
CYBER CROSS SYSTEM
VERSION 1
MACRO ASSEMBLER

REFERENCE MANUAL

CONTROL DATA®
CYBER 170 SERIES

96836500

CO~OLDATA
CORPQRl\TION

CYBER 70 SE·RIES MODELS 72, 73, 74
6000 SERIES COMPUTER SYSTEMS
CYBER 18 COMPUTER SYSTEMS ·
255X HOST COMMUNICATIONS PROCESSORS

REVISION RECORD
REVISION DESCRIPTION

A Manual released.

a2/75\

B Manual revised to reflect NOS/BE 1. 1 changes and name change of manual from CCP Support Software to

(4/76) CYBER Cross _§ystem.

Publication No.
96836500

© 1975, 1976
by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
La Jolla, California 9203.7
or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as chang-es, deletions, and ad­
ditions to information in this manual are indicated by
bars in the margins or by a dot near the pag-e number

Pag-e Revision Feature

Cover -
Title·Page -
Revision Record B

iii B

iv B

v B

vii B

viii B

1-1 B

2-1 B

2-2 B

2-3 B

2-4 B

2-5 B

2-6 B

2-7 B
3-1 B

3-2 B

3-3 B
3-4 B
3-5 B

3-6 B
3-7 B
3-8 B
3-9 B
3-10 B
3-11 B
3-12 B
3-13 B
3-14 B
3-15 B
3-16 B
3-17 B
3-18 B
3-19 B
3-20 B
3-21 B
3-22 B
3-23 B
3-24 B
3-25 B
3-26 B
3-27 B
3-28 B
3-29 B

96836500 B

if the entire pag-e is affected. A bar by the page num­
ber indicates pagination rather than content has
chang-ed.

Page Revision Feature

3-30 B
3-31 B
3-32 B
3-33 B
3-34 B
3-35 B
3-36 B
4-1 B
4-2 B
4-3 B
4-4 B
4-5 B
4-6 B
4-7 B
4-8 B
4-9 B
4-10 B
4-11 B
4-12 B
4-13 B
4-14 B
A-1 B
A-2 B
B-1 B
B-2 B
B-.3 B
C-1 B
D-1 B
E-1 B
F-1 B
F-2 B
F-3 B
F-4 B
F-5 B
F-6 B
F-7 B
F-8 B
F-9 B
F-10 B
F-11 B
F-12 B
F-13 B
F-14 B
G-1 B
G-2 B

iii

LIST OF EFFECTIVE PAGES (CONTINUED)

Page Revision Feature Page Revision Feature

G-3 B
Index-1. B
Index-2 B
Index-3 B
C_omment Sheet B
Envelope -
Back Cover -

iv 96836500 B

PREFACE

The CYBER Macro Assembler is a component of the CONTROL DATA® CYBER Cross System. The
Macro Assembler, referred to as CLASS (Compass Like Assembler), operates under control of the
CYBER 170/70/6000 NOS or NOS/BE operating systems. CLASS is intended to convert source language
input including macro instructions into relocatable binary output and generate list output. A separate
version of the Macro Assembler is available for the CYBER 18 computer series.

This manual describes the general operation of the assembler and provides the necessary instructions
for preparing programs for assembly. No attempt is made here to provide a programmers guide and,
therefore, examples are limited. It is assumed that the reader is already familiar with the operation
of the CYBER 18 computer.

Additional information can be found in the following publications:

9683650-0 B

Description Publication No.

CYBER Cross System Version 1 Reference Manual 96836000

CYBER Cross System Version 1 Micro Assembler 96836400
Reference Manual

CYBER Cross System Version 1 Link Editor and 604712-00
Library Maintenance Programs Reference Manual

NOS/BE 1 Reference Manual 60493800

NOS 1 Reference Manual, Volume 1 60435400

NOS 1 Reference Manual, Volume 2 60445300

1700 MSOS 4 Macro Assembler Reference Manual 6-0361900

MSOS Version 4 Macro Assembler Reference Manual 60361500

1700 Computer Reference Manual 60153100

CYBERNET/KRONOS 2.1 Batch and Remote Batch 80400600
Reference Manual

This product is intended for use only as described
in this document. Control Ila.ta cannot be responsible
for the proper functioning of undescrlbed features
or parameters.

v •

CONTENTS

PREFACE v

1 INTRODUCTION 1-1

2 LANGUAGE STRUCTURE 2-1

2.1 Control of the Assembler 2-1
2.2 Source Program Input structure 2-2

2.2.l Source Program 2-2
2.2.2 Source Statement 2-2

3 SYMBOLIC MAC IIlNE INSTRUCTIONS 3-1

3.1 General 3-1

3.1.1 Storage Reference Instructions 3-1

3.2 Pseudo Instructions 3-14

3.2.1 Subprogram Linkage 3-14

3. 2. 2 Data Storage 3-17
3.2.3 Constant Declarations 3-19
3.2.4 Assembler Communication 3-25
3.2.5 Listing Control 3-2.8

3.3 Macr-0s 3-30

3. 3.1 Macro Pseudo Instructions 3-30
3.3.2 Macro Skeleton 3-32

3.3.3 Macro Instructions ~-34

3.3.4 Assembly Text Generation and Use 3-34

3.4 CLASS Limitations 3-35

3. 4.1 warnings 3-35

3.4.2 Special Characters 3-35

4 OUTPUT 4-1

4.1 Relocatable Binary Oltput 4-1

4.2 List Output 4-9

4.2.1 List Options 4-9

4.2.2 Banner Page 4-10

4.2.3 Main Program Listing 4-11

4. 2 .. 4 Error Summary 4-11

96836500 B vii

4.2.5 Complete Reference Map 4-13
4.2.6 Short Reference Map 4-13
4.2.7 Macro Cross-Reference Map 4-14

Appendix A INSTALLATION OF CLASS A-1

Appendix B CLASS CONTROL CARD PARAMETERS B-1

Appendix C CONTROL CARDS FOR JOB RUN C-1

Appendix D ERROR MESSAGES D-1

Appendix E ASSEMBLY MODIFICATIONS TO CLASS E-1

Appendix F INSTRUCTION SET F-1

Appendix G ASCII CONVERSION TABLES G-1

INDEX Index-1

TABLES

4-1 Listing Page Format 4-12

viii 96836500 B

INTRODUCTION 1

The CLASS Macro Assembler, hereafter referred to as CLAsst, is a two-pass assembler that
executes on a CYBER 170/70/6000 computer. It can convert source language input including macro I
instructions to relocatable binary output and generate list output. The source programs are written
with symbolic machine, pseudo, and macro instructions. Enhanced instructions are assembled by
means of assembly text consisting of macros residing on a separate file that accompanies the assembler.
Additional macros may be defined by the user in the source program.

During the first pass each card (one instruction per card) is processed in sequence, programmer­
defined macros are processed into macro skeletons, skeletons with actual parameters substituted are
inserted at macro calls, a symbol table is built, conditional assemblies are evaluated and processed,
and the resulting source cards are written to a scratch file.

During the second and final pass, each source image is read in sequence from the scratch file and
processed, errors are flagged as they occur, the actual binary relocatable output is generated for each
instruction, the source image and binary image are listed if not suppressed, and a cross-reference is
generated for the listing.

Three versions of the binary output are produced:

• File B is used to link programs in the CYBER Cross System

• File PS is used to punch cards for loading with the MSOS 4 Loader

• File RB is used to write to magnetic tape for the MSOS 4 Loader.

t CLASS, a Compass-Like ASSembler

96886500 B 1-1

LANGUAGE STRUCTURE

2.1 CONTROL OF THE ASSEMBLER

Parameters on the CLASS call card are used to specify control options to the assembler. (See

Appendix B for a detailed explanation of these parameters.) 'Ibe following is a list of the features
available:

• The starting columns for the location, operation code, address, and comment. fields can
be designated for listing output.

• All BZS/BSS.blocks and their names, addresses, and lengths can be listed on the bann~r
page (the first page of the listing).

• List control cards such as I.ST, NLS. SPC, and EJT can be printed.

• The printing of comment cards (i.e., * in column I°) can be suppressed.

2

• EJT cards can be processed as page ejects. Normally, they are processed as four spaces.
(See Section 3. 2. 5.)

.

• If the IFA condition is false, printing of code between IFA and EIF can be suppressed.

• All machine code on multiword instructions (such as LRQ, NUM, DEC, etc.) can be
printed.

• A full cross-reference map of symbols, providing the page number/line number where they
are referenced, can be printed.

• A. short reference map giving only the symbols and their value can be printed.

• Column tabs can be set for the tidy feature.

• Macro code may be expanded (not recommended if Type 2 instructions are used).

• A macro cross-reference table which contains the macro name, the number of formal
parameters and locals, and the pa~ and line number where they are referenced, can
be printed.

• An assembly text of predefined symbols, macro skeletons, and macro name table can be
generated and utilized •

96836500 B 2-1

I

2.2 SOURCE PROGRAM INPUT STRUCTURE

2.2.1 SOURCE PROGRAM

A source program consists of one or more subprograms. Each subprogram is a set of source
statements preceded by a NAM card and followed by an END ca~d. Each subprogram may be assembled
independently, or several may be assembled as a group. The main subprogram of a group is the one to
which initial control is given; it does not have to be the first subprogram.

Communications between subprograms is accomplished by the subprogram linkage pseudo instructions
(e.g., EXT, ENT) and by the use of common and data storage, which are established by the COM and
DAT pseudo instructions.

2.2.2 SOURCE STATEMENT

A source statement consists of _the location, instruction, operation code, address, comment, and
sequence fields, respectively. The first five fields must not exceed 72 characters; within that limita­
tion they are free field except that each field must be separated by at least one space. The sequence
field is used when the source image is 80 characters; it is restricted to columns 73 through 80.

Each field is terminated by a tab ($B; paper tape only), carriage return (end of statement mark), or
blanks, depending on the input device. Any number of blanks may separate fields.

2.2.2.1 LOCA TfON FIELD

The location field must begin in column 1. If used, this field specifies a labeled statement. This
statement is a symbolic name consisting of one to six alphanumeric characters; the first must be
alphabetic. Characters in excess of six are ignored.

2.2.2.2 INSTRUCTION FIELD (OPERATION CODE FIELD, OPCODE)

This field begins to the right of the location field and must be separated from it by at least one blank
(or a tab). If the location field contains no label, the operation code may begin in column 2. The
operation code field contains a three-character instruction code or pseudo instruction code; or it con­
tains a macro-instruction code which may be up to six characters. Certain instructions (storage
reference, etc.) may be followed by one of the one-character OPCODE terminators l:i; *, +, or-.
There are two main groups of machine instructions: Type 1 (CYBER 18 instructions) and Type 2
enhanced instructions)~

2-2 !, _9683.650(j if

2.2.2.3 ADDRESS FIELD

The address field begins to the right of the operation code field, separated from it by at least one blank
character or tab. It is terminated by a blank or tab, or by the 72nd character of the source statement.
Exceptions are the macro instructions that may have a continuation line and the pseudo instruction ALF.

This field contains an expression consisting of:

1. One or more operands connected by the operators +, .. -, *, or I

2. One of the register designators A, Bt, I, Mt, Q. 1, 2, 3, 4

3.. Both of the above, separated by commas

An operand is either a numeric constant or a symbol used (defined) as:

• The label in the location field of any machine or macro instruction

• The label in the location field of one of the pseudo instructions: ADC, ALF, NUM, DEC,
orVFD

• A symbolic name in the address field of one of the pseudo instructions: EXT, COM, DAT,
BSS, BZS, EQU, FLD, or EXF

Such a symbol references a specific location in memory.

NUMERIC OPERAND

A numeric operand in the address field may be decimal or hexadecimal. A decimal number is repre­
sented by up to five decimal digits and must be within the range ±32, 767. A hexadecimal number is
represented by a dollar sign and not more than four hexadecimal digits in the range ±7FFF. (Hexa­
decimal operands in the NUM pseudo instruction may be in the range 0 through +FFFF.)

Numeric operands in the address field may be preceded by a plus or a minus sign. If a plus or no sign
is specified, the binary equivalent of the number is the value used. A minus indicates that the ones
complement of the binary equivalent is the value.

ADDRESS EXPRESSION

An address expression may be a single operand or a string of operands joined by the following arithmetic
operators:

+ Addition
Subtraction

* Multiplication
I Division

t Type 1 instructions only

96836500 B 2-3

I

Arithmetic operators may not follow each other without an intervening operand. Parentheses are not
permitted for grouping terms.

The asterisk has meaning both as an operator (multiplication) and as an operand (the current value of
the P counter). When it is used as the multiplication operator (refer to special characters), it must
be immediately preceded by an operand which may be another asterisk.

The slash, used as the division operator, must be between two operands. The operand that follows may
not be 0 or relocatable.

Example:

NAM EXAM PL
COM A,B
EQU C(l), D(5)
EXT G
BZS E(lO), F

START LDA D/5-C+*-2
ADD+ A-B/2
ADD E+5
STA G
END

The asterisk in the LDA instruction refers to the value of the current location counter.

The following instructions are illegal, assuming the same pseudo instructions precede the START:

START LDA
ADD
ADD
STA

D-C**5+2
A-2/B
E*F
G+5

*5 has no intervening operator.
Division by relocatable operand
Both operands are relocatable.
An external must stand alone.

An external name (location in another subprogram referenced by this subprogram) may be used in an
address expression as a single operand only. Arithmetic operators preceding or following an external
operand are illegal.

The hierarchy for evaluating arithmetic expressions is:

I or *
+or -

Evaluated first
Evaluated next

Expressions containing operators at the same level are evaluated from left to right. The expression

A/B+c*D

is evaluated algebraically as

A/B+(C)fD)

2-4
96836500 B

and not as any of the following:

A A
(B+C)(D) B+<C)(D)

Parentheses may not be used for grouping operands. .The algebraic expression

(A-D)(B+C/E)

must be written as

A*B+A*C/E-D*B-D*C/E

The following expression is illegal:

tA-D)* IB+C/E)

Division in an address expression always yields a truncated result; thus, 11/3 = 3. The expression
A *B(C may result in a value different from B/C*A. For example, if A== 4, B :--: 3, and C =-'"' 2, then

A *B/C =- 4*3/2 = 6 but

B/C*A c::: 3/2*4 =- 0 4

All expressions are evaluated modulo 2
15

-1. An address expression consisting solely of numeric
operands is absolute. If an expression contains symbolic operands, the final relocation for the expres­
sion is determined by the relocations of the symbolic operands. If the relocation of the operands is
expressed by the following terms, the final relocation is the algebraic sum of the relocation terms.

±P Positive or negative program relocation
±C Positive or negative common relocation
±D Positive or negative data relocation

The relocation must reduce to 0 or one of the relocation terms. If O, the location is absolute.

Example:

STRT

96836500 B

Source Statements

NAM EXAMPLE 3
COM A,B
DAT C,D
EQU E(l), F(D)
LDA B+C-E*2-A-D
LDA B+ D- F+sTRT-A-C
LDA B+D-E+sTRT-A-C
LOA B-D-A
END

Relocation Formula

+C+D-C-D = O (absolute)
+C+D-D+P-C-D = P-D (illegal)
+C+D+P-C-D = P (program)
+C-D-C = -D (negative data)

2-5

INDEXING AND REFERENCE REGISTERS

The special characters A, B, I, M, Q, 1, 2, 3, and 4 are used to specify registers which may be used
as reference or index registers within instructiol}s. The set of legal reference registers and index
registers differs between Type 1 and Type 2 instructions:

Type 1

Type 2

Reference Registers

A,I,M,Q
A,I,Q, 1,2,3,4

Index Registers

B,I,Q
A,I,Q,1,2,3,4

Indexing may be used with storage reference instructions only. Only one index specifier may follow any
address e~'"Pression~ it is separated from the expression by a comma with no intervening blanks. The
meanings of these special characters used as indices are specified below:

Q

B

A

l

2

3

4

The contents of the Q register are added to the contents of the expression
to form the actual address.

