60472200

G CONTROL DATA
CORPORATION

STATE PROGRAMMING LANGUAGE
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
255X SERIES
NETWORK PROCESSOR UNITS
COMMUNICATIONS CONTROL PROGRAM (CCP)
COMMUNICATIONS CONTROL INTERCOM (CCl)
COMMUNICATIONS CONTROL MODULE (CCM)
CDC®HOST OPERATING SYSTEMS:
NOS 1
NOS/BE 1
MASTER/MCS il

REVISION RECORD

. REVISION

DESCRIPTION

A

Original rel

(6-30-78)

B

Revised to CCP 3.2, PSR Level 497. This revision obsoletes all previous editions.

(5-31-79)

Cc

Revised to CCP/CCI, PSR Level 518 (HASP postprint).

(5-22-80)

Publication No.
60472200

REVISION LETTERS I, O, @ AND X ARE NOT USED Address comments concerning this

© 1978, 1979, 1980

manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. Box 4380-P

Anaheim, California 92803

by Control Data Corporation or use Comment Sheet in the back of

Printed in the United States of America

ii

this manual.

LIST OF EFFECTIVE PAGES

N

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins
or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than
content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV

Cover

Title Page

ii thru iv

v/vi

vii

1-1/1-2

2-1 thru 2-3
3-1 thru 3-3
4-1/4-2

5-1 thru 5-11
5-12 thru 5-15
A-1 thru A-8
A-9 thru A-11
B-1

B-2

C-1

D-1 thru D-8
Index-1/Index-2
Comment Sheet
Mailer

Back Cover

'OWEONPOEOPTORETOPO!

60472200 C iii/iv

PREFACE

The manual is intended to provide specific programming
information for analyst-level personnel who wish to create
or to modify the firmware-level (mux-level) message proces-
sing portions of a terminal interface program (TIP). These
programs are called text processing state programs for
downline messages and input state programs for upline
messages. The programs are required for every TIP in a
255x Network Processor Unit using Communications Control
Program (CCP), Communications Control INTERCOM (CCI)
or Communications Control Module (CCM). There is also a
set of modem state programs used in each of these systems.

Communications Control Program

Version 3

This manual should be used in conjunction with the appropri-
ate System Programmer's Reference Manual for CCP or
CCIL. Unless specified, all references to number are to
decimal values; all references to bytes are to 8-bit bytes; all
references to characters are to 8-bit ASCII-coded
characters. '

RELATED MANUALS

Additiona!l information on state programs and on systems
which use state programs can be found in the following
documents:

Publication Number

60474500

System Programmer's Reference Manual

Communications Control INTERCOM

Version 3

60471160

System Programmer's Reference Manual

Communications Control Module
Version 3
Reference Manual

" Macro Assembler
Reference Manual
Mass Storage Operating System

60470500

60361900

CDC manuals can be ordered from Control Data Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103

This product is intended for use only as described

in this document.
responsible for the

Control Data cannot be
proper functioning of

undescribed features or parameters.

60472200 B

vivi

CONTENTS

1. INTRODUCTION 1-1 Store Character Counter in Buffer

Character Manipulation
Program Interface 1-1 Store Character
State Program Structure 1-1 Replace Character
Manual Format 1-2 Replace and Store Character

Add (Insert) a Character
s Expand (Repeat) Character

2. INPUT STATE PROGRAMS 2-1 Index Manipulations
Set Modem State Index
Set Input/Text Processing State Index
Jump to Input/Text Processing State

\n\n\n\n\ln\n\n\.n\n
o R R RV RV V|

Firmware Interface 2-1

Program Control 2-1

Data Structure for Input State Program: MLCB 2-2 - Skips
9.3
2-3

Program Organization
Interface to the Modem State Programs

Skip

Skip if CRC is Equal

Skip if State is Less Than Value
Skip if Character is Not Equal
3. TEXT PROCESSING STATE PROGRAMS 3-1 Skip if Special Character Equals

U"\ﬂ\}\\lﬂ\ﬂ\ﬂ\l'l
ANONONON N

Current Character 5-6

Data Structure, TPCB 3-1 Skip if Character is Less Than Operand 5-7
Firmware Interface 3-2 Processing CLA Status 5-7
TPCB Initial Set-Up 3-2 Test CLA Status 5-7

TPCB Set-Up for Restart 3-2 Compare CLA Status 5-7

TPCB Return Values 3-2 Flag Control 5-7

File 1 Text Processing Registers 3-3 . Set/Reset Translate Flag 5-7
Program Control 3-3 Set/Reset Message in Process Flag 5-7
Program Organization 3-3 Operate on User Flags 5-8
Set Flags in the Destination Buffer 5-9

Set/Reset Parity Flag 5-9

4. MODEM STATE PROGRAMS 4-1 Worklist Handling 5-9
Terminate Input Buffer 5-9

Firmware Interface 4-1 Build Event Worklist 5-10
Program Control 4-1 Build CLA Status Worklist Entry 5-10
Program Organization 4-1 Text Processing Macros 5-11
Interface to the Multiplex Level Status Handler 4-1 Operate on File 1 Register 5-11
Interface to the Input State Programs 4-2 Set Register Value 5-11
Save/Restore Text Processing Conditions 5-11

Store Character from File 1 Register 5-12

5. STATE INSTRUCTIONS 5-1 Exit Text Processing 5-12
Insert Text Processing Character 5-12

Handling Assignable Counter 5-1 Miscellaneous Macros 5-13
Initialize Character Counter 5-1 Set Translation Table Address 5-13

Set Character Counter 5-1 Reset Timer 5-13

Mask and Set Character Counter 5-1 Backspace 5-13

Set Character Counter with Mod Function 5-1 Resync a Synchronous Line 5-13
Increment Character Counter 5-3 Set CRC Value 5-14
Decrement Character Counter 5-3 Allocate a New Buffer 5-14
Compare Character Counter to a Value 5-3 No Operation 5-14
Compare Character Counter to) Move Field 5-14

Block Length 5-3 Store Block Length Character 5-14

60472200 C vii

A,
8.

viii

SUMMARY OF STATE INSTRUCTIONS
STATE INSTRUCTION TIMING

State Pointer Table Creation
Locating an Input State Process
Standard MLCB

Standard TPCB

APPENDIXES

A-1 (o}
B-1
D.
INDEX
FIGURES
11 41
2-1 5-1
2-2 5-2
3-1

JOB DECK STRUCTURE FOR
ASSEMBLING STATE PROGRAMS
SAMPLE STATE PROGRAM

Locating a Modem State Process
Standard Macro Parameter Definitions
CLA Status Bit Assignment

C-1
D-1

604722008

INTRODUCTION

State programs handle protocol dependent tasks (such as
code and format conversion) for a terminal interface
program (TIP). These state programs operate on the
firmware (multiplex) level. All state programs are
written using a set of macros called state instructions.
These macros are a defined set of CYBER 18 macro
assembly macros and are assembled using the CYBER 18
macro assembler.

Three types of state program are needed by every TIP:

e Text processing state programs convert the
code/format of output messages; and in some cases the
code/format of input messages. These state programs
are called directly from the TIP and return control to
the TIP when the message text is in terminal format
and ready for output. (In the case of input text
processing, the message is in host format and is ready
to be passed to the host.)

e Input state programs convert code/format for input
messages. These state programs are specified by the
TIP to the multiplex subsystem, which controls the
programs directly. One-pass input state programs
convert the message to a form expected by the host.
Two-pass input state programs demultiplex data from
the circular input buffer to an input source buffer.
The TIP then performs input text processing.

e Modem state programs are common to all TIPs. They
are controlled by the multiplex subsystem and are used
to set up modem/communications line adapter
parameters, and to take status from the
communications line adapter parameters, and branch
on the basis of the communications line adapter
status. Modem state programs need be considered only
if a new line type is added to the system.

PROGRAM INTERFACE

All TIPs are written on two levels of processing: the OPS
level and the firmware level. State programs run at the
firmware level and interface with the OPS-level TIP by
passing information to them through worklist entries
and/or through the control block (MLCB and TPCB are
described later).

Part of the message processing is handled by the firmware
output data processor (ODP) or by the input data
processor (IDP). Both programs are part of the multiplex
subsystem. The ODP is interrupt driven by a
microprogram that is activated when output data demands
(ODD) are generated by the communications line
adapters. The ODP's primary function is to obtain
characters from line-oriented output buffers, transform
this data into line frame formats, and transfer the line
frames onto the multiplex output loop.

Output text processing is required when the output sent by
the host and received by the OPS-level TIP requires
special handling (e.q., character translation) before being
output to the terminal. Text processing state programs

60472200 B

analyze and reformat the output buffer data to terminal
format and code. This processing must be completed
before the TIP requests the multiplex subsystem to start
output on the line.

The IDP is a multiplex subsystem level 1 microprogram
which removes loop cell data from the circular input
buffer (CIB), strips off the multiplex loop control fields,
and packs the resulting characters into line-oriented input
buffers. Prior to storing an input character into the
buffer, an input state program determines whether any
special action is required for that character. When all the
input characters in the transmission are processed and the
line-oriented input buffer is completed, a worklist entry is
sent to the TIP at OPS-level. The IDP is interrupt driven
by the multiplex loop interface adapter whenever a line
frame is stored in the CIB. Unless its processing is
preempted by an ODP interrupt, the IDP processes all
active entries in the CIB prior to relinquishing control.

STATE PROGRAM STRUCTURE

The elements of a state program are as follows:

e State program instructions provide individual firmware
operations. These basic elements of the language are
defined in section 5 and summarized in appendix A.

e State processes consist of one or more state
instructions.

e State programs consist of one or more state
processes. A state program assembles as a sequential
table of coded state instructions, but processing starts
or stops only at state process boundaries. All state
programs are reentrant.

e State pointer tables contain a pointer to every state
process in the program. The state pointer table is
constructed with a set of macros to create both the
state process addresses and the state indexes. The
macro has the advantage of forcing the programmer to
use mnemonic names for the state and indexes, thus
making the code more flexible should state processes
be deleted or inserted.

In the example (figure 1-1) of the creation of a state
pointer table, the state named Pl is state 1, as
determined by its position in the table. Defining the
macro UMPTR1 using the CYBER 18 macro assembler
creates a symboi, USP1, which is eguated to 1 and an
address reference named UPl. Elsewhere in the program
there must be a label UP1 which defines the address of a
set of state instructions defining this state process. The
choice of the prefix US and U is arbitrary; however, the
following conventions are in use:

Aand AS- Asyncor TTY TIP
Hand HS - HASP TIP

Mand MS - Modem State Programs
Vand VS - Mode 4 TIP

UMPTR1 MAC NM

EQU US # NM # (*-UISPTBL) creates state index
mnemonic

ADC UZNM#
FMC

*
ENT UISPTBL

*

UISPTBL UMPTR1 ESRC end of source

UMPTR1 P1 first state process (index = 1)
UMPTR1 P2
UMPTR1 PN last state process (index = n)

(Note that each state pointer table has a unique entry
address name, UISPTBL in this case, and thus each table
has its own macro.)

Figure 1-1. State Pointer Table Creation

MANUA'. FORMAT For further CYBER 18 macro assembler information, see
the description in the M Assembler Reference

The remainder of the manual describes input state Mamr'r:it:ros scription In acro er ®

programs, modem state programs and the state

instructions.

60472200 B

INPUT STATE PROGRAMS

Prior to the start of an input operation, the appropriate
TIP passes information to the multiplex subsystem so that
the subsystem knows which input state pointer table to
use for a given line. As the data passes into the circular
input buffer (CIB), the specified input state program is
called by the input data processor (IDP). to store
characters into line-oriented buffers. These buffers are
sent to the TIP for further processing.

FIRMWARE INTERFACE

When the IDP detects a data character in the CIB, it
passes control to the designated input state process for
the line/terminal. Prior to executing the first state input
state instruction, the firmware loads a selected register
with the current (untranslated) character. The contents
of this register may be tested or changed by state
instructions. This register is referred to as the current
character.

The parity bit is stripped when the register is initially
loaded, if parity stripping is specified. If a state
instruction changes the character of this register, parity
stripping is ignored.

PROGRAM CONTROL

The line determines the port table (NAPORT) to use. The
dynamically allocated multiplex line control block (MLCB)
is found through NAPORT. Within the MLCB, selection of
the input state process to execute is found by combining
the value of the input state process index with the input
state pointer table entry which points to the associated
input state process. Figure 2-1 shows these relationships.

DATA STRUCTURE FOR
INPUT STATE PROGRAM: MLCB

The TIP causes the command driver of the multiplex
subsystem to set up the fields in the multiplex line control
block (MLCB). MLCB fields hold various control
information for the data processing. A standard 16-word
MLCB is provided for all systems using state programs.
This MLCB variant is shown in figure 2-2. Other variants
of the MLCB are used by some systems. See the
appropriate system programmer's reference manual for
definition of variant MLCB fields.

STATE POINTER STATE PROGRAM

BUFFER BUFFER 1

TABLE
STATE STATE
PROCESS 0 PROCESS 0
STATE INSTRUCTIONS
PROCESS 1
STATE STATE
PROCESS N PROCESS 1

INSTRUCTIONS

STATE
CHAIN PROCESS N
INSTRUCTIONS
DATA
BUFFER N

Figure 2-1. Locating an Input State Process

PORT TABLE
(NAPORT) ~ MLCB
/ STATE
NCLCB ADDRESS STATE
(ONE ENTRY PER STATE
POINTER
LINE) TABLE
ADDRESS
POINTER
60472200 B

2-1

The TIP must never directly reference the MLCB. The
fields within the MLCB may be changed only by the
command driver or state instructions.

H wN

[3,]

10
1
12
13
14
15

15 14/ 13! 12 11, 10 9, 8" 7 6 5 4 0

F1 F2 F3 F4 F5 F6 F7 F8 NCOCHR — NEXT OUTPUT CHARACTER

NCTIME — MULTIPLEX
Fo | F10 | F11 | TiMER NCOBLCD ~ LCD OF OUTPUT BUFFER

NCOBP — POINTER TO OUTPUT BUFFER

F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 | F21 | NCISTAI — INPUT STATE PROGRAM INDEX

NCCNTL — CHARACTER COUNT LIMIT NCCNT1 — CHARACTER COUNTER 1

NCISPTA — POINTER TO INPUT STATE PROGRAM POINTERS TABLE

NCIBP — POINTER TO INPUT BUFFER

F22 | F23 | F24 | F25 | F26 | F27 | F28 | F29 | F30 | F31 | F32 NCCRCP — CRC POLYNOMIAL
NCSCHR — SPECIAL CHARACTER NCIBFCD — FCD OF INPUT BUFFER

NCCRCS — CRC ACCUMULATION

NCZER1 — ZERO | NCCNT2 — CHARACTER COUNTER 2

NCZER2 — ZERO | NCBLKL — BLOCK LENGTH (RECORDS)

NCCXLTA — POINTER TO CODE TRANSLATE TABLE

NCSCBA — POINTER TO FIRST BUFFER IN BLOCK

NCBLCNT — NUMBER OF BUFFERS ALLOCATED NCSVWL — SAVED WORKLIST

RESERVED

Flags:

F1 = NCEOBL — end of block F17 = NCRPRT - strips parity bit

F2 = NCNXOCA — next output character available F18 = NCSCF — suppress chain flag

F3 = NCLCT — last character transmitted (CDCCP) F19 = NCLASTCH — LCD of source buffer reached
F4 = NCBCREQ - buffer chaining required F20 = NCEOSR - end of source buffer reached

F5 = NCOMPRO — output message in progress F21 = NCSP3 — not used

F6 = NCSP1 — not used F22 = NCUOP1

F7 = NCODDIN — ODD received F23 = NCUOP2

F8 = NCSP2 — not used F24 = NCUOP3

F9 = NCSUPCHAIN — suppress buffer chaining F25 = NCUOP4 optional user flags

F10 = NCOBT — generate output buffer terminated (OBT) F26 = NCUOP5

F11 = NCBZL — reset timer F27 = NCUOP6

F12 = NCRINCH — input character in right byte F28 = NCUOP7

F13 = NCCAREC — character received F29 = NCUOP8

F14 = NCRIGHTC — left/right source flag (1 = right) F30 = NCETX — Delay ETX worklist generation
F15 = NCINPRO — input message in progress F31 = NCMRTO — Modem response timed out
F16° = NCNOXL — code translation active F32 = NCCARR — Line carrier type (1 = controlled;

0 = constant)

Figure 2-2. Standard MLCB

60472200 B

PROGRAM ORGANIZATION

An input state program consists of a maximum of 64 state
processes. These states handle tasks such as data
conversion, cyclic redundancy checksum generation,
character compression, and message blocking. Since all
state processes are reentrant, lines with a similar protocol
(that is, controlled by a single TIP) share state processes.

