60474500

@ S CONTROL DATA
CORPORATION

NETWORK PRODUCTS
COMMUNICATIONS CONTROL PROGRAM

VERSION 3
SYSTEM PROGRAMMERS
REFERENCE MANUAL

cpc® COMPUTER SYSTEMS
255X SERIES
NETWORK PROCESSOR UNIT
HOST OPERATING SYSTEM

NOS 1

REVISION RECORD
REVISION* DESCRIPTION

A Initial Release. CCP Version 5, PSR Level 504

Publication No.

Address comments concerning this
60474500

manual to:

CONTROL DATA CORPORATION

*Revision letters I, O, Q and X are not used. Publications and Graphics Division
P.O. Box 4380-P

Anaheim, CA 92803
© 1979

by Control Data Corporation or use Comment Sheet in the back of

)) . this manual,
Printed in the United States of America

ii

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the page number indicates
pagination rather than content has changed.

Page Rev Page Rev Page Rev

Cover
Evaluation Sheet
Title Page

ii thru xiii
thru 1-18
thru 2-13
thru 3-8
thru 4-30
thru 5-26
thru 6-54
thru 7-26
thru 8-15

-1 thru 9-24
0-1 thru 10-17
11-1 thru 11-23
12-1 thru 12-16
A-1 thru A-13
B-1 thru B-6
C~1 thru C-34
thru D-8

!
L N e = N =T

H\O@\lﬁl\w‘bwl\)l—‘

-1
-1
-1

s e Rw)

thru F-2
G-1 thru G-37
H-1 thru H-92
I-1 thru I-13
Index~-1 thru
Index-19
Comment Sheet
Mailer
Back Cover

[B -l i ik i g g i B

60474500 A iii/iv

PREFACE

This manual describes those externals of the Communications Control Program
(CCP), Version 3.1, necessary to aid a systems programmer in making minor
modifications to standard CCP software. The manual also provides a
sufficient basis to understand those standard programs which interface to
any new terminal interface program (TIP) that the user writes for a
nonstandard terminal. CCP is used with the cDC® 255x Series Network
Processor Unit (NPU).

This manual is intended for the user who is familiar with CCP basic
functions and the role of CCP in network processing; these functions are
described in the CCP 3 Reference Manual. The user should be experience with
the PASCAL programming language and the CYBER CROSS support system

software. The user should also be familiar with the state programming
language.

CONVENTIONS USED

Throughout this manual, the following conventions are used in the
presentation of statement formats, operator type-ins, and diagnostic
messages:

ALN Uppercase letters indicate words, acronymns, or mnemonics either
required by the network software as input to it or produced as
output.

aln Lowercase letters identify variables for which values are
supplied by the NAM or terminal user, or by the network software
as output.

ooo Ellipsis indicates that the omitted entities repeat the form and
function of the entity last given.

Square brackets enclose entities that are optional; if omission
of any entity causes the use of a default entity, the default is
underline.

Braces enclose entities from which one must be chosen.
These delimiters indicate elements of the virtual terminal
format.

Unless otherwise specified, all references to numbers are to decimal

values; all references to bytes are to 8-bit bytes; and all
references to characters are to 8-bit ASCII-coded characters.

60474500 A v

RELATED MANUALS

The publications listed below contain additional information on both the
hardware and software elements of the 255x Series Network Processor Unit and
the CCP and related software. These publications can be ordered from
Control Data Literature and Distribution Services, 304 North Dale Street,
St. Paul, MN 55103.

Publication Title Publication Number

Network Products

Communciations Control Program

Version 3

Reference Manual 60471400

CYBER CROSS System Version 1
PASCAL Reference Manual 96836100

CYBER CROSS System Version 1
Macro Assembler Reference Manual 96836500

CYBER CROSS System Version 1
Micro Assembler Reference Manaul 96836400

CYBER CROSS System Version 1
Link Editor and Library Maintenance Programs
Reference Manual 60471200

Network Products
UPDATE Reference Manual 60342500

State Programming
Reference Manual 60472200

Macro Assembler Reference Manual

Mass Storage Operating System

NOS Version 1

Installation Handbook 60435700

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or
parameters.

vi 60474500 A

1. OVERVIEW

CCP Design
Priority Processing at
the Interfaces
OPS~Level Processing
Downline Message Processing
Upline Message Processing
CCP Features
CCP Modular Structure
CCP Programming Methods
Block Protocol
Block Routing
Point of Interface
Programs
Direct and Worklist Calls
Direct Calls on Firmware
Level
Special Call to Multiplex
Subsystem
Special Call to Firmware
Interface
Communications Using PASCAL
Globals (Tables)
Line Interface Handling
CCP Programming Languages

2. INITIALIZING AND
CONFIGURING THE NPU

Initializing the NPU
Phase 1 Initialization
Phase 2 Initialization
Pinit
Load and Dump NPU
Configuring the NPU
Changing/Deleting Logical
Connections
Link Configuration
Configure Logical Link SM
Logical Link Status SM
Enable Trunk SM
Line Configuration
Configure Line SM
Configured Line Deletion
Terminal Configuration
Configure Terminal SM
TCB Reconfiguration
TCB Deletion

60474500 A

CONTENTS

| I I A |
NOOVOUTUL U & W

ik lre

’-—‘
|
'—J

T
ey
w N

| 2 A I I |
N NS O

NNNNNI}) MDD

NN
|
(el ad L
NH OIS

3. FAILURE, RECOVERY,
AND DIAGNOSTICS

Host Failure

Host Recovery

NPU Failure

NPU Recovervy

Halt Codes and Dump
Interpretation

Logical Link Suspension

Logical Link Recovery

Trunk Failure

Trunk Recovery

Line Failure

Line Recovery

Terminal Failure

Terminal Recovery

Inline Diagnostic Aids
Alarm Messages
CE Error Messages
Statistics Messages

4, BASE SYSTEM SOFTWARE

System Monitor
Buffer Handling
Obtaining a Single Buffer
Releasing a Buffer
Releasing a Single Buffer
Releasing Several Buffers
Testing Buffer Availability
Buffer Copying
Other Buffer Handling
Routines
Timing Services
Direct Calls
Worklist Services
Making a Worklist Entry
Extracting a Worklist Entry
Basic Interrupt Processing
Macrointerrupts
Interrupt Priority
User Interface
Microinterrupts
PASCAL Globals
Standard Subroutines
Calling Macroassembly
Language Programs from
PASCAL Programs

w
[
—

1
[NE Ny

I
NN A BWWWWW

WWWWWwWwwwwwwww wWwww
i

>
|

: Lo
! }

nholl;-h

I
N O W NN L

[
1
=

vii

Defeating Type-Checking
in PASCAL Procedure
Calls

Handling Routines

PBFMAD

PBFMAH

PBMAX

PBMEMBER

PBMIN

PBTOAD

PBTOAH

Maintaining Paging Register

PBSTPMODE
PBPSWITCH
PBRDPGE
PBPUTPAGE
PBGETPAGE
PB18ADD
PB18BITS
PB18COMP
Block Functions
PBCLR
PBCOMP
Set/Clear Protect Bits
PBSETPROT
PBCLRPOT
Miscellaneous Subroutines
PBRFILE1l
PBHALT
PBILL
PBLOAD
Program Execution Timers
Console Support
General Peripheral
Processing
Console Support Services
Console Worklist Entry
Console Control Messages

5. MULTIPLEX SUBSYSTEM

Hardware Components
Multiplex Loop Interface
Adapter
Loop Multiplexers

Communications Line Adapters

System and User Interfaces
System Interfaces
Multiplex Level 1
(Firmware)

Multiplex Level 2 (PMWOLP)

OPS Level
User Interfaces
Command Driver Interface
Common Multiplex
Subroutines for TIPs

viii

6. NETWORK COMMUNICATIONS

SOFTWARE 6~1
Major Functions 6-1
Block Protocol 6-1

Block Format 6-2
Address 6-2
Service Channel 6-6
Block Types 6-6
BLK Block 6-6
MSG Block 6-6
Back Block 6-6
CMD Block 6-7
BRK Block 6-7
STP Block 6-7
Start Block 6-7
RST Block 6-8
Init Block 6-8
Bad Blocks Detected by NPU 6-8
ACTL Block 6-8
Data Block Clarifier 6~-9
Routing 6-11
Directories 6-12
Destination Node
Directory 6~-12
Source Node Directory 6-12
Connection Number
Directory 6-12
Routing Process 6-12
Altering Directories 6-15
Service Messages 6-15
Task Selection in the
Service Module 6-16
Initial Service Message
Processing 6-17
validating and Timing Out
Service Messages 6-17
Generating and Dispatching 6-17
Confiqguring, Enabling,
Disabling, Deleting
Control Blocks 6-19
Generating and Sending
Status Service Messages 6-19
Logical Link Status
Request Service
Message 6-19
Trunk Status Request
Service Message 6-19
Line Status Request
Service Message 6-20
Line Count Request
Service Message 6-21
Terminal Status Request
Service Message 6-21
Generating and Sending
Statistics Service
Messages 6-21
60474500 A

Generating and Sending
Broadcast SMs
Processing Overlay Programs
and Overlav Data
Processina Force Load
Command
CE Error and Alarm Messages
Common TIP Subroutines
Point-of-Interface
Routines
PBPIPOI and PBIIPOI
PBIOPOI - Internal
Output POI
PBPROPOI - Preoutput POI
PBPOPOI - Postoutput POI
Standard TIP Subroutines
Output Queueing ~ PBQIBLK
and PBQOBLKS
Upline Break - PTBREAK
Downline Break
Stop Transmission to a
Terminal - PTSTOP
Interface to Text
Processing Firmware =
PTTPINF
Finding Number of
Characters to be
Processed - PTCTCHR
Saving and Restoring
LCBs - PTSVXLCB and
PTRTxLCB
Common Return Control
Routine -~ PTRETOPS
Common TIP Regqulation -
PTREGIL
Saving and Restoring
Registers
PBBEXIT - Save Rl and R2
PBAEXIT - Restore Rl
and R2
Virtual Terminal Transform
Batch Virtual Terminal
Batch Virtual Terminal
Characteristics
BVT Block Protocol Usage
Interactive Virtual
Terminal
Interactive Virtual Ter-
minal Characteristics
IVT Block Handling at
Host Interface
IVT Block Protocol Usaqge
IVT Block Handling
for Communications
Supervisor
Commands for Changing
Terminal Parameters

60474500 A

6-22
6-22

6-23

7. HOST INTERFACE PROGRAM

Transaction Protocol
Transfer Functions
Directives Used
Transfer Initiation
Transfer Timing
Error Processing

Host/NPU Work Formats

Coupler Interface Hardware
Programming

Coupler Register Use

Programming the Coupler By
Use of Function Codes
Host Function Commands
NPU Function Commands

HIP Functions
Single Word Transfers

(Control)
Multiple Character Data
Transfer (Block Transfer)

Contention for Coupler Use

Requlation of Coupler Use
Host Failure and Recovery

Error Checking and Timeouts

Host/NPU Interface Sequences

Buffer Format

HIP States

8. LINK INTERFACE PACKAGE
MODULE

Trunk Protocol

Checks and Retransmissions
Cyclic Redundancy Check

Transmit Functions
Unnumbered Frame
Supervisory Frame
Information Frame

Receive Functions

Trunk Enabling and Disabling

Trunk Failure/Recovery

9. ASYNCHRONOUS (ASYNC) TIP

Hardware Considerations
Major Functions
Host Interface
Command Blocks
Terminal Configuration
User Interface
User Control Messages
Terminal Class Command
Page Width Command
Page Length Command

WO W WYWWWOWWYWWYWWOWO el
|
DN NUTUTLE B W WN [l

ix

Check Parity Command

Cancel Character Command

Backspace Character
Command

Abort Output Line Command

User Break 1 Character
Command

User Break 2 Character
Command

Control Character Command

CR Idle Count Command
I.F Idle Count Command
Special Edit

Transparent Text Delimiter

Command

Select Input Device
Command

Select Output Device
Command

Character Set Detect
Echoplex Mode Command
Operator Message Command
Page Wait Command
Access Control Keys
Terminal On/Off and
Break Control
User Input Message Format
User Output Message Format
Data Transforms
Parity Options
Character Mode Input
Processing
Logical Lines
Physical Lines
Block Mode Support
Type Ahead Mode
Keyboard Input
Paper Tape Character
Mode Input
Transparent Mode Input
Processing for Keyboard
and Paper Tape
Character Mode Output
Processing
Logical Line Aborting
Printer Output
CRT Output
Paper Tape Output
Transparent Mode Output
Processing for Printer,
CRT, and Paper Tape
Logical Line Aborting
Error Handling
Regulation
Autorecognition

9-10
9-10
9-10
9-10
9-10
9-11

9-11
9-11
9-12
9-15
9-15

9-15
9-15
9-16
9-17
9-17
9-17

9-19

9-20

9-20
9-21
9-21
9-21
9-21

9~22
9-22
9-22
9-22
9-23

10. MODE 4 TIP 10-1
Hardware Considerations 10-1
Major Functions 10-1
Data Format for Mode 4 10-2
Host Interface 10-2
Terminal Configuration 10-5
IVT Interface 10-5
Card Reader Interface 10-6
Printer Interface 10-6
Data Transforms 10-6
Downline IVT Transforms 10-7
Upline IVT Transforms 10-9
Autopoint Mode 10-9
Transparent Mode 10-9
User Break 1/Break 2 10-10
Page Wait 10-10
Page Size 10-10
Code Conversion 10-10
Cursor Control 10-10
Message Type Indicators 10-11
E Codes 10-11
Upline and Downline BVT
Transforms 10-11
Error Handling 10-14
Short-Term Error
Processing 10-14
Long-Term Error Processing 10-15
Duplicate Write Errors 10-15
Load Regulation 10-16
Autorecognition 10-16
Unsupported Mode 4 Protocol
Features 10-17
11. HASP TIP 11-1
Hardware Considerations 11-1
Major Functions 11-2
HASP Protocol 11-3
Terminal Operational
Procedure 11-5
Multileaving Block
Descriptions 11-6
Control Blocks 11-6
Acknowledge Block 11-7
Negative Acknowledge
Block 11-7
Enquiry Block 11-7
Idle Block 11-7
Control Bytes for Data
Blocks 11-7
Block Control Byte 11-8
Function Control Sequence 11-8
Record Control Byte 11-10
60474500 A

String Control Byte

Data Block Description

Operator Console Blocks
End-of-File Blocks
FCS Change Blocks

User Interface

Workstation Startup and
Termination

Work Initialization

Communications Line
Initialization

Sign-on Block

Sign-off Block

Host Interface
Code Conversion

HASP/BVT Format Conversion
Compressed Data (Upline)
Compressed Data

(Downline)
EOI/EOR Codes
Uncompressed Data
Forms Control Codes
Punch Banner Cards
HASP/IVT Format Conversion

Error Handling

CRC-16 Error

Illegal Block Make-up
Error

Unknown Response Error

Timeout Error

Block Control Byte Error

Regulation and Flow Control

Qw>

0O

Upline Regqulation

Glossary

CCP Mnemonics

Service and Command
Message Summary

Block Protocol Summary

Sample Main Memory Map
for NPU

60474500 A

11-11 Downline Data Flow Control 11-22
11-12 HASP Postprint 11-22
11-12
11-13
11-13 12. STATE PROGRAMS 12-1
11-13
Execution of State Programs 12-1
11-14 Classes 12-2
11-14 Components of a State
Program 12-4
11-14 Functions 12~-4
11-15 Input State Programs 12-4
11-15 Firmware Interface to
11-15 Input Data Processor 12-5
11-16 Modem State Program
11-17 Interface to Input
11-17 Data Processor 12-5
Text Processing State
11-17 Program Interface to
11-17 Input Data Processor 12-6
11-18 Text Processing State
11-18 Programs 12-6
11-18 Firmware Interface to
11-18 Output Data Processor . 12-7
11-19 Modem State Programs 12-8-
11-20 Firmware Interface to
Modem State Programs 12-9
11-20 Multiplex Level Status
11-20 Handler Interface to
11-20 Modem State Programs 12-9
11-21 Input State Program
11-22 Interface to Modem
11-22 State Programs 12-10
Macroinstructions 12-10
APPENDIXES
A-1 F CCP Naming Conventions F-1
B-1 G Standard TIP and SVM
Trees G-1
c-1 H Principal Data Structures H-1
D-1 I On-line Debugging Aids I-1
E-1
INDEX
xi

xii

Role of NPU in a Network 1-2
Priority and Nonpriority

Tasks in CCP 1-4
Downline Message

Processing 1-6
Upline Message

Processing 1-7
NPU Configuration

Seqgquence 2-4
Configuring Logical

Links Flowchart 2-6
Line/Terminal

Configuration Flowchart 2-9
Format of Alarm, CFE

Error, and Statistics

Messages 3-5
OPS Monitor Table Format 4-4

Buffers Formats and
Stampina 4-5

Worklist Organization 4-11
Basic Elements of the
Multiplex Subsystem 5-2

TIP and LIP/Multiplex
Worklist Communications 5-5
Command Packet General

Format 5-9
Control Command Format 5-11
Enable Line Command

Format 5-12
Input Command Format 5-15
Input After Output

Command Format 5-17
Terminate Input Command

Format 5-18
Terminate Output

Command Format 5-18
PTLINIT Relationships

with Major CCP Modules 5-24

Sample Block Data Paths

between NPU and Host 6-3
Block Header Format 6-4
Block Header Format for

Delivery Assurance 6-10
Data Block Clarifier

for CCP 6-11
Routing Directories

Format 6-13

Simplified Routing
Flowchart for PBSWITCH 6-14

FIGURES

Service Message
General Format

Flowcharts for
Important Common
TIP Subroutines

Structure of a TCB
Queue

Use of the BVT Block
Syntax Tabhle

Sample CYBER Job Stream
Card Inputs for BVT
Data Handling

Format for Terminal
Class, Page Width,
Page Length Messages

Coupler I/O Transactions

I/0 Transaction
Contention at the
Coupler 7-5

OPS and Interrupt Levels
for the HIP 7-

Coupler Register 7

Host Interface Protocol
Sequence, Host Side

Host Interface Protocol
Sequence, NPU Side

Simplified Trunk
Operation

Frame and Subblock Format

Sample Frame Formation

Sample Upline Message
Transmission Over a
Network Link

Sample Downline Message
Transmission Over a
Network Link

Frame Construction
Flowchart

LIDLE or LINIT Frame
Format 8-15

Mode 4 Protocol Message
Formats

Typical HASP
Multileaving Data
Transmission Block

Sign-on Block Format

Format of Block Control
Byte Error Block

Locating a State
Process

7-20

7-22
8-2
8-4
8-6

8-8

11-9
11-15

11-21
12-3

60474500 A

>
[}
N

> b b
|
U b W

CCP Modules

Support Programs for
TIPs

Principal Data
Structures

In-Line Diagnostic
Service Messages

OPS Monitor Table

Interrupt State
Definitions

Interrupt Assignments

Standard Subroutines

NPU Console Control
Commands

Multiplex 2 Level
Worklists

TIP/LIP OPS Level
Worklists

Optional Modem/Circuit
Functions

PTCLAS Worklist
Analysis and Action

PTLINIT State
Transition Table

Block Types

BVT Block Syntax

Formscontrol Values
for BVT Blocks

Format Effectors

IVT Block Syntax

Terminal Parameters as
Used by Standard TIPs

Coupler Status Register
Bit Assignments

Orderword Register Code

60474500 A

5-22

5-25
6-5
6-34

6-39
6-42
6-43

TABLES

10-5
10-6

10-7
11-1

11-2

NPU Status Word Codes

Address Register Code

PPU Function Commands

NPU Function Commands

HIP States and
Transitions

Comparison of Local and
L.ocal/Remote Networks

CMD Blocks for Async TIP

Transforms for Embedded
FEs

Preprint and Postprint
FEs for Asvnc TIP

Parityv Handling

Autorecognition in
Asvnc TIP

Mode 4 Nomenclature

CMD Blocks for Mode 4
Protocol

Downline IVT
for Mode 4

Downline IVT
Transforms

E~Codes

Downline BVT Transforms
for 200 UT Printer

Upline BVT Transforms

HASP Protocol Mnemonic
Definitions

HASP Significant EBCDIC
Characters

Downline IVT FEs for
HASP Terminals

State Program
Macroinstructions

Transforms

FE

7-13
7-14

9-24

xiii

OVERVIEW]

This section describes Communications Control Program (CCP) on a conceptual
level. The description gives the programmer an overview of how CCP
functions in a Network Processor Unit (NPU). For a more complete
description of how CCP functions in a network, refer to the CCP 3 Reference
Manual.

CCP provides the software necessary to process data (messages) through the
network communications portion of a Control Data network. The network
communication functions that are moved from the host (a CYBER 70/170) to the
NPU allow an application program in the host to process data as if program
was connected to a virtual terminal that was connected directly to a host
port. Since virtual terminals must be either batch or interactive, host
processing becomes almost independent of terminal type.

The network communications tasks that have been moved into the NPU are of
four types:

° Multiplexing data to and from the terminals

) Demultiplexing data and storing it in buffers for buffered high-speed
transfers to and from the host

° Converting all terminal protocols into either an interactive virtual
terminal protocol or into a batch virtual terminal protocol

e Regulation of the volume of message traffic handled

CCP is divided into several major subsections to handle these tasks. See
figure 1-1.

e Base modules to provide NPU control and general services to other
major subsections

® Network communications subsystem modules (internal processor and
service module) to provide routing and network configuration services

® A host interface (HIP and coupler) subsection

) Terminal interface (TIP or LIP) subsections for each major class of
terminal, including an interface to a remote NPU and the interface
from a remote NPU to a local NPU. (A local NPU is coupled directly -
by hardware - to the host. Any NPU lacking this coupler is a remote
NPU.) Terminal interfaces are handled by a TIP; NPU to NPU
interfaces are handled by a LIP at each end of the interface.

) A multiplex subsystem that provides the hardware and software

interface between the NPU and the various types of terminals (it also
provides the interface between local and remote NPUs)

60474500 A 1-1

LOCAL NPU
C
0
U INTERNAL ,
HOST |— P HiP - PRO- TIP }— TERMINAL
cs E CESSOR ms| -
NS Uuuv
R LBl e .
TS
—nr v TERMINAL
PS
LT
EE
XM
—1 LIP
REMOTE NPU
CS — COMMUNICATIONS INTERNAL LIP |—
SUPERVISOR ZE%OR 33
NS — NETWORK LB
SUPERVISOR TS
SVM — SERVICE TP v TERMINAL
MODULE @ PS
LT| ® o
4.NODE NETWORK Eel ® .
[] ®
NS = 0 XM
cs =1 L TIP |— TERMINAL
LOCAL NPU = X
REMOTE NPU = Y

M-375

Figure 1-1. Role of NPU in a Network

60474500 A

CCP passes ASCII messages to and from the host in interactive virtual
terminal (IVT) or batch virtual terminal (BVT) format. CCP passes messages
to and from the terminals in a code and format appropriate to the terminal.
Downline messages (output from the host) are switched to the proper terminal
and translated from ASCII IVT/BVT to terminal format and code. Upline
messages are normally received from the terminals, converted to IVT/BVT
ASCII, and passed to the host.

NOTE

A transparent mode is available. 1In this case, the message
remains in the terminals code and format throughout the
network.

CCP DESIGN

CCP can be classified as a responsive (driven) system rather than an active
system. The external stimuli that drive the system come (1) from the host
in the form of downline messages and commands and (2) from the terminals in
the form of upline messages. At the two principal interfaces (HIP or LIP on
the upline side; multiplex subsystem on the downline side), hardware and
formware do much of the preparation for a message or command transfer.

PRIORITY PROCESSING AT THE INTERFACES

At the interfaces, CCP is largely interrupt-driven and operates at priority
levels. Interrupts are processed immediately unless a higher priority task
is already being performed. The interrupt can be processed completely at
that time. However, many tasks take so much time that it is preferrable to
defer part of the task processing until later. This is done by generating a
worklist that defines the parameters for the task and then queuing that
worklist (task request) to the module that must process it. The multiplex
subsystem works this way and has its own worklist processor to schedule the
appropriate modules at a priority level.

The principal priority tasks in order of decreasing importance are as
follows:

Memory errors

Multiplex loop errors

Host coupler events

Real-time clock count

Output data demands (multiplex subsystem)

Input data frame received (multiplex subsystem)

The output of the priority level is either a message that the NPU can route
to the specified destination, or a command for the NPU which CCP interprets
to change its own processing mode.

Some major modules operate largely on the priority level (the multiplex
subsystem, for example); others have portions that operate on a priority
level while the remainder of their processing is on a nonpriority (OPS)
level (HIP, TIPs, for example). A few of the major modules do almost all of
their processing on the OPS level (internal processor and service module).

60474500 A 1-3

OPS-LEVEL PROCESSING

When no priority tasks are pending, CCP processes OPS-level tasks. There is
an OPS Monitor which assigns tasks by scanning all the nonpriority
worklists. These worklists are queued to one or another of the major system
modules. Each of these major modules (such as a TIP, LIP, HIP, internal
processor, or the service module) has its own internal worklist scanner that
determines the exact task to be performed on the basis of a workcode in the
worklist.

OPS~level worklists can originate either from a priority task or from
another nonpriority task. For example, a downline message from the host is
first handled on a priority basis as the HIP and the coupler set up to
receive the message and actually input the message into the assigned buffers
in the NPU. When the message (or part of a message called a block) has been
completely received, CCP is ready to process it. This block is passed on a
nonpriority basis to the internal processor with a worklist. The internal
processor routes the block to the proper TIP with a worklist. The TIP
passes the message (still at OPS-~level) to the multiplex subsystem. The
multiplex subsystem sets up the transfer on the OPS level and then outputs
the message to the terminal, one character at a time, on a priority basis.

Figure 1-2 shows the processing levels for most of the major modules.

MULTIPLEX
HIP SUBSYSTEM TIPS
REAL-
PRIORITY COUPLER 1/0 PROCES- | STATE
TIME CLOCK | |NTERRUPT |SING (WORK-| PROGRAMS
HANDLING | LISTS) (ASYNC 1/0)
nmeo | | T 1 T
(DELAYED CONTROL SUBSYSTEM CONTROL
NONPRIORITY OR CONTROL
(OPS LEVEL) PERIODIC)
OPS MONITOR INTERNAL SERVICE
BASE MODULES PROCESSOR MODULE

Figure 1-2.

M-379

Priority and Nonpriority Tasks in CCP

60474500 A

DOWNLINE MESSAGE PROCESSING

Downline messages originate serially from the host in blocks. A block is a
full message or one part of a message treated as a unit. The block is
passed to the NPU via the host interface program (HIP), which is responsible
for all transfers across the coupler. See fiqure 1-3. The HIP passes the
block to an internal processor, which examines the block header to gain
information about the terminal receiving the message. Each category of
terminal is serviced by one of the terminal interface programs (TIPs). The
internal processor passes the message to the appropriate TIP. The TIP
processes the message (translates it to terminal code and format) and passes
the message to the command driver in the multiplex subsystem. Before this,
the TIP reguests the multiplex subsystem to prepare the NPU-to-terminal line
for a transmission.

At the multiplex subsystem, the output message block is multiplexed (along
with other message blocks in the process of being transmitted to the
terminals) and sent to the terminal one character at a time. Actual timing
of the character transmission depends on an output data demand (ODD) signal
sent by the communications line adapter (CLA) to the NPU. An output
processor in the multiplex subsystem handles this activity. The host is
informed of message transmission progress twice: first, when the block is
completely accepted by the NPU, and again after the block is completely
transmitted to the terminal.

UPLINE MESSAGE PROCESSING

Upline messages (input to the host) originate at the terminals and are sent
one character at a time to the input loop of the multiplex subsystem. An
input processor picks up all characters and stores them in a temporary
buffer called the circular input buffer. The TIPs are responsible for
furnishing the multiplex subsystem a set of programs which are used to
demultiplex the data into line-oriented input buffers, Code and format
conversions are performed along with the demultiplexing. Since block size
is a CCP/host build-time parameter, any message that exceeds the maximum
block size is divided into blocks. Each block is then treated as a separate
message unit by CCP. The message is converted from terminal code and format
to ASCII IVT/BVT. (A transparent mode is also available for upline
messages, but it is restricted to interactive terminals.) After a complete
block has been assembled, the multiplex subsystem notifies the appropriate
TIP, which finishes processing the message. Then the TIP passes the message
block to the HIP, which in turn passes the block to the host. Terminals are
notified of processing progress according to the demands of the terminal
protocol. Figqure 1-4 shows simplified upline message processing.

CCP FEATURES

CCP provides several message processing features:
® IVT/BVT relieves host application programs of needing to handle

terminal protocols. The TIPs convert messages to/from ASCII IVT/BVT
for the host.

60474500 A 1-5

TERMINAL

M-376

HOST c MESSAGE
-1 |o HOST MESSAGE TRANSLATION ey
r R .| ROUTING | AND CONTROL| _
| PPU [—>f P INTERFACE 1 (nTeRnAL 1 (TERMINAL »| MULTIPLEX
71 |¢& PACKAGE PROCESSOR) INTERFACE g‘\;'g‘TEM)
R PACKAGE)
TIP
4
MLIA
TIP OUTPUT
MULTIPLEX
Loor
NETWORK PROCESSOR UNIT
TERMINAL | e 0 ®
Figure 1-3., Downline Message Processing
1-6 60474500 A

TERMINAL

TERMINAL

60474500 A

~——=- —-
! mLIA ' I

CIRCULAR! | I
: s’ FiNeuT - 'h»

-7 | -
I IBUFFER [T --+ »| INTERNAL
et I T it VML R L »| PROCESSOR
| il e aug
1 >
LINE-ORIENTED
INPUT v
BUFFERS
HIP
NETWORK PROCESSOR UNIT
v
COUPLER
y
1 T
I PPU i
| I |
HOST

Figure 1-4.

Upline Message Processing

M-377

Block protocol relieves the NPU and the host of upline message length
restrictions. Any size input message is accepted; when the normal
maximum number of input characters has been received (2048 bytes
including NPU-added header bytes), the block is declared full. It is
processed for shipment to the host and another block is started.
Blocks are designed so that the only block or the last block of a
message is clearly designated (MSG type block).

The multiplex subsystem provides hardware and software which makes
the terminal hardware characteristics invisible to the TIPs. The TIP
needs to know only the terminal type.

The NPU regulates its input (rejects incoming messages) under one of
several conditions - The entire NPU is short of assignable space
{buffers) for message processing - An individual TIP is using too
many buffers at any one time - An accept input/accept output flag is
being set by the NPU or by the host - Message priority is lower than
the current logical link regulation level.

In this way, the NPU rejects messages directed to it when those
messages might cause peak loading problems severe enough to stop the
NPU.

Priorities exist so that time-critical tasks can interrupt non-time
dependent tasks. The time-critical tasks are concerned with either
the multiplex subsystem (input and output processing at the lines to
the terminals plus various errors that occur during this processing)
or the NPU console. Since the console is rarely used, these latter
interrupts have minimal system impact. The lowest priority is not
interrupt-driven. It is called the operations (OPS) level. Most
processing occurs on the OPS level,

Programs are written in PASCAL or using state programming
instructions. (A few frequently used routines are written in
macroassembly language.) There is no correlation between language
used and operating priority. PASCAL was chosen for its simplicity of
use and because it is an effective langquage for manipulating table
entries. Much of the CCP processing depends on information saved in
tables. The OPS level of any program (TIP or otherwise) uses PASCAL
code.

For some purposes, it is more effective to write code on the firmware
level (also called multiplex-level processing). State programming
instructions are used for this. Such programs demulti-plex data and
translate code and format. Every TIP has at least two firmware level
programs: a downline text processing program and an upline input
state program,

The HIP does not use firmware programs directly; the LIP does not
have a text processing program. However, several of the general
support programs that are written in macroassembly language contain
portions that are written in firmware. These programs should not be
altered by any user.

Three methods of communication between modules are provided: direct

calls, queued calls (using worklists), and setting global variables
in tables, which are then accessed by other programs.

60474500 A

) A special program (LIP) handles communications between a local and a
remote NPU, The remote NPU handles most functions that a local NPU
handles in a system without a remote NPU. Downline blocks in the
local NPU are sent to the remote NPU by means of a special protocol
(CDCCP). The remote LIP reconverts the blocks to normal format and
passes them to the internal processor for normal routing and
processing by the TIPs, etc. The upline blocks are prepared in the
remote NPU as if for the HIP. Then the blocks are reformatted in
CDCCP protocol and sent to the local NPU. The LIP in the local NPU
reconstitutes the blocks and passes them to the HIP.

CCP MODULAR STRUCTURE

CCP can be considered as a group of generalized modules that provide
saervices for the TIPs, which interface the terminal protocol to the host
(block) protocol. Terminal-oriented programs are called Terminal Interface
Packages (TIPs). The modularization of CCP is shown in tables 1-1 and 1-2.

Most of CCP is always resident in the NPU., It is downline loaded from the
host, After loading is complete, there is additional communication between
host and CCP to configure all the tables which hold line-and
terminal-oriented information. A few programs use an overlay area (appendix
E).

° On-line diagnostics, a series of closed loop tests available only if
the user has purchased a network software maintenance contract.

°® Control for loading a remote NPU (if any exists) if this is the local
NPU.

CCP PROGRAMMING METHODS

CCP provides the interface for the network between terminal protocols and
the host (block) protocol. It also provides multiplexing to match the
high-speed block transfers at the host interface with the low-speed
character-by-character transfers at the line interfaces to the terminals.

BLOCK PROTOCOL
Block protocol defines three principal types of block:

) BLK and MSG blocks carry data. No block can have more than 1048
bytes. The host is responsible for block size downline; the TIPS
(input state programs) are responsible for block size upline. MSG
blocks carry a full message or the end of a message. BLK blocks
carry all segments of a message except the last or only segment.

° CMD blocks carry commands and status. The service module (SVM)
handles generalized commands. Some commands can also be directed to
and from TIPs; these do not use SVM.

° All other blocks carry communications protocol information such as
acknowledgements, breaks, and restarts.

60474500 A 1-9

TABLE 1-1. CCP MODULES

Module

Major Function

Normal Calls

Terminal-Oriented

Mode 4 TIP

ASYNC TIP

HASP TIP

Link Interface

Program (LIP)

Host-Oriented

Host Interface
Program (HIP)

General Support

Base system

Multiplex
subsystem

Network
communications

Handles synchronous Mode 4A/4C
terminals

Handles asynchronous terminals
using teletypewriter protocols

Handles synchronous HASP work-
stations

Handles link protocol between
local and remote NPUs (NPU-to-
NPU link is treated as a line
by the multiplex subsystem)

Handles block protocol between
host and NPU; transfers use
the host coupler

Includes a monitor, timing,
standard subroutines, NPU
console services, and task
calls (worklists)

Part of the base system;
contains command driver, and
input/output multiplex loops.
(The multiplex subsystem con-
sists of hardware, software,
and firmware.)

Message routing, service
messages, and common TIP
subroutines including POIs

PT4...

PT...
AP...
AF...

{HS...
HASP...

various

PTHIP...

PB...

PM...

{PN...
PT...

60474500 A

TABLE 1-2. SUPPORT PROGRAMS FOR TIPS

Programs Location+ Comments

HOST INTERFACE

Host Interface Program
(HIP) In local NPU only

LINK INTERFACE

Link Interface Program In both local and
(LIP) remote NPUs

GENERAL SUPPORT

Operating system B (Includes program execu-
tion, space allocation,
and interrupt handling)

Worklist handling B Interprogram task re-
quests

Timing services B

Standard subroutines B

Internal processor

maintenance B Building directories

Command driver M

Output processor M

Input processor M

Other multiplex

subsystem routines M

Message routing N

Service module, SVM B Handles most commands
between host and NPU

TIP support N Includes point of inter-
face (POI) programs,
block handlers, regula-
tion, and IVT command
processor

Inline diagnostics N

NPU console services B

Initialization programs Released when initializa-

tion is complete

+B Base system
M Multiplex subsystem
N Network communications

60474500 A 1-11

A special class of block (ACTL) is defined for data assurance over trunks
(links). It is used only by the LIP,

Each block header has information relating to routing: source/destination
modes (SN and DN), which are related to the host and NPU, and a connection
number (CN), which is related (through directories) to lines and terminals.

An internal processor handles downline routing by use of the directories.
Upline, the originating terminal is known. Using this information, the
multiplex subsystem can provide the SN/DN/CN information. Only the
destination code information is used during upline routing, indicating that
the data is to be shipped to the host.

All host/NPU transfers are controlled on the NPU side by the HIP. The HIP
operates at OPS-level and does not process blocks except to the extent that
it assures that a complete block is sent or received. The HIP can reject a
request to send an input block unless enough buffers can be assigned to
receive the entire block at the time the transfer is requested. No effort
is made to rereceive or retransmit portions of a block

The service module (SVM) handles most commands between host and NPU. For
service messages, the connection number (CN) is zero. For downline
commands, the SVM processes the command (such as entering fields in a
terminal related table) and returns an acknowledgement service message to
the host. In processing a service message, SVM can call on a TIP or on one
or more other support routines.

A few commands (such as starting or stopping message transmission on a line)
are sent directly between the host and the appropriate TIP., In this case,
CN is not zero.

BLOCK ROUTING

Downline block switching is done by the internal processor. Almost all
blocks pass to the receiving program (TIP, LIP, or SVM) using a worklist
entry. Invalid blocks are discarded. Upline blocks are routed by the
internal processor to the host (directly or through the local NPU) or, in
rare cases, to the NPU console.

POINT OF INTERFACE (POl) PROGRAMS

From the standpoint of the TIPs, there are certain protocol requirements
that each TIP fulfills both upline and downline. Common POI programs are
provided for these tasks.

° PBIOPOI - internal output POI. Downline block switching is handled
by the PBIOPOI. This POI generates the proper type of reply block
(acknowledgement, break, initiate, etc.) or queues the block to the
TIP or SVM for further processing.

) PBPOPOI - postoutput POI. This downline POI generates an
acknowledgement to the host indicating that the block has been
transmitted to the terminal. It also gathers statistics for the
transfer.

1-12 60474500 A

) PBPIPOI - postinput POI together with PBIIPOI internal input POI.
These POIs handle the upline block and switch it to the host.

e PBPROPOI - preoutput POI. This POI sets up table information for
downline transfers.

DIRECT AND WORKLIST CALLS

Direct calls can be made from any PASCAL program to any other. At the
OPS-level, direct calls are freely made between routines of the same kind
(such as SVM routines or TIP routines for the same TIP). Calls are also
made freely from the SVM, a TIP, the LIP, and the HIP to support routines
(base and network types.

Direct calls pass task-oriented information in either of two ways:

) Information can be stored in one or more fields of PASCAL tables
(data structures). The called program is expected to find the table
and the field.

o A small parameter list accompanies the call. This type of list is
ordinarily restricted to a few pointers and/or numbers. 1In this
manual this type of call is depicted as

MNCALL parm 1,...parmn

MNCALL is at least the first six characters of the entry point name.
Param l...parmn are the associated parameters. Parameters can be
omitted, but the delimiting commas cannot (exception: terminating
comma(s)) .

Calls between types of routines (such as a call from a TIP to the SVM or the
reverse, or a block switching call) are usually made with worklists. A
worklist is a packet of information about the requested task. Worklists are
gueued on a first-in-first-out basis to those few modules designated to
receive them. Those modules are the following:

TIPs

HIP

LIP

SWM

Internal processor

Timing processor

Multiplex loop interface adapter interrupt processor
NPU console handler

All of the named modules execute at the OPS-level. Worklists are also
queued for certain priority routines in the multiplex subsystem (multiplex
level). A worklist is considered to be an event that requires the CCP to
take appropriate action.

The monitor scans the list of OPS-level programs to find the next event
(task) which must be processed. It then passes control to that module
together with the worklist. The worklist contains a workcode that most
receiving modules (such as a TIP) use as the index to an internal switch
determining the module entry point appropriate to the reaquested task.

60474500 A 1-13

The multiplex subsystem has its own worklist processor which runs at
multiplex level (priority 3). The worklist processor handles the following
functions:

Communications line adapter status

Output buffer transmitted

Buffer threshold reached in multiplex subsystem
Unsolicited input or output on a line

Bad communications line adapter address

Illegal frame format

Timeout of output data demand (ODD)

Termination of input

CE error message generation

Hardware errors

Calling the TIP at OPS level for further processing

The event workcodes in the worklist define the internal switching for the
multiplex worklist processor.

DIRECT CALLS ON FIRMWARE LEVEL

Input state programs and text processing programs can branch during
processing. The branching calls are embedded in the code. Whenever state
programs are suspended for any reason (such as finishing processing on the
current input character and having to release control until the next input
character is available for processing), the state programs save a pointer to
the next entry point in a global table (NAPORT, MLCB, or TPCB: these are
defined later). When firmware processing resumes, the appropriate table is
checked for the pointers to the firmware entry point. Since the table is an
OpPS-level data structure, the pointers can be readily used by software on
any priority level, as well as by firmware.

SPECIAL CALL TO MULTIPLEX SUBSYSTEM

TIPs or SVM call the multiplex subsystem directly to save processing time.
This call to the command driver (PBCOIN) has a special parameter list called
a command packet which holds information used by the multiplex subsystem to
set up the table controlling this message transfer (MLCB). During the
transfer, additional information is added to the MLCB, and all programs
concerned with the transfer (whether software or firmware) refer to the MLCB
for transfer control information. The MLCB for the transfer is released
when the transfer is completed.

SPECIAL CALL TO FIRMWARE INTERFACE

A support routine (PTTPINF) is called directly by the OPS-level TIP when
firmware-level text processing is to be done. All text processing for a
block occurs in a single pass, although PTTPINF returns to OPS-level (within
itself) frequently so that interrupts can be processed. (While processing
on the firmware level, interrupts are inhibited.) For text processing, the
OPS-level TIP defines a table to control the transfer (TPCB) and fills all
the necessary fields before calling PTTPINF. The firmware accesses TPCB for
control information and adds status information used by the OPS-level TIP
after PTTPINF returns control to the TIP, The TPCB is discarded by the
OPS-level TIP when it passes the block to the next program (command driver
downline, HIP upline).

1-14 60474500 A

NOTE

Space is reserved in the TPCB for the contents of the first
16 microprocessor file 1 registers. This provides 16 full
words for communication in addition to the words already
defined in the TPCB.

COMMUNICATIONS USING PASCAL GLOBALS (TABLES)

Several instances of communications between modules and between different
levels of programs (OPS-level/firmware level) have already been cited:
worklists, MLCBs, TPCBs. Use of PASCAL globals (tables) is a way of passing
information between programs or saving information for later use. CCP
defines several major data structures as shown in table 1-3. Some of these
are defined temporarily, to be used only for one task (such as sending a
message block to a terminal) or for one sequence of tasks (such as defining
terminal information from the time when the line is enabled until the line
is disabled). Few structures are defined permanently. Even permanent
structures may need to be reconfigured each time the NPU is downloaded from
the host.

All principal data structures are defined in appendix H.

LINE INTERFACE HANDLING
Much of the line interface is the responsibility of the multiplex subsystem.
Important aspects of message transfer are as follows:

° Setting up the communication line adapter (CLA) for the transfer is
accomplished by a command originating in the host and passed to the
command driver via the TIP that controls this type of terminal
(line). The whole process can be started by a sign-on from the
terminal. Low-speed lines can use autorecognition features (part of
the TIP code) to establish line speed and code type.

° Polling synchronous lines for the next input character is initiated
by the command to start polling which originates in the host. The
TIP, however, determines the exact moment of sending each successive
polling message. The line polling message is passed to the terminal
via the multiplex subsystem. It is a timed output so that failure to
supply another input character in the specified period is treated as
a hardware error. Unsolicited input characters are also treated as
hardware errors.

° The NPU may reject input when the entire NPU is running out of
buffers.

) Output data is sent to the multiplex subsystem as a block of data in
terminal format and code. The output processor sends each character
in response to an output data demand (ODD) interrupt from the CLA.
This is a timed operation. If the ODD request does not appear in one
second, this is treated as a hardware error.

° The multiplex subsystem has limited error recovery logic. If the
attempt to send or receive a character fails n times, the line is
declared down and the TIP and SVM are called to take the appropriate
internal action and to notify the host of the line failure.

60474500 A 1-15

TABLE 1-3. PRINCIPAL DATA STRUCTURES

Structure

Major Functions

Principal
Users

Block format

Service message

formats

Console request

packet

System buffers
and buffer
control block
(BCB)

Worklists,
worklist
control block
(WLCB)

Timing tables

Logical link
control block
(LLCB)

Line control
block (LCB)

Terminal
control block
(TCB)

Command packet
(NKINCOM)

Port table
(NAPORT)

1-16

Provides vehicle for NPU-to-host
communications

Part of block format; passes commands,
status, and statistics between NPU and
host

Controls transfer to and from NPU
console

Controls space for processing. BCBs
locate assignable buffers in each of
four pools of assignable buffers.
Nominal buffer sizes are 8, 16, 32,
and 64 words (2 bytes per word)

Make major task request calls from
module to module. WLCB locates work-
lists queued to a single module

Provide periodic and delaved calls;
some timing is embedded in LCBs

Directory information for the link
(trunk) and regulation level for the
trunk; one static block per link

Line-related information, timing,
pointers to TIPs and terminal-related
structures (TCBs); statistics informa-
tion for the line; one static block
per line

Terminal-related information, includ-
ing terminal and device type, cluster
and terminal addresses, statistics,
pointers, and flags for data in the
current transfer. Dynamically
assigned when terminal is configured;
released when line disabled or termi-
nal deleted

Controls information for a multiplex
subsystem I/0; builds the MLCB

Current line (port) status; pointers
to MILCB and state programs controlling
a transfer at the multiplex port; one
static entry per line

All modules

SVM, all
modules

Base
modules

Base modules;
all modules
use buffers

Base modules;
all modules
that call
other modules

Base modules;
TIPs, SVM

Routing mod-
ules; SVM,
LIP

SVM, timing
module, TIPs,
LIP, HIP,
multiplex
subsystem

SsvVM, TIPs,
LIP, HIP,
multiplex
subsystem

Sent from TIP
to multiplex
subsystem

Multiplex
subsystem

60474500 A

TABLE 1-3. PRINCTPAL DATA STRUCTURES (Contd)

Prircipal

Structure Maicr Functicrs Users
"ultiplex line Ccortrcls infermatior for 2 ressace Multiplex
control block transfer to and from a terminal major sibsystem
{MI.CR) device used by OPS level and firmware

level (input state programs) to
exchange information; dvnamically
assigned for a single block transfer
(downline) or mescsage transfer (upline)

Text processing Controls irformaticn for converting Resrorsible
control block ccde and format (dewnline or second TIP
(TPCB) pass upline) of deta blocks; dynami-

cally assigned for a single block

TIP type table TIP related addresses SVM, base
modules

Line table Defines principal characteristics of Multiplex

a line subsystem
Modem/CLA Defines modem and communications line Multiplex
tables adapter physical characteristics subsystem
Terminal/device Defines physical characteristics of Multiplex
type tables terminals and devices at a terminal subsystemnm

The generation of the ODD and polling messages, and the use of worklists for
calls is sometimes referred to as an event driven processing system.

Physical positioning of CLAs in
preferential processing scheme.
is on the multiplev loop at any
multiplexer has first chance to
loop multiplexer is in the next

the loop multiplexer card cage generates a
Since only one line frame (input or output)
one time, the CLA farthest from the lcop

use the loop. As viewed from the frort, the
to lest slot on the right-hand side of the

cage (the last slot is not used). The CLA which has first chance to use the
loop is in the leftmost slot, and is the half of the CLA card associated
with the switches for the top half of the card. 1If this NPU's version of
CCP contains a LIP, the port servicing the LIP is usually placed in this
preferred position since the LIP is the highest speed line in the NPU.

CCP PROGRAMMING LANGUAGES

Commonly used base programs, especially those with firmware portions, are
written in macroassembly language for speed of execution. These programs
gshould not be altered. Such programs are listed in an assembly listing.

60474500 A

OPS-level support programs, r.ost priority level multiplex subsystem
programs, and the OPS level of cach TIP are written in PASCAL language.
Alterinag these programs can require altering the data structures (tables)
which these programs use to store and pass programming control information,
These programs are listed in an MPEDIT Listing and are esvrecially usable in
a PASCAL EDIT XREF listing.

NOTE

These programs can escape directly to firmware prcocessing
using the PASCAL INST instruction together with the firmware
address of the firmware proaram.

The firmware parts of the TIP are called input state programs or text
processing state programs. The multiplex subsystem has special firmware
programs called the mocdem state programs. These are used to pro~ess
CLA-generated status. If this status word occurs, it is usually in the same
frame as an input ressage character.

These programs are written using a predefined set of macroassemblv languaae
macrcinstructions called state instructions and are called in one of tlree
ways:

® A direct call from the OPS-level TIP to PTTPINF for a text processing
program,

° An event-driven cell, triggered by the placement of data in the
circular input buffer, to the modem state programs.

) A call from 2 modem state program to an input state rrogram.

The firmware programs communicate with the multiplex subsystem by releasing
control (inpuvt state programs or medem state programs) and by storing
information in Aata structures. Worklist calls can be made to the OPS-level
and nmultiplex-level multiplex subsvstem programs, or the OPS-level or
multiplex-level TIP. (Multiplex-level calls to the TIP are ordinarily
immediately converted to OPS-level calls to the same TIP.)

Text processina programs communicate with the calling TIP by releasing

control and by storing information in the TPCB., Worklist entries to the
OPS~level TIP can be made also.

1-18 60474500 A

INITALIZING AND CONFIGURING THE NPU 2

This section describes the loading, initializing, and configuring of the NPU.

Before the CCP can be loaded into the NPU, the host must prepare the load
file. Two cases of load file preparation in the host must be considered.
The normal case assumes released installation tapes and the associated
installation materials. Use the techniques described in the NOS
Installation Handbook (see preface) to generate a CCP load file and to
update a load file using corrective code release (CCR) tapes.

The special case occurs when the user initiates his own changes to CCP,
This case assumes the use of a system configure file (SCF) or the
equivalent. New modules sometimes have to be generated and prepared as
change tapes. In all cases, changes may need to be made to the SCF itself
and to the CCP tables. Table changes are normally entered by MPEDIT
statements. Such changes should be made only by qualified analysts.
Consult the CDC publication index for TIP Writer's Guide bulletins.

Assuming a load file is ready, a three-step process is used to make the NPU
into a fully operational network node:

) Dumping the contents of the failed NPU to the host. This is an
optional procedure but is normally used. If the user has purchased
network maintenance from CDC, a host application program (Network
Dump Analyzer, used through Interactive Facility (IAF)) is available
for a quick analysis of the dump. Refer to the CCP 3 Reference
Manual for standard dump formats. If the user has not purchased this
maintenance, he should devise his own programs to make the dumps
readily available for later analysis.

° Loading the NPU from the host. A special overlay loading capability
is available for the dump/load process.

) Configuring the NPU by specifying the network logical link, line, and
terminal connections for this NPU.

INITIALIZING THE NPU

Initialization takes place in two phases: the first to load and initialize
the micromemory, the second to load and initialize the macromemory.

PHASE | INITIALIZATION
BEGINA starts initialization after the following occurs:
The macromemory is downline loaded with the phase I load file

[]
° The host sends the start signal
@ The processor starts execution at location 00007g (routine BEGINA).

60474500 A 2-1

BEGINA first executes PIRAM to load the firmware microcode into the
micromemory. Then BEGINA calls PIEX to send a coupler idle status to the
host. CCP loops while waiting for the phase II load file.

PHASE Il INITIALIZATION

The system initialization routine (PINIT) receives control after the
following occurs:

® The phase II load file is downline loaded into the NPU.
) The host sends a start signal.

) The NPU starts execution at memory location 00003 (a jump to
routine BEGINX). BEGINX loads general-purpose registers 1 and 3 with
parameters for dynamic stack management (used during initialization
of recursive routines). Register 1 contains the dynamic stack last
word address; register 3 contains the dyvnamic stack first word
address. -

° BEGINX executes the PASCAL routine MAINS. This routine disables
interrupts, loads the interrupt mask, and calls PINIT.

Pinit

PINIT controls the remaining macromemory initialization. The routine resets
the deadman timer for host transfers, sets the page registers, and zeroes
page mode. It then calls each of the other initialization routines. Before
each routine is called, a specified bit is set in the initialization status
word. This word can be checked for debugging purposes if the initialization
procedures fail (see CCP Reference Manual). The routines are called in the
sequence given in the following paragraphs.

PIPROTECT

PIPROTECT sets memory protect bits. Before setting or clearing these bits,
PIPROTECT calls PISIZCORE to determine the last addressable memory location
and the last word of the buffer area. The protect bits are cleared from
every buffer word and set for all other words. Use of the protect system
prevents DMA devices from writing into any area but buffers. The protect
system can also be used with the Test Utility Program (TUP) for debugging
purposes. See appendix I.

PIBUF1

PIBUFl starts buffer initialization. PIWINIT is called to determine DN
limits, and to allocate the first node in the DN table to the NPU's local
node. The IDLNK and IDTBL tables are allocated and initialized, as is the
ORG DN table. An entry to TUP is allowed if the TUP option has been
selected.

PIGETABLE calls PILCBS to create port and circular input buffer tables. The
PIGETABLE determines the pointers to the timer, port, LCB, and subLCB
tables. SubLCBs for the MLIA, console and coupler are initialized, and the
first LCB is also initialized. The address variables for these subLCBs are
then filled.

2-2 60474500 A

PIBUFl sets the address limits of the buffer area and calls PIFR1 to
initialize the file 1 (firmware) registers. A 256 word array is used.
Dynamic values are assigned FFFFjg. Any nonused registers are set to
zero. PBEF transfers the array contents into the file 1 registers. Next,
some file 2 registers are loaded using assembly language (INST) commands.

Finally, PIBUF1l initializes the buffer maintenance control block. For each
buffer size, the pool boundary is forced to an even boundary, each word in
the buffer area is cleared, each buffer is released to the pool, and the
normal buffer threshold is set.

PIWLINIT

PIWLINIT initiates worklists. Each active worklist is allocated one
worklist-sized buffer. The put and get pointers are set. Zero-sized
worklists are assumed to be inactive, and a default size of three is used,
but no buffer is assigned.

PIINIT

PIINIT sets the NPU console to write mode so that the CCP banner message can
be displayed. PIINIT also sets up the branch-to-low-core halt routine.

This routine consists of 14 no-op instructions followed by a jump to

PBHALT. The routine starts at memory location 000035. Next, PIINIT sets
the time of day clock to the operator-assigned value (month, day, hour,
minute, second).

PIAPPS

PIAPPS initializes any trunks in the system, using the LIP. The banner
message is sent to the NPU console.

PIMLIA

PIMLIA initializes the MLIA and the CLAs. The routine checks for duplicate
CLA addresses. If any are found, PBHALT is called. The svstem is also
halted if the MLIA cannot be initialized correctly.

PILININIT

PILININIT sets up the multiplexer and coupler timinag services by adding the
MLIA and coupler subLCBs to the list of active LCBs. The data buffer size
is set up for the coupler. The deadman timer is reset.

PIBUF2
PIBUF2 clears and releases the last of the data buffers. The real-time
clock is started, the NPU initialized message is sent to the host,

interrupts are enabled, and the deadman timer is reset. PIBUF2 passes
control to PBMON (the OPS monitor routine) to start normal operation of CCP.

60474500 A 2-3

LOAD AND DUMP NPU

A detailed description of loading and dumping an NPU, whether local or
remote unit, is given in the CCP 3 Reference Manual.

CONFIGURING THE NPU
After loading and initializing the NPU, the host configures it by
establishing all logical links and logical connections for that NPU. This
is done in the following sequence:

° Logical links (LL) are configured by building the LLCB.

) Trunks are configured by building the LCBs assigned to the lines
treated as trunks.

° Lines are configured by building the line LCBs.

® Terminals are configured by building the TCBs.
See appendix H for the definition of the data structures known as LLCB, LCB,
and TCB. Format for the service messages to configure the LLCB, LCB, and
TCB are given in appendix C.

Figure 2-1 shows the sequence of configuring the NPU and the service
messages and blocks used for the operation.

HOST NPU

Confiqure logical link 1 (SM)

v

Logical link 1 configured (reply SM)

«
Confiqure logical link 2 (SM) >
< Logical link 2 configured (reply SM)
Configure line (SM) > REPEAT FOR
EACH LINE IN
P Line enabled (reply SM) THE SYSTEM
Configure TCB (SM) > REPEAT
FOR EACH
- TCB configured (reply SM) TERMINAL
IN THE
< INIT (block) SYSTEM
INIT (block) >

Figure 2-1. NPU Configuration Sequence

2-4 60474500 A

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs followed by a connection number. (Refer
to Block Protocol portion of section 6). The two node IDs represent the
nodes at which each station interfaces to the network. The order in which
they appear in the network logical address specifies the direction of the
connection (the destination node appearing first, then the source node).

The connection number specifies a full-duplex logical channel connecting the
stations. Connection number zero is reserved as a permanent service channel
for service messages.

NOTE

The network supervisor (NS) and the communications supervisor
(CS) mentioned in this section are host programs. These
programs are described in the CCP 3 Reference Manual (see
preface).

The network supervisor in the host is informed of an NPU entering this
active state by arrival of an NPU initialized service message (SM)
(restoring a failed NPU) or by the arrival of the first trunk status
response SM (indicating the trunk is operational). The latter occurs when
an operational NPU rejoins the network.

CHANGING/DELETING LOGICAL CONNECTIONS

A change to a logical connection may be required when a TCB is already
configured. This is accomplished with a reconfigure TCB SM (appendix C).
The communications supervisor in the host does not change the connection
number but sents the reconfigure TCB SM to reinitialize the block protocol
on the logical connections.

A logical connection sails when an element (line, logical 1link, or
application) required to support it fails or is disabled by a NOP or LOP
command. (NOP is the network operator, LOP is the local operator). The NPU
is informed of the termination of the logical connection either explicitly
by a reconfigure TCB SM changing the connection number to zero or implicitly
by deleting the TCB or the LCB on the logical link configuration. Neither
changing nor deleting connections is a normal part of the initial NPU
configuration process.

LINK CONFIGURATION

Two types of logical link configurations are possible in CCP:

) A link from host coupler to local NPU
) A link from local NPU to remote NPU

The functional steps in configuring a logical link are shown in figure 2-2.
The link configuration process starts when one of the following occurs:

® The NPU sends an NPU initialized SM. This is the normal
configuration situation when the NPU is successfully loaded.

60474500 A 2-5

HOST/LOCAL NPU

TYPE
NS -+ BOTH NODES ?

CONFIGURE
LOGICAL
LINK SM

NS - LOCAL NPU

VIA LINK
LOGICAL LINK
STATUS SM

l LOCAL NPU -» NS

LOGICAL LINK '
STATUS SM
OPERATIONAL
RESPONSE

START

LINK

HOST/REMOTE NPU
THROUGH LOCAL NPU

NS + BOTH NODES ‘

CONFIGURE
LOGICAL
LINK SM

CONFIGURE
LINK Sm
ERROR
RESPONSE

BOTH
NODES
CONFIGURED
)

NS + REMOTE NPU

VIA LINK
LOGICAL LINK
STATUS SM

LOCAL/REMOTE NPUs §

CLEAR/RESET
EXCHANGE

LOCAL NPU > NS l

LOGICAL LINK T
STATUS SM —
OPERATIONAL
RESPONSE

T ERROR RESPONSE NOT SHOWN

Fiqure 2-2.

EXIT

M-378

Configuring Logical Links Flowchart

60474500 A

° The NPU sends a trunk status operational SM. This occurs as the
result of an operator-entered command.

® The network operator generates an enable trunk SM by reenabling the
logical link at the host control console.

Configure Logical Link SM

NS responds to any of these situations by sending a configure logical link
SM to both ends of the logical link. Message parameters include ID1 and
ID2, the nodes comprising the link. 1IDl is the source node for the link and
ID2 is the destination node. The association between node IDs and the
coupler is predefined. The SM has a destination node corresponding to the
primary node ID of the NPU supporting the link.

The destination noce (CS in the host) establishes the data structure
necessary to support the host end of the link. The destination node in the
NPU also establishes the data structure necessary to support the link.

NOTE

Service messages to a remote node are sent over a trunk,

Once reconstituted in the remote node, such messages are
treated the same way as messages received over the coupler in
a local NPU.

When the link is established, a normal response SM informs NS that the link
is operational. If an error occurs, the reason code in the error response
message specifies the cause of the failure to confiqure the link.

Logical Link Status SM

NS in the host sends a loagical link status SM over the newly configured
link. The response SM always originates in the local NPU. Determination of
response type (normal or error) is made directly within the NPU if this is a
host/local NPU link, or indirectly by the clear/reset protocol over the
trunk if this is a host/remote NPU link. Regulation level for the trunk in
the SM reply is defined in the CCP 3 Reference Manual. An unsolicited
logical link SM reply message is sent to CS when the NPU needs to change the
regulation level on the trunk.

Enable Trunk SM
The enable trunk SM has two possible origins:

® Usual origin - NS in the host is notified by the unsolicited trunk
status SM response that trunk protocol is established.

) Diagnostics origin - NS in the host is notified that the operator at
the network console has entered a command to reenable a trunk
previously disabled for diagnostic tests.

Parameters are the port connecting the local to the remote NPU and the host
ordinal.

60474500 A 2-7

When the SM is processed, the local NPU initializes the communications line
adapter and conditions the modem for line operation. The normal response
includes information about communications line adapters and modem operation
and identifies the node of the remote NPU, which returns to on-line
condition.

LINE CONFIGURATION

Following logical link configuration, NS/CS in the host sends SMs to the
terminal NPU to configure the lines between the NPU and terminals. These
configure line SMs are handled by the service module in the receiving NPU.
Format of the SM is the same as for the configure trunk SM.

Line configuration requires sending the following line control block (LCB)
information to the NPU in the FN/FV pairs:

® Port ID for the line
® Host identifier

° Line type - includes type of duplex, communications line adapter,
modem, carrier, and circuit; answering and turnaround mode; and type
of transmission (svnchronous, asynchronous, or CDCCP).

°® Terminal type (TIP or sub-TIP required to process the terminal's
data, device type, and terminal class).

® Data necessary to fill the selected fields of the LCB.

Processing of each line is governed by LCB fields. Format of the LCB is
shown in appendix H.

A simplified flowchart for line confiquration is shown in figure 2-3.
Terminal configuration consists of configuring the terminal control block
(TCB). TCB configuration is shown on the same diagram to emphasize the fact
that a network cannot use the terminal until both the terminal's associated
LCB and TCB are configured. After configuration, the following events occur:

) The host identifies the terminal and ascertains that it either uses
an IBT or a BVT transform. The host also finds the proper regulation
level to use.

® CCP identifies the protocol necessary for the data transfers and
assigns a proper TIP to handle that protocol.

) The hardware in the communications line adapter and modem are
prepared for data transfers.

A terminal NPU is any NPU which has a terminal attached to its I/O ports.
A terminal NPU that is a local NPU can also be linked to a remote NPU.

2-8 60474500 A

Figure 2-3.

60474500 A

ENTRY l
NPU SENDS LINE
STATUS SM TO
v HOST LINE
NS SENDS INOPERATIVE
CONFIG LINE
SM TO NPU
TED STATUS
\ MESSAGE
NO
OPERATIONAL DN \
DISCONNECT DELETE
v
DISCONNECT DELETE
LINE SM LINE SM
/ TO NPU TO NPU
CONDITION
MODEM FOR
OPERATION A 4
NPU = HOST
LINE DELETED
SM
MODEM \
STATUS
OK
> EXIT
SWITCH
ON LINE
TYPE
?
SWITCHED, DEDICATED, SWITCHED,
W/0 AUTO- WITH AUTO- WITH AUTO-
DEDICATED, RECOGNITION RECOGNITION RECOGNITION
wio auTo > >
RECOGNITION
¥ NPU > CS NPU + CS ¥ NPU - CS ¥ NPU +> CS
SEND LINE SEND LINE LINE ENABLE
25’1‘;{_;”\133 ENABLE SM ENABLE SM SM WITH
b WAIT FOR AUTORECOG- WAIT FOR
LINE OPERATIVE RING NITION IN RING
PROCESS
\ 4 y
RING IN
-
(DIAL IN) 820(\:'&!?,“8
OCCURS
A \4 \
NPU SENDS
UNSOLICITED PERFORM PERFORM
LINE STATUS AUTO- AUTO
SM TO HOST. RECOGNITION RECOGNITION
LINE OP
M-380

Line/Terminal Confiquration Flowchart (Page 1 of 2)

Fiqure 2-3.

CS - NPU

CONFIGURE
TCB SM

¥ NPU + HOST

TCB
CONFIGURED
M

A

TERMINAL
REMAINS
CONFIGURED

CHANGE
OF STATUS
?

HOST
INTERVENES
HOST -+ NPU

DELETE TCB
M

l NPU - HOST

TCB DELETED
M

LINE/MODEM
FAILURE

NPU &+ HOST

UNSOLICITED
LINE STATUS sm
LINE INOP-
ERATIVE

M-381

Line/Terminal Configuration Flowchart (Page 2 of 2)

60474500 A

After line is configured, it is automatically enabled by the service
module. This allows the line to be monitored. Normal response is made
using the enable line SM response message. When the line is reported
operational, TCBs are configured. CS starts the line configuration process
whenever an NPU is loaded and all links are configured; or a network
operator enters a command generating a specific supervisory message in the
host.

Configure Line SM

For each line to be configured, CS sends a configure line SM to the NPU
connected to that terminal. All confiqure SMs contain a control block
descriptor string (FN/FV). There is one such descriptor string for each
type of configurable block in the NPU. The descriptor string equates a
field number to a field position within the control block, and allows the
associated field value to be entered into that field. Additionally, an
optional action can be defined for the field number. The action allows such
operations as validating the field value, assigning chains to other
structures, and other actions appropriate to the newly entered field.

After performing the configuration defined by the control block descriptor
string together with any defined actions, the service module attempts to
enable the newly configured line. At the completion of the enable process,
the line enabled response SM is returned.

The response message contains a reason code. If the response is normal, the
code specifies either that the line is enabled and operational, or that the
line is enabled but must wait for ring indicator/autorecognition results.

If the response is an error type, the reason code specifies the type of
error.

The four normal types of response messages correspond to the four major line
types:

Dedicated line, no autorecognition
Switched line, no autorecognition
Dedicated line, autorecognition
Switched line, autorecognition

The response to configuration of a dedicated line is line enabled (1) if the
modem of a dedicated line indicates data set ready, and (2) if (for a
constant carrier) both clear to send and data carrier detect are on.
Otherwise, line inoperative is reported.

Line operational is reported if autorecognition is not specified. A
30-second timer is started if autorecognition is specified. If no response
is obtained within the 30 seconds the TIP responds with line not
operational; the host then disconnects the line at the earliest
opportunity. If a response is obtained, line operational is reported
containing the results of autorecognition.

The response to configuration of a switched line is line enabled if a ring
indicator is present. This normal response is generated immediately. Line
enabled with no ring indicator is generated immediately if no ring indicator
is present. This is followed by a line operational SM when a dial-in

60474500 A 2-11

connection occurs. At this time, ring indicator is signalled and the NPU
returns a data terminal ready to answer the call. If, when ring indicator
is signalled, the host or logical link is not available, the NPU ignores the
dial-in.

Autorecognition for switched lines is the same as for dedicated lines.

CONFIGURED LINE DELETION

The delete line SM changes the LCB status to not configured. CCP also
deletes all TCBs for the line. The delete line SM is also treated as a
positive response to an unsolicited line inoperative SM.

TERMINAL CONFIGURATION

When the line is operational, the host configures terminals for the line by
issuing one or more configure terminal service messages. CCP responds to
the configure terminal SM by generating the TCB. The amount of information
in a TCB varies as a function of terminal or TIP type.

A TCB is built only when a line is enabled and operational. The block
remains in existence until a delete terminal SM, a disconnected SM, or
delete line SM is processed.

Terminals are identified in service messages by specifying the line, the
hardware address, device type, terminal class, and host ordinal. Cluster
and terminal address ranges are as follows (in hexadecimal):

Cluster Address Terminal Address

Mode 4A 70-7F 60
Mode 4C 70-7F 61-6F
ASYNC 0 0
HASP 0 1-7

The hardware address varies with the protocol being used by the terminal.
Mode 4A can have one or more cluster controllers on a line but only a single
console terminal on the cluster. Mode 4C can have one or more cluster
controllers per line and one or more console terminals per cluster. The
ASYNC TIP does not support any terminal addressing capability. The HASP TIP

uses the
address,
form the
range of

A single
terminal

terminal address as the stream number and does not use the cluster
For HASP, the device type is combined with the terminal address to
hardware identifier. Card readers and line printers use the full
stream numbers, but plotters share the range with card punches.

line can have numerous terminals and therefore numerous TCBs. Each
has its own TCB and each TCB is usually established at the close of

the initialization process,

Each terminal is configured with a host ordinal. The terminal host ordinal
consists of a 4-bit integer value (0 through 15) and a toggle bit (24).

