
CYBER CROSS SYSTEM
VERSION 1
MICRO ASSEMBLER
REFERENCE MANUAL

CONTROL DATA®
CYBER 170 SERIES

96836400

CONT"OL DATA
CORPOR<\TION

CYBER 70 SERIES MODELS 72, 73, 74
6000 SERIES COMPUTER SYSTEMS
CYBER 18 COMPUTER SYSTEMS
255X HOST COMMUNICATIONS PROCESSORS

REVISION
A

112/75)

B

(4/76)

c
(5/77)

Publication No.
96836400

© 1975, 1976. 1977

REVISION RECORD
DESCRIPTION

Manual released,

Manual revised to reflect NOS/BE 1.1 changes and manual title cha~e.

lVIanual revised to include PSR 45754. adding pseudo instructions LST and NLS. Pages revised: ii, iii. vii, 3-3.

3-5. 3-G. 5-4. A-1. B-1. B-2. B-3. E-3. comment sheet. Page added: 5-4.1/5-4. 2,

Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall

by Control Data Corporation La Jolla, California 92037
or use Comment Sheet in the back of
this manual. Printed in the United States of America

LIST OF EFFECTIVE PAGES

New features, as well as change~, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Cover --
Title Page -
ii c
iii c
v B
vii c
viii thru x B
1-1 B
2-1 B
2-2 B
3-1 B
3-2 B
3-3 c
3-4 B
3-5 c
3-6 c
3-7 B
4-1 B
5-1thru5-3 B
5-4 c
5-4.1/5-4.2 c
5-5 thru 5-12 B
6-1 thru 6-11 B
7-1thru7-9 B
8-1 B
8-2 B
9-1thru9-4 B
10-1 B
10-2 B
11-1thru11-4 B
Glossary-1 B
A-1 c

I !
I i

B-1 thru B-3 c
C-1 thru C-3 B
D-1 thru D-3 B
E-1 B
E-2 B
E-3 c
E-4 B
E-5 B
F-1 B
G-1 B
G-2 B
H-1 B
Index-1 thru

Index-3 B
Comment

Sheet c
Cover --

96836400 c iii

PREFACE

The CYBER Micro Assembler is a component of the CONTROL DATA® CYBER Cross System. The
Micro Assembler operates under control of the CYBER 170/70/6000 NOS or NOS/BE operating system.
It is intended to assemble micro code for the CYBER 18 computer series and the CDC 255x Series Host
Communications Processors. A separate version of the Micro Assembler is available for the CYBER 18
computer series.

This manual describes the general operation of the assembler and provides the necessary instructions
for preparing programs for assembly. No attempt is made here to provide a programmers guide and,
therefore, examples are limit.ad. It is assumed that the reader is already familiar with the operation
of the CYB ER 18 comput.er.

Information applicable to the Host Operating System can be found in the Literature Distribution Services
catalog. Additional information can be found in the following piblications:

96836400 B

Description

CYBER Cross System Version 1 Reference
Manual

Publication No.

96836000

CYBER Cross System Version 1 Macro Assembler 96836500
Reference Manual

CYBER Cross.System Version 1 Link Editor and 60471200
Library Maintenance Programs Reference
Manual

NOS/BE 1 Reference Manual 60493800

NOS 1 Reference Manual, Volume 1 60435400

NOS 1 Reference Manual, Volume 2 60445300

Micro-Programmable Computer Family 88973400
Micro Processor Reference Manual

1700 Enhanced Micro Processor with Core 88973500
Memory Reference Manual

This product is intended for use only as described
in this document. Control Otta cannot be responsible
for the proper functioning of undescribed features
or parameters.

v

CONTENTS

PREFACE v

1 INTRODUCTION 1-1

2 INSTRUCTION FORMAT 2-1

3 BASIC ELEMENTS 3-1

3.1 Symbols 3-1
3;2 Constants 3-2

3.2.1 Decimal Constants 3-2
3.2.2 Octal Constants 3-2
3.2.3 Hexadecimal Constants 3-2

3.3 Pseudo Instructions 3-3
3.4 Mnemonic Instructions 3-3

4 LOCATION FIELD 4-1

4.1 Q Field 4-1
4.2 Location Label Field 4-1

5 PSEUDO INSTRUCTIONS 5-1

~.1 Assembler Control Pseudo Instructions 5-1

s.1.1 ID ENT 5-1
5.1.2 CPR 5-1
5.1.3 END 5-2
5.1.4 FINIS 5-2

5.2 Li-sting Control Pseudo Instructions 5 ... 3

5.2.1 Comment Card 5-3
5.2.2 EJECT 5-3

5.2.3 SPACE 5-3

5.2.4 BOX 5-4

5.2.5 EBOX 5-4

5.2.6 LST 5-4 I 5.2.7 NLS 5-4.1

5.3 Memory. Management and Symbol Definition Pseudo Instructions 5-4.1

5.3.1 EQU 5-5

5.3.2 ORG 5-5

5.3.3 Use of Qualifier Field 5-6

5.3.4 ZMAP (Zero Map) 5-7

5.3.5 PMAP (Origin Map) 5-7

96836400 c vii

6

7

8

9

viii

5.4

5.5

5.6

Data Definition Pseudo Instructions

5.4.1
5.4.2
5.4.3

OCT
DEC
HEX

Programming Iiiformatlon Pseudo Instructions

5.5.1 Timing Information

Object Code Output Pseudo Instructions

5.6.1
5.6.2
5.6.3

RELO
ENT
DEAD

ALU AND A/Q SHIFT AND SCALE OPERATIONS

6.1

6.2
6.3

6.4

ALU Operations

6.1.1
6.1.2
6.1.3

Logical Operations
Arithmetic Operations
Double-Precision Arithmetic

Shift Operations
Scale Operations

6.3.1 Scale Examples

Selection of Operands for Use in F Field Operations

6.4.1
6.4.2
6.4.3
6.4.4

A- Field Operands
B- Field Operands
D-Field Operands
Examples of Use of F, A, B, and D Fields

INSTRUCTION ADDRESSING AND SEQUENCING

7.1 M Field
7.2 T Field
7.3 Assembler Processing of M and T

7.3.1 Sequential Addressing
7.3.2 Jump Addressing
7.3.3 Retum Addressing

7.4 M- and T-Field Examples

S FIELD (SPECIAL FIELD)

8.1
8.2

S-Field Mnemonics
Examples

C FIELD

9.1
9.2

Example of C-Field Coding
Multiply and Divide Examples

Fields

5-8

5-8
5-8
5-9

5-9

5-9

5-10

5-11
5-11
5-12

6-1

6-1

6-1
6-1
6-3

6-3
6-3

6-7

6-7

6-7
6-9
6-9

6-10

7-1

7-1
7-2
7-2

7-3
7-3
7-3

7-8

8-1

8-1
8-1

9-1

9-1
9-1

96836400 B

10 SELECTING NONCONFUCTING MNEMONICS 10-1

11 ASSEMBLY ERROR CODES 11-1

GLOSSARY Glossary-1

Appendix A EXECUTING THE CYBER 18 MICRO ASSEMBLER A-1

Appendix B OBJECT CODE OUTPUT FORMAT B-1

Appendix C MICRO-MEMORY CHECKSUM C-1

Appendix D SAMPLE LISTING INCLUDING ORIGIN MAP AND ZERO MAP D-1

Appendix E ASSEMBLER INSTALLATION E-1

Appendix F ASSEMBLER DEFAULT CODES F-1

Appendix G FORMAT OF MICRO-MEMORY IMAGE PAGES ON MASS STORAGE G-1

Appendix H ALLOCATION OF SCRATCH MASS MEMORY BY THE CYBER 18 VERSION H-1
OF THE ASSEMBLER

INDEX

2-1
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
7-5
8-1
9-1
9-2
9-3
10-1
11-1
B-1
C-1

96836400 B

FIGURES

MP Coding Form
An Example of a Logical Operation
An Example of an Overflow Operation
An Example of a Double-Precision Operation
An Example of a Shift Operation
An Example of Scale Operation
An Example of the Use of F, A, B, and D Fields
An Example of an Assembler-Generated Sequential Addressing
Further Examples of Sequential Addressing
An Example of Jump Addressing
An Example of Return Addressing
An Example of the Mand T Fields
An Example of the S-Field Coding
Example of C-Field Coding
Examples of Multiply Codes
Examples of Divide Codes
Examples of Conflicting Mnemonic Selection and Assembler Error Codes
Assembler Diagnostic Example
Deadstart Deck Example
Checksum Example

Index-1

2-2
6-2
6-4
6-5
6-6
6-8

6-11
7-4
7-5
7-6
7-7
7-9
8-2
9-2
9-3
9-4

10-2
11-4
B-3
C-3

ix

D-1 Sample listing D-2
E-1 MSOS IA>ad Map E-5

TABLES

2-1 Source statement Fields 2-1
3-1 Mnemonic Machine Instructions 3-3
10-1 Legal F, A, B, D, and S Combinations 10-1
11-1 Micro Assembler Error Codes 11-1
B-1 Deadstart Deck Format B-2

x 96836400B

INTRODUCTION 1

The assembler for the CYBER 18 computer series and CDC 255x processors provides the mnemonic
language necessary for the programmer to write a micro program. The assembler translates symbolic
source program instructions into object machine instructions and provides a listing of assembly results.

The characteristics of the assembler as written for the CYBER 170/70/6000 and CYBER 18 Series
computers are described. This assembler is based on the MICR0-71 assembler for the MPP computer.

Input to this assembler consists of one or more source programs followed by a FINIS card. Each pro­
gram begins with an !DENT card and is terminated with an END card. Each program is coded using
these basic elements:

Symbols
Constants
Pseudo instructions
Mnemonic instructions

The basic elements are punched into a card in specific fields, always left-justified within the field.

OJ.tput from the assembler consists of the following:

• Assembly listing including diagnostics

• Zero location map

• Origin location map

• Relocatable object image

• Deadstart object image

96836400 B 1-1

INSTRUCTION FORMAT

A source input statement to the assembler consists of eleven fields as shown in table 2-1 and as
illustrated in the coding form shown in figure 2-1. Of these fields, the Q (qualifier), location,
and comment fields are used to improve the documentation of the assembled micro instructions.
The eight fields used on the input form are in the same order that the programmer will tend to
use in preparing micro instructions for a micro program.

Information entered in each field (if anything is entered) is entered left-justified with a blank fill.
Information that is not entered left-justified is not processed correctly by the assembler.

TABLE 2-1. SOURCE STATEMENT FIELDS

FIELDS COLUMNS COMMENTS

Q 1 The qualifier field may specify whether the statement is a comment, an
(qualifier) upper instruction, or a lower instruction.

Location 2 through 9 The location field specifies the statement's symbolic address in this
program.

2

F
(function)

11 through 16
The function field specifies a logical, arithmetic, shift, or scale opera­
tion that is performed by the arithmetic and logic unit (ALU) on two
sources and placed in a destination.

A

B

D

s
(special)

c
(constant)

M
(mode)

T
(test)

Comment

96836400 B

1 7 through 22

23 through 28

29 through 34

35 through 40

41through49

50

51 through 55

56 through 80

Specifies the A source of the function

Specifies the B source of the function

Specifies the destination of the result of the ALU

The special field provides special instruction modes that either:

• Extend the A, B, and D fields, or

• Provide a special command which is performed in parallel
with the data transfers taking place in the ALU.

The constant field specifies another special command that is performed
independently of the rest of the instruction; it is executed in parallel
with the rest of the instruction.

The mode field specifies the addressing method for obtaining the next
instructfon pair: sequential, jump, or return.

The test field is the conditional branch of the instruction and specifies
which instruction (upper or lower) of the next instruction pair to execute.
The test and branch are executed after the rest of the instruction has
executed.

The comment field is used for remarks· that are printed as part of the
list output.

2-1

~i)
CONTR..OL DATA
CORJ'()Rl\TION

PROCRAI HUTllG
MICRO PROCESSOR CODING FORM

Figure 2-1. Micro Processor Coding Form

·----------­
NR ----------

BASIC ELEMENTS

The basic elements processed by the assembler are symbols, constants, pseudo instructions, and
mnemonic instructions.

3.1 SYMBOLS

A symbol is a one- to eight-character name that may be used as:

• A location label

• An alternate representation for a constant

3

A symbol is defined when it appears in the location field of the input form (columns 2 through 9). When
a symbol appears in the location field, it is used to name the location of a portion of the program or data
storage, or it is used in an EQU pseudo instruction to define the symbol as equivalent to the item defined
to the right of the EQU function code.

A symbol may be used in the location field (columns 2 through 9), the S field (columns 35 through 40),
or in the C field (columns 41 through 49) of the input form •.

A symbol is undefined when it has never appeared in the location field of the input form, or if it is
equated to an undefined symbol. The assembler identifies the use of undefined symbols on the assembly
listing.

A symbol consists of any combination of one to eight 026 keypunch characters (the 48-character set)
except the slash(/), the equate sign(=), the plus(+), the minus(-), or the asterisk(*). Several
examples of legal and illegal symbols are shown below. A symbol must contain a non-numeric charac­
ter to separate it from a constant.

Examples:

HCNYL
TAG
1234
*12.3
XYZ/3P
B=3

96836400 B

Legal
Legal
Illegal (will be interpreted as a constant)
Illegal (contains an asterisk)
Illegal (contains a slash)
Illegal (contains an equal sign)

3-1

3.2 CONST ANTS

Constants are used to represent numbers and may be used in the S and C fields of the input form.
Constants may also be used on the right side of the EQU pseudo instruction. The assembler recog­
nizes three \ypes of numeric constants: decimal, octal, and hexadecimal. The numeric constant is
represented by a string of digits within the number base of the constant. Decimal constants have no
suffix, octal constants have B .as a suffix~ and hexadecimal constants have X as a suffix. Constants
must be in the range of C through 4095.

3.2.1 DECIMAL CONSTANTS

A decimal.constant consists of a string of decimal digits. If the constant is larger than the field width
of the micro instruction, the high order bits will be discarded.

Examples:

999
98A
12.1

Legal
Illegal (contains an alphabetic character)
Illegal (contains a decimal Point)

3.2.2 OCTAl CONSTANTS

An octal constant consists of a string of octal digits that are suffixed with the letter B.

Examples:

123B
77B
019B

Legal
Legal
Dlegal (contains a non-octal digit)

3.2.3 HEXADECIMAL CONSTANTS

A hexadecimal constant consists of a string of hexadecimal digits and is suffixed with the letter X. The
hexadecimal digits are O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Examples:

3-2

77BX
lGX
ABC
77B

Legal
Illegal (contains a non-hexadecimal digit)
Illegal (has no X suffix)
Will be interpreted as an octal 77

96836400 B

3.3 PSEUDO INSTRUCTIONS

Pseudo instructions direct the assembler to perlorm specific functions. They do not generate micro
processor instructions. They define assembler control, listing control, data definition, and other
operations. Pseudo instructions are defined in section 5 of this manual.

3.4 MNEMONIC INSTRUCTIONS

Mnemonic instructions allow the programmer to use convenient names to specify the binary information
to be inserted in each field of the micro instruction. This list of mnemonic instructions recognized by
the assembler for each field of the instruction is given in table 3-1. Detailed usage of the mnemonic
instructions is given in section 6 of this manual.

