SHNEIE
=200
SICSE)@E)
S5l

COMPUTER SYSTEMS
ALGOL

EEEEEEEEEEEEEEE




Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales
office listed on the back cover.

CONTROL DATA CORPORATION
Documentation Department

February, 1966 3145 PORTER DRIVE € 1966, Control Data Corporation
Pub. No. 60134800 PALO ALTO, CALIFORNIA Printed in the United States of America



CONTENTS

INTRODUCTION v
CHAPTER 1 GENERAL DESCRIPTION 1-1
Compiler Features 1-1
Compiler Structure 1-1
Language Conventions 1-2
CHAPTER 2 SOURCE INPUT FORMAT 2-1
Source Deck 2-1
Program Compilation 2-1
Procedure Compilation 2-2
CHAPTER 3 3100/3200/3300/3500 ALGOL and ALGOL-60 3-1
Basic Concepts 3-1
Expressions 3-3
Statements 3-5
Declarations 3-6
CHAPTER 4 INPUT-OUTPUT 4-1
Comparison with ACM Proposal 4-1
Formats 4-1
I/0O Procedures 4-4
Hardware Function Procedures 4~-9
1/0 Errors 4-11



CHAPTER 5 CHANNEL CARDS 5-1

Channel Define Card 5-1
Channel Equate Card 5-2
Channel End Card 5-3
Standard ALGOL Channel Cards 5-3
CHAPTER 6 OBJECT PROGRAM FORMATS AND EXECUTION OPTIONS 6-1
Normal Mode 6-1
Segmented Mode 6-2
CHAPTER 7 COMPILATION OPTIONS 7-1
ALGOL Control Card 7-1
Object Program Output Options 7-2
CHAPTER 8 EQUIPMENT REQUIREMENTS 8-1
Scratch Units 8-1
Load-and-Go Unit 8-2
Equipment Declarations 8-2
Typical Deck Structures 8-3
APPENDIX A ALGOL CHARACTER TABLES A-1
APPENDIX B OBJECT PROGRAM STRUCTURE B-1
APPENDIX C OBJECT PROGRAM STACK C-1
APPENDIX D DIAGNOSTICS D-1
APPENDIX E PROGRAM EFFICIENCY HINTS E-1
APPENDIX F SAMPLE PROGRAM F-1

INDEX Index-1



INTRODUCTION

The ALGOL system described in this manual consists of the ALGOL
programming language and a compiler for translating ALGOL programs
into machine language for execution on the Control Data® 3100, 3200, 3300
and 3500 computers.

This reference manual presents the details and rules involved in writing a
program; it also includes sufficient information to prepare, compile and
execute such a program. Throughout this manual the hame ALGOL means
3100/3200/3300/3500 ALGOL unless otherwise specified.

The 3100/3200/3300/3500 ALGOL language closely conforms to the language
defined in the ALGOL-60 Revised Reportl; the input-output procedures
provided as part of the language conform closely to the set recommended by
the ACM2. This manual therefore uses both the report and the ACM proposal
as its basic reference material.

The terms used to describe 3100/3200/3300/3500 ALGOL are, wherever
possible, the ones which have explicit meanings within the context of the
ALGOL~60 Revised Report, the ACM input-output proposal, or general
ALGOL literature. No attempt is made to explain or define ALGOL con-
cepts except where it is necessary for an understanding of 3100/3200/
3300/3500 ALGOL.

The reader is assumed to be familiar with the referenced documents and the
Control Data publications: 3100/3200/3300 ALGOL General Information
Manual, 3100/3200/3300 ALGOL Instant Manual, and the SCOPE/COMPASS
Reference Manual.

In addition, the reader is referred to the following representative bibliography
which, it should be noted, is not meant to be exhaustive:

Baumann, R., Feliciano, M., Bauer, F. L., Samelson, K.: Introduction to
ALGOL, Prentice-Hall, Inc., 1964.

Dijkstra, E.W.: A Primer of ALGOL~-60 Programming, Academic Press,
1962.

MecCracken, Daniel D.: A Guide to ALGOL Programming, John Wiley & Sons,
Inc., 1962.



vi

The Communications of the ACM, 1963, vol. 6, No. 1, pp 1-17
Numerische Mathematik, Vol. 4, pp 420-453 (1963)
The Journal of the British Computer Soc.

International Organization for Standardization, Draft Proposal on the
Algorithmic Language ALGOL, Appendix E:

"Proposal for Input-Output Procedures for ALGOL 60 (ACM)".

This proposal is a revision of:

"A Proposal for Input-Output Procedures for ALGOL 60" by Knuth et al. ;
Communications of the ACM, vol. 7, No. 5, May 1964.

