
&J ~ CONT~OL DATA
\.!:! r::J CO[\PORf\TION

CYBER CROSS SYSTEM
VERSION 1
BUILD UTILITIES
REFERENCE MANUAL

CONTROL DATA@

NOS 1
NOS/BE 1

60471200

REVISION RECORD
REVISION DESCRIPTION

A Manual released

(4/76)

B Manual Update (ECO 06420) .

(6/76)

c Corrections on pages 3-2 and 3-11

(11/77)

D Manual revised to incorporate CYBER Cross NOS R6.

(8/79)

E Manual revised to change above references from R6 to RS.

(2/80)

F Manual revised to incorporate on-line console removal and all PSRs to level 528.

(10/80) Manual title changed from CYBER Cross System, Version 1 Link Editor and library

Maintenance Programs Reference Manual. This revision obsoletes all previous editions.

Publication No.
Address comments concerning this

60471200 manual to:

REVISION LETTERS I, 0, Q AND X ARE NOT USED.

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. Box 4380-P

© 1976, 1977, 1979,1980

by Control Data Corporation

Printed in the United States of America

ii

Anaheim, California 92803

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins
or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than
content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV

Cover -
Title Page -
ii thru ix -
1-1thru1-3 F
2-1 thru 2-6 F
3-1 thru 3-3 F
4-1 thru 4-11 F
5-1 thru 5-10 F
6-1 thru 6-10 F
A-1/A-2 F
B-1 thru B-12 F
C-1 thru C-5 F
D-1thru0-3 F
E-1/E-2 F
F-1 thru F-4 F
G-1 thru G-6 F
H-1 thru H-4 F
1-1thru1-7 F
Index..,.! thru

Index-7 F
Comment Sheet -
Mailer -
Back Cover -

60471200 F iii/iv

PREFACE

This manual was formerly called the CYBER Cross Link
Edit/Library Maintenance Reference Manual. Under its
new form and title, this manual describes five CYBER
Cross System build utilities which aid in generating load
files for a CONTROL DATA 255X Network Processor Unit
(NPU). Such a load file contains the on-line system for an
network processing unit. The load files are of two types:

• A Communications Control Program (CCP) used
as a part of a NOS Network,

• A Communications Control INTERCOM (CCI) used
as a part of a NOS/BE Network.

These utilities are run on a CYBER host (6000, CYBER 70
series, or CYBER 170 series) under the NOS or NOS/BE
operating systems. It is assumed that the reader is
familiar with the command structure of these operating
systems.

The utilities described in this manual are:

• The library maintenance utility (MPLIB) used with
CCI that allows the user to generate a new library
of object code modules. While this utility could
be used with CCP, the current installation
procedures do not use it.

• The Expand utility used with CCP that has two
functions:

(1) It allows a user to generate a variant input
for the application programs and hardware of
NPU. (See the glossary for the use of the
term application.)

(2) It provides variant inputs for the NOS
load-file generator utility.

• The Autolink utility used with CCP generates
input directives for the Link utility.

• The Link utility (MPLINK) assigns space for
modules and links modules together. This utility
produces a memory image load module file that
can later be converted to a load file. The utility
is used with both CCP and CCI.

• The Edit utility (MPEDIT) allows the user to
initialize values in the memory image load
module. The utility is used with both CCP and
CCI.

The memory image load module file that is produced for
an NPU by these utilities is composed of object code
modules that were initially generated by one of three
CYBER Cross programs:

• The CYBER Cross PASCAL compiler

• The CYBER Cross macroassemb~er

• The CYBER Cross microassembler

60471200 F

Therefore, to fully use the capabilities of the utilities, the
reader of this manual should be familiar with the
following concepts:

• Installation procedures using a NOS or NOS/BE
operating system.

e The CYBER Cross version of the PASCAL
compiler.

e The CY BER Cross macroassemblers and
microassemblers.

CONVENTIONS USED
Throughout this manual, the following conventions are
used in the presentation of statement formats, commands
and request formats, operator type-ins, and diagnostic
messages:

ALN Uppercase letters indicate words, acronyms,
keywords, or mnemonics required by the
network software as input to it, or produced as
output.

aln Lowercase letters identify variables for which
values are supplied by a console operator, a
programmer using batch input, or by the system
itself.

·Ellipses indicate omitted entities that repeat
the form and function of the last entity given
(exception: in PASCAL statements, ellipses are
indicated by ••).

[] Square brackets enclose entities that are
optional. If omission of an entity causes the use
of a default value, the default is noted.

Braces enclose entities from which one must be
chosen.

An ooderscore indicates a control character
(examples: carriage retum is CR, line feed is
LF, and space is SP). If a space is required in a
command, it is indicated as SP. Spaces shown
in a command are normally placed there only
for convenience in separating the parameters;
they are not required.

All numbers are given in decimal notation unless
otherwise specified. Hexadecimal numbers in text are
given a st.bscripted 16, for instance, C00016•
Hexadecimal parameters in commands require the display
code designator, the dollar sign($), for example, $COOO.

RELATED MANUALS
Additional information on the CYBER Cross system and
the CCP and CCI installation procedures can be found in
the following documents that are available from Control
Data Corporation, Literature and Distribution Services,
308 North Dale Street, St. Paul, Minnesota, 55103.

v

vi

Publication Title

NOS Version 1
Reference Manual, Volume 1 of 2

NOS Version 1 Installation Handbook

Update Version 1
Reference Manual

NOS Version 1 System Maintenance
Reference Manual

Network Products
NAM Version 1 Network Definition
Laiguage Reference Manual

NOS/BE Version 1
Reference Manual

NOS/BE Version 1 Installation Handbook

CYBER Cross System PASCAL Compiler
Reference Manual

CYBER Cross System Microassembler
Reference Manual

CYBER Cross System Macroassembler
Reference Manual

Publication Number

60435400

60435700

60449900

60455380

60480000

60493800

60494300

96836100

96836400

96836500

This product is for use only as described in this
document. Control Data cannot be responsible
for proper functioning of undescribed features or
parameters.

60471200 F

CONTENTS

1. INTRODUCTION 1-1 Fatal Error Message File 4-3
Executing Autolink 4-3

Library Maintenance (MPLIB) 1-1 Autolink Directives 4-3
System Variant Generator (Expand) 1-1 Passive MPLINK Directives 4-3
Autolink 1-1 Active Autolink Directives 4-4
Linking Utility (MPLINK) 1-1 Comments for Directives 4-4
Editor (MPEDIT) 1-1 APPL, Specifies Applications 4-5
Inputs to the Utilities 1-1 CORESIZE, Specifies the Memory Size of

General Command Format for the Utilities 1-1 the Variant Build 4-5
General Data Format Input to the Utilities 1-3 DEF, Specifies the Applications to be

Outputs from the Utilities 1-3 Included in the Build 4-5
DEFBASE, Specifies Base Applications that

Must be Included in Every Build 4-5
2. LIBRARY MAINTENANCE PROGRAM, MPLIB 2-1 MOD, Specifies Where a Module can be

Located during a Build 4-5
Introduction 2-1 PAGEREG, Specifies Page Register Number 4-6
MPLIB Inputs 2-1 PAGESIZES, Specifies the Size of a Page 4-6

MPLIB Directives File 2-1 RESERVE, Specifies a Reserved Area of
MPLIB Object Code File 2-1 Memory 4-6
MPLIB Old Library File 2-1 BUFSPSIZE, Specifies Memory Sizes for

MPLIB Output Files 2-1 the Buff er Space Report 4-6
New Library File 2-1 RPT, Specifies an Autolink Report 4-6
Library Listings 2-1 Autolink Reports 4-6

Executing MPLIB 2-2 BUFSP, Buff er Space Report 4-6
MPLIB Directives 2-5 DIR, Output Directives Report 4-8

*ALL, Add All the Object Code File Programs MAP, Memory Address Map Report 4-8
to the New Library 2-5 INFO, Input Directives Report 4-8

*PUT, Adds Programs to the Library from Special Considerations for Using Autolink 4-8
the Object Code File 2-5 Interrelationship of the APPL, DEF, and

*DEL, Deletes Programs from the Library 2-5 MOD Directives 4-9
*SUP, Suppresses Copying Programs from Duplicate Modules 4-9

the Object Code File to the Library 2-5 Minimizing the Number of Output Directives 4-10
*LST, List a Library 2-5 Autolink's Method of Selecting a Location
*END, End the Library Building Operation 2-6 for a Module 4-10

MPLIB Error Messages 2-6 Phase 1, Assigning Space to Paged Modules 4-10
Phase 2, Assigning Space in Main Memory 4-10
Phase 3, Assigning Space for Reverse-

3. VARIANT DEFINITION HANDLING UTILITY, Loaded Modules 4-11
EXPAND 3-1 Phase 4, Assigning Space to Sequence

Applications in Main Memory 4-11
Introduction 3-1 Phase 5, Assigning Space for FILL Modules 4-11
Executing Expand 3-1 Phase 6, Assigning Space for the Last
Syntax of Expand Variant Definition Parameters 3-1 Application 4-11
VRD, Defines a CCP Variant 3-1 Autolink Messages 4-11

Examples of VRD Definitions 3-2 Informative Messages 4-11
LFD, Defines a CCP Load File Variait 3-2 Fatal Errors 4-11

Examples of CCP Load File Definitions 3-3
Expand Error Messages 3-3

5. LINK UTILITY, MP LINK 5-1

4. AUTOLINK UTILITY 4-1 Introduction 5-1
NPU Addressing 5-1

Introduction 4-1 Page Addressing Mode 5-1
CCP Application Program Types 4-1 Absolute Addressing Mode 5-1
Autolink Inputs 4-1 Specifying a Memory Address 5-2

Autolink Input Directives 4-1 Address Functions 5-2
Autolink Input Modules 4-2 Abbreviating Address Specification 5-3

Outputs from Autolink 4-2 Address Assignment 5-3
Executing Autolink 4-2 MPLINK Inputs 5-3

Autolink Input Files 4-2 MPLINK Directives File 5-3
Input Directives File 4-2 MPLINK Object Code Input File 5-3
Object Code Module File 4-3 MPLINK Output Files 5-4
Library File 4-3 Memory Image Load Module File (ABSOLMP) 5-4

Autolink Output Files 4-3 Symbol Table (SYMTAB) File 5-4
Output Directives File 4-3 MPLINK Listings 5-4
Listing File 4-3 Executing MPLINK 5-5

60471200 F vii

MPLINK Directives
Summary of MPLINK Directives
MPLINK Directive Parameters

MPLINK Directive Parameter Names
MPLINK Directive Overlay Identifier

Parameter
MPLINK Memory Address Parameters

*L, Specifies Modules to be Linked
*RL, Specifies Modules to be Reverse Linked
*CB, Defines Linking Boundary
*LL, Defines a Lower Limit for Linked

Modules
*UL, Defines an Upper Limit for Linked

Modules
*SYSID, Identifies the System Load File
*OVLY, Specifies Overlay Areas and the

Modules in an Overlay
*ENT, Defines Entry Points
*SYN, Defines External Synonyms
*COR, Defines NPU Memory Size
*LIB, Specifies Library File
*VE, Equates a Variable to an Expression
*DSTK, Allocates a Stack Area for Recursive/

Reentrant PASCAL Programs
*DVAR, Allocates a Dynamic Variable Area

for PASCAL Programs
*COM, Defines a Blank Common Area for

Macroassembler Programs
*DAT, Defines the Labeled Common Area
*DMP, Generates the Memory Image Load Module

File Hexadecimal Listing
*END, Last MPLINK Directive

MPLINK Error Messages

6. EDIT UTILITY, MPEDIT

Introduction
MPEOIT Inputs

A
B
c
D
E

1-1
2-1
2-2
4-1
4-2
4-3
4-4
4-5

5-1
5-2

viii

Character Set
Utility Diagnostic Messages
Glmsary and Mnemonics
Memory Image Load Module File Format
Optional Memory Image Load Module File

Format

Producing a CCP Downline Load File
Format of an MPLIB Library File
Sample MPLIB Library Listing
Auto Ii nk Logical Flow
Example of MOD Directives
Sample Buff er Space Report for a CCP RLn
Sample Memory Map Report for a CCP Run
Autolink Sequence of Locating and Link

Modules
Page Register Selection
MPLINK Procedural Flow

5-5 MPEDIT Outputs 6-1
5-7 Executing MPEDIT 6-1
5-7 MPEDIT Program Syntax 6-2
5-7 MPEDIT Syntax 6-2

MPEDIT Keywords 6-2
5-7 MPEDIT Reserved Words 6-2
5-7 MPEDIT Local Symbols 6-3
5-7 MPEDIT External Symbols 6-3
5-8 MPEDIT Literals 6-4
5-8 MPEDIT Address Functions 6-4

/START, Field Start Address Function 6-4
5-8 /LENGTH, Field Length Address Function 6-4

/ENTRY, Entry Point Address Function 6-4
5-8 /VFD, Variable Field Definition Address
5-8 Fl.nction 6-4

MPEDIT Expressions 6-4
5-9 Operand Expressions 6-4
5-9 Address Expressions 6-5
5-9 MPEDIT Program Structure 6-5
5-9 Constant Declaration Part 6-5
5-9 Requesting the Optional Form of the
5-9 Initialized Load Module File 6-5

Variable Declaration Part 6-5
5-9 Array Declaration Part 6-6

Assignment Section 6-6
5-10 Local Assignment Section 6-7

Address Assignment Section 6-7
5-10 FOR Statement 6-7
5-10 ·Composite Statement 6-7

Empty Statement 6-8
5-10 Comments 6-8
5-10 Requesting a TRACE Operation 6-8
5-10 Requesting the SYMT AB Listing 6-8

Requesting the Initialized Load Module
File Listing 6-8

6-1 MPEDIT Diagnostics 6-8
MPEDIT Error Messages 6-10

6-1
6-1

APPENDIXES

A-1
B-1
C-1
D-1

E-1

F
G
H
I

Relocatable Object Code File Format
Autolink Utilities Examples
Link Utility Examples
Edit Utility Examples

F-1
G-1
H-1
I-1

INDEX

FIGURES

1-2
2-2
2-3
4-2
4-7
4-8
4-9

4-10
5-2
5-4

5-3 Sample MPLINK (Partial) Memory Map Sorted
by Module Name 5-5

5-4 Sample MPLINK Memory Map Sorted by Entry
Name (Partial) 5-6

6-1 MPEDIT Program Format 6-2
6-2 MPEDIT Program Flow 6-3
6-3 Examples of MPEDIT Constant, Variable,

and Array Declarations 6-6
6-4 Methods of Packing an NPU Array 6-8
6-5 Partial MPEDIT Trace Listing 6-9
6-6 Partial MPEDIT SYMTAB Listing (Sorted by

Entry Name) 6-10

60471200 F

4-1 CCP AppliC$tion Names ·
4-2 Summary of Autolink Directives

60471200 F .

TABLES

4-1
4-4

5-1 Summary of MPLINK Directives 5-7

ix

INTRODUCTION 1

This manual describes five utility programs used to build
the memory image load module file, and to maintain the
object code library file for 255X Network Processor Unit
(NPIJ) on-line programs. These utilities are normally used
in conjuction with the standard CCP or CCI installation
procedures described in the NOS and NOS/BE Installation
Handbooks. The utilities are called and executed
automatically from those installation procedures. The
utilities are:

• A library maintenance program (MPLIB) used only
with CCI

• A system variant handler (Expand) used only with
CCP

• An Autolink auxiliary for the Link utility used
only with CCP

e A Link utility (MPLINK) used with both CCP and
CCI

• An Editor utility (MPEDIT) used with both CCP
and CCI

All the utilities execute on a CYBER host computer
operating under NOS or NOS/BE.

Figure 1-1 shows the logical flow of the utilities in
producing a downline load file for a CCP system.

LIBRARY MAINTENANCE (MPLIB)
This utility uses object code from a previous library or
from one of the CYBER Cross compilers or assemblers to
generate a new library file. The library consists of object
code and a directory to all the modules on the libraries.

SYSTEM VARIANT GENERATOR
(EXPAND)
Several hardware and software variables must be specified
to customize a CCP load file for a given NPU
configuration in a network. Expand has two parts: a
variant definition section, and a section that aids the NOS
load file generator utility in building the CCP load file.

As shown in figure 1-1, the variant definition section
operates with a user-supplied file, called USERBPS, to
generate a temporary new program library and a set of
updated autolink directives.

The load file generator section supplies variant definitions
to the NOS load file generator utility. That utility
converts the initialized CCP memory image load file
module produced by the link Editor into a CCP load file
that can be downline loaded from the host into an NPU.
As shown in figure 1-1, the initialized load module file is
one of the inputs used to produce the load file for CCP.

60471200 F

AUTOLINK

Autolink uses a set of input directives to generate
MPLINK input directives for CCP. Autolink simplifies
module assignment and maximizes the amount of space
that is assigned to message processing buffers.

Autolink also gives information about the amount of
buffer space that would be available for various
combinations of application packages (such as combi­
nations of TIPs) located in an NPU with a given memory
size.

NOTE

Application programs are defined for CCP
and CCI as well as for the host. In this
manual, an application program (called an
application) executes in the NPU. (See
the glossary for the use of the term
application.)

LINKING UTILITY (MPLINK)

MPLINK assigns space, and links together all the modules
that are to used in a build operation, that is, all the
modules that are to be a part of the load file. 'Each
module is assigned an execution space on a memory image
load module file, which (after initial values are assigned)
can be converted to the load file for the NPU.

EDITOR (MPEDIT)
After MPLINK generates a memory image load module
file (ABSOLMP and a symbol table file (SYMT AB)), the
Editor utility initializes values in selected variables. The
variables to be initialized; and the initialization values are
specified by an MPEDIT program which uses a
PASCAL-like syntax.

INPUTS TO THE UTILITIES
There are two types of inputs to the utilities:

• Directive files. These directives are normally
arranged into a batch input file.

• Other files. The most important of these files
consist of object code modules which are built
into the on-line CCP or CCI system.

GENERAL COMMAND FORMAT FOR THE UTILITIES

The command inputs to· the utilites are in the form of
directives. The general form of any directive is a
command identifier (keyword) followed by a set of
parameters:

KEYWORD, param 1, param 2, ••• , param n

1-1

1-2

e~
en a: zg
2a:
I- 0..

fd l-
a: -
a::Q

8~
:I

USER BPS

TEMPORARY
NEW
PROGRAM
LIBRARY

FROM CYBER
CROSS ASSEMBLER
AND PASCAL
COMPUTER

CCP
COMBINED

BINARY
LIBRARY

Figure 1-1. Producing a CCP Downline Load File

IDENTIFIES
VARIANT

CONTAINS SOURCE
MODULES, DECKS
AND BUILD UTILITY
DIRECTIVES DECKS

CCP
LOAD
FILE

READY FOR
OOWNLINE
LOADING

OTHER UPDATED
LOAD MODULE
TYPE FILES
(OVERLAYS MUX
LEVEL CODE)

M-1083

60471200 F

Parameters are separated by commas. Parameters usually
specify values (such as the size of an NPU memory, or
files (such as an application program name).

GENERAL DATA FORMAT INPUT TO THE UTILITIES

The data inputs to the utilities are modules in object code
format that are generated by the CYBER Cross PASCAL
compiler, by the CYBER Cross macroassembler, or by the
CYBER Cross microassembler. At the time of use, the
object code modules can be separate files newly produced
from one of the assemblers or compilers, separate files
read from magnetic tape or mass storage, or selected
records read from a program library.

OUTPUTS FROM THE UTILITIES
When used with NOS installation techniques, the principal
output from the Expand/ Autolink/link/Editor utilities is
an initialized memory image load module on mass storage
in the host computer. This load module can then be
converted by the Expand utility and the Load File
Generator (LFG) into a downline loading, formatted file.

60471200 F

A similar use of the Link/Editor utilities operating under
NOS/BE produces an initialized memory image load
module on mass storage in the host computer. This load
module can then be converted into a downline loading
formatted file.

Optional outputs from various utilities include load maps,
listings of all modules, buff er space reports, and
diagnostic reports.

The principal output from the library maintenance utility
is a new, indexed library of the selected on-line NPU
modules in object code format. All program libraries are
held on the CYBER host's mass storage. Object code
modules selected from any library are used to build a new
load file for the on-line CCI system. The library
maintenance utility could be used to build a new CCP
library.

Another output of the library maintenance program is a
directory to the programs on the library, together with
information about these programs.

1-3

LIBRARY MAINTENANCE PROGRAM 2

INTRODUCTION
The library maintenance program, MPLIB, can be used
with CCP or CCI, but currently is used only with CCI.
The utility uses a set of directives operating on a set of
object code files to generate a new library. Two files are
normally used:

• An object code file which contains the object code
for modules that are to be added to the new
library, or which are to replace existing object
code modules by the same name which are already
on the old library. This file is required. If there
is no old library, the modules on the file create a
library.

• The old library file. This file, though optional, is
normally always present.

The user has the option of ordering listings of the new
and/or the old libraries.

MPLIB INPUTS
The library maintenance program requires two files: a
directives file and the object code file which contains the
modules used to generate the library. If a library has
already been built, MPLIB also requires the old library file.

There are also several calling parameters that are
associated with the library maintenance utility. These
parameters are discussed in the Executing MPLIB
subsection.

MPLIB DIRECTIVES FILE

This file contains the di rec ti ves in the order in which they
are to be executed. The directives are of three types:

• Those which cause modules to be selected for the
library, or deleted from an existing library.

• A directive that allows the operator to order a
listing of the new and/or the old library.

• A directive to terminate the library maintenance
operation.

The default name of this file is INPUT.

MPLIB OBJECT CODE FILE

This file contains the object code of modules that:

• Are used to construct a new library for the first
time

• Replace existing modules of t~ same name on the
old library (the new library contains these modules)

60471200 F

The relocatable object code format of these modules is
given in appendix F. Object programs that replace old
programs of the same name are added to the new library
at the same relative position as the replaced module.
New object code programs that were not on the previous
library are added to the end of the new library in the
order in which they occur on the object file. MPLIB adds
a directory record to this file.

The default name of this file is LGO.

MPLIB OLD LIBRARY FILE

This file was created by a previous run of MPLIB. Note
that once a library file has been created, it cannot be
modified by MPLIB. The method of modifying a library
file is to create a new file.

The format of a library file is shown in figure 2-1. The
first record of the file consists of the file name and the
library directory. Each program in the library has an
entry in the directory. Following this is the object code
of each program. Each program is contained in a single
record; the records appear in the same sequence as their
entries in the directory.

The default name of this file is OLDLIB.

MPLIB OUTPUT FILES
MPLIB provides two output files: the new library file and
an optional listing of the new and/or the old library file.

NEW LIBRARY FILE

The new library file has the same format as the old library
file; however, it contains additional modules and
substituted modules (as specified by the directives), and
lacks modules which the directives have deleted.

Default name of the new library is NEWLIB.

LIBRARY LISTINGS

The optional new and old library listings are requested by
an MPEDIT directive. If the directive is used, the listing
file is sent to the output file. The user can order printed
copies of the file using the techniques described in the
NOS/BE Reference Manual.

A library listing consists of a program names, program
lengths, and program entry points for each of the
programs on the library. A sample listing is shown in
figure 2-2.

If both the new and the old library listings are ordered,
the old library is the first part of the output file and the
new library is the second part.

2-1

LIBRARY FILE FORMAT

PROGRAM NAME AND
ENTRY POINT RECORD

END OF RECORD

OBJECT PROGRAM 1

END OF RECORD

OBJECT PROGRAM 2

END OF RECORD

OBJECT PROGRAM n

END OF FILE

....

...._

--....

...

,
I
I
I
I
I
I

1
f­
l
I
I
I
I
I
I
I
I

.J

FORMAT OF 'ROGRAM NAME
AND ENTRY l'OINT RECORD

OBJECT PROGRAM 1 INFORMATION

OBJECT PROGRAM 2 INFORMATION

• • •
OBJECT PROGRAM n INFORMATION

END-OF-TABLE WORD•

FORMAT OF OBJECT PROGRAM

OBJECT CARD IMAGE 1 (NAM)
(16 SIXTY-BIT WORDS)

OBJECT CARD IMAGE 2
(RBD OR ENT OR EXT, ETC.)

• •
OBJECT CARD IMAGE n (XFR)

~

NOTE: AN OBJECT PROGRAM IS ONE
LOGICAL RECORD, WITH A
MAXIMUM SIZE OF 4,992
SIXTY-BIT WORDS (312 OBJECT
CARD IMAGES).

59 41 0

ALL ONES I ALL ZEROS

(END-OF-TABLE WORD)

FORMAT OF OBJECT 'ROGRAM INFORMATION
(IN THE PROGRAM NAME AND ENTRY POINT RECORD)

58 53 47 41 36 20 23 15 0

I c1 I c2 c3 I c4 I c5 I c6 0 I PROGRAM I LENGTH

59 0

2 I OBJECT PROGRAM SIZE (80-BIT) I
58

3

59

4

•
• •
•

59

" I

35 29 23 17 11 5 0

0 I cl I c2 I c3. I c4 I c5 I c6 I
35 29 23 17 11 5 0

0 I c1 I c2 c3 c4 c5 c6 I
• • • •

35 29 23 17 11 5 0

0 I c1 I c2
lc31c4lc

5 lc61
NOTES: 1. WORD 1 CONTAINS THE SIX-CHARACTER

NAME AND THE LENGTH OF THE PROGRAM
IN 16-BIT WORDS.

2. WORD 2 CONTAINS THE LENGTH OF THE
OBJECT PROGRAM IN 80-BIT WORDS.

3. WORDS 3 THAU n CONTAIN THE s1x:
CHARACTER NAMES OF ENTRY POINTS
IN THE PROGRAM. NOTE THAT A
PROGRAM MAY HAVE NO ENTRY POINTS.

M-1084

Figure 2-1. Format of an MPLIB Library File

EXECUTING MPLIB

The utility is executed by attaching the MPLIB permanent
file, and then using the name call statement (see the
NOS/BE Reference Manual).

Five parameters are associated with the MPLIB name call
statement. All of these parameters specify files. Format
of the statement is:

MPLIB [,lfnl,lfn2,lfn3,lfn4,lfn5.J

where lfnl is the object code input file name (default
name is LGO); lfn2 is the input directives file name
(default name is INPUT); lfn3 is the output listing file
name (default name is OUTPUT); lfn4 is the old library
file name (default name is OLDLIB); and lfn5 is the name
of new library file created by the MPLIB run (default
name is NEWLIB).

The parameters are positional. Therefore, if a parameter
is omitted, its delimiting commas must be retained. If a
call uses all default parameters, all commas are omitted.
Such a default call is terminated with a period to indicate
the lack of delimiting commas. For example:

MPLIB.

This call produces:

2-2

• a new library, NEWLIB (lfn5)

• from an old library, OLDLIB (lfn 4), and an object
code input file, LGO (lfnl)

• as commanded by the directives file, INPUT (lfn2)

• with any listings output to the listing file,
OUTPUT (lfn3).

Example 2:

MPLIB,,,OLDOBJ,NEWOBJ.

This call uses default parameters for the object and
directives files, and for the listing file. It names the new
and old libraries, however. The call produces:

• a new library, NEWOBJ (lfn5)

• from an old library, OLDOBJ (lfn 4), and an object
code input file, LGO Ofnl)

• as commanded by the directives file, INPUT (lfn2)

• with any listings output to the listing file,
OUTPUT (lfn3).

60471200 F

fi'Plllt DI•E-f.TtVfS

•ALL. COPY All CF LGO · SCFLIB
•LST.NEW. SC FLU
•ENO. SCFLH

NEW ll8UPY

PPC!GRlfll U: NG TJ., ENTPY POJ~TS

ZERO CC4C lEPC'X PBPSWI 0013 PBPSWI llVCZC
81VC40

BEGINX COOl: BHINX PBPUTP 0017 PBPlTP 81¥050
BICUO

Pt u;rq COltC PPU.H PBGETP 0011 PeGET9 91(250
llCltOO

JLl'PS ((,}(; Jlif'PS PeSTP'4 0013 PBSTP" 8 IC"1C
81(410

AOORFS COIA CIPAOC UNUJCI< OOOF t;~LOCI< BICOC
CC Pl EV BINTXT
CCPCYC OULOCK 0011 CUL CCI< BU-C:C5
•r.~fllt: Uf!IUC
icoPEs PPOTCO OCCf' Prance PUOJ4C
CCPVf P 81 .. Ht
ACOR SU OEM TRY OC48 CEtiTRY 80"4(

8JSTID
PBLNOO CO?C1 PPU.00 QEXIT OOlE QE UT BISTeI

BISTRS
PPlt\Cl CCH Pett-Cl BUFMAI OC7t: P!PHC USTRC

PU Ell
P8lN02 OOlf nu.oz PBGHl U:SU7 vU7 PHJOC

PBft£LZ 81X140

P8LNG3 CClF PPU-03 ere too
L ISTSR C028 FBLSGE e1c21c

Pflt\0'-' ooze PPL t.N- PPL SPtJ f IY35()
! JCLAS

Pt!t NC8 CClf PHt\Ck PP STOP OOlC PD STOP l'JCCDtl
BICVER

P8H TC earn. Pet.ETC PBSLJ C~C7 PBSlJ B IBUTJ4
BIT£Rfll

PBPUTC CCC7 Pf PlJTC PTTPIN 002' PTTPJN eIC200
PH23C

PPC' All CCC.f PBCHL FPSClA co2r J:P-SrlA RH25C
8IT1 oc

n.s TrP C<Cl? HSTr::P '4CDf'IST OOC E flt Te eI,. 30
f-ll T9 Bt•15C

P8f Il E 002P f>Ptf t'll TO. PIX160
PfH f'lll't PT •170

f" llll BHlf'C
PJU'T r,r~r. p llf'T fl'Jt T3 PIXlCJO

f' ll T~ l'IJ20C

f'8Af'AS 0012 PBAtAS t'Tl TA RIX210
RI Jl21t0

PBLMAS oooc FPU'AS AS,.tSf cc cc BIX250
B 1Jf 30C

PPCt'AS OOCF PP.Cr&S HSPPU I OOCF ~~CC9 8IU20
t4JtJSPT 80150

P8Sfi'AS co cc PBSf'AS HEP,.2 el JCltltC
p uoc

PBBEXI OOCF PBRE XI HS2Pl'U ClleC t-'ZISPT UURC
fH TOO!

PeAEXI OOOE Pf!•EX I HS-PRUT 027Cl MXTPT IHOC09
t-'.,TTPT

P!SETP 0022 PBSETP HUTPT TPST78 OlCl BZ7TPT
nFTPT P3lTPT

PBCLPP oooc PBCLRP
HSP"GS oooc NA I< HMS BSCMSG COZD AC I< CMS

PICO"P OOlF P8CCiMP ACl04"S •CICl"S
EOTB"S

POOPG OOlC PUOP6 UIPST7 0210 8tSTH WACIC8"
BIOISC TTCB"S
UEMTlt OISCH'
BIEOlO ENQB"S

Ul<Bf•S

Figure 2-2. Sample MPLIB Library Listing

60471200 F 2-3

PO EXIT oc'c PDUIT PNT"lD 0098 PNT .. LO

POHTR 0282 PDSTT!l PNCNTl, 005b PNC NTL

PtTHP" 0011 ·ptTff;fi' PNlCR I 0026 P~LCR

CLCIA~ 04Pf ClCIAG PhSTAT OOZF P~STAT

OL D"1LX GCl? CLCl"lJ)' PNlLNS C077 PNllNS

PH SC.l ('03~ PH'S Cl PNZLNS 005C Pt\2LNS

PTt'SrA (.!)7r' P H'SC t PNLt.ST CCB7 PNLfl.ST

PlOHf" CCt.P. PHELP' Pt<lT114L OOQF PNJTHL

PTT Yl"'l: 0007 Fll'rfl4l Pf'\Tl'!l S OOGt PNH'l S

PTTYT I 0~4F HlYTI Pt.PrlOC Cl?8 P~FPOC

PTlYTr f,JC' £ PT HTC P._181<0 CCf7 Pt-tlP.Pt

Pt- A._A j (':)lf Pt..HAI f',._GVLO cue Pf. CVL 0

P~HN COCA flt-' Pl N PfliCVLr coqc:; PHVLC

Pf\ Sf"&>f. co ~f- H~,.P8 PM!VLT COIA P~f~ll

PM ~-~A C(l.f. rt•l.t.P. a P~ FPC E tC27 PKHCE

Pt.i?yi: S (IQ 7 J H.P"P~ P~PSfA ron P~FSlA

PJITf((c.:?7 HH(l Pl':~ST & ope: PHSl'

p"' CJ! fl re 3 !. Pf\Ofl Pt.:S~H Cl?~ nSf"H

Pl\G Tell (~4(P~fTCP !:tf PUG 0021 CCEFUG

P~• fC:t' .'! COf f HHeS UCL ft c·on PP(l I'<

p~ryll'" ((:'t:r PHI Tf PPC'ISP CC ff PA CJ SP

P~DISC (f.(q. H[JSC PB tr AO f•C41> Pftl(4r

P~VH fO':'/> p~.;~1qp PP ILL cor1)~ H Ill

Pf.S'4H 0171 H~,..liJL PP~HT Cl rt PP .. ll T

Pt.SP'OI COE4 Pl' ~P'l)J PBP't~ cot? PP P'f._

PH(lt-:f rzc:4 Pt.:([Nr TCTI~E 00)) HTU•E

Hlfl:CN OlAf PHt.CN TCST AR OOCft HSU~

HTP"l~ rn,. Pr.1nr lCSTOP OJCP TCSTC:P

Pt.0£LE C.OD<J Pt.OH E PIOTRL CO~l FICTIH

Pt.FNAR OOH PNE~A8 '"INS ooie f'H~S

P~tJS.& 01C5 PHIS'

PH ltiE. r:orr: P_t.lJ~f

Figure 2-2. Sample MPUB Library Listing (Contd)

2-4 60471200 F

MPLIB DIRECTIVES

There are six MPLIB directives. Four of them are directly
concerned with chasing the programs that form the new
libary. One of them selects the optional listings. One of
them terminates the directives list. Except for the
terminating statement, the directives can occur in any
order.

All directives begin with an asterisk (*); any directive can
be terminated with an optional period. The general form
of an MPEDIT directive is:

*DIRECTIVENAME [,parameter. J

All directives begin in column 1 of a Hollerith coded card
or card image.

If there are no directives in the directive file, the old
library is copied to the new library without alteration.

*ALL, ADD ALL THE OBJECT CODE FILE PROGRAMS
TO THE NEW LIBRARY

The *ALL directive causes MPLIB to copy all of the
programs on the object code file to the new library file.
It is used to create a new library for the first time. It can
also be used for adding a set of new modules (such as a
terminal interface package) to an existing library.

Format of the directive is:

*ALL[.]

*PUT, ADDS PROGRAMS TO THE LIBRARY
FROM THE OBJECT CODE FILE

The *PUT directive has two formats:

• One form adds a single program (module) from the
object code file to the new library file.

• The other form adds a sequence of programs from
the object code file to the new library file.

The directive is used to select programs for inclusion in
the new library. It is also used to replace programs on the
old library file with programs of the same names from the
object code file. The utility can be used in the latter
manner to update a program library.

The single program format of the directive is:

*PUT,mod [.]

where mod is the program name. It starts with a letter.
If the name exceeds six characters (letters or numbers),
MPLIB discards the seventh and following characters. The
names on the old library are no longer than six characters.

If a program is replaced with a new version of the
program, the new program has the same place in the new
library index and in the library file.

The series program format of the directive is:

*PUT,modl-mod2 [.]

where mod! is the name of the first program in the object
code sequence, and mod2 is the name of the last program
in the sequence. Names are truncated to six characters as
necessary. If the programmer wishes to replace a series

60471200 F

of programs on the old program library, the names of all
programs in the sequence must be identical to the new
names. This form of the directive is particularly useful
for adding new applications to a library, or replacing
applications where the modular structure of the
application has not changed.

Note that a dollar sign ($) symbol can be substituted for
the name of the first or last program on the object code
file.

*DEL, DELETES PROGRAMS FROM THE LIBRARY

The *DEL directive suppresses copying the specified
program or programs from the old library to the new
library. There are two forms of the directive. The single
program deletion format is:

*DEL,mod[.J

where mod is the program name. If the name exceeds six
characters, MPLIB discards the seventh and following
characters.

The series program deletion format is:

*DEL,modl-mod2 [.]

where mod! is the first of the programs to be deleted
during copying, and mod2 is the last program to be deleted
in the sequence. All programs on the library index
between (and including) the named programs are deleted.
(A listing of the old library can be produced by a *LST
directive to find the order of programs on the library.)

Note that a dollar sign ($) symbol can be substituted for
the name of the first or last program on the library file.

*SUP, SUPPRESSES COPYING PROGRAMS FROM
THE OBJECT CODE FILE TO THE LIBRARY

The *SUP directive is used only in conjunction with the
*ALL directive. It allows the user to suppress copying of
the specified program or programs from the object code
file to the new library. There are two forms of the
directive. The single program suppression format is:

*SUP ,mod [.]

where mod is the program name. If the name exceeds six
characters, MPLIB discards the seventh and following
characters.

