
l';:J ~ CONTl\.OL DATA
\!:I r:!I C01'POR{\TION

NETWORK PRODUCTS

60474600

COMMUNICATIONS CONTROL PROGRAM
VERSION 3
TERMINAL INTERFACE PROGRAM (TIP)
WRITER'S GUIDE
REFERENCE MANUAL

coc® COMPUTER SYSTEMS

255X SERIES

NETWORK PROCESSOR UNIT

HOST OPERATING SYSTEM

NOS1

REVISION RECORD
REVISION DESCRIPTION

A Initial Release

(12/21/79)

B PSR level 528 .. Replaces SCF procedures.

(l/l/81)

Publication No.
60474600

REVISION LETTERS I, 0, Q AND X ARE NOT USED.

© 1979, 1981

by Control Data C or po rat ion

Printed in the United States of America

ii

Address comments concerning this
manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. Box 4380-P
Anaheim, California 92803

-
-

or use Comment Sheet in the back of
this rnanual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins
or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than
content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV

Cover -
Title Page -
ii thru v B
vi thru viii A
ix B
1-1 thru 1-6 A
2-1/2-2 A
3-1/3-2 A
4-1 thru 4-7 A
4-8/4-9 B
5-1 thru 5-29 A
6-1 thru 6-4 A
7-1 thru 7-4 A
8-1 thru 8-5 A
9-1 thru 9-4 A
10-1 thru 10-3 A
11-1 thru 11-8 A
12-1 thru 12-9 A
12-10 B
12-11/12-12 A
13-1/13-2 A
14-1 thru 14-9 A
A-1/A-2 A
lndex-1 thru

Index-5 B
Index-6 A
Comment Sheet -
Mailer -
Back Cover -

60474600 B iii/iv

PREFACE

This manual defines the interface between the standard,
Communications Control Program (CCP), version 3.1, and
a terminal interface program (TIP). The TIP Writer's
Guide is intended for systems analysts and designers who
plan to write programs supporting:

• A terminal which uses a protocol not currently
handled by standard CCP

• A terminal which uses a variation of one of the
standard protocols supported by CCP

It is assumed that the reader is familiar with CCP
functions as described in the CCP Reference Manual, and
with TIP functions as described in the CCP System
Programmer's Reference Manual. It is further assumed
that the TIP writer is familiar with the CCP CROSS
version of the PASCAL programming language, and with
the state programming language as described in the
manuals listed below.

The TIP writer should also be familiar with host products
that directly affect the operation of a TIP: the Network
Access Method (NAM) and the Network Definition
Language (NOL). Knowledge of the host's Interactive
Facility (IAF), Remote Batch Facility (RBF), and
Transaction Facility (TAF) may also be helpful, depending
on the type of terminal to be added to the network.

When interfacing a new TIP to the system, the TIP writer
must use only the structures and functions described in
this document. Control Data cannot be responsible for
the functioning of any system with TIPs which use any
interfaces not described in this manual. Further, when
adding new CCP features or corrective code, Control
Data can change without notice any TIP-related structure
or function not described in this manual.

60474600 B

Publication Title

Network Products
NOS 1 Operator's Gui de

NOS 1 Reference Manual
Volumes 1 and 2

Network Products
Interactive Facility, Version 1
Reference Manual

Network Products
Transaction Facility, Version 1
Reference Manual

CYBER Cross System, Version 1
Build Utilities Reference Manual

CONVENTIONS USED

Throughout this manual, the following conventions are
used in the presentation of statement formats, operator
type-ins, and diagnostic messages:

ALN

aln

[J

{ }

Uppercase letters indicate words, acronyms,
or mnemonics either required by the network
software as input to it, or produced as output.

Lowercase letters identify variables for
which values are supplied by the NAM or
terminal user, or by the network software as
output.

Ellipses indicate that the omitted entities
repeat the form and function of the entity
last given.

Square brackets enclose entities that are
optional; if om1ss10n of any entity causes the
use of a default entity, the default is
underlined.

Braces enclose entities from which one must
be chosen.

Unless otherwise specified, all references to numbers are
to decimal values; all references to bytes are to 8-bit
bytes; all references to characters are to 8-bit,
ASCII-coded characters.

RELATED MANUALS
The manuals listed below contain additional information
on software elements of the Control Data Computer
Systems and software used in network operations. These
manuals can be obtained from CDC Literature and
Distribution Services, 308 North Dale Street, St. Paul,
Minnesota 55103.

Publication Number

60435600

60445300
60445400

60455250

60455340

60471200

v

I

I

I

vi

Network Products
Communications Control Program (CCP)
Version 3
Reference Manual

State Programming Language Reference Manual

Network Products
Communications Control Program, Version 3
System Programmer's Reference Manual

Network Products
Network Definition Language (NOL)
Reference Manual

Network Products
Network Access Method (NAM), Version I
Reference Manual

Network Products
Remote Batch Facility, Version I
Reference Manual

CCP Support Software I
Reference Manual

CYBER Cross System, Version I
PASCAL Computer Reference Manual

CYBER Cross System, Version I
Macro Assembler Reference Manual

60471400

60472200

60474500

60480000

60499500

60499600

96836000

96836100

96836500

This product is intended for use only as described in
this document. Control Data cannot be responsible
for the proper functioning of underscribed features
or undefined parameters.

60474600 A

l. TIP WRITING OVERVIEW

Required Information
Common Support Functions Provided for all TIPs
TIP Writer's Tasks
Summary of Downline Message Processing
Summary of Upline Message Processing
Upline Text Processing

2. MATERIALS NEEDED FOR WRITING A TIP

CCP Reference Manual
Language and Language Support Manuals

CYBER CROSS Reference Manuals
PASCAL Language Reference
CY BER UPDATE Reference Manual
State Programming Language Reference Manual
NOS 1 Installation Handbook

Hardware Reference Manuals
Terminal Protocol Rules
Listings

Master Audit Listing
PASCAL X-Ref Listing
PASCAL Listing
Assembly Listings
MPLINK Listing
MPEDIT Listing
Object Code Listings

3. DESIGN CONSIDERATIONS

Entry Conditions
OPS Level Entry
MUX-2 Level Entry
TCB Initialization

Local and Global Variables
TIP Reentrancy
Block Protocol
Undocumented System Interfaces

4. IMPLEMENTATION CONSIDERATIONS

Changes to the Base System Globals
Worklist Control Block (WLCB)
TIP Type Table
User Global Changes

Field Descriptor Tables
Action Table

State Programs
Base System Data Structure Overlays

LCB Overlay
TCB Overlay
Text Processing Control Block Overlay
CE Error File Entries
Terminal Characteristics Table

Adding a TIP to the Program Library
Global Modifications

TIP-Defined Global Variables
Global Expansion for a New TIP
Service Module Tables
PASCAL Modifications
Macroassembly Language Modifications

Build Procedure

60474600 A

CONTENTS

1-1

1-1
1-1
1-2
1-3
1-5
1-5

2-1

2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-2
2-2
2-2
2-2
2-2

3-1

3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2

4-1

4-1
4-1
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-4
4-4
4-6
4-6
4-7
4-8
4-8

5. PRINCIPAL DAT A STRUCTURES

Worklists
Line Control Block (LCB)
Terminal Control Block
Command Packet
MUX Line Control Block (MLCB)
Text Processing Control Block
Port Tables
TIP Type Table
Terminal Characteristics Table
Code Translation Tables
Dynamic Buffers
System Constant Definitions
System Type Definitions
System Variable Definitions
System Engineering File Work Area

6. BLOCK PROTOCOL

Block Format
Address
Node
Connection Number
Service Channel

Block Types
BLK - Block of a Message
MSG - Message or Last Block of a Message
BACK - Block Acknowledgment
CMD - Command Block
BRK - Break in Message Stream
STP - Stop Message Traffic
STRT - Start Message Traffic
RST - Reset Block
INIT - Initialize Traffic

Bad Blocks Detected by NPU

7. BLOCK PROTOCOL INTERFACE
PACKAGE (BIP)

Downline Data and Commands
Preoutput Point of Interface
Post Output Point of Interface
Command Acknowledgment
Negative Acknowledgment of Blocks and Breaks
Stop Output
Start Output

Upline Data and Commands
Upline Data
Upline Commands
Post Input Point of Interface
Internal Input Point of Interface

Message Sequencing
Error Processing

8. SERVICE MODULE INTERFACE

Enable Line
Disable Line

Configure Terminal
Reconfigure Terminal
Delete Terminal
Terminal Status Changes

5-1

5-1
5-1
5-1
5-1
5-7
5-7
5-7
5-7
5-7
5-7
5-7
5-8
5-8
5-8
5-8

6-1

6-1
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-4

7-1

7-1
7-1
7-1
7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-3
7-4
7-4
7-4

8-1

8-1
8-2
8-2
8-3
8-3
8-3

vii

System Engineering File Entries
Error Processing

9. COMMON TIP SUBROUTINES

Input Regulation, PTREGL
Reentrant Code Entry and Exit Procedures
IVT Command Processing
Statistics

10. BASE SYSTEM INTERFACE

TIP Execution Started By A Worklist
Sending A Worklist Entry
Ruff er Management

Assignment of a Buffer
Buff er Release

Single Buff er Release
Release of a Chain of Buffers

Timing Services
One Second Clock
Line Timer

Line Control Block (LCB) Address

11. MULTIPLEX SUBSYSTEM

Hardware Components
Multiplex Loop Interface Adapter
Loop Multiplexers
Communications Line Adapters (CLA)

TIP Interfaces
Multiplex Level 1 - Input State Programs
MUX-2 Level
OPS Level
Command Ori ver

Control Command
Input Command (NKINPT)

Output Command (NKDOUT)
Input After Output (NKINOUT)
Terminate Input Command (NKENDIN)
Terminate Output Command (NKENDOUT)
Disable Line Command (NKDISL)

12. VIRTUAL TERMINAL TRANSFORMS

Batch Virtual Terminal (BVT)

A

viii

Batch Virtual Terminal Characteristics
Summary of RBF Rules

Control Console and Batch Devices

Block Protocol Acknowledgment Scheme

8-4
8-4

9-1

9-1
9-1
9-3
9-4

10-1

10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-3

11-1

11-2
11-2
11-2
11-2
11-2
11-2
11-3
11-3
11-3
11-4
11-5
11-6
11-6
11-6
11-6
11-6

12-1

12-1
12-1
12-1
12-1

Batch Input
Batch Output
Output Block Size
Line F aiding and Compression
STP and STR T Blocks

BVT Syntax
Interactive Virtual Terminal

Downline IVT Transform
Time of Transferring Downline Data
Downline Data Format
IVT Format Effectors
IVT Character Processing
Auto input
Paging
Page Wait
Terminal Control Codes
Data Block Clarifier
CMD Blocks

Upline IVT Transforms
Backspace Processing
Data Fragmenting
Upline IVT Processing
Page Turn Prompt
Abort Line
Cancel Line
IVT Command
User Breaks
Auto input
Transparent Input Data

13. TEXT PROCESSING INTERFACE

Text Processing State Programs
Downline Text Processing for Low and Medium­

Speed Lines
Downline Text Processing for High-Speed Lines
Upline Text Processing

14. PASCAL GLOBAL INITIALIZATION

MPEDIT Directives
MPEDIT Constants
MPEDIT Variables
MPEDIT Arrays
Assignment Section

Worklist Control Block
TIP Type Tables
Terminal Class Table
Field Descriptor Table Definition
Action Table Initialization
State Program Address Linkage

APPENDIXES

A-1

INDEX

12-1
12-1
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-9
12-9

12-10
12-10
12-10
12-10
12-10
12-10
12-11
12-11
12-11
12-11
12-11
12-11
12-11
12-11
12-12
12-12

13-1

13-1

13-1
13-1
13-2

14-1

14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-3
14-9

60474600A

I

1-1
1-2
1-3
1-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
5-1

5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14

4-1
4-2

6-1
9-1
11-1
11-2
12-1

Principal Interfaces for a TIP
TIP Modules
Simplified Downline Message Flow
Simplified Upline Message Flow
TIP Constants
TIP Types
TIP Variable Arrays
TIP Value Declarations
TIP Forward Declarations
Global Initialization
COMDECKS for LCB, TCB, and TPCB
CNCEFILE COMDECK
PASCAL Language COMDECK
ASMUSER Deck
Compile Definition
Autolink Application Directives
Autolink Definition Directives
Autolink Module Directives
Autolink Application COMDECK Calls
Worklist Control Block and Worklist

Entries
Line Control Block
Terminal Control Block
Command Packets
Multiplex LCB (MLCB)
Text Processing Control Block (TPCB)
Port Table
TIP Type Table
Terminal Characteristics Table
Example of a Code Translate Table
Queue of Chained Buffers
Data Buffers
System Constants Used by the TIP
System Types Used by the TIP

Worklist Control Block
SIT, TIP Type and Subtype, and Terminal

Class
Block Types
CCP Interrupt Levels
MUX-2 Level Workcodes
OPS-Level Workcodes
BVT Syntax

60474600 B

FIGURES

1-2 5-15
1-3 5-16
1-4 6-1
1-6 6-2
4-4 8-1
4-5 8-2
4-5 8-3
4-5 8-4
4-5 8-5
4-6 8-6
4-7
4-7 8-7
4-8
4-8 11-1
4-9
4-9 11-2
4-9 11-3
4-9 11-4
4-9 11-5

11-6
5-2 11-7
5-4 11-8
5-5 11-9
5-8 14-1

5-10 14-2
5-11
5-13 14-3
5-14
5-15 14-4
5-16
5-16 14-5
5-17
5-18 14-6
5-26

TABLES

4-1

4-2
6-2
9-2

11-2
11-3
12-3

12-2
12-3
12-4
14-1
14-2

14-3

System Variables Used by the TIP
System Engineering File Word Area Entry
Sample Block Paths Between NPU and Host
Block Header Format
Enable Line Worklists and Replies
Disable Line Worklists
TCB Configured Worklist
Reconfigure TCB Worklists
Delete Terminal Worklists
Terminal Status Change Call to Service

Module
Sample Call to SVM to Generate a CE Error

Message
Basic Elements of the Multiplex Sub-

system
Command Packet General Format
Control Command Format
Input Command Format
Output Command Packet
Input after Output Command Format
Terminate Input Command Format
Terminate Output Command Format
Disable Line Command Format
MPEDIT Program Structure
MPEOIT Statements to Initialize TIP Type

Table (Sample)
MPEOIT Statement to Initialize Terminal

Class Table (Sample)
TCB and LCB Field Description Table

Initialization (Sample)
MPEOIT Initialization of USER TIP l TCB

Action Table (Sample)
MPEOIT Initialization Statements for

LCB Action Table (Sample)

Formscontrol Values for BVT Blocks
IVT Syntax
Format Effectors
TIP-Type Table Definitions
Terminal Charactertistics Table

Definitions
TCB Field Descriptor Table

5-28
5-29

6-1
6-2
8-2
8-3
8-3
8-3
B-4

B-5

8-5

11-1
11-3
11-4
11-5
11-6
11-7
11-8
11-8
11-8
14-1

14-3

14-3

14-3

14-5

14-5

12-6
12-7
12-9
14-2

14-4
14-8

ix

TIP WRITING OVERVIEW 1

A Terminal Interface Package (TIP) is responsible for
converting messages between the terminal format and the
virtual terminal format used by application programs in
the host. When a terminal logs onto the network, it
becomes connected to an application program in the host,
and a message transfer session begins. The multiplex
subsystem of CCP is responsible for making the physical
characteristics of the line transparent to the TIP; that is,
the TIP need only concern itself with the characteristics
of the terminal. The TIP then makes the physical char­
acteristics of the terminal transparent to the application
program in the host, so that the host programs need only
concern themselves with the characteristic of a virtual
terminal. Two types of virtual terminals are provided: an
interactive type for console devices, and a batch type for
all non-console devices. Note that a TIP can also provide
a transparent mode (no conversion to or from virtual
terminal characteristics).

REQUIRED INFORMATION
This manual concerns itself only with the characteristics
of a TIP. It is assumed that the reader is familiar with
PASCAL language, with the state programming language,
and with the functional characteristics of a network pro­
cessinq unit (NPU), as set forth in the CCP 3 Reference
Manual. Section 2 of this manual lists the materials which
are desirable to have on hand when writing a TIP.

COMMON SUPPORT FUNCTIONS
PROVIDED FOR ALL TIPS
CCP provides five support functions that are needed by
every TIP: a Service Module (SVM), a Block Protocol
Interface Package (BIP), a set of base system subroutines,
a text processor, and a multiplex subsystem. The func­
tions provided by each of these interfaces are as follows:

• SERVICE MODULE: This handles all the terminal
operational characteristics and status information
that is to be exchanged with the host. SVM also
provides table construction and initialization, and
handles any special messages which the TIP may
need to send to the host.

• BLOCK PROTOCOL INTERFACE PACKAGE
(BIP): This provides for transportation of data
from a host application to the TIP. BIP also
provides block flow control for the TIP.

60474600 A

• BASE SYSTEM: The base consists of a monitor
which controls task allocation within the NPU and
a set of standard subroutines which may be used
by a TIP writer. TIPs use standard base sub­
routines for buffer management and for timing
message-related events.

• MULTIPLEX SUBSYSTEM: The multiplex subsys­
tem provides various functions to transfer data
between the NPU and the terminal. It isolates the
TIP from line characteristics and performs the
common functions for controlling the line
hardware. The multiplex subsystem consists of
both software and hardware. Multiplex hardware
consists of a Multiplex Line Interface Adapter
(MLIA) and the Communication Line Adapters
(CLAs). The software consists of a PASCAL
language portion which interfaces with the TIP
(this is called the command driver), and a micro­
code portion which controls the input and output
of characters (collectively this is called the
multiplex firmware; individually it is called the
input processor and the output processor). The
multiplex firmware interfaces to the TIP's own
input state programs (these are written in state
programming language) which aid in translating
incoming characters and formatting the incoming
message.

• TEXT PROCESSING: Two interfaces are neces­
sary: the first is between the PASCAL coded
portions of the TIP and the common text pro­
cessing programs (called the text processor); the
second is between the text processor and the TIP's
own text processing programs (written in state
programming language).

In general, text processing programs are written to con­
vert text and format (on a character-by-character basis)
for downline messages~ while input state programs are
written to do the same thing for upline messages. Input
state programs also assist in demultiplexing the upline
messages which the multiplex subsystem multiplexed as
they entered the NPU.

The five interfaces for the TIP are shown in figure 1-1.

1-l

SERVICE
MODULE
(SVM)

BLOCK
PROTOCOL
INTERFACE
PACKAGE
(BIP)

BASE
SYSTEM
SUBROUTINES

NPU

TIP

TEXT
PROCESSOR

MULTIPLEX
SUBSYSTEM

Figure 1-1. Principal Interfaces for a TIP M-588

TIP WRITER'S TASKS

Since a standard Host Interface Package (HIP) is supplied
in every local NPU, the TIP writer need not concern him­
self with actually transmittinq or receiving data across
the coupler interface to the host. Similarly, since a
standard Link Interface Package (LIP) is supplied in every
remote NPU and in every NPU connected to a remote
NPU, the TIP writer need not concern himself whether his
TIP executes in a local or in a remote NPU. The TIP
writer must, however, provide the following:

1-2

• Modification to system table structures for TIP­
defined fields within common tables.

• Link editor code to initialize line and terminal
data structures which are unique to the TIP.

• PASCAL code to handle requests from the host to
change the status of lines or terminals, and to
inform the host that the requested changes were
or were not made.

• PASCAL code to support the IVT interface for
console devices and the BVT interface for non­
console devices. Code to support transparent
transmissions for consoles is optional.

• PASCAL code to support all the protocol re­
quirements of the terminal. Error processing
must be supplied to handle protocol and other
message processing failures.

• State programming language programs to handle
the protocol requirements and data translation of
upline (incoming) messages.

• State programming language programs to handle
the protocol requirements and data translation of
downline (outgoing) messages.

The TIP consists of five component modules as shown in
figure 1-2. These modules execute on four priority levels,
as will be discussed later. The component modules are as
follows:

• The first module initializes the Terminal Control
Block (TCB) for each terminal serviced (OPS-level
initialization). This module is called by the ser­
vice module to complete the initialization of the
dynamic data structure which controls message
transfers with a terminal. This module must ini­
tialize any TCB fields which the TIP uses as it
starts processing a message. The OPS-level TIP
can change TCB fields as needed during processing.

• The second module handles special priority calls
from the multiplexer subsystem (Mux 2 level TIP).

• The third module contains the bulk of the higher
level decision logic (OPS-level TIP). The OPS­
level TIP provides overall control of every ter­
minal which uses this protocol. It also provides
downline code translation and protocol control
functions (text processing is called from the OPS
level).

• The fourth module handles input message pro­
cessing, character-by-character (input state pro­
grams). A single set of input state programs is
used for all terminals under the TIP's control.

• The fifth module handles output message pro­
cessing, character-by-character (text processing
state programs). The OPS-level TIP calls these
programs when the TIP has a full block of data
ready to be converted. Text processing state
programs are processed on the OPS-level, but are
interrupted by the multiplexer subsystem firm­
ware. These programs are not reentrant.

60474600 A

TIP
DIRECTION OF C All

DATA REFERENC
TCB ----- E --+

SVM
_.. INITIALIZATION ..

(OPS-LEVEL)

MUX-2
LEVEL ..._ ...
TIP

MULTIPLEX
SUBSYSTEM

BASE
SYSTEM ... _.. OPS-LEVEL _..

MONITOR
....- -..,..

TIP "'"

I
I
I

INPUT STATES I
I+-~-----i PROGRAM (ISP)

I
I
I

TEXT
I

PROCESSING I
1-----_J STATES I+-

PROGRAM
(TPSP)

M-589

Figure 1-2. TIP Modules

These five modules execute at four priority levels.
Priority levels are system defined; the TIP writer can
exercise no control over them. The levels are listed in
precedence order, with the highest given first:

• Interrupt level l for processing output characters
to the terminals

• Interrupt level 2 for processing input characters
from the terminals

• Mux-2 level for priority processing of certain ter­
minal events. This level might be used to main­
tain high line utilization, or to provide a high
priority response to a terminal input.

• OPS level. This is the lowest NPU processing
level. The base system monitor gives control to
the OPS-level TIP to perform a single task. The
TIP must return control to the monitor when this
task is completed or suspended. The monitor
assigns control of the NPU by calling all OPS level
modules in rotational order from a list. For
example, the service module can request the TIP
to perform a task by placing the request (in the
form of a work list entry or WLE) in the TIP's
queue of tasks to be performed. Eventually, the
monitor will give control to the TIP to perform
the required task.

NOTE

Any mixing of routines between the Mux-2
level and the OPS-level requires reentrant
code at both levels.

60474600 A

In summary, the TIP writer has four main tasks, listed as
follows:

• Writing modifications to the system data struc­
tures.

• Writing TIP programs and subprograms in PASCAL
language to perform all of the non-character
processing functions of the TIP, including error
processing.

• Writing state language programs to convert the
code, and to format input and output messages,
character-by-character.

• Writing link edit directives to initialize the sys­
tem data structures during the CCP build process.

SUMMARY OF DOWNLINE
MESSAGE PROCESSING
After the connection to a terminal has been established, a
downline message can be processed. Figure 1-3 sum­
marizes the process.

The HIP or LIP handles the initial step of assembling the
message block (MSG or BLK type of block) into buffers in
the NPU. The TIP is not involved in this stage of pro­
cessing.

Once the HIP or LIP acknowledges that the block has been
successfully received, that module sends a worklist to the
BIP to queue the block to the appropriate TCB. The BIP
adds the data block to the TCB's queue and generates a
worklist for the TIP. When the TIP gains control with this

1-3

r-
1
I

©1

CARD
PACKET

HOST
FOR
LOCAL
NPU

CARD ~ HIP BIP

I

1@ 01
~,,/ TEXT

-------------- MLCB

~

I
I

0 I
I
I

L:_J r-_:_~-OC-1E NSS_F _o_R_

I
I
I
I
I
I
I
I

STATE
PROGRAMS

I
MUX I
FIRMWARE _J

I
10
I

OUTPUT LOOP

--+
MESSAGE
BLOCK ------- __ :!. ______ ...,

®
MESSAGE
BLOCK

~:t ___ i __
TO

TERMINAL (IVT FORM) (TML FORMI

(SOURCE) (DESTINATION)

CONTROL

M-591

NOTES TO FIGURE 1-3:

1. A block of downline message is transmitted to the HIP (local NPU) or LIP (remote NPU). That module
assigns buffers to receive the block of data.

2. The HIP or LIP generates a WLE to the BIP for routing block to the TIP.

3. The BIP queues the block to the TCB, and generates a WLE to the TIP.

4. The TIP calls the test processor interface (PTTPINF), after setting up the TPCB with information to
control the conversion. TPCB fields are the only means of communication between the TIP's OPS level and
the text processor.

5. The text processor uses the TIP's text processing state programs to govern transfer and conversion of the
data. Characters are taken from the source buffers, processed, and placed in the destination buffers.
Both code and format conversion take place at this time. At the end of text processing, control returns
to the OPS level TIP. The block is ready to be sent to the multiplex subsystem. The TIP releases
unneeded source buffers.

6. A TIP calls the command driver (PBCOIN) directly to deliver the message. Transfer parameters are in a
conunand packet (NKINCOM). The Multiplex Line Control Block (MLCB) fields are used to control the command
driver and the multiplex firmware while the message is being transmitted.

7. The multiplex subsystem transmits the message one character at a time, using firmware and hardware. The
OPS level TIP is not involved.

8. After the message is transmitted, the command driver calls the Mux-2 level TIP. The TIP releases buffers,
and informs the BIP of a successful message transfer.

9. The BIP creates an acknowledgment message for the host application program.

Figure 1-3. Simplified Downline Message Flow

worklist, the TIP checks the data block's validity and
generates a Text Processing Control Block (TPCB). Then
the TIP makes a direct call to the text processor interface
(PTTPINF). This is the interface to the text processor and
the TIP's own text processing state programs. State
programs (input, output, and modem) are described in
detail in the State Programming Language Reference
Manual. If the user is not familiar with such state
programming concepts as state instructions, state pro­
cesses, state programs, and state program pointer tables,
he is urged to review these concepts.

1-4

User-written text processing state programs implement
the character-by-character transfer f rorn the source
buff er to the newly assigned destination buffer. During
this transfer, code conversion (if any) occurs, and the
message is reformatted from IVT /BVT format to terminal
format. All parameters needed to perform the text
processing (buffer addresses, flags, counters, control
fields) are contained in the TPCB. As it converts the
message, the text processor changes TPCB fields. This
information will be used by the TIP, when it regains
control, to find the status of the text processing operation.

60474600A

The TIP does not regain control until the entire block is
text processed, or until the text processor can do no
more. The TIP releases any source buffers which are no
longer needed. In many cases, the source data is not
completely translated. The TIP determines where pro­
cessing may resume in the source buffer and releases
those buffers which have been fully processed.

When the block is fully translated, the message in the
destination output buffer is ready to be transmitted to the
terminal via the multiplex subsystem. The TIP makes a
direct call to the command driver (PBCOIN) and places
the parameters for the message transmission in a com­
mand packet (NKINCOM). This ends the TIP's concern
with the output operation until the command driver
returns a worklist informing the TIP either that the
message has been transmitted or that the transmission
failed.

The multiplex subsystem sends the block, character by
character, to the terminal. Output processor firmware
frames the data character prior to placing it on the
multiplex output loop. A character is placed on the loop
in response to an output data demand (ODD) interrupt
generated by the communication line adapter for that line.

In the event that the multiplex subsystem cannot send the
message, the subsystem informs the TIP of the failure,
and the reason for the failure. Depending on the way the
TIP is written, the TIP may react as follows:

• It may choose to try sending the message again
without notifying the host that a problem exists.

• It may mark the terminal or line inoperative,
release the message, and notify the host that (l)
the device status has chanqed to inoperative, and
(2) the message was not delivered.

SUMMARY OF UPLINE
MESSAGE PROCESSING
Several steps are required to prepare the multiplex
subsystem for receiving a message (see figure 1-4). As in
the downline case, the HIP or LIP performs the transfer to
the host or to the local NPU. The TIP determines if input
is permitted at this time (input regulation) by calling a
base subroutine, PTREGL, directly. If reception is per­
mitted, the TIP calls the command driver to set up the
input transfer. For asynchronous protocols, PTREGL is
used to discard input since input is not solicited from
those terminals.

60474600 A

Data from the line is placed on the input multiplex loop by
the CLA. As the multiplex subsystem picks the character
from the line, it adds framing information consisting of a
line address. The multiplex subsystem also picks up a line
status word (if any is available from the CLA), and places
the entire packet (frame and data) into the circular input
buffer (CIB). This ends the multiplexing operation.

The multiplex subsystem attempts to demultiplex the data
as fast as it is written into the circular input buffer.
Demultiplexing is activated by a hardware-generated in­
terrupt that occurs each time a new frame is placed in the
circular input buffer.

Demultiplexing control information is contained in the
modem state programs and the TIP's own input state
programs. Note that the modem state programs are a set
of common state programs on the firmware level; the TIP
writer needs only write the input state proqrams.

If status information is detected in the frame, a modem
state program is called to process it. After the current
modem state program finishes processing the status, con­
trol passes to the current input state program. This state
program controls the conversion of the character and its
movement into the line-oriented input buffer. Note that
the firmware is responsible for supplying chained input
buffers for the data.

Demultiplexing continues until the end of the block is
reached. At that time the input state program notifies
the TIP of this condition with a worklist. The TIP then
routes the processed block to the host through the BIP.

UPLINE TEXT PROCESSING
In some cases it is not possible to convert incoming data
in a single real time pass as the characters are being
received from the terminal. In such a case, the input
state program merely demultiplexes the data into the
line-oriented input buffers. Then the block is sent to the
OPS level TIP which has a separate set of text processing
programs for input data. The OPS level TIP calls the text
processor in the same way that the text processor is
called to convert downline data. If at all possible, this
two-pass text processing should be avoided. The pro­
cessing cost of translating characters, both upline and
downline, normally uses at least 50% of the available NPU
resources.

1-5

HOST OR
LOCAL NPU

HIP
OR
LIP

@
WLE

BLOCK
PROTOCOL
INTERFACE
PACKAGE
(BIP)

TIP

BASE
SYSTEM
(PTREGLI

COMMAND G) -s-::-1
PACKET 1 :-- L;---1

I I I
r--'---'--. ---~'----

MUX
FIRMWARE

I
I
I

INPUT a-.. I I
STATE l.&.-~-_J I
PROGRAM i-- I
(ISP) ©I

I
I
10
I
I
I

MODEM
STATE
PROGRAMS

INPUT LOOP

I
I
I
I
I
I
I
I

© I .-------1 L---.,

I
___ L ________________ _

NOTES TO FIGURE 1-4:

INPUT
DATA

CIRCULAR
INPUT
BUFFER

1. The TIP calls PTREGL directly to determine if input is allowed at this time.

2. The TIP calls the command driver (PBCOIN) to initiate input processing. Parameters are passed in the
command packet (NKINCOM).

3. The Multiplex subsystem prepares the hardware for input processing.

4. When the next input character arrives, it is framed and placed in the circular input buffer. The frame
consists of an address. If a line status word is available, it is added to the data packet.

5. The multiplex subsystem uses the number of the line to locate the input state program for that line and
the buffer assigned to receive the data. Then the input processor converts the character as directed by
the input state program.

6. The multiplex subsystem reports an end of input condition to the OPS level TIP (optionally to the mux
level TIP) by means of a worklist entry.

M-590

7. The TIP performs whatever operations are needed to finish the input processing. Then it passes the block
to the BIP.

8. The BIP passes the block to the HIP or LIP, to be sent upline to the host.

Figure 1-4. Simplified Upline Message Flow

1-6 60474600 A

MATERIALS NEEDED FOR WRITING A TIP 2

This section lists the documents that are useful to have
available when writing a TIP. The value of each of the
items to a TIP writer is also defined.

CCP REFERENCE MANUAL

This manual gives a general description of CCP's external
characteristics. Appendices to the reference manual list
all the code sets supported by the standard CCP TIPs:

• ASCII
• Teletype paired ASCII
• Bit paired ASCII
• Binary coded decimal {BCD)
• External BCD
e External BCD - APL
• Correspondence
• Correspondence - APL
• Display
• EBCDIC

The reference manual also contains a description of error
messages and halt codes.

LANGUAGE AND LANGUAGE
SUPPORT MANUALS
Compilation of CCP programs and building of the CCP
load file is done in the host computer. Four source
languages are used to write the CCP programs. A set of
directives is used to compile and integrate a TIP into
CCP. Three of these source languages are used by the TIP
writer. These are as follows:

• PASCAL language. This is used to write the
OPS-level programs, and any Mux-2 level pro­
grams.

• State programming language. This is used to
write the input state programs and the text pro­
cessing state programs.

• Macroassembly language. The TIP writer can use
this occasionally in the OPS-level programs.

The fourth language (microassembler) is used only in CCP
firmware level programs, such as the input processor or
the text processor. The TIP writer never uses this
language.

Link edit and library maintenance directives provide the
commands used to compile the TIP modules and to enter
the TIP into the CCP build (load file).

CYBER CROSS REFERENCE MANUALS

The CYBER CROSS compilers and support programs allow
the user to write programs for the NPU in languages
defined in the last paragraph, and to use the large and
efficient resources of a CYBER 70 or 170 to compile the
programs, to debug them, and to build the load file which
is used by the host to load the NPU.

60474600 A

Five manuals are included in the CYBER CROSS set:

1 CYBER CROSS System PASCAL Compiler Ref­
erence Manual. This manual defines the PASCAL
language and describes how to obtain cross ref­
erence listings.

• CYBER CROSS System Macroassembler Refer­
ence Manual. This manual defines the macro­
assembler rules. The macroassembler is used as
the basis of the specialized state programming
language.

• CYBER CROSS System Microassembler Reference
Manual. This manual defines the microassembler
rules.

e CYBER CROSS System Link Editor and Library
Maintenance Reference Manual. This manual ex­
plains the use of the link editor which is used to
initialize the CCP data structures. It also defines
the format of the CCP library which holds the
modules from which the NPU load file is con­
structed.

PASCAL LANGUAGE REFERENCE

The analyst may wish to read some background infor­
mation in the theory and use of PASCAL coding. This can
be obtained in a hiqhly usable text:

• PASCAL User Manual and Report, Second Edition
Kathleen Jensen and Niklaus Wirth
Springer Verlag, 1974

The text can be obtained through any technical book
dealer.

CYBER UPDATE REFERENCE MANUAL

The UPDATE programs provide the user with an easy
method of modifying the existing CCP libraries.

STATE PROGRAMMING LANGUAGE REFERENCE MANUAL

This manual contains the rules for writing programs in
state programming language. The user must write all
input state programs and text processing state programs
in this language. The manual defines each state
instruction. It also contains a description of the modem
state programs. These are a set of common support
modules for processing status information from the
communication line adapters.

NOS 1 INSTALLATION HANDBOOK

This manual describes the method of installing the NOS
installation tapes which include the CCP files. The
manual also describes the standard build procedure for
CCP.

2-1

HARDWARE REFERENCE MANUALS

Several hardware reference manuals may be of use in
helping the TIP writer to understand the hardware con­
straints of the NPU. These are as follows:

• 255X Host Communications Processor Reference
Manual. This describes the hardware environment
of the NPU.

•

•

•

2560-1/-2/-3 Synchronous Communications Line
Adapter Hardware Maintenance Reference Man­
ual. This describes the hardware environment of
the low and medium speed line controllers.

2561-1 Asynchronous Communications Line Adapt­
er Hardware Maintenance Reference Manual. This
describes the hardware environment of the asyn­
chronous line controllers.

2563-1 Synchronous Communications Line Adapter
Hardware Maintenance Reference Manual. This
describes the hardware environment of the bit
insertion line controllers (HDLC, X.25).

TERMINAL PROTOCOL RULES
Each terminal manufacturer should supply an adequate
description of the terminal's protocol. This must contain
the code definition (including any variations particular to
the terminal) of all symbols used by the terminal. It
should also include the set of default characters used for
non-recognized codes.

LISTINGS
It is often useful to have listings, both of the
base/multiplex subsystem/SIP and of other TIPs, to deter­
mine how other programmers have solved message han­
dling or interface problems.

CAUTION

The TIP writer should note that TIPs in
the standard CCP system use techniques
that are in conflict with the guidelines set
forth in this manual. CDC will support
only those TIPs that are written to con­
form to the rules set forth in this manual.

MASTER AUDIT LISTING

This is a complete source listing for CCP. It is obtained
by using the method described in the UPDATE Reference
Manual.

2-2

PASCAL X-REF LISTING

PASCAL cross-reference listings are available for all
PASCAL programs. The method for producing such
listings is given in an appendix of the PASCAL Compiler
Reference Manual. If the user has the maximum CCP
system (HIP, LIP, and at least three standard TIPs), all the
CCP modules cannot be run in a single cross-reference
listing. The user should split his cross-reference job into
two or more X-REF listings.

PASCAL LISTING

The standard build procedure preserves (as files) the
listings containing PASCAL code. These files can be
copied to the printer for use in reviewing the base system,
the interfaces to the TIP, and TIP coding.

ASSEMBLY LISTINGS

Two assembly listings are also supplied by the standard
build procedure:

• Base modules and modem state programs: These
listings are useful as examples of input
parameters and field initialization requirements
for base programs called by the TIPs. The modem
state program listings show how control passes to
the TIP input state programs.

• TIP state programs: This listings provide coded
examples of methods used by TIP writers to solve
the character by character protocol processing
problems for their equipment. The listings also
show how to pass control from the state level to
the OPS level TIP.

Assembly listings contain code conversion tables, and
state instruction definitions in macroassembly format.

MPLINK LISTING

A set of MPLINK listings are provided for each CCP
system variant. These listings indicate the program
module addresses.

MPEDIT LISTING

The MPEDIT listing shows the global tables and variables
which are initialized in the standard CCP system. This
includes all the fields and variables initialized by the
standard TIPs.

OBJECT CODE LISTINGS

The PASCAL compiler produces a set of listings of the
NPU instructions which are the result of the compilation.
This listing can be helpful in debugging code.

60474600 A

DESIGN CONSIDERATIONS 3

The internal structure of a TIP is determined by the
characteristics of the terminal's protocol, by the inter­
faces to the rest of CCP, and indirectly to the application
programs which are used in the host. Usually a TIP
supports more than one terminal. A TIP can support a
variety of related terminal types.

Because of the difference in the rates at which line­
related events and NPU-related events occur, the TIP
must handle conditions where a terminal event is to occur
after a period of time, rather than immediately. The TIP
must therefore have programs dependent on waiting for a
terminal event to occur. Since the TIP may be required to
handle several similar terminals on individual lines, each
at its own stage of processing a message, the TIP must
have reentrant code.

In planning the structure of a TIP, the writer must con­
sider the following:

• The methods which the system uses to access the
TIP

• The structure of the interfaces the TIP must use
to access the system

• The use of local and global variables

ENTRY CONDITIONS
CCP uses three types of entry into the TIP:

• The normal processing entry is by means of a
worklist to the OPS level TIP programs. The TIP
is called to continue processing a message or an
1/0 status chanqe. This call is made by the
OPS-level monitor.

