
r r

Control Data® 3100 Computer System
Preliminary Reference Manual

3100 Computer Instruction Index
Mnemonic &
Octal Code

Name Page
Mnemonic &
Octal Code

Name Page

HLT 00 Unconditional Stop 5-4 SBAO 33 Subtract from AO 5-19

SJl-6 Selective Jump 1-6 5-4 RAD 34 Replace Add 5-18

RTJ Return Jump 5-5 SSA 35 Selectively Set A 5-13

UJP 01 Unconditional Ju'mp 5-5 SCA 36 Selectively Complement A 5-13
IJI 02 Index J.ump, Incremental 5-5 LPA 37 Logical Product A 5-13
IJD Index Jump, Decremental 5-5 STA 40 Store A 5-15
AZJ 03 Compare A with Zero 5-6 STO 41 Store 0 5-15
AOJ Compare A with 0 5-7 SACH 42 Store A, Character 5-16

ASE 04 Skip if (M = y 5-9 SOCH 43 Store 0, Character 5-16

OSE Skip if (0) = y 5-9 SWA 44 Store Word Address 5-16

ISE Skip if (B b
) = y 5-9 STAO 45 Store AO 5-16

ASG 05 Skip if (A) ~ y 5-9 SCHA 46 Store Character Address 5-16

OSG Skip if (0) ~ y 5-9 STI 47 Store Index 5-16

ISG Skip if (Bb)~ y 5-9 MUA 50 Multiply A 5-18

MEG 06 Masked Equality Search 5-11 OVA 51 Divide A 5-18

MTH 07 Masked Threshold Search 5-12 CPR 52 Compare 5-13

SSH 10 Storage Shift 5-12 --- 53 Inter-Register Transfers, 24 Bit 5-17
lSI Index Skip, Incremental 5-8 LDI 54 Load Index 5-15

ISO Index Skip, Decremental 5-8 MUAO 56 Multiply AO 5-19

ECHA 11 Enter A, Character Address 5-8 DVAO 57 Divide AO 5-19

SHA 12 Shift A 5-10 FAD 60 Floating Point Add 5-20

SHO Shift 0 5-10 FSB 61 Floating Point Subtract 5-20

SHAO 13 Shift AO 5-11 *FMU 62 Floating Point Multiply 5-20

SCAO Scale AO 5-11 *FDV 63 Floating Point Divide 5-20

ENA 14 Enter A 5-9 *LDE 64 Load E 5-22

ENO Enter 0 5-9 *STE 65 Store E 5-22

ENI Enter Index 5-9 *ADE 66 Add to (E) 5-22

INA 1~ Increase A 5-9 *SBE 67 Subtract from (E) 5-23

INO Increase 0 5-9 *SFE 70 Shift E 5-21

INI Increase Index 5-9 *EZJ E Zero Jump 5-22

XOA 16 Exclusive OR of A and y 5-9 *EOJ E Overflow Jump 5-22

XOO Exclusive OR of 0 and y 5-9 *SET Set 0 Register 5-22

XOI Exclusive OR of Index and y 5-9 SRCE 71 Search Character Equality 3-6

ANA 17 AND of A and y 5-9 SRCN Search Character Inequality 3-6

ANO AND of 0 and y 5-9 MOVE 72 Move Data 3-7

ANI AND of Index and y 5-9 INPC 73 Input. Character Block to Storage 3-8

LOA 20 Load A 5-14 INAC Input. Character to A 3-8

LOO 21 Load 0 5-14 INPW 74 Input. Word Block to Storage 3-8

LACH 22 Load A, Character 5-14 INAW Input, Word to A 3-8

LOCH 23 Load 0, Character 5-14 OUTC 75 Output. Character Block from Storage 3-8

LCA 24 Load Complement A 5-15 OTAC Output. Character from A 3-8

LDAO 25 Load AO 5-15 OUTW 76 Output. Word Block from Storage 3-8

LCAO 26 Load Complement AO 5-15 OTAW Output. Word from A 3-8-

LDL 27 Load A Logica I 5-15 --- 77 Sense, Select Interrupt and Control

ADA 30 Add to A 5-18 functions 5-24

SBA 31 Subtract from A 5-18

ADAQ 32 Add to AQ 5-19

*Trapped instructions. See also Chapters 3 and 5.

Control Data® 3100 Computer System
Preliminary Reference Manual

REVISION

Pub. No. 60108400
July, 1964

©1964, Control Data Corporation
Printed in the United States of America

Record of Revisions
NOTES

Address comments concerning this Manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington
St. Paul, Minnesota 55112

or use Comment Sheet located in the
rear of this book.

CONTENTS
CHAPTER 1. SYSTEMS HARDWARE DESCRIPTION

System Concepts................................... 1-1
Summary of 3100 Characteristics............... 1-1

3100 Computer System 1-2
Peripheral Equipment 1-7

CHAPTER 2. SYSTEMS SOFTWARE DESCRIPTION

3100 SCOPE 2-1

3100 COMPASS 2-1

3100 Data Processing Package 2-2
3100 COBOL .. 2-3

3100 FORTRAN 2-3

3100 Generalized Sort/Merge Program......... 2-4

Basic System....................................... 2-4

CHAPTER 3. PROGRAMMING FEATURES

Program Interrupts................................. 3-1

Special Power Failure Interrupts................. 3-3
Trapped Instructions............................... 3-3

Integrated Register File............................ 3-4

Real-Time Clock.................................... 3-5

Block Operations......... 3-5

CHAPTER 4. OPERATING FEATURES

Displays and Indicators............................ 4-1 Switches " .. 4-3

CHAPTER 5. REPERTOIRE OF INSTRUCTIONS

General Information 5-1 Instructions.. 5-3

A.
B.
C.
D.
E.

1 - 1

1-2

1-3
1-4

1-5

3-1

3-2

3-3
3-4

3-5

APPENDIXES
3100 Compass

BASIC Assembler Coding Procedure

Number Systems

Table of Powers of Two

Octal-Decimal Integer Conversion Table

F.
G.
H.
I.

Octal-Decimal Fraction Conversion Table

Definition of 1/0 Interface Signals

3100 System Character Set

Peripheral Equipment Code

FIGURES

CONTROL DATA 3101 Desk Console 1-3 3-6 Input Character Block to Storage 3-11

Parity Bit Assignment 1-3 3-7 Input, Word Block to Storage 3-11
Word Addressed Instruction Format .. 1-4 3-8 Output. Character Block from Storage 3-12
Character Addressed Instruction Format 1-4 3-9 Output. Word Block from Storage 3-12

Storage addressing and Data Paths 4-1 Integrated Console 3-1

of Typical installation 1-6 4-2 Temperature Warning Designations for

Search Operation 3-6 Fully Expanded 3104, Front View ... 4-3

Move Operation 3-7 4-3 3104 Console Keyboard 4-5

Initial Steps of 1/0 Sequence 3-8 5-1 General Machine Code

Input, Character or Word to A " 3-9 Instruction Formats 5-1

Output. Character or Word from A ... 3-9 5-2 Indirect Addressing Routine 5-2

TABLES

1 - 1

1-2

_ 1-3

1-4

1-5

1-6

1-7

1-8

1-9

Optional Memory Configuration 1-2

Properties of Arithmetic and

Control Registers 1-6

Tape Transport Characteristics 1-7

Tape Transport Controllers 1-7

Card Reader Characteristics 1-7

Card Reader Controller

Characterist ics 1-8

Card Punch Characteristics.. 1-8

Card Punch Controller Characteristics 1-8

Paper Tape Reader Punch

Characteristics 1-8

~-------

1 - 1 0

1 -1 1

3 - 1

3 -2

3-3

3-4

3 - 5

3 -6

4 - 1

4 -2

4 -3

4 -4

Line Printer Characteristics 1-8

Printer Controller Characteristics 1-8

Interrupt Mask Bit Assignments 3 -2

Interrupt Priority................. 3 -2

Representative Interrupt Codes 3 -3

List of Trapped Instructions 3-3

Integrated Register File Assignments . 3 -4

Block Operations 3 -5

Register Displays 4 -2

Main Console Operator Switches. 4-4

Keyboard Switches 4-6

Maintenance Switches 4 -7

7

1

Systems Hardware Description

System Concepts
The CONTROL DATA* 3100 is a medium­

size, solid-state, general-purpose digital comput­
ing system. Advanced design techniques used in
the system provide for fast solutions to data pro­
cessing, scientific and real-time problems. Modular
construction is utilized by 3100 computers to per­
mit adaptation to the design requirements of exact­
ing installations.

The 3100 is program compatible to the CON­
TRoL DATA 3200 computer system and is con­
sistent with the Input/Output Specification for the
3000 computer series. An integrated register file
and block control system are used in all 3100 com­
puters and trapped instructions include those per­
tinent to BCD, floating point, and 48-bit precision
multiply and divide.

A complete line of peripheral equipment may
be incorporated into a 3100 system, including the
following:
-CONTROL DATA 601, 604 and 607 Tape

Transports which are Ih-inch magnetic tape
units that can handle binary or BCD data, re­
cording at densities up to 800 bits per inch with
tape speeds from 37.5 inches/second to 150
inches/second reading forward or backward.

-CONTROL DATA 405 Card Reader which
reads cards at a 1200 card per minute rate.

-CONTROL DATA 501 Line Printer which
prints 136 character lines at up to 1000 lines per
minute.
Also available are a paper tape reader/punch,

a medium speed line printer, and an I/O typewriter.

Summary of 3100 Characteristics
GENERAL
-Stored-program, general-purpose computer
- Parallel mode
-Solid-state logic
- Real time clock
- Program interrupt

COMPUTER
-Complete repertoire of instructions, word and

character oriented
- Three index registers
- Arithmetic

fixed point 24-bit precision
fixed point 48-bit precision add and subtract
fixed point 48-bit precision multiply and divide.

(trapped)
floating point with 36-bit coefficient biased

exponent and 1-bit coefficient sign (trapped)
BCD (trapped)

- Typical instruction execution time
fixed point 24-bit addition, 3.5 J.ls with storage

access

STORAGE
- Magnetic core memory
-Word size

24-bit words with four characters per word
4 parity bits, one per character

-4,096 words/16,384 characters, basic memory
size; expandable to 8,192, 16,384, or 32,768
words

-1.75 J.lsec complete cycle time

*Registered Trademark of Control Data Corp.

-1.0 J.lsec storage access time
- Indirect addressing

INPUT/.UTPWT
-Standarel

one 12-bit bidirectional I/O channel
-Optional

3 additional 12-bit channels, or
2 additional 12-bit channels and
1 additional 24-bit channel

-Data transfer rate up to 3.3 megabits/second
-Mediums

magnetic tape, punched cards, paper tape,
printed forms

CONSOLES
-Standard

integrated console with binary displays and de­
tachable keyboard

-Optional
separate desk console including detachable key­

board and on line typewriter

SOFTWARE
-Operating system: 3100 SCOPE
-Assembly program: 3100 COMPASS
- Basic System (3104 4K memory oriented)
-3100 Data Processing Package used with the

assembly program under the operating system;
business and I/O Macros

- Business language compiler: 3100 COBOL
-Scientific language compiler: 3100 FORTRAN

1-1

3100 Computer System
A 3100 computer system consists of combina­

tion logic modules selected by the customer to
best fit his needs.

3104 COMPUTER

The 3lO4 computer contains arithmetic and con­
trol logic to perform 24-bit precision fixed point
arithmetic, 48-bit precision fixed point addition
and subtraction, Boolean, character and word
handling, and decision making operations. The
computer win also execute BCD, floating point
and 48-bit precision multiply and divide as trapped
instructions.

The 3lO4 computer uses a panel type console
integrated with the main frame of the computer.
The panel is mounted at one end of the cabinet
and is equipped with binary displays, control
switches, monitor loudspeaker and removable
keyboard to facilitate remote operation.

A 4,096 word memory and a 12-bit bidirec­
tional data channel are also incorporated in the
3104.

COMMUNICATION CHANNELS (I/O)
The following I/O channels are available for

3100 computing system.

31, 06 Com munications Channel
The 31.06 is a bidirectional, 12-bit, parallel data

channel. Up to eight peripheral equipment con­
trollers may be .connected in parallel to one chan­
nel. One module may be installed in the main
computer cabinet. Additional modules must be
contained in adjacent cabinets. A maximum of four
3106 channels may be used with any 3100 system.

3107 Communications Channel
In lieu of two 3106 channels, one 3107 may be

used. The 3107 is a bidirectional, buffered 12- or
24-bit data exchange communication channel. It
features 12 to 24 bit assembly, disassembly and
permits attachment of one to eight peripheral con­
trollers to a 3100 system. Only one 3107 can be
used per 3100 computer system.

CONSOLES
Two consoles are available for use in the 3100

computer system. They are electrically compatible;
however, only one type may be used in a system.

1-2

I ntegrated Console
The integrated console, standard on a 3104 com­

puter, is a panel type mounted on the end of the
main computer frame. This console features binary
displays monitor loudspeaker and a removable
keyboard for remote operation. The 3192 on-line
monitor typewriter which connects directly to the
computer, is ordered separately when the inte­
grated console is used in a system.

3101 Desk Console
The 3101 desk console is electrically identical to

the integrated console but features a condensed
display and control unit mounted above an on-line
monitor typewriter included with this console. The
3101 is optional in 3100 systems. Figure 1-1 illus­
trates a 310 1 desk console.

OPTIONAL STORAGE

A customer may select a combination of mag­
netic core storage (MCS) modules to increase the
total storage capacity of his 3104 computer system
to 8,192, 16,384 or 32,768 words. The following
storage modules are available:

3108 -Optional 4,096 word (16,384 characters)
MCS memory module.

3109-0ptional 8,192 word (32,768 characters)
MCS memory module.

3103-0ptionaI16,384 word (65,536 characters)
MCS memory module.

Memory configurations are shown in table 1.

Table 1-1. Optional Memory Configurations

Total Expanded Memory Modules Required in
Memory Capacity Addition to 4K Memory in 3104

8K 3108
16K 3108 and 3109
32K 3108,3109 and 3103

STORAGE CHARACTERISTICS

Storage modules in a 3104 computer system are
composed of fields, consisting of 4,096 words, 28
bits per word. A particular system may have 1, 2,
4, or 8 such fields. These fields operate together as
one large storage system during the execution of
stored programs.

Figure 1-1.
Control Data 3101 Desk Console

Storage Word word is next read from storage, the appropri ­
ate parity bit(s) accompany the word to the
control section of the chassis where it is
checked for a loss or gain of bits. The 3100
uses odd parity. That is, the total number of
"1 's" in a character, plus the parity bit, is
always an odd number. Any failure to produce
the correct parity during read operations
causes a memory fault indication that is fol­
lowed by an immediate program halt. This
halting may be avoided by use of the Disable
Parity switch. An indicator light on the storage
module control panel indicates a parity error.

Parity

Storage words contain 28 bits. Twenty-four of
these are for information; four are for parity.

For parity checking purposes, each storage
word is broken into four 6-bit groups, each of
which has one parity bit associated with it.
Figure 1-2 shows parity bit assignments .

During each write cycle, a parity bit is stored
along with each group. When part or all of a

27 26 25 24 23 18 17 12 11 06 05

Character 0 Character 1 Character 2

"'--------------------Parity bit for character 3
"'---------------------Parity bit for character 2

"'---------------------- Parity bit for character 1
"'----------------------- Parity bit for character 0

Figure 1-2. Parity Bit Assignments

00

Character 3

1-3

Storage Addressing

Most instructions used with the 3100 com­
puter refer to a unique storage word or to a
character within a particular word.

Word Addressing

Figure 1-3 shows the format of a word ad­
dressed instruction.

Character Addressing

Figure 1-4 shows the format of a character
addressed instruction.

23 18 17 16 15 14

Designators

Storage Sharing
Two 3104 computers may share the use of a

common storage module. A switch on each storage
module control panel allows the operator to give
exclusive control to the right- or to the left-hand
computer. A middle position on this switch actu­
ates a two-position priority scanner. The requests
are honored by storage control on a nonpriority
basis. Neither computer has priority over the other.
The computer being serviced by the current storage
cycle relinquishes control to the awaiting computer
at the end of the cycle. Either computer can there-

00

'14 13 12 11

Module Field Co-ordinate Address
0-3 0-1 within field

0000-77778 (4095)

Figure 1-3. Word Addressed Instruction Format

Designators

23 18 17 16

Function/ / I

Operation (or it may
specify a particular
index)

1

116 15 14 13

00

m

I

02 01 00,

W---. y..----kYJ
Module Field Co-ordinate Address Character

0-3 0-1 within field 0-3
0000-77778 (4095)

Figure 1-4. Character Addressed Instruction Format

fore be delayed a maximum of one storage cycle.
A two-position scanner within each computer de­
termines whether main control or block control
has access to the storage module; thus a similar
program delay may occur within either computer.

Registers Associated with Storage
Two registers are associated with each storage

1-4

module: Sand Z.

• The 13-bit S Register contains the address
of the word being currently processed. Bit 12
specifies field 0 or field 1. Bits 00-11 specify
the co-ordinates of the word.

• The 28-bit Z Register is the storage restora­
tion and modification register.

Read/Write Control
During a normal memory cycle, all bits of a

word referenced by the (S) are read out of core
storage in parallel, loaded into Z, used for some
purpose, then written back into storage, intact.
Five modes exist in the 3100 computer for storage
modification. In all cases, assume that Z is initially
in the cleared state.

Single-Character Mode. Anyone character may be
inhibited during the read cycle. New data is then
loaded into the corresponding character position
of Z and the whole (Z) is stored.

Double-Character Mode. The upper, middle, or
lower half of a word is inhibited during the read
cycle. New data is loaded into the unfilled half of
Z and the whole (Z) is stored.

Triple-Character Mode. Either of the two possible
triple-character groups may be inhibited during the
read cycle. New data is then loaded into the cor­
responding character positions of Z and the whole
(Z) is stored.

Full- Word Mode. The whole word is inhibited dur­
ing the read cycle. A new word is entered into Z
and the (Z) is stored.

Address Mode. The lower 15 or 17 bits of a word
may be inhibited during the read cycle. A new word
or character address is then loaded into Z, and the
whole (Z) is stored.

After all write cycles, Z is cleared unless the
computer has stopped as the result of a memory
parity error.

ARITHMETIC SECTION
The arithmetic section of the 3100 computer

consists of two operational registers. They are dis­
played on the console and each may be loaded
from the entry keyboard. These registers are the:

A - arithmetic register

a - auxiliary arithmetic register

The A register (accumulator) is the principal
arithmetic register. Some of the more important
functions of A are:

1 All arithmetic and logical operations use the
A register in formulating a result. The A regis­
ter is the only register with provisions for
adding its contents to the contents of a stor­
age location or another register.

2 Shifting - A may be shifted to the right or
left separately or in conjunction with O. Right
shifting is open-ended; the lowest bits are
discarded and the sign is extended. Left shift­
ing is circular; the highest order bit appears
in the lowest order stage after each shift; all
other bits move one place to the left.

3 Control for conditional instructions - A holds
the word which conditions jump and search
instructions.

The Q register is an allxiliary register and is
generally used in conjunction with the A register.
The principal functions of Q are:

1 Providing temporary storage for the contents
of A while A is used for another arithmetic
operation.

2 Forming a double-length register, AO.

3 Shifting to the right or left. separately or in
conjunction with A.

4 Serving as a mask register for 06, 07, and
27 instructions.

Both A and Q may load, or be loaded from any
of the three index registers without the use of
storage references.

CONTROL SECTION
The control section contains five operational

registers. As in the arithmetic section, these regis­
ters are displayed on the console and loaded from
the entry keyboard. They are the:

F - program control register

p- program address counter

B 1 through B3 - index registers

The program control register, F, holds an in­
struction during the time it is being executed. After
executing an instruction, an exit, jump exit, or
skip exit is performed. An exit advances the count
in P by one and executes the next instruction speci­
fied by the contents of P. A jump exit executes the
instruction at the storage location specified by the
execution address of the jump instruction. The
execution address is, in this case, entered into P
and used to specify the starting location of a new
sequence of instructions. A skip exit advances the
count in P by two, bypassing the next sequential
instruction and executing the following one.

The P register is the program address counter.
It provides program continuity by generating in
sequence the storage addresses which contain the
individual instructions. Usually at the completion

1-5

Table 1-2. Properties of Arithmetic and Control Registers

Register No. of Stages Modulus

A 24 224_1

Q 24 224_1

F 24 224_1

p 15 2 15 _1

BLB3 15 2 15 _1

of each instruction, the count in P is advanced by
one to specify the address of the next instruction.

The three index registers, BI through B3, pro­
vide storage for quantities which are used in a
variety of ways, depending on the instruction. The
B registers have no provisions for arithmetic oper­
ations. In a majority of instructions they hold
quantities to be added to the execution address. All
address modifications are performed in the Adder.

Table 1-2 is a summary of the properties of the
A, Q, F, P, and B registers.

A sixth operational register, closely related to
the control section, is the communications register.
Quantities to be entered into any of the above
registers or into storage from the entry keyboard

Complement

Notation
Arithmetic Result

one's additive signed*

one's additive signed

** ** **
one's additive unsigned

one's additive unsigned

are temporarily held in the communications
register until the transfer button is pushed. If a
mistake is made while entering data into the
communications register, the Keyboard Clear
button may be used to clear this register.

COMPUTER ORGANIZATION
All modules of the 3100 computer except the

console are connected in parallel to a common
bidirectional data bus. The address registers of all
storage modules are connected in parallel to main
control by the address bus. Figure 1-5 is a block
diagram of storage addressing and data paths with­
in a typical computer installation.

Storage Address S Bus -
I T I ,-----,

3108 3104 I 3101 I 3109
Storage Computer .-------.l Desk I Storage
Module (Includes Standard I Console I Module

(4K) 4K Memory) I (Optional) : (8K)
L ______ ...J

1 Data Bus I - -
I r

- I r
3106 3106 3106 3106

4 bidirectional data channels

Figure 1-5. Storage Addressing and Data Paths of Typical Installation

*NOTE: The result of an arithmetic operation in A
satisfies A S; 2 23_1, since A always is treated as a
signed quantity. When the result in A is zero, it is
always represented by 00000000.

1-6

**NOTE: Only the lower 15 or 17 bits of F are modi­
fied, depending on whether word or character ad­
dressing is being used. The results are unsigned.

Peripheral Equipment
Peripheral equipment is available for handling

magnetic tape, punched cards, punched paper
tape, and printed forms. Other pieces of equip­
ment for the 3100 computer system are a program
controlled I/O typewriter, an incremental plotter,
and a Satellite coupler. For details on any particu­
lar piece of peripheral equipment, refer to the
reference manual concerning that equipment.

MAGNETIC TAPE
Magnetic tape is processed on either the

CONTROL DATA 601, 604 or 607 Tape Trans­
ports. A variety of tape transport controllers IS

available, each with a different capability.

Tape Transports
Table 1-3 lists the operating characteristics of

the 601, 604 and the 607 Tape Transports. Tapes
may be read forward or backward with both models.

Tape Transport Controllers
Tape transport controllers are differentiated by

the number of read/write controls they contain
and by the number of tape transports that they can
control. Eight types are available (see table 1-4).

The tape transport controllers marked by a dag­
ger (t) will most commonly be selected for a 3100
computer system. A multi-channel controller 'may
be used for buffered communication between two
or more computers in a multi-computer installation.

Table 1-3. Tape Transport Characteristics

Characteristic 601

Tape length 2400 feet

Tape width ~ -inch

Tape speed 37.5 inches/sec

Word size including one parity bit 7 bits

Bit density 200. or 556 bpi

Maximum bit transfer rate 7.5 or 20.85 kc

Table 1-4. Tape Transport Controllers

Model Number
No. of Read Maximum No. of

Write Controls Tape Transports

t3127 1 4

t3228 1 4
t3229 1 8

3621 2 8
3622 2 16
3623 4 8
3624 4 16
3625 3 8
3626 3 16

604 607

2400 feet 2400 feet

~ -inch ~ -inch

75 inches/sec 150 inches/sec

7 bits 7 bits

200. 556. or 800 bpi 200, 556. or 800 bpi

15. 41.65. or 60 kc 30. 83.3. or 120 kc

PUNCHED CARDS
Cards are read with a Control Data 405 Card

Reader and punched with an IBM 523 or 544
Card Punch.

Card Reader. Table 1-5 lists the operating charac­
teristics of the 405 card reader.

Card Reader Controllers. Two card reader control­
lers are available. Table 1-6 lists the characteristics
of each. Both types of controllers are mounted on
chassis within the 405 cabinet.

Table 1-5. Card Reader Characteristics

Speed - 80 column cards

Speed - 51 column cards

Reading method

Verification method

Card separation and picking method

Card capacity- main tray

Card capacity - reject tray

1200 cpm

1600 cpm

photo-electric. column-by-column

double read - comparison

pneumatic

4000 cards

240 cards

1-7

Table 1-6.
Card Reader Controller Characteristics

Characteristics 3248 3649

BCD Conversion Yes Yes
Checking Yes Yes
Full card buffer No Yes
No. of read controls 1 2

Card Punches. Table 1-7 lists the operating char­
acteristics of the 523 and 415 card punches.

Card Punch Controllers. Two types of card punch
controllers may be used. Each type is mounted in
its own peripheral equipment cabinet. Table 1-8
lists the controller characteristics.

PUNCHED PAPER TAPE

A unit frequently used for reading programs into
storage and for recording data from storage is the
3691 Paper Tape Reader Punch. Table 1-9 lists the
characteristics of this device.

Table. 1-9.
Paper Tape Reader Punch Characteristics

Reading speed

Punching speed

No. of read/write controls

350 characters/sec

110 characters/sec

1

PROGRAM CONTROLLED
I/O TYPEWRITER

The 3692 Program Controlled I/O Typewriter
has one read/write control. It differs from the on­
line 3192 typewriter in that it must be connected to
the computer via a 3106 Communication Channel.

INCREMENTAL PLOTTER
The 3293 Incremental Plotter can make 300 .01

inch steps per second. Form width is 11 inches.

PRINTED FORMS
The 501 High Speed Line Printer is available for

1-8

Table 1-7. Card Punch Characteristics

Characteristics 523 415

Speed-80 column cards 100 cpm 250 cpm
Card hopper capacity 800 cards 1200 cards

Punch method Mechanical. row-by-row

Table 1-8.
Card Punch Controller Characteristics

Characteristics 3245 3644

Checking No Yes
Full card buffer No Yes
No. of Write controls 1 2

all 3100 computer systems. The printer and con:­
troller characteristics are listed in Tables 1-10
and 1-11.

Table 1-10. Line Printer Characteristics

Characteristics 501

Printing speed 1000lpm

No. of characters 64
No. of columns 120

Table 1-11. Printer Controller Characteristics

Characteristics 3256 3659

No. of write controls 1 2
Full line buffer Yes Yes

SATELLITE COUPLER
The 3682 Satellite Coupler permits direct con­

nection between any two standard 12-bit bidirec­
tional channels, or channel converters. With the
addition of a 3681 Data Channel Converter, a
160-A Computer may be used as a satellite to the
3100 computer system.

