
r;:J £:'\ CONT~OL DATA
\::J ~ CO[\.PO~TION

NETWORK PRODUCTS

60474500

COMMUNICATIONS CONTROL PROGRAM

VERSION 3

SYSTEM PROGRAMMERS
REFERENCE MANUAL .

coc® COMPUTER SYSTEMS

255X SERIES

NETWORK PROCESSOR UNIT

HOST OPERATING SYSTEM

NOS1

REVISION RECORD
REVISION* DESCRIPTION

A Initial Release. CCP Version 5, PSR Level 504

Publication No.
60474500

Address comments concerning this
manual to:

*Revision letters I, O, Q and X are not used.
CONTROL DATA CORPORATION
Publications and Graphics Division
P.O. Box 4380-P

© 1979

by Control Data Corporation

Printed in the United States of America

ii

Anaheim, CA 92803

or use Comment She£>t in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the page number indicates
pagination rather than content has chanqed.

Page Rev Page Rev Page Rev

Cover
Evaluation Sheet
Title Page
ii thru xiii A
1-1 thru 1-18 A
2-1 thru 2-13 A
3-1 thru 3-8 A
4-1 thru 4-30 A
5-1 thru 5-26 A
6-1 thru 6-54 A
7-1 thru 7-26 A
8-1 thru 8-15 A
9-1 thru 9-24 A
10-1 thru 10-17 A
11-1 thru 11-23 A
12-1 thru 12-16 A
A-1 thru A-13 A
B-1 thru B-6 A
C-1 thru C-34 A
D-1 thru D-8 A
E-1 A
F-1 thru F-2 A
G-1 thru G-37 A
H-1 thru H-92 A
I-1 thru I-13 A
Index-! thru

Index-19 A
Comment Sheet
Mailer
Back Cover

60474500 A iii/iv

PREFACE

This manual describes those externals of the Communications Control Program
(CCP), Version 3.1, necessary to aid a systems programmer in making minor
modifications to standard CCP software. The manual also provides a
sufficient basis to understand those standard programs which interface to
any new terminal interface program (TIP) that the user writes for a
nonstandard terminal. CCP is used with the enc® 255x Series Network
Processor Unit (NPU).

This manual is intended for the user who is familiar with CCP basic
functions and the role of CCP in network processing; these functions are
described in the CCP 3 Reference Manual. The user should be experience with
the PASCAL programming language and the CYBER CROSS support system
software. The user should also be familiar with the state programming
language.

CONVENTIONS USED

Throughout this manual, the following conventions are used in the
presentation of statement formats, operator type-ins, and diagnostic
messages:

ALN Uppercase letters indicate words, acronymns, or mnemonics either
required by the network software as input to it or produced as
output.

aln Lowercase letters identify variables for which values are
supplied by the NAM or terminal user, or by the network software
as output.

ooo Ellipsis indicates that the omitted entities repeat the form and
function of the entity last given.

Square brackets enclose entities that are optional; if omission
of any entity causes the use of a default entity, the default is
underline.

Braces enclose entities from which one must be chosen.
These delimiters indicate elements of the virtual terminal
format.

Unless otherwise specified, all references to numbers are to decimal
values; all references to bytes are to 8-bit bytes; and all
references to characters are to 8-bit ASCII-coded characters.

60474500 A v

RELATED MANUALS

The publications listed below contain additional information on both the
hardware and software elements of the 255x Series Network Processor Unit and
the CCP and related software. These publications can be ordered from
Control Data Literature and Distribution Services, 304 North Dale Street,
St. Paul, MN 55103.

vi

Publication Title Publication Number

Network Products
Communciations Control Program
Version 3
Reference Manual 60471400

CYBER CROSS System Version 1
PASCAL Reference Manual 96836100

CYBER CROSS System Version 1
Macro Assembler Reference Manual 96836500

CYBER CROSS System Version 1
Micro Assembler Reference Manaul 96836400

CYBER CROSS System Version 1
Link Editor and Library Maintenance Programs
Reference Manual 60471200

Network Products
UPDATE Reference Manual 60342500

State Programming
Reference Manual 60472200

Macro Assembler Reference Manual
Mass Storage Operating System
NOS Version 1
Installation Handbook 60435700

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or
parameters.

60474500 A

1. OVERVIEW

CCP Design
Priority Processing at

the Interfaces
OPS-Level Processing

Downline Message Processing
Upline Message Processing
CCP Features
CCP Modular Structure
CCP Programming Methods

Block Protocol
Block Routing
Point of Interface

Programs
Direct and Worklist Calls
Direct Calls on Firmware

Level
Special Call to Multiplex

Subsystem
Special Call to Firmware

Interface
Communications Using PASCAL

Globals (Tables)
Line Interface Handling
CCP Programming Languages

2. INITIALIZING AND
CONFIGURING THE NPU

Initializing the NPU
Phase 1 Initialization
Phase 2 Initialization

Pinit
Load and Dump NPU
Configuring the NPU

Changing/Deleting Logical
Connections

Link Configuration
Configure Logical Link
Logical Link Status SM
Enable Trunk SM

Line Configuration
Configure Line SM

Configured Line Deletion
Terminal Configuration

Configure Terminal SM
TCB Reconfiguration

TCB Deletion

60474500 A

SM

CONTENTS

1-1

1-3

1-3
1-4
1-5
1-5
1-5
1-9
1-9
1-9

1-12

1-12
1-13

1-14

1-14

1-14

1-15
1-15
1-17

2-1

2-1
2-1
2-2
2-2
2-4
2-4

2-5
2-5
2-7
2-7
2-7
2-8

2-11
2-12
2-12
2-13
2-13
2-13

3. FAILURE, RECOVERY,
AND DIAGNOSTICS

Host Failure
Host Recovery
NPU Failure
NPU Recoverv
Halt Codes and Dump

Interpretation
Logical Link Suspension
Logical Link Recovery
Trunk Failure
Trunk Recovery
Line Failure
Line Recovery
Terminal Failure
Terminal Recovery
Inline Diagnostic Aids

Alarm Messages
CE Error Messages
Statistics Messages

4. BASE SYSTEM SOFTWARE

System Monitor
Buffer Handling

Obtaining a Single Buffer
Releasing a Buffer

Releasing a Single Buffer
Releasing Several Buffers

Testing Buffer Availability
Buff er Copying
Other Buff er Handling

Routines
Timing Services
Direct Calls
Worklist Services

Making a Worklist Entry
Extracting a Worklist Entry

Basic Interrupt Processing
Macrointerrupts

Interrupt Priority
User Interface

Microinterrupts
PASCAL Globals
Standard Subroutines

Calling Macroassembly
Language Programs from
PASCAL Programs

3-1

3-1
3-1
3-2
3-2

3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-6
3-7
3-7

4-1

4-1
4-2
4-6
4-7
4-7
4-7
4-7
4-7

4-8
4-8
4-9

4-10
4-12
4-13
4-13
4-13
4-14
4-15
4-16
4-17
4-17

4-17

vii

Defeating Type-Checking
in PASCAL Procedure
Calls

Handling Routines
PBFMAD
PBFMAH
PB MAX
PB MEMBER
PBMIN
PB TOAD
PBTOAH

Maintaining Paging Reqister
PBSTPMODE
PBPSWITCH
PBRDPGE
PBPUTPAGE
PBGETPAGE
PB18ADD
PB18BITS
PB18COMP

Block Functions
PBCLR
PB COMP

Set/Clear Protect Bits
PBSETPROT
PBCLRPOT

Miscellaneous Subroutines
PBFILEl
PB HALT
PB ILL
PB LOAD

Program Execution Timers
Console Support

General Peripheral
Processinq

Console Support Services
Console Worklist Entry
Console Control Messages

5. MULTIPLEX SUBSYSTEM

Hardware Components
Multiplex Loop Interface

Adapter
Loop Multiplexers
Communications Line Adapters

System and User Interfaces
System Interfaces

Multiplex Level 1
(Firmware)

Multiplex Level 2 (PMWOLP)
OPS Level

User Interfaces

viii

Command Driver Interface
Common Multiplex

Subroutines for TIPs

4-19
4-19
4-20
4-20
4-20
4-20
4-21
4-21
4-22
4-22
4-22
4-22
4-23
4-23
4-23
4-23
4-24
4-24
4-24
4-24
4-24
4-25
4-25
4-25
4-25
4-25
4-26
4-26
4-26
4-27
4-27

4-27
4-28
4-29
4-29

5-1

5-1

5-3
5-3
5-3
5-3
5-3

5-4
5-4
5-8
5-8
5-9

5-19

6. NETWORK COMMUNICATIONS
SOFTWARE

Major Functions
Block Protocol

Block Format
Address

Service Channel
Block Types

BLK Block
MSG Block
Back Block
CMD Block
BRK Block
STP Block
Start Block
RST Block
Init Block
Bad Blocks Detected by NPU
ACTL Block

Data Block Clarifier
Routing

Directories
Destination Node

Directory
Source Node Directory
Connection Number

Directory
Routing Process
Altering Directories

Service Messages
Task Selection in the

Service Module
Initial Service Message

Processing
Validating and Timing Out

Service Messages
Generating and Dispatching
Configurinq, Enabling,

Disabling, Deleting
Control Blocks

Generating and Sending
Status Service Messages
Logical Link Status

Request Service
Message

Trunk Status Request
Service Message

Line Status Request
Service Message

Line Count Request
Service Message

Terminal Status Request
Service Message

Generating and Sending
Statistics Service
Messages

6-1

6-1
6-1
6-2
6-2
6-6
6-6
6-6
6-6
6-6
6-7
6-7
6-7
6-7
6-8
6-8
6-8
6-8
6-9

6-11
6-12

6-12
6-12

6-12
6-12
6-15
6-15

6-16

6-17

6-17
6-17

6-19

6-19

6-19

6-19

6-20

6-21

6-21

6-21

60474500 A

Generating and Sending
Broadcast SMs

Processing Overlay Programs
and Overlav Data
Processina Force Load

Command
CE Error and Alarm Messages
Common TIP Subroutines

Point-of-Interface
Routines
PBPIPOI and PBIIPOI
PBIOPOI - Internal

Output POI
PBPROPOI - Preoutput POI
PBPOPOI - Postoutput POI

Standard TIP Subroutines
Output Queueing - PBQlBLK

and PBOBLKS
Upline Break - PTBREAK
Downline Break
Stop Transmission to a

Terminal - PTSTOP
Interface to Text

Processing Firmware -
PTTPINF

Finding Number of
Characters to be
Processed -·PTCTCHR

Saving and Restoring
LCBs - PTSVxLCB and
PTRTxLCB

Common Return Control
Routine - P~RETOPS

Common TIP Regulation -
PTREGL

Saving and Restoring
Registers
PBBEXIT - Save Rl and R2
PBAEXIT - Restore Rl

and R2
Virtual Terminal Transform

Batch Virtual Terminal
Batch Virtual Terminal

Characteristics
BVT Block Protocol Usage

Interactive Virtual
Terminal
Interactive Virtual Ter­

minal Characteristics
!VT Block Handlinq at

Host Interface
I-VT Block Protocol Usage
IVT Block Handlinq

for Communications
Supervisor

Commands for Changinq
Terminal Parameters

60474500 A

6-22

6-22

6-22
6-23
6-23

6-23
6-23

6-23
6-24
6-24
6-24

6-24
6-28
6-28

6-28

6-28

6-29

6-29

6-29

6-29

6-30
6-30

6-30
6-31
6-31

6-32
6-32

6-41

6-41

6-47
6-47

6-49

6-51

7. HOST INTERFACE PROGRAM

Transaction Protocol
Transfer Functions
Directives Used
Transfer Initiation
Transfer Timinq
Error Processing

Host/NPU Work Formats
Coupler Interface Hardware

Programming
Coupler R~gister Use
Programming the Coupler By

Use of Function Codes
Host Function Commands
NPU Function Commands

HIP Functions
Single Word Transfers

(Control)
Multiple Character Data

Transfer (Block Transfer)
Contention for Coupler Use
Requlation of Coupler Use

Host Failure and Recovery
Error Checkinq and Timeouts
Host/NPU Interface Sequences
Buff er Format
HIP States

8. LINK INTERFACE PACKAGE
MODULE

Trunk Protocol
Checks and Retransmissions

Cyclic Redundancy Check
Transmit Functions

Unnumbered Frame
Supervisory Frame
Information Frame

Receive Functions
Trunk Enablinq and Disablinq
Trunk Failure}Recovery -

9. ASYNCHRONOUS (ASYNC) TIP

Hardware Considerations
Major Functions
Host Interface

Command Blocks
Terminal Conf iquration

User Interface
User Control Messaqes

Terminal Class Command
Page Width Command
Page Length Command

7-1

7-1
7-1
7-2
7-2
7-7
7-7
7-7

7-8
7-8

7-10
7-10
7-12
7-12

7-14

7-14
7-17
7-18
7-19
7-19
7-19
7-25
7-25

8-1

8-1
8-11
8-11
8-11
8-11
8-12
8-12
8-12
8-13
8-14

9-1

9-1
9-2
9-3
9-3
9-4
9-4
9-5
9-5
9-6
9-6

ix

Check Parity Commann
Cancel Character Command
Backspace Character

~ommand

Abort Output Line Command
User Break 1 Character

Command
User Break 2 Character

Command
Control Character Command
CR Idle Count Command
TiF Idle Count Command
Special Edit
Transparent Text Delimiter

Command
Select Input Device

Command
Select Output Device

Command
Character Set Detect
Echoplex Mode Command
Operator Messaqe Command
Page Wait Command

Access Control Keys
Terminal On/Off and

Break Control
User Input Message Format
User Output Message Format

Data Transforms
Parity Options
Character Mode Input

Processinq
Logical Lines
Physical Lines
Block Mode Support
Type Ahead Mode
Keyboard Input
Paper ~ape Character

Mode Input
Transparent Mode Input

Processinq for Keyboard
and Paper Tape

Character Mode Output
Processinq
Logical Line Aborting
Printer Output
CRT Output
Paper Tape Output

Transparent Mode Output
Processing for Printer,
CRT, and Paper Tape

Loqical Line Aborting
Error Handlinq
Regulation
Autorecoqnition

x

9-6
9-7

9-7
9-7

9-7

9-7
9-8
9-8
9-8
9-8

9-8

9-9

9-10
9-10
9-10
9-10
9-10
9-11

9-11
9-11
9-12
9-15
9-15

9-15
9-15
9-16
9-17
9-17
9-17

9-19

9-20

9-20
9-21
9-21
9-21
9-21

9-22
9-22
9-22
9-22
9-23

10. MODE 4 TIP

Hardware Considerations
Major Functions
Data Format for Mode 4
Host Interface
Terminal Configuration
IVT Interface
Card Reader Interface
Printer Interface
Data Transforms

Downline IVT Transforms
Upline !VT Transforms

Autopoint Mode
Transparent Mode
User Break l/Break 2
Page Wait
Page Size
Code Conversion
Cursor Control
Message Type Indicators
E Codes

Upline and Downline BVT
Transforms

Error Handling
Short-Term Error

Processing
Long-Term Error Processing
Duplicate Write Errors

Load Regulation
Autorecoqnition
Unsupported Mode 4 Protocol

Features

11. HASP TIP

Hardware Considerations
Major Functions
HASP Protocol
Terminal Operational

Procedure
Multileaving Block

Descriptions
Control Blocks

Acknowledge Block
Negative Acknowledge

Block
Enquiry Block
Idle Block

Control Bytes for Data
Blocks
Block Control Byte
Function Control Sequence
Record Control Byte

10-1

10-1
10-1
10-2
10-2
10-5
10-5
10-6
10-6
10-6
10-7
10-9
10-9
10-9

10-10
10-10
10-10
10-10
10-10
10-11
10-11

10-11
10-14

10-14
10-15
10-15
10-16
10-16

10-17

11-1

11-1
11-2
11-3

11-5

11-6
11-6
11-7

11-7
11-7
11-7

11-7
11-8
11-8

11-10

60474500 A

String Control Byte
Data Block Description

Operator Console Blocks
End-of-File Blocks
FCS Change Blocks

User Interface
Workstation Startup and

'I'ermination
Work Initialization
Communications Line

Initialization
Sign-on Block
Siqn-off Block

Host Interface
Code Conversion

HASP/BVT Format Conversion
Compressed Data (Upline)
Compressed Data

(Down line)
EOI/EOR Codes
Uncompressed Data
Forms Control Codes
Punch Banner Cards

HASP/IVT Format Conversion
Error Handling

CRC-16 Error
Illegal Block Make-up

Error
Unknown Response Error
Timeout Error
Block Control Byte Error

Regulation and Flow Control
Upline Regulation

A Glossary
B CCP Mnemonics
c Service and Command

Message Summary
D Block Protocol Summary
E Sample Main Memory Map

for NPU

60474500 A

11-11
11-12
11-12
11-13
11-13
11-13

11-14
11-14

11-14
11-15
11-15
11-15
11-16
11-17
11-17

11-17
11-17
11-18
11-18
11-18
11-18
11-19
11-20

11-20
11-20
11-20
11-21
11-22
11-22

Downline Data Flow Control 11-22
HASP Postprint 11-22

12. STATE PROGRAMS

Execution of State Programs
Classes
Components of a State

Program
Functions

Input State Programs
Firmware Interface to

Input Data Processor
Modem State Program

Interface to Input
Data Processor

Text Processing State
Program Interface to
Input Data Processor

Text Processing State
Programs
Firmware Interface to

Output Data Processor
Modem State Programs

Firmware Interface to
Modem State Programs

Multiplex Level Status
Handler Interface to
Modem State Programs

Input State Program
Interface to Modem
State Programs

Macroinstructions

12-1

12-1
12-2

12-4
12-4
12-4

12-5

12-5

12-6

12-6

'12-7
12-8"

12-9

12-9

12-10
12-10

APPENDIXES

A-1 F CCP Naming Conventions F-1
B-1 G Standard TIP and SVM

Trees G-1
C-1 H Principal Data Structures H-1
D-1 I On-line Debugging Aids I-1

E-1

INDEX

xi

1-1
1-2

1-3

1-4

2-1

2-2

2-3

3-1

4-1
4-2

4-3
5-1

5-2

5-3

5-4
5-5

5-6
5-7

5-8

5-9

5-10

6-1

6-2
6-3

6-4

6-5

6-6

xii

Role of NPU in a Network
Priority and Nonpriority

Tasks in CCP
Downline Message

Processing
Upline Message

Processing
NPU Conf iquration

Sequence
Configuring Logical

Links Flowchart
Line/Terminal

Configuration Flowchart
Format of Alarm, CF

Error, and Statistics
Messages

OPS Monitor Table Format
Buffers Formats and

Stampino
Worklist Organization
Basic Elements of the

Multiplex Subsystem
TIP and LIP/Multiplex

Worklist Communications
Command Packet General

Format
Control Command Format
Enable Line Command

Format
Input Command Format
Input After Output

Command Format
Terminate In?ut Command

Format
Terminate Output

Command Format
PTLINIT Relationships

with Major CCP Modules
Sample Block Data Paths

between NPU and Host
Block Header Format
Block Header Format for

Delivery Assurance
Data Block Clarifier

for CCP
Routing Directories

1-2

1-4

1-6

1-7

2-4

2-6

2-9

3-5
4-4

4-5
4-11

5-2

5-5

5-9
5-11

5-12
5-15

5-17

5-18

5-18

5-24

6-3
6-4

6-10

6-11

Format 6-13
Simplified Routing

Flowchart for PBSWITCH 6-14

FIGURES

6-7 Service Message
General Format

6-8 Flowcharts for
Important Common
TIP Subroutines

6-9 Structure of a TCB
Queue

6-10 Use of the BVT Block

6-11

6-12

7-1
7-2

7-3

7-4
7-5

7-6

8-J,.

Syntax 'T'ahle
Sample CYBER Job Stream

Card Inputs for BVT
Data Handling

Format for Terminal
Class, Page Width,
Page Length Messages

Coupler I/O Transactions
I/O Transaction

Contention at the
Coupler

OPS and Interrupt Levels
for tlie HIP

Coupler Register
Host Interface Protocol

Sequence, Host Side
Host Interface Protocol

Sequence, NPU Side
Simplified Trunk

Operation

6-18

6-25

6-27

6-38

6-40

6-50
7-3

7-5

7-6
7-9

7-20

7-22

8-2
8-3
8-4

Frame and Subblock Format
Sample Frame Formation
Sample Upline Message

8-2
8-4
8-6

8-5

8-6

8-7

Transmission Over a
Network Link

Sample Downline Message
Transmission Over a
Network Link

Frame Construction
Flowchart

LIDLE or LINIT Frame
Format

10-1 Mode 4 Protocol Message
Formats

11-1 Typical HASP
Multileaving Data
Transmission Block

11-2 Sign-on Block Format
11-3 Format of Block Control

Byte Error Block
12-1 Locating a State

Process

8-8

8-9

8-10

8-15

10-3

11-9
11-15

11-21

12-3

60474500 A

1-1
1-2

1-3

3-1

4-1
4-2

4-3
4-4
4-5

5-1

5-2

5-3

5-4

5-5

6-1
6-2
6-3

6-4
6-5
6-6

7-1

7-2

CCP Modules
Support Programs for

TIPS
Prine ipal Data

Structures
In-Line Diagnostic

Service Messages
OPS Monitor Table
Interrupt State

Definitions
Interrupt Assignments
Standard Subroutines
NPU Console Control

Commands
Multiolex 2 Level

Worklists
TIP/LIP OPS Level

Worklists
Optional Modem/Circuit

Functions
PTCLAS Wor klist

Analysis and Action
PTLINIT State

Transition Table
Block Types
BVT Block Syntax
Formscontrol Values

for BVT Blocks
Format Effectors
IVT Block Syntax
Terminal Parameters as

Used by Standard T!Ps
Coupler Status Register

Bit Assignments
Orderword Register Code

60474500 A

1-10

1-11

1-16

3-6
4-3

4-15
4-lfi
4-18

4-?.~

5-6

5-7

5-13

5-22

5-25
6-5

6-34

6-39
6-42
6-43

6-54

7-11
7-12

TABLES

7-3
7-4
7-5
7-6
7-7

8-1

9-1
9-2

9-3

9-4
9-5

10-1
10-2

10-3

10-4

10-5
10-6

10-7
11-1

11-2

11-3

12-1

NPU Status Word Codes
Address Register Code
PPU Function Commanas
NPU Function Commands
HIP States and

Transitions
Comparison of Local and

Local/Remote Networks
CMD Blocks for Async TIP
rrransforms for Embedded

FEs
Preprint and Postprint

FEs for Asvnc TIP
Paritv Handlinq
Autorecoqnition in

Asvnc TIP
Mode 4 Nomenclature
CMD Blocks for Mode 4

Protocol
Downline IVT Transforms

for Mode 4
Downline IVT FE

Transforms
E-Codes
Downline BVT Transforms

for 200 UT Printer
Upline BVT Transforms
HASP Protocol Mnemonic

Definitions
HASP Significant EBCDIC

Characters
Downline IVT FEs for

HASP rrerminals
State Program

Macroinstructions

7-13
7-14
7-15
7-H

7-26

8-3
9-3

9-9

9-14
9-16

9-24
10-2

10-4

10-8

10-8
10-12

10-13
10-13

11-4

11-6

11-19

12-11

xiii

OVERVIEW 1

................ 11111111 ,,,,.._ llWl'I ~-----------..... ~

This section describes Communications Control Program (CCP) on a conceptual
level. The description gives the programmer an overview of how CCP
functions in a Network Processor Unit (NPU). For a more complete
description of how CCP functions in a network, refer to the CCP 3 Reference
Manual.

CCP provides the software necessary to process data (messages) through the
network communications portion of a Control Data network. The network
communication functions that are moved from the host (a CYBER 70/170) to the
NPU allow an application program in the host to process data as if program
was connected to a virtual terminal that was connected directly to a host
port. Since virtual terminals must be either batch or interactive, host
processing becomes almost independent of terminal type.

The network communications tasks that have been moved into the NPU are of
four types:

• Multiplexing data to and from the terminals

• Demultiplexing data and storing it in buffers for buffered high-speed
transfers to and from the host

• Converting all terminal protocols into either an interactive virtual
terminal protocol or into a batch virtual terminal protocol

• Regulation of the volume of message traffic handled

CCP is divided into several major subsections to handle these tasks. See
figure 1-1.

• Base modules to provide NPU control and general services to other
major subsections

• Network communications subsystem modules (internal processor and
service module) to provide routing and network configuration services

• A host interface (HIP and coupler) subsection

• Terminal interface (TIP or LIP) subsections for each major class of
terminal, including an interface to a remote NPU and the interface
from a remote NPU to a local NPU. (A local NPU is coupled directly -
by hardware - to the host. Any NPU lacking this coupler is a remote
NPU.) Terminal interfaces are handled by a TIP; NPU to NPU
interfaces are handled by a LIP at each end of the interface.

• A multiplex subsystem that provides the hardware and software
interface between the NPU and the various types of terminals (it also
provides the interface between local and remote NPUs)

60474500 A 1-1

HOST
cs
NS

c
0
u
p
L
E
R

CS - COMMUNICATIONS
SUPERVISOR

NS - NETWORK
SUPERVISOR

SVM - SERVICE
MODULE

4-NODE NETWORK

NS = 0
cs = 1

LOCAL NPU = X

REMOTE NPU = Y

LOCAL NPU

INTERNAL
PRO­
CESSOR

REMOTE NPU

INTERNAL---­
PRO-
CESSOR

LIP

MS
• u u •

LB •

TERMINAL

• • •
TS -----
1 Y TERMINAL
p s
LT
EE
XM

MS
uu
LB
TS
IV TERMINAL
PS
LT • •
EE • • • •
XM

TERMINAL

M-375

Figure 1-1. Role of NPU in a Network

1-2 60474500 A

CCP passes ASCII messages to and from the host in interactive virtual
terminal (IVT) or batch virtual terminal (BVT) format. CCP passes messages
to and from the terminals in a code and format appropriate to the terminal.
Downline messages (output from the host) are switched to the proper terminal
and translated from ASCII IVT/BVT to terminal format and code. Upline
messages are normally received from the terminals, converted to IVT/BVT
ASCII, and passed to the host.

NOTE

A transparent·mode is available. In this case, the message
remains in the terminals code and format throughout the
network.

CCP DESIGN

CCP can be classified as a responsive (driven) system rather than an active
system. The external stimuli that drive the system come (1) from the host
in the form of downline messages and commands and (2) from the terminals in
the form of upline messages. At the two principal interfaces (HIP or LIP on
the upline side; multiplex subsystem on the downline side), hardware and
formware do much of the preparation for a message or command transfer.

PRIORITY PROCESSING AT THE INTERFACES

At the interfaces, CCP is largely interrupt-driven and operates at priority
levels. Interrupts are processed immediately unless a higher priority task
is already being performed. The interrupt can be processed completely at
that time. However, many tasks take so much time that it is preferrable to
defer part of the task processing until later. This is done by generating a
worklist that defines the parameters for the task and then queuing that
worklist (task request) to the module that must process it. The multiplex
subsystem works this way and has its own worklist processor to schedule the
appropriate modules at a priority level.

The principal priority tasks in order of decreasing importance are as
follows:

• Memory errors
• Multiplex loop errors
• Host coupler events
• Real-time clock count
• Output data demands (multiplex subsystem)
• Input data frame received (multiplex subsystem)

The output of the priority level is either a message that the NPU can route
to the specified destination, or a command for the NPU which CCP interprets
to change its own processing mode.

Some major modules operate largely on the priority level (the multiplex
subsystem, for example); others have portions that operate on a priority
level while the remainder of their processing is on a nonpriority (OPS)
level (HIP, TIPs, for example). A few of the major modules do almost all of
their processing on the OPS level (internal processor and service module).

60474500 A 1-3

OPS-LEVEL PROCESSING

When no priority tasks are pending, CCP processes OPS-level tasks. There is
an OPS Monitor which assigns tasks by scanning all the nonpriority
worklists. These worklists are queued to one or another of the major system
modules. Each of these major modules (such as a TIP, LIP, HIP, internal
processor, or the service module) has its own internal worklist scanner that
determines the exact task to be performed on the basis of a workcode in the
worklist.

OPS-leveJ worklists can originate either from a priority task or from
another nonpriority task. For example, a downline message from the host is
first handled on a priority basis as the HIP and the coupler set up to
receive the message and actually input the message into the assigned buffers
in the NPU. When the message (or part of a message called a block) has been
completely received, CCP is ready to process it. This block is passed on a
nonpriority basis to the internal processor with a worklist. The internal
processor routes the block to the proper TIP with a worklist. The TIP
passes the message (still at OPS-level) to the multiplex subsystem. The
multiplex subsystem sets up the transfer on the OPS level and then outputs
the message to the terminal, one character at a time, on a priority basis.

Figure 1-2 shows the processing levels for most of the major modules.

PRIORI~{

NONPRIORITY'
(OPS LEVEL) t

MULTIPLEX
HIP SUBSYSTEM TIPS

REAL- COUPLER 1/0 PROCES- STATE
TIME CLOCK INTERRUPT SING (WORK- PROGRAMS

HANDLING LISTS) (ASYNC 1/0)

-----1-----...., 1-----~
TIMED
EVENTS MODULE MULTIPLEX MODULE
(DELAYED CONTROL SUBSYSTEM CONTROL
OR CONTROL
PERIODIC)

OPS MONITOR INTERNAL SERVICE

BASE MODULES PROCESSOR MODULE

M-379

Figure 1-2. Priority and Nonpriority Tasks in CCP

1-4 60474500 A

DOWNLINE MESSAGE PROCESSING

Downline messages originate serially from the host in blocks. A block is a
full message or one part of a message treated as a unit. The block is
passed to the NPU via the host interface program (HIP), which is responsible
for all transfers across the coupler. See figure 1-3. The HIP passes the
block to an internal processor, which examines the block header to gain
information about the terminal receiving the message. Each category of
terminal is serviced by one of the terminal interface programs (TIPs). The
internal processor passes the message to the appropriate TIP. The TIP
processes the message (translates it to terminal code and format) and passes
the message to the command driver in the multiplex subsystem. Before this,
the TIP requests the multiplex subsystem to prepare the NPU-to-terminal line
for a transmission.

At the multiplex subsystem, the output message block is multiplexed (along
with other message blocks in the process of being transmitted to the
terminals) and sent to the terminal one character at a time. Actual timing
of the character transmission depends on an output data demand (ODD) signal
sent by the communications line adapter (CLA) to the NPU. An output
processor in the multiplex subsystem handles this activity. The host is
informed of message transmission progress twice: first, when the block is
completely accepted by the NPU, and again after the block is completely
transmitted to the terminal.

UPLINE MESSAGE PROCESSING

Upline messages (input to the host) originate at the terminals and are sent
one character at a time to the input loop of the multiplex subsystem. An
input processor picks up all characters and stores them in a temporary
buffer called the circular input buffer. The TIPs are responsible for
furnishing the multiplex subsystem a set of programs which are used to
demultiplex the data into line-oriented input buffers. Code and format
conversions are performed along with the demultiplexing. Since block size
is a CCP/host build-time parameter, any message that exceeds the maximum
block size is divided into blocks. Each block is then treated as a separate
message unit by CCP. The message is converted from terminal code and format
to ASCII IVT/BVT. (A transparent mode is also available for upline
messages, but it is restricted to interactive terminals.) After a complete
block has been assembled, the multiplex subsystem notifies the appropriate
TIP, which finishes processing the message. Then the TIP passes the message
block to the HIP, which in turn passes the block to the host. Terminals are
notified of processing progress according to the demands of the terminal
protocol. Figure 1-4 shows simplified upline message processing.

CCP FEATURES
CCP provides several message processing features:

• IVT/BVT relieves host application programs of needing to handle
terminal protocols. The TIPs convert messages to/from ASCII IVT/BVT
for the host.

60474500 A 1-5

HOST c
0 r-- u

I PPU p
L-- L

E
R

1-6

MESSAGE
HOST ROUTING
INTERFACE (INTERNAL
PACKAGE PROCESSOR)

NETWORK PROCESSOR UNIT

MESSAGE
TRANSLATION
AND CONTROL
(TERMINAL
INTERFACE
PACKAGE)

OUTPUT
DRIVER
MULTIPLEX
SUB-
SYSTEM)

MLIA
OUTPUT
MULTIPLEX
LOOP

TERMINAL • • • TERMINAL

1 3 Downll·ne Message Processing Figure - •

M-376

60474500 A

TERMINAL

•
•
•

TERMINAL

r ---, r-­
lc1RCULAR !.--.! MLIA

INPUT
MUX
LOOP

INPUT a--+-•
I BUFFER l::::r - -· : ~I 11-.....1w 1-~_.. INTERNAL
L ___ J ~~__l I TIPS PROCESSOR

NETWORK PROCESSOR UNIT

LINE-ORIENTED
INPUT
BUFFERS

Figure 1-4. Upline Message Processing

HIP

COUPLER

I PPU I L ___ ..J

HOST

M-377

60474500 A 1-7

1-8

• Block protocol re]ieves the NPU and the host of upline message length
restrictions. Any size input message is accepted; when the normal
maximum number of input characters has been received (2048 bytes
including NPU-added header bytes), the block is declared full. It is
processed for shipment to the host and another block is started.
Blocks are designed so that the only block or the last block of a
message is clearly designated (MSG type block).

• The multiplex subsystem provides hardware and software which makes
the terminal hardware characteristics invisible to the TIPs. The TIP
needs to know only the terminal type.

• The NPU regulates its input (rejects incoming messages) under one of
several conditions - The entire NPU is short of assignable space
{buffers) for message processing - An individual TIP is using too
many buffers at any one time - An accept input/accept output flag is
being set by the NPU or by the host - Message priority is lower than
the current logical link regulation level.

In this way, the NPU rejects messages directed to it when those
messages might cause peak loading problems severe enough to stop the
NPU.

• Priorities exist so that time-critical tasks can interrupt non-time
dependent tasks. The time-critical tasks are concerned with either
the multiplex subsystem {input and output processing at the lines to
the terminals plus various errors that occur during this processing)
or the NPU console. Since the console is rarely used, these latter
interrupts have minimal system impact. The lowest priority is not
interrupt-driven. It is called the operations (OPS) level. Most
processing occurs on the OPS level.

• Programs are written in PASCAL or using state programming
instructions. (A few frequently used routines are written in
macroassembly language.) There is no correlation between language
used and operating priority. PASCAL was chosen for its simplicity of
use and because it is an effective language for manipulating table
entries. Much of the CCP processing depends on information saved in
tables. The OPS level of any program (TIP or otherwise) uses PASCAL
code.

•

For some purposes, it is more effective to write code on the firmware
level (also called multiplex-level processing). State programming
instructions are used for this. Such programs demulti-plex data and
translate code and format. Every TIP has at least two firmware level
programs: a downline text processing program and an upline input
state program.

The HIP does not use firmware programs directly; the LIP does not
have a text processing program. However, several of the general
support programs that are written in macroassembly language contain
portions that are written in firmware. These programs should not be
altered by any user.

Three methods of communication between modules are provided: direct
calls, queued calls (using worklists), and setting global variables
in tables, which are then accessed by other programs.

60474500 A

• A special program (LIP) handles communications between a local and a
remote NPU. The remote NPU handles most functions that a local NPU
handles in a system without a remote NPU. Downline blocks in the
local NPU are sent to the remote NPU by means of a special protocol
(CDCCP). The remote LIP reconverts the blocks to normal format and
passes them to the internal processor for normal routing and
processing by the TIPs, etc. The upline blocks are prepared in the
remote NPU as if for the HIP. Then the blocks are reformatted in
CDCCP protocol and sent to the local NPU. The LIP in the local NPU
reconstitutes the blocks and passes them to the HIP.

CCP MODULAR STRUCTURE
CCP can be considered as a group of generalized modules that provide
saervices for the TIPs, which interface the terminal protocol to the host
(block) protocol. Terminal-oriented programs are called Terminal Interface
Packages (TIPs). The modularization of CCP is shown in tables 1-1 and 1-2.

Most of CCP is always resident in the NPU. It is downline loaded from the
host. After loading is complete, there is additional communication between
host and CCP to configure all the tables which hold line-and
terminal-oriented information. A few programs use an overlay area (appendix
E) •

• On-line diagnostics, a series of closed loop tests available only if
the user has purchased a network software maintenance contract.

• Control for loading a remote NPU (if any exists) if this is the local
NPU.

CCP PROGRAMMING METHODS
CCP provides the interface for the network between terminal protocols and
the host (block) protocol. It also provides multiplexing to match the
high-speed block transfers at the host interface with the low-speed
character-by-character transfers at the line interfaces to the terminals.

BLOCK PROTOCOL

Block protocol defines three principal types of block:

• BLK and MSG blocks carry data. No block can have more than 1048
bytes. The host is responsible for block size downline; the TIPS
(input state programs) are responsible for block size upline. MSG
blocks carry a full message or the end of a message. BLK blocks
carry all segments of a message except the last or only segment.

• CMD blocks carry commands and status. The service module (SVM)
handles generalized commands. Some commands can also be directed to
and from TIPs; these do not use SVM.

• All other blocks carry communications protocol information such as
acknowledgements, breaks, and restarts.

60474500 A 1-9

Module

Terminal-Oriented

Mode 4 TIP

ASYNC TIP

HASP TIP

Link Interface
Program (LIP)

Host-Oriented

Host Interface
Program (HIP)

General Support

Base system

Multiplex
subsystem

Network
communications

1-10

TABLE 1-1. CCP MODULES

Major Function

Handles synchronous Mode 4A/4C
terminals

Handles asynchronous terminals
using teletypewriter protocols

Handles synchronous HASP work­
stations

Handles link protocol between
local and remote NPUs (NPU-to­
NPU link is treated as a line
by the multiplex subsystem)

Handles block protocol between
host and N~U; t~ansfers use
the host coupler

Includes a monitor, timing,
standard subroutines, NPU
console services, and task
calls (worklists)

Part of the base system;
contains command driver, and
input/output multiplex loops.
(The multiplex subsystem con­
sists of hardware, software,
and firmware.)

Message routing, service
messages, and common TIP
subroutines including POis

Normal Calls

PT4 .••

l PT ..•
AP •..
AF .•.

{
HS ...
HASP •••

various

PTHIP •••

PB •••

PM .••

{
PN •••
PT •••

60474500 A

TABLE 1-2. SUPPORT PROGRAMS FOR TIPS

Programs

HOST INTERFACE

Host Interface Program
(HIP)

LINK INTERFACE

Link Interface Program
(LIP)

GENERAL SUPPORT
Operating system

Worklist handling

Timing services

Standard subroutines

Internal processor
maintenance

Command driver

Output processor

Input processor

Other multiplex
subsystem routines

Message routing

Service module, SVM

TIP support

Inline diagnostics

NPU console services

Initialization programs

t B Base system
M Multiplex subsystem
N Network communications

60474500 A

Locationt

In local NPU only

In both local and
remote NPUs

B

B

B

B

B

M

M

M

M

N

B

N

N

B

Comments

(Includes program execu­
tion, space allocation,
and interrupt handling)

Interprogram task re­
quests

Building directories

Handles most commands
between host and NPU

Includes point of inter­
face (POI) programs,
block handlers, regula­
tion, and IVT command
processor

Released when initializa­
tion is complete

1-11

A special class of block (ACTL) is defined for data assurance over trunks
(links). It is used only by the LIP.

Each block header has information relating to routing: source/destination
modes (SN and DN), which are related to the host and NPU, and a connection
number (CN), which is related (through directories) to lines and terminals.

An internal processor handles downline routing by use of the directories.
Upline, the originating terminal is known. Using this information, the
multiplex subsystem can provide the SN/DN/CN information. Only the
destination code information is used during upline routing, indicating that
the data is to be shipped to the host.

All host/NPU transfers are controlled on the NPU side by the HIP. The HIP
operates at OPS-level and does not process blocks except to the extent that
it assures that a complete block is sent or received. The HIP can reject a
request to send an input block unless enough buffers can be assigned to
receive the entire block at the time the transfer is requested. No effort
is made to rereceive or retransmit portions of a block

The service module (SVM) handles most commands between host and NPU. For
service messages, the connection number (CN) is zero. For downline
commands, the SVM processes the command (such as entering fields in a
terminal related table) and returns an acknowledgement service message to
the host. In processing a service message, SVM can call on a TIP or on one
or more other support routines.

A few commands (such as starting or stopping message transmission on a line)
are sent directly between the host and the appropriate TIP. In this case,
CN is not zero.

BLOCK ROUTING

Downline block switching is done by the internal processor. Almost all
blocks pass to the receiving program (TIP, LIP, or SVM) using a worklist
entry. Invalid blocks are discarded. Upline blocks are routed by the
internal processor to the host (directly or through the local NPU) or, in
rare cases, to the NPU console.

POINT OF INTERFACE (POI) PROGRAMS

From the standpoint of the TIPs, there are certain protocol requirements
that each TIP fulfills both upline and downline. Common POI programs are
provided for these tasks.

•

•

1-12

PBIOPOI - internal output POI. Downline block switching is handled
by the PBIOPOI. This POI generates the proper type of reply block
(acknowledgement, break, initiate, etc.) or queues the block to the
TIP or SVM for further processing.

PBPOPOI - postoutput POI. This downline POI generates an
acknowledgement to the host indicating that the block has been
transmitted to the terminal. It also gathers statistics for the
transfer.

60474500 A

• PBPIPOI - postinput POI together with PBIIPOI internal input POI.
These POis handle the upline block and switch it to the host.

• PBPROPOI - preoutput POI. This POI sets up table information for
downline transfers.

DIRECT AND WORKLIST CALLS

Direct calls can be made from any PASCAL program to any other. At the
OPS-level, direct calls are freely made between routines of the same kind
(such as SVM routines or TIP routines for the same TIP). Calls are also
made freely from the SVM, a TIP, the LIP, and the HIP to support routines
(base and network types.

Direct calls pass task-oriented information in either of two ways:

• Information can be stored in one or more fields of PASCAL tables
(data structures). The called program is expected to find the table
and the field.

• A small parameter list accompanies the call. This type of list is
ordinarily restricted to a few pointers and/or numbers. In this
manual this type of call is depicted as

MNCALL parm l, ••• parmn

MNCALL is at least the first six characters of the entry point name.
Param l ••• parmn are the associated parameters. Parameters can be
omitted, hut the delimiting commas cannot (exception: terminating
comma (s)) .

Calls between types of routines (such as a call from a TIP to the SVM or the
reverse, or a block switching call) are usually made with worklists. A
worklist is a packet of information about the requested task. Worklists are
queued on a first-in-first-out basis to those few modules designated to
receive them. Those modules are the following:

e TIPS
e HIP
e LIP
• SVM
• Internal processor
• Timing processor
• Multiplex loop interface adapter interrupt processor
• NPU console handler

All of the named modules execute at the OPS-level. Worklists are also
queued for certain priority routines in the multiplex subsystem (multiplex
level). A worklist is considered to be an event that requires the CCP to
take appropriate action.

The monitor scans the list of OPS-level programs to find the next event
(task) which must be processed. It then passes control to that module
together with the worklist. The worklist contains a workcode that most
receiving modules (such as a TIP) use as the index to an internal switch
determining the module entry point appropriate to the requested task.

60474500 A 1-13

The multiplex subsystem has its own worklist processor which runs at
multiplex level (priority 3). The worklist processor handles the following
functions:

• Communications line adapter status
• Output buffer transmitted
• Buffer threshold reached in multiplex subsystem
• Unsolicited input or output on a line
• Bad communications line adapter address
• Illegal frame format
• Timeout of output data demand (ODD)
• Termination of input
• CE error message qeneration
• Hardware errors
• Callinq the TIP at OPS level for further processing

The event workcodes in the worklist define the internal switching for the
multiplex worklist processor.

DIRECT CALLS ON FIRMWARE LEVEL

Input state programs and text processing programs can branch during
processing. The branching calls are embeddea in the code. Whenever state
proqrams are suspended for any reason (such as finishing processing on the
current input character and having to release control until the next input
character is available for processing), the state programs save a pointer to
the next entry point in a global table (NAPORT, MLCB, or TPCB: these are
defined later). When firmware processing resumes, the appropriate table is
checked for the pointers to the firmware entry point. Since the table is an
OPS-level data structure, the pointers can be readily used by software on
any priority level, as well as by firmware.

SPECIAL CALL TO MULTIPLEX SUBSYSTEM

TIPs or SVM call the mvltiplex subsystem directly to save processing time.
This call to the command driver (PBCOIN) has a special parameter list called
a command packet which holds information used by the multiplex subsystem to
set up the table controlling this message transfer (MLCB). During the
transfer, additional information is added to the MLCB, and all programs
concerned with the transfer (whether software or firmware) refer to the MLCB
for transfer control information. The MLCB for the transfer is released
when the transfer is completed.

SPECIAL CALL TO FIRMWARE INTERFACE

A support routine (PTTPINF) is called directly by the OPS-level TIP when
firmware-level text processing is to be done. All text processing for a
block occurs in a sinqle pass, although PTTPINF returns to OPS-level (within
itself) frequently so that interrupts can be processed. (While processing
on the firmware level, interrupts are inhibited.) For text processing, the
OPS-level TIP defines a table to control the transfer (TPCB) and fills all
the necessary fields before calling PTTPINF. The firmware accesses TPCB for
control information and adds status information used by the OPS-level TIP
after PTTPINF returns control to the TIP. The TPCB is discarded by the
OPS-level TIP when it passes the block to the next program (command driver
downline, HIP upline).

1-14 60474500 A

NOTE

Space is reserved in the TPCB for the contents of the first
16 microprocessor file 1 reqisters. This provides 16 full
words for communication in addition to the words already
defined in the TPCB.

COMMUNICATIONS USING PASCAL GLOBALS (TABLES)

Several instances of communications between modules and between different
levels of programs {OPS-level/firmware level) have already been cited:
worklists, MLCBs, TPCBs. Use of PASCAL globals {tables) is a way of passing
information between programs or saving information for later use. CCP
defines several major data structures as shown in table 1-3. Some of these
are defined temporarily, to be used only for one task {such as sending a
message block to a terminal) or for one sequence of tasks {such as def ininq
terminal information from the time when the line is enabled until the line
is disabled). Few structures are defined permanently. Even permanent
structures may need to be reconfigured each time the NPU is downloaded from
the host.

All principal data structures are defined in appendix H.

LINE INTERFACE HANDLING

Much of the line interface is the responsibility of the multiplex subsystem.

Important aspects of message transfer are as follows:

• Setting up the communication line adapter (CLA) for the transfer is
accomplished by a command originating in the host and passed to the
command driver via the TIP that controls this type of terminal
(line). The whole process can be started by a sign-on from the
terminal. Low-speed lines can use autorecognition features (part of
the TIP code) to establish line speed and code type.

• Polling synchronous lines for the next input character is initiate0
by the command to start pollinq which originates in the host. The
TIP, however, determines the exact moment of sending each successive
polling message. The line polling message is passed to the terminal
via the multiplex subsystem. It is a timed output so that failure to
supply another input character in the specified period is treated as
a hardware error. Unsolicited input characters are also treated as
hardware errors.

• The NPU may reject input when the entire NPU is running out of
buffers.

• Output data is sent to the multiplex subsystem as a block of data in
terminal format and code. The output processor sends each character
in response to an output data demand {ODD) interrupt from the CLA.
This is a timed operation. If the ODD request does not appear in one
second, this is treated as a hardware error.

• The multiplex subsystem has limited error recovery logic. If the
attempt to send or receive a character fails n times, the line is
declared down and the TIP and SVM are called to take the appropriate
internal action and to notify the host of the line failure.

60474500 A 1-15

Structure

Block format

Service message
formats

Console request
packet

System buffers
and buff er
control block
(BCB)

Worklists,
worklist
control block
(WLCB)

Timing tables

Logical link
control block
(LLCB)

Line control
block (LCB)

Terminal
control block
(TCB)

Command packet
(NKINCOM)

Port table
(NAPORT)

1-16

TABLE 1-3. PRINCIPAL DATA STRUCTURES

Major Functions

Provides vehicle for NPU-to-host
communications

Part of block format; passes commands,
status, and statistics between NPU and
host

Controls transfer to and from NPU
console

Controls space for processing. BCBs
locate assignable buffers in each of
four pools of assignable buffers.
Nominal buffer sizes are 8, 16, 32,
and 64 words(2 bytes per word)

Make major task request calls from
module to module. WLCB locates work­
lists queued to a single module

Provide periodic and delayed calls;
some timing is embedded in LCBs

Directory information for the link
(trunk) and regulation level for the
trunk; one static block per link

Line-related information, timing,
pointers to TIPs and terminal-related
structures (TCBs); statistics informa­
tion for the line; one static block
per line

Terminal-related information, includ­
ing terminal and device type, cluster
and terminal addresses, statistics,
pointers, and flags for data in the
current transfer. Dynamically
assigned when terminal is configured;
released when line disabled or termi­
nal deleted

Controls information for a multiplex
subsystem I/O; builds the MLCB

Current line (port) status; pointers
to MLCB and state programs controlling
a transfer at the multiplex port; one
static entry per line

Principal
Users

All modules

SVM, all
modules

Base
modules

Base modules;
all modules
use buffers

Base modules;
all modules
that call
other modules

Base modules;
TIPs, SVM

Routing mod­
ules; SVM,
LIP

SVM, timing
module, TIPs,
LIP, HIP,
multiplex
subsystem

SVM, TIPs,
LIP, HIP,
multiplex
subsystem

Sent from TIP
to multiplex
subsystem

Multiplex
subsystem

60474500 A

TABLE 1-3. PRINCIPAL DATA STRUCTURES (Contd)

Structure

~·u1 tip lex line
r,ontrol block
(MI.CB)

'rext processing
control block
(TPCB)

TIP type tablf'

Line table

M0derf1/CLA
tables

Terminal/device
type tables

rv".:1~or Functiors

C0rtrcls infcrnati0r for ~ ~essa~e
transfer to and from a terminal major
device used by OPS level and firmware
level (input state proqrams) to
exchange information: dynamically
assigned for a single block transfer
(downline) or message transfer (upline)

Controls irformation for converting
cede and format (d0wnline or second
pass uoline) of d2ta blocksi dynaroi­
cally assigned for a single block

TIP related addresses

Defines principal characteristics of
a line

Def in~s modem and communications line
adapter physical c~aracteristics

Defines physical cbaracteristics of
tE'rminals and devices at a terminal

Pr irC'ipal
U~c-rs

Multiplex
s•1bsvstPm

Resror:::-iblE'
TIP

SVM, base
modules

Multiplex
subsystem

Multiplex
subsystem

~ultiplex

subsystem

The g~neration of the O~D and polling messages, and the use of worklists for
calls is sometimes referred to as an ev€nt driven processing system.

Physical positioning of CLAs in the loop multiplexer card cage generates a
prefe~ential processing scheme. Since 0nly one line frame (input or output)
is on the multiple~ loop at any one time, the CLA farthest from the lcop
multiplexer has first chance to use the loop. As viewed from the frort, the
loop multiplexer is in the next to le.st slot on the right-hand side of the
cage (the last slot is not used). The CLA which has first chance to use the
loop is in the leftmost slot, and is the half of the CLA card associated
wit~ the switches for the top half of tbe card. If this NPU's version of
CCP contains a LIP, the port servicing the LIP is usually placed in this
preferred position since tbe LIP is the highest speed line in the NPU.

CCP PROGRAMMING LANGUAGES

CommonJy used base programs, especially those with firmware portions, are
written in macroassembly language for speed of execu~ion. These programs
should not be altered. Such programs are listed in an assembly listing.

f.0474500 A l-17

OPS-level support Programs, ~ost priority level multiplex subsystem
proqrams, and the OPS level of each TIP are written in PASCAL language.
Alterina these proqrams can require alterinq the data structures (tables)
which these proqrams use to store and pass programming control infor~ation.
These nroqrams are listed in an MPEDIT Listinq and are esDecially usable in
a PASCAL EDIT XREF listinq.

NOTE

These programs can escape cirectly to firmware precessing
using the PASCAL INST instruction toqether with the firmware
address of the firmware proaram.

The firmware parts of the TIP are called inout state programs or text
prccessinq state proqrams. The multiplex subsystem has special firmware
programs called the mocern state programs. ~hese are used to pr0~ess
CLA-generated status. If this status ~ord occurs, it is usually in the same
frame as an inout ~~ssaqe character.

These proqrarns are written usinq a predefine0 set of rnacroassernblv langua~e
rnacrcinstructions called state instructjons and are called in one of t~ree
ways:

• A direct call from the OPS-level TIP to PTTPINF for a text processing
program.

• An event-driven cell, triggered by the placement of 0ata in the
circular input buffer, to the mocern state programs.

• A call from a modern state proqrnrn to an input state program.

The firmware programs communicate with the multiplex subsystem by releasing
control (inPPt state proqrarns or modem state programs) and by storing
information in ~ata structures. Worklist calls can be mace to the OPS-level
and multiplex-level multiplex subsvstem proqrams, or the OPS-level or
multiplex-level TIP. (Multiplex-level calls to the TIP are ordinarily
-irnmealately converted to OPS:level calls to the same TIP.)

Text processina proqrarns communicate with the calling TIP by releasing
control and by storing information in the TPCB. Worklist entries to the
OPS-level TIP can be made also.

1-18 60474500 A

INITALIZING AND CONFIGURING THE NPU 2

This section describes the loading, initializing, and configuring of the NPU.

Before the CCP can be loaded into the NPU, the host must prepare the load
file. Two cases of load file preparation in the host must be considered.
The normal case assumes released installation tapes and the associated
installation materials. Use the techniques described in the NOS
Installation Handbook (see preface) to generate a CCP load file and to
update a load file using corrective code release (CCR) tapes.

The special case occurs when the user initiates his own changes to CCP.
This case assumes the use of a system configure file (SCF) or the
equivalent. New modules sometimes have to be generated and prepared as
change tapes. In all cases, changes may need to be made to the SCF itself
and to the CCP tables. Table changes are normally entered by MPEDIT
statements. Such changes should be made only by qualified analysts.
Consult the CDC publication index for TIP Writer's Guide bulletins.

Assuming a load file is ready, a three-step process is used to make the NPU
into a fully operational network node:

• Dumping the contents of the failed NPU to the host. This is an
optional procedure but is normally used. If the user has purchased
network maintenance from CDC, a host application program (Network
Dump Analyzer, used through Interactive Facility (IAF)) is available
for a quick analysis of the dump. Refer to the CCP 3 Reference
Manual for standard dump formats. If the user has not purchased this
maintenance, he should devi$e his own programs to make the dumps
readily available for later analysis.

• Loading the NPU from the host. A special overlay loading capability
is available for the dump/load process.

• Configuring the NPU by specifying the network logical link, line, and
terminal connections for this NPU.

INITIALIZING THE NPU

Initialization takes place in two phases: the first to load and initialize
the micromemory, the second to load and initialize the macromemory.

PHASE I INITIALIZATION

BEGINA starts initialization after the following occurs:

• The macromemory is downline loaded with the phase I load file
• The host sends the start signal
• The processor starts execution at location 000016 {routine BEGINA).

60474500 A 2-1

BEGINA first executes PIRAM to load the firmware microcode into the
micromemory. Then BEGINA calls PIEX to send a coupler idle status to the
host. CCP loops while waiting for the phase II load file.

PHASE II INITIALIZATION

The system initialization routine (PINIT) receives control after the
following occurs:

• The phase II load file is downline loaded into the NPU.

• The host sends a start signal.

• The NPU starts execution at memory location 000016 (a jump to
routine BEGINX). BEGINX loads general-purpose registers 1 and 3 with
parameters for dynamic stack management (used during initialization
of recursive routines). Register 1 contains the dynamic stack last
word address; register 3 contains the dvnamic stack first word
address. -

• BEGINX executes the PASCAL routine MAIN$. This routine disables
interrupts, loads the interrupt mask, and calls PINIT.

Pin it

PINIT controls the rema1n1ng macromemory initialization. The routine resets
the deadman timer for host transfers, sets the page registers, and zeroes
page mode. It then calls each of the other initialization routines. Before
each routine is called, a specified bit is set in the initialization status
word. This word can be checked for debugging purposes if the initialization
procedures fail (see CCP Reference Manual). The routines are called in the
sequence given in the following paragraphs.

PI PROTECT

PIPROTECT sets memory protect bits. Before setting or clearing these bits,
PIPROTECT calls PISIZCORE to determine the last addressable memory location
and the last word of the buffer area. The protect bits are cleared from
every buffer word and set for all other words. Use of the protect system
prevents OMA devices from writing into any area but buffers. The protect
system can also be used with the Test Utility Program (TUP) for debugging
purposes. See appendix I.

PIBUFl

PIBUFl starts buffer initialization. PIWINIT is called to determine DN
limits, and to allocate the first node in the DN table to the NPU's local
node. The IDLNK and IDTBL tables are allocated and i~itialized, as is the
ORG DN table. An entry to TUP is allowed if the TUP option has been
selected.

PIGETABLE calls PILCBS to create port and circular input buffer tables. The
PIGETABLE determines the pointers to the timer, port, LCB, and subLCB
tables. SubLCBs for the MLIA, console and coupler are initialized, and the
first LCB is also initialized. The address variables for these subLCBs are
then filled.

2-2 60474500 A

PIBUFl sets the address limits of the buffer area and calls PIFRl to
initialize the file 1 (firmware) registers. A 256 word array is used.
Dynamic values are assigned FFFF16· Any nonused registers are set to
zero. PBEF transfers the array contents into the file 1 registers. Next,
some file 2 reqisters are loaded using assembly language (INST) commands.

Finally, PIBUFl initializes the buffer maintenance control block. For each
buffer size, the pool boundary is forced to an even boundary, each word in
the buffer area is cleared, each buffer is released to the pool, and the
normal buffer threshold is set.

PIWLINIT

PIWLINIT initiates worklists. Each active worklist is allocated one
worklist-sized buffer. The put and get pointers are set. Zero-sized
worklists are assumed to be inactive, and a default size of three is used,
but no buffer is assigned.

PIINIT

PIINIT sets the NPU console to write mode so that the CCP banner messaqe can
be displayed. PIINIT also sets up the branch-to-low-core halt routine.
This routine consists of 14 no-op instructions followed by a jump to
PBHALT. The routine starts at memory location 000016· Next, PIINIT sets
the time of day clock to the operator-assigned value (month, day, hour,
minute, second) .

PIAPPS

PIAPPS initializes any trunks in the system, using the LIP. The banner
message is sent to the NPO console.

PIMLIA

PIMLIA initializes the MLIA and the CLAs. The routine checks for duplicate
CLA addresses. If any are found, PBHALT is called. The svstem is also
halted if the MLIA cannot be initialized correctly.

PILININIT

PILININIT sets up the multiplexer and coupler timina services by adding the
MLIA and coupler subLCBs to the list of active LCBs. The data buffer size
is set up for the coupler. The deadman timer is reset.

PIBUF2

PIBUF2 clears and releases the last of the data buffers. The real-time
clock is started, the NPU initialized message is sent to the host,
interrupts are enabled, and the deadman timer is reset. PIBUF2 passes
control to PBMON (the OPS monitor routine) to start normal operation of CCP.

60474500 A 2-3

LOAD AND DUMP NPU
A detailed description of loading and dumping an NPU, whether local or
remote unit, is given in the CCP 3 Reference Manual.

CONFIGURING THE NPU

After loading and initializing the NPU, the host configures it by
establishing all logical links and logical connections for that NPU. This
is done in the following sequence:

• Logical links (LL) are configured by building the LLCB.

• Trunks are configured by building the LCBs assigned to the lines
treated as trunks.

• Lines are configured by building the line LCBs.

• Terminals are configured by building the TCBs.

See appendix H for the definition of the data structures known as LLCB, LCB,
and TCB. Format for the service messages to configure the LLCB, LCB, and
TCB are given in appendix C.

Figure 2-1 shows the sequence of configuring the NPU and the service
messages and blocks used for the operation.

HOST NPU

Configure logical link 1 (SM} ..
• Logical link 1 configured (reply SM)

Configure logical link 2 (SM) ..
4111

Logical link 2 configured (reply SM)

Configure line {SMl
~ } REPEAT FOR

EACH LINE IN

~
Line enabled {re:el~ SMl THE SYSTEM

Configure TCB {SM}

~l
REPEAT
FOR EACH

4111
TCB configured {re:el~ SMl TERMINAL

IN THE

~
INIT (bloc kl SYSTEM

INIT ~block} ..

Figure 2-1. NPU Configuration Sequence

2-4 60474500 A

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs followed by a connection number. (Refer
to Block Protocol portion of section 6). The two node IDs represent the
nodes at which each station interfaces to the network. The order in which
they appear in the network logical address specifies the direction of the
connection (the destination node appearing first, then the source node).
The connection number specifies a full-duplex logical channel connecting the
stations. Connection number zero is reserved as a permanent service channel
for service messages.

NOTE

The network supervisor (NS) and the communications supervisor
(CS) mentioned in this section are host programs. These
programs are described in the CCP 3 Reference Manual (see
preface).

The network supervisor in the host is informed of an NPU entering this
active state by arrival of an NPU initialized service message (SM)
(restoring a failed NPU) or by the arrival of the first trunk status
response SM (indicating the trunk is operational). The latter occurs when
an operational NPU rejoins the network.

CHANGING/DELETING LOGICAL CONNECTIONS

A change to a logical connection may be required when a TCB is already
configured. This is accomplished with a reconfigure TCB SM {appendix C).
The communications supervisor in the host does not change the connection
number but sents the reconfigure TCB SM to reinitialize the block protocol
on the logical connections.

A logical connection sails when an element (line, logical link, or
application) required to support it fails or is disabled by a NOP or LOP
command. (NOP is the network operator, LOP is the local operator). The NPU
is informed of the termination of the logical connection either explicitly
by a reconfigure TCB SM changing the connection number to zero or implicitly
by deleting the TCB or the LCB on the logical link configuration. Neither
changing nor deleting connections is a normal part of the initial NPU
configuration process.

LINK CONFIGURATION

Two types of loqical link configurations are possible in CCP:

• A link from host coupler to local NPU
• A link from local NPU to remote NPU

The functional steps in configuring a logical link are shown in figure 2-2.

The link configuration process starts when one of the following occurs:

• The NPU sends an NPU initialized SM. This is the normal
configuration situation when the NPU is successfully loaded.

60474500 A 2-5

2-6

HOST/LOCAL NPU

NS-+ BOTH NODES ------....i.------.....
CONFIGURE
LOGICAL
LINK SM

VIA LINK
LOGICAL LINK
STATUS SM

NPU

LOCAL NPU _.,. NS

LOGICAL LINK t
STATUS SM
OPERATIONAL
RESPONSE

t ERROR RESPONSE NOT SHOWN

START

CONFIGURE
LINK SM
ERROR
RESPONSE

HOST/REMOTE NPU
THROUGH LOCAL NPU

NS -+ BOTH NODES --------...
CONFIGURE
LOGICAL
LINK SM

NS -+- REMOTE NPU

VIA LINK
LOGICAL LINK
STATUS SM

LOCAL/REMOTE NPUs --------
CLEAR/RESET
EXCHANGE

LOCAL NPU -+ NS

LOGICAL LINK
STATUS SM -
OPERATIONAL
RESPONSE

M-378

Figure 2-2. Configuring Logical Links Flowchart

60474500 A

• The NPU sends a trunk status operational SM. This occurs as the
result of an operator-entered command.

• The network operator generates an enable trunk SM by reenabling the
logical link at the host control console.

Configure Logical Link SM

NS responds to any of these situations by sending a configure logical link
SM to both ends of the loqical link. Message parameters include IDl and
ID2, the nodes comprisinq the link. IDl is the source node for the link and
ID2 is the destination node. The association between node IDs and the
coupler is predefined. The SM has a destination node corresponaing to the
primary node ID of the NPU supporting the link.

The destination noce (CS in the host) establishes the d0ta structure
necessary to support the host end of the link. The destination node in the
NPU also establishes the data structure necessary to support the link.

NOTE

Service messages to a remote node are sent over a trunk.
Once reconstituted in the remote node, such messages are
treated the same way as messaqes received over the coupler in
a local NPU.

When the link is established, a normal response SM informs NS that the link
is operational. If an error occurs, the reason co~e in the error response
message specifies the cause of the failure to confiqure the link.

Logical Link Status SM

NS in the host sends a loqical link status SM over the newly configured
link. The response SM always originates in the local NPU. Determination of
response type (normal or error) is madP directly within the NPU if this is a
host/local NPU link, or indirectly by the clear/reset protocol over the
trunk if this is a host/remote NPU link. Regulation level for the trunk in
the SM reply is defined in the CCP 3 Reference Manual. An unsolicited
logical link SM reply message is sent to CS when the NPU needs to change the
regulation level on the trunk.

Enable Trunk SM

The enable trunk SM has two possible origins:

• Usual origin - NS in the host is notified by the unsolicited trunk
status SM response that trunk protocol is established.

• Diagnostics origin - NS in the host is notified that the operator at
the network console has entered a command to reenable a trunk
previously disabled for diaqnostic tests.

Parameters are the port connecting the local to the remote NPU and the host
ordinal.

60474500 A 2-7

When the SM is processed, the local NPU initializes the communications line
adapter and conditions the modern for line operation. The normal response
includes information about communications line adapters and modern operation
and identifies the node of the remote NPU, which returns to on-line
condition.

LINE CONFIGURATION

Following logical link configuration, NS/CS in the host sends SMs to the
terminal NPU to configure the lines between the NPU and terminals. These
configure line SMs are handled by the service module in the receiving NPU.
Format of the SM is the same as for the configure trunk SM.

Line configuration requires sendinq the following line control block (LCB)
information to the NPU in the FN/FV pairs:

• Port ID for the line

• Host identifier

• Line type,- includes type of duplex, communications line adapter,
modem, carrier, and circuit; answering and turnaround mode; and type
of transmission (svnchronous, asynchronous, or CDCCP).

• Terminal type (TIP or sub-TIP required to process the terminal's
data, device type, and terminal class).

• Data necessary to fill the selected fields of the LCB.

Processing of each line is governea by LCB fields. Format ot the LCB is
shown in appendix H.

A simplified flowchart for line configuration is shown in figure 2-3.
Terminal configuration consists of configuring the terminal control block
{TCB). TCB configuration is shown on the same diagram to emphasize the fact
that a network cannot use the terminal until both the terminal's associated
LCB and TCB are configured. After configuration, the following events occur:

• The host identifies the terminal and ascertains that it either uses
an IBT or a BVT transform. The host also finds the proper regulation
level to use.

• CCP identifies the protocol necessarv for the data transfers and
assigns a oroper TIP to handle that protocol.

• The hardware in the communications line adapter and modem are
prepared for data transfers.

A terminal NPU is any NPU which has a terminal attached to its I/0 ports.
A terminal NPU that is a local NPU can also be linked to a remote NPU.

2-8 60474500 A

ENTRY

NS SENDS
CONFIG LINE
SM TO NPU

CONDITION
MODEM f-OR
OPERATION

DEDICATED,
W/O AUTO
RECOGNITION

SEND LINE
ENABLE SM
LINE OPERATIVE

NO

NPU SENDS LINE
STATUS SM TO
HOST LINE
INOPERATIVE

DISCONNECT
LINE SM
TO NPU

SWITCHED,
W/O AUTO­
RECOGNITION

NPU -+CS

SEND LINE
ENABLE SM
WAIT FOR
RING

RING IN
!DIAL IN}
OCCURS

NPU SENDS
UNSOLICITED
LINE STATUS
SM TO HOST.
LINE OP

DELETE

DELETE
LINE SM
TO NPU

NPU-+ HOST
LINE DELETED
SM

EXIT

DEDICATED,
WITH AUTO­
RECOGNITION

NPU -+ CS

SEND LINE
ENABLE SM
AUTORECOG­
NITION IN
PROCESS

PERFORM
AUTO­
RECOGNITION

SWITCHED,
WITH AUTO­
RECOGNITION

NPU + CS

LINE ENABLE
SM WITH
WAIT FOR
RING

DIAL-IN
OCCURS

PERFORM
AUTO
RECOGNITION

M-380

Figure 2-3. Line/Terminal Configuration Flowchart (Page 1 of 2)

60474500 A 2-9

CONFIGURE
TCB SM

NPU-+ HOST

TCB
CONFIGURED
SM

TERMINAL
REMAINS
CONFIGURED

DELETE TCB
SM

LINE/MODEM
FAILURE

NPU-+ HOST

NPU-+ HOST

TCB DELETED
SM

UNSOLICITED
LINE STATUS SM
LINE INOP­
ERATIVE

M-381

Figure 2-3. Line/Terminal Configuration Flowchart (Page 2 of 2)

2-10 60474500 A

After line is configured, it is automatically enabled by the service
module. This allows the line to be monitored. Normal response is made
using the enable line SM response message. When the line is reported
operational, TCBs are configured. CS starts the line configuration process
whenever an NPU is loaded and all links are configured; or a network
operator enters a command generating a specific supervisory message in the
host.

Configure Line SM

For each line to be configured, CS sends a configure line SM to the NPU
connected to that terminal. All configure SMs contain a control block
descriptor string (FN/FV). There is one such descriptor string for each
type of configurable block in the NPU. The descriptor string equates a
field number to a field position within the control block, and allows the
associated field value to be entered into that field. Additionally, an
optional action can be defined for the field number. The action allows such
operations as validating the field value, assigning chains to other
structures, and other actions appropriate to the newly entered field.

After performing the configuration defined by the control block descriptor
string together with any defined actions, the service module attempts to
enable the newly configured line. At the completion of the enable process,
the line enabled response SM is returned.

The response message contains a reason code. If the response is normal, the
code specifies either that the line is enabled and operational, or that the
line is enabled but must wait for ring indicator/autorecognition results.
If the response is an error type, the reason code specifies the type of
error.

The four normal types of response messages correspond to the four major line
types:

• Dedicated line, no autorecognition
• Switched line, no autorecognition
• Dedicated line, autorecognition
• Switched line, autorecognition

The response to configuration of a dedicated line is line enabled {l) if the
modem of a dedicated line indicates data set ready, and {2) if {for a
constant carrier) both clear to send and data carrier detect are on.
Otherwise, line inoperative is reported.

Line operational is reported if autorecoqnition is not specified. A
30-second timer is started if autorecognition is specified. If no response
is obtained within the 30 seconds the TIP responds with line not
operational; the host then disconnects the line at the earliest
opportunity. If a response is obtained, line operational is reported
containing the results of autorecognition.

The response to configuration of a switched line is line enabled if a ring
indicator is present. This normal response is generated immediately. Line
enabled with no ring indicator is generated immediately if no ring indicator
is present. This is followed by a line operational SM when a dial-in

60474500 A 2-11

connection occurs. At this time, ring indicator is signalled and the NPU
returns a data terminal ready to answer the call. If, when ring indicator
is signalled, the host or logical link is not available, the NPU ignores the
dial-in.

Autorecognition for switched lines is the same as for dedicated lines.

CONFIGURED LINE DELETION

The delete line SM changes the LCB status to not configured. CCP also
deletes all TCBs for the line. The delete line SM is also treated as a
positive response to an unsolicited line inoperative SM.

TERMINAL CONFIGURATION

When the line is operational, the host configures terminals for the line by
issuing one or more configure terminal service messages. CCP responds to
the configure terminal SM by generating the TCB. The amount of information
in a TCB varies as a function of terminal or TIP type.

A TCB is built only when a line is enabled and operational. The block
remains in existence until a delete terminal SM, a disconnected SM, or
delete line SM is processed.

Terminals are identified in service messages by specifying the line, the
hardware address, device type, terminal class, and host ordinal. Cluster
and terminal address ranges are as follows (in hexadecimal):

Mode 4A
Mode 4C
ASYNC
HASP

Cluster Address

70-7F
70-7F

0
0

Terminal Address

60
61-6F

0
1-7

The hardware address varies with the protocol being used by the terminal.
Mode 4A can have one or more cluster controllers on a line but only a single
console terminal on the cluster. Mode 4C can have one or more cluster
controllers per line and one or more console terminals per cluster. The
ASYNC TIP does not support any terminal addressing capability. The HASP TIP
uses the terminal address as the stream number and does not use the cluster
address. For HASP, the device type is combined with the terminal address to
form the hardware identifier. Card readers and line printers use the full
range of stream numbers, but plotters share the range with card punches.

A single line can have numerous terminals and therefore numerous TCBs. Each
terminal has its own TCB and each TCB is usually established at the close of
the initialization process.

Each terminal is configured with a host ordinal. The terminal host ordinal
consists of a 4-bit integer value (0 through 15) and a toggle bit (24).
The integer value is validated each time a service message is received for
the terminal and is included in each service message sent to CS referencing
the terminal. The toggle bit is validated each time a reconfigure TCB SM is
received and must oppose the setting currently held in the TCB. The setting
in the TCB is then reversed. This prevents inadvertent reinitialization of
the block protocol on a logical connection in the event that a prior
reconfigure TCB response SM was lost.

2-12 60474500 A

Configure Terminal SM

The configure terminal SM requires the service module to configure the TCB.
Message parameters include terminal address, cluster address, device type,
and the FN/FV pairs such as were defined for the configure line SM. The FV
values are used in the specified fields of the TCB.

The service message is sent to the NPU by CS in the host either as the
result of a line operational SM received and processed hy CS, or as the
result of an operator command to configure the terminal when the line has
previously been reported as operational. As in the line configuration
message, the FN/FV pair designates the field number and the value to be used
in the field, and has an optional action associated with entering the field
in the TCB. The SVM sets the fields in the TCB as directed.

A response SM is sent to CS indicating whether the fields were set or not.

TCB Reconfiguration

Terminals are reconfigured to establish or delete a logical connection
number in an existing TCB, or to reinitialize the block protocol on an
existing logical connection. This occurs when CS detects a need to
establish or change a connection or modify other values in the TCB.

The format of the reconfigure terminal SM is the same as that given for the
configure terminal SM except that the subfunction code {SFC) differs. The
resulting operation in the NPU is the same except that the TCB should
already exist. The TCB is modified as specified in the SM. The optional
action is usually inhibited by the reconfigure TCB operation. The response
formats are the same as those for the configure terminal SM.

The reconfigure terminal SM provides a qeneral mechanism for CS to control
terminals. Any action required coincident with the field change is also
provided by the reconfiguration mechanism. If the toggle bit setting in the
host ordinal byte does not change, an error response is generated. If the
connection number is not zero, the block protocol is initialized or
reinitialized on the connection.

TCB DELETION

When the operator requests that a terminal be deleted from the network, CS
sends a delete terminal SM to delete the TCB and to clean up all table and
data space associated with the TCB. CCP removes the connection from the
logical connection directory. The service module responds to CS with a TCB
deleted SM. CS is responsible for correctly deleting both ends of a
connection.

Format of the delete terminal SM is the same as the configure terminal SM
except the SFC code differs and there are no FN/FV pairs in the message.
Normal response format is similar to that of the configure terminal SM
response.

60474500 A 2-13

FAILURE, RECOVERY, AND DIAGNOSTICS

Failure and recovery of CCP depends on a number of factors:

• Host Failure - If a host fails, the NPU and its software stop message
processing.

• NPU Failure - If an NPU fails, it must be reloaded and reinitiated
from the host. Off-line diagnostic tests are useful during this
period to help identify the cause of failure.

• Logical Link Failure - Host failure was mentioned above. Link CDCCP
protocol failure leads to higher and higher levels of regulation
until message traffic ceases on the link.

• Line Failure - Lines are disconnected and terminal control blocks
associated with the lines are deleted.

• Terminal Failure
discarded.

Terminal status is reported and message is

To aid recovery and to assure dependable network operations involving the
CCP, three sets of diagnostic programs are available:

• In-line Diagnostics - These include CE error and alarm messages,
statistics messages, halt code messages that specify the ,reason for
an NPU failure, and off-line dumps.

• Optional on-line Diagnostics - These allow checking of circuits tso
terminals. These aids are available only if a network maintenance
contract is purchased.

• Off-line Diagnostics - These hardware tests for NPU circuits are
described in detail in the Network Processor Unit Hardware
Maintenance Manual.

HOST FAILURE
If the NPU fails to receive a coupler interrupt within 10 seconds, the NPU
assumes a host failure and declares the host is unavailable (see HIP
description, section 7). Host unavailability is communicated to the other
end of all logical links (local or remote) by means of a disable trunk
service message (SM). (However, the remote NPU does not allow its last
trunk to be disabled - see section 8, LIP). The NPU also sends an
informative SM to all connected interactive terminals.

HOST RECOVERY

After host recovery, the host assures that logical links are reinitialized
and new connections are made.

60474500 A 3-1

3

The host recovers the existing configuration status by means of a status
request SM to the NPU.

NOTE

·All SMs are shown in appendix C of this manual.

The network repeats unsolicited line status changes that are not executed in
the NPU. Most SMs sent to the network have a possibility of being rejected;
in many cases the rejection code allows the network supervisor (NS)/
communications supervisor (CS) to determine the state of the line, device,
or terminal that could not be configured.

NPU FAILURE

The host might not be aware of this condition, depending on its own state
and availability of network paths. However, the peripheral processor unit
(PPU) of the host has a 10-second deadman timer. If the PPU connected to a
local NPU fails to receive an anticipated input or an idle response during
this period, a timeout occurs. The host declares the NPU dead, and the NPU
dump-and-load (or load only) operation is entered to start NPU recovery.
Failure of a remote NPU is detected locally as a failure of the remote NPU
to send data or idle blocks during a period longer than the timeout period.
The local NPU informs NS of the inoperative local/remote trunk with an
unsolicited trunk status SM, causing the host to dump and load the remote
NPU through one of the local NPUs. See section 8 for a full description of
the trunk protocol for detecting the failure and soliciting the loading of
the remote NPU.

NPU RECOVERY

The host dumps (optional) and reloaos an NPU after receiving a request for
load. Stimulus for reloading comes from either the host PPU driver or the
NPU bootstrap program. The reasons for requesting a load are as follows:

• Software failure caused PPU hardware deadman timer to expire.

• Hardware failure caused PPU deadman timer to expire.

• Trunk protocol failed between local and remote NPUs.

• Operator initiated a software halt, forcing reloading.

• Operator pressed MASTER CLEAR pushbutton on the NPU maintenance
panel, causing a reload request.

The host does not request a dump after the second or subsequent reload
attempt. After n successive attempts to load, the loading operation is
aborted. The NPU is thereafter ignored until manually reactivated. After
the NPU is successfully loaded and initialized, NS sets up all logical links
for that NPU that the present state of the network allows. The methods of
loading and initializing local and remote NPUs are described in the CCP 3.1
Reference Manual. NS reports the presence of each logical link that is to
be established to CS. CS examines its configuration tables for elements
that have been affected by the change in status. CS configures and enables

3-2 60474500 A

lines supported by the NPU. For any line reported as operational, an
examination of the configuration table reveals those terminals that can be
connected. For 0ach such terminal, both terminal and host support tables
are configured and thereby connected.

HALT CODES AND DUMP INTERPRETATION

Unless NPU stoppage resulted from host faiJure or was initiated hy operator
action, some fault in the NPU caused the failure. If a dump is a normaJ
part of the reloading cycle (and the network is normalJy set up that way), a
dump is sent to the host. The CCP 3 Reference Manual describes the
mechanics of transmitting the dump. Appendix B of that manual (Diagnostics)
describes dump format and its interpretation with or wjthout the use of halt
codes.

LOGICAL LINK SUSPENSION

A logical link suspensjon is detected either by the local NPU determining
that the channels to the host have been inactive or by an NPU detecting that
the CDCCP protocol on the trunk supporting the logical link has failed. In
the first case, the presumed host failure is communicated to the distant and
local ends of all logical links. When a loss of ability to communicate is
detected at the end of a Jogical link, all sources of data connected to that
logical link are prohibited from accepting new data. If the host is the
data source, a logical Jink regulation SM informs the host of the suspension
of each logical link. Interactive terminals with connections on the logical
link are informed of the suspension by an input stopped message.

LOGICAL LINK RECOVERY

A logical link either recovers spontaneously (e.g., return to service on a
failed channel) or is reinitialized by host (NS) action. In the case of
spontaneous recovery, the logical link protocol allows restart without loss
of data. Otherwise, al] logical connections are re-made and the terminal
session restarts. Logical link recovery is described in detail in the CCP 3
Reference Manual.

TRUNK FAILURE

A failure of a trunk is detected by failure of the protocol as described in
the LIP description (section 8). At this time, data in queue for the trunk
is discarded. A trunk failure causes the NPU to report the failure of the
logical link supported by the trunk. An unsolicited trunk status reply s~
reports the failure.

TRUNK RECOVERY

Recovery of a trunk is detected by the trunk protocol using the LINIT
elements of the trunk protocol (see sections 6 and 8). The logical link
protocol determines when the trunk is used for data other than SMs to/from
NS. Regulation of traffic on the trunk is discussed in detail in the CCP 3
Reference Manual.

60474500 A 3-3

LINE FAILURE
Line failure is detected by abnormal modem status or by line protocol
failure. The change of status is reported to CS with an unsolicited line
statu~ reply SM. CS deletes all terminal control blocks (TCBs) supported by
the line using the disconnect line SM.

LINE RECOVERY

A line cannot recover from a failure spontaneously. CS, which owns the
lines, must first process the unsolicited status reply (line inoperative) SM
by deleting the supported TCBs. CS then disables and reenables the line,
using the appropriate SM. At this time, the TIP commences to check for a
change. When the line status changes to operational, this is reported to CS
with an unsolicited line status reply SM (line operational). When CS
receives a message indicating that line status has changed to operational,
CS attempts to configure the supported terminals.

TERMINAL FAILURE
Where the protocol is capable of determining terminal status, the protocol
maintains records of such status. Terminal failure status is reported to CS
for network management purposes. An unsolicited terminal status reply
(terminal inoperative) SM reports the failure. The correspondent to which
the terminal is logically connected is informed of the failure by the stop,
element of the block protocol (STP). This is discussed in section 6 (block
types), Undeliverable traffic is discarded. The logical connection is not
broken on terminal failure.

TERMINAL RECOVERY
When terminal failure is detected, possible terminal recovery is monitored.
Typically, this is performed by a periodic status or diagnostic poll from
the NPU to the terminal. Terminal recovery status is reported to CS with an
unsolicited terminal status replay SM.

INLINE DIAGNOSTIC AIDS
Four types of inline diagnostic aids are provided with CCP:

3-4

• Alarm messages sent to the Network Operator (NOP) • These messages
alert the NOP that numerous hardware errors have occurred and that
the engineering file in the host should be examined to find the NPU
error history.

NOTE

If the user has purchased a network maintenance contract from
CDC, the Hardware Performance Analyzer (HPA) in the host is
the most convenient means of obtaining the contents of the
engineering file. Otherwise, the user must devise his own
method of analyzing the host engineering file.

60474500 A

• CE error SMs - These messages, which report individual hardware
errors, are sent to the host engineering file. Such messages should
be examined periodically.

• Statistics SMs - These messages are generated periodically for each
NPU, line, and terminal. Statistics SMs are also generated when
frequent errors cause the error counters for the device (statistic
block counters) to overflow. All statistics SMs are sent to the host
engineering file. These messages should be processed and displayed
periodically.

• Halt messages, dumps, and dump interpretation - When the NPU stops,
halt messages are sent to the NPU console. The message contains a
code indicating the cause of the halt {a halt message indicates the
NPU came to a soft stop; in a hard stop situation, the message cannot
be generated) and the program in control when the halt command was
generated. Dumps are part of the initialization process and are
discussed in detail in appendix B of the CCP 3 Reference Manual.
Note that the halt message is delivered using PBQUICKIO; the message
does not use a SM.

Format of the SMs used to generate alarm, CE error, and statistics messages
are given in appendix C. The basic format of all three SMs is shown in
figure 3-1.

1 2 3 4 5 6

DN SN CN BT PFC SFC

DN Destination node

SN Source node, the originating NPU

CN Connection number, 00 = services messages

BT Block type, 04 = CMD (see section 6)

PFC Primary function code

OA - CE Error or Alarm

07 - Statistics

SFC Secondary function code

00 - CE error message}
01 - Alarm message

00 - NPU statistics ~
01 - Trunk/line statisticsj
02 - Terminal statistics

DATA see table 3-1.

with PFC

with PFC

7

Data (one or
more bytes)

= OA

= 07

Figure 3-1. Format of Alarm, CE Error, and Statistics Messages

60474500 A 3-5

Message

CE Error

Alarm

NPU

Statistics

Trunk/Line

Statistics

Terminal

Statistics

TABLE 3-1. INLINE DIAGNOSTIC SERVICE MESSAGES

PFC SFC

OA 00

OA 01

07 00

07 01

07 02

Data Bytes

First: Error Code (EC)t

Subsequent: data (if any) - up to 27 bytes

Message text

Error words 1 thru 11; 2 bytes per wordt

First: P - portl from local NPU

Second: 00 f to line/trunk

Third: 00 - host ordinal

Fourth: LRN - link remote node

Subsequent: explanation words 1 thru 4;

2 bytes per wordt

First two bytes: P/00 as for trunk/line

statistics

Fourth: CA - cluster address! see appendix c
Fifth: TA - terminal address for values

Sixth: DT - device type

Seventh: CN - connection number

Subsequent: explanation words 1-3;

2 bytes per wordt

tRefer to appendix B of CCP 3 Reference Manual for details.

ALARM MESSAGES

For each alarm sent, a previous series of messages (CE errors) has
generated entries in the host engineering file for this device. These
messages are used to determine the cause of the failure and to perform
m~intenance to correct the failure. See CE error codes portion of appendix
B of the CCP 3 Reference Manual.

At the network operator's console, the alarm SM appears as follows:

FROM NPU xx/RESIDENT ••• (text)

3-6 60474500 A
\
•;

Currently, three alarm SM texts can be generated (text is the 50 characters
allowed for the SM text):

MAINTENANCE ALARM PORT xx (0 xx FF16)

MAINTENANCE ALARM MLIA

MAINTENANCE ALARM COUPLER

Within an NPU, a group of counters is maintained in the statistics block for
each hardware device. Each time a CE error SM is sent, its associated
statistics counter is incremented. Periodically, each counter is compared
to a threshold value. Whenever a threshold value is exceeded, an alarm SM
is sent to the NOP. If a threshold is not exceeded at the periodic check
time, the counter resets to zero. Threshold value is a CCP build-time
variable. The suqgested period is 15 minutes. To prevent multiple alarm

messages for the same condition, the following alarm SM restrictions are
provided:

• Lines and trunks - Only one alarm is sent after the line is enabled.
A subsequent disable/enable sequence allows another alarm to be sent.

• Coupler - Only one alarm SM can be sent per NPU load.

• MLIA - Only one alarm SM can be sent per NPU load.

CE ERROR MESSAGES

This category of diagnostic service message reports the occurrence of
hardware-related abnormalities. This includes all NPU-related hardware
(coupler, MLIA, loop multiplexers, CLAs}, and (indirectly) all connected
hardware: modems, lines, and terminals. The creation of the service
message is separate from and in addition to the statistics accumulated in
the NPU and periodically dumped to the host.

To prevent swamping the NPU or host with error messages when an oscillatory
condition arises, an error counter is incremented with each error message
generated. When the counter reaches the limit specified at build time, the
event is discarded rather than recorded. The counter is periodically reset
to zero. This period is another system build-time parameter.

Six types of CE error messages are used. The types and text portion of the
messages are in appendix B of the CCP 3 Reference Manual.

STATISTICS MESSAGES

Three forms of statistics messages are used: NPU statistics, line
statistics, and terminal statistics. Each type is sent upline to the host
engineering file. The host does not reply to statistics messages.

Statistics data is placed in the statistics block for the appropriate device
(NPU, line, or terminal) by a call to PNSGATH. The call comes from either a
TIP (via the postinput or postoutput POI) or from a LIP. The HIP places
statistics information in the NPU statistics block directly. The statistics
information for NPU and terminals is kept in the TCB for the terminal (NPU

60474500 A 3-7

has its own TCB). Statistics information for lines is kept in the LCB for
the line.

One stimulus for a statistics report is a request form the time module
PBTIMAL. The period for this timeout is a system build-time parameter.
PNSGATH handles the periodic request. Two other stimuli cause PNDSTATS to
generate the message: one stimulus arises when any one of the counters that
keep the statistics overflow. In that case, the message for the NPU, line,
or terminal is immediately generated. The other stimulus arises when a line
disconnect SM, a delete line SM, or delete terminal SM is received by the
NPU. The affected line a~d/or terminal statistics blocks are dumped and the
appropriate statistics SM is sent before the normal response SM is sent.
When any statistics messaae is sent upline, the statistics counters in that
statistics block of the TCB or LCB are cleared.

The search by PNSGATH for periodic statistics is conducted as follows: The
search cycle begins at the permanently assigned TCB for the NPU. The
statistics from this TCB are dumped if any are available. The next search
is set to begin at the first active LCB. If no NPU statistics are
available, the current search moves to the first active LCB. These
statistics are dumped, if available. The next search is set to begin at the
first TCB attached to this LCB. If the LCB has no statistics available, the
search moves to the first TCB. Its statistics are dumped, if available.
The next search is set to begin at the next TCB for this line. This
continues until all the TCBs for the first active line are checked. Then,
the second active line anc all its TCBs are checked. This continues until
all TCBs and all active lines are checked. The next cycle again starts with
the NPU TCB.

3-8 60474500 A

BASE SYSTEM SOFTWARE

The support software can be divided into three categories: the base system,
the multiplex subsystem (technically a part of the base system), and the
network communications software. This section ·describes the support
software for the base system only. The HIP and the LIP can be considered as
support programs for the TIPs.

The functional grouping of support tasks is as follows:

• Base system - Operating system functions (program execution, buffer
{space) allocation, interrupt handling), timing support, data
structures support. NPU console handling is also described in this
grouping.

• Multiplex subsystem - drivers for the multiplexer I/O lines.

• Network communications software - message routing, command
interpretation (the service module), common TIP support routines
(including statistics gathering, CE error messages to the host, and
regulation assistance) •

The major base subsystem components are the following:

• Monitor, also called OPS monitor
• Space (buffer) allocation
• Timing services
• Direct program calls
• Indirect (worklist-driven) program calls
• Interrupt handling
• Directory maintenance
• Global structures
• Standard code and arithmetic support routines

SYSTEM MONITOR
The NPU is a multiple-interrupt-level processor. Interrupts are serviced in
a priority scheme in which all lower priority interrupts are disabled during
execution of a program that is operating at a higher priority level. When
no interrupt is being processed, the NPU runs at its lowest priority, known
as the operations (OPS) monitor level. (Refer to interrupt lines/priorities
in appendix H.)

NOTE

This priority is not to be confused with the regulation level
priority for trunks (discussed in the CCP 3 Reference Manual)
nor with the host interface priorities (discussed as a part
of the HIP) •

4

60474500 A 4-1

The system monitor (PBMON) controls allocation of time to programs running
at the OPS level. The monitor gives control to a program by scanning the
table by worklist control block (WLCB) that defines the OPS level programs
that can be called with a worklist. Control is released to the first
program encountered with a queued worklist waiting to be serviced.

Scanning starts at entry 8 of the table (table 4-1) and continues until the
first program is encountered with a worklist attached (figure 4-1). The
monitor then determines whether the program can be called with more than one
worklist (N >l). Worklist control block BYLISTCB contains parameter
BYMAXCNT that defines the number of worklist entries to be processed by the
OPS-level program in one p~ss. If N is greater than 1, the program is given
control successively until either all the worklists for that proqram are
serviced or until the maximum number of consecutive executions for that
program has been reached. If N is 1, the scan pointer moves to the next
entry each time the program is executed, even though there may be more
worklists attached to this program's queue.

The scan pointer automatically recycles to the BOCHWL entry when BODUMMY is
reached. If new worklist-driven OPS-level proqrams are added to the list,
they precede BODUMMY. A worklist must be established to drive the new
program.

Each time a program completes, PBMON initializes a timer (BTTIMER). This
timer is advanced and qhecked by the interrupt level timer routine (PBTIMER)
at specific system-defined intervals. If the timer expires, it indicates
that an OPS-level program has been abnormally delayed. PBMON execution then
terminates and a call to PBHALT is made. This is called an OPS timeout
condition.

BUFFER HANDLING

This function allocates any of the four types of buffers (each tvpe has its
own free buffer pool) and returns buffers to the appropriate free buffer
pool when users are finished with the buffers. As an option, the function
~lso stamps buffers to keep a record of the buffer's usage and the address
of the program requesting the buffer.

Standard buffers are also assigned for the following:

• Data buff er for special TIP application
• Integer overlay
• Buffer chaining overlay
• Terminal control blocks (TCBs)
• Physical I/O request packets
• Active ASYNC LCB list
• Statistics (NPU, line, or terminal)
• Type 1 table entries
• Type 4 table entries
• Timeout buffers
• Diagnostic control block (PCB)
.. Multiplex line control block (MLCB) and text processing control block

(TPCB)
• Special application flags

Figure 4-2 indicates the types of buffers assigned. Each buffer type has
its own field definitions. The figure also shows the stamping techniques.

4-2 60474500 A

BYWLCB

••• to here

Current-;-+

I
pointer I
position I

+

Monitor

pointer

recycles •••

60474500 A

Table
Entries

BOFSWL

BOCHWL

BOINWL

BOMLWL

BOSMWL

BOTIWL

BOTYWD

BOLIWL

BODGWL

BO COWL

BOHLDC

BOM4WL

BOASYNC

BOHASP

B027WL

BOHHWL

BO DUMMY

TABLE 4-1. OPS MONITOR TABLE

Entry No. Program No. Entries

1

2 These entries not

3 serviced by moni-

4 tor. Reserved

5 for generating

6 worklists

7

8 Console 1

9 Internal processing 1

10 MLIA interrupt
handler 10

11 Service module
(SVM) 2

12 Timing services 1

13 TIP debug 1

14 Line initializer 1

15 (On-line
diagnostics) 0

16 HIP 1

17 LIP 1

18 Mode 4 TIP 1

19 ASYNC TIP 1

20 HASP TIP 1

21 Reserved 0

22 Reserved 0

23 Dummy for console:
recycles to entry 8 0

Calls WLG
Size Program (Word)

PBCONSOLE 2

PBINTPROC 2

PBMLIAOPS 5

PNSMWL 4

PBTIMAL 1

PBTIPDBG 6

PTLINIT 3

------ -
PTHIPOPS 3

PLTKOPS 3

PTMD4TIP 3

PTASNOPS 3

PTHSOPSTIP 3

------ -
------ -

------ -

4-3

Word

0

1

2

3

4

5

6

15 14 8 7

* BYCNT (count)

Put Pointer

Get Pointer

BYWLINDEX BY INC
First entry index Not used

Not used

** BYMAXCNT BYPAGE

BYPRADDR

* Multi-WLCB flag

** BYWLREQ, worklist required flag

BYCNT - number of entries in the worklist queue

BYMAXCNT - number of entries to process in one pass

BYPAGE - program page address

PYPRADDR - program address

BYWLINDEX - WLCB index

Figure 4-1. OPS Monitor Table Format

0

4-4 60474500 A

0 LCD J FCD 0 LCD 1 FCD 0 LCD J FCD

FLAGS FLAGS FLAGS

Usc=tble
buff er
words

m-1 CHAIN CHAIN REVERSE m-1 NIL

m-1 CHAIN FWD

Buffer of size m
LCD - last character

displacement
FCD - first character

displacement
FLAGS - end indications,

transparent
text, queuing,
etc.

Buffer before assignment.
Chains of free buffers
both forward and reverse

Buffer after assignment.
No chain, but word m-1
reserved for chaining

Pointe
to nex
entry

r
t

0

1

•
98

99

15

Address

Address

Buffer Stamping area*

of requestor \

of buffer

Most recent
150 buffers
assigned or

I released

l Last buffer

~entry j_

* Circular buffer, two words/entry

F status flag
0 = put
1 = get

Figure 4-2. Buffer Formats and Stamping

1 0

F

F

60474500 A 4-5

Buffer splitting continues until enough buffers of the size needed are made
available from progressively larger buffer pools or until all possible
buffer splits have been made from all larger buffer pools and not enough
buffers are available.

When testing buffer availability against a specified threshold number,
buff er maintenance attempts to adjust distribution of buffer sizes by using
buffer mating or buffer splitting to replenish buffer pools that are below
the threshold level. If buffer cannot be made available, the buffer
requester is notified that the requested operation cannot occur for lack of
buffers. Buffer mating is the converse of buffer splitting.

Buffers are potentially available in six sizes: 4, 8, 16, 32, 64, and 128
words. At installation time, the user chooses any four contiguous sizes;
for instance, 8, 16, 32, and 64 words.

In the standard system, buffers are assigned in following sizes, for the
uses indicated:

• 8 words - timing
• • •

16 words -
32 words
64 words

MLCB and WLCB
TCB and TPCB
data

Buffers are assigned from a buffer pool of the appropriate size and are
assigned one at a time; buffers can be released singly or in a chain of
buf~ers. Buffers are released to the buffer pool from which they were
originally drawn.

Buffer stamping is available as a build-time option. If this option is
selected, a buffer stamping area is reserved to save diagnostic information
on the assignment and release of buffers. The circular stamping buffer, 100
words long, can save information on the most recent 50 buffer assignments/
releases. Each two-word entry consists of the address of the routine that
requested the assignment/release, and the address of the buffer. A flag in
each entry indicates whether the buffer is currently assigned or in a free
buffer pool. Information concerning the use and location of the buffer
stamp area and the pointer to the next entry to be used is found in appendix
H, the buffer subsection.

OBTAINING A SINGLE BUFFER

The calling sequence to obtain a single buffer of a specified size is

PBGETlBF (parm)

Parm is the address of the pointer to the buffer control block. PBGETlBF is
a PASCAL function and returns the value of BOBUFPTR that points to the base
address of the buffer obtained. PBGETlBF also uses the buffer control block
for the specified size buffer. The chain word and flag word of the newly
assigned buffer is cleared and the LCD/FCD are set to their initial values.

Interrupts are inhibited during execution. A system halt occurs if the
buffer pool is down to the last buff er and there are no buffers in
larger-sized pools available to be split. A halt occurs if the next buffer
has a bad chain address.

4-6 60474500 A

RELEASING A BUFFER

The following calling sequences are used, respectively, to release a single
buffer or a specified size to release one or more buffers of a specified
size, or to release a chain of buffers. After checking for no buffers, the
system returns the released buffer to the free pool of other same-sized
buffers. The buffer handler also ensures that the address is a valid buffer
address and determines if the buff er has already been released to the free
buffer pool. Contents of released buffers are not altered except for chain
words.

Releasing a Single Buffer

The calling sequence to release a single buffer is

PBRELlBF (parml, parm2)

Parml is a pointer to any address within any word of the buffer to be
released and parml is the address of the pointer to the buffer control
block. Parml is a PASCAL VAR parameter that is altered by the procedure so
that, upon completion, parml contains the chain value of the last buffer
released.

Releasing Several Buffers

Two methods are available to do this. The first method requires a pointer
to the first buff er in the chain to be released. The second method will not
return an error indication if the buffer address is zero. In both cases,
the release mechanism is actually performed by firmware. The two methods
are called by PBRELCHAIN (parml, parm2) and PBRELZRO (parml, parm2).

In both cases, parml designates a pointer to the first buffer in the chain
to be released and parm2 designates (indirectly} the address of the buffer
pool to which the buffers will be returned. If parml for PBRELZRO is zero,
no action is taken.

TESTING BUFFER AVAILABILITY

The calling sequence to test buffer availability is

PBBFAVAIL (parml, parm2, parm3)

PARM! specifies the number of buffers required, parm2 pointer specifies the
buffer control block required, and parm3 specifies the total free space
threshold. PBBFAVAIL is a PASCAL function: it returns a true value if the
test indicates that sufficient buffers are available. This calling sequence
can be used at any interrupt level.

BUFFER COPYING

The BBCOPYBFRS routine allows copying data from a chain of any type of
buffers to a chain of data buffers. The call is

PBCOPYBFRS (parm red).

60474500 A 4-7

The parameter record (parm red) requires the following:

• The number of source buffers to copy
• Source buff er size
• Data buffer size
• A release flag

The source chain can be released after the copying operation.

OTHER BUFFER HANDLING ROUTINES

PBDLTXT deletes data from a buffer by advancing the first character
displacement (FCD) pointer in the buffer header. See figure 4-2. PBSTRIP
returns the empty buffers to the free buffer pool of the appropriate size.