The integer value is validated each time a service message is received for
the terminal and is included in each service message sent to CS referencing
the terminal. The toggle bit is validated each time a reconfigure TCB SM is
received and must oppose the setting currently held in the TCB. The setting
in the TCB is then reversed. This prevents inadvertent reinitialization of
the block protocol on a logical connection in the event that a prior
reconfigure TCB response SM was lost.

60474500 A

Configure Terminal SM

The configure terminal SM requires the service module to configure the TCB.
Message parameters include terminal address, cluster address, device type,
and the FN/FV pairs such as were defined for the configure line SM. The FV
values are used in the specified fields of the TCB.

The service message is sent to the NPU by CS in the host either as the
result of a line operational SM received and processed by CS, or as the
result of an operator command to configure the terminal when the line has
previously been reported as operational. As in the line configuration
message, the FN/FV pair designates the field number and the value to be used
in the field, and has an optional action associated with entering the field
in the TCB. The SVM sets the fields in the TCB as directed.

A response SM is sent to CS indicating whether the fields were set or not.

TCB Reconfiguration

Terminals are reconfigured to establish or delete a logical connection
number in an existing TCB, or to reinitialize the block protocol on an
existing logical connection. This occurs when CS detects a need to
establish or change a connection or modify other values in the TCB.

The format of the reconfigure terminal SM is the same as that given for the
configure terminal SM except that the subfunction code (SFC) differs. The
resulting operation in the NPU is the same except that the TCB should
already exist. The TCB is modified as specified in the SM. The optional
action is usually inhibited by the reconfigure TCB operation. The response
formats are the same as those for the configure terminal SM.

The reconfigure terminal SM provides a general mechanism for CS to control
terminals. Any action required coincident with the field change is also
provided by the reconfiquration mechanism. If the toggle bit setting in the
host ordinal byte does not change, an error response is generated. If the
connection number is not zero, the block protocol is initialized or
reinitialized on the connection.

TCB DELETION

When the operator requests that a terminal be deleted from the network, CS
sends a delete terminal SM to delete the TCB and to clean up all table and
data space associated with the TCB. CCP removes the connection from the
logical connection directory. The service module responds to CS with a TCB
deleted SM. CS is responsible for correctly deleting both ends of a
connection.

Format of the delete terminal SM is the same as the configure terminal SM
except the SFC code differs and there are no FN/FV pairs in the message.
Normal response format is similar to that of the configure terminal SM

response.

60474500 A 2-13

FAILURE, RECOVERY, AND DIAGNOSTICS

Failure and recovery of CCP depends on a number of factors:

® Host Failure - If a host fails, the NPU and its software stop message
processing.

) NPU Failure - If an NPU fails, it must be reloaded and reinitiated
from the host. Off-line diagnostic tests are useful during this
period to help identify the cause of failure.

) Logical Link Failure - Host failure was mentioned above. Link CDCCP
protocol failure leads to higher and higher levels of regulation
until message traffic ceases on the link.

® Line Failure - Lines are disconnected and terminal control blocks
associated with the lines are deleted.

® Terminal Failure - Terminal status is reported and message is
discarded.

To aid recovery and to assure dependable network operations involving the
CCP, three sets of diagnostic programs are available:

® In-line Diagnostics - These include CE error and alarm messages,
statistics messages, halt code messages that specify the reason for
an NPU failure, and off-line dumps.

e Optional on-line Diagnostics - These allow checking of circuits tso
terminals. These aids are available only if a network maintenance
contract is purchased.

'3 Off-line Diagnostics - These hardware tests for NPU circuits are
described in detail in the Network Processor Unit Hardware
Maintenance Manual.

HOST FAILURE

If the NPU fails to receive a coupler interrupt within 10 seconds, the NPU
assumes a host failure and declares the host is unavailable (see HIP
description, section 7). Host unavailability is communicated to the other
end of all logical links (local or remote) by means of a disable trunk
service message (SM). (However, the remote NPU does not allow its last
trunk to be disabled - see section 8, LIP). The NPU also sends an
informative SM to all connected interactive terminals.

HOST RECOVERY

After host recovery, the host assures that logical links are reinitialized
and new connections are made.

60474500 A 3-1

The host recovers the existing configuration status by means of a status
request SM to the NPU.

NOTE
"All SMs are shown in appendix C of this manual.

The network repeats unsolicited line status changes that are not executed in
the NPU. Most SMs sent to the network have a possibility of being rejected;
in many cases the rejection code allows the network supervisor (NS)/
communications supervisor (CS) to determine the state of the line, device,
or terminal that could not be configured.

NPU FAILURE

The host might not be aware of this condition, depending on its own state
and availability of network paths. However, the peripheral processor unit
(PPU) of the host has a 1l0-second deadman timer. If the PPU connected to a
local NPU fails to receive an anticipated input or an idle response during
this period, a timeout occurs. The host declares the NPU dead, and the NPU
dump-and-load (or load only) operation is entered to start NPU recovery.
FPailure of a remote NPU is detected locally as a failure of the remote NPU
to send data or idle blocks during a period longer than the timeout period.
The local NPU informs NS of the inoperative local/remote trunk with an
unsolicited trunk status SM, causing the host to dump and load the remote
NPU through one of the local NPUs. See section 8 for a full description of
the trunk protocol for detecting the failure and soliciting the loading of
the remote NPU.

NPU RECOVERY

The host dumps (optional) and reloads an NPU after receiving a request for
load. Stimulus for reloading comes from either the host PPU driver or the
NPU bootstrap program. The reasons for requesting a load are as follows:

® Software failure caused PPU hardware deadman timer to expire.
) Hardware failure caused PPU deadman timer to expire.

® Trunk protocol failed between local and remote NPUs.

) Operator initiated a software halt, forcing reloading.

) Operator pressed MASTER CLEAR pushbutton on the NPU maintenance
panel, causing a reload request.

The host does not request a dump after the second or subsequent reload
attempt. After n successive attempts to load, the loading operation is
aborted. The NPU is thereafter ignored until manually reactivated. After
the NPU is successfully loaded and initialized, NS sets up all logical links
for that NPU that the present state of the network allows. The methods of
loading and initializing local and remote NPUs are described in the CCP 3.1
Reference Manual. NS reports the presence of each logical link that is to
be established to CS. CS examines its configuration tables for elements
that have been affected by the change in status. CS configures and enables

3-2 60474500 A

lines supported by the NPU. For any line reported as operational, an
examination of the configuration table reveals those terminals that can be
connected. For each such terminal, both terminal and host support tables
are configured and thereby connected.

HALT CODES AND DUMP INTERPRETATION

Unless NPU stoppage resulted from host failure or was initiated hy operator
action, some fault in the NPU caused the failure. If a dump is a normal
part of the reloading cycle (and the network is normally set up that way), a
dump is sent to the host. The CCP 3 Reference Manual describes the
mechanics of transmitting the dump. Appendix B of that manual (Diagnostics)
describes dump format and its interprctation with or without the use of halt
codes.

LOGICAL LINK SUSPENSION

A logical link suspension is detected either by the local NPU determining
that the channels to the host have been inactive or by an NPU detecting that
the CDCCP protocol on the trunk supporting the logical link has failed. 1In
the first case, the presumed host failure is communicated to the distant and
local ends of all logical links. When a loss of ability to communicate is
detected at the end of a Jlogical link, all sources of data connected to that
logical link are prohibited from accepting new data. If the host is the
data source, a logical link regulation SM informs the host of the suspension
of each logical link. Interactive terminals with connections on the logical
link are informed of the suspension by an input stopped message.

LOGICAL LINK RECOVERY

A logical 1link either recovers spontaneously (e.g., return to service on a
failed channel) or is reinitialized by host (NS) action. 1In the case of
spontaneous recovery, the logical link protocol allows restart without loss
of data. Otherwise, all logical connections are re-made and the terminal
session restarts. Logical link recovery is described in detail in the CCP 3
Reference Manual.

TRUNK FAILURE

A failure of a trunk is detected by failure of the protocol as described in
the LIP description (section 8). At this time, data in queue for the trunk
is discarded. A trunk failure causes the NPU to report the failure of the

logical link supported by the trunk. An unsolicited trunk status reply SM

reports the failure.

TRUNK RECOVERY

Recovery of a trunk is detected by the trunk protocol using the LINIT
elements of the trunk protocol (see sections 6 and 8). The logical link
protocol determines when the trunk is used for data other than SMs to/from
NS. Regulation of traffic on the trunk is discussed in detail in the CCP 3
Reference Manual.

60474500 A 3-3

LINE FAILURE

Line failure is detected by abnormal modem status or by line protocol
failure. The change of status is reported to CS with an unsolicited line
status reply SM. CS deletes all terminal control blocks (TCBs) supported by
the line using the disconnect line SM. ’

LINE RECOVERY

A line cannot recover from a failure spontaneously. CS, which ocwns the
lines, must first process the unsolicited status reply (line inoperative) SM
by deleting the supported TCBs. CS then disables and reenables the line,
using the appropriate SM. At this time, the TIP commences to check for a
change. When the line status changes to operational, this is reported to CS
with an unsolicited line status reply SM (line operational). When CS
receives a message indicating that line status has changed to operational,
CS attempts to configure the supported terminals.

TERMINAL FAILURE

Where the protocol is capable of determining terminal status, the protocol
maintains records of such status. Terminal failure status is reported to CS
for network management purposes. An unsolicited terminal status reply
(terminal inoperative) SM reports the failure. The correspondent to which
the terminal is logically connected is informed of the failure by the stop.
element of the block protocol (STP). This is discussed in section 6 (block
types), Undeliverable traffic is discarded. The logical connection is not
broken on terminal failure.

TERMINAL RECOVERY

When terminal failure is detected, possible terminal recovery is monitored.
Typically, this is performed by a periodic status or diagnostic poll from
the NPU to the terminal. Terminal recovery status is reported to CS with an
unsolicited terminal status replay SM.

INLINE DIAGNOSTIC AIDS

Four types of inline diagnostic aids are provided with CCP:

® Alarm messages sent to the Network Operator (NOP). These messages
alert the NOP that numerous hardware errors have occurred and that
the engineering file in the host should be examined to find the NPU
error history.

NOTE

If the user has purchased a network maintenance contract from
CDC, the Hardware Performance Analyzer (HPA) in the host is
the most convenient means of obtaining the contents of the
engineering file. Otherwise, the user must devise his own
method of analyzing the host engineering file.

3-4 60474500 A

® CE error SMs - These messages, which report individual hardware
errors, are sent to the host engineering file. Such messages should
be examined periodically.

) Statistics SMs - These messages are generated periodically for each
NPU, line, and terminal. Statistics SMs are also generated when
frequent errors cause the error counters for the device (statistic
block counters) to overflow. All statistics SMs are sent to the host
engineering file. These messages should be processed and displayed
periodically.

° Halt messages, dumps, and dump interpretation - When the NPU stops,
halt messages are sent to the NPU console. The message contains a
code indicating the cause of the halt (a halt message indicates the
NPU came to a soft stop; in a hard stop situation, the message cannot
be generated) and the program in control when the halt command was
generated. Dumps are part of the initialization process and are
discussed in detail in appendix B of the CCP 3 Reference Manual.

Note that the halt message is delivered using PBQUICKIO; the message
does not use a SM.

Format of the SMs used to generate alarm, CE error, and statistics messages
are given in appendix C. The basic formet of all three SMs is shown in
figure 3-1.

1 2 3 4 5 6 7
Data (one or
DN SN CN BT PFC SFC more bytes)
DN - Destination node
SN - Source node, the originating NPU
CN ~ Connection number, 00 = services messages
BT ~ Block type, 04 = CMD (see section 6)
PFC - Primary function code

OA - CE Error or Alarm
07 - Statistics

SFC - Secondary function code
00 - CE error message . _
01 - Alarm message } with PFC = 0A
00 - NPU statistics)
01 - Trunk/line statistics with PFC = 07
02 - Terminal statistics ‘

DATA see table 3-1.

Figure 3-1. Format of Alarm, CE Error, and Statistics Messages

60474500 A 3-5

TABLE 3-1.

INLINE DIAGNOSTIC SERVICE MESSAGES

Message PFC SFC Data Bytes
CE Error (0]: 00 First: Error Code (EC)T
Subsequent: data (if any) - up to 27 bytes
Alarm 0A 0l Message text
NPU 07 00 Error words 1 thru 11; 2 bytes per word1~
Statistics
Trunk/Line 07 01 First: P - port from local NPU
Statistics Second: 00 to line/trunk
Third: 00 - host ordinal
Fourth: LRN - link remote node
Subsequent: explanation words 1 thru 4;
2 bytes per word*
Terminal 07 02 First two bytes: P/00 as for trunk/line
Statistics statistics
Fourth: CA - cluster address see appendix C
Fifth: TA - terminal address for values
Sixth: DT - device type
Seventh: CN - connection number
Subsequent: explanation words 1-3;
2 bytes per word+
+

Refer to appendix B of CCP 3 Reference Manual for details.

ALARM MESSAGES

\

For each alarm sent, a previous series of messages (CE errors) has
generated entries in the host engineering file for this device. These
messages are used to determine the cause of the failure and to perform
maintenance to correct the failure. See CE error codes portion of appendix
B of the CCP 3 Reference Manual.

At the network operator's console, the alarm SM appears as follows:

FROM NPU xx/RESIDENT...(text)

60474500 A

-

Currently, three alarm SM texts can be generated (text is the 50 characters
allowed for the SM text):

MAINTENANCE ALARM PORT xx (0 xx FFjg)
MAINTENANCE ALARM MLIA
MAINTENANCE ALARM COUPLER

Within an NPU, a group of counters is maintained in the statistics block for
each hardware device. Each time a CE error SM is sent, its associated
statistics counter is incremented. Periodically, each counter is compared
to a threshold value. Whenever a threshold value is exceeded, an alarm SM
is sent to the NOP. 1If a threshold is not exceeded at the periodic check
time, the counter resets to zero. Threshold value is a CCP build-time
variable. The suggested period is 15 minutes. To prevent multiple alarm

messages for the same condition, the following alarm SM restrictions are
provided:

) Lines and trunks - Only one alarm is sent after the line is enabled.
A subsequent disable/enable sequence allows another alarm to be sent.

) Coupler - Only one alarm SM can be sent per NPU load.

) MLIA - Only one alarm SM can be sent per NPU load.

CE ERROR MESSAGES

This category of diagnostic service message reports the occurrence of
hardware-related abnormalities. This includes all NPU-related hardware
(coupler, MLIA, loop multiplexers, CLAs), and (indirectly) all connected
hardware: modems, lines, and terminals. The creation of the service
message is separate from and in addition to the statistics accumulated in
the NPU and periodically dumped to the host.

To prevent swamping the NPU or host with error messages when an oscillatory
condition arises, an error counter is incremented with each error message
generated. When the counter reaches the limit specified at build time, the
event is discarded rather than recorded. The counter is periodically reset
to zero. This period is another system build-time parameter.

Six types of CE error messages are used. The types and text portion of the
messages are in appendix B of the CCP 3 Reference Manual.

STATISTICS MESSAGES

Three forms of statistics messages are used: NPU statistics, line
statistics, and terminal statistics. Each type is sent upline to the host
engineering file. The host does not reply to statistics messages.

Statistics data is placed in the statistics block for the appropriate device
(NPU, line, or terminal) by a call to PNSGATH. The call comes from either a
TIP (via the postinput or postoutput POI) or from a LIP. The HIP places
statistics information in the NPU statistics block directly. The statistics
information for NPU and terminals is kept in the TCB for the terminal (NPU

60474500 A 3-7

has its own TCB). Statistics information for lines is kept in the LCB for
the line.

One stimulus for a statistics report is a request form the time module
PBTIMAL. The period for this timeout is a system build-time parameter.
PNSGATH handles the periodic request. Two other stimuli cause PNDSTATS to
generate the message: one stimulus arises when any one of the counters that
keep the statistics overflow. In that case, the message for the NPU, line,
or terminal is immediately generated. The other stimulus arises when a line
disconnect SM, a delete line SM, or delete terminal SM is received by the
NPU. The affected line and/or terminal statistics blocks are dumped and the
appropriate statistics SM is sent before the normal response SM is sent.
When any statistics messace is sent upline, the statistics counters in that
statistics block of the TCB or LCB are cleared.

The search by PNSGATH for periodic statistics is conducted as follows: The
search cycle begins at the permanently assigned TCB for the NPU. The
statistics from this TCB are dumped if any are available. The next search
is set to begin at the first active LCB. If no NPU statistics are
available, the current search moves to the first active LCB. These
statistics are dumped, if available. The next search is set to begin at the
first TCB attached to this LCB. 1If the LCB has no statistics available, the
search moves to the first TCB. Its statistics are dumped, if available.

The next search is set to begin at the next TCB for this line. This
continues until all the TCBs for the first active line are checked. Then,
the second active line anéd all its TCBs are checked. This continues until
all TCBs and all active lines are checked. The next cycle again starts with
the NPU TCB.

3-8 60474500 A

BASE SYSTEM SOFTWARE 4

The support software can be divided into three categories: the base system,
the multiplex subsystem (technically a part of the base system), and the
network communications software. This section describes the support
software for the base system only. The HIP and the LIP can be considered as
support programs for the TIPs.

The functional grouping of support tasks is as follows:

) Base system - Operating system functions (program execution, buffer
(space) allocation, interrupt handling), timing support, data
structures support. NPU console handling is also described in this
grouping.

) Multiplex subsystem - drivers for the multiplexer I/O lines.

) Network communications software - message routing, command
interpretation (the service module), common TIP support routines
(including statistics gathering, CE error messages to the host, and
regulation assistance).

The major base subsystem components are the following:

Monitor, also called OPS monitor

Space (buffer) allocation

Timing services

Direct program calls

Indirect (worklist-driven) program calls
Interrupt handling

Directory maintenance

Global structures

Standard code and arithmetic support routines

SYSTEM MONITOR

The NPU is a multiple-interrupt-level processor. Interrupts are serviced in
a priority scheme in which all lower priority interrupts are disabled during
execution of a program that is operating at a higher priority level. When
no interrupt is being processed, the NPU runs at its lowest priority, known
as the operations (OPS) monitor level. (Refer to interrupt lines/priorities
in appendix H.)

NOTE
This priority is not to be confused with the regulation level
priority for trunks (discussed in the CCP 3 Reference Manual)

nor with the host interface priorities (discussed as a part
of the HIP).

60474500 A 4-1

The system monitor (PBMON) controls allocation of time to programs running
at the OPS level. The monitor gives control to a program by scanning the
table by worklist control block (WLCB) that defines the OPS level programs
that can be called with a worklist. Control is released to the first
program encountered with a queued worklist waiting to be serviced.

Scanning starts at entry 8 of the table (table 4-1) and continues until the
first program is encountered with a worklist attached (figure 4-1). The
monitor then determines whether the program can be called with more than one
worklist (N >1)., Worklist control block BYLISTCB contains parameter
BYMAXCNT that defines the number of worklist entries to be processed by the
OPS-level program in one pass. If N is greater than 1, the program is given
control successively until either all the worklists for that program are
serviced or until the maximum number of consecutive executions for that
program has been reached. If N is 1, the scan pointer moves to the next
entry each time the program is executed, even though there may be more
worklists attached to this program's quene.

The scan pointer automatically recycles to the BOCHWL entry when BODUMMY is
reached. If new worklist-driven OPS-level programs are added to the list,
they precede BODUMMY. A worklist must be established to drive the new
program.

Each time a program completes, PBMON initializes a timer (BTTIMER). This
timer is advanced and checked by the interrupt level timer routine (PBTIMER)
at specific system-defined intervals. If the timer expires, it indicates
that an OPS-level program has been abnormally delayed. PBMON execution then
terminates and a call to PBHALT is made. This is called an OPS timeout
condition.

BUFFER HANDLING

This function allocates any of the four types of buffers (each type has its
own free buffer pool) and returns buffers to the appropriate free buffer
pool when users are finished with the buffers. As an option, the function
also stamps buffers to keep a record of the buffer's usage and the address
of the program requesting the buffer.

Standard buffers are also assigned for the following:

Data buffer for special TIP application
Integer overlay

Buffer chaining overlay

Terminal control blocks (TCBs)

Physical I/0 request packets

Active ASYNC LCB list

Statistics (NPU, line, or terminal)
Type 1 table entries

Type 4 table entries

Timeout buffers

Diagnostic control block (DCB)
Multiplex line control block (MLCB) and text processing control block
(TPCB)

Special application flags

pooeoocooooooe o0

Figure 4-2 indicates the types of buffers assigned. Each buffer type has
its own field definitions. The fiqgure also shows the stamping technigues.

4-2 60474500 A

TABLE 4-1.

OPS MONITOR TABLE

WLG
E::?%:s Eggfy Program Enli\:kr)ies pfiéizm (fvéf,g)
BYWLCB BOFSWL 1
2 These entries not
3 serviced by moni-
4 tor. Reserved
5 for generating
6 worklists
7
.+.to here BOCHWL 8 Console 1 PBCONSOLE 2
BOINWL 9 Internal processing 1 PBINTPROC 2
BOMLWL 10 MLIA interrupt
handler 10 PBMLIAOPS 5
Current ——| BOSMWL 11 Service module
| (SVM) 2 PNSMWL 4
pointer | BOTIWL 12 Timing services 1 PBTIMAL 1
position | BOTYWD 13 TIP debug 1 PBTIPDBG 6
¢ BOLIWL 14 Line initializer 1 PTLINIT 3
BODGWL 15 (On-line
diagnostics) 0 | ==-—--- -
BOCOWL 16 HIP 1 PTHIPOPS 3
BOHLDC 17 LIP 1 PLTKOPS 3
BOM4WL 18 Mode 4 TIP 1 PTMDATIP 3
BOASYNC 19 ASYNC TIP 1 PTASNOPS 3
BOHASP 20 HASP TIP 1 PTHSOPSTIP 3
Monitor B027WL 21 Reserved 6 | == -
pointer BOHHWL 22 Reserved 0 | ===-—- -
recycles... | BODUMMY 23 Dummy for console;
\\ recycles to entry 8 0o | =------ -
4-3

60474500 A

Word

15 14 8 7 0
* BYCNT (count)
Put Pointer
Get Pointer
BYWLINDEX BYINC
First entry index Not used
Not used
* % BYMAXCNT BYPAGE
BYPRADDR
* Multi-WLCB flag
** BYWLREQ, worklist required flag
BYCNT - number of entries in the worklist gueue
BYMAXCNT - number of entries to process in one pass
BYPAGE - program page address
PYPRADDR - program address
BYWLINDEX - WLCB index
Figure 4-1. OPS Monitor Table Format
60474500 A

0 LCD FCD 0 LCD FCD 0 LCD FCD
FLAGS FLAGS FLAGS
Usable
buffer
words
m-1 CHAIN CHAIN REVERSE m-1 NIL
m-1 CHAIN FWD

Buffer of size m

LCD - last character
displacement
FCD - first character Buffer before assignment. Buffer after assignment.
displacement Chains of free buffers No chain, but word m-1
FLAGS - end indications, both forward and reverse reserved for chaining
transparent
text, queuing,
etc.
Buffer Stamping area¥*
15 1 0
0 Address of reguestor \
1 Address of bhuffer F
Pointer Most recent
to next 150 buffers
entry ——p assigned or
released
98)Last buffer
99 *entry Y, F

* Circular buffer, two words/entry

F status flag
0 put
1 get

Figure 4-2. Buffer Formats and Stamping

60474500 A 4-5

Buffer splitting continues until enough buffers of the size needed are made
available from progressively larger buffer pools or until all possible
buffer splits have been made from all larger buffer pools and not enough
buffers are available.

When testing buffer availability against a specified threshold number,
buffer maintenance attempts to adjust distribution of buffer sizes by using
buffer mating or buffer splitting to replenish buffer pools that are below
the threshold level. If buffer cannot be made available, the buffer
requester is notified that the requested operation cannot occur for lack of
buffers. Buffer mating is the converse of buffer splitting.

Buffers are potentially available in six sizes: 4, 8, 16, 32, 64, and 128
words. At installation time, the user chooses any four contiguous sizes;
for instance, 8, 16, 32, and 64 words.

In the standard system, buffers are assigned in following sizes, for the
uses indicated:

8 words - timing

16 words - MLCB and WLCB
32 words - TCB and TPCR
64 words - data

Buffers are assigned from a buffer pool of the appropriate size and are
assigned one at a time; buffers can be released singly or in a chain of
buffers. Buffers are released to the buffer pool from which they were
originally drawn.

Buffer stamping is available as a build-time option. If this option is
selected, a buffer stamping area is reserved to save diagnostic information
on the assignment and release of buffers. The circular stamping buffer, 100
words long, can save information on the most recent 50 buffer assignments/
releases. Each two-word entry consists of the address of the routine that
requested the assignment/release, and the address of the buffer. A flag in
each entry indicates whether the buffer is currently assigned or in a free
buffer pool. Information concerning the use and location of the buffer
stamp area and the pointer to the next entry to be used is found in appendix
H, the buffer subsection.

OBTAINING A SINGLE BUFFER
The calling sequence to obtain a single buffer of a specified size is
PBGET1BF (parm)

Parm is the address of the pointer to the buffer control block. PBGETI1BF is
a PASCAL function and returns the value of BOBUFPTR that points to the base
address of the buffer obtained. PBGETI1BF also uses the buffer control block
for the specified size buffer. The chain word and flag word of the newly
assigned buffer is cleared and the LCD/FCD are set to their initial values.

Interrupts are inhibited during execution. A system halt occurs if the
buffer pool is down to the last buffer and there are no buffers in
larger-sized pools available to be split. A halt occurs if the next buffer
has a bad chain address.

4-6 60474500 A

RELEASING A BUFFER

The following calling sequences are used, respectively, to release a single
buffer or a specified size to release one or more buffers of a specified
size, or to release a chain of buffers. After checking for no buffers, the
system returns the released buffer to the free pool of other same-sized
buffers. The buffer handler also ensures that the address is a valid buffer
address and determines if the buffer has already been released to the free
buffer pool. Contents of released buffers are not altered except for chain
words.

Releasing a Single Buffer
The calling sequence to release a single buffer is
PBREL1BF (parml, parm2)

Parml is a pointer to any address within any word of the buffer to be
released and parml is the address of the pointer to the buffer control
block. Parml is a PASCAL VAR parameter that is altered by the procedure so
that, upon completion, parml contains the chain value of the last buffer
released.

Releasing Several Buffers

Two methods are available to do this. The first method requires a pointer
to the first buffer in the chain to be released. The second method will not
return an error indication if the buffer address is zero. 1In both cases,
the release mechanism is actually performed by firmware. The two methods
are called by PBRELCHAIN (parml, parm2) and PBRELZRO (parml, parm2).

In both cases, parml designates a pointer to the first buffer in the chain
to be released and parm2 designates (indirectly) the address of the buffer

pool to which the buffers will be returned. If parml for PBRELZRO is zero,
no action is taken.

TESTING BUFFER AVAILABILITY
The calling sequence to test buffer availability is

PBBFAVAIL (parml, parm2, parm3)
PARM]1 specifies the number of buffers required, parm2 pointer specifies the
buffer control block required, and parm3 specifies the total free space
threshold. PBBFAVAIL is a PASCAL function; it returns a true value if the

test indicates that sufficient buffers are available. This calling sequence
can be used at any interrupt level,

BUFFER COPYING

The BBCOPYBFRS routine allows copying data from a chain of any type of
buffers to a chain of data buffers. The call is

PBCOPYBFRS (parm rcd).

60474500 A 4-7

The parameter record (parm rcd) requires the following:

The number of source buffers to copy
Source buffer size

Data buffer size

A release flag

The source chain can be released after the copying operation.

OTHER BUFFER HANDLING ROUTINES

PBDLTXT deletes data from a buffer by advancing the first character
displacement (FCD) pointer in the buffer header. See figure 4-2. PBSTRIP
returns the empty buffers to the free buffer pool of the appropriate size.

TIMING SERVICES

Timing services provide the means for running those programs or functions
which are executed periodically or following a specific lapse of time.
Seven timing services are available:

4-8

A firmware program handles the 3.33 ms microinterrupt to provide a
100-ms timing interval. This real-time clock interrupt is handled by
PBTIMER. PBCLKINIT restarts the real-~time clock following the
interrupt.

Every 100 ms, PBTIMER calls PBTOSRCH to search the chain of
time-lapsed buffer entries. These entries are assigned as needed in
response to calls from any module. If an entry's time period
elapses, and if the release flag for that entry is set, the entry is
deleted from the chain. In all cases, a worklist call is made to the
program which requested the delayed call. Timing services uses
PBTOQUE to add entries to this chain of delayed calls.

Every 500 ms, PBTIMER checks the deadman timer. The timer is reset
and the timer monitor routine is executed. If the deadman timer
expires, the monitor has spent too much time in one OPS-level
program. The NPU stops.

Every 100 ms, PTMSCAN (a part of the ASYNC TIP) scans the list of
active line control blocks (LCBs) for asynchronous terminals. If a
character is received, the timeout is set for the next character. 1If
no character has been received during the 100-ms period, a timeout is
declared, the LCB is removed from the list of active LCBs, and the
ASYNC TIP is notified by means of a worklist.

Every second, a timing routine checks all active output lines to find
whether an output data demand (ODD) interrupt has been generated for
the next character to output. If one second has passed with no new
ODD interrupt, the multiplex subsystem worklist processor is called
to declare a hardware failure for the 1line.

A time-of-day routine, PBTIMEOFDAY, is called every second. The time

of day is incremented and, if necessary, recycled to the start of day
time (00 hour, 00 minute, 00 second).

60474500 A

) Every 500 ms, PBLCBTMSCAN scans all active lines for periodic
requests. If a line's period for a specific request has elapsed, the
appropriate TIP is called, using a worklist entry. Input or output
is terminated for the line if this is requested. Inactive LCBs are
unchained from the set of active LCBs. Timer services provides the
means for chaining LCBs to this list of LCBs that require periodic
action.

DIRECT CALLS

Most OPS-level programs call other programs directly for performing minor
tasks. A few major task calls use indirect (worklist) calls. For direct
calls, the last program in the calling chain is usually PBCALL. It is used
for direct calls among OPS-level programs, for transferring between programs
on different pages, for timed or periodic calls, for service message
switching, for overlay execution, and by PBMON when that program places a
program into execution.

PBCALL calls a procedure from PASCAL by address, rather than by name.
Unlike other procedure calls, PBCALL can pass a variable number of
parameters, corresponding to the number of parameters expected by the
calling procedure. Example:

type pgms = (pgml...pgmn);

var table: array {pgms| of integer:

index: pgms;
addr ({programl} , table {pgml});

addr ({programn} , table {pgmn});

"{set up index}
PBCALL (table {index}); {call program, no parameters}

The PBCALL calling sequence is
PBCALL (addr, parml,...parmn)

addr is the address of the program to be called and parml through parmn are
optional and are parameters passed to the called program as shown:

procedure PBCALL;
begin
(store return address in called procedures entry point)
(jump to procedure)
end;
Other switching programs of importance are as follows:
) PBPAGE (parml) switches control directly from one OPS-level program

to another. Parml is a worklist index to OPS PROGRAMS SET INTO AN
INTERMEDIATE ARRAY.

60474500 A 4-9

) PBXFER (parml, parm2) transfers control to a program that may be on
another page of main memory. Parml is the called program's address
and parm2 is the dynamic page register base address. Both are global
variables.

® PBTIMAL (parm) controls all time-dependent OPS-level programs. Parm
is the array of time dependent programs (CBTIMTBL).

WORKLIST SERVICES

Worklists provide a convenient method to handle communications between
software modules that do not use direct calls. Figure 4-3 depicts the
worklist organization. The list services function manipulates worklists
with variable entry sizes. Functions provided by list services include the
following:

® Make (PUT) worklist entries from any priority level (including OPS
level).

° Make OPS-level worklist entries by terminal type.
° Extract (GET) an entry from a list.

Characteristics of lists managed by list services are as follows:
) First in, first out.

) Entries may be from one to six words in length, but all entries in a
particular list must be the same length.

e Lists are maintained in dynamically assigned space.

® There is no maximum on the number of entries in a list or on the
number of lists serviced.

Contention between priority interrupt levels is resolved by defining an
intermediate worklist array (BWWLENTRY) with 6-word entries for each
possible system interrupt level. Worklist entry parameters are assembled
and extracted in the intermediate worklist area corresponding to their
interrupt level. (A user can design his own programs to perform this
function, however.)

A worklist entry is passed to PBLSPUT and data is normally obtained from
PBLSGET through a global array named BWWLENTRY. Each element of the array
has a variant record structure consisting of one case for each logical entry
structure. When each new worklist-driven program is created, the format of
the new worklist is added as another case to the PASCAL-type definition
BOWKLSTS. Thus, each worklist has unique fields and names.

There are 17 elements to the array BWWLENTRY, one for each priority
interrupt level. To access the proper interrupt level, the global variable
LEVELNO is used. For example, to access a field of a particular worklist
entry at the proper interrupt level, the following expression is used:

BWWLENTRY [LEVELNO]. FIELDNAME

4-10 60474500

BYLISTCB

F BYCNT
BYPUT
BYGET
BYFEINC BYINC
BYFEINC
Entry
Next entry Entry
to GET
Next entry
to PUT
FWD CHAIN FWD CHAIN FWD CHAIN
F - Not used
BYCNT - Entry count
BYINC - Entry size (uniform in any one worklist)
BYFEINC - Displacement in buffer to first entry

60474500 A

Figure 4-3. Worklist Organization

The fields of the worklist entry are accessed to store information before
calling PBLSPUT or to obtain information after calling PBLSGET. For
programs that always run at a specific interrupt (e.g., OPS, CPL, and RTC),
constants can be used to increase efficiency.

If a program using PBLSPUT or PBLSGET calls a program also using PBLSPUT or
PBLSGET, information in the worklist entry BWWLENTRY might be changed upon
return. 1In such cases, one of the following techniques must be used to
ensure proper data integrity:

° Put all information in the worklist entry and call PBLSPUT before
calling the second program.

) Call PBLSGET and access all pertinent information from the worklist
entry before calling the second program.

° Save and restore the worklist entry from BWWLENTRY,

MAKING A WORKLIST ENTRY

PBLSPUT puts an entry into a worklist from any interrupt priority level.
The calling sequence is

PBLSPUT (parml, parm2)

Parml is the address of the worklist entry and parm2 is the address of the
proper worklist control block.

PBPUTYP makes a worklist entry after calculating the worklist index from the
line number. Firmware makes the actual worklist entry. Format of the call
is

PBPUTYP (parm)

Parm is the entry to be made, either in an intermediate array or in a local
save area.

NOTE
The second word of the entry is always a line number.

Two other important worklist entry builders are actually a part of network
supervision,

® PBTWLE parm - This makes a worklist entry for the specified terminal
control block (TCB). The parm is the work code. The entry made
contains the line number and the TCB pointer. PBPUTYP moves the
entry from the intermediate array to the worklist.

° PBSWLE - This makes a worklist entry for SWITCH, the procedure used
for switching. PBSWLE puts the pointer to the block to be switched
in a worklist entry for PRINTPRC. That routine calls SWITCH.
PBLSPUT moves the entry from the intermediate array to PBINTPRC's
worklist.

4-12 60474500 A

EXTRACTING A WORKLIST ENTRY

The PBLSGET routine moves entries from a worklist to an intermediate array
(BWWLENTRY). The routine is available at all priority interrupt levels. A
special firmware seaduence speeds up execution and eliminates contention
between software and firmware. Format of the call is

PBLSGET (parml, parm2)

Parml is the address of the worklist ertry and parm2 is the address of the
worklist control block. If the list is not empty, the next entry is moved
into the specified worklist area.

BASIC INTERRUPT PROCESSING

The two types of interrupts that are processed are the macrointerrupts and
the microinterrupts.

MACROINTERRUPTS

The interrupt mask register is set by an interregister command and the
interrupt system is activated bv the erable interrupt command. Upon
recognizing an interrupt, the hardware automatically stores the appropriate
program return address in a storage location reserved for the activated
interrupt state. This ensures that the software returns to the interrupted
program after interrupt processing.

With the return address stored, the hardware deactivates the interrupt
system and transfers tcontrol to an interrupt handler program that begins at
the address specified for that interrupt state. The program thus entered
stores all registers (includino the interrupt mask register and overflow) in
addresses reserved for the interrupt state. The interrupt mask register is
then loaded with a mask to be used while in this interrupt state, with a one
in the bit position indicating interrupt lines with higher priority than the
interrupt state being processed. The rrogram then saves the current
software priority level, sets the new software level, activates the
interrupt system, and processes the interrupt.

During such interrupt processing, an interrupt line with higher priority may
interrupt. However, such interrupts also cause storage of return address
links to permit secuential interrupt processing according to priority level
with eventual return through the return addresses to the mainstream computer
program.

When processing is completed at that level, the computer exits from an
interrupt state by inhibiting interrupts, restoring registers to their
pre-interrupt states, and executing the exit interrupt state command (EXI).
This command retrieves the return address stored when the interrupt state
was entered. Control is transferred to the return address and the interrupt
system is again activated.

60474500 A 4-13

Interrupt Priority

Interrupt priority is under control of the computer program. Priority is
established by an interrupt mask for each interrupt state that enables all
higher priority interrupts and disables all lower priority interrupts. When
an interrupt state is entered, the mask for that state is placed in the mask
register. Bit 0 of the mask register corresponds to interrupt state 00, bit
1 corresponds to interrupt state 01, etc. A bit that is set means that the
corresponding interrupt state has a higher priority than the interrupt state
to which the mask belongs. Thus, there can be as many as 17 levels of
priority.

NOTE

Priority of any interrupt state can be changed during program
execution.

Standard subroutines are provided for servicing the interrupt mask. These
subroutines are as follows:

Set Interrupt Mask

Reload Interrupt Mask

Perform a logical AND with the mask
Perform a logical OR with the mask

PBSMASK - SET INTERRUPT MASK

This routine loads a specified interrupt mask value into the M register to
become the new interrupt mask. The calling sequence is

PBSMASK (parm)
Parm is a value parameter specifying the new interrupt mask value to be
loaded into the M register. The resultant mask becomes the new mask value
in the M register.
PBAMASK - AND INTERRUPT MASK (AND PBLMASK)

PBAMASK, in conjunction with PBLMASK, is used to selectively disable and
enable one or more software interrupt levels. The calling sequence is

PBAMASK (parm)
Parm is a value parameter specifying the value to be logically ANDed with
the current interrupt mask.
PBOMASK - OR INTERRUPT MASK
PBOMASK employs a logical OR function to combine a given interrupt mask with
the current mask in the M register, the result becoming the new interrupt
mask value in the M register. The calling sequence is

PBOMASK (parm)

Parm is a value parameter specifying the mask value to OR with the current
interrupt mask.

4-14 60474500 A

User Interface

Because each interrupt handler is an independent program, there are no
specific user interfaces. However, pertinent information is necessary to
enable modification of, and additions to, the interrupt handlers.

An array contains interrupt masks for the 16 interrupt states. To access a
particular interrupt mask, use the interrupt state number as an index.
LEVELNO is the global variable where the current software priority level is
saved.

Table 4-2 lists the 16 interrupt states, gives the value for the delta field
for its exit instruction, the storage location for its return address, and
the location of the first instruction of the interrupt handler program.
Current interrupt assignments and their associated software priority are
listed in table 4-3. The seventeenth state (no interrupt line associated)
is the OPS level.

TABLE 4-2. INTERRUPT STATE DEFINITIONS (PBINTRAPS)

Interrupt Etignlngizc_ nga;igzrgf Firzgc?gég?ugiion
State Field Vvalue Address of Interrupt

Handler Program
00 00 0100 0101
01 04 0104 0105
02 08 0108 0109
03 oc oiocC 010D
04 10 0110 0111
05] 14 0114 0115
06 18 0118 0119
07 1c 01l1cC 011D
08 20 0120 0121
09 24 0124 0125
10 28 0128 0129
11 2C 0l2C 012D
12 30 0130 0131
13 34 0134 0135
14 38 0138 0139
15 3C 013C 013D

60474500 A 4-15

TABLE 4-3. INTERRUPT ASSIGNMENTS
\

InE?;;upt gggg:?i; Interrupt Description Hgggier

0 Pl Memory parity, program protect,
power failure, software breakpoint PBLNOO

1 P6 NPU consale PBLNO1
2 P2 Multiplex loop error (MLIA) PBLNO2
3 P3 Multiplex subsystem - Level 2 PBLNO3
4
5 P7 Coupler 2 PBLNOS
6 p7 Coupler 1 PBLNO6
7 P8 Spare
8 P9 Real-time clock ' PBLNOS
10 P11l Spare
11 P12 Spare
12 P13 ODD input parallel PBLNOC
13 Pl4 Input line frame received (MLIA) PBLNOD
15 -—- Macro breakpoint PBLNOF

MICROINTERRUPTS

Three microinterrupts are also serviced.

4-16

The output data processor processes the output data demand (ODD)
interrupt that each communications line adapter generates to indicate
that it is ready to output another character. The output data
processor (part of the multiplex subsystem) gets the next character
from the appropriate line-oriented output buffer and puts the
character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

The input data processor processes the interrupt produced when the
entry of either a data character or communications line adapter
status into the circular input buffer is completed. The input data
processor (also part of the multiplex subsystem) gets the next
character from the appropriate line-oriented output buffer and puts
the character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

60474500 A

® The input data processor processes the interrupt producued when the
entry of either a data character or communicatons line adapter status
into the circular input buffer is completed. The input data
processor (also part of the multiplex subsystem) uses the designated
input state program to demultiplex the character into the appropriate
line-oriented input buffer.

) The timing services firmware processes the 3.3-millisecond clock
interrupt, which is used as the time base for all timed NPU functions.

PASCAL GLOBALS

CCP provides a number of PASCAL globals, frequently in the form of fields
embedded in tables. Appendix J shows the tabular form of the principal data
structures and describes the fields. A complete listing of the CCP PASCAL
globals is in an MPEDIT listing.

STANDARD SUBROUTINES

Standard subroutines are a miscellaneous group of support routines which
perform the following tasks.

Convert and handle numbers

Maintain paging registers

Perform block functions

Set or clear protect bit

Perform miscellaneous other tasks

Table 4-4 lists these standard subroutines. Some of these frequently used
routines are written in macroassembly language rather than in PASCAL.

CALLING MACROASSEMBLY LANGUAGE PROGRAMS FROM PASCAL PROGRAMS
A procedure call to a macroassembly source code program from a PASCAL-coded

program is the same as a call to any other PASCAL program. The same calling
sequence code 1is generated, that is:

RTJ program
ADC parml
ADC parmn

A macroassembly program handles parameters as PASCAL parameters. To treat a
parameter as a value parameter, the user loads the contents of the parameter
and stores it locally and then passes the address of the store location to
the called program. To treat a parameter as a variable parameter, the user
loads the address of the parameter and uses this as a pointer. Packed
record parameters that are fields less than full word length are unpacked
into a temporary word and the address of the temporary word is passed to the
called program.

60474500 A 4-17

TABLE 4-4. STANDARD SUBROUTINES
Subgoutine Description Type** | Lanquaae* Cth§?ng
ame Defeated
PBCLR Clear block of main memory NI PP Yes
PBCLRPROT Clear protect bit NI MA Yes
PBCOMP Compare two blocks NI MA Yes
PBFILE] Load/display file 1 0 MA Yes
PBFMAD Convert from ASCII to binary R PF No
PBFMAH Convert from ASCII to birary R PF Nc
PBGETPAGEX Reads page register from
specified bank NI MA Yes
PBHALT System halt NI PP Yes
PBILL Illegal call - passes to TIP
for CCP variants NI PP Yes
PBLOAD Load a canned message R PP Yes
PBMAX Get max of 2 numbers NI PF No
PBMEMBER Test ASCII set membership NI PF No
PBMIN Get min of 2 numbers NI PF No
PBPSWITCH Loads page registers 30 and 31 NI MA Yes
PBPUTPAGE Writes page registers to either
bank NI MA Yes
PBRDPAGE Reads dynamic page register NI MA Yes
PBSETPROT Set protect bit 0] MA Yes
PBSTPMODE Sets page mode NI MA Yes
PBTOAD Convert to ASCII decimal R PP No
PBTOAH Convert to ASCII hexadecimal R PP No
PB18ADD Adds to 18-bit address (paging) R PP No
PB18BITS 18-bit address functions (paging) R PP No
PB18COMP Compares two 18-bit addresses
(paging) R PP No
TOTIME Programs execution timer R PP No
TOSTART Starts program execution timer R PP No
TOSTOP Stops program execution timer R pp No
**NI = Noninterruptable *pPp = PASCALL procedure
O = OPS level only PF = PASCAL function
R = re-entrant MA = Macroassembler
4-18 60474500 A

A functional call to a macroassembly program differs in that a PASCAL
forward reference describing the calling sequence must appear before all
function calls in the source code so that type-checking on the function
return value can be performed.

Defeating Type-Checking in PASCAL Procedure Calls

The PASCAL compiler is & one-pass compiler. When it encounters a procedure
call in source code, it may or may not have processed the calling sequence
of the called program. If the calling sequence has been processed, all
parameters of the user's procedure are error checked. The type of each
parameter corresponds to the type specified in the calling sequence and the
number of parameters must be the same. No expressions and no fields of less
than a word in length in a packed record can be variable parameters.

If the calling sequence of a program has not been processed when a call to
it is encountered, the PASCAL compiler generates a subroutine jump to an
external symbol. The standard calling sequence is then generated; however,
no error checking is done on the parameters. This situation defeats
type-checking in the procedure call.

If used carefully, defeating type-checking can be a useful technique. For
example, arrays with the same element types but of different lengths are
treated as different types by PASCAL. Therefore, any program needing
variable length array input as a variable parameter must defeat
type-checking. Ramifications of defeating type-checking are as follows:

) All calls from PASCAL programs to macroassembly procedures
automatically defeat type-checking unless defined as FORWARD.

® PASCAL and macroassembly functions cannot defeat typechecking.

HANDLING ROUTINES

Seven handling routines for number conversion are listed below and described
in the following paragraphs,

) PBFMAD - converts from ASCII decimal to binary
® PBFMAH -~ converts ASCII hexadecimal to binary
o PBMAX - finds larger of two numbers

® PBMEMBER - tests number to find whether it is a member of the user
defined subset of ASCII code

° PBMIN - finds smaller of two numbers
e PBTOAD - converts binary to ASCII decimal

) PBTOAH - converts binary to ASCII hexadecimal

60474500 A 4-19

PBFMAD — Converts from ASCIl Decimal to Binary

PBFMAD converts up to five ASCII decimal characters in a buffer into binary
number contained in one 16-bit word. The calling sequence is

PBFMAD (parml, parm2, parm3).

Parml is integer tvpe; the converted word is returned in parml. Parm2 is a
pointer specifying the buffer address where the decimal digits to be
converted are located. Parm3 is an integer variable specifying the index
where the first decimal digit to be converted is located within the buffer.

PBFMAD is a Boolean function. If PBFMAD is true, the conversion was
successful; otherwise, there was either bad data or a bad index.

PBFMAH — Converts from ASCIlI Hexadecimal to Binary

PBFMAH converts up to four ASCII hexadecimal characters in a buffer to a
binary number stored in one 16-bit word. The calling sequence is

PBFMAH (parml, parm2, parm3),.

Parml is a variable parameter of type BOOVERLAY; the converted word is
returned in parml. Parm2 is a pointer to the buffer address where the
hexadecimal characters to be converted are located. Parm3 is an integer
parameter specifying the index where the first hexadecimal character to be
converted is located within the buffer.

Like PBFMAD, PBFMAH is a Boolean function. If true, PBFMAH indicates the
conversion was successful. Otherwise, there was either bad data or a bad
start/stop index.

PBMAX — Funds the Larger of Two Numbers

PBMAX is a function that returns the larger (maximum) of two given numbers.
The calling sequence is

PBMAX (parml, parm2).

Parml and parm2 are integers to be compared. The larger of parml and parm2
is returned by PBMAX.

PBMEMBER — Tests ASCIl Set Membership

PBMEMBER determines whether or not a given ASCII character is a member of a
user-defined set of ASCII characters. PBMEMBER overcomes the 255X PASCAL
restriction of having one-word, l6-element sets by accessing an array of
one-word sets. A character is broken up for testing by the following format:

7 6 4 3 0

Index into Element number
array of sets in set

4-20 60474500 A

In an array of type JSACIISET, 128 bits are reserved (one for each possible
ASCII character), where JSASCIISET = array (0..7) of SETWORD. Characters
are located in the set by bit number; for instance, a blank (2031¢) is bit
number 20316. Bits of the JSASCIISET array are numbered as follows:

Word 0 | Word 1 | Word 2 | Word 3 | Word 4 | Word 5 | Word 6 | Word 7|
F 0 1F 10 2F 20 3F 30 4F 40 G5F 50 6F 60 7F 70

Bit Numbers (hexadecimal)

Therefore, the value initialization for testing hexadecimal characters is

var JSHEXSET: JSACIISET;

value JSHEXSET = (0, 0, 0, 3Fi16.
———
digits 0-9

7E1¢6, 0, 0, 0);

characters A-F

The calling sequence is

PBMEMBER (parml, parm2).
PARM1 is a value parameter of type BOOVERLAY containing the character to
test. Parm2 is a variable parameter of type JSASCIISET and is the set to

test parml for membership. PBMEMBER is a Boolean function; it returns a
true value if the character is in the set and a false value otherwise.

PBMIN — Funds the Smaller of Two Numbers

PBMIN is a function that returns the smaller (minimum) of two given
numbers. The calling segquence is

PBMIN (parml, parm2).

Parml and parm2 are integer value parameters. The smaller number of parml
and parm2 is returned by PBMIN.

PBTOAD — Converts Binary to ASCIl Decimal
PBTOAD converts a binary number contained in one 16-bit word to as many as

five ASCII decimal characters. Leading zeros are suppressed. The converted
digits are stored in a specified position in a buffer, followed by a blank.

The calling sequence is

PBTOAD (parml, parm2, parm3, parm4).

60474500 A

Parml is an integer containing the word to be converted; parm2 is a pointer
to the buffer that stores the converted ASCII digits. Parm3 and parmé4 are
integers specifying the start and stop indices for storing the converted
ASCII digits in the buffer. The JMCNVTO (convert to ASCII) system table is
used by this routine.

PBTOAH — Converts Binary to ASCIl Hexadecimal

PBTOAH converts a binary number contained in one 16-bit word into four ASCII
hexadecimal characters. The converted characters are stored in a specified
position in a buffer, followed by a blank. The calling sequence is

PBTOAH (parml, parm2, parm3, parmé)

Parml is a hexadecimal value and contains the word to be converted. Parm2
is a pointer to the buffer that stores the converted hexadecimal
characters. Parm3 and parm4 are integers specifying the start and stop
indices for storing the characters in the buffer. The SMCNVTO (convert to
ASCII) system table is used by this routine.

MAINTAINING PAGING REGISTERS
Five subroutines maintain the paging address system for an NPU with more
than 65K words of main memory. (The maximum allowable address is 3FFFF)¢g

and requires 18 bits.) Three other subroutines allow arithmetic and
functional operations on 18-~bit paging type addresses.

PBSTPMODE — Sets Paging Mode
PBSTPMODE sets the page mode for one of the three possible types of
operation: no paging, paging with bank 0 page registers, or paging with
bank 1 page registers. Calling sequence is
PBSTPMODE (parm)

Parm is the input index:

0 - use page mode 0; bank 0 registers

1 - use page mode 1; bank 1 registers

2 - absolute; no paging
PBPSWITCH — Performs Page Switching

PBPSWITCH loads the two dynamic page registers (30 and 31) using the input
specified page register base value. Calling sequence is

PBPSWITCH (parm)
Parm is the page register base value for the program to be executed

(programs must execute within a single 2K-word page). Output of the
subroutine is that the dynamic paging registers are ready for use.

4-22 60474500 A

PBRDPGE — Reads Dynamic Page Register

PBRDPGE reads the contents of the dynamic page register (30) and returns the
base address in the register to the reguestor. Calling sequence is

PBRDPGE

There are no input parameters.

PBPUTPAGE — Write Specified Page Register

PBPUTPAGE loads a specified page register (number and bank) with a specified
value. Calling sequence is

PBPUTPAGE (parml, parm2)

Parml contains the page number; a bank flag uses the leftmost bit (flag = 0
indicates bank 0; flag = 1 indicates bank 1). Parm2 is the 9-bit value to
be loaded in the designated register. Upon return, the specified page
register is loaded.

PBGETPAGE — Reads Specified Page Register

PBGETPAGE reads th contents of the specified page reglster and returns them
to the user. Calling sequence is

PBGETPAGE (parml, parm2)
Parml designates the number of the register and uses the leftmost bit as a

bank flag (flag = 0 indicates bank 0; flag = 1 indicates bank 1). Parm2 is
the location used to return the page register contents to the caller.

PB18ADD — Add Bit Addresses

PB18ADD adds two 18-bit addresses toagether. Format of an 18-bit address is
as follows:

Word 1 2
lower 16 bits

L

upper 2 bits
The calling sequence is
PB18ADD (parml, parm2)

Parml and parm2 are the two addresses to be added in BO18RITS format.
Output is the single 18-bit address.

60474500 A 4-23

PB18BITS — 18-Bit Address Functions

PB18BITS performs one of five possible functions:

Stores a number into an 18-bit address

Reads the specified 18-bit address

Clears the protect bit in an 18-bit address
Sets the protect bit in an 18-bit address
Forms an 18-bit address from a 17-bit address

The calling sequence is
PB18BITS (parml, parr2, parm3)

Parml is an 18-bit address, parm2 is the read/store word address and parm3
specifies the function to be performed. The output is a properly performed
function.

PB18COMP — Compares Two 18-Bit Addresses

PB18COMP makes a comparison between two 18-bit addresses. The calling
sequence is

PB18COMP (parml, parm2, parm3)
Parml is the A address, and parm3 is the B address. Parm2 specifies the
type of comparison: A COMP B, where COMP is ore of =, #, ’ ’ , Or
The output is a Booclean function: true if A COMP Bl; false if any
other condition exists.

BLOCK FUNCTIONS

Two standard block function subroutines are provided: PBCLR clears the
contents of a block, and PBCOMP compares the contents of two blocks.

PBCLR — Clears a Block of Main Memory

This subroutine is used to clear any block-sized area in mair memory.
Calling sequence is

PBCLR (parml, parm2)
Parml is the starting address of the blcocck to be cleared; parm2 is the
number of consecutive words to be zeroed. Output is a cleared block of
memory.
PBCOMP — Compares Two Equal Length Blocks

After block comparison, a Boolean answer (1 represents true, 1, false) is
returned to the caller. The calling sequence is

PBCOMP (parml, parm2, parm3)

4-24 60474500

Parml and parm2 are the starting address of the two blocks to be compared;
parm3 is the number of words compared in each block. Output is the Boolean
true-false function, which depends on whether the blocks had identical
contents,

SET/CLEAR PROTECT BITS

The protect bit is bit 17 of the main memory word. It cannot be used for

data, but it can be used to denv unprotected programs access to the word.

The bit (as well as the parity bit) is dropped by most interregister

transfers.

PBSETPROT - Set Protect Bit

PBSETPROT sets the protect bit at a specified address. Calling sequence is
PBSETPROT (parm)

Parm is the address of the protect bit to be set.

PBCLRPOT — Clear Protect Bit

PBCLRPOT clears the protect bit at the specified address. Calling sequence
is

PBCLRPOT (parm)

Parm is the address at which the protect bit is to be cleared.

MISCELLANEOUS SUBROUTINES

PBFILE1 — Load/Display File 1

PBFILE]l consists of two routines: PBEF (load file 1) and PBDF (display file
1). Both programs execute specified firmware sequences to perform the load
or display operations. Because of formware timing constraints, a maximum of
12 transfers per call can be specified during on-line operation. During
off-line operation, as many as 256 transfers can be specified.

PBEF transfers the contents of memory to file 1 starting at a specified
register. Calling sequence is

PBEF (parml, parm2)
Parml is a value paramter formatted as follows:

15 7 0
Number of words to load First File 1 register to load

To load all 256 registers, set parml to 0. Parm2 is a value parameter
specifying the address of the first memory location to transfer.

>
I

60474500 A 25

PBDF transfers the contents of file 1, starting at register n, to memory.
Calling sequence is

PBDF (parml, parm2)
Parml is a value parameter formatted as follows:

15 7 0

First File 1 register

Number of words to move to transfer

To display all 256 registers, set parml to 0. Parm2 is a value parameter
specifying the memory address to receive the first register transfer.
PBHALT — Stops the NPU

PBHALT stops the system after a serious error has occurred. The following
information is saved, starting in consecutive words at address 303¢.

) Return address of program calling PBHALT, or a value relating to a
halt code
® Halt code (indicates a reason for the halt) '
) Software registers
Calling sequence is

PBHALT (parm)

Parm is an integer value parameter specifying the halt code. The halt
message printed at the local console is

*HALT XXXXX YYVYY
XXXXx is the return address of the program calling PBHALT and yyyy is the
hexadecimal halt code or a value relating to the halt code.
PBILL — lllegal Calls

This subroutine is used to stop the NPU when calls are made to TIPs that are
not a part of the CCP system. Calling sequence is

PBILL

PBILL calls PBHALT with the halt code for an illegal TIP call.

PBLOAD — Load a User-Defined Message

The PBLOAD module loads a user—-defined message into a buffer starting at the
designated character position. The calling sequence is

PBLOAD (parml, parm2, parm3, parmé4)

4-26 60474500 A

Parml points to the location where the user-defined message is to be loaded
and parm2 specifies the text of the message to be loaded. Parm3 specifies
the starting position in the buffer of the first character in the message
and parm4 specifies the position of the last data character in the message
after it is loaded in the buffer. Parm4 overrides the message length.
Example:

VAR Buffer: BOBUFPTR: (assume a 32-word buffer)
MSG : JOML1O:
Value MSG = (% 0123456789] =);

PBLOAD (BUFFER, MSG, J1FRSTCHAR, J1LST32);
NOTE

All user-defined messages must have a right bracket () as
the end of message delimiter unless parm3 minus parm4 is less
than the message length.

PROGRAM EXECUTION TIMERS

Three subroutines (TOTIME, TOSTART and TOSTOP) provide execution timing
andlysis for programs. TOSTART sets a status mode (flag bit 206) which can
be used by an external hardware instrument to start a timer. TOSTOP resets
the status bit. TOTIME measures the elapsed time. Output is the total
execution time as measured by an exterral hardware instrument.

CONSOLE SUPPORT

This group of modules provides the terminal interface package (TIP) for the
NPU console. Conscle devices communicate with the NPU via the A/Q register
interface, rather than through the multiplex subsystem interface. Two
categories of subroutines are discussed in the following paragraphs.

[) General peripheral processing: these modules assign device, start,
read, and write,

) Console processing: this set of routines forms the console TIP.

GENERAL PERIPHERAL PROCESSING

These subroutines provide for general peripheral functions.

° Starting I/0 and (if necessary) assigning a device. Two routines
perform these services: PBIOSER and PBSTARTIO.

PBIOSERV reformats the logical request packet (LRP) from the user
into a physical request packet (PRP). A device code is assigned and
the subroutine tests whether there are too many messages awaiting
delivery. If so, the new message is discarded. Then PBSTARTIO is
called.

60474500 A 4-27

PBSTARTIO either starts the I/O, using the LRP packet from PBIOSERV,
or it queues the logical request packet to the appropriate driver,
using a worklist entry. If immediate I/O is requested but cannot be
accomplished, the request is rejected. This subroutine sets up the
device controller table parameters and issues the I/0O start command.
The individual driver interrupt handler then takes control.

° Testing whether device is ready, PBTCSTIORDY. Input to this routine
is the device number. 1If the device status indicates it is ready for
I/0, a ready indication is returned to the caller.

° Off-line quick output, PBQUICKIO. This permits one buffer (a short
message) to be output while the NPU is in off-line mode (such as
initialization breakpoint or during halt operations). As input, the
caller specifies the device to be used and the location of the
message to be sent.

® Timeout: PBIOTMP and PBTMEOUT are discussed in this section with
other timing services.

° Ready and write a character to a peripheral device. PBWRITE and
PBREAD handle the single character transfers. Characters passing
over the A/Q channel are in unpacked format, right justified in the A
register. (Q register usually carries peripheral addressing
information.)

PBWRITE writes data or director functions to a local peripheral device. The
subroutine uses the macroassembler routine PBPUTCHAR, to write the
character., Attempts are made to write until a retry threshold is reached.
At that time, the attempts cease and the reject error is counted by the
reject counter. This can cause a peripheral device timeout. 1In any event,
Q and A values are saved for debugging.

PBREAD reads data or status from a peripheral device. The routine uses the
macroassembler routine, PTGETCHAR, to read the character until a retry
threshold is reached. At that time, the attempts cease and a reject error
is added to the count in reject counter. This can cause a peripheral device
timeout. In any event, Q and A values are saved for debugging.

) Common driver completion PBDRCOMPL. This routine uses a completion
code in the logical request packet. It requires device
identification and a physical request packet address as input.
Completion actions can include one or more of the following:

- Releasing message output buffers

- Changing I/0 request flags

- Starting another message transfer

- Releasing current messages physical request packet

CONSOLE SUPPORT SERVICES

For certain applications, a local console is used as a communications
supervisory position. Two console functions can be selectively activated or
deactivated by the console operator (or at build time). These functions are
orderwire and diagnostics. When one or both of these functions are
transferred to a remote console, the corresponding functions must be
deactivated at the local console.

4-28 60474500 A

The orderwire function is employed for both input and output traffic
messages. The diagnostic function is used for input of diagnostic commands
and output of hardware diagnostic messages.

CONSOLE WORKLIST ENTRY

A type BOCHWL worklist entry is made by the internal process output
procedure for every message placed in an empty console queue. Such entry
contains the console TCB address.

CONSOLE CONTROL MESSAGES

All console control messages begin with a slash (/) and end with an
end-of-transmission code, control D (this consists of pressing the CONTROL
and D keys simultaneously). Table 4-5 contains console control messages and
the results of each.

Several routines consititute or support the console TIP.
° PBDISPLAY queues a message of 300 characters or less for output on
the local console. The input parameter is the location of the
message to display. This routine is a part of the base and is not

technically a part of the console TIP. The routine could be used to
support other devices.

NOTE
Every canned messagde must have a right bracket (]).
Canned messages use 32-word buffers.
PBDISPLAY uses the PBLOA and PBIOSERV subroutines to load a canned message
and to provide I/O services. PBDISPLAY also uses system structure JCOPSLRP
(OPS-level console legical request packet).
) PBOFMT formats the output for the console. Characters are converted

to hexadecimal and stored in a new buffer chain.

TABLE 4-5. NPU CONSOLE CONTROL COMMANDS

Command Function
/SUP Puts console in supervisory mode
/ORD Puts console in orderwire (diagnostic) mode
/OVL Puts NPU in overlay mode
/REQ Message interrupted by manual interrupt is requeued to console
/CAN Message interrupted by manual interrupt is cancelled
/MTQ Flushes console queue
égT} Controls routing of service messages (input, output, and
LOC locally generated messages)
MSNOP Generates message to NOP

60474500 A 4-29

) PBTTYSETMODE switches the console (keyboard/display or
teletypewriter) between read and write modes. If the console is in
TUP mode a TUP message flag is set. If the output interrupt flag is
already set, the subroutine restarts the message output. Otherwise,
the message is sent to the console primary output device. A 5-minute
timeout period is set when entering read mode.

) PBTTYINT is the interrupt handler for the console. Interrupts clear
the I/O timer. Action depends on the interrupt type, such as one of
the following:

Type Action
spurious count as spurious interrupt
alarm clear console
manual change mode
data (read) read character
data (write) write character
other clear interrupt

This interrupt handler is composed of several local subroutines.

® PBSUPMSG decodes and executes supervisory (/SUP) input messages from
the NPU console. The subroutine routes to the NPU console input
service messages (SMs), output SMs, locally generated SMs, and
messages that are directed to the network operator (NOP). An error
message is generated if the messages cannot be routed.

) PBIFMT formats input messages from the console. Supervisory messages
(/SUP) are specially flagged. Messages are converted from
hexadecimal and the buffer headers are prepared. conversion takes
place in a new chain of buffers. This subroutine uses other local
internal subroutines. Otherwise the output is a message in normal
network block protocol. If this is a /SUP message, the action
directed by the /SUP message has been performed.

[PBQCONSOLE sets a format flag for the console format (message
heading) and then calls PBQIlBLK to queue the message to the console
TCB. This routine is called from PBSWITCH which detects that the
message is to be sent to the console, rather than upline to the host,
or that the message is to be sent both upline and to the console.

4-30 60474500 A

MULTIPLEX SUBSYSTEM '

The multiplex subsystem contains the hardware, microprograms, and software
elements necessary to provide data and control paths for information
interchange between the various protocol handlers (TIPs and LIP) and all
communications lines. Design of the subsystem is based on the multiplex
loop concept, which is a demand-driven system for gathering input data and
status from the communications lines, and distributing output data and
control information to the communications lines. All of this is done on a
real-time basis. Figure 5-1 shows the basic elements of the multiplex
subsystem.

A major purpose of the multiplex subsystem is to transfer the task of
processing lines according to physical characteristics from the TIPs to the
multiplex subsystem programs. The TIPs need only command the multiplex
subsystem according to the logical characteristics of a line; the physical
characteristics are handled by the multiplex subsystem and are transparent
to the TIPs.

Line-oriented input and output buffers provide temporary storage for data.
The input data is placed in the circular input buffer (CIB) from which it is
later extracted (demultiplexed), transformed to IVT/BVT ASCII format by the
appropriate TIP and moved into a line-oriented input buffer. The part of
the TIP that does this (called input state programs) is controlled by the
multiplex subsystem. The OPS-level TIP informs the command driver where the
programs are located; the multiplex subsystem's input processor controls
execution of the input state programs. For trunks, the frames are removed
from the block formatted data, and the blocks are reconstituted.

Output data is picked by the output processor from an output data buffer.
The address of this buffer and other transfer information is supplied by the
OPS-level TIP to the command driver. Data is in terminal format or (for LIP
frames only) in downline frame format.

The multiplex subsystem is event-driven by interrupts: an output data
demand (ODD) for the next character of output data, or the input line frame
received interrupt which indicates that data (and possibly CLA status) is
contained in the CIB ready for demultiplexing.

The interrupts are handled with global information stored in various

tables. The subsystem processes data on a character-by-character basis
while user programs (TIPs) process data on a message or block basis.
Circuit, modem, and subsystem status is detected and transferred to the TIPs
using OPS-level worklist calls. Control information is received from the
TIPs in the form of a call to the command driver with an attached command
packet. This command packet is used to set up the multiplex LCB (MLCB),
which is the principal table used to control the transfer.

¥

HARDWARE COMPONENTS

The multiplex subsystem includes the multiplex loop interface adapter
(MLIA), loop multiplexers, and communications line adapters (CLAs).

60474500 A 5-1

(4]

¥V 00S¥L¥09

COMMUNICATIONS PROCESSOR

TiP
OR
Lip

MULTIPLEX
SUBSYSTEM
MICROPRO-
GRAMS AND
SOFTWARE

INCLUDES COMMAND
DRIVER, INPUT DATA
PROCESSOR, AND
OUTPUT DATA
PROCESSOR

] .
MEMORY BUFFERS
{

INPUT LOOP
///OUTPUT LOOP
4
|
y
LOOP
MULTI-
< PLEXER
!
MULTIPLEX A l
LoopP °
INTERFACE MULTIPLEX °
1 ADAPTER LOOPS
71 (MLIA)

T

CLA — COMMUNICATIONS LINE ADAPTER
TIP — TERMINAL INTERFACE PROGRAM
LIP — LINK INTERFACE PROGRAM

Figure 5-1.

Basic Elements of the Multiplex Subsystem

MULTIPLEX SUBSYSTEM

CLA

>

COMMUNI-
CATIONS
LINES OR
TRUNKS

MULTIPLEX LOOP INTERFACE ADAPTER

The MLIA provides hardware interface between the multiplex input/output
loops and the multiplex subsystem software. The major functions are as
follows:

) Management of the I/0 loops

° Input data buffering - compensates for the difference in rate at
which characters are removed from the input loops and the rate at
which they are stored in the main memory

® Output data demand (ODD) detection and buffering
° Multiplex loop error detection

) Generation of interrupts for the multiplex subsystem microprograms
and software for functions such as:

- Output data demand received
- Line frame received
- Loop error conditions

LOOP MULTIPLEXERS

Each loop multiplexer provides an interface between a group of as many as 32
CLAs and the demand-driven multiplex loop. 1Its primary function is to
receive parallel data from the CLAs and present it to the serial input loop
in the loop cell format. Conversely, it assembles serial data in the loop
cell format from the output loop and presents it to the CLAs in parallel
form.

COMMUNICATIONS LINE ADAPTERS (CLA)

The CLAs provide the interface between the loop multiplexers and the
communications lines. The primary functions of the CLAs are to assemble
serial data from the communications line into parallel data and present this
data to the loop multiplexer or, conversely, to disassemble parallel data
from the loop multiplexer and present it in serial form to the
communications line. The CLA operating characteristics can be altered under
program control for such functions as signhal rate, character length, parity,
and stop bit duration.

