96836500

G2 SrroranoN

CYBER CROSS SYSTEM
VERSION 1
MACRO ASSEMBLER

REFERENCE MANUAL

CONTROL DATA®

CYBER 170 SERIES |

CYBER 70 SERIES MODELS 72, 73, 74

6000 SERIES COMPUTER SYSTEMS

CYBER 18 COMPUTER SYSTEMS =

255X HOST COMMUNICATIONS PROCESSORS

REVISION RECORD

REVISION DESCRIPTION
A Manual released,
(12/175)
B Manual revised to reflect NOS/BE 1,1 changes and name change of manual from CCP Support Software to
4/76) CYBER Cross System. :

Publication No.
96836500

© 1975, 1976
by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation

Publications and Graphies Division
4455 Eastgate Mall

La Jolla, California 92037
or use Comment Sheet in the back of

this manual.

New features, as well as changes, deletions, and ad-
ditions to information in this manual are indicated by
bars in the margins or by a dot near the page number

LIST OF EFFECTIVE PAGES

if the entire page is affected.

ber indicates pagination rather than content has

changed.

A har by the page num-

Page

Revision

Feature

Page

Revision

Feature

Cover

Title Page
Revision Record
iii

iv

2-1

3-7

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29

wwwwwwwwwwwwwwwwwuwwwwwwwmwwwwwwwwwwwwwwwww| i

3-30
3-31
3-32
3-33
3-34
3-35
3-36
4-1
4-2
4-3
4-4
4-5
4-6

96836500 B

WYY RN PR R Y YR I Y Y Y Y Y

iii

LIST OF EFFECTIVE PAGES (CONTINUED)

Page

Revision

Feature

G=-3

Index~-1
Index-2

Index-3
Comment Sheet
Envelope

Back Cover

LR

Page

Revision

Feature

iv

96836500 B

PREFACE

The CYBER Macro Assembler is a component of the CONTROL DATA® CYBER Cross System. The
Macro Assembler, referred to as CLASS (Compass Like Assembler), operates under control of the
CYBER 170/70/6000 NOS or NOS/BE operating systems., CLASS is intended to convert source language
input including macro instructions into relocatable binary output and generate list output. A separate
version of the Macro Assembler is available for the CYBER 18 computer series.

This manual describes the general operation of the assembler and provides the necessary instructions
for preparing programs for assembly. No attempt is made here to provide a programmers guide and,
therefore, examples are limited, It is assumed that the reader is already familiar with the operation
of the CYBER 18 computer.

Additional information can be found in the following publications:-

96836500 B

Description
CYBER Cross System Version 1 Reference Mamal

CYBER Cross System Version 1 Micro Assembler
Reference Manual

CYBER Cross System Version 1 Link Editor and
Library Maintenance Programs Reference Manual

NOS/BE 1 Reference Manual

NOS 1 Reference Manual, Volume 1

NOS 1 Reference Manual, Volume 2

1700 MSOS 4 Macro Assembler Reference Manual
MSOS Version 4 Macro Assembler Reference Manual
1700 Computer Reference Manual

CYBERNET/KRONOS 2.1 Batch and Remote Batch
Reference Manual

Publication No.
96836000
96836400

60471200

60493800
60435400
60445300
60361900
60361500
60153100
80400600

This product is intended for use only as described
in this document, Control Data cannot be responsible
for the proper functioning of undescribed features

or parameters.

CONTENTS

PREFACE
1 INTRODUCTION
2 LANGUAGE STRUCTURE
2.1 Control of the Assembler
2,2 Source Program Input Structure
2,2,1 Source Program
2,2,2 Source Statement
3 ' SYMBOLIC MACHINE INSTRUCTIONS
3.1 General
3.1.1 Storage Reference Instructions
3.2 Pseudo Instructions
3.2,1 Subprogram Linkage
3.2,2 Data Storage
3.2.3 Constant Declarations
3.2.4 Assembler Communication
3.2,5 Listing Control
3.3 Macros
3.3.1 Macro Pseudo Instructions
3.3.2 Macro Skeleton
3.3.3 Macro Instructions
3.3.4 Assembly Text Generation and Use
3.4 CLASS Limitations
3.4.1 Warnings
3.4,2 Special Characters
4 OUTPUT
4.1 Relocatable Binary Output
4,2 List Output
4,2,1 List Options
4,2,2 Banner Page
4,2.3 Main Program Listing
4,2.4 Error Summary
96836500 B

1-1

2-1

2-1
2-2

2-2
2-2

3-1
3-1
3-1
3-14

3-14
3-17
3-19
3-25
3-28

3-30

3-30
3-32
3-34
3-34

3-35

3-35
3-35

4-1
4-1

49

4-9
4-10
4-11
4-11

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

INDEX

viii

4,2.5 Complete Reference Map 4-13
4.2.6 Short Reference Map 4-13
4.2.7 Macro Cross-Reference Map _ 4-14
INSTALLATION OF CLASS A-1
CLASS CONTROL CARD PARAMETERS B-1
CONTROL CARDS FOR JOB RUN . C-1
ERROR MESSAGES D-1
ASSEMBLY MODIFICATIONS TO CLASS E-1
INSTRUCTION SET : : F-1
ASCII CONVERSIQN TABLES G-1

Index-1

TABLES

Listing Page Format 4-12

96836500 B

INTRODUCTION | 1

The CLASS Macro Assembler, hereafter referred to as CLASST, is a two-pass assembler that

executes on a CYBER 170/70/6000 computer. It can convert source language input including macro
instructions to relocatable binary cutput and generate list output. The source programs are written
with symbolic machine, pseudo, and macro instructions. Enhanced instructions are assembled by
means of assembly text consisting of macros residing on a separate file that accompanies the assembler,
Additional macros may be defined by the user in the source program,

During the first pass each card (one instruction per card) is processed in sequence, programmer-
defined macros are processed into macro skeletons, skeletons with actual parameters substituted are
inserted at macro calls, a symbol table is built, conditional assemblies are evaluated and processed,
and the resulting source cards are written to a scratch file,

During the second and final pass, each source image is read in sequence from the scratch file and
processed, errors are flagged as they occur, the actual binary relocatable output is generated for each
instruction, the source image and binary image are listed if not suppressed, and a cross-reference is
generated for the listing.

Three versions of the binary output are produced:

® File B is used to link programs in the CYBER Cross System
. File P8 is used to punch cards for loading with the MSOS 4 Loader
[File RB is used to write to magnetic tape for the MSOS 4 Loader,

T CLASS, a Compass-Like ASSembler

96836500 B 1-1

LANGUAGE STRUCTURE 2

2.1 CONTROL OF THE ASSEMBLER

Parameters on the CLASS call card are used to specify control options to the assembler, (See

Appendix B
~ available:

96836500 B

for a detailed explanation of these parameters,) The following is a list of the features

The starting columns for the location, operation code, address, and comment fields can
be designated for listing output.

All BZS/BSS blocks and their names, addresses, and lengths can be listed on the banner
page (the first page of the listing).

List control cards such as LST, NLs; SPC, and EJT can be printed,

The printing of comment cards (i.e., * in column 1) can be suppressed,.

EJT cards can be processed as page ejects, Normally, they are processed as four spaces,
(See Section 3,2.5,)

If the IFA condition is false, printing of code between IFA and EIF can be suppressed,

All machine code on multiword instructions (such as LRQ, NUM, DEC, etc,) can be
printed,

A full cross-reference map of symbols, providing the page number/line number where they
are referenced, can be printed,

A short reference map giving only the symbols and their value can be printed,
Column tabs can be set for the tidy feature,
Macro code may be expanded (not recommended if Type 2 instructions are used),

A macro cross-reference table which contains the macro name, the number of formal
parameters and locals, and the page and line number where they are referenced, can
be printed.

An assembly text of predefined symbols, macro skeletons, and macro name table can be
generated and utilized,

2-1

k- \l

2.2 SOURCE PROGRAM INPUT STRUCTURE

2.2.1 SOURCE PROGRAM

A source program consists of one or more subprograms. Each subprogram is a set of source
statements preceded by a NAM card and followed by an END card, Each subprogram may be assembled
independently, or several may be assembled as a group, The main subprogram of a group is the one to
which initial control is given; it does not have to be the first subprogram,

Communications between subprograms. is accomplished by the subprogram linkage pseudo instructions
(e.g., EXT, ENT) and by the use of common and data storage, which are established by the COM and
DAT pseudo instructions,

2.2.2 SOURCE STATEMENT

A source statement consists of the location, instruction, operation code, address, comment, and
sequence fields, respectively, The first five fields must not exceed 72 characters; within that limita-
tion they are free field except that each field must be separated by at least one space, The sequence
field is used when the source image is 80 characters; it is restricted to columns 73 through 80,

Each field is terminated by a tab ($B; paper tape only), carriage return (end of statement mark), or
blanks, depending on the input device, Any number of blanks may separate fields,

2221 LOCATION FELD

The location field must begin in column 1, If used, this field specifies a labeled statement, This
statement is.a symbolic name consisting of one to six alphanumeric characters; the first must be
alphabetic. Characters in excess of six are ignored,

2222 INSTRUCTION FIELD (OPERATION CODE FIELD, OPCODE)

This field begins to the right of the location field and must be separated from it by at least one blank
(or a tab), If the location field contains no label, the operation code may begin in column 2, The
operation code field contains a three-character instruction code or pseudo instruction code; or it con-
tains a macro-instruction code which may be up to six characters, Certain instructions (storage
reference, etc.) may be followed by one of the one-character OPCODE terminators A,; *, + or -,
There are two main groups of machine instructions: Type 1 (CYBER 18 instructions) and Type 2

“enhanced instructions),

2-2 : 196836500 B,

22.2.3 ADDRESS FIELD

The address field begins to the right of the operation code field, separated from it by at least one blank
character or tab, It is terminated by a blank or tab, or by the 72nd character of the source statement,
Exceptions are the macro instructions that may have a continuation line and the pseudo instruction ALF,

This field contains an expression consisting of:

1. One or more operands connected by the operators +, .-, *, or /
2, One of the register designators A, BT, I,MT, Q1,2 3,14
3.. Both of the above, separated by commas

An operand is either a numeric constant or a symbol used (defined) as:

° The label in the location field of any machine or macro instruction

° The label in the location field of one of the pseudo instructions: ADC, ALF, NUM, DEC,
or VFD

. A symbolic name in the address field of one of the pseudo instructions: EXT, COM, DAT,
BSS, BZS, EQU, FLD, or EXF

Such a symbol references a specific location in memory,

NUMERIC OPERAND

A numeric operand in the address field may be decimal or hexadecimal. A decimal number is repre-
sented by up to five decimal digits and must be within the range +32,767, A hexadecimal number is
represented by a dollar sign and not more than four hexadecimal digits in the range +7FFF, (Hexa-
decimal operands in the NUM pseudo instruction may be in the range 0 through +FFFF,)

Numeric operands in the address field may be preceded by a plus or a minus sign, If a plus or no sign

is specified, the binary equivalent of the number is the value used, A minus indicates that the ones
complement of the binary equivalent is the value, ' '

ADDRESS EXPRESSION

An address expression may be a single operand or a string of operands joined by the following arithmetic
operators:

+ Addition

- Subtraction

* Multiplication
/ Division

T'I‘ype 1 instructions only

96836500 B 2-3

Arithmetic operators may not follow each other without an intervening operand., Parentheses are not
permitted for grouping terms.

The asterisk has meaning both as an operator (multiplication) and as an operand (the current value of
the P counter), When it is used as the multiplication operator (refer to special characters), it must

be immediately preceded by an operand which may be another asterisk,

The slash, used as the division operator, must be between two operands. The operand that follows may
not be 0 or relocatable,

Example:

NAM EXAMPL

COM A,B
EQU C(1), D(5)
EXT G

BZS E(10), F
START LDA D/5-C+*=2
ADD+ A-B/2

ADD E+5
STA G
END

The asterisk in the LDA instruction refers to the value of the current location counter,

The following instructions are illegal, assuming the same pseudo instructions precede the START:

START LDA D-C**5+2 *5 has no intervening operator,
ADD A-2/B Division by relocatable operand
ADD E*F Both operands are relocatable,
STA G+5 An external must stand alone.

An external name (location in another subprogram referenced by this subprogram) may be used in an
address expression as a single operand only, Arithmetic operators preceding or following an external
operand are illegal,

The hierarchy for evaluating arithmetic expressions is:

/ or * Evaluated first
+ or - Evaluated next

Expressions containing operators at the same level are evaluated from left to right. The expression
A/B+C*D
is evaluated algebraically as

A/B+(C)D)

96836500 B

and not as any of the following:

(A)(D) A : A
B+C {(B+C)(D) B+(C)(D)

Parentheses may not be used for grouping operands, The algebraic expression
(A-D)(B+C/E)

must be written as
A*B+A*C/E-D*B-D*C/E

The following expression is illegai:
(A-D)*(B+C/E)

Division in an address expression always yields a truncated result; thus, 11/3 = 3, The expression
A*B/C may result in a value different from B/C*A. For example, if A =4, B =3, and C = 2, then

A*B/C = 4%¥3/2 =6 but
B/C*A = 3/2*4 = 4

All expressions are evaluated modulo 215-1. An address expression consisting solely of numeric
operands is absolute, If an expression contains symbolic operands, the final relocation for the expres-
sion is determined by the relocations of the symbolic operands. If the relocation of the operands is
expressed by the following terms, the final relocation is the algebraic sum of the relocation terms,

£P Positive or negative program relocation
+C Positive or negative common relocation
£D Positive or negative data relocation

The relocation must reduce to 0 or one of the relocation terms, If 0, the location is absolute.

Example:
Source Statements Relocation Formula

NAM EXAMPLE 3
COM A,B
DAT C,D
EQU E(1), F(D)

STRT LDA B+C~-E*2-A-D +C+D-C-D = 0 (absolute)
LDA B+D-F+STRT-A-C +C+D-D+P-C-D = P-D (illegal)
LDA B+D-E+STRT-A-C - +C+D+P-C-D = P (program)
LDA B-D-A P , +C-D-C = -D (negative data)
END

96836500 B 2-5

INDEXING AND REFERENCE REGISTERS

The special characters A, B, I, M, Q, 1, 2, 3, and 4 are used to specify registers which may be used
as reference or index registers within instructions. The set of legal reference registers and index
registers differs between Type 1 and Type 2 instructions:

Reference Registers Index Registers
Type 1 A, ILMQ B,1,Q
Type 2 A,1,Q,1,2,3,4 A,1,Q,1,2,3,4

Indexing may be used with storage reference instructions only. Only one index specifier may follow any
address expression; it is separated from the expression by a comma with no intervening blanks. The
meanings of these special characters used as indices are specified below:

Q The contents of the Q register are added to the contents of the expression
to form the actual address.

1 The contents of location $FF are added to the contents of the address expression
to form the actual address,

B The contents of the Q register are added to the address expression, This sum
" is added to the contents of $FF to produce the actual address.