TABLE 3-1. MNEMONIC MACHINE INSTRUCTIONS

T MNEMONIC MACHINE CODE BIT 24 T MNEMONIC MACHINE CODE BIT 24

*L 0 0 LQL 1 1

u 1 0 K7L 2 1

L 2 0 OVFL 3 1

KZU 3 0 BTU 4 1

NZU 4 0 LQ*L 5 1

INTU 5 0 BTU* 5 1

NU 6 0 COL 6 1

ZL 7 0 Z*L 7 1

96836400 c 3-3

I

TABLE 3-1. MNEMONIC MACHINE INSTRUCTIONS (Continued)

F CODE
ARITHMETIC HEXADECIMAL SHIFT AND HEXADECIMAL IMPLIED IMPLIED
& LOGICAL MACHINE SCALE MACffiNE A B
MNEMONIC CODE MNEMONIC CODE CODE CODE

-At 0 ALOE lE 2 0

-A-+-B1t 1 ALOE lE 2 0

-A+B 2 AQLOE lE 3 0

ONE 3 AQLOE lE 3 0

-A.-B'"1' 4 AROE lE 4 0

-B 5 AROE lE 4 0

-EOR 6 AQROE lE 5 0

A+-B 7 A QR OE lE 5 0

-A.B 8 ALIE lE 2 1

EOR 9 ARSE lE 4 1

B A AQRSE lE 5 1

A+B B ALEA lE 2 2

ZERO c AQLEA lE 3 2

A.-B D AREA lE 4 2

A.B E AQREA lE 5 2

A F SLOE lF 2 0

SUB 14 SLOE lF 2 0

SUBT 15 SD LOE IF 3 0

SUB- 16 SD LOE lF 3 0

SUB-C 16 SLlE IF 2 1

SUB-T 17 SLEA IF 2 2

SUB-TC 17 SD LEA lF 3 2

ADD 18

ADDT 19

ADD+ lA

ADD+T lB

tMinus (-) means bit-by-bit complement
1tPius (+) means inclusive OR

11t Period (•) means AND

3-4 96836400 B

TABI.E 3-1. MNEMONIC MACHINE INSTRUCTIONS (Continued)

HEXADECIMAL
A MACHINE IMPLIED B MACHINE IMPUED IMPLIED
MNEMONIC CODE s MNEMONIC CODE s c

F2 0 F2 0

p 1 ZERO 1 c
I 2 N 1 8

x 3 K 1 4

A 4 N,K 1 0

F 5 BG 2

Fl 6 x 3

XF 6 Q 4

MEM 7 F 5

SMl 0 7 Fl 6

Ml 1 7 XF 6

SM2 2 7 MEM 7

R2 2 7 CRTJ 1 8

M2 3 7 INRD 2 8

R3 3 7 INRS 3 8

A*RS 4 7 MMU 4 8

RS 5 7 MML 5 8

RA 5 7 INTA 6 8

FNl 5 7 FMTO 0 8 I
X* 6 7 FM Tl 1 8

GR 6 7 FMT2 2 8 I

R6 6 7 FMT3 3 8

Q* 7 7

R7 7 7

RQ 7 7

FN2 7 7 I

96836400 c 3-5

TABLE 3-1. MNEMONIC MACmNE INSTRUCTIONS (Continued)

HEXADECIMAL HEXADECIMAL
D MACIIlNE IMPLIED D MACmNE IMPLIED
MNEMONIC CODE s MNEMONIC CODE s

NOP 0 T5 5 B

p 1 X* 6 B

I 2 T6 6 B

Q 3 GR 6 B

Fl 4 Q* 7 B

A 5 T7 7 B

x 6
HEXADECIMAL

F 7 s MACmNE

AA* 5 1 MNEMONIC CODE

XX* 6 1 NOP 0

I XGR 6 1 DD 1

FQ* 7 1 RPT 2

IOD 0 9 READ 3

RA 0 9 WRITE 4

FNl 0 9 LSEA 5 I
IOA 1 9 F2WR 6

RQ 1 9 AP 7

FN2 1 9 BP 8 I
MMU 2 9 DP 9

MML 3 9 APDP A

Ml 4 9 DPP B

SMl 5 9 GATEI c
M2 6 9 HALT D

T3 6 9 RTJ E

SM2 7 9 CLRNP F

T2 7 9

A*LH 1 B

X*LH 2 B

Q*LH 3 B

T4 4 B

A* 5 B

3-6 96836400 c

TABLE 3-1. MNEMONIC MACIDNE INSTRUCTIONS (Continued)

HEXADECIMAL WIDTH OF HEXADECIMAL WIDTH OF
c MACfilNE BIT VARIABLE c MACfilNE BIT VARIABLE

MNEMONIC CODE 19 FOR C MNEMONIC CODE 19 FOR C

K= 0 0 8 RLOE 74 0

WRCH/ 20 0 2 RLOE 74 0

RMW 24 0 RLlE 75 0

WRHWO 25 0 RROE 76 0

WRHWl 2'1 0 RROE 76 0

WRPB 28 0 RRlE 77 0

GATEIXT 30 0 TMA/ 0 1 4

CLRK 40 0 TMAK/ 10 1 4

1>ECK 44 0 GITMAK/ 20 1 3

INCK 45 0 GITMAK/XT 2C 1

CLRN 48 0 TK/ 30 1 4

DECK 4C 0 TN/ 40 1 4

INCN 4D 0 SUB 50 1

SETF/ 50 0 4 SLB 60 1

CLRF/ 60 0 4 N= 0 1 8

RQLXN 70 0

RQROE 72 0

RQROE 72 0

RQRlE 73 0

A slash (I) or an equal sign (=) following the mnemonic implies a constant will follow the mnemonic
and must have a value between O and 2W-1 where W is the width of the variable for the C field;
e.g., SETF/12.

96836400 B 3-7

LOCATION FIELD

The location field is coded in columns 1 through 9 of the input coding form and consists of two
subfields:

• The Q (qualifier) field

• The location label field

4.1 Q FIELD

4

The Q field is column 1 of the input coding form. It is used to specify the nature of the rest of the
statement and to provide a fine grain location of the resulting micro instruction within a micro-memory
address. Th.is field may contain an asterisk (*), dollar sign ($), plus sign (+), minus sign (-) , or it
may be blank.

An asterisk or dollar sign specifies that the rest of the input source statement is a remark and that the
remaining 79 columns contain comments. This qualifier allows the remarks card to be printed on the
listing with no effect on the assembler object code output.

A plus in the Q field locates the resulting micro instruction as the upper instruction of a micro­
instruction pair.

A minus in the Q field locates the resulting micro instruction as the lower instruction of a micro­
instruction pair.

A blank in the Q field locates the resulting micro instruction in the next available half of a micro­
instruction pair.

4.2 LOCATION LABEL FIELD

The location label field is in columns 2 through 9 of the input coding form. This field may be left
blank or it may contain a symbol. H a symbol is included in the field, it must be entered left-justified
and follow the definition of a symbol.

The location label field with a symbol is used to assign a mnemonic address to the corresponding micro
instruction, or it may be used in the EQU pseudo instruction to assign a value to the symbol in the label
field.

A symbol in the label field of a micro instruction takes on the upper /lower quality of the actual micro
instruction location. Th.is quality is used in coding jumps in the C field of a micro instruction.

96836400 B 4-1

PSEUDO INSTRUCTIONS

Pseudo instructions are instructions to the assembler and normally do not result in any micro-code
outpit (the only exceptions are the HEX, DEC, and OCT pseudo instructions). A pseudo instruction
consists of the pseudo operation code, which is coded in the F field of the input form (columns 11
through 16), plus additional information coded in the other fields of the input form. The detailed field
11Sage is given under each pseudo instruction.

5.1 ASSEMBLER CONTROL PSEUDO INSTRUCTIONS

These pseudo instructions define and control the operation of the MP assembler, but do not generate
code in the object program.

5.1.1 IDENT

5

This pseudo instruction provides program identification and must be used as the first instruction of each
program. The text in columns 1 7 through 80 of the card with the IDENT operation code is listed as
the first line at the top of each page of the output listing. In addition, if the RELO pseudo instruction is
used in this same program, data from columns 17 through 22 will be used as the name in the NAM
block, and data in columns 23 through 66 will be used in the NAM block as ID information.

Example:

11 17

ID ENT CDC 844 DISK FILE CONTROLLER EMULATION FOR MP

5.1.2 CPR

This pseudo instruction causes a copyright notice to be printed as the second line of each page of the
listing. The four decimal digits contained in columns 17 through 20 of this pseudo instruction are
included in the notice.

96836400 B 5-1

The following example provides a listing outplt of

COPYRIGHT 1976 CONTROL DATA CORPORATION

as the second line of each page of listing.

(

5.1.3 END

The END pseudo instruction signals the end of .this program for assembly and· must be the last instruc­
tion in a program. It causes the assembler to proceed with the complete assembly process. On com­
pletion of the assembly process, the assembler is reset and continues reading input information to
obtain the next micro program of a batch to assemble. The total assembly process is completed on
detecting a FINIS pseudo instruction.

Example:

(

5.1.4 FINIS

The FINIS pseudo instruction signals the completion of a batch of assemblies by the assembler and
returns control to the host computer operating system.

Example:

(

5-2 96836400 B

5.2 LISTING CONTROL PSEUDO INSTRUCTIONS

The listing output for the assembler is controlled by the following pseudo instructions. These
pseudo instructions may appear anywhere in the source input between !DENT and END pseudo
instructions.

5.2.1 COMMENT CARD

Any source card with an asterisk (*) or a dollar sign ($) in column 1 is treated as a comment card.
All columns of the comment card are printed.

5.2.2 EJECT

The EJECT pseudo instruction causes the listing to eject to the top of the next page, and the next
instruction will be printed following the title line on the next page. The EJECT pseudo instruction card
is not printed.

Example:

(

5.2.3 SPACE

The SPACE pseudo instruction causes blank lines to be printed. The SPACE pseudo instruction is not
printed. The number.of blank lines to be listed is defined in the A field of the pseudo instruction. The
A field may contain a constant or a predefined symbol, as in the following example:

11

SPACE
SPACE

17

6
NUMBER

The first SPACE pseudo instruction would cause six blank lines to be printed. The second wrold cause
two lines to be printed if NUMBER had been defined to be 2.

96836400 B 5-3

5~2.4 IOX

This pseudo instruction is used in conjunction with EBOX to provide emphasis for comments in the
listing. This pseudo instruction is not printed; however, a card of asterisks will be listed. All suc­
ceeding cards will have asterisks in columns 1 and 80 to create comment cards. Only an EBOX pseudo
instruction following a BOX pseudo instruction will be executed. The listing will be spaced one line
before printing the first line of asterisks for the BOX command.

Example:

I

5.2.5 EBOX

NOTE

A BOX command will turn all succeeding micro instruc­
tions to comment cards until EBOX is encountered.

This pseudo instruction causes a card of asterisks to be listed rather than this pseudo instruction. In
addition, the automatic assignment of asterisks to columns 1 and 80 started by the BOX pseudo instruc­
tion will be terminated. One blank line will be listed after the line of asterisks.

Example:

(

5.2.6 LST

This pseudo instruction causes the source listing to be resumed after an NLS has suspended it.

Example:

(
5-4 96836400 c

5.2.7 NLS
This pseudo instruction causes the source listing t.o be suppressed.

Example:

(

5.3 MEMORY MANAGEMENT AND SYMBOL DEFINITION
PSEUDO INSTRUCTIONS

These pseudo instructions define symbols and provide for controlling the allocation of micro memory
for the object code output. In addition, two memory management maps can be produced that list zero
locations and locations set by ORG pseudo instructions.

Both the EQU and ORG pseudo instructions require an address expression that begins in card column 1 7
and may continue through column 80. The expressions are made up of operands separated by operators.
The operands may be constants or previously defined symbols. The operat.ors are+, -, *• and I (add,

96836400 c 5-4.1/5-4. 2 •

subtract, multiply, and divide). Expressions are evaluated from left to right; operators are executed
as they are decoded. Parentheses are not allowed to group operat.ors within an expression. The
expression terminates on the first blank character. The range of the value of the expression is from O
to FFF16• Any constant used in the expression also has the same range.

Example:

A+B-C*D/E

F

-1

A+-B-C*D/E

5.3.1 fQU

Legal (if A= 5, B = 2, C = 3, D = 4, E = 5, value is 3)

Legal

Illegal (out of range)

Illegal (two operators without an operand in between)

The EQU pseudo instruction assigns a value corresponding to the expression beginning in column 1 7 t.o
the symbol appearing in the location label field (columns 2 through 9). The symbol in the location field
takes on an upper quality if the expression has more than one term in it. If the expression consists only
of a single, defined symbol, the symbol in the location field takes on an upper or lower quality matching
that of the symbol in the A field. The use of the plus sign or the minus sign in column 1 of an EQU
card has no effect on the quality of the symbol defined by the equate operation.

The EQU processing takes place during pass 1 of the assembler, and any symbol appearing as an
operand in the expression must have appeared and been defined in a location field prior to its use in the
EQU pseudo instruction.

Example:

2 11 17

VALUE EQU 4 Set VALUE= 4

LABEL EQU VALUE* VALUE/2 Set LABEL= 8

LABEL.1 EQU LABEL+ 1 * 2 Set LABEL. 1 = 18

P.43X EQU VALUE/3 Set P.43X = 1

5.3.2 ORG

The ORG pseudo instruction is used to assign a starting value to the micro-memory allocation counter.
The micro-memory allocation counter provides for automatic allocation of micro instructions to suc­
cessive upper and lower locations, unless the allocation ls changed by the coding of a plus sign or minus
sign in column 1 of the micro-instruction input card. When ORG is encountered, all instructions and
data following the ORG pseudo instruction are assembled in consecutive upper and lower micro-memory
locations, starting with the upper location of the address specified by the expression beginning in
column 1 7. The ORG may be used as many times as desired. If use of the ORG pseudo instruction

96836400 B 5-5

causes some instruction to be assembled into a non-zero instruction (i. e. , assembly over an already
assembled location), an error is flagged and the number of the card that previously caused the location
to be assenibled is printed for cross-referen~e. The most recent instruction does, however, overlay
the previously assembled instruction.

The line of micro code, or constants, following the ORG instruction is assembled as an upper instruc­
tion unless the instruction assignment is overridden by a minus sign (-) in column 1 of the instruction
following the ORG pseudo instruction.

Examples:

11

ORG

ORG

ORG

5.3.3 US! OF QUALIFIER FIELD

17

100 +ABC

FF3X

TAG

Set program location counter to
upper of 150 decimal if ABC= 50

Set program location counter to
upper of FF316
Set program location counter to the
upper of location value TAG (pro­
vided TAG is defined)

The qualifier field of a micro-instruction input card (column 1) also controls the operation of the micro­
memory allocation counter. Although not strictly a pseudo instruction, it should be mentioned.

As each micro instruction is assembled, the micro-memory allocation counter is increased by a half
micro-memory word in preparation for the assignment of the next micro instruction or constant. The
qualifier field operates in adjusting the micro-memory allocation to meet the programmer's desires.

5.3.3.l PLUS QUALIFIER

If the micro-memory allocation counter has advanced to assign the current micro instruction to an
upper micro-memory location, the plus qualifier has no effect. If the micro-memory allocation
counter has advanced to assign the current micro instruction to a lower micro-memory location, that
location will be left zero and the micro-memory allocation counter will be advanced to the upper location
of the next micro-memory address.

5-6 96836400 B

S.3.3.2 MINUS QUALIFIER

If the micro-memory allocation counter has advanced to assign the current micro instruction to an
u.pper micro-memory location, the minus qualifier will cause that location to be left zero and will
advance the counter to assign the current micro instruction to the lower location of that micro-memory
address. If the micro-memory allocation counter has advanced to assign the current micro instruction
to a lower micro-memory location, the qualifier has no effect.