The contents of location $FF are added to the contents of the address expression
to form the actual address.

The contents of the Q register are added to the address expression. This sum
is added to the contents of $FF to produce the actual address.

The contents of the A register are added to the contents of the expression
to form the actual address.

The contents of the 1 register are added to the contents of the expression to
form the actual address.

The contents of the 2 register are added to the contents of the expression to
form the actual address.

The contents of the 3 register are added to the contents of the expression to
form the actual address.

The contents of the 4 register are added to the contents of the expression to
form the actual address.

Examples:

Address Field

LOCl,B

"I

TAG2,Q, I

Q

2-6

Legal

Illegal

Illegal

Illegal

F\tnction

The contents of registers Q and $FF and the
address of LOCI are added to produce the actual
address.

The character following the first comma is assumed
to be the index character.

Only one index notation is allowed.

Unless Q has been previously defined as a location
symbol or is being used with the interregister trans­
fer instruction, it must follow a location symbol.

96836500 B

Address Field

TAG3, I Legal

TAG2,4 Legal

Function

The contents of $FF and TAG3 are added to
produce the actual address.

The address of T AG2 and register 4 are added
to produce the actual address.

Certain instructions use the special characters to reference registers, for example:

Instruction

SET

TRA

LAM

XF2

2.2.2.4 COMMENT FIELD

Address Field

A,Q,M

Q

M

Q

Function

Set the A, Q, and mask registers to ls.

Transfer the contents of the A register to the
Q register.

Transfer the logical product of the A and the mask
register to the mask register.

Transfer the contents of register 2 to register Q.

The address field is followed by the comment field. Comments do not affect program execution; how- I
ever, the comments in the NAM card are copied into the object text NAM block. The comment field ter­
minates at column 72 or with a carriage return (paper t.a.pe). Blanks are permitted in the comment field.

2.2.2.5 SEQUENCE FIELD

When the input image is 80 characters, columns 73 through 80 are available for sequencing, columns
73 through 75 may be used for program identification, and columns 76 through 80 are available for a
sequence number.

9683"6500 B 2-7

SYMBOLIC MACHINE INSTRUCTIONS 3

3.1 GENERAL

1b.e instructions are divided into classes according to the kind of function performed. These instruction
classes are:

• Storage Reference

• Field Reference

• Reglst.er Reference

• Shift

• Skip

• Inter-Register Transfer

• Decrement and Repeat

• Miscellaneous

Instructions are referred to as Type 1 or Type 2. Type 1 instructions are original CDC CYBER 18
instructions; Type 2 instructions are added or enhanced instructions. A complete list of the instruction
set with the relocatable binary machine code format and general definitions is given in Appendix F.
'Ibese definitions are intended for quick reference. I

3.1.1 STORAGE REFERENCE INSTRUCTIONS

Storage is divided into three areas: program, data, and common. 'Ibese areas are defined at assembly
time and the initial location of each is set to a relocation address of o. 'Ibe object code produced by
the assembler contains addresses which the loader modifies by a relocation factor at load time to
produce the actual address in memory. Actual location of these three areas in core memory is con­
trolled by the loader.

A symbol is program relocatable if it references a location in the subprogram; it is data relocatable if
it references a location in data storage; and it is common relocatable if it references a location in
common storage~ All other symbols are absolute. A symbol is made· absolute by equating it to a
.number, an arithmetic expression, or another absolute symbol.

In all cases, a symbolic label and a symbol defined by BSS or BZS take the relocation and value of the
current location counter. The location counter of a program is originally program relocatable; however,
its relocation may be changed by the ORG instruction.

96836500 B 3-1

'
I

An address expression which includes more than one operand of different relocation types must reduce
to one relocation type or to an absolute address. When the address mode of an Instruction is made
one-word relative by an asterisk terminator, the relocation type of the address expression must agree
with the type of the current location counter.

A symbolic operand may be preceded by a plus or a minus sign. If preceded by a plus or no sign, the
symbol refers to Its associated value; if preceded by a minus, the symbol refers to the ones comple­
ment of its associated value. When an expression contains more than one symbol, the final sign of the
expression ls the algebraic sum of the operands.

Type 1 storage reference instructions are divided into groups A and B. These storage reference
instructions use storage addresses as operands or as operand addresses. Group B includes jump and
store instructions and may not use the constant mode of addressing.

Group A storage reference .instructions allow three modes of addressing: absolute, relative, and
constant. Group B does not allow the use of the constant mode but is otherwise the same as group A.

Type 2 storage reference instructions allow absolute, relative, and, In certain cases, constant address­
ing modes. Constant addressing is valid only in storage reference instructions that transmit inforina~
tion to a register. Special characters designate the mode of addressing, the number of words for the
instruction, and indirect addressing.

Character

*

+

()

3-2

Description

An asterisk as the last character of the operation code specifies relative
addressing in a one-word Instruction (two words for Type · 2).

A minus as the last character of the operation code specifies absolute
addressing in a one-word instrtiction (two words for Type 2).

A plus as the last chara<?ter of the operation code specifies absolute
addressing in a two-word instruction (three words for Type 2).

An equal sign as the first character In the address field preceding a
constant indicates constant addressing; the instruction is always two
words (three words for Type 2).

Parentheses enclosing the address expression indicate indirect
addressing for Type l and Type 2.

If no character is specified as a terminator to the operation code, multi­
word relative addressing is assumed with the following exceptions:

•
•

•

If a constant is specified, the constant mode is assumed •

If the relocation type of the address expression differs from the
relocation type of the location counter, two-word absolute address­
ing is assumed (Type 1 only).

If a npnrelative external is referenced, absolute addressing is
assumed (Type 1 only).

96836500 B

Example:

The following are the relocation types (RT) of the current location counter:

p Program relocatable
c Common relocatable
D Data relocatable
A Absolute address

RT Label Operation Address

NAM EXAMPLE2
c COM COM1,COM2
D DAT DATl, DAT2
A EQU D(l), E(3), G(E-D), H($1000)
p BZS A,B,C
p BZS J, K(lO)
p START ADC 0
p LDA* START
p STA* DATl (Error)
p STA* COMl (Error)

Both errors resulted because the relocation types of the symbols in the address field did not match those
in the location counter and the short relative address mode was requested by an asterisk terminator.

RT Label Operation Address Comments

p LDA+ DATl (Not an error) Relocations do not have to match
when the mode is long absolute.

p LDA START (OK, relocations match)

p LDA COMl (Not an error) The assembler changes this
instruction to long absolute be-
cause the relocations do not
match, but no error is indicated.

p LDA START-K+DAT2-DAT1+COM2 This address expression results in
a common relocation type; all other
relocations cancel out (refer to
address expressions).

ORG DATl ORG changes the relocation of the
location counter to data.

D LDA* START (Error)

D STA* DAT2+9

ORG* ORG* returns the location counter
to the original relocation.

p LDA* START (Not an error)
ORG H

A LDA* START (Error)

96836500 B 3-3

RT Label Operation Address

A STA* DA Tl (Error)
A LDA* $1001
A STA- B (Error)

ORG*
END EXAMPLE2

The machine language formats resulting from a storage reference instruction are given in the following
section.

3.1.1.1 STORAGE REFERENCE, ABSOLUTE ADDRESSING(+, -)

The value of the address expression of an absolute short storage reference instruction must be non­
relocatable. The evaluated result ls stored in the last eight bits of the machine language instruction.
If this value is greater than 255, it is flagged as an error. If these last eight bits are O, a long
absolute instruction is assumed when the instruction is executed. No error is flagged.

Type 1

If the address expression is enclosed in
parentheses, indir~ct addressing is
indicated and bit 10 of the first word is
set.

Examples:

Type 2

If the address expression is enclosed in
parentheses, indirect addressing is
indicated and bit 6 of the first word is
set.

Absolute Short Direct

Instruction:

LDA-

Machine Word:

0

expr

texpr is an address expression.

3-4

Instruction:

LRA-

Machine Word:

15 12 11

0

LRA

4

expr

8 7 6 5 32 0

0 0 Ra Rb

expr

96836500 :B

Type 1

Instruction:

LDA- (expr)

Machine Word:

Instruction:

LDA+ expr

Machine Word:

15 12 11 10 9 8 7

Absolut.e Short Indirect t -., ()
Instruction:

LRA-

Machine Word:

15 12 11

expr 0 4

LRA

Absolute l.Dng Direct +

Instruction:

LRA+

Machine Word:

0 15 12 11

Type 2

(expr)

8 7 6 5 32

0 1 Ra Rb

expr

expr

8 7 6 5 32

LDA 0 1 0 0 0 0 4 0 1 Ra Rb

0 expr LRA 0

0 expr

t In indirect addressing the storage location referenced is not the address expression location,
but the contents of the address expression location.

96836500 B

0

0

3-5

Type 1 Type 2

Absolute Long Indirect +, ()

Instruction: Instruction:

LDA+ (expr) LRA+ {expr)

Machine Word: Machine Word:

15 12 11 10 9 8 7 0 15 12 11 87 65 32 0

LDA 0 1 0 0 0 0 4 0 1 Ra Rb

1 expr LRA 0

l expr

3.1.1.2 STORAGE REFERENCE, RELATIVE ADDRESSING (A, •)

When short relative addressing ls specified, the value of the current location counter is subtracted
(16-bit ones complement arithmetic) from the evaluated address expression. The result is placed in
the 8-bit A field. If the value of the result is outside the range ±$7 F, an error condition is flagged.
An error condition is also flagged if the relocation type of the address expression differs from that of
the location counter. If the 8-bit A field is O, a long instruction is assumed regardless of the opera-

. tion code terminator. No error message is printed for this condition.

Examples:

Instruction:

LDA*

Machine Word:

3-6

expr

Relative Short Direct •

expr-*

Instruction:

Machine Word:

15 12 11

0

LRA*

4

LRA

expr

8 7 6 5 3 2 0

1 0 Ra Rb

expr-*

.96836500:13·

Type 1 Type 2

Relative Short Indirect *• ()
Instruction: Instruction:

LDA* (expr) LRA* (expr)

Machine Word: Machine Word:

15 12 11 8 7 6 5 3 2 0

expr-* 0 4 1 1 Ra Rb

LRA ex.pr-*

In the expression expr-*, the asterisk indicates the value of the current location counter.

When a relative long instruction is specified, the value of the current location counter is subtracted
<using 16-bit ones complement arithmetic) from the value of the address expression to obtain the 16-bit
second word. For Type 1, if the relocation type of the address expression differs from that of the
location counter and the address does not reference an external, the assembler forces a long absolute
instruction. If the address expression is an external reference, the instruction is absolute or relative
depending on the definition of the external.

Examples:

Relative Long Direct .6.

Instruction: Instruction:

LDA expr LRA expr

Machine Word: Machine Word:

15 12 11 10 9 8 7 0 15 12 11 87 6 5 32 0

LDA 1 1 0 0 0 0 4 1 1 Ra Rb

ex.pr-* LRA 0

expr-*

9~836500 B 3-7

Type 1 Type 2

Relative Long Indirect 6, ()

Instruction: Instruction:

LDA (expr) LRA (expr)

Machine Word: Machine Word:

15 12 11 10 9 8 7 0 15 12 11 8 7 6 5 3 2 0

LDA 1 1 0 0 0 0 4 1 1 Ra Rb

expr-* LRA 0

expr-*

3.1.1.3 STORAGE REFERENCE, CONSTANT ADDRESSING

Constant addressing may only be used for certain storage reference instructions. Constants in the
address field are preceded by an equal sign and a one-letter code. A constant may be one of the
following:

Code

A

N

N

x

x

Examples:

DVI

ADD

LDA

AND

aa

±ddddd

±$hhhb

e

(e)

=N$1000

=N-12345

=AXY

=XTAG1+5

Meaning

Two alphanumeric characters (Type 1 only)

A five-digit decimal number with or without a leading sign

A four-digit hexadecimal number preceded by $, with
or without a sign

15
An address expression evaluated modulo 2 -1

An address expression evaluated modulo 2
15

-1, with
bit 15 set (Type 1 only)

(Hexadecimal constant)

(Decimal constant)

(ASCII constant)

(Address expression constant)

An instruction containing a constant in the address field results in two machine words (three words for
Type 2).

3-8 9$>836500.B

Example!

Instruction!

DVI =N5

Machine Words:

15 12 11 10 9 8 7 ()

DVI 0 0 0 0 0

5

3.1.1.4 FtELO REFERENCE

The field reference instructions follow precisely the same address mode conventions as the general
storage reference instructions. Field start (FLDSTR) and field length (FLDLTH) may not be externals,
although a field can be defined in its entirety as an external field.

Example:

Instruction-:

LFA+ Loc,7,2

Machine Word:

15 14 12 11 8 7 6 5 3 2 0

() 5 0 1 Ra LFA

IFLDSTR FLDLTH 0

0 Loe

Where.: FLDSTR is set to 7.

FLDLTH is set to 1 (one less than the actual field length, 2).

96836500 B 3-9

3.1.l.5 REGtSTER lNSTRUCTIONS (TYPE l ONLY)

I Register instructions (Type I only) result in one machine word; an eight-bit operation code field and
an eight bit 6 field. The first four bits of the operation code are set to O; the next four bits contain the
unique identifier Fl for each register instruction. The expression in the address field of the inshi1c­
tion is evaluated modulo 215-1 and truncated to fit in the eight-bit 6 field of the machine word. The
value of the expression must be absolute.

Example:

Instruction~

ENA expr

Machine Word:

15 12 11 8 7 0

expr-

3.1.l.6 SHIFT lNSTRUCTlONS (TYPE 1 ONl Y)

The shift instructions (Type 1 only) result in one machine word containing an 11-bit operation code
and a five-bit shift count. The first four bits of the operation code are set to O; the next four bits con­
tain the unique identifier Fl; the remaining three bits identify the direction of the shift and the regis­
ters used. Fl is 1111 for shift instructions. The expression in the address field of the instruction is
evaluated modulo 215_1 and becomes the shift count. It is truncated to five bits without a sign and
placed in bits 4 to O of the machine word. This expression must be absolute.

Example:

Instruction:

LLS e

Machine Word:

1 e

3-10 96836500 B

Where: D ls 0 Right shift.
1 Left shift.

A is -0 A register is ignored.
1 A register is used in the shift.

Q is 0 Q register is ignored.
1 Q register is used in the shift.

3J.1.7 SKJP tNSTRUCTtONS

Skip instructions result in one machine word: a 12-bit operation code and a four-bit. unsigned skip
count. The first four bits of the operation code field are set to O; the next four bits contain the skip
instruction code 0001 or 0000; the last four bits contain a unique identifier F2 for each skip instruc­
tion. The expression in the address field of the instruction is evaluated modulo 215 -1.

This expression may be absolute or relocatable for Type 1 instructions, but must be absolute for
Type 2 instructions. If absolute, the value of the expression is the skip count. If relocatable, the
value of the skip count is obtained by subtracting (16-bit ones complement arithmetic) the value of the
current location counter plus one from the expression. The skip count is then placed in the last four
bits of the machine word. The final value of the skip count must not exceed four bits or an error
results.t If the expression is relocatable, the relocation type of the expression must match the relo­
cation type of the location counter or an error results.