A The contents of the A register are added to the contents of the expression
to form the actual address,

1 The contents of the 1 register are added to the contents of the expression to
form the actual address,

2 The contents of the 2 register are added to the contents of the expression to
form the actual address.

3 The contents of the 3 register are added to the contents of the expression to
form the actual address,

4 The contents of the 4 register are added to the contents of the expression to
. form the actual address,

Examples:
Address Field) Function

Loc1, B Legal The contents of registers Q and $FF and the
address of LOC1 are added to produce the actual
address,

5ol Hlegal The character following the first comma is assumed
to be the index character,

TAGZ,Q,1 Illegal Only one index notation is allowed,

Q Illegal Unless Q has been previously defined as a location

symbol or is being used with the interregister trans-
fer instruction, it must follow a location symbol,

2-6 96836500 B

Address Field Function

TAG3, [Legal The contents of $FF and TAGS3 are added to
produce the actual address,

TAG2, 4 Legal The address of TAG2 and register 4 are added
to produce the actual address.

Certain instructions use the special characters to reference registers, for example:

Instruction Address Field Function
SET A,Q,M Set the A, Q, and mask registers to 1s,
TRA Q Transfer the contents of the A register to the
Q register.
LAM M Transfer the logical product of the A and the mask

register to the mask register,

XF2 Q Transfer the contents of register 2 to register Q.

2.2.2.4 COMMENT FIELD
The address field is followed by the comment field. Comments do not affect program execution; how-

ever, the comments in the NAM card are copied into the object text NAM block. The comment field ter~
minates at column 72 or with a carriage return (paper tape). Blanks are permitted in the comment field.

2.2.25 SEQUENCE FIELD
When the input image is 80 characteré, columns 73 through 80 are available for sequencing, columns

73 through 75 may be used for program identification, and columns 76 through 80 are available for a
sequence number,

96836500 B 2-7

SYMBOLIC MACHINE INSTRUCTIONS 3

3.1 GENERAL

The instructions are divided into classes according to the kind of function performed These instruction
classes are:

° Storage Reference

° Fleld Reference

° Register Reference

) Shift

° Skip

. Inter-Register Transfer

° Decrement and Repeat

) Miscellaneous
Instructions are referred to as Type 1 or Type 2. Type 1 instructions are original CDC CYBER 18 l
instructions; Type 2 instructions are added or enhanced instructions, A complete list of the instruction

set with the relocatable binary machine code format and general definitions is given in Appendix F, _
These definitions are intended for quick reference, | '

3.1.1 STORAGE REFERENCE INSTRUCTIONS

Storage is divided into three areas: program, data, and common, These areas are defined at assembly
time and the initial location of each is set to a relocation address of 0. The object code produced by

the assembler contains addresses which the loader modifies by a relocation factor at load time to
produce the actual address in memory. Actual location of these three areas in core memory is con-
trolled by the loader.

A symbol is program relocatable if it references a location in the subprogram; it is data relocatable if
it references a location in data storage; and it is common relocatable if it references a location in
common storage, All other symbols are absolute, A symbol is made absolute by equating it to a
number, an arithmetic expression, or another absolute symbol,

In all cases, a symbolic label and a symbol defined by BSS or BZS take the relocation and value of the

current location counter, The location counter of a program is originally program relocatable; however,
its relocation may be changed by the ORG instruction,

96836500 B ' 3-1

An address expression which includes more than one operand of different relocation types must reduce
to one relocation type or to an absolute address, When the address mode of an instruction is made
one-word relative by an asterisk terminator, the relocation type of the address expression must agree
with the type of the current location counter.

A symbolic operand may be preceded by a plus or a minus sign, If preceded by a plus or no sign, the
symbol refers to its associated value; if preceded by a minus, the symbol refers to the ones comple-

ment of its associated value, When an expression contains more than one symbol, the final sign of the
expression is the algebraic sum of the operands.

Type 1 storage reference instructions are divided into groups A and B, These storage reference
instructions use storage addresses as operands or as operand addresses, Group B includes jump and
store instructions and may not use the constant mode of addressing,

Group A storage reference instructions allow three modes of addressing: absolute, relative, and
constant, Group B does not allow the use of the constant mode but is otherwise the same as group A,

Type 2 storage reference instructions allow absolute, relative, and, in certain cases, constant address-
ing modes. Constant addressing is valid only in storage reference instructions that transmit informa-
tion to a register, Special characters designate the mode of addressing, the number of words for the
instruction, and indirect addressing.

Character . Description
* An asterisk as the last character of the operation code specifies relative

addressing in a one-word instruction (two words for Type 2).

- A minus as the last character of the operation code specifies absolute
addressing in a one-word instruction (two words for Type 2).

+ A plus as the last character of the operation code specifies absolute
addressing in a two-word instruction (three words for Type 2).

= An equal sign as the first character in the address field preceding a
constant indicates constant addressing; the instruction is always two
words (three words for Type 2),

() Parentheses enclosing the address expression indicate indirect
addressing for Type 1 and Type 2, »
A If no character is specified as a terminator to the operation code, multi-

word relative addressing is assumed with the following exceptions:
° Ifa coﬁstant is specified, the constant mode is assumed,

° If the relocation type of the address expression differs from the
relocation type of the location counter, two-word absolute address-
ing is assumed (Type 1 only),

. If a nonrelative external is referenced, absolute addressing is
assumed (Type 1 only),

3-2 . 96836500 B

Example:

The following are the relocation types (RT) of the current location counter:

P Program relocatable
C Common relocatable
D Data relocatable
A Absolute address
'RT Label Operation Address
NAM EXAMPLE2
C COM COM1,COM2
D DAT . DAT1,DAT2
A EQU D(1), E(3), G(E-D), H($1000)
P BZS A,B,C
P BZS J,K(10)
P START ADC 0
P LDA* START
P STA* DAT1 (Error)
P STA* COM1 (Error)

Both errors resulted because the relocation types of the symbols in the address field did not match those
in the location counter and the short relative address mode was requested by an asterisk terminator,

RT Label - Operation Address Comments

P LDA+ DAT1 (Not an error) Relocations do not have to match
when the mode is long absolute,

P LDA START (OK, relocations match)

P : LDA COM1 (Not an error) The assembler changes this
instruction to long absolute be-
cause the relocations do not
match, but no error is indicated.

P LDA START-K+DAT2-DAT1+COM2 This address expression results in
a common relocation type; all other
relocations cancel out (refer to
address expressions).

ORG DAT1 ' ORG changes the relocation of the
location counter to data,

D LDA* START (Error)

D STA* DAT2+9

ORG* ORG* returns the location counter
to the original relocation,

P LDA* START (Not an error)

ORG H
A LDA* START (Error)

96836500 B : 3-3

RT Label Operation Address
A STA* DAT1 (Error)
A LDA* $1001
A STA- B (Error)
ORG*
END EXAMPLE2

The machine language formats resulting from a storage reference instruction are given in the following
section,

3111 STORAGE REFERENCE, ABSOLUTE ADDRESSING (+, —)

The value of the address expression of an absolute short storage reference instruction must be non-
relocatable. The evaluated result is stored in the last eight bits of the machine language instruction.
If this value is greater than 255, it is flagged as an error, If these last eight bits are 0, a long
absolute instruction is assumed when the instruction is executed. No error is flagged.

Type 1~ Type 2
If the address expression is enclosed in If the address expression is enclosed in
parentheses, indirect addressing is parentheses, indirect addressing is
indicated and bit 10 of the first word is indicated and bit 6 of the first word is
set, set,
Examples:
Absolute Short Direct -
Instruction: : Instruction:
LDA- expr'r : LRA- expr
Machine Word: Machine Word:
15 1211 109 8 7 0 15 1211 87 6 5 32 0
LDA|O|OjO{O expr 0 4 0/]0f Ra [Rb

LRA expr

Texpr is an address expression,

3-4 : _ 96836500 B

Type 1

Instruction:
LDA- (expr)

Machine Word:

15 1211 10 9 8 17

Absolute Short indirectf - ()

Type 2

LDA|oj1}0]O

Instruction:
LDA+ expr

Machine Word:

15 12 11 10 9 8 7

ILDAjo]1]jo0]0

0 expr

Instruction:
LRA-~ (expr)
Machine Word:
0 15 12 11 87 6 5 32
expr 0 4 0{1| Ra | Rb
LRA expr
Absolute Long Direct +
Instruction:
LRA+ expr
Machine Word:
0 15 1211 87 65 32
0 0 4 0{1] Ra | Rb
LRA 0
0 expr

1'In indirect addressing the storage location referenced is not the address expression location,
but the contents of the address expression location,

96836500 B

3-5

Type 1
Instruction:
LDA+ (expr)
Machine Word:

15 121110 9 8 7

Tope 2

Absolute Long Indirect +, ()

LDA jOj1]0]0

1 expr

Instruction:
LRA+ (expr)
Machine Word:
0 15 12 11 87 65 32 0
0 0 4 0j1] Ra | Rb
LRA 0
1 expr

311.2 STORAGE REFERENCE, RELATIVE ADDRESSING (4, *)

When short relative addressing is specified, the value of the current location counter is subtracted
(16-bit ones complement arithmetic) from the evaluated address expression. The result is placed in
the 8-bit A field. If the value of the result is outside the range +$7F, an error condition is flagged.
An error condition is also flagged if the relocation type of the address expression differs from that of
the location counter, If the 8-bit A field is 0, a long instruction is assumed regardless of the opera-
‘tion code terminator, No error message is printed for this condition.

Examples:

Instruction:
LDA* expr
Machine Word:
211109 8 1

Rélative Short Direct *

LDA}1]0jo0] O

3-6

Instruction:
LRA* expr
Machine Word:
0 15 1211 87 665 32 0
expr—+* j 0 l 4 1]o|Ra | Rb
LRA expr-*

96836500-B

Relative Short Indirect

*s ()

Instruction:

Machine Word:

LRA*

15 12 11

(expr)

87 6 5 32 0

Type 1
Instruction:
LDA* (expr)
Machine Word:
5 1211109 8 7
LDA }1}1}j0}0 expr-*

0

LRA

expr-*

In the expression expr-*, the asterisk indicates the value of the current location counter,

When a relative long instruction is specified, the value of the current location counter is subtracted
(using 16-bit ones complement arithmetic) from the value of the address expression to obtain the 16-bit
second word, For Type 1, if the relocation type of the address expression differs from that of the
location counter and the address does not reference an external, the assembler forces a long absolute

instruction,

Examples:

Instruction:

LDA

Machine Word:

expr

15 1211 109 8 7

Relative Long Direct

| LDA

1

1

0

0

expr-*

96836500 B

Instruction:

LRA

Machine Word:

15 12 11

If the address expression is an external reference, the instruction is absolute or relative
depending on the definition of the external,

expr

87 6 5 32 0

0

LRA

expr-*

Type 1 Type 2
Relative Long Indirect A, ()

Instruction: Instruction:
LDA (expr) LRA (expr)
Machine Word: Machine Word:
15 1211 10 9 8 7 0 15 12 11 87 6 5 32 0
LDA|1j1]0]}0 (] 0 4 1|1] Ra Rb
expr-* LRA 0

expr-*

3113 STORAGE REFERENCE, CONSTANT ADDRESSING

Constant addressing may only be used for certain storage reference instructions, Constants in the
address field are preceded by an equal sign and a one-letter code, A constant may be one of the
following:

Code Type Meaning
A aa Two alphanumeric characters (Type 1 only)
N +ddddd : A five-digit decimal number with or without a leading sign
N +$hhhh A four-digit hexadecimal number preceded by $, with
or without a sign .
X e ~ An address expression evaluated modulo 215-1
X (€e) An address expression evaluated modulo 215—1, with

bit 15 set (Type 1 only)

Examples:
DV1 =N$1000 (Hexadecimal constant)
ADD =N-12345 {Decimal constant)
LDA =AXY (ASCII constant)
AND =XTAG145 (Address expression constant)

An instruction containing a constant in the address field results in two machine words (three words for

Type 2).

3-8 96836500°'B

Example:
Instruction:

DVI =N5
Machine Words:

15 1211 10 9 8 7 0

pvijo{o]o]o 0

3114 FELD REFERENCE

‘The field reference instructions follow precisely the same address mode conventions as the general
storage reference instructions, Field start (FLDSTR) and field length (FLDLTH) may not be externals,
although a field can be defined in its entirety as an external field,

Example:

Instruction:
LFA+ Loc, 7,2
Machine Word:

1514 1211 87 65 32 0
o | 5 Jol1| Ra |LFA
[FLDSTR| FLDLTH 0
0 Loc

Where: FLDSTR is setto 7,
} k FLDLTH is set to 1 (one less than the actual field length, 2).

96836500 B ' 3-9

3115 REGISTER INSTRUCTIONS (TYPE 1 ONLY)

Register instructions (Type 1 only) result in one machine word; an eight-bit operation code field and
an eight bit A field. The first four bits of the operation code are set to 0; the next four bits contain the
unique identifier F1 for each register instruction. The expression in the address field of the instruc-
tion is evaluated modulo 215-1 and truncated to fit in the eight-bit A field of the machine word, The

value of the expression must be absolute,

Example:

Instruection:
ENA expr

Machine Word:

15 12 11 8 7

0 ' F1

expr

3116 SHIFT INSTRUCTIONS (TYPE 1 ONLY)

The shift instructions (Type 1 only) result in one machine word containing an 11-bit operation code
and a five-bit shift count, The first four bits of the operation code are set to 0; the next four bits con-
tain the unique identifier F1; the remaining three bits identify the direction of the shift and the regis-

ters used, F1 is 1111 for shift instructions,

The expression in the address field of the instruction is

evaluated modulo 215-1 and becomes the shift count. It is truncated to five bits without a sign and
placed in bits 4 to 0 of the machine word. This expression must be absolute,

Example:

Instruction:
LLS e
Machine Word:

0

0 j1 111

D

15 1211 87 6 5 4

A

Q

3-10

96836500 B

Where: Dis 0 Right shift,

1 Left shift,
Ais 0 A register is ignored.

1 A register is used in the shift,
Qis 0 Q register is ignored.

1 Q register is used in the shift.

3117 SKIP INSTRUCTIONS

Skip instructions result in one machine word: a 12-bit operation code and a four-bit unsigned skip
count, The first four bits of the operation code field are set to 0; the next four bits contain the skip
instruction code 0001 or 0000; the last four bits contain a unique identifier F2 for each skip instruc-
tion, The expression in the address field of the instruction is evaluated modulo 27°-1,

This expression may be absolute or relocatable for Type 1 instructions, but must be absolute for
Type 2 instructions, If absolute, the value of the expression is the skip count, If relocatable, the
value of the skip count is obtained by subtracting (16~bit ones complement arithmetic) the value of the
current location counter plus one from the expression, The skip count is then placed in the last four
bits of the machine word, The final value of the skip count must not exceed four bits or an error
results.t If the expression is relocatable, the relocation type of the expression must match the relo-
cation type of the location counter or an error results,

Examples:

Address Expression Relocatable Instruction:
SAZ TAG . (TAG program relocatable)
Machine Word:

15 1211 87 4 3 0

0 0001 2 {TAG-*-1

Address Expression Absolute Instruction:

S3M TAG-*-1 (TAG program relocatable)
Machine Word:
15 12 11 8 7 4 3 0
0 |00O0O F2 TAG-*-1

TAn error message is printed for Type 1 instructions.