The user must provide programs for the four reserved
input state processes (0, 1, 2, and 3):

e State 0 handles parity errors and data transfer
overruns.

e State 1 is called when DCD dropped is detected. This
allows DCD dropped to be used as a logical ETX for
controlled carrier lines.

e State 2 is called when the number of input buffers
currently in use exceeds the system limit.

e State 3 is called when the buffer threshold is reached.

State 0 and state 1 are given control by the modem state
program (regardless of the current input state) when the
stated condition occurs. States 2 and 3 are called by the
IDP to process buffer related condition when trying to
store a new character which requires assigning a new
buffer (note: the character is not stored). States &4
through 63 are defined by the TIP.

INTERFACE TO THE

MODEM STATE PROGRAMS

This subsection describes the current interface; it by no
means represents all the allowable interfaces to the
modem state programs. When a data character and
communications line adapter status occur in the same line
frame of the CIB, the firmware transfers control to the
current modem state process. A modem state program

60472200 B

jumps to input state process O or 1 upon detecting status
conditions for which the input state program should get
control.

MLCB flags are used for communication between a
modem state program and an input state program. Setting
NCETX indicates the input state program has detected
the end of the input transmission and wishes to wait for
the carrier before continuing. Setting NCETX has
meaning only if NCCARR is also set. NCCARR is set by
the line initializer for a controlled carrier line and must
not be altered. State instructions are available to set,
clear, and test these flags.

Input state programs set the modem state index to the
modem state process which handles status while input is in
progress. That is, upon detecting start of input, the input
state program changes the modem state index to point to
the modem state process which handles status when
inputting (MSTINP). Then, upon detecting end of
transmission, the input state program sets the modem
state index to the modem state process for idle (MSTIDL).

On controlled carrier-type lines, an output message
cannot be transmitted until data carrier detect (DCD)
drops on input. To eliminate the possibility of TIPs
attempting to output before DCD drops during input, the
input state program has the ability to terminate the input
buffer and save the workcode in the MLCB (as opposed to
building a worklist at termination time). The input state
program then sets the NCETX user flag indicating that
the workcode was saved. A worklist entry may be built
immediately if the line type is not a controlled carrier
line.

The modem state program jumps to input state process 1
when DCD drops while in the idle modem state. The input
state can then send a worklist entry to the OPS level of
the TIP. The TIP does not get control until DCD drops,
eliminating the possibility of starting to output before
DCD drops during input.

2-3

TEXT PROCESSING STATE PROGRAMS

Two kinds of text processing are provided by a system:

e Output text processing converts data from host format
to data in terminal code/format. The processed data
is placed in an output buffer (or chain of buffers) and
the multiplex subsystem then sends the data to the
terminal.

e Input text processing converts data from the source
buffers to host code/format. The data was placed in
the source buffers by the appropriate input state
program.

Both types of text processing programs are called directly
from the OPS-level TIP.

When handling characters for text processing state
programs, the buffer containing data to be converted is
called the source buffer. A character from this buffer is
called the source character. The source character is
placed in the current character register by the firmware.

DATA STRUCTURE, TPCB

The text processing control block (TPCB) contains
information necessary to perform text processing. The
first 19 words are standard in all systems but only the
first 7 words plus a few named fields in other words are
used by each TIP. Figure 3-1 shows the standard TPCB.

5 | 14] 13] 12] 1] 1w0] 9| s] 7|6] 5| 4] 3] 2]1]o0
0| NCLCDFCD — SOURCE BUFFER LCD/FCD
1] F9 | F10 | F11 | NCTIME — MULTIPLEX TIMER | NCOBLCD — LCD OF OUTPUT BUFFER

NCSBP — SOURCE BUFFER POINTERS

F12 F13 F14 F15 F16 F17 F18

F19

F20 F21 |NCISTA1—INPUT STATE PROGRAM INDEX

NCCNTL — CHARACTER COUNT LIMIT

NCCNT1 — CHARACTER COUNTER 1

NCSPTA — POINTER TO STATE PROGRAMS POINTERS TABLE

F22 F23 F24 F25 F26 F27 F28

F29

F30 F31 F32 | NCCRCP — CRC POLYNOMIAL

NCSCHR — SPECIAL CHARACTER

NC1BFCD — FCD OF INPUT BUFFER

2
3
4
5
6] NCDBP — POINTER TO STATE PROGRAMS TABLE
7
8
9

NCCRCS — CRC ACCUMULATION

NCZER1 — ZERO

NCCNT1 — CHARACTER COUNTER 2

11} NCZER2 — ZERO

NCBLK1 — BLOCK LENGTH (RECORDS)

12| NCCXLTA — POINTER TO CODE TRANSLATE TABLE

13| NCFDBA — POINTER TO FIRST DESTINATION BUFFER

14| NCBLCNT — NUMBER OF BUFFERS ALLOCATED NCSVWL — SAVED WORKLIST
15] RESERVED

16} NCDUMD

17| NCDUME

18] NCFSBA — FIRST STORAGE BUFFER ADDRESS

19| RESERVED FOR TIP USAGE

-

nyw

33
\¢

31] RESERVED FOR TIP USAGE

M-422

Figure 3-1. Standard TPCB

60472200 B

3-1

FIRMWARE INTERFACE

The procedure PTTPINF provides the PASCAL interface
to the text processor. The procedure is called with one
parameter specified with the control block to be used.
The control block is a variable of type NCLCB.

The format of the call is PTTPINF (TPCB) where the
TPCB is contained in a data buffer. A pointer variable of
type BOBUFPTR is required to contain the address of the
TPCB. Control is returned to the called with various
control fields set in the TPCB.

TPCB INITIAL SET-UP

Prior to calling the firmware to perform text processing,
the TIP prepares the TPCB. Three fields must be
initialized:

e NCSPTA and NCSTAI point to the first text process to
execute.

e NCFSBA specifies the first source buffer to be text
processed.

Depending on the TIP and the type of data to be
processed, several other fields need to be initialized:

e NCBLKL, NCCNT1, NCCNT2, and NCCNTL specify
the counters (word count values and initialization
values).

e NCSCHR contains the special character used by the
SPCHEQ state instruction.

e NCCRCP selects the cyclic redundancy check (CRC)
polynomial.

® NCSCF suppresses length chaining of the input source;
and is used if a nonstandard buffer is used as the
source.

e NCUOPS user option flags are set as appropriate. All
other fields must be zero.

e TIP defined fields in words 19 to 31 may be set as
needed.

TPCB SET-UP FOR RESTART

NCSBP and NCDBP fields can affect a restart condition
(or the initial call) and are set to zero prior to calling the
text processing state program.

e NCSBP - If this field is zero, the firmware obtains the
first character from NCFSBA and sets all
related flags to their proper state.

If this field is nonzero, the firmware
assumes a continuation. The next source
character is obtained based on this word,
NCRIGHTC, and NCEOSR. To determine
the end of the source condition, the
firmware expects the data to be in the data
buffer and the LCD to be in the NCLCDFCD
field.

3-2

e NCDBP - If this field is zero, the firmware gets a
buffer, sets NCFDBA with the address of
the buffer, and sets all flags to their proper
state. .

If this field is nonzero, the firmware stores
the next character based on this pointer and
NCRINCH.

The TIP must also reset any of the initial parameters
required by the restarted state program. If CRC is being
accumulated, the field NCCRCS must be restored. The
restart is typically used when the initial source is
exhausted and the TIP must wait for more data to
complete the destination block. If the TPCB is contained
in a data buffer, no field need be changed except NCFSBA
and NCSBP.

TPCB RETURN VALUES

On return to the calling program the TPCB will contain
parameters as needed for the TIP to determine the actions
performed by the state programs. The following fields are
available:

NCFSBA -Contains the address of the first destination
buffers containing the processed data.

e NCVQPS -Contains the user-option flags being
returned.

. The TIP defined fields in words 19 to 31 may
contain any values, as needed.

If source data is to be fragmented into more than one
destination block, some special processing is usually
necessary. On return from test processing, the source
buffers that have been completely processed should be
released. The first source buffer containing data not yet
processed should have its first character displacement
(FCD) updated to point to the next character to be
processed. The following fields may be used:

e NCSBP - Contains the address of the word containing
the next source character to process.

e NCEOSR -s set to TRUE if the next source character
is the first of the next buffer.

e NCRIGHTC - is set to TRUE if the next source
character is in bits 7 to 0 of the word.

FILE 1 TEXT PROCESSING REGISTERS

A group of 16 firmware registers referred to as the file 1
text processing registers are initialized from the last 16
words of the TPCB before text processing is initiated.

The 16 file 1 registers are accessed by specifying a
displacement to the selected file 1 register. Thus, a
displacement of 0 selects the first text processing file 1
register and a displacement of 15 selects the last text
processing file 1 register.

60472200 B

PROGRAM CONTROL

The text processing state process to be executed is
determined by combining the value of the state process
index with the state pointer table address. Both fields are
in the TPCB. The selected text processing state pointer
table entry points to the associated text processing state
process. The process is the same as that shown in figure
2-1 except there is no port table and the TPCB takes the
place of the MLCB.

The state pointer table address and state process index
fields are set by the OPS-level TIP program. State
processing instructions may change the processing index
while executing state programs.

60472200 B

PROGRAM ORGANIZATION

A text processing state program consists of a maximum of
64 state processes. Since all state processes are
reentrant, lines with a similar protocol may share state
processes.

Text processing state process 0 is reserved for handling
the end-of-source-reached condition and state process 2 is
reserved for handling buffer overflow processing. States
1, and 3 through 63 are defined by the TIP.

3-3

MODEM STATE PROGRAMS

The modem state programs process modem status as a
function of modem control signals. The programs, which
are called by the firmware when communications line
adapter status enters the subsystem, forward the logical
communications line adapter status via a worklist entry to
the multiplex level status handler (PTCLAS). PTCLAS
analyzes the status and reports line conditions to the TIP
through a worklist entry.

FIRMWARE INTERFACE

Communications line adapter status is passed by the
multiplex subsystem to the circular input buffer (CIB).
The CIB provides temporary buffering of input characters
(section 2) and communications line adapter status. When
the firmware's input data processor (IDP) detects
communications line adapter status, it passes control to
modem state process for that line.

PROGRAM CONTROL

The modem state program is entered by accesing the port
table. A combination of the modem state index and the
modem state program address selects the modem state
pointer table entry which points to the associated modem
state process. Figure 4-1 shows this relationship.

The modem state program address field is set by the
multiplex subsystem when a line is initialized. The
modem state index is changed by the multiplex subsystem,
by an input state program, or by the modem state
program. The multiplex subsystem sets the modem state
index to the modem state process to be executed
according to the command being issued. The input state

programs control the setting of the modem state program
index for handling status while input processing is in
progess.

PROGRAM ORGANIZATION

The modem state program consists of a maximum of 16
state processes. There are modem state processes defined
for each line type based on line condition. Thus, the
modem state program can have one or more processes for
each condition or one state process to handle more than
one line condition, depending on the line type.

INTERFACE TO THE MULTIPLEX
LEVEL STATUS HANDLER

The modem state program builds a worklist entry
containing the communications line adapter status. The
multiplex level worklist processor routes the worklist
entry to the multiplex level status handler, PTCLAS.
Upon receiving control, PTCLAS analyzes the status
condition indicator and acts accordingly. The appropriate
action may be to generate a CE error message, start a
timer for modem response or communications line adapter
status overflow, or make a worklist entry to the
associated TIP.

PORT TABLE MODEM STATE MODEM STATE
(NAPORT) POINTER TABLE PROGRAM
STATE ™1 STATE
PROCESS 0 PROCESS 0
STATE INSTRUCTIONS
INDEX STATE
: PROCESS 1
STATE
PROCESS 1
MODEM INSTRUCTIONS
STATE
POINTER
TABLE STATE :
ADDRESS PROCESS N .
STATE
PROCESS N

INSTRUCTIONS

Figure 4-1. Locating a Modem State Process

60472200 B

4-1

INTERFACE TO THE INPUT
STATE PROGRAMS

When a data character and communications line adapter
status occur in the same line frame of the CIB, the
firmware transfers control to the current modem state
process. The modem state program jumps to input state
process 0 or 1 upon detecting status conditions for which
the input state program gets control.

There are user flags in the multiplex line control block
used for communication between the modem state
program and input state program. Refer to the Input
State Programs, Section 3.

Another user flag, MXCARR, is set by the line initializer
when a controller carrier line is initialized.

The input states programs also set the modem state index
to the modem state process which handles status while
input is in progress. That is, upon detecting start of input,
the input state program changes the modem state index to
the modem state process which handles status when

4-2

inputting (MSTINP). Then, upon detecting end of
transmission, the input state program sets the modem
state index to the modem state process for idle (MSTIDL).

On controlled carrier type lines, an output message cannot
be transmitted until DCD drops following input. To
eliminate the possibility of a TIP trying to output before
DCD drops for the current input operation, the input state
program has the ability to terminate the input buffer and
to save the workcode in the multiplex line control block
(as opposed to building the worklist at terminate time).
The input state program sets the MXETX wuser flag
indicating this saved workcode condition and sets the
modem state index to idle (MSTIDL). A worklist entry is
built immediately if the line type is not a controlled
carrier line.

The modem state program jumps to input state process 1
when MXETX sets and DCD drops while in the idle modem
state. The TIP does not get control until DCD drops,
eliminating the possibility of starting output before DCD
drops following input. When DCD drops, the TIP builds a
worklist entry using the saved workcode and buffer
address.

60472200 B

STATE INSTRUCTIONS

This section describes each state processing instruction in
detail.

The general format for a state instruction is:

MACRO NAME PARAMETERI,
PARAMETERZ2,...,PARAMETERN

The number of parameters varies depending upon the state
instruction. Note that this is the normal CYBER 18
macro assembler macro format. The macro name is
followed by a blank. Parameters are separated by
commas, and blanks within the parameter stream are
ignored. Omitted parameters are delimited by commas;
that is, PARAMETER1,PARAMETER3 omits PARAM-
ETER2.