SYSTEM AND USER INTERFACES

The system and user interfaces are described in detail in the following
paragraphs to promote a better understanding of the internal multiplex
subsystem interfaces.

SYSTEM INTERFACES

A TIP or a LIP is a multilevel program that executes at three processing
levels:

60474500 A 5-3

° Multiplex level 1 (firmware or microcode level)
) Multiplex level 2 {macrocode level)

°® OPS level (processing to satisfy network protocol such as service
message handling and timing)

Control passes to the TIP or multiplex control OPS level by use of worklist
entries. Direct calls are used for the other two levels. The TIP or LIP
must handle the worklist entry according to the program's current processing
state. State programs operate on firmware levels. State instructions
provide a type of reentrant processing where the states are related to entry
points, which are in turn related to the various stages of processing a
message. Each TIP or LIP decision logic that switches processing to the
entry point determined by a combination of the worklist and the program
state.

Figure 5-2 shows the multiplex level 2 worklist codes and the programs
responsible for handling and generating these codes. Table 5-1 summarizes
workcode functions for level 2 and table 5-2 describes the workcode
functions for OPS level.

Multiplex Level 1 (Firmware)

This level of interface program processing handles all incoming characters
and status. Worklist entries generated by the input state programs are
directed to either multiplex level 2 or to OPS level for processing. For
preliminary handling of CLA status, states 0, 1, 2, and 3 are reserved to
handle special status, as follows:

° 0 is reserved for CLA status such as parity errors and data transfer
overruns.

) 1 is reserved for DCD dropped.
) 2 is used when a TIP uses too many system buffers.
° 3 is used when buffer threshold is reached.

CLA status is analyzed by Modem State Programs and status that indicates a
hard error is sent to level 2. For a two-wire line the transition of data
carrier detect signal can be used as a logical end of text (ETX):; that is,
instead of generating a good block worklist entry, the input states wait for
data carrier not detected to generate a good block received. This
eliminates an extra worklist entry. The good block that is received is
issued to OPS level for processing. For more information, refer to section
12 and the State Programming Reference Manual (see preface).

Multiplex Level 2 (PMWOLP) -

This processing runs at the multiplex interrupt level. It is entered by
means of worklist entries received from the modem state programs, the
multiplex subsystem firmware, and the command driver. Processing at this
level is primarily of an error nature. Each interface program provides code
to process the workcodes at this level (MNOBT, MMCHOUT, MMFES, MMBREAR) plus
any of its own that are generated in level 1. For synchronous TIPs and
LIPs, no processing is required since the MMOBT entry is optional.

5-4 60474500 A

¥ 00S¥L¥09

MUX LEVEL 1 | MUX LEVEL 2 | OPS LEVEL
(FIRMWARE) (MACROCODE) (TiP)
|GOOD BLOCK, BAD BLOCK, ETC. I AOWK1-=-AOWK33 _
TIP/LIP l |
AOTIMEOUT | TiMING
STATE < POTIMEQUT
STATE \MS Mwusurcul » pmwoLp _RELEASED BUFFERS I SERVICES
MODEM I AOQUEOUT
STATE MMCLAS PMWOLP — PTCLAS CE ERROR »EXIT INTERNAL
PROGRAMS l l | AOSTOP PROCESS
—
| MMTIMRE MMFES, MMBREAK o o l
MMUNSOD% »] PMWOLP CE ERROR CMD ' AOSMEN
DRIVER
MMUNSIN TERMINATE _AOSMTCB
1/0 l
—MMTIMODD CLEAR < POSMDA | ;‘g‘g&fg
MMINEND — INPUT
M TERMINATED | < A0SMDLTCE
v AOSMRCTCB
X l I oMWOLP | AoHARDERR = «-ROSMRCTCS |
¢ l UNOTIFY TIP
1 HMOBT » PMWOLP > TIP/LIP |
R
x MMCAOR ; » pMwoLp —CE_ERROR EXIT |
3 MMIFFO » PMwoLp —CE ERROR o o |
E TERMINATE OUTPUT cMD
CMD
l TERMINATE INPUT DRIVER org;gzn
OPTIONAL WORKLIST __ ... o l
l OPTIONAL WORKLIST 1./ 1o I
M-386

Figure 5-2. TIP and LIP Multiplex Worklist Communications

TABLE 5-1.

MULTIPLEX LEVEL 2 WORKLISTS

Workcode

Wor kcode to TIP/LIP Functions

MMCLAS - CLA status error, implies line error to ipt

MMUNSOD - Unsolicited output, implies hard error to
PMWOLP, which disables the line

MMUNSIN - Unsolicited input, implies hard line error to
PMWOLP, which disables the line

MMTIMODD - ODD timeout, implies hard line error to PMWOLP,
which disables the line

MMTIMRE - Modem response timeout, implies hard line error
to PMWOLP, which disables the line

MMOBT MMOBT Output block transmitted

MMBUTCH MMBUTCH Multiplex subsystem buffer threshold reached;
buffers released

MMCHOUT MMCHOUT 100~ms timeout

MMCAOR - CLA address out of range - not seen by IP

MMIFFO - Illegal lineframe format - not seen by IP

NMINEND AQHARDERR Input buffer terminated, response to PMWOLP
command for hard errors

MMFES - Framing error status, TIP causes command driver
to send delimiter to line (asynchronous lines)

MMBREAK - User break, TIP is called (asynchronous line)

tip = appropriate interface program:

TIP or LIP

5=6

60474500 A

TABLE 5-2. TIP/LIP OPS LEVEL WORKLISTS

Workcode to TIP/LIP Description
AOWK1 Good block received from IP input states
AQWKn Other workcodes from IP input states
AOHARDERR Hard error detected from IP at level 2
AQTIMEOUT Line timeout from timing services
AOQUEOUT Output buffer queued to IP's TCB
AOSMEN Line enabled from service module
AQOSMTCB TCB configured from service module
AQOSMDA Disable line command from service module
A0SMDLTCB Delete TCB command from service module
AOSMRCTCB Reconfigures TCB command from service module

INPUT STATE PROGRAM WORKLISTS

Input state program worklists from firmware level are passed directly to the
TIP or LIP at OPS level.

The primary workcode generated is the CLA status workcode. After the modem
state programs have analyzed the CLA status for soft errors (data carrier
detect dropped and others) and determined that this is not a soft error, the
input processor modem state program generates a CLA status worklist to this
processing level. The CLA status handler (PTCLAS) analyzes the status and
generates the appropriate CE error code. If a hard error is detected on the
line, PMWOLP terminates input and output over the line. All multiplex level
worklists for the line are discarded until a response from the terminate
input logic is received. At that time the TIP is sent an OPS-level
AOHARDERR worklist.

MULTIPLEX SUBSYSTEM FIRMWARE WORKLIST ENTRIES

The multiplex subsystem firmware generates nine worklists to the interrupt
level. These can be divided into three categories:

) Hard errors for unsolicited input or output, and timeouts for output
data demand or modem response.

60474500 A

) System notices that the output buffer has been transmitted, the
buffer threshold has been reached so no more buffers can be assigned,
or 100 ms have elapsed since the last input character was received.

[) Multiplex loop errors that the CLA address is out of range or an
illegal line frame format was detected.

COMMAND DRIVER WORKLIST ENTRIES

The command driver generates worklist entries at the request of the
interface program. Two optional entries are generated: input terminated
and output terminated.

OPS Level

The OPS level portion of the interface program handles all line or terminal
polling, output block preparation, input block processing, service module
interface for configuring lines and terminals, and line error handling.
Worklists are generated to the interface processor by four different
programs: 1) interrupt programs multiplex level 1 and 2; 2) timing
services; 3) internal process; and 4) service module.

) Multiplex level 1 worklist normally indicates a good block has been
received on input. The block is passed to the point of interface
(POI) program and the interface program resumes its processing at the
initial entry point or at the saved entry point where processing was
suspended.

® Multiplex level 2 worklist indicates a hard error has occurred on the
line. Normally a line nonoperational service message is sent to the
host. Service on that line is discontinued until the host takes
continuation action.

e Timing services worklist is generated whenever the line control block
timer expires (BZLTIMER). It can be used as a means of delaying
service on a line or indicating a line failure (failure to respond).

° Internal process worklist indicates that output is queued to the
terminal control block (TCB) for this interface program. This is a
worklist for interface programs that stop processing when there is
nothing to do; it must therefore be restarted when the next output
arrives.

° The service module (SVM) maintains the interface between the host and
the interface program. SVM worklists indicate to the interface
program those lines and terminals that are to be configured or are to
be deleted from service.

USER INTERFACES

User interfaces to the multiplex subsystem can be divided into three
categories:

° Command driver interface (PBCOIN and PMCDRV). These modules command
communications to the multiplex subsystem and control data flow to
and from the communications lines. These include setting up the
hardware to start or stop transmissions.

5-8 60474500 A

° Common multiplex subroutines for TIPs are provided. These
subroutines allow the multiplex subsystem to communicate input events
to the user.

° State programs. PMCDRV sets up the operation and calls PMCOIN to
escape to the firmware. On the firmware level, the input state

programs provide processing on a character-by-character basis. State
programs and their OPS-level interfaces are described in section 12.

Command Driver Interface
The command driver calling sequence from the OPS level is

PBCOIN (parm)

where parm is the command packet (NKINCOM). The command driver calling
sequence from level 2 is

PMCDRV (parm)
where parm = NKINCOM is the name of the command packet. The general format

of a command packet which is used for most commands (NKCMD type) is shown in
figure 5-3.

WORD 15 7 0
0 Command Parameter
1 Line Number
2 Parameters
3 Parameters
4 Parameters
5 Parameters
6 Parameters
7 Parameters

Figure 5-3. Command Packet General Format

60474500 A 5-9

The following commands are available to the user for controlling the flow of
data to and from the communications lines:

) NKCLRL - Clear line

) NKINIL - Initialize line

® NKCONTROL - Control line

® NKENBL - Enable line

) NKINPT - Input

° NKDOUT - Direct output

® NKINOUT - Input after output

° NKENDIN ~ Terminate input

° NKENDOUT - Terminate output

° NKDISL - Disable line

® NKTURN - Turn line around (not used)
e NKSPECIAL - Diagnostic interface

Individual subroutines handle the various requests. PMCOIN is the interface
between the command driver and the firmware. PMCOIN can be used by other
software users to clear a CLA., If it is so used, the it must be followed by
a clear line command. 1Inputs to PMCOIN are the two global variables NGA and
NGQ that hold command and port information for use in the A and Q registers
by the firmware.

CLEAR LINE COMMAND
The clear line command (NKCLRL) causes the subsystem to clear (reset) all
line-oriented software and hardware (CLA) functions associated with the line

specified by the line number. The command format is as follows:

WORD 15 7 0
0 NKCMD NKLTYP

1 NKLINO

NKCMD

Command code (NKCLRL)

NKLINO

Line number, identifies port and subport

NRKLTYP

Line type; specifies line-type entry; defines physical
characteristics of port, modem, and circuit type

INITIALIZE LINE COMMAND

The initialize line command (NKINIL) establishes the line type of the
specified port and places the line in a mode in which the subsystem monitors
and processes modem and circuit related status. Other line-related
functions, such as processing of input and output characters, are inhibited
while the line is in the initialize mode. The command format is as follows:

WORD 15 7 0
0 NKCMD NKLTYP
1 NKLINO
NKCMD - Command code (NKINIL)
NKLINO -~ Line number
NKITYP - Line type; specifies line-type table entry

5-10 60474500 A

CONTROL COMMAND

The control command (NKCONTROL) serves a twofold purpose. It can define the
character transmission characteristics of a given line according to the
transmission characteristics key (NKTCKY) for input/output signaling rate,
character length, parity type, stop bit duration, and sync character. The
command can also specify up to five modem/circuit control functions, such as
echo, break, terminal busy, or resync. Such control functions are specified
in the optional fields of the command packet.

Generally, the command is used to initialize or alter the character
transmission characteristics of the line or to generate circuit control
functions. This command must not be issued before the initialize command.
The control command format is as shown in figure 5-4, Optional
modem/circuit functions are defined in table 5-3.

ENABLE LINE COMMAND (NKENBL)

The enable line command directs the subsystem to activate, as a function of
line type, the necessary modem signals to allow the local modem to connect
to the specified communications line. The command also conditions the
subsystem to monitor and analyze any changes in the modem status for signals
indicating that a line connect occurred. Character processing functions are
inhibited during the time the line is in the enable mode. The format for
the enable line command is shown in figure 5-5,.

WORD 15 14 7 6 0

0 NKCMD NKTCKY

1 NKLINO

2 Fl NKFUN1 F2 NKFUN2

3 F3 NKFUN3 F4 NKFUN4

4 F5 NKFUN5 NKZERO
NKCMD - Command code (NKCONTROL)
NKTCKY - Optional character transmission key. If nonzero,

references the character transmission characteristics table.

NKLINO - Line number
Fl thru F5 - Optional modem/circuit function; if the associated flag
and NKFUN1 (NKSRF1 - NKSRF5) is set, the function is to be

thru NKFUN5 implemented.

1l = Function to be implemented
0 = Function disabled
NKZERO - Delimits end of options. NKZERO is placed in the byte

following the last requested modem/circuit function; five
functions can be specified.

Figure 5-4. Control Command Format

60474500 A 5-11

WORD

NKCMD
NKTCLS
NKLINO

NKUOPS

NKIFCD

NKBLKL

NKSCHR

15 14 11 7 0

NKCMD NKTCLS
NKLINO
Not used
NKUOPS NKIFCD
Fl NKBLKL
Not used
NKSCHR

Command code (NKENBL)
Terminal class
Line number

Eight user flags (NKUOPl - NKUOP8) can be accessed either
individually or as an 8-bit field

First character displacement (FCD) of first buffer of input
block; optional FCD or zero. If zero, use value from the
terminal characteristics table (NJTECT)

NKNOXL, the code translate flag

translate

1
0 do not translate

o

Block length; optional block length or zero. If zero, use value
from NJTECT

Special character (optional character or 0)

Figure 5-5. Enable Line Command Format

60474500 A

TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS
Function Function
Mnemonic Provided Description
NOISR starust Input status request
NORTS RTS Request to send
NOSRTS SRTS Secondary request to send (Supervisory Channel)
NOOM oM Originate mode/auxiliary modem control
NOLM LM Local mode/auxiliary modem control
NOLT LT Local test
NODTR DTR Data terminal ready
NOTB TB Terminal busy (line busy out)
NORSYN RSYN Resynchronize
NONSYN NSYN New sync
NOBREAK BREAK Send break
NODLM DLM Data line monitor
NOECHO ECHO Echoplex mode
NOLBT LBT Loopback test
NO ION ION Input on
NOOON OON Output on
NOISON ISON Input supervision on
NOPON PON Parity on
NOPSET PSET Parity set (1 = even, 0 = odd)
NOCLLS CLLS Character length (LSB)
NOCLMS CLMS Character length (MSB)

Tpulsed functions, provide momentary signal and need not be reset

60474500 A

INPUT COMMAND (NKINPT)

The input command directs the multiplex subsystem to initiate the processing
of data on the specified input line (i.e., turn on the input side of the
communications line adapter. The processing functions provided by the
subsystem are determined by the input processing state program index.
Additional information is passed by a pointer table address for the input
processing states. If this option is not used, the information is taken
from the terminal characteristics table (NJTECT). Parity is stripped for
normal processing or passed for test purposes. Format of the input command
is shown in figure 5-6.

OUTPUT COMMAND (NKDOUT)

The output command permits output messages to be directed to a specified

output line. Line, modem, and control functions, as defined in the line

type tables, are generated by the subsystem as a function of the physical
line requirements.

Output continues until the character specified by the last character
displacement is transmitted. At that point, the subsystem chains to the
next output buffer, if the chain address in the buffer is nonzero. Output
stops if the chain address is zero or if the suppress chaining flag
(BFSUPCHAIN) is set in the flag word of the first output buffer.

The subsystem generates an optional worklist entry for the user program for
each data block output by the subsystem. If the buffer output is the last
data buffer of a transmission block and line turnaround is required, 1) the
subsystem generates the proper modem control signals to turn the line
around, 2) monitors modem status for line turnaround, and 3) notifies the
appropriate terminal dependent subroutine that the line is ready for input.
Modem signals and modem status analysis functions are specified by the line
type tables.

Either the terminate output or disable command can also be used to terminate
output processing functions on a specified line. Receipt of either command
causes the subsystem to immediately cease all processing functions
associated with the specified line.

The format of the output command is as follows:

WORD 15 7 0
0 NKCMD Not used
1 NKLINO
2 NKOBP
NKCMD -~ Command code (NKDOUT)

Line number
Output buffer pointer

NKLINO
NKOBP

5-14 60474500 A

WORD

NKCMD
NKLINO

NRUOPS

Fl

F2

NKISTAI

F3

F4
NKBLKL

NKISPTA

NKSCHR

NKCNT1

NKCXLTA

60474500 A

NKCMD Not used
NKLINO
Not used

NKUOPS Fl1{F2 NKISTATI

F3| F4 NKBLKL

NKISPTA

NKSCHR NKCNT1
NKCXLTA

Command code (NKINPT)

Line number

Eight user flags (NKUOPl - NKUOP8). NKUOPl is bit 15 in the
MLCB user flag field,...NKUOP8 is bit 8 in that field. NKUOPS
is moved into MLCB if NKMVB is 1.

NKMVB, move block of user flags into MLCB

NKRPRT, strip parity flag

1
0

strip parity
do not strip parity

Input state program index
NKNOXIL, code translate flag

1
2

translate
do not translate

NKSCENBL, change special character flag
Block length. If nonzero, this replaces CC2 in the MPCB.

Pointer to input state program pointer table address. Optional
address or zero. If zero, use NJTECT value.

Special character, moved to MLCB if NKSCENBL flag is set.

Character count, moved into the CCl field of the MLCB if the
value is nonzero.

Code translation table address. If nonzero, this replaces the
current code translation table address in MLCB.

Figure 5-6. 1Input Command Format

INPUT AFTER OUTPUT (NKINOUT)

This command permits interactive terminals (such as a display/keyboard
combination) to be immediately ready to receive input data in response to a
message displayed at the terminal. An index to the input state process
table indicates the treatment of the returned data. The format for this
command is shown in figure 5-7.

TERMINATE INPUT COMMAND (NKENDIN)

This command enables the TIP to direct the multiplex subsystem to
immediately stop input processing functions on the specified line. All
input characters and buffers are discarded. The TIP program can, by issuing
an input command, direct the subsystem to resume input on the line.
Transmission line characteristics are not altered by the terminate input
command and therefore the TIP need not generate a control command. The
format for the terminate input command is shown in figure 5-8.

After processing the terminate input command, the subsystem optionally
generates a worklist entry to the TIP as specified in the worklist and
wor kcode.

TERMINATE OUTPUT COMMAND (NKENDOUT)

This command enables the TIP to direct the multiplex subsystem to terminate
output processing functions on the specified line immediately. After
processing the terminate command, an optional worklist entry is generated to
the TIP, using the specified worklist and workcode. This command is used
when the TIP interrupts an outgoing message for a higher priority message,
or when an abnormal line condition occurs. The format of the terminate
output command is shown in figure 5-9.

DISABLE LINE COMMAND (NKDISL)

The disable line command directs the multiplex subsystem to terminate all
processing functions of the specified line. Modem control signals are
generated to inhibit further exchange between the local modem and the
communications line. The subsystem also releases all data structures
defining the character processing functions for the line. To reactivate, a
control, initialize, and enable command, followed by either an input or
output command, must be issued. The format for the disable line command is
as follows:

WORD 15 7 0
0 NKCMD Not used
1 NKLINO

NKCMD - Command code (NKDISL)
NKLINO -~ Line Number

5-16 60474500 A

WORD

NKCMD
NKLINO
NKOBP

NKUOPS

Fl

F2

NKBLKL

F3

NKISTAI

NKISPTA

NKSCHR

NKCNT1

NKCXLTA

60474500 A

15 14 13 11 7 _6 5 0

NKCMD Not used
NKLINO
NKOBP

NKUOPS Fl|F2 NKISTAI

F3 NKBLKL

NKISPTA

NKSCHR NKCNT1
NKCXLTA

Command code (NKINOUT)

Line number

Output buffer pointer

Eight user flags (NKUOPl - NKUOP8). NKUOPl is bit 15 in the
MLCB user flag word; NKUOP8 is bit 8 in that word. NKUOPS is
moved into MLCB if NKMVB is 1.

NKMVB, move user flags to MLCB

NKRPRT, strip parity flag

1
0

strip parity
do not strip parity

Block length (CC2). Moved into MLCB if nonzero; replaces
current MLCB block length

NKSCENBL, special character flag. If set, move NKSCHR into the
MLCB

Input processing state index

Input processing state pointers table address (optional address
or 0; if 0, NJTECT value is used)

Special character, moved into MLCB if NKSCENBL flag is set

Character count (CCl). If nonzero, this replaces the current
character count in the MLCB

Code translation table address. 1If nonzero, this replaces the
current translation table address in MLCB

Figure 5-7. Input after Output Command Format

WORD

NKCMD

Fl

F2
NRKWLINDX
NKLINO
NKUSRBY

NKWKCOD

WORD

NKCMD

Fl

F2
NKWLINDX
NKLINO

NKUSRBY

NKWKCOD

15 7 6 5 0

NKCMD Fl| F2 NKWLINDX

NKLINO

NKUSRBY NKWKCOD

Command code (NKENDIN)

NKRELBFS, release buffer flag (release buffer if set)
NKWKFL, send worklist to user (if set)

Worklist index, used if NKWKFLG is set

Line number

User-supplied byte, returned in field MMWTCOUNT in worklist

User workcode in worklist (MMWKCOD)

Figure 5-8. Terminate Input Command Format

15 7 6 5 0
NKCMD Fl| F2 NKWLINDX
NKLINO
NKUSRBY NKWKCOD

Command code (NKENDOUT)

NKRELBFS, releases buffer when flag is set; these are buffers
specified in BZLBTOMUX

NKWKFLG, sends worklist to user when set
Worklist index; used if NKWKFLG is set
Line number

User-supplied byte to be returned in field MMWTCOUNT in
worklist

User workcode in worklist (MMWKCO)

Figure 5-9. Terminate Output Command Format

60474500 A -

Common Multiplex Subroutines for TIPs

The multiplex subsystem provides a number of common subroutines for the
interface programs; these are as follows:

PMWOLP, the worklist processor on the multiplex level

PTCLAS, the CLA status analyzer

PTLINIT, the line initializer

PMT1SEC, the timing supplier for the output data demand (ODD) function

PMWOLP, MULTIPLEX WORKLIST PROCESSOR

PMWOLP processes each multiplex worklist by workcode type. Most workcodes
concern error processing. Workcodes that PMWOLP does not recognize are
passed directly to the responsible TIP at multiplex level 2.

If the workcode is a hard error, the line is cleared and input and output
are terminated. The terminate input command to the command driver causes
the driver to return a worklist to PMWOLP. All hard errors from the line
are discarded until the terminate input worklist is received. The input
terminated worklist is changed into a hard error worklist (AOHARDERR =
MMHARDERR) and the worklist is sent to the responsible tip at OPS level.

If the line is active, all errors, hard or soft, are reported to the CE
error file.

The multiplex level workcodes are summarized in table 5-1. The actions that
PMWOLP takes in response to the workcodes are as follows:

® MMCLAS - CLA Status. This workcode is generated for selected CLA
status words by one of the modem state programs (refer to section
12)., PMWOLP calls PTCLAS to analyze the status word. PTCLAS returns
information to PMWOLP in three ways: (1) The function is set true if
the worklist is to be sent to the TIP, (2) NRCODE is set to nonzero
if a CE error is to be reported, or (3) the workcode in the
intermediate array is changed to AOHARDERR (or MMHARDERR) if a hard
error is found.

) MMOBUX - Output buffer terminated. This is an optional worklist
generated by the multiplex firmware after the completion of an output
message. If the line is to be turned around, PBTOQUE is called to
provide a 200-ms delay. The worklist is passed to the TIP at level 2
either immediately (if the line does not require a turnaround delay)
or when the delay timeout period is completed.

® MMBUTCH - Multiplex buffer threshold reached. This worklist is
generated by the TIP's input state program 3 (see section 12) when
the multiplex firmware notifies that state program that the buffer
threshold has been reached. PMWOLP releases any input buffers and
stops processing.

® MMCAOR - CLA address out of range. The multiplex firmware reports
this error whenever the CLA address is out of range. The CLA is
cleared and the error is reported to the CE error file.

60474500 A 5-19

MMUNSOD - Unsolicited output data demand (ODD). The multiplex
firmware reports this error when an ODD is received on a line that is
not in output state. The error is reported to the CE error file and
a hard error is declared.

MMUNSIN - Unsolicited input. The multiplex firmware reports this
error in two cases: (1) a status character is received and input
status flag (ISON) is not set, or (2) a data character is received
and the input on (ION) flag is not set. 1In either case, the error is
reported to the CE error file and a hard error condition is declared.

MMIFFO - Input framing error. The multiplex firmware reports this
error when it cannot recognize the input frame. The error is
reported to the CE error file and no further action is taken.

MMTIMOD - Modem Timeout. PTCLAS reports this error after the
10-second timeout for dedicated lines has elapsed without a response
from the modem. The error is reported to the CE error file and a
hard error condition is declared.

MMINEND - Input terminated. PMWOLP generates this error worklist to
itself after the terminate input command is sent to the command
driver. The worklist informs PMWOLP that no more worklists will
follow. PMWOLP sends a hard error (AOHARDERR) worklist to the
OPS-level TIP.

MMTIMOD - ODD timeout. The multiplex subsystem timing routine
(PMT1SEC) generates this worklist when an active output line has not
requested a new character (ODD) within the allotted l-second period.
The error is reported to the CE error file and a hard error condition
is declared.

MMFES - Framing error for synchronous lines. PTCLAS generates this
error after examining the status word. The error is reported to the
CE error file and control is passed to the responsible TIP at
multiplex level 2. The TIP should send a command to the command
driver to clear this condition.

MMBREAK - User break on synchronous lines. PTCLAS generates this
condition after examining the status word. The user break indicates
that the user has requested output to be terminated. The condition
is reported to the CE error file and control is passed to the
responsible TIP at multiplex level 2.

PTCLAS, CLA STATUS ANALYZER

Analyzing CLA status is a joint task of the modem state programs and

PTCLAS.

All incoming two-word status entries (8 bits per word) are combined

into one 16-bit status word by the multiplex firmware. Control is passed to
the responsible modem state program for that line. The modem state program
checks for one of the necessary modem signals:

To initialize or enable the line
To give control to the TIP's appropriate input state program
To detect line error conditions

60474500 A

If the modem state program generates a worklist to PTCLAS, PMWOLP calls
PTCLAS to analyze the status word. The format of the worklist is as shown:

15 12 11 8 7 0
Line inop code Status indicator Wor kcode

Line number

Status word

T

The line inoperative code is supplied to PTCLAS for the TIP whenever a hard
error is detected. When PTCLAS detects a hard error, it changes the
workcode to MMHARDERR. The status condition indicator is set by the
originator to indicate the type of status that was detected. PTCLAS
analyzes the status word and takes one of the following actions:

) Causes control to be given to the line initializer (PTLINIT) or to a
TIP

) Causes PMWOLP to request a CE error file entry

) Starts the timeout period for a CLA status overflow condition or for
a modem signal loss condition (modem timeout)

See MMCLAS workcode in the PMWOLP subsection, above. Table 5-4 lists the
status condition indicators and the action that PTCLAS sets up for PMWOLP.

CLA Status Overflow Handling

Each time a status word is received, the firmware_increments a CLA status
word overflow counter in the port table (NAPORT). This overflow count is
cleared by any of the following conditions:

) Output buffer terminated (OBT) generated

° Terminate input buffer state instruction executed
e Terminate input command issued

° Terminate output command issued

When the counter overflows, the firmware builds a MOOVRT status worklist and
turns off input supervision for the CLA. When PTCLAS receives the first
status overflow entry, it starts a 1l0-second timeout period and sets flags
in the port table. When the 10 seconds expire, PTCLAS receives control with
a MOOVTO worklist from PBTOQUE. PTCLAS resets the overflow counter in the
port table, issues a command to turn on input supervision for the CLA, and
resets the wait bit. 1If the timeout occurs before another status overflow
is detected by the firmware, status processing continues normally. However,
if another overflow entry is received during the timeout period, PTCLAS
reports the status overflow to the TIP as a hard error. If at any time
there are not enough buffers available to start the timeout, PTCLAS reports
the status overflow to the TIP as a hard error.

60474500 A 5-21

TABLE 5-4.

PTCLAS WORKLIST ANALYSIS AND ACTION

Condition
Indicator Reported By Meaning Detected Action
MOCLAON (0)| Modem state | Line initialized | Any status Control to line
(MSTLNI) initializer
MORING (1)| Modem state | Ring indicator RI status Control to line
(MSTLNI) initializer
MOENBL (2)] Modem state | Line enabled DSR or DSR Control to line
(MSTENB) and DCD initializer
status
MOHERR (3)| Modem state | Hard error ILE, OLE, Control to TIP
(MSTCHK) INVALID RI, (supply INOP code
loss of DSRT and change work-
code)
MOSOER (4)| Modem state | Soft output NCNA statusT Control to TIP
(MSTOUT) error (change workcode)
MOSIER (5)| Modem state | Soft input error | DTO, FES, Control to TIP.
(MSTINP) loss of DCD (change workcode)
status T
MOSTRT (6)| Modem state | Start modem Loss of DCD Call PBTOQUE to
(MSTCHK) timeout on constant start 15-second
carrier line timeout
MOSTOP (7)] Modem state | Stop modem DCD status Cancel timeout
(MSTCHK) timeout during modem
timeout
MOOVRF (8)| Firmware CLA status Overflow of
overflow status
counter
MOOVTO (9)| PBTOQUE Status overflow 10-Second
(TIMEOUT) timeout timer expired
MOMRTO (A)| PBTOQUE Modem response 15-Second Refer to control
(TIMEOUT) timeout timer to TIP (change
expired wor kcode)
MOBREAK (B){ Modem state | Break condition FES with null | Control to TIP

(MSTINP)

character

{change workcode)

+C.E. error

messages generated on these conditions

5-22

60474500 A

Modem Response Timeout Handling

When DCD on constant carrier lines drops, a MOSTRT status worklist is
generated by the modem state program, and a bit is set in the MLCB
indicating that a modem timeout is in progress. When PTCLAS receives this
worklist, it causes a 1l0-second timeout entry to be generated. If the
timeout period elapses before DCD comes up, PTCLAS reports a hard error
(modem timeout) to the TIP., If, during the timeout period, the modem state
programs receive a status word with DCD set, a MOSTOP worklist is generated
for PTCLAS. When PTCLAS processes the worklist, it resets the timeout in
progress flags and cancels the timeout. 1If, at any time there are not
enough buffers to start the timeout, PTCLAS immediately reports the
condition to the TIP as a hard error.

PTLINIT, LINE INITIALIZER

PTLINIT initializes conditions on a line for input and output operations.
The program acts like a TIP and is composed of several subroutines, Figure
5-10 shows the relationship of PTLINIT with other multiplex modules, the
service module, timing services, and the TIPs.

Upon receiving control, the line initializer executes the
Clear-Initialize-Control sequence. As the initializer is state driven,
BZSTATE is set accordingly.

On a dedicated line, a check for CLA on is made before issuing the enable
line command. When the line is enabled, the initializer builds a line
operational worklist message for the service module and the associated TIP.

For enabling a switched line, three conditions must be met: (1) the ring
indicator (RI) must be detected, (2) the host must be up, and (3) buffers
must be available. If no RI is present a timer is started. A worklist
(line status nonoperational; no ring indicator) is issued if this timer
expires before an RI is detected. If buffers are not available or if the
host is down, another timer is started. 1If this timeout period expires,
program control is returned to the Clear-Initialize-Control sequence. If
the timeout period has not expired and RI is received in a status word,
PTLINIT again checks for buffer availability and whether host is up. With
an RI present, the host up, and buffers available, the enable line command
is issued. Line operational worklists are built for the service module and
for the associated TIP.

Error messages are generated under the following conditions:

° A timeout period has expired and a required status has not been
detected.

® The status indicates that the line is not operational.
PTLINIT is state driven with each state defined in table 5-5.

PTLMUX2, the multiplex level 2 program, merely passes control by generating
worklist entries to PTLINIT. This is reached through PBXFER.

After a line has been enabled, a l-second delay is made before notifying the
TIP. This allows time for line/modem transients to settle.

60474500 A 5-23

MULTIPLEX LEVEL

PMWOLP/
PTCLAS

PTLMUX2

MMHARDERR

MMCLAS

CLA
STATUS

OPS LEVEL

HARD
ERROR

\/—

CMD
DRIVER

LEGEND:

WORKCODE

WORKLIST

—

Figure 5-10.

CMD
PACKET

8zLCcB
LINE
CONTROL |«] SERVICE
BLOCK "\ MODULE
A
AOSMEN OR
AOSMDA
ENABLE OR
DISABLE LINE
LINE STATUS
= COLINOP
OR_COLNINOP
P{ PTLINIT | OPERATIONAL
OR NON-
OPERATIONAL
y
AOTIMEQUT
LINE
TIMED OUT

y

AOSMEN

LINE ENABLED

OR DISABLED

—

"

PTLINIT Relationships with Major CCP Modules

TIP
OR
LIP

M-382

60474500 A

60474500 A

TABLE 5-5, PTLINIT STATE TRANSITION TABLE
State
Event CLAON SWCK SWRING SWRDY CLARDY All States SWDLY
Status Ded: Buf Avail/ Buf Avail/ Set Up Timer=0
Enable Line. Host Up Host Up Timer for Autorecog.
State=CLARDY Enable Line Enable Line l1-second Send Line
Timer =30 State=SWRDY State=SWRDY Delay Enable-
seconds Timer=20 Timer=30 Nonop Msg. | ====— | = ====-
seccnés seconds
SW: Other
State=SWCK Buf Mot Buf Mot Send Line
Timer=1 Avail or Avail or Oper Msg.
second Host Down Eost Down Restore TIP Build WL
No Operation Start Timer, Type. for TIP
if timer is Type.
off
Timeout Clear Linc, Senc¢ Mo Ring | Condition Disable Disable Send
Send Inop Message. Line, Line. Line. Enable WL
Messadge. State=SWRING State=CLAON Clear Line. Clear Line. to TIP.
State= Timer=] Send Inop Send Inop | ——-—- Restore
Inactive second Message. Message. TIP Type.
Timer=0 State= State=
Inactive Inactive
Timer=0 Timer=0
Hard | ===== | mmee— | emme=] memee | e State= State=
Error Inactive Inactive
Send Line Send Line
Inop Inop
Message Message
Enable | ===~ | === | ————] e e Save/Set
Line TIP Type.
Condition
Line. ————
State=CLAON
Timer=1
second
pisable | —~=-- | === | ee=== | me=—— | —m=e- Send Line Send Line
Line Disable Disable
Message. Message.
Clear Line. Clear
State= Line.
Inactive State=
Timer=0 Inactive
Timer=0
5-25

PMT1SEC, OUTPUT DATA DEMAND TIMING HANDLER
This program supplies the timing for the ODD function. If 1 second elapses
on an active output line without an ODD signal being received, PMT1SEC times

the line out. A hardware error is declared by generating a multiplex
worklist, which requests an interrupt to process the error.

i

5-26 60474500 A

NETWORK COMMUNICATIONS SOFTWARE

6

This section describes the block protocol and the functions of the network
communications software programs. The functions include some command
execution (when the service module executes the command), and common TIP
subroutines. The virtual terminal formats (IVT and BVT) are also discussed
in this section; the virtual terminal transforms are used as a part of the
multiplex level (state program) part of the TIPs.

MAJOR FUNCTIONS

The major functions performed by the network communications programs are the
following:

) Defines the types of blocks that are acceptable for data transfer,
internode and intranode.

® Routes the blocks. This includes checking the validity of incoming
blocks and attaching the blocks to an NPU program that will continue
processing the block, or reading the block to be queued to the next
using network node.

) Provides and processes a special type of block reserved for command,
status, and statistics information. All service messages use this
kind of block. The modules that process service messages are
collectively called service modules. CE error, statistics, and alarm
messages are special classes of service messages.

) Provides the ability to alter the interactive virtual terminal
formatting parameters,

) Provides standard TIP support programs. These include the
point-of-interface (POI) programs and other standard routines that
can be used by any TIP.

BLOCK PROTOCOL

Block protocol is used to communicate commands and information between the

NPU and the host. Blocks are composed of consecutive bytes. The shortest

block consists of only a header (four bytes); the longest block consists of
2047 bytes, including the four-byte header.

Block protocol assumes the logical connection between processes in the host
and the NPU is error free (a supportive, lower level protocol provides
delivery assurances between the processes). However, the logical connection
can be abnormally broken, either process can fail, or the processes can
become temporarily congested, leading to regulation of information transfer.

60474500 A 6-1

Failure of a process is usually reported by means of a service message.
Temporary bottlenecks at a destination process are usually a result of
inability to deliver data to an associated terminal or to the host. Block
handling provides a standard method for informing the transmitting process
of a temporary problem so that any subsequent data transfers on that
connection can be held in abeyance until the problem is corrected.

The paths between the two processes are fully symmetrical as shown in figure
6-1. Blocks belong to one of three categories:

o Forward supervision (FS) functions are performed by INIT and RST
blocks.

°® Reverse supervision (RS) functions are performed by BACK, BRK, STRT,
and STP blocks.

° Forward data (FD) functions are performed by BLK, MSG, and CMD blocks.

BLOCK FORMAT

The first two bytes of any block are reserved for a link header (which is
used when sending/receiving data from a remote NPU). The next four bytes of
any block constitute the block header. Format of the block header is as
shown in figure 6-2.

The current release consists of nine principal block types plus an
additional assurance control block type used only for NPU to NPU
transmissions. Characteristics of each type are summarized in table 6-1.

The first three bytes of the block header provide a standard network
address. Byte 4 contains the block priority (P), block sequence number
(BSN), and block type (BT). The content of the remainder of the block, if
any, varies with the block type.

The priority of the block is only significant when the block is required to
traverse a network trunk. Priority provides for preferential treatment for
high-priority blocks when trunk queueing occurs. (Trunk queueing is a part
of priority assignment.) All blocks (regardless of type) containing the
same address must be assigned the same priority.

The BSN supplied in a downline block of type MSG, BLK, or CMD must be
returned in the BSN field of the upline BACK which acknowledges that block.
When a BRK or STP is sent, the BSN field must contain the BSN which was
contained in the last BACK sent for this connection. The BSN is always zero
on other upline and downline blocks.

Address

The address contains the node IDs for the source and destination of the
block plus a connection number.

6-2 60474500 A

NPU HOST

FS1 AND FD,
—,
XMTR RS1 (RCVR
PROCESS PROCESS
FS3 AND FD,
RCVR 5 RS 2 XMTR
FS — FORWARD SUPERVISION (CONTROL/STATUS REQUESTS)
FD — FORWARD DATA (INFORMATION/COMMANDS)
RS — ACKNOWLEDGMENT AND ERROR INFORMATION

M-367

Figure 6-1. Sample Block Data Paths Between NPU and Host

60474500 A

Byte 1 2 3 4 5

Y T
Link 7 1 6 413 O Remainder
Header DN SN CN P } BSN } BT of Block
-
Y
DN - Destination node Block Header
SN - Source node
CN =~ Connection number
P - Block priority for trunk usage
1 = high
0 = low

BSN - Block sequence number (range 0 - 7)

BT - Block type (defined in table 6-1)

Figure 6-2. Block Header Format

NODE

Each NPU has a unique node ID; each interface between a host and an NPU has
a unique node ID; the host has two unique node IDs. Node ID = 0 is reserved
for the Network Supervisor (NS) in the host. Node ID = 1 is reserved for
the Communications Supervisor (CS). The remaining node IDs (between 2 and
255) are build time parameters. For example, in a single-host, single-NPU
system, the host interface (coupler of the local NPU) might be node ID two,
and the terminal node (interface to the terminals) might be node ID three;
this pair of nodes forms a logical link. Thus, traffic going upline (from a
terminal to the host) has a destination node ID of two and a source node ID
of three. Traffic going downline from NS to the NPU has a destination node
ID of two and a source node ID of zero.

CONNECTION NUMBER

A logical connection is the association between a terminal control block
(TCB) in a NPU and an application process in the host, by which traffic is
communicated between the terminal (or a device at that terminal) and
applicable process. The TCB contains all status information relative to a
particular terminal (or terminal device) and the current transfer. The TCB
also contains a host-assigned connection number. The connection number is
one byte long, and has a range of values between 1 and 255. Every block
traveling downline to a terminal device or upline from a terminal device
bears the connection number of the associated TCB. Unique connection
numbers are assigned to all TCBs within a given NPU node, and are associated
with a particular host node, i.e., on a given logical link.

6-4 60474500 A

TABLE 6-1. BLOCK TYPES

Block Traffic

Mnemonic Name Type Type General Function
BLK Block 1 FD Any data block which is not
the EOM block of a multiblock
message
MSG Message 2 FD Data block which is the EOM

block of a multiblock message
or the only block of a message

BACK Block 3 RS Block acknowledgment for block
Acknowl- transmitted in opposite
edgment direction

CMD Command 4 FD Command

BRK Break 5 RS Indicates a discontinuity in

the data stream traveling in
the opposite direction

STP Stop 6 RS Forward data stream is
undeliverable and should be
stopped

STRT Start 7 RS Forward data stream can be
started

RST Reset 8 FS Transmitter has cleared

logical connection after
receiving a BRK or STRT

INIT Initiate 9 FS Initiate a logical connection
- - 10
. Not used
14
Subtype
ACTL Assurance 15 0 CLR - Local NPU clears remote
Control - NPU at initialization
used only in
local/remote 1 PRST - Remote NPU acknowledges
NPU communi- CLR
cations
2 REGL - Either end of link
changes regulation level
3 LINIT - Local NPU initializes
LINK
4 LIDLE - LIP at either end of

link is idle - LIDLE maintains
protocol when no data is being
transmitted

60474500 A 6-5

SERVICE CHANNEL

A block having a connection number of zero is called a service message, and
the logical connection over which it is communicated is called the service
channel. Unlike logical connections that can be dynamically created and
released, the service channel always exists. Service messages include
commands, requests for status, error information, statistics information, or
replies to one of these three message categories. The service channel can
also be used to send messages between terminals. Commands traveling via the
service channel establish logical connections and communicate control,
status, and error data. The complete summary of service messages is found
in appendix C.

BLOCK TYPES

The block types are described in detail below.

BLK Block

A BLK block is a data block containing a portion, but not the last segment
of a data message. All data blocks contain from 1 to 2043 bytes of data
immediately following the four-byte header. The content of the data field
is determined arbitrarily by the communicating processes.

MSG Bfock FD, BT = 2

A message is a self-contained unit of data communications. 1In half-duplex,
two~parity communications, the transmitter signals ready-to-receive by
sending end-of-message. Thus, a message is a data stream terminated with an
end-of-message indicator.

If a message is 2043 bytes or less in length, it can be transmitted within a
single MSG block. If a message is longer than 2043 bytes or if, as is
usual, the message is segmented by the terminal or because of a desire to
optimize NPU dynamic space, all segments but the last are transmitted within
BLK blocks. The last segment is transmitted within a MSG block.

Back Block

A BACK block is the acknowledgment of a received block. It is returned to
the transmitter by the receiver as BLK, MSG, and CMD blocks are processed to
allow the transmitter to adjust the rate of issuing data to the rate of
delivery to the receiver. The transmitter should not issue unacknowledged
blocks in excess of a network block limit (NBL) for each connection. The
BACK block that acknowledges a previously transmitted block allows the
transmitter to maintain an outstanding block count to ensure that the NBL is
not exceeded. NBL is established by the connection as a part of the
configuration process. Note that no data bytes are associated with a BACK
block.

6-6 60474500 A

T

CMD Block

A CMD block carries a network command. It allows connected processes to
communicate outside of the data stream but synchronous with that stream.

The command is received by the destination process in the same ordering
sequence to the data stream or other commands as existed at source. If CN
is 0, the command is a service message. The data bytes of the message are
highly structured. Rather than using BACK blocks as acknowledgment, service
messages use other service messages as acknowledgments. See appendix C.

BRK Block

The BRK block indicates a discontinuity (break) in the data stream and
travels in the opposite direction. The receiving process responds with an
RST to specify the point in the data stream where the BRK block occurred.
Block protocol does not retain blocks for retransmission. Instead, the
sender of the BRK block discards all blocks received before the RST block.

A further BRK or STP block must not be sent before the RST block is received.

A single data byte, the reason code (RC), follows the BRK block header and
specifies the reason for breaking the transmission. The RC byte is defined
as follows:

1 = User Break 1 received (typically means queue abort occurred)
2 = User Break 2 received (typically means job abort occurred)
3 = Output device not ready
4 = Illegal or invalidly formatted block received from host
STP Block

The STP (Stop) block is similar to the BRK block except that no RST block is
sent and no further blocks should be sent until a STRP block is received.

The STP block occurs when a process is unable to deliver data to the final
destination such as when a terminal is inoperative or not ready, or when a
line is inoperative. A reason code follows the header. This code is passed
to the connected process. The sender of the STP block discards all blocks
received before the next RST block received (normally caused by a STRT block
issued by the sender of the STP block). The RC byte is interpreted as
follows:

1 = Terminal busy

2 = Terminal failure

3 = Batch interrupted by interactive input or output
Start Block

The STRT (Start) block is used after a STP block to allow resumption of data
flow to the destination sending the STRT block. The receiving process
responds with a RST block to invite the connected process to resume data
transmittal. No data bytes are associated with this block.

60474500 A 6-7

RST Block

The RST (reset) block is sent in response to either a BRK or STRT block. It
serves to delimit the data stream and indicate the point in the data stream
at which the BRK or STRT block occurred. From the time the BRK or STRT
block was sent until the receipt of the RST block, all unacknowledged blocks
and all new blocks are discarded. No data bytes are associated with this
block.

Init Block

The INIT (initiate) block delimits the new data boundaries when a connection
is first made. Newly established connections discard blocks from the
logical connection until the INIT protocol is completed. The second end of
the connection to be set up immediately sends an INIT block. Upon receipt
of the INIT block, the first end to be set up responds with an INIT block
and starts accepting blocks over the logical connection. Upon receipt of
the responding INIT block, the second end of the connection to be set up
also starts to accept blocks over the logical connection. No data bytes are
associated with this block.

Bad Blocks Detected by NPU

When NPU software detects a bad block (any block with block protocol fields
that contain unexpected or undefined information), the NPU discards the
block. If the block is bad for some other reason, a BRK block is sent to
the host. If the block is a BLK, CMD, or MSG, no BACK block is sent to the
host. For any other block type, no action solicited by the block is taken
and it is not acknowledged. The NPU statistics word for
block-discarded-to-bad-address is incremented. The header section of a bad
block is displayed at the NPU console.

ACTL Block (Assurance Control)

This protocol is not needed for NPU-to-host communications. It is used only
to protect data traveling between local and remote NPUs where the
possibility of line errors is relatively high.

SEGMENTATION OF BLOCKS

The block is the unit of data that is assured. Blocks are generated by the
source node, passed through the network and delivered to the destination
node in the order of their generation. One of two possible priorities must
be assigned to a block by the source node. Obviously, if ordering is to be
preserved, all blocks and all forward supervision block protocol elements on
a connection traveling in the same direction must be assigned the same
priority.

Block delivery across internodal physical links is performed in a manner
that approximates a preemptive resume priority queue dispatch discipline.
For this process, blocks transmitted in a link are segmented into subblocks
to ensure that an opportunity for preemption occurs at discrete maximum
intervals.

6-8 60474500 A

Segmentation is of functional concern only to the LIP although
implementation considerations dictate that HIP and TIPs and the receive side
of the LIP position the data in buffers in a manner that facilitates
subblocking. Block priority for blocks arriving from the host coupler is
established by the host before setting up the data transfer. The subblock
boundary criteria are discussed in the section describing LIPs.

LOGICAL LINK

A logical link is the logical entity that monitors the transfer of data
blocks and block protocol elements for all connections between two end
points in the network. Unless both ends of a logical link are configured
and operational, all such data is discarded and no connections are
permitted. When both ends of a host-to-local logical link are configured,
the host is notified with a logical link status operational SM immediately;
this logical link remains operational until deleted by the host. When both
ends of a host-to-remote logical link are configured, the host is notified
with a logical link operational SM from the local NPU as soon as a
clear/reset exchange occurs between the local and remote NPUs. This logical
link becomes inoperative upon a physical link failure, and the host is
notified with a logical link status inoperative SM from the local NPU. NS
must explicitly delete the logical link. This causes all associated
connections to be deleted and all data blocks and block protocol elements
for these connections to be discarded. No connections are permitted on the
logical 1link until a clear/reset sequence establishes an operational state
again.

The block header format for delivery assurance over the link is as shown in
figure 6-3.

SERVICE MESSAGE ASSURANCE ON TRUNKS

When a physical link fails, all blocks to be transmitted on the link are
discarded by the link protocol. Any service message that must be protected
across a link failure (namely, unsolicited line status SM) is retained by
the service module and repeated when the link again becomes operational.
While the physical 1link is inoperative and no alternate path is available,
new service messages are retained by the service module.

DATA BLOCK CLARIFIER, DBC

The first data byte of a message is often used as the data block clarifier.
In this use, the byte carries additional control information about the data,
which is used internally by the TIP. CCP uses two types of data block
clarifier as shown in figure 6-4.

For the downline DBC, all TIPs use format effectors. All TIPs check for
transparent data, but only Mode 4C and ASYNC terminals can use the
transparent (ASCII) output data.

For the upline DBC, transparent data can be used by the ASYNC TIP only; Mode
4 upline transparent data causes the TIP to lock the keyboard. Only the
ASYNC TIP uses the cancel character and parity error flags.

60474500 A 6-9

DN
SN
CN

TYPE

PRID
BT

Subtype

DN SN CN Type Subtype RL

Destination node
Source node
Connection number

Type of block. 1In this field, bit 7 is the PRID, bits 6 - 4
are reserved for the block sequence number, and bits 3 - 0
designate the BT.

Priority designator; set for high-priority blocks
Block type. ACTL blocks also use subtype and RL.

CLR - Clear = 0. Sent by local end to remote end of a logical
link at initialization time; it is repeated until the PRST is
received; contains the logical link regulation level in second
byte of data field

PRST - Protocol Reset = 1., Sent by the remote end of a logical
link at initialization time after the receipt of a CLR. PRST
contains the logical link regulation level in second byte of
data field. Normal data blocks are transmitted following a
PRST. Local end accepts blocks after receipt of a PRST.

REGL - Regulation = 2. Sent by either end of logical link when
local regulation level changes; contains new logical link
regulation level in second byte of data field

LINIT - Link Initialization = 3. Sent by local end to
initialize the link (trunk); is repeated by local end until
remote end responds with LINIT. The Local end accepts blocks
following LINIT. Link initialization is done initially and
after a trunk failure. Remote end sends a LINIT only in
response to a received LINIT. RL field is not used.

LIDLE - Link Idle = 4. Sent by the LIP of both local and
remote ends periodically when no data is available to send to
the other end so the LIP is able to monitor both directions of
data flow for operational status. RL field is not used.

RL - Regulation load for trunk

Figure 6-3. Block Header Format for Delivery Assurance

60474500 A

Downline DBC

bits 7 4 3 2 1 0
not used
TIP using
bit 3 - Format effectors present, DBDLFE all
bit 2 - Transparent data, DBDLXPT all
bit 1 - Lace card bit, DBDLS5 HASP
bit 0 - Auto input data expected, DBDLAUTO — all
Upline DBC
bits 7 2 1 0
not used
TIP using
bit 2 - Transparent data, DBUTXPT ASYNC, Mode 4
bit 1 - Cancel character, DBULCAN ASYNC
bit 0 - Parity error, DBULPERR ASYNC
Figure 6-4. Data Block Clarifier (DBC) for CCP
ROUTING

Routing of blocks is performed by the internal processor, usually called
through PBINTPRC. The internal processor call is made from the monitor with

a worklist entry.

PBINTPRC passes the block to be switched to PBSWITCH, the general systems
block switch., PBSWITCH uses the directories to pass the block to the
program that must continue processing the block.

Upline blocks that are completely processed are passed to the HIP for
transmission to the host. Downline blocks to be sent to terminals are
queued to the TCB that is associated with the terminal or device to receive

the message.

A second source of switching can use PNROUTE. Only the service module and
utilities use this switching method.

60474500 A 6-11

CCP provides routing of blocks between nodes and within the NPU node. For
example, in a simple system consisting of one host and one local NPU, the
node assignments might be as follows:

® For host: NS = node 0; CS = node 1
® For local NPU: coupler = node 2; terminals = node 3

DIRECTORIES

Each block of information (service messages are a special subclass of
blocks) has three address elements: The destination node (DN), the source
node (SN), and a connection number (CN). There are three directories, one
associated with each of the three address elements:

° Destination node directory
) Source node directory (LLCB for the link)
[Connection number directory

The three directories are collectively designated as the routing
directories. Formats of the three directories are shown in figure 6-5.

Destination Node Directory

The destination node directory contains an integer value associated with
each valid DN address (range is 0 to 255). For a local node (meaning within
the same physical node), the directory provides the address of the source
node directory associated with that logical node. For all external logical
nodes, the directory entry provides a logical link control block (LLCB)
address. A zero entry indicates a nonexistent node (an unassigned value of
DN) .

The destination node directory is a fixed length table with two words per
entry. The first word contains the index (by node number), and the second
word points to the appropriate LLCB,

Source Node Directory

The local logical node has a source node directory for each local node
address. Each SN directory is used to select the connection directory
associated with the pair of nodes indicated by DN and SN. Nonzero entries
point to the address of the connection directory.

Connection Number Directory

For each logical node there is a CN directory for all terminals with which
there is at least one connection defined. An entry in the CN directory
provides the address of a terminal control block (TCB). The directory is
indexed by CN and has a pointer to the TCB for that CN. The CN directory is
located in dynamic buffer space.

ROUTING PROCESS

The PBSWITCH module starts the search of the three directories to perform
either internode or intranode routine (see figure 6-6).

6-12 60474500 A

DNLOCDN 00

NS LLCB address for NS in host
01

CS LLCB address for CS in coupler >— upline
02

Addr of SN directory SN directory for coupler
03

Addr of SN directory SN directory for terminals - downline

LLCB chain for this DN

Ptr
SN = 0 set of LLCBs for
this DN and all SNs
that have links to this
DN through this NPU.
Ptr to CN directory —
SN = 2
DN and CN directories
CN directory for this SN are type 1 tables.
01 |«
Ptr to TCB for CN = 1
02
Ptr to TCB for CN = 2
03
Ptr to TCB for CN = 3 TCB address

.
.

Note: Directories shown for a one NPU network

Figure 6-5. Routing Directories Formats

60474500 A 6-13

ENTER

A 4

SEARCH
DND USING
DN AS INDEX

NO DN
NODE DEFINED

ADDRESS

OF SND t
?

SEARCH SND t

F
USING SN AS = = = Is.'l“.CB OR
INDEX

y _NO ADDRESS

«

y

ERROR NOTIFY
SENDER THAT
BLOCK CAN'T BE

DELIVERED

LOCATION
OF NODE
?

INTERNODE

y OF CND
?

YES

SEARCH
CND USING
CN AS INDEX

INTRA-

NODE

USE LLCB
TO DIRECT
MSG TO COUPLER
OR REMOTE NPU

SERVICE
MESSAGE
?

YES

A 4

EXIT

y

SEND BLOCK
TO SVM
USING A WLE

\ 4

EXIT

ACTL BLOCK
PATH NOT SHOWN

Figure 6-6.

ADDRESS
OF TCB
?

NO

PBIOPOI

PASS BLOCK

TO PROCESS
ADDRESS
INDICATED IN TCB

EXIT

t LLCB FOR TERMINALS

DND — DESTINATION NODE DIRECTORY
SND — SOURCE NODE DIRECTORY

CND — CONNECTION NODE DIRECTORY
WLE — WORKLIST ENTRY

M-368

Simplified Routing Flowchart for PBSWITCH

60474500

Figure 6-6 indicates the steps of the routing search:

DN indexed the destination node directory to obtain an address. If the
address obtained is zero, the destination of the block is undefined and
PBSWITCH returns an indication to that effect.

If the destination is not a local logical node, the block is passed (as
appropriate) to the coupler for a host process or to the remote node. 1If
this is a locally directed service message, the message is passed to the
service module using a worklist entry.

If DN is a terminal node, the LLCB for that link is searched using SN. The
SN/DN LLCB has a pointer to the CN directory. This directory is similar to
the DN directory. It is indexed by CN and has a pointer to the CNs
associated TCB. Using the TCB address, PBSWITCH calls the internal output
POI (PBIOPOI) which queues the block to the TCB.

ALTERING DIRECTORIES

The modules PNDIRADD and PNDIRDLT add or delete entries to the directories.
PNDIRADD requires four input parameters:

e The first two are PASCAL values (ranges to 255) and represent DN and
SN values, respectively.

® The third is a PASCAL variable (range 0 to 255) and represents CN.

e The fourth is a PASCAL variable of the buffer pointer type (range 2 -
65, 535) that points to a TCB for use in the appropriate directory.

The DN directory can have a new two-word entry. The CN directory can have
new entries and, if necessary, new chained segments. LLCBs (the SN
directory) are established when new links are defined. PNDIRDLT removes
entries from the DN and CN directories. Three input parameters are
necessary:

® The first is a PASCAL value between 0 and 255 and is the index to the
DN entry to be removed.

® The second is a PASCAL value between 0 and 255 and is index to the SN
entry to be removed.

) The third is a PASCAL variable in the range 0 to 255 and is index to
the CN entry to be removed.

If the entry removed in the CN directory is the last remaining entry of that
segment of the directory, that segment of the directory is released.
Rechaining of directory segments is performed as necessary.

SERVICE MESSAGES

Service messages (SM), the special group of control messages that carry
extended command, status, and statistics information between the host and
NPU nodes, are processed by the Service Module (SVM). The procedures that
make up the SVM are grouped into the following general categories:

) Internal SM processing

60474500 A 6-15

) Validating and timing out service messages

) Generating and dispatching service messages

) Configuring, enabling, disabling, and deleting control blocks. These
include control blocks for logical links (LLCB), lines (LCB), and
terminals (TCB).

) Generating and sending status SMs. These include logical link
(trunk), line, and terminal SMs.

) Generating and sending statistics SMs
° Generating and sending broadcast one and broadcast all SMs
® Processing overlay programs and overlay data

® Generating requests for loading an NPU in response to force load SM

TASK SELECTION IN THE SERVICE MODULE

Entry to the SVM is usually made in the form of a worklist. Note that SVM
is customarily one of the modules given control by the OPS-monitor with more
than one worklist.

Worklist entry switching (PNSMWL) has two levels: On the first level,
switching is performed according to workcode. The processed workcodes are:

COSMIN/COSMOUT - processes or sends most SMs

COSMDISP - sends a service message

COLINOP - makes a line operational

COLNDA - disables a line Usually done in COSMIN
CODLTCB - deletes a TCB

COOVLDATA ~ processes overlay data

As can be seen, substantially all the processing is done by the COSMIN and
COSMOUT codes. The second level of switching takes place in the routines
handling COSMIN and COSMOUT. (This is the PFC/SFC level of switching.) A
subcode (J4...) is used. Again, almost all processing occurs using one
value, the J4DISPATCH subcode.

Within this subcode, the PFC (D8...) and the SFC (D9...) of the SM are used
to find an entry in the DBHANDLER table (see appendix E).

The SVM trees (appendix I) show the routines responsible for each SM.
SVM also provides a few direct entries:

® The timed entry call (from PBTIMAL)

) The periodic statistics entry (from PBTIMAL)

° The SM generation, PNSMGEN, which can be used by the TIPs to send any
of the eight types of service messages which this routine generates.

6-16 . 60474500 A

INTERNAL SERVICE MESSAGE PROCESSING

Four types of functions are handled by these SVM modules:

Making worklist entries for SVM and awaiting availability of buffers
for SVM processing.

The interface to the OPS monitor so that the monitor can pass control
to SVM.

An indexing function that finds the proper point in SVM to resume
processing after a pause. The necessary marking information is
contained in the worklist entry.

The logic to process the line inoperative and line operative worklist
entries. The output is a line enable/disable SM or a status SM.

VALIDATING AND TIMING OUT SERVICE MESSAGES

The timeout group of modules times out SMs and responses to timeout SMs.

The validation group of modules assures that all SMs have:

A valid primary function code (PFC) and secondary function code (SFC).

The port identification number is within the range of ports assigned
to this NPU.

NOTE

The format for each type of service message is given
in appendix C.

The general format of an SM (appendix C) is shown in figure 6-7.

GENERATING AND DISPATCHING

The following functions are handled by this group of modules:

DN and SN of the SM are reversed for use in generating the reply SM.
Queues SM to the local NPU console.

Releases buffers used for SMs.

Generates a message from the operator at the NPU console to the
network operator (NOP). This process begins when the operator at the
NPU console places the console in supervisory mode and enters the
message text. There is no response to this type of service message.
Generates PFC and SFC for service messages.

Dispatches the SM to:

1. The HIP if DN designates the local coupler.

2. The LIP if DN designates the remote node.
3. SVM if DN designates an action to be performed in this NPU,

60474500 A 6-17

Byte

Link Header DN SN CN P/RES/BT PFC EB/RB/SFC Parameters

DN

SN

CN

RES

BT

PFC

EB

RB

SFC

Parameters

N g
-~

block header

Destination node
Source node

Connection number is 00 for all service messages; the SM
channel is always assumed to be configured.

Priority flag; upper bit of block header byte 4
Bits 6 and 5 of block header byte 4

Block type; 4 = command block; lower 4 bits of block header
byte 4

Primary function code

00-3F1 - reserved for network use

40-F15 - reserved for intrahost use (error for CCP to
receive these messages)

A0-BF1g - reserved for expansion

C0-EO1g - reserved for network use

El-EF1¢ - reserved for installations

Error response SM; EB = 1 (bit 7 of the byte)
Normal response SM; EB = 1 (bit 6 of the byte)

Secondary function code; see appendix C (bits 5 through 0 of
the byte)

Defined in bytes. See appendix C.

Figure 6-7. Service Message General Format

60474500 A

CONFIGURING, ENABLING, DISABLING, DELETING CONTROL BLOCKS

This set of modules is used for initiation and changing control blocks for
logical links, lines, and terminals. The format and functional effect of
these messages are described in detail in the initialization section of the
CCP3 Reference Manual and in section 2 of this manual.

GENERATING AND SENDING STATUS SERVICE MESSAGES

This group of modules generates and sends the logical 1link, trunk, line and
terminal status messages. 1Included in these operations is the ability to
count configured NS links and configured CS lines. The status indicates
whether the line is operational.

Logical Link Status Request Service Message

This SM status request identifies the nodes comprising the SM link. If the
nodes are not specified, the message is treated as a request for the status
of all links connected through the NPU.

The response message has a reason code specifying whether the link is
operational, a regulation level for the link, and a flag to indicate an
unsolicited status reply. The reply also indicates the number of links
checked if the message requested information about all the links.

The error response contains only the reason code. Two types of errors are
recorded:

e A logical link is not configured.

° Another logical link status SM is already in progress, or the request
did not originate from NS in the host.

Trunk Status Request Service Message

This SM status request specifies the port used by the trunk. If the port is
not specified, the message is treated as a request for the status of all
trunks connected to the NPU. The reply message contains a reason code, such
as trunk operational, trunk inoperative, or no ring indicator (for dial-up
lines). The reply also contains the line type, configuration states, an
identifier for the remote node of the trunk, and the number of trunks
checked, if the request was for status on all trunks.

An error response is sent under the following conditions:

° There are no configured trunks or the line number specified is not a
trunk.

® Another trunk status SM is already in progress.

® An attempt is made to disable the last path from a remote NPU to NS.
Disabling the last trunk would permanently destroy the protocol to
the remote node affected when CS records are erroneous or incomplete
due to a host failure.

60474500 A 6-19

Line Status Request Service Message

This SM status request specifies the port used by the line. If the port is
not specified, the message is treated as a request for status of all lines
connected to the NPU. A response status SM is sent for each line configured
and owned by CS. The reply includes a response code (line operational, line
inoperative, or autorecognition/no ring indicator), line type, and
configuration state. If an error response is set, the reason code specifies
one of the following error states:

® A port is invalid or there is a bad host ordinal.
) Another line status request is in progress.

° An illegal configuration state exists (for a single-line response
message).

° No lines are configured (for an all-lines response message).

On a dial-up circuit, a line-enabled response is generated by the NPU
immediately following a configure line SM. When a user dials in, the modem
interface signals indicate an active line; the NPU then generates an
unsolicited line status operation SM, following autorecognition, if
applicable. Upon receiving the line status operational SM, the host
configures the terminals for the line by sending one or more configure
terminal SMs.

An unsolicited line status request SM is sent whenever the TIP senses
conditions that cause the line to be inoperative, including normal
disconnect on a dial-up line.

Line inoperative is reported when line or modem conditions cause the line to
become inoperative; it is not reported if the line is made inactive by
terminating its logical connections or by disabling the line.

The following modem signal conditions cause the line to be reported
inoperative. The timeouts involved ensure that a line is not declared
inoperative because of transient conditions that can be normally expected:

) Data Set Ready (DSR): If the data set ready signal drops at any
time, data transmit ready (DTR) is immediately turned off and line
inoperative is reported

) Clear to Send (CTS - 201 and 208 modem): If the clear to send signal
does not occur within one second of the rise of the ready to send
(RTS) signal; remain on for the duration of ready to send, and drop
within one second of the fall of ready to send. The data transmit
ready signal is then turned off, causing a switched line to
disconnect, and line inoperative is reported. Clear to send is not
monitored for the 103/113/202 modems.

® Data Carrier Detect (DCD - for full duplex constant carrier): Once a
line is operational, if the data carrier detect signal drops and
remains off for a period of 10 seconds, data transmit ready is turned
off, and line inoperative is reported. Abnormal operation of a data
carrier detect on a half duplex or on controlled carrier lines does
not influence line status.

6-20 60474500 A

TCBs are not automatically deleted when a line becomes inoperative. The
host must terminate each logical connection explicitly with a delete
terminal SM, or implicitly by sending a delete line SM or a disconnect line
SM.

The unsolicited SM also contains bytes defining the number of terminals, the
terminal type, the terminal address and the cluster address, the device
type, and line speed and code type. For autorecognition responses, the
terminal address and device type are repeated for each terminal that can be
detected by the TIP. The ASYNC TIP reports only one terminal address or
device type pair.

Line Count Request Service Message

The CS sends this message when it requires a count of the line which it
owns. This occurs following a host failure or when the NPU causes records
to be incomplete or erroneous. The reply message contains the requested
count.

Terminal Status Request Service Message

The CS sends this message when its records are incomplete due to a host
failure. Status can be requested for one or all terminals on a specified
line, the request specifying the line to be checked.

The response can be in answer to a request or it can be unsolicited, when
the NPU detects a terminal failure or a terminal recovery. Response
parameters are defined in appendix C.

When terminal failure is detected, the correspondent is informed via the
logical connection (if any) and the terminal status SM is sent. Terminal
failure does not change the state of the TCB with regard to the logical
connection, nor is the state of the line (as recorded in the LCB) modified.
Operator action is required to delete the terminal if desired.

If an error response is sent, the error is one of the following:

Invalid line number or bad HO

No terminals configured

Line inoperative or not enabled

Another terminal status request SM is in progress
LCB not configured

Generating and Sending Statistics Service Messages

Statistics SMs report on the NPU coupler, on lines, trunks and terminals.
The statistical data is derived from the appropriate statistics blocks for
the coupler, lines, and terminals respectively. The messages are generated
periodically or when the counter for the type of failure reaches its
overflow level. Statistics messages are also sent when a line is connected
or disabled or when a TCB is deleted. The various types of statistics SMs
are described in detail in appendix B.

60474500 A 6-21

Generating and Sending Broadcast SMs

The network operator (NOP) can send a message to one terminal or to all
terminals. These broadcast messages are carried in service messages. This
type of message identifies the cluster and terminal addresses, and the
device type of the receiving terminal. The network operator produces the
text. The procedures for entering this message from the NOP console are
given in the NOS Operator's Guide.

A normal response uses a similar format to acknowledge that the broadcast
message was received and passed to the specified terminal. 1If the message
was not delivered, an error response is generated. The possible types of
errors are as follows:

Invalid line number, bad host ordinal or toggle bit
Invalid device type

Terminal or line not configured

Terminal or line inoperative

Host toggle bit error

A broadcast message can be sent to all interactive terminals connected to
the NPU. Only the text of the message and the ID of the nodes being used
are necessary in the request message. The network operator enters the
message at the host console using the procedure outlined in the NOS
Operator's Guide.

