
r r

COM PUTE,R SYSTEM
REFERENCE MANUAL

CONTROL DATA
CORPORATION

3200 CHARACTERISTICS

• Stored-program, solid-state, general-purpose computer.

• Diode logic.
• Parallel mode of operation.
• Single address logic.
• Programmed inter-register transfers.
• Address modification (indexing).
• Indirect addressing.
• Character and word addressing (4 characters per word).
• 28-bit storage word (24 data bits and 4 parity bits).
• Nonvolatile magnetic core storage. Standard memory: 8,192 words/32,768 characters.

• Selected storage protection.
• Storage sharing.
• Complete cycle time: 1.25 microseconds.
• Access time: 0.75 microsecond.
• 24-bit accumulator register and auxiliary·accumulator register.
• Binary arithmetic: 2"1-1 modulus, one's complement for all single precision (24-bit) operations and

double precision (48-bit) addition and subtraction.
• Instruction repertoire compatible with the 3100 and 3300 Computers.
• Trapped instruction processing: executes double precision multiplication and division, floating

point, binary coded decimal (BCD) and an optional register transfer instruction if optional arith­
metic logic is not present in a system.

• 64-word register file (0.5 microsecond cycle time)
• Complete interrupt system.
• Block control operations.
o Logical and sensing operations.
• Masked storage searches.
• Three 15-bit index registers.
• Real-time clock (1.0 millisecond incrementation).
• Sit-down operator's console featuring:

• Octal register displays.
• Internal and external status displays.
• Instruction step control.
• Breakpoint thumbwheel control.
• Auto step control.
• Auto Load.
\I Auto Dump.
• Detachable keyboard for manual entry and control of the computer.

• Standard 3000 Series type 12-bit bidirectional data channel.
• Compatible I/O mediums include magnetic tape, disk file, punched cards, paper tape and printed

forms.

• Options include:
• Memory expansion to 16,384 or 32,768 words
• Additional 12-bit data channels or high-speed 24-bit data channels.
• Floating point and 48-bit precision multiply and divide hardware logic.
• BCD arithmetic hardware logic.
• On-line I/O monitor typewriter.
• Complete selection of peripheral equipment.

......:.J' \ \j \~ . L t:

r ,.

COMPUTER SYSTEM
REFERENCE MAN UAL

• I

60043800

REVISION

B

C

D

E

(9-27-66)

F
(1- 25- 66)

G

(12-21-66)

H

(12-21-66)

Pub. No. 60043800
December, 1966

RECORD of REVISIONS
NOTES

Obsoletes all previous editions.

Minor corrections only.

Obsoletes all previous editions.

Publication Change Order 11526. Pages iii, 1-3, 2-1,
4-2, 5-4, 5-12, 5-15, 6-5, 7-12, 7-25, 7-35, '7-39,
7-46, 7-47, 7-49, 7-55, 7-61, 7-73, 7-75, 7-77, 7-78,

7-79, 7-81, 7-83, 7-85, 7-86, 7-87, 8-12, B-6 and B-8.

Publication Change Order 12255. Pages 1-8, 1-13, 4-4,
7-22, 7-58, 7-65, 7-67, 7-68, 7-74, C-4, 7, 8, 9, 10,

11, 13, 14, 16, 17, 18, 19, 20, and Comment Sheet

revised.

Field Change Order 14561, new Product Designations

3204-A15, 3204- B17, 3205-A15 3205-B17 3210-A15,
3210-B17, 3215-A15 and 3215-B17. Pages 7-8. 7-11,

7-68, 7-69, 11, 12 and 20 revised.

Publication Change Order 15443, no Pr<;>duct Designation

change. Pages 4-4, 7-8, 7-9, 7-11, 7-14, 7-19, 7-50,

7-63, 7-64, 7-66, 7-68, 7-69, 7-72, 7-76, 7-78, C-7,

11, 12, 14, 19 and 20 revised.

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
St. Paul, Minnesota 55112

© 1966, Control Data Corporation
Printed in the United States of America

or use Comment Sheet in back of this
manual.

CONTENTS
Section 1. SYSTEM DESCRIPTIOI\l

INTRODUC'I'ION ; .. 1-1

COMPUTER MODULARITY ... 1-1
Main Control and Arithmetic Module. .. 1-3
Block Control and Interrupt Module. .. 1-3
Storage Module. 1-3
Input/Output Sub-Modules. 1-3
Optional Arithmetic Module , 1-4
Console .. 1-4
Input/Output Typewriter. .. 1-4
Power Control Panel. 1-4

3200 PROCESSORS ... 1-6

COMPUTER ORGANIZATION. .. 1-6
Computer Word Format.. 1-6
Register Descriptions. 1-6
Data Bus and'S' Bus ... 1-10
Block Control ... 1-10
Real-Time Clock ... 1-12
Parity .. 1-12

PERIPHERAlL EQUIPMENT .. 1-13

Section 2. STORAGE CHARACTERISTICS
STORAGE MODULE CONTROL PANEL. 2-1

STORAGE REGISTERS. 2-2
S Register. .. 2-2
Z Register .. 2-2

READ/WRITE CHARACTERISTICS ... 2-2
Single-Character Mode. .. 2-2
Double-Character Mode. .. 2-2
Triple-Character Mode. .. 2-2
Full-Word Mode , ... 2-2
Address Mode. .. 2-2

STORAGE ADDRESSING. .. 2-3

STORAGE SHARING. 2-3

STORAGE PROTECTION. 2-3
Permanent Protection. .. 2-4
Selective Protection. .. 2-4
No Protection. .. 2-4

Section 3. INPUT/OUTPUT CHARACTERISTICS
INTERFACE SIGNALS ... 3-1

I/O PARITY. .. 3-2
Parity Checking with the 3206 .. 3-2
Parity Checking with the 3207 .. 3-2

111

AUTO LOAD/AUTO DUMP .. , 3-3
Preliminary Considerations ... , 3-3
Auto Load ... , 3-3
Auto Dump .. , 3-3

SATELLITE CONFIGURATIONS ... , 3-5

Section 4. INTERRUPT SYSTEM
GENERAL INFORMATION. .. 4-1

INTERRUPT CONDITIONS. .. 4-1
Internal Interrupts .. 4-1
Trapped Instruction Interrupts ... 4-2
Power Failure Interrupt ... 4-2
I/O Interrupts. .. 4-3

INTERRUPT MASK REGISTER. .. 4-3

INTERRUPT CONTROL. .. 4-3
Enabling or Disabling Interrupt Control. .. 4-4
Interrupt Priority. 4-4
Sensing Interrupts. .. 4-4
Clearing Interrupts. .. 4-4

INTERRUPT PROCESSING. .. 4-5

Section 5. CONSOLES AND POWER CONTROL PANEL
CONSOLE. .. 5-1

Register Displays. .. 5-1
Console Loudspeaker. .. 5-4
Status Indicators. .. 5-4
Switches. 5-7

POWER CONTROL PANEL ... 5-15
Switches .. 5-15
Elapsed Time Meters .. 5-15

Section 6. TYPEWRITER
DESCRIPTION. .. 6-1

OPERATION ... 6-2
Set Tabs, Margins, and Spacing ... 6-2
Clear ... 6-2
Status Checking. .. 6-2
Type In and Type Load. .. 6-3
Type Out and Type Dump. .. 6-3

CONSOLE SWITCHES AND INDICATORS. .. 6-3

CHARACTER CODES. .. 6-5

Section 7. INSTRUCTIONS
GENERAL INFORMATION. .. 7-1

Instruction Word Formats. .. 7-1
Word Addresses vs. Character Addresses. .. 7-2
Symbol Definitions. .. 7-3
Indexing and Address Modification. .. 7-3

IV

Addressing Modes. .. 7-4
Indexing and Addressing Mode Examples , .. 7-5
Trapped Instructions. .. 7-6

INSTRUCTION LIST .. 7-7
Register Operations without Storage Reference , 7-12
Load ... 7-20
Store , .. , 7-23
Inter-register Transfer, 24-bit Precision .. 7-26
Inter-register Transfer, 48-bit Precision .. 7-29
Stops and Jumps .. 7-30
Logical Instructions with Storage Reference 7.37
Arithmetic, Fixed Point, 24-bit Precision .. 7-38
Arithmetic, Fixed Point, 48-bit Precision .. 7-40
Trapped Instructions if Arithmetic Option is Not Present 7~42
Arithmetic, Floating Point ... 7-43

Trapped Instructions if FP/DP Arithmetic Option is Not Present 7-43
BCD ... 7-46
Trapped Instruction if BCD Arithmetic Option is Not Present 7-46

Storage Shift, Searches, Compare and Register Shifts 7-50
Search .. 7-56
Move ... 7-58
Sensing .. 7-60
Control .. 7-63
Interrupt , .. 7-65
Input/Output '.' ... 7-68

Section 8. SOFTWARE SYSTEMS
GENERAL DESCRIPTION. .. 8-1

3100,3200,3300 SCOPE .. 8-1
3100,3200,3300 COMPASS. .. 8-2
3100,3200,3300 Data Processing Package 8-3
3100, 3200, 3300 Utility. .. 8-4
3100, 3200, 3300 COBOL '.' 8-4
3100, 3200, 3300 FORTRAN. 8-5
Generalized Sort/Merge Program. .. 8-5
3100,3200,3300 BASIC System .. 8-6

CODING PROCEDURES. 8-7
Instruction Format. .. 8-7
Pseudo-Instructions. .. 8-9
Assembly Listing Format .. 8-17
Error Codes .. 8-18

APPENDIX A-Control Data 3100, 3200, 3300 Computer Systems Character Set
B -Supplementary Arithmetic Information
C - Programming Reference Tables and Conversion Information

GLOSSARY, INSTRUCTION TABLES AND INDEX

v

FIGURES
FIGURE

1-1 Typical 3200 Modular Configuration. 1-2
1-2 3200 Console. .. 1-5
1-3 Computer Word Character Positions and Bit Assignments. .. 1-6
1-4 Storage Addressing and Data Paths of Typical Installation 1~10
1-5 Block Control Scanning Pattern .. 1-12
1-6 Parity Bit Assignments .. 1-13
2-1 Storage Module Control'Panel .. 2-1
3-1 Principal Signals Between I/O Channel and External Equipment. 3-1
3-2 Satellite Configurations. .. 3-4
5-1 Front View of 3200 Console Controls ... 5-2
5-2 EUEL Register Display .. 5-3
5-3 ED Register Display ... , 5-3
5-4 External Status Indicators. .. 5-4
5-5 Internal Status Indicators. .. 5-5
5-6 Temperature Warning Designations for an Expanded 3200 Computer, Front View 5-6
5-7 Console Keyboard. 5-8
5-8 Breakpoint Switch Examples .. 5-13
5-9 Power Control Panel .. 5-16
6-1 3192 Console Typewriter. .. 6-1
6-2 Typewriter Control Panel. 6-3
7-1 Word-Addressed Instruction Format. 7-1
7-2 Character-Addressed Instruction Format. 7-2
7-3 Indexing and Indirect Addressing Routine Flow Chart. 7-3
7-4 Operand Formats and Bit Allocations for MUAQ and DVAQ Instructions 7-41
7-5 Operand Formats and Bit Allocations for Floating Point Arithmetic Instructions 7-45
7-6 Search Operation .. 7-57
7 -7 Move Instruction ... 7-59
7-8 73 I/O Operation with Storage ... 7-73
7-9 74 I/O Operation with Storage ... 7-75
7-1075 I/O Operation with Storage ... 7-77
7-11 76 I/O Operation with Storage ... 7-79
7-1273 I/O Operation with A ... 7-81
7-1374 I/O Operation with A ... 7-83
7-1475 I/O Operation with A .. 7-85
7-1576 I/O Operation with A .. 7-87
8-1 COMPASS Coding Form .. 8-19
8-2 FORTRAN Coding Form .. 8-19

VI

TABLES
TABLE

1-1 Optional Memory Configurations. .. 1-3
1-2 Characteristics of 3200 Computer Registers. .. 1-9
1-3 Register File Assignments ... 1-11
1-4 Buffer Groups .. 1-11
2-1 Absolute Addresses ... 2-3
2-2 Auto Load/Auto Dump Reserved Addresses. .. 2-4
2-3 Storage Protection Switch Descriptions. .. 2-5
2-4 Storage Protection Switch Settings. .. 2-5
4-1 Interrupt Mask Register Bit Assignments ... 4-3
4-2 Interrupt Priority. .. 4-4
4-3 Representative Interrupt Codes. .. 4-5
5-1 Keyboard Switch Functions. .. 5-9
5-2 Console Main-Frame Switches ... 5-10
5-3 Power Control Panel Switch Functions ... 5-15
6-1 Console Typewriter Switches and Indicators. .. 6-4
6-2 Console Typewriter Codes. .. 6-5
7-1 List of Trapped Instructions. .. 7-7
7-2 Instruction Synopsis and Index. .. 7-8
7-3 Summary ofInstruction Execution Times ... 7-11
7 -4 Interrupt Mask Register Bit Assignments ... 7-61
7-5 Internal Status Sensing Mask ... 7-62
7 -6 Block Control Clearing Mask .. 7-63
7 -7 Pause Sensing Mask .. 7-64
7 -8 Interrupt Mask Register Bit Assignments ... 7-65
7-9 Modified I/O Instruction Words .. 7-69
8-1 Instruction Interpretations. .. 8-8
8-2 COMPASS Coding Form Description ... 8-18

VII

Section 1
SYSTEM DESCRIPTION

INTRODUCTION

The CONTROL DATA* 3200 is a medium-size, solid-state, general-purpose digital computing
system. Advanced design techniques are used throughout the system to provide expedient
solutions for scientific, real-time, and data processing problems. Modular packaging facili­
tates expansion ofthe basic 3200System to accommodate increasing customer needs.

The 3200 is compatible with the CONTROL DATA 3100 and 3300 Computer System; i.e., as
computation requirements exceed the capabilities of the 3200 System, the user may escalate
to a 3300 System without revising existing 3200 programs. Its input/output characteristics
are identical to the 3100, 3300, 3400, 3600 and 3800 Computer Systems-a fact which facili­
tates incorporating the 3200 into a SATELLITE* configuration.

Various software systems are available for the 3200 System. The SCOPE operating system
is used in 3200 Systems to provide efficient job processing. SCOPE requires a minimum of
storage and time requirements. COMPASS, operating under the control of SCOPE, is the
assembly system used to assemble relocatable machine language programs. Other applicable
software includes FORTRAN, COBOL, the Data Processing Package, Generalized Sort/
Merge and BASIC System. These systems are described in the Software Section of this manual.
Other software and hardware publications pertinent to 3200 Systems may be obtained from
the nearest Control Data sales office listed on the back cover ofthis manual.

A wide selection of peripheral equipment is available for use in a 3200 System. Equipment
that is applicable to 3200 Systems may be found in the 3000 Series Computer System Pe­
ripheral Equipment Reference Manual (Pub. No. 60108800).

This manual provides programming and operating information in conjupction with a descrip­
tion of special features of the 3200. Reference information and supplementary information
may be found in the Appendix section.

COMPUTER MODULARITY

A 3200 Computer consists of various logic cabinet modules designed to perform specific
operations. If additional storage, input/output channels, or arithmetic capabilities are de­
sired for an existing installation, an appropriate module is integrated into the system. Figure
1-1 illustrates and describes the modules of a typical 3200 computer with its external cabinet
panels removed.

*"Registered trademark of Control Data Corporation

1-1

U IU I', V

8K 8K BLOCK OPTIONAL MAIN CONTROL POWER
STORAGE STORAGE CONTROL ARITHMETIC AND CONTROL
MODULE MODULE AND CHASSIS ARITHMETIC MODULE PANEL

INTERRUPT
MODULE

r------, r-------,

: 1/0 MODULE:
I I

I CHANNELS I I 1/0 MODULE:
I 2 AND 3 : CHANNELS I

I (OPTIONAL) : o AND 1
I I

I I I I
1-- ______1 L ______ -'

1/

1/
/ '- I

Figure 1-1. Typical 3200 Modular Configuration

1-2

MAIN CONTROL AND ARITHMETIC MODULE
This module, standard in all 3200 systems, controls internal operations, executes 24-bit
precision fixed point arithmetic and 48-bit precision fixed point addition and subtraction
instructions. Boolean, character/word processing, and decision operations are also processed
by this module. Floating point, BCD, and 48-bit precision multiplication and division in­
structions are classified as trapped instructions if the optional arithmetic module is absent
from the system. Trapped instructions may be processed under control of an interpretive soft­
ware routine.

BLOCK COr\lTROL AND INTERRUPT MODULE
Logic associated with this module controls Search and Move operations, external equip­
ment and typewriter I/O,real-time referencing, and operations with the register file. In­
terrupt logic, also located in this module, processes Internal, I/O, Trapped Instruction, and
Power Failure interrupts.

STORAGE MODULE
An 8,192-word memory module is standard in every 3200 System. A customer may select
combinations of magnetic core storage (MCS) modules to increase the total storage capac­
ity of his computer system to 16,384 or 32,768 words. The following optional storage modules
are available:

3209 - 8,192-word (32,768 characters) MCS memory module (requires additional
chassis).
3203 - 16,384-word (65,536 characters) MCS memory module (requires additional
chassis).

Memory configurations are shown in Table 1-1.

TABLE 1-1. OPTIONAL MEMORY CONFIGURATIONS

Total Expanded Memory Modules Required in
Memory Capacity Addition t!) 8K Memory in 3204

16K 3109
32K 3209 and 3203

INPUT/OUTPUT SUB-MODULES
Two types ofI/O Channels are available:

3206

3206 Communication Channel (12-bit)
3207 Communication Channel (24-bit)

The 3206 is a bidirectional 12-bit parallel data channel. A maximum of eight 3206 channels
may be used in a 3200 System and up to eight peripheral controllers may be connected to
each channel. Cabinet space is provided for mounting two 3206 channels per I/O sub-module.
The two I/O channels are referred to as a 3206 Dual Communication Module. Channels 0 and
1 normally occupy the lower five logic rows of the storage module directly adjacent to the
block control and interrupt module and channels 2 and 3 occupy the lower five logic rows
of the adjacent storage chassis.

1-3

3207
The 3207 is a bidirectional 24-bit parallel data channel with twice the data transfer rate of
the standard 32015 I/O channel. One 3207 occupies the same cabinet space required for two
3206 channels. If a 3207 is installed in a system, the maximum number of 3206 channels is
limited to six. Only one 3207 may be used in a processor. Refer to Section 3 for additional
information.

OPTIONAL ARITHMETIC MODULE
The floating point/48-bit precision standard arithmetic option provides the necessary logic
to execute 36-bit precision coefficient floating point arithmetic. It also permits the 48-bit
precision multiply and divide instructions to be executed directly by the hardware. The BCD
standard arithmetic option permits decimal numbers to be added, subtracted, loaded, stored
or sensed directly without the use of interpretive software. If one or both options are absent,
the instructions pertaining. to the option(s) can be executed by entering a trapped routine
and utilizing the appropriate software.

CONSOLE
The 3200 sit-down console is standard on all 3200 systems and features:

• octal readout displays
• entry keyboard
• various operator switches
• thumbwheel breakpoint switch
• internal and external status indicators
• instruction Auto Step control
• operator's chair

A full view of the 3200 Console appears in Figure 1-2 and detailed information is contained
in Section 5.

INPUT/OUTPUT TYPEWRITER
The I/O monitor typewriter is also standard on all 3200 systems. Data is transmitted and
received directly from storage, thus eliminating the need for an I/O channel. Operating
information and character codes are found in Section 6.

POWER CONTROL PANEL

The Power Control Panel enables the computer operator to initially connect power to the
main computer, typewriter, and groups of peripheral equipment. Semipermanent storage
protection switches are located on the upper section of this panel. Operating time and main­
tenance time meters and the main equipment circuit breakers are also mounted on the con­
trol panel. Detailed information pertaining to the Power Control Panel appears in Section 5.

1-4

<=>
co
N

~ TO .. --- 7 0
•• --- ' I j .---~. . ' '" . ' ,

Figure 1-2. 3200 Console

1-5

3200 PROCESSORS

3204 The 3204 features 6-, 24-, and 48-bit modes, three index registers, indirect
Basic addressing, register file, two 12-bit communication channels, 8,192 words or

Processor 32,768 characters of magnetic core storage, 3200 sit-down console, chair,
on-line I/O typewriter, and control for referencing up to 32,768 words of
storage and up to eight 12-bit or six 12-bit and one 24-bit communication
channels.

3205 The 3205 includes all of the control, arithmetic, input/output and storage
Scientific functions of the 3204 Processor plus 48-bit floating point arithmetic logic
Processor and logic for 48-bit fixed point multiply and divide.

3210 The 3210 includes all of the control, arithmetic and input/output functions
Data of the 3204 Processor plus the BCD arithmetic logic for adding, subtracting,

Processor loading, storing, shifting and sensing characters of variable field lengths.

3215 The 3215 is a truly general-purpose computer featuring word and character
General addressing, binary and character manipulation, fixed and floating point

Processor arithmetic and variable length character arithmetic. It includes all of the
features of the 3204. 3205. and 3210 Processors.

COMPUTER ORGANIZATION

COMPUTER WORD FORMAT
The standard 3200 computer word consists of 24 binary digits. Each word is divided into four
6-bit characters. In storage, an odd parity bit is generated and checked for each of the four
characters, lengthening the storage word to 28 bits. Figure 1-3 illustrates the bit assignments
of a computer word in storage.

27 26 25 24 23 18 17 12 11 06 05 00

Character 0 Character 1 Character 2 Character 3

~'~---------------C-h-a-ra-c-te~~d~e-S-ig-n-a-to-rs--------------~/

Figure 1-3. Computer Word Character Positions and Bit Assignments

REGISTER DESCRIPTIONS

A Register (Arithmetic)
The A register (accumulator) is the principal arithmetic register. Some of the more important
functions of this register are:

• All arithmetic and logical operations use the A register in formulating a result.
The A register is the only register with provisions for adding its contents to the
contents of a storage location or another register.

• A may be shifted to the right or left separately or in conjunction with Q. Right shifting
is end-off; the lowest bits are discarded and the sign is extended. Left shifting is end­
around; the highest order bit appears in the lowest order stage after each shift; all
other bits move one place to the left.

• The A register holds the word which conditions jump and search instructions.

1-6

Q Register (Arithmetic)
The Q register is an auxiliary register and is generally used in conjunction with the
A register.

The principal functions of Q are:

• Providing temporary storage for the contents of A while A is used for another
arithmetic operation.

• Forming a double-length register, AQ.
• Shifting to the right or left, separately or in conjunction with A.
• Serving as a mask register for 06, 07, and 27 instructions.

Both A and Q may load or be loaded from any of the three index registers without the
use of storage references.

X Register (Arithmetic)
The X register is a transfer register, used only for internal instruction processing.
Contents of this register cannot be displayed by any external indicators.

F Register (Main Control)
The program control register, F, holds an instruction during the time it is being exe­
cuted. During execution, the program may modify the instruction in one of three ways:

• Indexing (Address Modification)-A quantity in one of the index registers
(Bb) is added to the lower 15 bits of F for word-addressed instructions, or to
the lower 17 bits of F for character-addressed instructions. The signs of Bb
and F are extended for the addition process.

• Indirect Addressing-The lower 18 bits of F are replaced by new a, b, and m
designators from the original address M (modified if necessary, M=m+Bb).

• Indirect Addressing (load and store index instructions)-Bits 00-14 and 17 of
F are replaced by new a and m designators from the original address M (no
modification possible).

After executing an instruction, a Normal Exit, Skip Exit or Jump Exit is performed.
F is displayed on the console whenever the keyboard is inactive and the computer is
not in the GO mode.

C Register (Main Control)
Quantities to be entered into the A, Q, B or P registers or into storage from the entry
keyboard are temporarily held in the Communication (C) register until the TRANSFER
switch is pushed. If an error is made while entering data into the Communication
register, the KEYBOARD CLEAR switch may be used to clear this register.

The C register holds words read from storage during a Sweep or Read Storage opera­
tion. The contents of C are displayed on the console whenever the keyboard is active.

P Register (Main Control)
The P register is the Program Address Counter. It provides program continuity by
generating in sequence the storage addresses which contain the individual instructions.
During a Normal Exit the count in P is incremented by 1 at the completion of each
instruction to specify the address of the next instruction. These addresses are sent via
the S (address) Bus to the specified storage module where the instruction is read. A
Skip Exit advances the count in P by 2, bypassing the next sequential instruction and
executing the following one. For a Jump Exit, the execution address portion of the jump
instruction is entered into P, and used to specify the starting address of a new sequence
of instructions.

1-7

Bb Registers (Main Contro/)

The three index registers, B1, B2 and B3, are used in a variety of ways, depending on the
instruction. In a majority of the instructions they hold quantities to be added to the execution
address (M=m+ Bb).

Data Bus Register (DBR-Main Control)
A 24-bit Data Bus register is used to temporarily hold the data received from storage, Commu­
nication register and other logic areas. It is a nondisplayed and nonaddressable register.

During character-addressed or input/output operations, data entering the DBR may be
shifted one, two, or three character positions during the transfer to reach the correct character
position within the DBR.

E Register
The optional arithmetic register, E, is present in a system whenever one of the two optional
arithmetic logic packages is present. Its characteristics and functions depend upon whether
it is being used for floating point/48-bit precision or for BCD operations.

During floating point/48-bit precision operations, the E register is divided into two parts,
EU and EL (EUpper and ELower) each composed of 24 bits. It is used as follows:

• 48-bit precision multiplication; holds the lower 48 bits of a 96-bit product .
• 48-bit precision division; initially hold's the lower 48 bits of the dividend; upon

completion, holds the remainder.
• Floating point multiplication; holds the residue of the coefficient of the 48-bit product.
• Floating point division; holds the remainder.

During BCD operations the E register is designated the ED register (EDecimal)' The unique
decimal digits can be expressed in 4 bits, i.e., 810=108 and 910=118. Accordingly, ED is ex­
tended from 48 to 53 bits in order to handle 13 of these 4-bit characters, plus one sign bit.
This register is used in conjunction with storage to perform BCD addition and subtraction.

D Register
The D register is a field length register and is used in conjunction with loading, storing,
adding, and subtracting numeric BCD characters. This register is set to a field length of 1 to
12 characters by executing a SET (70.7) instruction. The field length remains the same until
it is changed by another SET instruction.

The D register is present only when the BCD arithmetic option is incorporated into a system.
The contents of the D register cannot be displayed.

S Register (Storage)
The S register holds the address of the storage word currently being referenced. It is displayed
on the storage module control panel.

Z Register (Storage)
The Z register is the storage restoration and modification register. Data stored or being trans­
ferred to or from the address specified by the S register must pass through Z. The entire
storage word, including the four parity bits, is represented by the Z register and displayed on
the storage module control panel.

Rev. F 1-8

I-'
I

to

*

**

TABLE 1-2. CHARACTERISTICS OF 3200 COMPUTER REGISTERS

REGISTER
FUNCTION

BIT
MODULUS

COMPLEMENT ARITHMETIC
RESULT

DESIGNATION CAPACITY NOTATION PROPERTIES

Main
A Arithmetic 24 224_1 one's additive signed*

register

Auxiliary
Q Arithmetic 24 224_1 one's additive signed*

register

Program
F** Control 24 224_1 *** *** ***

register

Communica-
C** tion 24 224_1

register -1'-1'-1'-1'

Program
P Address 15 215c1

register

B1. B2, B3 Index
registers

15 2 15_1 one's additive unsigned

Storage
S Address 13 213_1

register

Storage 28
Z Data (includes 4 224_1

register parity bits) ****
Arithmetic

X Transfer 24 224_1

register

EU and EL
EUpper and
ELower octal 48 2 48_1 one's additive signed*;
register ,
ED 53 (include

ED (BCD) sign and ± 1013 absolute additive signed
register overflow digit)

D Field Length 4 24_1 one's -1'-1'-1'-1'

register
----------- ----

Since the A, Q, and EUEL register co.ntents are all treated as signed quantities, the capacity of these registers is limited to the following values:
A:O;2 23-1: Q:O;2 23 -1; EUEL::;:247_1. When the arithmetic result in A. Q, or EUELis zero, it is always represented by positive zero.
Dual purpose register.
Only the lower 'j 5 or 17 bits of F are modified depending on whether word or character addressing is being used. The results are unsigned.
Information not applicable.

DATA BUS AND'S' BUS

The Data Bus provides a common path over which data must flow to the storage, arithmetic,
console typewriter and I/O sections of the computer. These sections are connected in parallel
to the Data Bus. During the execution of each instruction, Main Control determines which
data transfer path is activated.

An odd parity bit is generated for the lower byte of each word as it leaves the DBR during
I/O operations. In the case of a 3207 I/O Channel, parity for the upper byte of data is gener­
ated in the channel itself rather than in the Data Bus.

The S or Address Bus is a data link between Main Control and storage for transmitting
storage addresses. Inputs to the S Bus are from the P register, F register, Block Control and
the Breakpoint circuits. Figure 1-4 illustrates the relevance of the Data Bus and S Bus in
a typical 32001 installation.

Storage Address Bus

3209 3209 Computation H 3200 I 3203
Storage Storage Console Storage
Module Module

Section
Module

16K 8K 8K
Console rl

Typewriter

Data Bus

I I I I I 1 I
I I I I

3206 I 3206 3206 I 3206 3204 Basic Processor 3206 I 3206 3206 I 3206
I I I I

---------or 3207

Figure 1-4. Storage Addressing and Data Paths of Typical Installation

BLOCK CONTROL

Block control is an auxiliary control section within a 3200 series processor. In conjunction
with the register file and program control, it directs the following operations:

III External equipment I/O
III Search/Move
III Real-Time clock
.. Console typewriter I/O
III High-speed temporary storage

Register File

The register file is a 64-word (24 bits per word) rapid access memory with a cycle time of 0.5
p.,sec. Although the programmer has access to all registers in the file with the inter-register
transfer (53) instruction, certain registers are reserved for specific purposes (see Table 1-3).
All reserved registers may be used for temporary storage if their use will not disrupt other
operations that are in progress.

1-10

The contents of any register in the file may be viewed by selecting the register number with
the Breakpoint switch and pressing the Read STO button on the keyboard. The contents may
be altered by setting the Breakpoint switch, pressing the Write STO button, and entering a
new word from the entry keyboard.

Register
Numbers

00-07

10-17

20

21
22

23

24-27
30
31

32
33

34-77

TABLE 1-3. REGISTER FILE ASSIGNMENTS

Register Functions

Modified I/O instruction word containing the current character address (channel 0-7 control)

Modified I/O instruction word containing the last character address ±1, depending on the

instruction (channel 0-7 control)

Search instruction word containing the current character address (search control)

Move instruction word containing the source character address (move control)

Real-time clock, current time

Current character address (typewriter control) *
Temporary storage

Instruction word containing the last character address +1 (search control)

Instruction word containing the destination character address (move control)

Real-time clock, interrupt mask

Last character address +1 (typewriter control) *
Temporary storage

*The upper 7 bits of registers 23 and 33 should contain zeros.

Block Control Priority

Access to block control circuits is shared between the computer's program control and· block
control's own buffered functions. Functi.ons within block control are divided into thr~e groups
(see Table 1-4). Five scanners provide the necessary priority network for this system. They are
the Program/Buffer scanner, the Group scanner, and the three Inner-Group scanners. Figure
1-5 is a diagram showing the search pattern of the scanners.

TABLE 1-4. BUFFER GROUPS

GROUP1 GROUP2 GROUP3
Channel 0 control Channel 4 control Real-time clock control

'1 5 Console typewriter control
2 6 Register File Display
3 7 Search/Move control

A free-running scanner alternately checks for block control requests from program control,
and for functions within block control. This scanning. is done on an equal time basis. As soon
as a request from one source has been processed, the scanner is released so it can check the
other source for an active request.

Another free-running scanner checks the three groups for an active block control request.
After a request from one group has been processed, the scanner moves to the next group,
rotating through the groups in a 3, 2, 1,3 order.

Each group has a four-position scanner. These scanners search from top to bottom of their
respective groups looking for active block control requests. After they find a request and it
has been processed, the scanners return to the top oftheir group before resuming their search.

1-11

Channel a Control ..
t Group 1 t

2 ..
t

3 ..
4 ..

Buffer Program
t

5 ~ ..
t .. Group 2

6 .. -----~ t
7 ..

Real-Time Clock Control ..
t

Console Typewriter Control ..
t •

Register File Display .. Group 3

t
Search/M ove Control ..

Figure 1-5. Block Control Scanning Pattern

REAL-TIMIE CLOCK

The real-ti:rne clock is a 24-bit counter that is incremented each millisecond to a maximum
period of 16,777,216* milliseconds. After reaching its maximum count, the clock returns to
zero and ~he cycle is repeated continuously. The clock, which is controlled by a 1 kilocycle
signal, starts as soon as power is applied to-the computer. The current time lis stored in regis­
ter 22 of the Register File. It is removed from storage, updated, and compared with the con­
tents of register 32 once each millisecond. When the clock time equals the time specified by
the clock mask, an interrupt is set. When necessary, the real-time clock may be reset to any
24-bit quantity including zero by loading A and then transferring (A) into register 22. Per­
forming a Master Clear will not affect the clock count.

PARITY

Parity bits are generated and checked in 3200 systems for the following two conditions:
1 Whenever a data word is read from or written into storage.
2 When a data word is transferred via an I/O channel.

*16,777,216 milliseconds equals approximately 4 hours and 40 minutes.

1-12

Storage Parity
A parity bit is generated and checked for each 6-bit character of a storage word. Refer to
Figure 1-6.

27 26 25 24

P3

23 18 17

o

12 11

Character designators
Parity bit for character 3
Parity bit for character 2
Parity bit for character 1
Parity bit for character 0

Figure 1-6. Parity Bit Assignments

06 05 00

3

During each Write cycle, a parity bit is stored along with each character. When part or all of
a word is read from storage, parity is checked for a loss or gain of bits. Failure to produce
the correct parity during Read operations causes the PARITY FAULT indicators on the
Storage Module Control Panel and internal status lights to glow. As soon as a parity error
is recognized by Main Control, program execution is halted. Master Clearing the computer
clears the fault, condition.

If the DISABLE PARITY switch has been depressed and is active, subsequent parity errors
will not cause parity error indicators to glow and program execution will not be affected.

The total number of "l's" in a character, plus the parity bit, is always an odd number in the
odd parity system used in the 3200.

I/O Parity

The I/O Communication Channels provide parity lines in addition to the other signals that
interface with external equipment. Parity is checked in the I/O channels to detect parity
errors during data transmission to the external equipment and errors when data is received
from external equipment. I/O parity errors can be detected by a sensing instruction; however,
the parity error indicator will not be activated. A complete description ofI/O parity generation
and checking may be found in the I/O section of this manual.

PERIPHERAL EQUIPMENT

A large variety of peripheral equipment is available for use with the 3200 computer. All
peripheral equipment available for 3100, 3200, 3300, 3400, 3600 and 3800 systems may be
attached to a 3206 communication channel. For programming instructions, as well as a list
of function codes and status response codes, refer to the Control Data 3000 Series Computer
Systems Peripheral Equipment Reference Manual (Pub. No. 60108800).

1-13 Rev. F

Section 2
STORAGE CHARACTERISTICS

STORAGE MODULE CONTROL PANEL

Figure 2-1 shows the Storage Control Panel which is mounted at the top of each 3209 Storage
Module. The Drive Voltage Control is used to adjust the drive voltage to 22.5 volts, and not
exceeding 24 volts. The Z and S registers are displayed on this panel, as well as three storage
faults. The indicator lamps represent an x or y drive line voltage failure and a storage parity
fault. The Contlt'Ol Panel on the 3203 Module is similar to the 3209 Control Panel but is laid
out on a verticai plane.

Figure 2-1. Storage Module Control Panel

2-1

STORAGE REGISTERS

S REGISTER
The 13-bit S register contains the address of the word being currently processed. Bit
12 specifies field 0 or field 1 in the memory stack. Bits 00-11 specify the co-ordinates
of the word.

Z REGISTER
The 2S-bit Z register is the storage restoration and modification register. All data that
is transferred to or from the storage module passes through Z.

READIWRITE CHARACTERISTICS

During a normal memory cycle, all bits of a word referenced by (S)* are read out of core
storage in parallel, loaded into Z, used for some purpose, then written back into storage
intact. Five modes exist in the 3200 Computer for storage modification. In all cases, Z is
initially in the cleared state.

The Z register is only cleared at the beginning of each memory cycle (except in the
case of a Master Clear). If the program stops as the result of a parity error, the operator
can examine (Z) on the Storage Module Control Panel, Figure 2-1.

SINGLE-CHARACTER MODE
Anyone character may be ignored during the Read cycle. New data is then loaded
into the corresponding character position of Z and the whole (Z) is stored.

DOU BLE-CHARACTER MODE
The upper, middle, or lower half of a word is ignored during the Read cycle. New data
is loaded into the unfilled half of Z and the whole (Z) is stored.

TRIPLE-CHARACTER MODE
Either of the two possible triple-character groups may be ignored during the Read cycle.
New data is then loaded into the corresponding character positions of Z and the whole
(Z) is stored.

FUll-WORD MODE
The whole word is ignored during the Read cycle. A new word is entered into Z and
(Z) is stored.

ADDRESS MODE
The lower 15 or 17 bits of a word may be ignored during the Read cycle. A new word
or character address is then loaded into Z, and the whole (Z) is stored.

*The parentheses are an accepted method for expressing the words "the content(s) of " (in this case, "the
contents of S").

2-2

STORAGE ADDRESSING

Table 2-1 gives the absolute addresses for a specific storage capacity.

TABLE 2-1. ABSOLUTE ADDRESSES

Storage
Word Encompassing Addresses

Capacity

8K 00000 ,.. 17777
(8,192)

16K ALL PRECEDING ADDRESSES AND:
(16,384) 20000 ,.. 37777

32K ALL PRECEDING ADDRESSES AND:
(32,768) 40000 ,.. 77777

NOTE

If an address is referenced that exceeds the storage capacity of a system, the uppermost
digit is adjusted to conform to the available storage. No fault indication is given for this case,

Example: Address 67344 referenced.

Actual address referenced: 67344 - 32 K system
27344-16K system

07344- 8K system

STORAGE SHARING
Two 3200 computers may share the memory of a 3209 Storage Module. A switch on each
Storage Module Control Panel allows the operator to give exclusive control to the right or
left computer, A middle position on this switch actuates a two-position priority scanner,
Storage Control honors the requests in the order they are received. Neither computer has
priority over the other and the computer involved in the current storage cycle relinquishes
control to the requesting computer at the end of its cycle. Either computer can therefore be
delayed a maximum of one storage cycle. A similar program delay may occur within either
computer when an internal scanner determines whether Main Control or Block Control has
access to the storage module,

Direct access to 3200 type storage modules is available for certain installations. The normal
I/O channel route is bypassed and the customer's special equipment interfaces directly with
the storage logic.

STORAGE PROTECTION
It is often desirable to protect the contents of certain storage addresses against altera­
tion during the execution of a program. There are three catagories of addresses: those
that are always protected; those that are protected at the option of the programmer;
and those that are never protected during special sequences.

An attempt to write at a protected address is defined as an Illegal Write. No writing
actually takes place, however, and the attempt to write does not stop or interrupt the
execution of the program. An Illegal Write causes a console indicator to light and the
program may sense an Illegal Write as bit 05 of the internal status response code. An
Illegal Write is cleared by a Master Clear, an Internal Clear, or by sensing.

2-3

PERMANENT PROTECTION
The upper 408 memory locations reserved for Auto Load and Auto Dump programs are always
protected against alteration by a special storage protection circuit. The actual addresses
protected depend upon the memory size and encompass the addresses shown in Table 2-2.

TABLE 2-2. AUTO LOAD/AUTO DUMP RESERVED ADDRESSES

Memory Auto Load and Auto Dump
Size Reserved Storage Addresses

8K 177 40-17777

16K 37740-37777

32K 77740-77777

Logic circuits sense the total storage capacity of the system and check each storage
address as it appears on the S (address) Bus to see if it is among the protected addresses.
If it is one of those to be protected, reading but no writing is allowed at that address.
The only time that this protection is disabled is when an operator presses the ENTER
AUTO PROGRAM switch on the console so that he may store a new Auto Load or
Auto Dump program. Refer to Section 3, Input/Output Characteristics, for additional
information on the Auto Load and Auto Dump features.

SELECTIVE PBOTECTION
There are 15 three-position toggle switches mounted on the Power Control Panel. Each
switch corresponds to one bit of the 15-bit storage address. The operator may protect
an address or block of addresses in storage by setting each of the switches to one of its
three positions. A view of the Storage Protect switches on the Power Control Panel
appears in the Consoles and Power Control Panel section, and Table 2-3 describes the
switch positions.

Selective protection may be disabled by pressing the Disable Storage Protect switch
on the console. Table 2-4 gives examples of the switch settings needed to protect various
blocks of addresses.

NO PROTECTIION
Addresses 00002 through 00005, 00010 and 00011, which are used by the interrupt system,
are never protected during the interrupt sequence.

2-4

TABLE 2-3. STORAGE PROTECTION SWITCH DESCRIPTIONS

Output
Switch

Description
Position

"1" Up Each address protected will have a "1" in this bit position.
"N" Center Each address protected may have either a "1" or a "0" in this position.

For example. when all switches are set to the neutral position. all storage
-is protected. provided that the protect feature is enabled.

"0" Down Each address protected will have a "0" in this bit position.

TABLE 2-4. STORAGE PROTECTION SWITCH SETTINGS

Examples:

Description of Protected Addresses Settings - Storage Addresses Pro-
Protection Switches tected (octal)

Single storage address 000 000 000 001 1 1 1 00017

Two nonsequential addresses of a 000 000 000 010 ONO 00020 & 00022
group of 10s.* 000 000 000 010 Nl0 00022 & 00026

Four nonsequential addresses of a 000 000 000 010 NON 00020.00021.
group of 10s.* 00024. & 00025

000 000 000 010 NNl 00021.00023.
00025. & 00027

Four address block- may be the 000 000 000 100 ONN 00040-00043
upper or lower half of a group 000 000 000 100 1 NN 00044-00047
of 10s.*

lOs address block 000 000 000 010 NNN 00020-00027

20s address block 000 000 001 OON NNN 00100-00117
000 000 001 1 1 N NNN 00160-00177

40s address block- may be the 100 000 000 ONN NNN 40000-40037
upper or lower half of a group 100 000 000 1 NN NNN 40040-40077
of 100s.*

Numerous other groups and com- 000 000 000 NNN 1 1 0 00006. 00016.
binations of the above groups 00026 ... 00076
may also be protected. NNN NNN NNN NNN 1 1 1 All XXXX7 ad-

dresses
NNN NNN 001 NNN NNN All XX1XX ad-

dresses (00100-
00177.01100-
01177. etc.)

* The first address of all groups of lOs. 20s. 40s. 1 OOa. etc .. must have a lower octal digit of zero.
Blocks of 100a. 200a. 400a. 1000a. 2000a. 4000a. etc .. may be protected in the same manner as
blocks of lOa. 20a. & 40a.

2-5

Section 3
INPUT/OUTPUT CHARACTERISTICS

Data is transferred between a 3200 Computer and its associated external equipment via a
3206 or 3207 Communication Channel. For programming purposes, the eight possible 3206
channels in a system are designated by numbers 0 through 7. A 3207 replaces the 3206 type
I/O channels 2 and 3 in expanded systems. It is programmed as Channel 2.

INTERFACE SIGNALS
Up to eight external equipment controllers may be attached in parallel to each 3206 Commu­
nication Channel. Figure 3-1 shows the principal signals which flow between a 3206 and its
external equipment. The 12 status lines are active only between the channel and the con­
troller to which it has been connected by the CON (77.0) instruction. The eight interrupt lines,
designated 0-7, connect to all eight controllers attached to a channel. These lines match the
Equipment Number switch setting on each controller. For a complete description of the I/O
interface signals as well as an I/O timing chart, refer to the 3000 Series I/O Specifications
(Pub. No. 60048800).

Data Lines (12 for 3206; 24 for 3207)

Parity Lines (1 for 3206; 2 for 3207)

Connect

Function

3206 or 3207 Read External

Communication Write Equipment

Channel Data Si(.]nal Controller

Master Clear

Clear External Interrupt

Channel Busv

Reply

Reiect

End of Record

External Parity Error

Status Lines (12)

Interrupt Lines (8)

SUDDress Assemblv/Disassemblv

Word Mark

Sample Status Time

Figure 3-1. Principal Signals Between I/O Channel and External Equipment

3-1

I/O PARITY

PARITY CHECKING WITH THE 3206
The computer checks parity by one method for Connect, Function and Write operations,
and by a second method for Read operations.

Connect, Function and Write
During the Connect, Function and Write operations, the Data Bus circuit of the com­
putation section generates a parity bit and sends it to the external equipment with each
12-bit byte of data via the I/O channel. The external equipment generates a second
parity bit and compares it with the parity bit from the computer. If an error exists, the
external equipment sends an External Parity Error signal back to the I/O channel.
This signal causes the logic within the channel to provide a "I" on sense line O. The
logic is cleared every time an attempt is made to execute a Connect, Function, Read,
or Write operation with this channel. It may also be channel-cleared by the program or
master-cleared by the operator. If a transmission parity error is received from a con­
troller, the controller remains inactive until the I/O channel is cleared.

Read
During a Read operation, the external equipment generates a parity bit and sends it to
the I/O channel along with each 12-bit byte of data. The I/O channel holds the parity
bit while the data is forwarded to the computation section. The Data Bus circuit of the
computation section generates a second parity bit and sends it back to the I/O channel.
The channel compares this second signal with the parity signal which was generated by
the external equipment. If an error exists, certain channel logic is set by an enable from
the computation section. This logic provides a "I" on sense line O. The channel parity
logic is cleared every time an attempt is made to execute a Connect, Function, Read or
Write operation with this channel. It may also be channel-cleared by the program or
master-cleared by the operator. If a transmission parity error is channel-generated, it
must be sensed by the INS instruction. If the error is not sensed, the next channel oper­
ation will clear the error indication.

PARITY CHECKING WITH THE 3207
The computer checks parity in a 3207 in a slightly different manner than in a 3206.

Connect, Function and Write
During the Connect, Function and Write operations, the Data Bus circuit in the com­
putation section generates a parity bit for the lower 12-bit byte of each data word. The
3207 generates a parity bit for the upper byte. Both parity bits are sent to the external
equipment via the I/O channel. The external equipment generates' parity bits and com­
pares them with the parity bits from the computer. If an error exists, the external equip­
ment sends an External Parity Error signal back to the I/O channel where it can set the
channel parity logic and provide a "I" on sense line O. Clearing the logic occurs in the
same way as it does in the 3206. If a transmission parity error is received from a control­
ler, the controller remains inactive until the I/O channel is cleared.

Read
During a Read operation, the external equipment generates two parity bits per data
word, one for eaeh 12-bit byte, and sends them to the 3207 along with the word. The
I/O channel holds the parity bit for the lower byte while it forwards the byte to the
computation section. The Data Bus circuit of the computation section generates a second
parity bit for this byte and sends it back to the I/O channel.

3-2

Simultaneously, the 3207 retains the parity bit for the upper byte of the data word. The
I/O channel generates a second parity bit for the upper byte as it forwards the byte to
the computation section.

The 3207 compares the two parity bits generated by the computer with the two parity
bits generated by the external equipment. If an error exists, the channel parity logic is
set by an enable from the computation section, thus providing a "1" on sense line O.
Clearing the logic also occurs the same way as it does in the 3206. If a transmission
parity error is channel-generated, it must be sensed- by the INS instruction. If the error
is not sensed, the next channel operation will clear the error indicator.

AUTO LOAD/AUTO DUMP

The Auto Load/Auto Dump feature allows the programmer 3210 storage addresses in
which to store two short routines. These routines are used generaHy to receive and
transmit data to external equipment. Assuming the routines are already in storage, the
operator can initiate these operations with the AUTO LOAD and AUTO DUMP switches
on the console.

PRELIMINARY CONSIDERATIONS
Addresses 77740 through 77777 are normally protected from being written into. To enter
Auto Load or Auto Dump routines, the operator presses the ENTER AUTO PROGRAM
switch on the console, enters the routine, then Master Clears the computlsr. Before pressing
the AUTO LOAD or AUTO DUMP switches, the operator must first Master Clear the
computer.

AUTO LOAD
The AUTO LOAD switch automatically sets (P) to address 77740. This group of 16
instructions may be used to bring in a program from a magnetic tape unit or other pe­
ripheral device. The last instruction in this routine should be a jump to the first address
of the newly stored program.

AUTO DUMP
The AUTO DUMP switch automatically sets (P) to address 77760. This group of 16
instructions is most often used to output a block of data to a magnetic tape unit or other
peripheral equipment. The last instruction in this routine may be a jump to any storage
area.

3-3

SATELLITE CONFIGURATIONS

Figure 3-2 shows three possible Satellite configurations that utilize one or more 3200
Computer Systems.

3200 Computer 3200 Computer

3206 3682 3206
Communication Satellite Communication

Channel

1
Coupler Channel

System System

* *
3200 Computer 3600 Computer

3206 3682 3606
Communication Satellite Data

Channel Coupler Channel

System System

* *
3200 Computer

3206 3682 3681 Data
Communication Satellite Channel

160/160-A

Channel

1
Coupler Converter

Computer

System

* *

Figure 3-2. Satellite Configurations

*NOTE: May be connected to seven additional external equipments.

3-4

Section 4
INTERRUPT SYSTEM

GENERAL INFORMATION

The Interrupt Control section ofthe 3200 Computer is capable of testing for the existence
of certain internal and external conditions without having these tests in the main pro­
gram. Examples of these conditions are internal faults and external equipment end-of­
operation. Near the end of each RNI cycle, a test is made for interruptible conditions.
If one ofthese conditions exists, execution of the main program halts, the contents of the
Program Address register are stored, and an interrupt routine is initiated. This interrupt
routine, initially stored in memory, performs the necessary functions for the existing
condition and then jumps back to the last unexecuted step in the main program. The
instruction being read when the interrupt is recognized is executed when the main pro­
gram is resumed.

There are four categories of interrupts in the 3200 Computer: Internal Condition inter­
rupts, InputlOutput (1/0) interrupts, Trapped Instruction interrupts and a special Power
Failure interrupt. The store operations required for all four types of interrupts occur
regardless of the state or selection of the storage protection feature described in Section 2.

An additional manual interrupt is set by a switch on either the computer or typewriter
console. This interrupt is not masked since this switch is pressed only when an interrupt
is desired. The interrupt is recognized if the interrupt system is enabled. The interrupt
condition is automatically cleared after the interrupt is recognized.

INTERRUPT CONDITIONS

INTERNAL INTERRUPTS
Anyone of six internal conditions may cause an interrupt during the execution of a pro­
gram. These conditions and their descriptions follow.

Arithmetic Overflow Fault
The Arithmetic Overflow fault is set when the capacity of the adder is exceeded. Its
capacity, including sign, is 24 or 48 bits for 24-bit precision and 48-bit precision, respectively.

Divide Fault
The Divide fault sets if a quotient, including sign, exceeds 24 or 48 bits for 24-bit precision
and 48-bit precision, respectively. Therefore, attempts to divide by too small a number,
including positive and negative zero, result in a Divide fault. A Divide fault also occurs
when a floating point divisor is either equal to zero or not in floating point format. The
results in the A, Q, and E registers are insignificant if a fault occurs. A Divide fault can
be correctly sensed only after the current instruction has been executed.

4-1

Exponent OV4~rflow/Underfiow Fault
During all floating point arithmetic operations, exponential overflow occurs if the ex-.
ponent exceeds +17778 or is less than -17778.

