the format for the eight block types.
Note that the word positions indicated are relative to the
beginning of an object text block.

NAM BLOCK

The NAM block contains a word count for common and
data storage, the module length, and the name of the
program. See figure F-1,

RBD BLOCK

An RBD block contains a portion of the actual command
sequence data of the module. See figure F-2. Words 2
through 57 contain the relocation bytes and words for the
command sequence input. Each relocation byte is a 4-bit
indicator that identifies a word of the command sequence
input as an absolute 15-bit address, or as a 15-bit address
relative to some relocation base. The relocation base for
a word is determined by the particular combination of bit
settings within the relocation byte.

The following are the relocation bytes in RBD blocks:

0000 Absolute (no relocation)

0001 Positive program relocation
0101 Negative program relocation
0010 Positive common storage relocation
0110 Negative common storage relocation
0011 Positive data storage relocation
0111 Negative data storage relocation

15 11 7 3 0

140 0 1t 0jO0 0 0 OO0 1 O 1jl0o0O0O

2 NUMBER OF WORDS IN
COMMON STORAGE BLOCK >
DATA PORTION
3 NUMBER OF WORDS IN 0

DATA STORAGE BLOCK

4 PROGRAM LENGTH

5 CHARACTER 1 CHARACTER 2

6 CHARACTER 3 CHARACTER 4 PROGRAM NAME

7 CHARACTER 5 CHARACTER 6

8
. NAM STATEMENT COMMENTS
31
32
’ NOT USED .
57 M-1099

Figure F-1. NAM Block Image

15 11 7 3 0
1] o100 0000 0101 Joooo
2 RO R1 R2 R3
3 wo
4 w1
5 w2
6 w3
7 R4 RS T R6 [R7
8 w4
9 ws
10 we
1 w7

12 R8 l R9 T R10 I R11

52 R40 l R41] R42 i R43
53 W40

54 wa1

55 w42

56 w43

57 NOT USED

M-1100

Figure F-2. RBD Block Image

where Wn is the nth word of the input block (n = 1 to 43);
Rn is the relocation byte of the nth word; WO is the origin
address of the input block; and RO is the relocation byte
for WG.

There is one relocation byte for every word in the
command sequence output, and a maximum of 45 entries
in the RBD block. The first word is the address relative
to the start of the program where the loader begins
storing command sequence data. The relocation byte for
the first word address (storage address) of an RBD block
may be 0000, 0001, or 0011. If the field contains a
number larger than 0011, 0011 is assumed. Zero is the
leading bit for all but the last relocation byte 1 is the
leading bit for the last relocation byte.

BZS BLOCK

A BZS block contains relocation bytes, the starting
address, and block sizes for areas of core to be cleared to
zeros when the program is loaded. See figure F-3.

where A is the starting address; S is the size of the area
reserved by BZS; R is the relocation of the starting
address; An is the starting address of the nth entry; Sn is
the size of the BZS reservation for the nth entry; and Rn
is the relocation byte of the nth entry.

The relocation bytes for a starting address may be 0000,
0001, or 0011.

F-2

15 11 7 3 0

1 0110 0000 0101 0000
2 R1 R2 R3 R4
3 Al
4 S1
5 A2
6 S2
7 A3
8 S3
9 A4
10 S4
11 R5 r R6 l R7 T R8
1 4
Y .
47 R21 I R22 I R23 I R24
48 A21
49 s21
50 A22
51 S22
52 A23
53 B S23
54 A24
55 S24
56 N’OT USED
57 NOT USED
M-1101
Figure F-3. BZS Block Image
ENF BLOCK

Up to 11 entry fields may be specified in an ENF block.
See figure F-4. The end of data in this block is identified
by zeros. If the sign bit of a word containing the entry
point address is 0, the address is program-relocatable. If
the sign bit is 1, the address is absolute and in one's
complement. Data begins in word 2.

where name n is a six-character name of the nth entry in
the block; and En is the entry address of the nth field
name. En is negative (one's complement) if absolute, and
positive if relative. FLDST n is the leftmost bit of the
nth field: 0<FLDST n=<15. FLDLTH n is the length of the
nth field: 1<FLDLTH n<16.

ENT BLOCK
Up to 14 entry point names and addresses may be included

in an ENT block. See figure F-5. The end of data in this
block is identified by zeros. If the sign bit of a word

60471200 F

15 11 7 3 0
00001000001010000

py

CHARACTER 1

N

CHARACTER 2

CHARACTER 3

w

CHARACTER 4

4 CHARACTER 5 CHARACTER 6

FL?ST] FLOLTH 1-1 NOT USED

rFIELD NAME 1

7 CHARACTER 1 CHARACTER 2

8 CHARACTER 3 CHARACTER 4

9 CHARACTER 5 CHARACTER 6

FIELD NAME 2

10 E2

11| FLOST LFLDLTH 21 I NOT USED

52 CHARACTER 1 CHARACTER 2

53 CHARACTER 3 CHARACTER 4

54 CHARACTER 5 CHARACTER 6 FIELD NAME 11

55 E11

FLOST LeLoLTh 1141 NOT USED
M-1102

Figure F-4. ENF Block Image

containing the entry-point address is 0, the address is
program-relocatable. If the sign bit of the word is 1, the
address is absolute and in one's complement. Data begins
in word 2 and extends to word 57.

where name n is a six-character name of the nth entry in
the block. En is the entry-point address of the nth name.
En is negative (one's complement) if absolute, and positive
if program-relocatable.

When processing an ENT block, the loader records the
entry-point name in its table. The entry-point address is
adjusted for relocation (either program or absolute), then
it is recorded in the table of entry points. This procedure
is repeated until the end of input is reached (a name equal
to 0).

EXF BLOCK

Up to 14 external fields and link addresses may be
included in an EXF block. See figure F-6.

where name n is a six-character name of the nth entry in
the block. Ln is the link address of the nth name. Ln is
negative (one's complement) if absolute, and positive if
relative.

60471200 F

15 11 7 "3 0

1 100 0j000O06}0T1TO01 l 0000
2 CHARACTER 1 CHARACTER 2
3 CHARACTER 3 CHARACTER 4

NAME 1
4 CHARACTER 5 CHARACTER 6
5 E1
6 CHARACTER 1 CHARACTER 2
7 CHARACTER 3 CHARACTER 4

NAME 2
8 CHARACTER 5 CHARACTER 6
9 E2

J) 5
T

50 CHARACTER 1 CHARACTER 2
51 CHARACTER 3 CHARACTER 4
52 CHARACTER 5 CHARACTER 6
53 E13
54 CHARACTER 1 CHARACTER 2
55 CHARACTER 3 CHARACTER 4

NAME 14
56 CHARACTER 5 CHARACTER 6
57 E14

M-1103

Figure F-5. ENT Block Image

The end of the EXF block is indicated by zeros. If the
sign bit of the word containing the link address is 0, the
address is program-relocatable. If the sign bit is 1, the
address is absolute and in one's complement. The format
of the data in the block is the same for EXF as for ENT
information. Relative external fields are indicated by
setting the leftmost bit of the word containing character
1 of the field name. An external name which contains no
references within the modules object text is indicated by
a $8000 in the link address.

EXT BLOCK

Up to 14 external names and link addresses may be
included in an EXT block. See figure F-7.

where name n is a six-character name of the nth entry in
the block. Ln is the link address of the nth name. Ln is
negative (one's complement) if absolute, and positive if
relative.

F-3

15 11 7 3 0
1111 0|000001010000
2 CHARACTER 1 CHARACTER 2
3 CHARACTER 3 CHARACTER 4
NAME 1
4 CHARACTER 5 CHARACTER 6
5 L1
6 CHARACTER 1
7 CHARACTER 3
8 CHARACTER 5
9 L2

CHARACTER 2

-

50 CHARACTER

51 CHARACTER 3 CHARACTER 4

NAME 13

52 CHARACTER 5 CHARACTER 6

53 L13

54 CHARACTER

y

CHARACTER 2

55 CHARACTER 3 CHARACTER 4

CHARACTER 2
CHARACTER 4

NAME 2
CHARACTER 6

NAME 14
56 CHARACTER 5 CHARACTER 6
57 L14
M-1104
Figure F-6. EXF Block Image
The end of the EXT block is indicated by zeros. If the

sign bit of the word containing the link address is 0, the
address is program-relocatable. If the sign bit is 1, the
address is absolute and in one's complement. The format
of the data in the block is the same for EXT as for ENT
information. Relative externals are indicated by setting
the leftmost bit of the word containing character 1 of the
name. The end-of-link is indicated by a $7FFF.

XFR BLOCK

The XFR block contains a transfer address (in words 2 to
4), which is six ASCII characters in length, including
trailing spaces. See figure F-8. The transfer address
must be an entry point in the program being loaded, or in
another program loaded during the same load operation.