The multiprogram suppression format is:

*SUP,modl-mod2[.]

where mod! is the first of the programs to be deleted
during coping, and mod2 is the last program to be deleted
in the sequence. All programs on the object code file
between (and including) the named programs are deleted.

Note that a dollar sign ($) symbol can be substituted for
the name of the first or last program on the object code
file.

*LST, LIST A LIBRARY

The *LST directive is used to request a listing of the new
library or a listing of the old library. Formats for these
requests are:

2-5

*LST ,OLD[.] for the old library listing

*LST,NEW[.J for the new library listing

If both listings are requested, the old library occurs first
on the output file.

*END, END THE LIBRARY BUILDING OPERATION

The *END directive terminates the directives file. Form
of the directive is:

2-6

*END[.]

MPLIB ERROR MESSAGES

Library maintenance error messages are listed in table
B-1 of appendix B. The action that should be taken when
these messages appear is also given in that table.

60471200 F

VARIANT DEFINITION HANDLING UTILITY, EXPAND 3

INTRODUCTION

Expand is a special purpose utility which provides a
simplified user interface to the CCP installation process.

Two directives are used to describe the NPU variants (see
glossary) and the CCP downline load file.

The CCP user provides an indirect access permanent file
called USERBPS which contains the CCP variant
definitions for the system to be installed. This utility
expands the USERBPS configuration definitions into a set
of directives used by the appropriate build step. Two
types of definitions are found on USERBPS:

• VRD, a variant definition. This expands
corrections to the update input decks (see figure
1-1 and the NOS Installation Handbook).

• LFD, a load file definition. This expands the Load
File Generator utility directives for the load file
generation build step (see figure 1-1 and the NOS
Installation Handbook).

EXECUTING EXPAND
Expand is called automatically by the appropriate CCP
installation build steps. The user must, however, know the
form of the variant definitions entered in USERBPS.

The variant parameters file (USERBPS) can contain any
number of CCP variant and load file definitions. The user
must supply a variant name (see figure 1-1) for each
variant to be processed.

During the variant build step, the user specifies the
variant name. The Expand utility is automatically called
to search USERBPS for the specified variant name. The
utility uses the associated definition to generate a set of
Update directives. These expanded definitions are used to
generate input for the Autolink and MPEDIT utilities,
which are described elsewhere in this manual. Note that
CCP installation build steps also call Autolink and
MPEDIT automatically.

SYNTAX OF EXPAND VARIANT
DEFINITION PARAMETERS
The general definition format is:

keyword=type, parameter l=valuel, ••• ,parametern=valuen.

Some parameters optionally take multiple values.
Mui tiple values are separated by slashes.

The following rules apply to all USERBPS definitions:

• The keyword identifies the type of definition
(VRD or LFD).

• Blanks are ignored.

• All definitions terminate with a period.

60471200 F

• Omitted parameters do not need delimiting
commas.

• If a definition requires two or more lines, the first
nonblank character of each continuation line is a
plus sign (+).

• All values for a parameter must appear in a single
line.

• The first nonblank character of a comment line is
an asterisk (*).

VRD, DEFINES A CCP VARIANT
Format of the VRD definition in USERBPS follows. Note
that the order of the last three parameters must be as
shown (NP, CP, and TR).

VRD=vn, VT =vU/v2/v3J, SZ=xK, TS=[tl/t2/ ••• /tJn, NL=n,
+ NP=id, CP=id, TR=pal-idl/pa2-id2/ •••• /pan-idn.

VRD identifies the entry as a variant definition and
specifies the variant name. The name is a three­
character string used by the CCP variant build step to
create unique, permanent file names.

VT specifies variant type. One value is required; two
others are optional:

vl - is required, its values can be F, Lor R where
F indicates a front-end 255X; the unit includes
a HIP but no LIP.
L indicates a local 255X; the unit includes a HIP
and a LIP.
R indicates a remote 255X; the unit includes a
LIP but no HIP.

v2 - is optional; its value is D indicating the variant
should include on-line diagnostic support
modules.

v3 - is optional; its value is T indicating the variant
is a test build. A test build includes modules
for TIPDEBUG, TESTGEN, TUP (the variable
TOTUP is set to 1), and CONSOLE.

Examples of VT parameters are:

VT =L/D/T Specifies a test build for a local NPU with
diagnostics.

VT=F/D

VT=R

Specifies a normal build for a front end
NPU with diagnostics.

Specifies a normal build for a remote NPU
without diagnostics.

SZ specifies the variant memory size. Allowable values
are:

65K
BlK
96K
128K

65,536 words of memory
81, 920 words of memory
98,304 words of memory
131,072 words of memory

3-1

The SZ memory size must not conflict with the
corresponding NPU definition in the network definition
language, l\DL (see the Network Definition Language
Reference Manual).

TS specifies the TIPs to be included in this variant. TS
can assume up to ten independent values.

A indicates the ASYNC TIP is included.
E indicates the ASYNC extended option (ASYNCEXT)

is included.
H indicates the HASP TIP is included.
M indicates the Mode 4 TIP is included.
X indicates the X.25 TIP with PAD sl.b TIP is included.
B is reserved for future use.
1 indicates a User 1 TIP is included (TIP provided by

user).
2 indicates a User2 TIP is included (TIP provided by

user).
3 indicates a User 3 TIP is included (TIP provided by

user).
4 indicates a User4 TIP is included (TIP provided by

user).

Examples of the TS parameter are:

TS=A/E/M

TS=H/X

NPU has the Mode 4 TIP, and the
ASYNC TIP with extentions.

NPU has the HASP TIP and the X.25
TIP with PAD subTIP.

TS=A/E/M/X/l NPU has both normal and extended
versions of the ASYNC TIP, the Mode
4 TIP, the X.25 TIP with the PAD
sl.bTIP, and one user-written TIP
designated as user TIP 1.

NL specifies maximum number of 255X lines (ports) to be
configured for this variant. The associated nl decimal
value ranges between 1 and 254.

NP specifies the NPU node ID for this NPU. The
associated np decimal value ranges between 2 and 255.
The value must not conflict with the corresponding NPU
definition in the network configuration file, NCF, which
was generated wring installation by network definition
language directives.

CP specifies the host coupler decimal ID if the variant
type is front-end (F) or local (L). CP is omitted for
variant type remote (R). The cp value must not conflict
with the corresponding coupler statement in the network
configuration file, NCF, which was generated during
installation by network definition language directives.

TR specifies the trunks if the variant type is local (L) or
remote (R). TR is omitted for variant type front-end (F).
Two values are required for each trunk: port address (pa)
in hexadecimal, and the three-character variant name of
the NPU at the other end of the trunk. AU trunks are
specified by one TR parameter. Value pairs are separated
by slashes (/). An NPU can have one to eight trunks. For
example:

TR=l-RM1/2-RM2/3-RM3

specifies a local variant with three trunks. These are
connected at ports 1, 2, and 3 to remote NPUs RMI, RM2,
and RM3 respectively.

3-2

EXAMPLES OF VRD DEFINITIONS

Example 1:

VRD=EXl, VT =L/D, SZ=BlK, TS=A/M, NL:lOO, NP=ll,
CP=2, TR=l-RM1/2-RM2.

This defines:

• A local NPU with 81,920 words of memory having
an NPU ID of 11 and a coupler node ID of 2.

• This normal build includes two TIPS (Mode 4 and
normal ASYNC) and on-line diagnostics.

• Two remote NPUs are attached. Remote NPU
RMI is connected through trunk port 1. Remote
NPU RM2 is connected through trunk port 2.

• No more than 100 lines can be connected to this
NPU.

Example 2:

VRD=EX2, VT=R/T, SZ=81K, TS=A/E/H/X, N..=127,
NP=23, TR=3-L81.

This defines:

• A remote NPU with 98,304 words of memory
having an NPU ID of 23.

• This test build includes four TIPs: HASP, X25 with
PAD subTIP, and both normal and extended
versions of ASYNC. On-line diagnostics are
omitted.

• This remote NPU is connected on trunk port 3 to a
local NPU with variant name L81.

• No more than 127 lines can be connected to this
NPU.

Example 3:

VRD=EX3, VT=F/D/T, SZ=l2BK, TS=A/E/M/H/X,
NL=l27, NP=30, CP=l5.

This defines:

• A front-end NPU with 131,072 words of memory
having an NPU ID of 30, and a coupler node ID of
15.

• No remote 255X units are connected to this NPU.

• This test build includes all five standard TIPs and
on-line diagnostics.

• No more than 127 lines can be connected to this
NPU.

LFD, DEFINES A CCP LOAD
FILE VARIANT
The format of an LFD statement in USERBPS is:

LFD=gn, LM=vv l-p2lidl/ •••• /vvn-p2lidn.

LFD identifies this entry as a load file definition, and
specifies the load file name (gn). The gn value is a
three-character string used by build step CCPGLF to
create a unique permanent file name for the output file
(see the NOS Installation Handbook).

60471200 F

LM specifies the CCP variant load modules to include in
this load file. The multiplex subsystem firmware (phase 1)
and dump bootstrap load modules are automatically
included in every load file. The on-line diagnostics and
remote 255X dump/load overlay load modules are
automatically included if files ZDGN and/or ZREM are
present.

The associated vvi-p2lidi value consists of two parts: (1)
vvi is the three-character name of a variant load module
(permanent file name = Zvvv) generated by the CCP
variant build step; (2) p2lidi is the three character name
specified for this variant as the phase 2 load ID in the
corresponding NPU statement in the network con­
figuration file.

One vvi-p2lidi value is required for each variant to be
included in the load file. Successive vvi-p2lidi values are
separated by slashes (/).

EXAMPLES OF CCP LOAD FILE DEFINITIONS

Example 1:

LFD=EX4, LM=EX1-Nll/EX2-N23 /EX3-N30.

defines a load file containing the variants created in the
three VRD variant definition examples given previously.

NOTE

In LFD examples, p2lidi naming follows
the load file generator conv~ntion: the
name starts with the letter N and is
followed by the two-digit NPU node ID.

Example 2:

LFD=EX5, LM=EX3-N30.

This defines a load file containing the variant shown in the
third VRD example given previously.

60471200 F

E:>CPAND ERROR MESSAGES
All error messages generated by the Expand utility are
written to the file specified by the fourth parameter of
the Expand name call statement. If no file name is
specified in that parameter, error messages are written to
the file with the local name, ERMSGF. During a variant
build or a load file generation, errors are written to the
output file. The messages appear on the listing from that
build step.

Each error message indicates the problem type (for
example, a USERBPS file error or a macro text file
error). In some cases, the erroneous text is also copied
into the error message.

An error message has one to three lines:

• The first line is the text line. It contains the text
passed to the Expand utility from the build
procedure step.

• The second line specifies the primary USERBPS
line of a variant or load file definition.

• The third line is an associated variant definition.

Some error messages omit one or more of these lines.

In some cases, an arrow occurs underneath the text line of
an error message.· Any text to the right of the arrow was
not processed by Expand at the time it detected the
error. For example:

LN = EXJ

+
In this case, the error occurred either in the symbol LN or
in the equal sign. Expand had not processed the EXJ
symbol.

The Expand utility error messages are shown in table B-2
of appendix B. The action to be taken when these
messages appear is also given in that table.

3-3

AUTOLINK UTILITY 4

INTRODUCTION
Autolink generates the MPLINK directives for CCP. It
simplifies MPLINK use and provides an optimized MPLINK
input directives file. By optimizing the location of
executable modules in NPU, Autolink provides the
maximum number of buffers. These buffers can be
assigned for message processing purposes.

If standard CCP installation procedures are used, this
program is generated by the build procedures from the
release tapes; its use is generally invisible to the system
installer.

CCP APPLICATION PROGRAM TYPES

A CCP application program (normally called an
application) is a group of modules working together to
perform some major system function. There are two
types of CCP applications:

• Base applications that must be included in every
CCP system. Most of these applications are
located in an unpaged area in main memory. One
of them, the service module, is located in the
paged area of main memory. Parts of the service
module that cannot fit on this page are located in
the paged area of main memory.

• Terminal interface packages (TIPs). This category
also includes the host interface package (HIP) and
the link interface package (LIP). These
applications are normally located in the paged
area of extended memory, although individual
application modules can be included in paged or
unpaged main memory.

Table 4-1 relates the standard CCP applications names to
the common names for these applications

The NPU memory is paged. Current page length for CCP
is 8192 words. CCP uses one page located at address
200016; all other pages are imaged at this page, but are in
fact located in extended memory (addresses higher than
65,536). Having all modules of an application located on
the same computer page speeds processing. Autolink
allows the user to specify that a module is to be loaded on
the same page as its application; Autolink can locate
other modules elsewhere to optimize buff er space or to
avoid page overflow. Paging and the associated
addressing problems caused by paging are discussed in
detail in the Link utility section of this manual.

AUTOLINK INPUTS

There are two types of Autolink input files: directives and
object code files for the directives to act upon. These are
shown in figure 4-1.

Autolink Input Directives

The user specifies the linking operations to be performed
by a series of input directives to Autolink (this is

60471200 F

TABLE 4-1. CCP APPLICATION NAMES

Name

ASYNC

ASYNCEXT

BASE SYS

CONSOL

HASPTIP

HIP

LIP

INITIAL

IVT

MODE4

OLD SYS

PIBUF2

PIDTBL

SVMODULE

TUP

X25L2

X25L3

X25PAD

X25TIP

Conman Name/Function

Asynchronous Terminal Interface
Package

Extended Asynchronous Terminal
Interface Package

Base System Modules

NPU Console Package

HASP Terminal Interface Package

Host Interface Package

Link Interface Package

Initialization Routines

Interactive Virtual Terminal
Conman Routines

Mode 4 Terminal Interface Package

On-line Diagnostics

Buffer Space

ID Table (this is always the last
application specified)

Service Module

Test Utilities Package

X.25 TIP Level 2 (Frame Handling)

X.25 TIP Level 3 (Packet Handling)

PAD SubTIP for the X.25 TIP

X.25 Terminal Interface Package

automatic if the standard system is used). The directives
are contained on an input file. Four types of directives
exist:

• Directives specifying the size and paging
characteristics of the NPU memory. Reserved
areas can also be specified (the characteristics of
a reserved area are discussed later).

• Directives defining the applications and
associated modules to be used in the build. These
directives also specify whether the module must
be loaded on the same page as the other modules
of the application.

4-1

AUTO LINK
DIRECTIVES

OBJECT
CODE MODULES
(RELOCATABLEt

OLD
LIBRARY
(INDEXED,
RELOCATABLE
OBJECT CODE
MODULES·
OPTIONAL)

INPUT
FILES

FATAL
ERROR
MESSAGE

--/7' '~--
--- ,, I ' --

---- ,,,,,,""' I ', ------- ,,-" ----.---------......... .,.. __ ______ __
BUFFER
SPACE
REPORT

MEMORY
MAP

INPUT
DIRECTIVES
REPORT

OUTPUT
DIRECTIVES
REPORT

ERROR
MESSAGES
a
DIAGNOSTICS

M-1085

Figure 4-1. Autolink Logical Flow

•
•

Directives defining the optional Autolink reports.

Passive MPLINK directives. These directives are
not processed by Autolink, but are saved and are
copied into the output file Autolink generates for
MPLINK.

Autolink Input Modules

Modules are input to Autolink from special object code
files (see figure 1-1). These files can be the direct output
of a Cross assembler or compiler, or a library file created
by the CCP installation procedures. In either form, the
object code is relocatable. The format of this relocatable
code is given in appendix F.

OUTPUTS FROM AUTOLINK

The principal Autolink output is a file of directives for
MPLINK. The other outputs are the Autolink reports and
a fatal error file (see figure 2-1). The reports are:

4-2

• •
• •

Buffer space report
Output directives report
A memory map
An input directives report

EXECUTING AUTOLINK

The CYBER Cross System must be installed for Autolink
to be executed. Autolink's name call statement is of the
form:

ALKOVL(files)

If the user follows the installation procedures given in the
NOS Installation Handbook, the input files necessary for
Autolink's proper operation should be available at Autolink
execution time.

AUTOLINK INPUT FILES
Inputs are presented to Autolink on three input files:

• •
•

The input directives file (required)
An object code file which contains modules
(required)
An object code library file (optional)

INPUT DIRECTIVES FILE

This file contains the directives necessary to generate the
MPLINK directives file. The MPLINK directives contain
all control information needed by the Link utility to
produce the memory image load module (ABSOLMP) file
and the symbol table (SYMT AB) file. These two files are
the required inputs to the Edit utility. See figure 1-1.

60471200 F

OBJECT CODE MODULES FILE

This file of object code modules contains all the modules
that are to be linked. These modules are the output of a
CYBER Cross System compiler or assembler.

LIBRARY FILE

This optional file contains the object code for modules
that are grouped into a library. The function of this file is
identical to that of the object code module file; the
library provides a second source of object modules.

AUTOLINK OUTPUT FILES
There are four types of Autolink output files:

• Output directives file

• Fatal error message file

• Listings files

• Temporary file for saving passive MPLINK
directives

The output directives file is normally left as an on-line
mass storage file so that it can be used as the input to the
MPLINK utility.

Information generated by fatal error processing is stored
in the fatal error message file. If no fatal error occurs,
this file is empty.

The user can select optional reports, the output directives
file, or a listing file contain one or more reports.

A temporary file is used to save the passive MPLINK
directives until they are needed in producing the output
directives file. The contents of the file are not available
to the user.

OUTPUT DIRECTIVES FILE·

This file contains the MPLINK directives that are
generated by the Autolink processing its own input
directives. The passive di rec ti ves that were used as
inputs to Autolink are copied to the MPLINK directives
file. The Autolink output file is used as the directives
input to MPLINK.

Any fatal error prevents generation of the output
directives file.

LISTING FILE

This file contains any operator-requested reports, as well
as any infocmative messages generated during Autolink
processing. Informative messages are either warnings
that indicate non-fatal input directive error, or provide
diagnostic information about the fatal error.

Fatal errors that occur during the MPLINK directives
generation prevent reports; fatal errors that occur during
report generation can resul_t in a partial report. The
partial report information is not reliable.

60471200 F

FATAL ERROR MESSAGE FILE

This file's message specifies the cause of the fatal error
and contains diagnostic comments. Standard CCP
installation procedures copy the fatal error file to the
output file and normally terminate the variant build step.

EXECUTING AUTOLINK
Autolink is executed through the name call statement:
ALKOVL(files). If the user follows the installation
procedures given in the NOS Installation Handbook, the
input files necessary for Autolink's proper operation
should be available, and rewound at Autolink execution
time.

Autolink's name call statement contains eight file names.
The names must appear in the order given. If a name is
omitted, its delimiting commas must remain. Format of
the Autolink name call statement is:

ALKOVL(l fnl,l fn2,l fn3,l fn4,l fn5,lfn6,l fn 7 ,1 f nB)

where the file names are defined as follows:

lfnl - the name of the file containing the input
directives to Autolink. Default is TAPE!.

lfn2 - the name of the file containing the main
object code input. Default is TAPE2.

lfn3 - the name of the file containing the object
code library. This is the secondary object
code input and is optional. Default is TAPE3.

lfn4 - the name of the output directives file.
Default is TAPE4.

lfn5 - the name of the reports file. This file
contains all reports and informative
messages. Default is TAPES.

lfn6 - the name of the provisional file that stores
the passive MPLINK directives. Default is
TAPE6.

lfn 7 - the name of the fatal error file. The file is
generated only in the case of a fatal error.
Default is TAPE7.

lfnB - the name of the error file. Default is TAPEB.

AUTOLINK DIRECTIVES
Autoli nk directives are of two types:

• Passive MPLINK directives that are not used by
Autolink but are copied into the output directives
file.

• Active Autolink directives, which are processed
by Autolink to form an output directives file or a
report, or both. Some of these directives specify
the modules to be selected from the input object
code files and how they are to be used in the
build. Other directives specify the report or
reports which Autolink is to generate.

PASSIVE MPLINK DIRECTIVES

Passive MPLINK directives allow the user to insert
MPLINK directives directly; they are copied unaltered
into the output directives file.

4-3

The group of passive MPLINK directives which Autolink
can use is:

• *COM which defines the blank common area

• *COR which defines the size of the NPU memory
to be used for the build

• *DAT which defines the labeled common area for
PASCAL tables

e *DSTK which defines the PASCAL
reentrant/recursive routines stack area used by
MPLINK

• *DMP which orders a hexadecimal dump of the
load file image

• *DVAR which defines the dynamic area for
PASCAL variables

• *ENT which defines an entry point for a module

• *LIB which defines the library file used to resolve
unsatisfied externals

• *SYN which defines a synonym for a module name
or entry point

• *SYSID which defines the system name and header
record for the load file

These directives are described in detail in the Link utility
section of this manual. Other MPLINK directives cannot
be used by Autolink.

ACTIVE AUTOLINK DIRECTIVES

Active Autoli nk directives are processed by Autoli nk and,
in most cases, generate MPLINK directives for the output
file. A directive consists of a directive name followed an
equal sign and a parameter list:

DIRNAME = parameter list

Blanks are ignored.

Active Autolink directives are summarized in table 4-2.

The order of the directives is significant:

4-4

• APPL directives must be entered before MOD
directives. APPL directives define the
applications to be used in the build. The order of
entering APPL directives with respect to one
another has an effect which is explained in the
Special Considerations for Using Autolink
sl.bsection. The last application must be PIDTBL.

• RPT =INFO turns on the input directives report.
Any input directives entered ahead of this
directive are omitted from the report; all
directives following the RPT =INFO directive are
included.

• MOD directives must follow all other directives.
The order of entering MOD directives with
respect to one another has as effect as explained
in the Special Considerations for Using Autolink
stbsection.

TABLE 4-2. SUMMARY OF AUTOLINK DIRECTIVES

Directive

APPL

BUFSPSIZE

CORESIZE

DEF

DEF BASE

MOD

PAGESIZES

PAGEREG

RESERVE

RPT

Description

Defines names of all applications
that can be used in any system
build.

Specifies the memory sizes to be
used in the buffer space report;
that is, several trial computer
sizes can be used.

Specifies the memory size of the
NPU which is to receive the build.

Specifies the applications to be
used in this build.

Specifies base applications which
must be used in every build.

Defines the module name, and asso­
ciates the module with one or more
applications.

Specifies the size of a page
(currently, CCP cannot use more
than one size).

Specifies page register number.

Specifies reserved areas of main
memory.

Specifies reports to be generated
as part of Autolink run.

rpx=BUFSP specifies the buffer
space report.

rpx=DIR specifies the output
directives report.

rpx=MAP specifies a main memory
map.

rpx=INFO specifies a list of
the input directives and
application lengths.

NOTE

If the order of the MOD directives is the
same as the order of the modules in the
object code input file, the execution speed
of MPLINK is greatly increased.

Comments for Directives

Comments can appear anywhere in the input directives
file. Comments are delimited in the usual PASCAL
syntax fashion:

• The comment starts with an ASCII underscore (-).
This is the same as the bent arrow ~) in CDC
graphics.

60471200 F

• The comment ends with an ASCII question mark
(?). This is the same as the down arrow(+) in CDC
graphics.

APPL. Specifies Applications

The APPL directives identify the applications that
comprise the system. An application consists of a group
of modules performing a set of related functions. The
group is identified by the single application name.

Only one application name is used in each application
directive. Every application referenced by a MOD
directive must have an APPL directive. No more than 60
applications can be defined.

The format of an APPL directive is:

APPL=appl [(ADDR = $nnnn)]

where appl is the user supplied name of the application. It
consists of one to six letters and digits. ADDR is an
optional parameter specifying a starting address ($nnnn)
for the application in hexadecimal.

The last application directive to be entered must be
PIDTBL The order of entering other APPL directives
with respect to one another is explained in the Special
Considerations for Using Autolink subsection.

CORESIZE. Specifies the Memory Size of the Variant Build

This directive specifies the memory size of the variC11t
build for the NPU. The format of the directive is:

CORESIZE=n

where n is the memory size. Allowable values are: 64K
(65,536 words of memory), BOK (81,920 words of memory),
96K (98,304 words of memory), and 128K (131,072 words
of memory). Default value is 12BK.

DEF, Specifies the Applications to be Included in the Build

This directive allows the user to select applications for a
variant build from the full set of applications specified by
APPL directives. Any application specified by an APPL
that is not included in a DEF directive is ignored. Format
of the directive is:

DEF=appl

where appl is Cl1 application name. It must be the same as
the name for the application used in an APPL directive.

DEFBASE, Specifies Base Applications
that Must be Included in Every Build

CCP requires some applications in every build. These
base applications must not appear in DEF directives. Base
applications are not included as optional applications in
the buffer space report; however, the size of DEFBASE
applications is calculated during that report's generation.
Format of the directive is:

DEFBASE = appl

60471200 F

where appl is an application name. It must be the same as
the name used for the application in the APPL directive.

MOD. Specifies Where a Module
can be Loca18c:I during a Build

This directive specifies the type of location available to a
module during a variant build. Autolink handles up to 600
MOD directives.

MOD directives must follow all other directives. Each
MOD directive associates a module with at least one
application. All modules used in the build must have a
MOD directive.

Autolink generates an informative message if a MOD
directive is issued for a module not available in one of the
object code input files. Autolink generates a fatal error
message if a MOD directive is issued for such a module
belonging to a defined application.

Note that a module directive can be carried on two or
more physical lines as defined in the syntax rules given
previously.

The MOD directive consists of a name followed by a
parameter list enclosed by parentheses. The parameters
are separated by commas, and can appear in any order.
Format of the MOD directive is:

MOD=modname(P=p,ADDR=addr,FILL,TH=tophat,
APPL=appll/appl2/ ••• /appln)

where modname specifies the name of the module as it
appears in the object code file. Only the first six
characters of the name are significant.

P - Specifies the type of paging to be used:
P - indicates a pageable module. If a module is (1)

pageable and (2) not specifically assigned a load
address (ADDR parameter), then the module is
located at the next available page address of the
associated application, if possible. Otherwise,
the module is located at the next available main
memory address of its application.

NP - indicates a non-pageable module. NP is the
default value for the P parameter.

F - indicates a module that is forced to reside with
the paged portion of its associate application.
An application cannot be assigned to a given
page unless all its F-designated modules can fit
on that page.

R - indicates a reverse-loaded module; that is, space
is reserved for the module based on a fixed
ending address rather than a fixed beginning
address. Unless otherwise specified, the ending
address of the first R module in the directives
file is the highest available main memory address
(FFFE 16). Ending addresses of subsequent R
modules start at a address one less that the
beginning address of previous R module.

ADDR - specifies the module is to located at an absolute
address.

addr is the absolute hexadecimal ($aaaa) address. For
R modules, addr is the ending address; for all
other modules, addr is the starting address. A
fatal error results if one ADDR module
overflows into the region assigned to another
ADDR module. If the ADDR parameter is
omitted, Autolink allocates a location according
the requirements of other parameters.

4-5

FILL - indicates that the module need not be loaded in
association with its application; rather, the module can be
used to fill empty locations throughout main memory or
paged memory that result from specifying reserved areas
and absolute addresses, after assigning space for other
some other types of modules (the filling operation is
perfomed after several other types of processing have
already been performed). Only if P=P can a FILL module
be used to fill empty space on a page.

TH - indicates a tophat module. A tophat module is
normally a module that is called by several other
modules. To minimize the code required to locate a
tophat module's entry point, a small auxiliary piece of
code is compiled with the module. This tophat code sets
the page registers when other modules call this module. If
a tophat module is located in a main memory, this
operation is not necessary, so the tophat auxiliary code is
discarded. Otherwise, if a tophat module is paged, the
tophat code is located in main memory to set the page
registers.

tophat - is the name of the pageable module as it
appears in the object text file. Only the
first six characters are significant.

APPL - specifies the names of all associated applications.
There must be at least one APPL in every MOD directive.

appl - is the name of an applicatioo as it appears in
the APPL directive.

An example of a series of MOD directives is given in
figure 4-2.

PAGEREG, Specif'aes Page Register Number

If specified, this directive indicates the decimal page
register number to be used for extended memory
addresses. If no PAGEREG directive is included in the set
of autolink directives, no page registers are explicitly
included in the MPLINK directives. Format of the
directive is:

PAGEREG = n

where n is the decimal page register number. For the
CCP system, page register 0 is used, and it designates the
page starting at 200016·

PAGESIZES, Specifies the Size of a Page

This directive specifies the size of each page in pageable
memory. Currently, CCP requires that all pages be of the
same size. The format of the directive is:

PAGESIZES=sl

where sl is the selected page size in K words (K=l024).
The allowable values are 2K, 4K, BK, and 16K. Default
value is BK.

RESERVE, Specifies a Reserved Area of Memory

This directive prohibits Autolink automatically locating
modules in the specified area. However, Autolink can
locate modules in a reserved area if an ADDR parameter
in a MOD directive specifies that the module should be
located in a reserved area. Each reserved area requires a
separate RESERVE directive. Format of the directive is:

4-6

RESERVE=addrb,addre

where addrb is the lower boundary of the area in
hexadecimal ($aaaa); and addre is the upper boundary of
the area in hexadecimal ($aaaa).

BUFSPSIZE, Specifies Memory Sizes
for the Buffer Space Report

This directive specifies the NPU memory size, or sizes, to
be used in the buffer space report (see the form of the
report in the Autolink Reports subsection). If BUFSPSIZE
is not specified, the report is generated only for the
memory size specified by the CORSIZE directive. Format
of the directive is:

BUFSPSIZE=sl,s2, ••• sn

where si is the memory size to be included in the report.
Allowable values are: 64K (65,536 words of memory), BOK
(81,920 words of memory), 96K (98,304 words of memory),
and 12BK (131,072 words of memory).

RPT, Specifies an Autolink Report

This directive specifies a report to be generated by
Autolink. Four reports are possible. Format of the
directive is:

RPT=rpt

where rpt specifies one of the reports: BUFSP, DIR, MAP,
or INFO. BUFSP specifies the buff er space report, DIR -
specifies the output directives report, MAP - specifies a
memory map report, and INFO - specifies the input
directives report. The position of this card determines
the content of the report: only directives that follow the
card are included in the report.

AUTOLINK REPORTS
Autolink generates four optional reports, each of which
can be selected by an RPT directive. If the BUFSPSIZE
directive is used, it determines the size of memory for the
buffer space report.

BUFSP, BUFFER SPACE REPORT

This report indicates the amount of main memory space
available for assigning to buffers for a given NPU build.
Buffer space is used for processing message traffic.

The report format is governed by the BUFSPSIZE
directive. BUFSPSIZE specifies all the memory sizes that
are to be used while generating the report. A report
includes all combinations of CCP applications that can fit
into a permitted build configuration. For each of these
combinations and memory sizes, the report gives the
amount of space available for buffers. Note that the base
applications do not explicitly appear in the report;
however, the space used by these applications is
calculated in generating the report data.

Since the report requires considerable computation time,
it should not be generated as a routine matter. A partial
buffer space report is shown in figure 4-3.

60471200 F

60471200 F

MOD = PNSWML(P = F, ADDR "' $2000, APPL $VMODULE)
MOD PNAWAIT (P = P, APPL = SVMODULE)

MOD = PNDSTAT(P = NP, APPL SVMODULE)

MOD PGDSTAT(P = P, FILL, TH = PNDSTAT, APPL SVHODULE/BASESYS)

MOD PIDTBL(P = NP, APPL = PIDTBL)
MOD = GLOBL$(P = NP, ADDR = $0DAO, APPL BASESYS)

MOD PIBUF2(P = R, ADDR = $FFFE, APPL PIBUF2)
MOD PBREAD(P = R, APPL = CONSOL)

MOD = MAIN$(P = R, APPL INITIAL)

MOD R4M4IN(P = NP, FILL, APPL = MODE 4)
MOD = R4M4CC(P = NP, FILL, APPL = MODE 4)
MOD R4M4TP(P = P, APPL = MODE4)

MOD = PTMD4TIP(P = F, APPL = MODE 4)

MOD = PTASNOPS(P = F, APPL = ASYNC/ASYNCEXT)
MOD = R4ASYT(P = P, APPL = ASYNC/ASYNCEXT)

MOD = R4ASYI(P = P, APPL = ASYNC/ASYNCEXT)
MOD ASYMSG(P = P, APPL = ASYNC/ASYNCEXT)

The first set of modules specified (which is also the order of the modules on the object code input file) is
from the service module. The leading module specifies (p = F) that this module must reside on the main memory
page (starting address = 200016> with other F designated service module routines. Since this is the first
MOD statement, the beginning of this module is located at the beginning of the specified page. The second
service module program can be paged anywhere.

PNDSTAT, also a part of the service module, is not pageable; therefore, it must be located in main memory other
than at the main memory page (locations 200016 through 3FFF16>. The last service module program specified
in the example is PGDSTAT. It can be paged, and must be vectored (using a tophat) to PNDSTAT. Since it is
tied to PNDSTAT, that module cannot be pageable. The module can be used to fill holes in main memory, or on
any page. Note that PGDSTAT is also a part of the base system application.

PIDTBL is the module belonging to the last application. It is nonpageable. PIDTBL must be loaded as the
assigned space above the last main memory sequential application; that is, normally, it is the application just
below the beginning of the buffer area.

GLOBL$ is a module that is assigned a specific address (ODA016>· It cannot be paged, and is a part of the
base system.

PIBUF2 begins the modules in the reverse loading sequence. The sequence ends with MAIN$.

PIBUF2 defines the vector to the area used for buffers. The vector is at the upper end of main memory. The
actual buffer space exists below the reverse-loaded modules, and normally above the last of the sequentially
loaded modules (the last application in this sequence is PIDTBL). The application name is PIBUF2.

PBREAD is also reverse-loaded. It is part of the console application package. The last address of PBREAD is
one less that the first buffer word address.

MAIN$ is the last reverse-loaded module. Some of the reverse-loaded programs are not used during the normal
on-line CCP processing, but are part of the initialization needed when CCP is configured after the downline
load file is sent to the NPU. The buffer area is not determined until Autolink finishes its execution.

The Mode 4 TIP has both pageable and nonpageable portions. It starts with two nonpageabl e modules, R4MRIN and
R4M4CC. Both of these can be used to fill holes in main memory. The first pageable Mode 4 module, R4M4TP,
preferably will be located at the beginning of its own page, since it is the first nonservice module specified
by a P = P MOD directive. Only one of the Mode 4 modules must" be located on the same page as its other modules
(p = F), that is, the Mode 4 worklist handler, PTMD4TIP.

The pageable Asynchronous and Asynchronous Extended TIP modules must be linked together on the same page, or in
main memory. The TIP entry routine, PTASNOPS, indicates that is must reside on the same page as the other F
modules (P = F) for these related TIPs. Some of the remaining modules are designated as pageable; others are
required to be nonpageable.

Figure 4-2. Example of MOD Directives

4-7

••• • • • • • •• • • • •
•MODE4 •HASPTI•HLIP •ASY~C •ASYNC •• 65 • 8C • 96 • 128 •
• • • • • •• • • • • •••
• k • x • x • x • x •• • • 1313~ • 30974 •
• • x • x • x • x •• • 5454 • 216e1 • 31825 •
• x • • x • x • x •• • 3610 • 19852 • 31183 •
• • • X • X • X •• • 11921 t 2745C • 32034 •
• x • x • • x • x •• • • 18482 • 31280 •
• • x • • x • x •• • 10531 • 26764 • 32131 •
• x • • • x • x •• • 8~45 • 24929 • 31489 •
• • • • X • X •• • 16998 • 3234C • 32340 •
• x • x • x • • x •• • • 14487 • 32325 •
• • x • x • • x •• • 6805 • 23038 • 33176 •
• x • • x • • x •• • 49~1 • 21203 • 32534 •
• • • , • • x •• • 13272 • 288~1 • 33385 •
• x • x • • • x •• • 33€5 • 19833 •. 32631 •
• • x • • • x •• • 118eZ • 28115 • 33482 •
t X t • • • X ** • 99q6 • 26280 • 3?84C •
• • • • • x •• • 18349 • 33691 • 33691 •
• x • x • x • x • •• • • 13136 • 30974 •
• • x • x • x • •• • 54~4 • 21687 • 31825 •
• x • • , • x • •• • 3610 • 19852 • 31183 •
• • • x • x • •• • 11921 • 27450 • 32034 •
• x • x • • x • •• • • 18~82 • 31280 •
• • x • • x • •• • 10531 • 26764 • 32131 •
• x • • • x • •• • 86~5 • 2'929 • 31489 •
-· • • • x • •• • 16998 • 323~0 • 32340 •
• x • x • x • • •• • 7739 • 23801 • 33534 •
• • X • J • • •• • 15937 • 298Cl • 34385 •
• X * • x • • •• • 1424C • 29159 • 33743 •
• • • x • • •• • 22653 • 34594 • 345q4 •
• x • x • • • •• • 128~0 • 28878 • 33840 •
• • x • • • •• • 21283 • 34691 • 34691 •
• x • • • • •• • 19317 • 3~049 • 34049 •
•••

--- •• INSUFFICIENT BUFFER SPACE

LINKGEN CO"PLETED

Figure 4-3. Sample Buffer Space Report for a CCP Rlll
(partial report only}

DIR, OUTPUT DIRECTIVES REPORT INFO, INPUT DIRECTIVES REPORT

This report generates a copy of all the directives that
Autolink generates for MPLINK. The directives are in the
order in which they appear in the MPLINK input file. An
output directives report is shown in appendix H as the
MPLINK input directive file.