BCD Fault
A BCD Fault is set if:

1. The lower 4 bits of any character, except the least significant, exceeds 118 (910).
Characters are tested for legality only during the LDE, ADE, and SBE in­
structions. In all cases, ir'the value 118 (910) is exceeded, the value zero is used
for that character.

2. The upper 2 bits of any character, except the least significant, do not equal zero.
3. An attempt is made to set (load) the D register with 158, 168 or 178.

Search/MoVE~ Interrupt
The SearchlMove control may be programmed to generate an interrupt during a 71 or
72 instruction for either of the following conditions:

1. Completion of an equality or inequality search.
2. Completion of a block move.

Real-Time Clock Interrupt
The Real-Time Clock interrupt is generated when the clock reaches a prespecified time
that has been stored in register 32 of the Register File.

TRAPPED INSTRUCTION INTERRUPTS
A translator within the 3200 Computer detects and traps the 55-70 instructions if the
appropriate option is not present in the system. Although they are not true interrupts,
trapped instructions are processed like interrupts once they have been detected. A con­
ventional interrupt always takes priority over a trapped sequence. The following opera­
tions take place when a trapped instruction is recognized:

1. P + 1 is stored in the lower 15 bits of address 00010.
2. The upper 6 bits of F are stored in the lower 6 bits of address 00011; the upper

18 bits remain unchanged.
3. Program control is transferred to address 00011 and an RNI cycle is executed.

Further information on trapped instructions may be found in the General Information
paragraph of Section 7.

POWER FAILURE INTERRUPT
If source power to a 3200 Computer is removed, the failure is detected and the computer
program is interrupted; this interrupt is necessary to prepare for a controlled shutdown
and prevent the loss of data. This operation requires 16 ms for detection, and up to 4 ms
for processing a special Power Failure interrupt routine.

The Power Failure interrupt overrides any other interrupt (internal or I/O), as well as
the trap sequence, regardless of the state of the interrupt control. Since this interrupt
overrides all others, the address where the present contents of P are stored and the
address to which program control is transferred must be different from that for a normal
interrupt. When a Power Failure interrupt occurs, the machine stores the contents of
P in the lower 15 bits of address 00002 and transfers program control to address 00003.

The normal interrupt system is disabled during a power failure sequence; i.e., the hard­
ware simulates the execution of."1 DINT (77.73) instruction.

4-2

I/O INTERRUPTS

I/O Channlel Interrupts
Any of the eight possible 1/0 channels may be programmed to generate an interrupt for either
of the following conditions:

1. Reaching the end of an input or output block.
2. Receiving an End of Record (Disconnect) signal from an external device.

I/O Equipment Interrupt
The 1/0 equipment interrupt is set when an interrupt signal is received from any of eight
peripheral equipment controllers connected to any of the eight possible 1/0 channels (there
may be a total of 64 interrupt lines). The interrupt remains set until the computer directs
the originating device to cancel it with a function code.

Associated Processor Interrupt
In a system of two or more processors (computers), each processor may interrupt the
processor to its left by executing an IAPR (77.57) instruction. The interrupting processor
must interrupt via its storage modules 0 and 1, which are storage modules 2 and 3 of the
processor being interrupted. This interrupt is not masked and becomes cleared as soon
as it is recognized.

INTERRUPT MASK REGISTER
The programmer can choose to honor or ignore an interrupt by means of the Interrupt
Mask register. All but two of the normal interrupt conditions are represented by the 12
Interrupt Mask register bits. The manual interrupt and the associated processor interrupt
are not masked. The mask is selectively set with the SSIM (77.52) instruction and se­
iectively cleared by the SCIM (77.53) instruction. See Table 4-1 for Interrupt Mask
register bit assignments.

The contents ofthe Interrupt Mask register may be transferred to the upper 12 bits of the
A register for]programming purposes with the COPY (77.2) or CINS (77.3) instructions.

TA.BLE 4-1. INTERRUPT MASK REGISTER BIT ASSIGNMENTS

Mask Bits Mask Codes Interrupt Conditions Represented

00 0001 I/O Channel 0 (Includes interrupts

01 0002 1 generated within the

02 0004 2 channel and external
03 0010 3 equipment interrupts.)
04 0020 4
05 0040 5
06 0100 6
07 0200 7.1
08 0400 Real-time clock

09 1000 Exponent overflow/underflow & BCD faults
10 2000 Arithmetic overflow & divide faults
11 4000 Search/Move completion

INTERRUPT CONTROL

A program can recognize, sense, and clear interrupts, and enable or disable interrupt
control through the use of certain instructions.

4-3

ENABLING OR DISABLING INTERRUPT CONTROL

Instruction EINT (77.74) enables the interrupt system and the DINT instruction (77.73)
disables it. Mtler recognizing an interrupt and entering the interrupt sequence, other inter­
rupts are disabled automatically. When leaving the interrupt subroutine, the interrupt must
again be enabled by the EINT instruction, if awaiting interrupts or subsequent interrupts are
to be recognized by the system. After executing an EINT instruction, at least one and up to
four more instructions may be executed before an interrupt is recognized, depending on the
type of interrupt.

To prevent extraneous interrupts from occurring, the Interrupt Mask register must not be
set or cleared while the interrupt system is enabled.

INTERRUPT PRIORITY
An order of priority exists between the various interrupt conditions. As soon as an in­
terrupt becomes active, the computer scans the priority list until it reaches an interrupt
that is active. The computer processes this interrupt and the scanner returns to the top
of the list where it waits for another active interrupt to appear. Table 4-2 lists the order
of priority.

TABLE 4-2. INTERRUPT PRIORITY

Priority Type of Interrupt

1 Arithmetic overflow or divide fault
2 Exponent overflowlunderflow or

BCD fault
3-66 External lID interrupts*
67-74 lID channel interrupts**

75 Searchlmove interrupt
76 Real-time clock interrupt
77 Manual interrupt
78 Associated processor interrupt

SENSING INTERRUPTS
The programmer may selectively sense interrupts, independent of the Interrupt Mask
register, by using the INTS (77.4) instruction. Sensing the presence of internal faults auto­
matically clears them. Channel interrupt lines that represent channels not present in
the system are always sensed as being active. However, the Interrupt Mask register bits
representing these missing channels may never be set; therefore, no interrupt can ever
occur.

CLEARING INTERRUPTS
I/O equipment interrupts may be cleared by:

II» Pressing the EXTERNAL CLEAR button on the console.
• Pressing the entry keyboard MC button.
s Executing an IOCL (77.51) instruction, or
.. Reselecting or disabling the interrupt with a function code, SEL (77.1) instruction.

Within a program, I/O channel interrupts must be selectively cleared by the INCL (77.50)
or JOCL (77.51) instructions.

*There are eight interrupt lines on each of the eight possible I/O channels, or 64 lines in all. On any given channel,
a lower numbered line has priority oyer'a higher numbered line. Likewise, a lower numbered channel has priority
over a higher numbered channel. Example: line 0 of channel 0 has highest priority of all external I/O interrupts,
line 0 of channel 1 has second highest, and line 7 of channel 7 has the lowest.

** A lower numbered I/O channel interrupt has priority over a higher numbered I/O channel interrupt.

Rev.H 4-4

The Real-time Clock, Arithmetic, and Search/Move Completion interrupts may be
cleared by:

Ell Sensing, after which the interrupts are automatically cleared.
Ell Executing an INCL (77.50) instruction, or
$ Pressing the MC or INTERNAL CLEAR buttons.

In the INCL instruction, x represents the contents ofthe Interrupt Mask register. Even though
the Interrupt Mask register bits usually represent both I/O channel and I/O equipment
interrupts, an INCL instruction clears only internal I/O channel interrupts. In addition to
clearing a ehannel interrupt with an INCL instruction, the program must clear the I/O
equipment interrupt with a function code SEL (77.1) instruction. The manual and associated
processor interrupts are automatically cleared after they are recognized by the computer
during an RNI cycle.

INTERRUPT PROCESSING

Four conditions must be met before a normal interrupt can be processed:

1. With the exception of the Manual interrupt and the Associated Processor in­
terrupt, a bit representing the interrupt condition must be set to "I" in the
Interrupt Mask register.

2. The interrupt system must have been enabled.
3. An interrupt-causing condition must exist.
4. The interrupt scanning logic (Refer to Table 4-2) must reach the level of the

active interrupt on the priority list.

When an active interrupt has met the above conditions, the following takes place:

1. The instruction in progress proceeds until the point is reached in the RNI cycle
where an interrupt can be recognized. At this time the count in P has not been
advanced nor has any operation been initiated. When an interrupt is recognized,
the address of the current unexecuted instruction in P is stored in address 00004.

2. A number representing the interrupt-causing condition is stored in the lower
12 bits of address 00005 without modifying the upper bits. Table 4-3 lists the
octal codes which are stored for each interrupt condition.

3. Program control is transferred to address 00005 and an RNI cycle is executed.

TABLE 4-3
REPRESENTATIVE INTERRUPT CODES

Conditions Codes

External interrupt *OOLCh
1/0 channel interrupt 010Ch
Real-time clock interrupt 0110
Arithmetic overflow fault 0111
Divide fault 0112
Exponent overflow fault 0113
BCD fault 0114
Searchlmove interrupt 0115
Manual interrupt 0116
Associated processor interrupt 0117

*L = line 0-7 and Ch =channel designator. 0-7

4-5

Section 5

CONSOLE AND POWER CONTROL PANEL

The 3200 desk console enables the computer operator to control and observe computer opera­
tion. This section describes the operator's controls and the significance of the visual indicators.
Also included in this section is a view of the Power Control Panel and a description of its
operation.

CONSOLE

REGISTER DISPLAYS

Communication Register
Data entered into any of the operational registers (except the ED register) must first pass
through the Communication register. Starting with the uppermost digit, data is entered into
the Communication register by first depressing a register switch and then depressing the
numeric keyboard switches. A blue Active Digit indicator light is superimposed on each
digit position of the Communication register as digit entry progresses. When data is to be
entered into the BI, B2, Rl or P registers, the Active Digit indicator automatically starts
at the fifth digit position of the Communication register.

Depressing the TRANSFER switch causes the data to be transferred from the Communica­
tion register to the designated register. Depressing the TRANSFER switch again results
in transferring all zeros to the register.

E Register
The E register is'displayed as either EU and EL or ED. Whenever the E register is being dis­
played, the A and Q registers cannot be displayed and vice versa. The register(s) currently
displayed is denoted by the illumination of one ofthe three register display indicators located
between the register displays.

Figure 5-2 illustrates specific digit functions when the EU EL register is displayed on the con­
sole. Figure 5-3 illustrates the digit functions when the ED register is displayed.

NOTE
The ED register may be entered directly with any of the 10 numeric keyboard characters. As
each digit is entered, the preceding digit is shifted one digit position left, increasing its
significance. Each succeeding entry shifts the digits one position left and inserts the newly
entered digit into the lowest order position. After a maximum of 13 digits have been entered
(including the overflow digit) the uppermost characters are shifted end-off as additional
characters are entered. The EU EL register cannot be entered into by a keyboard operation.
Appropriate inter-register transfer instructions must be utilized for entry into this register.

5-1

c.n
N

1. External status indicators

2. Internal status indicators

3. Thumbwheel breakpoint switch

4. Emergency power cutoff switch

5. Adjustable auto-step control

6. Octal register displays

7. Detachable keyboard

Figure 5-1. Front View of 3200 Console Controls
1563

1565

V V
Octal digits 8 through 15 Octal digits 0 through 7

Figure 5-2. EU EL Register Display

01
I

CIJ

Decimal digits 0 through 11

Overflow digit

Sign of ED

MSD of second operand

Sign of second operand

Figure 5-3. ED Register Display

Other Registers
The A, Q, P, Bl, B~ and Rl registers, described in the System Description Section of
this maIll,Ial,:.are displayed on the Integrated Console in binary form.

CONSOLE lOUDSPEAKER
The console loudspeaker and its associated volume control are mounted underneath the
console table. The loudspeaker receives its input from the upper 3 bits of the A register.
An audible sound is produced when one or more of these bits are toggled at an audio rate.
Loudspeaker volume is controlled by rotating the volume control.

STATUS INDICATORS

External Status Indicators

The external status indicators display the existing conditions of I/O channels 0-7. Condi­
tions displayed are Read, Write, Reject, Connect, Function, and Interrupt. Refer to
Figure 5-4.

Figure 5-4. External Status Indicators

Internal Status Indicators
Six columns of internal status indicators are located on the display section of the con­
soles. Refer to Figure 5-5. When the particular indicator is glowing, the condition or
fault described below exists:

5-4

Figure 5-5. Internal Status Indicators

1. STORAGE ACTIVE 0-1-2-3
The Storage Active lights indicate the storage area currently being referenced. Digit 0
glows when the first 8K of storage is referenced. In expanded 3200 systems, digit 1 indi­
cates that the second 8K storage section is referenced, digit 2 the third 8K section, and
digit 3 glows when the fourth 8K section is referenced.

2. CONDITIONS
STANDBY -Indicates that the main power switch is on but the individual logic supplies
are still off.
INTERRUPT DISABLED-Indicates the interrupt system has been disabled by executing
the DINT (77.73) instruction or by a Master Clear.
ILLEGAL WRITE - Glows whenever an attempt is made to write into the area of storage
currently being protected by the storage protect switches. This indicator will also glow
if an attempt is made to write into the Auto Load or Auto Dump storage areas. This condi­
tion is cleared by executing an INS (77.3) instruction or performing a Master Clear.
PARITY ERROR-Indicates that a parity error has occurred in storage. When the error
is detected, this indicator glows and program execution stops. Performing a Master Clear
clears the condition. Transmission parity errors do not affect this indicator.

3. CYCLE CRNI-RAD-ROP-STO)
These indicators represent the four program cycles: Read Next Instruction, Read Address,
Read Operand, and Store Operand. They are lit while the respective cycles are in progress.

4. FAULTS
This column of indicators represents the four arithmetic fault conditions:
ARITHMETIC OVERFLOW - The arithmetic overflow fault is set when the capacity of
the adder is exceeded. Its capacity, including sign, is 24 or 48 bits for 24-bit precision and
48-bit precision, respectively.

5-5

DIVIDE - The divide fault sets if a quotient, including sign, exceeds 24 or 48 bits for 24-
bit precision and 48-bit precision, respectively. Therefore, attempts to divide by too small
a number,' including positive and negative zero, result in a divide fault. During floating
point division, a divide fault occurs if division by zero or by a number that is not in floating
point format is attempted. If the divisor is not properly normalized a divide fault may also
occur. Refer to Appendix B for a description of normalization.
EXPONENT OVERFLOW/UNDERFLOW -This fault indicator glows when either an
exponent overflow (>+ 1777 H) or an expon~nt underflow « -1777 s) condition exists.
DECIMAL-A decimal (BCD) fault is set if:
• The lower 4 bits of any character except the least significant exceed 11H (910), Characters

are tested for legality only during the LDE, ADE and SBE instructions. In all cases,
if the value 118 (910) is exceeded, the value zero will be used for that character.

• The upper 2 bits of any character except the least significant do not equal zero.
• An attempt is made to load the D register with 158, 168, or 178.

5. TEMPERATURE WARNING
If the upper temperature limit of the normal operating range within a section of the com­
puter is exceeded, a corresponding TEMP WARNING indicator glows. The indicators cor­
respond to computer sections illustrated in Figure 5-6.

6. FAULTS
This column of indicators represents abnormal operating conditions.
TEMPERATURE HIGH - If the TEMP WARNING indicators are glowing and an absolute
temperature is exceeded, the computer will automatically shut off logic power. The TEMP
HIGH indicator for the particular computer section continues to glow until the tempera­
ture drops below the absolute limit. Secondary power must be manually re-applied before
normal operation can resume.
If the THERMOSTAT BYPASS console switch is on, all four TEMP HIGH indicators glow
and the temperature protection feature is defeated.
CIRCUIT BREAKER - This indicator glows if the circuit breakers governing any of the
internal power supplies are off.
TERMINATOR POWER-If output power from the internal terminator power supplies
fails, this indicator glows.

Temperature Temperature Temperature

Indicator Indicator Indicator

2 1 0

16K Storage
Main Control

Block Control,
and 110 Interrupt,

and Arithmetic

Logic and Optional
Logic

Arithmetic Logic

Figure 5-6. Temperature Warning Designations for an
Expanded 3200 Computer, Front View.

5-6

Temperature
Indicator

3

16K Storage
and 110
Logic

SWITCHES

Switches associated with a 3200 Computer _are classified as console switches and keyboard
switches. Console switches include the following:

• The EMERGENCY OFF switch.
• A group of operator/maintenance switches on the console main-frame.
• The Breakpoint switch assembly (Figure 5-8).

Keyboard Switches
The console keyboard switches are used for entering data manually into the computer and
for controlling its operation. A front view of the keyboard appears in Figure 5-7 and Table
5-1 describes the function ofthe keyboard switches.

Console Switches

EMERGENCY OFF SWITCH -This red rectangular momentary switch is used to remove
power from the whole computer system in case of a fire or other emergency. It should not
be used for a normal power shutdown. Refer to the SOURCE POWER OFF switch de­
scription in the Power Control Panel description of this section.

OPERATOR/MAINTENANCE SWITCHES -Table 5-2 describes the operator/maintenance
switches located on the console main-frame.

BREAKPOINT SWITCH ASSEMBLY -The Breakpoint switch is a six-section, eight-posi­
tion, thumb-wheel switch. The left-hand wheel selects the operating mode, and the other
five wheels specify a register number or storage address. There are four mode positions
on the mode selector switch with an OFF position between each mode; these modes are
BPI, BPO, REG, and STO.

BPI and BPO Modes: The address on the S Bus is continually compared with the instruc­
tion or operand address specified by the Breakpoint digit switches. When the selector
switch is set to BPI, the computer stops ifthese values become equal during an RNI (Read
Next Instruction) sequence. When the mode selector switch is set to BPO, the computer
stops ifthese values become equal during an ROP (Read Operand) or STO (Store) sequence.

REG and STO Modes: In these two modes, the operator may either monitor the contents
of a register location or storage address specified by the thumb-wheel digit switches, or
he may store a word in these locations. To monitor a storage location:

1. Set the mode selector to REG (register file location) or STO (storage).
2. Set the Breakpoint switch to the desired register number or storage address.
3. Press the READ STO switch on the keyboard.
4·. Adjust the Auto Step control to vary the display rate.

The register or storage contents are repeatedly displayed in the Communication register
at the selected repetition rate uI).til another keyboard button is pressed to release READ
STO. To write a word in storage:

1. Set the mode selector to REG or STO.
2. Set the Breakpoint switch to the desired register number or storage location.
3. Press the WRITE STO switch on the keyboard.
4. Enter data into the Communication register by depressing the numeric switches

and finally the TRANSFER switch.

The data is entered into the desired storage location or Register File location at the end
of the instruction that is currently being executed by the computer. Pressing any other
register or mode selector switch releases WRITE STO operation.

5-7

Figure 5-7. Console Keyboard

NOTE
The upper two rows of keyboard switches are mechanically linked together. This feature
prevents more than one switch from being active at anyone time.

5-8

TABLE 5-1. KEYBOARD SWITCH FUNCTIONS

SWITCH NAME ILLUMINATED DESCRIPTION

B1 B3 Yes
Enables data to be manually entered into Index registers B1,

to
B2, or B3 from the keyboard.

P Yes
Enables an address to be manually entered from the keyboard
into the P register.

A Yes
Causes both A and Q to be displayed, but permits entry only
into A.

Q Yes
Causes both A and Q to be displayed, but permits entry only
into Q.

EU* Yes Causes EU and EL to be displayed. Manual entry is not possible.

EL* Yes Same as EU.

ED* Yes
Causes ED to be displayed and enables manual entry directly
into this register. Refer to ED register description.

KYBD
OFF Yes Deactivates all keyboard controls.

(Keyboard Off)

EN
Permits data to be manually entered into storage while the

(Enter)
Yes computer is stopped. First address of sequence must be previous-

ly entered into P. Pressing the TRANSFER switch advances P.

SW
Permits unexecuted instructions to "be read from cpnsecutive

(Sweep)
Yes storage locations. First address of sequence must·be fir-st en-

tered into P. Pressing the TRANSFER switch advances P.

WRITE
Permits keyboard entry into the storage 10clltion specified by the

STO Yes
thumb-wheel switches. Entry occurs each time the TRANSFER

(Write Storage)
switch is pnessed whether the computer is in the GO mode or
stopped.

,

READ Permits the contents of the storage register location specified
STO Yes by the thumb-wheel switches to be displayed. The display rate

(Read Storage) is determined by the Auto-Step control.

KYBD CLR
Yes Clears the Communication register.

(Keyboard Clear)

GO Yes
Starts the program execution at the address specified by the
P register. Not used for Sweep or Enter operations.

SW/EN
CONT

Yes
Enables Sweep or Enter operations to proceed continuously

(Sweep/Enter through storage without pressing the TRANSFER switch.
Continuous)

STOP Yes Stops the computer at the end of the current instruction.

TRANSFER No
-r:ransfers data in the Comn;1Unication register to a selected
register or storage location.

MC
No

Performs both an internal and external clear. Disabled when GO

(Master Clear) switch is depressed and the computer is in the GO mode.

These switches, when pressed one at a time, allow entry of that
o through 7 No particular digit into the Communication register in the binary

digit position denoted by the active digit indicator.

Depressing either of these switches permits entry of that digit
8 and 9 No directly into the ED register. The option must be present in the

system and the ED register selection switch depressed.

Depressing either of these switches permits entry into the sign of
+ or -

No
ED digit (refer to Figure 5-2) in the ED register. These switches

(Plus or Minus) may be depressed at any time during the numeric entry of ED. The
sign of ED may be changed by depressing the opposite sign switch.

*Depressing any of the switches associated with the arithmetic options when the optional logic is not present
produces equivocal results.

5-9

TABLE 5-2. CONSOLE MAIN-FRAME SWITCHES

SWITCH NAME FUNCTION

Forces the computer into an interrupt routine if the computer is
MANUAL in the GO mode. If the computer is stopped when the switch is

INTERRUPT pressed, it will go into an interrupt routine as soon as the GO switch
is depressed.

SELECT Stops the computer when the SLS (77.70) instruction is read.
STOP 1

SELECT Switches are depressed in accordance with programs utilizing the
JUMP (1 through 6) selective jump (SJ 1-6) instruction.

ENTER AUTO Allows the operator to enter the Auto Load and Auto Dump storage
PROGRAM areas (addresses 77740 to 77777) with different data.

EXTERNAL Master clears all external equipments and the 1/0 channels.
CLEAR

INTERNAL Master clears internal conditions and registers.
CLEAR

DISABLE
Disables the protection feature switch of the 1 5 storage protect

STO PROTECT
switches. This switch has no effect on the protected Auto Load and
Auto Dump storage areas.

DISABLE Prevents the P register from being incremented. When the GO

ADVANCE P switch on the keyboard is depressed, the same instruction is repeated.

THERMOSTAT Allows computation to proceed regardless of unfavorable tempera-

BYPASS tures within the computer.

DISABLE Prevents recognition of parity errors from all storage modules.

PARITY

INSTRUCTION Enables the operator to step through the program instruction by in-
STEP struction. An instruction is executed each time the switch is depressed.

BCD STEP
Enables the operator to step through a BCD instruction one se-
quence at a time.

STORAGE Enables the operator to step through an instruction one storage
CYCLE STEP cycle at a time, i.e. RNI. RAD, ROP, or STO.

Permits instructions to be executed in a slow speed GO mode. The

AUTO STEP speed is regulated by the auto-step speed control on the console. There
are approximately 3 to 50 instructions executed per second.

If the computer has been master cleared and t~e Auto Load switch is
depressed, the computer will automatically jump to address 77740

AUTO LOAD and execute the instruction stored there. Refer to Auto Load/Auto
Dump in Section 3.

Permits the operator to enter a block of data from the typewriter.

TYPE LOAD
The data is defined by the lower bounds in register 23 and upper
bounds in register 33 of the Register File. Refer to the Typewriter
Section for additional information.

AUTO DUMP
This switch performs the same function as the Auto Load switch with
the exception of jumping to address 77760.

Similar to the Type Load operation, this switch causes a block of

TYPE DUMP data to be printed by the typewriter. The data in storage is defined

by registers 23 and 33.

5-10

Examples of Keyboard Switch Functions
1. To enter data into the A register:

a. Depress the A register switch.
b. Enter all eight digits of the Communication register by depressing the ap­

propriate numeric key switches.*
c. Depress the TRANSFER switch.
d. Depress the KEYBOARD OFF switch.

2. To enter data into the Q register:

Depress the Q register switch and repeat steps b through d of example 1.

3. To enter the Program Address Counter (P register) with a specific address:

a. Depress the P register switch.
b. Enter the lower five digits of the Communication register by depressing the

appropriate numeric key switches.
c. Depress the TRANSFER switch.
d. Depress the KEYBOARD OFF switch.

4. To enter an operand at a specific address**:

a. Perform step 3.
b. Depress the EN switch.
c. Enter all eight digits ofthe Communication register by depressing the appro­

priate numeric key switches.
d. Depress the TRANSFER switch.
e. The count in the Program Address Counter has now incremented by one. If

data is to be entered into this memory location, repeat steps c and d for as
many succeeding entries as required.

f. Depress the KEYBOARD OFF switch when all data has been entered into
the successive group of memory locations.

5. To read an operand from a specific storage address:

a. Perform step 3.
b. Depress the SW switch.
c. Depress the TRANSFER switch.
d. The contents of the specified stmage address are now displayed in the Com­

munication register. (The Program Address Counter is not incremented
when the TRANSFER switch is initially depressed.)

e. If the TRANSFER switch is depressed again, the Program Address Counter
is incremented by one, and the contents of the new address are displayed.

f. Depress the KEYBOARD OFF switch when all the desired memory loca­
tions within a successive group have been examined.

6. To enter zeros or another operand into all storage locations:

NOTE

Step 5 only permits the operator to examine the contents of specific storage locations. The
instructions are not executed during this operation.

*If all eight digit positions of the Communication register are not entered before the Transfer switch is
depressed, zeros will be entered into the remaining digit positions.

**The breakpoint switch may be used in lieu of this operation. Refer to example d, Figure 5-8.

5-11

a. Depress the EN switch.
b. Enter all eight digits of the Communication register by depressing the appro-

priate numeric key switches.
c. Depress the SW/EN CONT switch.
d. Depress the STOP switch.
e. Depress the KEYBOARD OFF switch.

7. The following procedure is applicable for sweeping storage during certain main­
tenance routines:

a. Depress the SW switch.
b. Depress the SW lEN CONT switch. The' switch remains depressed until the

STOP switch is depressed.
c. Depress the STOP switch.
d. Depress the KEYBOARD OFF switch.

Examples of Console Switch Functions
1. To enter a special routine into the Auto Load storage area:

a. Depress the MC (Master Clear) keyboard switch.
b. Holding down the keyboard STOP switch, depress the AUTO LOAD switch.

Release both switches. The P register should now read 77740. (Holding the
STOP switch down prevents the computer from entering the GO mode and ex­
ecuting the previous Auto Load routine.)

c. Depress the ENTER AUTO PROGRAM switch.
d. Depress the keyboard EN switch.
e. Enter the first instruction of the new routine at address 77740 by depressing

the appropriate numeric key switches.
f. Depress the keyboard TRANSFER switch.
g. Repeat steps e and f for addresses 77741 through 77757.
h. Depress the MC switch. This clears the registers and cancels the ENTER AUTO

PROGRAM function.
i. Depress the KEYBOARD OFF switch.

2. To enter a special routine into the Auto Dump storage area:
Repeat steps a through i of example 1 using the AUTO DUMP switch and filling
the storage area covered by addresses 77760 through 77777.

3. To execute the Auto Loadroutine:
a. Depress the keyboard MC switch.
b. Depress the AUTO LOAD switch. The computer automatically executes the

Auto Load routine and stops when a stop or halt instruction is recognized. The
Auto Load function is automaticaHy cleared when the computer stops.

4. To execut~ the Auto Dump routine:
Perform steps a and b in example 3 but use the AUTO DUMP switch instead of the
AUTO LOAD switch.

5. To execute a program at an Auto Step rate:
a. Set the P register to the first address of the program to be executed.
b. Depress the AUTO STEP switch.
c. Adjust the AUTO STEP display rate control.
d. When enough of the program has been executed, depress the AUTO STEP switch

again to cancel the function. The only way to exit from the Auto Step mode is
to depress the AUTO STEP switch again. In the Auto Step mode, halt and jump
instructions are executed but the computer will not stop. Neither will program
execution be affected by depressing the STOP switch. The computer will continue
cycling through memory until the AUTO STEP switch is again depressed.

5-12

EXAMPLE A

The breakpoint switch is inoperative whenever an
OFF designator is displayed. An OFF designator
separates the REG, STO, BPI and BPO positions.

EXAMPLE C

The computer stops only when an attempt is made to
read or store an operand at address 00413.

EXAMPLE B

During the normal execution of a program. the
computer stops when an RNI is attempted at mem­
ory location 05443. A jump to this location also
causes the computer to stop. If the program refer­
ences memory location 05443 for an operand, the
computer ignores the Breakpoint switch.

EXAMPLE D

Ifthe WRITE STO switch on the keyboard switch is
depressed and data has been entered into the
Communication register, the data is transferred
to memory location 00104 when the Transfer switch
is depressed.

Figure 5-8. Breakpoint Switch Examples

5-13

EXAMPLE E

If the WRITE STO switch on the keyboard is de­
pressed and data has been entered into the Com­
munication register, the data will be transferred to
register 77 when the TRANSFER switch is de­
pressed. (Only the lower two digits are recognized
when the designator switch is in the REG position.
The programmer must use caution when writing
into the Register File to prevent destruction of
other data. Refer to Section 1, Table 1-3.)

EXAMPLE F

If the READ STO switch on the keyboard is de­
pressed, the contents of memory location 27004
are displayed in the Communication register at a
repetition rate determined by the auto step control.
(If the memory location depicted by the breakpoint
switch exceeds the storage capacity of the system,
the computer selects the address that corresponds
to the storage capacity of the system.)

EXAMPLE G

If the READ STO switch on the keyboard is de­
pressed, the contents of register 22 are displayed
in the Communication register at a repetition rate
determined by the Auto Step control. (Only the
lower two digits are of consequence when the REG
designator is displayed. In this case register 22,
the real time clock, is being referenced.)

Figure 5-8. Breakpoint Switch Examples (Cant.)

5-14

POWER CONTROL PANEL

Power for the 3200 Computer System is controlled by the Power Control Panel, mounted
on the right side of the main cabinet assembly. The switches, circuit breakers, indicators
and meters associated with the panel are shown in Figure 5-9. Refer to the 3200 Customer
Engineering manual for detailed maintenance information concerning the Power Control
Panel.

SWITCHES
Table 5-3 lists the switches and their functions. Refer to Section 2 for a description of the
Storage Address Protection switches.

ELAPSED TIME METERS
Two elapsed time meters and a key-operated, two-position switch are located on the control
panel. Turning the key-operated Maintenance Mode switch to ON connects the Running Time
meter to the computer to indicate maintenance time. Removing the key connects the Opera­
ting Time meter to the computer to indicate normal operating time. Only one of the two
meters can operate at anyone time. Either meter logs time for a minimum of one second
when a storage cycle occurs.

TABLE 5-3. POWER CONTROL PANEL SWITCH FUNCTIONS

SWITCH NAME FUNCTION

CONTROL When this switch is depressed, the Blower switch and Peripheral Group
POWER switches can be activated.

Depressing this switch turns on cabinet blowers, power supply blowers
BLOWERS and furnishes power for the peripheral equipment blowers. This switch

ON must be on before the power supplies can be activated. The Control
Power switch must be on before this switch can be activated.

POWER When this switch is depressed and the Control Power and Blowers
SUPPLIES switches are on, the motor generators are turned on. These sets furnish

ON operating power for the logic power supplies.

PERIPHERAL If the Control Power switch is on and this switch is depressed, ope rat-
GROUP I ing power is sent to all the equipment connected to the Peripheral

ON Group I power distribution bus.

PERIPHERAL If the Control Power switch is on and this switch is depressed, operat-
GROUP II ing power is sent to all of the equipment connected to the Peripheral

ON Group II power distribution bus.

NOTES

1. The switches are active only when main power is present at the control panel
and the applicable circuit breakers are closed (ON position). The individual
circuit breakers are located directly below the switch panel.

2. Except for the Blowers switch, the OFF switches remove power immediately.
If the Power Supplies OFF and the Blowers OFF switches are depressed in
close succession, an automatic five minute delay will keep the blowers operating.
The Power Supplies OFF switch must be depressed a minimum of half a second.

5-15

;;-~

OPERATING MAINTENANCE MAINTENANCE
TIME MODE TIME

orr

~~OH II ~ . "

BLOWERS
POWER

SUPPlIES
PERIPHERAL

GROUP I
PERIPHERAL

GROUP II

y---------UNIT I ---------,

LOGIC TERMINATOR

y------UNITX-----,

LOGIC STORAGE

r-- PERIPHERAL GROlip I --,---,
POWER . .

SUPPLIES BLOWERS

•

LOGIC

r--:- 60"'--,
MAIII

POWER

r .. CONTROL POWER -:J

PRIMARY SECONDARY

•••• rTERMIHATOR POWER..,

• -20'

,UNITIORIi:, r-UHITIi:~
STORAGE LOGIC

,60"'"7"1
MAIN

CONSOLE

I:.: j , , ,,\ ,

,.60"'-,-]
TYPEWRITER

CONSOLE

•

Figure 5-9. Power Control Panel

5-16

~

co

Section 6

TYPEWRITER
DESCRIPTION

The 3192 Console Typewriter (Figure 6-1) is an on-line input-output (110) device; i.e. it
requires no connection to a communication channel and no function codes are issued. The
typewriter receives output data directly from storage via the lower 6 bits of the Data Bus.
Inputs to storage are handled in the same manner.

The console typewriter consists of an electric typewriter and a typewriter control panel
mounted on a desk console.

Figure 6-1. 3192 Console Typewriter

6-1

Used in conjunction with block control and the Register File, the typewriter may be used
to enter a block of internal binary-coded characters into storage and to print out data
from storage. The two storage addresses that define the limits of the block must be
stored in the register file prior to an input or output operation. Register 23* contains the
initial character address of the block, and register 33 contains the last character address,
plus one. Because the initial character address is incremented f(jr each storage reference,
it always shows the address of the character currently being stored or dumped. Output
operations occur at the rate of 15 characters per second. Input ooerations are limited by
the operator's typing speed.

OPERtATION

The general order of events when using the console typewriter for an input or output
operation is:

1. Set tabs, margins and spacing. Turn on typewriter.
2. Clear.
3. Check status.
4. Type out or type in.

SET TABS, MARGINS, AND SPACING
All tabs, margins, and paper spacing must be set manually prior to the input or output
operation. A tab may be set for each space on the typewriter between margins.

CLEAR
There are three types of clears which may be used to clear all conditions (except Encode
Function) existing in the typewriter control. These are:

• Internal Clear or a Master Clear.
This signal clears all external equipments, the communication channels, the
typewriter control, and sets the typewriter to lower case.

• Clear Channel, Search/Move Control, or Type Control instruction (77.51).
This instruction selectively clears a channel, the 8/M control, or, by placing
a "1" in bit 08 of the instruction, the typewriter control, and sets the type­
writer to lower case.

" Clear Switch on typewriter.
This switch clears the typewriter control and sets the typewriter to lower case.

STATUS CHECKING
The programmer may wish to check the status of the typewriter before proceeding. This
is done with the Pause instruction. Status response is returned to the computer via two
status lines.

The typewriter control transmits two status signals that are checked by the Busy Com­
parison Mask using the Pause instruction. These status signals are:

Bit 09 Type Finish
Bit 10 Type Repeat

An additional status bit appears on sense line 08. This code is Type Busy, and is transmitted
by block control in-the computation section when a typewriter operation has been selected.
If the programmer is certain of the status of the typewriter, this operation may be omitted.

'The upper nine bits of registers 23 and 33 should be "0".

6-2

TYPE IN AND TYPE LOAD

The Set Type In instruction or pressing the TYPE LOAD switch on the console or typewriter
permits the operator to enter data directly into storage from the typewriter. When the TYPE
LOAD indicator on the console or typewriter glows, the operator may begin typing. The
Encode Function switch must be depressed to enable backspace, tab, carriage return, and
case shifts to be transmitted to the computer during a typewriter input operation.

Input is in character mode only. As each character is typed, the information is trans­
mitted via the Data Bus to the storage address specified by block control. This address
is incremented as characters are transmitted. When the current address equals the ter­
minating address, the TYPE LOAD indicator goes off and the operation is terminated.
Data is lost if the operator continues typing after the TYPE LOAD indicator goes off.

TYPE OUT AND TYPE DUMP
The typewriter begins to type out when the computation section senses a Set Type Out
instruction or the operator presses the TYPE DUMP switch on the console or typewriter.
Single 6-bit characters are sent from storage to the typewriter via the lower 6 bits of the
Data Bus. When the current address equals the terminating address, the TYPE DUMP
indicator goes off and the operation is terminated.

During a Type Out operation, the keyboard is locked to prevent loss of data in the event
a key is accidentally pressed.

CONSOLE SWITCHES AND INDICATORS

Figure 6-2 shows the switch arrangement of the typewriter control panel. The function
of each switch appears in Table 6-1. A rocker switch on the typewriter unit is used to
apply power to the typewriter motor.

Figure 6-2. Typewriter Control Panel.

6-3

TABLE 6-1. CONSOLE TYPEWRITER SWITCHES AND INDICATORS

Name Switch (S) Description
Indicator (I)

HIGH
I This indicator glows when the ambient teml--arature within

TEMP the typewriter cabinet exceeds 110 0 F.

BUSY I
This indicator shows that the TYPE LOAD or TYPE DUMP
switch has been pressed and the operation is in progress.

POWER ON I This indicator shows that power is applied to the typewriter.

This switch is in parallel with the TYPE DUMP switch on the

TYPE
console and causes the computer to send data to the type-

DUMP
S&I writer for print-out. It is a momentary contact switch that is

illuminated until the last character in the block has been
printed or the CLEAR button is pressed.

This switch is in parallel with the TYPE LOAD switch on the
console and allows the computer to receive a block of input

TYPE
data from the typewriter. The TYPE LOAD indicator remains

LOAD
S&I on until either the FINISH. REPEAT or CLEAR button is

pressed. or until the last character of the block has been
stored. If the program immediately reactivates the typewriter.
it may appear that the light does not go off.

This switch is pressed during a Type Load operation to indi-

REPEAT S& I
cate that a typing error occurred. This switch deactivates
busy sense line 10 (see PAUS instruction). If the computer
does not respond. this light remains on.

This switch is pressed during a Type Load operation to indi-
cate that there is no more data in the current block. This

FINISH S&I
action is necessary if the block that the operator has entered
is smaller than the block defined by registers 23 and 33. This
switch also deactivates busy sense line 09. If the computer
does not respond. this light remains on.

This switch is in parallel with the MANUAL INTERRUPT

INTERRUPT S&I switch on the console and is used to manually interrupt the
computer program.

ENCODE
This switch enables the typewriter to send to storage the

FUNCTION
S&I special function codes for backspace. tab. carriage return.

upper-case shift. and lower-case shift.

CLEAR S&I This switch clears the typewriter controls and sets the type-
writer to Ipwer case but does not cancel Encode Function.

6-4

CHARACTER CODES

Table 6-2 lists the internal BCD codes, typewriter printout and upper- or lower-case shift
that applies to the console typewriter. All character transmission between the computa­
tion section and the typewriter is in the form of internal BCD. The typewriter logic makes
the necessary conversion to the machine code.

NOTE

Shifting to upper case (57) or lower case (32) is .not necessary except on keyboard letters
where both upper and lower cases are available. The standard type set for the 3192 has two
sets of upper case letters and no lower case letters. This eliminates the need for specifying
a case shift.

TABLE 6-2. CONSOLE TYPEWRITER CODES

Print-out Case Internal BCD Code Print-out Case Internal BCD Code

- L 40 0 L 00
J UorL 41 1 L 01
K U or L 42 2 L 02
L UorL 43 3 L 03
M U or L 44 4 L 04
N U or L 45 5 L 05
0 U or L 46 6 L 06
P UorL 47 7 L 07
Q U or L 50 8 L 10
R U or L 51 9 L 11

o (degree) U 52 ± U 12
$ U 53 = L 13
* U 54 .,

U 14
U 55 U 15
% U 56 L 16

(Shift to UC) 57 ? U 17
(Space) 60 + U 20

/ L 61 A U or L 21
S U or L 62 B U or L 22
T U or L 63 C U or L 23
U U or L 64 D U or L 24
V U or L 65 E U or L 25
W U or L 66 F U or L 26
X U or L 67 G U or L 27
Y U or L 70 H U or L 30
Z U or L 71 I U or L 31
& U 72 (Shift to LC) 32

U and L 73 U and L 33
(U 74) U 34

(Tab) 75 L 35
(Backspace) 76 @ U 36

(Carriage return) 77 ! L 37

6-5

Section 7
INSTRUCTIONS

GENERAL INFORMATION

INSTRUCTION WORD FORMATS

The standard 3200 machine coded instruction is 24 bits in length and generally classified
into one of two formats: word or character oriented.

Word oriented instructions are the most common of the instruction formats. Fifteen bits
are allocated for an unmodified storage address, operand, or shift count. Indirect address­
ing is usually available. Figure 7-1 illustrates a word oriented instruction and the signifi­
cance of the first 15 bits when they represent an unmodified word address 'm' .

Bit position 23 18 ~ 14

I (6 bits) J(1 bit) J (2 bits) J

~'--y--",'-
f a b I

Symbol designators

(See Symbol Definitions)

d j I

I
I
14

Storage Field
Module

0-3 0-1

(15 bits)

y
m

k
y

m
Word Address

Co-ordinate Address
within field

0000-7777e (4096)

Figure 7 -1. Word-Addressed Instruction Format

00

I
./

00

I
I

Character oriented instructions allocate 17 bits for unmodified character addresses or
extended operands. Indirect addressing is not available for these instructions; however,
address modification is permissible by referencing a specific index register. Figure 7-2
illustrates the format of a character oriented instruction word and the significance of the
first 17 bits when they represent an unmodified character address 'r'.

7-1

23 18 17 16 15 14 00

I (6 bits) 1(1 bit) I (17 bits) I

"---~ --~/ "- ~ '---------~ ~--------,' 1 'f yl '{
biz I

116 00 I
I Characte{ Address I
1 1

1 1

116 15 14 13 02 01 00 I

I I I I I
~~ '----~y~---~/ ~
Storage Field Co-ordinate Address Character
Module within field 0-3

0-3 0-1 0000-77778 (4096)

Figure 7 -2. Character-Addressed Instruction Format

Characters in a data word are always specified in the following manner:

23 18 17 12 11 06 05 00

I 0 I I 2 I 3

~ '\ .t ~ character deSignators

WORD ADDRESSES VS. CHARACTER ADDRESSES
It is often desirable to convert a word address and character position to its corresponding
character address or vice versa. The following procedure is a technique used for this purpose:

To convert a word address to a character address:

o Octally multiply the word address by four. (During program execution, this
operation is simulated by a left shift of two binary places.)

• Add the character position to the product.

The sum will be the character address.

EXAMPLE: Given: Word address 12442, character position 2
Find: Corresponding character address.

1. 12442
x4

52210
2. +2

52212 = character address

To convert a character address to a word address:

• Octally divide the character address by four.

The quotient will be the word address and the remainder is the character position. No
remainder indicates character zero.

7-2

EXAMPLE: Given: Character address 03442
Find: Word address and character position.

00710
~03442

.:QL
4
4

2 = remainder = character position 2.

NOTE

Octal multiplication and division
tables may be found in the appendix
section of this manual.
Instruction word formats that differ
from word and character orientation
are described in the instruction listing.

SYMBOL DEFINITIONS
The following designators are used throughout the list of instructions. Additional special
symbols are used in SearchlMove and certain 1/0 instructions and are defined where
they are used.

a = addressing mode designator (a = 0, direct ~ddressing; a = 1, indirect addressing)
b = i:t:J.dex designator (unless otherwise stated)
c = denotes a character code or field
ch = denotes an I/O channel (0-7)
d = special operation designator (see individual instructions).
f = function code (6 bits, octal 00 to 77)
H = instruction modifier for INPC or OUTC indicating 6 or 12 bit I/O operation

= interval designator (decrement quantity)
j = jump, stop, or skip condition designator (see individual instructions)
k = shift count (unmodified)
m = word execution address (unmodified)
n = same as m, but the word address of the second operand
r = character execution address (unmodified)
s = same as r, but the character address of the second operand
S = instruction modifier denoting sign extension

S present, bit 17 = "1", sign extended
S absent, bit 17 = "0", sign not extended

v = a specific register (00-77) within the Register File.
x = connect code or interrupt mask
y = 15-bit operand
z = 17-bit operand

IIIIIIII = indicates zeros should be loaded into a particular area of an instruction.

INDEXING AND ADDRESS MODIFICATION
In some instructions, the execution address 'm' or 'r', or the shift count 'k' may be modified
by adding to them the contents of an index register, Bb. The 2-bit designator 'b' specifies
which of the three index registers is to be used. Symbols representing the respective
modified quantities are M, R, and K.

M =m+(Bb)
R = r + (Bb) the sign of Bb is extended to bit 16 (21Ll)
K =k +(Bb

)

In each case, if b=O, then M=m, R=r and K=k.

7-3

ADDRESSING MODES
Three modes of addressing are used in the computer: No Address, Direct Address, and
Indirect Address.

No Address
This mode is used when an operand 'y' or a shift count ok' is placed directly into the lower
portion of an instruction word. Symbols 'a' and 'b' are not used as addressing mode and
index designators with any of the no address instructions.

Direct Address
The direct addressing mode is used in any instruction in which an operand address om'
is stored in the lower portion of the initial instruction word. This mode is specified by
making 'a' equal to O. In many instructions, address om' may be modified (indexed) by
adding to it the contents ofregister B b

, M=m + (Bb
).

Indirect Address
It is possible to use indirect addressing only with instructions that require an execution
address 'm'. For applicable instructions, indirect addressing is specified by making 'a'
equal to 1. Several levels (or steps) of indirect addressing may be used to reach the exe­
cution address; however, execution time is delayed in direct proportion to the number
of steps. The search for a final execution address continues until 'a' equals O. It is im­
portant to note that direct or indirect addressing and address modification are two dis­
tinct and independent steps. In any particular instruction, one may be specified without
the other. Figure 7-3 shows the indirect addressing routine for a 3200 Computer.

Original instruction
possibly containing

'a' and/or 'b'

No

Go to address M.
Acquire new

terms a, b, & m.

Add the
(B

b
) to m.

No

Execute instruction
using address M.

Figure 7 -3. Indexing and Indirect Addressing Routine Flow Chart

NOTE

Unless it is otherwise stated, indirect addressing follows the above routine through­
out the list of instructions.

7-4

INDEXING AND ADDRESSING MODE EXAMPLES
The following examples utilize the LDA (20) instruction; however, the process applies
to any of the instructions with an 'a' and/or 'b' designator.

LDA 23 18 17 16 15 14

I 20 I a m

a = addressing mode designator
b = index register designator

EXAMPLE 1

00

(ADDRESS MODIFICATION -(indexing) ONLY)
I

P=OOOOO 20 2 ~ 1 IB')-13342

. . t d Indicates Direct A dress Add this address to (8 2)

mode and address modification
by 8 2

5.L
+ 13342

20 2 67772~ This address is replaced ~67772
temporarily in the
original instruction

LDA with the 24-bit quantity stored at address 67772

67771
p= 67772

67773

p = 00001

77700000 --+- This quantity is loaded into the A register

I

EXAMPLE 2
(INDIRECT ADDRESSING ONLY)

204~
1- 1

Indicates Indirect Addressing Go to this address and acquire
new address and designator before
executing instruction.

mode but no address modification
(indexing).