F-4

15 11 7 3 0
1110 1 0]0 00 0f{0 1 0 1}0000
2 CHARACTER 1 CHARACTER 2
3 CHARACTER 3 CHARACTER 4
NAME 1
4 CHARACTER 5 CHARACTER 6
5 L
6 CHARACTER 1 CHARACTER 2
7 CHARACTER 3 CHARACTER 4
NAME 2
8 CHARACTER 5 CHARACTER 6
9 L2
1 A
50 CHARACTER 1 CHARACTER 2
51 CHARACTER 3 CHARACTER 4
NAME 13
52 CHARACTER 5 CHARACTER 6
53 L13
54 CHARACTER 1 CHARACTER 2
55 CHARACTER 3 CHARACTER 4
NAME 14
56 CHARACTER 5 CHARACTER 6
57 L14
M-1105
Figure F-7. EXT Block Image
15 11 7 3 0
1 1100 l 0 0 0O o1 0 1 0 00O
2 CHARACTER 1 CHARACTER 2
3 CHARACTER 3 CHARACTER 4
4 CHARACTER 5 CHARACTER 6
M-1106
Figure F-8. XFR Block Image
60471200 F

AUTOLINK UTILITIES EXAMPLES G

This appendix gives examples of Autolink files and
messages. The examples dre: :

A partial Autolink directives file (figure G-1)

A list of the applications included in the build

* generated by the directives file of figure G-1

(figure G-2)

An informative message noting the object
programs in the input object code file which did
not have an associated MOD directive (figure G-3)

60471200 F

An informative message noting the relocation
vectors (tophats) that were deleted during the
space assignment of tophat modules (figure G-4)

An informative message giving the buffer area for
the build, both test area and user buffer areas
(figure G-4)

G-2

LINKGEN INPUT DIRECTIVES LIST

L4

%~ AUTO-LINK INPUT DIRFCTIVESs, THIS DECK AND SUPPORTING COMDECKS

#- PROVIDE THE AUTO-LINK PROGRAM WITH INFORMATION NECESSARY TO
*- PRE-PROCESS THE CCP OBJECT FILE (FULL COMPILE OPTION) FOR
#- DETERMINING THE OPTIMUM MEMIRY ALLOCATION,

+

*SYSTD»,RI6,CCP VARIANT LUAD MODULE.

]

#- PAGE DEFINITIONS, 4 PAGE REGISTERS, PAGESIZZ IS 3K.

+

PAGEREG = 4

PAGESIZES = 8

L4

%~ STACK RELATED DIRECTIVES, STACK IN LOCATIONS 40 THRU FC.
+

*ENTSOSTKFW,$0040.

*ENT»ISTKLW» SOCFC,

*ENT»DVARFW» $0000.

*ENT,DVARLWs 30000,

*DSTK, 30040, $09FC.

L4

*- MEMORY RESFRVF AREA, OVERLAY AREA IS LOCATIJONS 170 THRU D9F.
#- LOCATIONS O THRU 16F AL30D R=SERVED FUR MISC PUPPOSES.

R

RESERVE=$(G170, SODOF

RESERVE=20000,%016F

L4

*- MEMORY SIZF IS SeT ACCNRDING TO UPDATF *DEFINE DIRECTIVE.
*- POSSIBLE S3TZES ARE £9K, B1lK, 96K 0P 128K.

+

CPRFSIZZ = Y86

o

*- SET UP SYNONYM NAMES FOR MTDE4 TRANSLATIONS TARLES

¢

*SYNsVIGAASC,VB4AASC,

*SYN)VI4ABTA,VB4ABTA,

P

*- THE FOLLOWING DIRECTIVES SPECIFY THt APPLICATIONS THAT ARE

*- IN THE CCP OBJECT FILE. FOUR OF THE APPLICATIONS ARE CONDITIONALLY

*~- SPECIFIED IN THAT THEY MAY 0OR MAY NOT BE IN TH: O0OBJECT FILE.

*- (1) TESTGEN — NONSTANDARPD USED ONLY BY COC DEVELOPMENT.
- (2) UTJOPIA - NONSTANDARD USED ONLY BY CDC DEVELOPMENT,
*- (3) HLIP - DEPENDS ON PURCHASE OF REMOTE CONCENTRATOR.
*- (4) OLDSYS - DEPENDS OF PURCHASE OF ON-LINE DIAGNOSTICS.
*

#- NOTE- THIS SET JIF DIRECTIVES SPECIFY WHICH APPLICATIONS ARE ON

%- THE OBJECT FILE. THEY DO NOT CONTROL WHICH APPLICATIONS ARF

%- INCLUDED IN THE VARIANT BUILD. THE VARIANT BUILD IS CONTROLLED

*- BY THE DIRECTIVES IN COMDECK ALDEFS.

$
APPL = SVMODULE
APPL = ASYNCEXT
APPL = ASYNC
APPL = MODE4
APPL = HASPTIP
APPL = HIP
APPL = HLIP
APPL = OLODSYS
APPL = IVT
APPL = CONSOL
APPL = BASESYS
APPL = PIBUF2
APPL = Tup
APPL = INITIAL
”

[

[

®

*- GENERATE SYNINYMS FOR THNSE APPLICATIONS THAT ARE NOT INCLUDED

#- [N THIS VARPIANT RUILD.
+
*SYNSPTHIPI,PRILL.
*SYN, PTHIPQ,PBILL.
*SYN, PBDEBUG,PBILL.
*¥SYN,UTOPTA,PBILL.
*SYN,PBBREAKPOI,PBILL.
*¥SYN,PBWRAPSNAP,PBILL.
*#SYN, PB2SNAP,PBILL.

®

®

Figure G-1. Autolink Input Directives File (Partial)

60471200 F

%~ THE FOLLOWING DIRFCTIVES CALL THF SUPPORTING AUTO-LINK COMDECKS,
%= (1) SETUP REPORT DEFINITIONS»

#— (2) DEFINE APPLICATIONS TO INCLUDED IN THIS VARIANT BUILD,

*¥— (3) DEFINE WHICH OUBJECT MODULES BELONG TO WHICH APPLICATICNS.

#-~ NOTE- MOD DIRECTIVES MUST BE LAST ON AUTO-LINK®S INPUT FILE.

*— CNMDECK ALRPT

*-

¥~ THIS COMDECK SETS UP REPORT DIRECTIVES FOR AUTO-LINK ACCORDINSG
#— *DEFINES (BUFSRPTSDIRECTRPT,MFMAPRPT, TOPHATRPT).

*- COMDECK ALDEFS

.

*= [HE DIRECTIVES IN THIS COMDECK CONTROL WHICH APPLICATIONS AR:
*— TNCLUDED IN A VARIANT RUILD. SOME APPLICATIGNS ARE ALWAYS

*- INCLUDED WHILE DTHERS ARE ONLY INCLUDED IF THEY ARE SPECIFIFD

%~ 8Y UPDATE DIRFCTIVES *DFFINE,
*—

DEF = SVMODULE
DEF = IVT

DEF = BASESYS

DEF = INITIAL

DEF = PIBUF2

DEF = PINTBL

CEF = ASYNCEXT

DEF = MIDEZ4

DEF = HASPTIP

DEF = HLIP

DEF = OLDSYS

[

*- CMDECK AL SMOD
L T

*-
#- THIS APPLICATION IS PAGEABLE (8.4 = P) AND
*=~ NON-PAGEASLE (¥4 = NP)

MOD = PNSMUWL
(84 = Fy
ADDR = $2000,
APPL = SVMODULE)
MOD = PNAWAIT

R 34 = Py
APPL = SVMODULE)
MOD = PNRTN
(§.4 = Py
APPL = SVMODULE)
®
[
[
L.
%~ THE FOLLOWING APPLICATIONS IS LINKED INTO ANY
%= PAGE,

MOD = PNCONFIGURF
(44 = Py, FILL,
APPL = SVMCOHULE)
MOD = PGODSTAT
(e = P, FILL,
TH = PNDSTAT,
APPL = SVMODULE/BASESYS)

MOD = PNSHMGEN
(? = Py FILLS
APPL = SVMODULE)
[
[
®

*- THIS APPLICATION IS PAGEABLE,
¢+
MOD = PTIVTPRSR
(L] = Py FILL,
APPL = IVT)
M0OD = PGIVTCMD
(e = Py, FILL,
™ = PTIVTICMD,
APPL = IVT/BASESYS)

Figure G-1. Autolink Input Directives File (Partial) (Contd)

60471200 F

.
-
=
-
*-
*e
*-

MOD

MOD

L))

*-
-
*-
%
-
*-
E TN
*—

MOD

MOD

MOD

Moo

*—
-
-

MOD

MOD

MOD

MOD

*
*-
-
e
-

MOoD

MOD

MOD

G-4

THE REST OF THIS APPLICATION IS NON-PAGEABLE (P

=NP)

AND MUST RESIDE IN THE BASE.

NOTE THAT PIDVTBL IS A SEPERATE APPLICATION.
THIS IS NECESSARY TO CONTROL THE LINKING.
PIDTRL I> THE LAST MOOULE LINKED IN THE
FORWARD DIRECTION.

= PIDTBL

= GLOBLS
P
ADDR
APPL
= ZEROX
P
°
°

= NPy
= PIDTBL)

= NP,
= 300490,
= BASESYS)

= NP,

THIS APPLICATION IS LINKED IN REVERSE ORDER.

APPLICATION TUP IS ALWAYS INCLUDED IN A VARIANT BUILD. HOMEVER,
TUP IS OVERLAYED BY BUFFERS UNLESS THE VARIANT TYPE IS SPECIFIED
AS TYPE T (TEST BUILD) IN WMHICH CASE THE VARIABLE TOTUP IS SET

0 1.