This report lists input directives and application lengths.
Only those directives that follow the RPT=INFO directive
in the input file are included in this report. A sample
report is shown in appendix G.

MAP, MEMORY ADDRESS MAP REPORT

This report produces two listings:

• One listing gives the names and starting addresses
of all modules in ascending address order.

• The other listing gives the names and starting
addresses of all modules in alphabetical module
name order.

This report is similar to the maps produced by MPLINK,
and is a convenience when the user does not plan to run
MPLINK immediately following Autolink. A sample
report is shown in figure 4-4.

4-8

SPECIAL CONSIDERATIONS
FOR USING AUTOLINK
This subsection discusses four aspects of using Autolink:

• The interrelationship of the APPL, DEF, and MOD
directives

• Requirements imposed on modules used by two or
more applications

• A method for minimizing the number of MPLINK
directives that are generated

• Autolink's method of locating modules in a build

60471200 F

CYBfR "I~I CROSS SYSTEM - LINK EDITOR -

!llOOULE fllEfll!ORY "IAP - SORTED BY MODULE AOO~ESS

•~rnouL =• •A'lDio!E) 5• •P10DULE* *ADORE ss• •fllOOULE* *ADDRESS• *lilOOULE* •ADDRESS*

HPOX 1'0(1) PNLNBA 4148 P~S ETP 5393 PNZDL T 5t=80

DSJNTR OlOll ?NSGAT 4115 PBCLRP 5385 PNZFUl 6005.

JUMPS 014~ PNCCfJ 4ZAE PBC OMP 53Cl PNROUT 6051

AOOIH S 01 ".'J PNCECN 444£1 PS~OPG 53EO PNOUA 60AF

~LrJBLS ')QA') 0 t.iSTOR 44H P~PSWl BFl PNDUD 613't

I Si>OL '.J .._F" 1:1 PT AFOU 4470 P13PUTP 5408 PNQUEU 6l7E

?BCAl.L l F ~'J PTUcT 44:: ~ PBGETP 5422 PNOEQU 61D't
PqlNOJ lF93 R4AC::YI 44 ')4 Pl\STDf4 5433 PBF'1AH b235
P~LNl)l 1FC4 ASYMSG 47A8 UNL fJCK 5446 P!HiJAli 6320
i'f\AMAc; lFt l) ASYLF"I 47~1 OULOCI(545, Pl T!JAH 6387

PNSM-L 20{,(' PTA?SP 4 73 E PBQTCD 54t>b P8TOAD !>40F
DNA'.olA I 21 <1 4 AASC ST 4i3C 'lF~TtlY 51t71 PM11LFH 6470
iHliHf'< 2lf\7 AAE BCO 4~;:c QEXIT 548C PTP'ISC A 61tQ4
?NS~BA 2 lC l AACAPL 4'13C 8UF 1'1AI 54DA PBCLK I 6514
i>NRVR '.i 7217 AT APL A 4'HC l I ST SR 5550 PIHOOM b52F
l>NTc.rn ? ~ 3 '1 A61PLA 4H: P1'S TOP 5578 PBOEL E 65 3E
PNQQCL ?'j 7 A AAS TAP 4'l1=C PTT PIN 5~8ts P8 INS E 6570
?NGTC:i i::: .,._,. AA5AAP "43r'. '100f'IST 5592 PBUPOA b6Fl
?NJC~S ? ?F 'J ASTDAS 4A7C t>IJLN04 :>6-iQ PBP'l~S 6751
Dt.,;l'\L TC "346 A~ '3COA HH P~LN~>7 5bA5 t>~TICK 6618
?N~Cw A ?.43? AEAPLA 41\7C PBLNCCJ Sb Bl PtHOQU 6883
PNOISC "4".: ·" AAfAPl 43;:: PIJL NlO ;6AO P8TOSR 6800
i>NS"'TJ l'.'t f 1 AC APL A 4C3C P8LN11 56CQ PBTOOE 6q56
PNSMl~ Z? ?•) A7TObD 4C'.lC pqlNlZ 5605 PBTllU bqAz
PN)t-rq ?5bb i18LNOf. 4:FC ,nN13 5f.E 1 P816AO 6QE9
0 NLLC:-t :>t;;:: l'TCTC~ 41)34 P'3LN14 5MO PBLCH 6A21
PNLl\ICN {. 7L 2 OfOETO 4%5 PBL Nl 5 5~FO PUIMO 6S05
Pt-.Tf"l. t:: ?.A 2-J PTWll 4!hA P8'4E'1A 5705 PRLLE N 68SF
P~1 DH". ?F 7 u PTSV?.l -t:BO PBLC8P 5732 PBLLR" 6JJDO
i>MNA~ ~071 ?TRTll 40Qf. P~"llt-4 S75F PNB'1PS bC31
t>fllv IS A n t 9 PUT?l 4JH P!HUlC 511F PMCOIN 6C59
l>NLINE , £.CA PH EGL 4046 PBSTRI 5HF PBCOIN 6C9E
PNT"LJ 34 A"' PBTWLE 4':36 PBC OPY HFc PMCDltV 6CDE
PN Ill<; ~50 PAQiHK 41:'.H PPPUTY 5878 P 13SCLA 7297
i>N LL ST 3o44 P.SQlBL 4E7R PADLTX 58CB PMOIOlP 72C6
PN'"!liH Flt PT IN IT H8l P9PAGE ~'CJZ!\ PTCLAS 71tA5
0 "4LCP Ht>D PTIVTC 4i:C 2 PBl<FE~ 598B Pr1TlS E 7664
i>NS TAT 'H<tb P8SLJ 4E•JB PBl~AO 5980 PTUIUX 7689
!>NllN5 3706 PGDS T4 4c".: 2 P~l138I 5AZ! PBSWLE 76CO
i>N 2LN'i 3f.it. E PB~l IA 5J77 i> e1 eco 'iAD8 P8INTP 76CB
0 NLNST Nl': PGSWIT 5H4 P88FAV iCO-S PBUPAB 7&04
l>NlTML 3; f !:> PH~O~ 52C 8 PBAOJU 5C 7C PBDNAB 7607
Pl'IH'LS 3AFA P8LN03 5Z".: 1 PNlSRC 5061) PU OST 76F5
i>NBROC 38 ff: P8LN08 531)6 P~lGTP 5DA4 PBHDRB 76FF
?N l 8R) 30 bl PBFILE 5325 PNlADD 50DS PBPIPO 77ftD
PNOVL::J 3E 7C PBLMAS 5'50 PNlDLT 5E ZIJ PIH IPO 7758
PNFRC E 31=9 ~ PBO"AS 5350 PNlFUL 5E8A f>T!UCK 779F
i>Nr.VL T 3FC 1 PRS"AS 53!>8 PNZSRC 5E BZ PT9RE A 77ED
i>NOVLD :.ooo PBBE XI 5377 PN~GTI 5EOE PTS TRT 781tf
PNPSTA 408C> PBAEX I 'B~5 PN~AOD 5F38 PT STOP 7892

Figure 4-4. Sample Memory Map Report for a CCP Run

INTERRELATIONSHIP OF THE APPL.
DEF. AND MOD DIRECTIVES

APPL directives specify all the applications that can be
used in a NPU build.

DEF directives specify all the applications that are to be
included in a given build. To specify a different build, it
is necessary to change only the DEF directives in the
input directives file.

Each application used in a build must have at least one
module defined for it by a MOD directive; that is, at least
one MOD directive specifies that application in its APPL
= appl parameter. If an application is not included in a
given build (that is, it is not defined by a DEF directive),
that application does not need to have any MOD directives
specifying it.

60471200 F

DUPLICATE MODULES

When a module is used by two or more applications, that
module's MOD directive must specify all the applications.
Using the same MOD name in two MOD directives causes
a fatal error.

A module is loa~ed for one application only; it is not
duplicated for other applications. If a module with a
tophat is located on a page, the tophat (relocation vector)
is retained. If a module with a relocation vector is
located in a nonpaged area, the module name is included
in the DELETED TOPHA T MODULE LIST, which is one of
Autolink's informative messages.

4-9

MINIMIZING THE NUMBER OF OUTPUT DIRECTIVES

Whenever possible, Autolink creates an output directive to
MPLINK in the form *L,modi-modj. This statement
directs MPLINK to start linking the module named modi
following the previously linked module, and to continue
linking consecutive modules as they appear on the input
object code file until the module called modj is linked.
This requires that both the Autolink and the Link utilities
use the same input object code file. Otherwise, a nonfatal
error occurs.

AUTOLINK'S METHOD OF SELECTING
A LOCATION FOR A MODULE

Autolink uses the following algorithm to maximize the
amount of buff er space:

• Paged modules are assigned space first.

• Next, modules with main memory addresses and
their associated modules are assigned space.

• Next, modules that are to be reverse-loaded are
assigned space starting at the upper end of
assignable main memory (location FFFE16), or at
the address specified.

• The remaining applications are assigned space in
the largest free area in main memory.

• FILL modules are located in the main memory
holes and in page holes.

•

•

The last application (which must be PIDTBL) is
located at the end of the sequential applications.

Buffer space is computed •

The specific steps used by Autolink in each of these
phases are described below.

Figure 4-5 shows this sequence.

Phase 1, Assigning Space to Paged Modules

First, Autolink locates modules assigned to a page by the
MOD directive's P=P parameter. If an application is the
only user of this module, that application is located on the
same page.

Next, any remaining applications with an NC parameter
are assigned locations on free pages. Applications which
are non-exclusive users of a P=P module are located on
free or nonreserved pages.

Then Autolink calculates the length of any applications
which have not yet been located on a page. If an
application will not fit on any one page, part of it is
placed on the page with the largest assignable space. The
rest of it is assigned to main memory.

Finally, Autolink sorts the pageable filler modules (Mod
parameters P=P and FILL) modules by length. Starting
with the largest module, Autolink attempts to locate that
module in the largest free space in paged memory. This
process continues ootil all the modules are either located
or put aside because paged space was not large enough to
hold them.

4-10

ASSIGN
APPLICATIONS
TO PAGES

ASSIGN
APPLICATIONS
BELOW FFFF1&
(NON-PAGED)

ASSIGN
REVERSE
LOADED
MODULES

ALL OTHER
APPL TO LARGEST
OPEN AREA BELOW
FFFF1&

FILL MODULES
TO HOLES IN
MAIN MEMORY AND
PAGED MEMORY

LAST
APPLICATION
(PIDTBLI

ASSIGN
BUFFERS

-PAGE ONE - 8196-WORD PAGE STARTING
AT 20001&

OTHER PAGES ARE 8196 WORDS LONG AND
START AT 100001&. 120001&. 140001s •... UP
TO 1 E0001& (DEPENDING ON MEMORY SIZE)

- USUALLY STARTS
AT FFFE1&

. - STARTS AT WORD FOLLOWING LAST
WORD OF PREVIOUSLY LOADED
SEQUENTIAL APPLICATION IN MAIN
MEMORY

M-1089

Figure 4-5. Autolink Sequence of Locating
and Link Modules

Phase 2, Assigning Space in Main Memory

This main memory space assignment phase occurs after
page space assignment is completed.

Applications with specific addresses (ADDR = addr) are
assigned space in the order in which they appear in the
APPL directives. A module associated with two or more
applications is located with the first application
encountered, not in the order of the MOD directive's
APPL parameter. Within an application, modules are
located in the order in which they appear in the input
directives file.

A module with the MOD parameter FILL is not located
during this phase.

If a module overlaps into space already assigned to a
module (ADDR parameter is specified) during this phase, a
fat al error occurs.

60471200 F

Phase 3. Assigning Space for Reverse-loaded Modules

Reverse-loaded modules are specified by MOD parameter
P=R. Space is assigned to these modules in the same
order in which they are encountered in the input
directives file. The ending address of the first module
encountered is located at a fixed or a specified main
memory address. The next module's ending address is
assigned to the word preceding the previous
reverse-loaded module's starting address. This process
continues until all the reverse-located modules are given
space in one contiguous group.

The ending address given to the set of reverse-loaded
modules is determined in one of two mutually exclusive
ways:

• The MOD directive for the first reverse-loaded
module in the directives input file is given a
specific address in the ADDR parameter
(example: PIBUF2 is the first reverse loaded
module; its directive specifies ADDR = $FFFE).
This address is the ending address of the module
rather than the starting address.

• No address is specified for the first
reverse-loaded module in the directives file. In
this case, the highest assignable main memory
address is used (FFFE 16) as the ending address of
the module.

If one reverse-loaded module overlaps another (as could be
the case if a reverse-loaded module is given an ADDR
parameter), a fatal error occurs.

Phase 4. Assigning Space to Sequence
Applications in Main Memory

This phase assigns space for all those modules belonging to
applications specified in a DEF directive, but which (1)
are not assigned addresses, (2) are not FILL modules, and
(3) are not exclusively associated with the last application.

The first application in the input directives file is assigned
space starting at the beginning of the largest unassigned
area in main memory. All the modules associated with
that application are located contiguously in the order in
which the MOD directives appeared in the input directives
file. When the first application is finished, space is
assigned for the next application in the same manner,
starting at the next word in main memory. This process
continues until all modules in all applications (except the
last application, PIDTBL) are assigned space.

At the end of this stage, a sequential set of applications
fits into the area selected. During this phase, if any
module overflows the end of that area, a fatal error
occurs.

Phase 5. Assigning Space for FILL Modules

At this stage of the process only two types of module
remain to be located: FILL modules (designated by the
FILL parameter of the MOD directive) and modules that
are exclusively associated with the last application. FILL
modules are assigned space in main memory in any
unassigned area large enough to accommodate them. If
all the FILL modules cannot be located, a fatal error
occurs.

60471200 F

Phase &. Assigning Space for the Last Application

The only remammg modules are those exclusively
associated with the last application, PIDTBL. Its module
lengths are added to calculate a single application length.
Its address is set to the word following the ending address
of last forward-loaded module.

AUTOLINK MESSAGES
Two types of messages are generated during Autolink
operations:

• Certain nonfatal errors generate an informative
message specifying events of interest to the user,
but events which do not stop Autolink processing.
These messages are copied to the listing file.

• Fatal errors generate a fatal error message; it is
copied to the fatal error file. A fatal error also
generates informative messages that are copied to
the listing file.

INFORMATIVE MESSAGES

Informative messages are copied to the output listing
file. Such messages are preceded by the directive that
was being processed when the error or processing step
occurred. The general format of these messages in the
listing file is:

Directive
Program scan pointer address
Message text

The informative and nonfatal error messages are listed in
table B-3 of appendix B. The type of action that should be
taken when the messages appear are also given in that
table.

FATAL ERROR$

A fatal error generates the message FAT AL ERROR for
the fatal error file. Autolink processing stops except to
prepare the diagnostic information that is copied to the
output listing file. This consists of two parts:

• Diagnostic comments

• A message specifying the fatal error type. Most
fatal error messages are concerned with a
directive error. This type of error message is
treated the same as an informative message: the
fatal error message is preceded by the directive
which was being processed when the error
occurred. The general format of these fatal error
messages in the listing file is:

Directive
Program scan pointer address
Fatal error message

The fatal error messages are given in table B-4 of
appendix B. The type of action that should be taken when
the messages appear is also given in that table.

4-11

LINK UTILITY 5

INTRODUCTION

The Link utility (MPLINK) uses an input directives file and
an input object code file to generate two principal outputs
(see figure 1-1):

• A memory image load module file consisting of
object code modules. The local file name (lfn) for
this file is ABSOLMP. The file's modules are
located in memory image order; that is, they have
the absolute addresses they would have if they
loaded into an NPU. lnitializable variables have
the same values that they have on the object code
input file. These variables are initialized later to
selected values by the Edit utility.

• A symbol table (lfn = SYMTAB) consisting of the
module names and entry points.

The Edit utility uses both these files plus its own input
directives to generate an initialized version of the
memory image load module file. This load module can
then be used to generate the downline load files used by
the host to load a CCP or CCI system into an NPU.

If standard CCP installation procedures are used, this
program is generated by the build procedures from the
release tapes; its use is generally invisible to the system
installer (see the NOS and NOS/BE Installation Handbooks).

The MPLINK input directives file can be :

• User-supp Ii ed

• Generated by SCF procedures during a standard
CCI installation

• Generated by Autolink procedures during a
standard CCP installation

The Link utility supplies special output listings including
memory maps, symbol lists, input directives, and a
hexadecimal listing of the memory image file.

NPU ADDRESSING
MPLINK assigns each module to an execution area in main
memory, in extended memory, or in an overlay area of
main memory. To uniquely address 128K (131,072) words,
an 18-bit address is provided (only 17 bits of the address
are used). However, when paging registers are used, an
11-bit address will locate any word on a 2K (2048) word
physical page. The remaining seven high-order bits are
used to designate the logical page. Note that both CCP
and CCI use an BK (8196) word logical page.

The NPU has two addressing modes: paged and absolute.
In either mode, the operating system calculates a 16-bit
address for each memory reference.

60471200 F

• In the absolute mode, the 16-bit value is the
effective address in the range 0000 - FFFF 16•

• In the page address mode, the page registers are
used to achieve an effective 18-bit memory
address in the range 0000 - 3FFFF 16 (only the
range 0000-lFFF 16 is used).

PAGE ADDRESSING MODE

In page address mode, the NPU memory is subdivided into
physical pages, each of which is 2K words long. The
location of a word within a page requires an 11 bit address
(range 000 - 7FF 16) and is called the page displacement.
Page displacement is the least significant bits of an NPU
address.

Each page is assigned a unique identification (range 00 -
7F 16) called the page number. The page number uses the
most significant bits of an NPU address.

Page displacement taken together with page number gives
an 18-bit addressing capability.

During page addressing mode, a page number is associated
with one of the 32 hardware paging registers (range 00 -
1F16). This requires five bits of the address, and is
handled by an MPLINK directive that associates the page
numbers with the page registers. Page register selection
(five bits) together with page displacement (11 bits) gives
the normal 16 bits of memory address referencing.

There are two sets of 32-page registers. Either set (0 or
1) can be active at any one time. The set being used is
selected by the executing program. Figure 5-1 correlates
the 18-bit address to page register and page displacement.

MPLINK assumes that all memory address specifications
are in the page address mode. Therefore, each address
specification has four distinct components:

• Page displacement
• Page number
• Page register
• Page register set

ABSOLUTE ADDRESSING MODE

The Link and Edit utilities do not support an absolute
addressing mode directly. However, the default mode
causes MPLINK to generate a program that effectively is
an absolute addressing mode. In this case, address
assignments are made entirely from page register set O.

In default mode, the page register contents are the same
as the page register numbers; that is, page register 0 has a
zero value, page register 1 has a 1 value, etc. The
resulting address resolution provides the same addresses
that would be generated if absolute addressing mode was
used.

5-1

PAGE REGISTER POINTS TO A { 15

16-BIT ADDRESS REFERENCE VALUE

10 0

~..:F~Hl~~G~~~'i:'~E~T I PAGE REGISTER PAGE DISPLACEMENT ~ - - - - - - - - -1
CURRENTLY IN EFFECT. ._------~,--------..._-----------------------------------

PAGE REGISTER
REG SET 0

0 PAGE NUMBER

PAGE NUMBER

!
I
I
I

i+---J
._ ____________________ .. 1- - - - ,

•
•
•
31

•
•
•

PAGE NUMBER

I
I
I
I
l
I
t
I

PAGE REGISTER
REG SET 1

0 PAGE NUMBER

PAGE NUMBER

• •
• •
• •
31 PAGE NUMBER I

I 18-BIT EFFECTIVE ADDRESS I
t 11 10 o I L-.(p ______ P_A_G_E_N_UM __ B_E_R _________________ PA_G_E __ D_ISP __ LA __ C_EM--E-NT----------~[.-J

M-1086

Figure 5-1. Page Register Selection

SPECIFYING A MEMORY ADDRESS

The memory address is specified in three parts:

Number
of Bits Address Part

18 An effective address consisting of a page
number plus page displacement

5
I

page register
page register set

Format of the address is:

effective address:page register:register set

Note that address parts are separated by colons. Each
part is a numerical value in one of seven formats:

• A decimal constant. This is preceded by a sign if
necessary. Examples: 10, -734.

• A positive hexadecimal constant. This is preceded
by a cbllar sign ($). Examples: $2000, $4F AC.

• A linked module name

• An entry point name

• An overlay area name

• A local variable name

• An address function

A previously linked module name with an explicit address
assignment, a defined entry point name, a defined overlay
area name, a defined local variable name, or an address
f ooction can be used as any part of the specified address.
The effective address associated with any one of these
names represents the numerical address value.

5-2

Address Functions

MPUNK provides five fooctions that can be used with an
operand or an address expression to generate a part of an
address. The flllctions are requested by means of
keywords. If this method is used, specification must have
the following format:

/keyword (name)

where name identifies a module, an entry point, or an
overlay. The allowable keywords are:

Keyword Value Returned by the Function

11-bi t page displacement
7-bit page number
5-bi t page register
1-bit page register set

PGDISP
PGNUM
PGREG
PG SET
OVID Last two characters of the overlay name

in which the overlay module resides

For example:

/PGNUM(PNSMWL) - returns the 7-bit number of the
page used by the service module
(PNSMWL)

Address functions can be used only if the module, entry
point, or overlay has been explicitly, named and the
assignment of the address related to the name has
preceded the reference.

Examples of a full address specification are:

• $13B75:$A:l

The 18-bit effective address is composed of a
page number = 2716, and a page displacement of
37516·
Page register 10 is to be used.
Page register set 1 is to be used.

60471200 F

e MODA:/PREG(MODB):l

The 18-bit effective address is taken from the
starting execution address of MODA.
The page register where MODS is located is to be
used.
The page register set to be used is 1.

e $1A45:/PREG(MODA):/PGSET(MODS)

The 18-bit effective address is composed of a
page number (3), and a page displacement of
04516·
The page register where MODA is located is to be
used.
The page register set where MOOS is located is to
be used.

Abbreviating Address Specification

It is not always necessary to specify the second (page
register) and third (page register set) parts of the memory
address. If only the first part of the address is specified
(either as a constant or an address fl.llction), the page
register is equal to the page number portion of the
effective address (upper seven bits), and the page register
set is assumed to be the same as in the previous memory
address specification. For example:

$421F:8:0
$421F:8
$421F::O
$421F

All specify the same address: the page displacement is
21F 16' the page number is 8, the page register is 8, and
the page register set is 0.

Addresses are specified similarly if an address function is
used. For example: MODA is equivalent to
MODA:PREG((MODA):PGSET(MODA).

ADDRESS ASSIGNMENT

MPLINK maintains an internal location counter for the
four-component memory address. The location counter
(which is used to assign space within the memory image
file) is initially set to zero. The components are updated
automatically as the memory image file is generated.
Specifying a memory address within a link or overlay
directive is the only method used by the Link or Edit
utilities to explicitly assign an address.

As 16-bit words of a module's object code are moved into
the memory image load module file (possibly with address
resolution), the words are assigned consecutive memory
addresses. If assigning the next address causes a memory
page overflow condition, the internal location counter is
adjusted to the first word (displacement = 0) of the next
consecutive page. At the same time, the page register
value is incremented by one.

Note that memory page overflow is not ~ error condition
unless the resultant page register value is greater than 31,
or the page number is greater than 127.

Unless MPLINK is given a specific load address for linking
a module, the memory address assigned to a module is the
next available memory address held. in the internal
location counter.

60471200 F

An area of memory which is designated as an overlay area
can have several different module groupings for the area.
Such a module grouping is called an overlay. On-line CCP
or CCI execution of these different groupings occurs at
different times.

Each overlay has a unique, two-letter identifier. If the
user does not specify the identifier, MPLINK assigns the
next alphabetic character in sequence (range AA through
ZZ) when the next overlay is built. The binary equivalent
of the identifier is returned to the user with each OVID
keyword assignment.

The first overlay module of an overlay group is assigned
the memory address at the start of the overlay area.
Subsequent overlay modules of the same group are
assigned space directly following the previously linked
overlay module. MPLINK assigns overlay modules in this
fashion llltil the next *L directive with an explicitly
declared address occurs (the *L directive declares the
overlay name). The user must explicitly declare all
overlays using this directive.

MPLINKINPUTS
The user must supply MPLINK with two input files: one
file contains directives, the other file contains object
code modules. The user has the option of supplying a
library file in addition to, or instead of, the object code
module file. The MPLINK procedural flow is shown in
figure 5-2. Typical MPLINK use is given in the examples
in appendix H.

MPLINK DIRECTIVES FILE

This file can be generated in one of three ways.

• CCP: The simplest way is to use the Autolink
utility. Autolink solves many of space assignment
problems that the user would otherwise have to
solve by repeated trials.

• CCI: The installer uses the SCF procedures with
the standard installation processes.

• Either: The user can generate his own file of input
directives using the MPLINK directives described
later in this section.

In all cases, the directive file is the first input file
presented to MPLINK.

MPLINK OBJECT CODE INPUT FILE

The required input file contains the object code modules
to be included in the build. If Autolink was used, the same
object code file must be presented to Autolink and to
MPLINK.

These modules in this file were previous put in this form
by a CYSER Cross assembler or compiler (macro­
assember, microassember, or PASCAL compiler - see the
appropriate CYSER Cross language reference manual).
The format of this relocatable object code is given in
appendix F.

Optionally, in CCI, the input modules file can be a library
file version of the modules in object code. This file was
previously produced by MPLIS. The library file is always
presented to MPLINK as the NEWLIS file. The library is
used by MPLINK to resolve all unsatisfied external
references.

5-3

•SAME OBJECT CODE FILE AS
WAS USED FOR AUTOLINK INPUT.

MPLINK
DIRECTIVES

OBJECT
CODE
MODULES•

OLD LIBRARY
(OPTIONALJ

INPUT
DIRECTIVES

MEMORY IMAGE
LOAD MODULE
FILE
HEXADECIMAL

M-1087

Figure 5-2. MPLINK Procedural Flow

Note that any object code file must be rewound prior to
delivery to MPUNK; MPLINK does not rewind the files
automatically.

MPLINK OUTPUT FILES
Three types of output files are produced by MPLINK.

• memory image load module file (ABSOLMP)
• system table (SYST AB)
• listings

MEMORY IMAGE LOAD MODULE FILE (ABSOLMP)

The file contains all the object code modules specified by
the MPLINK directives. In this absolute memory image
file:

5-4

• All modules are assigned to a specific execution
address

• All modules are assigned to a selected page
register

• All relocatable addresses are converted to
absolute addresses

• All external references are resolved

• All overlay modules are grouped in specified
overlay areas

SYMBOL TABLE (SYMTAB) FILE

The SYMTAB file contains the entire set of entry symbols
and module names defined by MPLINK. Each entry has a
value (either a memory address, a displacement, or a
constant), a field start location, and a field length.

MPLINK LISTINGS

MPLINK automatically produces five listings; a sixth
listing can be produced at the user's option. The listings
are:

• A copy of the input directives file.

• A module memory map sorted by module name. A
sample partial listing is shown in figure 5-3.

• A module memory map sorted by module address.

• An entry symbol list sorted by entry name. A
sample partial listing is shown in figure 5-4.

• An entry symbol list sorted by address.

• A hexadecimal list of the memory image load file
(optional). This is requested by the *DMP
directive.

60471200 F

CYBER ~lNI CROSS SYSTE" ~ LINK EDITOR -

MODULE ~EMORY MAP - SORTED BY MODULE NAME

'10DULE •ADDRESS* *MODULE* •ADORE SS• •MODULE• *ADDRESS• •MODULE• •ADDRESS•

A AC APL 493C PBCOMP 53Cl PBl'OPO 7A70 PINIT FBAF
AA EA PL 4BFC PBCOPY 57EE PBPROP 7A!>5 PINWIN F72't·
UEBCO 48 FC PeDELE b53E PBPSWI 53Fl PIPROT F67F
AASRAP 4A 3C PBDL TX 58C 8 PBPUTP ,54 OB PISllC F6D5
AAS CST 48 BC PBDNAB 7607 PBPUTY 5BH P ITMR S FE05
AAS TAP 4Q i:c PBF ILE 5325 PBQBLK 4E4F PIWLIN F8F8
Ad A Pl A 49BC PBFl1AO 7f64 P8Ql8L 4t 78 PLCBIN 1605C :Z05C
ACAPLA 4C 3C P8FMAH az,5 PBRDPG '53EO PLI OST l6ZC0:22CO
A.ODRFS JI ~·O PBFRNC 7A~4 PBRTCO 5466 PLIPML 1621A:Z2U
At APL A <tB7C PBGr:TP 5422 PBSCLA 7297 PLIPTC 16006:2006
AFBCOA 4AFC PAHALT 8096 PBSETP 5393 PlIP l62FZ:22F2
ASCE2b 153'1C:339C PBHDRI\ 76Ff PBSLJ 4EOB PL READ 16000:2000
ASCF?9 l~J5C:33~C PB IIPO 7758 Pl3SP1AS 5368 f>LTKOP 16000:2000
ASTOAS 4A7C P~fll 803F P BSTOP 5578 PMCD~V 6COE
ASYFRR 11729:372Q PBINSE 6570 PBSTPM 5433 PMCOIN 6C59
ASYLFM 4 7131 PBINTP 76: 8 PB'HRI 579f PMHLF.H 6470
AS VMS'; 47AP. PBINTR 0100 PBSWLE 76CO PP1T1SE 766't
HAPLA 4q1c PBIOPO 795b PB TICK 6818 PMWOLP 7ZC6
Al28EB l53rJC:33DC P BLC R !l 5732 PBTI"A 69A2 PN.AWAI 2198
A7TObP 4C RC PBLCBT 6A21 PBT I"O 6805 PNBMPS 6C37
BEGINX Fb71 PBLLEN 6B8F PBT"RS 67!'1 PNBROC 3BFE
i3UFMAI 540A PBLLRM 6Bt>O P8TOAO 6'tOF PNCECN 44't8
CLE A~U 16221: :>2'1 PBLMAS 5350 P8TOAH 6320 PNCEFJ 't2AE
t BC Al2 1551C:3HC PBUfKD 7C01 P BT ODE 6956 PNCNTL 372E
>: 26 AS C l 549C: 3't9C PBLNKU 713A5 Psrnou 6883 PNCONF l590Z:390Z
EZQASC 1541C:341C PBLNOO lftiB PBTOSR 6800 PNDEL E ZF70
FC SRC B l55-jC:~5".)C Pl3LN01 1 FC 't. PBTWLE. 'tE 36 PNDEQU 61D't
t.LIJBLS OOAJ PBLNO? 52C 8 PBUPAB 7604 PNDIRA 60AF
HAS PMS 856E P8LN03 52E 1 PBUPDA 66F3 PNOIRD 6134
HSPTCi3 l 55BE: 350E PRLN04 ~6~9 PBX FER 5988 PNDISA 3118
l-fSR41P R"'CA PBLN06 4CFC P8100!11 652F PNOISC 2458
l-fSR4 rT 14F6B:2f6B PBLN07 56A5 P816AO 69E9 PNOl TC 2346
l-fSR4T? 150~4:30F4 P8LN08 5306 PB18AO 5980 PNENAB 3077
IC 10010:2010 PBLN09 5631 PB188l 5A2A PNFRCE 3F9A
l SPOL 0 lF 58 PBLNlQ 5680. PB18CO 5AD8 PNGTCB 2Z91t
JUMPS 0140 PBLNll 56C9 PGOSTA ltEE2 PNLCR 3760
LIPSMA 84 8C PBLN12 5605 PGHAL T 17D't7: 3047 PNLINE 3ZCA
LISTSR 5550 PBLNl 3 56E 1 PGlVTC 15ESC13E5C PNLLCN 265C
MAINS F659 PBLN14 56ED PGSWIT 5181t PNLLIN 7ADA
MOO MST 5502 PBLNU 56F9 PIA PPS FC77 PNLLL I 7E66
PBADJU 5C7C PBLOAO 801t5 PIBUfl F822 PNLLLO 7ECB
PBAEXl 5385 PBLOST 76F5 PIBUF2 FF98 PNLLRC 70EE
0 BAMAS lFED PB"AX 577F PIOTBL 868F PNLLRE 7039
PBBEJCI 5377 PB"EHB 5705 PIFRl F99A PNLLSN 7058
PBBFAY 5C05 PB"IN 575F Pl GE TA F8U PNLLST 3644
PBCALl 1F8D PBMLU 5077 PllNIT FC37 PNLLTC 7~0C
PBCLKI 65l't PB"ON aou PILCBS F8~9 PNLNBA "1~8
PBCLRP 5385 PBONAS 5350 PllINI F063 PNLNCN 27E2
PBClR 801D PBPAGE 59ZB PIL"T F6E8 PNLNST 391E
PBCOl N oCSE PBPIPO 77.0 PIUU FE97 PNOVLO ltOOO

Figure 5-3. Sample MPLINK (Partial) Memory Map Sorted by Module Name

EXECUTING MPLINK
MPLINK is executed by attaching the MPLINK permanent
file (local file name is MPLINK), and then executing the
file name call statement MPLINK.

Three optional parameters are available with the MPLINK
file name call statement:

MPLINK(D=infile,R=outfile,CSET =cset)

where D is the logical file which presents the input
directives to MPLINK. Default is INPUT. R is the logical
file that receives the listings. Default is OUTPUT. CSET
is the host display code set to be used. . CSET = 63 selects
the CDC 63-character display code set; this is the default
value. CSET = 64 selects the CDC 64-character display
code set.

60411200 F

Appendix H gives examples of executing MPLINK.

MPLINK DIRECTIVES
All MPLINK processing is controlled by the MPLINK
directives entered in the input directives file. The
general format of a directive is:

*dimame,
paraml, ••• ,parami [paramj ••• paramn] comment

5-5

ui:APl P
AACOAO
UC DPT A
AACOllR P
AAEAPL R
AA.:P.:O
H"'l<EA
AAQUT?
A.\llFA!'
AAS HP
AA:iTAP
Ai3 APIA
A\ At'L
tr'. ARTO
AC AUTO
AC::APL
!l.Ci:AS"'
ACCGPll
!\·.:')flt.4

ACE APL
AC" BCD
o\.: "l L
AC'::Pl A
AC'< MSC.
ACK PT"
AC LIH:>
!\CLIMl
A': 0 6Ll f..

AC 0 !'10d A
!\C '>(l R

A;: P ~II E
!\i: !>IC S
AC t> Trhl
ACPLRl
ACPOiH A
A': POMA
ACrlONS A
A':PRMA A
AC RITT A
AnDllES R
A!)ORLC F'
A!)OPSU P
AD~AnT A
AOSTl A
AOST2 A
AEABLS P
AEAPL P
AEASCI ~
AEATTN R
A~ ATTl R

4o~c

oroo
IJOOO
'tii~C
4i3FC
48FC
('(..07
<1003
0004
40(
4-;s:c
4Cl'3C

1 ~of,r:O: 3'>ff}
JC7Q
"J'H
0004

lltf\7:1t-f\7
.)CO 1

OC0?
c (:'),
Ot'Ol
00::0
OCOl
Q 5Q I:

l ')b"I
:)DC"
OAO'l
(1')01
0r ·p

0v 1C
,, QI)\)

JC.'iO
''"~)
lC Ou
:J05>l
vJoC
l'.)('4d

%10
OOOA
0150
015F
1160
l'.'Jl4
0001
0002
474.a

11709:3709
46A7
H6q
4775

CYftER 11l"H CROS.S SYS HK - l_INK -EDI TOR -

ENT~Y SYKBOL LIST - SORTED BY ENTRY NA"E

•ENT~Y••RIA**AODRESS/VALUF••BIT Sil*

tFAUTl
AEAUT2
AF AUT 3
AESLS
A"'CHRl
AEC!Nl
AEC INZ
AEC IN 3
AFCI'H
lE'Cl(l.U
AfC'JJ 1
ACCQJ2
AE CS'::
6ECSLL
Ali'C'iL 1
At'CSL?
Al".C 11111
ACF I'f '?
AHT'f 3
AEtl'44
Acr:LL
AE f LT 1
At,: LT 3
AEE .>L
AC:!" OJ 1
6EE SL l
A!'t5L2
AEJN.>T
Hl'H
A"'l'l:H
AE~E!Jl
AES LL
AFSllO
AES150
A~ S Ii 1
AES 3JO
AES 301
AE XBL S
AE XOL 11
AE XOT A
AfXPTO
AEXSO I
AF'tXlll
AHXI N
AIOLET
AIOL~
AINPL B
AINPS 8
AlSPTl
AISPT6

R
R
p
R
p
R
II
p
p

R
II
R
R
R
p

R
R
R
p

p
R

R
R
R
R
R
R
I<
R
R
R
R
R
R
R
R
R
A
A
A
A
R
R

4648
't64E
465't
4584
't660
460A
46DC
't6E7
't6f9
't5A8
't!>CO

. 't6AO
11607: 3607

475F
477A
1t71C
46F5
lt6F7
't70Z
470lt
45C'5
45(!=
45EO
45Fl
't5F~

"71:10
47A2
4583
lt58C
lt55F
473C
l't570
465!1
4b68
46#i2
4674
467.6
4635
463A
4&?.A
462F
4604
4747
"792
0003
0001
OOOE
0000
"405
45ZA

AISP4C
AISPltE
ALAR•H
ALUl'l2
ALARl'll
ALC APL
ALCCRA
ALE: APL
ALE eco
ASA SCI
AS AUTO
ASCfZ6
ASCE:?.q
ASC INT
A SD I Sr.
ASS LL
ASS Cl
ASKPT

.ASX:>OI
A SYNCE
452741
A TA Pl A
AT Ell
ATE Pl
ATPD12
Af00[5
AT 0 016
ATPOI!I
ATPPRl
ATPP1H
61JC APL
AUCClRA
AU'= APL
AUE BCD
AVASCE
AVA SCP
AV87TO
AVClllTR
AVCORE
AVC£!RR
AVCRLF
AVCRl'IS
oi:eco
AVE BCE
AVEOLS
AVEOLT
AVEOTl1
AVE OTP
AVINTA
AVIS4C

R
R
A
A
A
R
R
R
R
A
A
R
R
II
A
A
A
A
A
R
A
R
A
A
II
R
R
R
R
R
R
R
R
R
p

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

"51l
HFA
0001
0002
0003
4C7C
OBC
oac
4B3C
0022
0018

1539C:339C
l 535C: 335C

1 76C
0003
0004
oo:n
0002
OOC>5
153A
0020
497C
0000
0000

ll 318: 3l18
1133F: 333F
1136313363
1138713387
1120 313203
112f2:32F2

4C3C
4A7C
41HC
ltAFC

11729:3729
lE50
1E74
1E30

ll 73AI 373A
lE5E
1E52
1E50
lE5F

ll 71tAS371tA
1EZ9
1E20
lt7A8
1E58
1E60
1E5lt

ENTRY: Name of the entry symbol. It is up to six letters and numbers long. If a local entry, the slash (/) is omitted.