TIMING SERVICES

Timing services provide the means for running those programs or functions
which are executed periodically or following a specific lapse of time.
Seven timinq services are available:

•

•

•

•

•

•

4-8

A firmware program handles the 3.33 ms microinterrupt to provide a
100-ms timing interval. This real-time clock interrupt is handled by
PBTIMER. PBCLKINIT restarts the real-time clock following the
interrupt.

Every 100 ms, PBTIMER calls PBTOSRCH to search the chain of
time-lapsed buffer entries. These entries are assigned as needed in
response to calls from any module. If an entry's time period
elapses, and if the release flag for that entry is set, the entry is
deleted from the chain. In all cases, a worklist call is made to the
program which requested the delayed call. Timing services uses
PBTOQUE to add entries to this chain of delayed calls.

Every 500 ms, PBTIMER checks the deadman timer. The timer is reset
and the timer monitor routine is executed. If the deadman timer
expires, the monitor has spent too much time in one OPS-level
program. The NPU stops.

Every 100 ms, PTMSCAN (a part of the ASYNC TIP) scans the list of
active line control blocks (LCBs) for asynchronous terminals. If a
character is received, the timeout is set for the next character. If
no character has been received during the 100-ms period, a timeout is
declared, the LCB is removed from the list of active LCBs, and the
ASYNC TIP is notified by means of a worklist.

Every second, a timing routine checks all active output lines to find
whether an output data demand (ODD) interrupt has been generated for
the next character to output. If one second has passed with no new
ODD interrupt, the multiplex subsystem worklist processor is called
to declare a hardware failure for the line.

A time-of-day routine, PBTIMEOFDAY, is called every second. The time
of day is incremented and, if necessary, recycled to the start of day
time (00 hour, 00 minute, 00 second).

60474500 A

• Every 500 ms, PBLCBTMSCAN scans all active lines for periodic
requests. If a line's period for a specific request has elapsed, the
appropriate TIP is called, using a worklist entry. Input or output
is terminated for the line if this is requested. Inactive LCBs are
unchained from the set of active LCBs. Timer services provides the
means for chaining LCBs to this list of LCBs that require periodic
action.

DIRECT CALLS

Most OPS-level programs call other programs directly for performing minor
tasks. A few major task calls use indirect (worklist) calls. For direct
calls, the last program in the calling chain is usually PBCALL. It is used
for direct calls among OPS-level programs, for transferring between programs
on different pages, for timed or periodic calls, for service message
switching, for overlay execution, and by PBMON when that program places a
program into execution.

PBCALL calls a procedure from PASCAL by address, rather than by name.
Unlike other procedure calls, PBCALL can pass a variable number of
parameters, corresponding to the number of parameters expected by the
calling procedure. Example:

type pgms ·= (pgml ••• pgmn);
var table: array {pgms} of integer:

index: pgms;
addr ({program!} , table { pgml}) ;

addr ({programn} , table {pgmn});

.{set up index}
PBCALL (table {index}); {call program, no parameters}

The PBCALL calling sequence is

PBCALL (addr, parml, .•• parmn)

addr is the address of the program to be called and parml through parmn are
optional and are parameters passed to the called program as shown:

procedure PBCALL;

begin
(store return address in called procedures entry point)
(jump to procedure)

Other switching programs of importance are as follows:

• PBPAGE {parml) switches control directly from one OPS-level program
to another. Parml is a worklist index to OPS PROGRAMS SET INTO AN
INTERMEDIATE ARRAY.

60474500 A 4-9

• PBXFER (parml, parm2) transfers control to a program that may be on
another page of main memory. Parml is the called program's address
and parm2 is the dynamic page register base address. Both are global
variables.

• PBTIMAL (parm) controls all time-dependent OPS-level programs. Parm
is the array of time dependent programs (CBTIMTBL).

WORKLIST SERVICES
Worklists provide a convenient method to handle communications between
software modules that do not use direct calls. Figure 4-3 depicts the
worklist organization. The list services function manipulates worklists
with variable entry sizes. Functions provided by list services include the
following:

• Make (PUT) worklist entries from any priority level (including OPS
level) .

• Make OPS-level worklist entries by terminal type.

• Extract (GET) an entry from a list.

Characteristics of lists managed by list services are as follows:

• First in, first out.

• Entries may be from one to six words in length, but all entries in a
pqrticular list must be the same length.

• Lists are maintained in dynamically assigned space.

• There is no maximum on the number of entries in a list or on the
number of lists serviced.

Contention between priority interrupt levels is resolved by defining an
intermediate worklist array (BWWLENTRY) with 6-word entries for each
possible system interrupt level. Worklist entry parameters are assembled
and extracted in the intermediate worklist area corresponding to their
interrupt level. (A user can design his own programs to perform this
function, however.)

A worklist entry is passed to PBLSPUT and data is normally obtained from
PBLSGET through a global array named BWWLENTRY. Each element of the array
has a variant record structure consisting of one case for each logical entry
structure. When each new worklist-driven program is created, the format of
the new worklist is added as another case to the PASCAL-type definition
BOWKLSTS. Thus, each worklist has unique fields and names.

There are 17 elements to the array BWWLENTRY, one for each priority
interrupt level. To access the proper interrupt level, the global variable
LEVELNO is used. For example, to access a field of a particular worklist
entry at the proper interrupt level, the following expression is used:

BWWLENTRY (LEVELNO]. FIELDNAME

4-10 60474500 A

BYLISTCB

FI BYCNT

BYPUT

BYGET

BYFEINC BY INC

Next entry
to GET

FWD CHAIN

F

BYCNT

BY INC

BYFEINC

BYFEINC

Entry

Entry

Next entry
to PUT

FWD CHAIN FWD CHAIN

Not used

Entry count

Entry size (uniform in any one worklist)

Displacement in buffer to first entry

Figure 4-3. Worklist Organization

60474500 A 4-11

The fields of the worklist entry are accessed to store information before
calling PBLSPUT or to obtain information after calling PBLSGET. For
programs that always run at a specific interrupt (e.g., OPS, CPL, and RTC),
constants can be used to increase efficiency.

If a program using PBLSPUT or PBLSGET calls a program also using PBLSPUT or
PBLSGET, information in the worklist entry BWWLENTRY might be changed upon
return. In such cases, one of the following techniques must be used to
ensure proper data integrity:

• Put all information in the worklist entry and call PBLSPUT before
calling the second program.

• Call PBLSGET and access all pertinent information from the worklist
entry before calling the second program.

• Save and restore the worklist entry from BWWLENTRY.

MAKING A WORKLIST ENTRY

PBLSPUT puts an entry into a worklist from any interrupt priority level.
The calling sequence is

PBLSPUT (parml, parm2)

Parml is the address of the worklist entry and parm2 is the address of the
proper worklist control block.

PBPUTYP makes a worklist entry after calculating the worklist index from the
line number. Firmware makes the actual worklist entry. Format of the call
is

PBPUTYP (parm)

Parm is the entry to be made, either in an intermediate array or in a local
save area.

NOTE

The second word of the entry is always a line number.

Two other important worklist entry builders are actually a part of network
supervision,.

•

•

4-12

PBTWLE parm - This makes a worklist entry for the specified terminal
control block (TCB). The parm is the work code. The entry made
contains the line number and the TCB pointer. PBPUTYP moves the
entry from the intermediate array to the worklist.

PBSWLE - This makes a worklist entry for SWITCH, the procedure used
for switching. PBSWLE puts the pointer to the block to be switched
in a worklist entry for PRINTPRC. That routine calls SWITCH.
PBLSPUT moves the entry from the intermediate array to PBINTPRC's
worklist.

60474500 A

EXTRACTING A WORKLIST ENTRY

The PBLSGF.T routine moves entries from a worklist to an intermediate array
(BWWLENTRY). The routine is available at all priority interrupt levels. A
special firmware seauence speeds up execution and eliminates contention
between software and firmware. Forrr.at of the call is

PBLSGET (parml, parm2)

Parml is the address of the worklist ertry and parm2 is the address of the
worklist control block. If the list iE not empty, the next entry is moved
into the specified worklist area.

BASIC INTERRUPT PROCESSING

The two types of interrupts that are processed are the macrointerrupts and
the microinterrupts.

MACROINTERRUPTS

The interrupt mask register is set by an interregister command and the
interrupt system is activated by the erable interrupt command. Upon
recognizing an interrupt, the hardware automatically stores the appropriate
program return address in a storage location reserved for the activated
interrupt state. This ensures that the software returns to the interrupted
program after interrupt processing.

With the return address stored, the hardware deactivates the interrupt
system and transfers tcontrol to an interrupt handler program that begins at
the address specified for that interrupt state. The program thus entered
stores all registers (including the interrupt mask register ana overflow) in
addresses reserved for the interrupt state. The interrupt mask register is
then loaded with a mask to be used while in this interrupt state, with a one
in the bit position indicating interrupt lines with higher priority than the
interrupt state being processed. The ~rogram then saves the current
software priority level, sets the new software level, activates the
interrupt system, and processes the interrupt.

During such interrupt processing, an interrupt line with higher priority may
interrupt. However, such interrupts also cause storage of return address
links to permit sequential interrupt processing according to priority level
with eventual return through the return addresses to the mainstream computer
program.

When processinq is completed at that level, the computer exits from an
interrupt state by inhibiting interrupts, restoring registers to their
pre-interrupt states, and executing the exit interrupt state command (EX!).
This command retrieves the return address stored when the interrupt state
was entered. Control is transferred to the return address and the interrupt
system is again activated.

60474500 A 4-13

Interrupt Priority

Interrupt priority is under control of the computer program. Priority is
established by an interrupt mask for each interrupt state that enables all
higher priority interrupts and disables all lower priority interrupts. When
an interrupt state is entered, the mask for that state is placed in the mask
register. Bit 0 of the mask register corresponds to interrupt state 00, bit
1 corresponds to interrupt state 01, etc. A bit that is set means that the
corresponding interrupt state has a higher priority than the interrupt state
to which the mask belongs. Thus, there can be as many as 17 levels of
priority.

NOTE

Priority of any interrupt state can be chanqed during program
execution.

Standard subroutines are provided for servicing the interrupt mask. These
subroutines are as follows:

• Set Interrupt Mask
• Reload Interrupt Mask
• Perform a logical AND with the mask
• Perform a logical OR with the mask

PBSMASK - SET INTERRUPT MASK

This routine loads a specified interrupt mask value into the M register to
become the new interrupt mask. The calling sequence is

PBSMASK (parm)

Parm is a value parameter specifying the new interrupt mask value to be
loaded into the M register. The resultant mask becomes the new mask value
in the M register.

PBAMASK - AND INTERRUPT MASK {AND PBLMASK)

PBAMASK, in conjunction with PBLMASK, is used to selectively disable and
enable one or more software interrupt levels. The calling sequence is

PBAMASK (parm)

Parm is a value parameter specifying the value to be logically ANDed with
the current interrupt mask.

PBOMASK - OR INTERRUPT MASK

PBOMASK employs a logical OR function to combine a given interrupt mask with
the current mask in the M register, the result becoming the new interrupt
mask value in the M register. The calling sequence is

PBOMASK (parm)

Parm is a value parameter specifying the mask value to OR with the current
interrupt mask.

4-14 60474500 A

User Interface

Because each interrupt handler is an indepennent program, there are no
specific user interfaces. However, pertinent information is necessary to
enable modification of, and additions to, the interrupt handlers.

An array contains interrupt masks for the 16 interrupt states. To access a
particular interrupt mask, use the interrupt state number as an index.
LEVELNO is the global variable where the current software priority level is
saved.

Table 4-2 lists the 16 interrupt states, gives the value for the delta field
for its exit instruction, the storage location for its return address, and
the location of the first instruction of the interrupt handler program.
Current interrupt assignments and their associated software priority are
listed in table 4-3. The seventeenth state (no interrupt line associated)
is the OPS level. -

TABLE 4-2. INTERRUPT STATE DEFINITIONS (PBINTRAPS)

Exit Instruc- r.ocation of Location of
Interrupt tion Delta of Return First Instruction

State Field Value Address of Interrupt
Handler Program

00 00 0100 0101

01 04 0104 0105

02 08 0108 0109

03 oc OlOC OlOD

04 10 OllO 0111
w

05 14 0114 0115

06 18 Oll8 0119

07 lC OllC 0110

08 20 0120 0121

09 24 0124 0125

10 28 0128 0129

11 2C 012C 012D

12 30 0130 0131

13 34 0134 0135

14 38 0138 0139

15 3C 013C 0130

60474500 A 4-15

TABLE 4-3. INTERRUPT ASSIGNMENTS

' Interrupt
Line

Software
Priority Interrupt Description Handler

Name

0

1

2

3

4

5

6

7

8

10

11

12

13

15

Pl

P6

P2

P3

P7

P7

PB

pg

Pll

Pl2

Pl3

Pl4

Memory parity, program protect,
power failure, software breakpoint

NPU console

Multiplex loop error (MLIA)

Multiplex subsystem - Level 2

Coupler 2

Coupler 1

Spare

Real-time clock

Spare

Spare

ODD input parallel

Input line frame received (MLIA)

Macro breakpoint

PBLNOO

PBLNOl

PBLN02

PBLN03

PBLNOS

PBLN06

PBLN08

PBLNOC

PBLNOD

PBLNOF

MICROINTERRUPTS

Three microinterrupts are also serviced.

•

•

4-16

The output data processor processes the output data demand (ODD)
interrupt that each communications line adapter generates to indicate
that it is ready to output another character. The output data
processor {part of the multiplex subsystem) gets the next character
from the appropriate line-oriented output buffer and puts the
character on the output loop. The r€questing communications line
adapter picks the character from the loop and transmits it.

The input data processor processes the interrupt produced when the
entry of either a data character or communications line adapter
status into the circular input buffer is completed. The input data
processor (also part of the multiplex subsystem) gets the next
character from the appropriate line-oriented output buffer and puts
the character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

60474500 A

• The input data processor processes the interrupt producued when the
entry of either a data character or communicatons line adapter status
into the circular input buffer is completed. The input data
processor {also part of the multiplex subsystem) uses the designated
input state program to demultiplex the character into the approprjate
line-oriented input buffer.

• The timing services firmware processes the 3.3-miJlisecond clock
interrupt, which is used as the time base for all timed NPU functions.

PASCAL GLOBALS
CCP provides a number of PASCAL globals, frequently in the form of fields
embedded in tables. Appendix J shows the tabular form of the principal data
structures and describes the fields. A complete listing of the CCP PASCAL
globals is in an MPEDIT listing.

STANDARD SUBROUTINES

Standard subroutines are a miscellaneous group of support routines which
perform the following tasks.

• Convert and handle numbers

• Maintain paging registers

• Perform block functions

• Set or clear protect bit

• Perform miscellaneous other tasks

Table 4-4 lists these standard subroutines. Some of these frequently used
routines are written in macroassembly language rather than in PASCAL.

CALLING MACROASSEMBL Y LANGUAGE PROGRAMS FROM PASCAL PROGRAMS

A procedure call to a macroassembly source code program from a PASCAL-coded
program is the same as a call to any other PASCAL program. The same calling
sequence code is generated, that is:

RTJ program
ADC par ml

ADC parmn

A macroassembly program handles parameters as PASCAL parameters. To treat a
parameter as a value parameter, the user loads the contents of the parameter
and stores it locally and then passes the address of the store location to
the called program. To treat a parameter as a variable parameter, the user
loads the address of the parameter and uses this as a pointer. Packed
record parameters that are fields less than full word length are unpacked
into a temporary word and the address of the temporary word is passed to the
called program.

60474500 A 4-17

TABLE 4-4. STANDAHD SUBROUTINES

Subroutine
Name

PBCLR

PBCLRPROT

PB COMP

PBFILEl

PBFMAD

PBFMAH

PBGETPAGEX

PB HALT

PB ILL

PB LOAD

PB MAX

PB MEMBER

PBMIN

PBPSWITCH

PBPUTPAGE

PBRDPAGE

PBSETPROT

PBSTPMODE

PB TOAD

PBTOAH

PB18ADD

PB18BITS

PB18COMP

TOTI ME

TO START

TO STOP

Description

Clear block of main memory

Clear protect bit

Compare two blocks

Load/display file 1

Convert from ASCII to binary

Convert from ASCII to birary

Reads page register from
spec if ied bank

System halt

Illegal call - passes to TIP
for CCP variants

Load a canned message

Get max of 2 numbers

Test ASCII set membership

Get min of 2 numbers

Loads page registers 30 and 31

Writes page registers to either
bank

Reads dynamic page register

Set protect bit

Sets page mode

Convert to ASCII decimal

Convert to ASCII hexadecimal

Adds to 18-bit address (paging)

18-bit address functions (paging)

Compares two 18-bit addresses
(paging)

Programs execution timer

Starts program execution timer

Stops program execution timer

**NI = Noninterruptable
0 = OPS level only
R ~ re-entrant

4-18

Type** Lanquaae*

NI PP

NI MA

NI MA

0 MA

R PF

R PF

NI MA

NI pp

NI PP

R pp

NI PF

NI PF

NI PF

NI MA

NI MA

NI MA

0 MA

NI MA

R pp

R pp

R pp

R pp

R pp

R pp

R pp

R pp

Type
Checking
Defeated

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

No

No

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

*pp = PASCALL procedure
PF = PASCAL function
MA = Macroassembler

60474500 A

A functional call to a macroassembly program differs in that a PASCAL
forward reference describing the calling sequence must appear before all
function calls in the source code so that type-checking on the function
return value can be performed.

Defeating Type-Checking in PASCAL Procedure Calls

The PASCAL compiler is a one-pass compiler. When it encounters a procedure
call in source code, it may or may not have processed the calling sequence
of the called program. If the calling sequence has been processed, all
parameters of the user's procedure are error checked. The type of each
parameter corresponds to the type specified in the calling sequence and the
number of parameters must be the same. No expressions and no fields of less
than a word in length in a packen record can be variable parameters.

If the calling sequence of a pro9ram has not been processed when a call to
it is encountered, the PASCAL compiler generates a subroutine jump to an
external symbol. The standard calling sequence is then generated: however,
no error checking is done on the parameters. This situation defeats
type-checking in the procedure call.

If used carefully, defeating type-checking can be a useful technique. For
example, arrays with the same element types but of different lengths are
treated as different types by PASCAL. Therefore, any program needing
variable length array input as a variable parameter must defeat
type-checking. Ramifications of defeating type-checking are as follows:

• All calls from PASCAL programs to macroassembly procedures
automatically defeat type-checking unless defined as FORWARD.

• PASCAL and macroassembly functions cannot defeat typechecking.

HANDLING ROUTINES

Seven handling routines for number conversion are listed below and described
in the following paragraphs.

• PBFMAD - converts from ASCII decimal to binary

• PBFMAH - converts ASCII hexadecimal to binary

• PBMAX - finds larger of two numbers

• PBMEMBER - tests number to find whether it is a member of the user
defined subset of ASCII code

• PBMIN - finds smaller of two numbers

• PBTOAD - converts binary to ASCII decimal

• PBTOAH - converts binary to ASCII hexadecimal

60474500 A 4-19

PBFMAD - Converts from ASCII Decimal to Binary

PBFMAD converts up to five ASCII decimal characters in a buffer into binary
number contained in one 16-bit word. The calling sequence is

PBFMAD (parml, parm2, parm3).

Parml is integer type; the converted word is returned in parml. Parm2 is a
pointer specifying the buffer address where the decimal digits to be
converted are located. Parm3 is an integer variable specifying the index
where the first decimal digit to be converted is located within the buffer.

PBFMAD is a Boolean function. If PBFMAD is true, the conversion was
successful; otherwise, there was either bad data or a bad index.

PBFMAH - Converts from ASCII Hexadecimal to Binary

PBFMAH converts up to four ASCII hexadecimal characters in a buffer to a
binary number stored in one 16-bit worn. The calling sequence is

PBFMAH (parml, parm2, parm3).

Parml is a variable parameter of type BOOVERLAY; the converted word is
returned in parml. Parm2 is a pointer to the buffer address where the
hexadecimal characters to be converted are located. Parm3 is an integer
parameter specifying the index where the first hexadecimal character to be
converted is located within the buffer.

Like PBFMAD, PBFMAH is a Boolean function. If true, PBFMAH indicates the
conversion was successful. Otherwise, there was either bad data or a bad
start/stop index.

PBMAX - Funds the Larger of Two Numbers

PBMAX is a function that returns the larger (maximum) of two given numbers.
The calling sequence is

PBMAX (parml, parm2).

Parml and parm2 are integers to be compared. The larger of parml and parm2
is returned by PBMAX.

PBMEMBER - Tests ASCII Set Membership

PBMEMBER determines whether or not a given ASCII character is a member of a
user-def~ned set of ASCII characters. PBMEMBER overcomes the 255X PASCAL
restriction of having one-word, 16-element sets by accessing an array of
one-word sets. A character is broken up for testing by the following format:

7 6 4 3 0

Index into Element number
array of sets in set

4-20 60474500 A

In an array of type JSACIISET, 128 bits are reserved (one for each possible
ASCII character), where JSASCIISET =array (0 •• 7) of SETWORD. Characters
are located in the set by bit number; for instance, a blank (2016) is bit
number 2016• Bits of the JSASCIISET array are numbered as follows:

Word O Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

F 0 lF 10 2F 20 3F 30 4F 40 SF 50 6F 60 7F 70

Bit Numbers (hexadecimal)

Therefore, the value initialization for testing hexadecimal characters is

var JSHEXSET: JSACIISET;
value JSHEXSET = (0, 0, 0, 3F161

~
digits 0-9

7E16, 0, 0, 0) ;

characters A-F

The calling sequence is

PBMEMBER (parml, parm2).

PARM! is a value parameter of type BOOVERI.AY containing the character to
test. Parm2 is a variable parameter of type JSASCIISET and is the set to
test parml for membership. PBMEMBER is a Boolean function; it returns a
true value if the character is in the set and a false value otherwise.

PBMIN - Funds the Smaller of Two Numbers

PBMIN is a function that returns the smaller (minimum) of two given
numbers. The calling sequence is

PBMIN (parml, parm2).

Parml and parm2 are integer value parameters. The smaller number of parml
and parm2 is returned by PBMIN.

PBTOAD - Converts Binary to ASCII Decimal

PBTOAD converts a binary number contained in one 16-bit word to as many as
five ASCII decimal characters. Leading zeros are suppressed. The converted
digits are stored in a specified position in a buffer, followed by a blank.
The calling sequence is

PBTOAD (parml, parm2, parm3, parm4).

60474500 A 4-21

Parml is an integer containing the word to be converted; parm2 is a pointer
to the buffer that stores the converted ASCII digits. Parm3 and parm4 are
integers specifying the start and stop indices for storing the converted
ASCII digits in the buffer. The JMCNVTO (convert to ASCII) system table is
used by this routine.

PBTOAH - Converts Binary to ASCII Hexadecimal

PBTOAH converts a binary number contained in one 16-bit word into four ASCII
hexadecimal characters. The converted characters are stored in a specified
position in a buffer, followed by a blank. The calling sequence is

PBTOAH (parml, parm2, parm3, parm4)

Parml is a hexadecimal value and contains the word to be converted. Parm2
is a pointer to the buff er that stores the converted hexadecimal
characters. Parm3 and parm4 are integers specifying the start and stop
indices for storing the characters in the buffer. The SMCNVTO (convert to
ASCII) system table is used by this routine.

MAINTAINING PAGING REGISTERS

Five subroutines maintain the paging address system for an NPU with more
than 65K words of main memory. (The maximum allowable address is 3FFFF16
and requires 18 bits.) Three other subroutines allow arithmetic and
functional operations on 18-bit paging type addresses.

PBSTPMODE - Sets Paging Mode

PBSTPMODE sets the page mode for one of the three possible types of
operation: no paging, paging with bank 0 page registers, or paging with
bank 1 page registers. Calling sequence is

PBSTPMODE (parm)

Parm is the input index:

0 - use page mode O; bank 0 registers
1 - use page mode l; bank 1 registers
2 - absolute; no paging

PBPSWITCH - Performs Page Switching

PBPSWITCH loads the two dynamic page registers (30 and 31) using the input
specified page register base value. Calling sequence is

PBPSWITCH (parm)

Parm is the page register base value for the program to be executed
(programs must execute within a single 2K-word page). Output of the
subroutine is that the dynamic paging registers are ready for use.

4-22 60474500 A

PBRDPGE - Reads Dynamic Page Register

PBRDPGE reads the contents of the dynamic page register (30) and returns the
base address in the register to the requester. Calling sequence is

PBRDPGF.

There are no input parameters.

PBPUTPAGE - Write Specified Page Register

PBPUTPAGE loads a specified page register (number and bank) with a specified
value. Calling sequence is

PBPUTPAGE (parml, parm2)

Parml contains the page number; a bank flaq uses the leftmost bit (flag = 0
indicates bank O; flag= 1 indicates bank 1). Parm2 is the 9-bit value to
be loaded in the designated register. Upon return, the specified page
register is loaded.

PBGETPAGE - Reads Specified Page Register

PBGETPAGE reads th contents of the specified page register and returns them
to the user. Calling sequence is

PBGETPAGE (parml, parm2)

Parml designates the number of the reqister and uses the leftmost bit as a
bank flag (flag= 0 indicates bank O;-flag = 1 indicates bank 1). Parm2 is
the location used to return the page register contents to the caller.

PB18ADD - Add Bit Addresses

PB18ADD adds two 18-bit addresses to~ether. Format of an 18-bit address is
as follows:

Word 1 2

i I lower 16 bits

+ upper 2 bits

The calling sequence is

PB18ADD (parml, parm2)

Parml and parm2 are the two addresses to be added in B018BITS format.
Output is the single 18-bit address.

60474500 A 4-23

PB18BITS - 18-Bit Address Functions

PB18BITS performs one of five possible functions:

• Stores a number into an 18-bit adaress
• Reads the specified 18-bit address
• Clears the protect bit in an 18-bit ad~ress
• Sets the protect bit in an 18-bit address
• Forms an 18-bit address from a 17-bit address

The callinq sequence is

PB18BITS (parml, parrr.2, parm3)

Parm! is an 18-bit address, parm2 is the read/store word address and parm3
specifies the function to be performed. The output is a properly performed
function.

PB18COMP - Compares Two 18-Bit Addresses

PB18COMP makes a comparison between two 18-bit addresses. The calling
sequence is

PB18COMP (parml, parm2, parm3)

Parm! is the A address, and parm3 is the B address. Parm2 specifies the
type of comparison: A COMP B, where COMP is one of =, I, , , , or

The output is a Boolean function: true if A COMP Bl; false if any
other condition exists.

BLOCK FUNCTIONS

Two standard block function subroutines are provided: PBCLR clears the
contents of a block, and PBCOMP compares the contents of two blocks.

PBCLR - Clears a Block of Main Memory

This subroutine is used to clear any bJock-sized area in mai~ memory.
Calling sequence is

PBCLR (parml, parm2)

P~rml is the starting address of the block to be cleared; parm2 is the
number of consecutive words to be zeroed. Output is a cleared block of
memory.

PBCOMP - Compares Two Equal Length Blocks

After block comparison, a Boolean answer (1 represents true, 1, false) is
returned to the caller. The calling sequence is

PBCOMP (parml, parm2, parm3)

4-24 60474500 A

Parm! and parm2 are the startin9 address of thP. two blocks to be comparea;
parm3 is the number of words compared in each block. Output is the Boolean
true-false function, which depends on whether the blocks had identical
contents.

SET/CLEAR PROTECT BITS

The protect bit is bit 17 of the main memory ~.1ord. It cannot be used for
data, but it can be used to deny unprotected programs access to the word.
The bit (as well as the parity bit) is dropped by most interregister
transfers.

PBSETPROT - Set Protect Bit

PBSETPROT sets the protect bit at a specified address. Calling sequence is

PBSETPROT (parm)

Parm is the address of the protect bit to be set.

PBCLRPOT - Clear Protect Bit

PBCLRPOT clears the protect bit at the specified address. Calling sequence
is

PBCLRPOT (parm)

Parm is the address at which the protect bit is to be cleared.

MISCELLANEOUS SUBROUTINES

PBFILE1 - Load/Display File 1

PBFILEl consists of two routines: PBEF (load file 1) and PBDF (display file
1). Both programs execute specified firmware sequences to perform the load
or display operations. Because of forrnware timing constraints, a maximum of
12 transfers per call can be specified during on-line operation. During
off-line operation, as many as 256 transfers can be specified.

PBEF transfers the contents of memory to file 1 starting at a specified
register. Calling sequence is

PBEF (parml, parm2)

Parml is a value paramter formatted as follows:

15 7 0

Number of words to load First File l register to load

To load all 256 registers, set parml to O. Parm2 is a value parameter
specifying the address of the first memory location to transfer.

60474500 A 4-25

PBDF transfers the contents of file 1, starting at register n, to memory.
Calling sequence is

PBDF (parml, parm2)

Parml is a value parameter formatted as follows:

15

Number of words to move

7

First File 1 register
to transfer

0

To display all 256 reqisters, set parml to O. Parm2 is a value parameter
specifying the memory address to receive the first register transfer.

PBHAL T - Stops the NPU

PBHALT stops the system after a se+ious error has occurrea. The following
information is saved, starting in consecutive words at address 3016·

• Return address of program calling PBHALT, or a value relating to a
halt code

• Halt code (indicates a reason for the halt)

• Software registers

Calling sequence is

PBHALT (parm)

Parm is an integer value parameter specifying the halt code. The halt
message printed at the local console is

*HALT xxxxx yyyy

xxxxx is the return address of the program calling PBHALT and yyyy is the
hexadecimal halt code or a value relating to the halt code.

PBILL - Illegal Calls

This subroutine is used to stop the NPU when calls are made to TIPs that are
not a part of the CCP system. Calling sequence is

PB ILL

PBILL calls PBHALT with the halt code for an illegal TIP call.

PBLOAD - Load a User-Defined Message

The PBLOAD module loads a user-defined message into a buffer starting at the
designated character position. The calling sequence is

PBLOAD (parml, parm2, parm3, parm4)

4-26 60474500 A

Parml points to the locntion where the user-def inea message is to be loaded
and parm2 specifies the text of the message to be loaded. Parm3 specifies
the starting position in the buffer of the first character in the message
and parm4 specifies the position of the last data character in the message
after it is loaded in the buffer. ParM4 overrides the message length.
Example:

VAR Buff er: BOBUFPTR: (assume a 32-word buffer)
MSG : JOMLlO:

Value MSG = (~ 0123456789] 3) ;

PBLOAD (BUFFER, MSG, JlFRSTCHAR, JlLST32);

NOTB

All user-defined messages must have a right bracket (as
the end of messaqe delimiter unless parm3 minus parm4 is less
than the message lenqth.

PROGRAM EXECUTION TIMERS

Three subroutines (TOTIME, TOSTART and TOSTOP) provide execution timing
analysis for programs. TOSTART sets a status mode (flag bit 206) which can
be used by an external hardware instrument to start a timer. TOSTOP resets
the status bit. TOTIME measures the elapsed time. Output is the total
execution time as measured by an exter~al hardware instrument.

CONSOLE SUPPORT

This group of modules provides the terminal interface package (TIP) for the
NPU console. Console devices communicate with the NPU via the A/Q register
interface, rather than through the multiplex subsystem interface. Two
categories of subroutines are discussed in the following paragraphs.

• General peripheral processing: these modules assign device, start,
read, and write.

• Console processing: this set of routines forms the console TIP.

GENERAL PERIPHERAL PROCESSING

These subroutines provioe for general peripheral functions.

• Starting I/O and (if necessary) assigning a device. Two routines
perform these services: PBIOSER and PBSTARTIO.

PBIOSERV reformats the logical request packet (LRP) from the user
into a physical request packet (PRP). A device code is assigned and
the subroutine tests whether there are too many messages awaiting
delivery. If so, the new message is discarded. Then PBSTARTIO is
called.

60474500 A 4-27

PBSTARTIO either starts the I/O, using the LRP packet from PBIOSERV,
or it queues the logical request packet to the appropriate driver,
using a worklist entry. If immediate I/O is requested but cannot be
accomplished, the request is rejected. This subroutine sets up the
device controller table parameters and issues the I/O start command.
The individual driver interrupt handler then takes control.

• Testing whether device is ready, PBTCSTIORDY. Input to this routine
is the device number. If the device status indicates it is ready for
I/O, a ready indication is returned to the caller.

• Off-line quick output, PBQUICKIO. This permits one buffer (a short
message) to be output while the NPU is in off-line mode (such as
initialization breakpoint or during halt operations). As input, the
caller specifies the device to be used and the location of the
message to be sent.

• Timeout: PBIOTMP and PBTMEOUT are discussed in this section with
other timing services.

• Ready and write a character to a peripheral device. PBWRITE and
PBREAD handle the single character transfers. Characters passing
over the A/Q channel are in unpacked format, right justified in the A
register. (Q register usually carries peripheral addressing
information.)

PBWRITE writes data or director functions to a local peripheral device. The
subroutine uses the macroassembler routine PBPUTCHAR, to write the
character. Attempts are made to write until a retry threshold is reached.
At that time, the attempts cease and the reject error is counted by the
reject counter. This can cause a peripheral device timeout. In any event,
Q and A values are saved for debugging.

PBREAD reads data or status from a peripheral device. The routine uses the
macroassembler routine, PTGETCHAR, to read the character until a retry
threshold is reached. At that time, the attempts cease and a reject error
is added to the count in reject counter. This can cause a peripheral device
timeout. In any event, Q and A values are saved for debugging.

• Common driver completion PBDRCOMPL. This routine uses a completion
code in the logical request packet. It requires device
identification and a physical request packet address as input.
Completion actions can include one or more of the following:

Releasing message output buffers
Changing I/O request flags
Starting another message transfer
Releasing current messages physical request packet

CONSOLE SUPPORT SERVICES

For certain applications, a local console is used as a communications
supervisory position. Two console functions can be selectively activated or
deactivated by the console operator (or at build time). These functions are
orderwire and diagnostics. When one or both of these functions are
transferred to a remote console, the corresponding functions must be
deactivated at the local console.

4-28 60474500 A

The orderwire function is employed for both input and output traffic
messages. The diagnostic function is used for input of diagnostic commands
and output of hardware diagnostic messages.

CONSOLE WORKLIST ENTRY

A type BOCHWL worklist entry is made by the internal process output
procedure for every message placed in an empty console queue. Such entry
contains the console TCB address.

CONSOLE CONTROL MESSAGES

All console control messages begin with a slash (/) and end with an
end-of-transmission code, control D (this consists of pressing the CONTROL
and D keys simultaneously). Table 4-5 contains console control messages and
the results of each.

Several routines consititute or support the console TIP.

• PBDISPLAY queues a message of 300 characters or less for output on
the local console. The input parameter is the location of the
message to display. This routine is a part of the base and is not
technically a part of the console TIP. The routine could be used to
support other devices.

NOTE

Every canned message must have a right bracket CJ).

Canned messages use 32-word buffers.

PBDISPLAY uses the PBLOA and PBIOSERV subroutines to load a canned message
and to provide I/0 services. PBDISPLAY also uses system structure JCOPSLRP
(OPS-level console legical request packet).

• PBOFMT formats the output for the console. Characters are converted
to hexadecimal and stored in a new buffer chain.

TABLE 4-5. NPU CONSOLE CONTROL COMMANDS

Command Function

/SUP

/ORD

/OVL

/REQ

/CAN

/MTQ

~~T}
LOC

MSNOP

60474500 A

Puts console in supervisory mode

Puts console in orderwire (diagnostic) mode

Puts NPU in overlay mode

Message interrupted by manual interrupt is requeued to console

Message interrupted by manual interrupt is cancelled

Flushes console queue

Controls routing of service messages (input, output, and
locally generated messages)

Generates message to NOP

4-29

• PBTTYSETMODE switches the console (keyboard/display or
teletypewriter) between read and write modes. If the console is in
TUP mode a TUP message flag is set. If the output interrupt flag is
already set, the subroutine restarts the message output. Otherwise,
the message is sent to the console primary output device. A 5-minute
timeout period is set when entering read mode.

• PBTTYINT is the interrupt handler for the conso1e. Interrupts clear
the I/O timer. Action depends on the interrupt type, such as one of
the following:

spurious
alarm
manual
data (read)
data (write)
other

Action

count as spurious interrupt
clear console
change mode
read character
write character
clear interrupt

This interrupt handler is composed of several local subroutines.

•

•

•

4-30

PBSUPMSG decodes and executes supervisory (/SUP) input messages from
the NPU console. The subroutine routes to the NPU console input
service messages (SMs), output SMs, locally generated SMs, and
messages that are directed to the network operator (NOP). An error
message is generated if the messages cannot be routed.

PBIFMT formats input messages from the console. Supervisory messages
(/SUP) are specially flagged. Messages are converted from
hexadecimal and the buffer headers are prepared. conversion takes
place in a new chain of buffers. This subroutine uses other local
internal subroutines. Otherwise the output is a message in normal
network block protocol. If this is a /SUP message, the action
directed by the /SUP message has been performed.

PBQCONSOLE sets a format flag for the console format (message
heading) and then calls PBQlBLK to queue the message to the console
TCB. This routine is called from PBSWITCH which detects that the
message is to be sent to the console, rather than upline to the host,
or that the message is to be sent both upline and to the console.

60474500 A

MULTIPLEX SUBSYSTEM •

The multiplex subsystem contains the hardware, microprograms, and software
elements necessary to provide data and control paths for information
interchange between the various protocol handlers (TIPs and LIP) and all
communications lines. Design of the subsystem is based on the multiplex
loop concept, which is a demand-driven system for gathering input data and
status from the communications lines, and distributing output data and
control information to the communications lines. All of this is done on a
real-time basis. Figure 5-1 shows the basic elements of the multiplex
subsystem.

A major purpose of the multiplex subsystem is to transfer the task of
processing lines according to physical characteristics from the TIPs to the
multiplex subsystem programs. The TIPs need only command the multiplex
subsystem according to the logical characteristics of a line; the physical
characteristics are handled by the multiplex subsystem and are transparent
to the TIPS.

Line-oriented input and output buffers provide temporary storage for data.
The input data is placed in the circular input buffer (CIB) from which it is
later extracted (demultiplexed), transformed to IVT/BVT ASCII format by the
appropriate TIP and moved into a line-oriented input buffer. The part of
the TIP that does this (called input state programs) is controlled by the
multiplex subsystem. The OPS-level TIP informs the command driver where the
programs are located; the multiplex subsystem's input processor controls
execution of the input state programs. For trunks, the frames are re~oved
from the block formatted data, and the blocks are reconstituted.

Output data is picked by the output processor from an output data buffer.
The address of this buffer and other transfer information is supplied by the
OPS-level TIP to the command driver. Data is in terminal format or (for LIP
frames only) in downline frame format.

The multiplex subsystem is event-driven by interrupts: an output data
demand (ODD) for the next character of output data, or the input line frame
received interrupt which indicates that data (and possibly CLA status) is
contained in the CIB ready for demultiplexing.

The interrupts are handled with global information stored in various
tables. The subsystem processes data on a character-by-character basis
while user programs (TIPs) process data on a message or block basis.
Circuit, modem, and subsystem status is detected and transferred to the TIPs
using OPS-level worklist calls. Control information is received from the
TIPs in the form of a call to the command driver with an attached command
packet. This command packet is used to set up the multiplex LCB (MLCB),
which is the principal table used to control the transfer.

HARDWARE COMPONENTS
The multiplex subsystem includes the multiplex loop interface adapter
(MLIA), loop multiplexers, and communications line adapters (CLAs).

60474500 A 5-1

s

U1
I

"'

°' 0
is:.
-...I
is:.
U1
0
0

~

COMMUNICATIONS PROCESSOR

81
• I • •

0 R
p

I
I
I

INCLUDES COMMAND
DRIVER, INPUT DATA
PROCESSOR, AND
OUTPUT DATA
PROCESSOR

MEMORY BUFFERS
I

I

MULTIPLEX
LOOP
INTERFACE

1 ••ADAPTER
(MLIA)

INPUT LOOP

OUTPUT LOOP

MULTIPLEX
LOOPS •

•
LOOP
MULTI­
PLEXER

I- MULTIPLEX SUBSYSTEM--------------t

CLA - COMMUNICATIONS LINE ADAPTER

TIP - TERMINAL INTERFACE PROGRAM

LIP - LINK INTERFACE PROGRAM

Figure 5-1. Basic Elements of the Multiplex Subsystem

COMMUNI­
CATIONS
LINES OR
TRUNKS

M-166

MULTIPLEX LOOP INTERFACE ADAPTER

The MLIA provides hardware interface between the multiplex input/output
loops and the multiplex subsystem software. The major functions are as
follows:

• Management of the I/O loops

• Input data buffering - compensates for the difference in rate at
which characters are removed from the input loops and the rate at
which they are stored in the main memory

• Output data demand (ODD) detection and buffering

• Multiplex loop error detection

• Generation of interrupts for the multiplex subsystem microprograms
and software for functions such as:

- Output data demand received
- Line frame received
- Loop error conditions

LOOP MULTIPLEXERS

Each loop multiplexer provides an interface between a group of as many as 32
CLAS and the demand-driven multiplex loop. Its primary function is to
receive parallel data from the CLAs and present it to the serial input loop
in the loop cell format. Conversely, it assembles serial data in the loop
cell format from the output loop and presents it to the CLAs in parallel
form.

COMMUNICATIONS LINE ADAPTERS (CLA)

The CLAs provide the interface between the loop multiplexers and the
communications lines. The primary functions of the CLAs are to assemble
serial data from the communications line into parallel data and present this
data to the loop multiplexer or, conversely, to disassemble parallel data
from the loop multiplexer and present it in serial form to the
communications line. The CLA operating characteristics can be altered under
program control for such functions as signal rate, character length, parity,
and stop bit duration.

SYSTEM AND USER INTERFACES

The system and user interfaces are described in detail in the following
paragraphs to promote a better understanding of the internal multiplex
subsystem interfaces.

SYSTEM INTERFACES

A TIP or a LIP is a multilevel program that executes at three processing
levels:

60474500 A 5-3

• Multiplex level 1 (firmware or microcode level)

• Multiplex level 2 (macrocode level)

• OPS level (processing to satisfy network protocol such as service
message handling and timing)

Control passes to the TIP or multiplex control OPS level by use of worklist
entries. Direct calls are used for the other two levels. The TIP or LIP
must handle the worklist entry according to the program's current processing
state. State programs operate on firmware levels. State instructions
provide a type of reentrant processing where the states are related to entry
points, which are in turn related to the various stages of processing a
message. Each TIP or LIP decision logic that switches processing to the
entry point determined by a combination of the worklist and the program
state.

Figure 5-2 shows the multiplex level 2 worklist codes and the programs
responsible for handling and generating these codes. Table 5-1 summarizes
workcode functions for level 2 and table 5-2 describes the workcode
functions for OPS level.

Multiplex Level 1 (Firmware)

This level of interface program processing handles all incoming characters
and status. Worklist entries generated by the input state programs are
directed to either multiplex level 2 or to OPS level for processing. For
preliminary handling of CLA status, states 0, 1, 2, and 3 are reserved to
handle special status, as follows:

• 0 is reserved for CLA status such as parity errors and data transfer
overruns.

• 1 is reserved for DCD dropped.

• 2 is used when a TIP uses too many system buffers.

• 3 is used when buffer threshold is reached.

CLA status is analyzed by Modem State Programs and status that indicates a
hard error is sent to level 2. For a two-wire line the transition of data
carrier detect signal can be used as a logical end of text (ETX); that is,
instead of generating a good block worklist entry, the input states wait for
data carrier not detected to generate a good block received. This
eliminates an extra worklist entry. The good block that is received is
issued to OPS level for processing. For more information, ref~r to section
12 and the State Programming Reference Manual (see preface).

Multiplex Level 2 (PMWOLP)

This processing runs at the multiplex interrupt level. It is entered by
means of worklist entries received from the modem state programs, the
multiplex subsystem firmware, and the command driver. Processing at this
level is primarily of an error nature. Each interface program provides code
to process the workcodes at this level (MNOBT, MMCHOUT, MMFES, MMBREAR) plus
any of its own that are generated in level 1. For synchronous TIPs and
LIPs, no processing is required since the MMOBT entry is optional.

5-4 60474500 A

°' 0
~
-.J
~
(JI

0
0

>

(JI

I
U1

MUX LEVEL 1
(FIRMWARE)

MUX LEVEL 2
(MACROCODE)

GOOD BLOCK, BAD BLOCK, ETC.