96836500 B 3-11

3118 |INTER-REGISTER TRANSFER

Inter-register transfer instructions result in one machine word, a 13-bit operation code, and a three-bit
field containing the code for the destination register specified in the address field. The first four bits
of the operation code are set to 0 for all inter-register transfer instructions; the next four bits are set
to 1000 or 0111; the five remaining bits identify the {ransfer specified by the instruction code. The
last three bits of the machine word are generated from the address field,

The register field bits are set as follows:

Type 1:

Bit

S Q© = = N N
1]]]] 1]
Q = O = O

Type 2:

Register

Pt

W N e

None

Description

Destination is the A register

A register is ignored

.Destination is the Q register

Q register is ignored
Destination is the mask register

Mask register is ignored

:

© W N e e e

For Type 1 instructions, when 0 is specified in the address field, all three destination register bits

are set to 0 indicating no destination for the result,
takes place, no register is destroyed, and the result of the add may be tested for overflow,

instruction contains a 0 in the address field, no operation takes place,

3-12

If the instruction is AAM, AAQ, or AAB, the add

If any other

96836500 B

Examples:

Type 1 Instruction:
TRA Q,M
Machine Word:

15 1211 87 32 1 0

0 11000 F2 01111

e
Register Field

Type 2 Instruction:
XF2 A
Machine Word:

15 1211 87 5432 0

0 7 2 0 6

R
Register Field

3.1..9 DECREMENT AND REPEAT (TYPE 2 ONLY)

' The decrement and repeat instructions (Type 2 only) result in one machine word. The skip count
SK must be absolute, positive, and less than 16,

15 12 11 87 5 4 3 0

96836500 B 3-13

Example:

Instruction:
] D2P *-TAG2
Machine Code:

15 12 11 817 5 4 3 0

| 0 6 2 0 [*-TAG2

31110 MISCELLANEOUS INSTRUCTIONS

The miscellaneous instructions are defined in Appendix F. Most miscellaneous instructions generate .
one machine word.

3.2 PSEUDO INSTRUCTIONS
Pseudo instructions control the assembler, provide subprogram linkage, control output listing, reserve

storage, and convert data, Pseudo instructions may be placed anywhere in a source language sub-
program, However, NAM must be the first statement of a subprogram and END must be the last

statement.

3.2.1 SUBPROGRAM LINKAGE

These instructions identify and link subprograms; a symbolic name in the location field is ignored.

NAM

l Nam identifies a source language subprogram and must be the first statement of the subprogram,

The format is:

NAM s
Where: s is an optional symbolic name of the subprogram that is printed as part of the assembly
list output. '

3-14 96836500 B

END

END must be the last statement of a source language subprogram, The format is:
END s

Where: s is an optional symbolic name of an entry point fo the first subprogram to be executed.
If specified, s must be defined as an entry point in the subprogram to which control
passes, This entry point may be in the same subprogram as the END statement or
in a subprogram loaded at the same time,

Example:
END START

Where: START is the location of the first statement to be executed,

ENT

The ENT instruction specifies the sjrmbolic names of entry points that may be referenced from other
subprograms, and identifies these names for the loader. The format is:

ENT 81’82’ ...,sn

Where: s, are entry points listed in the address field of ENT and must be defined in the subprogram
containing the ENT instruction, 8; must not refer to a location outside the sub-
program, common storage, or data storage.

Example:
NAM . PROG1
ENT ENT1, ENT2 (Legal)
ENT1 LDA XYZ1
ENT2 STA XYZ2
ENT ENTX (Illegal; ETNX not defined)
END ENT1
EXT/EXT*

The EXT instruction specifies the symbolic names of entry points in external subprograms that may be
referenced from this subprogram, and identifies these names for the loader, The format is:

EXT sl, 82’ .,sn

96836500 B 3-15

Where: s, are entry points in the address field of EXT and must be symbols defined in the
subprograms they reference, s; must not refer to symbols in the same subprogram,

Example:
NAM
EXT ENT1, ENT2 (Legal)

ENT3 LDA XYZ

COM ENTS
EXT ENT3 (Illegal; ENT3 is the same subprogram)
EXT ENT4 (Legal)
EXT ENTS (Illegal; ENT5 is common storage)
END

The EXT* instruction is the same as EXT except that later references to s; must be absolute under
EXT, and references to s; must be relative if EXT* is used, The format is:

EXT* sl,sz,...,sn

The plus terminator cannot be used with an operation code when the address references a relative
external entry point, It is also illegal to enclose an external in parentheses in the address field of an
ADC instruction,

ENF

The ENF pseudo instruction specifies the symbolic names of fields that may be referenced from other
subprograms, and identifies these fields for the loader. The format is: ’

ENF LS S

Where: fi are field names that have been defined in the subprogram containing the ENF pseudo
instruction,

EXF/EXF*
The EXF pseudo instruction specifies the entry fields in other subprograms that may be referenced from

this subprogram, EXF* is the same as EXF, except that references to the EXF* externals must be
relative, The format is:

EXF I S

Where: fi are external fields that may be referenced by this subprogram.

3-16 _ 196836500 B'

3.2.2 DATA STORAGE
The following instructions allocate data stoi'age. BSS and BZS assign storage local to the subprogram

in which they appear, COM and DAT assign data common to any number of subprograms, Symbolic
names in the location fields of data storage instructions are ignored.

BSS

The BSS instruction assigns symbolic names to segments of storage within the instruction sequence of
the subprogram, The format is:

Where: s is a symbolic name that defines the first location of the named segment,
omitted A segment is assigned with the length e, but no name is assigned

to the segment,

e, is an expression that must be previously defined, It corresponds to the symbolic name
that defines the length of the segment in words, Segments are assigned contiguously
to form one block of data starting at location s;. It can be assigned by an EQU
instruction. The size of the block is equal to the sum of the sizes of the segments,
e are evaluated modulo 215-1 and must be absolute,

0 The associated symbolic name is assigned to the next segment,
which in effect assigns two names to that segment,

omitted The length is assumed to be one computer word,

BZS

This statement functions in the same way as BSS, except that the specified storage locations are set to
0. The format is:

BZS. sl(el),sz(ez),...,sn(en)
Where: s; is a symbolic name that defines the first location of the named segment,
omitted A segment is assigned with the length e, but no name is assigned

to the segment,

e is an expression that must be previously defined, It corresponds to the symbolic name
that defines the length of the segment in words, Segments are assigned contiguously
to form one block of data starting at location s;. It can be assigned by an EQU
instruction, The size of the block is equal to the sum of the sizes of the segments,
e; are evaluated modulo 215_1 and must be absolute,

96836500 B 3-17

omitted

Example:
NAM
NAM3 LDA
BSS
BZS
BSS

BSS
BSS

BSS
EQU
BZS
BSS
BSS

END

COM

The associated symbolic name is assigned to the next segment,
which in effect assigns two names to that segment,

The length is assumed to be one computer word, '

XYZ1
NAM4(3)

NAMS5(5)
NAM1, NAM2(9)

NAM3
NAMS, (4)

NAMY7
NAMS(4), NAM9(2)
NAM10(NAMS8-NAMS)

NAMS8(NAM10-1)
LOC1(0), LOC2

Set up a three-word block with NAM4 as the
first word.

Set up a five-word block of 0s with NAMS as
the first word,

Set up a one-word block, NAM1, Set up a nine-
word block with NAM2 as the first word.
Illegal; NAM3 has already been declared.

Set up a one-word block, NAM6, Set up a four-
word block for an unnamed segment,

Set up a one-word block, NAM7,

LOC2

Set up a two-word block of 0s with NAM10 as
the first word,

Illegal; NAMS has already been declared,
Assign the same word to LOC1 and LOC2,

The COM instruction names and defines segments in a block of storage that are common to more than
one subprogram, The format is:

CcOM sl(el), 82(92), cees sn(en)

Where:

omitted

i

8 is a symbolic name that defines the first location of the named segment,

A segment is assigned with the length e, but no name is assigned

to the segment,

e, is an expression that must be previously defined, It corresponds to the symbolic name

that defines the length of the segment in words. Segments are assigned contiguously
to form one block of data starting at location 8;. Itcan be assigned. by an EQU
instruction, The size of the block is equal to the sum of the sizes of the segments,
e; are evaluated modulo 215-1 and must be absolute,

0

omitted

3-18

The associated symbolic name is assigned to the next segment,
which in effect assigns two names to that segment.

The length is assumed to be one computer word,

96836500 B

If a program includes more than one COM statement, they define consecutive segments of common
storage in the order of their appearance. The area used by common storage is assigned by the loader
at load time to locations outside the program area, Data in common storage cannot be preset by the
ORG pseudo instruction,

Example:
NAM
COM NAM4

NAMS3 STA XYZ1

COM NAM7($1EF), NAMS
EQU NAM1(6), NAM2(2)
COM NAMS5(NAM1-NAM2)
COM NAM6(NAMS3) (Illegal)
END

DAT

The DAT instruction reserves area for common storage that is assigned within the program area and
which may be preset with data or instructions by using the ORG pseudo instruction. The format is:

DAT 5,@ 18,5 ...58 (€))

Where: si is a symbolic name that defines the first location of the named segment,
omitted A segment is assigned with the length e, but no name is assigned to the
segment,

ei is an expression that must be previously defined, It corresponds to the symbolic name
that defines the length of the segment in words. Segments are assigned contiguously
to form one block of data starting at location sy. It can be assigned by an EQU
instruction, The size of the block is equal to the sum of the sizes of the segments,
e; are evaluated modulo 215_1 and must be absolute,

0 The associated symbolic name is assigned to the next segment, which in
effect assigns two names to that segment.

omitted The length is assumed to be one computer word.

3.2.3 CONSTANT DECLARATIONS

These pseudo instructions introduce constant values into the instruction sequence,

96836500 B 3-19

ADC/ADC*

An ADC/ADC* instruction evaluates the address expressions. The resultant address constants are
stored in consecutive locations within the instruction sequence. The format is:

8 ADC el,ez,(es),...,en

Where: s is a symbolic name in the location that is assigned to the first constant in the address
field,

e, is an expression that corresponds to the symbolic namé that defines the length of the
segment in words, Segments are assigned contiguously to form one block of data
starting at location s,, The size of the block is equal to the sum of the sizes of the
segments, e, are evaluated modulo 219-1 and must be absolute. Indirect address-
ing is specified by parentheses,

omitted The length is assumed to be one computer word.

When ADC is followed by an asterisk, the evaluated address expressions are made relative to the
current location counter, The relocation type of the expression must be the same as that of the loca-
tion counter. The value of the location counter is subtracted from the value of the evaluated expression
(16-bit ones complement arithmetic) and the result is the 16-bit address constant.

Indirect addressing cannot be specified in the ADC* statement.

ALF
The ALF instruction puts the message in ASCII format, ' The format is:
8 ALF n,message

Where: s is a symbolic name in the location that is assigned to the first constant in the address
field.

n is an unsigned integer; it specifies the number of words to be stored. 2n equals the
number of characters,

integer 2n characters of the message are stored, Excess charac-
ters are treated as a remark, (The ALF statement,
including the message, will not be processed beyond the
72nd character of the source image,) If the message is
less than 2n characters, the unused portion of the speci-
fied area is blank,

a noninteger character Signals the end of the message

a special character The storage of the message terminates the first time this
character is encountered in the message, if it occurs
before the 72nd character, If the character just prior ton
is the first character of a word, a blank is placed in the
second character to complete the word,

3-20 96836500 B

A character message is stored into consecutive locations in the instruction sequence. The message is
converted to ASCII characters and stored as two 8-bit characters per word,

The following typewriter control characters may be input with the ALF statement:

Code Meaning Hexadecimal Value
:R Carriage return D
:T Horizontal tab 9
:L Line feed A
:B Bell 7
:F Top of form C
vV Vertical tab B

These codes are converted to a single output character (hexadecimal) and counted as one character in
determining the value of n, when n is an integer character count. A colon is a eight- and five-
keypunch code with the ASCII value of $3A.,

A symbolic name in the location field is assigned to the first word of the message,

NUM

The NUM instruction defines numeric constants, The format is:
8 NUM kl’kz""’kn

Where: s is a symbolic name in the location that is assigned to the first constant in the
address field,

ki are specified integer constants stored into consecutive locations in the instruction
sequence, Each constant may be a decimal integer within the range +32,767, or a
hexadecimal integer preceded by a $ within the range +7FFF, The constant is
assumed to be positive. When the sign is minus, the ones complement of the
number is used,

Example:

The source statements,

NUM 1,2,3,$A
NAM1 NUM +14, -10,-$13B, $7FF

are translated into the following machine words,

96836500 B 3-21

Location Contents

0001
0002
0003
000A
NAM1 000E
FFF5
FEC4
07TFF

DEC

The DEC instruction converts decimal constants into fixed-point binary, The format is:
8 - DEC kl’kz""’kn

Where: s is a symbolic name in the location that is assigned to the first constant in the
address field. '

ki are specified integer constants stored into consecutive locations in the instruction
sequence, They are signed decimal integers followed by a decimal and/or binary
scaling factor, The decimal scaling factor consists of a D followed by a signed
or unsigned decimal integer. The binary scaling factor is a B followed by one or
two signed or unsigned decimal digits, The form of a constant in the address field

may be:
fDdBb

which is equivalent to the algebraic expression:
f 1od 2b

The fixed-point binary number resulting from the conversion must have a magnitude
less than 215, If the result of scaling is greater than 215-1, an error diagnostic is
printed.

A symbolic name in the location field is assigned to the location of the first constant,

Example:

The source language statements,

DEC 35D-1B6
NAM1 DEC -35B6

DEC 32760B-4
NAM2 DEC 32761D—5315, +625D-2B3
NAM3 DEC 10D3

3-22 96836500 B

are converted to the following machine words:

Location Contents of Bits 15 through 0
0000000011100000
NAM1 1111011100111111
0000011111111111
NAM2 0010100111101111
0000000000110010
NAM3 0010011100010000

VFD

The VFD (variable field definition) instruction assigns data to consecutive locations in the instruction
sequence without regard for computer words, Data is stored in bit strings rather than word units; it
may be numeric constants, ASCII characters, or expressions, However, all the data to be stored in

a memory location must be specified in a single VFD, A symbolic name in the location field is assigned
to the first word of data, The format is:

s VFD mlnl/vl’ m2n2/v2, vee ,mnnn/vn
Where: s is a symbolic name that defines the first location of the named segment,
m is the mode of the data,
N The data is a numeric constant and the number of bits must not be greater

than 16. If n is larger than necessary, the value is right-justified in the
field and the sign extended in the remaining high-order bits, If n is less
than is required, the value is truncated and the least significant bits are
stored, The value v is a decimal integer or a hexadecimal integer pre-
ceded by a dollar sign. Integers may be signed or unsigned; if the sign
is omitted, the number is assumed to be positive, A decimal number
must be within the range +32,767 and a hexadecimal integer within the
range +7FFF,

A v is a string of characters and n must be a multiple of 8, The number of
characters in the string should be equal to n/8, including embedded
blanks, The last character must be followed by a blank or a comma. The
characters are converted to ASCII code and stored as in the ALF
instruction,

X v is an expression and n must be less than or equal to 16, If n is less
than 16, the final value of the expression may be relocatable or absolute,
It is evaluated modulo 215—1. If the final value is absolute and n exceeds
the size required, the value is right-justified in the field, If it is abso-
lute and n is less than the required size, the value is truncated and the
least significant bits are stored in the field, If the final value is relocat-
able, n must equal 15 and the expression must be positioned so that it
will be stored right-justified at bit position 0 of the computer word,

96836500 B 3-23

If n equals 16, the expression must be absolute; it is evaluated using
16-bit ones complement arithmetic, If a symbol is used in a 16-bit
expression, bit 14 of the value of the symbol is extended to bit 15, and
therefore the calculation of the value of the symbol is accurate only to
214-1. For example, if the symbol A is equated to the value -1, the
value of A in the symbol table is $7FFE, but the value used in the 16-bit
calculation of this symbol is $FFFE, Numeric operands used in a 16-bit
expression may be 16 bits in magnitude,

n is the number of bits to be allocated,

v is the value of the data.