Appendix A lists the state instructions by macro name in
alphabetical order. Certain parameters are common to
several state instructions. These parameters are listed
separately in figure 5-1.

The instructions are functionally grouped in nine
categories as follows:

Handling assignable counters

Character manipulation

Index manipulation

Skips

Processing communications line adapter status
Flag control

Worklist handling

Text processing

Miscellaneous

HANDLING ASSIGNABLE COUNTER

Two general purpose counters, character counter 1 (CC1)
and character counter 2 (CC2), are usd in state programs
for tasks such as packetizing and character expanding.
CC1 is an 8-bit counter whose value may range from
0-255; CC2 is a 12-bit counter whose value may range
from 0-4095. Both counters are maintained in the control
block (MLCB ar TPCB).

INITIALIZE CHARACTER COUNTER

This state instruction initializes either of two character
counters that are maintained in the control block.
Character count 1 is initialized from the line control
block field NCCNTL. Character count 2 is initialized
from the line control block NCBLKL field.

Macro Call

INTCC COUNT,ACTION

Initializes the specified character counter.

60472200 B

Usage

The initialize character counter instruction resets control
block NCCNT1 or NCCNT2 with the values set in the
fields NCCNTL or NCBLKL, respectively. For input state
programs, NCCNTL and NCBLKL are set by issuing an
ENABLE or INPUT command to the command driver. For

text processing programs, the values are set in the TPCB
before calling the firmware.

SET CHARACTER COUNTER

This two-word state instruction sets either character
count 1 or count 2 to a specified value.

Macro Call
SETCC COUNT,CV
Sets charactér count (COUNT) to value
(cv).
MASK AND SET CHARACTER COUNTER
This two-word state instruction masks, using a logical
AND, a specified value to the current (untranslated)
character. The result is stored in the selected character
counter.
Macro Call
CHRCC COUNT,IMASK
Sets designated character counter
(COUNT).
Nonstandard Parameters

IMASK 8-bit mask

SET CHARACTER COUNTER

WITH MOD FUNCTION

This two-word state instruction performs a modulus
function by repeatedly subtracting a given modulo value
until the result is negative. The modulo value is then

added to the negative number and the result is stored in
the specified character counter.

Macro Call

MODCC COUNT,CV

5-1

5-2

ACTION

CHAR
COUNT

CRCA

cv
DD

EOT

EP

LABEL

SD

VALUE
wC

WL

Selects a character related and/or process control action.

Symbolic Name Value Description

Not specified 0 Default

- 0 Execute next instruction

EXIT 1 Discard character and exit

STOREXIT 2 Store character and exit

CRCSTOREX 3 Accumulate CRC, store character, and exit
CRCEXIT 4 Accumulate CRC, discard character, and exit
CRCNT 5 Accumulate CRC, execute next instruction

Defines an 8-bit character.

Not specified 0 Error

- 1 Count 1

- 2 Count 2
mbolic Name Value Description

Not specified 0 Default

Store character and do not accumulate CRC

CRCA Store character and accumulate CRC

-

Count value {must not be zero).

Sets the destination displacement to the file 1 register.

Symbolic Name Value Description

Not specified 0 File 1 register (first)

- 0-15 File 1 register (first through 16th)
Symbolic Name Value Description

Not specified 0 Default

- 0 Reset EQOT flag

EOT 1 Set EOT flag

This determines the worklist control block (WLCB) or translation table to be used. This
label is associated with this instruction so that the address of the appropriate translation
table or OPS-level WLCB may be supplied by the link editor at a later time. If the WLCB
parameter is not specified or is 0, the multiplex WLCB is used.

The name associated with the state instruction to receive control. The label must be on an
instruction that is within N locations forward or back from this instruction. N is defined in
each label using instruction.

Sets the source displacement to the file 1 register.

Symbolic Name Value Description_
Not specified 0 File 1 register «(first)
- 0-15 File 1 register (first through 16th)

The hexadecima! value to be used.

Specifies the workcode.

Value
Symbolic Name {hexadecimal) Description
Not specified 0 - Default
- 0 Use saved workcode ; _level
- 1-7F Use given workcode } Multiplex or OPS-eve

This parameter is not used; however, space must be allocated for it in the parameter string.

Figure 5-1. Standard Macro Parameter Definitions-

60472200 B

INCREMENT CHARACTER COUNTER

This state instruction increments (by one) either character
count 1 or count 2 of the control block. Counter recycles
if incremented when full.

Macro Call
ICC COUNT,ACTION

Increment the specified character count
(COUNT). :

DECREMENT CHARACTER COUNTER

This state instruction decrements (by one) either
character count 1 or count 2 of the control block. When
the specified character count reaches zero the processor
skips to the designated instruction. While the character
count is not zero, the specified action exit is performed.
If the count is zero when this instruction is executed, the
count is set to minus one. This value is treated as a large
positive number for subsequent operations.

Macro Call
DCC COUNT,LABEL,ACTION
Decrement the specified character count
(COUNT).
Usage

This is used to store or discard a fixed number (count) of
characters. When the last character in the string is
processed, the state program skips to the selected label to
continue processing.

COMPARE CHARACTER COUNTER
TO A VALUE

This two-word state instruction compares the selected
character counter to a specified value.

character count = value: execute next instruction

character count £ value: skip

Macro Call
CNTNE COUNT,CV,LABEL

Use specified character count (COUNT).
Labeled instruction is within +8 instructions of macro.
COMPARE CHARACTER COUNTER
TO BLOCK LENGTH

This two-word state instruction compares the block length
with either character count 1 or count 2.

block length # count: skip
block length = count: execute next instruction

60472200 B

Macro Call
BLCNE COUNT,LABEL

Uses the specified character count
(COUNT) for the comparison.

The label must be on an instruction that is within 8
locations forward from this instruction.

Usage

The block length for this comparison is obtained from the
control block field, NCBLKL.

STORE CHARACTER COUNTER IN BUFFER
This state instruction stores either character count 1 or

count 2 of the control block into the third word of the
first destination buffer (following the flag word).

Macro Call
STORC COUNT,ACTION
Store specified character count (COUNT)
into the buffer.
Usage
The third word of the first destination buffer is used to
communicate one counter value to the OPS-level TIP.

Thus it is useful only during input state processing as the
TIP is unable to access the control block.

CHARACTER MANIPULATION

These instructions store, replace, and add characters. The
character is translated or altered during the operations.

STORE CHARACTER

This state instruction stores the current character into
the destination buffer. If the translate flag is set, the
current character is translated before it is stored.

Macro Call

STORE CRCA

REPLACE CHARACTER

This state instruction takes the specified character and
establishes it as the current (untranslated) character.

Macro Call
RCHAR CHAR,ACTION

5-3

Usage

If the CRC is being accumulated and the existing current
character is to be included in the CRC, it must be
available to the encoder before executing this character
instruction. This is accomplished by executing a previous
instruction with an exit action parameter of CNCNT to
accumulate the CRC.

When this instruction is executed during input processing,
the current character received from the line is lost. For
text processing, the current character is saved in the first
file 1 register (displacement = 0) and may be restored, if
desired. The saved copy of the character does not have
the parity bit stripped regardless of the parity strip
option. If the CRC accumulation is specified as an exit
action with this instruction, the replacing character is
CRC encoded.

NOTE

RCHAR must exit to perform translation,
CRC encoding, and character storing.
ADDC does not allow CRC encoding or
translating.

REPLACE AND STORE CHARACTER

This combination of two state instructions takes a specified
character, establishes it as the current character, and
stores it into the destination buffer.

Macro Cadll
RPLACE CHAR,CRCA

Usage
The instruction produce the following code:

RCHAR CHAR
STORE CRCA

If the CRC is being accumulated and the existing current
character is to be included in the CRC, it must be available
to the encoder before executing this character instruction.
This is accomplished by executing a previous instruction
with an exit action parameter of CNCNT to aceumulate in
the CRC.

When this instruction is executed during input processing,
the current character received from the line is lost. For
text processing, the current character is saved in the first
file 1 register (displacement = 0) and is restored, if
desired. The saved copy of the character does not have the
parity bit stripped even if the parity strip option is set. If
the CRC accumulation is specified as an exit action with
this instruction, the replacing character is CRC encoded.

This macro provides a shorthand method of coding to place
a character into the destination buffer. The character is
translated and CRC is adjusted. Control returns to the
next state instruction.

ADD (INSERT) A CHARACTER

This state instruction inserts a given character into the
destination buffer. Character CRC accumulation and
translation is not performed.

Macro Call
ADDC CHAR,ACTION
NOTE

The exit action is performed on the
current character and not the inserted
character.

EXPAND (REPEAT) CHARACTER

This state instruction expands either a given character or
the current character by placing it in the destination
buffer. Character count 1 specifies the number of times
the character is to be expanded.

Character translation is performed if the translation flag is
set; however, CRC accumulation is not available.

NOTE

When the initial value of character
counter 1 is zero or is greater than 80,
expansion is not performed. The next
state instruction is executed.

* Macro Calls

RADDC CHAR
Expands the given character (CHAR).

CHRPT Expands the current character.

INDEX MANIPULATIONS

Some macros manipulate the following state program
indices:

Index Location Field
Modem ~Port table NAMSI
(NAPORT)
Input state MLCB NCISTAL
Text pro- TPCB NCSTAI

cessing state

SET MODEM STATE INDEX

This state instruction sets the modem state index in the

_ port table to a specified value.

~ Macro Calls

MSTATE STATE,ACTION

Sets the modem state index to the specified
value (STATE).

MJUMP STATE
Sets the modem state index to the specified

value (STATE) then executes this modem
state program.

60472200 B

Nonstandard Parameters

STATE Determines the new modem state program
index.

Symbolic Value

Name (hexadecimal) Description

Not] Default index

specified

— 0-F Index

MSTCHK 0 Check hard
error

MSTERR 1 Error

MSTLNI 2 Line
Initialized

MSTENB 3 Enable

MSTIDL 4 Idle

MSTOUT 5 Output

MSTINP 6 Input

Usage

The MSTIDL and MSTINP symbolic names are used by input
state programs exclusively. All the other symbolic names
are used by modem state programs only.

SET INPUT/TEXT PROCESSING

STATE INDEX

This state instruction sets the state program index in the

control block to a specified value.

Macro Call
STATE STATE,ACTION

Sets the state program index to the

specified value (STATE).

Nonstandard Parameters

STATE Sets the state value.

Symbolic Value

Name (hexadecimal) Description
Not 0 Default. Does
specified ‘not change the

index.
-— 0-3F State value
Usage

Changing the state index does not affect the current state
process execution. The macro changes states based on
incoming character patterns.

60472200 B8

JUMP TO INPUT/TEXT
PROCESSING STATE

This state instruction executes a given state and optionally
updates the control block state program index with the
given state.

Macro Calls
JUMP STATE,RTN

RTRN Jumps to the current state process.

Nonstandard Parameters

STATE Sets the state value.
Symbolic Value
Name (hexadecimal) Description
Not 0 Default. Does
specified not change the
index.
-— 0-3F State value
RTN
Symbolic Value
Name (hexadecimal) Description
Not 0 Default
specified
--- 0 Update state
index
-— 1 Do not update
state index
Usage

The jump instruction allows a state program to pass
control to a state process to continue the processing of
the current character. The RTN option allows the
programmer to suppress changing the state index, so that
the next input or source character is processed by the
previous state process. The RTN option also provides a
method for calling a simple subroutine. If the state
parameter is zero, the firmware jumps to the state
specified by the state index. The RTRN instruction jumps
to the state process indicated by the current value of the
state index. Processing begins at the first instruction of
this current state.

SKIPS

If the label parameter is within 128-255 locations from
the associated state instruction and the instruction is
located within 128 locations from the beginning of the
program, an informative diagnostic message is produced
and the instruction assembles correctly. This is an
assembler limitation.

SKiP

This state instruction transfers control by skipping
forward or backward.

Macro Calls
SKIP LABEL
Skip forward or backward.
SKIPB LABEL
Skip backward.

The label must be on an instruction that is within +255
locations from this instruction.

SKIP IF CRC IS EQUAL

This state instruction tests either an 8-bit or 7-bit block
check character (BCC) against the accumulated CRC. An
equal condition causes the processor to skip to the
instruction specified. An unequal condition causes the
next state instruction to be executed.

NOTE

When comparing a hexadecimal (16-bit)
CRC polynomial, the first BCC character
is accumulated by a state instruction that
relinquishes control with a CRCEXIT

parameter.
Macro Call
CRCEQ SB,LABEL

Nonstandard Parameters

SB Specifies BCC format
Symbolic Value
Name (hexadecimal) Description
Not 0 Default
specified
B8 0 8-bit BCC
B7 1 7-bit BCC

The label must be on a state instruction that is within 8
locations forward from this instruction.

SKIP IF STATE IS LESS THAN VALUE

This state instruction compares the current state index
(input, text, or modem) with a specified value to determine
the subsequent state process instruction to perform.

Current state < value: skip

Current state = value: execute next instruction

5-6

Macro Calls -

STATLS STATE,LABEL

Compares the current state index to the
specified value (STATE). The current state
is defined in the control block and is either
an input state or text processing state.

MSTLS STATE,LABEL
Compares the current modem state index to
the specified value (STATE).

Nonstandard Parameters

STATE Specifies the comparison value.
Symbolic Value
Name (hexadecimal) Description
Not 0 Default
specified
——- 0-1F Maodem state

values

— 0-3F Input and text

processing state
values

The label must be on a state instruction that is within 8
locations forward from this instruction.

SKIP IF CHARACTER IS NOT EQUAL

This state instruction compares the current (untranslated)
character with a specified character to determine the
subsequent state process instruction to perform.

Current character # char: skip

Current character = char: execute next instruction

Macro Call
CHARNE CHAR,LABEL

The label must be on an instruction that is within 8
locations forward from this instruction.

SKIP IF SPECIAL CHARACTER
EQUALS CURRENT CHARACTER

This state instruction compares the special character

(NCSCHR) to the current (untranslated) character to

determine the subsequent state instruction to perform.
Special character # current character: action parameter

Special character = current character: skip

60472200 B

Macro Call
SPCHEQ LABEL,ACTION

This instruction must be within 255 locations forward from
this instruction.

Usage

This instruction compares an incoming character against a
changing value in the line control block. This may be the
case if a line has multiple types where different control
characters are used for each terminal.

SKIP IF CHARACTER IS
LESS THAN OPERAND

This state instruction compares the current (untranslated)
character to a specified value to determine the subsequent
state process instruction to perform.

Current character < value: skip
Current character = value: execute next instruction

The label must be on an instruction that is within 8
locations forward from this instruction.

PROCESSING CLA STATUS

Each type of communications line adapter (async, sync and
HDLC) has its own status words. For these tests, the two
status words (8 bits each) are packed into a single computer
word (16 bits) with the first communications line adapter
status word in the upper half word and the second
communications line adapter status word in the lower half
word. The three words are defined in figure 5-2.

TEST CLA STATUS
This two-word state instruction checks for a specific
positive line status by performing an AND. If the check is

satisfied, the next state instruction is executed.
Otherwise, the processor skips to a designated instruction.

Macro Call
TSTCLA CMASK,LABEL

Nonstandard Parameters

CMASK Communications line adapter status mask

(16 bits). See figure 5-2.
The label must be on a state instruction that is within 8

locations forward from this instruction.

Usage

This instruction is used in input and modem state programs
only.