• A high priority entry point can be provided for the
TIP to process interrupt-driven tasks on the Mux-2
level. This call is made by the multiplex sub­
system's worklist handler.

• A direct entry is made to handle initialization of
those variables in the Terminal Control Block
(TCB) which are unique to this TIP. This is a
direct (return jump) call from the service module.
(This is theoretically optional, but is in fact
required on all but the simplest TIPs.)

OPS LEVEL ENTRY

The OPS-level TIP is an event-driven module which must
surrender control of the NPU for all wait conditions. Sys­
tem modules external to the TIP (or the TIP itself) request
the TIP to execute a task. The tasks are queued in a list
of unexecuted tasks. The Worklist Control Block (WLCB)
is the data structure which handles this task list. Each of
the tasks are called a worklist entry (WLE). Unsolicited
worklists are generated outside of the TIP. Solicited
worklists are generated by the TIP itself.

60474600 A

When the OPS monitor passes control of the NPU to the
TIP, the monitor also passes the worklist parameters to
the TIP. The TIP must have an entry structure that is
able to determine the exact task to be performed. This is
often done by switching to the appropriate TIP program
based on the workcode in the worklist.

MUX-2 LEVEL ENTRY

The multiplex subsystem enters the TIP's Mux-2 level
entry (if it is defined) to process certain types of priority
tasks. This entry appears to be a worklist-driven call, but
it is in fact a direct call using a return jump. OPS-level
processing may have been interrupted by a Mux-2 level
call. Therefore any shared OPS-level and Mux-2 level
procedures must be written using reentrant code.

TCB INITIALIZATION

The call to initialize those TCB fields that are unique to a
terminal must take place before using the terminal for the
first time.

LOCAL AND GLOBAL VARIABLES
CCP's global variables are defined for all modules in the
system. Since these globals are reserved for system use,
they may change as the system changes. Therefore the
TIP writer should avoid accessing such fields, and should
avoid defining system globals unless it is absolutely nec­
essary.

The necessary uses of system globals are as follows:

• Variables to be initialized by the build process
must be globally defined. The TIP writer must
provide MPEDIT declarations to specify the values
to be preset. The MPEDIT program locates a
variable to be initialized by its associated entry
point name. The PASCAL compiler allows only
global variables to have entry point names.

• In some cases, global variables are also needed to
pass parameters between modules of a TIP. This
is needed when the size of the TIP exceeds the
capacity of the compiler to place all TIP code in a
single module.

Local variables are used by the TIP writer as needed.
Unfortunately, reentrancy requirements can conflict with
such use. Local variables within a TIP should never be
assumed to hold valid information after the TIP has given
up control of the NPU to wait for an external event to
occur.

All variables should be defined uniquely. Multiple defi­
nition of variables may compromise the maintainability of
the system.

3-1

TIP REENTRANCY
Once the OPS level TIP is given control of the NPU, it is
allowed to execute until the TIP voluntarily returns con­
trol to the system. (Of course, this priority level may be
interrupted one or more time for higher priority tasks, but
such operations are invisible to the OPS level TIP.) The
TIP defines the points where reentrancy is permitted.
This matter is discussed in detail in section 8. The system
and the compiler do not provide sufficient capabilities to
code a TIP without considering reentrancy.

BLOCK PROTOCOL
Data is transported within the network using the block
protocol. The TIP has the responsibility of placing the
data in block formr:it before it passes it to any other

3-2

module, and the system provides interface modules to
move the blocks (and in some cases, to provide additional,
specialized formatting). The TIP must use these inter­
facing transport modules. The TIP is not allowed to
develop its own transport mechanisms in avoidance of
these system-provided interfaces.

UNDOCUMENTED SYSTEM INTERFACES
The system modules and the TIPs are compiled together in
a single CCP compilation. As the TIP writer designs his
TIP, he may become aware of many system modules and
globial variables that are reserved for system use. The
TIP writer should not use these modules and variables,
since CDC reserves the right to alter or delete any of
them at any time. CDC warrants only to maintain the
interfaces that are defined in this manual.

60474600 A

IMPLEMENTATION CONSIDERATIONS 4

Implementation of a new TIP requires the following:

• Coding the PASCAL OPS-level and Mux-2 level
programs

• Coding the state programs (input and text pro­
cessing)

• Coding the system global changes

• Coding the initialization directives for MPUNK
and MPEDIT

• Codinq the system build directives

Each of these coded programs and directive sets are
placed in various system and user supplied COMDECKS
and are added to the system library on the CYBER host.

CHANGES TO THE BASE SYSTEM
GLOBALS

Adding a TIP to the system requires that several data
structures be altered to make room for tables that the TIP

needs, and to provide standard mnemonics. Extensions are
required to the worklist control block (WLCB), the TIP
type table, and the terminal control block (TCB).

WORKLIST CONTROL BLOCK (WLCB)

A WLCB is defined for each TIP. It indicates the address
of the TIP's OPS-level entry point. The TIP writer must
add the following indices to COMDECK CONSTR4:

• BOUWLl
• BOUWL2
• BOUWL3
• BOUWL4

The values selected must be in increasing numerical order
and begin with the former value of BODUMMY. BO­
DUMMY is always the last entry, its value is one greater
than BOUWL4. The TIP writer must initialize the entries
used in the control array, as described in section 12. The
format of the worklist entry table is shown in table 4-1.

TABLE 4-1. WORKLIST CONTROL BLOCK

60474600 A

OPS-Level Programs:

These worklists are serviced by the OPS monitor program. They are also part
of the worklist array. New entries must be added at the end. The last entry
must be BODUMMY which is equal to the last TIP worklist value.

Type/Value

BOCHWL = 8;
BOINWL = 9;
BOMLWL = 10;
BOSMWL = 11;
BOTIWL = 12;
BOTYWD = 13;
BOLIWL = 14;
BODGWL = 15;
BOCOWL = 16;
BOHDLC = 17;
BOM4WL = 18;
BOTIYWL = 19;
BOHASP = 20;
B027WL = 21;
BOIIBWL = 22;
BODUMMY = 23; LBOASYNC = BOTTYWL;

Delete this card and add:

BOVWLl = 23
BOVWL2 = 26
BODUMMY = 27

Meaning

CONSOLE PROGRAM
INTERNAL PROCESS
MLIA INTERRUPT HANDLER
SERVICE MODULE
TIMING SERVICES
TIP DEBUG
LINE INITIALIZER
ONLINE DIAGNOSTICS
HOST INTERFACE PACKAGE (HIP)
HDLC LIP
MODE 4 TIP - BVT
MODE 3 TIP - TIY - IVT
HASP TIP
2780/ 3780 TIP
HASP/360 HIP
DUMMY FOR CONSOLE
ASYNC TIP

4-1

TIP TYPE TABLE

The TIP type table defines the characteristics of the TIP
and provides linkage to the configuration control para­
meters. The table is expanded for the four possible user
TIPs, and standard mnemonics are defined. The TIP
writer must expand the SYTIPTYPT array in COMDECK
TYPE and add the following indices to the COMOECK
CONSTR4:

• NOUTTl = 12; USER TYPE 1
e NOUTT2 = 13; USER TYPE 2
e NOUTT3 = 14; USER TYPE 3
e NOUTT4 = 15; USER TYPE 4

These values for the TIP type are permitted in the Net­
work Definition Language (NOL). The content of the TIP
type tables must be initialized by the TIP writer, as
explained in section 12. Table 4-2 shows the required
changes.

USER GLOBAL CHANGES

The user must define the arrays which are used by the
service module to process the line and terminal con­
figuration options. Four arrays are added to the user­
supplied VARtip COMDECK for line and terminal
configuration. These tables define the field descriptor
tables Cline and terminal) and the action tables Cline and
terminal).

NOTE

In the following COMOECK descriptions,
the COMOECK-s have a name AAAtip
where AAA is a system defined deck type
and TIP is a three character mnemonic
supplied by the TIP writer.

TABLE 4-2. SIT, TIP TYPE AND SUBTYPE, AND TERMINAL CLASS

4-2

System Interface Table Types:

Type l Value

SYLCBP = ARRAY HLRANGE OF BZLCBF;
SYLINO = ARRAY HLRANGE OF BOLINO;
SYENTY = ARRAY BCPRILEVEL OF BWWORKLIST;
SYLTYT =ARRAY INCLTYP,l •• NKRC30UT OF NBLTYE;
SYPRTT = ARRAY 0 •• 1 OF NAPCRY;
SYCTCT = ARRAY NOLNSPDS OF NICTCY;
SYTMTB = ARRAY COTDPGMS OF CBSYTMT;
SYTECT = ARRAY NOTCLASS OF NJTECY;
SYTIMTBL =ARRAY 0 .• 1 OF BZLTIME;
SYTIPTYPT =ARRAY NOHDLC •• NOCLCIAG OF TIPTYPE;
SYOVLCB = RECORD

DCOVID : INTEGER;
DCOVLST : DOOVLSTATE;
DCLBN : INTEGER;
DCBN : JSASCIISET;

Change this name to:

NOUTT4

System Interface Table:

Type 1 Value

SITTBL = PACKED RECORD
SIENTY : SYENTY;
SITMTB : SYTMTB;
SIWLCB : BYWLTY;
SIDBSIZE : BECTPTR;
SITPSIZE : BECTPTR;
SINJTEC : SYTECT;
SITIMTBL : SYTIMTBL;
SITIPTYP : SYTIPTYPT;
SIOVLBLK : SYOVLCE;
SILCBP : SYLCBP;

LAdd:

...

NOVTCl = 28;
NOVTC4 = 31;

Meaning

OVERLAY CONTROL BLOCK
OVERLAY ID
OVERLAY STATE
LAST BLOCK NUMBER
BLOCK NUMBERS LOADED

Meaning

POINTER TO BWWLENTRY
POINTER TO CBTIMTBL
POINTER TO BYWLCB
POINTER TO BEDBSIZE
POINTER TO BETPSIZE
POINTER TO NJTECT
POINTER TO BLTIMTBL
POINTER TO BJTIPTYPT
POINTER TO SYOVLCB
POINTER TO HALCBP

60474600 A

Field Descriptor Tables

The host software must be modified to add new para­
meters for the configure or reconfigure terminal service
messages. Messages are sent downline from the host to
initialize fields in these tables. These configuration mes­
sages state the values to be placed in the fields by means
of a field number/field value (fn/fv) pair. The tables are
required, even though the entries may be empty. The
following arrays are added to the VARtip COMDECK:

• VALnFDT: ARRAY O .• x OF DDFDTENTRY:
LINE FIELD DESCRIPTOR

• VATnFDT: ARRAY O •• x OF DDFDTENTRY:
TMNL FIELD DESCRIPTOR

where:

n has the range of 1 through 4, corresponding to user
TIP 1 through 4.

x is the number of fn/fv pair entries.

The TIP writer must initialize these tables as described in
section 14.

Action Table

The host uses line and terminal configuration service
messages to send to downline user-defined line or terminal
options. The variables are sent in the form of a field
name/field value pair (fn/fv). Action tables define the
appropriate type of initialization that is to be performed
while setting up each of these fn/fv pairs. The user
defines the following arrays in the VARtip COMDECK:

• VALnAT :ARRAY l..x OF DFATENTRY
LINE TABLE ACTIONS

• VATnAT :ARRAY l..x OF DFATENTRY
TERMINAL TABLE ACTIONS

where:

n has the range of 1 through 4 corresponding to user
TIP 1 through 4.

x is the number of entries.

The TIP writer also must initialize these action tables as
described in section 12.

STATE PROGRAMS
State programs include the input state programs, the text
processing state programs, the code translation tables,
and common definitions. The state programs use state
processing instructions almost exclusively, although any
valid macroassembler instruction can be used. The fre­
quently used macroassembler instructions are as follows:

• EQU to equate a protocol name with a value, or to
define usage for a file 1 register

• EXT to define entry points, such as a translation
table address

•
•

ENT to define the entry point to a state program

MAC to define the pointers table for a state pro­
gram

60474600 A

•

•
•

•

EMC to end the state program pointers table
macro definition

SPC to add blank lines to a listed output

EJT to insert a top-of-page command in a listed
output

ADC for address constants

The state programming language is described in detail in
the State Programming Lan~uage Reference Manual. The
deck structure for compiling state programs using UP­
DATE is described in the UPDATE Reference Manual.
There are two common definition decks:

• MUXMACROS defines the input state instructions
(macros) for the macroassembler. It also contains
EQU statements for multiplex subsystem con­
stants and for workcodes (AOWKn).

• REL4CONST contains EQU statements for the IVT
and BVT constants that are common to all CCP
programs.

Translation tables are written using macroassernbler
statements exclusively. The macroassembler language is
described in detail in the CYBER CROSS System Macro­
assembler Reference Manual.

BASE SYSTEM DATA STRUCTURE
OVERLAYS
The TIP writer probably will need to define the names of
fields in the user portions of the following tables:

• Line control block (LCB)

• Terminal control block (TCB)

• Text processing control block (TPCB, a subset of
the multiplex line control block NCLCB)

• CE error file entry (CNCE)

LCB OVERLAY

The entries are made in the tipLCB user COMDECK, and
are PASCAL statements of the form:

1:(
BZname

) ;

type; description

The prefix BZ is used for all LCB fields, and the name
must be unique.

TCB OVERLAY

The entries are made in the tipTCB user COMDECK, and
are PASCAL statements of the form:

1:(
BSname

) ;

Array; IVT fields
o •. 6

OF INTEGER

4-3

The prefix BS is used for all LCB fields, and the name
must be unique.

1EXT PROCESSING CONTROL BLOCK OVERLAY

The entries are made in the tipMLCB user COMDECK,
and are PASCAL statements of the form:

i':(CNname : type; field description

) ;

The prefix NC is used for all TPCB fields, and the name
must be unique.

CE ERROR FILE ENTRIES

The entries are made in the tipCEFILE user COMDECK,
and are PASCAL statements of the form:

l:(CNname : type; field description

);

The prefix CN is used for all CE file fields, and the name
must be unique.

TERMINAL CHARACTERISTICS TABLE

The TIP writer must create new tables to define the
terminal classes to he used with his TIP. These tables
define default values for IVT parameters to be used during
terminal configuration. The TIP writer adds the indices
for the four user terminal classes by adding constants to
the CONSTR4 COMOECK. Entries are of the form:

e NOUTCl = 28; USER TERMINAL CLASS 1
• NOUTC2 = 29; USER TERMINAL CLASS 2
e NOUTC3 = 30; USER TERMINAL CLASS 3
• NOUTC4 = 31; USER TERMINAL CLASS 4

These values are permitted to be defined in the Network
Definition Language.

The terminal class arrays must also be extended to include
the tables. This is done by adding the following state­
ments to the TYPE COMDECK:

NOTCLASS = 0 •• 31; TERMINAL CLASS
NOTTYP = NOTMLI~ •• NOUTC4; TERMINAL CLASS

The content of the new entries in the arrays are supplied
by the TIP writer using the guidelines of section 12.

ADDING A TIP TO THE PROGRAM

LIBRARY
The TIP writer must add to the program library all the
COMDECKs containing code for global modifications,
PASCAL TIP code, microassembly language TIP code (this
includes the state language programs), and the global
initialization statements.

GLOBAL MODIFICATIONS

Modifications are made for adding TIP-defined global

4-4

variables, for expanding the new TIP's system globals, for
defining the service module tables, and for defining new
CE error file messages.

TIP-Defined Global Variables

User globals are placed in their own UPDATE COM­
DECKs. The names are defined to be easily recognized.
Calls to these COMDECKs are placed in the following
standard system COMDECKs:

COMDECK Name

CONSTUSR

TYPEUSER

VARUSER

VALUSER

FWDUSER

Content of COMDECK

Call to the TIP's constants defi­
nition COMDECK

Call to the TIP's types definition
CO MOECK

Call to the TIP's variables defi­
nition COMDECK

Call to the TIP's values definition
CO MOECK

Call to the TIP's forward defi­
nition CO MOECK

Examples of each of these COMDECKs are given in
figures 4-1 through 4-5.

*COMDECK CONSTUSR
*$J+ PAGE EJECT

* *
* USER CONSTANTS CALL DECK *

* *

*CALL CONSTR.4
*CALL CONBLK
*CALL IPCON
*IF DEF,SVMODULE,1
*CALL SVMCON ST
*IF DEF,OLDIAG,4
*IF DEF ,CLAIA, 1
*CALL CONODC
*IF -DEF,CLAIA,1
*CALL CONOLD
*IF DEF ,HIP ,1
*CALL CONHIP
*IF DEF ,MODE4, 1
*CALL CONMD4
*IF DEF,TESTGEN,l
*CALL CONTST
*IF DEF, LDDMPO, 1
*CALL CONLDP
*IF DEF ,IVT, 1
*CALL CONIVTC
*IF DEF, ASYNC, 1
*CALL CONASYNC
*IF DEF ,HLIP, 1
*CALL CONLRZQSS
*END IF

If a new TIP is written with global constants
defined, the user must supply a call:

*CALL tipCON

A tipCON COMDECK defines the TIP's constants.

Figu-re 4-1. TIP Constants

60474600 A

*COMDECK TYPEUSER
*$J+ PAGE EJECT

*
*
*

USER TYPE DECLARATIONS DECK
*
*
*

*IF DEF,SVMODULE,l
*CALL SVMTYPE 3
*IF DEF ,ASYNC, 1
*CALL TYPASYNC
*IF DEF ,OLDIAG, 4
*IF DEF ,CLAIA, 1
*CALL TYPODC
*IF -DEF ,CLAIA, 1
*CALL TYPOLD
*IF DEF , LDDMPO, 1
*CALL TYPLDP
*IF DEF,LRZQSS,l
*CALL TYPLRZQSS
*IF DEF, IVT, 1
*CALL TYPIVTC
*IF DEF,HASPTIP,l
*CALL HASPTYPE

If a new TIP is written with global types defined,
the user must supply a call:

*CALL tipTYPE

A tipTYPE COMDECK defines the TIP's TYPE statements.

Figure 4-2. TIP Types

*COMDECK VARUSER

*
*
*

USER VARIABLES DEFINITIONS
*
*
*

*IF -DEF,OVLYBUILD
*CALL IPVAR
*CALL VARBLK
*IF DEF,SVMODULE,l
*CALL SVMVAR
*IF DEF ,HIP, 1
*CALL VARHIP
*IF DEF ,MODE4, l
*CALL VARMD4
*IF DEF,TESTGEN,l
*CALL VARTST
*IF DEF,HASPTIP,l
*CALL HASPVAR
*IF DEF ,ASYNC, 1
*CALL VARASYNC
*IF DEF ,HLIP,1
*CALL VARHLIP
*END IF
*IF DEF ,OLDIAG,4
*IF DEF ,CLAIA,l
*CALL VARODC
*IF -DEF, CLAIA, 1
*CALL VAROLD
*IF DEF,LDDMP0,1
*CALL VARLDP

If a new TIP is written with new global arrays
defined, the user must supply a call:

*CALL tipVAR

Figure 4-3. TIP Variable Arrays

60474600 A

*COMDECK VALUSER

*
*
*

USERVALUES DECLARATION
*
*
*

*IF -DEF,OVLYBUILD
*CALL IPVAL
*IF DEF,SVMODULE,1
*CALL SVMVALUE
*IF DEF ,ASYNC, 1
*CALL VALASYNC
*IF DEF,HASPTIP,1
*CALL HASPVAL
*ENDIF...-~~~~~~~~~~If a new TIP is written
*IF DEF,OVLYBUILD with new global values
VALUE defined, the user must
********************* supply a call:
** **
** VALUES ** *CALL tipVAL
** **

*ENDIF
*IF DEF,OLDIAG,4
*IF DEF,CLAIA,l
*CALL VALODC

A tipVAL COMDECK defines
values for the TIP
defined variables

*IF -DEF ,CLAIA, 1
*CALL VALOLD

Figure 4-4. TIP Value Declarations

*COMDECK FORWDUSER

* *
*
*

USER FORWARDS DECLARATION *
*

*IF DEF ,MODE4, 1
PROCEDURE PT4CSTATE(V3IN:BOOLEAN;V30N=BOOLEAN);
FORWARD;

*CALL SVMFWD
*IF DEF,ASYNC,l
*CALL ASYNCFWD
*IF DEF, IVT, 1
*CALL IVTFWD

Forward declarations may be needed
for a new TIP. In this case, the
user must supply a call:

*CALL ti pFWD

These declarations solve the
forward calling requirements of the
PASCAL compilation.

Figure 4-5. TIP Forward Declarations

4-5

The TIP writer should define a three character mnemonic
to identify the TIP. In all the examples which follow, the
mnemonic "tip" is used. The following list specifies the
COMDECK for TIP-defined globals:

COMDECK Name

tipCON
tip TYPE
tip VAR
tip VAL
tipFWD

Contents

TIP-defined constants
TIP-defined types
TIP-defined variables
TIP-defined value initializations
TIP-defined forward declarations

The TIP-defined variables may be initialized during the
system build procedures by means of MPEDIT directives.
The directives are contained in unique COMDECKs as
shown:

COMDECK Name

ZCNtip
ZAR tip
ZEXtip

Contents

TIP-defined constants
Array sizes for TIP-defined arrays
Variable initialization statements

These uniquely defined COMDECKs are called from the
standard system COMDECKs:

COMDECK Name

ZCONUSER
ZARR USER
ZEXUSER

Contents

Call to user edit constants
Call to user array size definitions
Call to user edit directives

An example of this COMDECK structure is shown in
figure 4-6.

*COMDECK ZCONUSER

*
*
*

*IF DEF, tipnam,1
*CALL ZCNtip

*
*
*

*COMDECK ZARRUSER

*
*
*

*IF DEF, tipnam,1
*CAIL ZARtip

*
*
*

*COMDECK ZEXUSER

*
*
*

*IF DEF, tipnam,1
*CALL ZEXtip

*
*
*

User adds a call to his
constant defining deck,
ZCNtip. User defines
ZCNtip as a COMDECK.

User adds a call to his
array defining deck,
ZARtip. User defines
ZARtip as a COMDECK.

User adds a call to his
field initialization
definition deck, ZEXtip.
User defines ZEXtip as a
COMDECK.

Fiqure 4-6. Global Initialization

4-6

GLOBAL EXPANSION FOR A NEW TIP

Standard system globals must be expanded to provide the
necessary control linkage to base system routines. The
following standard COMDECKs are referenced:

COMDECK Name

CONSTR4

TYPE

Necessary Additions

• Worklist entry indices for the
new TIP

• New user terminal type names
• New user TIP type names

• Expanded array for new TIP
types

• Expanded array for new ter­
minal classes

MPEDIT statements in the ZEXtip COMDECK are used to
initialize the values in the expanded arrays created by
these tables. These MPEDIT statements initialize the
worklist control block, the terminal type table, and the
terminal characteristic table (terminal class). Guidelines
for using these statements are given in section 12.

Data structures are also customized for each new TIP by
adding overlays to existing structures. In each case a
unique name should be assigned for a COMDECK con­
taining the type declarations:

COMDECK Name

tipLCB
tipTCB
tip ML CB

Contents

TIP-defined extention to LCB
TIP-defined extention to TCB
TIP-defined extention to TPCB

The TIP writer should insert a call to these TIP defined
overlays in the corresponding system COMDECKs:

COMDECK Name Contents

TYPELCB Contains calls to TIP-defined over­
lay

TYPETCB Contains calls to TIP-defined over­
lay

TYPENCLCB Type declarations for the TPCB

Examples of these COMDECKs are given in figures 4-7.

SERVICE MODULE TABLES

The service module requires four tables to be defined for
each TIP in the system. These tables define the TIP
specifications for processing line and terminal table
construction. In general, these tables define the valid
ranges of values provided by a user when the system is
configured. The table definition may be placed either in
the TIP's variable definition COMDECK, or in a unique
CO MOECK.

COMDECK Name

unique name
unique name
unique name
unique name

Contents

LCB field descriptor table
TCB field descriptor table
LCB action table
TCB action table

If the user determines that the TIP requires one or more
new CE error message types, an overlay should be added
to that data· structure.

60474600 A

*COMDECK TYPELCB

* *
* LCB DEFN FOR RELEASE 4 *

* *

*IF DEF ,MODE4, 1
*CALL TMD4D2
*IF DEF ,HASPTIP, 1
*CALL HASPLCB
*IF DEF, ASYNC, 1
*CALL ASYNCLC~The user must put his call

for the new TIP here:

*CALL tipLCB

The tipLCB deck is defined
as a numbered overlay.

*COMDECK TYPETCB

* *
* TCB DEFN FOR RELEASE 4 *

* *

*CALL TYPEIVT
*IF DEF ,MODE4, 1
*CALL TMD4D 1
*IF DEF,HIP,1
*CALL THIPD 1
*IF DEF ,ASYNC, 1
*CALL TASYNC
*IF DEF,HASPTIP,1
*CALL HASPTCB
*IF DEF ,HLIP, 11
*CALL TYPIHLIP......---------The user inserts his call

for the new TIP here:

*CALL tipTCB

The tipTCB deck is defined
as one or more overlays.

*COMDECK TYPENCLCB

* *
* USER APPS FOR NCLCB -- R4 *

* *

IF DEF,HASPTIP,1
CALL HASPMLCB
IF DEF ,MODE4, 1
CALL TMD403

*IF DEF , ASYNC , 1
*CALL ASYNCMLCB.....--------The user inserts his call

for the new TIP here:

*CALL tipMLCB

The tipMLCB deck is defined
as one or more numbered
overlays.

Figure 4-7. COMDECKS for LCB, TCB, and TPCB

NOTE

If these new types of error messages are
used, changes to the host's engineering
file analyzer will also be required. These
changes are not discussed in this docu­
ment.

60474600 A

The following COMDECKS must be added:

COMDECK Name Contents

tipCEFILE TIP-defined overlay for CE error
messages

A call to this COMDECK is added to the standard system
CO MOECK:

COMDECK Name Contents

TYPECNCE Defines the CE error message over­
lay.

Figure 4-8 shows the CE error message COMDECI<.

*COMDECK TYPECNCE

* *
* RELEASE 4 CNCEFILE DEFNS

*
*
*

**

3: (VM4LINO INTEGER
VM4CA,
VM4TA B08BITS;
VM4DT NODEVTYP;
VM4TC NOTCLASS;
VM4SPARE B02BITS;
VM4ERRCNT B06BITS);

4: (HSLINO INTEGER);

5: (HLINO INTEGER;
HLNID B08BITS);

6: (ASYLINO INTEGER;
ASYCA,
ASYTA B08BITS;
ASYDT NODEVTYP;
ASYTC NOTC LASS) ;

*CALL tipCEFILE

MODE4TIP
LINE NUMBER
CLUSTER ADDRESS
TERMINAL ADDRESS
DEVICE TYPE
TERMINAL CLASS
SPARE
ERROR COUNT

HASP TIP
LINE NUMBER

HDLC LIP
LINE NUMBER
REMOTE IDDE ID

ASYNCTIP
LINE NUMBER
CLUSTER ADDRESS
TERMINAL ADDRESS
DEVICE TYPE
TERMINAL CLASS

Figure 4-8. CNCEFILE COMDECK

PASCAL MODIFICATIONS

The PASCAL portions of the TIP are added as a single
COMDECK with the following name:

COMDECK Name Contents

tip TIP All PASCAL code for the user TIP

This COMDECK is called from the standard system
COMDECK as indicated:

COMDECK Name Contents

USERAPPS Call to PASCAL code for TIPs

Figure 4-9 shows the PASCAL code COMDECK.

4-7

*COMDECK USERAPPS
*$J+

* *
* USER APPLICATIONS PROGRAM CALLS *

* *

*CALL IP
*IF DEF ,HLIP, 1
*CALL HLIP
*IF DEF' IVI'
*CALL FBFMAD
*CALL PARSER
*CALL PTIVTCMD
*END IF
*IF DEF, HIP, 1
*CAU. HIP30
*IF DEF ,MODE4, 1
*CALL MODE4 TIP
*IF DEF,HASPTIP,l
*CALL HASPTIP
*IF DEF,ASYNC,2
*CALL ASY lOOMS
*CALL ASYNCTIP
*IF DEF ,OLDIAG, 1
*CALL OLDGOVL
*IF DEF,LDDMPO,l
*CALL LDMPOVL
*IF DEF,SVMODULE,l
*CALL SVM

If a new TIP is written,
the call must be
included here:

*CALL tipTIP

This calls all OPS-level
TIP COMDECKS.

Figure 4-9. PASCAL Language COMDECK

MACROASSEMBLY LANGUAGE MODIFICATIONS

The macroassembler portions of the TIP (state pro­
gramming language modules) are added as a single COM­
DECK with the following name:

COMDECK Name Contents

tipASSEM All assembly language decks in
the TIP

This COMDECK is called from the standard system
COMDECK as indicated:

COMDECK Name

AS MUSER

Contents

Call to TIP's assembly language
modules

Figure 4-10 shows the PASCAL code COMDECK.

Four separate assembly decks (idents) should be defined
for the TIP. These are the input states programs, the
input translation tables, the output text processing state
programs, and the output translation tables. If a second
pass is defined for input processing, a fifth deck is also
needed: the input text processing state programs with
their associated input text processing translation tables.
Any of these decks can be omitted if not needed. More
decks can be defined to separate subfunctions, but in this
case more build directives are required. If any macro­
assembler programs are to be called from the PASCAL
code, these can be specified as one or more idents.

To simplify the build directives, each program should have
one entry point with the same name as the deck (ident). If

4-8

COMDECKs are defined for each module, the COMDECK
name should be the same as the deck name (ident).

*DECK ASMU SER
NAM ASMUSER

* *
* DEVELOPMENTAL FILE ASSEMBLIES *

* *

DUMFIL NUM 0 DUMMY CARD FOR MPLINK

END ASMUSER
*IF DEF,LRZQSS,1
*CALL ASMLRZQSS
*IF DEF ,MODE4, I
*CALL REL4MD4
*IF DEF ,ASYNC, 1
*CALL REL4ASY
*IF DEF,HASPTIP,l
*CALL HASPASSEM
*IF DEF ,HLIP, 1
*CALL LIPIST
*IF DEF,OLDIAG,l
*CALL ISPOLD

--------New TIP must add
conditional de fin it ion
here:

*CALL namTIP

Figure 4-10. ASMUSER Deck

BUILD PROCEDURE
The completed source program is placed on the user input
file UCCP, and the standard build procedures are
followed. These procedures are described in the NOS 1
Installation Handbook.

The user TIP may be defined as a build option. However,
if all systems are to contain the user TIP, the options may
be omitted. The examples assume user TIPl is not a build
option (UTIPl) and user TIP2 is a build option (UTIP2).

Build options are involved in two different build steps:
the step which generates the CCP object code library
(CCPBLB), and the step which generates a CCP variant
load module (CCPVAR). The CCP standard build
procedures allow a TIP to be included in object library and
excluded from a variant build by using the following
procedures:

Build step CCPBLB gets its TIP definition from a common
deck called TIPOEFS. Build step CCPVAR gets it TIP
definition through the TS parameter in the specified
variant definition which is an entry in the USERBPS file
(see the Expand section of the CYBER Cross Build
Utilities Reference Manual). The TS parameter provides
options for up to four user-written TIPs. When these
options are selected, the following define statements are
generated:

*DEFINE UTIPl
*DEFINE UTIP2
*DEFINE UTIP3
*DEFINE UTIP4

Figure 4-11 shows COMDECK TIPDEFS. User TIP
definition should be inserted as indicated if the source
code is conditional for compilation.

60474600 B

*COMDECK TIPDEFS
*TEXT DEFAULT TIP DEFINITIONS FOR FULL COMPILE/ASSEMBLY
*DEFINE MODE4
*DEFINE ASYNC
*DEFINE ASYNCEXT
*DEFINE HASPTIP
*DEFINE X25
*DEFINE UTI P 1
*DEFINE UTIP2
*END TEXT

~------Define one to four
user TIPs

Figure 4-11. Compile Definition

The rest of this section is concerned only with the
CCPVAR build step, and assumes the user always wants to
have the TIPs compiled.

The TIP writer must add the following information to the
Autolink input directives decks (see the Autolink section
of the CYBER Cross Build Utilities Reference Manual):

• Application (APPL) directives for the new TIPs (a
TIP is considered an application) (see figure 4-12)

• Base definition directive if the user TIP is not a
build option (see figure 4-13)

• Optional definition directive if the user TIP is a
build option (see figure 4-13)

• COMDECK to describe the linking characteristics
of the individual modules within the TIP (see
figure 4-14)

• Calls to COMDECK (see figure 4-15)

*DECK ALIN DIR

APPL = ASYNC
APPL = MODE4
APPL = HASPIP
APPL = UTIPl
APPL = UTIP2
APPL = HIP

]
----New TIP directives

de fining the applications

Figure 4-12. Autolink Application Directives

60474600 B

*COMDECK ALDEFS

DEFBASE = SVMODULE
DEFBASE = IVT
DEF BASE = UTI P 1
DEFBASE CONSOLE
DEFBASE = BASESYS

New TIP base directive
(TIP is to be included in
all builds)

*IF DEF, MODE4
DEF = MODE4
*IF DEF , HASPTI P
DEF = HASP TIP
*IF DEF, UTIP2 Optional TIP definition
DEF = UTIP2
*IF DEF, HLIP
DEF HLIP

Figure 4-13. Autolink Definition Directives

*COMDECK ALUTIPl
MOD= UTlOPS (P = F, APPL = UTIPl)
MOD = UTlMl (P = P, APPL = UTIP 1)
MOD = UT1M2 (P = P, APPL = UTIPl)

MOD = UTlMN (P = P, APPL = UTIPl)
*COMDECK ALUTIP2
MOD = UT20PS (p = F, APPL = UTIP2)
MOD = UT2Ml (P = P, APPL = UTIP2)
MOD = UT2M2 (P = P, APPL = UTIP2)

MOD = UT2MN (P = P, APPL = UTIP2)

Used to
generate
the linking
directives
for the
user TIP
modules

Figure 4-14. Autolink Module Directives

*DECK ALINPDIR

*CALL ALASYNC
*CAU. ALMODE4
*CALL AI.HIP
*CALL ALUTIPl J----- Calls to the User TIP
*CAU. ALU TIP 2 COMDECKS
*CALL AI.HASP

Figure 4-15. Autolink Application COMDECK Calls

4-9 •

PRINCIPAL DATA STRUCTURES 5

The principal data structures used by the TIP are as fol­
lows:

• Worklists, worklist control blocks, and worklist
entries

• Line control blocks

• Terminal control blocks

• Command driver packets

• Mux LCBs (MLCBs) and text processing control
blocks (TPCBs)

• Port tables

• TIP type tables

• Terminal characteristics tables

• Code translation tables

• Dynamic buffers

This section discusses those aspects of the data structures
that are used by the TIP.

WORKLISTS
The worl<list control block (WLCB) is the system data
structure that controls entry to the user TIP. The TIP
writer must initialize some worklist control block fields at
build time. The run time TIP, however, cannot access the
table directly. The TIP can extract fields from the global
worklist variable, BWWLENTRY. Fiqure 5-1 shows the
worklist control block and the worklist entries (WLE). The
TIP must be able to decode entries from the Mux-2 level,
from the base timer, from the service module, and from
the BIP. The TIP can generate worklists to the service
module. It is often useful to have the TIP generate work­
lists to itself following the occurance of an event. The
TIP writer must define a worklist for his TIP, and be able
to interpret all uses of this worklist by other modules
which request the TIP to perform a task.

LINE CONTROL BLOCK (LCB)
One line control block is assigned for each communication
line adapter (CLA) which is attached to the NPU. The
LCBs are contained in an array of fixed length tables
which are built during system initialization. The TIP can
access a few of the fields in the system-defined standard
portion of the LCB. The TIP can access all the fields in
the TIP-defined variable portion of the LCB. In some
systems the variable portion may be longer than two
words.

60474600 A

To access LCB fields, the TIP uses a variable of type
BZLCBP, as shown in the example below:

VAR
(lcbptr) : BZLCBP;

BEGIN
WITH (lcbptr)t DO
BEGIN

The LCB is defined in figure 5-2. The figure defines (1)
all the fields and (2) the subset of fields that is available
to the TIP.

TERMINAL CONTROL BLOCK
One terminal control block (TCB) is created for each ter­
minal device that can support an independent data stream
to a host application program. The TCB has two parts:

• A base part. Only two boolean variables may be
set by the TIP in this portion.

• A variable part used by the TIP. If the device is
interactive, the variable part must include all the
interactive virtual terminal (IVT) definitions. The
TIP can read the IVT fields, but it cannot change
them. The .unused space in the variable portion -is
available for user TIP-defined fields.

When the TIP accesses the TCB, it must use a variable
pointer of the BOBUFPTR type. This is necessary since
TCBs are contained in buffers. The TCB overlay type is
BSTCB. A TCB is accessed as shown in the example below:

VAR
(tcbptr) : BOBUFPTR;

BEGIN
WITH (tcbptr)+.BSTCB DO
BEGIN

The TCB is defined in figure 5-3. The fiqure defines (1)
all the fields (including the IVT parameters) and (2) the
subset of fields that is available to the TIP.

COMMAND PACKET
The command packet is an area holding all the parameters
that the multiplex subsystem requires when a request for
1/0 is made. The request takes the form of a call to
PBCOIN, with the command packet attached. The TIP
fills the command packet fields; it is the responsibility of
the multiplex subsystem to alter the MLCB using these
field values.