5.3.4 ZMAP (ZERO MAP)

This pseudo instruction directs the assembler to produce a map of all unused (zero) locations between O
and the highest address assembled. This pseudo instruction may appear anywhere within a program.
The map will be produced after the assembly listing is complete, and will be printed on the same device
used to print the assembly listing. The map incllldes an lipper /lower flag and an address for the first
zero location in a group. If there is more than one sequential zero,·. the number of zeros is printed
(in decimal). If the number of zeros is greater than nine, the number is also printed in hexadecimal.

Example:

(
5.3.5 PMAP (ORIGIN MAP)

The PMAP pseudo instruction may be used to produce an origin map. This pseudo instruction may
appear anywhere within a program. The map will be produced after the assembly listing (and the zero
map if it was requested), and will be printed on the same device. The maP'iS printed in ascending
address order and includes an upper /lower flag and an address for the first instruction following each
ORG pseudo instruction, as well as the card number of the instruction. The origin map is useful when
trying to find the code corresponding to particular asse.mbled locations in micro memory when the
program is large and many ORG pseudo instructions are llsed.

Example:

(

96836400 B 5-7

5.4 DATA DEFINlilON PSEUDO INSTRUCTIONS

Three data definition pseudo instructions are provided so the programmer can define 32-bit constants to
be inserted in the micro memory at the current location specified by the micro-memory allocation
counter. The pseudo commands are DEC, OCT, and HEX for decimal, octal, and hexadecimal constant
generation. The pseudo commands are coded in the F field of the coding form, and a string of digits
in the number base is included in columns 17 through 28. Comments may start in any column after 29.
The string of digits may include a minus sign(-). Embedded blanks are ignored. The string of digits
is converted in its number base to a 32-bit binary number. The result is complemented if a minus sign
exists in the string. A symbol may be assigned to the location label field to locate the constant, and the
qualifier field may have a plus, a minus, or a blank to· control the micro-memory allooation.

An error is indicated if the string of digits contains any digit not in the number base.

5.4.1 OCT

The OCT pseudo instruction causes the string of digits starting in column 17 to be converted from octal
representation to binary and stored at the current micro-memory location. A symbol in the location
label field is optional. The qualifier field may be used. Occurrence of any character other than 0
through 7, minus, or blank in the string will cause an error to be indicated.

Example:

5.4.2 DIC

11 17

OCT
OCT
OCT

123
-123
1-23

Create 00000000123 in the current location
Create 37777777654 in the current location
Create 37777777654 in the current location

The DEC pseudo instruction causes the string of decimal digits in columns 17 through 28 to be con­
verted from decimal representation to binary and stored as a 32-bit number in the current micro­
memory location. A symbol in the location label field is optional. The qualifier field may be used to
specify upper or lower micro-memory location. Occurrence of any character other than 0 through 9,
minus, or blank in the string will cause an error to be indicated.

Example:

(

5-8

DEC
DEC

Create OOOOOOOA (hex) in the current location
Create FFFFFFFS (hex) in the current location

96836400 B

5.A.3 HEX

The HEX pseudo instruction causes the string of hexadecimal digits in columns 1 7 through 28 to be
converted from hexadecimal to binary representation and stored as a 32-bit number in the current
micro-memory location. A symbol in the location label field is optional. The qualifier field may be
used to specify upper or lower micro-memory location. Occurrence of any character other than o
through 9, A through F, minus, or blank in the string will cause an error to be indicated.

Example:

11 17

HEX
HEX

DEAD
DEAD-

Create OOOODEAD (hex) in the current location
Create FFFF2152 (hex) in the current location

5.5 PROGRAMMING INFORMATION PSEUDO INSTRUCTIONS

The programming information pseudo instructions provide the programmer with additional information
in the outplt listing.

5.5.1 TIMING INFORMATION

The assembler analyzes each. micro instruction for its execution time in the variable cycle length of
the micro processor. This timing information is printed immediately preceding the first column of the
card listing on the assembler print.out. This timing is indicated as a blank for an A cycle, and by the
letters B, C, D, E, F, and G for the corresponding cycles. The timing of the instructions is dependent on
whether 1he micro processor is operating in ones or twos complement operation. The following pseudo
instructions allow the programmer t.o notify the assembler of 1he mode of operation for timing purposes.
If no timing pseudo instructions are used, the assembler assumes twos complement operation.

Jn addition, some instructions take a different amount of time to execute, depending on whether they
are executed on a 16- or 32-bit machine. When the assembler detects a difference, two timing digits
are printed on the outplt listing; the first is for a 16-bit machine, the second is for a 32-bit machine.

5.5.1.1 CMPl

The CMPl pseudo instruction causes the timing information following the pseudo instruction to be listed
for each instruction as if operating in the ones complement mode.

96836400 B 5-9

5.5.1.2 CMP2

The CMP2 pseudo instruction causes the timing information following the pseudo instruction to be listed
for each instruction as if operating in the twos complement mode.

5.6 OBJECT CODE OUTPUT PSEUDO INSTRUCTIONS

The assembler creates a complete image of micro memory in 1he host computer during the assembly
process. The assembler provides two formats for output of micro memory object code data:

• Relocatable binary card images

• Deadstart card images

In both cases, outpit will begin at micro-memory location 0 and continue through the address of the
highest micro instruction assembled.

The assembler may produce a checksum that is included in the micro-memory image itself. The
checksum feature allows the micro program to checksum itself to be sure that is was properly loaded
into micro memory. It also allows the program to be sure that it has not been altered in micro mem­
ory during operation. Caution must be exercised in using the checksum. feature if the program changes
micro memory during the course of normal operation, since the checksum generated by the assembler
cannot include the data modified in micro memory during program execution. The checksum is calcu­
lated by the assembler as follows:

N

CHKSUM -L~
K=l

Where: CHKSUM is the calculated 16-bit, twos complement checksum

N is twice the number of micro instructions assembled (micro instructions are 32
bits each, but the checksum is 16 bits long).

L indicates a twos complement sum

~ is a 16-bit data item that is half of a 32-bit micro instruction.

The checksum is generated after the END pseudo instruction is read from the input stream if the
checksum was requested on the object code ou~t pseudo request carci. The checksum is stored into
the lower 16 bits of the micro instruction address specified on the request card if that location is zero
after the END pseudo is read. If the location is not 0, the checksum is not stored and a diagnostic is
produced. The requested object code output is produced in any case.

5-10 96836400 B

5.6.1 RELO

This pseudo instruction may appear anywhere in the micro-program source. It causes the assembler
to produce relocatable binary output that is compatible wi1h the CYBER 18 loader. (See the MSOS
Reference Manual). The name of the program punched in the NAM output block is found in columns 17
through 22 of the !DENT card. In addition, program identification material is also punched in the NAM
block and found in columns 23 through 66 of the !DENT card. If no !DENT card exists, the program
is given a blank name.

Program-relocatable RBD blocks are punched until the entire micro memory image has been output.

An XFR block is punched as the last record of the relocatable output. The transfer address is defined
by an ENT pseudo instruction. A checksum may be requested by punching an address expression
starting in column 17 of the REIO card. Address expressions were described earlier in this section.
The value of the address expression is the micro memory location where the checksum will be stored.
The upper half of 1he location is used unless a minus is punched in column 1, in which case the lower
half is used. The specified address must be within the bounds of the micro program and it must
contain 0, or else a diagnostic results. If a diagnostic is printed, the object code output is produced,
but it contains no checksum.

Example:

1 17

(- 14X

The checksum will be stored in the lower half of micro-memory address 14 (hexadecimal).

5.6.2 ENT

This pseudo instruction defines an entry point name and a transfer address to be used when producing a
relocatable binary output image with the RELO pseudo instruction. The entry point and transfer name
begin in column 17 and have a maximum of six characters. The value of the symbol is automatically
set to zero, even though it need not be defined in the location field of a micro instruction. If the symbol
is defined in the program as a value other than zero, it is still considered to be zero for the purpose of
producing an entry point block and a transfer block as the result of using the RELO pseudo instruction.

96836400 B 5-11

EXample:

(111 ENT START

START is the entry point name associated with the micro program when the RELO pseudo instruction is
used •. The entry address is O.

5.6.3 DEAD

This pseudo instruction may appear anywhere in the micro-program source. It causes the assembler
to produce a set of SO-character card image records suitable for deadstarting into micro memory from
a device capable of reading the card images and transferring the data to the panel interface on the micro
processor. All control character strings necessary t.o cause the panel interface to load the data at
micro-memory location 0 are embedded in the micro-memory image data. To afford proper addressing
of micro memory, these control character strings also increment the N register of the micro processor
by one after each block of 256 32-bit micro instructions (one-half page) has been input.

The last card punched contains code that will cause the panel interface to clear status mode register 2
and thus terminate the deadstart operation.

The number of spaces between characters punched on the card image records may be specified on the
DEAD pseudo instruction card by an expression beginning in column 41. The value of the expression
indicates the number of spaces punched between characters; values of O through 3 are legal. If
column 41 is blank, a default of 1 is assumed. Blanks may be necessary, depending on the speed
and characteristics of the deadstart device.

A checksum may be requested by punching an address expression startiq?; in column 17 of the
DEAD card.

Example:

1

(-

A deadstart object deck will be output on the object output device. A checksum will be produced and
stored at the lower half of address 2610• Three spaces will be output between each nonblank character
punched.

5-12 96836400 B

ALU AND
A/Q SHIFT AND SCALE OPERATIONS

The F, A, B, D, and occasionally S fields of the micro instructions are used to specify operations on
the arithmetic and logical unit.· The F. field specifies the operation to be performed. In the case of
ALU operailons, the A field specifies one source of operands, the B field specifies the other source,
and the D field specifies the destination of the output of the ALU •

.;_;;
: .. :~·

In case ~ F' 'field ~pecifles a shift of the A or A/Q register, the A, B, and D fields are not filled in
on input since the assembler provides the correct values in these fields.

6.1 ALU OPERATIONS

6

The ALU operations are either logical or arithmetic, and combine two source inputs. The results is
routed to a single destination. The two inputs are called the A source and the B source. The A
source is referred to as the A input or select.or 1 (Sl) and the B source as the B input or selector 2
(82).

6.1.1 LOGICAL OPERATIONS

The logical operations perform bit-by-bit combinations of the A input and .B input for delivery to the
destination.

An example of the use of the logical operations is shown in figure 6-1.

6.1.2 ARITHMETIC OPERATIONS

The arithmetic operations are performed in ones or two complement arithmetic and can operate on
eith8r single-precision operands, using the main ALU; or double-prec_ision operands, using the double­
precision hardware. Each arUhm.eti.c operator placed in the F field has two optional modifiers that
can force a carry-input on the operation and capture the overflow condition in the status/mode register.
These modifiers are used t.o emulate multiple-precision arithmetic and to test equalities and
inequalities.

96836400 B 6-1

CARO VALUE T PIMA MtCRO-'IEM LOCATION F A 8 D s c "' COMllENf DUGNl)STICS

7 LOGICAL OP£RlftONS EXAMPLE

9 0 ... HHHH EOlt a Q • l•IQI EH llt
10 1 HO -.10£ Htl •• • • CO f; .. -tlT I
u 0 Ht ..au'"' •R Q Q CONPf.EllfNf Q

CARD VALUE T PIMA "ICRl•MEM LOCH!ON , A 8 D s c "' COllllENT OIAGNOSJtCS

Figure 6-1. An Example of a Logical Operation

'lbe overflow condition exists if the signs of the A source and B source are equal and the sign of the
result ls different (addition), or lf the signs of the A and B sources differ and the sign of the result ls
the same as the B source (subtraction).

An example of an overflow condition ls shown ln figure 6-2.

6.1.3 DOUILE-PRECISION ARITHMETIC

The double-precision (DP) arithmetic module provides the capability to perform arithmetic on operands
twice the length of the standard word size. The DP module contains three registers, A*, X*, and Q*,
and an ALU (called ALU*) that is distinct from the main ALU of the CYBER 18. The A* and X*
are unconditionally Input to the ALU*. The output of the ALU* can be shifted left or right and the output
goes to the A* register. The X* and Q* registers are loadable only; they are not destinations of the
ALU*. On Input to the A* register from the A source, data can be shifted right one-half word, end­
around. On output from the DP registers, data can be shifted right eight bits.

An example of the double-precision operation ls shown in figure 6-3.

6.2 SHIFT OPERATIONS

The shift operations in the F field specify a shift of the A register or the A/Q register. No shift is
·possible in the double-precision registers from this command. The N regi&ter is used in conjunction
with the shift operations; the number of bits shifted is determined by the count in N at the start of the
shift instruction. If the N register ls zero, no shift occurs. The N register can be set in the (same)
Instruction by placing N = value in the C field; the value set affects the following instruction. The
shift operations are various combinations of shift A or A/Q, left or right, end-around or end-off,
sign-extended or not sign-extended, and entry of a O or 1 in the vacated blt position. The A, B, and
D fields must be left blank.

An example of the shift operation ls shown ln figure 6-4.

6.3 SCALE OPERATIONS

Scale performs a shift operation that stops the shift when the two bits at the scale point in the A register
are not equal. The scale point is normally specified as being between bits O and 1 in the A register.

96836400 B 6-3

CPD VILUf: l •1111 MICQ-.. UCtl lltl F •· I D s c .. , DUGNOSUCS

• eWWLOlt llMlllLI

l ••• ,,.. ~·· • ... , . 0 a ..,... taffa Ill SIM •EG

• lfOI[fttl ClllWLIHI an ... SI• SHYS ., Ultft&. H IS "" ICHU CHUH

• • • s ltJIGNOSUCS

ftp" 6-2. An Exam_., of an Overftow Operation

0:
I

(JI

21

JD
31
Ji!

ltt

0 112 S61S IAOO 8

Ol2 1UD 20DO 8

D OIJ 7167 1100 9

A 8 D s c "' co•ENf
..
• DOUILE PltfCISION OPERATIONS USE THE •• RE,ISfER as THE •
• LOii O_,E~ EXTENSION OF fNE 9'E'ISTER IN THE A FIELD ANO USES •

THE x• REGISTER as TNE LOii ORllER EXTENSION OF THE REGISTER IN •
• THE B'FIELD. RESULTS 19'£ IUTGMITICILLY ROUTED llCK TO THE a• REG. •
••

• •
•

.
•

•

h8 SNt BG SHI 0 SET DOUBLE PltfCISION

ISS""E A• MIS THE L.Ollft HALF OF ONE NUftlU
ASSUME X• HAS THE. LOWER HALF rJF ANOTHER ltUl'l8ER
THEN THE FOLLOWING INST~UCTtON,

ADD A x •
GIYES THE RESULT THAT A9 A• a A9 A• • x,x•
HOWEVER THE FOLLOWING INSTRUCTION

aoo P Q F

GIYES THE RESULT THAT F,a• P,A• • a,x•
CARD VALUE T PINI NIC•O•NEM LOCATION F D s c "'

Figure 6-3. An Example of a Double-Precision Operation

DIAGNOSTICS

DIAGNOSTICS

Cltlll V.LUf: ' .. , ... MIC•t•MfM LOCHtOM , a I 0 s c "' COlllHI DllGNOSllCS

.... • S"I" £Hl9't.' t ASSUME IS 6 llllTllLLY

•• t tH JCat Hit f: AQUA LE'J SHIFT Al EMD-MtOUND ... • 6 "-ICES • ••• • ' ' .,"' 1 .. 11UCtt•• 11rCUYrs. •• • SNlrJ "8Sf SIGlllFICIMf I-BIT CMAalCJEI INTO Q artfll CLEaa111&1

IJt • 04IH Utt ZEH Q Z!ID I I.. SET N JO I
'2 l PCH Hff E: IQUI ,, • .._,er ttosY s1ua1r1cat1Y llf CW I INYO LSI IF Q lllO HU ILL OfNH
'H • ens"
'i6 I ... DIDI tUF tt•Jl ASSUME MAW! 16 Hf MP
IS1 t tH 18'1 Hll r. AMIE

c"m Vlt.Uf ' .. , ... MICll•MM LOCATION , a • 0 s c ., COllM!NJ DllGNOSftCS

Figure 6-4. An Example of a Shift Operation

The maximum number of bits to scale ls contained ln the N register. On completion of the scale, the
N register contains the original speclfled maxlmu.m minus the number of shifts necessary to position
the number so the bits at the scale point are unequal. The A, B, and D fields of the coding form should
be left blank so the assembler can insert the correct values.