The revised proposal includes as a subset the report issued by the
International Federation for Information Processing (IFIP):
Communications of the ACM, vol. 7, No. 10, Oct. 1964, pp 628-630.

The revised proposal, called the ACM proposal throughout this manual,
is obtainable from:

American Standards Association Incorporated, 10 East 40th St.,

New York 16, N.Y.



COMPILER
FEATURES

COMPILER
STRUCTURE

GENERAL DESCRIPTION 1

The ALGOL compiler for the 3100/3200/3300/3500 computers is based in
design on the ALGOL compiler developed by Regnecentralen, Copenhagen,
Denmark, for the GIER computer. This design was adopted and, to some
degree, extended by Control Data to provide the most generally advantageous
features for an ALGOL compiler.

These include the implementation of the complete ALGOL-60 language
(wherever feasible and not in conflict with other advantages); comprehensive
input-output procedures; extensive compile-time and object-time
diagnostics; fast compilation; and a wide variety of compilation options, such
as the ability to compile both ALGOL programs and ALGOL procedures; and
the ability to generate and execute the object program in either normal or
segmented form.

The compiler is designed to run under control of the SCOPE monitor on a
3100, 3200, 3300 or 3500 computer with a minimum of 8K words of memory
storage. The compiler takes advantage of extra computer memory to
compile larger programs and uses extra storage for intermediate informa-
tion, thus reducing or eliminating references to scratch units.

The ALGOL compiler is a four-pass system in which each pass performs a
separate function in the total translation process; the output from one pass
serves as input to the next.

The first three passes perform all of the syntactic and semantic analysis of
the source text. Their output is either a list of encoded error messages or
the object code in a special macro format.

The fourth pass either decodes the error messages or produces the various
outputs from the compiler, including the object code in binary form. The
object code may be requested in the normal form for loading and executing
under control of the SCOPE monitor, or it may be requested in the
segmented form.

1-1



LANGUAGE
CONVENTIONS

1-2

A special routine, nominally pass 5 (although it takes no part in the actual
compilation process), controls the loading and executing of an object
program in the segmented form (Chapter 6). Execution in segmented mode
can be performed as part of the same compilation or as a completely
separate process.

ALGOL is described in terms of three languages in this manual: reference,
hardware, and publication language.

The reference language is that in which ALGOL is defined in the ALGOL~60
Revised Report; it is computer independent and utilizes the basic ALGOL
symbols, such as begin and end, to define the language syntax and
semantics.

The hardware language is the representation of ALGOL symbols in
characters that are acceptable to the computer; this is the language used by
the programmer. For example, where the reference language calls for the
use of the basic ALGOL symbol begin, the ALGOL programmer includes the
seven hardware characters 'BEGIN' in his program. The hardware
representations of ALGOL symbols are shown in Appendix A.

Unless otherwise stated or implied, the basic ALGOL symbols (reference
language) rather than their character equivalents (hardware language) are
used consistently throughout this manual. This convention simplifies the
explicit and implicit references to the ALGOL language as defined in the
ATLGOL-60 Revised Report.

For publication purposes only, the underlining convention delineates the
basic ALGOL symbols. These symbols are understood to have no relation
to the individual letters of which they are composed. Other than this
convention, the publication language is not considered in this manual.



SOURCE DECK

PROGRAM
COMPILATION

SOURCE INPUT FORMAT 2

The source deck must be in the form of cards or card images, described
here only as cards. Each character of the source input is punched in one
card column. A blank column has no effect on the source text, except in
strings (Chapter 4). Blanks may be freely used, however, to facilitate
reading.

Only columns 1-72 of each card are interpreted by the compiler; there is no
syntactic meaning attached to these boundaries; any language structure may
appear across the boundaries of two or more cards.

Each card is counted at compile time and assigned a line count (beginning at
0) for reference by error messages. This line count is included in any
source listing requested, as are columns 73-80 of each card.

The compiler can compile either an ALGOL program or an ALGOL
procedure; the user indicates on the control card which type of input is to be
compiled. A separately compiled procedure is incorporated into a main
program at the object program level (Chapter 7).

Compilation (generation of object code) of an ALGOL program starts with
the first ALGOL symbol begin ('"BEGIN'") in the source deck and terminates
with the last ALGOL symbol end ('END"). Any information in the source
deck prior to the first begin or following the final end is treated as a
commentary. Comments are printed as part of the source listing and are
included in the line count. Information in columns 1-8 of the first
commentary card is treated as the program name and printed on the page
headings of the source listing. If there is no initial commentary, the
program name generated is XXXALGOL. The end of the source deck is
indicated by the characters 'EOP' in card columns 10-14.