2

Systems Software Description
There are various programming language techniques which facilitate
writing programs for the CONTROL DATA 3100 Computer System.

The following pages contain a synopsis of the methods listed below.

e 3100SCOPE
Monitor System

e 3100 COMPASS
Assembler

e 3100 DATA PROCESSING PACKAGE
Macro Instructions, Generalized 1/0

e 3100 COBOL
Business Language Compiler

e 3100 FORTRAN
Scientific Language Compiler

e 3100 GENERALIZED SORT/MERGE PROGRAM
Operates Under 3100 SCOPE

e BASIC SYSTEM
Basic Assembler, Basic FORTRAN II

3100 SCOPE
SCOPE is the operating system for the CON­

TROL DATA 3100 Computer. Modular in struc­
ture, the system provides efficient job processing
while minimizing its own memory and time re­
quirements. Programming with the operating
system is simplified by the use of control cards
which are included with program decks. Among
the functions performed by SCOPE are the fol­
lowing:

JOB PROCESSING
• processes stacked or single jobs
• controls I/O and interrupt requests
• monitors compilations and assemblies
• loads and links object subprograms
• stores accounting information
• initiates recovery dumps
• prepares overlay tapes

EQUIPMENT ASSIGNMENTS
• logical unit references
• physical unit assignment at run time
• drivers for all standard peripheral equipment
• system units which facilitate job processing

and minimize monitor programming

DEBUGGING AIDS

• extensive diagnostics
• octal corrections
• snapshot dumps
• recovery dumps

LIBRARY PREPARATION AND EDITING
• prepare a new library
• edit an existing library
• list the contents of a library

3100 COMPASS
COMPASS is the comprehensive assembly sys­

tem for the CONTROL DATA 3100 Computer.
Operating under 3100 SCOPE, it assembles relo­
catable machine language programs. The program
may consist of subprograms, each of which may be
independently assembled. Refer to Appendix A for
3lO0 COMPASS coding procedures. COMPASS
source language includes the following features:

Operation codes

Addressing

Data storage

Common storage

Data definitions

Machine operations are written
as one or more mnemonic or
octal subfields.

Expressions, used as addresses,
may represent either word or
character locations. Expressions
consist of symbols, constants,
and special characters connected
by + and -.

A data area. shared by subpro­
grams, may be specified and
loaded with data in the source
program.

A common area may be desig­
nated to facilitate communica­
tion among subprograms.

Constants may be defined as
octal. decimal. double-precision,
integer or floating-point num­
bers; BCD words, BCD charac­
ters; or contiguous strings of bits.

Library access

Listing control

Library routines may be called
by reference to their entry points
or by inclusion of macros in the
source program (data processing
macros).

The format of the assembly list­
ing may be controlled by pseudo
instructions.

Diagnostics Diagnostics for source program
errors are included with the out­
put listing.

Macro instructions Macros may be defined in the
source program or entered into
the library; the sequence of in­
structions will be inserted when­
ever the macro name appears
in the operation field.

THE ASSEMBLER
The 3100 COMPASS assembly program con­

verts programs written in 3100 COMPASS source
language into a form suitable for execution under
the 3100 SCOPE operating system. Source program
input may be on punched cards or in the form of
card images on magnetic or paper tape. The output
from the assembler includes an assembly listing
and a relocatable binary object program on punched
cards or magnetic tape.

2-1

EQUIPMENT CONFIGURATION
The assembly system, which is stored on the

SCOPE library tape, is designed to operate on a
3100 computer with a minimum of 8,192 words of
storage. In addition to the SCOPE library unit, the
following input! output equipment is required:

Input unit: card reader, magnetic tape, or paper
tape

Scratch unit: magnetic tape (may also be used
for output)

Listable output unit: magnetic tape or printer

Object program output unit: magnetic tape or
card punch

PROGRAM STRUCTURE

Source programs may be divided into subpro­
grams which are assembled independently. All
location symbols except COMMON and DATA
symbols are local to the subprogram in which they
appear, unless they are declared as external sym­
bols. Locations which will be referenced by other

subprograms are declared as entry points. For ex­
ample, if subprogram IGOR references locations
KIEV and MINSK in subprogram DEMETRI,
KIEV and MINSK must be declared external sym­
bols in subprogram IGOR and entry points in
subprogram DEMETRI.

The links among subprograms are associated by
the SCO PE loader. As each subprogram is loaded,
all external symbols and entry points are entered
into a symbol table. When an external symbol is
found which matches an entry point already en­
tered in the table, or an entry point is found which
matches an external symbol, linkage between the
two points is established.

If any external symbols are not matched with
entry points after the last subprogram is loaded,
the library tape is searched for routines with the
names of unmatched symbols. If these routines
are found, they are loaded and linked to the other
subprograms. If external symbols remain for which
there has been no corresponding entry, the job is
terminated and an error message written by the
system.

3100 Data Processing Package
The Data Processing Package is composed of a

set of data processing routines and a generalized
input/ output system.

DATA PROCESSING ROUTINES
The data processing routines, called macros, are

used in COMPASS assembly language programs
to do particular data handling jobs; included are
the following:

TRANSM IT Transmits any string of up to 4.095
characters from one place in mem­
ory to another.

COMPARE Compares any string of up to 4.095
characters with any other string and
sets a register to indicate whether
the first string is lower, equal. or
higher than the second.

EDIT Moves a numeric field to a receiving
field with report editing.

MULTIPLY Multiplies two BCD numbers and
stores the result in a third.

DIVIDE Divides one BCD number by another
and stores the result in a third.

GENERALIZED INPUT/OUTPUT SYSTEM
The 3100 Generalized Input/Output System is

a series of library routines which provide complete

2-2

input/ output control for data processing. These
routines are used in COMPASS assembly programs;
they simplify programming while offering versatile
data handling and optimum usage of internal stor­
age_space and processing time. Complete, partial
or no buffering may be designated, depending upon
the amount of storage the programmer has avail­
able; multi-file reels or multi-reel files may be read
or written; fixed or variable length logical or physi­
cal records may be processed; and magnetic tape,
paper tape, cards or printer may be used for input!
output units. Both labeled and unlabeled tapes
may be handled. The input/output macros perform
the following functions:

OPEN I

OPENO

READ

WRITE

READI

WRITEF

CLOSE

Opens an input file

Opens an output file

Reads one logical record into the
record area

Writes one logical record from the
record area

Reads one logical record into a spe­
cified area in memory

Writes one logical record from a
specified area in memory

Closes a reel or file

In addition to the input/output operations, the

programmer also describes the files to be processed
through use of macros.

FIELDESC Defines logical records, buffers, log­
ical units, recording density and re­
run requirements.

LABELING Describes file label and tape reten­
tion time (prevents accidental de­
struction of tapes).

VARIABLE Indicates whether the size of a vari­
able length record is determined by

a record mark or a key field.

SHAREBUF Allows user to let files share the
same areas in storage.

MULTIFIL Defines multi-file reels.

The I/O System interprets each set of instruc­
tions, refers to the file description, and then initi­
ates the requested operation; it controls buffering,
transmission errors, and logical-physical record
divisions.

3100 COBOL
CO BO L is a programming system designed to

facilitate the solution of business data processing
problems. To use COBOL, the programmer de­
scribes the problem in a language resembling
English; the 3100 COBOL processor translates this
source language input into relocatable machine
language for program execution.

The 3100 COBOL language contains the ele­
ments set forth in the official Department of De­
fense Report Describing COBOL 1961, plus many
of the features defined as elective COBOL.

A COBOL source program is specified in four
divisions: IDENTIFICATION, ENVIRONMENT,
DA T A, and PROCEDURE. The IDENTIFICA­
TION division identifies the name, author, date,
and so forth of the program. The ENVIRONMENT
division defines the computer configuration re-

quired for both compilation and execution. The
DATA division describes the format of the data
files which the program is to process. The PRO­
CEDURE division contains a sequence of state­
ments which describe the processing to be per­
formed.

The 3100 COBOL compiler is a three-pass sys­
tem. No object code is produced until the entire
source program has been thoroughly analyzed.
Wherever possible, in-line coding is produced. De­
pending on the needs of the program, the compiler
provides an input/output system which allows
variable length records, up to two buffer areas per
file, multi-file reels, multi-reel files, rerun proce­
dures, and so forth. In general, the features of the
3100 COBOL input/output system correspond to
those described for the Data Processing package.

3100 FORTRAN
The 3100 FO R TRA N system incorporates a

problem-oriented language that facilitates simple
algebraic solution of mathematical or scientific
problems.

3100 FORTRAN programs are written as a se­
quence of statements, using familiar arithmetic
operations and English expre~sions. Large pro­
grams may be written independently in sections,
the sections tested, then executed together.

Statements are available to reserve areas of
memory for variables and arrays. Strings of values
may be loaded with the program for reference
during the program execution. Equivalence state­
ments allow the same areas of memory to be identi­
fied with different variables and arrays during the
execution of a program.

Type statements specify the mode in which values
are to be stored. The possible types include: REAL,

INTEG ER, and CHARACTER. The programmer
may also declare a special mode, type OTHER, to
handle information which does not conveniently
conform to the standard modes.

Arithmetic expressions are indicated by arith­
metic sign and algebraic names. For example,
A+B-C means add A to B and subtract C. Logi­
cal and relational operators are available for use
in expressions which may be true or false.

Statements are usually executed in sequence.
However, control statements may be used to trans­
fer to another part of the program.

Sets of statements which are to be executed sev­
eral times with minor changes or increments may
be written once with a statement to indicate how
many times they are to be repeated, and if they
are to be changed each time.

Input/ output operations provide a means to read

2-3

information into the machine from various sources
and to record results on a selected output device.
If buffered input/output operation is specified,
other operations may continue while information
is read in or out.

Facilities are also available to transfer a num-

ber of characters from one area of memory to
another, and to test machine conditions through
calls to 3100 FORTRAN library functions.

The 3100 FORTRAN compiler produces ma­
chine language programs which may be executed
immediately or stored for execution at a later date.

3100 Generalized Sort/Merge Program
The GENERALIZED SORT/MERGE PRO­

G RAM organizes data on magnetic tape into one
continuous predetermined order. SORT/MERGE
operates under the 3100 SCOPE operating system.
Control cards, read from the standard input unit,
contain file descriptions and SORT/MERGE
specifications.

SORT /MERGE orders fixed or variable length
tape records, blocked or unblocked, written in
either BCD or binary mode, according to a speci­
fied collating sequence. BCD and binary collating
sequences are provided within SORT/MERGE,
or the user may specify his own. The resultant
output file may be merged with other presorted files
in a final merge pass, or, if a number of presorted
files exist, the merge phase only can be performed.

The SORT/MERGE can transfer to user pre­
pared subroutines which perform the following
functions:

• edit acceptable records

• reject records

• check nonstandard labels

• modify nonstandard labels

• generate messages for the operator

• write secondary output file (edit sorted records)

• prepare summary file (summarize sorted records)

• terminate the sort process

The SO R T /MER G E checks standard header and
trailer labels and provides rerun dumps.

The SORT/MERGE contains an internal sort
phase and a merge phase. The sort uses the tourna­
ment replacement technique which makes maxi­
mum use of available core storage and takes ad­
vantage of existing bias in the data. The method of
merging, which is selected by the user; can be
normal balanced or polyphased with either for­
ward or backward reading.

Basic System
The BASIC system is designed for the CON­

TROL DATA 3104 computer with a standard 4K
internal storage memory. This system may also be
used with the 3104 computers equipped with ex­
panded memory modules up to 32K. Appendix B

BASIC ASSEMBLER AND LOADER

The BASIC Assembler language forms a subset
of the COMPASS language. Although designed
primarily for use on the 3104 with a 4K memory,
it can readily be used on larger systems. Object
programs produced by the BASIC Assembler are
loaded by the BASIC Loader or can be loaded by
3100 SCOPE. Source language programs must be
prepared as complete entities if they are to be
loaded by the BASIC loader. As a result, facilities
for referencing external storage areas (COM M 0 N,
DATA) and external program elements (ENTRY,
EXT, macros) are not used in BASIC Assembler

2-4

provides coding procedures for the BASIC Assem­
bler. Included in the BASIC system are:

BASIC ASSEMBLER

BASIC LOADER

BASIC FORTRAN "

language, nor are a few of the more complex pseudo
instructions (VF, IF). All other features of the
language are similar: operation codes, addressing,
data definitions, listing control, and s·o forth.

To assemble a BASIC Assembler program, the
following configuration is required:

4K words of storage

Input unit: card reader, magnetic tape or paper
tape (used for source language input, library, and
BASIC Assembler)

Listable output unit: printer, magnetic tape, paper

tape, typewriter

Object program output unit: card punch, magnetic
tape, paper tape, typewriter (all output may be
written on one tape unit if desired)

BASIC FORTRAN II
BASIC FORTRAN II is a problem-oriented

language that performs familiar mathematical
operations in arithmetic expressions and replace­
ment statements. The source language provides
substantial power and flexibility through a variety
of statements. BASIC FORTRAN II is compatible
with other FORTRAN II systems and provides
many of the features incorporated in 3100
FORTRAN.

2-5

3

Programming Features

This chapter discusses the following programming features of

the 3100 computer system:

• program interrupts

• special power failure interrupt

• trapped instructions

• integrated register file

• real-time clock

• block operations

Program Interrupts
The interrupt control section of the 3104 com­

puter provides for testing whether certain internal
and external conditions exist without having these
tests in the main program. Examples of these con­
ditions are internal faults and external equipment
end-of-operation. Near the end of each RNI cycle,
a test is made for these conditions. If one of the
conditions exists, execution of the main program
halts. The contents of the Program Address regis­
ter, P, are stored and an interrupt routine is initi­
ated. This interrupt routine, which has been initially
stored in memory, takes the necessary action for
the condition and then jumps back to the next
unexecuted step in the main program.

There are three major types of interrupts in the
3100 Computer System-normal interrupts (in­
cluding internal and external conditions), trapped
instruction interrupts, and a special power failure
interrupt.

Normal interrupts are the only interrupts that
are completely under the programmer's control.
These interrupts are of two types-internal and ex­
ternal. The following paragraphs describe the in­
terrupt causing conditions, the Interrupt Mask
register, interrupt control, and interrupt processing.

INTERNAL INTERRUPTS
Seven internal conditions may be set to cause

an interrupt. These conditions and their definitions
are:

• Arithmetic Overflow Fault
The Arithmetic Overflow fault is set when the
capacity of the adder is exceeded. Its capacity,
including sign, is 24 or 48 bits for 24-bit
precision and 48-bit precision, respectively.

• Divide Fault
The divide fault sets if a quotient, including
sign, exceeds 24 or 48 bits for 24-bit precision
or 48-bit precision, respectively. Therefore,
attempts to divide by too small a number re­
sult in a divide fault.

• Exponent Overflow/Underflow Fault
During a trapped floating point mUltiplication
and division, the Exponent Overflow/Under­
flow is set if the exponent exceeds 21°-1.

• BCD Fault
A BCD Fault is set if a BCD Trapped instruc­
tion is executed.

• 110 Channel Interrupts
Any of the four possible I/O channels will gen­
erate an interrupt:

1) Upon reaching the end of an input or out­
put block, or

2) Upon receiving an End of Record (Discon­
nect) signal from an external device.

• Search/Move Interrupt

The Search/Move interrupt is generated dur­
ing a 71 or 72 instruction:

1) Upon the completion of an equality or in­
equality search, or

2) Upon the completion of a block move.

• Real- Time Clock Interrupt

The Real-Time Clock interrupt is generated
when the clock reaches a prespecified time
that has been stored in register 32 of the

register file.

EXTERNAL INTERRUPTS
Three external conditions may cause interrupts.

These are:

• External I/O Interrupts

The External I/O interrupt is set when an In­
terrupt signal is received from any of eight
peripheral equipment controllers connected to
any of the four possible I/O channels (there
may be a total of 32 lines). The interrupt re­
mains set until the computer directs the origi­
nating device to turn it off.

• Manuallnterrupt

The Manual interrupt is set by a switch on the
computer console. This interrupt is not masked
because it is assumed that this switch will be
pressed only when an interrupt is desired.

• Associated Computer Interrupt

If two computers are sharing a storage mod­
ule, either computer may interrupt the other
by executing a 7757xxxx instruction. This in­
terrupt is not masked. It clears out as soon as
it is recognized.

INTERRUPT MASK REGISTER
The programmer can choose to honor or ignore

an interrupt by means of the Interrupt Mask regis­
ter. All but two of the normal interrupt conditions
are represented by the 12 Interrupt Mask register
bits. The mask is selectively set with instruction
7752xxxx, and selectively cleared by instruction
7753xxxx. See Table 3-1 for mask bit assignments.

3-1

Table 3-1. Interrupt Mask Bit Assignments

Mask Bit Conditions Represented

00-07 External Interrupts on Channel 0-3,
and I/O Channel Interrupts, Channels
0-3

08 Real-Time Clock Interrupt

09 Exponent Overflow and BCD Faults

10 Arithmetic Overflow and Divide Faults

1 1 Search/Move Completion

As previously explained, the Manual Interrupt
and the associated computer interrupt are not
masked. The contents of the Interrupt Mask regis­
ter may be transferred to the upper 12 bits of the A
register for display purposes with instruction
772cOOOO or 773cOOOO.

INTERRUPT CONTROL
Through use of the 3104 computer repertoire of

instructions, the program can recognize, sense, and
clear interrupts, and enable or disable interrupt
control.

Enabling or Disabling Interrupt Control

The programmer has master control over nor­
mal interrupts. Instruction 7774---- enables the
system; instruction 7773---- disables it. After recog­
nizing an interrupt and entering the interrupt se­
quence, other interrupts are disabled automatically,
just as if a 7773---- had been executed. When leav­
ing the interrupt subroutine, the interrupt must
again be enabled by the 7774---- instruction. After
7774----, one more instruction may be performed
before the interrupt enable takes effect.

INTERRUPT PRIORITY

An order of priority exists between the various
interrupt conditions. As soon as an interrupt be­
comes active, the computer scans the priority list
until it reaches an interrupt that is active. The
computer processes this interrupt and the scanner
returns to the top of the list where it waits for
another active interrupt to appear. Table 3-2 lists
the order of priority.

Sensing Interrupts
The programmer may selectively sense inter­

rupts, independent of the Interrupt Mask register,
by using instruction 774cxxxx. Sensing the presence
of internal faults automatically clears them.

3-2

Table 3-2. Interrupt Priority

Priority Type of Interrupt

1 Arithmetic Overflow or Divide fault

2 Exponent Overflow or BCD fault

3-66 External I/O Interrupts*

67-74 I/O Channel Interrupts**

75 Search/Move Interrupt

76 Real-Time Clock Interrupt

77 Manual Interrupt

78 Adjacent Computer Interrupt

NOTES:
*There are eight interrupt lines on each of the four
possible I/O channels, or 32 lines in all. On any given
channel. a lower numbered line has priority over a
higher numbered line. Likewise a lower numbered
channel has priority over a higher numbered channel.
Summarizing, line 0 of channel 0 has highest priority
of all external I/O Interrupts, and line 7 of channel 3
has the lowest.

** A lower numbered I/O channel interrupt has priority
over a higher numbered I/O channel interrupt.

Clearing Interrupts

I/O channel interrupts must be selectively cleared
by instruction 7750xxxx. The real-time clock, arith­
metic, and search/move completion interrupts may
be cleared by:

• Sensing, after which the interrupts are auto­
matically cleared.

• Using instruction 7750xxxx.

• Master clearing.

In instruction 7750xxxx, xxxx represents the
mask. The manual and associated computer inter­
rupts are automatically cleared when they are rec­
ognized.

INTERRUPT PROCESSING
Four conditions must be met before a normal

interrupt can be processed:

• With the exception of the manual interrupt
and adjacent computer interrupt, a bit repre­
senting the interrupt condition must be set to
"1" in the Interrupt Mask register.

• The interrupt system must have been enabled.

• An interrupt-causing condition must exist.

• The interrupt scanner must reach the level of
the active interrupt on the priority list.

When an active interrupt has met the above
conditions, the following takes place:

• The instruction in progress proceeds until the
point is reached in the RNI cycle where an
interrupt can be recognized. At this time the
count in P has not been advanced nor has any
operation been initiated. When an interrupt is
recognized, the address of the current unex­
ecuted instruction in P is stored in address
00004.

• A number representing the interrupt-causing
condition is stored in the lower 12 bits of
address 00005 without modifying the upper
bits. Table 3-3 lists the octal codes which are
stored for each interrupt condition.

• Program control is transferred to address
00005 and an RNI cycle is executed.

Table 3-3. Representative Interrupt Codes

Conditions Representative Codes

External interrupt OOLC*
1/0 channel interrupt 010C
Real-time clock interrupt 0110
Arithmetic overflow fault 0111
Divide fault 0112
Exponent overflow fault 0113
BCD fault 0114
Searchlmove interrupt 0115
Manual interrupt 0116
Adjacent computer interrupt 0117

*L=line 0-7
*C = channel numbers 0-3

Special Povver Failure Interrupts
Failure of primary power is detected by the com­

puter, and a special routine is executed prior to
shutdown so that no data will be lost. This opera­
tion takes 30 ms; 16 ms detection and 14 ms for
processing a special power failure interrupt.

NATURE OF THE INTERRUPT
The Power Failure interrupt overrides any other

interrupt (internal or external), regardless of the
state of the interrupt control.

Trapped

The 3104 computer processes 3200 type BCD,
floating point, and 48-bit precision multiply and
divide instructions by means of implemented soft­
ware. These instructions, listed in table 3-4 and in
Chapter 5 are called trapped instructions.

The following operations take place when a
trapped instruction is detected:

• (P + 1) is stored in address 00010

• The upper 6 bits of F are loaded into the lower
6 bits of address 00011; the upper 18 bits
remain unchanged.

• Program control is transferred to address
00011 and an RNI cycle is executed.

PROCESSING THE INTERRUPT
Since this interrupt overrides all others, the ad­

dress in which the present contents of P are stored
and the address to which the program control is
transferred must be different than that for a normal
interrupt. When a Power Failure interrupt occurs,
the machine stores the contents of P in address
00002 and transfers program control to address
00003.

Instructions
Table 3-4. List of Trapped Instructions

Machine Mnemonic
Code Code Instruction Function

56 MUAQ Multiply AQ, 48-bit Precision
57 DVAQ Divide AO, 48-bit Precision
60 FAD Floating Point Add
61 FSB Floating Point Subtract
62 FMU Floating Point Multiply
63 FDV Floating Point Divide
64 LDE Load E
65 STE Store E
66 ADE Add to E
67 SBE Subtract from E
70 SFE Shift E

EZJ, EO E Zero Jump, E=O
EZJ, LT E Zero Jump, E < 0
EOJ E Overflow Jump
SET Set D Register

3-3

Integrated Register File

The Integrated Register File is a 64 word (24 bits
per word) memory located in the upper 64 ad­
dresses of storage. Although the programmer has
access to all registers in the file with the 53 instruc­
tion, certain registers are reserved for specific pur-

poses (see table 3-5). All reserved registers may be
used for temporary storage if their use will not
disrupt other operations that are in progress.

The contents of any register in the file may be
inspected by transferring them to the A register.

Table 3-5. Integrated Register File Assignments

Register
Numbers

00-03

10-13

20

21
22
23

24

Reserved For

Current character or word address
(channel 0-3 control)

Last character or word address ± 1

depending on the instruction (channel
0-3 control)

Current character address (search con-

trol)
Source address (move control)
Clock, current time
Current character address (type con­

trol)

Current character address (auto-Ioad/
dump control)

Register
Numbers

25-27
30

31
32
33

34

35-77

Reserved For

Temporary storage

Last character address + 1 (search
control)

Destination address (move control)

Clock interrupt mask
Last character address + 1 (type con­

trol)

Last character address + 1 (auto-Ioad/

dump control)

Temporary storage

NOTE: Register numbers correspond to upper 64 word locations in memory. Unused registers, located be­

tween register assignments are used for temporary storage.

3-4

Real-Time Clock
The real-time clock is a 24-bit counter that is

incremented each millisecond and has a penod of
16,777,216* milliseconds. The clock, which is con­
trolled by a 1 kilocycle signal, starts as soon as the
Run button on the console has been pushed. The
current time is stored in register 22 of the register
file. I t is removed from storage, updated, and com-

pared with the contents of register 32 once each
millisecond. When the clock time equals the time
specified by the clock mask, an interrupt is set.

When necessary, the real-time clock may be re­
set to any 24-bit quantity including zero by loading
A, then entering (A) into register 22.

Block Operations
Block operations are of three types - Search,

Move, and Input/Output. These operations use
the computer block controls and, with the excep­
tion of those operations dealing with the A register,
certain reserved registers in the register file. Block
operations, with the exception of inputs to A and
outputs from A, are buffered. After the Search/

Move or I/O control has been activated, the com­
puter can return to its main program and continue
until an interrupt is generated or the program
senses for block operation completion. This section
presents all block operations (see table 3-6) and
includes machine code instruction formats, In­

struction descriptions, and flow charts.

Table 3-6. Block Operations

SRCE
SRCN Search/Move instructions, character addressed and buffered
MOVE

INAC Character input
INAW Word input

Unbuffered input to, and output from A
aTAC Character output
OTAW Word output

INPC Character input
INPW Word input

Buffered input to, and output from storage
aUTC Character output
aUTW Word output

* 16,777,216 milliseconds equals approximately 4
hours and 40 minutes.

3-5

SEARCH

SRCE, SRCN Search F = 71

This instruction initiates a search through a
block of character storage addresses looking for
equality or inequality with character 'c'. It is com­
posed ofthree words, including the two main block
instruction words plus a one word reject instruction.

23 18 17 16

I
l-

I z (P) 71

23 18 17 16

(P + 1) c I e I
23

As a search operation progresses, m i is incre­
mented until the search terminates when either a
comparison occurs between the search character
'c' and a character in storage, or until m i = m2•

If a comparison does occur, the address of the
satisfying character may be determined by inspect­
ing mI. To do this, transfer the contents of register
20 to A with instruction 53 (see figure 3-1).

00

m 2 I~register 30

00

m' \...--.register 20

00

(P + 2) = I Reject instruction I
~--~

I NT "1" for interrupt upon completion
m 2 last character address of the search block, plus one

c 00-778, BCD code of search character
e "0" for SRCE, search for character equality
e "1" for SRCN, search for character inequality

m' first character address of the search block

WRITE(MI+I)
INTO

REGISTER 20

INSTRUCT ION

WAIT FOR BLOCK CONTROL,
THEN S BUS PRIORITY.

OPERATION

INT= I

* REGISTER 20 IS ADDRESS XXXX20 IN
THE HIGHEST 64 WORDS OF MEMORY.

Figure 3-1. Search Operation

Note: Instructions 71 and 72 are mutually exclusive.
Attempts to execute one while the other is in progress
will cause a reject to P + 2.

3-6

MOVE f = 72

This instruction is used to move a block of data,
'c' characters long, from one area of storage to
another. It is composed of three words.

As a move operation progresses, m! and m2 are
incremented and 'c' IS decremented until c = 0

23 18 17 16

(see figure 3-2). 128 characters or 32 words may be
moved. When bits 00 and 01 of m! and m2 are "0"
and field length is a multiple of four characters,
data is moved word by word. This reduces move
time by 75% over a character by character move.