A normal response is sent when the message is queued to all the interactive
terminals connected to the destination NPU; otherwise an error response is
sent. Errors are reported in the following cases:

° no logical link established or this logical 1link is not established
) another broadcast SM is already in progress

PROCESSING OVERLAY PROGRAMS AND OVERLAY DATA

This group handles the overlay logic. Overlays are used for on-line
diagnostics in all NPUs, and are used in a local NPU to initialize a remote
neighbor NPU.

The same technique is used in either case, and is described in detail in the
CCP 3 Reference Manual.

PROCESSING FORCE LOAD COMMAND

The Network Operator has the ability to force an NPU to an inoperative
state, so that the NPU requests that it be reloaded.

Receipt of this force load SM causes the CCP to start the deadman timer.
When the timer expires, the NPU sends a load request SM to the host. There
is no response to the force load SM.

The technique for entering the force load command at the host console is
described in the NOS Operator's Guide.

The initialization process resulting is described in the CCP 3 Reference
Manual.

6-22 60474500 A

CE ERROR AND ALARM MESSAGES

CE error messages are special SMs that report hardware failures. These
messages include a one-byte CE error code, and can include additional data.
CE error messages are described in appendix B of the CCP Reference Manual.

Alarm messages are special SMs that report frequent errors occurring on a
given hardware device and are generated whenever the number of these errors
reach a threshold level. Alarm messages are described in detail in appendix
B of the CCP 3 Reference Manual.

COMMON TIP SUBROUTINES

These TIP subroutines belong to one of two classes: point-of-interface
(POI) routines, and other standard TIP support routines.

POINT-OF-INTERFACE ROUTINES
Five point-of-interface routines are included in the internal processor.

These routines handle many of the interfaces for the LIP and TIPs to begin
or to end processing of a message. The programs are as follows:

°® PBPIPOI - Post input POI
) PBIIPOI - Internal input POI
® PBIOPOI - Internal output POI
[PBPROPOI - Pre output POI
) PBPOPOI - Post output POI

PBPIPOI AND PBIIPOI

PBPIPOI, the post input POI, calls PNSGATH to gather the statistics for the
upline message transfer, and then calls PBIIPOI, the internal input POI, to
check if a proper connection for the data exists. If not, the buffers are
released; otherwise the header is added to the data (chained at the
beginning of the blocks, if necessary) and the data buffers are switched to
the next processing routine (presumably the HIP).

PBIOPOI — INTERNAL OUTPUT POI

This POI is called to process the output buffers according to block type.

It is called from the internal processor switch (PBSWITCH) to route downline
blocks to the TIPs. It is also called by the service module to switch
broadcast messages.

° BLK, MSG, and CMD blocks are queued to the appropriate TIP if the
accept output flag is set. Otherwise, the (chained) buffers are
rejected.

® BACK blocks indicate acceptance by the receiving node, so the number
of outstanding blocks is decremented and the acknowledged block is
released.

) BRK blocks sent upline from the TIP to the host indicate that a
transmission was interrupted. This indicates a non-recoverable
error. The host aborts the output transmission.

60474500 A 6-23

° INIT blocks cause the terminal operating and ready flags to be set.

) RST blocks cause the accept output data flag to be set. Buffers for
the current transmission are released.

° STRT blocks sent upline to the host cause the accept input data flag
to be set and a RST block to be generated. The host can again send
messages downline to the device.

° STP blocks are sent upline by the TIP to indicate that the terminal
cannot be used now, but that the message might be transmitted later
(after the TIP sends a STRT block). This is used for recoverable
cases, such as a printer being currently marked down. STP blocks
clear the accept input flag, release the buffers for the current
transfer, and notify the TIP to stop processing.

See figure 6-8.

PBPROPOI — PREOUTPUT POI

This POI is used to get a block for output processing. This is done by
updating pointers in the output message buffer that is queued to the TIP.
The block serial number is extracted also.

PBPOPOI — Postoutput POI

This POI is called from the TIP's postoutput routine to generate the
statistics for the block (uising PNSGATH) and to send a BACK block unless
the block was internally generated. The POI then releases the buffers
holding the message that the TIP has now finished processing.

STANDARD TIP SUBROUTINES

OUTPUT QUEUEING — PBQ1BLK AND PBQBLKS

Output queues are associated with a specific TCB that contains a pointer to
the first block in the queue, specifically to the first buffer of that
block. Figure 6-9 illustrates the queue structure. The queue contains one
or more data blocks, each of which is composed of one or more buffers. The
buffers are linked in the order they are removed from the chain. The last
word of one buffer is the pointer to the next buffer. The last word of the
last buffer contains NIL.

Blocks are chained together using the QCHN word of the buffer header (word 3
of the data buffer header). New blocks are always chained to the previous
last block. The QCHN word of the newest block is always NIL.

The TCB output queue is built by two routines: PBQlBLK and PBQBLKS:

° PBQIBLK (parm) uses the parameter (block address) to clear the chain
word of the block to be queued, then PBQLlBLK calls PBQBLKS.

® PBOBLKS (parm 1, parm 2) uses parm 1 to find the TCB output queue and
parm 2 to find the buffers to be added to the chain. If the TCB
queue is empty, a worklist entry is made to the TIP that controls the
TCB, so the TIP can process the queue,

6-24 60474500 A

- s

PTBACK ACKNOWLEDGE
SENDS

PTBREAK BRY BLOCK BLOCK

GENERATE
PURGE OUTPUT A BACK BLOCK
QUEUE
QQ=-—0 }
AQ <— 0
SEND IT
v
<@
GENERATE UP-
LINE '‘BREAK’

\ 4
¢ ‘ EXIT ’
\ 4
RETURN SUSPENDS TRANS-
PTSTOP MISSION OVER
A LINE
4

GENERATES UPLINE BREAK IF DOWNLINE
MESSAGES OR COMMANDS CANNOT BE TRANS-
MITTED BECAUSE OF BLOCK FORMAT ERRORS SET STOP BLOCK

SENT FLAG

i

STARTS TRANS-
PTSTRT MISSION OVER
A LINE =
AO =
NO
ACCEPT
ouTPUT
SET AND
STARTED
FLAG
CLEAR AO
NO 4
PURGE THE
OUTPUT QUEUVE
YES *
GENERATE A GENERATE A
STRT BLOCK, STOP BLOCK,
INCLUDE A INCLUDE THE
REASON CODE REASON CODE
y \ 4
SEND IT SEND IT
b -
% <
y \ 4
EXIT EXIT
M-369

Figure 6-8. Flowcharts for Important Common Tip Subroutines (sheet 1 of 2)

60474500 A 6~25

9¢-9

¥ 00S¥L¥09

CALL DOWNLINE
BLOCK HANDLER

(PBIOPOI)
SELECT BLOCK TYPE
] \ 4 » -
BLK, MSG, CMD BREAK BACK INIT RESET START STP
A VL \ v A \
CLEAR DECREMENT CLEAR INOP CLEAR
!
Al BLOCK COUNTER FLAGS, SET AO SET AO SET A Al
L v v y v
GENERATE REL EASE RELEASE GENERATE MAKE WL
UPLINE ASSOCIATED Al YES BUFFERS RESET STOP ENTRY
RESET BUFFERS SET
:////,
\ 4 \ 4 \ 4
NO
DISCARD RELEASE RELEASE
END IT
BLOCK BUFFERS S BUFFERS
\ 4 v
QUEUE Bt OCK SEND
TO TCB UPL INE SET Al
SET 0Q RESET
A
GENERATE
INIT BLOCK
AND SEND IT
R / \J \J \J \ A
L » Ll - -
Al = ACCEPT INPUT FI AG
RETURN A0 - ACCEPT OUTPUT F!1 AG
0Q = OUTPUT QUEUED FLAG
M-373

Figure 6-8. Flowcharts for Important Common TIP Subroutines (sheet 2 of 2)

TERMINAL CONTROU BLOCK

= R p
e p BSQTYPE
¢ TRUE
BFLCD BFFCD BFLCD BFFCD BFLCD BFFCD
FLAGS FLAGS FLAGS
QCHN - POINT
> HN = P > QCHN = NiL
IN NEXT BLOCK > ac T -»>
[] ® PY
Tz ® T = ° - o 2
[] () Py
MESSAGE BUFFER
CHAIN IS POINTER TO NEXT NIL
COMPOSED BUFFER
OF TWO OR
MORE BUFFERS v
CHAINED -
TOGETHER TO
FORM A
MESSAGE
BLOCK
v t
NIL
FIRST SEGMENT OUT v
NIL

LAST SEGMENT IN

|
MESSAGE BLOCK CHAIN IS COMPOSED OF TWO OR MORE BLOCKS CHAINED TOGETHER
TO FORM A TERMINAL OUTPUT QUEUE.

M-374

Figure 6-9., Structure of a TCB Queue

60474500 A 6-27

UPLINE BREAK — PTBREAK

The common send break subroutine PTBREAK (figure 6-8) indicates a
discontinuity in the output stream. This routine purges the output queue
described above, sets AO to zero to prevent further queueing of output
information, and sends an upline BREAK block with a code indicating the
reason for the break.

DOWNLINE BREAK

The host commands the TIP to stop input by sending a downline stop message
(a type of CMD block). This block is acted upon, when received, without
being output queued. The TIP replies with an input stopped message (also a
type of CMD block). This message causes the accept input (AI) flag to be
set to zero. To restart input, the host sends a start input message (a type
of CMD block). This sets the AI flag to 1 and the TIP again accepts input
from the terminal.

STOP TRANSMISSION TO A TERMINAL — PTSTOP

A TIP calls PTSTOP with a stop reason code. PTSTOP clears the accept output
flag in the TCB and then calls PNDNABRT to clear the output queue for this
terminal. PTSTOP also generates a STP block and includes the reason code
for the stop. The internal processor sends the block to the host via the
HIP.

INTERFACE TO TEXT PROCESSING FIRMWARE — PTTPINF

A TIP calls this interface to firmware routine to execute the upline or

downline text processing state programs. Upline text processing is used
only by TIPs which require two-state input processing, such as the HASP

TIP. The call is

PTTPINF (parm)
where parm is the address of the TPCB.

Text processing occurs on the firmware level. Information exchange between
OpPS-level and firmware level uses the 32-word text processing control block
(TPCB). Prior to the call to PTTPINF, the TIP sets all information
necessary to execute the transfer into the MLCB. When PTTPINF is put into
control, it transfers the second 16 words of the TPCB to the microprocessor
file 1 registers to speed processing. The text processing state programs
can save information for the OPS-~level TIP either in the file 1 registers or
in any other MLCB field. After the text processor (using the terminal-
oriented text processing state programs) has converted the data, control
returns to PTTPINF which stores the current file 1 register values in words
16 - 31 of the TPCB. After escaping to firmware processing, TPPTINF
periodically returns to OPS level to process interrupts (interrupts are
inhibited while firmware is executing state programs). When the entire text
processing sequence is completed, TPPTINF returns control to the calling
TIP. If the text could not be converted, TPPTINF notifies the TIP of the
failure by using fields in the TPCB.

This module is technically a part of the base system but is discussed here
since it provides a service for the TIPs.

6-28 60474500 A

FINDING NUMBER OF CHARACTERS TO BE PROCESSED — PTCTCHR

PTCTCHR counts the number of characters in the buffer to be processed. This
count includes the complete chain of data buffers in the message. This
mocdule is also considered a part of the base system.

SAVING AND RESTORING LCBs — PTSVxLCB AND PTRTxLCB

Two sets of routines allow TIPs to mark transmissions that must be suspended
until further terminal or host action occurs. The suspension address in the
TIP controlling the transfer is saved in the ILCB, and upon the necessary
action being completed, control returns to the TIP at the specified point
and transmission processing continues.

° PTSVILCB or PTSV2LCB saves the TIP return address in the LCB and
saves a wait count prior to returning control to the monitor.
PTSVILCB is used for input; PTSV2LCB is used for output. The TIP
will later receive control by a worklist entry to continue processing
at saved address.

) PTRT1LCB or PTRT2LCB - The TIP for this suspended transmission
receives control as a result of a worklist entry to it. These
routines restore TIP processing at the address (next entry point)
saved by PTSVXLCB. PTRTILCB is used for input; PTRT2LCB is used for
output.

These modules are also considered a part of the base system.

COMMON RETURN CONTROL ROUTINE — PTRETOPS

PTRETOPS is called by a TIP in order to properly relinquish control to the
monitor (PBMON). This module is also considered a part of the base system.

COMMON TIP REGULATION — PTREGL

The common TIP regulation checking routine is called when the TIP is ready
to start processing the data (upline or downline). Even though some
processing of the data may already be completed (for instance, input state
processing being complete on upline data), CCP may need protection from an
additional request for space or processing resources,

At the TIP's request, PTREGL checks any one or any combination of the
following four regqulation conditions:

® The regulation level at this end of the logical link is higher than
the priority level of the block transmitted to this NPU.

) The allowable number of blocks that can be queued to this TCB (ABL)
is greater than the number of blocks already queued to this TCB for
processing (OBL).

® The accept input (AI) flag is not set in the TCB (upline data).

60474500 A 6-29

° The buffer availability level in this NPU is below the level set for
this type (low or high priority) of data blocks.

NOTE

This routine is not called by the multiplex subsystem
for upline data. Instead, upline data is accepted
from the input loop, stored in the CIB, and
demultiplexed into a line-oriented input buffer; then
the TIP is called. The TIP has the responsibility
for checking whether the message should be rejected
(regulation occurs). The mechanism for stopping
input at the external interface is also a TIP
responsibility. This is done by breaking the message
(input stopped or BRK block) and commanding the
multiplex command driver to turn off the CLA. Until
the CLA state is changed, the multiplex subsystem
must continue to accept input data.

The calling format is PTREGL (parml, parm2). Parm 1 is a pointer to the
buffer associated with the proposed input operation. Parm 2 is the type of
comparison to be made.

If the type of regulation checked does not currently exist, PTREGL passes a
no regulation flag to the caller,

PTREGL is also considered a part of the base system.

SAVING AND RESTORING REGISTERS

Two subroutines save and restore the R1 and R2 registers.

PBBEXIT — Save R1 and R2

PBBEXIT is used to save Rl and R2 before executing the GOTO (EXIT) when the
GOTO statement occurs within one or more executable WITH statements.

NOTE

A GOTO (EXIT) from within a noninterruptable program does not
perform an UNLOCK operation before exiting.

PBEXIT then restores Rl and R2.

PBAEXIT — Restore R1 and R2

PBAEXIT is used before a GOTO (EXIT) is executed from within one or more
executable WITH statements. PBBEXIT has previously saved Rl and R2 in a
specified area so that they may be used as base addresses of the structures

associated with the first two executable WITH statements. The calling
sequence is

PBAEXIT (parm)

where parm is the name of the two-word save area for Rl and R2.

6-30 60474500 A

VIRTUAL TERMINAL TRANSFORM

Virtual terminal format allows the host application programs to expect only
two types of input: ASCII input from a standardized interactive terminal
(IVT), or ASCII input from a standardized batch terminal (BVT).

Each TIP is responsible for converting from terminal code and format to and
from the ASCII virtual terminal formats. Downline, this is handled entirely
in text processing state programs (see section 12). If the TIP handles
several types of terminals, it must have state programs to handle the
conversions for each separate type of terminal.

Upline, TIPs can use either of two ways of converting data. Usually, input
state programs can be used to completely demultiplex data from the circular
input buffer, to convert format, and to translate code in a single operation
(one pass processing). In cases where the upline block of data from the
terminal may be composed of data from several terminal devices, this single
stage input state processing is impractical. Instead, the multiplex
subsystem first uses input state programs for this TIP to gather all the
data into an input block for the line. Then after the TIP is called at OPS
level, the TIP provides a separate set of upline text processing state
programs to finish demultiplexing the data into blocks for each device. At
the same time, the upline text processing state programs convert format to
BVT or IVT, and translate code to ASCII (two stage input character
processing; used by the HASP TIP).

IVT and BVT can be considered as a special subset of the normal host/NPU
block protocol.

BVT is handled entirely by the state programs within the TIPs, Most IVT
transforms are handled the same way; however, IVT parameters can be varied
within a narrow range. For this reason a common TIP routine, PTIVTCMD, is
provided to decode the operator (or host)-entered message that changes the
IVT parameters (PTIVTCMD calls PTIVTPRSR to parse the message containing the
new IVT parameters).

Since the techniques used to format for IVT and BVT differ, the two types of
terminals are discussed individually.

BATCH VIRTUAL TERMINAL (BVT)

Batch Virtual Terminal provides the standard interface which permits
application programs in the host to exchange information with remote batch
terminals without regard to specific terminal characteristics.

The additional block handling abilities needed for batch-type terminals are
as follows:

o Ability to transform data to and from BVT format

) Ability to handle block protocol for each type of 9 blocks that can
be passed over the host and local NPU interface

60474500 A 6-31

Batch Virtual Terminal Characteristics

The BVT is deemed to be a multi-device terminal operating remotely from the
host. The BVT is connected to the 255X by a synchronous medium using a
high-speed line. Although the protocol on the line may differ by equipment
type, the BVT is assumed to be a block oriented terminal.

A separate logical connection exists for each device supported. Device
types that may exist at the remote site include: card readers, printers,
plotters, and card punches. The BVT is defined to allow full use of the
features of Mode 4 terminals.

Features considered are: data compression, printer carriage control, code
conversion, transparent data mode control, and file structure. For downline
blocks, the host process ensures that downline network blocks do not exceed
the allowable device block size after processing by the TIP, and that output
print lines do not exceed the device printline width. Similarly, the host
process is responsible for compressing data. For downline data, only,
blank, zero, and duplicate character compression is permitted. Compression
duplicate characters other than blanks or zeros will cause a rejection in
the form of a BRK block, if such data is sent to a Mode 4 terminal - (HASP
workstations, however, accept duplicate character compression). The degree
of upline compression is determined by the terminal. Full compression is
assumed. At any multidevice terminal the interactive devices conform to IVT
and the batch devices to BVT.

BVT Block Protocol Usage

° BLK Blocks - BLK blocks transfer non-last blocks of input or output
messages. The size of the upline block is determined by the
terminal. It is a host responsibility to ensure that the size of the
downline block does not exceed the terminal buffer size, after the
protocol envelope has been added. The TIP attempts to deliver all
blocks to the terminal. The effect of delivering too large a block
differs according to terminal type.

° MSG Blocks - Message blocks transfer the last or only block of an
input or output message. An upline message block is generated
whenever an end-of-information (EOI) is encountered in the card
stream. The EOI is designated by the < END OF INFORMATION > sequence.
A downline MSG block designates the end of a host message.

NOTE

The < > symbols are used for delimiting elements of
the IVT/BVT format.

) BACK Blocks - A BACK block acknowledges delivery of BLK, MSG, or CMD
blocks, for purposes of flow control.

® BRK Block - A break block temporarily stops the data flow when an
operator action occurs (interactive devices have precedence over
batch devices) or when a printer-not-ready condition is detected.
The application program is responsible for restarting the flow. A
BRK block is sent upline when the TIP receives a block that does not
conform to BVT or IVT.

6-32 60474500 A

) STP Block - A stop block stops the data flow when the end device
becomes inoperative or otherwise incapable of accepting more data.
The source process is required to protect all data which has not been
acknowledged by a BACK block and to prevent new data from being sent
to a device unable to accept it.

® STRT Block - A start block cancels the effect of the STP block. The
source process must respond with an RST block; then the source may
resume sending data.

) RST Block - A reset block indicates the point at which a BRK or STRT
block affected the message block stream. A destination process
issuing a BRK or STP block discards all unacknowledged blocks, as
well as all new BLK, MSG and CMD blocks, until an RST is received.
Additional BRK or STP blocks cannot be issued until the RST block for
the previous BRK or STP block is issued.

® CMD Block - A command block causes a change of mode in the other
process. A CMD block which is to affect data in the opposite
direction will not take effect until all data in the same direction
ahead of it has been processed. A CMD which is to affect data in the
same direction affects any data in the stream that follows the CMD
block.

Table 6-2 defines the MESSAGE contents of the blocks to the level needed for
BVT processing. Symbols used in the table are as follows:

° PARAM indicates a necessary parameter in the message block.

[PARAMa
* indicates one necessary parameter chosen
: from a list of possible parameters.
’ PARAMN
° {(PARAM)} . o « indicates that a parameter is necessary or i
permitted at a certain place in the message stream;

for instance a single MODECHANGE is allowed ahead
of a physical record in an UPLINEDATA message block.

Data control bytes have several parameter names: MODECHANGE,
COMPRESSEDDATA, etc. These control bytes have a common generic format:

FFnn)g where nn ranges between 00 and FF1g. These values are listed
together in a subtable.

A sample of the use of table 6-2 is shown in figure 6-10.

Table 6-3 defines the values for the parameter FORMSCONTROL which specifies
the print control action for the BVT.

Figure 6-11 shows job stream card examples for BVT data handling.

60474500 A 6-33

TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE)

MESSAGE

CONTROL

DOWNLINE CONTROL

UPLINE CONTROL

NETWORK HDR

NETWORK ADDRESS

PRI

BSN

COMMAND
. STOP INPUT
START INPUT

INPUT STOPPED

REASON CODE

DATA MESSAGE

BLKBLOCK

MSGBLOCK

BLK
MSG

DBC

UPLINEDBC
DOWNLINEDBC

BANNERCARD

UPLINEDATA

CONTROL

DATA MESSAGE
DOWNLINE CONTROL
UPLINE CONTROL

START INPU
NETWORK HDR COMMAND INPUT STOPPED REASON CODE

NETWORK HDR COMMAND [STOP INPUTT]

NETWORK ADDRESS PRI BSN

DN SN CN
0] o 0 - low
1] Priority {l - high
0
% see block protocol
Block Sequence Number description at beginning
: of section 6
L7
4
PFC - Cljg SFC = 05
PFC = Cljg SFC = 06
PFC = Cljg SFC = 07
00 00 - Stop input response
0l 01 - Input device not ready
02 02 - Card slip error
03 03 - EO1 input

(BLKBLOCK) g—, MSGBLOCK

NETWORK HDR BLK DBC [UPLINEDATA A]

DOWNLINEDAT
NETWORK HDR MsSG DBC UPLINEDATA
(ENDOF INFORMATION) DOWNLINEDATA
g%} See block protocol
UPLINEDBC
DOWNLINEDBC

00

SPARE SPARE SPARE NOTUSED NOTUSED NOTUSED
BANNERCARD NOTUSED

01l Punch banner card

- [00] Don't punch banner card

(MODECHANGE) (COMPRESSEDDATA)
NDOFMEDIA (ENDOFRECORD)] 0-n

60474500 A

TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd)

_ UMODECHANGE) (FORMSCONTROL) (COMPRESSEDATA)
DOWNLINEDATA = 'ENDOFMEDIA (ENDOFRECORD)] g-p
A single MODECHANGE is allowed ahead of a physical
record. FORMSCONTROL is required ahead of each print
line. COMPRESSEDDATA may be elided, e.g., FORMSCONTROL
without print. ENDOFMEDIA is required at the end of each
physical record. ENDOFRECORD and ENDOFINFORMATION are
used to indicate logical record or file boundaries.
HEX Value Parameter Use
FFO00-FF09 MODECHANGE Data Modes
FFOA-FFOF ENDOF... Information Separators
FF10-FF2F COMPRESSEDBLANKS Compressed Blanks
FF30-FF3F COMPRESSEDZEROES Compressed Zeros
FF40-FF8F COMPRESSEDDATA Compressed Data
FF90 STRINGINDICATOR Uncompressed String
Terminated by FFjig
FF91-FFCF STRINGLENGTH Uncompressed String of
Length 1 through 63
FFDO-FFDF - Not Used
FFEO-FFFE FORMSCONTROL Forms Control
FFFF Data Character FF
_ |asc1I-029
MODE CHANGE = SCII_O%]
ASCII-029 = FF0031¢4
ASCII-026 = FF031¢

Each device type supported by the BVT is assigned a data mode (see device
type subtable, below) which, in most cases, is unchangeable. However,
downline data to a card punch may contain a MODE CHANGE requesting the TIP
to perform the appropriate code translation to generate the desired punched
cards. The mode selected stays in effect until the next MODE CHANGE or an
ENDOFINFORMATION, which causes the data mode to be returned to the default
for the device. For all other downline data and all upline data, MODE
CHANGE is ignored.

ASCII-029 indicates that the data should be interpreted as ASCII, but that

only the 64 character subset will appear. The data will be translated by
the TIP to produce 029 cards. Similarly, ASCII-026 will produce 026 cards.

60474500 A 6-35

TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd)

DEVICE DATA MODES SUBTABLE

Device Type Data Mode
Card Reader Data is always converted to the 64-character subset of

ASCII by the TIP based on the characteristics of the card
reader and/or from information punched on the job and
end-of-record cards in the input stream,

Line Printer Data is always sent to the TIP in the 64-character subset
of ASCII and is translated by the TIP to produce the
terminal's standard graphics.

Card Punch Data is always sent to the TIP in the 64-character subset
of ASCII and, by default, is translated by the TIP to
produce 029 cards. A MODE CHANGE can be used to request
that 029 or 026 be punched.

Plotter Data is always sent untranslated by the TIP to the plotter.
EO Forms control associated with each
El print line. See table 6-3 for defini-
. tion of values. Forms controls which
FORMSCONTROL = FF1¢ . are not supported by a specific device
. results in a single space. See
FD individual TIP actions for implementa-
| FE16 tion.
COMPRESSEDZEROES
COMPRESSEDBLANKS
COMPRESSEDDATA = |REPLICATIONCOUNT BYTE

STRINGLENGTH STRING
STRINGINDICATOR STRING
1-n words

327 321 - 2 zeroes compressed

33 3316 - 3 zeroes compressed
COMPRESSEDZEROES = FFjg .

3E

| 3F1g 3F16 - 15 zeroes compressed

[12] 216 - 2 blanks compressed

13 .
COMPRESSEDBLANKS = FFjg . .

2E .

| 2F1¢ 2F1¢ - 31 blanks compressed
BYTE (0..255)

= 00 through FF1g (8-bit byte)

6-36 60474500 A

TABLE 6-2.

REPLICATIONCOUNT

STRINGINDICATOR

STRING

STRINGLENGTH

BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd)

FFi¢

FF903¢

BYTE

FF1¢

[42
43

8E
[8F16

Second byte represents the number of
times the byte following the count is to
be repeated. Value may range from 2
(42) 16 to 79 (8F)16. Upline

compression is determined by terminal;
full compression capability should be
assumed. Not used for downline blocks.

Used for upline only, this indicates that the
following byte string consists of uncompressed
data of indeterminate length. The string is
terminated by the first non-data FFig
encountered. Any data FFjg patterns must be
doubled by the TIP and the added FF1g must be
deleted by the host.

1-n

-

91
92

.

CE
[CF16

bytes - n is limited by the physical record

length of the terminal device.

This indicates that the following byte
string consists of uncompressed data of
length 1 (9131¢) through 63 (CFjg).

This method of representing uncompressed
data is always used downline but is used
upline only when a count is provided by
the terminal, such as HASP.

The following three elements allow file structure to be retained during

transfer.

ENDOFMEDIA

ENDOFRECORD

nn
ENDOFINFORMATION

60474500 A

FFOAl6 - This represents the end of a physical record,
for instance: card, print line.

FFOB16

nn FFOA

- This represents the end of a
logical record and may occur at other
than block boundary.

logical record level number
FFOCFFOA16 - This occurs only in a MSG block as the last

four characters in the block.

Use of BVT Block Syntax table:

because of card error, BVT block.

MESSAGE

NETWORK‘ﬁSE’/’/’:‘NETWORK
NETWORK“XDDRESS = DN SN

—

low priority assigned to batch terminals

PRI

BSN

INPUT STOPPED

COMMATf::::::::://///
2

REASON" CODE

= _CONTROL

CONTROLAA”/’///:/UPLINE CONTROL

UPLINE CONTROL = NETWORK HDR COMMAND INPUT STOPPED REASON CODE

0 -

4 -

Cl -7

%

~

R

CMD type of block

I B

ADDRESS
4/’/”///’i:44////

Example to generate an upline, input stopped

- /

CN _~ Codes of destination source, and
connections are given earlier in
section 6

///’

16 ~ See appendix C for the primary and secondary
function code assignments

Formatting the syntax into a byte format:

byte word format (hex)
0000
Link Header | DN | sN [cov | PRI/ | Prc | sFc | Re gigz
=02 =03 =X BSN/ =Clig =07 =02 c107
BT=04
0200
coupler noéle—--|
terminal node
CN used in
directory search bit 7 4 0
P BSN BT
3 = = CMD Block
=0
Figure 6-10. Use of the BVT Block Syntax Table
6-38 60474500 A

TABLE 6-3. FORMSCONTROL VALUES FOR BVT BLOCKS

FORMSCONTROL
(Hex) Action Before Printing Action After Printing
EO (1) Space 1 No Space
El (1) Space 2 No Space
E2 (1) Space 3 No Space
E3 (1) Suppress Space No Space
E4 (1) Skip to Channel 1 (2) No Space
E5 Skip to Channel 12 (3) No Space
E6 Skip to Channel 6 No Space
E7 Skip to Channel 5 No Space
E8 Skip to Channel 4 No Space
E9 Skip to Channel 3 No Space
EA Skip to Channel 2 No Space
EB Skip to Channel 11 No Space
EC Skip to Channel 7 No Space
ED Skip to Channel 8 No Space
EE Skip to Channel 9 No Space
EF Skip to Channel 10 No Space
FO No Space Skip to Channel 1 (2)
Fl No Space Skip to Channel 12 (3)
F2 No Space Skip to Channel 6
F3 No Space Skip to Channel 5
F4 No Space Skip to Channel 4
F5 No Space Skip to Channel 3
F6 No Space Skip to Channel 2
F7 No Space Skip to Channel 11
F8 No Space Skip to Channel 7
F9 No Space Skip to Channel 8
FA No Space Skip to Channel 9
FB No Space Skip to Channel 10
FC-FE Reserved
Notes:
1. Supported on all devices
2. Page eject
3. Bottom of page
60474500 A 6-39

See individual TIP sections for exceptions.

Terminal Input

(2)

Jobcard:
29
26
JOBNAME.... XX

End of Record Card:

(5)

=
8 29
9 nn 26
/* EOR nn... XX

End of Information Card:

6
7
8
9
/* EOI

Notes:

BVT

(1)
FF90 JOBNAME....

(4)
FFOB nn FFOA

(6)
FFOC FFOA

1. Uncompressed stream terminated by FF flag.

2. Columns 79/80 of JOB card may contain 26/29 code sequence.

3. End of physical record sequence.

4. EOR sequence.

|

29
26
XX

}

(3)
FFOA

5. EOR card may contain octal logical level number following EOR

designator.

6. EOI sequence. This is not valid for HASP.

Figure 6-11. Sample CYBER Job Stream Card Inputs for BVT Data Handling

6-40

60474500 A

INTERACTIVE VIRTUAL TERMINAL (IVT)

Four types of additional block handling are needed for interactive type
terminals:

® Ability to place data in IVT format.

® Ability to handle block protocol for each of the 9 block types that
can be passed over the host/NPU interface.

° Special service messages for the CS node are needed.

° Special service messages are needed to change interactive terminal
operating modes and terminal parameters.

Details of the user interface and virtual-to-real transforms are described
in the appropriate TIP section.

The variety of terminals that may be used to access interactive processes
causes a problem of incompatibility. This problem is of greater concern on
the output side where the use of format effectors produces undesirable and
unintended effects. The NT code solves these problems.

Because of the TIP's state programs, an application program in the host may
expect compatible input from a terminal, and may issue output to a terminal
with confidence that the intended results will occur. IVT provides the
necessary transforms between selected types of terminals and one of the
designated virtual terminal subtypes. IVT also provides a method for
varying these transforms to widen the variety of terminals which may be
accommodated.

The choice of functions provided by the IVT modules has been restricted to
ensure that significant intelligence will not be lost even when transforming
to the real terminal with the lowest capability. Where the application
program requires features not provided by IVT, but known to exist on the
connected real terminal, the application program may use those features in
one of two ways:

) The application may embed appropriate control characters in the
output text or, conversely, scan for significant control characters
in the input text. Due regard must be made for the control
characters which are significant to IVT and, therefore, are possibly
transformed by the TIP.

° By transferring data within formatting changes allowed (transparent
mode), the transforms are inhibited and the application has direct
access and responsibility for all real terminal features.
Transparent mode is separately selectable in each direction.
Transparent mode is not allowed for HASP interactive devices.

Interactive Virtual Terminal Characteristics
An IVT always has an input device and an output device. The input device is
typically a keyboard, but may be a paper tape reader or cassette reader.

When the input device is not a keyboard, IVT normalizes reader input so that
it appears to be identical to keyboard input.

60474500 A 6-41

The output device is typically a printer or display, but may be a paper tape \
punch or cassette recorder. The host application program does not normally
concern itself with the output media. Optional additional equipment

supported includes a paper tape reader or punch. Paper tape can be used

anytime, but the user must declare if X-OFF is to be put on this output

tape. The user must also declare if the tape is to be turned on again when

an X-OFF is input from the tape.

The IVT does not provide a method of switching between a display and a
printer, but assumes that local hard copy facilities may exist. 1IVT device
parameters, as seen by a host application, are as follows:

Line width - Infinite (subject to block limit)
Page size - Infinite

Parity - None (set to zero)

Code set - ASCII - 128 characters available

Format effector delays - None

IVT format effectors (FE) are an optional feature of downline data blocks.

A flag in the data block clarifier (DBC) determines whether FEs are present
or not. If the flag is set, FEs are not present and each output logical
line is defined as single-spaced, prior to printing; and the first character
is printed. If the flag is zero, FEs are assumed as the first byte of each
logical line of text. Undefined FEs default to the single-space prior to
print condition. The interpretation of FEs is given in table 6-4.

TABLE 6-4. FORMAT EFFECTORS

FE Action When Action Occurs
sSp Single Space preprint
0 Double Space preprint
- Triple Space preprint
+ Position to start of current line preprint
* Position to top of form or cursor home preprint
1 Home cursor and clear screen preprint
’ No action preprint
. Single space postprint
Position to start of current line postprint
T™wo additional format control symbols may be passed downline in text:
< CR > Carriage return preprint
< LF > Line feed preprint

6-42 60474500 A

Other potential control characters, or control character sequences, are
translated one for one. Thus the application can detect special input
control sequences and transmit special output control sequences by taking
note of the translation performed for a specific terminal. 1Idle fill can be
inserted for <CR> and <LF>, however. IVT operational controls which may be
passed via flags in the data block clarifier of downline blocks are as
follows:

Auto-input - Return this output with next input (only effective for a
MSG type block)

Transparent - Inhibit IVT transform for this output

FE - FEs present or absent

IVT operational controls which may be passed via flags in the data block
clarifier of upline blocks are as follows:

Transparent - This block remains in the terminal format
Parity Error - This block had one or more parity errors
Cancel - Cancel the message of which this MSG block is a part

IVT mode control, which may be affected by downline synchronous commands, is
shown in table 6-5 under the description of a MESSAGE.

The basic format of the command block is as follows:

| | | UPLINE OR |
! MESSAGE = NETWORK HDR | COMMAND | DOWNLINE CONTROL}
1] |
Byte 1 2 3 | 4 [5
Link header DN SN CN BT=04 CONTROL TEXT

IVT uses upline synchronous commands to communicate that input has been
stopped. (Note that CN defines that the command is for this terminal.)

TABLE 6-5. IVT BLOCK SYNTAX

MESSAGE - [CONTROL]

DATA MESSAGE
CONTROL MESSAGE PARAMETERS

COMMAND
BREAK

UPLINE CONTROL
REASON CODE

DN SN CN PRI BSN - See block proto-
_ col description
COMMAND -4 at the beginning
BREAK =5 of section 6

DOWNLINE CONTROL
CONTROL

NETWORK HDR [

NETWORK HDR

60474500 A 6-43

REASON CODE
(for break)

DOWNLINE CONTROL

TERMINAL CONTROL
STOP INPUT
START INPUT

UPLINE CONTROL
INPUT STOPPED

REASON CODE
(for input stopped)

TERMINALPARAMETERS
= PFC=Cl SFC=04

TABLE 6-5. IVT BLOCK SYNTAX (Contd)

PFC

PFC

User 1 break received (usually abort queue)
User 2 break received (usually abort job)
Output device not ready

Illegal/invalid block sent by host

[~ TERMINAL CONTROL
| TERMINAL PARAMETERS

_[sTop 1npPUT
| START INPUT

Cl16 SFC = 05
Cl16 SFC = 06

INPUT STOPPED REASON CODE
Cl16 SFC = 07

PW
PL

PA

CN

BS
CcT

SE

DL

CI =

LI =

~ Stop input response
- Input device not ready
- Card slip error

- EOI input

- Interactive interrupt
1]]

2 Meaning of terminal
(o] parameters are
E discussed below under
N the heading:
Commands for Terminal
SELECTED CHAR Parameterization.
SELECTED CHAR

SELECTED CHAR
CcA
NN
CA
NN
N
Y

(XHH) (,CNNNN) (,TO) | PFC and SFC values
are given in appendix C

60474500 A

TABLE 6-5. IVT BLOCK SYNTAX (Contd)

KB
Xp
_X =
"PR]
OP = DI
| PT
Ch = A
EP = _g]
PG = _g]
ALL, = SELECTED CHAR
Bl = SELECTED CHAR
B2 = SELECTED CHAR
|[MS = TEXT _
NNNN = (0...4095) - One to Four Decimal Digits
NNN = (0...255) - One to Three Decimal Digits
NN = (0...99) - One to Two Decimal Digits
SELECTEDCHAR = ASCII Representation of Selected Character
HH = 00...FF - Selected Bit Pattern as Sent by Terminal
TEXT = One through fifty ASCII characters message composing
the text
END OF CONTROL MESSAGE PARAMETERS
DATA MESSAGE PARAMETERS
DATAMESSAGE - [ChAmononEeeacs)
TRANSMODEMSG = BLKBLOCK** MSGBLOCK
BLKBLOCK = NETWORKHDR BLK TRANSBLKCONTENT
MSGBLOCK = NETWORKHDR MSG TRANSBLKCONTENT
NETWORKHDR = DN SN CN PRI BSN
BLK =1
MSG = 2
TRANSBLKCONTENT =[ggggg§;§§§m] (BYTE) g_p»

*The number of bytes in a BLKBLOCK is a system parameter separately
declarable upline and downline; n < 2043.

**0)-m lines

60474500 A 6-45

TABLE 6-5. IVT BLOCK SYNTAX (Contd)

BYTE (0...255) - CLA mode or terminal may not support
full range. If terminator is specified,

then that value will not appear upline

SPARE SPARE SPARE SPARE
DBCDOWNLINE = FEUSAGE TRANSPARENT NOTUSED
AUTOINPUT Binary flags

[0?] -~ This output is not autoinput

AUTOINPUT = | 01l] - This output is to be returned ahead of
next input
. |00|] - Format effectors (FEs) used
FEUSAGE - 0;] - Format effectors not used

SPARE SPARE SPARE NOTUSED
DBCUPLINE = NOTUSED TRANSPARENT CANCELLED
PARITYERROR Binary Flags

_ [00] - No Action Required
CANCELLED ~ |01} - cancel any incomplete upline message

_ [o0] - Block is in character mode
TRANSPARENT " L0l] - Block is in transparent mode

_ [00] - Parity errors not detected
PARITYERROR ~ |01] - Parity errors detected
CHARMODEMESSAGE = CHARMODEBLK** CHARMODEMSG

- UPLINE CONTENT
CHARMODEBLK = BLKADDRESS BLK [.DOWNLINE CONTENT]

_ UPLINECONTENT
CHARMODEMSG = BLKADDRESS MSG [:DOWNLINECONTENT]
BLKADDRESS = DN SN CN See normal block header

_ PHYSICALLINE
UPLINECONTENT = DBCUPLINE [LOGICALLINE]
PHYSICALLINE = 128ASCIICHARSETWITHPARITYSETTOZERO** - Blocking may

occur at physical line boundary or logical line
boundary. See individual TIPs for a discussion of
upline blocking.

LOGICALLINE = 128ASCIICHARSETWITHPARITYSETTOZERO** - Except total
of all bytes in a block must not exceed n.

[FE LOGICALLINE US]*
CLOGICALLINE USTJ**

Us 1F16 - US must not appear in a downline logical line

DOWNLINECONTENT

SINGLESPACEPRE]
DOUBLESPACEPRE
TRIPLESPACEPRE
STARTOFCURRENTLINEPRE
FE = | FORMFEEDPRE

HOMEANDCLEARPRE

NULL

SINGLESPACEPOST

STARTOFCURRENTLINEPOST _

*The number of bytes in a BLKBLOCK is a system parameter separately
declarable upline and downline; n <2043.

*%*0-m lines

6-46 60474500 A

P anN

TABLE 6-5. IVT BLOCK SYNTAX (Contd)

SINGLESPACEPRE = SP
DOUBLESPACEPRE = 10

= '
TRIPLESPACEPRE > Preprint Format Effectors
STARTOFCURRENTLINEPRE = '+°' (defined earlier)
FORMFEEDPRE = %!
HOMEANDCLEARPRE = '1'4
NULL = 1, No Action

= '
SINGLESPACEPOST * Postprint Format Effectors
STARTOFCURRENTLINEPOST = '/! (defined earlier)

IVT Block Handling at Host Interface

When a TIP in the NPU communicates with the application program in the CYBER
host, the communication between the two is subject to processing by an
intermediate process in the host called the Network Access Method (NAM).

NAM exists to provide a common logical interface to the communications
network.

The IVT interface to the host is necessarily described at two levels - the
interface to NAM, and the overlying interface to the interactive
application. The interface to NAM uses block protocol. 1Its special
application to IVT is defined below:

IVT Block Protocol Usage
BLK Block

) The BLK block is a non-last segment of a message. It is used for
transferring data both upline and downline. When a message is
greater than m bytes (M n), then the message is divided into blocks
of n bytes long. All non-last segments are sent as BLK blocks.
Blocks have a maximum of 2043 bytes, but are normally smaller to
conserve 255X resources.

® Upline, a character mode block is a partial logical line, (typically
a physical line), sent at the convenience of the TIP. A transparent
mode block consists of a system-defined number of bytes.

® The optimum block size for the IVT is a small number of physical
lines for the specific terminal. For special application, such as
graphics or paging, the optimum block size is a single display.
MSG Block
The last or only segment of a message is sent as a MSG block. For

transparent downline data, if page wait is selected, the MSG block
indicates the end of the page.

60474500 A 6-47

BACK Block

The BACK block is used for flow control. A BACK is sent by the receiving
process (NAM/TIP) when it has delivered, or otherwise disposed of a BLK,
MSG or CMD block.

CMD Block

The command block (CMD) provides a means of passing control information
synchronously with the data stream, but apart from the BLK and MSG blocks
which constitute the data stream. The CMD block functions available are
specified later in this section.

BRK Block
A TIP sends the break block (BRK) when:

® User Break 1 is received from the terminal (typically this means
abort the queue).

) User Break 2 is received from the terminal (typically this means
abort the job).

® The downline block does not conform to IVT format.

In all cases, the TIP discards all locally queued output data and all
newly arriving data until a reset (RST) block is detected. Data
discarded includes synchronous blocks. Downline BRK blocks are not used.

STP Block

The TIP may send a stop block (STP) to the application program to request
suspension of output.

STRT Block
The start block (STRT) cancels the effect of the STP block.
RST Block

A reset block (RST) is sent by a process when it has received a BRK or
STOP block. A RST block specifies the point in the data stream when the
break or stop occurred. A further STP or BRK block must not be issued
until the previous RST block has been processed.

Block usage is defined in the TIP sections.

Table 6-5 defines the contents of the message blocks to the level needed for
IVT processing. Symbols used are the same as those used for table 6-2,
Symbol definition and an example of table use are given in the BVT portion
of this section. Familiarization with syntax for block usage can be
enhanced by reviewing the sample in figure 6-10.

The following restrictions apply to the use of the IVT block syntax:
) All upline character mode messages consist of zero or more BLK blocks
and a single MSG type block. Each block typically contains a single

physical line. The whole series of BLK and MSG blocks comprise a
single logical line.

6-48 60474500 A

¢

° Downline character mode messages may be multiblock. Each block may
contain multiple logical lines. Logical lines may not cross block
boundaries.

) For downline character mode messages, a flag in the data block
clarifier indicates whether format effectors are present. If so, all
logical lines are preceded by an <FE»> byte. A logical line in a
block is terminated by a <US> (1Fj¢).

® A logical line may contain any of the 128 ASCII character set, except
<US >,

) In character mode, all ASCII characters consist of 7 bits,
right-justified, in an 8-bit byte with the parity (bit 8) set to zero.

° All bytes of a transparent mode block can contain any of the 256
possible bit combinations. Exception: if a terminator character is
defined for an upline block, this terminator does not appear. Note
that terminal or CLA configuration may restrict the significant
number of bits in the byte to less than eight.

IVT Block Handling for Communications Supervisor

IVT uses a special subclass of command messages for communicating changes of
IVT parameters to CS (node 1) in the host. The types of messages needed are:

° Messages to define terminal class, page width, and length.

o Broadcast messages allowing the network operator to communicate with
the operator at one or all of the controlled terminals.

® Messages allowing a terminal operator to communicate with the local
NPU operator.

TERMINAL CLASS, PAGE WIDTH/LENGTH

This NPU-originated message provides CS with the current terminal class and
page width/length information for this class. The byte format for the
message is as shown in figure 6-12.

BROADCAST MESSAGES

The two types of broadcast messages allow the network operator to
communicate to a designated terminal or to all the terminals supported by an
NPU. These messages and their replies are described in detail in the
service message portion of this section. The format of the message is also
summarized in appendix C.

60474500 A 6-49

Block Header

e

-~ ~
Link DN | SN | CN | PRI/ PFC SFC| P|O0O|HO|CA|TA | DT | ORIG | PW | PL
Header | =01 BSN/ =ﬂC16 =03
BT

DN - The CS in host

SN - NPU coupler node

CN - Connection number

PRI - Priority

BSN - Block serial number

BT - Block type; 4 = CMD

ggg} - Primary and secondary function codes for this SM

P - Port for this terminal

HO - Host ordinal

CA - Cluster address

TA - Terminal address defined in appendix C

DT - Device type

ORIG - Originator of message

00 - terminal user
01 - applications program

TC - Terminal class - defined in appendix C; 1 <TC <15

PW - Page width in characters/line; 0 < PW <255

PL - Page length in lines; 0 sPL €255

Figure 6-12.

Format for Terminal Class, Page Width, Page Length Messages

60474500 A

OPERATOR MESSAGE

This message originates at a terminal and allows the terminal operator to
communicate with the network operator. The byte format of the message is:

Byte
Link DN | SN | CN | PRI/ PFC| SFC| P| SP| HO| CA | TA | DT | HO | TEXT
Header | =01 BSN/ | =$0C | =02
BT

where all the fields except TEXT are defined above.

TEXT is sent in response to a <CTL>MS = TEXT message previously delivered
to the terminal

Commands for Changing Terminal Parameters

As noted in table 6-5, a special subclass of IVT service messages is used
for terminal parameters. These commands belong to the <TERMINAL PARAMETERS >
class of messages. In table 6-5, the parameters are left undefined; they
are defined below.

Each control message consists of a synchronous command with a single command
embedded as an ASCII test string. All control messages from the host to the
TIP may also be entered by a terminal user. Three of the commands were
discussed above: terminal class, page width and page length. When these
are entered by the terminal user, or issued by the host, they are reported
to the communication supervisor. All terminal user-entered commands result
in an acceptable or unacceptable response to the user. Host commands that
are invalid or illegal are rejected with a BRK block, and are printed on the
NPU console.

Terminal parameter definitions are as follows:
® Terminal Class (TC)

TC establishes a class for the terminal, with default values for all
parameters, as defined in table C-~7. A TIP does not execute a
command if the class is not supported. This change must be reported
to CS in the host.

) Page Width (PW)

PW establishes the physical line width in characters for output. For
nontransparent blocks, the TIP inserts a character to move the
carriage or cursor to the next line. This insertion occurs at the
point where the number of characters to be transmitted equals the
page width. This character sequence differs on each terminal class.
The parameter NNN varies between 0 and 255; 0 means new line and is
never inserted. This change must be reported to CS in the host.

60474500 A 6-51

6-52

Page Length (PL)

PL establishes the number of physical lines in a page for output.

The TIP inserts the character sequence defined for the terminal class
to advance the carriage or cursor to the next page length. Also, if

the page wait feature is selected, the TIP will wait for an operator

input before continuing. The parameter NN varies between 0 and 255;

0 means no paging. This change must be reported to CS in the host.

NOTE

None of the remaining IVT parameter changes need be
reported to the host (CS).

Parity Selection (PA)

PA specifies the type of parity that the TIP expects on input and
generates on output. See the description of parity in the
asynchronous TIP section of this manual.

Cancel Character (CN)

CN establishes the character that is used to delete the current
logical input line.

Backspace Character (BS)

BS establishes the character that is used to delete the previous
input character from the current input buffer.

Control Character (CT)

CT establishes the character that is used to enter operational
control messages.

Carriage Return Idle Count (CI)

CI establishes the number of idle characters to be inserted in the
output stream following carriage return (CR). The use of CI-nn
overrules the default value and CI-CA restores the default value.

Line Feed Idle Count (LI)

LI establishes the number of idle characters to be inserted in the
output stream following line feed (LF). The use of LI-nn overrules
the default value and LI-CA restores the default value.

Character Set Detect (CD)

This restarts the character set recognition logic when changing a
character set during a message exchange sequence. First, the
terminal operator enters the IVT command: CD = A. Then the operator
has 60 seconds to (1) physically change the terminal's code set (for
instance, by changing the type element on a typewriter), and (2)
activate the TIP's code set recognition sequence by pressing the
carriage return key.

60474500 A

=

AT

) Transparent Text Delimiter (DL)

DL establishes the transparent text delimiter for input. The
delimiter may be a character, a character count, or a timeout of 300
* 100 ms. One or more of the delimiters may be active
simultaneously. Default values are shown in table C-7.

' Input Device (IN)

IN specifies the input device as a keyboard or paper tape reader, in
character or transparent mode. Note that paper tape input is allowed
in keyboard mode, but that the TIP does not send the X-ON

characters to start the paper tape reader.

® Output Device (OP)

OP specifies the output device as printer, CRT display, or paper tape
punch. Printer and CRT display are functionally equivalent. The
user may punch a paper tape in any mode, but the TIP provides the
X-OFF character only if OP = PT and if data is not transparent.

® Special Edit Mode (SE)

A SE = Y selection places the terminal in special edit mode; an SE =
N selection returns the terminal to the normal character edit mode.
Special edit mode provides two types of special operations: (1)
backspace (BS), linefeed (LF), and cancel input control symbols are
sent upline as data; and (2) a character delete sequence (one or more
backspaces followed by a linefeed) causes the TIP to issue a caret
prompt to the terminal, and then to continue with input processing.

® Echoplex Mode (EP)
EP specifies where input character echoing will take place. EP = N
implies the terminal is doing its own input echoing. EP = Y causes
the TIP to set the CLA, to provide character echoing.

® Page Wait (PG)
PG selects the page wait feature. It allows the user to control
output by demanding each page explicitly after the previously page
has been viewed for the desired period of time.

® Abort Output Line Character (AL)

AL selects the character which, when input followed by a carriage
return, results in the current output line being discarded.

® User Break 1 (Bl)

Bl selects the character which, when input followed by a carriage
return, causes the TIP to send an upline BRK block, with reason code
specifying user break 1. Conventionally, user break 1 is used to
abort the queue.

60474500 A 6-53

® User Break 2 (B2)

B2 selects the character which, when input followed by a carriage
return, causes the TIP to send an upline BRK block, with reason code
specifying user break 2. Conventionally, user break 2 is used to
abort the job.

® Message (MS)

MS defines the character used to delimit messages to the LOP. Up to
50 characters of text may be inserted between the MS delimiters.

For any of these parameter changes entered from a terminal, the TIP can
accept or reject the command. If the TIP accepts the command it does not
usually return a positive acknowledgment to the interactive terminal. 1If,
however, the TIP rejects the command, the TIP sends the following error
message to the terminal:

ERR...
Table 6-6 shows the IVT terminal parameters as used by the standard TIPs.

TABLE 6-6. TERMINAL PARAMETERS AS USED BY STANDARD TIPS

Command MD4 HASP ASYNC

TC artt
PW AR
PL

PA

CN

BS

CT

CI

LI

SE

DL

IN

(0)4

EP

CD

PG

AL

Bl

B2

MS

Other or invalid parameters

>

o
P
ol
©

wWOrrpTPpTOoOoPOOE > O
wOrropgwowowWow>»O>EOE>®
w0>3’3’>3’>'3’><3’>'353’>>'>

A = Action

AR = Action and Report to CS

B = No Action; Send BRK or ERR block to host
C = Valid only from User

t These commands are only valid for certain terminal classes. DL is
not a valid command for terminal class 4 (IBM 2741). A BRK block is
sent to the application if any of these commands are received for a
terminal in a class which does not support the command.

++ An error occurs for any attempt to change the mode from 4A to 4C, or
vice versa.

6-54 60474500 A

HOST INTERFACE PROGRAM

This section describes the operation of the Host Interface Program (HIP).

The CYBER 70/170 channel coupler provides the hardware interface between the
NPU and the PPU of a CYBER 70/170 host processor. This coupler is operated
through the cooperation of two programs; one resident in the host, the other
resident in the NPU. The NPU program, called the Host Interface Package
(HIP) is described in this section. The HIP provides logic to support the
following functions.

° Interrupt processing for coupler-generated interrupts
°® Initiation and control of data transfers across the coupler
[) Coupler status processing and error recovery

® Communication with the host coupler control program to support the
transaction protocol

® The standardized logical (as opposed to physical) interface for all
NPU resident software involved with data transfers between host and
NPU

TRANSACTION PROTOCOL

A special protocol is used for transfers between the NPU and the host. The
bléck portion of this protocol was discussed in section 6. The directives
which pass the blocks across the coupler are discussed here.

TRANSFER FUNCTIONS

The coupler's transfer path is half-duplex: thus it is bi-directional, but
transmission occurs in only one direction at a time. Both the host and the
NPU can bid for the right to transmit over the transfer path. The following
conventions govern the transfers:

° When both the PPU and NPU simultaneously bid for the transfer path,
output from the host takes precedence over input to the host. Input
to the host is called an upline transfer. Output from the host is
called a downline transfer.

e The NPU may reject an output request if it has insufficient space to
assign for receiving the message. This is called an overload
condition.

' Both the host and NPU coupler control programs operate in one of
three states: idle, sending, or receiving.

60474500 A 7-1

) When an error occurs during a transaction, the receiving processor
discards all data associated with the transaction and returns to an
idle state.

) During periods of inactivity, the NPU coupler program generates a
periodic IDLE INQUIRY status word to verify that the host is still
operating. The host must respond by reading the NPU status word. If
the host does not read the word within 10 seconds, the NPU assumes a
host failure.

DIRECTIVES USED

Five directives govern the data transfers:
® OUTPUT REQUEST specifies that the host has data to send to the NPU.
® INPUT REQUEST specifies that the NPU has data to send to the host.

) READY FOR OUTPUT specifies that the NPU is ready to accept the data
transfer designated by the current OUTPUT REQUEST. This is a
response to an OUTPUT REQUEST.

) NOT READY FOR OUTPUT specifies that the NPU cannot accept the data
transfer designated by the current OUTPUT REQUEST because there are
not sufficient buffers to store the data. This is a response to an
OUTPUT REQUEST.

° IDLE INQUIRY indicates that the preestablished timeout period for
another transfer to or from the host has expired without activity.
The NPU issues this directive to verify that the host is still
operating.

TRANSFER INITIATION

Upline data transfers are initiated by the HIP when the CCP notifies the HIP
that there is input data queued for transfer to the host. This is an
OPS-level event. Downline data transfers are initiated when the HIP
receives an OUTPUT REQUEST orderword from the host. This is an
interrupt-level event.

If either the upline or the downline data transfer occurs while the HIP is
in idle state, the HIP immediately begins to process the request. Requests
for upline data transfers are queued if the HIP is already sending or
receiving data. Requests for downline data transfers are accepted if the
HIP is not already receiving data from the host.

Figure 7-1 shows typical input and output transactions over the coupler.
Figure 7-2 shows the resolution of I/O contention at the coupler. Figure
7-3 shows the division of the HIP tasks between the OPS and interrupt
levels. The PTxxxxx labels designate HIP subroutines. For further details,
see a HIP listing.

7-2 60474500 A

HOST ACTION

A\

Host has data
and initiates
action.

Host has data
and initiates
action.

to send
trans-

to send
trans-

TYPICAL OUTPUT TRANSACTIONS

PROTOCOL DIRECTIVE

A\
”~ ™~

OUTPUT REQUEST o

NOT READY FOR OUTPUT

NPU ACTION

AN
~ ™~

HIP in Idle State

No buffers avail-
able. HIP returns
response.

Host has data
and initiates
action.

to send
trans-

Host initiates write

operation.

OUTPUT REQUEST o

READY FOR _OUTPUT

HIP in Idle State

Buffers available.
HIP sets up coupler
to receive data,
returns response.

The transaction is ended when the coupler generates the completion

interrupts to the host and NPU.

If a transfer error occurs, the data is

discarded by the HIP and the host must initiate the transfer again.

Figure 7-1.

60474500 A

Coupler I/0 Transactions (sheet 1 of 2)

HOST ACTION
AN

Host unable to accept
data

TYPICAL INPUT TRANSACTIONS

PROTOCOL DIRECTIVE NPU_ACTION
N A

-~ o~ ~

HIP has data to
send, sets up
coupler and
initiates trans-

INPUT REQUEST action.

NOT READY FOR INPUT

HIP waits up to 1-2
ms before trying

again.

™ T e —,

Host can accept data
and initiates a read
operation.

When transfer com-
pletes, channel
coupler sends
interrupt

Figure 7-1.

HIP has data to
send, sets up
coupler and
initiates trans-

INPUT REQUEST action.

TRANSACTION COMPLETE

HIP releases data

buffers.

Coupler I/0 Transactions (sheet 2 of 2)

60474500 A

HOST ACTION

~ - T~

Host has data to send
and initiates trans-
action.

Host ignores

Host initiates write
operation.

When transfer comp-
plete, channel coupler
sends response

PROTOCOL DIRECTIVE
A

~ ™~

OUTPUT REQUEST

INPUT REQUEST

J—

READY FOR OUTPUT

NPU ACTION
A

TRANSMISSION COMPLETE

~ ™~

HIP has data to send,
sets up coupler, and
initiates trans-
action.

HIP discontinues
input. Buffers are
available, so HIP
sets up coupler to
receive data,
returns response

HIP forwards data to
internal processor

- em wr wm em wm wm mm e e o e e s mm em Ee e mm e e mm e em m e em em wm em == e e em mn e e

Host has data to send
and initiates trans-
action

Host executes a delay
before sending another
request.

OUTPUT REQUEST

INPUT REQUEST

NOT READY FOR OUTPUT

HIP then starts a normal input sequence.

Figure 7-2.

60474500 A

HIP has data to send,
sets up coupler, and
initiates transaction

HIP discontinues
input. No buffers
are available, so
HIP returns a nega-
tive response.

I/0 Transaction Contention at The Coupler

9-L

¥ 00S¥L709

INTERRUPT LEVEL

HOST STATE (UP)

OPS LEVEL

COMMANDS
+ DATA

PTHIPINT
INTERRUPT

HIP
LINE/
TERMINAL
CONTROL

PTHIPOPS

OUTPUT DATA BLOCK

v

SERVICE

SERVICE MODULE
MODULE
WORK-
LIST
CONTROL oPs
MONITOR

INTERNAL

INTERNAL
PROCESSOR

Figure 7-3.

WORK-
LIST

PROCESSOR

OPS and Interrupt Levels for the HIP

M-423

TRANSFER TIMING

All coupler transfers are timed by means of a deadman timer which is set for
ten seconds. If the scheduled transfer fails to complete during that period
(a timeout condition), the HIP declares that the host is down. The HIP then
causes the service module to send the HOST UNAVAILABLE message to all
interactive terminals. The NPU rejects all further input from terminals.
The HIP also discards any output if an output transfer was in progress. 1If
an input transfer was in progress, the current block is replaced at the head
of the output queue. It will be the first block transmitted when the host
recovers.

The HIP recognizes that the host has recovered when a valid orderword is
received. All terminals are notified by a message sent through the service
module. Input is again accepted from the terminals.

ERROR PROCESSING
The HIP provides two types of error processing:

® For recoverable errors, the HIP retries the transfer. The HIP
provides an unlimited number of retries to accomplish the transfer.
However, in practice the number of retries is limited by the host
stopping the transfer or stopping the NPU and reloading the CCP. The
recoverable errors are data parity error, hardware timeout, and
abnormal termination.

° For unrecoverable errors the HIP aborts the transaction. The
unrecoverable errors are memory parity error, memory protect error,
and chain address zero (the condition which occurs when the HIP
expects to find a chained data buffer, but finds a zero address for
that buffer). All of these cause an NPU halt and are therefore
unrecoverable errors. The NPU processor must be downline loaded from
the host to continue message processing.

When an error is detected during a downline transfer, the HIP discards the
data associated with the transfer and returns to the idle state.

HOST/NPU WORK FORMATS

The host uses a 12 bit byte at the PPU interface. Format is as shown:

11 8 7 0
data byte

L——reserved for control (output) or status (input)

The NPU uses a 16 bit word composed of two eight bit bytes. Each NPU word
requires two PPU words. Data transmission to the host is made only over the
direct memory access (DMA) path. Format is as shown:

15 8 7 0

byte 0 byte 1

60474500 A 7-7

Other transfers are made through four sets of special registers in the
coupler. The NPU uses the internal data channel (IDC) for loading and
reading these registers. The registers have a 16 bit interface on the NPU
side and a 12 bit interface on the host side. Transfers to the registers
are discussed below under coupler interface hardware programming.

COUPLER INTERFACE HARDWARE PROGRAMMING

Figure 7-4 shows the coupler hardware which constitutes the host/NPU
interface. A PPU may interface to one or two couplers, but each coupler
must connect to different NPU. An NPU can also have two couplers. If there
are two couplers, the NPU determines which host loads the NPU at
initialization time.

The coupler has three transmission circuits:

) A half-duplex data circuit for transmission of programs or data
between the memory of the PPU and the main memory of the NPU. On the
NPU side, this circuit uses the direct memory access mode of
transmission. This channel also provides an execution control method
(function command) used by the PPU to start or stop NPU microprogram
execution. Micromemory execution must be started at address 0. This
method is used for initial loading and dumping of the NPU.

° A full-duplex control circuit which the NPU and the PPU use to
perform transaction setup (handshaking).

° A supervisory circuit which is set up and monitored by both NPU and
PPU. Transaction status is made available to both sides of the
interface by this circuit.

COUPLER REGISTER USE

It must be recognized that the names of some of the registers (coupler
status, orderword, NPU status word) and some of the circuits (supervisory,
control) do not adequately define coupler operations. For instance, the
control and set up of the NPU involves the following:

) The host loads the orderword register, and examines the coupler
status word to determine if the NPU status word is available for
examination. The NPU status word is then checked.

[The host sends a function word address to the coupler channel and
executes an output command for a single word transfer.

) At a later time, the host sends service messages for further control
of the NPU, using block transfers on the data channel. The NPU
replies using service messages.

® In all cases the host and/or NPU checks and changes coupler status
register bits to indicate the current status of the transfer
activities.

° The host or NPU transmits data (messages) after properly setting up a

block starting address in the NPU, using the memory address registers
in the coupler.

7-8 60474500 A

¥ 00S¥L¥09

6-L

11 10

BUFFERS IN HOST

0 23 20 12 8 0
PPU MEMORY
10 8 8
CONTRO ADDRESS SETUP
L FOR PROGRAM
S Amae——
CIRCUIT TRANSFER
INPUT/QUTPUT
DATA/PROGRAM
12 {12 12 10 |8
15 98 0 1716 8 0
MEMORY | MEMORY
COUPLER STATUS ORDER WORD NPU STATUS WORD ADDRESS | ADDRESS
REGISTER ZERO ONE
0 16 16 16
SUPERVISORY A 'y
CIRCUIT
_ CONTROL CIRCUIT - If DATA CIRCUIT
‘ (FULL DUPLEX) | 7 (HALF DUPLEX)
(MONITORED
I—-— AND SET BY ——a
BOTH SIDES) ADDRESS
SETUP VIA
FOR DATA DMA
TRANSFER CHANNEL
L) 8 8
Y
VIA IDC CHANNEL BYTE 0 BYTE 1

NPU MAIN MEMORY

BUFFERS IN NPU
JT,CAN 8E CHAINED

FOR DATA TRANSFERS

<

2

Figure 7-4.

Coupler Registers

M-424

The coupler registers shown in figure 7-4 directly accessed by the PPU
program for normal data transmission are as follows:

) Coupler Status Register - A group of 16 hardware-defined flags, the
low order twelve bits can be read by the PPU. The flags inform the
NPU of the reason for interrupt, and indicate to both the NPU and PPU
the status of the transaction and the status of other coupler
registers.

) NPU Order Word - A 16-bit register, the low order twelve bits are
written by the PPU to communicate a software-defined order code to
the NPU. This code determines the order of regulation across the
coupler.

[NPU Status Word - A 16-bit register, the low order twelve bits can be
read by the PPU. The NPU uses this register to communicate a
software-defined status code to the PPU. This code indicates the
type of transfer that the NPU is ready to perform.

® NPU Address Register - An 18-bit register, the PPU can write all 18
bits for the purpose of loading or dumping the NPU. The high order
10 bits (address register bits 17-8, plus bit 8 of the NPU status
register) are called memory address zero. The low order 8 bits,
address register bits 7-0, are called memory address one. The PPU
must perform two function operations to write the entire register.
Since the highest order bits of the address register (bits 17, 16)
are actually implemented as bits 9, 8 of the NPU Status word, those
bits cannot be used for other purposes.

The NPU address register is also set by the NPU to indicate to the
host the address of the first word to be transferred during a data
transfer.

The code/bit assignment for each of these registers is shown in tables 7-1
through 7-4.

The NPU receives an interrupt when the PPU writes the order word or
completes a data transfer. The coupler status register indicates the reason
for the interrupt to the NPU. Therefore, the PPU does not use a separate
control circuit to indicate that the transaction is complete; this
information being automatically available in the supervisory circuit.

PROGRAMMING THE COUPLER BY USE OF FUNCTION CODES

The coupler may be given function codes by either the PPU or the NPU. 1In
either case, the codes are treated as one word addressed to the coupler
equipment. From the NPU side, functions are sent to the coupler over the
internal data channel.

HOST FUNCTION COMMANDS

The coupler is programmed from the host (PPU) side by setting a function
code (see table 7-5) and executing an I/0 instruction. The coupler function
code occupies the low order nine bits of the 12-bit PPU function code. The
high order 3 bits of this PPU word contain the equipment code (coupler
address on the channel). The equipment code is determined by the setting of
hardware switches on the coupler.

7-10 60474500 A

i

TABLE 7-1. COUPLER STATUS REGISTER BIT ASSIGNMENT (sheet 1 of 2)
Bit RESET
Number I/A Flag Name SET Condition Condition
0 A Memory parity error NPU memory parity +
error
1 A Memory protect fault NPU memory protect +
fault
2 - NPU status word NPU writes status PPU reads
loaded word NPU status
word
3 - Memory address PPU or NPU writes -
register loaded memory address one
4 I External cabinet Power failure +
alarm
5 I Transmission PPU completes any T
complete input or output
operation
6 I Transfer terminated NPU terminates +
by NPU transfer (not used)
7 I Transfer terminated PPU sets channel +
by PPU inactive during
data I/0
8 I Orderword register PPU writes order- NPU reads
loaded word orderword
9 - NPU status read PPU reads NPU +
status word
10 I Timeout Inactive returned +
during a PPU data
I/0 operation
because coupler was
selected and active
for more than 3
seconds

All flags (t+ except bit 2) are reset when NPU or PPU clears the coupler.

Those flags marked with
status register.

I/A: I
alarm.

60474500 A

All flags are cleared by a Master Clear.

Setting Flag causes an NPU interrupt; A =

tare also cleared when the NPU reads the coupler

Setting Flag causes an

TABLE 7-1. COUPLER STATUS REGISTER BIT ASSIGNMENT (sheet 2 of 2)

Bit RESET
Number I/A Flag Name SET Condition Condition
11 A CYBER 170 channel 12-bit word plus Enable T

parity error parity from data parity
channel not odd switch
parity. Enable positive
parity switch on. transition
12-13 Unused

14 Chain address zero Coupler finds zero t
in last word of NPU
buffer.

15 - Alarm Positive transition t
of any flag marked
"A"

All flags (tt except bit 2) are reset when NPU or PPU clears the coupler.
Those flags marked with t are also cleared when the NPU reads the coupler
status register. All flags are cleared by Master Clear.

I/A: I = Raising Flag causes NPU Interrupt; A = Raising Flag causes Alarm.