Examples:

Address ExpresBion Relocatable Instruction:

SAZ TAG (TAG program relocatable)

Machine Word:

15 1211 8 7 4 3 0

Address Expression Absolute Instruction:

S3M TAG-*-1 (TAG program relocatable)

Machine Word:

4 3 0

F2

tAn error message is prlnt.ed for Type 1 instructions.

96836500 B 3-11

I

3.U8 INTER-REGISTER TRANSFER

Inter-register transfer instructions result in one machine word, a 13-bit operation code, and a three-bit
field containing the code for the destination register specified in the address field. The first four bits
of the operation code are set to 0 for all inter-register transfer instructions; the next four bits are set
to 1000 or 0111; the five remaining bits identify the transfer specified by the instruction code. The
last three bits of the machine word are generated from the address field.

'Ibe register field bits are set as follows:

Type 1:

Type 2:

Bit

2=1

2=0

1 = 1

1=0

0=1

0 = 0

Register

A

.Q

I

1

2

3

4

None

Description

Destination is the A register

A register is ignored

Destination is the Q register

Q register is ignored

Destination is the mask register

Mask register is ignored

Code

()

5

7

1

2

3

4

0

For Type 1 instructions, when 0 is specified in the address field, all three destination register bits
are set to 0 indicating no destination for the result. If the instruction is AAM, AAQ, or AAB, the add
takes place, no register is destroyed, and the result of the add may be tested for overflow. If any other
instruction contains a O in the address field, no operation takes place.

3-12 96836500 B

Examples:

Type 1 lnstructi-0n~

TRA Q,M

Machine Word:

15 12 11 8 7 3 2 1 0

F2

Register Field

Type 2 Instruction:

XF2 A

Machine Word:

15 12 11 8 7 5432 0

2 H 6 I
Register Field

3.1.1. 9 DECREMENT ANO REPEAT (TYPE 2 ONLY)

The decrement and repeat instructions (Type 2 only) result in one machine word. The skip count
SK must be absolute, positive, and less than 16.

15 12 11 87 5 4. 3 0

0 6 Ra l

96836500 B 3-13

I

I

Example:

Instruction:

D2P *-TAG2

Machine Code:

15 12 11 87 5 4 3 0

I 0 I 6 I 2 I 0 l*-TAG21

3.1.l.tO MtSCEllANEOUS INSTRUCTIO~S

'lbe miscellaneous instructions are defined in Appendix F. Most miscellaneous instructions generate
one machine word.

3.2 PSEUDO INSTRUCTIONS

Pseudo instructions control the assembler, provide subprogram linkage, control output listing, reserve
storage, and convert data. Pseudo instructions may be placed anywhere in a source language sub-

1 program. However, NAM must be the first statement of a subprogram and END must be the last
statement.

3.2.1 SUBPROGRAM LINKAGE

These instructions identify and link subprograms; a symbolic name in the location field is ignored.

NAM

I Nam identifies a source language subprogram and must be the first statement of the subprogram.

The format ls:

NAM s

Where: s is an optional symbolic name of the subprogram that is printed as part of the assembly
list output.

3-14 96836500 B

END

END must be the last statement of a source language subprogram. The format is:

END s

Where: s is an optional symbolic name of an entry point t.o the first subprogram to be executed.

Example:

If specified, s must be defined as an entry point in the subprogram to which control
passes. This entry point may be in the same subprogram as the END statement or
in a subprogram loaded at the same time.

END START

Where: START is the location of the first statement to be executed.

ENT

The ENT instruction specifies the symbolic names of entry points that may be referenced from other
subprograms, and identifies these names for the loader. The format is:

ENT

Where:

Example:

EN Tl
ENT2

EXT/EXT*

si are entry points listed in the address field of ENT and must be defined in the subprogram
containing the ENT instruction. si must not i:efer to a location outside the sub­
program, common storage, or data storage.

NAM PROGi
ENT ENTl, ENT2 (Legal)
LDA XYZl
STA XYZ2

ENT ENTX (Illegal; ETNX not defined)

END ENTl

The EXT instruction specifies the symbolic names of entry points in external subprograms that may be
referenced from this subprogram, and identifies these names for the loader. The format is:

EXT

96836500 B 3-15

Where: s i are entry points in the address field of EXT and must be symbols defined in the
subprograms they reference. si must not refer to symbols in the same subprogram.

Example:

NAM
EXT ENT1,E~T2 (Legal)

ENT3 LDA XYZ
COM ENT5
EXT ENT3 (Illegal; ENT3 is the same subprogram)
EXT ENT4 (Legal)
EXT ENT5 (Die gal; ENT5 is common storage)

END

The EXT* instruction is the same as EXT except that later references to s1 must be absolute under
EXT, and references to .si must be relative if EXT* is used. The format is:

EXT*

The plus terminator cannot be used with an operation code when· the address references a relative
external entry point. It is also illegal to enclose an external in parentheses in the address field of an
ADC instruction.

ENF

The ENF pseudo instruction specifies the symbolic names of fields that may be referenced from other
subprograms, and identifies these fields for the loader. The format is: ·

ENF f
1
,f

2
, ••• ,fn

Where: fi are field names that have been defined in the subprogram containing the ENF pseudo
instruction.

EXF/EXF*

The EXF pseudo instruction speci.fies the entry fields in other subprograms that may be referenced from
this subprogram. EXF* is the same as EXF, except that references to the EXF* externals must be
relative. The format is:

EXF f1,f2
, ••• ,fn

Where: f. are external fields that may be referenced by this subprogram.
1

3-16 . 968365~0 B·

3.2.2 DATA STORAGE

The following instructions allocate data storage. BSS and BZS assign storage local to the subprogram
in which they appear. COM and DAT assign data common to any number of subprograms. Symbolic
names in the location fields of data storage instructions are ignored.

BSS

The BSS instruction assigns symbolic names to segments of storage within the instruction sequence of
the subprogram. The format is:

BSS

Where:

BZS

s. is a symbolic name that defines the first location of the named segment.
l

omitted A segment is assigned with the length e, but no name is assigned
to the segment.

e. is an expression that must be previously defined. It corresponds to the symbolic name
l

that defines the length of the segment in words. Segments are assigned contiguously
to form one block of data starting at location s 1• It can be assigned by an EQU
instruction. The size of the block is equal to the sum of the sizes of the segments.
e. are evaluated modulo· 215-1 and must be absolute.

l

0 The associated symbolic name is assigned to the next segment,
which in effect assigns two names to that segment.

omitted The length is assumed to be one computer word.

This statement functions in the same way as BSS, except that the specified storage locations are set to
o. The format is:

Where: s. is a symbolic name that defines the first location of the named segment.
l

9"6836500 B

omitted A segment is assigned with the length e, but no name is assigned
to the segment.

e. is an expression that must be previously defined. It corresponds to the symbolic name
1

that defines the length of the segment in words. Segments are assigned contiguously
to form one block of data starting at location s 1• It can be assigned by an EQU
instruction. The size of the block is equal to the sum of the sizes of the segments.
ei are evaluated modulo 215-1 and mustbe absolute.

3-17

Example:

NAM3

COM

0

omitted

NAM
LDA
BSS

BZS

BSS

BSS
BSS

BSS
EQU
BZS

BSS
BSS

END

The associated symbolic name is assigned to the next segment,
which in effect assigns two names to that segment.

The length ls assumed to be one computer word.

XYZl
NAM4(3)

NAM5(5)

NAMl, NAM2(9)

NAM3
NAM6, (4)

NAM7
NAM8(4), NAM9(2)
NAM10(NAM8-NAM9)

NAM8(NAM10-1)
LOCl(O), LOC2

Set up a three-word block with NAM4 as the
first word.
Set up a five-word block of Os with NAM5 as
the first word.
Set up a one-word block, NA Ml. Set up a nine­
word block with NAM2 as the first word.
Illegal; NAM3 has already been declared.
Set up a one-word block, NAM6. Set up a four­
word block for an unnamed segment.
Set up a one-word block, NAM7.
LOC2
Set up a two-word block of Os with NAMlO as
the first word.
Illegal; NAM8 has already been declared.
Assign the same word to LOCl and LOC2.

The COM instruction names and defines segments in a block of storage that are common to more than
one subprogram. The format is:

COM s 1(e1),s2(e2), ••• ,sn(en)

Where: s
1

ls a symbolic name that defines the first location of the named segment.

3-18

omitted A segment is assigned with the length e, but no name is assigned
to ~the segment.

ei is an expression that must be previously defined. It corresponds to the symbolic name
that defines the length of the segment in words. Segments are assigned contiguously
to form one block of data starting at location s 1• It can be assigned. by an EQU
instruction. The size of the block is equal to the sum of the sizes of the segments.
ei are evaluated modulo 215_1 and must be absolute.

0

omitted

The associated symbolic name is assigned to the next segment,
which in effect assigns two names to that segment.

The length is assumed to be one computer word.

06836500.B

If a program includes more than one COM statement. they define consecutive segments of common
storage in the order of their appearance. The area used by common storage is assigned by the loader
at load time to locations outside the program area. Data in common storage cannot be preset by the
ORG pseudo instruction.

Example:

NAM3

DAT

NAM
COM NAM4
STA
COM
EQU
COM
COM

END

XYZl
NAM7($1EF). NAMS
NAM1(6). NAM2(2)
NAM5(NAM1-NAM2)
NAM6(NAM3) (Illegal)

The DAT instruction reserves area for common storage that is assigned within the program area and
which may be preset with data or instructions by using the ORG pseudo instruction. The format is:

Where: s. is a symbolic name that defines the first location of the named segment.
1

omitted A segment is assigned with the length e, but no name is assigned to the
segment.

e. is an expression that must be previously defined. It corresponds to the symbolic name
1

that defines the length of the segment in words. Segments are assigned contiguously
to form one block of data starting at location s 1• It can be assigned by an EQU
instruction. The size of the block is equal to the sum of the sizes of the segments.
ei are evaluated modulo 215-1 and must be absolute.

0

omitted

The associated symbolic name is assigned to the next segment, which in
effect assigns two names to that segment.

The length is assumed to be one computer word.

3.2.3 CONSTANT DECLARATIONS

These pseudo instructions introduce constant values into the instruction sequence.

96836500 B 3-19

ADC/ADC*

An ADC/ ADC* instruction evaluates the address expi-essions. The resultant address constants are
st.ored in consecutive locations within the instruction sequence. The format is:

s ADC e
1
,e

2
, (e

3
), ••• ,en

Where: s is a symbolic name in the location that is assigned to the first constant in the address
field.

e. is an expression that corresponds to the symbolic name that defines the length of the
l segment in words. Segments are assigned contiguously to form one block of data

starting at location s 1• The size of the block is equal to the sum of the sizes of the
segments. ei are evaluated modulo 215-1 and must be absolute. Indirect address­
ing is specified by parentheses.

omitted The length Is assumed to be one computer word.

When ADC is followed by an asterisk, the evaluated address expressions are made relative to the
current location counter. The relocation type of the expression must be the same as that of the loca­
tion counter. The value of the location counter is subtracted from the value of the evaluated expression
(16-bit ones complement arithmetic) and the result is the 16-bit address constant.

Indirect addressing cannot be specified in the ADC* statement.

ALF

The ALF instruction puts the message in ASCII format. ·The format ls:

s ALF n, message

Where:

3-20

s is a symbolic name in the location that is assigned to the first constant in the address
field.

n is an unsigned integer; it specifies the number of words to be stored. 2n equals the
number of characters.

integer

a noninteger character

a special character

2n characters of the message are stored. Excess charac­
ters are treated as a remark. (The ALF statement,
including the message, will not be processed beyond the
72nd character of the source image.) If the message is
less than 2n characters, the unused portion of the speci­
fied area ls blank.

Signals the end of the message

The storage of the m~ssage terminates the first time this
character is encountered in the message, if it occurs
before the 72nd character. If the character just prior to n
is the first character of a word, a blank is placed in the
second character to complete the word.

96836500 :B

A character· message is stored into consecutive locations in the instruction sequence. The message is
converted to ASCIT characters and stored as two 8-bit characters per word.

The following typewriter control characters may be input with the ALF statement:

Code Meaning Hexadecimal Value

:R Carriage retum D

:T Horizontal tab 9

:L Line feed A

:B Bell 7

:F Top of form c
:V Vertical tab B

These codes are converted to a single output character (hexadecimal) and counted as one character in
determining the value of n, when n is an integer character count. A colon is a eight- and five­
keypunch code with the ASCII value of $3A.

A symbolic name in the location field ls assigned to the first word of the message.

NUM

'lb.e NUM Instruction defines numeric constants. The format is:

s NUM k
1
,k

2
, ... ,kn

Where:

Example:

s is a symbolic name in the location that ls as signed to the first constant in the
address field.

k
1

are specified integer constants stored into consecutive locations in the instruction
sequence. Each constant may be a decimal integer within the range ±32, 767, or a
hexadecimal integer preceded by a $ within the range ±7 FFF. The constant is
assumed to be positive. When the sign is minus, the ones complement of the
number is used.

'lb.e source statements,

NA Ml
NUM
NUM

1, 2, 3, $A
+14, -10, -$13B, $7FF

are translated into the following machine words.

9.6836500 B 3-21

location Contents

0001

0002

0003

OOOA

NA Ml OOOE

FFF5

FEC4

07FF

DEC

The DEC instruction converts decimal constants into fixed-point binary. The format is:

s

Where:

DEC

s is a symbolic name in the location that is assigned to the first constant in the
address field.

ki are specified integer constants stored into consecutive locations in the instruction
sequence. They are signed decimal integers followed by a decimal and/ or binary
scaling factor. The decimal scaling factor consists of a D followed by a signed
or unsigned decimal integer. The binary scaling factor is a B followed by one or
two signed or unsigned decimal digits. T·he form of a constant in the address field
maybe:

fDdBb

which is equivalent to the algebraic expression:

f.1od.2b

The fixed-point binary number resulting from the conversion must have a magnitude
less than 215 •. Ifthe result of scaling is greater than 215-1, an error diagnostic is
printed.

A symbolic name in the location field is assigned to the location of the first constant.

Example:

The source language statements,

3-22

NA Ml

NAM2
NAM3

DEC 35D-1B6
DEC
DEC
DEC
DEC

-35B6
32760B-4
32761D-5B15,of625D-2B3
1000

9"6836500 B

are converted to the following machine words:

Location Contents of Bits 15 through 0

NA Ml

NAM2

NAM3

VFD

0000000011100000
1111011100111111
0000011111111111
0010100111101111
0000000000110010
0010011100010000

The V FD (variable field definition) instruction assigns data to consecutive locations in the instruction
sequence without regard for computer words. Data is stored in bit strings rather than word units; it
may be numeric constants, ASCII characters, or expressions. However, all the data to be stored in
a memory location must be specified in a single VFD. A symbolic name in the location field is assigned
to the first word of data. The format ls:

s

Where:

96836500 B

VFD

s is a symbolic name that defines the first location of the named segment.

m is the mode of the data.

N

A

x

The data is a numeric constant and the number of bits must not be greater
than 16. If n is larger than necessary, the value is right-justified in the
field and the sign extended in the remaining high-order bits. If n is less
than is required, the value is truncated and the least significant bits are
stored. The value v is a decimal integer or a hexadecimal integer pre­
ceded by a dollar sign. Integers may be signed or unsigned; if the sign
is omitted, the number is assumed to be positive. A decimal number
must be within the range ±32, 767 and a hexadecimal integer within the
range ±7FFF.

v ls a string of characters and n must be a multiple of 8. The number of
characters in the string should be equal to D/8, including embedded
blanks. The last character must be followed by a blank or a comma. The
characters are converted to ASCII code and stored as in the ALF
instruction.

vis an expression and n must be less than or equal to 16. If n is less
than 16, the final value of the expression may be relocatable or absolute.
It is evaluated modulo 215-1. If the final value is absolute and n exceeds
the size required, the value is right-justified in the field. If it is abso­
lute and n is less than the required size, the value is truncated and the
least significant bits are stored in the field. If the final value is relocat­
able, n must equal 15 and the expression ·must be positioned so that it
will be stored right-justified at bit position 0 of the computer word.