I

L~~~~~
54427
54430
54431

310 77111

~~~~?~l 
This portion of operand is replaced temporarily 
in the original instruction. 

~ 
200~ 

t 
Indicates Direct Address mode and no address modification. LDA with the 24-bit 
operand stored at address 77111. (If this digit would have indicated additional indirect 
addressing and/or address modification this must be done before the LDA instruction 
is executed.) 

7-5 



EXAMPLE 3 
(INDIRECT ADDRESSING AND ADDRESS MODIFICATION) 

P = 00002 20 5~ 
d

. t . 
In Icates Indirect Address 

I (81}=00512 

Add this address to (81). 
mode and address modifica­
tion. 8y 81. 

t 
54430 

+00512 
55142 

t 
Go to this address and acquire 

,...-------------------------new address and designator before 

executing instruction. 

55141 
55142 
55143 77_~ 1 

This portion of operand is replaced 
temporarily in the original instruction. 

~ 
20 0 37777 

Indicates direct tddress mode and no 
address modification. LDA with the 24-bit 
operand stored at address 37777. (If this 
digit would have indicated additional indirect 
addressing and/or address modification, this must 
be done before the LDA instruction is executed.) 

Trapped Instructions 
The instructions appearing in Table 7-1 are executed by the Utility System under the 
control of SCOPE. The Basic Utility software system also is capable of executing these 
instructions, 

The computer detects the 55-70 instructions as they appear in the F register and traps 
them if the BCD and Floating Point 48-bit Precision hardware is absent. Trapped in­
structions are processed as interrupts once they are detected. A conventional interrupt 
always takes priority over the trap sequence. The following operations occur when a 
trapped instruction is detected: 

1. P + 1 is stored in the lower 15 bits of address 00010. 
2, The upper 6 bits of F are stored in the lower 6 bits of address 00011; the upper 

18 bits remain unchanged. 
3. Program control is transferred to address 00011 and an RNI cycle is executed. 

7-6 



TABLE 7-1. 
liST OF TRAPPED INSTRUCTIONS 

Operation Field Interpretation 

55 - - - - I.R.T., 48-bit precision 
56 MUAQ MUltiply AQ, 48-bit precision 
57 DVAQ Divide AQ, 48-bit precision 
60 FAD Floating point add 

61 FSB Floating point subtract 
62 FMU Floating point mUltiply 
63 FDV Floating point divide 
64 LDE Load ED 
65 STE Store ED 
66 ADE Add to ED 
67 SBE Subtract from ED 
70 SFE Shift ED 

EZJ,EQ ED zero jump, ED = 0 
EZJ,LT ED zero jump, ED < 0 
EOJ ED overflow jump 
SET Set D register 

INSTRUCTION LIST 

Each group of instructions is introduced with an index and, whenever necessary, a group 
description. Individual instructions are all presented in the same basic format: 

• Heading, which includes the assembly language mnemonic and instruction 
name 

• Machine code instruction format 
• Instruction description 
• Comments (when necessary) 
• Approximate instruction execution time (add 1.25 usec for each step of in-

direct addressing) 

The abbrev:iation, RNI, is used throughout the list of instructions to indicate the Read Next 
Instruction sequence. This is a sequence of steps taken by the control section to advance the 
computer to its next program step. For an extensive description of this sequence, consult 
the 3200 Customer Engineering.Manual (Pub, No. 60100900). 

Table 7-2 identifies the instructions and indicates on which page explicit instruction descrip­
tions may be found. Table 7-3 is a summary of the instruction execution times. In addition to 
these tables, three additional tables are provided at the end of this manual for cross reference 
of the instruction list. 

7-7 



MNEMONIC 

ADA, I 

ADAQ, I 

ADE 

AEU 

AlA 

ANA, S 

ANI 

ANQ, S 

AQA 

AQE 

AQJ, EQ 

NE 

GE 

IT 
ASE, S 

ASG, S 

AZJ, EQ 

NE 

GE 

IT 
CllO 
CINS 

ClCA 

CON 

COPY 

CPR, I 

CTI 

CTO 

DINT 

DVA. I 

DVAQ, I 

EAQ 

ECHA. S 
EINT 

ElQ 

ENA 

ENI 

ENQ 

EOJ 

EUA 

EXS 

EZJ, EQ 

IT 
FAD, I 

FDV, I 

FMU, I 

FSB, I 

Rev. H 

TABLE 7-2. INSTRUCTION SYNOPSIS AND INDEX 

add to A 

add to AQ 

add to E 

INSTRUCTION 

transmit (A) to E upper 

transmit (A) +- (Bh) to A 

logical product (AND) of y and (A) 

logical product (AND) of y and (Bh) 

logical product (AND) of y and (Q) 

transmit (A) +- (Q) to A 

transmit (AQ) to E 

{j"m p 
if IAI 

jump if (Al 

compare A with Q 

jump if (A) 

jump if (A) 

skip next instruction, if (A) = y 

skip next instruction, if (A) ~ y 

= Q 

oF Q 

~ Q 

< Q 

{

jump if (A) = 0 

jump if (A) oF 0 
compare A with zero jump if (A) ~ 0 

jump if (A) < 0 

channel interrupt lockout 
copy internal status 

clear channel activity 

connect 

copy external status 

within limits test 

set console typewriter input 

set console typewriter output 

disable interrupt control 

divide AQ (48 by 24) 

divide AQE (96 by 48) 

transmit (E upper) to A and (E lower) to Q 

enter A with 17-bit character address 

enable interrupt control 

transmit (E lower) to Q 

enter A 

enter index 

enter Q 

jump to m on E overflow 

transmit (E upper) to A 

sense external status 

compare E with zero; jump if E = 0 

compare E with zero; jump if E < 0 

floating add to AQ 

floating divide AQ 

floating multiply AQ 

floating subtract from AQ 

7-8 

PAGE 

7-38 

7-40 

7-47 

7-29 

7-26 

7-18 

7-18 

7 -18 

7-26 

7-29 

7-36 

7-36 

7-36 

7-36 

7-13 

7-14 

7-35 

7-35 

7-35 

7-35 

7-69 
7-62 

7-69 

7-70 

7-60 

7-53 

7-71 

7 -71 

7-67 

7-39 

7-42 

7-29 

7-15 

7-60 

7-29 

7-15 

7-15 

7-15 

7-49 

7-29 

7-64 

7-49 

7-49 

7-43 

7-44 

7-44 

7-44 



TABLE 7-2. INSTRUCTION SYNOPSIS AND INDEX (CONTINUED) 

MNEMONIC INSTRUCTION PAGE 

HLT unconditional stop; read next instruction 

from location m 7-30 

IAI transmit (Bb) + (A) to Bb 7-26 

IAPR interrupt associated processor 7-66 

IJO index jump; decrement index 7-34 

IJI index jump; increment index 7-33 

INA increase A 7-16 

INAC.INT character-addressed input to A 7-80 

INAW.INT word-addressed input to A 7-82 

INCL clear interrupt 7-65 

INI increase index 7-16 

INPC. INT. B. H character-addressed input to storage 7-72 

INPW. INT. B. N word-addressed input to storage 7-74 

INQ increase Q 7-16 

INS sense internal status 7-62 

INTS sense interrupt 7-61 

10CL clear I/O. typewriter. and S/M 7-63 

ISO index skip; decrement index 7-19 

ISE skip next instruction. if (B
b
) = y 7-13 

ISG skip next instruction. if (B
b
) ;::: y 7 -14 

lSI index skip; increment index 7-19 

LACH load A character 7-20 

LCA. I load A complement 7-21 

LCAQ. I load AQ complement (double precision) 7-21 

LOA. I load A 7-20 

LOAQ. I load AQ (double precision) 7-21 

LOE load E 7-48 

LOI. I load index 7-22 

LOL. I load logical 7-21 

LOQ. I load Q 7-22 

LPA. I logical product with A 7-37 

LOCH load Q character 7-22 

MEQ masked equality search 7-54 

MOVE.INT move I characters from r to s 7-58 

MTH masked threshold search 7-55 

MUA. I mUltiply A 7-39 

MUAQ.I mUltiply AQ 7-42 

OTAC. INT character-addressed output from A 7-84 

OTAW.INT word-addressed output from A 7-86 

OUTC. INT. B. H. character-addressed output from storage 7-76 

OUTW. INT. B. N word-addressed output from storage 7-78 

PAUS pause 7-64 

PRP priority pause 7-64 

QEL transmit (Q) to E lower 7-29 

QSE. S skip next instruction. if (Q) = y 7-13 

QSG. S skip next instruction. if (Q) ;::: y 7-14 

RAO. I replace add 7-38 

RTJ return jump 7-32 

7-9 Rev. H 



TABLE 7-2. INSTRUCTION SYNOPSIS AND INDEX (CONTINUED) 

MNEMONIC INSTRUCTION PAGE 

SACH store character from A 7-23 

SBA. I subtract from A 7-39 

SBAQ. I subtract from AQ 7-40 

SBCD set BCD fault 7-67 

SBE subtract from E 7-47 

SCA. I selectively complement A 7-37 

SCAQ scale AQ 7-52 

SCHA. I store 17-bit character address from A 7-25 

SCIM selectively clear interrupt mask 7-66 

SEL select function 7-70 

SET set D to value of y 7-46 

SFE shift E 7-49 

SFPF set floating point fault 7-67 

SHA shift A 7-50 

SHAQ shift AQ 7-52 

SHQ shift Q 7-52 

SJ1 jump if key 1 is set 7 -31 

SJ2 jump if key 2 is set 7-31 

SJ3 jump if key 3 is set 7-31 

SJ4 jump if key 4 is set 7-31 

SJ5 jump if key 5 is set 7 -31 

SJ6 jump if key 6 is set 7-31 

SLS selective stop 7-31 

SQCH store character from Q 7-24 

SRCE. INT search character equality 7-56 

SRCN.INT search character inequality 7-56 

SSA. I selectively set A 7-37 

SSH storage shift 7-50 

SSIM selectively set interrupt mask 7-66 

STA. I store A 7-23 

STAQ. I store AQ 7-24 

STE store E 7-48 

STI. I store index 7-25 

STQ. I store Q 7-24 

SWA. I store 15- bit word address from A 7-25 

TAl transmit (A) to Bh 7-27 

TAM transmit (A) to high speed memory 7-28 

TIA transmit (Bh) to A 7-27 

TIM transmit (Bh) to high speed memory 7-28 

TMA transmit (high speed memory) to A 7-28 

TMI transmit (high speed memory) to Bh 7-28 

TMQ transmit (high speed memory) to Q 7-27 

TQM transmit (Q) to high speed memory 7-27 

UCS unconditional stop 7-31 

UJP. I unconditional jump 7-32 

XOA. S exclusive OR y and (A) 7-17 

XOI exclusive OR y and (Bh) 7-17 

XOQ. S exclusive OR y and (Q) 7-17 

7-10 



TABLE 7-3. SUMMARY OF INSTRUCTION EXECUTION TIMES, t-tsec. 

APPROXIMATE APPROXIMATE 
INSTRUCTION EXECUTION INSTRUCTION EXECUTION 
MNEMONIC TIME MNEMONIC TIME 

ADA 2.5 INQ 1.3 
ADAQ 3.8 INS 1.3-1.7 
ADE 11.5* INTS 1.3-1.7 
AEU 1.3* IOCL 1.3 
AlA 1.3 ISD 1.9 
ANA 1.3 ISE 1.9 
ANI 1.3 ISG 1.9 
ANQ 1.3 lSI 1.9 
AQA 1.3 . 
AQE 1.3* LACH 2.5 
AQJ '1.9 LCA 2.5 
ASE 1.9 LCAQ 3.8 
ASG 1.9 LDA 2.5 
AZJ 1.9 LDAQ 3.8 
CILO 1.3 LDE 8.0* 
CINS 1.3-1.7 LDI 2.5 
CLCA 1.3 LDL 2.5 
CON * •• LDQ 2.5 
COPY 1.3-1.7 LPA 2.5 
CPR 2.5-3.4 LQCH 2.5 
CTI 1.3 
CTO 1.3 MEQ 4.2 +4.2n 
DINT 1.3 MOVE 3.3 
DVA 11.25 MTH 4.2 +4.2n 
DVAQ 22.5" MUA 7.8-11.0 

MUAQ 16.0-21.0' 
EAQ 1.3-
ECHA 1.3 OTAC 3.3 
EINT 1.3 OTAW 3.3 
ELQ 1.3* OUTC 3.3 
ENA 1.3 OUTW 3.3 
ENI 1.3 
ENQ 1.3 PAUS 2.0 us-40 ms 
EOJ 1.3- PRP 2.0 us-40 ms 
EUA 1.3" QEL 1.3' 
EXS 1.3-1.7 QSE 1.9 
EZJ 1.3- QSG 1.9 

FAD 10.0-12.0" RAD 3.8 
FDV 20.0' RTJ 2.5 
FMU 14.0-18.0' 
FSB 10.0-12.0- SACH 2.5 

SBA 2.5 
HLT - SBAQ 3.8 

SBCD 1.3 
IAI 1.3 SBE 11.5' 
IAPR -. SCA 2.5 
IJD 1.9 SCAQ 1.9-3.9 
IJI 1.9 SCHA 2.5 
INA 1.3 SCIM 1.3 
INAC ... SEL ... 
INAW ... SET 1.3" 
INCL 1.3 SFE 1.3-4.3' 
INI 1.3 SFPF 1.3 
INPC 3.3 SHA 1.3-2.7 
INPW 3.3 SHAQ 1.3-2.7 

n = number of words searched . 

• = Trapped instruction in computers without the appropriate optional hardware package . 
•• = Dependent upon interrupt response . 

••• = Dependent upon a variable signal response time from an external source of equipment. 

7-11 Rev. H 



TABLE 7-3. SUMMARY OF INSTRUCTION EXECUTION TIMES, f.lsec. (CONTINUED) 

APPROXIMATE APPROXIMATE 
INSTRUCTION EXECUTION INSTRUCTION EXECUTION 

MNEMONIC TIME MNEMONIC TIME 

SHQ 1.3-2.7 TAl 1.3 
SJl-6 1.3 TAM 1.8 
SLS 1.3 TIA 1.3 
SQCH 2.5 TIM 1.8 
SRCE 3.3 TMA 1.8 
SRCN 3.3 TMI 1.8 
SSA 2.5 TMQ 1.8 
SSH 3.8 TQM 1.8 
SSIM 1.3 
STA 2.5 UCS -
STAQ 3.8 UJP 1.3 
STE 8.0' 
STI 2.5 XOA 1.3 
STQ 2.5 XOI 1.3 
SWA 2.5 XOQ 1.3 

n = number of words searched. 
* = Trapped instruction in computers without the appropriate optional hardware package. 

** = Dependent upon interrupt response. 
*** = Dependent upon a variable signal response time from an external source of equipment. 

REGISTER OPERATIONS WITHOUT STORAGE REFERENCE 

Operation Field Address Field Interpretation 

ASE. S 04 y Skip next instruction if (A) = y 

QSE.S y Skip next instruction if (Q) = y 

ISE y. b Skip next instruction if (B
b

) = y 

ASG.S 05 y Skip next instruction if (A) ;::: y 

QSG.S y Skip next instruction if (Q) ;::: y 

ISG y. b Skip next instruction if (Bb
) ;::: y 

ENA. S 14 y Enter A with y 

ECHA. S 11 r Enter A with 17 -bit character address 

ENQ.S 14 Y Enter 0 with y 

ENI y. b Enter index with y 

INA.S 15 Y Increase A by Y 

INO.S y Increase 0 by Y 

INI y. b Increase index by y 

XOA.S 16 Y Exclusive OR of A and y 

XOQ.S y Exclusive OR of Q and y 

XOI y. b Exclusive OR of index and y 

ANA. S 17 Y AND of A and y 

ANO.S y AND of 0 and y 

ANI y. b AND of index and y 

lSI 10 y. b Index skip. incremental 

ISO y. b Index skip. decremental 

SHA 12 y. b Shift A 

SHO y. b Shift 0 

SHA~ 13 y. b Shift AO 

SCAO y. b Scale AO 

7-12 



23 18 1 7 1 6 1 5 14 00 

04 10 I b 
(Approximate execution time: 1.9 jlsec.) 

y 

b = index register designator 

Instruction Description: If (Bb)=y, skip to address P + 2; if not, RNI from address P + 1. 

Comments: If b = 0, y is compared to zero. 

23 18 17 15 14 00 
(Approximate execution time: 1.9 jlsec.) 

04 6 y 

Instruction Description: If (A) = y, skip to address P + 2; if not, RNI from address P + 1. 

Comments: Only the lower 15 bits of A are used for this instruction. 

23 18 17 15 14 00 
(Approximate execution time: 1.9 jlsec.) 

04 4 y 

Instruction Description: Same as ASE except the sign of y is extended. All 24 bits of A are 
recognized. 

23 18 17 15 14 00 

04 7 y 
(Approximate execution time: 1.9 .jlsec.) 

Instruction Description: If (Q)=y, skip to address P + 2; if not, RNI from address P + 1. 

Comments: Only the lower 15 bits of Q are used for this instruction. 

23 18 17 15 14 00 

04 5 y 
(Approximate execution time: 1.9 jlsec.) 

Instruction Description: Same as QSE except the sign of y is extended. All 24 bits of Q are 
recognized. 

7-13 



Rev.H 

23 18 17 16 1 5 14 00 
(Approximate execution time~ 1.9 /Lsec.) 

05 10 I b y 

b = index register designator 

Instruction Description: If (Bb
) are equal to or greater than y, skip to address P + 2; if 

not, RNI from address P + 1. 

Comments: If b=O, y is compared to zero. 

23 18 17 15 14 00 

05 6 y 
(Approximate execution time: 1.9 /Lsec.) 

Instruction Description: If (A) are equal to or greater than y, skip to address P + 2; if not, 
RNI from address P + 1. 

Comments: (ALls) and yare considered IS-bit positive numbers. 

23 18 17 15 14 00 
(Approximate execution time: 1.9 /Lsec.) 

05 4 y 

Instruction Desoription: Same as ASG except the sign of y is extended. All 24 bits of A are 
recognized. Positive zero (00000000) is recognized as greater than negative zero (77777777). 

23 18 17 15 14 00 

05 7 Y 
(Approximate execution time: 1.9 /Lsec.) 

Instruction Description: If (Q) are equal to or greater than y, skip to address P + 2; if not, 
RNI from address P + 1. 

Comments: (QLlS) and y,are considered IS-bit positive numbers. 

23 18 17 15 14 00 
(Approximate execution time: 1.9 /Lsec.) 

05 5 y 

Instruction Description: Same as QSG except the sign of y is extended. All 24 bits of Q are 
recognized. Positive zero (00000000) is recognized as greater than negative zero (77777777). 

7-14 



23 18 17 16 15 14 00 
ENI Enter Index with y 

14 10 I b 
(Approximate execution time: 1.3 j.1sec.) 

y 

b = index register designator 

Instruction Description: Clear index register Bb and enter y directly into it. 

Comments: If b=O, this is a no-operation instruction. 

23 18 17 15 14 00 
ENA Enter A with y (Approximate execution time: 1.3 j.1sec.) 

14 6 y 

Instruction Description: Clear the A register and enter y directly into A. 

23 18 17 15 14 00 
ENA.S Enter A with y 

14 
(Approximate execution time: 1.3 j.1sec.) 

4 y 

Instruction Description: Same as ENA except the sign of y is extended. 

ECHA Enter Character 
Address into A 

23 18 17 16 

z 

d = 0 for no sign extension 
d = 1 for sign extension 

00 
(Approximate execution time: 1.3 j.1sec.) 

Instruction Description: Clear A; then enter a 17 -bit operand z (usually a character address) 
into A. 

23 18 17 15 14 00 
ENQ Enter Q with y 

14 7 
(Approximate execution time: 1.3 j.1sec.) 

y 

Instruction Description: Clear the Q register and enter y directly into Q. 

23 18 17 15 14 00 
ENQ,S Enter Q with y 

14 5 
(Approximate execution time: 1.3 j.1sec.) 

y 

Instruction Description: Same as ENQ except the sign of y is extended. 

7-15 



23 1 8 1 7 1 6 1 5 14 00 
INI Increase Index by y 

15 I 0 I b y 
(Approximate execution time: 1.3 jlsec.) 

b = index register designator 

Instruction Description: Add y to (Bb
). 

Comments: If b= 0, this is a no-operation instruction. Signs of y and Bb are extended. 

23 18 17 15 14 00 
I.NA Increas.eA by y . 

15 6 y 
(Approximate execution time: 1.3 jlsec.) 

Instruction Description: Add y to (A). 

23 18 17 15 14 00 
INA,S Increi:lseAb~J; 

15 4 
(Approximate execution time: 1.3 jlsec.) 

y 

Instruction Description: Same as INA except the sign of y is extended. 

" .,' '" ,,'~ 

INO IrlcreaseQbyv 
23 18 17 15 14 00 

(Approximate execution time: 1.3 jlsec.) 
15 7 y 

Instruction Description: Add y to (Q). 

23 18 17 15 14 00 

15 5 y 
(Approximate execution time: 1.3 jlsec.) 

Instruction Description: Same as INQ except the sign of y is extended. 

7-16 



XOI EXCLUSIVE OR 
of Bb and y 

23 1 8 1 7 1 6 1 5 14 

16 10 I b y 

b = index register designator 

00 
(Approximate execution time: 1.3 f,lsec.) 

Instruction Description: Enter the selective complement (the EXCLUSIVE OR function) of 

y and (Bb
) back into the same index register. 

Comments: If b= 0, this is a no-operation instruction. 

XOA, EXCLUSIVE OR 
of A and y 

23 18 17 15 14 

16 6 

00 

y 
(Approximate execution time: 1.3 f,lsec.) 

Instruction Description: Enter the selective complement (the EXCLUSIVE OR function) 
of y and (A) back into the A register. 

XOA,S EXCLUSIVE OR 
of A and y 

23 18 17 

16 4 

15 14 00 
(Approximate execution time: 1.3 f,lsec.) 

y 

Instruction Description: Same as XOA except the sign of y is extended. 

XOQ EXCLUSIVE OR 
of Q and y 

23 18 17 

16 7 

15 14 00 
(Approximate execution time: 1.3 f,lsec.) 

y 

Instruction Description: Enter the selective complement (the EXCLUSIVE OR function) 
ofy and (Q) back into the Q register. 

XOQ,S EXCLUSIVE OR 
of Q and y 

23 18 17 15 14 

16 5 

00 
(Approximate execution time: 1.3 f,lsec.) 

y 

Instruction Description: Same as XOQ except the sign of y is extended. 

7-17 



ANI AND of Bb and y 
23 18 17 16 15 14 00 

17 10 I b 
(Approximate execution time: 1.3 }lsec.) 

y 

b = index register designator 

Instruction Description: Enter the logical product (the AND function) of y and (Bb
) back 

into the same index register. 

Comments: If b=O, this is a no-operation instruction. 

23 18 17 15 14 00 
ANA AND of A and y 

17 6 
(Approximate execution time: 1.3 }lsec.) 

y 

Instruction Description: Enter the logical product (the AND function) of y and (A) back 

into the A register. 

23 18 17 15 14 00 
ANA,S AND of A and y 

17 4 
(Approximate execution time: 1.3 }lsec.) 

y 

Instruction Description: Same as ANA except the sign of y is extended. 

23 18 17 15 14 00 
ANa AND of a and y 

17 7 
(Approximate execution time: 1.3 }lSec.) 

y 

Instruction Description: Enter the logical product (the AND function) of y and (Q) back 

into the Q register. 

23 18 17 15 14 00 
ANa,S AND of a and y 

17 5 
(Approximate execution time: 1.3 }lsec.) 

y 

Instruction Description: Same as ANQ except the sign of y is extended. 

7-18 



i .ISllnd~~Ski 
Incremental 

23 18 17 16 1 5 14 

10 10 1 b y 

b = index register designator 

00 
(Approximate execution time: 1.9 jlsec.) 

Instruction Description: If (Bb) = y, clear Bb and skip to address P + 2; if not, add one to (Bb) 

and RNI from address P + 1. 

Comments: The 10.0 instruction is a SSH (storage shift) instruction. described later in this 
chapter. Positive zero (00000) and negative zero (77777) form an equal comparison. 

Instruction in F 

Increment (Bb) by 1 No Yes Clear Bb 

and (Bb) = y ? and 
RNI@P+1 RNI@P+2 

23 18 17 1 6 1 5 14 00 

10 11 1 b y 
(Approximate execution time: 1.9jlsec.) 

b = index register designator 

Instruction Description: If (Bb) = y, clear Bb and skip to address P + 2; if not, subtract one 
from (Bb

) and RNI from address P + 1. 

Comments: Positive zero (00000) and negative zero (77777) form an equal comparison. 

Instruction in F 

Decrement (Bb) by 1 No Yes Clear Bb 
and (Bb) = y ? and 

RNI @ P + 1 RNI@P+2 

7-19 

Rev. H 



LOAD 

Operation Field Address Field Interpretation 

LOA.I 20 m.b Load A 
LACH 22 r.B1 Load A. Character 
LCA.I 24 m.b Load A. Complement 
LOU 27 m.b Load A. Logical 
LOAO.I 25 m.b Load AO 
LCAO.I 26 m.b Load AO. Complement 
LOO.I 21 m.b Load 0 
LOCH 23 r.B2 Load O. Character 
LOLl 54 m.b Load Index 

NOTE 

The LDE instruction is described in the BCD section of the instructions. 

23 18 17 16 15 14 00 

I 20 I a I b m 

a = addressing mode designator 
b = index register designator 
m=storage address; M=m+(Bb

) 

(Approximate execution time: 2.5 ~sec.) 

Instruction Description: Load A with a 24-bit quantity from the storage address specified by M. 

Comments: Indirect addressing and address modification may be used. 

23 18 17 16 00 

22 
I , 
;16 

I 00000-77777 

0201 00 i 
I 0-3 

'-~--~y,---~/~ 

word address character 
designator 

If b = 1. r is modified by index 
register B1; R=r -I- (B1). 
If b = O. r is not modified (r = R). 

(Approximate execution time: 2.5 ~sec.) 

Instruction Description: Load bits 00 through 05 of A with the character from storage 
specified by character address R. The A register is cleared prior to the load operation. 

Comments: Indirect addressing may not be used. Characters are specified in storage as follows: 

23 18 17 12 11 0605 00 

,7 
character designators 

NOTE 

Since the sign of Bb is extended during character address modification, it is possible 
to only reference within ± 16,38310 characters. 

7-20 



LCA Load A. 
·Complement 

23 18 17 16 15 14 

m 

a = addressing mode designator 
b = index register designator 
m=storage address: M=m+(Bb

) 

00 
(Approximate execution time: 2.5 /lsec.) 

Instruction Description: Load A with the complement of a 24-bit quantity from storage ad­
dress M. 

Comments: Indirect addressing and address modification may be used. 

LDL LoadA.Logical 
23 18 17 16 15 14 

m 

a = addressing mode designator 
b =index register designator 

00 
(Approximate execution time: 2.5 j.Lsec.) 

Instruction Description: Load A with the logical product (the AND function) of (Q) and the 
24-bit quantity from storage address M. 

23 18 17 1 6 1 5 14 00 

m 

a = addressing mode designator 
b = index register designator 
m=storage address: M=m+(Bbj 

(Approximate execution time: 3.8/lsec.) 

Instruction Description: Load the A and Q registers with the 24-bit quantities from addresses 
M and M +1, respectively. 

Comments: Addresses 77776 and 77777 should be used only if it is desirable to have M and 
M + 1 as non-consecutive addresses, since one's complement arithmetic is used to form M + 1. 

LCAQ Load AQ. 
Complement 

23 18 17 16 15 14 00 

m 

a = addressing mode designator 
b = index register designator 
m=storage address: M=m+(Bb) 

(Approximate execution time: 3.8 j.Lsec.) 

Instruction Description: Load regist'~rs A and Q with the complement of the 24-bit quanti­
ties from addresses M and M+1, respectively. 

Comments: Addresses 77776 and 77777 should be used only if it is desirable to have M and 
M + 1 as non-consecutive addresses, since one's complement arithmetic is used to form M + 1. 

7-21 



23 1 8 1 7 1 6 1 5 14 00 
Loa Load a (Approximate execution time: 2.5 ~sec.) 

m 

a = addressing mode designator 
b = index register designator 

m = storage address; M = m + (B b
) 

Instruction Description: Load Q with a 24-bit quantity from storage address M. 

Comments: Indirect addressing and address modification may be used. 

23 18 17 16 00 
LaCH Load a. 
Character 23 

(Approximate execution time: 2.5 ~sec.) 

:16 0201 oo! i 00000-77777 I 0-3 j 
'~----~y~----~/~ 

word address character 
designator 

If b = 1, r is modified by 
index register B2; R=r+(B2). 

If b = 0, r is not modified (r = R). 

NOTE 

Since the sign of Bb is extended during character address modification, it is possible 
to only reference within ± 16,38310 characters. 

Instruction Description: Load bits 00. through 05 of Q with the character from storage 
specified by character address R. The Q register is cleared prior to the load operation. 

Comments: Indirect addressing may not be used. Characters are specified in storage as 
follows: 

23 18 17 12 11 0605 00 

o 2 I 3 " ,/ ~ character designators 

23 1 8 17 1 6 1 5 14 00 
LOI load Index (Approximate execution time: 2.5 ~sec.) 

Rev. F 

m 

a = addressing mode designator 
b = index register designator 

m = storage address (indexing not permitted) 

Instruction Description: Load the specified index register, Bb
, with the lower 15 bits of the 

operand stored at address m. 

Comments: Indirect addressing may be used but address modification is not possible. During 
indirect addressing only a and m are inspected. Symbol b from the initial instruction speci­
fies which index register is to be loaded with the lower 15-bits from the storage address. 

7-22 



STORE 

Operation Field Address Field Interpretation 

STA.I 40 m.b Store A 
SACH 42 r.B2 Store A. character 
STAQ.I 45 m.b Store AQ 
STQ.I 41 m.b Store Q 
SQCH 43 r.B1 Store Q. character 
STI.I 47 m.b Store index 
SWA.I 44 m.b Store 1 5-bit word address 
SCHA 46 m.b Store 17-bit character address 

NOTE 

The STE instruction is described in the BCD instruction section. 

23 1 8 1 7 16 1 5 14 

m 

a = addressing mode designator 
b = index register designator 
m = storage address; M =m+(Bb

) 

00 
(Approximate execution time: 2.5 jlsec.) 

Instruction Description: Store (A) at the storage address specified by M. The (A) remains 

unchanged. 

23 18 17 16 00 

42 
(Approximate execution time: 2.5 jlsec.) 

:16 02 01 00 i 

i 00000-77777 I 0-3 I 
'-~--- ---_/'--- ~ Y -Y--' 
word address character 

designator 

If b = 1. r is modified by 
index register B2; R=r+(B2). 

If b = O. r is not modified (r = R). 

Instruction Description: Store the contents of bits 00 through 05 of the A register in the 
specified character address. All of (A) and the remaining three characters in storage remain 
unchanged. 

Comments: Indirect addressing may not be used. Characters are specified in storage as follows: 

23 18 17 12 11 0605 00 

o 2 I 3 

~ ~ l' ~ 
character designators 

NOTE 

Since the sign of Bb is extended during character address modification, it is possible 
to only reference within ± 16,38310 characters. 

7-23 



STAQ Store AQ 
23 18 17 16 15 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M = m + (B
b
) 

(Approximate execution time: 5.8 I1sec.) 

Instruction Description: Store (A) and (Q) in the storage locations specified by address M 
and M + 1, respectively. The (A) and (Q) remains unchanged. 

Comments: Addresses 77776 and 77777 should be used only if it is desirable to have M and 
M + 1 as non-consecutive addresses, since one's complement arithmetic is used to form M + l. 

STQ Store Q 
23 18 17 16 15 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M = m + (B
b

) 

(Approximate execution time: 2.5I1sec.) 

Instruction Description: Store (Q) at the storage address specified by M. The (Q) remains 
unchanged. 

saCH Sto,reClCharacter 
23 18 17 16 00 

43 

: 16 02 01 00: 

I 00000-77777 I 0-3 I 
~-----~v~----/~ 

word address character 
designator 

If b = 1, r is modified by 
index register B1; R=r + (B1). 

If b = 0, r is not modified. (r = R) 

NOTE 

(Approximate execution time: 2.5 I1sec.) 

Since the sign of Bb is extended during character address modification, it is possible 
to reference only within ± 16,38310 characters. 

7-24 



23 1 8 1 7 16 1 5 14 00 
STI Store Index (Approximate execution time: 2.5/lsec.) 

m 

a = addressing mode designator 
b = index register designator 
m = storage address (indexing not permitted) 

Instruction Description: Store the contents of the specified index register, B b
, in the lowel 

15 bits of storage address m. The upper 9 bits of m and (Bb
) remain unchanged. 

Comments: Indirect addressing may be used, but address modification is not possible. 
During indirect addressing only a and m are inspected. The b designator from the initial 
instruction specifies the index register that will have its contents stored. If b = 0, zeros 
are stored in the lower 15 bits of m. 

23 1 8 1 7 16 1 5 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M =m+(Sb) 

(Approximate execution time: 2.5 /lsec.) 

Instruction Description: Store the lower 15 bits of (A) in the designated address M. The upper 
9 bits of M and all of (A) remain unchanged. 

S<;~~)'s~J~~B'ha~~~t'~' 23 18 17 16 15 14 00 
(Approximate execution time: 2.5 /lsec.) 

Address m 

a = addressing mode designator 
b = index register designator 
m=storage address; M=m+(Sb) 

Instruction Description: Store the lower 17 bits of (A) in the address designated by M. The 
upper 7 bits of M and all of (A) remain unchanged. 

7-25 



INTER-REGISTER TRANSFER, 24-BIT PRECISION 

Operational Field Address Field Interpretation 

AOA 53 Transfer (A) + (0) to A 

AlA b Transfer (A) + (Sb) to A 

IAI b Transfer (Sb) + (A) to Sb 

TIA b Transfer (Sb) to A 

TAl b Transfer (A) to Sb 

TMO v Transfer (Register v) to 0 

TOM v Transfer (0) to Register v 

TMA v Transfer (Register v) to A 

TAM v Transfer (A) to Register v 

TMI v,b Transfer (Register v) to Sb 

TIM v,b Transfer (Sb) to Register v 

General Instruction Description 

The 53 instruction is used to move data between the A and Q registers, the index registers, and the 
Register File. The contents of the transferring register remain unchanged. 

AQA Transfer (A) 
+ (Q) to A 

(Approximate execution time: 1.3 /lsec.) 

Comments: (Q) remains unchanged. Bits 00 through 11 should be loaded with zeros. 

AlA Transfer (A) 
+ (Bb

) to A 

b = index register designator 

(Approximate execution time: 1.3 /lsec.) 

Comments: The sign of (Bb
) is extended prior to the addition. Bits 00 through 11 should be 

loaded with zeros. 

IAI Transfer (A) 
+ (B"} to Bb 

b = index register designator 

(Approximate execution time: 1.3 /lsec.) 

Comments: The sign of the original (Bb
) is extended prior to the addition. The upper 9 bits 

ofthe sum are lost when the sum is transferred to the index register. Bits 00 through 11 
should be loaded with zeros. 

7-26 



1817 16 1514 12 11 00 
TIA Transfer (Bb) to A (Approximate execution time: 1.3 /-lsec.) 

b = index register designator 

Comments: No sign extension on Bb. Prior tID the transfer, (A) is cleared. If b= 0, zeros are 
transferred to A. Bits 00 through 11 are loaded with zeros. 

23 1817 16 1514 12 11 
TAl Transfer (A) to Bb (Approximate execution time: 1.3 /-lsec.) 

~%§:;;i.(; 

:'~5:fMa 

b = index register designator 

Comments: The (A) remains unchanged. If b=O, this becomes a no-operation instruction. 
Bits 00 through 11 should be loaded with zeros. 

(Approximate execution time: 1.8 /-lsec.) 

v = Register File number. 00-778 

Comments: Bits 06 through 11, 15 and 16 should be loaded with zeros. 

TaM Transfer (a) 
to Register v 

(Approximate execution time: 1.8 /-lsec.) 

v = register file number. 00-778 

Comments: Bits 06 through 11, 15 and 16 should be loaded with zeros. 

7-27 



TMA Transfer 
(Register v) to A 

23 18 1 7 16 1 5 14 12 11 06 05 00 

v = register file number. 00-778 

(Approximate execution time: 1.8 j.Lsec.) 

Comments: Bits 06 through 11, 15 and 16 should be loaded with zeros. 

23 18 17 16 1 5 14 12 11 06 05 00 

to Register v 
(Approximate execution time: 1.8 j.Lsec.) 

v = register file number. 00-778 

Comments: Bits 06 through 11, 15 and 16 should be loaded with zeros. 

TM I Transfer 
," ',' b 

(Register v) to B 

23 18 17 16 15 14 12 11 06 05 00 
(Approximate execution time: 1.8 j.Lsec.) 

b = index register designator 
v = register file number. 00-778 

Comments: Lower 15 bits of v are transferred to Bb. Bits 06 through 11 should be loaded 
with zeros. 

TIM Transfer (Bb) 

to Register v 

23 18 1 7 16 1 5 14 12 11 06 05 00 

b = index register designator 
v = register file number. 00-778 

(Approximate execution time: 1.8 j.Lsec.) 

Comments: Upper nine bits of v remain cleared. Bits 06 through 11 should be loaded with 
zeros. 

7-28 



INTER-REGISTER TRANSFER, 48-BIT PRECISION 

Operation Field Address Field 

ELQ* 55 - - - -
QEL* - - - -

EUA* - - - -

AEU* - - - -
EAQ* - - - -
AQE* - - - -

"Trapped instruction if the Floating Point/Double Precision (FP/DP) 
option is not present. 

Interpretation 

Transfer (EL) to Q 

Transfer (Q) to EL 
Transfer (EU) to A 
Transfer (A) to EU 
Transfer (E) to AQ 

Transfer (AQ) to E 

TRAPPED INSTRUCTIONS IF FP/DP ARITHMETIC OPTION IS NOT PRESENT 

(Approximate execution time: 1.3 
~sec.) option present. 

Instruction Description: The 48-bit E register is split into halves-Eu and EL. With the 55 
instruction, data may be moved as a 48-bit word between E and AQ, or in halves between 
A and EU or Q and EL. 

Comments: Bits 00 through 14 should be loaded with zeros. 55.0 and 55.4·are no-operation 
instructions, even with the option present. 

7-29 



STOP AND JUMPS 

Operation Field Address Field Interpretation 

HLT 00 m Unconditional stop; RNI from address m 
SLS 77.70 Selective stop 
UCS 77.77 Unconditional stop 
SJl m Jump if key 1 is set 
SJ2 m Jump if key 2 is set 
SJ3 m Jump if key 3 is set 
SJ4 m Jump if key 4 is set 
SJ5 m Jump if key 5 is set 
SJ6 m Jump if key 6 is set 
RTJ m Return jump 
UJP,I 01 m,b Unconditional jump 
IJI 02 m,b Index jump; increment index 
IJD m,b Index jump; decrement index 
AZJ,EQ 03 m Compare A with zero; jump if (A) = 0 

NE Compare A with zero; jump if (A) ,r. 0 
GE Compare A with zero; jump if (A) :2: 0 
LT Compare A with zero; jump if (A) < 0 

AQJ,EQ m Compare A with Q; jump if (A) = (Q) 
NE Compare A with Q; jump if (A) ,r. (Q) 
GE Compare A with Q; jump if (A) :2: (Q) 
LT Compare A with Q; jump if (A)< (Q) 

NOTE 

Two additional Jump instructions, EZJ and EOJ, are described under the BCD instructions. 

A Jump instruction causes a current program sequence to terminate and initiates a new sequence 
at a different storage location. The P register provides continuity between program steps and 
always contains the storage location of the current program step. When a Jump instruction occurs, 
a new address is entered into P. In most Jump instructions, the execution address m specifies the 
beginning address of the new program sequence. The word at address m is read from storage, 
placed in F, and the first instruction of the new sequence is executed. 

Some of the Jump instructions are conditional upon a register containing a specific quantity or 
upon the status of the Jump key on the console. If the condition is satisfied, the jump is made to 
location m. If not, the program proceeds in its normal sequence to the next instruction. 

23 18 17 15 14 

00 0 m 

00 
(Approximate execution time: 

indeterminate) 

Instruction Description: Unconditionally halt at this instruction. Upon restarting, RNI from 
address m. 

Comments: Indirect addressing and address modification may not be used. 

7-30 



SL.S !;e.lective Stop (Approximate execution time: 1.3 /lsec.) 

Instruction Description: Program execution halts if the Select Stop switch on the console 
is set. RNI from address P + 1 when restarting. 

Comments: Bits 00 through 11 should be loaded with zeros. 

(Approximate execution time: 

indeterminate) 

Instr.uction Description: This instruction unconditionally stops the execution of the current 
program. RNI from address P + 1 when restarting. 

Comments: Bits 00 through 11 should be loaded with zeros. 

23 18 17 15 14 00 
(Approximate execution time: 1.3 /lsec.) 

00 m 

j = jump keys to 6 

Instruction Description: Jump to address m if Jump key j is set; otherwise. RNI from ad­
dress P + 1. 

Comments: Indirect addressing and address modification may not be used. 

Instruction 
in F 

RNI from No Jump key Yes Jump to 
address P + 1 j set? address m 

7-31 



23 18 17 15 14 00 

00 7 m 
(Approximate execution time: 2.5 J.Lsec.) 

Instruction Description: The address portion ofm is replaced with the return address, P + 1. 
Jump to location m + 1 and begin executing instructions at that location. 

Comments: Indirect addressing and address modification may not be used. 

Store address P + 
in the address 
portion of (m) 

Begin subroutine 
with instruction 

at address m + 1 

Return to m 
for address P + 

23 18 17 1 6 1 5 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M = m + (B b
) 

(Approximate execution time: 1.3 J.Lsec.) 

Instruction Description: Unconditionally jump to address M. 

Comments: Indirect addressing and indexing may be used. 

7-32 



IJI Index Jump, 
" Incremental 

23 18 17 1 6 1 5 14 00 

~o_2~lo~l __ b~ ____ m_~ 
b = index register designator 
m = jump address 

(Approximate execution time: 1.9 }1sec.) 

Instruction Description: If b = 1, 2, or 3, the respective index register is examined: 

1. If (B~ = 00000, the jump test condition is not satisfied; RNI from address P + 1. 
2. If (Bb

) ~ 00000, the jump test condition is satisfied. One is added to (Bb
); jump to addresEi 

m and RNI. 

Comments: If b= 0, this is a no-operation instruction; RNI from address P + 1. Indirect 
addressing and jump address modification may not be used. The counting operation is done 
in a one's complement additive accumulator. Negative zero (77777) is not generated because 
the count progresses from: 77775, 77776, to 00000 (positive zero) and stops. If negative zero 
is initially loaded into B b

, the count progresses: 77777, 00001, 00002, etc. In this case, the 
counter must increment through the entire range of numbers to reach positive zero. 

Instruction in F 

RNI from Yes f 
address P + 1 

b = 07 

No 

Yes 
(Sb) = 07 ) 

No 

Add one 
to (Sb) 

Jump to address 
'm'; RNI 

7-33 



IJD Index Jump. 
Decremental 

23 18 17 16 15 14 

02 11 1 b m 

b = index register designator 
m = jump address 

00 
(Approximate execution time: 1.9 J.Lsec.) 

Instruction Description: If b=l, 2 or 3, the respective index register is examined: 

1. If (Bb) = 00000, the jump test condition is not satisfied; RNI from address P + 1. 
2. If (Bb)~OOOOO, the jump test condition is satisfied. One is subtracted from (Bb); jump to 

address m and RNI. 

Comments: If b=O, this is a no-operation instruction; RNI from address P + 1. Indirect 
addressing and jump address modification may not be used. If negative zero (77777) is ini­
tially loaded into Bb, the count will decrement through the entire range of numbers to 
reach 00000 before the program will RNI from P + 1. 

Instruction in F 

RNI from Yes ) b= 07 
address P + 1 

No 

Yes 
(Bb) = 07 

'-
No 

Subtract one 
from (Bb) 

Jump to address 
m'; RNI 

7-34 



AZJ, Condition Compare 
A with Zero, Jump 

23 18 17 16 15 14 

03 10 I m 

= jump designator (0-3) 
m = jump address 

00 
(Approximate execution time: 1.9 J.L~ec.) 

Instruction Description: The operand in A is algebraically compared with zero for an equal­
ity, inequality, greater-than or less-than condition (see table). If the test condition is 
satisfied, program execution jumps to address m. If the test condition is not satisfied, RNI 
from address P + 1. 

Comments: Positive zero (00000000) and negative zero (77777777) give identical results when 
j = 0 or 1. When j = 2 or 3, negative zero is recognized as less than positive zero. Indirect address­
ing and address modification may not be used. 

Condition Jump 

Mnemonic Designator j Test Condition 

EQ 0 (A)=(O) 

NE 1 (A),c (0) 

GE 2 (A)::2::(O) 

LT 3 (A)«O) 

Instruction in F 

RNI from No Is test condition Yes Jump to 
address P + 1 satisfied? address 'm'; RNI 

7-35 



AQJ, Condition Compare 
A With Q, Jump 

23 18 17 16 15 14 

m 

j = 0-3 jump designator (0-3) 
m = jump address 

00 
(Approximate execution time: 1.9 ,usee.) 

Instruction Description: The quantity in A is algebraically compared with the quantity in 
Q for equality, inequality, greater-than or less-than condition (see table). If the test con­
dition is satisfied, program execution jumps to address m. If the test condition is not satis­
fied, RNI from address P + 1. 

Comments: This instruction may be used to test (Q) by placing an arbitrary value in A for 
the comparison. Positive and negative zero give identical results in this test when j = 0 
or 1. When j = 2 or 3, negative zero is recognized as less than positive zero. Indirect address­
ing and address modification may not be used. 

Condition Jump 
Test Condition 

Mnemonic Designator j 

EO 0 (A) = (0) 

NE 1 (A) ~ (0) 

GE 2 (A) ~ (0) 

LT 3 (A) < (0) 

Instruction in F 

RNI from No Is test condition Yes Jump to 
address P + 1 satisfied? address m'; RNI 

7-36 



LOGICAL INSTRUCTIONS WITH STORAGE REFERENCE 

Operation 
Field 

SSA,I 35 
SeA,1 36 
LPA,I 37 

Address 
Field 

m,b 

m,b 
m,b 

23 18 17 1 6 1 5 14 

m 

a = addressing mode designator 
b = index register designator 

m = storage address; M = m + (B") 

Interpretation 

Selectively set A 

Selectively complement A 
Logical product A 

00 
(Approximate execution time: 2.5 j.lsec.) 

Instruction Description: Selectively set the bits in the A register to "l's" for all correspond­
ing "l's" in the quantity at address M. 

23 18 17 16 15 14 

m 

a = addressing mode designator 

b = index register designator 

00 

m = storage address; M = m + (B b
) 

(Approximate execution time: 2.5 j.lsec.) 

I nstruction Description: Selectively complement the bits in the A register that correspond 
to the set bits in the quantity at address M. 

LPA Logical Product A 
23 18 17 16 15 14 

m 

a = addressing mode designator 

b = index register designator 

00 

m = storage address; M = m + (B b
) 

(Approximate execution time: 2.5 j.lsec.) 

Instruction Description: Replace (A) with the logical product of (A) and (M). 

7-37 



ARITHMETIC, FIXED POINT, 24-BIT PRECISION 

Operation Field Address Field 

ADA.I 30 
RAD.I 34 
SBA.I 31 
MUAI 50 
OVAl 51 

m.b 
m.b 
m.b 
m.b 

m.b 

23 1 8 1 7 1 6 1 5 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M = m + (Sb) 

Interpretation 

Add to A 
Replace add 
Subtract from A 
Multiply A 

Divide A 

(Approximate execution time: 2.5 ILsec.) 

Instruction Description: Add the 24-bit operand located at address M to (A). The sum re­
places the original (A). 

RAD Replace Add 
23 18 17 16 15 14 

m 

a = addressing mode designator 
b = index register designator 
m = storage address; M = m + (Sb) 

00 
(Approximate execution time: 3.8 ILsec.) 

Instruction Description: Replace the quantity at address M with the sum of (M) and (A). 
The original (A) remains unchanged. 

7-38 



SBA Subtract from A 
23 18 17 1 6 1 5 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M = m + (B b) 

(Approximate execution time: 2.5 ,usee.) 

Instruction Description: Subtract the 24-bit operand located at address M from (A). The 
difference is transferred to A. 

23 18 17 1 6 1 5 14 00 

m 

a = addressing mode designator 

b = index register designator 
m=storage address; M = m + (B b

) 

(Approximate execution time: 7.8-11.0 
,usee.) 

Instruction Description: Multiply (A) by the operand located at address M. The 48-bit product 
is displayed in QA with the lowest order bits in A. 

23 18 17 16 15 14 

51 I a I b m 

a = address mode designator 
b = index register designator 

00 

m = storage address; M = m + (Bb
) 

(Approximate execution time: 11.25,usec.) 

Instruction Description: Divide the 48-bit operand in AQ by the operand at storage address 
M. The quotient is displayed in A and the remainder with sign extended is displayed in Q. 
If a divide fault occurs, the operation halts and program execution advances to the next 
address. The final (A) and (Q) are meaningless if a divide fault occurs. 

7-39 



ARITHMETIC, FIXED POINT, 48-BIT PRECISION 

Operation Field Address Field Interpretation 

ADAQ,I 32 m,b Add to AQ 
SBAQ,I 33 m,b Subtract from AQ 

*MUAQ,I 56 m,b MUltiply AQ 
*DVAQ,I 57 m,b Divide AQ 

*Trapped instruction if arithmetic option is not present. 

This group of instructions may use indirect addressing and address modification, The A and Q 
registers function as a single 48-bit register with the highest order bits in A. Address 77777 is not 
recommended for use with this group of instructions. 

ADAQ Add to AQ 
23 18 17 1 6 1 5 14 00 

m 

a = addressing mode designator 

b = index register designator 
m=storage address: M = m + (B

b
) 

(Approximate execution time: 3,8 Ilsec.) 

Instruction Description: Add the 48-bit operand located in addresses M and M + 1 to 
(AQ). The sum is displayed in AQ. 

Comments: The upper 24 bits of the 48-bit operand in memory are contained at address M. 

SBAQ Subtract from AQ 
23 18 17 16 15 14 

II 33 I a I b m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address: M = m + (B
b

) 

(Approximate execution time: 3,8 Ilsec.) 

Instruction Description: Subtract the 48-bit operand located in addresses M and M + 1 
from (AQ). The difference is displayed in AQ. 

7-40 



47 

'I 
I 

DIVIDE: 

HOLDS THE LOWER 48 BITS OF A 96-81T 
DIVIDEND PRIOR TO EXECUTING A DVAQ 
INSTRUCTION 

HOLDS A 48-81T REMAINDER AFTER 
EXECUTING A DVAQ INSTRUCTION 

HOLDS THE LOWER 49 BITS OF A PRODUCT 
M U L TIP L Y: AFTER EXECUTING AN MUAQ INSTRUCTION 

00 

~ 
~ 

UPPER 46 BITS OF A D I V IDE 48-81T DIVISOR 
96-91T .DIVIDEND 

95 4 B 47 00 ,----- -----

I I 

23 00 23 001 
I I 

23 00 23 00 

.1._'11tJ~l:(<<t~T)t<tt~;;?)l;'j~¥i~~~'f;~!4f'pi'i ;'fr!'!:~(iif;~;\'l41:t{~~I~t~l_lIItJlllj 

48 - BIT MULTIPLICAND. 
AFTER EXECUTING AN MUAa INSTRUCTION ------------­
AQ HOLDS THE UPPER 48 BITS OF THE 

MULTIPLY --------------- 48-81T MULTIPLIER 

96-81T PROQUCT 

Figure 7-4. Operand Formats and Bit Allocations for MUAO and DVAO Instructions 



TRAPPED INSTRUCT~ONS IF FP/DP ARITHMETIC OPTION IS NOT PRESENT 

MUAQ Multiply AQ 
23 18 17 16 15 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M = m + (B b
) 

(Approximate execution time: 
16.0-21.0 /Lsec.) 

Instruction Description: Multiply (AQ) by the 48-bit operand in addresses M and M + l. 
The 96-bit product is displayed in AQE. 

Comments: Refer to Figure 7-4 for operand formats. 

DVAQ Divide AO. 
23 1 8 1 7 1 6 1 5 14 00 

I 57 I a I b m 

a = addressing mode designator 

b = index register designator 
m=storage address; M = m + (B

b
) 

(Approximate execution time: 22.5 /Lsec.) 
option present. 

Instruction Description: Divide (AQE) by the 48-bit operand in addresses M and M + l. 
The quotient is displayed in AQ, and the remainder with its sign extended is displayed in E. 

OJmments: If a divide fault occurs, program execution advances to the next address. The 
final contents of AQ and E are meaningliess if a divide fault occurs. Refer to Figure 7-4 for 
operand formats. 

7-42 



ARITHMETIC, FLOATING POINT 

Operational Field Address !=ield Interpretation 

*FAD.I 60 m.b FP addition to AQ 
*FSB.I 61 m.b FP subtraction from AQ 
*FMU.I 62 m.b FP multiplication of AQ 
*FDV.I 63 m.b FP division of AQ 

*Trapped instruction if Floating Point/Double Precision FP/DP arithmetic option is 
not present. 

GENERAL FLOATING POINT/DOUBLE PRECISION NOTE 

Figure 7-5 illustrates operand format and bit allocations for floating point instructions. Refer to 
the Floating Point section of Appendix B for additional floating point considerations and examples. 

TRAPPED INSTRUCTION IF FPjDP ARITHMETIC OPTION IS NOT PRESENT 

23 18 17 1 6 1 5 14 00 

m 

a = addressing mode designator 
b = index register designator 

b 
m = storage address; M = m + (B ) 

(Approximate execution time: 
10.0-12.0 j.Lsec.) option present. 

Instruction Description: Add the 48-bit operand located in addresses M and M + 1 to (AQ). 
The rounded and normalized sum is displayed in AQ. 

Com ments: The higher order bits of E hold the portion of the operand. that was shifted out of AQ 
during exponent equalization. ' 
Refer to Figure 7-5 for operand formats. 

7-43 



TRAPPED INSTRUCTIONS IF FPjDP ARITHMETIC OPTION IS ~JOT PRESENT 

FSB FP.Subtraction 
fromAQ 

23 1 8 1 7 1 6 1 5 14 00 

m 

a = addressing mode designator 
b = index register designator 
m=storage address; M = m + (Bh) 

(Approximate execution time: 
10.0-12.0,usec.) option present. 

Instruction Description: Subtract the 48-bit floating point operand located at storage addresses 
M and M + 1 from the floating point operand in AQ. The rounded and normalized differ­
ence is displayed in AQ. 

Comments: The upper order bits ofE hold the portion of the operand that was shifted out of AQ 
during the equalization of exponents. Refer to Figure 7-5 for operand formats. 

23 18 17 16 15 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M = m + (Bh) 

(Approximate execution time: 

14.0-18.0 ,usee.) option present. 

Instruction Description: Multiply the 48-bit floating point operand in AQ by the floating 
point operand located at storage addresses M and M + 1. The rounded and normalized 
product is displayed in AQ. 

Comments: Bits of 12-47 of E hold the lower 36 bits of the 72-bit unnormalized product. Refer 
to Figure 7-5 for operand formats. 

23 18 17 1 6 1 5 14 

m 

a = addressing mode designator 
b = index register designator 