= PBBREAKPOI

(14
APPL
= PBARAPSNAP
({4
APPL
= P32SNAP
(43
APPL
= PB1SNAP
(p
APPL
[
[
[

= Ry
= Tur)

= Q,

= Tue)

‘s Ry

= TUP)

= Ry
= TUP)

THIS APPLICATION IS LINKED IN REVERSE ORDER.
PIMLIA RESIDES IN HIGHEST CORE AND MAINS RESIDES IN

LOWEST CORE.

= PIMLIA
P
AppPL
= PITHRS
»
APPL
= PILININIT
(8]
APPL
= PIAPPS
(€4
APPL

= Ry
= INITIAL)

z Ry

= INITIAL)

= Ry
= INITIAL)

= Ry
= INITIAL)

COMDECK ALMIDES

THIS APPLICATINN IS NNN-PAGEABLE AND

PAGZABLE.

= R&M&IN
r
APPL
= R4M4CC
(1
APPL
= R4M4TP
(p

= NPy, FILL,
= MANES)

= NPy FILLS
= MODF&)

= Py

Figure G-1. Autolink Input Directives File (Partial) (Contd)

60471200 F

60471200 F

) -

APPL =
MOD = PXPAD3

te -

APPL =
MOD = PX2MUX

» =

APPL =
MOD = PX20PS

o

APPL =
MDD = PX2PDBT

« =

» 3

APPLICATION
NAME

SYMODU
ASYNCE
MODE4
HASPTI
HIP
HLIP
OLDSYS
IvT
CONSOL
BASESY
PIBUF2
TUP
INITIA
PIDTNL

APPL =

- END OF ALINPDIR

S o T e R e e e e S T R

FOR TEST PURPOSES THE BUFFER AREA OF THIS BUILD IS

DECIMAL = 18338 HEXADECIMAL = $47A2

NPy FILL,
X25CF1/ X25CF2)

Ps FILL»
L2DEBUG/ L3DEBUG)

Fs
X25L2/ X25CF1/ X25CF2)

= Fs

X25L27 X25CF1/ X25CF2)

Fs
X25L27 X25CF1/ X25CF2)

DECKs START OF SUPPORTING COMDECKS

THE USER BUFFER AREA FOR THIS BUILD IS

DECIMAL = 28453

Fkkdkkddckdedkdokkiifdkddikikkiokkkkkkkkkikkhkihikikikik

HEXADECIMAL = $6F25

Figure G-1. Autolink Input Directives File (Partial) (Contd)

LINKGEN COMPLETED

PAGED LENGTH
DEC HEX
7729 $1E31
8155 $1FDB
7477 $1D35
6402 $1902
1443 $05A3
4784 $12BO
0 $0000
6 $0000
0 $0000
0 $0000
0 $0000
0 $0000
0 $0000
0 $0000

MAIN LENGTH
DEC HEX
2229 $08BS5
2257 $08D1
851 $0353
209 $00D1
0 $0000
306 $0132
50 $0032
410 $019A
3991 $0F97
14476 $388C
0 $0000
3605 $OE15
2415 $096F
129 $0081

Figure G-2. Applications Used in the Build from Directives File (figure G-1)

G-6

FHAAAWARNING***%* NO MOD DIRECTIVE FOR THESE OBJECT PGMS:

PTDUMP
PTIRES
PTIBAC
PTISTU
RANDOM
PTIVT1
PTIEJE
PTBPAT
PTBCOD
PTBVT1
PTECHO
PTUPLI
PBDEBU

Figure G-3. Informative Message, Missing MOD Directives

Figure G-4. Deleted Tophat List and Buffer Area Message

DELETED TOPHAT MODULE LIST

PNDSTA
PBHALT
PTIVTC

60471200 F

LINK UTILITY EXAMPLES H

information is not necessary since the build
procedures automatically supply all the calling
e Two examples of calling MPLINK independently of procedures.
the CCP or CCI build procedures (figures H-1 and
H-2). Note that in the ordinary case, this e An MPLINK directives file (figure H-3). This file
was - produced for CCP by Autolink using the
Autolink directives files shown in appendix G.

This appendix gives the following examples:

60471200 F

Compile a PASCAL source program and build a load module satisfying external references from an object program

library:

ABC,CM77000,T77,P4.

REQUEST (ABSOLMP, *PF)
ATTACH(NEWLIB,0BJPGMLIBO3, ID=PT
ATTACH(MPLINK,ID=SCDD)
ATTACH(PASCAL , ID=SCDD)
PASCAL(0,CSET=64)

FRMT.

REWIND (LGO)

MPLINK (CSET=64)

CATALOG (ABSOLMP , LOADMODO1 , ID=PT ,RP=30)
7/8/9

.+ «PASCAL source program...
7/8/9

MPLINK directive file

6/7/8/9

0000, xxxXX ,XXXXXXXX, SMITH.

*Memory Image Load Module File
*New Library

*MPLINK Utility

*PASCAL Compiler

*List output and use 64 char ASCII

*Reset Object Code Input File
*Call MPLINK
*Catalog Load Module File

%A1l PASCAL Source Programs

NOTES

. After all of the object programs on the object code input file have been read and
linked, any remaining unsatisfied external references can be resolved using the

library if one is supplied.

Figure H-1, MPLINK Execution Example 1

Build a load module from an object program library with editing of the load module file:

ABC,CM77000,T77,P4.
REQUEST(ZAPMP, *PF)
ATTACH(NEWLIB,0BJPGMLIBO3, ID=PT)
ATTACH(MPLINK, ID=SCDD)
ATTACH(MPEDIT , ID=SCDD)

MPLINK (CSET=64)

REWIND (ABSOLMP, SYMTAB)
MPEDIT(CSET=64)

CATALOG (ZAPMP , LOADMODO02 , ID=PT,RP=30)
7/8/9

*REL,NEWLIB. First MPLINK Directive

Nest of MPLINK Directive File

6/7/8/9

0000, xxxx , XXXXXXXX , SCHOFIELD.

*Absolute Memory Image Load File and Symbol Table File

Figure H-2. MPLINK Execution Example 2

H-2

60471200 F

CYBER MINI CROSS SYSTEM
LINK DIRECTIVES

= LINK EOITOR -

1 *SYSID,R96,CCP VARIANT LOAD MODULE. 68 *Ly PNPSTA.
2 ¥ENTSDSTKFWy $0040. 69 *¥LyPNLNBA,
3 *ENTsDSTKLwy $UOFC. 79 *L» PNSGAT~PNCECN,
& *ENTSDVARFW, $0000, 71 *L,PNSTOR,
5 *ENTSDVARLW, £0000, 72 *L,PTAFQOU,
6 *¥DSTK, $0040, $O0FC. 73 *{ yPTARET.
7 *SYNsvI4AASC,VRB4AASC. T4 ¥L,R4ASYI-ASYMSG,
] *SYNSVISGARATA,VB4ARTA, 75 ¥ ,ASYLFM,
E) ¥SYNsPNOUGNTML, PBILL. 76 *LsPTAPSP,
19 *SYNSPNTSMTR,PBILL. 77 *L,)AASCST,.

