96836400

G CONTROL DATA
CORPORATION

CYBER CROSS SYSTEM
VERSION 1

MICRO ASSEMBLER
- REFERENCE MANUAL

CONTROL DATA®

CYBER 170 SERIES

CYBER 70 SERIES MODELS 72, 73, 74

6000 SERIES COMPUTER SYSTEMS

CYBER 18 COMPUTER SYSTEMS

255X HOST COMMUNICATIONS PROCESSORS

REVISION RECORD

REVISION DESCRIPTION
A Manual released,
(12/75)
B Manual revised to reflect NOS/BE 1, 1 changes and manual title change.
(4/76)
C Manual revised to include PSR 45754. adding pseudo instructions LST and NLS. Pages revised: ii, iii. vii, 3-3.
(5/77) 3-5. 3-6. 5-4. A-1. B~-1. B-2. B-3. E-3. comment sheet, Page added: 5-4.1/5-4.2,

Publication No.
96836400

© 1975,1976. 1977

by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall

La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV | PAGE REV PAGE REV ‘ PAGE REV

Cover
Title Page

ii

iii

v

vii

viii thru x
1-1

2=1

2-2

3-1

3-2

3-3

3-4

3-5

3-6

3-7

4-1

5-1 thru 5-3
5-4
5-4.1/5-4.2
5~5 thru 5-12
6~1 thru 6-11
7-1 thru 7-9
8-1

8-2

9-1 thru 9-4
10-1

10-2

11-1 thru 11-4
Glossary-1
A-1

B~1 thru B-3
C-1 thru C-3
D-1 thru D-3

G-1

rEHNWWANEEwOORDNEEEREEEIEEFOONTTOAANANENENEWOT QO]

H-1

Index~1 thru
Index-3

Comment
Sheet C

Cover -

==}

96836400 C iii

PREFACE

The CYBER Micro Assembler is a component of the CONTROL DATA® CYBER Cross System. The
Micro Assembler operates under control of the CYBER 170/70/6000 NOS or NOS/BE operating system.
It is intended to assemble micro code for the CYBER 18 computer series and the CDC 255x Series Host
Communications Processors. A separate version of the Micro Assembler is available for the CYBER 18
computer series.

This manual describes the general operation of the assembler and provides the necessary instructions
for preparing programs for assembly. No attempt is made here to provide a programmers guide and,
therefore, examples are limited. It is assumed that the reader is already familiar with the operation
of the CYBER 18 computer.

Information applicable to the Host Operating System can be found in the Literature Distribution Services
catalog. Additional information can be found in the following publications:
Description Publication No.

CYBER Cross System Version 1 Reference 96836000
Manual

CYBER Cross System Version 1 Macro Assembler 96836500
Reference Manual

CYBER Cross.System Version 1 Link Editor and 60471200
Library Maintenance Programs Reference

Manual

NOS/BE 1 Reference Manual 60493800
NOS 1 Reference Manual, Volume 1 60435400
NOS 1 Reference Manual, Volume 2 60445300
Micro~Programmable Computer Family 88973400

Micro Processor Reference Manual

1700 Ephanced Micro Processor with Core 88973500
Memory Reference Manual

This product is intended for use only as described

in this document. Control Data cannot be responsible
for the proper functioning of undescribed features

or parameters.

96836400 B v

PREFACE

CONTENTS

1 INTRODUCTION

2 INSTRUCTION FORMAT

3 BASIC ELEMENTS

96836400 C

3.1 Symbols
3.2 Constants
3.2.1 Decimal Constants
3.2,2 Octal Constants
3.2.3 Hexadecimal Constants
3.3 Pseudo Instructions
3.4 Mnemonic Instructions
4 LOCATION FIELD
4,1 Q Field
4,2 Location Label Field
5 PSEUDO INSTRUCTIONS
3.1 Assembler Control Pseudo Instructions
5,1,1 IDENT
5,1,2 CPR
5,1,3 END
5,1,4 FINIS
5.2 Listing Control Pseudo Instructions
5,2,1 Comment Card
5.2,2 EJECT
5.2.3 SPACE
5,.2,4 BOX
5.2.5 EBOX
5.2.6 LST
5.2.7 NLS
5.3 Memory Management and Symbol Definition Pseudo Instructions

5.3.1 EQU
5.3.2 ORG

5.3.3 Use of Qualifier Field
5.3.4 ZMAP (Zero Map)
5.3.5 PMAP (Origin Map)

1-1

2-1

3-1

3-1
3-2
3-2
3-2
3-2
3-3
3-3

vii

5.4 Data Definition Pseudo Instructions 5-8
5.4.1 OCT 5-8

5.,4,2 DEC i 5-8

5.4.3 HEX 5-9

5.5 Programming Information Pseudo Instructions 5-9
5.5.1 Timing Information 5-9

5.6 Object Code Output Pseudo Instructions 5-10
5.6,1 RELO 5-11

5.6.2 ENT 5-11

5.6.3 DEAD 5-12

6 ALU AND A/Q SHIFT AND SCALE OPERATIONS 6-1
6.1 ALU Operations 6-1
6.1.1 Logical Operations 6-1

6.1,2 Arithmetic Operations 6-1

6.1.3 Double-Precision Arithmetic 6-3

6,2 Shift Operations 6-3

6.3 Scale Operations 6-3
6,3.1 Scale Examples 6-7

6.4 Selection of Operands for Use in F Field Operations 6-7
6.4.1 A-TField Operands 6-7

6.4.2 B-Field Operands 6-9

6.4.3 D-Field Operands 6-9

6.4.4 Examples of Use of F, A, B, and D Fields 6-10

7 INSTRUCTION ADDRESSING AND SEQUENCING 7-1
7.1 M Field 7-1

7.2 T Field 7-2

7.3 Assembler Processing of M and T Fields 7-2
7.3.1 Sequential Addressing 7-3

7.3.2 Jump Addressing 7-3

7.3.3 Return Addressing 7-3

7.4 M- and T-Field Examples 7-8

8 S FIELD (SPECIAL FIELD) 8-1
8.1 S-Field Mnemonics 8-1

8.2 Examples 8-1

9 C FIELD 9-1
9.1 Example of C-Field Coding 9-1

9,2 Multiply and Divide Exampies 9-1

viii 96836400 B

10 SELECTING NONCONFLICTING MNEMONICS

11 ASSEMBLY ERROR CODES

GLOSSARY
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

Appendix H

INDEX

96836400 B

EXECUTING THE CYBER 18 MICRO ASSEMBLER

OBJECT CODE OUTPUT FORMAT

MICRO-MEMORY CHECKSUM

SAMPLE LISTING INCLUDING ORIGIN MAP AND ZERO MAP
ASSEMBLER INSTALLATION

ASSEMBLER DEFAULT CODES

FORMAT OF MICRO-MEMORY IMAGE PAGES ON MASS STORAGE

ALLOCATION OF SCRATCH MASS MEMORY BY THE CYBER 18 VERSION
OF THE ASSEMBLER

FIGURES

MP Coding Form

An Example of a Logical Operation

An Example of an Overflow Operation

An Example of a Double-Precision Operation

An Example of a Shift Operation

An Example of Scale Operation

An Example of the Use of F, A, B, and D Fields

An Example of an Assembler-Generated Sequential Addressing
Further Examples of Sequential Addressing

An Example of Jump Addressing

An Example of Return Addressing

An Example of the M and T Fields

An Example of the S-Field Coding

Example of C-Field Coding

Examples of Multiply Codes

Examples of Divide Codes

Examples of Conflicting Mnemonic Selection and Assembler Error Codes
Assembler Diagnostic Example

Deadstart Deck Example

Checksum Example

10-1
11-1

Glossary-1

Index~-1

2-2
6-2
6-4
6-5
6-6
6-8
6-11
-4
7-5
7-6
7-7
7-9
8-2
9-2
9-3
9-4
10-2
11-4

c-3

D-1

2-1
3-1
10-1
11-1
B-1

Sample Listing
MSOS Load Map

TABLES

Source Statement Fields

Mnemonic Machine Instructions

Legal F, A, B, D, and S Combinations
Micro Assembler Error Codes
Deadstart Deck Format

D-2
E-5

2-1
3-3
10-1
11-1

96836400 B

INTRODUCTION 1

The assembler for the CYBER 18 computer series and CDC 255x processors provides the mnemonic
language necessary for the programmer to write a micro program. The assembler translates symbolic
source program instructions into object machine instructions and provides a listing of assembly results.

The characteristics of the assembler as written for the CYBER 170/70/6000 and CYBER 18 Series
computers are described. This assembler is based on the MICRO-71 assembler for the MPP computer.

Input to this assembler consists of one or more source programs followed by a FINIS card, Each pro-

gram begins with an IDENT card and is terminated with an END card. Each program is coded using
these basic elements:

Symbols
Constants
Pseudo instructions
Mnemonic instructions
The basic elements are punched into a card in specific fields, always left-justified within the field.

OQutput from the assembler consists of the following:

° Assembly listing including diagnostics

o Zero location map

) Origin location map

° Relocatable object image
) Deadstart object image

96836400 B ' 1-1

INSTRUCTION FORMAT 2

A source input statement to the assembler consists of eleven fields as shown in table 2-1 and as
illustrated in the coding form shown in figure 2-1, Of these fields, the Q (qualifier), location,
and comment fields are used to improve the documentation of the assembled micro instructions.,
The eight fields used on the input form are in the same order that the programmer will tend to
use in preparing micro instructions for a micro program.

Information entered in each field (if anything is entered) is entered lefi~justified with a blank fill.
Information that is not entered left~justified is not processed correctly by the assembler.

TABLE 2-1. SOURCE STATEMENT FIELDS

FIELDS COLUMNS COMMENTS
Q 1 The qualifier field may specify whether the statement is a comment, an
(qualifier) upper instruction, or a lower instruction.
Location 2 through 9 | The location field specifies the statement's symbolic address in this
program,
F 11 through 16 The function field specifies a logical, arithmetic, shift, or scale opera-
(function) £ tion that is performed by the arithmetic and logic unit (ALU) on two
sources and placed in a destination.
A 17 through 22 { Specifies the A source of the function
B 23 through 28 | Specifies the B source of the function
D 29 through 34 | Specifies the destination of the result of the ALU
S i t either:
. 35 through 40 The special field provides special instruction modes that either
(special) e Extend the A, B, and D fields, or
e Provide a special command which is performed in parallel
with the data transfers taking place in the ALU,
(o] 41 through 49 The constant field specifies another special command that is performed
(constant) g independently of the rest of the instruction; it is executed in parallel
with the rest of the instruction.
M 50 The mode field specifies the addressing method for obtaining the next
(mode) instruction pair: sequential, jump, or return,
T 51 through 55 The test field is the conditional branch of the instruction and specifies
(test) oug which instruction (upper or lower) of the next instruction pair to execute,
The test and branch are executed after the rest of the instruction has
executed,
Comment | 56 through 80 | The comment field is used for remarks that are printed as part of the
list output.
96836400 B

(44

d 00%9€896

CORPORATION. MICRO PROCESSOR CODING FORM ne
PROGRAM ROUTING DATE
nill['imll!llll“l'"l!lllll“‘allﬂﬂ 25" 2] 9] 3132 asnsu 442 ﬁ“, 5‘52513 58157 8] Q0 Ul 8 "nnumusunu)
bt iiaerrrrreev e ettt et it e e e e il
IS NN RN EEEE NN ALttt b et erietdi SRRy
SN NI NN N NN IR NI NN R AN EEN NN AN IR NN RN
Lidri i g prejreeearroparrreerbeerseleiientl AR
pritrrer et el e e er i et ettt Forar i trrati it irretiieg
Lii bbb a bbb e et eerererertlgt piarlererr e treirredrerrtetd
PLy b br e e e vy e e eery e ieiitraiiiii Lot b rr et ra el r el
il deelr et e ettt ISR
IR NN AN R NN NN AN NN RN EEN] Pttt errietia it
Lot bbbt iee bty rerrirrbelrr ety aiaetl ettt
Lir b e ipep i e rrrrriarie et ity irrtd Ll e eeiprep e rt it tititet
Lid ettt arr gt errpertbiteet A erd rie e r e rretiteta
Lirrdeeeb ettt e vt rperrtrriil el Led et ey er i e eir it
Lyt e beer ettty e i el Lot ied et ee ittt
it e etk er et ettt ittt et il ettt itiatd
prrryr st ee b dreer ittty AR NN NN AN
eyl er e et e etbe et er it Py ri et e earreeielt
pitireielevpeabtgeel e errer it et Ertigd 111 IR N
L r st erel e r ittt L1l jlllllllLlIIlllllLlIlllL
i ir e ettt it ieiiiiit LLitb ity errerreaviia ettt
piii i it er e rervr e it erryerrerler ittt Lo et ee et iittl
prareeeel e e err e terr e e eegeirarin tertp by br et ere ettt
Litbiepsv el i e e errtolarlreerar ittt pPLA st bl ettt regat
P b Lt b vt vt er et etany LAl e ettt rre gttt
NI NN Lirart et ey ity riirrgt NI NI
I NN NN NN RN NN it er t e reettrsrititenti
Listitia b i eslerirrei ey eer bttt Litdd et evei v ri ettt e rrerrg
|uuquuuumdmmqunmmmqmﬂumppugquwwmgssnu 41]02)4sjmapasios |7 paapingse] sty 56]57158]58{60]61]82{83{64]65(56{67 6 63110 11| 120731 1o 78| sl TT s rot

Figure 2-1, Micro Processor Coding Form

BASIC ELEMENTS 3

L

The basic elements processed by the assembler are symbols, constants, pseudo instructions, and
mnemonic instructions.

3.1 SYMBOLS

A symbol is a one- to eight-character name that may be used as:

° A location label

° An alternate representation for a constant

A symbol is defined when it appears in the location field of the input form (columns 2 through 9). When
a symbol appears in the location field, it is used to name the location of a portion of the program or data
storage, or it is used in an EQU pseudo instruction to define the symbol as equivalent to the item defined
to the right of the EQU function code.

A symbol may be used in the location field (columns 2 through 9), the S field (columns 35 through 4()),
or in the C field (columns 41 through 49) of the input form.

A symbol is undefined when it has never appeared in the location field of the input form, or if it is
equated to an undefined symbol. The assembler identifies the use of undefined symbols on the agsembly
listing,

A symbol consists of any combination of one to eight 026 keypunch characters (the 48-character set)
except the slash (/), the equate sign (=), the plus (+), the minus (-), or the asterisk (*). Several
examples of legal and illegal symbols are shown below. A symbol must contain a non-numeric charac-
ter to separate it from a constant.

Examples:
HCNYL Legal
TAG Legal
1234 Illegal (will be interpreted as a constant)
*12.3 Illegal (contains an asterisk)
XYZ/3P Illegal (contains a slash)
B=3 Illegal (contains an equal sign)

96836400 B 3-1

3.2 CONSTANTS

Constants are used to represent numbers and may be used in the S and C fields of the input form.
Constants may also be used on the right side of the EQU pseudo instruction, The assembler recog-
nizes three types of numeric constants: decimal, octal, and hexadecimal, The numeric constant is
represented by a string of digits within the number base of the constant. Decimal constants have no
suffix, octal constants have B as a suffix, and hexadecimal constants have X as a suffix. Constants
must be in the range of C through 4095,

3.2.1 DECIMAL CONSTANTS

A decimal constant consists of a string of decimal digits. If the constant is larger than the field width
of the micro instruction, the high order bits will be discarded.