00 

m = storage address; M = m + (Bh) 

(Approximate execution time: 20.0 ,usee.) 
option present. 

Instruction Description: Divide the floating point operand in AQ by the 48-bit floating point 
operand located at storage addresses M and M + 1. The rounded and normalized quotient is 
displayed in AQ. The remainder with sign extended appears in the E register. 

Com ments: The sign of the remainder is the same as that of the dividend. Refer to Figure 
7 -5 for operand formats. 

NOTE 

The divisor must be properly normalized or a divide fault will result. Refer to Interrupt 
conditions, Section 4. 

'7 -44 



-.:J 
I 

""" 01 

I 
EXPONENT 
BIAS BIT 

47 46 , 
I 
1 
I 

23 22 21 

36 ,35 

I 
1 
I 

12 II 

24 ,23 

I 
I 
I 

00 23 

TH'S B'T } 
RECEIVES 
ROUNDING 
WHEN 
APPL'CABLE \ 

0100 
I , 
1 
I 

01 00 

(

EXPONENT 
BIAS BIT 

4746 
I 
I 
I 
I 

23 22 21 

3635 
I 
I 
I 
I 

12 II 

1 

24 , 23 

I 
I 

'(M+!) 

00 , 

00 

I 
I 
1 

,I IL'----------------------------~r_----------------------------_7 

t
' 

~ ____ ~~ ____ ~!lL ______________________ ~----------------------~ 

I< 

11- BIT EXPONENT 36-BIT COEFFICIENT 

{

SIGN BIT (COMPARED 
TO BIT 47 OF E FOR 
ROUNDING TEST) 

11- BIT EXPONENT 36-91T COEFFICIENT 

SIGN BIT 

FP OPERAND If F P OPERAND FRON .. I 
(EXPONENT AND FIRST 36 COEFFICIENT 

BIT RESULTS OF ALL FLOATING 
POINT OPERATIONS) 

STORAGE 

r---------------------------E REGISTER--------------------------~ 

MAGNITUDE BIT (COMPARED TO} 
BIT 47 OF AD FOR ROUNDING 
TEST) 

I' 
I 

:47146 

1 I , 1 
1 1 
23 22 

~SIGNEXT 
FOR REMAINDER 

EU 'I' EL -I 
I 
I 

36,35 24,23 

1 I 
1 1 
1 1 

12 II 00 23 

-'- REMAINDER FOR FOY ,I 

1------------------------ LOWER 36 COEFFICIENT BITS _I 
FROM FMU OPERATION 

~MEANINGLESS ~ 
I RESULTS FOR 

I F~AUDO:iRBA:I~~S 
J4 THAT PART OF THE OPERAND SHIFTED INTO _I 

THE E REGISTER DURING FAD OR 
Fse EXPONENT EQUALIZATION 

Figure 7 -5. Operand Formats and Bit Allocations for Floating Point Arithmetic Instructions. 



BCD 

Operational Field Address Field Interpretation 

*SET 70 y Set D register 
*ADE 66 m,b3 Add to E 
*SBE 67 m,b3 Subtract from E 
*LDE 64 m,b' Load E 
*STE 65 m,b2 Store E 
*SFE 70 k,b Shift E 
*EZJ,EQ m E zero jump, E = 0 
*EZJ,LT m E zero jump, E < 0 
*EOJ m E overflow jump 

*Trapped instruction if BCD arithmetic option is not present. 

GENERAL BCD INSTRUCTION NOTE 

Refer to the BCD arithmetic section of Appendix B for additional BCD consider­
ations and examples. 

TRAPPED INSTRUCTIONS IF BCD ARITHMETIC OPTION IS NOT PRESENT 

SET Set D Register 
23 18 17 15 14 

70 7 y 

0403 00 

i I 
(Approximate execution time: 1.8 ,usee.) 
option present. 

only the lower 4 bits 
are recognized. 

y = field length designator 

Instruction Description: Load the lower 4 bits of y into the 4-bit D register. 

Comments: (D) remains the same until replaced by a new 4-bit operand. In LDE and STE 
operations dealing with equal size fieldls, the D register is loaded only once with a SET instruc­
tion. If y=O, subsequent LDE, STE, ADE and SBE instructions are processed as no-ops. Refer 
to the BCD section of Appendix B for an example of a SET instruction execution. 

7-46 



TRAPPED INSTRUCTIONS If BCD ARITHMETIC OPTION IS NOT PRESENT 

ADE Add to .EO 
23 18 17 16 

66 I b I 
If 8 = 1, r is modified by 
(83 ); R = r + (83 ). 

If b = 0, r is the unmodified 
direct address (r = R). 

00 
(Approximate execution time: 11.5 jlsec.) 
option present. 

Instruction Description: A maximum field of 12 BCD numeric characters in storage may be 
added to (ED). The sum is displayed in ED. 

Comments. The characters in storage are in consecutive character positions. R specifies the 
most significant character (MSC) of a field. The 4-bit D register specifies field length. The 
(ED) are always right justified, i.e. the lowest significant digit of the operand is always in the 
digit zero position. 

NOTE 

Since the sign of Bb is extended during character address modification, it is possible 
to reference only within ± 16,38310 characters. 

23 18 17 16 

67 I b I 
If b = 1, r is modified by (8 3 ); 

R = r + (83 ). 

If b = 0, r is the unmodified 
direct address (r = R). 

00 
(Approximate execution time: 16.1 ,usee.) 
option present. 

Instruction Description: A maximum field of 12 BCD characters in storage is subtracted 
from (ED). The difference is displayed in ED. 

Comments: The characters in storage that tl:omprise the subtrahend are located in consecutive 
character positions. R specifies the most significant character of a field. The 4-bit D register 
specifies the field length. The (ED) are always right justified, i.e. the lowest significant digit of 
the operand is always in the digit zero position. 

NOTE 

Since the sign of Bb is extended during character address modification, it is possi­
ble to reference only within ± 16,38310 characters. 

7-47 



TRAPPED INSTRUCTIONS IF BCD AFtITHMETIC OPTION IS NOT PRESENT 

lOE load ED 
23 18 17 16 00 

I 

:16 02 01 00: 

I 00000-77777 I 0-3 I 
~------y~----/~ 

(Approximate execution time: 8.0 /.lsec.) 
option present. 

word character position 
address within the word 

If b = 1, r is modified by (8 1); R=r + (8 1). 

If b = 0, r is the unmodified direct address. 

Instruction Description: Load the ED register with a maximum field of 12 numeric BCD char­
acters from storage. 

Comments: Characters are loaded consecutively, starting with the least significant character 
(LSC) at address R + (D-l) and continuing until the most significant character at address R is in 
ED' (ED) is shifted right as loading progresses. The sign of the decimal operand is acquired 
along with the LSC. Prior to executing this instruction, the field length must be specified with a 
SET (70.7) instruction. The (ED) and always right justified, i.e., the lowest significant digit of 
the operand is always in the digit zero position. 
Refer to the BCD section of Appendix B for an LDE instruction execution example. 

NOTE 

Since the sign of Bb is extended during character address modification, it is possi­
ble to reference only within ± 16,38310 characters. 

23 18 17 16 

65 I b I 
If b= 1, r is modified by the 
(8 2 ); R=r + (8 2 ) 

If b= 0, r is the unmodified 
direct address (r = R). 

00 
(Approximate execution time: 8.0 /.lsec.) 
option present. 

Instruction Description: Store a maximum field of 13 numeric BCD characters from the ED 
register into storage. 

Comments: Characters are stored, beginning with the least significant character (LSC) 
and the sign ofthe stored operand is acquired with this character. (ED) is shifted right as 
the Store operation progresses, end off, until the entire field of characters is stored. 
Prior to executing this instruction the field length must be specified with a SET (70.7) 
instruction. 

NOTE 

Since the sign of Bb is extended during character address modification, it is possi­
ble to reference only within ± 16,38310 characters. 

7-48 



TRAPPED INSTRUCTIONS If BCD ARITHMETIC OPTION IS NOT PRESENT 

23 18 17 1 6 1 5 14 

70 ! O! b! 

b = index register designat9r 
k= shift designator 

00 
(Approximate execution time: 
1.3-4.3 J,Lsec.) option present. 

Instruction Description: This instruction shifts BCD characters within the ED register in 
single character (4-bit) shifts. 

Comments: k is added to (Bb) to modify the shift designator; K = k + (Bb). The sign of Bb is 
extended. The computer senses bits 00-03 and 23 of the sum. A left shift is performed if 
bit 23 is zero; and a right shift if it is one. Shifts are end-off in both directions. For a left 
shift, the complement of the lower 4 bits of the sum specify the shift magnitude. 

Examples: 

If K = 00000006, shift left 6 character pcsitions. 
If K = 77777771, shift right 6 character positions. 

23 18 17 15 14 

70 4 m 

m = jump address 

00 
(Approximate execution time: 1.3 J,Lsec.) 
option present. 

Instruction Description: This instruction compares (ED) with zero. If (ED)=O, jump to 
address m; if not, RNI from address P + 1. 

23 18 17 15 14 

70 5 m 

m = jump address 

00 
(Approximate execution time: 1.3 J,Lsec.) 
option present. 

Instruction Description: This instruction compares (ED) with zero. If (ED) < O. jump to 
address m; if not, RNI from address P + 1.. 

23 18 17 15 14 

70 6 m 

m = jump address 

00 
(Approximate execution time: 1.3 J,Lsec.) 
option present. 

Instruction Description: Jump to addressm if the overflow digit (digit 13) of the ED register re­
ceives a character indicating that ED had overflowed. The overflow condition is also true where 
an ADE or SBE causes an end-off carry in the overflow digit. If overflow has not occurred, RNI 
from address P + 1. 

7-49 



STORAGE SHifT, SEARCHES, COMPARE AND REGISTER SHifTS 

Operation Field Address Field Interpretation 

SSH 10 m Storage shift 
SHA 12 y,b Shift A 
SHQ y,b Shift Q 
SHAQ 13 y,b Shift AQ 
SCAQ y,b Scale AQ 
CPR,I 52 m,b Compare (within limits test) 
MEQ 06 m,i Masked equality search 
MTH 07 m,i Masked threshold search 

23 18 17 15 14 00 

100m 
(Approximate execution time: 3.8 j.Lsec.) 

m = storage address 

Instruction Description: Sense bit 23 of the quantity stored at address m. Shift (m) one 
place left, end around, and replace it in this same storage location. If the original bit 23 = 
"0" (positive), RNI from P + 1; if negative ("I"), RNI from P + 2. 

Comments: Addr~!)s modification may not be used. 

23 18 17 16 1 5 14 

12 I 0 I b I k 

b = index register designator 
k=shift count; K=k + (B

b
) 

00 
(Approximate execution time: 

1.3-2.7 j.Lsec.) 

Instruction Description: (Bb
) and k, with their signs extended, are added. If b=O, the sign of 

k is still extended. The sign and magnitude of the 24-bit sum determine the direction and 
magnitude of the shift. The computer senses only bits 00-05 and 23 of the sum for this in­
formation. For left shifts, the shift magnitude is placed in k; to shift right, the complement 
of the shift magnitude is placed in k. 

Examples: (b=O in both cases): 
Shift left six positions: k = 00006 
Shift right six positions: k= 77771 

Comments: During left shifts, bits reaching the upper bit position of the A (during SHA) 
or Q (during SHQ) registers are carried end around. Therefore, a left shift of 24 places re­
sults in no change in (A) or (Q). A left shift that exceeds 24 places results in an effective 
shift of K-24 (or K-48) places. 
During right shifts, the sign bit is extended and the bits are shifted end-off. A right shift 
of 23 or more places results in (A) or (Q) becoming all "O's" or all "1's", depending upon the 
original sign. 

Rev. H 7-50 



Sign of k is 
extended 

Shift will 
be right 

Shift A 

Yes 

"0" 

l 

"0" 

SHA/SHQ FLOW CHART 

Instruction in F 

! 
\ 

b = 0 7 
. } 

Uppermost 
bit of result equals 

"0" or "1"? 

I 

I 

No 

I 

"1" 

Add (Bb
) to k 

with sign ext. 

Shift will 
be left 

\ "1" 
d = "0" or \------------. 

\ "1"? 

1 
RNI from 

address P + 1 

7-51 

Shift Q 

I 



SHQ Shift Q 
23 1 8 1 7 1 6 1 5 14 

12 11 1 b k 

b = index register designator 
k=shift count; K=k + (Sb) 

00 
(Approximate execution time: 

1.3-2.7 Ilsec.) 

Instruction Description: Refer to SHA description. 

23 18 17 16 15 14 

13 10 1 b k 

b = index register designator 
k=shift count; K=k + (Sb) 

00 
(Approximate execution time: 1.3 Ilsec.) 

Instruction Description: (Bb
) and k, with their signs extended, are added. If b=O, the sign of 

k is still extended. The sign and magnitude of the 24-bit sum determine the direction and 
magnitude of shift. The computer senses only bits 00-05 and 23 of the sum for this informa­
tion. For a left shift, the magnitude is placed in k; to shift right, the complement of the 
shift magnitude is placed in k. 

Examples: (b = 0 in both cases): 
Shift left three places: 
Shift right three places: 

k=00003 
k=77774 

Comments: During left shifts bits reaching the upper bit position of the A register are 
carried end around to the lowest bit position of Q. Therefore, a left shift of 48 places re­
sults in no change in (AQ). A left shift exceeding 48 places results in an effective shift of 
K-48 places. 
During right shifts, the sign bit is extended and the bits are shifted end-off. A right shift 
of 47 or more places results in (AQ) becoming all "O's" or all "l's", depending upon the 
original sign. 

23 1 8 1 7 16 1 5 14 

13 k 

b = index register designator 

K = k minus the shift count 
K---> Sb 

00 
(Approximate execution time: 1.3 Ilsec.) 

Instruction Description: (AQ) is shifted left, end around, until the 2 highest order bits (46 and 
47) are unequal. If (AQ) should initially equal positive or negative zero, 4810 shifts are exe­
cuted before the instruction terminates. During scaling, the computer counts the number 
of shifts. A quantity K, called the residue, is equal to k minus the shift count. If b = 0, this 
quantity is discarded; ifb= 1,2, or 3, the residue is transferred to the designated index register. 

7-52 



CPR Compare 
(Within Limits Test) 

23 18 17 16 15 14 

m 

a = addressing mode designator 
b = index register designator 
m = storage address 

00 
(Approximate execution time: 

2.5-3.4 f.1sec.) 

Instruction Description: The quantity stored at address M is tested to see if it is within the 
upper limits specified by A and the lower limits specified by Q. The testing proceeds as follows: 

1. Subtract (M) from (A). If (M) > (A), RNI from address P + 1; if not. 
2. Subtract (Q) from (M). If (Q) > (M), RNI from P + 2; if not, 
3. RNI from address P + 3. 

Comments: The final state of the (A) and (Q) registers remains unchanged. (A) must be ;::: 
(Q) initially or the test cannot be satisfied. 77777777 is not sensed as negative zero. The 
following table is a synopsis of the CPR test: 

Test Jump Address 
Sequence if Test Satisfied 

(M) > (A) P+1 
(Q) > (M) P+2 
(A) ;::: (M) ;::: (Q) P+3 

CPR Instruction 
in F 

Subtract (M) 
from (A) 

Is (M) > (A) ? Yes 

·1 
RNI from 1 

I P + 1 

No 

Subtract (Q) 
from (M) 

Is (Q) > (M) ?, Yes RNI from 

/ P + 2 

No 

RNI from 

P + 3 

7-53 



MEQ.Masked 
Equality. Search 

23 18 17 15 14 

06 m 

i = interval designator, 0 to 7 
m = storage address 

00 
(Approximate execution time: 4.2+4.2n* 
/l-sec.) 

Instruction Description: (A) is compared with the logical product of (Q) and (M). This in­
struction uses index register Bl exclusively. m is modified just prior to step 3 in the test below. 

Instruction Sequence: 

1. Decrement (Bl) by i. (Refer to table below.) 
2. If (Bl) changed sign from positive to negative, RNI from P + 1; if not, 
3. Test to see if (A) = (Q) • (M). M = m+(Bl). If (A) =(Q) • (M), RNI from P 

+ 2; if not, 
4. Repeat the sequence. 

Comments: i is represented by 3 bits, permitting a decrement interval selection from 1 to 8. 
Address modification may not be used. Positive zero and negative zero are recognized as equal 
quantities. 

*n = number of words searched 

Designator Decrement 

No 

i interval 

1 1 
2 2 
3 3 
4 4 
5 5, 

6 6 
7 7 
0 8 

Initial Program Entry 

Decrement 
(B') by 'i' 

Did sign of B' 
change positive 

to negative? 

(A)=(Q)- (M) 
Yes 

7-54 

RNI from 

P+l 

RNI from 
P+2 



MTH Masked Threshold 
Search 

23 18 17 15 14 

07 m 

i = interval designator. 0 to 7 
m = storage address 

00 
(Approximate execution time: 
4.2+4.2n* flsec.) 

Instruction Description: (A) is compared with the logical product of (Q) and (M). This in­
struction uses index register B2 exclusively. m is modified just prior to step 3 in the test below. 

Instruction Sequence: 
1. Decrement (B2) by "I". (Refer to table below.) 
2. If (B2) changed sign from positive to negative, RNI from P + 1; if not, 
3. Test to see if (A) ~ (Q) .. (M). M = m + (B2). If (A) ~ (Q) .. (M), RNI from P + 

2; if not, 
4. Repeat the sequence. 

Comments: i is represented by 3 bits, permitting a decrement interval selection from 1 to 8. 
Address modification may not be used. Positive zero and negative zero are recognized as equal 
quantities. 

No 

*n = number of words searched 

Designator Decrement 
i interval 

1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
0 8 

Initial program entry 

Decrement 
(B1) by 'i' 

Did sign of B 1 

change positive 
to negative? 

(A) ~ (Q) • (M) 

7-55 

Yes 

RNI from 
P+1 

RNI from 
P + 2 



SEARCH 

Operation Field Address Field Interpretation 

71 SRCE,INT c,r,s Search for character equality 
SRCN,INT c,r,s Search for character inequality 

GENERAL SEARCH/MOVE NOTE 

The SEARCH and MOVE instructions are mutually exclusive. Attempts to execute 
one while the other is in progress will cause a reject and a skip to address P + 2, 

P 

P+1 

P + 2 

23 18 17 16 00 

71 IINTI s 

23 18 17 16 00 

c Ie I 

23 00 

Reject Instruction 

e = "0" for SRCE, equality 

e = "1" for SRCN, inequality 
INT = "1" for interrupt upon completion 
s = last character address ofthe search 

block, plus one 
c = 00-778, BCD code of search char­

acter 
= first (current) character address of 

the search block 

(Approximate execution 
register time: 3,3 1Lsec.) 

30 

register 
20 

Instruction Description: This instruction initiates a search through a block of character 
addresses in storage looking for equality or inequality with character c. It is composed of 
three words, including the two main instruction words plus a reject instruction. 

As a Search progresses, r is incremented until the search terminates when either a compari­
son occurs between the search character c and a character in storage, or until r=s. If a 
comparison does occur, the address of the satisfying character may be determined by in­
specting r. To do this, transfer the contents of register 20 to A with instruction TMA 
(53 0 20020). 

Register 20 of the register file is reserved for the second instruction word which contains 
the current character address of the search block. Register 30 is reserved for the first in­
struction word which contains the last character address, plus one of the search block. 

Figure 7-6 is a flow chart of steps that occur during a search operation. 

7-56 



-;--1 
01 
--l 

Await 
,--------:-,. Priority Search Control 
Generates Block 
Control Request 

Load Search 
Character C 
into Data Bus 
Register 

e; 0 

Read Up 
Register 20 
(Address P + 1) 

Load (address 
P + 1) into Data 
Register 

Is Search/Move 
Control Busy? 

Transfer (Data 
Bus register) 
to register· 20 

Restore 
Register 20 

L------;>f.1 No increment I ~I 
for first 
character 

No 

Yes 

Figure 7 -6. Search Operation 

Transfer (F) 
to register 
30 

Release R. F. 
Initiate 
Search 

Read Up 
Register 

(P) 

Transfer 
(S2) to 
S Bus 

Release Data 
Bus; RNIfrom 
Address P + 3 

Restore 
Register 30 

(P) 



MOVE 

Operation Field Address Field Interpretation 

72 MOVE,INT l.r,s Move l characters from r to s 

23 18 17 16 00 
MOVE Move l Characters P 
from r to s 72 IINTI s 

(Approximate execution 
time: 3.3 j.lsec.) 

P+1 

P + 2 

23 17 16 00 

23 00 

Reject Instruction 

INT = "1" for interrupt upon completion 
s = first address of character block 

destination 
= field length of block, 0-1778*11 
= first address of character block 

source 

Instruction Description: This instruction moves a block of data, l characters long, from one 
area of storage to another. It is composed of three words, including the two main instruc­
tion words, plus a reject instruction. 

As a Move operation progresses, rand s are incremented and l is decremented until l = O. 
128 characters or 32 words may be moved. When bits 00 and 01 of rand s are "0", and the 
field length is a multiple of four characters, data is moved word by word. This reduces move 
time by 75% over a character by character move. 

Register 21 of the Register File is reserved for the second instruction word which contains 
the first address of the character block source. Register 31 is reserved for the first instruc­
tion word which contains the first address of the character block destination. 

Figure 7 -7 is a flow chart of steps that occur during a Move operation. 

* = 1-1778 represents a field length of 1 to 127 characters; 0 represents a field length of 128 characters. 

Rev, F 7-58 



-:J , 
01 
<:0 

Restore Register 
31 (Save in restor­
ation register) 

Set Character 
Address in S2 
for correct 
shift. 

Read Up 
Register 21 
(Address P + 1) 

Load (Address 
P + 1) into Data 
Bus Register 

Increment r 
1---<>--.;011 by 1 for 

Character 
Move 

Decrement L 
by 1 for 
J:::haracter. Mov..a 

No Increment 
for First Word 
or Character 

Increment r by 
4 for Word 
Move 

Decrement L 
by 4 for 
Word Move 

Figure 7-7. Move Instruction 

Transfer (Data 
Bus Register) 
to Register 21 

Transfl'r (F) 
to Register 31 

Establish Word 
or Character 
Move 

Release R. F. 
Initiate Move 

Increment L 
f--""-~'I by 1 for 

Character Move 

Increment L 
by 4 for 
Word Move 

No Increment 
for First Word 
or Character 

Establish First 
Word or Charac­
ter 

Release Data 
Bus RNI From 
Address P + 3 



SENSING 

Operation Address 

77.2 

77.4 
77.3 

EXS x.ch;x~O 

COpy x.cn;x=O 

INTS x.ch 

INS x.ch;x~O 

CINS x.ch;x=O 

23 18 17 15 14 12 11 00 

77 x 

ch = 110 channel designator. 0-7 
x = external status sensing mask code 
(see Comments below) 

Interpretation 

Sense external status 

Copy external status 

Sense interrupt 

Sense internal status 
Copy internal status 

(Approximate execution time: 1.3-1.7 j.lsec.) 

Instruction Description: When a peripheral equipment controller is connected to an I/O 
channel by the CON (77.0) instruction, the EXS instruction can sense conditions within 
that controller. Twelve status lines run between each controller and its I/O channel. Each 
line may monitor one condition within the controller, and each controller has a unique set 
of line definitions. To sense a specific condition, a "1" is placed in the bit position of 
the status sensing mask that corresponds to the line number. When this instruction is rec­
ognized in a program, RNI at address P + 1 if an external status line is active when its 
corresponding mask bits are "1". RNI at address P + 2 if no selected line is active. 

Comments: Refer to the 3000 Series Computer Systems Peripheral Equipment Codes manual 
(Pub. No. 60113400) for a complete list of status response codes. 

23 181715141211 00 

77 0000 
(Approximate execution time: 1.3-1.7 j.lsec.) 

ch = 110 channel designator. 0-7 

Instruction Description: This instruction performs the following functions: 

1. The external status code from I/O channel ch is loaded into the lower 12 bits of A. See 
EXS instruction. 

2. The contents of the Interrupt Mask register are loaded into the upper 12 bits of A. See 
Table 7-4. 

3. RNI from address P + 1. 

7-60 



Mask Bit 
Positions 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 

TABLE 7-4. INTERRUPT MASK REGISTER BIT ASSIGNMENTS 

Mask Codes {xl Interrupt Conditions Represented 

0001 External equipment interrupt line 0 active 
0002 1 
0004 2 
0010 3 
0020 4 
0040 5 
0100 6 
0200 7 
0400 Real-time clock 
1000 Exponent overflow/underflow & BCD faults 
2000 Arithmetic overflow & divide faults 
4000 Search/Move completion 

23 18 1 7 1 5 14 12 11 00 

77 4 I ch I (Approximate execution time: 1.3-1.7 f.lsec.) 
x 

ch = I/O channel designator, 0-7 
x = interrupt sensing mask code 

Instruction Description: Sense for the interrupt conditions listed in Table 7-4. RNI from P 
+ 1 if an interrupt line is active and the corresponding mask bit is a "1". If none of the se­
lected lines is active, RNI from P + 2. Internal faults are cleared as soon as they are sensed. 

7-61 



INS Sense Internal 
Status 

23 18 17 1 5 14 12 11 

77 3 I ch I 
00 

(Approximate execution time: 1.3-1.7 J.Lsec.) 
x 

ch = I/O channel designator. 0-7 
x = internal status sensing mask code. 

Instruction Description: Table 7-5 lists the bit definitions of the internal status sensing 
mask. Bits 00-04 and 06-07 represent conditions within I/O channel ch. Bits 05 and 08-11, 
which represent internal faults, may be sensed without regard to channel designation. 

To sense a specific condition, load a "1'" into the bit position of the mask that corresponds 
to the condition. When this instruction is executed, RNI from address P + 1 if an internal 
status line is active and the corresponding mask bit is a "I". RNI from address P + 2 if 
none of the selected lines is active. Logic associated with the faults marked by an asterisk 
in Table 7-5 is cleared as soon as these conditions are sensed. 

TABLE 7-5. INTERNAL STATUS SENSING MASK 

Mask Bit 
Positions 

Mask Codes (xl Condition Represented 

00 0001 Parity error on channel ch 
01 0002 Channel ch busy reading 
02 0004 Channel ch busy writing 
03 0010 External reject active on channel ch 
04 0020 No-response reject active on channel ch 
05 0040 *lllegal write 
06 0100 Channel ch preset by CON or SEL. but no reading 

or writing in progress 
07 0200 Internal I/O channel interrupt on channel ch. upon: 

1) completion of read or write operation. or 
2) end of record 

08 0400 *Exponent overflow/underflow fault (floating point) 
09 1000 * Arithmetic overflow fault (adder) 
10 2000 *Divide fault 
11 4000 *BCD fault 

* Refer to INS instruction description . 

• CINS copy'tni~~~:1 23 18 1 7 1 5 14 12 11 00 

77 3 I ch I 0000 
(Approximate execution time: 1.3-1.7 J.Lsec.) 

Status 

ch = I/O channel designator. 0-7 

Instruction Description: The CINS instruction performs the following functions: 

1. The internal status code is loaded into the lower 12 bits of A. See INS instruction. 
2. The contents of the Interrupt Mask register are loaded into the upper 12 bits of A. See 

Table 7-4. 
3. RNI from address P + 1. 

7-62 



CONTROL 

Operation Address 
Interpretation 

Field Field 

77.51 IOCl x Clear 110, typewriter, and SearchlMove 
77.6 PAUS x Pause 
77.61 PRP x Priority pause 

23 18 17 12 11 00 

77 51 x 
(Approximate execution time: 1.3 /lsec.) 

x = block control clearing mask 

Instruction Description: This instruction may be used to clear the I/O channels. It also 
clears all associated peripheral equipment, the typewriter or the SearchlMove control 
according to bits set in the block control clearing mask. (Table 7-6). 

TABLE 7-6. BLOCK CONTROL CLEARING MASK 

Mask Bits Mask Codes (x) Controls Cleared 

00 0001 110 channel 0 
01 0002 1 
02 0004 2 
03 0010 3 
04 0020 4 
05 0040 5 
06 0100 6 
07 0200 7 
08 0400 Typewriter 
09 1000 (see note) 
10 2000 (see note) 
11 4000 Search/Move 

NOTE 

If bits 09 and 10 are both set or both clear, the channel(s) specified by bits 00 through 07 of the 
mask are cleared i.e, Read or Write, Status, and Channel Interrupt are cleared. A 5.5 JLsec. 
Clear signal is also sent to the peripheral equipment and controllers connected to the selected 
channel(s), 

If bit 09 is clear and bit 10 is set, the instruction will clear the channel(s) only and the 5.5 
JLsec. Clear signal is not transmitted. Bit 08 clears the typewriter as well as the Type Load or 
Type Dump logic in block control. 

7-63 
Rev. H 



23 

P 

23 

P+1 

18 17 15 14 12 11 

x 

Reject Instruction 

x = pause sensing mask code 

00 

00 

(Approximate execution time: 
2.0 f.lsec. to 40 ms.) 

Instruction Description: This instruction allows the program to halt for a maximum of 40 ms 
if a condition (excluding typewriter-see note) defined by the pause sensing mask exists. See 
Table 7-7. If a "I" appears on a line that corresponds to a mask bit that is set, the count in P will 
not advance. If the advancement of P is delayed for more than 40 ms, a reject instruction is read 
from address P + 1. If none of the lines being sensed is active, or if they become inactive during 
the pause, the program immediately skips to address P + 2. If an interrupt occurs and is enabled 
during a PAUS, the pause condition is terminated, the interrupt sequence is initiated and the 
address of the PAUS instruction is stored as the interrupted address. 

Comments: Bits 12 through 14 of the instruction at P should be loaded with zeros. 

NOTE 

If either bit 08,09 or 10 (or any combination ofthese bits) is set and the sensed condition exists, 
a pause will not occur and the instruction at P + 1 is read up immediately. If these bites) are set 
but the condition(s) does not exist, the program immediately skips to P + 2. For all other bits, 
the normal PAUS routine is followed. TYPE FINISH and/or TYPE REPEAT are cleared if bit 
9 and/or bit 10 are set and the condition(s) does not exist. 

TABLE 7-7. PAUSE SENSING MASK 

Mask Bits Mask Codes Condition Notes 

Rev. H 

00 0001 
01 0002 
02 0004 
03 0010 
04 0020 
05 0040 
06 0100 
07 0200 
08 0400 
09 1000 
10 2000 
11 4000 

I/O channel 0 busy 
1 
2 
3 
4 
5 
6 
7 

Typewriter busy 
Typewriter NOT finish 
Typewriter NOT repeat 
Search/Move control busy 

23 18 17 12 II 

177 61 x 

x=palJse sensing mask 

Channel read or write operation in 
progress, or the External MC logic 
within the channel is set 

Typewriter input or output in progress 
Finish logic not set 
Repeat logic not set 
Search or Move operation in progress 

00 

(Approximate execution time: 
2.0 JLsec. to 40 ms) 

Instruction Description: This instruction performs the same operation as the PAUS (77.6) 
instruction, however, the real-time clock is prevented from incrementing. 

7-64 



INTERRUPT 

Operation Field Address Field Interpretation 

77.50 INCL x Clear interrupt 
77.52 SSIM x Selectively set interrupt mask 
77.53 SCIM x Selectively clear interrupt mask 
77.57 IAPR Interrupt associated processor 
77.71 SFPF Set floating point fault 
77.72 SBCO Set BCD fault 
77.73 DINT Disable interrupt control 
77.74 EINT Enable interrupt control 

23 18 17 12 11 00 
(Approximate execution time: 1.3 JLsec.) 

77 50 x 

x = interrupt mask register clealring codes 

Instruction Description: This instruction clears the interrupt faults defined by the mask 
codes in Table 7-8, Note that only internal I/O channel interrupts are cleared by this 
instruction. 

TABLE 7-8:. iNTERRUPT MASK REGISTER BH ASSIGNMENTS 

Mask Bits * Mask Codes (x) Interrupt Conditions Represented 

00 0001 I/O Channel 0 (includes interrupts gener-
01 0002 1 ated within the channel 
02 0004 2 and external equipment 
03 0010 3 interrupts) 
04 0020 4 
05 0040 5 
06 0100 6 
07 0200 7 
08 0400 Real-time clock 
09 1000 Exponent overflow/underflow & BCD faults 
10 2000 Arithmetic overflow & divide faults 
11 4000 Search/Move completion 

*Mask hits 00-07 represent internal and external I/O interrupts for all instructions except INCL. 

7-65 Rev. F 



Rev.H 

23 18 17 12 11 Ou 

77 52 x 
(Approximate execution time: 1.3 iLsec.) 

x = interrupt mask register codes 

Instruction Description: This instruction selectively sets the Interrupt Mask register ac­
cording to the interrupt mask code x. For each bit set to "I" in x, the corresponding bit 
position in the Interrupt Mask register is set to "1" (see Table 7-8). Bit positions repre­
senting missing or nonavailable I/O channels cannot be set. 

Comments: This instruction should not be executed while the interrupt system is enabled. 

23 18 17 12 11 00 

I 77 53 
(Approximate execution time: 1.3 iLseC.) 

x 

x = interrupt mask register codes. 

Instruction Description: This instruction selectively clears the Interrupt Mask register ac­
cording to the interrupt mask code x. For each bit set to "I" in x, the corresponding bit 
position in the Interrupt Mask register is set to "0" (see Table 7-8). 

Comments: This instruction should not be executed while the interrupt sysitl:~m is enabled. 

Instruction Description: The processor (computer) executing this instruction sends an in­
terrupt to an associated processor on ilts left, via storage modules 0 and 1. The interrupt 
remains active in the receiving computer until it is recognized. 

Comments: Bits 00 through 11 should be loaded with zeros. 

7-66 



SFPF Set Floating 
Point Fault 

(Approximate execution time: 1.3 ~sec.) 

Instruction Description: The floating-point fault logic sets when a floating point fault ,occurs. 
This instruction is used when the optional floating point arithmetic logic is not pre~ent in 
a system. An interpretive software routine should recognize any conditions which would 
have caused a fault if the operation had been executed by the optional hardware. 

Comments: Bits 00 through 11 should be loaded with zeros. 

23 18 17 12 11 00 
(Approximate execution time: 1.3 ~sec.) 

Instruction Description: The BCD fault logic sets when a BCD fault occurs. This instruction 
is used when the optional BCD arithmetic is not present in a system. An interpretive soft­
ware routine should recognize any condition which would have caused a fault if the opera­
tion had been executed by the optional hardware. 

Comments: Bits 00 through 11 should be loaded with zeros. 

(Approximate execution time: 1.3 ~sec.) 

Instruction Description: This instruction disables the interrupt control system. The system 
remains disabled until an EINT instruction is executed. Selected interrupts may still be 
sensed. 

Comments: Bits 00 through 11 should be loaded with zeros. 

23 18 17 
EINT Enable 

12 11 00 
(Approximate execution time: 1.3 ~sec.) 

, Interrupt Control 77 74 

Instruction Description: This instruction enables the interrupt control system. After executing 
this instruction, at least one and up to four more instructions may be executed before an inter­
rupt is recognized, depending on the type of interrupt. (See Section 4.) 

Comments: Bits 00 through 11 should be loaded with zeros. 

7-67 Rev. F 



INPUT /OUTPUT 

Address 
Operation Field Field Interpretation 

77.512 ClCA cm Clear channel activity 
77.511 CllO cm Channel interrupt lockout 
77.0 CON x.ch Connect to external equipment 
77.1 SEl x.ch Select function 
77.75 CTI Set console typewriter input 
77.76 CTO Set console typewriter output 
73 INPC.INT.B.H ch.r.s Character-Addressed Input to storage 

INAC.INT ch Character-Addressed Input to A 
74 INPW.INT.B.N ch.m.n Word-Addressed Input to storage 

INAW.INT ch Word-Addressed Input to A 
75 OUTC.INT.B.H ch.r.s Character-Addressed Output from storage 

OTAC,INT ch Character-Addressed Output from A 
76 OUTW,INT,B,N ch,m.n Word-Addressed Output from storage 

OTAW, I NT ch Word-Addressed Output from A 

I/O operations with storage, unlike operations with A, are buffered. Main computer control relinquishes 
control of the I/O operations and returns to the main program as soon as Read or Write signals have 
been activated. 

During the execution of word-addressed I/O instructions, the addresses m and n are shifted left two 
places to the upper 15 bits of the 17 -bit address positions. From this time on, they are treated as char­
acter addresses. 

Registers 00-178 of the Register File are now reserved for I/O operations. The lowest order octal digit (X) 
of the register designator corresponds to the I/O channel ch being used. Registers 00-078 are used to 
hold the instruction word which contains the current character address; 10-178 hold the instruction 
word which contains the last character address ±1, depending on the operation. The Register File 
controls modify bits 21-23 of the first and second I/O instruction words. The modified values, listed in 
Table 7-9, are predictable. Bits 18 through 23 of register file locations 00 through 07 are used by block 
control during each I/O transfer - thus, alteration of these bits by a programmer is not recommended. 
In cases where the addresses require modification to obtain dynamic I/O operations, care should be 
taken to provide proper read-out and restoration of the control bits. Ifthe instruction cannot be executed, 
program control jumps to the reject instruction. 

If the bit reserved for Interrupt Upon Completion (INT) is a "I" and the mask bit for the affected I/O 
channel is a "I" and the interrupt system is enabled, the control logic receives a channel-generated 
interrupt when the output operation is completed. I/O efficiency can be increased by utilizing this bit 
when applicable. 

Rev. H 

NOTE 
For INPC (73) and OUTC (75) instructions with H == "1," an even character count 
must be used. If the count is odd, the last character will be lost. 

7-68 



TABLE 7-9. MODIFIED 1/0 INSTRUCTION WORDS 

Instruction Relative Modified Register* 
Instruction 

Word Location Code Designator 

73 INPC 1 P 3 - - - - - - - 1X 
..c: 

2 P+ 1 3 - - - - OX .... - - -
.~ 

Q) 74 INPW 1 P a - - - - - - - 1X 
VI Cl 

2 P+ 1 a OX t: ro - - - - - - -
. S! ... 

0 75 OUTC 1 P 1 - - - - - - - 1X .... ..... 
~ en 2 P+ 1 1 - - - - - - - OX Q) 
Q. 76 OUTW 1 P 2 - - - - - - - 1X 0 

2 P+ 1 2 - - - - - - - OX 

<C 73 INAC 1 P 7 - - - - - - - 1X 
..c: .... 2 P+ 1 7 - - - - - - - OX 
.~ 74 INAW 1 P 4 - - - - - - - 1X 
VI 2 P + 1 4 - - - - - - - OX 
t: 

75 OTAC 1 P 5 1X 0 - - - - - - -.... 
2 P + 1 5 OX ro - - - - - - -... 

Q) 76 OTAW 1 P 6 - - - - - - - 1X Q. 

0 2 P + 1 6 - - - - - - - OX 

'X represents an I/O channel designator ch, 0 through 7. 

CLCA Clear.Chanriel 
Activity 

23 18 17 12 II 8 7 00 

77 I 51 2 ~ em I 
cm=channel mask 
Bits 08 and 11 should be loaded with zeros. 

(Approximate execution time: 1.3 fLsec.) 

Instruction Description: Clear only the selected I/O channel(s). 

Comments: The peripheral equipment associated with the selected channel(s) are not cleared 
by executing this instruction. Bit 00 corresponds to channel 0, bit 01 corresponds to channel 
1, etc. More than one channel may be set to "T' for multiple channel clearing. 

23 18 17 12 II 87 00 

77 51 (Approximate execution time: 1.3 fLsec.) 

cm=channel mask 
Bits 08 and 11 should be loaded with zeros. 

Instruction Description: This instruction disables all external interrupts on channel(s) fern, 
while the channel(s) are busy. 

Comments: Bit 00 corresponds to channel 0, bit 01 corresponds to channell. More than one 
channel may be set to "I" for multiple channel interrupt lockout. The mask is cleared by 
termination of the I/O operation by clearing the channel(s) or by a Negate Channel Interrupt 
Lockout signal from certain peripherals. 

7-69 
Rev. H 



CON Connect 
P 

P+1 

23 18 17 15 14 12 11 00 

77 o ch x 

23 00 

Reject Instruction 

ch = 1/0 channel designator. 0-7 
x = 12 bit connect code. Bits 09-11 

select one of eight controllers which 
may be attached to channel ch. Bits 
00-08 select the peripheral units 
connected to the controller. 

(Approximate execution 
time: indeterminate) 

Instruction Description: This instruction sends a 12-bit connect code along with a connect 
enable to an external equipment controller on 110 channel ch. If a Reply is received from 
the controller within 100 Ilsec, the next instruction is read from address P + 2. If a Reject 
is received or there is no response within lOOllsec, a reject instruction is read from address 
P + 1. If the 110 channel is busy, a reject instruction is read from address P + 1. 

SEt; Select Function 
P 

23 181715141211 00 

77 ch x 

23 00 

Rej,ect Instruction 

ch = 1/0 channel designator. 0-7 
x = 12-bit function code. Each piece of 

external equipment has a unique 
set of function codes to specify op­

erations within that device. Refer 
to the 3000 Series Computer Sys­
tems Peripheral Equipment Codes 

publication No. 60113400 for a 
complete list of function codes. 

(Approximate execution 
time: indeterminate) 

Instruction Description: This instruction sends a 12-bit function code along with a func­
tion enable to the unit connected to 110 channel ch. If a Reply is received from the unit 
within 100 Ilsec, the next instruction is read from P + 2. If a Reject is received or there is 
no response within 100 Ilsec, a reject instlfUction is read from address P + 1. If the I/O chan­
nel is busy, a reject instruction is read from address P + 1. 

The following conditions or combination of conditions will result in a Reject: 
1) No Unit or Equipment Connected: The referenced device is not connected to the system 

and cannot recognize a Function instruction. If no response is received within 100 Ilsec, 
the Reject signal is generated automatically by the 110 channel. 

2) Undefined Code: When the Function code x is not defined for the specific device, a Reject 
may be generated by the device. However, in some cases an undefined code will cause the 
device to generate a Reply although no operation is performed. (Refer to the reference 
manual for the specific device.) 

3) Equipment or Unit Busy or Not Ready: The device cannot perform the operation specified 
by the function code x without damaging the equipment or losing data. For example, a 
Write End of File code is rejected by a tape unit if the tape unit is rewinding. 

4) Channel Busy: The selected data channel is currently performing a Read or Write 
operation. 

7-70 



f: ".:''' 23 18 17 12 11 00 
i<CTI< Se.t Consol~ (Approximate execution time: 1.3 flsec.) 

77 75 

Instruction Description: This instruction, like the TYPE LOAD switch, permits a block of data 
to be entered into storage as soon as the Type Load indicator lights. If a block of data smaller 
than the one defined by registers 23 and 33 is to be typed, the FINISH switch should be depressed 
when the typing is completed. If more data is entered than the defined block can hold, the excess 
data is lost. If a typing error occurs, the REPEAT button should be depressed. When either the 
FINISH or REPEAT switches are depressed, the typewriter input operation is terminated and 
the appropriate status bits (09 and 10) may be sensed with the PAUS instruction. Refer to page 
7-64 for additional information on the PAUS instruction. 

Comments: Bits 00 through 11 should be loaded with zeros.· 

(Approximate execution time: 1.3 flsec.) 

Instruction Description: This instruction, like the TYPE DUMP switch, causes the typewriter 
to print out the block of data defined by the character addresses in registers 23 and 33. 

Comments: Bits 00 through 11 should be loaded with zeros. 

NOTE 

The CTI and CTO instructions are mutually exclusive. Any attempt to execute one 
while the other is being executed will be ignored by the computer. Typewriter busy 
should be checked before these instructions are used and before registers 23 and 33 
are altered. 

7-71 



23 18 17 16 

73 s 

23 21 20 19 18 17 16 

23 

Reject Instruction 

B = "1" for backward storage 
ch = 1/0 channel designator. 0-7 
H = "0" for 6- to 24-bit assembly 
H =" 1" for 12- to 24-bit assembly 
INT =" 1" for interrupt upon completion 

00 

00 

00 

= first character address of 1/0 data block; 
becomes current address as 1/0 opera­
tion progresses 

s = last character address of input data 
block, plus one (minus one, for back­
ward storage) 

(Approximate execution time: 

3.3 j.Lsec.) 

Instruction Description: This instruction transfers a character-address block of data, con­
sisting of 6-bit characters or 12-bit bytes, from an external equipment to storage. During 
12- to 24-bit assembly; the lowest bit of each character address is forced to remain a "0" 
in register OX. This ensures that assembled bytes are in either the upper or the lower 
half of the word being stored. 

NOTE 
If H = "1," an even character count must be used. If the count is odd, the last character 
will be lost. 

INSTRUCTION SEQUENCE 

REQUEST 
CHANNEL 

LOAD (P)->F ~READ START (FCN REG) 
BLOCK If IP + 11 BUSY? 

(P + 1 )->Zo 

CONTROL (P)->Z' 

YES 
WAIT FOR BLOCK CONTROL, REJECT 

THEN S BUS PRIORITY. TO 

P+2 

& 
ACTIVATE READ STORE zo (P+1) STORE Z' (P) RELEASE BLOCK 

KD WRITE ON I/O IN ONE REGISTER IN ONE REGISTER CONTROL AND 

CHANNEL 0 -> 7 (00-> 07) (10->11) SCANNER 

OPERATION NO 
WITH A? J--~ 

YES 

'-----~ 3 

Rev. H 7-72 



-..:J , 
-..:J 
ICI.:i 

I/O Channel 
Generates 
Data Signal 

Restore 
Register 
0X 

Await 
Reply 

Request 
Core 
Storage 

Read Up 
Register 
IX 

X = I/O Channel Ch (0-7) 

Await 

I/O Channel 
Generates 
Block Control 
Request 

PrioritYj;-___ ---, 
Reply 
From 
Controller 

Read Up 
Register 
OX 

Transfer 
r to S2 

A or NC = I 

Await 
Priority r:, ~:::-:-----, 

Input One 
Or Two 
Characters 
To r 

Terminate 
'------>l!Ot Input 

INT = I 

Set External 
To Internal BCD 
Conversion 

H = 0 

B=O'H = I 

Increment 
r by I 

~Increment 
r by 2 I + >( 

H = 0 

Interrupt I ~ Decrement 
T 1 - ·Ir by I 

B = I IH = I 

~Decrement 
r by 2 

Figure 7 -8. I/O Operation with Storage 



23 18 1 7 16 1 5 14 00 
INPW Word Addressed 
Input to Storage 

P~I---7-4--~lo~~-n----~ (Approximate execution time: 
3.3 tLsec.) 

START 

23 21 20 19 18 17 16 15 14 00 

p+11 ch ~BINIINT~m 
23 00 

Reject Instruction ____ --I 

B = "1" for backward storage 
ch = I/O channel designator. 0-7 
INT = "1" for interrupt upon completion 
N = "0" for 12- to 24-bit assembly 
N = "1" for no assembly 
m = first word address of I/O data block; 

becomes current address as I/O oper­
ation progresses 

n = last word address of input data block, 
plus one (minus one, for backward 
storage) 

Bits 15 and 16 at P and 15, 16 and 20 at P + 1 should be loaded with zeros. 

Instruction Description: This instruction transfers a word-addressed data block from an ex­
ternal equipment to storage. Transferring 12-bit bytes or 24-bit words depends upon the type of 
I/O channel used. The 3206 utilizes 12-bit bytes and the 3207 uses 24-bit words. 

During forward storage and 12- to 24-bit assembly, the first byte of a block of data is stored 
in the upper half of the memory location specii5.ed by the storage address. Conversely, during 
backward storage, the first byte is stored in the lower half of the memory location. 

I/O OPERATION WITH STORAGE 

INSTRUCTION SEQUENCE 

{P)----;F 

(FCN REG) 

REQUEST 

BLOCK 

CONTROL 

READ 

(P + 1) 

WAIT FOR BLOCK CONTROL. 

THEN S BUS PRIORITY. 

CHANNEL 

BUSY? 

YES 

LOAD 
{P + 1 )----;ZO 

{P)----;Z' 

REJECT 

TO 

P+2 

ACTIVATE READ/ STORE Zo (P+ 1) STORE z' (P) RELEASE BLOCK 

i0 ~ 

Rev. F 

WRITE ON I/O IN ONE REGISTER 

CHANNEL 0-7 7 

OPERATION NO 
I---~ 

WITH A? 

(00-707) 

RNI 

FROM 

P+3 

IN ONE REGISTER CONTROL AND 

(10 ----; 17) SCANNER 

7-74 



"'-l 
I 

"'-l 
01 

I/O Channel 
Generates 
Data Signal 

Restore 
Register 
OX 

Await 
Reply 

Request 
Core 
Storage 

Read Up 
Register 
IX 

x = I/O Channel Ch (0-7) 

Await 

Await 

"'--V""'O-C-h-a-nn-e-l--' Pri~;ity read Up 
Ge~r~es Re~s~r 
Block Control OX 
Request 

A or NC = I 

Set External 
To Internal 

Transfer 
m to S2 

Priority I Deliver Input One 
Word Tom 

BCD Conversion 
(S2) To 
S Bus 

INT = I 

Terminate 
Input 

Interrupt 

Figure 7-9. 74 I/O Operation with Storage 

N=O 
I r-

Increment 
m by2 

B=OI L 
I 
N = 1 

I .---
Increment 
m by4 

I 

N = 0 
I ,---

Decrement 
m by 2 

'I L-
B=I N = I 

r-
Decrement 
m by4 



23 18 17 16 

75 s 

23 21 20 19 18 17 16 

23 

Reject Instruction 

B = "1 .. for backward storage 
ch = I/O channel designator. 0-7 
H = "0" for 24- to 6-bit disassembly 
H = "1" for 24- to 12-bit disassembly 
INT = "1" for interrupt upon completion 

00 

00 

00 

= first character address of I/O data block; 
becomes current address as I/O oper­
ation progresses 

s = last character address of output data 
block. plus one (minus one. for back­
ward output) 

(Approximate execution time: 
3.3 fJ.sec.) 

Instruction Description: This instruction transfers a character-addressed block of data, 
consisting of 6-bit characters or 12-bit bytes, from storage to an external equipment. 

NOTE 
If H = "1," an even character count must be used. lfthe count is odd, the last character 
will be lost. 

I/O OPERATION WITH STORAGE 

INSTRUCTION SEQUENCE 

LOAD 

START 
(P)~F 

(FCN REG) 

REQUEST 

BLOCK 

CONTROL 
f 

READ. 

(P + 1) 

CHANNEL 

BUSY? 
(P + 1)---->Zo 

(P)---->Z' 

1--.. 

Rev. H 

ACTIVATE READ 

WRITE ON I/O 
CHANNEL 0--) 7 

I 
WAIT FOR BLOCK CONTROL. 

THEN S BUS PRIORITY. 

STORE Zo (P+ 1) 

IN ONE REGISTER 
(00 --) 07) 

OPERATION NO 
RNI 

FROM 

P+3 
WITH A? 1---iIl 

YES 

STORE z' (P) 

IN ONE REGISTER 
(10 --) 17) 

7-76 

REJECT 

TO 

P+2 

RELEASE BLOCK 

CONTROL AND 

SCANNER ~ 



-.:] , 
-.:] 
-.:] 

Await 
Priori ty r-, ----.., 

H = 0 

Read Up 
Register 
OX 

Tr ansfer t---..----O---. 
r to S2 

B =0 

Increment 
r by 1 

I/O Channel 
Generates 
Block Control 
Request 

A or NC = 1 
H:;: 1 

x = I/O Channel Ch (0-7) 

Request 
Core 
Storage 

Await 
Priority IDeliver 

S2 To 
S Bus 

Set Internal 
To External BCD 
Conversion 

Output One 
Or Two 
Characters 
From r 

H = 0 

B = l'H = 1 

I/O Channel 
Generates 
Data Signal 

,..--------, 

Increment I 1 -,Restore 
r by 2 nI Register 

OX 

Decrement 
r by 1 

Decrement 
r by 2 

Await 
Reply 

Reply 
From 

Controller 

No INT = 1 

Read Up 
Register 
lX 

Does 
r = s? 

Yes I Set CI:annell 1 I Terminate 
~ Termmate ~ Output 

Figure 7-10.75 I/O Operation with Storage 

Interrupt 



23 1817 161514 00 
OUTW Word-Addressed 

i~glJ~put from Storage· 76 n 
(Appro)5imate execution time: 