Examples:

3-24

1, The source language statements,

NAM .
VFD N3/1,X5/6-4, A16/XY, X4/NAM1-NAM2
BSS NAM2(3), NAM1
END

result in the following machine words:

15 1312 817 0

001100010 }01011000

01011001 1}001140 000

2, The source language statements,

NAM
VFD N8/-1,A8/L,N1/0,X15/NAM1
BSS NAM1

END

result in the following words:

15 87 0

1111111001001100

0 Location of NAM1

‘96836500 B

3. The source language statements,

NAM
EQU A(-1),B(2)

VFD X16/A, X16/B, X16/$7FFF*2
END

result in the following machine words:
15

1111111111111110

0000000000000010O0

1111111111111110

3.2.4 ASSEMBLER COMMUNICATION

The assembly process is controlled or modified by these pseudo instructions, A symbolic name in the
location field is ignored except where specifically noted.

EQU

The EQU instruction equates each symbolic name to the expression value, The format is:

EQU sl(el.)’ 82(e2)’ LRE] sn(en)
Where: 5, is a symbolic name that is equated to the value of ei.

; are symbolic operands that have been previously defined and which are not external to
the subprogram in which the EQU statement appears, e, are evaluated modulo
15 i
27"-1 and must be absolute,

e

omitted The expression is assumed to be 0,

96836500 B 3-25

FLD

The FLD pseudo instruction defines a field to the assembler. Fields defined using this pseudo
instruction may be referenced by a simple name which has all the attributes of the field, These fields

may also be declared ex_ternal or entry fields, The format is:
FLD N(W, S, L)
Where: N is the name of the field; follows the same rules as the location names,
W is the word in which the field is contained,
S is the start bit, the leftmost bit in the field, 1528 >0

L is the length of the field (number of bits), 1 <L <16

ORG/ORG*

The ORG statement specifies an address expression to which the current location counter is set. The
format is:

ORG e

Where: e, is an expression that is evaluated modulo 215-1. The location counter is set to the
resultant value, The value of the expression may be program or data relocatable or
absolute; if relocatable, it must be positive, Any symbolic operands in the expres-
sion must have been previously defined,

The instructions following an ORG statement are assembled into consecutive locations beginning at the
location of the evaluated address expression e, This sequence may be changed by another ORG or
terminated by an ORG* statement, Within the range of a data relocatable ORG, any reference to an
external symbol is illegal, '

The ORG* instruction is used to return to the normal instruction sequence previously interrupted by an
ORG. More than one ORG may be specified without an intervening ORG*; however, when an ORG* does
occur, the location counter is reset to the value it had prior to the first ORG.

Example;
BSS ORG1(10), ORG2, ORG3(5)
NAM1 ENA 0

.
.

3-26 _ 96836500 B

NAM2

NAM3

IFA

JMP* NAM3

ORG NAM1

{Sequence of code beginning at NAM1)
ORG*

(Resume sequence of code at NAM2+1)
"TMP* NAM4

ORG ORG1

(Sequence of code beginning at ORG1)
ORG ORG3

(Sequence of code beginning at ORG3)
ORG*

(Resume sequence of code at NAM3+1)

The IFA instruction assembles a set of coding lines if a specified condition is true. The format is:

s

Where:

96836500 B

IFA e 1 c,e 2
s is a symbolic name in the location field, It is used as an identifying tag only; it is
not defined as a location symbol within the program, If specified, the first two
characters of the identifier s must match the first two characters of the symbolic
name in the address field of the corresponding EIF, If s is blank in an IFA state-
ment, it must also be blank in the corresponding EIF statement,

1
e, are expressions that are evaluated modulo 2 5--1 and which must result in an absolute
value, Any symbolic name in either expression must have been previously defined,

¢ allows the code to be assembled if a specified condition exists between e; and e3. If the
condition does not exist, the code following the IFA statement is skipped until a
corresponding EIF statement is encountered.

The following conditions may be specified by c:

Condition Meaning
EQ e1 = e2
NE e, # e,
GT e1 >_e2
LT e1 <e2

3-27

EIF

The EIF instruction signals the termination of an IFA or IFC instruction (Section 3. 3. 1) when coding
lines are skipped as a result of an untrue condition, When the condition in the IFA or IFC is true, EIF

is ignored. The format is:

EIF s

Where: s is the symbolic name in the address field that establishes the correspondence between an
IFA or IFC and an EIF instruction. The first two characters of s must be the same as
the first two characters in the location field of the corresponding IFA or IFC, An EIF
with a blank address field terminates an unlabeled IFA or IFC,

Example:

NAM
LOC1 BSS A(20), B(10),C(2)

EQU NAM1(10), NAM4(B), NAM2(2)
NAM3 IFA NAM1, EQ, NAM2+8
OoP1 SAZ 1

EIF NAM3

IFA NAM1,GT,NAM2+8
OP2 SAZ 2

EIF

END

OP1 is assembled and OP2 is skipped if the value of NAM1 equals the value of NAM2+8, OP1 is skipped
and OP2 is assembled if the value of NAM1 is greater than the value of NAM2+9, Both OP1 and OP2 are
skipped if the value of NAM1 is less than the value of NAM248,

3.2.5 LISTING CONTROL

The following pseudo instructions control the printing of assembly output, The location and address
fields are ignored unless specified.

NLS

The NLS instruction inhibits list output, The format is:
NLS

Normally, list output is enabled until an NLS occurs, It remains inhibited until an LST instruction or
the end of the program occurs.

3-28 96836500 B.

1IST

The LST instruction initiates list output after an NLS has inhibited it, The format is:
LST

SPC
The SPC instruction controls line spacing on the list output unit, No spaces are output if the SPC card
is encountered at the top of a listing page, The format is:

SPC e

Where: e is the number of lines to be skipped. The expression is evaluated modulo 215-1 and
must be absolute,

EJT

CLASS processes an EJT pseudo instruction as four spaces instead of a page eject. However, if the
EJT is encountered more than three-quarters of the way down a listing page, the page will be ejected.
No spacing or ejecting occurs if the EJT is encountered at the top of a listing page. There is an option
available to process all EJT cards as page.ejects. The format is:

EJT

ERR

The ERR pseudo instruction is provided for programmer-defined errors. It is intended to be used
within the coding lines of an IFA or IFC sequence to identify certain erroneous conditions which are set
up by the programmer, It is also used in the assembly text for enhanced instructions, The format is:

ERR

The following is a source code sequence example:

TAG IFA SYMB, EQ, 0
ERR
EIF TAG

In this example, if SYMB is equated to 0, an error results and will be flagged with PD on the line
where ERR is assembled,

96836500 B 3-29

NOREF

The NOREF pseudo instruction is provided in CLASS to enable the programmer to specify any symbols
that he does not want included in the complete reference map at the end of the listing (see Section 4. 2.5).
The address field contains the symbol names to be excluded, separated by commas, The format is:

NOREF
The following is the source language input:

NOREF SYMB1, SYMB2, SYMB3,...

3.3 MACROS

An often-used set of instructions may be grouped together to form a macro. Once a macro is defined,
it may be used as a pseudo instruction. The CLASS Assembler includes two types of macros:

Programmer-defined Macros declared and defined by MAC pseudo instructions. Each
macro may be defined anywhere in the program prior to the first
reference to it, Comment cards may be placed anywhere in the
macro definition, :

Library Definitions contained on the system library that may be called
from any subprogram,

If an error is encountered by CLASS in a macro definition, it is flagged and CLASS continues processing
the definition, However, whenever a macro is called whose definition was erroneous, no attempt is
made to substitute the skeleton for the call, The programmer is merely notified that there was an
error in the definition, Also, symbols beginning with the characters OO0 and Q99 may not be used as
macro names as these are reserved for the assembler, The mnemonics IFK, IFR, and PCO are
reserved for the assembler, CLASS limits nesting to 10 calls per macro, only because deeper nesting
usually is caused by an error loop, If deeper nesting is required, CLASS must be reassembled (see
Appendix E),

3.3.1 MACRO PSEUDO INSTRUCTIONS

These pseudo instructions are only used within a macro definition,

MAC

The MAC instruction is required and names a macro and its formal parameters, The location field
contains the name used to call the defined macro, It may be any name not used by a machine or pseudo
instruction, The format is:

8 MAC P,P

29""

19

3-30 96836500 B

Where: s is a symbolic name in the location field, which is assigned to the first word of the
generated code,

p. are symbolic names that are local to the macro definition and which may be used
anywhere else in the program without ambiguity. The formal parameters must
conform to the following rules:

e They must be symbolic of one or two characters,

e The parameter list must not extend beyond the 72nd character of the line
containing MAC,

e The parameter list must terminate with a blank or the 72nd character of the
line,

e Each parameter in the list is separated from the next by a comma,

EMC

The EMC instruection is required.and signals the end of a macro definition. A symbolic name in the
location or address field is ignored. EMC is always the last instruction in a macro definition, The
format is:

EMC

LOC

The LOC instruction is optional and allows the use of the same symbols in macros and programs to
avoid doubly defined symbols. Symbols that are local to the macro being defined are listed in this
instruction. Local symbols have meaning only in the macro in which they are listed by LOC, thus
allowing the same symbols to be used elsewhere in the program without ambiguity.

The LOC instruction must immediately follow the MAC instructions. A symbol in the location field of
the LOC instruction is ignored. The format is:

LOC sl,sz,...,sn

Where: s, are local symbols in the address field that must conform to the following rules:
e They must be symbolic names of one or two characters,

e The list cannot extend beyond the 72nd character of the line containing the
LOC instruction,

° The list terminates with a blank or the 72nd character of the line.
e Each symbol in the list is separated from the next by a comma,

e No local symbol in the list may be the same as a formal parameter specified
for the macro.

e No more than 256 local symbols can be used in one program.

36836500 B) 3-31

IFC

The IFC instruction is optional and allows a set of instructions within a macro definition to be assembled
only if a specified condition is true, This instruction is meaningful only within the range of a MAC.
pseudo instruction, The format is:

] IFC al,c,a2

Where: s is an identifying tag in the location field which is used to establish correspondence with
the terminating EIF, An EIF terminates an IFC when the first two characters of the
symbol in the address field of EIF are the same as the location symbol of the IFC, or
when both symbols are blank and it is the first EIF encountered,

a, is a string of one to six characters or a formal parameter specified in the MAC state-
ment, The character string should not contain commas, blanks, or apostrophes,
Two character strings are equal when they contain the same characters in the same
position and are of the same length, Characters in excess of six are ignored.

¢ is a specified condition:

Condition Meaning
EQ a, =a,
NE a #a .

If the condition specified exists between a; and ag, the code is assembled; if not, the
code following the IFC is skipped until a corresponding EIF pseudo instruction
(Section 3, 2, 4) is encountered,

3.3.2 MACRO SKELETON

A macro skeleton is the set of instructions within a macro definition that is the prototype of the opera-
tions to be performed when the macro is called.

The instructions may be any machine or pseudo instruction except MAC, LOC, EMC, NAM, END, or
MON. A macro skeleton may also contain macro instructions calling other macros, Formal param-
eters, enclosed in apostrophes, may appear anywhere in the instruction format of a prototype instruc-
tion. Local symbols defined by a LOC statement may be used anywhere in the macro skeleton; they
also must be enclosed in apostrophes, The only legal use of the apostrophe in a macro definition is to
enclose formal parameters or local symbols, Formal parameters that extend past the 72nd character
into the sequence field are ignored., Format parameters in a remark statement signaled by an * in
column 1 are also ignored,

In addition to the formal parameters specified in the MAC pseudo instruction, a special formal param-

eter (a period enclosed in apostrophes) may be used in the macro skeleton, It is replaced by the
instruction terminator of the calling macro instruction when a terminator is specified.

3-32 96836500 B

Null

Actual parameters may be omitted from a macro instruction, An omitted (null) parameter in the middle
of the list is indicated by its terminating comma only, Parameters at the end of the list may be
omitted with no indication.

Example:

The macro instruction with p2, P " and Pg omitted in the actual parameter list would be:
XYZ MUI, , SYMBS,,3

Empty fields are allowed in all machine and pseudo instructions with the following exceptions:

ALF n, message n must be specified

EQU s(e)

CcCoOM s(e) If e is specified, s must be specified
DAT s(e) '

IFA e ,c,e

IFC ai’ c,az] ¢ maust be specified

The actual parameters to be inserted into the value of a VFD instruction using mode A must agree with
the number of characters specified, A null actual parameter can cause an error in the generated code
unless the VFD allows for null parameters,

Nesting Macros

Calls to either library macros or programmer-defined macros can be nested in a macro definition,
Recursive calls to nested macros are allowed to the 10th level., Further recursive calls are ignored.

Local location symbols are unique to each level of nesting,

Example:
XYZ f(l;(; :1’ pz. p3. p4o p5
LDA "' '
v * ?, 1'
P3
S'py'A 'A'-*-1 Macro skeleton
{ I | L. 1]
o JMP', ps
A ENA 1
EMC

96836500 B 3-33

3.3.3 MACRO INSTRUCTIONS

With a macro instruction, the code generated from the named macro is inserted in the instruction
sequence beginning at the location of the macro instruction, The format is:

8 N PysPys-ccs Py

Where: s is a symbolic name in the location field that is assigned to the first word of the
generated code.

N is a symbolic name of the macro in the operation code field. It is the name specified
in the location field of the MAC statement of the macro definition it calls, The macro
name may be followed by one of the special terminators A, +, -, or *,

p. are symbolic names that are local to the macro definition and which may be used any-
where in the program without ambiguity.

The actual parameters must be listed in the same order as the formal parameters in the MAC state-
ment. The list of actual parameters must conform to the following rules:

° Each parameter in the list must be separated from the next by a comma,

™ The list must be terminated with a blank or the 72nd character unless the 72nd character
is a comma,

° The list may be continued onto the next line; if so, the last parameter on the list is
terminated by a comma and a blank or the 73rd character,

° The continuation line must contain the macro name in the operation code field. A symbolic
name in the location field is ignored,

° An actual parameter containing embedded blanks or commas must be enclosed by
apostrophes.