3-23

If n equals 16, the expression must be absolute; It ls evaluated using
16-blt ones complement arithmetic. If a symbol ls used In a 16-blt
expression, bit 14. of the value of the symbol ls extended to bit 15, and
therefore the calculation of the value of the symbol ls accurate only to
214-1. For example, If the symbol A ls equated to the value -1, the
value of A In the symbol table ls $7FFE, but the value used In the 16-blt
calculation of this symbol ls $FFFE. Numeric operands used In a 16-blt
expression may be 16 bits In magnitude.

n ls the number of bits to be allocated.

v ls the value of the data.

Examples:

1. The source language statements,

NAM
V FD N3/1, X5/6-4, A16/XY, X4/NAM1-NAM2
BSS NAM2(3), NAMl

END

result in the following machine words:

15 13 12 8 7 0

001 0 0 0 1 0 0 1 0 1 1 0 0 0

0 1 0 1 1 0 0 1 0 0 1 1. 0 0 0 0

2. The source language statements,

NAM
VFD N8/-l,A8/L, Nl/O,X15/NAM1
BSS NAMl

END

result in the following words:

15 87 0

1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0

0 Location of NAMl

3-24

3. The source language statements,

NAM
EQU A(-l),B(2)

· VFD Xl6/ A, Xl6/B, Xl6/$7 FFF*2

END

result In the following machine words:

15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

3.2.4 ASSEMBLER COMMUNICATION

0

The assembly process is controlled or modified by these pseudo instructions. A symbolic name in the
location field is ignored except where specifically noted.

The EQU instruction equates each symbolic name to the expression value. The format is:

Where: s. is a symbolic n9.me that is equated to the value of e .•
1 1

e. are symbolic operands that have been previously defined and which are not external to
1

the subprogram in which the EQU statement appears. e. are evaluated mod1llo
215-1 and must be absolute.

1

omitted The expression is assumed to be o.

9683650Q.·B 3-25

FLD

The FLD pseudo instruction defines a field to the assembler. Fields defined using this pseudo
instruction may be referenced by a simple name which bas all the attributes of the field. These fields
may also be declared external or entry fields. The format ls:

FLD N(W,S, L)

Where: N ls the name of the field; follows the same rules as the location names.

W ls the word in which the field is contained.

S is the start bit. the leftmost bit in the field. 15 :? S ~ 0

L ls the length of the field (number of bits). 1 S L S 16

ORG/ORG*

The ORG statement specifies an address expression to which the current location counter is set. The
format ls:

ORG

Where:

e

15
e. is an expression that ls evaluated modulo 2 -1. The location counter is set to the

1
resultant value. The value of the expression may be program or data relocatable or
absolute; if relocatable, it must be positive. Any symbolic operands in the expres­
sion must have been previously defined.

The instructions following an ORG statement are assembled into consecutive locations beginning at the
location of the evaluated address expression e. This sequence may be changed by another ORG or
terminated by an ORG* statement. Within the range of a data relocatable ORG, any reference to al)
external symbol ls illegal.

The ORG* instruction is used to return to the normal instruction sequence previously interrupted by an
ORG. More than one ORG may be specified without an intervening ORG*; however, when an ORG* does
occur, the location counter is reset to the value it bad prior to the first ORG.

Example:

NA Ml

3-26

BSS
ENA

ORGl(lO), ORG2, ORG3(5)
0

~6836500.B

NAM2

NAM3

IFA

JMP*
ORG

NAM3
NAMl

(Sequence of code beginning at NAMl)
ORG*
(Resume sequence of code at NAM2+1)
JMP* NAM4
ORG ORGl
(Sequence of code beginning at ORGl)
ORG ORG3
(Sequence of code beginning at ORG3)
ORG*
(Resume sequence of code at NAM3+1)

The IFA instruction assembles a set of coding lines if a specified condition is true. The format is:

s

Where:

9l;s36soo B

s

e.
l

IFA

is a symbolic name in the location field. It is used as an identifying tag only; it is
not defined as a location symbol within the program. If specified, the first two
characters of the identifier s must match the first two characters of the symbolic
name in the address field of the corresponding EIF. If s is blank in an IFA state­
ment, it must also be·blank in the corresponding EIF statement.

are expressions that are evaluated modulo 2
15

-1 and which must result in an absolute
value. Any symbolic name in either expression must have been previously defined.

callows the code to be assembled if a specified condition exists between e1 and e2. If the
condition does not exist, the code following the IFA statement is skipped until a
corresponding EIF statement is encountered.

The following conditions may be specified by c:

Condition Meaning

EQ el =e2

NE el ~e2
GT el >e2

LT el <e2

3-21

EIF

The EIF instruction signals the termination of an IFA or IFC instruction (Section 3. 3.1) when coding
lines are skipped as a result of an untrue condition~ When the condition in the IFA or IFC is true, EIF
is ignored. The format is:

EIF s

Where: s is the symbolic name in the address field that establishes the correspondence between an

Example:

LOCl

NAM3
OPl

OP2

IFA or IFC and an EIF instruction. The first two characters of s must be the same as
the first two characters in the location field of the corresponding IFA or IFC. An EIF
with a blank address field terminates an unlabeled IFA or IFC.

NAM

BSS A(20), B(lO), C(2)
EQU NAMl(lO), NAM4(B), NAM2(2)
IFA NAMl, EQ,NAM2+8
SAZ 1
EIF NAM3
IFA NAMl, GT, NAM2+8
SAZ 2
EIF

END

OPl is assembled and OP2 is skipped if the value of NAMl equals the value of NAM2+8. OPl is skipped
and OP2 is assembled if the value of NAMl is greater than the value of NAM2+9. Both OPl and OP2 are
skipped if the value of NAMl is less than the value of NAM2+8.

3.2.5 LISTING CONTROL

The following pseudo instructions control the printing of assembly output. The location and address
fields are igno~ed unless specified.

NLS

The NLS instruction inhibits list out1X1t. The format is:

NLS

Normally, list output is enabled until an NLS occurs. It remains inhibited until an I.ST instruction or
the end of the program occurs.

3-28 ~:6836500 ·B.

I.BT

The LST instruction initiates list output after an NLS has inhibited it. The format is:

!BT

SPC

The SPC instruction controls line spacing on the list output unit. No spaces are output if the SPC card
is encountered at the top of a listing page. The format is:

SPC e

Where: e is the number of lines to be skipped. The expression is evaluated modulo 2
15

-1 and
must be absolute.

EJT

CLASS processes an EJT pseudo instruction as four spaces instead of a page eject. However, if the
EJT is encounte.red more than three-quarters of the way down a listing page, the page will be ejected.
No spacing or ejecting occurs if the EJT is encountered at the top of a listing page. There is an option
available to process all EJT cards as page ejects. The format is:

EJT

ERR

The ERR pseudo instruction is provided for programmer-defined errors. It is intended to be used
within the coding lines of an IFA or IFC sequence to identify certain erroneous conditions which are set
up by the programmer. It is also used in the assembly text for enhanced instructions. The format is:

ERR

The following is a source code sequence example:

TAG IFA
ERR

SYMB,EQ,O

EIF TAG

In this example, if SYMB is equated to O, an error results and will be flagged with PD on the line
where ERR is assembled.

96836500 B 3-29

NOREF

The NOREF pseudo instruction is provided in CLASS to enable the programmer to specify any symbols
that he does not want inciuded in the complete reference map at the end of the listing (see Section 4. 2. 5).
The address field contains the symbol names to be excluded, separated by commas. The format is:

NOREF

The following is the source language input:

NOREF SYMBl, SYMB2, SYMB3, •••

3.3 MACROS

An often-used set of instructions may be grouped together to form a macro. Once a macro is defined,
it may be used as a pseudo instruction. The CLASS Assembler includes two types of macros:

Programmer-defined

Library

Macros declared and defined by MAC pseudo instructions. Each
macro may be defined anywhere in the program prior to the first
reference to it. Comment cards may be placed anywhere in the
macro definition.

Definitions contained on the system library that may be called
from any subprogram.

If an error is encountered by CLASS in a macro definition, it is flagged and CLASS continues processing
the definition. However, whenever a macro is called whose definition was erroneous, no attempt is
made to substitute the skeleton for the call. The programmer is merely notified that there was an
error in the definition. Also, symbols beginning with the characters 00 and Q99 may not be used as
macro names as these are reserved for the assembler. The mnemonics IFK, IFR, and PCO are
reserved for the assembler. CLASS limits nesting to 10 calls per macro, only because deeper nesting
usually is caused by an error loop. If deeper nesting is required, CLASS must be reassembled (see
Appendix E).

3.3.1 MACRO PSEUDO INSTRUCTIONS

These pseudo instructions are only used within a macro definition.

MAC

The MAC instruction is required and names a macro and its formal parameters. The location field
contains the name used to call the defined macro. It may be any name not used by a machine or pseudo
instruction. The format is: ·

s MAC P 1' P 2' • • ·' p n

3-30 96836500 B

Where:

EMC

s is a symbolic name in the location field, which is assigned to the first· word of the
generated code.

p. are symbolic names that are local to the macro definition and which may be used
1

anywhere else in the program without ambiguity. The formal parameters must
conform to the following rules:

• They must be symbolic of one or two characters.

• The parameter list must not extend beyond the 72nd character of the line
containing MAC.

• The parameter list must terminate with a blank or the 72nd character of the
line.

• Each parameter in the list is separated from the next by a comma.

The EMC instruction is required and signals the end of a macro definition. A symbolic name in the
location or address field is ignored. EMC is always the last instruction in a macro definition. The
format is:

EMC

LOC

The LOC instruction is optional and allows the use of the same symbols in macros and programs to
avoid doubly defined symbols. Symbols that are local to the macro being defined are listed in this
instruction. Local symbols have meaning only in the macro in which they are listed by LOC, thus
allowing the same symbols to be used elsewhere in the program without ambiguity.

The LOC instruction must immediately follow the MAC instructions. A symbol in the location field of
the LOC instruction is ignored. The format is:

LOC

Where:

96836500 B"

s. are local symbols in the address field that must conform tO the following.rules:
1

•
•

•
•
•

•

They must be symbolic names of one or two characters •

The list cannot extend beyond the 72nd character of the line containing the
LOC instruction.

The list terminates with a blank or the 72nd character of the line •

Each symbol in the list is separated from the next by a comma •

No local symbol in the list may be the same as a formal parameter specified
for the macro.

No more than 256 local symbols .can be used in one program •

3-31

IFC

The I FC instruction is optional and allows a set of instructions within a macro definition to be assembled
only if a specified condition is true. This instruction is meaningful only within the range of a MAC
pseudo instruction. The format is:

s

Where:

IFC

s is an identifying tag in the location field which is used to establish correspondence with
the terminating EIF. An EIF terminates an IFC when the first two characters of the
symbol in the address field of EIF are the same as the location symbol of the IFC, or
when both symbols are blank and it is the first EIF encountered.

a. is a string of one to six characters or a formal parameter specified in the MAC state-
1 ment. The character string should not contain commas, blanks, or apostrophes.

Two character strings are equal when they contain the same characters in the same
position and are of the same length. Characters in excess of six are ignored.

c is a specified condition:

Condition

EQ

NE

Meaning

al= a2

al-/:. a2

If the condition specified exists between a1 and a2, the code is assembled; if not, the
code following the IFC is skipped until a corresponding EIF pseudo instruction
(Section 3. 2. 4) is encountered.

3.3.2 MACRO SKELETON

A macro skeleton is the set of instructions within a macro definition that is the prototype of the opera­
tions to be performed when the macro is called.

The instructions may be any machine or pseudo instruction except MAC, LOC, EMC, NAM, END, or
MON. A macro skeleton may also contain macro instructions calling other macros. Formal param­
eters, enclosed in apostrophes, may appear anywhere in the instruction format of a prototype instruc­
tion. Local symbols defined by a LOC statement may be used anywhere in the macro skeleton; they
also must be enclosed in apostrophes. The only legal use of the apostrophe in a macro definition is to
enclose formal parameters or local symbols. Formal parameters that extend past the 72nd character
into the sequence field are ignored. Format parameters in a remark statement signaled by an * in
column 1 are also ignored.

In addition to the formal parameters specified in the MAC pseudo instruction, a special formal param­
eter (a period enclosed in apostrophes) may be used in the macro skeleton. It is replaced by the
instruction terminator of the calling macro instruction when a terminator is specified.

3-32 96836500 B

Null

Actual parameters may be omitted from a macro instruction. An omitted (null) parameter in the middle
of the list is indicated by its terminating comma only. Parameters at the end of the list may be
omitted with no indication.

Example:

XYZ MAC P
1
,p2,p

3
,p

4
,p

5
,P

6

The macro instruction with p
2

, p
4

, and p
6

omitted in the actual parameter list would be:

XYZ MUI, 1 SYMB5, , 3

Empty fields are allowed in all machine and pseudo instructions with the following exceptions:

ALF n,message n must be specified

EQU s(e)

} COM s(e) If e is specified, s must be specified
DAT s(e)

IFA e
1
,c,e

2 l c must be specified
IFC a

1
,c,a

2

The actual parameters to be inserted into the value of a VFD instruction using mode A must agree with
the number of characters specified. A null actual parameter can cause an error in the generated code
unless the VFD allows for null parameters.

Nesting Macros

Calls to either library macros or programmer-defined macros can be nested in a macro definition.
Recursive calls to nested macros are allowed to the 10th level. F\lrther recursive calls are ignored.

Local location symbols are unique to each level of nesting.

Example:

MAC P
1
,p

2
,p

3
,p

4
,P

5
LOC A

XYZ

'A'

LDA 'p '

I 'P2' ' 1, P3
S_'p4 'A 'A'-*-1 Macro skeleton
JMP'.' 'p '
ENA 1 5

EMC

96836500B 3-33

3.3.3 MACRO· INSTRUCTIONS

With a macro instruction, the code generated from the named macro ls inserted in the instruction
sequence beginning at the location of the macro instruction. The format is:

8 N

Where: s ls a symbolic name in the location field that ls assigned to the first word of the
generated code.

N is a symbolic name of the macro in the operation code field. It is the name specified
in the location field of the MAC statement of the macro definition it calls. The macro
name may be followed by one of the special terminators ~, +, -, or *.

p are symbolic names that are local to the macro definition and which may be used any-
i where in the program without ambiguity.

The actual parameters must be listed in the same order as the formal parameters in the MAC state­
ment. The list of actual. parameters must conform to the following rules:

• Each parameter in the list must be separated from the next by a comma~

• The list must be terminated with a blank or the 72nd character unless the 72nd character
is a comma.

• The list may be continued onto the next line; if so, the last parameter on the list is
terminated by a comma and a blank or the 73rd character.

• The continuation line must contain the macro name in the operation code field. A symbolic
name in the location field is ignored.

• An actual parameter containing embedded blanks or commas must be enclosed by
apostrophes.

3.3.4 ASSEMBLY TEXT GENERATION AND USE

CLASS has the capability of creating or calling an assembly text of predefined symbols and macro defi­
nitions. This text may be generated or called by use of special parameters on the CLASS call card.
(See Appendix B for a complete explanation of call card parameters.)