3.3 JLsec) 

23 2120 19 18 17 16 ~14 

m 

23 

Reject Instruction 

B = "1 " for backward storage 
ch = 1/0 channel designator, 0-7 
INT = "1" for interrupt upon completion 

00 

00 

m = first word address of 1/0 data block; 
becomes current address as 1/0 oper­
ation progresses 

N = "0" for 24- to 12-bit disassembly 
N =" 1" for straight 12- or 24-bit data 

transfer 
n = last word address of output data block, 

plus one (minus one, for backward 
output) 

Instruction Description: This instruction transfers a word-addressed block of data consisting 
of 12-bit bytes or 24-bit words, from storage to an external equipment. 

With no disassembly, 12 or 24-bit transfer capability depends upon whether a 3206 or 3207 I/O 
channel is used. If an attempt is made to send a 24-bit word o:ver a 3206 I/O channel, the upper 
byte will be lost. 

1/0 OPERATION WITH STORAGE 

INSTRUCTION SEQUENCE 

LOAD 

START 
(P)-->F 

(FCN REG) 

REQUEST {READ 
BLOCK f (P + 1) 

CHANNEL 

BUSY? 
(P + 1 )-->zo 

(P) -->Zl CONTROL / 

YES 
WAIT FOR BLOck CONTROL, 

THEN S BUS PRIORITY. 

ACTIVATE READ/ STORE Zo (p+ 1) STORE Zl (P) 
i~ WRITE ON 1/0 IN ONE REGISTER IN ONE REGISTER 

CHANNEL O~ 7 (OO~ 07) (10~ 17) 

OPERATION NO 

1 
RNI 

~ WITH A? 
FROM 

P+3 

~ 
Rev. H 7-78 

REJECT 

TO 

P+2 

RELEASE BLOCK 

CONTROL AND 

SCANNER 
~ 



...:J 
I 

...:J c:.o 

Await N = 0 

I/O Channel 
Generates 
Block Control 
Request 

Priority, Read Up Transfer I _ r"\ _ A J Increment 
Register mtoS2 ~mby2 
OX 

A or NC = 1 

x = I/O Channel Ch (0-7) 

r,------. A wait 
iRequest priyity 1~liver 
Core 2 To 
Storage S Bus 

No 

Set Internal 
To External 
BCD Conversion 

Output One 
Word 
From m 

Increment I I I Restore 
m by 4 III Register 

OX 

N = 0 

B = 1 

Decrement 
m by 2 

N = 1 

I/O Channel 
Generates 
Data Signal 

,--------. 
Decrement 
m by 4 

Await 
Reply 

INT = 1 

Reply 
From 
Controller 

Read Up 
Register 
lX 

Does 
m = n? 

Yes I Set C~annel~ 
.. Termlnate 

Terminate. " _I 

Output Interrupt 

Figure 7-11. 76 I/O Operation with Storage 



INAC Input, 
Character to A 

23 

73 

181716 00 

(Approximate execution time: 
indeterminate) 

START 

23 00 

Reject Instruction 

ch = 1/0 channel designator. 0-7 
I NT = "1" for interrupt upon completion 

Instruction Description: This instruction transfers a 6-bit character from an external equip­
ment into the lower six bits of the A register. A is cleared prior to loading, and the upper 18 
bits remain cleared. 

Comments: Bits 00-16 at P and P + 1 should be loaded with zeros. 

I/O OPERATION WITH A 

INSTRUCTION SEQUENCE 

(P)--->F 

(FCN REG) 

REQUEST 

BLOCK 

CONTROL I 
f 

READ 

(P + 1) 

WAIT FOR BLOCK CONTROL. 

THEN S BUS PRIORITY. 

CHANNEL 

BUSY? 

YES 

LOAD 
(P + 1 )--->Zo 

(P) ---> Z' 

REJECT 

TO 

P+2 

ACTIVATE READ STORE Zo (P+ 1) STORE z' (P) RELEASE BLOCK 

kD .-lo WRITE ON 1/0 IN ONE REGISTER 
CHANNEL O~ 7 

OPERATION NO 
~.:..-~ 

WITH A? 

(00-+ 07) 

RNI 

FROM 

P+3 

IN ONE REGISTER CONTROL AND 
(10-+ 17) SCANNER 

7-80 



-l 
I 

00 
f-' 

I/O Channel 
Generates 
Data Signal 

Input One 
Char acter Or 
Word To A 

Await 
Reply 

Reply From 
Controller 

INT = 1 

Terminate~ 
Input 

Await 
.--------'1, Priority ....--------, 
I/O Channel 
Generates 
Block Control 
Request 

Interrupt 

Read Up 
Registers 
OX & lX 

x = I/O Channel Ch (0-7) 

Figure 7-12.73 I/O Operation with A 



23 181716 00 
INAW Input, Word to A (Approximate execution time: 

indeterminate) 74 

23 00 

Reject Instruction 

ch = 1/0 channel designator. 0-7 
INT = "1" for interrupt upon completion 

Instruction Description: This instruction transfers a 12-bit byte into the lower 12 bits of A or 
a 24-bit word into all of A from an external equipment. Transferring 12 or 24 bits depends upon 
whether a 3206 or 3207 I/O channel is used. (A) is cleared prior to loading and, in the case of a 
12-bit input, the upper 12 bits remain cleared. 

Comments: Bits 00-16 at P and P+ 1 should be loaded with zeros. 

NOTE 

Bits 18, 19, and 20 are all zeros when a 3206 data channel is used. If the operation with 
A involves the use of a 3207, these bits take on the following significance: 

Bit 20 = always a "0". 
Bit 19= If bit 18="1", the state of bit 19 is of no consequence. 

If bit 18 = "0", a "I" in bit 19 signifies backward operation. 
A "0" in bit 19 signifies a forward operation. 

I/O OPERATION WITH A 

INSTRUCTION SEQUENCE 

LOAD 

START 
(P)->F 

(FCN REG) 

REQUEST 

BLOCK 

CONTROL If 
READ 

(P + 1) 

CHANNEL 

BUSY? 
(P + 1 )->Zo 

(P)->Zl 

~ 

ACTIVATE READ 

WAIT FOR BLOCK CONTROL. 

THEN S BUS PRIORITY. 

STORE Zo (P+ 1) 

YES 

STORE Zl (P) 

WRITE ON I/O IN ONE REGISTER IN ONE REGISTER 
CHANNEL 0 -> 7 (00-> 07) (10->17) 

OPERATION NO ~ RNI ~0 
WITH A? FROM V 

,--_P_+,--3 _-' 

~ 
7-82 

REJECT 

TO 

P+2 

RELEASE BLOCK 

CONTROL AND 

SCANNER 
~ 



-.j 
I 

C/J 
c...l 

Aw 

~ 

I/O Channel 
Generates 
Block Control 
Request 

cu. 

Await 
Priority .... , ______ ----, 

Read Up 
Registers 
OX & IX 

Output One 
Character 
Word From A 

X = I/O Channel Ch (0-7) 

INT = 1 

)ly Reply From Terminate Interrupt 
Controller Output 

Figure 7-13.74 I/O Operation with A 

I/O Channel 
Generates 
Data Signal 



OTAC Output, 
Character from A 

23 

75 

23 

Reject Instruction 

ch = 1/0 channel designator, 0-7 
I NT =" 1" for interrupt upon completion 

00 

(Approximate execution time: 

3.3 J..Lsec.) 

Instruction Description: This instruction transfers a character from the lower 6 bits of A 
to an external equipment. The original contents of A are retained. 

Comments: Bits 00-16 at P and P + 1 should be loaded with zeros. 

START ~ 

I/O OPERATION WITH A 

INSTRUCTION SEQUENCE 

(P)->F 
REQUEST 

(FCN REG) ~ BLOCK H f 

/ 
READ 

(P + 1) 

CHANNEL 

BUSY? 
CONTROL 

WAIT FOR BLOCK CONTROL. 

THEN S BUS PRIORITY. 

YES 

ACTIVATE READ STORE zo (P+1) STORE z' (P) 

)~ WRITE ON 1/0 IN ONE REGISTER IN ONE REGISTER 
CHANNEL 0--+ 7 (00 --+ 07) (10 --+ 17) 

OPERATION NO ~I F:~~ ~:.f3\ 
WITH A? "\J 

'----...:...P_+!......::,.3_--l 

~ 

7-84 

LOAD 

(P + 1 )->Zo 

(P)->Z' 

REJECT 

TO 

P+2 

RELEASE BLOCK 

CONTROL AND 

SCANNER ~ 



-:] 

00 
Cl1 

Await 

I/O Channel 
Generates 
Block Control 
Request 

Priority .... , ______ _ 

Await 
f;\ Re.ply 

~J 1 
Reply From 
Controller 
----

Read Up 
Registers 
OX & lX 

Output One 
Character 
Word From A 

x = I/O Channel Ch (0-7) 

Terminate 
Output 

INT = 1 

Interrupt 

Figure 7 -14. 75 I/O Operation with A 

I/O Channel 
Generates 
Data Signal 



23 18 17 16 
OTAW Output, Word 
trom A 76 

(Approximate execution ti"me: 
3.3 fJ.sec) 

START 

~ 

23 00 

Reject Instruction 

ch = 1/0 channel designator. 0-7 
INT = "1" for interrupt upon completion. 

Instruction Description: This instruction transfers a 12-bit byte from the lower 12 bits of A, 
or (A) to an external equipment, depending upon the type of I/O channel (3206 or 3207) that is 
used. (A) is retained. 
Comments: Bits 00-16 at P and P + 1 should be loaded with zeros. 

NOTE 

Bits 18, 19, and 20 are all zeros when a 3206 data channel is used. If the operation with 
A involves the use of a 3207, these bits take on the following significance: 

Bit 20= always a "0". 
Bit 19=Ifbit 18="1", the state of bit 19 is of no consequence. 

If bit 18="0", a "I" in bit 19 signifies backward operation. 
A "0" in bit 19 signifies a forward operation. 

I/O OPERATION WITH A 

INSTRUCTION SEQUENCE 

(P}---> F 

(FCN REG) 

REQUEST 

BLOCK 

CONTROL / 
f 

READ 

(P + 1) 

WAIT FOR BLOCK CONTROL. 

THEN S BUS PRIORITY. 

ACTIVATE READ STORE Zo (p+ 1) 

CHANNEL 

BUSY? 

YES 

STORE Zl (P) 

WRITE ON 110 IN ONE REGISTER IN ONE REGISTER 
. CHANNEL 0 ---+ 7 (00---+ 07) (10---+ 17) 

OPERATION NO ~! ___ R-:.N_I_---,~3 WITH A? FROM 
P+3 

~ 
7-86 

LOAD 
(P + 1 }--->zo 

(P) ---> Zl 

REJECT 

TO 

P+2 

RELEASE BLOCK 

CONTROL AND 

SCANNER ~ 



-l 

OJ 
-l 

I/O Channel 
Generates 
Block Control 
Request 

Await 
Priori ty ., ______ --, 

Read Up 
Registers 
OX & IX 

Output One 
Character 
Word From A 

X = I/O Channel Ch (0-7) 

Figure 7 -15. 76 I/O Operation with A 

I/O Channel 
Generates 
Data Signal 





Section 8 
SOfTWARE SYSTEMS 

GENERAL DESCRIPTION 

This chapter presents a synopsis of the major software systems applicable to a 3200 
COUlPuter System. The software information contained in this chapter is also valid for 
3100 and 3300 Computer Systems. 

Reference manuals are available for each of the systems described in this chapter and 
should be consulted for detailed information. Copies of these manuals and others as they 
become available may be obtained by corresponding with the nearest Control Data sales 
office listed on the back cover of this manual. 

3100, 3200, 3300 SCOPE 
SCOPE is the oper<;ltion system for the CONTROL DATA 3100, 3200, 3300 Computers. 
Modular in structure, the system provides efficient job processing while minimizing its 
own memory and time requirements. Programming with the operating system is simpli­
fied by the use of control cards which are included with program decks. Among the 
functions performed by SCOPE are the following: 

Job Processing 
• Processes stacked or single jobs 
• Controls I/O and interrupt requests 
It Monitors compilations and assemblies 
• Loads and links object subprograms 
• Stores accounting information 
e Initiates recovery dumps 
It Prepares overlay tapes 

Equipment Assignments 
e Logical unit references 
e Physical unit assignment at run time 
It Drivers for all standard peripheral equipment 
III System units which facilitate job processing and minimize monitor program­

ming 

8-1 



Debugging Aids 
.. Extensive diagnostics 
.. Octal corrections 
• Snapshot dumps 
• Recovery dumps 

library Preparation and Editing 
.. Prepare a new library 
II Edit an existing library 
II List the contents of a library 

3100, 3200, 3300 COMPASS 

COMPASS is the comprehensive assembly system for the 3100, 3200, 3300 Computers. 
Operating under 3100, 3200, 3300 SCOPE, it assembles relocatable machine language 
programs. The program may consist of subprograms, each of which may be independently 
assembled. COMPASS source language includes the following features: 

Operation codes Machine operations are written as one or more mnemonic or octal 
subfields. 

Addressing Expressions, used as addresses, may represent either word or char­
acter locations. Expressions consist of symbols, constants, and spe­
cial characters connected by + and -. 

Data storage A data area, shared by subprograms, may be specified and loaded 
with data in the source program. 

Common storage A common area may be designated to facilitate communication 
among subprograms. 

Data definitions Constants may be defined as octal, decimal, double-precision, inte­
ger or floating-point numbers; BCD words, BCD characters; or as 
strings of bits. 

Library access Library routines may be called by reference to their entry points 
or by inclusion of macros in the source program (data processing 
macros, input/output macros). 

Listing control The format of the assembly listing may be controlled by pseudo 
instructions. 

Diagnostics Diagnostics for source program errors are included with the output 
listing. 

Macro instructions Macros may be defined in the source program or entered into the 
library; the sequence of instructions will be inserted whenever the 
macro name appears in the operation field. 

The Assembler 
The COMPASS assembly program converts programs written in COMPASS source 
language into a form suitable for execution under the 3100, 3200, 3300 operating systems. 
Source program input may be on punched cards or in the form of card images on magnetic 
or paper tape. The output from the assembler includes an assembly listing and a relocat­
able binary object program on punched cards or magnetic tape. 

8-2 



Equipment Configuration 
The assembly system, which is stored on the SCOPE library tape, is designed to operate 
on a computer with a minimum of 8,192 words of storage. In addition to the SCOPE 
library unit, the following input/output equipment is required: 

Input unit: card reader, magnetic tape, or paper tape 
Scratch unit: magnetic tape (may also be used for output) 
Listable output unit: magnetic tape or printer 
Object program output unit: magnetic tape or card punch 

Program Structure 
Source programs may be divided into subprograms which are assembled independently. 
All location symbols except COMMON and DA T A symbols are local to the subprogram 
in which they appear, unless they are declared as external symbols. Locations which will 
be referenced by other subprograms are declared as entry points. For example, if sub­
program IGOR references locations KIEV and MINSK in subprogram DEMETRI, 
KIEV and MINSK must be declared external symbols in subprogram IGOR and entry 
points in subprogram DEMETRI. 

The links among subprograms are associated by the SCOPE loader. As each subprogram 
is loaded, all external symbols and entry points are entered into a symbol table. When an 
external symbol is found which matches an entry point already entered in the table, or 
an entry point is found which matches an external symbol, linkage between the two 
points is established. 

If any external symbols are not matched with entry points after the last subprogram is 
loaded, the library tape is searched for routines with the names of unmatched symbols. 
If these routines are found, they are loaded and linked to the other subprograms. If un­
matched external symbols remain, the job is terminated and an error message written 
by the system. 

3100,3200,3300 DATA PROCESSING PACKAGE 
The Data Processing Package is composed of Data Processing Routines and a General 
Purpose Input/Output System. 

Data Processing Routines 
The Data Processing Routines, called macros, are used in COMPASS assembly lan­
guage programs to do particular data handling jobs; included are the following: 

TRANSMIT 

COMPARE 

EDIT 

MULTIPLY 

DIVIDE 

Transmits any string of up to 4,095 characters from one place in 
memory to another. 

Compares fields located at A-address and B-address according to the 
data processing collating sequence. Fields may contain 1 to 4,095 char­
acters. The fields are treated as equal, regardless of their specified 
lengths, by assuming blank fill to the right of the shorter field. 

Moves a numeric field to a receiving field with report editing. 

Multiplies two BCD numbers and stores the result in a third. 

Divides one BCD number by another and stores the result in a third. 

8-3 



General Purpose Input/Output System ," 
The General Purpose Input/Output System is a series of library routines which provide 
complete input/output control for data processing. These routines are used in COM­
PASS assembly programs, and they simplify programming while offering versatile data 
handling and optimum usage of internal storage space and processing time. Complete, 
partial or no buffering may be designated, depending upon the amount of storage the 
programmer has available; multi-file reels or multi-reel files may be read or written; 
fixed or variable length logical or physical records may be processed; and magnetic tape, 
paper tape, cards or printer may be used for input/output units. Both labeled and un­
labeled tapes may be handled. The input/output macros perform the following functions: 

OPEN 

READ 

WRITE 

CLOSE 

Opens an input or output file. 

Reads one logical record into the record area or a specified area in memory. 

Writes one logical record from the record area or a specified area in memory. 

Closes a reel or file. 

In addition to the input/output operations, the programmer also describes the files to be 
processed through use of macros. 

FIELDESC Defines logical records, buffers, logical units, recording density and re­
run requirements. 

LABELING Describes file label and tape retention time (prevents accidental de­
struction of tapes). 

VARIABLE Indicates whether the size of a variable length record is determined by 
a record mark or a key field. 

STOP OPEN Allows user to let files share the same areas in storage. Defines multi­
file reels. 

The I/O System interprets each set of instructions, refers to the file description, and 
then initiates the requested operation; it controls buffering, transmission errors, and 
logical-physical record divisions. 

3100,3200,3300 UTILITY 
The Utility Package consists of a small control routine and a group of closed subroutines 
which, operating under control of the SCOPE operating system, will perform such func­
tions as tape handling, copying of records from unit to unit, and record comparison of 
two files. The package is open-ended; subroutines may be added as desired. 

3100, 3200, 3300 COBOL 
COBOL is a programming system designed to facilitate the solution of business data 
processing problems. To use COBOL, the programmer describes the problem in a lan­
guage resembling English; the COBOL processor translates this source language input 
into relocatable machine language for program execution. 

THE COBOL language contains the elements of required COBOL as set forth by the 
official government manual describing COBOL-61, plus many of the features defined as 
elective COBOL. 

A COBOL source program is specified in four divisions: IDENTIFICATION, ENVI­
RONMENT, DATA and PROCEDURE. The IDENTIFICATION division identifies 
the name, author, date, and so forth of the program. The ENVIRONMENT division 
defines the computer configuration required for both compilation and execution. The 
DA T A division describes the format of the data files which the program is to process. 
The PROCEDURE division contains a sequence of statements which describe the 
processing to be performed. 

8-4 



The COBOL compiler is a three pass system. No object code is produced until the entire 
source program has been thoroughly analyzed. Whenever possible, in-line coding is 
produced. Depending on the needs of the program, the compiler provides an input/ 
output system which allows variable length records, up to two buffer areas per file, multi­
file reels, multi-reel files, rerun procedures, and so forth. In general, the features of the 
COBOL input/output system correspond to those described for the Data Processing 
Package. 

3100, 3200, 3300 FORTRAN 
The 3100,3200,3300 FORTRAN system incorporates a problem-oriented language that 
facilitates simple algebraic solution of mathematical or scientific problems. 

3100, 3200, 3300 FORTRAN programs are written as a sequence of statements, using 
familiar arithmetic operations and English expressions. Large programs may be written 
independently in sections, the sections tested, then executed together. 

Statements are available to reserve areas of memory for variables and arrays. Strings of 
values may be loaded with the program for reference during the program execution. 
Equivalence statements allow the same areas of memory to be identified with different 
variables and arrays during the execution of a program. 

Type statements specify the mode in which values are to be stored. The possible types 
include: REAL, INTEGER, and CHARACTER. The programmer may also declare a 
special mode, type OTHER, to handle information which does not conveniently con­
form to the standard modes. 

Arithmetic expressions are indicated by arithmetic sign and algebraic names. For ex­
ample, A+B-C means add A to B and subtract C. Logical and relational operators are 
available for use in expressions which may be true or false. 

Statements are usually executed in sequenee. However, control statements may be 
used to transfer to another part of the program. (The transfer may be specified as de­
pendent on a test indicated by an expression in the transfer statement.) 

Sets of statements which are to be executed several times with minor changes or incre­
ments may be written once with a statement to indicate how many times they are to be 
repeated, and if they are to be changed each time. 

Input/output operations provide a means to read information into the machine from 
various sources and to record results on a selected output device. If buffered input/out­
put operation is specified, uther operations may continue while information is read in 
or out. 

Facilities are also available to transfer a number of characters from one area of memory 
to another, and to test machine conditions through calls to 3100, 3200, 3300 FORTRAN 
library functions. 

The 3100,3200,3300 FORTRAN compiler produces machine language programs which 
may be executed immediately or stored for execution at a later date. 

GENERALIZED SORT/MERGE PROGRAM 
The GENERALIZED SORTIMERGE PROGRAM organizes data on magnetic tape 
into one continuous predetermined order. SORTIMERGE operates under the SCOPE 
operating system. Control cards read from the standard input unit contain file descrip­
tions and SORTIMERGE specifications. 

8-5 



SORT/MERGE orders fixed or variable length tape records, blocked or unblocked, 
written in either BCD or binary mode, according to a specified collating sequence. BCD 
and binary collating sequences are provided within SORT/MERGE, or the user may 
specify his own. The resultant output file may be merged with other presorted files in 
a final merge pass, or, if a number of presorted files exist, the merge phase only can be 
performed. 

The SORT/MERGE program can transfer instruction execution to the user's prepared 
subroutines which in turn perform the following typical functions. Other subroutines 
not shown on this list may also be used: 

• Edit acceptable records 
• Reject records 
It Check nonstandard labels 
• Modify nonstandard labels 
• Generate messages for the operator 
til Write secondary output file (edit sorted records) 
• Prepare summary file (summarize sorted records) 
• Terminate the sort process 

The SORT/MERGE checks standard header and trailer labels and provides rerun 
dumps. The SORT/MERGE contains an internal sort phase and a merge phase. The 
sort uses the tournament replacement technique which makes maximum use of avail­
able core storage and takes advantage of existing bias in the data. The method of merg­
ing, which is selected by the user, can be normal balanced or polyphase with either 
forward or backward reading. 

3100, 3200, 3300 BASIC SYSTEM 
Included in the 3100, 3200, 3300 BASIC system are: 

• BASIC Assembler 
• BASIC FORTRAN II 
• BASIC Utility 

BASIC Assembler 
The BASIC Assembler language forms a subset of the 3100, 3200, 3300 COMPASS 
language. Although designed primarily for use on a 4K configuration, it can readily be 
used on larger systems. Object programs produced by the BASIC Assembler are loaded 
by the self-contained loader or can be loaded by SCOPE. Source language programs 
must be prepared as complete entities if they are to be loaded by the internal loader. As 
a result, facilities for referencing external storage areas (COMMON, DATA) and ex­
ternal program elements (ENTRY, EXT. Macros) are not used in BASIC Assembler 
language, nor are a few of the more complex pseudo instructions (VFD, IF). All other 
features of the language are similar: operating codes, addressing, data definitions, listing 
control, etc. 

To assemble a BASIC Assembler program, the following configuration is required: 

• Minimum of 4K words of storage 
• Input unit: card reader, magnetic tape or paper tape (used for source language 

input, library, and BASIC Assembler) 
• Listable output unit: printer, magnetic tape, paper tape, typewriter 
• Object program output unit: card punch, magnetic tape, paper tape, type­

writer (All output may be written on one tape unit if desired.) 

8-6 



BASIC FORTRAN Ii 
BASIC FORTRAN II is a problem-oriented language that performs familiar mathe­
matical operations in arithmetic expressions and replacement statements. The source 
language provides substantial power and flexibility through a variety of statements. 
BASIC FORTRAN II is compatible with other FORTRAN II systems. 

BASIC Utility 
This package is similar to the 3100, 3200, 3300 Utility but incorporates its own loader 
and input/output control routine. 

CODING PROCEDURES 

COMP ASS subprograms are written on standard coding sheets. A subprogram consists 
of symbolic or octal machine instructions and pseudo instructions. Symbolic machine 
instructions are alphabetic mnemonics for each of the machine instructions. Pseudo 
instructions are COMPASS instructions used for the following operations: 

• Subprogram identification and linkage 
«I Data definition (constants conversion) 
• Data storage 
• System calls 
• Assembler control 
• Output listing control 
• Macro definition 

INSTRUCTION FORMAT 
A COMPASS instruction may contain location, operation code, address, comment, and 
identification fields. 

location Field 
A symbol in the location field (LOCN) is placed in columns 1-8. A symbol identifies the 
address of an instruction or data item. 

Location field symbols may be blank or consist of one to eight alphabetic or numeric 
characters; the first character must be alphabetic. Embedded blanks are illegal in loca­
tion symbols. The following are examples of location symbols: 

A 
H3 
ABCDEFGH 
P1234567 

A single * in column 1 of the location field signifies a line of comments. 

Operation Code Field 
The operation code field (OP) consists of any of the mnemonic or octal instruction codes 
with modifiers, or any macro or pseudo instructions. The field begins in column 10 and 
ends at the first blank column. If a modifier is used, a comma must separate the opera­
tion code from the modifier; no blank columns may intervene. A blank operation field 
or a blank in column 10 results in a machine word with zeros in the operation field. 

8-7 



F 
I 
E 
L 
D 

Address field 
The address field begins before column Lll and after the blank which terminates the 
operation field, and ends at the first blank column. It is composed of one or more sub­
fields, depending upon the instruction. Subfields, which are separated by commas on 
the coding form, specify the following quantities: 

m or n 
r or s 
y 

z 
b or i 
c 
v 
ch 
x 

word address 
character address 
operand (15-bit) 
operand (17 -bit) 
index register or interval quantity 
character 
register file location 
channel 
function code or comparison mask 
number of characters in a block 

The interpretations of the address subfields for each set of instructions are described in 
Table 8-l. 

An m,n,r ,s,y or z subfield may contain: 

Subfields 

m, n 

b 

y or z 

c 

r 

s 

ch 

x 

i 

I 

III A location symbol 
III The symbol ** which causes eaeh bit in the subfield to be set to one 
III The symbol * which causes the assembler to insert the relocatable address of 

that instruction in the address field 
III An integer constant 
• An arithmetic expression 
III A literal 

TABLE 8-1. INSTRUCTION INTERPRETATIONS 

INSTRUCTION OPERATION CODES 

00-70 71 Search 72 Move 

word 
address - -

index register - -

operand - -

- character -

character address of first first character 
address character address of 

source field 

address of last first character 
- character ± 1 address of 

receiving field 

- - -

- - -

interval quantity - -

- - field length 

8-8 

73-77 1/0 

first word 
address, last 
word address + 1 

-

-

-

first 
character 
address 

last 
character 
address ± 1 

channel 

1/0 or inter-
rupt code 

-

-



b SUBFIELD-The index field (b) specifies an index register 1-3, or a symbol or expression 
which results in one of these registers. Some instructions require a particular index regis­
ter. If the b subfield is used with the octal operation codes, 0-7 may be tlsed. 

c SUBFIELD-The character field may contain any octal or decimal number, expression, 
or a symbol which is equivalent to a 6-bit binary number. Octal numbers must be suf­
fixed with the letter B. 

ch SUBFIELD-The channel field may contain one digit to designate an input/output 
channel, or a symbol equated to one of these digits, or an expression resulting in one 
of the digits. 

x SUBFIELD-The code field may, contain any of the interrupt or input/output codes or 
comparison mask. Decimal numbers, octal numbers suffixed with the letter B, symbols 
or expressions resulting in constants may be used. 

v SUBFIELD-The register file sub field specifies a location which may be 008-778. Any 
legal coding which results in a value 008-778 may be used. 

i SUBFIELD-In the MEQ and MTH instructions, this subfield specifies a decrement 
interval quantity of 1-8. 

I SUBFIELD-In the MOVE instruction, this sub field specifies the number of characters 
(1 to 128) to be moved. 

Comments Field 
Comments may be included with any instructions. A blank column must separate them 
from the last character in the address field, and they may extend to column 72. Com­
ments have no effect upon compilation but are included on the assembly listing. 

Identification Field 
Columns 73-80 may be used for sequence numbers or for program identification. This 
field has no effect upon assembly. 

PSEU DO-INSTRUCTIONS 

Monitor Control 
The following pseudo instructions provide communication between COMPASS subpro­
grams and the monitor. Some are required in every subprogram; others are optional. 
Unless otherwise noted, each instruction may have a location field and an address field. 

IDENT m - appears at the beginning of every COMPASS subprogram. The address field 
contains the name of the subprogram, which may be a maximum of eight alphanumeric 
characters, the first being alphabetic. A symbol in the location field is ignored and re­
sults in an error flag (L) on the listing. 

EN D m - marks the end of every subprogram. When a program (consisting of one or more 
subprograms) is assembled for execution, one of the subprogram END cards must con­
tain a location symbol in the address field to indicate the first instruction to be executed 
in the program. Only one END card can contain an address field symbol. A term in the 
location field is ignored. 

FINis-terminates an assembly operation. It is a signal to the assembler that no more 
programs are to be assembled. The FINIS card is placed after the last END card of the 
last subprogram in the source program. 

8-9 



Symbol Assignments 
The pseudo instructions, EQU; EQU, C; ENTRY; and EXT define symbols as equal to 
other symbols or values, or identify symbols used to communicate with subprograms. 
Linkage between symbols in separate subprograms is provided by the monitor system. 
These pseudo instructions may appear anywhere between an IDENT and an END 
pseudo instruction. 

EOU m - assigns the result of the expression in the address field to the symbol in the 
location field. The result is a 15-bit address. 

The following forms are allowed: 

symbol EQU symbol 
symbol EQU constant (octal or decimal) 
symbol EQU expression (address arithmetic) 

Example: 

OUT EQU JUMP+2 
If JUMP is assembled to address 00100, OUT will be assigned the value 00102. 

Numerical constants must follow the rules for symbolic instructions. Address arithmetic 
is permitted. A location field symbol may be equated to a decimal or octal constant. 

EOU, C m - is similar to EQU, except that the result is a 17-bit address. 

ENTRY m - defines location symbols which are referenced in other subprograms. These 
symbols, called entry points, must be placed in the address field of an ENTRY pseudo 
instruction. Any number oflocations may be declared as entry points in the same ENTRY 
instruction. If two or more names appear in the address field, they must be separated 
by commas. No spaces (blanks) can appear within a string of symbols. The address field 
of the ENTRY pseudo instruction may be extended to column 72 and the location field 
must be blank. Only word-location symbols (15-bits) may be used. 

Example: 

ENTRY SYM1,SYM2,SYM3 
SYM1, SYM2, SYM3 can now be referenced by other subprograms. 

EXT m - Symbols used by a subprogram which are defined in another subprogram are 
declared as external symbols by placing them in the address field of an EXT pseudo 
instruction. Only word-location symbols (15-bit) may be used. For example, to use the 
external symbols SYM1, SYM2, SYM3 in subprogram A, the following pseudo instruc­
tion would be written in subprogram A: 

EXT SYM1,SYM2,SYM3 

These symbols must be declared as ENTRY points in some other subprogram or sub­
programs which are loaded for execution with subprogram A. The address field may be 
extended to column 72; symbols are separated by commas. No spaces (blanks) can appear 
in a string of symbols. The location field of an EXT must be blank. 

Address arithmetic cannot be performed on external symbols. 

8-10 



Example: 

IDENT 
ENTRY 
EXT 

FFI SJl 
e 

BEN EQU 
e 

DEED LDA 
III 

RTJ 
at 

e 

END 
END 
FINIS 

listing Control 

CAIRO 
DEED, FFI 
ABE, DAVID 

** 

HAKIM 

ABE 

DAVID 

FFI 

The pseudo instructions which provide listing control for assembly listings are shown 
below. These instructions do not appear on the assembly listing and may be placed any­
where in a program. 

SPACE - controls line spacing on an assembly listing. A decimal constant in the address 
field designates the number of spaces to be skipped before printing the next line. If the 
number of spaces to be skipped is greater than the number of lines remaining to be 
printed on a page, the line printer skips to the top of the next page. A symbol in the 
location field is ignored. 

EJ ECT - causes the line printer to skip to the top of the next page when the assembled 
program is listed. A symbol in the location field is ignored. 

REM - is used to insert program comments in an assembly listing. The address field can 
be extended to column 72. Any standard key punch character can be used in the com­
ments. If the comments are to be written on more than one line, successive REM pseudo 
instructions must be used. A symbol in the location field is ignored. 

NOLIST - causes the assembler to discontinue writing a listing of the program, starting 
with this instruction. 

LIST - causes the assembler to resume listing the program. This instruction is used after 
a NOLIST instruction; it is not necessary to use it to obtain a complete listing of a program. 

8-11 



Macro Instructions 
MACRO - defines the beginning of a sequence of instructions that are inserted by the 
assembler in the source program whenever the location symbol of the MACRO instruc­
tion appears in an operation field. The end of the sequence of instruction is marked by 
an ENDM pseudo instruction. For example, if the sequence 

HOPE MACRO (PA, MA) 
LDA PA 
INA 24B 
STA MA 
ENDM 

were defined and the following instructions appeared in the same program 

STA GARAGE 
HOPE (DW21, D6) 
LDA FARM 

the assembled output would be 

STA GARAGE 
LDA 
INA 
STA 
LDA 

DW21 
24B 
D6 
FARM 

ENDM - defines the end of a MACRO sequence. 
L1BM - names library macros. 
NAME (p1, ... ,pn) - is used to reference macros. 
The parameters pI, ... , pn are used by the routine, aT!!. NAME is a macro name. 

Data Storage Assignments 
The following pseudo instructions reserve storage areas for blocks of data. BSS may be 
used to reserve storage blocks within the subprogram in which it appears. If these stor­
age areas are to be referenced by other subprograms, the name assigned to the block is 
declared as an entry point in the program containing the block, and as an external 
symbol in the program referencing the block. Only word location symbols may be used. 
COMMON identifies storage areas to be referenced by more than one subprogram. 
DA T A specifies special areas which may be preloaded with data; EXT and ENTRY are 
not needed to reference COMMON or DATA areas. Address arithmetic may be used, 
but all symbols must have been defined before the instruction is encountered. 

BSS m - reserves a storage area of length m in a subprogram on a common or data stor­
age area. The address field may contain any expression which results in a constant. The 
resultant constant specifies the number of words to be used. The address field of the 
first word of the reserved area is assigned the location field term of the BSS instruction. 
Other words or characters in the area may be referenced by addressing arithmetic or 
by indexing. 

BSS, C m - reserves a character storage area of length m in a subprogram. The address 
field is similar to the address field of BSS pseudo instruction. However, the resultant 
constant specifies the number of character positions to be reserved. 

COMMON - assigns location terms following it to a common storage block until a DATA 
or PRG pseudo instruction is encountered. EQU, EXT, ENTRY, 1FT, IFN, IFF, IFZ, 
END, ORGR, BSS and BSS,C are the only pseudo instructions which may follow a 
COMMON pseudo instruction.* 

*Occurrence of any other machine or data definition command causes the command and its successors to 
be assembled into the subprogram area. 

8-12 



A 
B 
C 

MARKET 
STREET 
SINGER 

IDENT 
COMMON 
BSS 
BSS 
BSS 

END 
IDENT 
COMMON 
BSS 
BSS 
BSS 
END 

BURKE 

20 
10 

6 

SPINOZA 

5 
13 

4 

Location and address fields of a COMMON pseudo instruction should be blank. 

COMMON may not be preset with data. 

During execution, one area in storage is assigned as COMMON. All COMMON may be 
filled repeatedly during execution. A storage location assigned to the nth word in 
COMMON in subprogram 1 is the same location assigned to the nth word in COMMON 
in subprogram 2. 

If the two subprograms in the above example were loaded together, the memory as­
signments would be: 

Example: 

Locations in Name in Name in subprogram 
memory relative subprogram SPINOZA 
to the beginning BURKE 
of common 

0-4 A :.A+4 MARKET )0 MARKET+4 

5-17 A+5 ----+A+17 STREET )oSTREET+12 

18-19 A+18~A+19 SINGER )0 SINGER+1 

20-21 B )0 B+1 SINGER+2 )0 SINGER+3 

22-29 B+2 )oB+9 

30-35 C )oC+5 

PRG-terminates the definition of a COMMON or DATA area. 

DATA-assigns all location symbols following it to a data block until a COMMON or 
PRG pseudo instruction is encountered. Data described by OCT; BCD; BCD,C; DEC; 
DECD and VFD pseudo instructions may be assembled into a DATA block. Areas may 
be reserved within a DATA block by the BSS and BSS,C pseudo instructions. The 
following is an example of a DATA pseudo instruction coded within a subprogram: 

8-13 



Example: 
III 

III 

III 

LDA APRESMOI 
DATA 

CONS OCT 10, 11, 12, 13 
PRG * 
STA LEDELUGE 

A data area named CONS is reserved and the octal constants 10, 11, 12, and 13 are 
loaded into the four words in this area. In the source program, ST A LEDELUGE would 
appear in the next location after LDA APRESMOI. 

Constants 
Octal, decimal, and BCD constants may be inserted in a COMPASS program by using 
the pseudo instructions listed below. Location terms may be used and the address field 
may extend to column 72, if necessary. 

OCT ml,m2, ... ,mn- inserts octal constants into consecutive machine words. A location 
term is optional; if present, it will be assigned to the first word. The address field con­
sists of one or more consecutive subterms, separated by commas. Each subterm may 
consist of a sign (+or - or none), followed by up to eight octal digits. Each constant is 
assigned to a separate word. If a location term is present, it is assigned to the first word. 
If less than eight digits are specified, the constant is right-justified in the word and 
leading zeros are inserted. 

DEC ml,m2, ... , mn- inserts 24-bit decimal integer constants in consecutive machine 
words. The D and B scaling is identical to the DECD scaling, but only positive integer 
values less than 233 may be used. If a location term is present, it is assigned to the first 
constant. 

DECO Ml,m2, ... ,mn-converts decimal constants to equivalent 48-bit binary values and 
stores them in consecutive groups of two machine words. Each constant may be written 
in either fixed or floating point format. 

The decimal numbers to be converted are written in the address field of the DE CD 
instruction as follows: 

Floating Point Constant format consists of a signed or unsigned decimal integer of 14 
digits. It is identified as a floating point constant by a decimal point which may appear 
anywhere within the digital string. A decimal scale factor indicated by D ± d is per­
mitted. The result after scaling must not exceed the capacity of the hardware (approxi­
mately 10±30B). 

Fixed Point Constant format is similar to that of the DEC single precision constants. 
Up to 14 decimal digits may be specified, expressing a value the magnitude of which is 
less than 247. Decimal and binary (B ± b) scale factors may be used. Low order bits are 
not lost; the signed 48-bit binary result is stored in two consecutive computer words. 

No spaces may occur within a number, including its associated scale factors, since a space 
indicates the end of the constant. Plus signs may be omitted. Any number of constants 
may appear in a DE CD instruction. Successive constants are separated by commas. 

8-14 



Examples: 

LOCN Op Address Field Comments 

CONST A DECD -12345. FLOATING PT CONST 

CONST B DECD +12345 FIXED PT CONST 

CONST C DECD -12345.D+5 FLOATING PT CONST, DECSCALE 

CONST D DECD 12345D-3 FIXED PT CONST, DECSCALE 

CONST E DECD +12345B+8 FIXED PT CONST, BINSCALE 

BCD n,C1C2, ... , C4n - inserts binary-coded decimal characters into consecutive words. If 
a location term is present, it is assigned to the first word. The address field consists of 
a single digit n, which specifies the number of four-character words needed to store the 
BCD constant, followed by a comma and the BCD characters. The next 4n character 
positions after the comma are stored. Any character string which terminates before 
column 73 may be used; n is restricted accordingly. 

BCD,C n,C1C2" .. , Cn- places n characters in the next available n character positions 
in memory. If the previous instruction were also a BCD,C instruction, the next char­
acter position is defined as the one which follows the last position used by the previous 
instruction. If a location symbol is used, it is assigned to the first character position in 
this field. If the previous instruction were not a BCD,C instruction, the next character 
position would be the first character position (0) of the next available word. Any char­
acter string which terminates before column 73 may be used; n is restricted accordingly. 

VFD mml/vl,m20dv2 ... ,mpnp/vp- assigns data in continuous strings of bits rather than in 
word units. Octal numbers, character codes, program locations and arithmetic values 
may be assigned consecutively in memory, regardless of word breaks. The address field 
consists of one or more data fields. 

In each data field m specifies the mode of the data, n the number of bits allotted, and v 
the value. Four modes are allowed: 

o Octal number. If it is preceded by a mmus sign, the one's complement 
form is stored. 

H Hollerith character code. The field length must be a multiple of six. Any 
printable character may appear in the v field except blanks or commas. 
Either a space or comma immediately succeeds the last character. 

A Arithmetic expression or decimal constant. The v field consists of an ex­
pression formed according to the rules for address field arithmetic, with the 
following restrictions: 
1. n must be :s; 24 and I v I :S;2n -C 1 unless a relocatable expression is used, in 

which case, n = 15. 
2. When a relocatable expression is used, it must be placed in the correct 

position in the address portion of a word to insure that it will be relocated 
by the loader. 

C Character expression. The rules governing the A-field apply, except that 
n = 17 for a relocatable expression. 

The VFD address field is terminated by the first blank column. 

8-15 



Example: 

VFD 012/-737.A211A-X+B.H24/+A3 .A15INAME 
+2.H18/BQ. 

A. X. and Bare nonrelocatable symbols. Four words 
are generated. with the data placed as follows: 

23 11 0 23 14 8 

,'-;-0-4 -0-'--:-1 .'----[-A --=---'1 I - X + BJ 1 2 0 I 2 

-737 Arithmetic Expression + 
Word Word 2 

23 20 14 0 23 17 11 

o 1 [Name +2] , 
1 

2 2 ! 5 0 j6 0 

3 Space Word Address B Q Space 

Word 3 Word 4 

Additional Pseudo Instructions 

2 0 

1 0 1 

A 

5 0 

1 
0 01 

Additional lines of coding may be generated by the following pseudo instructions: 

IFZ m,n - n succeeding lines of coding are assembled if m is zero. The expression n must 
result in a positive numerical integer, and m may be a symbol, an address arithmetic 
symbol, or a literal. If m is non-zero, n succeeding lines of coding will be bypassed by 
the assembler. 

IFN m,n - n succeeding lines of coding will be assembled if m is non-zero; the expression 
n must result in a positive numerical integer, and m may be a symbol, address arithmetic 
symbol or literal. Ifm is zero, n succeeding lines of coding will be bypassed by the assembler. 

The pseudo instructions, 1FT and IFN may be used within the range of a MACRO 
definition only. 

1FT m,p,n, - n succeeding lines of coding will be generated if character string m equals char­
acter string p. The expression n must result in a positive numerical integer, and m and 
p may be a formal parameter or a literal. If m ,r. p, n succeeding lines of coding will be 
bypassed. 

IFF m,p,n-n succeeding lines of coding will be generated if m ,r. p. The expression n 
must result in a positive integer, and m and p may be a formal parameter or a literal. If 
m = p, n succeeding lines of coding will be bypassed. 

ORGR m-the value in the address field will be assembled as the beginning location for 
subsequent instructions. The value may be in program, data area or common area mode. 
The occurrence of a mode change pseudo operation, COMMON, DATA or PRG, ter­
minates ORGR and subsequent instructions are assembled in the new mode. 

Nop-No operation. An ENI y, 0 instruction is inserted. 

TITLE - the information beginning in the address field is printed at the head of each 
page of the output listing which follows. The first page of listing may be titled by pre­
senting the TITLE card immediately following the IDENT card. 

8-16 



ASSEMBLY LISTING FORMAT 
An assembly listing contains the source program instructions and the corresponding 
octal machine instructions. The addresses assigned to each subprogram are relative 
addresses only. Absolute addresses are assigned when the program is loaded by the 
monitor loader. All common blocks are assigned consecutively, starting at relative loca­
tion 00000. Preceding the body of the subprogram are summaries of undefined symbols, 
doubly defined symbols, external names, entry point names, subprogram length, com­
mon length and data length. References to external symbols are strung together by the 
assembler. The monitor loader assigns the proper absolute addresses. 

The address of each instruction word is the left-most field for each instruction in the 
assembled listing. (Error codes appear to the left of this field.) External address field 
symbols are indicated by an X immediately to the left of the octal address field of each 
instruction. P indicates Program Relocatable, and C indicates Common. Subsequent 
fields from left to right on the listing are an 8-digit location contents field, a 2-digit oper­
ation code, a I-digit b-subfield, a 5-digit address, and a I-digit character position. The 
remaining fields correspond to those in the symbolic source program. 

Listing format: 
location char source 

location contents op b addr pos line 

5 or 6 8 2 1 5 80 
digits 

05264 55300000 55 0 00000 :3 EAQ 
05265 40003301 40 0 P03301 0 STA HOLDA8 
05266 27000173 27 0 P00173 0 LOL CONTABLE"'4 
05267 40003362 40 0 P03362 0 STA HOLOAS+1 
05270 14600000 14 1 00000 :2 ENA 0 
05271 40003350 40 0 P03350 0 STA SIMA 
05272 25003300 25 0 P03300 0 LOAQ TEMPo 
05273 45003357 45 0 P03357 0 STAQ HOLDADST 
05274 77300400 77 0 00400 3 INS 400B 
05275 01005301 01 0 P05301 0 UJP * ... 4 
05276 20003325 20 0 P03325 0 LOA EXPFlTFG 
05277 03105306 03 0 POS306 1 AZJ,NE AD5BR5A"'3 
05300 01005311 01 0 P053ll 0 UJP A05BRSA 
05301 20003325 20 0 P033:25 0 LOA EXPFLTFG 
05302 03105314 03 0 P05314 1 AZJ,NE ADSBR5B 
05303 14600001 14 1 00001 :2 ENA 01 
05304 40003341 40 0 P03341 0 STA HOLDSH 

8-17 



ERROR CODES 

The following error codes may appear as the left-most field on an assembled listing. If 
multiple errors are detected, multiple error codes are produced. 

Code 
A Illegal character or expression in the address field. 
D Same symbol used in more than one location field term. Only the first sym­

bol is recognized; the remainder are ignored. A list of doubly defined sym­
bols appears on the assembled listing. 

F Symbol table is full. No more location field symbols will be recognized. 
Also designates overflow of MACRO parameter table. 

o Illegal operation code. Zeros are substituted for the operation code. 