5-1

5-2

WORKLIST CONTROL BLOCK (ARRAY OF WLCBI

WLCB

0

2

3

4

5

6

7

15 14

Fl l

F2 l

USER TIP
WLCB

BYFEINC

BYWLINDEX

BYMAXCNT

Fl BYCOUNTEND
F2 BYWLREQ
* reserved for CDC

9 8

BYCNT

BYPUT

BYGET

*

(6)
BUFFER
WITH WLE

FIRST WLE

• • •
CHAIN

• •

LAST WLE

7

BYPRADDR

Field Name Definition

multiprocessor continue flag
number of WLEs
first WLE in chain
last WLE in chain
first entry index
WLE size in words
worklist index to WLCB
WLE sent to program if set true

M-716

BYINC

*

BYPAGE

BY CONTEND
BYCNT
BYPUT
BYGET
BYFEINC
BY INC
BYWLINDEX
BYWLREQ
BYMAXCNT
BY PAGE
BYPADDR

number of WLEs to process before next pass
program page
program address

Figure 5-1. Worklist Control Block and Worklist Entries (1 of 2)

0

60474600 A

Data structure for WLE from MUX Subsystem or Base Timer:

Word 15 14 8 7 6 5 0

0 MMWTCOUNT I I MMWKCOD

MM LINO

2 MM IBP

3 *
4 *

Field Name Type Description

MMWTCOUNT subrange wait count for timer WC
MMWCCOD subrange work code
MMLINO BO LINO line number
MM IBP BOBUFPTR bu ff er or TCB address

Data structure for WLE to or from SVM or BIP:

15 8 7 0

0 CMDATA CMWKCODE

CMLINO

2 CMPTR

or

15 8 7 0

0 CMDATA CMWKCODE

CMPOINT

Field Name Type Description

CMDATA subrange variable use data byte
CMWKCODE subrange work code
CMLINO BOLINO line number
CMPOINT BOBUFPTR pointer to buffer or TCB
CMPTR BOBUFPTR pointer to buffer or TCB

Figure 5-1. Worklist~Control Block and Worklist Entries (2 of 2)

60474600 A 5-3

5-4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BZLINO

BZTMRCHN

2 BZWTCOUNT BZOWNER

3 BZRETlADDR

4 BZRET2ADDR

5 Fl_lF21F31F4 BZLTYP BZHO

6 BZCNFST BZLNSPD BZTCBCNT

7 FS I F6 I F7 I BZSTATE F8 J F91 BZWKCODE

8 BZTIPTYPE BZSUBTIP BZSVTIPYPE

9

A

B

c

D

E

F
10

ID

Fl
F2
F3
F4

FS
F6
F7

F8
F9

BZSUBTIP
BZTCBPTR
BZLBTQMUX

Name

BZLINO
BZTMRCHN
BZWTCOUNT
BZOWNER
BZRETlADDR
BZRET2ADDR
BZTAPEX
BZCHECKQS
BZSMRESP
BZSMTO
BZLTYP
BZHO
BZCNFST
BZLNSPD
BZTCBCNT
BZTOUTPUT
BZTINPUT
BZDIS
BZSTATE
BZAUTO
BZDIAG
BZWKCODE
BZTIPTYPE
BZSUBTIP
BZ SVTIPTYPE
BZBTRANS
BZBRCV
BZCTRANS
BZCRCV
BZTCBPTR
BZLBTOMUX
SUBRANGE
BOBUFPTR
BOBUFPTR

BZSTIC.BZBTRANS

BZ STIC. BZBRCV

BZSTIC.BZCTRANS

BZSTIC.BZCRCV

BZTCBPTR

BZLBTQMUX

VARIABLE PART

Description

LINE NUMBER
ACTIVE LCB TIME CHAIN
WAIT COUNT
NODE ID OF CS
INPUT RETURN ADDRESS
OUTPUT RETURN ADDRESS
TIMAL APPENDAGE EXISTS
OUTPUT QUEUED
SM RESPONSE RECEIVED
SM BEING TIMED OUT
LINE TYPE
HOST ORDINAL
CURRENT CONFIGURATION STATE
LINE SPEED
NUMBER OF TCBS ATTACHED
TERMINAL OUTPUT TIMED OUT
TERMINAL INPUT TIMED OUT
LINE DISABLED
LINE STATE
AUTO RECOGNITION "
DIAGNOSTIC IN PROGRESS
LAST WORK CODE
TIP TYPE
SUB TIP TYPE
SAVE TIP TYPE
BLOCKS TRANSMITTED
BLOCKS RECEIVED
CHARACTERS TRANSMITTED
CHARACTERS RECEIVED
TCB CHAIN
LAST BUFFER TO MUX
SET BY TIP ONLY IF AUTORECOGNIZED BY TIP
POINTER TO FIRST TCB CHAINED ON THIS LINE
LAST OUTPUT BUFFER SENT TO MUX (DEBUG USE)

Figure 5-2. Line Control Block

60474600 A

60474600 A

Base part:

0

2

3

4

5

6

7

8

9
A
B

c
*
lF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

BSCHAIN

BSLCBP

BSCA BSTA

Fl BS CODE T BSHO F2 I BSTCLAS

BSQPTR

BS OWNER BSCN

BSLLCB

F3 BSABL l F4 BSOBL F5 1 F6 F7 F8

* F9 I FA FB FC l FD I FE FF Gl I G2

BSSTIC

VARIABLE PART

ID Name Description

BSCHAIN POINTER TO NEXT TCB ON LINE
BSLCBP LINE CONTROL BLOCK POINTER
BSCA CLUSTER ADDRESS
BSTA TERMINAL ADDRESS

Fl BS STOP UPLINE STOP OUTSTANDING
BSCODE CODE SET IN USE
BSHO HOST ORDINAL

F2 BSDEVTYPE DEVICE TYPE
BSTCLASS TERMINAL CLASS
BSQPTR QUEUE POINTER
BSOWNER
BSCN CONNECTION NUMBER
BSLLCB LOGICAL LINK CONTROL BLOCK POINTER

F3 BSINOP TERMINAL INOPERATIVE
BSABL AVAILABLE BLOCK LIMIT

F4 BSTBRCCNF TCB TO BE RECONFIGURED FLAG
BSOBL OUTSTANDING BLOCK LIMIT

F5 BSLBTPROC LAST BLOCK TYPE PROCESSED
F6 BSACPIN ACCEPT INPUT
F7 BSACPOUT ACCEPT OUTPUT
F8 BSIPRI INPUT PRIORITY
F9 BSWAIT WAITING FOR !NIT FLAG
FA BSBSNLAST BSN OF LAST BACKED BLOCK
FB BSBSNCRNT BSN OF CRNT OUTPUT BLOCK
FC BSTOTERM TCB TO BE TERMINATED
FD BS PARITY CHARACTER PARITY
FE BSCHLEN CHARACTER LENGTH
FF BSPGWAIT PAGE WAIT SELECTED
Gl BSXPARENT TRANSPARENT INPUT SELECTED
G2 BSHOTOGL HOST ORDINAL TOGGLE

BSSTIC STATISTICS

Figure 5-3. Terminal Control Block (1 of 3)

5-5

5-6

Printout cancelled by operator

Fields accessible to the TIP:

Field Name Type

BS CHAIN BOBUFPTR

BSCA subrange

BSTA subrange

BS STOP BOOLEAN

BSCODE subrange

BSDEVTYPE subrange

BSTCIASS subrange

BSINOP BOOLEAN

*BSPARITY subrange

*BSCHLEN subrange

*BSPGWAIT BOOLEAN

*BSXPARENT BOOLEAN

*IVT variable fields in base

Description

next TCB chained on the line

cluster address

terminal address

true if STP block outstanding to host

code set in use

device type

terminal class

true if terminal inoperative SM sent to
host by TIP, set and cleared by TIP

parity in use

character length

set true if page wait in effect

set true if next input is to be
transparent, reset by TIP if processed

IVT variable part:

ID

Fl
F2

F3
F4
FS
F6

c

D

E

F

10

11

12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

BSPGWIDTH BSPGLENGTH

BSCANCHR BSCNTRLCHAR

BSUSRl BSUSR2

Fl F2 * BSXCNT

F3 F4 FS l F6 l F7 l F8 BSXCHAR

BS BS CHAR BSABTLINE

BSCRIDLES BSLFIDLES

Name Type Description

BSPGWIDTH SR PAGE WIDTH
BS PG LENGTH SR PAGE LENGTH
BSCANCHAR c CANCEL CHARACTER
BSCNTRLCHAR c CONTROL CHARACTER
BSUSRl c USER BREAK 1 CHARACTER
BSUSR2 c USER BREAK 2 CHARACTER
BS XTO B TRANSPARENT TIMEOUT
BSXCHRON B TRANSPARENT DELIMITED BY CHAR
BSXCNT SR TRANSPARENT INPUT CHARACTER COUNT
BSCRCALC B CARRIAGE RETURN
BSLFCALC SR LINE FEED
BSECHOPLX B ECHOPLEX
BS IND EV B INPUT DEVICE

Figure 5-3. Terminal Control Block (2 of 3)

60474600 A

F7
F8

BSOUTDEV
BSAPL
BSXCHAR
BSBSCHAR
BSABTLINE
BSCRIDLES
BSLFIDLES

SR subrange
C CHAR
B BOOLEAN

SR
SR
c
c
c
c
c

OUTPUT DEVICE
APL MODE
TRANSPARENT TERMINATOR CHARACTER
BACKSPACE CHARACTER
ABORT LINE CHARACTER
NUMBER OF IDLES AFTER CR
NUMBER OF IDLES AFTER LF

Figure 5-3. Terminal Control Block (3 of 3)

The TIP can use seven of the possible types of command
packets:

• input

• input after output

• output

• terminate input

• terminate output

• disable line

• turn line around

A sample format of one of these command packets is
shown in figure 5-4. Each of the command packets are
described in detail in the multiplex subsystem section.

MUX LINE CONTROL BLOCK (MLCB)
The MLCB is used to control the input and ouput of
characters over a line, and to provide variable storage for
input state processing. This table is never directly ac­
cessed by the TIP. This description is for use in TIP de­
bugging. Figure 5-5 shows the MLCB.

TEXT PROCESSING CONTROL BLOCK
The TIP uses the text processing control block (TPCB) to
pass information to the microassembly language text pro­
cessor, and to the TIP's own text processing state pro­
grams. These programs also pass data back to the
OPS-level TIP through fields in the TPCB. Note that the
TPCB is the only way data can be passed back and forth
between the OPS-level TIP and the text processing
modules of the TIP. The TIP sets up the TPCB prior to
calling the text processor via PTTPINF. Figure 5-6 shows
the TPCB.

PORT TABLES
The port tables (NAPORT) are multiword entries in an
array which is indexed by the port index. The table is not
accessible to the run time TIP, nor are its fields initial­
ized by the TIP writer. However, during the debugging
phase of a new TIP, it is often useful to observe the
contents of the port table and to locate (through the port
table) the multiplex LCBs that are being used for a
particular line.

The port table is shown in figure 5-7.

TIP TYPE TABLE
The TIP type table contains those system parameters that
are necessary to control a TIP. These fields are never ac­
cessed by a TIP. The TIP writer must, however, initialize
specified fields at build time. The fields to be initialized
are defined in section 12.

60474600 A

Figure 5-8 shows the TIP type table.

TERMINAL CHARACTERISTICS TABLE
The terminal characteristics table is used for two pur­
poses:

• To initialize the TCB with default values for IVT
parameters

• To initialize the TCB with default values for user
calls to the multiplex subsystem.

In the second case, the default values are overridden when
the TIP specifies a value for that parameter in the com­
mand packet. The run time TIP does not use the terminal
characteristic table. However, the TIP writer must supply
all the necessary initialization values at build time. These
fields are defined in section 12.

Figure 5-9 shows the terminal characteristics table.

CODE TRANSLATION TABLES
The multiplex subsystem defines the format of a code
translation table: it is a packed array of characters. The
untranslated character is used as an index to find the
translated character. Parity should be stripped from the
untranslated character: this reduces the size of the table
by fifty percent.

Figure 5-10 shows the format of a code translation table.

DYNAMIC BUFFERS
The TIP accesses and manipulates buffers of various
sizes. CCP offers four standard buffer sizes: 8, 16, 32,
and 64 words long. The TIP accesses a buff er using a
pointer word of BOBUFPTR type, as shown:

VAR
(bufptr) : BOBUFPTR;

BEGIN
WITH (bufptr)+ DO
BEGIN

Data buffers may contain part or all of a message. In any
system there is only one size of data buffer, though
different systems may each have a different size data
buff er. The standard system uses a 64 word buffer. TCBs
also use data buffers, but the size and the content is
controlled by the system (the TIP writer selects a size at
build time, if his TIP is to be the only TIP in the system).

5-7

The TIP writer also uses a BOBUFPTR type pointer to
access user-defined variables fields in the TCB. The over­
lay type for naming TCB fields is BSTCB. A TCB is
accessed as shown:

VAR
(tcbptr) : BOBUFPTR;

BEGIN
WITH (tcbptr) t.BSTCB DO
BEGIN

A chain of data buffers is shown in figure 5-11. The data
buffers are defined in figure 5-12.

SYSTEM CONSTANT DEFINITIONS
Figure 5-13 defines the system constants that are avail­
able for TIP use.

SYSTEM TYPE DEFINITIONS
Figure 5-14 defines the system types that are available
for TIP use.

SYSTEM VARIABLE DEFINITIONS
The TIP can use a limited set of system variables as shown
in figure 5-15. Most of these variables are used to

INPUT or INPUT after OUTPUT:

interface to system procedures.

SYSTEM ENGINEERING FILE WORK
AREA
The TIP makes entries to the system engineering work file
when component failures are detected. The prototype of
the engineering work file entry is built in the system
global CNCEOVL Y. This global is an array indexed by
interrupt level. The TIP can issue a system engineering
file entry at either the OPS level or at the Mux-2 level.
Each entry in the array is structured for use by the TIP
and by other already defined entries. The TIP writer de­
fines field names for constructing each entry. After
initializing the work area, the TIP calls PNCEFILE to
issue the message.

An example of TIP access to the engineering work file
area is as follows:

WITH (tcbpointer)t .BSTCB DO
WITH CNCEOVL Y [<LEVEL)} DO

BEGIN
CNCECODE .- (error file entry code);
(line number) .- (lcbpointer) .BZLINO;
(cluster address) .- BSCA;
(terminal address) .- BSTA;
(device type) .- BSDEVTYPE;
(terminal class) .- BSTCLASS;
(error count) .- (occurrence count);

END;

The engineering work file area is shown in figure 5-16.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 NKCMD l *
NKLINO

2 NKOBP

3 Fl F2 F3l F4 Fs l F6 l F7 l •BI •9 I io I NKISTAI

*
F

* NKBLKL 11 4

5 NKISPTA

6 NKSCHR 1 NKCNTl

7 NKXLTA

FI NKUOPl
F2 NKUOP2
F3 NKUOP3
F4 NKUOP4
F5 NKUOPS
F6 NKUOP6
F1 NKUOP7
Fs NKUOP8
F9 NICMVB
F10 NKRPRT

Figure 5-4. Command Packets (l of 2)

5-8 60474600 A

60474600 A

OUTPUT:

0

2

0

Flags

Fl
F2
F3
F4
F5
F6
F7
F8
F9
FlO

Fll

15

15

Field Name

NKCMD
NKLINO
NKOBP
NKUOPl
NKUOP2
NKUOP3
NKUOP4
NKUOP5
NKUOP6
NKUOP7
NKUOP8
NKMVB
NKRPRT
NKISTAI
NKSCENBL
NKBLKL
NKISPTA
NKSCHR
NKCNTl
NKLXTA

NKCMD

NKCMD

Type

B08BITS
INTEGER
BOBUFPTR
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
B06BITS
BOOLEAN
B012BITS
INTEGER
CHAR
B08BITS
INTEGER

8 7

NKLINO

NKOBP

8 7

NKLINO

COMMAND
LINE NUMBER

*

*

Definition

OUTPUT BUFFER POINTER
USER OPTION FLAG 1 (MUX BIT 15)
USER OPTION FLAG 2 (MUX BIT 14)
USER OPTION FLAG 3 (MUX BIT 13)
USER OPTION FLAG 4 (MUX BIT 12)
USER OPTION FLAG 5 (MUX BIT 11)
USER OPTION FLAG 6 (MUX BIT 10)
USER OPTION FLAG 7 (MUX BIT 9)
USER OPTION FLAG 8 (MUX BIT 8)
MOVE USER BITS TO LCB FLAG
STRIP PARITY FLAG
INPUT STATE INDEX
SPECIAL CHARACTER TO BE CHANGED
BLOCK LENGTH COUNT

0

0

INPUT STATE POINTER TABLE ADDRESS
SPECIAL CHARACTER
CHARACTER COUNT 1 VALUE (IF NOT = 0)
TRANSLATE TABLE ADDRESS

Figure 5-4. Command Packets (2 of 2)

5-9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Fl F2 F3 F4 FSI F7 I NCOCHR

F9 F F NCTIME NCOBLCD
10 11

2 NCO BP

F F F F Fl F F l F ~o l NCI STAI 12 13 14 15 16 17 18 19 3

4 NCC NTL NCCNTl

5 NCISPTA

6 NC IBP

F F F F Fl F F l F qq~21 NCCRCP 22 23 24 25 26 27 28 29 7

8 NCSCHR NCIBFCD

9 NCCRCS

10 NCCNT2

11 NCBLKL

12 NCCXLTA - POINTER TO CODE TRANSLATE TABLE

13 NCSCBA - POINTER TO FIRST BUFFER IN BLOCK

NCBLCNT - NUMBER OF NCSVWL - SAVED WORKLIST
BUFFERS ALLOCATED

14

15 *

* reserved for CDC

Flags Field Type Description

Fl NCEOBL BOOLEAN; END OF BLOCK FLAG
F2 NCNXCCA BOOLEAN; NEXT OUTPUT CHAR AVAILABLE
F3 NCLCT BOOLEAN; LAST CHARACTER TRANSMITTED
F4 NCBCREQ BOOLEAN; BUFFER CHAINING REQUIRED
F5 NCOMFRO BOOLEAN; OUTPUT MESSAGE IN PROGRESS
F7 NCODDIN BOOLEAN; ODD RECEIVE

NCOCHR CHAR; NEXT OUTPUT CHARACTER
F9 NCSUPCHAIN BOOLEAN; SUPPRESS BUFFER CHAINING
FlO NCO BT BOOLEAN; GENERATE OBT
Fll NCBZL BOOLEAN; RESET TIMER

NC TIME B05BITS; MLX TIMER
NCOBLCD B08BITS; LCD OF OUTPUT BUFFER
NCO BP BOBUFPTR; OUTPUT BUFFER POINTER

Fl2 NCRINCH BOOLEAN; INPUT CHAR IN RIGHT BYTE
F13 NCCAREC BOOLEAN; CHARACTER RECEIVED FLAG
Fl4 NCRIGHTC BOOLEAN; LEFT/RIGHT SOURCE FLAG
F15 NCINFRO BOOLEAN INPUT MESSAGE IN PROGRESS
F16 NCNOXL BOOLEAN; CODE TRANSLATE ACTIVE
F17 NCRPRT BOOLEAN; STRIP PARITY BIT
F18 NCSCF BOOLEAN; TEXT PROCESS SUPPRESS CHAIN FLAG
F19 NCLASTCH BOOLEAN; TEXT PROCESS SOURCE LCD REACHED
F20 NCEOSR BOOLEAN; TEXT PROCESS END OF SOURCE REACHED

NCI STAI B06BITS; INPUT STATE PROGRAM INDEX
NCC NTL B08BITS; CHARACTER COUNT ONE LIMIT
NCCNTl B08BITS; CHARACTER COUNTER ONE
NCISPTA INTEGER; INPUT STATE POINTER TABLE ADDRESS
NCI BP BOBUFPTR; INPUT BUFFER POINTER

F22 NCUOPl BOOLEAN; USER OPTIONAL FLAG 1
F23 NCUOP2 BOOLEAN; USER OPTIONAL FLAG 2

Figure 5-5. Multiplex LCB (MLCB) (1 of 2)

5-10 60474600 A

60474600 A

F24
F25
F26
F27
F28
F29
F30
F31
F32

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

USER OPTIONAL FLAG 3
USER OPTIONAL FLAG 4
USER OPTIONAL FLAG 5
USER OPTIONAL FLAG 6
USER OPTIONAL FLAG 7
USER OPTIONAL FLAG 8

NCUOP3
NCUOP4
NCUOPS
NCUOP6
NCUOP7
NCUOP8
NCETX
NCMRTO
NCC ARR
NCCRCP
NCSCHR.
NCIBFCD
NCCRCS
NCCNT2
NCBLKL
NCCXLTA
NCSCEA
NCBLCNT
NCSVWL

BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOSBITS;
CHAR;
B08BITS;
INTEGER;
B012BITS;
B012BITS;
INTEGER;
BOBUFPTR;
B08BITS;
B08BITS);

DELAYED ETX WLE GENERATION FLAG
MODEM RESPONSE TIMEOUT FLAG
LINE CARRIER TYPE (!=CONTROLLED)
CRC POLYNOMIAL
SPECIAL CHARACTER
FCD OF INPUT BUFFER
CRC ACCUMULATION
CHARACTER COUNTER TWO
CHARACTER COUNTER TWO LIMIT
CODE TRANSLATE TABLE ADDRESS
FIRST BUFFER OF BLOCK ADDRESS
BUFFERS ALLOCATED COUNTER
SAVED WORKLIST VALUE

Figure 5-5. Multiplex LCB (MLCB) (2 of 2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

NCLCDFCD

Fl l * 1 * * NCOBLCD

NCSBP

F2 l *f F3 *l F41FS1 F61 F7 F81*1 NC STAI

NCCNTL - CHARACTER NCCNTl - CHARACTER COUNTER 1
COUNT LIMIT

NCSPTA - POINTER TO STATE PROGRAMS POINTER TABLE

NCDBP - POINTER TO STATE PROGRAMS TABLE

F9 I io I i1 FlFlFIFlF 12 13 14 15 16 i1J iaJ i9 I NCCRCP

NCSCHR. NOBFCD

NCCRCS

* NCCNT2

* NCBLKL

NCCXLTA - POINTER TO CODE TRANSLATE TABLE

NCSCBA - POINTER TO FIRST BUFFER IN BLOCK

NCBLCNT - NUMBER OF BUFFERS
ALLOCATED

*

*
F
20

*
F
21

NCFSBA - FIRST STORAGE BUFFER ADDRESS

RESERVED FOR TIP USAGE

* reserved for CDC

Figure 5-6. Text Processing Control Block (TPCB) (1 of 2)

5-11

Flags Field Type Description

NCLCDFCD INTEGER FCD AND LCD OF SOURCE BUFFER
Fl NCSUPCHAIN BOOLEAN; SUPPRESS BUFFER CHAINING

NCCBLCD BLBBITS; LCD OF OUTPUT BUFFER
NCSBP BOBUFPTR; SOURCE BUFFER POINTER.

F2 NC CC RB BOOLEAN; DEST. CHAR IN RT. BYTE
F3 NCRIGHTC BOOLEAN; LEFT/RIGHT SOURCE FLAG
F4 NC NO XL BOOLEAN; CODE TRANSLATE ACTIVE
FS NCRPRT BOOLEAN; STRIP PARITY BIT FLAG
F6 NCSCF BOOLEAN; TEXT PROCESSOR SUPPRESS CHAIN FLAG
F7 NCLASTCH BOOLEAN; TEXT PROCESSOR SOURCE LCD REACHED
F8 NCEOSR BOOLEAN; TEXT PROCESSOR END OF SOURCE REACHED

NC STAI B06BITS; STATE PROGRAM INDEX.
NCC NTL B08BITS; CHARACTER COUNT LIMIT
NCCNTl B08BITS; CHARACTER COUNTER ONE
NCSPTA INTEGER; STATE POINTER TABLE ADRS.
NCDBP BOBUFPTR; DESTINATION BUFFER PNTR.

F9 NCUOPl BOOLEAN; USER OPTIONAL FLAG 1
FlO NCUOP2 BOOLEAN; USER OPTIONAL FLAG 2
FU NCUOP3 BOOLEAN; USER OPTIONAL FLAG 3
Fl2 NCUOP4 BOOLEAN; USER OPTIONAL FLAG 4
F13 NCUOPS BOOLEAN; USER OPTIONAL FLAG 5
Fl4 NCUOP6 BOOLEAN; USER OPTIONAL FLAG 6
FlS NCUOP7 BOOLEAN; USER OPTIONAL FLAG 7
Fl6 NCUOP8 BOOLEAN; USER OPTIONAL FLAG 8
Fl7 NCETX BOOLEAN; USER OPTIONAL FLAG 9
Fl8 NCMRTO BOOLEAN; MODEM RESPONSE TIMEOUT
Fl9 NCCARR BOOLEAN; LINE CARRIER TYPE {l=CONTROLLED)

NCCRCP BOSBITS; CRC POLYNOMIAL
NC SC HR CHAR; SPECIAL CHARACTER
NCBFCD B08BITS; BUFFER FCD.
NCCRCS INTEGER; CRC ACCUMULATION
NCCNT2 B012BITS; CHARACTER COUNTER TWO
NCBLKL B012BITS; CHARACTER COUNTER TWO LIMIT
NCCXLTA INTEGER; CODE TRANSLATE TABLE ADDRESS
NCSCBL BOBUFPTR; FIRST BUFFER OF BLOCK ADDRESS
NCSLCNT B08BITS; BUFFERS ALLOCATED COUNTER

F20 CHAR CURRENT SOURCE CHARACTER
F21 CHAR RIGHT SOURCE CHARACTER

Figure 5-6. Text Processing Control Block (TPCB) (2 of 2)

5-12 60474600 A

60474600 A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 Fl l F21 F3 l F41 FS l NALTYP l l NASPILL

2 NAOBTCMD

3

4

5

6

7

Fl NA ION
F2 NAOON
F3 NAISON
F4 NALCBUP
F5 NAISR
F6 NANDCD
F7 NAMTD
F8 NAWAIT
F9 NAOVFE

Cbl CLA
Cb2 CLA
Cb3 CLA
Cb4 CLA

Name

NAION
NAOON
NAISON
NALCBUP
NAISR
NALTYP
NAHARDER
NASPILL
NALCBP
NAOBTCMD
NANDCD
NAM TO
NAWAIT
NAOVFE
NAMSI
NAMSPTA
NAFCCST
NAST AT

command
conmand
command
connnand

Cbl

Cb3

byte 1
byte 2
byte 3
byte 4

Type

BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOSBITS;
BOOLEAN;
BOSBITS;
NOLCBP;
B08BITS;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
B04BITS;
INTEGER;
NFCCSE;
INTEGER;

NALCBP

F6 I F7 I F8 l F91

NAMSPTA

NASTAT

*

Description

INPUT ON FLAG
OUTPUT ON FLAG
INPUT SUPERVISION
LCB ASSIGNED FLAG
CLA STATUS PENDING
LINE TYPE

Cb2

Cb4

HARD ERROR IN PROGRESS
CLA STATUS COUNT
POINTER TO MUX LCB
CLA TURNAROUND COMMAND
DCD DROPPED
MODEM TIMEOUT IN PROGRESS
FLAG FOR FIRST OVFL. TIMEOUT
FIRST STATUS OVFL. WL RCV
MODEM STATE INDEX
MODEM STATE POINTER TABLE
CLA COMMAND WORDS
CLA STATUS

Figure 5-7. Port Table

NAMSI

5-13

Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 Fl I F2 I * l F3 BJIVTSIZE I F4 I FS l BJLISTIX

BJDFTC

2 BJPTIMRTN

3 BJETIMETN

4 BJJFTD

5 BJFDT

6 BJJAT

7 BJAT

8 BJTPMUX2

9 BJTEMUX2

10 BJTCBPINIT

11 BJTCBEINIT

12 BJTXTPAGE

13 BJTXTENT

Flag Field Type Description

Fl BJOBT BOOLEAN; GENERATE OUTPUT BUFFER TRANSMITTED FLAG
F2 BJBZL BOOLEAN; RESET TIMER FLAG ON OBT

BJIVTSIZE B04BITS; NO. WORDS IN TCB/TCT IVT
F4 BJTCBSIZE BOBUFSIZES; TCB BUFFER SIZE
FS BJQTYPE BOOPTYPES; TYPE OF QUEUE FOR DATA

BJLISTIX BOWKLSTS; WORKLIST INDEX
BJDFTC NOTCLASS; DEFAULT TERM CLASS FOR PTENABL
BJPTIMRTN INTEGER: TIP TIMAL ROUTINE - PAGE ADDR
BJETIMRTN INTEGER; TIP TIMAL ROUTINE - ENTRY ADDR
BJJFDT DDFDTPTR; TCB FIELD DESCRIPTOR TABLE ADDR
BJFDT DDFDTPTR; LCB FIELD DESCRIPTOR TABLE ADDR
BJJAT DFATPTR; TCB ACTION TABLE ADDRESS
BJAT DFATPTR; LCB ACTION TABLE ADDRESS
BJTPMUX2 INTEGER; TIP LEVEL TWO PAGE ADDRESS
BJTEMUX2 INTEGER; TIP LEVEL TWO ENTRY ADDRESS
BJTCBPINIT INTEGER; TCB INIT ROUTINE PAGE
BJTCBEINIT INTEGER; TCB INIT ROUTINE ENTRY
BJTXTPAGE INTEGER; TEXT PROCESSING PAGE
BJTXTENT INTEGER; TEXT PROCESSING ENTRY

Figure 5-8. TIP Type Table

5-14 60474600 A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 NJISPTA

NJCXLTA

2 NJCNTI NJ SYNC

3 NJCRCP * NJIBFCD

NJBLKL l NJTIPTY

Fl F2 F3 I F4 l FS *

4

5

6 NJPGWIDTH NJ PG LENGTH

7 NJ CAN CHAR NJCNTRLCHAR

8 NJUSRl NJUSR2

9 F6 F7 * NJXCNT

F8 F9
F l' F 1 F
10 11 12 13 NJXCHAR 10

11 NJBSCHAR NJABTLINE

12 NJCRIDLES NJLFIDLES

Flag Field Type Description

NJISPTA INTEGER; INPUT STATES PTR TBL ADDRESS
NJCXLTA INTEGER; CODE TRANSLATE TABLE ADDR
NJCNTl B08BITS; INPUT CHARACTER COUNT 1
NJ SYNC B08BITS; SYNC CHARACTER
NJCPCP BOSBITS; CRC POLYNOMIAL INDEX
NJIBFCD B08BITS; FCD OF FIRST BUFFER
NJBLKL B012BITS; BLOCK SIZE
NJTIPTY NOTIPTY; TIP TYPE

Fl NJ PARITY B02BITS; PARITY
F2 NJCHLEN B02BITS; CHARACTER LENGTH
F3 NJ PAR TYPE B02BITS; PARITY TYPE FOR ASYNC TIP
F4 NJPGWAIT BOOLEAN; PAGE WAIT MODE
FS NJXPARENT BOOLEAN; TRANSPARENT INPUT MODE

NJPGWIDTH B08BITS; PAGE WIDTH
NJPGLENGTH B08BITS; PAGE LENGTH
NJCANCHAR CHAR; CANCEL INPUT LINE CHAR
NJCNTRLCHAR CHAR; CONTROL CHARACTER
NJUSRI CHAR; USER BREAK ONE
NJUSR2 CHAR; USER BREAK TWO

F6 NJXTO BOOLEAN; TIMEOUT IS EXPECTED DELIMITER
F7 NJXCHRON, XPT CHAR IS A DELIMITER

NJXCNT B012BITS; TRANSPARENT CHARACTER COUNT
F8 NJCRCALC BOOLEAN; CR IDLE CNT TO BE CALCULATED
F9 NJLFCALC BOOLEAN; LF IDLE CNT TO BE CALCULATED
FlO NJECHOPLX BOOLEAN; ECHOPLEX MODE
FU NJ IND EV BOOLEAN; INPUT DEVICE (F=KB, T=PT)
Fl2 NJOUTDEV B02BITS; OUTPUT DEVICE (PRT,DISPLAY,PT)
Fl3 NJ APL B02BITS; APL (O=NO,l=YES,2=SPECIAL)

NJXCHAR CHAR; TRANSPARENT DELIMITER CHAR
NJBSCHAR CHAR; BACKSPACE CHARACTER
NJABTLINE CHAR; ABORT OUTPUT LINE CHARACTER
NJCRIDLES B08BITS; COUNT OF IDLES AFTER CR
NJLFIDLES B08BITS); COUNT OF IDLES AFTER LF

Figure 5-9. Terminal Characteristics Table

60474600 A 5-15

5..:16

15 8 7

0 TRANSLATE 1 TRANSLATE

1 TRANSLATE 1+2 TRANSLATE

254 TRANSLATE 25'5 TRANSLATE

Figure 5-10. Example of a Code Translate Table

USER POINTER

BCCHAINS iacHNI

0

EXAMPLE SHOWS DATA BUFFERS

Figure 5-11. Queue of Chained Buffers

0

BSCHAINS

loBUFUEM,THI

0

M 717

60474600A

60474600 A

Word 15 8 7 0

0 BFLCD I BFFCD

FLAG WORD

2 BCCHAINS (QCHN)

3

4

n BCCHAINS (N+l)

where flags are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fl

where:

Fl

F2

F3

F4

F5

F6

F7

F8

BFEOTFLG - set by input state instruction, used for data sent
across coupler, not maintained by TIP

BFSUPCHAIN - set to inform firmware that buffer is of
non-standard length; that is, don't look for chain word

BFINTBLK - set to inform TIP that block did not originate in
host, stops BIP from sending an. acknowledge to host

BFPERM - set to indicate an array being used as a buffer, used
to inhibit any attempt to release buffer

BFLNKQ - set to indicate a valid address is present in the queue
word

BFSP7 - TIP defined, can be set by input state instruction

BFSP8 - TIP defined, can be set by input state instruction

BFSP9 - TIP defined, can be set by input state instruction

All other flag bits should not be used by the TIP.

Field Name Type

BFLCD, BFFCD SUBRANGE

BCCHAINS BOBUFPTR

Purpose

Specify the last character and the first
character of data in the buffer. They are
of subrange type.

Array for accessing the queue and chain
words, index beginning with 1.

Alternate types for buffer structure:

BFDATAC

BSTCB

BUNT

CHAR

BOTCB

Character array for accessing each 8-bit
character in buffer, beginning with zero.

Packed record used for accessing TCBs which
are assigned to data buffers.

INTEGER Array for accessing each word in buffer,
usually to clear fields initially, index
beginning with 1.

Figure 5-12. Data Buffers (l of 2)

5-17

5-18

Constants available for buffer manipulation:

QCHN

DATA

FBYTE

BTPT

DBC

DBUFLENGTH

JlLASTCHAR

BOS32

BOS64

BETPSIZE

TPBUFLENGTH

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

Selects the word in a data buffer used for
queuing.

Character displacement for first data
character in first buffer of a chain.

Character displacement for first data
character in subsequent buffers of a chain.

Character displacement of the block type
byte of a message.

Character displacement of the data block
clarifier byte of a message.

Length of data buffer in words.

Last usable character in a data buffer.

32

64

Pointer to control tables for buffers used
for TPCB.

Size of TPCB buffer in characters.

Figure 5-12. Data Buffers (2 of 2)

**
* *
*
*
*

MULTIPLEX SUBSYSTEM COMMANDS
THESE ARE COMMANDS ISSUED TO THE MUX COMMAND DRIVER

*
*
*

**

NKINPT 6; INPUT
NKDOUT 7; DIRECT OUTPUT
NKINOUT 9; INPUT AFTER OUTPUT
NKENDIN $A; TERMINATE INPUT
NKENDOUT $B; TERMINATE OUTPUT
NKDISL $C; DI SABLE LINE
NKCLRL $D; CLEAR LINE
NKCONTROL $E; CONTROL

**
* *
* EVENT WORK CODES * * THESE WORK CODES APPEAR IN THE WORK CODE FIELD OF THE EVENT PACKET RETURNED TO *
* THE EVENT WORKLIST QUEUE. THEY SPECIFY THE NATURE OF THE INFORMATION CONTAINED *
* IN SAID PACKET. CODE VALUES OF 1 THROUGH $1E ARE RESERVED FOR MUX USE EXCLUSIVELY *
* *
**

MMOBUX 2; OUTPUT BUFFER TRANSMITTED
MMBUTCH 3· ' BUFFER THRESHOLD CHANGED
MMFES 8; FRAIMING ERROR STATUS
MMC HOUT 9; CHARACTER TIMEOUT
NM IN END $C; INPUT TERMINATED
NMOTEND $D; OUTPUT TERMINATED
MM BREAK $E; ASYNC BREAK DETECTED
MMHARDERR $F; HARD ERROR

Figure 5-13. System Constants Used by the TIP (1 of 8)

60474600 A

60474600 A

**
*
*
*

LINE SPEED INDEX TABLE (ASYNCHRONOUS)
*
*
*

**

INDEX BAUD RATE

N0800 O; 800
NOllO l; 110
N0134 2· ' 134.5
N0150 3; 150
N0300 4·

'
300

N0600 5; 600
N01200 6; 1200
N02400 7; 2400
N04800 8; 4800
N09600 9; 9600
NODIAG 10; DIAGNOSTICS CLASS

**
* *
*
*

CODE SET KEYS *
*

**

KEY CODE SET

NOB CD 1·
'

BCD - MODE 4A BCD
NOASCII 2·

'
ASCII - ASCII FOR ASYNC OR MODE 4A ASCII

NOMODE4C 3· ' MODE 4C
NOTYPEPAPL 3· ' TYPEWRITER-PAIRED APL-ASCII
NOBITPAPL 4; BIT-PAIRED APL-ASCII
NOE BCD APL 5; EBCD
NOEAPIAPL 6; EBCD APL
NO CORR 7; CORRESPONDENCE
NOCORAPL 8; CORRESPONDENCE APL
NOXBCD 9; EBCDIC

**
* *
*
*

DEVICE TYPE *
*

**

NlCON O; CONSOLE
NlCR 1; CARD READER
NlLP 2· ' LINE PRINTER
NlCP 3· ' CARD PUNCH
NlPLOT 4· ' PLOTTER
NlINTDEV 7; INTERNAL DEVICE

**
* * * MODEM CONTROL STATES *
* *
**

MSTIDL 4; STATE 4, LINE IDLED

Figure 5-13. System Constants Used by the TIP (2 of 8)

5-19

5-20

**
* *
*
*
*
*

OPS LEVEL WORKCODES
THE FOLLOWING WORKCODES ARE USED FOR BASE SYSTEM,
TIP, SVM, AND APPLICATION FUNCTION.