In order to generate assembly text, M= FNAME should be specified on the CLASS call card. The source
program to be assembled should contain only the symbols and macro definitions to be included in the
text. Each macro definition should begin with a MAC pseudo operation and end with an EMC pseudo
operation. Symbols should be defined with an EQU statement.

3-34

After assembling the program, CLASS will build a file containing the predefined symbols with their
values, the macro skeleton images, and a macro name table. The file name will be the name specified
by the M parameter. The text may be saved for future use by making it a system file or by making it
a user file.

The assembly text can be utilized by specifying F=FNAME or G=FNAME on the CLASS call card. The
text must have already been generated and reside either in the system or on a user-supplied file. The
G parameter is used if the text is a user file.

CLASS reads in the file and adds the predefined symbols and macros to its tables prior to assembly.
If macros are redefined during assembly, the newest definition will be used. If symbols are redefined,
an error will be generated.

3.4 CLASS LIMITATIONS

3.4.1 WARNINGS

CLASS allows the following storage reference case to be assembled without error:

LDA+ ($C5)

which is assembled as:

C400
80C5

This would cause different results in 32K and 65K machines.

CI.ASS requires long relative references to relative externals and long absolute references to absolute
externals when the enhanced instructions are used.

User-defined macros may have any six character names except IFK, IFR, PCO, or any Type 2 machine
instruction name; and macro names may not begin with the characters 00.

The use of SPC 0 causes the assembler to lose the line count for the current page.

3.4.2 SPECIAL CHARACTERS

CLASS uses several special characters in its processing to 0.ag various conditions. They may not be
used on the input source cards or unpredictable errors may result. The special characters that cannot
be used are:

Character 6000 Display Code Hollerith Punch

I 76 12-8-6

t 70 11-8-5

l 11 11-8-6
A 72 12-6

"96836500 B 3-35

I

I
Because there is a discrepancy between the codes for a colon on the CYBER 18 computers and on the
CYBER 170/70/6000 computers, CLASS accepts as a colon an 8-5 punch, as specified in the CYBER 18
Macro Assembler reference manual, or an 8-2 punch as specified in the CYBER 170/70/6000 manuals.
Since the colon has special meaning in the ALF pseudo instruction, it is not advisable to attempt to insert
the colon in core using the ALF pseudo instruction.

CLASS expects an 8-4 punch for an apostrophe from the 026 card punch, but this is printed as a quote.

In general, special characters should be used with caution because of the discrepancies between the
various codes and keypunches.

3-36 96836500 B

OUTPUT 4

There are two types of output from the CLASS assembler:

• Relocatable Binary Output

• List Output

4.1 RELOCATABLE BIN.ARY OUTPUT

CLASS produces relocatable binary output in three formats: PS for punching up to SO-column cards,
B for the CYBER Cross System, and RB for magnetic tape input to the MSOS Loader. Files PS I
and B have the necessary identifiers to be recognizable to the MSOS peripheral device drivers; i.e.,
7/9 punch checksum and word count. File PS is written one program per record and file Bis written
one block (BZS, RBD, etc.) per record. File RB has no checksums and is written one block per rec-
ord. It should be written on a stranger (S-format) tape if the tape is to be loaded by the MSOS Loader.

The assembler specifies relocatable binary blocks by the type of indicator field in bits 15 through 13 of
the first word of the block. The following block types are defined:

Type Indicator Description

NAM 001 Name block
RBD 010 Command sequence block
BZS 011 Zero storage block
ENT 100 Entry point block
EXT 1()1 External name block
ENF 000 Entry field block
EXF 111 External field block
XFR 110 Transfer address block

Output begins with a NAM block and terminates with an XFR block. The EXT and EXF blocks follow
the RBD blocks. The RBD, BZS, ENT, and ENF blocks may come in any order.

The following is the format for the eight block types.

96836500 B 4-1

NAM Block

The NAM block contains a word count for common and data storage. the program length. and the name
ef tb.e program.

RBDBlock

1

2

3

4

5

6

'1

8

15 12 11 8 7 • 3 0

0 0 1 o Jo 0 0 0 0 1 0 1l 0 0 0 0

Number of words in common storage block

Number of words in data storage block

------------------------Program length

Character 1 Character 2

Character 3 Character 4

Character 5 Character 6

.i.. NAii statement comments
.i.

31 l~ ______ J

An RBD block contains a portion of the actual command sequence data of the program.

Program Name

Words 2 through 57 contain the relocation bytes and words for the command sequence input. Each
relocation byte is a four-bit indicator that identifies a word of the command sequence input as an
absolute 15-bit address or as a 15-bit address relative to some relocation base. The relocation base
for a word is determined by the particular combination of bit settings within the relocation byte.

The following are the relocation bytes in RBD blocks:

0000 Absolute (no relocation)

0001 Positive program relocation

0101 Negative program relocation

0010 Positive common storage relocation

0110 Negative common storage relocation

0011 Positive data storage relocation

0111 Negative data storage relocation

4-2 96836500B

The core image of the RBD block.is:

Where:

1

2

3

4

5

6

7

8

9

10

11

12

52

53

54

55

56

57

15

0 1

-i..

'1r'

12 11

0 0 0

RO

R4

RS

R40 I

87

0 0 00 1 0

Rl R2

WO

Wl

W2

W3

R5 R6

W4

W5

W6

W7

R9 RlO

R41 I R42

W40

W41

W42

W43

Not used

Wn is the nth word of the input block (n = 1 to 43).

Rn is the relocation byte of the nth word.

WO is the origin address of the input block

RO is the relocation byte for wO.

4 3 0

1 0 0 0 0

R3

R7

Rll

...
"'

I R43

There is one relocation byte for every word in the command sequence output and a maximum of 45
entries in the RBD block. The first word is the address relative to the start of the program where the
loader begins storing command sequence data. The relocation byte for the first word address (storage
address) of an RBD block may be 0000, 0001, or 0011. If the field contains a number larger than 0011,
0011 is assumed. Zero is the leading bit for all but the last. relocation byte; 1 is the leading bit for
the last relocation byte.

96836500 B 4-3

BZS Block

A BZS block contains relocation bytes, the starting address, and block sizes for areas of core to be
cleared to Os when the program is loaded.

The core image of the BZS block is:

4-4

1

2

3

4

5

6

7

8

9

10

11

47

48

49

50

51

52

53

54

55

56

57

15

0

'"
't'

1 1

Rl

R5

R21

R25

12 11

0 0

l

l

8 'I 4 3 0

0 0 0 0 1 0 1 0 0 0 0

R2 R3 R4

Al

Sl

A2

82

A3

83

A4

S4

R6 R7 RS

•"
....

R22 T R23 l R24

A21

821

A22

822

A23

823

A24

S24

Not used

Not used

96836500 B

Where: A is the starting address.

S is the size of the area reserved by BZS.

R is the relocation of the starting address.

An is the starting address of the nth entry.

Sn is the size of the BZS reservation for the nth entry.

Rn is the relocation byte of the nth entry.

The relocation bytes for a starting address may be 0000, 0001, or 0011.

ENF Block

Up to 11 entry fields may be specified in an EN F block. The end of data in this block is identified by
Os. If the sign bit of a word containing the entry point address is O, the address is program relocatable.
If the sign bit is 1, the address is· absolute and in. ones complement. Data begins in word 2.

The core image of the ENF block is:

.96836500 B

1

2

3

4

5

6

7

8

9

10

11

52

53

54

55

56

57

141

...

15 12 11 8 7

0 0 0 1o 0 0 0 0

Character 1

Character 3

:Character 5

El

FLDST 1 I FLDLTH 1-1

Character 1

Character 3

Character 5

E2

FLDST 2 l FLDLTH 2-1

Character 1

Character 3

Character 5

Ell

FLDST 11 IFLDLTH 11-1

Not used

4 3 0

1 0 110 0 0 0

Character 2

Character 4
Field Name 1

Character 6

Not used

Character 2
Field Name 2

Character 4

Character 6

Not used

,;i,

't'

Character 2

Character 4

Character 6

Field Name 11
Not 11sed

4-5

Where: Name n ls a six-character name of the nth entry in the block.

En is the entry address of the nth field name. En is negative (ones complement)
if absolute and positive if relative.

FLDST n ls the leftmost bit of the nth field. O S FLDST n S 15

FLDLTH n ls the length of the nth field. 1 ~ FLDLTH n ~ 16

ENT Block

Up to 14 entry point names and addresses may be included in an ENT block. The end of data in this
block is identified by Os. If the sign bit of a word containing the entry point address is O, the address
is program relocatable. If the sign bit of the word is 1, the address is absolute and in ones comple­
ment. Data begins in word 2 and extends to word 57.

The core image of the E~T block is:

4-6

1

2

3

4

5

6

7

8

9

50

51

52

53

54

55

56

57

15

1 0

.. ~
~ ...

12 11

0 o fo 0

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

8 7

0 0 0

El

E2

El3

E14

4 3 0

1 0 1 to 0 0 0

Character 2

Character 4
Name 1

Character 6

Character 2

Character 4
Name 2

Character 6

.... ,,..

Character 2

Character 4

Character 6

Character 2

Character 4
Name 14

Character 6

96836500B

Where: Name n is a six-character name of the nth entry ln the block.

En is the entry point address of the nth name. En is negative (ones complement) if
absolute and positive if program relocatable.

When processing an ENT block, the loader records the entry point name in its table. The entry point
address ·is adjusted for relocation (either program or absolute), then it is recorded in the table of entry
points. This procedure is repeated until the end of input is reached (a name equal to 0).

For each name, the loader determines if an entry point has been previously recorded in the table. If
so, a duplicate entry error has occurred. The same entry point name may not be used by two programs
to occupy memory space at the same time. Only the first occurrence of an entry point name is valid;
others are illegal and are not loaded.

EXF Block

Up to 14 external fields and link addresses may be included in an EXF block. The core image of the
EXF block is:

96836500 B

1

2

3

4

5

6

7

8

9

50

51

52

53

54

55

56

57

15

1 1

A.

~

12 l_l

1 0 l 0 0 0

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

8 7 4 3 0

0 0 1 0 1lo 0 0 0

Character 2

Character 4
Name 1

Character 6

Ll

Character 2

Character 4
Name 2

Character 6

L2

....

.,~

Character 2

Character 4
Name 13

Character 6

L13

Character 2

Character 4
Name 14

Character 6

L14

4-7

Where: Name n is a six-character name of the nth entry In the block.

Ln is the link address of the nth name. LN is negative (ones complement) If absolute
and positive If relative.

The end of the EXF block is indicated by Os. If the sign bit of the word containing the link address is O,
the address is program relocatable. If the sign bit is 1, the address is absolute and in ones comple­
ment. The format of the data in the block is the same for EXF as for ENT information. Relative
external fields are indicated by setting the leftmost bit of the word containing character 1 of the field
name.

EXT Block

Up to 14 external names and link addresses may be included in an EXT block. The core image of the
EXT block is:

4-8

1

2

3

·4

5

6

7

8

9

50

51

52

53

54

55

56

57

15

1 0

t4o

,,..

12 11

1 o Io 0 0

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

Character 1

Character 3

Character 5

8 7 4 3 0

0 0 1 0 1Jo 0 0 0

Character 2

Character 4
Name 1

Character 6

Ll

Character 2

Character 4
Name 2

Character 6

L2

....

.,..

Character 2

Character 4
Name 13

Character 6

L13

Character 2

Character 4
Name 14

Character 6

L14

96836500 B

Where: Name n is a six-character name of the nth entry in the block.

In is the link address of the nth name. In is negative (ones complement) if absolute
and positive if relative.

The end of the EXT block is indicated by Os. If the sign bit of the word containing the link address is
O, the address is program relocatable. If the sign bit is 1, the address is absolute and in ones comple­
ment. The format of the data in the block is the same for EXT as for ENT information. Relative
externals are indicated by setting the leftmost bit of the word containing character 1 of tl~e name.

XFR Block

The XFR block contains a transfer address (in words 2 to 4), which is six ASCII characters in length,
including trailing spaces. The transfer address must be an entry point in the program being loaded or
in another program loaded during the same load operation.

The core image of the xm block ls:

15 12 11 8 7 4 3 0

1 110000000101 0 0 0 0

2

3

4

4.2 LIST OUTPUT

A.2.1 LIST OPTIONS

Character 1 Character 2

Character . 3 Character 4

Character 5 Character 6

CLASS contains list options that can be requested on the CLASS call card. These options provide added
information in a highly usable form for the programmer or simply make the listing more readable. To
request one or several of the options, the parameter LO= should be specified, followed by the letter(s)
corresponding to the option(s).desired.

96836500 B 4-9

Example:

LO= BMRTX

Note that no commas separate the opUon letters.

The following options are available:

Identifier

B

C·

D

E

I

L

M

R

s
T

x

Option

List the BSS/BZS blocks on the banner page.

List the program list control cards (SPC, EJT,
etc.).

Suppress the comment cards.

Process EJT as a page eject.

List the code skipped by the IFA pseudo option.

List the macro cross-reference table.

List all entries on multi word entries.

List the fu.ll reference map.

List the abbreviated reference map.

Tidy the list file (convert free form to set columns).

Expand the macro code into macro calls.

If more than .seven options are desired, a second LO must be specified. If no LO option is specified,
options B, M, R, and Tare selected. If Wis specified, only the options specified are selected.

4.2.2 BANNER PAGE

CLASS outputs a banner page at the front of the assembly listing for every program. The information
on this page consists of the following:

•

•
•
•
•
•

4-10

A title line, giving the name of the program, CLASS vers~on level, date, time it was
executed, and page number

A subtitle, STORAGE ALLOCATION

The address and length of the program

The address of the END card

All entry points with their addresses, listed alphabetically

All external symbols, listed alphabetically

96836500 B

If LO option B is selected, BSS/BZ S blocks will also be listed with their type (local, common, or data),
address, and length.

4.2.3 MAIN PROGRAM LISTING

The assembly list output by CLASS consists of 34 columns of descriptive information. related to the
source statement, followed by a maximum of 80 columns listing the source statement. This is illus­
trated in Table 4-1.

Each page is headed by a title line that gives the name of the program, CLASS version level, date, time
of execution and page number.

The last page of the listing contains the amount of storage used, the number of source statements, a
symbol count, the number of references, the time used for assembly, and an error count in decimal if
errors are present.

4.2.4 ERROR SUMMARY

If assembly errors are encountered by CLASS during the assembly of the program, an error summary
is listed following the assembly listing. The information given includes the type of error found and the
page and line number where it was encountered. All errors of the same type are grouped together in
the order of their occurrence. Error types that are included in this summary are:

• Doubly defined symbol

• Undefined symbol

• Illegal expression

• Illegal operation eode

• lllegal relocation

• Numeric operand overflow

• Maero definition error

• Macro instruction error

• Illegal symbol name

• Programmer-defined error

Example:

Illegal operation code

Illegal relocation

96836500 B.

2/05

3/1

(Page No./Line No.)

3/04

5/17

4/04 6/21

4-11

Table 4-1. Listing Page Format

COLUMN CONTENTS

1-2 The line number; given only on lines that are multiples of five; 1. e., lines 5, 10, 15, etc.

3-4 Two spaces

5-6 The error mnemonic (see Appendix D for mnemonics); if no error is on this line, it is
left blank.

7 A space

8 The relocation designator for the location:

P ·Program relocation
D Data relocation
C Common relocation

9-12 I..ocation in hexadecimal

13-17 Spaces

18-21 The first machine word in hexadecimal

22 Space

23 The relocation designator if the word is a one-word instruction:

24

25-28

29

P Program relocation
-P Negative program relocation
C Common relocation

--c
D

-D
x

Blank

Space

Negative common relocation
Data relocation
Negative data relocation
External
Absolute

The second machine word if this is a two-word instruction; otherwise, it is blank.