U Undefined symbol. A list of undefined symbols will appear on the output 

listing. 
C An attempt was made to preset COMMON. The instructions are processed 

as if PRG was encountered. 
L A symbol appears in the location field when not permitted, a symbol is 

missing in the location field when one is required, or an illegal location 
symbol appears. 

M A modifier appears in the location field when not permitted, a modifier is 
missing in the operation field when one is required, or an illegal modifier 
appears in the operation field. 

T A character address symbol was used in an address subfield requiring a 
word symbol; significant bits are lost. 

TABLE 8-2. COMPASS CODING FORM DESCRIPTION 

FiElD COLUMNS 

Location Use columns 1-8. Column 9 is always blank. 

Operation Begins in column 10 and continues until the 
first blank column. 

Address Address may begin after the column terminat-
ing the operation field; however. it must begin 
before column 41. The address field terminates 
when the first blank column or column 73 is 

reached. 

Comments or Remarks Comments or remarks are written between the 
end of the address field and column 73. 

Identification or Columns 73-80 are treated as comment by 

Sequence Number COMPASS. 

8-18 



PROGRAM 
COMPASS SYSTEM CODING FORM NAME : 'CONTROl DATA 

PAGE 
ROUTINE '" CORPORATl0N DATE 
LOCH OPERAIION,MOOIFIERS ADDRESS FIELD COMMENTS IDENT 

I I 
' ••••• ,. ""'II'I~~""'"~~I"II"""""I"~.,n"' ••• u" •• " ••• ,., •• « ••• I •• ".I' •• '"'." ••••••••••••• ,Q •••••• ".'" •• ~""'."., •••• , ••••• 

I 

I I 
, I , ••••• I Ie " " " , ... II " " I .... "' un ..... II or II .. 'D" ...... II II .. ,. n ••• , ... , ....... r II"'." OJ II 1411" or '"11'. II OJ u .... II It .... 10" "" H n 11 n 1I .. I. 

Figure 8-1. COMPASS Coding Form 

PROGRAM 
FO::R.'I'::R.~:N" ~ NAM~R 

ROUTI DATE PAGE OF 

SJ~~"~ 
FORTRAN STATE MEN" 

SERIAL 

~':c::. 0 I ' ~~;HA I ~. ~~:HA Z NUMBER 

, , .. "',."." 

, , 

Figure 8-2. FORTRAN Coding Form 

8-19 





Appendix A 
CONTROL DATA 3100, 3200, 3300 Computer Systems Character Set 





Internal External 
BCD BCD 

Codes Codes 

00 12 

01 01 

02 02 

03 03 

04 04 

05 05 

06 06 

07 07 

10 10 

11 11 

12 (illegal) 

13 13 

14 14 

15 15 

16 16 

17 17 

20 60 

21 61 

22 62 

23 63 

24 64 

25 65 

26 66 

27 67 

30 70 

31 71 

32 72 

33 73 

34 74 

35 75 

36 76 

37 77 

Console 
Typewrit,er 
Characters 

(Uses Internal 
BCD Only) 

o (zero) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

± 

= 
" 

? 

+ 
A 

B 

C 

D 

E 

F 

G 

H 

I 
(Shift to 

lower case) 

) 

I 

@ 

! 

(Cant.) 

A-I 

Magnetic Punched 

Tape Unit Card 

Characters Codes 

o (zero) 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

- - - 2,8 

# 3,8 

@ 4,8 

- - - 5,8 

- -- 6,8 

(file mark) 7,8 

& 12 

A 12, 1 

B 12,2 

C 12,3 

D 12.4 

E .12,5 

F 12,6 

G 12,7 

H 12,8 

I 12,9 

+0 12,0 

12,3,8 

0 12,4,8 

- - - 12,5,8 

--- 12,6,8 

- - - 12,7,8 



Console 
Internal External Typewriter Magnetic Punched 

BCD BCD Characters Tape Unit Card 
Codes Codes (Uses Internal Characters Codes 

BCD Only) 

40 40 - (minus) - (minus) 11 

41 41 J J 11. 1 

42 42 K K 11.2 

43 43 L L 11,3 

44 44 M M 11.4 

45 45 N N 11.5 

46 46 0 0 11.6 

47 47 P P 11,7 

50 50 Q Q 11,8 

51 51 R R 11,9 

52 52 o (degree) -0 11.0 

53 53 $ $ 11. 3, 8 

54 54 * * 11. 4, 8 

55 55 # - - - 11. 5, 8 

56 56 % - - - 11. 6, 8 

57 57 
(Shift to 

11.7,8 
upper case) 

- - -

60 20 (space) (blank) (blank) 

61 21 / / 0,1 

62 22 S S 0,2 

63 23 T T 0,3 

64 24 U U 0.4 

65 25 V V 0,5 

66 26 W W 0,6 

67 27 X X 0,7 

70 30 Y Y 0,8 

71 31 Z Z 0,9 

72 32 & - - - 0,2,8 

73 33 , (comma) , (comma) 0,3,8 

74 34 ( % 0,4,8 

75 35 (tab) - - - 0,5,8 

76 36 (backspace) - -- 0,6,8 

77 37 (carriage return) - - - 0,7,8 

A-2 



Appendix B 
Supplementary Arithmetic Information 





Appendix B 
SUPPLEMENTARY ARITHMETIC INfORMATION 

NUMBER SYSTEMS 

Any number system may be defined by two characteristics, the radix or base and the 
modulus. The radix or base is the number of unique symbols used in the system. The 
decimal system has ten symbols, 0 through 9. Modulus is the number of unique quanti­
ties or magnitudes a given system can distinguish. For example, an adding machine 
with ten digits, or counting wheels, would have a modulus of 1010-1. The decimal system 
has no modulus because an infinite number of digits can be written, but the adding 
machine has a modulus because the highest number which can be expressed is 9,999,999,999. 

Most number systems are positional; that is, the relative position of a symbol determines 
its magnitude. In the decimal system, a 5 in the units column represents a different quan­
tity than a 5 in the tens column. Quantities equal to or greater than 1 may be represented 
by using the 10 symbols as coefficients of ascending powers of the base 10. The number 98410 is: 

9 x 1 0 2 = 9 x 1 00 = 900 
+8 x 101 = 8 x 10 = 80 
+4 x 100 = 4 x 4 

98410 

Quantities less than 1 may be represented by using the 10 symbols as coefficients of 
ascending negative powers of the base 10. The number 0.59310 may be represented as: 

5 x 10-
1 

= 5 )[ .1 =.5 
+9xl0-

2
=9x.Ol = .09 

-3 
+3 x 10 = 3 x .001 = .003 

0.59310 

BINARY NUMBER SYSTEM 
Computers operate faster and more efficiently by using the binary number system. There 
are only two symbols, 0 and 1; the base = 2. The following shows the positional value: 

24 

16 

The binary number 0 1 1 0 1 0 represents: 

Ox2 5 = Ox32 = 0 
+ 1 X 24 = 1 x 16 = 16 
+1 X 2 3 = 1 x 8 8 
+Ox2 2 = Ox4 = 0 
+1x21=lx2 = 2 
+0 x 20 = 0 x 1 = 0 

2610 

B-1 

Binary point 



Fractional binary numbers may be represented by using the symbols as coefficients 
of ascending negative powers of the base. 

2 -1 2 -2 2 -3 2 -4 2 -5 ... 
Binary Point Y2 1.4 Va 1/16 1/32 

The binary number 0.10 110 may be represented as: 

1 x2 -1 = 1 x1/2 = 1/2 8/16 
+0 x 2 -2 = 0 x 114 = 0 0 
+1x2 -3=1x1/8 =1/8 2/16 
+1 x2 -4 = 1 x 1116 = 1/16 = 1Ll6 

11/1610 

OCTAL NUMBER SYSTEM 
The octal number system uses eight discrete symbols, 0 through 7. With base eight the 
positional value is: 

8 5 

32.768 
84 

4.096 
83 

512 
8 2 

64 

The octal number 5138 represents: 

5 X 8 2 = 5 x 64 = 320 
+1x81 =1x8 8 
+3x8° = 3x 1 __ 3_ 

33110 

8 1 8 0 

8 1 

Fractional octal numbers may be represented by using the symbols as coefficients of as­
cending negative powers of the base. 

8 -1 

1/8 

8 -2 

1/64 

The octal number 0.4520 represents: 

8 -3 

1/512 
8 -4 

1/4096 

4x8 -1=4x1/8 =4/8 =256/512 
+5x8 -2=5x1/64 =5/64 = 40/512 
+2x8 -3=2x1/512=2/512= 2/512 

298/512 = 149125610 

B-2 



ARITHMETIC 

ADDITION AND SUBTRACTION 
Binary numbers are added according to the following rules: 

0+0=0 
0+1=1 
1+0=1 
1 + 1 = 0 with a carry of 1 

The addition of two binary numbers proceeds as follows (the decimal equivalents verify 
the result): 

Augend 0111 (7) 

Addend +0100 +(4) 

Partial Sum 0011 
Carry _1_ 

Sum 1011 (11 ) 

Subtraction may be performed as an addition: 

8 (minuend) 
-6 (subtrahend) 

2 (difference) 

8 (minuend) 
or ±±- (1 O's complement of subtrahend) 

2 (difference - omit carry) 

The second method shows subtraction performed by the "adding the complement" 
method. The omission of the carry in the illustration has the effect of reducing the result 
by 10. 

One's Complement 
The computer performs all arithmetic and counting operations in the binary one's comple­
ment mode. In this system, positive numbers are represented by the binary equivalent 
and negative numbers in one's complement notation. 

The one's complement representation of a number is found by subtracting each bit of 
the number from 1. For example: 

1111 
-1001 9 

0110 (one's complement of 9) 

This representation of a negative binary quantity may also be obtained by substituting 
"l's" for "D's" and "D's" for "l's". 

The value zero can be represented in one's complement notation in two ways: . 
0000--+002 Positive (+) Zero 
1111 --+ 112 Negative (-) Zero 

The rules regarding the use of these two forms for computation are: 

• Both positive and negative zero are acceptable as arithmetic operands. 

• If the result of an arithmetic operation is zero, it will be expressed as positive zero. 

One's complement notation applies not only to arithmetic operations performed in A, 
but also to the modification of execution addresses in the F register. During address 
modification, the modified address will equal '777778 only if the unmodified execution 
address equals 777778 and b = 0 or (Bb

) = 777778. 

B-3 



MULTIPLICATION 
Binary multiplication proceeds according to the following rules: 

OxO = 0 
Ox 1 = 0 
1 xO = 0 
1 x 1 = 1 

Multiplication is always performed on a bit-by-bit basis. Carries do not result from mul­
tiplication, since the product of any two bits is always a single bit. 

Decimal example: 

multiplicand 
multiplier 

partial products 

product 

14 
12 

I 28 
\~ (shifted one place left) 

16810 

The shift of the second partial product is a shorthand method for writing the true value 140. 

Binary example: 

multiplicand (14) 1110 
multiplier (12) 1100 

P"';" pmd,," { 

0000 
0000 shift to place 

1110 digits in proper 
1110 columns 

product ( 16810) 101010002 

The computer determines the running subtotal of the partial products. Rather than 
shifting the partial product to the left to position it correctly, the computer right shifts 
the summation of the partial products one place before the next addition is made. When 
the multiplier bit is "I", the multiplicand is added to the running total and the results 
are shifted to the right one place. When the multiplier bit is "0", the partial product sub­
total is shifted to the right (in effect, the quantity has been multiplied by 102). 

DIVISION 
The following examples shows the familiar method of decimal division: 

divisor 

,--:-1-=-4_ quotient 

131185 dividend 
13 

55 partial dividend 

~ 
3 remainder 

B-4 



The computer performs divi:;;ion in a similar manner (using binary equivalents): 

1110 quotient (14) 

divisor 1 1 01 11 011 1 001 dividend 
1101 

10100 
1101 

1110 partial dividends 
1101 

11 remainder (3) 

However, instead of shifting the divisor right to position it for subtraction from the partial 
dividend (shown above), the computer shifts the partial dividend left, accomplishing the 
same purpose and permitting the arithmetic to be performed in the A register. The com­
puter counts the number of shifts, which is the number of quotient digits to be obtained; 
after the correct number of counts, the routine is terminated. 

CONVERSIONS 

The procedures that may be used when converting from one number system to another 
are power addition, radix arithmetic, and substitution. 

TABLE B-1. RECOMMENDED CONVERSION PROCEDURES 
(INTEGER AND FRACTIONAL) 

Conversion Recommended Method 

Binary to Decimal Power Addition 
Octal to Decimal Power Addition 
Decimal to Binary Radix Arithmetic 
Decimal to Octal Radix Arithmetic 
Binary to Octal Substitution 
Octal to Binary Substitution 

GENERAL RULES 

ri> r f: use Radix Arithmetic, Substitution 

ri < r
f
: use Power Addition, Substitution 

ri = Radix of initial system 

r = f Radix of final system 

B-5 



POWER ADDITION 
To convert a number from rj to rr (rj < rr) write the number in its expanded rj polynomial 
form and simplify using rr arithmetic. 

EXAMPLE 1 

010 1112=1 

=1 

Binary to Decimal (Integer) 

(24) +0(2 3 ) + 1 (22) + 1 (21) + 1 (20) 

(16) +0(8) +1(4) +1(2) +1(1) 

=16 +0 +4 +2 +1 
=2310 

EXAMPLE 2 Binary to Decimal (Fractional) 
.01012 =(2 ·1 )+1 (2.2 ) +0(2 -3) + 1(2 -4) 

=0 +1/4 +0 +1116 
=5/1610 

EXAMPLE 3 Octal to Decimal (Integer) 

3248=3(8 2 ) +2(8 1) +4(80) 
=3(64)+2(8) +4(1) 

=192 +16 +4 
=21210 

EXAMPLE 4 Octal to Decimal (Fractional) 

.448 =4(8 -1 )+4(8.2
) 

=4/8 +4/64 

=36/6410 

RADIX ARITHMETIC 
To convert a whole number from rj to rr (rj > rr): 

1. Divide rj by rr using rj arithmetic 
2. The remainder is the lowest order bit in the new expression 
3. Divide the integral part from the previous operation by rr 
4. The remainder is the next higher order bit in the new expression 
5. The process continues until the division produces only a remainder which will 

be the highest order bit in the rf expression. 

To convert a fractional number from rj to rr: 

1. Multiply rj by rr using rj arithmetic 
2. The integral part is the highest order bit in the new expression 
3. Multiply the fractional part from the previous operation by rr 
4. The integral part is the next lower order bit in the new expression 
5. The process continues until sufficient precision is achieved or the process 

terminates. 

B-6 



SUBSTITUTION 

EXAM?LE 1 Decimal to Binary (Integer) 

45 2 22 remainder 1; record 1 
22 2 11 remainder 0; record 0 
11 2 5 remainder 1; record 

5 --;- 2 2 remainder 1; record 
2 2 1 remainder 0; record 0 
1 2 0 remainder 1; record 

Thus: 4510 = 1011012 101101 

EXAMPLE 2 

.25 x 2 

.5 x 2 

.0 x 2 

Decimal to Binary (Fractional) 

0.5; record 
1.0; record 
0.0; record 

o 

o 
Thus: .2510 = .0102 .010 

EXAMPLE 3 

273 -7 8 
34 -7 8 

4 -7 8 

Decimal to Octal (Integer) 

34 remainder 1; record 1 
4 remainder 2; record 2 
o remainder 4; record _4_ 

421 

Thus: 27310 = 4218 

EXAMPLE 4 Decimal to Octal (Fractional) 

.55 x 8 = 4.4; record 4 

.4 x 8 = 3.2; record 3 

.2 x 8 = 1.6; record 

.431 ... 
Thus: .5510 .431 ... 8 

This method permits easy conversion between octal and binary representations of a 
number. If a number in binary notation is partitioned into triplets to the right and left 
of the binary point, each triplet may be converted into an octal digit. Similarly, each 
octal digit may be converted into a triplet of binary digits. 

EXAMPLE 1 Binary to Octal 

Binary = 110 000 001 010 
Octal = 6 0 2 

EXAMPLE 2 Octal to Binary 

Octal = 6 5 0 2 2 7 
Binary = 110 101 000 010 010 111 

B-7 



SUPPLEMENTARY INSTRUCTION INFORMATION 

FIXED POINT ARITHMETIC 

24-Bit Precision 

Any number may be expressed in the form kBn
, where k is a coefficient, B a base num­

ber, and the exponent n the power to which the base number is raised. 

A fixed point number assumes: 

1. The exponent n = 0 for all fixed point numbers. 
2. The coefficient, k, occupies the same bit positions within the computer word 

for all fixed point numbers. 
3. The radix (binary) point remains fixed with respect to one end of the expression. 

A fixed point number consists of a sign bit and coefficient as shown below. The upper 
bit of any fixed point number designates the sign of the coefficient (23 lower order bits). 
If the bit is "1", the quantity is negative since negative numbers are represented in 
one's complement notation; a "0" sign bit signifies a positive coefficient. 

23 
SIGN 
BIT 

22 00 

COEFFICIENT 

The radix (binary) point is assumed to be immediately to the right of the lowest order 
bit (00). 

In many instances, the values in a fixed point operation may be too large or too small 
to be expressed by the computer. The programmer must position the numbers within 
the word format so they can be represented with sufficient precision. The process, called 
scaling, consists of shifting the values a predetermined number of places. The numbers 
must be positioned far enough to the right in the register to prevent overflow but far 
enough to the left to maintain precision. The scale factor (number of places shifted) is 
expressed as the power of the base. For example, 5,100,00010 may be expressed as 0.51 x 
107,0.051 X 108, 0.0051 X 109, etc. The scale factors are 7, S, and 9. 

Since only the coefficient is used by the computer, the programmer is responsible for 
remembering the scale factors. Also, the possibility of an overflow during intermediate 
operations must be considered. For example, if two fractions in fixed point format are 
multiplied, the result is a number < 1. If the same two fractions are added, subtracted, 
or divided, the result may be greater than one and an overflow will occur. Similarly, if 
two integers are multiplied, divided, subtracted or added, the likelihood of an overflow 
is apparent. 

48-Bit Precision (Double Precision) 
The 4S-bit Add, Subtract, Multiply and Divide instructions enable operands to be 
processed. The Multiply and Divide instructions utilize the E register and therefore are 
executed as trapped instructions if the applicable arithmetic option is not present in a 
system. Figure 7-4 in the Instruction Section illustrates the operand formats in 4S-bit 
precision Multiply and Divide instructions. 

B-S 



FlOAlriNG POINT ARITHMETIC 
As an alternative to fixed point operation, a method involving a variable radix point, 
called floating point, is used. This significantly reduces the amount of bookkeeping re­
quired on the part of the programmer. 

By shifting the radix point and increasing or decreasing the value of the exponent, widely 
varying quantities which do not exceed the capacity of the machine may be handled. 

Floating point numbers within the computer are represented in a form similar to that 
used in scientific notation, that is, a coefficient or fraction multiplied by a number raised 
to a power. Since the computer uses only binary numbers, the numbers are multiplied 
by powers of two. 

F • 2E where: F = fraction 
E=exponent 

In floating point, different coefficients need not relate to the same power of the base as 
they do in fixed point format. Therefore, the construction of a floating point number 
includes not only the coefficient but also the exponent. 

NOTE 

Refer to Figure 7-5 in the Instruction Section for the operand format and bit func­
tions for specific floating point instructions. 

Coefficient 
The coefficient consists of a 36-bit fraction in the 36 lower order positions of the floating 
point word. The coefficient is a normalized fraction; it is equal to or greater than Y.! but 
less than 1. The highest order bit position (47) is occupied by the sign bit of the coeffi­
cient. If the sign bit is a "0", the coefficient is positive; a "I" bit denotes a negative 
fraction (negative fractions are represented in one's complement notation). 

Exponent 
The floating point exponent is expressed as an ll-bit quantity with a value ranging from 
0000 to 37778. It is formed by adding a true positive exponent and a bias of20008 or a true 
negative exponent and a bias of 17778. This results in a range of biased exponents as 
shown below. 

True Positive Biased True Negative Biased 
Exponent Exponent Exponent Exponent 

+0 2000 -0 2000* 
+1 2001 -1 1776 
+2 2002 -2 1775 
-- --- - -- ------
-- ---- - - ------
+1776 3776 -1776 0001 
+17778 37778 -17778 00008 

47 46 36 35 00 

EXPONENT (INCLUDING BIAS) COEFFICIENT 

The exponent is biased so that floating point operands can be compared with each other 
in the normal fixed point mode. 

*Minus zero is sensed as positive zero by the computer and is therefore biased by 20008 rather than 17778. 

B-9 



As an example, compare the unbiased exponents of +528 and +0.028 (Example 1). 

EXAMPLE 1 

o 
Coefficient 

Sign 

a 
Coefficient 

Sign 

0 a 

Number = +52 

000 000 

Exponent 

Number = +0.02 

·111 111 

Exponent 

110 

011 

(36 bits) 

Coefficient 

(36 bits) 

Coefficient 

In this case +0.02 appears to be larger than +52 because of the larger exponent. If, 
however, both exponents are biased (Example 2), changing the sign of both exponents 
makes +52 greater than +0.02. 

EXAMPLE 2 

a 
Coefficient 

Sign 

a 
Coefficient 

Sign 

a 

Number = +528 

a 000 000 110 

Exponent 

Number = +0.028 

111 111 011 

Exponent 

(36 bits) 

Coefficient 

(36 bits) 

Coefficient 

When bias is used with the exponent, floating point operation is more versatile since 
floating point operands can be compared with each other in the normal fixed point mode. 

All floating point operations involve the A, Q, and E registers, plus two consecutive 
storage locations M and M + 1. The A and Q registers are treated as one 48-bit register. 
Indirect addressing and address modification are applicable to this whole group of in­
structions. 

Operand Formats 
The AQ register and the storage address contents have identical formats. 

In both cases the maximum possible shift is 64 (778) bit positions. Since the coefficient 
consists of only 36 bits at the start, any shift greater than 36 positions will, of course, 
always result in an answer equal to the larger of the two original operands. 

B-10 



(A) and (M) 

(0) and (M + 1) 

Exponents 

(47) (46) (36) (35) (24) 
23 22 12 11 00 

Sign of 
Coefficient 

11-bit o;;;r:and Upper 1i'bits of 
exponent including operand coefficient 
bias 

23 00 

I I 

The 3100, 3200, 3300 Computers use an ll-bit exponent that is biased by 20008 for float­
ing point operations. The effective modulus of the exponent is ± 17778 or ± 102310. 

Exponent Equalization 
During floating point addition and subtraction, the exponents involved are equalized 
prior to the operation. 

1. Addition - The coefficient of the algebraically smaller exponent is automati­
cally shifted right in AQE until the exponents are equal. A maximum of 778 
shifts may occur. 

2. Subtraction - If AQ contains the algebraically smaller exponent, the coefficient 
in AQ is shifted right in AQE until the exponents are equal. If (M) and (M + 1) 
have the smaller exponent, the complement of the coefficient of (M) and (M + 1) 
is shifted right in AQE until the exponents are equal or until a maximum of 
778 shifts are performed. 

Rounding 
Rounding is an automatic floating point operation and is particularly necessary when 
floating point arithmetic operations yield coefficient answers in excess of 36 bits. 

Although standard floating point format requires only a 36-bit coefficient, portions of 
the E register are used for extended coefficients. Refer to individual instruction descrip­
tions for E register applications. 

Rounding modifies the coefficient result of a floating point operation by adding or sub­
tracting a "I" from the lowest bit position in (~ without regard to the biased exponent. 
The coefficient ofthe answer in AQ passes through the adder with the rounding quantity 
before normalization. The conditions for rounding are classified according to arithmetic 
operation in Table B-2. 

B-ll 



I 

I 

I 

TABLE B-2. ROUNDED CONDITIONS FOLLOWING ARITHMETIC OPERATION 

Bit 47 of the E Register 
Arithmetic Bit 23 of the I or Applicable 

OPERATION A Register (Ratio of Residue/Divisor Rounding 
for Divide Only) 

0* 0 No 

0* , Add "'1" 
ADD ,* 0 Subtract "'" or 

SUBTRACT ,* , No 

Comments: Rounding occurs as a result of inequality between the sign bits 
of AQ and E. 

0 0 No 

0 , 
Add "'" , 0 Subtract '" " 

MULTIPLY , , No 

Comments: A floating point multiplication yields a 76 bit coefficient. Compari-
son between the sign bits of AQ and E indicates that the lower 36 
bits are equal to or greater than 1;2 of the lowest order bit in AQ. 

0 :2: 1;2 (absolute) Add "'" 

0 S; 1;2 (absolute) No 

DIVIDE 
, :2: 1;2 (absolute) Subtract "'" , S; 1;2 (absolute) No 

Comments: Rounding occurs if the answer resulting from the final residue 
division is equal to or greater than 1;2 

*Condition of bit 23 of the A register immediately after equalization. (Refer to Exponent Equalization on preceeding 
pagel. 

I 

Normalizing 
Normalizing brings the above answer back to a fraction with a value between one-half 
and one with the binary point to the left of the 36th bit of the coefficient. In other words, 
the final normalized coefficient in AQ will range in value from 236 to 231-1 including sign. 
Arithmetic control normalizes the answer by right or left shifting the coefficient the 
necessary number of places and adjusting the exponent. It does not shift the residue 
that is in E. 

Faults 
Three conditions are considered faults during the execution of floating point instructions: 

1. Exponent overflow (> + 17778) 
2. Exponent underflow « - 17778) 
3. Division by zero, by too small a number, or by a number that is not in floating 

point format. 

These faults have several things in common: 

1. They can be sensed by the INS (77.3) instruction 
2. Sensing automatically clears them 
3. The program should sense for these faults only after the floating point instruc­

tions have had sufficient time to go to completion 
4. They may be used to cause an interrupt. 

B-12 



FIXED POINT/FLOATING POINT CONVERSIONS 

Fixed Point to Floating Point 
1. Express the number in binary. 
2. Normalize the number. A normalized number has the most significant 1 posi­

tioned immediately to the right of the binary point and is expressed in the 
range liz .::; k < 1. 

3. Inspect the sign of the true exponent. If the sign is positive add 20008 (bias) 
to the true exponent of the normalized number. If the sign is negative, add the 
bias 17778 to the true exponent of the normalized number. In either case, the 
resulting exponent is the biased exponent. 

4. Assemble the number in floating point. 
5. Inspect the sign of the coefficient. If negative, complement the assembled 

floating point number to obtain the true floating point representation of the 
number. If the sign of the coefficient is positive, the assembled floating point 
number is the true representation. 

EXAMPLE 1 Convert +4.0 to floating point 

1. The number is expressed in octal. 

2. Normalize. 4.0 = 4.0 x 8 0 = 0.100 x 2 3 

3. Since the sign of the true exponent is positive. 
add 2000s (bias) to the true exponent. Biased 
exponent = 2000 + 3. 

4. Assemble number in floating point format. 
Coefficient = 400 000 000 ODDs 
Biased Exponent = 2003s 
Assembled word = 2003 400 000 000 ODDs 

5. Since the sign of the coefficient is positive, the 
floating point representation of +4.0 is as 
shown. If, however, the sign of the coefficient 
were negative, it would be necessary to com­
plement the entire floating point word. 

EXAiVlPLE 2 Convert -4.0 to floating point 

1. The number is expressed in octal. 

2. Normalize. -4.0 = -4.0 x 8 0 = -0.100 x 2 3 

3. Since the sign of the true exponent is positive, 
add 2000s (bias) to the true exponent. Biased 
exponent = 2000 + 3 

4. Assemble number in floating point format. 
Coefficient = 400000000 ODDs 
Biased Exponent = 2003s 
Assembled word = 2003400000 000 ODDs 

5. Since the sign of the coefficient is negative, 
the assembled floating point word must be 
complemented. Therefore, the true floating 
point representation for 
-4.0 = 5774377 777 777 777s. 

B-18 



EXAMPLE 3 Convert 0.510 to floating point 

1. Convert to octal. 0.510 = 0.48 

2. Normalize. 0.4 = 0.4 x 8 0 = 0.100 x 2 0 

3. Since the sign of the true exponent' is positive, 
add 20008 (bias) to the true exponent. Biased 
exponent = 2000 + O. 

4. Assemble number in floating point format. 
Coefficient = 400000000 0008 
Biased Exponent = 20008 
Assembled word = 2000 400 000 000 0008 

5. Since the sign ofthe coefficient is positive, the 
floating point representation of +0.510 is as 
shown. If, however, the sign of the coefficient 
were negative, it would be necessary to com­
plement the entire floating point word: This 
example is a special case of floating point 
since the exponent of the normalized number 
is 0 and could be represented as -0. The ex­
ponent would then be biased by 17778 instead 
of 20008 because of the negative exponent. 
The 3100 and 3200. however. recognize -0 
as + 0 and bias the exponent by 20008. 

EXAMPLE 4 Convert 0.048 to floating point 

1. The number is expressed in octal. 

2. Normalize. 0.04 = 0.04 x 8 0 = 0.4 X 8"1 

0.100x2-3 

3. Since the sign of the true exponent is nega­
tive, add 17778 (bias) to the true exponent. 
Biased exponent = 17778 + (-3) = 17748 

4. Assemble number in floating point format. 
Coefficient = 400000 000 0008 
Biased Exponent = 17748 
Assembled word = 17744000000000008 

5. Since the sign of the coefficient is positive. the 
floating point representation of 0.048 is as 
shown. If. however. the sign of the coefficient 
were negative. it would be necessary to com­
plement the entire floating point word. 

B-14 



Floating Point to Fixed Point Format 
1. If the floating point number is negative, complement the entire floating point 

word and record the fact that the quantity is negative. The exponent is now 
in a true biased form. 

2. If the biased exponent is equal to or greater than 20008, subtract 20008 to ob­
tainthe true exponent; ifless than 20008, subtract 17778 to obtain true exponent. 

3. Separate the coefficient and exponent. If the true exponent is negative, the 
binary point should be moved to the left the number of bit positions indicated 
by the true exponent. If the true exponent is positive, the binary point should 
be moved to the right the number of bit positions indicated by the true exponent. 

4. The coefficient has now been converted to fixed binary. The sign of the coeffi­
cient will be negative if the floating point number was complemented in step 
one. (The sign bit must be extended if the quantity is placed in a register.) 

5. Represent the fixed binary number in fixed octal notation. 

EXAMPLE 1 Convert floating point number 
2003 400 000 000 OOOs to 
fixed octal 

1. The floating point number is positive and re­
mains uncomplemented. 

2. The biased exponent> 2000a; therefore. sub­
tract 2000a from the biased exponent to ob­
tain the true exponent of the number. 2003 -
2000 = +3 

3. Coefficient = 400 000 000 OOOs = .1002. 
Move binary point to the right three places. 
Coefficient = 100.02. 

4. The sign of the coefficient is positive because 
the floating point number was not comple­
mented in step one. 

5. Represent in fixed octal notation. 
100.0 x 2 0 = 4.0 x 8 0 . 

EXAMPLE 2 Convert floating point number 
5774377 777 777 777s to fixed octal 

1. The sign of the coefficient is negative; there­
fore. complement the floating point number. 

Complement = 2003 400 000 000 OOOs 

2. The biased exponent (in complemented form) 
> 2000a; therefore, subtract 2000a from the 
biased exponent to obtain the true exponent 
ofthe number. 2003 - 2000 = +3 

3. Coefficient = 4000 000 000 OOOs = 0.1002. 
Move binary point to the right three places. 
Coefficient = 100.02 

4. The sign of the coefficient will be negative 
because the floating point number was origi­
nally complemented. 

5. Convert to fixed octal. -100.02 = -4.0a 

B-15 



EXAMPLE 3 Convert floating point number 
1774 400 000 000 0008 
to fixed octal 

1. The floating point number is positive and 
remains uncomplemented. 

2. The biased exponent < 20008; therefore, sub­
tract 17778 from the biased exponent to ob­
tain the true exponent of the number. 17748-
17778 =-3 

3. Coefficient = 400 000 000 0008 = .1002. 
Move binary point to the left three places. 
Coefficient = .0001002 

4. The sign of the coefficient is positive because 
the floating point number was not comple­
mented in step one. 

5. Represent in fixed octal notation . 
. 0001002 = .048 

BINARY CODED DECIMAL (BCD]I ARITHMETIC 

General 

The Binary Coded Decimal (BCD) option expands the arithmetic capabilities of a 3100, 3200, 
or 3300 Computer by providing the necessary logic for loading, storing, shifting, adding and 
subtracting binary coded decimal characters. A standard 24-bit data word is comprised of 
four 6-bit BCD characters. The general format for a BCD word and the bit function within a 
typical character are illustrated in Figure B-l. Tables B-3 and B-4 define the significance of 
binary data within a character. 
Figure B-2 depicts the ED register and the other digits displayed on the 3200 Console. 

23 18 17 12 11 06 05 00 

o I 2 3 

~C' .! ~ ~ haracter positions ~ 

BCD Character 

Figura B-1. BCD Word and Character Format 

B-16 



TABLE B-3. BCD SIGN BIT POSITIONS 

Sign of BCD Relative Bit Positions 
Character* 6 5 

+ 0 0 

+ 0 1 
- 1 0 

+ 1 1 

TABLE B-4. DECIMAL/BCD CHARACTER FORMAT 

Decimal BCD Character Relative Bit 
Number** Positions 

4 3 2 1 

0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

L-l_5~I_l_4~I_l_3~1~2~1~1_1~1_0~_9~_8~I~ED~~LI _7-L_6-L1_5~1_4~_3~ __ 2-L~ __ o~1 

1 r 
lL 
__ i_tL--_-_-_-_-~_ -_ -_ --_BCD character digits t 

L _______________ Overflow digit 

Sign of ED register 
L-------------------MSD of second operand 

L---_____________________ Sign of second operand 

Figure B-2. ED Register and Supplemental Digits 

*The Lowest Significant Digit of a given BCD field contains the sign of the operand in relative bit positions 
5 and 6. A fault is indicated ifrelative bits 5 and (3 in the remaining characters contain anything other than 
zeroes; however, the current instruction will continue to be executed. 

** A fault is also indicated if an illegal character is sensed in bits 1 through 4 (1010,1011,1100,1101,1110 or 1111). 

B-17 



Formats: These instructions handle 4-bit BCD characters rather than whole 24-bit 
words. These characters are placed into the ED register and storage in.the following ways: 

1) ED Register 

52 51 00 

~ ! '----------~y~----------~/ 
Sign Overflow 
of E character 

position 
BCD Characters 

The 53-bit ED register can hold 12 regular BCD characters plus one 
overflow character. 

2) Storage 

23 18 17 12 11 0605 00 

(M) = o 2 I 3 

Each 24-bit storage word may be divided into four character positions of 6 bits each. 
The lower 4 bits of each position may hold any BCD character, 0-9; the upper 2 bits 
are reserved for the sign designator, one per field. For each field the sign accompanies 
the least significant character. 10xxxx specifies negative; any other combination, posi­
tive (refer to Table B-3). The upper 2 bits of all other characters in the field must equal 
zero. The most significant character precedes the least significant character of a field 
in storage. 

Field Length: The field length is specified by the contents of the 4-bit D register. Any 
number 1-12 (0001-1100) is legal.* 

Illegal Characters: By definition, any BCD characters other than 0-9 are illegal. Char­
acters are tested for legality during: 

1. Loading into E (LDE), and 
2. Addition (ADE) and subtraction (SBE). If the translation of the lower four 

bits of a character exceeds 9, the value zero will be used for that character. 

BCD Fault: The BCD fault will occur if: 

1. A sign is present in any character position other than the least significant, or 
2. An illegal character other than the lowest MB is sensed during the execution 

of LDE, ADE, SBE 
3. The contents of D exceed 12 (will set only during a SET instruction). 

* Although a fault will occur, D may equal 13 for storing 13 characters. The following sequence should be fol­
lowed in storing 13 characters: '. 

1) Set D (BCD fault will occur) 
2) Sense for BCD fault (this clears the BCD Fault indicator) 
3) Execute STE instruction. 

If the BCD fault is disregarded and there is an attempt to load, add, or subtract 13 characters, only the lower 
12 characters will be used. No additional fault will occur. 

B-18 



BCD Instruction Example 

EXECUTED INSTRUCTIONS: 70700011 
64 0 00005 

ADDRESSES: CONTENTS OF ADDRESS 

MSC 

00001 

00002 

00003 

05 )QJ @ &-- -~~::::: 
~ @ cD) @)~ 

~2 

ANALYSIS: 

4 5 LSC 
10 0 101 
'-v-' '----.r-" 

" ,,' 5 

NOTE 

Only the LSC is analyzed for the sign of the 
field. A BCD fault occurs if anything other 
than zeros are in the upper two bits of the 
remaining characters. 

70 7 00011 instruction sets the field length register (D) with 118 

64 0 00005 instruction specifies an LDE with successive BCD characters starting with 
the least significant character (LSC) at address R +(0-1) of 00005 = ad­
dress 0001, character position 1. 118 characters are loaded into ED. The 

final contents of ED are shown below. 

-0000849109825 

! 
ED = 

(A BCD character cannot be loaded 
into the 13th digit. A zero will always 
be entered here during a 64 instruction.) 

B-19 





Appen~dix C 
Programming Reference Tables 

and 
Conversion Information 





TABLE OF POWERS OF TWO 

o 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 

1 024 
2 048 

4 096 
8 192 

16 384 
32 768 

65 536 

9 0.001 953 125 
10 0.000 976 562 5 
11 0.000 488 281 25 

12 0.000 244 140 625 
13 0.000 122 070 312 5 
14 0.000 061 035 156 25 
15 0.000 030 517 578 125 

16 0.000 015 258 789 062 5 
131 072 
262 144 
524 28B 

17 0.000 007 629 394 531 25 
18 0.000 003 814 697 265 625 
19 0.000 001 907 348 632 812 5 

048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 77 5 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 
073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 

2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 45~ 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094411 924481 391 906 738 281 25 

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 

C-l 



DECIMALIBINAIW POSITION TABLE 

Decimal 
Number 

largest Decimal of 
Integer Digits Binary largest Decimal Fraction 

Req'd* 
Digits 

1 1 .5 
3 2 .75 
7 3 .875 

15 1 4 .937 5 
31 5 .968 75 
63 6 .984 375 

127 2 7 .992 187 5 
255 8 .996 093 75 
511 9 .998 046 875 

1 023 3 10 .999 023 437 5 
2 047 11 .999 511 718 75 
4 095 12 .999 755 859 375 
8 191 13 .999 877 929 687 5 

16 383 4 14 .999 938 964 843 75 
32 767 15 .999 969 482 421 875 
65 535 16 .999 984 741 210 937 5 

131 071 5 17 .999 992 370 605 468 75 
262 143 18 .999 996 185 302 734 375 
524 287 19 .999 998 092 651 367 187 5 

1 048 575 6 20 .999 999 046 325 683 593 75 
2 097 151 21 .999 999 523 162 841 796 875 
4 194 303 22 .999 999 761 581 420 898 437 5 
8 388 607 23 .999 999 880 790 "710 449 218 75 

16 777 215 7 24 .999 999 940 395 355 244 609 375 
33 554 431 25 .999 999 970 197 677 612 304 687 5 
67 108 863 26 .999 999 985 098 838 806 152 343 75 

134 217 727 8 27 .999 999 992 549 419 403 076 171 875 
268 435 455 28 .999 999 996 274 709 701 538 085 937 5 
536 870 911 29 .999 999 998 137 354 850 769 042 968 75 

1 073 741 823 9 30 .999 999 999 068 677 425 384 521 484 375 
2 147 483 647 31 .999 999 999 534 338 712 692 260 742 187 5 
4 294 967 295 32 .999 999 999 767 169 356 346 130 371 093 75 
8 589 934 591 33 .999 999 999 883 584 678 173 065 185 546 875 

17 179 869 183 10 34 .999 999 999 941 792 339 086 532 592 773 437 5 
34 359 738 367 35 .999 999 999 970 896 169 543 266 296 386 718 75 
68 719 476 735 36 .999 999 999 985 448 034 771 633 148 193 359 375 

137 438 953 471 11 37 .999 999 999 992 724 042 385 816 574 096 679 687 5 
274 877 906 943 38 .999 999 999 996 362 021 192 908 287 048 339 843 75 
549 755 813 887 39 .999 999 999 998 181 010 596 454 143 524 169 921 875 

1 099 511 €27 775 12 40 .999 999 999 999 090 505 298 227 071 762 084 960 937 5 
2 199 023'255 551 41 .999 999 999 999 545 252 649 113 535 881 042480 468 75 
4 398 046 511 103 42 .999 999 999 999 772 626 324 556 767 940 521 240 234 375 
8 796 093 022 207 43 .999 999 999 999 886 313 162 278 383 970 260 620 117 187 5 

17 592 186 044 415 13 44 .999 999 999 999 943 156 581 139 191 985 130 310 058 593 75 
35 184 372 088 831 45 .999 999 999 999 971 578 290 569 595 992 565 155 029 296 875 
70 368 744 177 663 46 .999 999 999 999 985 789 145 284 797 996 282 577 514 648 437 5 

140 737 488 355 327 14 47 .999 999 999 999 992 894 572 642 398 998 141 288 757 324 218 75 

*Larger numbers within a digit group should be checked for exact number of decimal digits required. 

Examples of use: 

1. Q. What is the largest decimal value that can be expressed by 36 binary digits? 
A.68,719,476,735. 

2. Q. How many decimal digits will be required to express a 22-bit number? 
A. 7 decimal digits. 

C-2 



OCTAL ARITHMETIC MATRICES 

ADDITION-SUBTRACTION 

2 3 4 5 6 7 10 

3 4 5 6 7 10 11 

4 5 6 7 10 11 12 

5 6 7 10 11 12 13 

6 7 10 11 12 13 14 

7 10 11 12 13 14 15 

11 12 13 14 15 16 

MULTIPLICATION-DIVISION 

2 3 4 5 6 7 

4 6 10 12 14 16 

6 11 14 17 22 25 

10 14 20 24 30 34 

12 17 24 31 36 43 

14 22 30 36 44 52 

16 25 34 43 52 61 

C-3 



CONSTANTS 

1(" 3.14159 26535 89793 23846 26433 83279 50 

y'3 1.732 050 807 569 

v'TO 3.162 277 660 1683 

e 2.71828 18284 59045 23536 

In 2 0.69314 71805 599453 

In 10 2.30258 50929 94045 68402 

10glO 2 0.30102 99956 63981 

log 10 e 0.43429 44819 03251 82765 

10glO 10glO e 9.63778 43113 00537-10 

log 10 1(" 0.49714 98726 94133 85435 

1 degree 0.01745 32925 11943 radians 

1 radian 57.29577 95131 degrees 
IOglO(5) 0.69897 00043 36019 

7! 5040 

8! 40320 

9! 362,880 

10! 3,628,800 

11 ! 39,916,800 

12! 479,001,600 

13 ! 6,227,020,800 

14! 87,178,291,200 

15 ! 1,307,674,368,000 

16 ! 20,922.789,888,000 
1(" 0.01745 32925 19943 29576 92369 07684 9 

180 

~2 2.4674 01100 27233 96 

tf13 3.8757 84585 03747 74 

tf14 6.0880 68189 62515 20 

~5 9.5631 15149 54004 49 

tf16 15.0217 06149 61413 07 

~7 23.5960 40842 00618 62 

tf18 37.0645 72481 52567 57 

~3 58.2208 97135 63712 59 
2 • 

( ;}o 91.4531 71363 36231 53 

(;t 143.6543 05651 31374 95 

( ;}2 225.6516 55645 350 

(;t 354.4527 91822 91051 47 

(;t 556.7731 43417 624 

Rev. F C-4 



CONSTANTS (Continued) 

71"2 9.86960 44010 89358 61883 43909 9988 
271"2 19.73920 88021 78717 23766 87819 9976 
371"2 29.60881 32032 68075 85680 31729 9964 
471"2 39.47841 76043 57434 47533 75639 9952 
571"2 49.34802 20054 46793 09417 19549 9940 
671"2 59.21762 64065 36151 71300 63459 9928 
771"2 69.08723 08076 25510 33184 07369 9916 
871"2 78.95683 52087 14868 95067 51279 9904 
971"2 88.82643 96098 04227 56950 95189 9892 

V2 1.414 213 562 373 095 048 801 688 
1 +V2 2.414 213 562 373 095 048 801 688 

( 1 + V2)2 5.828 427 124 746 18 
( 1 + 0)4 33.970 562 748 477 08 
( 1 + 0)6 197.994 949 366 116 30 
( 1 + 0)B 1153.999 133 448 220 72 
( 1 + 0)10 = 6725.999 851 323 208 02 
( 1 + 0)12 = 39201.999 974 491 027 40 
( 1 + 0)14 = 228485.999 995 622 956 38 
( 1 + 0)16 1331713.999 999 246 711 
( 1 +V2)18 = 7761797.999 999 884 751 

Sin .5 0.47942 55386 04203 
Cos .5 0.87758 25618 90373 
Tan .5 0.54630 24898 43790 

Sin 1 0.84147 09848 07896 
Cos 1 0.54030 23058 68140 
Tan 1 1.55740 77246 5490 

Sin 1.5 0.99749 49866 04054 
Cos 1.5 0.07073 72016 67708 
Tan 1.5 14.10141 99471 707 

C-5 



OCTAL-DECIMAL INTEGER CONVERSION TABLE 

I 
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

I 0000 0000 0001 0002 0003 0004 0005 0006 0007 
0010 0008 0009 0010 0011 0012 0013 0014 0015 

I 0020 0016 0017 0018 0019 0020 0021 0022 0023 
0030 0024 0025 0026 0027 0028 0029 0030 0031 

! 0040 0032 0033 0034 0035 0036 0037 0038 0039 

0400 0256 0257 11258 0259 0260 0261 0262 0263 
0410 0264 0265 0266 0267 0268 0269 0270 0271 
0420 0272 0273 0274 0275 0276 0277 0278 0279 
0430 0280 0281 0282 0283 0284 0285 0286 0287 
0440 0288 0289 0290 0291 0292 0293 0294 0295 

0000 0000 
to to 

0777 0511 
(Octal) (Decimal) 

, 
0050 0040 0041 0042 0043 0044 0045 0046 0047 

I 0060 0048 0049 0050 0051 0052 0053 0054 0055 
0070 0056 0057 0058 0059 0060 0061 0062 0063 

I 
! 0100 0064 0065 0066 0067 0068 0069 0070 0071 

I 
0110 0072 0073 0074 0075 0076 0077 0078 0079 
0120 0080 0081 0082 0083 0084 0085 0086 0087 
0130 0088 0089 0090 0091 0092 0093 0094 0095 

I 0140 0096 0097 0098 0099 0100 0101 0102 0103 

I 0150 0104 0105 0106 0107 0108 0109 0110 0111 

I 0160 0112 0113 0114 0115 0116 0117 0118 0119 

0450 0296 0297 0298 0299 0300 0301 0302 0303 
0460 0304 0305 0306 0307 0308 0309 0310 0311 
0470 0312 0313 0314 0315 0316 0317 0318 0319 

0500 0320 0321 0322 0323 0324 0325 0326 0327 
0510 0328 0329 0330 0331 0332 0333 0334 0335 
0520 0336 0337 0338 0339 0340 0341 0342 0343 
0530 0344 0345 0346 0347 0348 0349 0350 0351 
0540 0352 0353 0354 0355 0356 0357 0358 0359 
0550 0360 0361 0362 0363 0364 0365 0366 0367 
0560 0368 0369 0370 0371 0372 0373 0374 0375 

Octal Decimal 
10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

I 
0170 0120 0121 0122 0123 0124 0125 0126 0127 

0200 0128 0129 0130 0131 0132 0133 0134 0135 

I 

0210 0136 0137 0138 0139 0140 0141 0142 0143 
0220 0144 0145 0146 0147 0148 0149 0150 0151 
0230 0152 0153 0154 0155 0156 0157 0158 0159 
0240 0160 0161 0162 0163 0164 0165 0166 0167 
0250 0168 0169 0170 0171 0172 0173 0174 0175 

0570 0376 0377 0378 0379 0380 0381 0382 0383 

0600 0384 0385 0386 0387 0388 0389 0390 0391 
0610 0392 0393 0394 0395 0396 0397 0398 0399 
0620 0400 0401 0402 0403 0404 0405 0406 0407 
0630 0408 0409 0410 0411 0412 0413 0414 0415 
0640 0416 0417 0418 0419 0420 0421 0422 0423 
0650 0424 0425 0426 0427 0428 0429 0430 0431 

I 
0260 0176 0177 0178 0179 0180 0181 0182 0183 
0270 0134 0185 0186 0187 0138 0189 0190 0191 

I 0300 0192 0193 0194 0195 0196 0197 0198 0199 

0660 0432 0433 0434 0435 0436 0437 0438 0439 
0670 0440 0441 0442 0443 0444 0445 0446 0447 

0700 0448 0449 0450 0451 0452 0453 0454 0455 

I 0310 0200 0201 0202 0203 0204 0205 0206 0207 
0320 0208 0209 0210 0211 0212 0213 0214 0215 

0710 0456 0457 0458 0459 0460 0461 0462 0463 
0720 0464 0465 0466 0467 0468 0469 0470 0471 

0330 0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 0476 0477 0478 0479 
0340 0224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0486 0487 
0350 0232 0233 0234 0235 0236 0237 0238 0239 0750 0488 0489 0490 0491 0492 0493 0494 0495 
0360 0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499 0500 0501 0502 0503 

L 0370 0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507 0508 0509 0510 0511 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

r mo" 
0512 0513 0514 0515 0516 0517 0518 0519 

1U10 0520 0521 0522 0523 0524 0525 0526 0527 
1020 0528 0529 0530 0531 0532 0533 0534 0535 
1030 0536 0537 0538 0539 0540 0541 0542 0543 
1040 0544 0545 0546 0547 0548 0549 0550 0551 

1

1050 0552 0553 0554 0555 0556 0557 0558 0559 
1060 0560 0561 0562 0563 0564 0565 0566 0567 
1070 0568 0569 0570 0571 0572 0573 0574 0575 

1400 0768 0769 0770 0771 0772 0773 0774 0775 
1410 0776 0777 0778 0779 0780 0781 0782 0783 
1420 0784 0785 0786 0787 0788 0789 0790 0791 
1430 0792 0793 0794 0795 0796 0797 0798 0799 
1440 0800 0801 0802 0803 0804 0805 0806 0807 
1450 0808 0809 0810 0811 0812 0813 0814 0815 
1460 0816 0817 0818 0819 0820 0821 0822 0823 
1470 0824 0825 0826 0827 0828 0829 0830 0831 

1000 0512 
to to 

1777 1023 
(Octal) (Decimal) 

1100 0576 0577 0578 0579 0580 0581 0582 0583 1500 0832 0833 0834 0835 0836 0837 0838 0839 
1110 0584 0585 0586 0587 0588 0589 0590 0591 1510 0840 0841 0842 0843 0844 0845 0846 0847 
1120 0592 0593 0594 0595 0596 0597 0598 0599 1520 0848 0849 0850 0851 0852 0853 0854 0855 
1130 0600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857 0858 0859 0860 0861 0862 0863 
1140 0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865 0866 0867 0868 0869 0870 0871 
1150 0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 0874 0875 0876 0877 0878 0879 
1160 0624 0625 0626 0627 0628 0629 0630 0631 1560 0880 0881 0882 0883 0884 0885 0886 0887 
1170 0632 0633 0634 0635 0636 0637 0638 0639 1570 0888 0889 0890 0891 0892 0893 0894 0895 

1200 0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0898 0899 0900 0901 0902 0903 
1210 0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906 0907 0908 0909 0910 0911 
1220 0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914 0915 0916 0917 0918 0919 
1230 0664 0665 0666 0667 0668 0669 0670 0671 1630 0920 0921 0922 0923 0924 0925 0926 0927 
1240 0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931 0932 0933 0934 0935 
1250 0680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 0940 0941 0942 0943 
1260 0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 0948 0949 0950 0951 
1270 0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0955 0956 0957 0958 0959 

1300 0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961 0962 0963 0964 0965 0966 0967 
1310 0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971 0972 0973 0974 0975 
1320 0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0977 0978 0979 0980 0981 0982 0983 
1330 0728 0729 0730 0731 0732 0733 0734 0735 1730 0984 0985 0986 0987 0988 0989 0990 0991 
1340 0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0994 0995 0996 0997 0998 0999 
1350 0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003 1004 1005 1006 1007 
1360 0752 0753 0754 0755 0756 0757 0758 0759 1760 1008 1009 1010 1011 1012 1013 1014 1015 
1370 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019 1020 1021 1022 1023 

C-6 



2000 1024 
to to 

2777 1535 
(Oclal) (Decimal) 

Oclal Decimal 
10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

3000 1536 
to to 

3777 2047 
(Oclal) (Decimal) 

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont'd) 

0 , 2 3 4 5 6 7 0 1 2 3 4 

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281 1282 1283 1284 
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 1290 1291 1292 
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 1298 1299 1300 
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 1306 1307 1308 
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 1314 1315 1316 
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 1322 1323 1324 