*
*
*
*

**

* --SYSTEM WORKCODES FOR TIP--

AO HARD ERR $OF; HARD ERROR - FROM MUX SUBSYSTEM
AOTIMEOUT $10; LINE TIMER EXPIRED - FROM LCB SCAN
AOQUEOUT $11; OUTPUT IN QUEUE FROM INTERNAL P.
AOSMEN $12; ENABLE LINE - FROM LINE !NIT.
AOSMDA $13; DISABLE LINE FROM SVM
AOSMTCB $14; TCB BUILT FROM SVM
AOSMDLTCB $15; DELETE TCB FROM SVM
AOSMRCTCB $16; RECONFIGURE TCB FROM SVM

* --MISCL.--

AOBREAK = $19; OOWNLINE BREAK - FROM SVM
AOOBUX = $1A; OUTPUT BUFFER XMIT - FROM TIP TO TIP

* --WORKCODES TO THE SERVICE MODULE--

COLINOP $20; LINE OPERATIONAL - FROM TIP
COLNINOP $21; LINE INOPERATIVE - FROM TIP
COLNDA $22; LINE DISABLED - FROM TIP
CODLTCB $23; TCB DELETED - FROM TIP
CORCTCB $2C; TERMINAL RECONFIGD - FROM TIP

* --TIP GENERATED WORKCODES FROM INPUT STATES--

AOWKl $21; TIP WORKCODE 1
AOWK2 $22; TIP WORKCODE 2
AOWK3 $23; TIP WORKCODE 3
AOWK4 $24; TIP WORKCODE 4
AOWK5 $25; TIP WORKCODE 5
AOWK6 $26; TIP WORKCODE 6
AOWK7 $27; TIP WORKCODE 7
AOWK8 $28; TIP WORKCODE 8
AOWK9 $29; TIP WORKCODE 9
AOWKlO $2A; TIP WORKCODE 10
AOWKll $2B; TIP WORKCODE 11
AOWK12 $2C; TIP WORKCODE 12
AOWK13 $2D; TIP WORKCODE 13
AOWK14 $2E; TIP WORKCODE 14
AOWKlS $2F; TIP WORKCODE 15
AOWK16 $30; TIP WORKCODE 16
AOWK17 $31; TIP WORKCODE 17
AOWK18 $32; TIP WORKCODE 18
AOWK19 $33; TIP WORKCODE 19
AOWK20 $34; 'TIP WORKCODE 20
AOWK21 = $35; TIP WORKCODE 21
AOWK22 $36; TIP WORKCODE 22
AOWK23 $37; TIP WORKCODE 23
AOWK24 $38; TIP WORKCODE 24
AOWK25 $39; TIP WORKCODE 25
AOWK26 $3A; TIP WORKCODE 26
AOWKi7 $3B; TIP WORKCODE 27
AOWK28 = $3C; TIP WORKCODE 28
AOWK29 = $3D; TIP WORK.CODE 29
AOWK30 = $3E; TIP WORK.CODE 30
AOWK31 = $3F; TIP WORKCODE 31

Figure 5-13. System Constants Used by the TIP (3 of 8)

60474600 A

60474600 A

**
* * * BLOCK PROTOCOL CONSTANTS *
* *
**

HTBLK $1; BLOCK TYPE
HTMSG $2; MESSAGE TYPE
HTBACK $3; BACK TYPE
HTCMD $4; COMMAND TYPE
HT BREAK $5; BREAK TYPE
HTS TOP $6; STOP TYPE
HTSTRT $7; START TYPE
HTRESET $8; RESET TYPE
HTINIT $9; INITIALIZE TYPE

**
*
*
*

BLOCK WORD DEFINITIONS *
*
*

**

QCHN 3; WORD INDEX FOR QUEUE

**
* * * TERMINAL CLASS *
* *
**

NOTMLIA O; MLIA
NOM33 l·

'
ASYNC - M33,M35,M37,M38

N0713 2·
' - CDC 713

NOM1240 3; - MEMOREX 1240
N02741 4; - IBM 2741
NOM40 5; - M40
NOH2000 6; - HAZELTINE 2000
N0751 7; - CDC 751-1
NOT4014 8· ' - TEKTRONIX 4014
NOHASP 9; HASP
N0200UT 10; MODE 4 - 100UT
N0214 11; - 214
N0711 12; - 711-10
N0714 13; - 714
N0731 14; - 731
N0734 15; - 734

**
* *
*
*

TIP TYPES *
*

**

NOHDLC
NlASYNC
NlM4
NlHASP
N0780
NOMLIA
NOCON SOLE
NOCOUPLER
NOLIN IT
NOOLDIAG

O;
l;
2·
' 3;

4;
5;
6;
7•

' 8;
9;

HDLC LIP
ASYNC TIP
MODE 4 TIP
HASP TIP
2780/3780
MLIA ERROR HANDLER
NPU CONSOLE
CYBER COUPLER
LINE INITIALIZER
ON-LINE DIAGS **LAST TIP TYPE ALWAYS**

Figure 5-13. System Constants Used by the TIP (4 of 8)

5-21

5-22

**
* *
*
*

SUB TIP TYPES *
*

**

NOASllO l· ' 110 BAUD ASCII
NOAS150 2·

' 150 BAUD ASCII
NOAS300 3·

' 300 BAUD ASCII
NOE2741 4· ' 2741 EBCD
NOC2741 5; 2741 CORR.ES

NOM4A l·
'

MODE4A
NOM4C 2·

' MODE4C

**
*
*
*

INPUT STOPPED REASON CODES
*
*
*

**

B9S !RESPONSE
B9NOTREADY
B9CSLIP
B9EOI
B9INTACT

O·
' l;

2·
' 3·
' 4· '

STOP INPUT RESPONSE
INPUT DEVICE NOT READY
CARD SLIP ERROR
EOI IN INPUT DATA
INTERACTIVE INTERRUPT

**
* *
*
*

COMMAND PFC/ SFC *
*

**

D8CTRL
D9START
D9STOP
D9STPD
D9DEF

$01
$05
$06;
$07;
$04;

CONTROL PFC
START INPUT SFC
STOP INPUT SFC
INPUT STOPPED SFC
DEFINE TERMINAL CHARACTERISTICS

**
* * * UPLINE BREAK REASON CODES *
* *
**

B9USR1
B9USR2
B90DEVNOTRDY
B9FORMAT

1;
2· ' 3;
4;

USER BREAK 1
USER BREAK 2
OUTPUT DEVICE NOT READY
BAD BLOCK FORMAT

**
* *
*
*

UPLINE STOP REASON CODES *
*

**

B9TBUSY
B9TFAILURE
B9BINTERRUPT

l;
2;
3;

TERMINAL BUSY
TERMINAL FAILURE
BATCH INTERRUPT

**
* * * LINE STATUS RESPONSE CODES *
* *
**

C6LOPER
C6LINOP
C6LNORING

O;
4;
5;

LINE OPERATIONAL
LINE INOPERATIVE
NO RING INDICATOR

Figure 5-13. System Constants Used by the TIP (5 of 8)

60474600 A

60474600 A

~*********

* *
*
*

!VT BUILD PARAMETERS *
*

**

B7AIMAX
B7PWDEF

20;
140;

MAX AUTO INPUT PARAMETERS
DEFAULT INPUT BLOCK SIZE

**
* * * !VT PARITY OPTIONS *
* *
**

B7ZERO
B70DD
B7EVEN
B7NONE

O;
l;
2;
3·
'

ZERO PARITY
ODD PARITY
EVEN PARITY
NO PARITY

**
*
*
*

!VT APL OPTIONS
*
*
* **

B8APLNO
B8APLYES
B8APLSPEC

O;
l· ' 2;

APL MODE
APL MODE
APL MODE

NO
YES
SPECIAL

**
* *
*
*

!VT OUTPUT DEVICE OPTIONS *
*

**

B8PRNTR
B8DISPLAY
B8PTAPE

O;
l;
2;

PRINTER
DISPLAY
PAPER TAPE

**
* * * !VT MISCELLANEOUS CONSTANTS *
* *
**

B8NOPAGING

B70DDPAR
B7NOPAR
B7EVPAR

O;

O;
l;
2;

PAGE WIDTH = 0 (NO PAGING)

BS PARITY
BSPARITY
BS PARITY

ODD PARITY
NO PARITY
EVEN PARITY

**
* *
*
*
*
*

!VT CHARACTER DEFINITIONS
THE FOLLOWING CHARACTERS ARE DEFINED FOR THE INTERACTIVE
VIRTUAL TERMINAL

*
*
*
*

**

* --FORMAT EFFECTORS--

I9FSS $20; FE - SINGLE SPACE
I9FDS $30; FE - DOUBLE SPACE
I9FTS $2D; FE - TRIPLE SPACE
I9FNS $2B; FE - START OF CURRENT LINE
I9FRS $2A; FE - TOP OF FORM
I9FPE $31; FE - HOME CURSOR AND CLEAR
I9FNA $20; FE - NO ACTION
I9PSS $2E; FE - POST PRINT SINGLE SPACE
I9PNS $2F; FE - POST PRINT START OF CURRENT LINE

Figure 5-13. System Constants Used by the TIP (6 of 8)

5-23

5-24

*
I9LF
I9CR
I9US

--CONTROL CODES--

$0A; LINE FEED
$OD; CARRIAGE RETURN
$1F; LOGICAL LINE SEPARATOR

**
* *
*
*
*
*

BVT CHARACTER DEFINITIONS
THE FOLLOWING CHARACTERS ARE DEFINED FOR THE
BATCH VIRTUAL TERMINAL

*
*
*
*

**

B9BVT $FF; BVT ESCAPE CODE

* --MODE CHANGE--

B9MCNO $00; MODE CHANGE - NONE
B9MC29 $01; MODE CHANGE - 029
B9MC26 $02; MODE CHANGE - 026
B9MCOT $03; MODE CHANGE - OTHER

* --INFORMATION SEPARATORS--

B9EOM $0A; END OF MEDIA
B9EOR $OB; END OF RECORD
B9EOIN $0C; END OF INFORMATION

* --COMPRESSED BLANKS--

B9CB02 $12; 2 COMPRESSED BLANKS
B9CB31 $2F; 31 COMPRESSED BLANKS

* --COMPRESSED ZEROES--

B9CZ02 $32; 2 COMPRESSED ZEROES
B9CZ15 $3F; 15 COMPRESSED ZEROES

* --REPLICATION COUNT--

B9RC02 $42; 2 REPEATED CHARACTERS
B9RC79 $8F; 79 REPEATED CHARACTERS

* --STRING LENGTH--

B9SLEN $90; INDETERMINATE LENGTH
B9SL01 $91; STRING OF LENGTH 1
B9SL63 $CF; STRING OF LENGTH 63

* --FORMS CONTROL--

PREPRINT POSTPRINT

B9FCS1 $EO; SPACE 1 NO SPACE
B9FCS2 $El; SPACE 2 NO SPACE
B9FCS3 $E2; SPACE 3 NO SPACE
B9FCSS $E3; SUPPRESS SPACE NO SPACE
B9FCPE $E4; PAGE EJECT NO SPACE
B9FCBP $ES; BOITOM OF PAGE NO SPACE
B9FCC6 $E6; CHANNEL 6 NO SPACE
B9FCCS $E7; CHANNEL 5 NO SPACE
B9FCC4 $E8; CHANNEL 4 NO SPACE
B9FCC3 $E9; CHANNEL 3 NO SPACE
B9FCC2 $EA; CHANNEL 2 NO SPACE
B9FC11 $EB; CHANNEL 11 NO SPACE
B9FCC7 $EC; CHANNEL 7 NO SPACE
B9FCC8 $ED; CHANNEL 8 NO SPACE
B9FCC9 $EE; CHANNEL 9 NO SPACE

Figure 5-13. System Constants Used by the TIP (7 of 8)

60474600 A

60474600 A

B9FC10 $EF; CHANNEL 10 NO SPACE
B9PPPE $FO; NO SPACE PAGE EJECT
B9PPBP $Fl; NO SPACE BOTTOM OF PAGE
B9PPC6 $F2; NO SPACE CHANNEL 6
B9PPCS $F3; NO SPACE CHANNEL 5
B9PPC4 $F4; NO SPACE CHANNEL 4
B9PPC3 $FS; NO SPACE CHANNEL 3
B9PPC2 $F6; NO SPACE CHANNEL 2
B9PP11 $F7; NO SPACE CHANNEL 11
B9PPC7 $F8; NO SPACE CHANNEL 7
B9PPC8 $F9; NO SPACE CHANNEL 8
B9PPC9 $FA; NO SPACE CHANNEL 9
B9PP10 $FB; NO SPACE CHANNEL 10
B9FCR1 $FC; RESERVED
B9FCR2 $FD; RESERVED
B9FCR3 $FE; RESERVED

**
* *
* DATA BLOCK FORMAT *
* *
**

DN 8; DESTINATION NODE
SN 9; SOURCE NODE
CN 10; CONNECTION NUMBER
BTPT 11; BLOCK TYPE/BSN/PRIORITY
Pl 12; PARAMETER 1
P2 13; PARAMETER 2
P3 14; PARAMETER 3
P4 15; PARAMETER 4
PS 16; PARAMETER 5
P6 17; PARAMETER 6
P7 18; PARAMETER 7
P8 19; PARAMETER 8
pg 20; PARAMETER 9
PIO 21; PARAMETER 10
Pll 22; PARAMETER 11
Pl2 23; PARAMETER 12
Pl3 24; PARAMETER 13
Pl4 25; PARAMETER 14
PIS 26; PARAMETER 15
Pl6 27; PARAMETER 16
Pl8 29; PARAMETER 18
P20 31; PARAMETER 20
P21 32; PARAMETER 21
P22 33; PARAMETER 22
P24 35; PARAMETER 24
FBYTE DN; FCD FOR FIRST BYTE OF DATA

**
* *
*
*

BLOCK PROTOCOL MESSAGE PARAMETERS *
*

**

BLOCK
DBC
DATA

DN;
Pl;
Pl;

FCD OF lST BYTE OF BLOCK HEADER
DATA BLOCK CLARIFIER

FCD OF lST BYTE OF DATA

**
* * * SM PARAMETER DEFNSE *
* *
**

PFC
SFC

Pl;
P2;

PRIMARY FUNCTION CODE
SECONDARY FUNCTION CODE

Figure 5-13. System Constants Used by the TIP (8 of 8)

5-25

5-26

FIELD LENGTHS:

BOlBIT
B02BITS
B03BITS
B04BITS
B05BITS
B06BITS
B07BITS
B08BITS
B09BITS
BOlOBITS
BOllBITS
B012BITS
B013BITS
B014BITS
B015BITS

BIT ELEMENTS:

= 0 •• 1;
= o .. 3;

0 .• 7;
o .. 15;
o .. 31;
o •. 63;
0 •• 121;
o •• 255;

=0 •• 511;
0 •• 1023;
0 .. 2041;
o .. 4095;
o .. 8191;
o •• 16383;
o .. 32767;

ELEMENTS= (BITO,BIT1,BIT2,BIT3,BIT4,BIT5,BIT6,BIT7,
BIT8,BIT9,BIT10,BIT11,BIT12,BIT13,BIT14,BIT15);

GENERAL MASK WORD:

SETWORD = SET OF ELEMENTS;

POINTERS:

BOBUFPTR BOBUFFER; BUFFER POINTER
BZLCBP BZLCB; LCB POINTER

**
* * * TERMINAL TYPE (TT) /DEVICE TYPE (DT) *
* *
**

NODEVTYPE
NOTCLASS
NPDT

NOTIPTYPE
NOSUBTIP

NPTT

o •• 7;
o .. 19;
PACKED RECORD

DEVICE CODE
TERMINAL CLASS
DEVICE TYPE (DT)

CASE X: INTEGER OF
1: (NPSPRl B08BITS;

NPDEV NODEVTYPE;
NPTCLASS NOTCLASS);

2: (NPSPR2,
NPCHAR

3: (NPINT
END;

CHAR);
INTEGER);

SPARE BYTE
DEVICE TYPE
TERMINAL CLASS
SPARE BYTE
CHARACTER OVERLAY
INTEGER OVERLAY

o .. 9;
0 •• 1;

TIP TYPE
TIP SUB TYPE

PACKED RECORD
CASE X: INTEGER OF
1: (NPSPR3 B08BITS;

NPAUTO BOOLEAN;
NPTIPTYPE: NOTIPTYPE;
NPSUBTIP NOSUBTIP);

2: (NPSPR4,
NPCHR

3: (NPSPR5
NPLS
NPCD

END;

CHAR);
B08BITS;
B04BITS;
B04BITS);

SPARE BYTE
AUTO RECOGNITION
TIP TYPE FIELD
TIP SUB TYPE FIELD
SPARE BYTE
CHARACTER OVERLAY
SPARE BYTE
LINE SPEED
CODE SET

Figure 5-14. System Types Used by the TIP (1 of 3)

60474600 A

60474600 A

**
* *
*
*

BLOCK TYPE BYTE *
*

**

BLKTYPE

BO LINO

PACKED RECORD
CASE DMY : INTEGER OF
1: (

BTSPRl B08BITS;
BTPRID BOOLEAN;
BTBSN B03BITS;
BTYPE B04BITS;

2: (
BTSPR2,
BTCHR CHAR);

END;

PACKED RECORD

PRIORITY DESIGNATOR
BLOCK SERIAL NUMBER
BLOCK TYPE

CHARACTER OVERLAY

CASE BOLINTAG : INTEGER OF
1: (BOLINO:INTEGER); FULL WORD
2: (BDPORT , PORT NUMBER

BDSUBPORT:B08BITS); SUB PORT NUMBER
END;

-k-k**
*
*
*

DATA BLOCK CLARIFIER (DBC)
*
*
*

**

DBDBC = PACKED RECORD CASE DBTAG INTEGER OF
1: (DBDMl CHAR; DUMMY

DBCHAR CHAR); CHARACTER OVERLAY
2: (DBDLFILL: B08BITS; DOWNLINE DBC

DBDLSl, SPARE
DBDLS2, SPARE
DBDLS3, SPARE
DBDLS4, SPARE
DBDLFE, FORMAT EFFECTORS
DBDLXPT, TRANSPARENT
DBDLS5, SPARE
DBDLAUTO : BOOLEAN); AUTO INPUT

3: (DBULFILL: B08BITS; UPLINE DBC
DBULSl, SPARE
DBULS2, SPARE
DBULS3, SPARE
DBULS4, SPARE
DBULS5, SPARE
DBULXPT, TRANSPARENT
DBULCAN, CANCEL
DBULPERR: BOOLEAN); PARITY ERR

4: (DBSPl BOIOBITS; SPARE
DBCCF B02BITS; CODE CONVERSION FIELD
DBBSF BOOLEAN; BACKSPACE PRESENT FLAG
DBDBT B03BITS; DATA CLARIFIER

5: (PDPMl BOS BITS; DUMMY
PDPRUB: BOOLEAN; PRUB BLOCK
PDBANB: BOOLEAN; BANNER BLOCK
PDSPl : B04BITS; NOT USED
PDEOI : BOOLEAN; MESSAGE CONTAINS EOI
PDXPAR: BOOLEAN); TRANSPARENT DATA

6: (DBFl B08BITS; FILL
DBPRUB, PRUB BLOCK
DBBANNER, BANNER BLOCK
DBSP2, NOT USED
DBSP3, NOT USED
DBSP4, NOT USED
DBSP5, NOT USED
DBEOI, EOI (1) OR EOR(O) BLOCK
DBCXPT: BOOLEAN); TRANSPARENT DATA

END;

Figure 5-14. System Types Used by the TIP (2 of 3)

5-27

5-20

INPUT REGULATION OPTIONS FOR PTREGL:

REGLTYPES = (RELOGLNK,
RELOCAL,
REABL,
REACPINP);

REGLSET SET OF REGLTYPES;

LOGICAL LINK REGULATION
LOCAL BUFFER LEVELS
ALLOWABLE BLOCK LIMIT
ACCEPT INPUT

Figure 5-14. System Types Used by the TIP (3 of 3)

DATA BUFFER SIZE:

BEDBSIZE ; BECTPTR;

BUFFER SIZE-INDEX PARAMETERS

BOSS,
BOS16,
BOS32,
BOS64,

DATA BLOCK SIZE

EIGHT WORDS
SIXTEEN WORDS
THIRTY-TWO WORDS
SIXTY-FOUR WORDS

**
* *
*
*

ONE SECOND CLOCK *
*

**

CASECNTR INTEGER;

TEXT PROCESSING BUFFER SIZE:

BETPSIZE : BECTPTR;
TPBUFLENGTH : INTEGER;

BUFFER LENGTHS ARRAY:

TEXT PROCESSING BUFFER
LENGTH

BUFLENGTH : ARRAY (BOBUFSIZES) OF INTEGER;

BUFFER CHARACTER LIMITS:

BUFLCD : ARRAY (BOBUFSIZES) OF INTEGER;

BUFFER SIZE MASKS:

BUFMASKS : ARRAY (BOBUFSIZES) OF SETWORD;

Figure 5-15. System Variables Used by the TIP

60474600 A

60474600 A

Word 15 13 12

0

2 CLUSTER ADDRESS

DEVICE 1 TERMINAL TYPE 3

n

Field Name Type

CNCECODE INTEGER

LINE NUMBER BO LINO

CLUSTER ADDRESS B08BITS

TERMINAL ADDRESS B08BITS

8 7 6 5

CNCECODE

LINE NUMBER

TERMINAL ADDRESS

CLASS SPARE 1 ERROR COUNT

ADDITIONAL USER AREA

Purpose

specification of the type of
error event to be logged in SEF

1 i ne numb er

cluster address

terminal address

DEVICE TYPE NODEVTYPE device type

TERMINAL CLASS NOTCLASS terminal class

SPARE B02BITS spare

0

ERROR CODE B06BITS number of times this error event
occurred

Figure 5-16. System Engineering File Work Area Entry

5-29

BLOCK PROTOCOL 6

Block protocol is used to communicate commands and
information between the NPU and the host. Blocks are
composed of consecutive bytes. The shortest block
consists of only a header (four bytes); the longest block
consists of 2047 bytes, including the four-byte header.

Block protocol assumes that the logical connection
between processes in the host and the NPU is error free (a
supportive, lower level protocol provides deli very assur­
ances between the processes). However, the logical
connection can be abnormally broken, either process can
fail, or the processes can become temporarily congested,
leading to regulation of information transfer.

Failure of a process is usually reported by means of a
service message. Temporary bottlenecks at a destination
process are usually a result of inability to deliver data to
an associated terminal or to the host. Block handling
provides a standard method for informing the transmitting
process of a temporary problem so that any subsequent
data transfers on that connection can be held in abeyance
until the problem is corrected.

The paths between the two processes are fully sym­
metrical as shown in figure 6-1. Blocks belong to one of
three categories:

NPU

•

•

Forward superv1s1on (FS) functions are performed
by INIT and RST blocks.

Reverse supervision (RS) functions are performed
by BACK, BRK, STR T, and STP blocks.

• Forward data (FD) functions are performed by
BLK, MSG, and CMD blocks.

BLOCK FORMAT
The first two bytes of any block are reserved for a link
header (which is used when sending/receiving data from a
remote NPU). The next four bytes of any block constitute
the block header. Format of the block header is as shown
in figure 6-2.

The current release consists of nine principal block types
plus an additional assurance control block type used only
for NPU to NPU transmissions. Characteristics of each
type are summarized in table 6-1.

The first three bytes of the block header provide a
standard network address. Byte 4 contains the block

HOST

FS 1 AND FD 1

PROCESS PROCESS

FS2 AND FD2

FS - FORWARD SUPERVISION (CONTROL/STATUS REQUESTS)
FD - FORWARD DATA (INFORMATION/COMMANDS)
RS - ACKNOWLEDGMENT AND, ERROR INFORMATION

M-367

Figure 6-1. Sample Block Paths Between NPU and Host

60474600 A 6-1

Mnemonic

BLK

MSG

BACK

CMD

BRK

STP

STRT

RST

INIT

--

6-2

Byte 1 2 3 4 5

---Bits

link
header DN

DN - Destination node

SN - Source node

SN

CN - Connection number

CN p

P - Block priority for trunk usage

1 = high
0 = low

7 6

BSN

BSN - Block sequence number (range 0 - 7)

BT - Block type (defined in table 6-1)

4

Figure 6-2. Block Header Format

TABLE 6-1. BLOCK TYPES

Block Traffic
Name Type Type

Block 1 FD

Message 2 FD

Block Acknowledgment 3 RS

Conmand 4 FD

Break 5 RS

Stop 6 RS

Start 7 RS

Reset 8 FS

Initiate 9 FS

-- 10

14

3 0

BT
Remainder
of block

General Function

Any data block which is not
EOM block of a multiblock
message

Data block which is the EOM

the

block of a multiblock message
or the only block of a message

Block acknowledgment for block
transmitted in opposite
direction

Conmand

Indicates a discontinuity in
the data stream traveling in
the opposite direction

Forward data stream is
undeliverable and should be
stopped

Forward data stream can be
started

Transmitter has cleared logical
connection after receiving a
BRK or STRT

Initiate a logical connection

Reserved

60474600 A

priority (P), block sequence number (BSN), and block type
(BT). The content of the remainder of the block, if any,
varies with the block type.

The priority of the block is only significant when the block
is required to traverse a network trunk. Priority pro vi des
for preferential treatment for high-priority blocks when
trunk queueinq occurs. (Trunk queueing is a part of pri­
ority assignment.) All blocks (regardless of type) contain­
ing the same address must be assigned the same priority.

The BSN supplied in a downline block of type MSG, BLK,
or CMD must be returned in the BSN field of the upline
BACK which acknowledges that block. When a BRK or
STP is sent, the BSN field must contain the BSN which
was contained in the last BACK sent for this connection.
The BSN is always zero on other upline and downline
blocks.

ADDRESS

The address contains the node IDs for the source and
destination of the block plus a connection number.

NODE

Each NPU has a unique node ID; each interface between a
host and an NPU has a unique node ID; the host has two
unique node IDs. Node ID = 0 is reserved for the Network
Supervisor (NS) in the host. One nonzero node (usually
node 1) is reserved for the Communications Supervisor
(CS). The remaining node IDs (between 2 and 255) are
build time parameters. For example, in a single-host,
single-NPU system, the host interface (coupler of the
local NPU) might be node ID two, and the terminal node
(interface to the terminals) miqht be node ID three; this
pair of nodes forms a logical link. Thus, traffic qoing
upline (from a terminal to the host) has a destination node
ID of two and a source node ID of three. Traffic going
downline from NS to the NPU has a destination node ID of
two and a source node ID of zero.

CONNECTION NUMBER

A logical connection is the association between a terminal
device on an NPU and an application process in the host,
by which traffic is communicated between the terminal
(or a device at that terminal) and the applicable process.
The connection number is one byte lonq, and has a range
of values between 1 and 255. Every block traveling down­
line to a terminal device or upline from a terminal device
bears the connection number. Unique connection numbers
are assigned to all terminal devices on a given logical link.

SERVICE CHANNEL

A block having a connection number of zero is called a
service message, and the logical connection over which it
is communicated is called the service channel. Unlike
logical connections that can be dynamically created and
released, the service channel always exists. Service
messages include commands, requests for status, error
information, statistics information, or replies to one of
these three message categories. Commands traveling via
the service channel establish logical connections and com­
municate control, status, and error data. The complete
summary of service messages is found in appendix C of
the CCP System Programmer's Reference Manual.

60474600 A

BLOCK TYPES

The block types are described in detail below.

BLK - BLOCK OF A MESSAGE

A BLK block is a data block containing a portion, but not
the last segment, of a data message. All data blocks
contain from l to 2043 bytes of data immediately follow­
ing the four-byte header. The content of the data field is
determined arbitrarily by the communicating processes;
that is, the TIP and the host application.

MSG - MESSAGE OR LAST BLOCK OF A MESSAGE

A message is a self-contained unit of data communi­
cations and is transmitted as data stream. An end-of­
message indicator always terminates the message's data
stream.

If a message is 2043 bytes or less in length, it can be
transmitted within a single MSG block. If a message is
longer than 2043 bytes or if, as is usual, the message is
segmented by the terminal or by the TIP, all segments but
the last are transmitted within BLK blocks. The last
segment is transmitted within a MSG block.

BACK - BLOCK ACKNOWLEDGMENT

A BACK block is the acknowledgment of a received
block. It is returned to the transmitter by the receiver as
BLK, MSG, and CMD blocks are processed to allow the
transmitter to adjust the rate of issuing data to the rate
of delivery to the receiver. The transmitter should not
issue unacknowledged blocks in excess of a network block
limit (NBL) for each connection. The BACK block that
acknowledges a previously transmitted block allows the
transmitter to maintain an outstanding block count to
ensure that the NBL is not exceeded. NBL is established
by the connection as a part of the configuration process.
Note that no data bytes are associated with a BACK block.

CMD - COMMAND BLOCK

A CMD block carries a network command. It allows
connected processes to communicate outside of the data
stream but synchronous with that stream. The command
is received by the destination process in the same ordering
sequence to the data stream, or other commands, as
existed at the source. If CN is O, the command is a
service message. The data bytes of the message are
highly structured. Rather than using BACK blocks as
acknowledgment, service messages use other service mes­
sages as acknowledgments. See appendix C.

BRK - BREAK IN MESSAGE STREAM

The BRK block indicates a discontinuity (break) in the
data stream and travels in the opposite direction. The
receiving process responds with an RST to specify the
point in the data stream where the action caused by the
BRK block occurred. The sender of the BRK block
discards all blocks received before the RST block. A
further BRK or STP block must not be sent before the
RST block is received.

6-3

A single data byte, the reason code (RC), follows the BRK
block header and specifies the reason for breaking the
transmission. The RC byte is defined as follows:

1 = User Break 1 received (typically means queue
abort occurred)

2 = User Break 2 received (typically means job abort
occurred)

3 = Output device not ready

4 = Illegal or invalidly formatted block received from
host

The receiver sends the BRK block when that device is
unable to determine when data can again be delivered.
The sender must use a higher level protocol than the break
condition to determine recovery.

STP - STOP MESSAGE TRAFFIC

The STP (Stop) block indicates that no further blocks
should be sent until a STR T block is received.

The STP block is used when a process is unable to deliver
data to the final destination but is able to determine when
data delivery can resume. The STP block is used to
release data buffered in the network; STP blocks are not
required for temporary delays. A reason code follows
the header. This code is passed to the connected process.
The sender of the STP block discards all sequenced blocks
received. The RC byte is interpreted as follows:

1 = Terminal busy
2 = Terminal failure
3 = Batch interrupted by interactive input or output

STRT - START MESSAGE TRAFFIC

The STR T (Start) block is used after a STP block to allow
resumption of data flow to the destination sending the

6-4

STRT block. The receiving process responds with a RST.
No data bytes are associated with this block.

RST - RESET BLOCK

The RST (reset) block is sent in response to either a BRK
or STRT block. It serves to delimit the data stream and
indicate the point at which the BRK or STRT block
occurred. From the time the BRK or STRT block was sent
until the receipt of the RST block, all unacknowledged
blocks and all new blocks are discarded. No data bytes
are associated with this block.

INIT - INITIALIZE TRAFFIC

The INIT (initiate) block delimits the new data boundaries
when a connection is first made. Newly established
connections discard blocks from the logical connection
until the INIT protocol is completed. The second end of
the connection to be set up immediately sends an INIT
block. Upon receipt of the INIT block, the first end to be
set up responds with an INIT block and starts accepting
blocks over the logical connection. Upon receipt of the
responding INIT block, the second end of the connection to
be set up also starts to accept blocks over the logical
connection. No data bytes are associated with this block.

BAD BLOCKS DETECTED BY NPU
When NPU software detects a bad block, the NPU discards
the block. If the block is bad due to a bad block type or to
a bad sequence number, a BRK block is sent to the host.
If the block is a BLK, CMD, or MSG, no BACK block is
sent to the host. For any other block type, no action
solicited by the block is taken and the block is not ac­
knowledged.

60474600 A

BLOCK PROTOCOL INTERFACE PACKAGE (BIP) 7

The Block Protocol Interface Package (BIP) controls the
transportation of data and control blocks between the TIP
and the application program. BIP provides a set of
modules which the TIP uses to receive data, to send data,
and to regulate the flow of data. Two independent
processes for data and commands are provided: one for
upline and the other for downline.

DOWNLINE DATA AND COMMANDS
After line and terminal configuration has been completed,
the host software and the BIP initialize the connection for
both upline and downline data. This initialization discards
any residual messages that might have been left in the
network from a previous use of the connection (CN). This
initialization is invisible to the TIP. The host application
programs are required to originate a downline message to
begin data exchange. The TIP uses this first downline
message to indicate that the connection has been
initialized, and to begin I/O tasks.

Whenever an output message arrives from the host, BIP
queues the message to the appropriate TCB. Whenever
BIP places a message in an empty TCB queue, BIP also
generates a worklist entry for the TIP associated with
that TCB. (Note that BIP does not generate a worklist
entry to the TIP if there are already messages in the TCB
queue.) This worklist can be used to initiate output.
After the output operation is completed, the TIP must
check to find if there is more output queued for delivery.
Format of the output queued worklist entry to the TIP is
shown below:

Output Queued WLE:

Word 15 14

l AOQUEOUT

line number

TCB address

PREOUTPUT POINT OF INTERFACE

The TIP checks for pending output by calling the
preoutput point of interface procedure, PBPROPOI. If
output is available, PBPROPOI returns the address of the
chain of message buffers to the TIP. Otherwise, a nil
pointer is passed to the TIP.

The principal characteristics of PBPROPOI are as follows:

60474600 A

Procedure name: PBPROPOI

Input parameter: (BlTCB) = address of TCB

Return parameter: (BlBUFF) = address of first
buffer in chain (or nil if
there is nothing in queue)

Calling sequence: PBPROPOI

Example of call:

BlTCB : (tcbpointer); Address of TCB to be

PBPROPOI;
IF B lBUFF = NIL
THEN

checked
Get next output message
If no messages, •••

ELSE ELSE, IF OUTPUT EXISTS •••

The message which was removed from the output queua
must be acknowledged before calling PBPROPOI again.
The message can be acknowledged by calling the post­
output point of interface (PBPOPOI), PTBACK, PTSTOP,
or PTBREAK. Message and terminal conditions determine
which routine is called. PBPOPOI is used to acknowledge
data messages (BLK or MSG blocks). Commands are
acknowledged by calling PTBACK. PTBREAI< (a negative
acknowledgment) is called if the message can be neither
delivered nor actioned. Such conditions could be caused
either by syntax errors in the message or a device­
not-ready condition at the terminal. The BRK block is
used for device-not-ready only if the TIP cannot deter­
mine when the device-ready condition occurs. If the TIP
can resolve the not ready condition, PTSTOP is called
instead. The STP block does not acknowledge a message
if the message was unqueued.

POST OUTPUT POINT OF INTERFACE

After successfully transmitting data to a terminal, the
TIP calls the post output point of interface program,
PBPOPOI. This program performs the following functions:

• It acknowledges to the host application program
that the block was successfully transmitted

• It accumulates line and terminal statistics

• It releases the data buffers

7-1

CCP must acknowledge all the blocks that an application
program sends and it must acknowledge them only once.
It is possihle for a network block to be fragmented into
two or more blocks. Each of these internally generated
blocks is identified by a BFINTBLK flag which is set to
TRUE in the first buffer of the block. The TIP must pass
this flag to the transmission block so PBPOPOI can
recognize that it is not to be acknowledged. When
PBPOPOI processes one of these internally generated
blocks, it accumulates statistics for the block. However,
since only one fragment of the block has BFINTBLK set to
FALSE, PBPOPOI acknowledges that transmission block
only.

Note that PBPOPOI must not be called more than once for
any network block without the BFINTBLK flag set, since
this would cause multiple acknowledgment of a single
network block.

PBPOPOl's principal characteristics are as follows:

Procedure name: PBPOPOI

Input parameter: (BlTCB) = address of TCB

Return parameter: (BlBUFF) = address of buffer
chain

Calling sequence: PBPOPOI

Example of call:

BlTCB : = (tcbpointer); TCB address
BlBUFF : = (bufferpointer); Buffer chain address
PBPOPOI; Acknowledge block

COMMAND ACKNOWLEDGMENT

After the TIP processes a command, the TIP acknowledges
command (CMD) blocks by calling PTBACK. This
procedure must be called only once for each CMD block.

PTBACK's principal characteristics are as follows:

Procedure name: PT BACK

Input parameter: (BlTCB) address of TCB

Return parameter: none

Calling sequence: PTBACK

Example of call:

BlTCB : = (tcbpointer); TCB address
PTBACK; Acknowledge the CMD block

NEGATIVE ACKNOWLEDGMENT OF BLOCKS AND BREAKS

A negative acknowledgement takes the form of a break
(BRK) block, which is generated by the PTBREAK
routine. Negative acknowledgement is sent to the host
application program whenever the TIP cannot deliver a
data (MSG or BLK) block, or is unable to execute a CMD
block. PTBREAK is called when the TIP detects a syntax
error or a sequence error in either a data or a command
block. PTBREAK is also called when the data cannot be
delivered for an indeterminate period, as when the
receiving terminal is not ready. The host application
program must provide the logic to restart the output
operation when the terminal is again able to accept data.

7-2

BRK blocks have a second use: they can carry user data
up line for special processing. For example, when a user
break is entered at a terminal, a break block is generated
for the application program. In this case, BRK block is
inserted into the data stream to carry upline data; it is
therefore not synchronous with other upline network
blocks. Since the BRK block can never be synchronous
with the normal data stream, it can be received and
processed ahead of any data or commands that were
queued for upline transmission prior to the BRK block, but
which the application has not yet received.

If (1) delivery assurance is required, and (2) the output
block was fragmented, and (3) the TIP did acknowledge
the network block without delivering all of the
fragmented blocks, then the TIP must hold the fraqmented
blocks either until they can be delivered or until the
connection is broken. However, if the failure to deliver
all of the fragments was caused by a user break received
from the terminal, all queued blocks are discarded; there
is no delivery assurance for this condition.

NOTE

The BACK block is used only for data flow
control. Deli very assurance requires some
other mechanism, such as passinq CMD
blocks between nodes. None of the
standard CCP TIPs use delivery assurance.

PTBREAK's principal characteristics are as follows:

Procedure name: PTBREAK

Input parameters: (BlTCB) = address of TCB
(reason code) = integer
variable:
Type of break condition:
B9FORMAT = syntax or sequence
error
B90DEVNOTRDY = Output device
not ready
B9USR1 user break
B9USR2 = user break 2

Return parameter: none

Calling sequence: PTBREAK (reason code);

Example of ca 11:

BlTCB : = (tcbpointer); TCB address
PTBBREK(B9FORMAT); Syntax error in message

STOP OUTPUT

The TIP can stop the downline data and command flow at
any time by calling PTSTOP to generate a STP block. A
stop block causes the host application to suspend output
until a start condition is sent upline. The STP block acts
as a negative acknowledgment if a network block was
unqueued but not acknowledged. The host application
repeats all unacknowledged messages when the downli ne
data flow is restarted. The TIP must not send a BRK
block while a STP block is outstanding (that is, no STRT
block has been generated to restart output from the host
application program).

PTSTOP's principal characteristics are as follows:

60474600 A

Procedure name: PTSTOP

Input parameters: (BlTCB) = address of TCB
(reason code) = reason code
for the stop
Type of stop condition:
B9TBUSY = terminal busy
B9TFAILURE = terminal failed

Return parameter none

Calling sequence: PTSTOP (reason code);

Example of call:

BlTCB : = (tcbpointer); TCB address
PTSTOP(B9BUSY); Stop downline message

flow

ST ART OUTPUT

To restart an output stream that was previously stopped
by the call to PTSTOP, the TIP issues a call to PTST ART.
That routine sends a STRT block upline if, and only if, the
last block sent upline was a STP block.

PTST AR T's principal characteristics are:

Procedure name: PTSTART

Input parameters: (BlTCB) = address of TCB
(reason code) = constant of
type INTEGER, which is always
set to a zero value

Return parameter: none

Calling sequence: PTSTART (reason code); reason
code is always zero

Example of call:

BEGIN

END;

BlTCB : = (tcbpointer);
PTSTART(O);

TCB address
Start downline
message flow

UPLINE DATA AND COMMANDS

UPLINE DATA

After terminal configuration is completed, it is possible
for the TIP to initiate and to process upline data.
However, the network cannot accept upline data until the
connection to the host application program is initialized.
Synchronous and asynchronous protocols should start
processing data in different ways:

• Synchronous TIPs should wait for the first
downline data to indicate that the connection has
been completed.

• Uncontrolled protocols which are used with
asynchronous terminals can lose the first few data
characters if the TIP waits for an indication that
the connection has been completed. For such
protocols, the first output from the application
program to the terminal is a prompt, indicating a
successful connection.

60474600 A

Before starting any input processing, or releasing any
upline data into the network, the TIP must make an input
data regulation check to find if input is allowed. The TIP
calls PTREGL to determine the current input conditions.
If input is allowed, the TIP requests input from the
terminal or allows already gathered messages to be
released to the network. The TIP calls the post input
point of interface, PBPIPOI, to transform the data into
network MSG or BLK blocks, and to pass the blocks upline
to the network.