COMPARE CLA STATUS

This two-word state instruction checks the line status for
any selected negative line status condition(s) by performing

60472200 B

an exclusive AND with the mask followed by an exclusive
OR with the mask. If the test result is zero, the next state
instruction is executed. If the result is non-zero, the
processor skips to the labelled instruction. The
communications line adapter status word 1 and word 2 are
packed into the upper half and lower half word (of one
word) respectively for this check.

Macro Call

CMPCLA CMASK,LABEL

Nonstandard Parameters

CMASK Communications line adapter status mask

(16 bits). See figure 5-2.

The label must be on a state instruction that is within 8
locations forward from this instruction.

Usage

This instruction is used in input and modem state programs
only.

FLAG CONTROL

These macros control the setting/resetting of various flags
in the contro! block (MLCB or TPCB) and destination
buffers.

SET/RESET TRANSLATE FLAG

This state instruction sets or resets the translate flag
(NCNOXL) in the control block. Setting the flag causes the
current character to be translated before it is stored into
the destination buffer. Translation is not performed if the
translation address (NCCXLTA) is nil.

Macro Calls
SETRAN ACTION
Sets the translation flag.
RSTRAN ACTION

Resets the translation flag.

SET/RESET MESSAGE IN PROCESS FLAG

This state instruction sets or resets the input message in
process flag maintained in the control block.

Macro Calls
SETINP ACTION
Sets the flag.
RSTINP ACTION

Resets the flag.

15 11 7 3 0

Async CTS | DSR | DCD | Rl {SDCDj SOQD | ILE | OLE | PES | DTO | FES | — - - - -
CLA

15 11 7 3 0
Sync
CLA CTS | DSR | DCD | RI Qam sSaD | ILE | OLE | PES | DTO | — NCNA| — - — -
(Mode 4)

15 11 7 3 0
HDLC CTS | DSR | DCD | RI QM SQD | ILE | OLE JFCSE | DTO | ABT |[NCNA] LCR| RC1 | RC2{ RC3
CLA

where

ABT - Abort

CTS — Clear to send

Dcb - Data carrier detect

DSR - Data set ready

DTO - Data transfer overrun

FCSE - Frame check sequence error

FES - Framing error status

HDLC - High-level data link control

ILE - Input loop error

LCR - Last character received

NCNA — Next character not available

OLE - Output loop error

PES - Parity error

oM - Quality monitor

RC1

RC2 - Reason codes

RC3

Ri - Ring indicator

SDCD -~ Secondary data carrier detector

sSab - Signal quality detector

Figure 5-2. CLA Status Bit Assignment

Usage Macro Calls
This instruction is used in input state programs to indicate SETMXF MFLAGS,ACTION
whether input is active or not active to the macro level
TIP. The ASYNC/TTY TIP uses this bit to indicate that a Set user flags (MFLAGS).

character timeout has occurred.
RSTMXF MFLAGS,ACTION

OPERATE ON USER FLAGS Reset user flags (MFLAGS).

This state instruction sets, resets or tests the flags in the TSTMXT MFLAGS,LABEL

control block. If any of the tested flags are set, the

processor skips to the labelled state instruction. if the Skip (to LABEL) if any user flags (MFLAGS)
tested flag is not set, the next state instruction is executed. are set.

5-8 60472200 B

Nonstandard Parameters

MFLAGS The 11 user flags in the control block. The
flags NCETX, NCMRTP and NCCARR are
reserved for modem state use.

Symbolic Value

Name (hexadecimal) Description
NCUOP1 400 bit 15
NCUOQOP2 200 bit 14
NCUOP3 100 bit 13
NCUOP4 080 bit 12
NCUOP5 040 bit 11
NCUOP6 020 bit 10
NCUOP7 010 bit 09
NCuUOP8 008 bit 08
NCETX 004 bit 07
NCMRTP 002 bit 06
NCCARR 001 bit 05

The label must be on a state instruction that is within 8
locations forward from this instruction.

Usage

The flags are used to record events during processing and
to indicate special processing. The initial value of the
flags is set for input state processing by calls to the
command driver. For text processing the various flags are
set on entry and tested on exit for communication between
the firmware and the OPS-level portions of the TIP.

SET FLAGS IN THE
DESTINATION BUFFER

This state instruction sets selected bits (bits 7 to 1) in the
flag word of either the first destination buffer or the
current destination buffer. Any bits set at a prior time
remain set.

Macro Call
SETFLG FLAGS,BUFF,ACTION

Nonstandard Parameters

FLAGS Selects flags.
Symbolic Value
Name (hexadecimal) Description
Not 0 Default
specified
-— 2-7E Flag bits
BUFF Selects flag word to operate upon.
Symbolic Value
Name (hexadecimal) Description
Not 0 Default
specified
FRST 0 First buffer
CURN 1 Current buffer
60472200 B

Usage

This instruction allows the input state program to record
data events in the flag bits of the buffer for
communication with the OPS-level portion of the TIP. :

SET/RESET PARITY FLAG

This state instruction sets or resets the parity flag in the
control block. Setting the flag causes the firmware to strip
off the high order bit (bit 7) of the current (untranslated)
character before executing the first state instruction. This
instruction does not affect the present current character,
but rather the next and subsequent current characters until
the parity bit resets. During text processing, the setting of
the parity flag does not affect the character saved in the
file 1 registers.

Macro Calls

SETPAR ACTION

Set the parity flag.
RSTPAR ACTION

Reset the parity flag.

Usage

Stripping the parity bit is advantageous when performing
character translation. A translation table contains 128
entries, instead of 256, when translation is used in
conjunction with the SETPAR macro.

WORKLIST HANDLING

These instructions build worklists or set a workcode in the
appropriate control block (MLCB or TPCB).

TERMINATE INPUT BUFFER

This two-word state instruction terminates input and either
builds a worklist entry or stores the workcode in the
MLCB. When specified, the end of transmission flag (EOT)
in the flag word of the current buffer is set. If a worklist
entry is built, the state program determines if it is
processed at the multiplex (interrupt level 3) or OPS level.
This is done by the selection of the worklist control block.

Macro Calls
TIBWL WC,WL,EOT,ACTION,EP
Terminats the input buffer and builds a
worklist entry.
TIBSWC WC,EOT,ACTION
Terminates the input buffer and saves the
workcode in the MLCB.
Usage

These instructions are used primarily for input state
processing to set the LCB in the final buffer and to signal
end of input via a workcode to the OPS-level portion of the

5-9

TIP. For text processing, the LCB is also set in the last
buffer with the TIBSWC instruction. The creation of a
workcode is unnecessary as the text processing is done at
OPS level.

The address of the worklist contro! block is calculated by
the Link Edit program. The control blocks are arranged in
an array of multiword entries. The origin of the array is an
entry point (BYWLCB) which allows the following
calculations:

(EP) = BYWLCB + (WLINDEX - (BOFSWL))*
/BYWSIZE

where
BYWLCB = address of worklist control block array
WLINDEX = index of worklist to receive the entry
[BYSIZE = length of worklist entry

The EOT flag is set when the input data is to be

transmitted to the host via a coupler. Input state programs
are not required to set this bit. ’

BUILD EVENT WORKLIST

This two-word state instruction generates a worklist entry.
Two worklist formats are available. One format places a
given workcode and ‘the input buffer pointer from the
MLCB into the worklist. The other format obtains the
workcode and the first buffer address from the MLCB.
Format of a worklist to the OPS-level TIP is as follows:

15 7 0

Workcode

Line Number

Current IBP or first buffer address

Macro Call

BLDWL WC,WL,ACTION,EP

Usdge

If the WC parameter is zero, the workcode is the last one
saved by TIBSWC. This instruction is used for input state
and modem state processing only. The address of the
worklist control block is calculated by the Link Edit
program. The control blocks are arranged in an array of

multiword entries. The origin of the array is an entry point
(BYWLCB) which allows the following calculations:

(EP) = BYWLCB + (WLINDEX - (BOFSWL))*
/BYWSIZE

where
BYWLCB = address of worklist control block array
WLINDEX - index of worklist to receive the entry

/BYWSIZE = length of worklist entry

5-10

BUILD CLA STATUS WORKLIST ENTRY

This state instruction generates the following com-
munications line adapter status worklist entry to the
multiplex level.

15 7 0

SCI 01

Line Number

Swl SW2

SCI Status condition indicator
SW1 Status Word 1
SW2 Status Word 2

Macro Call
BLKO1 SCLACTION

Nonstandard Parameters

SCI Status condition indicator

Symbolic Value

Name (hexadecimal) Description

Not 0 Default

specified

-— 0 Pass status to TIP

— 1 Line
initialized

— 2 Line enabled

— 3 Hard error(s)

— 4 Soft output
error(s)

-— 5 Soft input
error(s)

— 6 Start modem
response time-
out (10 sec)

— 7 Stop modem
response
timeout

—— 8 Communica-
tions line
adapter status
overflow

_— 9 Communica-
tions line
adapter status
overflow
timeout

— A Modem
response
timeout

— B Break (FES -
from an error
status)

60472200 B

-Usage

This instruction is used for modem state processing only.

TEXT PROCESSING MACROS

These instructions, used by the text processor, use file 1
registers to modify the current character or perform
calculations. '

OPERATE ON FILE 1 REGISTER

This state instruction operates on two filel reqisters by
either adding, subtracting, or comparing the registers.
When adding or subtracting, the result is stored in the
register designated by the destination displacement
parameter.

Macro Calls
TPADDR SD,DD

Add the contents of the source filel
register to the contents of the destination
file 1 register and store the result in the
destination file 1 register.

TPSUBR SD,DD

Subtract the contents of the source filel
register from the contents of the
destination file 1 register and store the
result in the destination file 1l register.

TPCMPR SD,DD

Compare the contents of the source filel
register to the contents of the destination
file 1 register. The result determines the
next instruction to execute.

(source) (destination) go to P+1
(source) = (destination) skip to P+2
(source) (destination) skip to P+3

P is the program address counter.

Usage
This instruction gives the state program a basic

computation capability. It is used primarily for text
processing.

SET REGISTER VALUE
This state instruction increments or decrements the

contents of the selected file 1 register by a specified
value. :

Macro Calls

TPINCR SD,VALUE

Increment the selected file 1 register by
the specified value.

TPDECR SD,VALUE

Decrement the selected file 1 register by
the specified value.

60472200 B

Nonstandard Parameters

VALUE Specifies the amount to increment or
decrement.

Symbolic Value

Name (hexadecimal) Description

Not 0 Increment by 0

specified or decrement
by O

- 0-7 Value to
increment/
decrement

SAVE/RESTORE TEXT
PROCESSING CONDITIONS

This state instruction provides the user with the ability to
look ahead before processing the data in a source buffer.
The mark function saves the current source and
destination buffer pointers, flags, and CRC accumulation;
this includes all the necessary information required to
get/store the next character in the respective buffer. The
information is stored in file 1 registers by the firmware.
Two levels of marking are allowed. The backup function
restores the information from the file 1 registers for the
specified level.

Macro Calls
TPMARK LV

Mark the source and destination buffers at
the indicated level.

TPBKUP LV,SRC,DST

Back up to the specified buffer/level.

Nonstandard Parameters

LV Specifies the marking level.
Symbolic Value
Name (hexadecimal) Description
Not 0 Default to
specified level 1
LEVEL1 a Level 1
LEVEL2 1 Level 2

SRC Specifies the source buffer.
Symbolic Value,
Name (hexadecimal) Description
Not 0 Default - null
specified
SRC 1 Source bhuffer

5-11

DST Specifies the destination buffer.
Symbolic Value
Name (hexadecimal) Description
Not 0 Default - null
specified
DST 2 Destination
buffer

Usage

This instruction is used in text processing state programs
only. Several protocols require a look ahead on the source
data to determine the correct transform for the data.
Thus, the program records a position in the data and
subsequently returns when the correct transform is known.

For TIPs which require that lines not cross transmission
block boundaries, the position at the end of a line (or start
of a line) is marked. Then, in the event that the line being
processed does cross transmission block boundaries, the
user can back up to the end of the last line (or start of the
current line). Another application is to mark the
beginning of a string when compressing characters.

STORE CHARACTER FROM
FILE 1 REGISTER

This state instruction, used for text character processing,
has two functions:

e It transfers a character from the file 1 register in the
register reserved for untranslated characters.

e It stores a character in the destination buffer and
optionally accumulates the CRC. If the translate flag
in the MUXLCB is on, the character is translated
before it is stored. The CRC is accumulated after
translation. When the translate flag is off, the
untranslated character is stored. Either the left or
right byte of the selected file 1 register is stored.

Macro Calls

TPSTLC SD,CRCA

Store the left byte of the file 1 register
(SD) in the destination buffer.

TPSTRC SD,CRCA

Store the right byte of the file 1 register
(SD) in the destination buffer.

TPRSTL SD
Restores the untranslated character
register from the left byte of the filel
register (SD).

TPRSTR SD
Restores the untranslated character

register from the right byte of the filel
register (SD).

5-12

Usage

The restoration of the untranslated character may be
accomplished with any file 1 register. However, the
restoration is usually done with the first filel register
(displacement is 0) which contains the current source
character. Caution should be used as this copy of the
source character does not have the parity bit set to zero
even when the parity strip option is selected. The parity
bit is always as it is in the source data.

EXIT TEXT PROCESSING
This state instruction causes an exit from the text

processing state program and returns to OPS-level
processing.

Macro Call

TPEXIT Exit text processing.

Usage

This macro is used to leave text processing after the end
of source condition is detected.

INSERT TEXT PROCESSING CHARACTER

This text processing state instruction inserts a character
in a destination buffer near a previously marked position.

Macro Call

TPINSR L,S,CHAR,I

Nonstandard Parameters

L Mark level
Symbolic Value
Name (hexadecimal) Description
Not 1 Insert character
specified at a position rela-
tive to the level 1
mark
— 2 Insert character
at a position rela-
tive to the level 2
mark
-—- other Illegal. Causes
error message:
LEVEL MUST BE
ONE OR TWO
C Character source
6047220 C

Symbolic Value

Name (hexadecimal) Description

Not 0 Default

specified Insert character
supplied with this
instruction

CURNT 1 Insert current
source character

other other Illegal. Causes
error message:
ILLEGAL
CHARACTER
SOURCE

Note that if the symbolic name for CHAR is label, the
character associated with the label will be used rather
than the CHAR supplied with the instruction.

I Index to position where character is to
be inserted

Symbolic Value

Name (hexadecimal) Description

Not 0-7F¢
specified

Determines
position of
character to
be inserted
relative to the
mark

-— other lllegal.
Causes error
message:
INDEX OUT
OF RANGE

Usage

This instruction is used in text processing state programs
only.

MISCELLANEOUS MACROS

SET TRANSLATION TABLE ADDRESS
This two-word state instruction stores the address of a
translation table into the control block.
Macro Call
STRNTB TA,ACTION
Set translation table address directly.
STRNTE ACTION,EP
Set up entry point for translation address to
be assigned by the link edit program.
Nonstandard Parameters

TA Address of the translation table.

60472200 C

RESET TIMER
This input processing state instruction. sets the line

control timer (BLTIME) with a specified value for the
associated line.

Macro Call
RSTIME TIME,ACTION

Parameters

TIME Sets a time interval for the subsystem timer.

Symbolic Value

Name (hexadecimal) Description
Not 0 Default
specified

-— 1-FF Number of half

seconds

Usage

This instruction gives an input state program the ability to
set the line timer based on input data. An application sets
a short timeout value for the interval between output
terminate and start of input. Once input is detected the
timer clears, permitting the receipt of the message. This
allows for quick detection of a no response condition.