R/A: Entry type; R=relocatable, Asabsolute, L•local.

fl7
7:7

ADDRESS/VALUE: Address of the entry or its value. Addresses are a displacement from the first word of the file. If address is 64K (65,536) or
less, true address appears. If address is above 64K, two addresses appear as shown: true: paged. For example 10000: 2000 has a true address of
1000016 and a page address of 200016•

BIT S/L: Field start position/field length. Both of this values are given in bits. For start position, bit 15 is the leftmost bit, bit O is
the rightmost. Both start and length have a range O-F16•

Figure 5-4. Sample MPLINK Memory Map Sorted by Entry Name (Partial)

5-6 60471200 F

where An * indicates the begiming of a MPLINK
directive. dirname is the name of the directive. paraml
is a parameter. The first parameter is separated from the
directive name by a comma. Additional parameters are
separated from one another by commas. Some parameters
are optional; optional parameters are enclosed in brackets

,param • Parameter types are discussed below. Specific
parameters are defined in the descriptions of individual
directives. A period (.) terminates the command portion
of the MPLINK directive. Comments start after the
period and include all characters until the * which starts
the next directive.

An example of an MPLINK input directives file is given in
appendix H.

SUMMARY OF MPLINK DIRECTIVES

Table 5-1 summarizes the MPLINK directives.

MPLINK DIRECTIVE PARAMETERS

There are three general types of paramters:

•

•
•

A name; it can be the the name of:

a module
an entry point in a module
a synonym equating an entry point to an
external
the system being built
an overlay area
a local variable

An overlay identification

A memory address

MPLINK Directive Parameter Names

A parameter name must begin with a letter. It can
contain any number of following letters or numbers;
however, only the first six characters are used by
MPLINK. Therefore, all unique names must differ in their
first six characters. Identical names lead to an MPLINK
error.

For the purposes of parameter names, the dollar sign ($) is
considered to be a number.

MPLINK Directive OVerlay Identifier Parameter

An overlay identifier always consists of two letters. If an
identifier is not assigned in a directive statement,
MPLINK generates its own overlay identifiers.

MPLINK Memory Address Parameters

The allowable forms of memory addressing were discussed
earlier in this section.

*L, SPECIFI~ MODULES TO BE LINKED

This directive links modules. The standard form of the
Link directive is:

*L,mod,addr.

60471200 F

TABLE 5-1. SUMMARY OF MPLINK DIRECTIVES

Name

*CB

*COM

*COR

*DAT

*DMP

*DSTK

*DVAR

*END

*ENT

*L

*LIB

*LL

*OVLY

*RL

*SYN

*SYS ID

*UL

*VE

Function

Defines the upper boundary for
linking programs.

Defines the blank conmon area used by
macroassembler modules.

Defines the size of the combined main
and extended NPU memories.

Defines a conmon data area for PASCAL
global variables.

Produces the hexadecimal listing of
the memory image load file.

Defines a stack area to be used for
PASCAL reentrant/recursive procedures.

Defines a dynamic variable area for
use with PASCAL variables •

Last statement of the input
directives file; ends the file.

Associates a memory address with an
entry point name.

Links one or more modules, or links
all the unlinked modules on a library
file.

Defines the library file used to
resolve unsatisfied externals.

Spec if ies a lower limit memory
address; modules cannot be located·
below this address.

Identifies and establishes the limits
of an overlay area.

Links reverse-loaded modules, with
the module ending address specified
in the directive.

Equates an arbitrary name with an
entry point name or a defined module
name.

Specifies the name for the build.

Specifies an upper limit memory
address; modules cannot be located
above this address.

Assigns a variable expression value
to a local variable.

This causes MPLINK to locate object code module, mod,
at starting address, addr. As it is located, other linking
operations also occur: addresses are absolutized and
externals are resolved.

5-7

There are five alternate ways of writing a Link directive:

• *L,mod.

Links the object code module (mod) starting at the
word following the last word of the module most
recently linked by MPLINK. Note that if trailing
parameters are omitted, their delimiting commas
can also be omitted.

• *L,,addr.

Links all object code modules in the object code
input file except those which are expressly linked
by other *L directives. The modules are linked in
the order in which they occur on the input object
code file. The first module encountered starts
linking at the specified address (addr). Note that
the delimiting commas for the omitted mod
parameter must be retained.

• *L,modl-mod2,addr.

Links all the modules starting with modl
extending through mod2 on the object code input
file. modl is located at the specified address.
The other modules are located in order following
that module. If either mod! or mod2 cannot be
located, an error occurs.

• *L,modl-mod2.

Same as the previous form, except modl is
located at the address following the last word of
the module previously linked.

• *L.

Links all object code modules in the input object
code file except those which are expressly linked
by other linking (*L,parameters, or *RL)
directives. The modules are linked in the order in
which they occur on the input object code file.
The first module encountered starts at the word
following the last word of the module most
recently linked.

*RL, SPECIFIES MODULES TO BE REVERSE LINKED

The reverse linking directive locates a module so that the
last word of the module is placed in the specified address.
There are two alternate forms for the directive:

• *RL,mod,addr.

Links the module so that the last word is placed in
addr.

• *RL,modl-mod2,addr.

Links a series of modules on the object code input
file, starting with modl and extending through
mod2. The last word of mod2 is located at addr.
The module ahead of mod2 is linked next, with its
last word immediately preceding the first word of
mod2. Other modules are linked similarly until all
modules in the sequence (including mod!) are
linked. If either mod! or mod2 cannot be found on
the object code input file, an error occurs.

*CB, DEFINES LINKING BOUNDARY

This boundary directive prohibits linking programs above
the specified address. Format of the directive is:

5-8

*CB,addr.

More than one *CB directive can be used in the directives
file. If a second (or subsequent) *CB,addr is used, the
second address becomes the new boundary value. If a
*CB,O directive is used, the boundary is removed.

Programs that are prevented from being linked by the
*CB,addr directive are subsequently linked by the link all
(*L) directive unless (1) a *L has already been used or (2)
there is no *L directive in the input directives file. In
either of these cases, the unlinked modules are linked
following the last program linking.

*LL, DEFINES A LOWER LIMIT
FOR LINKED MODULES

This directive prohibits any module from being located
below a given address in memory. If a module's starting
address is less than the specified address, processing is
halted and a fatal error message is generated. Format of
the directive is:

*LL,addr.

Since *LL is positional (that is it applies only to linking
directives that follow it in the directives file), more than
one *LL directive can be included in the file. In this case,
if *LL,addr2 follows *LL,addr 1, the specified lower
threshold is changed to addr2 for the remaining
directives. To cancel a lower limit, the user enters the
directive:

*LL,O.

*UL, DEFINES AN UPPER LIMIT
FOR LINKED MODULES

This directive prohibits any part of any module from being
located above a given address in memory. If a module's
ending address is greater than the specified address,
processing is halted and a fatal error message is
generated. Format of the directive is:

*UL,addr.

Since *UL is positional (that is it applies only to linking
directives that follow it in the directives file), more than
one *UL directive can be included in the file. In this case,
if *UL,addr2 follows *UL,addrl, the specified upper limit
is changed to addr2 for the remaining directives. To
cancel an upper limit, the user enters the directive:

*UL,O.

*SYSID, IDENTIFIES THE SYSTEM LOAD FILE

This directive establishes a user supplied name for the
load file. The system name and the optional text are
placed in the memory resident header record of the load
file.

Format of the directive is:

*SYSID,name [,text J.

If the SYSID is not specified in a directive, the load file
will not have a memory resident header record. In such a
case, if a *L directive includes a module with the name
LOADER, that module is placed at the head of the load
file.

60471200 F

The optional text is any string of letters or numbers up to
a total of 48 characters.

*OVLY, SPECIFIES OVERLAY AREAS AND
THE MODULES IN AN OVERLAY

This directive has two purposes:

• It defines the limits of an overlay area.

• It specifies the modules that are to be a part of
the overlay. An overlay consists of all modules
defined by *L directives which follow one overlay
directive and which precede the next overlay
directive or the *END directive.

Format of the *OVL Y directive is:

*OVL Y,name,ovlyid,addrb,addre.

where name is the overlay name (normally six letters or
numbers). Note that the overlay name has the attributes
of a defined entry point. ovlyid is the two-letter overlay
identifier. addrb is the begiming address of the overlay
area; and addre is the ending address of the overlay area.

In using the *OVL Y directive, the user should observe
these rules:

• A memory image load module file can have no
more than ten overlay areas.

• An *L directive which specifies the overlay area
name as its starting address designates its first
module as the start of that overlay.

• Overlay areas cannot overlap.

*ENT, DEFINES ENTRY POINTS

This directive assigns a four-component memory address
to a user-assigned name. The name is used to resolve
like-named external references. The name must not be
the same as an entry point in an already linked module.

Format of the directive is:

*ENT ,name,addr.

*SYN, DEFINES EXTERNAL SYNONYMS

This directive equates an arbitrary name to a declared
entry point name or defined module name. The equated
name is to be used for resolving external references.

Format of the directive is:

*SYN,namel,name2.

where name! is the name of a declared entry point or a
defined module; and name2 is the name to be associate
with name!. At every occurence of name! in the object
code, name2 is substituted.

*COR, DEFINES NPU MEMORY SIZE

This directive defines the size of the NPU memory for
which the load file is being generated. Format of the
directive is:

60471200 F

*COR,addr.

where addr specifies one of the four legal CCP or CCI
memory sizes. These are:

$FFFF
$13FFF -
$17FFF -
$1FFFF -

65,536 words
Bl,920 words
93,302 words
131,072 words

If addr is omitted, a default value of $FFFF is used. This
is equivalent to an address specification of $FFFF:$1F:O;
tt~at is, FFFF 16 is the last address of memory, memory
page 31 holds that address, and address register set 0 is
used for that range of addresses.

*LIB, SPECIFIES LIBRARY FILE

This directive specifies the library file which MPLINK
uses to resolve unsatisfied externals during the linking
process. Format of the directive is:

*LIB.

The library file is always presented to MPLINK with the
local file name of NEWLIB.

*VE, EQUATES A VARIABLE TO AN EXPRESSION

This directive assigns the value of the specified expression
to the named variable. Format of the directive is:

*VE,nam:=exp.

where nam creates a local variable of that name. exp can
have any of the following formats:

naml
constant
naml +constant
naml+nam2
naml-constant
naml-nam2

naml and nam2 can be local variables or entry points
which are absolute, or have been previously absolutized.

*DSTK, ALLOCATES A STACK AREA FOR
RECURSIVE/REENTRANT PASCAL PROGRAMS

This directive allocates the area that is used by all
reentrant and recursive PASCAL programs to save
processing parameters when a call is made to a program
which has not completely finished processing. Format of
the directive is:

*DSTK,addrb,addre.

where addrb is the starting address of the area and addre
is the ending address.

The programmer can choose a starting address in any part
of main memory that is not be used for other purposes
(buffers, programs, globals, or other reserved areas).

5-9

*DVAR, ALLOCATES A DYNAMIC VARIABLE AREA
FOR PASCAL PROGRAMS

This directive allocates the dynamic variable area used by
all PASCAL programs. The area is accessed by the
PASCAL standard procedure NEW. NEW is a variable
space allocatioo routine; it automatically allocates space
for a variable based on the type of variable (see the
CYBER Cross PASCAL Compiler Reference Manual).

Format of the directive is:

*DVAR,addrb,addre.

where addrb is the begiming address of the area and addre
is the ending address.

The programmer can dlOose a starting address in any part
of main memory that is· not be used for other purposes
(buffers, programs, globals, or other reserved areas).

*COM, DEFINES A BLANK COMMON AREA
FOR MACROASSEMBLER PROGRAMS

This directive allocates a bhnk common area that is
referenced by macroassembler modules. Format of the
directive is:

*COM,addrb,addre.

where addrb is the starting address of the area and addre
is the ending address.

*DAT, DEFINES THE LABELED COMMON AREA

This directive defines the labeled common area. PASCAL
global variables are assigned to this area, and
macroassembler programs can reference this area.
Format of the directive is:

*DAT ,addrb,addre.

where addrb is the starting address of the area and addre
is the ending address.

5-10

The programmer can choose a starting address in any part
of main memory that is not be used for other purposes
(buffers, programs, globals, or other reserved areas).

PASCAL global variables are defined in an object code
module named GLOBL$. The appearance of GLOBL$ in an
*L directive takes precedence over a *DAT directive.

*DMP, GENERATES THE MEMORY IMAGE LOAD
MODULE FILE HEXADECIMAL LISTING

This directive causes MPLINK to generate an output file
consisting of a hexadecimal dump of the memory image
load module file. The listing is sent to the file named
OUTPUT. Format of the directive is:

*DMP.

*END, LAST MPLINK DIRECTIVE

This directive must end the MPLINK input directives file.
It also specifies the address of the first instruction to be
executed after the load file is downline-loaded into the
NPU. Format of the directive is:

*END,addr.

where addr is a hexadecimal number or an entry point
name. Default for address is location 0.

MPLINK ERROR MESSAGES
If ai error occurs during an MPLINK run, an error
message is delivered to the output file. The messages are
preceded by a leading-up arrow. If the error is a
recognized syntax error, the up-arrow is followed by the
character that was being processed when the error
occurred. Table B-5 in appendix B lists the MPLINK error
messages, and the action which the user should take in
response to the message.

60471200 F

EDIT UTILITY 6

INTRODUCTION
The Edit utility is used to initialize values in specified
variables of the CCP or CCI absolutized modules.

The MPEDIT utility requires three inputs:

• The non-initialized memory image load module
file (APSOLMP) output of MPLINK. This is the
file to be initialized

• The symbol table file (SYMT AB) output of
MPLINK. This is used to locate the modules to be
initialized.

• The MPEDIT directives that control the
initialization. This extensive file of directives is
called an MPEDIT program throughout this
section. The program is similar in format to a
CYBER Cross PASCAL program; that is, it
consists of a declaration/definition part followed
by a group of executed statements. The user
should be familiar with PASCAL compiler
requirements and syntax (see the CYBER Cross
PASCAL Compiler Reference Manual).

If a standard CCP or CCI build procedure is used, the
MPEDIT program is available from the CCP or CCI
program library. The program is generated by the build
procedures from the release tapes (see figure 1-1).

The output of MPEDIT is an initialized version of the
memory image load module file. This file can be
converted to a downline-load file for an NPU.

MPEDIT also supplies several optional output listings.

The MPEDIT utility section contains the following
subsections:

• A description of the input files required

• A description of the output files: the required
memory image load module file, and the optional
listings

• The method of executing the MPEDIT program

• The structure of the MPEDIT program

• Error message discussion

Addressing for the MPEDIT utility follows the rules
specified in the MPLINK utility section.

MPEDIT INPUTS
MPEDIT requires two files produced by MPLINK:

• The memory image load module. file (ABSOLMP).
The file structure is shown in appendix D.

60471200 F

• The symbol table file (SYMT AB). This file
contains every entry symbol defined during
MPLINK, together with the symbol's absolute
location in the memory image file.

MPEDIT also requires the MPEDIT program. The syntax
of this program is described in detail in the remainder of
this section. A sample of parts of an MPEDIT program is
given in appendix I.

MPEDIT OUTPUTS
The MPEDIT utility produces two standard outputs:

• A memory image load module file with the
specified variables initialized.

NOTE

A variable can take the form of a
declared constant, a variable, or a field
within an array. Fields in arrays are
restricted to 16 bits (one contiguous NPU
word) in length.

• A listing of the MPEDIT input program. Any
syntax errors encountered in this program are
indicated on this listing.

Four optional outputs are also supplied:

• A specially formatted memory image load module
file, tailored for downline loading on an NPU.
Format of this load file is given in appendix E.
This is not the downline-load file for CCP or CCI,
but is a required input to generate that file. That
load file itself is generated by the CCP or CCI
installation procedures.

• A trace listing of the MPEDIT assignments that
were made.

• A listing of the symbol table (SYMT AB) which
includes local symbols that were introduced during
the MPEDIT phase.

• A hexadecimal listing of the memory image load
module.

EXECUTING MPEDIT
MPEDIT is executed by attaching the MPEDIT permanent
file, and then executing the name call statement MPEDIT
(see the appropriate NOS or NOS/BE Reference Manual).

Three optional parameters are available with the MPEDIT
call statement:

MPEDIT(D=infile,R=outfile,CSET =cset)

6-1

where D is the local file which presents the input
directives to MPEDIT. Default is INPUT. R is the local
file that receives the listings. Default is OUTPUT. CSET
is the host display code set to be used. CSET = 63 selects
the CDC 63-character display code set; this is the default
value. CSET = 64 selects the CDC 64-character display
code set.

Appendix I shows examples of executing MPEDIT.

Note that the user must rewind the ABSOLMP and
SYMT AB files prior to entering this utility; MPEDIT does
not rewind the files before using them.

MPEDIT PROGRAM SYNTAX
The statements which comprise an MPEDIT program are
similar to PASCAL statements (see the CYBER Cross
Compiler Reference Manual) with some restrictions and
extentions. A typical extention allows an expression on
the left side of a VALUE statement. The evaluted
expression specifies the address which receives the
assigned value. Comments are permitted as in PASCAL
statements. Appendix I show selected sections of ~
MPEDIT program.

As in a PASCAL program, an MPEDIT program has two
parts which occur in the order given:

• A definition/declaration section

• An assignment (initialization) section

The program ends with a terminator.

The sectioos of the program are shown in figure 6-1. The
MPEDIT flow is shown in figure 6-2.

The definition/declaration section consists of three parts
that must occur in the order given:

• A constant definitioo part

• A variable definitioo part

• An array definitioo part

The assignment section consists of one or more composite
statements. One composite assignment statement is
required for the memory resident portion of CCP or CCI;
one additiooal composite assignment statement is required
for each overlay to be edited. If overlay statements are
present, they must precede the memory resident
statement. The memory resident statement must be
present even if it is an empty statement (empty
statements are defined later).

The MPEDIT terminator is a period (.) immediately
following the END statement of the memory resident
assignment statement.

MPEDIT SYNTAX
MPEDIT program uses the following syntax elements:

•

•

6-2

Keywords that designate the part of the program
or operation to be performed by the assignment
section

Reserved symbols used to order the optional
outputs

PROGRAM STRUCTURE

CONST (1)
Constant Definition Part

VAR (1)

Variable Declaration Part

ARRAY (1)

Array Declaration Part

OVERLAY overlay identifier (2)

BEGIN
Assignment Section

END;

BEGIN (3)

Assigmnent Section
END.

(1) Optional

(2) Optional composite statement; can be
repeated for every overlay that requires
editing up to the maximum number defined
for the link edit.

(3) Composite statement; Memory Resident
Partition.

Figure 6-1. MPEDIT Program Format

• Local symbols used for equating constant locally,
or specifiying a local variable

• External symbols in MPEDIT always have an array
attribute

• Literals

• Address functions

• Expressioos

MPEDIT KEYWORDS

The following keywords are reserved for MPEDIT controls:

CONST
OVERLAY
CHAR

VAR
FOR
DIV

ARRAY
TO
MOD

BEGIN
DO

END
OF

These control words have the same definitions in the
PASCAL compiler.

MPEDIT RESERVED WORDS

MPEDIT assigns specific output option request meanings
to the following reserved symbols:

/TRACE /DMP$ /ESL$ /NAM$

MPEDIT assigns specific address meanings
following reserved symbols:

to the

/PGDISP
/START

/PGNUM
/LENGTH

/PGREG
/VFD

/PG SET /ENTRY

60471200 F

.. EDIT
PROGRAM
(coMMANDSI

Sf'ECIAL
FORMAT MEMORY
LOAD IMAGE
MODULE FILE

.. LINK
MEMORY IMAGE
LOAD MODULE
FILE
(ABSOLMPI

INITIALIZED
MEMORY IMAGE
LOAD MODULE
FILE

SYMBOL
TABLE
FILE
(SYMTABI

LISTING
FILES

'

INITIALIZED
SYMTAB

' ' ' ' ' '
MEMORY IMAGE
LOAD MODULE
FILE
(HEXADECIMALI

llNPUT
FILES

!OUTPUT
FILES

M-1080

Figure 6-2. MPEDIT Program Flow

These symbols must be used only to perform the desired
MPEDIT fl.llctioos. The flllctions are discussed later in
this section.

MPEDIT LOCAL SYMBOLS

Local symbols are used to equate a constant in the
constant definitioo part of the program or to declare a
local variable.

A Local symbol is defined by a slash U> followed by one to
six letters and/or digits. The first character must be a
letter. The dollar sign {$) is considered to be a digit. The
following are· valid local symbols:

/ABCDEF /A6 /MAIN$4 /I

A local symbol can have more than six letters or digits.
MPEDIT, however, truncates the symbol at the seventh
character, and discards that character and all that
follow. The user cannot, therefore, define two local
symbols such as / ABCDEFG ald / ABCDEFH. MPEDIT
treats both of these as I ABCDEF.

MPEDIT EXTERNAL SYMBOLS

External symbols are used during array processing. The
symbols refer to arrays in the SYMT AB load file produced
by MPUNK. An external symbol consists of ooe to six
letters ald/or digits. The first character must be a
letter. The dollar sign ($) is considered _to be a digit. An
external symbol cannot be one of the keywords defined
earlier. The following are valid external symbols:

A36F MAIN$ GLOBL$ UTOPARAM (treated as UTOPAR)

60471200 F

An external symbol can have more than six letters or
digits. MPEDIT, however, truncates the symbol at the
seventh character, and discards that character and all
that follow. The user cannot, therefore, define two
external symbols such as / ABCDEFG and / ABCDEFH.
MPEDIT treats both of these as / ABCDEF.

External symbols can be qualified by other external
symbols. To do this, the user separates the external
symbols by a period. A single external symbol can be
progressively qualified by additional external symbols, as
shown in the examples:

A36F.FIELD
GLOBL$.RECORD.FIELD

where:

• The first external symbol specifies a location on
the memory image file.

• Intermediate external symbols (if any) specify a
displacement from the previous location (for
instance, the start of a record in the global
variables).

• The final external specifies a field as:

A displacement from the start of the previous
external symbol

A start bit position for a field

A field length (in bits)

This method of qualification is identical to that used in
the PASCAL syntax.

6-3

MPEDIT LITERALS

A literal can be a decimal number (a sequence of decimal
digits), or a hexadecimal number (a sequence of
hexadecimal digits preceded by a $). Internally, literals
are represented as 16-bit quantities. Larger quantities
are illegal.

Signed literals are allowed (the leftmost bit is a sign bit).
A negative literal forces the complement of the 16-bit
quantity. If a literal is represented by less than 16 bits,
the unused left bits are packed with binary zeros.
Examples of legal literals are:

123 $147 -$F

MPEDIT ADDRESS FUNCTIONS

MPEDIT provides nine functions that can be used within
operand or address expressions to generate ;;n address.
The functions are executed by a reserved word in the form
/xxxxx. Five of these functions are also available with
MPLINK (see address functions in MPLINK):

/PGDISP
/PGSET

/PGNUM /PGREG
/OVD

In addition, MPEDIT defines four more address functims:

/START /LENGTH /ENTRY
/VFD

As in the MPLINK case, the function takes the format:

/xxxxx (name)

n;r ART, Field Start Address Function

The /ST ART fmction has the format:

/START(external)

The function returns the start position in bits (range 15-0)
of a field relative to the start of a variable word. For
example:

/START(FIELDX)

generates a bit position of 9 as the start of FIELDX:

(FELDX OJ

/LENGTH, Field length Address Function

The /LENGTH fmction has the form:

/LENGTH(external)

The function returns the value of the field length (in bits)
minus 1. A single bit field has a value of zero; a full word
field has a value of 15. PASCAL fields cannot exceed
word length, nor can a field start in one word and
overflow into the next.

Example: the length of FIELDX in the example above is
requested with /LENGTH(FIELDX). The address f1.11ction
would return a value of 10.

6-4

Example: to find the terminal class field (BSTCLASS)
start position and length in the base terminal control
block (TCB) descrip~or table, the following MPEDIT
statements are used:

DGTCBFDT [5J.DDFSTRT := /START(BSTCLASS);
DGTCBFDT [5].DDFLNTH := /LENGTH(BSTCLASS);

/ENTRY, Entry Point Address Function

This function accepts a module name as a parameter, and
generates the address of the module's associated entry
point. The /ENTRY function has the form:

/ENTRY(external)

Example: To locate the entry point and the page number
of the service module in CCP, the following MPEDIT
statements include address fmctions:

BYWLCB [BOSMWL]
BYWLCB [BOSMWL]

.BYPRADDR := /ENTRY(PNSWML);

.BYPAGE := /PGNUM(PNSWML);

NFD, Variable Field Definition Address Function

The /VFD function uses three parameters (address/
displacement, field start, and field length) to generate the
location and length of a field in the memory image load
module file.

The format of the /VFD specification is:

/VFD(addr I disp, fldstrt, fldlngth)

where addr/disp defines 'the absolute address of the word
holding the field in the memory image load file; fldstrt
defines the start bit position of the field within the word
(range 15-0); and fldlngth defines the length of the field
(in bits) minus 1 (range 0-15).

The address expression A, where A is an external, is
equivalent to the expression:

/VFD(A,/START(A),/LENGTH(A))

or more completely:

/VFD(A:PGREG(A):/PGSET(A),/START(A),/LENGTl-l(A))

MPEDIT EXPRESSIONS

Two types of expressions are used:

• Operand expressions

• Address expressions

Operand Expressions

An operand expression produces a single 16-bit binary
value. An expression is a valid combination of:

• constants (which are interpreted as 16-bit integers)
• local variables
• functions
• unqualified external symbols

60471200 F

These are joined together by arithmentic operators (+, -,
*, DIV, and MOD), and are grouped within parentheses to
specify the order in which the operations are to be
performed. An evaluated external symbol is represented
by its address/displacement value. Qualified address
values can be accessed using the address evaluation
functions given in MPLINK and MPEDIT, above.

In an operand expression, an external symbol cannot be
subscripted, even if it is declared in an array. The NPU
performs all arithmetic in one's complement mode so that
results are unique.

Examples of operand expressions are:

GLOBL$
(/PGREG(MOD)+$F21) DIV /START(GLOBL$)

Address Expressions

An address expression has one of two forms:

• A /VFD address fl.llction call

• A single external symbol. The symbol can be
qualified. If this form is used, symbols that are
declared in arrays must be properly subscripted;
that is, the st.bscript expressions must be operand
expressions with values that fall within the
expected range.

Examples:

• A

This is an address expression unless A was
declared in al array. In that case, the lack of
subscripts indicates it is al operand expression. It
could also be an operand expression if its usage
forced that conclusion; that is, it is on the
ricjlthand side of an assignment statement.

• A[2]
/VFD (MAIN$,O,O)

• ARRAY A (1 •• 5,1 •• 5 J OF 24;
C [1 •• 10] OF CHAR;

VAR/I; /J

A[/l,(/START(Q)-2)*/JJ.B.C [3]'address
expression'

MPEDIT PROGRAM STRUCTURE

CONSTANT DECLARATION PART

The first part of an MPEDIT program contains constant
declarations; this section is optional. Constant
declarations allow programmers to create synonyms for
literals. A local symbol that is defined as a constant
behaves as a true constant; its appearance is legitimate
wherever a literal is expected.

If a constant declaration part .is present, it is preceded by
the keyword, CONST. The complete . list of constant
declarations must follow that word.

Each declaration has the following format:

60471200 F

/symbol=expression;

that is, the declaration consists of a local symbol, an
equal sign, and a literal, or a previously defined,
constant. The' declaration terminates with a semicolon.
Literal and previously ·defined constants can be signed.

It is possible to define a constant value as an expression
which itself is a mixture of constants, previously declared
local constants, and entry symbols which appear in
SYMTAB.

Examples are given in figure 6-3.

Requesting the Optional Form of the
Initialized Load Module file

The pseudoconstant /NAM$ is used in MPEDIT to request
the optional form of the initialized memory image load
file. That load file is especially formatted for downline
loading in the NPU. Format of the file is shown in
appendix E.

Any three-character identifier ca~ be assigned to the
/NAM$ definition. The identifier specified is placed in
the heading of the load file. An example of the /NAM$
definition is:

/NAM$:= OE2

The definition can appear anywhere in the CONST
definition part of the program.

NOTE

This alternate form is not the final
form of the load file that is
downline-loaded into an NPU to provide
the on-line CCP or CCI. Instead, as
shown in figure 1-1, the CCP or CCI
installation procedures use a load file
generating utility to process this
optional form of the memory image
load module file along with other load
files. After processing by the host's
load file generating utility, the
reformatted and combined load file can
be downline-loaded into an NPU.

VARIABLE DECLARATION PART

The next part of an MPEDIT program con~ains variable
declarations; this section is also optional. It allows
programmers to create local symbols for local variables.
These symbols exist only during the MPEDIT phase. All
such variables are 16-bit quantities that can be used in
one's complement arithmetic.

If the variable declaration part is present, it is preceded
by the keyword, VAR. That word is followed by the
complete list of local variable declarations.

Each declaration has the following format:

/symbol;

that is, the declaration consists of a local symbol followed
by a semicolon terminator.

Example of a variable declaractions are given in figure
6-3.

6-5

CONSTANT DECLARATIONS

CONST
/TRUE 1;
/FALSE O;
/COUPLER = $0000;
/PORTO! $0100;
/PORT02 = $0200;
/BOSl 1;
/BOS16 /BOSl;
/BFLCDO /BUFSZ0*2 - /JlLSTPAD;
/DBFSZE /BECTLBK + (3*/SIZBECTLBK);

VARIABLE DECLARATIONS

VAR

/I
/!3
/P
/IDTBL
/BZOWNER
/BZLNSPD
/BSCN
/BSPGWAIT

ARRAY DECLARATIONS

ARRAY

JZOPSBASE [BOCHWL •• BODUMMY] OF 2;

DBPFCTBLE [1 •• DBLAST] OF 2;

CGTCBS [O •• C4TCM1] OF /SIZTCB
VATCBAT [1. .40] OF 3;

Constants as decimal numbers

Constants as hexadecimal numbers

Constants as previously defined constants

Constants as arithmetic expressions

general loop index
general use variable
work pointer for program
table work pointer
local variables

sequence of elements defined by symbols;
numerically defined size

sequence of elements defined by symbols;
constant defined size

JGTESTABLE /FALSE •• /TRUE,/FALSE •• /TRUE,/FALSE •• /TRUE] OF l;

NAMEN [1 •• 20] OF CHAR;

combination of both of the above
sequence of elements defined by
numbers; numerically defined size

sequence of element sets defined by
symbols; numerically defined size

sequence of elements defined by numbers;
elements packed two per NPU word.

Figure 6-3. Examples of MPEDIT Constant, Variable, and Array Declarations

ARRAY DECLARATION PART

The next part of an MPEDIT program contains array
declarations; this section is also optional. Array
declarations allow programmers to create external
symbols as arrays so that elements can be referenced by
an index. Any external symbol that is to be indexed must
be declared as an array.

If the array declaration part is present, it is preceded by
the keyword, ARRAY. That word is followed by the
complete list of array declarations.

A declaration can have either of two formats:

name [index] OF number;

name [index] OF CHAR;

In each case, the name is an external symbol, the index is
a range of numbers in PASCAL notation
(number •• number), and the declaration is terminated with
a semicolon. Note that number itself can be an
expression. If the CHAR format is used, the array
corresponds to a PASCAL packed array; that is, there are
two characters packed per NPU word.

6-6

Examples of array declarations are shown in figure 6-3.

ASSIGNMENT SECTION

There are two general types of assignment sections:
resident assignments and overlay assignments. All overlay
assignments must precede the resident assignment
section. The two types are identical except that each
overlay assignment section begins with:

OVERLAY overlay identifier

An assignment section consists of a single composite
statement which is delimited by the keywords BEGIN and
END. The composite statement consists of zero or more
statements which direct the MPEDIT actions to be
performed. There are five types of assignment
statements:

• Local assignment statements

• Address assignment statements

• FOR loop statement

60471200 F

• An embedded composite statement

• Empty statement

Each statement (except the last) is terminated by a
semicolon.

An MPEDIT program must include an assignment section
for the memory resident programs, even if that section
consists of only one empty statement.

Selected portions of an assignment section for a CCP
MPEDIT program are given in appendix I.

Local Assignment Section

A local assignment section statement has the following
format:

local variable := operand expression

where:= is the assignment operator.

MPEDIT evaluates the operand expression to find the
value, and places that value in the named local variable.
Examples of local address assignment statements are:

VAR /I; I J; /K; /L;

/I:= /I+l; /J := O; /K := /LENGTH(X);
/L := /V ALUE(A.B)+C;

Address Assignment Section

An address assignment statement has the form:

address expression:= operand expression

An address expression can take the form of an operand
expression (that is, the operand expression can appear on
the lefthand side of the assignment operator). In this
case, a /VFD with full-word attributes is implied.

Semantically, MPEDIT evaluates the ri!tlthand-side
operand expression, and replaces the value in the memory
image location specified on the lefthand side with this
new value.

If a 16-bit value is assigned to a smaller than 16-bit field,
the hicjler order bits are trl.Slcated.

As mentioned above, an address assignment statement can
have an operand expression on the lefthand side. For
example:

/I+l := 0 is interpreted as /VFD(/l+l,15,15) := 0

MPEDIT is instructed to zero the full 16-bit word that
appears at location /l+l. Similarly, 1 := 0 would zero the
full word at memory image location 1.

Example:

VAR /I;

.
/I :=0

60471200 F

This sets the local variable /I to zero. To zero the word
at memory location /I, the lefthand side of the assignment
must be forced to look like an expression. This could be
done in any of the following three ways:

• +/I:= 0
• (/I}:= 0
e /VFD(/I,15,15) := 0

FOR Statement

The FOR statement in MPEDIT is entirely analagous to
the FOR ••• TO statement in PASCAL. The statement
causes the indicated statement to be repeated, while a
progression of values is assigned to a control variable.
The basic form of the FOR statement is:

FOR control variable := initial operand expression
TO final operand expression
DO statement

The FOR ••• TO statement assigns values for the control
variable in increasing order. The control variable must be
a local variable.

In the following example, the FOR statement causes
MPEDIT to set 256 successive locations, begiming at the
external symbol GLOBL$, with the value of the preceding
memory location's address:

VAR /I

FOR /I := GLOBL$
TO GLOBL$ + $FF
DO (/I) := /I - l

Composite Statement

A composite statement is a sequence of statements (which
can include embedded composite statements) that are to
be executed in the order specified. A composite
statement is delimited by BEGIN and END. The format of
the statement is:

BEGIN

END.

statement;
statement;

statement

A composite statement is interpreted syntactically as a
single statement. It is used to delimit the entire
assignment section. It is also useful for specifying several
statements which are to be acted upon as a single
statement.

The example in figure 6-4 gives alternative ways of
packing an array.

6-7

METHOD 1

VAR /I;

FOR /I •= 0 TO 49 00

BEGIN
/VFD(GLOBL$+/I,15,7) := $4D;
/VFD(GLOBL$+/I,7,7) := /I

END;

METHOD 2

VAR /I; /J; /K;

ARRAY GLOBL$ [0 •• 99]

/K := $4D;

FOR /I := 0 to 49 DO

BEGIN

END;

/J := 2*/I;
GLOBL$ [/J]
GLOBL$ [/ J+ 1]

:= /K;
:= /I

OF CHAR;

This example packs an array of 50 NPU (16-bit)
words starting at location GLOBL$. Value $4D
is placed in the upper half word, and the word
count (0 through 49) in the lower half word.