00

(P) I I
l- I 72 z ~ ______ ~~~~ _________ m_2 _________ ~I~regi~er31

23 17 16 00

(P + 1) I c ~ ________ L-__________ m_1 ___________ ~)~register 21

(P + 2) Reject Instruction

I NT "1" for interrupt
m 2 first address of character block destination

c - field length of block, 0-1778*
m 1 first address of character block source

WAIT FOR BLOCK CONTROL,

THEN S BUS PRIORITY.

INSTRUCTION

CONTROL,

THEN S BUS PRIORITY.

OPERATION

INCREMENT BY 4

FOR WORD MOVE

OR I FOR CHARACTER

MOVE. DECREMENT

CHANNEL
REQUEST

CHANNEL
REQUEST

C BY I OR 4

*1-1778 represents a field length of 1 to 127 char­

acters; 0 represents a field length of 128 characters.

* REGISTER 21 IS ADDRESS XXXX21 IN THE

HIGHEST 64 WORDS OF MEMORY.

Figure 3-2. Move Operation

3-7

INPUT/OUTPUT

Instructions 73 through 76 enable the computer
to communicate with peripheral equipment via the
I/O channels. These instructions are of two dis­
tinct types: those that deal with the A register and

those that deal with storage. They all begin with
the series of steps shown in figure 3-3. See the 77
instruction in chapter 5 for details on the prelimi­
nary operations-connecting to I/O equipment
(77.0), sensing status of I/O equipment (77.2), and
selecting function of I/O equipment (77.1).

~S_T_A_R_T----lH~~_:_~_:_~_p_)---,H,--R_(E_:_D_+_~_:_--,k)

Figure 3-3. Initial Steps of liD Sequence

Operations with A
Operations with A are unbuffered. They have a

common machine code format.

INAC Input, Character to A f = 73

A 6-bit character is read from a peripheral device
and loaded into the lower 6 bits of A. A is cleared
previous to the input and the upper 18 bits remain
cleared (see figure 3-4).

INAW Input, Word to A f = 74

A 12 or 24-bit word is read from a peripheral
device and loaded into the lower 12 bits or into all
of A. Word size depends upon the type of I/O

23 18 17

channel in use. A is cleared previous to an input
and in the case of a 12-bit input, the upper 12 bits
remain cleared (see figure 3-4).

OTAC Output, Character from A f = 75

A character from the lower 6 bits of A is sent
to a peripheral device (see figure 3-5). (A) is re­
tained.

OTAW Output, Word from A f = 76

A word from the lower 12 bits or from all of A
is sent to a peripheral device. Word size depends
upon the type of I/O channel in use (see figure 3-5).
(A) is retained.

(P) I e V 7 7 / / / / / / / / / / / / 7\
23 21 20 17

(P + 1) Ch I ~ /7 71 ~ I / / / / 7 / / / / / / 7 / / / I
23 00

(P + 2) =/ L-__________ R_e_ie_c_t_l_n_st_r_u_ct_io_n _________ ------l1

f = operation code 73-76
I NT = "1" for interrupt on completion

Ch 1/.0 channel x; where x = 0-3
NC "1" for no BCD conversion

e - "1" for operations with A

3-8

WAIT FOR BLOCK CONTROL,
THEN S BUS PRIORITY.

I/O MODULE
GENERATES DATA
SIGNAL (INPUT

REQUEST)

WAIT FOR REPLY

INSTRUCTION

LOAD
(P+I)~ZO
(p)~ZI

ACTIVATE READ/
~--'!>01 WRITE ON I/o

CHANNEL 0....;.3

RELEASE BLOCK
CONTROL AND

SCANNER

OPERATION

NC= 0

NC=I

Figure 3-4. Input. Character or Word to A

INSTRUCTION

SAME~TRUCTI~FORMAT~ 1~I~R~R~ WORD TO A {FIGURE 3-~

NC: 0

NC: I

OPERATION

I/O MODULE
GENERATES DATA
SIGNAL (OUTPUT

READY)

WAIT
FOR

REPLY

!L-lr-R-E-p-L-y---'H TERMI NATE HEX IT
~ ____I OUTPUT RNI AT P+3

Figure 3-5. Output. Character or Word from A

3-9

Operations with Storage
These operations are buffered. Main computer

control relinquishes control of the I/O operations
and returns to the main program as soon as Read
or Write has been activated. They have a common
machine code format.

During the execution of word addressed I/O
instructions, the addresses m! and m2 are shifted
left two places to the upper 15 bits of the 17 -bit
address positions. From this time on, they are
treated as character addresses.

Registers 00-178 of the register file are reserved
for buffered I/O operations; the last octal digit of
the register designator corresponds to I/O channel
x through which data is being transferred. 00-07
hold the current character or word address, and
10-178 hold the last character or word address,
± 1, depending on the operation.

INPC Input, Character Block to Storage f= 73

This is a character addressed instruction; 6 or
12-bit characters are read from peripheral equip­
ment and stored in memory (refer to figure 3-6).

IfH=O, there is 6 to 24-bit assembly. If H= 1,
there is 12 to 24-bit assembly. During this 12 to
24-bit assembly, the lowest bit of each character
address is not read. This ensures that assembled
characters are in either the upper or the lower half
of a storage word.

M2 = last character address of input data block,
plus one (minus one, for backward storage).

INPW Input. Word Block to Storage f = 74

This is a word addressed instruction with the
addresses initially placed in the lower 15 bits of the

23 18 17 16

instruction words.
Depending upon the I/O module capability, 12

or 24-bit words are read from a peripheral device
and stored in memory (refer to figure 3-7).

IfN = 0, there is 12 to 24-bit assembly. The first
word of a block is stored in the upper half of a
storage address for store forward and in the lower
half for store backward.

If N = 1, there is no assembly; a straight 12 or
24-bit data transfer occurs. A 12-bit word will be
stored in the lower half of a storage address.

M2 = last word address of input data block,
plus one (minus one, for backward storage).

OUTC Output. Character Block from Storage f = 75

This is a character addressed instruction. Stor­
age words are disassembled into 6 or 12-bit char­
acters and sent to a peripheral device (refer to
figure 3-8).

If H = 0, there is 24 to 6-bit disassembly. If
H = 1, there is 24 to 12-bit disassembly.

M2 = last character address of output data
block, plus one (minus one for load backward).

OUTW Output. Word Block from Storage f = 76

This is a word addressed instruction with the
addresses initially placed in the lower 15 bits of the
instruction words. Words are read from storage
and sent to a peripheral device (refer to figure 3-9).

If N = 0, there is 24 to 12-bit disassembly. If
N = 1, there is a straight 12 or 24-bit data transfer
depending on the I/O module capabilities. If an
attempt is made to send 24 bits over a 12-bit I/O
channel, the upper 12 bits will be lost.

M2 = last word address of output data block,
plus one (minus one for load backward).

00

(P) I ~ ______ ~I_i~I _________ m_2 ________ ~I~mgi~er1X
23 21 20 19 18 17 16 00

(P + 1) 1 L.... _c_h_",-I_~--,-I_B--JIL-:_°...1-I_e--LI _________ m_l _______ ---.JI~register OX

23 00

(P + 2) =1 ~ __________ R_e_je_c_t_l_n_st_r_uc_t_io_n _________ ----'1
f = operation code 73-76

INT "1" for interrupt
m2 (see individual instruction)
Ch 1/0 channel X; where X = 0-3
NC "1" for no BCD conversion

B "1" for store backward
HorN = (see individual instruction)

3-10

e = "0" for operations with storage
m 1 = first character or word address of 1/0 data block; becomes current address as 1/0

operation is carried out.

INSTRUCTION

SAME INSTRUCTION FORMAT AS I NPUT ,CHARACTER OR WORD TO A (FIGURE 3-4)

I/O MODULE

GENERATES REQUEST
IF NOT TERMINATED

WAIT FOR BLOCK CONTROL,

THE N S BUS P RIO R I TY •

TESTS

STORE BACKWARD?
12-;..24 BIT ASSEMBLY?
NO BCD CONVERSION?,

-* BCD CONVERSION IF NC=O

I NT = I

OPE RATION

H=O

NO

YES

INT=O

Figure 3-6. Input, Character Block to Storage

INSTRUCTION

RELEASE BLOCK
CONTROL AND

SCA NNER

SAME INSTRUCTION FORMAT AS INPUT ,CHARACTER OR WORD TO A (FIGURE 3-4)

I/O MODULE

GENERATES REQUEST >----... --..........

IF NOT TERMINATED

WAIT FOR BLOCK CONTROL,

THEN S BUS PRIORITY.

TESTS

STORE BACKWARD?
NO ASSEMBLY? .

NO BCD CONVERSION?,

* BCD CONVERSION IF NC=O

I NT = I

OPE RATION

N=O

NO

YES

INT =0

Figure 3-7. Input Word Block to Storage

RELEASE BLOCK
CONTROL AND

SCANNER

3-11

3-12

INSTRUCTION

SAME INSTRUCTION FORMAT AS I NPUT ,CHARACTER OR WORD TO A (FIGURE 3-4)

I/O MODULE

GENERATES REQUEST~-""1r----iOJ

IF NOT TERMINATED

WAIT FOR BLOCK CONTROL,

THEN S BUS PRIORITY.

TESTS

STORE ---eAc'KWARD ?
'24~12 BIT DISASSEMBLY?
NO BCD CONVERSION?

* BCD CONVERSION IF NC=O

I NT = I

OPERATION

H=O

NO

YES

INT=O

Figure 3-8. Output, Character Block from Storage

INSTRUCTION

RELEASE BLOCK
CONTROL AND

SCANNER

SAME INSTRUCTION FORMAT AS I NPUT ,CHARACTER OR WORD TO A (FIGURE 3-4)

I/O MODULE

GENERATES REQUEST
IF NOT TERMINATED

WAIT FOR BLOCK CONTROL,
THEN S BUS PRIORITY,

~
STORE BACKWARD?
NO DISASSEMBLY::> .
NO BCD CONVERSION?

* BCD CONVERSION IF NC=O

I NT = I

OPERATION

N=O

NO

YES

INT = 0

Figure 3-9. Output, Word Block from Storage

4

Operating Features
Two consoles, functionally identical to each other, are available for the 3100
computer system - the standard Integrated Console or the Optional 3101 Desk

Console. This chapter defines the switches and indicators used on these consoles

as well as explains the use of the entry keyboard. The basic differences in these

consoles lie in their physical structures; they are electrically and logically identical.

Displays and Indicators
Seven rows of indicator lights are used to display

the operational registers of the 3104 on the inte­
grated console. Status lights, manual controls and
a keyboard are also provided. Figure 4-1 is a view
of the integrated console and table 4-1 describes

the register displays. The 3101 desk console is elec­
trically and logically identical to the integrated
console; however the displays and switches are lo­
cated above the on-line monitor typewriter.

o
Ul IHI. tIlt A U·'I$ If.

IQ8o \Q8Q!o8QIQ8oI9891c;>89IoSc;>io'Sol
o

I Q8; i~g~' 1 ~8o I Q8olo8~ I Q8oi ~g~i c;>89 1

@-=-;;-l~~~1 QQQ I QQQI O'O'QiOO'OI QQQI

• IQQQIQQQIQO'QiQQQIOQQl
f :t.;:=.. -- IQQQ IQQQ"QQQiOQQIQQQI

Figure 4-1. Integrated Console

4-1

Register

Program
Address

Counter

Indexes
B'-B3

Instruction
register or

Communications
register

A and Q
registers

4-2

Table 4-1. Register Displays

Binary Description
Capacity

15 bits Program Address register display panel.

15 bits Index register display panels.

24 bits 1) When one of the Step modes of operation
is used, the contents of the Instruction
register are shown.

2) In Stop mode, when the keyboard is active,
the contents of the Communication register
are shown.

3) In Run mode, when the keyboard is active,
the contents of the Communication register
are shown.

48 bits Displays the contents of each register.

On the integrated console, three indicator lights
represent each digit. The digit configuration is as
follows:

0 (supernumeric bit)
\ 1/ \1/ \1/
0 0 0

T T IL
bit 0

bit 1

bit 2

EXTERNAL STATUS INDICATORS
The external status indicators display the exist­

ing condition of I/O channels 0-3. Conditions
displayed are Read, Write, Reject, Connect,
Function, and Interrupt.

INTERNAL STATUS INDICATORS
Six columns of internal condition indicators are

mounted on the consoles.

Storage Active
For addressing purposes, all possible word
sections of memory are designated by digits
0-3. Digit zero indicates 4K or 8K storage.
Digits 0 and 1 indicate 16K storage and 0 to 3
32 K storage. Whenever one of these storage
sections becomes active, the corresponding
indicator light is lit.

2 Conditions
Standby means that the main power switch
is on, but individual supplies are still off.
Interrupt Disabled is lit whenever interrupt is
disabled by the 77 instruction.

Temperature Temperature
Indicator Indicator

2 1

8K Memory, Block Control,

3 Cycle

Four cycles are represented: Read Next In­
struction, Read Address, Read Operand, and
Store Operand. These indicators are lit when­
ever the cycles are in progress.

4 Faults
This column represents the four arithmetic
faults: Arithmetic Overflow, Divide, Exponent
Overflow, and Decimal (BCD-always occurs
when a BCD instruction is executed).

5 Temp Warning, and

6 Temp High

Looking at the front of a fully expanded 3104
computer, the cabinet sections are designated by
digits 0-3 (see figure 4-2). The Temp Warning lights
indicate that the section in question is approaching
the upper limit of the normal operating tempera­
ture range of the computer. This is only a warning;
the computer is not disabled. The Temp High in­
dicators light when the safe operating temperature
is exceeded in the sections they represent. At the
same time, the power will be cut off unless the
Thermostat Bypass switch has been pressed.

Temperature Temperature
Indicator Indicator

0 3

Main Control 16K Memory Power
and I/O Interrupt, and Arithmetic and I/O Panel

Logic 4K Memory Logic Logic
and I/O
Logic.

Figure 4-2. Temperature Warning Designations for Fully Expanded 3104, Front View

Svvitches
The console switches are divided into two groups

-those used for normal operation of the computer
and those used primarily for maintenance purposes.

OPERATOR SWITCHES
Operational switches are found on the mam

console and the entry keyboard.

Main Console: Table 4-2 lists and describes the
main console operator switches.

Entry Keyboard: The entry keyboard at the console
replaces the Set and Clear push buttons that are
on most CONTROL DATA computers for the
manual entry of information. Figure 4-3 shows the
3104 console keyboard. Table 4-3 lists and describes
the keyboard switches.

4-3

Table 4-2. Main Console Operator Switches

Switch Name Quan. Ilium. Description

Emergency Off 1 Removes power from the whole system.
(momentary)

Breakpoint 1 Lefthand dial of the six section, eight position
Address switch. Permits the selection of two modes:
Selector 1) Breakpoint Mode 2) Run Mode

Run Mode a) OFF e) OFF

Selector b) Instruction f) Register
Address Number*

c) OFF g) OFF

d) Operand Address h) Storage
Address

*Registers 00000-00077 only.

Breakpoint 5 Five eight position thumb-wheel switches can be
Address, set to octal addresses 00000-77777 for modes

Register File 1 or 2 above.
Number, or

Storage Address

Auto Load 1 Provides for the automatic loading of storage
(momentary) yes from a designated device. Active whether machine

is running or stopped.

Auto Dump 1 Provides for the automatic dumping of storage
(momentary) yes into a designated device. Active whether machine

is running or stopped.

Type Load 1 Provides for the loading of storage from the on-
(momentary) yes line liD typewriter. Active whether machine is

running or stopped.

Type Dump 1 Provides for the dumping of storage into the on-
(momentary) yes line 1/0 typewriter. Active whether machine is

running or stopped.

Select Stop 1 1 yes Stops the computer when the Selective Stop
instruction is read.

Manual Interrupt 1 Forces the computer into an interrupt routine if
(momentary) yes the computer is in Run. If the computer is stopped

when the switch is pressed, it will go into an in-
terrupt routine as soon as it is restarted.

Select Jump 1-6 6 yes Provides the manual conditions for executing a
program jump on the Selective Jump instruction.

External Clear 1 Master clears all external equipments, the I/O
(momentary) yes channels to which they are attached, and all

controls in the data channels.

Internal Clear 1 Master clears internal conditions and registers.
(momentary) yes

4-4

Figure 4-3. 3104 Console Keyboard
4-5

Table 4-3. Keyboard Switches

Operational Control Switches

Switch Name Ilium. Description

Keyboa rd Off Yes Deactivates all keyboard controls. Disables Keyboard Active
indicator.

Keyboard Clear Clears the Communications register and keyboard control
(momentary) settings.

Go Yes Starts the computer at address to which P register has been
(momentary) set. Indicator is lit while computer is executing instructions.

Not used for Sweep or Enter.

SW/EN

Go Yes Enables sweep or enter operations to proceed through storage.
(momentary)

Stop Yes Brings the computer to a halt at the end of the current instruc-
(momentary) tion. Indicator is lit when computer is forced to a Halt or Stop.

Transfer Enables the transfer of data between the Communications
(momentary) register and a selected register or storage location.

MC Performs both an internal and external master clear. Disabled
(momentary) when computer is in Go mode.

Register Selection Switches

Switch Name Ilium. Description

B1-B3 Yes Enables the manual entry of data from the keyboard into index
registers 8'-8 3.

P Yes Enables the manual entry of an address from the keyboard into
the P register.

A Yes Causes both A and Q to be displayed, but enables entry only
into A.

Q Yes Causes both A and Q to be displayed, but enables entry only
into Q.

Mode Selector Switches

Switch Name Ilium. Description

Enter * Yes Enables the manual entry of information into storage while
machine is stopped. First address of sequence is first entered
into P. Pushing Transfer advances P.

Sweep * Yes Enables instructions to be read from consecutive storage lo-
cations; they are not executed. First address of sequence is
first entered into P. Pushing Transfer advances P.

Write Yes Enables keyboard entry into the storage location specified by
Storage the thumb-wheel switches. Entry occurs each time the Trans-

fer key is pressed whether the computer is running or stopped.

Read Yes Causes the display of the contents of the storage register
Storage location specified by the thumb-wheel switches. The word is

displayed when the Transfer key is pressed whether the
computer is running or stopped.

4-6

Table 4-3. Keyboard Switches (cont'd)

Digit and Sign Selector Switches

Switch Name ilium. Description

0-7 All of these buttons, when pressed one at a time, allow entry
(momentary) of that particular digit into the Communications register.

* All register selection switches are disabled when either the Enter or Sweep switch is depressed.

MAINTENANCE SWITCHES
Maintenance switches are all located on the

main console. Table 4-4 lists and describes the
maintenance switches.

Table 4-4. Maintenance Switches

Switch Name Ilium. Description

Disable Storage Yes Disables the circuitry that normally protects the contents

Protect of storage.

Disable Advance P Yes Disables advancement of the count in the P register. When
the Go button on the keyboard is pressed, the same instruc-
tion is repeated. Press a second time to release function.

Thermostat Bypass Yes Allows computation to proceed regardless of unfavorable
ambient temperatures.

Disable Parity Yes Disables the recognition of parity errors from all storage
modules.

Instruction Step Yes Enables the operator to step through the ~rogram instruction
by instruction.

Storage Cycle Step Yes Enables the operator to step through an instruction one
storage cycle at a time.

Auto Step Yes Enab.les many instructions to be executed in a low speed
Run mode. The speed is regulated by the Auto Step Speed
control on the console.

4-7

5
Repertoire of Instructions

General Information
INSTRUCTION WORD FORMATS

Instructions 00-70 and 77 use one 24-bit word
each; instructions 71-76 use two 24-bit words. In
general, the upper 6 bits hold the identifying func-

j
rr---~A..---~

23 181716 1514

tion code 'f'. Instruction formats are of two types
-word and character. Figure 5-1 shows the general
formats for word and character oriented instruc­
tions. Instructions 70-77 use several additional
symbols that are defined when they occur.

00

15 1
v Word 1",--~:.---LiID,,----------

f a b m
d k

y

23 18 17 16 15 14 00

1 Character I 6 W 17
\ v v

f d r

b* z

Figure 5-1. General Machine Code Instruction Formats

SYMBOL DEFINITIONS

a = addressing mode designator (a = 0, direct ad­
dressing; a = 1, indirect addressing)

b = index designator (unless otherwise stated)

d = operation designator (see individual instructions)

= function code (6 bits, octal 00 to 77)

= interval designator

= jump, stop, or skip condition designator (see in­
dividual instructions)

k = shift count }
m = word execution address

= character execution address

unmodified

y = 1 5-bit operand

z = 17 -bit operand

In some instructions, the execution address 'm'
or 'r', or the shift count 'k' may be modified by
adding to them the contents of an index register,
Bb. The 2-bit designator 'b' specifies which of the
three index registers is to be used. Symbols repre­
senting the respective modified quantities are M,
Rand K.

*When used in this position, 'b' calls for the use of a
specific index register.

M =m + (Bb
)

R = r + (Bb
)

K = k + (Bb
)

In each case, ifb=O, then M=m, R=r and K=k.

ADDRESSING MODES

Three modes of addressing are used in the 3100
computer: no address, direct address, and indirect
address.

No Address. This mode is used when an operand
'y' or a shift count 'k' is placed directly into the
lower portion of an instruction word. Symbols 'a'
and 'b' are not used as addressing mode and index
designators with any ofthe no address instructions.

Direct Address. A direct address instruction is any
instruction in which an operand address 'm' is
stored in the lower portion of the initial instruction
word. This mode is specified by making 'a' equal
to zero. In many instructions, address 'm' may be
modified (indexed) by adding to it the contents of
register Bb; M = m + (Bb).

5-1

Indirect Address. It is possible to use indirect ad­
dressing only with instructions that require an exe­
cution address 'm'. For applicable instructions,
indirect addressing is specified by making 'a' equal
to one. Several levels (or steps) of indirect address­
ing may be used to reach the execution address;
however, execution time is delayed in direct pro­
portion to the number of steps. The search for a

final execution address continues until 'a' equals
zero. I t is important to note that direct (or indirect)
addressing and address modification are two dis­
tinct and independent steps. In any particular in­
struction, one may be specified without the other.
Figure 5-2 shows the indirect addressing routine
for a 3100 computer.

Go to address M.
Acquire new

terms a, b, & m.

Original instruction
possibly containing

'a' and/or 'b'

No

No

Execute instruction
using address M.

Note: Unless it is otherwise stated, indirect addressing follows the above routine throughout the repertoire
of instructions.

Figure 5-2. Indirect Addressing Routine

READ NEXT INSTRUCTION
SEQUENCE (RNI)

An abbreviation, RNI, is used throughout the
repertoire of instructions to indicate the read next
instruction sequence. This is a sequence of steps
taken by the control section to advance the com­
puter to its next program step. For an extensive
description of this sequence, consult the 3100
Customer Engineering Manual.

INDEX OF INSTRUCTIONS
In this chapter the instructions are grouped and

arranged in the following order. Those marked
with an asterisk are trapped instructions.

5-2

Each group of instructions is introduced with
an index as well as a group description whenever
it is necessary. Individual instructions are all pre­
sented in the same basic format:

Heading, which includes the assembly language
mnemonict and instruction name.

Machine code instruction format

Instruction description

Comments (when necessary)

Approximate instruction execution time. Add
1.75 J,lsec for indirect addressing. Instructions
shown without execution times are indeter­
minate at this time.

STOP AND JUMPS

REGISTER OPERATIONS WITHOUT STORAGE REFERENCE

STORAGE TEST

00-03

04-05,10-17

06-07, 10, 52

35-37 LOGICAL INSTRUCTIONS WITH STORAGE REFERENCE

LOAD 20-27, 54

40-47 STORE

INTER-REGISTER TRANSFER
24-bit Precision

ARITHMETIC, FIXED POINT, 24-BIT PRECISION

ARITHMETIC, FIXED POINT, 48-BIT PRECISION

ARITHMETIC, FLOATING POINT

BCD OPERATIONS

BLOCK OPERATIONS

MISCELLANEOUS OPERATIONS

tSome assembly code mnemonics may be modified
by one or more ofthe following codes:

EO Equal

GE Greater than or equal

Indirect addressing

LT Less than

NE Not equal

S

B

H

53

30-31, 34, 50-51

32-33, *56-57

*60-63

*64-70

71-76

77

Extend sign of operand; use full 24-bit
register in skip instructions

Backward read or write

Half assembly or disassembly (12-24)

INT Interrupt when completed

N No assembly or disassembly (24-24)

NC No internal BCD conversion

Instructions
STOP AND JUMPS

Operation Field

00 HLT
SJ 1
SJ2
SJ3
SJ4
SJ5
SJ6
RTJ

01 UJP, I

02 IJI
IJD

03 AZJ, EO
NE
GE
LT

AOJ, EO
NE
GE
LT

Address Field

m
m
m
m
m
m
m
m

m, b

m, b
m, b

m

m

Interpretation

Unconditional stop; RN I from address 'm'
Jump if key 1 is set
Jump if key 2 is set
Jump if key 3 is set
Jump if key 4 is set
Jump if key 5 is set
Jump if key 6 is set
Return jump

Unconditional jump

Index jump; increment index
Index jump; decrement index

o
-F 0
:2: 0

< 0

Compare A with zero; jump if (A)
Compare A with zero; jump if (A)
Compare A with zero; jump if (A)
Compare A with zero; jump if (A)
Compare A with 0; jump if (A)
Compare A with 0; jump if (A)
Compare A with 0; jump if (A)
Compare A with 0; jump if (A)

(0)

-F (0)
:2: (0)

< (0)

NOTE: Two additional Jump instructions, EZJ and EOJ, are described under the BCD instructions.

5-3

A Jump instruction causes a current program
sequence to terminate and initiates a new sequence
at a different location in storage. The Program
Address register, P*, provides the continuity
between program steps and always contains the
storage location of the current program step.

When a Jump instruction occurs, P is cleared
and a new address is entered. In most jump in­
structions, the execution address 'm' specifies the
beginning address of the new program sequence.
The word at address 'm' is read from storage,
placed in F, and the first instruction of the new
sequence is executed.

Some of the Jump instructions are conditional
upon a register containing a specific value or upon
the position of the Jump key on the console. If the
criterion is satisfied, the jump is made to location
'm'. If it is not satisfied, the program proceeds in
its regular sequence to the next instruction.

23 18 17 15 14 00

Format: o 0 o m

Instruction Description: Unconditionally stop at
this instruction. Upon restarting, RNI from address
'm'. Indirect addressing and address modification
are not applicable. (Approximate execution time:
1.8 f.1s.)

23 18 17 15 14 00

Format: o 0 m

j = 1 to 6

Instruction Description: Jump to address Om' if Jump
key j is set; otherwise, RNI from address P + 1.
Indirect addressing and address modification are not
applicable. (Approximate execution time: 1.8 J.ls.)

Instruction
in F

RNI from No Jump key
address P + 1 j set?

*Throughout this manual. the term (P) refers to the
contents of the word addressed by P. This term shall
be used because the more descriptive term, ((P)).

becomes awkward when used frequently.