Examples:
999 Legal
98A Illegal (contains an alphabetic character)
12,1 Illegal (contains a decimal point)

3.2.2 OCTAL CONSTANTS

An octal constant consists of a string of octal digits that are suffixed with the letter B,

Examples:
123B Legal
B Legal
019B Hlegal (contains a non-octal digit)

3.2.3 HEXADECIMAL CONSTANTS

A hexadecimal constant consists of a string of hexadecimal digits and is suffixed with the letter X. The
hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Examples:
77BX Legal
1GX Illegal (contains a non-hexadecimal digit)
ABC Tllegal (has no X suffix)
7B Will be interpreted as an octal 77

3-2 96836400 B

3.3 PSEUDO INSTRUCTIONS

Pseudo instructions direct the assembler to perform specific functions. They do not generate micro
processor instructions. They define assembler control, listing control, data definition, and other
operations. Pseudo instructions are defined in section 5 of this manual.

3.4 MNEMONIC INSTRUCTIONS

Mnemonic instructions allow the programmer to use convenient names to specify the binary information
to be inserted in each field of the micro instruction, This list of mnemonic instructions recognized by
the assembler for each field of the instruction is given in table 3-1, Detailed usage of the mnemonic
instructions is given in section 6 of this manual,

TABLE 3-1. MNEMONIC MACHINE INSTRUCTIONS

T MNEMONIC MACHINE CODE BIT 24 T MNEMONIC MACHINE CODE BIT 24
*L 0 0 IQL 1 1
U 1 0 K7L 2 1
L 2 0 OVFL 3 1
KZU 3 0 BTU 4 1
NZU 4 0 LQ*L 5 1
INTU 5 0 BTU* 5 1
NU 6 0 COoL 6 1
ZL 7 0 Z*L 7 1

96836400 C 3-3

TABLE 3-1, MNEMONIC MACHINE INSTRUCTIONS (Continued)

:R?;):;ETIC HEXADECIMAL | SHIFT AND | HEXADECIMAL | IMPLIED | IMPLIED

& LOGICAL MACHINE SCALE MACHINE A B

MNEMONIC CODE MNEMONIC | CODE CODE CODE
-at 0 ALOE 1E 2 0
-a+Blt 1 ALOE 1E 2 0
-A+B 2 AQLOE 1E 3 0
ONE 3 AQLOE 1E 3 0
-A.-pift 4 AROE 1E 4)
-B 5 AROE 1E 4 0
-EOR 6 AQROE 1E 5 0
A+-B 7 AQROE 1E 5 0
-A.B 8 AL1E 1E 2 1
EOR 9 ARSE 1E 4 1
B A AQRSE 1E 5 1
A+B B ALEA 1E 2 2
ZERO c AQLEA 1E 3 2
A.-B D AREA 1E 4 2
A.B E AQREA 1E 5 2
A F SLOE 1F 2 0
SUB 14 SLOE 1F 2 0
SUBT 15 SDLOE 1F 3)
SUB- 16 SDLOE 1F 3 0
SUB-C 16 SLIE 1F 2 1
SUB-T 17 SLEA 1F 2 P
SUB-TC 17 SDLEA 1F 3 2
ADD 18
ADDT 19
ADD+ 1A
ADD+T 1B

tMinus (-) means bit-by-bit complement
tPlus (+) means inclusive OR
Period (.) means AND

3-4

96836400 B

TABIE 3~1, MNEMONIC MACHINE INSTRUCTIONS (Continued)

‘ HEXADECIMAL
A MACHINE | IMPLIED || B MACHINE | IMPLIED | IMPLIED
MNEMONIC | CODE S MNEMONIC | CODE s C
F2 0 F2 0
P 1 ZERO 1 C
1 2 N 1 8
X 3 K 1 4
A 4 N,K 1 0
F 5 BG 2
F1 6 X 3
XF 6 Q 4
MEM 7 F 5
SM1 0 7 F1 6
M1 1 7 XF 6
SM2 2 7 MEM 7
R2 2 7 CRTJ 1 8
M2 3 7 INRD 2 8
R3 3 7 INRS 3 8
A*RS8 4 7 MMU 4 8
R5 5 7 MML 5 8
RA 5 7 INTA 6 8
FN1 5 7 FMTO 0 8 I
X* 6 7 FMT1 1 8 '
GR 6 7 FMT2 2 8 1
R6 6 7 FMT3 3 8
Q* 7 7
R7 7 7
RQ 7 7
FN2 7 7 l
96836400 C 3-5

TABLE 3-1. MNEMONIC MACHINE INSTRUCTIONS (Continued)

HEXADECIMAL HEXADECIMAL

D MACHINE IMPLIED D | MACHINE IMPLIED

MNEMONIC | CODE s MNEMONIC | CODE s
NOP 0 T5 5 B
P 1 X* 6 B
1 2 T6 6 B
Q 3 GR 6 B
F1 4 Q* 7 B
A 5 T7 7 B
x 6 HEXADECIMAL
F 7 s MACHINE
AA* 5 1 MNEMONIC CODE
XX* 6 1 NOP 0
XGR 6 1 DD 1
FQ* 7 1 RPT 2
10D 0 9 READ 3
RA 0 9 WRITE 4
FN1 0 9 LSEA 5
10A 1 9 F2WR 6
RQ 1 9 AP 7
FN2 1 9 BP 8
MMU 2 9 DP 9
MML 3 9 APDP A
M1 4 9 DPP B
SM1 5 9 GATEI c
M2 6 9 HALT D
T3 6 9 RTJ E
SM2 7 9 CLRNP F
T2 7 9
A¥LH 1 B
X*LH 2 B
Q*LH 3 B
T4 4 B
A* 5 B

3-6 96836400 C

TABLE 3-1. MNEMONIC MACHINE INSTRUCTIONS (Continued)

WIDTH OFF

HEXADECIMAL HEXADECIMAL WIDTH OF
c MACHINE BIT |VARIABLE Y MACHINE BIT {VARIABLE

MNEMONIC |CODE 19 |FOR C MNEMONIC |CODE 19 |FOR C
K= 0 0 8 RLOE 74 0

WRCH/ 20 0 2 RLOE 74 0

RMW 24 0 RLIE 75 0

WRHWO 25 (] RROE 76 0

WRHW1 - 27 (] RROE 76 0

WRPB 28 0 RRLE 77 0
GATEIXT 30 0 TMA/ 0 1 4
CLRK 40 0 TMAK/ 10 1 4
DECK 44 0 GITMAK/ 20 1 3
INCK 45 0 GITMAK/XT 2¢ 1

CLRN 48 0 TK/ 30 1

DECK 4C 0 TN/ 40 1

INCN 4D 0 SUB 50 1

SETF/ 50 0 4 SLB 60 1

CLRF/ 60 0 4 N= 0 1 8
RQLXN 70 0

RQROE 72 0

RQROE 72 0

RQRIE 73 0

and must have a value between 0 and 2
e.g., SETF/12.

A slash (/) or an equal sign (=) following the mnemonic implies a constant will follow the mnemonic
W_1 where W is the width of the variable for the C field;

96836400 B

LOCATION FIELD 4

The location field is coded in columns 1 through 9 of the input coding form and consists of two
subfields:

° The Q (qualifier) field
° The location label field
4.1 Q FIELD

The Q field is column 1 of the input coding form. It is used to specify the nature of the rest of the
statement and to provide a fine grain location of the resulting micro instruction within a micro-memory
address, This field may contain an asterisk (*), dollar sign ($), plus sign (+), minus sign (-), or it
may be blank,

An asterisk or dollar sign specifies that the rest of the input source statement is a remark and that the
remaining 79 columns contain comments, This qualifier allows the remarks card to be printed on the
listing with no effect on the assembler object code output.

A plus in the Q field locates the resulting micro instruction as the upper instruction of a micro-
instruction pair.

A minus in the Q field locates the resulting micro instruction as the lower instruction of a micro-
instruction pair.

A blank in the Q field locates the resulting micro instruction in the next available half of a micro-
instruction pair.

4.2 LOCATION LABEL FIELD

The location label field is in columns 2 through 9 of the input coding form, This field may be left
blank or it may contain a symbol. If a symbol is included in the field, it must be entered left-justified
and follow the definition of a symbol.

The location label field with a symbol is used to assign a mnemonic address to the corresponding micro
instruction, or it may be used in the EQU pseudo instruction to assign a value to the symbol in the 1abel
field,

A symbol in the label field of a micro instruction takes on the upper/lower quality of the actual micro

instruction location. This quality is used in coding jumps in the C field of a micro instruction.

96836400 B 4-1

PSEUDO INSTRUCTIONS 5
e]

Pseudo instructions are instructions to the assembler and normally do not result in any micro-code
output (the only exceptions are the HEX, DEC, and OCT pseudo instructions). A pseudo instruction
consists of the pseudo operation code, which is coded in the F field of the input form (columns 11
through 16), plus additional information coded in the other fields of the input form, The detailed field
usage is given under each pseudo instruction.,

5.1 ASSEMBLER CONTROL PSEUDO INSTRUCTIONS

These pseudo instructions define and control the operation of the MP assembler, but do not generate
code in the object program,

5.1.1 IDENT

This pseudo instruction provides program identification and must be used as the first instruction of each
program, The text in columns 17 through 80 of the card with the IDENT operation code is listed as
the first line at the top of each page of the output listing. In addition, if the RELO pseudo instruction is
used in this same program, data from columns 17 through 22 will be used as the name in the NAM
block, and data in columns 23 through 66 will be used in the NAM block as ID information,

Example:
{11 |17
/ IDENT CDC 844 DISK FILE CONTROLLER EMULATION FOR MP
5.1.2 CPR

This pseudo instruction causes a copyright notice to be printed as the second line of each page of the
listing, The four decimal digits contained in columns 17 through 20 of this pseudo instruction are
included in the notice.

96836400 B 5-1

The following example provides a listing output of
COPYRIGHT 1976 CONTROL DATA CORPORATION

as the second line of each page of listing.

4

f11 f17

CPR I 1976

5.1.3 END

The END pseudo instruction signals the end of this program for assembly and must be the last instruc-
tion in a program, It causes the assembler to proceed with the complete assembly process., On com-
pletion of the assembly process, the assembler is reset and continues reading input information to
obtain the next micro program of a batch to assemble. The total assembly process is completed on
detecting a FINIS pseudo instruction.

Example:
[11
/ END
5.1.4 FINIS

The FINIS pseudo instruction signals the completion of a batch of assemblies by the assembler and
returns control to the host computer operating system.

Example:

|11

s

5-2 96836400 B

5.2 LISTING CONTROL PSEUDO INSTRUCTIONS
The listing output for the assembler is controlled by the following pseudo instructions. These

pseudo instructions may appear anywhere in the source input between IDENT and END pseudo
instructions.

5.2.1 COMMENT CARD

Any source card with an asterisk (*) or a dollar sign ($) in column 1 is treated as a comment card,
All columns of the comment card are printed. '

5.2.2 EJECT

The EJECT pseudo instruction causes the listing to eject to the top of the next page, and the next
instruction will be printed following the title line on the next page. The EJECT pseudo instruction card
is not printed.

Example:
[11
EJECT
5.2.3 SPACE

The SPACE pseudo instruction causes blank lines to be printed, The SPACE pseudo instruction is not
printed, The number.of blank lines to be listed is defined in the A field of the pseudo instruction, The
A field may contain a constant or a predefined symbol, as in the following example:

Ju: |17

SPACE 6
SPACE NUMBER

The first SPACE pseudo instruction would cause six blank lines to be printed. The second would cause
two lines to be printed if NUMBER had been defined to be 2,

96836400 B 5-3

5.2.4 80X
This pseudo instruction is used in conjunction with EBOX to provide emphasis for comments in the
listing, This pseudo instruction is not printed; however, a card of asterisks will be listed, All suc-
ceeding cards will have asterisks in columns 1 and 80 to create comment cards, Only an EBOX pseudo
instruction following a BOX pseudo instruction will be executed, The listing will be spaced one line
before printing the first line of asterisks for the BOX command,

NOTE

A BOX command will turn all succeeding micro instruc-
tions to comment cards until EBOX is encountered.

Example:

4

|1

BOX

5.2.5 EBOX

This pseudo instruction causes a card of asterisks to be listed rather than this pseudo instruction. In
addition, the automatic assignment of asterisks to columns 1 and 80 started by the BOX pseudo instruc-
tion will be terminated, One blank line will be listed after the line of asterisks,

Example:
I 11
/ EBOX
5.2.6 LST

This pseudo instruction causes the source listing to be resumed after an NLS has suspended it.

Example:

-

5-4 96836400 C

11
LST

5.2.7 NLS
This pseudo instruction causes the source listing to be suppressed.

Example:

¢

5.3 MEMORY MANAGEMENT AND SYMBOL DEFINITION
PSEUDO INSTRUCTIONS

B
NLS

These pseudo instructions define symbols and provide for controlling the allocation of micro memory
for the object code output, In addition, two memory management maps can be produced that list zero
locations and locations set by ORG pseudo instructions,

Both the EQU and ORG pseudo instructions require an address expression that begins in card column 17

and may continue through column 80. The expressions are made up of operands separated by operators.
The operands may be constants or previously defined symbols, The operators are +, -, *, and / (add,

96836400 C 5-4,1/5-4.2 @

subtract, multiply, and divide). Expressions are evaluated from left to right; operators are executed
as they are decoded. Parentheses are not allowed to group operators within an expression. The
expression terminates on the first blank character. The range of the value of the expression is from 0
to FFF;g. Any constant used in the expression also has the same range.

Example:
A+B-C*D/E Legal (if A=5, B=2, C=3, D=4, E=5, value is 3)
F Legal
-1 Illegal (out of range)
A+-B-C*D/E Illegal (two operators without an operand in between)
5.3.1 EQU

The EQU pseudo instruction assigns a value corresponding to the expression beginning in column 17 to
the symbol appearing in the location label field (columns 2 through 9). The symbol in the location field
takes on an upper quality if the expression has more than one term in it, If the expression consists only
of a single, defined symbol, the symbol in the location field takes on an upper or lower quality matching
that of the symbol in the A field, The use of the plus sign or the minus sign in column 1 of an EQU
card has no effect on the quality of the symbol defined by the equate operation.

The EQU processing takes place during pass 1 of the assembler, and any symbol appearing as an
operand in the expression must have appeared and been defined in a location field prior to its use in the
EQU pseudo instruction.

Example:
2 | 11 | 17
VALUE EQU 4 Set VALUE = 4
LABEL EQU VALUE * VALUE/2 Set LABEL =38
LABEL,1 EQU LABEL +1* 2 Set LABEL.1 =18
P, 43X EQU VALUE/3 Set P.43X =1
5.3.2 ORG

The ORG pseudo instruction is used to assign a starting value to the micro-memory allocation counter.
The micro-memory allocation counter provides for automatic allocation of micro instructions to suc-
cessive upper and lower locations, unless the allocation is changed by the coding of a plus sign or minus
sign in column 1 of the micro-instruction input card, When ORG is encountered, all instructions and
data following the ORG pseudo instruction are assembled in consecutive upper and lower micro-memory
locations, starting with the upper location of the address specified by the expression beginning in
column 17. The ORG may be used as many times as desired, If use of the ORG pseudo instruction

96836400 B 5-5

causes some instruction to be assembled into a non-zero instruction (i.e., assembly over an already
assembled location), an error is flagged and the number of the card that previously caused the location
to be assembled is printed for cross-reference. The most recent instruction does, however, overlay
the previously assembled instruction. '

The line of micro code, or constants, following the ORG instruction is assembled as an upper instruc-
tion unless the instruction assignment is overridden by a minus sign (-) in column 1 of the instruction
following the ORG pseudo instruction.