Figure 6-4. Methods of Packing an NPU Array

Empty Statement

The empty statement is Malagous to the empty PASCAL
statement. It contains no information; it can be used
anywhere that a statement is appropriate. The empty
statement exists so that a syntax error is not generated if
the user inadvertently enters a semicolon. This most
frequently occurs after the statement which preceded the
END statement in a composite statement.

Comments

Comments can be introduced in any position within a
statement that does not violate a keyword or a symbol.
Comments are delimited at the begiming by an ASCII
underscore (this appears as a broken arrow in display
code), and at the end by an ASCII question mark (this
appears as a down arrow in display code). Any character
can be used within a comment except the delimiters.

Requesting a TRACE Operation

The pseudovariable /TRACE is used in MPEDIT to request
a trace listing. The trace listing presents the following
information

• The address or field that is initialized

• The value to be inserted into the field

6-8

• The previous contents of the full 16-bit word
holding the field (the field can be all or only a
part of that word)

• The current contents of the full 16-bit word after
the initializing value is inserted

• The line number of the MPEDIT program which
caused initialization of the field

Format of the pseudo variable requesting a trace listing is:

/TRACE:= x;

If the value for /TRACE is 2 or greater, the listing is
produced. If /TRACE is assigned a value of 0 or 1, the
trace report for that /TRACE entry is not produced.
Default value for /TRACE is 2. The pseudovariable can
appear mywhere in the assignment section; however, only
those assignment statements that appear after the trace
request will be included in the listing. For this reason it is
customary to define the pseudovariables at the begiming
of the assignment section.

A partial trace listing is shown in figure 6-5.

Requesting the SYMTAB Listing

The pseudovariable /ESL$ is used in MPEDIT to request a
listing of the symbol table (SYMT AB). This report
includes the local symbols. The report is generated at the
end of an MPEDIT run. For mat of the request is:

/ESL$:= x;

If the value of x is 2 or greater, the SYMTAB listing is
produced; if the value is 0 or 1, the listing is suppressed.
The default value for /ESL$ is O.

The request can appear anywhere in the assignment
section of the program. A sample partial SYMTAB listing
is shown in figure 6-6. The listing was requested by the
pseudovariable declaration:

/$ESL:= 2;

Requesting the Initialized Load Module File Listing

The pseudovariable /DMP$ is used in MPEDIT to request a
listing of the initialized memory image load module file.
Format of the request is:

/DMP$:=x;

If the value of x is 2 or greater, the listing is produced; if
the value is 0 or 1, the listing is suppressed. Default value
for /DMP$ is 2. The request can appear anywhere in the
assignment part of the program.

The memory image load module file values are listed in
hexadecimal; the listing is generated at the end of a
MPEDIT run.

MPEDIT DIAGNOSTICS
Some types of statement faults cause errors from the
programmer's standpoint, but d:> not generate an error
message. Others can generate one or more error
messages. Any of the following types of statements fail:

• statement has an undefined identifier

60471200 F

CYBER "lNI CROSS SYSTE" - LINK EDITOR -

TRACE LIST

578 Vf0(S0016A, SF, SFt I• 0096; 0000 .. 0096 67lt VFO(S01Z30, SE, S'i t =· 0001; oooc .. ozoc
579 VFDU0016B, SF' Sf) =· OOOF; 0000 .. OOOF 675 VFDU0122D, s1, S7t =· 0001; 0000 .. 0001
5RO VFOU00l67• Sf• SF> =· 0032; 0000 .. 0032 676 VFO(S01Z30., SF1 SO) :2 0001; OlOC ,. SZOC
581 VfD(S00168, ,F, Sft : . 0000; 0000 .. 0000 680 VFOC S0115D, s1, S7t =· 0003; 0000 .. 0003
582 VFDCS0016q, SF1 SF t ta onoo; 0000 .. 000~ 681 VFDU0116511 n, '7t :2 OuOl; 0000 .. 0001
595 VFDUOF67E1 H1 SFt :a F659; 0000 ,. F659 MZ VFDU0116D, s7, S7t := 0003; 0000 .. 0003
600 VFOUOlOBO, SF, SFt ;• 0020; 0000 .. 0020 683 VFO(SOll 75, s1, S7t =· OOOZ; 0000 .. 0002
MH VFO (SOl 08 t. Sf, SF) =· 0005; 0000 .. 000:) 6!llt VFDUOll 701 S7, '7) := 0001; 0000 .. 0001
608 VFDUOllAl, \f, SF) : . eoq3; 0000 .. 8093 685 VFDU011851 11, '7) := 0001; 0000 .. 0001
609 VFO(SOllA<'• s fl, S8J =· 0010; 0000 ,. 0010 686 VFD(sonao, $7., S7J : . 00!>1; 0000 ,. 0001
610 llFOUOllqt• Sf, HJ =· OOOQ; 0000 .. 4800 698 VFD C $015301 SF, SF) :2 OOO't; 0000 ,. OOO't
611 VFOUOllA01 se, S5) : . 0001; 0010 .. 0210 694 VFDU01774, \F., SF J : '"' OOOZ; 0000 .. oooz
612 VFD CS 011 qo, l 7. S7J =· 0002; 1)000 .. 0002 695 VFD(S01775, SF, SF I =· 0001; 0000 .. 0001
613 VFDUOlUO, $F, SOJ =· 0001; 0210 .. d210 69& Vf0(S01776, SF, SF J :2 OOOD; 0000 .. 0000
617 l.IFOUCl uq, Sf• $F) : .. 7602; 0000 .. 7602 697 VFO(SOl 777, SF' Sf) : .: 6AFO; 0000 .. 6AFD
616 VFDC S011A6• se. Sd) : . OOOE; 0000 .. OOOE b98 VFOC SOl 778, Sh SFJ :• OOFOi 0000 .. OOFO
~19 VFO (SOl lAl'H tf., HJ : .. oOOA; 0000 .. ,000 6H VFOU01779, SF, SF) :a OOFO; 0000 ,. OOFO
b2t) VFOUOllA~• $ E:t '5) : .. 0004; OOOF. .. O~OE 700 VFDU01778, SF, SFJ : "" '5065; 0000 ,. 5065
621 VFDUOlU'5t1 s 7, $7). : . 0002; 0000 .. oooz 701 VfO(S0177A, SF• SF> : .. OOOB; 0000 .. OOOB
02? VFD<SOllAA, \f., SOJ =· uOOl; OAOE .. B!'OE 702 VFD(S0177C, SF, SF) :a OOOZ; 0000 .. oooz
6?b VFO CSOl 1 Bl• \f• SFJ :2 51 TQ; 0000 ,. 'H 79 703 VFDU01770, if• Ht : .. 0001; 0000 .. 0001
fil7 VFOUOll•rn, S!h set :a COCA; ~000 .. OOOA 704 VFDCS0177b Sf, HJ : .. 0010; 0000 ,. 0010
628 VFDUOllAE, Sf, S4) =· 0008; 0000 .. 5800 70j VFDU0177F, SF. SF t == ~093; 0000 .. 8093
b?9 VFOUOl180t1 SE, $5J =· OOOA; OOOA ,. 140A 70& VFO(S01780, SF, SF) :: OOOZ; 0000 ,. oooz
'J30 VFDUOllAOe s 7, $7) : . 000'5; 0000 .. 00'.)5 707 VFO(S01761, SFt SF t : . 0002; 0000 .. oooz
l'l'31 VFOUOllqo, Sf, SO) :a 01)01; HOA ,. <HOA 708 VFDUOl 79 2, SF., SF J : .. 0000; 0000 .. 0000
b~5 . VFDU01169• SF• Sf) : .. 2189; 0000 .. 2 l8'l 70Q VFDUOl 783, SF, SF) == 6889; 0000 .. 6889
636 vi:o uo110a. se, $8) :a 0004; 0000 .. ".1004 710 VFOU01788, s~, SFJ : .. J078; 0000 ,. 0078
~31 VFD UCll!H>1 Sf, !it) : . oooc; 0000 .. ':>000 711 VFDIS0178Q, Sf, SF J == 00711; 0000 .. 0078
i1,·B VFO (SOl l 8R1 ~r. $5) :a 0001; 0004 ,. 0204 712 VFOCS0178A1 SF• SFJ := 0008; 0000 .. 0008
63Q llFDCS01185• s 7, $7) : . 0004; 0000 ,. 0004 713 VFD(S01788, SF, SF J :a 413F; 0000 ,. 413F
640 VFO (SOl l~ A, SF, $0) : . 0001; 0204 ,. 9204 714 VFDU0178C1 \f. SF J :: 0002; 0000 .. 0002
~44 VFD (S011C l • SF, SF) :: 69E5; 0000 ... 69C:5 715 VFDU01780• Sf, SF J : '"' 0001; 0000 ,. 0001
645 VFD< so11co, se, SB) :a 0000; 0000 .. 0001) 716 VFD(S0178E1 SF, SF) :a 0010; 0000 ,. 0010
646 VFOUOl18F1 SF, '4) : . 0000; 0000 .. 6800 717 VFOCS0178F, SF, SF J : a 11093; 0000 .. 8093
f;4 7 VFO uo11co. Sf, S5J : . 0001; 0000 .. ozoo 718 VFDU01704• Sf• SF J : .. OOOZ; 0000 .. 0002
648 VFO(so11ao, s 7, $7J =· 0001; 0000 .. 0001 719 Yf0(S017851 Sf, SF) : .. 0002; 0000 .. 0002
649 VFOUOllCO, Sf, SOJ =· 0001; ozoo .. 8200 720 VFDUOl7861 SF, SF) == OOOE; ocoo .. OOOE
~53 VFO UOt 1C9• Sf, SF) : . 80Q3; 0000 ,. 8093 721 VFDU017R7, SF, Sf) == 7682; 0000 .. 7682
654 VFOCS011C8, sa, S6) : . 0010; 0000 .. 0010 7ZZ VFD(S01790, SF, SF J =· 0014; 0000 .. 0014
e,5:; VFDU011C6• •F, $4) =· OOOE; 0000 .. 7000 7Z3 VFDUOl 791, SF. SF) :a OOH; 0000 ,. OOH
656 VFDU011C8• SF.' $5) =· 0001; 0010 .. 0210 724 VFDU0179Z, Sf, SF I : .. 0008; 0000 .. 0008
657 VFOU011C5, s 7, $7) =· 0006; 0000 .. 0006 725 VFD(S0ll93, Sf, SF) =· ltltltC; 0000 .. 'tltltC
658 VFDU011C8• Sf, so• =· 00.01; 0210 .. n10 72& VFDU017A't, SF., SF, =· 0000; 0000 .. 0000
6bZ VFOU01101' SF1 SF J =· 3039; 0000 .. 3039 727 VFOU017A51 SFt1 SF, :a 0000; 0000 .. 0000
6!>3 VFD uo1100. se, S8) =· 002F; 0000 .. OOZF 728 VFDU017A7, SF, SF J =· 0000; 0000 ,. 0000
661t VFOUOllCE, Sf, $1t, =· OOOF J 0000 ... 7800 739 VFDU01859• so. UJ =· 0001; 0000 .. 1000
665 VFD UOUDO• SE1 $5) =· 0001; 002F ,. OZZF 7lt0 VfD(S018 59 • s4, so : .. 0008; 1000 .. 1008
666 VFO(SOllCD, $71 $7) =· 0003; 0000 ,. 0003 11tlt VFDCS01867• so. SU I• 0001; 0000 ,. 1000
"67 VFDCSOllDO, SF1 SO) =· 0001; O.ZZF ,. 822F 71t5 VFDU01867., Sit, Sit, =· 0009; . 1000 ,. 1009
'>71 VFDU01Z311 Sf, SFl =· 653C; 0000 .. 653C 71t& VFDU01867t1 s1, S2) 'l:• OOOZ; 1009 .. lO'tq
67Z llFDU01Z30, sa, $8) S• OOOC; 0000· ,. oooc 750 VFDC 101883, '"' Sit, =· OOOF; 0000 .. OOOF
673 VFDU0122E, SF11 Sit, Sa 0018; 0000 ,. 0800 751 VFDU0188B• SF, SF) =· OOOE; 0000 .. OOOE

Figure 6-5. Par ti al MPEDIT Trace Listing

• statement causes an attempt to assign a Example 1:
nonexistent memory location

u := 0

• statement has a bad field specification (overflows
word or has an illegal format) where U is an llldefined identifier. This acts as an empty

statement.

• statement has an out-of-range subscript
Example 2:

A failed statement behaves ft.nctionally like a null
statement. The following examples show failed VAR /I;
statements.

FOR /I := $100 TO $202 DO
(/I):= 0

60471200 F 6-9

CYBER "'"' CROSS SYSTE" - LINK EDITOR -

FNTRY SY"BOL LIST - SORTED 8Y ENTRY NA"E

•ENT~Y**Q/A••ADDRESS/VALUE••BIT HL* •ENTRY••RIA••ADDRESS/VALUE••BIT Sil* *ENTl!Y••RIA••ADDRESSIVALUE••BIT SIL•

UC APL p 't93C ADSTZ A oooz AID LET A 0003
UC DAD A 0000 AS:ABLS R 't74A AIDLE A 0001
AACDPT A uCOO AE APL R 11709:3709 AINPLB A OOOE
UC ORR fl ftllJRC AEASC I R 't6A7 AINP~B A OOOD
AAE APL R lt~FC AEATf N p "769 AJSPTl R H05
AAE!\CO ~ lt8FC AEATTl R lt775 AISPT6 R lt5ZA
AAlllQFA A 0ijl}7 AfAUTl R ltt.48 AnP'tC R OlZ
AAOUTP I. uJ03 A!: AUTZ R lt6H AISPH R lt'tf A
AUE AD A OCC4 AJ=AUT3 R lt65" ALAR"l A 0001
AA'58AP R ltA3i: Af8LS R 't581t ALU"l A oooz
USTA" 11 49FC AECHRl R H60 ALAR"3 A 0003
Al!APLA fl t,QRI; AECINl R lt60A ALCAPL R 'tC7C
AC APL Q llt>E D: 3~!:0 A!:CIJfZ II' lt60C ALC('IU R ltABC
ACARTO 4 0078 AFC IN3 R lt6E7 ALE APL R ftBBC
AC All JO A 0001 AFCl!lllt II' lt6E9 ueeco R 't83C
ACCHL ll 0004 Ai!CK"D p ltHl! llf l 0002
ACCAPL l :>O<ilt AS:COOl R 't6CO ANIL l 0000
ACCASf II' 11 ':a?: ll,IH Al::CO'>Z Q ltbAO ASASC I A 0022
AC CORP A 0001 AEC 3c R 1160713607 ASlUTO A 0011
ACCOR I! l ooc' AECSLL R 47!JF ASCE?6 R 1539C: 339C
AC DF LP" A 1)007- AS:CSll 11 't77A A SC E~9 R l535C: 335C
ACt~PL l oon Al!CSLZ R H7C ASCINT R 17&C
AC; APL A OC:>Z AEE I!lll R lt6F5 ASDJSC A 0003
ACE BCD A f\uOl A!:EI~Z p lt6F7 ASS LL A OOOlt
ACESCO l 0\)('l AEFJN3 R "702 AS SOL A 0001
ACE LL A oc".1 AFfl'H R 't701t ASX PT A 0002
AC~PL A 01)'1 Ac&;LL p HC5 ASX SOI A 0005
ACl<"~G ll ~'>BE Aci:L Tl R lt'>CE ASfNCE R uu
ACKPTP ll 1008 llE EL T 3 R lt5FO ASZ71tl A 0020
ACLIH2 A .)')00 A EE PL R 't5Fl AT APL A R 1t97C
ACL J!'11 A CAO' AE~ PT 1 R lt'>FA AT ELL A 0000 FU
ACPBLI A 0001 AHSll R 't780 Alf.Pl A 0000 7:7
ACP808 A 0007- AtS:U2 R 4782 ATPDIZ R 11311• 3318
ACilCLR A oooc AEINPT R lt583 ATPDI5 R 1133F: 333F
ACPEVF A)001) AEPU R "58C ATPDI6 R 113'313363
ACPICS A 00~~ AE"ST R lt55F ATPDI8 R 11387: 3387
ACPIOW A 0060 AESE'>I 1t73C ATPPRl R 11203• 3203
ACPLR1 R lCOD AES LL lt570 ATP PR It 112F2a 3ZF2
ACPOBL A 01),8 AS:SllO lt65B AUCAPL ltCJC
ACPO"A A 006C AEShO lt668 AUCCRA U7C
AC PONS A 001t8 AESl!>l lt662 AUEAPL ltl7C
ACPR"A A 0010 AfS300 lt671t AUEBCO ltAFC
ACRITT A Oi>OA AES301 lt67l AVASCE 1172913129
ACRLF l 0003 AEXBL S lt635 AYASCP lUD
ACR l 0001 AE XDL M o\63A AV87TO lEH
ADORES R 0150 AEXDTA lt62A AVCHTR 1E30
AODRLC p OUF AEXPTD lt6ZF AVCDRE 1113AI 373A
A DOR SU R 0160 AEXSOI lt601t AVCORR lEH
ADEADT A OOH AE4XDL UA7 AVCRL.F lUZ
ADSTl A 0001 AHUN lt19Z AVCRNS 1E50

Figure 6-6. Partial MPEDIT SYMTAB Listing (Sorted by Entry Name)

where only addresses $100 through $1FF are defined in the
load file. In this case, 259 assignment statements are
executed. The first 256 are valid; the last three fail.

If a failed statement or other error causes an error
message, the error message is delivered to the output
file. The messages are preceded by an up arrow. If the
error is a recognized syntax error, the up arrow is

6-10

followed by the character that was being processed when
the error occurred.

MPEDIT ERROR MESSAGES

Table B-6 in appendix B lists the MPEDIT error messages,
the message meaning, and the action which the operator
or programmer should take in response to the message.

60471200 F

CHARACTER SET

The CYBER host uses one of two character sets to the
CYBER Cross Build Utilities:

60471200 F

• 63-character ASCII
• 64-character ASCII

These code sets are shown in table A-1.

A

A-1

TABLE A-1. 63/64 CHARACTER ASCII CODE

ASCII Hollerith External ASCII ASCII Hollerith External ASCII
CDC Graphic Display Punch BCD Punch ASCII CDC Graphic Display Punch BCD Punch ASCII

Graphic Subset Code (026) Code (029) Code Graphic Subset Code (026) Code (029) Code

: t : OOtt 8-2 00 8-2 072 6 6 41 6 06 6 066
A A 01 12·1 61 12-1 101 7 1 42 7 07 7 067
8 B 02 12·2 62 12-2 102 8 8 43 8 10 8 070
c c 03 12-3 63 12-3 103 9 9 44 9 11 9 071
D D 04 12-4 64 12-4 104 + + 45 12 60 12·8·6 053
E E 05 12-5 65 12·5 105 - - 46 11 40 11 055
F F 06 12-6 66 12-6 106 * • 47 11 ·8·4 54 11·8·4 052
G G 07 12·7 67 12·7 107 I I 50 0·1 21 0-1 057
H H 10 12·8 70 12·8 110 ((51 0·8·4 34 12·8·5 050
I I 11 12·9 71 12·9 111)) 52 12·8·4 74 11 ·8·5 051
J J 12 11·1 41 11-1 112 $ s 53 11·8-3 53 11-8·3 044
K K 13 11-2 42 11-2 113 = = 54 8-3 13 8·6 075
L L 14 11-3 43 11-3 114 blank blank 55 no punch 20 no punch 040
M M 15 11-4 44 11-4 115 , (comma) , (comma) 56 0-8-3 33 0·8·3 054
N N 16 11·5 45 11 ·5 116 . (period) . (period) 57 12-8-3 73 12-8-3 056
0 0 17 11-6 46 11-6 117 - # 60 0-8-6 36 8-3 043
p p 20 11-7 47 11·7 120 I [61 8·7 17 12-8-2 133
a a 21 11-8 50 11-8 121 I I 62 0·8·2 32 11-8-2 135
R R 22 11-9 51 11-9 122 % % 63tt 8·6 16 0·8-4 045
s s 23 0-2 22 0-2 123 * "(quote) 64 8·4 14 8·7 042
T T 24 0-3 23 0-3 124 -+ (underline) 65 0·8·5 35 0-8·5 137 -u u 25 0-4 24 0-4 125 v ! 66 11-0 or 52 12-8-7 or 041
v v 26 0-5 25 0-5 126 11-8-2ttt 11-0ttt
w w 27 0-6 26 0·6 127 /\ & 67 0-8-7 37 12 046
x x 30 0-7 27 0-7 130 t ' (apostrophe) 70 11 ·8·5 55 8-5 047
y y 31 0-8 30 0-8 131 i ? 71 11-8-6 56 0-8-7 077
z z 32 0-9 31 0-9 132 < < 72 12-0 or 72 12-84 or 074
0 0 33 0 12 0 060 12·8·2ttt 12-0ttt
1 1 34 1 01 1 061 > > 73 11·8·7 57 0-8·6 076
2 2 35 2 02 2 062 ~ (j) 74 8·5 15 8-4 100
3 3 36 3 03 3 063 ;;;:: \ 75 12·8·5 75 0-8·2 134
4 4 37 4 04 4 064 -, -(circumflex) 76 12·8·6 76 11 ·8·7 136
5 5 40 5 05 5 065 ; (semicolon) ; (semicolon) 77 12·8·7 77 11·8·6 073

tTwelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line
mark is converted to external BCD 1632.

ttln installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch).
The % graphic and related card codes do not exist and translations from ASCII/EBCDIC % yield a blank (558).

tt tThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

M-184

UTILITY DIAGNOSTIC MESSAGES

Each of the utilities described in this manual generates a
set of error and (in some cases) informational messages.
Some of these messages are sent to the output file (error
file), and others are sent to a special fatal error file.

The error messages in this appendix are arranged by
utility type. The tables are:

60471200 F

TABLE

B-1
B-2
B-3
B-4
B-5
B-6

UTILITY

Library Maintenance
Expand
Autolink - Informational messages
Auto link - Fatal errors
Link
Edit

B

B-1

TABLE B-1. LIBRARY MAINTENANCE UTILITY ERROR MESSAGES

Message Text Meaning/User Action

AN ATTEMPT WAS MADE TO WRITE TOO MANY PROGRAMS The library file is limited to 425 programs./
TO THE NEW LIBRARY FILE Delete nonused programs.

DEL DIRECTIVE DOES NOT HAVE A MATCH ON THE The specified program (or the first program of a
OLD LIBRARY FILE group) does not have a match on the old library

file. I Check the object code module names against
the directive parameter names.

I/O ERROR - READING INTERMEDIATE LIBRARY FILE The intermediate file could not be read./ Try
again. If error persists, call a system analyst.

I/O ERROR - READING LGO FILE The LGO file is not in the proper format, or has
been damaged./ Generate a new LGO file.

I/O ERROR - READING OLD LIBRARY FILE The old library file is not in the proper format,
or has been damaged. The old library cannot be
used.

I/O ERROR - WRITING INTERMEDIATE LIBRARY FILE The intermediate library file could not be
written. The space for temporary files was
exceeded, or there was an error in writing the
file./ Return unused local files and try again;
if second attempt fails, allocate more space for
temporary files.

I/O ERROR - WRITING NEW LIBRARY FILE The new library file could not be written. The
file may be write-protected, or it could exceed
the user's allocated file size, or there may be an
error in writing the file./ Try again after
checking protection of file. If error persists,
call a system analyst.

NAME FIELD ON DIRECTIVE CARD IS NOT Program names consist of one to six letters,
RECOGNIZABLE numbers, or $./ Check the directive name.

Correct as appropriate.

NEW LIBRARY ENTRY POINT TABLE OVERFLOW The total ntnnber of entry points plus programs
(times 2) cannot exceed 4000. I Rewrite the
programs to have fewer entry points or larger
programs.

NO END-OF-TABLE WORD FOR ENTRY POINT TABLE The old library file is not in the proper format or
RECORD ON LIBRARY FILE has been damaged • The old library cannot be used.

NO XFR BLOCK FOR PROGRAM ON RANDOM LGO FILE The LGO file is not in the proper format./ Try
again. If error persists, call a system analyst.

NON-ASCII (NOT $20-$5F) CHARACTER IN PROGRAM The LGO file is not in the proper format, or has
NAME OR ENTRY POINT ON THE LGO FILE been damaged./ Correct any format error; then try

again.

PUT OR SUP DIRECTIVE DOES NOT HAVE A MATCH The specified program (or programs) does not have a
ON LGO FILE match on the LGO file./ Check the object code

module names against the directive parameter names.

PUT OR SUP DIRECTIVE SECOND NAME DOES NOT HA VE The name of the second program (mod2) in a modl-
A MATCH ON LGO FILE mod2 parameter does not exist on the LGO file or

it preceeds the first program name (modl) ./ Check
the order of modules in the LGO file. Use a
different range of modules, or reverse the names
in the parameter.

B-2 60471200 F

TABLE B-1. LIBRARY MAINTENANCE UTILITY ERROR MESSAGES (Contd)

Message Text Meaning/User Action

PUT OR SUP SECOND NAME DOES NOT HAVE A MATCH The name of the second program (mod2)
ON OLD LIBRARY FILE in a modl-mod2 parameter does not exist on the old

library file or it preceeds the first program name
(mod!)./ Check the order of modules in the
library. Use a different range of modules, or
reverse the names in the parameter.

TOO MANY PROGRAMS ON LGO FILE The LGO file is limited to 425 programs./ Delete
nonused programs.

UNRECX>GNIZABLE DIRECTIVE The directive name is not *ALL, *PUT, *SUP, *DEL,
or *LST./ Check the directives file, and enter a
proper directive name.

TABLE B-2. EXPAND UTILITY ERROR MESSAGES

Message Text Meaning/User Action

EMPTY MACRO CALL FILE An empty file was passed to Expand from the build
procedures./ Notify a NOS system analyst.

ERROR IN ASSOCIATED VARIANT DEFINITION /The user should correct the error in the USERBPS
file, -and rerun the build step.

ERROR IN MACRO CALL FILE An erroneous file was passed to Expand from the build
procedures./ Notify a NOS system analyst.

ERROR IN MACRO TEXT FILE Probably a section of expected text was not found in
the file. The file is generated from the EXPTEXT deck
on the CCP program library./ Notify a NOS system
analyst.

ERROR IN USERBPS FILE /The user should correct the error in the USERBPS file
and rerun the build step.

INCX>MPLETE SYMBOL An end-of-line was found before the delimiter in the
USERBPS./ The user should correct the error in the
USERBPS file, and rerun the build step.

LINE TOO LONG AFTER SUBSTITUTION When the symbol was substituted in the text line, an
over flaw condition occurred. The file is generated
from the EXPTEXT deck on the CCP program library./
Notify a NOS system analyst.

NIL SYMBOL No characters were found before the delimiter in the
USERBPS./ The user should correct the error in the
USERBPS file , and rerun the build step.

SYMBOL TOO BIG The character string had more than ten characters in
the USERBPS./ The user should correct the error in
the USERBPS file, and rerun the build step.

60471200 F B-3

TABLE 8-3. AUTOLINK lf\FORMA TIVE MESSAGES

NOTE:

Some Autolink messages are prefaced with one of two messages:
***** ERROR *****

***** WARNING *****

Message Meaning/Action to be Taken

AUTOLINK COMPLETED Informative message only./ No action is required.

AUTOLINK OUTPUT DIRECTIVES LIST Informative message only. This message is followed by the
directives which serve as input to MPLINK./ No action is
required.

DELETED TOPHAT MODULE LIST The listed modules had a tophat program that was deleted,
since the modules were located in main memory rather than
in paged memory./ No action; informative only.

EXCEEDS THE 18 COLUMN REPORT LIMITATION A BUFSP report has coltunns for all applications to be
included in the build report, and for all the memory sizes
to be tested. A maximum of 18 coltunns can be fit on the
out put re port page. If the combination of APPL directives
and BUFSPSIZE sizes exceeds 18, this message is
generated./ Reduce the number of applications in the
build, or reduce the number of memory sizes for the report.

INVALID ADDRESS SPECIFICATION The address parameter in a MOD or RESERVE directive is not
valid./ Use a legal address: addresses should be within
memory size, and be expressed as a four-digit hexadecimal
value starting with a dollar sign($).

INVALID (C/NC/ADDRESS) ATTRIBUTE While parsing an APPL directive, Autolink found an invalid
address parameter, or the right parenthesis was missing./
Correct the invalid parameter.

INVALID LIST FILE The list file is not named correctly, the first character
of the name is not a letter, or the file is missing./
Correct the naming error, or make the file available.

INVAID MOD TERMINATOR In a MOD directive, the terminator should be a conma
except after modname (an opening parenthesis), or after
the last appl value (a closing parenthesis)./ Correct the
error.

INVALID OR MISSING LGO FILE The load-and-go file is not named correctly, the first
character of the name is not a letter, or the file is
missing./ Correct the naming error, or make the file
available.

INVALID P= PARAMETER In the MOD directive, the P parameter must take the value
of P, NP, F, or R./ Correct the error.

INVALID SECXlNDARY BINARY FILE The secondary binary file is not named correctly, the
first character of the name is not a letter, or the file
is missing./ Correct the naming error or make the file
available.

MORE THAN 60 APPLICATIONS DEFINED No more than 60 APPL directives are allowed./ Eliminate
the unnecessary APPL directives.

MORE THAN 60 DEF PARAMETERS The combined number of DEF and DEFBASE directives exceeds
60./ Eliminate the unnecessary directives.

MORE THAN 64 BUFSPSIZE PARAMETERS No more than 64 parameters can be associated with the
BUFSPSIZE directive./ Eliminate the unnecessary
parameters.

60471200 F

TABLE B-3. AUTOLINK INFORMATIVE MESSAGES (Contd)

Message Meaning/Action to be Taken

MULTIPLE CORESIZE DIRECTIVES ENTERED Only one CORESIZE directive can be entered with an input
directives file./ Select the correct CORESIZE directive
for the file, and eliminate the others.

NO APPLICATIONS GIVEN FOR THESE MODS: The 1 is t names the object code modules which have no
corresponding application./ Correct the error.

NO MOD DIRECTIVES FOR THESE OBJECT PGMS: The listed object code programs were found on the input
object code file, but were not named in a MOD directive./
Check the names, and add MOD (and other) directives if
these modules should be a part of the variant build.

NON-NUMERIC (HEX) DIGIT A character is not recognized as a legitimate hexadecimal
digit in one of the following directives: BUFSPSIZE,
CORESIZE, PAGEREG, PAGESIZES, or RESERVE./ Correct the
error and reenter the directive file.

PAGE OVERFLOW FORCED BY USER The F parameter in the MOD directive forces an application
length that requires more space than is allocated to the
page./ Change F modules so that fewer are forced to the
same page as their applications.

REPORTS REQUESTED BUT NO LIST FILE GIVEN The output file for reports was not specified in the
program name-call statement./ Correct the name-call
statement to specify an output file for the reports.

UNDEFINED APPLICATION NAME The appl name specified in the APPL parameter of the MOD
directive was not specified in any APPL directive./ Use a

Message

CORSIZE GREA'l'ER THAN 128

correct APPL parameter, or enter the correct APPL
directive.

TABLE B-4. AUTOLINK FATAL ERROR MESSAGES

NOTE:

Fatal error messages are prefaced with the message
EXECUTION TERMINATED DUE TO ERRORS

**********FATAL ERRORS**********

Meaning/Action to be Taken

Autolink detected a value greater than 128 in a
CORESIZE or BUFSPSIZE directive./ Correct the invalid
memory size parameter.

EOF ENCOUNTERED, ·CONTINUATION EXPECTED Additional MOD parameters were expected (APPL is
required; TH is required if P=P). Instead, an EOF was
detected in the directive./ Add the required
parameter, or parameters, to the directive.

INVALID DIRECTIVE 'l'ERMINATOR

INVALID INPUT DIRECTIVE

60471200 F

In a MOD directive, a conma or blank followed an
application name, or a nonblank character followed the
right parenthesis terminator./ Correct the error, and
reenter the directive file.

Format of input directive is not valid./ Correct the
input directive, and reenter the directive file.

B-5

TABLE B-4. AUTOLINK FATAL ERROR MESSAGES (Contd)

Message Meaning/Action to be Taken

INVALID MOD NAME While parsing a MOD directive, Autolink could not parse
the modname parameter. A modname consists of six (or
more) characters starting with a letter./ Correct the
error.

INVALID MOD SUBPARAMETER In one of the parameters in a MOD directive, the
parameter name is not correct (must be P, ADDR, FILL,
TH, or APPL), or the = is missing, or a value is
illegal./ Correct the error.

INVALID OR MISSING INPUT DIRECTIVES FILE The input directives file is not named correctly, the
first character of the name is not a letter, or the
file is missing./ Correct the naming error, or make
the file available.

INVALID OUTPUT DIRECTIVES FILE The output directives file is not named correctly, the
first character of the name is not a letter, or the
file is missing./ Correct the naming error, or make
the file available.

INVALID REPORT TYPE REQUEST An invalid report name was used in the RPT directive./
Use a valid name (BUFSP, DIR, MAP, or INFO).

INVALID RESERVE ADDRESS The beginning and ending reserve addresses should be
separated by a cormn.a./ Correct the error.

MAIN MEMORY EXCEEDED The variant requires more then 64K words of main
memory, or addresses are assigned which prevent the
variant from being located within main memory./ Check
applications that have preassigned addresses. Delete
applications as necessary.

MODULE=xxxxx OVERLAPS ANOTHER MODULE When locating modules, Auto link detected that
or addressed module space overlapped into nonaddressed

MODULE OVERLAP ERROR module space./ Adjust the lowest module address.

MORE THAN 32 PAGE SIZES More than 32 parameters were used in one PAGESIZES
directive./ Use only one value per directive.

NO MODS DEFINED FOR THESE APPLICATIONS This messages lists the APPL directives which have no
MOD directives naming them in an APPL parameter./
Delete the APPL directives, or add MOD directives with
these applications specified.

NO OBJECT TEXT FOR THESE MOD DIRECTIVES: This message lists modules which should have been
or present in the input object code file because they

NO OBJECT TEXT FOR THESE REQUIRED MODS: were specified by MOD statements./ Remove the MOD
directives or include the object code for the modules
in the input object code file.

NON-MOD DIRECTIVE FOLLOWS MOD DIRECTIVE At this stage in the input directives file, there
should be only MOD directives; all other directives
should have occurred earlier in the file./ If the
directive is valid, place it before the MOD directives.

PAGE REGISTER GREATER THAN 31 The page register parameter value in a PAGE REG
directive is greater than 31./ Change the parameter to
a legal value (range 0 through 31).

PAGE SIZE GREATER THAN 64 The pagesize parameter in a PAGESIZES directive is
greater than 64./ Change the parameter to a legal
value (2K, 4K , BK, or 16K).

8-6 60471200 F

TABLE B-4. AUTOLINK FAT AL ERROR MESSAGES (Contd)

Message Meaning/Action to be Taken

********WHILE LOADING FILLER K>DULES Either more modules are being loaded than are
nnn MODULES REMAIN UNLOADED specififed by the MOD directive (index J is greater

xxxxxx than the module counter), or more main memory is . needed (next address is greater than maximum address) • . Names of the modules are given; nnn is a decimal
number; hhhhh addresses are given in hexadecimal./

xxxxxx Correct the problem by retrying. If the build
INDEX J = ii ii MODCNTR = attempt still fails, contact a systems analyst. 1111

NEXTADR = hhhhh MAXADDR = hhhhh

TABLE B-5. MPLINK ERROR MESSAGES

Message

*DAT AND GLOBL$ CONFLICT

*RL FORCES MOD BELOW ADDR 0

ADDRESS TABLE OVERFLOW

ASSIGNEMENT OPERATOR EXPECTED

BAD LGO OR NEWLIB FILE

COMMA EXPECTED

COMMON AREA EXCEEDED

CURRENT LOWER LIMIT EXCEEDED

60471200 F

Meaning/User Action

MPLINK encountered both a *DAT directive and an object code
module called GLOBL$. The assigned GLOBL$ area exceeds the
area assigned by the *DAT directive./ The user can remove the
*DAT directive from the directives file, or he can increase the
area assigned by the directive.

The *RL directive causes MPLINK to locate some part of a module
below the start of main memory./ The user should change the
*RL directives.

The combined number of addresses specified in all the
directives exceeds the maximum number permitted./ The operator
should revise the directives, perhaps using directives with a
range of items in the parameters such as *L,modl-mod2,addr,
rather than individual linking or reverse linking directives.
This can require more than one library building operation, or a
rearrangement of modules on the input object code file.

The expression evalauator expected the := operator in the *VE
directive but did not find one./ The users should correct the
directive.

Either the input object code or the NEWLIB file is improperly
formatted. An improper file may have been attached./ If this
is not the case, the user may need to generate another input
object code or NEWLIB file.