TIP/LIP I I
~~~AMS MMBUTCH I • PMWOLP RELEASED BUFFERS EXIT 

MODEM I I I 
STATE .. MMCLASI II PMWOLP--+ PTCLAS CE ERROR .. 
PROGRAMS 

MMUNSOD 

MMUNSIN 

M 

MMTIMRE MMFES, MMBREAK 

PMWOLP CE ERROR 

MMTIMODD:-8MT1SEC 

MMINEND - INPUT 
TERMINATED 

AOWK1--AOWK33 

u 
x PMWOLP I AOHARDERR 

NOTIFY TIP .. 
F 
I 
R 
M 
w 
A 
R 
E 

I MMOBT __ ___.;;....;..._._...__ __ PMWOLP TIP/LIP 

I MMCAOR 
t~~.:.=..~~~~--1 "PMWOLP CE ERROR II EXIT 

I MMIFFO PMWOLP CE ERROR .. EXIT 

TERMINATE OUTPUT 

TERMINATE INPUT 

I OPTIONAL WORKLIST 11 TIP/LIP 

I OPTIONAL WORKLIST .. TIP/LIP 

I 
I 
I 

Fi9-ure 5-2. TIP and LIP Multipl-ex Worklist Communications 

OPS LEVEL 
(TIP) 

4 
AOTIMEOUT 

4 
AOOUEOUT 

..._ AOSTOP .... 

...._ AOSMEN 

.....-

..._ AOSMTCB .... 

-- AOSMDA ......-

...._ AOSMDLTCB --
.._ AOSMRCTCB .... 

TIMING 
SERVICES 

INTERNAL 
PROCESS 

SERVICE 
MODULE 

M-386 



Workcode 

MMC LAS 

MMUNSOD 

MMUNSIN 

MMTIMODD 

MMTIMRE 

MMOBT 

MMBUTCH 

MMC HOUT 

MMC A OR 

MMIFFO 

NMINEND 

MMFES 

MMBREAK 

TABLE 5-1. MULTIPLEX LEVEL 2 WORKLISTS 

Workcode 
to TIP/LIP 

MMOBT 

MMBUTCH 

MMC HOUT 

AO HARD ERR 

Functions 

CLA status error, implies line error to !Pt 

Unsolicited output, implies hard error to 
PMWOLP, which disables the line 

unsolicited input, implies hard line error to 
PMWOLP, which disables the line 

ODD timeout, implies hard line error to PMWOLP, 
which disables the line 

Modem response timeout, implies hard line error 
to PMWOLP, which disables the line 

Output block transmitted 

Multiplex subsystem buffer threshold reached; 
buffers released 

100-ms timeout 

CLA address out of range - not seen by IP 

Illegal linef rame format - not seen by IP 

Input buffer terminated, response to PMWOLP 
command for hard errors 

Framing error status, TIP causes command driver. 
to send delimiter to line (asynchronous lines) 

user break, TIP is called (asynchronous line) 

tIP = appropriate interface program: TIP or LIP 

5~6 60474500 A 



TABLE 5-2. TIP/LIP OPS LEVEL WORKLISTS 

r 

Workcode to TIP/LIP Description 

AOWKl Good block received from IP input states 

AOWKn Other workcodes from IP input states 

AOHARDERR Hard error detected from IP at level 2 

AO TIMEOUT Line timeout from timing services 

AOQUEOUT Output buffer queued to IP's TCB 

AOSMEN Line enabled from service module 

AOSMTCB TCB configured from service module 

AOSMDA Disable line command from service module 

AOSMDLTCB Delete TCB command from service module 

AOSMRCTCB Reconfigures TCB command from service module 

INPUT STATE PROGRAM WORKLISTS 

Input state program worklists from firmware level are passed directly to the 
TIP or LIP at OPS level. 

The primary workcode generated is the CLA status workcode. After the modem 
state programs have analyzed the CLA status for soft errors (data carrier 
detect dropped and others) and determined that this is not a soft error, the 
input processor modem state program generates a CLA status worklist to this 
processing level. The CLA status handler (PTCLAS) analyzes the status and 
generates the appropriate CE error code. If a hard error is detected on the 
line, PMWOLP terminates input and output over the line. All multiplex level 
worklists for the line are discarded until a response from the terminate 
input logic is received. At that time the TIP is sent an OPS-level 
AOHARDERR worklist. 

MULTIPLEX SUBSYSTEM FIRMWARE WORKLIST ENTRIES 

The multiplex subsystem firmware generates nine worklists to the interrupt 
level. These can be divided into three categories: 

• Hard errors for unsolicited input or output, and timeouts for output 
data demand or modem response. 

60474500 A 5-7 



• System notices that the output buffer has been transmitted, the 
buffer threshold has been reached so no more buffers can be assigned, 
or 100 ms have elapsed since the last input character was received. 

• Multiplex loop errors that the CLA address is out of range or an 
illegal line frame format was detected. 

COMMAND DRIVER WORKLIST ENTRIES 

The command driver generates worklist entries at the request of the 
interface program. Two optional entries are generated: input terminated 
and output terminated. 

OPS Level 

The OPS level portion of the interface program handles all line or terminal 
polling, output block preparation, input block processing, service module 
interface for configuring lines and terminals, and line error handling. 
Worklists are generated to the interface processor by four different 
programs: 1) interrupt programs multiplex level 1 and 2; 2) timing 
services; 3) internal process; and 4) service module. 

• Multiplex level 1 worklist normally indicates a good block has been 
received on input. The block is passed to the point of interface 
(POI) program and the interface program resumes its processing at the 
initial entry point or at the saved entry point where processing was 
suspended. 

• Multiplex level 2 worklist indicates a hard error has occurred on the 
line. Normally a line nonoperational service message is sent to the 
host. Service on that line is discontinued until the host takes 
continuation action. 

• Timing services worklist is generated whenever the line control block 
timer expires (BZLTIMER) • It can be used as a means of delaying 
service on a line or indicating a line failure (failure to respond). 

• Internal process worklist indicates that output is queued to the 
terminal control block (TCB) for this interface program. This is a 
worklist for interface programs that stop processing when there is 
nothing to do; it must therefore be restarted when the next output 
arrives. 

• The service module (SVM) maintains the interface between the host and 
the interface program. SVM worklists indicate to the interface 
program those lines and terminals that are to be configured or are to 
be deleted from service. 

USER INTERFACES 

User interfaces to the multiplex subsystem can be divided into three 
categories: 

• 

5-8 

Command driver interface (PBCOIN and PMCDRV). These modules command 
communications to the multiplex subsystem and control data flow to 
and from the communications lines. These include setting up the 
hardware to start or stop transmissions. 

60474500 A 



• Common multiplex subroutines for TIPs are provided. These 
subroutines allow the multiplex subsystem to communicate input events 
to the user. 

• State programs. PMCDRV sets up the operation and calls PMCOIN to 
escape to the firmware. On the firmware level, the input state 
programs provide processing on a character-by-character basis. State 
programs and their OPS-level interfaces are described in section 12. 

Command Driver Interface 

The command driver calling sequence from the OPS level is 

PBCOIN (parm} 

where parm is the command packet (NKINCOM}. The command driver calling 
sequence from level 2 is 

PMCDRV (parm} 

where parm = NKINCOM is the name of the command packet. The general format 
of a command packet which is used for most commands (NKCMD type} is shown in 
figure 5-3. 

WORD 

0 

1 

2 

3 

4 

5 

6 

7 

15 7 0 

Command J Parameter 

Line Number 

Parameters 

Parameters 

Parameters 

Parameters 

Parameters 

Parameters 

Figure 5-3. Command Packet General Format 

60474500 A 5-9 



The following commands are available to the user for controlling the flow of 
data to and from the communications lines: 

• NKCLRL - Clear line 
• NKINIL - Initialize line 
• NKCONTROL - Control line 
• NKENBL - Enable line 
e NKINPT - Input 
• NKDOUT - Direct output 
• NKINOUT - Input after output 
• NKENDIN - Terminate input 
• NKENDOUT - Terminate output 
• NKDISL - Disable line 
• NKTURN - Turn line around (not used) 
• NKSPECIAL - Diagnostic interface 

Individual subroutines handle the various requests. PMCOIN is the interface 
between the command driver and the firmware. PMCOIN can be used by other 
software users to clear a CLA. If it is so used, the it must be followed by 
a clear line command. Inputs to PMCOIN are the two global variables NGA and 
NGQ that hold command and port information for use in the A and Q registers 
by the firmware. 

CLEAR LINE COMMAND 

The clear line command (NKCLRL) causes the subsystem to clear (reset) all 
line-oriented software and hardware (CLA) functions associated with the line 
specified by the line number. The command format is as follows: 

WORD 

0 

1 

15 7 

NKCMD 

NKLINO 

NKCMD - Command code (NKCLRL) 

0 

NKLTYP 

NKLINO - Line number, identifies port and subpart 

NKLTYP - Line type; specifies line-type entry; defines physical 
characteristics of port, modem, and circuit type 

INITIALIZE LINE COMMAND 

The initialize line command (NKINIL) establishes the line type of the 
specified port and places the line in a mode in which the subsystem monitors 
and processes modem and circuit related status. Other line-related 
functions, such as processing of input and output characters, are inhibited 
while the line is in the initialize mode. The command format is as follows: 

WORD 

0 

15 7 

NKCMD 

1 NKLINO 

NKCMD - Command code (NKINIL) 
NKLINO - Line number 

0 

NKLTYP 

NKITYP - Line type; specifies line-type table entry 

5-10 60474500 A 



CONTROL COMMAND 

The control command (NKCONTROL) serves a twofold purpose. It can define the 
character transmission characteristics of a given line according to the 
transmission characteristics key (NKTCKY) for input/output signaling rate, 
character length, parity type, stop bit duration, and sync character. The 
command can also specify up to five modem/circuit control functions, such pS 
echo, break, terminal busy, or resync. Such control functions are specified 
in the optional fields of the command packet. 

Generally, the command is used to initialize or alter the character 
transmission characteristics of the line or to generate circuit control 
functions. This command must not be issued before the initialize command. 
The control command format is as shown in figure 5-4. Optional 
modem/circuit functions are defined in table 5-3. 

ENABLE LINE COMMAND (NKENBL) 

The enable line command directs the subsystem to activate, as a function of 
line type, the necessary modem signals to allow the local modem to connect 
to the specified communications line. The command also conditions the 
subsystem to monitor and analyze any changes in the modem status for signals 
indicating that a line connect occurred. Character processing functions are 
inhibited during the time the line is in the enable mode. The format for 
the enable line command is shown in figure 5-5. 

WORD 

0 

1 

2 

3 

4 

NKCMD 

NKTCKY 

NKLINO 

Fl thru F5 
and NKFUNl 
thru NKFUN5 

NKZERO 

15 14 7 6 0 

NKCMD NKTCKY 

NKLINO 

Fl NKFUNl F2 NKFUN2 

F3 NKFUN3 F4 NKFUN4 

F5 NKFUN5 NKZERO 

- Command code (NKCONTROL) 

- Optional character transmission key. If nonzero, 
references the character transmission characteristics table. 

- Line number 

- Optional modem/circuit function; if the associated flag 
(NKSRFl - NKSRF5) is set, the function is to be 
implemented. 

1 = Function to be implemented 
0 Function disabled 

- Delimits end of options. NKZERO is placed in the byte 
following the last requested modem/circuit function; five 
functions can be specified. 

Figure 5-4. Control Command Format 

60474500 A 5-11 



WORD 

0 

1 

2 

3 

4 

5 

6 

15 14 11 

NKCMD 

NKUOPS 

Fl l l 
NKSCHR 

NKCMD - Command code (NKENBL) 

NKTCLS - Terminal class 

NKLINO - Line number 

7 0 

l NKTCLS 

NKLINO 

Not used 

I NKIFCD 

NKBLKL 

Not used 

I 

NKUOPS - Eight user flags (NKUOPl - NKUOP8) can be accessed either 
individually or as an 8-bit field 

NKIFCD - First character displacement (FCD) of first buffer of input 
block; optional FCD or zero. If zero, use value from the 
terminal characteristics table (NJTECT) 

F - NKNOXL, the code translate flag 

1 translate 
0 = do not translate 

NKBLKL - Block length; optional block length or zero. If zero, use value 
from NJTECT 

NKSCHR - Special character {optional character or 0) 

Figure 5-5. Enable Line Command Format 

5-12 60474500 A 



Function 
Mnemonic 

NO I SR 

NORTS 

NOSRTS 

NOOM 

NOLM 

NOLT 

NODTR 

NOTB 

NORSYN 

NONSYN 

NO BREAK 

NODLM 

NO ECHO 

NOLBT 

NO ION 

NOOON 

NO ISON 

NO PON 

NOP SET 

NOCLLS 

NOCLMS 

TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS 

Function 
Provided 

STATUSt 

RTS 

SRTS 

OM 

LM 

LT 

DTR 

TB 

RSYN 

NSYN 

BREAK 

DLM 

ECHO 

LBT 

ION 

OON 

ISON 

PON 

PSET 

CLLS 

CLMS 

Description 

Input status request 

Request to send 

Secondary request to send (Supervisory Channel) 

Originate mode/auxiliary modem control 

Local mode/auxiliary modem control 

Local test 

Data terminal ready 

Terminal busy (line busy out) 

Resynchronize 

New sync 

Send break 

Data line monitor 

Echoplex mode 

Loopback test 

Input on 

Output on 

Input supervision on 

Parity on 

Parity set (1 = even, 0 = odd) 

Character length (LSB) 

Character length (MSB) 

tPulsed functions, provide momentary signal and need not be reset 

60474500 A 5-13 



INPUT COMMAND (NKINPT) 

The input command directs the multiplex subsystem to initiate the processing 
of data on the specified input line (i.e., turn on the input side of the 
communications line adapter. The processing functions provided by the 
subsystem are determined by the input processing state program index. 
Additional information is passed by a pointer table address for the input 
processing states. If this option is not used, the information is taken 
from the terminal characteristics table (NJTECT). Parity is stripped for 
normal processing or passed for test purposes. Format of the input command 
is shown in figure 5-6. 

OUTPUT COMMAND (NKDOUT) 

The output command permits output messages to be directed to a specified 
output line. Line, modem, and control functions, as defined in the line 
type tables, are generated by the subsystem as a function of the physical 
line requirements. 

Output continues until the character specified by the last character 
displacement is transmitted. At that point, the subsystem chains to the 
next output buffer, if the chain address in the buffer is nonzero. Output 
stops if the chain address is zero or if the suppress chaining flag 
(BFSUPCHAIN) is set in the flag word of the first output buffer. 

The subsystem generates an optional worklist entry for the user program for 
each data block output by the subsystem. If the buffer output is the last 
data buffer of a transmission block and line turnaround is required, 1) the 
subsystem generates the proper modem control signals to turn the line 
around, 2) monitors modem status for line turnaround, and 3) notifies the 
appropriate terminal dependent subroutine that the line is ready for input. 
Modem signals and modem status analysis functions are specified by the line 
type tables. 

Either the terminate output or disable command can also be used to terminate 
output processing functions on a specified line. Receipt of either command 
causes the subsystem to immediately cease all processing functions 
associated with the specified line. 

The format of the output command is as follows: 

WORD 

0 

1 

2 

15 

NKCMD 

7 

NKLINO 

NKOBP 

NKCMD - Command code (NKDOUT) 
NKLINO - Line number 
NKOBP - Output buffer pointer 

5-14 

0 

Not used 

60474500 A 



WORD 

0 

1 

2 

3 

4 

5 

6 

7 

15 14 11 

NKCMD 

NKUOPS 

F3 I F4 I 
NKSCHR 

NKCMD - Command code (NKINPT) 

NKLINO - Line number 

7 6 0 

l Not used 

NKLINO 

Not used 

lFll F21 NKISTAI 

NKBLKL 

NKISPTA 

I NKCNTl 

NKCXLTA 

NKUOPS - Eight user flags (NKUOPl - NKUOP8). NKUOPl is bit 15 in the 
MLCB user flag field, ••• NKUOP8 is bit 8 in that field. NKUOPS 
is moved into MLCB if NKMVB is 1. 

Fl - NKMVB, move block of user flags into MLCB 

F2 - NKRPRT, strip parity flag 

1 = strip parity 
0 = do not strip parity 

NKISTAI - Input state program index 

F3 - NKNOXL, code translate flag 

1 = translate 
2 = do not translate 

F4 - NKSCENBL, change special character flag 

NKBLKL - Block length. If nonzero, this replaces CC2 in the MPCB. 

NKISPTA - Pointer to input state program pointer table add~ess. Optional 
address or zero. If zero, use NJTECT value. 

NKSCHR - Special character, moved to MLCB if NKSCENBL flag is set. 

NKCNTl - Character count, moved into the CCl field of the MLCB if the 
value is nonzero. 

NKCXLTA - Code translation table address. If nonzero, this replaces the 
current code translation table address in MLCB. 

Figure 5-6. Input Command Format 

60474500 A 5-15 



INPUT AFTER OUTPUT (NKINOUT) 

This command permits interactive terminals (such as a display/keyboard 
combination) to be immediately ready to receive input data in response to a 
message displayed at the terminal. An index to the input state process 
table indicates the treatment of the returned data. The format for this 
command is shown in figure 5-7. 

TERMINATE INPUT COMMAND (NKENDIN) 

This command enables the TIP to direct the multiplex subsystem to 
immediately stop input processing functions on the specified line. All 
input characters and buffers are discarded. The TIP program can, by issuing 
an input command, direct the subsystem to resume input on the line. 
Transmission line characteristics are not altered by the terminate input 
command and therefore the TIP need not generate a control command. The 
format for the terminate input command is shown in figure 5-8. 

After processing the terminate input command, the subsystem optionally 
generates a worklist entry to the TIP as specified in the worklist and 
workcode. 

TERMINATE OUTPUT COMMAND (NKENDOUT) 

This command enables the TIP to direct the multiplex subsystem to terminate 
output processing functions on the specified line immediately. After 
processing the terminate command, an optional worklist entry is generated to 
the TIP, using the specified worklist and workcode. This command is used 
when the TIP interrupts an outgoing message for a higher priority message, 
or when an abnormal line condition occurs. The format of the terminate 
output command is shown in figure 5-9. 

DISABLE LINE COMMAND (NKDISL} 

The disable line command directs the multiplex subsystem to terminate all 
processing functions of the specified line. Modem control signals are 
generated to inhibit further exchange between the local modem and the 
communications line. The subsystem also releases all data structures 
defining the character processing functions for the line. To reactivate, a 
control, initialize, and enable command, followed by either an input or 
output command, must be issued. The format for the disable line command is 
as follows: 

WORD 

0 

1 

15 

NKCMD 

7 0 I Not used 

NKLINO 

NKCMD - Command code (NKDISL} 
NKLINO - Line Number 

5-16 60474500 A 



WORD 

0 

1 

2 

3 

4 

5 

6 

7 

15 14 13 11 

NKCMD 

NKUOPS 

l F3 l l 
NKSCHR 

NKCMD - Command code {NKINOUT) 

NKLINO - Line number 

NKOBP - Output buff er pointer 

7 6 5 0 

J Not used 

NKLINO 

NKOBP 

lFllF2l NKISTAI 

NKBLKL 

NKISPTA 

l NKCNTl 

NKCXLTA 

NKUOPS - Eight user flags (NKUOPl - NKUOP8). NKUOPl is bit 15 in the 
MLCB user flag word; NKUOP8 is bit 8 in that word. NKUOPS is 
moved into MLCB if NKMVB is 1. 

Fl - NKMVB, move user flags to MLCB 

F2 - NKRPRT, strip parity flag 

1 = strip parity 
0 = do not strip parity 

NKBLKL - Block length {CC2). Moved into MLCB if nonzero; replaces 
current MLCB block length 

F3 - NKSCENBL, special character flag. If set, move NKSCHR into the 
MLCB 

NKISTAI - Input processing state index 

NKISPTA - Input processing state pointers table address (optional address 
or O; if 0, NJTECT value is used) 

NKSCHR - Special character, moved into MLCB if NKSCENBL flag is set 

NKCNTl - Character count (CCl). If nonzero, this replaces the current 
character count in the MLCB 

NKCXLTA - Code translation table address. If nonzero, this replaces the 
current translation table address in MLCB 

Figure 5-7. Input after Output Command Format 

60474500 A 5-17 



WORD 

0 

1 

2 

NKCMD 

15 

NKCMD 

NKUSRBY 

- Command code (NKENDIN) 

7 6 5 

IF! 1 F21 NKWLINDX 

NKLINO 

I NKWKCOD 

Fl - NKRELBFS, release buffer flag (release buffer if set) 

F2 - NKWKFL, send worklist to user (if set) 

NKWLINDX - Worklist index, used if NKWKFLG is set 

NKLINO - Line number 

0 

NKUSRBY User-supplied byte, returned in field MMWTCOUNT in worklist 

NKWKCOD - User workcode in worklist (MMWKCOD) 

WORD 

0 

1 

2 

NKCMD 

Figure 5-8. Terminate Input Command Format 

15 7 6 5 

NKCMD IF! I F21 NKWLINDX 

NKLINO 

NKUSRBY I NKWKCOD 

- Command code (NKENDOUT) 

0 

Fl - NKRELBFS, releases buffer when flag is set; these are buffers 
specified in BZLBTOMUX 

F2 - NKWKFLG, sends worklist to user when set 

NKWLINDX - Worklist index; used if NKWKFLG is set 

NKLINO - Line number 

NKUSRBY - User-supplied byte to be returned in field MMWTCOUNT in 
worklist 

NKWKCOD - User workcode in worklist (MMWKCO) 

Figure 5-9. Terminate Output Command Format 

5-18 60474500 A . 



Common Multiplex Subroutines for TIPs 

The multiplex subsystem provides a number of common subroutines for the 
interface programs; these are as follows: 

• PMWOLP, the worklist processor on the multiplex level 
• PTCLAS, the CLA status analyzer 
• PTLINIT, the line initializer 
• PMTlSEC, the timing supplier for the output data demand (ODD) function 

PMWOLP, MULTIPLEX WORKLIST PROCESSOR 

PMWOLP processes each multiplex worklist by workcode type. Most workcodes 
concern error processing. Workcodes that PMWOLP does not recognize are 
passed directly to the responsible TIP at multiplex level 2. 

If the workcode is a hard error, the line is cleared and inpµt and output 
are terminated. The terminate input command to the command driver causes 
the driver to return a worklist to PMWOLP. All hard errors from the line 
are discarded until the terminate input worklist is received. The input 
terminated worklist is changed into a hard error worklist (AOHARDERR = 
MMHARDERR) and the worklist is sent to the responsible tip at OPS level. 

I! the line is active, all errors, hard or soft, are reported to the CE 
error file. 

The multiplex level workcodes are summarized in table 5-1. The actions that 
PMWOLP takes in response to the workcodes are as follows: 

• MMCLAS - CLA Status. This workcode is generated for selected CLA 
status words by one of the modem state programs (refer to section 
12). PMWOLP calls PTCLAS to analyze the status word. PTCLAS retu~ns 
information to PMWOLP in three ways: (1) The function is set true if 
the worklist is to be sent to the TIP, (2) NRCODE is set to nonzero 
if a CE error is to be reported, or (3) the workcode in the 
intermediate array is changed to AOHARDERR (or MMHARDERR) if a hard 
error is found. 

• MMOBUX - Output buffer terminated. This is an optional worklist 
generated by the multiplex firmware after the completion of an output 
message. If the line is to be turned around, PBTOQUE is called to 
provide a 200-ms delay. The worklist is passed to the TIP at level 2 
either immediately (if the line does not require a turnaround delay) 
or when the delay timeout period is completed. 

• MMBUTCH - Multiplex buffer threshold reached. This worklist is 
generated by the TIP's input state program 3 (see section 12) when 
the multiplex firmware notifies that state program that the buffer 
threshold has been reached. PMWOLP releases any input buffers and 
stops processing. 

• MMCAOR - CLA address out of range. The multiplex firmware reports 
this error whenever the CLA address is out of range. The CLA is 
cleared and the error is reported to the CE error file. 

60474500 A 5-19 



• MMUNSOD - Unsolicited output data demand (ODD). The multiplex 
firmware reports this error when an ODD is received on a line that is 
not in output state. The error is reported to the CE error file and 
a hard error is declared. 

• MMUNSIN - Unsolicited input. The multiplex firmware reports this 
error in two cases: (1) a status character is received and input 
status flag (ISON) is not set, or (2) a data character is received 
and the input on (ION) flag is not set. In either case, the error is 
reported to the CE error file and a hard error condition is declared. 

• MMIFFO - Input framing error. The multiplex firmware reports this 
error when it cannot recognize the input frame. The error is 
reported to the CE error file and no further action is taken. 

• MMTIMOD - Modern Timeout. PTCLAS reports this error after the 
10-second timeout for dedicated lines has elapsed without a response 
from the modem. The error is reported to the CE error file and a 
hard error condition is declared. 

• MMINEND - Input terminated. PMWOLP generates this error worklist to 
itself after the terminate input command is sent to the command 
driver. The worklist informs PMWOLP that no more worklists will 
follow. PMWOLP sends a hard error (AOHARDERR) worklist to the 
OPS-level TIP. 

• MMTIMOD - ODD timeout. The multiplex subsystem timing routine 
(PMTlSEC) generates this worklist when an active output line has not 
requested a new character (ODD) within the allotted 1-second period. 
The error is reported to the CE error file and a hard error condition 
is declared. 

• MMFES - Framing error for synchronous lines. PTCLAS generates this 
error after examining the status word. The error is reported to the 
CE error file and control is passed to the responsible TIP at 
multiplex level 2. The TIP should send a command to the command 
driver to clear this condition. 

• MMBREAK - User break on synchronous lines. PTCLAS generates this 
condition after examining the status word. The user break indicates 
that the user has requested output to be terminated. The condition 
is reported to the CE error file and control is passed to the 
responsible TIP at multiplex level 2. 

PTCLAS, CLA STATUS ANALYZER 

Analyzing CLA status is a joint task of the modern state programs and 
PTCLAS. All incoming two-word status entries (8 bits per word) are combined 
into one 16-bit status word by the multiplex firmware. Control is passed to 
the responsible modem state program for that line. The modem state program 
checks for one of the necessary modem signals: 

• • • 

5-20 

To initialize or enable the line 
To give control to the TIP's appropriate input state program 
To detect line error conditions 

60474500 A 



If the modem state program generates a worklist to PTCLAS, PMWOLP calls 
PTCLAS to analyze the status word. The format of the worklist is as shown: 

15 12 11 8 7 0 

Line inop code l Status indicator I Workcode 

Line number 

Status word 

The line inoperative code is supplied to PTCLAS for the TIP whenever a hard 
error is detected. When PTCLAS detects a hard error, it changes the 
workcode to MMHARDERR. The status condition indicator is set by the 
originator to indicate the type of status that was detected. PTCLAS 
analyzes the status word and takes one of the following actions: 

• Causes control to be given to the line initializer (PTLINIT) or to a 
TIP 

• Causes PMWOLP to request a CE error file entry 

• Starts the timeout period for a CLA status overflow condition or for 
a modem signal loss condition (modem timeout) 

See MMCLAS workcode in the PMWOLP subsection, above. Table 5-4 lists the 
status condition indicators and the action that PTCLAS sets up for PMWOLP. 

CLA Status Overflow Handling 

Each time a status word is received, the firmware increments a CLA status 
word overflow counter in the port table (NAPORT). This overflow count is 
cleared by any of the following conditions: 

• Output buffer terminated (OBT) generated 
• Terminate input buffer state instruction executed 
• Terminate input command issued 
• Terminate output command issued 

When the counter overflows, the firmware builds a MOOVRT status worklist and 
turns off input supervision for the CLA. When PTCLAS receives the first 
status overflow entry, it starts a 10-second timeout period and sets flags 
in the port table. When the 10 seconds expire, PTCLAS receives control with 
a MOOVTO worklist from PB~OQUE. PTCLAS resets the overflow counter in the 
port table, issues a command to turn on input supervision for the CLA, and 
resets the wait bit. If the timeout occurs before another status overflow 
is detected by the firmware, status processing continues normally. However, 
if another overflow entry is received during the timeout period, PTCLAS 
reports the status overflow to the TIP as a hard error. If at any time 
there are not enough buffers available to start the timeout, PTCLAS reports 
the status overflow to the TIP as a hard error. 

60474500 A 5-21 



TABLE 5-4. PTCLAS WORKLIST ANALYSIS AND ACTION 

Condition 
Indicator Reported By Meaning Detected 

MOCLAON (0) Modern state Line initialized Any status 
(MSTLNI) 

MORING (1) Modern state Ring indicator 
(MSTLNI) 

MOENBL (2) Modern state Line enabled 
(MSTENB) 

MO HERR ( 3) 

MO SO ER ( 4) 

MOSIER ( 5) 

MOSTRT ( 6) 

MO STOP (7) 

Modern state Hard error 
(MSTCHK) 

Modern state Soft output 
(MSTOUT) error 

Modem state Soft input error 
(MSTINP) 

Modern state Start modem 
(MSTCHK) timeout 

Modem state Stop modern 
(MSTCHK) timeout 

MOOVRF (8) Firmware CLA status 
overflow 

MOOVTO (9) PBTOQUE 
(TIMEOUT) 

Status overflow 
timeout 

MOMRTO (A) PBTOQUE 
(TIMEOUT) 

Modem response 
timeout 

RI status 

DSR or DSR 
and DCD 
status 

ILE, OLE, 
INVALID RI, 
loss of DSRt 

NCNA statust 

DTO, FES, 
loss of DCD 
status t 

Loss of DCD 
on constant 
carrier linet 

DCD status 
during modern 
timeout 

Overflow of 
status 
counter 

10-Second 
timer expired 

15-Second 
timer 
expiredt 

Action 

Control to line 
initializer 

Control to line 
initializer 

Control to line 
initializer 

Control to TIP 
(supply !NOP code 
and change work­
code) 

Control to TIP 
(change workcode) 

Control to TIP . 
(change workcode) 

Call PBTOQUE to 
start 15-second 
timeout 

Cancel timeout 

Refer to control 
to TIP (change 
workcode) 

MOBREAK (B) Modern state Break condition 
(MSTINP) 

FES with null Control to TIP 
charactert (change workcode) 

tc.E. error messages generated on these conditions 

5-22 60474500 A 



Modem Response Timeout Handling 

When DCD on constant carrier lines drops, a MOSTRT status worklist is 
generated by the modem state program, and a bit is set in the MLCB 
indicating that a modem timeout is in progress. When PTCLAS receives this 
worklist, it causes a 10-second timeout entry to be generated. If the 
timeout period elapses before DCD comes up, PTCLAS reports a hard error 
(modem timeout) to the TIP. If, during the timeout period, the modem state 
programs receive a status word with DCD set, a MOSTOP worklist is generated 
for PTCLAS. When PTCLAS processes the worklist, it resets the timeout in 
progress flags and cancels the timeout. If, at any time there are not 
enough buffers to start the timeout, PTCLAS immediately reports the 
condition to the TIP as a hard error. 

PTLINIT, LINE INITIALIZER 

PTLINIT initializes conditions on a line for input and output operations. 
The program acts like a TIP and is composed of several subroutines. Figure 
5-10 shows the relationship of PTLINIT with other multiplex modules, the 
service module, timing services, and the TIPs. 

Upon receiving control, the line initializer executes the 
Clear-Initialize-Control sequence. As the initializer is state driven, 
BZSTATE is set accordingly. 

On a dedicated line, a check for CLA on is made before issuing the enable 
line command. When the line is enabled, the initializer builds a line 
operational worklist message for the service module and the associated TIP. 

For enabling a switched line, three conditions must be met: (1) the ring 
indicator (RI) must be detected, (2) the host must be up, and (3) buffers 
must be available. If no RI is present a timer is started. A worklist 
(line status nonoperational; no ring indicator) is issued if this timer 
expires before an RI is detected. If buffers are not available or if the 
host is down, another timer is started. If this timeout period expires, 
program control is returned to the Clear-Initialize-Control sequence. If 
the timeout period has not expired and RI is received in a status word, 
PTLINIT again checks for buffer availability and whether host is up. With 
an RI present, the host up, and buffers available, the enable line command 
is issued. Line operational worklists are built for the service module and 
for the associated TIP. 

Error messages are generated under the following conditions: 

• A timeout period has expired and a required status has not been 
detected. 

• The status indicates that the line is not operational. 

PTLINIT is state driven with each state defined in table 5-5. 

PTLMUX2, the multiplex level 2 program, merely passes control by generating 
worklist entries to PTLINIT. This is reached through PBXFER. 

After a line has been enabled, a 1-second delay is made before notifying the 
TIP. This allows time for line/modem transients to settle. 

60474500 A 5-23 



MMHARDERR 

HARD 
ERROR 

LEGEND: 

WORKCODE 

WORKL IST 

MULTIPLEX LEVEL 

MM CLAS 

BZLCB 

LINE 
CONTROL 
BLOCK 

AOSMEN 

LINE ENABLED 
OR DISABLED 

OPS LEVEL 

AOSMEN OR 
AOSMDA 

LINE STATUS 
= COl.INOP 
OR COLNINOP 

OPERATIONAL 
OR NON­
OPERATIONAL 
LINE 

M-382 

Figure 5-10. PTLINIT Relationships with Major CCP Modules 

5-24 60474500 A 



Status 

Timeout 

Hare'! 
Error 

Enable 
Line 

Disable 
Line 

60474500 A 

TABLE 5-5. 

CLAON 

Ded: 
Enable Line. 
Sta te=CLARDY 
Timer=30 
seconds 

SW: 
State=SWCK 
Timer=l 
second 

Clear Lin<'. 
Senc1 Inop 
Messaqe. 
State= 
rnacti ve 
Timer=O 

SWCK 

Buf Avail/ 
Host Up 
Enable Line 
State =SWRDY 
Timer=30 
seccnds 

Buf Mot 
Avail or 
Host Down 
No Operution 

Senc" No Ring 
M£>ssaqe. 
State=SWRING 

PTLINIT STATE TRANSITION TABLE 

SWRING 

Buf Avail/ 
Host Up 
Enable Line 
State=SWRDY 
Timer=30 
seconds 

Buf Not 
Avail or 
Host Down 
Start Tim£>r, 
if timer is 
off 

Condition 
Line. 
State =CI.AON 
Timer=] 
second 

SWRDY 

Set Up 
Timer for 
J-second 
Delay 

Disable 
Line. 
Clear Line. 
Senc Inop 
Message. 
State= 
Inactive 
Timer=O 

CLARDY 

Timer=O 
Autorecog. 
Send Line 
Enable­
Nonop Msg. 

Other 
Send Line 
Oper Msg. 
Restore TIP 
Type. 

Disable 
Line. 
Clear Line. 
Send Inop 
Message. 
State= 
Inactive 
Timer=O 

All States 

Build WL 
for TIP 
Type. 

State= 
Inactive 
Send Line 
Inop 
Message 

Save/Set 
TIP Type. 
Condition 
Line. 
State=CLAON 
Timer=l 
second 

Send Line 
Disable 
Message. 
Clear Line. 
State= 
Inactive 
Timer=O 

SWDLY 

Send 
Enable WL 
to TIP. 
Restore 
TIP Type. 

State= 
Inactive 
Send Line 
Inop 
Message 

Send Line 
Disable 
Message. 
Clear 
Line. 
State= 
Inactive 
Timer=O 

5-25 



PMTlSEC, OUTPUT DATA DEMAND TIMING HANDLER 

This program supplies the timing for the ODD function. If 1 second elapses 
on an active output line without an ODD signal being received, PMTlSEC times 
the line out. A hardware error is declared by generating a multiplex 
worklist, which requests an interrupt to process the error. 

5-26 60474500 A 



NETWORK COMMUNICATIONS SOFTWARE 

This section describes the block protocol and the functions of the network 
communications software programs. The functions include some command 
execution (when the service module executes the command), and common TIP 
subroutines. The virtual terminal formats (IVT and BVT) are also discussed 
in this section; the virtual terminal transforms are used as a part of the 
multiplex level (state program) part of the TIPs. 

MAJOR FUNCTIONS 
The major functions performed by the network communications programs are the 
following: 

• Defines the types of blocks that are acceptable for data transfer, 
internode and intranode. 

• Routes the blocks. This includes checking the validity of incoming 
blocks and attaching the blocks to an NPU program that will continue 
processing the block, or reading the block to be queued to the next 
using network node. 

• Provides and processes a special type of block reserved for command, 
status, and statistics information. All service messages use this 
kind of block. The modules that process service messages are 
collectively called service modules. CE error, statistics, and alarm 
messages are special classes of service messages. 

• Provides the ability to alter the interactive virtual terminal 
formatting parameters. 

• Provides standard TIP support programs. These include the 
point-of-interface (POI) programs and other standard routines that 
can be used by any TIP. 

BLOCK PROTOCOL 

Block protocol is used to communicate commands and information between the 
NPU and the host. Blocks are composed of consecutive bytes. The shortest 
block consists of only a header (four bytes); the longest block consists of 
2047 bytes, including the four-byte header. 

Block protocol assumes the logical connection between processes in the host 
and the NPU is error free (a supportive, lower level protocol provides 
delivery assurances between the processes). However, the logical connection 
can be abnormally broken, either process can fail, or the processes can 
become temporarily congested, leading to regulation of information transfer. 

60474500 A 6-1 

6 



Failure of a process is usually reported by means of a service message. 
Temporary bottlenecks at a destination process are usually a result of 
inability to deliver data to an associated terminal or to the host. Block 
handling provides a standard method for informing the transmitting process 
of a temporary problem so that any subsequent data transfers on that 
connection can be held in abeyance until the problem is corrected. 

The paths between the two processes are fully symmetrical as shown in figure 
6-1. Blocks belong to one of three categories: 

• Forward supervision (FS) functions are performed by !NIT and RST 
blocks. 

• Reverse supervision {RS) functions are performed by BACK, BRK, STRT, 
and STP blocks. 

• Forward data {FD) functions are performed by BLK, MSG, and CMD blocks. 

BLOCK FORMAT 

The first two bytes of any block are reserved for a link header (which is 
used when sending/receiving data from a remote NPU). The next four bytes of 
any block constitute the block header. Format of the block header is as 
shown in figure 6-2. 

The current release consists of nine principal block types plus an 
additional assurance control block type used only for NPU to NPU 
transmissions. Characteristics of each type are summarized in table 6-1. 

The first three bytes of the block header provide a standard network 
address. Byte 4 contains the block priority (P), block sequence number 
(BSN), and block type (BT). The content of the remainder of the block, if 
any, varies with the block type. 

The priority of the block is only significant when the block is required to 
traverse a network trunk. Priority provides for preferential treatment for 
high-priority blocks when trunk queueing occurs. (Trunk queueing is a part 
of priority assignment.) All blocks {regardless of type) containing the 
same address must be assigned the same priority. 

The BSN supplied in a downline block of type MSG, BLK, or CMD must be 
returned in the BSN field of the upline BACK which acknowledges that block. 
When a BRK or STP is sent, the BSN field must contain the BSN which was 
contained in the last BACK sent for this connection. The BSN is always zero 
on other upline and downline blocks. 

Address 

The address contains the node IDs for the source and destination of the 
block plus a connection number. 

6-2 60474500 A 



NPU HOST 

PROCESS PROCESS 

FS - FORWARD SUPERVISION (CONTROL/STATUS REQUESTS) 
FD - FORWARD DATA (INFORMATION/COMMANDS) 
RS - ACKNOWLEDGMENT AND ERROR INFORMATION 

M-367 

Figure 6-1. Sample Block Data Paths Between NPU and Host 

60474500 A 6-3 



B_yte 1 2 3 
T 

Link 7 I 
Header DN SN CN p I 

~ 

y 

ON - Destination node Block Header 

SN - Source node 

CN - Connection number 

P - Block priority for trunk usage 

1 = high 
0 = low 

BSN - Block sequence number (range 0 - 7) 

BT - Block type (defined in table 6-1) 

4 
T 

6 4 I 3 
BSN I BT 

l 

Figure 6-2. Block Header Format 

NODE 

5 

0 Remainder l of Block 

..... 

Each NPU has a unique node ID; each interface between a host and an NPU has 
a unique node ID; the host has two unique node IDs. Node ID = 0 is reserved 
for the Network Supervisor (NS) in the host. Node ID = 1 is reserved for 
the Communications Supervisor (CS). The remaining node IDs (between 2 and 
255) are build time parameters. For example, in a single-host, single-NPU 
system, the host interface (coupler of the local NPU) might be node ID two, 
and the terminal node (interface to the terminals) might be node ID three; 
this pair of nodes forms a logical link. Thus, traffic going upline (from a 
terminal to the host) has a destination node ID of two and a source node ID 
of three. Traffic going downline from NS to the NPU has a destination node 
ID of two and a source node ID of zero. 

CONNECTION NUMBER 

A logical connection is the association between a terminal control block 
(TCB) in a NPU and an application process in the host, by which traffic is 
communicated between the terminal (or a device at that terminal) and 
applicable process. The TCB contains all status information relative to a 
particular terminal (or terminal device) and the current transfer. The TCB 
also contains a host-assigned connection number. The connection number is 
one byte long, and has a range of values between 1 and 255. Every block 
traveling downline to a terminal device or upline from a terminal device 
bears the connection number of the associated TCB. Unique connection 
numbers are assigned to all TCBs within a given NPU node, and are associated 
with a particular host node, i.e., on a given logical link. 

6-4 60474500 A 



Mnemonic 

BLK 

MSG 

BACK 

CMD 

BRK 

STP 

STRT 

RST 

INIT 

Name 

Block 

Message 

Block 
Acknowl­
edgment 

Command 

Break 

Stop 

Start 

Reset 

Initiate 

TABLE 6-1. BLOCK TYPES 

Block 
Type 

1 

2 

3 

4 

5 

6 

7 

8 

9 

14 

Traffic 
Type 

FD 

FD 

RS 

FD 

RS 

RS 

RS 

FS 

FS 

General Function 

Any data block which is not 
the EOM block of a multiblock 
message 

Data block which is the EOM 
block of a multiblock message 
or the only block of a message 

Block acknowledgment for block 
transmitted in opposite 
direction 

Command 

Indicates a discontinuity in 
the data stream traveling in 
the opposite direction 

Forward data stream is 
undeliverable and should be 
stopped 

Forward data stream can be 
started 

Transmitter has cleared 
logical connection after 
receiving a BRK or STRT 

Initiate a logical connection 

Not used l~ } 

~--- --+-- -- - --+----+---- -+--- ----- - - --

ACTL 

60474500 A 

Assurance 
Control -
used only in 
local/remote 
NPU communi­
cations 

15 

Subtype 

0 

1 

2 

3 

4 

CLR - Local NPU clears remote 
NPU at initialization 

PRST - Remote NPU acknowledges 
CLR 

REGL - Either end of link 
changes regulation level 

LINIT - Local NPU initializes 
LINK 

LIDLE - LIP at either end of 
link is idle - LIDLE maintains 
protocol when no data is being 
transmitted 

6-5 



SERVICE CHANNEL 

A block having a connection number of zero is called a service message, and 
the logical connection over which it is communicated is called the service 
channel. Unlike logical connections that can be dynamically created and 
released, the service channel always exists. Service messages include 
commands, requests for status, error information, statistics information, or 
replies to one of these three message categories. The service channel can 
also be used to send messages between terminals. Commands traveling via the 
service channel establish logical connections and communicate control, 
status, and error data. The complete summary of service messages is found 
in appendix C. 

BLOCK TYPES 

The block types are described in detail below. 

BLK Block 

A BLK block is a data block containing a portion, but not the last segment 
of a data message. All data blocks contain from 1 to 2043 bytes of data 
immediately following the four-byte header. The content of the data field 
is determined arbitrarily by the communicating processes. 

MSG Block FD, BT = 2 

A message is a self-contained unit of data communications. In half-duplex, 
two-parity communications, the transmitter signals ready-to-receive by 
sending end-of-message. Thus, a message is a data stream terminated with an 
end-of-message indicator. 

If a message is 2043 bytes or less in length, it can be transmitted within a 
single MSG block. If a message is longer than 2043 bytes or if, as is 
usual, the message is segmented by the terminal or because of a desire to 
optimize NPU dynamic space, all segments but the last are transmitted within 
BLK blocks. The last segment is transmitted within a MSG block. 

Back Block 

A BACK block is the acknowledgment of a received block. It is returned to 
the transmitter by the receiver as BLK, MSG, and CMD blocks are processed to 
allow the transmitter to adjust the rate of issuing data to the rate of 
delivery to the receiver. The transmitter should not issue unacknowledged 
blocks in excess of a network block limit (NBL) for each connection. The 
BACK block that acknowledges a previously transmitted block allows the 
transmitter to maintain an outstanding block count to ensure that the NBL is 
not exceeded. NBL is established by the connection as a part of the 
configuration process. Note that no data bytes are associated with a BACK 
block. 

6-6 60474500 A 



CMD Block 

A CMD block carries a network command. It allows connected processes to 
communicate outside of the data stream but synchronous with that stream. 
The command is received by the destination process in the same ordering 
sequence to the data stream or other commands as existed at source. If CN 
is 0, the command is a service message. The data bytes of the message are 
highly structured. Rather than using BACK blocks as acknowledgment, service 
messages use other service messages as acknowledgments. See appendix C. 

BRK Block 

The BRK block indicates a discontinuity (break) in the data stream and 
travels in the opposite direction. The receiving process responds with an 
RST to specify the point in the data stream where the BRK block occurred. 
Block protocol does not retain blocks for retransmission. Instead, the 
sender of the BRK block discards all blocks received before the RST block. 
A further BRK or STP block must not be sent before the RST block is received. 

A single data byte, the reason code (RC), follows the BRK block header and 
specifies the reason for breaking the transmission. The RC byte is defined 
as follows: 

1 = User Break 1 received (typically means queue abort occurred) 
2 = User Break 2 received (typically means job abort occurred) 
3 = Output device not ready 
4 = Illegal or invalidly formatted block received from host 

STP Block 

The STP (Stop) block is similar to the BRK block except that no RST block is 
sent and no further blocks should be sent until a STRP block is received. 

The STP block occurs when a process is unable to deliver data to the final 
destination such as when a terminal is inoperative or not ready, or when a 
line is inoperative. A reason code follows the header. This code is passed 
to the connected process. The sender of the STP block discards all blocks 
received before the next RST block received (normally caused by a STRT block 
issued by the sender of the STP block). The RC byte is interpreted as 
follows: 

1 = Terminal busy 
2 = Terminal failure 
3 = Batch interrupted by interactive input or output 

Start Block 

The STRT (Start) block is used after a STP block to allow resumption of data 
flow to the destination sending the STRT block. The receiving process 
responds with a RST block to invite the connected process to resume data 
transmittal. No data bytes are associated with this block. 

60474500 A 6-7 



RST Block 

The RST (re$et) block is sent in response to either a BRK or STRT block. It 
serves to delimit the data stream and indicate the point in the data stream 
at which the BRK or STRT block occurred. From the time the BRK or STRT 
block was sent until the receipt of the RST block, all unacknowledged blocks 
and all new blocks are discarded. No data bytes are associated with this 
block. 

lnit Block 

The !NIT (initiate) block delimits the new data boundaries when a connection 
is first made. Newly established connections discard blocks from the 
logical connection until the !NIT protocol is completed. The second end of 
the connection to be set up immediately sends an !NIT block. Upon receipt 
of the !NIT block, the first end to be set up responds with an !NIT block 
and starts accepting blocks over the logical connection. Upon receipt of 
the responding !NIT block, the second end of the connection to be set up 
also starts to accept blocks over the logical connection. No data bytes are 
associated with this block. 

Bad Blocks Detected by NPU 

When NPU software detects a bad block (any block with block protocol fields 
that contain unexpected or undefined information) , the NPU discards the 
block. If the block is bad for some other reason, a BRK block is sent to 
the host. If the block is a BLK, CMD, or MSG, no BACK block is sent to the 
host. For any other block type, no action solicited by the block is taken 
and it is not acknowledged. The NPU statistics word for 
block-discarded-to-bad-address is incremented. The header section of a bad 
block is displayed at the NPU console. 

ACTL Block (Assurance Control) 

This protocol is not needed for NPU-to-host communications. It is used only 
to protect data traveling between local and remote NPUs where the 
possibility of line errors is relatively high. 

SEGMENTATION OF BLOCKS 

The block is the unit of data that is assured. Blocks are generated by the 
source node, passed through the network and delivered to the destination 
node in the order of their generation. One of two possible priorities must 
be assigned to a block by the source node. Obviously, if ordering is to be 
preserved, all blocks and all forward supervision block protocol elements on 
a connection traveling in the same direction must be assigned the same 
priority. 

Block delivery across internodal physical links is performed in a manner 
that approximates a preemptive resume priority queue dispatch discipline. 
For this process, blocks transmitted in a link are segmented into subblocks 
to ensure that an opportunity for preemption occurs at discrete maximum 
intervals. 

6-8 60474500 A 



Segmentation is of functional concern only to the LIP although 
implementation considerations dictate that HIP and TIPs and the receive side 
of the LIP position the data in buffers in a manner that facilitates 
subblocking. Block priority for blocks arriving from the host coupler is 
established by the host before setting up the data transfer. The subblock 
boundary criteria are discussed in the section describing LIPs. 

LOGICAL LINK 

A logical link is the logical entity that monitors the transfer of data 
blocks and block protocol elements for all connections between two end 
points in the network. Unless both ends of a logical link are configured 
and operational, all such data is discarded and no connections are 
permitted. When both ends of a host-to-local logical link are configured, 
the host is notified with a logical link status operational SM immediately; 
this logical link remains operational until deleted by the host. When both 
ends of a host-to-remote logical link are configured, the host is notified 
with a logical link operational SM from the local NPU as soon as a 
clear/reset exchange occurs between the local and remote NPUs. This logical 
link becomes inoperative upon a physical link failure, and the host is 
notified with a logical link status inoperative SM from the local NPU. NS 
must explicitly delete the logical link. This causes all associated 
connections to be deleted and all data blocks and block protocol elements 
for these connections to be discarded. No connections are permitted on the 
logical link until a clear/reset sequence establishes an operational state 
again. 

The block header format for delivery assurance over the link is as shown in 
figure 6-3. 

SERVICE MESSAGE ASSURANCE ON TRUNKS 

When a physical link fails, all blocks to be transmitted on the link are 
discarded by the link protocol. Any service message that must be protected 
across a link failure (namely, unsolicited line status SM) is retained by 
the service module and repeated when the link again becomes operational. 
While the physical link is inoperative and no alternate path is available, 
new service messages are retained by the service module. 

DATA BLOCK CLARIFIER, DBC 

The first data byte of a message is often used as the data block clarifier. 
In this use, the byte carries additional control information about the data, 
which is used internally by the TIP. CCP uses two types of data block 
clarifier as shown in figure 6-4. 

For the downline DBC, all TIPs use format effectors. All TIPs check for 
transparent data, but only Mode 4C and ASYNC terminals can use the 
transparent (ASCII) output data. 

For the upline DBC, transparent data can be used by the ASYNC TIP only; Mode 
4 upline transparent data causes the TIP to lock the keyboard. Only the 
ASYNC TIP uses the cancel character and parity error flags. 

60474500 A 6-9 



DN 

SN 

CN 

TYPE 

PRID 

I DN I SN CN Type Subtype I RL I 
- Destination node 

- Source node 

- Connection number 

- Type of block. In this field, bit 7 is the PRID, bits 6 - 4 
are reserved for the block sequence number, and bits 3 - 0 
designate the BT. 

- Priority designator; set for high-priority blocks 

BT - Block type. ACTL blocks also use subtype and RL. 

Subtype - CLR - Clear = 0. Sent by local end to remote end of a logical 
link at initialization time; it is repeated until the PRST is 
received; contains the logical link regulation level in second 
byte of data field 

- PRST - Protocol Reset = 1. Sent by the remote end of a logical 
link at initialization time after the receipt of a CLR. PRST 
contains the logical link regulation level in second byte of 
data field. Normal data blocks are transmitted following a 
PRST. Local end accepts blocks after receipt of a PRST. 

- REGL - Regulation = 2. Sent by either end of logical link when 
local regulation level changes; contains new logical link 
regulation level in second byte of data field 

- LINIT - Link Initialization = 3. Sent by local end to 
initialize the link (trunk); is repeated by local end until 
remote end responds with LINIT. The Local end accepts blocks 
following LINIT. Link initialization is done initially and 
after a trunk failure. Remote end sends a LINIT only in 
response to a received LINIT. RL field is not used. 

- LIDLE - Link Idle = 4. Sent by the LIP of both local and 
remote ends periodically when no data is available to send to 
the other end so the LIP is able to monitor both directions of 
data flow for operational status. RL field is not used. 

- RL - Regulation load for trunk 

Figure 6-3. Block Header Format for Delivery Assurance 

6-10 60474500 A 



Downline DBC 

bits 7 4 3 2 1 0 

not used 

bit 3 - Format effectors present, DBDLFE 
bit 2 - Transparent data, DBDLXPT~~~~~~~ 
bit 1 - Lace card bit, DBDLSS----~--------~-----
bit 0 - Auto input data expected, DBDLAUTO--~--------

Upline DBC 

bits 7 2 1 0 

not used 

bit 2 - Transparent data, DBUTXPT~------~~-
bit 1 - Cancel character, DBULCAN----------~-----
bit 0 - Parity error, DBULPERR------~------~---------

Figure 6-4. Data Block Clarifier (DBC) for CCP 

ROUTING 

TIP using 

all 
all 
HASP 
all 

TIP using 

ASYNC, Mode 4 
ASYNC 
ASYNC 

Routing of blocks is performed by the internal processor, usually called 
through PBINTPRC. The internal processor call is made from the monitor with 
a worklist entry. 

PBINTPRC passes the block to be switched to PBSWITCH, the general systems 
block switch. PBSWITCH uses the directories to pass the block to the 
program that must continue processing the block. 

Upline blocks that are completely processed are passed to the HIP for 
transmission to the host. Downline blocks to be sent to terminals are 
queued to the TCB that is associated with the terminal or device to receive 
the message. 

A second source of switching can use PNROUTE. Only the service module and 
utilities use this switching method. 

60474500 A 6-11 



CCP provides routing of blocks between nodes and within the NPU- node. For 
example, in a simple system consisting of one host and one local NPU, the 
node assignments might be as follows: 

• For host: NS = node O; CS = node 1 
• For local NPU: coupler = node 2; terminals = node 3 

DIRECTORIES 

Each block of information (service messages are a special subclass of 
blocks) has three address elements: The destination node (DN), the source 
node (SN), and a connection number (CN). There are three directories, one 
associated with each of the three address elements: 

• Destination node directory 
• Source node directory (LLCB for the link) 
• Connection number directory 

The three directories are collectively designated as the routing 
directories. Formats of the three directories are shown in figure 6-5. 

Destination Node Directory 

The destination node directory contains an integer value associated with 
each valid DN address (range is 0 to 255). For a local node (meaning within 
the same physical node), the directory provides the address of the source 
node directory associated with that logical node. For all external logical 
nodes, the directory entry provides a logical link control block (LLCB) 
address. A zero entry indicates a nonexistent node (an unassigned value of 
DN). 

The destination node directory is a fixed length table with two words per 
entry. The first word contains the index (by node number), and the second 
word points to the appropriate LLCB. 

Source Node Directory 

The local logical node has a source node directory for each local node 
address. Each SN directory is used to select the connection directory 
associated with the pair of nodes indicated by DN and SN. Nonzero entries 
point to the address of the connection directory. 

Connection Number Directory 

For each logical node there is a CN directory for all terminals with which 
there is at least one connection defined. An entry in the CN directory 
provides the address of a terminal control block (TCB). The directory is 
indexed by CN and has a pointer to the TCB for that CN. The CN directory is 
located in dynamic buffer space. 

ROUTING PROCESS 

The PBSWITCH module starts the search of the three directories to perform 
either internode or intranode routine (see figure 6-6). 

6-12 60474500 A 



DNLOCD N 

..---

~ 

I 00 

NS LLCB address for NS in host 

l 01 

CS LLCB address for CS in coupler - upline 

1 02 

Addr of SN directory SN directory for coupler 

I 03 

Addr of SN directory SN directory for terminals - downline 

LLCB chain for this DN 

Ptr 

l SN 

Ptr to CN directory 

l SN 

CN directory for this 

l 
Ptr to TCB for CN = 1 

l 
Ptr to TCB for CN = 2 

I 
Ptr to TCB for CN = 3 

. . . 

= 0 

= 2 

SN 

01 

02 

03 

~ 

~ 

set of LLCBs for 
this DN and all SNS 
that have links to this 
DN through this NPU. 

DN and CN directories 
are type 1 tables. 

TCB address 

Note: Directories shown for a one NPU network 

Figure 6-5. Routing Directories Formats 

60474500 A 6-13 



6-14 

ENTER 

SEARCH 
DND USING 
DN AS INDEX 

NO 

Figure 6-6. 

YES 

NO DN 
NODE DEFINED 

ERROR NOTIFY 
SENDER THAT 
BLOCK CAN'T BE 
DELIVERED 

USE LLCB 
TO DIRECT 
MSG TO COUPLER 
OR REMOTE NPU 

ACTL BLOCK 
PATH NOT SHOWN 

SEARCH SND t 
USING SN AS 
INDEX 

SEARCH 
CND USING 
CN AS INDEX 

PASS BLOCK 
TO PROCESS 
ADDRESS 
INDICATED IN TCB 

EXIT 

-1 LLCB FOR 
SN 

t LLCB FOR TERMINALS 

DND - DESTINATION NODE DIRECTORY 
SND - SOURCE NODE DIRECTORY 
CND - CONNECTION NODE DIRECTORY 
WLE - WORKLIST ENTRY 

M-368 

Sirnplif ied Routing Flowchart for PBSWITCH 

60474500 A 



Figure 6-6 indicates the steps of the routing search: 

DN indexed the destination node directory to obtain an address. If the 
address obtained is zero, the destination of the block is undefined and 
PBSWITCH returns an indication to that effect. 

If the destination is not a local logical node, the block is passed (as 
appropriate) to the coupler for a host process or to the remote node. If 
this is a locally directed service message, the message is passed to the 
service module using a worklist entry. 

If DN is a terminal node, the LLCB for that link is searched using SN. The 
SN/DN LLCB has a pointer to the CN directory. This directory is similar to 
the DN directory. It is indexed by CN and has a pointer to the CNs 
associated TCB. Using the TCB address, PBSWITCH calls the internal output 
POI (PBIOPOI) which queues the block to the TCB. 

ALTERING DIRECTORIES 

The modules PNDIRADD and PNDIRDLT add or delete entries to the directories. 
PNDIRADD requires four input parameters: 

• The first two are PASCAL values (ranges to 255) and represent DN and 
SN values, respectively. 

• The third is a PASCAL variable (range 0 to 255) and represents CN. 

• The fourth is a PASCAL variable of the buffer pointer type (range 2 -
65, 535) that points to a TCB for use in the appropriate directory. 

The DN directory can have a new two-word entry. The CN directory can have 
new entries and, if necessary, new chained segments. LLCBs (the SN 
directory) are established when new links are defined. PNDIRDLT removes 
entries from the DN and CN directories. Three input parameters are 
necessary: 

• The first is a PASCAL value between 0 and 255 and is the index to the 
DN entry to be removed. 

• The second is a PASCAL value between 0 and 255 and is index to the SN 
entry to be removed. 

• The third is a PASCAL variable in the range 0 to 255 and is index to 
the CN entry to be removed. 

If the entry removed in the CN directory is the last remaining entry of that 
segment of the directory, that segment of the directory is released. 
Rechaining of directory segments is performed as necessary. 

SERVICE MESSAGES 
Service messages (SM), the special group of control messages that carry 
extended command, status, and statistics information between the host and 
NPU nodes, are processed by the Service Module (SVM). The procedures that 
make up the SVM are grouped into the following general categories: 

• Internal SM processing 

60474500 A 6-15 



• Validating and timing out service messages 

• Generating and dispatching service messages 

• Configuring, enabling, disabling, and deleting control blocks. These 
include control blocks for logical links (LLCB), lines (LCB), and 
terminals (TCB). 

• Generating and sending status SMs. These include logical link 
(trunk), line, and terminal SMs. 

• Generating and sending statistics SMs 

• Generating and sending broadcast one and broadcast all SMs 

• Processing overlay programs and overlay data 

• Generating requests for loading an NPU in response to force load SM 

TASK SELECTION IN THE SERVICE MODULE 

Entry to the SVM is usually made in the form of a worklist. Note that SVM 
is customarily one of the modules given control by the OPS-monitor with more 
than one worklist. 

Worklist entry switching (PNSMWL) has two levels: On the first level, 
switching is performed according to workcode. The processed workcodes are: 

• COSMIN/COSMOUT - processes or sends most SMs 
• COSMDISP - sends a service message 
• COLINOP - makes a line operational 
• COLNDA - disables a line Usually done in COSMIN 
e CODLTCB - deletes a TCB 
• COOVLDATA - processes overlay data 

As can be seen, substantially all the processing is done by the COSMIN and 
COSMOUT codes. The second level of switching takes place in the routines 
handling COSMIN and COSMOUT. (This is the PFC/SFC level of switching.) A 
subcode (J4 ••• ) is used. Again, almost all processing occurs using one 
value, the J4DISPATCH subcode. 

Within this subcode, the PFC (D8 ••• ) and the SFC {D9 ••• ) of the SM are used 
to find an entry in the DBHANDLER table {see appendix E). 

The SVM trees (appendix I) show the routines responsible for each SM. 

SVM also provides a few direct entries: 

• 
• 
• 

6-16 

The timed entry call (from PBTIMAL) 

The periodic statistics entry (f.rom PBTIMAL) 

The SM generation, PNSMGEN, which can be used by the TIPs to send any 
of the eight types of service messages which this routine generates. 

60474500 A 



INTERNAL SERVICE MESSAGE PROCESSING 

Four types of functions are handled by these SVM modules: 

• Making worklist entries for SVM and awaiting availability of buffers 
for SVM processing. 

• The interface to the OPS monitor so that the monitor can pass control 
to SVM. 

• An indexing function that finds the proper point in SVM to resume 
processing after a pause. The necessary marking information is 
contained in the worklist entry. 

• The logic to process the line inoperative and line operative worklist 
entries. The output is a line enable/disable SM or a status SM. 

VALIDATING AND TIMING OUT SERVICE MESSAGES 

The timeout group of modules times out SMs and responses to timeout SMs. 

The validation group of modules assures that all SMs have: 

• A valid primary function code (PFC) and secondary function code (SFC). 

• The port identification number is within the range of ports assigned 
to this NPU. 

NOTE 

The format for each type of service message is given 
in appendix C. 

The general format of an SM (appendix C) is shown in figure 6-7. 

GENERATING AND DISPATCHING 

The following functions are handled by this group of modules: 

• DN and SN of the SM are reversed for use in generating the reply SM. 

• Queues SM to the local NPU console. 

• Releases buffers used for SMs. 

• Generates a message from the operator at the NPU console to the 
network operator (NOP). This process begins when the operator at the 
NPU console places the console in supervisory mode and enters the 
message text. There is no response to this type of service message. 

• Generates PFC and SFC for service messages. 

• Dispatches the SM to: 

1. The HIP if DN designates the local coupler. 
2. The LIP if DN designates the remote node. 
3. SVM if DN designates an action to be performed in this NPU. 

60474500 A 6-17 



Byte 

DN 

SN 

CN 

p 

R~ 

BT 

PFC 

EB 

RB 

SFC 

1 2 3 4 

Link Header DN SN CN P/RES/BT 

""'---~---------....~~-----------~ block header 

- Destination node 

- Source node 

5 6 

PFC EB/RB/SFC Parameters 

Connection number is 00 for all service messages; the SM 
channel is always assumed to be configured. 

- Priority flag; upper bit of block header byte 4 

- Bits 6 and 5 of block header byte 4 

- Block type; 4 = command block; lower 4 bits of block header 
byte 4 

- Primary function code 

00-3F16 - reserved for network use 

40-F16 - reserved for intrahost use (error for CCP to 
receive these messages) 

AO-BF16 - reserved for expansion 

CO-E016 - reserved for network use 

El-EF16 - reserved for installations 

- Error response SM; EB = 1 (bit 7 of the byte) 

- Normal response SM; EB = 1 (bit 6 of the byte) 

- Secondary function code; see appendix C (bits 5 through 0 of 
the byte} 

Parameters - Defined in bytes. See appendix C. 

Figure 6-7. Service Message General Format 

6-18 60474500 A 



CONFIGURING, ENABLING, DISABLING, DELETING CONTROL BLOCKS 

This set of modules is used for initiation and changing control blocks for 
logical links, lines, and terminals. The format and functional effect of 
these messages are described in detail in the initialization section of the 
CCP3 Reference Manual and in section 2 of this manual. 

GENERATING AND SENDING STATUS SERVICE MESSAGES 

This group of modules generates and sends the logical link, trunk, line and 
terminal status messages. Included in these operations is the ability to 
count configured NS links and configured CS lines. The status indicates 
whether the line is operational. 

Logical Link Status Request Service Message 

This SM status request identifies the nodes comprising the SM link. If the 
nodes are not specified, the message is treated as a request for the status 
of all links connected through the NPU. 

The response message has a reason code specifying whether the link is 
operational, a regulation level for the link, and a flag to indicate an 
unsolicited status reply. The reply also indicates the number of links 
checked if the message requested information about all the links. 

The error response contains only the reason code. Two types of errors are 
recorded: 

• A logical link is not configured. 

• Another logical link status SM is already in progress, or the request 
did not originate from NS in the host. 

Trunk Status Request Service Message 

This SM status request specifies the port used by the trunk. If the port is 
not specified, the message is treated as a request for the status of all 
trunks connected to the NPU. The reply message contains a reason code, such 
as trunk operational, trunk inoperative, or no ring indicator (for dial-up 
lines). The reply also contains the line type, configuration states, an 
identifier for the remote node of the trunk, and the number of trunks 
checked, if the request was for status on all trunks. 

An error response is sent under the following conditions: 

• There are no configured trunks or the line number specified is not a 
trunk. 

• Another trunk status SM is already in progress. 

• An attempt is made to disable the last path from a remote NPU to NS. 
Disabling the last trunk would permanently destroy the protocol to 
the remote node affected when CS records are erroneous or incomplete 
due to a host failure. 

60474500 A 6-19 



Line Status Request Service Message 

This SM status request specifies the port used by the line. If the port is 
not specified, the message is treated as a request for status of all lines 
connected to the NPU. A response status SM is sent for each line configured 
and owned by cs. The reply includes a response code (line operational, line 
inoperative, or autorecognition/no ring indicator), line type, and 
configuration state. If an error response is set, the reason code specifies 
one of the following error states: 

• A port is invalid or there is a bad host ordinal. 

• Another line status request is in progress. 

• An illegal configuration state exists (for a single-line response 
message). 

• No lines are configured (for an all-lines response message). 

On a dial-up circuit, a line-enabled response is generated by the NPU 
immediately following a configure line SM. When a user dials in, the modern 
interface signals indicate an active line; the NPU then generates an 
unsolicited line status operation SM, following autorecognition, if 
applicable. Upon receiving the line status operational SM, the host 
configures the terminals for the line by sending one or more configure 
terminal SMs. 

An unsolicited line status request SM is sent whenever the TIP senses 
conditions that cause the line to be inoperative, including normal 
disconnect on a dial-up line. 

Line inoperative is reported when line or modem conditions cause the line to 
become inoperative; it is not reported if the line is made inactive by 
terminating its logical connections or by disabling the line. 

The following modem signal conditions cause the line to be reported 
inoperative. The timeouts involved ensure that a line is not declared 
inoperative because of transient conditions that can be normally expected: 

• 

• 

• 

6-20 

Data Set Ready (DSR): If the data set ready signal drops at any 
time, data transmit ready (DTR) is immediately turned off and line 
inoperative is reported 

Clear to Send (CTS - 201 and 208 modem): If the clear to send signal 
does not occur within one second of the rise of the ready to send 
(RTS) signal; remain on for the duration of ready to send, and drop 
within one second of the fall of ready to send. The data transmit 
ready signal is then turned off, causing a switched line to 
disconnect, and line inoperative is reported. Clear to send is not 
monitored for the 103/113/202 modems. 

Data Carrier Detect (DCD - for full duplex constant carrier): Once a 
line is operational, if the data carrier detect signal drops and 
remains off for a period of 10 seconds, data transmit ready is turned 
off, and line inoperative is reported. Abnormal operation of a data 
carrier detect on a half duplex or on controlled carrier lines does 
not influence line status. 

60474500 A 



TCBs are not automatically deleted when a line becomes inoperative. The 
host must terminate each logical connection explicitly with a delete 
terminal SM, or implicitly by sending a delete line SM or a disconnect line 
SM. 

The unsolicited SM also contains bytes defining the number of terminals, the 
terminal type, the terminal address and the cluster address, the device 
type, and line speed and code type. For autorecognition responses, the 
terminal address and device type are repeated for each terminal that can be 
detected by the TIP. The ASYNC TIP reports only one terminal address or 
device type pair. 

Line Count Request Service Message 

The CS sends this message when it requires a count of the line which it 
owns. This occurs following a host failure or when the NPU causes records 
to be incomplete or erroneous. The reply message contains the requested 
count. 

Terminal Status Request Service Message 

The CS sends this message when its records are incomplete due to a host 
failure. Status can be requested for one or all terminals on a specified 
line, the request specifying the line to be checked. 

The response can be in answer to a request or it can be unsolicited, when 
the NPU detects a terminal failure or a terminal recovery. Response 
parameters are defined in appendix C. 

When terminal failure is detected, the correspondent is informed via the 
logical connection (if any) and the terminal status SM is sent. Terminal 
failure does not change the state of the TCB with regard to the logical 
connection, nor is the state of the line (as recorded in the LCB) modified. 
Operator action is required to delete the terminal if desired. 

If an error response is sent, the error is one of the following: 

• Invalid line number or bad HO 

• No terminals configured 

• Line inoperative or not enabled 

• Another terminal status request SM is in progress 

• LCB not configured 

Generating and Sending Statistics Service Messages 

Statistics SMs report on the NPU coupler, on lines, trunks and terminals. 
The statistical data is derived from the appropriate statistics blocks for 
the coupler, lines, and terminals respectively. The messages are generated 
periodically or when the counter for the type of failure reaches its 
overflow level. Statistics messages are also sent when a line is connected 
or disabled or when a TCB is deleted. The various types of statistics SMs 
are described in detail in appendix B. 

60474500 A 6-21 



Generating and Sending Broadcast SMs 

The network operator {NOP) can send a message to one terminal or to all 
terminals. These broadcast messages are carried in service messages. This 
type of message identifies the cluster and terminal addresses, and the 
device type of the receiving terminal. The network operator produces the 
text. The procedures for entering this message from the NOP console are 
given in the NOS Operator's Guide. 

A normal response uses a similar format to acknowledge that the broadcast 
message was received and passed to the specified terminal. If the message 
was not delivered, an error response is generated. The possible types of 
errors are as follows: 

• Invalid line number, bad host ordinal or toggle bit 
• Invalid device type 
• Terminal or line not configured 
• Terminal or line inoperative 
• Host toggle bit error 

A broadcast message can be sent to all 
the NPU. Only the text of the message 
are necessary in the request message. 
message at the host console using the 
Operator's Guide. 

interactive terminals connected to 
and the ID of the nodes being used 
The network operator enters the 

procedure outlined in the NOS 

A normal response is sent when the message is queued to all the interactive 
terminals connected to the destination NPU; otherwise an error response is 
sent. Errors are reported in the following cases: 

• no logical link established or this logical link is not established 
• another broadcast SM is already in progress 

PROCESSING OVERLAY PROGRAMS AND OVERLAY DATA 
This group handles the overlay logic. Overlays are used for on-line 
diagnostics in all NPUs, and are used in a local NPU to initialize a remote 
neighbor NPU. 

The same technique is used in either case, and is described in detail in the 
CCP 3 Reference Manual. 

PROCESSING FORCE LOAD COMMAND 

The Network Operator has the ability to force an NPU to an inoperative 
state, so that the NPU requests that it be reloaded. 

Receipt of this force load SM causes the CCP to start the deadman timer. 
When the timer expires, the NPU sends a load request SM to the host. There 
is no response to the force load SM. 

The technique for entering the force load command at the host console is 
described in the NOS Operator's Guide. 

The initialization process resulting is described in the CCP 3 Reference 
Manual. 

6-22 60474500 A 



CE ERROR AND ALARM MESSAGES 
CE error messages are special SMs that report hardware failures. These 
messages include a one-byte CE error code, and can include additional data. 
CE error messages are described in appendix B of the CCP Reference Manual. 

Alarm messages are special SMs that report frequent errors occurring on a 
given hardware device and are generated whenever the number of these errors 
reach a threshold level. Alarm messages are described in detail in appendix 
B of the CCP 3 Reference Manual. 

COMMON TIP SUBROUTINES 
These TIP subroutines belong to one of two classes: point-of-interface 
(POI) routines, and other standard TIP support routines. 

POINT-OF-INTERFACE ROUTINES 

Five point-of-interface routines are included in the internal processor. 
These routines handle many of the interfaces for the LIP and TIPs to begin 
or to end processing of a message. The programs are as follows: 

• • • • • 

PBPIPOI 
PBIIPOI 
PBIOPOI 
PB PRO POI 
PBPOPOI 

PBPIPOI AND PBI IPOI 

- Post input POI 
- Internal input POI 
- Internal output POI 
- Pre output POI 
- Post output POI 

~BPIPOI, the post input POI, calls PNSGATH to gather the statistics for the 
upline message transfer, and then calls PBIIPOI, the internal input POI, to 
check if a proper connection for the data exists. If not, the buffers are 
released; otherwise the header is added to the data (chained at the 
beginning of the blocks, if necessary) and the data buffers are switched to 
the next processing routine (presumably the HIP). 

PBIOPOI - INTERNAL OUTPUT POI 

This POI is called to process the output buffers according to block type. 
It is called from the internal processor switch (PBSWITCH) to route downline 
blocks to the TIPs. It is also called by the service module to switch 
broadcast messages. 

• BLK, MSG, and CMD blocks are queued to the appropriate TIP if the 
accept output flag is set. Otherwise, the (chained) buffers are 
rejected. 

• BACK blocks indicate acceptance by the receiving node, so the number 
of outstanding blocks is decremented and the acknowledged block is 
released. 

• BRK blocks sent upline from the TIP to the host indicate that a 
transmission was interrupted. This indicates a non-recoverable 
error. The host aborts the output transmission. 

60474500 A 6-23 



• INIT blocks cause the terminal operating and ready flags to be set. 

• RST blocks cause the accept output data flag to be set. Buffers for 
the current transmission are released. 

• STRT blocks sent upline to the host cause the accept input data flag 
to be set and a RST block to be generated. The host can again send 
messages downline to the device. 

• STP blocks are sent upline by the TIP to indicate that the terminal 
cannot be used now, but that the message might be transmitted later 
(after the TIP sends a STRT block) • This is used for recoverable 
cases, such as a printer being currently marked down. STP blocks 
clear the accept input flag, release the buffers for the current 
transfer, and notify the TIP to stop processing. 

See figure 6-8. 

PBPROPOI - PREOUTPUT POI 

This POI is used to get a block for output processing. This is done by 
updating pointers in the output message buffer that is queued to the TIP. 
The block serial number is extracted also. 

PBPOPOI - Postoutput POI 

This POI is called from the TIP's postoutput routine to generate the 
statistics for the block (uising PNSGATH) and to send a BACK block unless 
the block was internally generated. The POI then releases the buffers 
holding the message that the TIP has now finished processing. 

STANDARD TIP SUBROUTINES 

OUTPUT QUEUEING - PB01 BLK AND PBQBLKS 

Output queues are associated with a specific TCB that contains a pointer to 
the first block in the queue, specifically to the first buffer of that 
block. Figure 6-9 illustrates the queue structure. The queue contains one 
or more data blocks, each of which is composed of one or more buffers. The 
buffers are linked in the order they are removed from the chain. The last 
word of one buffer is the pointer to the next buffer. The last word of the 
last buffer contains NIL. 

Blocks are chained together using the QCHN word of the buffer header (word 3 
of the data buffer header). New blocks are always chained to the previous 
last block. The QCHN word of the newest block is always NIL. 

The TCB output queue is built by two routines: PBQlBLK and PBQBLKS: 

• 

• 

6-24 

PBQlBLK (parm) uses the parameter (block address) to clear the chain 
word of the block to be queued, then PBQlBLK calls PBQBLKS. 

PBQBLKS (parm 1, parm 2) uses parm 1 to find the TCB output queue and 
parm 2 to find the buffers to be added to the chain. If the TCB 
queue is empty, a worklist entry is made to the TIP that controls the 
TCB, so the TIP can process the queue. 

60474500 A 



Figure 6-8. 

60474500 A 

PTBREAK 

PURGE OUTPUT 
QUEUE 
QQ~O 

A0+-0 

GENERATE UP­
LINE 'BREAK' 

SENDS 
BAY BLOCK 

GENERATES UPLINE BREAK IF DOWNLINE 
MESSAGES OR COMMANDS CANNOT BE TRANS­
MITTED BECAUSE OF BLOCK FORMAT ERRORS 

PTSTRT 

SET AND 
STARTED 
FLAG 

GENERATE A 
STAT BLOCK. 
INCLUDE A 
REASON CODE 

SEND IT 

STARTS TRANS­
MISSION OVER 
A LINE 

PTBACK 

GENERATE 
A BACK BLOCK 

SEND IT 

PTSTOP 

SET STOP BLOCK 
SENT FLAG 

CLEAR AO 

PURGE THE 
OUTPUT QUEUE 

GENERATE A 
STOP BLOCK. 
INCLUDE THE 
REASON CODE 

SEND IT 

SENDS 
ACKNOWLEDGE 
BLOCK 

SUSPENDS TRANS· 
MISSION OVER 
A LINE 

AO= 
ACCEPT 
OUTPUT 

M-369 

Flowcharts for Important Common Tip Subroutines (sheet 1 of 2) 

6-25 



O'\ 
I 

l'V 
O'\ 

O'\ 
0 
~ 
........ 
~ 
V1 
0 
0 

> 

BLK, MSG. CMD 

YES 

QUEUE Bl OCK 
TO TCB 
SET 00 

DISCARD 
BLOCK 

BREAK 

CLEAR 
Al 

GENERATE 
UPLINE 
RESET 

SEND 
UPI INE 
RESET 

BACK 

DECREMENT 
BLOCK COUNTER 

REL EASE 
ASSOCIATED 
BUFFERS 

CALL DOWNLINE 
BLOCK HANDLER 
(PBIOPOI) 

SELECT BLOCK TYPE 

INIT 

CLEAR INOP 

FLAGS. SET AO 

SET Al 

GENERATE 

INIT BLOCK 
AND SEND IT 

RESET 

RELEASE 
BUFFERS 

Al 
AO 
00 

START 

SET Al 

GENERATE 
RESET 

SEND IT 

ACCEPT INPUT FI AG 
ACCEPT OUTPUT Fl AG 
OUTPUT QUEUED FLAG 

Figure 6-8. Flowcharts for Important Common TIP Subroutines (sheet 2 of 2) 

STP 

CLEAR 
Al 

MAKE WL 
STOP ENTRY 

RELEASE 
BUFFERS 

M-373 



MESSAGE BUFFER 
CHAIN IS 
COMPOSED 
OF TWO OR 
MORE BUFFERS 
CHAINED 
TOGETHER TO 
FORM A 
MESSAGE 
BLOCK 

60474500 A 

TERMINAL CONTROL BLOCK 

... ~ • l't" 

• c • ~BSOTYPE 
TRUE 

L....+ BFLCD I BFFCD BFLCD l BFFCD BFLCD I BFFCD 

FLAGS FLAGS FLAGS 

OCHN - POINT r-+ OCHN = PT 1 ~ OCHN = NIL 
IN NEXT BLOCK 

• • • 
~~ • * I 

• 

r 
~~ • ~~ 

• • • 
POINTER TO NEXT NIL 
BUFFER 

l I 

i 1 

NIL 

..... ..,, 1 -
FIRST SEGMENT OUT 

NIL 

LAST SEGMENT IN 

MESSAGE BLOCK CHAIN IS COMPOSED OF TWO OR MORE BLOCKS CHAINED TOGETHER 
TO FORM A TERMINAL OUTPUT QUEUE. 

M-374 

Figure 6-9. Structure of a TCB Queue 

6-27 



UPLINE BREAK - PTBREAK 

The common send break subroutine PTBREAK (figure 6-8) indicates a 
discontinuity in the output stream. This routine purges the output queue 
described above, sets AO to zero to prevent further queueing of output 
information, and sends an upline BREAK block with a code indicating the 
reason for the break. 

DOWNLINE BREAK 

The host commands the TIP to stop input by sending a downline stop message 
(a type of CMD block). This block is acted upon, when received, without 
being output queued. The TIP replies with an input stopped message (also a 
type of CMD block). This·message causes the accept input (AI) flag to be 
set to zero. To restart input, the host sends a start input message (a type 
of CMD block). This sets the AI flag to 1 and the TIP again accepts input 
from the terminal. 

STOP TRANSMISSION TO A TERMINAL - PTSTOP 

A TIP calls PTSTOP with a stop reason code. PTSTOP clears the accept output 
flag in the TCB and then calls PNDNABRT to clear the output queue for this 
terminal. PTSTOP also generates a STP block and includes the reason code 
for the stop. The internal processor sends the block to the host via the 
HIP. 

INTERFACE TO TEXT PROCESSING FIRMWARE - PTTPINF 

A TIP calls this interface to firmware routine to execute the upline or 
downline text processing state programs. Upline text processing is used 
only by TIPs which require two-state input processing, such as the HASP 
TIP. The call is 

PTTPINF (parm) 

where parm is the address of the TPCB. 

Text processing occurs on the firmware level. Information exchange between 
OPS-level and firmware level uses the 32-word text processing control block 
(TPCB). Prior to the call to PTTPINF, the TIP sets all information 
necessary to execute the transfer into the MLCB. When PTTPINF is put into 
control, it transfers the second 16 words of the TPCB to the microprocessor 
file 1 registers to speed processing. The text processing state programs 
can save information for the OPS-level TIP either in the file 1 registers or 
in any other MLCB field. After the text processor (using the terminal­
oriented text processing state programs) has converted the data, control 
returns to PTTPINF which stores the current file 1 register values in words 
16 - 31 of the TPCB. After escaping to firmware processing, TPPTINF 
periodically returns to OPS level to process interrupts (interrupts are 
inhibited while firmware is executing state programs). When the entire text 
processing sequence is completed, TPPTINF returns control to the calling 
TIP. If the text could not be converted, TPPTINF notifies the TIP of the 
failure by using fields in the TPCB. 

This module is technically a part of the base system but is discussed here 
since it provides a service for the TIPs. 

6-28 60474500 A 



FINDING NUMBER OF CHARACTERS TO BE PROCESSED - PTCTCHR 

PTCTCHR counts the number of characters in the buffer to be processed. This 
count includes the complete chain of data buffers in the message. This 
module is also considered a part of the base system. 

SAVING AND RESTORING LCBs - PTSVxLCB AND PTRTxLCB 

Two sets of routines allow TIPS to mark transmissions that must be suspended 
until further terminal or host action occurs. The suspension address in the 
TIP controlling the transfer is saved in the LCB, and upon the necessary 
action being completed, control returns to the TIP at the specified point 
and transmission processing continues. 

• PTSVlLCB or PTSV2LCB saves the TIP return address in the LCB and 
saves a wait count prior to returning control to the monitor. 
PTSVlLCB is used for input; PTSV2LCB is used for output. The TIP 
will later receive control by a worklist entry to continue processing 
at saved address. 

• PTRTlLCB or PTRT2LCB - The TIP for this suspended transmission 
receives control as a result of a worklist entry to it. These 
routines restore TIP processing at the address (next entry point) 
saved by PTSVxLCB. PTRTlLCB is used for input; PTRT2LCB is used for 
output. 

These modules are also considered a part of the base system. 

COMMON RETURN CONTROL ROUTINE - PTRETOPS 

PTRETOPS is called by a TIP in order to properly relinquish control to the 
monitor (PBMON). This module is also considered a part of the base system. 

COMMON TIP REGULATION - PTREGL 

The common TIP regulation checking routine is called when the TIP is ready 
to start processing the data (upline or downline). Even though some 
processing of the data may already be completed (for instance, input state 
processing being complete on upline data), CCP may need protection from an 
additional request for space or processing resources. 

At the TIP's request, PTREGL checks any one or any combination of the 
following four regulation conditions: 

• The regulation level at this end of the logical link is higher than 
the priority level of the ~lock transmitted to this NPU. 

• The allowable number of blocks that can be queued to this TCB (ABL) 
is greater than the number of blocks already queued to this TCB for 
processing (OBL). 

• The accept input (AI) flag is not set in the TCB {upline data). 

60474500 A 6-29 



• The buffer availability level in this NPU is below the level set for 
this type (low or high priority) of data blocks. 

NOTE 

This routine is not called by the multiplex subsystem 
for upline data. Instead, upline data is accepted 
from the input loop, stored in the CIB, and 
demultiplexed into a line-oriented input buffer; then 
the TIP is called. The TIP has the responsibility 
for checking whether the message should be rejected 
(regulation occurs). The mechanism for stopping 
input at the external interface is also a TIP 
responsibility. This is done by breaking the message 
(input stopped or BRK block) and commanding the 
multiplex command driver to turn off the CLA. Until 
the CLA state is changed, the multiplex subsystem 
must continue to accept input data. 

The calling format is PTREGL (parml, parm2). Parm 1 is a pointer to the 
buffer associated with the proposed input operation. Parm 2 is the type of 
comparison to be made. 

If the type of regulation checked does not currently exist, PTREGL passes a 
no regulation flag to the caller. 

PTREGL is also considered a part of the base system. 

SAVING AND RESTORING REGISTERS 

Two subroutines save and restore the Rl and R2 registers. 

PBBEXIT - Save R1 and R2 

PBBEXIT is used to save Rl and R2 before executing the GOTO (EXIT) when the 
GOTO statement occurs within one or more executable WITH statements. 

NOTE 

A GOTO (EXIT) from within a noninterruptable program does not 
perform an UNLOCK operation before exiting. 

PBEXIT then restores Rl and R2. 

PBAEXIT - Restore R1 and R2 

PBAEXIT is used before a GOTO (EXIT) is executed from within one or more 
executable WITH statements. PBBEXIT has previously saved Rl and R2 in a 
specified area so that they may be used as base addresses of the structures 
associated with the first two executable WITH statements. The calling 
sequence is 

PBAEXIT (parm) 

where parm is the name of the two-word save area for Rl and R2. 

6-30 60474500 A 



VIRTUAL TERMINAL TRANSFORM 
Virtual terminal format allows the host application programs to expect only 
two types of input: ASCII input from a standardized interactive terminal 
(IVT), or ASCII input from a standardized batch terminal {BVT). 

Each TIP is responsible for converting from terminal code and format to and 
from the ASCII virtual terminal formats. Downline, this is handled entirely 
in text processing state programs (see section 12). If the TIP handles 
several types of terminals, it must have state programs to handle the 
conversions for each separate type of terminal. 

Upline, TIPs can use either of two ways of converting data. Usually, input 
state programs can be used to completely demultiplex data from the circular 
input buffer, to convert format, and to translate code in a single operation 
(one pass processing). In cases where the upline block of data from the 
terminal may be composed of data from several terminal devices, this single 
stage input state processing is impractical. Instead, the multiplex 
subsystem first uses input state programs for this TIP to gather all the 
data into an input block for the line. Then after the TIP is called at OPS 
level, the TIP provides a separate set of upline text processing state 
programs to finish demultiplexing the data into blocks for each device. At 
the same time, the upline text processing state programs convert format to 
BVT or IVT, and translate code to ASCII (two stage input character 
processing; used by the HASP TIP). 

IVT and BVT can be considered as a special subset of the normal host/NPU 
block protocol. 

BVT is handled entirely by the state programs within the TIPs. Most IVT 
transforms are handled the same way; however, IVT parameters can be varied 
within a narrow range. For this reason a common TIP routine, PTIVTCMD, is 
provided to decode the operator (or host)-entered message that changes the 
IVT parameters (PTIVTCMD calls PTIVTPRSR to parse the message containing the 
new IVT parameters). 

Since the techniques used to format for IVT and BVT differ, the two types of 
terminals are discussed individually. 

BATCH VIRTUAL TERMINAL (BVT) 

Batch Virtual Terminal provides the standard interface which permits 
application programs in the host to exchange information with remote batch 
terminals without regard to specific terminal characteristics. 

The additional block handling abilities needed for batch-type terminals are 
as follows: 

• Ability to transform data to and from BVT format 

• Ability to handle block protocol for each type of 9 blocks that can 
be passed over the host and local NPU interface 

60474500 A 6-31 



Batch Virtual Terminal Characteristics 

The BVT is deemed to be a multi-device terminal operating remotely from the 
host. The BVT is connected to the 255X by a synchronous medium using a 
high-speed line. Although the protocol on the line may differ by equipment 
type, the BVT is assumed to be a block oriented terminal. 

A separate logical connection exists for each device supported. Device 
types that may exist at the remote site include: card readers, printers, 
plotters, and card punches. The BVT is defined to allow full use of the 
features of Mode 4 terminals. 

Features considered are: data compression, printer carriage control, code 
conversion, transparent data mode control, and file structure. For downline 
blocks, the host process ensures that downline network blocks do not exceed 
the allowable device block size after processing by the TIP, and that output 
print lines do not exceed the device printline width. Similarly, the host 
process is responsible for compressing data. For downline data, only, 
blank, zero, and duplicate character compression is permitted. Compression 
duplicate characters other than blanks or zeros will cause a rejection in 
the form of a BRK block, if such data is sent to a Mode 4 terminal - (HASP 
workstations, however, accept duplicate character compression). The degree 
of upline compression is determined by the terminal. Full compression is 
assumed. At any multidevice terminal the interactive devices conform to IVT 
and the batch devices to BVT. 

BVT Block Protocol Usage 

• BLK Blocks - BLK blocks transfer non-last blocks of input or output 
messages. The size of the upline block is determined by the 
terminal. It is a host responsibility to ensure that the size of the 
downline block does not exceed the terminal buffer size, after the 
protocol envelope has been added. The TIP attempts to deliver all 
blocks to the terminal. The effect of delivering too large a block 
differs according to terminal type. 

• MSG Blocks - Message blocks transfer the last or only block of an 
input or output message. An upline message block is generated 
whenever an end-of-information (EOI) is encountered in the card 
stream. The EOI is designated by the< END OF INFORMATION> sequence. 
A downline MSG block designates the end of a host message. 

• 

• 

6-32 

NOTE 

The < > symbols are used for delimiting elements of 
the IVT/BVT format. 

BACK Blocks - A BACK block acknowledges delivery of BLK, MSG, or CMD 
blocks, for purposes of flow control. 

BRK Block - A break block temporarily stops the data flow when an 
operator action occurs (interactive devices have precedence over 
batch devices) or when a printer-not-ready condition is detected. 
The application program is responsible for restarting the flow. A 
BRK block is sent upline when the TIP receives a block that does not 
conform to BVT or IVT. 

60474500 A 



• STP Block - A stop block stops the data flow when the end device 
becomes inoperative or otherwise incapable of accepting more data. 
The source process is required to protect all data which has not been 
acknowledged by a BACK block and to prevent new data from being sent 
to a device unable to accept it. 

• STRT Block - A start block cancels the effect of the STP block. The 
source process must respond with an RST block; then the source may 
resume sending data. 

• RST Block - A reset block indicates the point at which a BRK or STRT 
block affected the message block stream. A destination process 
issuing a BRK or STP block discards all unacknowledged blocks, as 
well as all new BLK, MSG and CMD blocks, until an RST is received. 
Additional BRK or STP blocks cannot be issued until the RST block for 
the previous BRK or STP block is issued. 

• CMD Block - A command block causes a change of mode in the other 
process. A CMD block which is to affect data in the opposite 
direction will not take effect until all data in the same direction 
ahead of it has been processed. A CMD which is to affect data in the 
same direction affects any data in the stream that follows the CMD 
block. 

Table 6-2 defines the MESSAGE contents of the blocks to the level needed for 
BVT processing. Symbols used in the table are as follows: 

• PARAM indicates a necessary parameter in the message block. 

• 

{PA~a} 
PARAMn 

• 

indicates one necessary parameter chosen 
from a list of possible parameters. 

indicates that a parameter is necessary or {<PARAM)} 
permitted at a certain place in the message stream; 
for instance a single MODECHANGE is allowed ahead 
of a physical record in an UPLINEDATA message block. 

Data control bytes have several parameter names: MODECHANGE, 
COMPRESSEDDATA, etc. These control bytes have a common generic format: 
FFnn16 where nn ranges between 00 and FF16• These values are listed 
together in a subtable. 

A sample of the use of table 6-2 is shown in figure 6-10. 

Table 6-3 defines the values for the parameter FORMSCONTROL which specifies 
the print control action for the BVT. 

Figure 6-11 shows job stream card examples for BVT data handling. 

60474500 A 6-33 



TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) 

MESSAGE 

CONTROL 

= CCONTROL ] 
DATA MESSAGE 

= fDOWNLINE CONTROLl 
LUPLINE CONTROL J 

DOWNLINE CONTROL = NETWORK HDR COMMAND [
STOP INPUT 1 
START INPUTj 

UPLINE CONTROL = NETWORK HDR COMMAND INPUT STOPPED REASON CODE 

NETWORK HDR NETWORK ADDRESS PRI BSN 

NETWORK ADDRESS = DN SN CN 

PRI 

BSN 

COMMAND 

STOP INPUT 

START INPUT 

INPUT STOPPED 

REASON CODE 

DATA MESSAGE 

BLKBLOCK 

MSGBLOCK 

BLK 
MSG 

DBC 

UPLINEDBC 

DOWNLINEDBC 

BANNERCARD 

UPLINEDATA 

6-34 

= [~] Priority {l
o - low 

- high 

= 

0 
1 
2 Block Sequence Number 

see block protocol 
description at beginning 
of section 6 

7 

= 4 

= PFC - Cl16 

= PFC = Cl16 

SFC = 05 

SFC = 06 

= PFC = Cl16 SFC = 07 

01 - Input device not ready = [goo 12~o loo - Stop input response 

02 Card slip error 
03 - EOl input 

= (BLKBLOCK)o-n MSGBLOCK 

= NETWORK HDR BLK DBC [UPLINEDATA J 
DOWNLINEDATA 

NETWORK HDR MSG DBC [UPLINEDATA J = (ENDOFINFORMATION) DOWNLINEDATA 

= 01} See block protocol = 02 

= ~UPLINEDBC J 
DOWNLINEDBC 

= 00 

= SPARE SPARE SPARE 
BANNERCARD NOTUS ED 

NOTUS ED 

= [ool Don't punch banner card 
Olj Punch banner card 

nMODECHANGE) (COMPRESSEDDATA) 
= ~NDOFMEDIA (ENDOFRECORDQ 0-n 

NOTUS ED NOTUS ED 

60474500 A 



TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd) 

DOWNLINEDATA = ((MODECHANGE) (FORMSCONTROL) (COMPRESSEDATA) 
ENDOFMEDIA (ENDOFRECORD)] 0-n 

HEX Value 

FF00-FF09 

FFOA-FFOF 

FF10-FF2F 

FF30-FF3F 

FF40-FF8F 

FF90 

FF91-FFCF 

FFDO-FFDF 

FFEO-FFFE 

FFFF 

A single MODECHANGE is allowed ahead of a physical 
record. FORMSCONTROL is required ahead of each print 
line. COMPRESSEDDATA may be elided, e.g., FORMSCONTROL 
without print. ENDOFMEDIA is required at the end of each 
physical record. ENDOFRECORD and ENDOFINFORMATION are 
used to indicate logical record or file boundaries. 

Parameter 

MODECHANGE 

ENDOF .•• 

COMPRESSEDBLANKS 

COMPRESSED ZEROES 

COMPRESSEDDATA 

STRING INDICATOR 

STRING LENGTH 

FORMSCONTROL 

Use 

Data Modes 

Information Separators 

Compressed Blanks 

Compressed Zeros 

Compressed Data 

Uncompressed String 
Terminated by FF16 

Uncompressed String of 
Length 1 through 63 

Not Used 

Forms Control 

Data Character FF 

MODE CHANGE fASCII-0291 
LAscn-026J 

ASCII-029 

ASCII-026 

= FF0016 

= FF0316 

Each device type supported by the BVT is assigned a data mode (see device 
type subtable, below) which, in most cases, is unchangeable. However, 
downline data to a card punch may contain a MODE CHANGE requesting the TIP 
to perform the appropriate code translation to generate the desired punched 
cards. The mode selected stays in effect until the next MODE CHANGE or an 
ENDOFINFORMATION, which causes the data mode to be returned to the default 
for the device. For all other downline data and all upline data, MODE 
CHANGE is ignored. 

ASCII-029 indicates that the data should be interpreted as ASCII, but that 
only the 64 character subset will appear. The data will be translated by 
the TIP to produce 029 cards. Similarly, ASCII-026 will produce 026 cards. 

60474500 A 6-35 



TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd) 

Device Type 

Card Reader 

Line Printer 

Card Punch 

Plotter 

FORMSCONTROL 

COMPRESSEDDATA 

DEVICE DATA MODES SUBTABLE 

Data Mode 

Data is always converted to the 64-character subset of 
ASCII by the TIP based on the characteristics of the card 
reader and/or from information punched on the job and 
end-of-record cards in the input stream. 

Data is always sent to the TIP in the 64-character subset 
of ASCII and is translated by the TIP to produce the 
terminal's standard graphics. 

Data is always sent to the TIP in the 64-character subset 
of ASCII and, by default, is translated by the TIP to 
produce 029 cards. A MODE CHANGE can be used to request 
that 029 or 026 be punched. 

Data is always sent untranslated by the TIP to the plotter. 

= FF16 

EO 
El 

Forms control associated with each 
print line. See table 6-3 for defini­
tion of values. Forms controls which 
are not supported by a specific device 
results in a single space. See 
individual TIP actions for implementa­
tion. 

~
COMPRESSEDZEROES ] 
COMPRESSEDBLANKS 

= REPLICATIONCOUNT BYTE 
STRINGLENGTH STRING 
STRING INDICATOR STRING 

1-n words 

32 
33 

2 zeroes compressed 
3 zeroes compressed 

COMPRESSEDZEROES = FF16 

3E 
3F16 3F16 - 15 zeroes compressed 

12 1216 - 2 blanks compressed 
13 

COMPRESSEDBLANKS FF16 

2E 
2Fl6 2Fl6 - 31 blanks compressed 

BYTE (0 •• 255) 
00 through FF16 (8-bit byte) 

6-36 60474500 A 



TABLE 6-2. BVT BLOCK SYNTAX (HOST/COUPLER INTERFACE) (Contd) 

REPLICATIONCOUNT = FF16 

STRINGINDICATOR = FF9016 

42 
43 

Second byte represents the number of 
times the byte following the count is to 
be repeated. Value may range from 2 
(42)16 to 79 (8F)16· Upline 

SE 
8F16 

compression is determined by terminal; 
full compression capability should be 
assumed. Not used for downline blocks. 

Used for upline only, this indicates that the 
following byte string consists of uncompressed 
data of indeterminate length. The string is 
terminated by the first non-data FF16 
encountered. Any data FF16 patterns must be 
doubled by the TIP and the added FF16 must be 
deleted by the host. 

STRING BYTE l-n bytes - n is limited by the physical record 
length of the terminal device. 

STRING LENGTH 

91 
92 

CE 
CF16 

This indicates that the following byte 
string consists of uncompressed data of 
length 1 {9116) through 63 {CF16). 
This method of representing uncompressed 
data is always used downline but is used 
upline only when a count is provided by 
the terminal, such as HASP. 

The following three elements allow file structure to be retained during 
transfer. 

ENDOFMEDIA = FFOA16 

ENDOFRECORD FFOB 16 

- This represents the end of a physical record, 
for instance: card, print line. 

nn FFOA16 - This represents the end of a 
logical record and may occur at other 
than block boundary. 

nn = logical record level number 

ENDOFINFORMATION = FFOCFFOA16 - This occurs only in a MSG block as the last 
four characters in the block. 

60474500 A 6-37 



Use of BVT Block Syntax table: Example to generate an upline, input stopped 
because of card error, BVT block. 

MESSAGE = CONTROL 

CONTROL~UPLINE CONTROL 

UPLINE~NETWORK HDR COMMAND INPUT STOPPED REASON CODE 

NETWORK'1fiiR =-NETWORK ADDRE(s"" ~N / 

NETWORK~DN SN~es of destination source, and 
~connections are given earlier in 
/ section 6 

PRI =~low priority a~ned to batch terminals 

BSN = / 

COMMAV = CMD type of block 

INPUT STOPPED - 716 - see appendix C for the primary and secondary 
function code assignments 

REASON = 2 

Formatting the syntax into a byte format: 

byte 

Link Header ON SN CN PRI/ PFC 
=02 =03 =x BSN/ =Cl16 

BT=04 

coupler node-=:J 

terminal node 

CN used in 
directory search bit 7 

p 

.....__ R 
1 
=O 

SFC 
=07 

6 4 3 

BSN 
=O 

RC 
=02 

0 

BT 
=4 

word format (hex) 
0000 
0203 
xx04 
Cl07 
0200 

CMD Block 

Figure 6-10. Use of the BVT Block Syntax Table 

6-38 60474500 A 



TABLE 6-3. FORMSCONTROL VALUES FOR BVT BLOCKS 

FORMS CONTROL 
(Hex) Action Before Printing Action After Printing 

EO (1) Space 1 No Space 

El (1) Space 2 No Space 

E2 (1) Space 3 No Space 

E3 (1) Suppress Space No Space 

E4 (1) Skip to Channel 1 (2) No Space 

ES Skip to Channel 12 (3) No Space 

E6 Skip to Channel 6 No Space 

E7 Skip to Channel 5 No Space 

ES Skip to Channel 4 No Space 

E9 Skip to Channel 3 No Space 

EA Skip to Channel 2 No Space 

EB Skip to Channel 11 No Space 

EC Skip to Channel 7 No Space 

ED Skip to Channel 8 No Space 

EE Skip to Channel 9 No Space 

EF Sk,ip to Channel 10 No Space 

FO No Space Skip to Channel 1 (2) 

Fl No Space Skip to Channel 12 (3) 

F2 No Space Skip to Channel 6 

F3 No Space Skip to Channel 5 

F4 No Space Skip to Channel 4 

FS No Space Skip to Channel 3 

F6 No Space Skip to Channel 2 

F7 No Space Skip to Channel 11 

F8 No Space Skip to Channel 7 

F9 No Space Skip to Channel 8 

FA No Space Skip to Channel 9 

FB No Space Skip to Channel 10 

FC-FE Reserved 

Notes: ---
1. Supported on all devices 
2. Page eject 
3. Bottom of page 

60474500 A 6-39 



See individual TIP sections for exceptions. 

Terminal Input BVT 

(2) 

Jobcard: 

(1) 
JOBNAME •••• FF90 JOBNAME •••• 

End of Record Card: 

(5) 

[

7 
8 

9 nn 
/* EOR nn ••• 

(4) 
FFOB nn FFOA 

End of Information Card: 

(6) 
FFOC FFOA 

Notes: 

1. Uncompressed stream terminated by FF flag. 

2. Columns 79/80 of JOB card may contain 26/29 code sequence. 

3. End of physical record sequence. 

4. EOR sequence. 

(3) 
FFOA 

5. EOR card may contain octal logical level number following EOR 
designator. 

6. EOI sequence. This is not valid for HASP. 

Figure 6-11. Sample CYBER Job Stream Card Inputs for BVT Data Handling 

6-40 60474500 A 

( 

\ 



INTERACTIVE VIRTUAL TERMINAL (IVT) 

Four types of additional block handling are needed for interactive type 
terminals: 

• Ability to place data in IVT format. 

• Ability to handle block protocol for each of the 9 block types that 
can be passed over the host/NPU interface. 

• Special service messages for the CS node are needed. 

• Special service messages are needed to change interactive terminal 
operating modes and terminal parameters. 

Details of the user interface and virtual-to-real transforms are described 
in the appropriate TIP section. 

The variety of terminals that may be used to access interactive processes 
causes a problem of incompatibility. This problem is of greater concern on 
the output side where the use of format effectors produces undesirable and 
unintended effects. The NT code solves these problems. 

Because of the TIP's state programs, an application program in the host may 
expect compatible input from a terminal, and may issue output to a terminal 
with confidence that the intended results will occur. IVT provides the 
necessary transforms between selected types of terminals and one of the 
designated virtual terminal subtypes. IVT also provides a method for 
varying these transforms to widen the variety of terminals which may be 
accommodated. 

The choice of functions provided by the IVT modules has been restricted to 
ensure that significant intelligence will not be lost even when transforming 
to the real terminal with the lowest capability. Where the application 
program requires features not provided by IVT, but known to exist on the 
connected real terminal, the application program may use those features in 
one of two ways: 

• The application may embed appropriate control characters in the 
output text or, conversely, scan for significant control characters 
in the input text. Due regard must be made for the control 
characters which are significant to IVT and, therefore, are possibly 
transformed by the TIP. 

• By transferring data within formatting changes allowed (transparent 
mode), the transforms are inhibited and the application has direct 
access and responsibility for all real terminal features. 
Transparent mode is separately selectable in each direction. 
Transparent mode is not allowed for HASP interactive devices. 

Interactive Virtual Terminal Characteristics 

An IVT always has an input device and an output device. The input device is 
typically a keyboard, but may be a paper tape reader or cassette reader. 
When the input device is not a keyboard, IVT normalizes reader input so that 
it appears to be identical to keyboard input. 

60474500 A 6-41 



The output device is typically a printer or display, but may be a paper tape 
punch or cassett~ recorder. The host application program does not normally 
concern itself with the output media. Optional additional equipment 
supported includes a paper tape reader or punch. Paper tape can be used 
anytime, but the user must declare if X-OFF is to be put on this output 
tape. The user must also declare if the tape is to be turned on again when 
an X-OFF is input from the tape. 

The IVT does not provide a method of switching between a display and a 
printer, but assumes that local hard copy facilities may exist. IVT device 
parameters, as seen by a host application, are as follows: 

Line width 
Page size 
Parity 
Code set 

- Infinite (subject to block limit) 
- Infinite 
- None (set to zero) 
- ASCII - 128 characters available 

Format effector delays - None 

IVT format effectors (FE) are an optional feature of downline data blocks. 
A flag in the data block clarifier (DBC) determines whether FEs are present 
or not. If the flag is set, FEs are not present and each output logical 
line is defined as single-spaced, prior to printing; and the first character 
is printed. If the flag is zero, FEs are assumed as the first byte of each 
logical line of text. Undefined FEs default to the single-space prior to 
print condition. The interpretation of FEs is given in table 6-4. 

FE 

SP 

0 

+ 

* 
1 

I 

Single Space 
Double Space 

Triple Space 

TABLE 6-4. FORMAT EFFECTORS 

Action 

Position to start of current line 

Position to top of form or cursor home 

Home cursor and clear screen 

No action 

Single space 

Position to start of current line 

When Action Occurs 

preprint 
preprint 
preprint 

preprint 

preprint 

preprint 

preprint 

postprint 

postprint 

Two additional format control symbols may be passed downline in text: 

<CR> 

< LF > 

6-42 

Carriage return 

Line feed 

preprint 

preprint 

60474500 A 



Other potential control characters, or control character sequences, are 
translated one for one. Thus the application can detect special input 
control sequences and transmit special output control sequences by taking 
note of the translation performed for a specific terminal. Idle fill can be 
inserted for <CR> and <LF>, however. IVT operational controls which may be 
passed via flags in the data block clarifier of downline blocks are as 
follows: 

Auto-input - Return this output with next input (only effective for a 
MSG type block) 

Transparent - Inhibit IVT transform for this output 

FE - FEs present or absent 

IVT operational controls which may be passed via flags in the data block 
clarifier of upline blocks are as follows: 

Transparent This block remains in the terminal format 

Parity Error - This block had one or more parity errors 

Cancel - Cancel the message of which this MSG block is a part 

IVT mode control, which may be affected by downline synchronous commands, is 
shown in table 6-5 under the description of a MESSAGE. 

The basic format of the command block is as follows: 

I UPLINE OR I 

' MESSAGE = NETWORK HOR COMMAND DOWN LINE CONTROL I I 
I 

Byte I 1 2 3 4 5 I Link header DN SN CN BT=04 CONTROL TEXT 

IVT uses upline synchronous commands to communicate that input has been 
stopped. (Note that CN defines that the command is for this terminal.) 

MESSAGE 

CONTROL 

NETWORK HOR 

COMMAND 

BREAK 

= 

= 

= 

= 
= 

TABLE 6-5. IVT BLOCK SYNTAX 

[CONTROL ] 
DATA MESSAGE 

CONTROL MESSAGE PARAMETERS 

NETWORK HOR [COMMAND 
BREAK 

DN SN CN PRI BSN -

4 

5 

[
DOWNLINE CONTROLl] 
UPLINE CONTROL J 
REASON CODE 

See block proto­
col description 
at the beginning 
of section 6 

I 
I 

I 

60474500 A 6-43 



REASON CODE 
(for break) 

DOWNLINE CONTROL 

TERMINAL CONTROL 

STOP INPUT 

START INPUT 

UPLINE CONTROL 

INPUT STOPPED 

REASON CODE 
(for input stopped) 

TERMINALPARAMETERS 
= PFC=Cl SFC=04 

6-44 

TABLE 6-5. IVT BLOCK SYNTAX (Contd) 

[

00] - User l break received (usually abort queue) 
= 01 - User 2 break received (usually abort job) 

02 - Output device not ready 
03 - Illegal/invalid block sent by host 

[
TERMINAL CONTROL J 

= TERMINAL PARAMETERS 

[ 
STOP INPUT J 

= START INPUT 

= PFC = Cl16 SFC = 05 

= PFC = c116 SFC = 06 

= INPUT STOPPED REASON CODE 

= PFC = c116 SFC = 07 

= ( - Input device not ready 

1
0
0

1
0) - Stop input response 

02j - Card slip error 

• 

03 - EOI input 
04 - Interactive interrupt 

TC = 

PW = 
PL = 

PA = 

CN = 
BS = 
CT = 

CI = 

LI = 

SE = 

DL = 

1 
2 

14 
15 
NNN 

NNN 

rn 
SELECTED CHAR 

SELECTED CHAR 

SELECTED CHAR 

[~~] 
[~~] 
[~] 
(XHH) ( ,CNNNN) (,TO) 

Meaning of terminal 
parameters are 
discussed below under 
the heading: 
Commands for Terminal 
Parameterization. 

PFC and SFC values 
are given in appendix C 

60474500 A 



NNNN 

NNN 

NN 

SELECTEDCHAR 

HH 

TEXT 

DATAMESSAGE 

TRANSMODEMSG 

BLKBLOCK 

MSGBLOCK 

NETWORKHDR 

BLK 

MSG 

TRANSBLKCONTENT 

TABLE 6-5. IVT BLOCK SYNTAX (Contd) 

IN = [!~] 
OP = [g!] 
CD = A 

EP = [~] 
PG = [~] 
AL = SELECTED CHAR 

Bl = SELECTED CHAR 

B2 = SELECTED CHAR 

MS = TEXT 

(0 ••• 4095) - One to Four Decimal Digits 

= (0 ••• 255) - One to Three Decimal Digits 

= (0 ••• 99) - One to Two Decimal Digits 

= ASCII Representation of Selected Character 

= 00 ••• FF - Selected Bit Pattern as Sent by Terminal 

= One through fifty ASCII characters message composing 
the text 

END OF CONTROL MESSAGE PARAMETERS 

DATA MESSAGE PARAMETERS 

[ 
TRANSMODEMSG J 

= CHARMODEMESSAGE 

= BLKBLOCK** 

= NETWORKHDR 

MSGBLOCK 

BLK TRANSBLKCONTENT 

= NETWORKHDR MSG TRANSBLKCONTENT 

= DN SN CN PRI BSN 

= 1 

= 2 

[ 
DBCUPLINE J (BYTE) O-n* 

= DBCDOWNLINE 

*The number of bytes in a BLKBLOCK is a system parameter separately 
declarable upline and downline: n ~ 2043. 

**0-m lines 

60474500 A 6-45 



BYTE 

DBCDOWNLINE 

AUTO INPUT 

FEUSAGE 

DBCUPLINE 

CANCELLED 

TRANSPARENT 

PARITYERROR 

CHARMODEMESSAGE 

CHARMODEBLK 

CHARMODEMSG 

BLKADDRESS 

UPLINECONTENT 

PHYSICALLINE 

LOGICALLINE 

DOWNLINECONTENT 

us 

FE 

TABLE 6-5. IVT BLOCK SYNTAX (Contd) 

= (0 ••• 255) - CLA mode or terminal may not support 
full range. If terminator is specified, 
then that value will not appear upline 

SPARE SPARE SPARE SPARE 
= FEUSAGE TRANSPARENT NOTUS ED 

AUTO INPUT Binary flags 

[~~ This output is not autoinput 
= - This output is to be returned ahead of 

next input 

= [~~] - Format effectors (FEs) used 
- Format effectors not used 

SPARE SPARE SPARE NOTUSED 
= NOTUSED TRANSPARENT CANCELLED 

PARITYERROR Binary Flags 

- No Action Required 
= [~~] - Cancel any incomplete upline message 

= [o
0
o
1
i] - Block is in character mode 
J - Block is in transparent mode 

= [
0
o

1
ol - Parity errors not detected 
J - Parity errors detected 

= CHARMODEBLK** CHARMODEMSG 

= BLKADDRESS BLK 

= BLKADDRESS MSG 

[ 
UPLINE CONTENT J 
DOWNLINE CONTENT 

[ 
UPLINECONTENT J 
DOWNLINECONTENT 

= ON SN CN See normal block header 

= DBCUPLINE [ 
PHYSICALLINE J 
LOGICALLINE 

= 128ASCIICHARSETWITHPARITYSETTOZERO** - Blocking may 
occur at physical line boundary or logical line 
boundary. See individual TIPs for a discussion of 
upline blocking. 

= 128ASCIICHARSETWITHPARITYSETTOZERO** - Except total 
of all bytes in a block must not exceed n. 

= [[FE LOGICALLINE US]*] 
[ LOGICALLINE USJ** 

1F16 - US must not appear in a downline logical line 

SINGLESPACEPRE 
DOUBLESPACEPRE 
TRIPLESPACEPRE 
STARTOFCURRENTLINEPRE 

= FORMFEEDPRE 
HOMEANDCLEARPRE 
NULL 
S INGLESPACEPOST 
STARTOFCURRENTLINEPOST 

*The number of bytes in a BLKBLOCK is a system parameter separately 
declarable upline and downline; n ~2043. 

**O-m lines 

6-46 60474500 A 



TABLE 6-5. !VT BLOCK SYNTAX (Contd) 

SINGLESPACEPRE 

DOUBLESPACEPRE 
= SP 

= '0' 
TRIPLESPACEPRE = '-' 

STARTOFCURRENTLINEPRE = '+' 
FORMFEEDPRE = '*' 
HOMEANDCLEARPRE = 'l' 
NULL = ',' 
SINGLESPACEPOST = '·' 
STARTOFCURRENTLINEPOST = '/' 

IVT Block Handling at Host Interface 

Preprint Format Effectors 
(defined earlier) 

No Action 

Postprint Format Effectors 
(defined earlier) 

When a TIP in the NPU communicates with the application program in the CYBER 
host, the communication between the two is subject to processing by an 
intermediate process in the host called the Network Access Method (NAM). 
NAM exists to provide a common logical interface to the communications 
network. 

The IVT interface to the host is necessarily described at two levels - the 
interface to NAM, and the overlying interface to the interactive 
application. The interface to NAM uses block protocol. Its special 
application to IVT is defined below: 

IVT Block Protocol Usage 

BLK Block 

• The BLK block is a non-last segment of a message. It is used for 
transferring data both upline and downline. When a message is 
greater than m bytes (Mn), then the message is divided into blocks 
of n bytes long. All non-last segments are sent as BLK blocks. 
Blocks have a maximum of 2043 bytes, but are normally smaller to 
conserve 255X resources. 

• Upline, a character mode block is a partial logical line, (typically 
a physical line), sent at the convenience of the TIP. A transparent 
mode block consists of a system-defined number of bytes. 

• The optimum block size for the IVT is a small number of physical 
lines for the specific terminal. For special application, such as 
graphics or paging, the optimum block size is a single display. 

MSG Block 

The last or only segment of a message is sent as a MSG block. For 
transparent downline data, if page wait is selected, the MSG block 
indicates the end of the page. 

60474500 A 6-47 



BACK Block 

The BACK block is used for flow control. A BACK is sent by the rece1v1ng 
process (NAM/TIP) when it has delivered, or otherwise disposed of a BLK, 
MSG or CMD block. 

CMD Block 

The command block (CMD) provides a means of passing control information 
synchronously with the data stream, but apart from the BLK and MSG blocks 
which constitute the data stream. The CMD block functions available are 
specified later in this section. 

BRK Block 

A TIP sends the break block (BRK) when: 

• User Break 1 is received from the terminal (typically this means 
abort the queue). 

• User Break 2 is received from the terminal (typically this means 
abort the job). 

• The downline block does not conform to IVT format. 

In all cases, the TIP discards all locally queued output data and all 
newly arriving data until a reset (RST) block is detected. Data 
discarded includes synchronous blocks. Downline BRK blocks are not used. 

STP Block 

The TIP may send a stop block (STP} to the application program to request 
suspension of output. 

STRT Block 

The start block (STRT} cancels the effect of the STP block. 

RST Block 

A reset block (RST} is sent by a process when it has received a BRK or 
STOP block. A RST block specifies the point in the data stream when the 
break or stop occurred. A further STP or BRK block must not be issued 
until the previous RST block has been processed. 

Block usage is defined in the TIP sections. 

Table 6-5 defines the contents of the message blocks to the level needed for 
IVT processing. Symbols used are the same as those used for table 6-2. 
Symbol definition and an example of table use are given in the BVT portion 
of this section. Familiarization with syntax for block usage can be 
enhanced by reviewing the sample in figure 6-10. 

The following restrictions apply to the use of the IVT block syntax: 

• 

6-48 

All upline character mode messages consist of zero or more BLK blocks 
and a single MSG type block. Each block typically contains a single 
physical line. The whole series of BLK and MSG blocks comprise a 
single logical line. 

60474500 A 



• Downline character mode messages may be multiblock. Each block may 
contain multiple logical lines. Logical lines may not cross block 
boundaries. 

• For downline character mode messages, a flag in the data block 
clarifier indicates whether format effectors are present. If so, all 
logical lines are preceded by an <FE> byte. A logical line in a 
block is terminated by a <US> (1Fl6) • 

• A logical line may contain any of the 128 ASCII character set, except 
<US>. 

• In character mode, all ASCII characters consist of 7 bits, 
right-justified, in an 8-bit byte with the parity (bit 8) set to zero. 

• All bytes of a transparent mode block can contain any of the 256 
possible bit combinations. Exception: if a terminator character is 
defined for an upline block, this terminator does not appear. Note 
that terminal or CLA configuration may restrict the significant 
number of bits in the byte to less than eight. 

IVT Block Handling for Communications Supervisor 

IVT uses a special subclass of command messages for communicating changes of 
IVT parameters to CS (node 1) in the host. The types of messages needed are: 

• Messages to define terminal class, page width, and length. 

• Broadcast messages allowing the network operator to communicate with 
the operator at one or all of the controlled terminals. 

• Messages allowing a terminal operator to communicate with the local 
NPU operator. 

TERMINAL CLASS, PAGE WIDTH/LENGTH 

This NPU-originated message provides CS with the current terminal class and 
page width/length information for this class. The byte format for the 
message is as shown in figure 6-12. 

BROADCAST MESSAGES 

The two types of broadcast messages allow the network operator to 
communicate to a designated terminal or to all the terminals supported by an 
NPU. These messages and their replies are described in detail in the 
service message portion of this section. The format of the message is also 
summarized in appendix C. 

60474500 A 6-49 



Block Header 

Link DN SN CN PRI/ PFC SFC p 00 HO CA TA DT 
Header =01 BSN/ =~Cl6 =03 

BT 

DN - The cs in host 

SN - NPU coupler node 

CN - Connection number 

PRI - Priority 

BSN - Block serial number 

BT - Block type; 4 = CMD 

~~g} - Primary and secondary function codes for this SM 

P - Port for this terminal 

HO - Host ordinal 

TA 

- Cluster address } 

- Terminal address 

- Device type 

defined in appendix C 

CA 

DT 

ORIG - Originator of message 

00 - terminal user 
01 - applications program 

TC - Terminal class - defined in appendix C: 1 ~TC ~ 15 

PW - Page width in characters/line; O s PW :$; 255 

PL - Page length in lines; O ~PL ~ 255 

ORIG PW PL 

Figure 6-12. Format for Terminal Class, Page Width, Page Length Messages 

6-50 60474500 A 



OPERATOR MESSAGE 

This message originates at a terminal and allows the terminal operator to 
communicate with the network operator. The byte format of the message is: 

Byte 

Link ON SN CN PRI/ PFC SFC p SP HO CA TA OT HO TEXT 
Header =01 BSN/ =$0C =02 

BT 

where all the fields except TEXT are defined above. 

TEXT is sent in response to a <CTL>MS = TEXT message previously delivered 
to the terminal 

Commands for Changing Terminal Parameters 

As noted in table 6-5, a special subclass of IVT service messages is used 
for terminal parameters. These commands belong to the <TERMINAL PARAMETERS> 
class of messages. In table 6-5, the parameters are left undefined; they 
are defined below. 

Each control message consists of a synchronous command with a single command 
embedded as an ASCII test string. All control messages from the host to the 
TIP may also be entered by a terminal user. Three of the commands were 
discussed above: terminal class, page width and page length. When these 
are entered by the terminal user, or issued by the host, they are reported 
to the communication supervisor. All terminal user-entered commands result 
in an acceptable or unacceptable response to the user. Host commands that 
are invalid or illegal are rejected with a BRK block, and are printed on the 
NPU console. 

Terminal parameter definitions are as follows: 

• Terminal Class (TC) 

TC establishes a class for the terminal, with default values for all 
parameters, as defined in table C-7. A TIP does not execute a 
command if the class is not supported. This change must be reported 
to CS in the host. 

• Page Width (PW) 

PW establishes the physical line width in characters for output. For 
nontransparent blocks, the TIP inserts a character to move the 
carriage or cursor to the next line. This insertion occurs at the 
point where the number of characters to be transmitted equals the 
page width. This character sequence differs on each terminal class. 
The parameter NNN varies between 0 and 255; 0 means new line and is 
never inserted. This change must be reported to CS in the host. 

60474500 A 6-51 



• Page Length (PL) 

PL establishes the number of physical lines in a page for output. 
The TIP inserts the character sequence defined for the terminal class 
to advance the carriage or cursor to the next page length. Also, if 
the page wait feature is selected, the TIP will wait for an operator 
input before continuing. The parameter NN varies between 0 and 255; 
0 means no paging. This change must be reported to CS in the host. 

NOTE 

None of the remaining IVT parameter changes need be 
reported to the host (CS}. 

• Parity Selection (PA) 

PA specifies the type of parity that the TIP expects on input and 
generates on output. See the description of parity in the 
asynchronous TIP section of this manual. 

• Cancel Character (CN) 

CN establishes the character that is used to delete the current 
logical input line. 

• Backspace Character (BS} 

BS establishes the character that is used to delete the previous 
input character from the current input buffer. 

• Control Character (CT} 

CT establishes the character that is used to enter operational 
control messages. 

• Carriage Return Idle Count (CI} 

CI establishes the number of idle characters to be inserted in the 
output stream following carriage return (CR}. The use of CI-nn 
overrules the default value and CI-CA restores the default value. 

• Line Feed Idle Count (LI) 

LI establishes the number of idle characters to be inserted in the 
output stream following line feed (LF}. The use of LI-nn overrules 
the default value and LI-CA restores the default value. 

• Character Set Detect (CD) 

6-52 

This restarts the character set recognition logic when changing a 
character set during a message exchange sequence. First, the 
terminal operator enters the IVT command: CD = A. Then the operator 
has 60 seconds to (1) physically change the terminal's code set (for 
instance, by changing the type element on a typewriter), and (2) 
activate the TIP's code set recognition sequence by pressing the 
carriage return key. 

60474500 A 



• Transparent Text Delimiter (DL) 

DL establishes the transparent text delimiter for input. The 
delimiter may be a character, a character count, or a timeout of 300 
± 100 ms. One or more of the delimiters may be active 
simultaneously. Default values are shown in table C-7. 

• Input Device (IN) 

IN specifies the input device as a keyboard or paper tape reader, in 
character or transparent mode. Note that paper tape input is allowed 
in keyboard mode, but that the TIP does not send the X-ON 
characters to start the paper tape reader. 

• Output Device (OP) 

OP specifies the output device as printer, CRT display, or paper tape 
punch. Printer and CRT display are functionally equivalent. The 
user may punch a paper tape in any mode, but the TIP provides the 
X-OFF character only if OP = PT and if data is not transparent. 

• Special Edit Mode (SE) 

A SE = Y selection places the terminal in special edit mode: an SE = 
N selection returns the terminal to the normal character edit mode. 
Special edit mode provides two types of special operations: (1) 
backspace (BS), linefeed (LF), and cancel input control symbols are 
sent upline as data: and (2) a character delete sequence (one or more 
backspaces followed by a linefeed) causes the TIP to issue a caret 
prompt to the terminal, and then to continue with input processing. 

• Echoplex Mode (EP) 

EP specifies where input character echoing will take place. EP = N 
implies the terminal is doing its own input echoing. EP = Y causes 
the TIP to set the CLA, to provide character echoing. 

e Page Wait (PG) 

PG selects the page wait feature. It allows the user to control 
output by demanding each page explicitly after the previously page 
has been viewed for the desired period of time. 

• Abort Output Line Character (AL) 

AL selects the character which, when input followed by a carriage 
return, results in the current output line being discarded. 

• User Break 1 {Bl) 

Bl selects the character which, when input followed by a carriage 
return, causes the TIP to send an upline BRK block, with reason code 
specifying user break 1. Conventionally, user break 1 is used to 
abort the queue. 

60474500 A 6-53 



• User Break 2 (B2) 
B2 selects the character which, when input followed by a carriage 
return, causes the TIP to send an upline BRK block, with reason code 
specifying user break 2. Conventionally, user break 2 is used to 
abort the job. 

• Message (MS) 

MS defines the character used to delimit messages to the LOP. Up to 
50 characters of text may be inserted between the MS delimiters. 

For any of these parameter changes entered from a terminal, the TIP can 
accept or reject the command. If the TIP accepts the command it does not 
usually return a positive acknowledgment to the interactive terminal. If, 
however, the TIP rejects the command, the TIP sends the following error 
message to the terminal: 

ERR ••• 
Table 6-6 shows the IVT terminal parameters as used by the standard TIPs. 

6-54 

TABLE 6-6. TERMINAL PARAMETERS AS USED BY STANDARD TIPS 

Command MD4 

TC ARtt 
PW AR 
PL AR 
PA B 
CN A 
BS B 
CT A 
CI B 
LI B 
SE B 
DL B 
IN B 
OP B 
EP B 
CD B 
PG A 
AL B 
Bl A 
B2 A 
MS c 

Other or invalid parameters B 

A = Action 
AR = Action and Report to CS 
B = No Action: Send BRK or ERR block to host 
C = Valid only from User 

HASP ASYNC 

B AR 
AR AR 
B AR 
B A 
A A 
B A 
A A 
B A 
B A 
B A 
B A/Bt 
B A 
B A 
B A 
B A 
B A 
B A 
A A 
A A 
c c 
B B 

tThese commands are only valid for certain terminal classes. DL is 
not a valid command for terminal class 4 (IBM 2741). A BRK block is 
sent to the application if any of these commands are received for a 
terminal in a class which does not support the command. 

ttAn error occurs for any attempt to change the mode from 4A to 4C, or 
vice versa. 

60474500 A 



HOST INTERFACE PROGRAM 

This section describes the operation of the Host Interface Program (HIP). 

The CYBER 70/170 channel coupler provides the hardware interface between the 
NPU and the PPU of a CYBER 70/170 host processor. This coupler is operated 
through the cooperation of two programs; one resident in the host, the other 
resident in the NPU. The NPU program, called the Host Interface Package 
(HIP) is described in this section. The HIP provides logic to support the 
following functions. 

• Interrupt processing for coupler-generated interrupts 

• Initiation and control of data transfers across the coupler 

• Coupler status processing and error recovery 

• Communication with the host coupler control program to support the 
transaction protocol 

• The standardized logical (as opposed to physical) interface for all 
NPU resident software involved with data transfers between host and 
NPU 

TRANSACTION PROTOCOL 
A special protocol is used for transfers between the NPU and the host. The 
block portion of this protocol was discussed in section 6. The directives 
which pass the blocks across the coupler are discussed here. 

TRANSFER FUNCTIONS 

The coupler's transfer path is half-duplex: thus it is bi-directional, but 
transmission occurs in only one direction at a time. Both the host and the 
NPU can bid for the right to transmit over the transfer path. The following 
conventions govern the transfers: 

• When both the PPU and NPU simultaneously bid for the transfer path, 
output from the host takes precedence over input to the host. Input 
to the host is called an upline transfer. Output from the host is 
called a downline transfer. 

• The NPU may reject an output request if it has insufficient space to 
assign for receiving the message. This is called an overload 
condition. 

• Both the host and NPU coupler control programs operate in one of 
three states: idle, sending, or receiving. 

60474500 A 7-1 

7 



• When an error occurs during a transaction, the rece1v1ng processor 
discards all data associated with the transaction and returns to an 
idle state. 

• During periods of inactivity, the NPU coupler program generates a 
periodic IDLE INQUIRY status word to verify that the host is still 
operating. The host must respond by reading the NPU status word. If 
the host does not read the word within 10 seconds, the NPU assumes a 
host failure. 

DIRECTIVES USED 

Five directives govern the data transfers: 

• OUTPUT REQUEST specifies that the host has data to send to the NPU. 

• INPUT REQUEST specifies that the NPU has data to send to the host. 

• READY FOR OUTPUT specifies that the NPU is ready to accept the data 
transfer designated by the current OUTPUT REQUEST. This is a 
response to an OUTPUT REQUEST. 

e NOT READY FOR OUTPUT specifies that the NPU cannot accept the data 
transfer designated by the current OUTPUT REQUEST because there are 
not sufficient buffers to store the data. This is a response to an 
OUTPUT REQUEST. 

• IDLE INQUIRY indicates that the preestablished timeout period for 
another transfer to or from the host has expired without activity. 
The NPU issues this directive to verify that the host is still 
operating. 

TRANSFER INITIATION 

Upline data transfers are initiated by the HIP when the CCP notifies the HIP 
that there is input data queued for transfer to the host. This is an 
OPS-level event. Downline data transfers are initiated when the HIP 
receives an OUTPUT REQUEST orderword from the host. This is an 
interrupt-level event. 

If either the upline or the downline data transfer occurs while the HIP is 
in idle state, the HIP immediately begins to process the request. Requests 
for upline data transfers are queued if the HIP is already sending or 
receiving data. Requests for downline data transfers are accepted if the 
HIP is not already receiving data from the host. 

Figure 7-1 shows typical input and output transactions over the coupler. 
Figure 7-2 shows the resolution of I/O contention at the coupler. Figure 
7-3 shows the division of the HIP tasks between the OPS and interrupt 
levels. The PTxxxxx labels designate HIP subroutines. For further details, 
see a HIP listing. 

7-2 60474500 A 



HOST ACTION 
_r.--......... _,,,,,,A.._, .................. , 

Host has data to send 
and initiates trans­
action. 

Host has data to send 
and initiates trans­
action. 

Host has data to send 
and initiates trans­
action. 

Host initiates write 
operation. 

TYPICAL OUTPUT TRANSACTIONS 

PROTOCOL DIRECTIVE 

OUTPUT REQUEST 

NOT READY FOR OUTPUT 

OUTPUT REQUEST 

READY FOR OUTPUT 

NPU ACTION 

r-~--------~"""--, .................. , 
HIP in Idle State 

No buffers avail­
able. HIP returns 
response. 

HIP in Idle State 

Buffers available. 
HIP sets up coupler 
to receive data, 
returns response. 

The transaction is ended when the coupler generates the completion 
interrupts to the host and NPU. If a transfer error occurs, the data is 
discarded by the HIP and the host must initiate the transfer again. 

Figure 7-1. Coupler I/O Transactions (sheet 1 of 2) 

60474500 A 7-3 



HOST ACTION 
,,,,...__. ........ __ ~~---------~, 

Host unable to accept 
data 

Host can accept data 
and initiates a read 
operation. 

When transfer com­
pletes, channel 
coupler sends 
interrupt 

TYPICAL INPUT TRANSACTIONS 

PROTOCOL DIRECTIVE 

.. INPUT REQUEST 

NOT READY FOR INPUT 

.. INPUT REQUEST 

TRANSACTION COMPLETE 

NPU ACTION 
~~------_...."".__ ...... --~, 

HIP has data to 
send, sets up 
coupler and 
initiates trans­
action. 

HIP waits up to 1-2 
ms before trying 
again. 

HIP has data to 
send, sets up 
coupler and 
initiates trans­
action. 

HIP releases data 
buffers. 

Figure 7-1. Coupler I/O Transactions (sheet 2 of 2) 

7-4 60474500 A 



HOST ACTION 
,~------~~,,,/\._~----.... --~, 
Host has data to send 
and initiates trans­
action. 

Host ignores 

Host initiates write 
operation. 

When transfer cornp­
plete, channel coupler 
sends response 

Host has data to send 
and initiates trans­
action 

Host executes a delay 
before sending another 
request. 

PROTOCOL DIRECTIVE 

OUTPUT REQUEST 

INPUT REQUEST L 
READY FOR OUTPUT 

TRANSMISSION COMPLETE 

OUTPUT REQUEST 

INPUT REQUEST L 
NOT READY FOR OUTPUT 

HIP then starts a normal input sequence. 

NPU ACTION 

~~------~'"""..._ ................ " 
HIP has data to send, 
sets up coupler, and 
initiates trans­
action. 

HIP discontinues 
input. Buffers are 
available, so HIP 
sets up coupler to 
receive data, 
returns response 

HIP forwards data to 
internal processor 

HIP has data to send, 
sets up coupler, and 
initiates transaction 

HIP discontinues 
input. No buffers 
are available, so 
HIP returns a nega­
tive response. 

Figure 7-2. I/O Transaction Contention at The Coupler 

60474500 A 7-5 



.....J 
I 

°' 

°' 0 
.c:. 
.....J 
.c:. 
U1 
0 
0 

> 

c 
0 
u 
p 

L 
E 
R 

INTERRUPT LEVEL I 
I 
I 

OPS LEVEL 

COMMANDS 
+DATA 

INTERRUPT 

HOST STATE (UP) 
SERVICE 
MODULE 
WORK­
LIST 

HIP 
WORK­
LIST 

INTERNAL 
OUTPUT DATA BLOCK '--~~~~~~~~~~~~~~~~~~~~-11~PROCESSOR 

WORK-
LIST 

Figure 7-3. OPS and Interrupt Levels for the HIP 

M-423 



TRANSFER TIMING 

All coupler transfers are timed by means of a deadman timer which is set for 
ten seconds. If the scheduled transfer fails to complete during that period 
(a timeout condition), the HIP declares that the host is down. The HIP then 
causes the service module to send the HOST UNAVAILABLE message to all 
interactive terminals. The NPU rejects all further input from terminals. 
The HIP also discards any output if an output transfer was in progress. If 
an input transfer was in progress, the current block is replaced at the head 
of the output queue. It will be the first block transmitted when the host 
recovers. 

The HIP recognizes that the host has recovered when a valid orderword is 
received. All terminals are notified by a message sent through the service 
module. Input is again accepted from the terminals. 

ERROR PROCESSING 

The HIP provides two types of error processing: 

• For recoverable errors, the HIP retries the transfer. The HIP 
provides an unlimited number of retries to accomplish the transfer. 
However, in practice the number of retries is limited by the host 
stopping the transfer or stopping the NPU and reloading the CCP. The 
recoverable errors are data parity error, hardware timeout, and 
abnormal termination. 

• For unrecoverable errors the HIP aborts the transaction. The 
unrecoverable errors are memory parity error, memory protect error, 
and chain address zero (the condition which occurs when the HIP 
expects to find a chained data buffer, but finds a zero address for 
that buffer). All of these cause an NPU halt and are therefore 
unrecoverable errors. The NPU processor must be downline loaded from 
the host to continue message processing. 

When an error is detected during a downline transfer, the HIP discards the 
data associated with the transfer and returns to the idle state. 

HOST /NPU WORK FORMATS 
The host uses a 12 bit byte at the PPU interface. Format is as shown: 

11 8 7 0 

data byte I 
~reserved for control (output) or status (input) 

The NPU uses a 16 bit word composed of two eight bit bytes. Each NPU word 
requires two PPU words. Data transmission to the host is made only over the 
direct memory access (OMA) path. Format is as shown: 

15 8 7 0 

byte 0 byte 1 

60474500 A 7-7 



Other transfers are made through four sets of special registers in the 
coupler. The NPU uses the internal data channel (IDC) for loading and 
reading these registers. The registers have a 16 bit interface on the NPU 
side and a 12 bit interface on the host side. Transfers to the registers 
are discussed below under coupler interface hardware programming. 

COUPLER INTERFACE HARDWARE PROGRAMMING 
Figure 7-4 shows the coupler hardware which constitutes the host/NPU 
interface. A PPU may interface to one or two couplers, but each coupler 
must connect to different NPU. An NPU can also have two couplers. If there 
are two couplers, the NPU determines which host loads the NPU at 
initialization time. 

The coupler has three transmission circuits: 

• A half-duplex data circuit for transmission of programs or data 
between the memory of the PPU and the main memory of the NPU. On the 
NPU side, this circuit uses the direct memory access mode of 
transmission. This channel also provides an execution control method 
(function command) used by the PPU to start or stop NPU microprogram 
execution. Micromemory execution must be started at address O. This 
method is used for initial loading and dumping of the NPU. 

• A full-duplex control circuit which the NPU and the PPU use to 
perform transaction setup (handshaking). 

• A supervisory circuit which is set up and monitored by both NPU and 
PPU. Transaction status is made available to both sides of the 
interface by this circuit. 

COUPLER REGISTER USE 
It must be recognized that the names of some of the registers (coupler 
status, orderword, NPU status word) and some of the circuits (supervisory, 
control) do not adequately define coupler operations. For instance, the 
control and set up of the NPU involves the following: 

• 

• 

• 

• 

• 

7-8 

The host loads the orderword register, and examines the coupler 
status word to determine if the NPU status word is available for 
examination. The NPU status word is then checked. 

The host sends a function word address to the coupler channel and 
executes an output command for a single word transfer. 

At a later time, the host sends service messages for further control 
of the NPU, using block transfers on the data channel. The NPU 
replies using service messages. 

In all cases the host and/or NPU checks and changes coupler status 
register bits to indicate the current status of the transfer 
activities. 

The host or NPU transmits data (messages) after properly setting up a 
block starting address in the NPU, using the memory address registers 
in the coupler. 

60474500 A 



°' 0 
~ 
....J 
~ 
l11 
0 
0 

> 

....J 
I 

PPU MEMORY 

12 

COUPLER STATUS 
REGISTER 

116 

SUPERVISORY 
CIRCUIT 

12 

BUFFERS IN HOST 

11 10 0 11 8 0 23 20 12 8 0 

11 11 I 11 I I I I 

12 

15 98 0 1716 

8 

8 0 

INPUT /OUTPUT 
DATA/PROGRAM 

...... ------....... --------- ---
r--O~~E~ WORD l NPU STATUS WORD 

MEMORY 
ADDRESS 
ZERO 

MEMORY 
ADDRESS 
ONE 

16 16 16 

t i:...-----+-- CONTROL CIRCUIT I I • 141 "DATA CIRCUIT__) 
(FULL DUPLEX) J (HALF DUPLEX)t 

~ 
(MONITORED 
AND SET BY ___.,... 
BOTH SIDES) 

NPU MAIN MEMORY 

VIA IDC CHANNEL 

ADDRESS 
SETUP 
FOR DATA 
TRANSFER 

BYTE 0 BYTE 1 

T CAN BE CHAINED • -
FOR DATA TRANSFERS T 

~ ~ 

Figure 7-4. Coupler Registers 



The coupler registers shown in figure 7-4 directly accessed by the PPU 
program for normal data transmission are as follows: 

• Coupler Status Register - A group of 16 hardware-defined flags, the 
low order twelve bits can be read by the PPU. The flags inform the 
NPU of the reason for interrupt, and indicate to both the NPU and PPU 
the status of the transaction and the status of other coupler 
registers. 

• NPU Order Word - A 16-bit register, the low order twelve bits are 
written by the PPU to communicate a software-defined order code to 
the NPU. This code determines the order of regulation across the 
coupler. 

• NPU Status Word - A 16-bit register, the low order twelve bits can be 
read by the PPU. The NPU uses this register to communicate a 
software-defined status code to the PPU. This code indicates the 
type of transfer that the NPU is ready to perform. 

• NPU Address Register - An 18-bit register, the PPU can write all 18 
bits for the purpose of loading or dumping the NPU. The high order 
10 bits (address register bits 17-8, plus bit 8 of the NPU status 
register) are called memory address zero. The low order 8 bits, 
address register bits 7-0, are called memory address one. The PPU 
must perform two function operations to write the entire register. 
Since the highest order bits of the address register (bits 17, 16) 
are actually implemented as bits 9, 8 of the NPU Status word, those 
bits cannot be used for other purposes. 

The NPU address register is also set by the NPU to indicate to the 
host the address of the first word to be transferred during a data 
transfer. 

The code/bit assignment for each of these registers is shown in tables 7-1 
through 7-4. 

The NPU receives an interrupt when the PPU writes the order word or 
completes a data transfer. The coupler status register indicates the reason 
for the interrupt to the NPU. Therefore, the PPU does not use a separate 
control circuit to indicate that the transaction is complete: this 
information being automatically available in the supervisory circuit. 

PROGRAMMING THE COUPLER BY USE OF FUNCTION CODES 
The coupler may be given function codes by either the PPU or the NPU. In 
either case, the codes are treated as one word addressed to the coupler 
equipment. From the NPU side, functions are sent to the coupler over the 
internal data channel. 

HOST FUNCTION COMMANDS 

The coupler is programmed from the host (PPU) side by setting a function 
code (see table 7-5) and executing an I/O instruction. The coupler function 
code occupies the low order nine bits of the 12-bit PPU function code. The 
high order 3 bits of this PPU word contain the equipment code (coupler 
address on the channel). The equipment code is determined by the setting of 
hardware switches on the coupler. 

7-10 60474500 A 



TABLE 7-1. COUPLER STATUS REGISTER BIT ASSIGNMENT (sheet 1 of 2) 

Bit 
Number 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I/A 

A 

A 

I 

I 

I 

I 

I 

I 

Flag Name 

Memory parity error 

Memory protect fault 

NPU status word 
loaded 

Memory address 
register loaded 

External cabinet 
alarm 

Transmission 
complete 

Transfer terminated 
by NPU 

Transfer terminated 
by PPU 

Orderword register 
loaded 

NPU status read 

Timeout 

SET Condition 

NPU memory parity 
error 

NPU memory protect 
fault 

NPU writes status 
word 

PPU or NPU writes 
memory address one 

Power failure 

PPU completes any 