BACKSPACE

This state instruction backspaces the destination buffer
pointer one character at a time. Should the pointer cross
buffer boundaries while backspacing, the firmware
releases the unused destination buffer. However, if
backspace is performed on the first character of the first
destination buffer, the firmware does not release this
buffer.

Macro Call

BKSPAC

RESYNC A SYNCHRONOUS LINE

This state instruction sends a resync command to the
communications line adapter instructing it to discard all
characters until a sync character is detected.

Macro Call

RESYNC ACTION

Usage

This instruction is used by input state programs for
processing synchronous lines.

5-13

SET CRC VALUE

This state instruction initializes the cyclic redundancy
checksum (CRC) value in the control block for
communications lines that require encoding and decoding.

Macro Call
INTCRC ICRC,ACTION

Nonstandard Parameters

ICRC Sets the initial CRC value.
Symbolic Value
Name (hexadecimal) Description
Not 0 Default
specified
ZCRC 0 Set to zero
OCRC 1 Set to all 1's

ALLOCATE A NEW BUFFER

This state instruction gets a new buffer and sets the
buffer FCD field. The user-supplied FCD is always an
even number. The LCD of the old buffer is updated and a
chain to the new buffer is established. If a buffer has not
been established, this instruction effectively does a no-op.

Macro Call

ALNBUF FCD,ACTION

Parameters
FCD Defines a displacement to the first data

character of the new buffer. This value
must be an even number between 4 and
7C16. An even number forces the first
character into the left character position
of the word.

Usage

This instruction is used to end an old message, then start a
new buffer when a new message is detected, or to break
up the data into packets.

NO OPERATION

This state instruction provides the mechanism for
specifying the action parameter exclusively. (The action
parameter is normally specified as one of the parameters
for a state instruction.)

Macro Call
NOPR ACTION

| ST

MOVE FIELD

This state instruction is used only in text character
processing. it allows the user to move specified fields
from (1) a file 1 register to another file 1 register, (2) the
control block (16 words) to a file 1 register, or (3) a file 1
register to the control block (16 words).

Macro Calls
TPMOVE SD,DD

Moves the contents (16 bits) of a filel
register (SD) to another file 1 register (DD).

TPST SD,DD

Moves the contents (16 bits) of a filel
register (SD) to the specified (DD) control
block word.

TPSTR SD,DD

Moves the contents of the right byte of the
file 1l register (SD) to the right byte of the
specified (DD) control block word.

TPSTL SD,DD

Moves the contents of the right byte of the
file 1 register (SD) to the left byte of the
specified (DD) control block word.

TPLD SD,DD

Moves the contents (16 bits) of the
specified (SD) control block word to the
selected file 1 register (DD).

TPLDR SD,DD

Moves the right byte of the specified (SD)
control block word to the right byte of the
designated (DD) file 1 register.

TPLDL SD,DD

Moves the left byte of the specified (SD)
control block word to the right byte of the
designated (DD) file 1 register.

Usage

These instructions are useful for moving TPCB fields into
the file 1 registers where they can be operated on by the
add, subtract, and compare register instructions. They
are also used for setting and resetting TPCB fields with
user-supplied information in the file 1 registers.

STORE BLOCK LENGTH CHARACTER

This state instruction sets the block length count in the
character count 1 (NCCNT1) field of the control block
with the current character minus an adjustment.

60472200C

Macro Call
SBLC ADJ,ACTION

Parameters

ADJSpecifies an adjustment to the start of the block.

Symbolic Value

Name (hexadecimal) Description
Not 0 Default
specified

—- 0-FF Adjustment

Usage

The adjustment is required if (1) the block length
character is included in the block length count, or (2) the
block length character is not the first character in the
block.

60472200 C

1 2 3 4 5

A B 5 C D
L——‘" BLOCK LENGTH
CHARACTER

ADJUSTMENT =3

An adjustment is not required when the block length

character is not included in the block length count.

1 2 3 4 5

4 A B C D

L—-—BLOCK LENGTH CHARACTER

ADJUSTMENT =0

5-15 |

SUMMARY OF STATE INSTRUCTIONS

In this appendix, the state instructions are listed
alphabetically. The one or two-word macro-assembler
packing of the instruction (including its parameter list) is
also shown.

Note that the ACTION code always appears in bits 5, 6,
and 7 of word 1. If the execution/exit action to be taken
is specified by the TIP writer, the label ACTION is used;

otherwise, the fixed action code is given. See figure 5-1

for ACTION codes.

The control block of the MLCB (input state processing) or
the TPCB (upline or downline text processing).

File 1 registers are numbered 1 to 16; they are indexed O
to 15.

MACRO PARAMETERS PARAMETER LIST FORMAT
ADDC CHAR,ACTION Add a character
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
CHAR ACTION 1146
ALNBUF FCD,ACTION Allocate a new buffer
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FCD ACTION 1846
BKSPAC Backspace
15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1 00
0 1D
BLCNE COUNT,LABEL Skip if counter value unequal to block length
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Al]t A7 1C16
0
Al = count -1 A7 = label - *-2
Macro takes the form BLCINE or BLC2NE where A1 = 0 or 1
BLDWL WC,WL,ACTION,EP Build worklist entry with given workcode
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 wC ACTION 0346

EP

WLCB ADDRESS

WL is ignored but is present in macro call

60472200 B

MACRO

BLDWL

BLDO1

CHARLS

CHARNE

CHRCC

CHRPT

PARAMETERS PARAMETER LIST FORMAT
WC,WL,ACTION,EP Build worklist entry with workcode in control block
1% 14 13 12 11 10 09 08 07 06 05 04 03 02 01 OO0
1 0 ACTION 0346
EP WLCB ADDRESS
WL is ignored, but must be present in the macro call
SCI,ACTION Build CLA status worklist
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SCI ACTION 1616
CHAR,LABEL Skip if character < operand
%5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0O
CHAR A2 0A4g
A2 = label - *-1
CHAR,LABEL Skip if character # operand
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
CHAR A2 0Cq6
A2 = label - *-1
COUNT,|MASK Mask and set character counter
1 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Al 0 1 0 1Cqp
IMASK

A1l = count -1

Macro takes the form of CHRCC1IMASK and CHRCC2IMASK where A1 = 0 or 1

Expand current character

15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1

00

0 7 46

60472200 B

MACRO

CMPCLA

CNTNE

CRCEQ

DCC

IcC

INTCC

60472200 B

PARAMETERS PARAMETER LIST FORMAT
CMASK,LABEL Compare CLA status
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 A7 1546
CMASK

A7 = label - *-2

COUNT,CV,LABEL Skip if character counter does not equal CV
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Al 0 1 0 A7 104¢
Ccv

SB,LABEL

15

A1l = count -1 A7 = label - *-2

Macro also takes the form CNTINE CV,LABEL and CNT2NE CV, LABEL
where A1 = 0 or 1

Skip if CRC equal

14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SB

0 A2 0516

A2 = label - *-1

COUNT,LABEL,ACTION Decrement count

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Al]0 A2 ACTION 06,
Al = count -1 A2 = label - *-1)
Macro takes the forms DCC1 LABEL,ACTION and DCC2 LABEL,ACTION
where A1 = 0 or 1
COUNT,ACTION Increment count o
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Al]1 . 0 ACTION 0616
A1 = count -1
Macro takes the forms ICC1 ACTION and ICC2 ACTION
where A1 = 0 or 1
COUNT,ACTION Initialize count
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Al 0 ACTION 0716

A1l = count -1

Macro takes the form INTCC1 ACTION and INTCC2 ACTION
where A1 = 0 or 1

A-3

MACRO

INTCRC

JUMP

JUMP

MJUMP

MODCC

MSTATE

MSTLS

NOPR

PARAMETERS PARAMETER LIST FORMAT
ICRC,ACTION Set CRC initial value
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
A3 0 2 ACTION 1F46
A3 = ICRC
STATE,RTN Jump to state
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 11 STATE 0 0816
STATE Update state index and jump
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 1]0 STATE 0 0816
STATE Set modem state and execute
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 0 STATE 0 1946
COUNT,CV Set count with modulus function
15 -14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Al 0 1C16
cv
A1 = count -1
STATE ,ACTION Set modem state index
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 STATE ACTION 1946
STATE,LABEL Skip if modem state < operand
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 STATE A2 0B1g
A2 = label - *-1
ACTION No operation {execute ACTION only)
1 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0

ACTION

0046

60472200 B

MACRO

RADDC

RESYNC

RCHAR

RPLACE

RPLACE

RSTIME

RSTINP

RSTMXF

60472200 B

PARAMETERS PARAMETER LIST FORMAT
CHAR Expand (add) current character
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
CHAR 6 46
ACTION Resync the line
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 OO0
0 1 ACTION 1Fi6
CHAR,ACTION Replace character
15 14 13 12 11. 10 09 08 07 06 05 04 03 02 01 00
CHAR ACTION 0245
CHAR,CRCA Replace and store character with CRC
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
CHAR 0 0246
0 3 1246
CHAR Replace and store character without CRC
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
CHAR 0 0246
0 2 1296
TIME,ACTION Reset timer
5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
TIME ACTION 1A16
ACTION Reset input in progress flag
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 ACTION 116
MFLAGS,ACTION Reset user flags
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 1 ACTION 1716
MFLAGS 0

MACRO

RSTPAR

RSTRAN

RTRN

SBLC

SETCC

SETFLG

SETINP

SETMXF

PARAMETERS PARAMETER LIST FORMAT

ACTION Reset parity flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

0 ACTION OF 16

ACTION Reset translate flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1

00

0 1 0 ACTION OF 16

Jump to current state process

15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1

00

1 0 084

ADJ,ACTION Store block length in character counter 1

15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1

00

ADJ ACTION 094g

COUNT,CV Set count

15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1

00

Alfo |1 0 1C16

cv

A1l = count -1
Also the forms SETCC1 CV and SETCC2 CV

FLAGS,BUFF,ACTION Set flags in buffer

15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1

00

FLAGS A4| ACTION 1316

A4 = buffer (0 = first 1 = current)

ACTION Set input in progress flag

%5 14 13 12 11 10 09 08 07 06 05 04 03 02 O1

00

1 0 ACTION 1F41g

MFLAGS,ACTION Set user flags

15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1

00

0 ACTION 1746

MFLAGS 0

60472200 B

MACRO

SETPAR

SETRAN

SKIP

SKIPB

SPCHEQ

STATE

STATLS

60472200 B

PARAMETERS PARAMETER LIST FORMAT
ACTION Set parity flag
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 0 ACTION OF46
ACTION Set translation flag
15 14 13 12 11 10 09 08 07 06 05 04 03 02 O1 00
1 0 1 (4] ACTION OF 16
LABEL Skip forward
i5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
A9 1 w";
A9 = label - *
LABEL Skip backward
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
B1 0 0016
B1 = * - label
LABEL,ACTION Skip if special character equals current character
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
A2 ACTION 0D46
A2 = fabel - * -1
STATE,ACTION Set next state
1% 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
(o} STATE ACTION 0816
STATE,LABEL Skip if state < operand
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 OO0
0 STATE A2 0B

A2 = label - *-1

A-7

MACRO

STORC

STORE

STORE

STRNTB

STRNTE

TIBSWC

TIBWL

TPADDR

PARAMETERS PARAMETER LIST FORMAT

COUNT,ACTION Store count
%5 14 13 12 11 10 09 08 07 06 05 04 03 02 Ot 00
Al (0] ACTION 1446
A1 = count -1
Also STORC1 ACTION and STORC2 ACTION
Store character without CRC
15 14 13 12 t1 10 09 08 07 06 05 04 03 02 O1 00
0 2 1246
CRCA Store character and accumulate CRC
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 3 1246
TA,ACTION Set translation table address
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 ACTION B4
TA
ACTION,EP Set translation table address
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 ACTION 1B1g
EP TRANSLATION TABLE ADDRESS
WC,EOT,ACTION Terminate and save workcode
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 | A5 weC ACTION 0446
0
A5 = EOT
WC,WL,EOT,ACTION EP Terminate input and build worklist
5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0O
0 | A5 wc ACTION 0416
EP WLCB ADDRESS
A5 = EOT
SD,DD ’ (sD} + (DD} ~ (DD)
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 1 1046

60472200 B

MACRO PARAMETERS PARAMETER LIST FORMAT

TPBKUP LV,SRC,DST Restore text processing conditions
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0O
1 0 A6 A8 0 1E46
A6 = LV-1 A8 = SRC + DST
TPCMPR SD,DD Compare file 1 registers
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SD DD 3 1045
TPDECR SD,VALUE Decrement file 1 register
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 VALUE SD 0 1046
TPEXIT Exit from text processing
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 1 1E46
TPINCR SD,VALUE Increment file 1 register
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 VALUE SD 0 1046
TPSINSR L,S.CHAR,I Insert text processing character

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

L{fo ofs]o o 1 1 1F16
1 CHAR
TPLD SD,DD Move control block word to file 1 register
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SD DD 4 0Eqg
TPLDL SD,DD Move left byte of control block word to file 1 register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 6 OEqg

60472200 C

MACRO

TPLDR

TPMARK

TPMOVE

TPRSTL

TPRSTR

TPSTL

TPSTLC

TPSTLC

PARAMETERS PARAMETER LIST FORMAT
SD,DD Move right byte of control block word to file 1 register
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SD DD 5 OEqq
Lv Save buffer conditions
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
4] A6 0 0 1E45
A6 = LV-1
SD,DD Move register to register
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SD DD 0 0E46
SD Restore from left byte of file 1 register
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 SD 0 014
SD Restore from right byte of file 1 register
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 0 SD 0 0146
SD,DD Move right byte of file 1 register to left byte of control block word
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SD DD 3 OEqg
SD,CRCA Store left byte of file 1 register into destination buffer with CRC
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 SD 3 0145
SD Store left byte of file 1 register into destination buffer without CRC
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 SD 2 0146

60472200 C

MACRO

TPSTR

TPSTRC

TPSTRC

TPSUBR

TPST

TSTCLA

TSTMXF

60472200 C

PARAMETERS PARAMETER LIST FORMAT
SD,DD Move right byte of file 1 register to right byte of control block word
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 OO0
SD DD 2 OE46
SD,CRCA Store right byte of file 1 register into destination buffer with CRC
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 0 SD 3 0716
SD Store right byte of file 1 register into destination buffer without CRC
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 0 sD 2 0716
SD,DD Subtract file 1 régister
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SD DD 2 1016
SD,DD Move file 1 register to controi block
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SD DD 1 0E16
CMASK,LABEL Test CLA status
% 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 0 A7 1516
CMASK
A7 = label - *-2

MFLAGS,LABEL

15 14 13

12

Test user flags

11 10 09 08 07 06 05 04 03 02 01 00

0

170 A7 1716

MFLAGS 0

A7 = label - * -2

A |

STATE INSTRUCTION TIMING

Timing for input, output, and text processing is calculated
by using the following tables.

expressed in microseconds.