The expression evaluator encountered a directive with fewer
required parameters than expected./ The user should check the
expression to assure that all the required parameters are
present, and are separated from the previous parameter or
directive name by a coama.

MPLINK found a blank common specification in an object code
module that exceeded the area allocated by the *COM
directive./ The user should increase the size of the blank
comnon area assigned by the *COM directive.

During linking caused by a *RL directive, MPLINK attempted to
use a memory location below the word specified by the *LL
directive./ The user should change the *LL boundary, or insert
other directives to relocate the module (or group of modules)
that crossed the boundary.

B-7

TABLE B-5. MPLINK ERROR MESSAGES (Contd)

Message Meaning/User Action

CURRENT UPPER LIMIT EXCEEDED During a normal loading caused by a *L directive, MPLINK
attempted to use a memory location above that specified by the
*UL directive./ The user should change the *UL boundary, or
insert other directives to relocate the module (or group of
modules) that crossed the boundary.

DATA AREA EXCEEDED MPLINK found a named, connnon specification in an object code
module that exceeded the area allocated by the *DAT
directive./ The user should increase the size of the common
area assigned by the *DAT directive, or decrease the nmnber of
applications used.

DIRECTIVE TABLE OVERFLOW MPLINK encountered too many directives in the input directives
file. I The user should consolidate directives (for instance,
by using the directives with a range-type parameter such as
modl-mod2).

DUPLICATE ENTRY POINT The entry point or module name (or at least the first six
characters of it) have been used in a previous entry point or
module name./ The user should rename one of the two
expressions to obtain a unique, six-character name.

DUPLICATE LOADER MODULE MPLINK found at least two modules with the name LOADER./ The
user should eliminate duplicate LOADER modules; he should
retain only that module to be used at the head of the load file.

ENTRY POINT TABLE OVERFLOW The combined nmnber of entry point names, module names, and
synonyms exceeded the entry-point table capacity./ The user
could rewrite his programs to consolidate modules, or to use
fewer *SYN directives.

EXPRESSION TABLE OVERFLOW The number of expressions appearing in the *VE directives
exceeds the allowable maximum./ The user should use fewer *VE
directives, and revise the input modules accordingly.

EXPRESSON VAL EXCEEDS $3FFF The value encountered in a *VE directive is too large (value
range is 0 to $3FFF). I The user should change the directive.

EXT IN EXPR NOT ABSOLUTIZED An entry-point name (naml or nam2) appearing in a *VE directive
has not been previously absolutized./ The user should alter
the *VE expression, or the order in which directives are added,
so that the name is absolutized by the time MPLINK encounters
the *VE directive.

EXPRESSION OPERAND STACK OVERFLOW The expression evaluator found too many operands during its
processing. I The user should restate the expression with
additional, nested parenthesis groupings.

IDENTIFIER EXPECTED A valid name is expected in a *ENT, *OVLY, or *SYN expression,
and it was not supplied./ The user should insert a valid name
(a letter followed by a string of letters and/or digits) at the
a ppro pri ate place in the directive.

ILLEGAL DIRECTIVE The keyword that names the directive is incorrect :1 The user
should reenter the directive with the correct keyword.

ILLEGAL EOF ENCOUNTERED A temporary MPLINK work file encountered an unexpected
end-of-file. This is an internal error./ Rerun MPLINK.

ILLEGAL SYMBOL The expression evaluator found a symbol it could not
interpret./ The user should check the directive for symbols
that are not in the 63 or 64-character display code set (as
appropriate).

8-8 60471200 F

Message

INCORRECT GROUP SPECIFICATION

INVALID ADDRESS (COMPONENr)

LOGICAL ADDRESS EXCEEDS $FFFF

MAXIMUM GROUP SIZE EXCEEDED

MEMORY OVERFLOW

MISSING LEFT OR RIGHT PAREN

MOD ON LINK DIR NOT FOUND

MODULE TOO LARGE

OPERAND EXPECTED

OVERLAY AREA LEN LESS THAN 0

OVERLAY AREA TABLE OVERFLOW

PERIOD EXPECTED

PLUS, MINUS, OR PERIOD EXPECTED

60471200 F

TABLE B-5. MPLINK ERROR MESSAGES (Contd)

Meaning/User Action

The module names specified by the modl-mod2 parameter in a *L
or *RL expression are not correct; that is, modl, mod2, or both
are incorrectly specified. The user should reenter the
directive with the correct module names as they appear on the
input object code or NEWLIB files. Alternatively, an incorrect
module name on those files should be changed.

A directive has an invalid addr, or some component of an addr
is in error. The user should correct the address and reenter
the directive.

An object code module is longer in 64K words and cannot be
fitted in the NPU./ The module should be divided into smaller
modules, or rewritten to reduce the number of words.

In a range-type parameter (modl-mod2), the number of modules,
or the number of words in all of the modules, exceeds MPLINK's
ability to process the group./ The user should split the range
parameter between two or more directives, each with a smaller
mod 1-mod2 size.

MPLINK assigned memory locations that do not exist in the
NPU./ The user should check the memory size assigned by the
*COR directive. If it is correct, the user can try reassigning
the link start locations. It is possible that there is not
enough memory for all the planned applications. The user could
remove sane applications; alternatively, additional memory
should be purchased.

The expression evaluator found one of two errors: a left
parenthesis not followed by a right parenthesis, or a right
parenthesis .that was not preceded by a left parenthesis./ In
either case, the user should modify the expression to include
the missing parenthesis, or to delete the unwanted parenthesis.

The module specified by the mod parameter in a *L or *RL
directive could not be found on the input object code or
library file./ The user should check the module name and
correctly specify it, or add the missing module to the
appropriate file.

The specified module exceeds the size of MPLINK's external
buffer./ The user should recode the module to compress it, or
divide the module into two or more modules.

The expression evalauator expected an numeric value operand./
The user should revise the statement.

In an OVLY directive, the ending address (addre) parameter is
smaller than the beginning address (addrb) parameter./ The
user should check the limits of the desired overlay size, and
enter the proper limits.

-..-
Only ten overlay areas can be declared with *OVLY directives./
The user should rearrange his applications so that no more than
ten of them use overlays.

The expression evaluator expected the directive to be
terminated with a period but found another * instead./ User
should check to assure the directive is properly terminated
with a period.

In a variable directive (*VE), the expression evaluator
expected a plus, a minus, or a period in the exp parameter.
None of these was found./ The user should enter the correct
expression in the directive.

B-9

Message

SYNONYM TABLE OVERFLOW

TOO MANY LOCAL VARIABLES

UNDEFINED OR ILLEGAL INDENT

UNSATISFIED EXT TABLE OVERFLOW

Message

(EXPECTED

) EXPECTED

[EXPECTED

] EXPECTED

**** OUT OF RANGE

:= EXPECTED

; EXPECTED

= EXPECTED

xxxxxx MULTIPLE ENTRY DEFINITION

B-10

TABLE B-5. MPLINK ERROR MESSAGES (Contd)

Meaning/User Action

Too many *SYN directives were entered./ The user should revise
his programs so he will have to declare fewer of these
name-equating operations.

Too many variables were declared by *VE directives./ The user
should recode to use fewer local variables.

The name of an overlay is being illegally defined, or the
referenced name of an entry point in a *SYN or *ENT directive
is missing./ The user should use a correct overlay identifier
(range AA through ZZ), or should enter the correct entry-point
name on the *SYN or *ENT directive.

MPLINK has encountered too many unsatisfied external
references, or forward external references. The user should
rearrange module sequencing to minimize forward references, or
he should delete some of the unsatisfied external references.

TABLE B-6. MPEDIT ERROR MESSAGES

Meaning/Programmer Action

MPEDIT syntax requires that the next element of the statement
be an opening parenthesis./ The programmer should revise the
statement.

MPEDIT syntax requires that the next element of the statement
be a closing parenthesis./ The progrannner should revise the
statement.

MPEDIT syntax requires that an array statement has the form:
ARRAY size OF x. The array statement lacks the opening
square bracket around the size parameter./ The programmer
should revise the composite statement.

MPEDIT syntax requires that an array statement has the form:
ARRAY size OF x. The array statement lacks the closing
square bracket around the size parameter./ The programmer
should revise the composite statement.

This occurs only in a trace listing. The previous statement
referenced an address that does not exist in the load file./
The programner should revise the statement.

MPEDIT syntax requires that the next element of the statement
be a defining operand./ The programmer should revise the
statement. •

MPEDIT syntax requires that this statement or declaration be
separated from the previous statement or declaration by a
semicolon./ The programmer should revise the statement.

MPEDIT syntax requires that the next element of the constant
definition be an equal sign./ The progrannner should revise the
statement.

A local symbol, array name, or overlay name has been defined
more than once. xxxxxx is the multiply defined name./ The
programmer should redefine one of the names, keeping in mind
that only the first six characters of the name are unique as
far as MPEDIT is concerned.

60471200 F

TABLE B-6. MPEDIT ERROR MESSAGES (Contd)

Message

ARRAY TABLE OVERFLOW

BEGIN EXPECTED

COMMA EXPECTED

DIMENSION TABLE OVERFLOW

DO EXPECTED

END EXPECTED

EXPRESSION OPERAND STACK OVERFLOW

ILLEGAL ARITHMETIC OPERATOR

ILLEGAL END

ILLEGAL KEYWORD

ILLEGAL SYMBOL IN EXPRESSION

ILLEGAL DIMENSION COUNT

MISSING RIGHT PARENTHESIS

60471200 F

Meaning/Progranmer Action

The number of arrays declared in the ARRAY section exceeds the
capacity of MPEDIT./ The progrannner show revise his program to
include fewer arrays.

MPEDIT syntax requires that a composite statement begin with
the keyword BEGIN./ The progranmer should revise the composite
statement.

MPEDIT syntax requires that parameters in /VFD expressions and
array expressions be separated by coumas./ The progranmer
should revise the statement.

The total number of dimensions declared for all arrays within
the ARRAY section exceeds the capacity of MPEDIT./ The
programmer should revise his programs to include fewer arrays,
or reduce the dimensions in the existing arrays.

MPEDIT syntax requires that a FOR - TO statement be followed
with the keyword DO./ The programmer should revise the
statement.

MPEDIT syntax requires that a composite statement terminate
with the END keyword./ The programmer should revise the
composite statement.

The expression evaluator encountered too many operands during
evaluation./ The programmer can usually avoid this problem by
revising the statement with additional, nested parenthetical
groupings.

The expression evaluator expected one of the five legal
arithmetic operators: +, -, *, DIV, or MOD./ The programmer
should revise the statement.

The keyword END is not permitted where it was found./ The
progranmer should eliminate END from this position in the
program.

The only keywords recognized by MPEDIT are:

CONST
BEGIN
FOR
OF
MOD

VAR
END
TO
CHAR

ARRAY
OVERLAY
DO
DIV

The keyword found is not one of these./ The programmer should
change the program to use the desired legal keyword.

The expression evaluator encountered a symbol that was not in
the CDC 63 or CDC 64 display code set (as appropriate)./ The
programmer should remove the undefined symbol, and substitute a
symbol defined in the proper character set.

-"-

The number of index values specified for an array in the
assigrnnent section does not agree with the number of values
declared in the array declaration section./ The programmer
should revise the program to make the index values agree.

The expression evaluator found a left parenthesis that was not
followed by a right parenthesis./ The programmer should modify
the expression to include a right parenthesis, or to delete the
left parenthesis.

B-11

TABLE B-6. MPEDIT ERROR MESSAGES (Contd)

Message Meaning/Programner Action

NO ASSOCIATED LEFI' PARENTHESIS The expression evaluator found a right parenthesis that was not
preceeded by a left parenthesis./ The programmer should modify
the expression to include a left parenthesis, or to delete the
right parenthesis.

NOT A LOCAL VARIABLE The indicated local identifier was not previously specified in
the VAR section./ The progranmer should either declare the
variable in the VAR section, or specify an already declared
variable.

OF EXPECTED MPEDIT syntax requires that an array statement has the form:
ARRAY size OF x. The array statement lacks OF foll owing the
array size specification./ The programmer should revise the
composite statement.

OPERAND EXPECTED The expression evaluator expected an numeric value operand./
The progranmer should revise the statement.

OUT OF RANGE The array index is not within the range declared for the array
in the ARRAY section./ The progranmer should either increase
the declared range, or revise the erroneous statement.

PERIOD EXPECTED The pro gr am ends with a period after the final END statement.
None was found./ The programmer should revise the composite
statement.

STUFF TABLE OVERFLOW The number of editing values exceeds the internal capacity of
MPEDIT./ The progranner can present the editing information in
successive runs, recalling MPEDIT for each new section of the
editing operation.

TO EXPECTED MPEDIT syntax requires that a FOR statement be followed with
the keyword TO./ The progranmer should revise the composite
statement.

B-12 60471200 F

GLOSSARY AND MNEMONICS c

Absolute Address (NPU) -
The location of a word in NPU memory measured by
its displacement from word O.

Application (CCP or CCI) -
A set of modules which are designed to be executed
together to perform a special function. In CCP and
CCI, applications include a HIP, a LIP (CCP only), any
of the standard or user-written TIPs, the base modules,
initialization routines, interactive virtual terminal
common routines (CCP only), on-line diagnostics, the
buffer space, the service module, and the test utilities.

Assignment Sec ti on -
The part of the MPEDIT program that contains the
statements which assign values to variables or fields.

Autolink -
A CYBER Cross utility program which generates an
input directives file for the MPLINK utility.

Base -
A set of programs that is used in every CCP or CCI
build.

Blank Common -
A common area used by macroassembler programs.

Buffer Space Report -
An optional autolink output. It reports the amount of
buff er space available as a function of the main
memory size, and the TIPs selected for a build.

Build -
The procedure of converting individual source code
modules into a linked set of object code modules in the
form of a load tape.

Directive -
A utility input statement specifying some utility
operation.

Directives Report -
An autolink report which lists the directives in the file
that is sent to MPLINK.

Dump Memory -
A hexadecimal listing of the memory image load
module file produced by MPLINK.

Dynamic Variable Area -
An area used by the PASCAL NEW procedure. See the
PASCAL Compiler Reference Manual.

Edit Utility -
The utility (MPEDIT) which allows the user to
initialize values in the memory image load file. The
initialized memory image load file produced by the
Edit utility can be converted into an NPU load file.

Entry Point - .
A labeled statement in a module which other modules
can reference. In some cases, another program can
activate a module at the entry point.

60471200 F

Error Messages -
Messages generated by a utility specifying operations
which the utility could not perform. The failure could
be due to a syntax error, an overflow condition, or
other fault. Error messages are usually sent to the
output file. Error messages are of two types: fatal
errors that halt the utility, and nonfatal errors that
are noted, but allow the utility to continue processing.

Expand -
The build utility that expands variant- definitions into
directives for the CCP variant build and load file
generator installation steps.

External Synonyms -
Statements equating module names and entry points
with local names.

Fatal Error File -
An autolink file containing the fatal error message
generated during an autolink processing phase.

Field -
A sequence of continuous bits consistently used to
record similar information. For CCP and CCI, fields
range from 1 to 16 bi ts in length, and cannot cross
word boundaries.

Fill Module -
A module that can be assigned to fill holes in main
memory, or (in some cases) to fill a hole on a page.

Forced Page Module -
A module that must reside on the same page as the
paged portion of its application.

Information Report -
An autolink report listing the input directives and
application lengths.

Initialized Load File -
The load file that is generated by MPEDIT. It has the
same format as the MPLINK load file; however,
selected fields and variables have initial values.

Installation Procedures -
The CCP or CCI procedures that generate a load file,
which can be immediately downloaded into an NPU to
form the on-line system of that NPU.

Input Directives File -
A file containing the directives necessary to execute
the autolink, MPLINK, MPEDIT or MPLIB utilities.

Keyword -
A reserved word used by a utility for a specific
operation.

LGO File -
The load-and-go file. The file with this local name
contains relocatable object code modules.

C-1

Library -
A group of object code modules, together with an
index for those modules. The old library can be used
an an input to the autolink, MPLINK, MPEDIT and
MPLIB utilities. The MPLIB utility generates a new
library.

Library File -
A file created by MPLIB. The file contains object
code for all modules in the library, plus an index to the
modules.

Library Maintenance -
The function performed by MPLIB utility; that is,
generating a new library from a set of object code
modules, or generating a new library from the old
library, together with selected new object code
modules.

Link Utility -
The utility (MPLINK) which links object code modules
into into a memory image load module. MPLINK also
produces a symbol table file. Both of these files are
used as input for the Edit utility.

Linking -
The process of (1) locating (assigning space) for object
code modules on a memory image load module file, and
(2) resolving external calls in those modules with entry
points in other load file modules.

Listing File -
A utility output file. In most cases it contains user
requested reports.

Load File -
The host file holding a set of linked, edited,
absolutized object code modules. The file can be
downline-loaded into a specific NPU to form the
on-line system for that NPU. A different load file
(variant) is needed for each NPU to be loaded.

Memory Image Load Module File -
A file produced by the MPLINK utility. The load
module file contains the absolutized code for all
programs to be used in the CCP or CCI build.
MPLINK's version of this file is not initialized;
MPEDIT initializes the file. A host load file generator
converts the initialized memory image load module
into a load file for CCP or CCI.

Memory Map -
An autolink or MPLINK report showing the main
memory location of every module in the build.

MOD Directive -
An auto link directive which identifies a module to be
included in an application package.

Modname -
The name of a module. Autolink uses the first six
characters of the name.

Module -
(1) An integral part of an application that has a name
and at least one entry point (a module is sometimes
called a routine or a program). Any module can be
selected to be used as part of an NPU build.
(2) See memory image load module file.

MPEDIT -
The editing utility that assigns values to variables in
the memory image load module file generated by
MPLINK.

C-2

MPLINK-
The utility that assigns space to modules on a memory
image load module file, and links the modules together
by equating external calls in one module to the
comparable entry point in another module.

Name Call Statement -
The statement that is executed by the host's operating
system to pass control of the computer to the program
(or utility) associated with that statement.

Object Code Input Files -
Input files containing modules in object code format.
Such files are used in all the utilities except the
expand utility.

Object File -
A utility input or output file containing object code for
modules.

Output Directives -
An autolink output file containing the MPLINK
directives used to link the system modules during an
MPLINK run.

Overlay -
A set of modules (application) that is not normally
resident in the NPU. When the overlay is to be
executed, it is loaded into a specific overlay area. The
modules which normally use that area cannot be used
until the overlay is ejected.

Overlay Area -
The part of an NPU that can be used to execute
overlay programs.

Package (CCP or CCI) -
A special class of applications that handle terminal,
host or link interfaces; for example, the terminal
interface packages (TIPs).

Page (logical) -
An 8196-word section of CCP or CCI memory. All
memory is paged. Memory up to 65K is executable at
the address given; memory above 65K is imaged at the
page beginning at 200016·

Page (physical) -
A 2K (2048) word section of NPU memory.

Page Addressing -
The method of using an 18-bit address to locate a
module that is assigned to a pageable area of memory.
All modules assigned to the region above 65K are
accessed in page-addressing mode. Some of the area
below 65K is also page-addressed. In particular, in
CCP and CCI, an BK page starts at address 200016·
All modules paged above 65K are imaged at this page.

Page Register -
A register that indexes one of the NPU physical pages.

Pageable Module -
A module that can be located on the application page,
or in main memory if the application's page is full.

Passive MPLINK Directives -
Directives not processed by autolink, but passed
directly to MPLINK in the output directives file.
These are : *COM, *COR, *DAT, *DSTK, *DMP,
*DVAR, *ENT, *LIB, *SYN, and *SYSID.

Program -
A module or a group of modules with related functions.

60471200 F

Report -
One of the reports that is associated with the
Autolink, Link, Edit, or Library Maintenance utility
programs.

Reverse Loaded -
A module that is located in main memory by assigning
the address given to the last word of the module.
Space is then reserved for all other words in the
module down to the first word.

Stack Area -
A reserved area in an NPU memory for use by
PASCAL recursive/reentrant procedures.

Terminal Interface Package (TIP) -
An application that handles the interface between the
NPU and a type of terminal, such as TTY terminals, or
Mode 4 terminals.

Tophat -
Indicates a tophat module. A tophat module is
normally a module ·that is called by several other
modules. To minimize the code required to locate a

60471200 F

tophat module's entry point, a small auxiliary piece of
code is compiled with the module. This tophat code
sets the page registers when other modules call this
module. If a tophat module is located in a main
memory, this operation is not necessary, so the tophat
auxiliary code is discarded. Otherwise, if a tophat .
module is paged, the tophat code is located in main
memory to set the page registers.

User Build Parameters File -
A user file (USERBPS) which contains the CCP variant
load module definitions and the CCP load file
definitions. Expand uses the file to generate Update
directives based on the variant definition.

Variant -
The definition of a real set of hardware and software
for an NPU. The variant for an NPU defines the
memory size, the NPU type (local or remote), the TIPs
to be included in the build, and the maximum number
of lines that can be configured. The variant also
identifies the NPU, the host coupler (if any), and any
trunks used by the NPU.

C-3

MNEMONICS

*ALL

*CB

*COM

*COR

*DAT

*DEL

*DMP

*DSTK

*DVAR

*END

*ENT

*L

Copy all LGO files to new library - MPLIB
directive

Upper boundary declaration - MPLINK

Define blank common area - MPLINK directive

Define 255x memory size - MPLINK directive

Define labeled common area - MPLINK
directive

Delete module - MPLIB directive

Define labeled common area - MPLINK
directive

Define stack area - MPLINK directive

Define stack area - MPLINK directive

End-of-directive-file directive - all build
utilities

Define entry point - MPLINK directive

Link modules - MPLINK directive

*LIB Define library file - MPLINK directive

*LL Lower boundary declaration - MPLINK

*LST List the library - MPLIB directive

*OVLY

*PUT

*RL

*SUP

*SYN

*SYS ID

Define overlay-area directive - MPLINK

Insert/replace module in library - MPLIB
directive

Reverse-linking directive - MPLINK

Suppresses copying programs from the LGO
to the library - MPLIB

Define external synonym - MPLINK directive

System identification - MPLINK directive

*UL Upper limit directive - MPLINK

*VE Directive which assigns a value to a local
variable - MPLINK

/DMP$ List the load tape - MPEDIT statement

/ENTRY Address entry function - MPEDIT statement

/ESL$ List SYMTAB - MPEDIT statement

/LENGTH Field length function - MPEDIT statement

/NAM$ Generate the NPU load tape - MPEDIT
statement

/PGDISP

C-4

Page displacement function
MPEDIT statement

MPLINK/

/PGNUM

/PGSET

/START

/TRACE

Page resister number function
MPLINK/MPEDIT statement

Page register set function - MPLINK/MPEDIT
statement

Field state location function
statement

MP EDIT

Trace of edit operations - MPEDIT statement

/VFD Variable field definition - MPEDIT statement

ABSOLMP Absolute memory image load file

ARRAY

BEGIN

BIP

BUFSIZE

BUFSP

Array declaration command - MPEDIT

Begin statement - MPEDIT

Block interface package

Buffer space report directive - Autolink

Buff er space report - Auto link

CCP Communications Control Program

CHAR

CONST

Character mode, array declaration - MPEDIT

Constant declaration - MPEDIT

CORESIZE NPU memory size directive - Autolink

CSET CDC code set variable

D Input file parameter - MPLINK directive

DEF Define applications - Autolink directive

DEFBASE Define applications variant Autolink

DIR

DIV

DO

END

FOR

GLOBL$

HIP

INFO

INPUT

LFG

LGO

LIP

directive

Output directives report - Autolink directive

Division operator - MPEDIT

Part of MPEDIT loop di rec ti ve (FOR x TO y
DO •••)

End statement of a composite statement -
MPEDIT

Part of MPEDIT loop directive (FOR x TO y
DO •••)

CCP /CCI data base area

Host interface package

Input directives and application lengths report

Default input file

Load file generator - Expand

Load-and-go file

Link interface package

604-71200 F

LOADER First record on a memory image load module
tape

MAP Main memory map report - Autolink

MOD Module directive - Autolink

MOD Modulus operator - MPEDIT

MPEDIT Edit utility

MP LIB Library maintenance utility

MPLINK Link utility

NEWLIB New library file - MPLIB

OF Part of array declaration - MPEDIT

OUTPUT Default output file

OVERLAV Overlay identifier - MPEDIT

60471200 F

PAGESIZES Page size directive - Autolink

RESERVE Reserve main memory - Autolink directive

RPT Report generator directive - Autolink

SVM Service module

SVMTAB Symbol table file

TIP Terminal interface package

TO Part of MPEDIT loop directive (FOR x TO y
DO •••)

USERBPS User build parameters file - Expand

VAR Variable declaration - MPEDIT

VRD CCP variant definition - Expand

X.25 A TIP

C-5

MEMORY IMAGE LOADMODULE·FILE FORMAT D

This appendix describes the format of the memory image
load module file. It is an output of either MPLINK or
MPEDIT. The only difference between the two files is the
initialization of certain values. Format of the files is
identical.

MPLINK or MPEDIT builds the load module file from
object code programs and directives. The object code
programs can be on an LGO file or a library file, or, for
MPEDIT, a non-initialized memory image load module file
produced by MPLINK. If the object code programs are on
an input object code file, they have been previously
produced individually by a CYBER Cross macroassembler,
microassembler, or PASCAL compiler. Libraries,
likewise, are composed of object code programs produced
by these CYBER Cross compilers/assemblers. A library
has a directory for locating the modules easily.

Each program on the load module file has an execution
(load) address. This address is either specified, or equated
to zero, by the MPLINK utility. External references from
all programs can be resolved from a program library. The
user can also specify entry-point values (addresses).

FILE FORMAT
Figure D-1 shows the load module file format on the
highest level. On this level, the file consists of an
optional loader record, a partition for NPU-resident
programs, and partitions for each group of overlay
modules (assuming there are any optional overlays). The
resident load partition includes a system header record
followed by a series of record pairs, one pair for each
program in the on-line system. If there are overlay
partitions, each of these has a format similar to that of
the resident partition. The file is terminated with a
trailer record.

OPTIONAL LOADER RECORD

If the LOADER record exists, it is the first record on the
load module file. This record is included only if an object
text file called LOADER is included in the library or input
object code files used as input by MPLINK. Format of
this header record is arbitrary.

RESIDENT LOAD PARTITION

This partition contains object code for every module in
the on-line NPU system. It does not contain any code for
over lay modules.

The partition has a system header, followed by a record
pair for every on-line module. The modules occur in the
same order in which they occur in NPU memory.

A record pair for a module consists of a module header
record followed by a record containinq the object code for
the module.

60471200 F

System Header Record

Figure D-2 shows the format of the system header
record. This record is generated as the direct result of
the MPLINK directive: *SYSID,name(,text).

In this 30-word record the fields are:

• RECORD COUNT (word 1) is the number of
records in the resident partition. The number of
modules in this partition is:

Number(modules) = (records - 1)/2

• HEADER TYPE (word 2) is a system header (type
= O).

• MEMORY ADDRESS (words 2 and 3) is not used.

• NAME (words 4, 5, and 6) is the six-character
ASCII identifier specified by the name parameter
in the *SY SID directive.

• TEXT (words 7 through 30) is specified by the text
parameter in the *SY SID directive. Character
code is ASCII. Any characters not used are filled
with zeros.

Module Header Record

Figure D-2 shows the format of the module header
record. This record is generated by MPLINK at the time
modules are linked as the result of a *Lor *RL directive.

In this 30-word record the fields are:

• WORD COUNT (word 1) is the number of 16-bit
words of object code in the following record.

• HEADER TYPE (word 2) is a module header (type
= 4).

• MEMORY ADDRESS (words 2 and 3) designates
the address of the module's first word. It has
three parts (see page addressing description in the
MPLINK section):

PAGE NUMBER is the 7-bit logical page
number.

PAGE REGISTER is the 5-bit page register ID.

PAGE DISPLACEMENT is the 11-bit
displacement (in words) to the first word of
the module on the physical page.

• NAME (words 4, 5, and 6) is a six-character ASCII
identifier. It has one of the following formats:

A PASCAL common area name: MAIN$ or
GLOBL$

D-1

FILE FORMAT

LOADER RECORD
(OPTIONAL)

END OF RECORD

RESIDENT
LOAD
PARTITION

END OF RECORD

OVERLAY
AREA 1
LOAD
PARTITION

END OF RECORD

• • • •
OVERLAY
AREA m
LOAD
PARTITION

END OF RECORD

TRAILER
RECORD

END OF FILE

.... -

.-.-

-.....

r-
1
I
I
I
I
I
I
I
I
I
I

_J

RESIDENT LOAD
PARTITION

SYSTEM HEADER
RECORD

LOAD
PARTITION

OVERLAY AREA
LOAD PARTITION

OVERLAY AREA
HEADER RECORD

END OF RECORD

OVERLAY 1
HEADER RECORD

END OF RECORD

OVERLAY
IMAGE BLOCK
(OVERLAY 1)

END OF RECORD

• • • •
OVERLAY m
HEADER RECORD

LOAD PARTITION

MODULE 1
HEADER RECORD

END OF RECORD

MODULE 1
MEMORY IMAGE
RECORD

END OF RECORD

MODULE 2
HEADER RECORD

END OF RECORD

MODULE 2
MEMORY IMAGE
RECORD

END OF RECORD

• • • •
MODULE n
HEADER RECORD

END OF RECORD

MODULE n
MEMORY IMAGE
RECORD

M-1095

Figure D-1. Format of an MPLINK or MPEDIT Output Load File

The name associated with a PASCAL­
compiled program

The name specified on the NAM card of a
macroassembled program

The name of a microassembled program

The partition has an overlay header, followed by a record
pair for every module in the overlay. The modules occur
in the same order in which they occur in NPU memory
when the overlay is moved into its execution area.

A record pair for an overlay module consists of an overlay
module header record followed by a record containing the
object code for the overlay module.

• COMMENTS (words 7 through 30) is blank if this a
PASCAL-compiled module. It is the comment On
ASCII characters) on the NAM card if this is a
macroassembled module.

Overlay Area Header Record

Resident Module Record

This record consists of 16-bit words of object code.

OVERLAY LOAD PARTITION

There can be one to ten overlay partitions. Each partition
is separately identified, and occurs in the same order that
the overlay directives were entered in MPLINK.

An overlay partition contains object code for every
module in that overlay.

D-2

Figure D-2 shows the format of the overlay area header
record. This record is generated as the direct result of
the MPLINK *OVL Y directive.

In this 30-word record the fields are:

• RECORD COUNT (word 1) is the number of
records in this overlay partition. The number of
overlay modules in this partition is:

Number(modules) = (records - 1)/2

• HEADER TYPE (word 2) is an overlay area header
(type= 1).

60471200 F

BIT
WORD 15 14 11 10 76 0

WORD OR RECORD COUNT

0
HEADER PAGE

} PAGE FIELDS 2 TYPE NUMBER
COLLECTIVELY

PAGE PAGE ARE THE
3

REGISTER D ISP LAC EM ENT MEMORY
ADDRESS

4 CHAR 1 CHAR 2

5 CHAR 3 NAME CHAR 4

6 CHAR 5 CHAR 6

7 CHAR 1

• • TEXT, COMMENTS,

• OR ZEROS

30 CHAR 48

HEADER TYPE (3 BITS)

0 _SYSTEM (RESIDENT PARTITION)

1 OVERLAY PARTITION

2 OVERLAY MODULE

4 RESIDENT MODULE

NOTE: THE LENGTH OF THE WORD IS ASSUMED TO BE
16-BITS (THE WORD SIZE OF THE TARGET NPU}
RATHER THAN 60 BITS (THE WORD SIZE OF THE
HOST COMPUTER GENERATING THE LOAD MODULE

•

•

•

FILEL M-1088

Figure D-2. Format of Load File Header Record

MEMORY ADDRESS (words 2 and 3) specifies the
first word of the overlay area. It has three parts:

PAGE NUMBER is the 7-bit logical page
number.

PAGE REGISTER is the 5-bit page register ID.

PAGE DISPLACEMENT is the 11-bit
displacement (in words) to the first word of
the module on the physical page.

NAME (words 4, 5, and 6) is the six-character
ASCII identifier specified by the name parameter
in the *SYSID directive.

TEXT (words 7 through 30) is not used. Characters
are filled with zeros.

Overlay Module Header Record

Figure D-2 shows the format of an overlay module header
record. This record is generated by MPLINK at the time
modules are linked as the result of a *L or *RL directive
following an overlay declaration.

In this 30-word record the fields are:

•

•

WORD COUNT (word 1) is the number of 16-bit
words of object code in the following record.

HEADER TYPE (word 2) is an overlay module
header (type = 2).

60471200 F

WORD15 10 6 0

•

2

3

4

5

6

7

8

9

10

11

12

•
•
•

30

0 0

PAGE
NUMBER TRANSFER

ADDRESS

PAGE
NUMBER STACK

ADDRESS
(BEGIN)

PAGE
NUMBER - STACK

ADDRESS
(END)

PAGE
NUMBER } DYNAMIC

VARIABLE
AREA (BEGIN)

PAGE
NUMBER } DYNAMIC

VARIABLE
AREA (END)

0 0

• •

I. •

.J
BIT 15 IN WORD 2 SET INDICATES THE
TRAILER RECORD. THIS BIT IS 0 IN A
HEADER RECORD.

NOTE: THE LENGTH OF THE WORD IS ASSUMED TO BE
16-BITS (THE WORD SIZE OF THE TARGET NPUJ
RATHER THAN 60 BITS (THE WORD SIZE OF THE
HOST COMPUTER GENERATING THE LOAD MODULE
FILEL M-1091

Figure D-3. Format of Load File Trailer Record

MEMORY ADDRESS (words 2 and 3) specifies the
address of the overlay module's first word when it
is in NPU memory. The address has three parts:

PAGE NUMBER is the 7-bit logical page
number •

PAGE REGISTER is the 5-bit page register ID.

PAGE DISPLACEMENT is the 11-bit
displacement (in words) to the first word of
the module on the physical page.

• NAME-(words 4, 5, and 6) is a six-character ASCII
identifier. It is the name associated with a
PASCAL-compiled program.

• COMMENTS (words 7 through 30) is blank. The
characters are filled with zeros.

Overlay Module Record

This record consists of 16-bit words of object code.

TRAILER RECORD

The format of the trailer record is shown in figure D-3.
The use of the words is described on that figure.

D-3

OPTIONAL MEMORY IMAGE LOAD MODULE FILE FORMAT· E

The optional memory image load file for an NPU consists
of a single record. The file is generated by the
pseudoconstant /NAM$ in the MPEDIT utility.

The record begins with a prefix and a header as shown in
figure E-1. The data within the record is segmented.
Each segment is preceded by the first word address (FW A)
for which it is intended. Each segment is also preceded by
a length field. The length field indicates the number of
16-bit words in the data segment. The length can never
exceed 120 16-bit words.

The prefix is shown in figure E-2. It contains informati1;m
describing the creation of the record. Except for the first
60-bit word and the binary zero fill in the second 60-bit
word, all information in the prefix is in display code, with
blank fill, so that it can be printed. The prefix contains
exactly 15 60-bit words.

The header is one 60-bit word. It contains the record
name in display code, in bit positions 59 through 42. The
bit pattern of the remainder of the word is shown in figure
E-3.

The first word address and the length field formats are
shown in figure E-4 and E-5.

The data segment format is shown in figure E-6.

WORD 59 0

1--------1
15

16

17

n

I"

I'

PREFIX
I"

HEADER

FWA DATA SEGMENT 1

LENGTH OF DATA SEGMENT 1

DATA SEGMENT 1

FWA DATA SEGMENT 2

LENGTH OF DATA SEGMENT 2

DATA SEGMENT 2

•
• ~
•

FWA DATA SEGMENT n

LENGTH OF DATA SEGMENT n

DATA SEGMENT n

M-1092

Figure E-1. Optional Load Module Record Format

60471200 F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

59 47 41 35 29 23 17 0

nooa I 00168 l 0

RECORD l 0 NAME

DATE

TIME

OPERATING SYSTEM NAME l OPER. SYS. VERS.

LANGUAGE PROCESSOR NAME I LANG. PROC.

LANG. PROC. MOD. LEVEL l BLANK FILL

BLANK FILL

t--
LANGUAGE PROCESSOR INFORMATION

OR .,....._
BLANK FILL

1---

USER COMMENTS .,....._
OR

.,....._ BLANK FILL

Figure E-2. Optional Memory Image Record
Prefix Format

VER.