Space

30 The relocation designator if this is a two-word instruction. Uses the same code as the
one-word relocation designator.

31-34

35-114

4-12

Spaces

Input source statements: If the tidy option is selected on the CLASS call card (see Appendix
B), the source statements will be put in the columns specified. If the T option of LO param­
eter is specified (see Section 4. 2.1), the fields will be put in the following columns of the
listing:

Starting Column

35
45
52
64

108

Field

Location
Operation Code
Address
Comments
Sequence Number

'96836500 B

4.2 .5 COMPLETE REFERENCE MAP

To obtain a complete reference map, specify R in the LO option list. The following· information is
given in the complete reference map:

1. Symbol names (in alphabetical order)

2. Symbol values

3. If the symbol is in the common or data storage area external to the program or is a system
symbol (such as the I register), it is Ragged by the following:

/common/
DATA
EXTERNAL
-SYSTEM-
ABSOLUTE

4. The page number/line number in chronological order, for all references to the symbol.
An identifying letter is printed following the page/line number references that have special
meanings. These are the following:

Letter Meaning

The location of the symbol
Where it is defined as a BSS or BZS block
Where it is defined as an entry point
Where. it is defined as an external
Where it is equated

L
B
E
x
Q
s
F

Where it is referenced as the address of a store instruction (Type 1)

Where it is defined as a field

5. If the symbol is undefined or doubly defined, it will be preceded with a U or a D,
respectively.

4.2.6 SHORT REFERENCE MAP

To obtain an abbreviated reference map, specify S in the LO option list. The following information is
given in the short reference map:

1. Symbol names (in alphabetical order)

2. Symbol values

3. A letter indicating the type of relocation:

96836500 B

p

D
c
s

Program
Data
Common
System

4-13

Example:

ASSEMBLY OF TEMPTY
ABBREVIATED REFERENCE MAP.

I I OOFF/ S
S SAVE 0005/ P

4.2.7 MACRO CROSS-REFERENCE MAP

To obtain the macro cross-reference map, specify L in the LO option list. The following information
is given in the macro cross-reference map:

1. The macro names (in alphabetical order)

2. The number of formal parameters

3. The number of local parameters

4. The page number/line _number where the macro is referenced (called)

If there has been an error on the macro definition, an M error code will be printed before the macro
name.

Examples:

M

4-14

MACROl
MACR02

0004P
0002P

OOOlL
OOOOL

2/21
1/15

3/10
5/3 5/17

96836500 B

INSTALLATION OF CLASS A

CLASS must be assembled under COMPASS and requires KRONTXT as an assembly text. The CLASS
release materials consist of a program library tape of CLASS, KRONTXT, associated common decks,
and assembly text.

The following simplified installation procedure is provided as an example of CLASS installation under
NOS/BE 1.1. It is assumed that the program libraries have been made available as permanent disk
files.

1. Installation of CLASS as permanent files:

96836500 B

JOB, CM60000.
ATTACH(OLDPL, CLASSPL)
UPDATE(Q)
RETURN (OLDPL)
ATTACH(OLDPL, KRONTXTPL)
UPDATE(Q, C=TEXT)
RE,QUEST (KRONTXT, *PF)
COMPASS(I=TEXT, B=KRONTXT, L=O)

REQUEST(CLASS, *PF)
COMPASS(!, G=KRONTXT, B=C LASS)
RETURN (OLD PL, TEXT, COMPILE)
ATTACH(OLDPL, MACROPL)
UPDATE(Q)
REQUEST(SMACl 7, *PF)
CLASS(!, M=SMAC17)
CATALOG(KRONTXT, KRONTEXT)
CATALOG(CLASS, CLASSBIN)
CATALOG(SMAC17, MA CB IN)
7/8/9
*COMPILE CLASS
7/8/9
*COMPILE KRONTXT
7/8/9
*COMPILE MACROS
6/1/8/9

A-1

A-2

2. Installation of CLASS as system-resident files:

JOB, CM60000.
ATTACH(OLDPL, C LASSPL)
UPDATE(Q)
RETURN(OLDPL)
ATTACH(OLDPL, KRONTXTPL)
UPDATE(Q, C=TEXT)
COMPASS(l=TEXT, B=KRONTXT, L=O)

COMPASS(I, G=KRONTXT, B=CLASS)
RETURN (OLD PL, TEXT, COMPILE)
ATTACH(OLDPL, MACROPL)
UPDATE(Q)
CLASS(I, M=SMACl 7)

REWIND(CLASS, SMACl 7)
EDITLIB(SYSTEM, ERROR=3)
7/8/9
*COMPILE CLASS
7/8/9
*COMPILE KRONTXT
7/8/9
*COMPILE MACROS
7/8/9
READY(SYSTEM)
LIBRARY (NUCLEUS, OLD)
REPLACE(*, KRONTXT)
REPLACE(*, CLASS)
REPLACE(*, SMACl 7)

FINISH.
COMPLETE.
ENDRUN.
6/7/8/9

96836500 B

CLASS CONTROL CARD PARAMETERS

'Ibe control card used to call CLASS has the following format:

CLASS(p
1

, p2, ••• , pn)

The parameters

I

L

B

I
PS

RB

T

LO

NR

M

F

G

(p
1

, p
2

, etc.) that may be specified on the call card are:

Input ff.le name.

Output file name.

I

Assign binary file names.

Tidy tab columns (6-dlglt decimal number).

List options.

Do not rewind input file before assembly.

Build assembly text.

Call assembly text from system file.

Call assembly text, from user file.

These parameters may be In any order and must be in one of the following forms:

Omitted Default

The parameter ls set to the altemate default option.

Parameter p
1

is set to the option indicated by x.

The following is a more detailed description of the parameters:

Input File Name:

Blank
I
l=FNAME

96836500·B

lnpit on ftle INPUT
Input on flle COMPILE
·t11p1t on ftl-e FNAME

B

B-1

Qitpat File tJ&Jne:

Blank
L
L=FNAME
L=O

Assign Binary File Name:

Blank
B
B=FNAME
B=O
P8=FNAME
RB=FNAME

'lldy Tab Columns:

Blank
T
T-nnnnnn

list Options:

Blank
LO
LO=xxxxxx

Full liat OD ftle OUTPUT
Full list OD me OUTPUT
Full list OJI file FNAME
No list output

Binary outpu.t on file LGO. }
Binary outptt on file LGO.
Binary output on file FNAME.
No binary output.
Punch outpit on me FNAME.
Tape outp.tt on file FNAME.

Tabs are set at columns 11, 18• 31.
Tabs are set at columns · 11. 18, 31.

Punch outpit on file PUNCHSO,
tape output on file RBIN.

Three 2-diglt decimal tabs are set at the columns specified.
Each location symbol begins in column 1.

Options B, M, R, and T are selected.
Options B, M, R, and T are selected.
Where xxxxxx may be any combination of the following:

B List the BSS/BZS blocks on the banner page.
C List the program control cards (SPC, EJT, etc.).
D Suppress the comment cards.
E Process EJT as eject.
I List the code skipped by the IFA pseudo operation.
L List the macro cross-reference.
M List all entries on multiword instructions (i.e., DEC,

ALF, etc.).
R List the full reference map.
S List the abbreviated reference map.
T Tidy the listing columns (11, 18, 31 are default).
X Expand the macro code.

If more than seven list options are desired, a second LO must be specified.

If LO=xxxxxx is specified, only the options specified are selected.

B-2 '96836500 13

Do Not Rewind:

Blank
NR

Build Assembly Text:

Blank
M=FNAME

Call Assembly Text:

Blank
F
F=FNAME
G

G=FNAME

Rewind input file.
Do not rewind input file ..

No assembly text will be generated.
Assembly text ls generated on file FNAME.

No assembly text ls called.
Assembly text is called from system file SMACl 7.
Assembly text is called from system file FNAME.
Assembly text is called from the user file SMAC17.
Assembly text is called from the user file FNAME.

In order to call an assembly text, it must have been built prior to this run and must reside on the
file called. A maximum of one assembly text file is allowed.

. 968365.00 B B-3,

·coNlROt CARDS FOR JOB RUN c

The following are sample deck structures for assembling CYBER 18-17 source code using CLASS. 1

Examples:

1. Using CLASS installed as permanent files:

JOB~ CM70000.
A TTACH(C LASS, C LASSBIN, ID=xxxx)
ATTACH(SMAC17, MACBIN,ID=xxxx)
CLASS(G)
7/8/9
(SOURCE CODE)
6/7/8/9

2. Using CLASS installed as system-resident files:

JOB, CM70000.
ASSEM(F)
7/8/9
(SOURCE CODE)
6/7/8/9

96836500 B C-1

ERROR MESSAGE.$

D.1 ASSEMBLY ERROR MESSAGES

When an error occurs during assembly, it is flagged with a two-character error mnemonic in columns
5-6 on the listing. If more than one error occurs in the same line of code, the most recent error
encountered ls the one that is flagged. However, all errors are reflected in the total error count.

Error Mnemonic Meaning

DS Doubly defined symbol

UD Undefined symbol

EX Illegal expression

OP Illegal operation code

RL Illegal relocation

ov Numeric operand overflow

IS Illegal symbol name

PD Programmer-defined error

D.2 MACRO ERROR DIAGNOSTIC MESSAGES

When an error is encountered in a macro definition or call, a two-character error mnemonic appears
on the line following the erroneous code along with a diagnostic message.

Error Mnemonic

MD

MD

MD

MD

MD

Diagnostic Message

*/MAC DEF ERROR NO NAME

*/MAC DEF ERROR BAD PARAM

*/MAC DEF ERROR NO OPCODE

*/MAC DEF ERROR BUFFER OVE

*/MAC DEF ERROR BAD TERM

D

96836500. B · D-1

Error Mnemonic

MC

MC

MC

MC

MC

D.3 MISSING END CARD

Diagnostic Message

*/MACRO CALL ERROR NEST GT 10

*/MACRO CALL ERROR BUFFER OV

*/MACRO CALL ERROR PARAM ERR

*/MACRO CALL ERROR BAD CONT

*/MACRO CALL ERROR BAD DEF

If no END card is encountered by CLASS at the end of the program. the following message is output at
the end of the listing:

/// END CARD MISSING ///

D.4 DAYFILE ERROR MESSAGES

If CLASS encounters a control card error or insufficient field length has been assigned for the job. an
error message is output to the dayfile and the job is aborted. The following messages are output to the
dayfile. indicating the erroneous condition:

CONTROL CARD ERROR
NO INPUT FILE SPECIFIED
FILE NAME CONFLICT
INV A LID TAB COLUMNS (for tidy feature)
INV AUD LIST OPTIONS
INSUFFICIENT FL FOR CLASS
MEMORY OVERFLOW IN PASS 1
MEMORY OVERFLOW IN PASS 2

The following messages output to the dayfile indicate erroneous conditions that exist but which do not
cause the job to abort:

D-2

MACTXT OVERFLOW
Q99 ILLEGAL TO CLASS
SYSTEM ERROR IN PASS 1 ASSEMBLY (if this message occurs, there is probably a bug in CLASS)
NN ERRORS IN xxxxxx (where xxxxxx is the program name)

96836500B

ASSEMBLY MODIFICATIONS TO CLASS

CLASS presently limits nesting to 10 calls per macro by use of a counter. If this maximum is to be
changed, modify the following card:

MREF EQU 10

The maximum range is 1 to 31.

If the buffer length is exceeded in producing a macro skeleton, modify the following card:

SKELBL EQU 1080

96836500 B E-1

E

INSTRUCTION SET

F.1 STORAGE REFERENCE INSTRUCTIONS

The Type 1 source format is:

[Location]t OPCODE Address(, Index] (Comments]

The machine code format is:

Instruction identifier
Relative address flag

1 1 l
Indirect address flag

----------------- Index register Q flag
Index register I flag

f /2

J ~1~ :1 : i7 LJ.tt 01 ·.-
Alternate ~ • . ---- - ------ - -- - - -- - -- - --'

Where: * and - terminators cause a one-word instruction.

A and + terminators cause a multiword instruction.

The storage reference instructions and their meanings are:

Operation
Code

ADD

ADQ

Description

Add A

. Add Q

Contents of
the F Field

8

F

Definition

Add the contents of EA t1t to the contents
of the A register •

Add the contents of EA to the contents of
the Q register.

tBrackets indicate an optional field.
ttThe small 6 denotes a blank, the larger 6 denotes a machine code field.

ittEA is the effective address storage location; i.e., the final result of evaluating the address
expression and the index register.

96836500 -B

F

F-1

Operation
Code

AND

DVI

EOR

JMP

LDA

LDQ

MUI

RAO

RTJ

SPA

STA

STQ

SUB

Contents of
Description the F Field

AND with A A

Divide integer 3

Exclusive OR B
with A

Jump 1

Load A C

Load Q E

Multiply integer 2

Replace Add 1 D
in storage

Return jump 5

Store A, 7
parity to A

Store A 6

Store Q 4

Subtract 9.

Definition

AND the contents of EA to the contents of the
A register.

Divide the concatenated contents of the QA registers
by the contents of EA. Put the quotient in the A
register and the remainder in the Q register.

Exclusive OR the contents of EA with the contents of
the A register •

. Jumpto EA.

Load the A register with the contents of EA.

Load the Q register with the contents of EA.

Multiply the contents of EA with the contents of the
A register. Put the 32-bit product in the QA
registers.

Increment the contents of EA by 1. 1be contents of
the A register are not altered.

Transfer the address of the next instniction to EA.
Jump to EA + 1.

Store the contents of the A register in EA. If
there is an odd number of bits in the A register,
set it to O. If there is an even number of bits,
set it to 1.

Put the contents of the A register in EA. The
contents of the A register are not altered.

Put the contents of the Q register in EA. The
contents of the Q register are not altered.

Subtract the contents of EA from the contents of the
A register. Put the result in the A register. The
contents of EA are not changed.

Arithmetic operations are ones complement arithmetic. The OVERFLOW indicator is set if the result
of the arithmetic operation is greater than the capacity of the destmation register or storage location.
It remains set llDtil a skip on overflow instruction is executed.

F-2 96836500 B:
').

The Type 2 machine code format is:

15

I
~

0

F4

12 11

4

F5

8 7 6 5 3 2 -0

r ind Ra Rb

6 *,-

I

L _______ !1:~~~-~--------1 A,+

Contents of the
Operation F4 F5 Rb
Code Description Fields

AMA AND to memory, A A 1 6
AMI AND to memory, I A 1 7
AMQ AND to memory, Q A 1 5
AMI AND to memory, 1 .A 1 1
AM2 AND to memory, 2 A I 2
AM3 AND to memory, 3 A 1 3
AM4 AND to memory, 4 A 1 4

ANA AND to A A 0 6
ANI AND to I A 0 0
ANQ AND to Q A 0 5
ANl AND to 1 A 0 1

AN2 AND to 2 A 0 2

AN3 AND to 3 A -0 3
AN4 AND to 4 A 0 4

ARA Add to A g 0 6
ARI Add to I 8 0 7
ARI Add to 1 8 0 1
AR2 Add to 2 8 0 2

AR3 Add to 3 8 0 3
AR4 Add to 4 8 0 4
ARQ Add to Q 8 0 5

CAE Compare A equal E 0 6
CIE Compare I equal E 0 7
CQE Compare Q equal E 0 5
ClE Compare 1 equal E 0 1
C2E Compare 2 equal E 0 2
C3E Compare 3 equal E 0 3
C4E Compare 4 equal E 0 4

Definition

Form the logical product bit-by-bit of the con-
tents of EA with the contents of the named regis-
ter. Put the result in EA; the contents of the
register are not altered, except for the A regis-
ter, which receives the original contents of EA.