The coupler channel is automatically disconnected when the PPU sends the
function code. The disconnect occurs within one microsecond of executing
the function code. If a parity error is detected on the function code
(CYBER 170), the channel is not disconnected.

NPU FUNCTION COMMANDS

The NPU commands (see table 7-6) are issued over the internal data channel.
The coupler is not disconnected from the host by these commands.

HIP FUNCTIONS

There are two primary functions performed by the HIP:
° Processing single word (control/status) function.

) Processing block transfers, for control or message processing
purposes.

7-12 60474500 A

TABLE 7-2. ORDERWORD REGISTER CODES

11 9 8 0
Order Length Orderword Register
Code eng rderw eg e
Order
Code Regulation
Value Name Level
1 Output Level 1 (Service Messages) 1
2 Output Level 2 (High Priority Data) 2
3 Output Level 3 (Low Priority Data) 3
5 Host not ready for input

Length ~ In 8 byte increments, of the output block to be transferred.
The value is rounded up when the length is not a multiple of 8.

TABLE 7-3. NPU STATUS WORD CODES

(actually bit 16 of the NPU
address register)

Code Value
(hexadecimal) Name Protocol
0 Ignore value and read again Data transfer
1 Idle
4 Ready for output
7 Not ready for output
8 Ready for dump Dump transfer
13 Input available, 256 bytes Data transfer
14 Input available, 256 bytes Data transfer
100 Bit 16 of address register NPU address set up

by host dump/load
protocol

60474500 A

TABLE 7-4. ADDRESS REGISTER CODE

bit 16 bit 15 - 8 bit 7 - 0

(first word)

Used as bit Memory address 0 Memory address 1
8 of NPU

status word

1. Address register increments with each NPU word (16 bits)
transferred.

2. Bits 11-8 of the second PPU word and bits 11-9 of the first PPU
word are discarded when loading register from PPU.

3. Only 15 bits are loaded from NPU; PPU zero fills the upper sets of
each word.

SINGLE WORD TRANSFERS (CONTROL)

The PPU can write the orderword at any time. The NPU reads the orderword
only if it has been loaded by the PPU, as indicated by bit 8 of the coupler
status register. This bhit is automatically recet when the NPU rcads the
orderword.

The NPU can write the NPU status word at any time. The PPU can read the NPU
status word only if it has been loaded by the NPU. When the PPU reads the
register, it cannot read the register again until the NPU again writes the
register., The PPU determines that the NPU status word has been loaded
(written) by interrogating bit 2 of the coupler status register. This bit
is automatically reset when the PPU reads the NPU status word.

Note that the NPU accesses the orderword NPU status word over the internal
data channel (IDC).

MULTIPLE CHARACTER DATA TRANSFER (BLOCK TRANSFER)
Block transfers use the direct memory access channel,

When executing the data transfer protocol, an arbitrary number of characters
are transferred between contiguous locations in the PPU and a set of chained
buffers in the NPU. The location of the characters in NPU memory and the
operation of the buffer chaining mechanism are transparent to the PPU.

From the point of view of both NPU and PPU, input means data flowing upline;
that is, from NPU to PPU. Similarly, output means data flowing downline,
from PPU to NPU.

This operation of the coupler requires concurrent action of both the NPU and
PPU. Either the NPU or the PPU may initiate the operation. When both have
completed the setup, the transfer takes place.

7-14 60474500 A

TABLE 7-5.

PPU FUNCTION COMMANDS

PPU Function Code

Octal Value

PPU Usage

Clear NPU

start npu T

Input program

Output program

Clear coupler

Output memory address
zero and one

Output orderword

Input coupler status

Input NPU status

Input orderword

Input data

Output data

200

040

007

015

400

010
011

016

005

004

006

003

014

Used prior to loading or dumping
the NPU. Stops the NPU and sets
micromemory address register to
location 0.

Starts the NPU emulator (micro-
code) at the location in the
micromemory address register. The
emulator must always be started at
location 0.

Used to dump NPU main memory.

Used to load the NPU main memory.
Micromemory can neither be loaded
nor dumped directly from the PPU.

Resets the coupler's control logic
and most registers. The protocol
defined allows only the NPU to
clear the coupler.

Sets NPU main memory accessing for
loading and dumping.

Loads the coupler ordnrword regis-
ter. Causes an NPU interrupt.

Used to check the state of various
registers and flip-flops in the
coupler. Used to test whether

the NPU has loaded the NPU status
word.

Inputs the NPU status word
previously loaded by the NPU.

Allows the PPU to read back the
orderword it had written. Used
only prior to dumping the NPU.

Allows characters to be input to
the PPU. The coupler must have
been previously set up by the NPU.

Allows characters to be output
from the PPU. The coupler must
have been previously set up by the
NPU.

1—

Must be delayed at least 10 ms following a clear NPU function code.

60474500 A

TABLE 7-6. NPU FUNCTION COMMANDS

NPU Command Hexadecimal Value NPU Usage

Input switch status 0654 Allows the NPU to check PPU
data channel device address,
on-line/off-line switch set-
ting, alarm override switch
setting. Executed during
initialization.

Output buffer 0658 Sets the coupler to follow
the NPU buffer chains for
the current buffer length in
use. Executed during ini-~
tialization.

Clear coupler 060C Resets the coupler control
logic and most registers.
Used during protocol error
processing. The contents of
the NPU status word are not
affected.

Input coupler status 0650 Used in the NPU interrupt
handler to determine the
reason for interrupt.

Input orderword 0660 Used in the NPU interrupt
handler to input the order-
word previously loaded by

PPU.

Output NPU status 0648 Used to send control codes
to the PPU.

Output memory address 066C Used to set up the coupler

for data transfer. Points
the coupler to the start of
an NPU buffer chain.

The PPU sends a function to the coupler, either to input data or to output
data. During an output operation the PPU cannot directly determine if the
NPU has set up its side of the coupler to transfer the data. The
determination is accomplished by the preceding communications, during which
the NPU and PPU agree that setup for output will be the next thing done by
both sides. For an input operation, after the PPU has sent a function to
the coupler and has activated the channel, the PPU can test the channel to
determine if a first buffer address is specified for the transfer and if the
NPU status indicates that the NPU has input data available. If so, the NPU
is set up and the transfer can take place. If not, the NPU sets up the
coupler. The channel should become ready for transfer within 12 ms of the
input data function command to the coupler.

7-16 60474500 A

The NPU sets up its side of the coupler for data transfer by writing the
address of the first buffer of a chain to the coupler address register
(buffer length is set up during initialization).

The high order four bits of each PPU data word control the operation of the
output transaction, although bits 10~8 are not used in the defined protocol
and are always set to zero. (If any of bits 10-8 are set, NPU buffer
chaining occurs at other than end-of-buffer. This causes excessive buffer
use in the NPU.) Bit 11 is set to 1 on the last character of the
transaction; this causes the coupler to stop storing data into the NPU
memory. The PPU disconnects the channel following transfer of this flagged
word.

Input transfer is terminated when the last character of an NPU buffer is
transmitted, and when bit 11 in the last word of the buffer is 1. The last
character transferred is stored in PPU memory with bit 11 set. The coupler
automatically disconnects the channel after this word is transferred.

It should be noted that a service message is handled by block transfers,
although such messages have a control rather than a message transfer
function. 1Interpretation of service messages is discussed throughout this
manual according to the type of service message.

Checking data transfers is discussed below under the timeout and error
checking heading.

CONTENTION FOR COUPLER USE

The coupler performs block mode transfers in only one direction at a time
(half~duplex protocol). Either the NPU or PPU can request the channel at
any time. The NPU requests the channel by setting the output memory address
to point to the start of the input block buffer chain, and then by setting
the output NPU status with one of the input available status codes. The PPU
requests the channel by sending a function to the coupler to output the
orderword with one of the output codes.

If the NPU and PPU both request to use the channel at approximately the same
time, output is usually favored. This is accomplished by changing the wvalue
in the coupler's memory address register to point to an output buffer chain
and responding with a "Ready for output" in the NPU status word. The NPU
will re-request the channel at the completion of the output transaction.

When the output transaction is completed, the PPU starts a brief (1-10 ms)
output-continue timer cycle to allow the NPU to request input, if the NPU
has data queued for the PPU. This timer prevents the PPU from monopolizing
the channel with output operations and thereby flooding the NPU.

If the NPU has a scarcity of buffers, it rejects the PPU's request, thus
regulating output data. To limit the frequency of NPU output-request-driven
coupler interrupts to the NPU during this data regulation period, an output
rejected timer cycle of 100 ms is used.

60474500 A 7-17

REGULATION OF COUPLER USE

The primary objective of host regulation is to:

° Prevent saturation or overloading of the host or network in the event
of an abnormality (emergency regulation).

° Allow data flow between the network and the host to ensure that
continuity of service and performance standards are maintained.

) Smooth data flow (prevent over-regulation) using appropriate feedback
control techniques.

The host coupler interface is a controlled, variable bandwidth I/0 channel,
in which the bandwidth is increased or decreased by a combination of
load-balancing and reaching regulation thresholds.

Normally, the NPU accepts all input offered by the PPU. When buffer
availability levels drop below pre-defined thresholds, the NPU uses the
priority level defined below to reject downline messages from the host:

Priority Message Type
1 Service messages.
2 Data blocks and related forward and reverse supervision

of the highest priority.

3 Data blocks and related forward and reverse supervision
at the lowest priority.

Each of these message types is kept in a separate queue in the host.
Regulation in the NPU occurs by the NPU first rejecting output offered at
level 3, then rejecting levels 3 and 2, and in an extreme situation,
rejecting all output offered by the PPU. As buffer levels rise above these
regulation thresholds, the NPU reverses this procedure until the unit is
again capable of accepting all outputs.

The order in which the PPU offers the various output levels is determined by
host considerations.

There are also two classifications of upline messages:

Classification Message Type
1 Data and supervision less than 256 bytes in length.
2 Data and supervision greater than 256 bytes in
length.

Both types of message are kept on a single queue in the NPU.
There is no priority associated with the two upline classifications offered

by the NPU to the PPU; the separation into two length ranges is only to
allow the PPU to utilize its buffer space more efficiently.

7-18 60474500 A

HOST FAILURE AND RECOVERY
A special case of regulation occurs when the host fails and when it recovers.

When the NPU software determines that communication across the coupler has
failed, a regulation level of zero is communicated to the other end of each
logical link terminating at the coupler. This inhibits acceptance of
further input traffic from terminals logically connected via the coupler.
Additionally, an informative message will be sent out to each affected
interactive terminal.

When the NPU software detérmines that communication across the coupler has
been restored, a normal regulation level is communicated to the other end of
each logical link terminating at the coupler. This enables input from
terminals logically connected via the coupler and causes an informative
message to be sent to all affected interactive terminals.

ERROR CHECKING AND TIMEOUTS

The data transfer physical protocol checks for:

® Contaminated data
) Incomplete transaction
® Failure of interface to respond

The first two types of errors are handled at the physical protocol level by
accepting only good blocks, and by discarding bad blocks in their entirety.
The physical level protocol does not re-transmit blocks. The coupler is
assumed to provide a noise-free channel and to generate only hard (rather
than intermittent) failure modes. Errors are detected and logged by the
host.

Interface failure causes the interface to be declared down, but the protocol
returns to the initial state and continues to wait for interface response.
Both the PPU and NPU have timers implemented locally to accomplish failure
detection. A keep-alive timer of one second duration generates a periodic
idle status, made available to the PPU when no traffic is in progress. The
PPU deadman timer provides a ten second duration signal. This timer expires
only if the PPU fails to receive either an idle or input request during that
period. If the timer expires, the PPU declares the NPU to be down and
enters the NPU dump/reload sequence.

The NPU deadman timer also provides a 30 seconds duration signal. If the
NPU fails to receive a coupler interrupt within this period, it declares the
host unavailable. The NPU deadman timer is not explicitly shown in the NPU
protocol flow diagram (figure 7-2), but it is implicit in all places where
the NPU is waiting for an interrupt.

HOST/NPU INTERFACE SEQUENCES

Figures 7-5 and 7-6 show the interface protocol sequences as viewed from the
host and NPU, respectively.

60474500 A 7-19

7-20

START
CONDITION

START DEAD
TIMER (10 SEC)

DEAD

TIMER
RUNNING
? BUFFERS
AVAILABLE
? y
READ INPUT
DATA
DECLARE
SEND 'NOT
NPU DEAD READY FOR
INPUT"
COUPLER
STATUS
LOG ERROR(S)
STORE DATA v
DISCARD DATA
R R
. M-425
Figure 7-5. Host Interface Protocol Sequence,
Host Side (sheet 1 of 2)
60474500 A

60474500 A

REGULATION
LEVEL 1

?

REGULATION
LEVEL 2

NO = REGULATION LEVEL 3

ORDERWORD SET ORDERWORD SET ORDERWORD SET
TO "OUTPUT TO "OUTPUT TO "OUTPUT
LEVEL t” LEVEL 2" LEVEL 3"

< J

4
a

DEAD
TIMER

RUNNING
?

STATUS=
‘'READY FOR
OUTPUT’
?

OUTPUT
THE DATA

A

STATUS=

'NOT_READY \NO
FOR OUT-

START OUTPUT START OUTPUT
(CONTINUE) (REJECTED)
TIMER TIMER
{1-10 MS) (100 MS)
START START

M-426

Figure 7-5. Host Interface Protocol Sequence,
Host Side (sheet 2 of 2)

TIMEOUT

ORDERWORD
LOADED

OUTPUT REQUEST

NOT READY
j FOR INPUT

SET TIMER
BUFFER TO IDLE
o AVA.LABfE TIMEOUT VALUE
? {500MS)

SET STATUS WORD

TO NOT READY
FOR OUTPUT OLE
SET BUFFER

ADDRESS IN
COUPLER

Ly

STATUS WORD
SET TO READY
FOR OUTPUT, SET
TIMER TO DEAD-

MAN VALUE
DEADMAN OUTPUT
TIMEOUT COMPLETE
COUPLER
STATUS
’ A
HOST NOT AVAIL- ROUTE
fovE DATA IN NPU
‘ SEND MSG TO
CE ERROR FILE
SET TIMER TO IN HOST
KEEP ALIVE
VALUE v
DISCARD
Y DATA
IDLE

+ see NOTE ON
SHEET 2

M-427

Figure 7-6. Host Interface Protocol Sequence,
NPU Side (sheet 1 of 2)

22 60474500 A

INPUT

TIMEQUT AVAILABLE

SET BUFFER
ADDRESS IN
COUPLER

\4

SET TIMER TO
DEADMAN VALUE

t v

SET STATUS WORD
SET TO INPUT

y

INPUT DEADMAN ORDERWORD
COMPLETE TIMEOUT LOADED

WAS
STATUS SENT
LAST
?

MAX
NON-READ
IDLES SENT

INPUT

SET STATUS AVAILABLE
WORD SET TO ?
IDLE, SET
TIMER TO IDLE
VALUE
v SET TIMER TO
KEEP ALIVE
VALUE
IDLE {1 SECOND)
4
IDLE

1 BEFORE LOADING
THE STATUS REGISTER, THE
STATUS IS CHECKED TO
VERIFY IT IS NOT STILL
LOADED FROM A PREVIOUS
TIMER. IF IT IS, A WORKLIST
IS MADE BACK TO THE OPS
LEVEL HIP TO RE-EXAMINE
THE STATUS.

M-428

Figure 7-6. Host Interface Protocol Sequence,
NPU Side (sheet 2 of 2)

60474500 A 7-23

NOTE

In figure 7-6 the large arrowhead (*) indicates that the NPU
is waiting for the next coupler interrupt. While waiting,
the coupler program re-entry point is saved in a state
vector, the deadman timer is running, and the NPU is
servicing other processes. When the interrupt occurs, the
NPU resumes servicing the coupler at the location specified
by the state vector. If the reason for interrupt is one of
the items listed below the arrow, service proceeds as shown.
If the interrupt occurred for some other reason, an error has
occurred. Such an error is logged in the CE error file and
the protocol is restarted at . If the deadman timer
timeout occurs before the interrupt, the HIP calls a routine
to note that the host is unavailable, and then restarts the
protocol at @ .

The principal features of the protocol detailed by the flow charts are as
follows:

7-24

The NPU can specify input available and set up the coupler for input
data transfers at any time.

The PPU can order output at any time.
If conflict occurs, the NPU normally allows output from the PPU.

The NPU can refuse to take PPU output if the NPU does not have
sufficient buffer space for the transfer.

The PPU can refuse input from the NPU by requesting output or by
responding with a 'not ready for input'.

If either the NPU or the PPU deadman timer expires, protocol is reset
to the start condition, but continues.

If a given output type is refused by the NPU, the PPU performs a
short timeout before re-requesting output, to prevent swamping the
NPU with interrupts. The type of output offered in succeeding
attempts is determined by the host logic.

If output is accepted by the NPU, the PPU allows the NPU to indicate
if input is available, before again ordering output.

Once data transfer is initiated, the transaction must be complete.
If it does not, the entire transaction unit is discarded.

Error checking is performed by the receiving device. If an error is
detected, a CE error message is sent to the host engineering file,
any received data is discarded, and the protocol is reset. No
attempt is made to retransmit the data.

60474500 A

BUFFER FORMAT

The HIP requires all using programs to provide or accept data blocks in
standard format. Figure 7-7 shows format that is a variation of standard
block format.

HIP STATES

The HIP can be considered a passive program that passes from one state to
the next as a result of a stimulus from an external event. Table 7-7 shows

the HIP as

BL =
FCD =

FLAGS

LBF =

LCD =

LWA =

CHAIN

60474500 A

a state driven program.

LCD FCD* \
+ 1|7 G
LBF FLAGS
A A
‘r) >
CHAR. 0 ‘ CHAR. 1
-~ >
CHAR. N-1 CHAR. N
CHAIN*)

Buffer Length (in 16 bit words) BL = 2X, 2=sx =7
First Character Displacement (relative to FWA) 4 = FCD = 253

Bit indicators which provide additional information about the
data or data buffers.

First Word Address of Buffer (must be an integer multiple of BL)
Last Buffer Flag (1 = last)

Last Character Displacement (relative to FWA) 4 s LCD =253,
BL LCD/2 + 1

Last Word Address of Buffer LWA = FWA + BL - 1

FWA of next data buffer (may contain zero value when LBF = 1)

Figure 7-7. Standard Data Block Format Used by the HIP

BL

TABLE 7-7. HIP STATES AND TRANSITIONS
Event Transfer Chain
Transfer Terminated Orderword Address Transaction
State Complete by PPU Loaded Zero Timeout
AOPTO Start Send Idle
Output Inquiry
IDLE CE=Spurious | CE=Spurious | (AOPT3) CE=Spurious
Interrupt Interrupt Invalid Interrupt
Orderword
— Halt
AOPT1 Start Out- CK for Idle
put or Not Response
Rdy for (deadman
Input timeout)
Idle CE=Spurious | CE=Spurious | Invalid CE=Spurious | Send Idle
Inquiry Interrupt Interrupt Orderword Interrupt Inquiry
Sent — Halt
AOPT2 NORMAL CE=Transfer | Terminate CE=Chain Host Down
INPUT Term by PPU | Input, Address to SVC Mod-
COMPLETION Start Zero, Re- ule, Requeue
Output lease Input | Input Mes-
Block sage
Input Release In- | (AOPT3)
Completion put Block Invalid
Orderword
—Halt
AOPT4 NORMAL CE=Transfer | CE=End of System Halt | Host Down to
OouTPUT Term by PPU | Operation (JOCHAIN) SVC Module
COMPLETION Missing Release Out-
put Buffers
Output Release Release
Completion Output Output
Buffers Buffers
Invalid
Orderword
— Halt
AOPTS No Action No Action No Action No Action No Action
AOPT6
Delay
7-26 60474500 A

LINK INTERFACE PACKAGE MODULE

The LIP module is responsible for handling transmission and reception on
both ends of a trunk; therefore, a version of the LIP must exist in both the
local and remote NPU.

Since the current CCP version permits only direct coupling from a remote NPU
to a local NPU, the terms trunk, logical link, and physical link are
synonymous for this connection. Two major types of operations are handled
by the LIP:

° Loading/dumping of the remote NPU. This operation is discussed in
the CCP 3 Reference Manual (see preface).

e Transmission of data (messages) over the trunk. Figure 8-1 shows the
functions involved in such transmissions. Note the division of
functions between local and remote NPUs. Table 8-1 contrasts local
and local/remote systems.

This section discusses LIP operation in five major categories:

Trunk protocol

Transmit functions
Receive functions

Trunk enabling/disabling
Trunk failure/recovery

TRUNK PROTOCOL

The LIP implements a class of the Control Data Corporation Control Procedure
(CDCCP) for information interchange. CDCCP treats each trunk as a separate
entity and is not concerned with the contents of the information frame. The
specific protocol implemented is equivalent to ISO HDLC class, using the
symmetrical, asynchronous response mode, and using the basic numbering range
with two-way, simultaneous reject and initialization options.

Either end of the link can initiate data transmission when conditions
warrant. The interfacing LIPs first establish the nominal mode: the local
NPU sends the set-asynchronous-response-mode (SARM) frame; the remote NPU
replies with an unnumbered-acknowledgement (UA) message indicating that
asynchronous response mode (ARM) has also been established in the remote
NPU. Then data transmission begins.

The basic unit of transmission over the trunk is a trunk transmission frame
(TTF). Format of the frame (8-bit bytes) is shown in figure 8-2. There are
three types of frames:

® Unnumbered frames that establish the basic transmission states
between the two nodes, such as initialization and command rejected.

60474500 A 8-1

c-8

¥ 00S¥LP09

INPUT
LOOPS
HOST LOCAL NPU REMOTE NPU
| 1.
c
o
LS] s 2 (1 o | [z -
P » P »{ (BLOCKS) BLOCKS) TRUNK (4))
U L (1)
E @) MUX MUX
R SUB- >< SUB- ¥ ¥
I X SYSTEM) SYSTEM I ,
l l 0 @
MESSAGES
NOTES: Eg(r;gT
(1) MESSAGES ARE COMPLETE BLOCKS, IN VIRTUAL TERMINAL FORMAT.
{2) MESSAGES ARE BROKEN INTO SUB BLOCKS BY LIP AND ASSEMBLED TERMINALS

(3)

(4)

{5)

INTO FRAMES CONTAINING < 255 BYTES EACH (FIGURE 8-2).

FRAMES TRANSMITTED OVER TRUNK AT=< 9600 BAUD. OUTPUT LOOP
OF LOCAL NPU CARRIES DATA/CONTROL INFORMATION; INPUT LOOP
RECEIVES ASSURANCE CONTROL INFORMATION (ALSO IN FRAMES).

RECONSTITUTED FRAMES ARE CHECKED BY LIP PRIOR TO PASSING
DATA AS RECONSTITUTED BLOCKS TO TiIPs FOR PROCESSING.

TIPs PROCESS MESSAGES, CONVERT TO TERMINAL FORMAT, AND
QUEUE FOR OUTPUT TO INDIVIDUAL TERMINALS.

Figure 8-1. Simplified Trunk Operation (Output Only)

M-387

TABLE 8-1. COMPARISON OF LOCAL AND LOCAL/REMOTE NETWORKS

Local Local/Remote

Terminals local only Terminals remote; can also have
local terminals.

Terminal data multiplexed locally; Remote; same on downline. Upline
TIPs place data in virtual data collected into frames (made up
terminal format (upline) or real of subblocks) after convert to IVT
terminal format (downline). or BVT format; transmitted via trunk
to local NPU. No HIP in remote NPU.
Upline data passed through TIPs to Local: Data from local terminals
HIP, thence to host treated the same. Data from remote

terminal treated same as for upline
data except LIP reconstitutes and
checks frames. Then reconstitutes
subblocks into message to pass to
HIP. Downline data broken into
subblocks, assembled into frames,
then sent to remote NPU via trunk;
still in virtual terminal format.

Load/dump NPU through coupler Load/dump local NPU through coupler;
: load/dump remote NPU using overlay
in local NPU, transmission over
trunk, and bootstrap program and
cassette in remote.

° Supervisory frames that establish whether transmission or reception
is currently possible (ready for data/not ready for data/rejected
last data sent) and that provide frame acknowledgement information.

® Information frames used to transmit message data. This class of
frames includes frames that are carrying service messages.

Before data framing, the messages (blocks) are queued in the link queues on
a first-in first-out basis. Each NPU has two such queues, one for
high-priority messages, the other for low-priority messages. The queues
hold pointers to the blocks which can either be a single buffer or a chain
of buffers (subblocks) making up the message. From the link queue,
individual subblocks are passed to the text transmission queue and then to
the frame. The entire subblock need not be included in the information
bytes of the frame. All that is necessary is the data part of the buffer.
This is the part delimited by FCD-LCD in the buffer, as shown in figure 8-3.

When the frame is filled (that is, the next subblock would cause a frame

overflow condition), the frame CRC is generated and the frame is sent to the
neighbor NPU (assuming the trunk protocol has been established).

60474500 A 8-3

FRAME FORMAT

Byte 1 2 3 4 5

J)

N-2 N-1 N

F A C I

W

>)

S CRC F
[

C - Control

¢

Information (subblocks)

byte (can be U, S, or I frame)

CONTROL BYTE (C Field)

Bits 7 5 4 2 1 0
U Frame P/F 1 1
P/F - Poll/final flag
0 = poll
1l = final
Bits 7 - 2 Function Protocol Element
000PO0OO Unnumbered information U1
° 000F01 Request initialization mode RIM
000PO1 Set initialization mode SIM
011F00 Unnumbered acknowledgement UA
100F01 Command rejected CMDR
000P11 Set asynchronous response mode SARM
Bits 7 5 4 3 2 1 0
S Frame N(R) P/F SC/R 0 1

N(R) - Sequence number of next frame expected in receiving NPU

P/F - Same

as U frame

SC/R - Supervisory command/response
Bits Mnemonics
00 Receive Ready RR
01 Receive Not Ready RNR
10 Rejected REJ
11 Not Used
Figure 8-2. Frame and Subblock Format (sheet 1 of 2)

8-4

60474500 A

Bits 7 5 4 3 2 1 0

I Frame N(R) = 0 P/F N(S) 0

P/F - Same as U frame
N(S) - Sequence number of frame

SUBBLOCK FORMAT FOR INFORMATION (I) FIELD

L FLG Message data bytes

FLG - Disassembly flags

Bits 7 - Priority 1 = high priority
6 ~ last subblock; 1 = true
5 - 0 - Unused

F - Flag is a unique bit pattern (01111110) to identify start and end
of frame. A zero bit is inserted after every string of five L's
where a frame is transmitted, and removed at the receiving NPU; F
bytes are added by transmitting CLA.

A - Receiving node address
0 = local -
1 = remote

CRC =~ Two cyclic redundancy bytes added by transmitting CLA.

N ~ Maximum frame size determined by the build time parameter
MAXFRMSZE (nominally set to 259); excludes the beginning and
ending F bytes and CRC bytes added by the CLA when transmitted

I - Appears only when control byte is I or in a UI frame

L ~ Length of subblock: 3 <L <257

Figure 8-2, Frame and Subblock Format (sheet 2 of 2)

60474500 A 8-5

LINK Q
(HIGH)

CHAINED MESSAGE n

BUFFERS

TEST Q
(HIGH)

(SuB-

BLOCKS)
1] 64 WORDS

\

\

AN\

MESSAGE n+1

o

IN THE SAMPLE
SYSTEM, ALL DATA
BLOCKS ARE 64
WORDS LONG.

8-6

v

LCD FCD

P g

-

14}

[N X
)

144

Figure 8-3.

SAMPLE
MESSAGE

USES ONLY

100 CHARACTERS
PER BUFFER.
ONLY ONE SsuB-
BLOCK AT A
TIME IN TEXT Q.

SAMPLE SHOWN FOR
HIGH-PRIORITY
QUEUES, WITH LOW-
PRIORITY QUEUES
EMPTY.

100

FRAME
ol F
o |\ FrAME
CONTROL
c
L=.102
. FLG=1 | | suB BLOCKS:
DATA TWO CONTROL
. WORDS PLUS
wo A o Llpata
BYTEST
DATA
CHARACTERs | L=102
FLG=1
2
DATA
J []
101
[]
DATA
CRC
FRAME
CRC | (coNTROL
F

Sample Frame Formation

SAMPLE SHOWS UP-
LINE MESSAGE.
ONLY TWO 100-
CHARACTER SUB-
BLOCKS FIT INTO

THIS FRAME.

REMAINING SUB-

BLOCKS ARE

TRANSMITTED IN
SUBSEQUENT

FRAMES.

m-388
60474500 A

Upline Data - Instead of being passed from the TIP to the HIP (as in a local
NPU only system), the message is passed to the remote NPU's LIP and through
the two queues, as shown in figure 8-4. Then the message data is placed in
the frame. After transmission over the trunk, the local NPU's LIP checks
the transmission, strips away the frame, reconstitutes subblocks into whole
message blocks, and passes these blocks to the HIP for upline transmission
to the application program in the host.

Downline Data - Downline transmission is shown in figure 8-5. Messages
(blocks) that are still in virtual terminal format are passed through the
HIP to the local NPU's LIP. The LIP converts the chained message buffers to
subblocks to be used in the frame. When the frame is filled (or no more
data is queued for transmission), the frame is sent to the remote NPU over
the trunk.

At the remote NPU the frame is stripped off and the subblocks are
reconstituted into chained message buffers, which are passed to the
appropriate TIP to be converted to the output terminal's protocol.

Two priorities are associated with frames to allow a trunk regulation
scheme. These priorities are as follows:

°® Priority 1 (high). Normally this priority is assigned to messages
from interactive terminals. Messages tend to be short but need rapid
processing to avoid delays at the terminal.

° Priority 2 (low). Normally this priority is assigned to messages
from batch terminals. Messages tend to be long (1000 bytes or more).

The scan system that generates the frames from subblocks scans four queues
priority 1 TEXT Q, priority 1 link queue, priority 2 TEXT Q, and prior .ty ’/
link queue in the order given. 1In this manner, all priority 1 informati~.
that can fit in the frame is transmitted before any priority 2 level
information.

Figure 8-6 shows the logical sequence of constructing a frame from subblocks
extracted from the various queues. Blocks for internodal delivery are
queued by link according to priority. These queues are input to the LIP.
The LIP interrupts low-priority traffic delivery at frame boundaries in
order to deliver queued high=-priority traffic. This, in conjunction with an
appropriately small frame size, optimizes high-priority response.

Information frames are constructed from subblocks with a total length not
exceeding a defined maximum frame size. A subblock can be all or part of a
block. Since frames must end on a block boundary, frames of fairly constant
length are constructed whenever a sufficient number of subblocks are
awaiting transmission.

Each trunk has a transmit in-process text queue (TEXT Q) for each priority.
If the queue is not empty, TEXT Q contains the untransmitted remainder of a
block that has been removed from the link queue and partially transmitted on
the trunk.

Each frame is headed by the A and C fields (figure 8-2). Each subblock in
the frame is headed by (1) an L field containing the length in characters of
the subblock following, and (2) an FLG field containing a priority flag and
an end-of-block flag. The L and FLG fields are used by the receiving LIP to
restructure the original blocks for processing by the CCP program.

60474500 A 8-7

8-8

¥ 00S%L%09

INPUT
LOOP REMOTE NPU

LINK Q

SUB- —
- BLocks [P TEXT @ »| FRAME
N f
-—— INPUT | /
INPUT P MESSAGES S s
MESSAGES) |~ MUX ;.
SUB- AN % / 7 UP TO 8 MOST
L

\ 4

SYSTEM | CONVERTS N 7 | FRAME Q lRECENTLY
TO VIRTUAL N TRANSMITTED
— TERMINAL FRAMES SAVED
\ FORMAT FOR POSSIBLE

"N
AN RETRANSMISSION
OUTPUT
Loop~"
FRAMES TRANSMITTED
TRUNK ONE BYTE AT A TIME VIRTUAL
TERMINAL
AT RATES UP TO TERMIN/
9600 BAUD
LOCAL NPU
»{SUB BLOCKS > c
f SUB BLOCKS o
» |- ———-+>—»| FRAMES g
SUB BLOCKS MESSAGES » P [efHosT
MUX E
INPUT SUB- 'y HL R
Loor| SYSTEM i - .
CHECKING = I
e |
f /
|,/ RECONSTITUTED
Y, FULL MESSAGE
@ BLOCKS
M-389

Figure 8-4. Sample Upline Message Transmission Over a Network Link

¥ 00S¥L%09

6-8

HOST

IMEFOCOO0

LOCAL NPU
LINK Qs
SUB BLOCK teom ° »| FRAMES HH—»}
MESSAGES 7 Pl \
(BLOCKS) , " \
»{ VIRTUAL y; e u \
TERMINAL y; // | MJ’;(
FORMAT _ | gYS:I‘EM _ouTtpuT
¥ s \ Loop
L) v \
| 1 /
[| s I)
/s v UP TO 8
lMOST RECENTLY
' ——-» FRAME Q | TRANSMITTED
| FRAMES SAVED FOR
POSSIBLE RETRANSMISSION
VIRTUAL
TERMINAL TRUNK
FORMAT \
5 MESSAGES RECONSTH- FRAMES \
* IN UTED (RECONSTI- |e—de——— le
Y MESSAGES <+
e TERMINAL FRAME TUTED AND
FORMAT VERIFIED)
SUB BLOCKS MUX §
SUB. INPUT
i x 7 SYSTEM LOOP
lr -~ N 7
N\ s/
(1 -~
rd
7
N OUTPUT
LOOP
MESSAGES
SENT TO
TERMINALS M-390

Figure 8-5.

Sample Downline Message Transmission Over a Network Link

IS Room REMOVE SUB BLOCK
|
PRIORITY 1 NO N:xﬂ,:“,"gnfgﬁ, YES FROM PRIORITY 1
Lﬁ:(: Q TEXT Q TEXT Q AND ADD TO
?TY SUB BLOCK FRAME
! 3

YES NO

ROOM
IN FRAME FOR
NEXT PRIORITY 1
LINK QUEUE
SUB BLOCK

IS
PRIORITY 1
LINK QUEUE
EMPTY
?

REMOVE FIRST BLOCK
YES FROM PRIORITY 1

LINK QUEUE AND PUT
IN PRIORITY 1 TEXT Q

NO

YES NO

ROOM
IN FRAME FOR
NEXT PRIORITY 2
TEXT Q
SUB BLOCK
?

IS
PRIORITY 2
TEXT Q

EMPTY
?

REMOVE SUB BLOCK
YES FROM PRIORITY 2
TEXT Q AND ADD TO
FRAME

NO

A

YES NO

ROOM
IN FRAME FOR
NEXT PRIORITY 2
LINK QUEUE
SUB BLOCK

[
PRIORITY 2

LINK QUEUE
EMPTY

REMOVE FIRST BLOCK
YES FROM PRIORITY 2 LINK
QUEUE AND PUT IN
PRIORITY 2 TEXT Q

NO

n M-381

Figure 8-6. Frame Construction Flowchart

8-10 60474500 A

The system regulation level (0, 1, and 2 levels) as discussed in the CCP 3
Reference Manual are used in conjunction with supervisory frames to
determine whether or not the receiving NPU can accept frames.

CHECKS AND RETRANSMISSIONS

Since there is a possibility that data will be garbled during transmission
over a trunk, a cyclic redundancy check (CRC) is included in each frame by
the communications line adapter (CLA).

Cyclic Redundancy Check

The cyclic redundancy check field is a 1l6-bit result of mathematical
computation on the digital value of all bits in the frame (excluding
inserted zeros). The transmitter performs the calculation and sends the
result., The receiver performs the calculation and compares the result with
the CRC received. If the comparison fails, the frame is discarded and must
be retransmitted.

The CLA uses CRC procedure to determine the reliability of the incoming
frame. The CRC field is the binary Eattern found in multiplying the binary
value of the A, C, and I fields by X 6 and dividing the result by x1l6 +

x12 + x5 + 1. If, at the end of the received frame, the CRC field does

not equal the calculated value of this remainder, the frame check sequence
error (FCSE) status is sent to the controlling processor.

Retransmission is made possible by saving recently transmitted frames. If
the frame acknowledgement fails to appear or indicates a bad frame, all
frames up to the last properly acknowledged frame are retransmitted. These
frames were previously saved in a Frame Retention Queue (FRQ) which is an
eight entry list for each trunk. As an information frame is transmitted, it
is entered into the frame retention queue according to its transmission
sequence number. When acknowledged, the frames are released from the frame
retention queue. Frames are retransmitted from the frame retention queue as
necessary, starting with the oldest frame first.

TRANSMIT FUNCTIONS

Three types of frames can be transmitted (figure 8-2): unnumbered,
supervisory, and information.

UNNUMBERED FRAME

The following control statements are transmitted as unnumbered frames (U
frames):

° The set asynchronous response mode (SARM) message establishes normal
transmission over the trunk,

® The SARM response message is an Unnumbered Acknowledgement (UA).
This is also used to acknowledge UI messages.

® The request for initialization mode (RIM) message is sent when the
remote NPU requires reinitializing (for instance, after a timeout).

60474500 A 8-11

) The response to a RIM message is a set initialization mode (SIM)
message, acknowledging that the local NPU will commence the load or
dump operation of the remote NPU using overlay methods.

® The unnumbered information (UI) message is used to transmit load or
dump information.

™ The command reject (CMDR) message is sent when the command (C) field
of a received frame does not correspond to any of the legal C fields.

SUPERVISORY FRAME

Three types of supervisory frames (S-frames) are transmitted. All these
frames respond to the condition of a frame just received.

® A receive ready (RR) frame is sent when either of the following
occurs:

- An information frame is correctly received and the receiving NPU
can process more data (for instance, the next frame of a message).

- A receive not ready (RNR) message was received but the poll/final
flag is not set, and the regulation is not at zero (message
transmission prohibited) level.

° A receive not ready frame is sent in response to an information frame
or to a receive not ready message when zero regulation is in effect.
This essentially causes the receive not ready message to be passed
back and forth over the trunk until regulation level rises to at
least level 1 or until the trunk is disconnected.

° A reject (REJ) frame is sent when an information frame is received
without error but the sequence number, N(S), is not the one
expected. The received frame is discarded and a reject frame is
sent. All subsequent information frames are discarded until the
expected frame is received.

INFORMATION FRAME

Information frames (I-frames) carry the network's message traffic over the
trunk. The LIP generates an information frame (figure 8-2) by scanning the
link and TEXT transmit queues as discussed previously. The information
frame header consists of the address byte and the control byte. The
sequence number of this frame, N(S), is placed in the control byte. This
defines the slot in the frame retention queue where the pointer to this
frame is to be stored.

RECEIVE FUNCTIONS

Frames received from a neighbor are processed according to type.

Information frames contain information. Supervisory frames contain
acknowledgements and can interrupt the flow or cause retransmission.
Unnumbered frames indicate initialization is needed or an error has occurred
and are processed by the LIP as necessary.

8-12 60474500 A

Acknowledgements come across the trunk in the control byte of a supervisory
frame. The number N(R) is the neighbor's next expected number for the
trunk. Thus all frames up to and including N(R)-1 that are saved in the
frame retention gqueue may be released. Failure to receive an
acknowledgement after a suitable time causes the transmitting NPU to poll
for an acknowledgement. If the acknowledgement does not allow all frames to
be released from the frame retention queue, the remaining frames are
retransmitted. If repeated polls do not receive an acknowledgement, the
trunk is declared inoperative.

An incoming receive not ready frame with the poll/final flag set causes the
supervisory receiving NPU to reply as soon as possible. If regulation is
not in effect, the response is a frame with receive ready; otherwise the
response is a supervisory frame with receive not ready.

The value of the poll flag in a received information frame is returned to
the sender in the final flag of the response generated for that frame.

Supervisory functions are performed when the following supervisory frame
responses are received:

) Receive ready - Acknowledgement frames as described above.

° Receive not ready - The sending NPU inhibits further information
frame transmission over the trunk. A supervisory frame with receive
not ready and the poll flag is sent to inquire if the receiving NPU
can again receive information frames. The trunk is declared
inoperative if, after several inquiries, the receiving NPU is not
ready to receive.

® Reject - After the acknowledgement contained in the reject
supervisory frame is processed, all frames remaining in the frame
retention queue are retransmitted, starting with the oldest frame,

Certain unnumbered commands and responses cah be received during the normal
protocol. Any event not mentioned causes a command reject (CMDR) to be
sent. Receiving a command reject causes the trunk to be declared
inoperative.

® Request initialization mode - This indicates the neighbor NPU has
failed and the load/dump process is to be initiated.

) Command rejected - The information field contains the reason the
command was rejected. The event is noted in the statistics block and
the trunk is reinitialized using the set asynchronous response mode -
unnumbered acknowledgement handshake procedure.

® Set asynchronous response mode -~ An unnumbered acknowledgement is
immediately transmitted on the trunk.

TRUNK ENABLING AND DISABLING

Enabling is the result of normal operations that attempt to bring the trunk
up. Enabling can also be operator initiated following an operator-initiated
disabling command.

60474500 A 8-13

When a disable trunk service message (SM) is received by the local node, the
protocol is stopped at that node and a normal response (trunk inoperative)
SM is sent to NS. The LIP does not service the trunk until an enable trunk
SM is received by the local node. Upon receiving an enable trunk SM, the
local NPU sends a normal response (trunk operational) SM to NS, and the link
initialization procedure is restarted. (Disabling takes place at both ends
of a trunk independently.) One end of a trunk can be enabled, with the LIP
at that end attempting to maintain trunk protocol, while the other end is
disabled.

Receiving a disable trunk command is such a case. The remote node sends an
abnormal response (cannot disable last path to NS) SM to NS. An enable
trunk SM received by the remote node causes a normal response (trunk
operational) SM to be sent to NS.

TRUNK FAILURE/RECOVERY

These operations result from hardware or software errors. After the trunk
is declared operational, the local node and the remote node monitor both
directions of data flow (receive and send). 1If no data is available to
transmit, the LIDLE element of the link control block type (ACTL) is
periodically sent to the other end. The LIDLE element format is shown in
figure 8-7.

When the protocol indicates an inability to send data, or neither a data
block nor a LIDLE has been received in time, the trunk is declared
inoperative. The local node informs NS by sending the host an unsolicited
trunk status SM. The LIP discards all data blocks upline and downline after
a trunk failure.

The link initialization procedure is used to recover following a trunk
failure. After a successful exchange of LINIT frames between local and
remote nodes, the local node reports the trunk as operational to NS. Normal
data blocks may then travel upline and downline over the trunk.

8-14 60474500 A

Byte 1 2 3 4 5 6 7 8 9 11 12 13 14 15
SUB~- l
F A C I L FLG DN SN CN TYPE TYPE RL ClRC F
I-bytes of subblock
F - Frame flag
A - Receiving node ID
C - I-frame
L, FLG - As defined for I-frame
DN, SN - Destination and source nodes (terminal nodes of sending and
receiving NPUs)
DN - Connection numbers
TYPE - Specifies priority, block type and serial number as follows:
Bit 7 6 4 3
P BSN BT
P - Priority
BSN - Block serial number
BT - Block Type = 15 (ACTL)
SUBTYPE - 4 = LIDLE
3 = LINIT
RL - Regulation level of sender
00 = no messages accepted
01l = high priority accepted
02 = low priority accepted
Figure 8-7. LIDLE or LINIT Frame Format
60474500 A 8-15

ASYNCHRONOUS (ASYNC) TIP

The Asynchronous (ASYNC) TIP supports dedicated and dial-up asynchronous
lines that serve freewheeling terminalst operating at standard rates in the
range between 110 and 9600 baud. The TIP provides software support for
Teletype, IBM 2741, and teletypewriter-compatible CRTs that operate in an
interactive mode with host applications. The TIP supports seven separate
types of terminals. 1In addition, by means of the IVT control command, a
user at his terminal can alter parameters for any of the seven standard
terminals to create new terminals, which are also supported.

HARDWARE CONSIDERATIONS

The seven types of terminals supported by the TIP are the following:

Terminal
Class Manufacturer Model Number
1 Teletype M33, 35, 37, 38
2 CDC 713-10
4 IBM 2741
5 Teletype M40/2
6 Hazeltine 2000
7 CDC 751-10
8 Tektronix 4014

Appendix C gives the default parameters for each of these terminals and also
defines terminal class and subTIP.

The basic features of the TIP are as follows:
° Each line has a single terminal. Clusters are not supported.
Multidevice terminals can include keyboard/display devices with or
without paper tape reader/punch or cassette.

® Each terminal can be dedicated or dial-up.

® Nine standard line speeds are supported. These speeds range between
110 and 9600 baud and are defined in appendix C.

° Lines are considered to be full duplex.
® All terminals are interactive devices.

® The TIP supports terminals that use ASCII, External, or
correspondence code as their basic code.

tSee glossary

60474500 A 9-1

MAJOR FUNCTIONS

The major functions of the Async TIP are concerned with message control,
code and format conversion, and line speed setting.

) The TIP interfaces terminal protocol (one of the seven defined
terminals or a terminal derived from one of these seven by varying
parameters) to the host interactive virtual terminal (IVT) protocol.
Data is transformed to and from IVT format. For downline messages,
this text processing is controlled by state programs. For upline
messages, this processing is controlled by input state programs.

° The TIP simultaneously controls several transfers to terminals. Each
line can have multiple messages waiting for transfer. Information
for a transfer is contained in a worklist entry (WLE) which is
attached to the line control block (LCB) for that line. The line
must have an active terminal control block (TCB) for the terminal.

If a terminal has a task in progress, additional tasks are queued to
the TIP in the form of more WLEs. Tasks are processed on a first-in,
first-out basis.

Most of the terminal transfer functions (such as finding the next
character on output, placing it in an output frame, and passing the
frame to the output control loop) are performed by the multiplexer
subsystem. The TIP specifies the data location on output. On input,
the TIP input state programs demultiplex data under multiplex
control. The TIP specifies the first of the series of state programs
to be used. The TIP gains control to terminate the data transfer or
to process the unrecoverable failure of a transfer.

Fields in the TCB determine which terminal device is to be used for
input and for output. These fields are changed by an IVT command
from the host application or by a user IVT command entered at the
terminal.

) The TIP provides transparent mode for passing terminal data to and
from the host. In this mode, the host application program that
receives or originates the data is responsible for handling all data
interpretation, including control characters.

® The TIP converts terminal code (such as External) to and from ASCII
code where necessary.

) The TIP sets line speed explicitly at TCB configuration time, or
determines line speed as a part of autorecognition.

® The TIP processes autorecognition information to gather terminal
configuration data for the host. This includes line speed for
terminals with transmission rates up to 1200 baud. For the 2741
terminal, code type is also detected.

[The TIP is prepared to receive input at all times. The TIP attempts
to deliver output whenever such data is available unless an input
operation is active, a page wait condition is in force, or an auto
input block has been output. When input is detected during output,
the TIP suspends the output operation and processes the input. The
TIP repeats the interrupted output later, from the beginning of the

9-2 60474500 A

logical line unless the input causing the interruption was one of the
special characters that cause an upline user break or the discarding
of a logical line.

) The TIP processes unrecoverable errors in data transfers and reports

the failure to the host. Other parts of CCP process terminal and
line recovery, in conjunction with the service module.

HOST INTERFACE

The host interface uses block protocol. Data is normally formatted in IVT
mode (see section 6). Most commands, status, and statistics pass through

the interface in the form of service messages. These use CMD blocks with

the connection number zero.

COMMAND BLOCKS

Connection-oriented commands also use four types of CMD blocks. Table 9-1
shows the command block format.

TABLE 9-1. CMD BLOCKS FOR ASYNC TIP

Format
Name Block Header Other
DN SN CN BT PFC SFC Other

Start Input neu t Host ID Line ID 04 Cl 05 -
Stop input NPUt | Host ID | Line ID | 04 | C1 06 -
Input Stopped NPU Host ID Line ID 04 Cl 07 RC
Define terminal
characteristics NPU Host ID Line ID 04 Cl 04 String

RC - Response code; if 00, stops input response

String - Conforms to the IVT requirements of table 6-5; has the form shown
in TERMINAL PARAMETERS 1less the PFC and SFC; is one or more
characters

¥ pownline from the host only.

60474500 A 9-3

The terminal parameters recognized by the IVT interface are as follows:

Command Definition
TC Terminal class
PW Page width
PL Page length
PA Check parity
CN Cancel character
BS Backspace character
AL Abort output line
Bl User break 1 character
B2 User break 2 character
CcT Control character
CI1 CR idle count
LI LF idle count
SE Special edit mode
DL Transparent text delimiter
IN Select input device
oP Select output device
CD Select character set device
EP Echoplex mode
MS Operator-generated message to network operator (NOP) console
PG Page wait

These commands can be sent at the rate of one per CMD block. There is no
limit to the number of CMD blocks that can be sent to alter one or more
TCBs. If an error is detected in a command from the host, a BRK block is
generated and sent upline.

TERMINAL CONFIGURATION

Before a terminal can be used, the line and terminal must be configured.
This is performed by service messages to configure (change) line control
blocks (LCBs) and terminal control blocks (TCBs). The initial configuration
of TCBs is processed by the service module (SVM). The TIP, however,
finishes preparing the TCB on a worklist entry call from the service module.

When the connection between the user terminal and the host is initially
established, the terminal is configured by setting up the TCB with a set of
default parameters (appendix C). Host software can modify these parameters
at any time using any of the parameters listed above. The terminal user
also can modify the configuration of the terminal, its operational modes,
and the management of the upline and downline data streams by entering these
parameters in a control message.

USER INTERFACE

The Async TIP user interface has five aspects:

[Commands from the user console to alter the terminal
characteristics. These commands are functionally similar to those
commands received from the host which were discussed previously. As
in the host interface case, the message is parsed by the IVT
processor (PTIVICMD) and the information is used to alter the TCB for
the terminal, thereby altering the terminal's characteristics.

9-4 60474500 A

Information changing PW, PL or TC is also passed upline to the
communication supervisor (CS) in the host so that network
configuration remains a system constant. This assures that terminal
will retain its PW and PL characteristics should the NPU fail. 1In
this case the NPU is reloaded from the host using current
configuration information.

) The format of input messages from the terminal.
° The format of output messages to the terminal.

° Modem and line control that results from the user activating or
deactivating a terminal.

) Sending a break 1 or break 2 signal.
NOTE
Break 1 and break 2 signals are user-defined and are
independent of the terminal's break key (if any). The host

application program must provide code to utilize these break
signals.

USER CONTROL MESSAGES
A user control message has three parts:

CTL other CR
CTL is the appropriate control character for the terminal, other is one of
the terminal parameters described previously, and CR (carriage return) is
the terminal's input logical line delimiter.
This message is passed through the multiplexer subsystem interface and is
recognized as a user-initiated control message. The Async TIP calls
PT1IVTCMD to parse the message and to check for a valid parameter. If all
parameters are valid, the appropriate field in the TCB is changed and the
TIP responds to the user with the statement of

CR LF CR LF
If the user input is incorrect, the TIP responds with the canned message

CR LF ERR... CR LF
To enable the TIP to detect operational control messages, each message must
start with the defined control character and the message must be contained
in one logical input line (2741 terminals must precede the control character

with an attention character). Commands become effective immediately. A
detailed description of each terminal parameter follows.

Terminal Class Command

The terminal class command format is as follows:

60474500 A 9-5

L |
- |

CTL TC CR

]
]
lco\lann.uwv-'

This command establishes the terminal class and default parameters as
defined in the terminal class table (appendix C).

Page Width Command
The page width command format is as follows:
CTL PW = NNN CR

This command establishes the line width (in characters) for nontransparent
output and the maximum block size (in characters) for input.

For those terminal classes that do not use the display as the default
device, the TIP inserts the character sequence deferred for the terminal to
move the carriage to the point in the next line where the number of
characters to be transmitted equals page width.

For those terminal classes that do use the display as the default device,
the page width is assumed to be the actual physical width of the screen.
The TIP does not insert a new line sequence when the number of characters
output equals page width, since the TIP assumes that terminal hardware
automatically starts the new line. This prevents double spacing. NNN
ranges between 0 and 255; 0 means NEW LINE is never inserted.

Page Length Command
The page length command format is as follows:
CTL PL = NNN CR

This command establishes the number of physical lines for output. For
terminal classes that do not use the display as the default device, the TIP
inserts the character sequence defined for the terminal class to advance the
carriage to next page when the number of physical lines transmitted equals
page length. For terminal classes that use the display as the default
device, the TIP assumes the page length is the actual screen size. When the
page length is reached, the TIP does not output a new page because the TIP
assumes that the terminal hardware will automatically move to the new page
position. If the default device is display and if the page wait feature is
selected, and if OP = DI, the TIP waits for operator input before
continuing. NNN varies between 0 and 255; 0 means no paging.

Check Parity Command

The check parity command format is as follows:

9-6 60474500 A

CTL PA = CR

HZ20N

This command establishes the type of parity that is to be expected on input
and that is to be generated on output. Parity options are discussed later
in the terminal transforms subsection.

Cancel Character Command ,
The cancel character command format is as follows:
CTL CN = a CR

This command establishes the character to be used to delete the logical
input line in process. After the line is deleted, the TIP sends a *DEL*
message to the terminal.

Backspace Character Command

This command establishes the character to be used for the backspace key;
that is, the character that causes the previous input character to be
deleted from the input buffer in process. Note that backspacing is a
one-unit-at-a-time operation. Backspacing cannot cross a logical or
physical line boundary. The command format is

CTL BS = a CR

Abort Output Line Command

This command establishes the character to be used to cause the rest of the
present output logical line to be discarded. The command format is

CTL AL = a CR

User Break 1 Character Command

This command establishes the character to be used to generate an upline BRK
block with a user break 1 reason code. User break 1 is frequently used as
an abort output queue signal. The command format is

CTL Bl = a CR

User Break 2 Character Command

This command establishes the character to be used to generate an upline BRK
block with a user break 2 reason code. User break 2 is frequently used as
an abort job signal. The command format is

CTL B2 = a CR

60474500 A \ 9-7

Control Character Command

This command establishes the character to be used to enter operational
control messages (IVT parameter change command). The command format is

CTL CT = a CR

CR Iid!le Count Command

This command establishes the number of idle characters to be inserted in the
output stream following a carriage return. The user of CI = nn for these
terminals overrules the default value (appendix C); CI = CA restores the
default value. The command format is

CTL CI = [CR

LF idle Count Command

This command establishes the number of idle characters to be inserted in the
output stream following a line feed. The use of LI = nn overrules the
default value (appendix C); LI = CA restores this default value. The
command format is

_ ca
CTL LI = [mJ CR

Default value is given in appendix C.

Special Edit

Command format:

CTL SE = [g] CR

An SE = Y selection places the ‘terminal in special edit mode; an SE = N
selection returns the terminal to the normal character edit mode. Special
edit mode provides two types of special operations:

° Backspace (BS), line feed (LF), and cancel input control symbols are
not treated as control characters; instead they are sent upline as
data.

) A character delete sequence (one or more backspaces followed by a
line feed) causes the TIP to issue a caret prompt to the terminal,
and then to continue with input processing.

Transparent Text Delimiter Command

This command establishes the transparent text delimiter. The timeout value
is 300 + 100 milliseconds.

9-8 60474500 A

TABLE 9-2. TRANSFORMS FOR EMBEDDED FORMAT EFFECTORS (FE)
IN ASYNC TIP DOWNLINE
IvT Terminal Classes
1 2 st 5 6 7 8
Virtual TTY
Inter- 33, 35, CDC IBM TTY CDC Hazeltine | Tektronix

Action face 37, 38 713-10| 2741 40 751-10 2000 4014
Carriage CR CR CR NL'H CR CR not CR
Return supported

Line

Feed LF LF LF LF ESCB LF LF LF

T'Supports the APL code set.

t*New Line
The command format is

CTL DL = (Xhh),(Cnnnn), (TO) CR

hh

character selected as a delimiter

nnnn - A character count (0 to 4095)

TO

- Input character timeout

Each field is optional, but at least one must appear.

Select Input Device Command

- Two hexadecimal digits representing the terminal-originated

Parameters can be
entered in any order and trailing commas can be deleted.

This command allows the user to specify the input device as a keyboard or
It also specifies whether or not transparent mode is in

paper tape
effect.

reader.

Note that paper tape input is allowed in keyboard mode, but that

the TIP does not send the X-ON characters to start the paper tape reader.

The command format is:

CTL

KB -
XK -
PT -
Xp -

60474500 A

K
X
P
X
X

IN

B
K
T CR
P

Keyboard input
Transparent keyboard input
Paper tape reader input
Transparent paper tape reader input
Transparent input, any device

Select Output Device Command

This command allows the user to specify the output device as printer, CRT
display, or paper tape punch. Printer and CRT display are functionally
equivalent except for page wait. The user can punch a paper tape in any
mode, but the TIP only provides the X-OFF character if OP = PT and if data
is not transparent. The command format is:

PR
CTL OP = DI CR
PT

PR - Printer
DI - CRT Display
PT - Paper Tape Punch

Character Set Detect
Command format:
CTL, CD = A CR

This restarts the character set recognition logic when the terminal operator
changes the message character set. After the operator enters this command,
he has 60 seconds to: (1) physically change the terminal's code set (for
instance, by changing the type element on a 2741 typewriter), and (2)
activate autorecognition of the new code set by pressing the) and carriage
return keys (in that order).

Echoplex Mode Command

This command allows the user to specify where input character echoing is to
take place. The command format is:

CTL EP = [ﬁ] CR

Y - TIP sets the communication line adapter to echo the input characters
N - The terminal echoes the input characters

Operator Message Command

This command allows the user to send message text to the network operator.
Any number of text characters is accepted. The command format is:

CTL MS = text CR

Page Wait Command

This command selects the page wait condition. It allows the user to limit
output to the currently displayed page until the operator provides a turn
page signal. Note that this command has effect only for OP = DI. The
command format is:

_ Y
CTL PG = [N] CR

9-10 60474500 A

ACCESS CONTROL KEYS

The user can abort output processing by using a special character. Each of
the following three allowable special characters must be followed by a
carriage return (CR):

' Abort output line character - the predefined key at the terminal (not
the ABORT key).

) User break 1 - the predefined key at the terminal (not the BREAK key).
) User break 2 - the predefined key at the terminal (not the BREAK key).

For full-duplex terminals, the special characters can be entered during
output; for half-duplex terminals, a break state must first be entered by
pressing the BREAK key (IBM 2741 uses ATTN key) to cause output to stop and
the special character to be recognized. When break processing occurs, the
user can enter data or commands.

TERMINAL ON/OFF AND BREAK CONTROL

For asynchronous lines, the modems produce the carrier signal only during
active message transmission.

® Receive Carrier - The receive carrier remains on while the line is up.

o Transmit Carrier - The TIP turns the NPU transmit carrier (RTS) on
for the duration of an output message delivery to the terminal., The
TIP turns RTS off immediately following the last character sent or in
response to a break received from the terminal.

Breaks can be initiated upline. The received (upline) break from the
terminal appears in one of two ways:

® For terminals with transmission rates less than 600 baud: for at
least 200 ms, a spacing condition is maintained on the receive data
line while the output is being sent.

® For terminals with transmission rates of 600 baud and above: for at

least 200 ms, a spacing condition is maintained on the supervisory
receive channel.

USER INPUT MESSAGE FORMAT

Two standard input message formats are acceptable, one for normally
processed data and the other for transparent data, as shown below:

(STX) logical line LLDLM (X-OFF)
input = |(STX) CTL Command LLDLM
transparent data DLM
An X-OFF after a DLM is not seen.

STX - Start of text symbol
logical line - [?hysical line LF Cﬁ] physical line 0-n

60474500 A 9-11

The terminal user enters input as the basic unit that he wishes processed by
If page mode is in effect, input can be treated as a request

the computer.
for next page.

Character mode inputs are logical lines as shown above.

The logical line delimiters (LLDLM) are:

LLDLM =

CHARSEQ

EOT

LF
CR

CTL
Command
Transparent

Data

DLM

physical
line

byte

character

DEL

X-OFF

CHARSEQ]

;

EOT

[LF DEL] CR 0-m

0416, the value when translated from user's code. Set to
no parity (ASCII).

A logical NOT

OAj6 values - when translated from the user's
0D15} code. Set to no parity (ASCII).

Control character, defined by terminal type and can be
changed by user

Terminal parameter commands (listed above in user control
messages)

Ebyte] 1-nj (X—OFF{] 1-ny where nj and njy are
positive integers

200-ms timeout character count
delimiter byte

Any of these can be specified by the user. Two or more can
be used in combination.

[character] 1-m where m is terminal's physical line width
as defined by user

bit pattern - any bit pattern that can be received from the
terminal

member of 128 ASCII character set. When translated from
user's code, it is set to no parity (ASCII)

idle fill
a character that turns the paper tape reader off.

Meaningful only when input device is paper tape (IN = PT or
XP)

USER OUTPUT MESSAGE FORMAT

Two standard output message formats are acceptable: one for normally
processed data and the other for transparent data. The format is given for
the message after all IVT transforms, paging, etc., have been performed.

60474500 A

output

page
LF [idle] NR [idle]
0-k

(POSTFE)

page
transparent data

(FF) BPREFE) physical liné]

0-m

(x-OFF [idlé€] 3) 1-n

k and m - Line feed and carriage return idle counts defined by terminal
class or terminal parameter commands; n - Page length in physical lines.
If the page length is set to zero, no form feeds (FF) are inserted by the
TIP, and the page wait feature has no effect.

transparent - [byte]], where n is an installation time parameter for

data

FF

PREFE

physical
line

LF

idle

POSTE

X-OFF

byte

60474500 A

maximum block size

[home—and-cleaﬂ ; differs by terminal class; not sent if
page length is zero

Single Space

Double Space

Triple Space

Start of Current Line
Home

Home-and-Clear

Pre-print format effectors; differ by terminal class. See
table 9-2.
[character] g-n where n is defined by page width

OAj value when translated from no parity ASCII to user's
code set; causes the cursor or platten to move down one line

DEL

NULL

Single Space

Start of Current Line

Postprint format effectors; differ by terminal class. See
table 9-3.

A character that turns the paper tape reader off; used only
when the output device is paper tape (OP = PT) and when
data is not transparent.

Any bit pattern capable of being received by the terminal;
depending on the parity option selected, byte can be 7 bits
plus parity or all 8 bits as received from the host.

TABLE 9-3. PREPRINT AND POSTPRINT FORMAT EFFECTORS FOR ASYNC TIP
IVT FE TERMINAL FE
TTY

33, 35, (en @ IBM TTY c Hazeltine | Tektronix

37, 38 713-10 2741 40 751-1 2000 4014
PREPRINT
Position to start
of next line SPACE CR LF CR IF NL CR LF CR LF LF CR LF
Position to start
of current line + CR CR (N)BSs'r ESC G CR - CR
Position to top
of form (cursor
home) * |ler ewrstt m enes™t | BscH | ™ 20C ESC FF
Hame cursor and -
clear screen 1 CR 6LFs CAN 6NLs++ ESC R CAN FS ESC FF
Null ’ - - - - - - -
Double Space 0 CR 2LFs | CR 2LF| 2NLs CR 2IF |CR 2LF 2IFs CR 2IFs
Other - CR 3IFs | CR 3ILF| 3NLs CR 3IF|CR 3LF 31Fs CR 3LFs
POSTPRINT
Single space . CR ILF CR LF NL CR LF CR LF LF CR IF
Return to start
of current line / CR CR (N)BSs CR CR - CR

tThe number of backspaces is a function of current cursor position.

t+when PL # 0, the IVT logic calculates the difference between end of page and current print

position.

It then spaces forward the appropriate number of lines.

-

60474500 A

P

DATA TRANSFORMS

The following text describes the upline and downline transforms necessary to
convert asynchronous vertical terminal data to and from terminal protocol
format. The following transforms are described:

° Parity options
® Character mode input processing
(1) for logical and physical lines
(2) block mode support as the default condition

(3) type ahead mode

(4) keyboard input (includes processing for parity, for nulls and
deletes, conversion to 7-bit ASCII code, backspacing, autoinput,
line feed and new line for physical lines, carriage return and
end of transmission for logical lines, store text, cancel, upper
and lower case control, and line width)

(5) paper tape character mode input
® Transparent mode input

e Character mode output processing

- printer output (including conversion from 7-bit ASCII to printer
code, processing of format effectors, line folding, and upper and
lower case shift)

- CRT output
- paper tape output
° Transparent mode output processing

° Aborting logical lines

PARITY OPTIONS

Parity can be set in any of four ways: 2zero (Z), odd (0), even (E), and

none (N). Four processing types (transparent and nontransparent data for
input and output) must be supported. Table 9-4 summarizes the processing
done on bit 7 (parity bit) of the character by the Async TIP.

CHARACTER MODE INPUT PROCESSING

Logical Lines

A logical line of input is defined to be that input line ending with the
terminal's carriage return, new line, or EOT delimiter. The TIP discards
the carriage return or EOT character. A line feed sequence or new line
sequence, respectively, is returned to the user if the mode permits. The
currently assembled block is sent to the host as a MSG block. Null logical
lines are discarded only if they are used as a page turn indicator.

60474500 A 9-15

TABLE 9-4. PARITY HANDLING

Parity Selection
Data Mode Direction Zero (2) odd (0) Even (E) None (N)

Nontransparent Output Host sends 8 bits; bit 8 is ignored.

If character is translated, bit 8 is
suppressed. (Virtual characters must
have bit 7 = 0.)

Transparent Output Host sends 8 bits; bit 8 can be Character
anything. Bit is then set correctly from host
to is sent

out
Zero 0odd Even unaltered.
parity, then character is sent to CLA

Nontransparent Input Bit 8 is always set to zero before
sending character to host.

Transparent Input Bit 8 is always set to zero before Character
sending character to host. is sent to

host
unaltered.

Physical Lines

A physical line of input is defined to be an input line that ends with the
terminal's line feed delimiter or when current page width is reached.

When not in APL special mode, the TIP discards the line feed delimiter
character. In the case of line feed, a carriage return sequence is returned
to the user. The currently assembled block is sent to the host as a BLK
block containing a single physical line. When in APL special mode, the line
feed is not discarded, a carriage return sequence is not sent to the user,
and the block is sent to the host as a MSG block.

Note that on a 2741 terminal, line feed is effected by using the ATTN key.
In normal processing, a new line is echoed to position the carriage to the
beginning of the next line and the keyboard is unlocked. In APL special
mode, a line feed is echoed to perform the physical line feed only; the
keyboard is not unlocked.

9-16 60474500 A

Block Mode Support

The default condition of the TIP is block mode. This means that input has
priority over output. At the end of each logical or physical line, a 300-ms
timer is started by the TIP. If any new input arrives from the terminal,
the output side of the TIP is locked out. Output data from the host remains
queued for the terminal. Any canned response, such as echoing carriage
return to line feed sequence, is discarded.

Type Ahead Mode

The TIP is always in the type ahead mode; that is, it is normally ready for
input unless it is busy outputting. Output is started only if the input
pauses at the end of a logical line for 300+100 ms. If an input request
conflicts with output on output operation or if input starts at any time
that output is active, the output is halted and input proceeds. If the user
is in autoinput or special edit mode, he has the responsibility for not
typing ahead.

Keyboard Input

PARITY CHECKING AND STRIPPING

The TIP services the input data stream using the default parameter
appropriate to the terminal class. For the no parity checking case, the
parity bit is stripped, as data characters arrive from the terminal. (This
does not apply if the data is transparent and PA = N,) The user can cause
parity checking by resetting the internal parameters using the CTL PA
command. The communications line adapter is set to the terminal's present
parity mode. As input characters arrive, the communications line adapter
automatically checks and strips parity from the data characters. If a
parity error occurs, the TIP stores the bad character in the input data
buffer and then marks the data block clarifier (DBC) to show that a parity
error exists within the data block.

NULLS AND DELETES PROCESSING

The TIP strips nulls (NUL) and deletes (DEL) from the input data stream as
it receives them.

CHARACTER CODE CONVERSION

The TIP converts the terminal's input characters to 7-bit ASCII (parity bit
= 0) as it receives them.

BACKSPACE PROCESSING

The TIP is capable of detecting the terminal's currently defined backspace
character. One input character is discarded by the TIP for each consecutive

backspace character received. Backspacing to the beginning of a line
deletes the line. Backspacing past the beginning of the line is ignored.

60474500 A 9-17

Since the TIP may ship physical lines to the host before the end of logical
line, all references to beginning of line in the preceding discussion should
be understood to refer to physical lines. If the current page width is
reached before receiving the end of a physical line indicator, backspacing
is not permitted into the previous block since the TIP has already released
that block. Backspacing is effective only if the special edit mode is not
in effect. 1In special edit mode, the backspace is treated as any other data
character.

AUTOINPUT PROCESSING

The TIP has limited ability to place data into the data block just output
(autoinput mode). Logically, the previously received output data block is
chained to the front of a newly arriving input data block and is sent to the
host as part of the input data stream. Autoinput only applies to downline
MSG blocks; it is ignored if specified in a BLK block (that is, the entire
autoinput message is restricted to a single block).