input or output 
operation 

NPU terminates 
transfer (not used) 

PPU sets channel 
inactive during 
data I/O 

PPU writes order­
word 

PPU reads NPU 
status word 

Inactive returned 
during a PPU data 
I/O operation 
because coupler was 
selected and active 
for more than 3 
seconds 

RESET 
Condition 

t 

t 

PPU reads 
NPU status 
word tt 

t 

t 

t 

t 

NPU reads 
orderword 

t 

t 

All flags ( tt except bit 2) are reset when NPU or PPU clears the coupler. 
Those flags marked with tare also cleared when the NPU reads the coupler 
status register. All flags are cleared by a Master Clear. 

I/A: I = Setting Flag causes an NPU interrupt; A = Setting Flag causes an 
alarm. 

60474500 A 7-11 



TABLE 7-1. COUPLER STATUS REGISTER BIT ASSIGNMENT (sheet 2 of 2) 

Bit RESET 
Number I/A Flag Name SET Condition Condition 

11 A CYBER 170 channel 12-bit word plus Enable t 
parity error parity from data parity 

channel not odd switch 
parity. Enable positive 
parity switch on. transition 

12-13 Unused 

14 Chain address zero Coupler finds zero t 
in last word of NPU 
buffer. 

15 - Alarm Positive transition t 
of any flag marked 
"A" 

All flags ( ttexcept bit 2) are reset when NPU or PPU clears the coupler. 
Those flags marked with t are also cleared when the NPU reads the coupler 
status register. All flags are cleared by Master Clear. 

I/A: I = Raising Flag causes NPU Interrupt: A = Raising Flag causes Alarm. 

The coupler channel is automatically disconnected when the PPU sends the 
function code. The disconnect occurs within one microsecond of executing 
the function code. If a parity error is detected on the function code 
(CYBER 170), the channel is not disconnected. 

NPU FUNCTION COMMANDS 

The NPU commands (see table 7-6) are issued over the internal data channel. 
The coupler is not disconnected from the host by these commands. 

HIP FUNCTIONS 
There are two primary functions performed by the HIP: 

• Processing single word (control/status) function. 

• Processing block transfers, for control or message processing 
purposes. 

7-12 60474500 A 



TABLE 7-2. ORDERWORD REGISTER CODES 

11 9 8 0 

I 

Order 

I Length 
I 

Orderword Register Code 

Order 
Code Regulation 
Value Name Level 

1 Output Level 1 (Service Messages) 1 
2 Output Level 2 (High Priority Data) 2 
3 Output Level 3 (Low Priority Data) 3 
5 Host not ready for input 

Length - In 8 byte increments, of the output block to be transferred. 
The value is rounded up when the length is not a multiple of 8. 

TABLE 7-3. NPU STATUS WORD CODES 

Code Value 
(hexadecimal) Name Protocol 

0 Ignore value and read again Data transfer 

1 Idle 

4 Ready for output 

7 Not ready for output 
~ 

8 Ready for dump Dump transfer 

13 Input available, 256 bytes Data transfer 

14 Input available, 256 bytes Data transfer 

100 Bit 16 of address register NPU address set up 
(actually bit 16 of the NPU by host dump/load 
address register) protocol 

60474500 A 7-13 



bit 16 
(first word) 

Used as bit 
8 of NPU 
status word 

TABLE 7-4. ADDRESS REGISTER CODE 

bit 15 - 8 

Memory address 0 

bit 7 - 0 

Memory address 1 

1. Address register increments with each NPU word (16 bits) 
transferred. 

2. Bits 11-8 of the second PPU word and bits 11-9 of the first PPU 
word are discarded when loading register from PPU. 

3. Only 15 bits are loaded from NPU; PPU zero fills the upper sets of 
each word. 

SINGLE WORD TRANSFERS (CONTROL) 

The PPU can write the orderword at any time. The NPU reads the orderword 
only if it has been loaded by the PPU, as indicated by bit 8 of the coupler 
status register. This hit i~ ~~t0matically ~eset ~he~ the NrU ~aad~ th~ 
orderword. 

The NPU can write the NPU status word at any time. The PPU can read the NPU 
status word only if it has been loaded by the NPU. When the PPU reads the 
register, it cannot read the register again until the NPU again writes the 
register. The PPU determines that the NPU status word has been loaded 
(written) by interrogating bit 2 of the coupler status register. This bit 
is automatically reset when the PPU reads the NPU status word. 

Note that the NPU accesses the orderword NPU status word over the internal 
data channel (IDC). 

MULTIPLE CHARACTER DATA TRANSFER (BLOCK TRANSFER) 

Block transfers use the direct memory access channel. 

When executing the data transfer protocol, an arbitrary number of characters 
are transferred between contiguous locations in the PPU and a set of chained 
buffers in the NPU. The location of the characters in NPU memory and the 
operation of' the buffer chaining mechanism are transparent to the PPU. 

From the point of view of both NPU and PPU, input means data flowing upline; 
that is, from NPU to PPU. Similarly, output means data flowing downline, 
from PPU to NPU. 

This operation of the coupler requires concurrent action of both the NPU and 
PPU. Either the NPU or the PPU may initiate the operation. When both have 
completed the setup, the transfer takes place. 

7-14 60474500 A 



TABLE 7-5. PPU FUNCTION COMMANDS 

PPU Function Code 

Clear NPU 

Start NPU t 

Input program 

Output program 

Clear coupler 

Output memory address 
zero and one 

Output orderword 

Input coupler status 

Input NPU status 

Input orderword 

Input data 

Output data 

Octal Value 

200 

040 

007 

015 

400 

010 
011 

016 

005 

004 

006 

003 

014 

PPU Usage 

Used prior to loading or dumping 
the NPU. Stops the NPU and sets 
micromemory address register to 
location O. 

Starts the NPU emulator (micro­
code) at the location in the 
micromemory address register. The 
emulator must always be started at 
location o. 

Used to dump NPU main memory. 

Used to load the NPU main memory. 
Micromemory can neither be loaded 
nor dumped directly from the PPU. 

Resets the coupler's control logic 
and most registers. The protocol 
defined allows only the NPU to 
clear the coupler. 

Sets NPU main memory accessing for 
loading and dumping. 

Loads the coupler oro~rword regis­
ter. Causes an NPU interrupt. 

Used to check the state of various 
registers and flip-flops in the 
coupler. Used to test whether 
the NPU has loaded the NPU status 
word. 

Inputs the NPU status word 
previously loaded by the NPU. 

Allows the PPU to read back the 
orderword it had written. Used 
only prior to dumping the NPU. 

Allows characters to be input to 
the PPU. The coupler must have 
been previously set up by the NPU. 

Allows characters to be output 
from the PPU. The coupler must 
have been previously set up by the 
NPU. 

tMust be delayed at least 10 ms following a clear NPU function code. 

60474500 A 7-15 



TABLE 7-6. NPU FUNCTION COMMANDS 

NPU Command Hexadecimal Value 

Input switch status 0654 

Output buff er 0658 

Clear coupler 060C 

Input coupler status 0650 

Input orderword 0660 

Output NPU status 0648 

Output memory address 066C 

NPU Usage 

Allows the NPU to check PPU 
data channel device address, 
on-line/off-line switch set­
ting, alarm override switch 
setting. Executed during 
initialization. 

Sets the coupler to follow 
the NPU buffer chains for 
the current buffer length in 
use. Executed during ini­
tialization. 

Resets the coupler control 
logic and most registers. 
Used during protocol error 
processing. The contents of 
the NPU status word are not 
affected. 

Used in the NPU interrupt 
handler to determine the 
reason for interrupt. 

Used in the NPU interrupt 
handler to input the order­
word previously loaded by 
PPU. 

Used to send control codes 
to the PPU. 

Used to set up the coupler 
for data transfer. Points 
the coupler to the start of 
an NPU buffer chain. 

The PPU sends a function to the coupler, either to input data or to output 
data. During an output operation the PPU cannot directly determine if the 
NPU has set up its side of the coupler to transfer the data. The 
determination is accomplished by the preceding communications, during which 
the NPU and PPU agree that setup for output will be the next thing done by 
both sides. For an input operation, after the PPU has sent a function to 
the coupler and has activated the channel, the PPU can test the channel to 
determine if a first buffer address is specified for the transfer and if the 
NPU status indicates that the NPU has input data available. If so, the NPU 
is set up and the transfer can take place. If not, the NPU sets up the 
coupler. The channel should become ready for transfer within 12 ms of the 
input data function command to the coupler. 

7-16 60474500 A 



The NPU sets up its side of the coupler for data transfer by writing the 
address of the first buffer of a chain to the coupler address register 
{buffer length is set up during initialization). 

The high order four bits of each PPU data word control the operation of the 
output transaction, although bits 10-8 are not used in the defined protocol 
and are always set to zero. (If any of bits 10-8 are set, NPU buffer 
chaining occurs at other than end-of-buffer. This causes excessive buffer 
use in the NPU.) Bit 11 is set to 1 on the last character of the 
transaction; this causes the coupler to stop storing data into the NPU 
memory. The PPU disconnects the channel following transfer of this flagged 
word. 

Input transfer is terminated when the last character of an NPU buffer is 
transmitted, and when bit 11 in the last word of the buffer is 1. The last 
character transferred is stored in PPU memory with bit 11 set. The coupler 
automatically disconnects the channel after this word is transferred. 

It should be noted that a service message is handled by block transfers, 
although such messages have a control rather than a message transfer 
function. Interpretation of service messages is discussed throughout this 
manual according to the type of service message. 

Checking data transfers is discussed below under the timeout and error 
checking heading. 

CONTENTION FOR COUPLER USE 
The coupler performs block mode transfers in only one direction at a time 
(half-duplex protocol). Either the NPU or PPU can request the channel at 
any time. The NPU requests the channel by setting the output memory address 
to point to the start of the input block buffer chain, and then by setting 
the output NPU status with one of the input available status codes. The PPU 
requests the channel by sending a function to the coupler to output the 
orderword with one of the output codes. 

If the NPU and PPU both request to use the channel at approximately the same 
time, output is usually favored. This is accomplished by changing the value 
in the coupler's memory address register to point to an output buffer chain 
and responding with a "Ready for output" in the NPU status word. The NPU 
will re-request the channel at the completion of the output transaction. 

When the output transaction is completed, the PPU starts a brief (1-10 ms) 
output-continue timer cycle to allow the NPU to request input, if the NPU 
has data queued for the PPU. This timer prevents the PPU from monopolizing 
the channel with output operations and thereby flooding the NPU. 

If the NPU has a scarcity of buffers, it rejects the PPU's request, thus 
regulating output data. To limit the frequency of NPU output-request-driven 
coupler interrupts to the NPU during this data regulation period, an output 
rejected timer cycle of 100 ms is used. 

60474500 A 7-17 



REGULATION OF COUPLER USE 
The primary objective of host regulation is to: 

• Prevent saturation or overloading of the host or network in the event 
of an abnormality (emergency regulation). 

• Allow data flow between the network and the host to ensure that 
continuity of service and performance standards are maintained. 

• Smooth data flow {prevent over-regulation) using appropriate feedback 
control techniques. 

The host coupler interface is a controlled, variable bandwidth I/O channel, 
in which the bandwidth is increased or decreased by a combination of 
load-balancing and reaching regulation thresholds. 

Normally,· the NPU accepts all input offered by the PPU. When buffer 
availability levels drop below pre-defined thresholds, the NPU uses the 
priority level defined below to reject downline messages from the host: 

Priority 

1 

2 

3 

Message Type 

Service messages. 

Data blocks and related forward and reverse supervision 
of the highest priority. 

Data blocks and related forward and reverse supervision 
at the lowest priority. 

Each of these message types is kept in a separate queue in the host. 
Regulation in the NPU occurs by the NPU first rejecting output offered at 
level 3, then rejecting levels 3 and 2, and in an extreme situation, 
rejecting all output offered by the PPU. As buffer levels rise above these 
regulation thresholds, the NPU reverses this procedure until the unit is 
again capable of accepting all outputs. 

The order in which the PPU offers the various output levels is determined by 
host considerations. 

There are also two classifications of upline messages: 

Classification 

1 

2 

Message Type 

Data and supervision less than 256 bytes in length. 

Data and supervision greater than 256 bytes in 
length. 

Both types of message are kept on a single queue in the NPU. 

There is no priority associated with the two upline classifications offered 
by the NPU to the PPU; the separation into two length ranges is only to 
allow the PPU to utilize its buffer space more efficiently. 

7-18 60474500 A 



HOST FAILURE AND RECOVERY 

A special case of regulation occurs when the host fails and when it recovers. 

When the NPU software d€termines that communication across the coupler has 
failed, a regulation level of zero is communicated to the other end of each 
logical link terminating at the coupler. This inhibits acceptance of 
further input traffic from terminals logically connected via the coupler. 
Additionally, an informative message will be sent out to each affected 
interactive terminal. 

When the NPU software determines that communication across the coupler has 
been restored, a normal regulation level is communicated to the other end of 
each logical link terminating at the coupler. This enables input from 
terminals logically connected via the coupler and causes an informative 
message to be sent to all affected interactive terminals. 

ERROR CHECKING AND TIMEOUTS 
The data transfer physical protocol checks for: 

• Contaminated data 
• Incomplete transaction 
• Failure of interface to respond 

The first two types of errors are handled at the physical protocol level by 
accepting only good blocks, and by discarding bad blocks in their entirety. 
The physical level protocol does not re-transmit blocks. The coupler is 
assumed to provide a noise-free channel and to generate only hard (rather 
than intermittent) failure modes. Errors are detected and logged by the 
host. 

Interface failure causes the interface to be declared down, but the protocol 
returns to the initial state and continues to wait for interface response. 
Both the PPU and NPU have timers implemented locally to accomplish failure 
detection. A keep-alive timer of one second duration generates a periodic 
idle status, made available to the PPU when no traffic is in progress. The 
PPU deadman timer provides a ten second duration signal. This timer expires 
only if the PPU fails to receive either an idle or input request during that 
period. If the timer expires, the PPU declares the NPU to be down and 
enters the NPU dump/reload sequence. 

The NPU deadman timer also provides a 30 seconds duration signal. If the 
NPU fails to receive a coupler interrupt within this period, it declares the 
host unavailable. The NPU deadman timer is not explicitly shown in the NPU 
protocol flow diagram (figure 7-2), but it is implicit in all places where 
the NPU is waiting for an interrupt. 

HOST /NPU INTERFACE SEQUENCES 
Figures 7-5 and 7-6 show the interface protocol sequences as viewed from the 
host and NPU, respectively. 

60474500 A 7-19 



START 
CONDITION 

START DEAD 
TIMER (10 SECI 

DECLARE 
NPU DEAD 

NO 

YES 

SEND 'NOT 
READY FOR 
INPUT' 

YES 

READ INPUT 
DATA 

STORE DATA 

Figure 7-5. Host Interface Protocol Sequence, 
Host Side (sheet 1 of 2) 

ERROR 

LOG ERAOR(Sl 

DISCARD DATA 

M-425 

7-20 60474500 A 



60474500 A 

YES 

ORDERWORD SET 
TO "OUTPUT 
LEVEL 1" 

Figure 7-5. 

NO 

NO = REGULATION LEVEL 3 

ORDERWORD SET 
TO "OUTPUT 
LEVEL 2" 

OUTPUT 
THE DATA 

ST ART OUTPUT 
(CONTINUE) 
TIMER 
(1-10 MS) 

NO 

START 

ORDERWORD SET 
TO "OUTPUT 
LEVEL 3" 

ST ART OUTPUT 
(REJECTEDI 
TIMER 
1100 MSI 

START 

M-426 

Host Interface Protocol Sequence, 
Host Side (sheet 2 of 2) 

7-21 



SET STATUS WORD 
TO NOT READY 
FOR OUTPUT 

DEADMAN 
TIMEOUT 

HOST NOT AVAIL· 
ABLE NPU 

SET TIMER TO 
KEEP ALIVE 
VALUE 

IDLE 

OUTPUT REQUEST 
~---------. NOT READY 

t 

SET BUFFER 
ADDRESS IN 
COUPLER 

STATUS WORD 
SET TO READY 
FOR OUTPUT, SET 
TIMER TO DEAD· 
MAN VALUE 

FOR INPUT 

SET TIMER 
TO IDLE 
TIMEOUT VALUE 
(600MSI 

OUTPUT 
COMPLETE 

SEND MSG TO 
CE ERROR FILE 
IN HOST 

DISCARD 
DATA 

OK 

ROUTE 
DATA IN NPU 

t SEE NOTE ON 
SHEET 2 

M__.27 

Figure 7-6. Host Interface Protocol Sequence, 
NPU Side (sheet 1 of 2) 

7-22 60474500 A 



SET STATUS 
WORD SET TO 
IDLE, SET 
TIMER TO IDLE 
VALUE 

t BEFORE LOADING 
THE STATUS REGISTER, THE 
STATUS IS CHECKED TO 
VERIFY IT IS NOT STILL 
LOADED FROM A PREVIOUS 
TIMER. IF IT IS, A WORKLIST 
IS MADE BACK TO THE OPS 
LEVEL HIP TO RE-EXAMINE 
THE STATUS. 

Figure 7-6. 

60474500 A 

SET TIMER TO 
KEEP ALIVE 
VALUE 
(1 SECOND) 

INPUT 
AVAILABLE 

SET BUFFER 
ADDRESS IN 
COUPLER 

SET TIMER TO 
DEADMAN VALUE 

t 
SET STATUS WORD 
SET TO INPUT 

Host Interface Protocol Sequence, 
NPU Side (sheet 2 of 2) 

M-428 

7-23 



NOTE 

In figure 7-6 the large arrowhead Ct) indicates that the NPU 
is waiting for the next coupler interrupt. While waiting, 
the coupler program re-entry point is saved in a state 
vector, the deadman timer is running, and the NPU is 
servicing other processes. When the interrupt occurs, the 
NPU resumes servicing the coupler at the location specified 
by the state vector. If the reason for interrupt is one of 
the items listed below the arrow, service proceeds as shown. 
If the interrupt occurred for some other reason, an error has 
occurred. Such an error is lo_.2.ged in the CE error file and 
the protocol is restarted at (8) • If the deadman timer 
timeout occurs before the interrupt, the HIP calls a routine 
to note that the host is unavailable, and then restarts the 
protocol at @ • 

The principal features of the protocol detailed by the flow charts are as 
follows: 

• 

• 
• 
• 

• 

• 

• 

• 

• 

• 

7-24 

The NPU can specify input available and set up the coupler for input 
data transfers at any time. 

The PPU can order output at any time • 

If conflict occurs, the NPU normally allows output from the PPU • 

The NPU can refuse to take PPU output if the NPU does not have 
sufficient buffer space for the transfer. 

The PPU can refuse input from the NPU by requesting output or by 
responding with a 'not ready for input'. 

If either the NPU or the PPU deadman timer expires, protocol is reset 
to the start condition, but continues. 

If a given output type is refused by the NPU, the PPU performs a 
short timeout before re-requesting output, to prevent swamping the 
NPU with interrupts. The type of output offered in succeeding 
attempts is determined by the host logic. 

If output is accepted by the NPU, the PPU allows the NPU to indicate 
if input is available, before again ordering output. 

Once data transfer is initiated, the transaction must be complete • 
If it does not, the entire transaction unit is discarded. 

Error checking is performed by the receiving device. If an error is 
detected, a CE error message is sent to the host engineering file, 
any received data is discarded, and the protocol is reset. No 
attempt is made to retransmit the data. 

60474500 A 



BUFFER FORMAT 
The HIP requires all using programs to provide or accept data blocks in 
standard format. Figure 7-7 shows format that is a variation of standard 
block format. 

HIP STATES 
The HIP can be considered a passive program that passes from one state to 
the next as a result of a stimulus from an external event. Table 7-7 shows 
the HIP as a state driven program. 

FWA LCD I FCD* 

* FWA + 1 LBF FLAGS 

I I> CHAR. 0 I CHAR. 1 

t r CHAR. N-1 I CHAR. N 

CHAIN* LWA 

BL = Buffer Length (in 16 bit words) BL = 2x, 2 :s x :s 7 

FCD = First Character Displacement (relative to FWA) 4 :s FCD :s 253 

FLAGS = Bit indicators which provide additional information about the 
data or data buffers. 

FWA = First Word Address of Buffer (must be an integer multiple of BL) 

LBF = Last Buffer Flag (1 = last) 

LCD = Last Character Displacement (re la ti ve to FWA) 4 :s LCD :s 253, 
BL LCD/2 + 1 

LWA = Last Word Address of Buffer LWA = FWA + BL - 1 

CHAIN = FWA of next data buffer {may contain zero value when LBF = 1) 

Figure 7-7. Standard Data Block Format Used by the HIP 

BL 

60474500 A 7-25 



TABLE 7-7. HIP STATES AND TRANSITIONS 

~ 
Transfer Chain 

Transfer Terminated Orderword Address Transaction 
Complete by PPU Loaded Zero Timeout e 

AO PTO Start Send Idle 
Output Inquiry 

IDLE CE=Spurious CE=Spurious (AOPT3) CE=Spurious 
Interrupt Interrupt Invalid Interrupt 

Orderword 
~Halt 

AOPTl Start Out- CK for Idle 
put or Not Response 
Rdy for (deadman 
Input timeout) 

Idle CE=Spurious CE=Spurious Invalid CE=Spurious Send Idle 
Inquiry Interrupt Interrupt Orderword Interrupt Inquiry 
Sent ~Halt 

AOPT2 NORMAL CE=Transf er Terminate CE=Chain Host Down 
INPUT Term by PPU Input, Address to SVC Mod-
COMPLETION Start Zero, Re- ule, Re queue 

Output lease Input Input Mes-
Block sage 

Input Release In- (AOPT3) 
Completion put Block Invalid 

Orderword 
~Halt 

AOPT4 NORMAL CE=Transf er CE=End of System Halt Host Down to 
OUTPUT Term by PPU Operation (JOCHAIN) SVC Module 
COMPLETION Missing Release Out-

put Buffers 

Output Release Release 
Completion Output Output 

Buffers Buffers 
Invalid 
Orderword 
~Halt 

AOPT5 No Action No Action No Action No Action No Action 

AOPT6 

Delay 

7-26 60474500 A 



LINK INTERFACE PACKAGE MODULE 

The LIP module is responsible for handling transmission and reception on 
both ends of a trunk; therefore, a version of the LIP must exist in both the 
local and remote NPU. 

Since the current CCP version permits only direct coupling from a remote NPU 
to a local NPU, the terms trunk, logical link, and physical link are 
synonymous for this connection. Two major types of operations are handled 
by the LIP: 

• Loading/dumping of the remote NPU. This operation is discussed in 
the CCP 3 Reference Manual (see preface). 

• Transmission of data (messages) over the trunk. Figure 8-1 shows the 
functions involved in such transmissions. Note the division of 
functions between local and remote NPUs. Table 8-1 contrasts local 
and local/remote systems. 

This section discusses LIP operation in five major categories: 

• Trunk protocol 
• Transmit functions 
• Receive functions 
• Trunk enabling/disabling 
• Trunk failure/recovery 

TRUNK PROTOCOL 

The LIP implements a class of the Control Data Corporation Control Procedure 
(CDCCP) for information interchange. CDCCP treats each trunk as a separate 
entity and is not concerned with the contents of the information frame. The 
specific protocol implemented is equivalent to ISO HDLC class, using the 
symmetrical, asynchronous response mode, and using the basic numbering range 
with two-way, simultaneous reject and initialization options. 

Either end of the link can initiate data transmission when conditions 
warrant. The interfacing LIPs first establish the nominal mode: the local 
NPU sends the set-asynchronous-response-mode (SARM) frame; the remote NPU 
replies with an unnumbered-acknowledgement (UA) message indicating that 
asynchronous response mode (ARM) has also been established in the remote 
NPU. Then data transmission begins. 

The basic unit of transmission over the trunk is a trunk transmission frame 
(TTF). Format of the frame (8-bit bytes) is shown in figure 8-2. There are 
three types of frames: 

• Unnumbered frames that establish the basic transmission states 
between the two nodes, such as initialization and command rejected. 

60474500 A 8-1 

8 



CX> 
I 

I\) 

°' 0 
.a:i. 
...... 
.a:i. 
U1 
0 
0 

)ii 

INPUT 
LOOPS 

HOST LOCAL NPU A REMOTE NPU 

I I .I I .I I I I. -, I I 
.., 

c 

p H e fti ME$AGES WI FRAMES Wl I LT~UNU p r (BLOCKS) ~SL~KS) 
u E (1) (2) MUX 

R ~~ 
SYSTEM 

)rU I I e e 
NOTES: ~~T 
(1) MESSAGES ARE COMPLETE BLOCKS, IN VIRTUAL TERMINAL FORMAT. 

(2) MESSAGES ARE BROKEN INTO SUB BLOCKS BY LIP AND ASSEMBLED 
INTO FRAMES CONTAINING~ 255 BYTES EACH (FIGURE 8-2). 

(3) FRAMES TRANSMITTED OVER TRUNK AT~ 9600 BAUD. OUTPUT LOOP 
OF LOCAL NPU CARRIES DATA/CONTROL INFORMATION; INPUT LOOP 
RECEIVES ASSURANCE CONTROL INFORMATION (ALSO IN FRAMES). 

(4) RECONSTITUTED FRAMES ARE CHECKED BY LIP PRIOR TO PASSING 
DATA AS RECONSTITUTED BLOCKS TO TIPs FOR PROCESSING. 

(5) TIPs PROCESS MESSAGES, CONVERl TO TERMINAL FORMAT, AND 
QUEUE FOR OUTPUT TO INDIVIDUAL TERMINALS. 

I tiJ I FRAMES ~ I BLOCKS 
(4) ~~ESSAGES) 

I ~·~· ~m 

~ 
TERMINALS 

I 

e 
I 

e 

Figure 8-1. Simplified Trunk Operation (Output Only) 

M-387 



TABLE 8-1. COMPARISON OF LOCAL AND LOCAL/REMOTE NETWORKS 

Local Local/Remote 

Terminals local only Terminals remote: can also have 
local terminals. 

Terminal data multiplexed locally: 
TIPs place data in virtual 
terminal format (upline) or real 
terminal format (downline). 

Upline data passed through TIPs to 
HIP, thence to host 

Load/dump NPU through coupler 

Remote; same on downline. Upline 
data collected into frames (made up 
of subblocks) after convert to IVT 
or BVT format: transmitted via trunk 
to local NPU. No HIP in remote NPU. 
Local: Data from local terminals 
treated the same. Data from remote 
terminal treated same as for upline 
data except LIP reconstitutes and 
checks frames. Then reconstitutes 
subblocks into message to pass to 
HIP. Downline data broken into 
subblocks, assembled into frames, 
then sent to remote NPU via trunk: 
still in virtual terminal format. 

Load/dump local NPU through coupler: 
load/dump remote NPU using overlay 
in local NPU, transmission over 
trunk, and bootstrap program and 
cassette in remote. 

• Supervisory frames that establish whether transmission or reception 
is currently possible (ready for data/not ready for data/rejected 
last data sent) and that provide frame acknowledgement information. 

• Information frames used to transmit message data. This class of 
frames includes frames that are carrying service messages. 

Before data framing, the messages (blocks) are queued in the link queues on 
a first-in first-out basis. Each NPU has two such queues, one for 
high-priority messages, the other for low-priority messages. The queues 
hold pointers to the blocks which can either be a single buffer or a chain 
of buffers (subblocks) making up the message. From the link queue, 
individual subblocks are passed to the text transmission queue and then to 
the frame. The entire subblock need not be included in the information 
bytes of the frame. All that is necessary is the data part of the buffer. 
This is the part delimited by FCD-LCD in the buffer, as shown in figure 8-3. 

When the frame is filled (that is, the next subblock would cause a frame 
overflow condition), the frame CRC is generated and the frame is sent to the 
neighbor NPU (assuming the trunk protocol has been established). 

60474500 A 8-3 



FRAME FORMAT 

Byte 1 2 3 4 5 N-2 N-1 N 

F A c I :: I CRC 

Information (subblocks) 

C - Control byte (can be U, s, or I frame) 

CONTROL BYTE (C Field) 

Bits 7 5 4 2 1 0 

u Frame IP/FI 1 1 

P/F - Poll/final flag 

0 = poll 
1 = final 

Bits 7 - 2 Function Protocol Element 

OOOPOO 
OOOFOl 
OOOPOl 
OllFOO 
lOOFOl 
OOOPll 

S Frame 

Unnumbered information 
Request initialization mode 
Set initialization mode 
Unnumbered acknowledgement 
Command rejected 
Set asynchronous response mode 

Bits 7 5 4 3 2 

N (R) IP/FI SC/R 

1 0 

UI 
RIM 
SIM 
UA 
CMDR 
SARM 

N(R) - Sequence number of next frame expected in receiving NPU 

P/F - Sarne as U frame 

SC/R - Supervisory command/response 

Bits Mnemonics 

00 Receive Ready RR 
01 Receive Not Ready RNR 
10 Rejected REJ 
ll Not Used 

Figure 8-2. Frame and Subblock Format (sheet 1 of 2) 

8-4 60474500 A 



Bits 7 5 4 3 2 

I Frame N(R) = 0 IP/FI N(S) 

P/F - Same as U frame 
N(S) - Sequence number of frame 

SUBBLOCK FORMAT FOR INFORMATION (I) FIELD 

L I FLG Message data bytes 

FLG - Disassembly flags 

Bits 7 - Priority 1 = high priority 
6 - last subblock; 1 = true 
5 - 0 - Unused 

1 0 

0 

F Flag is a unique bit pattern (01111110) to identify start and end 
of frame. A zero bit is inserted after every string of five L's 
where a frame is transmitted, and removed at the receiving NPU; F 
bytes are added by transmitting CLA. 

A - Receiving node address 

0 = local 
1 = remote 

CRC - Two cyclic redundancy bytes added by transmitting CLA. 

N - Maximum frame size determined by the build time parameter 
MAXFRMSZE (nominally set to 259); excludes the beginning and 
ending F bytes and CRC bytes added by the CLA when transmitted 

I - Appears only when control byte is I or in a UI frame 

L - Length of subblock: 3 ~ L ..s,257 

Figure 8-2. Frame and Subblock Format (sheet 2 of 2) 

60474500 A 8-5 



LINK Q 
(HIGH) 

CHAINED MESSAGE n 

BUFFERS 
(SUB­
BLOCKS) 

1 

8-6 

2 

3 

4 

5 

MESSAGE n+1 

D 
IN THE SAMPLE 
SYSTEM, ALL DATA 
BLOCKS ARE 64 
WORDS LONG. 

TEST Q 
(HIGH) 

SAMPLE 
MESSAGE 
USES ONLY 
100 CHARACTERS 
PER BUFFER. 
ONLY ONE SUB­
BLOCK AT A 
TIME IN TEXT Q. 

SAMPLE SHOWN FOR 
HIGH-PRIORITY 
QUEUES, WITH LOW­
PR IOR ITY QUEUES 
EMPTY. 

FRAME 

-A-:-O-l :~~:OL 
L=.102 

FLG=1 

DATA 
SUB BLOCKS: 

100 
BYTES 

• 
• 
• 

TWO CONTROL 
WORDS PLUS 
DATA 

2 

DATA 

L=102 

FLG=1 

DATA 

• 
• 
• 

DATA 

CRC l 
__ cR_c_ ~~~~~OL 

F 

SAMPLE SHOWS UP­
LINE MESSAGE. 
ONLY TWO 100-
CHARACTE R SUB­
BLOCKS FIT INTO 
THIS FRAME. 
REMAINING SUB­
BLOCKS ARE 
TRANSMITTED IN 
SUBSEQUENT 
FRAMES. 

M-388 

Figure 8-3. Sample Frame Formation 

60474500 A 



Upline Data - Instead of being passed from the TIP to the HIP (as in a local 
NPU only system), the message is passed to the remote NPU's LIP and through 
the two queues, as shown in figure 8-4. Then the message data is placed in 
the frame. After transmission over the trunk, the local NPU's LIP checks 
the transmission, strips away the frame, reconstitutes subblocks into whole 
message blocks, and passes these blocks to the HIP for upline transmission 
to the application program in the host. 

Downline Data - Downline transmission is shown in figure 8-5. Messages 
(blocks) that are still in virtual terminal format are passed through the 

HIP to the local NPU's LIP. The LIP converts the chained message buffers to 
subblocks to be used in the frame. When the frame is filled (or no more 
data is queued for transmission), the frame is sent to the remote NPU over 
the trunk. 

At the remote NPU the frame is stripped off and the subblocks are 
reconstituted into chained message buffers, which are passed to the 
appropriate TIP to be converted to the output terminal's protocol. 

Two priorities are associated with frames to allow a trunk regulation 
scheme. These priorities are as follows: 

• Priority 1 (high). Normally this priority is assigned to messages 
from interactive terminals. Messages tend to be short but need rapid 
processing to avoid delays at the terminal. 

• Priority 2 (low). Normally this priority is assigned to messages 
from batch terminals. Messages tend to be long (1000 bytes or more). 

The scan system that generates the frames from subblocks scans four qu£Jes 
priority 1 TEXT Q, priority 1 link queue, priority 2 TEXT Q, and prior .ty ; 
link queue in the order given. In this manner, all priority 1 informal:~:. 
that can fit in the frame is transmitted before any priority 2 level 
information. 

Figure 8-6 shows the logical sequence of constructing a frame from subblocks 
extracted from the various queues. Blocks for internodal delivery are 
queued by link according to priority. These queues are input to the LIP. 
The LIP interrupts low-priority traffic delivery at frame boundaries in 
order to deliver queued high-priority traffic. This, in conjunction with an 
appropriately small frame size, optimizes high-priority response. 

Information frames are constructed from subblocks with a total length not 
exceeding a defined maximum frame size. A subblock can be all or part of a 
block. Since frames must end on a block boundary, frames of fairly constant 
length are constructed whenever a sufficient number of subblocks are 
awaiting transmission. 

Each trunk has a transmit in-process text queue (TEXT Q) for each priority. 
If the queue is not empty, TEXT Q contains the untransmitted remainder of a 
block that has been removed from the link queue and partially transmitted on 
the trunk. 

Each frame is headed by the A and C fields (figure 8-2). Each subblock in 
the frame is headed by (1) an L field containing the length in characters of 
the subblock following, and (2) an FLG field containing a priority flag and 
an end-of-block flag. The L and FLG fields are used by the receiving LIP to 
restructure the original blocks for processing by the CCP program. 

60474500 A 8-7 



00 
I 

00 

°' 0 
~ 
.....J 
~ 
U1 
0 
0 

)" 

INPUT 
MESSAGES 

REMOTE NPU 

TRUNK 

-, 
', 

LOCAL NPU 

I I 

INPUT~ 
MUX I SUB-

LOOP I SYSTEM 

LINK Q 

SUB­
BLOCKS 

1 • ••FRAME t---------
INPUT 
MESSAGES I / 

I / 
I / 

CONVERTS 
TO VIRTUAL 
TERMINAL 
FORMAT 

' 'G 
/ §lUP TO 8 MOST 'Ef/ FRAME 0 RECENTLY 

TRANSMITTED 
LIP - j FRAMES SAVED 

FOR POSSIBLE 
RETRANSMISSION 

FRAMES TRANSMITTED 
ONE BYTE AT A TIME 
AT RATES UP TO 
9600 BAUD 

SUB BLOCKS.------

FRAMES I 

----..-1 I 

VIRTUAL 
TERMINAL 
FORMAT 

I ·c 

llFl 111 SUB BLOCKS 
~ MESSAGES m ~ ~ L HOST 

E 

+ R 
I 

~11 I 

/ I I 

~ / RECONSTITUTED e / FULL MESSAGE 
BLOCKS 

M-389 

Figure 8-4. Sample Upline Message Transmission Over a Network Link 



0\ 
0 
.a:=. 
...... 
.a:=. 
U1 
0 
0 

):II 

(X) 

I 
\0 

HOST 

c 
0 
u 
p 
L 
E 
R 

LOCAL NPU 

MESSAGES 
(BLOCKS) 
VIRTUAL 
TERMINAL 
FORMAT 

I 
I 

LINK Os 

SUB BLOCK 

/ / 
/ / 

/ // 

/ / 
/ / 

FRAMES I I I •• 

/ / 
I / / r 

t MOST RECENTLY 

\ 
\ 
\ 

MUX 
SUB­
SYSTEM 

\ 
\ 

e el /// UPTOS 

--+! FRAME 0 !!TRANSMITTED 
Y FRAMES SAVED FOR 

POSSIBLE RETRANSMISSION 

MESSAGES 
IN 

,. I I I TERMINAL 
FORMAT 

I 

~/ 
~/ 

VIRTUAL 
TERMINAL 
FORMAT 

RECONSTI­
TUTED 
MESSAGES 
FRAME 
SUB BLOCKS 

FRAMES 
(RECONSTI­
TUTED AND 
VERIFIED) 

' ' / G/ 

MESSAGES { 
SENT TO 
TERMINALS 

TRUNK 

MUX 
SUB­
SYSTEM 

Figure 8-5. Sample Downline Message Transmission Over a Network Link 

OUTPUT 
LOOP 

INPUT 
LOOP 

OUTPUT 
LOOP 

M-390 



Figure 8-6. 

8-10 

REMOVE SUB BLOCK 
FROM PRIORITY 1 
TEXT Q AND ADD TO 
FRAME 

REMOVE FIRST BLOCK 
FROM PRIORITY 1 
LINK QUEUE AND PUT 
IN PRIORITY 1 TEXT Q 

REMOVE SUB BLOCK 
FROM PRIORITY 2 
TEXT Q AND ADD TO 
FRAME 

REMOVE FIRST BLOCK 
FROM PRIORITY 2 LINK 
QUEUE AND PUT IN 
PRIORITY 2 TEXT Q 

Frame Construction Flowchart 
M-391 

60474500 A 



The system regulation level (0, 1, and 2 levels) as discussed in the CCP 3 
Reference Manual are used in conjunction with supervisory frames to 
determine whether or not the receiving NPU can accept frames. 

CHECKS AND RETRANSMISSIONS 

Since there is a possibility that data will be garbled during transmission 
over a trunk, a cyclic redundancy check (CRC) is included in each frame by 
the communications line adapter (CLA) • 

Cyclic Redundancy Check 

The cyclic redundancy check field is a 16-bit result of mathematical 
computation on the digital value of all bits in the frame (excluding 
inserted zeros). The transmitter performs the calculation and sends the 
result. The receiver performs the calculation and compares the result with 
the CRC received. If the comparison fails, the frame is discarded and must 
be retransmitted. 

The CLA uses CRC procedure to determine the reliability of the incoming 
frame. The CRC field is the binary pattern found in multiplying the binary 
value of the A, C, and I fields by xl6 and dividing the result by xl6 + 
xl2 + x5 + 1. If, at the end of the received frame, the CRC field does 
not equal the calculated value of this remainder, the frame check sequence 
error (FCSE) status is sent to the controlling processor. 

Retransmission is made possible by saving recently transmitted frames. If 
the frame acknowledgement fails to appear or indicates a bad frame, all 
frames up to the last properly acknowledged frame are retransmitted. These 
frames were previously saved in a Frame Retention Queue (FRQ) which is an 
eight entry list for each trunk. As an information frame is transmitted, it 
is entered into the frame retention queue according to its transmission 
sequence number. When acknowledged, the frames are released from the frame 
retention queue. Frames are retransmitted from the frame retention queue as 
necessary, starting with the oldest frame first. 

TRANSMIT FUNCTIONS 
Three types of frames can be transmitted (figure 8-2): unnumbered, 
supervisory, and information. 

UNNUMBERED FRAME 

The following control statements are transmitted as unnumbered frames (U 
frames): 

• The set asynchronous response mode (SARM) message establishes normal 
transmission over the trunk. 

• The SARM response message is an Unnumbered Acknowledgement (UA). 
This is also used to acknowledge UI messages. 

• The r~quest for initialization mode (RIM) message is sent when the 
remote NPU requires reinitializing (for instance, after a timeout). 

60474500 A 8-11 



• The response to a RIM message is a set initialization mode (SIM) 
message, acknowledging that the local NPU will commence the load or 
dump operation of the remote NPU using overlay methods. 

• The unnumbered information (UI) message is used to transmit load or 
dump information. 

• The command reject (CMDR) message is sent when the command (C) field 
of a received frame does not correspond to any of the legal C fields. 

SUPERVISORY FRAME 

Three types of supervisory frames (S-frames) are transmitted. All these 
frames respond to the condition of a frame just received. 

• A receive ready (RR) frame is sent when either of the following 
occurs: 

An information frame is correctly received and the rece1v1ng NPU 
can process more data (for instance, the next frame of a message). 

A receive not ready (RNR) message was received but the poll/final 
flag is not set, and the regulation is not at zero (message 
transmission prohibited) level. 

• A receive not ready frame is sent in response to an information frame 
or to a receive not ready message when zero regulation is in effect. 
This essentially causes the receive not ready message to be passed 
back and forth over the trunk until regulation level rises to at 
least level 1 or until the trunk is disconnected. 

• A reject (REJ) frame is sent when an information frame is received 
without error but the sequence number, N(S), is not the one 
expected. The received frame is discarded and a reject frame is 
sent. All subsequent information frames are discarded until the 
expected frame is received. 

INFORMATION FRAME 

Information frames (I-frames) carry the network's message traffic over the 
trunk. The LIP generates an information frame (figure 8-2) by scanning the 
link and TEXT transmit queues as discussed previously. The information 
frame header consists of the address byte and the control byte. The 
sequence number of this frame, N(S), is placed in the control byte. This 
defines the slot in the frame retention queue where the pointer to this 
frame is to be stored. 

RECEIVE FUNCTIONS 
Frames received from a neighbor are processed according to type. 
Information frames contain information. Supervisory frames contain 
acknowledgements and can interrupt the flow or cause retransmission. 
Unnumbered frames indicate initialization is needed or an error has occurred 
and are processed by the LIP as necessary. 

8-12 60474500 A 



Acknowledgements come across the trunk in the control byte of a supervisory 
frame. The number N(R) is the neighbor's next expected number for the 
trunk. Thus all frames up to and including N(R)-1 that are saved in the 
frame retention queue may be released. Failure to receive an 
acknowledgement after a suitable time causes the transmitting NPU to poll 
for an acknowledgement. If the acknowledgement does not allow all frames to 
be released from the frame retention queue, the remaining frames are 
retransmitted. If repeated polls do not receive an acknowledgement, the 
trunk is declared inoperative. 

An incoming receive not ready frame with the poll/final flag set causes the 
supervisory receiving NPU to reply as soon as possible. If regulation is 
not in effect, the response is a frame with receive ready~ otherwise the 
response is a supervisory frame with receive not ready. 

The value of the poll flag in a received information frame is returned to 
the sender in the final flag of the response generated for that frame. 

Supervisory functions are performed when the following supervisory frame 
responses are received: 

• Receive ready - Acknowledgement frames as described above. 

• Receive not ready - The sending NPU inhibits further information 
frame transmission over the trunk. A supervisory frame with receive 
not ready and the poll flag is sent to inquire if the receiving NPU 
can again receive information frames. The trunk is declared 
inoperative if, after several inquiries, the receiving NPU is not 
ready to receive. 

• Reject - After the acknowledgement contained in the reject 
supervisory frame is processed, all frames remaining in the frame 
retention queue are retransmitted, starting with the oldest frame. 

Certain unnumbered commands and responses can be received during the normal 
protocol. Any event not mentioned causes a command reject (CMDR) to be 
sent. Receiving a command reject causes the trunk to be declared 
inoperative. 

• Request initialization mode - This indicates the neighbor NPU has 
failed and the load/dump process is to be initiated. 

• Command rejected - The information field contains the reason the 
command was rejected. The event is noted in the statistics block and 
the trunk is reinitialized using the set asynchronous response mode -
unnumbered acknowledgement handshake procedure. 

• Set asynchronous response mode - An unnumbered acknowledgement is 
immediately transmitted on the trunk. 

TRUNK ENABLING AND DISABLING 

Enabling is the result of normal operations that attempt to bring the trunk 
up. Enabling can also be operator initiated following an operator-initiated 
disabling command. 

60474500 A 8-13 



When a disable trunk service message (SM) is received by the local node, the 
protocol is stopped at that node and a normal response (trunk inoperative) 
SM is sent to NS. The LIP does not service the trunk until an enable trunk 
SM is received by the local node. Upon receiving an enable trunk SM, the 
local NPU sends a normal response (trunk operational) SM to NS, and the link 
initialization procedure is restarted. (Disabling takes place at both ends 
of a trunk independently.) One end of a trunk can be enabled, with the LIP 
at that end attempting to maintain trunk protocol, while the other end is 
disabled. 

Receiving a disable trunk command is such a case. The remote node sends an 
abnormal response (cannot disable last path to NS) SM to NS. An enable 
trunk SM received by the remote node causes a normal response (trunk 
operational) SM to be sent to NS. 

TRUNK FAILURE/RECOVERY 
These operations result from hardware or software errors. After the trunk 
is declared operational, the local node and the remote node monitor both 
directions of data flow (receive and send). If no data is available to 
transmit, the LIDLE element of the link control block type (ACTL) is 
periodically sent to the other end. The LIDLE element format is shown in 
figure 8-7. 

When the protocol 
block nor a LIDLE 
inoperative. The 
trunk status SM. 
a trunk failure. 

indicates an inability to send data, or neither a data 
has been received in time, the trunk is declared 
local node informs NS by sending the host an unsolicited 
The LIP discards all data blocks upline and downline after 

The link initialization procedure is used to recover following a trunk 
failure. After a successful exchange of LINIT frames between local and 
remote nodes, the local node reports the trunk as operational to NS. Normal 
data blocks may then travel upline and downline over the trunk. 

8-14 60474500 A 



Byte 1 2 3 4 5 6 7 8 9 

FLG DN SN CN 

I-bytes of subblock 

F - Frame flag 

A - Receiving node ID 

C - I-frame 

L, FLG - As defined for I-frame 

10 

TYPE 

11 

SUB­
TYPE 

12 13 14 15 

DN, SN - Destination and source nodes (terminal nodes of sending and 
receiving NPUs) 

DN - Connection numbers 

TYPE - Specifies priority, block type and serial number as follows: 

Bit 7 6 

p BSN 

P - Priority 
BSN - Block serial number 
BT - Block Type = 15 (ACTL) 

SUBTYPE - 4 = LIDLE 
3 = LINIT 

RL - Regulation level of sender 

00 = no messages accepted 
01 = high priority accepted 
02 = low priority accepted 

4 3 0 

BT 

Figure 8-7. LIDLE or LINIT Frame Format 

60474500 A 8-15 





ASVNCHRONOUS(ASVNC)TIP 

The Asynchronous {ASYNC) TIP supports dedicated and dial-up asynchronous 
lines that serve freewheeling terminalst operating at standard rates in the 
range between 110 and 9600 baud. The TIP provides software support for 
Teletype, IBM 2741, and teletypewriter-compatible CRTs that operate in an 
interactive mode with host applications. The TIP supports seven separate 
types of terminals. In addition, by means of the IVT control command, a 
user at his terminal can alter parameters for any of the seven standard 
terminals to create new terminals, which are also supported. 

HARDWARE CONSIDERATIONS 
The seven types of terminals supported by the TIP are the following: 

Terminal 
Class 

1 
2 
4 
5 
6 
7 
8 

Manufacturer 

Teletype 
CDC 
IBM 
Teletype 
Hazeltine 
CDC 
Tektronix 

Model Number 

M33, 35, 37, 38 
713-10 
2741 
M40/2 
2000 
751-10 
4014 

Appendix C gives the default parameters for each of these terminals and also 
defines terminal class and subTIP. 

The basic features of the TIP are as follows: 

• Each line has a single terminal. Clusters are not supported. 
Multidevice terminals can include keyboard/display devices with or 
without paper tape reader/punch or cassette. 

• Each terminal can be dedicated or dial-up. 

• Nine standard line speeds are supported. These speeds range between 
110 and 9600 baud and are defined in appendix C. 

• Lines are considered to be full duplex. 

• All terminals are interactive devices. 

• The TIP supports terminals that use ASCII, External, or 
correspondence code as their basic code. 

f See glossary 

60474500 A 9-1 

9 



MAJOR FUNCTIONS 
The major functions of the Async TIP are concerned with message control, 
code and format conversion, and line speed setting. 

9-2 

• The TIP interfaces terminal protocol (one of the seven defined 
terminals or a terminal derived from one of these seven by varying 
parameters) to the host interactive virtual terminal (IVT) protocol. 
Data is transformed to and from IVT format. For downline messages, 
this text processing is controlled by state programs. For upline 
messages, this processing is controlled by input state programs. 

• The TIP simultaneously controls several transfers to terminals. Each 
line can have multiple messages waiting for transfer. Information 
for a transfer is contained in a worklist entry (WLE) which is 
attached to the line control block (LCB) for that line. The line 
must have an active terminal control block (TCB) for the terminal. 

• 

• 

• 

• 

• 

If a terminal has a task in progress, additional tasks are queued to 
the TIP in the form of more WLEs. Tasks are processed on a first-in, 
first-out basis. 

Most of the terminal transfer functions (such as finding the next 
character on output, placing it in an output frame, and passing the 
frame to the output control loop) are performed by the multiplexer 
subsystem. The TIP specifies the data location on output. On input, 
the TIP input state programs demultiplex data under multiplex 
control. The TIP specifies the first of the series of state programs 
to be used. The TIP gains control to terminate the data transfer or 
to process the unrecoverable failure of a transfer. 

Fields in the TCB determine which terminal device is to be used for 
input and for output. These fields are changed by an IVT command 
from the host application or by a user IVT command entered at the 
terminal. 

The TIP provides transparent mode for passing terminal data to and 
from the host. In this mode, the host application program that 
receives or originates the data is responsible for handling all data 
interpretation, including control characters. 

The TIP converts terminal code (such as External) to and from ASCII 
code where necessary. 

The TIP sets line speed explicitly at TCB configuration time, or 
determines line speed as a part of autorecognition. 

The TIP processes autorecognition information to gather terminal 
configuration data for the host. This includes line speed for 
terminals with transmission rates up to 1200 baud. For the 2741 
terminal, code type is also detected. 

The TIP is prepared to receive input at all times. The TIP attempts 
to deliver output whenever such data is available unless an input 
operation is active, a page wait condition is in force, or an auto 
input block has been output. When input is detected during output, 
the TIP suspends the output operation and processes the input. The 
TIP repeats the interrupted output later, from the beginning of the 

60474500 A 



logical line unless the input causing the interruption was one of the 
special characters that cause an upline user break or the discarding 
of a logical line. 

• The TIP processes unrecoverable errors in data transfers and reports 
the failure to the host. Other parts of CCP process terminal and 
line recovery, in conjunction with the service module. 

HOST INTERFACE 
The host interface uses block protocol. Data is normally formatted in IVT 
mode (see section 6). Most commands, status, and statistics pass through 
the interface in the form of service messages. These use CMD blocks with 
the connection number zero. 

COMMAND BLOCKS 

Connection-oriented commands also use four types of CMD blocks. Table 9-1 
shows the command block format. 

TABLE 9-1. CMD BLOCKS FOR ASYNC TIP 

Format 

Name Block Header Other 

DN SN CN BT PFC SFC Other 

Start Input NPUt Host ID Line ID 04 Cl 05 -
Stop input NPUt Host ID Line ID 04 Cl 06 -
Input Stopped NPU Host ID Line ID 04 Cl 07 RC 

Define terminal 
characteristics NPU Host ID Line ID 04 Cl 04 String 

RC - Response code7 if 00, stops input response 

String - Conforms to the IVT requirements of table 6-57 has the form shown 
in TERMINAL PARAMETERS less the PFC and SFC7 is one or more 
characters 

t Downline from the host only. 

60474500 A 9-3 



The terminal parameters recognized by the IVT interface are as follows: 

Command 

TC 
PW 
PL 
PA 
CN 
BS 
AL 
Bl 
B2 
CT 
CI 
LI 
SE 
DL 
IN 
OP 
CD 
EP 
MS 
PG 

Definition 

Terminal class 
Page width 
Page length 
Check parity 
Cancel character 
Backspace character 
Abort output line 
User break 1 character 
User break 2 character 
Control character 
CR idle count 
LF idle count 
Special edit mode 
Transparent text delimiter 
Select input device 
Select output device 
Select character set device 
Echoplex mode 
Operator-generated message to network operator (NOP) console 
Page wait 

These commands can be sent at the rate of one per CMD block. There is no 
limit to the number of CMD blocks that can be sent to alter one or more 
TCBs. If an error is detected in a command from the host, a BRK block is 
generated and sent upline. 

TERMINAL CONFIGURATION 

Before a terminal can be used, the line and terminal must be configured. 
This is performed by service messages to configure (change) line control 
blocks (LCBs) and terminal control blocks (TCBs). The initial configuration 
of TCBs is processed by the service module (SVM). The TIP, however, 
finishes preparing the TCB on a worklist entry call from the service module. 

When the connection between the user terminal and the host is initially 
established, the terminal is configured by setting up the TCB with a set of 
default parameters (appendix C). Host software can modify these parameters 
at any time using any of the parameters listed above. The terminal user 
also can modify the configuration of the terminal, its operational modes, 
and the management of the upline and downline data streams by entering these 
parameters in a control message. 

USER INTERFACE 
The Async TIP user interface has five aspects: 

9-4 

• Commands from the user console to alter the terminal 
characteristics. These commands are functionally similar to those 
commands received from the host which were discussed previously. As 
in the host interface case, the message is parsed by the IVT 
processor (PTIVTCMD) and the information is used to alter the TCB for 
the terminal, thereby altering the terminal's characteristics. 

60474500 A 



Information changing PW, PL or TC is also passed upline to the 
communication supervisor (CS) in the host so that network 
configuration remains a system constant. This assures that terminal 
will retain its PW and PL characteristics should the NPU fail. In 
this case the NPU is reloaded from the host using current 
configuration information. 

• The format of input messages from the terminal. 

• The format of output messages to the terminal. 

• Modem and line control that results from the user activating or 
deactivating a terminal. 

• Sending a break 1 or break 2 signal. 

NOTE 

Break 1 and break 2 signals are user-defined and are 
independent of the terminal's break key (if any). The host 
application program must provide code to utilize these break 
signals. 

USER CONTROL MESSAGES 

A user control message has three parts: 

CTL other CR 

CTL is the appropriate control character for the terminal, other is one of 
the terminal parameters described previously, and CR (carriage return) is 
the terminal's input logical line delimiter. 

This message is passed through the multiplexer subsystem interface and is 
recognized as a user-initiated control message. The Async TIP calls 
PTlVTCMD to parse the message and to check for a valid parameter. If all 
parameters are valid, the appropriate field in the TCB is changed and the 
TIP responds to the user with the statement of 

CR LF CR LF 

If the user input is incorrect, the TIP responds with the canned message 

CR LF ERR... CR LF 

To enable the TIP to detect operational control messages, each message must 
start with the defined control character and the message must be contained 
in one logical input line (2741 terminals must precede the control character 
with an attention character). Commands become effective immediately. A 
detailed description of each terminal parameter follows. 

Terminal Class Command 

The terminal class command format is as follows: 

60474500 A 9-5 



1 
2 
4 

CTL TC = 5 CR 
6 
7 
8 

This command establishes the terminal class and default parameters as 
defined in the terminal class table (appendix C). 

Page Width Command 

The page width command format is as follows: 

CTL PW = NNN CR 

This command establishes the line width (in characters) for nontransparent 
output and the maximum block size (in characters) for input. 

For those terminal classes that do not use the display as the default 
device, the TIP inserts the character sequence deferred for the terminal to 
move the carriage to the point in the next line where the number of 
characters to be transmitted equals page width. 

For those terminal classes that do use the display as the default device, 
the page width is assumed to be the actual physical width of the screen. 
The TIP does not insert a new line sequence when the number of characters 
output equals page width, since the TIP assumes that terminal hardware 
automatically starts the new line. This prevents double spacing. NNN 
ranges between 0 and 255: 0 means NEW LINE is never inserted. 

Page Length Command 

The page length command format is as follows: 

CTL PL = NNN CR 

This command establishes the number of physical lines for output. For 
terminal classes that do not use the display as the default device, the TIP 
inserts the character sequence defined for the terminal class to advance the 
carriage to next page when the number of physical lines transmitted equals 
page length. For terminal classes that use the display as the default 
device, the TIP assumes the page length is the actual screen size. When the 
page length is reached, the TIP does not output a new page because the TIP 
assumes that the terminal hardware will automatically move to the new page 
position. If the default device is display and if the page wait feature is 
selected, and if OP = DI, the TIP waits for operator input before 
continuing. NNN varies between 0 and 255: 0 means no paging. 

Check Parity Command 

The check parity command format is as follows: 

9-6 60474500 A 



CTL PA 

This command establishes the type of parity that is to be expected on input 
and that is to be generated on output. Parity options are discussed later 
in the terminal transforms subsection. 

Cancel Character Command 

The cancel character command format is as follows: 

CTL CN = a CR 

This command establishes the character to be used to delete the logical 
input line in process. After the line is deleted, the TIP sends a *DEL* 
message to the terminal. 

Backspace Character Command 

This command establishes the character to be used for the backspace key; 
that is, the character that causes the previous input character to be 
deleted from the input buffer in process. Note that backspacing is a 
one-unit-at-a-time operation. Backspacing cannot cross a logical or 
physical line boundary. The command format is 

CTL BS = a CR 

Abort Output Line Command 

This command establishes the character to be used to cause the rest of the 
present output logical line to be discarded. The command format is 

CTL AL = a CR 

User Break 1 Character Command 

This command establishes the character to be used to generate an upline BRK 
block with a user break 1 reason code. User break 1 is frequently used as 
an abort output queue signal. The command format is 

CTL Bl = a CR 

User Break 2 Character Command 

This command establishes the character to be used to generate an upline BRK 
block with a user break 2 reason code. User break 2 is frequently used as 
an abort job signal. The command format is 

CTL B2 = a CR 

60474500 A 9-7 



Control Character Command 

This command establishes the character to be used to enter operational 
control messages (IVT parameter change command). The command format is 

CTL CT = a CR 

CR Idle Count Command 

This command establishes the number of idle characters to be inserted in the 
output stream following a carriage return. The user of CI = nn for these 
terminals overrules the default value (appendix C); CI= CA restores the 
default value. The command format is 

CTL CI = [~~ CR 

LF Idle Count Command 

This command establishes the number of idle characters to be inserted in the 
output stream following a line feed. The use of LI = nn overrules the 
default value (appendix C); LI= CA restores this default value. The 
command format is 

CTL LI = [~~ CR 

Default value is given in appendix c. 

Special Edit 

Command format: 

CTL SE = [~] CR 

An SE= Y selection places the 1 terminal in special edit mode; an SE= N 
selection returns the terminal to the normal character edit mode. Special 
edit mode provides two types of special operations: 

• Backspace (BS), line feed (LF), and cancel input control symbols are 
not treated as control characters; instead they are sent upline as 
data. 

• A character delete sequence (one or more backspaces followed by a 
line feed) causes the TIP to issue a caret prompt to the terminal, 
and then to continue with input processing. 

Transparent Text Delimiter Command 

This command establishes the transparent text delimiter. The timeout value 
is 300 + 100 milliseconds. 

9-8 60474500 A 



TABLE 9-2. TRANSFORMS FOR EMBEDDED FORMAT EFFECTORS (FE) 
IN ASYNC TIP DOWNLINE 

!VT Terminal Classes 

1 2 4t 5 6 7 

Virtual TTY 

8 

Inter- 33, 35, CDC IBM TTY CDC Hazeltine Tektronix 
Action face 37, 38 713-10 2741 40 751-10 2000 

Carriage CR CR CR NLtt CR CR not 
Return supported 

Line 
Feed LF LF LF LF ESCB LF LF 

t·supports the APL code set. 
ttNew Line 

The command format is 

CTL DL = (Xhh), (Cnnnn), (TO) CR 

hh - Two hexadecimal digits representing the terminal-originated 
character selected as a delimiter 

nnnn - A character count (0 to 4095) 

TO - Input character timeout 

4014 

CR 

LF 

Each field is optional, but at least one must appear. Parameters can be 
entered in any order and trailing commas can be deleted. 

Select Input Device Command 

This command allows the user to specify the input device as a keyboard or 
paper tape reader. It also specifies whether or not transparent mode is in 
effect. Note that paper tape input is allowed in keyboard mode, but that 
the TIP does not send the X-ON characters to start the paper tape reader. 

The command format is: 

CTL IN = [;~] CR 

KB - Keyboard input 
XK - Transparent keyboard input 
PT - Paper tape reader input 
XP - Transparent paper tape reader input 
X - Transparent input, any device 

60474500 A 9-9 



Select Output Device Command 

This command allows the user to specify the output device as printer, CRT 
display, or paper tape punch. Printer and CRT display are functionally 
equivalent except for page wait. The user can punch a paper tape in any 
mode, but the TIP only provides the X-OFF character if OP = PT and if data 
is not transparent. The command format is: 

rP~R~~ CTL OP = Ll Ll CR 

PR - Printer 
DI - CRT Display 
PT - Paper Tape Punch 

Character Set Detect 

Command format: 

CTL CD = A CR 

This restarts the character set recognition logic when the terminal operator 
changes the message character set. After the operator enters this command, 
he has 60 seconds to: (1) physically change the terminal's code set (for 
instance, by changing the type element on a 2741 typewriter), and (2) 
activate autorecognition of the new code set by pressing the ) and carriage 
return keys (in that order). 

Echoplex Mode Command 

This command allows the user to specify where input character echoing is to 
take place. The command format is: 

CTL EP = [~] CR 

Y - TIP sets the communication line adapter to echo the input characters 
N - The terminal echoes the input characters 

Operator Message Comm.,d 

This command allows the user to send message text to the network operator. 
Any number of text characters is accepted. The command format is: 

CTL MS = text CR 

Page Wait Command 

This command selects the page wait condition. It allows the user to limit 
output to the currently displayed page until the operator provides a turn 
page signal. Note that this command has effect only for OP = DI. The 
command format is: 

CTL PG = [~] CR 

9-10 60474500 A 



ACCESS CONTROL KEYS 

The user can abort output processing by using a special character. Each of 
the following three allowable special characters must be followed by a 
carriage return (CR): 

• Abort output line character - the predefined key at the terminal (not 
the ABORT key). 

• User break 1 - the predefined key at the terminal (not the BREAK key). 

• User break 2 - the predefined key at the terminal (not the BREAK key). 

For full-duplex terminals, the special characters can be entered during 
output; for half-duplex terminals, a break state must first be entered by 
pressing the BREAK key (IBM 2741 uses ATTN key) to cause output to stop and 
the special character to be recognized. When break processing occurs, the 
user can enter data or commands. 

TERMINAL ON/OFF AND BREAK CONTROL 

For asynchronous lines, the modems produce the carrier signal only during 
active message transmission. 

• Receive Carrier - The receive carrier remains on while the line is up. 

• Transmit Carrier - The TIP turns the NPU transmit carrier (RTS) on 
for the duration of an output message delivery to the terminal. The 
TIP turns RTS off immediately following the last character sent or in 
response to a break received from the terminal. 

Breaks can be initiated upline. The received (upline) break from the 
terminal appears in one of two ways: 

• For terminals with transmission rates less than 600 baud: for at 
least 200 ms, a spacing condition is maintained on the receive data 
line while the output is being sent. 

• For terminals with transmission rates of 600 baud and above: for at 
least 200 ms, a spacing condition is maintained on the supervisory 
receive channel. 

USER INPUT MESSAGE FORMAT 

Two standard input message formats are acceptable, one for normally 
processed data and the other for transparent data, as shown below: 

rSTX) 
input = lSTX) 

logical line LLDLM (X-OFFJ 
CTL Command LLDLM 
transparent data DLM 

An X-OFF after a DLM is not seen. 

STX - Start of text symbol 
logical line - [.physical line LF CR] physical line 0-n 

60474500 A 9-11 



The terminal user enters input as the basic unit that he wishes processed by 
the computer. If page mode is in effect, input can be treated as a request 
for next page. 

Character mode inputs are logical lines as shown above. 

The logical line delimiters (LLDLM) are: 

LLDLM = 

CHARSEQ 

EOT 

LF 
CR 

CTL 

Command 

rcHARSEQl 
LEOT J 

[LF DEL] CR 0-m 

- 04161 the value when translated from user's code. Set to 
no parity (ASCII). 

- A logical NOT 

values - when translated from the user's 
code. Set to no parity (ASCII). 

- Control character, defined by terminal type and can be 
changed by user 

Terminal parameter commands (listed above in user control 
messages) 

Transparent - gbyteJ l-n1 (X-OFF}] l-n2 where n1 and n2 are 
Data positive integers 

OLM 

physical 
line 

byte 

character 

DEL 

X-OFF 

- [200-ms timeout character count] 
delimiter byte 

Any of these can be specified by the user. Two or more can 
be used in combination. 

[Character] 1-m where m is terminal's physical line width 
as defined by user 

- bit pattern - any bit pattern that can be received from the 
terminal 

- member of 128 ASCII character set. When translated from 
user's code, it is set to no parity (ASCII) 

- idle fill 

- a character that turns the paper tape reader off. 
Meaningful only when input device is paper tape (IN = PT or 
XP) 

USER OUTPUT MESSAGE FORMAT 

Two standard output message formats are acceptable: one for normally 
processed data and the other for transparent data. The format is given for 
the message after all IVT transforms, paging, etc., have been performed. 

9-12 60474500 A 



output = [~~~~sparent data] 

page = {FF} LlPREFE) physical line] 

rLF (idle]O-k NR [idle)O-m J] 
l(POSTFE) (X-OFF [idle) 3) 1-n 

k and m - Line feed and carriage return idle counts defined by terminal 
class or terminal parameter commands; n - Page length in physical lines. 
If the page length is set to zero, no form feeds {FF} are inserted by the 
TIP, and the page wait feature has no effect. 

transparent - [byte] 1-n where n is an installation time parameter for 
data maximum block size 

FF 

PRE FE 

physical 
line 

LF 

idle 

PO STE 

X-OFF 

byte 

60474500 A 

- [home-and-clea~ ; differs by terminal class; not sent if 
page length is zero 

Single Space 
Double Space 
Triple Space 
Start of Current Line 
Home 
Home-and-Clear 

Pre-print format effectors; differ by terminal class. See 
table 9-2. 

- [character] o-n where n is defined by page width 

- OA16 yalue when translated from no parity ASCII to user's 
code set; causes the cursor or platten to move down one line 

- [DEL J 
NULL 

- rsingle Space 1 
Lstart of Current LineJ 

Postprint format effectors; differ by terminal class. See 
table 9-3. 

- A character that turns the paper tape reader off; used only 
when the output device is paper tape {OP = PT) and when 
data is not transparent. 

- Any bit pattern capable of being received by the terminal; 
depending on the parity option selected, byte can be 7 bits 
plus parity or all 8 bits as received from the host. 

9-13 



TABLE 9-3. PREPRINT AND POSTPRINT FORMAT EFFECTORS FOR ASYNC TIP 

IV!' FE 

PREPRINT 

Position to start 
of next line SPACE 

Position to start 
of current line + 

Position to top 
of form (cursor 
home) 

HCllle cursor and 

* 

clear screen 1 

Null 

Double Space 0 

Other 

POSTPRINT 

Single space 

DI Return to start 
of current line 

'!TY 
33, 35' 
37, 38 

CR LF 

CR 

CR 6LFstt 

CR 6LFstt 

-
CR 2LFs 

CR 3LFs 

CR LF 

CR 

coc 
713-10 

CR LF 

CR 

EM 

CAN 

-
CR 2LF 

CR 3LF 

I 
CR LF 

CR 

TERMINAL FE 

IBM '!TY coc 
2741 40 751-1 

NL CR LF CR LF 

(N)BSst ESC G CR 

6NLstt ESCH EM 

6NLstt ESC R CAN 

- - -
2NLs CR 2LF CR 2LF 

3NLs CR 3LF CR 3LF 

I 
NL 

I 
CR LF 

I 
CRLF 

(N)BSs CR CR 

t The number of backspaces is a function of current cursor position. 

Hazeltine Tektronix 
2000 4014 

LF CRLF 

- CR 

20C ESC FF 

FS E5C FF 

- -
2LFs CR 2LFs 

3LFs CR 3LFs 

I 
LF CRLF 

CR 

ttWhen PL # O, the IV!' logic calculates the difference between end of page and current print 
position. It then spaces forward the a~ropriate number of lines. 

9-14 60474500 A 



DATA TRANSFORMS 
The following text describes the upline and downline transforms necessary to 
convert asynchronous verbical terminal data to and from terminal protocol 
format. The following transforms are described: 

• Parity options 

• Character mode input processing 

(1) for logical and physical lines 

(2) block mode support as the default condition 

(3) type ahead mode 

(4) keyboard input {includes processing for parity, for nulls and 
deletes, conversion to 7-bit ASCII code, backspacing, autoinput, 
line feed and new line for physical lines, carriage return and 
end of transmission for logical lines, store text, cancel, upper 
and lower case control, and line width) 

(5) paper tape character mode input 

• Transparent mode input 

• Character mode output processing 

- printer output {including conversion from 7-bit ASCII to printer 
code, processing of format effectors, line folding, and upper and 
lower case shift) 

- CRT output 

- paper tape output 

• Transparent mode output processing 

• Aborting logical lines 

PARITY OPTIONS 

Parity can be set in any of four ways: zero {Z), odd (0), even (E), and 
none (N). Four processing types (transparent and nontransparent data for 
input and output) must be supported. Table 9-4 summarizes the processing 
done on bit 7 (parity bit) of the character by the Async TIP. 

CHARACTER MODE INPUT PROCESSING 

Logical Lines 

A logical line of input is defined to be that input line ending with the 
terminal's carriage return, new line, or EOT delimiter. The TIP discards 
the carriage return or EOT character. A line feed sequence or new line 
sequence, respectively, is returned to the user if the mode permits. The 
currently assembled block is sent to the host as a MSG block. Null logical 
lines are discarded only if they are used as a page turn indicator. 

60474500 A 9-15 



Data Mode 

Nontransparent 

Transparent 

Nontransparent 

Transparent 

Physical Lines 

TABLE 9-4. PARITY HANDLING 

Direction 

Output 

Output 

Input 

Input 

Zero (Z) 

Host sends 8 
If character 
suppressed. 
have bit 7 = 

Parity Selection 

Odd (0) Even (E) 

bits1 bit 8 is ignored. 
is translated, bit 8 is 
(Virtual characters must 
0i) 1 
T I 

Host sends 
anything. 
to 

8 bits1 bit 8 can be 
Bit is then set correctly 

Zero Odd Even 

parity, then character is sent to CLA 
I l 

Bit 8 is alway~ set to ze~o before 
sending character to host. 

I l 
T l 

Bit 8 is always set to zero before 
sending character to host. 

None (N) 

Character 
from host 
is sent 
out 
unaltered. 

Character 
is sent to 
host 
unaltered. 

A physical line of input is defined to be an input line that ends with the 
terminal's line feed delimiter or when current page width is reached. 

When not in APL special mode, the TIP discards the line feed delimiter 
character. In the case of line feed, a carriage return sequence is returned 
to the user. The currently assembled block is sent to the host as a BLK 
block containing a single physical line. When in APL special mode, the line 
feed is not discarded, a carriage return sequence is not sent to the user, 
and the block is sent to the host as a MSG block. 

Note that on a 2741 terminal, line feed is effected by using the ATTN key. 
In normal processing, a new line is echoed to position the carriage to the 
beginning of the next line and the keyboard is unlocked. In APL special 
mode, a line feed is echoed to perform the physical line feed only1 the 
keyboard is not unlocked. 

9-16 60474500 A 



Block Mode Support 

The default condition of the TIP is block mode. This means that input has 
priority over output. At the end of each logical or physical line, a 300-ms 
timer is started by the TIP. If any new input arrives from the terminal, 
the output side of the TIP is locked out. Output data from the host remains 
queued for the terminal. Any canned response, such as echoing carriage 
return to line feed sequence, is discarded. 

Type Ahead Mode 

The TIP is always in the type ahead mode; that is, it is normally ready for 
input unless it is busy outputting. Output is started only if the input 
pauses at the end of a logical line for 300+100 ms. If an input request 
conflicts with output on output operation or if input starts at any time 
that output is active, the output is halted and input proceeds. If the user 
is in autoinput or special edit mode, he has the responsibility for not 
typing ahead. 

Keyboard Input 

PARITY CHECKING AND STRIPPING 

The TIP services the input data stream using the default parameter 
appropriate to the terminal class. For the no parity checking case, the 
parity bit is stripped, as data characters arrive from the terminal. (This 
does not apply if the data is transparent and PA = N.) The user can cause 
parity checking by resetting the internal parameters using the CTL PA 
command. The communications line adapter is set to the terminal's present 
parity mode. As input characters arrive, the communications line adapter 
automatically checks and strips parity from the data characters. If a 
parity error occurs, the TIP stores the bad character in the input data 
buffer and then marks the data block clarifier (DBC) to show that a parity 
error exists within the data block. 

NULLS AND DELETES PROCESSING 

The TIP strips nulls (NUL) and deletes (DEL) from the input data stream as 
it receives them. 

CHARACTER CODE CONVERSION 

The TIP converts the terminal's input characters to 7-bit ASCII {parity bit 
= 0) as it receives them. 

BACKSPACE PROCESSING 

The TIP is capable of detecting the terminal's currently defined backspace 
character. One input character is discarded by the TIP for each consecutive 
backspace character received. Backspacing to the beginning of a line 
deletes the line. Backspacing past the beginning of the line is ignored. 

60474500 A 9-17 



Since the TIP may ship physical lines to the host before the end of logical 
line, all references to beginning of line in the preceding discussion should 
be understood to refer to physical lines. If the current page width is 
reached before receiving the end of a physical line indicator, backspacing 
is not permitted into the previous block since the TIP has already released 
that block. Backspacing is effective only if the special edit mode is not 
in effect. In special edit mode, the backspace is treated as any other data 
character. 

AUTOINPUT PROCESSING 

The TIP has limited ability to place data into the data block just output 
(autoinput mode). Logically, the previously received output data block is 
chained to the front of a newly arriving input data block and is sent to the 
host as part of the input data stream. Autoinput only applies to downline 
MSG blocks; it is ignored if specified in a BLK block (that is, the entire 
autoinput message is restricted to a single block). 

After the autoinput block has been output, the TIP cannot deliver any more 
output until the executed input has been received. Otherwise, the input 
from the terminal may not be attached to the correct block. Only the first 
20 characters of the output data are returned. Format effectors are 
stripped from the output data before returning it. If the user wishes to 
override the autoinput and substitute his own input, he enters a cancel 
input line character followed by a carriage return/EOT. This cancels any 
data entered by the user as well as the autoinput block being held for 
return to the host. When an autoinput block has been output, the TIP 
remains in input mode until a noncancelled input is received. 

SPECIAL EDIT MODE 

In Special Edit Mode input, the backspace, line feed, and cancel characters 
are sent upline as data. When a character delete sequence is recognized 
(BS ••• BS LF), the TIP issues a caret prompt. Note that in special edit 

mode the TIP recognizes only logical lines and not physical lines. 

LINE FEED AND NEW LINE PROCESSING (PHYSICAL LINE) 

When not in Special Edit Mode, the TIP discards the line feed or attention 
(2741 terminal) character, and sends a carriage return sequence to the 
user. The currently assembled block is sent to the host as a BLK block 
containing a single physical line. In special edit mode, however, the TIP 
stores the line feed as data and does not send a carriage return sequence to 
the user. 

CARRIAGE RETURN AND EOT PROCESSING (LOGICAL LINE) 

The TIP discards the carriage return or EOT character. Either a line feed 
sequence or new line sequence is sent to the user if the mode permits. The 
currently assembled block is sent to the host as a MSG block. A null 
logical line is discarded only if it is used as a page turn. 

9-18 60474500 A 

~\ 
\ 



PHYSICAL/LOGICAL LINE PROCESSING 

Processing of physical and logical lines follows the general rules laid down 
for character mode input processing. 

START-OF-TEST PROCESSING 

The start-of-text {STX) character is discarded when it occurs as the first 
character of a logical line. 

CANCEL CHARACTER (CN) PROCESSING 

The TIP detects the terminal's currently defined cancel character preceding 
the end-of-logical line indicator, discards the current input logical line, 
and sends a *DEL* message to the terminal. {Note that 2741 terminals must 
have an attention character preceding the CN character.) If any part of the 
logical line has already been dispatched, a cancel MSG block is sent to the 
host. The cancel character is treated as any other data character if the 
TIP in operation is in either special edit or transparent mode. 

UPPER/LOWERCASE SHIFT PROCESSING 

For the 2741 terminal, the TIP records shifts between lowercase and 
uppercase to ensure correct translation to ASCII. The TIP assumes the 
lowercase condition at the beginning of each input logical line. 

MAXIMUM LINE WIDTH PROCESSING 

If the current line width is reached without a physical line terminator 
being found, the partially assembled physical line is sent to the host as a 
BLK block. In the case that the line width is zero (user did not specify 
line width), the maximum line width is set to 140 characters. Note that in 
the usual case, the line terminator is found before the maximum width is 
reached. At that time the line is sent to the host as a BLK block. 

Paper Tape Character Mode Input 

The TIP is capable of reading paper tape input data without forcing the user 
to specifically enter a paper tape mode. To accomplish this, X-OFF 
characters should not exist on the paper tape or, alternatively, the user 
must turn the reader on after each X-OFF. 

For those users who have paper tape with X-OFF characters on the paper tape, 
paper tape input should be declared. In both keyboard and paper tape modes, 
the TIP detects end of physical/logical lines and processes them 
accordingly. The TIP then checks the next character which arrives; nulls 
and deletes are always stripped. If the character following a carriage 
return or EOT delimiter is a line feed or a new line, that character is 
discarded by the TIP. Similarly, if the TIP detects a line feed or new line 
delimiter followed by a carriage return or EOT character, that character is 
discarded. 

60474500 A 9-19 



In keyboard mode an X-OFF character is treated as data. In paper tape mode 
X-OFF is treated as data unless it is at the end of a logical line. In that 
case, X-OFF is discarded. If X-OFF stopped the tape, whether or not it was 
at the end of the logical line, the TIP sends X-ON after a MSG block from 
the application has been processed and there is no further output queued for 
this terminal. 

TRANSPARENT MODE INPUT PROCESSING FOR KEYBOARD AND PAPER TAPE 

Input data received by the TIP is sent to the host without character 
translation. When system default block size is exceeded, data is sent as 
BLK type blocks until one of the user transparent delimiters is reached. 
That data is then sent as a MSG block. In transparent paper tape mode where 
a special character or character count is specified, receipt of an X-OFF, 
which stops the tape, results in X-ON being sent to the terminal. The X-OFF 
character and all previously input data is sent to the host in a BLK block. 
When X-OFF is input due to special character or due to a timeout delimiter, 
and the tape stops, then the previous input is sent to the host in a MSG 
block, and transparent mode is terminated. No X-ON is sent in this case. 
If the input does not stop at the end of the transparent input, the 
remaining data is processed in character mode. Some of the initial 
character data might be lost in this case. The number of significant bits 
per character received from the terminal can range from six to eight 
depending on terminal type and parity setting. When the no-parity mode is 
selected (PA= N), the parity bit is passed as data. All information is 
passed right justified in the byte. Nonsignificant high-order bits are set 
to zero. 

When transparent mode ends, the TIP returns to character mode. Device type 
remains unchanged. 

CHARACTER MODE OUTPUT PROCESSING 

Output delivered to the TIP can have multiple logical lines within a data 
block. End of logical line delimiters, as well as certain embedded format 
characters, are translated to the terminal's format sequence where 
possible. Table 9-2 lists embedded format effector conversions for various 
types of terminals. The TIP monitors for input message or break commands 
during output operations so that the user can stop the output and perform 
necessary input operations or terminate the output. 

During automatic line folding or end of logical line processing, the TIP 
inserts the terminal's currently defined number of NUL characters into the 
output stream. During output paging, any input causes the TIP to reset the 
page count to the top of page. Therefore, the user must assume 
responsibility for inputting data, which can cause subsequent output to be 
improperly positioned on following pages. 

Where format effectors cause the terminal to be positioned over a page 
boundary, a new page sequence is output. This feature can be disabled by 
setting the page length to zero. 

9-20 60474500 A 



Logical Line Aborting 

During output, the TIP continuously monitors for a break or for input data. 
The user can terminate the current logical output line by entering the abort 
line character followed by a carriage return or EOT. Output continues with 
the next logical output line. 

Printer Output 

The printer output function includes character translation, format effector 
and line folding, and, for the 2741 terminal, upper and lowercase shifts. 

• Character translation. Normal output data (!VT format) is delivered 
to the TIP from the host application in ASCII code. The TIP converts 
the ASCII data to the terminal character set. 

• Format Effectors and Line Folding. Each logical line of output can 
contain a format effector as the first character. A bit in the data 
block clarifier defines whether or not these format effectors are 
present. Preprint single spacing is assumed if the format effectors 
are not present or are not defined. The format effectors {table 9-2) 
cause preformat or postformat control. The TIP converts the format 
effectors to the terminal's format sequence. Where applicable, the 
TIP automatically folds the line by outputting the terminal's line 
feed and carriage return sequence with the appropriate number of NULs. 

• 2741 Upper and Lowercase Shifts. Current upper and lowercase shift 
is retained by the TIP for output. Upper and lowercase shi­
characters are inserted by the TIP as a function of ASCII '~ae 
translation to the 2741 terminal character set. 

CRT Output 

CRT output is processed the same as printer output except that the TIP 
allows a page wait when that option is selected. After a page wait, the 
user enters a null line to obtain the next page. The TIP discards the null 
input line in page wait situations. If a non-null input line is typed by 
the user, it is treated as a page turn and is passed to the host unless it 
is a command. In that case, the TIP processes the command. 

When the page wait option is selected, the page output size is one line less 
than the current page length, to allow space for the user input necessary to 
turn the page. The page wait option has no effect on hard copy devices or 
when the current page length is zero. If a top of form is received in the 
output stream before the page is full, the message OVER •• is output to 
notify the user to turn the page. 

Paper Tape Output 

When the output device is specified to be paper tape, the TIP inserts an 
X-OFF character (DC4) followed by three NULs at the end of each logical line 
sequence if that line sequence contains postprint format effectors. Line 
folding is performed as for printer output. 

60474500 A 9-21 



TRANSPARENT MODE OUTPUT PROCESSING FOR PRINTER, CRT, AND PAPER TAPE 

Transparent mode allows the user application to inhibit the TIP transforms. 
In this mode the user application is responsible for all data formatting. 

The application can permit page waits by sending a synchronous command to 
the TIP. The TIP adds page waits at the end of every MSG block. The TIP 
interrupts page wait responses in the same manner as character mode page 
waits. 

LOGICAL LINE ABORTING 

Logical line aborting is the same as described previously for character mode 
output processing. 

ERROR HANDLING 
The Async TIP has the following error handling capability: 

• Marks lines down if the transmission fails due to an autorecognition 
timeout or a hardware error on the line (detected by multiplex 
subsystem). The TIP then requests the service module to generate a 
line status disabled service message. SVM sends the message to CS in 
the host. 

• Disables the line in response to a disable line service message from 
CS in the host. 

• Stops message processing and releases the message in response to user 
breaks, aborts output line commands, or cancels input line commands. 

• Rejects improper commands. 

The TIP does not generally check output transmissions. 

REGULATION 
The NPU is forced to reject input when (1) the NPU runs low on buffers, (2) 
the network block limit is exceeded, (3) a stop input command is received, 
or (4) the NPU loses contact with the host. If the reason for rejecting 
input is because the NPU lost contact with the host, then at the time the 
condition is detected in the NPU, each connected console terminal is sent a 
canned message to inform the user of the situation. The canned message is 

X-OFF NUL NUL C~ LF BELL BELL IDLESN 

INPUT STOPPED user text CR LF IDLESN 

Default for user text is HOST UNAVAILABLE. If input is received after the 
user has been notified of a loss of contact with the host or if any of the 
other reasons for rejecting input are detected, the input is discarded and 
the user is notified with the following canned message: 

9-22 

X-OFF NUL NUL CR LF BELL BELL IDLESN 

REPEAT ••• CR LF IDLESN 

60474500 A 



This message is repeated every time any further input is attempted from the 
terminal until the situation is relieved. When communication with the host 
has been restored, the user is notified by the following canned message: 

CR LF IDLESN 

HOST AVAILABLE CR LF IDLESN 

AUTORECOGNITION 
Autorecognition allows the TIP to determine both the terminal's transmission 
rate (if the rate is between 110 and 1200 baud) and the terminal's current 
code set. To activate the autorecognition function, the user at the 
terminal presses the carriage return key after the connection is 
established. This generates the appropriate character code input from the 
terminal. The TIP samples the input at 800 baud. Depending on the 
transmission speed, the TIP will detect one or more different characters for 
each acceptable line speed. 

The TIP resets the communications line adapter to the correct baud rate and 
then sends the terminal two line feeds to begin the character set 
recognition function. The operator presses the ) key and then a carriage 
return (ASCII terminal operators may press only the carriage return if they 
wish). 

To determine the code set, the TIP compares the input bits to the bits for 
these characters in each acceptable code set. After finding the correct 
code set, the TIP sends two more line feeds downline to the terminal to 
indicate that autorecognition is complete. Upline, the TIP sends a line 
operational service message to the host. This message contains the line 
speed and terminal character set. See appendix c. 

Extended code set recognition is a build time option. If the option is not 
selected, the TIP sends an error message to the terminal. 

Any terminal operating at a speed greater than 1200 baud must be dialed into 
a port where the communications line adapter is designed to operate at that 
particular speed. 

Table 9-5 summarizes the baud rate and code set autorecognition. 

60474500 A 9-23 



9-24 

TABLE 9-5. AUTORECOGNITION IN THE ASYNC TIP 

Stage 1 - Baud Rate - Autorecognition after terminal connection 

Rate Terminal 0Eerator InEut TIP ResEonse 

110 Any but 2741 Carriage Return 2 LFs 

134. 5 2741 Carriage Return 2 LFs 

150 Any but 2741 Carriage Return 2 LFs 

300 Any but 2741 Carriage Return 2 LFs 

600 Any but 2741 Carriage Return 2 LFs 

1200 Any but 2741 Carriage Return 2 LFs 

Stage 2 - Code Recognition 

Code 0Eerator InEut TIP ResEonse* 

ASCII ) CR or CR 2 LFs 

Teletype-paired ASCII ) CR or CR 2 LFs 

Bit-paired ASCII ) CR or CR 2 LFs 

External BCD ) CR 2 LFs 

External BCD-APL ) CR 2 LFs 

Correspondence ) CR 2 LFs 

Correspondence APL ) CR 2 LFs 

*If extended character set recognitiop is not included at 
build time, the error message is sent to terminal. 

60474500 A 



MODE 4 TIP 10 

The Mode 4 terminal interface program (TIP) provides procedures to convert 
data from synchronous terminals using Mode 4 protocol to data that is 
compatible with the host's virtual terminal (IVT or BVT) format. The Mode 4 
protocol supports both batch and interactive devices. There are three 
versions of the protocol: 

• Mode 4A supports a group of devices, such as console, printer, and 
card reader. 

• Mode 4B supports a console. 

• Mode 4C supports several consoles. 

The TIP also handles the necessary interface control tasks. 

HARDWARE CONSIDERATIONS 

Some of the hardware considerations for Mode 4 are the following: 

• Terminal types. A typical Mode 4A terminal is the 200 User Terminal 
consisting of a keyboard, a display (CRT), a card reader, and a 
printer. This terminal has both interactive and batch devices, and 
uses a single line. 

• Cluster capabilities. The Mode 4 terminal can be a cluster of 
several devices of the same types, such as a group of consoles or a 
group of printers. The TIP services multiple terminals in sequential 
order, without priority. However, the individual batch devices (card 
reader and printer) in a Mode 4A cluster terminal are subordinated to 
the interactive device. A batch transfer using such a device is 
preempted by an interactive device transfer. 

• Line speed. The TIP supports line speeds up to 9600 baud. 

• Line type. Lines are of two types: dedicated without a transceiver, 
or dial-up with a modem. Lines are considered to be half duplex. 
The TIP either transmits data over the line or receives data, but 
does not do both simultaneously. 

• Terminal codes. The TIP supports terminals that use either ASCII or 
external BCD code. 

MAJOR FUNCTIONS 
The TIP performs the following major functions: 

• It interfaces terminal protocol {some variation of Mode 4 protocol) 
to the host virtual terminal protocol (IVT for interactive devices, 
BVT for batch devices). 

60474500 A 10-1 



• It provides a transparent mode of passing terminal data to and from 
the host. In transparent mode, the host application program that 
receives or originates the data is responsible for handling all data 
interpretation, including control characters. 

• It converts external BCD code to and from ASCII code where necessary. 

• It polls terminals to receive upline data or to assure that the 
terminal is ready to accept downline data. The host requests the 
polling; the TIP controls actual timing of the polling. 

• It performs autorecognition to gather terminal configuration data for 
the host. Autorecognition on lines with multicluster terminals 
report only one cluster. 

• It performs terminal and line recovery for recoverable errors and 
reports irrecoverable errors. 

NOTE 

Considerable differences in terminology exist in Mode 4 
documents. Table 10-1 defines the terms used in this manual 
and in other Mode 4A and 4C documents. 

TABLE 10-1. MODE 4 NOMENCLATURE 

Nomenclature used Mode 4 Mode 4C 
in this manual Nomenclature Nomenclature 

NPU data source control station 
cluster address site address terminal address 
cluster controller equipment controller station 
terminal address station address device address 

DATA FORMAT FOR MODE 4 
Figure 10-1 shows typical data formats for Mode 4 protocol. 

HOST INTERFACE 
The host interface uses block protocol. Data is formatted in IVT or BVT 
mode (see section 6). Most status and statistics pass through the interface 
in service messages. These use CMD blocks with a connection number (CN) of 
zero. 

Four types of line-related CMD blocks are used. Table 10-2 shows the 
command block format. 

10-2 60474500 A 



DATA FORMAT (odd parity) 

Transmission Header 
Transmission 
Trailer 

~ 

Sync SOH TA MTI Text ESC E Code ETX LPC Pad Pad 

Transmit 
& Receive 
at Least 2 

I 
I Mode 4 
l, Transmission 

, Block 

' ' ' 0 1 2 3 4 ) 

I DN I SN I CN I R/BSN i 2/3 I DBC I Text 

I 
I 
l 
' ' ' ' ' 

Block Format 
(NPU and Host) 

NONDATA FORMAT 

Sync SOH CA TA MTI ETX LPC 

Mode 4 Transmission Block 

- Sync bit = 16 16 
- Start of header = 01 

~ 

Pad 

Sync 

SOH 

ESC 

ETX 

MTI 

- Escape code; external BCD = 3E16 ASCII 

E Code 

CA 

TA 

- End of text = 03 

- Message text indicator 

- Equipment Code 

- Cluster address (appendix C) 

- Terminal address (appendix C) 

Pad 

LPC - Longitudinal parity check; collects parity on bits 0 - 6 of all 
characters except Sync bytes 

DN, SN, CN - Block header address 

R/BSN/BT - Response flag/block serial number/block type; BT for a data 
block must be 1 of 2 

DBC 

Pad 

- Data block clarifier 

- Byte of all l's to assure transmission of LPC by modern 

Figure 10-1. MODE 4 Protocol Message Formats 

60474500 A 10-3 



TABLE 10-2. CMD BLOCKS FOR MODE 4 PROTOCOL 

Name Format 

DN SN CN BT PFC SFC Other 

Start Input NPU Terminal Host Data Node CN 04 Cl 05 -
Stop Input NPU Terminal Host Data Node CN 04 Cl 06 -
Input Stopped Host Data Node NPU Terminal CN 04 Cl 07 RC 

Define Terminal 
Characteristics NPU Host Data CN 04 Cl 04 String 

RC - Response code 

00 - Stop input response 
01 - Input device not ready 
02 - Card slip error 
03 - EOI input 
04 - Batch input interrupted by interactive I/O 

String - Conforms to the IVT requirements of table 6-5. String has the 
form shown in TERMINAL PARAMETERS less the PFC and SFC. It is one 
to fifty characters long. 

The TERMINAL PARAMETERS recognized by the IVT interface are listed below. 
See appendix C for default values. 

Command 

TC 
PW 
PL 
CN 
CT 
IN 
PG 
Bl 
B2 
MS 

Definition 

Terminal class 
Page width 
Page length 
Cancel character 
Control character 
Input device for transparent mode 
Page wait 
User break 1 
User break 2 
Operator message 

Each command entered from the terminal must be preceded by the control 
character and followed by a carriage return or an end of message: CTL 
parameter CR. In an input block from the terminal containing multiple 
logical lines separated by carriage returns, only the first logical line can 
be an IVT command. All other lines are treated as data and sent to the 
host. If the IVT command is a request for transparent input, the current 
terminal input continues to be treated in the current mode. The next input 
block, however, is treated in transparent mode. 

Commands sent by the host are contained within CMD blocks and are not 
preceded by the control character. Only one IVT command can be sent in a 
CMD block. 

10-4 60474500 A 



If an error is detected in a command from the host, a BRK block is returned 
to the host. When errors are detected in a request from the terminal, the 
message ERR ••• is sent to the terminal. 

TERMINAL CONFIGURATION 

Before a terminal can be used, the line and terminal must be configured. 
This is performed by service messages to create control tables called line 
control blocks (LCBs) and terminal control blocks (TCBs). Configuring the 
LCBs can involve the autorecognition logic. 

Most of the initial configuration of TCBs is processed by the service 
module. The TIP, however, finishes preparing the TCB when it is called by 
the service module. 

The TIP processes each line as independent data channels. Each terminal on 
a line is checked for work in the order the terminals were configured. This 
method allows each terminal to be processed in order without priority. The 
card reader and printer of the 200 User Terminal are treated as separate 
terminals in this scheme, but the console is required and must be configured 
before the card reader and printer can be configured. 

Note that each terminal can perform only one task if other terminals have 
work waiting. The work allocation check always moves to the next terminal 
after assigning the current task to a terminal. 

IVY INTERFACE 

The interactive virtual terminal interface to the Mode 4 TIP supports 
display/keyboards attached to synchronous lines. The configuration may be 
multicluster and each cluster may be multiterminal. The 200 User Terminal 
console supported by the !VT interface uses several additional features to 
control the card reader and printer. 

The terminals are activated a (polling for input is started) either by 
delivery of an output message {MSG or BLK blocks) or by a start input 
command. 

Polling for input continues until the terminal is deleted, until an error 
occurs, until buffer or logical link regulation occurs, or until a stop 
input command is received. Input stopped command is sent in response to the 
stop input command. 

A STP block is sent upline whenever a communications error is detected. The 
subsequent STRT block is sent upline when the error condition is resolved. 

For the 200 User Terminal, the use of the display causes STP blocks to be 
sent upline on the card reader and printer connections. The STP block on 
the card reader connection is preceded by an input stopped command if the 
device is reading cards. These events signal the current use of the 200 
User Terminal transmission buffer since this buffer is shared by the 
display, the card reader, and the printer. The host is sent STRT blocks for 
the card reader and printer to signal the end of the interactive 
transactions when the TIP receives a stop input command for the console 
connection. 

60474500 A 10-5 



CARD READER INTERFACE 

The Mode 4A card reader is activated by sending a start input command to the 
TIP. The TIP sends card reader data, transformed to BVT format, to the 
host. Each block of data is reported to the host as a BLK block until an 
EOI card (6/7/6/9 punch in column one) is detected. Then a MSG block is 
sent containing the data up to and including the EOI card. Subsequent EOI 
cards are discarded until the first non-EOI card is sensed. Any data 
following the last EOI is considered part of the next message. (A single 
block from a Mode 4 device might contain more than one message, which is 
reported as a MSG block.) An input stopped command is sent following the 
last data from the transmission block. No further input is allowed from the 
card reader until it is restarted by a start input command. An input 
stopped command is also sent if no further cards are present in the input 
hopper (not ready), if the TIP detects an error in the card data (card 
slip), if card reading is interrupted for I/Oto the display/keyboard, or as 
a response to a stop input command. A reason code is supplied to 
distinguish the different cases (see table 10-2). Note that if an EOI card 
and not ready are detected in the same transmission block, then the not 
ready reason code is reported. 

An upline STP block on the card reader channel indicates that downline data 
or commands must not be sent. If data or commands were sent, they are not 
acknowledged with a BACK block. The data or command must then be repeated. 
A STP block is used by the host or the terminal operator whenever the 
display is in use. 

An upline STP block is generated when the TIP detects a communications error 
with the terminal. A subsequent upline STRT block is sent when the error is 
resolved. 

PRINTER INTERFACE 

The printer is activated when the host sends downline data. The printer 
connection is considered active until a MSG block is sent by the host or 
until the display is used. The TIP sends to the printer the data that has 
been transformed from BVT format to printer format. Each correctly 
delivered block is acknowledged by sending a BACK block to the host. 

A STP is generated by the TIP whenever data or commands cannot be processed 
because the display is in use. This stop occurs either when the host sends 
data to the display or when the remote operator interrupts a batch 
operation. The host must prepare to resend any data or commands not 
acknowledged with a BACK block. 

A STP block is also generated whenever an irrecoverable error is detected on 
the printer. 

A BRK block is sent to the host whenever the printer is found to be not 
ready while the host is attempting to deliver output. 

DATA TRANSFORMS 
This subsection describes the upline and downline transforms that convert 
data to and from terminal format. 

10-6 60474500 A 



DOWNLINE IVT TRANSFORMS 

The downline IVT transforms (table 10-3) apply to the following: 

• Carriage return (CR) 

• Line feed (LF) 

• Logical line separator (US) 

• Autoinput. In this case, the TIP saves the first 20 data characters 
of the output message and returns these 20 characters together with 
the reply data solicited from the operator at the terminal (also has 
upline transform effects). The format effector is removed if present 
in the downline data. 

• Transparent data. Data is not transformed; it remains in terminal 
format. 

• Format effectors (FEs). These are present in the downline IVT data 
(see table 10-4). 

NOTE 

Flags affecting the autoinput, transparent mode, and FEs are 
found in the data block clarifier (DBC) field of the data 
block. The transparent mode flag applies to both upline and 
downline transfers. This clarifier byte immediately precedes 
the first byte of data in the block. 

Cursor is returned to the left margin following each input 
and output of a logical line. If more than one logical line 
exists in a block, the logical separator (US) is treated as a 
carriage return. This assures that output data is compatible 
whether logical lines are blocked or not. The fact that the 
cursor is returned to the left margin after each output is 
taken into account when processing the format effectors. Any 
undefined format effector is processed as a preprint 
position-to-start-of-next-line command. 

• ASCII control characters. Any ASCII control character is replaced 
with blanks. For those terminals with fewer than 96 characters, 
lowercase is treated as uppercase. 

• Data errors. If an error is detected in the IVT data, a BRK block is 
sent to the host. 

• Code conversion. Converts ASCII to terminal code if necessary. 

• Preprint format effectors for clearing and homing cursor. If 
preprint format effectors position-to-top-of-form or 
home-cursor-and-clear-screen are used, they must begin a transmission 
to the terminal. If more than one logical line exists in a block 
from the host, the block is fragmented into as many separate 
transmissions as necessary to achieve the proper function. 

60474500 A 10-7 



TABLE 10-3. DOWNLINE IVT TRANSFORMS FOR MODE 4 

IVT Interface Transform (all devices) 

Carriage Return CR CRt 

Line Feed LF nul 

Logical Line Separator us CRt 

t ASCII is 1B4116i external BCD is 3E4116i see appendix A. 

TABLE 10-4. DOWNLINE IVT FORMAT EFFECTOR (FE TRANSFORMS) 

Effector Transform 
FE Type Command Code (all devices) 

Preprint Position to start of 
next line SPACE nul 

Position to start of 
current line I + nul 

Position to top of form 
(cursor home) x ctt 

Home cursor and clear 
i2tt screen 1 

Null , nul 

Double space 0 CRt 

Triple space - CR,CRt 

Postprint Single space . nul 

Return to start of 
current line I nul 

Notes: 

tcR in ASCII is 184116; in external BCD it is 3E4116• 

ttMessage type indicator (MTI) codes of Mode 4 protocol where C16 is 
reset write and 1216 is clear write. 

J 

10-8 60474500 A 



UPLINE IVT TRANSFORMS 

The input from the terminal can include multiple logical lines separated by 
carriage returns with the restriction that only the first logical line can 
be an IVT command. Each logical line is sent to the host as an individual 
MSG block. Code conversion and control character blanking can occur. No 
other transforms are performed on the data except that escape codes are not 
counted in the calculation of the cursor position. 

Autoinput Mode 

The TIP delivers output to the terminal and retains the data buffers when 
the autoinput flag is set in the data block clarifier of a MSG block. The 
subsequent input from the terminal is attached to the end of the first 20 
characters of the saved data and returned to the host. The format effector 
is deleted from the autoinput if it is present. If more than one logical 
line is present in a MSG block specifying autoinput, a BRK block is sent to 
the host. If more than one logical line is received from the terminal, the 
first received line is appended to the saved autoinput. All subsequent 
logical lines are transmitted to the host as received. 

The terminal operator can cancel the saved autoinput data by entering a 
logical line ending with the cancel control (CN) character. The cancel 
request must be the first logical line of the transmission; subsequent 
logical lines are sent to the host as received. 

An input logical line other than an IVT command must be received to satisfy 
the autoinput request before a subsequent output can be sent to the 
terminal. The cancelled line is not sufficient to satisfy the autoinput 
request. 

Transparent Mode 

Mode 4C terminals are interactive; no batch capability is provided. The IVT 
transform is not performed on transparent data. Mode 4 frame control is 
added to the data. No code conversion is performed. The parity bit for 
each character is also added before the data reaches the line. 

Autoinput and page wait are supported for transparent data. However, page 
length calculations are not supported; page wait occurs only following each 
MSG block. 

Format effectors are not supported. Each output is assumed to be a write 
with an E4 terminator. The clear-write and reset-write features of the Mode 
4 protocol are not supported. 

Transparent input applies only to the first input transaction following 
selection of the feature. The Mode 4 frame control characters are removed 
but no other translation occurs. The cursor is not repositioned to the left 
margin following each input or output and the keyboard is not unlocked. 
Since any further polling would result in retransmission of the previous 
data, polling ceases. The host must request that polling be resumed by 
sending output or by issuing a start input command. 

Transparent mode for a Mode 4A terminal, which is a batch device, is 
illegal; a BRK bloCk is sent if this is attempted. 

60474500 A 10-9 



User Break 1/Break 2 

The !VT interface allows the terminal operator to request a BRK block to 
signal the user break 1 or break 2 condition. This BRK block is caused by 
entering a logical line with either the user break 1 or user break 2 
character as the only data. The interpretation of these BRK blocks depends 
on the application program that uses them. 

Page Wait 

The page wait feature of the !VT interface provides a method of assuring 
that output is delivered at a readable rate. The data sent from the host is 
added to the screen until the end of the page is reached. The data remains 
displayed until the operator enters an input line. 

Page Size 

Calculations for page size are based on the page width and page length 
parameters, which are assumed to be the actual size of the terminal or 
display. It is assumed that the hardware provides an automatic carriage 
return at the page width boundary. 

Page calculations take line folding into account. A folded logical line may 
span a page boundary. The clear-write and reset-write format effectors 
terminate a previous page. If the previous page is not full, the message 
OVER •• is sent to the terminal. A page is full whenever the page length 
less one line is filled. 

Page turning is accomplished when the terminal operator enters an input 
line. If the page prompt consists of a null line or a line with only a 
control character, the line is not usually sent to the host. However, if 
the NPU has no more queued data to be sent to the terminal, the null line is 
sent to the host. 

Code Conversion 

In character mode, all IVT data is converted to ASCII code whether the 
terminal code is ASCII or external BCD. The ASCII Mode 4A translation 
includes folding lowercase into uppercase and substituting blanks for any 
control codes. The Mode 4C translation substitutes blanks for the control 
codes but allows the transmission of the lowercase codes. 

Cursor Control 

The TIP returns the cursor to the leftmost character on the next line 
following the end of each input or output line. A blank line appears on the 
screen if the ETX symbol from an input request is in the last column or if 
the output ends in the last column. This is required to allow positioning 
of the send index for the next line. 

Whenever the send index terminator is detected as the first two characters 
(an escape/control code pair), it is deleted before sending the message to 
the host. 

10-10 60474500 A 



Cursor positioning to the left margin is accomplished in one of three ways, 
depending on terminal class (terminal class is initially configured and can 
be changed with the TC IVT command from the terminal user or application): 

• 214 and 200 User Terminals. Each input causes the TIP to output a 
sufficient number of blanks to move the cursor to the left margin of 
the next line. Each output is padded with blanks to move the cursor 
to the left margin of the next line. 

• 731/732 and 734 Terminals. Each input causes a clear line to unlock 
the keyboard. Each output is terminated with a clear line. 

• Mode 4C Devices (711 and 714). Each input causes a carriage return, 
backspace sequence. Each output is terminated with a carriage 
return, backspace sequence. In either case, the cursor is at the 
left margin of the next line. 

CANCEL CHARACTER PROCESSING 

When the TIP detects a cancel character <CN> in the input line preceding the 
end of logical line indicator, the TIP discards that logical line. Then the 
TIP notifies the terminal that the line was discarded by sending a *DEL* 
message downline. 

Message Type Indicators (MTI) 

The MTI codes shown in figure 10-2 are in hexadecimal notation, exclusive of 
parity. The type of MTI code affixed to output data is a function of the 
format effector in character mode only. For transparent mode, MTI is always 
write. 

E Codes 

For downline transforms, device selection is performed by E codes which are 
appended to the output by the TIP. For upline transforms, E codes coming 
from the terminal indicate the responding device and also report status. 
Received E codes are stripped from the input data by the TIP. Table 10-5 
shows the E codes. 

UPLINE AND DOWNLINE BVT TRANSFORMS 

The Mode 4 TIP converts downline data from BVT specifications to the Mode 4 
protocol. This conversion is limited to the actual features of the 200 User 
Terminal printer as described in table 10-6. 

Any BVT code pair beginning with FF16 is considered an error if not 
supported by the Mode 4 transform. Any sequence of characters not preceded 
by a legal BVT code pair is also considered a host error. All such errors 
are reported by sending a BRK block to the host. 

Upline data is translated from the Mode 4 protocol to the BVT specifications 
as described in table 10-7. Each card other than EOR or EOI is scanned for 
spaces. Trailing spaces are removed. Each card is terminated with the 
end-of-media indicator. Blank cards send only an end-of-media indicator. 
Sequences of uncompressed data are preceded by the string indicator. 

60474500 A 10-11 



E Code 

MT! in 
Transmitted 

Block 
(hexadecimal) 

05 Poll 
12 Clear Write 
OC Reset Write 
11 Write 
07 Alert 
31 Configuration 

x 
x 
x 
x 

x 

MTI in Received Block 

x 
x 
x 
x 

x 
x 
x 
x 
x 
x 

x 

x 

POLL, ALART, REJECT, ACK and ERROR transmission blocks are 
non-data blocks and have the following format. 

I Sync I SOH I CA I TA I MTI I ETX I LPC I 

Figure 10-2. MTI Codes for Mode 4 

E Code 
(Hexadecimal) 

TABLE 10-5. E CODES 

Write :Qutput) Read (Input) 

--------------+-------------------+----------~·~.~----------+------------------------11 
El 42 

E2 20 

E3 21 

E4 22 

10-12 

To CRT (text) 

To printer (text) 

To card reader (no 
text): enables 
transfer of card 
buff er to CRT 
buffer 

To CRT (text): 
position to start 
index 

From CRT (text) 

From printer (no 
text); indicates 
possible error in 
printing last 
block 

From card reader 
(text); indicates 
that card reading 
has stopped 

From printer (no 
text); indicates 
that last block 
correctly printed 

From card reader 
(text); normal 
card data 

Not used 

60474500 A 



TABLE 10-6. DOWNLINE BVT TRANSFORMS FOR 200 USER TERMINAL PRINTER 

Conversion 

BVT Interface ASCII EBCDIC 
(hexadecimal) (hexadecimal) (hexadecimal) 

mode change FFOO to FF09 nul nul 
I 

forms control FFEO 20 50 
FF El 4A 4A 
FFE2 4AlB4020 4A3E5050 
FFE3 50 30 
FFE4 41 41 
FFE5 - FFFE 20 50 

compressed zeros FFF32 3030 4A4A 
FF33 1B44 3E43 . . . . . . . . . 
FF3F 1B4F 3E4F 

compressed blanks FF12 2020 5050 
FF13 1B23 3E23 
FF14 1B24 3E3F . . . . . . . . . 
FF2F 1B3F 3E3F 

end of media FFOA 1B40 3E50 

TABLE 10-7. UPLINE BVT TRANSFORMS 

BVT Interface 
Mode 4 Interface {hexadecimal) 

Beginning of uncompressed data string indicator FF90 

End of card end of media FFOA 

esc 5716 in column it end of record FFOB 

esc 5616 in column it end of information FFOC 

tesc indicates escape; 1B16 for ASCII and 3E16 for external BCD. 

60474500 A 10-13 



Special processing occurs for EOI, EOR and JOB cards {first card following 
an EOI card) to transform them to the BVT form specified in section 6. The 
TIP does not interpret columns 79 and 80 of the JOB and EOR cards. 

The card data is transmitted as read from the terminal. For external BCD 
the data is converted to ASCII as specified by the system code conversion 
table. 

The TIP ensures that each transmission block of data received from the card 
reader contains a multiple of 80 characters. If it does not, the data is 
discarded and an input stopped command is sent to the host. 

ERROR HANDLING 

The Mode 4 TIP handles two types of errors: 

• Short-term errors in which an error counter is incremented and the 
operation is retried. 

• Long-term errors in which the shoft-term errors cannot be corrected; 
an irrecoverable error is declared and the I/O is terminated. 

SHORT-TERM ERROR PROCESSING 

The TIP performs short-term recovery for both input and output. The TIP 
retains three error counters, as follows: 

Error 
Counter 

1 

2 

3 

Type of Error 

No response: after transmitting to the terminal, a response 
timeout occurs; SOH is never received. 

Bad response: 

Cluster Address {CA) or terminal address {TA) does not 
correspond to terminal addressed by transmit block 

invalid message type indicator 

invalid or missing E code 

ETX missing {overlength block or data carrier detected signal 
drops prematurely) 

character of longitudinal parity error 

text in block that should not have text 

Error response: indicates transmit error 

Whenever any error occurs, the TIP increments the appropriate counter and 
retries the output/input sequence. If any counter reaches threshold value 
{set at 5) in an attempt to complete a single transaction with the terminal, 
the TIP performs the long-term error handling procedures. 

10-14 60474500 A 



LONG-TERM ERROR PROCESSING 

When the TIP cannot recover from a short-term error while communicating with 
a terminal, the host is sent a STP block. For a Mode 4A terminal, the STP 
block is sent for all connections on the cluster. The terminal is then 
polled every 10 seconds until the problem is resolved. When a read response 
is detected for the terminal, the host is sent a STRT block. A terminal 
status service message is generated each time a change in terminal status is 
noted. 

DUPLICATE WRITE ERRORS 

Those terminals which do not have separate CRT and transmission buffers 
(such as the 200 user terminal} write output data directly to the CRT screen 
as it is being received. If the terminal detects an error in the block, it 
sends an ERROR response, causing the TIP to retransmit the output. However, 
the cursor is not in the same place as it was when the original WRITE was 
performed, so the output block can appear two (or more) times on the CRT 
screen. This is not a problem with RESET WRITE or CLEAR WRITE which home 
the cursor before displaying the output data, and thus overwrite the bad 
block. 

The toggle bit returned from Mode 4 terminal differs depending on terminal 
type: 

• The 200 user terminal and compatible terminals always return the 
toggle state of the last good write regardless whether the terminal 
is responding to a write request or to a poll for status request. 

• The synchrorious Tektronix 4014 terminal and 711 terminals always 
return the toggle state of the last message received. If the last 
message is a poll for status request, then the terminal returns the 
toggle state of the poll message. 

The Mode 4 TIP compensates for these Mode 4 terminal differences as follows: 

• The toggle state of the terminal is initialized by writing a null 
message in order to guarantee delivery of the first block of output. 

• When polling for status due to a lost terminal response to a write, 
the TIP sets the toggle state opposite to the state of the last 
write. If the toggle bit in the response is the same as in the poll, 
the block is sent again. This method guarantees that all output 
blocks are correctly received by the terminal. No blocks are 
duplicated (except for 711 terminal) since (1) the block is not sent 
more than once for 200 and 714 terminals and (2) the 4014 terminal 
discards a block if the toggle state is the same as the previous 
block. 

• In the case of the 711 terminal, it is impractical to prevent the 
sending of duplicate blocks since the terminal neither supports 
polling for status nor contains logic for discarding duplicate blocks. 

60474500 A 10-15 



LOAD REGULATION 

If the TIP is unable to acquire sufficient buffers for an input block or 
when the host is down, the TIP discards the partial block and repolls the 
terminal later when the condition is cleared. No error counter is 
incremented by this operation. However, a counter is incremented in the NPU 
statistics block to indicate the number of times that regulation has taken 
place. 

AUTORECOGNITION 

The host can request autorecognition for Mode 4 lines. This activates a 
procedure for determining the cluster address and terminals that exist on 
the line. When the host configures the line, the TIP responds with the line 
enable response. If the line is dedicated, autorecognition begins. The 
line is switched and the TIP waits until the ring indicator is present. 

Autorecognition begins with a cluster poll to determine the cluster address 
of the caller. The first four polls are done at cluster address 7016 to 
allow the caller to hear the audible tone and to allow the modem time to 
stabilize after the modem data switch is depressed. All cluster addresses 
are attempted at least twice before a failure is declared. The timeout for 
a nonexistent cluster is from 1/2 to 1 second. 

Once the cluster address has been determined, the TIP checks for receipt of 
a read message. The read message contains an escape code which determines 
the code set in use by the terminal. Polling continues until the read 
message is received. For external BCD terminals, this completes 
autorecognition. For ASCII terminals, the configuration poll is sent to 
determine the configuration. If there is an error response or no response, 
the terminal is assumed to be Mode 4A. If a read response is detected, the 
terminal is assumed to be Mode 4C. 

The line status operational service message is sent to the host at the 
normal completion of autorecognition. This service message contains the 
following: 

Field 

TT 
CA 
TA 
OT 

Description 

Terminal type 
Cluster address 
Terminal address } 
Device type 

for each 
terminal 

For all terminals, the appropriate terminal type (appendix C) is reported as 
one of the following: Mode 4A external BCD, Mode 4A ASCII, or Mode 4C 
ASCII. The actual cluster address is also reported in the range 70-7Fl6• 

For the Mode 4A external BCD or Mode 4A ASCII, three terminals are reported: 
these describe the console, the card reader, and the line printer. The 
terminal address for all three terminals is 6016· 

The configuration request is used for the Mode 4C terminals to determine the 
actual terminal address and actual device types. Only the consoles are 
reported. 

10-16 60474500 A 



To complete autorecognition during the dial-up procedures, the remote 
operator must press the send key on at least one of the displays in the 
cluster. This allows the code set of the terminal to be recognized. 

UNSUPPORTED MODE 4 PROTOCOL FEATURES 

The following features of Mode 4 devices are not supported by the TIP: 

• Status request 
• Alert 
• Diagnostic write 
• Receipt of initialization request 

60474500 A 10-17 





HASP TIP 

The HASP multi-leaving TIP supports HASP workstations. The protocol uses 
bidirectional transmission over HASP lines to terminals that have both 
interactive and batch devices. 

The HASP protocol defines two types of blocks: data blocks and control 
blocks. Data blocks also contain control information. Positive 
acknowledgment of the receipt of each block is required. 

The HASP protocol automatically attempts to resend garbled blocks. If the 
block cannot be successfully sent after four attempts, the line is declared 
inoperative. 

Data blocks are composed of data records, which are in turn composed of 
character strings. If several consecutive identical characters occur, this 
character string is sent as a number (the number of identical characters) 
plus the character. This' type of data compression can save significant 
transmission time. Another important feature of the HASP protocol is its 
ability to meter the rate of output so that fast processing devices have 
most of the transmission time available, yet slow processing devices have 
data whenever they are ready to use it. 

HARDWARE CONSIDERATIONS 
Some of the hardware considerations for the HASP TIP are the following: 

• A typical HASP workstation consists of a keyboard, a CRT display, up 
to 7 card readers, up to 7 printers, a processor, and {optionally) 
external storage (magnetic tape or disk). The processor has 
computer-like functions, with upline and downline data processing. 

• The terminal has its own emulation package, which is loaded from the 
designated storage device: magnetic or paper tape, cards, or 
terminal mass storage. 

• The internal code of the workstation is EBCDIC. 

11 

• Any hardware (computer) that can be made to respond to HASP protocol 
and which uses EBCDIC internal code can be used as a HASP workstation. 

• Each workstation uses one NPU port (line). Device sharing is the 
responsibility of the HASP TIP at the NPU and the workstation 
processor at the terminal. 

• All terminals have interactive devices and most have batch devices. 

• Transmission over the line is bidirectional. 

• Line speed is determined by the modem clock. 

60474500 A 11-1 



MAJOR FUNCTIONS 
The HASP TIP performs the following major functions: 

• The TIP interfaces the ASCII-coded virtual terminal protocol of the 
host to a workstation that uses the HASP protocol and EBCDIC as its 
internal code. 

• It handles tasks by queueing them as worklist entries (WLEs) to the 
OPS-level TIP. The host application programs send data to one HASP 
device at a time. The HASP TIP sends all output data blocks to one 
device at a time. There is no multileaving on downline data 
transfers. 

• It converts code between ASCII (128-character set for interactive 
devices, 64-character set for batch devices) and EBCDIC· 
(128-character subset only). 

• It supports upline and downline data compression for both interactive 
and batch devices. 

• It supports data flow control to various devices by the use of a 
function control sequence (FCS). 

• It initiates line synchronization when the line has been configured; 
uses an enquiry/reply protocol to determine whether the line can 
currently be used for a transfer. 

• It provides soft error processing (retransmitting a garbled data 
block) and hard error processing (declaring a line inoperative when 
soft error processing fails to transmit data correctly). 

• It rejects all data when the host is down or the NPU's supply of 
available buffers has reached the threshold level. Note that there 
can be no regulation distinction between interactive and batch data 
since one HASP block can carry both types of data. 

• It supports autoinput. In this mode only the first 20 characters of 
the output data are saved to be appended to the beginning of the 
solicited return data. 

• It discards the terminals sign-on card. A network log-in is used 
instead. 

• 
• 

• 

11-2 

It does not process autorecognition • 

It processes control messages (IVT commands) from the terminal at the 
workstation. The messages change IVT parameters for the terminal. 
The acceptable parameters define user break 1 and 2 characters, 
define the cancel and control message characters, and define page 
width. A message can also be sent to the local operator (LOP). 

It interfaces to the multiplex subsystem. Downline, IVT/BVT data is 
reformatted to the terminal (HASP) protocol by the text processing 
state programs (reached through a call to PTTPINF). The TIP then 
calls the multiplex subsystem command driver. The address of the 
converted block plus other message processing information is placed 
in a command packet for the command driver (PBCOIN). The multiplex 
subsystem is then responsible for sending the data to the HASP 
workstation. 

60474500 A 



Upline, the HASP data is partially processed by the multiplex 
subsystem using the input state programs that are part of the 
firmware-level TIP. Before starting the input transfer, the TIP sets 
up the message processing by passing the transfer parameters 
(including the pointer to the first input state program to be used 
and an input buffer address) to the command driver. After the first 
stage of processing is completed by the TIP's input state programs, 
the multiplex subsystem calls the TIP at OPS-level using a worklist 
entry. The TIP then uses this partially processed data as a source 
buffer and calls the HASP TIP input text processing programs (via 
PTTPINF) to demultiplex as well as to convert the upline data to 
IVT/BVT format. 

• It rejects any attempt to send transparent data for either batch or 
interactive device except that downline data to the plotter (batch 
mode device) is not code converted. 

HASP PROTOCOL 
The multileaving protocol consists of the bidirectional transmission of 
information blocks between an NPU and a HASP multileaving terminal using 
IVT/BVT data at the host interface. Transparent mode is not supported. Two 
types of information blocks are defined: 

• Control block. This contains binary synchronous communications (BSC) 
characters only. Table 11-1 lists commonly used HASP mnemonics. 

• Data block. This contains data records composed of character strings 
and their associated character string control bytes. Each data 
record in the data block is associated with a specific peripheral 
device. In order to facilitate identification, a record control byte 
(RCB) is used to assign a stream number and a device type to the data 
record. Each record control byte has an associated subrecord control 
byte (SRCB) to provide additional information about the data record. 

A data block can consist of several data records from one or more 
devices. A function control sequence (FCS) is added to each data 
block to control the flow of data from or to any particular device. 

To facilitate error detection, a block control byte (BCB) is added to 
each data block. A binary synchronous communications envelope 
surrounds the data block. 

The HASP TIP never sends multileaved downline data to the HASP terminal. 
The host must send to the HASP TIP the desirable length of data for each 
active output stream (device) to make a single data block. 

NOTE 

Multileaving is a synonym for interleaving data from various 
devices in a single transmission block. 

The HASP TIP does support multileaved data from a HASP workstation. The 
HASP TIP parses the input stream, relating each physical record to its 
associated connection number, and sends the data to the host sorted by 
device. 

60474500 A 11-3 



TABLE 11-1. HASP PROTOCOL MNEMONIC DEFINITIONS 

Mnemonic 

ACKO 

BCB 

BSC 

CRC 

OLE 

ENQ 

Definition 

Acknowledge block or character 

Block control byte 

Binary synchronous communications 
control characters 

Cyclic redundancy check 

Data link escape control 
character 

Enquiry control character or 
block 

EOF End-of-file block 

ETB 

FCS 

NAK 

PAD 

RCB 

SCB 

SOH 

SRCB 

STX 

11-4 

End-of-transmission block 
character 

Function control sequence block 

Negative acknowledgment block 

Padding control character 

Record control byte 

String control byte 

Start of header character 

Subrecord control byte 

Start of text character 

Use 

Positive acknowledgment 
that transmission was 
received 

Used for error detection~ 
includes block sequence 
number 

Any of several block 
control characters such 
as OLE, STX, and ETB 

Data quality checksum 

BSC control character 

Inquiry if transmission 
can be started when 
terminal is newly 
configured 

BSC control character 

Controls data trans­
mission rate from/to a 
device 

Confirms that 
transmission failed 

All are l's 

Stream number and device 
type ID~ contains status 
information 

String length and type, 
duplicate character 

BSC control character 

Additional data record 
information 

BSC control character 

60474500 A 



TABLE 11-1. HASP PROTOCOL MNEMONIC DEFINITIONS (Contd) 

Mnemonic Definition 

SYN Sync control character 

WLE Worklist entry 

IVT Parameter Control Mnemonics 

CN Cancel character 

CT Control character 

Bl User break 1 

B2 User break 2 

MS Operator message 

PW Page width 

TERMINAL OPERATIONAL PROCEDURE 

Use 

Maintains line 
synchronization 

Defines symbol for cancel 
key 

Defines symbol to be used 
with operator-initiated 
control messages 

Defines symbols for 
user breaks 

Allows terminal operator 
to send message to local 
operator 

Defines page width 

The workstation software is loaded and the communications line is 
initialized. After the sign-on card is transmitted, the NPU and. the 
terminal transmit idle blocks until one or the other initiates a function 
(data or command transfer). 

When a function other than a console message or console command is desired, 
the process trying to initiate the function transmits a request to initiate 
function transmission RCB. The receiving process then transmits a 
permission to initiate function transmission RCB if the data from the 
requesting process can be handled. If the data cannot be handled, or a 
function is currently being processed, the request to initiate a function 
transmission RCB is ignor~d. 

When a permission to initiate a function transmission RCB is received, the 
requesting process begins transmitting data blocks to the other process. 
Data blocks can be transmitted until an EOF is encountered. In order to 
transmit more data blocks for the same device stream, the request to 
initiate a function transmission RCB sequence must be repeated. If a 
request to initiate a function transmission is not received before data 
blocks are received, the data blocks are ignored. 

60474500 A 11-5 



Data blocks are transmitted and acknowledged one block at a time. Before a 
second block can be transmitted, the receiving process must transmit a 
positive response which takes one of two forms: if no data is ready to be 
transmitted to the sending process, an acknowledge block is sent; otherwise, 
the next waiting data block is transmitted to the sending process. 

Console functions (operator messages and commands) do not have to follow the 
request-to-initiate/permission-to-initiate sequence. A console function can 
be initialized any time that the wait-a-bit in the function control sequence 
is not set and the remote console bit is set. 

MULTILEAVING BLOCK DESCRIPTIONS 

CONTROL BLOCKS 

The multileaving protocol uses four types of control blocks: 

• Acknowledge block 
• Negative acknowledge block 
• Enquiry block 
• Idle block 

Table 11~2 lists significant EBCDIC characters associated with these blocks. 

TABLE 11-2. HASP SIGNIFICANT EBCDIC CHARACTERS 

Char Hex Value Meaning 

SOH 01 Start of header 

STX 02 Start of text 

OLE 10 Data link escape 

ETB 26 End-of-transmission block 

ENQ 20 Enquiry 

SYN 32 Synchronize 

NAK 30 Negative acknowledge 

ACKO 70 Positive acknowledge 

PAD FF Pad 

Note: ACKO only has significance in the sequence OLE ACKO {as 
the entire message) since ACKO is not a protocol 
character. 

11-6 60474500 A 



Acknowledge Block (ACK) 

The acknowledge (ACK} block consists of the following control characters: 

SYN, SYN, SYN, OLE, ACKO, PAD 

SYN - Synchronization control character 
DLE - Data link escape control character 
ACKO - Affirmative acknowledgment control character 
PAD - Pad control character (all l's) 

The ACK block indicates that the previous block was received without error 
and no data is available for transmission. 

Negative Acknowledge Block (NAK) 

The negative acknowledge (NAK) block consists of the following control 
characters: 

SYN, SYN, SYN, NAK, PAD 

SYN - Synchronization control character 
NAK - Negative acknowledgment control character 
PAD - Pad control character (all 1 bits) 

The NAK block indicates that the previous block was received in error and a 
retransmission is necessary. If the allotted number of retry attempts have 
been completed, the line is declared inoperative. A NAK block cannot be 
transmitted as a response to a NAK block. 

Enquiry Block (ENO) 

The enquiry (ENQ) block consists of the following control characters: 

SYN, SYN, SYN, SOH, ENQ, PAD 

SOH is the start-of-header control character and 
ENQ is the enquiry control character 

The enquiry block establishes communications between the HASP terminal and 
the NPU at loading time. It is not used at ~ny other time. 

Idle Block (ACKO) 

The idle block is an ACKO block which is used to maintain communications and 
to avoid an unwanted timeout when neither process has any data to transmit. 
An idle block is transmitted at least once every 2 seconds. This block has 
the same format as the acknowledge block. 

CONTROL BYTES FOR DATA BLOCKS 
Each data block has at least one sequence of five control bytes that define 
the data immediately following the last control byte. The control bytes in 
the order they appear are as follows: 

60474500 A 11-7 



• Block control byte (BCB); used for sequencing blocks 

• Function control sequence (FCS); defines the transmission flow 
(suspends all data or the data for a device, or restarts data 
transmission for one or all devices) 

• Record control byte (RCB); carries status information for following 
data and stream identification 

• Subrecord control byte (SRCB); carries more status and data control 
information 

• String control byte (SCB); describes data string (length and nature, 
whether compressed or uncompressed data) 

Following the first set of five control bytes, additional data subblocks can 
be preceded only by an SCB or by a sequence of RCB/SRCB/SCB. 

Each control byte is defined below. Figure 11-1 shows a typical 
transmission block and its associated control bytes. 

NOTE 

The bytes in the following descriptions are described as if 
they appeared on a card input device. That is, the least 
significant bit is on the left, the most significant bit is 
on the right. 

BLOCK CONTROL BYTE (BCB) 

The block control byte format is as follows: 

0 7 I .sxxxcccc I 
jJ - must be a 1 (on) 

XXX - 000 = Normal block 
- 001 = Ignore sequence count 
- 010 = Reset expected block sequence count to CCCC 
- 011 - 111 = Not used in this implementation 

CCCC - Module block sequence count, range 0 through 15 

FUNCTION CONTROL SEQUENCE (FCS) 

The function control sequence (FCS) format is as follows: 

0 7 F I .ssRRABCD.'JTRRWXYZ I 
~ - Must be a 1 (on) 

S - 1 = Suspend all stream transmission (wait-a-bit) 
0 = Normal state 

11-8 60474500 A 



SYN 

SYN - Synchronization characters 

SYN 

DLE - BSC leader (SOH if no transparency feature) 

STX - BSC start-of-text 

BCB - Block control byte 

FCS - Function control sequence (2 bytes) 

RCB - Record control byte for record 1 

SRCB - Subrecord control byte for record 1 

SCB - String control byte for record 1 

DA 
T - Character string 

A 

SCB - String control byte for record 1 

DA 
T - Character string 

A 

SCB=O - Terminating string control byte for record 1 

RCB - Record control byte for record 2 

SRCB - Subrecord control byte for record 2 

SCB - String control byte for record 2 

DA 
T - Character string 

A 

SCB=O - Terminating string control byte for record 2 

RCB=O - Transmission block terminator record control byte 

DLE - BSC trailer (SYN if not in transparent mode) 

ETB - BSC ending sequence 

CRC-16 - Cyclic redundancy checksum (2 bytes) 

PAD - All 1 bits 

Figure 11-1. Typical HASP Multileaving Data Transmission Block 

60474500 A 11-9 



NOTE 

For the following bits: a bit = 1 = continue (restart) 
function transmission; a bit = 0 = suspend (stop function 
transmission) • 

T - Remote console stream identifier 
R - Not used 
ABCDWXYZ - Various function stream identifiers 

These stream identifiers are bit-defined and have two sets of definitions; 
one for upline use, the other for downline use. For upline use, the bits 
identify the card reader that is to send data: 

Card reader 1 = A 
Card reader 2 = B 
Card reader 3 = c 
Card reader 4 = D 
Card reader 5 = w 
Card reader 6 = x 
Card reader 7 = y 
Card reader 8 = z 

For down line use, the bits identify the punch or printer that is to receive 
the data: 

Printer 1 = A = Punch number 8 
Printer 2 = B = Punch number 7 
Printer 3 = c = Punch number 6 
Printer 4 = D = Punch number 5 
Printer 5 = w = Punch number 4 
Printer 6 = x = Punch number 3 
Printer 7 = y = Punch number 2 
Printer 8 = z = Punch number 1 

RECORD CONTROL BYTE (RCB) 

The record control byte bit representation is as follows: 

0 7 

I ~sssssss I 
S - 1 (must always be on) 

SSSSSSS - Additional record information, dependent upon record type (see 
RCB above) 

For general control record: 

SSSSSSS = 10000001 = Initial terminal sign-on 

For request or permission to initiate a function transmission: 

SSSSSSS = Stream identifier and record type identifier as described 
in RCB 

11-10 60474500 A 



For bad BCB on last block received: 

SSSSSSS = Expected block sequence count 

For print record: 

SSSSSSS = MCCCCCC 

M - 0 = Normal carriage control 
1 = Not used 

CCCCCC - Carriage 
lOOONN 
llNNNN = 
OOOONN = 
OlNNNN = 
000000 = 

control information 
Space immediately NN spaces 
Skip immediately to channel NNNN 
Skip NN spaces after print 
Skip to channel NNNN after print 
Suppress space 

For punch record: 

For 

SSSSSSS = MMBRRSS 

SS - Punch stacker select information 

B - 0 Normal EBCDIC card image 
1 = Not used 

MM - 00 = SCB count units = 1 
01 - 11 = Not used 

RR - Not used 

input record: 

sssssss = MMBRRRR 

MM - 00 = SCB count unit = 1 
01 - 11 = Not used 

B - 0 = Normal EBCDIC card image 
1 = Not used 

RRR - Not used 

STRING CONTROL BYTE 

The string control byte bit representation is as follows: 

0 7 I OKTCCCCC I 
0 - 0 = End of record (KTCCCCC = 0) 

1 = All other SCBs 

K - 0 Duplicate character string 

60474500 A 11-11 



T - 0 = Duplicate character is a blank 
1 = Duplicate character is non-blank (character follows SCB) 
CCCC = Duplication count 

K - 1 = Non-duplicate character string 

TCCCCC - Character string length 

If KTCCCCC is 0 and O is 1, SCB indicates record is continued in the next 
transmission block. This feature is not supported by the HASP TIP and is 
shown for completeness only. 

DATA BLOCK DESCRIPTION 
Data blocks consist of data records, the control bytes, and the following 
text control characters: 

SYN - Synchronization control character 

DLE - Data link escape control character 

SOH - Start of header control character; used only if 
nontransparent mode 

STX - Start of text control character 

ETB - End-of-transmission block control character 

CRC-16 - Cyclic redundancy checking control characters (2 bytes) 

PAD - Pad control character (all 1 bits) 

A typical data transmission block is shown in figure 11-1. 

Several types of blocks are specially defined. These blocks appear to be 
data blocks but are actually special purpose blocks containing transmission 
control information. They are as follows: 

• Operator console blocks 
• End-of-file blocks 
• FSC change blocks 
• Sign-on blocks 
• BCB error blocks 

OPERATOR CONSOLE BLOCKS 

Blocks which contain operator console messages or commands do not contain 
any additional records in the data block following the console record. 

A request to initiate a transmission function is not required to transmit 
console records. However, the wait-a-bit flag must not set in the FCS, and 
the remote console bit must be set. 

11-12 60474500 A 



END-OF-FILE BLOCKS (EOF) 

Blocks that contain the end of file (EOF) indicator do not contain any 
additional records from the same device stream in the data block following 
the EOF. Data blocks terminated by an EOF contain a final record in the 
following format (shown for card reader 1): 

{BSC header) 

BCB 

FCS 

RCB 10010011 - Card reader stream 1 

SRCB 10000000 - SCB count units = 1, EBCDIC card images 

SCB 00000000 - EOF 

RCB 00000000 - Transmission block terminator (BSC trailer) 

(BSC trailer) 

To transmit additional records for a device stream that contains an EOF, the 
request to initiate a function transmission must be transmitted again. If 
another device stream contains data for transmission and has permission to 
transmit, the last RCB in the above example would be a device stream RCB 
followed by data instead of a transmission block terminator. 

FCS CHANGE BLOCKS 

The FCS change block is transmitted when the status of one or more of the 
streams has changed, and there is no data ready to transmit. The FCS change 
block format is as follows: 

(BSC header) 

BCB 

FCS - Changed FCS 

RCB 00000000 - Transmission block terminator 

(BSC trailer) 

USER INTERFACE 
The user is required to load the software into the HASP workstation 
processor, to execute this initializing software, to sign-on after the 
communications line is configured (by the HASP TIP and the workstation), and 
to sign off. 

60474500 A 11-13 



WORKSTATION STARTUP AND TERMINATION 

The workstation startup procedure consists of three steps: 

• Terminal initialization at the HASP workstation 

• Communications line initialization, which involves the workstation, 
the NPU, and the host 

• Signing-on, which involves the workstation and the HASP TIP in the NPU 

WORKSTATION INITIALIZATION 

The HASP workstation operator loads the terminal software and executes it. 
The loading medium can be paper tape, cards, magnetic tape, or mass storage 
depending upon the terminal hardware. The workstation initialization 
processor establishes I/O buffers and other necessary parameters. After 
initialization, a card is read from the card reader. If the card is blank, 
the default sign-on parameters are used (default sign-on parameters are 
assembled into the terminal software). If the card is a /*SIGNON card, the 
parameters on the /*SIGNON card are used instead of the default. In either 
case, the /*SIGNON card is discarded by the HASP TIP~ it is not passed to 
the host. 

COMMUNICATIONS LINE INITIALIZATION 

After the terminal is initialized, the communications line is initialized by 
the HASP TIP upon receipt of a configure line service message (SM) from the 
host. When communication is established with the line, communication 
between the HASP TIP in the NPU and the HASP workstation is established by 
the following procedure: 

• An ENO block is sent from the workstation to the HASP TIP. 

• The ENQ is ignored by the HASP TIP until configure terminal SM 
arrives from the host for the HASP console stream. The HASP TIP then 
sends an ACKO to the ENQ. 

• If the ACK block is received by the workstation, the sign-on record 
is transmitted to the HASP TIP. 

• If I/O errors occur or the ACKO block is not received, the process 
restarts with another ENQ block. 

• After the sign-on record is transmitted and a positive acknowledgment 
is received (ACKO), the workstation is ready for normal processing. 

• As each individual batch device stream is configured by the host, the 
!NIT block is received and the HASP TIP allows processing of the 
corresponding output streams. For batch input streams, processing 
does not begin until a START INPUT command is received for the input 
device stream. For the console input stream, input is allowed after 
the receipt of a downline data block or a Start Input command. 

11-14 60474500 A 



SIGN-ON BLOCK 

Column 1 16 25 
/*SIGNON REMOTEnn password 

NOTE 

Record is shown in punched card format, with least 
significant character on the left, most significant character 
on the right. 

The nn is a one or two digit number that can be used to correlate this 
remote terminal with information about it in the host computer. Password 
can be blank. The sign-on block format is shown in figure 11-2. 

BCB 

FCS 

RCB 

SRCB 

DA 
T 

A 

RCB 

} BSC Header 

1010XXXX - Reset count to XXXX 

11110000 - General control record 

11000001 - Initial sign-on 

} Sign-on record 

0000000 - Transmission block terminator 

} BSC Trailer 

Figure 11-2. Sign-on Block Format 

The sign-on record is not sent to the host since the host requires a 
separate logging-on procedure at the operator's console. 

SIGN-OFF BLOCK 

The /*SIGNOFF card, when transmitted to the HASP TIP as a record in the data 
block, has the same effect as an EOF block. The HASP TIP converts the 