3.3.4 ASSEMBLY TEXT GENERATION AND USE

CLASS has the capability of creating or calling an assembly text of predefined symbols and macro defi-
nitions, This text may be generated or called by use of special parameters on the CLASS call card,
(See Appendix B for a complete explanation of call card parameters,)

In order to generate assembly text, M=FNAME should be specified on the CLASS call card, The source
program to be assembled should contain only the symbols and macro definitions to be included in the
text, Each macro definition should begin with a MAC pseudo operation and end with an EMC pseudo
operation, Symbols should be defined with an EQU statement,

3-34 : '96836500'B

After assembling the program; CLASS will build a file containing the predefined symbols with their
values, the macro skeleton images, and a macro name table, The file name will be the name specified
by the M parameter. The text may be saved for future use by making it a system file or by making it
a user file, :

The assembly text can be utilized by specifying F=FNAME or G=FNAME on the CLASS call card, The
text must have already been generated and reside either in the system or on a user-supplied file. The
G parameter is used if the text is a user file,

CLASS reads in the file and adds the predefined symbols and macros to its tables prior to assembly,
If macros are redefined during assembly, the newest definition will be used. If symbols are redefined,
an error will be generated,

3.4 CLASS LIMITATIONS

3.4.1 WARNINGS

CLASS allows the following storage reference case to be assembled without error;
LDA+ ($C5)
which is assembled as:

C400
80C5

This would cause different results in 32K and 65K machines.

CLASS requires long relative references to relative externals and long absolute references to absolute
externals when the enhanced instructions are used.

User-defined macros may have any six character names except IFK, IFR, PCO, or any Type 2 machine
instruction name; and macro names may not begin with the characters O0.

The use of SPC 0 causes the assembler to lose the line count for the current page.

3.4.2 SPECIAL CHARACTERS

CLASS uses several special characters in its processing to flag various conditions., They may not be
used on the input source cards or unpredictable errors may result. The special characters that cannot
be used are:

~ Character 6000 Display Code Hollerith Punch
| 7% 12-8-6
t 70 11-8-5
| 1 11-8-6
A 72 12-0

96836500 B ’ 3-35

Because there is a discrepancy between the codes for a colon on the CYBER 18 computers and on the
CYBER 170/70/6000 computers, CLASS accepts as a colon an 8-5 punch, as specified in the CYBER 18
Macro Assembler reference manual, or an 8-2 punch as specified in the CYBER 170/70/6000 manuals,
Since the colon has special meaning in the ALF pseudo instruction, it is not advisable to attempt to insert

the colon in core using the ALF pseudo instruction,

CLASS expects an 8-4 punch for an apostrophe from the 026 card punch, but this is printed as a quote,

In general, special characters should be used with caution because of the discrepancies between the
various codes and keypunches,

3-36 96836500 B

OUTPUT 4

There are two types of output from the CLASS assembler:

° Relocatable Binary Output
. List Output

4.1 RELOCATABLE BINARY OUTPUT

CLASS produces relocatable binary output in three formats: P8 for punching up to 80-column cards,
B for the CYBER Cross System, and RB for magnetic tape input to the MSOS Loader. Files P8

and B have the necessary identifiers to be recognizable to the MSOS peripheral device drivers; i.e.,
7/9 punch checksum and word count., File P8 is written one program per record and file B is written
one block (BZS, RBD, etc.) per record, File RB has no checksums and is written one block per rec-
ord. It should be written on a stranger (S-format) tape if the tape is to be loaded by the MSOS Loader.

The assembler specifies relocatable binary blocks by the type of indicator field in bits 15 through 13 of
the first word of the block, The following block types are defined:

Type Indicator Description

NAM 001 Name block

RBD 010 Command sequence block
BZS 011 Zero storage block

ENT 100 Entry point block

EXT 101 External name block
ENF 000 Entry field block

EXF 111 External field block

XFR 110 Transfer address block

Output begins with a NAM block and terminates with an XFR block, The EXT and EXF blocks follow
the RBD blocks, The RBD, BZS, ENT, and ENF blocks may come in any order,

The following is the format for the eight block types.

96836500 B 4-1

NAM Block

The NAM block contains a word count for common and data storage, the program length, and the name
of the program,

15 12 11 8 7 43 0

0 0 1 0jJ0 0 0 0JO0 1 0 1j0 0 O0 O
Number of words in common storage block
Number of words in data storage block

Program length
Character 1 Character 2)
Character 3 Character 4

Character 5 Character 6

0 =3 O O b W N

b Program Name

-

- _ NAM statement comments
a1

RBD Block

An RBD block contains a portion of the actual command sequence data of the program,

Words 2 through 57 contain the relocation bytes and words for the command sequence input, Each
relocation byte is a four-bit indicator that identifies a word of the command sequence input as an
absolute 15-bit address or as a 15-bit address relative to some relocation base., The relocation base

for a word is determined by the particular combination of bit settings within the relocation byte,

The following are the relocation bytes in RBD blocks:

0000 Absolute (no relocation)

0001 Positive program relocation

0101 Negative program relocation

0010 Positive common storage relocation
0110 Negative common storage relocation
0011 Positive data storage relocation
0111 Negative data storage relocation

4-2 96836500 B

The core image of the RBD block is:

15 12 11 87 4 3 0
1 0 1 0 o0/0 0 0 00 1 0 1j0 0 O O
2 RO R1 R2 R3
3 wo
4 w1l
5 w2
6 w3
7 R4 R5 R6 R7
8 w4
9. W5
10 wé
11 . W7
12 RS R9 R10 R11
52 R40 R41 R42 R43
53 W40
54 w41
55 W42
56 w43
57 ’ Not used

Where: Wn is the nth word of the input block (n = 1 to 43).
Rn is the relocation byte of the nth word.
WO is the origin address of the input block
RO is the relocation byte for w0,

There is one relocation byte for every word in the command sequence output and a maximum of 45
entries in the RBD block. The first word is the address relative to the start of the program where the
loader begins storing command sequence data. The relocation byte for the first word address (storage
address) of an RBD block may be 0000, 0001, or 0011, If the field contains a number larger than 0011,
0011 is assumed, Zero is the leading bit for all but the last relocation byte; 1 is the leading bit for
the last relocation byte,

96836500 B 4-3

BZS Block

A BZS block contains relocation bytes, the starting address, and block sizes for areas of core to be
cleared to 0s when the program is loaded,

The core image of the BZS block is:

15 12 11 87 4 3 0
1 0 11 00 0 0 00 1 0 1410 0 0 O
2 R1 R2 R3 R4
3 Al
4 S1
5 A2
6 s2
7 A3
8 S3
9 A4
10 54
11 R5 R6 R7 ' R8
N N
47 R21 R22 R23 R24
48 A2l
49 S21
50 A22
51 S22
52 A23
53 S23
54 A24
55 S24
56 R25 Not used
57 Not used

4-4 96836500 B

Where:

A is the starting address,

S is the size of the area reserved by BZS,

R is the relocation of the starting address.

" An is the starting address of the nth entry,

Sn is the size of the BZS reservation for the nth entry.

Rn is the relocation byte of the nth entry.

The relocation bytes for a starting address may be 0000, 0001, or 0011,

ENF Block

Up to 11 entry fields may be specified in an ENF block, The end of data in this block is identified by
0s, If the sign bit of a word containing the entry point address is 0, the address is program relocatable,
If the sign bit is 1, the address is absolute and in ones complement. Data begins in word 2.

The core image of the ENF block is:

W 00 1 O N AW N -

-
- o

52
53
54
55
56
57

96836500 B

15 12 11 8 7 4 3
0 0 0 o0 O O OO0 1 0 150 0 O 0
Character 1 Character 2
Character 3 Character 4
Character 5 Character 6
El
FLDST @ |FLDLTH1-1 Not used
Character 1 Character 2
Character 3 Character 4
Character 5 Character 6
E2
FLDST 2 | FLDLTH2-1 Not used
Character 1 Character 2
Character 3 Character 4
Character 5 Character 6
El1
FLDST 11 {FLDLTH11-1 Not used
Not used

I\

> Field Name 1

> Field Name 2

» Field Name 11

4-5

Where: Name n

FLDST n

is a six-character name of the nth entry in the block.

is the entry address of the nth field name.

if absolute and positive if relative,

En is negative (ones complement)

is the leftmost bit of the nth field, 0 < FLDST n £ 15

FLDLTH n is the length of the nth field, 1 SFLDLTH n £16

ENT Block

Up to 14 entry point names and addresses may be included in an ENT block. The end of data in this
block is identified by 0s, If the sign bit of a word containing the entry point address is 0, the address
is program relocatable, If the sign bit of the word is 1, the address is absolute and in ones comple-
ment, Data begins in word 2 and extends to word 57,

The core image of the ENT block is:

®©W 00 S O N W N =

50
51
52
53
54
55
56
57

4-6

15 12 11 8 7 4 3 0
1 0 0 010 0 0 0}j0 1 0 130 0 0 O
Character 1 Character 2]
Character 3 Character 4
- > Name 1
Character 5 Character 6
El
1
Character 1 Character 2
Character 3 Character 4
> Name 2
Character 5 Character 6
E2
P
Character 1 Character 2
Character 3 Character 4
Character 5 Character 6
E13
Character 1 Character 2
Character 3 Character 4
) Name 14
Character 5 Character 6
El4
96836500 B

Where: Name n is a six-character name of the nth entry in the block.

En is the entry point address of the nth name. En is negative (ones complement) if
absolute and positive if program relocatable,

When processing an ENT block, the loader records the entry point name in its table. The entry point
address is adjusted for relocation (either program or absolute), then it is recorded in the table of entry
points, This procedure is repeated until the end of input is reached (a name equal to 0),

For each name, the loader determines if an entry point has been previously recorded in the table, If
so, a duplicate entry error has occurred, The same entry point name may not be used by two programs
to occupy memory space at the same time, Only the first occurrence of an entry point name is valid;
others are illegal and are not loaded.

EXF Block

Up to 14 external fields and link addresses may be included in an EXF block, The core image of the
EXF block is: - :

15 12 11 8 7 4 3 0
1 111 0]0 0 0 0j]0 1 0 110 0 0 O
2 Character 1 Character 2)
3 Character 3 Character 4
¥ Name 1
4 Character 5 Character 6
5 L1)
6 Character 1 Character 2
7 Character 3 1 Character 4
> Name 2
8 Character 5 Character 6
9 L2
P
ﬂr -
50 Character 1 Character 2 A
51 Character 3 Character 4
> Name 13
52 Character 5 Character 6
53 o L13 J
b
54 Character 1 Character 2
55 Character 3 i Character 4
> Name 14
56 Character 5 Character 6
57 L14
P

96836500 B 4-7

Where: Name n is a six-character name of the nth entry in the block.

In

is the link address of the nth name,
and positive if‘ relative,

LN is negative (ones complement) if absolute

The end of the EXF block is indicated by 0s, If the sign bit of the word containing the link address is 0,
the address is program relocatable, If the sign bit is 1, the address is absolute and in ones comple-
ment, The format of the data in the block is the same for EXF as for ENT information., Relative
external fields are indicated by setting the leftmost bit of the word containing character 1 of the field

name,

EXT Block

Up to 14 external names and link addresses may be included in an EXT block. The core image of the

EXT block is:

© ® 9 O G b W N

50
51
52
53
54
55
56
57

15 12 11 8 7 4 3 0
1 01 00 0 0 00 1 0 1]0 0 0 O
Character 1 Character 2
Character 3 Character 4
Character 5 Character 6
1
Character 1 Character 2
Character 3 Character 4
Character 5 Character 6
1.2

1

Character 1 Character 2

Character 3 Character 4

Character 5 Character 6
L13

Character 1 Character 2

Character 3 Character 4

Character 5 Character 6
L14

9

4

I\,

>

4

Name 1

Name 2

Name 13

Name 14

96836500 B

Where: Name n is a six-character name of the nth entry in the block.

In is the link address of the nth name, In is negative (ones complement) if absolute
and positive if relative,

The end of the EXT block is indicated by 0s. If the sign bit of the word containing the link address is

0, the address is program relocatable. If the sign bit is 1, the address is absolute and in ones comple-
ment, The format of the data in the block is the same for EXT as for ENT information. Relative
externals are indicated by setting the leftmost bit of the word containing character 1 of the name,

XFR Block
The XFR block contains a transfer address (in words 2 to 4), which is six ASCII characters in length,
including trailing spaces. The transfer address must be an entry point in the program being loaded or

in another program loaded during the same load operation,

The core image of the XFR block is:

15 12 11 87 43 0
1 1T 1.0 0 {0 O0 0 0|0 1 0 1|0 O O O
2 Character 1 Character 2
3 Character 3 Character 4
4 Character 5 Character 6

M

4.2 LIST OUTPUT

4.2.1 LIST OPTIONS

CLASS contains list options that can be requested on the CLASS call card., These options provide added
information in a highly usable form for the programmer or simply make the listing more readable. To
request one or several of the options, the parameter LO = should be specified, followed by the letter(s)
corresponding to the option(s).desired.

96836500 B 4-9

Example:

LO = BMRTX

Note that no commas separate the option letters,

The following options are available:

Identifier Oution
B List the BSS/BZS blocks on the banner page,
C - List the program list control cards (SPC, EJT,
ete.).
D Suppress the comment cards,
E Process EJT as a page eject,
I List the code skipped by the IFA pseudo option,
L List the macro cross-reference table,
M List all entries on multiword entries.
R List the full reference map,
S List the abbreviated reference map.
T Tidy the list file (convert free form to set columns),
X Expand the macro code into macro calls,

If more than seven options are desired, a second LO must be specified, If no LO option is specified,
options B, M, R, and T are selected, If LO is specified, only the options specified are selected,

4.2.2 BANNER PAGE

CLASS outputs a banner page at the front of the assembly listing for every program, The information
on this page consists of the following:

4-10

A title line, giw}ing the name of the program, CLASS version level, date, time it was

executed, and page number

A subtitle, STORAGE ALLOCATION

The address and length of the program

The address of the END card

All entry points with their addresses, listed alphabetically
All external symbols, listed alphabetically

96836500 B

If LO option B is selected, BSS/BZS blocks will also be listed with their type (local, common, or data),
address, and length,

4.2.3 MAIN PROGRAM LISTING

The assembly list output by CLASS consists of 34 columns of descriptive information related to the
source statement, followed by a maximum of 80 columns listing the source statement, This is illus-
trated in Table 4-1,

Each page is headed by a title line that gives the name of the program, CLASS version level, date, time
of execution and page number,

The last page of the listing contains the amount of storage used, the number of source statements, a
symbol count, the number of references, the time used for assembly, and an error count in decimal if
errors are present,

4.2.4 ERROR SUMMARY

If assembly errors are encountered by CLASS during the assembly of the program, an error summary
is listed following the assembly listing. The information given includes the type of error found and the
page and line number where it was encountered, All errors of the same type are grouped together in
the order of their occurrence, Error types that are included in this summary are:

° Doubly defined symbol

L Undefined symbol

. Illegal expression

] Illegal operation code

° Illegal relocation

® Numeric operand overflow
° Macro definition error

® Macro instruction error

) Illegal symbol name

® Programmer-defined error
Example:
(Page No. /Line No.)
Tllegal operation code 2/05 3/04 4/04 6/21
Illegal relocation ‘ - 3/1 5/17 .