5-4

Yes Jump to
address 'm'

23 18 17 15 14 00

Format: o 0 7 m

Instruction Description: The address portion of (m)
is replaced with the return address P + 1. Jump to
location m + 1 and begin executing instructions
at that location. Indirect addressing and address
modification are not applicable. (Approximate
execution time: 3.5 f.1s.)

Format:

I nstruction in F

,

Store p+ 1 in
address portion

of (m)

,

Begin subroutine
with instruction

at address m + 1

~

Return to 'm'
for address P +

23 1 8 1 7 1 6 1 5 14

01 I a I b

00

m

Instruction Description: Unconditionally jump to
address M. Indirect addressing and indexing are
available. (Approximate execution time: 1.8 f.1s.)

23 18 17 16 1 5 14 00

Format: 02 I d I b m

d = 0
b = 1-3
m = jump address

Instruction Description: If b = 0, this becomes a
no-op instruction; RNI from address P + 1. If
b ~ 0, (Bb

) is examined.

If (Sb) = 0, the jump test condition is not
satisfied; RNI from address P + 1.

2 If (Bb
) ~ 0, the jump test condition is satisfied.

One is added to (Bb
); jump to address 'm'

and RNI.

Indirect addressing and jump address modifica­
tion are not applicable. (Approximate execution
time: 2.6 f.1s.)

Comments: The counting operation is done in a
one's complement additive accumulator. Negative
zero is not generated because the count progresses
... , 77775, 77776, 00000, stopping at positive zero.
If negative zero is initially in Bb

, the count pro­
gresses 77777, 00001, etc. In this case, the counter
must pass through its entire range to reach positive
zero.

RNI from
address P +

Instruction in F

Jump to address
'm'; RNI

23 1 8 1 7 16 15 14

Format: 02 I d I b m

d = 1
b = 1-3
m = jump address

00

5-5

Instruction Description: If b =0, this becomes a
no-op instruction; RNI from address P + 1. If
b ~ 0, (Bb

) is examined.

1 If (B
b

) = 0, the jump test condition is not
satisfied; RNI from address P + 1.

2 If (B
b

) ~ 0, the jump test condition is satisfied.
One is subtracted from (B

b
); jump to address

'm' and RNI.

Indirect addressing and jump address modifica­
tion are not possible. (Approximate execution
time: 2.6 J.Ls,)

RNI from
address P + 1

Instruction in F

Subtract one
'from (Bb

)

Jump to address
'm'; RNI

Comments: If negative zero is initially in Bb
, the

count must be decremented from 77777 to 00000
before the program will RNI from P + 1.

23 1 8 1 7 1 6 1 5 14 00

Format: 03 I d I m

d=O
j = 0-3
m = jump address

Instruction Description: The quantity in A is com­
pared algebraically with zero for an equality, in­
equality, greater than or less than condition (see
table). If the test condition is true, the program
jumps to address 'm'. If the test condition is not
true, RNI from address P + 1. Indirect addressing
and address modification are not applicable. (Ap­
proximate execution time: 2.6 J.Ls.)

Condition
j Test Condition

Mnemonic

EQ ° (A)=± °
NE 1 (A)~± °
GE 2 (A)~+ °
LT 3 (A)<+ °

Comments: Positive and negative zero give identical
results in this test when j = 0 or 1.

Instruction in F

RNI from No Is test condition Yes Jump to
address P + 1 satisfied? address m'; RNI

5-6

23 18 17 1 6 1 5 14 00

Format: 03 I d I m

d=1
j = 0-3
m = jump address

Instruction Description: The quantity in A is com­
pared with the quantity in Q for an equality, in­
equality, greater than or less than condition (see
table). If the test condition is true, the program
jumps to address 'm'. If the test condition is not
true, RNI from address P + 1. Indirect addressing

and address modification are not applicable. (Ap­
proximate execution time: 2.6 J..ts.)

Condition
j Test Condition

Mnemonic

EQ 0 (A)=(Q)

NE 1 (A) r!: (Q)

GE 2 (A)~(Q)

LT 3 (A)«Q)

Comments: This instruction may be used to test
the contents of Q by placing an arbitrary value
in A for the comparison. Positive and negative zero
give identical results in this test when j =0 or 1.

Instruction in F

~

RNI from No Is test condition Yes Jump to
""-

address P + 1 satisfied? ,.
address 'm'; RNI

5-7

REGISTER OPERATIONS WITHOUT STORAGE REFERENCE

Operational Field Address Field Interpretation

04 ASE, S y

QSE,S y

ISE y, b

05 ASG,S y

QSG,S y

ISG y, b

14 ENA, S y

ENQ,S y

ENI y, b

15 INA, S y
INQ,S y

INI y, b

16 XOA, S y

XOQ,S y

XOI y, b

17 ANA, S y
ANQ,S y

ANI y, b

10 lSI y, b

ISO y, b

11 ECHA, S y

12 SHA y, b

SHQ y, b

13 SHAQ y, b

SCAQ y, b

23 1 8 1 7 1 6 1 5 14 00

Format: I 10 I d I b I y

d = 0
b = 1 to 3

Instruction Description: If (Bb) = y, clear Bb and
skip to address P + 2; if not, add one to (Bb

) and
RNI from address P + 1. (Approximate execution
time: 2.6 f..ts.)

23 18171615 14 00

Format: 10 I d I b y I
d=l

b=l to 3

Instruction Description: If (Bb) = y, clear Bb and
skip to address P + 2; if not, subtract one from

5-8

Skip next instruction if (A) = y

Skip next instruction if (Q) = y
Skip next instruction if (B

b
) = y

Skip next instruction if (A) ~ y
Skip next instruction if (Q) ~ y
Skip next instruction if (B

b
) ~ y

Enter A with y
Enter Q with y

Enter index with y

I ncrease A by Y
Increase Q by Y
Increase index by y

EXCLUSIVE OR of A and y
EXCLUSIVE OR of Q and y
EXCLUSIVE OR of index and y

AND of A and y
AND of Q and y

AN 0 of index and y

Index skip, incremental
I ndex skip, decremental

Enter A with 17 -bit character address

Shift A
Shift Q

Shift AQ
Scale AQ

(Bb
) and RNI from address P + 1. (Approximate

execution time: 2.6 f..ts.)

23 18 17 16 00

Format: I 1 1 z

Instruction Description: Clear A, then enter a 17-bit
quantity'y' (usually a character address) into A.

When d = 1, the sign is extended. (Approximate
execution time: 1.8 f..ts.)

Instructions 04, OS, and 14-17 all refer to a regis­
ter. Table 5-1 indicates the register and includes
the corresponding operation codes, assembly
mnemonics, and designators. When both 'd' and
'b' equal zero in instructions 04 and OS, zero is
compared with 'y' and the instructions proceed just
as if (Bb

) was zero. Instructions 14-17 are no-ops
when both 'd' and 'b' equal zero.

Table 5-1. Register Summary

Operation Codes and Mnemonics

04 05 14 15 16 17 d b Register

ISE ISG ENI INI* XOI ANI 0 1-3 Bb, no sign extended on Bb or 'y'

ASE,S ASG,S ENA,S INA,S XOA,S ANA,S 1 to A, sign extension on 'y'

QSE,S OSG,S ENQ,S INO,S XOO,S ANQ,S 1 t 1 0, sign extension on 'y'

ASE** ASG** ENA INA XOA ANA 1 t2 A. no sign extension on 'y'

QSE** OSG** ENQ INO XOQ ANO 1 t3 0, no sign extension on 'y'

*Sign extension on 'y' and Bb
**Only the lower 15 bits of A or Q are used.

t When d = 1, 'b' does not serve in its usual role of index designator.

23 18 17 16 15 14 00

Format: 04 I d I b y

See table 5-1 for 'b', 'd', and register.

Instruction Description: If the register contents
equal 'y'; skip to address P + 2; if not, RNI from
address P + l. (Approximate execution time:
2.6 f.ls.)

23 18 17 16 15 14 00

Format:
05 I d I b y

See table 5-1 for 'b', 'd', and register.

Instruction Description: If the register contents are
equal to or greater than 'y' skip to address P + 2;
if not, RNI from address P + 1. (Approximate
execution time: 2.6 f.ls.)

23 18 17 16 15 14 00

Format: 14 I d I b y

See table 5-1 for 'b', 'd', and register.

Instruction Description: Clear the register and enter
'y' directly into the register. (Approximate execu­
tion time: 1.8 f.ls.)

23 18 17 16 15 14 00

Format: \ 15 \ d [b y

See table 5-1 for 'b', 'd', and register.

Instruction Description: Add 'y' to the register con­
tents. (Approximate execution time: 1.8 f.ls.)

23 18 17 16 1 5 14 00

Format: I 16 I d I b y

See table 5-1 for 'b', 'd', and register.

Instruction Description: Enter the selective comple­
ment (the EXCLUSIVE OR function) of 'y' and
register contents into the register. (Approximate
execution time: 1.8 f.ls.)

23 1 8 1 7 1 6 1 5 14 00

Format: y

See table 5-1 for 'b', 'd', and register.

Instruction Description: Enter the logical product
(the AND function) of 'y' and the register con­
tents into the register. (Approximate execution
time: l.8 f.ls.)

5-9

23

Format: I 12

d = O,SHA
d = 1. SHQ

1817161514

b = index designator; K = k + (B
b

).

00

k

Instruction Description: (Bb
) and k, with their signs

extended, are added. (Even if b=O, the sign of ok'
is still extended.) The sign and magnitude of the
24-bit sum determine the direction and magnitude
of shift. The computer only senses bits 00-05 and 23
of the sum for this information. To shift left, the
magnitude of shift is placed in 'k'; to shift right,

the complement of the magnitude of shift is placed
in ok'.

Examples: (b = 0 in both cases):

Shift left six positions: k = 00006

Shift right six positions: k = 77771

(Approximate execution time: 1.8 to 3.8 f.ls.)

Comments:
During left shifts, bits reaching the top of the A
or Q register are brought end around. Therefore,
a left shift of 24 places results in no change in (A)
or (Q); a left shift of greater than 24 places results
in an effective shift of K-24 (or K-48) places.

During right shifts, the sign bit is extended and the
low order bits are discarded. A right shift of 23 or
more places results in (A) or (Q) becoming all "O's"
or all .. 1 's", depending on the sign.

Instruction in F

5-10

Sign of k is
extended

Shift will
be right

Yes

"0"

"0"

Uppermost
bit of result equals

"0" or "1 "?

RNI from
address P +

No

"1"

"1"

Add (B
b

) to k
with sign ext.

Shift will
be left

23 18 17 16 1 5 14 00

Format: I 13 I d I b I k

d=O
b = index designator; K = k + (B

b
)

Instruction Description: The contents of A and Q
are shifted together as one 48-bit register. (Bb

) and
'k', with their signs extended, are added. (Even if
b = 0, the sign of ok' is still extended.) The sign
and magnitude of the 24-bit sum determine the
direction and magnitude of shift. The computer
only senses bits 00-05 and 23 of the sum for this
information. To shift left, the magnitude of shift
is placed in ok'; to shift right, the complement of the
magnitude of shift is placed in 'k'.

Examples: (b = 0 in both cases):

Shift left three places: k = 00003
Shift right three places: k = 77774

(Approximate execution time: 2.6 to 5.1 J.ts.)

Comments:
During left shifts, bits reaching the top of the A
register are brought end around to the lowest bit

STORAGE TEST

of Q. Therefore, a left shift of 48 places results in
no change in (AQ); a left shift of greater than 48
places results in an effective shift of K-48 places.

During right shifts, the sign bit is extended and
the low order bits are discarded. A right shift of
47 or more places results in (AQ) becoming all
"O's" or all '"I 's", depending on the sign.

23 1817161514 00

Format: I 13 k

d=1
b = index designator

K = k-shift count; (K~ Bb
)

Instruction Description: (AQ) is shifted left end
around until the highest 2 bits (46 and 47) are un­
equal. If (AQ) should initially equal positive or
negative zero, 48 decimal (60 octal) shifts are ex­
ecuted before the scale instruction terminates.
During scaling, the computer makes a shift count.
A quantity 'K', called the residue, equals ok' minus
the shift count. If b = 0, this quantity is discarded;
ifb = 1 to 3, the residue is placed in index Bb. (Ap­
proximate execution time: 2.6 to 5.1 J.ls.)

Operation Field Address Field Interpretation

Format:

06

07

10

52

MEQ

MTH

SSH

CPR,1

23 18 17 15 14

I 06 I I
i = 0 to 7, interval designator
m = unmodified storage address

m

m, bl

m, b2

m

m, b

00

Instruction Description: This instruction uses index
B1 exclusively. M = m + (HI). (A) is compared
with the logical product of (Q) and (M).

Instruction Sequence:

Decrement (Bl) by T.

Test to see if (Bl) changed sign from positive to
negative.

If so, RNI from P + 1; if not. test to see if A=Q.M.

*n = number of words searched

Masked equality search

Masked threshold search

Storage shift

Compare (within limits test)

If A = Q.M, RNI from P + 2; if not. repeat se­
quence.

(Approximate execution time: 3.5 J.lS + n*-l.8 J.ls.)

Comments: 'i' is represented by 3 bits allowing a
decrement interval selection of 1 to 8.

interval

1 1
2 2
3 3
4 4
5 5
6 6
7 7
0 8

5-11

Format:

Decrement
(B1) by 'j'

23 18171514

07

i = 0 to 7, interval designator
m = unmodified storage address

RNI from
P+1

RNI from
P + 2

m

00

Instruction Description: This instruction uses index
B2 exclusively. M = m +·(B2). (A) is compared with
the logical product of (Q) and (M).

Instruction Sequence:

Decrement (B2) by 'i'.

Test to see if (8 2) changed sign from positive
to negative.

If so, RN I from P + 1; if not, test to see if
A;:::::O.M.

If A;::::: O. M, RNI from P+2; if not repeat
sequence.

(Approximate execution time: 3.5 j.l.S + n*-1.8
j.l.s.)

Comments: 'i' is represented by 3 bits allowing a
decrement interval selection of 1 to 8.

interval

1 1

2 2
3
4
5
6
7
o

3
4
5
6
7
8

*n = number of words searched
5-12

Decrement
(8 2) by 'j'

A;:::::O·M
Yes

23 18171514

Format: 10 o

m = storage address

RNI from

P+1

RNI from
P+2

m

00

Instruction Description: Sense bit 23 of (m). If (m)
is negative, RNI from P + 2; if positive, RNI from
P + 1. In both cases, shift (m) one place left, end
around, and replace it in storage. (Approximate
execution time: 5.3 j.l.s.)

Shift m) one
Place left end

around, and replace

RNI from

P+2

RNI from

P+1

23 18 17 16 15 14

Format: 52 I a I b

a = addressing mode designator
b = index designator

m = storage address

00

m

Instruction Description: (M) is tested to see if it is
within the limits specified by A (upper limits) and
Q (lower limits). The sequence of comparisons and
the action taken are as follows:

Subtract (M) from (A) and place the difference
in A. If A is negative, R N I from address P + 1 ;
if not,

2 Subtract (Q) from (M) and place the difference

in A. If A is negative, R N I from address P + 2;
if not,

3 RNI from address P + 3.

Final State of Registers: (A) and (Q) remain un­
changed. The address to which control proceeds,
upon completion of the instruction is given by the
following table:

Condition

(M»(A)

(Q) >(M)

Control
Given To

(A) :2: (M):2: (Q) P+3

LOGICAL INSTRUCTIONS WITH
STORAGE REFERENCE

Operation Address
Interpretation

Field Field

35 SSA I m, b Selectively set A

36 SCA I m, b Selectively complement A

37 LPA I m, b Logical product A

23 18 1 7 1 6 1 5 14

Format: r=;5 I a I b

a = addressing mode designator
b = index designator

m = storage address: M = m + (Bb
)

m

00

Instruction Description: Selectively set" 1 's" in A
for all "1 's" at address M. (Approximate execu­
tion time: 3.5 f.1s.)

23 18 1 7 1 6 1 5 14 00

Format: LI ___ 3_6 __ -LI_a-L1 __ b __ ~ ______ m ______ ~
a = addressing mode designator
b = index designator

m = storage address; M = m + (Bb
)

Instruction Description: Selectively complement
corresponding bits in A for all HI's" at address M.
(Approximate execution time: 3.5 f.1s.)

23 18 17 16 15 14

Format: 37

a = addressing mode designator
b = index designator

m = storage address; M = m + (Bb
)

00

m

Instruction Description: Replace A with the logical
product of (A) and (M). (Approximate execution
time: 3.5 f.1s.)

5-13

LOAD

Operation Field Address Field

20 LOA. I m, b

21 LOO,I m, b

22 LACH m,8 1

23 LOCH m, 8 2

24 LACM,I m, b

25 LOAQ,I m, b

26 LAOC, I m, b

27 LOL.l m, b

54 LOl.l m, b

23 18 1 7 16 1 5 14 00

Format: 20 m

a = addressing mode designator
b = index designator

m = storage address; M = m + (8 b
)

Instruction Description: Load A with a 24-bit quan­
tity from storage address M. (Approximate execu­
tion time: 3.5 f..Ls.)

Comments: Indirect addressing and address modi­
fication are available.

23 18 1 7 1 6 1 5 14

Format: 21 I a I b

a = addressing mode designator
b = index designator; M = m + (8 b

)

m = storage address

00

m

Instruction Description: Load Q with a 24-bit quan­
tity from storage address M. (Approximate execu­
tion time: 3.5 f..Ls.)

Comments: Indirect addressing and address modi­
fication are available.

Format:

5-14

23

22

18 17 16

v
word address

00

02 01 00:

character
designator

b = index designator. If b = 1, 'r' is modified by
index register 8 1 ; R = r + (8 1).

Interpretation

Load A

Load 0

Load A, Character

Load 0, Character

Load A. Complement

Load AQ

Load AO, Complement

Load A, Logical

Load Index

Instruction Description: Load bits 0 to 5 of A with
the character from storage specified by character
address R. A is cleared prior to the load operation.
(Approximate execution time: 3.5 f..Ls.)

Comments: Indirect addressing is not applicable.
Characters in storage are specified in the following
manner:
23 18 17 12 11 06 05 00

o 2 I 3

~~ /~
character designators

23 18 17 16 00

Format: 23

:16 020100:

l _0_0_00_0_-....,7:~7_77 __ ~
word address character

designator

b = index designator. If b = 1 , r is modified by
index register 8 2 ; R = r + (8 2).

Instruction Description: Load bits 0 to 5 of Q with
the character from storage specified by character
address R. Q is cleared prior to the load operation.
(Approximate execution time: 3.5 f..Ls.)

Comments: Indirect addressing is not applicable.
Characters in storage are specified in the following
manner:

23 18 17 12 11 06 05 00

o 2 I 3

~~/~
character designators

23 18 1 7 16 1 5 14 00

Format: 24 I a I b m

a = addressing mode designator
b = index designator
m = storage address; M = m + (Bb

)

Instruction Description: Load A with the comple­
ment of a 24-bit quantity from storage address M.
(Approximate execution time: 3.5 J.ls.)

Comments: Indirect addressing and address modi­
fication are available.

23 18 17 16 15 14

Format: 25

a = addressing mode designator
b = index designator
m = storage address; M = m + (Bb

)

00

m

Instruction Description: Load registers A and Q
with the two words from addresses 'M' and M + 1,
respectively. Address 77777 should not be used.
(Approximate execution time: 5.2 J.ls.)

23 18 1 7 16 1 5 14

Format: 26 I a I b

a = addressing mode designator
b = index designator

m = storage address; M = m + (Bb
)

STORE
Operation Field

40 STA, I

41 STQ, I

42 SACH
43 SQCH

44 SWA,I

45 STAQ,I

46 SCHA
47 STI.I

23 18 17 16 15 14

Format: 40

a = addressing mode dflsignator
b = index designator

00

m

Address Field

m

m, b

m, b

m, B2

m, B1

m, b

m, b

m, b

m, b

00

m = storage address; M = m + (Bb)

Instruction Description: Store (A) in storage address
M. (Approximate execution time: 3.5 J.ls.)

Instruction Description: Load registers A and Q
with the complement of the two words from ad­
dresses M and M + 1, respectively. (Approximate
execution time: 5.2 J.ls.)

23 18 1 7 1 6 1 5 14

Format: I 27 I a I b I
a = addressing mode designator
b = index designator

00

m

Instruction Description: Load A with the logical
product (the AND function) of (Q) and the con­
tents of address M. (Approximate execution time:
3.5 J.ls.)

23 1 8 1 7 1 6 1 5 14 00

Format: 54 I a I b I m

a = addressing mode designator
b = index designator
m = storage address

Instruction Description: Load index register Bbwith
the lower 15 bits of storage address 'm'. (Approxi­
mate execution time: 3.5 J.ls.)

Comments: Indirect addressing, but no address
modification, is possible. During indirect address­
ing only 'a' and 'm' are inspected. Symbol 'b' from
the initial instruction specifies which index register
is to be loaded with the storage address contents.

Interpretation

Store A
Store Q
Store A, character
Store Q, character

Store 1 5-bit word address

2.5 J.lsec

Store AQ)- 3.8 J.lsec

Store 17 -bit character address}
Store index 2.5 J.lsec

23 18 17 16 15 14

Format: I 41 I a I b I
a = addressing mode designator
b = index designator

m

m = storage address; M = m + (Bb)

00

Instruction Description: Store (Q) in storage ad­
dress M. (Approximate execution time: 3.5 fJ,s.)

5-15

23 18 17 16 00

Format: LI ___ 4_2 __ ~I_b~I _____________________ ~
I

I

116 020100 1 r 00000-77777 !iJ
'-----y===:;9

word address character
designator

b = index designator. If b = 1, r is modified by
index register 8 2 ; R = r+ (8 2).

Instruction Description: Store the contents of bits ° to 5 of the A register in the specified character
address. All of A and the remaining three characters
in storage remain unchanged. (Approximate execu­
tion time: 3.5 f.ls.)

Comments: Indirect addressing is not applicable.
Characters in storage are specified in the following
manner:

23 18 17 12 11 06 05 00

o ~ 1 I 2 ~3

23 18 17 16 00

Format:
1 43

: 16 02 01 00 I

[00000-:7777 8
word address character

designator

b = index designator. If b = 1, r is modified by
index register 8 1 ; R = r + (8 1).

Instruction Description: Store the contents of bits ° to 5 of the Q register in the specified character
address. All of Q and the remaining three charac­
ters in storage remain unchanged. (Approximate
execution time: 3.5 f.ls.)

Comments: Indirect addressing is not applicable.
Characters in storage are specified in the following
manner:
23 18 17 12 11 0605 00

I,----------=:-o ---,---I ------::-1 ----,--I ------,,2---'---~~3 ------l

-------char~ d~tors

5-16

23 18 17 16 15 14

Format: 44 I a 1 b

a = addressing mode designator
b = index designator

m = storage address; M = m + (8
b

)

00

m

Instruction Description: Store the lower 15 bits of
(A) in the designated address M. The upper 9 bits
of M remain unchanged. (Approximate execution
time: 3.5 f.ls.)

23 18 17 16 15 14

Format: 45 I a I b

a = addressing mode designator
b = index designator

m = storage address; M = m + (8
b

)

00

m

Instruction Description: Store the contents of regis­
ters A and Q in storage addresses M and M + I,
respectively. Address 77777 should not be used.
(Approximate execution time: 5.2 f.ls.)

23 18 17 16 15 14

Format: 46 1 a 1 b

a = addressing mode designator
b = index designator

m

m = storage address; M = m + (Bb
)

00

Instruction Description: Store the lower 17 bits of
(A) in the designated address M. The upper bits of
M remain unchanged. (Approximate execution
time: 3.5 f.ls.)

23 18 17 16 15 14

Format: 47

a = addressing mode designator
b = index designator

m = storage address

00

m

Instruction Description: Store the (Bb
) in the lower

15 bits of storage address 'm'. The upper 9 bits of
om' remain unchanged. (Approximate execution
time: 3.5 f.ls.)

Comments: Indirect addressing, but no address
modification, is possible. During indirect address­
ing only 'a' and Om' are inspected. Symbol 'b' from
the initial instruction specifies which index register
is to have its contents stored. If b = 0, zeros are
stored in m.

INTER-REGISTER TRANSFER 24-Bit Precision

Operational Field Address Field Interpretation

Transfer (Bb
) to A

Transfer (A) to Bb
53 TIA

TAl
TMO
TOM
TMA
TAM
TMI
TIM
AOA
AlA
IAI

The 53 instruction is used to move data between
the A and Q (arithmetic) registers, the index regis­
ters, and the register file.

23 18 17 16 15 14 12 11

Format: I 53

d= O. TIA; d = 1. TAl
b = index designator. 1 to 3

Comment: No sign extension.

00

23 1 8 1 7 1 6 1 5 1 4 1 2 11 06 05 00

Format: 53 v

d O. TMO; d = 1. TOM
v - register number. 00-77

23 18 1 7 1 6 1 5 14 12 11 06 05 00

Format: 53 I d 1-- - I 2 I v

d O,TMA; d = 1,TAM
v = register number. 00-77

b
b
m
m
m
m
m. b
m. b

b
b

Transfer (Register m) to 0
Transfer (0) to Register m
Transfer (Register m) to A
Transfer (A) to Register m
Transfer (Register m) to Bb
Transfer (Bb

) to Register m
Transfer (A) + (0) to A
Transfer (A) + (B

b
) to A

Transfer (B
b
) + (A) to Bb

23 18 1 7 1 6 1 5 14 12 11 06 05 00

Format: 53 I d I b I 3 I v

d = 0, TMI; d = 1. TIM
b = index designator, 1 to 3
v = register number. 00-77

23 18 17 15 14 12 11

Format: 53 o 4

23 18 17 16 15 14 12 11

Format: 53 4

b = index designator. 1 to 3

00

00

Instruction Description: The sign of (Bb
) is extended.

23 18 17 16 15 14 12 11 00

Format: 53 4

b = index designator. 1 to 3

Instruction Description: The sign of the original
(Bb

) is extended prior to the addition. The upper 9
bits are lost when the sum is placed in Bb.

5-17

ARITHMETIC, FIXED-POINT, 24-BIT PRECISION

Operation Field Address Field Interpretation

30 ADA I

31 SBA I

34 RAD, I

50 MUA I

51 DVA I

23 18 1 7 16 15 14

Format: I I I 30 a b

a = addressing mode designator
b = index designator

m

m = storage address; M = m + (Bb
)

m, b

m, b

m, b

m, b

m, b

00

Instruction Description: Add a 24-bit quantity
located at address M to (A). The sum appears in
A. (Approximate execution time: 3.5 f.1s.)

23 18 1 7 16 1 5 14

Format: 31 I a I b

a = addressing mode designator
b = index designator

m

m = storage address; M = m + (B
b

)

00

Instruction Description: Subtract a 24-bit quantity
located at address M from (A). The difference ap­
pears in A. (Approximate execution time: 3.5 f.1s.)