TABLE B-1. EXECUTION TIMES FOR INPUT/TEXT

PROCESSING DEPENDENT INSTRUCTIONS

All timing values are

TABLE B-2. STATE INSTRUCTION

EXECUTION TIMES (Contd)

Task - Per Character

Text

Input | Processing

On 3.1
Off 1.5

Exit

Get character

Translation (select one)

CRC (select one)
Yes 4.9
No 0.0

Store character

12.8 5.5

Number of instructions x 2.2 - -—

Instruction execution time(s) -—- --
(See Section B.2)

4.8 4.8
2.2 1.5

Task - Per Character

Text

Input | Processing

Get and chain a destination 15.0 16.0
buffer

Chain a source buffer - 6.6
Release a buffer 11.4 11.4
Make a worklist 6.9 6.9
Start-up —-- 10.1
PTTPINF interface - 135.0

TABLE B-2. STATE INSTRUCTION

EXECUTION TIMES

Execution

Macro Time Description
ADDC 2.3 Add a character

7.1 (including store)
ALNBUF 10.8 Allocate a new buffer
BKSPAC 3.9 Buckspace (not over buffer

boundary)
60472200 B

Execution
Macro Time Description
BLCNE 5.0 Skip if count not equal
black length
BLDWL 16.1 Build worklist entry with given
workcode
BLDWL 10.4 Build:® worklist entry with
workcode in control block
BLKO1 14.5 Build CLA status worklist
CHARLS 1.2 Skip if char < operand
CHARNE L4 Skip if char not equal
operand
CHRCC 5.0 Mask and set char counter
CHRPT 9.4 Expand (one) character
CMPCLA 2.6 Compare CLA status
CNTNE 5.0 Skip if char count not equal
CRCEQ 2.0 Skip if CRC equal
DCC 2.9 Decrement count
ICC 2.9 Increment count
INTCC 1.8 Initialize count
INTCRC 2.8 Set CRC initial value
JUMP 4.0 Jump to state
JUMP 5.4 Update state index and jump
MJIUMP 3.4 Set modem state and execute
MODCC 5.0 Set count with mod function
MSTATE 3.4 Set modem state index
MSTLS 2.3 Skip if modem
state < operand
NOPR 1.5 No operation
RADDC 9.4 Expand (one) character
3.1 (each additional 2 chars)
RESYNC 8.8 Resync the line
RCHAR 0.5 Replace character
RPLACE 6.7 Replace and store

character

B-1

TABLE B-2. STATE INSTRUCTION TABLE B-2. STATE INSTRUCTION

EXECUTION TIMES (Contd) EXECUTION TIMES (Contd)
Execution Execution
Macro Time Description Macro Time Description
RSTIME 3.4 Reset timer TPBKUP 9.4 Restore TP conditions
RSTINP 2.5 Reset input in progress flag TPCMPR 5.2 Compare file 1 registers
RSTMXF 3.9 Reset user flags TPDECR 5.2 Decrement file 1 register
RSTPAR 2.5 Reset parity flag TPEXIT 2.8 Exit text processing
RSTRAN 1.9 Reset translate flag TPINCR 5.2 Increment file 1 register
RTRN 4.0 Jump to current state TPINSR - Insert text processing
process character
SBLC 1.4 Store block length in char- TPLD 4.4 Move control block word to
acter counter 1 file 1 register
SETCC 5.0 Set count TPLDL 4.4 Move left byte of control
block word to file 1 register
SETFLG 3.4 Set flags in buffer
TPLDR 4.4 Move right byte of control
SETINP 2.5 Set input in progress flag block word to file 1 register
SETMXF 3.9 Set user flags TPMARK 6.3 Save buffer conditions
SETPAR 2.5 Set parity flag TPMOVE 4.4 Move register to register
SETRAN 1.9 Set translation flag TPRSTL 2.3 Restore from left byte of
file 1 register
SKIP 1.5 Skip forward
TPRSTR 2.3 Restore from right byte of
SKIPB 1.5 Skip backward file 1 register
SPCHEQ 1.8 Skip if special char = char TPSTL 4.4 Move right byte of file 1
reqgister to left byte of
STATE 4.0 Set next state control block word
STATLS 2.3 Skip if state operand TPSTLC 2.3 Store left byte of file 1
register into test buffer
STORC 3.2 Store count
TPSTR 4.4 Move right byte of file 1
STORE 1.4 Store character register to right byte of
control block word
STRNTB 2.0 Set translation table
address TPSTRC 2.3 Store right byte of file 1
register into test buffer
STRNTE - Set translation table
address TPSUBR 5.2 Subtract file 1 register
TIBSWC 10.4 Terminate input and save TPST 4.4 Move file 1 register to
workcode control block
TIBWL 16.1 Terminate input and build TSTCLA 2.6 Test CLA status
worklist
TSTMXF 3.9 Test user flags
TPADDR 5.2 (SD) + (DD) (DD)

B-2. 60472200C

JOB DECK STRUCTURE FOR ASSEMBLING C
STATE PROGRAMS

(To be supplied later)

60472200 B c-1

SAMPLE STATE PROGRAM D

This sample is the input state program (first pass) for the This appendix has the following subsections:

HASP TIP. Since there is no code or format conversion in :

this first pass state processing, this comparatively simple e Equates

state program is only concerned with moving data from

the circular input buffer (CIB) to the input source buffer, e Input state program pointers table (HSINST)

and then notifying the TIP that the data is ready for

upline text processing. e Input state processes making up the input state program

60472200 B D-1

D-2

[{113
0002
9001
geoe
8801
0002
geo3
0804
0005
0006

0400
0200
010¢
0080
0040
8020
0018
8003
0004
0002
0001

9603
0021
gea2
9023
0924
0025
8026
0827
8028
0029
082A
ao2e
ag2cC
0020
002€
002F
0030
0031
8032
0033
9034
0035
8036

BT RI S l.‘.."“.""'."'/l.‘.”‘.‘l.."’."

»
»
»
»
»

HASP STATE PROGRAMS AND
TRANSLATION TABLES
‘ASSEMBLIES

LY.L HSR4IPS

SISV SUFLSSC USRI SIS ISUSES ISR IFEFRNSBEFSER

L
-
-
-
-
-

'.'..‘..l'\l'..........'.....
. :
. MUX SUBSYSTEM EQUATES
L
3 ® 8 ¥ F 3% % % PSS VSES TSN
»
€QU MXETX($4) ETX FLAG FOR CLA STATUS
€0u MXMRTO (2) RESPONS TINEOUT
EQU MXCARR(S1) CONTROLLED CARRIER FLAG
EQU MSTCHK(O)
EQU MSTERR(1)
EQU MSTLNI(2)
EQU MSTENB(3)
EQU MSTIDL ()
EQU MSTOUT(S)
€qu MSTINP (6)
»
* % s MUX FLAGS
»
EQU NCUOP1($400) BIT 15
€0U NCUOP2($200) BIT 14
Eau NCUOP3($100) BIT 13
EQU NCUOP4($08D) BIT 12
£QU NCUOPS5($040) BIT 11
EQU NCUOP6($020) BIT 10
EQU NCUOP7($010) BIT 9
EQU NCUOPE($008) BIT &
"EQU NCUOP9(2084) AIT 7 (TEXT PROCESSING
€Qu NCUOPA($002) BIT 6 (TEXT PROCESSING
E0U NCUOPB(3801) BIT 5 (TEXT PROCESSING
8 % 3 % % 3 % % % 3 NS F T STV STV SO
3
. WORK CODES
.
$ % 8% 5 ¥ 3 % & % % 8% 8 % F S 3 VS S BT e VS
3
EQU MMBUTCH(3) MUX BUFFER THRESHOLD
€Qu AQNK1($21)
EqQu ABWK2 (AGHK1+1)
£u ACWK3I (AOWK2¢1)
£QU AOWKG CAGHK3#1)
EQU AQOMKS (AOWK)
EQU AOWKG (ADNKS+1)
£Qu AGWK7 (AONK6 +1)
£QU AONKS (AONK7+1)
€Qu ATHKI (ADNWKS+1)
EQu AGHKL0 (AONKI#1)
€Qu AOWK11(AGNK10¢1)
€Qu AOWK12 (AOWK11¢1)
€Qu AOWKL3(AOWKL2¢1}
£Qu AONKL4 (ADWKL3¢1)
E0U ACNK15 (AONKLL+1)
EQU AONK16 (AOWKL5+1)
€U AOWK17 (AOWK16+1)
€U AOWK18 (ADMKL7+1)
EQU AOWK19 (AOWK18+1)
€Qu ATWK28 CAOWKL9¢1)
£Qu AOWK21 (AOWK20¢1)
€au AONK22 (AOWK21+1)

‘e s v EwEe

L K N R IR B B R 4

HANDLER

ONLY)
ONLY)
ONLY)

* 8 % 3 8 " 8>
»
-
*
LR B B K K K B

60472200 B

60472200 B

0001
8002
0010
0026
8020
0032
0030
0070

0000
00Fo
gocC1

0014
0021
8022
0023
0024
9025
0026

0001
0002

gace
00AD

003F
0010
001F
001F
0OFF

SHEBT SV TSI SRS BISSIFISISIVITE SIS IS LIS SIS S

-

* HASP REL&4 CONSTANT EQUATES
L d

L
.
-

FEFEIS PSSR VPSS ERC S I SIS IS FLFL PSS FLSECBREF RIS

EQU
EQU
EQu
€au
EQU
EQU
EQu
EQU

EQU
EQU
€aQu

EQu
€Qu
EQU
EQu
EQu
EQU
EQU

EQu
€qQu

£Qu
EaQu

" €Qu
€Qu
EQu
EQu
€Qu

HCSOH($01) *
HCSTX($02)
HCOLE (810)
HCETB($26)
HCENQ ($20)
HCSYN($32)
HCNAK ($3D)
HCACK (870)

HCZEROC(D) .
HCCONTROL (SFO)
HCSIGNON(SCL)

HHKNLNG (S14) *
HWKENQ(ADONWKL)
HWKERR (HWKENQ#1)
HHKACK (HWKENQ#®2)
HWKNAK (HHKENQ+3)
HHKMSG (HWKENQ+4)
HHKBTH{HHKENQ®S)

HFNEW(301)
HFXPT (£02)

HNONCHP ($CO) *
HCMPNBLKS ($AQ)

HMNCMSK ($3F) *
HEXPT (16) .
HMCEMSK (S1F) ¢
HMCNBMSK(S$1F)
HMCHRUSK(SFF)

BSC QUTER PROTOCOL CHARACTERS

CHARACTER 9
CONTROL RCB
SIGMON SRCB

HASP HORKLIST NUMBER
ENQ RECEIVED WORKCNDE
ERR RECEIVED WORKCODE
ACK RECEIVED WORKCODE
NAK RECEIVED WORKCODE
MSG RECEIVED WORKCODE
BUFFER THRESHOLD WCRKCGDE

NON COMPRESSZO DATA Sce
COMPRESSED NON BLANKS SCB

NON-COMPRESSED-DATA SSE MASK
TRANSPARENT DATA MASK
COMPRESSED BLANKS MASK
COMPRESSED NON=-BLANKS MASK
CHARACTER MASK

P0000
POQOL
PO002
POoO3
POOOL
POQ0S
PO006
P0007
Pga0s
POI09
POOOA
POQ08
POO0OC
P8900
POOOE
POSOF
PO018
POO1L
Peg12
PO013
PO01G
PO015
POe16
PO17

POINTER

0018
0019
0028
0829
002€E
0036
€041
0048
9057
0eso
0066
9068
a076
QO7F
0084
8095
§09E
00A2
08A6
08AD
00AE
o083
0086
90C2

AR AR RRRARRERERERRERERRERERERERRNLE..]

0000 P
goge P

222029895 . 1 SOSSUSTISIVITIFT LISV ILTISSSIIIOSS
BSOS STV IS IS TSI IS IS TIVOL IS SV ITIIIINISISIS IS IS ICE SIS UIOSLIVITISESS

s .
. HASP INPUT STATE PROGRAMS (1ST PASS) POINTER TABLE .
» .

VIITRIIS IS FICIVSI SN IS IS I VI IS SIS TP SIITIVSII IS ITI IV SIIFISTISS IS TSNS
EIRIT AT Y ST RT YR PRI PR et s TR ATY YIS ST IR PRSI PRE LS S2 e L)
KSINST HAC NM

€EQU HSZNMZL{*-HINSPT)

ADC H2ENMZ

ENC

ENT HINSPTY
EQU HINSPT (*)
HSINST CLASTATY
HSINST DCONOY
HSINST OVERUN
HSINST BUTHR
HSINST INIT
HSINST DATO
HSINST SOH
HSINST OLEO
HSINST BC8
HSINST LFCS
HSINST RFCS
HSINST 1RCE
HSINST CONTROL
" HSINST SRCE
HSINST sSce
HSINST DATA
HSINST OLE
HSINST SIGNON
HSINST €78
HSINST 1CRC
HSINST 2CRC
HSINST ERROR
HSINST TERM
HSINST IOLE

STANDARD DEFINITIONS FOR
INPUT STATE PROGRAMS

WN=0O

60472200 B

60472200 B

P0318
P0019

P0319
POS1A
P0g18
PO31C
P0A10
POJLE
POOLF
PoJ2"
POO21
Pog22
Po323
Pof024
POd2sS
POd26
P0d27
P0928

P0328
POg29

P0029
PO02A
P0928
Poo2C
P0020
PDY2E

Pog2E
PO92F
P00230
P03
P0232
P0033
L K1Y
P013S
P0I36

P06
pRI27
PGa38
P0339
PO024A
P0a28
P003C
PCO2D
L4 b 13
POQ2F
PRJal
PeJlut

POO4L
POQ42
POOL3
POJuL
POJ4S
POO46
POO47
PG04S
POJ4LI
POOLA

0020

0237
0020
013F
0237
[.0.1]
G13F
3428
8528
013F
0117
0080
€014
8003
0000
C13F

5508

0304
ogoo
A604
9000
9608

32cC
0117
g20¢
8117
tnso
€619
€528
013F

322C
cezo
ei2c
°h28
1€2C
0728
3068
ALQ4
eooo
9604
8408

322C
0029
2D6C
AL04
cn09
9608
t24C
C21F
tess
8408

XTI T R S F R S YRR T Y Y S L R R R IR Y Y Y R R P Y R L e RS AL S R L L
XX IR R AV RS Y PR P Y RS SRR XY RS2SR SR R T S R S AL A R L E RS Lo

* *
. HSCLASTAT - CLA STATUS HANDLER *
» *

I 2SR R 2T R PR RIS NS S R R SRR RS S S RS S R SRS S S S R S RSS2 RS2 S R L L L RS
EE R a2 ISR SR RS S R R R XS R S R R I PR R RS RSS2SR S 22 S S S 2 2 22 L)
FCLASTAT NOPR EXIT IGNORE STATUS

Rl R IR RS RIS R R R SR R R P R R RS L A RS S RS XSS 2RSS RS RS R ST S S R S S X L Y
L X IR R RS RS RIS S R 2 R S 2 R R R A R R S R S R RS RS R S T R S L R X T

» Ll
* HSOCONCT - DATA-CARRIER-DETECT OPOPPED *
* »

L R Ry Ry Yy Y R RS YT Y yY
LL T R R R T Y R R T Y Ly Ty Yy T Yy P T T Y)
FDCONOT TSTMXF MXCARR,HDCO1 * SKIP IF CONTFOLLEN CAPPIER