96836500 B 4-11

Table 4-1, Listing Page Format

COLUMN ; CONTENTS
1-2 The line number; given only on lines that are multiples of five; i,e., lines 5, 10, 15, etc,
3-4 Two spaces
5-6 The error mnemonic (see Appendix D for mnemonics); if no error is on this line, it is
left blank,
7 A space
8 The relocation designator for the location:
P ‘Program relocation
D Data relocation
C Common relocation
9-12 Location in hexadecimal
13-17 Spaces
18-21 The first machine word in hexadecimal
22 Space
23 The relocation designator if the word is a one-word instruction:
P Program relocation
-P Negative program relocation
C Common relocation
-C Negative common relocation
D Data relocation
-D Negative data relocation
X External
Blank Absolute
24 Space
25-28 The second machine word if this is a two-word instruction; otherwise, it is blank.
29 Space
30 The relocation designator if this is a two-word instruction, Uses the same code as the
one-word relocation designator,
31-34 | Spaces
35-114 Input source statements: If the tidy option is selected on the CLASS call card (see Appendix
B), the source statements will be put in the columns specified. If the T option of LO param-
eter is specified (see Section 4, 2,1), the fields will be put in the following columns of the
listing: '
Starting Column Field
35 Location
45 Operation Code
52 _ Address
64 Comments
108 Sequence Number
4-12 96836500 B

4.2.5 COMPLETE REFERENCE MAP

To obtain a complete reference map, specify R in the LO option list. The following information is
given in the complete reference map:

1, Symbol names (in alphabetical order)
2, Symbol values

3. If the symbol is in the common or data storage area external to the program or is a system
symbol (such as the I register), it is flagged by the following:

/common/ ,
DATA

EXTERNAL
-SYSTEM-
ABSOLUTE

4, The page number/line number in chronological order, for all references to the symbol,
An identifying letter is printed following the page/lme number references that have special
meanings, These are the following:

Letter ' Meaning
L. The location of the symbol
B Where it is defined as a BSS or BZS block
E Where it is defined as an entry point
X Where it is defined as an external
Q Where it is equated
S Where it is referenced as the address of a store instruction (Type 1)
F Where it is defined as a field

5. If the symbol is undefined or doubly defined, it will be preceded witha U or a D,
respectively,

4.2.6 SHORT REFERENCE MAP

To obtain an abbreviated reference map, specify S in the LO option list, The following information is
given in the short reference map:

1, Symbol names (in alphabetical order)

2, Symbol values
3. A letter indicating the type of relocation:
Program

Data
Common

System

naow

96836500 B 4-13

Example:

ASSEMBLY OF TEMPTY
ABBREVIATED REFERENCE MAP,

1

4.2.7 MACRO CROSS-REFERENCE MAP

]

I
SAVE

OOFF/ 8

0005/

P

To obtain the macro cross-reference map, specify L in the LO option list, The following information

is given in the macro cross-reference map:

1,
2,
3.
4

The macro names (in alphabetical order)

The number of formal parameters

The number of local parameters

The page number/line number where the macro is referenced (called)

- If there has been an error on the macro definition, an M error code will be printed before the macro

name,

Examples:

4-14

M

MACRO1
MACRO2

0004P
0002P

0001L
0000L

2/21
1/15

3/10
5/3

5/17

96836500 B

INSTALLATION OF CLASS A

CLASS must be assembled under COMPASS and requires KRONTXT as an assembly text. The CLASS

release materials consist of a program library tape of CLASS, KRONTXT, associated common decks,
and assembly text.

The following simplified installation procedure is provided as an example of CLASS instaﬂation under
NOS/BE 1.1, It is assumed that the program libraries have been made available as permanent disk
files.

1, Installation of CLASS as permanent files:

JOB, CM60000,

ATTACH(OLDPL, CLASSPL)
UPDATEQ)

RETURN(OLDPL)
ATTACH(OLDPL, KRONTXTPL)
UPDATE(Q, C=TEXT)

REQUEST (KRONTXT, *PF)
COMPASS(I=TEXT, B=KRONTXT, 1L=0)
REQUEST(CLASS, *PF)
COMPASS(I, G=KRONTXT, B=CLASS)
RETURN(OLDPL, TEXT, COMPILE)
ATTACH(OLDPL, MACROPL)
UPDATE®Q)

REQUEST(SMAC17, *PF)

CLASS(@, M=SMAC17)
CATALOG(KRONTXT, KRONTEXT)
CATALOG(CLASS, CLASSBIN)
CATALOG(SMAC17, MACBIN)

7/8/9

*COMPILE CLASS

7/8/9

*COMPILE KRONTXT

7/8/9

*COMPILE MACROS

6/17/8/9

96836500 B , A-1

Installation of CLASS as system-resident files:

JOB, CM60000,
ATTACH(OLDPL, C LASSPL)
UPDATE(@Q)

RETURN(OLDPL)

ATTACH(OLDPL, KRONTXTPL)
UPDATE(Q, C=TEXT)
COMPASS(I=-TEXT, B=EKRONTXT, 1L=0)
COMPASS(I, G=KRONTXT, B=CLASS)
RETURN(OLDPL, TEXT, COMPILE)
ATTACH(OLDPL, MACROPL)
UPDATE@Q)

CLASS(I, M=SMAC17)

REWIND(CLASS, SMAC17)
EDITLIB(SYSTEM, ERROR=3)

7/8/9

*COMPILE CLASS

7/8/9

*COMPILE KRONTXT

7/8/9

*COMPILE MACROS

7/8/9

READY(SYSTEM)
LIBRARY(NUCLEUS, OLD)
REPLACE(*, KRONTXT)
REPLACE(*, CLASS)
REPLACE(*, SMACL17)
FINISH.

COMPLETE,

ENDRUN,

6/7/8/9

96836500 B

CLASS CONTROL CARD PARAMETERS

The control card used to call CLASS has the following format:

CLASS(pl. pz’ LEAE] pn)

The parameters (pl, Py etc.) that may be specified on the call card are:

I Input file name,
L Output file name,
. P8 Asslign binary file names,
RB |
T Tidy tab columns (6-digit decimal number).
LO List options,
NR Do not rewind input file before assembly,
Build assembly text,
F Call assembly text from system file,

Call assembly text from user file,

These parameters may be in any order and must be in one of the following forms:

Omitted Default)
P, The parameter is set to the alternate default option,
Px Parameter P is set to the option indicated by x.

The following is a more detailed description of the parameters:

Input File Name:

Blank Input on file INPUT

I Input on file COMPILE

I=FNAME ‘Input on file FNAME
96836500 B

Output File Name:

Blank

L=FNAME
L=0

Assign Binary File Name:

Blank

B
B=FNAME
B=0
P8=FNAME
RB=FNAME

Tidy Tab Columns:

Blank
T
T=nnnnnn

List Options:
Blank

LO=xxxxxx

Full list on file OUTPUT
Full list on file OUTPUT
Full list on file FNAME
No list output

Binary output on file LGO,
Binary output on file LGO.
Binary output on file FNAME,
No binary output.

Punch output on file FNAME,
Tape output on file FNAME,

Punch output on file PUNCHS80,
tape output on file RBIN, _

Tabs are set at columns 11, 18, 31, -

Tabs are set at columns 11, 18, 31,

Three 2-digit decimal tabs are set at the columns specified.
Each location symbol begins in column 1,

Options B, M, R, and T are selected,
Options B, M, R, and T are selected.
Where xxxxxx may be any combination of the following:

List the BSS/BZS blocks on the banner page.

List the program control cards (SPC, EJT, etc,).
Suppress the comment cards,

Process EJT as eject,

List the code skipped by the IFA pseudo operation,
List the macro cross-reference,

List all entries on multiword instructions (i.e., DEC,
ALF, etc.).

List the full reference map,

List the abbreviated reference map,

Tidy the listing columns (11, 18, 31 are default).
Expand the macro code,

2H"mMOOW

to i BLZI-)

If more than seven list options are desired, a second LO must be specified,

If LO=xxxxxx is specified, only the options specified are selected,

196836500 B

Do Not Rewind:

Blank
NR

Build Assembly Text:

Blank
M=FNAME

Call Assembly Text:

Blank

F
F=FNAME
G
G=FNAME

Rewind input file.
Do not rewind input file,

No assembly text will be generated,
Assembly text is generated on file FNAME,

No assembly text is called,

Assembly text is called from system file SMAC17,
Assembly text is called from system file FNAME,

Assembly text is called from the user file SMAC17,
Assembly text is called from the user file FNAME,

In order to call an assembly text, it must have been built prior to this run and must reside on the
file called. A maximum of one assembly text file is allowed,

96836500 B

The following are sample deck structures for assembling CYBER 18-17 source code using CLASS,

Examples:

1,

‘CONTROL CARDS FOR JOB RUN

Using CLASS installed as permanent files:

JOB, CM70000,
ATTACH(CLASS, C LASSBIN, ID=xxxX)
ATTACHSMAC17, MACBIN, ID=xxxx)
CLASS(G)

7/8/9

(SOURCE CODE)

6/7/8/9

Using CLASS installed as system-resident files:

JOB, CM70000,
ASSEM(F)

7/8/9

(SOURCE CODE)
6/1/8/9

96836500 B

ERROR MESSAGES | D

D.1 ASSEMBLY ERROR MESSAGES

When an error occurs during assembly, it is flagged with a two-character error mnemonic in columns
5-6 on the listing. If more than one error occurs in the same line of code, the most recent error
encountered is the one that is flagged. However, all errors are reflected in the total error count,

Error Mnemonic Meaning
DS Doubly defined symbol
UD Undefined symbol
EX . Illegal expression
oP Illegal operation code
RL Illegal relocation
ov Numeric operand overflow
IS Hlegal symbol name
PD Programmer-defined error

D.2 MACRO ERROR DIAGNOSTIC MESSAGES

When an error is encountered in a macro definition or call, a two-character error mnemonic appears
on the line following the erroneous code along with a diagnostic message,

Error Mnemonic Diagnostic Message
MD */MAC DEF ERROR NO NAME
MD */MAC DEF ERROR BAD PARAM
MD */MAC DEF ERROR NO OPCODE
MD */MAC DEF ERROR BUFFER OVE
MD */MAC DEF ERROR BAD TERM

96836500 B D-1

Error Mnemonic Diagnostic Message

MC */MACRO CALL ERROR NEST GT 10
MC */MACRO CALL ERROR BUFFER OV
MC */MACRO CALL ERROR PARAM ERR
MC */MACRO CALL ERROR BAD CONT
MC */MACRO CALL ERROR BAD DEF

D.3 MISSING END CARD

If no END card is encountered by CLASS at the end of the program, the following message is output at
the end of the listing:

/// END CARD MISSING ///

D.4 DAYFILE ERROR MESSAGES

If CLASS encounters a control card error or insufficient field length has been assigned for the job, an
error message is output to the dayfile and the job is aborted. The following messages are output to the
dayfile, indicating the erroneous condition:

CONTROL CARD ERROR

NO INPUT FILE SPECIFIED

FILE NAME CONFLICT

INVALID TAB COLUMNS (for tidy feature)
INVALID LIST OPTIONS

INSUFFICIENT FL FOR CLASS

MEMORY OVERFLOW IN PASS 1
MEMORY OVERFLOW IN PASS 2

The following messages output to the dayfile indicate erroneous conditions that exist but which do not
cause the job to abort:

MACTXT OVERFLOW

Q99 ILLEGAL TO CLASS

SYSTEM ERROR IN PASS 1 ASSEMBLY (if this message occurs, there is probably a bug in CLASS)
NN ERRORS IN xxxxxx (where xxxxxx is the program name)

D-2 . : 96836500 B

ASSEMBLY MODIFICATIONS TO CLASS

CLASS presently limits nesting to 10 calls per macro by use of a counter. If this maximum is to be
changed, modify the following card:

MREF EQU 10

The maximum range is 1 to 31,

If the buffer length is exceeded in producing a macro skeleton, modify the following card:

SKELBL EQU 1080

96836500 B

INSTRUCTION SET F
=

F.1 STORAGE REFERENCE INSTRUCTIONS

The Type 1 source format is:
[I.,oca,tion].f OPCODE Address [, Index] [Comments]

The machine code format is:

Instruction identifier
Relative address flag
Indirect address flag
Index register Q flag

| Index register I flag
11 1 8 1
F |rlind qf1 A\l .-
| :
; Alternate /\ NS
.- - et W G mp W o s W W W e oww W @ e aw ‘
Where: * and - terminators cause a one-word instruction,

Aand + terminators cause a multiword instruction.

The storage reference instructions and their meanings are:

Operation Contents of
Code Description the F Field Definition
ADD Add A 8 Add the contents of EAT‘T to the contents
of the A register.
ADQ CAdd Q F Add the contents of EA to the contents of
the Q register,

tBrackets indicate an optional field,
T The small A denotes a blank, the larger A denotes a machine code field.

EA is the effective address storage location; i.e., the final result of evaluating the address
expression and the index register, ‘

96836500 B ’ F-1

Operation Contents of

Code Description the F Field Definition
AND AND with A A AND the contents of EA to the contents of the
. A register,
DVI Divide integer 3 Divide the concatenated contents of the QA registers

by the contents of EA, Put the quotient in the A
register and the remainder in the Q register,

EOR Exclusive OR B Exclusive OR the contents of EA with the contents of

with A the A register,

JMP Jump 1 . Jump to EA,

LDA Load A C Load the A register with the contents of EA,

LDQ Load Q E Load the Q register with the contents of EA,

MUI Multiply integer 2 Multiply the contents of EA with the contents of the
A register, Put the 32-bit product in the QA
registers, . ’

RAO Replace Add 1 - D Inerement the contents of EA by 1, The contents of

in storage " the A register are not altered,

RTJ Return jump 5 Transfer the address of the next instruction to EA,
Jump to EA +1,

SPA Store A, 7 Store the contents of the A register in EA, If

parity to A there is an odd number of bits in the A register,
set it to 0, If there is an even number of bits,
setitto 1,

STA Store A 6 Put the contents of the A register in EA. The
contents of the A register are not altered,

STQ - Store Q 4 Put the contents of the Q register in EA, The
contents of the Q register are not altered,

SUB Subtract 9. Subtract the contents of EA from the contents of the

A register. Put the result in the A register. The
contents of EA are not changed.

Arithmetic operations are ones complement arithmetic. The OVERFLOW indicator is set if the result

of the arithmetic operation is greater than the capacity of the destination register or storage location.
It remains set until a skip on overflow instruction is executed,

F-2 o , 196836500 B: -

The Type 2 machine code format is:

Rb

QD WN OO

WU -,

W N O,
v

B WwN R~ »
"y .

15 12 11 87 65 32 0
0 4 rlindl Ra { Rb
F4 F5 A
1
1
i Alternate /\ :
e e e
Contents of the
Operation F4 F5
Code Description Fields
AMA AND to memory, A A 1
AMI AND to memory, I A 1
AMQ AND to memory, Q A 1
AM1 AND to memory, 1 A 1
AM2 AND to memory, 2 A 1
AM3 AND to memory, 3 A 1
AM4 AND to memory, 4 A 1
ANA AND to A A 0
ANI ANDto I A 0
ANQ AND to Q A 0
AN1 AND to 1 A 0
AN2 AND to 2 A 0
AN3 AND to 3 A 0
AN4 AND to 4 A 0
ARA Add to A 8 0
ARI Addto1 8 0
AR1 Addto 1 8 0
AR2 Add to 2 8 0
AR3 Add to 3 8 0
AR4 Add to 4 8 0
ARQ Add to Q 8 0
CAE Compare A equal E 0
CIE Compare I equal E 0
CQE Compare Q equal E 0
C1lE Compare 1 equal E 0
C2E Compare 2 equal E 0
C3E Compare 3 equal E 0
C4E Compare 4 equal E 0
96836500 B

Definition

Form the logical product bit-by-bit of the con-
tents of EA with the contents of the named regis-
ter. Put the result in EA; the contents of the
register are not altered, except for the A regis-
ter, which receives the original contents of EA,

Form the logical product bit-by-bit of the con-
tents of EA with the contents of the named
register. Put the result in the register; the con-
tents of EA are not altered.