UPLINE COMMANDS

Commands can be sent upline either as a response to a
downline command, or as a result of upline data. In either
case, the TIP calls the Internal Input Point of Interface,
PBIIPOI, to send a command.

POST INPUT POINT OF INTERFACE

Whenever the TIP has data that is ready to be sent to the
host application program, the TIP calls the post input
point of interface routine, PBPIPOI. This POI performs
three tasks: it creates a network block, it routes the block
to the host, and it gathers line and terminal statistics for
the data.

PBPIPOl's principal characteristics are as follows:

Procedure name: PBPIPOI

Input parameters: (BlBUFF) = address of data
buffer chain
(BlTCB) = address of TCB
(BlBT) = block type:

HTMSG = message
HTBLK = block

Return parameter: none

Calling sequence: PBPIPOI

Example of call:

BlBUFF : = (bufferpointer); Address of input data
BlTCB : = (tcbpointer); TCB address
BlBT := HTMSG; Message block
PBPIPOI; Send message to

application program

Prior to calling PBPIPOI, the TIP should call PTREGL to
assure that the connection has been initialized and can
accept data. Otherwise, data could be lost.

The first character displacement (FCD) of the first data
buff er must point to the first data character and not to
the first header byte. The first data character is defined
to be the data block clarifier (DBC). If the DBC is in the
proper relative location in the buffer, the system adds the
network header to the first buffer. If the DBC is in any
other byte, the system allocates a new buffer for the
network header and chains the data buffers to the new
header. This inefficient use of data buffers should be
avoided. The TIP should normally place the DBC in the
byte indexed by the global constant DAT A. (The global
variable DBC is equated to DATA to allow more
descriptive code.) Following the DBC, the first
transformed data byte from the terminal in placed at
location (DA TA + 1). The TIP normally prepares the FCD
and DBC as shown:

7-3

VAR
(dbc) : DBDBC

WITH BlBUFF t DO
BEGIN

BFFCD : = DATA;

BFDATAC roBd : =
(dbc) .l>B(HAR;

END;

Data block clarifier
With the data buffer
To be sent
Indicate the location of
the DBC

Set the message DBC

INTERNAL INPUT POINT OF INTERFACE

To send a command to the host, the TIP constructs the
command in a data buff er and calls the internal input
point of interface, PBIIPOI, to format the command into a
network recognized CMD block, aml to send the block
upline. The first data byte of the command should begin
at an index specified by the global constant DATA (this
avoids inefficient use of data buffers).

PBIIPOl'S principal characteristics are as follows:

7-4

Procedure name: PB II POI

Input parameters: (BlBUFF) = address of counnand
(BlTCB) = address of TCB
(BlBT) = HTCMD - Network
command block type

Return parameter: none

Calling sequence: PBIIPOI

Example of call:

BlBUFF := (bufferpointer); Address of counnand
data

BlTCB : = (tcbpointer);
BlBT : = HTCMD;
PBIIPOI;

TCB address
Counnand b 1 oc k
Send connnand to host

MESSAGE SEQUENCING

Each downline BLK, MSG, or CMD block is given a
sequence number by the network software. This sequence
number is returned to the host in the acknowledgment for
the block. BIP maintains the sequence numbers, but the
the TIP must assure that interface procedures are called
in the proper order. Failure to maintain this order causes
the host software to report an NPU failure. This will lead
to reloading the NPU and causes the loss of all current
messages, as well as a loss of time in reloading the NPU
and reconfiguring all its lines.

ERROR PROCESSING
Illegal parameters passed to the BIP routines will result in
the eventual failure of the NPU. The BIP does not check
input parameters to protect the system against failures
resulting from erroneous TIP calls.

60474600 A

SERVICE MODULE INTERFACE 8

The Service Module (SVM) provides the interface for
supervisory (service) messages between the TIP and the
host.

Downline, a service message from the host originates as a
request to change the status of a line or a terminal. The
service module forwards the request to the TIP for
processing or for TIP concurrence. In most cases the TIP
must reply to the service module request. However, the
TIP need not reply immediately. Instead, the TIP can save
the request and continue processing until an appropriate
time is found to send the reply. Such delays are often
necessary to complete a protocol cycle so that the
terminal is left in a known state rather than in some error
or recovery state.

Upline, the TIP can generate a service message when the
TIP detects a change in the status of a line or terminal.
In this case, the TIP calls the service module to forward
the change of status to the host in the form of a
supervisory message. The TIP also gathers statistics for
the host's engineering file, and calls the service module
indirectly to deliver this information to the host. Note
that this information is independent of the application
programs. Such information is for diagnostic purposes; it
is independent of online message processing.

There are three methods of interfacing to the service
module:

• Most communication between TIP and service
module is initiated by worklist entries.

• The service module makes a direct call to the
TIP's TCB initialization routine during terminal
configuration.

• The TIP calls other routines which in turn call the
service module, thereby providing indirect calls to
the SVM.

The following tasks use the TIP/SVM interface:

• Worklist call from SVM to TIP to enable a line.
The TIP must reply to the SVM with a line enabled
or a line inoperative worklist.

• Worklist call from SVM to TIP to disable a line.
The TIP must reply to the SVM with a line
disabled worklist.

• Direct call from SVM to TIP to configure user TIP
defined fields of the TCB. The TIP must return
control to the SVM by completing the return jump.

• Worklist call from SVM to TIP to start terminal
operation following configuration. There is no
reply to this service message.

• Worklist call from SVM to TIP to change a data
connection from the terminal to another appli­
cation program. The TIP must reply to the SVM
with a terminal reconfigured worklist.

60474600 A

• Worklist call from SVM to TIP to delete a
terminal. The TIP must reply to the SVM with a
terminal deleted worklist.

• Indirect call to SVM via PNSMGEN to report a
change of terminal status (such as a terminal
failure or recovery).

• Indirect call to SVM via PNCEFILE to report
statistical performance data.

ENABLE LINE
A line enable worklist is sent to the TIP when a line is
being initialized for use and the modem signals are
correct. The TIP initializes the TIP-defined fields, if
necessary. The enable line worklist is sent to the TIP for
both the initial line configuration and for reinitialization.
Reinitialization can result from a line enable or a
disconnect line request from the host.

The TIP must reply to the SVM with either a line enabled
worklist (workcode = COLINOP), or a line inoperative
work list (workcode = COLNINOP), depending on the TIP's
success in enabling the line.

The TIP must do additional processing on autorecognition
lines (the LCB's BZAUTO field = TRUE). The TIP
communicates with the terminal, and the operator replies
by pressing certain keys which send information for the
TIP to interpret. By using autorecognition methods the
TIP can determine the following:

• Line speed
• Sub TIP type
• Code set
• Cluster address(es)
• Terminal address(es)
• Device type(s)

The TIP places the detected information in specified
fields of a data buff er. This buffer is passed to the SVM
along with the worklist entry for the line enabled reply. If
the TIP failed to generate any autorecognition infor­
mation, the address of the autorecognition buffer will be
NIL. SVM passes all autorecognition information to the
host.

NOTE

Implementing new autorecognition para­
meters requires host program changes.
New use of existing autorecognition fields
may also require host program changes.

If the TIP writer uses a dummy TCB during auto­
recognition, the TIP itself must both create and maintain
this TCB.

The service module assures that only one enable line
worklist is sent to the TIP for each line. Terminal related
requests are not sent to the TIP until SVM receives the
TIP's reply to the enable line message. However, SVM can

8-1

send the TIP a disable line worklist to cancel the auto­
recognition procedures at any time.

Figure 8-1 shows the worklist entry format for the enable
line request and for the TIP's worklist replies to this
request.

Enable Line WLE

15 8 7 0

I AOSMEN

line number

Line Enabled WLE

15 8 7 0

l COLINOP

line number

address of autorec buffer

Line Inoperative WLE

15 8 7 0

l COLNINOP

line number

Figure 8-1. Enable Line Worklists and Replies

DISABLE LINE

When the host decides to discontinue use of a line, it sends
a disable or disconnect request to the NPU. The service •
module processes its part of the request and passes a
disable line worklist to the TIP. The TIP terminates any
activities on the line and then sends a line disabled
worklist to the service module. The TIP need not return
the reply immediately, however. Instead it may delay any
reply until the terminal is left in a known state. The TIP
must release all internally maintained buffers for the line,
including all the buffers held in each TCB on the line. The
service module releases the TCBs.

The format of the disable line worklist to the TIP, and the
format of the TIP's reply wocklist to the service module
are shown in figure 8-2.

CONFIGURE TERMINAL

After the line is enabled, the host can request that the
terminals on that line be configured. The service module
handles a large part of this configuration process and then
calls the TIP directly to finish configuring the terminal.

The TIP must contain a separate subroutine to handle this
call. The TIP's part of the configuration process normally
consists of initializing the value of TIP-defined fields in
the TCB (and in some cases the LCB).

B-2

After initializing the fields, the TIP completes the return
jump to the service module.

Disable Line WLE

15 8 7 0

I I AOSMDA

line number

Line Disabled WLE

15 8 7 0

I COLNDA I
Figure 8-2. Disable Line Worklists

NOTE

If the TIP returns control to the monitor
from this subroutine, the NPU will fail.

The TIP must not begin I/O at this time, as the connection
is not yet open and data cannot be sent from the terminal
to the host.

After both the TIP and the service module have completed
the terminal configuration, the service module notifies
the host and sends a TCB-configured worklist to the TIP.
When the TIP receives this worklist, the TIP writer has a
choice of coding options:

• The TIP can be coded so that the TIP initiates I/O
with the terminal at this time. However, note
that it may still be necessary to inhibit input
because the connection is not yet initialized. The
TIP discovers whether or not input can be
accepted by calling PTREGL directly.

• The TIP can be coded to wait for the first output
block from the host as the event which initiates
both input and output for the terminal. This first
output block is either (1) the request from the
network for log on information, or (2) the first
message from a user-written application pro­
gram. In either case, the BIP sends a worklist to
the TIP since this is the first block in the TCB's
output data queue.

Note that the TIP does not return a worklist to the service
module to reply to the TCB-configured worklist.

The principal characteristics of the configure TCB process
are as follows:

Procedure name: Chosen by the TIP writer

Input paramters: (BlTCB) address of TCB

Output parameters: None

60474600 A

Processes:

Required system
table changes:

Initialize values of
TIP-defined TCB fields, if
necessary

Address of TCB configuration
routine must be initialized
in the TIP type table.

Figure 8-3 shows the format of the TCB configured
worklist sent from the service module to the TIP.

Word 15 8 7 0

0 1 AOSMTCB

line number

2 TCB address

Figure 8-3. TCB Configured Worklist

RECONFIGURE TERMINAL
A reconfiguration request from the service module
indicates that the host is switching the data connection
from one application program to another. The TIP must
return the TCB to the same initialized state as if it were
newly configured. When the TIP has finished its part of
the reconfiguration process, the TIP sends a TCB recon­
figured worklist to the service module.

The TIP reconfiguration process consists of the following
actions:

• All internally held data buffers are released.

• All TIP-defined fields in the TCB are initialized.

• The TIP initiates 1/0 on the connection in the
same way it initialized J/O for a configuration
process.

It is especially important that the terminal be left in a
known state since this request is a normal part of the
switching procedure between application programs. All
residual effects of the old application program should be
eliminated and all current protocol cycles should be
allowed to go to completion. The TIP should delay the
reply to the reconfiguration request until all the above
actions are completed. However, the TIP must reply to
the request even if the line fails and the service module is
sent a line-inoperative status worklist.

The service module will not send a second reconfiguration
request for the same terminal until the TIP replies to the
first reconfiguration request. Furthermore, if the TIP has
not replied to a reconfiguration request, the service
module will not send a line disable request for that
terminal's line. Note, however, that there is no limitation
on sending configure TCB, reconfigure TCB, or disable
line requests for any other terminal controlled by the TIP.

If a terminal has failed, the TIP must retain this infor­
mation. A request to change a connection does not
change the error status of the terminal.

Figure 8-4 shows the worklist formats for the recon­
figuration requests.

60474600 A

Reconfigure Terminal WLE

Word 15 8 7 0

0 T AOSMRCTCB

line number

2 TCB address

Terminal Reconfigured WLE

Word 15 8 7 0

0 T CORCTCB

TCB address

Figure 8-4. Reconfigure TCB W orklists

DELETE TERMINAL
When the host requests that a terminal or a terminal
device be deleted, the service module sends a delete
terminal worklist to the TIP. To process this request the
TIP must accomplish the following:

• Release all internally held buffers

• Save any data in the TCB which the TIP has
reason to retain

• Unqueue the TCB from the chain of active TCBs
for the line

• Reply that the above actions have been completed
by sending a terminal deleted worklist to the
service module. The service module will not send
a delete line request for this terminal's line if the
TIP has not replied to a previous delete terminal
request.

The TCB unqueuing process proceeds as follows:

• The TIP finds the pointer to the first TCB linked
to the line. This pointer is held in the LCB field,
BZTCBPTR.

• If this pointer is for the TCB to be deleted, the
TIP moves the pointer to the following TCB into
BZTCBPTR. This pointer is contained in the TCB
field, BSCHAIN.

• If this pointer is not for the TCB to be deleted,
the TCB chain in each TCB's BSCHAIN field is
searched until the TCB preceding the TCB to be
deleted is found. That TCB points to the TCB to
be deleted. That TCB's BSCHAIN field is loaded
with the BSCHAIN field from the TCB to be
deleted.

Figure 8-5 shows the delete terminal worklist formats.

TERMINAL STATUS CHANGES
If a TIP detects changes in a a terminal's status, the TIP
passes the information indirectly to the service module by

8-3

Delete Terminal WLE

Word 15 8 7 0

0 1 AOSMDLTCB

1 line number

2 TCB address

Terminal Deleted WLE

Word 15 8 7 0

0 1 CODLTCB

TCB address

Figure 8-5. Delete Terminal Worklists

means of a direct call to PNSMGEN. The service module
subsequently sends the appropriate service message to the
host.

The procedures for reporting status changes are as follows:

• The TIP detects an irrecoverable error such as a
protocol failure.

• The terminal must be configured at the time.

• The TIP collects the status change information
and calls the SVM indirectly.

• When the error condition is resolved and the
terminal can again be used, the TIP again reports
the change of status via PNSMGEN.

• The host supervision does not have to act on a
failing terminal status change. Application pro­
grams can be written which will not relinquish a
connection even though the terminal has failed.

• The TIP must also initiate sending a STP block to
the application by means of a direct call to
PTSTOP. This will stop transfers on the con­
nection. The application program can be written
in either of two ways: (1) The application can
relinquish the connection to the network, or (2)
the application can retain the connection and wait
for a STRT block to be sent, indicating that the
terminal has recovered.

If the application relinquishes the connection, the host
supervisor can send a message downline to reconfigure the
terminal without initializing the data path (that is, the old
connection is ended, but no new connection is defined). In
this case, protocol blocks are inhibited from using the
path, since there is no receiving application program. The
host supervisor then waits for an operational status
service message before any new connection is estab­
lished. (The TIP notifies PNSMGEN that the terminal's
status has changed to operational; the service module
sends the message upline.) The host supervisor establishes
the new connection by a second reconfigure message for
the same terminal.

If the TIP cannot detect that the failed terminal has
recovered, both the connection and the terminal are

8-4

unusable until the network operator intervenes. The TIP
receives notification of the operator's intervention in the
form of a delete terminal request or a disable line request.

The TIP must retain the operational or nonoperational
status of the terminal throughout the reconfiguration
process. The TIP must not reissue a terminal inoperative
status as a result of the reconfiguration request. Since
the STP block sent on the original connection is not
transferred to the new connection, the STRT block must
be cancelled.

The principal characteristics of the terminal status
change process are shown in figure 8-6.

SYSTEM ENGINEERING FILE ENTRIES
Entries are made in the system engineering file for
periodic statistical analysis. Entries help the analyst to
diagnose patterns of failure and to identify marginal
components.

The TIP constructs the entry format in a work area and
calls PNCEFILE to generate and to send the appropriate
type of CE ERROR message to the host. The TIP writer
must define the various fields in the entry. See section 5
for the recommended field definitions and field types.
Additional user information can be added to the entry;
however, new formats may require corresponding changes
in the engineering file analyzer. In addition, the engi­
neering file analayzer may need changes if the TIP writer
adds new error file entry codes. No provision is made for
the creation of new alarm messages to the network oper­
ator as a result of newly defined engineering file entries.

The principal characteristics of the system engineering
file entry generating process are as follows:

Procedure name: PNCEFILE

Input parameters: (length) length of the
prototype entry in eight bit
bytes

(CNCEOVLY) = prototype entry
construe ted prior to the
call to PNCEFILE

Return parameters: None

Calling sequence: Initialize the prototype
entry in the work area

Call PNCEFILE, passing the
entry length as a parameter:

PNCEFILE (length)

Figure 8-7 shows an example of calling the service module
to generate a CE error service message.

ERROR PROCESSING
The system may fail in the following cases:

• The TIP sends a worklist to SVM which is not in
reply to a SVM worklist, and is not one of the
acceptable unsolicted worklists (unsolicited line
and terminal status requests are acceptable).

60474600 A

• Line number or TCB address in the worklist to
SVM is incorrect. In most cases, the illegal value
causes destructive changes to memory which leads
to an eventual NPU failure. If SVM detects the

error, that module executes an immediate system
halt. It should be apparent that the TIP writer
must carefully validate his SVM interface.

Procedure name: PNSMGEN

Input paramters: (GENPFC) D8STATUS
(GENSFC) D9TMLSTAT
(OP) TCB address
(BSINOP) ~ Terminal status (operational TRUE, inop FALSE)

Output parameters: None

Calling sequence: The global variables GENPFC and GENSFC are INTEGER type. The global constants D8STATUS
and D9'IMLSTAT are provided for use with this call. The global variable must be set up
immediately preceding the call.

60474600 A

The global OP is of BOBUFPTR type.

The boolean variable BSINOP is a flag in the TCB. The TIP sets and clears this flag.

The TIP cannot call the service module directly. Therefore an indirect call is made to
PNSMGEN. The array BRTNJUMP, the constant ClPNSMGEN, the fields JENTADDR and JPAGEVAL
in the array BRTNJUMP and the procedure PBXFER are all system defined. The TIP writer
should use the code shown in figure 8-6 to make the call.

Figure 8-6. Terminal Status Change Call to Service Module

WITH <tcbpointer> tDd
WITH CNCE OVLY l<level>j Dd
BEGIN

CNCECODE := <error file entry code>; ,+-entry code +
<line number>
<cluster address>
<terminal address> :=

:=
:=

<device type>
<terminal class>

:=
:=

<lcbpointer> t. BZLINO; r+-line number +
BSCA; ,+-cluster address +
BSTA; ,+-terminal address+
BSDEVTYPE; r+device type +
BSTCLASS; ,+-terminal class +

<error count> := <occurrence count>; ,+-occurrence count+
,+-issue SEF entry + PNCEFILE (<length>);

END;

where:

<tcbpointer>
<level>

<error file entry code>

<line number>
<lcb pointer>
<cluster address>
<terminal address>
<device type>
<terminal class>
<error count>
<occurence count>

pointer variable to TCB
interrupt level constant

OPS = OPS level (normal) entry to TIP
MUX2 = MUX level entry to TIP

defines entry
user should select values X'40 to X'4F

line number and terminal reporting error
pointer variable to LCB

l entries from TCB defining
J terminal with problem

count field for this error
value for count field

Figure 8-7. Sample Call to SVM to Generate a CE Error Message

8-5

COMMON TIP SUBROUTINES 9

CCP provides a variety of subroutines to perform func­
tions that are common to several TIPs. These common
functions are as follows:

• To check if input regulation should occur

• To provide reentrant code entry and exit pro­
cedures

• To process IVT commands

• To gather error processing statistics

INPUT REGULATION, PTREGL
Before a TIP can solicit or allow upline data, the TIP must
check the upline traffic conditions to find if input should
be regulated (inhibited). Four types of conditions can
cause the TIP to regulate input. The TIP has the choice of
checking for any of these conditions or any combination of
these conditions:

•

•

The data path from the terminal is congested with
too many upline blocks. This condition occurs
when the number of network blocks sent to the
host, but not yet acknowledged, exceeds the user
defined threshold value.

The data path from the host to an NPU attached
to the terminals is congested because of a failed
intermediate node or a shortage of data buffers in
an intermediate node. An intermediate node is
defined to be any NPU that is upline from an NPU
which has attached terminals.

• The node attached to the terminals is itself con­
gested, and has too few assignable data buffers to
allow further input from the terminals.

• The data path from the terminal to the host appli­
cation program has not been initialized.

The TIP issues a call to the boolean function, PTREGL, to
determine if one or more of these regulation causing
conditions exists.

The principal characteristics of the regulation checking
subroutine are as follows:

Procedure name: PTREGL

Input parameters: (tcbpointer)
TCB

address of the

60474600 A

(regltype) variable of type
SETWORD with the following
values:

EGLOGLNK
regulation

logical link

REABL = network block limit

REACPINP = connection
initialized status

RELOCAL = data buffer
shortage in this NPU

Output parameter: input regulation status, type
BOOLEAN •

TRUE = input allowed

FALSE = at least one of the
requested types of regulation
condition exists.

Calling sequence: (regvalue) := PTREGL
((tcbptr),(regtype))

Example of call:

IF PTREGL(BlTCB, RELOGLNK,REABL,REACPINP,RELOCAL
THEN
BEGIN ALLOW INPUT FOR THIS

TERMINAL

END;

For controlled protocols, the TIP may discover the status
of all the possible conditions prior to permitting input.
For uncontrolled protocols, the terminal's input may be
accepted by the TIP and then discarded. The terminal
must be notified that the input was discarded in these
cases.

REENTRANT CODE ENTRY AND EXIT
PROCEDURES
If the TIP supports more than one line, the TIP must use
reentrant coding to use the network effectively • It is
possible that the reentrant code could be written for each
entry to the TIP so that the TIP would relinquish control
with a normal exit. Given the modular structure of TIPs,
it is more likely that the TIP will relinquish control within
a subroutine while waiting for an external event to occur.
The occurrence of the event will cause the TIP to reenter
the subroutine at the point where control was relin­
quished, and to continue processing. The type of reen­
trancy cannot be handled by the push down stack logic
which the PASCAL compiler provides.

The common subroutine is written so that the TIP
executes code to set up to await the external event, and
then exits to the system by calling one of two exit
procedures: PTSV!LCB or PTSV2LCB. Since each routine
saves the address of its call in the line control block
(LCB), only one call may be outstanding for each routine
at any one time. Only the return address is saved; the TIP

9-1

TABLE 9-1. CCP INTERRUPT LEVELS

Hardware Software
Line No. Priority Interrupt Description

0 Pl INTERNAL

1 P6 TELETYPE (CCP CONSOLE)

2 P2 MULTIPLEX LOOP ERROR

3 P3 MUX-2 LEVEL

4 P16 1742-30 LINE PRINTER (CONSOLE OPTION)

5 PS SPARE

6 P7 COUPLER

7 PS SPARE

8 P9 REAL TIME CLOCK

9 PIO 1742 LINE PRINTER (CONSOLE OPTION)

10 Pll SPARE

11 P12 SPARE

12 P13 MLIA OUTPUT DATA DEMAND (ODD)

13 P14 MLIA INPUT LINE FRAME

14 P15 SPARE

15 --- HARDWARE BREAKPOINT

-- P17 OPS LEVEL PROGRAMS (OPERATION BELOW THE LOWEST INTERRUPT LEVEL)

must be coded to handle restoration of other necessary
information, such as local variables, program return
address, program initialization and formal parameter
linkage. Saving all this information would normally
require the TIP writer to have an intimate knowledge of
the compiler generated code; however, coding conventions
are employed to avoid the need for such knowledge.

There are sixteen interrupt levels in the CCP system, and
a seventeenth (lowest) level called the OPS-level. The
TIP is coded to permit all its PASCAL subroutines to
execute at the same interrupt level (OPS-level). (Note,
however, that a TIP can have one or more independent
PASCAL routines that are coded to execute on Mux-2
level. This is explained elsewhere.) Table 9-1 shows the
interrupt levels of the standard CCP system.

The OPS-level TIP retains control of the processor until it
voluntarily relinquishes control to the system. This allows
the TIP to use local variables without being concerned
about their destruction until control is relinquished.
Therefore, the TIP saves only those local variables that
will be needed after reentry. This convention allows the
TIP to be compiled by PASCAL without specifying the
PASCAL reentrancy compiler option. The compiler uses
this option to create and to use its own local variables.

The compiler uses two registers (Rl and R2) in the
generated code. These registers are initialized by a WITH
statement of a pointer variable or a formal parameter.

9-2

The code assumes the correct content of these registers
within the domain of the WITH statement. If three or
more WITH statements are nested, the compiler creates
local variables for use as substitute registers. To simplify
these conditions, the convention is adopted to close all but
two WITH statements prior to making an exit for for a
subsequent reentrance. Further, the rule of closure is
invoked if a procedure is called which ultimately exits for
a subsequent reentry. If one or two WITH statements are
not closed, they are always the WITH of the LCB and the
TCB, in that order. This rule defines the contents of Rl
and R2 for all modules.

The convention of using the TCB and the LCB is arbi­
trary. The TIP writer can use any other specification.
However, it is convenient to always use a fixed constant
for these registers.

If a procedure which exits for subsequent reentry is called
from more than one place, the return address must be
saved. This return address may be obtained by the
PASCAL procedure RETADR. The TIP must save this
adddress in table space associated with the terminal,
usually in the TIP defined area of the TCB.

If a procedure uses a WITH statement of a pointer
variable, the procedure entry code saves the current
contents of Rl and R2. The initialization code uses local
variables and restores the values of the last call to the
procedure, not the values of the current caller.

60474600 A

Therefore, the TIP must execute code to return directly
to the called procedure, thereby avoiding register
restoration. This convention is used only if the values of
Rl and R2 are always known to be the result of a WITH of
the LCB and the TCB respectively. The restoration of
registers may be avoided by defining a procedure which
executes the PASCAL procedure RETURN without
specifying a WITH statement.

The register restoration avoidance procedure is as follows:

PROCEDURE (special exit)((return address):
INTEGER):

BEGIN
RETURN (returnaddress);

END;

The following is an example of the use of the procedure:

PROCEDURE (tip module);
BEGIN

WITH(tcbpointer)t.BSTCB,
(lcbpointer)tDO

BEGIN
RETADRC<return address>);

END; WITH (tcbpopinter)

TCB POINTER
LCB POINTER

PROCEDURE RETURN

(special exit H< return address>);
END; (tip module)

Formal parameters cause the use of local variables and
cannot be referenced following an exit for subsequent
reentry. Therefore, all return parameters must be passed
back to the calling procedure in dynamic tables such as
the TCB. Further, all references to the content of formal
input parameters must precede the exit. This rule
normally results in passing only the TCB and the
specification of the TCB in the WITH as the first
statement.

The principal characteristics of exiting for subsequent
reentry are as follows:

Procedure name: PTSVlLCB or PTSV2LCB

Input parameter: (HALCBP[HLOPS]) = LCB address

Return parameter: none

Calling sequence: PTSVlLCB
PTSV2LCB

Example of call:

PTSVxLCB; Wait for event

At some later time, the TIP receives control from the
system to process the worklist, which indicates that the
awaited event has occurred. The TIP must recognize this
solicited worklist so that it can call the reentrancy
procedure PTRTlLCB or PTRT2LCB. These procedures
transfer control to the subroutine which last executed the
related PTSVlLCB or PTSV2LCB procedure. The contents
of registers Rl and R2 are not altered. Therefore, the
TIP must specify the WITH of the LCB and TCB prior to

60474600 A

executing the reentry.

The principal characteristics of executing a reentry are as
follows:

Procedure name: PTRTlLCB or PTRT2LCB

Input parameter: (HALCBP[HLOPS]) = LCB address

Return parameter: none

Calling sequence: PTR.TlLCB
PTRT2LCB

Example of call:

WITH (tcbpointer)t.BSTCB,
(lcbpointer)t.DO

BEGIN
PTRTlLCB; Reenter the TIP module

END;

IVT COMMAND PROCESSING
When the TIP detects either an upline or downline
interactive virtual terminal (IVT) command, the TIP calls
function PTIVTCMD to check the syntax of the request
and to process the command. If the command is entered
from a terminal, PTIVTCMD decodes the command and
changes the appropriate fields in the IVT parameter area
of the TCB. On return, a reply to the terminal operator is
provided in IVT format. The TIP will subsequently convert
and transmit this information to the terminal. PTIVTCMD
performs similar processing for downline commands from
a host application program, but in this case the reply to
the host takes the form of a BACK or BRK block. If the
command was accepted, a BACK block is sent; otherwise,
a BRK block is sent upline.

The function PTIVTCMD returns a boolean value to inform
the TIP whether the command was accepted or not. A
value of TRUE indicates that the command was valid.
The TIP must initialize any internal or external conditions
which are affected by the IVT parameter. The specific
IVT command and the communications line adapter or
terminal define the actual process to be performed. For
most TIPs, nothing is required. The buffers containing the
command are always released, whether or not the
command was accepted.

The TIP is not informed which IVT command was
detected. If any IVT command causes changes to internal
tables or to the communications line adapter, the TIP
must perform all the actions for any command.

The principal characteristics of a call to PTIVTCMD are
as follows:

Procedure name:

Input parameters:

PTIVTCMD

(source) = source of connnand

C9TERM = upline command
from termi na 1

C9APPL = downline command
from application program

(BlBUFF) = address of data
buffers holding the command

9-3

Return parameters: (PTIVTCMD) = BOOLEAN
condition of results:

Calling sequence:

Example of call:

VAR

TRUE = command accepted
FALSE comnand rejected

(BlBUFF) pointers to the
buffers with reply to
terminal for an upline
command, in IVf format. The
internal block flag
(BFINTBLK) is set TRUE.

(result) = PTIVTCMD(source);

(result) : BOOLEAN;
BEGIN

COMMAND RESULT

END;

BlBUFF := (bufferpointer); BUFFER wrm
COMMAND

(result) : = PTIVTCMD (B9TERM); PROCESS
COMMAND

STATISTICS
The system accumulates line and terminal statistics for
periodic reports to the host's engineering file. Statistics

9-4

are normally gathered by the POI procedures PBPOPOI
and PBPIPOI for downline and upline traffic respectively.
The TIP must also gather error statistics. For each block
which had errors that required retransmitting the block,
the TIP calls PNSGA TH to record the event.

The principal characteristics of a call to PNSGATH are as
follows:

Procedure name: PNSGATH

Input parameters: (tcbpointer) = address of TCB
(buffer pointer) = NIL
(statistics type)=JOBADBLK

Return parameters: none

Calling sequence:

PNSGATH((tcbpointer),(bufferpointer),
(statisticstype));

Example of call:

VAR
(tcbpointer) : BOBUFPTR; TCB ADDRESS

BEGIN
(tcbpointer) := (buffer address);
PNSGATH((tcbpointer),NIL,JOBADBLK);

END;

60474600 A

BASE SYSTEM INTERFACE 10

The CCP operating system has several subroutines which
provide services for the TIP. The TIP calls these sub­
routines directly, or directly references tables and vari­
ables kept by these subroutines. The services are as
follows:

• Placing the TIP into control with a worklist­
defined task. The base system initiates TIP exe­
cution and provides a work area for the worklist.

• Providing queuing of TIP-generated worklists, to
itself, or to other OPS-level modules

• Assignment and release of buffers

• Timing services

• Finding the address of a line control block from
the line number

TIP EXECUTION STARTED BY A
WORKLIST
At the OPS level, the operating system monitor places the
TIP into execution when that TIP is the next module on
the OPS-monitor worklist table, and the TIP has a worklist
queued to it. The OPS monitor scans the worklist control
blocks for all OPS-level entry modules on a round robin
basis, so that all of these procedures have equal priority.

Before placing the TIP in control of the NPU, the monitor
moves the worklist entry into a global variable. The
global variable is a complex type. Two of its variants
apply to TIPs: one of these is for OPS-level entries, the
other is for Mux-2 level entries. The two types of
worklist entries used for TIPs are shown below. Since it is
not possible to determine which type of processing to use
before the workcode field is decoded, the TIP uses the
multiplex subsystem overlay exclusively. The SVM data
structure overlay is used when the TIP sends a worklist to
the service module.

OPS-level reference to the worklist is as follows:

VAR
(we) : INTEGER;

BEGIN
WITH BWWLENTRY[OPS].CMSMLEY DO
BEGIN

(we) : = CMWKCODE;
END;

END;

Mux-2 level reference:

VAR
(we) : INTEGER;

BEGIN
WITH BWWLENTRY[MUX2].BOEWLQ DO
BEGIN

60474600 A

Workcode

Workcode

END;
END;

(we) := MMWKCOD;

SENDING A WORKLIST ENTRY
The TIP calls PBLSPUT to send a worklist entry to the TIP
itself or to another subsystem such as the service module.

The principal characteristics of a call to PBLSPUT are as
follows:

Procedure name:

Input parameters:

PBLSPUT

(WLEptr) = Address of
worklist entry

(WLCBpointer) = Address of
the worklist control block

Return parameters: none

Calling sequence: PBLSPUT(WLEptr , WLCBptr);

Example of call:

WITH BWWLENTRY[OPS].CMSMLEY DO Type of worklist
BEGIN

END;

CMWKCODE : = (we)
CMDATA : = (data)

PBLSPUT (BWWLENTRY[OPS] ,
BYWLCB[BOSMWL]); Generate a

worklist for
the service
module

Note that the TIP is needed to set the worklist fields prior
to calling PBLSPUT.

BUFFER MANAGEMENT
The base system provides subroutines to assign and release
buffers for the TIP.

ASSIGNMENT OF A BUFFER

The TIP may need to create messages or table structures
in buffers. The TIP calls PBGETlBF to assign a buffer for
such a specific function. PBGETlBF returns the address
of the buff er which has been reserved for the TIP.

The call to PBGETlBF to assign a buffer is !=IS follows:

VAR
(bufptr)

BEGIN
(bufptr)

END;

BOBUFPTR; Buffer address

= PBGETlBF(bufsize);

10-1

Buf size is a set of system defined global variables. The
use of any sized buffer but those that are system defined
causes a system halt. The sizes are as follows:

Variable

8 word buffer
16 word buffer
32 word buff er
64 word buff er
Data buff er size

Size

8058
BOS16
BOS32
B064
BEDBSIZE
BETPSIZE TPCB buffer size; text processing

control block

Bufptr contains the assigned buffer address when control
returns to the TIP. Note that most data buffer assign­
ment is done for the TIP, both during text processing and
during input state program processing. In both cases, the
firmware program (text porcessor or input data processor)
does the buffer asignment.

BUFFER RELEASE

Two base subroutines are provided for releasing buffers;
one for releasing a single buffer, and the other for
releasing a chain of buffers .

. Single Buffer Release

The TIP calls PBRELlBF to release a single buffer. The
calling proced.Jre is as follows:

VAR
(bufptr) : BOBUFPTR; Address of buffer

BEGIN
PBRELIBF((bufptr),(bufsize));

END;

Bufptr must contain a valid buff er address. Bufsize must
be one of the valid system global variables defined for
buff er size (see above).

If the buffer that is being released has other buffers
chained to it, only the first buff er in the chain is
released. The address of the next buff er in the chain is
returned in the bufptr parameter. If the TIP passes a bad
address to PBRELlBF in bufptr or a bad buffer size in
bufsize, this will cause destruction of memory, and lead to
an eventual system halt. Note that bufadr equal zero is
valid for PBRELZRO but invalid for PBRELlBF.

Release of a Chain of Buffers

The TIP calls PBRELZRO to release a chain of buffers.
Format of the call is as follows:

VAR
(bufptr) : BOBUFPTR; Address of first buffer

BEGIN

END;

PBRELZRO ((bufptr),
(bufsize));

Bufptr contains the address of the first buffer in the
chain. Bufsize contains the size of each buff er in the
chain (chained buffers are always uniform in size). It
must be one of the globally-defined buffer sizes.

On return to the TIP, bufptr always will be nil. If the TIP
passes PBRELZRO, a bad address in bufptr, or a bad

10-2

buffer size in bufsize, this will cause destruction of
memory, and lead to an eventual system halt.

NOTE

Use of PBRELZRO protects against any
attempt to release a nil bufptr.

TIMING SERVICES
The base system provides two timing functions for user
written TIPs. These are:

• A variable containing a one second clock which
the TIP can reference to measure timed intervals.

• An array of decremented timers with an entry for
each line in the system.

ONE SECOND CLOCK

The system variable CASECNTR is incremented once a
second by the base system timer. This INTEGER type
variable is set to zero during system initialization and is
never reset. The time recycles to zero at 65,536 seconds.

LINE TIMER

The line timer provides a set of functions so the TIP
writer can time line related events. The timer control
table is an array indexed by port number. The port
number is obtained from the line control block. Each
entry in the array is of the form:

15 14 7 0

BLRESET BL TIME I
The timing routines scan the table for a nonzero value for
each enabled line in the system. Each half-second the
timer decrements the value in BL TIME until the value
reaches zero. At that time the system sends a timer
worklist (AOTIMOUT) to the TIP that controls the line.
The TIP can set the BL TIME value at any time by placing
a nonzero value in the field. The TIP can cancel the timer
at any time by setting BL TIME to zero.

If the TIP sets a nonzero value in BLRESET, the multiplex
subsystem will transfer this value to BL TIME (thereby
starting the timer), whenever output is successfully sent
over the line. This feature is useful for TIPs, which
support a half-duplex protocol where a terminal response
to the output block is expected to begin within a fixed
interval, such a two seconds. An input state instruction
can set BL TIME to zero or to a larger value once the first
input character has been returned from the terminal. The
system never changes the value in BL TRESET.

The following example shows a use of the line timer:

CONST
(rstime)
(setime)

VAR
Clcbptr)

(rstvalue);
(set va 1 ue) ;

BZLCBP;

Link turnaround time
Timer interval

60474600 A

BEGIN
WITH HALCB IH10Psjt,

END;

BLTIMTBLt !port] DO
BLTIME : = (setvalue);
BLTREST : = (rstvalue);
BLTIME : = O;

Starts the timer
Set turnaround time
Clear timer

The line timer is often used to assure that an expected
event occurred. If the TIP is waiting for an expected
event that will generate a worklist, the timer can be
started to time the event (note that an expected event
and a soliticited worklist are different terms for the same
action). If the timer worklist entry is received by the TIP,
the expected event failed to occur. If the expected event
worklist is received by the TIP, the event did occur during
the permitted period.