6.3.1 SCALE EXAMPLES

The examples depleted ln figure 6-5 show a scale for a 16-blt machine and a 32-blt machine. In both
examples, assume that a number ls positioned in the A/Q registers and has to be scaled. In the ones
complement example, an end-around scale Is used to provide for the propagation of the correct value for
the least significant bits. In the twos complement example, a zero entry scale Is used.

6.4 SELECTION OF OPERANDS FOR USE IN F FIELD OPERATIONS

The F field specifies an operation to be performed on two inputs, the A source and the B source. 'lbe
result of the operation is stored in a location specified by the D field or destination. The mnemonic
code specifying an A source is placed in the A field of the coding form (columns 17 through 22). The
mnemonic code specifying the B source Is placed in the B field of the coding form (columns 23 through
28), and the mnemonic specifying the destination is placed in the D field of the coding form (columns
29 through 34).

In the object language output, the A, B, and D fields occupy three bits each and thus allow only for
specifying one of eight different sources and destinations. Since more than eight sources and destina­
tions may be specified in each field, the S field is used to provide alternate coding interpretation for
the 3-bit number in the A, B, and D fields. The CYBER 18 assembler accepts any of the specified
alternate mnemonics for the fields and provides an automatic S-field setting in the object code output.
The prime code set requires tb.e setting of the S field. The result of the use of the S field to specify
alternate decodings of the A, B, and D fields leads to a possible conflict of mnemonics. The
resolution of this conflict is described in section 10 of this manual. The assembler also provides
diagnostic messages if any conflict occurs on a programmer's input.

6.4.1 A-FIELD OPERANDS

The A field in columns 17 through 23 of the assembler coding form is used to record the mnemonic
to specify the A input to the ALU. 'Ibis operand may have up to two concurrent functional usages.
The A-field mnemonic may:

• Specify an operand that will be functionally combined with the B source

• Specify an operand that will be supplied as the output of selector 1 for transfer to some
register in the CYBER 18 system.

These uses of the A input will be covered in the examples in this section.

96836400 B 6-7

f
GD

ClltO VILU! T PIMA lllCll•lllll LOCUIDN f • a D s c "' CO*'ENJ DIAGNOSTICS .. • SCIL£ EXl .. LE OllES COlll't.llENT IRITNM!TIC 1• an •
H I ... DIDI lHI ... u Slf lllXI""" SHIP'T
iJ l ... FEDD 2111 £ sau• .. 12·--llR '1F SHlfTS ., • SCILE IXl .. LI f WOS COIPLlllENT HUNMHIC 11 an • ., I '" DIDI tUI Hf MXllUll SNIP'T

•• l .. , 1FCI Ziii E SOLO£ •"·-lllt '1F SHIP'TS

CHO VALUE ' tt/111 lllCRll•lllll LOCATION f • a D s c 111' COlllllNT Dll&NOSflC~

Flgure 6-5. An Example of Scale Operation

'lbere are two groups of A-Input mnemonics:

• A Inputs

• A' Inputs

'lbe A Inputs do not use the S field for specifying the coding, while the A' inputs require the use of a
special code In the S field. The programmer should not include an S-fleld code If he uses an A' code
because the assembler wlll choose the correct S field, even If a D' field ls also coded.

6.4.2 I-FIELD OPERANDS

'lbe B field In columns 23 through 28 cf the assembler coding form is used to record the mnemonic
to specify the B Input to the ALU. Depending on the mnemonic used, the B field has two functional
uses. It may:

• Specify an operand to be functionally combined with the A source

• Specify the referencing of an operand from the micro memory.

There are two groups of B-input mnemonics:

• B inputs

• B' Inputs

'Ibe B Inputs do not use the S field for specifying the coding, while the B' inputs require the use of a
code In the S field. The assembler provides the correct coding in the S field.

In the case of the B-input mnemonics of ZERO, N, K, and NK, two bits in the C field are used as
.extensions of the B-fleld mnemonic. The assembler provides for generating the correct bits in the C
field and will also allow coding other information in the C field provided the' information agrees with the
B-fleld required bits.

6.4.3 D-FIELD OPERANDS

'Ibe D field in columns 29 through 34 of the assembler coding form ls used to record the mnemonic to
specify the destination of information from the main organization of the CYBER 18. There are four
sources of information for deli very to the specified destination. These are:

• 'lbe optionally shifted output of the ALU. This shifting occurs in a shifting network
(selector 3) that provides the shift on the output of the ALU.

• 'lbe direct (unshiftable) output of the ALU

• 'lbe output of selector 1 (input to the selector ls specified by the A field)

• 'lbe output of selector 2 (input to the selector ls specified by the B field)

96836400 B 6-9

The destinations for information from the sources is indicated by the I>-field mnemonic.

'lbere are four groups of D-fleld destination mnemonics:

• D codes

• D' codes

e D" codes

• DD" codes

'lbe D codes do not use the S field for specifying the coding, while the rest of the codes require the use
of a code In the S field. The assembler provides the correct coding in the S field.

If an A' mnemonic is specified and a D' Is specified, the assembler provides the correct code in the
S field for this combination of alternate codes for the A and D fields.

'lbe programmer should not Include an S-fleld coding If the primed Inputs are selected. (The assembler
will flag an error.)

6.4.4 EXAMPLES Of USE Off, A, I, AND D fllLDS

The assembler output listing shown In figure 6-6 demonstrates basic use of the field& discussed In this
aectfon. In some cases, the S and C fields wlll also be used to demonstrate common programming
errors that are detected by the assembler.

6-10 96836400 B

~
I

CARO

71

7]

1S
76

78
79
80
111
112

ftlt
115

81
Sit
119
en

CJZ

9111
CIS

CARD

VALUE T P/"A

009

008

0 on
1 on
0 OU
1 ...
0 DOB

DOB

0 DOC
1 llC
0 HD
l OID

0 OIE
l OIE

VALUE T P/"A

"IC'tll-"f"

7125 0000 B

DEqE 2703 9

Fllttt 0096 B
7051 21Df B
r..u oooc B
tt7U 2110
5EDF Oft DD

7110 21DO 8

lj .. £6 0000
5CD6 2003
5615 OAOl B
SACJ7 2AOlt I)

701!0 0790 c
FlOD ZOOI B

NICRO-"E"

l OClT ION F A 0 s c "' co""ENT DIAGNOSTICS

F,a.a.o FIELD fU"Pt.f~

ADO Q •• UI • f Q)

A S"2 lC K•l •= CS/" REG 2)
ALSO SET THE K REGISTER TO CONTAIN THE Ntl"8ER l

ADO Fl Fl Fl K=6 CFU6 • Z•CFU3
ADD p 8G p u PsCPt•l FOR 16 BIT "p
ADO+ p ZE"O p P•CPt+l FOR 16 BIT ,.p
ONE A I I•IU F FIELD HAS NO EFF.

lC Q• Q9•Ut

AD'l A lC AA•
A•a I NIT UL A "' Ut • ()()

" Q x X•CQt
a.a lC IJG)(l X• BIT l OF Q
A•8 S"1 86 S"1 1 SETS S"1• BIT 2
a.-8 S"2 BG SM2 .. CLEAR SNZ IJIT ..
FOLLOWING CODE IS IN £RROR

AOD S"l CRTJ A A AND 8 BOTH USE S 16
ADO. A N A Kall C FIELD USED BY 8 FIELD 1

LOCATION F • B 0 s c '" CO"NENT OIAGNOSfICS

Figure 6-6. Example of the Use of F, A, B, and D Fields

INSTRUCTION ADDRESSING AND SEQUENCING 7

The micro memory of the CYBER 18 consists of up to 4096 micro memory locations where each location
is a 64-bit word that contains two micro instructions. The two micro instructions in a micro memory
location are referred to as the upper and the lower micro instructions, or a micro instruction pair.
Thus, a fully expanded micro memory has the capacity of storing 8192 micro instructions.

For addressing purposes, the 4096-location capacity of the micro memory is organized into 16 pages,
where each page has 256 locations (or micro instruction pairs) giving a capacity of 512 micro instruc­
tions per page.

Each micro instruction is provided with an M field (coded in column 50 of the assembler coding form)
that specifies the location of the next micro instruction pair from which the next micro instruction will
be selected. The selection of the desired micro instruction of the next pair is determined by the coding
in the T field (columns 51 through 55 of the assembler coding form).

The M field specifies the mode of obtaining the next instruction pair from micro memory; e.g., jump,
return, or sequential to the next micro instruction pair. The T field specifies an unconditional selec­
tion of an upper or lower instruction from the next pair, an unconditional selection of the lower of the
current micro instruction pair, or a conditional branch taking either the upper or the lower micro
instruction of the next pair, depending on the condition.

7 .1 M FIELD

The M field selects the next instruction pair and is coded in column 50 of the assembler input coding
form. The method of selection is described below:

Code

s

J

96836400 B

Operation

Sequential addressing. Select the next micro instruction pair as the next
sequential pair from the current pair. The next micro-instruction pair is
within the current page.

Jump addressing. Select the next instruction pair from the location specified
in the C field. If the jump address is in the current page, a within-page jump
will be performed and the S field is available for coding. If the jump address
is in another page, the micro assembler will use the S field to specify the
page in a page-jump instruction.

7-1

Code

R

blank

Operation

Return addressing. The micro memory address of the next instruction pair
ls ob~lned from the RTJ register. The top four bits specify the page and the
bottom eight bits specify the address within the page. The RTJ register must
have been previously set up by correct coding in the S field.

The CYBER 18 assembler assumes the S-mode addressing.

The code selected in the M field may be overridden in two cases:

• If the T field has the code *L, the lower micro instruction of the current micro instruction
pair ls selected regardless of the M-fleld code.

• If the C field contains the mnemonics specifying TMA/, TMAK/, GITMAK/, or
GITMAl(/XT, then the transform addreasing scheme replaces the M-fleld code.

7.2 T FIELD

The T field ls located In columns 51 through 55 of the assembler coding form. This field Is used to
select the upper or lower micro Instruction from the next instruction pair to execute. This selection
may be unconditional or may be conditioned on the ALU output, value of bits in registers, reject
conditions, etc.

When micro memory ls being read or written as an operand, the T field is used to address the refer­
enced micro-memory location and the upper instruction in the next sequential micro instruction pair is
always selected.

The T codes may be used on all micro Instructions. The T' codes are not available for use in micro
.Instructions that have a J in the M field (jump Instructions) or for micro Instructions that specify
N = value or K = value In the C field.

7.3 ASSEMBLER PROCESSING OF MANDT FIELDS

If the M and T fields are left blank, the assembler will assume sequential addressing mode and will
choose a T code ln the object code output to cause the next micro instruction to be taken as the next
sequential micro instruction.

Thus, if the current micro instruction is an upper, the *L code will be inserted for the T field. If
the current micro instruction ls a lower, a U code wlll be inserted in the T field.

If a J is coded fn the M field, the C field ls interpreted as the location to be jumped to. The C field
may contain a symbol or it may contain a constant. A symbol ls carried as a total micro-memory
location address and b2ls an upper or lower property as well. A constant is interpreted as an upper of
a total micro memory location address.

7-2 96836400 B

The assembler compares the page of the location to jump to with the page of the current micro
instruction. If the page numbers are the same, a within-page jump is coded, and the S field may be
used for additional instructions. If the pages are different, a page jump is coded, and the page number
ls extracted from the constant or symbol value and inserted in the S field for the object code. The
location within page ls coded in the C field of the object code. If the programmer has used a value in
the S field and a page jump ls coded, a diagnostic wlll be generated.

7.3.1 SEQUENTIAL ADDRESSING

Sequential addressing ls automatically generated by the assembler if the M and T fields are blank, or
the programmer may specify the addressing. The example in figure 7-1 shows assembly output of two
sequences of code to show two ways of specifying sequencing. The arrows in the diagram show the
program flow.

In figure 7-2, the instructions with NOP coded in the D field are not executed, but the other instructions
with coding are executed. The arrows again show the program flow. This example shows how it is
possible to interleave two paths of program flow through one set of micro memory locations. An alter­
nate program could use the locations specified by the NOP in the S field.

7.3.2 JUMP ADDRESSING

In jump addressing, if no T-field value ls specified, the assembler selects the T-field value to get to
the instruction addressed. However, the default T-fleld selection is suppressed if the programmer
specifies a va~ue in the T field.

The example in figure 7-3 shows four methods of arriving at a specific micro instruction.

7 .3.3 RETURN ADDRESSING

Return addressing causes control to be returned to the micro-instruction pair specified by the contents
of the RTJ register. The programmer must specify a value in the T field to get a correct return loca­
tion (upper or lower of the micro iMtruction pair). The RTJ register may be set any time by placing
the mnemonic RTJ in the S field of a micro instruction. The address stored into the RTJ register is
that of the next sequential micro-memory word following the instruction with RTJ in the S field. Both
page and address within a page are stored in the RTJ register.

The example in figure 7-4 shows use of return addressing. In this example, a jump is made to the
routine SUB which tests the value in the A register and returns to the lower of the following micrb­
instruction pair if the value is negative, and returns to the upper of the palr if the value in A is positive.

96836400 B 7-a

CARO VALUf. T P/Ml Mlr.Rll•M£M LDCUION , l a 0 s c "' COMMENJ DIAGNOSTIC~

'H ASSEMBLER GENERlfED SEQU£NflAL aoORESSING

ua HF t;f'lf oaao • l ::1 lit HF Slt£5 UH a Q
toi! llO t;EOll Hit l l(

Ult PttOGRAMMER SEQUENCE. NOT£ SlNF. MICRO CODE GElltltlTED.

106 • Ott Ul£ llOH l • • .;:i s•&.
107 1 Ott SltES lHO a Q :;:1 SU
111 I HZ UOB Olll l l(S•l.

CARD VALUE ft/Ml "ICltO•"EM LOClflON F • a D s c "' CONM£Nf DIAGNOSTICS

Figure 7-1. An Example of an Assembler-Generated Sequential Addressing

CARO YA\.UE T P/"A "!CR'>-NEN \.OCAUON F " 0 ~ c "' COMMENT OllGMOSTtCS

lll • FUIUH£1t SEQUENTIAL AOO~ESSING

llJ a op tJFlE noa A
SUJ lllt l OU HOI UH NOP

llli 0 Ollt 'iftES ftDOI • e Q A

] ll6 1 Olft 5101 2000 NOP
ll7 • on 5108 0000 lllOP
llA l OH 5EOIJ ZOOO A l(Q SU
111 0 016 'StlOE '.1000 ZEltO l(•\.