Form the logical product bit-by-bit of the con-
tents of EA with the contents of the named
register. Put the result in the register; the con-
tents of EA are not altered.

Add the contents of EA to the contents of the
named register.
Put the result in the register; the contents of
EA are not altered.
Overflow as in ADD.

Compare the contents of the named register to
the contents of EA bit-by-bit. If equal, skip one
location; otherwise, execute the next (one-word)
instruction.
The contents of EA and the named register are
not altered.

96836500 B F-3

I

Contents of the
Operation F4 F5 Rb
Code Description Fields Definition

LRA Load register A c 0 6

LRI Load register I c 0 7
LRQ Load register Q c 0 5

Load the named register with the contents of EA.
LRl Load register 1 c 0 1

The contents of EA are not altered.
LR2 Load register 2 c 0 2
LR3 Load register 3 c 0 3

LR4 Load register 4 c 0 4

OMA OR to memory, A D 1 6 Form the logical sum (inclusive OR) bit-by-bit
OMI OR to memory, I D 1 7 of the contents of EA with the cont.ents of the
OMQ OR to memory, Q D 1 5 named register.
OMl OR to memory, 1 D 1 1. Put the result in EA; the contents of the register
OM2 OR to memory, 2 D 1 2 are not altered except for the A register, which
OM3 OR to memory, 3 D 1 3 receives the original contents of EA.
OM4 OR to memory, 4 D 1 4

ORA OR to A D 0 6

ORI OR to I D 0 7
Form the logical sum bit-by-bit of the contents

ORQ OR toQ D 0 5
of EA with the contents of the named register.

ORI OR to 1 D 0 1
Put the result in the register. The contents of

OR2 OR to 2 D 0 2
EA are not altered.

OR3 OR to 3 D 0 3
OR4 OR to 4 D 0 4

SBA Subtract to A 9 0 6

SBI Subtract to I 9 0 7 Subtract the contents of EA from the named
SBQ Subtract to Q 9 0 5 register.
SBl Subtract to 1 9 0 1 Put the result in the register; the contents of
SB2 Subtract to 2 9 0 2 EA are not altered.
SB3 Subtr~ct to 3 9 0 3 Overflo.w as in ADD.
SB4 Subtract to 4 9 0 4

SJA Subroutine jump, A 5 0 6

SJE Subroutine jump exit 5 0 0

SJI Subroutine jump, I 5 0 7 Put the address of the last word of this instruc-
SJQ Subroutine jump, Q 5 0 5 tion in the named register. Jump to EA.
SJl Subroutine jump9 1 5 0 1 SJE does the jump to EA only.
SJ2 Subroutine jump, 2 5 0 2
SJ3 Subroutine jump, 3 5 0 3

SJ4 Subroutine jump, 4 5 0 4

F-4 96836500 B

Contents of the
Operation F4 F5 Rb
Code Description Fields Definition

SRA Store register A c 1 6
SRI Store register I c 1 7
SRQ Store register Q c 1 5

Store the contents of the named register in EA.
SRl Store register l c 1 1
SR2 Store register 2 c 1 2

The contents of the register are not altered.

SR3 Store register 3 c 1 3

SR4 store register 4 c 1 4

CCE Compare character E 2 t Compare the contents of bits 0 to 7 of the A
equal. register with the speclfied character in the sum

of EA + the contents of bits 1 to 15 in register
Rb. Bit 0 = O in Rb specifies a left character;
otherwise, a right character is implied. If
equal bit-by-bit, skip one location; otherwise
execute the next instruction.

LCA Load character c 2 t Load to bits 0 to 7 of the A register character
to A specified in the same manner as in CCE.

SCA Store character c 3 t Store the contents of bits 0 to 7 of the register
from A in the bits specified (same procedure as CCE).

F.2 FIELD REFERENCE INSTRUCTIONS

The Type 2 (only) source format is:

(Location] OPCODE Address, FLDSTR, FLDLTH,(Index) (Comments]

or

[Location] OPCODE Fieldname, [Index] [Comments]

The machine code format is:

15 12 11 876 5 320

0 5 r ~nd Ra F3a

FLDSTR FLDLTH-1 6 *,-

I

1 Alternate 6 : 6. , +
; __ - J

tAs specified

96836500 B F-5

Operation
Code

CLF

LFA

SEF

SFA

SFN

SFZ

Contents of the
Description F3a Field Definition

Clear field 6 Clear the bits in the specified field to all Os.

Load field to A 4 Load the specified field in the A register right­
justified, with leading Os. The contents of EA
are not altered.

Set field 7 Set bits in the specified field to all ls.

Store field from A 5 Store the appropriate number of right-justified
bits from the A register to the specified field.
The contents. of the A register are not altered.

Skip on field no zero 3 If all bits of the specified field are not o,
skip one location; otherwise, execute the next
instruction. The field contents are not altered.

Skip on field zero 2 If all bits of the specified field are o, skip one
location; otherwise, execute the next instruction.
The field contents are not altered.

F.3 INTERREGISTER INSTRUCTIONS

The Type 1 source format is:

•(Location] OPCODE Register [Comments]

The machine code format is:

F-6

Operand 1) Origin
...____ Operand 2 Registers :

)

Adder
Exclusive OR

Control
.Logical Product Lines

96836500 B

Operation Contents of the
Code Description Fl Field

AAB Transfer the arithmetic sum of A,Q, +M 8

AAM Transfer the arithmetic sum of A, M 8

AAQ Transfer the arithmetic sum of A, Q 8

CAB Transfer the complement of tba logical prod-.ict s
of A,Q,+M

CAM Transfer the complement of the logical product 8
ofA,M

CAQ Transfer the complement of the logical product 8
of A,Q

CLR Clear to- o. -s

EAB Transfer the exclusive OR, A, Q, +M 8

EAM Transfer the exclusive OR, A, M 8

EAQ Transfer the· exclusive OR, A, Q 8

LAB Transfer the logical product of A, Q, +M 8

LAM Transfer the logical product of A~ M 8

LAQ Transfer the logical product of A, Q 8

SET Set to ls. 8

TCA Transfer the complement of A 8

TCB Transfer the complement of Q+M 8

TCM Transfer the eomplement of M 8

TCQ Transfer the complement of Q 8

TRA Transfer the complement of A 8

TRB Transfer the complement of Q+M 8

TRM Transfer the complement of M 8

TRQ Transfer the complement of Q 8

The instructions transfer data from one or two origin registers through the adder to any combination of
A, Q, M destination registers. The OVERFLOW indicator is set when overftow actually occurs.

The Type 2 source format is:

[IDcatlon] OPCODE Register (Comments]

9~836500_B F-?

The machine code format is:

15 12 11 87 54 32 0

Contents of the
Operation F2a Ra
Code Description Fields

XFA Transfer A 0 6

XFI Transfer I 0 7

XFQ Transfer Q 0 5

XFl Transfer 1 0 1

XF2 Transfer 2 0 2

XF3 Transfer 3 0 3

XF4 Transfer 4 0 4

F.4 SKIP INSTRUCTIONS

The Type 1 source format is:

[!Dcation] OPCODE SK (Comments)

The machine code format is:

15 12 11;

l·o o o+ . •
Instruction
(F)

A

0

•
I

8 7 4 3 0

0 11 I I
I\ • A / w

Skip
Count

Sub-Instruction
(Fl)

*Destinatl~n register

F-8

Skip
Instruction
(F2)

Rb

*
*
*
*
*
*
*

Definition

These instructions transfer the contents of
the named register to a specified destination
register.

96836500 B

Operation Contents of the
Code Definition F2 Field Detlnltlon

SAM Skip if A minus 3 Skip if bit 15 of the register is 1.

SAN Skip if A nonzero 1 Skip if all of the bits in the A register are not O.

SAP Skip if A~ 0 2 Skip if bit 15 of the A register is O.

SAZ Skip if A zero 0 Skip if all of the bits in the A register are o.
SNF Skip if no protect fault F Skip if the PROTECT FAULT indicator is o.
SNO Skip if no overflow B Skip if the OVERFLOW indicator is O.

SNP Skip if no parity error D Skip if the STORAGE PARITY indicator is O.

sov Skip if overflow* A Skip if the OVERFLOW indicator is 1.

SPE Skip if parity error* c Skip if the STORAGE PARITY indicator is 1.

SPF Skip if protect fault* E Skip if the PROGRAM PROTECT indicator is 1.

SQM Skip if Q minus 7 Skip if bit 15 of the Q register is 1.

SQN Skip if Q nonzero 5 Skip if all bits in the A register are not O.

SQP Skip if Q ~ 0 6 Skip if bit 15 of the Q register is O.

SQZ Skip if Q zero 4 Skip if all bits of the Q register are O.

SWN Skip if switch not set 9 Skip if the SELECTIVE SKIP switch is O.

sws Skip if switch set 8 Skip if the SELECTIVE SKIP switch is 1~

When the skip condition ls met, the address of the next instruction to be executed is the location of the
skip instruction plus the skip count, plus one.

The Type 2 source format is:

I.Dcation -OPCODE SK

Where: SK is the skip count.

The machine code format is:

15 12 11 8 1 4 3 0

I 0 I 0 l F2 I SK I

*Clears the appropriate indicator.

96836500.B F-9

Operation Contents of the
Code Description F2 Field Definition

SlM Skip if 1 minus 7 Skip if bit 15 of register 1 is 1.

SlN Skip if 1 nonzero 5 Skip if all bits of register 1 are not O.

SlP Skip if 1 2: 0 6 Skip if bit 15 of register 1 is o.

SlZ Skip if 1 zero 4 Skip if all bits of register 1 are o.
S2M Skip if 2 minus B Skip if bit 15 of register 2 ls 1.

S2N Skip if 2 nonzero 9 Skip lf all bits of register 2 are not o.
S2P Skip If 2 ~ 0 A Skip if bit 15 of register 2 is o.
S2Z Skip if 2 zero 8 Skip lf all bits of register 2 are o.
S3M Skip If 3 minus F Skip ifbit 15 of register 3 is o.
S3N Skip if 3 nonzero D Skip if not all bits of register 3 are o.
S3P Skip if 3 2: 0 E Skip If bit 15 of register 3 ls o.
S3Z Skip If 3 zero. c Skip if all bits of register 3 are o.
S4M Skip If 4 minus 3 Skip if bit 15 of register 4 is o.
S4N Skip if 4 nonzero 1 Skip if all bits of register 4 are not o.
S4P Skip If i: 2: 0 2 Skip if bit 15 of register 4 is o.
S4Z Skip if 4 zero 0 Skip if all bits of register 4 are O.

CLASS requires an absolute expression for Type 2 skip instructions.

F.5 REGISTER REFERENCE/SHIFT INSTRUCTIONS

The Type 1 (only) source format ls:

Location OPCODE [Address] [Comments]

The machine code for~at is:

15 12 11 8 7 0

I 0 I Fl I a/SK I

F-10 96836500 B

Operation Contents of the
Code Description Fl Field Definition

*

CPB Clear program protect 7 Clear the protect bit in the address specified
in the Q register.

EIN Enable interrupt 4 Activate the interrupt system after one instruc-
tion following EIN has executed.

ENA Ent.er A A Replace the contents of the A register with an
8-bit delta, sign extended.

ENQ Enter Q c Replace the contents of the Q register with an
8-bit delta, sign extended.

EXI Exit interrupt state E Exit from the interrupt state specified in delta.
Automatically resets the OVERFLOW indica-
tor, activates the interrupt system and
jumps to the retum address in the trap
region.

IIN Inhibit interrupt 5 Deactivate the interrupt system.

INA Increase A 9 Increase the contents of the A register by a
signed delta quantity. The appropriate overflow
is generated.

INP Input to A 2 Read one word to the A register from an I/ 0
device specified in the Q register*.

INQ Increase Q D Increase the contents of the Q register by a
signed delta quantity. An appropriate overflow
is generated.

NOP No operation B Self-explanatory

OUT Output from A 3 Output one word from the A register to an I/O
device specified in the Q register*.

SI.8 Selective st.ep 0 Stop the computer if the SELECTIVE STOP
switch is on. On restart, the next location is
executed.

SPB Set program protect 6 Set the program protect bit in the address speci-
fied by the Q register.

For INP and OUT the next instruction is:

• The location of the I/O instruction plus one if the device sends a reply

• The location of the I/0 instructions plus one, plus the signed delta if the device sends
a reject

• The location of the I/O instruction plus the signed delta if an internal reject occurs

96836500-B F-11

I

The machine code format is:

15 12 11 8 '1 6 5 4 0

1 =Shift Left _J~
0 = Shift Right

Shift A

Shift Q

Operation
Code Description

ALS A left shift

ARS A right shift

LLS Long left shift

LRS Long right shift

QLS Q left shift

QRS Q right .shift

•
Shift
Count

Contents of
the Fl Field

F

F

F

F

F

F

Definition

Right shifts are end-off with sign extension
in the upper bits; left shifts are end-around.
Long shifts are for juxtaposed QA registers.
The maximum long shift is 31

10
places.

F.6 DECREMENT REGISTER AND SKIP REPEAT INSTRUCTIONS

The Type 2 (only) source form~t is:

[Location]"
'•

OPCODE Skip count [Comments]

The machine code format is:

F•12 96836500.B

Operation Contents of
Code Description the RA Fleld

DAP Decrement & repeat 6
if·A ~ 0

DIP Decrement & repeat 7
if I~ 0

DQP Decrement & repeat 5
if Q ~ 0

DlP Decrement & repeat 1
if 1 ~ 0

D2P Decrement & repeat 2
if 2 ~ 0

D3P · Decrement & repeat 3

if 3 ~ 0

D4P Decrement & repeat 4
if4~-0

F.7 MISCELLANEOUS INSTRUCTIONS

'Ibe Type 2 (only) source format is:

(1.Dcation] OPCODE (Register]

or

[IDcation] OPCODE Address

The machine code format is:

15 12 11 8 7 5 4 3 0

o B I Ra I ol n I
Used for multiword instructions

I
I
I

' I ·-------------------- ----.-----·

9&83.65QO_ B·

Definition

If bit 15 of the named register is O, decrement
the register contents by 1 and repeat (jump
backwards the number of locations specified
in skip count SK (unsigned)). The skip count
must be specified as ·a positive absolute integer
expression in the source code.

F-13

Operation Contents of the
Code Description Ra F3 Field Definition

ASC Accumulator scale 0 A Shift the A register left end-around until bits
14 and 15 are different. The number of places
shifted is placed in register 1 on completion.
There is no shift if A is 0000 or FFFF. ,.

CBP Clear breakpoint 0 7 Clear the macro breakpoint interrupt.
interrupt

DMI Define micro 0 6 Define the use of one of the 12 available micro-
interrupt interrupts.

EMS Execute micro t 2 Transfer machine control to the upper micro-
sequence instruction at the address given in the specified

register.

GPE Generate character 0 8 Set or clear bit 7 of the A register to callse
parity even parity of bits 0 to 7 to be even; other bits of the

A register are not altered.

GPO Generate character 0 9 Set or clear bit 7 of the A register to cause
parity odd parity of bits O to 7 to be odd; other bits of the

A register are not altered.

LLB Load lower unpro- t 1 Load the lower unprotected bounds register
tected bounds from the register specified.
register

LMM Load micro memory 0 1 Load a block to micro memory, starting at the
1700 memory address in register 2 and the micro-
memory address in register 1. The contents of
Q is the number of 32-bit words to be loaded.