23 18 1 7 1 6 15 14

Format: 34 I a I b

a = addressing mode designator
b = index designator

m = storage address; M = m + (Bb
)

00

m

Add to A

Subtract from A

Replace add

Multiply A

Divide A

Instruction Description: Replace the quantity in M
with the sum of (M) and (A). The original (A)
remain unchanged. (Approximate execution time:
5.2 f.1s.)

23 18 17 16 15 14 00

Format: 50 I a I b m

a = addressing mode designator
b = index designator

m = storage address; M = m + (Bb
)

Instruction Description: Multiply (A) by the quan­
tity at address M. The 48-bit product appears in
QA with the lowest order bits in A. (Approximate
execution time: 14.5 f.1s.)

23 18 17 16 15 14 00

Format: 51 lal b m

a = addressing mode designator
b = index designator

m = storage address; M = m + (Bb
)

Instruction Description: Divide the 48-bit quantity
in AQ by the quantity at storage address M. The
quotient appears in A and the remainder with its
sign extended appears in Q. If a divide fault occurs,
this operation halts and the program advances to
the next instruction. The final contents of A and Q
are meaningless if this happens. (Approximate
execution time: 15.0 jLs.)

ARITHMETIC, FIXED-POINT, 48-BIT PRECISION

5-18

Operation Field

32 ADAQ, I

33

56

57

SBAQ, I

MUAQ, I

DVAQ, I

Address Field

m, b

m, b

m, b

m, b

Interpretation

Add to AQ

Subtract from AQ

Multiply AQ {

Divide AQ \
Trapped
Instructions

Comments: Instructions 56 and 57 are trapped in

3100 computer systems.

Registers A and Q serve together as a 48-bit
register with the highest order bits in A.

23 18 1 7 16 15 14

Format: I 32 I a I b

a = addressing mode designator
b = index designator

m = storage address; M = m + (Sb)

00

m

Instruction Description: Add the 48-bit contents of
addresses M and M + 1 to (AQ). The sum appears
in AQ. (Approximate execution time: 5.2 f.,ls.)

23 18 17 16 15 14

Format: I 33 I a I b I
a = addressing mode designator
b = index designator

00

m

m = storage address; M = m + (Sb)

ARITHMETIC, FLOATING POINT

Operational Field

60 FAD, I

61 FSB, I

62 FMU, I

63 FDV, I

Address Field

m, b

m, b

m, b

m, b

This group of instructions is trapped in 3100
computer systems. The E and 0 registers are simu-

Comments: All floating point operations in the 3100
computer involve the A and Q registers plus two
consecutive storage locations, 'm' and m + 1. The

Instruction Description: Subtract the 48-bit com­
bined contents of addresses M and M + 1 from
(AQ). The difference appears in AQ. (Approximate
execution time 5.2 f.,ls.)

23 18 17 16 15 14

Format: 56 I a I b I

a = addressing mode designator
b = index designator

m = storage address; M = m + (Sb)

00

m

Instruction Description: M uitiply (AQ) by the 48-
bit operand in M and M + 1. The 96-bit product
appears in AQE.

23 18 17 1 6 1 5 14

Format: 57 I a I b

a = addressing mode designator
b = index designator

m = storage address; M = m + (Sb)

00

m

Instruction Description: Divide (AQE) by the 48-
bit contents of addresses M and M + 1. The
answer appears in AQ and the remainder with its
sign extended appears in E. If a divide fault occurs,
this operation halts and the program advances to
the next instruction. The final contents of AQ and
E are meaningless if this happens.

Interpretation

FP addition to AQ

FP subtraction from AQ

FP multiplication of AQ

FP division of AQ

lated in 3100 memory by appropriate software and
are not separate physical entities.

A and Q registers are treated as one 48-bit register.

Operand Formats: The AQ register and the storage
address contents have identical formats.

5-19

(47) (46) (36) (35) (24)

23 22 12 11 00

(A) and (M)

Sign of
Coefficient

11-bit o¥and Upper 1Ybits of
exponent including operand coefficient

bias

23 00

(Q) and (M + 1) I I
\~----------~-------------- ~----------------------------}

Lower 24 bits o~erand coefficient

Exponent Equalization: During floating point addi­
tion and subtraction, the exponents involved are
equalized prior to the operation. The coefficient of
the algebraically smaller exponent is automatically
shifted right until the exponents are equal.

Rounding: Rounding modifies the coefficient an­
swer by adding one to AQ for positive answers or
by subtracting one for negative answers. Rounding
is necessary since the coefficient answer may con­
tain more than 36 bits. The condition for rounding
is inequality of the sign bits of AQ and E. This
means that the next lower significant bit to the right
of the number in AQ is equal to or greater than
one-half. Coefficient arithmetic may, yield rounded
answers from zero to 237.

Normalizing: Normalizing brings the above answer
back to a fraction from one-half to one with the
binary point to the left of the 36th bit. The magni­
tude of the final normalized number in AQ will
range from 236 to 237_l. Normalizing is performed
by either a right shift or the required number of left
shifts for add and subtract or a one place right or
left shift for multiply and divide. The exponent is
corrected for every shift. The residue in E is not
shifted.

Exponent Overflow: It is possible to sense exponent
overflow and/or to use this overflow to cause an
interrupt. Sensing this fault automatically clears
the Exponent Overflow indicator.

23 18 1 7 1 6 1 5 14 00

Format: 60 I a I b I m

a = addressing mode designator
b = index designator

m = storage address; M = m + (Sb)

5-20

Instruction Description: Add the contents of M and
M + 1 to (AQ). The rounded and normalized sum
appears in A Q.

23 18 17 16 15 14

Format: I 61

a = addressing mode designator
b = index designator

m = storage address; M = m + (Sb)

00

m

Instruction Description: Subtract the 48-bit con­
tents of 'M' and M + 1 from (AQ). The rounded
and normalized difference appears in AQ.

23 18 17 16 15 14

Format: 62 I a I b

a = addressing mode designator
b = index designator

rn = storage address; M = m + (Sb)

00

m

Instruction Description: Multiply (AQ) by the 48-
bit contents of 'M' and M + 1. The rounded and
normalized product appears in AQ.

23 1 8 1 7 1 6 1 5 1 4

Format: [63 I a I b

a = addressing mode designator

b = index designator
m = storage address; M = m + (Sb)

00

m

Instruction Description: Divide (AQ) by the 48-
bit contents of M and M + 1. The rounded and
normalized quotient appears in AQ. The remain­
der with sign extended appears in the E register.

BCD

Operational Field Address Field

70 SFE k, b
EZJ, EQ m
EZJ, LT m
EOJ m
SET y

64 LDE m, b 1

65 STE m, b2

66 ADE m, b3

67 SBE m, b3

This group of instructions is trapped in 3100
computer systems. The E and D registers are sim­
ulated in 3100 memory by appropriate software
and are not separate physical entities.

Formats: These instructions handle 4-bit BCD
characters rather than whole 24-bit words. These
characters are placed into the simulated E register
and into storage in the following ways:

1 ED Register (Simulated Configuration).

53 51 00

I ± 11 3 11 211 1 11 0 I 91817161 5 1413121

.. +' y /
Sign Overflow
of E character BCD Characters

position

The simulated 53-bit ED register can hold 12
regular BCD characters plus one overflow
character. The ED register can never be dis­
played on the consoles.

2 Storage

23 18 17 12 11 06 05 00

(M) = IL-_O_-l-I _-.l..._2------L1----;-3-----i

~ "'" / / Character Positions

Each 24-bit storage word may be divided into
four character positions of 6 bits each. The
lower 4 bits of each position may hold a 4-
bit character; the upper 2 bits are reserved
for the sign designator, one per field. For each
field, the sign accompanies the least sig­
nificant character. 10xxxx specifies negative;
any other combination, positive. The upper 2
bits of all other characters in the field must
equal zero. The most significant character
precedes the least significant character of a
field in storage.

Field Length: The field length is specified by the
contents of the simulated 4-bit D register. Any
number 1-12 (0001-1100) is legal.*

Interpretation

Shift E
E zero jump, E = 0
E zero jump, E < 0
E overflow jump
Set D register

Load E

Store E

Addition to E

Subtraction from E

Illegal Characters: By definition, any character
greater than 9 (or lIs) is illegal. Characters are
tested for legality during:

1 Loading into E,

2 Storing as they leave E, and

3 Addition and subtraction as they leave E and
storage for processing by the adder.

BCD Fault: The BCD fault will occur if:

A sign is present in any character position
other than the least significant, or

2 An illegal character is sensed during the ex­
ecution of an instruction, or

3 The contents of D exceed 12 (will set only
during a SET instruction).

23 18 1 7 1 6 1 5 14

Format: 70 I d I b

d = 0
b = index designator
k = shift designator

00

k

Instruction Description: This instruction shifts BCD
characters within the E register in one character
(4-bit) steps. 'k' and the contents of index Bb are
added to modify the shift designator; K = k + (B b

).

The computer senses bits 00-03 and 23 of the sum.

*Although a fault will occur, D may equal 13 for the
storage of 13 characters. The following sequence
should be followed in storing 13 characters:

1 Set D (BCD fault will occur)
2 Sense for BCD fault (this clears the BCD Fault

indicator
3 Issue STE instruction

If the BCD fault is disregarded and there is an attempt
to load, add, or subtract 13 characters, only the lower
12 characters will be used. No additional fault will
occur.

5-21

Direction of Shift: Shifting is left if bit 23 is zero;
right if it is one. Shifts are end off in both directions.

Magnitude of Shift: For a left shift, the lower 4 bits
of the sum specify the shift magnitude; for a right
shift, the lower 4 bits of the complement of the sum
specify the shift magnitude.

Examples:
If K = 00000006, shift left 6 character positions.

If K = 77777771, shift right 6 character positions.

23 18 1 7 16 1 5 14

Format: I 70 I d I
d=l
j = jump test designator

m = jump address

00

m

Instruction Description: This instruction compares
(E) with zero. If the test condition is true, jump to
address m; if not, RNI from address P + 1. See the
table below for test conditions.

Mnemonic

EQ

LT

23 18 17

o

Format: ! 70 I 6

m = jump address

Test Condition

(E) = 0

(E) < 0

15 14

m

00

Instruction Description: Jump to address 'm' if digit
13 of the ED register receive a character indicating
that ED has overflowed; if not, RNI from address
P + 1.

23 18 17 15 14 00

Format: I 70 7 y

y = field length designator

Instruction Description: Place the lower 4 bits of 'y'
in the simulated 4-bit D register. (D) remains set

5-22

until a new quantity is entered. In other words,
during a series of load and store operations dealing
with equal size fields, (D) need only be set once.

23 18 17 16 00

Format: 64 I b I

Word
Address

Character
position

within the

If b=O, r is the unmodified direct address.
If b=l, r is modified by (B1); R=r+(B1).

word

Instruction Description: Load the 53-bit ED register
(includes sign of ED) with a field of up to 12 nu­
meric BCD characters from storage. Characters
are read consecutively, starting with the least sig­
nificant character (at address R + (D - 1) and
continuing until the most significant character (at
address R) is in ED. (ED) is shifted right as loading
progresses. The sign is acquired along with the
least significant character. Before executing this
instruction, specify field length with a SET (70.7)
instruction.

23 18 17 16 00

Format: I 65 I b I
If b=O, r is the unmodified direct address.
If b=l, r is modified by the (B2); R=r+ (B2).

Instruction Description: Store a field of up to 13
numeric BCD characters from the 53-bit ED regis­
ter (includes sign of ED). Storage begins with the
least significant character and the sign. As it con­
tinues, (E~) is shifted right, end off, until the field
is stored. Before executing this instruction, specify
field length with a SET (70.7) instruction.

23 18 17 16

Format: I 66 I b I

If b = 0, r is the unmodified direct address.
If b=l, r is modified by (B3); R=r+(B3).

00

Instruction Description*: A field of up to 12 stored
numeric characters may be added to (ED). The sum
appears in ED. Stored characters are in consecutive
character positions of adjacent storage addresses.
'R' specifies the most significant character of a field.
The 4-bit D register specifies field length.

23 18 17 16

Format: 67 I b I

If b=Q, r is the unmodified direct address.
If b= 1. r is modified by (B3); R=r + (B3).

00

Instruction Description*: A field of up to 12 stored
numeric characters may be subtracted from (ED).
See instruction 66 for remainder of description.

BLOCK OPERATIONS­
SEARCH, MOVE, AND I/O

Operation Field

71 SRCE,INT
SRCN,INT

72 MOVE,INT

73 INPC,NC.INT,B,H
INAC,NC.INT

74 INPW,NC,INT,B,N
INAW,NC.INT

Address Field

c, m 1 • m 2

c, m 1 , m 2

c, m 1 • m 2

ch, m1 • m2

ch

ch, m 1, m2

ch

Interpretation

Search character equality
Search character inequality

Move c characters from m 1 to m 2

Input, character block to storage
Input, character to A

Input, word block to storage
I nput, word to A

75 OUTC,NC.I NT,B.H
OTAC,NC,INT

ch. m 1 , m2

ch
Output, character block from storage
Output, character from A

76 OUTW.NC,INT.B,H Output, word block from storage
Output, word from A OTAW.NC,INT

Comments: These instructions have the following
characteristics in common:

They are composed of three words, including
the two main block instruction words plus a
one word reject instruction.

2 Addresses required for the execution of the
instruction set are located within the instruc­
tion set.

3 Constants such as field lengths and BCD codes
for search characters are within the instruc­
tion set.

4 They can all be set to cause an interrupt upon
completion.

See chapter 3, Programming Features, for a
description of the Block instructions.

*The A and Q registers are not used for these in­
structions.

5-23

SENSING, CONTROL AND INTERRUPT

Operation Field Address Field

77.0 CON x. ch

77.1 SEl x. ch

77.2 COpy x. ch; x = 0

77.2 EXS x. ch; x ~ 0

77.3 CINS x. ch; x = 0

77.3 INS x. ch; x ~ 0

77.4 INTS x. ch

77.50 INCl x

77.51 10Cl x

77.52 SSIM x

77.53 SCIM x

77.57 IAPR

77.6 PAUS

77.70 SlS

77.71 SFPF

77.72 SBCD

77.73 DINT

77.74 EINT

77.75 CTI

77.76 CTO

77.77 UCS

Comments: 77 is an instruction that handles sens­
ing, selecting, interrupt and control functions not
covered by instructions 00-76.

23 18 17 15 14

Format: 0-7

Interpretation

connect

select

copy external status

external sense

copy internal status

internal sense

interrupt sense

interrupt clear

1/0 clear

selectively set interrupt mask

selectively clear interrupt mask

interrupt associated processor

pause

selective stop

*set FP fault

*set BCD fault

disable interrupt control

enable interrupt control

console typewriter in

console typewriter out

unconditional stop

The general format for all sub-divisions of the
77 instruction is:

12 11 00

0000-7777

Operation
Code

Channel designator
or special usage

Operation
Code

Modifier

Throughout this instruction, the term Busy may
mean:

channel writing.
channel reading.
1/0 equipment Reject on channel.
last Connect on channel not yet recognized. or
last Function on channel not yet recognized.

*Used for software simulation of the optional arith­
metic packages.

5-24

Format:

Comparison mask.
function code. etc.

23 18 17 1 5 14 12 11

77 o c

c-= 1/0 channel designator 0-3.

00

xxxx

xxxx = 12-bit connect code. Bits 09-11 select one
of eight controllers which may be attached
to the selected channel. Bits 00-08 select
one of a possible 512 units which may be
connected to the .selected controller.

Instruction Description: Channel c is checked for
Busy. If Busy is present, a reject instruction is read
from address P + l. If channel c is not Busy, a 12-
bit connect code is sent on channel c along with a
connect enable; then the next instruction is read
from address P + 2.

23 18 1 7 1 5 14 12 11 00

Format: 77 c xxxx

c = I/O channel designator 0-3.
xxxx = 12-bit function code. Each piece of periph­

eral equipment has a unique set of function
codes to specify operations within that de­
vice. Refer to the individual peripheral
equipment manuals for these codes.

Instruction Description: Channel c is checked for
Busy. If Busy is present, a reject instruction is read
from address P + 1. If channel c is not Busy, a 12-
bit function code xxxx is sent on channel c along
with a function enable; then the next instruction is
read from address P + 2.

23 1817 1514 1211 00

Format: I 77 I 2 I ch I 0000

ch = I/O channel designator 0-3

Instruction Description: This is a dual purpose in­
struction:

A The external status code from I/O channel C is
loaded into the lower 12 bits of A.

B The contents of the Interrupt Mask register are
loaded into the upper 12 bits of A. See Table 5-4.
RNI from address P + 1.

23 18 17 15 14 12 11 00

Format: I 77 I 3 I ch I 0000

ch = I/O channel designator 0-3

Instruction Description: This is a dual instruction:

A The internal status code of the computer is

loaded into the lower 12 bits of A.

B The contents of the Interrupt Mask register are
loaded into the upper 12 bits of A. See Table 5-4.
RNI from address P + 1.

23 18 17 15 14 12 11 00

Format:
xxxx 77

ch = I/O module, channels 0-3.

xxxx = sense mask. Bits 00-03 of the mask repre­
sent interrupt lines from the designated I/O
channel; bits 08-11 represent internal inter­
rupt conditions.

Instruction Description: Sense for the interrupt
conditions listed in table 5-4. If" 1" bits appear on
the interrupt lines in any of the same positions as
"1" bits in the mask, RNI from address P + 1. If
comparison does not occur in any of the bit posi­
tions, skip to address P + 2. Internal interrupts
are cleared as soon as they are sensed.

Table 5-4. Interrupt Sensing Mask

Comparison Mask
Definitions Bit Positions

00-07 I/O line 0-3 interrupt active

*08 Clock interrupt

*09 Exponent overflow or BCD fault

*10 Arithmetic overflow or divide fault

* 11 Search/move completion interrupt

23 18 17 15 14 12 1 1 00

Format: 77 5 o xxxx

Instruction Description: The interrupt faults defined
by xxxx are cleared (see table 5-5). N ate that only
internal I/O channel interrupts are cleared by this
instruction.

Table 5-5. Interrupt Mask Register

Bit Positions Definitions

00-07 I/O channel 0- 7 interrupts
(internal and external)

08 Clock interrupt

09 Exponent overflow or BCD fault

10 Arithmetic overflow or divide fault

11 Search/move completion interrupt

* FFs associated with these faults are cleared as soon
as the conditions are sensed.

5-25

23 18 17 15 14 12 11 00

Format: I 77 xxxx

Instruction Description: Selectively sets the Inter­
rupt Mask register according to xxxx. For each" 1"
bit in xxxx, the corresponding bit position in the
Interrupt Mask register is set to "1" (see table 5-5).

23 18 1 7 1 5 14 12 11 00

Format: I 77 5 I 3 I xxxx

Instruction Description: Selectively clears the Inter­
rupt Mask register according to xxxx. For each" 1"
bit in xxxx, the corresponding bit position in the
Interrupt Mask register is set to "0" (see table 5-5).

23 18 17 15 14 12 11 00

Format: I 77 5 7

Instruction Description: This instruction sends an
int.errupt signal to a processor (computer). The
interrupt remains active until it is recognized.

23 18 17 15 14 12 11 00

Format: I 77 7 I
Instruction Description: The floating-point fault
flip-flop is set to indicate that a floating point fault
has occurred. This instruction is used when float­
ing-point arithmetic is simulated and causes a flip­
flop to set whenever a fault is sensed. The setting
of this flip-flop causes bit 09 to be set in the In­
terrupt register and permits a normal hardware
interrupt.

5-26

23 18 17 15 14 12 11 00

Format: I 77

Instruction Description: This instruction exists for
the same reason as 77.71. In this case the BCD
Fault flip-flop is set.

23 18 17 1 5 14 12 11 00

Format: 77 7 3

Instruction Description: Interrupt control is enabled.
This instruction allows one more instruction to
be executed before any interrupt can take place.

23 18 17 1 5 14 12 11 00

Format: I 77 I 7 I 4 I
Instruction Description: Interrupt control is enabled.
This instruction allows one more instruction to
be executed before any interrupt can take place.

Appendix A
3100 Compass

This appendix describes the capabilities of the 3100 COMPASS assembly system and is not

intended as a final system description.

This information is preliminary and subject to change without notice.

Coding Procedures

3100 COMPASS subprograms are written on
standard coding sheets. A subprogram consists of
symbolic or octal machine instructions and pseudo
instructions. Symbolic machine instructions are al­
phabetic mnemonics for each of the 3100 machine
instructions. Pseudo instructions are COMPASS
instructions used for the following operations:

subprogram identification and linkage

data definition (constants conversion)

data storage

system calls

assembler control

output listing control

macro definition

INSTRUCTION FORMAT
A COMPASS instruction may contain location,

instruction, address, comment, and identification
fields.

LOCATION FIELD
A symbol in the location field (LOCN) is placed

in columns 1-8. A symbol identifies the address of
an instruction or data item.

Location field symbols may be blank or consist
of one to eight alphabetic or numeric characters;
the first character must be alphabetic. Embedded
blanks are ignored in location symbols. The fol­
lowing are examples of location symbols:

A

H3

ABCDEFGH

P1234567

A single * in the location field signifies a line of
comments.

OPERATION CODE FIELD
The operation code field (OP) consists of any of

the 3100 mnemonic or octal instruction codes with
modifiers, or any macro or pseudo instructions.
The field begins in column 10 and ends at the first
blank column. If a modifier is used, a comma must
separate the operation code from the modifier; no
blank columns may intervene. A blank operation
field or a blank in column 10 results in a machine
word with zeros in the operation field.

ADDRESS FIELD
The address field begins before column 41 any­

where after the blank which terminates the opera­
tion field and ends at the first blank column. It is
composed of one or more subfields, depending
upon the instruction. Subfields, which are sepa­
rated by commas on the coding form, specify the
following quantities:

m or n word address

r or s character address

y operand (1 5-bit)

z operand (17 -bit)

b or i index register or interval quantity

c character

v register file location

ch channel

x function code or comparison mask

The interpretations of the address subfields for
each set of 3100 instructions are described in the
table on page A-2.

An m, n, r, s, y or z subfield may contain:

• a location symbol

• the symbol ** which causes each bit in the
subfield to be set to one

• the symbol * which causes the assembler to
insert the relocatable address of that instruc­
tion in the address field

• an integer constant

• an arithmetic expression

• a literal

b SUBFIELD-The index field (b) specifies an index
register 1-3; or a symbol or expression which re­
sults in one of these digits may be used. Some
instructions require a particular index register. If
the b subfield is used with the octal operation
codes, 0-7 may be used.

c SUB FIE LD - The character field may con tain any
. octal or decimal number, expression, or a symbol
which is equivalent to a 6-bit binary number. Octal
numbers must be suffixed with the letter B.

ch SUBFIELD- The channel field may contain one
digit 0-3 to designate an input! output channel, or
a symbol equated to one of these digits, or an
expression resulting in one of the digits.

A-I

x SUBFIELD-The code field may contain any of
the interrupt or input! output codes or comparison
mask. Either decimal numbers, octal numbers suf­
fixed with the letter B, symbols, or expressions
resulting in constants may be used.

v SUBFIELD- The register file subfield specifies a
location which may be 008-778. Any legal coding
which results in a value 008-778 may be used.

i SUBFIELD-In the MEQ and MTH instructions,

this subfield specifies a decrement interval quantity
of 1-8.

COMMENTS FIELD
Comments may be included with any instruc­

tions. A blank column must separate them from
the last character in the address field and they may
extend to column 72. Comments have no effect
upon compilation, but are included on the assem­
bly listing.

INSTRUCTION

00-70 71 (Search) 72 (Move) 73-77 (1/0)

first word
m,n word address, last

address word address + 1

b index register

y or z operand operand
F

c character

E
L
D

r character address of first first character first
address character address of character

source field address

s address of last first character last
character + 1 address of character

ch

x

i Interval quantity

IDENTIFICATION FIELD
Columns 73-80 may be used for sequence num-

receiving field address + 1

channel

1/0 or inter-
rupt code

bers or for program identification. This field has
no effect upon assembly.

Pseudo-I nstructions

MONITOR CONTROL
The following pseudo instructions provide com­

munication between 3100 COMPASS subprograms
and the monitor. Some are required in every sub­
program; others are optional. Unless otherwise
noted, each instruction may have a location field
and an address field.

IDENT m -appears at the beginning of every
COMPASS subprogram. The address field con-

A-2

tains the name of the subprogram, which may be
a maximum of eight alphanumeric characters, the
first being alphabetic. A symbol in the location
field is illegal and will result in an error flag (L)
on the listing.

END m -marks the end of every subprogram.
When a program (consisting of one or more sub­
programs) is assembled for execution, one of the
subprogram END cards must contain a location

symbol in the address field to indicate the first
instruction to be executed in the program. Only
one END card can contain an address field sym­
bol. A term in the location field is ignored.

FIN IS -terminates an assembly operation. It is
a signal to the assembler that no more programs
are to be assembled. The FINIS card is placed
after the last END card of the last subprogram
in the source program.

SYMBOL ASSIGNMENTS
The pseudo instructions, EQ U; EQ U, C; ENTRY;

and EXT define symbols as equal to other symbols,
or values or identify symbols used to communi­
cate with subprograms. Linkage between symbols
in separate subprograms is provided by the moni­
tor system. These pseudo instructions may appear
anywhere between an IDENT and an END pseudo
instruction.

EQU m - assigns the result of the expression in the
address field to the symbol in the location field.
The result is a 15-bit address.

The following forms are allowed:

symbol EQU symbol

symbol EQU constant (octal or decinal)

symbol EQU expression (address arithmetic)

Example:

OUT EQU JUMP + 2

If JUMP is assembled to address 00100, OUT
will be assigned the value 00102.

Numerical constants must follow the rules for
symbolic instructions. Address arithmetic is per­
mitted. A location field symbol may be equated
to a decimal or octal constant.

EQU, C m -is similar to EQU, except that the
result is a 17-bit address.

ENTRY m -defines location symbols which are
referenced in other subprograms. These symbols,
called entry points, must be placed in the address
field of an ENTRY pseudo instruction. Any num­
ber of locations may be declared as entry points in
the same ENTRY instruction. If two or more names
appear in the address field, they must be separated
by commas. No spaces (blanks) can appear within
a string of symbols. The address field of the
ENTR Y pseudo instruction may be extended to
column 72 and the location field must be blank.
Only word-location symbols (I5-bits) may be used.

Example:

ENTRY SYM 1 ,SYM2.SYM3

SYM 1. SYM2, SYM3 can now be referenced by
other subprograms.

EXT m - Symbols used by a subprogram defined
in another subprogram are declared as external
symbols by placing them in the address field of an
EXT pseudo instruction. Only word-location sym­
bols (I5-bit) may be used. For example, to use the
external symbols SYMI, SYM2, SYM3 in sub­
program A, the following pseudo instruction would
be written in subprogram A:

EXT SYM 1.SYM2.SYM3

These symbols must be declared as ENTRY
points in some other subprogram or subprograms
which are loaded for execution with subprogram
A. The address field may be extended to column
72; symbols are separated by commas. No spaces
(blanks) can appear in a string of symbols. The
location field of an EXT must be blank.

Address arithmetic cannot be performed on ex­
ternal symbols.