Examples:
11 17
ORG 100 + ABC Set program location counter to
upper of 150 decimal if ABC = 50
ORG FF3X Set program location counter to
upper of FF316
ORG TAG Set program location counter to the

upper of location value TAG (pro-
vided TAG is defined)

5.3.3 USE OF QUALIFIER FIELD

The qualifier field of a micro~instruction input card (column 1) also controls the operation of the micro-
memory allocation counter, Although not strictly a pseudo instruction, it should be mentioned,

As each micro instruction is assembled, the micro-memory allocation counter is increased by a half
micro-memory word in preparation for the assignment of the next micro instruction or constant. The
qualifier field operates in adjusting the micro-memory allocation to meet the programmer's desires.

5331 PLUS QUALIFIER

If the micro-memory allocation counter has advanced to assign the current micro instruction to an
upper micro-memory location, the plus qualifier has no effect. If the micro-memory allocation

counter has advanced to assign the current micro instruction to a lower micro-memory location, that
location will be left zero and the micro-memory allocation counter will be advanced to the upper location
of the next micro-memory address.

5-6 96836400 B

5.3.3.2 MINUS QUALIFIER

If the micro-memory allocation counter has advanced to assign the current micro instruction to an
upper micro-memory location, the minus qualifier will cause that location to be left zero and will
advance the counter to assign the current micro instruction to the lower location of that micro-memory
address. If the micro-memory allocation counter has advanced to assign the current micro instruction
to a lower micro-memory location, the qualifier has no effect.

5.3.4 ZMAP (ZERO MAP)

This pseudo instruction directs the assembler to produce a map of all unused (zero) locations between 0
" and the highest address assembled, This pseudo instruction may appear anywhere within a program.

The map will be produced after the assembly listing is complete, and will be printed on the same device

used to print the assembly listing, The map includes an upper/lower flag and an address for the first

zero location in a group. If there is more than one sequential zero,:the number of zeros is printed

(in decimal), If the number of zeros is greater than nine, the number is also printed in hexadecimal.

Example:
|11

ZMAP

5.3.5 PMAP (ORIGIN MAP)

The PMAP pseudo instruction may be used to produce an origin map, This pseudo instruction may
appear anywhere within a program. The map will be produced after the assembly listing (and the zero
map if it was requested), and will be printed on the same device, The map is printed in ascending
address order and includes an upper/lower flag and an address for the first instruction following each
ORG pseudo instruction, as well as the card number of the instruction. The origin map is useful when
trying to find the code corresponding to particular assembled locations in micro memory when the
program is large and many ORG pseudo instructions are used.

Example:
| 11
/ PMAP

96836400 B 5-7

5.4 DATA DEFINITION PSEUDO INSTRUCTIONS

Three data definition pseudo instructions are provided so the programmer can define 32-bit constants to
be inserted in the micro memory at the current location specified by the micro-memory allocation
counter, The pseudo commands are DEC, OCT, and HEX for decimal, octal, and hexadecimal constant
generation. The pseudo commands are coded in the F field of the coding form, and a string of digits
in the number base is included in columns 17 through 28. Comments may start in any column after 29,
The string of digits may include a minus sign (-). Embedded blanks are ignored. The string of digits
is converted in its number base to a 32-bit binary number, The result is complemented if a minus sign
exists in the string, A symbol may be assigned to the location label field to locate the constant, and the
qualifier field may have a plus, a minus, or a blank to control the micro-memory allocation.

An error is indicated if the string of digits contains any digit not in the number base.

5.4 OCvY

The OCT pseudo instruction causes the string of digits starting in column 17 to be converted from octal
representation to binary and stored at the current micro-memory location. A symbol in the location
label field is optional, The qualifier field may be used. Occurrence of any character other than 0
through 7, minus, or blank in the string will cause an error to be indicated,

Example:
l 11 ' 17
oCcT 123 Create 00000000123 in the current location
OCT -123 Create 37777777654 in the current location
ocT 1-23 Create 37777777654 in the current location
5.4.2 DEC

The DEC pseudo instruction causes the string of decimal digits in columns 17 through 28 to be con-
verted from decimal representation to binary and stored as a 32-bit number in the current micro-
memory location. A symbol in the location label field is optional. The qualifier field may be used to
specify upper or lower micro-memory location, Occurrence of any character other than 0 through 9,
minus, or blank in the string will cause an error to be indicated.

Example:
Jaus |17
DEC 10 Create 0000000A (hex) in the current location
DEC -10 Create FFFFFFF5 (hex) in the current location

5-8 96836400 B

5.4.3 HEX

The HEX pseudo instruction causes the string of hexadecimal digits in columns 17 through 28 to be
converted from hexadecimal to binary representation and stored as a 32-bit number in the current
micro-memory location, A symbol in the location label field is optional. The qualifier field may be
used to specify upper or lower micro-memory location. Occurrence of any character other than 0
through 9, A through F, minus, or blank in the string will cause an error to be indicated.

Example:

|11 |17

HEX DEAD Create 0000DEAD (hex) in the current location
HEX DEAD- Create FFFF2152 (hex) in the current location

5.5 PROGRAMMING INFORMATION PSEUDO INSTRUCTIONS

The programming information pseudo instructions provide the programmer with additional information
in the output listing,

5.5.1 TIMING INFORMATION

The assembler analyzes each micro instruction for its execution time in the variable cycle length of

the micro processor, This timing information is printed immediately preceding the first column of the
card listing on the assembler printout. This timing is indicated as a blank for an A cycle, and by the
letters B, C, D, E, F, and G for the corrésponding cycles. The timing of the instructions is dependent on
whether the micro processor is operating in ones or twos complement operation. The following pseudo
instructions allow the programmer to notify the assembler of the mode of operation for timing purposes.
If no timing pseudo instructions are used, the assembler assumes twos complement operation.

In addition, some instructions take a different amount of time to execute, depending on whether they

are executed on a 16- or 32-bit machine, When the assembler detects a difference, two timing digits
are printed on the output listing; the first is for a 16-bit machine, the second is for a 32-bit machine,

5511 CMP

The CMP1 pseudo instruction causes the timing information following the pseudo instruction to be listed
for each instruction as if operating in the ones complement mode,

96836400 B 5-9

5512 CMP2

The CMP2 pseudo instruction causes the timing information following the pseudo instruction to be listed
for each instruction as if operating in the twos complement mode.

5.6 OBJECT CODE OUTPUT PSEUDO INSTRUCTIONS

The assembler creates a complete image of micro memory in the host computer during the assembly
process. The assembler provides two formats for output of micro memory object code data:

. Relocatable binary card images
° Deadstart card images

In both cases, output will begin at micro-memory location 0 and continue through the address of the
highest micro instruction assembled.

The assembler may produce a checksum that is included in the micro-memory image itself. The
checksum feature allows the micro program to checksum itself to be sure that is was properly loaded
into micro memory. It also allows the program to be sure that it has not been altered in micro mem-
ory during operation., Caution must be exercised in using the checksum feature if the program changes
micro memory during the course of normal operation, since the checksum generated by the assembler
cannot include the data modified in micro memory during program execution. The checksum is calcu-
lated by the assembler as follows:

N
CHKSUM = -Z Mk
K=1

Where: CHKSUM is the calculated 16-bit, twos complement checksum

N is twice the number of micro instructions assembled (micro instructions are 32
bits each, but the checksum is 16 bits long).

2 indicates a twos complement sum

Mk is a 16-bit data item that is half of a 32-bit micro instruction.

The checksum is generated after the END pseudo instruction is read from the input stream if the
checksum was requested on the object code output pseudo request card, The checksum is stored into
the lower 16 bits of the micro instruction address specified on the request card if that location is zero
after the END pseudo is read, If the location is not 0, the checksum is not stored and a diagnostic is
produced. The requested object code output is produced in any case.

5-10 96836400 B

5.6.1 RELO

This pseudo instruction may appear anywhere in the micro-program source. It causes the assembler
to produce relocatable binary output that is compatible with the CYBER 18 loader. (See the MSOS
Reference Manual), The name of the program punched in the NAM output block is found in columns 17
through 22 of the IDENT card, In addition, program identification material is also punched in the NAM
block and found in columns 23 through 66 of the IDENT card, If no IDENT card exists, the program

is given a blank name,

Program-relocatable RBD blocks are punched until the entire micro memory image has been output.

An XFR block is punched as the last record of the relocatable output. The transfer address is defined
by an ENT pseudo instruction. A checksum may be requested by punching an address expression
starting in column 17 of the RELO card. Address expressions were described earlier in this section.
The value of the address expression is the micro memory location where the checksum will be stored.
The upper half of the location is used unless a minus is punched in column 1, in which case the lower
half is used. The specified address must be within the bounds of the micro program and it must
contain 0, or else a diagnostic results. If a diagnostic is printed, the object code output is produced,
but it contains no checksum.

Example:

1 fu | 17
- RELO 14X

The checksum will be stored in the lower half of micro-memory address 14 (hexadecimal).

5.6.2 ENT

This pseudo instruction defines an entry point name and a transfer address to be used when producing a
relocatable binary output image with the RELO pseudo instruction, The entry point and transfer name
begin in column 17 and have a maximum of six characters, The value of the symbol is automatically
set to zero, even though it need not be defined in the location field of a micro instruction. If the symbol
is defined in the program as a value other than zero, it is still considered to be zero for the purpose of
producing an entry point block and a transfer block as the result of using the RELO pseudo instruction,

96836400 B 5-11

Example:

.Ill’ '17

l ENT I START

START is the entry point name associated with the micro program when the RELO pseudo instruction is
used, . The entry address is 0,

5.6.3 DEAD

This pseudo instruction may appear anywhere inthe micro-program source. It causes the assembler

to produce a set of 80-character card image records suitable for deadstarting into micro memory from

a device capable of reading the card images and transferring the data to the panel interface on the micro
processor, All control character strings necessary to cause the panel interface to load the data at
micro-memory location 0 are embedded in the micro-memory image data. To afford proper addressing
of micro memory, these control character strings also increment the N register of the micro processor
by one after each block of 256 32-bit micro instructions (one-half page) has been input.

The last card punched contains code that will cause the panel interface to clear status mode register 2
and thus terminate the deadstart operation,

The number of spaces between characters punched on the card image records may be specified on the
DEAD pseudo instruction card by an expression beginning in column 41. The value of the expression
indicates the number of spaces punched between characters; values of 0 through 3 are legal. If
column 41 is blank, a default of 1is assumed. Blanks may be necessary, depending on the speed
and characteristics of the deadstart device.

A checksum may be requested by punching an address expression starting in column 17 of the
DEAD card. :

Example:

1 |1 | 17 | a1

/ - DEAD 1AX | 3

A deadstart object deck will be output on the object output device, A checksum will be produced and
stored at the lower half of address 2649- Three spaces will be output between each nonblank character

punched,

5-12 96836400 B

ALU AND 6
A/Q SHIFT AND SCALE OPERATIONS

The F, A, B, D, and occasionally S fields of the micro instructions are used to specify operations on
the arithmetic and logical unit, The F field specifies the operation to be performed, In the case of
ALU operations, the A field specifies one source of operands, the B field specifies the other source,
and the D ﬁe}fl specifies the destination of the output of the ALU,

In case the F field 5§peciﬁes a shift of the A or A/Q register, the A, B, and D fields are not filled in
on input since the assembler provides the correct values in these fields,

6.1 ALU OPERATIONS

The ALU operations are either logical or arithmetic, and combine two source inputs, The results is
routed to a single destination. The two inputs are called the A source and the B source, The A
source is referred to as the A input or selector 1 (S1) and the B source as the B input or selector 2
(s2).

6.1.1 LOGICAL OPERATIONS

The logical operations perform bit-by-bit combinations of the A input and .B input for delivery to the
destination,

An example of the use of the logical operations is shown in figure 6-1.

6.1.2 ARITHMETIC OPERATIONS

The arithmetic operations are performed in ones or two complement arithmetic and can operate on
either single-precision operands, using the main ALU; or double-precision operands, using the double-
precision hardware. Each arithmetic operator placed in the F field has two optional modifiers that

can force a carry-input on the operation and capture the overflow condition in the status/mode register.
These modifiers are used to emulate multiple~precision arithmetic and to test equalities and

inequalities.

96836400 B 6-1

2-9

€ 00798896

CARD VALUE T P/NA

7

9 ¢ 000
10 1 000
11 0 oot

CARD VALUE T P/WA

MICRO-MEN

$326 0000
GO0E 2000

‘GAE3 8008

MICRO-MEN

LOCATION F [8 0 S c "y COMMENT

LOGICAL OPERAYIONS EXAMPLE

EOR A [} X X=(Q) EOR (A)

-A X x CONPLENENT X

-8 Q Q CONPLENENT Q
LOCAVION F A 8 (] S c nY COMMENT

Figure 6-1, An Example of a Logical Operation

NIAGNDSTICS

OIAGNOSTICS

The overflow condition exists if the signs of the A source and B source are equal and the sign of the
result is different (addition), or if the signs of the A and B sources differ and the sign of the result is
the same as the B source (subtraction),

An example of an overflow condltion is shown in figure 6~2.

6.1.3 DOUBLE-PRECISION ARITHMETIC

The double~precision (DP) arithmetic module provides the capability to perform arithmetic on operands
twice the length of the standard word size. The DP module contains three registers, A*, X*, and Q*,
and an ALU (called ALU*) that is distinct from the main ALU of the CYBER 18. The A* and X*

are unconditionally input to the ALU*, The output of the ALU* can be shifted left or right and the output
goes to the A* register, The X* and Q* registers are loadable only; they are not destinations of the
ALU*, On input to the A* register from the A source, data can be shifted right one-half word, end-
around, On output from the DP registers, data can be shifted right eight bits,

An example of the double-precision operation is shown in figure 6-3.

6.2 SHIFT OPERATIONS

The shift operations in the F field specify a shift of the A register or the A/Q register, No shift is
possible in the double-precision registers from this command. The N register is used in conjunction
with the shift operations; the number of bits shifted is determined by the count in N at the start of the
shift instruction, If the N register is zero, no shift occurs. The N register can be set in the (same)
instruction by placing N = value in the C field; the value set affects the following instruction, The
shift operations are various combinations of shift A or A/Q, left or right, end-around or end-off,
sign-extended or not sign-extended, and entry of a 0 or 1 in the vacated bit position, The A, B, and
D fields must be left blank, ‘

An example of the shift operation is shown in figure 6-4.

6.3 SCALE OPERATIONS

"Scale performs a shift operation that stops the shift when the two bits at the scale point in the A register
are not equal. The scale point is normally specified as being between bits 0 and 1 in the A register.