signoff record to a BVT EOI and sends it to the host as a MSG data block. 

HOST INTERFACE 
The host interface is used for connection configuration and initialization 
of the workstation devices. Once the line becomes operational, the HASP TIP 
allows the sign-on block to be sent from the HASP workstation. The sign-on 
block is acknowledged to the HASP workstation but is not delivered to the 
host. 

60474500 A 11-15 



Upon receiving a line operational service message for a HASP workstation, 
the host issues a configure terminal service message to configure the 
workstation's console. A downline data block or a Start Input command 
causes the HASP TIP to permit input from the workstation console. The 
console connection allows the workstation operator to send and receive 
messages to and from the host. It also allows the operator to alter IVT 
parameters. 

After the console is configured, the batch devices are configured. Start 
Input commands from the host cause the HASP TIP to allow input devices to 
read cards. Output device streams are initiated by the HASP TIP as soon as 
data arrives. Devices configured as plotters use card punch output streams. 

Once the necessary initialization and configuration are complete, traffic 
can flow between the terminal and the host. During this traffic handling 
period, the HASP TIP is involved in the following functions. 

• Code conversion - upline and downline 
• Format conversion, HASP TO BVT/IVT upline, BVT/IVT to HASP downline 
• Flow control upline and downline 
• HASP error recovery procedures 
• Input/output streams, to/from a HASP terminal 

CODECONVERmON 
Interactive virtual terminal (IVT) data to and from the console is 
translated by the TIP by converting ASCII to EBCDIC or EBCDIC to ASCII 
code. Only the 128-character subset equivalent to the ASCII character set 
is converted; that is, on output the eighth bit is stripped off, and on 
input any character not in the subset is converted to a blank. 

Batch virtual terminal (BVT) data to and from the batch devices (except the 
plotter) is translated by converting ASCII to EBCDIC or EBCDIC to ASCII. 
Here only the 64-character subset of ASCII appears in the data from and to 
the host. Plot data is sent untranslated to the terminal. 

Upline, card reader input is translated by an EBCDIC-to-ASCII conversion by 
default (029) or if requested by a job card or an end-of-record card with 29 
punched in columns 79 and 80. An alternate 026-to-ASCII conversion can be 
requested by punching 26 in columns 79 and 80 of a job or end-of-record 
card. Subsequent end-of-record cards with 29 or 26 punched in columns 79 
and 80 change the conversion mode; the current mode is kept in effect with 
any other punches. The conversion mode is returned to default (029) when an 
end-of-information card is input. No indication of conversion mode is sent 
to the host. 

Downline, printer data is always translated by an ASCII-to-EBCDIC 
conversion. Punch data is translated by the same conversion by default or 
if requested by a MODE CHANGE of ASCII-029. An alternate ASCII-to-026 
conversion can be requested by a MODE CHANGE of ASCII-026. The requested or 
default mode stays in effect until changed by a subsequent MODE CHANGE 
request or until the receipt of an ENDOFINFORMATION. At that time, the mode 
is returned to the 029 default. 

Note that on card input in 026 mode, 12-8-2 is read as 12-0 and 11-8-2 read 
as 11-0. Neither 12-8-2 nor 11-8-2 is punched on card output in 026 mode. 
Similarly, on card input in 029 mode, 11-0 is read as 12-8-7 and 12-0 is 
read as 12-8-4. Neither 11-0 nor 12-0 is punched on card output in 029 mode. 

11-16 60474500 A 



For downline data, the HASP TIP appends the BSC envelope to the data in the 
same manner as the BSC envelope was received from the HASP workstation. 

HASP/BVT FORMAT CONVERSION 

Conversion of the HASP/BVT format is required for compressed data, both 
upline and downline, for uncompressed data, for EOI/EOR codes, for forms 
control codes, and for punch banner cards. 

Compressed Data (Upline) 

The HASP TIP converts the string control bytes to BVT compressed format. 
String control bytes designating blank compression are converted directly to 
BVT blank compression codes. Trailing blanks are stripped. 

The HASP terminal does not distinguish between compressed blanks and 
compressed zeros as BVT does. Zeros are treated the same as any other 
repeated character by the HASP TIP for conversion to BVT. 

Compressed Data (Downline) 

The HASP TIP converts BVT compressed format to string control byte format. 
BVT compressed zeros are expanded to the string control byte format for 
repeated characters. 

EOl/EOR Codes 

All data blocks between the host and the HASP TIP are BLK blocks, except for 
the last block of data which is a MSG block. The MSG block is the 
end-of-information (EOI) block and indicates no more data transmission 
follow. 

Upline, the end-of-input block (MSG block) is sent by the HASP TIP when an 
end-of-file block is received from a card reader stream. Contained within 
the MSG block is a BVT EOI. /*EOI cards received from the card reader 
stream cause the HASP TIP to send the MSG block as well. Consecutive /*EOI 
cards are ignored by the HASP TIP. 

/*EOR or 789 cards received from the card reader stream cause the HASP TIP 
to convert the EOR to its special BVT equivalent. The TIP obtains the level 
number from the card and also passes that information to the host. 

In addition to the preceding, the HASP TIP scans the first card from an 
input device stream, the card after a /*EOI (assumed to be a job card), and 
the /*EOR or 789 card. The TIP checks columns 79 and 80 for code conversion 
(26, 29). An appropriate conversion table is selected, based on the 
information in columns 79 and 80. 

Downline, the MSG block causes the HASP TIP to send the associated output 
device stream an end-of-file block. 

BVT EOR/EOis are converted to 789 cards {with the appropriate level number) 
and to /*EOis. For output devices other than the card punch, these EOR/EOI 
symbols are ignored by the HASP TIP. 

60474500 A 11-17 



Uncompressed Data 

The HASP TIP converts uncompressed string control bytes to BVT uncompressed 
control codes and converts BVT uncompressed control codes to uncompressed 
string control bytes. 

Forms Control Codes 

The BVT forms control codes are converted to subrecord control bytes for 
printer streams. For each possible BVT code, there is an equivalent 
preprint or postprint subrecord control byte. 

Punch Banner Cards 

The downline data block clarifier contains a flag which, when set in a block 
for a punch file, indicates that a laced card should be generated before 
sending the data to the terminal. The laced card consists of 80 columns of 
the EBCDIC punch 58161 which punches rows 12, 11, 8, and 9. 

HASP/IVT FORMAT CONVERSION 

The IVT command allows the workstation operator to vary some workstation 
parameters. These parameters apply only to the workstation console which is 
the interactive HASP workstation device. The following IVT parameters can 
be changed: 

• CN - designates key to be used as cancel character 

• CT - designates key to be used as control message character 

• Bl, B2 - designate keys to be used as user breaks 1 and 2 

• MS - designates key to be used to delimit a message from the 
workstation console to the local operator (LOP) console 

• PW - designates page width on the workstation display 

Format of the message as entered at the workstation is 

< CTL > <OTHER > < > 

CTL is the control symbol 

OTHER designates one of the six allowable parameters above 

< > is the terminator character for the console as defined by the CT 
parameter 

HASP compressed data is expanded to IVT format. Page width (PW) line 
folding past the column specified by the PW parameters (or the default value 
if PW has not been specified) is performed by sending multiple output lines. 

Autoinput is supported. In the autoinput mode, only the first 20 characters 
of the output block are appended to the solicited input data. Autoinput is 
confined to a single MSG block on output. Input longer than one line is 
ignored. 

11-18 60474500 A 



Transparent data is not allowed in IVT mode. Any attempt by the user 
application to send transparent data downline causes the HASP TIP to send a 
BRK block to the host, terminating the output attempt. 

If a cancel input line character is sent to the TIP, the TIP deletes the 
previous input line and sends a *DEL* message to the terminal. 

Downline !VT format effectors (FEs) are defined in table 11-3. No parsing 
of any FE within the output line is performed. 

For output data blocks that contain a format effector only, the HASP TIP 
ensures that a blank character is inserted into the output stream. This 
prevents the HASP workstation from changing a format-effector-only data 
block into an end-of-file block. 

TABLE 11-3. DOWNLINE !VT FORMAT EFFECTORS FOR HASP TERMINALS 

Preprint FE Action 

Single Space Space No action required 

Double Space 0 Generate one blank line 

Triple Space - Generate two blank lines 

Start of Current Line + Ignore 

Home I* I Ignore 

Horne and Clear 1 Ignore 

Null , Ignore 

Postprint 

Single Space . No action required 

Start of Current Line I Ignore 

ERROR HANDLING 
The NAK block is the basic method of informing the receiving process that an 
error occurred. The TIP saves the last downline data block for the terminal 
so that it can be retransmitted if needed. Retransmission of a data block 
is attempted three times following the initial NAK. For output blocks that 
are undeliverable to the terminal, the HASP TIP causes the service module to 
generate a line status service message with line inoperative indication. 
This service message is sent to the host. 

The HASP TIP, after receiving the same block incorrectly four times from the 
terminal, considers the data as unreadable. The TIP causes the service 
module to generate and to send a line inoperative SM to the host. 

60474500 A 11-19 



The error conditions recognized by the HASP TIP are as follows: 

• CRC-16 error 
• Illegal block make~up 
• Unknown response 
• Timeout 
• BCB error 

CRC-16 ERROR 

Cyclic redundancy checking (CRC) occurs only on data blocks. If a C~C-16 
error occurs, the receiving process transmits a NAK block to the 
transmitting process. This indicates that a retransmission of the last 
block is required. If the retransmitted block is correct, the processing 
continues. 

ILLEGAL BLOCK MAKE-UP ERROR 

A data block must end with an ETB control character; if it does not, an 
illegal block make-up error occurs. The receiving process transmits a NAK 
block to the transmitting process, which informs the transmitting process 
that a retransmission of the last block is required. If the retransmitted 
block is correct, the processing continues. 

UNKNOWN RESPONSE ERROR 

An unknown response error occurs when the response received from the 
transmitting process is not one of the following: 

• A data block beginning with the DLE and STX control characters in 
transparent mode 

• A data block beginning with the SOH and STX control characters in 
nontransparent mode 

e An ACKO block 

• A NAK block 

If an unknown response error occurs, the rece1v1ng process transmits a NAK 
block to the transmitting process. This informs the transmitting process 
that a retransmission of the last block is required. If the retransmitted 
block is correct, processing continues. 

TIMEOUT ERROR 

If the maximum number of retries has been used or there is a hard error, the 
HASP TIP declares the line to be down. Otherwise, the TIP tries to resent 
the block. 

11-20 60474500 A 



BLOCK CONTROL BYTE ERROR 

Every data block has a block control byte (BCB) that contains a block 
sequence count. The data blocks are transmitted in sequentially ascending 
order unless an ignore or reset block control byte is transmitted. If the 
block sequence count in the data block is not the same as the expected block 
sequence count, a block control byte error occurs. 

If a block control byte error occurs and the block sequence count is the 
same as a block sequence count previously received (the expected count minus 
received block sequence count ~ 2) , the data block is ignored and processing 
continues as if a function control sequence change block or ACKO block was 
received. 

If a block control byte error occurs and the block sequence count is not the 
same as the count previously received, a block control byte error bl0ck is 
transmitted from the receiving process to the transmitting process. The 
block control byte error block informs the other process that a block 
sequence count error has occurred, and that the transmitting process must 
either return to the missing block or must transmit a reset block control 
byte. The format of the block control byte error block is shown in figure 
11-3. 

BCB 

FCS 

RCB 

SRCB 

SCB 

RCB 

BSC header 

lOOlXXXX - ignore sequence checking where 
XXXX = received block sequence count 

11100000 - Bad BCB on last block 

lOOOYYYY - where YYYY is expected block sequence count 

all zeros - end-of-record 

all zeros - transmission block terminator 

BSC trailer 

Figure 11-3. Format of Block Control Byte Error Block 

60474500 A 11-21 



REGULATION AND FLOW CONTROL 
The NPU regulates upline input from the HASP workstation when the NPU runs 
out of buffers, when the host stops, or when data transmission is not 
ready. The workstation regulates downline data output from the host or NPU 
as a function of the busy state of the workstation device that uses or 
produces the data. 

UPLINE REGULATION 

In response to the Stop Input command, the TIP sends an Input Stopped 
command to the host. If data continues to arrive from the terminal, that 
data is discarded. No permission to transmit is granted by the TIP. 

Upon receipt of an end-of-file block from the terminal, the TIP sends an 
Input Stopped command to the host following the data. Permission to send 
more data is not granted until a Start Input command is received from the 
host. 

If the host becomes unavailable or if the NPU runs out of buffers, the TIP 
stops all input from the terminals by setting the wait-a-bit in the function 
control sequence (FCS) control byte. 

DOWNLINE DATA FLOW CONTROL 

The FCS fields control the flow on each of the streams (terminal devices) by 
the use of the bits assigned to control each stream. The FCS sent by the 
terminal to the TIP controls the TIP's downline delivery of records related 
to each stream. 

The TIP correlates the FCS bits with the applicable connection numbers. lf 
a bit is set to the suspend transmission state, the TIP sends an upline STP 
block on the related connection after a timeout occurs. In a subsequent 
upline block from the terminal to the TIP, the function control sequence bit 
for the specified downline stream is set to change transmission from the 
suspend state to the continue state. This causes the TIP to send a STRT 
block upline on the related connection number. This block causes the host 
to resume delivery of downline traffic to the TIP for that stream. 

If a request to initiate function transmission sent from the HASP TIP is 
denied by the terminal, then a STP block is sent upline for this device's 
connection number (CN) after a timeout occurs. If permission is granted, a 
STRT block is sent. 

HASP POSTPRINT 
HASP printers vary in their terminal carriage control actions. Some perform 
carriage control, then print the data; others print the data, then perform 
carriage return actions. The former are called preprint terminals: the 
latter are called postprint terminals. The preprint terminals are designed 
to receive the data in the following format: 

[CARRIAGE CONTROL] [DATA] 

The terminal action is perform the carriage control action first, then print 
the data. 

11-22 60474500 A 



Initially, CCP treated all printers as preprint terminals. However, 
postprint terminals cannot perform these actions in one step; they use the 
following sequence of actions: print the data, then perform the carriage 
control actions. 

To handle both preprint and postprint terminals with the same data format, 
CCP divides HASP printer output data into two records: 

[CARRIAGE CONTROL] [DATA] 

[2 BLANKS] [CARRIAGE CONTROL] and [DATA] [no cc] 
where no CC is no carriage control character 

Preprint terminals handle this as a carriage control, then a print data 
sequence. Postprint terminals print out two blanks from the first record 
(that is, nothing is printed) and then perform the carriage control action. 
For the second record, the postprint terminal prints the data, but performs 
no carriage control action. 

60474500 A 11-23 





STATE PROGRAMS 12 

This section describes the firmware-level state programs, which are used by 
the TIPs and the multiplex subsystem to speed programming. One set of state 
programs controls upline transfers (input state programs, sometimes 
augmented by upline text processing programs) and another set controls 
downline transfers (text processing). Each program is composed of a series 
of state processes. Each state process is composed of a series of state 
instructions. 

Each TIP (in some cases, each type of terminal serviced by a TIP) has upline 
and downline state programs to process control characters, assign buffers, 
perform error processing for garbled characters in the transmission stream, 
and (if necessary) to translate code. The entire group of state processes 
that comprise a state program has a state pointer program associated with 
it. To execute a program, the TIP sets an index in this pointer table to 
specify the first state process to be used when the next character is to be 
processed. The pointer table index is then moved as appropriate for the 
next anticipated character. This is usually done by the state programs 
themselves. 

The multiplex subsystem also controls a set of state programs called the 
modem state programs. 

EXECUTION OF STATE PROGRAMS 

All state programs are executed on the firmware level. Message processing 
itself is under the control of the appropriate TIP, which is executed on the 
OPS level. That TIP, before starting processing of the message, sets up a 
multiplex line control block (MLCB) for upline messages or a text processing 
control block (TPCB) for downline messages. Since most of the message 
processing is normal (for instance, the modem is set up in the same way each 
time, buffers are assigned, a sequence of control characters delimit the 
message, termination is generally the same), this kind of processing can be 
handled entirely within the state programs. 

As the message is processed on the firmware level, the state program index 
is changed on the firmware level by the state programs themselves. The 
state programs process the data without further communication with the 
OPS-level part of the TIP. For upline data, processing consists of moving 
data from the circular input buffer to a dynamically assigned, line-oriented 
input buffer. When the line buffer is ready, the OPS level TIP is called to 
process it. For downline data state processing consists in taking all the 
data from the line-oriented output buffer, translating and reformatting it 
for the terminal, and placing it in an output buffer. Control returns to 
the OPS-level TIP to continue processing the message. Usually, the TIP 
notifies the multiplex subsystem that the message is ready for outputting. 

The ideal case summarized above makes few provisions for special problems 
such as error processing. In such a case, the state programs might inform 
the TIP that message transmission failed, and the TIP would then activate 
one of its OPS-level routines for handling that situation based on the type 
of error encountered. 

60474500 A 12-1 



State program processing is usually more complicated than in the ideal 
case. Processing may shift several times between firmware-level processing 
by the state programs and OPS-level TIP. Communication between the TIP and 
the multiplex subsystem is needed to set up the input state program. This 
communication uses the command packet. The multiplex subsystem then starts 
the input state programs when the first character of the message is placed 
in the CIB. Whenever the TIP passes control to the multiplex subsystem, the 
new input state index must be set in the MLCB. 

Figure 12-1 shows the pointers that initially are needed to locate the first 
state process in a state program sequence. As a state process is completed 
and requires another, the index in the state pointer table is changed so the 
TIP or multiplex subsystem can find the next state process of the state 
program to be executed. 

CLASSES 
Functionally, there are three classes of state programs: 

• Input state programs for upline processing. An input data processor 
handles the character processing. 

• 

12-2 

The input data processor is a multiplex subsystem level 1 
microprogram which has the basic task of removing loop cell data from 
the input multiplexer loop, stripping away the multiplex loop control 
fields, and packing the resulting characters into a circular input 
buffer (CIB). Then the input state program is called to store an 
input character into a line-oriented input buffer. The current input 
state process determines whether any special action (code or format 
conversion) is required for the character and processes the character 
as needed. When all the input characters for that block are 
processed, input is terminated and a worklist entry is made to call 
the TIP at OPS level. 

The input data processor is interrupt driven (priority 2) by the 
multiplex loop interface adapter whenever a line frame is stored in 
the CIB. Unless pre-empted by a priority 1 interrupt, the input data 
processor causes the appropriate state program (input or modem) to 
remove all unprocessed entries from the CIB prior to relinquishing 
control. In this way, the CIB's pick pointer is moved up to the put 
pointer position whenever possible. Running out of space in the CIB 
causes the NPU to stop. · 

Text processing state programs for downline processing. Output text 
processing is always required unless the output sent by the host is 
in transparent mode. Normally, the OPS-level TIP calls the text 
processing state program to convert data to terminal format. The TIP 
makes a direct call to the state programs using the firmware 
interface program, PTTPINF. The text processing program reformats 
and converts to terminal code where necessary. This operation moves 
the data from the buffers holding the output data in virtual terminal 
format to buffers holding the data in terminal format. This data 
conversion must be accomplished before calling the multiplex 
subsystem to initiate output on the line. 

60474500 A 



PORT TABLE 
(NAPORT) 

CONTROL BLOCK 
(MLCB OR TPCB) 

STATE POINTER TABLE 
(CAN BE INPUT, TEXT 
PROCESSING, OR MODEM) 

V1 STATE PRO 

NCLCB ADDA STATE 
~ STATE PRO 

CESS 0 

CESS 1 
INDEX 

• 
........ • ....... 

INDEXED BY r-+ • PORT (LINE) STATE 
NUMBER POINTER 

TABLE 
1--

ADDA 
STATE PRO CESS N 

OR 

~ 
DATA 

BUFFER k:I BUFFER 1 
(FOR MODEM POINTER 
STATE PROGRAM) ' '~ DATA 

BUFFER N 

STATE .........., 
INDEX 

MODEM 
STATE 1----1 
POINTER 
TABLE 

Figure 12-1. Locating a State Process 

STATE PROGRAM 

STATE 
PROCESS 0 
INSTRUCTIONS 

STATE 
PROCESS 1 
INSTRUCTIONS 

• 
• 
• 

STATE 
PROCESS N 
INSTRUCTIONS 

M-392 

60474500 A 12-3 



After the text is converted to terminal code and format by the text 
processing state program, the output data processor (ODP) in the 
multiplex subsystem handles the character output to the line. The 
output data processor is an interrupt-driven (priority 1) level 1 
microprogram that is activated when an output data demand (ODD) is 
generated by the CLA on that line. The output data processor's 
primary function is to obtain a single character from line-oriented 
output buffer, to place this data into line frame format, and to 
transfer the line frame onto the multiplex output loop. This process 
is repeated, driven by the ODD interrupts, until the entire message 
is transmitted. 

Text processing is also performed on some upline data. This occurs 
where the input block is composed of data from several devices at the 
same workstation, as in the case of the HASP TIP. In this case, the 
input state programs partially demultiplex the data into a 
line-oriented input buffer. Then the multiplex subsystem calls the 
OPS-level TIP. The OPS-level TIP calls TPPTINF to convert this block 
of terminal data to one or more blocks of device-oriented data in 
IVT/BVT format. Different sets of text processing programs are 
needed for upline and downline conversions. 

• Modem state programs. The IDP and ODP described above handle those 
tasks that are protocol dependent. Modem state programs handle those 
tasks that are performed for all line protocols, such as processing 
CLA status. 

COMPONENTS OF A STATE PROGRAM 
There are three components of a state program: 

• A dtate program consists of one or more state processes. The number 
and variety of state processes defined for a state program is a 
function of the particular terminal protocol. Each state program is 
assembled as a sequential table of coded state processes. 

• A state process is composed of 
(firmware macroinstructions). 
language of state processing. 
macros and their use, refer to 
(see preface). 

one or more state instructions 
The set of these macros forms the 
For a complete description of the 
the State Programming Reference Manual 

• The state pointer table contains the address of each state process 
defined for a particular protocol or line type. A state prooess is 
selected by setting the state index to the process number. 

FUNCTIONS 
The functions of the input state, text processing, and modem state programs 
are described in this subsection. 

INPUT STATE PROGRAMS 

Input state programs demultiplex char~cters into line-oriented input 
buffers. This is done in two ways: 

12-4 60474500 A 



• One-pass processing. These buffers of fully converted data are 
passed to the host via the TIP and the HIP. 

• Two-pass processing. These buffers of partially demultiplexed data 
become the source buffers for input text processing. The OPS-level 
TIP is called to finish the demultiplexing. Then the TIP passes the 
fully converted data to the host via the HIP. 

An input state program consists of a maximum of 64 state processes. These 
processes handle tasks such as data conversion, CRC generation, character 
compression, and message blocking. Since all state processes are reentrant, 
lines with a similar protocol can share some state processes. 

The TIP must provide programs for the four reserved input state processes 
(0, 1, 2, and 3). State 0 handles parity errors or data transfer overrun. 
State 1 is called when the data carrier detect (DCD) signal is dropped. 
This condition can be used as a logical end of text for controlled carrier 
lines. Both state 0 and 1 are given control by the modern state program 
(regardless of the current input state) when the stated condition occurs. 
States 2 and 3 are called by the input data processor to process 
buffer-related conditions. State 2 is given control when the number of 
input buffers currently in use exceeds the system limit. State 3 receives 
control when the available buffer minimum threshold is reached. States 4 
through 63 are defined by the TIP. 

The 16-word multiplex line control block (MLCB) stores control information 
for the message. Numerous flags and fields are defined for the transfer, 
including the state process pointer and the state program index. Together, 
these locate the next state process to be executed. The MLCB fields are 
defined in appendix H. 

The input data processor has three interfaces: to firmware, to modem state 
programs, and to text processing state programs. 

Firmware Interface to Input Data Processor 

When the firmware input data interrupt causes the multiplex subsystem to 
pass control to the designated input state process for the line or 
terminal. Before executing the first state input state instruction, the 
firmware loads a selected register with the current (untranslated) 
character. The contents of this register can be changed by state 
macroinstructions. 

If parity stripping is specified, the parity bit is stripped when the 
register is initially loaded. If and when the register contents are 
changed, parity stripping is ignored. Exit options allow the TIP to store 
the character from the register without changing the register contents. 

Modem State Program Interface to Input Data Processor 

When a data character and CLA status occur in the same line frame of the 
CIB, the firmware transfers control to the current modem state process. The 
modem state program is responsible for passing control to input state 
process 0 or 1 upon detecting status conditions for which the input state 
program should get control. 

60474500 A 12-5 



Flags in the MLCB are used for communication between the modem state program 
and input state program. One flag indicates that a workcode has been saved 
for use when the carrier drops. Another flag is set by the line initializer 
when a controlled carrier line is detected. 

The input state program must set the modem state index to the modem state 
process that handles status while input is in progress. That is, upon 
detecting start of input, the input state program must change the modem 
state index to the modern state process that handles status when inputting. 
Then, upon detecting end of transmission, the input state program must set 
the modern state index to the modern state process for idle. 

For the controlled carrier type of line, an output message cannot be 
transmitted until data carrier detect drops on input. To eliminate the 
possibility of a TIP starting output before data carrier detect has dropped 
during input, the input state program has the ability to terminate the input 
buffer and save the workcode in the MLCB {the alternative would be building 
the worklist at the time of the termination). The input state program then 
sets a user flag indicating this saved workcode condition. 

A worklist entry can be built immediately if the line type is not a 
controlled carrier line. 

The modem state program jumps to input state process 1 when the saved 
workcode flag is set, data carrier detect has dropped, and the idle modern 
state exists. The TIP does not get control until data carrier detect has 
dropped, eliminating the possibility of starting output before data carrier 
detect has dropped during input. 

Other input/modern states interfaces can be defined as needed by the user. 

Text Processing State Program Interface to Input Data Processor 

The input state program creates interim {source) buffers to be used by the 
text processing state program only when more than one pass is required to 
process the input from the CIB. 

TEXT PROCESSING STATE PROGRAMS 

These state programs handle all protocol-oriented output processing and some 
input processing {where several devices on the same line have data to 
convert within a single upline block). 

When handling characters for output text processing, the buffer received 
from the host is referred to as the source buffer. A character from this 
buffer is known as a source character. For input text processing, the 
source character is obtained from the source buffer that was created by the 
input state program at the end of the first pass. The source character is 
placed in the current character register by the firmware. 

A text processing state program consists of a maximum of 64 state 
processes. Since all state processes are reentrant, lines with a similar 
protocol can use the same state processes. 

Text processing state process 0 is reserved for handling the end of a 
source-reached condition and state process 2 is reserved for handling buffer 
overflow processing. States 1 and 3 through 63 are defined by the TIP. 

12-6 60474500 A 



The selection of the text processing state process to execute is determined 
by combining the value of the state process index with the state pointer 
table address. Both fields are in the text processing state pointer table 
entry points to the associated text processing state process. See appendix 
H for a definition of TPCB fields. 

The state pointer table address and state process index fields are set by 
the OPS-level TIP program. State program macroinstructions allow the 
firmware program to change the state process index while executing text 
processing state programs. 

Before text processing is initiated, a group of 16 firmware registers {file 
1 text processing registers) are initialized from the last 16 words of the 
TPCB by PTTPINF. This action allows the firmware to operate entirely within 
micromemory. 

The 16 file 1 registers are accessed by specifying a displacement to the 
selected file 1 register. A displacement of 0 selects the first file 1 
register and a displacement of 15 selects the last file 1 register. 

Firmware Interface to the Output Data Processor 

The 9estination buffers generated by the output text processing program can 
be accessed by the output data processor when an output data demand {ODD) is 
received from the communications line adapter. The output data processor 
gets the next character from line-oriented buffers, moves the character into 
multiplex output loop frame, and transfers the frame to the MLIA for 
transmission on the multiplex output loop. 

The TIP support program, PTTPINF, provides the interface between the 
OPS-level TIP and the firmware which performs state-driven text processing. 
PTTPINF performs the following functions: 

• Initializes the file 1 registers for text processing with the lower 
16 words of the text processing control block {TPCB) array. 

• Initiates output state processing instructions. 

• Releases unused destination buffers created by the save and restore 
conditions state instruction upon return to macrolevel processing. 

• Restores the text processing TPCB array with the file 1 registers 
upon return to macrolevel processing. 

PTTPINF is called with a parameter containing the address of the TPCB. 

After detecting a character but before executing the first state 
instruction, the firmware loads file register 0 and a selected register with 
the current {untranslated) character. The programmer can change the 
contents of file register 0 by using the state program macroinstructions. 

If parity stripping is specified, the parity bit is stripped when the 
register is initially loaded. If the contents of the register are changed, 
parity is ignored. Exit options can store this character without changing 
the register contents. 

60474500 A 12-7 



MODEM STATE PROGRAMS 

The modem state programs process modem status as a function of modem control 
signals. The programs (which are called by the firmware when communications 
line adapter (CLA) status word enters the subsystem) use a worklist entry to 
forward the logical CLA status to the multiplex level status handler 
(PTCLAS). PTCLAS analyzes the status and uses a worklist entry to report 
line conditions to the OPS-level TIP modem state program. 

A modem state program consists of a maximum of 16 state processes. There 
are modem state processes defined for each line type based on line 
condition. Thus, the modem state program can have one or more processes for 
each condition or one state process to handle more than one line condition, 
depending on the line type. 

The modem state programs report status conditions to the line initializer 
and to the TIPs. These programs are based on line type. The states defined 
for each line analyze the status as a function of the current state of the 
line (for example, line idle, output in progress, input in progress, and 
initializing line). 

State 0 is the starting state of the modem state programs when a CLA status 
word is detected in the circular input buffer. This state checks for hard 
errors and any other signals that are common to idle, input, and output 
states. Control passes to the current state program if no errors are 
detected or if the current state is discard, initializing line, or enabling 
line. 

State 1 discards all status. This state is selected following any hard 
error worklist generation or by a clear line or disable line command to the 
command driver. 

State 2 is the common line initialization state. Upon receiving any status, 
this program checks the ring indicator. A worklist is generated if it is 
found. If the ring indicator is not included in the status word, a CLAON 
worklist is generated. 

State 3 is the enable line state. It is selected whenever an enable line 
command is issued. The modem signals that indicate that the line is ready 
for data transfer are checked. If these are found, a worklist indicating 
the line is enabled is generated. The modem state program changesrto state 
4 (idle) after the worklist is generated. Either of two signals indicate 
the line is enabled: data set ready (DSR) alone, or a combination of DSR 
and data carrier detect (DCD). 

NOTE 

States 0, 1, 2, and 3 are similar for all line types. Any 
new modem state programs must perform t~ese same functions. 
New programs should also check the three hard error 
indicators: input line enabled, output line enabled, and DSR. 

State 4 is the idle state. It checks for any error conditions that are not 
checked in state O. 

NOTE 

States 5 and 6 are unique by line type. 

12-8 60474500 A 



State 5 is the output state. It checks for output-related errors not 
checked in state O, such as next character not available. 

State 6 is the input state. It checks for input-related errors not checked 
by state 0, such as parity error status. The program also provides a jump 
to the TIP input state that handles the data character that accompanies the 
status indicator for any status condition that requires such a character 
(for example, PES, data transfer overrun, and SDLC character status). 

NOTE 

States 4, 5, and 6 can be separate states if the line does 
not use full-duplex transmission. With full-duplex 
transmission lines, these states can be performing the same 
functions for handling status while input and output are 
simultaneously in progress. 

State 7 is ready for output, reverse channel. It is not used. 

The modern state index in the port table {NAPORT) can be set by the command 
driver, an input state program, or a modern state program. The modern state 
program address field is set by the command driver when a line is 
initialized. The command driver sets the index to the modern state process 
according to the command being issued. The input state programs control the 
setting of the modern state program index for handling status while input is 
in progress. 

The modern state program is initially entered by accessing modern state 
process O. Modern state process 0 sets the modern state index according to 
the status information it receives. Subsequent selection of a modern state 
process is determined by the modern state program address and modern state 
index of the port table. This combination of the index and address selects 
the state pointer table entry that points to the associated modern state 
process. 

The modern state programs have three interfaces. 

Firmware Interface to the Modem State Programs 

CLA status is moved into the circular input buffer {CIB) along with the 
input data. When the firmware's input data processor detects CLA status, it 
passes control to modern state process 0 for that line. 

Multiplex Level Status Handler (PTCLAS) Interface to the 
Modem State Programs 

After the modern state program builds a worklist entry containing the logical 
CLA status, the multiplex level worklist processor routes the priority 
worklist entry to the multiplex level status handler, PTCLAS. Upon 
receiving control, PTCLAS analyzes the status condition indicator and acts 
accordingly. The appropriate action may be to generate a CE error message, 
to start a timer for modern response or CLA status overflow, or to make a 
worklist entry to the associated TIP at OPS-level. 

60474500 A 12-9 



Input State Program Interface to the Modem State Programs 

This interface was described in the Input State Program subsection. 

MACROINSTRUCTIONS 
There are nine classes of macroinstructions: 

• Status of the two assignable counters 

• Character manipulation (stoce, replace, etc.) 

• Index manipulation 

e Skips 

• CLA status handling 

• Flag control (set and reset) 

• Worklist handling (build, terminate, use fields) 

• Text processor operations 

• Miscellaneous (addresses, timers, backspace, resync, CRC, buffer 
allocation, block length, move fields) 

The state program macroinstructions are summarized in table 12-1. The 
general format of a state program macroinstruction is 

MACRO NAME parml,parm2, ••• ,parmn 

The instruction in this call format is closed up and all defined parameters 
must be present. If a parameter is inapplicable to the current call or it 
the default value is to be used, the parameter value can be omitted, but its 
delimiting commas must be present. 

Example: 

MACROX parml,parm2,parm3,parm4 

could appear as 

MACROX parml,,parm3, 

if parameters 2 and 4 are to have default values. 

12-10 60474500 A 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS 

Name Function Parameters 

STATUS OF ASSIGNABLE COUNTERS 

INT CC Initialize character counters {CC) COUNT, ACTION 

INTCCl Initialize CCl with packet size ACTION 

INTCC2 Initialize CC2 with maximum block length ACTION 

SETCC Set CC to value {CV) COUNT, CV 

SETCCl Set CCl to CV CV 

SETCC2 Set CC2 to CV CV 

CHRCC Mask and set CC COUNT, !MASK 

CHRCCl Set CCl I MASK 

CHRCC2 Set CC2 !MASK 

MO ICC Set CC with modulus function. COUNT, CV 
Modulus = CV 

ICC Increment cc COUNT, ACTION 

ICCl Increment CCl ACTION 

ICC2 Increment CC2 ACTION 

DCC Decrement cc COUNT, LABEL, 
ACTION 

DCCl Decrement CCl LABEL, ACTION 

DCC2 Decrement CC2 LABEL, ACTION 

CNTNE Compare CC with value {CV) COUNT, CV, 
LABEL 

CNTlNE Use count 1 CV, LABEL 

CNT2NE Use count 2 CV, LABEL 

BLCNE Compare CC to block length COUNT, LABEL 

BLClNE Use count 1 LABEL 

BLC2NE Use count 2 LABEL 

STORC Store cc in destination buffer COUNT, ACTION 

STORCl Use count 1 ACTION 

STORC2 Use count 2 ACTION 

60474500 A 12-11 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS (Contd) 

Name Function 

CHARACTER MANIPULATION 

STORE 

RC HAR 

RP LACE 

ADDC 

RAD DC 

CHRPT 

Store current character in destination 
buffer with or without CRC 

Make specified character the current 
(untranslated) character 

Make specified character the current 
character, store it (combines RCHAR 
and STORE) 

Insert (add) character to destination 
buffer 

Add CHAR to destination buffer the 
number of times specified in count 1 

Add current character to destination 
buffer the number of times specified in 
count 1 

INDEX MANIPULATION 

MSTATE 

MJUMP 

STATE 

RTRN 

JUMP 

SKIPS 

SKIP 

SKI PB 

CRCEQ 

STATLS 

12-12 

Set modem state index in port table to 
value (STATE) 

MSTATE, then execute indexed program 

Set input index in MLCB to value (STATE) 
or set TP index in TPCB to value 

Execute currently indexed input or TP 
state programs 

Optionally update state index, then 
execute indexed input or TP state 
program 

Skip_forward to LABEL 

Skip backward to LABEL 

Skip to LABEL if CRC check is good 

Skip to LABEL if current input/TP state 
index < LABS:L 

Parameters 

CRCA 

CHAR, ACTION 

CHAR, CRCA 

CHAR, ACTION 

CHAR 

none 

STATE, ACTION 

STATE 

STATE, ACTION 

none 

STATE, RTN 

LABEL 

LABEL 

SB, LABEL 

STATE, LABEL 

60474500 A 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS (Contd) 

Name 

MST LS 

CHARNE 

SPCHEQ 

CHAR LS 

Function 

Skip to LABEL if current modem state 
index < LABEL 

Skip to LABEL if current character 
F CHAR 

Perform ACTION if current character F 
special character, skip to LABEL 
otherwise (special character in control 
block) 

Skip to LABEL if current character 
<CHAR 

CLA STATUS HANDLING 

TS TC LA 

CMPC LA 

FLAG CONTROL 

SE TRAN 

RSTRAN 

SETI NP 

RSTINP 

SETMXF 

RSTMXF 

TSTMXF 

SETFLG 

SETPAR 

RSTPAR 

60474500 A 

Check unmasked CLA status bits, skip to 
LABEL unless bits match. Use AND 
function 

Same as TSTCLA but use exclusive OR 
function 

Set translate flag 

Reset translate flag 

Set message in process flag 

Reset message in process flag 

Set specified flags 

Reset specified flags 

Skip to LABEL if any of MFLAGS is set 

Set flags in destination buffer 

Set parity flag in control block 
(strips parity from subsequent current 
characters) 

) 

Reset parity flag 

Parameters 

STATE, LABEL 

CHAR, LABEL 

LABEL, ACTION 

CHAR, LABEL 

CMASK, LABEL 

CMASK, LABEL 

ACTION 

ACTION 

ACTION 

ACTION 

MFLAGS, ACTION 

MFLAGS, ACTION 

MFLAGS, LABEL 

MFLAGS, BUFFER, 
ACTION 

ACTION 

ACTION 

12-13 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS {Contd) 

Name Function 

WORKLIST HANDLING 

TIBWL 

TIBSWC 

BLDWL 

BLDOl 

Terminate input buffer, build a worklist 
entry {WLE) for TIP 

Terminate input buffer, save workcode 
{WC) in MLCB 

Build WLE for OPS or multiplex level 

Generate CLA status WLE for multiplex 
level 2 

TEXT PROCESSOR OPERATIONS 

TPADDR 

TPSUBR 

TPCMPR 

TPINCR 

TPDECR 

TPMARK 

TPBKUP 

TPSTLC 

TPSTRC 

TPRSTL 

TPRSTR 

TPEXIT 

12-14 

{SFlR+DFlR) ... DFlR. FlR is a file 1 
register, S is source, D is destination 

{DFlR-SFlR) -+- DFlR 

SF!R < DF!R, execute P+l instruction 
SFlR = DFlR, execute P+2 instruction 
SFlR > DFlR, execute P+3 instruction 

Increment specified FlR by VALUE 

Decrement specified FlR by VALUE 

Mark (save processing parameters) source 
and destination buffers at level {LV) 

Return to the specified buffers at level 

Store left byte of FlR {SD) into destina­
tion buffer {with or without CRC check) 

Store right byte of FlR 

Restore untranslated character registers 
from FIR, left byte 

Restore untranslated character register 
from FlR, right byte 

Exit from TP state program to OPS level 

Parameters 

we, WL, EOT, 
ACTION, EP 

WC, EOT, 
ACTION 

WC, WL, 
ACTION, EP 

SCI, ACTION 

SD, DD 

SD, DD 

SD, DD 

SD, VALUE 

SD, VALUE 

LV 

LV, SRC, DST 

SD, CRCA 

SD, CRCA 

SD 

SD 

none 

60474500 A 



TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS {Contd) 

Name Function Parameters 

MISCELLANEOUS 

STRNTB 

RSTIME 

BKSPAC 

RESYNC 

ICRC 

ALNBUF 

NOPR 

TPMOVE 

TPST 

TPSTR 

TPSTL 

TPLD 

TPLDR 

TPLDL 

SBLC 

60474500 A 

Store translation table address in 
control block 

Reset line control timer value (TIME); 
is a function of line type 

Backspace destination buffer pointer one 
word 

Send resync command to CLA 

Initialize CRC 

Allocate and initialize a buffer 

Specify ACTION parameter 

Move SFlR contents to DFlR 

Move SFlR to specified CB word 

Move right byte of SFlR to specified CB 
word 

Move left byte of SFlR to specified CB 
word 

Move specified CB word to DFlR 

Move right byte of specified CB word to 
DFlR 

Move left byte of specified CB word to 
DFlR 

Adjust block length count and then store 
new count in CB 

TA, ACTION 

TIME, ACTION 

none 

ACTION 

ICRC, ACTION 

FCD, ACTION 

ACTION 

SD, DD 

SD, DD 

SD, DD 

SD, DD 

SD, DD 

SD, DD 

SD, DD 

ADJ, ACTION 

12-15 



The number of parameters varies. Macroinstructions are represented in 
either a one word or a two word instruction (parameter list). The usual 
word oriented format is as follows: 

One-word 

15 7 3 0 
Flags/Fields Fl Code I 

Two-word 

15 7 3 0 
Flags/Fields Fl Code 

I 
FIELD 

Flags - usually in bits 14 and 15 

Fl - a set of frequently used parameters, including ACTION, a 
parameter that specifies the actions to take prior to exiting 
from the instruction sequence 

Code - the instruction ID (index): 00 CODE 1F16 

Field - any additional control or address field 

Each code can have several variations, defined by use of flags and fields. 

NOTE 

Flags, Fields, and Fl are all parameters. The order of the 
parameters in the call is not usually the same as the packed 
order in the instruction words. 

For a detailed description of the macroinstructions, refer to the State 
Programming Reference Manual (see preface). 

12-16 60474500 A 



GLOSSARY 

ADDRESS - A location of data {as in the macro or micro NPU memory) or of a 
device {as a peripheral device or terminal). The NPU main memory is 
paged. 

APL - A specific programming language characterized by powerful operations 
defined as simple keyboard symbols. 

APPLICATION PROGRAM - A program resident in a host computer. The program 
provides an information storage, a retrieval, and/or processing service 
to a remote user via the data communication network and the Network 
Access Method. 

A/Q CHANNEL - The internal data channel of the 255X NPU. Peripheral devices 
located on the A/Q channel ordinarily use the A register for data and 
status transfers and the Q register for command and addressing 
information. 

ASYNC PROTOCOL - The protocol used by asynchronous, teletypewriter-like 
devices. For CCP, the protocol is actually the set of protocols for 
eight types of real terminals. The NPU and terminal interface is handled 
by the ASYNC TIP. 

AUTORECOGNITION - A capability for selected terminals which allows the TIP 
to recognize some device characteristics for the terminal, rather than 
having the terminal or the host specify the information. 

BANDWIDTH - For CCP, bandwidth indicates the transfer rate (in characters 
per second) between the NPU and the terminal. 

BASE SYSTEM SOFTWARE - The relatively invariant set of programs in CCP that 
supply the monitor, timing, interrupt handling, and multiplexing 
functions for the NPU. Base software also includes common areas and 
debugging utilities. 

BLOCK - A unit of information used by networks. A block consists of four or 
more 8-bit characters and contains sufficient information to identify the 
type of block, its origin, destination, and routing. Differing block 
protocols apply to the host/NPU and the NPU/terminal interfaces. 

BLOCK PROTOCOL - The protocol governing block transfers of information 
between the host and the NPU. 

BREAK - An element of a protocol indicating an interruption in the data 
stream. 

BROADCAST MESSAGE - A message generated by the system or by an operator 
using the systems. The message is sent to one (broadcast one) or all of 
the terminals in the system {broadcast all). 

60474500 A A-1 

A 



BUFFER - A collection of data in contiguous words. CCP assigns one size of 
buffers for data and two other sizes of buffers for internal processing. 
A buffer usually has a header of one or more words. Data within a data 
buffer is delimited by pointers to the first and last characters (data 
buffers are character oriented). If the data cannot all fit into one 
buffer, an additional buffer is assigned and is chained to the current 
buffer. Buffer assignment continues until the entire message is 
contained in the chain of buffers. Buffers are chained together only in 
the forward direction. 

BUFFERING - The process of collecting data together in buffers. Filled 
buffers include the case where data is terminated before the end of the 
buffer and the remaining space is filled with extraneous information. 

BUFFER THRESHOLD - The minimum number of buffers available for assignment to 
new tasks. As the buffer level falls toward the threshold, new tasks are 
rejected (regulation). 

BVT - Batch Virtual Terminal. See virtual terminal. 

BYTE - A group of contiguous bits. For data handling within the NPU/host 
interface, a byte is 8 bits, usually in the fo~m of a 7-bit ASCII 
character with the eighth bit reserved for parity. 

CASSETTE - The magnetic tape device in an NPU used for bootstrap loading of 
off-line diagnostics and (in remote NPUs) the bootstrap load and dump 
operation. 

CCP - Communications Control Program. This set of modules performs the 
tasks delegated to the NPU in the network message processing system. 

CE ERROR MESSAGE - A diagnostic message sent upline to the host from the 
NPU. The message contains information concerning hardware and/or 
software malfunctions. 

CHARACTER - A coded byte of data. In the CCP program, a character is 
ordinarily in 8-bit ASCII format (7 bits plus an eighth bit reserved for 
parity) • 

CIB - Circular Input Buffer. The fixed buffer used by the multiplex 
subsystem to collect all data passing upline from the multiplexer. The 
buffer is controlled by a put pointer for the multiplexer and a get 
pointer used to demultiplex data to individual line-oriented data buffers. 

COMMAND DRIVER - The base system program (PMCDRV) that controls the 
multiplex subsystem. 

COMMON AREA - Areas of main memory dedicated to system and global data. 
These are usually below address 1,05016· 

CONFIGURATION - See System Configuration. 

CONNECTION NUMBER (CN) - A number specifying the path used to connect the 
terminal through the NPU to the host. For each NPU/host pair, there are 
255 available connection numbers. 

A-2 60474500 A 



CONSOLE - (1) A terminal devoted to network control processing. There are 
three such terminals: the Network Operator's (NOP) terminal, the Local 
Operator's (LOP) terminal, and the NPU console. (2) Any standard 
interactive device on a terminal. 

CONTENTION - (1) The state that exists in a bidirectional transmission line 
when both ends of the line try to use the line for transmission at the 
same time. Most protocols contain logic to resolve the contention 
situation. (2) The situation that exists when an interruptable program 
and the program that may interrupt it share data elements. 

CONTROL BLOCKS - (1) The types of blocks used to transmit control (as 
opposed to data) information; (2) Data structures assigned for special 
configuration/status purposes in the NPU. The major control blocks are 
line control blocks (LCB), logical link control blocks (LLCB), terminal 
control blocks (TCB), queue control blocks (QCB), buffer maintenance 
control blocks (BCB), multiplex line control blocks (MLCB), text 
processor control blocks (TPCB), and diagnostics control blocks (DCB). 

COUPLER - The hardware interface between the local NPU and the host. 
Transmissions across the coupler use block protocol. 

CRC - Cyclic redundancy check. A check code transmitted with blocks/frames 
of data. It is used by several protocols including the HASP, Mode 4, BSC 
and CDCCP protocols. 

CROSS - The software support system for CCP. It supports PASCAL coding and 
is run on the host computer. One output is a CCP program in 255X Machine 
Code format ready for execution in the NPU. 

COMMUNICATIONS SUPERVISOR (CS) - A portion of the network software resident 
in the host. CS is written as an application program; the Communications 
Supervisor coordinates the network-oriented activities of the host 
computer and of the lines and terminals logically linked to it. 

DATA - Information processed by the network or some components of the 
network. Data usually has the form of messages, but commands and status 
are frequently transmitted using the same information packets as data 
(for instance, system messages). 

DATA COMPRESSION - The technique of transmitting a sequence of identical 
characters as a control character and a number representing the length of 
the sequence. HASP and Mode 4 protocols support data compression, as do 
virtual terminal formats. 

DATA SET - A hardware interface that transforms analog data to digital data 
and the converse. A data set is used to connect a remotely located 
terminal to the NPU. 

DOLTS - Special diagnostic documentation that uses a highly structured table 
technique to aid the troubleshooter in isolating a problem. 

DEBUGGING - The process of running a program to rid it of anomalies. CCP 
supplies debugging aids for programs (TUP, PBTIPDG, and PBDEBUG) and for 
run-time PASCAL programs (QDEBUG and its associated programs). 

DIAGNOSTICS - Software programs or combinations of programs and table that 
aid the troubleshooter in isolating problems. 

60474500 A A-3 



DIRECT CALLS - The method of passing control directly from one program to 
another. This is the usual control transfer mode for CCP. Some CCP 
calls are indirect, through the monitor. Such OPS-level indirect calls 
pass information to the called program through parameter areas called 
worklists. See Worklist. 

DIRECTORIES - Table in CCP that contain information used to route blocks to 
the proper interface and line. There are directories for source and 
destination node (SN and DN) and for connection number (CN). A routed 
message is attached to the TCB for the line over which the message will 
pass. 

DN - Destination node. The network node to which a message is directed; for 
instance, the DN of an upline message might be the host process (CS) 
which processes line-related service messages. 

OMA - Direct memory access. The high-speed I/0 channel to the NPU main 
memory. This channel is used by the coupler for host/NPU buffered 
transfers and by the multiplex hardware (MLIA) for line-NPU transfers. 

DOWNLINE - The direction of output information flow, from host to terminal 
or NPU. 

DUMP - The process of transferring the contents of the NPU main memory, 
registers and file 1 registers to the host. The dump can be processed by 
the Network Dump Analyzer in the host to produce a listing of the dumped 
hexadecimal information. 

EXTERNAL BCD - A type of binary-coded decimal (BCD) code used by some 
asynchronous and Mode 4 terminals. 

FE - Format Effectors. Control symbols used by certain protocols (for 
instance, the IVT protocol). 

FILE REGISTERS - The two sets of microregisters (file 1 and file 2) in the 
NPU. File 1 registers contain parameter information that is reloaded 
whenever the NPU is initialized. Microprograms using these registers can 
also change values in them. File 2 registers are invariant firmware 
registers that come preprogrammed with the NPU. 

FRAMES - (1) The basic communications unit used in the HDLC or CDCCP 
protocol for trunk (NPU to NPU) communicatiqns. Frames are composed of 
control bytes, a CRC sum, and (in some cases) data bytes in subblock 
sequence. A subblock may be a block protocol block or a part of a 
block. Frames are transmitted as a sequence of bytes through the 
multiplex subsystem. (2) A sequence of data bytes used internally by the 
multiplex subsystem hardware (see Line Frame). 

FREEWHEELING - A terminal that can input information at the discretion of 
the user. Input rate cannot be controlled directly. 

FRONT END - A computer that performs network communications functions (such 
as terminal multiplexing) for a host computer. The local NPU is a front 
end for a CYBER host. 

FULL DUPLEX (FDX) - A transmission mode allowing data transfer in both 
directions at the same time. 

A-4 60474500 A 



FUNCTION CODE - Code used by the service module to designate the type of 
function (command or status) being transmitted. Two codes are defined: 
Primary function code (PFC) and secondary function code (SFC). See 
appendix C. 

GLOBAL VARIABLES - Variables that are defined for use throughout CCP. 
Contrast global variables with local variables, which are identified only 
within a single program. 

HALT CODE - Code generated by the NPU when it executes a soft stop. A halt 
indicates the cause of the stoppage; it is delivered at the NPU console 
in the form of a halt message. 

HALF DUPLEX (HDX) - A transmission mode allowing data transfer in one 
direction at a time. Normally, a single set of data lines carry input, 
output, and part of the control information. Contention for use is 
possible in HDX mode and must be resolved by the protocol governing line 
transfers. 

HASP - Houston Automatic Spooling Process is a protocol used by the HASP 
workstations. The standard code of a HASP workstation is EBCDIC. The 
HASP TIP in the NPU processes the HASP protocol and normally performs 
EBCDIC/ASCII conversions since the host uses ASCII in IVT or BVT format 
for its processing. 

HEADER - A word or set of words at the beginning of a block, record, file, 
or buffer which contain control information for that unit of data. 

HIP - Host Interface Package. The CCP program that handles block transfers 
across the host/local NPU interface. The HIP normally operates with !VT 
or BVT data and uses CCP block protocol. 

HOST - The computer that controls the network and that contains the 
applications programs that process network messages. 

·ID - Identifiers. This can refer to ports, nodes, lines, links, or 
terminals. Any hardware element or connection can have an ID, normally a 
sequentially assigned number. 

INITIALIZATION - The process of loading an NPU and optionally dumping the 
NPU contents. After downline loading from the host, the NPU 
network-oriented tables are configured by the host so that all network 
processors have the same IDs for all network terminals, lines, and trunks. 

INPUT BUFFER - A data buffer reserved by CCP for receiving an upline message 
for the host. These buffers are assigned and released dynamically. 
Contrast with the CIB on the multiplex subsystem interface. 

INTERFACE (NPU) - The set of hardware and software that permits transfers 
between the NPU and an external device. There are four principal 
interfaces: to the host (block protocol in IVT or BVT format handled by 
a HIP), to the peripheral devices (CDT printer protocol handled by base 
system software), to a neighbor NPU (CDCCP protocol handled by a LIP), 
and to the terminals via the multiplex subsystem (various protocols; 
standard protocols are handled by the Mode 4, ASYNC, and HASP TIPs). 

INTERNAL PROCESSING - A group of CCP modules that provide routing capability. 

60474500 A A-5 



INTERRUPTS - A set of hardware lines and software programs that allow 
external events to interrupt NPU processing. Interrupting programs are 
allowing preferential processing on a priority basis. The lowest 
priority level is processed by the OPS monitor. 

!VT - Interactive virtual terminal. A block protocol format for interactive 
terminals. See Virtual Terminals. 

LCB - Line control block. A table assigned to each active line in the 
system. It contains configuration information as well as current 
processing information. 

LINE - A connection between an NPU and a terminal. 

LINE FRAME - A sequence of data bytes used within the multiplex subsystem as 
the means to transfer data and status in both directions between the CLA 
and the MLIA. 

LINK - A connection between two NPUs or an NPU and a host. In this release 
(CCP3) a link is the same as a trunk. 

LIP - Link interface package. The CCP program that handles frame transfers 
across a trunk; that is, across the connection between a local and a 
remote NPU. A LIP uses CDCCP protocol and interfaces on the local NPU 
side to the HIP. On the remote NPU side, the LIP interfaces with the 
appropriate TIP •. In both local and remote NPUs, the LIP interfaces with 
the multiplex subsystem for transfers across the trunk. 

LLCB - Logical link control block. A table assigned to each logical link in 
the system, which includes this NPU. The table contains configuration 
information as well as current processing information. A logical link is 
an association between a pair of nodes in the network. 

LOAD - The processing of moving programs downline from the host and storing 
them in the NPU main memory and micromemory. Loading of a remote NPU is 
accomplished by the host through the use of overlays in the local NPU. 

LOCAL NPU - An NPU that is connected to the host via a coupler. A local NPU 
always contains a HIP for processing block protocol transfers across the 
host/local NPU interface. 

LOGICAL CONNECTION - A logical message path established between two 
application programs or between a network terminal and an application 
program. Until terminated, the logical connection allows messages to 
pass between the two entities. Not all logical connections are used (for 
instance, a remote NPU may be actively connected to local NPUl rather 
than local NPU2; however, if NPUl fails, the potential logical connection 
to NPU2 becomes an active connection and traffic is routed to the host 
via NPU2). 

LOGICAL LINK - See Link. 

LOGICAL REQUEST PACKET (LRP) - A parameter/data packet for a peripheral 
device. The LRP attached to a real peripheral control block is 
transformed to a physical request packet and is delivered to the assigned 
NPU console device. 

A-6 60474500 A 



LOCAL OPERATOR (LOP) - The operator of that terminal in the network that is 
connecting a specific application program in the host to the messages 
being processed. The terminal by default is the host system console, but 
the LOP can be transferred to any other interactive terminal in the 
network other than an NPU console. The operator manages the 
communications elements of the network within the local computer system 
by communicating with the Communications Supervisor in the host 
computer. Contrast with network operator. The local operator is an 
administrative operator within the network and need not be the host 
computer's operating system operator. 

LOOP MULTIPLEXER (LM) - The hardware that interfaces the CLAs (which convert 
data between bit serial digital and bit parallel digital (character 
format) and the input and output loops of the MLIA). 

LPC - Longitudinal parity character. A form of check character which is 
formed by exclusive OR of all the preceding characters. It is used by 
the Mode 4 and ASCII BSC protocols. 

MAIN MEMORY - The macrornernory of the NPU. It is partly dedicated to 
programs and common areas; the remainder is buffer area used for data and 
overlay programs. Word size is 16 data bits plus two additional bits for 
parity and program protection. Memory is packaged in 16K and 32K word 
increments. 

MASK REGISTER - A register used in the interrupt subsystem to determine 
whether an interrupt is of sufficiently high priority to be processed 
now. Each bit in the mask register (M) corresponds to an interrupt 
line. The register operates under program control. 

MESSAGE - A logical unit of information, as processed by an application 
program. When transmitted over a network, a message can consist of one 
or more physical blocks. 

MODE 4 - A communications line transmission protocol for synchronous 
terminals. The protocol requires the polling of sources for input to the 
data communications network. CCP supports Mode 4A, 4B and Mode 4C 
equipment. Mode 4A equipment is polled through a single hardware address 
(usually that of the console device), regardless of how many devices use 
the address as the point of interface to the network. Mode 4C equipment 
is polled through several hardware addresses, depending on the point each 
device uses to interface with the network. The Mode 4 TIP processes the 
interface between the NPU and the Mode 4 terminals. 

MODEM - A hardware device for converting analog levels to digital signals 
and the converse. Long lines interface to digital equipment via moderns. 
Modem is synonymous with data set. The term modern is derived from 
modulator-demodulator. 

MICROMEMORY - The micro portion of the NPU memory. This consists of 2048 
words of 64-bit length. 1024 words are read-only memory (ROM); the 
remaining 1024 words are random access memory (RAM) and are alterable. 
The ROM memory contains the emulator microprogram that allows use of 
assembly language. 

MICROPROCESSOR - The portion of the NPU that processes the programs. 

MLIA - Multiplex loop interface adapter. The hardware portion of the 
multiplex subsystem that controls the multiplex loops (input and output). 

60474500 A A-7 



MODULE - See program. 

MONITOR - The portion of the NPU base system software responsible for time 
and space allocation within the computer. The principal monitor program 
is PBMON (commonly known as OPSMON) which executes OPS-level programs by 
scanning a table of programs that has pending tasks (worklist entries). 

MULTILEAVING - Interleaving data from various devices in a single 
transmission block. It is used by the HASP protocol. 

MULTIPLEX SUBSYSTEM - The portion of the base NPU software that performs 
multiplexing tasks for upline and downline data and also demultiplexes 
upline data from the CIB and places the data in line-oriented input data 
buffers. 

NAM - See Network Access Method. 

NEIGHBOR NPUs - Two NPUs connected to one another by means of a trunk. The 
NPU connected to the host via a coupler is designated as the local NPU. 
The other NPU is a remote NPU; it is not connected directly to the host 
in any fashion. 

NETWORK - An interconnected set of network elements consisting of a host, 
one or more NPUs, and terminals. 

NETWORK ACCESS METHOD (NAM) - A software package that provides a generalized 
method of using a communications network for switching, buffering, 
queueing, and transmission of data. NAM resides in the host. 

NETWORK DEFINITION LANGUAGE (NDL) - The compiler-level language that defines 
the network configuration file and local cqnfiguration file contents used 
by the host computer. 

NETWORK LOGICAL ADDRESS - The address used by block protocol to establish 
routing for the message. It consists of three parts; DN (the destination 
node), SN (the source node) and CN (the connection number). 

NETWORK OPERATOR (NOP) - An administrative operator at the network operator 
console. This terminal by default is the host console, but the NOP 
function can be assigned to any other terminal in the system except an 
NPU console. The network operator manages the NPU hardware, linkages, 
and other network elements of the entire data communications network by 
communicating with the Network Supervisor at the host computer. Contrast 
with local operator. The network operator can also be a local operator, 
but need not be the operating system operator for the host computer at 
the network control center. 

NETWORK PROCESSING UNIT (NPU) - The collection of 255X hardware and 
peripherals together with the Communications Control Program (CCP). ~he 
CCP program buffer and transmit data between terminals and host computer. 

NETWORK SUPERVISOR {NS) - A portion of the network software, which 
coordinates all of the NPUs in the communications network. NS is written 
as an application program and resides in the host. 

NODE - A network element that creates, absorbs, switches, and/or buffers 
message blocks. Typical system nodes are NS and CS in the host, the 
coupler node of a local NPU, and a terminal node of a remote NPU. 

A-8 60474500 A 



OFF-LINE DIAGNOSTICS - Optional diagnostics for the NPU that require the NPU 
be disconnected from the network. 

ON-LINE DIAGNOSTICS - Optional diagnostics for the NPU that can be executed 
while the NPU is connected to, and operating as a part of, the network. 
Individual lines being tested must, however, be disconnected from the 
network. These diagnostics are provided if the user purchases a network 
maintenance contract. 

OPS MONITOR - The NPU monitor (see Monitor}. 

OUTPUT BUFFER - Any buff er that is used to output information from the NPU 
to another NPU, to a peripheral device, or to a terminal via the 
multiplex subsystem. 

OVERLAY AREA - A reserved area in main memory that is used to execute 
overlay programs. 

OVERLAY PROGRAMS - Programs that are not normally resident in main memory 
but which are called into the overlay area of main memory to execute 
special tasks. These programs are loaded by means of service messages 
from the host and perform such tasks as NPU initialization, debugging, 
loading/dumping a remote NPU, and on-line diagnostics. 

PAGING (NPU} - A method of executing programs and accessing data in the NPU 
main memory region above 65K. Paging is required to allow addressing 
where the address is larger than 16 bits (NPU word size) in length. 

PAGING (Screen) - The process of filling a CRT display with data while 
holding additional data for subsequent displays. Changing the paged 
display is a terminal operator controlled function. 

PARITY - A bit-oriented data assurance method. Parity in the NPU memory is 
word-oriented and is ordinarily not controlled by the operator. Parity 
bit is added when words are stored in main memory: parity bit is 
discarded after checking when the word is read from main memory. A 
parity error causes the highest priority interrupt in the system. Parity 
bits are also associated with ASCII characters (bit 7) and with some 
synchronous protocols (example: LPC, the longitudinal parity character). 

PASCAL - A high-level programming language used for CCP programs. Most CCP 
programs are written in PASCAL language. 

PFC - Primary function code. See Function Code. 

PHYSICAL LINK - A connection between two major network nodes such as 
neighboring nodes. Messages can be transmitted over active physical 
links. 

PHYSICAL REQUEST PACKET (PRP) - A packet of data to or from a peripheral 
device. Data in PRP format is ready to be processed by the peripheral 
device handler. A logical request packet (which see) must be converted 
into a PRP before sending output to the device. 

POINT OF INTERFACE (POI) PROGRAMS - A special set of base system programs 
that interface directly with TIPs. POis are defined for such standard 
functions as ending an output operation or ending an input operation. 

60474500 A A-9 



POLLING - (1) The action of checking CLAs to find whether a port is ready to 
transmit or receive another word of data. The multiplex subsystem 
performs the polling operation for active lines. (2) The action of 
soliciting input from certain types of terminals. A poll message is 
output to the terminal. The response is input device status or an 
indication that no data is ready to be input. 

PORT (P) - The physical connection in the NPU through which data is 
transferred to or from the NPU. Each port is numbered and supports a 
single line. Subparts are possible but not used in this version of CCP. 

PPU - Peripheral processor unit. The part of the host dedicated to 
performing I/O transfers. The coupler connects the PPU to an NPU via a 
data channel. 

PRIORITY LEVEL - CCP uses 16 interrupt processing levels plus the OPS 
processing level. Priority levels are interrupt driven. The OPS monitor 
processes at the lowest priority level; that is, at a level below any 
interrupt driven level. 

PROGRAM - A series of instructions that are executed by a computer to 
perform a task; usually synonymous to a module. A program can be 
composed of several subprograms. 

PROTECT SYSTEM - A method of prohibiting one set of programs (unprotected) 
from accessing another set of programs (protected) and their associated 
data. The system uses a protect bit in each main memory word. 

PROTOCOL - The complete set of rules used to transmit data between two 
nodes. This includes format of the data and commands, and the sequence 
of commands needed to prepare the devices to send and receive data. CCP 
uses the following protocols: The block protocol, the Logical Link 
protocol, the coupler protocol, and various terminal protocols. 

QUEUES - Sequences of blocks, buffers, or messages. Most NPU queues are 
maintained by leaving the queued elements in place and using a 
combination of tables of pointers to the next queued element and pointer 
words within the queued elements. Most queues operate on a first-in 
first-out basis. A series of worklist entries for a specific terminal is 
an example of an NPU queue. 

RECORD - For CCP: A data unit defined for the host software or for HASP 
workstations and HASP transmission. A HASP record contains space for at 
least one character of data and normally has a header associated with 
it. Records for HASP may be composed of subrecords. 

REGULATION - The process of making an NPU or a host progressively less 
available to accept various classes of input messages. The host has one 
regulation scheme, the multiplex interface of a local NPU has another 
scheme, and the multiplex interface to a neighbor NPU has a third 
regulation scheme. Some types of terminals (for instance, HASP 
workstations) can also regulate messages. Message classifications are 
usually based on batch, interactive, and control message criteria. 

REMOTE NPU - An NPU connected only to other (local) NPUs. Since a remote 
NPU has no coupler, it cannot be directly connected to the host. 

A-10 60474500 A 



RESPONSE MESSAGES - A subclass of service (network control) messages 
directed to the bost that are normally generated to respond to a service 
message from the host. Response messages normally contain the requested 
information or indicate the requested task has been started or 
performed. Error responses are sent when the NPU cannot deliver the 
information or start the task. A class of unsolicited response messages 
are generated by the NPU to report hardware failures. 

ROUTING - The process of sending data or commands through the NPU to the 
internal NPU process or to an external device (for instance, a 
terminal). The network logical address (DN, SN, CN) is the primary 
criterion for routing. The NPU directories are used to accomplish the 
routing function. 

SERVICE CHANNEL - The network logical link used for service message 
transmission. For this channel, CN=O. The channel is always configured, 
even at load time. 

SERVICE MESSAGE (SM) - The network method of transmitting most command and 
status information to or from the NPU. Service messages use CMD blocks 
in the block protocol. 

SERVICE MODULE (SVM) - The set of NPU programs responsible for processing 
most service messages. SVM is a part of the network communications 
software. 

SFC - Secondary function code. See Function Codes. 

SOURCE NODE (SN) - The network node originating a message or block of 
information. 

STATE PROGRAMS - Programs in the multiplex subsystem whose execution depends 
on the current state of the message being transmitted. For example, one 
state program is executed at the start of the message header processing, 
and another at start of text processing, another at end-of-text 
processing. 

STATE PROGRAM TABLES - Tables used by the multiplex subsystem to locate the 
next state program to execute. 

STATISTICS SERVICE MESSAGE - A subclass of service messages that contain 
detailed information about the characteristics and history of an element 
such as a line or. a terminal. 

STATUS - Information relating to the current state of an equipment, device 
or line. Service messages are the principal carriers of status 
information. Statistics are a special subclass of status. 

STRINGS - A unit of information.transmission used by the HASP protocol. One 
or more strings compose a record. A string can be composed of different 
characters or it can be a string of contiguous identical characters. In 
the latter case, the string is normally compressed to a single character 
(the only one type in the string) and a value indicating the number of 
times the character occurs. 

SUBPROGRAM - A series of instructions that are executed by a computer to 
perform a task or part of a task. A subprogram can be called by several 
programs or can be unique to a single program. Subprograms are normally 
reached by a direct call from a program. 

60474500 A A-11 



SUPERVISORY MESSAGE - A message block in the host not directly involved with 
the transmission of data but which provides information for establishing 
and maintaining an environment for the communication of data between the 
application program and NAM, and through the network to a destination or 
from a source. Supervisory messages can be transmitted to an NPU in the 
form of a service message. 

SWITCHING - The process of routing a message or block to the specified 
internal program or external destination. 

SYNCHRONOUS PROTOCOLS - A class of protocols which require that characters 
be transmitted in contiguous blocks. Synchronization for the entire 
block transmission is established at the beginning of the block. 
Synchronous Protocols include Mode 4, BSC, HASP, HDLC, and CDCCP. 

SYSTEM CONFIGURATION - The process of setting tables and variables 
throughout the network to assign NPUs, lines, links, terminals, and 
devices so that all elements of the network recognize a uniform 
addressing scheme. After configuration, all network elements accept all 
data commands directed to or through themselves and reject all other data 
and commands. 

TERMINAL - An element connected to a network by means of a communications 
line. Terminals supply input messages to, and/or accept output messages 
from, an application program. A terminal can be a separately addressable 
device comprising a physical terminal or station, or the collection of 
all devices with a common address. 

TERMINAL CONTROL BLOCK (TCB) - A control block containing configuration and 
status information for an active terminal. It is dynamically assigned. 

TERMINAL INTERFACE PACKAGES (TIPS) - NPU programs that provide the interface 
between real terminal format and virtual terminal format. The standard 
TIPS are the ASYNC TIP, the Mode 4 TIP, and the HASP TIP. TIPS are 
responsible for some data conversion and for error case processing. 

TIMEOUT - The process of setting a time for completion of an operation and 
entering an er~or processing condition if the operation has not finished 
in the allotted time. 

TIMING SERVICES - The subset of base system programs that provide timeout 
processing and clock times (examples: messages or status). Timing 
services provide the drivers for the real-time clock. 

TRUNK - A line connecting two NPUs or an NPU and a host. The host/NPU trunk 
uses block protocol: the NPU/NPU trunk uses trunk protocol. 

TRUNK PROTOCOL - The protocol used for communicating between neighboring 
NPUs. It is a modified CDCCP protocol that uses the frame as the basic 
communications element. 

TUP - Test Utility Package. A debugging utility that supports breakpoint 
debugging as well as other utility type operations such as loading and 
dumping. 

UNSOLICITED SERVICE MESSAGES - Service messages sent to the host that do not 
respond to a previous service message from the host. Unsolicited SMs 
report hardware or software failures to the host. 

A-12 60474500 A 



UPLINE - The direction of message travel from a terminal through an NPU to 
the host. 

VIRTUAL TERMINAL - A software concept for CCP that converts all types of 
upline messages to one of two formats: Batch virtual terminal (BVT) or 
interactive virtual terminal (IVT). By this method, application programs 
in the host need only to be able to process data in IVT or BVT format 
rather than in the multiplicity of formats that real terminals use. 
Downline messages from the host to real terminals are converted from IVT 
or BVT to real terminal format. The IVT/BVT processors are a part of the 
NPU's network communications software. 

WORD - The basic storage and processing element of a computer. The NPU uses 
16-bit words (main memory) and 64-bit words (internal to the 
microprocessor only). All interfaces are 16-bit word (OMA and A/Q) or in 
character format (multiplex loop interface). Characters are stored in 
main memory, two per word. Hosts (CYBER series) use 60-bit words 
internally, but a 12-bit byte at the interface to the NPU. Characters at 
the host side of the NPU/host interface are stored in bits 19 through 12 
and 7 through 0 of a dual 12-bit byte. 

Interfacing intelligent terminals, such as a HASP workstation, can use 
any word size but must communicate to the NPU in character format. 
Therefore, workstation word size is transparent to the NPU. 

WORKLISTS - Packets of information containing the parameters for a task to 
be performed. Programs use worklists to request tasks of OPS level 
programs. Worklist entries are queued to the called program. Entries 
are one to six words long and a given program always has entries of the 
same size. Worklists are also used on the multiplex (priority) level. 

WORKLIST PROCESSOR - (1) Any system program that receives and processes. 
(2) The program within the multiplex subsystem that handles worklist 
entries generated by the multiplex firmware (PMWOLP). 

60474500 A A-13 





ACKO 

ACN 

ACTL 

A/Q 

APL 

ARM 

ASCII 

ASYNC 

BACK 

BCB 

BCD 

BFC 

BFR 

BLK 

BN 

BP 

BRK 

BSC 

BSN 

BT 

BVT 

Bl, B2 

CA 

CB 

CDCCP 

CDT 

CCP 

CE 

CFS 

CIB 

CLA 

CCP MNEMONICS 

Acknowledge block (various protocols) 

Application connection number 

Assurance control block 

The A/Q (internal) I/0 channel of the NPU 

A Programming Language 

Asynchronous response mode 

American Standard Code for Information Interchange 

Asynchronous 

Acknowledgment block (element of block protocol) 

1. Buffer control block 
2. Block control byte (HASP protocol) 

Binary coded decimal 

Block flow control 

Buff er 

Message block (element of block protocol) 

Block number (overlay) 

Breakpoint 

Break (element of block protocol) 

Binary synchronous communications (protocol) 

Block serial number (for blocks/SVM) 

Block type 
Batch virtual terminal format 

User allowed breaks for IVT protocols 

Cluster address 

Cluster block 

CDC communications protocol (trunk protocol) 

Conversational display terminal 

Communications control program in NPU 

Customer engineer 

Configuration state (for SVM) 

Circular input buff er 

Communications line adapter 

60474500 A 

B 

B-1 



CLR 

CMD 

CMDR 

CN 

CND 

CR 

CRC 

CRT 

cs 
CTL 

DBC 

DCB 

DCD 

DDLT 

DEL 

DM 

DMA 

DN 

DND 

DSR 

DT 

EBCDIC 

EC 

E-CODE 

ENQ 

EOF 

EOI 

EOM 

EOR 

ETB 

ETX 

Clear logical line (trunk protocol) 

Command block (element of block protocol) 

Command reject (trunk protocol) 

Connection number (for blocks/SVM) 

Connection number directory 

Carriage return 

Cyclic redundancy check 

Cathode ray tube (type of terminal display) 

Communications Supervisor program in host 

Control element (ASYNC protocol) 

Data block clarifier (for blocks/SVM) 

Diagnostics control block 

Data carrier detect (RS-232 signal name) 

Diagnostic decision logic table 

Delete character 

Disconnect mode (trunk protocol) 

Direct memory access (in NPU) 

Destination node (for blocks/SVM) 

Destination node directory 

Data set ready (RS-232 signal name) 

Device type 

Extended Binary Coded Decimal Interchange Code 

Error code 

Device codes (Mode 4 protocol) 

Enquiry block (HASP/BSC protocols) 

End of file 

End of information 

End of medium 

End of record 

End of block (HASP/BSC protocol) 

End of text 

FCD First character displacement (in buffer) 

FCS Function control sequence (HASP protocol) 

FD Forward data (block protocol) 

FDX Full duplex 

FE Format effector 

B-2 60474500 A 



FE 

FF 

FN 

FRQ 

FS 

FV 

HASP 

HDLC 

HDX 

HIP 

HO 

IAF 

ID 

IDC 

I-FRAME 

INIT 

I/0 

ISO 

IVT 

LBN 

LCB 

LCD 

LCF 

LD 

LF 

LID LE 

LIN IT 

LIP 

LL 

LLCB 

LLREG 

LM 

LOP 

LP 

LRN 

LRP 

LT 

Front end 

Form feed 

Field number {for SVM) 

Frame retention queue {trunk protocol) 

Forward supervision {block protocol) 

Field values {service module) 

Houston automatic spooling process {protocol) 

High-level data link control 

Half duplex 

Host interface package 

Host ordinal 

Interactive Facility Program in host 

Identifier {number or code) 

Internal data channel (in NPU) 

Information frame {trunk protocol) 

Initialization block {element of block protocol) 

Input/output 

International Standards Organization 

Interactive virtual terminal format 

Last block number (overlay) 

Line control block in NPU 

Last character displacement (in buffer) 

Local configuration file in host {CS controlled) 

Load or dump 

Line feed 

Idle element (trunk protocol) 

Line initialization element (trunk protocol) 

Link interface package in NPU 

Logical link 

Logical link control block in NPU 

Logical link regulation 

Loop multiplexer 

Local operator 

A TUP command 

Link remote node {service module) 

Logical request packet {I/O) for the NPU console 

Line type 

60474500 A B-3 



M 

MLCB 

MLIA 

MPLINK 

MSG 

MT! 

NAK 

NAM 

NCF 

NOA 

NDLP 

NHP 

NIP 

NOP 

NPINTAB 
NPU 

NS 

NVF 

OBT 

ODD 

OPS 

OPSMON 

p 

p 

PAD 

PFC 

PL 

POI 

PPU 

PRP 

PRST 

PW 

QCB 

QDEBUG 

B-4 

Mask register 

Multiplex line control block 

Multiplex loop interface adapter 

The PASCAL Linking Editor 

Message block (element of the block protocol) 

Message type indicators (Mode 4 protocol) 

Negative acknowledgment block (HASP/BSC protocol) 

Network Access Method program in host 

Network configuration file in host (NS controlled) 

Network dump analyzer (in host) 

Network Definition Language Processor in host 

Network host products 

Network Interface program 

Network operator 

CCP Data structure that contains initialization status 

Network Processor Unit 

Network Supervisor program in host 

Network Validation Facility in host 

Output buffer transmitted (information from multiplex subsystem to 
user) 

Output data demand (multiplex subsystem microinterrupt) 

Operations (OPS level = Monitor level programs) 

Monitor in CCP (PBMON) 

Priority 

Port 

Padding element (synchronous protocols) 

Primary function code (for SVM) 

Page length (IVT) 

Point of interface (class of CCP programs) 

Peripheral processor unit in host 

Physical request packet {I/O) for the NPU console 

Protocol reset (trunk protocol) 

Page width 

Queue control block 

PASCAL Debugging Package 

60474500 A 



RAM 
RBF 

RC 

RC 

RCB 

RCV 

REGL 

REJ 

RIM 

RL 

RM 

RNR 

RR 

RS 

RST 

RT 

RTS 

RTS 

SARM 

SCB 

S-Frame 

SFC 

SIM 

SM 

SN 

SND 

SPRM 

SRCB 

STP 

STRT 

STX 

SVM 

SYNC 

TA 

TAF 

TC 

TCC 

TCB 

Random access memory 

Remote Batch Facility program in host 

Reason Code (in response service messages) 

Remote Concentrator 

Record control byte (HASP protocol) 

Receive state 

Regulation level 

Reject (trunk protocol) 

Request initialization mode (trunk protocol) 

Regulation level 

Response message (service message) 

Receive not ready (trunk protocol) 

Receive ready (trunk protocol) 

Reverse supervision (block protocol) 

Reset block (element of block protocol) 

Record type 

Ready to send (trunk protocol) 

Request to send (RS-232 signal name) 

Set asynchronous mode (trunk protocol) 

String control byte (HASP protocol) 

Supervisory frame (trunk protocol) 

Secondary function code (service message) 

Set initialization mode (trunk protocol) 

Service message 

Source node (for blocks/SVM) 

Source node directory 

System programmer's reference manual 

Subrecord control byte (HASP protocol) 

Stop data block (element of block protocol) 

Start data block (element of block protocol) 

Start of text 

Service module for processing service messages 

Synchronizing character (synchronous protocols) 

Terminal address (same as the station address used by Mode 4) 

Transaction facility in host 

Terminal class 

Trunk control character (byte) - UI frame - LIP 

Terminal control block in NPU 

60474500 A B-5 



TDP Time Dependent Program 

TIP Terminal interface package 

TIPTQ TIP trunk queues (trunk protocol) 

TO Timeout 

TOT Total number of trunks (SM) 

TPCB Text processing control block 

TT Terminal type 

TTF Trunk transmission frame 

TUP Test utility package 

TVF Terminal Verification Facility in host 

UA Unnumbered acknowledgment (trunk protocol) 

U-Frame See UA and UI 

UI Unnumbered information frame (trunk protocol) 

US Unit separator 

UT User terminal 

VAR PASCAL keyword that marks the beginning of the variable declaration 
section of a PASCAL program, procedure, or function 

VAR PASCAL keyword that specifies that the parameter in a procedure or 
function is to be passed by name rather than by value 

WACK Wait acknowledgment block (synchronous protocols) 

WL Worklist 

WLCB Worklist control block 

WLE Worklist entry 

WLP Worklist processor 

X-OFF Stop punch character (ASYNC protocol) 

X-ON Start punch character (ASYNC protocol) 

XPT Transparent bit, paper tape (ASYNC TIP) 

B-6 60474500 A 



SERVICE AND COMMAND MESSAGE SUMMARY c 

This appendix is divided into five parts: 

• The general format for all service or command messages (SMs) 
• The network SM primary and subfunction summary table 
• A summary of each network SM and its normal or error response sequence 
• A table of SM mnemonics 
• A set of tables defining SM parameter values 

SERVICE AND COMMAND MESSAGE GENERAL FORMAT 
All service or command messages described within this appendix are prefixed 
by the header information shown below. (This information is omitted in the 
individual descriptions to conserve space.) Each of the major subdivisions 
in the header format diagram is one 8-bit byte in length. 

Physical Link Header 
I 

Length 
of SM FLG 
in Bytes (unused) 
(unused) 

P - priority flag 
RES - unused 

' 
Block Header 

7 6 4 3 

Source Connection 
Destination Node Number (CN) p RES BT=4 Node (ON) {SN) = 00 {SM) 

;J. 00 (others) 

Service Message Header 

BT - block type = 04 for service messages. This is a CMD block. 

The general format of the service and command message body is shown below. 
Each of the major subdivisions in the body is also one 8-bit byte in length. 

PFC - Primary Function Code 
EB - 1 = Error response service message 
RB - 1 = Normal response service message 
SFC - Secondary function code 

AO - BF16 - Reserved for expansion 
co - E016 - Reserved for network use 
El - EF16 - Reserved for installations 
00 - 3Fl6 - Reserved for network use 
40 - 9Fl6 - Reserved for intrahost use 

60474500 A C-1 

0 



SUMMARY OF SERVICE AND COMMAND MESSAGE TYPES 
Table C-1 shows the basic network SM types and the primary (PFC) and 
secondary (SFC) function codes associated with each type. For service 
messages PFC = 01 through OC, CN = 0; for command messages PFC = Cl, CN ~ O. 

COMMANDS SENT OVER LOGICAL CONNECTIONS 
The following are command blocks sent through logical connections, where 
connection number is not zero. 

START INPUT 

I PFC Cll6 SFC = 05 

STOP INPUT 

I PFC = Cll6 SFC = 06 

INPUT STOPPED 

I PFC = Cll6 SFC = 07 RC 

RC - Reason code 

00 = Stop input response 
01 = Input device not ready 
02 = Card slip error 
03 EOI input 
04 Batch input interrupted by interactive I/O 

DEFINE CHARACTERISTICS (TERMINAL PARAMETERS) FOR IVT 

I PFC = Cll6 I SFC = 04 I String 

String - defined in section 6, table 6-4. It is given in the TERMINAL 
PARAMETERS field of the'IVT protocol. 

C-2 60474500 A 



TABLE C-1. SERVICE AND COMMAND MESSAGE TYPES 

SVM 
Service Message Name PFC SFC Processing 

CN = 0 {hex) Mnemonic {hex) Mnemonic Routine 

Load Request 00 D9RQ PNDISCARD 
Force Load 01 D8LOAD 01 D9FRC PNFRCELD 
NPU Initialized 02 D9INIT PNDISCARD 

Configure Logical Link 02 D8LINK 00 D9LLCNF 
}PNLLCNF Delete Logical Link 01 D9LLDLT 

Configure Trunk/Line 00 D9LNCNF PNLNCNF 
Delete Line 01 D9LNDLT PNDELETE 
Configure Terminal (TCB) 03 D8CONFIG 02 D9TMLCNF 

}PNTMLCNF Reconfigure Terminal 
{TCB} 03 D9TMLRCNF 

Delete Terminal {TCB) 04 D9TMLDLT ANTMLDLT 

Overlay Program Block 04 D80VLOAD 00 D90VLBLK PNOVLOAD 
Terminate Overlay 01 D90VLTMT PNOVLTMT 

Overlay Data 05 D80VLDATA 00 D9DATA PNOVLDATA 

Logical Link Status 
Request 00 D9LLSTAT PNLLSTAT 

Trunk Status Request 06 D8STATUS 01 D9TNKSTAT PNTNKSTAT 
Line Status Request 02 D9LNSTAT PNLNSTAT 
Terminal Status Request 03 D9TMLSTAT PNTMLSTAT 

Line Count Request 05 D9LCR PNLCR 

NPU Statistics 00 D9NPUCNTS 
}PNDISCARD Trunk/Line Statistics 07 D8COUNTS 01 D9CNTLN 

Terminal Statistics 02 D9CNTML 

Enable Trunk/Line 00 D9ENABLE PNENABLE 
Disable Trunk/Line 08 D8LINE 01 D9DISABLE 

}PNDISABLE Disconnect Trunk/Line 02 D9DISCONNECT 

CE Error OA DSEVENT 00 D9CE 
}PNDISCARD Message to Network 

Operator 01 D9ALARM 

Host Broadcast One 00 D9BRD1 PNlBRDCST 
Host Broadcast All oc D8USER 01 D9BRDCST PNBRDCST 
Operator Message 02 D90PMSG 

}PNDISCARD Terminal Characteristics 03 D9TDEF 
. 

Service Message Name 
CN 'I 0 PFC SFC Remarks 

IVT Command Cl 04 See section 6, IVT/BVT 
Start Input 05 Downline 
Stop Input 06 Down line 
Input Stopped 07 Upline 

60474500 A C-3 



INDIVIDUAL SERVICE MESSAGES 
These messages, where the connection number is zero, are shown below. 

LOAD REQUEST 

I PFC = 01 SFC = 00 I LRN p 

LRN - Node ID of element to load 
P - Line over which load is performed 

Response 

None 

FORCE LOAD 

I PFC = 01 SFC = 01 I 
Response 

None 

NPU INITIALIZED 

PFC 01 SFC 02 CCP CCP = = Version Cycle 

Describes the current software running in the NPU 

Response 

None 

CONFIGURE LOGICAL LINK 

C-4 

I PFC = 02 I SFC = 00 I IDl 

ID1/ID2 - Nodes forming logical link 

HO 

IDl = Destination node 
ID2 = Source node 

- Host ordinal 

ID2 

00 

CCP 
Level 

HO 

60474500 A 



Normal Response 

I ~~c = 

RC - 00 

Error Response 

I gc 

SFC = 

I IDl 
4016 

' 
Configured 

SFC = IDl 
8016 

IDl invalid 
Too many LLCBs 

RC - 01 
02 
03 = LL already exists 

DELETE LOGICAL LINK 

ID! 

ID2 HO RC 

ID2 HO RC 

!02 HO 

ID1/ID2 - Nodes forming logical link; ID! to be used as the local ID at 
the NPU 

Normal Response 

I ~~c = 
SFC = ID! !02 HO RC 
4116 

RC - 00 = deleted 

Error Response 

I ~~c = SFC = IDl !02 HO RC 
8116 

SFC - Logical link does not exist 

RC - 01 = IDl invalid 
02 = LLCB not configured 
03 Bad HO 

60474500 A c-s 



CONFIGURE LINE 

PFC I SFC 
=03 =00 

p 00 I HO I LT I ~ I FNl I FVl I · · ·_I _F_N_n __ F_v_n_ 

P - Port 
LT - Line type (see table C-3) 
TT - Terminal type (see table E-2) 
FN - Field number 
FV - Associated field value (see table E-5) 

Normal Response 

The normal response is a line-enabled normal response SM. 

Error Response 

LT 

TT 

RC 

PFC 
=03 

-
-

-

See 

See 

01 
02 
03 
04 
05 
06 

SFC= I p 
8016 . 

table C-3 

table C-2 

= Invalid 
= Invalid 

00 HO 

FN/FV 
line number 

= Line control block 
= Invalid line type 

LT 

already 

Invalid terminal type 
= Diagnostics in progress 

FN/FV - Pair returned if RC = 1 

DELETE LINE 

I PFC SFC p 00 HO =03 =01 

Normal Response 

PFC = SFC = p 00 03 4116 

C-6 

TT RC FN 

c9nf igured 

HO RC=OO 

FV 

60474500 A 



Error Response 

PFC 
03 

SFC = 
8116 

p 

RC - 02 Invalid line number 
03 = Line not configured 

CONFIGURE/RECONFIGURE TERMINAL 

SFC - 02 = Configure 
03 = Reconfigure 

DT - See table C-2 

FN/FV - See table C-7 

Normal Response 

00 

CA 

SFC - 4216 = Terminal configured 
4316 = Terminal reconfigured 

DT - See table C-2 

60474500 A 

HO RC 

TA DT I THO I FNl I FVl I ·. · I FNn I FVn I 

C-7 



Error Response 

PFC 
=03 00 HO CA TA DT I THO RC 

SFC - 8216 = Configure 
8316 = Reconfigure 

DT - See table C-2 

RC - 01 Invalid FN or FV 

02 = Invalid line number or terminal address 

03 Terminal already configured (configure), or not configured 
(reconfigure) 

04 No buffer for TCB (temporary) 

05 = Invalid DT 

06 = Line inoperative or not enabled 

07 = HO toggle bit unchanged 

08 = Logical link not established 

09 CN in use 

10 = No console configured for Mode 4A cluster; cannot configure 
batch device 

11 = Line not configured 

FN/FV - Pair returned if RC = 01 or 09 

DELETE TERMINAL 

Normal Response 

C-8 

PFC 
=03 

HO CA 

HO 

TA 

CA TA DT 

60474500 A 



Error Response 

HO CA 

RC - 02 = Invalid line number 

03 = Terminal on line not configured 

04 = Cannot delete console of Mode 4A cluster while batch devices 
still configured 

05 HO toggle error 

OVERLAY PROGRAM BLOCK 

I ~-:-~-~----~-~-~-----B-N----L-B_N _____ o_v_e_r_1_f_y __ r_n ____ c_h_e_c_:k_s_u_m _________ I· -~ 
Words 1-n of overlay 

Checksum - Complement of arithmetic sum of data words 

Normal Response 

PFC 
=04 

Error Response 

SFC= 
4016 

SFC= 
8016 

BN LBN 

BN LBN 

RC - 01 = Overlay space in use 
02 = Checksum error 

TERMINATE OVERLAY 

PFC 
=04 

60474500 A 

SFC 
=01 

I RC= Overlay ID 00 
J 

RC 

C-9 



Response 

PFC SFC= 
=04 4116 

OVERLAY DATA (GENERAL FORM) 

Normal Response 

PFC 
=05 

Error Response 

PFC 
=05 

SFC 
=00 

SFC= 
4016 

SFC= 
8016 

l 
Overlay 

l 

T 
Overlay 

l 
RC - 01 : Invalid OVID 

02 = No overlay loaded 

ID 

ID 

Overlay ID - Returned if RC = 1 

OVERLAY DATA (LOADING/DUMPING) 

C-10 

DATA 

l 
DATA I 

J 

I 

RC Overlay ID I 

J 

60474500 A 



LOAD COMMAND 

I ~~C= 
1 - Load 

I 
I 

SFC= 
00 1 p 

L Beginning Address Checksum 

0 
Register 
Number 

Register 
Content Page Displacement 

23 22 18 17 11 10 

22 - 18 - Base register address {not used) 
17 - 0 - Main memory address 

Response 

PFC= SFC= I 
01 05 4016 

Overlay ID p 

l 
01 - Load 

RC - 00 
01 
02 

= Overlay loaded successfully 
= Protocol error on trunk 

Mode error 

START COMMAND 

01 

02 - Start 

60474500 A 

00 

p 

RC 

00 

00 

0 

0 

Data Words 
(1 - 105) 

.. 

. I . l 
Beg1nn1ng Address 

l 1 

C-11 



Response 

~~C= I ~~~: I over+ ID I 02 I P 

02 - Start 

RC - 00 
01 
02 

Overlay started successfully 
= Protocol error on trunk 
= Mode error 

DUMP COMMAND 

I ~~C= I I Over+ I 
SFC= 

ID 00 p 
00 

00 - Dump 

I 
I 

LI Begi?ning Adrress Endi:ng 

Response 

I ~~C= I I Over+ I I 
SFC= ID 00 p 
4016 

00 - Dump 

RC - 00 = Overlay dumped successfully 
01 = Protocol error on trunk 
02 Mode error 

00 RC 

00 0 0 

Addr:ess 

00 RC 0 

Data ~ords (1 T 105) 

C-12 

11 
I 

I 

11 

60474500 A 



CLEAR COMMAND 

03 p 00 

03 - Clear 

Response 

03 - Clear 

LOGICAL LINK STATUS REQUEST 

I ~~C= I ~~C= I IDl ID2 HO 

ID1/ID2 - Node IDs forming logical link; IDl is node ID of the NPU. If 
IDl and ID2 are missing, NPU returns status for all logical 
links supported by the NPU. 

Normal Response 

PFC= 
06 

SFC= 
4016 

IDl ID2 HO 

RC - 00 Logical link operational 
01 = Logical link inoperative 

RC RL 

RL - Regulation level (see CCP Reference Manual) 

INIT - 00 = Second and subsequent responses 

!NIT TOT 

01 Unsolicited response (used when NPU changes the regulation 
level) 

TOT - Number of LL in an "all" request 

60474500 A C-13 



Error Response 

PFC= 
06 

SFC= 
8016 

IDl ID2 HO 

RC - 02 = Logical link not configured 

RC 

03 Logical link status request in progress or request not from NS 

NOTE 

The normal response may be unsolicited (SFC = 4016> or 
unsolicited (SFC = 00). 

TRUNK STATUS REQUEST 

I I 
PFC= SFC= p 00 06 01 

P/00/HO - If missing, return 

Normal Response 

I I 

PFC= SFC= p 00 06 4116 

RC - 00 = Trunk operational 
04 = Trunk inoperative 
05 = No ring indicator 

LT - See table C-3 

CFS - See table C-4 

Error Response 

PFC= SFC= 
06 8116 

p 00 

HO= 
00 

status 

HO= 
00 

HO= 
00 

on all trunks 

RC LT CFS 

RC 

LRN 

RC - 01 = Invalid line number or no trunks configured belonging to 
requester 

02 = Trunk status request in progress 

03 = Cannot disable last path to NS 

TOT 

C-14 60474500 A 



Unsolicited Response 

NOTE 

Normal responses above may be sent as an unsolicited status 
message with SFC = 01. 

LINE STATUS REQUEST 

I ~~C= I ~~C= p 00 HO 

P/00/HO - If missing, return status on all lines except trunks 

Normal Response 

SFC= 
4216 

p 

RC - 00 = Line operational 
04 = Line inoperative 

00 HO RC LT CFS 

05 = No ring indicator or autorecognition in progress 

LT - See table C-3 

CFS - See table C-4 

Error Response 

PFC= 
06 

RC - 01 
02 
03 
07 

60474500 A 

SFC= 
8216 

p 00 HO 

Invalid line number or bad HO 

RC 

Line status request in progress (all lines only) 
Illegal configuration state (single lines only) 
No lines configured (all lines only) 

NT 

C-15 



Unsolicited Response 

PFC SFC 

Only for 
autorecognition 

~~------__...,,,A...__.----," 

: 
00 HO =06 =02 

p RC LT CFS NT TT LS I CD CA 
I I 

RC - Same as other line status responses 
LT - See table C-3 
CFS - See table C-4 
TT - See table C-2 
LS - See table C-6 
CD - See table C-6 

For autorecognition responses, the TA DT pairs are repeated for each 
terminal that can be detected by the TIP. The ASYNC TIP will only report 
one TA DT pair. The DT may be either zero to indicate no information or 
four to indicate the IBM 2741. The Mode 4 TIP may report up to 15 TA DT 
pairs with the full range of values as shown in Table A-2 for DT. For a 
Mode 4A cluster, the TIP will report 3 termin~ls: DT=OO, TC=OO, DT=Ol, 
TC=OO; DT=02, TC=OO. Mode 4C consoles will be reported as TC=OO as it is 
not possible to distinguish 711 from 714. 

TERMINAL STATUS REQUEST 

PFC= 
06 

Normal Response 

PFC 
06 

SFC= 
03 

SFC= 
4316 

p 

DT - See table C-2 

p 00 

SP HO 

RC - 00 
04 

= Terminal operational 
Terminal inoperative 

HO 

CA TA OT THO RC DN SN CN TOT 

C-16 60474500 A 

I 

I 



Error Response 

PFC= 
06 

SFC= 
4316 

p 00 HO RC 

RC - 01 Invalid line number of bad HO 
02 No terminals configured 
03 Line inoperative or not enabled 
05 = Terminal status request in progress 
06 LCB not configured 

Unsolicited Response 

NOTE 

Normal response (see above) may be sent as an unsolicited 
status message with SFC = 03. 

LINE COUNT REQUEST 

I PFC= SFC= 
06 05 

Normal Response 

PFC= SFC= NL 06 4516 

NPU STATISTICS (UPLINE ONL V) 

Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 

1 - Service messages generated 
2 - Service messages processed 
3 - Bad service messages received 
4 - Blocks discarded due to bad address 
5 - Packets/blocks discarded due to bad format 
6 - Times at regulation level 4 (no regulation) 
7 - Times at regulation level 3 
8 - Times at regulation level 2 
9 - Times at regulation level 1 

10 - Times at regulation level 0 
11 - Network assurance protocol timeout 

60474500 A C-17 



Response 

None 

TRUNK/LINE STATISTICS (UPLINE ONLY) 

LRN - Trunks only; LRN 

Word 1 - Blocks transmitted 
Word 2 - Blocks received 

0 for Lines 

Word 3 - Characters transmitted (good blocks only) 
Word 4 - Characters received (good blocks only) 

Response 

None 

TERMINAL STATISTICS (UPLINE ONLY) 

...... ~-~-~ ...... 1-~-~-~ ...... 1_P_ .... l_o_o_..__H_o_..._c_A __ T_A_._l _o_T ...... l_T_H_o ..... l ~t~ tis: i:s _ w:r~s 1-- - 3 J 
OT - See table C-2 

THO - Toggle HO 

Word 1 - Blocks transmitted 
word 2 - Blocks received 
Word 3 - Blocks in error 

Response 

None 

ENABLE TRUNK/LINE 

C-18 

PFC= 
08 

SFC= 
00 

p 00 HO 

60474500 A 



Normal Response (Trunk/Line Enabled) 

SFC= 
4016 

p 00 HO RC 

RC - 00 Trunk/line enabled and operational 
04 = Trunk/line inoperative 

LT CFS LRN 
NT=O 

Trunk 
Line 

05 = Line enabled; wait for ring indicator or autorecognition result 

LT - See table C-3 

CFS - See table C-4 

Error Response (Trunk/Line Not Enabled) 

I ~~C: I ~~~: I p 00 HO RC 

RC - See trunk line status request response codes 

DISABLE TRUNK/LINE 

I ~~C: I SFC= p 00 HO 
01 

Normal Response (Trunk/Line Disabled) 

I ~~C: I I 
SFC= p 00 HO RC= 

LT CFS LRN Trunk 
4116 00 NT Line 

LT - See table C-3 
CFS - See table C-4 

Error Response 

PFC= SFC= p 00 HO RC 
08 8116 

RC - See trunk/line status request responses 

60474500 A C-19 



DISCONNECT TRUNK/LINE 

I ~~C= ~~C= I p 00 HO 

Normal Response 

Normal response is line enabled normal response SM. 

Error Response 

SFC= 
8216 

p 00 

SFC - Equals 8016 for RC ~ 04 

HO RC 

RC - See trunk/line status request error response codes 

CE ERROR MESSAGE 

I ~r~: I ~~C= I EC Text 

EC - Error codes defined in appendix B of The CCP3 Reference Manual 
Text - Text defined in appendix B of The CCP3 Reference Manual 

Response 

None 

MESSAGE TO NETWORK OPERATOR 

PFC= SFC= 00 Text (0 - 50 characters) 
OA16 01 

Response 

None 

C-20 60474500 A 



ALARM MESSAGE TO NETWORK OPERATOR 

I PFC= 
OA16 I ~~= I 01 

I Text I 

Text - Maintenance alarm coupler 
Maintenance alarm MLIA 
Maintenance alarm port xx 

Response 

None 

HOST BROADCAST ONE 

I ~~C= I PFC= p 00 HO CA TA DT 
ocl6 

Text must be 1 - 50 characters in IVT compatible format. 

Normal Response 

PFC= 
ocl6 

Error Response 

PFC= 
ocl6 

RC - 01 
02 = 
03 = 
04 = 
06 = 

60474500 A 

SFC= 
4016 

SFC= 
8016 

p 

p 

00 

00 

HO CA TA 

HO CA TA 

Invalid line number of bad HO or bad THO 
Invalid device type 

DT 

DT 

Terminal not configured or line not configured 
Terminal inoperative or line inoperative 
HO toggle error 

THO 

THO 

THO 

Text 

RC= 
00 

RC 

C-21 



HOST BROADCAST ALL 

ID2 HO Text 

ID1/ID2 - If 0, broadcast to console terminals supported by NPU 
Text - 50 characters or less in IVT compatible format 

Normal Response 

PFC= 
ocl6 

Error Response 

PFC= 
oc16 

SFC= 
4116 

SFC= 
8116 

RC= 
00 

RC 

RC - 01 No logical link established or specified logical link not 
established 

02 = Broadcast already in progress 

OPERATOR MESSAGE 

Text (50 PFC= SFC= 
oc16 02 

p 00 HO CA TA DT THO chQ.racters 

TERMINAL CLASS/PAGE WIDTH/PAGE LENGTH (TERMINAL CHARACTERISTICS) 

PFC= SFC= p 00 
ocl6 03 

DT - See table C-2 

ORIG - 00 = Terminal user 
01 = Application 

HO CA 

TC - Terminal class (see table C-2) 

TA 

PW - Page width in characters per line 

PL - Page length in lines per page 

C-22 

DT THO ORIG 

or less) 

TC PW PL 

60474500 A 



SERVICE MESSAGE MNEMONICS 
The following table defines abbreviations used in the individual service 
message descriptions. 

Abbreviation 

BN 

BSN 

BT 

CA 

CD 

CFS 

CN 

ON 

OT 

EB 

FN 

FV 

HO 

IDl 

ID2 

LBN 

LRN 

LS 

60474500 A 

Meaning 

Block Number - used in the overlay load SM to insure 
delivery of all overlay program blocks 

Block Serial Number - part of the block protocol 

Block Type - SMs are always of type CMD 

Cluster Address - part of a terminal's physical 
identification 

Code type (see table C-6) 

Configuration State - state of the line as known by the 
service module (see table C-4 for values) 

Connection Number - part of the block address. In the 
address of a SM, the CN is always zero. When used as data 
in a SM, the CN may be nonzero. 

Destination Node ID - part of the block address 

Device Type - part of the Terminal Type (see table C-2) 

Error Bit in SM response 

Field Number - used in line and terminal configure SMs to 
describe a field in the LCB or TCB (see table C-5 and C-6 
for values) 

Field Value - used in line and terminal configure SMs as 
the value to be put in the field (see tables C-5 and C-6) 

Host Ordinal - a value (0 - 15) that is included in all SMs 
that refer to control structures, and provides unique 
element identification for the host. For terminals, an 
additional toggle bit that controls connection switching is 
included. 

Node IDl - used to identify the destination node in SMs 
dealing with logical links. 

Node ID2 - used to identify the source node in SMs dealing 
with logical links. 

Last Block Number - used in the overlay load SM to insure 
delivery of all overlay program blocks. 

Link Remote Node - node ID of the neighbor node at the 
other end of a trunk. 

Line Speed Index (see table C6) 

C-23 



Abbreviation 

LT 

NBL 

NL 

NT 

p 

PFC 

RB 

RC 

SFC 

SN 

TA 

THO 

~T 

TC 

TT 

C-24 

Meaning 

Line Type - used to describe the transmission capabilities 
of the line (see table C-3) 

Network Block Limit - the number of blocks allowed to be 
outstanding for any one terminal at a given time. 

Number of Lines - the number of configured lines belonging 
to a particular cs. 

Number of Terminals - the number of terminals configured on 
a line. 

Port - the CLA address used for a communications line. 

Primary Function Code - used to delineate the class of SM 
(see table C-1) 

Response Bit in SM response 

Response Code - used in SM responses to indicate the 
requested action has taken place or an error has occurred. 

Secondary Function Code - used to indicate a particular SM 
within a class of SMs (see table C-1) 

Source Node - part of the block address 

Terminal Address - part of the terminal's physical 
identification 

Toggle HO 

Total Number of Status SMs to be sent for this request. 
Used by the requester to verify all responses have arrived. 

Terminal Class - used to describe the common 
characteristics of a set of terminals (see tables C-2 and 
C-8) 

Terminal Type - the combination of DT and TC. 

60474500 A 



TABLES SPECIFYING SM PARAMETER VALUES 

TABLE C-2. TERMINAL TYPE/DEVICE TYPE 

Terminal Type (TT) 

7 6 5 4 3 

I 
Auto TIP Type 

2 1 0 

~ 
Sub TIP 

TIP Type: 0 = LIP 
1 = ASYNC 
2 = Mode 4 
3 = HASP 
4 = 2780/3780 

Auto - Autorecognition Flag 

TIP Type 

1 2 0 or 3 
Sub TIP ASYNC Mode 4 LIP or HASP 

1 110 baud ASCII 4A not defined 

2 150 baud ASCII 4C not defined 

3 300 baud ASCII not defined not defined 

4 2741 Ext BCB not defined not defined 

5 2741 Correspond not defined not defined 

Stored in BZSUBTIP field of LCB 

60474500 A C-25 



TABLE C-2. TERMINAL TYPE/DEVICE TYPE (Contd) 

Device Type (OT) 

7 6 5 4 3 2 1 0 

Device Terminal 
Class 

Terminals Supported (by Device) 

(TC) 0 1 2 
Class Console Card Reader Line Printer 

1 M33, etc. 

2 713 

4 2741 

5 M40 

6 H2000 

7 751-1 

8 T4014 

9 HASP HASP HASP 

10 200 UT 200 UT 200 UT or 4014 

11 214 

12 711-10 

13 714 

14 731 

15 734 

Device: 5 - Reserved for internal host/NPU use 
6 - Reserved for expansion 
7 - Reserved for installations 

Terminal Class: 16-27 - Reserved for expansion 
28-31 - Reserved for installations 

3 
Card Punch 

HASP 

4 
Plotter 

HASP 

When the OT byte is sent in a downline SM to identify a particular TCB, 
the TC field need not match the field in the TCB as the latter can 
qhange at any time. 

C-26 60474500 A 



°' 0 
ii::.. 
.....J 
ii::.. 
U1 
0 
0 

)" 

(') 
I 

t\.) 

.....J 

Line Type Trans-
Hexacecimal mission CLA 

Value Facility Type 

01 HDX 2560-1 

02 FDX* 2560-1 

03 FDX 2560-1 

04 HDX 2561-1 

05 HDX 2561-1 

06 FDX 2561-1 

07 FDX 25El-l 

08 HDX 2561-1 

09 FDX 2561-1 

OA FDX 2563-1 

OB RESERVED 

* Operating with HDX Protocol 
ttRc = reverse channel 

TABLE C-3. LINP. TYPES (LT) 

Turn- Turn-
Answer Carrier Circuit Around Around Transmission 

Modem Type Mode Type Type Required Delayed Mode 

RS232-201A/2081 
Switched Controlled 2 Wire YES NO Synchronous Compatible 

RS232-201B/208A Deci- Controlled 4 Wire YES NO Synchronous Compatible cated 

RS232-201B/208A Dedi-
Constant 4 Wire NO r.~o Synchronous Compatible cated 

RS232-358-l Dedi- Controlled 2 Wire YES NO Asynchronous Cofllpatible cated 

RS232-202 Switched Controlled YES NO Asynchronous Co:npatible 

RS232-103E/113 Switched Constant 2 Wire NO NO Asynchronous Compatible 

RS232-103E Dedi- Constant 2 Wire NO NO Asynchronous Compatible cated 

RS232-202S Switched Controlled 
2 Wire Asynchronous 

Compatible Rctt 

RS232-103E Switched Constant 2 Wire NO NO Asynchronous 
Compatible 

RS232-201B Dedi- Constant 4 Wire ~70 ~10 HDI..C 
Compatible cated 

-



TABLE C-4. CONFIGURATION STATES 

Value Significance 

Field 
Number 

0 LCB not configured 

1 LCB configured, not enabled 

2 Enable requested to TIP 

3 Line operational, no TCBs 

4 Line operational, TCBs configured 

5 Disable requested to TIP 

6 Line inoperative, no TCBs 

7 Line inoperative, TCBs configured 

8 Disconnect requested to TIP 

9 Line inoperative. Waiting for ring indicator or 
autorecognition in process 

TABLE C-5. LINE CONTROL BLOCK FIELD NUMBER/FIELD VALUE 
(FN/FV) ASSIGNMENTS 

NPU 
Mnemonic Mode 4 

Name Description TIP A SYNC HASP 

5 BZOWNER Node ID of owning CS/NS 1-255* 1-255* 1-255* 

21 BZLNSPD Line speed index - 0-8** -

*Required for configuration 
**Required if autorecognition not specified 

C-28 60474500 A 



60474500 A 

TABLE C-6. LINE SPEED AND CODE SET 

Line Speed (LS) 

800 baud 

llO baud 

134.5 baud 

150 baud 

300 baud 

600 baud 

1200 baud 

2400 baud 

4800 baud 

9600 baud 

Not used 

Code Set (CD) 

Not used 

BCD 

ASCII 

Typewriter-paired ASCII APL 

Bit-paired ASCII APL 

External BCD 

External BCD APL 

Correspondence 

Correspondence APL 

EBCDIC 

Not used 

LS/CD can occur in a single byte of 
this case, LS uses the upper 4 bits 
uses the lower 4 bi ts. · 

Index 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A through F 

Index 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A through 

a service message. 
of the byte and CD 

F 

In 

C-29 



TABLE C-7. TERMINAL CONTROL BLOCK FIELD NUMBER/FIELD VALUE 
(FN/FV) ASSIGNMENTS 

NPU 
Field Mnemonic 
Number Name Description 

5 BSTTYP Terminal class 

12 BSOWNER Node ID of owning CS 

13 BSCN Connection number 

14 - Destination node 

15 - Source node 

16 BSABL Available block limit 

19 BSIPRI Input priority 

28 BSPGWIDTH Page width 

29 PSPGLENGTH Page length 

30 BSCANCHAR Cancel character 

31 BSBSCHAR Backspace character 

33 BSCRIDLES Carriage return idle 
count 

34 BSLFIDLES Line feed idle count 

35 BSCRCALC Calculate CR idle count 
flag 

36 BSLFCALC Calculate LF idle count 
flag 

37 BSSPEDIT Special edit mode 

38 BSXPARENT Transparent input mode 

39 BSXCHM Transparent character 
count delimiter· (MSB) 

40 BSXCHL Transparent character 
count delimiter (LSB) 

C-30 

ASYNC 
TIP 

1, 2, 4-8 

l-255t 

1-255 

0-255 

0-255 

0-7t 

1-2 

0-255 

0-255 

0-127 

0-127 

0-99 

0-99 

0-1 (no-yes) 

0-1 (no-yes) 

0-1 (no-yes) 

0-1 (no-yes) 

0-15 (most 
significant 
4 bits)ttt 

0-255 (least 
significant 
8 bits)ttt 

Values 

Mode 4 HASP 
TIP TIP 

10-15 9 

l-255t 1-255 

1-255 1-255 

0-255 0-255 

0-255 0-255 

o-1t o-1t 

1-2 1-2 

0-255 0-255 

0-255 -

0-127 0-127 

0-127 0-127 

0-1 {no- -
yes) 

60474500 A 



Field 
Number 

41 

42 

43 

44 

45 

TABLE C-7. TERMINAL CONTROL BLOCK FIELD NUMBER/FIELD VALUE 
(FN/FV) ASSIGNMENTS (Contd) 

Values 
NPU 

Mnemonic ASYNC Mode 
Name Description TIP TIP 

BSXCHAR Transparent character 0-255 -
delimiter 

BS XTO Transparent time out 0-1 (no-yes) -
delimiter flag 

BSINDEV Input device 0-1 (KB, PT) -
BSOUTDEV Output device 0-2 (PR, DIS, -

PT) 

BSECHOPLX Echoplex mode flag 0-1 (no-yes) -

4 

46 BSPGWAIT Page wait flag 0-1 (no-yes) 0-1 (no-
yes) 

47 BSPARITY Parity mode 0-3 (zero, -
odd-even, 
none) 

48 BSABTLINE Abort output line 0-127 -
character 

49 BSUSRl User Break 1 character 0-127 0-127 

50 BSUSR2 User Break 2 character 0-127 0-127 

51 BS CODE TIP code settt 4-5t l-3tt 

52 BSXCHRON Transparent message is 0-1 (no-yes) -
delimited by a character 
(flag) 

+Required for configuration 
ttsee table C-9 (BSCODE) 

tttpairs 39 and 40 are required together 

HASP 
TIP 

-

-

-
-

-
-

-

-

0-127 

0-127 

-
-

60474500 A C-31 



TABLE C-8. DEFAULT PARAMETERS FOR TERMINAL CLASSES 

Terminal Class 
(TC) 

Terminal 
Supported 

Page Width (PW) 

Page Length (PL) 

Parity (PA) 

Cancel Input 
Line Char. (CN) 

Back Space (BS) 

Control Char. 
(CT) 

Carriage Return 
Idle Count (CI) 

Line Feed Idle 
Count (LI) 

Special Edit 
Mode (SE) 

Transparent 
Mode (TM) 

Transparent 
Delimiter (DL) 

Device Mode (IN) 
In/Out (OP) 

Echo Mode (EP) 

Page Wait (PW) 

Abort Output 
Line {AL) 

User Break 1 
(Bl) 

User Break 2 
(B2) 

1 

M33, M35 
M37, M38 

72 

0 

Even 

CANtt 

BS 

ESC 

2 

1 

No 

No 

CR/ 
2043 

KB/ 
PR 

No 

No 

CAN 

OLE 

DC4 

tcalculated by TIP 

2 

CDC 
713-10 

80 

0 

Even 

CANtt 

BS 

ESC 

0 

0 

No 

No 

CR/ 
2043 

KB/ 
DI 

No 

No 

CAN 

OLE 

DC4 

ASYNC Terminals 

4 

IBM 
2741 

132 

0 

Odd 

BS 

(+)ttt 

1 

No 

No 

CR/ 
2043 

KB/ 
PR 

N/A 

No 

5 6 

Hazel­
tine 

M40 2000 

74 74 

0 0 

Even Even 

N/A BS 

CTL P ESC 

1 0 

3 3 

No No 

No No 

CR/ CR/ 
2043 2043 

KB/ KB/ 
DI DI 

No No 

No No 

CAN CAN 

ACK OLE 

DC4 DC4 

ttKeyboards may actually be marked as follows: CTLX for CAN, 
CTL P for DLE, CTL F for ACK, CTL T for DC4 

ttt+for APL 

7 

CDC 
751-1 

80 

0 

Even 

CANtt 

BS 

ESC 

0 

0 

No 

No 

CR/ 
2043 

KB/ 
DI 

No 

No 

CAN 

DLE 

DC4 

8 

Tek­
tronix 

4014 

74 

0 

Even 

BS 

ESC 

0 

0 

No 

No 

CR/ 
2043 

KB/ 
DI 

No 

No 

$ 

OLE 

DC4 

C-32 60474500 A 



TABLE C-8. DEFAULT PARAMETERS FOR TERMINAL CLASSES (Contd) 

HASP Mode 4 Terminals 

Terminal Class (TC) 9 10 11 12 13 14 15 

Terminals Supported HASP 200UT/ 214 711-10 714 731 734 4014 

Page Width (PW) 80 80 80 80 80 80 80 

Page Length (PL) N/A 13 13 16 16 13 13 

Cancel Input Line 
( ( ( ( ( ( ( 

Char. (CN) 

Control Char. (CT) % % % % % % % 

Transparent Mode (IN) N/A N/A N/A No No N/A N/A 

Device Mode In/Out N/A KBD/ KBD/ KBD/ KBD/ KBD/ KBD/ 
CRT CRT CRT CRT CRT CRT 

Page Wait (PG) N/A Yes Yes Yes Yes Yes Yes 

User Break 1 (Bl) : : : : : : : 

user Break 2 (B2) ) ) ) ) ) ) ) 

60474500 A C-33 



TABLE C-9. BSCODE DEFINITIONS FOR CCP INTERNAL USE 

ASYNC MODE 4 HASP 
BS CODE 12 12 VALUE TC = 4 TC "F 4 TC = 13 

TC -F 13 TC = 9 

tt 0 UNK UNK UNK UNK UNK 

9 1 External BCD 5 x x BCD 1 tEBCDIC 

6 2 2 
2 External BCD ASCII x Mode 4A x 

APL ASCII 

3 2 
3 7 Typewriter- Mode 4C x x Correspondence Paired ASCII ASCII APL 

8 4 
4 Correspondence Bit-Paired x x x 

APL ASCII APL 

5-7 x x x x x 

TC - terminal class 
UNK - unknown or does not apply 
X - illegal value for that combination of TIP type and terminal class 
n - external value for code set 

tHASP TIP currently does not use BSCODE since EBCDIC is the only code 
set supported. 

ttif a BSCODE = 0 is specified for an ASYNC terminal, the ASYNC TIP with 
default to the ASCII code set. 

C-34 60474500 A 



BLOCK PROTOCOL SUMMARY 

Block protocol is the protocol used to communicate between the NPU and the 
host. It is used for data {message) transfer and for commands and status 
transmission. {A few commands and status transfers are confined to the 
handshaking routines in the host coupler; these do not use the block 
protocol.) 

BLOCK SIZE 
The minimum block size of a block is 4 bytes. The block consists of only 
the block header. 

The maximum block size is 2047 bytes, which includes the block header of 4 
bytes plus data bytes. 

BLOCK FORMAT 
The 

The 

format of a block is as follows: 

Byte 1 2 3 4 5 

Header I Data {optional) 

format of this header field is shown below: 

Byte 1 2 3 4 

I DN I SN CN p BSN i BT 
Bit 7 6 4 3 0 

DN - destination node 

SN - source node 
00 NS in host 
01 = CS in host 
02 = NPU coupler node } Only one NPU 
03 = NP(j terminal node in system 

2047 

02-225 = nodes in systems with more than one NPU in system 

CN - connection number 
00 = service message 
01 = 225 = line 

P - Priority {trunks) 
1 = high 
0 = low 

BSN - block serial number {0 for ACTL blocks) 

BT - block type; see table D-1 for description of types. 

60474500 A D-1 

D 





BLOCK TYPE 
BLK = 1 4 5 2047 (max) 

I Header Data I 
MSG = 2 

1 4 I Header 

5 2047 (max) 

Data I 
BACK = 3 

1 4 

I Header l 
CMD = 4 

1 4 5 x l Header Parameters 

--~~~~~Defined in appendix c. 

BRK = 5 

1 4 5 I Header RC 

RC - Reason Code 
00 = illegal 

STP = 6 

1 

01 = user break 1 
02 = user break 2 
03 = output device not ready 
04 = illegal/invalid format in block received from host 

4 5 

Header RC 

RC - Reason Code 
00 = illegal 
01 terminal busy 
02 = terminal failure 
03 = batch interrupted by interactive I/0 

STRT = 7 

1 4 

Header l 

60474500 A D-3 



D-4 

RST 8 

1 4 

Header I 
!NIT = 9 

1 4 

I Header 

ACTL = 15 (for use between neighbor NPUs only) 

1 4 5 6 

I Header l I ST RL 

/ 0o, /7 6 4 

I p l BSN 

l 
BT 

I 
=O =15 

ST - Subtype 
00 clear (CLR) 
01 = protoco~ reset (PRST)} RL byte used 
02 regulation (REGL) 
03 link initialization (LINIT)} RL b t not used 
04 = link idle (LIDLE) y e 

RL - Regulation level 
00 high 
01 = low 

60474500 A 



BLOCK FLOW 
Figure D-1 illustrates sample data block protocol flow downline and figure 
D-2 shows the sample data block protocol upline flow. Figure D-3 
illustrates the downline flow where the TIP controls restart and figure D-4 
shows downline flow where the host controls restart. 

Host NPU Terminal Comments 

BLK Host sends first block _., .... to TIP . 

BLK Host sends second block _., .... to TIP • 

first block First block is delivered ....... -....- to terminal. 

BACK First block is acknowl-..... edged to host . .... 

second block Second block is _... 
delivered to terminal. -....-

BACK Second block is acknowl-..... edged to host • .....-

MSG Host sends third and 
last block to TIP. 

third block Third block is delivered 
to terminal. 

BACK Third block is acknowl-
edged to host. 

Figure D-1. Data Block Protocol Downline 

60474500 A D-5 



Host NPU 

...... ... 

BLK ...... ... 
BACK 

~ 

..._ ..... 

BLK ...._ ... 

... ... 
BACK __... .... 

BLK ...... ....-

BACK • 
CMD (CTRL/STOP) 

BACK ·1 
• 

CMD ( CTRL/ STPD) 

r BACK .. 
CMD (CTRL/STRT) 

BACK ·1 
• 

Terminal 

data 

data 

data 

Comments 

TIP inputs data from 
terminal • 

TIP sends data block to 
host • 

Host acknowledges block 
to TIP. 

TIP receives input data 
from terminal. 

TIP sends first block to 
host • 

TIP gets more input from 
terminal • 

Host acknowledges first 
block • 

TIP sends second block 
to host • 

Host acknowledges second 
block. 

Host requests stop input. 

TIP acknowledges CMD 
block to host. 

TIP informs host of 
input stopped. 

Host acknowledges CMD 
block to TIP 

Host requests input 
start. 

TIP acknowledges CMD 
block to host. 

Figure D-2. Data Block Protocol Upline 

D-6 60474500 A 



Host NPU 

BLK ...... ... 

BLK _.. .... 

BACK .... ....-

STP ....._ 
..... 

STRT ..... ..... ~ 

RST ..... -
BLK 

BACK 

Terminal 

first block ...... --.... 

second block 

Comments 

First block sent from 
host to TIP • 

Second block sent from 
host to TIP • 

Data of first block sent 
to terminal. 

First block acknowledged. 

TIP determines an STP 
condition exists and 
informs host with an STP 
containing the BSN of the 
last acknowledged block. 

All unacknowledged data 
and all new data 
received by the TIP is 
discarded until a RST is 
received in response 
to a STRT from the TIP. 

TIP determines STP 
condition has been 
resolved so a STRT is 
sent. 

STRT acknowledged by 
RST from host. 

Second block retrans­
mitted to TIP. 

Data of second block 
delivered to terminal. 

Second block 
acknowledged to host. 

Figure D-3. Block Flow Downline Control (TIP Controls Restart) 

60474500 A D-7 



Host NPU 

BLK ..... ... 

BLK ..... ... 

BACK ....._ 
..... 

BRK ....._ 
..... 

RST ...... --... 

BLK 

BACK 

Terminal 

first block ..... .... 

second block 

Comments 

First block sent from 
host to TIP 

Second block sent from 
host to TIP 

First block delivered 
to terminal 

First block acknowledged 
to host 

TIP determines a BRK 
condition exists and 
informs host with a BRK 
containing the BSN of 
the last acknowledged 
block. 

All unacknowledged data 
and all new data 
received by the TIP is 
discarded until a RST 
is received from host. 

Host acknowledges BRK 
with a RST to TIP. 

Second block retrans­
mitted to TIP 

Second block delivered 
to terminal 

Second block 
acknowledged to host 

Figure D-4. Block Flow Control Downline (Host Controls Restart) 

D-8 60474500 A 



SAMPLE MAIN MEMORY MAP FOR NPU 

Figure E-1 shows the layout of CCP in the main memory of a 255x network 
processor unit with 65K words of main memory. 

Locations in hexadecimal 

0000 

0100 

0150 

0170 

0070 

1050 

23BC 

35A3 

7FOO 

8000 

8200 

0980 

0998 

DE7F 

EFAO 

FOOO 

FFFF 

Jump to BEGINX 

Interrupt trap locations 

Address pointer table 

Console interrupt routines 

PASCAL globals 

Assembly language routines 

State programs 

PASCAL programs 

ID table 

Circular input buff er 

Line port table 

Line control blocks 

Set up stack, go to PINIT 

LOAD Rl, R2, R3, R4, go to MAIN$ 

Part I of initialization programs 

Initialize system 

Part II of initialization programs 

Initialize last of buffer 

System Paged Overlay service module 

Program Name 

ZEROX 

PBINTRP 

Addresses 

GLOBL$ 

PIDTBL 

MAIN$ 

BEGINX 

PIN IT 

PIBUF2 

Set up at 
initializa­
tion time 

Becomes 
buffers when 
needed 

Figure E-1. Sample Main Memory Map 

60474500 A E-1 

E 





CCP NAMING CONVENTIONS 

The following naming conventions for the CCP PASCAL programs should be 
regarded as guidelines rather than as strict requirements. 

The general format of a label is 

PIRRRRSSS 

where the usual length is six bytes, but additional bytes can be used. 

P values are: A - O Global data 

P Procedure or function 

Q - W Local data 

X - Z Non-CDC 

I values are: 0 Transparent or not tied down 

1 - 9 Not a structure 

A - z A structure 

For procedures and functions: 

P = P, I = A Assurance programs 

B Base system programs 

D Diagnostic programs 

M Multiplex subsystem programs (part of the base 
system} 

N Network communications programs 

p Packets 

T TIPs, HIP, LIP 

60474500 A F-1 

F 

-



For types, variables, and ~ieJds: 

AO ••• OPS-level workcodes 

BA ••• Over~ay 

BC ••• Physical/logical request packet (PRP/LRP) 

BF ••• Buffer 

BJ ••• TIP-type table 

BL ••• Logical link control block (LLCB) 

BS ••• Terminal control block (TCB) 

BT ••• Timing, monitor controlled 

BW ••• Intermediate array for worklist 

BY ••• Worklist control block (WLCB) 

BZ ..• Line control block (LCB) 

CM ••• Service module 

D... Input/output (I/O) 

J... Logical/physical I/O request packet 

JC ••• TUP table 

LD ••• Load or dump 

M... Multiplex subsystem 

MM ••• Event worklists (multiplex subsystem) 

N... Multiplex subsystem 

NA ••• Port table 

MB •.• Line types 

MC ••. Multiplex LCB (MLCB) or text processing control block (TPCB) 

NJ ••• Terminal characteristics 

NK ••• Multiplex command driver' inputs (command packet) 

NZ .•• Diagnostics control block (DCB) 

SI ••. System interfaces (SIT) 

F-2 60474500 A 



STANDARD TIP AND SVM TREES 

This apendix consists of four sections, one for each of the standard TIPs 
(Mode 4, ASYNC, and HASP) and a section for the service module (SVM). 

Within each TIP section there are two parts: a one-line description of each 
routine or subroutine, followed by a tree for the PASCAL-level routines and 
subroutines comprising the TIP. The trees are laid out so that the OPS 
work-level entry is on the first sheets and subroutines follow. Following 
the OPS-level switch and preceding the subroutines are the direct call 
routines from SVM and multiplex level 2 interrupt routines. 

Comparing these trees and TIPs should aid the TIP programmer in finding how 
other TIP programmers have solved similar problems. 

In the illustrations of the trees, external calls are underlined. No effort 
is made to trace calls from external routines. 

60474500 A G-1 

G 



MODE 4 TIP PROGRAMS 

PTSTACK - provides push down stack for TCB 

PTUNSTACK - Pop up part of stacking for TCB 

PT4CYCLE - TIP reentry with simulated WC (for shared terminals on line) 

PT4RELBUF - Release a buffer chain 

PT4DISABLELINE - Processes disable line request 

PT4TERMINATETCB - Processes terminate TCB request 

PT40UTPUT - If anything is in the output queue sets flag 

PT4GET - Get next downline message (interprets data on stop/start/IVT cards) 

PT4TIMECHECK - Checks one second event timer 

PT4LASTCHAR - Find last character of message 

PT4CMD - Generates and finds upline replies 

PT4CSTATE - Change cluster states for batch devices 

PT4TEXTPROCESS - Transforms downline data to Mode 4 format. Calls PTTPINF -
interface to firmware text processor 

PT4PMSG - Generates poll message 

PT4LINIO - Initiates I/O for mode 4 line (MLCB setup, start, set timeout 
value) 

PT4RETRY - Checks for unrecoverable errors 

PT4TOGGLE - Polls for toggle following write 

PT4POLL - Issues poll message 

PT4WRT - Issues output data block terminal 

PT4EPOLL - Polls for read response 

PT4DOUT - Sends message to display 

PT4DINP - Polls display for input 

PT4PROUT - Sends message to display. 

PT4PROUT - Sends message to printer 

PT4E3WRITE - Generate E3 write for card reader 

PT4CRINT - Polls MD4A terminals for data (card reader) 

PT4 CONFIGURE - Configure request 

G-2 60474500 A 



PT4AUTORECOGNITION - Polls CA to find code set, for ASCII terminal -
configure request for terminal address for MD4A -
reports a console, card reader, and line printer 

PT4ERRORPROCESS - Disable response to disable request 
Line error - send line inop SM 
Break - bad downline data 
Others - terminal/cluster error 

PT4WKALLOCATION - Finds next unit of work for terminal (reports several 
types of errors) 

PT4STRT - Sends stop input message to host 

PT4STOP - Send start input message to host 

PT4WKPROCESS - Cycles thru TCBs for active line, allocates work on that line 

PT4IOCHECK - Processes I/O returns - uses work code 

PT4CERR - Processes CE error messages 

PT4WCCHECK - Processes OPS level workcodes -

enable line 
process queued output 
delete TCB 
disable line 
process cycle reentry 
read El, E2, E3, or autorecognition response 
process ACK, REJ, or errors on line 
process timeouts 

PTMD4TIP - Main OPS-level-worklist entry switch 

PT4TCBINIT - Prepares TCBs (direct call from SVM) 

60474500 A G-3 



OPS LEVEL SWITCH 

PTMD4TIP (OPS-level entry - Switch on WC in WLE, then switch on task in 
- terminal) 

PT4WCCHECK 

~BLTIMTBL 
Cases (WC) = PT4CHECK 

line) 

(AOSMEN)l 
(enable 

PTGETlBF 
PT4TCBINIT - none 

(AOQUEOUT) - none 
(check Q) 

(AOSMDA) - none 
(disable 
line) 

(AOSMDLTCB) - none 
(delete terminal) 

(AOWKl) - none 
(cycle 
re-entry) 

(AOWK2 l-PT4 IOCHECK----® 
AOWK3 (read El, 
AOWK4 E2, E3, or 
AOWKB Autorec) 
AOWK9 

(AOWKS: l1PT4IOCHECK~ 
WACK, 
REJ, or _____t:;';\ 
error) PT4RELBUF~ 

AOWK6 }-:=IPT4IOCHECK--@ 
AOWK7 
{error or PT4RELBUF---@ 
slipped 
card) 

Figure G-1. 

A t(AOHARDERROR) - none 
(hardware error) 

(AOTIMEOUT) - none 

(AOSMRTCB) - none 

PTRTlLCB 

PT4WKPROCESS 

~PT4WKALLOCATION~ 
Cases (process device for next 

TCB on the line) 

PT400UT---0 

PT4DINP---0 

PT4PROUT--O 

PT4CRINP-0 

PT4AUTORECOGNITION---cv 

PT4EPOLL---© 

End case 

l_PT4ERRORPROCESS~ 
PT4CYCLE---@ 

BLTIMTBL 

PTRETOPS 

Mode 4 TIP (sheet 1 of 7) 

60474500 A 



WORK CODES 

cp ? 
PT4DOUT display (output processing) PT4DINP display (input processing) 

PT4TEXTPROC~ 
PT4TOGGLE~ 

PT4WRT---@ 

PT4CYCLE---@ 

PT4RELBUF---@ 

PBPOPOI 

PTREGL 

PT4POLL--@ 

PT4CYCLE---@ 

PT4RELBUF----@ 

PT4LASTCHAR - none 

PTBREAK 

PBPIPOI 

PT4TEXTPROC~ 

PT4WRT---@ 

PTIVTCMD 

PT40UTPUT - none 

Figure G-1. Mode 4 TIP (sheet 2 of 7) 

60474500 A G-5 



cp 
PT4PROUT (printer output) 

G-6 

PT4TEXTPROC~ 

PT4WRT---@ 

PT4CYCLE--@ 

PT4POLL--@ 

PT4RELBUF---@ 

PTBREAK 

PT4CSTATE==-=@ 

PBPOPOI 

Figure G-1. 

WORK CODES 

cp 
PT4CRINP (card reader input) 

PTREGL 

PT4E3WRITE -PT4TEXTPRoc===@ 

PT4WRT---@ 

PT4CYCLE --@ 
PT4RELBUF=-=@ 

PT4POLL==0 

PT4CSTATE=-=@ 

PBPIPOI 

PT4CERR ---@ 
PT4CMD---@ 

Mode 4 TIP (sheet 3 of 7) 

60474500 A 



WORK CODES 

~(autorecognition) 
PT4AUTORECOGNITION 

PT4TCBINIT - none 

PT4PMSG - none 

PT4POLL----@ 

PT4RETRY-@ 

PT4RELBUF----@ 

PBLSPUT (SVM) 

PT4DISABLELINE---@ 

PT4CONFIGURATION - none 

PT4CERR---® 

PBGETlSEG 

PBGETlBUF 

~ (polling control) 

PT4EPOLL 

L-PT4POLL~ 
LPT4RELBUF----@ 

SUBROUTINES 

cp 
PT4ERRORPROC 

PBRELlBUF 

PT4DISABLELINE---@ 

PT4TERMINATECB~ 
PTBREAK 

PT4RELBUF---@ 

PT4TCBINIT (call from SVM) -
none 

Figure G-1. Mode 4 TIP (sheet 4 of 7) 

60474500 A G-7 



SUBROUTINES 

cp 8A 

PT4WKALLOCATION 

Cases (device to be used on this TCB) 

8A 

(NlCON) 
(console} 

PTlVTCMD 

PT4RELBUF---@ 

PT4STOP----@ 

PT4TIMECHECK _, none 

PT40UTPUT - none 

PT4STRT---@ 

PT4G ET':.:..::.@ 

PT STOP 

PTBACK 

PTBREAK 

PT4CMD---@ 

(NlCR} PTSTOP 
(Cd rdr} 

PT40UTPUT - none 

PT4STRT===@ 

PT4GET----@ 

PT4CSTATE==-=@ 

PTBACK 

PT4CMD:..:..::.@ 

PT4RELBUF.::...:..:.@ 

PT4STOP--@ 

(NlLP} 
(printer} 

PT4STOP---@ 

PT STOP 

PT40UTPUT - none 

PT4CSTATE==-@ 

PT4GET==@ 

PTBREAK 

PT4STRT--@ 

(BSCERROR) 
(cluster 
error) 

(BSCIDLE) 
(cluster 
is idle) 

(BSCINTER 
ACTIVE) 

[

PT4STOP--@ 

PT4TIMECHECK -
none 

[
PT4STRT--@ 

PT40UTPUT - none 

PT4STO:P----@ 

PT4TIMECHECK -
none 

PT4GET--@ 

PTBACK 

PTBREAK 

PT4CMD-@ 

PTlVTCMD 

PT40UTPUT - none 

Figure G-1. Mode 4 TIP (sheet 5 of 7) 

G-8 60474500 A 



~ 
T4TEXTPROC 

PTTPINF (text processor) 

PT4RELBUF=-=@ 

PBGETlBUF 

PBRELlBUF 

? 
PT4POLL 

PTSTACK - none 

PT4PMSG - none 

PT4LINIO~--rPBCOIN 
LsLTIMTBL 

PTSVlLCB 

PT4RETRY==-=<§) 

PTUNSTACK - none 

SUB ROUT INES 

~ 
PT4WRT 

TSTACK - none 

PT4LINIO ==-=@ 
PTSVlLCB 

PT4RETRY==@ 

PT4TOGGLE~~---PT4PMSG -
none 

PT4CYCLE:.:..::.@ PT4LINIO ::.:.=@) 
PT4UNSTACK - none PTSVlLCB 

~ 
PT4CYCLE (cycles three 

~ 
to allow time 
terminates) 

PTUNSTACK - none 

PTSTACK - none 

PT4RETRY==@ 

PT4RELBUF ==@ 
PTSTACK - none 

PTUNSTACK -
none 

TCBs for line 
to all 

Figure G-1. Mode 4 TIP (sheet 6 of 7) 

60474500 A G-9 



SUBROUTINES 

<i/J ~ 
PT4RELBUF PT4GET PBPROPOI 

LPBRELlBF ~PT4RELBUF~ 

Q/J <ip 
PT4DISABLELINE PT4CSTATE - none 

tPBCOIN 

~ PBLSPUT {SVM) 
PT4RETRY PNSGATH 

PT4RELBUF:.::..:..@ LPT4CERR~ 
<flJ 

~ PT4TERMINATETCB 
PT4RELBUF==@ PT410CHECK 

tPBLSPUT (SVM) 

PT4RELBUF===-@ ~ 
PT4CSTATE---@ PT4CMD PB II POI 

LPBGETlBF 

~ 
€!> PT4STOP 

~~SroP PT4CERR - none 

PT4RELBUF 

<i? PBXFER {SVM) 
PT4STRT PBX FER { SVM ~ 

Figure G-1. Mode 4 TIP (sheet 7 of 7) 

G-10 60474500 A 



ASYNC TIP PROGRAMS 

PTASNMUX - Multiplex level 2 worklist handler 

APLSPUT - Converts multiplex level 2 interrupt to an OPS-level worklist 
entry 

APCDRV - Call command driver 

PTASNOPS - OPS level entry, worklist main processor 

Output buffer sent, or terminate transmission 

200ms Timeout handler (WLE from multiplex level 2) 

Regulation and autorecognition timeout 

Buff er threshold reached 

Break received 

XOFF received 

Trailer sequence 

Hard error or bad autorecognition 

Output queued, try to output 

TCB built, try I/O 

Line enabled 

Disable line 

Reconfigure TCB 

Delete TCB 

Input terminated 

Send transparent block to host 

Transparent message timeout 

Transparent block size reached during input; transparent XOFF checked; 

End of logical line; check for commands, echo data; pass data to host 

Input active, turn off output 

Autorecognition 

PTAFALASTBUF - Returns address of last buff er in chain 

PTAFCMDCHECK - Checks if input block is an IVT command from the terminal or 
a DATA block 

PTAFINOK - Tests if it is OK to 'input 

PTAFNULLMSG - Checks if input block is a null input 

PTAFOUTOK - Tests if it is OK to output 

AFREGAFTERINPUT - After input is passed to tip, checks if system is in 
regulation. If so, TIP releases input - notifies terminal 
that message was discarded. 

PTAUTOIN - Autoinput handler 

60474500 A G-11 



APCMDACTION - Performs action requested by IVT command 

APBRINGLINEDOWN - Brings line down due to a disable command or line errors 

PTAPBUFREL - Release a buff er chain 

APCMDRESP - Responds to command by sending message (or action) to terminal 

APENDOFLINE - Sends EOL sequence to terminal 

APENOUT - Sends terminate output command to command driver 

APEPLX - Change echoplex state at terminal 

APGETOUTPUT - Get block for output - prepare it (text process data; interpret 
if it is a command) 

APIOCHECK - Checks for I/0 to do 

APIVTFORMAT - Puts character string in !VT block format for returning an 
answer to the terminal 

APOUTPUT - Build command packet and call command driver for an output block 

APPASSINPUTTOHOST - Pass input block to host - works through Post-Input POI 
(chains autoinput heading to reply block) 

APPREPARETEXT - Text processes output blocks (format for output to terminal) 

APRCVST - Sends control D to terminals (274ls) - puts terminal in write mode 

APRELOQUE - Purge output queues 

APSPECSEQ - Process breaks, abort, cancels characters 

APUPBREAK - Process break on output; ends output 

PTAREC - Turns on input for autorecognition 

PTASETINPUT - Sets up MLBC for IVT interactive input 

PTATPTC - Sets up text processor interface (TPCB) by terminal class 

PTAPO - ASYNC TIP call to Post-Output POI 

PTAPI - ASYNC TIP call to Post-Input POI 

APPGPARAM - Sets page width and page length in TCB 

APTERMTCB - Terminates a TCB 

PTAQOBT - Processes output block from queue 

APTCBINIT - Initializes TCB fields 

APWTOBTERM - Waits for output buffer terminated 

PTAFICCHAR - Checks first input character for controlfunctions 

PTABKSPCHECK - Checks backspace character 

G-12 60474500 A 



WORK CODES 

ASYNC 

PTASNOPS (OPS entry, switch 

I on WC in WLE) 

Cases --
(NMOTEND PTSVlLCB 
or AOOBUX) 
(output buf PTMSQUE 
transmitted 

PTAPEPLX--@ or output 
terminated) 

PTRT2LCB 

(AW200MSTO)--PTRT1LCB 
(200ms 
timeout) 

(AO TIMEOUT) AFREGAFTERINPUT~ 
(Reg check 

APBRINGLINEDOWN~ or auto-rec 
timeout) 

PTAREC-----@ 

:APIOCHECK--0 

PTREGL 

BLTIMTBL 

(AWBUTCH)~PTREGL 
(buffer 
threshold) BLTIMTBL 

AFREGAFTERINPUT~ 
(AWBREAK) APINPUT--0 
(break 
received) BLTIMTBL 

PTASETINPUT ---0 
APLINESTATUS ----® 
APUPBREAK~ 

(AWXOFF)~PTMSQUE 
(process 
XOFF, paper PTSVlLCB 
tape) ----0 

APIOCHECK 2 

(AWTRAILER) - none 
(process trailer) 

A 

A 

Al 

(AOHARDERR)~-:APBRINGLINEDOWN~ 
(bad auto-
recognition 
or hardware 
error) 

(AOQUEOUT)----APIOCHECK--0 
(output msg 
in Q) 

(AOSMTCB)~APTCBINIT~ 
(set up for 
input then APIOCHECK--0 
output msg 
in Q) 

(AOSMEN)-------PTAREC~ 
(enable 
line 

AOSMDA) APBRINGLINEDOWN----€:9 

(AOSMDLTCB)- n.J?'fh .... "Tes--@ 
(delete TCB) 

(AOSMRCTCB) ~APTERMTCB --@ 
(reconfigure 
TCB) APTCBINIT~ 
(AWINTERM)----PTRTlLCB 
(process 
after input 
terminated) 

( AWXPTXOFF or 
AWXPTBLKSIZE) 
(XPT blk 
size or 
XPT XOFF 
input) 

PTAPBUFREL--{!) 

APWTOBTERM---@ 

AFREGAFTERINPUT--@ 

APP ASS INPUTOHOST--® 

PTDELMS 

PTSVlLCB 

APIOCHK--0 

PTMSQUE 

Figure G-2. ASYNC TIP (sheet 1 of 8) 

60474500 A G-13 



Al 

A2 

WORK CODES 

(AWSXB) APPASSINPUTOHOST----@ 
(send trans-
parent block 
to host) 

(AWXPTTO)---rAPENDIN~ 
(trans- L 
parent PTDELMS - none 
timeout) 

(AWXPTDELIM) 
(trans­
parent rnsg 
de lirni ter) 

(AWEPL or 
AWBLKSIZ) 
(character 
block size 
or end phy 
line) 

Bl 

PTAPBUFREL---© 

APWTOBTERM~ 
APRCVST----@ 

APREGAFTERINPUT~ 
APPASSINPUTOHOST~ 

PTASENTINPUT---<D 

APPGPARAM - none 

APIOCHECK---0 

PTDELMS 

PTAPBUFREL-© 

APWTOBTERM----@ 

APRCVST--@ 

PTAFCMDCHECK---@ 

AFREGAFTERINPUT~ 
PTAFNULLMSG - none 

PBRELlBF 

APPASINPUTOHOST~ 
PTMSQUE 

PTSVlLCB 

APENDOFLINE---@ 

A2 

A3 

(AWELL) 
(end log 
line, 
process 
line) 

Bl 

APPGPARAM----@ 

APINPUT---0 

APIOCHECK---@ 

PTAPBUFREL--© 

APWTOBTERM----{§ 

PBRELZRO 

APRCVST---@ 

PTAFSCANSPECSEQ ~ 

APSPECSEQ--@ 

PTAFCMDCHECK-----@ 

AFREGAFTERINPUT ~ 
APENDIN--0 

PTSVlLCB 

APCMDACTION~ 

PTASETINPUT~ 

APCMDRESP----® 

PBRELlBF · 

PTAFNULLMSG - none 

PTAPBUFREL--© 

PTMSQUE 

APIOCHECK--© 

PTIVTCMD 

APPASINPUTOHOST~ 
APPGPARAM - none 

APENDOFLINE---@ 

Figure G-2. ASYNC TIP (sheet 2 of 8) 

G-14 60474500 A 



A3 

WORKCODES 

(AWINACT) 
(make 
input 
active) 

(AWllO, 
AW150) - none 
(low speed 
autorec) 

PTABUFREL---~ 

PTMSQUE 

APUBREAK----@ 

PTDELMS 

(AW300, ---BLTIMTBL 
AW300A, _ ~ 
AW134 PTASENDPROMPT~ 
AW600 
AW1200 
AW2741) 
(autorec­
ogni tion) 

PTSY2LCB 

APLINESTATUS~ 

(other) ignore WLE 

{AWCORR or -APLINESTATUS ----@ 
AWECBD) 
{detect 
2741 
code set) 

SUB ROUT INES 

CD PTASETINPUT 

~::::~:s -none 

~PTABKSPCHECK - none 

0 APIOCHECK 

PTAPOUTPUT----<D 

PTSV2LCB 

PTAFINOK - none 

PINPUT--0 

PTRETOPS 

0 

SUBROUTINES 

tPTAFOUTOK - none 

PTAQCBT--@ 

APGETOUTPUT----G) 

APGETOUTPUT 

PBROPOI 

PTAPI--© 

APENDIN--0 

PTSVlLCB 

PTIVTCMD 

APCMDACTION~ 

APRELOQUE ----@ 
PTASETINPUT--0 

PTBREAK 

APPREPARETEXT~ 
PTBACK 

PBBUFAVAIL 

BLTIMTBL 

© PTAPOUTPUT 

~PTAPEPLX 
LPBCOIN 

CD PTAPOtPBRELCHN 

PBPOPOI 

PNSGATH 

© PTAPBUFREL----~--PBRELZRO 

Figure G-2. ASYNC TIP {sheet 3 of 8) 

60474500 A G-15 



cp 
AP INPUT 

cp 

PTREGL 

PTAPOUTPUT---© 

PTSV2LCB 

BLTIMTBL 

PTAPI--~~~--PBPIPOI 

LPNCEFILE 

~ENDIN---~----PBCOIN 
~PTAPEPLX~ 

~ 
APRELOQUE-------PTAPBUFREL~ 

SUBROUTINES 

~ 
APPREPARETEXT--~--PTATPTC - none 

PTTPINF 
(text process) 

PBGETlBF 

PTBREAK 

PBCOPYBFRS 

APRELOQUE---€2) 

PTAPBUFREL~ 

~ 
APRCVST-----------L-PTAPOUTPUT----<!) 

PTSV2LCB 

€? 
PTAPOUTPUT---------PBCOIN 

L PTAPEPLX 

<if> 
PTAFCMDCHECK--------PTAFNULLMSG - none 

PTAFALASTB - none 

PTAFICCHAR--® 

PTAFBUFREL~ 

Figure G-2. ASYNC TIP (sheet 4 of 8) 

G-16 60474500 A 



~ 
AFREGAFTERINPUT 

PTREGL 

PTAPBUFREL---0 

APENDIN---0 

APIVTFORMAT - none 

APPREPARETEXT----@ 

PTSV!LCB 

PTSV2LCB 

PTASETINPUT---~ 

PTAPOUTPUT---~ 

Ci? 
APPASSINPUTOHOST 

E
PBGETlBF 

PTAPBUFREL---<D 

PTAPI----© 

~ 
APENDOFLINE 

APIVTFORMAT----@ 

APPREPARETEXT----@ 

PTAPOUTPUT·---0 

PTSV2LCB 

PTAFBUFREL----0 

Figure G-2. 

60474500 A 

SUBROUTINES 

~ 
APIVTFORMAT 

LPBGETlBF 

<fP 
PTAFSCANSPECSEQ 

none LPTAFNULLMSG -

L_PTAFALASTBUF - none 

~ 
APSPECSEQ 

~ 

PTAPBUFREL---<D 

APPASSINPUTOHOST----~ 

APPREPARETEXT---~ 

PTBREAK 

APRELOQUE----@ 

PNSGATH 

PTAQOBT----@ 

PTAPUPBREAK 

E
PTAPENOUT----@ 

PTSV2LCB 

PTAPBUFREL--- .. © 

~ 
PTAPENOUT---------PBCOIN 

ASYNC TIP (sheet 5 of 8) 

G-17 



(if> 
PTAPEPLX - PBCOIN 

~RINGLINEDOWN 
APENDIN--0 

PTAPENOUT----@ 

PTSVlLCB 

PTAPBUFREL---© 

APPRELOQUE----@ 

PBCOIN 

PBLSPUT (SVM) 

~ 
PTAREC 

LPBCOIN 

LBLTIMTBL 

SUBROUTINES 

~ APLSPUT - PBLSPUT {ASYNC) 

6l 
APCDRV 

LPMCDRV 

~ 
APCMDACTION - APPGARAM 

~ 
APPGPARAM 

Lnone 

Figure G-2. ASYNC TIP (sheet 6 of 8) 

G-18 60474500 A 



~ 
APCMDRESP 

~ 

PTAPBUFREL--© 

APPREPARETEXT----@ 

PTMSQUE 

PTSVlLCB 

PTAPOUTPUT~ 
PTSV2LCB 

APTERMTCB 

PTO ELMS 

PTAPBUFREL--© 

APENDOUT--@ 

APENDIN----0 

PTSVlLCB 

APRELOQUE----@ 

PBLSPUT (SVM) 

SUBROUTINES 

~ 
PTAQOBT 

l-PTAUTOINPUT - none 

LPTAP0---0 

~ 
APTCBINIT 

L AFCMDACTION~ 
L PTASETINPUT --0 

<i? 
APWTOBTERM - PTSV2LCB 

€? 
PTAFICCHAR 

€? 
PTAFNULLMSG - none 

€? 
PTASENDPROMPT - PBCOIN 

~ 
APLINESTATUS BLTIMTBL 

APENDIN--0 

PBGETlBUF 

PBLSPUT (SVM) 

Figure G-2. ASYNC TIP (sheet 7 of 8) 

60474500 A G-19 



CALLS WITHOUT AN OPS LEVEL WORKLIST 

PTATPTC - none 

PTASNMUX (mux level entry, WLE switch) 

~APLSPUT----~ 
L..PCDRV----@ 

Figure G-2. ASYNC TIP (sheet 8 of 8) 

G-20 60474500 A 



HASPTIP 

PTHSMUXTIP - Mux level 2 workcode entry - converts mux level worklist to OPS 
level HASP worklist 

PTHSOPSTIP - OPS-level entry. Processes worklists from OPS-level (main HASP 
processor) 

(AOSMEN) - Enables line (sets LCB fields) 

(AOSMDA) - Disables line 

(AOSMTCB) - Checks for an ENQ block; process transmission 

(AOSMDLTCB) - Terminates and releases TCB, passes terminate command to 
command driver, notifies host 

(MSGCONT) - Prepares RCB/SRCB 

/RQP/ - Requests permission to send 

/PG/ - Permission granted to send 

/BCBERR/ - Bad BCB, brings line down 

/CONT/ - Sends control record 

/0,3,4,5/ - Purge record 

(AOTIMEOUT) - Timeout handler 

(AOQUEOUT) - Output handler 

(MSGCMPLT - Message completed, return to caller 

(ERROR) - Release buffer - return to caller 

(ACK/NAK) - Sets good or bad completion value, returns to caller 

(NMINDEND) - Ends input, returns to caller 

(MMHARDER) - Hardware error, sets inop code and returns to caller 

(BUFTHR) - No buffers (threshold reached}, drops message 

(FALL THROUGH} - End of switch: error 

NAKTEST - If NAKs received after I/O, brings line down 

FINDTCB - Finds TCB for stream (upline TCB location} 

PTHSSENDCMD - Sends upline command to host (multileaving control; input 
stopped) 

STROPN - Checks if workstation device will accept data (wait-a-bit-check); 
notifies host if it will 

DELINK - Unlinks entry from data-list queue (DLQ) 

60474500 A G-21 



HASPGET - Removes entry from DLQ - i.e., gets buffer of data that is ready 
to transmit 

HASPPUT - Queues entries into DLQ (2 wds/entry) 

HASPIO - Calls command driver (PBCOIN) 

PUTBCBFCS - Sets up BCB and FCS for output 

PTHSBCBFCS - Sets up BCB and FCS 

PTTHASP - Output text processing - calls PTTPINF 

GENDATA - Sets up buffer prior to PTTPINF call 

WRAPUP - Cleans up data transfer to HASP workstation 

BRINGLINEDOWN - Terminates a HASP workstation due to errors - sends terminal 
command to mux, notifies host 

ERRCHK - Checks for errors in I/O transfer - mark line down if necessary 

CHKCMD - Parses CMD blocks from host for a HASP TCB 

PREOUTPUT - Gets next entry in TCB queue and starts processing (downline 
switch) 

POSTOUTPUT - Cleans up output transmission (PBPOPOI) 

HSPR4INP - Input text processing (second pass processing of input data) 

HSPOSTINP - Cleans up input transmission (PBPIPOI) for input text processing 

HSPTCBUILD - Initializes TIP-dependent TCB fields - direct call from SVM 
during configuration of terminal 

G-22 60474500 A 

( 



WORK CODES 

HASP 

PTHOPSTIP (OPS entry; switch on I workcode in WLE) 

Cases 

A 

(AOSMEN) - none 
(enable line) 

(AOSMDA) --BRINGLINEDOWN---@ 
(d isable 
line) 

(AOSMTCB) 
(build 
TCB) 

(AOSMRCTCB 
AOSMDLTCB) 
(delete, 
terminate, 
or recon­
figure TCB) 

or 

HASPI0---0 

ERRCHK---© 

PBRELZRO 

BRINGLINEDOWN~ 

PBRELZRO 

ERRCHK---0 

HASPI0---0 

DELINK - none 

PBLSPUT (SVM) 

@> 

Cases 

Al 

(MSGCONT)-----FINDTCB - none 
(input 
processing) 

(AOTIMEOUT) 
(timeout 
control) 

(RQP) *1FINDTCB -
none 

HASP PUT 
none 

(PG)*----FINDTCB -
none 

BCBERR)-BRINGLI~ 

DOWN~ 

(CONT)* - none 

(0,3,4,5)* - none 

B 

ERRCHK--0 

BLTIMTBL 

PBRELZRO 

(MSGCMPLT) IPBRE~O 
(message 
completed) B 

ERROR)--------,-~LZRO 

l-© 

*RCB Switch 

Figure G-3. HASP TIP (sheet 1 of 4) 

60~74500 A G-23 



Al 

105 

WORK CODES 