Example:

FFI

BEN

DEED

IDENT

ENTRY

EXT

SJ 1

•
EQU

•
LDA

•
•
•

RTJ

•
•

END

CAIRO

DEED. FFI

ABE. DAVID

**

HAKIM

ABE

DAVID

END FFI

FINIS

LISTING CONTROL
The pseudo instructions which provide listing

control for assembly listings are shown below.
These instructions will not appear on the assembly
listing and may be placed anywhere in a program.

SPACE -controls line spacing on an assembly
listing. A decimal constant in the address field
designates the number of spaces to be skipped
before printing the next line. If the number of

A-3

spaces to be skipped is greater than the number
of lines remaining to be printed on a page, the
line printer skips to the top of the next page. A
symbol in the location field is ignored.

EJECT -causes the line printer to skip to the top
of the next page when the assembled program is
listed. A symbol in the location field is ignored.

REM -is used to insert program comments in an
assembly listing. The address field can be extended
to column 72. Any standard key punch character
can be used in the comments. If the comments are
to be written on more than one line, successive
REM pseudo instructions must be used. A symbol
in the location field is ignored.

NOLIST-causes the assembler to discontinue
writing a listing of the program, starting with this
instruction.

LIST -causes the assembler to resume listing the
program. This instruction is used after a NOLIST
instruction; it is not necessary to use it to obtain
a complete listing of a program.

MACRO INSTRUCTIONS

MACRO -defines the beginning of a sequence of
instructions that will be inserted by the assembler
in the source program whenever th~ location sym­
bol of the MACRO instruction appears in an oper­
ation field. The end of the sequence of instruction
is marked by an ENDM pseudo instruction. For
example, if the sequence

HOPE MACRO (PAMA)

LOA PA

INA 24B

STA MA

ENOM

were defined and the following
peared in the same program

STA GARAGE

HOPE (OW21 06)

LOA FARM

the assembled output would be

A-4

STA GARAGE

LOA

INA

STA

LOA

OW21

24B

06

FARM

instructions ap-

EN OM - defines the end of a macro sequence.

LI B M - names library macros.

NAME (p1, ... ,pn)-is used to reference macros. The
parameters pI, ... ,p2 are used by the routine, and
name is a system defined macro.

DATA STORAGE ASSIGNMENTS
The following pseudo instructions reserve stor­

age areas for blocks of data. BSS reserves storage
blocks within the subprogram in which it appears.
If these storage areas are to be referenced by other
subprograms, the name assigned to the block is
declared as an entry point in the program contain­
ing the block, and as an external symbol in the pro­
gram referencing the block. Only work location
symbols may be used. COMMON identifies storage
areas to be referenced by more than one subpro­
gram. DATA specifies special areas which may
be preloaded with data; EXT and ENTRY are
not needed to reference COMMON or DATA
areas. Address arithmetic may be used, but all
symbols must have been defined before the instruc­
tion is encountered.

BSS m - reserves a storage area of length m in a
subprogram on a common or data storage area.
The address field may contain any expression which
results in a constant. The resultant constant speci­
fies number of words to be used. The address field
of the first word of the reserved area is assigned
the location field term of the BSS instruction. Other
words or characters in the area may be referenced
by addressing arithmetic or by indexing.

BSS, C m - reserves a character storage area of
length m in a subprogram. The address field is
similar to the address field of BSS pseudo instruc­
tion. However, the resultant constant specifies the
number of character positions to be reserved.

COMMON -assigns location terms following it to
a common storage block until a DATA or PRG
pseudo instruction is encountered. ORGR, BSS
and BSS, C are the only pseudo instructions which
may follow a COMMON pseudo instruction.*
Location and address fields of a COMMON pseudo
instruction should be blank. COMMON may not
be preset with data. The following example illus­
trates the foregoing pseudo instructions:

*Occurrence of any other machine or data defini­
tion command causes the command and its suc­
cessors to be assembled into the subprogram area.

Example:

IDENT BURKE

COMMON

A BSS 20

B BSS 10

C BSS 6

•
•
•

END

IDENT SPINOZA

COMMON

MARKET BSS 5

STREET BSS 13

SINGER BSS 4

END

Locations in Name in
memory relative subprogram
to the beginning BURKE
of common

1-5 A)A+4

6-18 A+5~A+17

19-20 A+18~A+19

21-22 B)B+1

23-30 B+2)B+9

31-36 C)C+5

DA TA - assigns all location symbols following it
to a data block until a COMMON or PRG pseudo
instruction is encountered. Data described by
OCT; BCD; BCD,C; DEC; DECD and VFD
pseudo instructions may be assembled into a DATA
block. Areas may be reserved within a DATA
block by the BSS and BSS,C pseudo instructions.
The following is an example of a DATA pseudo
instruction coded within a subprogram:

Example:

•
•
•

LOA APRESMOI

DATA

CONS OCT 10,11,12,13

PRG *
STA LEDELUGE

A data area named CONS would be reserved
and the octal constants 10, 11, 12, and 13 loaded
into the four words in this area. In the source

During execution, one area in storage is assigned
as common. All common storage may be filled re-
peatedly during program execution. A storage
location assigned to the nth word in COMMON
in subprogram 1 is the same location assigned to
the nth word in common in subprogram 2. If the
two subprograms in the above example were loaded
together, the memory assignments would be as
shown in the following table:

Name in subprogram
SPINOZA

MARKET) MARKET+4

STREET) STREET+12

SINGER) SINGER+1

SINGER+2) SINGER+3

program, STA LEDELUGE would appear in the
next location after LDA APRESMOI.

PRG -terminates the definition of a COMMON
or DATA area.

CONSTANTS
Octal, decimal, and BCD constants may be in­

serted in a 3100 COMPASS program by using the
pseudo instructions listed below. Location terms
may be used and the address field may extend to
column 72, if necessary.

OCT m1 ,m2, ... ,mn -inserts octal constants into
consecutive machine words. A location term is
optional; ifpresent, it will be assigned to the first
word. The address field consists of one or more
consecutive subterms, separated by commas. Each
subterm may consist of a sign (+ or - or none),
followed by up to eight octal digits. Each constant
is assigned to a separate word. If a location term
is present, it will be assigned to the first word. If
less than eight digits are specified, the constant is
right justified in the word and leading zeros inserted.

A-5

DECD ml,m2, ... ,mn-converts decimal constants to
equivalent 48-bit binary values and stores them in
consecutive groups of two machine words. Each
constant may be written in either fixed or floating
point format.

The decimal numbers to be converted are writ­
ten in the address field of the DECD instruction
as follows:

Floating point constant consists of a signed or un­
signed decimal integer of 14 digits. It is identified
as a floating point constant by a decimal point
which may appear anywhere within the digital
string. A binary scale factor or decimal scale factor
(indicated by B ± b or D ± d, respectively) is
permitted. The result after scaling must not exceed

Examples:

LOCN Op Address Field

CONST A DECO -12345.

CONST B DECO + 12345

CONST C DECO -12345.0+5

CaNST 0 DECO 123450-3

CONST E DECO + 12345B+8

the capacity of the hardware (approximately
10 ±308).

Fixed point constant format is similar to that of the
DEC single precision constants. Up to 14 decimal
digits may be specified, expressing a value the mag­
nitude of which is less than 247. Decimal and binary
scale factors may be used. Low order bits are not
lost; the signed 48-bit binary result is stored in two
consecutive computer words.

No spaces may occur within a number, including
its associated scale factors, as a space indicates
the end of the constant. Plus signs may be omitted.
Any number of constants may appear in a DECD
instruction. Successive constants are separated by
commas.

Comments

FLOATING PT CONST

FIXED PT CONST

FLOATING PT CONST, OECSCALE

FIXED PT CaNST, OECSCALE

FIXED PT CONST, BINSCALE

CaNST F DECO +12345.012B-18 FLOATING PT CaNST, OECBIN SC

DEC ml ,m2, ... ,mn - inserts 24-bit decimal integer
constants in consecutive machine words. The D
and B scaling is identical to the DECD scaling,
but only positive integer values less than 233 may
be used. If a location term is present, it is assigned
to the first constant.

BCD n,clc2, ... ,c4n-inserts binary-coded decimal
characters into consecutive words. If a location
term is present, it will be assigned to the first word.
The address field consists of a single digit n, which
specifies the number of four-character words needed
to store the BCD constant, followed by a comma
and the BCD characters. The next 4n character
positions after the comma will be stored. Any char­
acter string which terminates before column 73
may be used; n is restricted accordingly.

BCD,C n,C1C2, ... ,Cn -places n characters in the next
available m character positions in memory. If the
previous instruction were also a BCD,C instruc­
tion, the next character position is defined as the
one which follows the last position used by the
previous instruction. If a location symbol is used,
it will be assigned to the first character position in
this field. If the previous instruction were not a
BCD,C instruction, the next character position

A-6

would be the first character position (0) of the next
available word. Any character string which ter­
minates before column 73 may be used; n is re­
stricted accordingly.

VFD mln1/vl .. ./mpnp/vp-assigns data in continu­
ous strings of bits rather than in word units. Octal
numbers, character codes, program locations and
arithmetic values may be assigned consecutively in
memory, regardless of word breaks. The address
field consists of one or more data fields. In each
data field m specifies the mode of the data, n the
number of bits allotted: and v the value. Four
modes are allowed:

o Octal number. If it is preceded by a minus
sign, the one's complement form is stored.

H Hollerith character code. The field length
must be a mUltiple of six. Any printable
character may appear in the v field except
blanks or commas. Either a space or comma
immediately succeeds the last character.

A Arithmetic expression or decimal constant.
The v field consists of an expression formed
according to the rules for address field arith­
metic, with the following restrictions:

1 n must be ~ 24 and I vi ::;; 2n
-

1-1 unless a
relocatable expression is used, in which
case, n = 1 5 for word addresses and n = 1 7
for character addresses.

2 When a relocatable expression is used, it

Example:

must be placed in the correct position in
the address portion of a word to insure
that it will be relocated by the loader.

C Character Expression.

VFD 012/-737,A27/A-X+B,H24/+A3 ,A15/NAME+2,H12/BQ

A X, and B are non-relocatable symbols. Four words are generated, with the data placed as follows:

23 12 0

I 70 40 [A* I
WORD 1

23 14 0

I 3 60 [NAME + 2] I
WORD 3

The YFD address field is terminated by the first
blank column not within a Hollerith field.

ADDITIONAL PSEUDO INSTRUCTIONS
Additional lines of coding may be generated by

the following pseudo instructions:

I FZ m,n - n succeeding lines of coding will be as­
sembled if m is zero. The integer n must be a posi­
tive numerical integer and m may be a symbol, an
address arithmetic symbol, or a literal. If m is
nonzero, n succeeding lines of coding will be by­
pa~sed by the assembler.

I FN m,n - n succeeding lines of coding will be as
sembled if m is nonzero; n must be a positive
numerical integer and m may be a symbol, address
arithmetic symbol or literal. If m is zero, n suc­
ceeding lines of coding will be bypassed by the
assembler.

The pseudo instructions, 1FT and IFN, may be
used within the range of a MACRO definition only.

1FT m,n,p - p succeeding lines of coding will be
generated if character string m equals character
string n. The integer p must be a positive numerical
integer and m and n may be a formal parameter
or a literal. If m ~ n, p succeeding lines of coding
will be bypassed.

IFF m,n,p-p succeeding lines of coding will be
generated if m ~ n. The integer p must be a posi­
tive integer and m and n may be a formal parameter
or a literal. If m = n, p succeeding lines of coding
will be bypassed.

23 14 8 0

I-x + B 20 I 21 0

WORD 2

23 12 0

I B Q I a 0 0 0

WORD 4

ORGR m -the value in the address field will be
assembled as the beginning location for subsequent
instructions. The value may be in program, data
area, or common area mode. The occurrence of a
mode change pseudo operation, COMMON,
DATA or PRG, terminates ORGR and subse­
quent instructions are assembled in the new mode.

NOP-No operation. An ENI y, 0 instruction is
inserted.

TITLE - the information beginning in the address
field is printed at the head of each page of the
output listing which follows. The first page of list­
ing may be titled by presenting the TITLE card
immediately following the IDENT card.

ASSEMBLY LISTING FORMAT
An assembly listing contains the source pro­

gram instructions and the corresponding octal
machine instructions. The addresses assigned to
each subprogram are relative addresses only. Ab­
solute addresses are assigned when the program is
loaded by the monitor loader. All common blocks
are assigned consecutively, starting at relative loca­
tion 00000. The range of locations assigned to the
machine instructions (first word address and last
word address plus one) are given at the beginning
of each subprogram. Following this is a list of all
entry points and external symbols, and the address
assignments for all COMMON and DATA pseudo
instructions. References to external symbols are
strung together by the assembler. The monitor
loader assigns the proper absolute addresses.

I

I

A-7

The address of each instruction word is the left­
most field for each instruction in the assembled
listing. (Error codes appear to the left of this field.)
External address field symbols are indicated by an
X immediately to the left of the octal address field
of each instruction. P indicates Program Relocat­
able, and C indicates Common. Subsequent next
fields from left to right on the listing are an 8-digit
location contents field, a 2-digit operation code, a
I-digit b-subfield, a 5-digit address, and a I-digit
character position. The remaining fields correspond
to those in the symbolic source program. Listing
format:

loca- location char source
tion contents op b addr pos line

5 or 6
digits

8

ERROR CODES

2 5 80

The following error codes may appear as the
leftmost field on an assembled listing:

Code

A-8

A Illegal character or expression in the ad­
dress field.

o Same symbol used in more than one loca­
tion field term. Only the first symbol is recog­
nized; the remainder are ignored. A list of
doubly defined symbols appears on the as­
sembled listing.

F Symbol table is full. No more location field
symbols will be recognized. Also designates
overflow of MACRO parameter table.

D Illegal operation code. Zeros are substituted

for the operation code.

U Undefined symbol. The assembler assigns the
symbol to a region following the last program
entry. A list of undefined symbols will appear
on the output listing.

C An attempt was made to preset COMMON.

L A symbol appears in the location field when
not permitted, a symbol is missing in the
location field when one is required, or an
illegal location symbol appears.

M A modifier appears in the location field when
not permitted, a modifier is missing in the
operation field when one is required, or an
illegal modifier appears in the operation field.

T A character address symbol was used in an
address subfield requiring a word symbol;
significant bits are lost.

TABLE A-1

3100 COMPASS and BASIC ASSEMBLER MACHINE INSTRUCTIONS

Operation Field

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

HLT

SJ1
SJ2
SJ3
SJ4
SJ5
SJ6
RTJ

UJP. I

IJI
IJD

AZJ. EO
NE
GE
LT

AOJ. EO
NE
GE
LT

ASE.S
OSE. S
ISE

ASG.S
OSG.S
ISG

MEO

MTH

lSI
ISO
SSH

ECHA. S

SHA
SHQ

SHAO
SCAO

ENA
ENI
ENO

INA
INI
INO

XOA. S
XOO. S
XOI

ANA. S
ANO. S
ANI

Address Field

m

m
m
m
m
m
m
m

m. b

m. b
m. b

m

m

y
y
y. b

Y
Y
y. b

m. i

m. i

y. b
y. b
m

z

y. b
y. b

y. b
y. b

Y
y. b
y

y
y. b

Y

Y
Y
y. b

y
y
y. b

Instruction

unconditional stop; read next instruction
from location m

jump if key 1 is set
jump if key 2 is set
jump if key 3 is set
jump if key 4 is set
jump if key 5 is set
jump if key 6 is set
return jump

unconditional jump

index jump; increment index
index jump; decrement index

compare A with zero;

compare A with 0;

{
{

jump if (A) = 0

jump if (A) ~ 0

jump if (A) ~ 0
jump if (A) ::; 0

jump if (A) = (0)

jump if (A) ~ (0)

jump if (A) ~ (0)

jump if (A) ::; (0)

skip next instruction. if (A) = y
skip next instruction. if (0) = y
skip next instruction. if (Bb

) = y

skip next instruction. if (A) ~ y
skip next instruction. if (0) ::; y
skip next instruction. if (B

b
) ~ y

masked threshold search

masked equality search

index skip; increment index
index skip; decrement index
storage shift

enter A with 17 -bit character address

shift A
shift Q

shift AO
scale AO

enter A
enter index
enter 0

increase A
increase index
increase 0

exclusive OR y and (A)
exclusive OR y and (0)

exclusive OR y and (B
b

)

logical product (AND) of y and (A)
logical product (AN D) of y and (0)
logical product (AND) of y and (Bb)

A-9

TABLE A-1 - (cant.)

Operation Field Address Field Instruction

20 LDA, I m. b load A

21 LDQ. I m. b load Q

22 LACH r . 1 load A character

23 LQCH r. 2 load Q character

24 LCA, I m. b load A complement

25 LDAQ.I m. b load AQ (double precision)

26 LCAQ.I m. b load AQ complement (double precision)

27 LDL. I m. b load logical

30 ADA. I m. b add to A

31 SBA, I m. b subtract from A

32 ADAQ.I m. b add to AO

33 SBAO. I m. b subtract from AO

34 RAD. I m. b replace add

35 SSA, I m. b selectively set A

36 SCA, I m. b selectively complement A

37 LPA, I m. b logical product with A

40 STA, I m. b store A

41 STQ. I m. b store Q

42 SACH r. 2 store character from A

43 SQCH r. 1 store character from 0

44 SWA. I m. b store 15-bit word address from A

45 STAQ. I m. b store AO

46 SCHA. I m. b store 17 -bit character address from A

47 STI. I m. b store index

50 MUA, I m. b multiply A

51 DVA, I m. b divide AQ (48 by 24)

52 CPR. I m. b within limits test

53 TIA b transmit (Bb) to A

TAl b transmit (A) to Bb

TMA v transmit (high speed memory) to A

TAM v transmit (A) to high speed memory

TMO v transmit (high speed memory) to 0
TOM v transmit (Q) to high speed memory

TMI v.b transmit (high speed memory) to Bb

TIM v.b transmit (B
b
) to high speed memory

AQA transmit (A) + (0) to A

AlA b transmit (A) + (B
b
) to A

IAI b transmit (Bb) + (A) to Bb

54 LDI. I m. b load index

56* MUAQ. I m. b multiply AQE (96 by 48)

57* DVAO. I m. b divide AQE (48 by 48)

60* FAD. I m. b floating add to AQ

61* FSB. I m. b floating subtract from AQ

*Trapped instructions.

A-lO

TAB LE A-1 - (cant.)

Operation Field Address Field Instruction

62* FMU, I m, b floating multiply AQ

63* FDV, I m, b floating divide AQ

64* lDE r, 1 load E

65* STE r, 2 store E

66* ADE r, 3 add to E

67* SBE r, 3 subtract from E

70* SFE y, b shift E

EZJ, EQ m compare E with zero; jump if E 0

IT compare E with zero; jump if E < 0

EOJ m jump to m on E overflow

SET y set D to value of y

71 SRCE, INT c, m1, m2 search character equality

SRCN, INT c, m1, m2 search character inequality

72 MOVE,INT L r, s move f characters from r to s

73 INPC, INT, B, H, A or NC ch, r, s input character block to memory

INAC, A or NC ch input character to A

74 INPW, INT, B, N, A or NC ch, m, n input word block to memory

INAW, A or NC ch input word to A

75 OUTC, INT, B, H, A or NC ch, r, s output character block from memory

OTAC, A or NC ch output character from A

76 OUTW, INT, B, N, A or NC ch, m, n output word block from memory

OTAW, A or NC ch output word from A

77.0 CON x, ch connect

77.1 SEL x, ch select

77.20 COPY x, ch x=o copy status

77.2 EXS x, ch x~o external sense

77.3 INS x, ch x~o internal sense

77.30 CINS x=o copy internal status

77.4 INTS x, ch interrupt sense

77.50 INCl x interrupt clear

77.51 10Cl x 1/0 clear

77.52 SSIM x selective set interrupt mask

77.53 SCIM x selective clear interrupt mask

77.57 IAPR x interrupt associated processor

77.6 PAUS x pause

77.70 SLS selective stop

77.71 SFPF set floating point fault

77.72 SBCD set BCD fault

77.73 DINT disable interrupt control

77.74 EINT enable interrupt control

77.75 CTI console typewriter in

77.76 eTa console typewriter out

77.77 UCS unconditional stop

*T rapped instructions.
A-II

Appendix 8
BasIc Assembler Coding Procedures

Basic Assembler Coding Procedures
BASIC Assembler programs are written in a

manner similar to 3100 COMPASS programs. Each
program is a complete entity and may be designed
for any 3100 equipment configuration. Object pro­
grams produced by the BASIC Assembler for the
3104 4K storage configuration are loaded by the
BASIC Loader; those for 8K or larger configura­
tions are loaded by 3100 SCOPE.

INSTRUCTION FORMAT consists of the
following fields:

LOCATION FIELD -from one to six alphabetic or
numeric characters; the first character must be al­
phabetic.

OPERATION FIELD-any of the 3100 mnemonic
instruction codes with modifiers, or the BASIC
Assembler pseudo instructions.

ADDRESS FIELD -from one to six character loca­
tion symbols, the special ** or * symbol, an integer
constant, or an expression (address arithmetic)
consisting of two terms.

COMMENTS FIELD -may be included with any
instruction. A full line of comments may be in­
serted by placing an asterisk in the location field.

IDENTIFICATION FIELD -sequence numbeT or
program identification.

Pseudo-I nstructions
PROGRAM IDENTIFICATION is provided

for each program.

IDENT m appears atthe beginning of a BASIC
Assembler program. The address
field contains the name of the sub­
program.

END m marks the end of the program. The
address field may contain a symbol
which is used as the entry point to
the program.

SYMBOL ASSIGNMENTS for each program.

EQU m equates an undefined symbol to a
defined word address symbol.

EQU, C m equates an undefined symbol to a
defined character address symbol.

ORGR m assembles the value specified in the
address field as the beginning loca­
tion for subsequent instructions. A
symbol in the address field must
be defined elsewhere in the pro­
gram.

NOP m inserts a "do-nothing" instruction.
The address field may contain a
symbol.

LISTING CONTROL for assembly listings.

SPACE controls line spacing.

EJ ECT moves the line printer to the top of
the next page.

REM

NOLIST

LIST

is used to insert program comments.

suppresses the output listing lines.

resumes printing after a NOLIST
instruction.

DATA STORAGE ASSIGNMENTS

BSS m reserves a block of words of length m.

BSS, C m reserves a block of characters of
length m.

DATA DEFINITION

OCT m

DEC m

DECO m

inserts an octal constant into a ma­
chine word.

inserts a single precision decimal
constant into a machine word. Deci­
mal and binary scaling is permitted.

inserts a double precision decimal
constant into two consecutive ma­
chine words. Floating or fixed point
numbers are allowed, also decimal
and binary scaling.

BCD n,C1C2 ... C4n inserts binary-coded decimal
characters into consecutive
words.

BCD, Cn,c1c2 ... Cn inserts binary-coded decimal
characters into the next
available n character posi­
tions in storage.

ASSEMBLY LISTING FORMAT
An assembly listing contains the source program

and corresponding octal machine instructions. The
program may be loaded absolutely, beginning at
location 00000 or relocated into memory relative
to some location other than 00000. Error codes
correspond to 3100 COMPASS error codes; A, D,
F, L, M, 0 and T codes are included.

B-1

Appendix C
Number Systems

• ARITHMETIC

• CONVERSIONS

• FIXED POINT AND
FLOATING POINT
NUMBERS

Number Systems

Any number system may be defined by two char­
acteristics, the radix or base and the modulus. The
radix or base is the number of unique symbols used
in the system. The decimal system has ten symbols,
o through 9. Modulus is the number of unique
quantities or magnitudes a given system can dis­
tinguish. For example, an adding machine with
ten digits, or counting wheels, would have a modu­
lus of 1010_1. The decimal system has no modulus
because an infinite number of digits can be written,
but the adding machine has a modulus because
the highest number which can be expressed is
9,999,999,999.

Most number systems are positional, that is, the
relative position of a symbol determines its mag­
nitude. In the decimal system, a 5 in the units
column represents a different quantity than a 5 in
the tens column. Quantities equal to or greater
than 1 may be represented by using the 10 symbols
as coefficients of ascending powers of the base 10.
The number 98410 is:

9 x 102 = 9 x 100 = 900
+8 X 101 = 8 x
+4 x 10° = 4 x

10 = 80
1 4

98410

Quantities less than 1 may be represented by
using the 10 symbols as coefficients of ascending
negative powers ofthe base 10. The number 0.59310
may be represented as:

5x 10- 1 = 5x.1 .5
+9x10- 2 =9x.01 .09
2 3x10- 3 = 3x.001 .003

0.59310

BINARY NUMBER SYSTEM
Computers operate faster and more efficiently

by using the binary number system. There are only
two symbols 0 and 1; the base = 2. The following

shows the positional value:
2 5 24 2 3 22 21 20

=32 =16 =8 =4 =2 =1 Binary point

The binary number 0 I I 0 I 0 represents:

Ox2 5 =Ox32= 0
+ 1 X 24 = 1 x 16 = 16
+1x,2 3 =1x8 8
+Ox2 2 =Ox4 0
+1x21=1x2 2
+Ox2° = Ox 1 _0 __

2610

Fractional binary numbers may be represented
by using the symbols as coefficients of ascending
negative powers of the base.

2 1 2- 2 2- 3 2- 4 2- 5 ...

Binary Point = 1;2 = % = Va = 1/16 = 1/32

The binary number 0.10 110 may be represented
as:

1 x 2 - 1 = 1 x 112 = 1 12 8/1 6
+Ox2- 2 = Ox 1/4 = 0 0
+ 1 x 2 - 3 = 1 x 118 = 1/8 2/1 6
+1x2 4=1x1/16=1/16= J1l6

11/1610

OCTAL NUMBER SYSTEM
The octal number system uses eight discrete sym­

bols, 0 through 7. With base eight the positional
value is:

85

32,768
84

4,096
8 3

512
82

64

The octal number 5138 represents:

5 x 8 2 = 5 x 64 = 320
+1x81 =1x8 8
+3 x 8° = 3 x 1 __ 3_

33110

8°
1

Fractional octal numbers may be represented by
using the symbols as coefficients of ascending neg­
ative powers of the base.

8- 1

1/8

8- 3

1/512

8- 4

1/4096

The octal number 0.4520 represents:

4x8- 1 =4x1/8 =4/8 =256/512
+ 5x8 - 2 = 5x 1/64 = 5/64 = 40/51 2
+2x8- 3=2x1 1512 =2/512 = 21512

298/512 = 149/25610

C-l

Arithmetic
ADDITION AND SUBTRACTION

Binary numbers are added according to the fol­
lowing rules:

0+0=0
0+1=1
1+0=1
1 + 1 = 0 with a carry of 1

The addition of two binary numbers proceeds

as follows (the decimal equivalents verify the
result):

Augend' 0111 (7)

Addend +0100 +(4)

Partial Sum 0011
Carry 1

Sum 1011 (11)

Subtraction may be performed as an addition:

8 (minuend) 8 (minuend)

-6 (subtrahend) or +4 (1 O's complement of subtrahend)

2 (difference) 2 (difference - omit carry)

The second method shows subtraction performed
by the "adding the complement" method. The omis­
sion of the carry in the illustration has the effect of
reducing the result by 10.