CARO YALU£ PIMA NtCR'J-NEN \.OCAT!ON F A B lJ s c NT COMMENT DIAGNOSTICS

Figure 7-2. Further Examples of Sequential Addressing

CARD VALUE T P/M& MICRa•"E" LOCATION F' • a 0 s c "' COMENT ouGNOsnn

122 .IU"P AOOllESSING

121t 1 016 9808 21n LOCA

~
tzt; 0 U1 911'1 Ht9 LOCH
Uft 1 117 111101 Htfl LOCA
127 0 OU ••n11 2019 lOC9 u
128 0 119 SIDI Hto •LOC& NOP
tn 1 on IJIDI 2000 -t.oca NOP

~
Utt 0 OU noe 1t01q LOCI
Ul l OU nos 1to1• t.OCH
U2 0 019 9108 lt0t9 LOC9
LU l 018 9801 lt019 1.0CA
Ult Diel LOCU EOU t.OCA
us on LOCH EQU 1.0CB

ClltO VILU£ f PIM& MICH•M£N LOCATION F' 8 0 s c "' COMlllNJ DIIGMOSrrn

Figure 7-3. An Example of Jump Addressing

CARO VILUE f PIMI IUCRt•MEM LDClflON F • a 0 ~ c "' CD•ElllT OtlGNOSTICS

UI • ltfTUltN IDIM£SSING NOC~

, .. , • UC 9108 2E51 • 91!fJ sua J , .. , l OlC 'HIM 2111
lltZ • ltD 'HDI IHI • ... KTUltM LOCATION ""9!1t
lltl l 110 '901 2111 ... KTU..N LOCUION LOMEI , • ltE SFll CHI C sua I • ... SNU SUMDUTINE f!ST CU
llolJ 0 llF' UDI • "L 91!ETU91!N LCNE"CA-t
llt6 l llF UOI HH IN KTURN U~RCA•I

CAP.D VALUE T P/MI NICRO•NEM LOCAUON F • a D ~ c "' CDNMlllT DIAGNOSTICS

Figure 7-4. An Example of Return Addressing

7.4 M- AND T-FIELD EXAMPLES

An example of the M- and T-fleld use ts shown In figure 7-5.

SUbtract the X register from the P register: If the results are negative. add (X) to (A) and place the
results In the X register. If the results are positive. add (X) to (X) and place the results fn the X
register.

7-8 96836400 B

CHO V•LUE T t'/"A NICRll•ME" LOCITION , 9 0 s c "' CO""fNT DUGNOSTICS

llt9 • l't UD 1' FtELD !UIPLE

tsl 0 020 6H9 CIOO I) • SUll .. • NOP SllU
nz 0 on 7l1E 2111 9 • ADD A • • SU
151 l 021 710£ Ziii 9 - ADO JC • • t51t • 122 '908 IHI • ... NEXT tNSTltUCTtON

CARD VALUE T PIMA MIC1'1·"EM LOCATION , A 9 D s c "' COM!NT DIAGNOSTICS

Figure 7-5. An Example of the Mand T Fields

S FIELD (SPECIAL FIELD) 8

'Ibe special field (S field) ls coded In columns 35 through 40 of the assembly coding form. If this field
ls not used by .the assembler to specify alternate translations for the A, B, or D fields, it may be used
by the programmer to specify a special instruction, It may contain a constant, or it may contain a
programmer-defined symbol.

8.1 $-FIELD MNEMONICS

'lbe mnemonics specifying altemate A-, B-, or D-fleld codings are not normally used by the program­
mer and are automatically generated as required by the assembler.

8.2 EXAMPLES

The code shown in figure 8-1 counts the number of 1 bits in the register. If a 16-bit micro processor
is used, with twos complement arithmetic, the t.otal of the number of 1 bits ends in the Q register.

The code at HERE adds X to itself to get a left shift of 1, and the COL in the T field checks for carry­
out of the high order bit if it was a 1. If there ls no carry-out, the upper instruction at HERE ls
repeated. If there ls a carry-out, the lower instruction ls performed, which adds one to the A register
and jumps back to HERE. Each execution of the instruction at HERE counts N down by one. When N

· ls counted down to zero, control goes to the next sequential upper instruction since a twos complement
adder ls assumed that would leave all zeros in the X register after the 16 addltlons of X to itself.

96836400 B 8-1

Cl RD VALUE T P/MI MICRO-MEM LOCUION , I I D s c .. ,. COllll!MT DUGNOSJIC~

ts7 • S FIELD ltEPElf £XI'""-£

1'59 1 12! DIDI 31111 ZHO Q ... u CLEAR Q, SET ltPf CCIUltf
161 I IH 1J-.01J Hlf • IG • 1' SU t '° •
1'1 a u .. 110£ C211 P tHE~E 100 • • x ltPI SCCll. l!ST llSI Of' I
1ft2 t "" 1121 212 .. II - IDD I Q Q HEllE J COUNf • t en
1H I 12-IJ IJIDI IHI NOP llEXJ lllSfltUCIIOM

CHO VlLUE ' It/Ill 111Cltl•tl£11 t.OCHION , • • D $ c "' c , tl•lllCISllCS

Figure 8-1. An Example of the S-Field Coding

C FIELD 9

The C field (columns 41 through 49 of the assembler coding form) can be used to specify the next
Instruction pair (If the M field ls J), as a constant for setting the K or N register, as a constant for
specifying the bit address for the bit generator, or It may be interpreted as additional special instructions
similar to the S field.

9.1 EXAMPLE OF C-FIELD CODING

If the M field ls coded with a J, the C field is used as the address of the micro-memory location to
jump to. The examples In figure 9-1 show legal and illegal use of the S field in conjunction with the
C field.

9.2 MULTIPLY AND DIVIDE EXAMPLES

Examples of multiply and divide codes implemented in a 16-bit micro processor using ones complement
arithmetic are shown in figures 9-2 and 9-3.

96836400 B 9-1

CARD VALUE T PIMA MICRO-MM LOClTIOll , A I D s c "' COMMENT DllGllOSTICS

Ht • SIMPLH

161 210 OltG HIX
169 I Zll 9FlE UH • A x L•I LGCNI .. .IUtlP IN 81NK
111. 1 Ill 9181 , ... UClll " J4lfl# OTHO 11111
171 I Ill VIE Hit a a I Liil LGCllZ .. .,.. IJHl't lllllC CS EMIRI • 112 1 Zit 411GI 2111 LGClll HllNII' TMIS HNI
us I 112 "°' , JU ,.,,. TO I ftHE •
1711 1 211 9101 HH JU JU• TO PASE • IS E••t • 17' ... OltG STlH ftHE •
11' I ... 1101 IHI LOCNZ •• lllST.UCTION Ill PASE 2

ClllO VALUE T PIMA MtCRl-MEM LOCATION , a I D s c "' C-NT Dll5llOSTtCS

Figure 9-1. Example of C-Field Coding

co
I
w

CARD

178
17CJ
180
111
112
183

Ult
115
116
187
1H
1811
190
191
lCJZ
1CJJ
lCJtt
1CJ5
1CJ6
1CJ7

CARO

VUUE T PINA

030
• na
0 031
1 031
0 032
1 012
I an
I Utt
1 on
0 ns
0 036
1 036
0 GJ7

VALUE T PIMA

NICRG-MEM LOCATION F A B 0 s c "' CO•ENT DIAGNOSTICS

••
• MULTIPLY A BY X PRODUCT fO AQ H an MP
• MULTIPLY NORKS ON POSITIVE NUN9ERS SO PROVIDE LEAD IN TO •
• CALCULATE SIGN OF NEGATIVE INPUTS AND CORRECT AT END •
• CODE IS NRITTEN FOlll ONES COMPLEMENT I•UT NUN8£RS •
••

CttPl INDICATE ONES COMPLEMENT
DRG JOX

DF18 CHI C NUU A A Q K=I SNU CHECK SIGN
ttAEl 00tt5 • -B Q Q INCK COMP Q FOR POSITIVE
5EDI COii C A)(SNU CHECK SIGN OF X
UDE IUtt • -A)()(DECK GET POS X AND SIGN IN K
DIDO 300F ZERO A N•15 CLEAR A SET TINES COUNT
5101 HF2 RQlfOE SL!&. MAKE FIRST STEP TEST
!FlD 22F2 • A • A RPT RQROE LQl. MIL ITERATION LOOP
7110 22F2 C - ADD A IC A RPf RQROE LI&. llUL ITERATION LOOP
tt11D 6111 -A • • SKZU EXIT DN POS SIGN TEST RE
IUD 2037 • -A A A EXIT .J POS RESULT REC°"P A
uu 21137 -B Q Q EXIT .J NE6 RES COltP Q
51lDI OOH EXIT NEXT INSJ1tUCTION

MICR8-MEM LOCATION F B D s c MT CO""ENT DIIGNOSTtCS

Figure 9-2. Examples of Multiply Codes

co
I

ti:-.

CARD VALUE T P1"A MICRO•ME" LOCATION F A 8 D s c MT co""ENT DIAGNOSTICS

141q ••
Ziii • DIVIDE AQ 8T CONTENTS OF x. USES ONES COMPLEMENT REP •
201 • THIS ROUTINE MAIC£S OVERFLOW TEST ANO SETS BIT IN S"l IF PRESENT •
202 • F REGISTER IS USED TO CALCULATE SIGN f1F QUOTIENT •
2n ..
201t l U7 SFlF CHO C DIVIDE A A F SNU CHECK SIGH
2011j I ua '110 2000 • •A A A SU NEG CO• A
286 l 131 '801 , NOP SL Pos. LEAVE ALONE
207 a n• ltAEJ IHI •8 Q Q NEG COMP Q
201 l 139 D2EF HID EM x , F NaU QUOT SIGN IN F• SET CTR
289 D OJA SEDA CHI C A x I CLRFlt SNU SAVE X IN I• SET 2S COMP

211 Cflt2 INDICATE TWOS CO .. L!llENT

2U l IJA ltlDE 2111 •A x x GET POSITIVE x

215 • CHECIC FOR OVERFLOW

217 ' OH 5Ft0 1171 A A A RQLXN SHIFT AQ LEFT t ·
218 t na HID CIFI D SUB A l(A RQLXN SCOL TEST DIVIOE OVERFLOW
2n 0 UC 711D con D + ADO A x A "QLXN SNU
2211 l UC 5615 2AOE 8 • A+B SMt llG S"l lit SET BIT lit DIVIDE OVt:RFLO

22! • DIVIDE ITERATION LOOP

221t 0 030 7t1D C270 D + ADO A x A RPT RQlXN NU
225 l no 6910 C270 D • sua A x A RPY RQLXN NU

227 END CORRECTION A IS LEFT ANO !UY "E TO MANY SUBTRACTS

229 0 OlE 7110 2000 B • AOD A x A SU
no 1 DSE 5Fl0 lt876 A A A ltROE SL
231 0 OJF 7110 0000 8 • ADO A x A

233 CHECK SIGN OF QUOTIENT

235 t UF 5Fsa cast c A F SET Fil SNU SET ONES CO"P

237 CMPl INDICATE ONES CO"'LEMENT

239 OltO ltAE3 0080 • •8 Q Q COMP QUO TtENT

21tl CHECK SIGN OF REMAINDER ANO CORRECT A

21tJ l Oltl 5218 CHO C • EOR I F SNU CHECK REM SIGN
21tlt 0 Gitt IUD 20J7 • •A A A EXIT J DONE
21t5 1 Oltl 9108 20J7 EXIT J DONE NO C•UNGE

CARO VALUE T P1"A MICRl•'IE" LOCATION F A 8 D s c MT CDNNENT DIAGNOSTICS
co
~
00 co
~
c::>
c::>
t;g

Figure 9-3. Examples of Divide Codes

SELECTING NONCONFLICTING MNEMONICS 10

The proper selection of a mnemonic for a field depends on the mnemonics used in the other fields (table
10-1 lists permissible combinations of codes). This is an inherent characteristic of 1he CYBER 18 and
is a result of maximizing the information content in the instruction repertoire. This means that the
most frequently used operands require less space than the less frequently used operands.

TABLE 10-1. LEGAL F, A, B, D, ANDS COMBINATIONS

F FIELD A FIELD B FIELD D FIELD S FIELD

Arithmetic or logical A B D Unused

A' B D AP

A B' D BP

A B D' DP

A' B D' APDP

A B D" DPP

A B DD DD

Shifts or scale b b b Unused

b b NOP Unused

Where: b is a blank field

A, A', B, B', D, D', DD are types of A-, B-, and D-field codes

AP, BP, DP, APDP, DPP, DD are values supplied by the assembler

Each instruction also consists of a maximum of four independent and concurrently executed functional
operations; this further reduces the effective instruction execution time. Their associated fields are
also dual, in the sense that they can be used to specify less frequently used operands for other fields.

The instructions are further enhanced through a merging of firmware/hardware concepts in the trans­
form boards. The transforms provide functions that would normally require several instructions
(without a transform). A transform is essentially the mapping of bits within the CYBER 18 architecture
including any desired constants to the MIR, MA, N, and K registers. The transform resultant can
modify both the state of the registers and 1he instruction sequencing. The assembler flags ambiguously
coded instructions with an assembly error message. See figure 10-1.

96836400 B 10-1

CARD VALUE T PIMA MICRl-MEM LOCATION F A 8 D s c "' CDllllENT

21t7
21tll
21t9
no
Hl

252
253
25ft
255
256
H7
259
ZS9
260

261
262
261

261t
265
266
267

269
269
270

271
272

2U
271t
275

276
271
2711

• tlt2 711t2 IDBI c
l Olt2 711t2 2'PIO 0
0 llt3 7tlt2 019t D
1 Oltl 5FIE 2119 A
0 '!iFOE OIOD 8
1 '" 5f1C 2'100

• Olt5 snc Hoo
1 SCH 2l01 8
0 SCH IHI II

t ... , DIDI J021
I Olt7 0808 1121
l , .. , 5801 HIO
0 Gltll .. OI lt01t7

t Oltl SltCI 2018
I 51tC8 OHi

1 Olt'I 7C90 2000 E
0 OltA 7C91 DODD ~

13 Ll~ES CONTAIN EqRORS

CARD VALUE T P'HA HICR~-MEH

..
~ EXAMPLES OF COllFUCTUG MNEMONIC SELECTION AND ASS!MIL£R ERRDlt CODES •
• BLAN~ FIELDS AltE AYllLllLE FOR USAGE •
• A I D AND S FIELD CONFLICTS • ..

ADD p F2 I HALT LEHL
ADD Mt F2 I HALT ILLEGAL
ADO 1'1 F2 I LEGAL
• • CttTJ IC LEGAL
A A CRTJ IC LIEl ILLEGAL

• • x l'1 LEGAL
A A IC Nl READ ILLEGAL
a.a SMl Q SHI LEGAL
a.a S"t Q SNt RTJ ILLEGAL

..
• T AND C FIELD CO"FLICTS •
••

N=ll u LEGAL
N=33 LQL ILLEGAL

U81 256 LQL LEGAL
LAIH JLQL ILLEGAL

••
• 8 AND C FIELD CONFLICTS • ••

N J1 ILLEGAL
N 108 LEGAL

••
• SHIFT FUNCTION AND A OR B FIELD CONFLICT • ..

ALEA
ALEA
ENO

LOCATION F A

Q

B 0 c HT

ILLEGAL
ILLEGAL

CO""ENT

Figure 10-1. Examples of Conflicting Mnemonic Selection and Assembler Error Codes

11

11

17

17

lit

l9

1

1
l

DUGNOSYICS

DU GNOSTIC'S

ASSEMBLY ERROR CODES 11

The assembler prints numeric error codes to flag and diagno~e incorrect assembly statements. When a
statement ls in error, one to four error codes are listed to the right of the statement to describe the
problem. Table 11-1 contains a list of the Micro Assembler error codes. Figure 11-1 is an example
of a llstlng containing error codes.