Add the contents of EA to the contents of the
named register,

Put the result in the register; the contents of
EA are not altered.

Overflow as in ADD,

Compare the contents of the named register to
the contents of EA bit-by-bit, If equal, skip one
location; otherwise, execute the next (one-word)
instruction,

The contents of EA and the named register are
not altered.

Operation

Code Description
LRA Load register A
LRI Load register I
LRQ Load register Q
LR1 Load register 1
LR2 Load register 2
LR3 Load register 3
LR4 Load register 4
OMA OR to memory, A
OMI OR to memory, I
OMQ OR to memory, Q
OM1 OR to memory, 1
OM2 OR to memory, 2
OM3 OR to memory, 3
OmM4 OR to memory, 4
ORA OR to A
ORI OR to I
ORQ OR to Q
OR1 OR to 1
OR2 OR to 2
OR3 OR to 3
OR4 OR to 4
SBA Subtract to A
SBI Subtract to I
SBQ Subtract to Q
SB1 Subtract to 1
SB2 Subtract to 2
SB3 Subtract to 3
SB4 Subtract to 4
SJA Subroutine jump, A
SJE Subroutine jump exit
SJ1 Subroutine jump, I
SJQ Subroutine jump, Q
SJ1 Subroutine jump, 1
sJ2 Subroutine jump, 2
SJ3 Subroutine jump, 3
SJ4 Subroutine jump, 4

F-4

Contents of the
F4 F5 Rb
Fields

_J

aaoaoaaaaan
cocoococo o
BN OO

Opooouog (elleiielvBvieNe)
coocoocoo e
N N L IR =)

IR CRE R RRC Y-

WO W W WW P W
OO OO O CC
W N U o

oot oGg or oo
©C OO0 O O O OO
WO o,

Definition

Load the named register with the contents of EA.
The contents of EA are not altered.

Form the logical sum (inclusive OR) bit-by-bit
of the contents of EA with the contents of the
named register,

Put the result in EA; the contents of the register
are not altered except for the A register, which
receives the original contents of EA,

Form the logical sum bit-by-bit of the contents
of EA with the contents of the named register,
Put the result in the register, The contents of
EA are not altered.

Subtract the contents of EA from the named
register,

Put the result in the register; the contents of
EA are not altered,

Overflow as in ADD,

Put the address of the last word of this instruc-
tion in the named register. Jump to EA,
SJE does the jump to EA only.

96836500 B

Contents of the

Operation F4 F5 Rb
Code Description Fields v Definition
SRA Store register A cC 1 6]
SRI Store register 1 C 1 7
St registe C
SRQ ore g?s T Q 1 5 Store the contents of the named register in EA,
- SR1 ‘ Store register 1 C 1 1 > Th tents of th st t altered
SR2 Store register 2 c 1 9 e contents of the register are not altered,
SR3 ' Store register 3 C 1 3
SR4 Store register 4 C 1 4 J
CCE Compare character E 2 T Compare the contents of bits 0 to 7 of the A

equal . : register with the specified character in the sum
of EA + the contents of bits 1 to 15 in register
Rb, Bit 0 = 0 in Rb specifies a left character;
otherwise, a right character is implied, If
equal bit-by-bit, skip one location; otherwise
execute the next instruction,

LCA Load character C 2 T Load to bits 0 to 7 of the A register character

to A specified in the same manner as in CCE.
SCA Store character C 3 T Store the contents of bits 0 to 7 of the register

from A in the bits specified (same procedure as CCE),

F.2 FIELD REFERENCE INSTRUCTIONS

The Type 2 (only) source format is:

[Location] ~OPCODE Address, FLDSTR, FLDLTH,[Index] [Comments]

or

[Location] ~OPCODE Fieldname,[Index] [Comments]

The machine code format is:

15 12 11 876 5 320
0 5 r llnd Ra | F3a

FLDSTR | FLDLTH- JAN *, -

f Alternate /\ | AL+
1 i

T I N e e e Iy

tAs specified

96836500 B F-5

Operation Contents of the

Code Description F3a Field Definition
CLF Clear field 6 Clear the bits in the specified field to all 0s,
LFA Load field to A 4 Load the specified field in the A register right-

justified, with leading 0s. The contents of EA
are not altered,

SEF Set field 7 Set bits in the specified field to all 1s.
SFA Store field from A 5 Store the appropriate number of right-justified
bits from the A register to the specified field,
The contents. of the A register are not altered.
SFN Skip on field no zero 3 If all bits of the specified field are not 0,
skip one location; otherwise, execute the next
instruction, The field contents are not altered.
SFZ "~ Skip on field zero 2 If all bits of the specified field are 0, skip one

Iocation; otherwise, execute the next instruction,
The field contents are not altered.

F.3 INTERREGISTER INSTRUCTIONS
The Type 1 source format is:

[Location] = OPCODE Register = [Comments]
The machine code format is:

15 1211A876543210
0 F1=8 (LHXR A |Q MAQM

l__ Destination

Registers

Operand 1 | Origin
Operand 2 | Registers

—— Exclusive OR

t——— Logical Product Control

Lines

] Adder

F-6 96836500 B

Operation
Code

AAB

AAQ
CAB

CAM

CAQ

SET

TCA
TCB
TCM
TCQ
TRA
TRB
TRM
TRQ

Description

Transfer the arithmetic sum of A, Q, +M
Transfer the arithmetic sum of A,M
Transfer the arithmetic sum of A, Q

Transfer the complement of the logical product
of A,Q, M

Transfer the complement of the logical product
of A M

Transfer the complement of the logical product
of A,Q

Clear to 0.

Transfer the exclusive OR,A,Q,+M
Transfer the exclusive OR,A, M
Transfer the exclusive OR,A,Q
Transfer the logical product of A, Q, +M
Transfer the logical product of A,M
Transfer the logical product of A, Q
Set to 1s,

Transfer the complement of A
Transfer the complement of Q+M
Tranafer the complement of M
Transfer the complement of Q
Transfer the complement of A
Transfer the complement of Q+M
Transfer the complement of M

Transfer the complement of Q

Contents of the
F1 Field

8
8
8

w

® o O o 0 o 0 o o W o o o o o o

The instructions transfer data from one or two origin registers through the adder to any combination of

A, Q, M destination registers. The OVERFLOW indicator is set when overflow actually occurs.

The Type 2 source format is:

[Location] OPCODE Register [Comments]

96836500 B

F-7

The machine code format is:

15 12 11 87 654 32 0

0 7 Ra | Fa | Rb

Contents of the

Operation F2a Ra Rb
Code Description Fields Definition
XFA Transfer A 0 6 *)
XFI Transfer 1 0 7 *
XFQ Transfer Q 0 5 *
These instructions transfer the contents of
*
XFl Transfer 1 0 1 P the named register to a specified destination
XF2 Transfer 2 0 2 * | register, -
XF3 Transfer 3 0 3 *
XF4 Transfer 4 0 4 *

F.4 SKIP INSTRUCTIONS
The Type 1 source format is:

| [Location] OPCODE SK [Comments]
The machine code format is:

15 12 11 817 4 3 0

0000{000T1

\ I\ I\ N\ w |

Instruction Skip
(F) Count
Sub-Instruction
(F1)
Skip
Instruction
(F2)

*Destination register

F-8 : 96836500 B

Operation
Code
SAM
SAN
SAP
SAZ
SNF
SNO
SNP
sov
SPE
SPF

Definition

Skip if A minus

Skip if A nonzero
Skipif A> 0

Skip if A zero

Skip if no protect fault
Skip if no overflow
Skip if no parity error
Skip if overflow*

Skip if parity error*
Skip if protect fault*
Skip if Q minus

Skip if Q nonzero
Skipif Q > 0

Skip if Q zero

Skip if switch not set
Skip if switch set

Contents of the

F2 Field

® © AU AP W N O N Mo

Definition

Skip if bit 15 of the register is 1.

Skip if all of the bits in the A register are not 0,

Skip if bit 15 of the A register is 0.

Skip if all of the bits in the A register are 0.
Skip if the PROTECT FAULT indicator is 0,
Skip if the OVERFLOW indicator is 0,

Skip if the STORAGE PARITY indicator is 0,
Skip if the OVERFLOW indicator is 1,

Skip if the STORAGE PARITY indicator is 1.
Skip if the PROGRAM PROTECT indicator is
Skip if bit 15 of the Q register is 1,

Skip if all bits in the A register are not 0.
Skip if bit 15 of the Q register is 0,

Skip if all bits of the Q register are 0,

Skip if the SELECTIVE SKIP switch is 0.
Skip if the SELECTIVE SKIP switch is 1,

When the skip condition is met, the address of the next instruction to be executed is the location of the
skip instruction plus the skip count, plus one,

The Type 2 source format is:

Location OPCODE SK

Where:

SK is the skip count,

The machine code format is:

15

12 11 8 7 4

SK

*Clears the appropriate indicator,

96836500 B

F-9

Operation Contents of the

~ Code Description F2 Field Definition

Si1M Skip if 1 minus 7 Skip if bit 15 of register 1 is 1,
S1N Skip if 1 nonzero 5 Skip if all bits of register 1 are not 0.
S1P Skipif 1 20 6 Skip if bit 15 of register 1 is 0,
S1Z Skip if 1 zero 4 Skip if all bits of register 1 are 0,
S2M Skip if 2 minus B Skip if bit 15 of register 2 is 1.
S2N Skip if 2 nonzero 9 Skip if all bits of register 2 are not 0.
s2p Skipif 2 20 A Skip if bit 15 of register 2 is 0,
S2Z Skip if 2 zero - 8 Skip if all bits of register 2 are 0.

" S3M Skip if 3 minus F Skip if bit 15 of register 3 is 0,
S3N Skip if 3 nonzero D Skip if not all bits of register 3 are 0,
S3P Skip if 3 20 E Skip if bit 15 of register 3 is 0,
S3Z Skip if 3 zero C Skip if all bits of register 3 are 0,
S4M Skip if 4 minus 3 Skip if bit 15 of register 4 is 0,
S4N Skip if 4 nonzero 1 Skip if all bits of register 4 are not 0,
S4P Skipif 4 20 2 Skip if bit 15 of register 4 is 0,
S4Z Skip if 4 zero 0 Skip if all bits of register 4 are 0.

CLASS requires an absolute expression for Type 2 skip instructions,

F.5 REGISTER REFERENCE/SHIFT INSTRUCTIONS

The Type 1 (only) source format is:
Location OPCODE [Address] [Comments]

The machine code format is:

15 12 11 8 7 0

0 F1 A/SK

F-10 96836500 B

Operation
Code

CPB
EIN

ENA
ENQ

EXI

IIN
INA

INP

INQ

NOP
ouT

SLS

SPB

Description

Clear program protect

Enable interrupt
Enter A
Enter Q

Exit interrupt state

Inhibit interrupt

Increase A

Input to A

Increase Q

No operation
Output from A

Selective step

Set program protect

Contents of the

F1 Field

7

*
For INP and OUT the next instruction is:

96836500- B

Definition

Clear the protect bit in the address specified
in the Q register,

Activate the interrupt system after one instruc-
tion following EIN has executed,

Replace the contents of the A register with an
8-bit delta, sign extended.

Replace the contents of the Q register with an
8-bit delta, sign extended.

Exit from the interrupt state specified in delta,
Automatically resets the OVERFLOW indica=~
tor, activates the interrupt system and

jumps to the return address in the trap

region. .

Deactivate the interrupt system,

Increase the contents of the A register by a
signed delta quantity. The appropriate overflow
is generated.

Read one word to the A register from an I/O
device specified in the Q register*,

Increase the contents of the Q register by a
signed delta quantity, An appropriate overflow
is generated,

Self-explanatory

Output one word from the A register to an I/O
device specified in the Q register*,

Stop the computer if the SELECTIVE STOP
switch is on. On restart, the next location is
executed,

Set the program protect bit in the address speci- -
fied by the Q register,

The location of the I/0 instruction plus one if the device sends a reply

The location of the I/0 instructions plus one, plus the signed delta if the device sends

a reject

The location of the I/O instruction plus the signed delta if an internal reject occurs

F-11

The machine code format is:

15 12 11 8 7 6 5 4 (1}
0000 F1 11
w‘
1 = Shift Left I :
Shift
0 = Shift Right C
Shift A
Shift Q
Operation Contents of
Code Description the F1 Field Definition
3
AlS A left shift F
ARS A right shift F Right shifts are end-off with sign extension
LLS Long left shift F { in the upper bits; left shifts are end-around.
Long shifts are for juxtaposed QA registers.
LRS Long right shift F The maximum long shift is 31 10 places,
QLS Q left shift F
QRS Q right shift F)

F.6 DECREMENT REGISTER AND SKIP REPEAT INSTRUCTIONS
The Type 2 (only) source format is:

[Location] ~ OPCODE Skip count [Comments)
The machine code format is:

15 12 11 87 5 4 3 0
0 6 Ra |O SK

F-12 . 96836500 B

Operation
Code

DAP

DIP

D1iP

D2p

F.7 MISCELLANEOUS INSTRUCTIONS

The Type 2 (only) source format is:

Contents of

ifA20

if120

ifQ20

if120

if220

if320

Decrement & repeat -

if420

Description the RA Field

Decrement & repeat 6

_ Decrement & repeat 7
Decrement‘ & repeat 5
Decrement & repeat 1
Decrement & repeat 2
-Decrement & repeat 3
4

[Location] = OPCODE [Register]

or
{Location] OPCODE Address
The machine code format is:
15 12 11 87 5 4 3
0 B Ra | O F3

96836500 B

Used for multiword instructions

. e - e e - e - -

Definition

If bit 15 of the named register is 0, decrement
the register contents by 1 and repeat (jump
backwards the number of locations specified

in skip count SK (unsigned)). The skip count
must be specified as a positive absolute integer
expression in the source code,

F-13

Operation

Code Description
ASC Accumulator scale
CBP Clear breakpoint
interrupt

DMI Define micro
interrupt

EMS Execute micro
sequence

GPE Generate character
parity even

GPO Generate character
parity odd

LLB Load lower unpro-
tected bounds
register

LMM Load micro memory

LRG Load registers”

LUB Load upper unpro-
tected bounds register

s1O Set/Sample input or
output

SPS Sample port/status

SRG Store registersﬂ'

Contents of the
Ra F3 Field

0 A
0 7
0 6
T 2
0 8
0 9
T 1
0 1
0 2
T 0
0 4
0 5
() 3

TAs specified in the instruction register field
ﬁA two-word instruction that requires a + OPCODE terminator for external addresses,

F-14

Definition

Shift the A register left end-around until bits
14 and 15 are different, The number of places
shifted is placed in register 1 on completion,
There is no shift if A is 0000 or FFFF,

Clear the macro breakpoint interrupt.

Define the use of one of the 12 available micro-
interrupts,

Transfer machine control to the upper micro-
instruction at the address given in the specified
register,

Set or clear bit 7 of the A register to cause
parity of bits 0 to 7 to be even; other bits of the
A register are not altered.