FESYNC EXIT - * REISYNC CLA AND EXIT
+0C01 TSTHMXF MXETX,HDCD2 * SKI? IF WORKLIST WANTEZC
FESYNC EXIT A RESYNC CLA AND =XIT
+0co2 PSTLS MSTIOL,HOCO3 DOURLE CHECK THAT MODEM STATEZ IS ICLE
MSTLS MSTIOL+1,HDCOY4
roCR2 FESYNC EXIT . MODEM STATE NNT IDLE
+DCD4 RSTHXF MXETX * CLEAF WL ENTRY NZECZD FLAG
ESTIME 0 * STNP TIMER
ELCHL 4 4 oHWCRK2 . SUILLC WL EINTRY
RESYNC EXIT * REZSYNC CLA AND EXIT

LR RS R R g A R R R e N Y Y Y Ry e Y Y Y Py R S R Y Y R R Y P R Y)
LA RS R S Rl R g 2 R A R e s R L el R Y e AL R S P R S S R RS

- *
* HSOVERUN - TGO MANY BUFFERS *
» *

AL R R R L e L R R S S R S R RS T S R S R R R R 2 Y PR E R S L RS RS RS R R Y Y
EA R RIS L L R R R R R R Y Y R S A S SR S S S P S S S R 2 2 T
FOVERUN JUMP' HSERRCR,RTN GOTO STATE IRROR REMEMAER CUR STATE

LR R S R S R R R R Y R R A R R R S S S I I S A S R R I S L S L S S L L 2
EL R R R L L A R P L R R S e e S A L R S L S L s

¥

* HSBUTHR - BUFFER-THRESHOLD REACHEOD IN SYSVEM *

»

L TR T R Ty Y Y PR YN s IR YL YT
LI 2R R T I Yy Y Ty Yy E Y Py NIy Py PRy Y PRy AT L T RSN SN 222 Y)

FBUTHR TIBWL MMRUTCH hd TELL MUX SS TO RZLEASZI BUFFERS
TIRSHC HWKETH * MAKE BUFFER THRESHOLD WLE
JUMP HSTERM * TERMINATE INPUT

EA 2 Rl T2 Sl S R S R e I R e XY A L A R X I L L A S A s R i AL R L
R RS R Rl g S T e R L L R s e I R S L A Rt Al S A e s Il LY

» -
* HSINIT - INITIAL INPUY STATE .
L] »

Ly Yy Yy Yy P Py PR R R Y PRI P RPN Y T ¥]
PR TN Ry R YT Y Ty Y P Yy Ty Yy Yy Yy e R Ly R T R L S L LS
FINIY CHARNE HCSYN,HINITL LOCK FOR SYN CHAR

FSTMXF HMXPT RISET MUX XPT FLAG

RSTMXF MXETX . CLEAR ETX FLAG

MSTATE MSTINP * SIT MOGEM STATZ INPUT
STATE HSDATHLEXIT IT IS - SWITCH T0O DATA ARRIVING
FINITL RESYNC EXIT IT ISNT - RESYNC CLA

Ry Y Y Y Y L Y R R R Ry L Py SRR SR S SRS E NS ¥ 2
[E R IR R e N T Y P Y R R Y R e e R L R S S e AL

@ -
* HSDATG - DATA ARRIVING *
* »

LRI 2RI RIS R R R R R R I R R R R R Y A R R I A R A R L S L S S St s Sl
22 SR R R 2 R I T R R R R R S R R R A R R L R e R L R R L RS RS S S S L

+DATO CHARNE HCSYN,HDATIL SYN CHAR
NCPR EXIT YES - IGNORE
FOATOL CHARNE HCSOH,HDATO2 SO™

STATE HSSOH,EXIT vzs
+OATC2 CHARNZ HCDLE,HCAT)3 OLE

STATE HSCLEQ.EXIT
FDATL3 CHARNE HCNAK,HDAT5 NAK

TIBSHC HWKNAK * YZS- NAK WLE TC TIP
JumnpP HSTERNM * TERMINATE INOUT
+DAT(S JUuMP HSINIT * ALLOW LINS TO RESYNG

IR Y Ry Y Yy P Yy Ry Y ey ey R Y Y Y R Y R S R T S RS S I]
FEIB LRSSV RSB SRS S BRI P X RS AT SRR B EFER NGRS RN E R A AT EEXFASEFFFRFREXEXRIFE SR

¥ »
* ° FSSCH - SCH RECEIVEC +
» ¥

IE X2 R R R R R R R R R R X R R R e R I L e S R S R R RS S S s s
EE R R R R R R S 2 R S L A Y R L L R T R

FSCH CHARNE HCSYN,HSGH1 SYN
NOPR EXIT YES - IGNORZ

FSCHY CHAPNE HCENQ,HSOH2 ENC
TIBSWC HWKENG * YES- ENQ WLEI TO TIP
JUMP HETERM * TERMINATE INZUT

FSCHZ CHARNE HCSTX,HSOH3 STX
INTCRC ZCRC * INITIALIZE CRC ACCUM
STATE HSEBCB,CRCEXIT

FSCHZ Jump HSINIT * ALLOW LINE TO RESYNS

D-6

POOLB

PO0LB
POO4C
POG4D
POGAE
POOLF
P0050
P05
PO9S2
P0153
PO0SH
PO0SS
P0056
POOS?

POOS57
PO0Ss
P0959
PGOSA
Pgose
P00SC
PO0S0

P0250
PJOSE
POOSF
P0060
POOEL
P0962
POOE3
PO064L
PODES
P0066

P0066
PO0E7
POgES
P0069
POOEA
PO068

P8geEn
P006C
POO6D
POO6GE
POGSEF
POJ70
POO71
PO072
PON73
POO7%
P037S
P0Q76

P0976
POO77
POI78
POO79
POI7A
P0078
POO7C
P0970
POI7E

322C
528
706C
A3B4
0800
9608
028C
0017
0200
021F
0828
8408

322¢
0020
1c2C
e02¢e
co11
09686

322C
0020
192¢
0020
e237
8200
0220
0513
0A68

322¢C
0020
102¢
0020
0868

322¢C
cg20
102C
00290
002C
1288
262C
1388
Fa2c
ocses
0068

322¢C
0020
1c2¢C
0c29
Cci6C
ACLC
0050
1188
0E6S

0057 P

IS VST IFEFE VLS VISV IS IS USSP FFIISS I ESS IS SSSVL PRI SFE IR BB S ISESESSREEY
SH SV FSC IR SN SIS S FSSUS AR L ITFR ST SIS ISFIL S PR ESES B LI LIS I TSI FFIBFIOEIS SR

* ®
* HSOLEO - DLE RECEIVED °
» *

T T T T T P P Y P PP T T Py PTYY TP
PZYT Y VIV YR VY R YYLIVIY YV Y ST PRL VYIS LR LR SRS L2 ST L Y L2 P21 1)
HOLEQ CHARNE HCSYN,HDLEOL SYN

STATE MHSOATOLEXIT YES = IGNORE
FOLESL CHARNE HCACK,HDLEO2 ACK

TIBSWC HWKACK * YES=- ACK WLE TO TIP
JumMp HSTERM A TERMIKATE INPUT
HOLEQ2 CHARNE HCSTX,HOLEO3 STX
SETHXF HMXPT SET MUX XPT FLAG
INTCRC ZCRC hd INITIALIZE CRC ACCUM
STATE HSBCB,EXIT
FDLEO3 JumMp HSINIT * ALLOW LINE TO RESYNC

LA R A2 22 2 Rl R L2 24 2 R 22 1 2L R 22 A2 S 2SS R A2l RS2SRSS TS R S S 222 R LS 2 2)
FE VLTV LFE NGV EFSINIIC I ENS BRI NSRRI LS EU UGS S F UL S SS SR U TSRS TR FE ST RSN R

[} . -
. HSBCE - PRCCESS ECH : Y
. »

SR VIV FLVIC VT IFFF SISV IS FIFIFFVI I IFIVFFFIVSI VISV IR IS VTN SIFSIEIB ISR
EL RS TR 22 S IS S R g s Al A R R A I IS R IS R S S PRSI VS TR YRS 2)

rece EQu HBCE(*)
CHARNE HCSYN,HBCB1
NOPR EXIT IGNORE
+8Ca1 CHARNE HCOLE,HECB2 DLE
NOPR EXIT IGNORE ’
+BCA2 ADDC HCZERO ADD DUMMY FOR RIGHT-CHAR-ALLIGNMENT

STATE HSLFC$,CRCSTOREZX STORE BCB,CRC AND EXIT
AR IR SR 222 R 2T R R R Y Ry S P Y P Y Y P T P TS YT YR YLy T TY
NI IIR NS RIS R SNSRI VIV II SIS I IS ISP IS I IS E SIS SRR IR RRNIRIIRES

. .
. HSLFCS - PROCESS LEFT FCS »
» *

SRV SIS IS BEFS VSIS FIV VIS ISR ILS S IBE VISV TSGR IF L SSL TS S TSR ISV EFIESRIE 5083
AA R 22222 R R S 22 A il s A s R S R R R S R A S R S RIS RS S S S RS R R Y)

FLFCS CHARNE HCSYN,MLFCSL SYN
NOPR ExXIT IGNORE
FLFCS1 CHARNE HCDLE,HLFCS2 OLE
NOPR EXIT IGNORE
FLFCS2 TSTMXF HMXPT,HLFCS3 SKIP IF XPT-FLAG SET

SKIP HLFCS4
FLFCS3 SETFLG HFXPT,CURN SET XPT=-FLAG IN FIRST-BUFFER
FLFCS4 STATE HSRFCSoCRCSTOREX STORE LFCS,CRC AND EXIT
LEY AR TR FL LY R L e e Ty T YT Y P PP Ty

e d il AL RS L a2 R 2 R 22 2l S A 2 A S R R SR R IR S S22 S RS XS EE R 22 2 ¥ 3

] .
. HSRFCS - PROCESS RIGHT FCS .
* *

ARSI VT I SIS SISV IS SRS SPSESIFSREF S S SRR IIR A UNBITIR B FAESSETR SR SNSN
LI R LT RIS IR EF SRR SAL LS VEYE FRTTE LT VYT TR Y P PPy ey

FRFCS CHARNE HCSYN,HRFCS1 SYN
NOPR EXIT IGNORE

FRFCS1 CHARNE HCOLE,HRFCS2 OLE
NOPR EXIT IGNORE

FRFCS2 STATE HS1RCB,CRCSTOREX STORE RFCS,CRC AND EXIT

ER RS R R 22 L R 22 2 22 222 RS 2 T R 2 2 2 2 TS T PRI e R IR SR S S PSR S LY
FUFFFIFC IV USBSISSIUITIS IS IS SIS LIS EIFISISS SIS SRS SIS RIS ERE RIS SN

* »
* HSLRCB =~ PROCESS FIRST / NEXT RCB -
. .

AR LR L 2L S 22 e e e A I A I L S L S S R P P L2 R 2 ST PSSR RS YRS FERT Y T ¥
FEFFISFSIF VSV FRCI SIS SR TSPV SRS RISV SIS SP NS S LS SS IV IS SRR R SRS BT EFSESE

F1RCE CHARNE HCSYN,H1RCB1 SYN
NOPR EXIT IGNORZ

FLRCB1 CHARNE HCOLE,HiRC32 OLE
NOPR EXIT IGNORE

HiRCB2 CHARNE HCZERQ,HiRCBS NO (MORE) RECORDS
STATE HSETB,CRCEXIT DONE, LOOK FOR ET8
r1RCES CHARNE HCETB,H1RCB3 ETE WITHCUT ZERD RCB
STATE HS1CRC,CRCEXIT YES GO PROCESS CFRC NOW
FLFCE3 CHARNE HCCCONTROL,HIRCP4 NO - CONTROL RECORD
STATE HSCONTROL,CRCEXIT ©ROCESS CONTROL SRGS

H1FCEBGL STATE HSSRCE8,CRCSTOREX NO - GET SRCB .
P T Y e Y e Y Y P T ey AL P R T ST YRS LR Y T PP s

AR Z R L Id Rl R AL L R i S RS A S S S I R S S SR R S S ST S R S S R S22 X2 2 2 3

* L]
hd HSCONTROL - CONTROL RCE RECEIVED,LONOK AT SRCA® *
» »

RA AR 2L 22 Rl s 2 d A A2 2l AL I 2 R 2 Al R e AL R R R I R S R 2 2
EE IR R I Ry s R Y Y R R Ry E I I e I TP PP YT Y P

FCCNTRCL CHARNE HCSYN,HCONL SYN

NCPP EXIT IGNORE
HCCNE CHARNE HCOLE.HCON2 OLE
NOPR EXIT IGNORE
FCCN2 CHARNE HCSIGNON,HCON3 SIGNON
SETCC2 HCAO YES = SET 80 CHAR LENGTH

STATE HSSIGNON,CRCZXIT PROCESS THZ SIGNON ¢ THROW AWAY SRCR
+CCNI STATE HSSC8,CRCSTOREX NO - PROCESS NORMALLY

60472200 B

60472200 B

POQ7F

POQ7F
Po0ag
PodeL
gL
PO0a3
PO08Y

POOSL
£0085
POO8E
P0QA?
PoJ8s
P0089
PO0AA
P08
PO0GSC
£0080
POABE
POOSF
£0090
P00S1
PO03Z
P00S3
POOSH
P0095

P01¢S
P0096
Po9c?
PO098
PoGSe9
PO29A
Po0%8
POJcC
P019D

POOSE
POOCF
POJAD
POJAL

Po0A2
POOA3
PRdAG
PO0AS
POOAG

P00A6
POJA7
POOAS
POOAS
POOAA
PO8AS
POAC
POOAD

PO0AD

322C
002
102C
0020
0Ee68

322¢
0020
102¢C
6020
262C
1388
og2c
0868
Ce6A
901C
8083F
9F68
AB6A
AQ1C
0001
0F68
0060

32AC
0237
€200
0020
8066
ec68
102C
1028
0409

322C
oF28
0Fo8
0800

262C
1388
8086
CESS

322C
0020
102¢C
0020
262C
1388
5508

1488

A2 222 2 RS IS R SRS R SR SRS SRS S RS RS T2 S S22 XY SRR SRS 2L X 2 Y
B SR IS SEGE SRS F IV IS IA PSSR IFESR SR LIV SIFESF IS F TR IE SIS IRFRSSFEIFFFFRFE XSS

'} »
* HSERCB - PROCESS SRCAS ¢
. *

AR FEFGFE S FGS VS FFLVF AU EEF S FF SIS RIS S S ISR FS TSI F SIS IE I NS SS TR SR F L EEEF
AR R 2L RIS R S R R R S AL R L S A R R S SR S S S S S L RS S S L R L]

+SRCE CHARNE HCSYN,4SRCSL SYN
NOPR EXIT IGNORE
FSRCEL CHARNE HCDLE,HSRC22 OLE
NOPR EXIT IGNORE
FSRCE2 STATE HSSCBoCRCSTOREX CRG STORE &ND EXIT

EZ X2 R R 2 R TR R R R R R S R S el R I R R I Rl S R S S R X Y
PR NIRRT RS SRS Y RSS2 R SR 2 A2 R S A A R R S R R R R R L R R S S R e L