--I

--I

-
-
~

M-1093

1
59

RECORD NAME 1~' 0 1
35

I~
(DISPLAY CODE) - - 77779 -

0

0

59

0

Figure E-3. Optional Load Module Record
Header Format

4746 11 7

0

M-1094

0

A HIGH-ORDER 2 BITS OF FIRST WORD ADDRESS (FWA)

B MIDDLE 8 BITS OF FWA

C LOW-ORDER 8 BITS OF FWA

Figure E-4. Optional Memory Image Record
First Word Address Format

M-1096

E-1

59

E-2

7 0

0 I LENGTH I
LENGTH = NUMBER OF 16-BIT WORDS IN DATA SEGMENT

Figure E-5. Optional Memory Image Record
Length Format

M-1097

23 0 23 0 23 0

~lw_oR_D_1~lw_oR_D_2~1--i::~___.l~w-oR_DN_I
' "'"" I_....._....._
I '""....._ ._...._
f 23 19 11 7 ._...._ 0

HIGH-ORDER LOW-ORDER
0 EIGHT BITS OF 0 EIGHT BITS OF

16-BIT WORD 16-BIT WORD

ONE WORD OF DATA SEGMENT M-1098

Figure E-6. Optional Load Module Record
Segment Format

60471200 F

RELOCATABLE OBJECT CODE FILE FORMAT F

RECORD BLOCK

The object text input to the autolink or link utilities is the
relocatable binary code generated by the CYBER Cross
System translators: PASCAL compiler or macro­
assembler. The relocatable binary is represented in
record blocks of 960 bits of information: (i.e., sixteen
60-bit words of sixty 16-bit words).

The data portion of the record block is formatted
accordingly:

Word 1 (16-bit words) -

Bits 15 through 8 =module sequence number

Bits 7 through 4 = 5, the 7/9 binary card indicator

Bits 3 through 0 = 0

Word 2 = the complement of the length of the data
portion in 16-bit words;

Word 3 to !! = the object text block

Word 3 + n + 1 =the checksum

A record block will not exceed one card image, thus the
length of an object text block (words 3 to n, where n is the
length of the data portion, is 57 words or less. The
checksum immediately follows the last data word in the
record block; and if the data portion is less than 57 words,
the record block is padded to fill a complete BO-column
card image.

OBJECT TEXT BLOCK
The object text block, which contains the relocatable
binary information, is headed by a type of block indicator
field in bits 15 through 13 of the first object text word.
The following object text block types are defined:

~ Indicator Description

NAM 001 Name block
RBD 010 Command block sequence
BZS Oll Zero storage block
ENT 100 Entry point block
EXT 101 External name block
ENF 000 Entry field block
EXF 111 External field block
XFR 110 Transfer address block

The remainder of this first word contains a constant of
bits 6 and 4 set equal 1, and all other bits set equal O.

A module's object text begins with a NAM block and
terminates with an XFR block. The ENT and EXF blocks
follow the RBD blocks. The RBD, BZS, ENT, and ENF
blocks may come in any order.

60471200 F

The following is the format for the eight block types.
Note that the word positions indicated are relative to the
beginning of an object text block.

NAM BLOCK

The NAM block contains a word count for common and
data storage, the module length, and the name of the
program. See figure F -1.

RBD BLOCK

An RBD block contains a portion of the actual command
sequence data of the module. See figure F-2. Words 2
through 57 contain the relocation bytes and words for the
command sequence input. Each relocation byte is a 4-bit
indicator that identifies a word of the command sequence
input as an absolute 15-bi t address, or as a 15-bi t address
relative to some relocation base. The relocation base for
a word is determined by the particular combination of bit
settings within the relocation byte.

The following are the relocation bytes in RBD blocks:

2

0000
0001
0101
0010
0110
0011
0111

15

0 0 1

Absolute (no relocation)
Positive program relocation
Negative program relocation
Positive common storage relocation
Negative common storage relocation
Positive data storage relocation
Negative data storage relocation

11 7 3 0

o} o o o o}o 1 0 110 0 0 0

NUMBER OF WORDS IN
COMMON STORAGE BLOCK

NUMBER OF WORDS IN
DATA PORTION

3
DATA STORAGE BLOCK ------------·-

4 PROGRAM LENGTH

5 CHARACTER 1 CHARACTER 2

6 CHARACTER 3 CHARACTER 4

7 CHARACTER 5 CHARACTER 6

8
L

~~I~-----N-A_M __ ST_A_T--EM_E_N_T_c_o_M_M __ E_N_T_s ___ ~I

NOT USED sJ _____ r
M-1099

Figure F-1. NAM Block Image

F-1

15 11 7 3 0

0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

2 RO R1 R2 R3

3 WO

4 W1

5 W2

6 W3

7 R4 R5 R6 R7

8 W4

9 W5

10 W6

11 W7

12 RB R9 RlO R11

'" ~r ..

52 R40 1 R41 1 R42 l R43

53 W40

54 W41

55 W42

56 W43

57 NOT USED

M-1100

Figure F-2. RBD Block Image

where Wn is the nth word of the input block (n = 1 to 43);
Rn is the relocation byte of the nth word; WO is the origin
address of the input block; and RO is the relocation byte
for WO.

There is one relocation byte for every word in the
command sequence output, and a maximum of 45 entrie!i
in the RBD block. The first word is the address relative
to the start of the program where the loader begins
storing command sequence data. The relocation byte for
the first word address (storage address) of an RBD block
may be 0000, 0001, or 0011. If the field contains a
number larqer than OOll, OOll is assumed. Zero is the
leading bit for all but the last relocation byte 1 is the
leading bit for the last relocation byte.

BZS BLOCK

A BZS block contains relocation bytes, the starting
address, and block sizes for areas of core to be cleared to
zeros when the program is loaded. See figure F -3.

where A is the starting address; S is the size of the area
reserved by BZS; - R is the relocation of the starting
address; An is the starting address of the nth entry; Sn is
the size of the BZS reservation for the nth entry; and Rn
is the relocation byte of the nth entry.

The relocation bytes for a starting address may be 0000,
0001, or 0011.

F-2

15 11 7 3 0

0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0

2 Rl R2 RJ R4

3 Al

4 Sl

5 A2

6 52

7 AJ

8 SJ

9 A4

10 S4

11 R5 R6 R7 RB

'" ..

47 R21 I R22 l R23 l R24

48 A21

49 521

50 A22

51 522

52 A23

53 S23

54 A24

55 524

56 NOT USED

57 NOT USED

M-1101

Figure F -3. BZS Block Image

ENF BLOCK

Up to 11 entry fields may be specified in an ENF block.
See figure F -4. The end of data in this block is identified
by zeros. If the sign bit of a word containing the entry
point address is O, the address is program-relocatable. If
the sign bit is 1, the address is absolute and in one's
complement. Data begins in word 2.

where name n is a six-character name of the nth entry in
the block; and En is the entry address of the nth field
name. En is negative (one's complement) if absolute, and
positive if relative. FLDST n is the leftmost bit of the
nth field: 0 ~FLDST n ~15. FLDL TH n is the length of the
nth field: l~FLDL TH n~l6.

ENT BLOCK

Up to 14 entry point names and addresses may be included
in an ENT block. See figure F -5. The end of data in this
block is identified by zeros. If the sign bit of a word

60471200 F

15 11 7 3 0

ooooJooo 0 0 1 0 1} 0 0 0 0

2 CHARACTER 1 CHARACTER 2

3 CHARACTER 3 CHARACTER 4

4 CHARACTER 5 CHARACTER 6

5 El

FLDSTIFLDLTH 1-1 NOT USED 1 .
> FIELD NAME 1

6

7 CHARACTER 1 CHARACTER 2

8 CHARACTER 3 CHARACTER 4

9 CHARACTER 5 CHARACTER 6
FIELD NAME 2

10 E2

11 FL~ST l FLDLTH 2-1 NOT USED

t'

52 CHARACTER 1 CHARACTER 2 h

53 CHARACTER 3 CHARACTER 4

54 CHARACTER 5 CHARACTER 6 > FIELD NAME 11

55 El 1
t

FLDST l FLDL TH 11-1 NOT USED

'
11 M-1102

56

Figure F-4. ENF Block Image

containing the entry-point address is O, the address is
program-relocatable. If the sign bit of the word is 1, the
address is absolute and in one's complement. Data begins
in word 2 and extends to word 57.

where name n is a six-character name of the nth entry in
the block. En is the entry-point address of the nth name.
En is negative (one's complement) if absolute, and positive
if program-relocatable.

When processing an ENT block, the loader records the
entry-point name in its table. The entry-point address is
adjusted for relocation (either program or absolute), then
it is recorded in the table of entry points. This procedure
is repeated until the end of input is reached (a name equal
to 0).

EXF BLOCK

Up to 14 external fields and link addresses may be
included in an EXF block. See figure F -6.

where name n is a six-character name of the nth entry in
the block. Ln is the link address of the nth name. Ln is
negative (one's complement) if absolute, and positive if
relative.

60471200 F

15 11 7 3 0

1 oooloo 0 0 0 1 01!000 0

2 CHARACTER 1 CHARACTER 2 I

3 CHARACTER 3 CHARACTER 4
> NAME 1

4 CHARACTER 5 CHARACTER 6

5 El

6 CHARACTER 1 CHARACTER 2

7 CHARACTER 3 CHARACTER 4

> NAME 2
8 CHARACTER 5 CHARACTER 6 I
9 E2

r

50 CHARACTER 1 CHARACTER 2

51 CHARACTER 3 CHARACTER 4

52 CHARACTER 5 CHARACTER 6

53 E13

54 CHARACTER 1 CHARACTER 2

55 CHARACTER 3 CHARACTER 4

> NAME 14

56 CHARACTER 5 CHARACTER 6

57 E14
M-1103

Figure F -5. ENT Block Image

The end of the EXF block is indicated by zeros. If the
sign bit of the word containing the link address is O, the
address is program-relocatable. If the sign bit is 1, the
address is absolute and in one's complement. The format
of the data in the block is the same for EXF as for ENT
information. Relative external fields are indicated by
setting the leftmost bit of the word containing character
1 of the field name. An external name which contains no
references within the modules object text is indicated by
a $8000 in the link address.

EXT BLOCK

Up to 14 external names and link addresses may be
included in an EXT block. See figure F -7.

where name n is a six-character name of the nth entry in
the block. Ln is the link address of the nth name. Ln is
negative (one's complement) if absolute, and positive if
relative.

F-3

15

1

2

3

4

5

6

7

8

9

..

50

51

52

53

54

55

56

57

11 7 3

1 1 olo 0 0 0 0 1 0 1} 0 0 0

CHARACTER 1 CHARACTER 2

CHARACTER 3 CHARACTER 4

CHARACTER 5 CHARACTER 6

L1

CHARACTER 1 CHARACTER 2

CHARACTER 3 CHARACTER 4

CHARACTER 5 CHARACTER 6

L2

CHARACTER 1 CHARACTER 2

CHARACTE"R 3 CHARACTER 4

CHARACTER 5 CHARACTER 6

L13

CHARACTER 1 CHARACTER 2

CHARACTER 3 CHARACTER 4

CHARACTER 5 CHARACTER 6

L14

Figure F -6. EXF Block Image

0

0

1r

}NAME 13

}NAME 14

M-1104

The end of the EXT block is indicated by zeros. If the
sign bit of the word containing the link address is O, the
address is program-relocatable. If the sign bit is 1, the
address is absolute and in one's complement. The format
of the data in the block is the same for EXT as for ENT
information. Relative externals are indicated by setting
the leftmost bit of the word containing character 1 of the
name. The end-of-link is indicated by a $7FFF.

XFR BLOCK

The XFR block contains a tr an sf er address (in words 2 to
4), which is six ASCII characters in length, including
trailing spaces. See figure F -8. The transfer address
must be an entry point in the program being loaded, or in
another program loaded during the same load operation.

F-4

15 11 7 3 0

1 0 1 olo 0 0 0 0 1 0 110 0 0 0

2 CHARACTER 1 CHARACTER 2

3 CHARACTER 3 CHARACTER 4

4 CHARACTER 5 CHARACTER 6

5 L1

6 CHARACTER 1 CHARACTER 2

7 CHARACTER 3 CHARACTER 4

8 CHARACTER 5 CHARACTER 6

9 L2

..
•r 1

50 CHARACTER 1 CHARACTER 2

51 CHARACTER 3 CHARACTER 4

52 CHARACTER 5 CHARACTER 6

53 L13

54 CHARACTER 1 CHARACTER 2

55 CHARACTER 3 CHARACTER 4

56 CHARACTER 5 CHARA~TER 6

57 L14
M-1105

Figure F-7. EXT Block Image

15 11 7 3 0

1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

2 CHARACTER CHARACTER 2

3 CHARACTER 3 CHARACTER 4

4 CHARACTER 5 CHARACTER 6

Figure F -8. XFR Block Image

60471200 F

AUTOLINK UTILITIES EXAMPLES G

This appendix gives examples of Autolink files and
messages. The examples are:

• A partial Autolink directives file (figure G-1)

• A list of the applications included in the build
" generated by the directives file of figure G-1

(figure G-2)

• An informative message noting the object
programs in the input object code file which did
not have an associated MOD directive (figure G-3)

60471200 F

• An informative message noting the relocation
vectors (tophats) that were deleted during the
space assignment of tophat modules (figure G-4)

• An informative message giving the buffer area for
the build, both test area and user buff er areas
(figure G-4)

G-1

G-2

LINKGEN INPUT DIRECTIVES LIST

..
•- AUTO-LINK INPUT DIRFCTIVES1 THIS DECK AND SUPPORTING COMDECKS
•- PROVIDE THE AUTO-LINK PROGRAM WITH INFORMATION NECESSARY TO
•- PRE-PROCESS THE CCP OBJECT FILE (FULL COMPILE OPTIONI FOR
•- DETERMINING THE OPTIMUM MEM1RY ALLOCATION •
.a.
•SYSiu1R9b1CCP VARIANT LOAD ~ODULE • ..
•- PAGE DEFINlTIO~S, 4 PAGE REGISTFPS, PAGESIZ~ IS 8K.

' PAGEREG = 4
·PAGES I ZES "' 8 ,.
•- STACK RELATED DIRECTIVES, STACK IN LO~ATIONS 4J THRU FC •
.a.
•ENT,DSTKFW,$0040.
•E~T.OSTKLw1SOCFC.
•ENT,OVARFW1!00JO.
•ENT1DVARlW1iOOOO.
*DSTK,~0040,SOOFC • ..
•- ~~MORY RE5FRV~ AREA, OVERLAY AREA IS LOCATl1NS 170 THRU 09F.
•- LOCATIONS v THRU lbf AL)O RcSERVEO FOP HISC PUOPOSES •

. ,
REStQV:aSvl70,SOOQF
RESERVEaSOOOO,S~lbF ..
•- ~cHORY SIZF IS 5tT ACCO~OING TO UPDATF •DEFINE DIRECTIVE.
•- POSSIBLt 'IZES A~E 6~K, 8lK1 96K oo 1Z8K •
.a.
cnp;:s1z:: = 9o ,.
•- SET UP SYNQNY~ NA~ES FOR H~DE4 TQANSLATIONS TAPLE)

' *SYNtVl4AASC1V84AASC.
•SYN,Vl4A~TA1VB4A8TA. ,.
•- THE FOLLOWI~G DIQ~CTlVES SPECIFY THE APDLICATl3NS THAT ARE
•- IN THE CCP OBJECT FILE. FOUR OF THF APPLICATIONS ARE' CONDITIONALLY
•- SPECIFIED IN THAT TH~Y MAY OR MAY ~OT BE IN TH= OBJECT FILE.
•- (1) TESTGcN - NONSTANDAPD USED ONLY BY CDC DEVELOPMENT.
•- (21 UTDPIA - NONSTANDARD USED ONLY BY CDC DEVELOPMENT.
•- (3) ~LIP - DEPENDS ON PURCHASE OF REMOTE CONCENTRATOR.
•- (41 OLDSYS - DEPENDS OF PURCHASE OF ON-LINE DIAGNOSTICS. ·-·­·­·­·­'

NOTE- THIS SET JF DIRECTIVES SPECIFY WHICH APPLICATIONS ARE ON
THE OBJECT FILE. THEY DO NOT CONTROL WHICH APPLICATIONS ARF
INCLUDED IN THE VARIANT BUILD. THE VARIANT BUILD IS CONTROLLED
BY THE DIRECTIVES IN COMDECK ALDEFS. ,

APPL • SV"ODULE
APPL a ASYNCEXT
APPL • ASYNC
APPL • MODE4
APPL • HASPTIP
APPL • HIP
APPL • HLIP
APPL • DLDSYS
APPL • IVT
APPL • CONSOL
APPL • BASESYS
APPL "' PISUFZ
APPl = TUP
APPL INITIAL

• • •
•- Gf~ERATE SYN~NYMS FnP T~~SE APPLICATIONS THAT ARE N~T INCLUDED
•- l~ THIS VAPIANT ~UILD.

"' •SYN.~TYIPI,PPILL.
•SYN,PTHfPQ,PBILL.
•SYN,PBDEBUG,PBILL.
•SYN1uTOPJA,~Blll.
•SYN1P8BREAKPOI1P8ILL.
•SYN,PB~~APSNAP,PBILL.

*SYN,PSZSNAPtPBlLL •

• • •
Figure G-1. Autolink Input Directives File (Partial)

60471200 F

60471200 F

it

•- THE FOLLO~ING OIR~CTIVES CALL T4F SUPPORTING AUTO-LINK COMDECKS, *- (1) SETUP R~?ORT DEFINITIONS,
·- (2) DEFINE APPLICATIONS Ta INCLUDEO IN THIS VARIANT BUILD,
•- (3) DEFINE w~IC~ OBJECT MODULES BELONG TO WHICH APPLICATl~NS.
•- NOTE- MOO DIRECTIVES MUSI B~ LAST ON AUTO-LINKtS INPUT FILE.

it

·- cnMOECK ALRPT ·-·- THIS COMOEC~ 5ETS UP QCPQRT DIRECTIVES FOR AUTO-LINK ACCORDING
•- *DEFINES (BUFS~PT,DlRECTRPT,McMAPRPT,TOPHATRPT) •
.a.
it

t- CQMDECK ALDEFS ·-·- lYt DIRECTIVES IN THIS COMD~CK CONTROL WHICH APPLICATIONS ARc
·- TNCLUDEO IN A VA~IANT nu1LD. SOME APPLICATIONS ARE ALWAYS
•- I~CLUOED WHILE OT~tRS ARE ONLY INCLUDED IF THEf AQE SPFCIFIED
*- ~y UPDATE OI~FCTIVE~ *DFFINF. •

.a.
DEF Slll'100ULE
OtF IVT
DEF BASE SYS
OFF INITIAL
DEF Pll\UFZ
DEF PIOTBL
De F = ASYNCEXT
OH M10E4
DEF HASP TI I>

OcF ,. iiLIP
DEF OLD SYS
it ·­·- C.,MOECK Al S!l'IOD

·-·- TYIS APPLICATION IS PAGEABlE
•- N~~-PAGEA~LE CP • NPl
.a.
"°D = PNSMWl

(p • f,
AODR • $20001
A?PL • SVtrnDULE l

"00 = PNAwAIT

"OD • PNRTN

it

• • •

(p • p,
APPL • SVMOOULE)

(p • p,
APPL • SV!.OOULE)

'p • Pl ANO

•- T~E FOllOwJNG APPllCATIO~S IS LINK~O INTO ANY
•- p "Gt:•
...
"OD ,.

HOO •

f'IOD •

• • •

P ~C ONF l >iUtH:
CP
APPL

PGOS TAT
(P

TH
APPL

P~Sl'iGEN
(?

APPL

• P, FILL,
= SV.,.C!lULE>

• P, FILL,
= PNOSTAT,
= SVHOOULEIRAiESYS)

• P, Flllt
= SVHOOULE>

•- THI~ APPLICATION IS PAG~ABLE •
...
HOO •

HOO •

• • •

PTIVTPRSR
(P

APPL
PGIVTCMO

CP
TH
APPL

• p, FILL,
• IVT J

• P, FILL,
• PTI VTCM01
• IVTIBASESYSJ

Figure G-1. Autolink Input Directives File (Partial) (Contd)

G-3

G-4

..
•- THE REST Of THIS APPLICATION IS NON-PAGEABLE CP •NPJ
•- ANO MUST RESIDE IN THE BASE. ·-·- NOTE THAT PIOTBL IS A SEPERAT~ APPLICATION.
•- THIS IS NECESSA~Y TO CONTROL THE LINKING.
•- PIDT~L I) THE LAST MODULE LINK~D IN THE
•- FORWARD DIRECTION.

' f10D a PI DTRL

MOO z Gtnsu

HOD = ZEROX

• • •

(P = NP,
APPL = PIOTBLI

(P = NP,
ADDR = •OO .Ai),
APPL • USf SYS)

(p = "IP,

•- THIS APPLICATION JS LINKED IN REVERSE ORDER. ·-·- APPLICATION TUP IS ALWAYS INCLUDE~ IN A VARIANT BUILD. HOWEVER,
•- TUP IS DVERLAYED BY BUFFERS UNLESS THE VARIANT TYPE IS SPECIFIED
•- AS TYPE T CTEST BUILD) IN WHICH CASE THE VARIABLE TOTUP IS SET
•- TO 1. ·-' KOO •

MOD "

trno =

MOD =

• • •

P8BREAKPOI
(P
APPL

PBllUPSNAP
(P
APPL

Ptl2SNAP
(P
APPL

PBlSNA P
(P
APPL

"" R1
• TUP J

• Q,

"' TUP)

• R,
• TUPJ

"' R'
• TUP)

•- THIS APPLICATION IS LINKED IN REVERSE ORDER.
•- PIMLIA RESIDES IN HIGHEST CORE AND MAINS RESIDES IN
•- LOWEST CORE.

' MOD = P IML IA
(P • R,
APPL . INITIAL>

MOD • P ITKRS
(P .. ll,

APPL = INITIALt
HOO PILININIT

MOD

• • •

PIA PPS

(P

APPL

(P

APPL

. ~,
• INITIAL>

• R, . INITIAL)

COMD!:C K Al ~UOE4

•- THIS APPLICATI~N lS ~~N-PAGEABL~ A~O
•- PAGi:ABLE. ·-' MOD ~41141N

MOO = R41'44CC

HOO R4M4TP

• • •

(P = NP, Flll1
A?Pl = l4nflf4J

(p • ~p, FILL1
APPL = 110DF'I•)

(p • p,

Figure G-1. Autolink Input Directives File (Partial} (Contd)

60471200- F

CP • NP,, FILL,,
APPL • X25Cfll X25CF2t

P.OD • PXPAD3
CP • p, Fill•

APPL • L2Df8UGI l3DEBUGJ
MOD • PX214UX

(P • F,
APPL • XZ5l21 X 25Cfll X25CFZJ

MOD • PX20PS
CP • F,

APPL • XZ5LZ/ X25CFll XZ5CFZ)
MOO = Pl(2P08 T

(P • F,
APPL • X25L2/ X25CFl/ X25CFZ) ..

•- E~O OF ALINPDTR DECK, START OF SUPPORTING COMDECKS

"
**

FOR TEST PURPOSES THE BUFFER AREA OF THIS BUILD IS
DECIMAL = 18338 HEXADECIMAL = $47A2

THE USER BUFFER AREA FOR THIS BUILD IS
DECIMAL = 28453 HEXADECIMAL = $6F25

**

Figure G-1. Autolink Input Directives File (Partial) (Contd)

PAGED LENGTH MAIN LENGTH
APPLICATION

NAME DEC HEX DEC HEX

SYMODU 7729 $1E31 2229 $08B5
ASYNCE 8155 $1FDB 2257 $08Dl
MODE4 7477 $1D35 851 $0353
HASPTI 6402 $1902 209 $00Dl
HIP 1443 $05A3 0 $0000
BLIP 4784 $12BO 306 $0132
OLDSYS 0 $0000 50 $0032
IVT 0 $0000 410 $019A
CONSOL 0 $0000 3991 $0F97
BASE SY 0 $0000 14476 $388C
PIBUF2 0 $0000 0 $0000
TUP 0 $0000 3605 $0E15
IN IT IA 0 $0000 2415 $096F
PIDTNL 0 $0000 129 $0081

LINKGEN CX>MPLETED

Figure G-2. Applications Used in the Build from Directives File (figure G-1)

6Q471200 F G-5

G-6

*****WARNING***** NO MOD DIRECTIVE FOR THESE OBJECT PGMS:
PTDUMP
PTIRES
PTIBAC
PTISTU
RANDOM
PTIVTl
PTIEJE
PTBPAT
PTBCOD
PTBVTl
PTECHO
PT UP LI
PBDEBU

Figure G-3. Informative Message, Missing MOD Directives

DELETED TOPHAT MODULE LIST

PNDSTA
PB HALT
PTIVTC

Figure G-4. Deleted Tophat List and Buffer Area Message

60471200 F

LINK UTILITY EXAMPLES H

This appendix gives the following examples:

• Two examples of calling MPLINK independently of
the CCP or CCI build procedures (figures H-1 and
H-2). Note that in the ordinary case, this

60471200 F

information is not necessary since the build
procedures automatically supply all the calling
procedures.

• An MPLINK directives file (figure H-3). This file
was· produced for CCP by Autolink using the
Autolink directives files shown in appendix G.

H-1

Compile a PASCAL source program and build a load module satisfying external references from an object program
library:

ABC,CM77000,T77,P4.
REQUEST (ABSOLMP,*PF)
ATTACH(NEWLIB,OBJPGMLIB03,ID=PT
ATTACH(MPLINK,ID=SCDD)
ATTACH(PASCAL,ID=SCDD)
PASCAL(O,CSET=64)
FRMT.
REWIND(LGO)
MPLINK(CSET=64)
CATALOG(ABSOLMP,LOADMOD01,ID=PT,RP=30)
7/8/9
••• PASCAL source program •••
7/8/9

MPLINK directive file

6/7 /8/9

0000,xxxx,xxxxxxxx,SMITH.
*Memory Image Load Module File
*New Library
*MPLINK Utility
*PASCAL Compiler
*List output and use 64 char ASCII

*Reset Object Code Input File
*Cal 1 MPLINK
*Catalog Load Module File

*All PASCAL Source Programs

NOTES

After all of the object programs on the object code input file have been read and
linked, any remaining unsatisfied external references can be resolved using the
library if one is supplied.

Figure H-1. MPLINK Execution Example 1

Build a load module from an object program library with editing of the load module file:

ABC,CM77000,T77,P4.
REQUEST(ZAPMP,*PF)
ATTACH(NEWLIB,OBJPGMLIB03,ID=PT)
ATTACH(MPLINK,ID=SCDD)
ATTACH(MPEDIT,ID=SCDD)

0000,xxxx,xxxxxxxx,SCHOFIELD.

MPLINK (CSET=64)
REWIND(ABSOLMP,SYMTAB)
MPEDIT(CSET=64)
CATALOG(ZAPMP,LOADMOD02,ID=PT,RP=30)
7/8/9

*Absolute Memory Image Load File and Symbol Table File

*REL,NEWLIB. First MPLINK Directive

Nest of MPLINK Directive File

6/7 /8/9

Figure H-2. MPLINK Execution Example 2

H-2 60471200 F

l
?.
3
4

5
6
7
'~
•.j

10
J 1
12
n
14
I':>
1 Cl

17
1 ~
H
2\)
, 1

n
23
•)I ,_ 't

h
?I:>
n
2~

?.-i
30
11
32
3 :~
34
35
'31;)
37
'38
3r~

4C
H
4?
43
44
45
46
47
:.~

49
}'.)

i:; 1
??
53
54
55
50
57
58
59
~o

ol
62
63
64
f.15
66
67

CYBER MINI CROSS SYSTE" - LINK EDITOR -

LINK DIRECTIVES

*SYS IO, R 90, CCP '/ARIANT LOAD fi!OOULE. 68 *L, PNPSU.
*ENT,OSTKFW,$0040. bq *L,PNLNBA.
*cNT,DSTKLw,$uOFC. n *L,PNSGAT-PNCECN.
*fNT,DVARFW,$0000. 71 *L,PNSTOR.
*~NT,OVARLw,ioooo. 72 *L, PTAFOU.
*JSTK1$00401$00FC. 73 •L,PTAPET.
*SYN,~l4AASC1V~4AASC. 74 *L,R4ASYl-ASYMSG.
+SY~,VI4A~TA,Vq4A~TA. 1~ •L,ASYLFM.
*SYN,PNr.J~TML1PBlLL. 7b .H,PTAPSP.
*SYN,PNTS~TR,PBILL. 71 •L,uscsr.
*SYN1PN~LOX?,,P~lll. 78 *L1AAEBCD.
*5YN,PN)LX2j,P~ILL. 7q *L,AACAPL.
*SYN,PN5S~CH,PBILL. ff') *L,ATAPLA-AASAAP.
*SYN,PNT)~ON,P~ILL. 81 *L,ASTOAS.
*SYN~PTHI~I,P3ILL. 82 *l' AEBCDA.
*SYN,PTrlIPQ,P3lllo 83 •L,AEAPLA-ACAPLA.
*SYN1P~ntlU~,P8JLL. 64 *L,A7T06P.
*SYN,UTOPIA1Pqfll. 85 *L,PBLNOb.
*SYN1P~BQcAKPOl1P~TLl. qb *l, P TC TC ti- PB 0 l RL •
*SYN,PB~~AP~~AF,PBlll. 87 *L' PTINJT.
*~YN.~B~S~AP,PRILL. 8~ *L,PTIVTC.
*SYN,Pjl$~AP,P1ILL. d9 *L1PPSLJ .
*~Y~,~BJPSrlLT1~~lLL. 90 *L1PGOSTA.
*~YN1~BTU~d?~AK1PqILL. 'H •L,?BMLJA.
*SYN, 0 aru~,P8ILL. 9? *L,i>(;SWJT.
*~YN,PRDfCCDE,PRTLL. 93 *L,PBLNO?-PSLN03.
*SY~,P~P~~FQo~,PBTLL. 94 *L,1>8LN08.
*SYN,PBTIPO~G,P~ILL. 95 *L1P8FILF.
*SYN,P~OMPR~G, 0 ~lll. ·~b *L•PBLMAS-PBSTOP.
*SYN1PBTU?DUMP,P3ILL. 97 *L1PTTPIN.
*~Y~,P~RcAO,PBILL. 98 *L, MOl)MS T.
*5YN,PB~Rir.oqrLL. 99 *L,PBLN04-PBLN1~.
*SYN1PBTEjT1P~ILL. lOJ *l1PBMEMB-PNOF.QU.
*SYN,P~QUICK,~BILL. 101 *L,PBFMAH-P~TOAD.
*SY~1i>BTM~O,P3ILL. 10? *l1PMMLEH.
•SYN,PRJOSE,P1ILL. 103 *L,PTMSCA.
*~YN,PA~~C~,P~Ill. 104 *L1PBCLKI-PNBMPS.
*SY~1PdlTY$1PR!LL. 105 *L1PMC8lN-PHCDRV.
*SYN,~~IUT~1PRlll. lOo *l1PBSCLA.
*~YN,PBOC1N,P~!LL. 107 *l•P"WOLP-PMTlSE.
*SYN1P~)l~P,P3TLL. 108 •L,PTL"ux.
*~YN,PBTTfINTe?~lll. 109 *L1PBSWLE-PBINTP.
*SYN,PBr,cJC,P~ILL. 110 *L,PBUPAB-PTBACK.
*SY~1PdSf,QTJQ,PBILL. 111 *L•PTBREA.
*SYN,PBSUPMJG,PBILL. 112 *l1PTSTRT-PTSTOP.
*SYNrP~JF~f,c1[LL. 113 •L, PTICt.O.
*SY~1PBCONSOLF,P~ILL. 114 *L,PBIOPO-PNLLTC.
*~YN,PBJF~f,P~Ill. 115 •L, PBFMAD.
*C0~1U7FFF. 116 *l •ODE 8UG-PBCLR .
*SYN1PNOSTA,PGDSTA. 117 *b P BLOAO-PB Ill .
*SYN,PBS~ITePGSWTT. 116 *L,PBHALT.
*L1lERO>t' ,$O~"v0. 119 *L1PBl10N -TO STOP.
*L1PBINTR-AOORES,iOOlOO. 120 *L,R4M41N-P4M4CC.
*l1GL08L$,$OOOAO. 121 •L,LIPSMA.
*L,ISPfJLD. 122 *l1PNTNKS.
*l1 P BC ALL. 12 3 *L,HASPHS.
*L1PBLNOO-PBLNOl. 124 *L1HSR4IP.
*L1PBAHAS. 125 *L1PJ..OTBL.
•L,PNSHWL,io2ooo:so4. 12b *l,HAINS ,SOFo5q.
*L,PNAW41-PNSMBA. 127 *L,BEGINX.
*L,PNRVRS-PNSMTR. 123 *L,PIPROT-PISIZC.
*L1PNSHDI-PNLLCN. izq *L, P IU1T .
*l1PNLNCN-PNLNST. 130 *l1PINWIN.
*l1PNlTHL-PNO~LO. 131 •t,PILCBS-PIGETA.
*l1PNFRCF.. 132 *L,PIFRl .
*l1PNOVLT. 133 *L 1 P I6UF t.
*l1PNOVLO,S04000. 134 *L' PIN IT .

Figure H-3. Sample MPLINK Directives File for a CCP Run

60471200 F H-3

H-4

135
l3b
137
138
139
140
141
142
143
144
145
146
147
148
149
15 0
151

*L,PIWLIN-PIAPPS.
*liPILINI-PTTMRS.
*L,PIMLIA.
*L1PIBUF2.
*L,PTASNO,$lOOOC:io4.
+L,R4ASYT-R4A274.
*l.1ASYERR.
*l 1 PTMSOU.
*L1PTuELM-PTASNM.
•L.PTAREC-PTAFAL.
*L1PTAPBU-PTAFSC.
*L,PTAPI •
*L,PTMD4T1$12000:\04.
*L1R4M4TP.
*L1PTSTAC-PT4TEX.
*l1PT4TCR.
*L,Pf\'SMGE.

152
153
154
155
15b
157
158
159
160
161
162
lt-3
164
105
166
167
H-6

+L,PTHSOP1Sl4000:S04.
+L,HSR4IT-FCSRCB.
*L1PTHSMU.
*L1HSPTC8-PTTPHA.
*l1PNCONF.
*l1PGIVTC.
*L1PLTKOP1SlbOOO:so4.
tt,PlIPTC.
*L1IC
*l1PLCBIN.
*L1PLREAu.
+L,PLIPP'IL.
*l 'CLE Alll U-PL IP
*L1PTIVTP.
*L' ?TL IN I.
*l '? GHAL T.
*E "110.

Figure H-3. Sample MPLINK Directives File for a CCP Run (Contd)

60471200 F

EDIT UTILITY EXAMPLES I

This appendix gives the following examples:

• Selected portions of an MPEDIT program with
constant, variable, and array decJarations, and a
single assignment section for the main CCP
programs (that is, no overlay assignment
sections). This program is given in figure 1-1.

60471200 F

• A partial listing of the memory image load module
file (Figure 1-2).

Note that the Edit utility is automatically called as a part
of the CCP and CCI build procedures.

I-1

CYBER MINI CROSS SYSTEM - LINK EDITOQ -

EDIT STATE,.ENTS

..

* •
*
*
*

COPY~IGHT CONT~OL OATA CORP. 19751
1976. 1977. 1978. 1979, 1980

• •
* ***

"' ..
****************•**************••············

DEFINITION/DECLARATION
SECTION

* * * C:JNST\NTS * CONSTANT DECLARATION PART

* * ***
"' CONST

IT RLIF U
IF'\LSF "' J;
/~A"11 = .)t:?; rt GENERATE "PPPU FILE

...
**********•************************ • •
*
*

* •
···············~···················
" ,.
***•······························

C'Ji:>i;: SI7C:
**•·············

ICS16K
IC S ~ ?K
IC S40K
ICS481<
IC S5~K
ICSb41<
/CS128K
/CS25~K

" BFfF
HFFF
i9FFF

" iBHF
IDFFF ;
SFFFE;
l;

" 2; ..
••

SUFFER CONTROL BLOCK INDECES
**************•··· ...

/IJOSO • 0 ~ SIZE 0 INDEX .a.
/BOSl " 1 ~ 1 ...
/BOS? " z ~ 2 ...
/BOS3 . 3 ~ 3 ...

• • •
VAR VARIABLE DEFINITION PART

IT; ,. GENERAL LOOP INDEX -"
Ill; ~ GENERAL LOOP INDEX .a.
IIZ; ,. GE~ER~L LOOP I~OEX .a.
113; rt GE~ERAL USE VARIA~LF -"
/P; rt WORK 0 0INTER FOR ~ODE~ STATE PROGRAMS .a.
I J; rt GENERAL INDE l(LOOP -"
IL; rt•ORK-POINTER FOR TIP-INPUT-STATES-"
IL SAl/E; rt SAVE ~ORK PTR I~ TtXT 0 ~nCR HOR STATE PROGPA~-"

It<; rtVARIABLF INDEll KOCNTRBL .a.
ICHS~LIA ,. SUI] PORT LCS TA8LE POI~TERS - MLIA -"
/CHSCONS rt CIJNSOLE
/CHSCOlJl>LER ,. COUPLER -"
IICHSUBLC~; rt INDEX - CHSUJLCi3 .&.