~~~Ql-0 
NAK) f
(HASP block
reply)

(NMINEND)~
(end input)

(MMHARDERR)~
(hardware
error)

(BUFTHR):LERRCHK~
(buffer
threshold) PBRELZRO

NAKTEST--@

POSTOUTPUT--@

HASPGET--0

PBLSPUT (SVM)

PBRELZRO

BRINGLINEDOWN-----(£0

CALLS WITHOUT AN OPS-LEVEL WORKLIST

PTHSMUXTIP (mux 2 interrupt entry)

i._PBRELZRO

LPBLSPUT (HASP)

HASPTCBUILD (direct call from SVM)

Lnone

Figure G-3. HASP TIP (sheet 2 of 4)

G-24 60474500 A

~
HASPGET (text process output)

DELINK - none

GENDATA---©

PTTPHASP---0

PBGETlBUF

~PR4INP (2nd pass - text process
input)

cp

PBCLR

PTTPINF (text processor)

PBRELlBF

PBRELCHN

PTBREAK

PTIVTCMD

PBRELZRO

PRE OUTPUT--©

PBPIPOI

HSPOSTINP---@

PTHSENDCMD----Q])

CHKCMD (process cmds)

PBRELZRO

PTBACK

PTHSSENDCMD---@

TIVTCMD

SUBROUTINES

~
HASPIO (mux interface)
I

Case

~

ACKCMD)----------.-PTREGL

GENDATA--©

PTTPHASP---0

PBCOIN

(NAKCMD)---------PBCOIN

(OUTCMD)-----PTREGL

PBOIN (set up
for output
processing)

(INPCMD)--------PBCOIN (set up
for input
processing)

(TERMIO)-------PBCOIN

(NOCMD) - none

GENDATA--------[~PUTB~BFCS

PBGETlBF

STROPN

~
PREOUTPUTtPBPROPOI

HASPPUT - none

CHKCMD-©

Figure G-3. HASP TIP (sheet 3 of 4)

60474500 A G-25

<?
PTTPHASP~-----PTBACK

~
ERRCHK

PTBREAK

PBCLR

PTTPINF (text
processor)

PBRELlBF

PTHSBCBFCS - none

PBRELCHN

PBRELZRO

PBGETIBUF

t
BRINGLINEDOWN~
HASP IO

PBRELZRO

~
BRINGLINEDOWN

~
NAKTEST

DELINK - none

PNCEFILE

PBRELZRO

PBLSPUT (SVM)

PBCOIN

WRAPUP---@

L_BRINGLINEDOWN~

Figure G-3.

G-26

SUBROUTINES

€?
POSTOUTPUT

~

PBRELZRO

PBPOPOI

PREOUTPUT--©

HASPPUT - none

STROPN

~

PBRELZRO

PTSTO~

PTSTRT

DELINK - none

HASPPUT - none

WRAP UP

tHASPro--©

PBRELZRO

CfP
PTHSSENDCMD~---, PBGETlBF

.... ----PBIIPOI

€?
HSPOSTINP------~LPRELZRO

PBPIPOI

~
PUTBCBFCS - PTHSBCBFCS - none

HASP TIP (sheet 4 of 4)

60474500 A

SVM TREES

The section shows the service module trees. There are two parts: a short
description of each SVM routine, and the trees relating the routines.

Note the routines which are service module related, but not a part of the
SVM:

PNSGATH - gathers statistics (stores them in TCB or LCB as appropriate)

PTLINIT - initializes the line by setting up the LCB

PNCEFILE - generates the CE error and alarm service messages. The text
of the message identifies the line (or other device such as
coupler, MLIA, etc.) which failed.

See appendix C for format of individual SMs.

SVM Routines:

PNAWAIT - gives up control while waiting for external event (availability
of buffers, or a TIP to perform a specific set-up or deletion)

PNRTN - used to regain com !'Ol after PNAWAIT is used

PNSMBAD - validates PFC/SFC of SM

PNLNBAD - validates line number (used when enabling and deleting lines)

PNRVRSE - reverses SN and DN to return an SM reply to the host

PNTOCONS - delivers an SM to the NPU console

PNQREL - releases buffers in a queue

PNGTCB - gets a TCB address

PNCRWAIT - terminates a reconfiguration in progress

PNTCBSRCH - uses line number, cluster address, terminal address, and
device type to find a TCB

PNDLTCB - deletes a TCB and its queue

PNDISCARD - discards SMs with invalid PFC or SFC

PNSMTO - handles the SVM timeout worklist entries

PNSMTR - removes a WLE in the SVM timer worklist

PNSMWL - WL entry switch for SVM

COSMIN/COSMOUT - send/receive SM - this workcode is the subswitch for the
SVM handler table (see table Cl)

COSMDISP - calls PNSDISP to send an SM

COLINOP/COLNINOP - calls PNLINE to enable or disable a line

60474500 A G-27

COLNDA - handles replies from TIP for line disable requests by the SVM

CODLTCB - handles replies from TIP for delete TCB requests from SVM

COOVLDATA - handles the overlay data SM

COB FT

CODI SABLE

CO ENABLE

Call PNRTN to continue processing TIP reply following

PNAWAIT release of control

COTMLDLT

The following routines are called either from the first level (work code) of
the main switch (above), or are called from the PFC/SFC decoding of the
subcode.

PNSMDISP - sends an SM to the host or remote NPU

PNLLCNF - configures or deletes a logical link

PNCONFIGURE - common subroutine to configure a control block (LCB or TCB)

PNLNCNF - configures a trunk or line

PNTMLCNF - configures or reconfigures a TCB

PNDELETE - deletes a line

PNENABLE - enables a line

PNDISABLE - disables a line

PNLINE - handles line operational or line inoperative work codes

PNTMLDLT - deletes a TCB

PNlLLSTAT - formats the logical link status SM

PNLLSTAT - handles logical link status SM

PNCNTLN - counts trunks or lines

PNLCR - handles the count line request SM

PNSTATE - generates response code for a line status SM

PNlLNSTAT - formats the trunk/line status SM

PN2LSTAT - formats the trunk/line status SM for a single line

PNLNSTAT - handles line status SM

PNTNKSTAT - handles the trunk status SM

PNlTMLSTAT - formats the terminal status SM

PNTMLSTAT - handles the terminal status SM

G-28 60474500 A

PNBRDCST - handles broadcast SM (message to all terminals)

PNlBRDCST - handles the broadcast 1 SM (message to one terminal)

PNOVLOAD - processes overlay program loading

PNOVLDATA - processes overlay programs

PNOVLTMT - terminates an overlay program

PNFRCLD - processes the force load SM

The following programs are called externally as SVM common programs for
TIPS, the multiplex sutsystem, etc.