Since line inputs or outputs are usually the events to be
timed, the TIP can set flags in the LCB which can be
referenced by the system to terminate input and/or output
before sending a worklist to the TIP. This feature is
selected by setting boolean values in the LCB to true, as
shown below:

VAR
(lcbptr) : BZLCBP;

BEGIN
WITH (lcbptr) t DO
BEGIN

END;
END;

BZINPUT : = TRUE;

BZOUTPUT : = TRUE;

LCB address

Terminate input on
timeout
Terminate output
on timeout

It is possible for an expected event to occur before the
timer is cancelled. This causes both worklists to be sent:
the timer worklist, and the expected event worklist. To
take care of this condition, the timeout worklist can be
marked with a sequence number, BZWTCOUNT, supplied
by the TIP in the LCB. This value is placed in the
MMWTCOUNT field of the worklist. If the TIP incre­
ments BZWTCOUNT when the timer is cancelled, the
timer worklist can be discarded as extraneous, since

60474600 A

MMWTCOUNT is not equal to BZWTCOUNT. If, however,
the expected event worklist follows the timer worklist,
the former worklist cannot be detected as the timed
event. Use of the routines PTSVlLCB and PTSV2LCB
causes the LCB value, BZWTCOUNT, to be incremented.
Caution should be exercized for handling any reentrancy
conditions for an expected worklist following a timeout
worklist. Most conditions can be avoided by using the
terminate input and terminate output features of the
timeout event. However, it is also possible to generate a
TIP-defined continue worklist in the TIP's own queue.
Then the TIP can discard any expected event worklists
until the continue worklist is received. Note that the TIP
must not discard any other worklist entries; other worklist
entires must be processed normally.

LINE CONTROL BLOCK (LCB)
ADDRESS
The TIP calls the base subroutine PBLCBP to find the
address of the line table when the TIP has the line number.

The principal characteristics of a call to PBLCBP are as
follows:

Procedure name: PBLCBP

Input parameter: (lineno) Line number

Return parameter: (LCBptr) Address of LCB

Calling sequence: PBLCBP((lineno),(LCBptr));

Example of call:

VAR
(LCBptr) : BZLCBP Address of LCB
Cline no) : INTEGER Line number

BEGIN
PBLCBP((line no),flcbptr));

END;

The line number is usually specified for the TIP by the
worklist entry.

10-3

MULTIPLEX SUBSYSTEM 11

The multiplex subsystem contains the hardware, micro­
programs, and software elements necessary to provide
data and control paths for information interchange be­
tween the TIPs and all communications Ii nes. Design of
the subsystem is based on the multiplex loop concept,
which is a demand-driven system for gathering input data
and status from the communications lines, and distributing
output data and control information to the commu­
nications lines. All of this is done on a real-time basis.
Figure 11-1 shows the basic elements of the multiplex
subsystem.

A major purpose of the multiplex subsystem is to transfer
the task of processinq lines according to physical char­
acteristics from the TIPs to the multiplex subsystem pro­
grams. The TIPs need only command the multiplex
subsystem according to the logical characteristics of a
line; the physical characteristics are handled by the
multi pl ex subsystem and are transparent to the TIPs.

Line-oriented input and output buffers provide temporary
storage for data. The input data is placed in the circular
input buffer (CIB) from which it is later extracted
(demultiplexed), transformed to IVT /BVT ASCII format by
the appropriate TIP, and moved into a line-oriented input

COMMUNICATIONS PROCESSOR

()1

buffer. The part of the TIP that does this (called input
state programs) is controlled by the multiplex subsystem.
The OPS-level TIP informs the command driver where the
programs are located; the multiplex subsystem's input
processor controls execution of the input state programs.

Output data is read by the output processor from an
output data buffer. The address of this buffer and other
transfer information is supplied by the OPS-level TIP to
the command driver. Data is in terminal format.

The multiplex subsystem is event-driven by interrupts: an
output data demand (ODD) for the next character of
output data, or the input line frame received interrupt
which indicates that data (and possibly CLA status) is
contained in the CIB ready for demultiplexing.

The interrupts are handled with global information stored
in various tables. The subsystem processes data on a
character-by-character basis while TIPs process data on a
message or block basis. Circuit, modem, and subsystem
status is detected and transferred to the TIPs using
OPS-level worklist calls. Control information is received
from the TIPs in the form of a call to the command driver
with an attached command packet. This command packet

OUTPUT LOOP

• I
• •

®
I
I
I

MULTIPLEX
LOOP
INTERFACE
ADAPTER

MULTIPLEX
LOOPS •

•

COMMUNI­
CATIONS
LINES OR
TRUNKS

R
p

I

INCLUDES COMMAND
DRIVER, INPUT DATA
PROCESSOR, AND
OUTPUT DATA
PROCESSOR

MEMORY BUFFERS
I

I

---(MUA)

LOOP
MULTI­
PLEXER

l~•-----------MULTIPLEX SUBSYSTEM--------------~
CLA - COMMUNICATIONS LINE ADAPTER
TIP - TERMINAL INTERFACE PROGRAM

LIP - LINK INTERFACE PROGRAM

Figure 11-1. Basic Elements of the fvlultiplex Subsystem

60474600 A

M-166

11-1

is used to set up the multiplex LCB (NCLCB), which is the
principal table used to control the transfer.

HARDWARE COMPONENTS
The multiplex subsystem includes the multiplex loop
interface adapter (MLIA), loop multiplexers, and com­
munications line adapters (CLAs).

MULTIPLEX LOOP INTERFACE ADAPTER

The MLIA provides hardware interface between the
multiplex input/output loops and the multiplex subsystem
software. The major functions are as follows:

• Management of the I/O loops

•

•
•

Input data buffering - compensates for the dif­
ference in rate at which characters are removed
from the input loops and the rate at which they
are stored in the main memory

Output data demand (ODD) detection and buffering

Multiplex loop error detection

• Generation of interrupts for the multiplex sub­
system microprograms and software for functions
such as:

- Output data demand received
- Line frame received
- Loop error conditions

LOOP MULTIPLEXERS

Each loop multiplexer provides an interface between a
group of as many as 32 CLAs and the demand-driven

multiplex loop. Its primary function is to receive parallel
data from the CLAs and present it to the serial input loop
in the loop cell format. Conversely, it assembles serial
data in the loop cell format from the output loop and
presents it to the CLAs in parallel form.

COMMUNICATIONS LINE ADAPTERS {CLA)

The CLAs provide the interface between the loop multi­
plexers and the communications lines. The primary func­
tions of the CLAs are to assemble serial data from the
communications line into parallel data and. present this
data to the loop multiplexer or, conversely, to disassemble
parallel data from the loop multiplexer and present it in
serial form to the communications line. The CLA oper­
ating characteristics can be altered under program control
for such functions as signal rate, character length, parity,
and stop bit duration.

TIP INTERFACES
The multiplexer interface to the TIPs is defined in the
following paragraphs •

A TIP is a multilevel program that executes at three
processing levels:

• Multiplex level l (firmware or microcode level)

• Multiplex level 2 (macrocode level)

• OPS level (processing to satisfy network protocol
such as service message handling and timing)

MULTIPLEX LEVEL 1 - INPUT STATE PROGRAMS

All incoming characters are processed by the multiplex
subsystem, as directed by the input state programs. These

TABLE 11-1. MUX-2 LEVEL WORKCODES

Workcode Description

MMOBT If the output buff er terminate flag (BJOBT) is set in the TIP-type table, the multiplex
subsystem will send this workcode upon completion of each output block. The TIP uses
this workcode as a trigger to start another output, thereby assuring maximum line
utilization. All text processing of output data must be done at the OPS level, and not
in response to this workcode.

MMFES If an asynchronous Cl.A reports a framing error status, this workcode is sent to the TIP.

MMBREAK If an asynchronous CIA reports a break, and the break condition is maintained for more
than 200 ms, the multiplex subsystem sends this workcode to the TIP.

MMC HOUT This workcode is sent to the TIP when the character timer expires. The timer has a
resolution of 100 ms and is used only with asynchronous CI.As.

AOWKl to The TIP' s input state programs can send a workcode to the Mux-2 level procedure with one
AOWK31 of these user-defined codes. This procedure can disrupt the system's normal

multiprogrannning methods. It should be avoided.

MMBUTCH When the system is critically low on buffers and a new buffer is required to process an
incoming character, the TIP' s input state programs are given control. A predefined
state (state 3) is entered. This state can issue a MMBUTCH workcode to the TIP's
level-2 procedure. The multiplex subsystem detects this workcode and releases all of
this line's input buffers. It also stops processing of any other characters from other
input lines.

11-2 60474600 A

TABLE 11-2. OPS-LEVEL WORKCODES

Workcode Description

AOHARDERR The multiplex subsystem has detected an irrecoverable modem signal error. The TIP
should report a line failure to the host.

AOWKl to The TIP's input state program creates a worklist entry to send character-related event
AOWK31 information to the OPS-level TIP. These codes are TIP-defined.

These codes may also be used to indicate a terminate input or terminate output request.

TIP-supplied programs direct the translation of terminal
data into network data format. The input state proqrams
are constructed of a special set of state programming
language instructions which are interpreted by the input
data processor of the multiplex subsystem. Usually, the
entire translation of terminal data to virtual terminal
format can be accomplished by the proper use of state
programming instructions. The instructions for handling
and generating these codes are described in detail in the
State Programming Language Reference Manual. Table
11-1 summarizes workcode functions for Mux-2 level and
table 11-2 describes the workcode functions for OPS level.

MUX-2 LEVEL

Each TIP can provide a procedure to receive control from
the multiplex subsystem by means of a direct call. This
procedure is to process high priority tasks. The OPS-level
portion of the TIP can be interrupted to process the event
leading to this priority call. Therefore, any procedures
that are common between the OPS level and the Mux-2
level of the TIP must be compiled with the reentrant code
option selected. It is very desirable to avoid sharing
subroutines between the two levels.

The Mux-2 level procedure is entered for four system­
defined events. The entry parameters appear in the form
of a worklist, with the workcode and parameters con­
tained in a work array, BWWLENTRY. The four system
workcodes are defined in table 11-1. In addition, the TIP
can send workcodes to its Mux-2 level procedure for user
defined events. The worklist entries are entered in the
multiplex subsystem event work list queue (MMEWLQ).
Those worklist entries not recognized by the multiplex
subsystem (AOWKl through AOWK31) are passed on to the
TIP. Each input state instruction which creates a worklist
(BLDWL and TIBWL) requires the address of the worklist
control block owning the particular queue. This address is
calculated by an MPEDIT expression which utilizes the
worklist index. For the multiplex subsystem queue itself,
the work list index used in the expression is MMEWLQ.

OPS LEVEL

The TIP must provide a primary entry point to receive
control for all OPS-level worklist entries. These worklist
entries are generated by any of several system modules as
well as by the multiplex subsystem. The multiplex sub.:.·
system originates a worklist whenever it is requested to
do so by one of the TIP's input state programs. These
worklists indicate the occurrence of character-related
events, such as the start of a message, the end of a
message, the end of a line, or other protocol related
events. Table 11-2 defines the workcodes sent to the OPS
level by the multiplex subsystem

60474600 A

COMMAND -DRIVER

The TIP can issue commands to the multiplex subsystem
to request the execution of an input, output, or control
function for the line. These commands can be issued from
either the OPS level or the Mux-2 level of the TIP. The
commands indicate the type of function to be performed
and are used to initialize user fields in the mux LCB which
the TIP's input state proqrams will need to use.

The command driver procedure used by the OPS-level TIP
is PBCOIN (general format of the command packet that
accompanies the call is shown in figure 11-2); the pro­
cedure used by the Mux-2 level TIP is PMCDRV. Two
procedures are provided to avoid the complexities of re­
entrant coding.

WORD

0

2

3

4

5

6

7

15

Command

7 0

I Parameter

Line Number

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

Figure 11-2. Command Packet General Format

Principal characteristics of the command driver call are
as follows:

Procedure name:

Input parameter:

Output parameter:

Calling sequence:

Example of a call:

VAR
(command packet)

PBCOIN or PMCDRV

(command packet) =Data
record of type NKCMD with
control and data parameters

None

PBCOIN (command packet);
PMCDRV (command packet);

NKINCOM; Command
packet

11-3

(output buffer) BOBUFPTR; Address of
output buff er • NKCONTROL - Control line

BEGIN • NKINPT - Input
• NKDOUT - Output
• NKINOUT - Input after output

WITH(conmand packet) DO Set up

BEGIN
NKCMD
NKLINO
NKOBP

END;

output command

= NKDOUT; Command code
(line number); Line number
(output buffer); Address of

data

• NKENDIN - Terminate input
• NKENDOUT - Terminate output
• NKDISL - Disable Line

Control Command
PBCOIN(cotmnand packet); Initiate

output The control command (NKCONTROL) serves a twofold
purpose. It can define the character transmission char­
acteristics of a given line according to the terminal class
(NKTCLS) for input/output signaling rate, character
length, parity type, stop bit duration, and sync character.
The command can also specify up to five modem/circuit

END;

The following commands are available to the TIP writer
for controlling the flow of data to and from the com­
munications lines:

Field

NKCMD

NKTCLS

NKLINO

Fl thru F5
and NKFUNl
thru NKFUN5

NKZERO

11-4

WORD

0

15 14 7 6 0

2 Fl

3 F3

4 F5

Type

B08BITS

B08BITS

INTEGER

BOOLEAN

B08BITS

Function
Mnemonic

NO BREAK

NOECHC>

NO PON

NOPSET

NOCLLS

NOCLMS

NKCMD NKTCLS

NKLINO

NKFUNl F2 NKFUN2

NKFUN3 F4 NKFUN4

NKFUN5 NKZERO

Description

Co1IU11and code (NKCONTROL)

New terminal class. If nonzero, the character parity, character length, and
sync character are set up for this new terminal class from NJTECT.

Line number

Optional modem/circuit function; if the associated flag (NKSRFl - NKSRF5) is
set, the function is to be implemented.

1 Function to be performed
0 Function disabled

Delimits end of options. NKZERO is placed in the byte following the last
requested modem/circuit function; five functions can be specified.

OPTIONAL MODEM/CIRCUIT FUNCTIONS

Function
Provided Description

BREAK Send break

ECHC> Echoplex mode

PON Parity on

PSET Parity set (1 = even, 0 odd)

CLLS Character length (LSB)

CI.MS Character length (MSB)

Pulsed functions provide momentary signal and need not be reset

Figure 11-3. Control Command Format

60474600 A

control functions, such as echo, break, terminal busy, or
resync. Such control functions are specified in the
optional fields of the command packet.

Input Command (NKINPT)

The input command directs the multiplex subsystem to
initiate the processing of data on the specified input line
(i.e., to tum on the input side of the communications line
adapter). The processing functions provided by the
subsystem are determined by the input processing state
program index. Additional information is passed by a
pointer table address for the input processing states. If

Generally, the command is used to initialize or alter the
character transmission characteristics of the line or to
generate circuit control functions. The control command
format is as shown in figure 11-3. Optional modem/
circuit functions are defined in the figure.

Field

NKCMD

NKLINO

NKUOPS

Fl

F2

NKISTAI

F3

F4

B08BITS

INTEGER

BOOLEAN

BOOLEAN

BOOLEAN

B06BITS

BOOLEAN

BOOLEAN

WORD

0

2

3

4

5

6

7

15 14 11 7 6 5 0

NKCMD l Not used

NKLINO

Not used

NKUOPS I FllF2I I NKISTAI

F3 I F4l NKBLKL

NKISPTA

NKSCHR 1 NKCNTl

NKCXLTA

Description

Conmand code (NKINPT)

Line number

Eight user flags (NKUOPl - NKUOP8). NKUOPl is bit 15 in the MLCB user flag
field, ••• NKUOP8 is bit 8 in that field. NKUOPS is moved into MLCB if NKMVB
is 1.

NKMVB, move block of user flags into MLCB

NKRPRT, strip parity flag; value must be specified:

1 = strip parity l
0 = do not strip parity r

Actually, bit 7 of the character,
whether it is parity or excess

Input state program index; must be set

NKNOXL, code translate flag

1 translate
0 do not translate

NKSCENBL, change special character flag

NKBLKL B012BITS Character count 2. If nonzero, this sets the character count of the block and
the initialization value.

NKISPTA INTEGER

NKSCHR CHAR

NKCNTl B08BITS

NKCXLTA INTEGER

60474600 A

Pointer to input state program pointer table. If zero, the existing value is
not changed. The original value is specified in NJTECT.

Special character, moved to MLCB if NKSCENBL flag is set.

Character count 1. If nonzero, character count 1 and its initialization value
are set to this value.

Code translation table address. If zero, the existing value is not changed.
The original value is specified in NJTECT.

Figure 11-4. Input Command Format

11-5

this option is not used, the information is taken from the
terminal class table (NJTECT). Format of the input
command is shown in figure 11-4.

OUTPUT COMMAND (NKDOUT)

The output command permits output messages to be
directed to a specified output line. Line, modem, and
control functions, as defined in the line type tables, are
generated by the subsystem as a function of the physical
line requirements.

Output continues until the character specified by the last
character displacement is transmitted. At that point, the
subsystem chains to the next output buffer, if the chain
address in the buff er is nonzero. Output stops if the chain
address is zero or if the suppress chaining flag
(BFSUPCHAIN) is set in the flag word of the first output
buffer.

The subsystem generates an optional worklist entry for
the user program for each data block output by the
subsystem.

The terminate output or the disable command can also be
used to terminate output processing functions on a spe­
cified line. Receipt of either command causes the sub­
syster:n to immediately cease all processing functions
associated with the specified line.

The format of the output command is shown in figure 11-5.

WORD

0

Field

NKCMD
NKLINO
NKOBP

2

15

NKCMD

Type

B08BITS
INTEGER
BOBUFPTR

7 0

1 Not used

NKLINO

NKOBP

Definition

Command code (NKDOUT)
Line number
Output buffer pointer

Figure 11-5. Output Command Packet

Input After Output (NKINOUT)

This command permits interactive terminals (such as a
display/keyboard combination) to be immediately ready to
receive input data in response to a message displayed at

11-6

the terminal. An index to the input state process table
indicates the treatment of the returned data. The format
for this command is shown in figure 11-6.

If the buff er output is the last data buffer of a
transmission block, and line turnaround is required, (1) the
subsystem generates the proper modem control signals to
turn the line around, (2) monitors modem status for line
turnaround, and (3) notifies the appropriate terminal­
dependent subroutine that the line is ready for input.
Modem signals and modem status analysis functions are
specified by the line-type tables.

Terminate Input Command (NKENDIN)

This command enables the TIP to direct the multiplex
subsystem to immediately stop input processing functions
on the specified line. Buffers are optionally discarded.
The TIP program can, by issuing an input command, direct
the subsystem to resume input on the line. Transmission
line characteristics are not altered hy the terminate input
command and, therefore, the TIP need not generate a
control command. The format for the terminate input
command is shown in figure 11-7.

After processing the terminate input command, the sub­
system optionally generates a worklist entry to the TIP as
specified in the worklist and workcode.

Terminate Output Command (NKENDOUT)

This command enables the TIP to direct the multiplex
subsystem to terminate output processing functions on the
specified line immediately. After processing the termi­
nate command, an optional worklist entry is generated to
the TIP, using the specified worklist and workcode. This
command is used when the TIP interrupts an outgoing
message for a higher priority message, or when an abnor­
mal line condition occurs. The format of the terminate
output command is shown in figure 11-8.

Disable Line Command (NKDISL)

The disable line command directs the multiplex subsystem
to terminate all processing functions of the specified
line. Modem control signals are generated to inhibit
further exchange between the local modem and the
communications line. The subsystem also releases all data
structures defining the character processing functions for
the line. To reactivate the functions, a control, initialize,
and enable command, followed by either an input or
output command, must be issued. The format for the
disable line command is shown in figure 11-9.

60474600 A·

Field

NKCMD

NKLINO

NKOBP

NKUOPS

Fl

F2

NKISTAI

F3

F4

NKBLKL

NKISPTA

NKSCHR

NKCNTl

NKCXLTA

60474600 A

Type

B08BITS

INTEGER

BOBUFPTR

BOOLEAN

BOOLEAN

BOOLEAN

B06BITS

BOOLEAN

BOOLEAN

B012BITS

INTEGER

CHAR

B08BITS

INTEGER

WORD

0

2

3

4

5

6

7

15 14 13 11 7 6 5 0

NKCMD 1 Not used

NKLINO

NKOBP

NKUOPS J Fll F21 NKISTAI

F31 F41 NKBLKL

NKISPTA

NKSCHR I NKCNTl

NKCXLTA

Description

Command code (NKINOUT)

Line number

Output buffer pointer

Eight user flags (NKUOPl - NKUOP8).
word; NKUOP8 is bit 8 in that word.

NKUOPl is bit 15 in the MLCB user flag
NKUOPS is moved into MLCB if NKMVB is 1.

NKMVB~ move block of user flags into MLCB

NKRPRT, strip parity flag; value must be specified:

1 strip parity
0 do not strip parity

Input state program index; must be set

NKNOXL, code translate flag

1 = translate
0 = do not translate

NKSCENBL, change special character flag

Character count 2. If nonzero, this sets the character count of the block and
the initialization value.

Pointer to input state pointer table. If zero, the existing value is not
changed. The original value is specified in NJTECT.

Special character, moved into MLCB if NKSCENBL flag is set

Character count 1 • If nonzero, the character count 1 and its initialization
value are set to this value.

Code translation table address. If zero, The existing value is not changed.
The original value is specified in NJTECT.

Figure 11-6. Input after Output Command Format

11-7

WORD

0

2

Field Type

NKCMD B08BITS

Fl BOOLEAN

F2 BOOLEAN

NKWLINDX BOWKLS'fS

NKLINO INTEGER

NKUSRBY B08BITS

NKWKCOD NKWKCOD

WORD

0

2

Field Type

NKCMD B08BITS

Fl BOOLEAN

F2 BOOLEAN

NKWLINDX BOWKLSTS

NKLINO INTEGER

NKUSRBY B08BITS

NKWKCOD B08BITS

11-8

15 7 6 5 0

NKCMD I Fl I F21 NKWLINDX

NKLINO

NKUSRBY I NKWKCOD

Description

Conmand code (NKENDIN)

NKRELBFS, release buffer flag (release buffer if set)

NKWKFL, send worklist to user (if set)

Worklist index, used if NKWKFLG is set. The TIP uses one of the user-defined
values BOVWI..l through BOVWI..4.

Line number

User-supplied byte, returned in field MMWTCOUNT in worklist

User workcode in worklist (MMWKCOD). One of the values AOWKl through AOWK31
is used.

Figure 11-7. Terminate Input Command Format

15 7 6 5 0

NKCMD 1FllF21 NKWLINDX

NKLINO

NKUSRBY I NKWKCOD

Description

Command code (NKENDOUT)

NKRELBFS, releases buffer when flag is set; these are buffers specified in
BZLBTOMUX

NKWKFLG, sends worklist to user when set

Worklist index; used if NKWKFLG is set. The TIP uses one of the user-defined
values BOVWLl theough BOVWL4.

Line number

User-supplied byte to be returned in field MMWTCOUNT in worklist

User workcode in worklist (MMWKCOD). One of the values AOWK.l through AOWK31
is used.

Figure 11-8. Terminate Output Command Format

WORD

0

Field

NKCMD
NKLINO

15 7 0

NKCMD Not used I
~

B08BITS
INTEGER

NKLINO

Description

Coumand code (NKDISL)
Line Number

Figure 11-9. Disable Line Command Format

60474600 A

VIRTUAL TERMINAL TRANSFORMS 12

Virtual terminal format allows host application programs
to expect only two types of input: ASCII input from a
standardized interactive terminal (IVT), or ASCII input
from a standardized batch terminal (BVT).

Each TIP is responsible for converting terminal code and
format to and from ASCII virtual terminal formats.
Downline, this is handled entirely by text processing state
programs. If the TIP handles several types of terminals
with dissimilar characteristics, the TIP will probably need
one set of state programs to handle the conversions for
each terminal type.

Since the techniques to format for IVT and BVT have little
in common, the two types of terminals are discussed
individually.

BATCH VIRTUAL TERMINAL (BVT)
Batch virtual terminal provides the standard interface
which permits application programs in the host to ex­
change information with remote batch terminals, without
regard to specific terminal characteristics.

BATCH VIRTUAL TERMINAL CHARACTERISTICS

The BVT is deemed to be a multi-device terminal
operating remotely from the host. BVT is connected to
the NPU by a synchronous modem using a medium speed
or high speed line. (Although the protocol on the line may
differ by equipment type, BVT is always assumed to be a
block transfer terminal).

A separate logical connection exists for each device on a
line. Device types that can exist at remote terminals
include card readers, printers, plotters, and card punches.

BVT is capable of supporting data compression, printer
carriage control, code conversion, transparent data, mode
control, and file structure. For downli ne blocks, the host
process assured that downli ne network blocks are not
longer than the allowable block size for the terminal
device, allowing space for TIP-inserted control infor­
mation. The host application program must also assure
that the width of an output print line does not exceed the
device's printline width.

The host process is also responsible for compressing data.
Downline, only blank and zero compression is allowed.
Any other type of attempted compression will cause the
block to be rejected by a BRK block from CCP. The
terminal determines the degree of upline compression
allowed. Full compression is assumed.

The BVT data is contained within MSG and BLK blocks;
the CMD blocks are used to pass BVT command infor­
mation. The standard remote batch facility (RBF) uses
the BVT data format and defines the sequence of block
types for transferring data and control. Since a user­
defined batch TIP can be designed to accept data connec­
tions with RBF, the rules for RBF are discussed here.

60474600 A

SUMMARY OF RBF RULES

Control Console and Batch Devices

RBF assumes that a batch terminal consists of one or
more batch devices (such as a card reader or a printer)
and an interactive console. The interactive console pro­
vides any control commands necessary for RBF operation.
The interactive console uses the IVT interface. It is
possible to simulate all the necessary RBF control com­
mands that are normally provided by an interactive
console, by use of control functions entered through a
card reader. The TIP must separate the control infor­
mation from the batch card input and send the control as
IVT data on the simulated console connection.

Batch Input

Batch input from a card reader should not be started until
a start input command is received from RBF. This
command assures that RBF will accept the data and no
information will be lost. Card reading can begin and
network blocks can be constructed by the TIP. Usually,
one transmission block is created for BVT and sent to the
host as one network block. The TIP does not perform data
compression. If the BVT syntax provides the appropriate
representation, the TIP is not required to perform data
expansion. The TIP should discard all trailing blanks on
each card.

If an end of information card (EOI) is detected in the
upline transmission block, The TIP must fragment the data
into one or more network blocks. The EOI card must be
the last card of a MSG block. Subsequent EOI cards are
discarded until a non-EOI card is detected. If such a
non-EOI card is found, the remaining data is send to the
host as the first block of the next message.

Whenever the card reader has run out of source data and
has informed the TIP of this condition, the TIP must
generate an input stopped command to follow the last
network block. This informs RBF that the input device is
not ready. The TIP must await a start input command
from RBF before card reading can resume.

The input stopped command can also indicate a slipped
card error. Either the slipped card or the end of source
condition will cause RBF to generate a message to the
batch terminal's console.

A stop input command may be sent downline to the TIP as
a result of an RBF command. In this case, the TIP must
stop reading the cards, and must also send an input
stopped command upline to acknowledge that the re­
quested action was performed. The stopped input com­
mand follows the last network block containing data.

Batch Output

The output data stream from RBF does not contain com­
mands. A network output data block can be transformed

12-1

into a single transmission block and sent to the terminal.
RBF must contain the necessary information so that it can
create the proper sized and formatted network blocks.

If an output device is not ready to receive data, the block
is undeliverable and the TIP replies to the host with a
BRK block. The BRK block's reason code prompts RBF to
create a message for the interactive console which con­
trols this device. It is assumed that the operator will
enter the proper control commands so that output can
resume.

Output Block Size

The TIP writer has two choices for defining network block
construction for the new TIP: (1) he can modify RBF by
adding a new set of rules suited to this TIP's terminal
buff er sizes, or (2) he can cause the TIP to fragment a
network block for the device into two or more trans­
mission blocks. If the latter choice is made and the TIP
has to generate a BRK block because the device was not
ready, the TIP is responsible for saving the unprinted
fragments. Normally, the TIP would assure that these
unprinted fragments are neither duplicated nor lost.
However, if such delivery assurance is not required, the
fragments can be discarded.

Line utilization is affected if the chosen fragment size is
not the maximum size allowed by the terminal's buffers.
It should be noted that the selection of block size is not a
significant factor for low speed line utilization.

Line Folding and Compression

Line folding and compression of zeroes or blanks is
performed by RBF. The TIP need not perform any further
compression, but it is permitted to do so. Compresssion
of characters in RBF can be suppressed if character
compression is not supported by the terminal, or the TIP
can perform character expansion prior to transmission.

STP and STAT Blocks

The STP block can be sent on a batch connection if the
TIP needs to stop downline data or commands. The TIP
must detect a restart condition and send a STRT block
upline to indicate that the data stream has been
restarted. This command sequence is especially useful
when batch devices are physically dependent and cannot
be used simultaneously.

BVT SYNTAX

Table 12-1 defines the syntax for BVT data and com­
mands. The table is presented in a modified Bachus Naur
format. The rules for this type of table are given on the
first page of the table. Table 12-2 describes the print
actions for the defined forms-control characters. All TIPs
should supp art forms-control characters EO through E4.
All other values can be treated as preprint si nqle space, if
the printer does not support paper motion functions.

INTERACTIVE VIRTUAL TERMINAL
The interactive virtual terminal (IVT) is defined to provide
common interface-to-host application programs for a
variety of interactive terminal types. The TIP is respon­
sible for converting the IVT interface to the terminal's
real characteristics, and the converse. The output trans­
form is usually simple, as the IVT interface is defined for

12-2

display characters and is not extended to the various
control capabilities of physical terminals. The interface
requires that specific functions be performed both upline
and downline. The IVT syntax is described in table 12-3.
This is also presented in modified Bachus Naur format.
The rules for this format are given in table 12-1.

DOWNLINE IVT TRANSFORM

The TIP receives three types of downline blocks that are
associated with IVT processing: BLK, MSG, and CMD
blocks. BLK and MSG blocks contain data to be sent to
the terminal. CMD blocks contain control information for
the TIP. Host application programs originate all three
types of blocks, as required. A BLK block indicates that a
MSG block must follow to complete the message for the
terminal. One or more BLK blocks can precede the MSG
block. A MSG block can contain all of the message or
only the final block of the messa_ge.

Time of Transferring Downline Data

The TIP translates the data in a downline IVT block to a
format and code set that can be recognized by the
terminal. The TIP can be designed in either of two ways:
(1) the TIP can immediately send the data downline to the
terminal and send an acknowlegement upline to the host
that the data was sent, or (2) the TIP can collect blocks
and wait until the MSG block is received before sending
the data to the terminal. When the TIP receives a
message block, it must send the data, since the network
cannot assure the TIP that more data will follow.

Oownline data is normally to be translated into terminal
format and code. However, it is possible for the host to
send blocks of transparent data for the terminal. The TIP
must send the transparent data to the terminal imme­
diately; the TIP can neither fragment blocks nor collect
blocks to send as a complete message.

Downline Data Format

Oownline IVT data consists of one or more logical lines. A
logical line consists of an optional format effector, a
string of ASCil data or IVT control characters, and a
terminator. Two conditions are possible for format
effectors: either the format effectors are present in
every logical line of a MSG or BLK block, or none of the
lines contain format effectors. If a suppression bit is set
in the data. block clarifier (DBC), none of the lines have
format effectors.

IVT Format Effectors

The host application program assumes that a given format
effector always causes a consistant type of operation at
each terminal. However, since some terminals inhibit
certain operations, the TIP must provide default actions
to cover these cases. Format effectors are described in
table 12-4.

For each input operation from a terminal, the TIP posi­
tions the cursor to the first character position for the
next line.

NOTE

In the following discussion, cursor posi­
tioning should be taken to mean either
positioning a true cursor (display symbol)
or positioning of the next character to be

60474600 A

TABLE 12-1. BVT SYNTAX

Following is a description of the metasymbols belonging to the BNF formalism used to describe
IVT, BVT, block protocol, and connnands.

Symbol

: :=

<>

j I
I I

*
+

()

<BVTBLKDATA>1

<BVTMSGDATA>1

<UP LINE BVTBLK>

<DOWNLINEBVTBLK>

<UPLINEBVTMSG>

<DOWNLINEBVTMSG>

<CARDREADERBLK>

<CARDREADERMSG>

<PRINTBLK>

<PRINTMSG>

<PUNCHBLK>

<PUNCHMSG>z

<PLOTBLK>

<PLO'IMSG>

<UPLINECARD>

< PRINTLINE >

< DOWNLINECARD >

<PLOTLINE>

<CARDREADERDBC>

<PRINTDBC>

<PLOTDBC>

<PUNCHDBC>

60474600 A

Meaning

This metasymbol indicates that the syntactic construct to the left is defined
as the string or alternation of strings to the right.

The vertical line demarcates alternatives.

The angular brackets enclose syntactic constructs denoted by English phrases.

Braces enclose optional expressions.

An asterisk exponent indicates zero or more repetitions.

A plus exponent indicates one or more repetitions.

Parentheses are used to factor alternatives or expressions formed from them.

: :=

: : =

: : =

: : =

: : =

: : =

::=

::=

: :=

: : =

: : =

::=

::=

: :=

::=

::=

::=

: :=

: : =

: : =

: : =

::=

< UPLINEBVTBLK> <DOWNLINEBVTBLK>

<UPLINEBVTMSG> DOWNLINEBVTMSG>

<CARDREADERBLK>

<PRINTBLK> I <PUNCHBLK> t <PLOTBLK>

<CARDREADERMSG>

<PRINTMSG> I <PUNCHMSG> I <PLO'IMSG>

<CARDREADERDBC> <UPLINECARD>*

<CARDREADERDBC> <UPLINECARD> * <ENDOFINFORMATION'>

<PRINTDBC> <PRINTLINE>*

<PRINTDBC> <PRINTLINE>* l<ENDOFINFORMATION>l

<PUNCHDBC> <DOWNLINECARD>*

<PUNCHDBC> f <DOWNLINECARD> * <ENDOFINFORMATION>l

<PLOTDBC> PLOTLINE>*

<PLOTDBC> <PLOTLINE> * l<ENDOFINFORMATION> l

<CARDREADERDATA> I <ENDOFR.ECORD>

<PRINTDATA> I <ENDOFR.ECORD>

<PUNCHDATA> I <ENDOFR.ECORD>

<PLOTDATA> I <ENDOFR.ECORD>

X'OO

X'OO

X'OO

<SPARE> <SPARE> <SPARE> <SPARE> <SPARE> <SPARE>
<BANNERCARD> <SPARE>

12-3

12-4

<SPARE>3

<BANNERCARD>3

<PUNCHBANNERCARD>3

<DONTPUNCHBANNERCARD>3

<CARDREADERDATA>

<PRINTDATA>

<PUNCIIDATA>

<PLOTDATA>

<UPLJNECOMPRESSEIDATA>

<DOWNLJNECOMPRESSEIDATA>

<FORMSCONTROL>4

<COMPRESSEDZEROS>5

<COMPRESSEDBLANKS>6

< REPLICATIONCOUNT>7

<BYTE>

<BVTESCAPE>

<MODECHANGE>s

<ASCII029>

<ASCII026>

<STRINGINDICATOR>9

<INDETERMINATELENGTHSTRING>

<STRINGSEQUENCE>

<DATAFF>

<STRINGBYTE>

< STRINGLENGTH >11

<FIXEDLENGTHSTRING>

<ENDOFMED IA>13

<ENDOFRECORD>14

< LEVELNUMBER>

TABLE 12-1. BVT SYNTAX (Contd)

::=

::=

::=

.. -

.. -

::=

: : =

::=

::=

::=

: : =;:

: : =

::=

::=

: : =

::=

::=

::=

: : =

: : =

::=

::=

::=

: : =

:: =

: : =

::=

: : =

::=

0

<PUNCHBANNERCARD> I <DONTPUNCHBANNERCARD>

0

1<MODECHANGE> I <UPLINECOMPRESSEDDATA>*
<ENDOFMEDIA>

l <MODECHANGE> I <FORMSCONTROL>
<DOWNLINEDOMPRESSEDDATA>* <ENDOFMEDIA>

)<MODECHANGE>I <OOWNLINECOMPRESSEDDATA>*
<ENDOFMEDIA>

l <MODECHANGE>: <OOWNLINECOMPRESSEDDATA>*
<ENDOFMEDIA>

<COMPRESSEDZEROS> I
<COMPRESSEDBLANKS>f
<REPLICATIONCOUNT~ <BYTE>I
<STRINGINDICATOR> <INDETERMINATELENGTHSTRING>f
<STRINGLENGTH> <FIXEDLENGTHSTRING>

<COMPRESSEDZEROS> f
<COMPRESSEDBLANKS> I
<STRINGLENGTH> <FIXEDLENGTHSTRING>

<BVTESCAPE> (X'EO f X'El f

<BVTESCAPE> (X 1 32 f X 1 33 1

<BVTESCAPE> (X'l21 X'l31

<BVTESCAPE> (X 1 42 f X 1 43 f

xoo I X' 01 I ••• f X'FF

X'FF

<ASCII029> I <ASCII026>

<BVTESCAPE> x I 00

<BVTESCAPE> X'03

<BVTESCAPE> X'90

+
<STRINGSEQUENCE> 10

<DATAFF> f <STRINGBYTE>

<BVTESCAPE> X'FF

X'OO X'Ol X'FE

<BVTESCAPE> (X'91 X'92

n
<BYTE> 12

<BVTESCAPE> X'OA

... I X'FE)

... I X'3F)

... t X' 2F)

••• f X' BF)

X'CF)

<BVTESCAPE> X'OB <LEVELNUMBER>
<LEVELNUMBER> <ENOOFMEDIA>

<BYTE>

60474600 A

TABLE 12-1. BVT SYNTAX (Contd)

<ENDOFINFORMATION>15 : : = <BVTESCAPE> X'OC <ENDOFMEDIA>

< CMDBLKDATA>

< STOPINPUT>

< STAR TINPUT>

< INPUTSTOPPED>

<CTRLPFC>

< STOPINPUTSFC>

:: =

: : =

:: =

::=

: :=

::=

<STOP INPUT> f <STAR.TINPUT> ·I <INPUTSTOPPED>

<CTRLPFC> <STOPINPUTSFC>

<CTRLPFC> <STARTINPUTSFC>

<CTRLPFC <INPUTSTOPPEDSFC>
<INPUTSTOPPEDREASONCODE>

X'Cl

5

<STAR TINPUTSFC> ::= 6

< INPUTSTOPPEDSFC> ::= 7

< INPUTSTOPPEDREASONCODE> ::= <STOPINPUTR.ESPONSE> I
<INPUTDEVICENOTREADY > I
<CARDSLIPERROR> I <EOIINPUT>

< STOPINPUTRESPONSE> : := 0

<INPUTDEVICENO'IREADY> ::=

<CARD SU PERROR> : := 2

<EOIINPUT>

RJTES:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

60474600 A

: : = 3

<BVTBLKDATA> and <BU'IMSGDATA> represent the data portion of a network data block,
i.e., that portion of the block starting with the DBC.

<ENDOFINFORMATION> should be required in a <PUNCHMSG> but the R4 syntax allows a
<PUNCHMSG> consisting of <PUNCHDBC> only.

These syntactic constructs represent a single bit.

<FORMSCONTROL> which are not supported by a specific device result in a preprint
single space.

<COMPRESSEDZEROS> is used to represent 2 through 15 zeros.