11t #¥SYNsPN3LDX25,P3ILL. 78 *Ls AAEBCD.
12 *3YNyPNOLX25,PBILL. 79 #LoAACAPL,
132 *SYNsPNSSRCH,PBILL. 89 *Ls ATAPLA-AASBAP,
14 ESYNsPNTSMON,PRILL. 81 *L»ASTDAS.
15 ¥SYNSPTHIPI,P3IILL. 82 *{ » AEBCDA,
lo *SYNSsPTHIPCyPBILL. 813 *) AEAPLA-ACAPLA,
17 *SYN,PANEIUS,PRILL. B4 *LsATTO6P.
14 ¥SYNsUTOPI A, PAILL, 85 *L,PBLNOG,
iy *SYN,PRBRZAKPOI,FPRTLL, 36 *L,PTCTCH-PBQ18L,
29 *SYN,PBARAPSNAF,PBIL L. 87 *L,PTINTT.
21 *¥5YNsPB25NAP,PRILL. 38 *L,PTIVIC,
2? ¥SYN,P31SNAP,P3TLL. 39 *LsPBSLY o
23 *SYM,P30PSHL THPRILL, 90 *L,PGDSTA,
24 *5YNy PBTUPBRPTAK,PBILL, 91 *L,PBMLTIA,
25 ¥SYN,P3TuU?yPRBILL. 92 Ly PGSWIT,
26k *CYN,PRDECCDE,PRTLL, 93 *LyPRLNO2-PBLNO3.
27 #SYN,PRDPEQRF{JOM, PBTLL . 94 ¥L,PBLNOS.
P *¥SYNsPBTIPDRG,P3ILL. 95 *¥LyPBFJILE.
29 *SYNp PBRDOMPREGPRILL, 96 *L»PBLMAS-PBSTOP.
30 *SYN,PBTUPDUNMP,PBLL. 97 *¥L,PTTPIN,
31 ¥SYN,PBReAD PBILL. 98 *¥LsMONMST.
32 *SYN,PBWRIT»P3TLL. 99 *LsPBLNOS4=-PBLNLS.
33 *¥SYN,PBTEST,PARILL. 109 *L,PBMEMB-PNDFEQU,
34 #SYN,PRQUICK,?BILL. 101 ¥, PBFMAH-PRTOAD,
35 *SYN,PBTMcO,P3ILL. 102 * ,PMMLEH,
35 *SYNSPRIOSELP3TLL. 103 *LsPTMSCA,
37 ¥SYM,PRANACO, FRILL, 104 *L,PBCLKI-PNBMPS.,
3z ¥SYNSPBTTYS»PBILL. 105 *L,PMCIIN-PMCDRYV,
39 #SYN»PBIUTM, PRILL, 106 *LsPBSCLA,
4C #3YN,PBQLIN, PRTILL, 107 *L, PMWOLP-PMTL1SE.
41 *SYN»P3JISPyPITLL. 108 *¥LyPTLMUX.
4? *SYNSPETTYINTS?8ILL, 109 *LoPBSWLE~PBINTP,
43 *SYNsPBGSETCy PRILL, 110 *L , PBUPAB-PTBACK,
44 =#SYNyPBSTARTIO,PRILL, 111 *LsPTBREA.
45 *SYN,PBSUPMSC,PBILL. 112 *L,PTSTRT-PTSTOP.
46 *SYNeyP3JFAT,CHILL,. 113 ¥LsPTICMD.
4 ®¥SYN,PBCONSOLF,P3ILL, 114 * ,PBIOPO-PNLLTC.
43 *SYNSPBIFMTs PRILL. 115 *L,PBFMAD.
49 *¥COR»317FFF, 116 *L 5, QDEBUG-PBCLR .
20 *SYNsPNDSTA, PGOSTA, 117 *L,PBLOAD-PBILL .
51 *SYNsPBSWIT.PGSWIT, 118 *L,PBHALT.
52 *L,7EROY ,300NG0. 119 - *L,PBMON ~-TOSTOP.
53 #¥| s PBINTR~ADDRESS300100. 120 ¥y R4MHIN-R4MGCC,
54 *L,GLOBL S, $O0DAO. 121 *L,LIPSMA,
55 *L,ISPOLD. 122 *¥L o PNTNKS.
55 *L,PBCALL. 123 *L,HASPMS.
57 %Ly PBLNOO-PBLNOL. 124 *LyHSR&IP,
58 *L, PBAMAS., 125 *L,PIDOTBL,
53 ¥LsPNSMWLs $G2000.:304. 126 *¥L,)MAINS ,30F659,
60 ¥LoPNAWAI-PNSMBA, 127 *LsBEGINX.,
651 %L s PNRVRS=PNSMTR, 123 *LsPIPROT-PISTZC,
62 ¥L, PNSMDI-PNLLCN. 129 *{ SPILMT
63 *L, PNLNCN=-PNLNST. 130 *¥Ls PINWIN,
64 *LsPNLTML-PNGVLO. 131 *¥L,PILCBS-PIGETA.
65 *L, PNFRCE, 132 *L,PIFR] .
66 ¥LyPNOVLT, 133 *L,PIBUFY.
67 *L, PNOVLD,$04000. 134 *L,PINIT .

Figure H-3. Sample MPLINK Directives File for a CCP Run
60471200 F

135
135
137
138
133
140
14l
142
143
144
145
146
147
148
149
150
151

*LyPIWLIN-PIAPPS.
*L,PILINI-PTTMRS.
*LsPIMLIA,

*L,PIBUF 2.
*L,PTASNO»$1000C:%04.
*LyRGASYT-R4A2T4.,

*| s ASYERR.

L, PTMSOU.
¥LsPTOELM-PTASNM,

*L yPTAREC-PTAFAL,
*LyPTAPBU-PTAFSC.
*L,PTAPI .

*L ,PTMD4T,$12000:%04,
¥ yR4M4TP,
¥LyPTSTAC-PT4TEX.
*LsPT4TCR,

*L,PNSMGE.

152
153
154
155
156
157
158
159
160
161
162
1€3
164
165
166
167
168

*L »PTHSOP,»$14000:804.
*LsHSR4IT-FCSRCB,
*L,PTHSMU,
*LyHSPTCB-PTTPHA,

*L, PNCONF.

*L,PGIVTC.
*L,PLTKOP,$160002%04,
*L,PLIPTC.

*L,IC L

*LsPLCBIN,

*L,PLREAD.

*¥LyPLIPML,

*¥L s CLEANU-PLIP
¥L,PTIVTP,

*L,PTLINI,

*L yPGHALT.

¥END,

H-4

Figure H-3. Sample MPLINK Directives File for a CCP Run (Contd)

60471200 F

EDIT UTILITY EXAMPLES

This appendix gives the following examples:

e Selected portions of an MPEDIT program with
constant, variable, and array declarations, and a
single assignment section for the main CCP
programs (that is, no overlay assignment
sections)., This program is given in figure I-1.

60471200 F

e A partial listing of the memory image load module

file (Figure I-2).

Note that the Edit utility is automatically called as a part

of the CCP and CCI build procedures.

Il

CYBER MINI CROSS SYSTEM - LINK EDITOR -

EDIT STATEMENTS

o
AR R ERR R ARSI RERRRERR R SRR KRR b b kRN RkR RRE Rk
* *
* COPYRISHT CONTROL DATA CORP. 1975, ¥
* 1974, 1977, 1978, 1979, 1980 *
* ¥
REEEREE R kR kR ke ek x bbbk h kb kb kbkk kR k
+
. DEFINITION/DECLARATION
dhkkk kR kR A KRR RKR bRk Rk SRR hkk kkE Kk SECT'ON
* *
* CINSTANTS * CONSTANT DECLARATION PART
* *
AR EE R AR RXRAKERRRERE R AR KRR SRR TRk Rk A EEX
L4
CGNST
JTRUF = 13
IFALSF = 33
INaME = JE?23 » GENERATE MPPPU FILE 13
» [
FEXERREEREAR RS b AR bR AR R R TR LS
* *
* SY>TEM CONSTANTS *
* *

R PR h ik kahr kb ak ki kR bR E R R A kKR

3

[

RE R R KT F R R F R ATEU TR AR AR KRR R KRR KRR AR R KSR PR REE R R AR
*¥HCORE SI7c**

AEKEER R R AR KR ERRERRSRE R SRR AR R AR R AR A TFRIRE R R K E R R R R KRR AR REERRERRRERR R R T Xk

3+

7C 316K = $3FFF ;
/CS32K = $TFFF ;
/C S40K = 39FFF 3
/C348K = $BFFF 3
/CS55K = $DFFF 3
/1CS64K = SFFFEs
/C3128K = 13

1CS256K = 23

L4

ERRETEREREERERERRR O R R RR R R R AR R R AR AR R R AR AR R AR AR AR AR R AR R RN kh %S
**BUFFER CONTROL BLOCK INDECES*#*

EEREEREEREERERERERERRE R RERRRER R R R R RR R R RN R R AR R KRR R AR RR AR AR kR

:

/380S0 =03 » SIZE O INDEX ¢
/8051 =13 [1 +
r80S2? =23 ° 2 ¢
/80S3 =3 3 o 3 13
[
[}
[
[}
VAR VARIABLE DEFINITION PART
115 @ GENERAL LOOP INDEX +
/113 ® GENERAL LOOP INDEX 1
1123 o GENERAL LOOP INDEX ¥
7113; ? GENERAL USE VARIABLF 4
/P3 » WORK OOINTER .FOR MODEM STATE PROGRAMS +
/s » GENERAL INDEX LOQOP 4
L3 W ORK-POINTER FOR TIP-INPUT-STATESS
/LSAVE; P SAVE wORK PTR IN TeXT ©2NCR HDR STATE PROGRAME
[1.%1 oVARIABLF INDEX KQCNTRTAL 4
FCHSMLIA 3 » SUB PORT LC8 TABLE POINTERS - MLIA +
JCHSCONS 3 L2 CNANSOLE 3
/CHSCOUPLER » COUPLER +
/ICHSUBLCR; » INDEX - CHSUJ3LC3 +
/LPID :
/TCBCRNS 3
/TCBMLIA 3
7305323
/1DTRL; ? NETWORK DEFINITION TABLE WORK POINTER 4
B T e L
*
* [THE FOLLOWING IS THE SOURCE INPUT *
* FUR APPLICATION UNIQUE VARIABLES #
* DEFINITION FCR THIS SYSTEM . *
* *
R T e I I s IS T T Y

Figure I-1. Partial MPEDIT Program

2

60471200 F

BUFLCO[/305C.+/B0S3) OF 1;

BUFMASKS(/805D..,/B0S3] NF 13

BECTLRKL/3050+4/80S3) OF /SIZBFCTLRX;
NICTCT [NOROO..NODIAG 1 OF 13

NJTZICT [NOTMLIA..NOTDIAG 1 OF 15;