NUMERIC
CODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

96836400 B

TABLE 11-1. MICRO ASSEMBLER ERROR CODES

MEANING OR CAUSE

The A code is set by a shift operation in F.

The A code is undefined.

The B code is set by a shift operation in F.

The B code given is undefined.

A C- and M-field conflict occurred.

Cannot reach page; the S code is set and cannot be used to reach the page
specified in the C field for the jump comm.and,

C- and B-field conflict.

The C code given is undefined.

A multiply-defined label was encountered.

Not used.

The · D code ls 8etting an S code in conflict with A or B.

The D code ls undefined.

The EQU pseudo instruction needs a symbol in the label field.

The F code is undefined.

The M code is undefined.

A different S code is set by the A and B fields.

The S code is already set by A, B, or D.

The S code is undefined.

An illegal T code was given for a jump, N=, or K=.

A T code is required but is not specified; it is assumed to be U.

11-1

NUMERIC
CODE

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

·as

11-2

TABLE 11-1. MICRO ASSEMBLER ERROR CODES (Continued)

MEANING OR CAUSE

The T code is undefined.

An undefined symbol was encountered; the field containing the symbol is
specified in the next integer.

There is an illepl character in the HEX, DEC, or OCT constant.

Not used

The numeric value is not in the range (0 - $FFF)

The micro-memory location ts greater than 4, 095.

The first character on the card ts not *, $, +, -, or blank.

The shift code in the C field ts illegal when the S field contains the L8EA
instruction.

The D field must be an NOP if:

1. The F field ls a shift or scale, or
2. The B field is MMU or MML.

KZU in the T field is illegal if the C field ls INCK.

NZU in the T field is illegal if the C field is INCN.

Macro-memory read in the C or S fields is illegal if the instruction time
is E or F.

The A field may not be blank on an EQU card. The symbol in the L field is
undefined.

This location has already been used. The next inte·ger specifies the
numbering of the card that caused the location to be previously assembled.
This instruction overrides the one previously assembled.

Not used

The address is out of range (less than zero or greater than 4, 095).

A symbol in an address expression is longer than eight characters.

The number of spaces requested between characters on the dead.start object
cards is less than zero or greater than three. If this error occurs, one
space will be punched between characters.

96836400 B

NUMERIC
CODE

39

TABLE 11-1. MICRO ASSEMBLER ERROR CODES (Continued)

MEANING OR CAUSE

An error has caused the label in columns 2 through 9 of an EQU card
not to be defined. The error may be one of the following:

• Use of a symbol that has not been previously defined in the
EQU expression.

• Use of a symbol that is larger than eight characters in the
EQU expression.

• The value of the EQU expression is greater than 4, 095 or
less than zero.

I

In addition to the error codes in figure 11-1, there are four other conditions:

Message

*****CHECKSUM ERROR*****

STOP 5

STOP444

STOP 777

96836400 B

Printed

At the end of the source code
listing. The error is detected
in pass 2.

CYBER 18-17 system: On list
output device when 1he error
occurs. The error is detected
in pass 1.
CYBER 170/70/6000 system:
In dayfile.

CYBER 18-17 system: On list
output device when error
occurs. The error is detected
in pass 1.
CYBER 170/70/6000 system:
In dayfile.

CYBER 18-17 system: On list
output device when a FINIS
card is read.
CYBER 170/70/6000 system:
In dayfile.

Meaning

Contents of the address in object
code output to contain twos
complement checksum was not
zero. The object code output is
produced without a checksum.

Binary object code. The page
read from mass storage was not
the page requested. An error
was detected in subroutine
GETPAG.

Symbol table overflow; more
than 10, 000 symbols have been
defined.

This is not an error. It signifies
normal job termination.

11-3

.....
I

H::-

cg
0)
00
~

~
0
0

to

CAPO
1

z
1
4
5
&

7
II
q

10
11
12
13
14
15
1&
17
111
19
2D
21
22
23
Zit
25
26
27
211
29
30
31
32
n
lit
35
36
37
38
39
ltO

CARO

VALUE T P/"A "ICRO-"E"

000
noo
OOA

0 OOA 5808 0000
l OOA 5808 2000
0 DOB 5808 00011
1 DOB 111108 2110A
II DOC 58Dll 0000
1 ooc 51108 zooo
0 llllD 5808 0000
1 000 51108 2000
D DOE 58011 DODll
1 DOE 5808 20Dll
D OOF 5808 0000
1 OOF 511011 2000
0 010 RFFF DFFF
1 010 511011 2000
0 011 7C80 0000 E
1 011 7C80 20DO E
0 012 5570 0700 B
1 012 5E10 2700 B
0 013 5£18 0700 8
1 013 51tDO 211110 8
0 Ollt 5800 0800
1 014 51tCll 2008
0 015 0808 OFFF
1 015 9808 2300 G
0 016 0808 lOOF
1 016 9808 200C
0 D17 CJllOll 2DllC

OOA
DOA 5650 0000

000

27 LINES CONTAIN ERRORS

VALUE T P/HA HICRO-MEH

LOCATION F A B 0 s c ltT CO"HENT DIAGNOSTICS
I DENT DIAGNOSTIC EXAMPLE FOR THE HP ASSEM8l.U

..
• •

DIAGNOSTIC EXA"PLE
• • ••

UOUBLE EQU UNDEFINED EQUATE 33
EOU 5 UNDEFINED LABLE 13
OPG AX

SYP4 FIRST SYHBOl OUP 9
NOP

S'H DUPLICATE SYM80l 9
SY" J USE OF DUP. SYH80L

LDC NOP GOOD STATEMENT
MP UNDEFINED FUNCTION lit

'l CAN'T USE Q AS A INPUT 2
A CAN'T USE A AS 8 INPUT ..

X"1 UNDEFINED DESTINATION 12
RAP UNDEFINED S CODE 22 18

ILLEGAL CHAR IN COL 27
JOE UNDEFINED C FIELD 22

x ILLEGAL H CODE t5
BTL ILLEGAL T CODE 21

ALOF x A,B HUST 8E BLANK 1
ALOE x A,B "UST BE BLANK 3

A• INTA A,B CAN'T 90TH BE PR I HE 16
S"l A• A' ,0 11 ILLEGAL 11
SH1 READ A' S CONFLICT 17

INlO UEA 8' S CONFLICT 17
A• GUEi 0' S CONFLICT 17

N DECK B ANO C CO~LICT 7
N-=35 R C AND M FIELD CONFLICT 5

READ uox J NEED S FIELD FOR PAGE 6
N=15 LQL ILLEGAL T FOR N= 19
LOC JLQL ILLEGAL T FOR JU"P 19
LOC JU LEGAL T FOR JUMP

ORG lD
A+B p A QQG OVER EXISTING COOE 31t to
ORG 5000 ORG TO NON-EXISTANT LOC. 25 .J6
ENO

LOCATION F A B 0 s c HT COHHENT OIAGNOSTtCS

Figure 11-1, Assembler Diagnostic Example

EXECUTING THE CYBER 18 MICRO ASSEMBLER

EXECUTING THE MICRO PROCESSOR MICRO ASSEMBLER
UNDER MSOS 4 ON THE CYBER 18 COMPUTER

The following control cards will put fhe Micro Assembler int.o execuUon on an M'SOS system:

Control Card

*BATCH

*JOB

*K,Lff

*K,Prr

*K, Iss

*MP

*Z

Description

Calls the job processor.

ff is the logical unit of the FORTRAN line printer. The first character of
the output line is treated as spacing control.

rr is the logical unit of the object output device.

ss is the logical unit of the source input device.

Calls the Micro Assembler. The assembler reads from the source input
device (ss), and prints on fhe FORTRAN printer (ff). If binary output was
requested, it will be punched on tile object output device.

Signs off the job processor.

EXECUTING THE MICRO ASSEMBLER ON A
CYBER 170/70/6000 SERIES COMPUTER

The following program call card causes execution of the Micro Assembler on the CYBER 170/'10/6000.
It assumes the Micro Assembler is part of the system library.

A

MASSEM (pl, p2, p3) pl is ttie logical file name of the file on which the micro program source I

96836400 c

resides. The default is INPUT.

p2 is the logical file name of fhe file on which fhe assembler writes the
source lisUng. The default is OUTPUT.

p3 is the logical file name of fhe file on which fhe assembler writes the
object outpllt. The default is MP17BO.

A-1

OBJECT CODE OUTPUT FORMAT B

FORMAT OF RELOCATABLE OUTPUT DATA

The binary output produced by the assembler is in a format that exactly matches the format of relocatable
binary programs read by the system loader on an MSOS system for a CYBER 18-17 computer. The I
relocatable binary consists of four different kinds of records:

• NAM

• ENT

• RBD

• XFR

When the data is output on a CYBER 170/70/6000 Series computer, all records are sixteen 60-bit words
long. A 7 /9 punch, sequence number, word count, and checksum are included to make the 16 words
match the punched card format of a CYBER 18-17 computer. When punching the assembler's relocatable
output to cards for subsequent reading on~ CYBER 18-17, care must be taken to assure that the CYBER
170/70/6000 system card punch driver does not add its own sequence numbers and checksums to those
generated by the asseir.bler.

When outputting data on the CYBER 170/70/6000, unformatted FORTRAN writes are used. The FORTRAN
run-time package is used for 1/0 on the CYBER 170/70/6000.

When data is output on a CYBER 18 computer, the data records are of varying lengths:

•
•
•

•

NAM

ENT

RBD

XFR

34 sixteen-bit words

5 sixteen-bit words

56 sixteen-bit words for all RBD blocks except the last. The last RBD block
has from four to 56 words, depending on the amount of
data remaining.

4 sixteen-bit words

I

If the data is output to a card punch, the MSOS card punch driver will add a 7 /9 punch, sequence I
number, word count, and a checksum to each record. However, if the output device is not a card
punch, the 7 /9 punch, sequence number, word count, and checksum are not output to the device.

When outputting data on the CYBER 18-17, MSOS FORMAT writes are used. The FORTRAN run-time
package is not used for 1/0 on the CYBER 18.

96836400 c B-1

I

I

FORMAT OF DEADSTART OUTPUT DECK

The deadstart deck contains both data and control character strings. Control strings are punched one
string per card. Micro-memory data is punched to optimize the number of complete 32-bit instructions
per card, depending on the number of spaces to be punched between characters. The cards in table
1;3-1 are punched with the assumption that a master clear (which clears the FCR) was done just prior to
setting SM204 (which causes deadstart to commence)._

These deadstart control cards are designed to be acceptable in the general case. No transmission is
allowed to the CDT console during deadstart to handle the general case where the baud rate of the panel
during deadstart is different than that of the CDT console. After deadstart, if the user wishes to see
control characters typed on the panel CDT, he should type:

J40:
J58:

When outputting data on the CYBER 170/70/6000 computer, formatted FORTRAN writes are used. The
FORTRAN run-time package is used for all I/O on the CYBER 170/70/6000.

When outputting data on the CYBER 18-17 computer, MSOS FORMAT writes are used. The FORTRAN
run-time package is not used for I/O on the CYBER 18-17.

Whichever computer is used, the deadstart card images are 80 characters each.

Figure B-1 is a listing of a deadstart deck that was produced by assembling the program listed in
Appendix C.

TABLE B-1. DEAD.START DECK FORMAT

TYPE CARDS MEANING

1 K20089000G Set up FCR r-egiste:t.·.
Select K register for display O.
Select FCR for display 1.
Select MICRO mode.
Suppress console transmit.
Enable micro-memory write.

2 LOOG Clear K register.

3 JOlG Select N register for display o.
4 LOOG Clear N register.

5 JOCG Select micro memory for display O.

6 L Begin load of micro memory.

B-2 96836400 c

TYPE CARDS

7 Data

8 K9A088000G

9 KOOOOOOOOG

K 2 0 089000G
L 0 0 G
J 0 1 G
LO 0 G
J 0 CG
L
9 4 DE2 5 O 5 G
c 6 DE 0 0 FFG
9 4 DE2 5 0 0 G
5 8 DE 8 9 4 CG
9 8 D 8 2 DO 8 G
K 9 AO 8 8 0 0 0 G
K 0 0 0 0 0 0 0 O G

96836400 c

TABLE B-1. DEADSTART DECK FORMAT (Continued)

MEANING

Micro-memory data in 32-bit micro instructions. Each instruction
is terminated with a G. The number of instructions per card depends
on the spacing.

Spaces
0

Instructions per card
8

1 4
2 2

3 2

Set up new FCR register. After all data has been punched:
Select RTJ register in display o.
Select SM2 register in display 1.
Select :MICRO mode.
Suppress console transmit.
Disable micro-memory write.

Clear SM2. This card stops the deadstart hardware from reading
more cards.

DB D F-3 9 0 9 G 5 4 D 5 0 9 0 9 G D8 DD 3 0 0 3 G
5 4 E 0 4 8 8 0 G 7 1 1 D 0 0 0 0 G 5 4 D 0 E 0 1 F G
5 4 E 8 4 8 8 0 G 7 1 1 D 6 0 4 4 G 0 0 0 0 9 2 DAG
9 8 DC4 9 0 2 G 5 DO DE 0 0 0 G 8 6 DE40 0 2 G
5 8 D 8 2 0 0 0 G

Figure B-1. Deadstart Deck Example

B-3

I

I

I

I

MICRO-MEMORY CHECKSUM c

The checksum option, available with the object code output options (DEAD and RELO), is very useful
when the programmer wishes to be able to initially or periodically verify that the micro program is
intact in micro memory. Caution must be taken to ensure that the memory included in the checksum (all
memory within the bounds of the assembled program) is not changed by normal program function. If it is
changed, the checksum routine, coded as part of the user's program, will detect an error.

The code in Figure C-1 illustrates one way of coding a checksum routine that will run on either a 16-blt
or a 32-bit micro processor. It is nine words long and occupies the first nine locations of micro
memory. Following are some notes to help clarify its operation:

• When starting a micro processor after a master clear, the first location executed is O lower.

• Tb.ls checksum routine requires the program to be N blocks long where a block is 128 words.
There are two blocks per page and 16 pages of micro memory in the maximum configuration.

• K7L must be coded in the T field when reading micro memory to allow reference to the
least significant bi~ of the K register to determine which half word ls to be read.

• After reading micro memory, the next micro instruction executed ls the upper of the next
sequential location.

• Driving the bit generator with a 31 In the C field produces a zero on a 16-blt machine.

• The checksum produced by the assembler ls In a 16-bit twos complement form.

• The machine is in twos complement mode (SMlOl = 0) while doing the checksum addition;
thus, even on a 32-bit machine, the lower 16 bits of the A register represent the correct
checksum value. This is because in twos complement addition, there is no end-around carry.

• After completing the checksum loop, N and K both equal FF. This is because the test for
Kand N equal to zero is done before the registers are decremented. If the N zero (NZU)
and K zero (KZU) T-ff.eld tests are true, N and Kare still decremented (0 - 1 = FF).

• The X register is set to all ones before reading micro memory in case a hardware mal­
function causes no data to be gated to X after micro memory is read.