<COMPRESSEDBLANKS> is used to represent 2 through 31 blanks.

<REPLICATIONCOUNT> is the number of times (2 through 79) the following character is
to be repeated.

Each device type supported by the BVT is assigned a data mode which, in most cases,
is unchangeable. However, downline data to a card punch may contain a <MODE CHANGE>
requesting the TIP to perform the appropriate code translation to generate the
desired punched cards. The mode selected stays in effect until the next <MODE
CHANGE> or an <ENDOFINFORMATION>, which causes the data mode to be returned to the
default for the device. For all other down line data and all up line data, <MODE
CHANGE> is ignored.

<ASCII-029> indicates that the data should be interpreted as ASCII, but that only
the 64 character subset will appear. The data will be translated by the TIP to
produce 029 cards. Similarly, <ASCII-026> will produce 026 cards.

<STRINGINDICATOR> indicates a character string of 1 to 80 characters following which
is terminated by the first non-data FF.

A <STRINGSEQUENCE> is restricted to 1 to 80 characters.

<STRINGLENG'IH> indicates a character string following of 1 to 63 bytes.

12-5

12.

13.

14.

15.

12-6

TABLE 12-1. BVT SYNTAX (Contd)

n represents repetition from to 63 times based on the value of <STRINGLENGTH>.

<ENDOFMEDIA> not preceded by data causes a blank record to be generated.

<ENDOFRECORD> causes a 789 card to be punched for card punch. It is ignored for
printer or plotter. UpUne the level numbers, represent the contents of columns 2
and 3 of 789 card and columns 6 and 7 of a /*EOR card.

<ENDOFINFORMATION> is ignored in print and plot MSG blocks. It causes a /*EOI card
to be generated for a HASP card punch.

TABLE 12-2. FORMSCONTROL VALUES FOR BVT BLOCKS

<FORMSCONTROL)
(HEX) Action Before Printing Action After Printing

EO (1) Space 1 No Space

El (1) Space 2 No Space

E2 (1) Space 3 No Space

E3 (1) Suppress Space No Space

E4 (1) Skip to Channel 1 (2) No Space

ES Skip to Channel 12 (3) No Space

E6 Skip to Channel 6 No Space

E7 Skip to Channel 5 No Space

E8 Skip to Channel 4 No Space

E9 Skip to Channel 3 No Space

EA Skip to Channel 2 No Space

EB Skip to Channel 11 No Space

EC Skip to Channel 7 No Space

ED Skip to Channel 8 No Space

EE Skip to Channel 9 No Space

EF Skip to Channel 10 No Space

FO No Space Skip to Channel 1 (2)

Fl No Space Skip to Channel 12 (3)

F2 No Space Skip to Channel 6

F3 No Space Skip to Channel 5

F4 No Space Skip to Channel 4

FS No Space Skip to Channel 3

F6 No Space Skip to Channel 2

F7 No Space Skip to Channel 11

F8 No Space Skip to Channel 7

F9 No Space Skip to Channel 8

FA No Space Skip to Channel 9

FB No Space Skip to Channel 10

FC-FE Reserved

Notes:

1. Supported on all devices
2. Page eject
3. Bottom of page

60474600 A

<DOWNLINECONSOLEBLK>

<UPLINECONSOLEBLK>

<DOWNLINECONSOLEMSG>

<UPLINECONSOLEMSG>

<UPLINEFRAGMENT>

<TRAN SPARENTFRAGMENT>

<IVTFRAGMENT>

<UPLINEFRAGMENTEND>

<DOWNLINECONSOLELINF.8>

<TRANSPARENTLINE>

<UPLINEIVTLINE>

<DOWNLINEIVTLINES>

<DOWNLINEIVTBYTE>5

<US>

<CR>

<LF>

<UPLINEIVTBYTE>5

<BYTE>

<FORMATEFFECTOR>2

<UPLINECONSOLEDBC>

<SPARE>

<IDTUSED>

<TRAN SPARENT>3

<CANCELLED>

<PARITYERROR>

<DATAISNOTTRANSPARENT>

<DATAISTRANSPARENT>

<PREVIOUSDATAISR>TCANCELLED>

<PREVIOUSDATAISCANCELLED>

<DATARECEIVEDWITHOUTERROR>

<DATARECEIVEDWITHPARITYERROR>

< OOWNLINECONSOLEDBC>

60474600 A

TABLE 12-3. IVT SYNTAX

: : =

::=

: :=

::=

: : =

::=

: :=

: :=

::=

::=

: :=

: :=

: : =

: : =

: : =

::=

::=

: :=

::=

: :=

: :=

::=

::=

::=

: :=

::=

: :=

: :=

::=

::=

: : =

: : =

<OOWNLINECONSOLEDBC> <DOWNLINECONSOLELINES>

<UPLINECONSOLEDBC> <UPLINE FRAGMENT>

<OOWNLINECONSOLEDBC> <DOWNLINECONSOLELINES>

<UPLINECONSOLEDBC> <UPLINEFRAGMENTEND>

<TRANSPARENTFRAGMENT> I IVTFRAGMENT>

<BYTE>*

<UPLINEIVTBYTE>*

<TRANSPARENTFRAGMENT> J <IVTFRAGMENT>

<TRANSPARENTLINE> I <DOWNLINEIVTLINES>

<BYTE>*

<UPLINEIVTBYTE>*

{<FORMATEFFECTOR> <DOWNLINEIVTBYTE> * <US>)*I
(<OOWNLINEIVTBYTE> * <US>)*

X'OO I X'Ol) ••• X'091 X'OB I X'OC I X'OEf
fX'lEfX'201 ···IX'7EfX'7Ff<CR>l<LF>

X' IF

X'OD

X'OA

x' 00 I x I 011 . . . I x' 7E I x' 7F

x•oof x•oq ···I X'7E f X'FF

<BYTE>

<SPARE> <SPARE> <SPARE> <NO'IUSED>
<NO'IDSED> <TRANSPARENT> <CANCELLED>
<PARITYERROR>

0

0

<DATAISNOTTRANSPARENT> 1 <DATAISTRANSPARENT>

<PREVIOUSDATAISNOTCANCELLED>J
<PREVIOUSDATAISCANCELLED>

<DATARECEIVEDWITHOUTERROR>J
<DATARECEIVEDWITHPARITYERROR>

0

0

0

<SPARE> <SPARE> <SPARE> <SPARE>
<FORMATEFFECTORUSAGE> <TRANSPARENT>
<NOTUSED> <AUTOINPUT>

12-7

12-8

<FORMATEFFECTORUSAGE>

<AUTO INPUT>

<FORMATEFFECTORISUSED>

<FORMATEFFECTORNOTUSED>

<OUTPUT! SAU'IOINPUT>16

<OUTPUTISIDTAUTOINPUT>

<CONSOLECMDD ATA >

<DOWNLINECONSOLECMD>

<UPLINECONSOLECMD>

<STOP INPUT>

<STARTINPUT>

<IVfCOMMAND>

<INPUT STOPPED>

<CTRLPFC>

<STOPINPUTSFC>

<STAR TINPUTSFC>

<TERMINALDEFINITIONSFC>

<INPUTSTOPPEDSFC>

<INPUTSTOPPEDREASONCODE>

<STOPINPUTRESPON SE>

WTES:

TABLE 12-3. IVT SYNTAX (Contd)

::=

: : =

::=

: : =

: :=

: : =

::=

::=

: :=

: : =

: : =

: :=

: : =

: : =

::=

: : =

::=

::=

: : =

::=

<FORMATEFFECTORSUSED>
<FORMATEFFECTORSNOTUSED>

<OUTPUT! SAUTOINPUT> I
<OUTPUTISNOTAUTOINPUT>

0

0

<DOWNLINECONSOLECMD> I <UPLINECONSOLECMD>

<STOPINPUT> t <STARTINPUT> I <IVTCOMMAND>

<INPUTSTOPPED >

<CTRLPFC> <STOPINPUTSFC>

<CTRLPFC> <STARTINPUTSFC>

<CTRLPFC> <IVfCOMMAND> <IVfCOMMANDTEXT>4

<CTRLPFC> <INPUTS'IOPPEDSFC>
<INPUTSTOPPEDREASONCODE>

X'Cl

X'OS

X'06

X'04

X'07

<STOPINPUTRESPONSE>

X'OO

1. See table 12-4 for a definition of the format effectors.

2.

3.

4.

5.

All data in the upline block marked with the DBC flag is considered to be
transparent data. °For down line data, the transparent flag takes precedence over the
format effector selection.

The actual text of (IvrCOMMANDTEXT) is the responsibility of PTIVTCMD; it is not the
TIP's responsibility.

Ivr bytes are ASCII characters, both upline an downline. The parity bit is ignored
by the TIP for downline data. Upline, the parity bit must always be zero.

A network block specifying autoinput in the DBC may contain only one logical line.
It must be a MSG block.

60474600 A

TABLE 12-4. FORMAT EFFECTORS

FE Preprint Action Postprint Action

space single space no space

0 double space no space

- triple space no space

+ position to start of current line no space

* position to top of form or home cursor no space

I home cursor and clear

' no space

no space

I no space

written on the platen of a typewriter.
The latter naturally includes platen (verti­
cal) movement as well as head (horizontal)
movement.

(page eject)

If output follows input, the TIP processes format effectors
to account for this repositioning. For example, a single
space preprint format effector is treated as a null oper­
ation when that format effects immediately follows an
input operation.

Following output of a logical line, the cursor is left where
the data line terminated. Any subsequent output must
therefore process the format effector as specified; that
is, a single space preprint format effector causes the
cursor to move to the first character position of the next
line. Then the additional data can be transmitted.

Some terminals cause special difficultie~, since the cursor
is not left at the end of the data line but is moved
automatically to some other position. For example, on a
Mode 4 display unit, the protocol requires an end of text
symbol at the end of the logical line. The terminal
displays this EDT symbol. However, this displaces the
cursor to one character position past the last user
character location. Following each output operation on
such a terminal, the TIP can return the cursor to the first
character position of the following line. Subsequent
format effectors must account for the post output repo­
sitioning.

The TIP is required to display the data iri the same way
whether the network block was composed of a single
logical line or of many logical lines. If the TIP repositions
the cursor following each output, the TIP must also
reposition the cursor at the end of each logical line.

Whenever the TIP cannot perform the specific action
directed by a format effector, the TIP must perform the
same action as for a preprint single space. Also, the TIP
must supply any idle characters that are needed to allow
the terminal to perform a physical repositioning action.
These idle characters, of course, follow the format
effector. The rule for inserting idle characters is given
below in the explanation of adding idle characters for line
feeds and carriage returns.

60474600 A

no space

no space

single space

position to start of current line

The TIP does not supply preprint or postprint cursor
motion for downline IVT data which has no embedded
format effectors. If the cursor cannot be left in the
position following the last user character, the TIP returns
the cursor to the first character of the next line, for
every output physical line.

IVT Character Processing

An IVT data line can use any character in the standard 128
character ASCII code set (see appendix A of the CCP 3
Reference Manual). The TIP must be able to translate any
of these characters to an equivalent terminal code
character.

There is one IVT code for a carriage return (CR) and
another IVT code for a line feed (LF). When the TIP
recognizes either of these codes it must !:le able to do two
things: (1) issue a command to position the cursor to the
proper location, and (2) issue characters that will allow
the terminal sufficient time to position the cursor. The
TIP provides this additional time by inserting idle char­
acters following the carriage return or line feed. Then
the TIP may resume outputting data characters.

The idle character is defined by the terminal: it may be
any non-displayed character that does not affect platen
motion or paper movement, and does not have any other
terminal function. The number of idle characters to be
inserted is determined by the IVT commands.

The sequences of CR LF or LF CR can be replaced by the
new line function, if the terminal supports that function.
If separate LF or CR functions are not supported by the
terminal, the TIP can interpret the CR as a new line
request and can discard all LF codes.

Auto input

If the autoinput flag is set in the data block clarifier, the
TIP must save the first 20 characters of the downline
source data. The format effector and the unit separator
must be discarded, as well as any characters following the
twentieth. An autoinput block must be a message block,

12-9

and must contain a single logical line. When in autoinput
mode, the TIP outputs the logical Ii ne, saves the first
twenty characters, and waits for an input line. This input
line is appended to the saved output characters, and the
entire new line of data is returned to the application
program in the host. It is possible to autoinput trans­
parent data.

Note that input data is required following this down Ii ne
autoinput block. Note, also, that the entire output is
delivered to the terminal, even if page wait logic would
normally require fragmentation.

Paging

When the output data appears on a hard copy device such
as a printer or a teletype, the TIP must provide paging for
the data. The TIP counts input and output lines and
inserts six new lire requests to provide page-to-page
spacing. This spacing is intended to provide a fixed length
for each page of a message. When a format effector
selects a new page, a sufficient number of new line
requests are inserted to position the page to the bottom of
the page. Then the six new Ii ne requests are generated.

If the printer supports a top-of-form or a page-ejPct
function, that device feature should be used instead of
new line requests.

The TIP's interpretation of format effectors must allow
for platen positioning caused by paging logic. For
example, a preprint format effector which occurs at the
top-of-form can be ignored. Also, if a format effector
causes multiple lines that would span a page boundary, the
TIP treats the format effector as a top-of-form.

The number of lines on a page is selectable by the IVT
command %PL=nn. When the page length is nonzero and
the output device is a hardcopy printer, paging is
required. Page lenqth on a display specifies the number of
Ii nes on the screen.

Page Wait

The IVT command %PG = Y selects the page-wait feature
I for display devices. This feature requires the TIP to

construct and deliver one, and only one, full page of data
to the terminal. In page-wait mode, the TIP must wait for
input data after sending each full page of data. The TIP
can construct a full page of data in either of two ways:
(1) it cm gather enough data to make a full page of data
within the TIP, and send this data as a single transmission
to the terminal, or (2) it can send multiple outputs to the
terminal, so that the terminal constructs the page on the
output device.

A page is considered full whenever the TIP has
transmitted PL - 1 lines. Note that the last line of the
screen is reserved. This line is used by the terminal
operator to enter the awaited input (page turn indication)
so that more output can be sent later. A page is also
considered to be full if the format effector requests a
top-of-form or a page-eject. In such a case, the TIP must
indi.cate that more data is to follow, even though the
current page does not appear to be full. The TIP should
send the message OVER so that it appears on the line
following the last line of the output text. This alerts the
operator that more user data will follow after the
operator enters the page tum signal. If the page length is
zero, only a top-of-form or page-eject format effector
will cause a page-wait condition.

12-10

The following things must !Je considered when calculating
a full page:

• IVT control codes CR and LF
e The paqe width

The IVT command %PW = nn specifies the page width and
indicates the physical bounrlary of a line. For hardcopy
devices, the TIP must insert the proper new line codes to
return the platen to the first character position of the
next line. For display devices, page width specifies the
column at which the terminal automatically inserts a new
line; the TIP does not need to insert any codes.

The TIP is not responsible for suppression of double
spacing if the character following an automatic new line
(or an inserted new line) is an IVT control code or the end
of a loqical line.

The page width specification may cause line folding. The
effect of line folding must be considered in calculating
both paging and page wait. If a. folded line would appear
on the last line of a page (or both there and on subsequent
Ii nes), the Ii ne is fragmented. The second fragment of the
Ii ne is saved; that fragment appears on the next page.

For transparent output, page wait occurs following each
message block.

Terminal Control Codes

Downline data can contain ASCil control codes or escape
sequences which cause actions to be performed by the
terminal. The TIP writer has two choices for handling
these: (1) the TIP may exclude the codes by slbstituting a
blank for each such code, or (2) the TIP may transmit the
codes unchanged. In the latter case, the TIP can elect to
account for the cursor motion caused by the codes, or it
can ignore· the cursor motion and all its side effects.
However, the TIP writer should note that such cursor
motion can affect both paging and page wait. In any case,
the TIP writer must assure that any such codes passed
downline do not cause a terminal failure, result in error
reports, or disconnect the user.

Data Block Clarifier

The data block clarifier (DBC) is used to indicate the
format of the data. The format should remain consistant
throughout a complete message. A message fragmented
into a sequence of BLK blocks and a MSG block should all
have the same value for the fragment or format effector
flag. From message to message, however, the format may
be changed as the application program desires.

CMD Blocks

Command (CMD) blocks are defined both ~line and down­
line. Only one of them is required by a user TIP; that is
the downline CMD block containing an IVT command.
Other CMD blocks are used by standard TIPS and by CDC
application programs. These CMD hlocks are a specially
defined use and do not occur in any other circumstances.
It is possible that a user TIP and a user application pro­
gram could define such a special use of a CMD block.

UPLINE IVT TRANSFORMS

The upline IVT transform converts terminal data to ASCil
data. Each sequence of characters is accumulated and

60474600 B

transferred to the host as a single message. The input
sequence begins with the NPU detecting a character on
the line, and the sequence ends with the NPU detecting a
terminating character or sequence of characters. After
the data is converted to IVT format, the data is checked
for IVT functions before it is sent upline.

The upline IVT transform discards any leading or trailing
characters that are automatically supplied by the ter­
minal, or required by the terminal's protocol. The termi­
nating character is always sent by the terminal for its
carriage return function. For block mode terminals, the
terminating character can be any key which releases the
data for transmission (such as an ETX). This terminating
character or character sequence is always discarded.

Backspace Processing

If the terminal sends a backspace code in the data stream,
the TIP's input state programs usually process the char­
acter. Backspace can be used only to correct characters
in the same physical input line; that is, the user cannot
backspace across a carriage return, line feed, or page­
width boundary.

Data Fragmenting

The TIP can fragment upline data into multiple network
blocks. All such fragments except the last are sent upline
as BLK blocks. The last fragment is sent as a MSG block.
The TIP can use any reasonable fragmentation rule, but
the following factors should be considered:

• Fragments should be at least 150 characters in
length. A smaller fragment unduly raises the
overhead cost of network block handling.

• Fragmentation should be avoided unless charac­
ters are being accumulated in the NPU memory at
typing speeds.

• Fragments must not be released for 1..pline trans­
mission unless the backspace cannot alter the data
in the fragment.

• Fragmentation performed at the input state level
can be reduced by concatenating blocks at the
OPS level before passing the blocks upline to the
host.

Upline IVT Processing

Before sending data to the host, the TIP must check the
following IVT functions in the order listed (all checks are
made after processing the data for a possible backspacing
operation):

• Page tum prompt
• Abort input line
• Cancel input
• IVT comm and
• User break 1 or user break 2
• Autoinput

Page Turn Prompt

If the page wait feature is selected, the TIP must check
for a page tum prompt. The prompt has two forms: (1) a
message containing no data, or (2) a message containing

60474600 A

only the IVT control code. The null line is treated as a
prompt only if there is additional output available for
transmission to the terminal. In this case, the prompt is
discarded and the TIP resumes sending data to the ter­
minal. If output is not available, a null message is sent to
the host. If autoinput is being held, a null line satisfies
the input, if it is not also a page turn prompt.

Abort Line

If output is interrupted by a break key or a full duplex
input, the current output line is discarded, if the next
input is an abort line. If any character except the abort
output character is found on the input Ii ne, output is
resumed starting from the beginning of the line. If a
logical line consists of several physical lines, only the
interrupted physical line is discarded.

Cancel Line

The last or only character of a line is checked to find if it
is a cancel character. If it is, the message is discarded
and the TIP sends a *DEL* message to the terminal. If an
IVT command was being accumulated when cancelled, the
command is discarded. If data was being accumulated and
previous fragments have already been sent to the host, the
TIP sends a null MSG block upline with the cancel flag set
in the data block clarifier.

If a cancel operation occurs during autoinput, the TIP
discards any autoinput data it is saving. Note that the TIP
continues to wait for input to complete the autoinput
operation. Cancelling the autoinput data does not satisfy
the requirement for input.

IVT Command

If the first character of a message is the IVT control
character, the TIP calls PTIVTCMD to process the
command which follows. The TIP accumulates the entire
command before sending it to PTIVTCMD; that is, all
fragments must be reassemebled, and none of the frag­
ments are sent to the host. If the command exceeds 150
characters in length, the remaining characters are dis­
carded.

If any of the IVT commands that are implemented require
functional changes of the hardware (such as a com­
munications line adapater command), the TIP must send
all possible functions to the hardware, following each IVT
command. The TIP does not parse or act on the IVT
command. The TIP merely senses that a command oc­
curred, and reinitializes all the hardware functions.

PTIVTCMD determines the correct action to be taken for
each IVT command, by reference to parameters in the
field descriptor and field action tables. It is preferrable
to accept all IVT commands, but to perform an action only
for those which are appropriate for the type of terminal.
The IVT commands are listed and described in the CCP
System Programmer's Reference Manual.

User Breaks

The user break code must be the first and only character
of a message. If a user break is found in a message, the
data is discarded and the TIP generates a BRK block
which is sent to the host. All internally held downline
data (including autoinput data) is discarded.

12-11

Auto input

If the TIP is holding autoinput when input arrives, the
input data is chained to the autoinput data. The result is
sent to the host as one input message. After autoinput
has been sent to the host, the next output can be sent to
the terminal. Autoinput data can be cancelled by the
cancel character; however, the TIP must still wait for
upline data before permitting the next output transmission.

Transparent Input Data

An IVT command (either from the terminal or sent down­
line from the host) can cause the TIP to process input data
in transparent mode. The command applies to the next

12-12

input message. Successful receipt of input data cancels
transparent mode, so a new command is required for each
line that is to be processed as transparent data. The TIP
must inspect the BSXPARENT field of the TCB prior to
each input operation to determine the processing mode.
After sending the input line to the host, the TIP must set
the BSXPARENT flag to FALSE. During transparent
mode processing, the TIP checks for the p~ge turn
prompt. Autoinput is permissible in transparent mode.
Only a null line input with data available for output is
considered to be a valid page tum prompt in tranparent
mode; the IVT control code is not considered a page
prompt.

60474600 A

TEXT PROCESSING INTERFACE 13

CCP provides a text processor for processing the various
character translations that are necessary when network ,
data is converted to terminal data. The network data is in
interactive virtual terminal (IVT) format, in batch virtual
terminal (BVT) format, or is transparent data. Terminal
data is normally in a different format. The usual principal
differences are as follows:

•
•

•

A different code set than the network's

A terminal transmission buffer size different than
the network block sizes

Terminal operating characteristics that are not
identical to IVT or BVT

Text processing is usually required downline. A TIP can be
written to perform upline text processing also.

TEXT PROCESSING STATE
PROGRAMS-.
The TIP is responsible for making the translations, using a
specialized language for character processing. This lan­
guage contains most of the same instructions that are
available to the input state programs for upline character
processing • The instructions are described in detail in the
State Programming Language Reference Manual. A few
state programming instructions are available only for text
processing, and cannot be used by the input state pro­
grams. All instructions are written into firmware level
text processing state programs, and are interpreted by the
text processor, when the TIP calls that firmware module
via PTTPINF.

When the TIP is ready to translate a source message, the
TIP sets up a control table called the Text Processing
Control Block (TPCB), which is an overlay of the Mux LCB
(NCLCB). This TPCB contains the pointers to the source
data buffers, the instructions to be interpreted (that is,
the address of a pointer table to the TIP's firmware level
text processing state programs), and other TIP-defined
fields. The TPCB was discussed in section 6, principal
data structures. When the table is ready, the TIP makes a
direct call to PTTPINF. This transfers control to the text
processor, which controls the TIP's own text processing
state programs.

The principal characteristics of executing PTTPINF are:

Procedure name:

Input parameter:

Return parameter:

Calling Sequence:

60474600 A

PTTPINF

(TPCBptr)
TPCB

address of the

(errcode) = text processing
failure indicator

PTTPINF(TPCBPTR);

Example of a call:

WITII BlTCB .BSTCB, (TPCBptr) DO

BEGIN
NCaaa value;

NCzzz : = value;
PTTPINF(TPCBptr);

END;

SPECIFY TPCB
ADDRESS

SET UP ALL
TIIE NECESSARY
TPCB FIELDS

The text processor supplies destination buffers to receive
the translated characters, as necessary. The text pro­
cessing state programs handle each source character and
determine its disposition. In general, the translated char­
acters will be sequentially placed in the destination buf­
fers. On return to the TIP, the TPCB holds pointers to the
source data buffers and to the destination buffers.

The text processor is normally called for downline data.
In all cases, the text processor is called only from the
OPS-level TIP. Text processing translations are per­
formed at a lower priority level than input state program
processing, so input character translations can interrupt
text processing translations. However, no other OPS-level
program can gain control of the NPU while a text pro­
cessing operation is in progress. Therefore, there is no
need for reentrant coding in the TIP's firmware-level text
processing state programs.

DOWN LINE TEXT PROCESSING FOR
LOW AND MEDIUM-SPEED LINES
For TIPs which operate on lines with baud rates at or
below 9600, text processing is done on demand; that is,
one block of data is removed from the TIP's output queue
and a sufficient amount of that data is translated and
given to the multiplex subsystem for transmission. On
completion of the transmission, the TIP translates more
output data and passes it to the multiplex susbsystem.
This process continues until there is no more data to be
transmitted. In demand mode, there is never any output
on the line during a text processing operation.

DOWN LINE TEXT PROCESSING FOR
HIGH-SPEED LINES
For a TIP to efficiently utilize a line that operates at
higher baud rates, text processing and output transmission
are performed simultaneously. To accomplish this, the
TIP must remove enough data from the output queue to
create two transmission blocks. As soon as this amount of
data is text processed, the first transmission block is

13-1

passed to the multiplex subsystem for sending. As soon as
the first block is successfully sent, the TIP passes the
second block to the multiplex subsystem. Then the TIP
immediately gets another block from its output queue and
starts text processing that block into another transmission
block.

Except for starting a message, the TIP must not remove
more than one block from its output queue without
sending an acknowledgment to the host (the TIP has the
choice of delaying the acknowledgement for fragmented
blocks). In the special case where the first two trans­
mission blocks must be translated before either of them is
sent, the TIP may remove more than one network block
from its output queue. The BIP routine PTBACK can be
called to acknowledge to the host that the first block was
unqueued. This allows the second block to be unqueued.

If PTBACK is used in this manner the postoutput POI
(PBPOPOI) must be used only for accounting purposes, and
not for control. To do this, the TIP sets the internal block
flag (BFINTBLK) to inhibit PBPROPOI from transmitting
another BACK block upline. If the TIP is to accomodate
the usual application program delivery assurance require-

13-2

ments, the TIP must itself preserve the data acknowl­
edged but not sent to the terminal, even though a BRK or
STP block is sent upline. The application program will not
resend those blocks which were acknowledged by the TIP.

UPLINE TEXT PROCESSING
Text processing may also be performed on upline data. In
most cases, the TIP's input state programs will have
already translated the data during input processing, as the
characters were being demultiplexed from the circular
input buffer. If a complete data translation cannot be
performed at this time, the TIP must supply upline text
processing programs to finish the text translation. The
input data buffers supplied by the multiplex subsystem
become the source buffers for this upline text processing
operation. The call to PTTPINF is the same as for down­
line text processing. When text procesing is complete, the
TIP calls the postinput POI to send the blocks upline.

Note that two-pass text processing has a considerable
effect on NPU utilization, and should be avoided if at all
possible.

60474600 A

PASCAL GLOBAL INITIALIZATION 14

There are two ways to initialize PASCAL variables for the
TIP: by using VALUE statements, or by using executable
initialization code. Use of VALUE statements is limited
by restrictions on the syntax. It also causes hard-coded
numeric fields to be used, instead of the symbolic names
which are more appropriate for PASCAL. Initialization by
executable code requires that the TIP maintain code that
is used only during system initialization.

To resolve both these problems, an editing capability was
created for use during the build process. This editing
process is called MPEDIT. MPEDIT allows value ini­
tialization using symbolic names, and it provides value
initializations of addresses which are known only after a
system is linked and absolutized.

MPEDIT DIRECTIVES
MPEDIT directives are used to initialize variables and
fields for PASCAL globals. If the user is not thoroughly
familiar with MPEDIT directives, he is urged to review
the edit phase section of the CYBER Cross System Link
Editor and Library Maintenance Reference Manual. The
insertion of MPEDIT decks is shown in section 4 of this
manual.

The codes described below may be necessary for
modifying a TIP or for writing a new TIP. The MPEDIT
program structure is shown in figure 14-1. A I preceding
.a symbolic name indicates a symbol defined only to
MPEDIT. Symbols not preceded by a I are defined for
PASCAL or assembly language or MPLINK.

PROGRAM STRUCTURE

CONST
Constant definitions

VAR
Variable declarations

ARRAY
Array declarations

BEGIN
Ass i grunen t section

END

CONST
VAR
ARRAY
BEGIN
END
FOR
TO
DO
OF
CHAR

Figure 14-1. MPEDIT Program Structure

MPEDIT CONSTANTS

Keywords

Constant definitions are added by the TIP writer to create
symbolic names which are subsequently used by MPEDIT
statements during value initialization. The constants are
usually default values for:

60474600 A

• Cancel character
• IVT control character
• User break 1 character
• User break 2 character
• Transparent delimiter character
• Backspace character
• Character length in bits

Constants are defined by:

/CONSTNAME = nr;

where CONSTNAME is the TIP's local mnemonic. nr is
the value assigned to that mnemonic. ; ends the constant
definition.

Constant definitions are contained in the user supplied
COMDECK ZCNtip.

MPEDIT VARIABLES
MPEDIT variables define symbolic names which are
defined only to MPEDIT, and are used for numeric
calculations. Probably the user neither needs to add to,
nor change, any of the standard CCP edit phase variables.
If it becomes necessary to add a variable, the format of
the variable declaration is:

/VARNA ME;

where VARNAME is the variable name.
variable declaration.

ends the

Variables /I, /J, /K, and /L are available for TIP use
without special definition. User-defined variables are
contained in the user-supplied COMDECK VARtip.

MPEDIT ARRAYS

To initialize values in arrays, the TIP writer must define
for MPEDIT both an index range and a length of element
(these parameters are not placed in the symbol table by
PASCAL). Array declarations have the format:

ARRA YNAME [RANGE J OF SIZE;

where ARRA YNAME is the symbolic name of the array
declared in the PASCAL global variable declaration
section. ARRA YNAME may be any entry point name
which allows initialization of arrays in assembly language
programs. Range is a subrange declaration of the form:

M •• N

where M and N are numeric constants or symbols. SIZE is
the number of words in an array entry. ; ends the variable
declaration.

Array declarations are contained in the user COMDECK
ZAR tip.

14-1

ASSIGNMENT SECTION
Each TIP has a section of code in the MPEDIT assignment
section. The assignment statements most likely to be
required are as follows:

• • •
• •
• •

LCB descriptor table
TCB descriptor table
Worklist control block
TIP type table
Terminal characteristics table
TCB/LCB action tables
State program address linkage

Each of these is discussed separately later.

WORKLIST CONTROL BLOCK

Each TIP defines a worklist control block. Format of the
block's initialization code is as follows:

BYWLCB [BOUSERnJ • BYPRADDR : =/ENTRY
(procname);

BYWLCB [BOUSERn J • BYPAGE : = /PGNUM
(procname);

BYWLCB [BOUSERn J • BYWLINDEX
BYWLCB [BOUSERnJ • BYMAXCNT
BYWLCB [BOUSERnJ. BYINC
BYWLCB [BOUSERn] • BYWLREQ

: = BOUSERn;
: = l
: = 3
: =/TRUE

where BOUSERn is the index of the worklist in the OPS
MONITOR TABLE (BYWLCB), with n ranging from l to
A. Procname is the procedure name containing the
OPS-level entry point of the TIP.

TIP TYPE TABLES

Each TIP requires a TIP type table. Almost every field of
this table must be initialized. The typical definition for
an entry is:

BYTIPTYPT NOUTTn] • field : = value;

where NOUTTn is the TIP type definition index. Standard
TIPs use n valu~s of 1 through 4. The TIP writer must
define a new value for n for his TIP. Field is one of the
fields as defined in the TIP type table. The fields usually
defined are shown in table 14-1. Value may be locally
defined, or it may be a global symbol.

TABLE 14-1. TIP-TYPE TABLE DEFINITIONS

Field Range Comments

BJOBT TRUE or FALSE Output buffer terminated worklist is to be generated
(not usually needed for controlled protocols)

BJBZL TRUE or FALSE Reset timer flag when output buffer termination occurs.
Controlled protocols reset timer after a successful
output in order to time the terminal's response.

BJIVTSIZE BSLFIDLES to
BSPGWID'IH + 1

BJTCBSIZE /BOS32 TCB for a TIP always requires a 32 word buffer

BJQTYPE /BOQNEXTSEG

BJLISTIX BOUSERn Index to the worklist control block

BJDFTC NOU SER 1 - NOU SER 5 Default terminal class when line is enabled
for user terminal
classes

BJJFDC VATnFDT for Address of TIP's TCB descriptor table
n = 1 to 4

BJFDT VALnFDT for Address of TIP's LCB descriptor table
n = 1 to 4

BJJAT VATnAT for Address of TIP's TCB action table
n = 1 to 4

BJAT VALnAT for Address of TIP's LCB action table
n = 1 to 4

BJTIPMUX2 /PGNUM(procname) Page number of the Mux-2 level entry to the TIP

BJTEMUX2 /ENTRY(procname) Entry point for the Mux-2 level entry to the TIP.
Defined only for those TIPs that have a routine
exclusively for handling Mux-2 level inputs.

BJTCBPINIT /PGNUM(procname) Page number for the TIP's TCB initialization routine
(direct call from service module)

BJTCBEINIT /ENTRY(procname) Entry point for the TIP's TCB initialization routine

14-2 60474600 A

See figure 14-2 for sample MPEDIT statements to
initialize TIP type table.

TIP-TYPE TABLE FOR USER TIP

BJTIPTYPT NOUTTl .BJOBT := /TRUE;
BJTIPTYPT NOUTTl .BJBZL := /FALSE;
BJTIPTYPT NOUTTl .BJTCBSIZE := /BJS32;
BJTIPTYPT NOUTTl .BJQTYPE := /BJQNEXTSEQ;
BJTIPTYPT NOUTTl .BJLISTIX := /BOUWLl;
BJTIPTYPT NOUTTl .BJDFTC := /NOUTCl;
BJTIPTYPT NOUTTl .BJJFDT := /UATlFDT;

BJTIPTYPT NOUTTl
BJTIPTYPT NOUTTl
BJTIPTYPT NOUTTl
BJTIPTYPT NOUTTl
BJTIPTYPT NOUTT 1
BJTIPTYPT NOUTTl

.BJFDT
.BJJAT
.BJAT
.BJTEMUX2
.BJTPMUX2
.BJIVTSIZE

:= UALlFDT;
:= UATlAT;
: = UALlAT;
:= /ENTRY (procname);
:= /PGNUM (procname);
: = BSLFIDLES -

BSPGWIDTH + l ;
BJTIPTYPT NOUTTl
BJTIPTYPT NOUTTl

.BJTCBPINIT

.BJTCBPINIT
:= /ENTRY (procname);
:= /PGNUM (procname);

Figure 14-2. MPEDIT Statements to Initialize TIP Type
Table (Sample)

TERMINAL CLASS TABLE

A terminal class table must be defined for each of the
TIP's terminal classes. Two catagories of tables are
usually defined: one for the base fields and one for the
IVT overlay fields. The content of these tables may vary
widely from TIP to TIP. For the same TIP, however, the
same fields are set for each terminal class. Format of a
table entry initialization is:

NJTECT [NoUTT~ • field : = value;

where NOUTTn is the terminal class with n ranging from l
through 4. Field is the NJTECT field mnemonic. Table
14-2 shows the fields defined for TIPs. Value is a
symbolic or absolute value.

See figure 14-3 for sample MPEDIT statement to initialize
terminal class table.

TERMINAL CHARACTERISTICS (BASE FIELDS) FOR TERM CLASS NOUTCl

NJTECT NOUTCl
NJTECT NOUTCl
NJTECT NOUTC 1
NJTECT NOUTCl

.NJISPTA := UAISPTR;
• NJTIPTY := NOUTTl;
.NJPARITY := B7EVPAR;
• NJCHLEN := /CLSEVEN;

INPUT STATE ADDR

IVT TERM CHARACTER! STICS FOR TERM CLASS NOUTC 1

NJTECT NOUTCl .NJPGWAIT := /FALSE;
NJTECT NOUTC 1 .NJPGWIDTH := 72;
NJTECT NOUTCl .NJPGLENGTH := O;
NJTECT NOUTCl .NJCANCHAR : = /I 31CANCHR;
NJTECT NOUTCl .NJCNTRLCHAR : = / 131 CNTRLCHR;
NJTECT NOUTC 1 .NJUSRl := /I31UB1 j
NJTECT NOUTCl .NJUSR2 := /I31UB2;
NJTECT NOUTC 1 .NJXCHAR : = /I 31XCHAR;
NJTECT NOUTCl .NJ BS CHAR := /I31BSCHAR;
NJTECT NOUTC 1 .NJABTLINE := /I31ABTLINE;
NJTECT NOUTCl .NJXPARENT := /FALSE;
NJTECT NOUTCl .NJXTO := /FALSE;
NJTEC T NOU TC 1 .NJXCNT := 2043;
NJTECT NOUTC 1 .NJCRCALC := /TRUE;
NJTECT NOUTCl .NJCRIDLES := 2;

Figure 14-3. MPEDIT Statement to Initialize Terminal Class
Table (Sample)

60474600 A

FIELD DESCRIPTOR TABLE DEFINITION

Normally, the TIP writer is not required to add new field
name/field value (fn/fv) pairs to line or terminal
configuration. These changes require host code changes.
Only those fn/fv values that are defined for existing TIPs
are described here. The TIP-defined line field descriptor
table defines .the line speed option. The TCB field
descriptor is nil. The example shown in figure 14-4 is for
USER TIP 1 and is contained in user supplied COMDECK
ZEXtip.

* * * USER TIP 1 TCB FIELD DESCRIPTOR TABLE *
* *

UATlFDT 0 .ODNUMENT := O; NUMBER OF ENTRIES

* * * USER TIP 1 LCB FIELD DESCRIPTOR TABLE *
* *

UALlFDT 0 .DDNUMENT := 1; NUMBER OF ENTRY

/BZLNSPD
UALlFDT 1 .DDFSTRT
UALlFDT 1 .DDFLNTH
UALlFDT 1 .DDFDISP

:= 21;
: = /START(BZLNSPD);
:= /LENGTH(BZLNSPD);
:= BZLNSPD;

Figure 14-4. TCB and LCB Field Description Table
Initialization (Sample)

ACTION TABLE INITIALIZATION

The following checks are manditory during a terminal
configuration operation:

• /BSTCLASS - terminal class. Upper and lower
bounds must be checked (D2VU and D2VL). If this
is a reconfigure terminal service message, a
variant TCB (D2TCBDFL T) should be established.

• /BSCN - change CN. The connection number must
be processed (D2ACN).

• /SN - data path between host and terminal. The
directory change must be processed (D2LLCB) •

• /DN - new path to terminal for data from host •
The directory change must be processed
(D2LLCB).

• /BSNBL - network block limit.

• /BSIPRI - data priority.