BFTHRESH [80Tl..RITHMUX] OF 13 » RUFFER THRESHOLOS +
®
[
®
AVTCALF [0..41 IF L
PR L T
% *
* ASYNC ARRAYS *
* *
L Y R T T YT T TS N
ot
AVIC3AT ([1l..401 JF 33 oTCB ACTION TABLE +
AVULIRAT (le.e31 9F 33 o LCB ACTION TABLE ¢
AMVTCAFDT (2eeDY OF 1 oTCB FIFLD DESCRIPTOR TABLES
AVLOIFDT (D611 2F 13 ALC3 FIFLD DESCRIPTNR TABLES
ot
1
ASYNC CJDE TASLE ADDRESS ARRAYS
+
AVUCCIDFTL/ACEBCDas/ACCAPL]Y OF 13
AVINTARLE [/ACERCD.o /AT TAPLy /NDASYASCee/NOIM2741) OF 13
AYCJTTARL: T/AC:BCD.o/7ACCAPLs /NYASYASC.o/NOIBM2741]) OF 1;
Ll
* TNITIALIZATICON JF SVM—ARRAYS FAR HASP-TIP
N
HSTC3IATI1.44C) TF 33 »TCB ACTINN TABLE ¢
HSLC3AT (1..2) OF 33 ? LCB ACTION TASLE +
ASTCAFOT [uee0) OF 13
HSLCBFOT (2401 CF 13
Fye

PEEEFEERA R R E AR PR AR R R R RN F R AR R R Rk SRk kR bk bk bR R bk R kR R}
AREND APPLICATION UNIJUE ARRAY S0URCE*
DEEX SRR E TR T C R E Rk R RSk kT kR R SR kAR R R R AR R RN RNk E R AR X E X RES

[
kEEE R kP REER AR KEEE RN R FR R KRR R Rk ph R SRR kR
* *
* DEFINE O93FUDC VARIABLES *
« *
PR EFEEERERXR LR KRR ERRCKEEE AR E X RN RR ARk ER
+
BFSIN
VARID := $£963;
VARIN+1l := $000F;
CCPVER 1= $323 #CCP VERSION ~ CSD REPLACESS
ccecyc t= 03 #CCP CYCLE -USER REPLACESS
CCPLEV t=x 03 #CCP LEVEL - CSD REPLACESS
JTRACE = 2 ;
(23181 $= 2% ® EXTESNAL SYM TBL LIST ON ¢
3
SEXEEREEEE RSB TP RARKEES Kb bR bR bk bbb cb kbbb
* *
* NEFINE AS MANY PIINTEPS *
* AS ?SSISLE *
. .
EEEEBE AR EESE K F LT R EREEREE AR CR RS REREAEREE LSS .
&
ot
17G332 = /80515 ¢ 13
BEGINY & €D = MATNES » SYSTEM INIT I
OEEESEE R LR CHERE KSR KGR EERELES
< SET UP POST MURTEM DLLIMITERS
Ly R T R T I T T
3
CENTULIX = ¢2);
CAFNTL TMe= 153
Ll
* € ¢ INITIALIZE WJRKLISTS FOR 0Py LEVEL PROGRANS ¢ =
s
»
¢ * * [NTFRNAL PRJCFSS * *
3
BYVLCBO3DTNWL). BYPRADDR := /ENTRY(PBINTPROC);
RYNLCBIROINWL). BYPAGE 2= /PGNUMI(PIINTPRAC);
BYRNLEBIAIINWL JoBYWLINDEX 2= BOINJL;
BYWLCBIBOINWL J.BYMAXCNT 3= 43
BYJLCREBOINWL 1.BYINC 3= 2;
SYALCBCIIINGL T.8YWLRFO :-'IYPUF;
Figure I-1. Partial MPEDIT Program (Contd)
60471200 F

ASSIGNMENT SECTION

PSEUDO VARIABLE DECLARATION

PART (PART OF ASSIGNMENT
SECTION)

-3

’)J

I-4

7';}ttt#t##t#tttttt:##ttt#t#ttttt#tttt
* SERVICF MODULE LOCAL VARIABLES *
EEERERERRRERARRERRERRREERRRERERRERE S
/BZOWNERS :
/8ILNSPOD;
/BINZ;
/3Z1PKTLNTH;
I1B72PKTLNTH;
137K3
1871LPVC3
IBZ2LPVC;
/B8Z0CE;
IBZTRANSTYPE;
/BZILSVC;
/1BZ2LSVC;
/BILAPBS
/182713
ILCW3
7BSTCLASS;
/BSOWNER;
/BSCN;
/DN3
I1SN;
/BSNBL;
/BSIPRIS
IBSPGWIDTH;
/BSPGLENGTH;
IBSCANCHAR;
/B58SCHAR;
FBSCNTRLCHAR;
/3SCRIDLESS
/3SLFIDLESS
I3SCRCALC;
/BSLFCALC:
/8SSPEDIT;
/GSXPARENT S
IBSXCHM;
/BSXCHL: .
I854ACHARS
713SXT03
/3SINDEV;
18 S0UTNEVS
IBSFCHNPLX ;
IBSPGWATT;
r3SPARITY;
/ASABTULINE S
/BSUSR1;
/B8sSuUsSP2;
/RSCNDES
/3SXCHRON;
IBSCHAKREC ;
FLC3VARTANT; AFIRST VARIANT LCB INDEX +
JTCYVARIANT; #FIRST VARIANT TCB INDEX :
INDOLCBENT
/DDTCBFOT:
I1COSMRFSTES
R R T e E s E Py e e I T T YT T Y
»*%FND APPLICATION UNTOUE VAPIABLE SOURCE*$S
T Y e e e R it Lttt m

» ~ ARRARY DECLARATION
e e T I LA s
* *
* ARRAY DECLARATIONS -~ BASE AND CCP *
* TA3LES *
* *

FRERXCERRRRRRRKRER R R R RERRE R b kR kR kb T kS
+

ARRAY

BJTIPTYPT UNOHDLC..N1USR1] OF /SIZTIPTYPT;

BWWLENTRY [1..171 OF /7J1WLMAX;

CATIMTBLL COLCBTMSCN.,COSPARE] NF &3)

C6GTCBS [0.4C4TCM1Y OF /SIZTCB; » FIXED TCBS. +
JACT (/TTY../LP1742) OF /SIZ2CT;

JAIOWL [/FALSE../TRUE] OF 1;

JGTESTABLE [/FALSE.o/TRUEs /FALSE«</TRUE»FFALSE««/TRUE] OF 13
JZOPSBASE [BOCHWL..BCDUMMY] OF 2; » OPS PROGRAM ARRAY ¢
JKMASK [1l..17) OF 13

JKTMASKI1..173 OF 13

JSWLADOR (0..171 OF 1;

J1TUPRBFRS [1l..64) OF 13

NBLTYT UNOLNTIAG.NOLAST51..NKRC30UT] OF 23

NELTP [NOLDIAG..NOLAST] NF 1:

BUFLENGTH[/B05C../B0S3] COF 13

TCBLENGTHI/30TS0../BOTS71 OF 13

Figure I-1. Partial MPEDIT Program (Contd)

60471200 F

* I

% ¥ MUIA INTERRUPT HANDLER * #

BYWLCBIBOMLWL 1.BYPRADDR = JENTRY{(PBMLIAOPS);
BYWLCB(BOMLWL 1.BYPAGE t= /PGNUM(PBMLIANPS);
BYWLCBIBOMLAL J.BYWLINDEX := BOMLWLS
BYWLCBIBOMLWL 1.BYMAXCNT 3= 10;

BYWLCBIBOMLWL J.8YINC = 53

BYWLCBIBOMLWL J.BYWLREQ ¢= /TRUE;

]
* * ¥ SERVICE MODULE # *
£ 2
BYWLCBIBOSMWL 1.BYPRADDR t= FENTRY(PNSMWL);
BYWLCBLSOSMWL 1.BYPAGE 2= fPGNUM{PNSMWL);
BYWLCR2[B0SMWL J.BYWLINDEX 3= BOSMWL;
BYWLCBLAOSMWL 1 RYMAXTNT 3= 13
BYWLCBISOSMwL 1.BYINC 2= 43
BYWLCRIROSMAL 1.PYWLRED $= JTRUES
R .
[
®
®
Y'Y
b
FOR /1 := 1 TO 17 DN
AEGIN _ FOR..TO LOOP
JSWLANNRT/TY 3= BAWLENTRY4+/JLWLMAX*(/I-1)3
END
» THE VALUCS IN JKTMASK ARE THE SAME AS THOSE IN JKMASK +
X2
JKMASKIT) = 23 JKTHASKIL] := 0s
JKMASKL2 1 := 1; JKTMASKE2) 3= 1;
JKMASKI3] 3= PN JKTMASKL]] 3= 53
JKMASKISG 1 = 03 JKTMASKLG] &= $03
JKMASKLS 1 3= $i03 JKTMASKLS 1 3= $10;
JKMASKLA] 3= $30; JKTMASKLG] := $30;
JKMASKL? 1 := t1F3 JKTMASKLT 1 ¢= $1F;
JKMASKE]] := $1F; JKTMASKIS3 1 3= $1F3;
JKMASKL9)} o= tFF3 JKTMASKI[9] == $FF;
JKMASKI10) := $1FF; JKTMASKIiO]) := S1FF;
JKMASKI11] = $3FF; JKTMASKL[11]) == $3FF;
JXKMASK[12] := $7FFs JKTMASK[12] := $STFF3
JKMASK[13]) := $FFF; JKTMASKIL13] 3= SFFF3
JKMASKIL14) 2= $1FFF; JKTMASKE14]) 3= S1FFF;
JKMASKLLS5) 3= $3FFF; JKTMASKLL5] 2= $3FFF;
JKMASKI16) 2= S7FEF; JKTMASKI16) 3= STFEF;
JKMASKI17]) = S$FFFF; JKTMASKIL17) 3= $FFFF;
[
®
®
BT T e T s e e e
* INITIALIZATION OF LINE TYPE TABLES * NESTED FOR.TO LOOPS