PNPSTAT - generates the periodic statistics SM (one statistics block -
next in the list)

PNDSTAT - generates the dump statistics SM (the specified statistics
block)

PNSMGEN - generates an SM

60474500 A G-29

WORK CODES

PNSMWL (WLE to SVM)

~EXIT
Cases

~------~NSMBAD - none

(COSMIN
COSMOUT)

PNDISCARD~
PBRELCHN

Subcase

~--------PBRELCHN
(J4DISCARD)

1----------~-PNTOCONS::.:..:(V
(J4PRINT)

----------PBBFAVAIL
(J4DISPATCH
J4BOTH) PTCTCHR

PNTOCONS::.::.::.©

PBCOPYBFRS

PNlGTPTR -
none

PBSWLE

PNLNBAD -
none

PNBMPSTAT -
PNDSTAT==©

PBCALL* - See
sheets 2 - 5

to-------- PNSMDISP---0

(COSMDISP)

A

A

i--~~------PNLINE:..:.::(V
(COLINOP)
(COLNINOP)

~~~------PNLNBAD - none 
(COLNDA) 

PB HALT 

(CODLTCB) 
CORCTCB - none 

i---~------PBCALL* 

(COOVLDATA) 

(COBFR 
CODI SABLE 
CO ENABLE 
COTMLRCNF 
COTMLDLT) 

PNRTN - PBAEXIT 

*PBCALL - in this case the 
internal switch based 
on PFC= 08 ••• and 
SFC = 09 

{See appendix C) 

Figure G-4. SVM TREES (sheet 1 of 8) 

G-30 60474500 A 



SWITCH THROUGH PBCALL and PFC/SFC 

0-PNDI SCARD----- PNBMPSTAT ===© 
(Load request, L 

NPU initialized, PNTOCONs=-==@ 
all statistics, 
CE error, ns to/ 
from operator, 
time character-
istics; these 
are usually 
called directly 
from non-SVM 
programs) 

PNFRCELD~PNlGTPTR - none 
(force load) 

PB HALT ----
PBRELCHN 

PNLLCNF~~-----PNDISCARD~ 
(configure/ 
delete link) PNlGTPTR - none 

PNROUTE 

(deletes) 

i----PNDIRDLT 

PN2GTID 

PNQREL==© 

( conf ig) 

---PBCLR 

PNDIRADD 

PNRVRSE - none 

PNSMDISP===© 

PNLLINIT 

PNLNCNF~--...-PBRELlBF 

(configure 
trunk/line) PNRVRSE - none 

PNSMDISP===© 

PBDLTXT 

PBX FER 
(PNCONFIGURE) 

PBRELGlBF 

PBRELCHN 

PBLLENTER 

PBLSPUT ( INIT) 

PNDELETE--~--PNRVRSE - none 
(disable/ 
deconf igure PNSMDISP::.::.:(D 
line) 

PBRELCHN 

PBLLRMOV 

PNDSTAT=-==© 

PNSMTR===0 

PBPUTYP - for TIP 

PNAWAIT===@ 

PNDLTCB =.:.:.@ 
PNRCWAIT - none 

Figure G-4. SVM TREE (sheet 2 of 8) 

60474500 A G-31 



SWITCH THROUGH PBCALL USING PFC/SFC 

PNTMLCNF~------PBRELlBF 
(configure or 
reconfigure TCB) PNRVRSE - none 

PNSMDISP===© 

PNSMTR==© 

PNTCBSRCH==@ 

PBBUFAVAIL 

PBCLR 

PBDLTXT 

PBX FER 
(PNCONFIGURE)~ 

PBPUTYP (to TIP) 

PBRELCHN 

PBGETlBF 

PNAWAIT==-=@ 

PBDNABRT 

PT IN IT 

PNTMLDLT~~-----.-PNRVRSE - none 
(delete TCB) 

PNSMDISP===© 

PNTCBS RCH::.::..:.@ 

PBRELCHN 

PBPUTYP (to TIP) 

PNAWAIT===@ 

PNDLTCB===@ 

PNOVLDATA~---PBCALL 
(overlay 
data) PBRELlBF 

PNRVRSE - none 

PNSMDISP--0 

PNOVLOAD--- PBCLR 
(overlay 
program) PBMEMBER 

PBRELlBF 

PNRVRSE - none 

PNSMDISP==© 

PNOVLTMTtPBCALL 
(terminate 
overlay PNRVRSE - none 
program) 

PNSMDISP::.:::© 

PNLLSTAT PNRVRSE - none 
(LL status) 

PNSMDISP==© 

PBBUFAVAIL 

PNAWAIT::.:..:.@ 

PBX FER 
(PNlLLSTAT)- none 

PBRELCHN 

PNROUTE 

Figure G-4. SVM TREES (sheet 3 of 8) 

G-32 60474500 A 



SWITCH THROUGH PBCALL USING PFC/SFC 

PNTNKSTAT -------PNRVRSE - none 
(trunk status) 

PNSMDISP =-=© 
PNCNTLN - none 

PBBUFAVAL 

PNAWA IT::.::..:.@ 

PBGETlBF 

PNSTATE - none 

PNlLNSTAT - none 

PBRELCHN 

PN2LNSTAT=-=-=@ 

PNLNSTAT -----..-- PNRVRSE - none 
(line status) 

PNSMDISP===© 

PNCNTLN - none 

PNSTATE - none 

PBBUFAVAIL 

PNAWAIT::=..:.@ 

PNlLNSTAT - none 

PBRELCHN 

PN2LNSTAT---@ 

PNTMLSTAT-------PNRVRSE - none 
(terminal 
statistics) PNSMDISP==© 

PNSMTR 

PBBUFAVAIL 

PNAWAIT =-=@ 
PBX FER 
(PNlTMLSTAT)-none 

PBRELCHN 

PNLCR :tPNCNTLN - none 
(count 
lines PNRVRSE - none 
request) 

PNSMDISP--0 

PNENABLE PNRVRSE - none 
(enable 
trunk/line) PNSMDISP:::.:(D 

PBRELCHN 

PBLSPUT (for LIP) 

PBLLENTR 

PB LS PUT (!NIT) 

Figure G-4. SVM TREES (sheet 4 of 8) 

60474500 A G-33 



SWITCH THROUGH PBCALL USING PFC/SFC 

PNDISABLE ------PNRVRSE - none 
(disable or 
disconnect PNSMDISP=-==0 
trunk/line) 

PNRCWAIT - none 

PBRELCHN 

PNlLNSTAT - none 

PNENABLE===@ 

PNSMTR===0 

PBPUTYP (to TIP) 

PNAWAIT:.:..::@ 

PBLLRMOV 

PNDSTAT 

PBLSPUT (!NIT) 

PBLLENTR 

PNDLTCB===@ 

PNlBRDCST ---PBRELlBF 
(msg to one 
terminal) PNRVRSE - none 

PNSMDISP::..::.0 

PNTCBSRCH:.::.:.@ 

PBCOPYBFICS 

PBIOPOI 

PNBRDCST ---PNROUTE 
(msg to all 
terminals) PBRELlBF 

PNRVRSE - none 

PNSMDISP===© 

PTCTCHR 

PBCOPYBFRS 

PBBFAVAIL 

PNAWAIT:..::..:@ 

PBIOPOI 

PBRELCHN 

Figure G-4. SVM TREES (sheet 5 of 8) 

G-34 60474500 A 



ROUTINES EXCLUSIVELY FOR DIRECT EXTERNAL CALLS 

PNPSTAT---------PNDSTAT:::.::.0 
(periodic 
statistics) 

PNSMGEN-------- PBBUFAVAIL 
(generates 
SM to host) PBGETlBF 

PBX FER 
(PNlLLSTAT) - none 

PBCOPYBFRS 

PBLSPUT (self) 

PBXFER 
(PNlTMLSTAT) - none 

PB LS PUT 
(self/timing) 

PB LOAD 

PBRELlBF 

PNSMTO ----PBLSGET 
(call from 
timing) PNLNBAD - none 

PBRELCHN 

PTCTCHR 

PBCOPYBFRS 

PBLSPUT (self) 

PB LS PUT 
(self-timeout) 

PNGTCB----~L- PN2GTID 

PN2SRCH 

Figure G-4. SVM TREES (sheet 6 of 8) 

60474500 A G-35 



0 
0 

PNDISCARD (see first sheet) 

PNTOCONS (display msg at NPU 

t 
console) 

PBCOPYBFRS 

PBQlBLK 

PNLINE (Line OP/INOP) 

PNLNBAD - none 

PB HALT 

PBGETlBF 

PNlLNSTAT - none 

PBRELCHN 

PNSMDISP:..:.:@ 

PBLSPUT (TIM) 

SUBROUTINES 

© 

0 

PNDSTAT (dump statistics) 

BBFAVAIL 

PBGETlBF 

PBRELlBF 

PBLSPUT (SVM) 

PNSMDISP (Send SM) 

PTCTCHR 

PNSMBAD - none 

PNDISCARD 

PBRELCHN 

PBBFAVAIL 

PNTOCONS ===0 
PBCOPYBFRS 

PNlGTPTR - none 

PBLSPUT (SVM) 

PNBMPSTAT - none 

PBSWLE 

Figure G-4. SVM TREES (sheet 7 of 8) 

G-36 60474500 A 



©- PNQREL - PBRELCHN 

0--PNCONFIGURE PNSTORE 
(conf ig a 
control PNROUTE 
block) 

PB HALT 

PNDIRDLT 

PNDIRADD 

PNQREL==© 

PBDNABRT 

PBUPABRT 

PT IN IT 

PBXFER (TIP) 

SUBROUTINES 

0-PNSMTRtPBLSGET (Timing) 

PBRELCHN 

PBLSPUT (SVM 
timing) 

@- PNAWAIT 1PBBEXIT 

PBLSPUT (self) 

PBAEXIT 

@- PNDLTCB PNDIRDLT 

PBDNABRT 

PBUPABRT 

PNDSTAT==© 

PBRELlBF 

~PBTCBSRCH~PNLNBAD - none 

~PN2LNSTAT PNSMDISP===<:V 

PBRELCHN 

PNSTATE - none 

PNlLNSTAT - none 

PNRTN~~-PBAEXIT 

Figure G-4. SVM TREES (sheet 8 of 8) 

60474500 A G-37 





PRINCIPAL DATA STRUCTURES H 

This appendix lists and describes the principal data structures in CCP. It 
is intended for use with a link edit on cross-reference listing. 

Because PASCAL definitions can occur in three stages (types of structure, 
variables using these types, and values on constants assigned to 
type/variable fields), the tables discussed in this section are defined with 
the type definition. Mnemonics for variables assigned to the same fields 
are usually similar to the type definition. The listing should be consulted 
for the correct variable name. Wherever the variable name is frequently 
used, this name is also given in this appendix. 

In some cases (such as service messages) the data structures are already 
well described elsewhere. In these cases, the reader is referred to another 
location in this manual or in The CCP Reference Manual. 

60474500 A H-1 



CONTENTS 

Bits, Words, and Pointers 
Bit Definition 
Word Structures 

Characters (2/word) 
Integers (l/word) 
Four Hexadecimal Numbers/Words 
Flag Word (16 flags/word) 
Line Timing 

Masks 
Character Masks 
Bit Masks 

Pointer Definitions (BOINTPTR) 
Variable Word Definitions 

Multiword ASCII Set 
Hardware Related Tables 

Register Designation 
Register Save Area 
Coupler Related Constants 

Q and A Register Load Area, NGAQLT 
Hardware Lines and Associated Software Priorities 

NPU Console 
Logical/Physical I/0 Request Packet, JCPACKET 

Device Controller Table, JACONTROLLERTABLE 
I/O Response Codes, JOIORESP 
Director (Controller) Function Codes for the 1713 TTY 
Special TTY (Console Keyboard) Characters 
Halt Codes 

Block Protocol 
Block Protocol Constants 
Block Type 
Block Byte Sequence 
Field Bit Start Position in Byte 
Block Type (BT) Byte 
Data Bytes 
Data Block Clarifier, DBDBC 

Character 
Downline DBC 
Upline DBC 

Directories/Internal Processor/Common TIP Routines 
Type 1 and Type 4 Tables 

Type l/Type 4 Table Entries, BRDIRCTRY 
Type 4 Table List Search Control Block, LSRCHCB 

POI Interface Values 
TIP Type Table, TIPTYPE 

Base System Software 

H-2 

Buffers 
Buffer Maintenance Control Block, BECTRL 
System Buffer, BOBUFFER 

Overlays for TIP flags 
Buffer Constants 
Buffer Stamping Area, BYSTAMP 
Copy Buffer Parameters, JTCOPYB 
Buffer Threshold Levels, BOBUFLEVELS 

H-6 
H-11 
H-11 
H-6 
H-7 
H-7 
H-7 
H-7 
H-7 
H-8 
H-8 
H-8 
H-8 
H-12 
H-12 
H-12 
H-13 
H~l3 

H-14 
H-14 
H-15 
H-16 
H-17 
H-19 
H-19 
H-19 
H-20 
H-20 
H-20 
H-20 
H-21 
H-21 
H-21 
H-22· 
H-22 
H-23 
H-23 
H-23 
H-24 
H-24 
H-24 
H-24 
H-24 
H-25 
H-26 
H-26 
H-26 
H-27 
H-28 
H-34 
H-35 
H-36 
H-36 

60474500 A 



Worklists 
Intermediate Array Format, BWWORKLIST 
Multiplex Event Worklist Queue Types, MMEVENT 
Service Module Type Worklist Entry Formats, CMSMWLE 
Worklist Control Block, BYLISTCB 
Worklist Table, BOWKLSTS 
OPS-Level Workcodes, CMWKCODE 
Multiplex Event Work Codes 

Monitor Tables 
PGMSKIP 
BYPGMS 
SM ONT 
DOOVLSTATE 
CBSYTMT 

Miscellaneous 
System Interfaces 
System Interface Table, SITTBL 
Overlay Control Block, SYOVLCB 
Firmware Entry Points 
Low-Core Pointers 
SK Page Locator Table 

Timing Tables 
RTC/Autodata Transfer Table, CICLKADT 
One-Second Clock, CASECNTR 
Line Timing Control Table, BLTIMTBL 
Periodically Executed Programs, CBTIMTBL 
Time of Day Tables, CADATE 
Loop Lower Instruction 

Regulation 
Input Regulation Option for PTREGL, REGLTYPES 

Control Blocks 
Static Logical Link Control Block (LLCB), BOSLLCB 
Line Control Block (LCB) , BZLCB 
Terminal Control Block (TCB), BSTCBLK 

Multiplex Subsystem 
Multiplex Command Driver Packet, NKINCOM 

Multiplex Line Control Block (MLCB), NCLCB, Text 
Processing Control Block (TPCB) 

Port Table (NAPORT) 
Line Tables 

Multiplex Line Type Table, NBLTYT 
Line Types, NOLTYP 
Asynchronous Line Speeds 
Line Number Field, BOLINO 
Multiplex Character Transmit Characteristic Table, NICTCT 

CLA/Modem Tables 
Modem/CLA Relationships 
CLA Types 
CLA Commands and Status 
Control Command Sequence Word, NDSEQE 
Multiplex CLA Command Status Table Entries, NFCCSE 

SDLC CLA Entry 
Whole Word Variation 
ASYNC CLA Entry 
Synchronous CLA Entry 

60474500 A 

CLA Status Condition Indicators, MOSCTYP 
Modem Control States 
Modem State Programs 

H-36 
H-37 
H-38 
H-40 
H-41 
H-42 
H-43 
H-45 
H-46 
H-46 
H-46 
H-46 
H-46 
H-46 
H-47 
H-47 
H-47 
H-48 
H-48 
H-49 
H-49 
H-49 
H-50 
H-50 
H-50 
H-50 
H-51 
H-52 
H-52 
H-52 
H-52 
H-52 
H-53 
H-56 
H-66 
H-67 

H-70 
H-77 
H-78 
H-78 
H-79 
H-80 
H:-80 
H-80 
H-81 
H-81 
H-82 
H-82 
H-82 
H-82 
H-83 
H-83 
H-83 
H-84 
H-86 
H-86 
H-86 

H-3 



Terminal Tables 
Terminal Characteristics Table, NJTECT 

Terminal and Device Types (TT/DT) 
Terminal Type 
Device Type 
Device Types 

Service Messages 

H-4 

FN/FV Data Structures 
Field Description Table, DDFDTRECORD 
Action Table Entries, DFATENTRY 

H-86 
H-86 
H-89 
H-89 
H-89 
H-90 
H-90 
H-90 
H-91 
H-91 

60474500 A 



NOTE 

For tables with two or more variants, the TIP writer can 
select fields from any variant so long as incompatible fields 
in the same word are not used for a single process. 
(Caution: The writer must know all the programs (within the 
TIP as well as called directly or indirectly from the TIP) 
that use the field.) Use of fields from several variants of 
a table (such as the TCB) is common throughout CCP. 

60474500 A H-5 



BITS, WORDS AND POINTERS 

BIT DEFINITION 

The following labels define the bit structure for NPU words. 

Bit 

Word 

Mnemonic 

BOlBIT 
B02BITS 
B03BITS 
B04BITS 
B05BITS 
B06BITS 
B07BITS 
B08BITS 
B09BITS 
BOlOBITS 
BOllBITS 
B012BITS 
B013BITS 
B014BITS 
B015BITS 

15 

Bits 

0 
0-1 
0-2 
0-3 
0-4 
0-5 
0-6 
0-7 
0-8 
0-9 
0-10 
0-11 
0-12 
0-13 
0-14 

Decimal Range 

0-1 
0-3 
0-7 
0-15 
0-31 
0-63 
0-127 
0-255 
0-511 
0-1023 
0-2047 
0-4095 
0-8191 
0-16383 
0-32767 

The bit elements that make up the 16-bit NPU word are as follows: 

ELEMENTS = (BIT 0, BIT 1, BIT 2, BIT 3, BIT 4, BIT 5, BIT 6, 
BIT 7, BIT 8, BIT 9, BIT 10, BIT 11, BIT 12, 
BIT 13, BIT 14, BIT 15) 

Bit O is least significant bit; bit 15 is most significant bit. 

WORD STRUCTURES 

Mask Word 

SETWORD = SET OF ELEMENTS 

Bit set allows corresponding bit to be inspected (logical AND) 

Characters (2/Word) 

15 7 0 

CHAR CHAR 

Array of up to 131K characters 

BOCHRARAY = PACKED ARRAY (B015BITS) OF CHAR: 

0 

H-6 60474500 A 



Integers ( 1 /Word) 

Word array of 6SK words 

BOINTARAY = ARRAY (BOlSBITS) OF INTEGER: 

Four Hexadecimal Numbers/Word 

BOHEX = PACKED RECORD 

BOHl, BOH2, BOH3, BOH4: B04BJ:TS 

END: 

lS 11 7 3 0 

BOHl 
I 

BOH2 
I 

BOH3 
I 

BOH4 

Flag Word 

Sixteen flags are packed in one word. 

BOFKAGS = PACKED RECORD 

BOBlS, BOB14, BOB13, BOB12, BOBll, BOBlO, BOB9 BOBS, BOB7, 
BOB6, BOBS, BOB4, BOB3, BOB2, BOB!, BOBO: BOOLEAN 

lS 0 

I [I 11 I I I I I I I I I l~I 
BOIS BOBO 

Sixteen flags with mnemonic corresponding to bit position of flag in word. 

Line Timing 

BZLTIME has three values, packed as shown. The count increments are in half 
seconds. 

lS 

Fl 

MASKS 

14 7 

BLTRESET 

Output buff er terminated (OBT) 
reset value 

0 

BLT I ME 

Timeout field count 

BLTCONT - firmware contention flag, used for 2552 processing 
where both multiplex and base sides have a request 
waiting 

The principal masks are for single characters and single bits. 

60474SOO A H-7 



Character Masks 

Left byte, BY OMSK 

15 7 0 

All l's All O's 

Right byte, BYlMSK 

15 7 0 

All O's All l's 

Bit Masks 

Hexadecimal values are 1, 2, 4, 8, 10, 20, 40, 80, 100, 200, 400, 800, 1000, 
2000, 4000, 8000. 

POINTER DEFINITIONS (BOINTPTR) 

Pointers are all one word (INTEGER) type. 

Pointer 

BOQPTR 
BOBUFPTR 
BOHEXPTR 
BOREGPTR 
NOLCBP 
BZLCBP 

Control Block 
or Buffer 

BOC BENT 
BOBUFFER 
BO HEX 
BO REG SAVE 
NCLCB 
BZLCB 

VARIABLE WORD DEFINITIONS 

Meaning 

Queue control block pointer (QCB) 
Buffer pointer for general buffer 
Hex pointer (location in hexadecimal) 
Register save area pointer 
Multiplex LCB (MLCB) pointer 
LCB pointer 

The universal word overlay has many variations. Each variation is of the 
most frequently used type. Thus, by overlaying the universal overlay over a 
variable, the variable may be accessed in a variety of formats. 

15 7 0 

0 BACHARS CHAR 1 BACHARS CHAR 2 

type: CHAR: length l to ALFALENG 

15 0 

0 BABOOL 

type: BOFLAGS - up to 16 flags 

H-8 60474500 A 



15 0 

0 BAS ET 

type: SETWORD - mask 

15 0 

0 BASE'T I 

type: SET of 0 through F16 

15 0 

0 I BABUFBTR 

type: BOBUFPTR, buffer pointer 

15 0 

0 BAI NT 

type: INTEGER, full word integer 

15 0 

BAWLCODE 

type: BOWLCODES, worklist code 

15 7 0 

BALCHAR BARCHAR 

type: CHAR, left and right characters 

15 0 

BA CORE I' 
type: BOHEXPTR, hexadecimal pointer 

15 11 7 3 0 

I BAH EX I 
type: BOHEX, 4 hexadecimal digits 

60474500 A H-9 



H-10 

15 0 

BAREGPTR 

type: BOOINTPTR, integer pointer 

15 0 

BAREGPTR 

type: BOREGPTR, register pointer 

15 7 0 

0 BALBYT BARB YT 

type: B08BITS, integers in left and right bytes 

15 0 

0 BAlBOL 

type: BOOLEAN, uses only bit 0 

15 0 

0 BAQPTR 

type: BOQPTR, queue pointer 

15 0 

0 BABUFSIZE 

type: BOBUFSIZES. Index to size of buffer (1, 2, 3, 4} 
for the network. Nominal sizes: 8, 16, 32, 64 
correspond to values 1, 2, 3, and 4o 

15 0 

0 BAWKLST 

type: BOWKLSTS. Worklist index. Entries in the monitor 
table as shown in section 5. Uses only bits 0 
through 4. 

15 0 

0 BALTYP 

type: NOLTYP. Line type. See table C-3. User only bits 
0 through 3. 

60474500 A 



15 0 

0 I BALI NO 

type: NOLINO. Line number. Used to index LCBs. 

15 0 

0 I BALCBP 

type: BALCBP. LCB pointer. 

15 0 

0 I BATTYP 

type: NOTTYP. Terminal type. See appendix C. 

15 0 

0 I BAlCHAR 

type: CHAR. Right character. Uses full word with 
character right justified. 

15 6 3 0 

0 _l _____________ B_A_P_A_n ______________ l ___ B_A __ IN_n_E_x ____ l ___ B_A_B_I_T_P_o_s __ _ 

type: Three fields together make a pointer (BACHROVLY) to 
an ASCII character in the ASCII/binary conversion 
table. See appendix A of The CCP Reference Manual. 

15 11 8 0 

0 I BA15T012 BACPOC BACPLN 

0 

type: Two fields (left most field is spare) called BACPOW. 

15 

BACPOC is the coupler order word code and BACPLN is 
block length. Used by the HIP for threshold checks 
and for computing the number of buffers needed for 
an input block. 

6 0 

BASP9 BA7BITS 

type: fields: variants 24 and 25 are used together as an 
18-bit address. BA7BITS is upper 7 bits, BAllBITS 
is lower 11 bits of address. 

60474500 A H-11 



15 10 0 

0 I BAPAGE I BAllBITS 

BAPAGE is the page number: range 0 through 31. 

15 0 

0 I BAPGM 

type: BOPGM. Used by TUP to index into the OPS monitor 
table. Uses only bits 0 through 4. 

15 0 

0 I BAL IO 

type: JO LIO. Console logical I/O index. Uses only bits 
0 through 3. 

15 0 

0 BABLKTYPE 

type: BLKTYPE. Block type (BT) field in the block header. 
Uses lower 4 bits. 

15 0 

0 ~'----------------------~----B_A_c_Tc __ T ________________________ __. 

type: NICTCT. Entry in character transmission table (NICTCY). 

MUL TIWORD ASCII SET 
JSASCIISET = ARRAY {303BITS) OF SET OF B04BITS: 

This is an eight-column, 16-row array of 8-bit characters. The 8 by 16 
array completely defines the full 128-character set (as well as the 
96-character subsets) for ASCII. See appendix A of The CCP Reference Manual. 

HARDWARE RELATED TABLES 
This subsection describes hardware registers and lines which are not handled 
by the multiplex subsystem. 

REGISTER DESIGNATION 

This sequence defines the principal 255X hardware registers: Rl-R4, Q, A, 
I, M, overflow. Extra is a dummy register. 

H-12 

BOREGISTERS = (BOEXTRA, BORl, BOR2, BOR3, BOR4, BOQ, BOA, 
BOI, BOM, BOOFLOW) 

60474500 A 



REGISTER SAVE AREA 

BOREGSAVE = ARRAY (BOREGISTERS) OF INTEGER 

Register Saved 

15 

Word 0 BOREGSAVE -
Rl . . . 

BOREGSAVE (ARRAY) R4 
Q 
A 
I 
M 

9 BOREGSAVE ELEMENT 10 Overflow 

COUPLER RELATED CONSTANTS 

The coupler codes used by the various coupler registers are described in 
section 7. 

Mnemonic 

Coupler Functions 

ACPICS 
ACPIOW 
AC PONS 
ACPOBL 
AC PC LR 
AC POMA 
ACPRMA 

Value ---

(hexadecimal) 

50 
60 
48 
58 
oc 
6C 
10 

(end hexadecimal) 

Data Transfer Status Commands 

1 
3 
4 
7 

Meaning 

INPUT COUPLER STATUS 
INPUT ORDERWORD 
OUTPUT NPU STATUS 
OUTPUT BUFFER LENGTH 
CLEAR COUPLER 
OUTPUT MEMORY ADDRESS 
READ MEMORY ADDRESS REGISTER 

IDLE STATUS 
OUTPUT DATA AVAILABLE 
READY TO ACCEPT OUTPUT DATA 

0 

AID LE 
AAOUTPT 
AAREADY 
AANREADY 
AINPSB 
AINPLB 

13 
14 

NOT READY TO ACCEPT OUTPUT DATA 
INPUT AVAILABLE - SMALL BLK OR MSG 

Coupler Condition States 

AO PTO 
AOPTl 
AOPT2 
AOPT3 

60474500 A 

0 
1 
2 
3 

IDLE STATE 
IDLE INQUIRY SENT 
INITIATED INPUT 
INITIATE OUTPUT 

H-13 



Mnemonic 

AOPT4 
AOPT5 
AOPT6 

Coupler Timeout Values 

AID LETO 
ADEADTO 

4 
5 
6 

3 
60 

Q and A Register Load Area, NGAQL T 

Meaning 

OUTPUT IN PROGRESS 
READY FOR OUTPUT DELAY 
NOT ROY FOR OUTPUT DELAY 

IDLE TIMEOUT = 1 TO 1 1/2 SECONDS 
DEADMAN TIMEOUT = 30 SECONDS 

One word is provided for commands (Q register) and two variants are provided 
for data/subcommands (A register). The console used the A/Q channel for 
I/O. These are used only for the command driver. 

Command (Q) 

15 7 0 

0 NGPORT - Port Number NGCMD - I/O device command 

Subcommand (A) 

15 7 0 
0 NGLTYP - Line Type NGCNT - Count of characters being sent 

Universal Overlay 

15 0 

0 l NGINT - Integer 

Hardware Lines and Associated Software Priorities 

Hardware Software 
Line No. Priorit:i DescriEtion of Interru2t 

0 Pl Internal (parity and protect, power) 

1 P6 Teletype (NPU console) 

2 P2 Multiplex l,oop error 

3 P3 Multiplex Level 2 

4 Pl6 1742-30 line pr inter (for console - not 
used) 

5 PS Spare 

H-14 60474500 A 



Hardware 
Line No. 

6 

7 

8 

Software 
Priority 

P7 

P8 

P9 

Description of Interrupt 

Coupler 

Spare 

Real-ti: lE. clock 

9 

10 

PlO 1742 line printer (for console - not used) 

Pll Spare 

11 Pl2 Spare 

12 Pl3 MLIA ODD (parallel for all NPU ports) 

13 Pl4 MLIA input line frame (parallel for all NPU 
ports) 

14 Pl5 Spare 

15 Hardware breakpoint 

Pl7 OPS level programs 

JKMASK defines the array of 17 priority level masks (BOPRlLEVEL) associated 
with these interrupts. Priority 1 is highest; priority 17 is not associated 
with any interrupt driver. 

NPU CONSOLE 
The NPU console has two levels of data structures. 

• The request packet from the user (logical request packet, LRP} 
establishes the message transfer parameters. The LRP is converted to 
a physical request packet (PRP) by the console driver so that the 
user does not need to concern himself with terminal physical 
characteristics. 

• The device controller table provides parameter storage for the A/Q 
transfer between NPU and console ·device. One such controller table 
is provided for each device associated with the NPU console. 

In addition, the console driver for the device must: 

• recognize the A/Q line responses 

• provide the controller functions in the form recognized by the 
controller {bits set) 

• recognize special characters that are used by the console for mode or 
message control 

60474500 A H-15 



LOGICAL/PHYSICAL 1/0 REQUEST PACKET, JCPACKET 

These two packets share the same format. The packets are used to pass 
requests to the NPU console and are the logical equivalent of the LCB/TCB 
for remote terminals. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 JCCOMMAND - I/O command JCCQMPL - I/O completion code 

1 Fl I F2 I F3 I F4 F5 I F6 I F7 I FB F9 I FlO Fll Fl21 Fl31 Fl41 Fl51 Fl6 

JCLIO-logical JCPD - Physical device code (bits 7-0 only) I/O function 2 

3 JCUSERWD - User word 

4 JCPOINTER - Pointer to tag or first buffer 

5 JCBUFSZE - Pointer to buffer control block 

JCLIO - JCUSRCODE - JCRESULT -
6 Worklist code User program code Fl7 I/O result code 

(bits 3-0 only) 

JCRETRYCNT - JCRECDSZE - JCBLKSZE - block 
Retry count Record size (bits 3-0 only) 7 

8 JCSTATUS - Physical device status 

Fl - JCRELBUFLG, release output buffers 

F2 - JCRELPRFFLG, release physical request packet (PRP) 

F3 - JCNOBUFLG, I/0 not in buffer 

F4 - JCSPl, not used 

FS - JCPRIFLG, priority output 

F6 - JCTRANSPFLG, transparent data 

F7 - JCGETBUFLG, get buffers for input 

FS - JCRESETFLG, reset wait I/O bit 

F9 - JCCHAINFLG, chain messages 

FlO - JCSTACKFLG, stack this completion request 

Fll - JCENDSTACKFL, end of completion stack 

Fl2 - JCBATCHFLG, batch this request 

Fl3 - JCENDBATCHFLS, last request in batch 

Fl4 - JCSP2, not used 

Fl5 - JCIMMEOFLG, perform immediate output 

Fl6 - JCCOMFLG, call PBDRCOMPL, the console common driver 
completion routine 

Fl7 - JCOPCODE, worklist OPScode 

H-16 

size 

60474500 A 



The following constant values are assigned to the LRP/PRP fields indicated. 

Mnenomic 

J3READ 
J3WRITE 

J3NOCOMPL 
J3 

J3ACCEPTED 
J3REJECTED 
J3ERR1 
J3ERR2 
J3COMPLETE 

JlPRIWL 
JlREGWL 

Value 

0 
1 

0 
0 

0 
1 
2 
3 
4 

1 
0 

Console read 
Console write 

Meaning 

Failed to complete 
Not used 

LRP accepted 
LRP rejected 
All retries attempted 
More retries can be attempted 
LRP completed 

Priority worklist } two console 
No priority worklist queues 

Functions (JCLIO field) are: 

Mnemonic Value Console Mode ---
JO LIO (J2TUPOUTPUT, 1 SUPERVISORY INPUT 

J2SUPOUT, 2 SUPERVISORY OUTPUT 
J2ALM, 3 ALARMS 
J2REP, 4 REPORTS 
J20RD, 5 ORDERWIRE 
J2DIAG, 6 DIAGNOSTICS 
J2TUPINPUT, 7 TUP INPUT 
J2TUPOUTPUT, 8 TUP OUTPUT 
J2TUPDUMP, 9 TUP DUMP 
J2SNP1, 10 SNAPSHOT 1 
J2SNP2, 11 DUMP REGISTERS 
J2SNP3, 12 PRINT BREAKPOINT ADDRESS 
J2SPARE, 13 SPARE 
J2QUICK, 14 QUICK I/O 
J2WS1, 15 WRAP-SNAP 1 
J2LAST); DUMMY 

Device Controller Table, JACONTROLLERTABLE 

} 
I/O 
commands 

} 
Completion 
codes 
(JCCOMPL) 

l 
Result codes 
(JCRESULT) 

Driver 
} worklist 

priorities 

The device controller table is used by the modules comprising the NPU 
drivers. One controller table is used for each console device. 

0 

1 

2 

3 

4 

60474500 A 

15 0 

JASTATUS - Physical device status 

JACRUREQ - Pointer to current I/O request 

JAIOBUF - Pointer to I/0 buff er 

JAINPROGFLG - I/O in progress flag 

JABUFXZE - Pointer to I/O buff er control block 

H-17 



5 JACHRCNT - I/0 character count 

JATIMER - I/O timer - half seconds 6 

7 

8 

9 

JATIMOUT - Timeout count - half seconds - 5 minute overflow 

JAR EJECT - Rejected transfer count 

JABADINT - Bad interrupts count 

10 JARETRY - Retry I/O count 

JAQVALUE - Q register contents for last I/O transfer 11 

12 (data) JAAVALUE - A register contents for last I/O count 

13 JAREADFLG - Last I/O type flag; l = read, 0 = write 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

JAMASK - Mask out device for PBS TART IO 

JAIOWL - Driver worklists, used for PBLSGET and PBLSPUT 

JAIOWL (ARRAY) 
} I/O worklist 

JAIOWL ELEMENT 2 

JAAUTOFLG - Augornatic output flag 

JAFRSTFLG - First character of message plan 

JAINTFLG - Message interrupted flag 

JAMODEFLG - Mode change flag 

JACHFLG - Console input message flag 

JACURIBP - Current input buffer pointer 

JAOLDIBP - First input buffer pointer 

JAQCHOSEN - Queue chosen 

JADROPQ - Interactive queue 

JAERRCNT - Error count 

Words 17 through 26 are used only for the di$play/keyboard. 

JAINPROGFLG - Only bit 0 is valid 
JAAVALUE - Only bits 7 through 0 are valid 
JAREADFLG - Only bit 0 is valid 
JAIOWL - Only bits 4 through 0 are valid 
JAAUTOFLG - Only bit 0 is valid 
JAFRSTFLG - Only bit 0 is valid 
JAINTFLG - Only bit 0 is valid 
JAMODEFLG - Only bit 0 is valid 
JACHFLG - Only bit 0 is valid 

H-18 60474500 A 



1/0 Response Codes, JOIORESP 

These are hardware responses checked by the conso+e I/O drivers when reading 
or writing a character. 

JOXREJECT 
JOIREJECT 
JOREPLY) 

l 
2 
3 

EXTERNAL REJECT 
INTERNAL REJECT 
REPLY 

Director (Controller) Function Codes for 1713 TTY 

BIT 15, 14 - BAUD RATE SELECTOR; 0 ::: llO, 
BIT 13 - DISCONNECT PRINTER 
BIT 12 - 8-BIT WORD 
BIT 11 - DE-SELECT PARITY 
BIT 10 - CONNECT PRINTER 
BIT 9 - SELECT READ MODE 
BIT 8 - SELECT WRITE MODE 
BIT i - NOT USED 
BIT 6 - ADT MODE 
BIT 5 - NOT USED 
BIT 4 - INTERRUPT ON ALARM 
BIT 3 - INTERRUPT ON END-OF-OPERATION 
BIT ""2 - INTERRUPT ON DATA 
BIT 1 - CLEAR INTERRUPT 
BIT 0 - CLEAR CONTROLLER 

1 = 300, 2 :: 1200, 3 

Multiple functions are accepted by the controller1 they are defined as 
follows: 

- TTY clear interrupt, controller 

= 9600 

TTYCLR, 
TTYREAD, 
TTYRITE, 
TTYWRITE, 
TTYEOP: CHAR: 

- TTY select read mode, alarm interrupt, data interrupt 
- TTY select write mode, no interrupt 
- TTY select write mode, alarm interrupt, data interrupt 
- Clear interrupt select EOP interrupt 

Special TTY (Console Keyboerd) Characters 

Character 
Definition 

JlCP, 
JlLF p 

JlCTLH, 
JlBCKSPCE, 
JlTUPCAN, 
JlTUPCAN, 
JlENTERTUP, 
JlLVETUP, 
J2ENTERMP, 
J2LVEMP, 
JlICR, 
JlILF, 
JlIDISCARD, 
JlSYSEOM: CHAR: 

60474500 A 

Keyboard Character/Use 

CARRIAGE RETURN 
LINE FEED 
CONTROL H - TREATED AS BACKSPACE 
BACK Sp ACE 
/TUP MESSAGE EOM 
QUESTION MARK TUP CANCEL INPUT 
CONTROL A ENTER TUP MODE 
CONTROL D LEAVE TOP MODE 
ESCAPE ENTER MAINT PANEL MODE 
LEAVE MAINT PANEL MODE 
REPLACE WITH CR CONTROL SHIFT N, 
REPLACE WITH LF CONTROL SHIFT M, 
DISCARD CONSOLE INPUT 
CONTROL D SYSTEM EOM 

H-19 



Halt Codes 

The NPU halt message is sent to the NPU consol~. The halt codes are 
described in The CCP Reference Manual. 

BLOCK PROTOCOL 
The block protocol defines the byte structure used to transmit block between 
the host and the terminal mode of the NPU. Blocks occur in buffer with one 
or more changed buffers comprising the block. Each buffer in the chain 
requires a buffer header and (except for the last or only buffer case) a 
buffer pointer for chaining. All other bytes can be used for the message. 

See section 6 for block protocol discussion 

BLOCK PROTOCOL CONSTANTS 

The block header occurs at the start of the buffer, following the bytes 
reserved for the buffer header (four bytes) and the two bytes reserved for a 
link header. 

Bytes 

Par~eters I l Link DN SN CN P/BSN/ DBC DATA header BT 

block header 

BT - block type; BT uses bits 3-0 only. 
DBC - data block clarifier; if present, it is the first data byte. 

BLOCK TYPE 

Block Type 
Mnemonic Value Block Type Meaning 

BT - bits 3 through 0 of P/BSN/BT byte 

HTBLK 
HTMSG 
HTBACK 
HTC MD 
HT BREAK 
HT STOP 
HTSTRT 

HTRESET 
HT IN IT 
HT AC TL 

SUBBLOCKS 
HTC LR 
HTPRST 
HTREGL 
HTLINIT 
HTLIDLE 

1 
2 
3 
4 
5 
6 
7 

8 
9 

15 
0 
1 
2 
3 
4 

:!~~~ge }data transfer blocks 
Back - acknowledgment 
Command - used for service messages 

~~~~k l Communications 
Start start, stop, restart
Reset
Initialize
Data assurance (word for LIP only)

Clear
Protocol reset
Regulation
Link initialization
Link idle

I

H-20 60474500 A

BLOCK BYTE SEQUENCE

Byte position assumes buffer header and link header. Bytes are numbered
starting at 1 in the upper byte of word 0 of the buffer.

Mnemonic

DN

Byte
Position

6
7
8
9

Destination node
Source node
Connection number

Byte Use

Priority/serial number/block type

SN
CN
BTPT
Pl 10

11
12
13
14
15
16
17
18
19
20
n
22

Parameter 1 (DBC if data instead of parameter)
P2
P3
P4
PS
P6
P7
PS
pg
PlO
Pll
Pl2
Pl3
Pl4
Pl6
Pl8
P20
P24
FBYTE
BLOCK
DBC
DATA

23
25
27
28
33
DN
DN
Pl
Pl

FIELD BIT START POSITION IN BYTE

Binary
Mnemonic Value

FSO 1
FSl 2
FS2 4
FS3 8
FS4 10
FSS 20
FS6 40
FS7 80

BLOCK TYPE (BT) TYPE

Parameter 2
Parameter 3
Parameter 4
Parameter 5
Parameter 6
Parameter 7
Parameter 8
Parameter 9
Parameter 10
Parameter 11
Parameter 12
Parameter 13
Parameter 14
Parameter 16
Parameter 18
Parameter 20
Parameter 24

Data may start at any
parameter position: it
must start at the byte
following the last
parameter used.

FCD for first byte of data
FCD of first byte of block header
Data block character
FCD of first byte of data (may be DBC)

Starting Bit

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

The fourth byte of the block header can have two forms:

60474500 A H-21

7

Byte

Byte

DATA BYTES

Mnemonic

DBC

TIME

STMP

LVLN

DATA

DWORDl

DWORD2

DWORD3

DWORD4

DWORD5

DWORD6

6 3 0

BTBSN BTYPE = BLKTYPE 1

block type, range 0 - 15

block serial number

BTPRID - Priority designator

7 0

CHAR I = B LKTYPE 2

[character

Position of byte in
data part of message

Pl = 1

P2 = 2

P3 = 3

P4 = 4

PS 5

6

7

8

9

10

11

Meaning

Data block clarifier (control
flags for the data which
follows)

stamp

level numbers

data bytes (can begin at
positions 1 through 5)

DATA BLOCK CLARIFIER, DBDBC

The DBC is often used as the first byte of data in a message. In the
definition, it is right justified in a computer word. Six DBC variants are
provided.

H-22 60474500 A

Character

15 7

0 I DBDMl - Not used I DBCHAR - Character

Down line DBC

15 7 6 5 4 3 2 1 0

0 I DBDLFILL I Fl F2 F3 F4 F5 F6 F7 F8

Fl - DBDLSl,
F2 - DBDLS2,
F3 - DBDLS3
F4 - DBDLS4, spare
F5 - DBDLFE, format effectors u'sed
F6 - DBDLXPT, transparent data
F7 - DBDLS5, spare
FS - DBDLAUTO, autoinput block

Upline DBC

15

0 I DBULFILL

F9 - DBULSl, spare
FlO - DBULS2, spare
Fll - DBULS3, spar~
Fl2 - DBULS4, spare
Fl3 - DBULS5, spare

7 6

F9 FlO

Fl4 - DNULXPT, transparent data
Fl5 - DBULCAn, cancel data
Fl6 - DBULPERR, parity error

15

5

Fll

0 DBSPl - not used

DBCCF - code conversion
Fl7 - DBBSF, backspace present
DBDBT - data clarifier

Mode 4, transparent data

15 7

0 PDPMl - not used Fl8

Flags:

6

Fl9

Fl8 - PDPRUB, physical record unit block
Fl9 - PDBANB, banner block
F20 - PDEOI, message contains an EOI
F21 - PDXPAR, transparent data

60474500 A

4 3 2 1 0

Fl2 Fl3 Fl4 Fl5 Fl6

5 3 2 0 I DBCCF I Fl 7 DBDBT I

5 1 0

PDSPl - not used F20 F21

0

H-23

HASP TIP

15 7 6 5 4 3 2 1 0

0 DBFl - not used F22 F23 F24 F25 F26 F27 F28 F29

F22 - DBPRUB, physical record unit block
F23 - DBBANNER, banner message
F24 - DBSP2, not used
F25 - DBSP3, not used
F26 - DBSP4, not used
F27 - DBSP5, not used
F28 - DBEOI, block contains EOI or EOR
F29 - DBCXPT, transparent data

DIRECTORIES/INTERNAL PROCESSOR/COMMON TIP ROUTINES
The internal processor includes the POis and various switching routines.
The routing routines use the LCBs as directories; the routines also use
directories built in type 1 and type 4 tables. See section 6 for routing
and POI descriptions.

TYPE 1 AND TYPE 4 TABLES

Type 1/Type 4 Table Entries, BRDIRCTRY

These are indexed tables with a pointer associated with each index. Two
words/entry: word 1 has the index right justified; word 2 has the
associated pointer. The routing directories use the following type of
table:

BRLFTBYTE l BRIO - index

BRPTR - pointer

- left byte is optional

- searching routine returns this
pointer to the table user

Type 4 Table List Search Control Block, LSRCHCB

I LSCOUNT ~SBUFPTR
POI INTERFACE VALUES

BlTCB: BOBUFPTR
BlBUFF: BOBUFPTR

- Entry count for this buffer

- Pointer to current buffer

POINTER TO A TCB
DATA BUFFER POINTER

INPUT STATES POINTER TABLE SIZE: 0 •• 80.

One such table exists for each TIP. ACTION TABLES and TIP TYPE/SUBTIP TYPE
are discussed under service messages.

H-24 60474500 A

TIP TYPE TABLE, TIPTYPE

This table contains one entry of type TIPTYPE for each interface package in
a system (TIP, LIP, or HIP). The local console, MLIA, line initializer, and
on-line diagnostics are also included. The table fields are unique to each
TIP.

Pointer to the table is BJTIPTYPT.

15 14 13 12 8 6 4 0

BJLISTIX Worklist 0 Fl F2 F3 BJIVTSIZE BJTCBSIZ BJQTYPE Monitor Table Index

1 BJDFTC - Default terminal class when enabling line (see appendix C)

2

3

4

5

6

7

8

9

bits 0 - 4 only

BJPTIMRTN - TIP TI MAL routine page address

BJETIMRTN - TIP TI MAL routine entry address

BJJFDT - TCB field descriptor table address

BJFDT - LCB field descriptor table address

BJJAT - TCB action table address

BJAT - LCB action table address

BJTPMUX2 - TIP level 2 (multiplex interrupt entry) page address

BJTEMUX2 - TIP level 2 entry address

10 BJTCBP IN IT - TCB initialization routine page address

11 BJTCBEINIT - TCB initialization routine entry address

12 BJTXTPAGE - Text processing page address

13 BJTXTENT - Text processing entry address

Flags

Fl - BJOBT, generates output buffer terminated (OBT) flag

F2 - BJBZL, resets timer flag when OBT occurs

F3 - BJSPl, not used

BJTCBSIZE - number of words in IVT overlay for TCB/TCT

BJ QTY PE

60474500 A

- TCB buffer size (0 = 8, 1 = 16, 2 = 32, 3 = 64 in nominal
system)

H-25

BASE SYSTEM HARDWARE
The base system data structures support the following functions:

• Buffer assignment, release, and copying

• Worklist assignment and control

• Monitor table use

• Finding system interface locations

• Low-core pointers

• Timing

• Masking

• Input regulation

• Control block support (setting up control blocks is a service
module/TIP responsibility)

• Multiplex subsystem operators

BUFFERS

The proposed buffer structures are as follows:

• A control block for each pool of free buffers

• Definitions of each type of buffer assigned

• The optional stamping area which contains two words for tracing
buff er use

• A copy buffer input parameter list used by the copy buffers routine,
PBCOPYBFRS

There are four buffer sizes. In the normal systems, the buffers are
assigned as shown:

BOSO - 8 words
BOSl - 16 words
BOS2 - 32 words
BOS3 - 64 words

Buffer Maintenance Control Block, BE CTR L

This control block contains all the necessary information for allocating and
releasing system buffers. There is a control block for each of the four
free buffer pools. Each control block is initialized by PIBUFl. Firmware
subroutines allocate and release the buffers.

H-26 60474500 A

15 14 7 0 -
0 Fl I BEBAC - Number of buffer currently available for assignment

1

2

3

4

5

BENFB -

BELFB -

BEMSK -

BELCO -

BETRSl

next free buffer location

last free buff er location

mask and length - 1

LCD of newly BEFCD - FCD of newly
assigned buffer assigned buffer

- Pool's buffer threshold

6 BECHAIN - Pointe~ to buff er control block for next largest size
buff er

7 BEDUM2 - not used

Fl - not used
BECTPTR is pointer to BECTRL

System Buffer, BOBUFFER

System buffers exist in four sizes as defined by BOBUFSIZES. Buffers are
used for a variety of purposes as described by the following overlay
definitions:

0

15 14 13 12 11 10

BFLCD - Last characters
displacement

9 8 7 6 5 4 3 2 1

BFFCD - First character
displacement

0

1 Fl F2 F3 F4 F5 F6 F7 F8 F9 FlO BFQCNT Fll Fl2 Fl3 F14

2 BFDATAC CHAR 1 BFDATAC CHAR 2

BFDATAC 122 data characters

62 BFDATAC CHAR 121 BFDATAC CHAR 122

BFQCNT - queue count

Last word usually reserved for chain to next buffer (see chain variant,
below)

Flags:

Fl - BFEOTFLG, end of transmission buffer

F2 - BFSOTT, start of transparent text

F3 - BFSONT, start of nontransparent text

F4 - BFSUPCHAIN, suppress buffer chaining

F5 - BFEOBFLG, end of block buffer

F6 - BFINTBLK, internal block; do not send BACK block

60474500 A H-27

F7

F8

F9

FlO

Fll

Fl2

Fl3

- BFPRTK,

- BFPERM,

- BFLNKQ,

- BFSP5,

- BFSP7,

- BFSP8,

- BFSP9,

buff~r protect

permanent buffer

buff er is part of link queue or frame

used by console I/0

used by console output reserved for TIP uset

not used

not used }

Fl4;- BFDBSIZE, data buffer size, not used, O indicates single data
buffer size

tuse where buff er is assigned for console

OVERLAYS FOR TIP FLAGS

These overlays are for words 0 and 1, to use FlO, Fll, Fl2, and Fl3.

Mode 4 TIP

15 6

0 BFFILl - fill for word 0

1 BFFIL2 - fill for unused bits

FlO - BFFRAG - fragmented line
Fll - BFFE - format effectors present
Fl2 - PFPARTIAL - MSG block; not complete message
Fl3 - BFM4D3 - not used

ASYNC TIP

Four types of flag overlay are provided

15 6

0 BFFILl fill for word 0

3 2

3 2

1 0

1 0

1 BFFIL2 - fill for unused bits l FlOl l Fll l Fl21 Fl3

Variant 1 - ASYNC

FlO - BFPGWAIT, page wait for this output block
Fll - BFEOM, end of message block - output
Fl2 - BFEOS, end of source block - output
Fl3 - BFADMl, not used

variant 2 - ASYNC

FlO - BFXPT, transparent input
Fll BFPARITY, parity error in this block
Fl2/Fl3 - BFADM2, not used

H-28 60474500 A

Variant 3 - ASYNC

Fl0/Fll/Fl2 - BFFLGS, clumped TIP flags
Fl3 - BFADM3 - not used

Variant 4

FlO - BFINTIP, internal from TIP
Fll/Fl2/Fl3 - BFADM4, not used

TIP

15 6

0 BFFILl - fill for word 0

1 BFFIL2 - fill for unused bits

FlO - BFBCCOK, BCC in and correct (3270)
Fll - BFNOTABRTPKT, input state program terminated
Fl2 - BFVRCBAD, VRC error in packet
Fl3 - BF32D3, not used

NPU console (TIP)

15 6

0 BFFILl - fill for word O

1 BFFIL2 - fill for unused bits

FlO - BFFORMAT, console format
Fll - BFTFXT, text for console in block
Fl2/Fl3 - BFCNSLFIL, not used

General Purpose Integer Buffer (64 words)

15

0 BIINT '
BI INT (ARRAY) \

j
64 words of integers

l
63 BI INT ELEMENT 64 I

General Purpose Chaining Buffer (64 words)

15

0 BCCHAINS '
BCCHAINS (ARRAY) ~ 64 words of pointers

((or other) purposes
1

53 BCCHAINS ELEMENT 64)

60474500 A

3 2 1 0

3 2 1 0

IFll l Fl21 Fl3

0

0

for chaining

H-29

TCB buffer (32 word buffer)

15

0 '
BSTCB \ See TCB field definitions (above) 1 32 word maximum

J

31 /

Physical/Logical Request Packet (PRP/LRP) buffer (16 word buffer)

15

0)
BCPRP ~ See PRD/LRP field definitions (above);

j only first 9 words of buffer are assigned

8 J

Active TTY LCB List buffer (16 words)

0

1

2

13
14

15

15

one entry

requires 2 words

Entries for a Type 1 Table

15

0 \

NELED - Index to last entry

NELINO - Line number \

NELCBP - Pointer to MLCB

NEENTRY (ARRAY) > up to 7 entries
per buff er

NEETRY ELEMENT 7
I

NECHAIN - Pointers to next active TTY

BRTYPl l Two words per entry - see directories section 6]
1 I

0

0

0

0

H-30 60474500 A

Buffer for type 4 table (16 word buffer)

0

1

2

13
14

15

up to 7 directory
entries per buffer

CECOUNT - Index to last entry
I

l
I < 2 word directory entry -I CEENTRY) see directories section 6

~

\ CEENTRY (ARRAY)

CE ENTRY ELEMENT 7

Logical Link Control Block (LLCB) buffer (8 words)

15

0 \

BLLLCB \ See LLCB field definition
J

6 I

Timeout buffers (5 words)

Two variants are provided.

15 14 10 7

0 F251 BFTUSR - user bits l BFTWKCOD - work code

1 BFTLINO - Line number

BFTWLINDX BFTSPl - Not used Worklist index 2

BFTOVAL - Timeout count - base = 100 ms 3

4 BFTCHAIN - Pointer to next timeout buffer or chain

Flag:

F25 - BFTREL, release buffer after using

60474500 A

0

0

H-31

Variant for word 1 of timeout buffer

15 11 7 0

0 BFTOMl - Not used BFTSCI - Status indication BFTDM2 - Not used

These buffers are assigned as needed for delayed calls and chained together
with the last buffer word BFTCHAN. PBTOSRCH searches the chained buffers
for timeouts and releases them if BFIREL is set. The adjacent buffers are
rechained together if the buffer is released.

Multiplex LCB (MLCB) buffer (32 words). Also used for TPCB.

15 0

0 _)
BGMLCB ~ See MCLB for field definitions.

j See also multiplex subsystem, section 5

31)

Mobil systems application flags (8 words)

15 7 6 5 4 3 0

0 BFMDMl - Integer

1 BFMDM2 - Not used J F26 J F27 I F28 J F29 } BFMDM3 - Not used

Flags:

F26 - BFEOR, End of record
F27 - BFEOI, End of information
F28 BFPMMSG, PM message

NPU Statistics buffer {16 words)

See appendix B of CCP Reference Manual for field definitions

H-32

0

5

6

15

16

15

CPFILO

CPFILO

CPCILO

CPNPU

)
{ARRAY) ~ Six words of file for NPU

j statistics message block header

ELEMENT 6)

\

~
j

10 words of NPU statistics {9 words used)

I

0

60474500 A

Line Statistics buffer (16 words)

See appendix B of the CCP Reference Manual for field definitions

15 0
0 CPFILl)

CPFILl (ARRAY) ~ 8 words of fill message block
j header and SVM bytes

7 CPFILl ELEMENT a)
8 '

CPLINE ·~ 4 words of line statistics
j
l

11 J

Terminal Statistics buffer (16 words)

See appendix B of the CCP Reference Manual for field definitions

15 0

0 CPFIL2)

CPFIL2 (ARRAY) ~ 19 words of fill for message
j block header and SVM bytes

8 CPFIL2 ELEMENT 9)
9 '\

CPTML \ 3
j

words of terminal statistics

11 J

HASP TIP buffer (8 words)

15 11 3 2 l 0

0 BFHSl - Fill
for word 0

BFHSTYP - Canned BFHS2 - Not used F31 F32 F33 F34 message type 1

1 = request permission to send, 0 = permission to send granted

Flags:

F31 - BFHSTXT, Text processed data
F32 - BFHSCMODE, Transparent data
F33 - BFHSNEW, New record flag
F34 - BFHS3, Not used

60474500 A H-33

LIP

15 7 6 5 4 3 2 1

0 BFlDSUM - file for word O

BF3DUM
1 BF2DUM - not used F35 not F36 F37 F38 F39

used

2 BFAFLD - frame A field BFCFLD - frame C field

3 BFLFLD - subblock L field F41 F42 l BF4DUM - not used

F35 - BFLBE, low on buffers encountered
F36 - BFIE, input error
F37 - BFRPD, receive priority sent to neighbor NPU
F38 - BFRPFLG, receive priority flag (this NPU)
F39 - BFREBFG, received end of block flag
F40 - BFTPRFG, transmit priority flag
F41 - BFTEBFG, transmitted ~nd of block flag
F42 - BF4DUM, not used

0

F40

Buffer Constants

Mnemonic Value

JlFRSTCHAR 4

JlDATAFRST 4

JlLST8 13

JlLST16 29

JlLST32 61

JlLST64 125

J2LST128 253

JlLSTCHAR JlLST64

JlLCDFCD 0404

J2LCDFCD 090A

J3LCDFCD 1F06

J4LCDFCD 1706

JSLCDFCD 1906

J6LCDFCD 1B06

H-34

Meaning

FCD FOR BUFFER ALLOCATE WHEN NOT IN A
NETWORK

FIRST CHAR POSITION OF ARRAY BFDATAC IN A
BUFFER

LAST CHAR OF 8 WORD BUFFER

LAST CHAR OF 16 WORD BUFFER

LAST CHAR OF 32 WORD BUFFER

LAST CHAR OF 64 WORD BUFFER

LAST CHAR OF 128 WORD BUFFER

Maximum LCD in a data buffer (assumes
system has selected 8, 16, 32 and 64 word
buffers).

Hexadecimal displacements to character

positions for LCD, FCD

60474500 A

Mnemonic

JlBLMAX

DBUFLENGTH

Value

64

64

Meaning

Maximum buffer lenqth in
system with 8, 16, 32, and
64 word buffers

Data buffer length (largest
buffer)

BYSTSZE 100 Length of circular stamp
buffer, one word per buffer

standard
system

BlCIBSIZ 512

QCHN 3

JQT2SZE 16

JQT4SZE 16

DODNMAX 10

Buffer Stamping Area, BVST AMP

Size of circular input
buffer (CIB)

Word 3 of buffer assigned
as a block is the chain word

Length of type 2 table

Length of a type 4 table

l buffer
(assigned
J as table

Length of a local directory {ON) table

The buffer stamping area provides a circular table of 50 entries to record
the usage of the most recently assigned or released buffers in the NPU. As
a buffer is assigned or released, the address of the program requesting this
action is recorded together with the buffer address. The LSB of the buffer
address entry indicates whether the buffer is currently free or assigned.
The file 1 microregisters contain information about the buffer stamping:

0095 - stamping status: 0 = not used1 1 0 indicates stamping
0069 - base address of stamping area
006A - pointer to next entrv to be used in the stamping area
006B - address of last entry in stamping area

15

0 BYSCALLER "
BYSBUFFER I

>
Array of two word stamp entries

98/99 Last stamp entry

F - flag giving the status of the buffer: 0 = put, 1 = get

60474500 A

0

IF

H-35

Copy Buffer Parameters, JTCOPVB

This is the parameter list used when calling PBCOPYBFRS, the buffer copying
routine.

15 14 13

0

1

JTNUM - number of buffers to copy

JTSSIZE - source buffer size

2 Fl I F2 I JTRLS - release source buffers flag

Fl JTDSIZE, destination buffer size flag
F2 - JTSMIXED, mixed data buffer source chain - not used

JTNUM - only bits 7 through 0 are valid
JTRLS - only bit 0 is valid

Buffer Threshold Levels, BOBUFLEVELS

The following are the buffer threshold levels checked by the various
regulation routines when determining whether to assign buffers from the
appropriate free buffer pool or to reject input or to move to a lower level
of input regulation. In the heirarchy of regulation checks, 9 is the most
important, 0 is the least important.

Mnemonic

BO Tl
BOT2
BOTHDLY
BOTH CT
BOTH3LV
BOTH2LV
BOTHlLV
BOTHDIS
BOTHTIM
BOTHMUX

WORK LISTS

Value

0
1
2
3
4
5
6
7
8
9

Meaning

CONSOLE SNAPSHOT
CONSOLE SNAPSHOT
COPY TO CONSOLE
TCB ALLOCATION
LOWEST PRIORITY DATA
HIGHEST PRIORITY DATA
SERVICE MESSAGE DOWNLINE
SERVICE MESSAGES UPLINE
CLA STATUS HANDLER
MUX BUFFER THRESHOLD

0

Worklists are used on the OPS-level (a variant type of worklist - event
worklists - is used in the multiplex subsystem). A worklist is a processing
request (task). It is attached to a program. If more than one task is
waiting to be executed by an OPS-level program, the worklists for the tasks
are queued to the program on a first-in-first-out basis.

Worklists use work codes to describe the task to be done. The called
program often uses the work code as a switching index to subprogram entry
points.

Each worklist has a control block to point to the locations of the queued
worklists.

H-36 60474500 A

An intermediate area (BWWORKLIST) is provided which PBLSPUT uses for
constructing worklists and PBLSGET uses for handling worklists when a
program is called for execution with the next worklist. Several routines
define local worklist areas usino the BWWORKLIST format.

Intermediate Array Format; BWWORKLIST

BWWORKLIST depicts the different format overlays which the intermediate
array can assume. It also depicts the formats of the entries of the
different worklists of the system. All fields are word length. The array
of entries allows a maximum sized entry for each priority level in the
system. The array is located at BWWLENTRY.

BWPKTPTY BOBUFPTR

CATMLEY INTEGER

BOEWLQ MMEVENT

BWTCB, BWBLKPTR BOBUFPTR

BWIMED ARRAY (l •• JlWLMAX)

CMSMLEY CMSMWLE

ACPEVENT
ACPBLINO
ACPBOBUF

60474500 A

B07BITS
BO LINO
BOBUFPTR

Size
(words)

1

1

2

1 to 6

1 to 3

2

This overlay is for the
console drivers worklists
(BOTTYP, BOTTYN), and all
worklists whose entries are a
single pointer word of type
BOBUFPTR.

This overlay is for the
timing services worklist
(BOBTIWL) and all worklists
with single word integer
entries.

This overlay is for the
multiplex event worklist
queue (MMEWLQ) and all
worklists whose entries are 5
words long of type MMEVENT.
Format is defined below.

This overlay is for the
internal processor worklist
and all worklists with 2
consecutive pointer words.

This overlay is the general
format used by list services
for the bulk transfer of
entries to and from any
worklist.

This is the service module
worklist overlay

Event code
Line number Coupler overlay
Buffer pointer

H-37

Size
(words)

BWORDl,
BWORD2,
BWORD3,
BWORD4,
BWORDS,

This ovPrlay i~ for TIP debug
and it provides easy access
to each word of the inter­
mediate array

BWORD6 : INTEGER

BWLIPPARAMS : IELIPPARAMS 3 Overlays for the LIP. Two
types of 3 word entries

The larqest number of words allowed in any worklist (JlWLMAX) is six.

Multiplex Event Worklist Queue Types, MMEVENT

The event worklist for the multiplex subsystem is five words long. Several
types are provided. The worklists can be prepared by users or by multiplex
firmware.

VARIANT: Input processing - data

15 7 5

0 MMWTCOUNT wait count MMSPl MMWKCOD multiplex
in half seconds (Not used) work code

MMLINO - Line number 1

2 MMIBP - Input buffer pointer

3
3

4

MMDM2 unused

MMDM3 unusen

VARIANT: Output processing - data

0

1
2

2

3

4

15

l/.iMDELAYCNT - delay count

MMPORT

MMOBP - Output buff er pointer

Mfv'!DM5 - not use a

MMDM6 - not used

Fl is a delay completed flag, MMDECMPLT

7 6

Fl l MMSP4 - not used

MMLOPOR

Note that the TIP use a 3-word variant composed of words 0 and 1 of the
first variant and word 2 of the second variant. Downline, this WLE is
prepared by PBTWLE.

0

0

H-38 60474500 A

VARIANT: Universal overlay - user defi~€a word format

15 0

0 .MMWDO

1 Mt·'!WDl

2 MMWD2

3 .MMWD3

4 MMWD4

VARIANT: Error condition

1 i; - 11 7 0

M1-1ItWP non- MMSCI indicator MMDM8 operational code states condition - spare 0

1 MMDM9 - spare

MMCSTS - CLA Status Word - See appendix B of
The CCP Reference Manual 2

VARIANT: CE error message

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 Ml-fDMlO - not use a

1 MMDMll - not used

2 F2 F3 F4 FS F6 P7 F8 F9 FlO Fll Fl2 Fl3 MMDM12

F2 - MMLCTS
F3 - l-1..MI,DSR
F4 - Ml1LDCD
FS - MMLRI CLA STATUS BYTE l
F6 - MMI.0~"
F7 - MMLSQD
F8 - MMLILE See appendix B in

}
The CCP3 Reference Manual

F9 - .MMLILE
FlO - MMLPES
Fll - MMLDTO CLA STATUS BYTE 2
Fl2 - MMLFF.S
Fl3 - M.MLNCNA

6047A:·OO A H-39

VARIANT: MLIA status

MMDM13 - not used

NNDM14 - not use Cl

0

1

2 MMLIAST - MLIA status

VARIANT: IELIPPARAMS

Two 3-word variants for LIP

15

bits 3 - O

7 6 5 0

0

1

2

IECFIELD - C field of input frame l Fl J F2 I IEWKCODE - work code

IELINO - line number

IEFRMPTR - pointer to frame

Fl - IESPARE, not used
F2 - !ELBE, low on buffers condition

15 11 7 0

IEDUM 1 - IESCI - IEDUM2 - not used not used CLA status

IELNKPTR - pointer to LLCB

IEBLKPTR - pointer to block:

Service Module Type Worklist Entry Formats, CMSMWLE

Two principal types of worklists are provided: a class of entries with a
work code and one type of entry for timing calls.

Work code class:

• Related to TCB

15

CMDATA (optional data)

CMLINO

CMPTR

H-40

7

l CMWKCODE

Line number

Points to SM

0

or TCB

Code range:
21-3Fl6• See
OPS-level work­
codes for SVM.

60474500 A

• SM pointer

15 I CMDATA

CMPOINT

• Save and Return

15

CMDATA

C.MRl

CMR2

CMRTN

• Service messaqe timer

15

CMTIMER - Timeout
in half seconds

Worklist Control Block, BVLISTCB

7 I CMWKCODE

7 0

l CMWKCODE

7 0

CMTIPWC - TIP generated
work code for SVM

}

Pointer to SM

Save location
for Rl and R2
Return address

This control block holds information for each worklist. See worklist
services portion of section 4.

Variant for multiplex-level worklists

15 14 7

0 Fl I BYCNT - number of entries in worklist

1 BYPUT - put pointer for next entry

2 IWGET - get pointer for next entry

0

BYFEINC - index to first entry BYINC - size of entry (words) in WL buff er 3

Normal variant for OPS-level worklists

0

1

2

f0474500 A

15 14

Fl l BYCNT

BYPUTMASK -

BYGETMASK -

put mask

get mask

10 8 0

H-41

.
15 14 10 8 0 :

3 BYSPARE - not used

4 BYWLINDEX - workli st index BYSP2 - not used - can use
only bits 7-0

5 BYSP3 - not used

6 F2 BYMAXCNT - number of work- BYPAGE - program page
list to get on this call address

7 BYPRADDR - program address

Fl - not used

F2 - BYWLREQ, worklist required flag. Used by PBPAGE to set up
intermediate WL array entry if the call was made without a WL.

BYWLTY is the array (BOWKLSTS) of BYLISTCB

Worklist Table, BOWKLSTS

The following ranked worklists determine the indexing of the OPS-monitor
table. Values 1 through 7 are not serviced by the OPS-monitor. They are in
the index to generate the worklist array. New entries should be added in
front of these entries.

The remaining worklists (8 through end) are serviced by the OPS-monitor
program. They are also part of the worklist array. New entries must be
added at the end, but in front of BODUMMY. The last entry must be BODUMMY
which is equal to the last TIP worklist value and causes the monitor scan
pointer to return to value 8.

H-42

Mnemonic

BOFSWL
MMEWLQ
BOHIPDLQ
BOSMTO
BOT200
BOTTYP
BOTTYN
BOLPWL
BOCHWL
BOINWL
BOMLWL
BOSMWL
BOTIWL
BOTYWD
BOLIWL
BODGWL
BODOWL
BO HD LC
BOM4WL
BOTTYWL

Value

1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Meaning

FIRST WORKLIST = MMEWLQ
MUX EVENT WORKLIST QUEUE
HIP DATA LIST QUEUE
SERVICE MODULE TIMEOUT LIST
CRITICAL 200 MS TIMEOUT
TTY CONSOLE DRIVER - PRIORITY
TTY CONSOI,E DRIVER - NON PRIORITY
LINE PRINTER DRIVER
CONSOI.E PROGRAM
INTERNAL PROCESSOR (IP)
MLIA INTERRUPT HANDLER
SERVICE MODULE (SVM)
TIMING SERVICES
TIP DEBUG (PTTIPDBG) - OPTIONAL
LINE INITIALIZER (LINIT)
ONLINE DIAGNOSTICS - OPTIONAL
HOST INTERFACE PACKAGE (HIP)
LINK INTERFACE PROGRAM
MODE 4 TIP - BVT
ASYNC TIP

60474500 A

Mnemonic

BO HASP
B027WL
BOHHWL
BO DUMMY

Value

20
21
22
23

Meaning

HASP 'PIP
2780/3780 TIP - not 11sed
HASP/J60 HIP - not used
DUMMY FOR CONSOLE

The subtables scanned by the OPS monitor is called BOPGMS. It extends from
BOCHWL to BODUMMY. The value assigned in the array is BOWI.CODES.

OPS-Level Workcodes, CMWKCODE

The work codes are used in the worklist entry to indicate the type of task a
called module is to perform. These are also called TIP workcodes.

Mnemonic
Value
(hex) Meaning

System work codes for HIP, LIP or TIPs

AO HARD ERR

AO TIMEOUT

AOQUEOUT

AOSMEN

AOSMDA

AOSMTCB

AOSMDLTCB

AOSMRCTCB

Miscellaneous

AO BREAK

AODBUX

AOSMLN

AOSMNPUINIT

AOSMMPCCINIT

AOSMFAIL

SVM WorkcodP-s

COLINOP

COLNINOP

COL't-!DA

60474500 A

OF

10

11

12

13

14

15

16

19

lA

lB

lC

lD

IE

20

21

22

Hard error

Line timer expired

Output in queue

Enable line

Disable line

l TCB built

Delete TCB

Reconfigure TCB

Downline break

Output buff er XMIT

Line status protect

NPU init protect

MPCC !nit protect

Force load MPCC

:::: ~::::::::~ l
LINE DISABLED }

From multiplex subsystem

From LCB scan timing

From internal processor

From line initializer

From SVM

From SVM

From TIP to itself

From SVM

From SVM

From SVM} Not used
From SVM

From TIP, LIP,
or line initializer
(LINIT)

H-43

Mnemonic

CODLTCB

CO SM IN

COSMOUT

COSMDISP

COOVLDATA

COB FR

CO ENABLE

CODI SABLE

COTMLDLT

CORCTCB

COTMLRCNF

Value
(hex)

23

24

25

26

27

28

29

2A

2B

2C

2D

TCB DELETED

SM IN

SM OUT

DISPATCH SM

OVERLAY DATA

MISCL. BFR EVENT

ENABLE LINE EVENT

DISABLE LINE EVENT

DELETE TERM. EVENT

Terminal
reconfigured

Reconfigure
terminal event

Meaning

From TIP or LIP

From SVM to itself

From TIP or LIP

From SVM to itself

Generated by input state programs to OPS-level TIP or LIP (note that
multiplex macros must equate this AOWKl to its own AOWKl with the same value)

Value
Mnemonic (hex) Meaning

AOWKl 21 TIP/LIP WORK CODE 1
AOWK2 22 TIP/LIP WORK CODE 2
AOWK3 23 TIP/LIP WORK CODE 3
AOWK4 24 TIP/LIP WORK CODE 4
AOWK5 25 TIP/LIP WORK CODE 5
AOWK6 26 TIP/LIP WORK CODE 6
AOWK7 27 TIP/LIP WORK CODE 7
AOWK8 28 TIP/LIP WORK CODE 8
AOWK9 29 TIP/LIP WORK CODE 9
AOWKlO 2A TIP/LIP WORK CODE 10
AOWKll 2B TIP/LIP WORK CODE 11
AOWK12 2C TIP/LIP WORK CODE 12
AOWK13 2D TIP/LIP WORK CODE 13
AOWK14 2E TIP/LIP WORK CODE 14
AOWK15 2F TIP/LIP WORK CODE 15
AOWK16 30 TIP/LIP WORK COPE 16
AOWK17 31 TIP/LIP WORK CODE 17
AOWK18 32 TIP/LIP WORK CODE 18
AOWK19 33 TIP/LIP WORK CODE 19
AOWK20 34 TIP/LIP WORK CODE 20
AOWK21 35 TIP/LIP WORK CODE 21
AOWK22 36 TIP/LIP WORK CODE 22
AOWK23 37 TIP/LIP WORK CODE 23
AOWK24 38 TIP/LIP WORK CODE 24

H-44 60474500 A

Mnemonic

AOWK25
AOWK26
AOWK27
AOWK28
AOWK29
AOWK30
AOWK31
AO STOP

Multiplex Event Work Codes

Value
(hex)

39
3A
3B
3C
3D
3E
3F

AOWKl

Meaning

TIP/LIP WORK CODE 25
TIP/LIP WORK CODE 26
TIP/LIP WORK CODE 27
TIP/LIP WORK CODE 28
TIP/LIP WORK CODE 29
TIP/LIP WORK CODE 30
TIP/LIP WORK CODE 31
Stop transmission code

These work coces appear in the work code field of the event packet returned
to the multiplex event worklist queue. The codes specify the nature of the
information contained in the packet. Code values of 01 through OlE16 are
reserved for multiplexer use.

Value
Mnemonic (hex) Meaning

MMC LAS 1 CLA status received

MMOBUX 2 Output buffer transmitted

MMBUTCH 3 Buff er threshold changed

MMUNSOD 4 Unsolicited ODD

MMCAOR 5 CLA address out of range

MMIFFO 6 Illegal frame format (multiplex)

MMUNSIN 7 Unsolicited input

MMFES 8 Framing error status (multiplex subsystem
frames)

MMC HOUT 9 Character timeout

MMTIMOD A ODD timeout

MMTIMRE B Modem response timeout

MMINEND c Input terminated

MMOTEND D Output terminated

MMBREAK E ASYNC terminal break detected

MMHARDERR F Hardware error

€047~500 A H-45

MONITOR TABLES

The main monitor tables is the OPS-level worklist array described above.
That table's use is described in section 4. Other monitor tables are
defined below.

PGMSKIP = (Run, Skip)

Run skip flaq

BY PG MS

Three cases:

e BYIPGM - BOPGMS type
• BYWKLS - worklists type
• BYINT - inte9er type

SM ONT

Used by timing services for timed programs {half-second time base)

15 0

BTTIMER - timer count

BTCURSP =} BTCURPD non used pointers

BTMRIX - loop end check index

DOOVLSTATE

Overlay state table, scalar definition.

Four scalers:

• DOLDING - overlay loading
• DOLDED - overlay loaded
• DORNING - overlay runninq
e DOAVAIL - overlay space available

CBSVTMT

Used for OPS-level, time-dependent programs.

H-46 60474500 A

MISCELLANEOUS

System Interfaces

A system interface table (SIT) js defined in the form of a pointer array.
Pointers define the locations of individual entries in this qroup of tables
which are frequently used. In addition to the formally defined tables at
the top of the SIT, the last group of entries are pointers to frequently
used base programs.

System Interface Table, SITTBL

Mnemonic

SIENTY
SITMTB
SIWLCB
SIDBSIZE
SITPSIZE
SINJTEC
SITIMTBL
SITIPTYP
SIOVLBLK
SILCBP
SILLRMOV
SILLENTB
SILCBS
SICOIN
SIGTlBF
SIRLlBF
SIBFAVL
SIRTlLCB
SISVlLCB
SILSPUT
SIRELCHN
SIRELZRO
SILOAD
SilBADD
SI18COMP
SITOAH

POINTER TO BWWLENTRY
POINTER TO CBTIMTBL
POINTER TO BYWLCB
POINTER TO BEDBSIZE
POINTER TO BETPSIZE
POINTER TO NJTECT
POINTER TO BLTIMTBL
POINTER TO BJTIPTYPT
POINTER TO SYOVLCB
POINTER TO HALCBP
ADDRESS OF PBLLRMOV
ADDRESS OF PBLLENTB
ADDRESS OF PBLCBF
ADDRESS OF PBCOIN
ADDRESS OF PBGETlBF
ADDRESS OF PBRELlBF
ADDRESS OF PBBFAVAIL
ADDRESS OF PTRTlLCB
ADDRESS OF PTSVlLCB
ADDRESS OF PBLSPUT
ADDRESS OF PBRELCHN
ADDRESS OF SIRELZRO
ADDRESS OF PBLOAD
ADDRESS OF PB18ADD
ADDRESS OF PB18COMP
ADDRESS OF PBTOAH

Common Name

OPS monitor
Timing (PBTIMAL)
Worklist CB
Data buffer sizes
Not used
Terminal characteristics
Line timing
TIP type
Overlay control
Sub TIP
LLCB remove
LLCB enter
LCB
Command down
Get buf fe!;'
Release buffer
Buffer availability
Return to TIP entry
Save TIP entry
Make a worklist
Release buffers
Release and zero buffers
Load NPU
18-bit address final
18-bit address computer
Convert of hex in ASCII format

Extent of the entries which point to other tables are:

Name Description

SYLCBP LCBs

SYLINO Line number

SYENTY Interrupt worklist

SYLTYT Line type

SYPRTT Port

60474500 A

Pointer

BZLCBP

BO LINO

BWWORKLIST

NBLTYE

NAPORY

Number of
Entries

HLRANGE

HLRANGE

BOPRILEVEL

NOLTYP,
1 ••• NKCONTROL

NO PORTS

H-47

SYCTCT

SYTMTB

SYTECT

SYTIMTBL

SYTIPTYPT

SYOVLCB

Description

Multiplex charac­
ter transmit
characteristics

OPS - level
periodic programs

Terminal
characteristics

Line timing

TIP type

Overlay control
block

Overlay Control Block, SVOVLCB

Pointer

NICTCY

CBSYTMT

NJTECY

BZLTIME

TIPTYPE

SYOVLCB

Number of
Entries

NOLNSPDS

COTDPGMS

NOTCLASS

O ••• C4LCBS

NOTIPTY

1 - see below

This control block is used during overlay operations (remote NPU load/dump)
some diagnostics and console overlays.

15 11 0

DCOVID - overlay ID

DCOVST \

\
j

DOOVLSTATE flags - see monitor table above

)

DCLBN - last block number

DCBN l array of block numbers loaded in ASCII/binary

Firmware Entry Points

The following words (integer type) are the entry points for frequently used
firmware routines.

Address
Mnemonic (hex) Function Performed by Firmware

PFLSGET 607 Gets a worklist entry

PFLSPUT 608 Builds a worklist entry and queues if it's
necessary

PFBURLS 606 Release a buffer

PFBUGET 605 Assign a buffer of the size requested

PFBUEXT 609 Extract a buffer

H-48 60474500 A

Mnemonic

NlFIRMAD

N2P3INTAD

N3P3INTAD

PFLINTO

PFSR2SM

Low-Core Pointers

Address
(hex)

600

601

602

60A

60E

Function Performed by Firmware

Output to CLA sequence

GeQerate a multiplex - level 2 interrupt

Reset multiplex - level 2 interrupt

Decrement line timeout count

Set/reset status bits. Used for program
execution timing (requires external
hardware measuring device)

The low-core pointers (also called the address table) is a sequence of
address extending from location 015016 to location Ol6A16• Refer to
appendix B of The CCP3 Reference Manual.

BK Page Locator Table

This table is used to jump to a routine which is not located on the same BK
page of memory. CCP uses memory up to the 96K word boundary JUMPTEL in an
array of two-word entries.

15

O JPAGEVAL - Page index for a routine

1 JENTADDR - Entry address with the page

TIMING TABLES

The principal timing tables are:

• RTC (real-time clock) table used to count 3.3 ms increments to
generate the 100 ms RTC interrupt

• One-second clock counter

• Line timing table for timing out I/O events

• Array of programs which are run periodically

• Time of day tables

• Timeout buffers - See Buff er subsection

0

60474500 A H-49

RTC/Autodata Transfer Table, CICLKADT

CICOUNT is incrementea hy firmware everv 3.3 ms. When CICOUNT = CILIMIT =
30 (100 ms), the timer is reset and PBTIMER generates the 100-ms interrupt.

15 0

CIWORDl - Constant = 80F016

CICOUNT - Counter - incremented every 3.3 ms

CILIMIT - Interrupt count = 30. Compared to CICOUNT

CISPARE - Not used

One-Second Clock, CASECNTR

This clock is used by PBTIMEOFDAY for time of day calculations. The count
is used modulo 60 - by the minute counter modulo, 60 x 60 by the hour
counter, modulo 60 x 60 x 24 by the day counter, and modulo 60 x 60 x 24 x
month {days) by the month counter.

15 0 I CASECNTR - One-second clock I
Line Timing Control Table, BL TIMTBL

This table is used for timinq out the output buffer {OBT) for each line.
Entries are accessed by line number. Entries use a half-second time base.

BLTIMTBL uses SYTIMTBL type table and BZLTIME entry {one word).

0

last
line

15 14 7

Fl l BLTRESET l BLTIME

Fl - BLTCONT, not used

0

BLTRESET - timeout value for the line, used to set BLTIME
BLTIME - Set by line user: decremented each half-second PBTIMAL

Periodically Executed Programs, CBTIMTBL

This array of timing entries (type CBSYTMT) is used to time out the period
between program executions. The table is scanned every half second by
PBTIMAL an~ each proaram's count is decremented.

If count = O, the associated periodic program is called, and the timing
counter returns to the full period value.

H-50 60474500 A

0

1

3

18
49
50
Sl

15

CF.TIMER - Timing remaining

CRINTVAL - P~rjod - in h~lf seconds - used to reset perjodic
program calls

CBPADDR - Paqe address of program to be called

CBADDR - Aclclress of program to be call en

CBTIMTBL (ARRAY) of C"RSYTMT four word entries

CBTIMBL ELEMENT] 3

The period is set for each proqram at build time. The proqrarns in the
normal system and this place in the table are shown below:

Mnemonic Value

0
1
2
3
4
5
6
7
8
9

Meaninq/Program

ACTIME LCB LIST SCAN PBLCRTMSCAN
BUFFER ADJUSTMENT PBADJUST
TEST UTILITY PROGRAM (TUP), PBTUP
TIME OF DAY AND DATE/PBTIME OF DAY
MUX TTY TIMER, PMTlSEC
PERIODIC STATISTICS DUMP, PNDSTAT
I/0 TIMAL APPENDAGE, PBTUSRCH
RESET CE ERROR COUNT, PB
Variable frequency turnaround
OverletY

0

COLCETMSON
COADJUST
COTUP
COTIMEOFDAY
COTlSEC
COPSTAT
COIOTMR
COCECNT
COVAFQTAT
C'OOVLY
COHLIP
COLLPR

10
11
12

LIP, PLIPTC
Loqic link protocol PNLLLI, PNLLLO, PNLLTC

CO SPARE Spare - for debugging use

Time of Day Tables, CADATE

The table is checked every secono and incremented. An overflow in one word
causes that word to be zeroed and the next word to be incremented.

0

1

2

3

4

15

CASEC - seconds (0-59)

CAMIN - Minutes (0-59)

CAHOUR - hour (0-23)

CADAY - days (0-31)

CAMONTH - months (1-12)

0

60474500 A H-51

Overlay for conversion

15

0

I
CATIMV

CATIMV (ARRAY)

l 4 CATIMV ELEMENT 5

Loop Lower Instruction

LOOPFOREVER has a value of 18FF16· Executing this instruction places the
NPU in a closed, continuous loop.

REGULATION

Input Regulation Option for PTREGL, REGL TYPES

These options define the type for regulation check for the link.

RELOGLNK
RELOCAL,
REABL,
REACPINP

1
2
3
4

LOGICAL LINK REGULATION
LOCAL BUFFER LEVELS
ALLOWABLE BLOCK LIMIT
ACCEPT INPUT

The set of REGLTYPES = REGSET

CONTROL BLOCKS

The system structures provide these principal control blocks for network
elements:

•
•

LLCBs for logical links }

LLCBs for each line
state assignment

• TCBs for each terminal - dynamic assignment at enable time

Static Logical Link Control Block (LLCB), BOSLLCB

A static LLCB is required for each logical link connected through this NPU
(that is, this NPU has at least one of the nodes forming this logical
link). The number of LLCBs is a build time parameter and LLCBs are
initialized at load time. Two variants are provided for word 6. These are
a maximum of 5 (JOMAXLLCB) LLCB in the system.

0

H-52 60474500 A

1
r

0

1

2

3

4

5

15 14 13 7

Fl l F2 l BLDMY - not used l
BLCONDI'R - Connection directory

BLDN - destination node l
BLCHAIN - chain to next LLCB

BLHO - host ordinal l
BLTE - LL state expiration time

5 2 0

BLTREG l BLREG

or coupler TCB

BLSN - source node

BLSTATE - configuration state

6A l F3

6B BLSTE - LL state

Fl - BLCDS, connection directory flag
F2 - BLINIT, initial LL status SM sent to host
BLTREG - last transmitted regulation level at this end
BLREG - regulation level at this end

Logical link states for BLTREG and BLREG

LLO
LLl
LLll
LL12
LL2
LL3

Value

0
2
4
6
1
8

Not configured
Waiting for clear
Waiting for linkage
Waiting for PRST (protocol reset)
Operational
Down

When used as a directory, the cha.in of blocks can be searched using either
BLDN or BLSN as an index. BLCONDIR points to the connection directory for
this link (looking toward multiplex lines) or to the coupler TCB (looking ·
toward host).

Line Control Block (LCB), BZLCB

One line control block is provided for each line (port) connected to the
NPU. The LCB contains the line dependent information used primarily by OPS
level interface packages to:

• Define and control line protocol

• Define and interface with external line managers (such as the service
module)

Words O through 14 are common to all LCBs. A series of overlays is provided
for various TIP and subport types, starting at word 15. The line control
block array is composed of successive 24 word LCBs. A maximum of 33 array
elements are permitted for a total of 792 words.

60474500 'A H-53

COLCBD =ARRAY (0 •• C4LCB5) of BZLCB

0

1

2

3

4

5

6

7

8

9

12

13

14

15

Flags:

Fl

F2

F3

F4

F5

F6

H-54

15 14 13 12 11 7 0

BZLINO - line number

BZTMRCHN - active LCB timer chain

BZWTCOUNT - wait count - BZOWNER - Node ID of CS
half-second base which owns line

Save locations
'\

for J BZRETlADDR - input routine return address

suspended TIP (BZRET2ADDR - Output routine return address processing
)_

Fl F2 F3 F4 Line type BZLTYP BZHO - host ordinal see appendix C

BZCNFST - BZLNSPD - line BZTCBONT - number of TCBs current speed: see currently attached to configuration
state appendix C this line

F5 F6 F7 F8 BZSTATE - line BZWKCODE - last work
F9 state (note 1) code received

BZTIPTYPE - TIP BZSUBTIP - sub BZSVTIPTYPE - save area for
type - see TIP type - see TIP type during ini tializa-
appendix C appendix C ti on (uses only bits 3 - 0).

' line statistics block. A four integer record called I BZSTIC -
BZLNCNTS. Words (in order 9 - 12) are:

I
blocks transmitted: > BZBTRANS - number of

BZBRCV - number of blocks received:
BZCTRANS - number of characters transmitted: and
BZCRCV - number of characters received

..i.

BZTCBPTR - pointer to first TCB attached to this line

BZLBTOMUX - pointer to last buff er given to multiplex subsystem

BZALCT - Alarm/messaqe counter for this line

BZTAPEX, TIMAL appendage exists for this line: that is, PBTIMAL
scans this block for an I/0 timeout (active LCB)

BZCHECKQS, checks when output queued

BZSMRESP, SM response received

BZSMTO, SM is being timed out

BZTOUTPUT, terminate output

BZTINPUT, terminate input

60474500 A

F7 BZDIS, line disabled (used by SVM only)

F8 BZDIAG, onlin~ diagnostic test in progress

F9 BZAUTO, autorecognition required on this line

NOTE 1: These states are local constants in the line initializer
program: PTLINIT. See that routine for values assigned to
line states.

VARIATIONS: Words 16 and higher.

Subline control block

15 7

16 BZSUBlPTR - pointer to first attached subport

17 BZSPS - not used l BZNUMSUBS - number of subports

Mode 4 TIP

15 14 13 5

BZCURTCB - TCB currently being serviced by TIP

0

0

16 FlO Fll BZ4Rl - not used BZMAXRETRY - maximum number
of retries for this line

FlO - BZDELAYLINE
Fll - BZMULTIDROP, rnultidrop line

HASP TIP

Two variations are provided as follows:

15 14 13 12 11 7 6 5

16

17

18

19

20

21

BZHSWFCS - workstation function control sequence (FCS)

BZHSTFCS - TIP function control sequence

BZHSHEAD - Pointer to head of data list queue

BZHSTAIL - Pointer to tail of data list queue

BZHSCONSOLE - Pointer to address of console TCB

BZHSOTCB - Pointer to current TCB address

22 BZHSCCB - Pointer to current continue buff er

BZHSIBCB - Input BZHSOBCB - BZHSETO -
Output BCB Fl3 Fl4 Retry count BCB count count - errors

23

24 Fl6 Fl7 Fl8 Fl9 BZHSNAK BZHSRRBITS - Read
Retry count request bits
- NAKS

60474500 A

0

FlS

F20

H-55

Flags:

Fl3 - BZHSGNON, Sign on card seen
Fl4 - BZHSENQSEEN, Enquiry block seen
FIS - BZHSWOQ, Waiting for output
Fl6 - BZHSICREG, Suspend card reader command
Fl7 - BZHSIPREG, Transparent mode
Fl8 - BZHSXPT, Transparent mode
Fl9 - BZHSRSBCB, Reset BCB needs to be sent flag
F20 - BZHSLINERR, Line error occurred

HASP TIP Records

15

' 16 BZHSC
I

I 8 word array
~~ BZHSC (ARRAY) > for clean up

I purposes

23 BZHSC ELEMENT 8
.L

BZHSRQP - Input stream requests - 16 bits, one per device
(0 = must request permission, 1 = permission granted)

BZHSPNED - Output stream requests - 16 bits - one per device

0

(0 = must request permission, 1 = permission granted)

ASYNC TIP

15 11 8 7 6

16
BZMSCNT - BZMSRST - 100 100 ns ns reset value F21 F22 F23
counter

17 BZMSCHN - LCB chain for active LCBs with

F21 - BZMSCART, character timeout
F22 - BZEPDLY, Echoplex - delay control
F23 - Input terminated flag
F24 - BZEPLREC, End of physical line received
F25 - BZXOFFREC, Transparent X-OFF received
F26 - BZARWK, Possible low-speed autorecognition

. Terminal Control Block (TCB), BSTCBLK

5 4 3 2

BZADMl -F24 F25 F26 not used

100 ms timeout

The terminal control block defines terminal-dependent information. One TCB
is provided for each terminal in the system. There can be several TCBs for
a single line. The first 12 words are basic to all TCBs, static or dynamic
(static TCBs are assigned for the MLIS and the coupler). Overlays are then
provided. There is a common overlay for all dynamic TCBs, called the IVT
overlay. All of the TIP TCBs use at least the first three words of this
overlay7 the remaining words for each TIP require a unique overlay for that
TIP. The statis TCBs occupy words dynamic TCBs and are released by a line
disabled condition.

0

H-56 60474500 A

~~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BSCHAIN - pointer to next TCB for this line

BSLCBP - pointer to LCB for this line 1

2 BSCA cluster address BSTA - terminal address

Code set BSDEVTYPE BSTCLASS Terminal for BSCODE BSHO Host device Fl terminal ordinal type. See class. See

(l} appendix C appendix C
3

4 BSQPTR - pointer to TCB queue (OQ indication}

BSOWNER - Node ID BSCN - Connection number (CN} of CS 5

6 BSLLCB - Pointer to LLCB for this line

BSABL - BSOBL - BSLBTPROC - BS I PR I

F2 Available F3 Outstand- type of F4 FS Input
block ing block last block prior-7

limit count (2} processed (3} ity(4)

BSBSNLAST BSBSNCRNT

FSA FSB BSN of BSN of F6 BSPARIT BSCHLEN F7 F8 F9 last back CRNT out- (6} (7) 8

block (5) put block

9 " Terminal statistics block. This is a record of three
integer words named BSTMLCNTS. The statistics
(in order 9 - 11} are:

BS ST IC > BSBTRANS - number of blocks transmitted
t BSBRCN - number of blocks received

BSBBAD - number of bad blocks transmitted
11) received

Notes:

1. SBCODE, see subTIP type table in appendix C

2. BSOBL, number of blocks queued to this TCB awaiting processing

3. BSLSTPROC, see block types in section 6

4. BSIPRI, see PTREGL priority level: 1 = 0, 2 = 1

s.

6.

BSBSNLAST, } see block protocol in section 6
BSBSNCRNT

BSPARITY, type parity

0 = zero
1 = odd
2 = even
3 = none

60474500 A

words

and

H-57

7. BSCHLEN, character length

0 = 5 bits
1 = 6 bits
2 = 7 bits
3 8 bits

8. BSBCKLTR - upline back postponed flag (uses only bit 0)

Flags:

Fl - BSSTOP, Data stopped to this terminal
F2 - BSINOP, Terminal inoperative
F3 - BSTBRCONF, Terminal to be reconfigured
F4 - BSACPINP, Terminal accepts input for host (AI)
FS - BSACPOUT, Terminal accepts output from host (AO)
FSA - BSRESl, Not used
FSB - BSWAIT, Waiting for initialization
F6 - BSTBTERM, TCB is to be deleted
F7 - BSPGWAIT, In page wait mode
F8 - ESXPARENT, Terminal data in transpar~nt mode
F9 - BSHOTOGL, Host ordinal toggle bit

MLIA Handler (statis TCB)

15

Fl8 BSWRKCO - Process state work code (bits 0 and 12

13

14

BSCONB - Condition B counter (input drop errors)

BSCONC - Condition c qounter (last data errors)

1 only)

15 BSCOND - Condition D count~r (Input error ODD first-in,
first-out error)

Coupler TCE (static TCB)

This is the TCB used by the HIP for transfers to/from the host.

12

13

14

15

16

17

18

.

15 14 7

BSCPAVPTR - Pointer to first available output buffer

BSCPLAST - Pointer to last available output buffer

BSCPINPUT - Input buff er address

BSBUFOTT - Memory access loaded address

BSCPSTATUS - Coupler Status

BSCPDATA - Order word storage

BSCPCMD - Last NPU status word sent to host

0

0

H-58 60474500 A

19

20

21

BSCPBUFAV - Number of available
buffers

BSCPAMASK - Coupler interrupt mask

F42I BSCPIDLT - Idle timeout counter

BSCOBZSTA - Previous state

22 BSCPCONN - Coupler connection number

Flag:

F42 - BSCPHST, host status

1 = host available
0 = host down

IVT Overlay - Used by HASP, ASYNC, and MODE 4 TIPS

15 14 13 12 11 9 7

12 BSPGWIDTH - page width BSPGLENGTH - page length

BSCANCHAR - cancel input BSCNTRLCHAR - control
character character 13

14 BSUSRl - user break 1 BSUSR2 - user break 2

0

F33 F34 F F BSXCNT - character count in transparent mode 34A 34B 15

F35 F36 F37 F38 BSOUTDE BSAPL BSXCHAR - transparent mode
(1) (2) delimiter character 16

BSBSCHAR - backspace character BSABTLINE - abort output
line character 17

BSCRIDLES - count of idles BSLFIDLES - count of idles
after CR after LF 18

Flag:

F33 - BSXTO, transparent transmission delimited by time

F34 - BSXCHRON, transparent transmission delimited by character (BSXCHAR)

F34A - BSFIRST, first 2741 upline message

F34B - BSRES3, not used

F35 - BSCRCALC, calculate the CR idle count

F36 - BSLFCALC, calculate the LF idle count

F37 - BSECHOPLX, Echoplex mode

60474500 A H-59

F38 - BSINDEV, Input device

0 = keyboard
1 = paper tape

(1) - BSOUTDEV, output device

0 = printer
1 = display
2 = PT
3 = illegal

(2) - BSAPL, APL node

0 = no
1 = yes
2 = special APL node

Mode 4 TIP - The first three words are reserved for the first three words of
the IVT overlay.

H-60

12

13

14

15

16

17

18

19

20

21

22

23

24

25

15 14 13 12 11 9 8 7 6 5 4 1 0

BSM4IVT '\
J

BSM4IVT \
j

3-word array for IVT overlay parameters
l

BSM4IVT ELEMENT
3 "

BSIBUFF - input buff er pointer

BSOBUFF - output buffer pointer

BSCSTATE BSTSTATE F39 F40 F41 F42 F43 BSRESS - F43A not used

BSRES6 BSERRTYPE -
F44 F45 F46 F47 not used type of CE not used

error

BSCLC - current line count BSERRSP - error not
response error count used

BS TIMER - Event timer {Event is polling, etc.)

BS STACK \

BS STACK
1 return address stack 1

BS TACK ELEMENT 3 I

BSPOLL CHAR 1 " BS POLL CHAR 2
I

BS POLL > (2 character/word) array of

~ 14 characters for polling

60474500 A

.

7'

JO PSPOI.L CHAR 13) l BSPOI.L CHAR 14

JJ BSCI,SP':T'R - pointer to cl11ster TCB

BSCS'T'ATE - Cluster state

0 = idle
1 = interactive
2 = batch/card reader
3 = batch/printer
4 = batch/card reader and printer
5 = cluster error
F-7 = not used

~STSTATE - Ter~inal stRtes

(l = idle
1 = active
2 dearadPcl
~ = terminal error
4 = autorecoqnition
5-7 = not used

Fla~~:

F39 - RSCPFSFP'~P, rPserved for cluster use

F40 - BSTPESERVED, reserved for terminal use

F41 - BST0GEYPECTED, to~gle expected (tog~les for configure and
reconfigure)

F42 - RSTOGRECEIVP.D, toqgle received

F43 - BSTOBERrF~ reconfiquration exr.ected

F43A - FSOUTINPRGF.S, output in proqress

F44 - BSAUTOINPU'J', autoinput

F45 - BSINRE0, inr-ut required

F46 - BSCYCIJE, cycle request outstanding - check TCB for next cluster
flevice

F47 - BSJOP, messa~e in oroaress

ASYNC TIP - first seven words are resenred for IVT overlay.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

17 PSASYIVT '
0

13 RSASYJ'""T' ~
j

7 worcl array reserved for IVT parameters

' 17 P.S~.SYIVT EI.F.MENT 7)

.
0 :

60474500 A H-61

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 :

BSLNCNT - text processor BSPGCNT - text processor
line count page count

BSAUTOINPUT - pointer to auto-input buff er

BSFIBP - pointer to input buffer

BS SOURCE - pointer to output source buff er

BSCURSOURCE - pointer to current logical line source

BSNXTSOURCE - pointer to next logical line source

BSOBPTR - pointer to text processed output buffer

F48 l F49 l FSO l F51 l F52 l F53 F541F55 F561Fs71Fs81Fs91F601F61 BS PARTY

BSTPSTATE (2) BSFESAVE - save format effector F62 I F63

BSRETADR - save area for return address

BSCURLCD - current logical LCDBSNXTLCD -
line LCD

BSCURCHR - current character BSNXTCHR -
in right byte

BSCMDQUE - pointer to IVT command queue

Flags:

F48 - BSALWIN, allow input~ no input stop

F49 - BSXOFF, X-OFF character detected

FSO - BSBREAK, break character detecte~

FSl - BSINACT, input active

F52 - BSOUTACT, output active

next logical
line LCD

next character
in right byte

F53 - BSMXREG, send message indicating multiplex buffer regulation is in
effect

F54 - BSWTFORMSG, waiting for downline message

FSS - BSPGTURN, wait for page turn input

F56 - BSlSLF, output paper tape LF detected

F57 - BSTRAILER, trailer detected

F58 - BSPWFE, save format effect or after page wait

F59 - BSCURRIGHT, current logical line byte (0 = left, 1 = right)

F60 - BSNXTRIGHT, next logical line byte (0 = left, 1 = right)

H-62 60474500 A

F61 - BSLASTWLE, last input line type (0 = logical line, l = physical
line)

F62 - BSNXTEOBS, next text processing source - flag

F63 - BCCUREORS, current text processing source - flag

(1) - BSPARTYPE, terminal parity (0 = zero, l = odd, 2 = even, 3 = none)

(2) - BSTPSTATE, saved index to TP states pointer table

HASP TIP - first three words are reserved for IVT overlay.

15 12 11 10 9 8 7 6 5 4 3 2 l

12 BSHSPIVT \

BS HP I VT \ 3-word array reserved for IVT parameters
J

13

14

15

16

17

18

19

20

21

22

23

24

BSHSPIVT ELEMENT 3)

BSHSOBUFF - Pointer to current output buffer

BSHSHEAD - Pointer to head of data list queue

BSHSTAIL - Pointer to tail of data list queue

BSHSQBF - Pointer to data list queue buffer

BSHSSTMR - Suspend transmission timer

BSHSFCSM - Stream :r.-:ask for function control sequence (FCS)

BSHSDBP - Pointer to text processing destination buffer

BSHSFDBA - Pointer to text processing source buff er

BSHSAUTOPTR - Pointer to auto-input buff er

BSBSXLTA - Pointer to code translation table

0

25 BSHSIMD }F64IF6sJF661F67}F68IF691F10JF11JF12JF131F14JF15lF76

BSHSIMD - Card read mode - 029 card default in each case, 1 = 026 card.
(Bit 15 - transparent mode; bit 14 - nontransparent mode, bit
13 - EBCDIC mode)

Flags:

F64 - BSHSJOB, Job expected flag
F65 - BSHSRSNT, Request for permissio~ to senc signal sent
F66 - BSHSPNED, Request for permission to send signal needs to be sent
F67 - PSHSOIP, Output in progress
F68 - BSHSSUSP, Output stopped message sent to host
F69 - BSFSSF, Countdown for output stopped
F70 - BSHSITPCB, Input TPCB built
F71 - BSHSDCRB, Destination character in right byte
F72 - BSHSENDOFINF, EOI on input detectec

60'174500 A H-63

LIP

F73 - BSHSIVTCERR, Upline IVT command error
F74 - BSHSSATAUTO, Auto-input satisfied
F75 - BSHSIOK, Received start of input
F76 - BSHSOKIVT, Send good IVT command response

15 7

12 BSI \

\
j

Array of 8 words for frame retention queue

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

BSI - Element 8

RSLNI<OPTR

Array of two pointers to link queues

BSTEXTQPTR

Array of two pointers to text queues

BS RB RF Array of two pointers to first receive

block reassembly buffers

BSRBRL Array of two pointers to last receive

block reassembly buffers

BS RB RF Array of two pointers to first transmit

block reassembly buffer

BSTBRL Array of two pointers to last transmit

block reassembly buff er

BSLINO - Line number

BSNID - ID of neighbor BSITSS - Initial trunk states
NPU node sent (Bit ~ only)

BSUI - Pointer to UI block

BSLDPTR - Pointer to load/dump block

BSFRMPTR - Pointer to frame

BSCMDCFLD - Command C-f ield BSRSPCFLD - Response C-f ield

0

H-6t1 60474500 A

.
15 14 13 12 11 10 6 4 2 0 • .

38

39

40

41

42

43

44

45

46

47

48

49

50

BSTlET - Tl expiration time (in seconds)
/·

BSHCTE - HDI.C control time expiration time
counter (in seconds)

ALL COUNTERS BSLCTRE - Transmit frame expiration time ARE SET TO
MAXIMUM VALUES counter (in seconds)

AND ARE DECRE- BSLCTSE - Trunk status SM expiration time MENTED. SEE
LOCAL CONSTANT (in seconds)

IN PLIP BSLMTE - Line expiration time counter
(in seconds)

y

RS TOI - Trunk initialization expiration
time counter (in seconds)

BSHCSTE BSLCSTE BSLMSTE l BSNSO * l BSNSR

BSNSU BS SEC STE not used BSPRISTE

BSWDlXMT - FCD, LCD and flags for

BSWD2XMT - Short TCC transmit frame

BSXMTAFLD BSXMTCFLD
A and C fields for a short TCC transmit frame

BSTCCOB - Point to frame being output currently

F76 J F77 J F78 F79 I F80 BSRC - Retry counter

*Not used

BSCMDFLD - See control byte - figure 8-2 in LIP

BSRSPCFLD - Description for values

BSHCSTE

BSLCSTE

- CDCCP control state

0 = HCO
1 = HCll - Awaiting response to SARM
2 = HC12 - Timing transmission
3 = HC2 - Sendinq
4 = HC3 Loading
5 = HC4 - Waitinq for load block

- Link control state

0 = LCO
1 = LCl - Awaitinq send
2 = LC2 - Awaiting LINIT
3 = LC3 - Link control transmit (operating)

60474500 A H-65

BSI.MSTF. - Line control statE>

0 = LMO
1 LMl - timinq
2 LM2 - at•:aitinq CLA on
3 LM3 - idle
4 LM4 - transmitting
5 = LM5 - awaitinq enablen state

RSNSO - Indicates next frame to transmit

BR~SR Inoicates next frame to receive

RSNSU - IndPx to next unacknowledqment frame

BSSECSTE - secondary states

0 = SO - basic state
1 = Sl - receive
2 S2 - reject
3 = S3 - busy

BSPRISTE - primary states

0 = PO - hasic state
1 = Pl - link set up
2 = P2 - transmitting
3 = P20 - idle trunk
4 = P21 - modules limit
5 P3 - timeout-recovery
6 P4 - busy-recovery
7 = PS
8 = P6 - initialization
9 = P7

10 = PS - loading

Flags:

F76 - BSTCCREL, release buffers
F77 - BSF, set P/F flag to F
F78 - BSP, P/F flag to P

mode

F79 - BSLSTXMTPRI, last transmit was primary
F80 - BSXMTING, transmission in progress

MULTIPLEX SYSTEM
The wultiplex subsystem data structures are of two types: those that
interface the multiplex subsystem to the other NPU software (such as TIPs)
and those that concern the physical characteristics of lines, terminals,
CLAs, modems, and hardware controllers for the lines.

The data structures in the system interface category are:

• MLCB - The format for this table is also used for the TPCB. In
either case it contains information used for state programs.

•

H-66

The multiplex command driver packet (command packet) which sets up
the data transfer parameters.

60474500 A

The data structures in the hardware characteristics cateqory are:

• Multiplex Port table (NAPORT) which has an entry for each line
• Line type tables
• CLA related tables
• Modem related tables
• Terminal related tables
• Device related tables

MULTIPLEX COMMAND DRIVER PACKET, NKINCOM

The commana packet provides the interface between TIPs, LIP service module,
etc., and the command driver, PBCOIN. This parameter list provides the
necessary information for the multiplex subsystem to prepare the line for a
transmission. Six standard formats are provided.

Set up commands - see section 5, multiplex command driver.

15 7

0 NKCMD - command NKLTYP - line type

1 NKPORT - I/O port NKLOPOR - not used

NKCARY CHAR 1 " NKCARY CHAR 2 l 2

NKCARY
>

An a-character array holding the
command parameters

NKCARY CHAR 7 I NKCARY CHAR 8
) 5

Function commands

15 14 7 6

0

0

0 NKDMl - not used NKTCLS - default terminal

1

2

3

4

Fl

F3

F5

NKLINO - line number

NKFUNl

NKFUN3

NKFUN5

NKFUNl-5 are function bytes

Fl - NKSRFl }
F2 - NKSRF2
F3 - NKSRF3
F4 - NKSRF4
FS - NKSRF5

60474500 A

Function selected flags

class

F2 NKFUN2

F4 NKFUN4

NKZERO - end of function

H-67

ASYNC TIP for !VT input

0

1

2

15 14 13

NKDM2 -

NKDM3 -

NKIBP -

12 11 10 9 8 7 0

not us ea

not used

Input buff er aacress

3 F6 F7 F8 F9 FlO Fll Fl2 Fl3 Optional FCD of I/0
buffer NKIFCD

F6
F7
F8
F9
FlO
Fll
Fl2
Fl3
Fl4
Fl5

4 Fl4 Fl5 NKDM9 NKBLKL - block length

- NKUOPl Multiplex bit 15
- NKUOP2
- NKUOP3
- NKUOP..1
- NKUOPS
- NKUOPE'

User option flags 1-8.
Can also be used as 2

single field, NKUOPS

- NKUOP7 •
- NKUOP8 Multiplex bit 8
- NKNOXL, Translate code flaq: 1 = translate
- NKSCENBL, Move special character flag

NKDM9 - not used

Set up for input processing (call from TIP or LIP)

0

1

:?.

3

4

5

15

PKWDO
} Word 0

NKWDl

NKOBP - pointer to

NKUOPS - user bits

NKDM6 - not usea

NKISPTA - Pointer

7 6

and 1 of universal

output buff er

Fl6 Fl7

to input state table

5

overlav

NKISTAI -

(words)

in the MLCB,
field NCUOPS

0

program index
to input state

6
NKSCHR - special NKCNTl - character counter 1 value

character

7 NKCXLTA - Translate table adrlress

Fl6 - NKMVB, Move user bits to LCB flag
Fl7 - NKRPRT, ~trip parity flag

IT-'"8

for input state programs

60474500 A

Universal input

0

1

2

3

4

5

6

7

15

NKDM7 -

NKDM8 -

NKWD2

NKWD3

NKWD4

NKWD5

NKWD6

NKWD7

not used

not used

\

Universal overlay words

I

Terminate I/O command

15 7 6

0 NKDMlO - not used Fl8 I Fl9 I
1 NKDMll - not used

5

NKWLINDX - worklist index

2
NKJSRDY - user parameter NKWKCOD - user work code if

for worklist

Fl8 - NKRELBFS, release input buffer flag
Fl9 - NKWKFLG, make worklist for caller flag

NKWLINDX: Only bits 4 throuqh 0 are valid

worklist requested

Values for NKCMD (first variant) are shown below. See section 5 for
description of parameters list for each command.

Value
Mnemonic {hex) Meaning

NKTURN 3 TURN LINE AROUND
NKINIL 4 INITIALIZE LINE
NKENBL 5 ENABLE LINE
NKINPT 6 INPUT
NKDOUT 7 DIRECT OUTPUT
NKOBT 8 OUTPUT BUFFER TRANSMITTED
NKINOUT 9 INPUT AFTER OUTPUT
NKENDIN A TERMINATE INPUT
NKENDOUT B TERMINATE OUTPUT
NKDISL c DISABLE LINE
NKCLRL D CLEAR LINE
NKCONTROL E CONTROL
NKSPECIAL 10 UPDATE MUX TABLE

0

0

60474500 A H-69

Multiplex Line Control Block (MLCB), NCLCB
Text Processing Control Block (TPCB)

The MLCB is a dynamically allocated buffer obtained and released as a result
of requests issued by the T!Ps. The MLCB dP.fines the processing functions
to be provided by the multiplex subsystem. For a given communications line,
there is one line control block for each enabled line.

Seven variants of the MLCB are provided. Some of these are TPCBs.