After the autoinput block has been output, the TIP cannot deliver any more
output until the executed input has been received. Otherwise, the input
from the terminal may not be attached to the correct block. Only the first
20 characters of the output data are returned. Format effectors are
stripped from the output data before returning it. If the user wishes to
override the autoinput and substitute his own input, he enters a cancel
input line character followed by a carriage return/EOT. This cancels any
data entered by the user as well as the autoinput block being held for
return to the host. When an autoinput block has been output, the TIP
remains in input mode until a noncancelled input is received.

SPECIAL EDIT MODE

In Special Edit Mode input, the backspace, line feed, and cancel characters
are sent upline as data. When a character delete sequence is recognized
(BS ... BS LF), the TIP issues a caret prompt. Note that in special edit
mode the TIP recognizes only logical lines and not physical lines.

LINE FEED AND NEW LINE PROCESSING (PHYSICAL LINE)

When not in Special Edit Mode, the TIP discards the line feed or attention
(2741 terminal) character, and sends a carriage return sequence to the

user. The currently assembled block is sent to the host as a BLK block
containing a single physical line. In special edit mode, however, the TIP
stores the line feed as data and does not send a carriage return sequence to
the user.

CARRIAGE RETURN AND EOT PROCESSING (LOGICAL LINE)
The TIP discards the carriage return or EOT character. Either a line feed
sequence or new line sequence is sent to the user if the mode permits. The

currently assembled block is sent to the host as a MSG block. A null
logical line is discarded only if it is used as a page turn.

9-18 60474500 A

PHYSICAL/LOGICAL LINE PROCESSING

Processing of physical and logical lines follows the general rules laid down
for character mode input processing.

START-OF~TEST PROCESSING

The start-of-text (STX) character is discarded when it occurs as the first
character of a logical line.

CANCEL CHARACTER (CN) PROCESSING

The TIP detects the terminal's currently defined cancel character preceding
the end-of-logical line indicator, discards the current input logical line,
and sends a *DEL* message to the terminal. (Note that 2741 terminals must
have an attention character preceding the CN character.) If any part of the
logical line has already been dispatched, a cancel MSG block is sent to the
host. The cancel character is treated as any other data character if the
TIP in operation is in either special edit or transparent mode.

UPPER/LOWERCASE SHIFT PROCESSING

For the 2741 terminal, the TIP records shifts between lowercase and
uppercase to ensure correct translation to ASCII. The TIP assumes the
lowercase condition at the beginning of each input logical line.

MAXIMUM LINE WIDTH PROCESSING

If the current line width is reached without a physical line terminator
being found, the partially assembled physical line is sent to the host as a
BLK block. In the case that the line width is zero (user did not specify
line width), the maximum line width is set to 140 characters. Note that in
the usual case, the line terminator is found before the maximum width is
reached. At that time the line is sent to the host as a BLK block.

Paper Tape Character Mode Input

The TIP is capable of reading paper tape input data without forcing the user
to specifically enter a paper tape mode. To accomplish this, X-OFF
characters should not exist on the paper tape or, alternatively, the user
must turn the reader on after each X-OFF.

For those users who have paper tape with X-OFF characters on the paper tape,
paper tape input should be declared. In both keyboard and paper tape modes,
the TIP detects end of physical/logical lines and processes them
accordingly. The TIP then checks the next character which arrives; nulls
and deletes are always stripped. If the character following a carriage
return or EOT delimiter is a line feed or a new line, that character is
discarded by the TIP. Similarly, if the TIP detects a line feed or new line
delimiter followed by a carriage return or EOT character, that character is
discarded.

60474500 A 9-19

In keyboard mode an X-OFF character is treated as data. In paper tape mode
X-OFF is treated as data unless it is at the end of a logical line. 1In that
case, X-OFF is discarded. If X-OFF stopped the tape, whether or not it was
at the end of the logical line, the TIP sends X-ON after a MSG block from
the application has been processed and there is no further output queued for
this terminal.

TRANSPARENT MODE INPUT PROCESSING FOR KEYBOARD AND PAPER TAPE

Input data received by the TIP is sent to the host without character
translation. When system default block size is exceeded, data is sent as
BLK type blocks until one of the user transparent delimiters is reached.
That data is then sent as a MSG block. In transparent paper tape mode where
a special character or character count is specified, receipt of an X-OFF,
which stops the tape, results in X-ON being sent to the terminal. The X-OFF
character and all previously input data is sent to the host in a BLK block.
When X-OFF is input due to special character or due to a timeout delimiter,
and the tape stops, then the previous input is sent to the host in a MSG
block, and transparent mode is terminated. No X-ON is sent in this case.

If the input does not stop at the end of the transparent input, the
remaining data is processed in character mode. Some of the initial
character data might be lost in this case. The number of significant bits
per character received from the terminal can range from six to eight
depending on terminal type and parity setting. When the no-parity mode is
selected (PA = N), the parity bit is passed as data. All information is
passed right justified in the byte. Nonsignificant high-order bits are set
to zero.

When transparent mode ends, the TIP returns to character mode. Device type
remains unchanged.

CHARACTER MODE OUTPUT PROCESSING

Output delivered to the TIP can have multiple logical lines within a data
block. End of logical line delimiters, as well as certain embedded format
characters, are translated to the terminal's format sequence where
possible. Table 9-2 lists embedded format effector conversions for various
types of terminals. The TIP monitors for input message or break commands
during output operations so that the user can stop the output and perform
necessary input operations or terminate the output.

During automatic line folding or end of logical line processing, the TIP
inserts the terminal's currently defined number of NUL characters into the
output stream. During output paging, any input causes the TIP to reset the
page count to the top of page. Therefore, the user must assume
responsibility for inputting data, which can cause subsequent output to be
improperly positioned on following pages.

Where format effectors cause the terminal to be positioned over a page

boundary, a new page sequence is output. This feature can be disabled by
setting the page length to zero.

9-20 60474500 A

Logical Line Aborting

During output, the TIP continuously monitors for a break or for input data.

The user can terminate the current logical output line by entering the abort
line character followed by a carriage return or EOT. Output continues with

the next logical output line.

Printer Qutput

The printer output function includes character translation, format effector
and line folding, and, for the 2741 terminal, upper and lowercase shifts.

® Character translation. Normal output data (IVT format) is delivered
to the TIP from the host application in ASCII code. The TIP converts
the ASCII data to the terminal character set.

° Format Effectors and Line Folding. Each logical line of output can
contain a format effector as the first character. A bit in the data
block clarifier defines whether or not these format effectors are
present. Preprint single spacing is assumed if the format effectors
are not present or are not defined. The format effectors (table 9-2)
cause preformat or postformat control. The TIP converts the format
effectors to the terminal's format sequence. Where applicable, the
TIP automatically folds the line by outputting the terminal's line
feed and carriage return sequence with the appropriate number of NULs.

® 2741 Upper and Lowercase Shifts. Current upper and lowercase shift
is retained by the TIP for output. Upper and lowercase shi~”
characters are inserted by the TIP as a function of ASCII - uae
translation to the 2741 terminal character set.

CRT Output

CRT output is processed the same as printer output except that the TIP
allows a page wait when that option is selected. After a page wait, the
user enters a null line to obtain the next page. The TIP discards the null
input line in page wait situations., If a non-null input line is typed by
the user, it is treated as a page turn and is passed to the host unless it
is a command. In that case, the TIP processes the command.

When the page wait option is selected, the page output size is one line less
than the current page length, to allow space for the user input necessary to
turn the page. The page wait option has no effect on hard copy devices or
when the current page length is zero., 1If a top of form is received in the
output stream before the page is full, the message OVER.. is output to
notify the user to turn the page.

Paper Tape Output
When the output device is specified to be paper tape, the TIP inserts an
X-OFF character (DC4) followed by three NULs at the end of each logical line

sequence if that line sequence contains postprint format effectors. Line
folding is performed as for printer output.

60474500 A 9-21

TRANSPARENT MODE OUTPUT PROCESSING FOR PRINTER, CRT, AND PAPER TAPE

Transparent mode allows the user application to inhibit the TIP transforms.
In this mode the user application is responsible for all data formatting.

The application can permit page waits by sending a synchronous command to
the TIP. The TIP adds page waits at the end of every MSG block. The TIP
interrupts page wait responses in the same manner as character mode page
waits.

LOGICAL LINE ABORTING

Logical line aborting is the same as described previously for character mode
output processing.

ERROR HANDLING

The Async TIP has the following error handling capability:

° Marks lines down if the transmission fails due to an autorecognition
timeout or a hardware error on the line (detected by multiplex
subsystem). The TIP then requests the service module to generate a
line status disabled service message. SVM sends the message to CS in
the host.

[Disables the line in response to a disable line service message from
CS in the host.

® Stops message processing and releases the message in response to user
breaks, aborts output line commands, or cancels input line commands.

o Rejects improper commands.

The TIP does not generally check output transmissions.

REGULATION

The NPU is forced to reject input when (1) the NPU runs low on buffers, (2)
the network block limit is exceeded, (3) a stop input command is received,
or (4) the NPU loses contact with the host. If the reason for rejecting
input is because the NPU lost contact with the host, then at the time the
condition is detected in the NPU, each connected console terminal is sent a
canned message to inform the user of the situation. The canned message is

X-OFF NUL NUL CR LF BELL BELL IDLESy

INPUT STOPPED user text CR LF IDLESy
Default for user text is HOST UNAVAILABLE. 1If input is received after the
user has been notified of a loss of contact with the host or if any of the
other reasons for rejecting input are detected, the input is discarded and
the user is notified with the following canned message:

X-OFF NUL NUL CR LF BELL BELL IDLESy

REPEAT...CR LF IDLESyN

9-22 60474500 A

This message is repeated every time any further input is attempted from the
terminal until the situation is relieved. When communication with the host
has been restored, the user is notified by the following canned message:

CR LF IDLESy

HOST AVAILABLE CR LF IDLESy

AUTORECOGNITION

Autorecognition allows the TIP to determine both the terminal's transmission
rate (if the rate is between 110 and 1200 baud) and the terminal's current
code set. To activate the autorecognition function, the user at the
terminal presses the carriage return key after the connection is
established. This generates the appropriate character code input from the
terminal. The TIP samples the input at 800 baud. Depending on the
transmission speed, the TIP will detect one or more different characters for
each acceptable line speed.

The TIP resets the communications line adapter to the correct baud rate and
then sends the terminal two line feeds to begin the character set
recognition function. The operator presses the) key and then a carriage
return (ASCII terminal operators may press only the carriage return if they
wish).

To determine the code set, the TIP compares the input bits to the bits for
these characters in each acceptable code set. After finding the correct
code set, the TIP sends two more line feeds downline to the terminal to
indicate that autorecognition is complete. Upline, the TIP sends a line
operational service message to the host. This message contains the line
speed and terminal character set. See appendix C.

Extended code set recognition is a build time option. If the option is not
selected, the TIP sends an error message to the terminal.

Any terminal operating at a speed greater than 1200 baud must be dialed into
a port where the communications line adapter is designed to operate at that
particular speed.

Table 9~-5 summarizes the baud rate and code set autorecognition.

60474500 A 9~-23

TABLE 9-5. AUTORECOGNITION IN THE ASYNC TIP

Stage 1 - Baud Rate - Autorecognition after terminal connection

Rate Terminal Operator Input TIP Response
110 Any but 2741 Carriage Return 2 LFs
134.5 2741 Carriage Return 2 LFs
150 Any but 2741 Carriage Return 2 LFs
300 Any but 2741 Carriage Return 2 LFs
600 Any but 2741 Carriage Return 2 LFs
1200 Any but 2741 Carriage Return 2 LFs
Stage 2 - Code Recognition
Code Operator Input TIP Response*
ASCII) CR or CR 2 LFs
Teletype-paired ASCII) CR or CR 2 LFs
Bit-paired ASCII) CR or CR 2 LFs
External BCD) CR 2 LFs
External BCD-APL) CR 2 LFs
Correspondence) CR 2 LFs
Correspondence APL) CR 2 LFs

*If extended character set recognition is not included at

build time, the error message is sent to terminal.

60474500 A

MODE 4 TIP 10

The Mode 4 terminal interface program (TIP) provides procedures to convert
data from synchronous terminals using Mode 4 protocol to data that is
compatible with the host's virtual terminal (IVT or BVT) format. The Mode 4
protocol supports both batch and interactive devices. There are three
versions of the protocol:

) Mode 4A supports a group of devices, such as console, printer, and
card reader,

® Mode 4B supports a console.
) Mode 4C supports several consoles.

The TIP also handles the necessary interface control tasks.

HARDWARE CONSIDERATIONS

Some of the hardware considerations for Mode 4 are the following:

) Terminal types. A typical Mode 4A terminal is the 200 User Terminal
consisting of a keyboard, a display (CRT), a card reader, and a
printer. This terminal has both interactive and batch devices, and
uses a single line.

® Cluster capabilities. The Mode 4 terminal can be a cluster of
several devices of the same types, such as a group of consoles or a
group of printers. The TIP services multiple terminals in sequential
order, without priority. However, the individual batch devices (card
reader and printer) in a Mode 4A cluster terminal are subordinated to
the interactive device. A batch transfer using such a device is
preempted by an interactive device transfer.

] Line speed. The TIP supports line speeds up to 9600 baud.

® Line type. ULines are of two types: dedicated without a transceiver,
or dial-up with a modem. Lines are considered to be half duplex.
The TIP either transmits data over the line or receives data, but
does not do both simultaneously.

° Terminal codes. The TIP supports terminals that use either ASCII or
external BCD code,

MAJOR FUNCTIONS

The TIP performs the following major functions:
® It interfaces terminal protocol (some variation of Mode 4 protocol)

to the host virtual terminal protocol (IVT for interactive devices,
BVT for batch devices).

60474500 A 10-1

o It provides a transparent mode of passing terminal data to and from
the host. 1In transparent mode, the host application program that
receives or originates the data is responsible for handling all data
interpretation, including control characters.

® It converts external BCD code to and from ASCII code where necessary.

) It polls terminals to receive upline data or to assure that the
terminal is ready to accept downline data. The host requests the
polling; the TIP controls actual timing of the polling.

) It performs autorecognition to gather terminal configuration data for
the host. Autorecognition on lines with multicluster terminals
report only one cluster.

° It performs terminal and line recovery for recoverable errors and
reports irrecoverable errors.

NOTE
Considerable differences in terminology exist in Mode 4

documents. Table 10-1 defines the terms used in this manual
and in other Mode 4A and 4C documents.

TABLE 10-1. MODE 4 NOMENCLATURE

Nomenclature used Mode 4 Mode 4C

in this manual Nomenclature Nomenclature

NPU data source control station
cluster address site address terminal address
cluster controller equipment controller station

terminal address station address device address

DATA FORMAT FOR MODE 4

Figure 10-1 shows typical data formats for Mode 4 protocol.

HOST INTERFACE

The host interface uses block protocol. Data is formatted in IVT or BVT
mode (see section 6). Most status and statistics pass through the interface
in service messages. These use CMD blocks with a connection number (CN) of
zero.

Four types of line-related CMD blocks are used. Table 10-2 shows the
command block format.

10-2 60474500 A

DATA FORMAT (odd parity)

Transmission
Transmission Header Trailer

-~ N N —e—

Sync | SOH | CA | TA | MTI Text ESC | E Code | ETX | LPC | Pad | Pad
R e 1
Transmit | Mode 4 !
& Receive Transmission L\
at Least 2 \ Block N

\ \\
\\ N
0 1 2 3 4 \
DN | SN |CN | R/BSN;2/3 | DBC Text
A
Block Format
(NPU and Host)

NONDATA FORMAT

Sync SOH CA TA MTI ETX LPC Pad Pad

Mode 4 Transmission Block

Sync - Sync bit = 1616
SOH - Start of header = 01
ESC - Escape code; external BCD = 3E16 ASCII = lB16
ETX - End of text = 03
MTI - Message text indicator
E Code - Equipment Code
CA - Cluster address (appendix C)
TA - Terminal address (appendix C)
LPC - Longitudinal parity check; collects parity on bits 0 - 6 of all

characters except Sync bytes

DN, SN, CN - Block header address

R/BSN/BT - Response flag/block serial number/block type; BT for a data
block must be 1 of 2

DBC - Data block clarifier

Pad - Byte of all 1's to assure transmission of LPC by modem

Figure 10-1. MODE 4 Protocol Message Formats

60474500 A 10-3

TABLE 10-2. CMD BLOCKS FOR MODE 4 PROTOCOL

Name Format
DN SN CN | BT | PFC | SFC | Other
Start Input NPU Terminal Host Data Node | CN| 04 | C1 05 -
Stop Input NPU Terminal Host Data Node | CN | 04 | C1 06 -
Input Stopped Host Data Node NPU Terminal CN| 04| Cl 07 RC
Define Terminal
Characteristics NPU Host Data CN|O4]Cl 04 String

RC - Response code

00 -~ Stop input response

01 - Input device not ready

02 - Card slip error

03 - EOI input

04 - Batch input interrupted by interactive I/O

String - Conforms to the IVT requirements of table 6-5. String has the
form shown in TERMINAL PARAMETERS less the PFC and SFC. It is one
to fifty characters long.

The TERMINAL PARAMETERS recognized by the IVT interface are listed below.
See appendix C for default values.

Command Definition
TC Terminal class
PW Page width
PL Page length
CN Cancel character
CcT Control character
IN Input device for transparent mode
PG Page wait
Bl User break 1
B2 User break 2
MS Operator message

Each command entered from the terminal must be preceded by the control
character and followed by a carriage return or an end of message: CTL
parameter CR. In an input block from the terminal containing multiple
logical lines separated by carriage returns, only the first logical line can
be an IVT command. All other lines are treated as data and sent to the
host. If the IVT command is a request for transparent input, the current
terminal input continues to be treated in the current mode. The next input
block, however, is treated in transparent mode.

Commands sent by the host are contained within CMD blocks and are not
preceded by the control character. Only one IVT command can be sent in a
CMD block.

10-4 60474500 A

If an error is detected in a command from the host, a BRK block is returned
to the host. When errors are detected in a request from the terminal, the
message ERR... is sent to the terminal.

TERMINAL CONFIGURATION

Before a terminal can be used, the line and terminal must be configured.
This is performed by service messages to create control tables called line
control blocks (LCBs) and terminal control blocks (TCBs). Configuring the
LCBs can involve the autorecognition logic.

Most of the initial configuration of TCBs is processed by the service
module. The TIP, however, finishes preparing the TCB when it is called by
the service module.

The TIP processes each line as independent data channels. Each terminal on
a line is checked for work in the order the terminals were configured. This
method allows each terminal to be processed in order without priority. The
card reader and printer of the 200 User Terminal are treated as separate
terminals in this scheme, but the console is required and must be configured
before the card reader and printer can be configured.

Note that each terminal can perform only one task if other terminals have
work waiting. The work allocation check always moves to the next terminal
after assigning the current task to a terminal.

IVT INTERFACE

The interactive virtual terminal interface to the Mode 4 TIP supports
display/keyboards attached to synchronous lines. The configuration may be
multicluster and each cluster may be multiterminal. The 200 User Terminal
console supported by the IVT interface uses several additional features to
control the card reader and printer.

The terminals are activated a (polling for input is started) either by
delivery of an output message (MSG or BLK blocks) or by a start input
command.

Polling for input continues until the terminal is deleted, until an error
occurs, until buffer or logical link regulation occurs, or until a stop
input command is received. Input stopped command is sent in response to the
stop input command.

A STP block is sent upline whenever a communications error is detected. The
subsequent STRT block is sent upline when the error condition is resolved.

For the 200 User Terminal, the use of the display causes STP blocks to be
sent upline on the card reader and printer connections. The STP block on
the card reader connection is preceded by an input stopped command if the
device is reading cards. These events signal the current use of the 200
User Terminal transmission buffer since this buffer is shared by the
display, the card reader, and the printer. The host is sent STRT blocks for
the card reader and printer to signal the end of the interactive
transactions when the TIP receives a stop input command for the console
connection.

60474500 A 10-5

CARD READER INTERFACE

The Mode 4A card reader is activated by sending a start input command to the
TIP., The TIP sends card reader data, transformed to BVT format, to the
host. Each block of data is reported to the host as a BLK block until an
EOI card (6/7/6/9 punch in column one) is detected. Then a MSG block is
sent containing the data up to and including the EOI card. Subsequent EOI
cards are discarded until the first non-EOI card is sensed. Any data
following the last EOI is considered part of the next message. (A single
block from a Mode 4 device might contain more than one message, which is
reported as a MSG block.) An input stopped command is sent following the
last data from the transmission block. No further input is allowed from the
card reader until it is restarted by a start input command. An input
stopped command is also sent if no further cards are present in the input
hopper (not ready), if the TIP detects an error in the card data (card
slip), if card reading is interrupted for I/0 to the display/keyboard, or as
a response to a stop input command. A reason code is supplied to
distinguish the different cases (see table 10-2). Note that if an EOI card
and not ready are detected in the same transmission block, then the not
ready reason code is reported.

An upline STP block on the card reader channel indicates that downline data
or commands must not be sent. If data or commands were sent, they are not
acknowledged with a BACK block. The data or command must then be repeated.
A STP block is used by the host or the terminal operator whenever the
display is in use.

An upline STP block is generated when the TIP detects a communications error
with the terminal. A subsequent upline STRT block is sent when the error is
resolved.

PRINTER INTERFACE

The printer is activated when the host sends downline data. The printer
connection is considered active until a MSG block is sent by the host or
until the display is used. The TIP sends to the printer the data that has
been transformed from BVT format to printer format. Each correctly
delivered block is acknowledged by sending a BACK block to the host.

A STP is generated by the TIP whenever data or commands cannot be processed
because the display is in use. This stop occurs either when the host sends
data to the display or when the remote operator interrupts a batch
operation. The host must prepare to resend any data or commands not
acknowledged with a BACK block.

A STP block is also generated whenever an irrecoverable error is detected on
the printer.

A BRK block is sent to the host whenever the printer is found to be not
ready while the host is attempting to deliver output.

DATA TRANSFORMS

This subsection describes the upline and downline transforms that convert
data to and from terminal format.

10-6 60474500 A

DOWNLINE IVT TRANSFORMS

The downline IVT transforms (table 10-3) apply to the following:

Carriage return (CR)
Line feed (LF)
Logical line separator (US)

Autoinput. 1In this case, the TIP saves the first 20 data characters
of the output message and returns these 20 characters together with
the reply data solicited from the operator at the terminal (also has
upline transform effects). The format effector is removed if present
in the downline data.

Transparent data. Data is not transformed; it remains in terminal
format.

Format effectors (FEs). These are present in the downline IVT data
(see table 10-4).

NOTE

Flags affecting the autoinput, transparent mode, and FEs are
found in the data block clarifier (DBC) field of the data
block. The transparent mode flag applies to both upline and
downline transfers. This clarifier byte immediately precedes
the first byte of data in the block.

Cursor is returned to the left margin following each input
and output of a logical line. 1If more than one logical line
exists in a block, the logical separator (US) is treated as a
carriage return. This assures that output data is compatible
whether logical lines are blocked or not. The fact that the
cursor is returned to the left margin after each output is
taken into account when processing the format effectors. Any
undefined format effector is processed as a preprint
position-to-start-of-next-line command.

ASCII control characters. Any ASCII control character is replaced
with blanks. For those terminals with fewer than 96 characters,
lowercase is treated as uppercase.

Data errors. If an error is detected in the IVT data, a BRK block is
sent to the host.

Code conversion. Converts ASCII to terminal code if necessary.

Preprint format effectors for clearing and homing cursor. If
preprint format effectors position-to-top-of-form or
home-cursor-and-clear-screen are used, they must begin a transmission
to the terminal. If more than one logical line exists in a block
from the host, the block is fragmented into as many separate
transmissions as necessary to achieve the proper function.

€0474500 A 10-7

TABLE 10-3. DOWNLINE IVT TRANSFORMS FOR MODE 4

IVT Interface

Transform (all devices)

Carriage Return
Line Feed

Logical Line Separator

CR

LF

Us

crt
nul

cr?

TASCIT is 1B4lj1g; external BCD is 3E4ljg; see appendix A.

TABLE 10-4. DOWNLINE IVT FORMAT EFFECTOR (FE TRANSFORMS)

Effector Transform
FE Type Command Code (all devices)

Preprint Position to start of

next line SPACE nul

Position to start of

current line + nul

Position to top of form

(cursor home) X ctt

Home cursor and clear

screen 1 12**

Null ' nul

Double space 0 crt

Triple space - CR,CR+
Postprint Single space . nul

Return to start of

current line / nul

Notes:

TCR in ASCII is 1B413g; in external BCD it is 3E4ljg.

tTMessage type indicator (MTI) codes of Mode 4 protocol where Cjg is

reset write and 12314 is clear write.

60474500 A

UPLINE IVT TRANSFORMS

The input from the terminal can include multiple logical lines separated by
carriage returns with the restriction that only the first logical line can
be an IVT command. Each logical line is sent to the host as an individual
MSG block. Code conversion and control character blanking can occur. No
other transforms are performed on the data except that escape codes are not
counted in the calculation of the cursor position.

Autoinput Mode

The TIP delivers output to the terminal and retains the data buffers when
the autoinput flag is set in the data block clarifier of a MSG block. The
subsequent input from the terminal is attached to the end of the first 20
characters of the saved data and returned to the host. The format effector
is deleted from the autoinput if it is present, If more than one logical
line is present in a MSG block specifying autoinput, a BRK block is sent to
the host. If more than one logical line is received from the terminal, the
first received line is appended to the saved autoinput. All subsequent
logical lines are transmitted to the host as received.

The terminal operator can cancel the saved autoinput data by entering a
logical line ending with the cancel control (CN) character. The cancel
request must be the first logical line of the transmission; subsequent
logical lines are sent to the host as received.

An input logical line other than an IVT command must be received to satisfy
the autoinput request before a subsequent output can be sent to the
terminal. The cancelled line is not sufficient to satisfy the autoinput
request.

Transparent Mode

Mode 4C terminals are interactive; no batch capability is provided. The IVT
transform is not performed on transparent data. Mode 4 frame control is
added to the data. No code conversion is performed. The parity bit for
each character is also added before the data reaches the line.

Autoinput and page wait are supported for transparent data. However, page
length calculations are not supported; page wait occurs only following each
MSG block.

Format effectors are not supported. Each output is assumed to be a write
with an E4 terminator. The clear-write and reset-write features of the Mode
4 protocol are not supported.

Transparent input applies only to the first input transaction following
selection of the feature. The Mode 4 frame control characters are removed
but no other translation occurs. The cursor is not repositioned to the left
margin following each input or output and the keyboard is not unlocked.
Since any further polling would result in retransmission of the previous
data, polling ceases. The host must request that polling be resumed by
sending output or by issuing a start input command.

Transparent mode for a Mode 4A terminal, which is a batch device, is
illegal; a BRK block is sent if this is attempted.

60474500 A 10-9

User Break 1/Break 2

The IVT interface allows the terminal operator to request a BRK block to
signal the user break 1 or break 2 condition. This BRK block is caused by
entering a logical line with either the user break 1 or user break 2
character as the only data. The interpretation of these BRK blocks depends
on the application program that uses them.

Page Wait

The page wait feature of the IVT interface provides a method of assuring
that output is delivered at a readable rate. The data sent from the host is
added to the screen until the end of the page is reached. The data remains
displayed until the operator enters an input line.

Page Size

Calculations for page size are based on the page width and page length
parameters, which are assumed to be the actual size of the terminal or
display. It is assumed that the hardware provides an automatic carriage
return at the page width boundary.

Page calculations take line folding into account. A folded logical line may
span a page boundary. The clear-write and reset-write format effectors
terminate a previous page. If the previous page is not full, the message
OVER.. is sent to the terminal. A page is full whenever the page length
less one line is filled.

Page turning is accomplished when the terminal operator enters an input
line. If the page prompt consists of a null line or a line with only a
control character, the line is not usually sent to the host. However, if
the NPU has no more queued data to be sent to the terminal, the null line is
sent to the host.

Code Conversion

In character mode, all IVT data is converted to ASCII code whether the
terminal code is ASCII or external BCD. The ASCII Mode 4A translation
includes folding lowercase into uppercase and substituting blanks for any
control codes. The Mode 4C translation substitutes blanks for the control
codes but allows the transmission of the lowercase codes.

Cursor Control

The TIP returns the cursor to the leftmost character on the next line
following the end of each input or output line. A blank line appears on the
screen if the ETX symbol from an input request is in the last column or if
the output ends in the last column. This is required to allow positioning
of the send index for the next line.

Whenever the send index terminator is detected as the first two characters

(an escape/control code pair), it is deleted before sending the message to
the host.

10-10 60474500 A

Cursor positioning to the left margin is accomplished in one of three ways,
depending on terminal class (terminal class is initially configured and can
be changed with the TC IVT command from the terminal user or application):

° 214 and 200 User Terminals. Each input causes the TIP to output a
sufficient number of blanks to move the cursor to the left margin of
the next line. Each output is padded with blanks to move the cursor
to the left margin of the next line.

) 731/732 and 734 Terminals. Each input causes a clear line to unlock
the keyboard. Each output is terminated with a clear line.

® Mode 4C Devices (711 and 714). Each input causes a carriage return,
backspace sequence. Each output is terminated with a carriage
return, backspace sequence. In either case, the cursor is at the
left margin of the next line.

CANCEL CHARACTER PROCESSING

When the TIP detects a cancel character <CN> in the input line preceding the
end of logical line indicator, the TIP discards that logical line. Then the
TIP notifies the terminal that the line was discarded by sending a *DEL*
message downline.

Message Type Indicators (MTI)

The MTI codes shown in figure 10-2 are in hexadecimal notation, exclusive of
parity. The type of MTI code affixed to output data is a function of the
format effector in character mode only. For transparent mode, MTI is always
write,

E Codes

For downline transforms, device selection is performed by E codes which are
appended to the output by the TIP. For upline transforms, E codes coming
from the terminal indicate the responding device and also report status.
Received E codes are stripped from the input data by the TIP. Table 10-5
shows the E codes.

UPLINE AND DOWNLINE BVT TRANSFORMS

The Mode 4 TIP converts downline data from BVT specifications to the Mode 4
protocol. This conversion is limited to the actual features of the 200 User
Terminal printer as described in table 10-6.

Any BVT code pair beginning with FFjg is considered an error if not
supported by the Mode 4 transform. Any sequence of characters not preceded
by a legal BVT code pair is also considered a host error. All such errors
are reported by sending a BRK block to the host.

Upline data is translated from the Mode 4 protocol to the BVT specifications
as described in table 10-7. Each card other than EOR or EOI is scanned for
spaces. Trailing spaces are removed. Each card is terminated with the
end-of-media indicator. Blank cards send only an end-of-media indicator.
Sequences of uncompressed data are preceded by the string indicator.

60474500 A 10-11

MTI in Received Block

MTI in
Transmitted REJECT ACK ERROR READ

Block (18,) (06.) (15,) (13,)
(hexadecimal) 16 16 16 16
05 Poll X X X
12 Clear Write X X X
0C Reset Write X X X
11 Write X X X
07 Alert X X
31 Configuration X X X

POLL, ALART, REJECT, ACK and ERROR transmission
non-data blocks and have the following format.

blocks are

sSync SOH CA TA MTI ETX LPC
Figure 10-2. MTI Codes for Mode 4
TABLE 10-5. E CODES
E Code
E Code (Hexadecimal) Write ‘Output) Read (Input)
El 42 To CRT (text) From CRT (text)
E2 20 To printer (text) From printer (no
text); indicates
possible error in
printing last
block
From card reader
(text); indicates
that card reading
has stopped
E3 21 To card reader (no From printer (no
text): enables text); indicates
transfer of card that last block
buffer to CRT correctly printed
buffer
From card reader
(text); normal
card data
E4 22 To CRT (text): Not used
position to start
index

10-12

60474500 A

o

P

TABLE 10-6. DOWNLINE BVT TRANSFORMS FOR 200 USER TERMINAL PRINTER

Conversion
BVT Interface ASCII EBCDIC
(hexadecimal) (hexadecimal) (hexadecimal)
mode change FF00 to FFO09 nul nul
forms control { FFEQ 20 50
FFE1 4A 4A
FFE2 4A1B4020 4A3ES5050
FFE3 50 30
FFE4 41 41
FFE5 - FFFE 20 50
compressed zeros FFF32 3030 4A4A
FF33 1B44 3E43
FF3F 1B4F 3E4F
compressed blanks FF12 2020 5050
FF13 1B23 3E23
FF1l4 1B24 3E3F
FF2F 1B3F 3E3F
end of media FFOA 1B40 3E50
TABLE 10-~7. UPLINE BVT TRANSFORMS
BVT Interface
Mode 4 Interface (hexadecimal)
Beginning of uncompressed data string indicator FF90
End of card end of media FFOA
esc 5716 in column 1t end of record FFOB
esc 5616 in column 1t end of information FFOC
tesc indicates escape; 1B1g for ASCII and 3E1g for external BCD.
60474500 A 10-13

Special processing occurs for EOI, EOR and JOB cards (first card following
an EOI card) to transform them to the BVT form specified in section 6. The
TIP does not interpret columns 79 and 80 of the JOB and EOR cards.

The card data is transmitted as read from the terminal. For external BCD
the data is converted to ASCII as specified by the system code conversion
table.

The TIP ensures that each transmission block of data received from the card

reader contains a multiple of 80 characters. If it does not, the data is
discarded and an input stopped command is sent to the host.

ERROR HANDLING

The Mode 4 TIP handles two types of errors:

e Short-term errors in which an error counter is incremented and the
operation is retried.

e Long-term errors in which the shoft-term errors cannot be corrected;
an irrecoverable error is declared and the I/O is terminated.
SHORT-TERM ERROR PROCESSING

The TIP performs short-term recovery for both input and output. The TIP
retains three error counters, as follows:

Error
Counter Type of Error

1 No response: after transmitting to the terminal, a response
timeout occurs; SOH is never received.

2 Bad response:

Cluster Address (CA) or terminal address (TA) does not
correspond to terminal addressed by transmit block

invalid message type indicator
invalid or missing E code

ETX missing (overlength block or data carrier detected signal
drops prematurely)

character of longitudinal parity error
text in block that should not have text
3 Error response: indicates transmit error
Whenever any error occurs, the TIP increments the appropriate counter and
retries the output/input sequence. If any counter reaches threshold value

(set at 5) in an attempt to complete a single transaction with the terminal,
the TIP performs the long-term error handling procedures.

10-14 60474500 A

LONG-TERM ERROR PROCESSING

When the TIP cannot recover from a short-term error while communicating with
a terminal, the host is sent a STP block. For a Mode 4A terminal, the STP
block is sent for all connections on the cluster. The terminal is then
polled every 10 seconds until the problem is resolved. When a read response
is detected for the terminal, the host is sent a STRT block. A terminal
status service message is generated each time a change in terminal status is
noted.

DUPLICATE WRITE ERRORS

Those terminals which do not have separate CRT and transmission buffers
(such as the 200 user terminal) write output data directly to the CRT screen
as it is being received. If the terminal detects an error in the block, it
sends an ERROR response, causing the TIP to retransmit the output. However,
the cursor is not in the same place as it was when the original WRITE was
performed, so the output block can appear two (or more) times on the CRT
screen. This is not a problem with RESET WRITE or CLEAR WRITE which home
the cursor before displaying the output data, and thus overwrite the bad
block.

The toggle bit returned from Mode 4 terminal differs depending on terminal
type:

® The 200 user terminal and compatible terminals always return the
toggle state of the last good write regardless whether the terminal
is responding to a write request or to a poll for status request.

® The synchronous Tektronix 4014 terminal and 711 terminals always
return the toggle state of the last message received. If the last
message is a poll for status request, then the terminal returns the
toggle state of the poll message.

The Mode 4 TIP compensates for these Mode 4 terminal differences as follows:

® The toggle state of the terminal is initialized by writing a null
message in order to guarantee delivery of the first block of output.

® When polling for status due to a lost terminal response to a write,
the TIP sets the toggle state opposite to the state of the last
write. If the toggle bit in the response is the same as in the poll,
the block is sent again. This method guarantees that all output
blocks are correctly received by the terminal. WNo blocks are
duplicated (except for 711 terminal) since (1) the block is not sent
more than once for 200 and 714 terminals and (2) the 4014 terminal
discards a block if the toggle state is the same as the previous
block.

° In the case of the 711 terminal, it is impractical to prevent the

sending of duplicate blocks since the terminal neither supports
polling for status nor contains logic for discarding duplicate blocks.

60474500 A 10-15

LOAD REGULATION

If the TIP is unable to acquire sufficient buffers for an input block or
when the host is down, the TIP discards the partial block and repolls the
terminal later when the condition is cleared. No error counter is
incremented by this operation. However, a counter is incremented in the NPU
statistics block to indicate the number of times that regulation has taken
place.

AUTORECOGNITION

The host can request autorecognition for Mode 4 lines. This activates a
procedure for determining the cluster address and terminals that exist on
the line. When the host configures the line, the TIP responds with the line
enable response. If the line is dedicated, autorecognition begins. The
line is switched and the TIP waits until the ring indicator is present.

Autorecognition begins with a cluster poll to determine the cluster address
of the caller. The first four polls are done at cluster address 7014 to
allow the caller to hear the audible tone and to allow the modem time to
stabilize after the modem data switch is depressed. All cluster addresses
are attempted at least twice before a failure is declared. The timeout for
a nonexistent cluster is from 1/2 to 1 second.

Once the cluster address has been determined, the TIP checks for receipt of
a read message. The read message contains an escape code which determines
the code set in use by the terminal. Polling continues until the read
message is received. For external BCD terminals, this completes
autorecognition. For ASCII terminals, the configuration poll is sent to
determine the configuration. If there is an error response or no response,
the terminal is assumed to be Mode 4A. If a read response is detected, the
terminal is assumed to be Mode 4C.

The line status operational service message is sent to the host at the
normal completion of autorecognition. This service message contains the
following:

Field Description

TT Terminal type

CA Cluster address

TA Terminal address for each
DT Device type terminal

For all terminals, the appropriate terminal type (appendix C) is reported as
one of the following: Mode 4A external BCD, Mode 4A ASCII, or Mode 4C
ASCII. The actual cluster address is also reported in the range 70-7F1¢.

For the Mode 4A external BCD or Mode 4A ASCII, three terminals are reported;
these describe the console, the card reader, and the line printer. The
terminal address for all three terminals is 603¢.

The configuration request is used for the Mode 4C terminals to determine the

actual terminal address and actual device types. Only the consoles are
reported.

10-16 60474500 A

To complete autorecognition during the dial-up procedures, the remote
operator must press the send key on at least one of the displays in the
cluster. This allows the code set of the terminal to be recognized.

UNSUPPORTED MODE 4 PROTOCOL FEATURES

The following features of Mode 4 devices are not supported by the TIP:

Status request

Alert

Diagnostic write

Receipt of initialization request

60474500 A

10-17

HASP TIP 1

The HASP multi-leaving TIP supports HASP workstations. The protocol uses
bidirectional transmission over HASP lines to terminals that have both
interactive and batch devices.

The HASP protocol defines two types of blocks: data blocks and control
blocks. Data blocks also contain control information. Positive
acknowledgment of the receipt of each block is required.

The HASP protocol automatically attempts to resend garbled blocks. If the
block cannot be successfully sent after four attempts, the line is declared
inoperative.

Data blocks are composed of data records, which are in turn composed of
character strings. If several consecutive identical characters occur, this
character string is sent as a number (the number of identical characters)
plus the character. This type of data compression can save significant
transmission time. Another important feature of the HASP protocol is its
ability to meter the rate of output so that fast processing devices have
most of the transmission time available, yet slow processing devices have
data whenever they are ready to use it.

HARDWARE CONSIDERATIONS

Some of the hardware considerations for the HASP TIP are the following:

® A typical HASP workstation consists of a keyboard, a CRT display, up
to 7 card readers, up to 7 printers, a processor, and (optionally)
external storage (magnetic tape or disk). The processor has
computer-like functions, with upline and downline data processing.

) The terminal has its own emulation package, which is loaded from the
designated storage device: magnetic or paper tape, cards, or
terminal mass storage.

) The internal code of the workstation is EBCDIC.

°® Any hardware (computer) that can be made to respond to HASP protocol
and which uses EBCDIC internal code can be used as a HASP workstation.

° Each workstation uses one NPU port (line). Device sharing is the
responsibility of the HASP TIP at the NPU and the workstation
processor at the terminal,

® All terminals have interactive devices and most have batch devices.

) Transmission over the line is bidirectional.

o Line speed is determined by the modem clock.

60474500 A 11-1

MAJOR FUNCTIONS

The HASP TIP performs the following major functions:

The TIP interfaces the ASCII-coded virtual terminal protocol of the
host to a workstation that uses the HASP protocol and EBCDIC as its
internal code.

It handles tasks by queueing them as worklist entries (WLEs) to the
OPS-level TIP. The host application programs send data to one HASP
device at a time. The HASP TIP sends all output data blocks to one
device at a time. There is no multileaving on downline data
transfers.

It converts code between ASCII (128-character set for interactive
devices, 64-character set for batch devices) and EBCDIC -
(128-character subset only).

It supports upline and downline data compression for both interactive
and batch devices.

It supports data flow control to various devices by the use of a
function control sequence (FCS).

It initiates line synchronization when the line has been configured;
uses an enquiry/reply protocol to determine whether the line can
currently be used for a transfer.

It provides soft error processing (retransmitting a garbled data
block) and hard error processing (declaring a line inoperative when
soft error processing fails to transmit data correctly).

It rejects all data when the host is down or the NPU's supply of
available buffers has reached the threshold level. Note that there
can be no regulation distinction between interactive and batch data
since one HASP block can carry both types of data.

It supports autoinput. In this mode only the first 20 characters of
the output data are saved to be appended to the beginning of the
solicited return data.

It discards the terminals sign-on card. A network log-in is used
instead.

It does not process autorecognition.

It processes control messages (IVT commands) from the terminal at the
workstation. The messages change IVT parameters for the terminal.
The acceptable parameters define user break 1 and 2 characters,
define the cancel and control message characters, and define page
width. A message can also be sent to the local operator (LOP).

It interfaces to the multiplex subsystem. Downline, IVT/BVT data is
reformatted to the terminal (HASP) protocol by the text processing
state programs (reached through a call to PTTPINF). The TIP then
calls the multiplex subsystem command driver. The address of the
converted block plus other message processing information is placed
in a command packet for the command driver (PBCOIN). The multiplex
subsystem is then responsible for sending the data to the HASP
workstation.

60474500 A

P

——

Upline, the HASP data is partially processed by the multiplex
subsystem using the input state programs that are part of the
firmware-level TIP. Before starting the input transfer, the TIP sets
up the message processing by passing the transfer parameters
(including the pointer to the first input state program to be used
and an input buffer address) to the command driver. After the first
stage of processing is completed by the TIP's input state programs,
the multiplex subsystem calls the TIP at OPS-level using a worklist
entry. The TIP then uses this partially processed data as a source
buffer and calls the HASP TIP input text processing programs (via
PTTPINF) to demultiplex as well as to convert the upline data to
IVT/BVT format.

) It rejects any attempt to send transparent data for either batch or
interactive device except that downline data to the plotter (batch
mode device) is not code converted.

HASP PROTOCOL

The multileaving protocol consists of the bidirectional transmission of
information blocks between an NPU and a HASP multileaving terminal using
IVT/BVT data at the host interface. Transparent mode is not supported. Two
types of information blocks are defined:

® Control block. This contains binary synchronous communications (BSC)
characters only. Table 11-1 lists commonly used HASP mnemonics.

) Data block. This contains data records composed of character strings
and their associated character string control bytes. Each data
record in the data block is associated with a specific peripheral
device. In order to facilitate identification, a record control byte
(RCB) is used to assign a stream number and a device type to the data
record. Each record control byte has an associated subrecord control
byte (SRCB) to provide additional information about the data record.

A data block can consist of several data records from one or more
devices. A function control sequence (FCS) is added to each data
block to control the flow of data from or to any particular device.

To facilitate error detection, a block control byte (BCB) is added to
each data block. A binary synchronous communications envelope
surrounds the data block.

The HASP TIP never sends multileaved downline data to the HASP terminal.
The host must send to the HASP TIP the desirable length of data for each
active output stream (device) to make a single data block.

NOTE

Multileaving is a synonym for interleaving data from various
devices in a single transmission block.

The HASP TIP does support multileaved data from a HASP workstation. The
HASP TIP parses the input stream, relating each physical record to its
associated connection number, and sends the data to the host sorted by
device.

60474500 A 11-3

TABLE 11-1. . HASP PROTOCOL MNEMONIC DEFINITIONS
Mnemonic Definition Use
ACKO Acknowledge block or character Positive acknowledgment
that transmission was
received
BCB Block control byte Used for error detection;
includes block sequence
number
BSC Binary synchronous communications Any of several block
control characters control characters such
as DLE, STX, and ETB
CRC Cyclic redundancy check Data quality checksum
DLE Data link escape control BSC control character
character
ENQ Enquiry control character or Inquiry if transmission
block can be started when
terminal is newly
configured
EOF End-of-file block
ETB End-of-transmission block BSC control character
character
FCS Function control sequence block Controls data trans-
mission rate from/to a
device
NAK Negative acknowledgment block Confirms that
transmission failed
PAD Padding control character All are l's
RCB Record control byte Stream number and device
type ID; contains status
information
SCB String control byte String length and type,
duplicate character
SOH Start of header character BSC control character
SRCB Subrecord control byte Additional data record
information
STX Start of text character BSC control character

60474500 A

TABLE 11-1. HASP PROTOCOL MNEMONIC DEFINITIONS (Contd)

Mnemonic Definition Use
SYN Sync control character Maintains line
synchronization

WLE Worklist entry

IVT Parameter Control Mnemonics

CN Cancel character Defines symbol for cancel
key
cT Control character Defines symbol to be used

with operator-initiated
control messages

Bl User break 1) Defines symbols for

B2 User break 2 ‘ user breaks

MS Operator message Allows terminal operator
to send message to local
operator

PW Page width Defines page width

TERMINAL OPERATIONAL PROCEDURE

The workstation software is loaded and the communications line is
initialized. After the sign-on card is transmitted, the NPU and. the
terminal transmit idle blocks until one or the other initiates a function
(data or command transfer).

When a function other than a console message or console command is desired,
the process trying to initiate the function transmits a request to initiate
function transmission RCB. The receiving process then transmits a
permission to initiate function transmission RCB if the data from the
requesting process can be handled. If the data cannot be handled, or a
function is currently being processed, the request to initiate a function
transmission RCB is ignored.

When a permission to initiate a function transmission RCB is received, the
requesting process begins transmitting data blocks to the other process.
Data blocks can be transmitted until an EOF is encountered. In order to
transmit more data blocks for the same device stream, the request to
initiate a function transmission RCB sequence must be repeated. If a
request to initiate a function transmission is not received before data
blocks are received, the data blocks are ignored.

60474500 A 11-5

Data blocks are transmitted and acknowledged one block at a time. Before a
second block can be transmitted, the receiving process must transmit a
positive response which takes one of two forms: if no data is ready to be
transmitted to the sending process, an acknowledge block is sent; otherwise,
the next waiting data block is transmitted to the sending process.

Console functions (operator messages and commands) do not have to follow the
request-to-initiate/permission-to-initiate sequence. A console function can

be initialized any time that the wait-a-bit in the function control sequence
is not set and the remote console bit is set.

MULTILEAVING BLOCK DESCRIPTIONS

CONTROL BLOCKS
The multileaving protocol uses four types of control blocks:
° Acknowledge block
° Negative acknowledge block
° Enquiry block
) Idle block

Table 11-2 lists significant EBCDIC characters associated with these blocks.

TABLE 11-2. HASP SIGNIFICANT EBCDIC CHARACTERS

Char Hex Value Meaning

SOH 01 Start of header

STX 02 Start of text

DLE 10 Data link escape

ETB 26 End-of-transmission block
ENQ 2D Enquiry

SYN 32 Synchronize

NAK 3D Negative acknowledge

ACKO 70 Positive acknowledge

PAD FF Pad

Note: ACKO only has significance in the sequence DLE ACKO (as
the entire message) since ACKQ is not a protocol
character.

11-6 60474500 A

Acknowledge Block (ACK)

The acknowledge (ACK) block consists of the following control characters:
SYN, S¥YN, SYN, DLE, ACKO, PAD

SYN - Synchronization control character

DLE - Data link escape control character

ACKO - Affirmative acknowledgment control character
PAD - Pad control character (all 1's)

The ACK block indicates that the previous block was received without error
and no data is available for transmission.

Negative Acknowledge Block (NAK)

The negative acknowledge (NAK) block consists of the following control
characters:

SYN, SYN, SYN, NAK, PAD

SYN - Synchronization control character
NAK - Negative acknowledgment control character
PAD - Pad control character (all 1 bits)

The NAK block indicates that the previous block was received in error and a
retransmission is necessary. If the allotted number of retry attempts have
been completed, the line is declared inoperative. A NAK block cannot be
transmitted as a response to a NAK block.

Enquiry Block (ENQ)

The enquiry (ENQ) block consists of the following control characters:
SYN, SYN, SYN, SOH, ENQ, PAD

SOH is the start-of-header control character and
ENQ is the enquiry control character

The enquiry block establishes communications between the HASP terminal and
the NPU at loading time. It is not used at any other time.

Idle Block (ACKO) s

The idle block is an ACKO block which is used to maintain communications and
to avoid an unwanted timeout when neither process has any data to transmit.
An idle block is transmitted at least once every 2 seconds. This block has
the same format as the acknowledge block.

CONTROL BYTES FOR DATA BLOCKS

Each data block has at least one sequence of five control bytes that define
the data immediately following the last control byte. The control bytes in
the order they appear are as follows:

60474500 A 11-7

Followi

Block control byte (BCB); used for sequencing blocks

Function control sequence (FCS); defines the transmission flow
(suspends all data or the data for a device, or restarts data
transmission for one or all devices)

Record control byte (RCB); carries status information for following
data and stream identification

Subrecord control byte (SRCB); carries more status and data control
information

String control byte (SCB); describes data string (length and nature,
whether compressed or uncompressed data)

ng the first set of five control bytes, additional data subblocks can

be preceded only by an SCB or by a sequence of RCB/SRCB/SCB.

Each control byte is defined below. Figure 1ll-1 shows a typical

transmi

ssion block and its associated control bytes.
NOTE

The bytes in the following descriptions are described as if
they appeared on a card input device. That is, the least
significant bit is on the left, the most significant bit is
on the right.

BLOCK CONTROL BYTE (BCB)

The block control byte format is as follows:

0 7

PXXXCCCC

XXX

CCCC

- must be a 1 (on)

- 000 = Normal block

- 001 = Ignore sequence count

- 010 = Reset expected block sequence count to CCCC
- 011 - 111 = Not used in this implementation

Module block sequence count, range 0 through 15

FUNCTION CONTROL SEQUENCE (FCS)

The function control sequence (FCS) format is as follows:

0 7 F

PSRRABCDJTRRWXYZ

g - Must be a 1 (on)

s -

11-8

1
0

Suspend all stream transmission (wait-a-bit)
Normal state

60474500 A

Figure 11-1.

60474500 A

SYN
SYN - Synchronization characters
SYN
DLE - BSC leader (SOH if no transparency feature)
STX - BSC start-of-text
BCB - Block control byte
FCS - Function control sequence (2 bytes)
RCB - Record control byte for record 1
SRCB - Subrecord control byte for record 1
SCB - String control byte for record 1
DAT - Character string
A
SCB - String control byte for record 1
DAT - Character string
A
SCB=0 - Terminating string control byte for record 1
RCB - Record control byte for record 2
SRCB - Subrecord control byte for record 2
SCB - String control byte for record 2
DAT - Character string
A
SCB=0 - Terminating string control byte for record 2
RCB=0 - Transmission block terminator record control byte
DLE - BSC trailer (SYN if not in transparent mode)
ETB - BSC ending sequence
CRC-16 - Cyclic redundancy checksum (2 bytes)
PAD - All 1 bits

Typical HASP Multileaving Data Transmission Block

11-9

NOTE

For the following bits: a bit =
function transmission; a bit = 0
transmission).

1l = continue (restart)
= suspend (stop function

T - Remote console stream identifier
R - Not used
ABCDWXYZ - Various function stream identifiers

These stream identifiers are bit-defined and have two sets of definitions;
one for upline use, the other for downline use. For upline use, the bits
identify the card reader that is to send data:

Card reader
Card reader
Card reader
Card reader
Card reader
Card reader
Card reader
Card reader

OJAUT B WN
R I T I
NKXIEOoOwP

For downline use, the bits identify the punch or printer that is to receive
the data:

Printer 1 = A = Punch number 8
Printer 2 = B = Punch number 7
Printer 3 = C = Punch number 6
Printer 4 = D = Punch number 5
Printer 5 = W = Punch number 4
Printer 6 = X = Punch number 3
Printer 7 = Y = Punch number 2
Printer 8 = Z = Punch number 1

RECORD CONTROL BYTE (RCB)

The record control byte bit representation is as follows:

0 7
#SSSssss
] - 1 (must always be on)

SSSSSSS - Additional record information, dependent upon record type (see
RCB above)

For general control record:

§S8sSSsS = 10000001

Initial terminal sign-on
For request or permission to initiate a function transmission:

SSSSSSS = Stream identifier and record type identifier as described
in RCB

11-10 60474500 A

For bad BCB on last block received:

S88SSSS = Expected block sequence count
For print record:

SS8S8SSSS = MCCCCCC

M -0
1

Normal carriage control
Not used

CCCCCC - Carriage control information

1000NN = Space immediately NN spaces
11NNNN = Skip immediately to channel NNNN
000ONN = Skip NN spaces after print
OLNNNN = Skip to channel NNNN after print
000000 = Suppress space

For punch record:
SSSSSSS = MMBRRSS

SS - Punch stacker select information

B - 0 = Normal EBCDIC card image
1 = Not used
MM - 00 = SCB count units =1
01l - 11 = Not used
RR - Not used
For input record:
SSSSSSS = MMBRRRR
MM - 00 = SCB count unit =1

01 - 11 = Not used

= Normal EBCDIC card image
1 = Not used

RRR - Not used

STRING CONTROL BYTE

The string control byte bit representation is as follows:

0 7
OKTCCCCC
0 - 0 = End of record (KTCCCCC = 0)
1 = All other SCBs
K - 0 = Duplicate character string

60474500 A 11-11

T -0 Duplicate character is a blank
1 Duplicate character is non-blank (character follows SCB)
CCCC = Duplication count

K - 1 = Non-duplicate character string
TCCCCC - Character string length
If KTCCCCC is 0 and O is 1, SCB indicates record is continued in the next

transmission block. This feature is not supported by the HASP TIP and is
shown for completeness only.

DATA BLOCK DESCRIPTION

Data blocks consist of data records, the control bytes, and the following
text control characters:

SYN - Synchronization control character

DLE - Data link escape control character

SOH - Start of header control character; used only if
nontransparent mode

STX - Start of text control character

ETB - End-of-transmission block control character

CRC-16

Cyclic redundancy checking control characters (2 bytes)
PAD - Pad control character (all 1 bits)
A typical data transmission block is shown in figure 1l1-1.

Several types of blocks are specially defined. These blocks appear to be
data blocks but are actually special purpose blocks containing transmission
control information. They are as follows:

Operator console blocks
End-of-file blocks

FSC change blocks
Sign-on blocks

BCB error blocks

OPERATOR CONSOLE BLOCKS

Blocks which contain operator console messages or commands do not contain
any additional records in the data block following the console record.

A request to initiate a transmission function is not required to transmit

console records. However, the wait-a-bit flag must not set in the FCS, and
the remote console bit must be set.

11-12 60474500 A

END-OF-FILE BLOCKS (EOF)

Blocks that contain the end of file (EOF) indicator do not contain any
additional records from the same device stream in the data block following
the EOF. Data blocks terminated by an EOF contain a final record in the
following format (shown for card reader 1):

(BSC header)

BCB

FCS

RCB 10010011 Card reader stream 1

SRCB | 10000000

SCB count units = 1, EBCDIC card images

SCB 00000000

EOF

RCB 00000000

Transmission block terminator (BSC trailer)

(BSC trailer)

To transmit additional records for a device stream that contains an EOF, the
request to initiate a function transmission must be transmitted again. If
another device stream contains data for transmission and has permission to
transmit, the last RCB in the above example would be a device stream RCB
followed by data instead of a transmission block terminator.

FCS CHANGE BLOCKS

The FCS change block is transmitted when the status of one or more of the
streams has changed, and there is no data ready to transmit. The FCS change
block format is as follows:

(BSC header)

BCB
FCS - Changed FCS
RCB 00000000 - Transmission block terminator

(BSC trailer)

USER INTERFACE

The user is required to load the software into the HASP workstation
processor, to execute this initializing software, to sign-on after the
communications line is configured (by the HASP TIP and the workstation), and
to sign off.

60474500 A 11-13

WORKSTATION STARTUP AND TERMINATION

The workstation startup procedure consists of three steps:
) Terminal initialization at the HASP workstation

) Communications line initialization, which involves the workstation,
the NPU, and the host

° Signing-on, which involves the workstation and the HASP TIP in the NPU

WORKSTATION INITIALIZATION

The HASP workstation operator loads the terminal software and executes it,
The loading medium can be paper tape, cards, magnetic tape, or mass storage
depending upon the terminal hardware. The workstation initialization
processor establishes I/0 buffers and other necessary parameters. After
initialization, a card is read from the card reader. If the card is blank,
the default sign-on parameters are used (default sign-on parameters are
assembled into the terminal software). If the card is a /*SIGNON card, the
parameters on the /*SIGNON card are used instead of the default. 1In either
case, the /*SIGNON card is discarded by the HASP TIP; it is not passed to
the host.

COMMUNICATIONS LINE INITIALIZATION

After the terminal is initialized, the communications line is initialized by
the HASP TIP upon receipt of a configure line service message (SM) from the
host. When communication is established with the line, communication
between the HASP TIP in the NPU and the HASP workstation is established by
the following procedure:

) An ENQ block is sent from the workstation to the HASP TIP.

° The ENQ is ignored by the HASP TIP until configure terminal SM
arrives from the host for the HASP console stream. The HASP TIP then
sends an ACKO to the ENQ.

o If the ACK block is received by the workstation, the sign-on record
is transmitted to the HASP TIP.

) If I/0 errors occur or the ACKO block is not received, the process
restarts with another ENQ block.

® After the sign-on record is transmitted and a positive acknowledgment
is received (ACKO), the workstation is ready for normal processing.

° As each individual batch device stream is configured by the host, the
INIT block is received and the HASP TIP allows processing of the
corresponding output streams. For batch input streams, processing
does not begin until a START INPUT command is received for the input
device stream. For the console input stream, input is allowed after
the receipt of a downline data block or a Start Input command.

11-14 60474500 A

SIGN-ON BLOCK

Column 1 16 25
/*SIGNON REMOTEnn password

NOTE

Record is shown in punched card format, with least
significant character on the left, most significant character
on the right,

The nn is a one or two digit number that can be used to correlate this
remote terminal with information about it in the host computer. Password
can be blank. The sign-on block format is shown in figure 11-2.

} BSC Header

BCB 1010XXXX - Reset count to XXXX

FCS

RCB 11110000 ~ General control record

SRCB 11000001 - Initial sign-on

DAT) Sign-on record

Al

RCB 0000000 - Transmission block terminator

} BSC Trailer

Figure 11~-2. Sign-on Block Format

The sign-on record is not sent to the host since the host requires a
separate logging-on procedure at the operator's console.

SIGN-OFF BLOCK

The /*SIGNOFF card, when transmitted to the HASP TIP as a record in the data
block, has the same effect as an EOF block. The HASP TIP converts the
signoff record to a BVT EOI and sends it to the host as a MSG data block.

HOST INTERFACE

The host interface is used for connection configuration and initialization
of the workstation devices. Once the line becomes operational, the HASP TIP
allows the sign-on block to be sent from the HASP workstation. The sign-on
block is acknowledged to the HASP workstation but is not delivered to the
host.

60474500 A 11-15

Upon receiving a line operational service message for a HASP workstation,
the host issues a configure terminal service message to configure the
workstation's console. A downline data block or a Start Input command
causes the HASP TIP to permit input from the workstation console. The
console connection allows the workstation operator to send and receive
messages to and from the host. It also allows the operator to alter IVT
parameters.

After the console is configured, the batch devices are configured. Start
Input commands from the host cause the HASP TIP to allow input devices to
read cards. Output device streams are initiated by the HASP TIP as soon as
data arrives. Devices configured as plotters use card punch output streams.

Once the necessary initialization and configuration are complete, traffic
can flow between the terminal and the host. During this traffic handling
period, the HASP TIP is involved in the following functions.

Code conversion - upline and downline

Format conversion, HASP TO BVT/IVT upline, BVT/IVT to HASP downline
Flow control upline and downline

HASP error recovery procedures

Input/output streams, to/from a HASP terminal

CODE CONVERSION

Interactive virtual terminal (IVT) data to and from the console is
translated by the TIP by converting ASCII to EBCDIC or EBCDIC to ASCII
code. Only the l1l28-character subset equivalent to the ASCII character set
is converted; that is, on output the eighth bit is stripped off, and on
input any character not in the subset is converted to a blank.

Batch virtual terminal (BVT) data to and from the batch devices (except the
plotter) is translated by converting ASCII to EBCDIC or EBCDIC to ASCII.
Here only the 64-character subset of ASCII appears in the data from and to
the host. Plot data is sent untranslated to the terminal.

Upline, card reader input is translated by an EBCDIC-to-ASCII conversion by
default (029) or if requested by a job card or an end-of-record card with 29
punched in columns 79 and 80. An alternate 026-to-ASCII conversion can be
requested by punching 26 in columns 79 and 80 of a job or end-of-record
card. Subsequent end-of-record cards with 29 or 26 punched in columns 79
and 80 change the conversion mode; the current mode is kept in effect with
any other punches. The conversion mode is returned to default (029) when an
end-of-information card is input. No indication of conversion mode is sent
to the host.

Downline, printer data is always translated by an ASCII-to-EBCDIC
conversion. Punch data is translated by the same conversion by default or
if requested by a MODE CHANGE of ASCII-029. An alternate ASCII-to-026
conversion can be requested by a MODE CHANGE of ASCII-026. The requested or
default mode stays in effect until changed by a subsequent MODE CHANGE
request or until the receipt of an ENDOFINFORMATION. At that time, the mode
is returned to the 029 default.

Note that on card input in 026 mode, 12-8-2 is read as 12~0 and 11-8-2 read
as 11-0. Neither 12-8-2 nor 11-8~2 is punched on card output in 026 mode.
Similarly, on card input in 029 mode, 11-0 is read as 12-8-7 and 12-0 is
read as 12-8-4. Neither 11-0 nor 12-0 is punched on card output in 029 mode.

11-16 60474500 A

For downline data, the HASP TIP appends the BSC envelope to the data in the
same manner as the BSC envelope was received from the HASP workstation.

HASP/BVT FORMAT CONVERSION

Conversion of the HASP/BVT format is required for compressed data, both
upline and downline, for uncompressed data, for EOI/EOR codes, for forms
control codes, and for punch banner cards.

Compressed Data (Upline)

The HASP TIP converts the string control bytes to BVT compressed format.
String control bytes designating blank compression are converted directly to
BVT blank compression codes. Trailing blanks are stripped.

The HASP terminal does not distinguish between compressed blanks and
compressed zeros as BVT does. Zeros are treated the same as any other
repeated character by the HASP TIP for conversion to BVT.

Compressed Data (Downline)

The HASP TIP converts BVT compressed format to string control byte format.
BVT compressed zeros are expanded to the string control byte format for
repeated characters.

EOI/EOR Codes

All data blocks between the host and the HASP TIP are BLK blocks, except for
the last block of data which is a MSG block. The MSG block is the
end-of~information (EOI) block and indicates no more data transmission
follow.

Upline, the end-of-input block (MSG block) is sent by the HASP TIP when an
end-~of-file block is received from a card reader stream. Contained within
the MSG block is a BVT EOI. /*EOI cards received from the card reader
stream cause the HASP TIP to send the MSG block as well. Consecutive /*EOI
cards are ignored by the HASP TIP,

/*EOR or 789 cards received from the card reader stream cause the HASP TIP
to convert the EOR to its special BVT equivalent. The TIP obtains the level
number from the card and also passes that information to the host.

In addition to the preceding, the HASP TIP scans the first card from an
input device stream, the card after a /*EOI (assumed to be a job card), and
the /*EOR or 789 card. The TIP checks columns 79 and 80 for code conversion
(26, 29). An appropriate conversion table is selected, based on the
information in columns 79 and 80.

Downline, the MSG block causes the HASP TIP to send the associated output
device stream an end-of-file block.

BVT EOR/EOIs are converted to 789 cards (with the appropriate level number)

and to /*EOIs. For output devices other than the card punch, these EOR/EOI
symbols are ignored by the HASP TIP,

60474500 A 11-17

Uncompressed Data

The HASP TIP converts uncompressed string control bytes to BVT uncompressed
control codes and converts BVT uncompressed control codes to uncompressed
string control bytes.

Forms Control Codes

The BVT forms control codes are converted to subrecord control bytes for
printer streams. For each possible BVT code, there is an equivalent
preprint or postprint subrecord control byte.

Punch Banner Cards

The downline data block clarifier contains a flag which, when set in a block
for a punch file, indicates that a laced card should be generated before
sending the data to the terminal. The laced card consists of 80 columns of
the EBCDIC punch 583¢, which punches rows 12, 11, 8, and 9.

HASP/IVT FORMAT CONVERSION

The IVT command allows the workstation operator to vary some workstation
parameters. These parameters apply only to the workstation console which is
the interactive HASP workstation device. The following IVT parameters can
be changed:

® CN - designates key to be used as cancel character
e CT - designates key to be used as control message character
) Bl, B2 - designate keys to be used as user breaks 1 and 2

e Ms - designates key to be used to delimit a message from the
workstation console to the local operator (LOP) console

® PW ~ designates page width on the workstation display
Format of the message as entered at the workstation is_
< CTL > <OTHER > < >
CTL is the control symbol
OTHER designates one of the six allowable parameters above

< > is the terminator character for the console as defined by the CT
parameter

HASP compressed data is expanded to IVT format. Page width (PW) line
folding past the column specified by the PW parameters (or the default value
if PW has not been specified) is performed by sending multiple output lines.

Autoinput is supported. 1In the autoinput mode, only the first 20 characters
of the output block are appended to the solicited input data. Autoinput is
confined to a single MSG block on output. Input longer than one line is
ignored.

11-18 60474500 A

Transparent data is not allowed in IVT mode. Any attempt by the user
application to send transparent data downline causes the HASP TIP to send a
BRK block to the host, terminating the output attempt.

If a cancel input line character is sent to the TIP, the TIP deletes the
previous input line and sends a *DEL* message to the terminal.

Downline IVT format effectors (FEs) are defined in table 11-3. No parsing
of any FE within the output line is performed.

For output data blocks that contain a format effector only, the HASP TIP
ensures that a blank character is inserted into the output stream. This
prevents the HASP workstation from changing a format-effector-only data

block into an end-of-file block.

TABLE 11-3. DOWNLINE IVT FORMAT EFFECTORS FOR HASP TERMINALS

Preprint FE Action
Single Space Space No action required
Double Space 0 Generate one blank line
Triple Space - Generate two blank lines
Start of Current Line + Ignore
Home TRt Ignore
Home and Clear 1 Ignore
Null ' Ignore

Postprint
Single Space . No action required
Start of Current Line / Ignore

ERROR HANDLING

The NAK block is the basic method of informing the receiving process that an
error occurred. The TIP saves the last downline data block for the terminal
so that it can be retransmitted if needed. Retransmission of a data block
is attempted three times following the initial NAK. For output blocks that
are undeliverable to the terminal, the HASP TIP causes the service module to
generate a line status service message with line inoperative indication.
This service message is sent to the host.

The HASP TIP, after receiving the same block incorrectly four times from the
terminal, considers the data as unreadable. The TIP causes the service
module to generate and to send a line inoperative SM to the host.

60474500 A 11-19

The error conditions recognized by the HASP TIP are as follows:

CRC-16 error

Illegal block make-up
Unknown response
Timeout

BCB error

CRC-16 ERROR

Cyclic redundancy checking (CRC) occurs only on data blocks. If a CRC-16
error occurs, the receiving process transmits a NAK block to the
transmitting process. This indicates that a retransmission of the last
block is required. If the retransmitted block is correct, the processing
continues.

ILLEGAL BLOCK MAKE-UP ERROR

A data block must end with an ETB control character; if it does not, an
illegal block make-up error occurs. The receiving process transmits a NAK
block to the transmitting process, which informs the transmitting process
that a retransmission of the last block is required. 1If the retransmitted
block is correct, the processing continues.

UNKNOWN RESPONSE ERROR

An unknown response error occurs when the response received from the
transmitting process is not one of the following:

) A data block beginning with the DLE and STX control characters in
transparent mode

® A data block beginning with the SOH and STX control characters in
nontransparent mode

) An ACKO block

° A NAK block
If an unknown response error occurs, the receiving process transmits a NAK
block to the transmitting process. This informs the transmitting process

that a retransmission of the last block is required. 1If the retransmitted
block is correct, processing continues.