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 1330 1331 1332 
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 1338 1339 1340 

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348 
211 0 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353 1354 1355 1356 
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 1362 1363 1364 
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 1370 1371 1372 
2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 1376 1377 1378 1379 1380 
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 1386 1387 1388 
2160 1 ;36 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396 
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401 1402 1403 1404 

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 1416 1417 1418 1419 1420 
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 
2230 1176 1177 1178 1179 1180 1181 1182 1183 2630 1432 1433 1434 1435 1436 
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 1450 1451 1452 
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 1456 1457 1458 1459 1460 
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 1466 1467 1468 

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 1482 1483 1484 
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 1490 1491 1492 
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 1498 1499 1500 
2340 1248 1249 1250 ,1251 1252 1253 1254 1255 2740 1504 1505 1506 1507 1508 
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 1514 1515 1516 
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 1522 1523 1524 
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 1530 1531 1532 

0 1 2 3 4 5 6 ., 0 1 2 3 4 

3000 1536 1537 1538 1539 1540 1541 1542 1543 3400 1792 1793 1794 1795 1796 
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 1802 1803 1804 
3020 1552 1553 1554 1555 1556 1557 1556 1559 3420 1808 1809 1810 1811 1812 
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 1818 1819 1820 
3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 1824 1825 1826 1827 1828 
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836 
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 1842 1843 1844 
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470, 1848 1849 1850 1851 1852 

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 1858 1859 1860 
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 1866 1867 1868 
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 1872 1873 1874 1875 1876 
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1881 1882 1883 1884 
3140 1632 1633 1634 1635 1636 1637 1638 1639 3540 1888 1889 1890 1891 1.892 
3150 1640 1641 1642 1643 1644 1645 1646 1647 3550 1896 1897 1898 1899 1900 
3160 1648 1649 1650 1651 1652 1653 1654 1655 3560 1904 1905 1906 1907 1908 
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 1914 1915 1916 

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 1922 1923 1924 
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610 1928 1929 1930 1931 1932 
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620 1936 1937 1938 1939 1940 
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945 1946 1947 1948 
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953 1954 1955 1956 
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 -1962 1963 1964 
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 1968 1969 1970 1971 1972 
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 1976 1977 1978 1979 1980 

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700 1984 1985 1986 1987 1,988 
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 1994 1995 1996 
3320 1744 1145 1746 1747 1748 1749 1750 1751 3720 2000 2001 2002 2003 2004 
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 2010 2011 2012 
3340 1760 1761 1762 1763 1764 1765 1766 1767 3740 2016 2017 2018 2019 2020 
3350 1768 1769 1770 1771 1772 1773 1774 1775 3750 2024 2025 2026 2027 2028 
3360 1776 1777 1778 1779 1780 1781 1782 1783 3760 2032 2033 2034 2035 2036 
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 2042 2043 2044 

C-7 

5 6 7 

1285 1286 1287 
1293 1294 1295 
1301 1302 1303 
1309 1310 1311 
1317 1318 1319 
1325 1326 1327 
1333 1334 1335 
1341 1342 1343 

1349 1350 1351 
1357 1358 1359 
1365 1366 1367 
1373 1374 1375 
1381 1382 1383 
1389 1390 1391 
1397 1398 1399 
1405 1406 1407 

1413 1414 1415 
1421 1422 1423 
1429 1430 1431 
1437 1438 1439 
1445 1446 1447 
1453 1454 1455 
1461 1462 1463 
1469 1470 1471 

1477 1478 1479 
1485 1486 1487 
1493 1494 1495 
1501 1502 1503 
1519 1510 1511 
1517 1518 1519 
1525 1526 1527 
1533 1534 1535 

5 6 7 

1797 1798 1799 
1805 1806 1807 
1813 1814 1815 
1821 1822 1823 
1829 1830 1831 
1837 1838 1839 
1845 1846 1847 
1853 1854 1855 

1861 1862 1863 
1869 1870 1871 
1877 1878 1879 
1885 1886 1887 
1893 1894 1895 
1901 1902 1903 
1909 1910 1911 
1917 1918 1919 

1925 1926 1927 
1933 1934 1935 
1941 1942 1943 
1949 1950 1951 
1957 1958 1959 
1965 1966 1967 
1973 1974 1975 
1981 1982 1983 

1989 1990 1991 
1997 1998 1999 
2005 2006 2007 
2013 2014 2015 
2021 2022 2023 
2029 2030 2031 
2037 2038 2039 
2045 2046 2047 

Rev.H 



0 1 

4000 2048 2049 
4010 2056 2057 
4020 2064 2065 
4030 2072 2073 
4040 2080 2081 
4050 2088 2089 
4060 2096 2097 
4070 2104 2105 

4100 2112 2113 
4110 2120 2121 
4120 2128 2129 
4130 2136 2137 
4140 2144 2145 
4150 2152 2153 
4160 2160 2161 
4170 2168 2169 

4200 2176 2177 
4210 2184 2185 
4220 2192 2193 
4230 2200 2201 
4240 2208 2209 
4250 2216 2217 
4260 2224 2225 
4270 2232 2233 

4300 2240 2241 
4310 2248 2249 
4320 2256 2257 
4330 2264 2265 
4340 2272 2273 
4350 2280 2281 
4360 2288 2289 
4370 2296 2297 

0 1 

5000 2560 2561 
5010 2568 2569 
5020 2576 2577 
5030 2584 2585 
5040 2592 2593 
5050 2600 2601 
5060 2608 2609 
5070 2616 2617 

5100 2624 2625 
5110 2632 2633 
5120 2640 2641 
5130 2648 2649 
5140 2656 2657 
5150 2664 2665 
5160 2672 2673 
5170 2680 2681 

5200 2688 2689 
5210 2696 2697 
522U 2704 2705 
5230 2712 2713 
5240 2720 2721 
5250 2728 2729 
5260 2736 2737 
5270 2744 2745 

5300 2752 2753 
5310 2760 2761 
5320 2768 2769 
5330 2776 2777 
5340 2784 2785 
5350 2792 2793 
5360 2800 2801 
5370 2808 2809 

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cant'd) 

2 3 4 5 6 7 0 1 2 3 4 5 6 7 

2050 2051 2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311 
2058 2059 2060 2061 2062 2063 4410 2312 2313 2314 2315 2316 2317 2318 2319 
2066 2067 2068 2069 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326 2327 
2074 2075 2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335 
2082 2083 2084 2085 2086 2087 4440 2336 2337 2338 2339 2340 2341 2342 2343 
2090 2091 2092 2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351 
2098 2099 2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359 
2106 2107 2108 2109 2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367 

2114 2115 2116 2117 2118 2119 4500 2368 2369 2370 2371 2372 2373 2374 2375 
2122 2123 2124 2125 2126 2127 4510 2376 2377 2378 2379 2380 2381 2382 2383 
2130 2131 2132 2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391 
2138 2139 2140 2141 2142 2143 4530 2392 2393 2394 2395 2396 2397 2398 2399 
2146 2147 2148 2149 2150 2151 4540 2400 2401 2402 2403 2404 2405 2406 2407 
2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415 
2162 2163 2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423 
2170 2171 2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431 

2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439 
2186 2187 2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447 
2194 2195 2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455 
2202 2203 2204 2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 2463 
2210 2211 2212 2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470 2471 
2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479 
2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486 2487 
2234 2235 2236 2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494 2495 

2242 2243 2244 2245 2246 2247 4700 2496 2497 2498 2499 2500 2501 2502 2503 
2250 2251 2252 2253 2254 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511 
2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519 
2266 2267 2268 2269 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527 
2274 2275 2276 2277 2278 2279 4740 2528 2529 2530 2531 2532 2533 2534 2535 
2282 2283 2284 2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542 2543 
2290 2291 2292 2293 2294 2295 4760 2544 2545 2546 2547 2546 2549 2550 2551 
2298 2299 2300 2301 2302 2303 4770 2552 2553 2554 2555 2556 2557 2558 2559 

2 3 4 5 6 7 0 1 2 3 4 5 6 7 

2562 2563 2564 2565 2566 2567 5400 2816 2817 2818 2819 2820 2821 2822 2823 
2570 2571 2572 2573 2574 2575 5410 2824 2825 2826 2827 2828 2829 2830 2831 
2578 2579 2580 2581 2582 2583 5420 2832 2833 2834 2835 2836 2837 2838 2839 
2586 2587 2588 2589 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 2847 
2594 2595 2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855 
2602 2603 2604 2605 2606 2607 5450 2856 2857 2858 2859 2860 2861 2862 2863 
2610 2611 2612 2613 2614 2615 5'160 2864 2865 2866 2867 2868 2869 2870 2871 
2618 2619 2620 2621 2622 2623 5'110 2872 2873 2874 2875 2876 2877 2878 2879 

2626 2627 2628 2629 2630 2631 5500 2880 2881 Z882 2883 2884 2885 2886 2887 
2634 2635 2636 2637 2638 2639 5510 2888 2889 2890 2891 2892 2893 2894 2895 
2642 2643 2644 2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902 2903 
2650 2651 2652 2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911 
2658 2659 2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919 
2666 2667 2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927 
2674 2675 2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935 
2682 2683 2684 2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 2943 

2690 2691 2692 2693 2694 2695 5600 2944 2945 2946 2947 2948 2949 2950 2951 
2698 2699 2700 2701 2702 2703 5610 2952 2953 2954 2955 2956 2957 2958 2959 
2706 2707 2708 2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966 2967 
2714 2715 2716 2717 2718 2719 5630 2968 2969 2970 2971 2972 2973 2974 2975 
2722 2723 2724 2725 2726 2727 5640 2976 2977 2978 2979 2980 2981 2982 2983 
2730 2731 2732 2733 2734 2735 5650 2984 2985 2986 2987 2988 2989 2990 2991 
2738 2739 2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999 
2746 2747 2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007 

2754 2755 2756 2757 2758 2759 5700 3008 3009 3010 3011 3012 3013 3014 3015 
2762 2763 2764 2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023 
2770 2771 2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031 
2778 2779 2780 2781 2782 2783 5730 3032 3033 3034 3035 3036 3037 3038 3039 
2786 2787 2788 2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047 
2794 2795 2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055 
2802 2803 2804 2805 2806 2807 5760 3056 3057 3058 3059 3060 3061 3062 3063 
2810 2811 2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071 

C-8 

4000 2048 
to to 

4777 2559 
(Octal) (Decimal) 

Octal Decimal 
10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

5000 2560 
to to 

5777 3071 
(Octal) (Decimal) 



6000 3072 
to to 

6777 3583 
(Octal) (Decimal) 

Octal Decimal 
10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

7000 3584 
to to 

7777 4095 
(Octal) (Decimal) 

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont'd) 

0 1 2 3 4 5 6 7 0 1 2 3 4 

6000 3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 
6010 3080 3081 3082 3083 3084 3085 3086 3087 6410 3336 3337 3338 3339 3340 
6020 3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 
6030 3096 3097 3098 3099 3100 3101 3102 3103 6430 3352 3353 3354 3355 3356 
6040 3104 3105 3106 3107 3108 3109 3110 3111 6440 3360 3361 3362 3363 3364 
6050 3112 3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372 
6060 3120 3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380 
6070 3128 3129 3130 3131 3132 3133 3134 3135 6470 3384 3385 3386 3387 3388 

6100 3136 3137 3138 3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 
6110 3144 3145 3146 3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404 
6120 3152 3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 
6140 3168 3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 
6150 3176 3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 
6160 3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 
6170 3192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 

6200 3200 3201 3202 3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460 
6210 3208 3209 3210 3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468 
6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 
6230 3224 3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 
6250 3240 3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 
6270 3256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 

6300 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 
6310 3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532 
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564 
6360 3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 
6370 3320 3321 3322 3323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580 

0 1 2 3 4 5 6 7 0 1 2 3 4 

7000 3584 3585 3586 3587 3588 3589 3590 3591 7400 3840 3841 3842 3843 3844 
7010 3592 3593 3594 3595 3496 3497 3598 3599 7410 3848 3849 3850 3851 3852 
7020 3600 3601 3602 3603 3604 3605 3606 3607 7420 3856 3857 3858 3859 3860 
7030 3608 3609 3610 3611 3612 3613 3614 3615 7430 3864 3865 3866 3867 3868 
7040 3616 3617 3618 3619 3620 3621 3622 3623 7440 3872 3873 3874 3875 3876 
7050 3624 3625 3626 3627 3628 3629 3630 3631 
7060 3632 3633 3634 3635 3636 3637 3638 3639 

7450 38&0 3881 3882 3883 3884 
7460 3888 3889 3890 3891 3892 

7070 3640 3641 3642 3643 3644 3645 3646 3647 7470 3896 3897 3898 3899 3900 

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500 3904 3905 3906 3907 3908 
7110 3656 3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916 
7120 3664 3665 3666 3667 3668 3669 3670 3671 7520 3920 3921 3922 3923 3924 
7130 3672 3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 
7140 3680 3681 3682 3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940 
7150 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 
7160 3696 3697 3698 3699 3700 3701 3702 3703 7560 3952 3953 3954 3955 3956 
7170 3704 3705 3706 3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964 

7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 3968 3969 3970 3971 3972 
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980 
7220 3728 3729 3730 3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988 
7230 3736 3737 3738 3739 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996 
7240 3744 3745 3746 3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 
7250 3752 3753 3754 3755 3756 3757 3758 3759 7650 4008 4009 4010 4011 4012 
7260 3760 3761 3762 3763 3764 3765 3766 3767 7660 4016 4017 4018 4019 4020 
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670 4024 4025 4026 4027 4028 

7300 3776 3777 3778 3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036 
7310 3784 3785 3786 3787 3788 3789 3790 3791 7710 4040 4041 4042 4043 4044 
7320 3792 3793 3794 3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052 
7330 3800 3801 3802 3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060 
7340 3808 3809 3810 3811 3812 3813 3814 3815 7740 4064 4065 4066 4067 4068 
7350 3816 3817 3818 3819 3820 3821 3822 3823 7750 4072 4073 4074 4075 4076 
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 4080 4081 4082 4083 4084 
7370 3832 3833 3834 3835 3836 3837 3838 3839 7770 4088 4089 4090 4091 4092 

C-9 

5 6 7 

3333 3334 3335 
3341 3342 3343 
3349 3350 3351 
3357 3358 3359 
3365 3366 3367 
3373 3374 3375 
3381 3382 3383 
3389 3390 3391 

3397 3398 3399 
3405 3406 3407 
3413 3414 3415 
3421 3422 3423 
3429 3430 3431 
3437 3438 3439 
3445 3446 3447 
3453 3454 3455 

3461 3462 3463 
3469 3470 3471 
3477 3478 3479 
3485 3486 3487 
3493 3494 3495 
3501 3502 3503 
3509 3510 3511 
3517 3518 3519 

3525 3526 3527 
3533 3534 3535 
3541 3542 3543 
3549 3550 3551 
3557 3558 3559 
3565 3566 3567 
3573 3574 3575 
3581 3582 3583 

5 6 7 

3845 3846 3847 
3853 3854 3855 
3861 3862 3863 
3869 3870 3871 
3877 3878 3879 
3885 3886 3887 
3893 3894 3895 
3901 3902 3903 

3909 3910 3911 
3917 3918 3919 
3925 3926 3927 
3933 3934 3935 
3941 3942 3943 
3949 3950 3951 
3957 3958 3959 
3965 3966 3967 

3973 3974 3975 
3981 3982 3983 
3989 3990 3991 
3997 3998 3999 
4005 4006 4007 
4013 4014 4015 
4021 4022 4023 
4029 4030 4031 

4037 4038 4039 
4045 4046 4047 
4053 4054 4055 
4061 4062 4063 
4069 4070 4071 
4077 4078 4079 
4085 4086 4087 
4093 4094 4095 



OCTAL-DECIMAL FRACTION CONVERSION TABLE 

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. 

.000 .000000 .100 .125000 .200 .250000 .300 .375000 

.001 .001953 .101 .126953 .201 .251953 .301 .376953 

.002 .003906 .102 .128906 .202 .253906 .302 .378906 

.003 .005859 .103 .130859 .203 .255859 .303 .380859 

.004 .007812 .104 .132812 .204 .257812 .304 .382812 

.005 .009765 .105 .134765 .205 .259765 .305 .384765 

.006 .011718 .106 .136718 .206 .261718 .306 .386718 

.007 .013671 .107 .138671 .207 .263671 .307 .388671 

.010 .015625 .110 .140625 .210 .265625 .310 .390625 

.011 .017578 .111 .142578 .211 .267578 .311 .392578 

.012 .019531 .112 .144531 .212 .269531 .312 .394531 

.013 .021484 .113 .146484 .213 .271484 .313 .396484 

.014 .023437 .114 .148437 .214 .273437 .314 .398437 

.015 .025390 .115 .150390 .215 .275390 .315 .400390 

.016 .027343 .116 .152343 .216 .277343 .316 .402343 

.017 .029296 .117 .154296 .217 .279296 .317 .404296 

.020 .031250 .120 .156250 .220 .281250 .320 .406250 

.021 .033203 .121 .158203 .221 .283203 .321 .408203 

.022 .035156 .122 .160156 .222 .285156 .322 .410156 

.023 .037109 .123 .162109 .223 .287109 .323 .412109 

.024 .039062 .124 .164062 .224 .289062 .324 .414062 

.025 .041015 .125 .166015 .225 .291015 .325 .416015 

.026 .042968 .126 .167968 .226 .292968 .326 .417968 

.027 .044921 .127 .169921 .227 .294921 .327 .4 19921 

.030 .046875 .130 .171875 .230 .296875 .330 .421875 

.031 .048828 .131 .173828 .231 .298828 .331 .423828 

.032 .050781 .132 .175781 .232 .300781 .332 .425781 

.033 .052734 .133 .177734 .233 .302734 .333 .427734 

.034 .054687 .134 .179687 .234 .304687 .334 .429687 

.035 .056640 .135 .181640 .235 .306640 .335 .431640 

.036 .058593 .136 .183593 .236 .308593 .336 .433593 

.037 .060546 .137 .185546 .237 .310546 .337 .435546 

.040 .062500 .140 .187500 .240 .312500 .340 .437500 

.041 .064453 .141 .189453 .241 .314453 .341 .439453 

.042 .066406 .142 .191406 .242 .316406 .342 .441406 

.043 .068359 .143 .193359 .243 .318359 .343 .443359 

.044 .070312 .144 .195312 .244 .320312 .344 .445312 

.045 .072265 .145 .197265 .245 .322265 .345 .447265 

.046 .074218 .146 .199218 .246 .324218 .346 .449218 

.047 .076171 .147 .201171 .247 .326171 .347 .451171 

.050 .078125 .150 .203125 .250 .328125 .350 .453125 

.051 .080078 .151 .205078 .251 .330078 .351 .455078 

.052 .082031 .152 .207031 .252 .332031 .352 .457031 

.053 .083984 .153 .208984 .253 .333984 .353 .458984 

.054 .085937 .154 .210937 .254 .335937 .354 .460937 

.055 .087890 .155 .212890 .25f .337890 .355 .462890 

.056 .089843 .156 .214843 .25( .339843 .356 .464843 

.057 .091796 .157 .216796 .257 .341796 .357 .466796 

.060 .093750 .160 .218750 .260 .343750 .360 .468750 

.061 .095703 .161 .220703 .261 .345703 .361 .470703 

.062 .097656 .162 .222656 .262 .347656 .362 .472656 

.063 .099609 .163 .224609 .263 .349609 .363 .474609 

.064 .101562 .164 .226562 .264 .351562 .364 .476562 

.065 .103515 .165 .228515 .265 .353515 .365 .478515 

.066 .105468 .166 .230468 .266 .355468 .366 .480468 

.067 .107421 .167 .232421 .267 .357421 .367 .482421 

.070 .109375 .170 .234375 .270 .359375 .370 .484375 

.071 .111328 .171 .236328 .271 .361328 .371 .486328 

.072 .113281 .172 .238281 .272 .363281 .372 .488281 

.073 .115234 .173 .240234 .273 .365234 .373 .490234 

.074 .117187 .174 .242187 .274 .367187 .374 .492187 

.075 .119140 .175 .244140 .275 .369140 .375 .494140 

.076 .121093 .176 .246093 .276 .371093 .376 .496093 

.077 .123046 .177 .248046 .277 .373046 .377 .498046 

C-IO 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont'd) 

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. 

.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732 

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736 

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740 

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743 

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747 

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751 

.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755 

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759 

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762 

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766 

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770 

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774 

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778 

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782 

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785 

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789 

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793 

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797 

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801 

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805 

.000024 .000076 .000124 .000320 .000224 .000564 .000324 000808 

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812 

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816 

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820 

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823 

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827 

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831 

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835 

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839 

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843 

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846 

.000037 .0001 i8 .000137 .000362 .000237 .000606 .000337 .000850 

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854 

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858 

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862 

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865 

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869 

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873 

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877 

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881 

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885 

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888 

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892 

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896 

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900 

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904 

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907 

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911 

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915 

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919 

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923 

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926 

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930 

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934 

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938 

.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942 

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946 

.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000949 

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953 

.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957 

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961 

.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965 

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968 

.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972 

C-ll 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont'd) 

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. 

.000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708 

.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712 

.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716 

.000403 .000988 .000503 .001232 .000603 .001476 .000703 .001720 

.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724 

.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728 

.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731 

.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735 

.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739 

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743 

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747 

.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750 

.000414 .001022 .000514 .001266 .000614 .001510 .000714 .001754 

.000415 .001026 .000515 .001270 .000615 .001514 .000715 .001758 

.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762 

.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766 

.000420 .001037 .000520 .001281 .000620 .001525 .000720 .001770 

.000421 .001041 .000521 .001285 .000621 .001529 .000721 .001773 

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777 

.000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781 

.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785 

.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789 

.000426 .001060 .000526 .001304 .000626 .001548 .000726 .001792 

.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796 

.000430 .00106B .000530 .001312 .000630 .001556 .000730 .001800 

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804 

.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808 

.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811 

.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815 

.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819 

.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823 

.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827 

.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831 

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834 

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838 

.000443 .001110 .000543 .001354 .000643 .001598 .000743 .001842 

.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846 

.000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850 

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .001853 

.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857 

.000450 .001129 .000550 .001373 .000650 .001617 .000750 .001861 

.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865 

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869 

.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001873 

.000454 .001144 .000554 .001388 .000654 .001632 .000754 .001876 

.000455 .001148 .000555 .001392 .000655 .001636 .000755 .001880 

.000456 .001152 .000556 .001396 .000656 .001640 .000756 .001884 

.000457 .001155 .000557 .001399 .000657 .001644 .000757 .001888 

.000460 .001159 .000560 .001403 .000660 .001647 .000760 .001892 

.000461 .001163 .000561 .001407 .000661 .001651 .000761 .001895 

.000462 .001167 .000562 .001411 .000662 .001655 .000762 .001899 

.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903 

.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001907 

.000465 .001178 .000565 .001422 .000665 .001667 .000765 .001911 

.000466 .001182 .000566 .001426 .000666 .001670 .000766 .001914 

.000467 .001186 .000567 .001430 .000667 .001674 .000767 .001918 

.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922 

.000471 .001194 .000571 .001438 .000671 .001682 .000771 .001926 

.000472 .001197 .000572 .001441 .000672 .001686 .000772 .001930 

.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934 

.000474 .001205 .000574 .001449 .000674 .001693 .000774 .001937 

.000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941 

.000476 .001213 .000576 .001457 .000676 .001701 .000776 .001945 

.000477 .001216 .000577 .001461 .000677 .001705 .000777 .001949 

C-12 



GLOSSARY, INSTRUCTION TABLES and INDEX 

GLOSSARy ....................................................................... 1 

INSTRUCTION TABLES. . . . . . . . . . .. . .. . .. . . .. . .. .. .. . . .. .. .. .. .. .. . .. . . .. .. .. .. ... 7 
(See Section 7 for detailed instruction and designator descriptions.) 
Table 1. Octal Listing of Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 
Table 2. Alphamnemonic Listing ofInstructions ................................... 12 
Table 3. Function Listing of Instructions .......................................... 17 

INDEX ............................................................................ 23 





GLOSSARY 

A REGISTER - Principal arithmetic register; operates as a 24-bit additive accumulator 
(modulus 224-1). 

ABSOLUTE ADDRESS-Synonymous with Address. 

ACCESS TIME-The time needed to perform a storage reference, either read or write. 
In effect, the access time of a computer is one storage reference cycle. 

ACCUMULATOR-A register with provisions for the addition of another quantity to 
it5 content. 

ADDER-A device capable of forming the sum of two or more quantities. 

ADDRESS-A 15-bit operand which identifies a particular storage location; a 17-bit 
operand which identifies a particular character location in storage. 

ADDRESS MODIFICATION Normally tlie derivation of a storage address from the 
sum of the execution address and the contents of the specified index register. 

AND FUNCTION -A logical function in Boolean algebra that is satisfied (has the value 
"I") only when all of its terms are "1's". For any other combination of values it is 
not satisfied and its value is "0". 

ARGUMENT - An operand or parameter used by a program or an instruction. 

ASSEMBLER - A program which translates statements to machine language. Normally, 
one source language statement results in the generation of one line of object code. 

BASE A quantity which defines some system of representing numbers by positional 
notation; radix. 

BINARY-CODED DECIMAL (BCD) A form of decimal notation where decimal digits 
are represented by a binary code. 

BIT - Binary digit, either "1" or "0". 

BLOCK-A sequential group of storage words or characters in storage. 

BOOTSTRAP-Any short program which facilitates loading of the appropriate system 
executive. 

BRANCH - A conditional jump. Refer to Jump. 

BREAKPOINT - A point in a routine at which the computer may be stopped by manual 
switches for a visual check of progress. 

Bl, B2, B3 REGISTERS- Index registers used primarily for address modification 
and/or counting. 

BUFFER - Any area that is used to hold data temporarily for input or output, normally 
storage. 

BYTE - A portion of a computer word. 

CAP ACITY - The upper and lower limits of the numbers which may be processed in 
a register, or the quantity of information which may be stored in a storage unit. If 
the capacity of a register is exceeded, an overflow is generated. 

CHANNEL-An Input/Output (I/O) transmission path that connects the computer 
to an external equipment. 

CHARACTER-A group of 6 bits which represents a digit, letter or symbol from the 
typewriter. 

1 



CLEAR - An operation that removes a quantity from a register by placing every stage 
ofthe register in the "0" state. The initial contents of the register are destroyed by 
the Clear operation. 

COMMAND - Synonymous with Instruction. 

COMPILER-A program with the compatability to generate more than one line of 
machine code (instruction or data word) from one source language statement. 

COMPLEMENT-Noun: See One's Complement or Two's Complement. Verb: A com­
mand which produces the one's complement of a given quantity. 

CONTENT-The quantity or word held in a register or storage location. 

CORE - A ferromagnetic toroid used as the bi-stable device for storing a bit in a 
memory plane. 

COUNTER-A register or storage location, the contents of which may be incremented 
or decremented. 

D REGISTER-A 4-bit field length register used for BCD operations. 

DOUBLE PRECISION - Providing greater precision in the results of arithmetic opera­
tions by appending 24 additional bits of lesser significance to the initial operands. 

ENTER-The operation where the current contents of a register or storage location are 
replaced by some defined operand. 

EQUALIZE - Adjusting the operand of the algebraically smaller exponent to equal the 
larger, prior to adding or subtracting the floating point coefficients. 

EXCLUSIVE OR A logical function in Boolean algebra that is satisfied (has the value 
"I") when any of its terms are "I". It is not satisfied when all its terms are "I" or 
w hen all its terms are "0". 

EXECUTION ADDRESS-The lower 15 or 17 bits of a 24-bit instruction. Most often 
used to specify the storage address of an operand. Sometimes used as the operand. 

EXIT - Initiation of a second control sequence by the first, occurring when the first is 
near completion; the circuit involved in exiting. 

F REGISTER-Program Control register. Holds a program step while the single 24-bit 
instruction contained in it is executed. 

FAULT-Operational difficulty which lights an indicator or for which interrupt may be 
selected. 

FIXED POINT-A notation or system of arithmetic in which all numerical quantities 
are expressed by a predetermined number of digits with the binary point implicitly 
located at some predetermined position; contrasted with floating point. 

FLIP-FLOP (FF)-A bi-stable storage device. A "I" input to the set side puts the FF 
in the "I" state; a "I" input to the clear side puts the FF in the "0" state. The 
FF remains in astate indicative of its last "I" input. A stage of a register consists of a FF. 

FLOATING POINT A means of expressing a number, X, by a pair of numbers, Yand 
Z, such that X = Yn Z• Z is an integer called the exponent or characteristic; n is a base, 
usually 2 or 10; and Y is called the fraction or mantissa. 

FUNCTION CODE - See Operation Code. 

INCREASE - The increase operation adds a quantity to the contents of the specified 
register. 

INDEX DESIGNATOR-A 2-bit quantity in an instruction; usually specifies an index 
register whose contents are to be added to the execution address; sometimes specifies 
the conditions for executing the instruction. 

2 



INDIRECT ADDRESSING-A method of address modification whereby the lower 18 
bits ofthe specified address become the new execution address and index designator. 

INSTRUCTION - A 24- or 48-bit quantity consisting of an operation code and several 
other designators. 

INTEGRATED REGISTER FILE - The upper 6410 locations of core storage. Reserved 
for special operations with block control. 

INTERR UPT - A signal which results in transfer of control, following completion of the 
current instruction cycle, to a fixed storage location. 

INTERRUPT REGISTER-A 24-bit register whose individual bits are set to "I" by 
the occurrence of specific interrupt conditions, either internal or external. 

INTERRUPT MASK REGISTER-A 24-bit register whose individual bits match those 
ofthe Interrupt register. Setting bits of the Interrupt Mask register to "1's" is one 
of the conditions for selecting interrupt. 

INVERTER-A circuit which provides as an output a signal that is opposite to its 
input. An inverter output is "I" only if all the separate OR inputs are "0". 

JUMP - An instruction which alters the normal sequence control of the computer and, 
conditionally or unconditionally, specifies the location of the next instruction. 

LIBRARY - Any collection of programs (routines) and/or subprograms (subroutines). 

LOAD - The Load operation is composed of two steps: a) The register is cleared, and 
b) The contents of storage location M are copied into the cleared register. 

LOCATION - A storage position holding one computer word, usually designated by a 
specific address. 

LOGICAL PRODUCT-In Boolean algebra, the AND function of several terms. The 
product is "I" only when all the terms are "I"; otherwise it is "0". Sometimes 
referred to as the result of bit-by-bit multiplication. 

LOGICAL SUM-In Boolean algebra, the OJR function of several terms. The sum is 
"1" when any or all of the terms are "I"; it is "0" only when all are "0". 

LOOP-JRepetition of a group of instructions in a routine. 

MACRO CODE-A method of defining a subroutine which can be generated and/or 
inserted by the assembler. 

MASK-In the formation of the logical product of two quantities, one quantity may 
mask the other; i.e., determine what part of the other quantity is to be considered. 
If the mask is "0", that part of the other quantity is unused; if the mask is "1", the 
other quantity is used. 

MASTEJR CLEAR-A general command produced by pressing one of two switches: 
a) Internal Master Clear- Clears all operational registers and control FF's in the 
processor. b) External Master Clear - Clears all external equipments and the com­
munication channels. 

MNEMONIC CODE-A three- or four-letter code which represents the function or 
purpose of an instruction. Also called Alphabetic Code. 

MODULUS-An integer which describes certain arithmetic characteristics of registers, 
especially counters and accumulators, within a digital computer. The modulus of a 
device is defined by rn for an open-ended device and rn_l for a closed (end-around) 
device, where r is the base of the number system used and n is the number of digit 
positions (stages) in the device. Generally, devices with modulus rn use two's comple­
ment arithmetic; devices with modulus rn_l use one's complement. 

3 



NORMALIZE-To adjust the exponent and mantissa of a floating point result so that 
the mantissa lies in the prescribed standard (normal) range. 

NORMAL JUMP-An instruction that jumps from one sequence of instructions to a 
second, and makes no preparation for returning to the first sequence. Also referred 
to as an Unconditional Jump. 

NUMERIC CODING A system of abbreviation in which all information is reduced to 
numerical quantities. Also called Absolute or Machine Language coding. 

OBJECT PROGRAM-The machine language version of the source program. 

ONE'S COMPLEMENT- With reference to a binary number, that number which 
results from subtracting each bit of a given number from "1". The one's complement 
of a number is formed by complementing each bit of it individually, that is, changing 
a "1" to "0" and a "0" to a "1". A negative number is expressed by the one's comple­
ment of the corresponding positive number. 

ON -LINE OPERATION - A type of system application in which the input or output 
data to or from the system is fed directly from or to the external equipment. 

OPERAND- Usually refers to the quantity specified by the execution address. 

OPERATION CODE (Function Code)-A 6-bit quantity in an instruction specifying 
the operation to be performed. 

OPERATIONAL REGISTERS-Registers which are displayed on the operator's sec­
tion of the console. 

OR FUNCTION - A logical function in Boolean algebra that is satisfied (has the value 
"1") when any of its terms are "1". It is not satisfied when all terms are "0". Often 
called the inclusive OR function. 

OVERFLOW - The capacity of a register is exceeded. 

PARAMETER-An operand used by a program or subroutine. 

PARITY CHECK-A summation check in which the binary digits in a character are 
added and the sum checked against a previously computed parity digit; i.e., a check 
which tests whether the number of ones is odd or even. 

P REGISTER-The Program Address Counter (P register) is a one's complement 
additive register (modulus 215_1) which defines the storage addresses containing the 
individual program steps. 

PROGRAM-A precise sequence of instructions that accomplishes the solution of a 
problem. Also called a routine. 

PSEUDO CODE - A statement requesting a specific operation by the assembler or compiler. 

Q REGISTER-Auxiliary 24-bit arithmetic register which assists the A register in the 
more complicated arithmetic operations. 

RADIX- The number of different digits that can occur in a digit position for a specific 
number system. It may be referred to as the base of a number system. 

RANDOM ACCESS-Access to storage under conditions in which the next position from 
which information is to be obtained can be independent of the previous one. 

READ - To remove a quantity from a storage location. 

REGISTER-The internal logic used for temporary storage or for holding a quantity 
during computation. 

REJECT - A signal generated under certain circumstances by either the external equip­
ment or the processor during the execution of Input/Output instructions. 

4 



REPLACE- When used in the title of an instruction, the result of the execution of the 
instruction is stored in the location from which the initial operand was obtained. 
When replace is used in the description of an instruction, the contents of a location 
or register are substituted by the operand. The Replace operation implies clearing the 
register or portion of the register in preparation for the new quantity. 

REPL Y - A response signal in I/O operations that indicates a positive response to some 
previous operation or request signal. 

RETURN JUMP - An instruction that jumps from a sequence of instructions to initiate 
a second sequence and prepares for continuing the first sequence after the second is 
completed. 

ROUTINE - The sequence of operations which the computer performs, also called a 
program. 

SCALE FACTOR- One or more coefficients by which quantities are multiplied or 
divided so that they lie in a given range of magnitude. 

S REGISTER- The 13-bit S register displays the address of the word. 

SHIFT-To move the bits of a quantity right or left. 

SIGN BIT - In registers where a quantity is treated as signed by use of one's comple­
ment notation, the bit in the highest order stage ofthe register. If the bit is "1", the 
quantity is negative; if the bit is "0", the quantity is positive. 

SIGN EXTENSION -The duplication of the sign bit in the higher order stages of a 
register. 

SOFTWARE-Programs and/or subroutines. 

SOURCE LANGUAGE-The language used by the programmer to define his program. 

STAGE-The FFs and inverters associated with a bit position of a register. 

STATUS-The state or condition of circuits within the processor, I/O channels, or 
external equipment. 

STO RE - To transmit information to a device from which the unaltered information can 
later be obtained. The Store operation is essentially the reverse of the Load opera­
tion. Storage location M is cleared, and the contents of the register are copied into M. 

SUBROUTINE - A set of instructions that is used at more than one point in program 
operation. 

SYMBOLIC CODING-A system of abbreviation used in preparing information for 
input into a computer; e.g., Shift Q would be SHQ. 

TOGGLE - To complement each specified bit of a quantity, i,e.: "1" to "0" or "0" to "1". 

TRANSMIT (Transfer) - The term transfer implies register contents are moved; i.e., 
the contents of register 1 are copied into register 2. Unless specifically stated, the 
contents are not changed during transmission. The term transmit is often used 
synonymously with transfer. 

TWO'S COMPLEMENT-Number that results from subtracting each bit of a number 
from "0". The two's complement may be formed by complementing each bit of the 
given number and then adding one to the result, performing the required carries. 

UNDERFLOW - An illegal change of sign from - to +, e.g., subtracting from a quantity 
such that the result would be less than - (2n-l), where n is the modulus. In floating 
point notation, this occurs where the value of the exponent becomes less than 
2-10 +1(-17778). 

5 



WORD - The content of a storage location. It can be an instruction or 24 bits of data. 

WRITE - To enter a quantity into a storage location. 

X RE G ISTER - An arithmetic transfer register. N onaddressable and nondisplayed. 

Z REGISTER - A 28-bit storage data register. Receives the data and parity bits as 
they are read from storage or written into storage. Nonaddressable but displayed 
on the 'T' panel in the storage module. 

6 



TABLE 1. OCTAL LISTING OF INSTRUCTIONS 

OCTAL 
OPERATION MNEMONIC ADDRESS 

CODE CODE FIELD 

00.0 

00.1 
00.2 
00.3 

00.4 
00.5 

00.6 
00.7 

01 
02.0 
02.1-3 

02.4 

02.5-7 

03.0 
03.1 
03.2 

03.3 

03.4 

03.5 

03.6 

03.7 

04.0 

04.1-3 

04.4 

04.5 

04.6 

04.7 

05.0 

05.1-3 
05.4 

05.5 

05.6 
05.7 
06.0-7 

07.0-7 

10.0 

10.1-3 

HLT 

SJ1 

SJ2 

SJ3 

SJ4 

SJ5 

SJ6 

RTJ 

UJP.I 

No operation 

IJI 

m 

m 

m 

m 

m 

m 

m 

m 

m,b 

(see 14.0) 

I m,b 

No operation (see 14.0) 

IJD m.b 

AZJ.EQ 

AZJ.NE 

AZJ.GE 

AZJ.LT 

AQJ.EQ 

AQJ.NE 

AQJ.GE 

AQJ.LT 

ISE 

ISE 

ASE.S 

QSE.S 

ASE 

QSE 

ISG 

ISG 

ASG.S 

QSG,S 

ASG 

QSG 

MEQ 

MTH 

SSH 

lSI 

m 

m 

m 

m 

m 

m 

m 

m 

Y 
y,b 

y 

y 

y 

y 

Y 
y,b 

y 

y 

y 

y 

m.i 

m.i 

m 

y,b 

INSTRUCTION DESCRIPTION 

Unconditional stop, RNI 0.. m upon restarting 

If jump key 1 is set. jump to m 

If jump key 2 is set. jump to m 

If jump key 3 is set, jump to m 

If jump key 4 is set, jump to m 

If jump key 5 is set. jump to m 

If jump key 6 is set. jump to m 

P + 1 --. m (address portion). RNI 0.. m +1. return 
to m for P + 1 

Unconditional jump to m 

If (B b) = 0, RNI ® P + 1; if (B
b
) r!- 0, (B

b
) - 1 ---; B~ 

RNI @ m 

If (B b) = 0, RNI @ P + 1; if (B b
) r!- 0, (B

b
) - 1 

RNI @ m 

If (A) = 0, RNI @ m, otherwise RNI @ P + 1 

If (A) r!- O. RNI 0.. m, otherwise RNI 0.. P + 1 
If (A) 2: 0, RNI @ m, otherwise RNI @ P + 1 

If (A) < 0, RNI 0.. m. otherwise RNI 0.. P + 1 

If (A) = (Q), RNI 0.. m. otherwise RNI 0.. P + 1 

If (A) r!- (Q). RNI @ m, otherwise RNI 0.. P + 1 

If (A) 2: (Q). RNI 0.. m, otherwise RNI @ P + 1 

If (A) < (Q). RNI 0.. m, otherwise RNI @ P + 1 

If y = 0, RNI @ P + 2, otherwise RNI @ P +1 

, b 
B, 

If y = (B
b
). RNI @ P + 2, otherwise RNI 0.. P + 1 

If y = (A). RNI @ P + 2, otherwise RNI 0.. P + 1. 
Sign of y is extended 

If y = (Q). RNI @ P + 2. otherwise RNI @ P + 1. 
Sign of y is extended 

If y = (A), RNI @ P + 2, otherwise RNI ® P + 1. 
Lower 15 bits of A are used 

If y = (Q). RNI @ P + 2, otherwise RNI @ P + 1. 
Lower 15 bits of Q are used 

If Y = 0, RNI @ P + 2, otherwise RNI @ P + 1 

(B b
) 2: y, RNI 0.. P + 2. otherwise RNI @ P + 1 

If (A) 2: y. RNI @ P + 2, otherwise RNI @ P + 1. 

Sign of y is extended 

If (Q) 2: y, RNI @ P + 2, otherwise RNI @ P + 1. 

Sign of y is extended 
If (A) 2: y, RNI @ P + 2. otherwise RNI 0.. P + 1 
If (Q) 2: y, RNI @ P + 2, otherwise RNI @ P + 1 
(B1) - i ---; B1; if (B1) negative, RNI @ P + 1; if (B1) 
positive, test (A) = (Q) 1\ (M).if true RNI 0.. P + 2; 
if false, repeat sequence 
(B2) - i ---; B2; if (B2) negative, RNI @ P + 1; if (B2) 
positive, test (A) 2: (Q) 1\ (M). if true. RNI @ P + 2; 
if false, repeat sequence 

Test sign of (m). shift (m) left one place end around 
and replace in storage. If sign negative, RNI 0.. P + 2; 
otherwise RN I 0.. P + 1 

If (B b) = y, clear Bb and RNI @ P + 2; if (B b) r!- y, 
(B b) + 1 ---; B b, R N I @ P + 1 

7 

PAGE 
NO. 

7-30 
7-31 

7 -31 
7-31 

7-31 

7-31 

7-31 

7-32 

7-32 

7-33 

7-34 
7-35 
7-35 

7-35 
7-35 
7-36 

7-36 

7-36 

7-36 

7-13 

7-13 

7 -13 

7-13 

7-13 

7-13 

7-14 

7-14 

7 -14 

7-14 

7 -14 

7-14 

7-54 

7-55 

7-50 

7-19 

Rev. F 



TABLE 1. OCTAL LISTING OF INSTRUCTIONS (CONTINUED) 

OCTAL 
OPERATION MNEMONIC ADDRESS 

CODE CODE FIELD 

10.4 

10.5-7 

11.0 

11.4 

12.0-3 

12.4-7 

13.0-3 

13.4-7 

14.0 

14.1-3 

14.4 

14.5 

14.6 

14.7 

15.0 
15.1-3 

15.4 

15.5 

15.6 

15.7 

16.0 

16.1 -3 

16.4 

16.5 

16.6 

16.7 

17.0 

17.1-3 

17.4 

17.5 

17.6 

17.7 

20 

21 

22 

23 

24 

Rev. F 

ISD y, b 

ISD Y,b 

ECHA z 

ECHA,S z 
SHA Y,b 

SHQ Y,b 

SHAQ y,b 

SCAQ y,b 

No operation 

ENI y,b 

ENA,S Y 

ENQ,S Y 

ENA Y 

ENQ Y 

No operation 

INI y,b 

INA,S Y 

INQ,S Y 

INA Y 

INQ Y 

No operation 

XOI y,b 

XOA,S y 

XOQ,S Y 

XOA y 

XOQ Y 
No operation 

ANI y,b 

ANA,S Y 

ANQ,S Y 

ANA Y 

ANQ Y 
LDA,I m,b 

LDQ,I m,b 

LACH r,l 

LQCH r,2 

LCA,I m,b 

INSTRUCTION DESCRIPTION 

Skip next instruction if Y = 0 

If lsb) = y, cl~ar Sb and RNI @ P + 2; if (Sb) ~ y, 
(S ) - 1 ---> Sand RNI @ P + 1 

z ---> A. lower 17 bits of A are used 

z ---> A, sign of z extended 

Shift (A). Shift count K = k + (Sb) (signs of k and Sb 
extended). If bit 23 of K = "1 ", shift right; com­
plement of lower 6 bits equal shift magnitude. If 
bit 23 of K = "0", shift left and lower 6 bits equal 
shift magnitude. Left shifts end around; right shifts 
end off 

Shift (Q). Shift count K = k + (Sb) (signs of k and Sb 