96836400 B 6-3

-9

CARD VALUE T P/Ms NICRO-EN
16
16 t 88t 7268 2008 9
19

CARD VALUE T P/us WICRR-0EW

g 00¥9£896

Locevien ¥ . . o s [6 CONMENY
. SVERFLOY EYMIRLE

a001 » ° s OVERFLOW SAVER TN S/N REG
. NOTE THE OUERFLOM BTV TN S/8 STAVS SEV UNTIL IF IS ENPLICITLY. CLEARED
Lecavion ¢ . . 'y s ¢ o cemmguy

Figure 6-2, An Example of an .Ovorflow Operation

DIAGNOSTICS

OJAGNOSTICS

g 0079¢896

CARD VALUE T P/MA NICRO-MEM LOCATION F A 8 0 S c L1 COMRENTY DIAGNOSTICS
21 SUS TSI ISIUIIIINIIINIGITEIINITIIUISINESIIIOUTISI SIS INNISIUIGIIINISITINEIINEINS
22 . DOUBLE PRECISION OPERATIONS USE THE A® REGISTER AS TNE .
23 . LOW ORDER EXTENSION OF TME REGISTER IN THE A FIELD AND USES .
24 . THE X® REGISTER AS TME LON OROER EXTENSION OF THE REGISTER IN .
23 * THE 8 FIELD. RESULTS ARE AUTOMATICALLY ROUTED BACK TO TME A® REG. .
26 (IITIYIYITS LDV PR YT YT PR LT P TN PY IS YT Y PAL PO L PN T Y PRY PR P LY PR DL PR A T Y POy Y T Y
28 0 082 5615 0A00 8 AeB SML B6 SM [] SET DOUBLE PRECISION
30 . ASSUNE A® MAS THE LOWER HALF OF ONE NUMSER
k1% . ASSUME X® HAS THE LONER MALF OF ANOTHER NUMBER
32 L4 THEN THE FOLLOWING INSYRUCTION,
3% 1 002 7110 2000 8 ADD A X [}
36 . GIVES THE RESULT THAT AsA® = AyA® + X, X*
37 4 HONEVER THE FOLLOWING INSTRUCTION
39 9 003 7067 0000 B ADD P Q F
(13 4 GIVES THE RESULT THAT F,A® = P,A® ¢ Q,X*
CARD VALUE T P/MNA NMICRO-MEN LOCATION F A 8 0 S c L4 COMMENT DIAGNOSTICS

Figure 6-3, An Example of a Double-Precision Operation

9-9

g 00¥9ER96

CARD VALUE T P/8A NICRO-NEN LOCAVION F A 8] L e L1 CONNENT DIAGNOSTICS
(1} . SHIFT EXANPLE, ASSUNE (M) IS 6 INITIALLY
&6 t 003 7C00 2080 € AGLEA) LEFT SHIFY AQ ENO-AROUND
& . . 6 PLACES, tN) = FF AFTER INSTRUCYION EXECUVES.
(1] . SHIFY WOST SIGNIFICANY 8-BIY CHMARAGTER INTO Q AFTER CLEARINGG
51 e 006 0808 1000 2ERO Q N=e TERD Q AND SET N TO 8
$2 1 88, 7CO0 2009 € AGLEA
S b ".:ct MOST SIGMIFICANTY RIT OF A INVO LSS OF Q AND NAKE ALL OTMER
s . 8IS »
56 0 00% DADS 101F N=3t ASSUNE WAVE 16 BIV we
(24 1 NS 7048 2000 € AQROE
CARD VALUE T P/NA NICRO-NEN LOCAVION ¥ A e [S c “v CONNENT DIAGNOSTICS

Figure 6-4. An Example of a Shift Operation

The maximum number of bits to scale is contained in the N register. On completion of the scale, the

N register contains the original specified maximum minus the number of shifts necessary to position
the number so the bits at the scale point are unequal. The A, B, and D fields of the coding form should
be left blank so the assembler can insert the correct values.

6.3.1 SCALE EXAMPLES

The examples depicted in figure 6-5 show a scale for a 16-bit machine and a 32-bit machine, In both
examples, assume that a number is positioned in the A/Q registers and has to be scaled, In the ones
complement example, an end-around scale is used to provide for the propagation of the correct value for
the least significant bits, In the twos complement example, a zero entry scale is used,

6.4 SELECTION OF OPERANDS FOR USE IN F FIELD OPERATIONS

The F field specifies an operation to be performed on two inputs, the A source and the B source, The
result of the operation is stored in a location specified by the D field or destination, The mnemonic
code specifying an A source is placed in the A field of the coding form (columns 17 through 22), The
mnemonic code specifying the B source is placed in the B field of the coding form (columns 23 through
28), and the mnemonic specifying the destination is placed in the D field of the coding form (columns

29 through 34).

In the object language output, the A, B, and D fields occupy three bits each and thus allow only for
specifying one of eight different sources and destinations, Since more than eight sources and destina-
tions may be specified in each field, the S field is used to provide alternate coding interpretation for
the 3=bit number in the A, B, and D fields. The CYBER 18 assembler accepts any of the specified
alternate mnemonics for the fields and provides an automatic S-field setting in the object code output.
The prime code set requires the setting of the S field, The result of the use of the S field to specify
alternate decodings of the A, B, and D fields leads to a possible conflict of mnemonics. The
resolution of this conflict is described in section 10 of this manual., The assembler also provides
diagnostic messages if any conflict occurs on a programmer's input.

6.4.1 A-FIELD OPERANDS
The A field in columns 17 through 23 of the assembler coding form is used to record the mnemonic
to specify the A input to the ALU, This operand may have up to two concurrent functional usages.

The A-field mnemonic may:

° Specify an operand that will be functionally combined with the B source

° Specify an operand that will be supplied as the output of selector 1 for transfer to some
register in the CYBER 18 system.

These uses of the A input will be covered in the examples in this section,

96836400 B 6-7

8-9

g 0079€896

CARD VALUE T P/WA
60
62 e 00
3 1 006
[1]
[14 " o7
L] 1 w7

CARD VALUE T P/NA

NICRI-MEN LOCATION F [] 8] S c nr CONMENT
L4 SCALE EXAWPLE ONES CONPLENENT ARITHMETIC 16 S8IY WP
0806 1820 N=32 SEV NAXINUN SHIFY
TEDO 2000 € SOLEA Ne32-NUNBER OF SNIFTS
. SCALE EXANPLE THOS CONPLENENT ARIVHNETIC 32 BITV WP
0808 1048 (1} SEV MAXINUN SHIFTY
TFCS 2000 € SOLOE N=GA-NUNBER OF SHIFTS
WICRO-NER LOCATION F A 8] S c Li4 GCONNENT

Figure 6-5. An Example of Scale Operation

OIAGNOSTICS

DIAGNOSTICS

There are two groups of A-input mnemonies:

® A inputs
® A' inputs
The A inputs do not use the S field for specifying the coding, while the A' inputs require the use of a

special code in the S field. The programmer should not include an S-field code if he uses an A' code
because the assembler will choose the correct S field, even if a D' field is also coded,

6.4.2 B-FIELD OPERANDS

The B field in columns 23 through 28 cf the assembler coding form is used to record the mnemonic
to specify the B input to the ALU, Depending on the mnemonic used, the B field has two functional
uses, It may:

° Specify an operand to be functionally combined with the A source

° Specify the referencing of an operand from the micro memory,
There are two groups of B-input mnemonics:

° B inputs
) B' inputs

The B inputs do not use the S field for specifying the coding, while the B' inputs require the use of a
code in the S field, The assembler provides the correct coding in the S field,

In the case of the B-input mnemonics of ZERO, N, K, and NK, two bits in the C field are used as
‘extensions of the B-field mnemonic, The assembler provides for generating the correct bits in the C
field and will also allow coding other information in the C field provided the information agrees with the
B-field required bits,

6.4.3 D-FIELD OPERANDS

The D field in columns 29 through 34 of the assembler coding form is used to record the mnemonic to
specify the destination of information from the main organization of the CYBER 18, There are four
sources of information for delivery to the specified destination. These are:

° The optionally shifted output of the ALU. This shifting occurs in a shifting network
(selector 3) that provides the shift on the output of the ALU,

° The direct (unshiftable) output of the ALU

° The output of selector 1 (input to the selector is specified by the A field)

° The output of selector 2 (input to the selector is specified by the B field)

96836400 B . 6-9

The destinations for information from the sources is indicated by the D-~field mnemonic,
There are four groups of D-field destination mnemonics:

D codes

D' codes

D" codes

DD" codes

The D codes do not use the S field for specifying the coding, while the rest of the codes require the use
of a code in the 8 field. The assembler provides the correct coding in the S field.

If an A' mnemonic is specified and a D' is specified, the assembler provides the correct code in the
8 field for this combination of alternate codes for the A and D fields.

The programmer should not include an S-field coding if the primed inputs are selected. (The assembler
will flag an error.)

6.4.4 EXAMPLES OF USE OF F, A, B, AND D FIELDS
The assembler output listing shown in figure 6-6 demonstrates basic use of the flelds discussed in this

section, In some cases, the S and C fields will also be used to demonstrate common programming
errors that are detected by the assembler,

6-10 96836400 B

q 0079896

CARD VALUE T P/MA

7t
73

75
76

78
79
80
81
82

(1]
85

14
(1}
89
90

92

9%
95

 OReORa

—-aro

009
009
00A
(L1
008

o0cC
L1 14
900
[1 1]

00E
00E

CARD VALUE T P/MA

11-9

MICRO-MEN

7125 0008
DEOE 2703

F184 0006
7051 200F
T448 000C
471A 2000
SEDF 0R0D

7110 2100
SAEG 0000
SCD6 2003

5615 0AO1
SA97 2A06

7000 0790
F100 2008

HICRO-MEN

LOQCAVYION F L3 A 4] S c NY COMMENT
. FeAeBoD FIELD EXAMPLES
ADD A Q A A= (A) ¢ Q)
A SM2 X K=3 X= (S/% REG 2)
. ALSO SET THE K REGISTYER TO CONTAIN VTHE NUMBER 3
ADO F1 F1 F1 K=6 (F1)6 = 2°(F1)3
ADD P 86 [4 15 P=(P)el FOR 16 BIT mP

ADD+ P ZERO P P=(P)e1 FOR 16 BIT MNP
ONE A 1 I=(A) F FIELD HAS NO EFF.
X Q* Q®sx)
ADD A X AAe
. A*s INIVIAL (ADy A = (A) ¢ (X}
L] Q x x=qQ)
A.8 X 86 X 3 X= BIT 3 OF Q
AeB Sm1 86 SMi 1 SETS SM1, BIT 2
A.=-B SMH2 86 su2 b CLEAR SM2 9IT &
. FOLLOWING CODE IS IN ERROR
ADD SMt CRTS A A AND 8 BOTH USE S
ABD. A N A K=31 C FIELD USED BY B FIELD
LOCATION F A B] S c L1g COMMENT

Figure 6-6, Example of the Use of F, A, B, and D Fields

DIAGNOSYICS

DIAGNOSTICS

INSTRUCTION ADDRESSING AND SEQUENCING 7

The micro memory of the CYBER 18 consists of up to 4096 micro memory locations where each location
is a 64-bit word that contains two micro instructions. The two micro instructions in a micro memory
location are referred to as the upper and the lower micro instructions, or a micro instruction pair.
Thus, a fully expanded micro memory has the eapacity of storing 8192 micro instructions.

For addressing purposes, the 4096-location capacity of the micro memory is organized into 16 pages,
where each page has 256 locations (or micro instruction pairs) giving a capacity of 512 micro instruc-

tions per page,

Each micro instruction is provided with an M field (coded in column 50 of the assembler coding form)
that specifies the location of the next micro instruction pair from which the next micro instruction will
be selected. The selection of the desired micro instruction of the next pair is determined by the coding
in the T field (columns 51 through 55 of the assembler coding form).

The M field specifies the mode of obtaining the next instruction pair from micro memory; e.g., jump,
return, or sequential to the next micro instruction pair. The T field specifies an unconditional selec-
tion of an upper or lower instruction from the next pair, an unconditional selection of the lower of the
current micro instruction pair, or a conditional branch taking either the upper or the lower micro
instruction of the next pair, depending on the condition,

7.1 M FIELD

The M field selects the next instruction pair and is coded in column 50 of the assembler input coding
form. The method of selection is described below:

Code Operation
S Sequential addressing. Select the next micro instruction pair as the next

sequential pair from the current pair, The next micro-instruction pair is
within the current page.

J Jump addressing. Select the next instruction pair from the location specified
in the C field, If the jump address is in the current page, a within-page jump
will be performed and the S field is available for coding. If the jump address
is in another page, the micro assembler will use the S field to specify the

~ page in a page-jump instruction.

96836400 B 7-1

Code Operation

R Return addressing, The micro memory address of the next instruction pair
is obtained from the RTJ register, The top four bits specify the page and the
bottom eight bits specify the address within the page. The RTJ register must
have been previously set up by correct coding in the S field.

blank The CYBER 18 assembler assumes the S~mode addressing.
The code selected in the M field may be overridden in two cases:

° If the T field has the code *L, the lower micro instruction of the current micro instruction
pair is selected regardless of the M-field code,

[If the C field contains the mnemonics specifying TMA/, TMAK/, GITMAK/, or
GITMAK/XT, then the transform addressing scheme replaces the M-field code.

7.2 T FIELD

The T field is located in columns 51 through 55 of the assembler coding form. This field is used to
select the upper or lower micro instruction from the next instruction pair to execute., This selection
may be unconditional or may be conditioned on the ALU output, value of bits in registers, reject
conditions, ete.

When micro memory is being read or written as an operand, the T field is used to address the refer-
enced micro-memory location and the upper instruction in the next sequential micro instraction pair is
- always selected,

The T codes may be used on all micro instructions, The T' codes are not available for use in micro
instructions that have a J in the M field (jump instructions) or for micro instructions that specify
N = value or K = value in the C field,

7.3 ASSEMBLER PROCESSING OF M AND T FIELDS

Ifthe M and T fields are left blank, the assembler will assume sequential addressing mode and will
choose a T code in the object code output to cause the next micro instruction to be taken as the next
sequential micro instruction.

Thus, if the current micro instruction is an upper, the *L code will be inserted for the T field, If
the current micro instruction is a lower, a U code will be inserted in the T field,

If a J is coded in the M field, the C field is interpreted as the location to be jumped to. The C field
may contain a symbol or it may contain a constant, A symbol is carried as a total micro-memory
location address and has an upper or lower property as well, A constant is interpreted as an upper of
a total micro memory location address,

7-2 96836400 B

The assembler compares the page of the location to jump to with the page of the current micro
instruction, If the page numbers are the same, a within-page jump is coded, and the S field may be
used for additional instructions. If the pages are different, a page jump is coded, and the page number
is extracted from the constant or symbol value and inserted in the S field for the object code., The
location within page is coded in the C field of the object code. If the programmer has used a value in
the S field and a page jump is coded, a diagnostic will be generated,

7.3.1 SEQUENTIAL ADDRESSING

Sequential addressing is automatically generated by the assembler if the M and T fields are blank, or
the programmer may specify the addressing. The example in figure 7-1 shows assembly output of two
sequences of code to show two ways of specifying sequencing. The arrows in the diagram show the
program flow,

In figure 7-2, the instructions with NOP coded in the D field are not executed, but the other instructions
with coding are executed. The arrows again show the program flow, This example shows how it is
possible to interleave two paths of program flow through one set of micro memory locations, An alter-
nate program could use the locations specified by the NOP in the S field,

7.3.2 JUMP ADDRESSING

In jump addressing, if no T-field value is specified, the assembler selects the T-field value to get to
the instruction addressed. However, the default T-field selection is suppressed if the programmer
specifies a value in the T field,

The example in figure 7-3 shows four methods of arriving at a specific micro instruction,

7.3.3 RETURN ADDRESSING

Return addressing causes control to be returned to the micro-instruction pair specified by the contents
of the RTJ register. The programmer must specify a value in the T field to get a correct return loca-
tion (upper or lower of the micro instruction pair). The RTJ register may be set any time by placing
the mnemonic RTJ in the S field of a micro instruction, The address stored into the RTJ register is
that of the next sequential micro-memory word following the instruction with RTJ in the S field, Both
page and address within a page are stored in the RTJ register,

The example in figure 7-4 shows use of return addressing, In this example, a jump is made to the

routine SUB which tests the value in the A register and returns to the lower of the following micro-
instruction pair if the value is negative, and returns to the upper of the pair if the value in ‘A is positive.

96836400 B -3

-4

g 00%9£896

CARD VALUF T P/WA WICRO-NEW LOCATVION F [}] 0 S c L1 COMMENT DIAGNOSTICS
98 . . ASSENBLER GENERATED SEQUENTIAL ADDRESSING

100 © 0 O00F SFIf 0000 . ¢ A A X)

10t 1 OOF S&ES 2008 - L] Q AE

102 0 010 SENG 0000 o A x Q

106 . PROGRAMNER SEQUENCE. NOTE SANFE NICRO CODE GENERATED.