*}**##tt**** KX RRRRRRRER R SRR R KK FRR R XE Rk kR kk Rk kbR b kb kb kb k kR Rk kE
+

e
FUR 71:=NCLDIAG TO NOLAST D0
FCR /11 := 3 7D NKRC3OUT DO ® PRIME ALL SECOND WDS ¢
NRLTYT [/15/T1L).NBINT2 :=3FFFF3;
L4
* ~~==— SET UP CLEAR AND DISABLE COMMANDS ----
t
FCR /I 2= NNLDIAG TO NOLAST DO
BFGIN
NBLTYTL /ToNKCLRLINBINT2 := $0400; #SET THE TERMINAL BUSY BIT ¢
NBLTYTL/IsNKDISLY.NBINT2 3= $04C0; = oTO BUSY QUT THE MODEM +
END;S
L2
ALINE TYPE O (NOLDIAG) USED FOR ON LINE DIAGNOSTICS ONLY.LINE +
ACHARACTERISTICS ARE TAYLORED DINAMICALLY DURING EXECUTION ¢
é ')
NBLTYT (NOLDIA,2 J.NBINT12=MILTO; MODEM STATES PTR. TABLE ADDR

NBLTYT CNOLDIA,NKINIL)I.NBINT1:=300203
NBLTYT INOLDIASNKENBLI.NBINT12=88840;

+
INIT. SET (ISON) +
ENABLE SET (DTR, RTS, ISR}

o
L4
»
NBLTYT (NOLDIA,NKINPTI.NBINT1:=30200; o INPUT SET (ION) +
NBLTYY C[NOLDIA,NKDOUTJI.NBINT12=30100; » DIR.OUT SET (OON) ¢
NBLTYT [NOLDIA,NKOBT 1.NBINT132=$8800; » 08T SET (RTS, DIR) ¢
NBLTYT I[NOLDIA,NKINOUJ.NBINT12230100; » IN.AFT.0 SET (OON) AND 4
NBLTYT {NOLDIAsNKINOUI.NBINT22=SFDFF; o RESET(ION) +
NBLTYT [NOLDIAsNKENDIJ.NBINT2:=$FDFF; » TERM.INP RESET(ION) L4
NBLTYT CNOLDIA,NKENDOJ.NBINT22=SFEFF; o TERM.OUT RESETI(OON) +
®
[
o

Figure I-1. Partial MPEDIT Program (Contd)

60471200 F

»

T T T T T T e T S e T e T

+
»

¥

L34
ol

b

»d

X3

I-6

a6 88 S0 se 4e ee as se ea es we se e e ee ee se sr

L T TR R T I R T]

*% SET UP BUFFER AREA POINTERS *=*

P Y R R R R e R R R R R RS SRS RS2SR 22 R 2222222 2 2% %2)

*%% IDTBL *#%

IDTBL DEFINES A NETWORK TO THE CCP. IT MUST BE
IDENTICALLY INITIALIZED IN EVERY NPU OF A NETWORK,

TDOTRL CONTAINS ONF ENTRY FOR EACH NPU IN THE NETWORK.
EACH ENTRY TS A VARIARLE NUMBER OF WORUS FOLLOWED BY
$TFFF AS A TERMINATOR. THE FINAL ENTRY IS FOLLOWED BY
Twd CONSECUTIVE TERMINATORS,

THF FIRST WORD OF AN INTBL ENTRY IS THE NODE ID OF THE
NPU IN QUESTION. IF THE NPU IS A LOCAL 0ONE, EACH ID
ACCESSFD VIA COUPLFR TS CONTAINED IN FOLLOWING WORDS.
FINALLYs THERF IS ONE WORD FOR £EACH TRUNK CONNECTED

TO THE NPU: THE LINK-REMOTE-NODE ID IS IN THE RIGHT
HALF, AND THE PORT NUMBER IS IN THE LEFT HALF.

INTBLP 3= PIDTIL; » PASCAL IDTBL POINTER. +
/1D¥RL := PIDTBL - 13 » EDITING IDTBL PODINTER, +
/L 3= 03
/L # 13 /IDT3L + 7L 2= $00163
/LU + 15 /IDTBL + /L 3= 302083
/L ¢+ 1; /IDTBL + /L 3= $030Cs
JL + 13 /IDTRL + /L 3= $0400D;

/L ¢+ 13 /IDTBL + /L 3= [/ENDE;
Lo+ 13 JIOTBL + /L 3= ¢0008;
/L + 13 /71DTBL + /L 2= 300003
/L + 1; /INTBL + /L 3= $0001;
/L ¢+ 153 /TDTBL + /L 3= ¢CC03; .
/L ¢+ 13 /ZIDTBL ¢+ /L 3= /JENDE:
fL ¢ 15 .7IDT3L + /L 3= 3$000C;
/L + 1; JIDTBL + /L := <0000:3
/L ¢+ 153 71D07T3L + /L := $£0001;
/L ¢+ 13 /IDTBL + /L 3= 30004;
/L + 1; /7IDTBL + /L 2= /ENDE;
L+ 1; JIDTBL + /L == $000D;
/L ¢ 13 /IDTBL 4 /L = $0000;
/L + 15 /IDYBL + /L = $0001:
/L + 13 /IDTBL 4 /L := $0005;
/L + 1; JIDTBL + /L 3= [ENDE;
/L + 1; /JIDTBL + /L 3= /JENDE;
B3SBUF := /L + /IDTBL + 15 AINCREMENT AVAILABLE CORE PTR 3
[
L
®
AEEERERFRRRAE R R R AR AR R AR KRR RN R R AR R ARk R R K
* *
* SET UP BASE TCB FIELD DESCRIPTOR TARLE *
* *

LR R A A R R R R e R R R e R A R S22 222222222 XY

DOTCRFRT := DGTCRFOT;

DATC3FDTICINDNUMENT = 403 PNO. OF ENTRIES +
/35TCLASS t= 53

DGTCRAFDTL S1.DDFSTRT == /START(BSTCLASS);

DGTAFDTL Y3.ODFLNTH = JLENGTH(BSTCLASS);

DGTCBFDTL 51.DOFDISP := BSTCLASS;

/BITWNER 123

/START(BSOWNER);

FLENGTH(BSIWNER);

DGTC3FDTIL2]NDFSTRT
DATI3FDTC12]1.DDFLNTH 2

[T T}

NGTCAFDTI121.0DFDISP RSIWNFR;S

/3SCN 1= 135
OGICAFLT{131.00FSTRT 3= /START(RSCN);
OS5 TCBFDTC13).CDFLNTH ¢= /LENGTH(BSCN);
DGTC3FDTTL131.0DFDISP := B5CN;

Figure I-1. Partial MPEDIT Program (Contd)

60471200 F

od
/DN
DGTCBFDTI14).DDOFSTRT
DGTC3FDTL1414DDFLNTH
DGTCHFDTL141.00FDISP

143

$F;

7
ASLLCB;

o oo es oo
LI I}

ad
/SN t= 153
DGTCBFDTLLS5).DDFSTRT = 73
DGTCBFDNTL15].DDFLNTH 3= 73
DGTIC3FDTI{151.DDFDISP = BSLLCBS
o
/BSIPRI := 193
NGTCBFDTL1921.DDFSTRT s= /START(BSIPRI);
DGTCBFDTL191.DDFLNTH 2= ZLENGTH(BSIPRI);
DGTCBFDT(191.0DFDISP = BSIPRI;
@
[
[
CBTIMTBLICOHLIPILCBINTVAL := 23
R I L T I I I T T e
P¥END APPLICATION UNTQUE EXECUTION STATFMENT SOURCE#*3
PREEARER AR R KRR R RE ARtk R Rk naasbbbanstarsesnssessssssnss END OF ASSIGNMENT SECTION
FNO .