• The definition of the checksum from section 5. 6 ls:

96836400 B

N

CHKSUM = -L
K=l

·M
k

C-1

C-2

It is clear that if this checksum value is stored into micro memory by the assembler at a
location (Mk) that was O and was included in the checksum calculation by the assembler,
then the checksum generated in the A register by the following sample code must be zero
if the correct data was loaded into micro memory and the micro processor was functioning
properly because:

N

A = L Mk + CHKSUM - 0
K=l

96836400 B

co
O')
00
Ct.?
Q)
~
0
0

b:1
CARD VALUE ' P/"4 MICRtJ•M£M LOCH ION F A 8 D s c MT COltMENT OIACiNOSTICCi

l I DENT CHECKSUM EXAMPL~
'- 009 MICltOHLT EQU 9 ENA9LE MICRO.INSTRUCTION HALT
] on !ILOCKS EQU J CNUM8ER OF MICRO~EMO-T PAGESt • - l
... OlF BGIJIT3l f.QU 31 SIT GENERATOR DRIVER VALUE FOR BIT 31

5 ••
6 • I N I T I A L I Z A T I 0 N •
7 • TME CHECKSUll rs z•s COMPLINENT, 16 en •
a • THE CHECKSUM rs CALCut.ATED AND SHOULD RESULT IN A REG "' o • •
' • IF THF • REG rs NOT ZERO. THE CHECKCiUM FAILS CDETECTS AND ERRORI. •

10 IF THE CHECKSlM FAILS, THE PROGRAM HALTS AT 'AOSUM UPPER. •
11 • IF THE CHECKS\M PASSES, THE PROGRAM CONTINUES AT BADSUM LONER •
12 • NIT~ THE REGISTERS AS FOL.LONS •
11 MPU "fPU N.U. "' NOT USED •
lit • REGISTER VALUE VUUE x = IJMl(NONN •
lS • t N.U • NoUo •
16 • p N.u. 111.u. •
17 • A DOUD O'OODODD •
18 • F' N.U. N.U. •
n • l(KXXX xxxxxxxx •
20 a N.U. N.U.
Zl SMt DhO OOltOOOOO
2l • Ml oaon oonooooo
2J • SM2 0000 00000000 •
Zit • 142 0000 00000000
ZS • N,K FFFF OOOOFFFF
26 NOTE THAT LONER OF SfCAOO IS OPIE:N TO CONUIN •
27 THE CHEr.KSUH VALUE GENER4TEO ~T THE ASSEM~LER •
28 ..•...........
H 0 000 91tOE 2505 tMPJZICFIX 8 x l(l9EA SEC ADO J FINISH SNAPPING X RFG.
JO 1 ODD DltOF 3909 -ZEROLONR ZERO SM2 N:oq CLR SM2t SET N FOR HALT
u 0 001 51tD5 0909 8 BG SHI HIC~OHLT SET SHI UP FOR HALT ONLY
32 1 IOt OIDO lttOJ ZS:RO A N=BlOCl<S CLlt At SET N TO RE40 MMe
3! ti 012 C6DF UFF tSETICFf ONE x l(:FFX CL' M2, SET IC TO READ ""·
Jlt l 002 i;1tn ltlllO F -SU!tLOOP B MMU 1(7\. READ MICRO MEMORY
35 0 013 7UD OOH 'I t ADD A x l ADD TIUS TO SUM
36 l 1103 S1tno EttF c - 8 BG llGBITll ZL ZEltO IF MP16
J7 0 DOit 91tDE 2500 8 x x UEl MP32XFIX J SWAP H4LVES OF X REGISTER
3!I 1 DOit sue 1t1110 F - 8 ""L K7L READ 2ND 112 OF MORO
]Cl D DOS 7110 6tlltlt 8 •SECADD ADD A x • DECK ICZU 400 ZND 112 OF woqo
ltO ti 016 HOE S'tltC ZS:RO M2 DECN NZU CHECK THE N REGISTER
ltt 1 0116 CJSDC lt902 ZERO Ml SUMLOOP J CONTINUE TO SU" IN BLOCIC
lt2 a 007 5000 £000 c •C•u::cicsu" A.8 N•I(A ZL CHECK THE SUM FOR zEqo
lt3 1 007 96DE lt002 ONE x SUMLOOP J SET X, READ NEXT WORn 0 008 9909 2009 t8lDSUM HAU IJAOSUM J BAO CHECK~UM, A NOT ZERO .. , 1· one 5808 2000 NOP CHECKSUM CORRECT
lt6 ENO

NO ERRORS

CARO VAlUE T PIMA MICRO-HE" LOC4TION F B 0 s c MT COMMENT OIAGN'lSTJCS

("}
I

Ct.?

Figure C-1. Checksum Example

SAMPLE LISTING INCLUDING
ORIGIN MAP AND ZERO MAP

D

The following descriptions are keyed to the fields (columns) of the sample listing:

Field

A'

A

B

c

D

E

F

G

H

A'

!IP llICRO ASS£MLER t7H VERSION 16.0 SIMPLE LISHNG

A B C D
G -G Q ~ r.mRa':ifEii' loc1r101t "' C01411£MT OIAGNOSJ ICS

• ,-------......
1l
11
11•
l'i
16

t7 086
1~

19
C!D

~
886 SllOF ?lltO G +DVt
0111 sslE acao •
097 'IUS CFC!O C -

ORG
ZfltO
8
9

MEN
Q

READ CLSIK
GAfEI
ClSINP ovI.t~

Contents

JllU

~EID l~At. F=NK=9
IEU ro x. SAVf • IN I
C>IECK SIG'I OF 0

Assembler identification: host machine type (CYBER 18-17/CYBER 170/70/6000),
assembler version number

s~urce card number (in decimal)

Value (in hexadecimal) of the expression on an EQU or an ORG card.

Micro memory instruction location (in hexadecimal) assigned to this card. The
P/MA column contains three digits. The first is the page address; the second two
are the micro-memory address within the page. The T column specifies the upper
half word for T = O. T = 1 specifies the lower half word.

The contents in hexadecimal of the instruction location T P/MA.

A code indicating the length of time required to execute this instruction. A blank is
an A time.

When this column is not blank, the instruction on this card takes longer to execute
on a 32-bit MP than on a 16-bit MP. The code printed in this column will indicate
the .execution time on a 32-bit machine (see MP engineering specification, Section
3. 3.1. 5).

Card image. The fields on the card are indicated by the notations: LOCATION,
F, A, B, D, S, C, M, T, and COMMENT.

If the assembler detects an error in the information coded on the source card, the
error code(s) is(are) printed on this part of the listing. There is room to print up to
four error codes on the listing.

9683640-0 B D-1

CARO VALUE T P/HA HICRO•HEM LOCATION F B D s c "' COHHENT

12
11
14
1c;
16

17
111
1'l
20

2;J
21
?It

26
?.1
211

31)
31
32
31

35
3&

H
39
40
41
42
41
44
45

50
51
52
51
54

%
57
'ill
59
60

0116

0116

020

02A

0116
0117
0117

0116

.....................•...•..
D I V I 0 E t N S T R U C T I 0 N f'=l•...............•........•....................

5110F 231+0 G +OVI
l,;53E OCOO
94f5 CF20 C •

ORG
ZfltO
B
B

OP.G
ZERO
e

OOG

1X•2•MEMP.EF1
F

HEH X
Q A

1X•2•M£14REF1
A F

Q A

l'O)(+CNK•PGO

READ ClRI<
GAfEI
CUNP OVI .10

GA1'!"1 CLP.I<
CLRNP OVI. t 0

u

JNU

L
JNU

qEAD l~AJ, F=Nl<=n
CEAI TO X, SAVF A IN I
CHECI< SIG~ OF Q

€A IN X IIH. OPR.J,F=Nl<=O
SAVE A, CHEC~ SIGN OF Q

020 4AE5 021tl+
020 92118 1+1!22

+llVY. tn Q A RPT
PTJ

OECI<
nvt.l'I

HAKE Q POS IQ TO Al Nl<=·D
COHP 16LS1 IF NEC~SSARY EOR N,I(Q J

CMP2
0 21 ltBOf OC 00 +!'VI.20 ·!! lfEH GATEI HAl<E)(POSITIVE, I=FFFF

F=+O/•O FOR QUOT 5IGN
SAVE F IN It F=2•X

021 n2"F JO 10
OZZ c;c;c;F l+C74

EOlt I
A F

N,I<
)(

F
F

N=16
GATfI RLOE L

022 1c;c;E CC61 c -nvr.1n B GATFI CLOF/QNESP.NU C~ECI< SIGN OF X, I=F=••O,
GO TO OVI.2~ VIA RTJ OEG

..
•

023 7110 C270 D •
023 6910 C270 D •

021t 7120 0000 ~ •
021t DE9E JO 01
02s 1010 on,1 E
025 9720 CC2A C

OIVIllE Alr,ORIT~H •SUBTRACT, SHIFT AND CORRECT lIF NECESSARYI. QUOTIENT· IS
FORMED BY THE COMPLEMENT OF THE CARRYOUT OF A ICOAI BEING PUT IN THE
LSB OF Q, SHIFTED, ANO THE OPERATION REPEATED 17 TIHES. If COA IS A
ONE THE FIRST TWO TIHES, IT INOI~ATFS AN OVERFLOW. THE REHAINOER•2
WILL BE IN A AND WILL NEFO CORRECTEO BY X•2 IF NEGATIVE. THUS,

A,Q I X : Q, REHAINO~P•2 IN A CIF NEGATIV~, R•2 • x•21

EACH ITERATION RESULTS IN

ADO
SUB

ADO
A
AREA
UB
C14P1

F

Q

P.PT
QPT

RQL XN
~QL)(N

NU
NU

N=l
SETF/ONES

GATFI OVI.40 JNU

CO~RECTIO~IA=A-?X-XISHIFT
SU~TPACT, CA=A·XI, SHIFT

COQRECT RE"IAINIP=~·2X+2XI
SAVE I IN)(FOR QUOT SIGN
POSITION R~"AIN. PROPEPLY
SAVE A IN I, CHEr.1< OVF.

OZA 561S OAOA 8 •OVI.~O
OZA 52£5 6000

OPG
A+B
EOR
A
-A

2AHPGO
S"1 "G
)(Q

SH1
A l(lU

OVERFLOW l1ST TWO COA=11
QUOT ~IH PQOPER SIGN TO A
REMAINDER WITH SAM~ SIGN
AS OIVIO. TO Q, GOTQ IN!

02" 9E98 20'!il I Q tNI J
02B llOqft 20 511 I Q INI J

CARO VALUE T PIMA MICR~·NE" LOCATION F 8 0 s c MT CO"IHENT

Figure D-1. Sample Listing

OIAGNOSTICS

'lill'·"IOSfIC<;

co
a>
00

~
~
O •-•••••••• ORIGIN MAP •••••••••
t:1:j

T PIMA

0 0020
0 082l
0 0096
l 0016

CA"O

!7
S7
19
23

••••••••• ZERO M•P •••••••••

T PIMA

0 ODDO
0 0026
0 002C

Nuan

....... ,
• lll H81t

Figure D-1. Sample Llstlng (Continued)

ASSEMBLER INSTALLATION E

The assembler is basically written in FORTRAN to provide transportability between the CYBER 18-17 and
CYBER 170/70/6000 computers. However, some basic differences in FORTRAN as implemented on the
two machines require some differences in the programs themselves. The differences have been kept
to a minimum to ease the maintenance task. They can be categorized as follows:

• Data statement incompatibilities - Extensive use of labeled common is made, which
allows presetting data items with data statements contained in a BLOCK DATA subroutine.
There is a different BLOCK DATA subroutine for each machine.

• Word size is different for each machine. The following variables must be correctly set up
in the BLOCK DATA subroutine so the assembler's character manipulating subroutines
will work:

Name 1700 Value 6000 Value

BYTEl FF0016 77000000000000000000B
BYTE2 OOFF16 00777777777777777777B
CSffiFT 8 6
BLKPAD 002016 00555555555555555555B

• The CYBER 170/70/6000 is a faster machine than the CYBER 18. To help speed up the
CYBER 18, all I/O routines in the CYBER 18 version make extensive use of the FORTRAN
run-time monitor to make MSOS monitor calls to perform the actual I/O. The CYBER
170/70/6000 version uses FORTRAN I/O calls.

• Since mass storage addressing is different on the two machines, all mass storage I/O
routines are unique for their respective machines.

• The CYBER 18 FORTRAN compiler and the Macro Assembler allow program identification
material to be included as part of the PROGRAM, SUBROUTINE, FUNCTION, or NAM
cards. This identificationis then transferred to the relocatable binary decks that make up
the assembler and is printed by the MSOS loader when the assembler is loaded. Each
source deck in the assembler for the CYBER 18 version contains this identification, which
will cause an error if the same deck is compiled on the CYBER 170/70/6000 FORTRAN­
extended compiler.

• The PROGRAM card for the main routine of the assembler for the CYBER 170/70/6000 ver­
sion defines all I/O files to be used during an assembly. This card will cause an error
when read by the CYBER 18 FORTRAN compiler.

• All the assembler routines for the CYBER 170/70/6000 version must be compiled with the
FTN (FORTRAN-extended) compiler. All assembler routines for the CYBER 18-17 version
except CYBER 18-10/20/30 must be compiled with the standard FORTRAN compiler. The
CYBER 18-10/20/30 must be assembled with the Macro Assembler.

96836400 B E-1

The following programs are identical between the two versions of the assemblers except for the
previously noted differences in the PROGRAM, SUBROUTINE, or FUNCTION cards.

E-2

Name

ASMP17

LIST

TABLE

PRINT!

PRINT2

PRINT3

PRINT4

PRINT5

PRINT6

PRINT7

PRINTS

PRINT9

PRINTlO

SPLIT

PUTFLD

GETFLD

PU TC HR

GETCHR

BINHEX

BINASC

VALUE

EVALU8

NUMCON

OPER8R

IFIXIT

PA TAPE

PR TAPE

PMAP

ZMAP

Main routine

Format output listing

Manipulate symbol table

Function

Format assembled line, source, and diagnostics

Format comment line

Format first line of listing header

Format second line of listing header

Format number of errors in assembly

Format no-error message

Format blank lines

Format ORG and EQU listing output

Format copyright message

Format ZMAP and PMAP listing lines

Split source card into functional fields

Put data field

Get data field

Put character

Get character

Internal binary to external hexadecimal character conversion

Internal binary to external decimal character conversion

Find value of data item (either symbol or constant)

Evaluate address expression

Evaluate a constant

Check character for an operator (+ - * I)

Convert double-precision value to integer

Format absolute object output

Format relocatable object output

Format origin map

Format zero map

96836400 B

CLEAR

PC ARD

CHKSUM

A2SCMP

DE DINS

PAKOUT

Function

Clear data buffer

Format deadstart object output

Calculate twos complement 16-bit checksum

Perform twos complement, 16-bit arithmetic

Converts micro instructions to ASCll

Formats and outputs lead start cards

The following programs are special for the particular machine on which they run:

Name

BLOCK DATA

LSTOUT

PO NERD

DISKWT

DISKRD

GETPAG

PB LANK

PUNCH

A PUNCH

CDOUT

RSTP

ADD16

COMP16

Function

Contains data statements to preset labeled Common

Writes to list output device

Reads input for pass 1

Writes pass 1 output for subsequent input by pass 2

Reads pass 2 input

Gets a page of the micro-memory image

Punches blank leader on paper tape or writes EOF

Output routine for PRTAPE

Output routine for PATAPE

Output routine for PCARD

Read symbol table page

Perform 16-bit ones complement addition

Perform 16-bit complement

The following routines run with the CYBER 170/70/6000 version of the assembler only:

Name

BINCRD

ADJUST

PACK

Function

Build CYBER 18-compatible formatted relocatable binary card image.

Convert characters from DISPLAY code to ASCII.

Pack 16-bit data words into 60-bit data words.

The following ro1.1tines run with the CYBER 18 version of the assembler only:

Name

SHIFT

MP

96836400 c

function

Shift a word left or right

Assembly language routine that puts the assembler itself into execution

E-3

I

INSTALLATION ON A CYBER 170/70/6000

The instructions necessary to install the Micro Assembler in the CYBER 170/70/6000 system are
located in the installation handbooks for NOS and NOS/BE.