106 0 011 SFiE 0000 ¢ A [X seL

107 1 011 S&ES 2080 - 8 Q A su

108 o 012 SFDB 0060 o A X Q seL

CARD VALUE T P/HA MICRO-MEM LOCATION F [8 [} s ¢ nr COMMENY OTAGNOSTICS

Figure 7-1, An Example of an Assembler-Generated Sequential Addressing

€ 00%9€896

-l

CARD VALUE T P/mA

11

113
116
115
116
117
118
119

omrOmara

013
013
016
016
015
015
016

CARD VALUE T P/NA

NICRI-MEM

SFLE
5808
S4ES
56808
5608
SED8
SADE

2900
2000
“oo0e
2000
gooc
2000
9900

NICRI=-MEM

LOCATION F A

. [} A

* e

*

- A x

. ZERO

LOCATION F A
Figure 7-2,

8 L] S c LAJ COMMENT

FURTHER SEQUENTIAL ADDRESSING

X su
o]
Q A 118

NoP
NOP
Q Su
X L
8 2 S c nr COMMENT

Further Examples of Sequential Addressing

DIAGNOSTICS

OIAGNOSTICS

9-L

g 00%96896

CARD VALUE

122

126
12%
126
127
1268
129
138
131
132
133
136
135

019
019

T

P OrOrOOr O™

PINA

016
017
"z
018
019
019
[2Y)
3%}
018
018

CARD VALUE T P/MA

MICRO-MEN

9808 2019
9808 2019
38D8 2019
98ne 2019
5808 00680
5808 2000
9808 4019
9808 4019
9808 4019
9808 4019

MICRO-MEN

LOCAYION

+LOCA
-Loce

LOCAA
Loces

LOCATION

JUNP ADDRESSING

Loca
LOCAA
LOCA
Locs
NOP
NOP
Loce
Loces
Locs
LOCA
EQU LoOCA
€EQU LoCB

F A 8 0 S c

L1 COMMENT

p
Ju

gge-

L1 COMMENT

Figure 7-3. An Example of Jump Addressing

OIAGNOSTICS

OIAGNOSTICS

€ 00%9€896

L-L

CARD VALUE T P/MA

138

140
162
162
143
1hb
145
146

,ODrOre

(.33
0icC
010
01D
81€
F
0rF

CARPD VALUE T P/NA

NICRO-MEN

9808 2E58
560p8 2000
5808 8080
5808 2000
SFi8 Co00
1808 4008
1808 2000

MNICRO~NER

LOCAYTION

te e

sus

*

LOCATION

RETURN ADORESSING WOCE

RYJ
noP
NOP
A [} NOP
F A] 0 S

nr

COMNENT OIAGNOSTICS

RETURN LOCATION UPPER
RETURN LOCATION LOWER
SUBROUTINE TEST (A)
RETURN LONER(A=)
RETURN UPPER(AS)

CONRENT OIAGNOSTICS

Figure 7-4, An Example of Return Addressing

7.4 M- AND T-FIELD EXAMPLES
An example of the M- and T-field use is shown In figure 7-5.
Subtract the X register from the P register; if the results are negative, add (X) to (A) and place the

results in the X register. If the results are positive, add (X) to (X) and place the results in the X
register,

7-8 96836400 B

g 00798896

6-L

CARD VALUE T P/WA

149

151 0 020
152 0 02t
153 1 o2
15% o e22

CARD VALUE Y P/WA

MICRN-MEM LOCATION F L] 8 D S c Lg COMMENT
. M AND T FIELD EXAMPLE
6858 CO00 0 sus P X NoP SNy
711E 2000 9 ¢ ADD A X x su
T0DE 2000 3 - ADD X X X
S808 9000 ¢ noe NEXT INSTRUCTION
MICRI-MEN LOCATION F A 8 0 S [. COMMENT

Figure 7-5, An Example of the M and T Fields

DIAGNOSTICS

DIAGNOSTICS

S FIELD (SPECIAL FIELD) 8

The special field (S field) is coded in columns 35 through 40 of the assembly coding form. If this field
is not used by the assembler to specify alternate translations for the A, B, or D fields, it may be used
by the programmer to specify a special instruction, it may contain a constant, or it may contain a
programmer-defined symbol,

8.1 S-FIELD MNEMONICS

The mnemonics specifying alternate A-, B-, or D-field codings are not normally used by the program-
mer and are automatically generated as required by the assembler,

8.2 EXAMPLES

The code shown in figure 8~1 counts the number of 1 bits in the register., If a 16~bit micro processor
is used, with twos complement arithmetic, the total of the number of 1 bits ends in the Q register,

The code at HERE adds X to itself to get a left shift of 1, and the COL in the T field checks for carry-
out of the high order bit if it was a 1, If there is no carry-out, the upper instruction at HERE is
repeated, If there is a carry-out, the lower instruction is performed, which adds one to the A register
and jumps back to HERE, Each execution of the instruction at HERE counts N down by one, When N
"i8 counted down to zero, control goes to the next sequential upper instruction since a twos complement
adder is assumed that would leave all zeros in the X register after the 16 additions of X to itself,

96836400 B 8-1

d 00%9€896

CARD VALUE T P/MA

157

159
168
164
162
163

BrO0

822
023
02
026
825

CARD VALUE T P/Ma

MICRO-MEN LOCAVION F [} L] 1] S c "
4 S FIELD REPEAT EXANPLE

08D8 3010 ZERO Q N=16

S4DS 200F 8 a6 A 13 Su

TODE C288 D ¢HERE A00 x x X 144 sGoL

8123 2024 6 - ADD A Q Q HERE J

5808 o000 . NOP

NICRO-NEN LOCAFION F [} e 1] H c "

COMMNENTY OIAGNOSTICS

CLEAR Q, SET RPT COUNT
1 70 A

TEST uSH OF A

COUNTY A & BIV

NEXT INSTRUCTION

GONNENT 0IAGNASTICS

Figure 8-1, An Example of the S-Field Coding

C FIELD : 9

The C fleld (columns 41 through 49 of the assembler coding form) can be used to specify the next
instruction pair (if the M field is J), as a constant for setting the K or N register, as a constant for

specifying the bit address for the bit generator, or it may be interpreted as additional special instructions
similar to the S field.

9.1 EXAMPLE OF C-FIELD CODING

If the M field is coded with a J, the C field is used as the address of the micro-memory location to

jump to, The examples in figure 9-1 show legal and illegal use of the S field in conjunction with the
C field,

9.2 MULTIPLY AND DIVIDE EXAMPLES

Examples of multiply and divide codes implemented in a 16-bit micro processor using ones complement
arithmetic are shown in figures 9-2 and 9-3,

96836400 B 9-1

2-6

 00%9¢896

CARD VALUE

168 200

175 08
176

CARD VALUE

T P/MA

- ® roresre
=

WICRO~NEN

9FLE &S0
9008 3400
9FLE 23500
9808 2080
9808 3400
9808 2000

5008 000
WICRE-NEN

LOCATION F A 9
. SJUNP SANPLES
oRG 200X
] L]
A A
LOCNS
(11}}
LOCN2
LOCATION F [} []

Figure 9-1, Example of C-Field Coding

LOEA
LOEA

nor
nor

Locwe
LocN2
Locw2
200x
e X
(112

GOMNENT

JUNP IN BANK

JUNP OTHER BANK

JUNP OTHER BANK (S ERROR)
JUNP THIS BANK

JUNP TO § PAGE &

JUNP TO PAGE & (S ERROR)
SVARY PAGE &

INSTRUCTION IN PAGE 2

GOMMENT

DIAGNOSTICS

DIAGNOSTICS

g 0079€896

CARD VALUE T P/NA

178
179
180
161
182
183

184
185
186
187
188
189
190
191
192
193
196
195
196
197

030

OrCcOoOMO OrOd

830
031
031
032
032
033
036
03s
035
036
036
037

CARD VALUE T P/MA

€-6

MICRO-NMEM

OF18 Co00
GAEZ 0045
SEDS Co00
AODE 0046
D800 300F
5808 29F2
SF10 22F2
7110 22F2
4110 6000
8110 2037
BAE3 2037
5808 0000

HICRO-NEN

(1]

LOCATION F A]] S c nr COMNENT OIAGNOSTICS
[T TV LYYy Y YL T T YT IN YRy PRRL Y PR TV YT PYTYIYY YA ILLYYVLL PAYYYY YT Ly
4 MULTIPLY A 8Y X PRODUCT 1O AG 16 BIT NP .
. NULTIPLY WORKS ON POSITIVE NUMBERS SO PROVIDE LEAD IN TO 4
. CALCULATE SIGN OF NEGATIVE INPUTS AND CORRECT AT END .
L CODE IS WRITTEN FOR ONES CONPLENENT INPUT NUMBERS .
Y LY YYITYY PET T PPy PP Y P P TYY VY PPT PP T PP P Y Y PY T PYY PRT PP vy TY VY YR Y Y VYA Y Y Y Py Y YY)
cHPL INDICATE ONES COMPLEMENT
ORG 30X
nLY A A Q K=0 SNU CHECK SIGN
* -8 Q Q INCK CONP Q FOR POSITIVE
A X SNU CHECK SIGN OF X
3 -A X X DECK GET POS X AND SIGN IN K
ZERD A N=15 CLEAR A SET TIMES COUNT
RQROE SLGL WAKE FIRST STEP TESY
3 A A A RPT RQROE LOL MUL ITERATION LOOP
- ADD A X A RPY RQROE LOL MUL ITERATION LOOP
-A A A SXZu EXIT OM POS SIGN TEST RE
* -A A A EXTY J POS RESULT RECOWP A
- -8 Q Q EXIT J NEG RES COMP Q
EXIT NEXT INSTRUCTION
LOCATION F A 8 D S c LiJ COMMENT OIAGNOSTICS

Figure 9-2, Examples of Multiply Codes

-6

CARD VALUE T P/MA
199
200
204
202
203
206 1 037
205 9 038
206 1 038
207 e 039
208 1
209 0 03A
214
213 1 03
215
217 0 033
218 1 038
219 0 03C
220 1 e3C
222
226 0 030
225 1 030
227
229 0 O3
230 1 03
231 0 O3
233
23S 1 03F
237
239 0 040
268
243 1 060
264 0 041
245 1 06t

CARD VALUE T P/MA

 00%9£896

MICRO-MEM

SF1F
6110
5808
GAE3
D2€EF
SEDA

coeo
2000
4000
0000
3000
Co61

4B80E 2000

SF10
6910
7110
5615

070
COFe
coro
2A0€

7110
6910

c270
ca2ro

7110
SF10
7110

2000
4076
[{1]]

SFS8 CO0St

SAE3 0000

S2A8
8110
9808

ceoo
2037
2037

MICRO-HEN

4

LOCATION F . 8) s c NT COMNENT DIAGNOSTICS
SOSISTVSIGU IS ICOOUSISTITIGTIIIPITISUSI GBI VIS IIOITUSI SISV IOININIIES
. DIVIDE AQ BY CONTENTS OF X. USES ONES CONPLENENT REP .
. THIS ROUTINE MAKES OVERFLOM TEST AND SETS 8IY IN SNi IF PRESENT .
. F REGTSTER IS USED TO CALCULATE SIGN OF QUOTIENT .
PV IS UIUICI SISO UGV TI TSIV ITITISU IV USIVISIVISSU TS IITEIITIIISITISITIENIISIISS
DIVIDE A A F SNU CHEGK SIGH
. - A A SU NEG COMP A
- NOP SL POS, LEAVE ALONE
. -8 Q Q NEG COWP Q
EOR X F F N213 QUOT SIGN IN F, SET CTR
A x 1 CLRF/1 SNU SAVE X IN T SET 25 CONP
cwe2 INDICATE THOS COWPLENENT
o x x GET POSITIVE X
. CHECK FOR OVERFLOW
A a A ROLXN SHIFT AQ LEFT 1 -
sus A x A ROLXN SCOL TEST DIVIOE OVERFLOW
. A0 A X A RQUXN SNU
- AtB SW1I BG sMi 14 SET BIT 14 DIVIDE OVERFLO
. DIVIOE ITERATION LOOP
. 00 A X A RPT RQLXN NU
- sus A X A RPY RQLXN NU
. END CORRECTION A IS 1 LEFT AND MAY RE 1 TO WANY SUBTRACTS
* ADD A X A su
- 2 A A *ROE st
. ADD A x A
. CHECK SIGN OF QUOTIENT
» F SETF71 SNU SET ONES GCONP
cuey INDICATE ONES COMPLEMENT
. -8 0 a COMP QUOTTENT
. CHECK SIGN OF REMAINDER AND CORRECT A
- €EOR I F SNU CHECK REN SIGN
. - a A EXTY J DONE
- EXIT 3 OONE NO GHANGE
LOCATION F A 8 0 s c WT COMMENT OIAGNOSTICS

Figure 9-3. Examples of Divide Codes

SELECTING NONCONFLICTING MNEMONICS 10

The proper selection of a mnemonic for a field depends on the mnemonics used in the other fields (table
10-1 lists permissible combinations of codes). This is an inherent characteristic of the CYBER 18 and
is a result of maximizing the information content in the instruction repertoire, This means that the
most frequently used operands require less space than the less frequently used operands,

TABLE 10-1, LEGAL F, A, B, D, AND S COMBINATIONS

F FIELD A FIELD B FIELD D FIELD _ S FIELD
Arithmetic or logical A B D Unused
A' B D AP
B! D BP
B D' Dp
A’ B D' APDP
A B D" DPP
A B DD DD
Shifts or scale b b b Unused
b b NOP Unused
Where: b is a blank field
A, A', B, B', D, D', DD are types of A-, B-, and D-field codes
AP, BP, DP, APDP, DPP, DD are values supplied by the assembler

Each instruction also consists of a maximum of four independent and concurrently executed functional
operations; this further reduces the effective instruction execution time, Their associated fields are
also dual, in the sense that they can be used to specify less frequently used operands for other fields.

The instructions are further enhanced through a merging of firmware/hardware concepts in the trans-
form boards. The transforms provide functions that would normally require several instructions
(without a transform). A transform is essentially the mapping of bits within the CYBER 18 architecture
including any desired constants to the MIR, MA, N, and K registers. The transform resultant can
modify both the state of the registers and the instruction sequencing. The assembler flags ambiguously
coded instructions with an assembly error message. See figure 10-1,

96836400 B 10-1

2-01

q 0079£896

CARD

267
248
249
250
254

252
253
254
255
256
257
258
2%9
260

264
262
263

264
26%

267

268
269
270

27
272

273
274
275

276

t144
278

CARD

VALUE 7 P/NA NICRO-MEMN

842 7042 8008
042 7842 2780
063 7042 0700
063 SFOE 2800
SFOE 0800
Obbs SFIC 2900
045 SF1C 0900
05 S5C25 2A00
086 5C25 0ASS

O rOHrOrOMrO
3

046 0O8DS 3021
067 DB8DS 1021
087 S808 2080
CA8 9808 4047

@ re D

048 S54C6 2008
049 S54C8 0008

- -

049 7C90 2000
06A 7C98 0000

o

13 LINES CONTAIN ERRORS
VALUE T P/HA NMICRI-MEM

DIIAO

mm

LOCATION F [8 0 H ["y CONNENT
SO ISV IPISUSSITIIIUV TV IS TIPSV SUSSSVOUTII SIS IO TI TS PIST I TISTITISIISI IS
b4 EXAMPLES OF CONFLICTING MNEMONIC SELECTION AND ASSEMBLER ERROR cooss .
. BLANK FIELOS ARE AVAILABLE FOR USAGE
D AND S FIELD CONFLICTS M
..U'..CO.I..OO.'.l....‘.l..‘.........0'...0"..0..‘0‘.‘.....'.0.000...".O..I.'.
D P F2 1 HALY LEGAL
ADD M1 F2 1 HALT ILLEGAL
ADD Mg F2 1 LEGAL
A A cRTY X . LEGAL
A A CRTJ X L8EA ILLEGAL
[) A X " LEGAL
A A x "t READ ILLEGAL
A.8 sm1 Q SM1 LEGAL
A.B SML Q@ SM1 RTJ ILLEGAL
SSSSUTVIIVUISUITITIST S ST VIOV TSI T TSI PV VIS ISP PSS UGS SIS IVITITEISSBININES
. T AND C FIELD CONFLICTS .
SEUSSSCIUSSSUVT RIS II ISV IIBISSUS IV TSIV IV SR SIS ST TSIV S ST IGIITIIISSITIVIIISIIIES
N=33 T} LEGAL
N=33 LaL ILLEGAL
LABY 256 LQL LEGAL
LABY JLOL ILLEGAL

SO SITSPUSIVCIGTI IS OIS IS IS SIS USIVIUSI IS VI SPIU TIPS IS IITIICSSITILTSTISIINISIILY

. 8 AND C FIELD CONFLICTS ’ .