Figure I-1. Partial MPEDIT Program (Contd)

CYBER MINI CROSS SYSTEM - LINK EDITOR -
MEMORY IMAGE FILE DUMP

KD EX] KEED A% ABEL KEES EEEG RERT SEER K4 A¥EA KE4(540 SSED SESE S4OF
HEADER
0000 r: 0142 5239 3620 2€20 4343 5020 5641 9249 414E 5429 4C4F 4144 204D 4F &4
0010 554C 4520 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020:1
RIS
HEADER
0000 [£0040 2¢O 5445 524F 5820 2020 2020 2020 2020 2020 2020 2020 2020 2C20 2020
0019 2c20 2n2C¢ 2920 2029 2020 2020 2020 2020 2020 2020 2020 2054 4552 4F20:1
7°ROX
)00 [:1400 FA71
no10
7020
9030 2)
HEADER
J0€0 C:00CE 4018 FATL 4745 4749 4553 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
09010 2020 2020 2u2C 2920 2020 202C 2020 2020 2020 2020 2C20 2042 4547 494Ez1
BEGINX .
r670 (:0401 €090 NeeC 0402 CCoO Q633 2000 0040 J4C& CICH 1400 F659:)
HEADFR
3100 [:0040 4000 0100 ~5C&42 494E 5492 4ES4 4552 5255 5054 20% 5241 5053 2054 4142 4C45
3010 202F 4C4F 4144 2041 5620 2431 13230 292C 2020 2029 2C20 2049 4ESG4 52413)
P3INT®
2120 & 140C 1F98 1400 1FC4 1400 52C3 1400 527
5110 1400 56A3 543C 4CFC OEl4 5400 4CFC DEl8 1400 S6AF
2120 1400 5306 1400 5688 1400 56C7 1400 5603
€130 140C 560F 1400 SeE8 1400 S56F7 1400 5703 23
HEADER
0900 £:0010 400C 0140 4AS5 4D50 5320 S441 424C 4520 434F 4E54 4149 4E53 204A 554D 5053
3310 2054 4F2u 202C 2029 2020 2020 2320 2020 2020 2020 2027 2044 554D 5053:1)
JuMPs
0140 [:1400 1400 3093 1400 Fe671 3]
HE ADER
0non [:001E 4uCyL 0150 4144 4452 4553 4E20 434F 4ES4 4149 4ES3 2054 4845 2041 4444 5245
2010 5353 4553 2F43 4F4E 5445 4ES4 5320 4F45 2020 2020 2020 2041 4444 5245:)
ADDRES
2150 [3115A 126C 1096 1094 1287 0DC4 1774 12%¢ 18C9 ODEC 18E9 00A7
0160 17AC 1813 1902 146C . 0032 0096 00OF 2]
Figure I-2. Sample Memory Image L.oad Module Hexadecimal
60471200 F

*ALL 2-5
*CB 5-8
*COM 5-10
*COR 5-9
*DAT 5-10
*DEL 2-7
*DMP 5-10
*DSTK 5-9
*DVAR 5-10
*END 2-6
*ENT 5-9

* 5.7

*LIB 5-9
*L 5-8
¥ST 2-5
*OVLY 5-9
*PUT 2-5
*RL 5-8
*SUP 2-5
*SYN 5-9
*SYSID 5-8
*UL 5-8

*VE 5-9
[ENTRY 6-4
JLENGTH 6-4
[START 6-4
INFD 6-4

Abbreviating Address Specification 5-3
ABSOLMP 5-4
APPL 4-5,4-9
Absolute Addressing 5-1
Active Autolink Directives 4-4
Add
Object Code to New Library, *ALL, 2-5
Programs to Library, *PUT 2-5
Address
Assignment 5-3
Assignment Section 6-6
Expressions, MPEDIT 6-4
Functions 5-2

JENTRY 6-4
JLENGTH 6-4
/START 6-4
/VFD 6-4
MPEDIT 6-4
Parameters 5-7
Memory 5-2

Memory Map Report 4-8
Specification, Abbreviating 5-3
Addressing
Absolute - 5-1
NPU 5-1
Page 5-1
Application, Last 4-11
Application
Base 4-5
Main Memory 4-11
Names, CCP 4-1
Programs, CCP 4-1
Specifying 4-5
Array

60471200 F

INDEX

Declaration 6-5
NPU 6-17

Assi gning Space

Applications in Main Memory 4-10
FILL Modules 4-11
Last Application 4-11
Paged Modules 4-10
Reverse-Loaded Modules 4-11
Sequential Applications in Main Memory
Assignment, Address 5-3
Assignment Section 6-6
Autolink 1-1, 4-11
Directives 4-1, 4-2, 4-3, 4-4, 4-9, 4-10
Examples G-1
Execution 4-2, 4-3
Fatal Error 4-3, 4-11
Informative Messages 4-11
Input Directives 4-2, 4-8
Input Files 4-2
Input Modules 4-2
Inputs 4-1
Introduction 4-1
Listing File 4-3
Locating and Linking Modules 4-10
Logical Flow 4-2
Object Code Modules File 4-3
Outputs 4-2, 4-3, 4-8, 4-10
Reports 4-6
Selecting a Module Location 4-10
Special Considerations 4-8

Base Applications 4-5
Blank Common Area 5-10
Boundary, Linking 5-8
Buffer Space Report 4-6
Build Specifications
Applications 4-5
Base Applications 4-5
Module Location 4-5
BUFSP 4-6
BUFSPSIZE 4-6

ccP
Application Program Types 4-1
Applications Names 4-1
Buffer Space Report 4-6
Downline Load File 1-2
Load File 3-2, 3-3
Memory Map Report 4-8
Variant 3-2
Character Set A-2
Command Format for the Utilities 1-1
Comments 4-4
Common Area
Blank 5-10
Labelled 5-10
Composite Statement 6-7
Constant Declaration 6-5
CORESIZE 4-5

4-11

Index-1

Data Format Input to the Utilities

Declarations
Array 6-6
Constant 6-5
MPEDIT 6-5
Variables 6-5
DEF 4-5, 4-19
DEFBASE 4-5
Define
Blank Common Area 5-10
CCP Variant 3-1

Dynamic Variable Area 5-10

Entry Points 5-9
External Synonyms 5-9

|_abeled Common Area 5-10

Linking Boundary 5-8
NPU Memory Size 5-9
Stack Area 5-9

Lower Limit for Linked Modules
Upper Limit for Linked Modules

VRD 3-1

Variant 3-1, 3-2
Delete Programs 2-5
Diagnostics

Messages B-1

MPEDIT 6-8
DIR 4-8
Directive

Last 5-10

MPLINK Overlay 5-7
Parameters, MPLINK 5-7
Directives
APPL, DEF, and MOD 4-5
Autolink 4-3
Autolink Input 4-2
MOD 4-9
MPLIB 2-5
MPLINK 5-5
MPLINK Summary 5-7
Minimizing Output 4-10
Passive MPLINK 4-3
Report 4-8
Directives File
Autolink Input 4-2
Autolink Output 4-3
MPLIB 2-5
MPLINK 5-3
Downline Load File, CCP 1-2
DUMP Listing 5-10
Duplicate Modules 4-9
Dynamic Variable Area 5-10

Edit 1-1, 6-1

Examples I-1
Empty Statement 6-8
End, Library Building 2-6

Entry Name, Memory Map Sorted by

Entry Point 5-9
Address Function 6-4
Equate Variable to Expression
Error File, Fatal 4-11
Error Messages
Expand 3-3
Fatal 4-11
MPEDIT 6-10
MPLIB 2-6
MPLINK 5-10
Example
Autolink G-1
Buffer Space Report 4-6
CCP Load File Definitions
Edit I-1
Link H-1
MOD Directives 4-5

Index-2

5-9

3-3

1-3

5-8
5-8

5-6

MPEDIT Constant, Variable, and Array Declarations
6-5, 6-6

MPLIB Library Listing 2-1

MPLINK Memory Map Sorted by Module Name 5-5

MPLINK Memory Map Sorted by Entry Name 5-6

Memory Map Report 4-9

VRD Definitions 3-2

Executing
Autolink 4-2, 4-3
Expand 3-1
MPEDIT 6-1
MPLIB 2-2
MPLINK 5-5

Expand 1-1, 3-1
Error Messages 3-3
Execution 3-1
Introduction 3-1
Expressions 5-9
Expressions, MPEDIT 6-4
External Symbols, MPEDIT 6-3
External Synonyms 5-9

Fatal Error File, Autolink 4-3
Fatal Error Message, Autolink 4-11
Field Length Address Function 6-4
Field Start Address Function 6-4
Field, Variable 6-4
Files
Autolink
Input 4-2
Input Directives 4-2
Listing 4-6
Object Code Modules 4-5
Output 4-3
Output Directives 4-6
ccpP
Downline Load 1-2
Load 3-3
Load Variant 3-2
Fatal Error 4-11
Initialized Load Module 6-5
Library 2-5, 4-3, 5-9
MPLIB
Directives 2-1, 2-5
Object Code 2-1
Output 2-1
MPLINK
Directives 5-5
Object Code Input 5-3
Output 5-4
Memory Image Load Module 5-4, D-1
New Library 2-1
Object Code 2-5
Old Library 2-1
Optional Memory Image Load Module E-1
Symbol Table 5-4
System Load 5-8
FILL Modules 4-11
FOR Statement 6-7
Format
Commands for the Utilities 1-1
Data Input to the Utilities 1-3
MPEDIT Program 6-5
MPLIB Library File 2-1

Function
Address 5-2
[ENTRY 6-4

JLENGTH 6-4
MPEDIT Address 6-4
/START 6-4

IVFD 6-4

General Command Format for Utilities 1-1
General Data Format Input to Utilities 1-3
Glossary C-1

60471200 F

Identifying System Load File 5-8
INFO 4-8
Informative Messages, Autolink 4-11
Initialized Load Module File 6-5, 6-8
Input Files