INSTALLATION ON A CYBER 18-17

The necessary assembler routines are compiled and the relocatable object code is ordered with control
cards as shown in figure E-1. Figure E-1 is the load map of the assembler installation accomplished
on an MSOS 4. 1 system with the following logical unit assignments:

Device

Magnetic tape

Mass memory

LU

6

8

Contents

Assembler relocatable object decks with control cards

Scratch

The assembler is installed as a file on the CYBER 18 system to avoid loader overhead each time the
assembler is executed. MP is an assembly language routine that is called by the control card *MP,
which in turn reads in the assembler file and executes it.

Under MSOS 4, 1he following FORTRAN system routines must be available and must be loaded when
the file is built:

E-4

FOR TN

QSPRMS

FXFL

FLOAT

PSSTOP

QSPAND

Q8DBLE

Q8DFLT

DFLOTN

DUMVOL

DRSTOR

96836400 B

•LllEOT
LI
tN
•Kol6oPI
Ill
•P,F

ltP 2H't
lSt1Pt7 2916
QIQIOS Hf'l
LIST .JJFl
TIBLE HFI
llSTP 9
PRtNTl ltlZA
PltlNTZ ltl97
PRINTJ lt211J
P1t1Nfft -.2 .. 2
PRINTS .. no
Pitt NT& .. 268
Pitt NH .. 277
PIUNTI .. 292
PRINT9 .. 2F6
PRNTlO ftltlt
1.STOUT ltJH
SPLIT c.
PUTFLO ft5t2
GETFLO lt51E
PUTCHR .. ,,.
GE1'CH1t ft5H
!JINlSC ftljEJ
91NffEl(lt&'i ..
VALUE "98
F.VALUI lt6F7
ttUMCON 1t1ll
OPE1t< ltlltE
IFUlf ltl11
PONEltO .. an a
OISICNT lt910
OtSICllO lt9Ell
GETPAG ,
PAUPE ltl77
PRTAPE ltAD2
PM.lttlC lt9C&
PUNCH .. ca
APUNCH .. C5F
PNIP .. cu
ZNIP ltCF.:O
CLEAR .. .,..,
PC ARO lt067
coour ltE18
CHICSUlt ltE&S
SHIFT .. E£l
10016 ltF'll
COltPl6 ltF2C
l!SCltP ftf'IF
FORTN
Q8PRltS 5000
F'l(FL 51F7
FLOlT 515E
PSS TOP 5380
Q8PANO SlE1
QIOBLE ljltft9
QSDFLT SltSF
DF'LOTN ,
OUNVOL 581tl
DIPS TOR Sll7A

IN
•1<.11
[N
•N,ASltP,,,8
ltt
•1C1I60P11
IN
•L,NP
IN
•z

7.'i llt-H-11t
ts.at u-21t-n
t&.o 09-22-711
n.11 11-z-.-111
t3ell 87-18-7'
t&.l 09-22-111
is.to u-211-111
u.111 07-H-11t
13.H 01-ot-11t
9.1 l6•11t
t3. H· 01-oa-1 ..
9.11 Olt-16•711
9.0 011·16-111
u.oo 01-n-111
u.n 11-ae-111
u.oo 01-11-n
l&el 09-22-111
U.IO 11-t1-11t

••• tlt-l6•71t
9.t l6-71t
9.11 llt-l&•71t
9.0 Olo-l6•11t
9.0 o .. -l6-11t
u.oo 07-H-711
9.0 D .. ·l6-11t
9.1 11t-u-11t
9.1 llt-l6-71t
u.ao 07-H-11t ! tttAOS
13.tD 01-oa-11t
13.00 17-U-1't
U.IO 11-11-11t
u.llJ 17-H-11t
ti.to 11-11-n
7.2 11-22-n NPl7
7.t ll•22•11t ""11
1.1 01-22-111 NPl7
11.00 07-H-11t
11.00 01-011-11t

u.oo 87-8'-7 ..
11.eo 11-11-111
lloOO 01-H-11t

'·' u-n-11t "Pl7
1.'I Ol•22•11t MP11
1.2 11-22-1 .. MP11
u;,.o 19-22-111

OECK-ID FOl l.2 FTN RUNTTNE
DECIC•ID GU lo'/ F'TN RUNTtlt£
OECIC•IO G06 J.2 F'TN ltUlfTtlt£
DECIC•IO GU J.2 FTN llUNTtlt£
Of'CIC-10 Hl& 3.2 F'TN IPUNTINE
Of'CIC•tn H17 3.2 FTN RUNTINE
DECIC•tn ICI! 3. ! FTN RUNTtltE
DECK-IIJ Kl1 J.2 FTN ltUNTINE
OECK•ID IC12 3.2 FTN 1tUNTtltE
DECIC•IO ICU 3.2 FTN RUNTtltE
DECK· llJ t<lll J.2 F'JN RUNTIME

•cro, ltP ASSEM8LER IS NOW INSTALLED
•z

SU,..IRY-079
SU,..ARY•01'l
SUltNUY•07q
su a•n-01•
SU ... AU•079
SU,..UY•08'i
SU""ARY•IJ79
SUNMltn-079
SU lllY• 079
SUltNUY•079
SUNltlllT-079

Figure E-1. MSOS 4 load Map

96836400 B E-5

ASSEMBLER DEFAULT CODES F

Code
Field Conditions Default Decimal

F (1) B not blank B 15
(2) A not blank, B blank A 10

(3) A and B both blank Zero 12

A x 3

B x 3

D NOP 0

s NOP 0

c 0

M C field is K= or N= s 3

C field is not K= or N= s 1

T Upper instruction and M field is s *L 0

Lower instruction and M field is S u 1
M field is R u 1

M field is J, C ls constant u 1

M field is J, C is upper symbol u 1

M field is J, C is lower symbol L 2

96836400 B F-1

FORMAT OF MICRO-MEMORY IMAGE PAGES
ON MASS STOR-AGE

Word
- -- --- - - --- -...--------------- - - - - - - - - - --

Six

1

2

3

96-word 384
sectors

385

Page number = o. 1. 2, •.• ,42 l
,_____Blna_ry ze---ro ----1- __________ _

3M l

wr t·
i--------------t- - - - - - - - - - - -

191 32-bit
instructions

16 bits of an
instruction
per word

G

1 J
192 words

wonm j
~----!----~---

[

191 card numbers]
corresponding to
the 191 micro
instructions on
this page

575

576 Binary zero - - - - - - - -- - ---------------- -- - - - - - - - - -

The following are equations to calculate page number 1 index to a micro instruction on the page, and
index to the card number of the code that assembles into the micro instruction for a given micro
instruction address:

PAGSIZ

T

T

PMA

WORD

I

96836400 B

384

0 lf upper Instruction of a word

1 if lower instruction of a word

micro Instruction word address

PMA*2+T (32-blt instruction number stflrting at zero)

WORD*2+1 (16 bit half instruction number starting at one)

G-1

G-2

J

RQPAGE

INDEX!

INDEX2

CINDEX

PAGE (CINDEX)

<

>

PAGSIZ-2 (number of 16-bit half instructions per page)

I/ J (page number)

I-RQPAGE*J+2 (index to the first 16-bit half instruction)

INDEXl+l (index to the second 16-bit half instruction)

INDEX1/2+PAGSIZ (index to the card number of the code that assembles
into the micro instruction)

O ~ The corresponding micro instruction address is not used.

O * The corresponding micro instruction address was the first instruction
assembled following an ORG. The real card number ls
-PAGE(CINDEX).

O ~The instruction was assembled from card PAGE(CINDEX).

96836400 B

ALU

A/Q

A source

B source

Ones complement

Sl

82

Twos complement

96836400 B

GLOSSARY

The portion of the computer which performs arithmetic and logical
functions on two input quantities.

A register, Q register or the combined· A/Q register. The A and Q
registers are shift registers.

The first input to the ALU.

The second input to the ALU.

The radix-minus-one complement in binary notation.

An eight to one multiplexer used to select the A source.

An eight to one multiplexer used to select the A source.

The radix complement in binary location.

Glossary-!

ALLOCATION OF SCRATCH MASS MEMORY BY THE

Top of
Scratch

Scratch
Sector 1

96836400 B

CYBER 18-17 VERSION OF THE ASSEMBLER H

Symbol Table Pages - 2500 words/page
27 sectors/page
500 symbols per page
Page numbers start at 1
20 pages maximum = 540 sectors maximum = 10, 000 symbols

maximum

Micro-memory image and corresponding card numbers
576 words/page = 6 sectors/page
191 32-bit instructions/page
Maximum of 43 pages = Maximum of 258 sectors
Page numbers start at O
Micro-memory image data is written by pass 2

Source card images written by pass 1, read by pass 2
One sector per card

H-1

A field 2-1;6-1, 71 81 11
Mnemonics 3-5
Operands 6-7, 8

ALU operations 6-1
Arithmetic 6-1, 3
Double-precision arithmetic 6-3, 5
Logical 6-1, 2

A/Q operations 6-1
Scale 6-3, 7, 8
Shift 6-1, 3, 6

Arithmetic operations 6-1, 3
A source 6-1
Assembler

Control pseudo instructions 5-1
Default codes F-1
Installation E-1, 21 3

B iteld 2-1; 6-1, 7, 9, 11
Mnemonics 3-5
Operands 6-9

BOX pseudo instruction 5-4
B source 6-1

C field 2-1; 9-1, 2
Mnemonics 3-7

Checksum 5-10, 11; C-1
CMPl pseudo instruction 5-9
CMP2 pseudo instruction 5-10
Codes

Assembler default F-1
Error 11-1, 2, 3, 4

Comment earc:t 5-3, 4
Comment field 2-1

96836400 B

INDEX

Constants 3-2
Decimal 3-2
Hexadecimal 3-2
Octal 3-2

Control character strings 5-12
CPR pseudo instructions 5-1, 2

Data definition pseudo instructions 5-8
DEAD pseudo instructions 5-12
Deadstart

Card images 5-10, 12
Output deck format B-2, 3

DEC pseudo instruction 5-8
Decimal constants 3-2
D field 2-1; 6-1, 7, 9, 10, 11

Mnemonics 3-6
Operands 6-9

Digit strings 3-2; 5-8
Double precision arlthmetlc 6-3, 5

EBOX pseudo instruction 5-4
EJECT pseudo instruction 5-3
END pseudo instruction 5-2, 10
ENT pseudo Instruction 5-11
Entry point name 5-11
EQU pseudo instruction 5-4, 5
Error codes 11-1, 2, 3, 4
Executing the Micro Assembler A-1

Index-1

F field 2-1; 6-7, 13
Mnemonics 3-4

F1NIS pseudo instruction 5-2
Formats

Deadstart output deck B-2, 3
Instruction 2-1
Object code output B-1
Relocatable output data B-1

Hexadecimal constants 3-2
HEX pseudo instruction 5-9

IDENT pseudo instruction 5-1
Instruction addressing 7-1

Jump 7-1, 3, 6
Return 7-2, 3, 7
Sequential 7-1, 3, 4, 5

Instruction format 2-1

Jump addressing 7-1, 3, 6

listing control pseudo instructions 5-3
Location field 2-1; 4-1; 5-5
Logical operations 6-1, 2
Lower micro instructions 7-1

Memory management and definition
pseudo instructions 5-4

M field 2-1; 7-1, 2, 3, 8, 9

Index-2

Micro instructions 7-1
Lower 7-1
Pairs 7-1
Upper 7-1

Micro memory
Allocation 5-4, 6
Image pages format G-1, 2
Locations 7-1

Minus qualifier 5-7
Mnemonics

A field 3-5
B field 3-5
C field 3-7
D field 3-6
F field 3-4
Instructions 3-3, 4; 5-6, 7
Selection 10-1, 2
S field 3-6; 8-1
T field 3•3

Object code output
Format B-1
Pseudo instructions 5-10

OCT pseudo instruction 5-8
Octal constants 3-2
Operands 5-4; 6-7

A field 6-7, 8
B field 6-9
D field 6-9

Operators 5-4, 5
ORG pseudo instruction 5-4, 5, 6 ·
Origin map 5-7; D-3

Plus qualifier 5-6
PMAP pseudo instruction 5-7
Programming information pseudo instructions 5-9
Pseudo instructions 3-3; 5-1

Assembler control pseudo instructions 5-1
BOX 5-4
CMPl 5-9
CMP2 5-10

96836400 B

Pseudo instructions (continued)
Comment card 5-3, 4
CPR 5-1, 2
Data definition 5-8
DEAD 5-12
DEC 5-8
EBOX 5-4
EJECT 5-3
END 5-2, 10
ENT 5-11
EQU 5-4, 5
FINIS 5-2
HEX 5-9
!DENT 5-1
Listing control 5-3
Memory management and definition 5-4
Object code output 5-10
ORG 5-4, 5, 6
PMAP 5-7
Programming information 5-9
RELO 5-11
SPACE 5-3

Q field 2-1; 4-1; 5-6

RE LO pseudo instruction 5-11
Relocatable binary card images 5-10, 11
Relocatable outpit data format B-1
Return addressing 7-2., 3, 7

Sample listing D-1
Scale operations 6..:.3, 7, 8
Scratch mass memory H-1
Sequential addressing 7-1, 3, 4, 5

96836400 B

S field 2-1; 6-1, 7; 8-1, 2
Mnemonics 3-6; 8-1

Shift operations 6-1, 3, 6
Source input statements 2-1
Source statement fields 2-1

A field 2-1; 6-1, 7, 8, 11
B field 2-1; 6-1, 7, 9, 11
C' field 2-1; 9-i, 2
Comment field 2-1
D field 2-1; 6-1, 7, 9, 10, 11
F field 2-1; 6-7, 13
Location field 2-1; 4-1; 5-5
M field 2-1; 7-1, 2, 3, 8, 9
Q field 2-1; 4-1; 5-6
S field 2-1; 6-1, 7; 8-1, 2
T field 2-1; 7-1, 2, 3, 8, 9

SPACE pseudo instruction 5-3
Strings

Control character 5-12
Digit 3-2; 5-8

Symbols 3-1

T field 2-1; 7-1, 2, 3, 8, 9
Mnemonics 3-3

Timing information 5-9
Transfer address 5-11

Upper micro instruction 7-1

Zero map 5-7; D-3
ZMAP pseudo instruction 5-7

Index-3

I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~I
:3 I
OJ
~,
~I
ti
OJ

J
I
I
I
I
I
J
f
1
I
I
I
j

I
1
I
I
I
I
I
I

COMMENT SHEET

MANUAL TITLE CONTROL DATA® CYBER Cross System Version 1 Micro Assembler

Reference Manual

PUBLICATION NO.

FROM NAME:

BUSINESS
ADDRESS:

96836400 REVISION c

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be
welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or
general comments may be made below. Please include page number to which your comment
applies.

STAPLE

STAPLE

STAPLE

FOLD
---------------------~

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MA1LEO !N U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGA TE MALL
LA JOLLA, CALIFORNIA 92037

i=-:RST CLASS
PER~AIT NO. 3~'.3

._A JOLLA CA.

I
I

---------------~
FOLD

STAPLE

I
I
I
I
I
I
I
I
I
I

0 z s

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. !55440 LITHO IN U.S.A.
SALES OFFICES ANO SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@:~
CONT~OL DATA COf\PORf\TION

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	05-01
	05-02
	05-03
	05-04.0
	05-04.1
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	G-01
	G-02
	Glossary-01
	H-01
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