PUBSSEVESSITTSIIEISIPIIVS I SIS U TTIVISII TSIV ISSTISTIUII IS ISUTIINOIVIIIIBINIINISIINS

N 31
N 108

ILLEGAL
LEGAL

S SISUISIITICEVIUSIUTISIISSIISCUILIIBIITIIDISIIIINITVIIISIILIIIBISISITIFISININNG

. SHIFT FUNCTION AND A OR B FIELD CONFLICY .
(XTI TTYR PRI IR PO e PR VT Y Y R Ty R e e Y YTy T Y Py Py Y Y YV Y Py PV Yy TPy Y

ALEA A ILLEGAL
ALEA Q ILLEGAL
END

LOCATION F A 8 o S < Lig COMMENT

Figure 10-1, Examples of Conflicting Mnemonic Selection and Assembler Error Codes

DIAGNOSTICS

17

17
17
17

19
19

Rl

DIAGNOSYICS

ASSEMBLY ERROR CODES

n

The assembler prints numeric error codes to flag and diagnose incorrect assembly statements, When a

statement is in error, one to four error codes are listed to the right of the statement to describe the

problem, Table 11-1 contains a list of the Micro Assembler error codes. Figure 11~1 is an example
of a listing containing error codes,

TABLE 11-1, MICRO ASSEMBLER ERROR CODES

NUMERIC
CODE MEANING OR CAUSE
1 The A code is set by a shift operation in F,
2 The A code is undefined,
3 The B code is set by a shift operation in F,
4 The B code given is undefined,
5 A C- and M-field conflict occurred,
6 Cannot reach page; the S code is set and cannot be used to reach the page
specified in the C field for the jump command,
7 C- and B-field conflict.
8 The C code given is undefined,
9 A multiply-defined label was encountered,
10 Not used.
11 The D code is setting an S code in conflict with A or B,
12 The D code is undefined,
13 The EQU pseudo instruction needs a symbol in the label field,
14 The F code is undefined.
15 The M code is undefined,
16 A different S code is set by the A and B fields.
17 The 8 code is already set by A, B, or D,
18 The S code is undefined,
19 An illegal T code was given for a jump, N=, or K=,
20 A T code is required but is not specified; it is assumed to be U,

96836400 B

TABLE 11-1, MICRO ASSEMBLER ERROR CODES (Continued)

NUMERIC
CODE MEANING OR CAUSE

21 The T code is undefined,

22 An undefined symbol was encountered; the field containing the symbol is
specified in the next integer.

23 There is an illegal character in the HEX, DEC, or OCT constant,

24 Not used

25 The numeric value is not in the range (0 - $FFF)

26 The micro-memory location is greater than 4, 095,

27 The first character on the card is not *, §$, +, -, or blank,

28 The shift code in the C field is illegal when the S field contains the LSEA
instruction,

29 The D field must be an NOP if:

1, The F fleld is a shift or scale, or
2, The B fleld is MMU or MML,

30 KZU in the T field is illegal if the C field is INCK,

31 NZU in the T field is illegal if the C field is INCN,

32 Macro-memory read in the C or S fields is illegal if the instruction time
is E or F,

33 The A field may not be blank on an EQU card, The symbol in the L field is
undefined, }

34 This location has already been used, The next integer specifies the
numbering of the card that caused the location to be previously assembled,
This instruction overrides the one previously assembled,

35 Not used

36 The address is out of range (less than zero or greater than 4, 095).

37 A symbol in an address expression is longer than eight characters,

‘38 The number of spaces requested between characters on the deadstart object
cards is less than zero or greater than three, If this error occurs, one
space will be punched between characters,

11-2 96836400 B

TABLE 11-1, MICRO ASSEMBLER ERROR CODES (Continued)
NUMERIC
CODE MEANING OR CAUSE
39 An error has caused the label in columns 2 through 9 of an EQU card

not to be defined, The error may be one of the following:

Use of a symbol that has not been previously defined in the

EQU expression,

Use of a symbol that is larger than eight characters in the

EQU expression,

The value of the EQU expression is greater than 4, 095 or

less than zero.

In addition to the error codes in figure 11-1, there are four other conditions:

Message

*+xxkCHECKSUM ERROR*****

STOP 5

STOP 444

STOP 777

96836400 B

Printed

At the end of the source code
listing, The error is detected
in pass 2.

CYBER 18-17 system: On list
output device when the error
occurs. The error is detected
inpass 1.

CYBER 170/70/6000 system:
In dayfile.

CYBER 18~17 system: On list
output device when error
occurs. The error is detected
in pass 1.

CYBER 170/70/6000 system:
In dayfile.

CYBER 18-17 system: On list
output device when a FINIS
card is read.

CYBER 170/70/6000 system:
In dayfile.

Meaning

Contents of the address in object
code output to contain twos
complement checksum was not
zero, The object code output is
produced without a checksum.

Binary object code. The page
read from mass storage was not
the page requested., An error
was detected in subroutine
GETPAG.

Symbol table overflow; more
than 10, 000 symbols have been
defined.

This is not an error. It signifies
normal job termination.

11-3

-1t

q 00%9€896

CARD
1

PNEwWwN

CARD

VALUE T P/MA MIGCRO-MNEM

000

000

00A
00A 5808 0000
00A 5808 2000
008 5808 0000
008 93D8 200A
00C 58D8 0000
00C S8D8 2000
00D 5808 0000
00D S8D8 2000
00E S58D8 0000
00E 5808 2000
00F 5808 0000
00F 5808 2000
010 BFFF OFFF
010 5808 2000

- 011 7C80 DOOO
081 7C80 2000
012 SS70 0700
012 SEL0 2700
013 SE18 0700
013 S&D0 2880
014 5800 0800
014 S&C8 2008
015 0808 OFFF
015 9808 2300
016 D8D8 100F
016 9380D8 200C
017 9808 200C

Ol OH+OHOHOROMONOFROROHMORAOROrO

00A

00A 565D 0000
000

27 LINES CONTAIN ERRORS

VALUE T P/MA MICRO-MEM

W B®MM

LOCATION F

b]

A 8 S
_IDENT DIAGNOSTIC EXAMPLE FOR T

c
HE MP ASS

nr

COMMENT

ENBLER

SIPBSTVIUIIIFIT IS IS IV TISI ISV CGIFISC IS ISV UIVIISSIVVTIUT LIV IBLVSSUBIISFIIIIR S

. DIAGNOSTIC EXANPLE

.
-
»

SNBSSV SUTADIVISUSIISII TS SIIVIINTISDESS IS NI ISTIBU ISPV SICUTSISSIITRISI SIS IS

TROUBLE EQU
EQU s
0RG AX
SYM
NOP
SYM
Loc
NP
|
A
XML
X
ALOE X
ALOE X
A® INTA
SM1 A®
SM1
INRD
A®
N
ORG 10
AeB P X A
ORG 5000
END
LOCATION F A 8 0

Figure 11-1,

NOP

READ
LBER
GATEX

READ

SYN

JOE

DECK
N=35
100X
N=16
Loc
toc

8TL

LaL
JLa.
Ju

L1g

UNDEFINED EQUATE
UNDEFINED LASBLE

FIRST SYMBOL DuP

OUPLICATE SYMBOL

USE OF DUP. SYMBOL

GOOD STATEMENY
UNDEFINED FUNCTION
CAN’T USE Q AS A INPUT
CAN‘T USE A AS B8 INPUT
UNDEFINED DESTINATION
UNDEFINED S CODE
ILLEGAL CHAR IN COL 1
UNDEFINED C FIELOD
ILLEGAL M CODE

ILLEGAL T CODE

AsB MUST BE BLANK

AeB MUST BE BLANK

AyB CAN’T BOTH BE PRIME
A®¢D** TLLEGAL

A' S GCONFLICT

8¢ S CONFLICT

0’ S CONFLICT

B AND C CONFLICY

C AND M FIELD CONFLICY
NEED S FIELD FOR PAGE
ILLEGAL T FOR N=
ILLEGAL T FOR JuwP
LEGAL T FOR Juwp

ORG OVER EXISTING COOE
ORG TO NON-EXISYANT LOC.

COMMENT

Assembler Diagnostic Example

33
13

34
25

DIAGNOSTICS

18

10
36

DIAGNOSTICS

EXECUTING THE CYBER 18 MICRO ASSEMBLER A

EXECUTING THE MICRO PROCESSOR MICRO ASSEMBLER
UNDER MSOS 4 ON THE CYBER 18 COMPUTER

The following control cards will put the Micro Assembler into execution on an MSOS system:

Control Card Description
*BATCH Calls the job processor.
*JOB
*K, Lff ff is the logical unit of the FORTRAN line printer. The first character of
the output line is treated as spacing control.
*K, Prr rr is the logical unit of the object output device.
*K, Iss 88 is the logical unit of the source input device.
*MP Calls the Micro Assembler. The assembler reads from the source input

device (ss), and prints on the FORTRAN printer (ff). If binary output was
requested, it will be punched on the object output device.

*Z Signs off the job processor.

EXECUTING THE MICRO ASSEMBLER ON A
CYBER 170/70/6000 SERIES COMPUTER

The following program call card causes execution of the Micro Assembler on the CYBER 170/70/ 6000
It assumes the Micro Assembler is part of the system library,

MASSEM (pl,p2,p3) pl is the logical file name of the file on which the micro program source §
resides. The default is INPUT,

p2 is the logical file name of the file on which the assembler writes the
source listing. The default is OUTPUT.

p3 is the logical file name of the file on which the assembler writes the
object output. The default is MP17BO.

96836400 C A-1

OBJECT CODE OUTPUT FORMAT B

FORMAT OF RELOCATABLE OUTPUT DATA

The binary output produced by the assembler is in a format that exactly matches the format of relocatable
binary programs read by the system loader on an MSOS system for a CYBER 18-17 computer., The 1
relocatable binary consists of four different kinds of records:

° NAM
. ENT
[RBD
[XFR

When the data is output on a CYBER 170/70/6000 Series computer, all records are sixteen 60-bit words
long. A 7/9 punch, sequence number, word count, and checksum are included to make the 16 words
match the punched card format of a CYBER 18-17 computer. When punching the assembler's relocatable
output to cards for subsequent reading on a CYBER 18-17, care must be taken to assure that the CYBER
170/70/6000 system card punch driver does not add its own sequence numbers and checksums to those
generated by the assembler,

When outputting data on the CYBER 170/70/6000, unformatted FORTRAN writes are used. The FORTRAN
run-time package is used for 1/0 on the CYBER 170/70/6000.

When data is output on a CYBER 18 computer, the data records are of varying lengths:

. NAM 34 sixteen-bit words 1
° ENT 5 sixteen~bit words

° RBD 56 sixteen-bit words for all RBD blocks except the last. The last RBD block
has from four to 56 words, depending on the amount of
data remaining.

. XFR 4 sixteen-bit words
If the data is output to a card punch, the MSOS card punch driver will add a 7/9 punch, sequence | |
number, word count, and a checksum to each record. However, if the output device is not a card

punch, the 7/9 punch, sequence number, word count, and checksum are not output to the device.

When outputting data on the CYBER 18-17, MSOS FORMAT writes are used. The FORTRAN run-time
package is not used for I/0 on the CYBER 18,

96836400 C B-1

FORMAT OF DEADSTART OUTPUT DECK

The deadstart deck contains both data and control character strings. Control strings are punched one
string per card. Micro~memory data is punched to optimize the number of complete 32-bit instructions
per card, depending on the number of spaces to be punched between characters. The cards in table
B-1 are punched with the assumption that a master clear (which clears the FCR) was done just prior to
setting SM204 (which causes deadstart to commence).

These deadstart control cards are designed to be acceptable in the general case. No transmission is
allowed to the CDT console during deadstart to handle the general case where the baud rate of the panel
during deadstart is different than that of the CDT console. After deadstart, if the user wishes to see
control characters typed on the panel CDT, he should type:

J40:

J58:

When outputting data on the CYBER 170/70/6000 computer, formatted FORTRAN writes are used, The
FORTRAN run-time package is used for all I/0 on the CYBER 170/70/6000,

When outputting data on the CYBER 18-17 computer, MSOS FORMAT writes are used. The FORTRAN
run~-time package is not used for I/0 on the CYBER 18-17,

Whichever computer is used, the deadstart card images are 80 characters each.

Figure B~-1 is a listing of a deadstart deck that was produced by assembling the program listed in
Appendix C.

TABLE B-1. DEADSTART DECK FORMAT

TYPE CARDS MEANING

1 K20089000G Set up FCR register.

Select K register for display 0.
Select FCR for display 1.
Select MICRO mode.

Suppress console transmit.
Enable micro-memory write.

2 L00G Clear K register.

3 J01G Select N register for display 0.

4 L00G Clear N register.

5 JOCG Select micro memory for display 0.
6 L Begin load of micro memory.

B-2 96836400 C

TABLE B~1. DEADSTART DECK FORMAT (Continued)

TYPE CARDS MEANING
7 Data Micro~-memory data in 32-bit micro instructions. Each instruction
is terminated with a G. The number of instructions per card depends
on the spacing.
Spaces Instructions per card
0 8
1 4
2 2
3 2
8 K9A088000G Set up new FCR register. After all data has been punched:
Select RTJ register in display 0.
Select SM2 register in display 1.
Select MICRO mode.
Suppress console transmit,
Disable micro-memory write.
9 K00000000G Clear SM2, This card stops the deadstart hardware from reading
more cards.
K20089000G
LOOG
Jo0o1G
LO0OOG
JoCG
L
94DEZ2505G D8DF3909G 54D500909G D8DD3 003G
C6DEO0OOFFG 54E04880G 711DO0O0O0O0G 54 D0EO1FG
94DE2500G 54 E84880G 711D6044G 000092DAG
5 8DE894CG 98DC4902G¢G 5 DODEO OO0 G 86 DE4 002G
98D82DO0S8S8G 58D82000G
K9 A088000O0G
K0O0OO0OOOO0OG
Figure B-1. Deadstart Deck Example
96836400 C B-3

MICRO-MEMORY CHECKSUM | C

The checksum option, available with the object code output options (DEAD and RELO), is very useful
when the programmer wishes to be able to initially or periodically verify that the micro program is
intact in micro memory, Caution must be taken to ensure that the memory included in the checksum (all
memory within the bounds of the assembled program) is not changed by normal program function, If it is
changed, the checksum routine, coded as part of the user's program, will detect an error,

The code in Figure C-1 illustrates one way of coding a checksum routine that will run on either a 16-bit
or a 32-bit micro processor. It is nine words long and occupies the first nine locations of micro
memory. Following are some notes to help clarify its operation:

96836400 B

When starting a micro processor after a master clear, the first location executed is 0 lower.