The program should be self-contained in that it makes no reference to
variables not defined within it. If it contains a reference to a procedure
which is to be compiled separately, it must include a procedure declaration
and a code symbol and code number to replace the body (Section 5.4.6
Chapter 3).

2-1



PROCEDURE
COMPILATION

2-2

The source deck rules for compilation of an ALGOL procedure are the same
as described for an ALGOL program, except that compilation starts with the
first ALGOL symbol procedure (PROCEDURE') encountered, rather than
begin. The procedure symbol may be preceded by one of the ALGOL
symbols, real (REAL'), integer ('INTEGER'), or Boolean (' BOOLEAN").

The procedure should conform exactly to the rules for an ALGOL procedure
specified in a main ALGOL program. However, the procedure should be
self-contained both in the sense described above for a program and in that
it should not declare any own variables nor should it call itself. In all other
aspects, any of the permitted facilities for describing an ALGOL procedure
may be used.

The information in columns 1-8 of the first commentary card of a pre-
compiled procedure is not used as the procedure name. Instead, the
procedure name is CDPxxxxx where xxxxx is the number assigned to the
procedure on the ALGOL control card and associated with the procedure by
the code symbol. If all 5 digits of the number are not specified, it is zero-
filled on the left. For example, the number 20 becomes 00020.

The following pages show the ALGOL coding form and the structure of the
source decks for the two compilation modes.



ALGOL CODING FORM CONTROL DATA NAME

PROGRAM : PAGE

ROUTINE: conronATlo DATE
STATEMENTS IDENT

2 lalalsfefsla]s]io]rTia]aliaTisTis] 2 ]r0] 0 [20f2i [2e]ea]24]25]2s a7 [z0] 23] 50] 31 | 22] 53] 54| s3] s6]7 [0  3e]40] a1 [+2] 3] #4] 5] s6|a7] #a]s]s0]o1 5253 |54 ]s8]s6]s7]s8]s5]e0]e: {2 ]es]6a] 5] c6ls7 o8

73] ra]7s{76|77]7al7s]00

S IS VS S S Y O S SO O S A N V15 S ' N O Y S T O W W T S VA O N T U T T O T T Y N U S TN T N T T T O N W B |

NSRS S G R N N S T T N S T T W T T U T T T T U U S U OO T T T W OO0 N 0 O Y G S O B

S A 5 ) T U S T T T T T T T U Y T T T U W Y I U U Y VR YO O A T U S N O 0 Y B MO A O

N NN NN i I A A S A B
e [sTalsTe[r [ete [0l izls[ia[ia[re[iz]ia [is Jzo[ 21 [22]23]24[25] 26 [27]z8 28] 50 5-]:zlu[:4[ss|n[n[u|n|4o|o-[ulu[ulu[u|41|n|n9[=o]sn|sz|ujulu]n|s1|ulu|oo|u]n[uln]sa]u]n[n[u]1o|7-ln 73[7a]7s[76[z7]78] 7000




Source Deck for Program

Ve
W
 am

HEOP”

y—

Vs

Z

Terminal Commentary

[

HENDIV

optional

L

7—
L

Y

—

/  "BEGIN'" (source code)

z
£

P

Initial Commentary

Program Name

Source Deck for Procedure

optional

HEOPH

W

AL

Vs

Va

L

[

HENDH

Terminal Commentary

optional

Vs

Vs

;.
L
-

[

(source code)

L~

L
L
o
/-

Initial Commentary

"REAL" "PROCEDURE"
or "INTEGER" "PROCEDURE"
or "BOOLEAN" "PROCEDURE"

or "PROCEDURE"

optional



BASIC CONCEPTS

3100/3200/3300/3500 ALGOL AND ALGOL-60

To facilitate cross-referencing, the same numbering system is used
throughout the present chapter as in the ALGOL-60 Revised Report.
Since comments are made only on selected features, the section numbers
do not run consecutively.

All descriptions of language modifications are made at the main reference
in the report; wherever feasible, all other references are also noted. The
reader should assume, however, that such modifications apply to all
references to the features, noted or otherwise.

A section or feature not mentioned in this chapter is implemented fully in
3100/3200/3300/3500 ALGOL in exact accordance with the report. In
addition to the language descriptions in this chapter, a set of reserved
identifiers which reference input/output procedures are described in
Chapter 4.

2. Basic Symbols, Identifiers, Numbers, and Sirings, Basic Concepts

2.1 Letters
Since there is hardware representation for upper case letters only, lower
case letters have no meaning in 3100/3200/3300/3500 ALGOL.

2.3 Delimiters
3100/3200/3300/3500 ALGOL contains two extra delimiters:

<code procedure body indicator> ::= code
<segment control indicator> ::= segment

The symbol code is included to permit reference to separately compiled
procedures (section 5. 4. 6).