ILPIO;
ITC!3CGN)
ITCB~L U

IBOS32;
/IOTql; ,. ~ETwOPK OEFI~IT!ON TA~LE WORK POINTER

~····································· * • * fHF FOLLO~l~G IS THE SOURCE INPUT *
* FUR APPLICATIO~ UNIQUE VARIABLES *
* DEFINITT~N F~R THIS SYST~M *
* •
*************************************'

Figure 1-1. Partial MPEDIT Program

1-2 60471200 F

dUFLCOC/30S0 •• /80S3J OF l;
8UF~ASK~C1aoso •• 1BOS3J nF l;
BECTLPKC/~OSO •• IBOS3J OF /SIZBFCTL~K;
NICTCT (Noqoo •• NOOIAG 1 OF I;
NJJ;CT C ~OT~LIA •• ~OTOIAG J OF l~;

BFTYRES~ r~or1 •• ~vl~~Uk] OF l; ~ ~UFFER TH~ES~OLOS

• • • AV Ti: 4l F [(}. • 41 IJF l;

~································· • • * A~Y~: AQQAY~ *
* •
•••******•························
AVICdAT Cl •• 401 1F 3;
~~L:~AT CL •• 31 1F 3;
~~TC1FDT CJ •• 01 OF l;
AVLC3FOT co •• 11 ~F l;

~res ACTION TABLE •
~ LCB ACTION TABLE •
~TCB Fl~LD DESCRIPTOR TA~l~•
~LC3 FIFLD OESCRIPTnR TABLE•

A~YNC CJD~ TA~L~ ~DDRfSS A~RAYS

AVUCC1rFTCIAC~BCD •• /ACCAPl] OF l;
AV!~TfqLE (/ACERCD •• /AC~APL,/~1ASYASC •• /NOl~M27411 OF l;
avrJfTA~L~ [/~C~BCD •• /ACCAPL,/N,ASYASC •• /NOIBMZ741] OF l;

TNiTI~LlZATir~ Jf SVM-ARQ!YS F~R HASP-TIP

4$T\.~AT[l •• 4CJ ~F 3;
4SLC'JAT Cl •• 21 '.lF 3:
rlSTC3FOT (j •• OJ OF 1;
HSLCdFDT [~ •• OJ PF I;

~TCB ACTION TABLE
~ LCB ACTION TABL~

....
~··· -+*Plfi At>PLl":HJn\I UNll!J!= Al'~AY iOU~Cl?U

.. ********•***"'

***********····························· • •
• OE.FINE 0 .iFllOO VARU~LES •
* •
***************••······················· •
sr::G IN

VARIO :a 1Qb;
VAQI'l+l :• 'OOOF:
CC PVE~ : = S32;
CC PCYC : = o:
CCPLEV : . O;
/TRACI:: : .. 2 ;

rtCCP YFRSION - CSD REPLACES.a.
rtCCP CYCLE -USER REPLACES.a.
rtCCP LEVEL - CSD REPLACES.a.

IF.)I_\ : : 2: .. EXJfQNAL ~VI' TBL LIST ON ...
~

·············~······························· • • * OEf INE AS 14ANY P]Jt-iTFl>S •
* AS :>iJSSBLE *
• • ••• ...

IQ G 5 ~ 2 : = I I\ C'S 1 b • l ;
bEGl~V • fD 1• MAYNJ;

~······••******••···················· * SET UP PDjJ ~~~TE~ ~tll"lTE~S *
•••·······•••······················ ...

..
•
'

i:r: SH I~ : = i :J J:
c n ;::-111 Tl r ~ : = 1 "' •

• ... llllH'QNAL PRuCFSS

,. SYSTf" llllfT

• •
aY..,lClH -Jl)f~• l J. nnAOOQ =· rHUllY' (PBUTPRIJC I;
f\YwLCBr 'tOl~-l J.8Yt>AGE =· /PGN~~(P31NTP•nCJ;
Ill ~LC 13 CI\)l"iWl J.~Ytiill~DJ:K =· !J')[!lhfl;
BY~lCiH801NWL J •. 8YJ'O~NT =· It;
1'YWLC'H BOI~JL J. BYlNC =· Z;
lSYlilC SC iJINtiil 1• tiYWLtfFO =· IT~Uf;

Figure 1-1. Partial MPEDIT Program (Contd)

60471200 F

ASSIGNMENT SECTION

PSEUDO VARIABLE DECLARATION
PART (PART OF ASSIGNMENT
SECTION)

1-3

I

~.a. I

I-4

r+••••······························· t SERVIC~ MODULE LOCAL VARIA8LES •
/8ZOWNE~:
I~ ZLNS PO;
/8ZN2;
/dZlPKTLNTH;
/87ZPl<TLNTH;
/!HK;
/SZllPVC;
/IH2LPVC;
/8ZDCE;
/8 ZTIUNSTYPE;
/Blll SVC;
/8Z2LSVC;
/BZLAPB;
18 ZTl;
IL Cw;
f BSTCL ASS;
/BSOWNER;
/BSCN;
/ON;
/SN;
/BSNBL;
/BSIPRI;
/BSPGWIDTH;
/BSPGLENGTH;
/BSCANCHAR;
/BSBSCHAiO
/BSCNTRLCHAR;
1'3SCRIDLES;
nsu= 10ti:s;
/q~CRC ALC;
/qSLfCALC:
/BSSPEDIT;
/JSXPARl=NT:.
/'lSXCl-IM;
/BSXC'"'L;
/ 8:iXCHAR;
/'3SX£f'.I;
/~SINOC:'J;
/8 SOUTl)C V;
I B SFC Hfl!>LX;
/BSPGwAIT;
/!3SPAllITY;
/i:\SA!Hl Hff:
/BSUSRl;
IBSUSP2;
IBSUJDf=.;

I o3 S XCH R~°";
I BSCl-IAftl~EC;

llC~VARIA~T; ~FIRST VARIANT LCB INOEX .a.
ITC~VARIANT; r+FIRST VARIANT TCB INDEX .a.
lf)IJLCB!=DT;
/IJ'JTCoFDT;
ICOSMRFSZF.;

r+****************·· ... ,..ti=ND APPLICATION UNTCUE VAOIABlt SOURCE•.a.

... *************************************••······························· ... r+

····~·· • • * ARRAY OECLARATIONj - BASE AND CCP *
* TA~LF.S *
• • ••• ...
ARRAY

BJTIPTYPT CNOHOLC •• NlUSPlJ OF ISIZTIPTYPT;
~WwL~NTOY Cl •• 171 nF /JlWLMAX; .
C~TIMTBL(COLCBTMSCN •• COSPAREJ OF 4;
CGTCBS co •• C4TCM1J OF /SIZTC8; ~ FIXED Tees.
JACT C/TTY •• /LP1742J OF /SIZCT;
JAIOWL [/FALSE •• /TRUE1 OF l;
JGTESTA~LE C/FALS~ •• /TRUE-/FALSE •• ITRUE,/FALSE •• ITRUEJ OF l;
JZOPSBASE CBOCHWL •• 8COU"MY1 OF 2; ~ OPS PROGRAM ARRAY
JKMASK Cl •• 171 OF l;
JKTMASKCl •• 171 OF l;
JSWLAODR C0 •• 17J Of lJ
JlTUPllFRS-fi •• o4J~OF l;
NqlfYT [NQlryJAG •• NOLAST,l •• NKPC30UT1 OF 2;
NCLT? C~OLOIAG •• NOLASTl nF l;
BUFLENGTH£/BOSO •• /BOS31 OF~;
TCBLE~GT1-1£/BOTSO •• /BOTS7l OF l;

Figure I-1. Partial MPEDIT Program (Contd)

ARRARY DECLARATION

60471200 F

* * MLIA INTERRUPT HANDLER * *

6YWLC8 C 30f'tUI l J.B'fPRAOOR :a
!HWLCBCBOIUWL] I BY PAGE :•
BY111ilCB£80'1L#l 1. BYWLINOE X :s
BYWLCBCBOHLllL J. BY"AXCNT :a
Bl'WLCBC'3,MLWl l.BYINC :a
!H'WLCBCSOl'll'iill J. BYlllLREQ :a

* * SERVICE l'IOOULE

BYWLCBCBOSHWL
SYWLCBC gQSMWl
8YWLCiHi30Sf'IWL
t3Y\llLC8 l ':'OSM.-L
B'floiLCBC"OSHiitl
BYlllLC~CeOSH.iL

• • •

J.BYPRADDR
J,BYPAGE
J. SV.ilINDEX
], PY MAX': NT
J.eYINC
). evwLREO

FO!> I I : • l TO l 7 0!1
~EGIN

I•
:a
: .
: "
:=
:•

/ENTRY(PB"llAOPS);
/PGNU~(PBHLIAOPS);
BOML -'l;
10;
5;
/TRUE;

• •
/ENTRY(PNSMWL);
/PGNU" C PNSPIWL);
Bt)Sf'IWL;
l;
4;
/TRUE;

JS~LAO~Q(/l] == s.wLENT~Y+/JlWLMA(•flt-1);
E._.!J;

T~c VALU~5 IN JKTMA51< ARE JHE SAMF AS THOSE IN JK'1ASK

Jt0U5k.(l] : = (); JKT'US1<Cl :z o:
J•OUSKC2 1 : : li Jl\TMASKC Z :a l;
J1<"4A:)I(C3 J == ... ,, JKTHASKC3 : . 5;
JKl"IASK[4 1 : = ,,, ; JKTHASKC 4 == $0;
Jl(MASl< { '5 1 : = uo; JKTMASKC5 := SlD;
Jl(P'IA5i((6 J : = S30; JKTHASKCb : . S3!>;
J1<"1ASl<.(7] . - HF; JKPU5K C 7 : . SlF;
Jl<IUSl<(q] : = HF; JKTHAS KC S : .. SlF;
JKMASi([Q J :•a HF; JKTHASK[9 l : . SH;
JK,_.ASKClOl : = SlH; JKTHASKClOJ : . SlFF;
JK'4ASl(Cll] : z S3fF; JKTHASl<Clll : = S3fF;
J!OUSl<.£121 : = UfF; JKTHASKC12l :a S7FJ:;
JKMSKC131 : = SFFF; Jl(THAS KC 131 := SFFF;
JK'1ASKC141 : : UFFF; JKTHASKC141 : = SlFFF;
JKMA:iKll5l :a S 3FFF; JKTHASKC151 =· S3FFF;
JKP'IASKC16l : = S7FEf; Jl<TIUSK Cl6 l =· S7FEF;
JK"'ASK Cl 71 : .. $ FFFF; JKTHAS KC 17 l : = HFFF;

• • •

FOR •• TO LOOP

rt*** NESTED FOR •• TO LOOPS * INITIALIZATION OF LINE TYPE TABLES *
••

.+

*
"'

...

FU~ fl:=NCLDIAG TO NOLAST on
FCR /11 := 3 T~ NKRC30UT on
NnLTYT [/l,/Ill.NRINT2 :aSFFFF;

rt PRl"'E All SECOND WDS

---- SET UP CLEAR ANO DISABL~ COMMANDS ----

~OR /I := N~LDIAG T~ NOLAST no
BFGl~

NHll'TC/I,Nl(CLRlJ,NBINTZ := $0400;
~6LTYTC/I,Nl(OISLJ.NSINT2 :s S04CJ;

t:NI);

.+SET THE TERMINAL BUSY BIT .&.

rtTO BUSY OUT THE "ODEM •

rtLINE TYPE 0 CNOLDIAG) USED FOR ON LINE DIAGNOSTICS ONLY.LINE .&.

.+CHARACTERISTICS ARE TAYlOREO DINAMICALLY DURING EXECUTION .&.

NBLTYT
t.IBL HT
Niil TYT
111 BL TY T
NBL TYT
NBL TYT
NBL TYT
NBLTYT
NBl TYT
N iJlTYT

CNOLDI A, 2 J.NBINTl:•MILTO; it "OOEl't STATES PTR. TABLE
CNOLDIA,NKINILJ.N8JNT1:•SOOZO; rt INIT. SET CI SON)
CNOLDIA,NKENBLJ,NBINT1:•S8840; rt ENABLE SET CDTR,
CNOLDIA,NKINPTJ.NBINTl:•SOZOO; .. INPUT SET IIONJ
CNOLDIA,NKDOUTJ,NBINTl:•SOlOO; .+ DIR .OUT SET COON)
CNOLDIA,NKOBT J,NBINTlS•SBBOO; ,. ORT SET CRTS,
CNOLOIA,NKINOUJ.NBINTl:•SOlOO; ,. IN.AFT.a SET COON)
CNOLDIA,NKINOUJ.NBJNT2:•SFDFF; it
CNOLDIA.NKENDIJ.NBINT2:zSFDFF; it TERI'!. INP
CNulOIA,NKENOOJ,NBINT2t•SFEFF; .+

• • •

fER ... OUT

RESET C ION)
RESEH ION)
RESETCOON)

RTS,

OU)
AND

ADDO

"' ISRH

"' "
"'
"' "' "' "

Figure 1-1. Partial MPEDIT Program (Contd)

60471200 F 1-5

..
•• ** SET UP BUFFER AREA POINTE~S **
••
"'

IL . -
/L : =
IL : "'
IL : =
/l . -
IL . -
IL : =
IL . -
IL : =
/L . -
IL . -
/l : "'
/L : =
/L : =
IL : =
IL : :

IL . -
/l . -
/L : "'
IL : ,.
IL =·
..

*** IOTBL ***
IDTBL OF.FINES A NETWORK TO THE CCP. IT ~UST BE
IDENTICALLY INITIALIZED IN EVERY NPU OF A NETWORK.

JDT~L CONTAINS ON~ ENTRY FOR EACH NPU IN THE NETWORK.
EACH ENTRY rs A VARIA~LE NUMBER OF WORUS FOLLOWED BY
S7FFF AS A TERMINATOR. THE FIN~L ENTRY IS FOLLOWED BY
TWO CONSECUTIVE T~RMINATORS.

THF FIRST WllRO OF AN IIHBL ENTRY' IS THE NODE IO OF THE
NPU IN QUE ST ION. IF THE ~PU IS A LOCAL ONE, EACH ID
ACCESS Fu VIA COUPLFQ TS CONTAINED TN FOLLOW I NG WORDS.
FINALLY, THE RF rs ONE WORD FDR EACH TRUNK CONNECTED
TO THf NPU: THF llNK-REMOT~-NODE ID IS TN THE RIGHT
HALF. ANO HIE POPT NUMBER IS TN TrtE LEFT HALF;.

lr)fBLP := PllJT1L; ,. PASC Al I DTBL POINTER•
/IDT~L . - P IDT BL - 1; .+ EDITING IDTBL POINTER.
IL . - O;

/l + 1; IT DT 1H + IL : = ,0016;
IL + 1; /IDTBL + /l . - $0200;
IL + l ; I IfHBL + IL : ,. t030C;
IL + 1 ; II 0 Till + /l : = $0400;
IL + 1; I IO TBL + IL : : IENOF.;
IL + 1; /IDTBL + IL :: !00013;
IL + I; /IDTiH + /l :: soooo;
IL + l; /lr)TBL + /L == $0001;
IL + I ; /J lHBL + /L : = ~(1003;
IL + 1; /IDTBL + /l : :: !l=NOf;
/l + 1; .llDBL + /L == 10JOC;
/l + l; I IDTBL + /l :z •oooo;
IL + 1; llDHL + /l : z SOOOl;
IL + l; llOTBL + ll ::: SOOOlt;
IL + 1; /TOTBL + IL :z /ENDE;
IL + 1; /IOTBL + IL : = soooo;
IL + 1; I ID TBL + /l == SOOOO;
IL + 1; I IOTBL + IL :· 10001;
IL + 1; /IOTBL + /l : . SOv05;
/l + 1; /IOTBL + /l =· /ENDE;
/l + 1; /IDTBL + /L I• /ENDE;

83SBUF :a /l .. I IDTBL + 1; r> INC RE-ME NT AVAILABLE CORE PTR

• • •

"' "

...

1-6

.+************•*********•······························
* • * SET UP SASE TCB FIELD OESCRI~TO~ TAqlf *
* •
····•••**"'
onc~Fl'T := OGTt:i:IFOT;

or.TC3F~T(0J.nONUMFNT :z ~o; rt NO. Of EN TR IfS

/dSTCl ASS : = 5;
OGTCH·Of[~l.DDFSTRT :,a /STARTIBSTCLASS);
!)GTl".flFDT[?J.ODFLNTH :s /LFNGTH(BSTCLASS>;
OGTCt3FDf[51.DOFOISP : = ~STCUSS;

/ 8 '!JWNfR : "' 12;
OGTCjFQT[l?J.r)DFSTRT : = /STARTl~SOwNE~);
n~TCJFOT[12l.DDFLNTH . - /lENGTrllBSJW~ER);

nr.rc~FOT[l2J.DDFDISP . - l'.lS!lW~F~;

/dS~N := 11;
or,1~~FuT[11J.Dn~STPT :: /START(RSC~I;

D~TC8FPTC13l.DOFLNTH ·- /LENGTrl(SS:N>;
OGTC3FDTC13l.DDFOISP := 9SC~;

Figure 1-1. Partial MPEDIT Program (Contd)

60471200 F

IO"'I : = 14;
Df.TCSFOTC141.DOFSTRT : = $F;

DGT~~FDTC14J.OOFLNTH : . 7;
DGTC~FOTC14l.OOFOISP : s ~SllCB;

IS~ : = 15;
~~TC~FOTC151.0DFSTRT : :s 7;
DGTCSfnTC151.00FLNT~ : & 7;
DGTCdFOT[l51.00FOISP := !iStlCB;

/BSIPRI : s lQ;
IJGTCSFDTCl?J.OOFSTRT : s /STARHBSIPIH);
OGTCBF~TClQJ.OOFLNTH :s /LENGTH(BSil>~J);
OGTCBFOTC191.DDFDISP :s BSIPPI;

• • •
CBTIMTBLCCOHLIPJ.C81NTV4l :: 2;

~**•·························~
~*cND APPLICATION UNtOUf EXECUTION STATF .. ENJ SOURCE*4

~··~ FNiJ.

END OF ASSIGNMENT SECTION

Figure 1-1. Partial MPEDIT Program (Contd)

CYdER ,.INI CtlDSS SYSIE'1 - LINK EDITO~ -

"i:PIORY l"AGE Fll'E DU"IP

•••o •••l •••2 •••'3 •••4 ... , •••& •••7 •••8 ···~ ***A •••a ***C ... D ***E ••tf

HEADER
0000 c: 0142 5 ?39 3h20 2CZO . 't3't3 5020 5641 ,2't9 't.14E 'H2'l 4C4F 4Hlt 201tD 4F41t
0010 554C 4720 2020 2020 20?0 20'0 2020 2020 2020 2020 2020 20"0 2020 2020:1

R<H>

H£Al)f~

0000 {: 0040 401.:0 5A45 524F 5i;2c.i 2020 2020 2020 2020 2C20 ?OZv 20ZO 2020 2020 2020
0010 2C20 zn;>_c, 7.')20 ZOZ·'.> ZOZC· 2020 2020 2020 2020 2020 ZC'ZO 205& 455? 4FZO: J

zc~ox

JJOO {: 14t'O F~71

"010
')020
0030

HtAOl=R
,JQCO {: O!'\.. f 41.)lt ~'>7J. 4 ?45 474q 4~53 2020 2020 2020 2020 zozo 2020 2020 2020 2020 zozo
0011) Zv2J 7.0?0 2v2C 202" 2020 202C 2 11 20 20~0 2020 2020 2C20 rn42 4547 494E:)

i3"G INX
Fo70 (: 04\l l C'J'J(\ ...,occ 0402 ccoo 04)3 ~OOJ 0040 ::>4C4 COM 1400 F&59:]

HFADFP
J'lOO {: 0040 4000 0100 5C42 4?4E 54?2 4E54 455?. 5255 5054 20H 5:?41 5053 205't 4142 4C45
JOlO 2<.2,,. 4C4F 4144 2 041 5420 ?4H 31)30 2q2c ?OZO 202') 2C20 zo4q 4t54 5241:)

PSTNTQ
JlJO [: 140(1F98 1400 1FC4 l'tOO 52C '3 1400 52E7
Oi.10 140(, 5643 54'.>C 4CFC OE14 5400 4CFC OElB 1400 5&AF
')120 140(' 53')6 1400 56!JR 1400 56C7 1400 5603
Cl30 140C 560F 14JO 56EB 1400 56F7 1400 5703

rH lOE~
0')00 (: :)()1 (') 400(0140 I+ A.,5 41)"i() 5320 5441 424C 4520 434f 4E54 4149 4E 5'3 204A 5540 5053
0010 2054 4F21.- :>.02C ?.07.J 2020 2020 ?J20 ?020 2020 2020 202') 204A 5,40 5053: J

JUMPS
0140 (:1400 1400 q 093 1400 F671

Hf 4DE R
01\J') C: 001 E 4vCi.. 0150 4144 445? 4553 4PO 434F 4f54 H4C:> 4E53 2054 4845 2041 4444 521t5
0010 5353 1+5" 3 2F43 4F4E 5445 4E54 ~HO 4F4~ 2020 2020 2020 2041 4444 5245:]

ADORES
0150 C: 115 A 12&0 109c; lOqA 121\7 ODC4 1774 12'lt- 18C9 ODEC 18E9 OOA7
0160 l 7AC 1813 iqo2 U6C 0032 0096 OOOF :]

Figure 1-2. Sample Memory Image Load Module Hexadecimal

60471200 F

: J

: J

:]

1-7

*ALL 2-5
*CB 5-8
*COM 5-10
*COR 5-9
*DAT 5-10
*DEL 2-7
*DMP 5-10
*DSTK 5-9
*DVAR 5-10
*END 2-6
*ENT 5-9
*L 5-7
*LIB 5-9
*LL 5-8
*LST 2-5
*OVLY 5-9
*PUT 2-5
*RL 5-8
*SUP 2-5
*SYN 5-9
*SYSID 5-8
*UL 5-8
*VE 5-9
/ENTRY 6-4
/LENGTH 6-4
/START 6-4
/VFD 6-4

Abbreviating Address Specification 5-3
ABSOLMP 5-4
APPL 4-5, 4-9
Absolute Addressing 5-1
Active Autolink Directives 4-4
Add

Object Code to New Library, *ALL, 2-5
Programs to Library, *PUT 2-5

Address
Assignment 5-3
Assignment Section 6-6
Expressions, MPEDIT 6-4
Functions 5-2

/ENTRY 6-4
/LENGTH 6-4
/START 6-4
/VFD 6-4
MPEDIT 6-4

Parameters 5-7
Memory 5-2
Memory Map Report 4-8
Specification, Abbreviating 5-3

Addressing
Absolute 5-1
NPU 5-1
Page 5-1

Application, Last 4-11
Application

Base 4-5
Main Memory 4-11
Names, CCP 4-1
Programs, CCP 4-1
Specifying 4-5

Array

60471200 F

INDEX

Declaration 6-5
NPU 6-17

Assigning Space
Applications in Main Memory 4-10
FILL Modules 4-11
Last Application 4-11
Paged Modules 4-10
Reverse-Loaded Modules 4-11
Sequential Applications in Main Memory 4-11

Assignment, Address 5-3
Assignment Section 6-6
Autolink 1-1, 4-11

Directives 4-1, 4-2, 4-3, 4-4, 4-9, 4-10
Examples G-1
Execution 4-2, 4-3
Fatal Error 4-3, 4-11
Informative Messages 4-11
Input Directives 4-2, 4-8
Input Files 4-2
Input Modules 4-2
Inputs 4-1
Introduction 4-1
Listing File 4-3
Locating and Linking Modules 4-10
Logical Flow 4-2
Object Code Modules File 4-3
Outputs 4-2, 4-3, 4-8, 4-10
Reports 4-6
Selecting a Module Location 4-10
Special Considerations 4-8

Base Applications 4-5
Blank Common Area 5-10
Boundary, Linking 5-8
Buffer Space Report 4-6
Build Specifications

Applications 4-5
Base Applications 4-5
Module Location 4-5

BUFSP 4-6
BUFSPSIZE 4-6

CCP
Application Program Types 4-1
Applications Names 4-1
Buffer Space Report 4-6
Downline Load File 1-2
Load File 3-2, 3-3
Memory Map Report 4-8
Variant 3-2

Character Set A-2
Command Format for the Utilities 1-1
Comments 4-4
Common Area

Blank 5-10
Labelled 5-10

Composite Statement 6-7
Constant Declaration 6-5
CORESIZE 4-5

Index-!

Data Format Input to the Utilities 1-3
Deel arati ons

Array 6-6
Constant 6-5
MPEDIT 6-5
Variables 6-5

DEF 4-5, 4-19
DEFBASE 4-5
Define

Blank Common Area 5-10
CCP Variant 3-1
Dynamic Variable Area 5-10
Entry Points 5-9
External Synonyms 5-9
Labeled Common Area 5-10
Linking Boundary 5-8
NPU Memory Size 5-9
Stack Area 5-9
Lower Limit for Linked Modules 5-8
Upper Limit for Linked Modules 5-8
VRD 3-1
Variant 3-1, 3-2

Delete Programs 2-5
Diagnostics

Messages B-1
MPEDIT 6-8

DIR 4-8
Directive

Last 5-10
MPLINK Overlay 5-7
Parameters, MPLINK 5-7

Directives
APPL, DEF, and MOD 4-5
Auto Ii nk 4-3
Autolink Input 4-2
MOD 4-9
MPLIB 2-5
MPLINK 5-5
MPLINK Summary 5-7
Minimizing Output 4-10
Passive MPLINK 4-3
Report 4-8

Directives File
Autoli nk Input 4-2
Autolink Output 4-3
MPLIB 2-5
MPLINK 5-3

Downline Load File, CCP 1-2
DUMP Listing 5-10
Duplicate Modules 4-9
Dynamic Variable Area 5-10

Edit 1-1, 6-1
Examples 1-1

Empty Statement 6-8
End, Library Building 2-6
Entry Name, Memory Map Sorted by 5-6
Entry Point 5-9

Address Function 6-4
Equate Variable to Expression 5-9
Error File, Fatal 4-11
Error Messages

Expand 3-3
Fatal 4-11
MPEDIT 6-10
MPLIB 2-6
MPLINK 5-10

Example
Autoli nk G-1
Buffer Space Report 4-6
CCP Load File Definitions 3-3
Edit 1-1
Link H-1
MOD Directives 4-5

Index-2

MPEDIT Constant, Variable, and Array Declarations
6-5, 6-6

MPLIB Library Listing 2-1
MPLINK Memory Map Sorted by Module Name 5-5
MPLINK Memory Map Sorted by Entry Name 5-6
Memory Map Report 4-9
VRD Definitions 3-2

Executing
Autolink 4-2, 4-3
Expand 3-1
MPEDIT 6-1
MPLIB 2-2
MPLINK 5-5

Expand 1-1, 3-1
Error Messages 3-3
Execution 3-1
Introduction 3-1

Expressions 5-9
Expressions, MPEDIT 6-4
External Symbols, MPEDIT 6-3
External Synonyms 5-9

Fatal Error File, Autolink 4-3
Fatal Error Message, Autolink 4-11
Field Length Address Function 6-4
Field Start Address Function 6-4
Field, Variable 6-4
Files

Autolink
Input 4-2
Input Directives 4-2
Listing 4-6
Object Code Modules 4-5
Output 4-3
Output Directives 4-6

CCP
Downline Load 1-2
Load 3-3
Load Variant 3-2

Fatal Error 4-11
Initialized Load Module 6-5
Library 2-5, 4-3, 5-9
MPLIB

Directives 2-1, 2-5
Object Code 2-1
Output 2-1

MPLINK
Directives 5-5
Object Code Input 5-3
Output 5-4

Memory Image Load Module 5-4, D-1
New Library 2-1
Object Code 2-5
Old Library 2-1
Optional Memory Image Load Module E-1
Symbol Table 5-4
System Load 5-8

FILL Modules 4-11
FOR Statement 6-7
Format

Commands for the Utilities 1-1
Data Input to the Utilities 1-3
MPEDIT Program 6-5
MPLIB Library File 2-1

Function
Address 5-2
/ENTRY 6-4
/LENGTH 6-4
MPEDIT Address 6-4
/START 6-4
/VFD 6-4

General Command Format for Utilities 1-1
General Data Format Input to Utilities 1-3
Glossary C-1

60471200 F

Identifying System Load File 5-8
INFO 4-8
Informative Messages, Autolink 4-11
Initialized Load Module File 6-5, 6-8
Input Files

Autolink 4-2
MPLINK Object Code 5-3

Input Directives
Autolink 4-1
File, Autolink 4-2
Report 4-8

Input Modules, Autolink 4-2
Input, Relocatable Object Code F -1
Inputs

Autolink 4-1
MPEDIT 6-1
MPLIB 2-1
MPLINK 5-3
Utilities 1-1

Interrelationship, APPL, DEF, and MOD Directives
4-9

Introduction
Autolink 4-1
Expand 3-1
Library Maintenance 2-1
MPEDIT 6-1
MPLINK 5-1

Keywords, MPEDIT 6-2

Labeled Common Area 5-10
Last Application 4-11
Last MPLINK Directive 5-10
LFD 3-2
Library

Add Programs 2-5
Building 2-6
File 2-1, 4-3, 5-9

New 2-1
Old 2-1

Listing 2-1, 2-5
Maintenance, Introduction 1-1
Suppress Copying Programs 2-5

Limit
Lower, Linked Modules 5-8
Upper, Linked Modules 5-8

Link 1-1, 5-1
Examples H-1
Utility (MPLINK) 1-1, 5-1

Linked Modules 5-8
Linking Boundary 5-8
Linking Modules 5-7
Listing

Autolink Files 4-3
Initialized Load Module File 6-5
Library 2-1, 2-5
Load File DUMP 5-10
SYMTAB 6-8
Trace 6-8

Literals, MPEDIT 6-4
Load File

CCP 1-2, 3-2
DUMP Listing 5-10
System 5-8

Load Module File 6-5, D-1
Listing 6-8
Memory Image 5-4
Optional Memory Image E-1

Local Symbols, MPEDIT 6-3
Location, Modules 4-5, 4-10
Logical Flow, Autolink 4-2
Lower Limit, Linked Modules 5-8

60471200 F

Main Memory 4-11
MAP 4-8
Map Report, Memory Address 4-8
Memory Address 5-2

Map Report 4-8
Parameters, MPLINK 5-7

Memory Image Load Module File 5-4, D-1
Optional E-1

Memory Map
Report 4-8
Sorted by Entry Name 5-6
Sorted by Module Name 5-5

Memory Size
Buff er Space Report 4-6
NPU 5-9
Variant Build 4-5

Memory
Main 4-10, 4-11
Reserved Area 4-6

Messages
Autolink 4-11
Diagnostic B-1
Fatal Error 4-11
MPEDIT Error 6-10
MPLINK Error 5-10

Minimizing Number of Output Directives 4-10
Mnemonics C-4
MOD 4-5, 4-9

Example 4-7
Module Location 4-5, 4-10
Module Name, Memory Map 5-5
Modules

Autolink Input 4-2
Duplicate 4-9
File 4-3
FILL 4-11
Linking 5-7, 5-8
Locating 4-10
Paged 4-10
Reverse-Linked (Loaded) 4-11, 5-8

MPEDIT 1-1, 6-1
Address Expressions 6-5
Address Functions 6-4
Constant, Variable, and Array Declarations 6-6
Diagnostics 6-8
Error Messages 6-10
Execution 6-1
Expressions 6-5
External Symbols 6-3
Inputs 6-1
Introduction 6-1
Keywords 6-2
Literals 6-4
Local Symbols 6-3
Operand Expressions 6-4
Outputs 6-1
Program Flow 6-3
Program Format 6-2, 6-5
Reserved Words 6-2
SYMT AB Listing 6-8
Syntax 6-2
Trace Listing 6-9

MPLIB 1-1
Directives 2-5
Directives File 2-1
Error Messages 2-6
Execution 2-2
Inputs 2-1
Library File 2-1
Library Listing 2-1
Object Code File 2-1
Old Library File 2-1

Index-3

Output Files 2-1
MPLINK 1-1, 5-1

Directives 5-5
File 5-3
Last 5-10
Overlay Identifier Parameter 5-7
Parameters 5-7
Parameter Names 5-7
Passive 4-3
Summary 5-7

Error Messages 5-10
Execution 5-5
Inputs 5-3
Introduction 5-1
Memory Address Parameters 5-7
Memory Map Sorted by Module Name 5-5
Memory Map Sorted by Entry Name 5-6
Object Code Input File 5-3
Output Files 5-4
Procedural Flow 5-4

Names
CCP Applications 4-1
Entry 5-6
MPLINK Directive Parameter 5-7

New Library 2-1, 2-5
File 2-1

NPU
Addressing 5-1
Array 6-6
Memory Size 5-9

Number
Minimizing Output Directives 4-10
Specifying Page Register 4-6

Object Code
File 2-1, 2-5

Autolink 4-3
MPLINK 5-3
Relocatable F -1
Suppressed Copying 2-5

Programs 2-5
Old Library File, MPLIB 2-1
Operand Expressi ans, MPEDIT 6-4
Optional

Form of Initialized Load Module File 6-5
Memory Image Load Module File E-1

Output Directives
File, Autolink 4-3
Minimizing 4-10
Report 4-8

Output Files
Autolink 4-3
MPLIB 2-1
MPLINK 5-4

Outputs
Autolink 4-2
MPEDIT 6-1
Utilities 1-3

Overlay
Areas 5-9
Modules 5-9
MPLINK Directive 5-7

Packing an NPU Array 6-6
Page

Addressing 5-1
Register 4-6, 5-3
Size 4-6

Paged Modules 2-22
PAGEREG 4-6
PAGESIZES 4-6

Index-4

Parameters
MPLINK Overlay 5-9
MPLINK Directives 5-5
MPLINK Memory Address 5-7
Names, MPLINK Directive 5-7
Variant Definition 3-1

Passive MPLINK Directives 4-3
Program

Flow, MPEDIT 6-3
Flow, MPLINK 5-4
Format, MPEDIT 6-2
Library Maintenance 2-1
Structure, MPEDIT 6-5

Programs
Application 4-1
Deleting from Library 2-5
Object Code 2-5
Suppress Copying to Library 2-5

Register, Page 4-6, 5-3
Relocatable Object Code Input F -1
Report

Autolink 4-6
Buffer Space 4-6
Input Directives 4-8
Memory Map 4-8
Output Directives 4-8

Requesting
Initialized Load Module File Listing 6-5
SYMT AB Listing 6-B
Trace 6-8

RESERVE 4-6
Reserved Area of Memory 4-6
Reserved Words, MPEDIT 6-2
Reverse-Linked Modules (Loaded) 4-11, 5-8
RPT 4-6

Selecting a Module Location 4-10
Sequential Applications in Main Memory 4-11
Special Considerations in Using Autolink 4-8
Specifying

Abbreviated Address 5-3
Applications 4-5
Applications in Build 4-5
Autolink Reports 4-6
Base Applications in Build 4-5
Library File 5-9
Memory Address 5-2
Memory Size of Variant Build 4-5
Memory Sizes for Buffer Space Report 4-6
Module Location in Build 4-5
Modules to be Linked 5-7
Modules to be Reverse Linked 5-8
Overlay Areas and Modules 5-9
Page Register Number 4-6
Page Size 4-6
Reserved Area of Memory 4-6

Stack Area 5-9
Statement

Composite 6-7
Empty 6-8
FOR 6-7

Summary
Autolink Directives 4-3
MPLINK Directives 5-5

Suppress Copying Programs to Library 2-5
Symbol Table File (SYMTAB) 5-4
Symbols

MPEDIT External 6-3
MPEDIT Local 6-3

SYMTAB 5-4
Listing 6-8, 6-10

60471200 F

Synonyms, External 5-9
Syntax

MPEDIT 6-2
Variant Definition Parameters 3-1

System Load File 5-B
System Variant Generator (EXPAND) 1-1

Trace 6-B, 6-9

Upper Limit, Linked Modules 5-B
Utilities

General Command Format 1-1
General Data Format Input 1-3
Inputs 1-1
Outputs 1-3

60471200 F

Variable 5-9
Area, Dynamic 5-10
Declaration Part 6-5, 6-6
Field Defintion Address Function 6-4

Variant
Build, Memory Size 4-5
CCP Load File 3-2
Define 3-1
Definition Handling Utility, Expand 3-1
Definition Parameters 3-1
Generator 1-1

VRD 3-1
Definitions 3-2

Words, MPEDIT Reserved 6-2

lndex-5

I
I
I
I
I
I
I
I
I
I w,

Zt
::::; I

<.:> t

z'
0
<
I­
::>
u

J
I
I
I
I
I
I
I
I

.I
<' ·I
-e1>1 .,
::::>,
z• -· o' w1
z• _,
ai::,
a..,

I
0- I

"''_,

""' .I
>1
WI
ai:: I

I

0-:
.- I
'It I
Mt
<{I
<{I

I
I
I
I
I

COMMENT SHEET

CYBER Cross System, Version l
MANUAL TITLE: Build Utilities Reference Manual

PUBLICATION NO.: 60471200 REVISION: F

STREET ADDRESS=-------------------------------

CITY: _______________ STATE: _______ ZIP CODE: _______ _

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE TAPE

rorn rorn
--~-------------------------~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POST AGE Will BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. Box 4380-P
Anaheim, California 92803

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED ST A TES

'I
I

---~ row rorn

w z
::::::;

C> z
0
<
::> u

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~~
CONT1'0L DATA CO~OR{\TION

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB
	xBack