Autolink 4-2

MPLINK Object Code 5-3
Input Directives

Autolink 4-1

File, Autolink 4-2

Report 4-8
Input Modules, Autolink 4-2
Input, Relocatable Object Code F-1

Inputs
Autolink 4-1
MPEDIT 6-1
MPLIB 2-1
MPLINK 5-3

Utilities 1-1
Interrelationship, APPL, DEF, and MOD Directives
4-9
Introduction
Autolink 4-1
Expand 3-1
Library Maintenance 2-1
MPEDIT 6-1
MPLINK 5-1

Keywords, MPEDIT 6-2

L.abeled Common Area 5-10
Last Application 4-11
LLast MPLINK Directive 5-10
LFD 3-2
Library
Add Programs 2-5
Building 2-6
File 2-1, 4-3,5-9
New 2-1
Old 2-1
Listing 2-1, 2-5
Maintenance, Introduction 1-1
Suppress Copying Programs 2-5
Limit
L.ower, Linked Modules 5-8
Upper, Linked Modules 5-8
Link 1-1, 5-1
Examples H-1
Utility (MPLINK) 1-1, 5-1
Linked Modules 5-8
Linking Boundary 5-8
Linking Modules 5-7
Listing
Autolink Files 4-3
Initialized Load Module File 6-5
Library 2-1, 2-5
Load File DUMP 5-10
SYMTAB 6-8
Trace 6-8
Literals, MPEDIT 6-4
Load File
CCP 1-2, 3-2
DUMP Listing 5-10
System 5-8
Load Module File 6-5, D-1
Listing 6-8
Memory Image 5-4
Optional Memory Image E-1
Local Symbols, MPEDIT 6-3
Location, Modules 4-5, 4-10
Logical Flow, Autolink 4-2
Lower Limit, Linked Modules 5-8

60471200 F

Main Memory 4-11
MAP 4-8
Map Report, Memory Address 4-8
Memory Address ~5-2
Map Report 4-8
Parameters, MPLINK 5-7
Memory Image Load Module File 5-4, D-1
Optional E-1
Memory Map
Report 4-8
Sorted by Entry Name 5-6
Sorted by Module Name 5-5

- Memory Size

Buffer Space Report 4-6

NPU 5-9
Variant Build 4-5
Memory

Main 4-10, 4-11
Reserved Area 4-6
Messages
Autolink 4-11
Diagnostic B-1
Fatal Error 4-11
MPEDIT Error 6-10
MPLINK Error 5-10
Minimizing Number of Output Directives 4-10
Mnemonics C-4
MOD 4-5, 4-9
Example 4-7
Module Location 4-5, 4-10
Module Name, Memory Map 5-5
Maodules
Autolink Input 4-2
Duplicate 4-9
File 4-3
FILL 4-11
Linking 5-7, 5-8
Locating 4-10
Paged 4-10
Reverse-Linked (Loaded) 4-11, 5-8
MPEDIT 1-1, 6-1
Address Expressions 6-5
Address Functions 6-4
Constant, Variable, and Array Declarations 6-6
Diagnostics 6-8
Error Messages 6-10
Execution 6-1
Expressions 6-5
External Symbols 6-3
Inputs 6-1
Introduction 6-1
Keywords 6-2
Literals 6-4
Local Symbols 6-3
Operand Expressions 6-4
Outputs 6-1
Program Flow 6-3
Program Format 6-2, 6-5
Reserved Words 6-2
SYMTAB Listing 6-8
Syntax 6-2
Trace Listing 6-9
MPLIB 1-1
Directives 2-5
Directives File 2-1
Error Messages 2-6
Execution 2-2
Inputs 2-1
Library File 2-1
Library Listing 2-1
Object Code File 2-1
Old Library File 2-1

Index-3

Output Files 2-1
MPLINK 1-1, 5-1
Directives 5-5
File 5-3
Last 5-10
Overlay Identifier Parameter 5-7
Parameters 5-7
Parameter Names 5-7
Passive 4-3
Summary 5-7
Error Messages 5-10
Execution 5-5
Inputs 5-3
Introduction 5-1
Memory Address Parameters 5-7
Memory Map Sorted by Module Name 5-5
Memory Map Sorted by Entry Name 5-6
Object Code Input File 5-3
Output Files 5-4
Procedural Flow 5-4

Names
CCP Applications 4-1
Entry 5-6

MPLINK Directive Parameter 5-7
New Library 2-1, 2-5
File 2-1
NPU
Addressing 5-1
Array 6-6
Memory Size 5-9
Number
Minimizing Output Directives 4-10
Specifying Page Register 4-6

Object Code
File 2-1, 2-5
Autolink 4-3
MPLINK 5-3

Relocatable F-1
Suppressed Copying 2-5
Programs 2-5
Old Library File, MPLIB 2-1
Operand Expressions, MPEDIT 6-4
Optional
Form of Initialized Load Module File 6-5
Memory Image Load Module File E-1
Output Directives
File, Autalink 4-3
Minimizing 4-10
Report 4-8
Output Files
Autolink 4-3
MPLIB 2-1
MPLINK 5-4
Outputs
Autolink 4-2
MPEDIT 6~
Utilities 1-
Overlay
Areas 5-9
Modules 5-9
MPLINK Directive 5-7

1
3

Packing an NPU Array 6-6
Page
Addressing 5-1
Register 4-6, 5-3
Size 4-6
Paged Modules 2-22
PAGEREG 4-6
PAGESIZES 4-6

Index-4

Parameters
MPLINK Overlay 5-9
MPLINK Directives 5-5
MPLINK Memory Address 5-7
Names, MPLINK Directive 5-7
Variant Definition 3-1
Passive MPLINK Directives 4-3
Program
Flow, MPEDIT 6-3
Flow, MPLINK 5-4
Format, MPEDIT 6-2
Library Maintenance 2-1
Structure, MPEDIT 6-5
Programs
Application 4-1
Deleting from Library 2-5
Object Code 2-5
Suppress Copying to Library 2-5

Register, Page 4-6, 5-3
Relocatable Object Code Input F-1
Report

Autolink 4-6

Buffer Space 4-6

Input Directives 4-8

Memory Map 4-8

Output Directives 4-8
Requesting

Initialized Load Module File Listing 6-5

SYMTAB Listing 6-8
Trace 6-8
RESERVE 4-6
Reserved Area of Memory 4-6
Reserved Words, MPEDIT 6-2

Reverse-l_inked Modules (Loaded) 4-11, 5-8

RPT 4-6

Selecting a Module Location 4-10

Sequential Applications in Main Memory 4-11
Special Considerations in Using Autolink 4-8

Specifying
Abbreviated Address 5-3
Applications 4-5)
Applications in Build 4-5
Autolink Reports 4-6
Base Applications in Build 4-5
Library File 5-9
Memory Address 5-2
Memory Size of Variant Build 4-5

Memory Sizes for Buffer Space Report

Module Location in Build 4-5
Modules to be Linked 5-7
Modules to be Reverse Linked 5-8
Overlay Areas and Modules 5-9
Page Register Number 4-6
Page Size 4-6
Reserved Area of Memory 4-6
Stack Area 5-9
Statement
Composite 6-7
Empty 6-8
FOR 6-7
Summary
Autolink Directives 4-3
MPLINK Directives 5-5
Suppress Copying Programs to Library
Symbol Table File (SYMTAB) 5-4
Symbols
MPEDIT External 6-3
MPEDIT Local 6-3
SYMTAB 5-4
Listing 6-8, 6-10

2-5

60471200 F

Synonyms, External 5-9
Syntax
MPEDIT 6-2
Variant Definition Parameters 3-1
System Load File 5-8
System Variant Generator (EXPAND) 1-1

Trace 6-8, 6-9

Upper Limit, Linked Modules 5-8
Utilities
General Command Format 1-1
General Data Format Input 1-3
Inputs 1-1
Outputs 1-3

60471200 F

Variable 5-9
Area, Dynamic 5-10
Declaration Part - 6-5, 6-6
Field Defintion Address Function 6-4
Variant
Build, Memory Size 4-5
CCP Load File 3-2
Define 3-1
Definition Handling Utility, Expand 3-1
Definition Parameters 3-1
Generator 1-1
VRD 3-1
Definitions 3-2

Words, MPEDIT Reserved 6-2

Index-5

CUT ALONG LINE

AA3419 REV. 4/79 PRINTED IN U.S.A.

-————

COMMENT SHEET

CVYBER Cross System, Version 1
MANUAL TITLE: Build Utilities Reference Manual

PUBLICATION NO.: 60471200 REVISION: F

NAME:

COMPANY:

STREET ADDRESS:

CIvy: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.
FOLD ON DOTTED LINES AND TAPE

TAPE TAPE
FOLD FOLD
. NO POSTAGE
NECESSARY
iF MAILED
IN THE
UNITED STATES

D

BUSINESS REPLY MAIL —

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. [T

T

POSTAGE WILL BE PAID BY I

CONTROL DATA CORPORATION R

Publications and Graphics Division —

P. O. Box 4380-P R

Anaheim, California 92803 S

P

.]

e

SR
FOLD fFOLD

CUT ALONG LINE

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 55440 LITHO IN U.SA.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

- CONTROL DATA CORPORATION

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB
	xBack