extended). If bit 23 of K = "1", shift right; com­
plement of lower 6 bits equal shift magnitude. If 
bit 23 of K = "0", shift left; lower 6 bits equal shift 
magnitude. Left shifts end around; right shifts end off 
Shift (AQ) as one register. Shift count K = k + (Sb) 
(signs of k and Sb extended). If bit 23 of K = "1", 
shift right; complement of lower 6 bits equal shift 
magnitude. If bit 23 of K = "0", shift left; lower 6 
bits equal shift magnitude. Left shifts end around; 
right shifts end off 

Shift (AQ) left end around until upper 2 bits of A are 
unequal. Residue K = k - shift count. If b = 1, 2, 
or 3, K ---> Sb; if b = 0, K is discarded 

No operation (COMPASS assembled NOP) 

Clear Sb, enter y 

Clear A, enter y, sign extended 

Clear Q, enter y, sign extended 

Clear A, enter y 

Clear Q, enter y 

Increase (Sb) by y, signs of y and Sb are extended 

Increase (A) by y, sign extended 

Increase (Q) by y, sign extended 

Increase (A) by Y 

Increase (Q) by Y 

y V (Sb) ---> Sb 

Y V (A) ---> A. Sign of y extended 

y V (Q) ---> Q. Sign of y extended 

y V (A) ---> A, no sign extension 

y V (Q) ---> Q, no sign extension 

y /\ (Sb) ---> Sb 

Y /\ (A) ---> A. sign of y extended 

y /\ (Q) ---> Q, sign of y extended 

y /\ (A) ---> A, no sign extension 

y /\ (Q) ---> Q, no sign extension 

(M) ---> A 

(M) ---> Q 

(R) ---> A. Load lower 6 bits of A 

(R) ---> Q. Load lower 6 bits of Q 

(M) ---> A 

8 

PAGE 
NO. 

7-19 

7-19 

7-15 

7-15 

7-50 

7-52 

7-52 

7-52 

7-15 

7-15 

7-15 

7-15 

7-15 

7-16 

7-16 

7-16 

7-16 

7-16 

7-17 

7-17 

7-17 

7-17 

7-17 

7-18 

7-18 

7-18 

7-18 

7-18 

7-20 
7-22 

7-20 

7-22 

7-21 



TABLE 1. OCTAL LISTING OF INSTRUCTIONS (CONTINUED) 

OCTAL 
OPERATION MNEMONIC ADDRESS 

CODE CODE FiElD 

25 
26 

27 

30 
31 
32 

33 

34 

35 

36 

37 

40 

41 
42 
43 

44 

45 

46 

47 

50 

51 

52 

53 
53 
53 

53 

53 

53 

53 

53 
53 
53 

53 

54 
55.0 

55.1 
55.2 

55.3 

55.4 
55.5 

55.6 
55.7 

LDAO,I 

LCAO,I 

LDU 

ADA,I 

SBA,I 

ADAO,I 

SBAO,I 

RAD,I 

SSA,I 

SCA.I 

LPA,I 

STA,I 

STO,I 

SACH 

SOCH 

SWA,I 

STAO,I 

SCHA.I 

STI,I 

MUA.I 

DVA,I 

CPR,I 

TIA 

TAl 

TMO 

TOM 

TMA 

TAM 

TMI 

TIM 

AOA 

AlA 

IAI 

LOI,I 

No operation 

ELO 

EUA 

EAO 

No operation 

OEL 

AEU 

AOE 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

r,2 

r,1 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

b 

b 

v 

v 

v 

v 

v,b 

v,b 

b 

b 

m,b 

INSTRUCTION DESCRIPTION 

(M)->A, (M + 1)->0 

(M)->A, (M + 1)->0 

(M) 1\ (0) -> A 

Add (M) to (A) -> A 

(A) minus (M) -> A 

Add (M,M + 1) to (AO) -> AO 

(AO) minus (M,M + 1) -> AO 

Add (M) to (A) -> (M) 

Where (M) contains a "1" bit, set the corresponding 
bit in A to "1" 

Where (M) contains a "1" bit, complement the cor­
responding bit in A 

(M) 1\ (A) -> A 

(A)->(M) 

(O)->(M) 

(AOO.05) -> R 

(000·05) R 

(AOO·14) -> (MOO·14) 

(AO) -> (M,M + 1) 

(AOO·16) -> (MOO-16) 

(Bb) -> (MOO-14) 

Multiply (A) by (M) -> ~A. Lowest order bits of 
product in A 

(A) -;- (M) -> A. remainder -> 0 

(M) > (A)' RNI @ P + 1 } (A) and (Q) 
(0) > (M), RNI @ P + 2 
(A) ~ (M) ~ (0)' RNI @ P + 3 are unchanged 

Clear (A).(B b) -> AOO-14 

(AOO-14) -> Bb 

(v)->O 

(0) ->V 

(v)->A 

(A)->v 

(VOO-14) -> Bb 

(Bb) -> VOO-14 

Add (A) to (0) -> A 

Add (A) to (B b) -> A 

Add (A) to (B b) -> Bb Sign of Bb extended prior to 

PAGE 
NO. 

7-21 

7-21 
7-21 
7-38 

7-39 

7-40 

7-40 

7-38 
7-37 

7-37 
7-37 
7-23 

7-24 
7-23 

7-24 

7-25 

7-24 

7-25 
7-25 

7-39 
7-39 

7-53 

7-27 
7-27 

7-27 

7-27 

7-28 

7-28 

7-28 

7-28 

7-26 
7-26 

addition 7 -26 

All other combinations of 53.00-77 are undefined 
and will be rejected by the assembler 

(MOO-14) -> Bb 7-22 

(EL) -> 0 
(EU) ->A 

(EUEL) ->AO 

(0) -> EL 

(A) -> EU 

(AO) -> EUEL 

9 

7-29 
7-29 

7-29 

7-29 

7-29 
7-29 

Rev, F 



TABLE 1. OCTAL LISTING OF INSTRUCTIONS (CONTINUED) 

OCTAL 
OPERATION MNEMONIC ADDRESS 

CODE CODE FiElD 

56 

57 

60 

61 

62 

63 

64 

65 

66 

67 

70.0-3 

70.4 

70.5 

70.6 

70.7 

71 *** 

71 **** 

72 

73 ** 

73 * 

74 ** 

74 * 

75 ** 

75 * 

76 ** 

MUAQ.I 

DVAQ 

FAD.I 

FSB.I 

FMU.I 

FDV.I 

LDE 

STE 

ADE 

SBE 

SFE 

EZJ.EQ 

EZJ.LT 

EOJ 

SET 

SRCE.INT 

SRCN.INT 

MOVE.INT 

INPC.INT. 
B.H 
INAC.INT 

INPW.INT. 
B.N 

INAW.INT 

OUTC.INT. 
B.H 
OTAC.INT 

OUTW.INT 
B.N 

m.b 

m.b 

m.b 

m.b 

m.b 

m.b 

r.1 

r.2 

r.3 

r.3 

y.b 

m 

m 

m 

y 

c.r.s 

c.r.s 

c.r.s 

ch.r.s 

ch 

ch.m.n 

ch 

ch.r.s 

ch 

ch.m.n 

*7 -bit operation code. bit 17 = "1 " 

**7 -bit operation code. bit 17 = "0" 

Rev. F 

INSTRUCTION DESCRIPTION 

Multiply (AQ) by (M.M + 1) ---> AQE 

(AQE) -7- (M.M + 1) ---> AQ and remainder with sign 
extended to E. Divide fault halts operation and pro­
gram advances to next instruction 

Floating point addition of (M.M + 1) to (AQ) ---> AQ 

Floating point subtraction of (M.M + 1) from (AQ)--->AQ 

Floating point multiplication of (AQ) and (M.M + 1) 
---> AQ 

Floating point division of (AQ) by (M.M + 1) ---> AQ. 
remainder with sign extended to E 

Load E with up to 12 numeric BCD characters from 
storage. BCD field length is specified by (D). Char­
acters are read consecutively from least significant 
character at address (R + (D) - 1) until the most 
significant character at address R is in E. (E) is shifted 
right as loading progresses. The sign of the field is 
acquired along with the least significant character 

Store up to 13 numeric BCD characters from E. Least 
significant character is stored at R + (D) - 1 con­
tinuing back to most significant character stored in R 

Up to twelve 4-bit characters (most significant char­
acter at address R) are added to (E). Sum appears in 
E. (D) register specifies field length 

Up to twelve 4-bit characters (most significant char­
acter at address R) are subtracted from (E). Difference 
appears in E. (D) specifies field length 

Shift E in one character (4 bit) steps. Left shift: bit 
23 = "0". magnitude of shift = lower 4 bits of K = k 
+ (B b

). Right shift: bit 23 = "1". magnitude of shift 
= lower 4 bits of complement of K = k + (Bb

) 

(E) = O. jump to m; (E) ,c. O. RNI @ P + 1 

(E) < O. jump to m; (E) ~ O. RNI @ P + 1 

Jump to m if E overflows. otherwise RNI @ P + 1 

Set (D) with lower 4 bits of y 

Search for equality of character c in a list beginning 
at location r until an equal character is found, or until 
character location s is reached; 0 ::; c ::; 6310 

Same as SRCE except search condition is for in­
equality 

Move c characters from r to s; 1 ::; c ::; 12810 

A 6- or '12-bit character is read from peripheral device 
and stored in memory at a given location 

(A) is cleared and a 6-bit character is transferred from 
a peripheral device to the lower 6 bits of A 

Word address is placed in bits 00-14. 12- or 24-bit 
words are read from a peripheral device and stored 
in memory 

(A) is cleared and a 12- or 24-bit word is read from a 
peripheral device into the lower 12 bits or all of A 
(word size depends on 1/0 channel) 

Storage words disassembled into 6- or 12-bit characters 
and sent to a peripheral device 

Character from lower 6 bits of A is sent to a peripheral 
device. (A) retained 

Words read from storage to a peripheral device 

PAGE 
NO. 

7-42 

7-42 

7-43 

7-44 

7-44 

7-44 

7-48 

7-48 

7-47 

7-47 

7-49 

7-49 

7-49 

7-49 

7-46 

7-56 

7-56 

7-58 

7-72 

7-80 

7-74 

7-82 

7-76 

7-84 

7-78 

10 ***7 -bit operation code. bit 17 in P + 1 = "0" 

****7 -bit operation code, bit 17 in P + 1 = "1 " 



TABLE 1. OCTAL LISTING OF INSTRUCTIONS (CONTINUED) 

OCTAL 
OPERATION MNEMONIC ADDRESS 

CODE CODE FiElD 

76 * 

77.0 

77.1 

77.2 

77.2 

77.3 

77.3 

77.4 

77.50 

77.51 

77.511 

77.512 

77.52 

77.53 

77.54-56 

77.57 

77.6 

77.61 

77.70 

77.71 

77.72 

77.73 

77.74 

77.75 

77.76 

77.77 

OTAW,INT ch 

CON x,ch 

SEl x,ch 

EXS x,ch 

COpy ch 

INS x,ch 

CINS ch 

INTS x,ch 

INCl x 

10Cl x 

CllO cm 

ClCA cm 

SSIM x 

SCIM x 

No operation 

IAPR 

PAUS x 

PRP 

SlS 

SFPF 

SBCD 

DINT 

EINT 

CTI 

CTO 

UCS 

x 

INSTRUCTION DESCRIPTION 

Word from lower 12 bits or' all of A (depending on 

PAGE 
NO. 

type of liD channel) sent to a peripheral device 7-86 

If channel ch is busy, reject instruction, RNI (Q, P + 1 
If channel ch is not busy, 12-bit connect code sent on 
channel ch with connect enable, R N I Cit P + 2 7 -70 

If channel ch is busy, read reject instruction from 
P + 1. If channel ch is not busy, a 12-bit function 
code is sent on channel ch with a function enable, 
RNI @ P + 2 7-70 

Sense external status if "1" bits occur on status lines 
in any of the same positions as "1" bits in the mask, 
RNI Cit P + 1. If no comparison, RNI (Q, P + 2 7-60 

External status code from liD channel ch -> lower 
12 bits of A, contents of interrupt mask register-> 
upper 12 bits of A; RNI @ P + 1 7-60 

Sense internal status if "1" bits occur on status lines 
in any of the same positions as "1" bits in the mask, 
RNI @ P + 1. If no comparison, RNI @ P + 2 7-62 

Interrupt mask and internal status to A 7-62 

Sense for interrupt condition; if "1" bits occur simul­
taneously in interrupt lines and in the interrupt mask, 
RNI @ P + 1; if not, RNI @ P + 2 7-61 

Interrupt faults defined by x are cleared 7-65 

Clears I/O channel or search/move control as defined 
by bits 00-07, 08 and 11 of x, 7 -63 

lockout external interrupts while 
channel(s) are busy. 7-69 

Clear channel activity, not 
peripherals. 7-69 

Selectively set interrupt mask register for each "1" 
bit in x. The corresponding bit in the mask register 
is set to "1" 7 -66 

Selectively clear interrupt mask register for each" 1" 
bit in x. The corresponding bit in the mask register 
is set to "0" 7 -66 

Interrupt associated processor 7 -66 

Sense busy lines. If" 1" appears on a line correspond-
ing to" 1 " bits in x, do not advance P. If P is inhibited 
for longer than 40 ms, read reject instruction from 
P+ 1. If no comparison, RNI (Q, P+2 7-64 

Same as PAUS, except real-time 
clock is prevented from incrementing. 7-64 
Program stops if Selective Stop switch is on; upon 
restarting, RNI Cit P + 1 7-31 

Set floating point fault logic 7 -67 

Set BCD fault logic 7 -67 

Disables interrupt control 7-67 

Interrupt control is enabled, allows one more instruc-
tion to be executed before interrupt 7 -67 

Set Type In } Beginning character address must be 
present in location 23 of register file 
and last character 7 -71 

Set Type Out address + 1 must be preset in loca-
tion 33 of the file 

Unconditional stop. Upon restarting, RNI @ P+ 1 7-31 

11 Rev.H 



TABLE 2. ALPHAMNEMONIC LISTING OF INSTRUCTIONS 

MNEMONIC 
OCTAL 

OPERATION ADDRESS INSTRUCTION DESCRIPTION PAGE 
CODE CODE FIELD NO. 

ADA.I 30 m.b Add (M) to (A) -> A 7-38 

ADAQ.I 32 m.b Add (M.M + 1) to (AQ) -> AQ 7-40 

ADE 66 r.3 Up to twelve 4-bit characters (most significant char-
acter at address R) is added to (E). Sum appears in E. 
(D) specifies field length 7-47 

AEU 55.6 (A)-> EU 7-29 

AlA 53.(0+b)4 b Add (A) to (Bb) -> A 7-26 

ANA 17.6 y y /\ (A) -> A. no sign extension 7 -18 

ANA.S 17.4 y y /\ (A) -; A. sign of y extended 7 -18 

ANI 17.1-3 y.b Y /\ (Bb) -; Bb 7-18 

ANQ 17.7 Y Y /\ (Q) -; Q. no sign extension 7-18 

ANQ.S 17.5 Y Y /\ (Q) -> Q. sign of y extended 7-18 

AQA 53.04 Add (A) to (Q) -; A 7-26 

AQE 55.7 (AQ) -; EUEL 7-29 

AQJ.EQ 03.4 m If (A) = (Q). RNI @ m. otherwise RNI @ P + 1 7-36 

AQJ.GE 03.6 m If (A) ~ (Q). RNI @ m. otherwise RNI @ P + 1 7-36 

AQJ.LT 03.7 m If (A) < (Q). RNI @ m. otherwise RNI @ P + 1 7-36 

AQJ.NE 03.5 m If (A) ~ (Q). RNI @ m. otherwise RNI @ P + 1 7-36 

ASE 04.6 y If y = (A). RNI @ P + 2. otherwise RNI @ P + 1 
lower 15 bits of A are used 7-13 

ASE.S 04.4 y If y = (A). RNI @ P + 2. otherwise RNI @ P+ 1 
Sign of y is extended. 7-13 

ASG 05.6 y If (A) ~ y. RNI @ P+2. otherwise RNI @ P+ 1 7-14 

ASG.S 05.4 y If (A) ~ y. RNI @ P+2. otherwise RNI @ P+ 1 
Sign of y is extended 7-14 

AZJ.EQ 03.0 m If (A) = O. RNI @ m. otherwise RNI @ P + 1 7-35 

AZJ.GE 03.2 m If (A) ~ O. RNI @ m. otherwise RNI @ P + 1 7-35 

AZJ.LT 03.3 m If (A) < O. RNI @ m. otherwise RNI @ P + 1 7-35 

AZJ.NE 03.1 m If (A) ~ O. RNI @ m. otherwise RNI @ P + 1 7-35 

CllO 77.511 cm lockout external interrupts while 
channel(s) are busy. 7-69 

CINS 77.3 ch Interrupt mask and internal status to A 7-62 

ClCA 77.512 cm Clear channel activity, not 
peripherals. 7-69 

CON 77.0 x.ch If channel ch is busy. reject instruction. RN I @ P + 1 
If channel ch is not. busy. 12-bit connect code sent on 
channel ch with connect enable. RNI @ P + 2 7-70 

COPY 77.2 ch External status code from I/O channel ch to lower 
12-bits of A. contents of interrupt mask register to 

7-60 upper 12-bits of A. RNI @ P + 1 

CPR.I 52 m,b (M( > (AI. RN' @ P + 1 }. 
(Q) > (M). RNI @ P + 2 (A) and (Q) 7-53 
(A) ~ (M) ~ (Q). RNI @ P + 3 are unchanged 

CTI 77.75 Sot Typ' '0 } B,g'oo'o. 'h""", ,ddee" m"" b, 
preset in location 23 of register file 
and last character address + 1 must 

7"71 
CTO 77.76 Set Type Out be preset in location 33 of the file 

DINT 77.73 Disables interrupt .control 7-67 

DVA.I 51 m.b (A) +- (M) -> A. remainder -; Q 7-39 

DVAQ 57 m.b (AQE) +-(M.M + 1) -> AQ and remainder with sign 
extended to E. Divide fault halts operation and pro-
gram advances to next instruction 7-42 

EAQ 55.3 (EUEU -;AQ 7-29 

ECHA 11.0 z z -; A. lower 17 bits of A are used 7-15 

ECHA.S 11.4 z z -> A. sign of z extended 7-15 

EINT 77.74 Interrupt control.is enabled. Allows one more instruc-
tion to be executed before interrupt 7-67 



TABLE 2. ALPHAMNEMONIC LISTING OF INSTRUCTIONS (CONTINUED) 

MNEMONIC 
CODE 

ElQ 

ENA 

ENA.S 

ENI 

ENQ 

ENQ.S 

EOJ 

EUA 

EXS 

EZJ,EQ 

EZJ,lT 

FAD,I 

FDV,I 

FMU,I 

FSB,I 

HlT 

IAI 

IAPR 

IJD 

IJI 

INA 

INA.S 

INAC,INT 

INAW,INT 

INCl 

INI 

OCTAL 
OPERATION 

CODE 

55.1 

14.6 

14.4 

14.1-3 

14.7 

14.5 

70.6 

55.2 

77.2 

70.4 

70.5 

60 

63 

62 

61 

00.0 

53 (4+b)4 

77.57 

02.4-7 

02.1-3 

15.6 

15.4 

73 * 

74 * 

77.50 

1 5.1 -3 

INPC,INT,B,H 73 ** 

INPW,INT.B,N 74 ** 

INQ 

INQ,S 

INS 

INTS 

10Cl 

15.7 

15.5 

77.3 

77.4 

77.51 

ADDRESS 
FIELD 

y 

Y 
y,b 

y 

y 

m 

x,ch 

m 

m 

m,b 

m,b 

m,b 

m,b 

m 

b 

m,b 

m,b 

y 

Y 
ch 

ch 

x 

y,b 

ch,r,s 

ch,m,n 

y 

Y 
x,ch 

c,ch 

x 

INSTRUCTION DESCRIPTION 

(El)~Q 

Clear A, enter y 

Clear A, enter y, sign extended 

Clear B
b

, enter y 

Clear Q, enter y 

Clear Q, enter y, sign extended 

Jump to m if E overflows, otherwise RNI <Q. P + 1 

(EU)~A 

Sense external status if "1" bits occur on status lines 
in any of the same positions as "1" bits in the mask, 
RNI QJ P + 1. If no comparison, RNI <Q. P + 2 

(E) = 0, jump to m; (E) o;L 0, RNI <Q. P + 1 

(E) < 0, jump to m; (E) :2: 0, RNI QJ P + 1 

Floating point addition of (M,M + 1) to (AQ) --> AQ 

Floating point division of (AQ) by (M,M + 1) --> AQ 
Remainder with sign extended to E 

Floating point multiplication of (AQ) and (M,M + 1) 
~AQ 

Floating point subtraction of (M,M + 1) from (AQ)-->AQ 

Unconditional stop, RNI <Q. m upon restarting 

Add (A) to (B b
) ~ Bb Sign of Bb extended prior to 

addition 

Interrupt associated processor 

If (B b) = 0, RNI (g P + 1; if (B b) o;L 0, (Bb) - 1 --> Bb, 
RNI (g m 

If (Bb) = O. RNI QJ. P + 1; if (B
b
) o;L 0, (B

b
) + 1 -; B

b
, 

RNI QJ m 

Increase (A) by y 

Increase (A) by y, sign of y is extended 

(A) is cleared and a 6-bit character is transferred from 
a peripheral device to the lower 6 bits of A 

(A) is cleared and a 12- or 24-bit word is read from 
a peripheral device into the lower 12 bits or all of A 
(word size depends on liD channel) 

Interrupt faults defined by x are cleared 

Increase (B b) by y, signs of y and Bb are extended 

A 6- or 12-bit character is read from a peripheral 
device and stored in memory at a given location 

Word Address is placed in bits 00-14, 12- or 24-bit 
words are read from a peripheral device and stored 

PAGE 
NO. 

7-29 

7-15 

7-15 

7-15 

7-15 

7-15 

7-49 

7-29 

7-60 

7-49 

7-49 

7-43 

7-44 

7-4Lj. 

7-44 

7-30 

7-26 

7-66 

7-34 

7-33 

7-16 

7 -16 

7-80 

7-82 

7-65 

7-16 

7-72 

in memory 7-74 

Increase(Q)byy 7-16 

Increase (Q) by y, sign of y is extended 7 -16 

Sense internal status if" 1 " bits occur on status lines 
in any of the same positions as "1" bits in the mask, 
RNI QJ P+ 1. If no comparison, RNI @ P+2 7-62 

Sense for interrupt condition; if "1" bits occur simul­
taneously in interrupt lines and in the interrupt mask, 
RNI ~L P + 1, if not, RNI <Q. P + 2 7-61 

Clears I/O channel or search/move control as defined 
~ by bits 00-07, 08, and 11 of x. 7 -63 

L-'S_D ____ ---L1_0_.4 ____ -"---_Y,_b ___ -1i_s_ki_p_n_ext 'instruction if y = 0 I 7-19 

*7 -bit operation code, bit 17 in P = ''1' 

**7 -bit operation code, bit 17 in P = "0" 
13 Rev. F 



TABLE 2. ALPHAMNEMONIC LISTING OF INSTRUCTIONS (CONTINUED) 

MNEMONIC 
OCTAL 

OPERATION ADDRESS 
CODE CODE FIELD 

ISD 10.5-7 y,b 

ISE 04.0 y 
ISE 04.1-3 y,b 

ISG 05.0 y 
ISG 05.1-3 y,b 

lSI 10.1-3 y,b 

LACH 22 r, 

LCA,I 24 m,b 
LCAQ,I 26 m,b 
LDA,I 20 m,b 
LDAQ,I 25 m,b 
LDE 64 r,l 

LOLl 54 m,b 

LDU 27 m,b 
LOQ,I 21 m,b 
LPA,I 37 m,b 

LQCH 23 r,2 
MEQ 06.0-7 m,i 

MOVE,INT 72 c,r,s 

MTH 07.0-7 m,i 

MUA,I 50 m,b 

MUAQ,I 56 m,b 
OTAC,INT 75* ch 

OTAW,INT 76* ch 

OUTC, 75 "'it ch,r,s 
INT,B,H 

OUTW, 76*" ch,m,n 
INT,B,H 

PAUS 77.6 x 

PRP 77.61 x 

QEL 55.5 
QSE 04.7 y 

QSE,S 04.5 y 

QSG 05.7 y 

*7 -bit operation code, bit 17 = ''1'' 
Rev. H 

INSTRUCTION DESCRIPTION PAGE 
NO. 

If lBb) =y, clear Bb and RNI @ P + 2; if (Bb)~y, 
(B )-1-' Bb, RNI @ P + 1 7-19 
If y = 0, RNI @ P + 2, otherwise RNI @ P + 1 7-13 
If y=(B\ RNI @ P + 2, otherwise RNI @ P + 1 7-13 

If Y = 0, RNI @ P + 2, otherwise RNI @ P + 1 7-14 

If (Bb) ~ y, RNI @ P + 2, otherwise RNI @ P + 1 7-14 

If (Bb) = y, clear Bb and RNI @ P + 2; if (Bb) ~ y, 
(Bb) + 1 -> Bb, RNI @ P + 1 7-19 

(R) -> A; load lower 6 bits of A 7-20 

(M)->A 7-21 

(M)->A, (M + 1)->Q 7-21 

(M)->A 7-20 

(M)->A, (M + l)->Q 7-21 

Load E with up to 12 numeric BCD characters from 
storage. BCD field length is specified by (D) register. 
Characters are read consecutively from least signifi-
cant character at address (R + (D) -1) until the most 
significant character at address M is in E. (E) is shifted 
right as loading progresses. The sign of the field is 
acquired along with the least significant character 7-48 

(Moo-14) -> Bb 7-22 

(M) A (Q)->A 7-21 

(M)->Q 7-22 

(M) A (A)->A 7-37 

(R) -> Q; load lower 6 bits of Q 7-22 

(B1) -i -> B1; if (B1) negative, RNI @ P + 1; if (8 1) 
positive, test (A) = (Q) 1\ (M); if true, RNI @ P + 2, 
if false, repeat sequence 7-54 

Move c characters from r to s; I ~ c ~ 12810 7-58 

(B2) - i -, B2; if (B2) negative, RNI @ P + 1; if (B2) 
positive, test (A) ~ (Q) A (M); if true, RNI @ P + 2; 
if false, repeat sequence 7-55 

Multiply (A) by (M) -> QA; lowest order bits of prod-
uct in A 7-39 
Multiply (AQ) by (M,M + 1) -> AQE 7-42 
Character from lower 6 bits of A is sent to peripheral 
device, (A) retained 7-84 

Word from lower 12 bits or all of A (depending on 
type of 1/0 channel) sent to a peripheral device 7-86 

Storage words disassembled into 6 or 12-bit characters 
and sent to a peripheral device 7-76 

Words read from storage to peripheral device 7-78 

Sense busy lines. If" 1 " appears on a line correspond-
ing to "1" bits in x, do not advance P. If P is inhibited 
for longer than 40 ms, read reject instruction from 
P + 1. If no comparison, RNI @ P + 2 7-64 
Same as PAUS except real-time 
clock is prevented from incrementing. 7-64 

(Q) -> EL 7-29 

If y = (Q). RNI @ P + 2, otherwise RNI@P+l; 
lower 15 bits of Q are used 7-13 

If y = (Q). RNI @ P + 2, otherwise RNI @ P + 1 
Sign of y is extended 7-13 

If (Q) ~ y, RNI @ P + 2, otherwise RNI @ P + 1 7-14 

14 **7 -bit operation code, bit 17 = "0" 



TABLE 2. ALPHAMNEMONIC LISTING OF INSTRUCTIONS (CONTINUED) 

OCTAL 
MNEMONIC OPERATION ADDRESS 

CODE CODE FiElD 

QSG.S 

RAD,I 

RTJ 

SACH 

SBAI 

SBAQ,I 

SBCD 

SBE 

SCAI 

SCAQ 

SCHAI 

SCIM 

SEL 

SET 

SFE 

SFPF 

SHA 

SHAQ 

SHQ 

SJl 
SJ2 
SJ3 
SJ4 

SJ5 
SJ6 

05.5 

34 

00.7 

42 

31 

33 

77.72 

67 

36 

13,4-7 

46 

77.53 

77.1 

70.7 

70.0-3 

77.71 

12.0-3 

13.0-3 

12.4-7 

00.1 

00.2 

00.3 

00.4 

00.5 

00.6 

y 

m,b 

m 

r,2 

m,b 

m,b 

r,3 

m,b 

y,b 

m,b 

x 

x,ch 

Y 
k,b 

y,b 

y,b 

y,b 

m 

m 

m 

m 

m 

m 

IIIISTRUCTION DESCRIPTION 

If (Q) 2': y, RNI @ P + 2, otherwise RNI @ P + 1 
Sign of y is extended 
Add (M) to (A) -> (M) 

P + 1 -> M (address portion) RNI @ m + 1. return 
to m for P + 1 
(AOO-05) -> R 

(A) minus (M) -> A 

(AQ) minus (M, M + 1) -> AQ 

Set BCD fault logic 
Up to twelve 4-bit characters (most significant char­
acter at address m) is subtracted from E. Difference 
appears in E. (D) register specifies field length. 

Where (M) contains a "1" bit. complement the cor­
responding bit in A 

Shift (AQ) left end around until upper 2 bits of A are 
unequal. Residue K = k-shift count. If b = 1, 2, or 3, 
K -> Bb; if b=O, K is discarded 

(AOO-16) -> (MOO-16) 

Selectively clear Interrupt Mask Register for each 
"1" bit in x. The corresponding bit in the mask register 
is set to "0" 

If channel ch is busy, read reject instruction from 
P + 1. If channel ch is not busy, a 12-bit function 
code is sent on channel ch with a function enable, 
RNI@P+2 
Set (D) with lower 4 bits of y 

Shift (E) in one character (4-bit) steps. Left shift: bit 
23 = "0", magnitude of shift = lower 4 bits of K = k 
+ (B\ Right shift: bit 23 = "1", magnitude of shift= 
lower 4 bits of complement of K = k + (B

b
) 

Set floating point fault logic 
Shift (A). Shift count K=k + (Bb) (signs of k and Bb 
extended). If bit 23 of K = "1", shift right; comple­
ment of lower 6 bits equal shift magnitude. If bit 23 
of K = "0", shift left; lower 6 bits equal shift magni­
tude. Left shifts end around; right shifts end off 

Shift (AQ) as one register. Shift count K = k + Bb 
(signs of k and Bb extended). If bit 23 of K = "1", shift 
right and complement of lower 6 bits equal shift mag­
nitude. If bit 23 of K = "0", shift left and lower 6 bits 
equal shift magnitude. Left shifts end around; right 
shifts end off 
Shift (Q), Shift count K = k + (Bb) (signs of k and Bb 
extended). If bit 23 of K = "1", shift right; comple­
ment of lower 6 bits equal shift magnitude. If bit 23 
of K = "0". shift left; lower 6 bits equal shift magni­
tude. Left shifts end around; right shifts end off 

If jump key 1 is set, jump to m 

If jump key 2 is set, jump to m 

If jump key 3 is set, jump to m 

If jump key 4 is set, jump to m 

If jump key 5 is set. jump to m 

If jump key 6 is set. jump to m 

15 

PAGE 
NO. 

7-14 

7-38 

7-32 

7-23 

7-39 

7-40 

7-67 

7-47 

7-37 

7-52 

7-25 

7-66 

7-70 

7-46 

7-49 

7-67 

7-50 

7-52 

7-52 

7-31 

7 -31 

7-31 

7-31 

7-31 

7-31 



TABLE 2. ALPHAMNEMONIC LISTING OF INSTRUCTIONS (CONTINUED) 

MNEMONIC 
OCTAL 

OPERATION ADDRESS INSTRUCTION DESCRIPTION 
CODE CODE FIELD 

SLS 77.70 Program stops if Selective Stop switch is on; upon 
restarting RNI @ P + 1 

SGCH 43 r,1 (GOO.05) ---; R 

SRCE.INT 71* c.r.s Search for equality of character c in a list beginning 
at location r until an equal character is found, or until 
character location s is reached; 0 :::;; c :::;; 6310 

SRCN.INT 71** c.r.s Same as SRCE except search condition is for in-
equality 

SSA.I 35 m.b Where (M) contains a "1" bit. set the corresponding 
bit in A to "1" 

SSH 10.0 m Test sign of (m). shift (m) left one place. end around 
and replace in storage. If sign negative. RNI @ P + 2; 
otherwise RNI @ P + 1 

SSIM 77.52 x Selectively set interrupt mask register for each "1" 
bit in x. The corresponding bit in the mask register is 
set to "1 " 

STA.I 40 m.b (A) ---; (M) 

STAG.I 45 m.b (AG) ---; (M ,M + 1 ) 

STE 65 r.2 Store up to 13 numeric BCD characters from E. Least 
significant character stored at R+(D)-1 continuing 
back to most significant character stored at R 

STI.I 47 m.b (B b) ---; (MOO.14) 

STG.I 41 m.b (G) ---; (M) 

SWA.I 44 m,b (AOO·14) ---; (MOO·14) 

TAl 53 b (AOO.14) ---; Bb 

TAM 53 v (A) ---; v 

TIA 53 b Clear (A). (Bb) ---; AOO·14 

TIM 53 v.b b 
(B ) ---; V 00.14 

TMA 53 v (v) ........ A 

TMI 53 v.b (VOO.14) --> B 
b 

TMG 53 v (v) ........ G 

TGM 53 v (G)-->v 

UCS 77.77 Unconditional stop. Upon restarting RNI @ P + 1. 

UJP.I 01 m.b Unconditional jump to M 

XOA 16.6 y y V (A) --> A. no sign extension 

XOA.S 16.4 y y V (A) ---; A, sign of y is extended 

XOI 16.1-3 y.b y V (Bb) ---; Bb 

XOG 16.7 y y V (G) ---; G. no sign extension 

XOG.S 16.5 Y Y V (G) ---; G. sign of y is extended 

*7-bit operation code. bit 17 in P + 1 = "0" 

**7-bit operation code. bit 17 in P + 1 = "1" 

Rev. F 16 

PAGE 
NO. 

7-31 

7-24 

7-56 

7-56 

7-37 

7-50 

7-66 

7-23 

7-24 

7-48 

7-25 

7-24 

7-25 

7-27 

7-28 

7-27 

7-28 

7-28 

7-28 

7-27 

7-27 

7-31 

7-32 

7-17 

7-17 

7-17 

7-17 

7-17 



FUNCTION 

Transfers 

TABLE 3. FUNCTION LISTING OF INSTRUCTIONS 

MNEMONIC 
CODE 

AEUttt 

ANAt 

ANA.S 

ANlt 

ANQt 

ANQ.S 

EAQttt 

ELQttt 

ENA 

ENA.S 

ENI 

ENQ 

ENQ.S 

EUAttt 

LCA.lt 

LCAQ.lt 

LDA.I 

LDAQ.I 

LDEt 

LDLI 

LDUt 

LDQ.I 

LPA.lt 

SSA.lt 

STA.I 

STAQ.I 

STEttt 

STLI 

STQ.I 

SWA.I 

TAl 

TAM 

TIA 

TIM 

TMA 

TMI 

TMQ 

TQM 

XOAt 

XOA.St 

XOlt 

XOQt 

INSTRUCTION DESCRIPTION 

(A)----> EU 

y A (Ab ) ---" A 

y A (A) ---" A, sign of y extended 

y A (Bb) ----> Bb 

y A (Q)----> Q. no sign extension 

y A (Q) ----> Q. sign of y extended 

(EU EL) ---->AQ 

(EL) ---->Q 

Clear A. enter y 

Clear A. enter y. sign extended 

Clear Bb. enter y 

Clear Q. enter y 

Clear Q. enter y. sign extended 

(EU)----> A 

(M)---->A 

(M)---->A. (M+ 1)---->Q 

(M)----> A 

(M)---->A. (M + l)---->Q 

Load E with up to 12 numeric BCD characters from storage. 
BCD field length is specified by (D) register. Characters are read 
consecutively from least significant character at address (R + 
(D)-l) until the most significant character at address R is in E. 
(E) is shifted right as loading progresses. The sign of the field is 
acquired along with the least significant character 

(MOO.14) ----> Bb 

(M) A (Q)---->A 

(M)---->Q 

(M) A (A)---->A 

Where (M) contains a "1" bit, set the corresponding bit in A to "1" 

(A)---->(M) 

(AQ)----> (M.M + 1) 

Store up to 13 numeric BCD characters from E. Least significant 
character stored at R + (D)-l continuing back to most signifi­
cant character stored in R 

(Bb) ----> (MOO-14) 

(Q)---->(M) 

(AOO-14) ----> (MOO.14) 

(AOO-14) ----> Bb 

(A) ---->v 

Clear (A). (Bb) ----> AOO·14 

(B
b
) ----> V OO·14 

(v) ---->A 

(vOO.14) ----> Bb 

(v)---->Q 

(Q)---->v 

y V (A) A. no sign e)(tension 

y V (A) ----> A. sign of y is extended 
y V (Bb) ----> Bb 

y V (Q) ----> Q. no sign extension 

t Requires additional operation prior to transfer. 
tt Trapped Instruction if optional floating point/48-bit precision hardware is absent. 

ttt Trapped Instruction if optional BCD hardware is absent. 

17 

PAGE 
NO. 

7-29 

7-18 

7-18 

7-18 

7-18 

7 -18 

7-29 

7-29 

7-15 

7 -15 

7 -15 

7-15 

7-15 

7-29 

7-21 

7-21 

7-20 

7-21 

7-48 

7-22 

7-21 

7-22 

7-37 

7-37 

7-23 

7-24 

7-48 

7-25 

7-24 

7-25 

7-27 

7-28 

7-27 

7-28 

7-28 

7-28 

7-27 

7-27 

7-17 

7-17 

7-17 

7 -17 

Rev. F 



FUNCTION 

Transfers 

(Continued) 

Character 

Operation 

Arithmetic 

Jumps and 

Stops 

Rev. F 

TABLE 3. FUNCTION LISTING OF INSTRUCTIONS (CONTINUED) 

MNEMONIC 
CODE 

XOQ.St 

MOVE.INT 

QELttt 

SACH 

SCA.I 

SETttt 
ECHA 

ECHAS 

LACH 

LQCH 

SQCH 

SCHA.I 

ADAI 

ADAQ.I 

ADEttt 

AlA 

AQA 

AQEttt 

OVAl 

DVAQtt 

FADtt 

FDV.ltt 

FMU.ltt 

FSB.ltt 

IAI 

INA 

INA.S 

INI 

INQ 

INQ.S 

MUA.I 

MUAQ.ltt 

RAD.I 

SBA.I 

SBAQ.I 

SBEttt 

HLT 

SJ1 

SJ2 

SJ3 

SJ4 

SJ5 

SJ6 

INSTRUCTION DESCRIPTION 

y V (Q) ---. Q. sign of y is extended 

Move c characters from r to s: I S c S 12810. 

(Q)---.EL 

(Aoo.os) ---. (R) 

Where (M) contains a "'" bit. complement the corresponding 
bit in A 

Set (D) with lower 4 bits of y 
z ---> AOO·16 

Z ---> A sign extended 

(R) ---. ADD-OS 

(R) ---. Qoo·os 

(Qoo.os) ---. (R) 

(AOO-16) ---> (M 00·16) 

Add (M) to (A) ---. A 

Add (M.M + 1) to (AQ) ---> AQ 

Up to twelve 4-bit characters (most significant character at 
address R) is added to (E). Sum appears in E. (D) register speci­
fies field length 

Add (A) to (Bb) --7 A 

Add (A) to (Q) ---. A 

(AQ) ---. (EU EL) 

(A) -;- (M) ---> A. Remainder -> Q 

(AQE) -;- (M.M + 1) ---> AQ and remainder with sign extended 
to E. Divide fault halts operation and program advances to next 
instruction 

Floating point addition of (M.M + 1) to (AQ) -> AQ 

Floating point division of (AQ) by (M.M + 1) ---> AQ. remainder 
with sign extended to E 

Floating point mUltiplication of (AQ) and (M.M + 1) ---> AQ 

Floating point subtraction of (M.M + 1) from (AQ) -> AQ 

Add (A) to (Bb) -> Bb Sign of Bb extended prior to addition 

Increase (A) by y 

Increase (A) by y. sign extended 

Increase (Bb) by y. signs of y and Bb are extended 

Increase (Q) by y 

Increase (Q) by y. sign extended 

Multiply (M) by (A) ---. QA. Lowest order bits of product in A 

MUltiply (AQ) by (M.M + 1) -> AQE 

Add (M) to (A) ---. (M) 

(A) minus (M) -> A 

(AQ) minus (M.M + 1) ---. AQ 

Up to twelve 4-bit characters (most significant character at 
address R) is subtracted from E. Difference appears in E. (D) 
register specifies field length 

Unconditional stop: RNI @; m upon restarting 

If jump key 1 is set. jump to m 

If jump key 2 is set. jump to m 

If jump key 3 is set. jump to m 

If jump key 4 is set. jump to m 

If jump key 5 is set. jump to m 

If jump key 6 is set. jump to m 

18 

PAGE 
NO. 

7-17 

7-58 

7-29 

7-23 

7-37 

7-46 
7-15 

7-15 

7-20 

7-22 

7-24 

7-25 

7-38 

7-40 

7-47 

7-26 

7-26 

7-29 

7-39 

7-42 

7-43 

7-44 

7-44 

7-44 

7-26 

7 -16 

7 -16 

7 -16 

7-16 

7 -16 

7-39 

7-42 

7-38 

7-30 

7-40 

7-47 

7-30 

7 -31 

7 -31 

7 -31 

7 -3J 

7 -31 

7-31 



FUNCTION 

Jumps and 

Stops 

(Continued) 

Decision 

TABLE 3. FUNCTION LISTING OF INSTRUCTIONS (CONTINUED) 

MNEMONIC 
CODE 

SLS 

UCS 

UJP.I 

RTJ 

AQJ.EQ 

AQJ,GE 

AQJ,LT 

AQJ.NE 

ASE 

ASE.S 

ASG 

ASG,S 

AZJ.EQ 

AZJ.GE 

AZJ.LT 

AZJ.NE 

CPR.I 

EOJttt 

EZJ.EQttt 

EZJ.L Tttt 

IJD 

IJI 
ISD 

ISO 

ISE 

ISE 

ISG 

ISG 

lSI 

SRCE,INT 

SRCN.INT 

SSH 

MEQ 

MTH 

PAUS 

PRP 

INSTRUCTION DESCRIPTION 

Program stops if Selective Stop switch is on; upon restarting. 
RNI@;P+1 

Unconditional stop. Upon restarting. RNI @; P + 1 

Unconditional jump to 'm 

P + 1 ---+ m (address portion). RN I @ m + 1, return to m for 
P+1 
If (A) = (Q). RNI @ m. otherwise RNI @ P + 1 

If (A) ;:0: (Q). RNI @ m. otherwise RNI @ P + 1 

If (A) < (Q). RNI @ m. otherwise RNI @ P + 1 

If (A) ~ (Q). RNI @ m. otherwise RNI @ P + 1 

Ify = (A). RNI @ P + 2. otherwise RNI @ P + 1. Lower 15 
bits of A are used 

Ify = (A). RNI @ P + 2. otherwise RNI @ P + 1. Sign ofy is 
extended 

If (A) ;:0: y. RNI @ P + 2. otherwise @ P + 1 

If (A) ;:0: y, RNI @; P + 2. otherwise RNI @; P + 1. Sign 
of y is extended 

If (A) = O. RNI ® m. otherwise RNI @ P + 1 

If (A) ;:0: 0, RNI @ m. otherwise RNI @ P + 1 

If (A) < O. RNI @ m. otherwise RNI @ P + 1 

If (A) ~ O. RNI @ m. otherwise RNI @ P + 1 

(M) > (M). RNI @ P + 1 } (A) and (Q) are 
(Q) > (M). RNI @ P + 2 unchanged 
(A) ;:0: (M) ;:0: (Q) RNI @ P + 3 

Jump to m if E overflows. otherwise RNI @; P + 1 

(E) = O. jump to m; (E) ~ O. RNI @ P + 1 

(E) < O. jump to m; (E) ;:0: O. RNI @ P + 1 

If (B b
) = 0, RNI @ P + 1; if (Bb) ~ o. (B

b
) -1 ---+ Bb. RNI @ m 

If (B b
) = 0, RNI @ P + 1; if (B b) ~ o. (B

b
) + 1 ---+ Bb. RNI @ m 

If y = 0, RNI @ P + 2; if y ~ 0, RNI @ P + 1 

If (B b
) = y. clear Bb and RNI @ P + 2; if (B b

) ~ y, (B
b
) -1 ---+Sb 

and RNI @ P + 1 

If y=O. RNI @ P+2, otherwise RNI @ P+ 1 

If y = (B\ RNI @. P + 2, otherwise RNI @ P + 1 

If y =0. RNI @ P+2. otherwise RNI @ P+ 1 

If (B
b

) ;:0: y. RNI @ P + 2. otherwise RNI @ P + 1 

If (B
b
) = y. clear Bb and RNI @ P + 2; if (B

b
) ~ y. (B

b
) + 1 

---+ Bb. RNI @ P + 1 

Search for equality of character c in a list beginning at location r 
until an equal character is found, or until character location s is 
reached; ° ~ c ~ 6310 

Same as SRCE except search condition is for inequality 

Test sign of (m), shift (m) left one place end around and replace 
in storage. If sign negative. R N I @ P + 2; otherwise R N I @ P + 1 

(B 1) - i ---+ B 1; if (B 1) negative. RNI @ P + 1; if (B1) positive. test 
(A) ;:0: (Q) II. (M). if true. RNI@; P + 2. if false. repeat sequence 

(B2 - i ---+ (B2); if (B2) negative. RN I @ P + 1; if (B2) positive, test 
(A) ;:0: (Q) II. (M); if true. RNI @ P + 2; if false. repeat sequence 

Sense busy lines. If "1" appears on a line corresponding to "1" 
bits in x. do not advance P. If P is inhibited for longer than 40 ms. 
read reject instruction from P + 1. If no comparison. RNI @ 
P+2 

Same as PAUS except real-time clock 
is prevented from incrementing. 

19 

PAGE 
NO. 

7-31 

7-31 

7-32 

7-32 

7-36 

7-36 

7-36 

7-36 

7-13 

7-13 

7-14 

7-14 

7-35 

7-35 

7-35 

7-35 

7-33 

7-49 

7-49 

7-49 

7-34 

7-33 
7-19 

7-19 

7 -13 

7-13 

7-14 

7-14 

7-19 

7-56 

7-56 

7-50 

7-54 

7-55 

7-64 

7-64 

Rev. H 



FUNCTION 

Decision 
(Continued) 

Shifts 

Inputl 
Output 

Rev. H 

TABLE 3. FUNCTION LISTING OF INSTRUCTIONS (CONTINUED) 

MNEMONIC 
CODE 

OSE 

OSE,S 

OSG 

OSG,S 

SHA 

SHAO 

SHO 

SCAO 

SFEttt 

SSH 

CllO 

ClCA 
CON 

COpy 

CTI 

CTO 

EXS 

INAC,INT 

INAW,INT 

INPC,INT,B,H 

INPW.INT.B,N 

IOCl 

OTAC,INT 

INSTRUCTION DESCRIPTION 

Ify = (0), RNI @ P + 2; otherwise RNI @ P + 1. lower 15 bits 
of 0 are used 

If y = (0), RNI @ P + 2. Otherwise RNI @ P + 1. Sign of y is 
extended 

If (0) ;::0: y, RNI @ P + 2, otherwise RNI @ P + 1 

If (0) ;::0: y, RNI @ P + 2, otherwise RNI @ P + 1. Sign of y is 
extended 

Shift (A). Shift count K = k + (Bb) (signs of k and Bb extended). 
If bit 23 of K = "1 ", shift right; complement of lower 6 bits equal 
shift magnitude. If bit 23 of K = "0", shift left; lower 6 bits equal 
shift magnitude. left shifts end around; right shifts end off 

Shift (AO) as one register. Shift count K = k + (B b) (signs of k 
and Bb extended). If bit 23 of K = "1", shift right; complement 
of lower 6 bits equal shift magnitude. If bit 23 of K = "0", shift 
left; lower 6 bits equal shift magnitude. left shifts end around; 
right shifts end off 

Shift (0). Shift count K=k + (Bb) (signs of k and Bb extended). 
If bit 23 of K = "1 ", shift right; complement of lower 6 bits equal 
shift magnitude. If bit 23 of K = "0", shift left; lower 6 bits equal 
shift magnitude. left shifts end around; right shifts end off 

Shift (AO) left end around until upper 2 bits of A are unequal. 
Residue K=k-shift count. If b=1, 2, or 3, K->Bb; if b=O, K is 
discarded 

Shift E in one character (4-bit) steps. left shift: bit 23 = "0", 
magnitude of shift = lower 4 bits of K = k + (B \ Right shift: . bit 
23 = ''1'', magnitude of shift = lower 4 bits of complement of 
K = k + (B b

) 

Test sign of (m), shift (m) left one place end around and replace 
in storage. If sign negative, RNI @ P + 2; otherwise RNI @ P + 1 

lockout external interrupts while 
channel(s) are busy. 

Clear channel activity, not the peripherals. 
If channel ch is busy, read reject instruction from P + 1. If chan­
nel ch is not busy, 12-bit connect code sent on channel ch with 
connect enable, RNI @ P + 2 

External status code from 1/0 channel ch to lower 12-bits of A, 
contents of interrupt mask register to upper 12-bits of A. RN I 
@P+1 

Set Type In } Beginning character address must 
be preset in location 23 of 
register file and last character 

Set Type Out address + 1 must be preset in 
location 33 of the file. 

Sense external status if "1" bits occur on status lines in any of 
the same positions as "1" bits in the mask, RNI @ P + 1. If no 
comparison. RNI @ P + 2 

(A) IS cleared and a 6-bit character is transferred from a periph­
eral device to the lower 6 bits of A 
(A) is cleared and a 12 or 24-bit word is read from a peripheral 
device into the lower 12 bits or all of A (Word size depends on 
1/0 channel) 

A 6 or 12-bit character is read from peripheral device and stored 
in memory at a given location 

Word address is placed in bits 00-14; 12- or 24-bit words are 
read from a peripheral device and stored in memory 

Clears I/O channel or search/move control as defined by bits 
00-07. 08. and 11 of x. 

Character from lower 6 bits of A is sent to peripheral device, 
(A) retained 

20 

PAGE 
NO. 

7 -13 

7 -13 

7 -14 

7-14 

7-50 

7-52 

7-52 

7-52 

7-49 

7-50 

7-69 

7-69 

7-70 

7-60 

7-71 

7-60 

7-80 

7-82 

7-72 

7-74 

7-63 

7-76 



FUNCTION 

Inputl 
Output 

(Continued) 

Interrupt 

TABLE 3. FUNCTION LISTING OF INSTRUCTIONS (CONTINUED) 

MNEMONIC 
CODE 

OTAW,INT 

OUTC,INT,B,H 

OUTW,INT.B,H 

SEL 

CINS 

DINT 

EINT 

IAPR 

INCL 

INS 

INTS 

SSIM 

SBCD 

SCIM 

SFPF 

INSTRUCTION DESCRIPTION 

Word from lower 12 bits or all of A (depending on type of 1/0 
channel) sent to a peripheral device 

Storage words disassembled into 6 or 12-bit characters and sent 
to a peripheral device 

Words read from storage to peripheral device 

If channel ch is busy, read reject instruction from P + 1. If chan­
nel ch is not busy, a 12-bit function code is sent on channel ch 
with a function enable, RNI @ P + 2 

Interrupt mask and internal status to A 

Disable interrupt control 

Interrupt control is enabled, allows one more instruction to be 
executed before interrupt occurs 

Interrupt associated processor 

Interrupt faults defined by x are cleared 

Sense internal status if "1" bits occur on status lines in any of 
the same positions as "1" bits in the mask, RNI @ P + 1. If no 
comparison, RNI @ P + 2 

Sense for interrupt condition; if "1" bits occur simultaneously in 
interrupt lines and in the interrupt mask, RNI @ P + 1; if not. 
RNI @ P+2 

Selectively set Interrupt mask register, for each" 1" bit in x. The 
corresponding bit in the mask register set to "1 ". 

Set BCD fault logic 

Selectively clear interrupt mask register for each "1" bit in x. 
The corresponding bit in the mask register is set to "0". 
Set floating point fault logic 

21 

PAGE 
NO. 

7-86 

7-76 

7-78 

7-70 

7-62 

7-67 

7-67 

7-66 

7-65 

7-62 

7-61 

7-66 

7-67 

7-66 

7-67 





INDEX 

A Register ........................... 1-6 
Accumulator (See A Register) 
Addressing 

Addressing Modes ............... 7-4,7-5 
Address Modification and Indexing ..... 7-3 
Absolute Addresses .................. 2-3 
Word-Character Conversions .......... 7-2 

Arithmetic 
Faults ............................. 4-1 
Fixed Point .................... 7-38, 7-40 
Floating Point ...................... 7-43 
Supplementary Information ........ App. B 

Assemblers (See COMPASS and BASIC 
Assemblers) 

Assembly Listing Format ................ 8-17 
Auto Load/Auto Dump ................... 3-3 

Examples ............................ 5-12 
Interim Subroutine .................... 3-3 
Reserved Addresses .................... 2-4 

B b Registers ............................. 1-8 
BASIC Assembler ........................ 8-6 
BCD ................................... 7-46 
Block Control and Interrupt Module ....... 1-3 
Block Control 

Section ............................... 1-10 
Clearing Mask ........................ 7-63 

Breakpoint 
Address .............................. 5-13 
Mode ................................. 5-13 
Switch ................................ 5-7 

C Register ........................... 1-7,5-1 
Character Address-Word Address 

Conversions ........................... 7-2 
Character Positions ...................... 1-6 
Character Set ........................ App. A 
Clear, Master .................... 5-8,5-9 
Clock, Real-Time ........................ 1-12 
COBOL ................................. 8-4 
Codes 

Interrupt .............................. 4-5 
Error ...... '" ...................... , .8-18 
Typewriter Character ................ 6-5 

Coding 
Procedures ........................ 8-7 
Forms ........................... 8-19 

Compare Instruction ................. 7-53 
Communication Register (See C Register) 
COMPASS Assembler ................. 8-2 

Coding Form ...................... 8-19 
Computer Organization ............... 1-6 
Consoles ......................... 1-4,5-1 

Switches and Indicators .............. 5-2 

23 

Console Keyboard . . . . . . . . . . . . . . . ..... 5-8 
Console Typewriter .................... 6-1 
Control Instructions .................. 7-63 
Conversions 

Word Address-Character Address ....... 7-2 
Numbers ....................... '" B-5 
Octal-Binary .................. C-6, C-10 

D Register ............................... 1-8 
Data Bus ............................ 1-10 

Register . . . " . . . . . . . . . . . . . . . . . . ... 1-8 
Data Processing Package ........... ' ... 8-3 
E Register ........................ 1-9,5-1 
Error Codes ......................... 8-18 
F Register ........................... 1-7 
Faults, Arithmetic .................... 4-1 
Field Length Register (See D Register) 

Fixed Point Arithmetic ............... B-8 
Floating Point Arithmetic ............. B-9 
FORTRAN .............................. 8-5 

Coding Form ......................... 8-19 
Indexing 

Address Modification ................... 7-3 
Examples ............................. 7-5 

Index Registers (See B b Registers) 
Input/Output 

Channels .............................. 1-3 
Characteristics ......................... 3-1 
Instructions ..................... 7-68, 7-69 
Interface Signals ....................... 3-1 
Parity ............................ 1-13,3-2 

Instructions (See also specific instructions) . 7-1 
Execution Times ...................... 7-11 
Format .................. 7-1,7-14,7-45,8-7 
Interpretations ......................... 8-8 
Index ..... '" .......................... 7-8 
Listings ............................... 7-7 

(Also see back of book for Octal, Alpham­
nemonic and Function Listings on pp. 7, 12, 
and 17) 

Macro ................................ 8-12 
Pseudo- ................................ 8-9 
Symbols ........... pp. 7, 12 (in back of book) 
Trapped 7-6, 7-7 (See also pp. 7-42 to p. 7-49) 

Interface Signals ......................... 3-1 
Inter-Register Transfer 

24-Bit Precision ....................... 7-26 
48-Bit Precision ....................... 7-29 

Interrupt 
Clearing and Sensing .................. .4-4 
Codes ................................. 4-5 
Control ................................ 4-4 



Instructions .......................... 7-65 
Internal ............................... 4-1 
I/O .................................... 4-3 
Mask Register ......................... 4-3 
Power Failure ......................... 4-2 
Priority ............................... 4-4 
Processing ............................. 4-5 
Real time .............................. 4-2 
System ................................ 4-1 
Trapped Instruction .................... 4-2 

Jump Instructions ...................... 7-30 
Keyboard (See Console Keyboard) 
Load Instructions ....................... 7-20 
Logical Instructions 

(with Storage Reference) ............... 7-37 
Loudspeaker, Console ..................... 5-4 
Macro Instructions ...................... 8-12 
Main Control & Arithmetic Module ....... 1-3 
Master Clear ......................... 5-8,5-9 
Memory 

Configurations, Optional ................ 1-3 
Protection . . . . . . ................... 2-3, 2-5 

Meters, Elapsed Time ................... 5-15 
Modularity .............................. 1-1 
Move Instruction ........................ 7-58 
Number Systems ........................ B-1 
Octal-Decimal Con version Table 

Integer ................................ C-6 
Fraction .............................. C-I0 

Optional Arithmetic ...................... 1-4 
P Register ............................... 1-7 
Pause Sensing Mask .................... 7-64 
Parameters, Instruction (See Symbol Definitions) 
Parity .................................. 1-12 

Storage ............................... 1-12 
I/O ............................... 1-13.3-2 

Peripheral Equipment ............... 1-1,1-13 
Power Control Panel ................ 1-4,5-15 
Program Address Counter (See P Register) 
Programming Reference Table ......... App. C 
Pseudo-Instructions ...................... 8-9 
Q Register ............................... 1-7 
Radix Arithmetic ........................ B-6 
Read/Write Characteristics ............... 2-2 

Single-Character Mode ................. 2-2 
Double-Character Mode ................. 2-2 
Triple-Character Mode ................. 2-2 
Full-Word Mode ....................... 2-2 
Address Mode .......................... 2-2 

Real-Time Clock ......................... 1-12 
Registers (See also specific registers) 

Characteristics. . . . . . . . . . . . . . . . . . . . . . .. 1-9 
Descriptions ........................... 1-6 
Displays ............................... 5-1 

24 

Operations ............................ 7-12 
Shifts . . . . ............................ 7-50 

Register File ............................ l-l{J 
Register File Assignments ............... 1-11 
S Bus .................................. 1-10 
S Register ............................... 1-8 
Satellite Configurations .................. 3-5 
Search Instructions ................. 7-50,7-56 
Sense Instructions ....................... 7-60 
SCOPE .................................. 8-l 
Software Systems ........................ 8-1 
SORT/MERGE Program, Generalized ...... 8-5 
Status 

Checking (Typewriter) ................. 6-2 
Indicators .......................... 5-4,5-5 
Internal Status Sensing Mask .......... 7-62 

Stop Instructions ........................ 7-30 
Storage 

Addressing ............................ 2-3 
Characteristics ......................... 2-1 
Control Panel .......................... 2-1 
Module ................................ 1-3 
Parity ................................ 1-12 
Protection ............................. 2-3 
Registers .............................. 2-2 
Sharing ............................... 2-3 
Shift ................................. 7-50 
Word Format .......................... 1-6 

Store Instructions ....................... 7-23 
Switches 

Console ........................... 5-7,5-10 
Keyboard .............................. 5-9 
Power Control Panel ................... 5-15 
Storage Protection ..................... 2-5 
Typewriter Console ..................... 6-3 

Symbol Definitions ....................... 7-3 
System Description ....................... 1-1 
Temperature Warning .................... 5-6 
Typewriter, Console ...................... 6-1 

Codes ................................. 6-5 
Status Checking ....................... 6-2 
Switches and Indicators ................ 6-4 
Tabs, Margins and Spacing ............. 6~2 
Type Dump ............................ 6-3 
Type In ................................ 6-3 
Type Load ............................. 6-3 
Type Out .............................. 6-3 

Utility Package .......................... 8-4 
Word Address ............................ 7-1 
Word Address - Character Address 

Conversions ........................... 7-2 
Word Format ............................ '1-6 
X Register ............................... 1-7 
Z Register ............................... 1-8 



w 
Z 
::::i 

~ 
Z 
o ..... 
< 
I­
:::l 
U 

col 
~I 
-:1 
> 
~I 
;;;1 
N 
",I 
to) 

::E 1 

:31 ... 
I 

COMMENT SHEET 

CONTROL DATA 3200 COMPUTER SYSTEM 

REFERENCE MANUAL 

PUB. NO. 60043800 

FROM: NAME: __________________________ _ 

BUSINESS 
ADDRESS: __________________________ _ 

THESE COMMENTS REFER TO REV. __ OF THIS MANUAL. 

COMMENTS: (DESCRIBE ERRORS,SUGGESTED ADDITIONS OR 
DELETIONS, ETC. INCLUDE PAGE NUMBER.) 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A . 
FOLD ON DOTTED LINES AND STAPLE 



STAPLE STAPLE 

:OLD FOLD 
-------------------------------------------~ 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 

81001 34TH AVENUE SOUTH 

MINNEAPOLIS, MINNESOTA 55440 

ATTN: TECHNICAL PUBLICATIONS DEPT. 
PLANT TWO 

OLD 

FIRST CLASS 
PERMIT NO. 8241 

MINNEAPOLIS, MINN. 

FOLD 

w 
Z 
::; 

~ 
z 
o .... « 
I­
::::> 
u 



• e, -; 
e 
e 
e 
e 
e 
e 
e 

I 
..,.-::-

e 
e 
e 
e 
e 
e 
e· 
e 
e 
e 



Pub. No. 60043800 

j .• : 

CONTROL DATA 
CORPORATION 

. CORPORATE HEADIlUARTERS. 8100 34th AVE. SO •• MINNEAPOLIS. MINN. 55440 
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

Litho in U.S.A. 