Usual TIP I/O data transfer request

15 14 13 12 11 10 9 8 7 6 5 4 0

0 Fl F2 F3 F4 F5 F6 F7 F8 NCOCHR - Next output character

F9 FlO Fll NC TIME - Mux NCOBLCD - LCD of output buf f~r timer 1

2 NCOBP - Pointer to output buff er

NCISTAI - Input state 3 Fl2 Fl3 Fl4 Fl5 Fl6 Fl7 Fl8 F19 F20 F21 program index

4 NCCNTL - Character count limit NCCNTl - Character counter 1

5 NCISPTA - Pointer to input state program table

6 NCIBP - Pointer to input buff er

NCCRCP - CRC 7 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 polynomial
......... - - ./

NCUOPS

15 12 7

8

9

10

NCSCHR - Special character NCIBFCK - FCD of input buff er

NCCRCS - CRC accumulation

NCZERl - Zero NCCNT2 - Character counter 2

11

12

13

14

NCZER2 - Zero

NCCXLTA - Pointer to

NCSCBA - Pointer to

NCBLCNT - Number of
allocated

NCBLKL - Block length

code translate table

first buff er in block

buffers NCSVWL -

Word 15 is not used in this basic format

Flags:

Fl - NCEOBL, end of block
F2 - NCNXOCA, next output character available
F3 - NCLCT, last character transmitted (CDCCP)
F4 - NCBCREQ, buffer chaining required
FS - NCOMPRO, output message in progress

(records)

Saved worklist

0

H-70 60474500 A

F6 - NCINOUT, input after output expecLed
F7 - NCODDIN, ODD received
F8 - NCODBS, output data buffer size (not used)
F9 - NCSUPCHAIN, suppress buffer chaininq
FlO - NCOBT, qenerate output buffer terminated (OBT)
Fll - NCBZL, reset tireer
Fl2 - NCRINCH, input character in riqht byte
Fl3 - NCCAREC, character received
Fl4 - NCRIGHTC, left/riqht source flag (1 = right)
FIS - NCINPRO, input message in progress
Fl6 - NCNOXL, code translation active
Fl7 - NCRPRT, strips parity bit
Fl8 - NCSCF, suppress chain flag
Fl9 - NCLASTCH, LCD of source buffer reached
F20 - NCEOSR, end of source buffer reached
F21 - NCSP3, not used
F22 - NCUOPl
F23 - NCUOP2
F24 - NCUOP3
F25 - NCUOP4
F26 - NCUOPS
F27 - NCUOP6
F28 - NCUOP7

optional user flags; can also be
addressed as a single field NCUOPS

F29 - NCUOP8
F30 - NCETX, delay ETX worklist generation
F31 - NCMRTO, modern response timed out
F32 NCCARR, line carrier type (1 = controlled, 0 =

Sixteen integer words

15

0 NCCARRY ' J

NCCARRY (ARRAY) } Inteqer

15 NCCARRY ELEMENT 16

Eight user option words - includes half a word of flags

15 7

0 NCWDO

1 NCWDl

2 NCWD2

3 NCWD3 user option words

4 NCWD4

5 NCWDS

NCWD6)

constant)

6

7 NCUOPS - User option flags l NCDMOM2 - Not used

60474500 A

0

0

H-71

TPCB

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

15 14 7 5

UCLCDFCD - Source bnf fer LCn/FCD

NCDUM2 - See MLCB (flags F9-Fll, NCTIME and NCOBLCD)

NCSBP - Source buffer pointers

NCFFLGS - Text processing firmware NCSTAI - Index F33 f irrnware (see Fl3 - F21 of MLCB)
source flags mask state programs

NCDUM4 - See MLCB (NCCNTL, NCCNT1)

NCSPTA - Pointer to state programs table

NCDBP - Pointer to destination buffer

NCDUM5 - See MLCB (flags F22-F32)

NCDUM6 - See MLCB (NCSCHR) l NCBFCD - FCD of buff er

NCDUM7 - Not used

NCDUM8 - See MLCB (NCCNT2)

NCDUM9 - See MLCB (NCBLKL)

NCDUMA - See MLCB (NCCXLTA)

NCFDBA - Pointer to first destination buff er

NCDUMB - See MLCB (NCSLCNT and NCSVWL)

NCDUMC '\
j

NCDUMD l j Used only on CCI - MLCB

NC DUME I

NCFSBA - First storcige buff er address

F33 - NCDCRB, character in right byte

Integer/File Reqister 1 TPCB - This MLCB has 16 words of INTEGER and 16
words for savinq the first 16 file 1 registers (firmware level).

15

0 NCTPML 'I

' NCTPML (ARRAY) > 16
J

integers

15 NCTPML ELEMENT 16 I

.

0

to

0

H-72 60474500 A

.
0 :

16 NCTPFl ' J

NCTPFl (ARRAY) } Spare for 16 file 1 registers

NCTPFl ELEMENT 16
1
) 31

HASP TIP - Overlay for output text prpcessing (TPCB)

15 14 13 12 11 10 9 8 7 6 0

0 NPADl \

~~ 1> 7
j

word array for standard TPCB ~~

NPAPl - element 7 6

7

8

F34 l F35 l F361 F37 l F38 l F39 1 F40 l F41 J F42 I NPAD2 - not used

F34
F35
F36
F37
F38
F39
F40
F41
F42

18

19

20

21

22

23

24

25

26

27

28

29

30

31

NPAD 3

~~

NPAD3 - element

NCCBLIMIT

NCCNBLIMIT

NCtJCLIMIT

NCCMPINIT

NCC RB
I

NCNCINIT

NCPAGEWDTH

NC LINE

NCCOUNT

NCC LIMIT

NCXLTA

NCSVCH

NCPADH

- NCERROR - NCUOPl
- NCDATA - NCUOP2
- NCPLOT - NCUOP3
- NCPUNCH - NCUOP4
- NCMSG - NCUOP5
- NCFORMAT - NCUOP6
- NCWXPT - NCUOP7
- NCTRPL - NCUOP8
- NCBLNK - NCUOP9

60474500 A

\

\ 11
J

word array of integers s:~

11

(03

04

05

06

07

Save space for file 1 registers 08

09

OA

OB

oc
OD

OE

OF

User flags

H-73

HASP TIP - Overlay for input (two-pass) text processing

F43
F44
F45
F46
F47
F48

15 14 13 12 11 10 9

0 NCF!Ll \

~~
l

7 word arra" for standard TPCB >
J

6 NCF!Ll - element 7 I

7 F43 I F44 I F45 I F46 I F4 7 I F48 I NCFIL2 - not used

8

18

19

20

21

22

23

24

25

26

27

28

29

30

31

~~

NCFIL3

NCFIL3 - ele-ment 11

NCSAVE

NCCMPBLK

NCNCMP

NC CARD

NCCRECORD

NCLRCB

NCCMPNBL

NCFIL4

NCFILS

NCC LAST

NCNXTL

NCFIL6

NCFIL7

- NCIA - NCUOPl }
- NCJOB NCUOP2
- NCENDSRC - NCUOP3
- NCEOI NCUOP4
- NCEOR NCUOPS
- NCEOF NCUOP6

\

\ 11 word array of integers
j

'
\

Save space I

for file 1

I registers

\

l Save space for {) file 1 registers

user flags

0

03

04

05

06

07

08

09

oc
OD

H-74 60474500 A

~~

~~

Mode 4 TIP TPCB

0

15

16

17

18

19

20

21

22

31

~~

~~

15 7

NC4PML ' j \ Array of 16 words

~ reserv~d for standard TPCB

NC4PML - element 16 J
NC4RlS - not used NC4CHR - current character

NC4R2S - not used NC4RCHR - right character

NC4SBA - pointer to first source buff er

NC4ERR

NC4CA - cluster address NC4TA - terminal address

NC4CRCS - temporary CRC count

NC4R3S \

1 Array of 10 words

' l
NC4R3S - element 10)

ASYNC TIP TPCB

0

1

6

7

8

15

16

17

18

19

~~

~~

15 14 13 12 11 10 9 8 7 6 5 4

NCLCD - LCD NCAFLl - not used

NCAFL7)

' Array of 6 words reserved

~ for standard TPCB

NCAFL7 - element 6 J
F49lFsolFs1JFs2]F53JF54JFsslFs6 F571Fs81Fs91 NCAFL2 - not used

NCAFL3 \

l
Array of 8 words >

J

NCAFL3 - element 8)

NCAFL4 - not used NCCRCHR - current character

NCAFL5 - not used NCRTCHR - right character

NCAFL6 - not used

NCLFILCHR - LF and idle character

0

0

60474500 A H-75

~~

~~

~~

~~

20

21

22

23

24

25

26

15 7

NCLNCNT - line character count

NCPGWIDTH - line size

NCPGCNT - page line counter

NCPGLNGTH - page size

NCONE - constant value = 1

NCFESIZ - number of LFs in a formal effector

NCFESAVE - FE save area for post-print

NClOCHRCNT - 10 character counter (2741)

NC255 - constant value = 255

27

28

29 NCCRIDLES - CR idle value l NCLFIDLES - LF idle value

30 NCOCC - output character count (Ml240)

31 NCAPL - APL mode: 0 = no, 1 = yes (bit 0 only)

F49 - NCTAPE, user option - paper tape
F50 - NCGRFC, user option - Ml240 graphics
F51 - NCPL, user option: PL = 0 is page length - 1
F52 - NCFE, format effectors present (0 = none)
F53 - NCCALC, idle calculation needed for 2741/Ml240
F54 - NCPWFE, format effector after page wait
F55 - NClLSLF, optional line feed
F56 - NCNLFE, N line feeds exit
F57 - NCCORR, 2741 correlation flag
F58 - NCNOLF, no line feed on this terminal
F59 - NCEOP, end of page

ASYNC TIP - alternate TPCB

15 14

0 NCAFLS

7 6

~~ \
j

6-word array reserved for standard TPCB

6 NCAFL8 - element 7

7 F601 NCAFL9 - not used l F61 l NAFLlO - not used

Flags:

NCUC - Upper case selected
NCPGWAIT - Page wait active

.
0 :

0

~~

H-76 60474500 A

Port Table (NAPORT)

A Multiplex port table entry (NAPORT) defines information relating to each
line. Entries are ordered by line number and an entry is provided for each
port in the system. The Multiplex port table is the starting point of line
orientation to the Multiplex subsystem. The Multiplex subsystem accessed
the Multiplex port table to obtain modem and circuit related parameters
necessary to establish the proper communication interface between the
multiplex subsystem and a user communication line. The port table entry
points to the MLCB which in turn points to the state programs which process
data for the multiplex subsystem. Four variants are provided.

Normal Port Table

15 14 13 12 11 10 7 6 5 4 3

0
NALTYP - Line NASPILL - CLA status Fl F2 F3 F4 F5 type - see F6
appendix C count

1 NALCBP - Pointer to MLCB

NAOBTCMD - CLA turn around
command 2

NAMSPTA - Pointer to modem state 3

4 NAFCCST - CLA command status

5

6 NASTAT l
7 NASPARE)

Fl - NAION, Input on
F2 - NAOON, Output on

not used

F3 - NAISON, Input supervision
F4 - NALCBUP, LCB assigned
F5 - NAISR, CLA status pending
F6 - NAHARDER, Hard error in progress

F7 F8 F9 FlO

pointer table

F7 - NANDCD, Data carrier delete signal (DCD) dropped
F8 NAMTO, Modem timeout in progress

NAMSI
state
table

F9 - NAWAIT, Timeout flag for first status overlay worklist
FlO - NAOVFE, First status overflow worklist received

Clearing Port Table Variant

15

0 NAARY \

~~ \ NAARY (ARRAY)
J

7 NAARY ELEMENT 8

- Index
pointer

to

0

0

60474500 A H-77

~~

Pointer/Flags Variant

This table allows the MLCB and the word 2 flags to be overlaid

0

1

15

NADM3 -

NABFPTR

6 3

Not used

- Buff er pointer

0

2 NADM4 - Not used l NAFLAGS J NADM5 - not used

NAFLAFS - Overlay for flags F8, F9, and FlO

General Overlay

15

0 NAOVERLAY \
J

~~ ' ' 8-word overlay for general use

7 NAOVERLAY - element 8

Line Tables

MULTIPLEX LINE TYPE TABLE, NBLTYT

The line type table is an array of entries of type NBLTYE. Each entry
corresponds to a line type in the system. See appendix C. The line type
table entry defines the physical characteristics of a given port, modern
circuit. Four variants are provided.

Normal Entry

15 14 13 12 11 10 9 8 4

NBOTYP - CLA type

0

0

0
NBMODCLS - modern

NBSPl Fl F2 F3 F4 F5 - see CLA constants class; see below

1 NBAND - Mask

NBSPl - Not used

Flags:

Fl - NBTURN, Line turnaround required
F2 - NBDELAY, Delay the line turnaround

above

F3 - NBANSMOD, Answer mode: 0 = autorecognition, 1 = dedicated
F4 - NBCARR, Carrier type: 0 = constant, 1 controlled
F5 - NBCIRTYP, Circuit type: 0 = 2 wire, 1 = 4 wire

H-78 60474500 A

~~

Integer Entry

0

1

15 I NBINTl

NBINT2

Universal Overlay Entry

15

0 I NBWDO

1 NBWDl

Two integers

Two overlay words

Overlay for Input Status Flag Word 0 Overlay

15

0 I NEDMl - Not Used

F6 - NBISR, Input status request

IrINE TYPES, NOLTYP

This is the line type entry for the LCB. The

6 5 0 l F6 l NBDM2 - Not used

sequence of line types is
included in the SIT. SW indicates a switched (dial up} line: DE indicates a
dedicated line. See appendix c.

Value
Mnemonic (hex) Meaning

NOLDIAG 0 RESERVED FOR ON-LINE DIAGNOSTICS

NOLl 1 2560-1 201A SW HDX CON TR 2WIRE

NOL2 2 2560-1 201B DE FDX CON TR 4WIRE (HDX MODE)

NOL3 3 2560-1 201B DE FDX CONST 4WIRE

NOL4 4 2560-1 208A DE FDX CONST 4WIRE

NOL5 5 2560-1 208A SW HDX CONTR 2WIRE

NOL6 6 2561-1 103E SW FDX CONST 2WIRE

NOL7 7 2561-1 103E DE FDX CONST 2WIRE

NOL8 8 2561-1 202S SW HDX CON TR 2WIRE REVERSE CHANNEL

NOL9 9 SPARE (UNDEFINED)

NOLA A 2563-1 201B DE FDX CONST 4WIRE (SDLC)

NOLS B SPARE (UNDEFINED)

NO LAST B LAST LINE TYPE

60474500 A H-79

ASYNCHRONOUS LINE SPEEDS

Mnemonic
~Index) Value Baud Rate

NOBOO 0 800
NOllO 1 110

N0134 2 134, 5

N0150 3 150

N0300 4 300

N0600 5 600

N01200 6 1200

N02400 7 2400

N04800 8 4800

N09600 9 9600

NODIAG 10 DIAGNOSTICS CLASS

LINE NUMBER FIELD, BOLINO

This is the usual field used by the system to reference line number. It is
used in the LCB, and line number fields compose the line array part of the
SIT. Several routines define their own line number variable using BOLINO
type as a basis.

15 0 I BOLINO

MULTIPLEX CHARACTER TRANSMIT CHARACTERISTIC TABLE, NICTCT

The character transmission characteristics table is an
entries (type NICTCY) indexed by the line speed index.
the speed range, speed, and number of output stop bits
receiving to/from asynchronous terminals. An array of
part of the SIT.

15 13 9 7

NICTCY 0 NIRSPED NITS PED

array of
NICTCY
indexed

array of 1 word
Each entry specifies

for transmitting and
these entries is a

3 0
NI STOP entry

stop bit
length (bit
0 only)

by line transmit speed speed
NI TSP - transmit
speed range

receive speed·

NIRSR - receive speed range

9

H-80 60474500 A

NIRSP - Not used

NIRSPED - See asynchronous line speeds

NI TSP - Not used

NITSPED - See asynchronous line speeds

NI STOP - 0 = 1 stop bit } for character delimiting - 1 = 2 stop bits

CLA/Modem Tables

MODEM/CLA RELATIONSHIPS

Modems

Maximum (The modems listed
CLA Modem Modem Class are only a sampling
Type Speed (hexadecimal) of modems available)

All Not 0 None
Applicable

2560-1 Not 201B, 201A, 201C, 2010
2560-2 Applicable 208A, 208B
2560-3 1 358-2
2563-1

2561-1 100 2
Async

110 3

120 4

134.5 5

150 6

300 7 103 series, 113A, 113B,
VA3405 A thru G

600 8 VA3405 A thru G

800 9

1050 A

1200 B

1600 D

2400 F

4800 10

9600 12 358-1

60474500 A H-81

CLA TYPES

Mnemonic

NO SYNC

NOASYNC

NONORS232

NO SD LC

Value

0

1

2

3

CLA COMMANDS AND STATUS

Meaning

Synhronous CLA 2560-1

Asynchronous CLA 2561-1

High-speed synchronous CLA 2560-3, 2560-4

Trunk data line control for LIP protocol -
CLA 2563-1

A control command sequence word (NDSEQE) is used by the multiplex level
command driver, PMCDRV, to send commands to the CLAs. These commands are
indexed as shown below. Four CLA Status words (8 byte) make up the two
NPU/CLA status words (NRCCSE) and use a bit set method of checking the
commands currently in effect for a given CLA/modem.

CONTROL COMMAND SEQUENCE WORD, NDSEQE

Used for multiplex commands to modern or circuit hardware. Three variants
are provided.

Normal Entry

15 7 6

0 NDDMl - Not used Fl NDCASE - Index to modem/circuit
command case

Fl - Set function flag (0 = reset)

NDCASE is defined in the table below

Character Overlay

15 7 0

0 I NDDM2 - Not used I NDCHAR - Character l
Universal Overlay

15 0

0 I NDWORD - Universal word

MULTIPLEX CLA COMMAND STATUS TABLE ENTRIES, NFCCSE

The CLA command status table reflects the current command status of each
CLA. It contains the cumulative history of all physical commands sent to
each CLA. Five variants are provided.

0

H-82 60474500 A

Bit Assignment Entry - This variant provides four eight-bit words with a
name assigned to each bit. It is used to set and clear bits in the CLAs.

word 1 bits 7 0 o d 2 bits 7 0 [, - _[w r , -
15 7

0

1

Lword 3 bits 7-0 Lword 4 bits 7-0

The individual bits are named as shown

0

NF~: 1B7 l
Word 1, bits 7 through 0

NFW
000

3B7 l
Word 3, bits 7 through O

NFWlBO NFW3BO

NFW2B7 l
: Word 2, bits 7 through 0

NFW2BO

NFW4B7 l
: Word 4, bits 7 through O

NFW4BO

The assignment of bits is given in the table at the end of this paragraph.

SDLC CLA Entry

Defines SDLC CLA bit assignment.

15

0 I NFDMO

Whole Word Variation

0

1

15 I NFINTl

NFINT2

ASYNC CLA Entry

15

} Integers

13 11

0 NFDMl - Not used

10 9 8 7

1 NFAPARY 1 NFACHLE l F33 l F34 l F35 l F36 l NFARSPED

60474500 A

2 0

NFXCNT

3 1 0

NFARSR l NFATSR

NF AT SPED

H-83

NFARSR - receive speed range (baud)

NFATSR - transmit speed range {baud)

NFAPARY - Parity:

0 zero
1 odd
2 = even
3 none

NFACHLE - Character length (bits)

0 5
1 = 6
2 7
3 = 8

F33 - NFSTOP, stop bit

F34 - NFDM2, not used

F35 - NFECHO, Echoplex mode

F36 - NFLBT, currently in one-line diagnostic loopback test

NFARSPED - Receive speed {baud), see asynchronous line speeds

NFATSPED - Transmit speed (baud), see asynchronous line speeds

Synchronous CLA Entry

15 7 3 1 0

0 NFDM3 - Not used I NFSPARY I NFSCHLE

1 NFSYCAR - Synchronous character l NFDM4 - Not used

NFSPARY - parity

0 = zero
1 odd
2 = even
3 = none

NFSCHLE - character length {bits)

0 5
1 6
2 = 7
3 8

H-84 60474500 A

The following table (not a data structure) correlates command index to
command status.

Value Synq/
Mnemonic NDCASE NFCCEE Async

for NDCASE (hex) (Word/bit} Meaning or general

NORTS 1 (WlB7) (RTS) Request to send

NOSRTS 2 (WlB6} (SRTS} Secondary request to send A

NORSYN 2 (WlB6) (RSYN) Resync

NOOM 3 (WlB5) (OM) Originate mode/auxiliary A

NOLM 4 (WlB4) (LM) Local mode/auxiliary A

NON SYN 4 (WlB4) (NXYN) New sync s
NOLT 4 (WlB4) (LT) Local test (2560-3)

NODTR 5 (WlB3} (DTR) Data terminal ready

NOTB 6 (WlB2) (TB) Terminal busy A

NO ION 7 (WlBl) (ION) Input on

NOCON 8 (WlBO) (OCN) Output on

NO BREAK 9 (W2B7) (BREAK) Break mode A

NO I SR A (W2B6) (ISR) Input status request

NO ISON B (W2B5) (ISON) Input supervision on

NODLM c (W2B4) (DLY) Data line monitor A

NO ECHO D (W3Bl) (ECHO) Echoplex mode A

NOLBT E (W3BO) (LIT) Loopback test A

NOLBT E (W2B4) (LIT) Loopback test s
NOLBT E (W2B4) (LIT) Loopback test t

NOLBT E (W2B4) (LIT) Loopback test SDLC

NO PON F (W3B6) (PON) Parity on A

NO PON F (W2B2) (PON) Parity on s
NO PON F (W2B2) (PON Parity on t

NOPSET 10 (W3B7) (PSET) Parity set, 1 = even A

NOP SET 10 (W2B3) (PSET) Parity set, 0 = odd s
NOPSET 10 (W2B3) (PSET) Character length - LSB t
NOCLLS 11 (W3B4) (CLLS) Character length - LSB A

NOCLLS 11 (W2BO) (CLLS) Character length - LSB s
NOCLLS 11 (W2BO) (CLLS) Character length - LSB t
COCLMS 12 (W3B5) (CLMS) Character length - MSB A

NOCLMS 12 (W2Bl) (CLMS) Character length - MSB s
NOCLMS 12 (W2Bl) (CLMS) Character length - MSB t

t Not RS-232

60474500 A H-85

CLA STATUS CONDITION INDICATORS, MOSCTYP

The status indicators are used in the worklist entry.

MOCLAON, 0 CLA ON DETECTED
MORING, 1 RING INDICATOR DETECTED
MOENBL, 2 LINE ENABLED
MOHERR, 3 HARD ERRORS DETECTED
MOSOER, 4 SOFT OUTPUT ERRORS DETECTED

MOSIER, 5 SOFT INPUT ERRORS DETECTED (unsolicited input)
MOSTRT, 6 START MODEM TIMEOUT
MOSTOP, 7 STOP MODEM TIMEOUT

MOOVRF, 8 CLA STATUS OVERFLOW (unsolicited output)
MOOVTO, 9 CLA STATUS OVERFLOW TIMEOUT
MOMRTO, A MODEM RESPONSE TIMEOUT
MOBREAK); B BREAK FROM FRAMING ERROR STATUS

MONSDCD c SDCD dropped on output - possible break
MOSDCD D SDCD on - ready for output
MOSDTO E SDCD timeout - break
MOSD2TO F SDCD timeout - disconnect

MODEM CONTROL STATES

These status are used in the command packet to PBCOIN to set up the modem's
state of operation.

Mnemonic

MS TC HK
MS TERR
MSTLNI
MSTENB
MSTIDL
MS TOUT
MSTINP
MSTRFO

MODEM STATE PROGRAMS

Value

0
1
2
3
4
5
6
7

Meaning

STATE 0
STATE 1 LINE CLEARED
STATE 2 LINE INITIALIZED
STATE 3 LINE ENABLED
STATE 4 LINE IDLED
STATE 5 OUTPUT ON
STATE 6 INPUT ON
STATE 7 READY FOR OUTPUT ON REVERSE CHANNEL

NOMSPT has range o •• 40; this is the size of modem states pointer table. One
table exists for multiplex modem state pointers subsystem.

Terminal Tables

TERMINAL CHARACTERISTICS TABLE, NJTECT

The terminal characteristics table entry (NITECY) contains parameters which
define the special processing characteristics of a given terminal type. It
is used to set up the MLCB and to configure the system (SVM use). The
variant is accessed when the IVT parameters are used.

H-86 60474500 A

15 14 13 12 11 9 8 7 3 0

0 NJISPTA - address of input status pointer table

1 NJCXLTA - address of code translate table

NJCNTl - Input character counL 1 NJSYNC - Sync
character 2

NJORCP - CRX NJIBFCD - FCD of first buffer polynormal {bits 7-0 only) index
3

NJTIPTY -

NJBLKL - block size {words) TIP type -
see appen-4

dix C

NJCHLEN- NJPARTY-NJ PAR IT Char- ASYNC TIP Fl F2 NJSPl - Not used -Parity acter parity length

5

NJPSWIDTH - Page width NJPGLENGTH -
Page length 6

NJCANCHAR - Character for NJCNTRLCHAR -
cancel input line Control character 7

NJUSFl - Character for NJUSR2 - Character
user break 1 for user break 2 8

9 F3 F4 FS F6 NJXCNT - Counter for transparent character

NJOUTDE NJ APL- NJXCHAR - Character
10 F7 F8 F9 FlO output APL which delimits

device mode trqnsparent text

NJABTLINE -
11 NJBSCHAR - Backspace character Character to abort

output line

NJORIOLES - Count of idles NJFIDLES - Count

following a CR of idles following
an LF

12

IVT parameters are in words 6 through 12 IVT variant

IVT variant

15 0

0 NJARRY)

NJARRY (ARRAY) \
j

overlay for IVT parameters

14 NJARRY ELEMENT 15)

60474500 A H-87

Terminal Classes

This is the BZTIPTYPE field of the LCB. Further information on terminal
class is found in appendix C.

Mnemonic Value Meaning

NOTMLIA 0 MLIA
NOM33 1 ASYNC - M33, M35, M37, M38
N0713 2 - CDC 713

N02741 4 - IBM 2741
NOM40 5 - M40
NOH2000 6 - HAZELTINE 2000
N0751 7 - CDC 751-1
NOT4014 8 - TEKTRONIX 4014
NO HASP 9 HASP
N0200UT 10 MODE 4 - 200UT
N0214 11 - 214
N0711 12 - 711-10
N0714 13 - 714
N0731 14 - 731
N0734 15 - 734
NOTCOUPLER 16 COUPLER
NOTCONSOLE 17 CONSOLE
NOTHDLC 18 HDLC LIP
NOTDIAG 19 DIAGNOSTICS

Values

NJ PAR IT 0 = zero 1 odd 2 = even 3 = none
NJCHLEN 0 = 5 bits 1 = 6 bits 2 = 7 bits 3 = 8 bits
NJP.\RTY 0 = zero 1 = odd 2 = even 3 = none
NJOUTDE 0 = printer 1 = display 2 = paper tape 3 = not used
NJ APL 0 No 1 = Yes 2 = Special APL mode 3 = not used

Flags:

Fl - NJPGWAIT, Page wait mode
F2 - NJXPARENT, Input transparent mode
F3 - NJXTO, Expected delimiter is a timeout
F4 - NJXCHRON, Expected transparent delimiter is a delimiting character
FS - NJDUM2, Not used
F6 - NJDUMl, Not used
F7 - NJCRCALC, Calculate CR idle count
F8 - NJLFCALC, Calculate LF idle count
F9 - NJECHOPLX, Echoplex mode
FlO - NJINDEV, Input device (0 = keyboard, 1 paper tape)

H-88 60474500 A

Terminal and Device Types (TT /OT)

These data structures are used to find TCBs, check devices for
deliverability of messages, etc. See appendix c.

TERMINAL TYPE

Three cases are possible:

Bit 15 7 6 2 0

NPSPR3
(spare byte) = NPTT(l) terminal type

NP AUTO
autorecognition
flag

Bit 15 7 I NPSPR 4
: (spare byte)

Bit 15 7

NPSPR5
(spare byte)

DEVICE TYPE

Two cases are possible:

Bit 15 7

NPSPRl
(spare byte)

60474500 A

[NP SUB TIP, range 0 - 7,
sub-TIP size

"-NPTIPTYPE, rang e 0 - 15 TIP type

CHAR

3

NPLS

-lin s e pe

4

0

I = NPTT(2)

character overlay

0

NPCD

ea

[code

as n

set (asynchronous)

y chronous)

0

= NPDT(l)

LNPTCL ASS, range l - 31,
terminal class

NPDEV, range 1 - 7, device type

H-89

Bit .,_1_5 __________________ 7.._ ________________ _..0_

DEVICE TYPES

NPSPR 2
(spare byte) CHAR = NPDT(2)

1~~~character overlay

These mnemonics are used by programs to determine if device type is proper
for delivery of message, generating status, and so forth.

Mnemonic

NlCON
NlCR
NlLP
NlCP
NlPLOT
NlINTDEV

Value

0
1
2
3
4
7

SERVICE MESSAGES

Meaning

Console
Card reader
Line printer
Card punch
Plotter
Internal device

Appendix C defines most of the service message data structures. Table C-1
defines the function and subfunction codes used to switch processing within
the SVM to the indicated SVM routines. Appendix B of The CCP3 Reference
Manual defines the error-related service message structures (CE error and
statistics messages).

Definition

TIP/Sub-TIP

Line type

Configuration states

CE error messages

Statistics messages

(NPW)
(tr/ln)
(term)

FN/FV DATA STRUCTURES

Fields

NO •••

C7 ..•

CN ••.

CP ••.
BZ •••
BS •••

Location!

Appendix c

Appendix c

Appendix c

Appendix B

Appendix B
Appendix B
Appendix B

table

CCP3
Reference
Manual

These data structures are used when taking FN/FV parameters from the
configure service messages and entering them in the appropriate place
(usually in the TCB).

H-90 60474500 A

Field Description Table, DDFDTRECORD

The field descriptor table size is given by DDFTDRECORD in the first word.
A series of one-word entries (DDFDTENTRY) follow.

15 11 7

DDFTDRECORD - Number of table 0ntries
D
D
F
'J'
D
E
N
T
R
y

DDFSTRT - f ielo DDFLNTH - field DDFDISP -
start of

ARRAY OF DDFTDENTRYs

Pointer to table is DDFTDPTR

Action Table Entries, DFATENTRY

dis plc~ceme n t lo
field in record

0

The action table is used for configuring lines and terminals. There can be
an entry in the tahle associated with the field number (FN) of each possible
FN/FU pair in the configure service message. Normal values for the entries
can be found in the link-edit listing normal table entry.

15 7 0

DFERRCDE - Error code DFFN - Field number (table index)

DFRKEY - Reconfigure action key DFCKEY - Configure action key

DFPARAM - Optional action parameter

Table end

15 I DFEND - End of table

Poi~ter to the table is DFATPTR.

Configure Action Codes - Each TIP has associated with it an action table
which is set up in a link edit operation. After storing the field value
(FV) in the TCB, PNCONFIGURE checks the TIPs action table using the action
code as an index, and takes the action specified by the PNCONFIGURE
subroutine.

0

60474500 A H-91

DFCKEY or DFRKEY

D2NA
D2VUL
D2VU
D2VL
D2ACN
D2LLCB
D2TCPCHN
D2INK
D2TCB
D2PARITY
D2TCBDFLT
D2CRIDLE
D2LFIDLE
D2APL
D2INIT
D2TCBINIT
D2SKP
D2VM
D2CODECK

0
1
2
3
4
5
6
7
9

10
11
12
13
14
15
16
17
18
19

NO ACTION
VERIFY UPPER AND LOWER VALUE
VERIFY UPPER VALUE
VERIFY LOWER VALUE
PROCESS CONNECTION NPMBER
TRANSFORM ON, SN IN LLCB ADDRESS
CHAIN TCB
GET INDEX INTO LINK TABLE FROM LRN (TRUNKS ONLY)
MOVE IN DEFAULT TCB VALUES
RESTORE CR IDLE COUNT
RESTORE LF IDLE COUNT
VALIDATE JlOO APL CODE
RESTORE LF IDLE COUNT
VALIDATE APL CODE
EMPTY OUTPUT QUEUE AND SEND !NIT
SET UP VARIANT TCB
SKIP TO NEXT ACTION CODE
VERIFY MIDDLE VALUE
CHECK AND SET CODE TYPE

Configure action error codes - If the action specified by the action table
cannot be completed, the acting PNCONFIGURE subroutine sets an error code
(DEFERRCDE) in the action table entry which commanded the action. Other SVM
routines use this code to generate the configure SM reply (normal or error)
to the host.

H-92

DFERRCDE

D3AC
D3FNFVERR
D3INVCB
D3CNFERR

D3NOBFR
D3INVLT
D3PRNDL
D3INVTT
D3INVDT
D3NOTENABLED
D3HOTGERR
D3NOL
D3CNINUSE
D3CONNCFG
D3NOTCNF

0
1
2
3

4
4
4
5
5
6
7
8
9

10
11

ACTION COMPLETE
FIELD NUMBER OR FIELD VALUE OUT-OF-RANGE
INVALID CONTROL BLOCK ID
CONTROL BLOCK ALREADY CONFIGURED (CONFIGURE SM)
CONTROL BLOCK NOT CONFIGURED (RECONFIGURE SM)
NO BUFFER FOR TCB
INVALID LINE TYPE
LINE PRINTER OR CARD READER STILL CONFIGURED
INVALID TERMINAL TYPE
INVALID DEVICE TYPE
LINE NOT ENABLED
HOST ORDINAL TOGGLE ERROR
LOGICAL LINK NOT ESTABLISHED
CONNECTION NUMBER, ALREADY IN USE
CONSOLE NOT YET CONFIGURED
LINE IS NOT CONFIGURED

60474500 A

ON-LINE DEBUGGING AIDS

The on-line debugging aids for CCP include the Test Utility Package {TUP)
and other aids. These debugging aids offer a variety of interactive
commands useful to the programmer who is altering CCP code or adding a new
TIP to the system. Several breakpoint commands are available.

NOTE

These on-line debugging aids are not a supported product.
The descriptions are given here because of their usefulness.
However, the user should be cautious about any analysis based
on the use of these debugging aids.

CONSOLE COMMANDS
Commands for on-line debugging are entered through the NPU console. A
special character (control A) places the console in debug mode. In this
mode, the console is an interactive device. In addition to the ?tandard
machine language debugging features, there are aids based on the internal
structure of the software {such as dumping a line control block {LCB) or
making a worklist entry). Various machine language level breakpoints are
also available. These debugging aids allow one or more breakpoints per
machine instruction.

INSTALLING DEBUGGING AIDS

The on-line debugging aids are an optional feature. They are made available
by using the Update command

* DEFINE DBUGALL

during the build process. During the MPEDIT phase, the global to console
must be set to true.

GENERAL COMMAND FORMAT

Once the debugging system is activated, it accepts any of the commands
listed in table I-1. Rules for entering the commands are as follows:

• Control A allows the user to enter debug mode. The control A must be
recognized as the first character of the input message.

• Control D allows the user to leave the debug mode.

• Each command can include up to eight parameters. Each parameter
field includes one to five hexadecimal characters (18-bit addressing
is supported).

6047.4500 A I-1

I

I-2

• Commas or blanks delimit the parameters. These symbols are
interchangeable.

•

•

•
•

A slash (/) delimits the end of a command or the end of a command
line.

Control C or question mark (?) cancels a partially entered debugging
command.

Shift 0 or control H are used for backspacing •

An error message (*ERR) is printed in response to an invalid input •
The usual invalid inputs are a bad command mnemonic, the wrong number
of parameters, or a parameter containing nonhexadecimal characters.

60474500 A

TABLE I-1. DEBUGGING AID COMMANDS

Command Syntax

OPS Halt

OPS Restart

Dump Memory

Load Memory

Display Register

Enter Register

Display File 1

Enter File 1

Get a Worklist

Release a Buff er

Get a Worklist

Put a Worklist

Device Assignment

Dump OPS Program

Load OPS Program

Read Page Register

Dump LCB

Dump LLCB, TCB

Search for TCB

Enter Breakpoint

Remove Breakpoint

Enable Software BP

Disable Software BP

Breakpoint Restart

60474500 A

OH/

OR/

DP{~},start, stop, base/

LHX, start, base/C, word 1, ••• word 8/

DR/

E R I where R is 1, 2, 3, 4, Q, A, I, or M

DR, file 1 register (0 .. X'FF)/

EF, file 1 register 0 .. X'FF)/

BG, buff er size (0 .. 3)/

BR, buff er address, buff er size (0 .. 3)/

LG, worklist number/

LP, wor klist number, word 1, ... word 6/

DA, LIP, PD/

DM{~}, start, end, OPS worklist number/

LDX, start, OPS worklist number/C,
WO rd 1 , • • • WO rd s .

RP, page number + X'8000*bank/

Lc{~} 1 1ine number/

Tc{~},DN, SN, CN/

Ts{~} 1 1ine number, CA, TA, DT/

EB, inst. start, inst. stop, BP code,
optional parameters/

RB, inst. start, inst. stop, BP code/

BL, software priority level (0 .. X'll)/

DL, software priority level (0 .. X'll)/

RS/

I-3

COMMAND FORMATS

Each command is described individually in this subsection. The normal
response to the command is also given. Two types of responses occur:

• Debug asks for more parameters (such as where a Load Hexadecimal
command is used). These additional parameters alway use a C command
in the form

C , word 1 , • • • , word 8 /

Word is a hexadecimal value (OOOOO-FFFFF16) (5-character
hexadecimal should be used only for addresses above (FFFFF16)

, or is the delimiter
I ends the input.

• Debug returns results or a comment. The return always begins with *·

In the following, the syntax of the input is given on the first line and the
format of the normal response is given on subsequent lines.

OPS Halt

The OPS halt command stops OPS-level processing in the system. All other
debug commands can be entered while the system is in this mode.

OH/
* * OPS HLT

The error response *ERR SYS HLT is returned if the OPS level is already
halted.

OPS Restart

This command returns control to the OPS level after an OPS halt.

OR/
*

The error response *ERRR SYS HLT prints if the OPS level is not halted.

Dump Memory

{DPC}
DPL ,. start address, stop address, base address/

* dump address word 1
*dump address +8 word 9 •••

etc.

word 8
word 16

The DPC command displays the memory contents within the specified range on
the local console. The DPL command dumps memory to the assigned dump device.

I-4 60474500 A

The base address is optional and is used for relative addressing. If only
the start address is entered, one word of memory is dumped.

An error response is returned if the user attempts to dump outside the
memory range.

A DR/command can be repeated without re-entering the command by pressing the
manual interrupt (control G) key.

Load Memory

LHX start address, base address/
*
C, new word 1, ... new word 8/
*load address old word 1 .•. old word 8

The LHX command sets up the load address. The C command loads from one to
eight words into memory. The load address is incremented for each word
loaded. Thus, mulitple C commands load contiguous memory. Other debug
commands (except a LHX command) can be executed between C commands without
disturbing the load address. The previous contents of the loaded memory
locations are displayed in response to a C command. If the debugger tries
to load an out-of-range location, dashes print following the contents of the
last in-range location.

Display Registers

The contents of macro registers Rl, R2, R3, R4, Q, A, I, and M are
displayed. The command gives valid information only if the system is in the
OPS halt, breakpoint halt or system halt mode.

DR/
*l =contents of Rl ..• M contents of M

Enter Register

The specified register is loaded. This command is accepted only in the OPS
halt or breakpoint halt modes.

E{R}, value/ where R is 1, 2, 3, 4, Q, A, I, or M
* previous register contents

Display File 1

The contents of the specified micro file 1 register is displayed. A series
of file 1 registers can be displayed quickly by using the manual interrupt
(control G) key. After the initial display file 1 command, the next file 1
register is displayed by pressing manual interrupt.

DF, file 1 register (O-FF16)/
* register contents

An error response is displayed if the file 1 register number is too large.

60474500 A I-5

Enter File 1 Register

A specified file 1 register is loaded with a given value.

EF, file 1 register (0 •. FF16), value/
* previous file 1 register contents

An error response is displayed if the file 1 register number is too large.

Get a Buffer

A buffer of a given size is obtained.

BG, buffer size (0 •• 3)/
* buff er address

An error response is displayed if the buffer size is too large.

Release a Buffer

A given buffer is returned to the free buffer pool.

NOTE

No real error checking is performed by the Release a Buffer
command. Incorrect use of this command can cause a system
halt.

BR, buffer address, buffer size (0 •• 3)/

*
An error response is displayed if the buffer size is too large.

Get a Worklist Entry

The next entry from the specified worklist is removed and printed. If the
worklist is currently empty, *LIST EMPTY is printed.

LG, worklist number/
* worklist entry word 1 .•• worklist entry word 6/

An error response is displayed if the worklist number is too large.

Put a Worklist Entry

The given worklist entry (zero to six words) is placed into the specified
worklist. OPS-level programs can be exercised with the command. First,
halt OPS level scheduling via the OPS halt command. Next, place the desired
worklist entry or entries into the desired OPS-level worklist(s). Finally,
return control to OPS scheduling using the OPS Restart command. The queued
worklist entries are worked off and results can be verified.

LP, worklist number, word 1, ••• word 6/
*

An error response is displayed if the worklist number is too large.

I-6 60474500 A

Device Assignment

This command allows the user to dynamically assign logical input/output
functions (LIO) to physical devices (PD). The available PD codes are as
follows:

0 Null device
1 Local console
2 Line printer

The currently defined LIO codes are as follows:

8
9
XA16
XB16
XC16
XD16

Dump device
Memory snapshot
Register snapshot
Breakpoint return address snapshot
Spare breakpoint
Quick output

The default for all LIO codes except the dump device is the local console.
The dump device is the local line printer if the line printer software is
built into the system.

DA, LIO, PD/
*

An error response is displayed if either parameter is too large.

Dump OPS Program Locations

This command is similar to the DP command, which uses the base address
feature. Instead of a base address, however, the user enters the desired
OPS program worklist number. The correct OPS program base address is
obtained from a pre-built table.

{DMP}
DML , start address, end
* dump address word 1
* dump address +8 word 9

etc.

address, OPS wl number/
word 8

••• word 16

The DMP command dumps to the local console. The DML command dumps to the
assigned dump device·. All three parameters are mandatory. An error
response is printed if the OPS worklist number is too large.

NOTE

When the OPS programs are paged above 64K (FFF16>, the
necessary paging is automatically performed.

60474500 A I-7

Load OPS Program Location

This command is similar to the LH/. command, which uses the base address
feature. Instead of a base address, however, the user enters the desired
OPS program worklist number. The correct OPS program base address is
obtained from a pre-built table._

LOX, start address, OPS wl number/
*
C, new word 1, ... new word 8/
* load address old word 1 old word 8/

NOTE

When the OPS programs are paged above 64K, the necessary
paging is automatically performed.

Read Page Register

In NPUs with the paging feature, page registers in either bank can be
displayed. Writing a page register while the system is on-line is quite
hazardous and is not allowed. The leftmost bit of the page number parameter
determines which bank to read: O •• lF16 for bank 0 and 8000 •• 801F16 for
bank 1.

RP, page number/
* page contents.

An error response is displayed if the page number is out of range.

Dump Line Control Block

Given a line number, the corresponding line control block (LCB) is dumped.
The line number is a 16-bit quantity containing the port (left 8 bits) and
subport (right bits), subport = 00.

{
LCB}
LCL , line number/

*LCB start address word 1
*LCB start address +8 word 9

etc.

word 8
word 16

LCB dumps to the local console. LCL dumps to the assigned dump device. An
error response is displayed if either the port or subport is too large for
the configured system.

I-8 60474500 A

Dump Terminal Control Block or Logical Link Control Block by ON, SN, and CN

If the CN is zero, the logical link control block (LLCB) is dumped.
Otherwise, the terminal control block (TCB) is dumped. The DN and SN (and
CN) form the logical network address and a search through the routing
directory is performed to find the proper control block.

{TCB}
TCL , ON, SN, CN/

* control block start address word 1
* control block start address +8 word 9

etc.

word 8
word 16

TCB dumps to the local console. TCL dumps to the assigned dump device. An
error response is displayed if the control block is not found in the routing
directory.

Dump Terminal Control Block by Line Number, CA and TA

The line number, cluster address and terminal address form the physical
network address of the terminal control block (TCB) and a search through the
active line control blocks is performed to find the TCB.

{TSB}
TSL , line number, CA, TA, OT/

* TCB start address word 1
* TCB start address +8 word 9 •••

etc.

word 8
word 16

TSB dumps to the local console. TSL dumps to the assigned device. An error
response is displayed if the TCB is not found.

Enter Breakpoint

This command places an entry into the software breakpoint table
(JEBPTABLE). The entry consists of the starting and ending addresses of the
instruction to breakpoint, the breakpoint code specifying which breakpoint
to execute and any optional paraemters required by the breakpoint. A
maximum of five optional parameters are allowed.

EB, instruction start, instruction stop, breakpoint code, parameter
1, • • • parameter 5/
*

The following conditions cause an error response to be displayed:

• Breakpoint table full
• Start address, end address and/or breakpoint code missing
• Start or end address out-of-range

Breakpoint codes are discussed below.

60474500 A I-9

Remove Breakpoint

This command removes a specified entry from the breakpoint table. Only
matches with the instruction start and end addresses and the breakpoint code
are searched for in the breakpoint table. An error response is displayed if
the wrong number of parameters are entered or if the entry is not found.

RB, instruction start, instruction end, breakpoint code/
*

Enable Software Breakpoint by Priority Level

This command allows software breakpoints to occur at a specific software
priority level. This allows reentrant code which is executed at difference
priority levels to be breakpointed at a specific priority level or levels.

BL, priority level (0 •• 1116)/
*

An error response is displayed if the priority level is too large.

Disable Software Breakpoint by Priority Level

This command disables software breakpoints on a specific priority level.

DL, priority level (0 •• 1116)/

An error response is displayed if the priority level is too large.

SOFTWARE BREAKPOINTS
Software breakpoints on the NPU are generated through the hardware program
protect system. When the system is initialized, all of memory except the
dynamic buffer area is protected. That is, the program protect bits are set
on each nonbuffer memory location. When a breakpoint is set on an
instruction, the program protect bits are reset for that instruction. When
the protected instruction following the unprotected (breakpoint) instruction
is executed, a program protect interrupt (line 0) is generated, provided the
program protect system is activated. The instruction generating the
interrupt executes as a one-word NOP. The line 0 interrupt handler passes
control to the breakpoint handler. The breakpoint interrupt handler
searches the breakpoint table using the interrupt return address for line
o. If an entry in the breakpoint table is not found, a true program protect
fault has occurred and the system is halted. Otherwise, control is passed
to the proper breakpoint handler for each entry found in the breakpoint
table, provided software breakpoints are enabled for the interrupting
priority level. Note that more than one breakpoint entry per instruction is
allowed.

A basic knowledge of the macro assembly language is necessary when using
software breakpoints.

Certain restrictions must be observed when using software breakpoints.

I-10 60474500 A

Instructions that write into nonbuffer memory, jump, return jump or skip, or
are priviledged (disable and enable interrupts, set and clear protect bit,
and interregister instructions with the interrupt mask register as the
destination register) cannot have breakpoints. The enter breakpoint command
is:

EB, start global area, end global area, O/

This clears the protect bits on all global variables, allowing the user to
breakpoint instructions that write into the global area.

Two consecutive instructions cannot have breakpoints. Noninterruptable code
cannot have breakpoints.

Note that both the proper software priority and the program protect system
must be active before a breakpoint interrupt can occur. The program protect
system is activated by entering J28: on the NPU maintenance panel.
Entering J20: deactivates the program protect system.

The global constant JlBREAKMAX specifies the number of entries in the
breakpoint table JEBPTABLE. Currently, JlBREAKMAX is 10.

BREAKPOINT HANDLERS

Currently, there are seven breakpoints handlers available:

• Enter debug mode
• Memory snapshot
• Register snapshot
• Instruction address snapshot
• Quick output
• Wraparound snapshot
• User-defined snapshot

The enter debug mode breakpoint enters a loop after the breakpoint
instruction executes. In this loop, all priority levels at and below the
breakpoint priority level are suspended until the loop is exited using the
breakpoint restart debug command. All debug commands can be entered while
in the breakpoint loop.

The memory snapshot formats a specified memory range into system buffers and
queues them to a specified local peripheral.

The register snapshot formats the contents of macro registers Rl, R2, R3,
R4, Q, A, I, and M into a system buffer and queues it to a specified local
peripheral.

The instruction address snapshot places the address of the breakpoint
instruction into a system buffer and queues it to the memory snapshot local
peripheral.

Quick output writes the contents of one buffer of ASCII characters to a
specified local peripheral.

The wraparound snapshot places the contents of a specified memory range into
a user supplied circular save area.

60474500 A I-11

The user-defined snapshot consists of 20 NOPs available to contain
user-written breakpoint code.

The local peripheral for the above snapshots is specified by the device
assignment debug command.

Combinations of the above snapshots can be entered for a single breakpointed
instruction. Table I-2 defines the optional parameters for the Enter
Breakpoint Debug command. The execution count is the maximum number of
times the snapshot is to be executed.

OPS SCHEDULED DEBUG AID
A special OPS scheduled program (PBTIPDBG) is available to execute
user-supplied debug code. PBTIPDBG is entered by making a worklist entry
from source code or through the List Put Debug command (LP, parameters, see
table I-1). The first word of the worklist entry is a code defining which
user code to execute. The next four words are optional and are used to pass
parameters to the user code. Code 0 is reserved and contains 20 NOPs
available for on-line patching.

I-12 60474500 A

Breakpoint
Code {Hex)

7

9

A

B

c

D

E

60474500 A

TABLE I-2. BREAKPOINT PARAMETERS

Breakpoint

Enter debug mode

Memory snapshot

Register snapshot

Instruction address

snapshot

User-defined snapshot

Quick output

Wraparound snapshot

Parameter Number
and Description

No parameters

1 - Snapshot start address

2 - Snapshot end address

3 - Execution count

1 - Execution count

1 - Execution count snapshot

1 - Execution count

1 - Address of buff er to output

2 - Execution count

1 - Start address of snap area

2 - End address of snap area

3 - Start address of save area

4 - End address of save area

5 - Execution count

I-13

INDEX

Abort output line command 9-7
Aborting

Logical line 9-21, 9-22
Access

Control keys 9-11
Acknowledge {ACK)

Block 11-7
Negative block (NAK) 11-7

Action
PTCLAS worklist 5-22

ACTL block (assurance control) 6-8
Adapter

Communications line 5-3
Multiplex loop interface 5-3

Address 6-2
Register codes 7-14

Aids
Inline diagnostic 3-4

Alarm
Format 3-5
Messages 3-6, 6-23

Altering directories 6-15
Analysis

PTCLAS worklist 5-22
Assignment(s)

Coupler status register
bit 7-11, 7-12

Interrupt 4-16
Assurance

Block header format
delivery 6-10

Message service on trunks 6-9
Asynchronous (ASYNC)

Major functions of TIP 9-2
Preprint and postprint format

effectors for TIP 9-14
TIP 9-1
TIP, autorecognition 9-24
TIP, CMD blocks 9-3

Auto input
Mode 10-9
Processing 9-18

Autorecognition 9-23, 10-16
ASYNC TIP 9-24
Mode 4 TIP 10-16

Availability
Buffer testing 4-7

60474500 A

BACK block 6-6, 6-32, 6-48
Backspace

Character command 9-7
Processing 9-17

Banner
Punch cards 11-18

Base system software 4-1
Basic

Elements of the multiplex
subsystem 5-2

Interrupt processing 4-13
Batch

Virtual terminal (BVT) 6-31
Virtual terminal

characteristics 6-32
Bit(s)

Clear protect 4-25
Coupler status register

assignment 7-11, 7-12
Set protect 4-25

BLK block 6-6, 6-32, 6-47
Block(s)

Acknowledge (ACK) 11-7
ACTL (assurance control) 6-8
BACK 6-6, 6-32, 6-48
Bad detected by NPU 6-8
BLK 6-6, 6-32, 6-47
BRK 6-7, 6-32, 6-48
BVT protocol usage 6-32
BVT syntax (host/coupler

interface) 6-34 thru 6-37
BVT syntax table, use of 6-38
CMD 6-7, &-33, 6-48
CMD for ASYNC TIP 9-3
CMD for Mode 4 protocol 10-4
Command 9-3
Control 11-6
Control byte (BCB) 11-8
Control bytes for data 11-7
Control byte error 11-21
Control, configuring 6-19
Control, deleting 6-19
Control, disabling 6-19
Control, enabling 6-19
Data clarifier, DBC 6-9, 6-11
Data description 11-12
Data paths, sample between NPU and

host 6-3

Index-!

End-of-file (EOF) 11-13
Enquiry (ENQ) 11-7
FCS change 11-13
Format 6-2
Format of block control byte (BCB)

error 11-21
Format (NPU and host) 10-3
Forms control values for BVT

blocks 6-39
Functions 4-24
Header format 6-4
Header format for delivery

assurance 6-10
Idle (ACKO) 11-7
Illegal make-up error 11-20
!NIT 6-8
IVT handling at host

interface 6-47
IVT handling for communications

supervisor 6-49
IVT protocol usage 6-47
IVT syntax 6-43 thru 6-47
Mode support 9-17
MSG 6-6, 6-32, 6-47
Multileaving descriptions 11-6
Negative acknowledge (NAK) 11-7
Operator console 11-12
Protocol 1-9, 6-1
Routing 1-12
RST 6-8, 6-33, 6-48
Segmentation 6-8
Sign-off 11-15
Sign-on 11-15
Standard data format used by the

HIP 7-25
Start 6-7
STP 6-7, 6-33, 6-48
STRT 6-33, 6-48
Transfer - multiple character data

transfer 7-14
Transmission, Mode 4 data format

(odd parity) 10-3
Transmission, Mode 4 non-data

format 10-3
Types 6-5, 6-6
Typical HASP multileaving data

transmission 11-9
Break

Control and terminal
on/off 9-11

User 1 10-10
User 1 character command 9-7
User 2 10-10
User 2 character command 9-7

BRK Block 6-7, 6-32, 6-48
Broadcast

Messages 6-49
SMs generating 6-22
SMs sending 6-22

Index-2

Buffer

BVT

Copying 4-7
Format 7-25
Formats 4-5

4-8
4-6

4-7
4-7

Handling 4-2
Handling routines
Obtaining single
Releasing several
Releasing single
Stamping 4-5
Testing availability 4-7

Block protocol usage 6-32
Block syntax (host/coupler

interface) 6-34 thru 6-37
Block syntax table, use 6-38
Blocks, forms control

values 6-39
Data handling, sample CYBER job

stream card inputs 6-40
Downline transforms 10-11, 10-13
Downline transforms for 200 UT

pr inter 10-13
HASP format conversion 11-17
Upline transforms 10-11

Byte (s)
Block control (BCB) 11-8
Block control error 11-21
Control for data blocks 11-7
Format of block control (BCB)

error block 11-21
Record control 11-10
String control 11-11

Calling
Macroassembly language programs

for Pascal programs 4-17
Calls

Defeating type-checking in Pascal
procedure calls 4-17

Direct 1-13, 4-9
Direct on firmware level 1-14
Special to firmware

interface 1-14
Special to multiplex

subsystem 1-14
Worklist 1-13

Cancel
Character (CN) processing 9-19
Character command 9-7
Character processing 10-11

Card(s)
Inputs for BVT data handling,

CYBER job stream sample 6-40
Punch banner 11-18

Card reader interface 10-6
Carriage return and EOT processing

(logical line) 9-19

60474500 A

CCP
Data block clarifier (DBC) 6-11
Design 1-3
Direct 1-13
Feature 1-5
Major modules relationships with

PTLINIT 5-24
Modular structure 1-19
Modules 1-10
Non-priority tasks 1-4
Priority tasks 1-4
Programming languages 1-17
Programming methods 1-9
Worklist 1-13

CE Error
Format 3-5
Messages 3-7, 6-23

Change FCS blocks 11-13
Changing

Logical communications 2-5
Terminal parameters,

commands 6-51
Character(s)

Backspace command 9-7
Cancel (CN) processing 9-19
Cancel command 9-7
Code conversion 9-7
HASP significant EBCDIC 11-6
Mode input processing 9-15
Mode output processing 9-20
Multiple character data transfer

(block transfer) 7-14
Paper tape mode input 9-19
Processing, cancel 10-11
Set detect 9-10
User break 1 command 9-7
User break 2 command 9-7

Characteristics
Batch virtual terminal 6-32
Interactive virtual

terminal 6-41
Check (s) 8-11

Cyclic redundancy 8-11
Parity command 9-6

Checking
Error 7-19
Stripping, parity 9-17

Circuit
Optional functions 5-13

Clarifier
Data block, DBC 6-9, 6-11

CLA status
Analyzer, PTCLAS 5-20
Overflow handling 5-21

Class(es)
Format for terminal class, page

width, page length
messages 6-50

60474500 A

State programs 12-2
Terminal command 9-5
Terminal, page width/length 6-49

Classification
Upline messages 7-18

Clear line command 5-10
CN

Cancel character processing 9-19
Code(s)

Address register 7-14
Character conversion 9-17
Conversion 10-10, 11-16
E codes 10-11, 10-12
EOI/EOR 11-17
Forms control 11-18
Halt 3-3
MT! for Mode 4 10-12
NPU status word 7-13
Orderword register 7-13
Programming the coupler by use of

function codes 7-10
Command(s) (CMD)

Abort output line 9-7
Backspace character 9-7
Block 6-3, 6-7, 6-48
Blocks 9-3
Blocks for ASYNC TIP 9-3
Blocks for Mode 4 protocol 10-4
Cancel character 9-7
Changing terminal

parameters 6-51
Check parity 9-6
CR idle 9-8
Clear line 5-10
Control 5-11
Control format 5-11
Disable line (NKDISL} 5-16
Driver interface 5-9
Driver worklist entries 5-8
Echoplex mode 9-10
Enable line {NKENBL) 5-11
Host function 7-10
Initialize line 5-10
Input (NKINPT} 5-14
Input after output format 5-17
Input format 5-15
LF idle count 9-8
NPU console control 4-29
NPU function 7-12, 7-16
Operator message 9-10
Output (NKDOUT} 5-14
Packet, general format 5-9
Page length 9-6
Page wait 9-10
Page width 9-6
PPU function 7-15
Processing force load 6-22
Protect bits 4-25

Index-3

Select input device
Select output device
Terminal class 9-5

9-9
9-10

Terminate input (NKENDIN) 5-16
Terminate output (NKENDOUT) 5-16
Terminate output format 5-18
Transparent text delimiter 9-8
User break 1 character 9-7
User break 2 character 9-7

Common
Flowcharts for important TIP

subroutines 6-25, 6-26
Multiplex subroutines for

TIPS 5-19
Return control routine -

PTRETOPS 6-29
TIP regulation - PTREGL
TIP routines 6-22

Communication{s)
Line adapters 5-3

6-29

Line initialization 11-14
Network software 6-1
Supervisor, IVT block

handling, 6-49
Using Pascal Globals

Comparison
Local and local/remote

networks 8-3
Components

Hardware 5-1
State program

Compressed
Data (downline)
Data (upline)

12-4

11-17
11-17

1-15

Configuration
Line 2-8
Line flowchart
Link 2-5

2-9, 2-10

Terminal 2-12, 9-4, 10-5
Terminal flowchart 2-9, 2-10

Configure
Line 2-11
Logical link SM 2-7
Terminal SM 2-13

Configured line deletion
Configuring

Control blocks 6-19
Logical links flowchart
NPU 2-1, 2-4

Connection number
Directory 6-12

Connections
Changing logical
Deleting logical

Console

6-4

2-5
2-5

2-12

2-6

Control messages 4-29
NPU control cammands 4-29
Operator blocks 11-12

Index-4

Support 4-27
Support services 4-28
Worklist entry 4-29

Contention
Coupler use 7-17
Input/output transaction at the

coupler 7-5
Control

Access keys 9-11
Block byte error 11-21
Blocks 11-6
Blocks, configuring 6-19
Blocks, deleting 6-19
Blocks, disabling 6-19
Blocks, enabling 6-19
Break, terminal on/off 9-11
Byte block (BCB) 11-8
Bytes for data blocks 11-7
Command format 5-11
Commands 5-11
Cursor 10-10
Downline data flow 11-22
Flow 11-22
Format of block byte (BCB) error

block 11-21
Forms codes 11-18
Forms, values for BVT

blocks 6-39
Function sequence (FCS) 11-8
IVT parameter mnemonics 1-5
NPU console commands 4-29
Record byte (RCB) 11-10
Regulation 11-22
Single word transfers 7-14
String byte 11-11
User messages 9-5

Control messages
Console 4-29

Conversion
Character code 9-17
Code 10-10, 11-16
HASP/BVT format 11-17
HASP/IVT format 11-18

Copying
Buffer 4-7

Count
CR idle command 9-8
LF idle command 9-8
Line, request service

message 6-21
Coupler

BVT' block syntax (host/coupler
interface) 6-34 thru 6-37

Contention for use 7-17
Input/output transaction

contention 7-5
Input transactions 7-3, 7-4

60474500 A

Interface hardware
programming 7-8

Output transactions 7-3, 7-4
Programming by use of function

codes 7-10
Register use 7-8
Registers 7-9
Regulation of use 7-18
Status register bit

assignment 7-11, 7-12
CRC-16 error 11-20
CRT

Output 9-21
Transparent mode output processing

for printer and CRT Paper
tape 9-22

Cursor control 10-10
CYBER job stream card inputs for BVT

data handling 6-40
Cyclic redundancy check (CRC) 8-11

Data
Block clarifier, DBC 6-9
Block clarifier (DBC) CCP 6-11
Block description 11-12
BVT handling, sample CYBER job

stream card inputs 6-40
Compressed (downline) 11-17
Compressed {upline) 11-17
Control bytes for blocks 11-7
Down line 8-7
Downline flow control 11-22
Format for Mode 4 10-2
Format {odd parity), Mode 4

transmission block 10-3
Input processor, modern state

program interface 12-5
Multiple character transfer {block

transfer) 7-14
Principal structures 1-16, 1-17
Processor, firmware

interface 12-5
Processor, firmware interface to

the output data 12-7
Processing overlay 6-22
Sample paths between NPU and

host 6-3
Standard block format used by the

HIP 7-25
Transfer directives 7-2
Transforms 9-15, 10-6
Typical HASP rnultileaving

transmission block 11-9
Uncompressed 11-18
Upline 8-7

DBC, data block clarifier 6-9
Defeating type-checking in Pascal

procedure calls 4-19

60474500 A

Definitions
HASP protocol mnemonic

11-5
11-4,

Interrupt state 4-15
Terminal parameter 6-51 thru

6-54
Deletes

Processing 9-17
Deleting

Control blocks 6-9
Logical connections 2-5

Deletion
Configured line 2-12
TCB 2-13

Delimiter
Transparent text command 9-9

Delivery assurance
Block header format 6-10

Description{s)
Data block 11-12
Multileaving block 11-6

Design, CCP 1-3
Destination node

directory 6-12, 6-13
Detect character set 9-10
Device

Select input command 9-9
Select output command 9-10

Diagnostics 3-1
Inline aids 3-4
Inline service messages 3-6

Direct calls 1-13, 4-9
Firmware level 1-14

Directives
Data transfer 7-2

Directories 6-12
Altering 5-15
Connection number 6-12
Destination node 6-12, 6-13
Routing formats 6-13
Source node 6-12

Disable
Control blocks 6-19
Line command (NKDISL) 5-16

Disabling trunk 8-13
Dispatching 6-17
Downline

Break 6-28
BVT transforms 10-1
BVT transforms for 200 UT

printer 10-13
Compressed data 11-17
Data 8-7
Data flow control 11-22
IVT format effector (FE

transforms) 10-8
IVT format effectors for HASP

terminals 11-19

Index-5

IVT transforms 10-7
IVT trarnsforms for Mode 4 10-8
Sample message transmission over a

network link 8-9
Driver

Command interface 5-9
Command worklist entries 5-8

Dump
Interpretation 3-3
NPU 2-4

Duplicate write errors 10-15

E codes 10-11, 10-12
EBCDIC

HASP significant characters 11-6
Echoplex

Mode command 9-10
Edit

Special 9-8
Special mode 9-18

Effector(s)
Downline IVT format (FE

transforms) 10-8
Downline IVT format effectors for

HASP terminals 1-19
Format 6-42
Preprint and postprint format for

ASYNC TIP 9-14
Elements

Multiplex subsystem 5-2
Embedded

Transf orrns for format effectors
(FE) in ASYNC TIP
down line 9-9

Enable
Control blocks 6-19
Line command (NKENBL)
Line command format
Trunk SM 2-7

5-11
5-12

Enabling trunk 8-13
End-of-file blocks (EOF)
Enquiry (ENQ) block 11-7
Entry .

11-13

5-8 Command driver worklist
Console worklist 4-29
Making worklist 4-12
Multiplex subsystem firmware

worklist 5-7
Worklist, extracting

EOT
4-13

Processing and carriage return
(logical line) 9-18

EOI/EOR codes 11-17
Error(s)

CE messages 6-23
CRC-16 11-20
Checking 7-19
Duplicate write

Index-6

10-15

Format of block control byte (BCB)

11-19
11-20

block 11-21
Handling 9-22, 10-14,
Illegal block make-up
Processing 7-7
Procesing, long term
Processing, short-term

10-15
10-14

Timeout 11-20
Unknown response

Execution
Program timers

11-20

4-27
12-1 State programs

Extracting worklist entry

Failure 3-1
Host 3-1, 7-19
Line 3-1
NPU 3-2
Terminal 3-4
Trunk 3-3, 8-14

FCS change blocks 11-13

4-13

FE transforms, downline IVT format
effector 10-8

Features
Unsupported Mode 4

protocol 10-17
Finding number of characters to be

processed - PTCTCHR 6-29
Firmware

Interface to input data
processor 12-5

Interface to modern state
programs 12-9

Interface to output data
processor 12-7

Interface, special call 1-14
Level, direct calls 1-14
Multiplex subsystem worklist

entries 5-7
Flow

Control 11-22
Downline data control 11-22

Flowchart
Configuring logical links 2-6
Frame construction 8-10
Important common TIP

subroutines 6-25, 6-26
Routing for PBSWITCH 6-14
Line configuration 2-9, 2-10
Terminal configuration 2-9, 2-10

Force load command, processing 6-22
Forrn(s)

Control codes 11-18
Control values for BVT

blocks 6-39
Forrnat(s)

Alarm 3-5
Block control byte (BCB) error

block 11-21

60474500 A

Block header 6-4
Block header for delivery

assurance 6-10
Block, (NPU and host) 10-3
Buffer 4-5, 7-25
CE error 3-5
Control command 5-11
Data for Mode 4 10-2
Data (odd parity), Mode 4

transmission block 10-3
Downline IVT effectors for HASP

terminals 11-19
Effector, downline IVT (FE

transforms) 10-8
Effectors 6-42
Enable line command 5-12
Frame 8-4, 8-5
Frame and subblock 8-4, 8-5
HASP/BVT conversion 11-17
HASP/IVT format conversion 11-18
Host word 7-7
Input after output command 5-17
Input command 5-15
LIDLE frame 8-15
LINIT frame 8-15
Mode 4 protocol message 10-3
Non-data Mode 4 transmission

block 10-3
NPU word 7-7
OPS monitor table 4-4
Preprint and postprint effectors

for ASYNC TIP 9-14
Routing directories 6-13
Service message 6-18
Standard data block format used

by the HIP 7-25
Statistics messages 3-5
Subblock 8-4, 8-5
Terminal class, page width, page

length messages 6-50
Terminate output command 5-18
Transforms for embedded effectors

(FE) in ASYNC TIP
down line 9-9

User input message 9-11
User output message 9-12

Frame
Construction flowchart 8-10
Format 8-4, 8-5
Information 8-12
LIDLE format 8-15
LINIT format 8-15
Sample formation 8-6
Supervisory 8-12
Unnumbered 8-11

Functions
Block 4-24
Codes for programming the

coupler 7-10

60474500 A

Control sequence (FCS) 11-8
HIP 7-12
Host commands 7-10
Major functions of ASYNC TIP 9-2
Major, HASP TIP 11-2
Major, Mode 4 TIP 10-1
NPU commands 7-12, 7-16
Optional circuit 5-13
Optional modem 5-13
PPU commands 7-15
Receive 8-12
State programs 12-4
Transfer 7-1
Transmit 8-11

General
Command packet format 5-9
Peripheral processing 4-27

Generating 6-17
Broadcast SMs 6-22
Statistics service messages 6-21
Status service messages 6-19

Halt codes 3-3
Handler

Multiplex level status (PTCLAS)
interface to modem state
programs 12-9

Handling
Buffer 4-2
Buff er routines 4-8
BVT data, sample CYBER job stream

card inputs 6-40
Error 9-22, 10-14, 11-19
IVT block at host interface 6-47
IVT block for communications

supervisor 6-49
Line interface 1-15
Modem response 5-23
Overflow, CLA status 5-21
Parity 9-16
Routines 4-19

Hardware
Components 5-1
Considerations 9-1, 11-1
Coupler interface

programming 7-8
Mode 4 considerations 10-1

HASP
BVT format conversion 11-17
Downline IVT format effectors for

terminals 11-19
IVT format conversion 11-18
Postprint 11-22
Protocol 11-3
Protocol mnemonic

definitions 11-4, 11-5
Significant EBCDIC

characters 11-6

Index-7

TIP 11-1
TIP major functions 11-2
Typical multileaving data

transmission block 11-9
Header

HIP

Block f orrnat 6-4
Block format for delivery

assurance 6-10

Functions 7-12
OPS and interrupt levels 7-6
Standard data block format

used 7-25
States 7-25, 7-26
Transitions 7-26

Host
Block format 10-3
BVT block (host/coupler

interface) 6-34 thru 6-37
Failure 3-1, 7-19
Function commands 7-10
Interface 9-3, 10-2, 11-15
Interface, !VT block handling

at 6-47
Interface program 7-1
Interface program sequence, host

side 7-20, 7-21
Interface protocol sequence, NPU

side 7-22, 7-23
Interface sequences 7-19
Recovery 3-1, 7-19
Sample data paths between NPU and

host 6-3
Word formats 7-7

Idle (ACKO)
Block 11-7
CR count command 9-8
LF count command 9-8

Illegal block make-up error
Information frame 8-12
INIT block 6-8
Initialization

Communications line
Phase 1 2-1
Phase 2 2-2
Workstation 11-14

Initialize line command
Initializing NPU 2-1
Initiation

Transfer 7-2
Inline diagnostic

Aids 3-4
Service messages

Input(s)
3-6

11-14

5-10

11-20

5-17
9-15

After output (NKINOUT) 5-16
After output command format
Character mode processing
Command (NKINPT) 5-14

Index-8

Command format 5-15
Coupler transactions 7-3, 7-4
Data processor, modem state

program 12-5
Firmware interface to input data

processor 12-5
Keyboard 9-17
Paper tape character mode 9-19
Sample job stream card inputs for

BVT data handling 6-40
Select device command 9-9
State programs 12-1
State program interface to modem

state programs 12-10
State program worklists 5-7
Terminate command (NKENDIN) 5-16
Text processing state program

interface to input data
processor 12-6

Transaction contention at the
coupler 7-5

Transparent mode processing for
keyboard and paper tape 9-20

User message format 9-11
Interactive

Virtual terminal
characteristics 6-41

Interface(s)
Adapter, multiplex loop 5-3
BVT block syntax (host/coupler

interface) 6-34 thru 6-37
Card reader 10-6
Command driver 5-19
Coupler hardware programming 7-8
Firmware to input data

processor 12-5
Firmware to modern state

programs 12-9
Firmware to output data

processor 12-7
Firmware, special call 1-14
Host (HIP) 9-3, 10-2, 11-15
Host interface sequences 7-19
Host, !VT block handling at 6-47
Host program 7-1
Host protocol sequence, host

side 7-20, 7-21
Host protocol sequence, NPU

side 7-22, 7-23
Input state program interface to

modern state programs 12-10
IVT 10-5
Line handling 1-15
Link package module (LIP) 8-1
Modem state program to input data

processor 12-5
Multiplex level status handler

(PTCLAS) interface to modern
state programs 12-9

60474500 A

NPU sequences 7-19
Point of Interface programs

(POI) 1-12, 6-23
Printer 10-6
Priority processing 1-13
System 5-3
Text processing firmware -

PTTPINF 6-28
Text processing state program

interface to input data
processor 12-6

User 4-15, 5-3, 5-8, 9-4, 11-13
Internal

Output POI 6-23
Service message processing 6-17

Interpretation
Dump 3-3

Interrupt
Assignments 4-16
Basic processing 4-13
Levels and OPS for the HIP 7-6
Priority 4-24
State definitions 4-15

!VT
Block handling at host

interface 6-47
Block handling for communications

supervisor 6-49
Block protocol usage 6-47
Block syntax 6-43 thru 6-47
Downline format effector (FE

transforms) 10-8
Downline format effectors for HASP

terminals 11-19
Downline transforms 10-7
Downline transforms for

Mode 4 10-8
Format conversion 11-18
Interactive virtual

terminal 6-41
Interface 10-5
Parameter control mnemonics 11-5
Upline transforms 10-9

Job stream
Card inputs for BVT data handling,

CYBER sample 6-40

Keyboard
Input 9-17
Transparent mode input processing

for keyboard and paper
tape 9-20

Keys
Access control 9-11

Languages
Calling macroassembly programs

from Pascal programs 4-17
CCP programming 1-17

60474500 A

Length
Page command 9-6

Length/width
Format for terminal class, page

width, page length
messages 6-50

Page, terminal class 6-49
Level

LF

Firmware, direct calls 1-14
Interrupt levels and OPS for the

HIP 7-6
Multiplex 1 (firmware) 5-4
Multiplex 2 (PMWOLP) 5-4
Multiplex 2 worklists 5-6
Multiplex status handler (PTCLAS)

interface to modem state
programs 12-9

OPS 5-8

Idle count command 9-8
LID LE

Frame format 8-15
Line

Abort output command 9-7
Adapters, communications 5-3
Clear command 5-10
Communications

initialization 11-14
Configuration 2-8
Configuration flowchart 2-9,

2-10
Configure SM 2-11
Configured deletion 2-12
Count request service

message 6-21
Disable command (NKDISL) 5-16
Enable command format 5-12
Enable command (NKENBL) 5-11
Failure 3-4
Initialize command 5-10
Initializer, PTLINIT 5-23
Interface handling 1-15
Line feed and new line processing

(physical line) 9-18
Logical aborting 9-21, 9-22
Maximum width processing 9-19
Physical/logical processing 9-19
Recovery 3-4
Status request service

message 6-20
LIN IT

Frame format 8-15
Logical 9-15
Logical, carriage return and EOT

processing 9-18
Physical 9-16

Link
Configuration 2-5
Configure logical SM 2-7

Index-9

Configuring logical
flowchart 2-6

Interface package module 8-1
Logical 6-9
Logical recovery 3-3
Logical status request service

message 6-19
Logical status SM 2-7
Logical suspension 3-3
Sample downline message

transmission over a
network 8-9

Sample upline message transmission
over a network 8-8

LIP
Multiplex worklist

communications
OPS level worklists

Load
Force load command
NPU 2-4
Regulation

Local
10-16

5-5
5-8

6-22

Comparison of local and
local/remote networks 8-3

Network comparison of local and
local/remote 8-3

Local/remote
Comparison of local and

local/remote networks 8-3
Logical

2-5 Connections, changing
Configure link SM 2-7
Configuring connections 2-5
Deleting connections 2-5
Line aborting 9-21, 9-22
Line, carriage return and EOT

processing 9-18
Lines 9-15
Link flowchart
Link recovery
Link status SM
Link suspension

Logical link 6-9

2-6
3-3

2-7
3-3

Status request service
message 6-19

Logical/physical
Line processing 9-19
State process 12-3

Long-term error processing
Loop

10-15

Multiplexes 5-3
Multiplex interface adapter

Lower case/upper case shift
processing 9-19

Macroassembly programs
Calling from Pascal

programs 4-17

Index-10

5-3

12-10 Macroinstructions
State program

Macrointerrupts
Major

12-11 thru 12-16
4-13, 4-16

CCP modules relationships with
PTLINIT 5-25

9-2 Functions of ASYNC TIP
Functions by the network

communications programs
HASP TIP functions 11-2
Mode 4 TIP functions 10-1

Making worklist entry 4-12
Make-up

6-1

Illegal block error 11-20
Maximum line width processing
Message(s)

9-19

Alarm 3-6, 6-23
Broadcast 6-49
CE error 3-7, 6-23
Downline processing 1-5, 1-6
Format for terminal class, page

width, page length
messages 6-50

Formats, Mode 4 protocol 10-3
Generating status SM 6-19
Internal SM processing 6-17
Line count request SM 6-21
Line status request SM 6-20
Logical link request SM 6-19
Online diagnostic SM 3-6
Operator 6-51
Operator command 9-10
Sample downline transmission over

a network link 8-9
Sample upline transmission over a

network link 8-8
Sending status SM 6-19
Service (SM) 6-15
SM general format 6-18
SM timing out 6-17
SM validating 6-17
Statistics SM format 3-5
Terminal status request SM 6-21
Trunk status request SM 6-19
Type indicators (MTI) 10-11
Upline classification 7-18
Upline processing 1-5, 1-7
User control 9-5
User input format 9-11
User output format 9-12

Message assurance on trunks
Methods

6-9

CCP programming 1-9
MSG block 6-32, 6-47
Miscellaneous subroutines
Mnemonic(s)

HASP protocol definitions
11-5

4-25

11-4,

IVT parameter control 11-5

60474500 A

Mode
Autoinput 10-9
Block support 9-17
Character input processing
Character output processing
Paper tape character input
Special edit 9-18
Transparent 10-9

9-15
9-20

9-19

Transparent input processing for
keyboard and paper tape 9-20

Transparent output processing for
printer, CRT, and paper
tape 9-17

Type ahead 9-17
Mode 4

CMD blocks for protocol
Data format for 10-2

10-4

Data format (odd parity) 10-3
Downline IVT transf orrns for 10-8
Hardware considerations 10-1
MIT codes for 10-12
Nomenclature 10-2
Protocol message formats
TIP major functions 10-1
Transmission block nondata

f orrnat 10-3
Unsupported protocol

features 10-17

10-3

Modern
Interface to state programs,

multiplex status handler
(PTCLAS) 12-9

Optional functions 5-13
Response timeout handling 5-23
State program interface to input

data processor 12-5
State programs 12-8
State programs, firmware

interface 12-9
State programs, input state

program interface 12-10
Module(s)

Link interface package 8-1
Major CCP relationships with

PTLINIT 5-24
Task selection in the

service 6-16
Monitor

OPS table 4-3
OPS table format 4-4

MSG block 6-6
MT!

Codes for Mode 4 10-12
Message type indicators 10-11

Multileaving
Block descriptions 11-6
Typical HASP data transmission

block 11-9

60474500 A

Multiple
Character data transfer (block

transfer) 7-14
Multiplex

Basic elements of the
subsystem 5-2

Common subroutines for TIPs 5-19
Level 1 (f irrnware) 5-4
Level 2 (PMWOLP) 5-4
Level status handler (PTCLAS)

interface to the modern state
programs 12-9

Level 2 worklists 5-6
LIP worklist communications 5-5
Loop 5-3
Loop interface adapter 5-3
Subsystem 5-1
Subsystem f irrnware worklist

entries 5-7
TIP worklist communications 5-5
Worklist processor, PMWOLP 5-19

Multiplex subsystem
Special call 1-14

Negative acknowledge (NAK)
block 11-7

Network(s)
Communications software 6-1
Comparison of local and

local/remote 8-3
Sample downline message

transmission over link 8-9
Sample upline message transmission

over a link 8-8
New line processing and line feed

(physical line) 9-18
Node 6-4

Destination directory 6-12, 6-13
Source directory 6-12

Nomenclature
Mode 4 10-2

Nondata (command)

NPU

Format, Mode 4 transmission
block 10-3

6-8 Bad blocks detected
Block format 10-3
Configuring 2-1, 2-4
Console control commands
Dump 2-4

4-29

Failure 3-2
Function commands
Interface sequences
Initializing 2-1
Load 2-4

7-12, 7-16
7-19

Network 1-2
Recovery 3-2
Role 1-2

Index-11

Sample data paths between host and
NPU 6-3

Status word codes 7-13
Word formats 7-7

Nulls and deletes processing 9-17
Number, connection 6-4

Directory 6-12

Obtaining a single buffer 4-6
Odd

Parity data format, Mode 4
transmission block 10-3

Off /on
Terminal and break control 9-11

On/off
Terminal and break control 9-11

Operation
Simplified trunk (output

only) 8-2
Operational

Terminal procedure 11-5
Operator

Console blocks 11-12
Message 6-51
Message command 9-10

OPS
Level 5-8
Level processing 1-4
Level worklists 5-7
Monitor table 4-3
Monitor table format 4-4
OPS and interrupt levels for the

HIP 7-6
Optional

Circuit functions 5-13
Modem functions 5-13

Options
Parity 9-15

Orderword
Register codes 7-13

Output
Abort line command 9-7
Character mode processing 9-20
Command (NKDOUT) 5-14
Coupler transactions 7-3, 7-4
CRT 9-21
Data processor, firmware

interface 12-7
Data timing handler,

PMTlSEC 5-26
Input after (NKINOUT) 5-16
Input after command format 5-17
Printer 9-21
Queueing - PBQlBLK and

PBQBLKS 6-24
Select device command 9-10
Simplified trunk operation (output

only) 8-2

Index-12

Terminate command
(NKENDOUT) 5-16

Terminate command format 5-18
Transaction contention at the

coupler 7-5
Transparent mode processing for

printer, CRT, and paper
tape 9-22

Trunk operation 8-2
Typical transmissions 7-3

Overflow handling, CLA status 5-21
Overlay

Processing data 6-22
Processing programs 6-22

Package
Link interface (LIP) module 8-1

Page
Length command 9-6
Size 10-10
Wait 10-10
Wait command 9-10
Width command 9-6

Paper tape
Character mode input 9-19
Keyboard, transparent mode input

processing 9-20
Output 9-21
Transparent mode output processing

for printer, CRT, and paper
tape 9-22

Parameter
!VT control mnemonics 11-5

Parity
Check command 9-6
Checking and stripping 9-17
Handling 9-16
Odd, data format Mode 4

transmission block 10-3
Options 9-15

Pascal
Communication using globes 1-15
Globals 4-17
Procedure calls, defeating type

checking 4-19
Programs, calling macroassembly

language programs 4-17
Page

Format for terminal class, page
width, page length
messages 6-50

Width/length, terminal
class 6-49

Paging registers
Maintaining 4-22

Parameter(s)
Commands for changing

terminal 6-51
Terminal definitions 6-51 thru

6-54

60474500 A

Paths, data
Sample between NPU and host 6-3

PB18ADD - add bit addresses 4-23
PBAEXIT - restore Rl and R2 6-30
PBAMASK - and interrupt mask 4-14
PB18BITS - 18-bit address

functions 4-24
PBCLR - clears a block of main

memory 4-24
PBCLRPOT - clear protect bit 4-25
PBLOAD - load a user defined

message 4-26
PBILL - illegal calls 4-26
PBCOMP - compares two equal length

blocks 4-24
PB18COMP - compares two 18-bit

addresses 4-24
PBEXIT

Save Rl 6-30
Save R2 6-30

PBFILEl 4-25
PBFMAD - converts ASCII decimal to

binary 4-20
PBFMAH - converts from ASCII

hexadecimal to binary 4-20
PBGETPAGE - reads specified page

register 4-23
PBHALT - stops the NPU
PB II POI 6-23

4-26

PBINTRAPS (interrupt state
definitions) 4-15

Phase
1 Initialization 2-1
2 Initializtion 2-2

PBIOPOI - internal output POI
PBLMASK 4-14
PBMAX - finds the larger of two

numbers 4-20
PBMEMBER - tests ASCII set

membership 4-20
PBMIN - finds the smaller of two

numbers 4-21
PBOMASK - OR with interrupt

mask 4-14
PBPIPOI - post input POI
PBPROPOI - preoutput POI
PBPSWITCH - performs page

switching 4-22

6-23
6-23

PBPUTPAGE - write specified page
register 4-23

PBQlBLK - output queueing
PBQBLKS - output queueing
PBRPGE - reads dynamic page

register 4-23

6-24
6-24

6-23

PBSETPROT - set protect bit
PBSMASK - set interrupt mask
PBSTPMODE - sets paging mode
PBSWITCH - simplified routing

4-25
4-14
4-22

flowchart 6-24

60474500 A

PBTOAD - converts binary to ASCII
decimal 4-21

PBTOAH - converts binary to ASCII
hexadecimal 4-22

Peripheral
General processing 4-27

Physical lines 9-16
Physical/logical line

processing 9-19
PIAPPS 2-3
PIBUF 1 2-2
PIBUF 2 2-3
PIINIT 2-3
PILININIT 2-3
PIMLIA 2-3
PINIT 2-2
PI PROTECT 2-2
PIWLINIT 2-3
PMTlSEC, output data demand timing

handler 5-26
PMWOLP, multiplex worklist

processor 5-19
Point of interface (POI)

programs 1-12, 6-23, 6-24
Postprint

HASP 11-22
Preprint format effectors for

ASYNC TIP 9-14
PPU function commands 7-15
Preoutput POI 6-24
Preprint and postprint format

effectors for ASYNC TIP 9-14
Principal data structures 1-16,

1-17
Printer

Interface 10-6
Output 9-21
Transparent mode output processing

for printer, CRT, and paper
tape 9-22

200 UT, downline BVT
transforms 10-13

Priority
Interrupt 4-14
Processing 1-3
Tasks 1-4

Procedure
Pascal calls, defeating type

checking 4-19
Terminal operational 11-5

Process
Locating a state
Routing 6-12

Processing
Autoinput 9-18
Backspace 9-17
Basic interrupt
Cancel character

10-11

12-3

4-13
(CN) 9-19,

Index-13

Character mode input 9-15
Character mode output 9-20
Deletes and nulls 9-17
Downline message 1-5, 1-6
Error 7-7
Error, long-term 10-15
Error, short-term 10-14
Force load command 6-22
General peripheral 6-17
Internal service message 6-17
Line feed and new line processing

(physical line) 9-18
Maximum line width 9-19
OPS level 1-4
Overlay data 6-22
Overlay program 6-22
Physical/logical line 9-19
Priority at interfaces 1-3
Start-of-text 9-19
Text processing state program

interface to input data
processor 12-6

Text processing state
programs 12-6

Transparent mode input for
keyboard and paper tape 9-20

Transparent mode output for
printer, CRT, and paper
tape 9-22

Upline message 1-5, 1-7
Upper/lowercase shift 9-19

Processor
Firmware interface to input

data 12-5
Input data, firmware

interface 12-5
Output data, firmware

interface 12-7
Program(s)

Classes of state 12-2
Components of a state 12-4
Execution of state 12-2
Execution timers 4-27
Functions of state 12-4
Host interface 7-1
Input state 12-4
Input state program interface to

modem state programs 12-10
Interface to modem state programs,

multiplex level status handler
(PTCLAS) 12-9

Modem state 12-8
Modem state, firmware

interface 12-9
Modem state interface to input

data processor 12-5
State 12-1
State program 12-11 thru 12-16
Text processing state 12-6

Index-14

Text processing state program
interface to input data
processor 12-6

Programming
CCP languages 1-17
CCP methods 1-9
Coupler interface hardware 7-8
Coupler by use of function

codes 7-10
Programs

Calling macroassembly language
from Pascal programs 4-17

For TIPS 1-11
Point of interface (POI) 1-12
Processing overlay 6-22

Program, state input worklists 5-7
Protect bits

Clear 4-25
Set 4-25

Protocol
Block 1-9, 6-1
BVT block usage 6-32
CMD blocks for Mode 4 10-4
Features, unsupported

Mode 4 10-17
HASP 11-3
Host interface protocol sequence,

host side 7-20, 7-21
Host interface protocol sequence,

NPU side 7-22, 7-23
HASP mnemonic definitions 11-4,

11-5
IVT block usage 6-47
Mode 4 message formats 10-3
Transaction 7-1
Trunk 8-1
User message format 9-12

PTBREAK - upline break 6-28
PTCLAS

CLA status analyzer 5-20
Multiplex level status handler

to the modem state
programs 12-9

Worklist action 5-22
Worklist analysis 5-22

PTCTCHR - finding number of
characters to be
processed 6-29

PTLINIT
Line initializer 5-23
Relationships with major CCP

modules 5-24
State transition table 5-25

PTREGL - common TIP regulation 6-29
PTRETOPS - common return control

routine 6-29
PTRTxLCB

Restoring LCBs 6-29
Saving LCBs 6-29

60474500 A

PTSTOP - stop transmission to a
terminal 6-28

PTSVxLCB
Restoring LCBs 6-29
Saving LCBs 6-29

PTTPINF - interface to text
processing firmware 6-28

Punch banner cards 11-18

Queue
Structure of a TCB 6-27

Reconfiguration
TCB 2-13

Receive
Functions (LIP) 8-12

Record
Control byte (RCB} 11-10

Recovery 3-1
Host 3-2, 7-19
Line 3-4
Logical link 3-3
NPU 3-2
Terminal 3-4
Trunk 3-3, 8-14

Redundancy
Cyclic check 8-11

Register(s) 6-30
Address code 7-14
Coupler 7-9
Coupler status register bit

assignment 7-11, 7-12
Coupler, use of 7-8
Maintaining paging 4-22
Orderword codes 7-13
Saving 6-30

Regulation 9-22
Control 11-22
Coupler use 7-18
Load 10-16
Upline 11-22

Relationships
PTLINIT with major CCP

modules 5-24
Releasing

Buff er 4-7
Several buffers 4-7
Single buffer 4-7

Response
Modem timeout handling 5-23
Unknown error 11-20

Restoring
LCBs - PTRTxLCB 6-29
LCBs - PTSVxLCB 6-29
Rl and R2 6-30
Registers 6-30

Retransmissions 8-11

60474500 A

Routines
Buffer handling
Handling 4-19

4-8

Point of interface (POI}
Routing 6-11

6-23

Block 1-12
Directories formats
Flowchart for PBSWITCH
Process 6-12

6-13
6-14

RST block 6-8, 6-33, 6-48

Sample
CYBER job stream card inputs for

BVT data handling 6-40
Downline message transmission over

a network link 8-9
Frame formation 8-6
Upline message transmission over a

network link 8-8
Saving

LCBs - PTRTxLCB 6-29
LCBs - PTSVxLCB 6-29
Rl and R2 6-30
Registers 6-30

Segmentation
Of blocks 6-8

Select
Input device command 9-9
Output device command 9-10

Selection
Task in the service module 6-16

Sending
Broadcast SMs 6-22
Statistics SMs 6-21
Status SMs 6-19

Sequence
Function control (FCS}
Host interface 7-19

11-8

Host interface protocol sequence,
host side 7-20, 7-21

Host interface protocol sequence,
NPU side 7-22, 7-23

NPU configuration 2-4
NPU interface 7-19

Service
Channel 6-6
Module, task selection in 6-16

Service Messages
6-9 Assurance on trunks

General format 6-18
Generating statistics
Generating status SMs
Inline diagnostic SMs
Internal SM processing
Line count request SM
Line status SM 6-20
Logical link request SM
Messages 6-15

SMs 6-21
6-19
3-6

6-17
6-21

6-19

Index-15

Sending statistics 6-21
Sending status 6-19
Terminal status SM 6-21
Timing out 6-17
Trunk status request 6-19
Validating 6-17

Services

Set

Console support 4-28
Testing 4-8
Wor klist 4-10

Character detect 9-10
Protect bits 4~25

Shift
Upper/lowercase processing 9-19

Short-term error processing 10-14
Sign-off block 11-15
Sign-on block 11-15
Single word transfers

(control) 7-14
Size

SM
Page 10-10

Configure line 2-11
Configure logical link 2-7
Configure terminal 2-13
Enable 2-7
Logical link status 2-7

Special
Call to firmware interface 1-14
Call to multiplex subsystem 1-14
Edit 9-8
Edit mode 9-18

Standard
Data block format used by the

HIP 7-25
Start-of-text

Processing 9-19
Start up

Workstation 11-14
State

HIP 7-25, 7-26
Interrupt definitions 4-15
Process, locating 12-3
Transition table, PTLINIT 5-25

State Programs
Execution of programs 12-1
Input program interface to modem

state programs 12-10
Program, components of a

state 12-4
Program interface to input data

processor 12-5
Program macroinstruction 12-11

thru 12-16
Programs 12-1
Programs, classes 12-2
Programs functions 12-4

Index-16

Programs, input 12-4
Programs, modem 12-8
Programs, modem, firmware

interface 12-9
Programs, modem, input state

program interface 12-10
Programs, modem, multiplex level

status handler (PTCLAS)
interface 12-9

Statistics
Messages 3-7
Messages format 3-5
Service messages,

generating 6-21
Service messages, sending 6-21

Status
Coupler register bit

assignment 7-11, 7-12
Logical link SM 2-7
Multiplex level status handler

(PCLAS) interface to modem
state programs 12-9

NPU word codes 7-13
Stop transmission to a terminal -

PTSTOP 6-28
STP block 6-7, 6-33, 6-48
Stream, job

Card inputs for BVT data handling,
CYBER sample 6-40

String
Control byte 11-11

Stripping and checking, parity 9-17
STRT block 6-33, 6-48
Structure

CCP modular 1-9
CLA overflow handling 5-21
Generating messages 6-19
Line request service

message 6-20
Logical link request service

message 6-19
Principal data 1-16, 1-17
Service messages generating 6-19
Service messages sending 6-19
Support programs 1-11
Terminal request service

message 6-21
Trunk request service

message 6-19
Structure

Format 8-4, 8-5
TCB queue 6-27

Subblock
Frame and subblock format 8-4,

8-5
Subroutines

Common TIP 6-23

60474500 A

Flowcharts for important common
TIP 6-25, 6-26

For TIPs, common multiplex 5-19
Miscellaneous 4-25
Standard 4-17, 4-18

Subsystem
Basic elements of the 5-2
Multiplex 5-1
Multiplex firmware worklist

entries 5-7
Multiplex, special call to 1-14

Supervisor
!VT block handling for

communications 6-49
Supervisory

Frame 8-12
Console 4-27
Console services 4-28

Support
Block mode 9-17

Suspension
Logical link 3-3

Syntax
BVT block (host/coupler

interface) 6-34 thru 6-37
BVT block table 6-38
IVT block 6-43 thru 6-47

System
Base software 4-1
Interfaces 5-3
Monitor 4-1

Table
BVT block syntax 6-38
OPS monitor 4-3
OPS monitor format 4-4
State transition, PTLINIT 5-25

Tape, paper
Character mode input 9-19
Keyboard, transparent mode input

processing 9-20
Tasks

Non-priority in CCP 1-4
Priority in CCP 1-4
Selection in the service

TCB
module 6-16

Deletion 2-13
Queue structure 6-27
Reconfiguration 2-13

Terminal
Batch virtual 6-31
Batch virtual

characteristics 6-32
Class command 9-5
Class, page width/length 6-49
Configuration 2-12, 9-4, l0-5
Configuration flowchart 2-9,

2-10

60474500 A

Configure SM 2-13
Downline BVT transforms for 20

user terminal printer 10-13
Downline !VT format for

HASP 11-19
Failure 3-4
Format for terminal class, page

width, page length
messages 6-50

Interactive virtual
characteristics 6-41

Interactive virtual (IVT) 6-41
On/off and break control 9-11
Operational procedure 11-5
Parameters, commands for

changing 6-51
Recovery 3-4
Status request service

message 6-21
Virtual transform 6-31

Terminal parameter
definitions 6-51 thru 6-54
Abort output line character

(AL) 6-53
Backspace character (BS) 6-52
Cancel character (CN) 6-52
Carriage return idle count

(CI) 6-52
Character set detect (CD) 6-52
Control character (CT) 6-52
Echoplex mode (EP) 6-53
Input device (IN) 6-53
Line feed idle count (LI) 6-52
Message (MS) 6-54
Output device (OP) 6-53
Page length (PL) 6-52
Page wait (PG) 6-53
Page width (PW) 6-51
Parity selection (PA) 6-52
Special edit mode (SE) 6-53
Terminal class (TC) 6-51
Transparent text delimiter

(DL) 6-53
User break 1 (Bl) 6-53
User break 2 (B2) 6-54

Terminate
Input command (NKENDIN) 5-16
Output command (NKENDIN) 5-16
Output command format 5-18

Termination
Workstation 11-14

Testing
Buffer availability 4-7

Text
Processing state program interface

to input data processor 12-2
Processing state programs 12-6
Transparent delimiter

command 9-8

Index-17

Tirneout(s) 7-19
Error 11-20
Modern response handling 5-23

Timers program execution 4-27
Timing

TIP

Service messages 6-17
Services 4-8
TIP common subroutines 5-19,

6-23
TIP flowcharts for important

common subroutines 6-25,
6-26

TIP multiplex worklist
communications 5-5

TIP OPS level worklists 5-7
TIP standard subroutines 6-24
TIP support programs 1-11
Transfer 7-7

Asynchronous (ASYNC) 9-1
Autorecognition in the

ASYNC 9-24
CMD blocks for ASYNC 9-3
HASP 11-1
HASP, major functions 11-2
Major functions of the ASYNC 9-2
Mode 4 10-1
Mode 4 major functions 10-1
Preprint and postprint format

effectors for ASYNC 9-14
Transaction{s)

Coupler input transactions 7-3,
7-4

Coupler output transactions 7-3,
7-4

Input contention at the
coupler 7-5

Output contention at the
coupler 7-5

Protocol 7-1
Typical output 7-3

Transfer
Functions 7-1
Initiation 7-2
Multiple character data transfer

(block transfer) 7-14
Single word (control) 7-14
Timing 7-7

Transforrn(s)
Data 9-15, 10-6
Downline BVT 10-11
Downline BVT for 200 UT

printer 10-13
Downline IVT 10-7
Downline IVT for Mode 4 10-8
For embedded format effectors (FE)

in ASYNC TIP downline 9-9
FF downline IVT format

effector 10-8

Index-18

Upline BVT 10-11, 10-13
Upline IVT 10-9
Virtual terminal 6-31

Transmission
Block, Mode 4 data format (odd

parity) 10-3
Block, Mode 4 nondata

format 10-3
Sample downline message over a

network link 8-9
Sample upline message over a

network link 8-8
Typical HASP rnultileaving data

block 11-9
Transmit

Functions 8-11
Transition(s)

HIP 7-26
Table, state PTLINIT 5-24

Transparent
Mode 10-9
Mode input processing for keyboard

and paper tape 9-20
Mode output processing for

printer, CRT, and paper
tape 9-22

Text delimeter command · 9-8
Trunk

Disabling 8-13
Enable SM 2-7
Enabling 8-13
Failure 3-3, 8-14
Operation (output only) 8-2
Protocol 8-1
Recovery 3-3, 8-14
Service message assurance 6-9

Type-ahead mode 9-17
Type-checking

Defeating in Pascal procedure
calls 4-19

Types
Block 6-5, 6-6

Uncompressed data 11-18
Unknown response error 11-20
Unnumbered frame 8-11
Unsupported Mode 4 protocol

features 10-17
Upline

6-28 Break - PTBREAK
BVT transforms
Compressed data
Data 8-7

10-11, 10-13
11-17

IVT transforms 10-9
Message classifications
Regulation 11-2

7-18

Sample message transmission over a
network link 8-8

60474500 A

Upper/lowercase shift
processing 9-19

Usage
BVT block protocol 6-32
BVT block syntax table 6-38
IVT block protocol 6-47

Use
Contention for coupler 7-17
Coupler register 7-8
Function codes, programming the

coupler 7-10
Regulation of coupler 7-18
Standard data block format used by

the HIP 7-25
User

Break 1 10-10
Break 1 character command 9-7
Break 2 10-10
Break 2 character command 9-7
Control messages 9-5
Input message format 9-11
Interface 4-15, 5-3, 5-8, 9-4,

11-13
Output message format 9-12
200 UT printer, downline BVT

transforms 10-13

Validating
Service messages 6-17

Values
Format control for BVT

blocks 6-39
Virtual

Batch terminal 6-31
Batch virtual

characteristics 6-32
Interactive terminal

characteristics 6-41
Interactive terminal (IVT) 6-41
Terminal transform 6-31

60474500 A

Wait
Page 10-10
Page command

Width
9-10

Maximum line processing
Page command 9-6

Width/length

9-19

Format for terminal class, page
width, page length
messages 6-50

Page, terminal class
Word

Formats, host 7-7
Formats, NPU 7-7

6-49

NPU status codes 7-13
Single, transfers (control)

Worklist
Calls 1-13
Command driver entries 5-8
Communications, multiplex

LIP 5-5
Communications, multiplex

TIP 5-5
Console entry 4-29
Extracting entry 4-13
Input state program 5-7
Making entry 4-12
Multiplex subsystem firmware

entries 5-7
Organization 4-11
PTCLAS analysis and action
Services 4-10

Workstation

7-14

5-22

Initialization 11-14
Start up and termination 11-14

Write
Duplicate errors 10-15

Index-19

COMMENT SHEET

MANUAL TITLE CCP Version 3 System Programming Reference Manual

PUBLICATION NO. 60474500 REVISION A --------------------- -----
FROM: NAME:

BUSIN_E_S~S--~----------------------~

ADDRESS:
--~

COMMENTS:
This form is not intended to be used as an order blank. Your evaluation of
this manual will be welcomed by Control Data Corporation. Any errors,
suggested additions or deletions, or general comments may be made below.
Please include page number references and fill in publication revision level
as shown by the last entry on the Revision Record page at the front of the
manual. Customer engineers are urged to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

Fold on Dotted Lines and Tape

TAPE TAPE

~~~----------------------------------------------------------------------------------------------------!9:E ___ i 

111111 
N~~~1:R~E 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 
Publications and Graphics Division 
P. 0. Box 4380-P 
Anaheim, California 92803 

IF MAILED 
IN THE 

UNITED ST A TES 

---------------------------------------------------------------------------------------------------------------, FOLD FOLD 





CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN 55440 LITHO IN U S.1 
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

~~ 
CONTR_OL DATA COR_POR{\TION 