Set or clear bit 7 of the A register to cause
parity of bits 0 to 7 to be odd; other bits of the
A register are not altered.

Load the lower unprotected bounds register
from the register specified.

Load a block to micro memory, starting at the
1700 memory address in register 2 and the micro-
memory address in register 1. The contents of
Q is the number of 32-bit words to be loaded.

Load registers 1, 2,3,4,Q,A,I,M, and the over-
flow respectively starting at the address speci-
fied.

Load the upper unprotected bounds register
from the register specified,

Input or output the contents of the A register to
an MO05 peripheral device as specified by bits in
the Q register,

Replace the contents of the A register with the
coded status of the M05 peripheral device speci-
fied by bits in the Q register., Clear the inter-
rupt generated by MO05,

Store registers 1, 2, 3,4,Q,A,I,M, and the over-
flow respectively starting at the address specified,

96836500 B

ASCIl CONVERSION TABLES ‘ G

The 1963 American Standard Code for Information Interchange (ASCII) is used by CLASS, ASCII code
uses eight bits: bit 8, which is always zero, is omitted in the table below, Bits 1 through 4 contain
the low-order four bits of code for the character in that row, Bits 5 through 7 contain the high-
order three bits of the code for the character in that column, The code is given in ascending sequence,

ASCH Bit Hexadecimal
Symbol Configuration Number ’ Meaning
NULL 000 0000 0 Null/idle
SoOM 000 0001 1 Start of message
EOA 000 0010 2 End of address
EOM 000 0011 3 End of message
EOT 000 0100 4 End of transmission
" WRU 000 0101 5 Who are you
RU 000 0110 6 Are you
BELL 000 0111 7 Audible signal
FEg 000 1000 8 Format effector '
HT/SK 000 1001 9 Horizontal tab skip (punched card)
LF 000 1010 A Line feed
VTAB 000 1011 B Vertical tabulation
FF 000 1100 C Form feed
CR 000 1101 D Carriage return
SO 000 1110 E Shift out
SI 000 1111 F Shift in
DCg 001 0000 10 Device control/data link escape
DC3 001 0001 11
DCo 001 0010 12 Device controls
DCg 001 0011 13
DC4 (STOP) - 001 0100 14 Device control/stop
ERR 001 0101 15 Error
SYNC 001 o110 16 Synchronous idle
LEM 001 0111 17 Logical end of media
8o - 001 1000 18
$ 001 1001 19
Sy 001 1010 1A
S3 001 1011 1B 1 Information separators
S 001 1100 1C
S5 001 1101 iD
Se 001 1110 1E
5 001 1111 IF

96836500 B. G-1

8-BIT | 171x-1 | 171x-2 6-BIT 8-BIT | 171x-1 | 171x-2 6~BIT

Ascll TTY TTY 026 029 EXT. BCD Ascn | TTY TTY 026 029 EXT. BCD

CODES | ARRAY | ARRAY | PUNCHES | ‘PUNCHES | MAG TAPE CODES | ARRAY | ARRAY | PUNCHES | PUNCHES | MAG TAPE
201 6 Space Space No Punch No Punch 20g 401 s @ a 0-8-7 8-4 37 8
21t ! ! 11-8-2 12-8-7 52 41 A A 12-1 12-1 61
22 " . 8-7 8-7 17 42 B B 12-2 12-2 62
23t * # 12-8-7 8-3 77 43 c c 12-3 12-3 63

- 24 $ $ 11-8-3 11-8-3 53 44 b D 12-4 12-4 64
25¢ % % 0-8-5 0-8-4 35 45 E E 12-5 12-5 65
261 & & 8-2 12 00 (351 46 F F 12-6 12-6 66
27t ' ' 8-4 8-5 14 47 G G 12-7 12-7 67
28t ((0-8-4 12-8-5 34 48 H H 12-8 12-8 70
29t) 12-8-4 11-8-5 74 49 I I 12-9 12-9 7
2A * * 11-8-4 11-8-4 54 4A J J 11-1 11-1 41
28t + + 12 12-8-6 60 4B K K 11-2 11-2 42
2C . . 0-8-3 0-8-3 33 4C L, L 11-3 11-3 43
2D - - 1 11 40 4D M M 11-4 11-4 “
2E . . 12-8-3 12-8-3 3 4E N N 11-5 11-5 45
2F / / 0-1 0-1 21 4F o o 11-6 11-6 46
30 0] 0 0 12 50 P P 11-7 11-7 47
31 1 1 1 1 01 51 Q Q 11-8 11-8 50
32 2 2 2 2 02 52 R R 11-9 11-9 51
33 3 3 3 3 03 53]] 0-2 0-2 22
34 4 4 4 4 04 54 T T 0-3 0-3 23
35 5 5 5 5 05 55 u U 0-4 0-4 24
36 6 6 6 [06 56 v v 0-5 0-5 25
37 7 7 7 7 07 57 w w 0-6 0-6 26
38 8 8 8 8 10 58 X b 4 0-7 0-7 27
39 9 9 9 9 11 59 Y Y 0-8 0-8 30
3A : : 8-5 8-2 15 5A Z Z 0-9 0-9 31
3B : ; 11-8-6 11-8-6 56 5Bt [[12-8-5 12-8-2 75
3ct < < 12-8-6 12-8-4 76 sct \ \ 0-8-2 0-8-2 36
spt = = 8-3 8-6 13 sot 1] 11-8-5 11-8-2 55
3t > > 8-6 0-8-6 16 SE t ~ 11-8-7 11-8-7 57
sFt ? ? 12-8-2 0-8-7 72 5Ft - - 0-8-6 0-8-5 32

t Refer to note 2 below.

TiRefer to note 4 below.

NOTES

1. The 171x-2 TTY array is the ASCII 68, 64 character subset, This array is the same as used on the 171x-3 devices which receive from a 1774.

2, To operate in 026 punched card mode, ASCH 63 options are selected. To operate in 029 punched card mode, ASCII 68 options are selected.
These options are assembly-time options for each driver affected.

3. The CDC Standard 1.10.003 is supported by an assembly option. For CDC ASCII mode of operation, the card punches 12-8-2 and 12-0 are
stored internally as 7B. The card punches 11-8-2 and 11-0 are stored internally as 7D. For line printer operations, the internal codes 7B
and 7D are converted to 5B and 5D to allow printing the hardware compatible graphic characters [(left bracket) and] (right bracket).

4. Since 173x magnetic tape controllers do not provide any code conversion, BCD code 00 is illegal and causes a noise record or BCD code 35
is substituted for the illegal 00 code to prevent tape errors,

On tape write operations the ASCII codes 251 6 %) and 2616 (&) are written as BCD 358'
On tape read operations the BCD code 358 is always translated to an ASCII $25 (%).

96836500 B

00592896

€=

SCOPE 34
STANDARD CHARACTER SETS
ASCII Hollerith | External | ASCII ASCII Hollerith | Externai ASCH
cDC Graphic | Display Punch BCD Punch | ASCII cDC Graphic Dssplay Punch BCD Punch ASCII
Graphic Subset Code (026) Code (029) | Code Graphic Subset Code (026) Code (029) Code

ot : 00t 8-2 00 8-2 3A 6 6 a9 6 06 6 36
A A o1 121 61 121 a1 7 7 42 7 07 7 37
[:] B 02 12-2 62 122 42 8 8 43 8 10 8 38
Cc [03 12-3 63 12-3 43 9 9 a4 9 1" 9 39
D D 04 124 64 12-4 4 + + 45 12 60 12-8-6 28
E E 05 126 65 125 a5 - - a6 1 40 1 20
F F 06 12:6 66 126 46 . * 47 11-84 54 1184 2A
G G 07 12.7 67 12-7 47 / / 50 01 21 0-1 2F
H H 10 128 70 128 48 ({ 51 0-84 34 12:85 28
[} | 11 129 7 12:9 49)) 62 12-8-4 74 11-8-5 29
J J 12 11 41 11 AA $ $ 53 11-8-3 53 11-8-3 24
K K 13 11-2 42 11-2 48 T = = 54 8-3 13 . 86 3D
L L 14 11-3 43 11-3 4C blank blank 55 no punch 20 no punch 20
M M 15 114 44 11-4 4D , lcomma) , lcomma) 56 083 33 0-8-3 2C
N N 16 116 45 115 4€E . {period) . (period) 57 1283 73 128-3 2E
(o] (o] 17 116 46 116 4F = # 60 0-8-6 36 8.3 23
P P 20 117 47 1.7 50 | [61 8.7 17 1282 58
Q Q 21 18 50 118 61 N) 62 0-8-2 32 11-8-2 5D
R R 22 119 51 19 52 %tt % 63 8-6 16 0-8-4 25
S S 23 0-2 22 0-2 63 #* ' {quote) 64 8-4 14 8-7 22
T T 24 0-3 23 0-3 54 - _ (underline) 65 0-8-5 35 0-8-5 5F
V] U 25 0-4 24 04 55 v ! 66 11-0or 52 12-8-7 or p3]
\ \" 26 05 25 05 56 11-8-2ttt 11-011t
w w 27 0-6 26 0-6 57 A & 67 0-8-7 37 12 26
X X 30 0-7 27 0-7 58 t ! (apostrophe) 70 1185 55 85 27
\4 Y 3 08 30 08 59 l ? n 11.8-6 56 0-8-7 3F
4 r4 32 09 31 09 5A < < 72 120 or 72 12-84 or 3C
(] 0 33) 12 0 30 12-8-21tt 120ttt

1 1 34 1 01 1 31 > > 73 11-8-7 57 0-8-6 3E
2 2 35 2 02 2 32 < @ 74 8-5 15 84 40
3 3 36 3 03 3 33 = 75 1285 75 0-8-2 5C
4 4 37 4 04 4 34 - ~(circumflex) 76 1286 76 11.8-7 5E
] 5 40 5 05 5 35 (lon) | :{(semicolon) 77 12.8.7 77 1186 38

1 Twelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line mark is converted to
external BCD 1632.

11n installations using the CDC 63-graphic set, display code 00 has no associated graphic or Hollerith code; display code 63 is the colon (8-2 punch).

111 The alternate Hollerith (026) and ASCI| (029) punches are accepted for input only.

Absolute addressing
Absolute long direct 3-5
Absolute long indirect 3-6
Absolute short direct 3-4
Absolute short indirect 3-5
Example of, 3-11
Relative long direct 3-7
Relative long indirect 3-8
Relative short direct 3-6
Relative short indirect 3-7
Absolute symbol 3-1
ADC/ADC* 3-20
Address expression 2-3
Address field 2-3
ALF 3-20
Arithmetic expressions 2-3,4,5
Assembler communication
EIF 3-28
EQU 3-25
FLD 3-26
IFA 3-27
ORG/ORG* 3-26,27
Asterisk 2-4; 3-2

Banner page 2-1; 4-10
Binary output 1-1
BSSblock 2-1; 3-17
BSZ block 2-1
Core image of, 4-4
Example of, 3-18
Format of, 3-17
Relocation bytes 4-5

96836500 B

INDEX

COM 3-18,19
Comment field 2-7
Constant addressing 3-8
Constant declarations 3-19
ADC/ADC* 3-20
ALF 3-20
DEC 3-22
NUM 3-21
VFD 3-23

DAT 3-19
Data storage instructions 3-17
BSS 3-17
BZS 3-17
COM 3-18
DAT 3-19
DEC 3-22
Decrement and repeat instructions 3-13
Delta, two-word relative addressing 3-2

EIF 3-28

EJT 2-1; 3-29

EMC 3-31

END 3-15

ENF 3-16; 4-5

ENT
Core image of, 4-6
Example of, 3-15
Format of, 3-15

Index-1

EQU 3-25
Equal sign, use of 3-2
ERR 3-29
Errors 4-11,12; Appendix D
Evaluation hierarchy 2-4
EXF/EXF* 3-16; 4-7
Expression, See address expression
EXT/EXT*
Core image of, 4-8
Example of, ~ 3-16
Format of, 3-15

Field reference instruction 3-9
FLD 3-26

FLDLTH 3-9

FLDSTR 3-9

IFA 2-1; 3-27
IFC 3-32
Index register 2-6
Indirect addressing 3-2,5
Instruction field 2-2
Inter-register transfer
instructions 3-12; Appendix F

Jump instructions Appendix F

Listing control 3-28
EJT 3-29
ERR 3-29
LST 3-29
NLS 3-28
NOREF 3-30

Index-2

LO (list options) 4-9; Appendix B
LOC 3-31

Iocation field 2-2

IST 2-1; 3-29

MAC 3-30

Macro
Instructions 3-34
Library 3-30

Nesting 3-33
Programmer-defined 3-30
Pseudo instructions
EMC 3-31
IFC 3-32
LOC 3-31
MAC 3-30
Skeleton 3-32
Minus sign (-), use of, 3-2
Multiword instructions 2-1

NAM 3-14; 4-2

NLS 2-1; 3-28
NOREF 3-30

Null parameters 3-33
NUM 3-21 _
Numeric operand 2-3

OPCODE 2-2
ORG/ORG* 3-26,27

‘96836500 B

Parenthesis (), use of, 3-2

Plus sign (+), use of, 3-2

Pseudo instructions 3-14
Address field, in 2-3

(see also assembler communication)
(Communications between subprograms 2-2
(see also constant declarations)

(see also listing control)
Locations field, in 2-3
Macro 3-30

RBD 4-2,3
Reference map
Complete 4-13

Cross-reference map 2-1; 4-14

Short 4-13
Reference register 2-6
Register instructions 3-10
Relocatable binary output 4-1

BZS 4-4

ENF 4-5

ENT 4-6

EXF 4-7

EXT 4-8

NAM 4-2

RBD 4-2,3

XFR 4-9
Relocation types 3-3
Reserved macro names 3-30

96836500 B

Sequence field 2-7
Shift instructions 3-10
Skip instructions 3-11
Slash (/), use of, 2-4
Special characters 3-35
SPC 2-1; 3-29
Storage
Common 3-1
Data 3-1
Program 3-1
Storage reference instructions
Subprograms
END 3-15
ENF 3-16
ENT 3-15
EXF/EXF* 3-16
EXT/EXT* 3-15
NAM 3-14

Tidy feature 2-1
Type 1 instructions 3-1,2
Type 2 instructions 3-1,2

VFD 3-23,24,25

XFR 4-9

2-6

Index-3/Index-4

-

CUT ON THIS LINE

COMMENT SHEET .
' ' . @ CONTROL DATA
CORPORATION
TITLE: CONTROL DATA CYBER Cross System Version 1 ‘
Macro Assembler Reference Manual

PUBLICATION NO. 96836500 " REVISION B

This form is not intended to be used as an order blank. Cbntrol Data Corporation solicits your comments about this

" manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered {please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME :

- ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.
FOLD ON DOTTED LINES AND TAPE

TAPE TAPE

FOLD FOLD]

— —— — a———

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive

Sunnyvale, California 94086

TAPE TAPE

CUT ON THIS LINE

CORPORATE HEADQUARTERS, P.0. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN US.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	A-01
	A-02
	B-01
	B-02
	B-03
	C-01
	D-01
	D-02
	E-01
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	G-01
	G-02
	G-03
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