LRG Load registers 1t 0 2 Load registers 1, 2, 3, 4, Q, A, I, M, and the over-
flow respectively starting at the address speci-
fied.

LUB Load upper unpro- t 0 Load the upper unprotected bounds register
tected bounds register from the register specified.

SIO Set/Sample input or 0 4 Input or output the contents of the A register to
output an M05 peripheral device as specified by bits in

the Q register.

SPS Sample port/ status 0 5 Replace the contents of the A register with the
coded status of the M05 peripheral device speci-
fied by bits in the Q register. Clear the inter-
rapt generated by M05.

SRG Store registers 1t 0 3 Store registers 1, 2, 3, 4, Q, A, I, M, and the over-
flow respectively starting at the address specified.

tAs specified in the instruction register field

1tA two-word instruction that requires a + OPCODE terminator for external addresses.

F-14 i96836500 B

ASCII CONVERSION TABLES G

The -1963 American Standard Code for Information Interchange (ASCII) is used by CLASS. ASCII code
uses eight bits: bit 8, which is always zero, is omitted in the table below. Bits 1 through 4 contain
the low-order four bits of code for the character in that row. Bits 5 through 7 contain the high-
order three bits of the code for the character in that column. The code is given in ascending sequence.

ASCil Bit Hexadecimal
Symbol Configuration Number Meaning

NULL 000 0000 0 Null/idle
SOM 000 0001 1 Start of message
EOA 000 0010 2 End of address
EOM 000 0011 3 End of message
EQT 000 0100 4 End of transmission
WRU -000 0101 5 Who are you
RU 000 0110 6 Are you
BELL 000 0111 7 Audible signal

FEo 000 1000 8 Format effector
HT/SK 000 1001 9 Horizontal tab skip (punched card)
LF 000 1010 A Line feed

VTAB 000 1011 B Vertical tabulation
FF 000 1100 c Form feed
CR 000 1101 D Carriage return
so 000 1110 E Shift out
SI 000 1111 F Shift in

DCo 001 0000 10 Device control/data link escape
DC1 001 0001 11

) DC2 001 0010 12 Device controls

DC3 001 0011 13
OC4 (STOP) 001 0100 14 Device control/ stop
ERR 001 0101 15 Error
SYNC 001 0110 16 Synchronous idle
LEM 001 0111 1'1 Logical end of media

So 001 1000 18

81 001 1001 19

82 001 1010 lA

8a 001 lOll lB Information separators
Si 001 1100 lC

8s 001 1101 lD
8s 001 1110 lE
s, 001 1111 lF

96836500 ·B. G-1

8-BIT 17lx-1 171x-2
ASCII TTY TTY
CODES ARRAY ARRAY

2016 Space Space

21t ! !

22 " ...
23t * #

24 $ $

25t % 'I:

26" • Ir

27t I I

28' ((

29t))

2A • •
2Bf. + +

2C . .
2D - -
2E

2F I I

30 0 0

31 1 1

32 2 2

33 3 3

34 4 4

35 5 5

36 6 6

37 7 7

38 8· 8

39 9 9

3A : :

3B : :

act < <

3Dt = =
art > >

3Ft ? ?

t .Refer to note 2 below.
ttRefer to note 4 below.

026 029
PUNCHES "PUNCHES

No Punch No Punch

11-8-2 12-8-7

8-7 8-7

12-8-7 8-3

11-8-3 11-8-3

0-8-5 0-8-4

8-2 12

8-4 8-5

0-8-4 12-8-5

12-8-4 11-8-5

11-8-4 11-8-4

12 12-8-6

0-8-3 0-8-3

11 11

12-8-3 12-8-3

0-1 0-1

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

8-5 8-2

11-8-6 11-8-6

12-8-6 12-8-4

8-3 8-6

8-6 0-8-6

12-8-2 0-8-7

6-BIT 8-BIT 171x-1 17lx-2 6-BIT
EXT. BCD ASCII TTY TTY 026 029 EXT. BCD
MAG TAPE CODES ARRAY ARRAY PUNCHES PUNCHES MAG TAPE

208 4016 @ @ 0-8-7 8-4 378

52 41 A A 12-1 12-1 61

17 42 B B 12-2 12-2 62

77 43 c c 12-3 12-3 63

53 44 l> D 12-4 12-4 64

35 45 E E 12-5 12-5 65

00 (35)tt 46 F F 12-6 12-6 66

14 47 G G 12-7 12-7 67

34 48 H H 12-8 12-8 70

74 49 I I 12-9 12-9 71

54 4A J J 11-1 11-1 41

60 4B K K 11-2 11-2 42

.33 4C L L 11-3 11-3 43

40 4D M M 11-4 11-4 '"
73 4E N N 11-5 11-5 45

21 4F 0 0 11-6 11-6 46

12 50 p p 11-7 11-7 47

01 51 Q Q 11-8 11-8 50

02 52 R R 11-9 11-9 51

03 53 s s 0-2 0-2 22

.04 54 T T 0-3 0-3 23

05 55 u u 0-4 0-4 24

06 56 v v 0-5 0-5 25

07 57 w w 0-6 0-6 26

10 58 x x 0-7 0-7 27

11 59 y y 0-8 0-8 30

15 5A z z 0-9 0-9 31

56 5Bt r r 12-8-5 12-8-2 75

76 set \ \ 0-8-2 0-8-2 36

13 5Dt] J 11-8-5 11-8-2 55

16 5E t "' 11-8-7 11-8-7 57

72 5Ft - - O-S.;.& 0-8-5 32

NOTES

1. The 17lx-2 TTY array is the ASCII 68, 64 character subset. This array is the same as used on the 171x-3 devices which receive from a 1774.

2. To operate in 026 punched card mode, Asen 63 options are selected. To operate in 029 punched card mode, ASCII 68 options are selected.
These options are assembly-time options for each driver affected.

3. The CDC Standard 1.10.003 is supported by an assembly option. For CDC ASCll mode of operation, the card punches 12-8-2 and 12-0 are
stored internally as 7B. The card punches 11-8-2 and 11-0 are stored internally as 7D. For line printer operations, the internal codes 7B
and 7D are converted to 5B and SD to allow printing the hardware compatible graphic characters ((left bracket) and] (right bracket).

4. Since l 73x magnetic tape controllers do not provide any code conversion, BCD code 00 is illegal and causes a noise record or BCD code 35
is substituted for the illegal 00 code to prevent tape errors.

G-2

On tape write operations the Asen codes 25
16

(%)and 26
16

(&)are written as BCD 358.

On tape read operations the BCD code 35
8

is always translated to an ASCII $25 (%).

. .!>68~6500 B

Cl
I c,.,

ASCII Hollerith External

CDC Graphic Display Punch BCD

Graphic Subset Code (0261 Code

: t : OOt 8-2 00

A A 01 12·1 61

B B 02 12-2 62

c c 03 12-3 63

D D 04 12-4 64
E E 05 12-5 65

F F 06 12·6 66
G G 07 12·7 67

H H 10 12-8 70

I I 11 12·9 71

J J 12 11-1 41

K K 13 11-2 42

L L 14 11·3 43

M M 15 11-4 44

N N 16 11·5 45

0 0 17 11·6 46
p p 20 11-7 47

a 0 21 11-8 50
R A 22 11-9 51

s s 23 0-2 22

T ,. 24 0-3 23

u u 25 0·4 24

v v 26 0-5 25

w w 27 0-6 26

x x 30 0-7 27
y y 31 0-8 30
z z 32 0-9 31

0 0 33 0 12

1 1 34 1 01

2 2 35 2 02

3 3 36 3 03

4 4 37 4 04
5 5 40 5 05

ASCII

SCOPE 3.4

STANDARD CHARACTER SETS

ASCII
Punch ASCII CDC Graphic

(0291 Code Graphic Subset

8·2 3A 6 6

12-1 41 7 7

12·2 42 8 8
12-3 43 9 9
12-4 44 + +
12-5 45 - -
12·6 46

. .
12·7 47 I I
12-8 48 ((

12-9 49 I)

11-1 4A $ $
11-2 48 = =
11·3 4C blank blank

11-4 40 , lcommal , (commal

11·5 4E . (period) . (period)

11·6 4F - #
11·7 50 I (
11-8 51 I I
11-9 52 %tt %
0·2 53 '* 11 (quote)

0-3 54 -+ (underline) -
0-4 55 v ' 0-5 56

0·6 57 /\ &
0-7 58 t ' (apostrophe)

0·8 59 l ?
0-9 SA < <
0 30
1 31 > >
2 32 ~ @

3 33 ~ \
4 34

-. ,...(circumflex)

5 JS ; (semicolon) ; (semicolon)

Hollerith E><ternal ASCII

Display Punch BCD Punch ASCII

Code (0261 Code 10291 Code

41 6 06 6 36
42 7 07 7 37
43 8 10 8 38
44 9 11 9 39
45 12 60 12·8·6 28
46 11 40 11 20
47 11·8·4 54 11·8·4 2A
50 0-1 21 0·1 2F
51 0-8·4 34 12·8·5 28
52 12-8-4 74 11·8·5 29
53 11·8·3 53 11·8·3 24
54 8·3 13 . 8-6 3D
55 no punch 20 no punch 20
56 0-8-3 33 0-8-3 2C
57 12·8·3 73 12-8-3 2E

60 0·8·6 36 8·3 23

61 8-7 17 12-8·2 58

62 0·8·2 32 11·8·2 50
63 8-6 16 0-8-4 25
64 8-4 14 8-7 22
65 0-8-5 35 0-8-5 5F

66 11-0or 52 12-8-7 or 21

11·8-2ttt 11-0ttt

67 0-8-7 37 12 26

70 11-8·5 55 8-5 27

71 11-8-6 56 0-8-7 JF

72 12-0 or 72 12-8-4 or 3C
12-8-2ttt 12-0ttt

73 11-8-7 57 0-8-6 3E

74 8-5 15 8-4 40
75 12-8-5 75 0-8-2 SC

76 12·8·6 76 11·8·7 SE
77 12-8-7 77 11-8-6 38

t Twelve or more zero bits at the end of a 60-bit word are interpreted as end-of -line mark rather than two colons. End-of -line mark is converted to

external BCD 1632.
t t In installations using the CDC 63.graphic set, display code 00 has no associated graphic or Hollerith code; display code 63 is the colon (8-2 punch).

tttThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

Absolute addressing
Absolute long dtrect 3-5
Absolute long indirect 3-6
Absolute short direct 3-4
Absolute short indirect 3-5
Example of, 3-11
Relative long direct 3-7
Relative long indirect 3-8
Relative short direct 3-6
Relative short indirect 3-7

Absolute symbol 3-1
ADC/ ADC* 3-20
Address expression 2-3
Address field 2-3
ALF 3-20
Arithmetic expressions 2-3, 4, 5
Assembler communication

EIF 3-28
EQU 3-25
FLD 3-26
IFA 3-27 ·
ORG/ORG* 3-26, 27

Asterisk 2-4; 3-2

Banner page 2-1; 4-10
Binary output 1-1
BSS block 2-1; 3-17
BSZ block 2-1

Core image of, 4-4
Example of, 3-18
Format of, 3-17
Relocation bytes 4-5

96836500 B·

INDEX

COM 3-18, 19
Comment field 2-7
Constant addressing 3-8
Constant declarations 3-19

ADC/ ADC* 3-20
ALF 3-20
DEC 3-22
NUM 3-21
VFD 3-23

DAT 3-19
Data storage instructions 3-17

BSS 3-17
BZS 3-17
COM 3-18
DAT 3-19

DEC 3-22
Decrement and repeat instructions 3-13
Delta, two-word relative addressing 3-2

EIF 3-28
EJT 2-1; 3-29
EMC 3-31
END 3-15
ENF 3-16; 4-5
ENT

Core image of, 4-6
Example of, 3-15
Format of, 3-15

Index-1

EQU 3-25
Equal sign, use of 3-2
ERR 3-29
Errors 4-11, 12; Appendix D
Evaluation hierarchy 2-4
EXF/EXF* 3-16; 4-7
Expression, See address expression
EXT/EXT*

Core image of, 4-8
Example of, • 3-16
Format of, 3-15

Field reference instruction 3-9
FLD 3-26
FLDLTH 3-9
FLDSTR 3-9

IFA 2-1; 3-27
IFC 3-32
Index register 2-6
Indirect addressing 3-2, 5
Instruction field 2-2
Inter-register transfer

instructions 3-12; Appendix F

Jump instructions Appendix F

Listing control 3-28
EJT 3-29
ERR 3-29
LST 3-29
NLS 3-28
NOREF 3-30

Index-2 .

LO (list options) 4-9; Appendix B
LOC 3-31
location field 2-2
I.ST 2-1; 3-29

MAC 3-30
Macro

Instructions 3-34
Library 3-30
Nesting 3-33
Programmer-defined 3-30
Pseudo instructions

EMC 3-31
IFC 3-32
LOC 3-31
MAC 3-30

Skeleton 3-32
Minus sign (-), use of, 3-2
Multiword instructions 2-1

NAM 3-14; 4-2
NLS 2-1; 3-28
NOREF 3-30
Null parameters 3-33
NUM 3-21
Numeric operand 2-3

OPCODE 2-2
ORG/ORG* 3-26, 27

:96836500 B

Parenthesis (), use of, 3-2
Plus sign (+), use of, 3-2
Pseudo instructions 3-14

Address field, in 2-3
(see also assembler communication)
(Communications between subprograms 2-2
(see also constant declarations)
(see also listing control)
Locations field, in 2-3
Macro 3-30

RBD 4-2,3
Reference map

Complete 4-13
Cross-reference map 2-1; 4-14
Short 4-13

Reference register 2-6
Register instructions 3-10
Relocatable binary output 4-1

BZS 4-4
ENF 4-5
ENT 4-6
EXF 4-7
EXT 4-8
NAM 4-2
RBD 4-2,3
XFR 4-9

Relocation types 3-3
Reserved macro names 3-30

96836500 .B

Sequence field 2-7
Shift instructions 3-10
Skip instructions 3-11
Slash (I), use of, 2-4
Special characters 3-35
SPC 2-1; 3-29
Storage

Common 3-1
Data 3-1
Program 3-1

Storage reference instructions 2-6
Subprograms

END 3-15
ENF 3-16
ENT 3-15
EXF/EXF* 3-16
EXT/EXT* 3-15
NAM 3-14

Tidy feature 2-1
Type 1 instructions 3-1, 2
Type 2 instructions 3-1, 2

VFD 3-23, 24, 25

XFR 4-9

Index-3/Index-4

I
I
I
I
I
I
I
I
I
1
I
1

~1
~

~I
· e1
al
I
I
I
I
I
I
I
I
I
I
I
I
I

COMMENT SHEET
. &Jc:\ CON°TR.OL DATA
~ r::I CO~O~TION

TITLE: CONTROL DATA CYBER Cross System Version 1
Macro Assembler Reference Manual

PUBLICATION NO. 96836500 REVISION B

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manua1 do you recommend to better serve your purpose?

Note specifte •rors discovered (please include page number reference).

General comments:

FROM NAME=-----------­
COMPANY

POSITION: _____________ _

NAME: __ ___

--ADDRESS=-----------------------------

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES ANO TAPE

TAPE TAPE

I

I
I
I
I
I
I
I
I

-~~------------------------------.--~~

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A •.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
I
I w

I~
I~
16

I
. I ____ · __________________ · ____ J

FOLD FOLD I

TAPE TAPE

I
I
I
I
I
I
f

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@:~
CONTf\.OL DATA CO~OR{\TION

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	A-01
	A-02
	B-01
	B-02
	B-03
	C-01
	D-01
	D-02
	E-01
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	G-01
	G-02
	G-03
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