One's Complement. The 3100 performs all arith­
metic and counting operations in the binary one's
complement mode. In this system, positive numbers
are represented by the binary equivalent and neg­
ative numbers in one's complement notation.

The one's complement representation of a num­
ber is found by subtracting each bit of the number
from l. For example:

1111
-1001 9

0110 (one's complement of 9)

This representation of a negative binary quan­
tity may also be obtained by substituting" l's" for
"O's" and "O's" for" I 's".

The value zero can be represented in one's com­
plement notation in two ways:

0000--'002
1111--.112

Positive (+) Zero
Negative (-) Zero

The rules regarding the use of these two forms
for computation are:

Both positive and negative zero are acceptable
as arithmetic operands.

2 If the result of an arithmetic operation is zero,
it will be expressed as positive zero.

One's complement notation applies not only to
arithmetic operations performed in A, but also to
the modification of execution addresses in the F
register. During address modification, the modified
address will equal 777778 only if the unmodified
execution address equals 777778 and b = 0 or (Bb

)

= 777778.

C-2

MULTIPLICATION
Binary multiplication proceeds according to the

following rules:

OxO = 0
Ox 1 = 0
1 xO = 0
1 x 1 = 1

Multiplication is always performed on a bit-by­
bit basis. Carries do not result from multiplication,
since the product of any two bits is always a single
bit.

Decimal example:

multiplicand
multiplier

14
12

partial products < 28
14 (shifted one place left)

product 16810

The shift of the second partial product is a short­
hand method for writing the true value 140.

Binary example:

multiplicand (14) 1110
multiplier (12) 1100

partial products {

0000
0000 shift to place

1110 digits in proper
1110 columns

product (16810) 101010002

The computer determines the running subtotal
of the partial products. Rather than shifting the
partial product to the left to position it correctly,
the computer right shifts the summation of the par­
tial products one place before the next addition is
made. When the multiplier bit is "1", the multi-

plicand is added to the running total and the results
are shifted to the right one place. When the mul­
tiplier bit is "0", the partial product subtotal is
shifted to the right (in effect, the quantity has been
multiplied by 102).

DIVISION
The following examples shows the familiar

method of decimal division:

divisor

,.-1'---4-=---_ q u oti e nt

13\185 dividend
13

55 partial dividend
52

3 remainder

The computer performs division In a similar
manner (using binary equivalents):

divisor

1110

1 1 01 \1 0 11 1 001
1101

10100
1101

1110
1101

11

quotient (14)

dividend

partial dividends

remainder (3)

However, instead of shifting the divisor right to
position it for subtraction from the partial divi­
dend (shown above), the computer shifts the partial
dividend left, accomplishing the same purpose and
permitting the arithmetic to be performed in the A
register. The computer counts the number of shifts,
which is the number of quotient digits to be ob­
tained; after the correct number of counts, the
routine is terminated.

Conversions
The procedures that may be used when convert­

ing from one number system to another are power
addition, double dabble, and substitution.

Recommended Conversion Procedures
(Integer and Fractional)

Conversion Recommended Method

Binary to Decimal Power Addition
Octal to Decimal Power Addition
Decimal to Binary Double Dabble
Decimal to Octal Double Dabble
Binary to Octal Substitution
Octal to Binary Substitution

GENERAL RULES

rj > rf : use Double Dabble, Substitution

rj < r
f
: use Power Addition, Substitution

rj = Radix of initial system

r = f Radix of final system

POWER ADDITION
To convert a number from rj to r fer j < rr) write

the number in its expanded rj polynomial form
and simplify using r f arithmetic.

EXAMPLE 1 Binary to Decimal (Integer)

010 1112=1 (24) +0(2 3)+1(22)+1(2 1)+1(2 0)

=1 (16) +0(8) +1(4) +1(2) +1(1)

=16 +0 +4 +2 +1
=2310

EXAMPLE 2 Binary to Decimal (Fractional)
.01012 =(2- 1)+1(2- 2) +0(2- 3

) +1(2- 4
)

=0 +1/4 +0 +1/16
= 5/1610

EXAMPLE 3 Octal to Decimal (Integer)

3248=3(82) +2(8 1) +4(80)

=3(64)+2(8) +4(1)

=192 +16 +4
=21210

EXAMPLE 4 Octal to Decimal (Fractional)

.448 = 4(8 - 1) + 4 (8- 2)

=4/8 +4/64
=36/6410

DOUBLE DABBLE
To convert a whole number from ~ to r f (r j > rf):

1 Divide ri by rf using ri arithmetic

2 The remainder is the lowest order bit in the
new expression

3 Divide the integral part from the previous oper­
ation by rr

4 The remainder is the next higher order bit in
the new expression

5 The process continues until the division pro­
dUces only a remainder ~hich will be the high­
est order bit in the rf expression.

C-3

To convert a fractional number from fi to n:

1 MUltiply ri by rr using ri arithmetic

2 The integral part is the highest order bit in the
new expression

3 Multiply the fractional part from the previous
operation by rf

4 The integral part is the next lower order bit in
the new expression'

5 The process continues until sufficient precision
is achieved or the process terminates,

EXAMPLE 1

45 -;- 2
22 2
11 -;- 2

5 2
2 2

-;- 2

Thus: 4510

EXAMPLE 2

.25 x 2

.5 x 2

.0 x 2

Thus: .2510

EXAMPLE 3

273 -7- 8
34 -7- 8

4 -7- 8

Decimal to Binary (Integer)

22 remain~er 1; record 1
11 remainder 0; record 0
5 remainder 1; record
2 remainder 1; record . 1
1 remainder 0; record 0
0 remainder 1 ; record

1011012 101101

Decimal to Binary (Fractional)

0.5; record 0
1.0; record
0.0; record 0

.0102 .010

Decimal to Octal (Integer)

34 remainder 1; record 1
4 remainder 2; record
o remainder 4; record

2
4-

421

Thus: 27310 = 4218

EXAMPLE 4 Decimal to Octal (Fractional)

.55 x 8 = 4.4; record 4

.4 x 8 = 3.2; record 3

.2 x 8 = 1.6; record

.431 ...
Thus: .5510 .431 ... 8

SU BSTITUTION

This method permits easy conversion between
octal and binary representations of a number. If a
.number in binary notation is 'pa-rtitioned into trip-
lets to the right and left of the binary point, each
triplet may be converted into an octal digit. Simi-
lady each octal digit may be converted into a
triplet of binary digits.

EXAMPLE 1 Binary to Octal

Binary = 110 000 001
Octal = 6 0' . 1

EXAMPLE 2 Octal to Binary

Octal = 6 5 0
Binary = 110 101 000

010
2

227
010 010 111

Fixed Point and Floating Point Numbers
(The following information is for reference only and does not necessarily imply-computer capability).

Any number may be expressed in the form kBn
,

where k is a coefficient, B a base number, and the
exponent n the power to which the base number
is raised.

A fixed point number assumes:

The exponent n = 0 for all fixed point numbers.

2 The coefficient, k, occupies the same bit posi­
tions within the computer word for all fixed
point numbers.

3 The radix (binary) point remains fixed with re­
spect to one end of the expression.

A 3100 fixed point number consists of a sign bit
and coefficient as shown below. The upper bit of
any 3100 fixed point number designates the sign of
the coefficient (23 lower order bits). If the bit is
"1", the quantity is negative since negative num­
bers are represented in one's complement notation;
a "0" sign bit signifies a positive coefficient.

BIT NO. 23 I 22 00 I

I~_~_I?_TN~I ____________________ ~~~~ _____ C_O_E_FF_IC_I_E_N_T ______________ ~I
C-4

The radix (binary) point is assumed to be im­
mediately to the right of the lowest order bit (00).

In many instances, the values in a fixed point
operation may be too large or too small to be
expressed by the computer. The programmer must
position the numbers within the word format so
they can be represented with sufficient precision.
The process, called scaling, consists of shifting the
values a predetermined number of places. The
numbers must be positioned far enough to the right
in the register to prevent overflow but far enough
to the left to maintain precision. The scale factor
(number of places shifted) is expressed as the power
of the base. For example, 5,100,00010 may be ex­
pressedasO.5I x 107,0.051 X 108,0.0051 X 109, etc ..
The scale factors are 7, 8, and 9.

Since only the coefficient is used by the computer,
the programmer is responsible for remembering
the scale factors. Also, the possibility of an over­
flow during intermediate operations must be con­
sidered. For example, if two fractions in fixed poin.t
format are multiplied, the result is a number < 1.
If the same two fractions are added, subtracted,
or divided, the result may be greater than one and
an overflow will occur. Similarly, if two integers

47 46 36 35

I I I
"---y---/ '- /

V

COEFFICIENT EXP'NENT
SIGN (INCLUDING BIAS)

Coefficient. The coefficient consists of a 36-bit frac­
tion -in the 36 lower-order positions of the floating
point w.ord. The coefficient is a normalized fraction;
it is equal to or greater than 1/2 b~t less than 1.
The highest order bit position (47) is occupied by
the sign bit of the coefficient. If the sign bit is a
"0", the coeffiCient is positive; a "1" bit denotes a
negative fraction (negative fractions are represented

True Positive Biased
Exponent Exponent .
+0 2000
+1 2001

+2 2002
-- - - --
- - - - --

+1776 3776
+ 17778 37778

*Minus zero is sensed as positive zero by the com­
puter and is therefore biased by 20008 rather than
17778.

are multiplied, divided, subtracted or added, the
likelihood of an overflow is apparent.

As an alternative to fixed point operation, a
method involving a variable radix point, called
floating point, is used. This significantly reduces
the amount of bookkeeping required on the part
of the programmer.

By shifting the radix point and increasing or de­
creasing the value of the exponent, widely varying
quantities which do not exceed the capacity of the
machine may be handled.

Floating point numbers within the computer are
represented in a form similar to that used in "sci­
entific" notation, that is, a coefficient or fraction
multiplied by a number raised to a power. Since
the computer uses only binary numbers, the num­
bers are multiplied by powers of two.

where: F = fraction
E = exponent

In floating point, different coefficients_ need not
relate to the same power of the base as they do in
fixed point format. Therefore, the construction of
a floating point number includes not only the co­
efficient but also the exponent.

00

I
'- v /

COEFFICIENT

in one's complement notation).

Exponent. The floating point exponent is expressed
as an II-bit quantity with a value ranging from
00008 to 37778. It is formed by adding a true posi­
tive exponent and a bias of20008 or a true negative
exponent and a bias of 17778. This results in a
range of biased exponents as shown below.

True Negative Biased
Exponent Exponent

-0 2000*
-1 1776
-2 1775
- - ------

- - ------

-1776 0001
-17778 00008

C-5

The exponent is biased so that floating point
operands can be compared with each other in the
normal fixed point mode.

As an example, compare the unbiased exponents
of +528 and +0.028 (Example 1).

EXAMPLE 1 Number = +52

o
Coefficient

Sign

o 0 000 000

Exponent

110 (36 bits)

Coefficient

Number = +0.02

o
Coefficient

Sign

111 111

Exponent

011 (36 bits)

Coefficient

In this case +0.02 appears to be larger than +52
because of the larger exponent. If, however, both
exponents are biased, (Example 2) changing the

sign of both exponents makes +52 greater than
+0.02.

EXAMPLE 2 Number = +528

o
Coefficient

Sign

o 000 000

Exponent

110 (36 bits)

Coefficient

Number = +0.028

o o 111 111 011

Coefficient
Sign

Exponent

(36 bits)

Coefficient

When bias is used with the exponent, floating­
point operation is more versatile since floating­
point operands can be compared with each other
in the normal fixed point mode.

CONVERSION PROCEDURES .
Fixed Point to Floating Point

C-6

1 Express the number in binary.

2 Normalize the number. A normalized number
has the most significant 1 positioned imme­
diately to the right of the binary point and is
expressed in the range 1/2 :s:: k < 1.

3 I nspect the sign of the true exponent. If the
sign is positive add 20008 (bias) to the true
exponent of the normalize.d number. If the
sign is negative add the bias 17778 to the
true exponent of the normalized number. In

either case, the resulting exponent is the
biased exponent.

4 Assemble the number in floating point.

5 Inspect the sign of the coefficient. If negative,
complement the assemble~ floating point
number to obtain the true floating point rep­
resentation of the number. If the sign of the
coefficient is positive the assembled floating
point number is the true representation.

EXAM PLE 1 Convert +4.0 to floating point

1 The number is expressed in octal.

2 Normalize. 4.0 = 4.0 x 8° = 0.100 x 23.

3 Since the sign of the true exponent is positive,
add 20008 (bias) to the true exponent. Biased
exponent = 2000 + 3.

4 Assemble number in floating point format.
Coefficient = 400 000 000 0008
Biased Exponent = 20038
Assembled word = 2003 400 000 000 0008

5 Since the sign of the coefficient is positive, the
floating point representation of +4.0 is as
shown. If, however, the sign of the coefficient
were negative, it would be necessary to com­
plement the entire floating point word.

EXAM PLE 2 Convert -4.0 to floating point

1 The number is expressed in octal.

2 Normalize. -4.0 = -4.0 x 8° = -0.100 x 2 3

3 Since the sign of the true exponent is positive,
add 20008 (bias) to the true exponent. Biased
exponent = 2000 + 3.

4 Assemble number in floating point format.
Coefficient = 400000000 OOOa
Biased Exponent = 20038
Assembled word = 20034000000000008

5 Since the sign of the coefficient is negative,
the assembled floating point word must be
complemented. Therefore, the true floating
point representation for
-4.0 = 57743777777777778

EXAMPLE 3 Convert 0.510 to floating point

Convert to octal. 0.510 = 0.48

2 Normalize. 0.4 = 0.4 x 80 = 0.100 x 20

3 Since the sign of the true exponent is positive,
add 20008 (bias) to the true exponent. Biased
exponent = 2000 + O.

4 Assemble number in floating point format.
Coefficient = 400000000 0008
Biased Exponent = 2000a
Assembled word = 2000 400 000 000 0008

5 Since the sign of the coefficient is positive, the
floating point representation of +0.510 is as
shown. If, however, the sign of the coefficient
were negative, it would be necessary to com­
plement the entire floating point word. This
example is a special case of floating point
since the exponent of the normalized number
is 0 and could be represented as -0. The ex­
ponent would then be biased by 17778 instead
of 20008 because of the negative exponent.
The 3200, however, recognizes -0 as +0 and
biases the exponent by 20008.

EXAMPLE 4 Convert 0.048 to floating point

1 The number is expressed in octal.

2 Normalize. 0.04 = 0.04 x 80 = 0.4 x 8 - 1

0.100 x 2- 3

3 Since the sign of the true exponent is nega­
tive, add 17778 (bias) to the true exponent.
Biased exponent = 17778 + (-3) = 17748.

4 Assemble number in floating point format.
Coefficient = 4000000000008
Biased Exponent =17748
Assembled word = 17744000000000008

5 Since the sign of the coefficient is positive, the
floating point representation of 0.048 is as
shown. If, however, the sign of the coefficient
were negative, it would be necessary to com­
plement the entire floating point word.

Floating Point to Fixed Point Format

If the floating point number is negative, com­
plement the entire floating point word and
record the fact that the quantity is negative.
The exponent is now in a true biased form.

2 If the biased exponent is equal to or greater
than 20008 subtract 20008 to obtain the true
exponent. If less than 20008 subtract 17778
to obtain true exponent.

3 Separate the coefficient and exponent. If the
true exponent is negative the binary point
should be moved to the left the number of bit
positions indicated by the true exponent. If the
true exponent is positive, the binary point
should be moved to the right the number of
bit positions indicated by the true exponent.

4 The coefficient has now been converted to
fixed binary. The sign of the coefficient will be
negative if the floating point number was com­
plemented in step one. (The sign bit must be
extended if the quantity is placed in a register.)

5 Represent the fixed binary number in fixed
octal notation.

EXAMPLE 1 Convert floating point number
2003400000000,0008 to
fixed octal

The floating point number is positive and re­
mains uncomplemented.

2 The biased exponent> 20008, therefore sub­
tract 2000a from the biased exponent to ob­
tain the true exponent of the number. 2003 -
2000 = +3

3 Coefficient = 400 000 000 0008 = .1002.
Move binary point to the right 3 places. Co­
efficient = 100.02.

4 The sign of the coefficient is positive because
the floating point number was not comple­
mented in step one.

5 Represent in fixed octal notation.
100.0 x 2° = 4.0 x 8°.

EXAMPLE 2 Convert floating point number
5774377 777 777 7778 to fixed octal

The sign of the coefficient is negative, there­
fore, complement the floating point n\Jmber.

Complement = 2003 400 000000 0008

2 The biased exponent (in complemented form)
> 20008, therefore subtract 20008 from the

C-7

biased exponent to obtain the true exponent
of the number. 2003 - 2000 = +3

3 Coefficient = 4000 000 000 0008 = 0.1002
Move binary point to the right 3 places.
Coefficient = 100.02

4 The sign of the coefficient will be negative
because the floating point number was origi­
nally complemented.

5 Convert to fixed octal. -100.02 = -4.08

EXAMPLE 3 Convert floating point number
1 774 400 000 000 0008
to fixed octal

C-8

The floating point number is positive and
remains uncomplemented.

2 The biased exponent < 20008, therefore sub­
tract 17778 from the biased exponent to ob­
tain the true exponent of the number. 17748-
17778 = -3

3 Coefficient = 400000000 0008 = .1002
Move binary point to the left 3 places.
Coefficient = .0001002

4 The sign of the coefficient is positive because
the floating point number was not comple­
mented in step one.

S Represent in fixed octal notation .
. 0001 002 = .048

Appendix D
Table of Powers of Two

TABLE OF POWERS OF TWO

2 n n 2-n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

D-l

Appendix E
Octal-Decimal I nteger Conversion Table

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0000 0000 0001 0002 0003 0004 0005 0006 0007 0400 0256 0257 0258 0259 0260 0261 0262 0263 0000 0000
0010 0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270 0271 to to
0020 0016 0017 0018 0019 0020 0021 0022 0023 0420 0272 0273 0274 0275 0276 0277 0278 0279 0777 0511
0030 0024 0025 0026 0027 0028 0029 0030 0031 0430 0280 0281 0282 0283 0284 0285 0286 0287

(Octal) (Decimal) 0040 0032 0033 0034 0035 0036 0037 0038 0039 0440 0288 0289 0290 0291 0292 0293 0294 0295
0050 0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0298 0299 0300 0301 0302 0303
0060 0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 0308 0309 0310 0311
0070 0056 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 0319 Octal Decimal

10000 - 4096
0100 0064 0065 0066 0067 0068 0069 0070 0071 0500 0320 0321 0322 0323 0324 0325 0326 0327 20000 - 8192
0110 0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 0330 0331 0332 0333 0334 0335 30000 - 12288 0120 0080 0081 0082 0083 0084 0085 0086 0087 0520 0336 0337 0338 0339 0340 0341 0342 0343
0130 0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 0348 0349 0350 0351 40000 - 16384

0140 0096 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354 0355 0356 0357 0358 0359 50000 - 20480
0150 0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362 0363 0364 0365 0366 0367 60000 - 24576
0160 0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369 0370 0371 0372 0373 0374 0375 70000 - 28672
0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 0380 0381 0382 0383

0200 0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0388 0389 0390 0391
0210 0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398 0399
0220 0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402 0403 0404 0405 0406 0407
0230 0152 0153 0154 0155 0156 0157 0158 0159 0630 0408 0409 0410 0411 0412 0413 0414 0415
0240 0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 0420 0421 0422 0423
0250 0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427 0428 0429 0430 0431
0260 0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438 0439
0270 0184 0185 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442 0443 0444 0445 0446 0447

0300 0192 0193 0194 0195 0196 0197 0198 0199 0700 0448 0449 0450 0451 0452 0453 0454 0455
0310 0200 0201 0202 0203 0204 0205 0206 0207 0710 0456 0457 0458 0459 0460 0461 0462 0463
0320 0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466 0467 0468 0469 0470 0471
0330 0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 0476 0477 0478 0479
0340 0224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0486 0487
0350 0232 0233 0234 0235 0236 0237 0238 0239 0750 0488 0489 0490 0491 0492 0493 0494 0495
0360 0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499 0500 0501 0502 0503
0370 0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1000 0512 0513 0514 0515 0516 0517 0518 0519 1400 0768 0769 0770 0771 0772 0773 0774 0775 1000 0512
1010 0520 0521 0522 0523 0524 0525 0526 0527 1410 0776 0777 0778 0779 0780 0781 0782 0783 to to
1020 0528 0529 0530 0531 0532 0533 0534 0535 1420 0784 0785 0786 0787 0788 0789 0790 0791 1777 1023
1030 0536 0537 0538 0539 0540 0541 0542 0543 1430 0792 0793 0794 0795 0796 0797 0798 0799 (Detail (Decimal)
1040 0544 0545 0546 0547 0548 0549 0550 0551 1440 0800 0801 0802 0803 0804 0805 0806 0807
1050 0552 0553 0554 0555 0556 0557 0558 0559 1450 0808 0809 0810 0811 0812 0813 0814 0815
1060 0560 0561 0562 0563 0564 0565 0566 0567 1460 0816 0817 0818 0819 0820 0821 0822 0823
1070 0568 0569 0570 0571 0572 0573 0574 0575 1470 0824 0825 0826 0827 0828 0829 0830 0831

1100 0576 0577 0578 0579 0580 0581 0582 0583 1500 0832 0833 0834 0835 0836 0837 0838 0839
1110 0584 0585 0586 0587 0588 0589 0590 0591 1510 0840 0841 0842 0843 0844 0845 0846 0847
1120 0592 0593 0594 0595 0596 0597 0598 0599 1520 0848 0849 0850 0851 0852 0853 0854 0855
1130 0600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857 0858 0859 0860 0861 0862 0863
1140 0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865 0866 0867 0868 0869 0870 0871
1150 0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 0874 0875 0876 0877 0878 0879
1160 0624 0625 0626 0627 0628 0629 0630 0631 1560 0880 0881 0882 0883 0884 0885 0886 0887
1170 0632 0633 0634 0635 0636 0637 0638 0639 1570 0888 0889 0890 0891 0892 0893 0894 0895

1200 0640 0641 0642 0643 0644 0645 0646 0647 1600 OB96 OB97 OB9B OB99 0900 0901 0902 0903
1210 0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906 0907 0908 0909 0910 0911
1220 0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914 0915 0916 0917 0918 0919
1230 0664 0665 0666 0667 0668 0669 0670 0671 1630 0920 0921 0922 0923 0924 0925 0926 0927
1240 0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931 0932 0933 0934 0935
1250 0680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 0940 0941 0942 0943
1260 0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 0948 0949 0950 0951
1270 0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0955 0956 0957 0958 0959

1300 0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961 0962 0963 0964 0965 0966 0967
1310 0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971 0972 0973 0974 0975
1320 0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0977 0978 0979 0980 0981 0982 0983
1330 0728 0729 0730 0731 0732 0733 0734 0735 1730 0984 0985 0986 0987 0988 0989 0990 0991
1340 0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0994 0995 0996 0997 0998 0999
1350 0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003 1004 1005 1006 1007
1360 0752 0753 0754 0755 0756 0757 0758 0759 1760 1008 1009 1010 1011 1012 1013 1014 1015
1370 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019 1020 1021 1022 1023

E-l

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
2000 1024 2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281 1282 1283 1284 1285 1286 1287

to to 2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 1290 1291 1292 1293 1294 1295
2777 1535 2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 1298 1299 1300 1301 1302 1303
(Octall (Decimall 2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 1306 1307 1308 1309 1310 1311

2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 1314 1315 1316 1317 1318 1319
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 1322 1323 1324 1325 1326 1327

Octal Decimal 2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 1330 1331 1332 1333 1334 1335

10000 - 4096 2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 1338 1339 1340 1341 1342 1343

20000 - 8192 2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348 1349 1350 1351
30000 - 12288 2100 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353 1354 1355 1356 1357 1358 1359
40000 - 16384 2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 1362 1363 1364 1365 1366 1367
50000 - 20480 2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 1370 1371 1372 1373 1374 1375
60000 - 24576 2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 1376 1377 1378 1379 1380 1381 1382 1383
70000 - 28672 2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 1386 1387 1388 1389 1390 1391

2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396 1397 1398 1399
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401 1402 1403 1404 1405 1406 1407

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414 1415
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 1416 1417 1418 1419 1420 1421 1422 1423
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430 1431
2230 1176 1177 1178 1179 1180 1181 1182 1183 2630 1432 1433 1434 1435 1436 1437 1438 1439
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446 1447
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 1450 1451 1452 1453 1454 1455
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 1456 1457 1458 1459 1460 1461 1462 1463
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 1466 1467 1468 1469 1470 1471

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478 1479
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 1482 1483 1484 1485 1486 1487
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 1490 1491 1492 1493 1494 1495
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 1498 1499 1500 1501 1502 1503
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740 1504 1505 1506 1507 1508 1519 1510 1511
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 1514 1515 1516 1517 1518 1519
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 1522 1523 1524 1525 1526 1527
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
3000 1536 3000 1536 1537 1538 1539 1540 1541 1542 1543 3400 1792 1793 1794 1795 1796 1797 1798 1799

to to 3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 1802 1803 1804 1805 1806 1807
3777 2047 3020 1552 1553 1554 1555 1556 1557 1558 1559 3420 1808 1809 1810 1811 1812 1813 1814 1815
(Detail (Decimal! 3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 1818 1819 1820 1821 1822 1823

3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 1824 1825 1826 1827 1828 1829 1830 1831
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836 1837 1838 1839
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 1842 1843 1844 1845 1846 1847
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470 1848 1849 1850 1851 1852 1853 1854 1855

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 1858 1859 1860 1861 1862 1863
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 1866 1867 1868 1869 1870 1871
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 1872 1873 1874 1875 1876 1877 1878 1879
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1881 1882 1883 1884 1885 1886 1887
3140 1632 1633 1634 1635 1636 1637 1638 1639 3540 1888 1889 1890 1891 1892 1893 1894 1895
3150 1640 1641 1642 1643 1644 1645 1646 1647 3550 1896 1897 1898 1899 1900 1901 1902 1903
3160 1648 1649 1650 1651 1652 1653 1654 1655 3560 1904 1905 1906 1907 1908 1909 1910 1911
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 1914 1915 1916 1917 1918 1919

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 1922 1923 1924 1925 1926 1927
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610 1928 1929 1930 1931 1932 1933 1934 1935
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620 1936 1937 1938 1939 1940 1941 1942 1943
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945 1946 1947 1948 1949 1950 1951
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953 1954 1955 1956 1957 1958 1959
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 1962 1963 1964 1965 1966 1967
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 1968 1969 1970 1971 1972 1973 1974 1975
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 1976 1977 1978 1979 1980 1981 1982 1983