• Internal (0) - three internal actions are possible •
The new TIP must determine which of these
internal actions is required. The first two or
three action table entries are reserved for these
internal actions (as was described earlier in the
direct SVM to TIP call in the service module
interface). Normally, D2TCBCHN, D2TCBINIT,
and D2INIT, are used in that order. The remaining
actions are descretionary; these usually check the
upper and/ or lower bound of the field to be
initialized. The bound must be supplied in the
fourth word of the entry (.DFPARAM : = x).

14-3

TABLE 14-2. TERMINAL CHARACTERISTICS TABLE DEFINITIONS

Field Value/Connnents

NJISPTA address of input states pointer table

NJCXLTA address of code translate table

NJCNTl initial value for counter 1 (0-255)

NJ SYNC SYNC character for protocol

NJCRCP CRC polynomial index (see SPRM)

NJIBFCD character displacement for first character to be stored in first buffer

NJBLKL reset value for count 2 (0-16383)

NJTIPTY TIPTYPE

NJPARITY parity option

B70DDPR : odd parity
B7NOPAR : no parity
B7EVPAR : even parity

NJCHLEN character length (see CLA Reference Manual for values) - normal 1 for 8-bit characters

NJPARTYPE parity type

B7ZERO : zero parity
B70DD : _odd parity
B7EVEN : even parity
B7NONE : no parity

NJPGWAIT page wait option (/TRUE,/FALSE)

NJXPARENT Transparent input

IVT Parameters - The following fields must start on a word boundary:

NJPGWIDTH : B08BITS; PAGE WIDTH

NJ PGLENG'IH : B08BITS; PAGE LENGTH

NJCANCHAR : CHAR; CANCEL INPUT LINE CHAR

NJCNTRLCHAR : CHAR; CONTROL CHARACTER

NJUSRl : CHAR; USER BREAK ONE

NJUSR2 : CHAR; USER BREAK TWO

NJ XTO : BOOLEAN; TIMEOUT IS EXPECTED DELIMITER

NJXCHRON XPT CHAR IS A DELIMITER

NJXCNT : B012BITS; TRANSPARENT CHARACTER COUNT

NJCRCALC : BOOLEAN; CR IDLE CNT TO BE CALCULATED

NJLFCALC : BOOLEAN; LF IDLE CNT TO BE CALCULATED

NJECHOPLX : BOOLEAN; ECHOPLEX MODE

NJ IND EV : BOOLEAN; INPUT DEVICE (F=KB, T=PT)

NJOUTDEV : B02BITS; OUTPUT DEVICE (PRT, DISPLAY, PT)

NJAPL : B02BITS; APL (O=NO, l=YES, 2=SPECIAL)

NJXCHAR : CHAR; TRANSPARENT DELIMITER CHAR

NJBSCHAR : CHAR; BACKSPACE CHARACTER

NJABTLINE : CHAR; ABORT OUTPUT LINE CHARACTER

NJCPIDLES : B08BITS; COUNT OF IDLES AFTER CR

NJLFIDLES : B08BITS); COUNT OF IDLES AFTER LF

Note: The IVT parameters are used to initially set the IVT fields in the TCB if -- the device type is a console. The permissable values for these parameters
are de fined by the IVT specifications (see the CCP System Programmer's
Reference Manual).

14-4 60474600 A

Figure 14-5 shows an example of an action table
initialization. All the remaining values in the example
may be checked; but there is no requirement to check
them. These fields permit optional terminal specification;
in the terminal definition statements of NOL, or by IVT

commands from a terminal or from an application
program. Omission indicates that processing is skipped.
The example shows a complete set, whether it is needed
by the TIP or not.

60474600 A

* *
* USER TIP 1 TCB ACTION TABLE *
* *

/L := 1;

UATlAT /L .DFFN := O; INTERNAL ACTION
UATlAT /L .DFRKEY := D2SKP;
UATlAT /L .DFCKEY : = D2TCBCHN;
UATlAT /L .DFPARAM := O; /L := /L + 1

UATlAT /L .DFFN := O;
UATlAT /L .DFRKEY := DZSKP;
UATlAT /L .DFCKEY : = DZTCBINIT;
UATlAT /L .DFPARAM := O; /L := /L + 1

UATlAT /L .DFFN := O; INTERNAL ACTION
UATlAT /L .DFRKEY := D2INIT;
UATlAT /L .DFCKEY := D2INIT;
UATlAT /L .DFPARAM := O; /L := /L + 1

UATlAT /L .DFFN := /BSTCLASS;
UATlAT /L .DFRKEY := D2VUL;
UATlAT /L .DFCKEY := D2VUL;
UATlAT /L .DFPARAM := $801 /L := /L + 1

UATlAT /L .DFFN := /BSTCLASS;
UATlAT /L .DFRKEY := D2VM;
UATlAT /L .DFCKEY := D2NA;
UATlAT /L .DFPARAM := $204 /L := /L + 1

UATlAT /L .DFFN := /BSTCLASS;
UATlAT /L .DFRKEY : = D2TCBDFLT;
UATlAT /L .DFCKEY := D2NA;
UATlAT /L .DFPARAM := 0: /L := /L + 1

UATlAT /L .DFFN : = / BSOWNER;
UATlAT /L .DFRKEY := D2VL;
UAT!AT /L .DFCKEY := D2VL;
UATlAT /L .DFPARAM := 0: /L := /L + 1

UATlAT /L .DFFN := /BSCN;
UATlAT /L .DFRKEY := D2ACN;
UATlAT /L .DFCKEY := D2ACN;
UATlAT /L .DFPARAM := 0: /L := /L + 1

UATlAT /L .DFFN := /DN;
UATlAT /L .DFRKEY := D2ADN;
UATlAT /L .DFCKEY := D2SKP;
UATlAT /L .DFPARAM := 0: /L := /L + 1

UATlAT /L .DFFN : = I SN;
UAT!AT /L .DFRKEY := D2LLCB;
UATlAT /L .DFCKEY := D2LLCB;
UATlAT /L .DFPARAM := 0: /L := /L + 1

UATlAT /L .DFFN : = /BSNBL;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 7: /L -== /L + 1

Figure 14-5. MPEDIT Initialization of USER TIP 1 TCB Action Table
(Sample; 1 of 3)

14-5

UATlAT /L .DFFN := /BSIPRI;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 3: /L := /L + 1

UATlAT /L .DFFN : = /BSIPRI;
UATlAT /L .DFRKEY := D2VL;
UATlAT /L .DFCKEY := D2VL;
UATlAT /L .DFPARAM := 1: /L := /L + 1

UATlAT /L .DFFN := /BSCANCHAR;
UATlAT /L .DFR.KEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 127; /L := /L + 1

UATlAT /L .DFFN := /BSBSCHAR;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 127; /L := /L + 1

UATlAT /L .DFFN := /BSCNTRLCHAR;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 127; /L := /L + 1

UATlAT /L .DFFN := /BSCRIDLES;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 99; /L := /L + 1

UATlAT /L .DFFN := /BSLFIDLES;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 99; /L := /L + 1

UATlAT /L .DFFN := /BSCRCALC;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := l; /L := /L + 1

UATlAT /L .DFFN := /BSCRCALC;
UATlAT /L .DFRKEY := D2CRIDLE;
UATlAT /L .DFCKEY := D2CRIDLE;
UATlAT /L .DFPARAM := O; /L := /L + 1

UATlAT /L .DFFN := /BSLFCALC;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := l; /L := /L + 1

UATlAT /L .DFFN := /BSLFCALC;
UATlAT /L .DFRKEY := D2LFIDLE;
UATlAT /L .DFCKEY := D2LFIDLE;
UATlAT /L .DFPARAM := O; /L := /L + 1

UATlAT /L .DFFN := /BSA.PL;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 2; /L := /L + 1

UATlAT /L .DFFN := /BSA.PL;
UATlAT /L .DFRKEY := D2APL;
UATlAT /L .DFCKEY := D2APL;
UATlAT /L .DFPARAM := O; /L := /L + 1

UATlAT /L .DFFN := /BSXPARENT;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := l; /L := /L + 1

Figure 14-5. MPEDIT Initialization of USER TIP l TCB Action Table
(Sample; 2 of 3)

14-6 60474600 A

60474600 A

UATlAT /L .DFFN : = /BSXCHM;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 15;

UATlAT /L .DFFN := /BSXTO;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := l;

UATlAT /L .DFFN := /BSINDEV;
UATlAT /L .DFRKEY := D2VU;
UATIAT /L .DFCKEY := D2VU;
UATIAT /L .DFPARAM := l;

UATIAT /L .DFFN := /BSOUTDEV;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATIAT /L .DFPARAM := 2;

UATIAT /L .DFFN : = /BSECHOPLX;
UATIAT /L .DFRKEY := D2VU;
UATIAT /L .DFCKEY : = D2VU;
UATlAT /L .DFPARAM := l;

UATlAT /L .DFFN := /BSPGWAIT;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY : = D2VU;
UATIAT /L .DFPARAM := l;

UATIAT /L .DFFN := /BSPARITY;
UATIAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 3;

UATlAT /L .DFFN : = /BSPARITY;
UATlAT /L .DFRKEY := D2PARITY;
UATlAT /L .DFCKEY := D2PARITY;
UATIAT /L .DFPARAM := O;

UATlAT /L .DFFN : = /BSABTLINE;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 127;

UATIAT /L .DFFN : = /BSUSRl;
UATIAT /L .DFRKEY := D2VU;
UATIAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 127;

UATlAT /L .DFFN : = / BSUSR2;
UATlAT /L .DFRKEY := D2VU;
UATIAT /L .DFCKEY := D2VU;
UATIAT /L .DFPARAM := 127;

UATlAT /L .DFFN := /BSCODE;
UATlAT /L .DFRKEY := D2VL;
UATIAT /L .DFCKEY := D2VL;
UATlAT /L .DFPARAM := 4;

UATIAT /L .DFFN := /BSCODE;
UATlAT /L .DFRKEY := D2VU;
UATlAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := 5;

UATlAT /L .DFFN := /BSXCHRON;
UATIAT /L .DFRKEY := D2VU;
UATIAT /L .DFCKEY := D2VU;
UATlAT /L .DFPARAM := l;

UATlAT /L .OFEND : = $7FFF:

/L := /L + l

/L := /L + l

/L := /L + l

/L := /L + l

/L := /L + 1

/L := /L + 1

/L := /L + 1

/L := /L + l

/L := /L + l

/L := /L + l

/L := /L + 1

/L := /L + 1

/L := /L + l

/L := /L + 1

END OF TABLE

Figure 14-5. MPEDIT Initialization of USER TIP 1 TCB Action Table
(Sample; 3 of 3)

14-7

Table 14-3 defines all the terminal configuration field
numbers and the associated mnemonic names. In
initialization statements, a I precedes the field name,
since these MPEDIT variables are defined for the TIP
writer. The set of terminal initialization statements are
placed in the user supplied COMDECK ZEXtip.

An optional check can be made for line speed, if the line
is asynchronous with a fixed speed, and this speed is
defined in the line definition:

• /BZLNSPD - line speed.

The following check is mandatory for line configuration:

• /BZOWNER - owning host for this line.

TABLE 14-3. TCB FIELD DESCRIPTOR TABLE

FN Field Connnents

5 BSTCIASS Terminal class. A new class must be defined if the terminal does
not use a protocol identical to a current terminal (exceptions -
minor variations are available by use of Ivr command parameters).

12 BSOWNER Node ID of CS in the host.

13 BSCN Connection Number defined by initialization for this terminal.

14 BSLLCB (upper) The destination node (DN) byte in the LLCB that is used as a
directory.

15 BSLLCB (lower) The source node (SN) byte in the LLCB that is used as a directory.

16 BSABL Available block limit - the number of blocks that can be used by a
TIP before triggering regulation if the TIP requests PTREGL to set
regulation on available block count.

19 BSIPRI Input priority. The priority of an input block that will be
accepted without triggering regulation if the TIP requests PTREGL
to set regulation on input priority.

28 BSPGWID'IH Default page width (in characters) for the device. See note 1.

29 BSPGLENGTH Default page length (in lines) for the device. See note 1.

30 BSCANCHAR Character used to cancel an input line from the terminal. See
note 2.

31 BS BS CHAR Character used for backspacing on the device. See note 2.

32 BSCNTRLCHAR Control character for the device. See note 2.

33 BSCRIDLES Carriage return idle count for the device. See note 2.

34 BSLFIDLES Line feed idle count for the device. See note 2.

35 BSCRCALC Flag to calculate the CR idle count for the device.

36 BSLFCALC Flag to calculate the LF idle count for the device.

37 BS APL APL mode flag. See note 2.

38 BSXPARENT Transparent text de limiting flag.

39 BSXCHM Most significant 4 bits of the transparent character count
(BSXCNT). See note 3.

40 BSXCHL Least significant 8 bits of the transparent character count
(BSXCNT). See note 3.

41 BSXCHAR Transparent text delimiting character. See note 3.

42 BS XTO Transparent message delimited by timeout flag. Value is 300 + 100 -ms. See note 3.

14-8 60474600 A

TABLE 14-3. TCB FIELD DESCRIPTOR TABLE (2 of 2)

FN Field Comments

43 BSINDEV Input device. See note 2.

44 BSOUTDEV Output device. See note 2.

45 BSECHOPLX Echoplex mode flag. See note 2.

46 BSPGWAIT Page Wait Mode flag. See note 2.

\ 47 BSPARITY Parity type selector.

48 BSABTLINE Abort output line character. See note 2.

49 BSUSRl User break character 1. See note 2.

so BSUSR2 User break character 2. See note 2.

51 BSCODE TIP code set. Not used if autorecognition is used. See TIP type
table in appendix E of SPRM. See note 4.

52 BSXCHRON Transparent message delimited by a delimiter character. See note
3.

ID TES:

1. For interactive devices, this value can be altered later by an !VT command. A message is sent
up line changing th is va 1 ue in CS, but not in the load file. At reload time, the value reverts to
this initialization value.

2. For interactive devices, this value can be altered later by an IVT command. The value is kept
locally in the TCB. Any action that causes release of the TCB loses the changed value.
Rec on figuration of the TCB from the host uses the initialization value.

3. For interactive devices, the character count, timeout flag or transparent delimiting character in
the TCB INT overlay can be changed by an upline IVT parameter change message from the interactive
device. All of the values revert to default value after the current transparent message
processed.

4. New codes will need to be defined for new TIP that

Figure 14-6 shows a sample of the LCB action table
initialization statements.

The MPEDIT statements for LCB action table ini­

tialization are included in the user supplied COMDECK
ZEXtip.

STATE PROGRAM ADDRESS LINKAGE

A TIP can be written with various state programs and
code conversion tables used dynamically, depending on the
situation at the terminal. If this is done, the TIP writer
must initialize globals with addresses, so the PASCAL
code can reference the content.

services a multi-code terminal group.

* * * USER TIP 1 LCB ACTION TABLE *
* *

UALlAT 1 .DFFN
UALlAT 1 .DFRKEY
UALlAT 1 .DFCKEY
UALlAT .DFPARAM

UALlAT 2 .DFFN
UALlAT 2 .DFRKEY
UALlAT 2 .DFCKEY
UALlAT 2 .DFPARAM

:= /BZOWHER;
:= D2VL;
:= D2VL;
:= 1:

:= /BZLNSPO;
:= D2VU;
:= D2VU;
:= 8:

is

UALlAT 3 .OFEND := $7FFF; END OF TABLE

60474600 A

Figure 14-6. MPEDIT Initialization Statements for LCB

Action Table (Sample)

14-9

BLOCK PROTOCOL ACKNOWLEDGMENT SCHEME A

The nine block types plus four special commands (block
type 4) are used to establish and maintain communication
between the host and the NPU. Tables A-1 and A-2 show
the block acknowledgment scheme. In general, the fol­
lowing applies:

• BACK blocks are never acknowledged

• MSG and BLK blocks are al ways BACKed

• CMD blocks to a TIP (CNtO) are BACKed

• CMD blocks (service messages) downline are
acknowledged by an upline service message reply

• BRK blocks downline cause an RST block to be
sent upline

•

•
•

BRK upline causes host to notify the application
program which sent the MSG, BLK, or CMD
block. Sender decides whether to retransmit block

INIT, RST, and STP downline are not acknowledged

STRT downline causes an RST block to be sent
up line.

• STP block upline is not acknowledged

• INIT upline causes an INIT downline

• STRT block upline causes an RST downline

TABLE A-1. NPU ACKNOWLEDGMENT OF DOWNLINE BLOCKS

Block Type Queued To Acknowledged By Remarks

BACK Not queued Not acknowledged BIP decrements outstanding block count and
releases the BACK block.

Bad block Not queued Not acknowledged BIP counts this as a bad address input block and
discards.

CMD with SVM Service module Response service message is the acknowledgment.
CN=O with a reply SM

CMD with TCB's output queue TIP (may be thru If application to TIP CMD, TIP calls PTBACK.
CNpO PTIVTCMD) with a TIP also generates input stopped CMD block

BACK block messages. If downline IVT CMD block, PTIVTCMD
sends BACK block if parameters successfully
changed, otherwise, BRK block is sent. BRK
block is sent for any unintelligible CMD block
received by TIP.

MSG/BLK TCB's output queue BIP TIP calls BIP when message is transmitted to
terminal, BIP sends BACK.

BRK TIP WLE to OPS-level BIP RST block BIP sends a RST block; sends WLE to TIP (allows
higher priority than data).

INIT Not queued Not acknowledged Processed by BIP which sets accept input (AI)
and accept output (AO) flags. BIP also sets
outstanding block limit (OBL) counter to 0.

RST Not queued Not acknowledged Processed by BIP which sets accept output (AO)
flag.

STRT Not queued BIP wirh RST block BIP sets accept input (AI) flag and sends the
reset block.

STOP TIP WLE to OPS-level Not acknowledged BIP clears accept input (AI) flag. However, WLE
allows processing the couununications line of
messages with higher priority than data.

60474600 A A-1

Block Types

BACK

CMD CN=O

CMD CNf:O

BRK

BLK or MSG

STRT

STP

A-2

TABLE A-2. ACKNOWLEDGMENT OF TIP-GENERATED UPLINE BLOCKS

Acknowledgment Required

No

No

Yes

Yes

Yes, BACK block

Yes

No

Remarks

BACK block is acknowledgment to previous MSG, CMD or BLK
block sent to host.

This is either an unsolicited SM that requires
specifications from host or is the solicited answer to
host's previous SM to the NPU (SVM processes).
Unsolicited SMs are repeated after a time interval until
the required action from the host is detected.

Host responds with a BACK block.

Host responds with a RST. MSG/BLK/CMD blocks not
acknowledged may be repeated.

Internal BID process handles the BACK block. TIP is not
notified.

Host replies with RST to start output.

Accept output flag is reset. TCB's output data queue is
purged.

60474600 A

Abort Line 12-11
Acknowledgment

Block 6-3
Block Protocol A-1
Command 7-2
Negative 7-2

Action Table 4-3
Initialization 14-3

Adapter
Communications Line 11-2
Multiplex Loop Interface 11-2

Adding A TIP to the Program Library 4-4
Address 6-3

LCB 10-3
Linkage, State Program 14-5

ASMUSER COMDECK 4-8
Arrays

MPEDIT 14-1
TIP Variable 4-5

Assembly Listings 2-2
Assignment

Buffer 10-1
Section 14-2

Autoinput 12-9, 12-12

I
Autolink

Application Directives 4-9
Application COMDECK Calls
Definition Directives 4-9
Module Directives 4-9

4-9

BACK - Block Acknowledgment 6-3
Backspace Processing 12-11
Bad Blocks Detected by NPU 6-4
Base System

Data Structure Overlays 4-3
Globals Changes 4-1
Interface 10-1

Basic Elements of the Multiplex Subsystem
Batch

Devices 12-1
Input 12-1
Output 12-1
Virtual Terminal (BVT) 12-1
Virtual Terminal Characteristics 12-1

BIP 7-1
BLK

Block of a Message 6-3
Break in Message Stream 6-3

Block
Acknowledgment 6-3
BVT 12-6
Bad 6-4
Break 6-3
CMD 12-10
Command 6-3
Data 12-10
Format 6-1
Header Format 6-2
Initialize Traffic 6-4
Message 6-3
Negative Acknowledgment 7-2
Paths Between NPU and Host 6-1
Protocol 3-2, 6-1

Acknowledgment Scheme A-1
Interface Package (BIP) 7-1

60474600 B

11-1

INDEX

Reset 6-4
STP and STRT 12-2
Size, Output 12-2
Start Message Traffic 6-4
Stop 6-4
Types 6-2, 6-3

Break
Message Stream 6-3
Negative Acknowledgment 7-2
User 12-11

Buffer
Assignment 10-1
Chained 5-16
Data 5-17
Dynamic 5-7
Management 10-1
Release 10-2

Chain 10-2
Single 10-2

Build Procedure 4-8
BVT 12-1

Blocks 12-6
Syntax 12-2, 12-3

Call to SVM to Generate a CE Error Message 8-5
Cancel Line 12-11
CCP

Interrupt Levels 9-2
Reference Manual 2-1

CE Error
File Entries 4-4
Message 8-5

Chained Buffers 5-16, 10-2
Change

Base System Globals 4-1
Terminal Status B-3
Terminal Status Call to SVM 8-5

Channel, Service 6-3
Character Processing, IVT 12-9
Characteristics, Batch Virtual Terminal 12-1
CLA 11-2
Clarifier, Data Block 12-10
Clock, One Second 10-2
CMD, Command Block 6-3, 12-10
CNCEFILE COMDECK 4-7
Code Translation Tables 5-7, 5-16
Codes, Terminal Control 12-10
CO MD ECK

Application Calls 4-9
ASMUSER 4-8
CNCEFILE 4-7
LCB 4-7
PASCAL Language 4-8
TCB 4-7
TPCB 4-7

Command
Acknowledgment 7-2
Block 6-3
Control 11-4
Disable Line 11-6, 11-8
Driver 11-3
Format

Disable Line 11-8
Input after Output 11-7
Terminate Input 11-8

I

Index-I

Terminate Output 11-8
IVT 9-3, 12-11
Input 11-5
Input After Output 11-6
Output 11-6
Terminate Input 11-6, 11-8
Terminate Output 11-6, 11-8

Command Packet 5-1, 5-8
General Format 11-3
Output 11-6

Commands
Downline 7-1
Upline 7-3

Common
Support Functions for all TIPs 1-1
TIP Subroutines 9-1

Communications Line Adapter (CLA) 11-2
I Compile Definition 4-8

Components, Hardware 11-2
Compression 12-2
Conditions, Entry 3-1
Configured

Terminal 8-2
TCB Worklist 8-3

Connection Number 6-3
Considerations

Design 3-1
Implementation 4-1

Console, Control 12-1
Constants

Definition 5-8
MPEDIT 14-1
System 5-18
TIP 4-4

Control Block
Line 5-1, 5-4, 10-3
MUX Line 5-7
Overlay, Text Processing 4-4
Terminal 5-1, 5-5
Text Processing 4-4, 5-7, 5-11
Worklist 4-1, 14-2

Control Codes, Terminal 12-10
Control Command 11-4
Control Console and Batch Devices 12-1
Control, Block Worklist 5-2
CYBER CROSS Reference Manuals 2-1
CYBER UPDATE Reference Manual 2-1

Data
Buffers 5-17
Downline 7-1
Format, Downline 12-2
Fragmenting 12-11
Structure Overlays, Base System 4-3
Structures 5-1
Transferring Downline 12-2
Transparent Input 12-12
Upline 7-3

Data Block Clarifier 12-10
I Declarations

I

TIP Forward 4-5
TIP Value 4-5

Definition
Autolink Directives 4-9
Compile 4-8
Field Descriptor Table 14-3
System Constant 5-8
System Type 5-8
System Variable 5-B
TIP Type Table 14-2
Terminal Charactertistics Table

Delete
I Terminal B-3

Index-2

14-4

Terminal Worklist 8-4
Design Considerations 3-1
Devices, Batch 12-1
Directives

Autolink Application 4-9
Autolink Application COMDECK 4-9
Autolink Definition 4-9
Autolink Module 4-9
MPEDIT 14-1

Disable Line 8-2
Command (NKDISL) 11-6
Command Format 11-8
Worklist 8-3

Downline
Data Format 12-2
Data and Commands 7-1
Data, Time of Transferring 12-2
IVT Transform 12-2
Message Flow 1-4
Message Processing 1-3
Text Processing

High-Speed Lines 13-1
Low/Medium-Speed Lines 13-1

Driver, Command 11-3
Dynamic Buffers 5-7

Enable Line 8-1
Worklist and Replies 8-2

Engineering File Work Area 5-8
Entry

CE Error File 4-4
Conditions 3-1
MUX-2 Level 3-1
OPS Level 3-1
Procedures, Reentrant Code 9-1
System Engineering File 5-29, 8-4
Worklist 5-2, 10-1

Error
Message 8-5
Processing 7-4, 8-4

Execution, TIP 10-1
Exit Procedures, Reentrant Code 9-1
Expansion, Global 4-6

Field Descriptor Table 4-3
Definition 14-3

Flow, Message 1-4, 1-6
Folding, Line 12-2
Format Effectors 12-9

IVT 12-2
Format

Block 6-1
Block Header 6-2
Command Packet 11-3
Control Command 11-4
Disable Line Command 11-8
Downline Data 12-2
Input Command 11-5
Input after Output Command 11-7

Forms Control Values for BVT Blocks 12-6
Fragmenting Data 12-11
Functions, Common Support for all TIPs 1-1

Global
Base System 4-1
Changes, User 4-2
Expansion for a New TIP 4-6
Initialization 4-6, 14-1
Modifications 4-4
Variables 3-1, 4-4

I

60474600 B

Handbook, NOS 1 Installation 2-1
Hardware

Components 11-2
Reference Manuals 2-2

Header Format Block 6-2
Higi-Speed Lines Downline Text Processing 13-1
Host/NPU Block Paths 6-1

Implementation Considerations 4-1
Information, Required 1-1
INIT - Initialize Traffic 6-4
Initialization

I Statements, LCB Action Table 14-5
Action Table 14-3

I

Global 4-6
LCB Field Description Table 14-3
PASCAL Globals 14-1
TCB 3-1
TCB Field Description Table 14-3
USER TIP 1 TCB Action Table 14-5

Initialize
TIP Type Table 14-3
Terminal Class Table 14-3
Traffic 6-4

Input
After Output Command (NKINOUT) 11-6, 11-7
Batch 12-1
Command (NKINPT) 11-5
Command Format 11-5
Data, Transparent 12-12
Regulation, PTREGL 9-1
State Programs 11-2

Installation Handbook, NOS 1 2-1
Interactive Virtual Terminal 12-2
Interface

Adapter, Multiplex Loop 11-2
Base System 10-1
Package, Block Protocol 7-1
Service Module 8-1
System 3-2
TIP 1-2, 11-2
Text Processing 13-1

Internal Input Point of Interface 7-4
Interrupt Levels, CCP 9-2
IVT

Character Processing 12-9
Command 12-11
Command Processing 9-3
Format Effectors 12-2
Processing, Upline 12-11
Syntax 12-7
Transform, Downline 12-2
Transforms, Upline 12-10

Laiguage
Macroassembly 4-8
Reference Manual, PASCAL 2-1
State Programming 2-1
Support Manuals 2-1

Last Block of a Message 6-3
LCB 5-1

Address 10-3
COMDECK 4-7
Field Description Table Initialization
Overlay 4-3

Level
MUX-2 11-2
OPS 11-3

Level 1, Multiplex 11-2
Level 2, MUX 11-3
Levels

Interrupt 9-2

60474600 B

14-3

Library, Program 4-4
Line

Abort 12-11
Adapter, Communications 11-2
Cancel 12-11
Control Block 5-1, 5-4
Control Block Address 10-3
Disable 8-2, 11-8
Disable Worklist 8-3
Enable 8-1
Enable Worklist and Replies 8-2
Folding and Compression 12-2
Timer 10-2

Linkage, State Program Address 14-5
Listings 2-2

Assembly 2-2
MPEDIT 2-2
MPLINK 2-2
Master Audit 2-2
Object Code 2-2
PASCAL 2-2
PASCAL X-Ref 2-2

Local Variables 3-1
Loop Multiplexers 11-2
Low-Speed Lines Downline Text Processing 13-1

Macroassembly Language Modifications 4-8
Management, Buffer 10-1
Manual

CCP Reference 2-1
CYBER CROSS 2-1
CYBER UPDATE 2-1
Hardware Reference 2-2
Language and Language Support 2-1
PASCAL Language Reference 2-1
State Programming Language 2-1

Master Audit Listing 2-2
Materials Needed for Writing a TIP 2-1
Medium-Speed Lines Downline Text Processing 13-1
Message

Block 6-3
CE Error 8-5
Flow, Simplified Downline 1-4
Flow, Simplified Upline 1-6
Processing, Downline 1-3
Processing, Upline 1-5
Sequencing 7-4
Stream, Break 6-3
Traffic, Stop 6-4

MLCB 5-7, 5-10
MLIA 11-2
Modifications

Global 4-4
Macroassembly Language 4-8
PASCAL 4-7

Module Directives, Autolink 4-9
Modules, TIP 1-3
MPEDIT

Arrays 14-1
Constants 14-1
Directives 14-1
Initialization, LCB Action Table 14-5
Initialization, TCB Action Table 14-5
Listing 2-2
Program Structure 14-1
Statements to Initialize TIP Type Table
Variables 14-1

MPLINK Listing 2-2
MSG - Message or Last Block of a Message
Multiplex

LCB (MLCB) 5-10
level 1 Input State Programs 11-2
Loop Interface Adapter (MLIA) 11-2

14-3

6-3

Index-3

I

I

I

I

I

Subsystem 11-1
Multiplexers, Loop 11-2
MUX Line Control Block (MLCB) 5-7
MUX-2 Level 11-3

Entry 3-1
Workcodes 11-2

Negative Acknowledgment of Blocks and Breaks 7-2
New TIP, Global Expansion 4-6
NKDISL 11-6
NKDOUT 11-6
NKENDIN 11-6
NKENDOUT 11-6
NKINOUT 11-6
NKINPT 11-5
Node 6-3
NOS 1 Installation Handbook 2-1
NPU Detected Bad Blocks 6-4
NPU/Host Block Paths 6-1

OPS Level 11-3
Entry 3-1
Workcodes 11-3

Object Code Listings 2-2
One Second Clock 10-2
Output

Batch 12-1
Block Size 12-2
Command (NKDOUT) 11-6
Command Packet 11-6
Start 7-3
Stop 7-2

Overlay
Base System Data 4-3
LCB 4-3
TCB 4-3
Text Processing Control Block

Overview, TIP Writing 1-1

Packet, Command 5-1, 5-B
Page

Turn Prompt 12-11
Wait 12-10

Paging 12-10
PASCAL

4-4

Global Initialization 14-1
Language COMDECK 4-8
Language Reference Manual 2-1
Listing 2-2
Modifications 4-7
X-Ref Listing 2-2

Paths Between NPU and Host 6-1
Point of Interface

Internal Input 7-4
Postinput 7-3
Postoutput 7-1
Preoutput 7-1

Port Table 5-7, 5-13
Postinput Point of Interface 7-3
Postoutput Point of Interface 7-1
Preoutput Point of Interface 7-1
Principal

Data Structures 5-1
Interfaces for a TIP 1-2

Procedures
Build 4-8
Reentrant Code 9-1

Processing
Backspace 12-11
Downline Message 1-3
Error 7-4, 8-4

Index-4

IVT Character 12-9
IVT Command 9-3
Text 5-11, 13-1
Upline IVT 12-11
Upline Message 1-5
Upline Text 1-5, 13-2

Programs
Input State 11-2
Library 4-4
MPEDIT 14-1
State 4-3, 14-5
Text Processing 13-1

Prompt, Page Turn 12-11
Protocol ·

Block 3-2, 6-1, A-1
Interface Package, Block 7-1
Terminal 2-2

PTREGL 9-1

Queue of Chained Buffers 5-16

RBF Rules 12-1
Reconfigure

TCB Worklist 8-3
Terminal 8-3

Reentrancy, TIP 3-2
Reentrant Code Entry and Exit Procedures 9-1
Reference Manual

CCP 2-1
CYBER CROSS 2-1
CYBER UPDATE 2-1
Hardware 2-2
PASCAL Language 2-1
State Programming Language 2-1

Regulation, Input 9-1
Release

Buffer 10-2
Chain of Buffers 10-2

Replies to Enable Line Worklist 8-2
Required Information 1-1
Reset Block 6-4
RST - Reset Block 6-4
Rules

RBF 12-1
Terminal Protocol 2-2

Sample
Block Paths Between NPU and Host 6-1
Call to SVM for CE Error Message 8-5
Code Translate Table 5-16
MPEDIT Initialization

LCB Action Table 14-5
TC Table 14-3
TIP Type Table 14-3
TCB/LCB Field Description Table 14-3

Sending A Worklist Entry 10-1
Sequencing, Message 7-4
Service Channel 6-3
Service Module

Interface 8-1
Tables 4-7

Services, Timing 10-2
Simplified

Downline Message Flow 1-4
Upline Message Flow 1-6

Single Buffer Release 10-2
Start

Message Traffic 6-4
Output 7-3

State Programming Language Reference Manual 2-1
State Programs 4-3

60474600 B

I

I

I Address Linkage 14-5
Input 11-2
Text Processing 13-1

Statements, MPEDIT, Initialize
TC Table 14-3
TIP Type Table 14-3

Statistics 9-4
Status

Change, Terminal 8-3
Terminal 8-5

Stop
Message Traffic 6-4
Output 7-2

STP
Block 12-2
Stop Message Traffic 6-4

Stream, Message 6-3
STRT

Block 12-2
Start Message Traffic 6-4

Structure
MPEDIT Program 14-1
Overlays, Base System Data 4-3

Structures, Data 5-1
Subroutines, Common TIP 9-1
Subsystem, Multiplex 11-1
Summary

Downline Message Processing 1-3
RBF Rules 12-1
Upline Message Processing 1-5

Support Functions Provided for all TIPs 1-1
Support Manuals, Languages 2-1
SVM 8-5

Call to Generate a CE Error Message 8-5
Syntax

BVT 12-2, 12-3
IVT 12-7

System Constants
Definitions 5-8
Used by the TIP 5-18

System Engineering File
Entries 8-4
Work Area 5-8
Word Area Entry 5-29

System Interfaces, Undocumented 3-2
System Types

Definitions 5-8
Used by the TIP 5-26

System Variables
Definitions 5-8
Used by the TIP 5-28

Table
Action 4-3, 14-3
Code Translation 5-7, 5-16
Field Descriptor 4-3, 14-3
LCB Action 14-5
LCB Field Description 14-3
Port 5-7, 5-13
Service Module 4-7
TCB Field Descriptor 14-3, 14-8
TIP Type 4-2, 5-7, 5-14, 14-2, 14-3
Terminal Characteristics 4-4, 5-7, 5-15, 14-4
Terminal Class 14-3
USER TIP 1 TCB Action 14-5

Tasks, TIP Writer's 1-2
TCB

Action Table 14-5
COMDECK 4-7
Configured Worklist 8-3
Field Descriptor Table 14-8

Initialization 14-3
Initialization 3-1

60474600 B

Overlay 4-3
Reconfigure Worklist 8-3

Terminal
Batch Virtual 12-1
Configure 8-2
Control Block 5-1, 5-5
Control Codes 12-10
Delete 8-3
Delete Worklist 8-4
Interacti ve Virtual 12-2
Protocol Rules 2-2
Reconfigure 8-3
Status Change 8-3
Status Change Call to SVM 8-5
Virtual 12-1

Terminal Characteristics Table 4-4, 5-7, 5-15
Definitions 14-4

Terminal Class Table 14-3
Terminate

Input Command (NKENDIN) 11-6
Input Command Format 11-8
Output Command (NKENDOUT) 11-6
Output Command Format 11-B

Text Processing
Control Block (TPCB) 5-7, 5-11
Control Block Overlay 4-4
Downline 13-1
High-Speed Lines 13-1
Interface 13-1
State Programs 13-1
Upline 1-5, 13-2

Time of Transferring Downline Data 12-2
Timer, Line 10-2
Timing Services 10-2
TIP

Adding to the Program Library 4-4
Common Support Functions 1-1
Constants 4-4
Defined Global Variables 4-4
Execution Started By A Worklist 10-1
Forward Declarations 4-5
Global Expansion 4-6
Interfaces 1-2, 11-2
Materials Needed for Writing 2-1
Modules 1-3
Reentrancy 3-2
Subroutines 9-1
System Constants 5-18
System Types 5-26
System Variables 5-28
Type Table 4-2, 5-7, 5-14, 14-2, 14-3
Type Table Definitions 14-2
Types 4-5
Value Declarations 4-5
Variable Arrays 4-5
Writer's Tasks 1-2
Writing Overview 1-1

TPCB 5-11
TPCB COMDECK 4-7
Traffic

Initialize 6-4
Message 6-4

Transferring Downline Data 12-2
Transforms

Downline IVT 12-2
Upline IVT 12-10
Virtual Terminal 12-1

Translation Tables 5-7, 5-16
Transparent Input Data 12-12
Turn Page Prompt 12-11
Type Definitions 5-8
Types

Block 6-2, 6-3
System 5-26
TIP 4-5

lndex-5

Undocumented System Interfaces 3-2
UPDATE Reference Manual 2-1
Upline

Commands 7-3
Data 7-3
IVT Processing 12-11
IVT Transforms 12-10
Message Flow 1-6
Message Processing 1-5
Text Processing 1-5, 13-2

User
Breaks 12-11
Global Changes 4-2

USER TIP 1 TCB Action Table 14-5

Values, Forms Control 12-6
Variable

Arrays, TIP 4-5
Definitions 5-8
Global 4-4
Local and Global 3-1
MPEDIT 14-1
System 5-28

Virtual Terminal

Index-6

Batch 12-1
Interactive 12-2
Transforms 12-1

Wait, Page 12-10
WLCB 4-1
Word Area Entry, System Engineering File 5-29
Work Area, System Engineering File 5-8
Workcodes

MUX-2 Level 11-2
OPS Level 11-3

Worklist 5-1, 10-1
Control Block (WLCB) 4-1, 5-2, 14-2
Delete Terminal 8-4
Disable Line 8-3
Enable Line 8-2
Entries 5-2
Entry 10-1
Reconfigure TCB 8-3
TCB Configured 8-3

Writing a TIP, Materials Needed 2-1

X-Ref Listing, PASCAL 2-2

60474600 A

w
z
::::;

0 z
0
-4_
I­
::>
u

<i
If)'
::) :
~:
~:
I- I

~: er:::,
Q..I

I
0- I
r-.....1
---1 ...,,.

>
UJ
0:::

COMMENT SHEET

MANUAL TITLE: CCP3 TIP Writer's Guide

PUBLICATION NO.: 60474600 REVISION: 8

CITY: _______________ STATE: ________ ZIP CODE:---------

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE TAPE

FOLD FOLD
---~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. Box 4380-P
Anaheim, California 92803

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I

---~ FOLD FOLD I
l
t
I
I
I
I
I
I
I
I
I

w z
=:;

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@:~
CONTl\.OL DATA COf\PORf\TION

	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	A-01
	A-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB
	xBack