This checksum routine requires the program to be N blocks long where a block is 128 words.
There are two blocks per page and 16 pages of micro memory in the maximum configuration,

K7L must be coded in the T field when reading micro memory to allow reference to the
least significant bit of the K register to determine which half word is to be read.

After reading micro memory, the next micro instruction executed is the upper of the next
sequential location,

Driving the bit generator with a 31 in the C field produces a zero on a 16-bit machine,
The checksum produced by the assembler is in a 16-bit twos complement form,

The machine is in twos complement mode (SM101 = 0) while doing the checksum addition;
thus, even on a 32-bit machine, the lower 16 bits of the A register represent the correct
checksum value. This is because in twos complement addition, there is no end-around carry.

After completing the checksum loop, N and K both equal FF, This is because the test for
K and N equal to zero is done before the registers are decremented. If the N zero (NZU)
and K zero (KZU) T-field tests are true, N and K are still decremented (0 - 1 = FF},

The X register is set to all ones before reading micro memory in case a hardware mal-
function causes no data to be gated to X after micro memory is read, ;

The definition of the checksum from section 5.6 is:

N
CHKSUM = —2 : -Mk
K=1

1t is clear that if this checksum value is stored into micro memory by the assembler at a
location (My) that was 0 and was included in the checksum calculation by the assembler,
then the checksum generated in the A register by the following sample code must be zero
if the correct data was loaded into micro memory and the micro processor was functioning

properly because:

A= M, + CHKSUM = 0

96836400 B

g 00798896

009
003
[214

NO ERRORS

PO ONOORONORONOND

000
000
001
002
092
002
083
go3
004
005
005
006
006
(14
007
008

CARD VALUE T P/MA

&=D

CARD VALUE T P/MA MICRO-MEM

940E 2505
D80F 3909
5405 0909
0800 3003
C6DE 00FF
SAED 4880
7110 0000
SAN0 EOLF
940€ 2500
SHES &880
7110 60&4&
53DE 894%C
960C 4902
5000 £000
860E 4002
9608 2008
5808 2000

MICRO-MEM

@M OS™m

LOCATION F

HICROHLY EQU
BLoCKS EQu
BGAIT31 EQU

SHCLSVUIGOUCISRSIIVITIS ISV CISUSIUSISSITISICIT RIS TSIV ISSSIPIILIISSLIISIEINIISS

L B BE B B BE IR BY BE BN B BE BE BL BE B BL B B B BN

+MPI2XFIX B
~ZEROLOWR ZERO
*

8
- 2FR0
+SETKFF ONE
-SuMLO0OP B8
. ADD
- 8
¢ 8
- 8
+SECADD ADD
. ZERD
- ZERO
+CHECKSUN A.B

ONE
+BADSUNM

END
LOCATION F

9
3
31

8 0
IDENT CHECKSUM EXAMPLE

s

c L1

COMMENT

ENABLE MICRO-INSTRUGTION MALT
(NUMBER OF MICROMEMORY PAGES) * -
BIT GENERATOR DRIVER VALUE FOR BIT 3%

INITIALIZATION

REGISTER

Ny K

NOTE THMAT LOWER OF SFCADD IS OPEN TO CONVAIN
THE CHECGKSUM VALUE GENERATED AY THE ASSEMSLER

L 2 2 XA T I I RS TR A R R R S AR RS R R XS RS R R R R RS R L R Y YR SRR R 2 RS 2 12 2 ¢ 2

X

86

IF THE A REG IS NOV ZERO,

X
SM2
SMt
A
X

A
X
A
M2
M1
A
X

NoP

nPL6

VALUE

NeU.
N.U.
0000
NesU.
XXXX
N.U.
0060
0000
0000
0000
FFFF

LBEA

LAEA

HALY

THE CHMECKSUM IS 2°S COMPLIMENT, 16 BIY
THE CHECKSUM IS CALCULATED AND SHOULD RESULT IN A REG = 0.

THE CMECKSUM FAILS (DETECTS AND ERROR).
IF THE CHECKSUM FAILS, THE PROGRAM HALTS AT 3AOSUM UPPER.

IF THE CHECKSUM PASSES, THE PROGRAN CONTINUES AT BADSUM LONER
MITH THE REGISTERS AS FOLLONS

P32
VALUE
N.Ue
NeUe
019000000
N.U.
XXXXXXXX
N.U.
00400000
00090000
60000000
00000000
0000FFFF

SECADO J
N=09
MICROHLYT
N=BLOCKS
K=FFX

[448

BGBIT31 L
MPI2XFIX J

K7L
X2u
NZU

DECK

DECN

SuMLooP
4N

SUMLOOP

9A0SUM U

Figure C~1, Checksum Example

NeUes = NOT USED
X = UNKNOWN

L
L
L
.
L]
Ll
L d
L
»
L]
»
.
.
.
.
L
L
-
»
L
»
.

FINISH SWAPPING X REG.
CLR SM2y SET N FOR HALY
SET SM1 UP FOR HALY ONLY
CLR Ay SET N TO READ M,
CLR M2, SET K TO READ MM,
READ MICRO MEMORY

ADD THIS TO SUM

ZERC IF MP16

SHAP HALVES OF X REGISTER
READ 2ND 1/2 OF WORO

ADD 2ND 1/2 OF WORD
CHECK THE N REGISTER
CONTINUE TO SUM IN BLOCK
CHECK YTHE SUM FOR ZERO
SET X, READ NEXT WORD

BAD CHECKSUM, A NOT ZERO
CHECKSUM CORRECT

COMMENT

DIAGNOSTICS

DIAGNNSTICS

SAMPLE LISTING INCLUDING D
ORIGIN MAP AND ZERO MAP

I e

‘ The following descriptions are keyed to the fields (columns) of the sample listing:

A
A

——

N
MP MICRC ASSEMSLER 1788 VERSION 16.8 SANPLE LISTING

A C D —
’c':;\? VI:R T P/MR " MICRO-MER {OGM’ION F a 8]) c NT CONMENT N nusn:sucs
12 EF —
1
15
16
4 ose 0 086 S8OF 2340 G +0OVY :::0 ’x.z’mnsrtf READ CLRK u READ (SA), F=NK=8
18 +| cAY,
2 T 847 Ses ceze c - Ot Ml MR ovnan aw ok siworo
Field Contents
A’ Assembler identification: host machine type (CYBER 18-17/CYBER 170/70/6000),
assembler version number

A Source card number (in decimal)

B Value (in hexadecimal) of the expression on an EQU or an ORG card,

C Micro memory instruction location (in hexadecimal) assigned to this card. The

P/MA column contains three digits, The first is the page address; the second two
are the micro-memory address within the page. The T column specifies the upper
half word for T=0, T =1 specifies the lower half word,

D The contents in hexadecimal of the instruction location T P/MA,

E A code indicating the length of time required to execute this instruction, A blank is
an A time,

F When this column is not blank, the instruction on this card takes longer to execute

on a 32-bit MP than on a 16-bit MP, The code printed in this column will indicate
the execution time on a 32-bit machine (see MP engineering specification, Section
3.3.1.5).

G Card image. The fields on the card are indicated by the notations: LOCATION,
F, A, B, D, S, C, M, T, and COMMENT,

H If the assembler detects an error in the information coded on the source card, the

error code(s) is(are) printed on this part of the listing, There is room to print up to
four error codes on the listing.

96836400 B D-1

d 0079€896

CARD VALUE T

17 086

-
9
X

22 086

26 0290

&
~
~o

g
-
moro

56 028

N
o
rora

CARD VALUE T

P/MA

086
[134
087

086

020
020

021
021
022

022

023
023

026
024
025
925

gea
02a
023
28

P/HA

MICRO-MEM

SA0F
5S3E
94ES

s94F

4AES
9288

480
N2RF
$55F

155€

7110
6910

7120
DEQE
7010
9720

5615
S2€5
9E98
80498

2340
0Ccoo

CFa0 .

LCuod

0244
we22

0C00
3010
4G4

CCh1

ca270
c270

0000
3001
0061
ccaa

0ADA
6000
2058
2058

NICRN=-MNEN

c

aom 3 OO0

LOCATION F A 8 o S c NY COMMENT

YT Ry T Y Yy vy Yy Y Yy Yy PNy Y P Ty Yy Ry Y Yy Yy Yy Yy Yy Yy Py Yy Yy YLy

. .
CIVIDE INSTRUCTION F=3

. .

L T Y Yy T Ty Py Ty T Yy Y Y Yy Y Y T Y Y TYY YT Y Y TN

ORG IXC2¢MEMREF L
+0VI ZERO F READ CLRK U READ (A}, F=NK=0
+ 8 L} MEM X GATEL (EA) TO X, SAVF A IN I
- 8 Q A _CLRNP OVI.10 JNU CHECK SIGN OF Q

0RG IXC2¢MEMREF L

- ZERO A F GATFI CLRK L EA IN X (IM. OPR,) F=NK=0
L 8 Q A CLRNP DVI.10 JNU SAVE A, CHECK SIGN OF Q

0RG 20X +CNKePGO
Q

+0VI. L0 - A RPY DECK MAKE Q@ POS (Q TO &) NK=-0

- EO0R 1 NyK Q LaR] nvI.39 J COMP 16LS3 IF NECESSARY
cup2

+NVI.20 -3 NEM X X GATEY MAKE X POSIVIVE, I=FFFF

- EOR 1 NoK F N=16 F=¢0/-0 FOR QUOT SIGN

* L} F X F GATFI RLOE L SAVE F IN I, F=2%X

-nvi. 30] F X X GATFI GCLOF/ZONESRPNU CHECK SIGN OF X, I=F=¢=-9,

.

GO TO DVI,.20n VIA RTJ 9€EG

. DIVINE ALGORITHM - SURTRACT, SHIFT AND CORRECY (IF NECESSARY), QUOTIENT.IS
* FORMED BY THE COMPLEMENT OF THE CARRYCUT OF A (COA) BEING PUT IN THE

. LSB OF Qy SMIFTED, ANO THE OPERATION REPEATED 17 TIMES. IF COA IS A

. ONE THE FIRSY TWO TIMES, IT INOICATES AN OVERFLOW. THE REMAINDER®2
.

.

®

*

WILL BE IN A AND WILL NEFO CORRECYED BY X*®2 IF NEGATIVE. THUS,
AsQ /7 X = Qo REMAINDER®2 IN & (IF NEGATIVE, R*2 - X*2)

EACH ITERATION RESULTS IN AzA=-X (OR A=A-2Xe¢X), A,Q=A,Q%2, N00=NOT(COA}

3 ADD A X A L8 ROL XN NU CORRECTION(A=A=-2X-X)SHIFT
- sus A X A RPT RAOL XN NU SUSTRACT, (A=A-X), " SHIFT
. ADD A F A CORRECT REMAIN(R=R-2X+2X)
- L) 1 X N=1 SAVE I IN X FOR QUOT SIGN
AREA SETF/ONES POSITION RFMAIN. PROPERLY
AtB A Q GATFI OVI.40 JNU SAVE A IN I, CHECK OVF,
cueg
ORG 2AX+PGO
NVIL b0 AeB SHL 86 SN1L OVERFLOW OVERFLOW (1ST TWO COA=1)
- EOR X Q A KZU QUOT WIH PIOPER SIGN TO A
* A I Q INI J REMAINDER WITH SAME SIGN
- -A I Q INT J AS DIVID. YO G, GOTN INT
LOGATION F A B8 0 S c LA} COMMENT

Figure D-1. Sample Listing

DIAGNOSTICS

NIASNOSTICS

d 00¥96896

£da

sssssssss QRIGIN WAP ssssseses

T P/HA

0 0020
0 002A
0 0086
1 0086

S38303083

T P/MA

0 0060
0 0026
9 oo02C

CARD

ZERD MAP ssesssese

NUMNBER

64 0040
8
180 0084

7
57
18
23

Figure D-1,

Sample Listing (Continued)

ASSEMBLER INSTALLATION E

The assembler is basically written in FORTRAN to provide transportability between the CYBER 18-17 and
CYBER 170/70/6000 computers. However, some basic differences in FORTRAN as implemented on thé
two machines require some differences in the programs themselves, The differences have been kept

to a minimum to ease the maintenance task, They can be categorized as follows:

] Data statement incompatibilities — Extensive use of labeled common is made, which
allows presetting data items with data statements contained in a BLOCK DATA subroutine.
There is a different BLOCK DATA subroutine for each machine,

. Word size is different for each machine. The following variables must be correctly set up
in the BLOCK DATA subroutine so the assembler's character manipulating subroutines
will work:

Name 1700 Value 6000 Value
BYTE1 FFOOIG 77000000000000000000B
BYTE2 OOFF16 0077771777 177777777T7TB
CSHIFT 8 6
BLKPAD 002016 00555555555555555555B

° The CYBER 170/70/6000 is a faster machine than the CYBER 18. To help speed up the
CYBER 18, all I/0 routines in the CYBER 18 version make extensive use of the FORTRAN
run-time monitor to make MSOS monitor calls to perform the actual I/0. The CYBER
170/70/6000 version uses FORTRAN 1/0 calls.

. Since mass storage addressing is different on the two machines, all mass storage I/0
routines are unique for their respective machines,

. The CYBER 18 FORTRAN compiler and the Macro Assembler allow program identification
material to be included as part of the PROGRAM, SUBROUTINE, FUNCTION, or NAM
cards. This identificationis then transferred to the relocatable binary decks that make up
the assembler and is printed by the MSOS loader when the assembler is loaded. Each
source deck in the assembler for the CYBER 18 version contains this identification, which
will cause an error if the same deck is compiled on the CYBER 170/70/6000 FORTRAN-
extended compiler. .

. The PROGRAM card for the main routine of the assembler for the CYBER 170/70/6000 ver-
sion defines all I/0 files to be used during an assembly. This card will cause an error
when read by the CYBER 18 FORTRAN compiler.

° All the assembler routines for the CYBER 170/70/6000 version must be compiled with the
FTN (FORTRAN-extended) compiler. All assembler routines for the CYBER 18-17 version
except CYBER 18-10/20/30 must be compiled with the standard FORTRAN compiler., The
CYBER 18-10/20/30 must be assembled with the Macro Assembler,

96836400 B E-1

The following programs are identical between the two versions of the assemblers except for the
previously noted differences in the PROGRAM, SUBROUTINE, or FUNCTION cards.