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700 1984 1985 1986 1987 1988 1989 1990 1991
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 1994 1995 1996 1997 1998 1999
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720 2000 2001 2002 2003 2004 2005 2006 2007
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 2010 2011 2012 2013 2014 2015
3340 1760 1761 1762 1763 1764 1765 1766 1767 3740 2016 2017 2018 2019 2020 2021 2022 2023
3350 1768 1769 1770 1771 1772 1773 1774 1775 3750 2024 2025 2026 2027 2028 2029 2030 2031
3360 1776 1777 1778 1779 1780 1781 1782 1783 3760 2032 2033 2034 2035 2036 2037 2038 2039
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 2042 2043 2044 2045 2046 2047

E-2

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

4000 2048 2049 2050 2051 2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311 4000 2048
4010 2056 2057 2058 2059 2060 2061 2062 2063 4410 2312 2313 2314 2315 2316 2317 2318 2319 to to
4020 2064 2065 2066 2067 2068 2069 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326 2327 4777 2559
4030 2072 2073 2074 2075 2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335
4040 2080 2081 2082 2083 2084 2085 2086 2087 4440 2336 2337 2338 2339 2340 2341 2342 2343 (Octal) (Oecimal)

4050 2088 2089 2090 2091 2092 2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
4060 2096 2097 2098 2099 2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359
4070 2104 2105 2106 2107 2108 2109 2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367 Octal Decimal

10000 - 4096
4100 2112 2113 2114 2115 2116 2117 2118 2119 4500 2368 2369 2370 2371 2372 2373 2374 2375 20000 - 8192
4110 2120 2121 2122 2123 2124 2125 2126 2127 4510 2376 2377 2378 2379 2380 2381 2382 2383 30000 - 12288
4120 2128 2129 2130 2131 2132 2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391
4130 2136 2137 2138 2139 2140 2141 2142 2143 4530 2392 2393 2394 2395 2396 2397 2398 2399 40000 - 16384

4140 2144 2145 2146 2147 2148 2149 2150 2151 4540 2400 2401 2402 2403 2404 2405 2406 2407 50000 - 20480

4150 2152 2153 2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415 60000 - 24576
4160 2160 2161 2162 2163 2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423 70000 - 28672
4170 2168 2169 2170 2171 2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

4200 2176 2177 2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439
4210 2184 2185 2186 2187 2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
4220 2192 2193 2194 2195 2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
4230 2200 2201 2202 2203 2204 2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 2463
4240 2208 2209 2210 2211 2212 2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470 2471
4250 2216 2217 2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479
4260 2224 2225 2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486 2487
4270 2232 2233 2234 2235 2236 2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494 2495

4300 2240 2241 2242 2243 2244 2245 2246 2247 4700 2496 2497 2498 2499 2500 2501 2502 2503
4310 2248 2249 2250 2251 2252 2253 2254 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511
4320 2256 2257 2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519
4330 2264 2265 2266 2267 2268 2269 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527
4340 2272 2273 2274 2275 2276 2277 2278 2279 4740 2528 2529 2530 2531 2532 2533 2534 2535
4350 2280 2281 2282 2283 2284 2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542 2543
4360 2288 2289 2290 2291 2292 2293 2294 2295 4760 2544 2545 2546 2547 2548 2549 2550 2551
4370 2296 2297 2298 2299 2300 2301 2302 2303 4770 2552 2553 2554 2555 2556 2557 2558 2559

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

5000 2560 2561 2562 2563 2564 2565 2566 2567 5400 2816 2817 2818 2819 2820 2821 2822 2823 5000 2560
5010 2568 2569 2570 2571 2572 2573 2574 2575 5410 2824 2825 2826 2827 2828 2829 2830 2831 to to
5020 2576 2577 2578 2579 2580 2581 2582 2583 5420 2832 2833 2834 2835 2836 2837 2838 2839
5030 2584 2585 2586 2587 2588 2589 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 2847 5777 3071

5040 2592 2593 2594 2595 2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855 (Octal) (Decimal)

5050 2600 2601 2602 2603 2604 2605 2606 2607 5450 2856 2857 2858 2859 2860 2861 2862 2863
5060 2608 2609 2610 2611 2612 2613 2614 2615 5460 2864 2865 2866 2867 2868 2869 2870 2871
5070 2616 2617 2618 2619 2620 2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878 2879

5100 2624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
5110 2632 2633 2634 2635 2636 2637 2638 2639 5510 2888 2889 2890 2891 2892 2893 2894 2895
5120 2640 2641 2642 2643 2644 2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902 2903
5130 2648 2649 2650 2651 2652 2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911
5140 2656 2657 2658 2659 2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919
5150 2664 2665 2666 2667 2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927
5160 2672 2673 2674 2675 2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935
5170 2680 2681 2682 2683 2684 2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 2943

5200 2688 2689 2690 2691 2692 2693 2694 2695 5600 2944 2945 2946 2947 2948 2949 2950 2951
5210 2696 2697 2698 2699 2700 2701 2702 2703 5610 2952 2953 2954 2955 2956 2957 2958 2959
5220 2704 2705 2706 2707 2708 2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966 2967
5230 2712 2713 2714 2715 2716 2717 2718 2719 5630 2968 2969 2970 2971 2972 2973 2974 2975
5240 2720 2721 2722 2723 2724 2725 2726 2727 5640 2976 2977 2978 2979 2980 2981 2982 2983
5250 2728 2729 2730 2731 2732 2733 2734 2735 5650 2984 2985 2986 2987 2988 2989 2990 2991
5260 2736 2737 2738 2739 2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999
5270 2744 2745 2746 2747 2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007

5300 2752 2753 2754 2755 2756 2757 2758 2759 5700 3008 3009 3010 3011 3012 3013 3014 3015
5310 2760 2761 2762 2763 2764 2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023
5320 2768 2769 2770 2771 2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031
5330 2776 2777 2778 2779 2780 2781 2782 2783 5730 3032 3033 3034 3035 3036 3037 3038 3039
5340 2784 2785 2786 2787 2788 2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047
5350 2792 2793 2794 2795 2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
5360 2800 2801 2802 2803 2804 2805 2806 2807 5760 3056 3057 3058 3059 3060 3061 3062 3063
5370 2808 2809 2810 2811 2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071

E-3

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

6000 3072 6000 3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 3333 3334 3335
to to 6010 3080 3081 3082 3083 3084 3085 3086 3087 6410 3336 3337 3338 3339 3340 3341 3342 3343

6777 3583 6020 3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 3349 3350 3351

10ctal) IDec:imal) 6030 3096 3097 3098 3099 3100 3101 3102 3103 6430 3352 3353 3354 3355 3356 3357 3358 3359
6040 3104 3105 3106 3107 3108 3109 3110 3111 6440 3360 3361 3362 3363 3364 3365 3366 3367
6050 3112 3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372 3373 3374 3375
6060 3120 3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380 3381 3382 3383

Octal Dec:imal 6070 3128 3129 3130 3131 3132 3133 3134 3135 6470 3384 3385 3386 3387 3388 3389 3390 3391
10000 - 4096
20000 - 8192 6100 3136 3137 3138 3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 3397 3398 3399
30000 - 12288 6110 3144 3145 3146 3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404 3405 3406 3407

40000 - 16384 6120 3152 3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 3413 3414 3415
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 3421 3422 3423 50000 - 20480 6140 3168 3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430 3431

60000 - 24576 6150 3176 3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 3437 3438 3439
70000 - 28672 6160 3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447

6170 3192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454 3455

6200 3200 3201 3202 3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460 3461 3462 3463
6210 3208 3209 3210 3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468 3469 3470 3471
6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479
6230 3224 3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3485 3486 3487
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494 3495
6250 3240 3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 3501 3502 3503
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510 3511
6270 3256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519

6300 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527
6310 3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532 3533 3534 3535
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542 3543
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550 3551
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 3557 3558 3559
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564 3565 3566 3567
6360 3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574 3575
6370 3320 3321 3322 3323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

7000 3584 7000 3584 3585 3586 3587 3588 3589 3590 3591 7400 3840 3841 3842 3843 3844 3845 3846 3847
to to 7010 3592 3593 3594 3595 3496 3497 3598 3599 7410 3848 3849 3850 3851 3852 3853 3854 3855

7777 4095 7020 3600 3601 3602 3603 3604 3605 3606 3607 7420 3856 3857 3858 3859 3860 3861 3862 3863

10ctal) IDecimal) 7030 3608 3609 3610 3611 3612 3613 3614 3615 7430 3864 3865 3866 3867 3868 3869 3870 3871
7040 3616 3617 3618 3619 3620 3621 3622 3623 7440 3872 3873 3874 3875 3876 3877 3878 3879
7050 3624 3625 3626 3627 3628 3629 3630 3631 7450 3880 3881 3882 3883 3884 3885 3886 3887
7060 3632 3633 3634 3635 3636 3637 3638 3639 7460 3888 3889 3890 3891 3892 3893 3894 3895
7070 3640 3641 3642 3643 3644 3645 3646 3647 7470 3896 3897 3898 3899 3900 3901 3902 3903

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500 3904 3905 3906 3907 3908 3909 3910 3911
7110 3656 3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916 3917 3918 3919
7120 3664 3665 3666 3667 3668 3669 3670 3671 7520 3920 3921 3922 3923 3924 3925 3926 3927
7130 3672 3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 3933 3934 3935
7140 3680 3681 3682 3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940 3941 3942 3943
7150 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 3949 3950 3951
7160 3696 3697 3698 3699 3700 3701 3702 3703 7560 3952 3953 3954 3955 3956 3957 3958 3959
7170 3704 3705 3706 3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964 3965 3966 3967

7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 3968 3969 3970 3971 3972 3973 3974 3975
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980 3981 3982 3983
7220 3728 3729 3730 3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988 3989 3990 3991
7230 3736 3737 3738 3739 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996 3997 3998 3999
7240 3744 3745 3746 3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 4005 4006 4007
7250 3752 3753 3754 3755 3756 3757 3758 3759 7650 4008 4009 4010 4011 4012 4013 4014 4015
7260 3760 3761 3762 3763 3764 3765 3766 3767 7660 4016 4017 4018 4019 4020 4021 4022 4023
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670 4024 4025 4026 4027 4028 4029 4030 4031

7300 3776 3777 3778 3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036 4037 4038 4039
7310 3784 3785 3786 3787 3788 3789 3790 3791 7710 4040 4041 4042 4043 4044 4045 4046 4047
7320 3792 3793 3794 3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052 4053 4054 4055
7330 3800 3801 3802 3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060 4061 4062 4063
7340 3808 3809 3810 3811 3812 3813 3814 3815 7740 4064 4065 4066 4067 4068 4069 4070 4071
7350 3816 3817 3818 3819 3820 3821 3822 3823 7750 4072 4073 4074 4075 4076 4077 4078 4079
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 4080 4081 4082 4083 4084 4085 4086 4087
7370 3832 3833 3834 3835 3836 3837 3838 3839 7770 4088 4089 4090 4091 4092 4093 4094 4095

E-4

Appendix F
Octal-Decimal Fraction Conversion Table

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000 .000000 .100 .125000 .200 .250000 .300 .375000

.001 .001953 .101 .126953 .201 .251953 .301 .376953

.002 .003906 .102 .128906 .202 .253906 .302 .378906

.003 .005859 .103 .130859 .203 .255859 .303 .380859

.004 .007812 .104 .132812 .204 .257812 .304 .382812

.005 .009765 .105 .134765 .205 .259765 .305 .384765

.006 .011718 .106 .136718 .206 .261718 .306 .386718

.007 .013671 .107 .138671 .207 .263671 .307 .388671

.010 .015625 .110 .140625 .210 .265625 .310 .390625

.011 .017578 .111 .142578 .211 .267578 .311 .392578

.012 .019531 .112 .144531 .212 .269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 .396484

.014 .023437 .114 .148437 .214 .273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 .277343 .316 .402343

.017 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 .281250 .320 .406250

.021 .033203 .121 .158203 .221 .283203 .321 .408203

.022 .035156 .122 .160156 .222 .285156 .322 .410156

.023 .037109 .123 .162109 .223 .287109 .323 .412109

.024 .039062 .124 .164062 .224 .289062 .324 .414062

.025 .041015 .125 .166015 .225 .291015 .325 .416015

.026 .042968 .126 .167968 .226 .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 .296875 .330 .421875

.031 .048828 .131 .173828 .231 .298828 .331 .423828

.032 .050781 .132 .175781 .232 .300781 .332 .425781

.033 .052734 .133 .177734 .233 .302734 .333 .427734

.034 .054687 .134 .179687 .234 .304687 .334 .429687

.035 .056640 .135 .181640 .235 .306640 .335 .431640

.036 .058593 .136 .183593 .236 .308593 .336 .433593

.037 .060546 .137 .185546 .237 .310546 .337 .435546

.040 .062500 .140 .187500 .240 .312500 .340 .437500

.041 .064453 .141 .189453 .241 .314453 .341 .439453

.042 .066406 .142 .191406 .242 .316406 .342 .441406

.043 .068359 .143 .193359 .243 .318359 .343 .443359

.044 .070312 .144 .195312 .244 .320312 .344 .445312

.045 .072265 .145 .197265 .245 .322265 .345 .447265

.046 .074218 .146 .199218 .246 .324218 .346 .449218

.047 .076171 .147 .201171 .247 .326171 .347 .451171

.050 .078125 .150 .203125 .250 .328125 .350 .453125

.051 .080078 .151 .205078 .251 .330078 .351 .455078

.052 .082031 .152 .207031 .252 .332031 .352 .457031

.053 .083984 .153 .208984 .253 .333984 .353 .458984

.054 .085937 .154 .210937 .254 .335937 .354 .460937

.055 .087890 .155 .212890 .255 .337890 .355 .462890

.056 .089843 .156 .214843 .256 .339843 .356 .464843

.057 .091796 .157 .216796 .257 .341796 .357 .466796

.060 .093750 .160 .218750 .260 .343750 .360 .468750

.061 .095703 .161 .220703 .261 .345703 .361 .470703

.062 .097656 .162 .222656 .262 .347656 .362 .472656

.063 .099609 .163 .224609 .263 .349609 .363 .474609

.064 .101562 .164 226562 .264 .351562 .364 .476562

.065 .103515 .165 .228515 .265 .353515 .365 .478515

.066 .105468 .166 .230468 .266 .355468 .366 .480468

.067 .107421 .167 .232421 .267 .357421 .367 .482421

.070 .109375 .170 .234375 .270 .359375 .370 .484375

.071 .111328 .171 .236328 .271 .361328 .371 .486328

.072 .113281 .172 .238281 .272 .363281 .372 .488281

.073 .115234 .173 .240234 .273 .365234 .373 .490234

.074 .117187 .174 .242187 .274 .367187 .374 .492187

.075 .119140 .175 .244140 .275 .369140 .375 .494140

.076 .121093 .176 .246093 .276 .371093 .376 .496093

.077 .123046 .177 .248046 .277 .373046 .377 .498046

F-l

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751

.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 .0001-43 .000377 .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938

.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946

.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000949

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953

.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961

.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968

.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972

F-2

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708

.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712

.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716

.000403 .000988 .000503 .001232 .000603 .001476 .000703 .001720

.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724

.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728

.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731

.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735

.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747

.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750

.000414 .001022 .000514 .001266 .000614 .001510 .000714 .001754

.000415 .001026 .000515 .001270 .000615 .001514 .000715 .001758

.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762

.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766

.000420 .001037 .000520 .001281 .000620 .001525 .000720 .001770

.000421 .001041 .000521 .001285 .000621 .001529 .000721 .001773

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777

.000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781

.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785

.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789

.000426 .001060 .000526 .001304 .000626 .001548 .000726 .001792

.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796

.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804

.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808

.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811

.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815

.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819

.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823

.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827

.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838

.000443 .001110 .000543 .001354 .000643 .001598 .000743 .001842

.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846

.000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .001853

.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857

.000450 .001129 .000550 .001373 .000650 .001617 .000750 .001861

.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869

.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001873

.000454 .001144 .000554 .001388 .000654 .001632 .000754 .001876

.000455 .001148 .000555 .001392 .000655 .00.1636 .000755 .001880

.000456 .001152 .000556 .001396 .000656 .001640 .000756 .001884

.000457 .001155 .000557 .001399 .000657 .001644 .000757 .001888

.000460 .001159 .000560 .001403 .000660 .001647 .000760 .001892

.000461 .001163 .000561 .001407 .000661 .001651 .000761 .001895

.000462 .001167 .000562 .001411 .000662 .001655 .000762 .001899

.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903

.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001907

.000465 .001178 .000565 .001422 .000665 .001667 .000765 .001911

.000466 .001182 .000566 .001426 .000666 .001670 .000766 .001914

.000467 .001186 .000567 .001430 .000667 .001674 .000767 .001918

.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922

.000471 .001194 .000571 .001438 .000671 .001682 .000771 .001926

.000472 .001197 .000572 .001441 .000672 .001686 .000772 .001930

.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934

.000474 .001205 .000574 .001449 .000674 .001693 .000774 .001937

.000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941

.000476 .001213 .000576 .001457 .000676 .001701 .000776 .001945

.000477 .001216 .000577 .001461 .000677 .001705 .000777 .001949

F-3

Appendix G
Definition of liD Interface Signals

DEFINITION OF liD INTERFACE SIGNALS

This appendix defines the signals that are exchanged between the 3106 Data Channel and
external equipment. There are three classes of signals: bidirectional, 3106 to external
equipment, and external equipment to 3106.

Bidirectional Signals

Data Bits The 12 lines which carry data are bi-directional. and perform
as follows:

1. I n a Read (input) operation, data is transmitted from the
external equipment to the 3106.

2. In a Write (output) operation, data is transmitted from the
3106 to the external equipment.

3. The Connect and Function codes are transmitted from the
3106 to the external equipment via the 12 data lines.

Parity Bit A parity bit accompanies each 12 bits of data transmitted
between the 3106 and external equipment. Odd parity is
used; thus the total number of "1 's" transmitted is always
an odd number.

3106 to External Equipment

Read Static" 1 " signal produced by 3106 during a Read operation.

Write Static" 1" signal produced by 3106 during a Write operation.

Connect Static" 1 " signal sent to external equipment when 12-bit
Connect code is available on data lines. Signal drops when
external equipment returns Reply or Reject.

Function Static" 1" signal sent to external equipment when 12-bit
Function code is available on data lines. Signal drops when
external equipment returns Reply or Reject.

Data Signal Static" 1 " signal sent to external equipment during both
Read and Write operations. Signal drops conditionally when
Reply is received from external equipment.

1. I n a Read operation, Data Signal indicates that 3106 is
ready to accept a 12-bit word from external equipment.

2. I n a Write operation, Data Signal indicates the 3106 has
placed a 12-bit word on the data lines.

G-l

3106 to External equipment (Cont.)

Master Clear "1" signal from computer which returns channel and external
equipment to zero initial conditions and disconnects external
equipment.

Computer Running Static" 1 " when computer is operating.

External Equipment to 3106

Reply Static "1" signal produced by external equipment in response
to a Connect. Function, or Data Signal. Signal drops when
Connect. Function, or Data Signal drops.

1 . If connection can be made when Connect signal is
received, external equipment connects and returns a
Reply.

2. If specified function can be performed when Function
signal is received, external equipment initiates function
and returns a Reply.

3. I n a Read operation, external equipment sends a Reply as
soon as it has placed a 12-bit word on the data lines in
response to the Data Signal.

4. In a Write operation, external equipment sends a Reply
as soon as it samples the data lines in response to the
Data Signal.

Reject Static" 1 " signal produced by external equipment in response
to a Connect or Function signal, if the connection cannot be
made or the function cannot be performed at the time that
the external equipment receives the respective signal.

End of Record Static" 1" signal produced by external equipment during a
Read operation. This signal is produced in response to the
Data Signal, if the end of the specified block of data has
been reached.

Parity Error Static" 1" signal produced if the total number of "1 's"
in the 12 data bits plus the parity bit is not an odd number.

Status Bits The external equipment uses the 12 status lines to indicate
its condition.

Interrupt Lines A "1" signal on an interrupt line indicates that an external
equipment has reached a predetermined condition. A 3106
may communicate with a maximum of 8 external equip-
ments, and each external equipment uses 1 interrupt line.

G-2

Appendix H
31 00 System Character Set

Char.

o

2

3

4

5

6

7

8

9

A

B

C

o

E

F

G

H

J

K

L

M

N

o

Int.

BCD

00

01

02

03

04

05

06

07

10

11

21

22

23

24

25

26

27

30

31

41

42

43

44

45

46

Ext.

BCD

12

01

02

03

04

05

06

07

10

11

61

62

63

64

65

66

67

70

71

41

42

43

44

45

46

3100 SYSTEM CHARACTER SET

Holi.

o

2

3

4

5

6

7

8

9

12-1

12-2

12-3

12-4

12-5

12-6

12-7

12-8

12-9

1 1 -1

11-2

11-3

11-4

11-5

11-6

Char.

p

Q

R

S

T

u

V

W

X

y

z

-(dash)

+
+0

-(minus)

-0

$

*

(space)

/

Int.

BCD

47

50

51

62

63

64

65

66

67

70

71

13

14

20

32

33

34

40

52

53

54

60

61

73

74

Ext.

BCD

47

50

51

22

23

24

25

26

27

30

31

13

14

60

72

73

74

40

52

53

54

20

21

33

34

Holi.

11-7

11-8

11-9

0-2

0-3

0-4

0-5

0-6

0-7

0-8

0-9

3-8

4-8

12

12-0

12-3-8

12-4-8

11

11-0

11-3-8

11-4-8

blank

0-1

0-3-8

0-4-8

I,_----'-----------'-_----'--_~----'--------'----'---------'
H-l

Appendix I
Peripheral Equipment Codes

Peripheral Equipment
FUNCTION AND STATUS RESPONSE CODES

The following tables list the function and status response codes for the 3248/405 Card

Reader and the 322X and 362X Magnetic Tape Controllers.

Function and status response codes for other 3200 peripheral equipments can be found

in the reference manuals of these equipments.

3248/405 CARD READER CODES

FORMAT AND OPERATIONAL STATUS REPLIES
FUNCTION CODES XXXl Reader Ready

0001 Negate Hollerith to Internal BCD Conversion XXX2 Reader Busy

0002 Release Negate Hollerith to Internal BCD Conversion XXX4 Binary Card

0004 Gate Card to Secondary Station XX1X End of File ~Card)

0005 Function Clear XX2X Stacker Full or Jammed or Fail to Feed

XX4X Hopper Empty
INTERRUPT FUNCTION CODES X1XX End of File ~Switch)

0020 Interrupt on Ready and Not Busy X2XX Interrupt - Ready and Not Busy

0021 Release Interrupt on Ready and Not Busy X4XX Interrupt - End of Operation

0022 Interrupt on End of Operation lXXX Interrupt - Abnormal End of Operation

0023 Release Interrupt on End of Operation 2XXX Read Compare or Pre-read Error

0024 Interrupt on Abnormal End of Operation

0025 Release Interrupt on Abnormal End of Operation

322X AND 362X MAGNETIC TAPE CONTROLLERS

FORMAT FUNCTION CODES INTERRUPT FUNCTION CODES

0000 Release 0020 Interrupt On Ready and Not Busy
0001 Binary 0021 Release Interrupt on Ready and Not Busy
0002 Coded 0022 Interrupt on End of Operation
0003 556 BPI Density 0023 Release Interrupt on End of Operation
0004 200 BPI Density 0024 Interrupt on Abnormal End of Operation
0006 800 BPI Density 0025 Release Interrupt on Abnormal End of Operation
0005 Clear

0041 Reverse Read STATUS REPLIES

0040 Clear Reverse Read XXXl Ready
XXX2 Read/Write Control and/or Busy
XXX4 Write Enable
XX1X File Mark

TAPE MOTION FUNCTION CODES XX2X Load Point
0010 Rewind XX4X End of Tape
0011 Rewind Unload X1XX Density r'1" in bit 6 indicates 556 BPI.
0012 Backspace "0" in bit 6 and bit 1 indicates 200 BPI)
0013 Search End of File Mark Forward X2XX Density ("1" in bit 1 indicates 800 BPI)
0014 Search End of File Mark Backward X4XX Lost Data
0015 Write End of File Mark lXXX End of Operation
0016 Skip Bad Spot 2XXX Transverse or Longitudinal Parity Error

1-1

III
Z

.J
(!)
Z
o
.J
«
I­
:J
U

FROM

COMMENT SHEET

CONTROL DATA 3100 COMPUTER SYSTEM

PRELIMINARY REFERENCE MANUAL

PUB. NO. 60108400

NAME: __ ___

BUSINESS ADDRESS: __ __

COMMENTS: (DESCR IBE ERRORS, SUGGESTED ADDITION OR

DELETION AND INCLUDE PAGE NUMBER, ETC.)

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

FOLD

FOLD

STAPLE

BUSINE:SS RE:PLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WiLL BE PAID BY

CONTROL DATA CORPORATION

8100 34TH AVENUE SOUTH

MINNEAPOLIS 20, MINNESOTA

ATTN: TECHNICAL PUBLICATIONS DEPT.

STAPLE

COMPUTER DIVISION
PLANT TWO

STAPLE

FOLD

FIRST CLASS

PERMIT NO. 8241

M INNEAPOL IS, MINN.

FOLD

STAPLE

IJJ
Z

.I
C)
Z
o
.I
«
I­
::J
o

CONTROL DATA SALES OFFICES ALAMOGORDO. ALBUQUERQUE. ATLANTA. BOSTON. CAPE CANAVERAL

CHICAGO. CINCINNATI. CLEVELAND. COLORADO SPRINGS. DALLAS. DAYTON

DENVER. DETROIT. DOWNEY, CALIF .• HONOLULU. HOUSTON. HUNTSVillE

ITHACA· KANSAS CITY. KAN .• LOS ANGELES. MINNEAPOLIS. NEWARK

NEW ORLEANS. NEW YORK CITY· OAKLAND. OMAHA. PALO ALTO

PHILADELPHIA. PHOENIX. PITTSBURGH. SACRAMENTO. SALT LAKE CITY

SAN BERNARDINO. SAN DIEGO. SEATTLE. WASHINGTON. D.C.

INTERNATIONAL OFFICES FRANKFURT, GERMANY. HAMBURG. GERMANY. STUTTGART, GERMANY

GENEVA. SWITZERLAND. ZURICH. SWITZERLAND. CANBERRA. AUSTRALIA

MELBOURNE, AUSTRALIA. SYDNEY, AUSTRALIA. ATHENS. GREECE

Pub. No. 60108400

LONDON, ENGLAND. OSLO. NORWAY. PARIS, FRANCE. STOCKHOLM. SWEDEN

MEXICO CITY. MEXICO. (REGAL ELECTRONICA DE MEXICO, S.A.)

OTTAWA, CANADA. (COMPUTING DEVICES OF CANADA. LIMITED). TOKYO. JAPAN.

(C.ITOH ELECTRONIC COMPUTING SERVICE CO., LTD.)

CONTROL DATA
CORPORATION

8100 34th AVENUE SOUTH, MINNEAPOLIS. MINNESOTA 55440

Litho in I

	0001
	0002
	001
	002
	003
	004
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-00
	B-01
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-00
	D-01
	E-00
	E-01
	E-02
	E-03
	E-04
	F-00
	F-01
	F-02
	F-03
	G-00
	G-01
	G-02
	H-00
	H-01
	I-00
	I-01
	replyA
	replyB
	xBack