TIMEOUT ERROR
If the maximum number of retries has been used or there is a hard error, the

HASP TIP declares the line to be down. Otherwise, the TIP tries to resent
the block.

11-20 60474500 A

i

BLOCK CONTROL BYTE ERROR

Every data block has a block control byte (BCB) that contains a block
sequence count. The data blocks are transmitted in sequentially ascending
order unless an ignore or reset block control byte is transmitted. If the
block sequence count in the data block is not the same as the expected block
sequence count, a block control byte error occurs.

If a block control byte error occurs and the block sequence count is the
same as a block sequence count previously received (the expected count minus
received block sequence count < 2), the data block is ignored and processing
continues as if a function control sequence change block or ACKO block was
received.

If a block control byte error occurs and the block sequence count is not the
same as the count previously received, a block control byte error block is
transmitted from the receiving process to the transmitting process. The
block control byte error block informs the other process that a block
sequence count error has occurred, and that the transmitting process must
either return to the missing block or must transmit a reset block control
byte. The format of the block control byte error block is shown in figure
11—3 .

BSC header

1001XXXX - ignore sequence checking where

BCB XXXX = received block sequence count

FCS

RCB 11100000 - Bad BCB on last block

SRCB 1000YYYY - where YYYY is expected block sequence count
SCB all zeros - end-of-record

RCB all zeros - transmission block terminator

BSC trailer

Figure 11-3. Format of Block Control Byte Error Block

60474500 A 11-21

REGULATION AND FLOW CONTROL

The NPU regulates upline input from the HASP workstation when the NPU runs
out of buffers, when the host stops, or when data transmission is not
ready. The workstation regulates downline data output from the host or NPU
as a function of the busy state of the workstation device that uses or
produces the data.

UPLINE REGULATION

In response to the Stop Input command, the TIP sends an Input Stopped
command to the host. If data continues to arrive from the terminal, that
data is discarded. No permission to transmit is granted by the TIP.

Upon receipt of an end-of-file block from the terminal, the TIP sends an
Input Stopped command to the host following the data. Permission to send
more data is not granted until a Start Input command is received from the
host.

If the host becomes unavailable or if the NPU runs out of buffers, the TIP
stops all input from the terminals by setting the wait-a-bit in the function
control sequence (FCS) control byte.

DOWNLINE DATA FLOW CONTROL

The FCS fields control the flow on each of the streams (terminal devices) by
the use of the bits assigned to control each stream. The FCS sent by the
terminal to the TIP controls the TIP's downline delivery of records related
to each stream.

The TIP correlates the FCS bits with the applicable connection numbers, If
a bit is set to the suspend transmission state, the TIP sends an upline STP
block on the related connection after a timeout occurs. In a subsequent
upline block from the terminal to the TIP, the function control sequence bit
for the specified downline stream is set to change transmission from the
suspend state to the continue state. This causes the TIP to send a STRT
block upline on the related connection number. This block causes the host
to resume delivery of downline traffic to the TIP for that stream.

If a request to initiate function transmission sent from the HASP TIP is
denied by the terminal, then a STP block is sent upline for this device's
connection number (CN) after a timeout occurs. If permission is granted, a
STRT block is sent. :

HASP POSTPRINT

HASP printers vary in their terminal carriage control actions. Some perform
carriage control, then print the data; others print the data, then perform
carriage return actions. The former are called preprint terminals; the
latter are called postprint terminals. The preprint terminals are designed
to receive the data in the following format:

[carr1ace contrROL] [DATA]

The terminal action is perform the carriage control action first, then print
the data.

11-22 60474500 A

Initially, CCP treated all printers as preprint terminals. However,
postprint terminals cannot perform these actions in one step; they use the
following sequence of actions: print the data, then perform the carriage
control actions.

To handle both preprint and postprint terminals with the same data format,
CCP divides HASP printer output data into two records:

[cARRIAGE cONTROL] [DATA]
[2 BLaNKS] [CARRIAGE CONTROL| and [pata] [no cc]
where no CC is no carriage control character
Preprint terminals handle this as a carriage control, then a print data
sequence. Postprint terminals print out two blanks from the first record
(that is, nothing is printed) and then perform the carriage control action.

For the second record, the postprint terminal prints the data, but performs
no carriage control action.

60474500 A 11-23

STATE PROGRAMS 12

This section describes the firmware-level state programs, which are used by
the TIPs and the multiplex subsystem to speed programming. One set of state
programs controls upline transfers (input state programs, sometimes
augmented by upline text processing programs) and another set controls
downline transfers (text processing). Each program is composed of a series
of state processes. Each state process is composed of a series of state
instructions.

Each TIP (in some cases, each type of terminal serviced by a TIP) has upline
and downline state programs to process control characters, assign buffers,
perform error processing for garbled characters in the transmission stream,
and (if necessary) to translate code. The entire group of state processes
that comprise a state program has a state pointer program associated with
it. To execute a program, the TIP sets an index in this pointer table to
specify the first state process to be used when the next character is to be
processed. The pointer table index is then moved as appropriate for the
next anticipated character. This is usually done by the state programs
themselves.

The multiplex subsystem also controls a set of state programs called the
modem state programs.

EXECUTION OF STATE PROGRAMS

All state programs are executed on the firmware level. Message processing
itself is under the control of the appropriate TIP, which is executed on the
OPS level. That TIP, before starting processing of the message, sets up a
multiplex line control block (MLCB) for upline messages or a text processing
control block (TPCB) for downline messages. Since most of the message
processing is normal (for instance, the modem is set up in the same way each
time, buffers are assigned, a sequence of control characters delimit the
message, termination is generally the same), this kind of processing can be
handled entirely within the state programs.

As the message is processed on the firmware level, the state program index
is changed on the firmware level by the state programs themselves. The
state programs process the data without further communication with the
OPS-level part of the TIP. For upline data, processing consists of moving
data from the circular input buffer to a dynamically assigned, line-oriented
input buffer. When the line buffer is ready, the OPS level TIP is called to
process it. For downline data state processing consists in taking all the
data from the line-oriented output buffer, translating and reformatting it
for the terminal, and placing it in an output buffer. Control returns to
the OPS-level TIP to continue processing the message. Usually, the TIP
notifies the multiplex subsystem that the message is ready for outputting.

The ideal case summarized above makes few provisions for special problems
such as error processing. 1In such a case, the state programs might inform
the TIP that message transmission failed, and the TIP would then activate
one of its OPS-level routines for handling that situation based on the type
of error encountered.

60474500 A 12-1

State program processing is usually more complicated than in the ideal

case. Processing may shift several times between firmware-level processing
by the state programs and OPS-level TIP. Communication between the TIP and
the multiplex subsystem is needed to set up the input state program. This
communication uses the command packet. The multiplex subsystem then starts
the input state programs when the first character of the message is placed
in the CIB. Whenever the TIP passes control to the multiplex subsystem, the
new input state index must be set in the MLCB.

Figure 12-1 shows the pointers that initially are needed to locate the first
state process in a state program sequence. As a state process is completed
and requires another, the index in the state pointer table is changed so the
TIP or multiplex subsystem can find the next state process of the state
program to be executed.

CLASSES

Functionally, there are three classes of state programs:

® Input state programs for upline processing. An input data processor
handles the character processing.

The input data processor is a multiplex subsystem level 1
microprogram which has the basic task of removing loop cell data from
the input multiplexer loop, stripping away the multiplex loop control
fields, and packing the resulting characters into a circular input
buffer (CIB). Then the input state program is called to store an
input character into a line-oriented input buffer. The current input
state process determines whether any special action (code or format
conversion) is required for the character and processes the character
as needed. When all the input characters for that block are
processed, input is terminated and a worklist entry is made to call
the TIP at OPS level.

The input data processor is interrupt driven (priority 2) by the
multiplex loop interface adapter whenever a line frame is stored in
the CIB. Unless pre-empted by a priority 1 interrupt, the input data
processor causes the appropriate state program (input or modem) to
remove all unprocessed entries from the CIB prior to relinquishing
control. In this way, the CIB's pick pointer is moved up to the put
pointer position whenever possible. Running out of space in the CIB
causes the NPU to stop.)

) Text processing state programs for downline processing. Output text
processing is always required unless the output sent by the host is
in transparent mode. Normally, the OPS-level TIP calls the text
processing state program to convert data to terminal format. The TIP
makes a direct call to the state programs using the firmware
interface program, PTTPINF. The text processing program reformats
and converts to terminal code where necessary. This operation moves
the data from the buffers holding the output data in virtual terminal
format to buffers holding the data in terminal format. This data
conversion must be accomplished before calling the multiplex
subsystem to initiate output on the line.

12-2 60474500 A

STATE POINTER TABLE

PORT TABLE CONTROL BLOCK (CAN BE INPUT, TEXT
(NAPORT) (MLCB OR TPCB) PROCESSING, OR MODEM) STATE PROGRAM
STATE PROCESS 0 STATE
| Process o
NCLCB ADDR STATE STATE PROCESS 1 INSTRUCTIONS
INDEX [|
®
STATE
T ° PROCESS 1
INSTRUCTIONS
INDEXED BY — °
PORT (LINE) STATE
NUMBER POINTER | | ™
TABLE
ADBR STATE PROCESS N °
[]
OR
STATE
DATA PROCESS N
BUFFER (,/1"' BUFFER 1 INSTRUCTIONS
(FOR MODEM POINTER N
STATE PROGRAM) N
N
4] DATA
BUFFER N
STATE
INDEX
MODEM
STATE
POINTER
TABLE
M-392

Figure 12-1. Locating a State Process

60474500 A 12-3

After the text is converted to terminal code and format by the text
processing state program, the output data processor (ODP) in the
multiplex subsystem handles the character output to the line. The
output data processor is an interrupt-driven (priority 1) level 1
microprogram that is activated when an output data demand (ODD) is
generated by the CLA on that line. The output data processor's
primary function is to obtain a single character from line-oriented
output buffer, to place this data into line frame format, and to
transfer the line frame onto the multiplex output loop. This process
is repeated, driven by the ODD interrupts, until the entire message
is transmitted.

Text processing is also performed on some upline data. This occurs
where the input block is composed of data from several devices at the
same workstation, as in the case of the HASP TIP. 1In this case, the
input state programs partially demultiplex the data into a
line-oriented input buffer. Then the multiplex subsystem calls the
OPS-level TIP. The OPS-level TIP calls TPPTINF to convert this block
of terminal data to one or more blocks of device-oriented data in
IVT/BVT format. Different sets of text processing programs are
needed for upline and downline conversions.

Modem state programs. The IDP and ODP described above handle those
tasks that are protocol dependent. Modem state programs handle those
tasks that are performed for all line protocols, such as processing
CLA status.

COMPONENTS OF A STATE PROGRAM

There are three components of a state program:

A state program consists of one or more state processes. The number
and variety of state processes defined for a state program is a
function of the particular terminal protocol. Each state program is
assembled as a sequential table of coded state processes.

A state process is composed of one or more state instructions
(firmware macroinstructions). The set of these macros forms the
language of state processing. For a complete description of the
macros and their use, refer to the State Programming Reference Manual
(see preface).

The state pointer table contains the address of each state process
defined for a particular protocol or line type. A state process is
selected by setting the state index to the process number.

FUNCTIONS

The functions of the input state, text processing, and modem state programs
are described in this subsection.

INPUT STATE PROGRAMS

Input state programs demultiplex characters into line-oriented input
buffers. This is done in two ways:

12-4

60474500 A

® One-pass processing. These buffers of fully converted data are
passed to the host via the TIP and the HIP.

) Two-pass processing. These buffers of partially demultiplexed data
become the source buffers for input text processing. The OPS-level
TIP is called to finish the demultiplexing. Then the TIP passes the
fully converted data to the host via the HIP.

An input state program consists of a maximum of 64 state processes. These
processes handle tasks such as data conversion, CRC generation, character
compression, and message blocking. Since all state processes are reentrant,
lines with a similar protocol can share some state processes.

The TIP must provide programs for the four reserved input state processes
(0, 1, 2, and 3). State 0 handles parity errors or data transfer overrun.
State 1 is called when the data carrier detect (DCD) signal is dropped.
This condition can be used as a logical end of text for controlled carrier
lines. Both state 0 and 1 are given control by the modem state program
(regardless of the current input state) when the stated condition occurs.
States 2 and 3 are called by the input data processor to process
buffer-related conditions. State 2 is given control when the number of
input buffers currently in use exceeds the system limit. State 3 receives
control when the available buffer minimum threshold is reached. States 4
through 63 are defined by the TIP.

The 16-word multiplex line control block (MLCB) stores control information
for the message. Numerous flags and fields are defined for the transfer,
including the state process pointer and the state program index. Together,
these locate the next state process to be executed. The MLCB fields are
defined in appendix H.

The input data processor has three interfaces: to firmware, to modem state
programs, and to text processing state programs.

Firmware Interface to Input Data Processor

When the firmware input data interrupt causes the multiplex subsystem to
pass control to the designated input state process for the line or
terminal. Before executing the first state input state instruction, the
firmware loads a selected register with the current (untranslated)
character. The contents of this register can be changed by state
macroinstructions.

If parity stripping is specified, the parity bit is stripped when the
register is initially loaded. 1If and when the register contents are
changed, parity stripping is ignored. Exit options allow the TIP to store
the character from the register without changing the register contents.

Modem State Program Interface to Input Data Processor

When a data character and CLA status occur in the same line frame of the
CIB, the firmware transfers control to the current modem state process. The
modem state program is responsible for passing control to input state
process 0 or 1 upon detecting status conditions for which the input state
program should get control.

60474500 A 12-5

Flags in the MLCB are used for communication between the modem state program
and input state program. One flag indicates that a workcode has been saved
for use when the carrier drops. Another flag is set by the line initializer
when a controlled carrier line is detected.

The input state program must set the modem state index to the modem state
process that handles status while input is in progress. That is, upon
detecting start of input, the input state program must change the modem
state index to the modem state process that handles status when inputting.
Then, upon detecting end of transmission, the input state program must set
the modem state index to the modem state process for idle.

For the controlled carrier type of line, an output message cannot be
transmitted until data carrier detect drops on input. To eliminate the
possibility of a TIP starting output before data carrier detect has dropped
during input, the input state program has the ability to terminate the input
buffer and save the workcode in the MLCB (the alternative would be building
the worklist at the time of the termination). The input state program then
sets a user flag indicating this saved workcode condition.

A worklist entry can be built immediately if the line type is not a
controlled carrier line.

The modem state program jumps to input state process 1 when the saved
workcode flag is set, data carrier detect has dropped, and the idle modem
state exists. The TIP does not get control until data carrier detect has
dropped, eliminating the possibility of starting output before data carrier
detect has dropped during input.

Other input/modem states interfaces can be defined as needed by the user.

Text Processing State Program Interface to Input Data Processor

The input state program creates interim (source) buffers to be used by the
text processing state program only when more than one pass is required to
process the input from the CIB.

TEXT PROCESSING STATE PROGRAMS

These state programs handle all protocol-oriented output processing and some
input processing (where several devices on the same line have data to
convert within a single upline block).

When handling characters for output text processing, the buffer received
from the host is referred to as the source buffer. A character from this
buffer is known as a source character. For input text processing, the
source character is obtained from the source buffer that was created by the
input state program at the end of the first pass. The source character is
placed in the current character register by the firmware.

A text processing state program consists of a maximum of 64 state
processes. Since all state processes are reentrant, lines with a similar
protocol can use the same state processes,

Text processing state process 0 is reserved for handling the end of a

source-reached condition and state process 2 is reserved for handling buffer
overflow processing. States 1 and 3 through 63 are defined by the TIP.

12-6 60474500 A

The selection of the text processing state process to execute is determined
by combining the value of the state process index with the state pointer
table address. Both fields are in the text processing state pointer table
entry points to the associated text processing state process. See appendix
H for a definition of TPCB fields.

The state pointer table address and state process index fields are set by
the OPS-level TIP program. State program macroinstructions allow the
firmware program to change the state process index while executing text
processing state programs.

Before text processing is initiated, a group of 16 firmware registers (file
1 text processing registers) are initialized from the last 16 words of the
TPCB by PTTPINF. This action allows the firmware to operate entirely within
micromemory.

The 16 file 1 registers are accessed by specifying a displacement to the
selected file 1 register. A displacement of 0 selects the first file 1
register and a displacement of 15 selects the last file 1 register.

Firmware Interface to the Output Data Processor

The destination buffers generated by the output text processing program can
be accessed by the output data processor when an output data demand (ODD) is
received from the communications line adapter. The output data processor
gets the next character from line-oriented buffers, moves the character into
multiplex output loop frame, and transfers the frame to the MLIA for
transmission on the multiplex output loop.

The TIP support program, PTTPINF, provides the interface between the
OPS-level TIP and the firmware which performs state-driven text processing.
PTTPINF performs the following functions:

) Initializes the file 1 registers for text processing with the lower
16 words of the text processing control block (TPCB) array.

° Initiates output state processing instructions.

) Releases unused destination buffers created by the save and restore
conditions state instruction upon return to macrolevel processing.

) Restores the text processing TPCB array with the file 1 registers
upon return to macrolevel processing.

PTTPINF is called with a parameter containing the address of the TPCB.

After detecting a character but before executing the first state
instruction, the firmware loads file register 0 and a selected register with
the current (untranslated) character. The programmer can change the
contents of file register 0 by using the state program macroinstructions.

If parity stripping is specified, the parity bit is stripped when the
register is initially loaded. 1If the contents of the register are changed,
parity is ignored. Exit options can store this character without changing

the register contents.

60474500 A 12-7

MODEM STATE PROGRAMS

The modem state programs process modem status as a function of modem control
signals. The programs (which are called by the firmware when communications
line adapter (CLA) status word enters the subsystem) use a worklist entry to
forward the logical CLA status to the multiplex level status handler
(PTCLAS). PTCLAS analyzes the status and uses a worklist entry to report
line conditions to the OPS-level TIP modem state program.

A modem state program consists of a maximum of 16 state processes. There
are modem state processes defined for each line type based on line
condition, Thus, the modem state program can have one or more processes for
each condition or one state process to handle more than one line condition,
depending on the line type.

The modem state programs report status conditions to the line initializer
and to the TIPs. These programs are based on line type. The states defined
for each line analyze the status as a function of the current state of the
line (for example, line idle, output in progress, input in progress, and
initializing line).

State 0 is the starting state of the modem state programs when a CLA status
word is detected in the circular input buffer. This state checks for hard
errors and any other signals that are common to idle, input, and output
states. Control passes to the current state program if no errors are
detected or if the current state is discard, initializing line, or enabling
line.

State 1 discards all status. This state is selected following any hard
error worklist generation or by a clear line or disable line command to the
command driver.

State 2 is the common line initialization state. Upon receiving any status,
this program checks the ring indicator. A worklist is generated if it is
found. If the ring indicator is not included in the status word, a CLAON
worklist is generated.

State 3 is the enable line state. It is selected whenever an enable line
command is issued. The modem signals that indicate that the line is ready
for data transfer are checked. 1If these are found, a worklist indicating
the line is enabled is generated. The modem state program changes”to state
4 (idle) after the worklist is generated. Either of two signals indicate
the line is enabled: data set ready (DSR) alone, or a combination of DSR
and data carrier detect (DCD).

NOTE
States 0, 1, 2, and 3 are similar for all line types. Any
new modem state programs must perform these same functions.
New programs should also check the three hard error
indicators: input line enabled, output line enabled, and DSR.

State 4 is the idle state. It checks for any error conditions that are not
checked in state 0.

NOTE

States 5 and 6 are unique by line type.

12-8 60474500 A

State 5 is the output state. It checks for output-related errors not
checked in state 0, such as next character not available.

State 6 is the input state. It checks for input-related errors not checked
by state 0, such as parity error status. The program also provides a jump
to the TIP input state that handles the data character that accompanies the
status indicator for any status condition that requires such a character
(for example, PES, data transfer overrun, and SDLC character status).

NOTE

States 4, 5, and 6 can be separate states if the line does
not use full-duplex transmission. With full~duplex
transmission lines, these states can be performing the same
functions for handling status while input and output are
simultaneously in progress.

State 7 is ready for output, reverse channel. It is not used.

The modem state index in the port table (NAPORT) can be set by the command
driver, an input state program, or a modem state program. The modem state
program address field is set by the command driver when a line is
initialized. The command driver sets the index to the modem state process
according to the command being issued. The input state programs control the
setting of the modem state program index for handling status while input is
in progress.

The modem state program is initially entered by accessing modem state
process 0. Modem state process 0 sets the modem state index according to
the status information it receives. Subsequent selection of a modem state
process is determined by the modem state program address and modem state
index of the port table. This combination of the index and address selects
the state pointer table entry that points to the associated modem state
process.

The modem state programs have three interfaces.

Firmware Interface to the Modem State Programs

CLA status is moved into the circular input buffer (CIB) along with the
input data. When the firmware's input data processor detects CLA status, it
passes control to modem state process 0 for that line.

Multiplex Level Status Handler (PTCLAS) Interface to the
Modem State Programs

After the modem state program builds a worklist entry containing the logical
CLA status, the multiplex level worklist processor routes the priority
worklist entry to the multiplex level status handler, PTCLAS. Upon
receiving control, PTCLAS analyzes the status condition indicator and acts
accordingly. The appropriate action may be to generate a CE error message,
to start a timer for modem response or CLA status overflow, or to make a
worklist entry to the associated TIP at OPS-level.

60474500 A 12-9

Input State Program Interface to the Modem State Programs

This interface was described in the Input State Program subsection.

MACROINSTRUCTIONS

There are nine classes of macroinstructions:
) Status of the two assignable counters
° Character manipulation (store, replace, etc.)
) Index manipulation
) Skips
° CLA status handling
° Flag control (set and reset)
) WOrklist handling (build, terminate, use fields)
® Text processor operations

® Miscellaneous (addresses, timers, backspace, resync, CRC, buffer
allocation, block length, move fields)

The state program macroinstructions are summarized in table 12-1. The
general format of a state program macroinstruction is

MACRO NAME parml,parm2,...,parmn
The instruction in this call format is closed up and all defined parameters
must be present. If a parameter is inapplicable to the current call or if
the default value is to be used, the parameter value can be omitted, but its
delimiting commas must be present,
Example:

MACROX parml,parm2,parm3,parmé
could appear as

MACROX parml,,parm3,

if parameters 2 and 4 are to have default values.

12-10 60474500 A

TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS

Name

Function

Parameters

STATUS OF ASSIGNABLE COUNTERS

INTCC
INTCCl
INTCC2
SETCC
SETCC1
SETCC2
CHRCC
CHRCC1
CHRCC2

MOICC

ICC
ICCl
ICC2

DCC

DCC1
DCC2

CNTNE

CNT1NE
CNT2NE
BLCNE

BLCINE
BLC2NE
STORC

STORC1

STORC2

60474500 A

Initialize character counters (CC)
Initialize CCl with packet size
Initialize CC2 with maximum block length
Set CC to value (CV)

Set CC1l to CvV

Set CC2 to CV

Mask and set CC

Set CCl

Set CC2

Set CC with modulus function.
Modulus = CV

Increment CC
Increment CCl
Increment CC2

Decrement CC

Decrement CCl
Decrement CC2

Compare CC with value (CV)

Use count 1

Use count 2

Compare CC to block length

Use count 1

Use count 2

Store CC in destination buffer
Use count 1

Use count 2

COUNT, ACTION
ACTION
ACTION

COUNT, CV

cv

cv

COUNT, IMASK
IMASK

IMASK

COUNT, CV

COUNT, ACTION
ACTION
ACTION

COUNT, LABEL,
ACTION

LABEL, ACTION
LABEL, ACTION

COUNT, CV,
LABEL

CV, LABEL

Cv, LABEL
COUNT, LABEL
LABEL

LABEL

COUNT, ACTION
ACTION

ACTION

12-11

TABLE 12-1.

STATE PROGRAM MACROINSTRUCTIONS (Contd)

Name Function Parameters

CHARACTER MANIPULATION

STORE Store current character in destination CRCA
buffer with or without CRC

RCHAR Make specified character the current CHAR, ACTION
(untranslated) character

RPLACE Make specified character the current CHAR, CRCA
character, store it (combines RCHAR
and STORE)

ADDC Insert (add) character to destination CHAR, ACTION
buffer

RADDC Add CHAR to destination buffer the CHAR
number of times specified in count 1

CHRPT Add current character to destination none

buffer the number of times specified in
count 1

INDEX MANIPULATION

MSTATE

MJUMP

STATE

RTRN

JUMP

SKIPS
SKIP

SKIPB
CRCEQ

STATLS

12-12

Set modem state index in port table to
value (STATE)

MSTATE, then execute indexed program

Set input index in MLCB to value (STATE)
or set TP index in TPCB to value

Execute currently indexed input or TP
state programs

Optionally update state index, then

execute indexed input or TP state
program

Skip forward to LABEL
Skip backward to LABEL
Skip to LABEL if CRC check is good

Skip to LABEL if current input/TP state
index < LABEL

STATE, ACTION

STATE

STATE, ACTION
none

STATE, RTN

LABEL
LABEL
SB, LABEL

STATE, LABEL

60474500 A

TABLE 12-1.

STATE PROGRAM MACROINSTRUCTIONS (Contd)

Name Function Parameters

MSTILS Skip to LABEL if current modem state STATE, LABEL
index < LABEL

CHARNE Skip to LABEL if current character CHAR, LABEL
CHAR

SPCHEQ Perform ACTION if current character # LABEL, ACTION
special character, skip to LABEL
otherwise (special character in control
block)

CHARLS Skip to LABEL if current character CHAR, LABEL
< CHAR

CLA STATUS HANDLING

TSTCLA Check unmasked CLA status bits, skip to CMASK, LABEL
LABEL unless bits match. Use AND
function

CMPCLA Same as TSTCLA but use exclusive OR CMASK, LABEL

function

FLAG CONTROL

SETRAN
RSTRAN
SETINP
RéTINP
SETMXF
RSTMXF
TSTMXF

SETFLG

SETPAR

RSTPAR

60474500 A

Set translate flag

Reset translate flag

Set message in process flag

Reset message in process flag

Set specified flags

Reset specified flags

Skip to LABEL if any of MFLAGS is set
Set flags in destination buffer

Set parity flag in control block
(strips parity from subsequent current
characters)

Reset‘barity flag

ACTION
ACTION
ACTION
ACTION
MFLAGS, ACTION
MFLAGS, ACTION
MFLAGS, LABEL

MFLAGS, BUFFER,
ACTION

ACTION

ACTION

12-13

TABLE 12-1.

STATE PROGRAM MACROINSTRUCTIONS (Contd)

Name Function Parameters
WORKLIST HANDLING
TIBWL Terminate input buffer, build a worklist WC, WL, EOT,
entry (WLE) for TIP ACTION, EP
TIBSWC Terminate input buffer, save workcode wC, EOT,
(WC) in MLCB ACTION
BLDWL Build WLE for OPS or multiplex level WC, WL,
ACTION, EP
BLDO1 Generate CLA status WLE for multiplex SCI, ACTION

level 2

TEXT PROCESSOR OPERATIONS

TPADDR

TPSUBR

TPCMPR

TPINCR
TPDECR

TPMARK

TPBKUP

TPSTLC

TPSTRC

TPRSTL

TPRSTR

TPEXIT

12-14

(SF1R+DF1R) = DFlR. FIR is a file 1
register, S is source, D is destination

(DF1R-SF1R) - DF1R

SF1R < DF1lR, execute P+l instruction
SF1R = DF1lR, execute P+2 instruction
SF1R > DF1lR, execute P+3 instruction
Increment specified F1R by VALUE
Decrement specified F1R by VALUE

Mark (save processing parameters) source
and destination buffers at level (LV)

Return to the specified buffers at level

Store left byte of FIR (SD) into destina-
tion buffer (with or without CRC check)

Store right byte of FlR

Restore untranslated character registers
from F1R, left byte

Restore untranslated character register
from F1R, right byte

Exit from TP state program to OPS level

sSb, DD

sD, DD

SD, DD

SD, VALUE
SD, VALUE

Lv

Lv, SRC, DST

SD, CRCA

SD, CRCA

SD

SD

none

60474500 A

TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS (Contd)
Name Function Parameters
MISCELLANEOUS
STRNTB Store translation table address in TA, ACTION
control block
RSTIME Reset line control timer value (TIME); TIME, ACTION
is a function of line type
BKSPAC Backspace destination buffer pointer one none
word
RESYNC Send resync command to CLA ACTION
ICRC Initialize CRC ICRC, ACTION
ALNBUF Allocate and initialize a buffer FCD, ACTION
NOPR Specify ACTION parameter ACTION
TPMOVE Move SF1R contents to DFI1R SD, DD
TPST Move SF1R to specified CB word SD, DD
TPSTR Move right byte of SF1R to specified CB SD, DD
word
TPSTL Move left byte of SFIR to specified CB SD, DD
word
TPLD Move specified CB word to DFIR SD, DD
TPLDR Move right byte of specified CB word to sD, DD
DF1R
TPLDL Move left byte of specified CB word to sD, DD
DF1R
SBLC Adjust block length count and then store ADJ, ACTION
new count in CB

60474500 A

12-15

The number of parameters varies. Macroinstructions are represented in
either a one word or a two word instruction (parameter list). The usual
word oriented format is as follows:

One-word

15 7 3 0
Flags/Fields F1 Code

Two-word

15 7 3 0
Flags/Fields Fl Code
FIELD
Flags - usually in bits 14 and 15

Fl -~ a set of frequently used parameters, including ACTION, a
parameter that specifies the actions to take prior to exiting
from the instruction sequence

Code the instruction ID (index): 00 CODE 1Fjg

Field

any additional control or address field

Each code can have several variations, defined by use of flags and fields.
NOTE
Flags, Fields, and Fl are all parameters. The order of the
parameters in the call is not usually the same as the packed
order in the instruction words.

For a detailed description of the macroinstructions, refer to the State
Programming Reference Manual (see preface).

12-16 60474500 A

~

GLOSSARY

ADDRESS - A location of data (as in the macro or micro NPU memory) or of a
device (as a peripheral device or terminal). The NPU main memory is
paged.

APL - A specific programming language characterized by powerful operations
defined as simple keyboard symbols.

APPLICATION PROGRAM - A program resident in a host computer. The program
provides an information storage, a retrieval, and/or processing service
to a remote user via the data communication network and the Network
Access Method.

A/Q CHANNEL -~ The internal data channel of the 255X NPU. Peripheral devices
located on the A/Q channel ordinarily use the A register for data and
status transfers and the Q register for command and addressing
information,

ASYNC PROTOCOL - The protocol used by asynchronous, teletypewriter-like
devices. For CCP, the protocol is actually the set of protocols for
eight types of real terminals. The NPU and terminal interface is handled
by the ASYNC TIP.

AUTORECOGNITION - A capability for selected terminals which allows the TIP
to recognize some device characteristics for the terminal, rather than
having the terminal or the host specify the information.

BANDWIDTH - For CCP, bandwidth indicates the transfer rate (in characters
per second) between the NPU and the terminal.

BASE SYSTEM SOFTWARE - The relatively invariant set of programs in CCP that
supply the monitor, timing, interrupt handling, and multiplexing
functions for the NPU. Base software also includes common areas and
debugging utilities,

BLOCK - A unit of information used by networks. A block consists of four or
more 8~bit characters and contains sufficient information to identify the
type of block, its origin, destination, and routing. Differing block
protocols apply to the host/NPU and the NPU/terminal interfaces.

BLOCK PROTOCOL - The protocol governing block transfers of information
between the host and the NPU.

BREAK - An element of a protocol indicating an interruption in the data
stream,

BROADCAST MESSAGE - A message generated by the system or by an operator

using the systems. The message is sent to one (broadcast one) or all of
the terminals in the system (broadcast all).

60474500 A A-1

BUFFER - A collection of data in contiguous words. CCP assigns one size of
buffers for data and two other sizes of buffers for internal processing.
A buffer usually has a header of one or more words. Data within a data
buffer is delimited by pointers to the first and last characters (data
buffers are character oriented). If the data cannot all fit into one
buffer, an additional buffer is assigned and is chained to the current
buffer. Buffer assignment continues until the entire message is
contained in the chain of buffers. Buffers are chained together only in
the forward direction.

BUFFERING - The process of collecting data together in buffers. Filled
buffers include the case where data is terminated before the end of the
buffer and the remaining space is filled with extraneous information.

BUFFER THRESHOLD - The minimum number of buffers available for assignment to
new tasks. As the buffer level falls toward the threshold, new tasks are
rejected (regulation).

BVT - Batch Virtual Terminal. See virtual terminal.

BYTE - A group of contiguous bits. For data handling within the NPU/host
interface, a byte is 8 bits, usually in the form of a 7-bit ASCII
character with the eighth bit reserved for parity.

CASSETTE - The magnetic tape device in an NPU used for bootstrap loading of
off-line diagnostics and (in remote NPUs) the bootstrap load and dump
operation.

CCP - Communications Control Program. This set of modules performs the
tasks delegated to the NPU in the network message processing system. |

CE ERROR MESSAGE -~ A diagnostic message sent upline to the host from the
NPU. The message contains information concerning hardware and/or
software malfunctions.,

CHARACTER - A coded byte of data. 1In the CCP program, a character is
ordinarily in 8-bit ASCII format (7 bits plus an eighth bit reserved for
parity).

CIB - Circular Input Buffer. The fixed buffer used by the multiplex
subsystem to collect all data passing upline from the multiplexer. The
buffer is controlled by a put pointer for the multiplexer and a get
pointer used to demultiplex data to individual line-oriented data buffers.

COMMAND DRIVER - The base system program (PMCDRV) that controls the
multiplex subsystem.

COMMON AREA - Areas of main memory dedicated to system and global data.
These are usually below address 1D503¢.

CONFIGURATION - See System Configuration.
CONNECTION NUMBER (CN) - A number specifying the path used to connect the

terminal through the NPU to the host. For each NPU/host pair, there are
255 available connection numbers.

A-2 60474500 A

CONSOLE - (1) A terminal devoted to network control processing. There are
three such terminals: the Network Operator's (NOP) terminal, the Local
Operator's (LOP) terminal, and the NPU console. (2) Any standard
interactive device on a terminal.

CONTENTION - (1) The state that exists in a bidirectional transmission line
when both ends of the line try to use the line for transmission at the
same time. Most protocols contain logic to resolve the contention
situation. (2) The situation that exists when an interruptable program
and the program that may interrupt it share data elements.

CONTROL BLOCKS - (1) The types of blocks used to transmit control (as
opposed to data) information; (2) Data structures assigned for special
configuration/status purposes in the NPU. The major control blocks are
line control blocks (LCB), logical link control blocks (LLCB), terminal
control blocks (TCB), queue control blocks (QCB), buffer maintenance
control blocks (BCB), multiplex line control blocks (MLCB), text
processor control blocks (TPCB), and diagnostics control blocks (DCB).

COUPLER - The hardware interface between the local NPU and the host.
Transmissions across the coupler use block protocol.

CRC - Cyclic redundancy check. A check code transmitted with blocks/frames
of data. It is used by several protocols including the HASP, Mode 4, BSC
and CDCCP protocols.

CROSS -~ The software support system for CCP. It supports PASCAL coding and
is run on the host computer. One output is a CCP program in 255X Machine
Code format ready for execution in the NPU.

COMMUNICATIONS SUPERVISOR (CS) - A portion of the network software resident
in the host. CS is written as an application program; the Communications
Supervisor coordinates the network-oriented activities of the host
computer and of the lines and terminals logically linked to it.

DATA ~ Information processed by the network or some components of the
network. Data usually has the form of messages, but commands and status
are frequently transmitted using the same information packets as data
(for instance, system messages).

DATA COMPRESSION - The technique of transmitting a sequence of identical
characters as a control character and a number representing the length of
the sequence. HASP and Mode 4 protocols support data compression, as do
virtual terminal formats.

DATA SET - A hardware interface that transforms analog data to digital data
and the converse. A data set is used to connect a remotely located
terminal to the NPU.

DDLTs - Special diagnostic documentation that uses a highly structured table
technique to aid the troubleshooter in isolating a problem.

DEBUGGING - The process of running a program to rid it of anomalies. CCP
supplies debugging aids for programs (TUP, PBTIPDG, and PBDEBUG) and for
run—-time PASCAL programs (QDEBUG and its associated programs).

DIAGNOSTICS - Software programs or combinations of programs and table that
aid the troubleshooter in isolating problems.

60474500 A A-3

DIRECT CALLS - The method of passing control directly from one program to
another. This is the usual control transfer mode for CCP. Some CCP
calls are indirect, through the monitor. Such OPS-level indirect calls
pass information to the called program through parameter areas called
worklists, See Worklist.

DIRECTORIES -~ Table in CCP that contain information used to route blocks to
the proper interface and line. There are directories for source and
destination node (SN and DN) and for connection number (CN). A routed
message is attached to the TCB for the line over which the message will
pass.

DN - Destination node. The network node to which a message is directed; for
instance, the DN of an upline message might be the host process (CS)
which processes line-related service messages.

DMA - Direct memory access., The high-speed I/0 channel to the NPU main
memory. This channel is used by the coupler for host/NPU buffered
transfers and by the multiplex hardware (MLIA) for line-NPU transfers.

DOWNLINE - The direction of output information flow, from host to terminal
or NPU.

DUMP - The process of transferring the contents of the NPU main memory,
registers and file 1 registers to the host. The dump can be processed by
the Network Dump Analyzer in the host to produce a listing of the dumped
hexadecimal information,

EXTERNAL BCD - A type of binary-coded decimal (BCD) code used by some
asynchronous and Mode 4 terminals.

FE - Format Effectors. Control symbols used by certain protocols (for
instance, the IVT protocol).

FILE REGISTERS - The two sets of microregisters (file 1 and file 2) in the
NPU. File 1 registers contain parameter information that is reloaded
whenever the NPU is initialized. Microprograms using these registers can
also change values in them. File 2 registers are invariant firmware
registers that come preprogrammed with the NPU.

FRAMES - (1) The basic communications unit used in the HDLC or CDCCP
protocol for trunk (NPU to NPU) communications. Frames are composed of
control bytes, a CRC sum, and (in some cases) data bytes in subblock
sequence. A subblock may be a block protocol block or a part of a
block. Frames are transmitted as a sequence of bytes through the
multiplex subsystem. (2) A sequence of data bytes used internally by the
multiplex subsystem hardware (see Line Frame).

FREEWHEELING - A terminal that can input information at the discretion of
the user. 1Input rate cannot be controlled directly.

FRONT END - A computer that performs network communications functions (such
as terminal multiplexing) for a host computer. The local NPU is a front
end for a CYBER host,

FULL DUPLEX (FDX) - A transmission mode allowing data transfer in both
directions at the same time.

A-4 60474500 A

FUNCTION CODE -~ Code used by the service module to designate the type of
function (command or status) being transmitted. Two codes are defined:
Primary function code (PFC) and secondary function code (SFC). See
appendix C.

GLOBAL VARIABLES - Variables that are defined for use throughout CCP.
Contrast global variables with local variables, which are identified only
within a single program.

HALT CODE - Code generated by the NPU when it executes a soft stop. A halt
indicates the cause of the stoppage; it is delivered at the NPU console
in the form of a halt message.

HALF DUPLEX (HDX) - A transmission mode allowing data transfer in one
direction at a time. Normally, a single set of data lines carry input,
output, and part of the control information. Contention for use is
possible in HDX mode and must be resolved by the protocol governing line
transfers.

HASP ~ Houston Automatic Spooling Process is a protocol used by the HASP
workstations. The standard code of a HASP workstation is EBCDIC. The
HASP TIP in the NPU processes the HASP protocol and normally performs
EBCDIC/ASCII conversions since the host uses ASCII in IVT or BVT format
for its processing.

HEADER - A word or set of words at the beginning of a block, record, file,
or buffer which contain control information for that unit of data.

HIP - Host Interface Package. The CCP program that handles block transfers
across the host/local NPU interface. The HIP normally operates with IVT
or BVT data and uses CCP block protocol.

HOST - The computer that controls the network and that contains the
applications programs that process network messages.

‘ID - Identifiers. This can refer to ports, nodes, lines, links, or
terminals. Any hardware element or connection can have an ID, normally a
sequentially assigned number.

INITIALIZATION - The process of loading an NPU and optionally dumping the
NPU contents. After downline loading from the host, the NPU
network-oriented tables are configured by the host so that all network
processors have the same IDs for all network terminals, lines, and trunks.

INPUT BUFFER - A data buffer reserved by CCP for receiving an upline message
for the host. These buffers are assigned and released dynamically.
Contrast with the CIB on the multiplex subsystem interface.

INTERFACE (NPU) - The set of hardware and software that permits transfers
between the NPU and an external device. There are four principal
interfaces: to the host (block protocol in IVT or BVT format handled by
a HIP), to the peripheral devices (CDT printer protocol handled by base
system software), to a neighbor NPU (CDCCP protocol handled by a LIP),
and to the terminals via the multiplex subsystem (various protocols;
standard protocols are handled by the Mode 4, ASYNC, and HASP TIPs).

INTERNAL PROCESSING - A group of CCP modules that provide routing capability.

60474500 A A-5

INTERRUPTS - A set of hardware lines and software programs that allow
external events to interrupt NPU processing. Interrupting programs are
allowing preferential processing on a priority basis. The lowest
priority level is processed by the OPS monitor.

IVT - Interactive virtual terminal. A block protocol format for interactive
terminals. See Virtual Terminals.

LCB - Line control block. A table assigned to each active line in the
system. It contains configuration information as well as current
processing information.

LINE - A connection between an NPU and a terminal.

LINE FRAME - A sequence of data bytes used within the multiplex subsystem as
the means to transfer data and status in both directions between the CLA
and the MLIA.

LINK - A connection between two NPUs or an NPU and a host. In this release
(CCP3) a link is the same as a trunk.

LIP - Link interface package. The CCP program that handles frame transfers
across a trunk; that is, across the connection between a local and a
remote NPU. A LIP uses CDCCP protocol and interfaces on the local NPU
side to the HIP. On the remote NPU side, the LIP interfaces with the
appropriate TIP. 1In both local and remote NPUs, the LIP interfaces with
the multiplex subsystem for transfers across the trunk.

LICB - Logical link control block. A table assigned to each logical link in
the system, which includes this NPU. The table contains configuration
information as well as current processing information. A logical link is
an association between a pair of nodes in the network.

ILOAD - The processing of moving programs downline from the host and storing
them in the NPU main memory and micromemory. Loading of a remote NPU is
accomplished by the host through the use of overlays in the local NPU.

LOCAL NPU - An NPU that is connected to the host via a coupler. A local NPU
always contains a HIP for processing block protocol transfers across the
host/local NPU interface.

LOGICAL CONNECTION - A logical message path established between two
application programs or between a network terminal and an application
program. Until terminated, the logical connection allows messages to
pass between the two entities. Not all logical connections are used (for
instance, a remote NPU may be actively connected to local NPUl rather
than local NPU2; however, if NPUl fails, the potential logical connection
to NPU2 becomes an active connection and traffic is routed to the host
via NPU2).

LOGICAL LINK - See Link,
LOGICAL REQUEST PACKET (LRP) - A parameter/data packet for a peripheral
device. The LRP attached to a real peripheral control block is

transformed to a physical request packet and is delivered to the assigned
NPU console device.

A-6 60474500 A

LOCAL OPERATOR (LOP) - The operator of that terminal in the network that is
connecting a specific application program in the host to the messages
being processed. The terminal by default is the host system console, but
the LOP can be transferred to any other interactive terminal in the
network other than an NPU console. The operator manages the
communications elements of the network within the local computer system
by communicating with the Communications Supervisor in the host
computer. Contrast with network operator. The local operator is an
administrative operator within the network and need not be the host
computer's operating system operator.

LOOP MULTIPLEXER (LM) - The hardware that interfaces the CLAs (which convert
data between bit serial digital and bit parallel digital (character
format) and the input and output loops of the MLIA).

LPC - Longitudinal parity character. A form of check character which is
formed by exclusive OR of all the preceding characters. It is used by
the Mode 4 and ASCII BSC protocols.

MAIN MEMORY - The macromemory of the NPU. It is partly dedicated to
programs and common areas; the remainder is buffer area used for data and
overlay programs. Word size is 16 data bits plus two additional bits for
parity and program protection. Memory is packaged in 16K and 32K word
increments.

MASK REGISTER - A register used in the interrupt subsystem to determine
whether an interrupt is of sufficiently high priority to be processed
now. Each bit in the mask register (M) corresponds to an interrupt
line. The register operates under program control.

MESSAGE - A logical unit of information, as processed by an application
program. When transmitted over a network, a message can consist of one
or more physical blocks.

MODE 4 - A communications line transmission protocol for synchronous
terminals. The protocol requires the polling of sources for input to the
data communications network. CCP supports Mode 4A, 4B and Mode 4C
equipment. Mode 4A equipment is polled through a single hardware address
(usually that of the console device), regardless of how many devices use
the address as the point of interface to the network. Mode 4C equipment
is polled through several hardware addresses, depending on the point each
device uses to interface with the network. The Mode 4 TIP processes the
interface between the NPU and the Mode 4 terminals.

MODEM - A hardware device for converting analog levels to digital signals
and the converse. Long lines interface to digital equipment via modems.
Modem is synonymous with data set. The term modem is derived from
modulator-demodulator.

MICROMEMORY - The micro portion of the NPU memory. This consists of 2048
words of 64-bit length. 1024 words are read-only memory (ROM); the
remaining 1024 words are random access memory (RAM) and are alterable.
The ROM memory contains the emulator microprogram that allows use of
assembly language.

MICROPROCESSOR -~ The portion of the NPU that processes the programs.

MLIA - Multiplex loop interface adapter. The hardware portion of the
multiplex subsystem that controls the multiplex loops (input and output).

60474500 A A-7

MODULE - See program.

MONITOR - The portion of the NPU base system software responsible for time
and space allocation within the computer. The principal monitor program
is PBMON (commonly known as OPSMON) which executes OPS-level programs by
scanning a table of programs that has pending tasks (worklist entries).

MULTILEAVING - Interleaving data from various devices in a single
transmission block. It is used by the HASP protocol.

MULTIPLEX SUBSYSTEM - The portion of the base NPU software that performs
multiplexing tasks for upline and downline data and also demultiplexes
upline data from the CIB and places the data in line-oriented input data
buffers.

NAM - See Network Access Method.

NEIGHBOR NPUs - Two NPUs connected to one another by means of a trunk. The
NPU connected to the host via a coupler is designated as the local NPU.
The other NPU is a remote NPU; it is not connected directly to the host
in any fashion.

NETWORK - An interconnected set of network elements consisting of a host,
one or more NPUs, and terminals,

NETWORK ACCESS METHOD (NAM) - A software package that provides a generalized
method of using a communications network for switching, buffering,
queueing, and transmission of data. NAM resides in the host.

NETWORK DEFINITION LANGUAGE (NDL) - The compiler-level language that defines
the network configuration file and local configuration file contents used
by the host computer.

NETWORK LOGICAIL ADDRESS - The address used by block protocol to establish
routing for the message. It consists of three parts; DN (the destination
node), SN (the source node) and CN (the connection number),

NETWORK OPERATOR (NOP) - An administrative operator at the network operator
console. This terminal by default is the host console, but the NOP
function can be assigned to any other terminal in the system except an
NPU console. The network operator manages the NPU hardware, linkages,
and other network elements of the entire data communications network by
communicating with the Network Supervisor at the host computer. Contrast
with local operator. The network operator can also be a local operator,
but need not be the operating system operator for the host computer at
the network control center.

NETWORK PROCESSING UNIT (NPU) - The collection of 255X hardware and
peripherals together with the Communications Control Program (CCP). The
CCP program buffer and transmit data between terminals and host computer.

NETWORK SUPERVISOR (NS) - A portion of the network software, which
coordinates all of the NPUs in the communications network. NS is written
as an application program and resides in the host.

NODE - A network element that creates, absorbs, switches, and/or buffers
message blocks. Typical system nodes are NS and CS in the host, the
coupler node of a local NPU, and a terminal node of a remote NPU.

A-8 60474500 A

OFF-LINE DIAGNOSTICS - Optional diagnostics for the NPU that require the NPU
be disconnected from the network.

ON-LINE DIAGNOSTICS - Optional diagnostics for the NPU that can be executed
while the NPU is connected to, and operating as a part of, the network.
Individual lines being tested must, however, be disconnected from the
network. These diagnostics are provided if the user purchases a network
maintenance contract.

OPS MONITOR - The NPU monitor (see Monitor).

OUTPUT BUFFER - Any buffer that is used to output information from the NPU
to another NPU, to a peripheral device, or to a terminal via the
multiplex subsystem.

OVERLAY AREA - A reserved area in main memory that is used to execute
overlay programs.

OVERLAY PROGRAMS - Programs that are not normally resident in main memory
but which are called into the overlay area of main memory to execute
special tasks. These programs are loaded by means of service messages
from the host and perform such tasks as NPU initialization, debugging,
loading/dumping a remote NPU, and on-line diagnostics.

PAGING (NPU) - A method of executing programs and accessing data in the NPU
main memory region above 65K. Paging is required to allow addressing
where the address is larger than 16 bits (NPU word size) in length.

PAGING (Screen) - The process of filling a CRT display with data while
holding additional data for subsequent displays. Changing the paged
display is a terminal operator controlled function.

PARITY - A bit-oriented data assurance method. Parity in the NPU memory is
word-oriented and is ordinarily not controlled by the operator. Parity
bit is added when words are stored in main memory; parity bit is
discarded after checking when the word is read from main memory. A
parity error causes the highest priority interrupt in the system. Parity
bits are also associated with ASCII characters (bit 7) and with some
synchronous protocols (example: LPC, the longitudinal parity character).

PASCAL - A high-level programming language used for CCP programs. Most CCP
programs are written in PASCAL language.

PFC - Primary function code. See Function Code.

PHYSICAL LINK - A connection between two major network nodes such as
neighboring nodes. Messages can be transmitted over active physical
links.

PHYSICAL REQUEST PACKET (PRP) - A packet of data to or from a peripheral
device. Data in PRP format is ready to be processed by the peripheral
device handler. A logical request packet (which see) must be converted
into a PRP before sending output to the device.

POINT OF INTERFACE (POI) PROGRAMS - A special set of base system programs

that interface directly with TIPs. POIs are defined for such standard
functions as ending an output operation or ending an input operation.

60474500 A A-9

POLLING - (1) The action of checking CLAs to find whether a port is ready to
transmit or receive another word of data. The multiplex subsystem
performs the polling operation for active lines. (2) The action of
soliciting input from certain types of terminals. A poll message is
output to the terminal. The response is input device status or an
indication that no data is ready to be input.

PORT (P) - The physical connection in the NPU through which data is
transferred to or from the NPU. Each port is numbered and supports a
single line. Subports are possible but not used in this version of CCP.

PPU - Peripheral processor unit. The part of the host dedicated to
performing I/0 transfers. The coupler connects the PPU to an NPU via a
data channel. :

PRIORITY LEVEL - CCP uses 16 interrupt processing levels plus the OPS
processing level. Priority levels are interrupt driven. The OPS monitor
processes at the lowest priority level; that is, at a level below any
interrupt driven level.

PROGRAM - A series of instructions that are executed by a computer to
perform a task; usually synonymous to a module. A program can be
composed of several subprograms.

PROTECT SYSTEM - A method of prohibiting one set of programs (unprotected)
from accessing another set of programs (protected) and their associated
data. The system uses a protect bit in each main memory word.

PROTOCOL - The complete set of rules used to transmit data between two
nodes. This includes format of the data and commands, and the sequence
of commands needed to prepare the devices to send and receive data. CCP
uses the following protocols: The block protocol, the Logical Link
protocol, the coupler protocol, and various terminal protocols.

QUEUES - Sequences of blocks, buffers, or messages. Most NPU queues are
maintained by leaving the queued elements in place and using a
combination of tables of pointers to the next queued element and pointer
words within the queued elements. Most queues operate on a first-in
first-out basis. A series of worklist entries for a specific terminal is
an example of an NPU queue.

RECORD - For CCP: A data unit defined for the host software or for HASP
workstations and HASP transmission. A HASP record contains space for at
least one character of data and normally has a header associated with
it. Records for HASP may be composed of subrecords.

REGULATION - The process of making an NPU or a host progressively less
available to accept various classes of input messages. The host has one
regulation scheme, the multiplex interface of a local NPU has another
scheme, and the multiplex interface to a neighbor NPU has a third
regulation scheme. Some types of terminals (for instance, HASP
workstations) can also regulate messages. Message classifications are
usually based on batch, interactive, and control message criteria.

REMOTE NPU - An NPU connected only to other (local) NPUs. Since a remote
NPU has no coupler, it cannot be directly connected to the host.

A-10 60474500 A

—

e

RESPONSE MESSAGES - A subclass of service (network control) messages
directed to the host that are normally generated to respond to a service
message from the host. Response messages normally contain the requested
information or indicate the requested task has been started or
performed. Error responses are sent when the NPU cannot deliver the
information or start the task. A class of unsolicited response messages
are generated by the NPU to report hardware failures.

ROUTING - The process of sending data or commands through the NPU to the
internal NPU process or to an external device (for instance, a
terminal). The network logical address (DN, SN, CN) is the primary
criterion for routing. The NPU directories are used to accomplish the
routing function.

SERVICE CHANNEL - The network logical link used for service message
transmission. For this channel, CN=0. The channel is always configured,
even at load time.

SERVICE MESSAGE (SM) - The network method of transmitting most command and
status information to or from the NPU. Service messages use CMD blocks
in the block protocol.

SERVICE MODULE (SVM) - The set of NPU programs responsible for processing
most service messages. SVM is a part of the network communications
software.

SPC - Secondary function code. See Function Codes.

SOURCE NODE (SN) ~ The network node originating a message or block of
information.

STATE PROGRAMS -~ Programs in the multiplex subsystem whose execution depends
on the current state of the message being transmitted. For example, one
state program is executed at the start of the message header processing,
and another at start of text processing, another at end-of-text
processing.

STATE PROGRAM TABLES - Tables used by the multiplex subsystem to locate the
next state program to execute.

STATISTICS SERVICE MESSAGE - A subclass of service messages that contain
detailed information about the characteristics and history of an element
such as a line or a terminal.

STATUS - Information relating to the current state of an equipment, device
or line. Service messages are the principal carriers of status
information. Statistics are a special subclass of status.

STRINGS ~ A unit of information.transmission used by the HASP protocol. One
or more strings compose a record. A string can be composed of different
characters or it can be a string of contiguous identical characters. 1In
the latter case, the string is normally compressed to a single character
(the only one type in the string) and a value indicating the number of
times the character occurs.

SUBPROGRAM - A series of instructions that are executed by a computer to
perform a task or part of a task. A subprogram can be called by several
programs or can be unique to a single program. Subprograms are normally
reached by a direct call from a program.

60474500 A A-11

SUPERVISORY MESSAGE - A message block in the host not directly involved with
the transmission of data but which provides information for establishing
and maintaining an environment for the communication of data between the
application program and NAM, and through the network to a destination or
from a source. Supervisory messages can be transmitted to an NPU in the
form of a service message.

SWITCHING - The process of routing a message or block to the specified
internal program or external destination.

SYNCHRONOUS PROTOCOLS - A class of protocols which require that characters
be transmitted in contiguous blocks. Synchronization for the entire
block transmission is established at the beginning of the block.
Synchronous Protocols include Mode 4, BSC, HASP, HDLC, and CDCCP.

SYSTEM CONFIGURATION - The process of setting tables and variables
throughout the network to assign NPUs, lines, links, terminals, and
devices so that all elements of the network recognize a uniform
addressing scheme. After configuration, all network elements accept all
data commands directed to or through themselves and reject all other data
and commands.

TERMINAL - An element connected to a network by means of a communications
line. Terminals supply input messages to, and/or accept output messages
from, an application program. A terminal can be a separately addressable
device comprising a physical terminal or station, or the collection of
all devices with a common address.

TERMINAL CONTROL BLOCK (TCB) - A control block containing configuration and
status information for an active terminal. It is dynamically assigned.

TERMINAL INTERFACE PACKAGES (TIPs) - NPU programs that provide the interface
between real terminal format and virtual terminal format. The standard
TIPs are the ASYNC TIP, the Mode 4 TIP, and the HASP TIP. TIPs are
responsible for some data conversion and for error case processing.

TIMEOUT - The process of setting a time for completion of an operation and
entering an error processing condition if the operation has not finished
in the allotted time.

TIMING SERVICES - The subset of base system programs that provide timeout
processing and clock times (examples: messages or status). Timing
services provide the drivers for the real-time clock.

TRUNK - A line connecting two NPUs or an NPU and a host. The host/NPU trunk
uses block protocol; the NPU/NPU trunk uses trunk protocol.

TRUNK PROTOCOL - The protocol used for communicating between neighboring
NPUs. It is a modified CDCCP protocol that uses the frame as the basic
communications element.

TUP - Test Utility Package. A debugging utility that supports breakpoint
debugging as well as other utility type operations such as loading and
dumping.

UNSOLICITED SERVICE MESSAGES - Service messages sent to the host that do not
respond to a previous service message from the host. Unsolicited SMs
report hardware or software failures to the host.

A-12 60474500 A

.

UPLINE - The direction of message travel from a terminal through an NPU
the host.

VIRTUAL TERMINAL -~ A software concept for CCP that converts all types of
upline messages to one of two formats: Batch virtual terminal (BVT)
interactive virtual terminal (IVT). By this method, application prog
in the host need only to be able to process data in IVT or BVT format
rather than in the multiplicity of formats that real terminals use.
Downline messages from the host to real terminals are converted from
or BVT to real terminal format. The IVT/BVT processors are a part of
NPU's network communications software.

WORD - The basic storage and processing element of a computer. The NPU
16-bit words (main memory) and 64-bit words (internal to the

to

or
rams

IvVT
the

uses

microprocessor only). All interfaces are l6-bit word (DMA and A/Q) or in

character format (multiplex loop interface). Characters are stored i
main memory, two per word. Hosts (CYBER series) use 60-bit words
internally, but a 12-bit byte at the interface to the NPU. Character
the host side of the NPU/host interface are stored in bits 19 through
and 7 through 0 of a dual 12-bit byte.

Interfacing intelligent terminals, such as a HASP workstation, can us
any word size but must communicate to the NPU in character format.
Therefore, workstation word size is transparent to the NPU.

WORKLISTS - Packets of information containing the parameters for a task
be performed. Programs use worklists to request tasks of OPS level
programs. Worklist entries are queued to the called program. Entrie
are one to six words long and a given program always has entries of t
same size. Worklists are also used on the multiplex (priority) level

WORKLIST PROCESSOR - (1) Any system program that receives and processes.

(2) The program within the multiplex subsystem that handles worklist
entries generated by the multiplex firmware (PMWOLP).

60474500 A

n

s at
12

e

to

s
he

A-13

—

CCP MNEMONICS B

ACKO
ACN
ACTL
A/Q
APL
ARM
ASCII
ASYNC

BACK
BCB

BCD
BFC
BFR
BLK
BN
BP
BRK
BSC
BSN
BT
BVT
B1, B2

CA
CB
CDCCP
cpT
ccp
CE
CFS
CIB
CLA

Acknowledge block (various protocols)

Application connection number

Assurance control block

The A/Q (internal) I/O channel of the NPU

A Programming Language

Asynchronous response mode

American Standard Code for Information Interchange
Asynchronous

Acknowledgment block (element of block protocol)

1. Buffer control block
2. Block control byte (HASP protocol)

Binary coded decimal

Block flow control

Buffer

Message block (element of block protocol)
Block number (overlay)

Breakpoint

Break (element of block protocol)

Binary synchronous communications (protocol)
Block serial number (for blocks/SVM)
Block type

Batch virtual terminal format

User allowed breaks for IVT protocols

Cluster address

Cluster block

CDC communications protocol (trunk protocol)
Conversational display terminal
Communications control program in NPU
Customer engineer

Configuration state (for SVM)

Circular input buffer

Communications line adapter

60474500 A B-1

CLR
CMD
CMDR
CN
CND
CR
CRC
CRT
Cs
CTL

DBC
DCB
DCD
DDLT
DEL
DM
DMA
DN
DND
DSR
DT

EBCDIC
EC
E-CODE
ENQ
EOF
EOI
EOM
EOR
ETB
ETX

FCD
FCS
FD
FDX
FE

Clear logical line (trunk protocol)

Command block (element of block protocol)
Command reject (trunk protocol)

Connection number (for blocks/SVM)
Connection number directory

Carriage return

Cyclic redundancy check

Cathode ray tube (type of terminal display)
Communications Supervisor program in host
Control element (ASYNC protocol)

Data block clarifier (for blocks/SVM)
Diagnostics control block

Data carrier detect (RS-232 signal name)
Diagnostic decision logic table
Delete character

Disconnect mode (trunk protocol)
Direct memory access (in NPU)
Destination node (for blocks/SVM)
Destination node directory

Data set ready (RS-232 signal name)
Device type

Extended Binary Coded Decimal Interchange Code
Error code

Device codes (Mode 4 protocol)

Enquiry block (HASP/BSC protocols)

End of file

End of information

End of medium

End of record

End of block (HASP/BSC protocol)

End of text

First character displacement (in buffer)
Function control sequence (HASP protocol)
Forward data (block protocol)

Full duplex

Format effector

60474500 A

Pt

FE
FF
FN
FRQ
FS
FV

HASP
HDLC
HDX
HIP
HO

IAF

ID

IDc
I-FRAME
INIT
1/0

ISsO

IvT

LBN
LCB
LCD
ICF
LD

LF
LIDLE
LINIT
LIP
LL
LLCB
LLREG
LM
LOP
LP
LRN
LRP
LT

Front end

Form feed

Field number (for SVM)

Frame retention queue (trunk protocol)
Forward supervision (block protocol)
Field values (service module)

Houston automatic spooling process (protocol)
High-level data link control

Half duplex

Host interface package

Host ordinal

Interactive Facility Program in host

Identifier (number or code)

Internal data channel (in NPU)

Information frame (trunk protocol)
Initialization block (element of block protocol)
Input/output

International Standards Organization
Interactive virtual terminal format

Last block number (overlay)

Line control block in NPU

Last character displacement (in buffer)

Local configuration file in host (CS controlled)
Load or dump

Line feed

Idle element (trunk protocol)

Line initialization element (trunk protocol)
Link interface package in NPU

Logical link

Logical link control block in NPU

Logical link regulation

Loop multiplexer

Local operator

A TUP command

Link remote node (service module)

Logical request packet (I/0) for the NPU console
Line type

60474500 A B-3

M Mask register

MLCB Multiplex line control block

MLIA Multiplex loop interface adapter

MPLINK The PASCAL Linking Editor

MSG Message block (element of the block protocol)

MTI Message type indicators (Mode 4 protocol)

NAK Negative acknowledgment block (HASP/BSC protocol)

NAM Network Access Method program in host

NCF Network configuration file in host (NS controlled)

NDA Network dump analyzer (in host)

NDLP Network Definition Language Processor in host

NHP Network host products

NIP Network Interface program

NOP Network operator

NPINTAB CCP Data structure that contains initialization status

NPU Network Processor Unit

NS Network Supervisor program in host

NVF Network Validation Facility in host

OBT Output buffer transmitted (information from multiplex subsystem to
user)

OoDD Output data demand (multiplex subsystem microinterrupt)

OPS Operations (OPS level = Monitor level programs)

OPSMON Monitor in CCP (PBMON)

P Priority

P Port

PAD Padding element (synchronous protocols)
PFC Primary function code (for SVM)

PL Page length (IVT)

POI Point of interface (class of CCP programs)
PPU Peripheral processor unit in host

PRP Physical request packet (i/O) for the NPU console
PRST Protocol reset (trunk protocol)

PW Page width

QCB Queue control block

QDEBUG PASCAL Debugging Package

B-4 60474500 A

RAM Random access memory

RBF Remote Batch Facility program in host

RC Reason Code (in response service messages)

RC Remote Concentrator

RCB Record control byte (HASP protocol)

RCV Receive state

REGL Regulation level

REJ Reject (trunk protocol)

RIM Request initialization mode (trunk protocol)
RL Regulation level

RM Response message (service message)

RNR Receive not ready (trunk protocol)

RR Receive ready (trunk protocol)

RS Reverse supervision (block protocol)

RST Reset block (element of block protocol)

RT Record type

RTS Ready to send (trunk protocol)

RTS Request to send (RS-232 signal name)

SARM Set asynchronous mode (trunk protocol)

SCB String control byte (HASP protocol)

S~-Frame Supervisory frame (trunk protocol)

SFC Secondary function code (service message)

SIM Set initialization mode (trunk protocol)

SM Service message

SN Source node (for blocks/SVM)

SND Source node directory

SPRM System programmer's reference manual

SRCB Subrecord control byte (HASP protocol)

STP Stop data block (element of block protocol)
STRT Start data block (element of block protocol)
STX Start of text

SVM Service module for processing service messages
SYNC Synchronizing character (synchronous protocols)
TA Terminal address (same as the station address used by Mode 4)
TAF Transaction facility in host

TC Terminal class

TCC Trunk control character (byte) - UI frame - LIP
TCB Terminal control block in NPU

60474500 A B-5

TDP
TIP
TIPTQ

TOT
TPCB
TT
TTF
TUP
TVF

UA
U-Frame
U1
us
uT

VAR

VAR

WACK
WL
WLCB
WLE
WLP

X-OFF
X-ON
XPT

Time Dependent Program

Terminal interface package

TIP trunk queues (trunk protocol)
Timeout

Total number of trunks (SM)

Text processing control block

Terminal type

Trunk transmission frame

Test utility package

Terminal Verification Facility in host

Unnumbered acknowledgment (trunk protocol)
See UA and UI

Unnumbered information frame (trunk protocol)
Unit separator

User terminal

PASCAL keyword that marks the beginning of the variable declaration
section of a PASCAL program, procedure, or function

PASCAL keyword that specifies that the parameter in a procedure or
function is to be passed by name rather than by value

Wait acknowledgment block (synchronous protocols)
Worklist

Worklist control block

Worklist entry

Worklist processor

Stop punch character (ASYNC protocol)

Start punch character (ASYNC protocol)
Transparent bit, paper tape (ASYNC TIP)

60474500 A

SERVICE AND COMMAND MESSAGE SUMMARY

C

This appendix is divided into five parts:

The general format for all service or command messages (SMs)
The network SM primary and subfunction summary table

A table of SM mnemonics
A set of tables defining SM parameter values

SERVICE AND COMMAND MESSAGE GENERAL FORMAT

All service or command messages described within this appendix are prefixed
by the header information shown below. (This information is omitted in the
individual descriptions to conserve space.) Each of the major subdivisions
in the header format diagram is one 8-bit byte in length.

A summary of each network SM and its normal or error response sequence

Physical Link Header Block Header
A A
e N \
7 64 3 0
Length Source Connection
of SM FLG Destination | o3 Number (CN) p | RES | BT=
in Bytes | (unused) Node (DN) (SN) = 00 (SM)
(unused) # 00 (others)
- J
h g
Service Message Header
P - priority flag
RES - unused
BT - block type = 04 for service messages. This is a CMD block.

The general format of the service and command message body is shown below.

Each of the major subdivisions in the body is also one 8-bit byte in length.

Service message parameters
(defined individually)

PFC EB RB SFC

PFC - Primary Function Code

EB - 1 = Error response service message
RB - 1 = Normal response service message
Secondary function code

n

g

(@]
1

A0 - BF)1g - Reserved for expansion

CO0 - EO014 - Reserved for network use
El - EFjg - Reserved for installations
00 - 3F1g - Reserved for network use
40 - 9F1¢ - Reserved for intrahost use

60474500 A c-1

SUMMARY OF SERVICE AND COMMAND MESSAGE TYPES

Table C-1 shows the basic network SM types and the primary (PFC) and
secondary (SFC) function codes associated with each type. For service
messages PFC = 01 through 0C, CN = 0; for command messages PFC = Cl, CN # 0.

COMMANDS SENT OVER LOGICAL CONNECTIONS

The following are command blocks sent through logical connections, where
connection number is not zero.