» *
. HSSCB8 -~ PROCESS SCAaS . *
» -

L S22 R RIS S22 T R 22 S S R R R 2 S R I I S g L R A L P S R R A RS e el e i
ELEZE RS RIETE R IR 2 Y 222 L R 2 2 2 X 22 S R R S s S S S S I RS L LSS R i S X)

rsce CHARNE HCSYN,HSCB1 SYN
NOPR EXIT IGNORE

+ScCe1 CHARNE HCDLE,HSCB1A DLE
NOPR EXIT IGNORE

+SCB1A CHARNE HCETB,HSCB2 ETE
SYATE HS1CRC,CRCEXIT PROCESS CRC
+sce2 CHARNE HCZERQ,HSCB3 EOR
STATE HS1RCB,CRCSTOREX YES - GET NEXT RCB
KSCB3 CHARLS HNONCMP,HSC34 NON - COMPRESSED
CHRCC2 HMNCMSK SET COUNT TO NUM OF NON COMPRESSED

STATE HSDATA'ChCSTOREX SET DATA STATE CRC, STGRE AND EXIT
FSC84L CHARLS HCMPNBLKS,HSCB5 COMPRESSED NON BLANK
SETCC2 HCONE SEY COUNT TO ONE

STATE HSDATA;CRCSTOREX SET DATA STATE CRG ,STCRE AND EXIT
rSCBS NOPR CRCSTCREX COMOPESSED BLAMKS = STORE SCB,CRCsEX

FFFS VST IS SFF VIV FF IS SIS VS FGSSE IS SE RS S PSSR F S SR SIS AR PSSR S S SGLFEEET SRS
G REBIFEFE SIS IV F VSIS USSR FF SIS L S FFF VARV VISR U VGE IS S AR EFFFE S EERY

* .
. HSCATA - PROCESS CHARACTERS AFTEP SCB hd
* =

L Ty P Y Yy T Y Y Iy R Y Py Y L YT PV
[T TR YRR Y Y Yy P Y LR R Y I S E Y S T R R TR P AR SRR SRR SIS Y L
FDATA CHARNE HCSYN,HDATA3Z IS CHAR A SYN

TSTMXF HMXPT,HOATAL YSS ~ XPT WORKSTATION

NOPR EXIT NO - IGNORE
FDATAL £cec2 HCAYA2,CRCSTOREX YES SO PPOCESS IT
FDATA2 STATE HSSCB,CRCSTOREX UNTIL DONE
+OATA3 CHARNE HCODLE,HDATA4 OLE
STATE HSDLE,ZXIT YES - PROCESS IV
FOAT AL SKXIPB HCATA1 NOT DLE - PROCESS CHARACTYTF
ETT T T Ty Y Y Y T Ty P ey Ry Py T T T I Y PP AT LAY R LYY YL LY 2
LT TT RIS Ry Y I L T Ty ey Y T Y Y T Y Py Py Y P Yy P Y Py P Ty 2y

3 - L]
* #SDLE - FRCCESS CHAR AFTER OLE .
Ll N .

R XL R R R I R R R e R S TR TR YL PRSI VRN TR Y P PRV PR YY)
ELEL L RSl R A2 221 R 22 22T XA 2 R 2 L R R X IR S R L A R L S P L]

HOLE CHARNE HCSYN,HOLEL SYN
STATE HSDATAL,EXIT IGNORE

FOLEL STATE HSODATA OTHERWISE SET STAS BACK TN DATA
SKIPS HCATA1 AND PROCESS THIS CHARACTER

FEFE SRR FEV SR SES IR E PSP S LU IC SR SF S VSRR VRIS R LSS SR LR AR A AFEFSEES
AR TR R RIS R T2 22 PRS2 2 R R R 2 X R 2 RS SRS X S S R 2 RS RS A2 2 R L X 2

) »
. HSSIGNON - PROCESS SIGNON-CARD *
. *

LIRS Sy PR Y Ty Yy Y Yy Yy P rE Y Y Py T Py Y Y Yy Y P PP Y YT T YR Y Y PY
LLE IR ARt IR R I Y T T P T R R Y S ST Y LAA LY FN PR PYLELY T
FSIGNON CHARNE HCETB,HSIGN2 * CHECK FOR EARLY ET3

STATE HS1CRC,CRCEXIT LOOK FOR CRC
ESIGN2 ceca HSIGN1,CRCEXIT ACCUM CRC, DISCARC DATA
+SIGNL STATE MSSCB,CRCEXIT UNTIL CONE ALL 80
(LRI RN YT R Y Y PR Y R P T T P S T PR T Y PO P P e Yy L P Yy Y Y Y Y Ty YTy
LRI S R Y RNy PP R TRy PPNy Y Py Y Ty PPy PPV YV TV LY ¥ Y

. »
. HSETB - PROCESS ET8B b
. *

SEEIIEBNIS VRIS S T SS SE UGS EE PSSP SRS SN S S SSRGS S SV AN SIS AT SCRTRE RS SR
YV FISFIF I SFL VS SC ISR IS FUC SR FF LSS ISR UE VS LSS LIS F S S S S XS LRSS ESFE XS EFES

FETB CHARNE HGSYN,HETB1 SYN
. NOPR EXIT IGNORE
FETBL CHARNE HCDLE,HETB2 OLE
NOPR EXIT IGNORE
HETB2 CHARNE HCETB,HETB3 ETe
STATE HS1CRC,CRCEXIT PROCESS
+ETB3 Jume HSERRCR,RTN GOTN STATE ERROR REMFMBFR CUR STATE

SR VLRI CFFR SSRE S S AT FI S FC VIR S SR SFFIRIS SIS FENIFRFSF RS FE NNV S SIS S S URR RS EE SR
FIFFSIFE IS IVFBAIFSIFFE IV RIL PR VS LBISPFBUCF R SIS LRSIV F S LR ISP S S XX RS SRR S SRV ¥

L -
. HS1CRC - PROCESS LEFT CRC *
] L]

LA R R Al E s S e A AL RIS R RS S R R R R R R Y Y SRR S S L R PSS VY Ry T ¥
CRUIFEIV AR FIV SRSV I RL SR RSSLEFR ARSI UE LI E R LR S CLEX S VLR ES S SIS R E S XIS LEE RS

F1CRC STATE HS2CRC,CRCEXIT SET FCR RIGHT CRC ,CRC AND SXIT

D-8

POCAE

POOAE
POOAF
P0280
PodEL
PoaB2
POOE3

Pode3
P08,
PO0RS
PoOEE

PO0E6
[£11:14
POOES
[11-1]
Po0BA
PoOEs
POOEC
POOED
POJRE
POOEF
P88Ce
PogCL
POOC2

POOC2

0025
5508
ASO4
gc00
9608

A204
6000
9608

0619
0207
0029
0014
0117
o080
8003
s000
9708
0017
eose

9708

Q13F

E2 2T ISR IR LS S22 22 222222222222 2R RS S22 22 RSS2 2T 2 RS ST RS 2 2 A 2 2 X 2
X I ST RS RIS SR R YRR SR D RS SRR 2R XS XSS 2 R3S S22 S22 22 RS R SR S22 21 22 2 22
M :

» HS2CRC - PROCESS RIGHY CRC

»

B SIS BEUITA RIS BS ISP LTSNS LIS SIS S EE NI RS S SIS ICERFICLNES S SSRLERCLFEEE S
I X2 IR 2 RS2 S TS 2 R PR SR S 2SR R R Y 2 R A S X R R SR SIS S R RS S ST RS RS S R0 22 kL g

F2CRC CRCEQ B88&,H2CRC1 CRC EQUAL
JUMP HSERRCR,RTN NO, ERROPR

F2CRC1 TIBSWC HWKMSG . YES- WLE TO TIP
Jump HSTER® e TERMINATE INSUT

EA X RIS 12222 S 2SR R3S 2RSS 1 RS 2 2222 R 22 S22 T RS SRS RS S S ST S R 2 L 2 2
2RI P2 RS IR IR RS TR R ET RS S S SIS S IS S RIS TS SR SS S S RE SRS 2SS S S 2 X 2)
¥ Ll
] HSERROF - ERROR IN DATA MESSAGE *
3 -
FE VISV DR IS VSR JE SR IS SVS UV SR FLE TS U SSUS IS SIS IS S IFS USSP SIS ISR
EIE 2RISR LSS R T I R 222 2 S RS RSS2 R 2 IR 22 SR S R RS T R RS R 2 22 122 R S 2 2 d

FERRCR TIBSHC HHKERR - GIVE TIP AN =RROR HWLE

Jume HSTER¥ g TERMINATE INPUT
PRSI NE I TV S SIISIFIICSI S SRS ST IINE S USSR IFS AT SRS INCF SIS SCISTSFICRS
IR B AE NI ES SIS A SISV IS FS SIS UG FS GBS RS SSS SIS SIS S IR SIS E SRR SG LRSS IS F

e L]
. HSTERM - TERPINATE INPUT *
hd .

P NI IR IR YN NI I NI IV NGNS IR I NSINSITSINEIII IS NI ICIIENE O
(XTI ENY TP YRR Y Y2 SR S YA IV PR E P IS YI ST FRSTY RIS SIT SR RE TN ¥ 2L PN
FTERM MSTATE MSTIDLE he SET MOOEM STATE TO IDLE

TSTHXF MXCARF,HTERM1 SKIP IF CONTROLLED CARFIER

*

RSTIME O TURN OFF TIMER
RSTHMXF MXETX s RESET ETX FLAG

BLOWL 4 9y HHORKY hd MAKE WLE W/ SAVED WORKCODE

JumMe HSIOLE hd WAIT AT IOLES
FTERNYL SETMXF MXETX . SET ETX FLAG
JUNP HSIOLE . WAIT AT IDLE

SEFIBSISIVSIV SRS U TSNS ICCIVSSPIF VSRS II IS S S S AR ISSFSBELSES SIS ESSRSIN RS
AL R SZ I 222 22 T2 R TS 1S 222 S22 2L 22 RSS2 Q2 R RS XS RS 2 23

» .
. HSIDLE - ALL DCNE,IGNORE ANY ARRIVING DATA .
. L

RAR LRI XA Z 2 22222 222 2 S22 22 2R 2 2 S S22 S 22 S22 Sdd 222 222 22 R 2R 22 22 3 2)
SRS SIS SIS IVGT S SIS IS USTIS SIS LT IS SSCS IS SRS EFEISH SRS SEIRISS IS FS

FIDLE RESYNC EXIT RESYNC CtLA

60472200 B

INDEX

ACTION 5-2 Interfaces
ADDC 5-4 firmware to input states 2-1
ALNBUF 5-14 firmware to modem states 4-1
Assignable counters 5-1 firmware to text processing 3-2
input state to modem state 2-3, 4-2
Backspace 5-13 input state to text processing 2-3
BKSPAC 5-13 modem state to multiplex subsystem 4-2
BLCNE 5-3 program 1-1
BLDWL 5-10
BLKO1 5-10 JUMP 5-5
Buffer allocation 5-13 Jumps 5-5
Buffer flags 5-9
LABEL 5-2

CHAR 5-2
Character MJUMP 5-4

add 5-4 MLCB 2-1, 2-2, 5-5, 5-10

block length 5-14 MODCC 5-1

counters 5-1, 5-14 Modem states 2-3, 4-1, 5-4

current 5-7 Move

expand 5-4 field 5-13

repeat 5-4 file 1 register 5-11, 5-12

replace 5-4 MSTATE 5-4

skips 5-6, 5-7 MSTLS 5-6

special 5-7 Multiplex subsystem 1-1, 4-2

store 5-4, 5-12, 5-14
CHARNE 5-6 No-Op 5-13
Circular input buffer (CIB) 2-1, 4-1 ’ NOPR 5-14
CLA 5-7,5-10

status bits 5-8 OPS-level TIP 1-1, 2-3, 3-1, 3-2, 3-3, 5-4, 5-9, 5-10
CMPCLA 5-7 Output data processor (ODP) 1-1
CNTNE 5-3
Command driver 2-2 Parity flag 5-9
Communications line adapter (CLA) 5-7, 5-10 Port table 2-1, 4-1, 5-5
Control Process flag 5-7

input state program 2-1 Programs

modem state program 4-1 control 2-1, 3-3, 4-1

text processing program 3-3 input state 2-1, 4-2
COUNT 5-2 interfaces 1-1; also see Interfaces
Counters, character 5-1, 5-3, 5-4 modem 2-3, 4-1
CRC 5-4, 5-6, 5-11, 5-13 oganization 2-3, 3-3, 4-1
CRCA 5-2 state 1-1
CRCEQ 5-6 structure 1-1
Cv 5-2 text processing 3-1

PTTPINF 3-2
Data structures

input state program 2-2 RADDC 5-4
text processing program 3-1 RCHAR 5-4
pcc 5-3 RESYNC 5-13
DD 5-2 RPLACE 5-4
RSTIME 5-13
EOT 5-2 RSTINP 5-7
EP 5-2 RSTMXF 5-8
RSTPAR 5-9
Flags 5-7 RSTRAN 5-7
File 1 registers 3-2, 5-11, 5-12 RTRN 5-5
Index 5-5 SBLC 5-14
input state 5-5 SD 5-2
modem state 4-1, 5-5 SETFLG 5-9
text processing state 5-5 SETINP 5-7
Input data processor (IDP) 1-1, 2-1 SETMXF 5-8
Input states 2-1, 4-2, 5-5, 5-6 SETPAR 5-9
Instructions 1-1, 5-1 SETRAN 5-7
INTCRC 5-14 SKIP, SKIPB 5-6

60472200 C Index-1

Skips 5-5, 5-6, 5-7

SPCHEQ 5-7
STATE 5-5
State

input 2-1, 4-2
modem 2-3, 4-1

pointer table

1-2, 2-1, 4-1

process 1-1, 2-1
program 1-1, 2-1, 4-1
reserved (0,1, 2 and 3) 2-3, 4-2

text processing
Status, CLA 5-7

3-1

Status handler, multiplex 4-1
STORC, STORC1, STORC2 5-3

STORE 5-4

STRNTB 5-13
STRNTE 5-13
Synchronous line

Text processing

TIBSWC 5-9
TIBWL 5-9
Timer 5-12

TPADDR 5-11
TPBKUP 5-11

Index-2

5-13

3-1, 5-11, 5-12

TPCB 3-1
TPDECR 5-11

TPEXIT 5-12
TPINCR 5-11
TPINSR 5-12

TPLD, TPLDL, TPLDR 5-14
TPMARK 5-11

TPMOVE 5-14

TPST, TPSTL, TPSTR 5-14
TPRSTL 5-12

TPRSTR 5-12

TPSTLC 5-12

TPSTRC 5-12

Translate flag 5-7
Translation table 5-12
TSTCLA 5-7

TSTMXF 5-8

User flags 5-8

VALUE 5-2
wC 5-2
WL 5-2

Worklists: 5-10

60472200 C

CUT ALONG LINE

AA3419 REV. 4/79 PRINTED IN U.S.A.

-

-

COMMENT SHEET

MANUAL TITLE: State Programming Language Reference Manual
PUBLICATION NO.: 60472200 REVISION: C

NAME:

COMPANY:

STREET ADDRESS:

Ity STATE: ZiP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

TAPE TAPE
FOLD FOLD
- NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

]

BUSINESS REPLY MAIL ——

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]

]

POSTAGE WILL BE PAID BY T

CONTROL DATA CORPORATION S

Publications and Graphics Division I

P. O. Box 4380-P]

Anaheim, California 92803 R

|

]

R

]
FOLD o FOLD

CUT ALONG LINE

CORPORATE HEADQUARTERS, P.O. BOX 0. MINNEAPOLIS, MINN. 55440 LITHO IN U.SA.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

CONTROL DATA CORPORATION

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	Index-01
	Index-02
	replyA
	replyB
	xBack