Name

ASMPL7
LIST
TABLE
PRINT1
PRINT2
PRINT3
PRINT4
PRINT5
PRINT6
PRINT7
PRINTS
PRINT9
PRINT10
SPLIT
PUTFLD
GETFLD
PUTCHR
GETCHR
BINHEX
BINASC
VALUE
EVALUS
NUMCON
OPERSR
IFIXIT
PATAPE
PRTAPE
PMAP
ZMAP

Function

Main routine

Format output listing

Manipulate symbol table

Format assembled line, source, and diagnostics
Format comment line

Format first line of listing header

Format second line of listing header

Format number of errors in assembly

Format no-error message

Format blank lines

Format ORG and EQU listing output

Format copyright message

Format ZMAP and PMAP listing lines

Split source card into functional fields

Put data field

Get data field

Put character

Get character

Internal binary to external hexadecimal character conversion
Internal binary to external decimal character conversion
Find value of data item (either symbol or constant)
Evaluate address expression

Evaluate a constant

Check character for an operator (+ - * /)
Convert double-precision value to integer

Format absolute object output

Format relocatable object output

Format origin map

Format zero map

96836400 B

Name

CLEAR
PCARD
CHKSUM
A28CMP
DEDINS
PAKOUT

Function

Clear data buffer

Format deadstart object output

Calculate twos complement 16-bit checksum
Perform twos complement, 16-bit arithmetic
Converts micro instructions to ASCII

Formats and outputs lead start cards

The following programs are special for the particular machine on which they run:

Name

BLOCK DATA
LSTOUT
PONERD
DISKWT
DISKRD
GETPAG
PBLANK
PUNCH
APUNCH
CbhoUuT
RSTP
ADD16
COMP16

Function

Contains data statements to preset labeled Common
Writes to list output device

Reads input for pass 1

Writes pass 1 output for subsequent input by pass 2
Reads pass 2 input

Gets a page of the micro-memory image

Punches blank leader on paper tape or writes EOF
Output routine for PRTAPE

Output routine for PATAPE

Output routine for PCARD

Read symbol table page

Perform 16;bit ones complement addition

Perform 16-bit complement

The following routines run with the CYBER 170/70/6000 version of the assembler only:

Name

BINCRD
ADJUST
PACK

Function

Build CYRER 18-compatible formatted relocatable binary card image.
Convert characters from DISPLAY code to ASCII,
Pack 16-bit data words into 60-bit data words,

The following routines run with the CYBER 18 version of the assembler only:

Name

SHIFT
MP

96836400 C

Function

Shift a word left or right

Assembly language routine that puts the assembler itself into execution

E-3

INSTALLATION ON A CYBER 170/70/6000

The instructions necessary to install the Micro Assembler in the CYBER 170/70/6000 system are
located in the installation handbooks for NOS and NOS/BE.

INSTALLATION ON A CYBER 18-17

The necessary assembler routines are compiled and the relocatable object code is ordered with control
cards as shown in figure E~1. Figure E-1 is the load map of the assembler installation accomplished
on an MSOS 4.1 system with the following logical unit assignments:

Device LU Contents
Magnetic tape 6 Assembler relocatable object decks with control cards
.Mass memory 8 Scratch

The assembler is installed as a file on the CYBER 18 system to avoid loader overhead each time the
assembler is executed. MP is an assembly language routine that is called by the control card *MP,
which in turn reads in the assembler file and executes it.

Under MSOS 4, the following FORTRAN system routines must be available and must be loaded when

the file is built:
FORTN
Q8PRMS
FXFL
FLOAT
PSSTOP
Q8PAND
Q8DBLE
Q8DFLT
DFLOTN
DUMVOL
DRSTOR

E-4 96836400 B

96836400 B

SLISEDT
Lr

IN
*K,16,P8
™

P,F
L0
ASHPLY
Q8asos
LISTY
TABLE
L3344
PRINTL
PRINT2
PRINT3
PRINTS
PRINTS
PRINT6
PRINT?
PRINTS
PRINTS
PRNTLO
LSTOoUT
SPLIT
PUTFLD
GETFLO
PUTCHR

2339
2936
33FA
33FR
3SFA
4099
4124
4187
%203
262
4240
4268
»2717
4292
42F6
4314
4389
LeCa
4512
&S3E
§56A
4583
ASE3
5654

&6F7
[341]
GBAE
870
&80A
6980
L9ES
HAOF
GAT?
&AD2
48C6
«C38
&CSF
4C83

o067
4067
ELB
LEGS
HEEL
&F18
&F2C
&F3F
WFAS
5000
SeF?
S1SE
5380
S3E?
5649
S4SF
5480
S84A
5a8TA

SNJASHP, 448
N

I
*K,I6,P11
e

SLonP
IN
.

75 08=-19-7%

15,00
16.0
15.080
13.00
16.1
15.00
13.909
13.08
9.0
13. 00
9.0
9.0
13.00
13.00
13.00
1601
13.00

9.0

16.0
OECK-ID
DECK-1D
OECK-ID
DECK-10
0ECK-10
DFCK-1ID
OECK~-IN
DECK~-IN
OECK-1I0
DECK~ID
DECK-IN

SCT0, MP ASSEMSLER IS NOW
At 4

08-24-7%

09-22-7%

08-24=74
07-08-7%

09-22-74

88-24~74
07-08-74
07-08-7%

04+-16-7%

47-08-T%

04=16-76
04=-16-76

87-08-7s
07-08~7%
07-08-74

09-22-74

e7-88-74%

$4-16-74
04=-16-746
06~16-7%
Ok~16-74
0h=16-76

07-08-7%

04=16=74
06=16-7%
06-16-74%
2 READS

87-08-76
07-08~7%
Q7-08-7%
A7-08-7%
87-08-74
07-08-7%

01-22-74

1-22-74%

01-22-7%

07-08-74%
07-08-T%

07-08-74
07-03-74
o7-08-74

012574
01-22-74%
81-22-7%
99-22-7%

Fo1 3.2
601 3.2
606 3.2
G613 3.2
Hi6 3.2
H17 3.2
Kg2 3.2
Ko7 3.2
Kt2 3.2
K13 3.2
Kis 3.2

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

INSTALLED

nPL?
L2 ¥4

Ll 34
“PL?
nPLT

RUNTTNE
RUNTINE
RUNT INE
RUNT INE
RUNTIN
RUNTT

RUNTINE
RUNT INE
RUNTINE
RUNT INE
RUNTINE

SUMMARY=-079
SUNMARY-D79
SUMNARY=-079
SUMMARY-079
SUMMARY=-QT9
SUMMARY-08S
SUMNARY-879
SUNMARY-079
SUMMARY-079
SUMMARY-079
SUMMARY-079

Figure E-1, MSOS 4 Load Map

E-5

Field

F

g 0w o w »

96836400 B

ASSEMBLER DEFAULT CODES

Conditions

(1) B not blank
(2) A not blank, B blank
(3) A and B both blank

C field is K= or N=
C field is not K= or N=

Upper instruction and M field is S
Lower instruction and M field is S
M field is R

M field is J, C is constant

M field is J, C is upper symbol
M field is J, C is lower symbol

Code

Default Decimal
B 15
A 10
Zero 12
X 3
X 3
NOP 0
NOP 0
0
S 3
S 1
*L 0
U 1
U 1
i) 1
U 1
L 2

Word
A 1
2
3
Six
96-word 384
sectors
575
4 576

ON MASS STORAGE

Page number = 0,1,2,...,42

Binary zero

Binary zero

A
384
words 382
words
v v
A A
191
192 words
words
v

FORMAT OF MICRO-MEMORY IMAGE PAGES G

191 32-bit
instructions

16 bits of an
instruction
per word

191 card numbers
corresponding to
the 191 micro
instructions on

this page

The following are equations to calculate page number, index to a micro instruction on the page, and
index to the card number of the code that assembles into the micro instruction for a given micro

instruction address:

PAGSIZ
T

T

PMA
WORD

96836400 B

0 if upper instruction of a word
1 if lower instruction of a word

micro instruction word address

PMA*2+T (32-bit Instruction number starting at zero)
WORD*2+1 (16-bit half instruction number starting at one)

J =
RQPAGE =
INDEX1 =
INDEX2 =
CINDEX =

PAGE (CINDEX) =

<

>

PAGSIZ-2 (number of 16-bit half instructions per page)
1/J (page number)

I-RQPAGE*J+2 (index to the first 16-bit half instruction)
INDEX1+1 (index to the second 16-bit half instruction)

INDEX1/2+PAGSIZ (index to the card number of the code that assembles
into the micro instruction)

0 => The corresponding micro instruction address is not used.

0 => The corresponding micro instruction address was the first instruction
assembled following an ORG. The real card number is
-PAGE(CINDEX),

0 => The instruction was assembled from card PAGE(CINDEX),

96836400 B

GLOSSARY

ALU The portion of the computer which performs arithmetic and logical
functions on two input quantities,

A/Q A register, Q register or the combined A/Q register, The A and Q
registers are shift registers.

A source The first input to the ALU.

B source The second input to the ALU,

Ones complement The radix-minus-one complement in binary notation,

S1 An eight to one multiplexer used to select the A source,
s2 An eight to one multiplexer used to select the A source,
Twos complement The radix complement in binary location,

96836400 B Glossary-1

ALLOCATION OF SCRATCH MASS MEMORY BY THE
CYBER 18-17 VERSION OF THE ASSEMBLER H

Top of
Scratch

Scratch
Sector 1

96836400 B

Symbol Table Pages — 2500 words/page
27 sectors/page
500 symbols per page
Page numbers start at 1
20 pages maximum = 540 sectors maximum = 10, 000 symbols
maximum

Micro-memory image and corresponding card numbers
576 words/page = 6 sectors/page
191 32-bit instructions/page
Maximum of 43 pages = Maximum of 258 sectors
Page numbers start at 0
Micro-memory image data is written by pass 2

Source card images written by pass 1, read by pass 2
One sector per card

INDEX

A field 2-1;6-1, 7, 8, 11 Constants 3-2
Mnemonics 3-5 Decimal 3-2
Operands 6-7, 8 Hexadecimal 3-2
ALU operations 6-1 Octal 3-2
Arithmetic 6-1, 3 Control character strings 5-12
Double-precision arithmetic 6-3, 5 . CPR pseudo instructions 5-1, 2

Logical 6-1, 2
A/Q operations 6-1
Scale 6-3, 7, 8
" Shift 6-1, 3, 6
Arithmetic operations 6-1, 3

A source 6-1 Data definition pseudo instructions 5-8
Assembler DEAD pseudo instructions 5-12
Control pseudo instructions 5-1 Deadstart
Default codes F-1 Card images 5-10, 12
Installation E-1, 2, 3 Output deck format B-2, 3

DEC pseudo instruction 5-8

Decimal constants 3-2

D field 2-1;6-1, 7, 9, 10, 11
Mnemonics 3-6

Operands 6-9
B field 2-1;6-1, 7, 9, 11 Digit strings 3-2; 5-8
Mnemonics 3-5 Double precision arithmetic 6-3, 5

Operands 6-9
BOX pseudo instruction 5-4
B source 6-1

EBOX pseudo instruction 5-4
EJECT pseudo instruction 5-3
END pseudo instruetion 5-2, 10

C field 2-1; 9-1, 2 ENT pseudo instruction 5-11
Mnemonics 3-7 Entry point name 5-11

Checksum 5-10, 11; C-1 EQU pseudo instruction 5-4, 5

CMP1 pseudo instruction 5-9 Error codes 11-1, 2, 3, 4

CMP2 pseudo instruction 5-10 Executing the Micro Assembler A-1

Codes

Assembler default F-1

Error 11-1, 2, 3, 4
Comment card 5-3, 4
Comment field 2-1

96836400 B Index-1

F field 2-1; 6-7, 13
Mnemonics 3-4
FINIS pseudo instruction 5-2
Formats
Deadstart output deck B-2, 3
Instruction 2-1
Object code output B-1
Relocatable output data B-1

Hexadecimal constants 3-2
HEX pseudo instruction 5-9

IDENT pseudo instruction 5-1
Instruction addressing 7-1
Jump 7-1, 3, 6
Return 7-2, 3, 7
Sequential 7-1, 3, 4, 5
Instruction format 2-1

Jump addressing 7-1, 3, 6

Listing control pseudo instructions 5-3
Location field 2-1; 4-1; 5-5

Logical operations 6-1, 2

Lower micro instructions 7-1

Memory management and definition
pseudo instructions 5-4
M field 2-1;7-1, 2, 3, 8, 9

Index~2

Micro instructions 7-1
Lower 7-1
Pairs 7-1
Upper 7-1
Micro memory
Allocation 5-4, 6
Image pages format G-1, 2
Locations 7-1
Minus qualifier 5-7
Mnemonics
A field 3-5
B field 3-5
C field 3-7
D field 3-6
F field 3-4
Instructions 3-3, 4; 5-6, 7
Selection 10-1, 2
S field 3-6; 8-1
T field 3-3

Object code output

Format B-1

Pseudo instructions 5-10
OCT pseudo instruction 5-8
Octal constants 3-2
Operands 5-4; 6-7

A field 6-7, 8

B field 6-9

D field 6-9
Operators 5-4, 5
ORG pseudo instruction 5-4, 5, 6-
Origin map 5-7; D-3

Plus qualifier 5-6
PMAP pseudo instruction 5-7
Programming information pseudo instructions 5-9
Pseudo instructions 3-3; 5-1
Assembler control pseudo instructions 5-1
BOX 5-4
CMP1 5-9
CMP2 5-10

96836400 B

Pseudo instructions (continued)
Comment card 5-3, 4
CPR 5-1, 2
Data definition 5-8
DEAD 5-12
DEC 5-8
EBOX 5-4
EJECT 5-3
END 5-2, 10
ENT 5-11
EQU 5-4, 5
FINIS 5-2
HEX 5-9
IDENT 5-1
Listing control 5-3
Memory management and definition 5-4
Object code output 5-10
ORG 5-4, 5, 6
PMAP 5-7
Programming information 5-9
RELO 5-11
SPACE 5-3

Q field 2-1; 4-1; 5-6

RELO pseudo instruction 5-11
Relocatable binary card images 5-10, 11
Relocatable output data format B-1
Return addressing 7-2, 3, 7

Sample listing D-1

Scale operations 6-3, 7, 8
Scratch mass memory H-1
Sequential addressing 7-1, 3, 4, 5

96836400 B

S field 2-1; 6-1, 7; 8-1, 2
Mnemonics 3-6; 8-1
Shift operations 6-1, 3, 6
Source input statements 2-1
Source statement fields 2-1

A field 2-1; 6-1, 7, 8, 11
B field 2-1; 6-1, 7, 9, 11
C'field 2-1; 9-1, 2
Comment field 2-1

D field 2-1; 6-1, 7, 9, 10, 11
F field 2-1; 6-7, 13
Location field 2-1; 4-1; 5-5
M field 2-1; 7-1, 2, 3, 8, 9
Q field 2-1; 4-1; 5-6

S field 2-1; 6-1, 7; 8-1, 2
T field 2-1; 7-1, 2, 3, 8, 9

SPACE pseudo instruction 5-3
Strings
Control character 5-12
Digit 3-2; 5-8
Symbols 3-1

T field 2-1; 7-1,2,3,8,9
Mnemonics 3-3

Timing information 5-9

Transfer address 5-11

Upper micro instruction 7-1

Zero map 5-7; D-3
ZMAP pseudo instruction 5-7

Index-3

CUT ALONG LINE

— — s S
-——.———h—-——————..—.-&—a—..-—-—-—-——d—«-—-—.—-n_-——-—.—-—————————_———-——————— —

COMMENT SHEET

MANUAL TITLE CONTROL DATA® CYBER Cross System Version 1 Micro Assembler

Reference Manual

PUBLICATION NO, 96836400 REVISION C
FROM NAME:

BUSINESS

ADDRESS:

COMMENTS: This form is not intended to be used as an order blank, Your evaluation of this manual will be
welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or
general comments may be made below, Please include page number to which your comment
applies.

STAPLE

T e em— — ——— v —— on— — —— w—— —— — o ot m— m— e — — — - — — — — oy — o— — — wman o— —

STAPLE

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED !N U.S.A,

POSTAGE wiLL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MALL

LA JOLLA, CALIFORNIA 92037

STAPLE

FIRST CLASS
PERMIT NO. 333

LA JOLLA CA,

STAPLE

CUT ALONG LINE

CORPORATE HEADQUARTERS, P.O. BOX 0. MINNEAPOLIS, MINN, 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Gp

CONTROL DATA CORPORATION

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	05-01
	05-02
	05-03
	05-04.0
	05-04.1
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	G-01
	G-02
	Glossary-01
	H-01
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