START INPUT
PFC = Cl,, | SFC = 05
STOP INPUT
PFC = Cl,. | SFC = 06
INPUT STOPPED
PFC = Cl , | SFC = 07 RC

RC - Reason code

00 = Stop input response

01 = Input device not ready

02 = Card slip error

03 = EOI input

04 = Batch input interrupted by interactive T/0

DEFINE CHARACTERISTICS (TERMINAL PARAMETERS) FOR IVT

PFC = Cl1 SFC = 04 String

16

String - defined in section 6, table 6-4. It is given in the TERMINAL
PARAMETERS field of the IVT protocol.

c-2 ‘ 60474500 A

TABLE C-1. SERVICE AND COMMAND MESSAGE TYPES
SVM
Service Message Name PFC SFC Processing
CN =0 (hex) Mnemonic | (hex)| Mnemonic Routine
Load Request 00 DI9RQ PNDISCARD
Force Load 01l D8LOAD 01 DI9FRC PNFRCELD
NPU Initialized 02 DI9INIT PNDISCARD
Configure Logical Link 00 DI9LLCNF }
Delete Logical Link 02 | DBLINK 01 | D9LLDLT PNLLCNF
Configure Trunk/Line 00 DI9LNCNF PNLNCNF
Delete Line 01 DYOLNDLT PNDELETE
Configure Terminal (TCB) 03 D8CONFIG 02 DI9TMLCNF
Reconfigure Terminal PNTMLCNF
(TCB) 03 D9TMLRCNF
Delete Terminal (TCB) 04 D9TMLDLT ANTMLDLT
Overlay Program Block 00 DY9OVLBLK PNOVLOAD
Terminate Overlay 04 D8OVLOAD 01 DI9OVLTMT PNOVLTMT
Overlay Data 05 D8OVLDATA 00 DO9DATA PNOVLDATA
Logical Link Status
Request 00 DILLSTAT PNLLSTAT
Trunk Status Request 01 D9TNKSTAT PNTNKSTAT
Line Status Request 06 D8STATUS 02 D9LNSTAT PNLNSTAT
Terminal Status Request 03 DO9TMLSTAT PNTMLSTAT
Line Count Request 05 DY9LCR PNLCR
NPU Statistics 00 DINPUCNTS
Trunk/Line Statistics 07 D8COUNTS 01 DI9CNTLN PNDISCARD
Terminal Statistics 02 DI9CNTML
Enable Trunk/Line 00 D9ENABLE PNENABLE
Disable Trunk/Line 08 D8LINE 01 DO9DISABLE
Disconnect Trunk/Line 02 D9DISCONNECT }PNDISABLE
CE Error 00 DI9CE
Message to Network (0] DSEVENT }PNDISCARD
Operator 01 DY9ALARM
Host Broadcast One 00 DI9BRD1 PN1BRDCST
Host Broadcast All oc DSUSER 01 D9BRDCST PNBRDCST
Operator Message 02 DIOPMSG }PNDISCARD
Terminal Characteristics 03 DI9TDEF
Service Message Name ‘
CN # 0 PFC SFC Remarks
IVT Command Cl 04 See section 6, IVT/BVT
Start Input 05 Downline
Stop Input 06 Downline
Input Stopped 07 Upline
60474500 A c-3

INDIVIDUAL SERVICE MESSAGES

These messages, where the connection number is zero, are shown below.

LOAD REQUEST

PFC = 01 SFC = 00 LRN P 00
LRN - Node ID of element to load
P - Line over which load is performed
Response
None
FORCE LOAD
PFC = 01 SFC = 01
Response
None
NPU INITIALIZED
_ _ ccp cCcP CcCP
PFC = 01 | SFC = 02| yersion Cycle Level
Describes the current software running in the NPU
Response
None
CONFIGURE LOGICAL LINK
PFC = 02 SFC = 00 ID1 ID2 HO

ID1/ID2 - Nodes

HO - Host ordinal

ID1
ID2

forming logical link

Destination node

Source node

60474500 A

Normal Response

PFC =} SFC = 1Dl ID2 HO RC
02 40
16
RC - 00 = Configured
Error Response
PFC = | SFC = | {p; D2 HO RC
02 80
16
RC - 01 ID1 invalid

02
03

Too many LLCBS
LL already exists

DELETE LOGICAL LINK

PFC = SFC =

02 01 ID1 ID2 HO

ID1/ID2 - Nodes forming logical 1link; ID1 to be used as the local ID at

the NPU
Normal Response
PFC =1 SFC = | 1p; D2 HO RC
02 41
16
RC - 00 = deleted
Error Response
PFC = | SFC = | 1p1 | 1D2 HO RC
02 8116

SFC - Logical link does not exist

RC - 01 = ID1l invalid
02 = LLCB not configured
03 = Bad HO

60474500 A C-5

CONFIGURE LINE

ljFC ?FC P 00 HO LT TT FN1 FV1l cee FN FV
=03 =00 n n
P - Port

LT - Line type (see table C-3)

TT - Terminal type (see table E-2)

FN - Field number

FV - Associated field value (see table E-5)

Normal Response

The normal response is a line-enabled normal response SM.

Error Response

PRC [SFC=| 5 | g9 HO tr | rr | rRe | PN | BV
=03 | 80
16
LT - See table C-3
T - See table C-2
RC - 01 Invalid FN/FV

02 = Invalid line number
03 = Line control block already configured
04 = Invalid line type
05 = Invalid terminal type
06 = Diagnostics in progress
FN/FV - Pair returned if RC = 1
DELETE LINE
PFC SFC
=03 =01 P 00 HO
Normal Response
PFC = | SFC = P 00 HO | RC=00
03 4116

C-6 60474500 A

Error Response

PFC = | SFC = P 00 HO RC
03 81
16
RC - 02 = Invalid line number
03 = Line not configured
CONFIGURE/RECONFIGURE TERMINAL
PFC
=03 SFC P 00 HO CA TA DT | THO | FN1 | FV1 . FNn FVn
SFC - 02 = Configure
03 = Reconfigure
DT - See table C-2
FN/FV - See table C-7
Normal Response
PFC RC=
—03 | SFC | P 00 | HO | CA | TA | DT | THO | oo
SFC - 4237 = Terminal configured
4316 = Terminal reconfigured
DT - See table C-2
60474500 A c-7

Error Response

S |skc| » | oo | mo| ca| ma| Dr|mHo | RC | BN | FV
SFC - 82316 = Configure
8316 = Reconfigure
DT - See table C-2
RC - 01 = Invalid FN or FV
02 = Invalid line number or terminal address
03 = Terminal already configured (configure), or not configured
(reconfigure)
04 = No buffer for TCB (temporary)
05 = Invalid DT
06 = Line inoperative or not enabled
07 = HO toggle bit unchanged
08 = Logical link not established
09 = CN in use
10 = No console configured for Mode 4A cluster; cannot configure
batch device
11 = Line not configured
FN/FV - Pair returned if RC = 01 or 09
DELETE TERMINAL
s l5a | | oo | mo|calmal|or|mo
Normal Response
PFC | SFC= | 00 | oo | ca | ™ | pr | o | BC
=03 4416 =00

60474500 A

Error Response

PFC
=03

SFC=
8416

00

HO CA

TA DT

THO RC

RC - 02
03
04

05

Invalid line number

Terminal on line not configured

Cannot delete console of Mode 4A cluster while batch devices
still configured

HO toggle error

OVERLAY PROGRAM BLOCK

1
I:FC §FC BN LBN Overlay ID Checksum .« . .
=04 =00 |
I
Words 1-n of overlay
Checksum - Complement of arithmetic sum of data words

Normal Response

PFC SFC= | RC=

=04 40 BN LBN | Overlay ID 00
16 |

Error Response

PFC | SFC= | py LBN | Overlay ID | RC

=04 80
16 I

RC - 01 = Overlay space in use
02 = Checksum error

TERMINATE OVERLAY

PFC
=04

SFC

60474500 A

Response

PFC SFC=
=04 4116

OVERLAY DATA (GENERAL FORM)

I B
PFC SFC t
=05 =00 Overllay 1D DATA !
Normal Response
C SFC= ! .
PR - Overlay ID DATA |
=05 40 i
16 I
]
Error Response
PFC SPC= ! 4
~ | Overlay ID RC Overlay ID :

=05 8016

J

Invalid OVID

RC - 01 =
02 = No overlay loaded
Overlay ID - Returned if RC

OVERLAY DATA (LOADING/DUMPING)

C-10

60474500 A

LOAD COMMAND

PFC= §EC= OverlTy ID 1 P 00 0 BC |7
1

I | | Data Words K

Beginning Address Checksum ' (1 - 105) ‘

J

=
I
- [ng
o \ [- T o o
Q wm
Q

Register Register
Number Content

23 22 18 17 11 10 0

Page Displacement

22 - 18 - Base register address (not used)

17 - 0 - Main memory address
-
Response
PFC= | SFC= 1 I
Overlay ID 01 P 00 RC 0 Beginning Address

05 4016 | |

01 - Load

RC - 00 Overlay loaded successfully

01 = Protocol error on trunk
= Mode error

START COMMAND

PFC= | SFC= l
05 00 Overlry ID 0l P 00
02 - Start

60474500 A Cc-11

Response

PFC=
05

SFC=

]
Overlay ID 02
4016

02 - Start

RC - 00
01
02

Overlay started successfully

Protocol error on trunk

Mode error

DUMP COMMAND

PFC=
05

SFC=

|
00 Overlﬁy ID 00

00 - Dump

T T
Begi?ning Adgress

T 1
End%ng Addﬂess

SFC=

1
40 Overlay ID 00

16 I

Response
PFC=
05
00 - Dump
RC - 00 =
0l =
02 =

Overlay dumped successfully

Protocol error on trunk

Mode error

!
L——-—- Begi?ning Address

Data W:ords (1 % 105)

60474500 A

CLEAR COMMAND

PFC= | SFC= I
05 00 Overliay ID 03 P 00
03 -~ Clear
Response
= = I
PFC SFC Overlay ID 03 P 00
05 40
16 |
03 - Clear

LOGICAL LINK STATUS REQUEST

PFC= SFC=

06 00 D1 ID2 HO

ID1/ID2 - Node IDs forming logical link; ID1 is node ID of the NPU. If
ID1 and ID2 are missing, NPU returns status for all logical
links supported by the NPU.

Normal Response

PFC= | SFC= | 1p1 | 12 | HO RC RL | INIT | TOT
06 40
16 .
RC - 00 = Logical link operational
01 = Logical link inoperative
RL - Regulation level (see CCP Reference Manual)
INIT - 00 = Second and subsequent responses
01 = Unsolicited response (used when NPU changes the regulation

level)

TOT =~ Number of LL in an "all" request

60474500 A Cc-13

Error Response

PFC= | SFC= | 1p1 | 12 | HO RC
06 80
16
Logical link not configured

o
(@]
1
o
Y
o

Logical link status request in progress or request not from NS
NOTE
The normal response may be unsolicited (SFC = 403¢) or

unsolicited (SFC = 00).

TRUNK STATUS REQUEST

PFC= | SFC= HO=
06 01 P 00 | oo

P/00/HO - If missing, return status on all trunks

Normal Response

PFC= | SFC= P oo | HO= RC LT CFs | IRN | ToT
06 41 00
16
RC - 00 = Trunk operational
04 = Trunk inoperative
05 = No ring indicator

LT - See table C-3

CFS - See table C-4

Error Response

PFC= | SFC= HO=

RC
06 8116 ‘00

RC - 01 = Invalid line number or no trunks configured belonging to
requestor

02 = Trunk status request in progress

03 = Cannot disable last path to NS

C-14 60474500 A

Unsolicited Response

NOTE

Normal responses above may be sent as an unsolicited status
message with SFC = 01.

LINE STATUS REQUEST

PFC= SFC=

06 02 p 00 HO

P/00/HO - If missing, return status on all lines except trunks

Normal Response

PFC= | SFC= P 00 HO RC LT CFS NT
06 42
16
RC - 00 Line operational

04
05

Line inoperative
No ring indicator or autorecognition in progress

LT - See table C-3

CFS - See table C-4

Error Response

PFC= | SFC= P 00 HO RC
06 82
16
RC - 01 = Invalid line number or bad HO
02 = Line status request in progress (all lines only)
03 = Illegal configquration state (single lines only)
07 = No lines configured (all lines only)

60474500 A c-15

Unsolicited Response

Only for
autorecognition
~ o ~
T
1
I_’gg ?gg p | o0 |Ho | rRec | Lr|cPrs | N | TP | Ls 1 cp | ca ——~‘
= = 1

|

RC - Same as other line status responses
LT -~ See table C-3
CFS - See table C-4
TT -~ See table C-
LS - See table C-
CD See table C-

DT TA DT

1 I 1 1

N YN

For autorecognition responses, the TA DT pairs are repeated for each
terminal that can be detected by the TIP. The ASYNC TIP will only report
one TA DT pair. The DT may be either zero to indicate no information or
four to indicate the IBM 2741. The Mode 4 TIP may report up to 15 TA DT
pairs with the full range of values as shown in Table A-2 for DT. For a
Mode 4A cluster, the TIP will report 3 terminals: DT=00, TC=00, DT=01,
TC=00; DT=02, TC=00. Mode 4C consoles will be reported as TC=00 as it is
not possible to distinguish 711 from 714.

TERMINAL STATUS REQUEST

PFC= SFC=

Normal Response

PFC | SFC=

P Sp HO Ca TA DT | THO RC DN SN CN | TOT
06 4316

DT - See table C-2

RC - 00
04

Terminal operational
Terminal inoperative

C-16 60474500 A

Error Response

PFC= SFC=
06 431 P 00 HO RC
RC - 01 Invalid line number of bad HO

(=]
w
LU T I I T 1}

No terminals configured

Line inoperative or not enabled
Terminal status request in progress
LCB not configured

Unsolicited Response

Normal response (see above)

status message with SFC =

LINE COUNT REQUEST

PFC= SFC=
06 05
Normal Response
PFC= SFC=
NL
06 4516

NPU STATISTICS (UPLINE ONLY)

Statistics Words |

NOTE

—— - - o= = - o o]

Service messages generated

Service messages processed

Bad service messages received

Blocks discarded due to bad address
Packets/blocks discarded due to bad format

PFC= SFC=
07 00
Word 1 -
Word 2 -
Word 3 -
Word 4 -~
Word 5 -
Word 6 - Times at
Word 7 - Times at
Word 8 - Times at
Word 9 - Times at
Word 10 - Times at
Word 11 -

60474500 A

regulation
regulation
regulation
regulation
regulation

level 4 (no regulation)
level 3
level 2
level 1
level O

Network assurance protocol timeout

may be sent as an unsolicited
03.

Cc-17

Response

None

TRUNK/LINE STATISTICS (UPLINE ONLY)

=,
g§C= §§C= p | oo | HO | rN | 00 | Statistics Words 1 - 4:
------——-——J

LRN - Trunks only; LRN = 0 for Lines

Word 1 - Blocks transmitted

Word 2 - Blocks received

Word 3 - Characters transmitted (good blocks only)

Word 4 - Characters received (good blocks only)
Response

None

TERMINAL STATISTICS (UPLINE ONLY)

_—n———--—--ﬁ
zgg igg P 00 HO CA TA DT | THO| Statistics Words 1 - 3 :
S |
DT - See table C-2
THO - Toggle HO
Word 1 - Blocks transmitted
Word 2 - Blocks received
Word 3 - Blocks in error
Response
None

ENABLE TRUNK/LINE

PFC= SFC=
08 00 00 HO

c-18 60474500 A

Normal Response (Trunk/Line Enabied)

PFC= SFC= LRN Trunk
08 4016 P 00 HO RC LT CFS NT=0 Line
RC - 00 Trunk/line enabled and operational

04
05

Trunk/line inoperative
Line enabled; wait for ring indicator or autorecognition result

LT - See table C-3

CFS - See table C-4

Error Response (Trunk/Line Not Enabled)

PFC= SFC=

P 00 HO RC
08 8016

RC - See trunk line status request response codes

DISABLE TRUNK/LINE

PFC= SFC=
08 0l 00 HO

Normal Response (Trunk/Line Disabled)

PFC= SFC= RC= LRN Trunk
08 a1, P 00 HO 00 LT CFS I—x7 Line

LT - See table C-3
CFS - See table C-4

Error Response

PFC= SFC=

p 00 HO RC
08 8116

RC - See trunk/line status request responses

60474500 A C-19

DISCONNECT TRUNK/LINE

PFC= SFC= 00 HO

Normal Response

Normal response is line enabled normal response SM.

Error Response

PFC= SFC=
08 8216

SFC - Equals 803 for RC = 04
RC - See trunk/line status request error response codes

CE ERROR MESSAGE

PFC= SFC=
EC Text
OA16 00
EC - Error codes defined in appendix B of The CCP3 Reference Manual

Text - Text defined in appendix B of The CCP3 Reference Manual

Response

None

MESSAGE TO NETWORK OPERATOR

PFC= SFC=

0A,. | 01 00 Text (0 - 50 characters)

Response

None

C-20 60474500 A

ALARM MESSAGE TO NETWORK OPERATOR

PFC=
0Al6

SFC=

01 01 Text

Text - Maintenance alarm coupler
Maintenance alarm MLIA
Maintenance alarm port xx

Response

None

HOST BROADCAST ONE

PFC= | SFC= P 00 HO caA TA DT THO | Text
0C16 00
Text must be 1 - 50 characters in IVT compatible format.
Normal Response
ggc: o P 00 HO ca TA DT mHO | o6
16 16
Error Response
ggc= ggc= P 00 HO CA TA DT THO | RC
16 16
RC ~ 01 = Invalid line number of bad HO or bad THO
02 = Invalid device type
03 = Terminal not configured or line not configured
04 = Terminal inoperative or line inoperative
06 = HO toggle error
60474500 A c-21

HOST BROADCAST ALL

PFC=
OC16

SFC=
0l

ID1

ID2

HO

Text

ID1/ID2 -
Text -

Normal Response

If 0, broadcast to console terminals supported by NPU
50 characters or less in IVT compatible format

PFC= SFC= RC=
OC16 4116 00
Error Response
e | g | xc
16 16
RC - 01 =

02

No logical link established or specified logical link not
established

Broadcast already in progress

OPERATOR MESSAGE

PFC=
16

SFC=
02

00

HO

(69

TA

DT

THO

Text (50
characters
or less)

TERMINAL CLASS/PAGE WIDTH/PAGE LENGTH (TERMINAL CHARACTERISTICS)

PFC= | SFC= 00 | Ho | ca | ma | pr|THo |ORIG | T | PW | PL
OC16 03
DT - See table C-2
ORIG - 00 = Terminal user
01 = Application
TC - Terminal class (see table C-2)
PW - Page width in characters per line
PL - Page length in lines per page

60474500 A

SERVICE MESSAGE MNEMONICS

The following table defines abbreviations used in the individual service
message descriptions.

Abbreviation

BN

BSN
BT

ca

CD

CFS

CN

DN

DT

EB

FN

FV

HO

ID1

ID2

LBN

LRN

LS

60474500 A

Meaning

Block Number - used in the overlay load SM to insure
delivery of all overlay program blocks

Block Serial Number - part of the block protocol
Block Type - SMs are always of type CMD

Cluster Address - part of a terminal's physical
identification

Code type (see table C-6)

Configuration State - state of the line as known by the
service module (see table C-4 for values)

Connection Number - part of the block address. In the
address of a SM, the CN is always zero. When used as data
in a SM, the CN may be nonzero,

Destination Node ID - part of the block address

Device Type ~ part of the Terminal Type (see table C-2)

Error Bit in SM response

Field Number - used in line and terminal configure SMs to
describe a field in the LCB or TCB (see table C-5 and C-6
for values)

Field Value - used in line and terminal configure SMs as
the value to be put in the field (see tables C-5 and C-6)

Host Ordinal - a value (0 - 15) that is included in all SMs
that refer to control structures, and provides unique
element identification for the host. For terminals, an
additional toggle bit that controls connection switching is
included.

Node ID1 - used to identify the destination node in SMs
dealing with logical links.

Node ID2 - used to identify the source node in SMs dealing
with logical links.

Last Block Number - used in the overlay load SM to insure
delivery of all overlay program blocks.

Link Remote Node - node ID of the neighbor node at the
other end of a trunk.

Line Speed Index (see table C6)

Cc-23

Abbreviation

LT

NBL

NL

NT

PFC

RB

RC

SFC

SN

TA

THO

TC

TT

Meaning

Line Type - used to describe the transmission capabilities
of the line (see table C-3)

Network Block Limit - the number of blocks allowed to be
outstanding for any one terminal at a given time.

Number of Lines - the number of configured lines belonging
to a particular CS.

Number of Terminals - the number of terminals configured on
a line.

Port - the CLA address used for a communications line.

Primary Function Code - used to delineate the class of SM
(see table C-1)

Response Bit in SM response

Response Code - used in SM responses to indicate the
requested action has taken place or an error has occurred.

Secondary Function Code - used to indicate a particular SM
within a class of SMs (see table C-1)

Source Node - part of the block address

Terminal Address ~ part of the terminal's physical
identification

Toggle HO

Total Number of Status SMs to be sent for this request.
Used by the requestor to verify all responses have arrived.

Terminal Class - used to describe the common
characteristics of a set of terminals (see tables C-2 and
C-8)

Terminal Type - the combination of DT and TC.

60474500 A

TABLES SPECIFYING SM PARAMETER VALUES

TABLE C-2. TERMINAL TYPE/DEVICE TYPE

Terminal Type (TT)

7 6 5 4 3 2 1 0 TIP Type: 0 = LIP
1 = ASYNC
2 = Mode 4
l N\ P 3 = HASP
Auto TIP Type Sub TIP 4 = 2780/3780
Auto - Autorecognition Flag
TIP Type
1 2 0 or 3
Sub TIP ASYNC Mode 4 LIP or HASP
1 110 baud ASCII 4 not defined
2 150 baud ASCII 4C not defined
3 300 baud ASCII not defined not defined
2741 Ext BCB not defined not defined
5 2741 Correspond not defined not defined

Stored in BZSUBTIP field of LCB

60474500 A

TAB

Device Type (DT)

LE C-2. TERMINAL TYPE/DEVICE TYPE (Contd)

7 6 5 4 3 2 1 0
Device Terminal
Class
Terminals Supported (by Device)
(TC) 0 1 2 3 4
Class Console Card Reader Line Printer Card Punch Plotter
1 M33, etc.
2 713
4 2741
5 M40
6 H2000
7 751-1
8 T4014
9 HASP HASP HASP HASP HASP
10 200 UT
or 4014 200 UT 200 UT
11 214
12 711-10
13 714
14 731
15 734
Device: 5 - Reserved for internal host/NPU use
6 - Reserved for expansion
7 - Reserved for installations
Terminal Class: 16-27 - Reserved for expansion
28-31 - Reserved for installations
When the DT byte is sent in a downline SM to identify a particular TCB,
the TC field need not match the field in the TCB as the latter can
change at any time.

C-26

60474500 A

¥ 00S¥L%09

LZ-O

TABLE C-2. LINE TYPES (LT)
Lire Type Trans- Turn- Turn-
Hexadecimal | mission CLA Answer Carrier Circuit Around Around Transmission
Value Facility Type Modem Type Mode Type Type Required | Delayed Mode
01 HDX 2560-1 | RS232-201A/2081 | o\ ched | controlled | 2 Wire YES NO Synchronous
Compatible
02 FDX* 2560-1 RSZ32—?01B/208A Deci- Controlled | 4 Wire YES NO Synchronous
Compatible cated
RS232-201B/208A | Dedi- . .
03 FDX 2560-1 Compatible cated Constant 4 Wire NO NO Synchronous
RS232-358-1 Dedi- R
61—
04 HDX 2561-1 Compatible cated Controlled | 2 Wire YES NO Asynchronous
05 HDX 2561-1 Rsz32_?02 Switched | Controlled YES NO Asynchronous
Compatible
c -
06 FDX 2561-1 RS232 }03E/ll3 Switched | Constant 2 Wire NO NO Asynchronous
Compatible
RS232-103F Dedi- .
07 FDX 25€1-1 Compatible cated Constant 2 Wire NO NO Asynchronous
RS232-2028 . 2 Wire
- s
08 EDX 2561-1 Compatible witched | Controlled rctt Asynchronous
RS232-103E . R
- h N 1
09 FDX 2561-1 Compatible Switched | Constant 2 Wire NO (o] Asynchronous
RS232-201B Dedi- . . N .
0A FDX 2563-1 Compatible cated Constant 4 Wire (o] NO FDIC
0B RESERVED o

* Operating with HDX Protocol
RC = reverse channel

TABLE C—-4. CONFIGURATION STATES

Value Significance
0 LCB not configured
1 LCB configured, not enabled
2 Enable requested to TIP
3 Line operational, no TCBs
4 Line operational, TCBs configured
5 Disable requested to TIP
6 Line inoperative, no TCBs
7 Line inoperative, TCBs configured
8 Disconnect requested to TIP
9 Line inoperative. Waiting for ring indicator or
autorecognition in process
TABLE C-5. LINE CONTROL BLOCK FIELD NUMBER/FIELD
(FN/FV) ASSIGNMENTS
NPU
Field Mnemonic Mode 4
Number Name Description TIP HASP
5 BZOWNER Node ID of owning CS/NS 1-255%* 1-255%* 1-255%*
21 BZLNSPD Line speed index - -
*Required for configuration
**Required if autorecognition not specified
Cc-28 60474500 A

TABLE C-6. LINE SPEED AND CODE SET

Line Speed (LS) Index
800 baud 0
110 baud 1
134.5 baud 2
150 baud 3
300 baud 4
600 baud 5

1200 baud 6
2400 baud 7
4800 baud 8
9600 baud 9
Not used A through F

Code Set (CD) Index
Not used 0
BCD 1
ASCII 2
Typewriter-paired ASCII APL 3
Bit-paired ASCII APL 4
External BCD 5
External BCD APL 6
Correspondence 7
Correspondence APL 8
EBCDIC 9
Not used A through F

LS/CD can occur in a single byte of a service message.
this case, LS uses the upper 4 bits of the byte and CD

uses the lower 4 bits.

In

60474500 A

Cc-29

TABLE C-7. TERMINAL CONTROL BLOCK FIELD NUMBER/FIELD VALUE
(FN/FV) ASSIGNMENTS
Values
NPU
Field Mnemonic ASYNC Mode 4 HASP
Number Name Description TIP TIP TIP
5 BSTTYP Terminal class 1, 2, 4-8 10-15 9
12 BSOWNER Node ID of owning CS 1-255F 1-255% 1-255
13 BSCN Connection number 1-255 1-255 1-255
14 - Destination node 0-255 0-255 0-255
15 - Source node 0-255 0-255 0-255
16 BSABL Available block limit 0-7% 0-77 0-71
19 BSIPRI Input priority 1-2 1-2 1-2
28 BSPGWIDTH Page width 0-255 0-255 0-255
29 PSPGLENGTH | Page length 0-255 0-255 -
30 BSCANCHAR Cancel character 0-127 0-127 0-127
31 BSBSCHAR Backspace character 0-127 0-127 0-127
33 BSCRIDLES Carriage return idle 0-99 - -
count
34 BSLFIDLES Line feed idle count 0-99 - -
35 BSCRCALC Calculate CR idle count 0-1 (no-yes) - -
flag
36 BSLFCALC Calculate LF idle count 0-1 (no-yes) - -
flag
37 BSSPEDIT Special edit mode 0-~-1 (no-yes) - -
38 BSXPARENT Transparent input mode 0-1 (no-yes) 0-1 (no- -
yes)
39 BSXCHM Transparent character 0-15 (most - -
count delimiter ' (MSB) significant
4 bits)Ttt
40 BSXCHL Transparent character 0-255 (least - -
count delimiter (LSB) significant
8 bits)Ttt
C-30 60474500 A

TABLE C-7. TERMINAL CONTROL BLOCK FIELD NUMBER/FIELD VALUE
(FN/FV) ASSIGNMENTS (Contd)
Values
NPU
Field Mnemonic ASYNC Mode 4 HASP
Number Name Description TIP TIP TIP
41 BSXCHAR Transparent character 0-255 - -
delimiter
42 BSXTO Transparent time out 0-1 (no-yes) - -
delimiter flag
43 BSINDEV Input device 0-1 (KB, PT) - -
44 BSOUTDEV Output device 0-2 (PR, DIS, - -
PT)
45 BSECHOPLX Echoplex mode flag 0-1 (no-yes) - -
46 BSPGWAIT Page wait flag 0-1 (no-yes) 0-1 (no- -
yes)
47 BSPARITY Parity mode 0-3 (zero, - -
odd-even,
none)
48 BSABTLINE Abort output line 0-127 - -
character
49 BSUSR1 User Break 1 character 0-127 0-127 0-127
50 BSUSR2 User Break 2 character 0-127 0-127 0-127
51 | BSCODE TIP code settt 4-st 1-3tt -
52 BSXCHRON Transparent message is 0-1 (no-yes) - -
delimited by a character
(flaqg)
tRequired for configuration
ttSee table C-9 (BSCODE)
tttpPairs 39 and 40 are required together
60474500 A c-31

TABLE C-8.

DEFAULT PARAMETERS FOR TERMINAL CLASSES

ASYNC Terminals

Terminal Class
(TC) 1 2 4 5 6 7 8
. Hazel- Tek-

ggrméﬁiéd M33, M35 | cpC IBM tine coe tronix

pp M37, M38 | 713-10 | 2741 M40 2000 751-1 4014
Page Width (PW) 72 80 132 74 74 80 74
Page Length (PL) | O 0 0 0 0 0 0
Parity (PA) Even Even odd Even Even Even Even
Cancel Input Tt 4 + ++ + H
Line Char. (CN) CAN CAN (CAN CAN CAN CAN
Back Space (BS) BS BS BS N/A BS BS BS
C(gg)tml Char. ESC ESC)ttt crn p | Esc ESC ESC
Carriage Return +
Idle Count (CI) 2 0 ca 1 0 0 0
Line Feed Idle
Count (LI) 1 0 1 3 3 0 0
Special Edit
Mode (SE) No No No No No No No
Transparent
Mode (TM) No No No No No No No
Transparent CR/ CR/ CR/ CrR/ CrR/ CR/ CR/
Delimiter (DL) 2043 2043 2043 2043 2043 2043 2043
Device Mode (IN) KB/ KB/ KB/ KB/ KB/ KB/ KB/
In/Out (OP) PR DI PR DI DI DI DI
Echo Mode (EP) No No N/A No No No No
Page Wait (PW) No No No No No No No
Abort Output
Line (AL) CAN CAN (CAN CAN CAN S
?;ii Break 1 DLE DLE : ACK | DLE DLE DLE
?§§§ Break 2 DC4 DC4) pc4 | pca DpC4 DpC4

tcalculated by TIP
T*Keyboards may actually be marked as follows: CTLX for CAN,

CTL P for DLE, CTL F for ACK, CTL T for DC4
t1t=for APL

Cc-32 60474500 A

TABLE C-8. DEFAULT PARAMETERS FOR TERMINAL CLASSES (Contd)

HASP Mode 4 Terminals

Terminal Class (TC) 9 10 11 12 13 14 15
Terminals Supported masp | 2000771 214 | 711-10 | 714 | 731 | 734
Page Width (PW) 80 80 80 80 80 80 80
Page Length (PL) N/A 13 13 16 16 13 13
Cancel Input Line
Control Char. (CT) % % % % % % %
Transparent Mode (IN) N/A N/A N/A No No N/A N/A

. N/A KBD/ KBD/ KBD/ KBD/ KBD/ KBD/
Device Mode In/Out CRT CRT | CRT CRT | CRT | CRT
Page Wait (PG) N/A Yes Yes Yes Yes Yes Yes
User Break 1 (Bl) : : : : : :
User Break 2 (B2))))))))

60474500 A C-33

TABLE C-9. BSCODE DEFINITIONS

FOR CCP INTERNAL USE

ASYNC MODE 4 HASP
BSCODE 12 12
VALUE TC = 4 TC # 4 TC = TC # ™ =9
13 13
tto UNK UNK UNK UNK UNK
l 9
External BCD 5 X X BCD 1 tEBCDIC
6 2 2
2 External BCD X Mode 4A X
APL ASCII ASCIIT
3 2
7 Typewriter-
3 Correspondence Paired ASCII Mode 4C X X
ASCII
APL
8 4
4 Correspondence Bit-Paired X X X
APL ASCII APL
5-7 X X X X X
TC - terminal class
UNK - unknown or does not apply
X - illegal value for that combination of TIP type and terminal class
n - external value for code set

THASP TIP currently does not use BSCODE since EBCDIC is the only code
set supported.

ttIf a BSCODE = 0 is specified for an ASYNC terminal, the ASYNC TIP with
default to the ASCII code set.

C-34

60474500 A

BLOCK PROTOCOL SUMMARY D

Block protocol is the protocol used to communicate between the NPU and the
host. It is used for data (message) transfer and for commands and status
transmission. (A few commands and status transfers are confined to the
handshaking routines in the host coupler; these do not use the block
protocol.)

BLOCK SIZE

The minimum block size of a block is 4 bytes. The block consists of only
the block header.

The maximum block size is 2047 bytes, which includes the block header of 4
bytes plus data bytes.

BLOCK FORMAT

The format of a block is as follows:

Byte 1 2 3 4 5 2047
Header Data (optional)

The format of this header field is shown below:

Byte 1 2 3 4
T
DN SN CN P | BSN } BT
7

Bit
DN - destination node

SN - source node

00 = NS in host

01l = CS in host

02 = NPU coupler node } Only one NPU
03 = NPU terminal node in system

02-225 = nodes in systems with more than one NPU in system

CN - connection number
00 = service message

01 225 = line

P - Priority (trunks)
1 = high
0 = low

BSN - block serial number (0 for ACTL blocks)

BT - block type; see table D-1 for description of types.

60474500 A D-1

BLOCK TYPE

BLK = 1 4 5 2047 (max)
Header Data
MSG = 2
1 4 5 2047 (max)
Header Data
BACK = 3
1 4
Header
CMD = 4
1 4 5 X
Header Parameters
L Defined in appendix C.
BRK = 5
1 4 5
Header RC
RC - Reason Code
00 = illegal
01 = user break 1
02 = user break 2
03 = output device not ready
04 = illegal/invalid format in block received from host
STP = 6
1 4 5
Header RC
RC - Reason Code
00 = illegal
01 = terminal busy
02 = terminal failure
03 = batch interrupted by interactive I/0
STRT = 7
1 4
Header

60474500 A

RST = 8
1 4
Header

INIT = 9
1 4
Header

ACTL = 15 (for use between neighbor NPUs only)

1 4 5 6
Header | ST RL
7 64 3\0\
T T
P| BSN | BT
: =0 ! =15

ST - Subtype

00 = clear (CLR)

01 = protocol reset (PRST)

02 = regulation (REGL) } RL byte used

03 = link initialization (LINIT)

04 = link idle (LIDLE) } RL byte not used
RL - Regulation level

00 = high

01 = low

60474500 A

BLOCK FLOW

Figure D-1 illustrates sample data block protocol flow downline and figure
D-2 shows the sample data block protocol upline flow. Figure D-3
illustrates the downline flow where the TIP controls restart and fiqgure D-4
shows downline flow where the host controls restart.

Terminal

v

v

v

Host NPU
BLK L
BLK >
first block
P BACK
second block
P BACK
MSG -
third block
BACK

A

60474500 A

Comments

Host sends first block
to TIP.

Host sends second block
to TIP.

First block is delivered
to terminal.

First block is acknowl-
edged to host.

Second block is
delivered to terminal.

Second block is acknowl-
edged to host.

Host sends third and
last block to TIP.

Third block is delivered
to terminal.

Third block is acknowl-
edged to host.

Figure D-1. Data Block Protocol Downline

Host NPU Terminal
data
BLK
BACK
—>
data
BLK
P data
BACK _
r BLK
BACK
>

CMD (CTRL/STOPl

BACK

A

CMD (CTRL/STPD)

A

BACK

-
>

CMD (CTRL/STRTl

BACK

A

Figure D-2.

Comments

TIP inputs data from
terminal.

TIP sends data block to
host.

Host acknowledges block
to TIP.

TIP receives input data
from terminal.

TIP sends first block to
host.

TIP gets more input from
terminal.

Host acknowledges first
block.,

TIP sends second block
to host.

Host acknowledges second
block.

Host requests stop input.
TIP acknowledges CMD
block to host.

TIP informs host of
input stopped.

Host acknowledges CMD
block to TIP

Host requests input
start.

TIP acknowledges CMD
block to host.

Data Block Protocol Upline

60474500 A

i

Host

BLK

NPU

BLK

A 4

BACK

Yy

first block

Terminal

STP

A

STRT

RST

BLK

BACK

second block

v

Figure D-3.

60474500 A

Comments

First block sent from
host to TIP.

Second block sent from
host to TIP.

Data of first block sent
to terminal.

First block acknowledged.

TIP determines an STP
condition exists and
informs host with an STP
containing the BSN of the
last acknowledged block.

All unacknowledged data
and all new data
received by the TIP is
discarded until a RST is
received in response

to a STRT from the TIP,

TIP determines STP
condition has been
resolved so a STRT is
sent.

STRT acknowledged by
RST from host.

Second block retrans-
mitted to TIP.

Data of second block
delivered to terminal.

Second block
acknowledged to host.

Block Flow Downline Control (TIP Controls Restart)

Host NPU Terminal Comments

BLK First block sent from
host to TIP

BLK Second block sent from
> host to TIP

first block First block delivered
to terminal

v

BACK First block acknowledged
to host

BRK TIP determines a BRK
< condition exists and
informs host with a BRK
containing the BSN of
the last acknowledged
block.

All unacknowledged data
and all new data
received by the TIP is
discarded until a RST
is received from host.

RST Host acknowledges BRK
> with a RST to TIP.
BLK Second block retrans-
1q mitted to TIP
second block > Second block delivered

to terminal

BACK Second block
acknowledged to host

Figure D-4. Block Flow Control Downline (Host Controls Restart)

60474500 A

Figure E-1 shows the layout of CCP in the main memory of a 255x network
processor unit with 65K words of main memory.
Locations in hexadecimal Program Name
0000 ZEROX
Jump to BEGINX
0100 PBINTRP
Interrupt trap locations
0150 Addresses
Address pointer table
0170
Console interrupt routines
0D70 GLOBLS$
PASCAL globals
1D50
Assembly language routines
23BC
State programs
35A3
PASCAL programs
7F00 PIDTBL)
ID table
8000
8200 Circular input buffer §e§ up at
Line port table ’t?;:lziéza-
Line control blocks
P
\
D980 MAINS
Set up stack, go to PINIT
D998 BEGINX
LOAD R1l, R2, R3, R4, go to MAINS
Part I of initialization programs Becomes
DE7F ' PINIT > buffers when
Initialize system needed
Part II of initialization programs
EFAQ PIBUF2
Initialize last of buffer
F000 4
System Paged Overlay service module
FFFF
Figure E-1. Sample Main Memory Map
60474500 A E-1

CCP NAMING CONVENTIONS F

The following naming conventions for the CCP PASCAL programs should be
regarded as guidelines rather than as strict requirements.

The general format of a label is
PIRRRRSSS
where the usual length is six bytes, but additional bytes can be used.

O Global data

P values are: A

P Procedure or function
Q - W Local data
X - Z Non-CDC
I values are: O Transparent or not tied down
1 - 9 Not a structure {

A - 7Z A structure

Por procedures and functions:

P=P, I-= A Assurance programs
B Base system programs
D Diagnostic programs
M Multiplex subsystem programs (part of the base
system)
N Network communications programs
P Packets
T TIPs, HIP, LIP

60474500 A F-1

For types, variables, and {ields:
AO... OPS-levelyworkcodes
BA... Overlay
BC... Physical/logical request packet (PRP/LRP)
BF... Buffer
BJ... TIP-type table
BL... Logical link control block (LLCB)
BS... Terminal control block (TCB)
BT... Timing, monitor controlled
BW... Intermediate array for worklist
BY... Worklist control block (WLCB)
BZ... Line control block (LCB)
CM... Service module
D... Input/output (I/0)
Jeao Logical/physical I/0 request packet
JC... TUP table
LD... Load or dump
M... Multiplex subsystem
MM... Event worklists (multiplex subsystem)
N... Multiplex subsystem
NA... Port table
MB... Line types
MC... Multiplex LCB (MLCB) or text processing control block (TPCB)
NJ... Terminal characteristics
NK... Multiplex command driver inputs (command packet)
NZ... Diagnostics control block (DCB)

SI... System interfaces (SIT)

F-2 60474500 A

STANDARD TIP AND SVM TREES G

This apendix consists of four sections, one for each of the standard TIPs
(Mode 4, ASYNC, and HASP) and a section for the service module (SVM).

Within each TIP section there are two parts: a one-line description of each
routine or subroutine, followed by a tree for the PASCAL-level routines and
subroutines comprising the TIP. The trees are laid out so that the OPS
work-level entry is on the first sheets and subroutines follow. Following
the OPS-level switch and preceding the subroutines are the direct call
routines from SVM and multiplex level 2 interrupt routines.

Comparing these trees and TIPs should aid the TIP programmer in finding how
other TIP programmers have solved similar problems.

In the illustrations of the trees, external calls are underlined. No effort
is made to trace calls from external routines.

60474500 A G-1

MODE 4 TIP PROGRAMS

PTSTACK - provides push down stack for TCB

PTUNSTACK - Pop up part of st&cking for TCB

PT4CYCLE - TIP reentry with simulated WC (for shared terminals on line)
PT4RELBUF - Release a buffer chain

PT4DISABLELINE - Processes disable line request

PT4TERMINATETCB - Processes terminate TCB request

PT40UTPUT -~ If anything is in the output queue sets flag

PT4GET - Get next downline message (interprets data on stop/start/IVT cards)
PT4TIMECHECK - Checks one second event timer

PT4LASTCHAR - Find last character of message

PT4CMD - Generates and finds upline replies

PT4CSTATE - Change cluster states for batch devices

PT4TEXTPROCESS - Transforms downline data to Mode 4 format. Calls PTTPINF -
interface to firmware text processor

PT4PMSG - Generates poll message

PT4LINIO - Initiates I/O for mode 4 line (MLCB setup, start, set timeout
value)

PT4RETRY - Checks for unrecoverable errors
PT4TOGGLE - Polls for toggle following write
PT4POLL - Issues poll message

PTAWRT - Issues output data block terminal
PT4EPOLL - Polls for read response

PT4DOUT - Sends message to display

PT4DINP - Polls display for input

PT4PROUT - Sends message to display.

PT4PROUT - Sends message to printer
PT4E3WRITE - Generate E3 write for card reader
PTACRINT -~ Polls MD4A terminals for data (card reader)

PT4 CONFIGURE ~ Configure request

G-2 60474500 A

PT4AUTORECOGNITION - Polls CA to find code set, for ASCII terminal -
configure request for terminal address for MD4A -
reports a console, card reader, and line printer

PT4ERRORPROCESS - Disable response to disable request
Line error - send line inop SM
Break - bad downline data
Others - terminal/cluster error

PTAWKALLOCATION - Finds next unit of work for terminal (reports several
types of errors)

PT4STRT - Sends stop input message to host
PT4STOP - Send start input message to host
PT4WKPROCESS - Cycles thru TCBs for active line, allocates work on that line
PT4I0CHECK - Processes I/O returns - uses work code
PT4CERR ~ Processes CE error messages
PT4WCCHECK - Processes OPS level workcodes =~
enable line
process queued output
delete TCB
disable line
process cycle reentry
read El1, E2, E3, or autorecognition response
process ACK, REJ, or errors on line
process timeouts
PTMD4TIP - Main OPS-level-worklist entry switch

PT4TCBINIT - Prepares TCBs (direct call from SVM)

60474500 A G-3

OPS LEVEL SWITCH

PTMDATIP (OPS-level entry - Switch on WC in WLE, then switch on task in

terminal)
PT4WCCHECK
—~ BLTIMTBL
Cases (WC) = PT4CHECK
— (AOSMEN)
(enable
line)

PTGET1BF
PT4TCBINIT - none

— (AOQUEOUT) - none
(check Q)

—(AOSMDA) - none
(disable
line)

— (AOSMDLTCB) - none
(delete terminal)

— (AOWK1) = none

(cycle
re~entry)
[(AOWK2 —-—-PT4IOCHECK
AOWK3 (read E1,
AOWK4 E2, E3, or
AOWKS8 Autorec)
AOWK9
(AOWKS: PT4IOCHECK
WACK,
REJ, or ‘[

error)

PT4RELBUF
AOWK6 } PT4 IOCHECK
AOWK7 l

(error or PT4RELBUF

slipped
card)

Figure G-1.

ole

(AOHARDERROR) - none
(hardware error)

(AOTIMEOUT) - none
(AOSMRTCB) - none
— PTRT1LCB

- PT4AWKPROCESS

-PT4WKALLOCATION

Cases (process device for next
TCB on the line)

—PT4DOUT—@
|-PT4DINP ——@
L PT4PROUT —-@
_PT4CRINP _—-@
-PT4AUTORECOGNITION—-®
|- PT4EPOLL ——@
End case
LPT4ERRORPROCESS —-@
- PT4CYCLE—@

-~ BLTIMTBL

- PTRETOPS

Mode 4 TIP (sheet 1 of 7)

60474500 A

WORKCODES

®

PT4DOUT display (output processing) PT4DINP display (input processing)

. pT4 TEXTPROC | PTREGL

- PT4TOGGLE - PT4POLL——-@
——PT4WRT—@ —-PT4CYCLE——-@

- PT4CYCLE-——® - PT4RELBUF
- PT4RELBUF L~ PT4LASTCHAR - none

—~ PBPOPOI —- PTBREAK

— PBPIPOI

— PT4TEXTPROC
— prawRT—(12)

— PTIVTCMD

—= PT40UTPUT - none

Figure G-1. Mode 4 TIP (sheet 2 of 7)

60474500 A G-5

WORKCODES

PT4PROUT (printer output) PT4CRINP (card reader input)

r—-PT4TEXTPROC L DTREGL

—PT4WRT—-® L PT4E3WRITE —-—PT4TEXTPROC
-——-—PT4CYCLE——® . ——PT4WRT——-®

—PT4POLL ——-@ ‘ —PT4CYCLE ——@
—-—PT4RELBUF —-PT4RELBUF

| PTBREAK ———PT4POLL"—"'—'@
—PT4CSTATE==-@ |_—pT4C STATE=@

L~ PBPOPOI — PBPIPOI

L PT4CERR ---
L pT4cMD --—-@

Figure G-1. Mode 4 TIP (sheet 3 of 7)

G-6 60474500 A

WORKCODES

(autorecognition)
PT4AUTORECOGNITION
—PT4TCBINIT -~ none

——PT4PMSG -~ none

—pT4POLL—-@
—PT4RETRY—-@
L pr 4RELBUF

——PBLSPUT (SVM)

——-PT4DISABLELINE—@

— PT4CONFIGURATION - none

— PT4CERR

—PBGET1SEG

——PBGET1BUF

(polling control)

PT4EPOLL

PT4POLL—@
PT4RELBUF

Figure G-1.

60474500 A

SUBROUTINES

PT4ERRORPROC

—— PBREL1BUF

— PT4DISABLELINE ——@
——PT4TERMINATECB

——PTBREAK

— PT4RELBUF

PT4TCBINIT (call from SVM)
none

Mode 4 TIP (sheet 4 of 7)

PTAWKALLOCATION

(N1CON)
= (console)

~PT1VTCMD

L-PT4RELBUF
-DT4 STOP—-@

~-PT4TIMECHECK - none

-PT40UTPUT - none

1—PT4STRT
-PT4GET-—-=@

.PTSTOP
- PTBACK

- PTBREAK

profaembobombe el

L.PT4CMD

—=(N1CR) =PTSTOP

(Cd rdr)

- PTBACK

Cases (device to be used on this TCB)

—-PT40UTPUT - none

—PT4STRT
—PT4GET-—--@
—PT4CSTATE===®

}-—PT4CMD=;@
| .PT4RELBUF
_pT4 STOP__@

Figure G-1.

SUBROUTINES

@)

— (N1LP)
(printer)

~PTSTOP

~PTBREAK

——(BSCERROR)
(cluster
error)

—(BSCIDLE)
(cluster
is idle)

l— (BSCINTER
ACTIVE)

-PT4ST0P—-@

~PT40UTPUT - none

—PT4CSTATE=—="—@
-PT4GET-—"—-@

PT4 S'I‘RT

&

[PT4STOP

PT4TIMECHECK -
none

~PT4STRT

&

= PT40UTPUT ~ none

~PT4STOP

6

~PT4TIMECHECK -~
none

~PT4GET

6

—PTBACK

~PTBREAK

6

-PT4CMD

—PT1VTCMD

L. PT40UTPUT - none

Mode 4 TIP (sheet 5 of 7)

60474500 A

19

PT4TEXTPROC

— PTTPINF (text processor)

—PT4RELBUF

— PBGET1BUF

—PBREL1BUF

PT4POLL

[—PTSTACK - none

—PT4PMSG -~ none

-—PT4L1N10“'—-=-@ PBCOIN
-_[BLTIMTBL

| PTSVILCB

—PT4RETRY“—“@

~—=PTUNSTACK - none

Figure G-1.

60474500 A

SUBROUTINES

)

PT4WRT

—PTSTACK - none

—PT4LINIO'—'=-@

+—PTSV1LCB

—-PT4RETRY==@

[—PT4TOGGLE===(16)—

| _PT4CYCLE “—"@

~— PT4UNSTACK - none

—PT4PMSG -
none

L_PT4LINIO m@

| —PTSV1LCB

e PT4RETRY3"-='-'-@
— PT4RELBUF

—PTSTACK - none

“—PTUNSTACK -
none

PT4CYCLE (cycles three TCBs for line
to allow time to all

terminates)
PTUNSTACK - none

PTSTACK - none

Mode 4 TIP (sheet 6 of 7)

SUBROUTINES
PT4RELBUF PT4GET ——-——-—[:PBPROPOI
L PBREL1BF PT 4RELBUF

PT4DISABLELINE PTACSTATE - none
PBCOIN

PBLSPUT (SVM)

@ EQ':I,"AIRETRY PNSGATH
PT4RELBUF-‘—"—=' I
PT4CERR

PT4TERMINATETCB
PT410CHECK PT4RELBUF
PBLSPUT (SVM)

PT4RELBUF @
PT4C STATE_@ PT4CMD —[PBI IPOI

PBGET1BF

Q

PT4STOP

PTSTOP PT4CERR - none
PT4RELBUF @
PBXFER (SVM) ,

PT4STRT

PBXFER (SVM)

Figure G-1. Mode 4 TIP (sheet 7 of 7)

G-10 60474500 A

ASYNC TIP PROGRAMS
PTASNMUX - Multiplex level 2 worklist handler

APLSPUT - Converts multiplex level 2 interrupt to an OPS-level worklist
entry

APCDRV - Call command driver
PTASNOPS - OPS level entry, worklist main processor

Output buffer sent, or terminate transmission

200ms Timeout handler (WLE from multiplex level 2)

Regulation and autorecognition timeout

Buffer threshold reached

Break received

XOFF received

Trailer sequence

Hard error or bad autorecognition

Output queued, try to output

TCB built, try I/O

Line enabled

Disable line

Reconfigure TCB

Delete TCB

Input terminated

Send transparent block to host

Transparent message timeout

Transparent block size reached during input; transparent XOFF checked;
End of logical line; check for commands, echo data; pass data to host
Input active, turn off output

Autorecognition
PTAFALASTBUF - Returns address of last buffer in chain

PTAFCMDCHECK - Checks if input block is an IVT command from the terminal or
a DATA block

PTAFINOK - Tests if it is OK to input

PTAFNULLMSG - Checks if input block is a null input

PTAFOUTOK - Tests if it is OK to output

AFREGAFTERINPUT - After input is passed to tip, checks if system is in
regulation., If so, TIP releases input - notifies terminal

that message was discarded.

PTAUTOIN - Autoinput handler

60474500 A G-11

APCMDACTION - Performs action requested by IVT command

APBRINGLINEDOWN - Brings line down due to a disable command or line errors
PTAPBUFREL - Release a buffer chain

APCMDRESP -~ Responds to command by sending message (or action) to terminal
APENDOFLINE - Sends EOL sequence to terminal

APENOUT - Sends terminate output command to command driver

APEPLX - Change echoplex state at terminal

APGETOUTPUT - Get block for output -~ prepare it (text process data; interpret
if it is a command)

APIOCHECK - Checks for I/0 to do

APIVTFORMAT - Puts character string in IVT block format for returning an
answer to the terminal

APOUTPUT - Build command packet and call command driver for an output block

APPASSINPUTTOHOST -~ Pass input block to host - works through Post-Input POI
(chains autoinput heading to reply block)

APPREPARETEXT - Text processes output blocks (format for output to terminal)
APRCVST - Sends control D to terminals (2741ls) - puts terminal in write mode
APRELOQUE - Purge output queues

APSPECSEQ - Process breaks, abort, cancels characters

APUPBREAK - Process break on output; ends output

PTAREC - Turns on input for autorecognition

PTASETINPUT - Sets up MLBC for IVT interactive input

PTATPTC - Sets up text processor interface (TPCB) by terminal class

PTAPO - ASYNC TIP call to Post-Output POI

PTAPI - ASYNC TIP call to Post-Input POI

APPGPARAM - Sets page width and page length in TCB

APTERMTCB - Terminates a TCB

PTAQOBT - Processes output block from queue

APTCBINIT - Initializes TCB fields

APWTOBTERM - Waits for output buffer terminated

PTAFICCHAR - Checks first input character for controlfunctions

PTABKSPCHECK -~ Checks backspace character

G-12 60474500 A

ASYNC

PTASNOPS (OPS entry,
on WC in WLE)

Cases

— (NMOTEND

or AOQOBUX)
(output buf
transmitted
or output
terminated)

(200ms
timeout)

— (AQTIMEOUT) —
(Reg check
or auto-rec
timeout)

—- (AWBUTCH) ~——
(buffer
threshold)

— (AWBREAK) ——
(break
received)

f—— (AWXOFF) ~—
(process
XOFF, paper
tape)

— (AWTRAILER)
®

60474500 A

WORKCODES

®

switch

PTSV1LCB

PTMSQUE

PTAPEPLX —-@

PTRT2LCB

—(AW200MSTO) —-PTRT1LCB

pAFREGAFTERINPUT——-@
-APBRINGLINEDOWN

L-PTAREC——-@

-FAPIOCHECK

6

~PTREGL
~BLTIMTBL
- PTREGL

~BLTIMTBL

L AFREGAFTER INPUT_—-@
~AP INPUT——@

~BLTIMTBL

L PTASETINPUT -—-@

- APLINESTATUS
L-APUPBREAK-—@

~ PTMSQUE

~-PTSV1LCB

L. APTOCHECK

- none

(process trailer)

Figure G-2.

—(AOHARDERR) ——APBRINGLINEDOWN
(bad auto-

recognition

or hardware

error)

| (AOQUEOUT) -——-APIOCHECK——-@
(output msg

in Q)

—(A0SMTCB)
(set up £
input then
output msg

in Q)

(AOSMEN)
r-_(enable
line

——[APTCBINIT—-@
or

APIOCHECK

p'rAREc-——@

——(AOSMDA) APBRINGLINEDOWN
| (AOSMDLTCB)— apTh ™ ’TCB——@

(delete TCB)

— (AOSMRCTCB) APTERMTCB ——@
(reconfigur;-[
TCB) APTCB INIT—-@
—(AWINTERM) =——PTRT1LCB
(process
after input
terminated)

= (AWXPTXOFF oOr
AWXPTBLKSIZE)
(XPT blk PPTAPBUFREL—-@

size or
L apwroBTERM —(32)

XPT XOFF
- AFREGAFTERINPUT ——@

input)
| APPASSINPUTOHOST

—PTDELMS

- PTSV1LCB

—APIOCHK—-@

—-PTMSQUE

®

ASYNC TIP (sheet 1 of 8)

G-13

®

l—(AWSXB)
to host)

(trans-~
parent
timeout)

®

G-14

WORKCODES

—————APPASSINPUTOHOST

(send trans-
parent block

&—-(AWXPTTO)«—[APENDIN——-@

PTDELMS - none

—(AWXPTDELIM) r-PTAPBUFREL-—-@

(trans-

parent msg —APWTOBTERM———(:)

delimiter)
L. APRCVST ——@
L.APREGAFTERINPUT —-—@
| APPASS INPUTOHOST
- PTASENT INPUT—@
- APPGPARAM - none
AP IOCHECK-—-@
-PTDELMS

(AWEPL or —PTAPBUFREL-—@

AWBLKSIZ)

(character FAPWTOBTERM-——{:)

block size

or end phy —APRCVST———(:)

line)

- PTAFCMDCHECK
L—AFREGAFTERINPUT—-@

—~-PTAFNULLMSG - none

-PBREL1BF

_APPAS INPUTOHOST

—PTMSQUE

. PTSV1LCB

—APENDOFLINE———{::)
(B1)

Figure G-2.

®)

&

(AWELL)
(end log
line,
process
line)

@

- APPGPARAM
—APINPUT—@

}—APTOCHECK -—-@

—prappurREL —(6)
—-APWTOBTERM~—-—@

—PBRELZRO

—APRCVST———@

. PTAFSCANSPECSEQ
| APSPECSEQ

| PTAFCMDCHECK

| AFREGAFTERINPUT ——-@
—APENDIN——-@

L PTSVLLCB
—-APCMDACTION
—PTASETINPUT —-@

| APCMDRESP

——PBREL1BF

—PTAFNULLMSG - none

_ PTAPBUFREL —@

|~ PTMSQUE

——APIOCHECK—-@

— PTIVTCMD

|_APPAS INPUTOHOST

—APPGPARAM - none

| ADENDOFLINE —@

ASYNC TIP (sheet 2 of 8)

60474500 A

WORKCODES
®
L (AWINACT) PTABUFREL----@
(make
input PTMSQUE
active)
APUBREAK----@
PTDELMS
AW150) - none
(low speed
autorec)
— (AW300, BLTIMTBL
Aw300a,
AW134 PTASENDPROMPT
AW600
AW1200 PTSY2LCB
AW2741)
(autorec- L-APLINESTATUS
ognition)
—(other) ignore WLE
L (AWCORR or —APLINESTATUS
AWECBD)
(detect
2741
code set)
SUBROUTINES

(:) PTASETINPUT
- PBCOIN
—~PTDELMS - none

L PTABKSPCHECK - none

@ APIOCHECK
—-PTAPOUTPU‘I‘——-@

—~PTSV2LCB

— PTAFINOK - none

| APIN PUT——@

--PTRETOPS

Figure G-2.

60474500 A

SUBROUTINES

| PTAFOUTOK - none
| PTAQCBT —-@
o APGETOUTPUT—@

(:) APGETOUTPUT

—PBROPOI

—PTAPI
__APENDIN —-@

—-PTSV1LCB

—PTIVICMD

-—APCMDACTION

| APRELOQUE

| PTASETINPUT —@

| PTBREAK
—-APPREPARETEXT—@
| PTBACK

| PBBUFAVAIL

| BLTIMTBL

@ PTAPOUTPUT

—PTAPEPLX
— PBCOIN
(:) PTAPO PBRELCHN
PBPOPOI
PNSGATH
(:) PTAPBUFREL PBRELZRO

ASYNC TIP (sheet 3 of 8)

G-15

APINPUT

— PTREGL

L PTAPOUTPUT —@

—PTSV2LCB

L— BLTIMTBL
PTAPI———[PBPIPOI
PNCEFILE
iPENDIN————[PBCOIN
PTAPEPLX——@

APRELOQUE ——-PTAPBUFREL—-@

Figure G-2.

G-16

SUBROUTINES

APPREPARETEXT —PTATPTC - none

-~ PTTPINF
(text process)

— PBGET1BF
- PTBREAK

— PBCOPYBFRS

- APRELOQUE
bPTAPBUFREL—-@

APRCVST

L PTAPOUTPUT —@

PTSV2LCB

_@

PTAPOUTPUT'*——-——[:PBCOIN
PTAPEPLX

-®

PTAFCMDCHECK PTAFNULLMSG - none

PTAFALASTB - none

PTAFICCHAR ——@

PTAFBUFREL

ASYNC TIP (sheet 4 of 8)

60474500 A

AFREGAFTERINPUT

— PTREGL

-—PTAPBUFREL----@
—-APENDIN----@

~ APIVTFORMAT - none

- APPREPARETEX‘I‘-—--

— PTSV1LCB
— PTSV2LCB

[PTASETINPUT--—-@

L PTAPOUTPUT----@

APPASSINPUTOHOST

—PBGET1BF

—PTAPBUFREL----@

e PTAPI—-—

APENDOFLINE

- APIVTFORMAT----

- APPREPARETEXT----@

-—-PTAPOUTPUT----@

— PTSV2LCB

—PTAFBUFREL----@

Figure G-2.

60474500 A

SUBROUTINES

APIVTFORMAT

l---PBGETlBF

PTAFSCANSPECSEQ

PTAFNULLMSG - none

PTAFALASTBUF - none

29

APSPECSEQ
-—PTAPBUFREL----@
__APPASS INPUTOHOST-—--
—APPREPARETEXT----@

| PTBREAK

—APRELOQUE---

—PNSGATH

—PTAQOBT----@

PTAPUPBREAK

PTAPENOUT----@

PTSV2LCB

PTAPBUFREL---.@

PTAPENOUT

PBCOIN

ASYNC TIP (sheet 5 of 8)

G-17

SUBROUTINES

®

PTAPEPLX - PBCOIN

@

APBRINGLINEDOWN

. ADEND IN-—-@
-—PTAPENOUT——@

—PTSV1LCB

| PTAPBUFREL -—-@
| APPRELOQUE

APLSPUT - PBLSPUT (ASYNC)

>
o
Q
o
)
<

PMCDRV

®

=

PCMDACTION -~ APPGARAM .

—PBCOIN APPGPARAM
—PBLSPUT (SVM) none
PTAREC
PBCOIN
BLTIMTBL

Figure G-2. ASYNC TIP (sheet 6 of 8)

G-18 60474500 A

-

APCMDRESP

— PTAPBUFREL—@
| APPREPARETEXT—-@

— PTMSQUE

— PTSV1LCB

—PTAPOUTPUT——-@

—-PTSV2LCB

APTERMTCB

— PTDELMS

—prapeUrREL—(6)
— APENDOUT——(22)
— APEND IN—-—@

——PTSV1LCB

- APRELOQUE

— PBLSPUT (SVM)

Figure G-2.

60474500 A

SUBROUTINES

PTAQOBT

PTAUTOINPUT -~ none

PTAPO —@

APTCBINIT

AFCMDACTION
PTASETINPUT ——@

APWTOBTERM - PTSV2LCB

9

PTAFICCHAR PTAFNULLMSG - none

PTASENDPROMPT -~ PBCOIN

(®

APLINESTATUS BLTIMTBL

APENDIN ——@

PBGET1BUF

PBLSPUT (SVM)

ASYNC TIP (sheet 7 of 8)

G-19

CALLS WITHOUT AN OPS LEVEL WORKLIST

PTATPTC - none

PTASNMUX (mux level entry, WLE switch)

APLSPUT----
pCDRv-——-@

Figure G-2. ASYNC TIP (sheet 8 of 8)

G-20

60474500 A

£ £

HASPTIP

PTHSMUXTIP ~ Mux level 2 workcode entry - converts mux level worklist to OPS
level HASP worklist

PTHSOPSTIP - OPS-level entry. Processes worklists from OPS-level (main HASP
processor)

(AOSMEN) - Enables line (sets LCB fields)
(AOSMDA) - Disables 1line
(AOSMTCB) -~ Checks for an ENQ block; process transmission

(AOSMDLTCB) - Terminates and releases TCB, passes terminate command to
command driver, notifies host

(MSGCONT) - Prepares RCB/SRCB
/RQP/ - Requests permission to send
/PG/ - Permission granted to send
/BCBERR/ - Bad BCB, brings line down
/CONT/ - Sends control record
/0,3,4,5/ - Purge record
(AOTIMEOUT) - Timeout handler
(AOQUEOUT) - Output handler
(MSGCMPLT - Message completed, return to caller
(ERROR) -~ Release buffer ~ return to caller
(ACK/NAK) - Sets good or bad completion value, returns to caller
(NMINDEND) - Ends input, returns to caller
(MMHARDER) - Hardware error, sets inop code and returns to caller
(BUFTHR) =~ No buffers (threshold reached), drops message
(FALL THROUGH) - End of switch: error
NAKTEST ~ If NAKs received after I/O, brings line down
FINDTCB - Finds TCB for stream (upline TCB location)

PTHSSENDCMD - Sends upline command to host (multileaving control; input
stopped)

STROPN - Checks if workstation device will accept data (wait-a-bit-check):
notifies host if it will

DELINK - Unlinks entry from data-list queue (DLQ)

60474500 A G-21

HASPGET - Removes entry from DLQ - i.e., gets buffer of data that is ready
to transmit

HASPPUT - Queues entries into DLQ (2 wds/entry)
HASPIO - Calls command driver (PBCOIN)

PUTBCBFCS - Sets up BCB and FCS for output
PTHSBCBFCS - Sets up BCB and FCS

PTTHASP - Output text processing - calls PTTPINF
GENDATA - Sets up buffer prior to PTTPINF call
WRAPUP - Cleans up data transfer to HASP workstation

BRINGLINEDOWN - Terminates a HASP workstation due to errors - sends terminal
command to mux, notifies host

ERRCHK - Checks for errors in I/O transfer - mark line down if necessary
CHKCMD - Parses CMD blocks from host for a HASP TCB

PREOUTPUT - Gets next entry in TCB queue and starts processing (downline
switch)

POSTOUTPUT - Cleans up output transmission (PBPOPOI)
HSPR4INP - Input text processing (second pass processing of input data)
HSPOSTINP - Cleans up input transmission (PBPIPOI) for input text processing

HSPTCBUILD - Initializes TIP-dependent TCB fields - direct call from SVM
during configuration of terminal

G-22 60474500 A

WORKCODES

HASP Cases
PTHOPSTIP (OPS entry; switch on L~ (MSGCONT) -FINDTCB - none
workcode in WLE) (input
processing) [~(RQP)* FINDTCB -
Cases none
| (AOSMEN) - none HASPPUT -
(enable line) none
| (AOSMDA) BRINGLINEDOWN - (PG) * FINDTCB -
(disable none
line)
|-(BCBERR)—~BRINGLINE=
— (AOSMTCB)—T HASPIO—-@ DOWN
(build
TCB) F-ERRCHK——@ -(CONT) * - none
-PBRELZRO L.(0,3,4,5)* - none
“-BRINGLINEDOWN
—-(AOTIMEOUT)-—
t——(AOSMRCTCB or (timeout
AOSMDLTCB)—T PBRELZRO control) LERRCHK 9
(delete,
terminate, »—ERRCHK—-@ LBLTIMTBL
or recon-
figure TCB) -HASPIO——-@ L PBRELZRO
L-DEL.INK - none L--(AOQUEOUT)—ﬂ-PREOUTPUT
(queue
_PBLSPUT (SVM) control) L.BLTIMTBL
O —(MSGCMPLT) —7PBRELZRO
A (message
completed)
—(ERROR }————~PBRELZRO

o)

*RCB Switch

Figure G-3. HASP TIP (sheet 1 of 4)

60474500 A G-23

WORKCODES CALLS WITHOUT AN OPS-LEVEL WORKLIST

(a1) PTHSMUXTIP (mux 2 interrupt entry)
— (ENQ ~PBRELZRO
ACK
NAK) L.PBLSPUT (HASP)
(HASP block [
reply) HASPTCBUILD (direct call from SVM)
| — (NMINEND) e _none

(end input)

| — (MMHARDERR) 9

(hardware
error)
| (BUFTHR) ERRCHK—@
(buffer I
threshold PBRELZRO

End Cases; Start
Main I/0 Patch

HASPIO—@

ERRCHK—-@

105

—NAKTEST——-@
- POSTOUTPUT —@
|- HASPGET —-@

—PBLSPUT (SVM)

—~PBRELZRO

L BRINGLINEDOWN

Figure G-3. HASP TIP (sheet 2 of 4)

G-24 60474500 A

HASPGET (text process output)

| —DELINK - none

—-GENDATA—@
——PTTPHASP—@

~—PBGET1BUF

iSPR4INP (2nd pass - text process
input)

—PBCLR
L—PTTPINF (text processor)
—=PBREL1BF

— PBRELCHN

— PTBREAK

—=PTIVTCMD

— PBRELZRO

——PREOUTPUT

—-PBPIPOI

__nsposT INP
_.PTHSENDCMD—-@

CHKCMD (process cmds)
—=PBRELZRO
— PTBACK

— PTHSSENDCMD ——@

L-PTIVTCMD

Figure G-3.

60474500 A

SUBROUTINES

HASPIO (mux interface)

Case

—(ACKCMD) PTREGL
GENDATA—@
PTTPHASP-—-@
PBCOIN

—=(NAKCMD) PBCOIN

—— (OUTCMD) PTREGL
PBOIN (set up
for output
processing)

l——(INPCMD) PBCOIN (set up
for input
processing)

t——(TERMIO)———"PBCOIN

l—(NOCMD) =~ none

GENDATA PUTBCBFCS
PBGET1BF
STROPN

PREOUTPUT PBPROPOI

HASPPUT - none

CHKCMD _..@

HASP TIP (sheet 3 of 4)

G-25

SUBROUTINES

PTTPHAS p~—-———1—— PTBACK P£STOUTPUT
— PTBREAK —PBRELZRO
— PBCLR —PBPOPOI
— PTTPINF (text —-PREOUTPUT
processor)
—-HASPPUT - none
— PBREL1BF

t— PTHSBCBFCS - none

— PBRELCHN STROPN
- PBRELZRO — PBRELZRO
L PBGETIBUF —PTSTOP
—PTSTRT
@ ~DELINK - none
ERRCHK

|__HASPPUT - none
BRINGL INEDOWN
HASPIO

PBRELZRO WRAPUP
HASPIO—@
? PBRELZRO
BRINGLINE