3-2

The symbol segment may appear only within a comment, so that it has no
effect on compatibility with the ALGOL~-60 Revised Report; nor does it
prevent the program from being compiled on another ALGOL compiler.
This symbol has no effect on the compilation process; it merely controls
segmenting of the object program (Chapter 6).

At the point in the object program corresponding to the appearance of the
segment symbol in the source program, the current segment is terminated
and a new segment is begun.

Segmentation control increases efficiency of object program execution. For
example, if the code generated for a for statement overlaps two segments;
but can, in fact, fit into one segment, jumping between the segments is
superfluous. The user can force the complete for statement code into a
single segment by including the segment symbol just prior to the for state-
ment in the source program; in this case, the for statement code begins the
new segment.

The symbol comment and the whole of the comment feature is implemented
exactly as in the report (Section 2.3) except that the symbol segment in the
middle of a comment is recognized and treated as described above.

2.4 Identifiers
The maximum size of an identifier is 256 hardware characters. If a longer
identifier is specified, only the first 256 characters are used.

The number of identifiers that can be handled by the compiler depends on
their sizes and the memory capacity of the computer. With the largest size
memory, the maximum is 4095 differently-spelled identifiers.

2.5 Numbers

A number can contain at most 14 decimal digits (leading zeros not counted),
plus a decimal point, plus an exponent part as defined in the report. The
maximum number of decimal digits in an exponent part is three.

2.5.4 Types
Variables of type integer are represented in 48-bit fixed-point form in the
range:

-140,737,488, 355,328 = -2 47 < integer < +2 47 = +140,737,488, 355,328

Variables of type real are represented in normal floating-point form with a
36-bit mantissa, sign bit, and 11-bit exponent part in the range:

.

-104308 = -241023 < real < +241023 = +104308



EXPRESSIONS

Conversions between real and integer values are performed at both compile
time and object time by closed subroutines.

All integer numbers with 14 or fewer digits are initially stored during
compilation in fixed-point form. All integer numbers with more than 14
digits are converted to normal floating-point form. Numbers with a decimal
point and/or an exponent part are converted to normal floating-point form.
In all numbers, any digits after the fourteenth are treated as zeros (powers
of ten).

If, in the source program, the number is involved directly with a variable,
it is converted, if necessary, from its current form to normal floating-point
if the variable is real or fixed-point form if it is integer.

If the number is not involved directly with a variable at compile time, it is
left in its initial form; at object time, it is treated as a real variable if in
normal floating-point form and as an integer variable if in fixed-point form.

2.6 Strings

2.6.1 Syntax
A proper string is defined in ALGOL as follows:

<proper string> ::= <any sequence of basic 6-bit BCD characters
except 12 8>

2.6.3 Semantics
The string quotes ‘and’ are introduced to enable the ALGOL language to
handle arbitrary sequences of basic characters.

3. Expressions
3.1.4 Subscripts

3.1.4.2 Subscript values are assumed to be in the range:

-24 23 < subscript value < +2423

3-3



No check is made to determine if a value is outside of this range. The upper
24 bits of the subscript integer variable are assumed to be zero and ignored.

The only subscript check is on the final address computed from the sub-
scripts of the array. This check ensures that the address lies within the
boundaries of the complete array; individual subscripts are not checked. The
array bounds check may be suppressed throughout the object code with the
control card option N (Chapter 7).

3.2.4 Standard Functions

When either of the standard functions ABS or SIGN is called directly, the
object for it is generated in-line. A procedure call is generated only when
ABS or SIGN is used as an argument to another procedure.

The algorithms for calculating the standard functions SIN, COS, ARCTAN,
EXP, LN, and SQRT incorporated in the ALGOL system all yield results
which have an accuracy of one part in 10410.

All input-output functions are expressed as calls of standard procedures
{described in Chapter 4). The list of reserved identifiers is expanded to
include the names of these procedures, as follows:

IN LIST HLIM ARTHOFLW
OUT LIST VLIM PARITY
INPUT HEND EOF
OUTPUT VEND REWIND

IN REAL NODATA UNLOAD
OUT REAL TABULATION SKIPF

IN ARRAY FORMAT SKIPB

OUT ARRAY SYSPARAM ENDFILE
IN CHARACTER EQUIV BACKSPACE
OUT CHARACTER STRING ELEMENT IOLTH

GET ARRAY CHLENGTH MODE

PUT ARRAY MANINT

Calls to all of the standard procedures (both input-output and function)
conform to the syntax of calls to declared procedures (Section 4.7.1) and
in all other respects are equivalent to regular procedure calls. This
specifically includes the activation of a standard procedure when its
identifier appears as an actual parameter in a procedure call.

If a standard procedure is not needed throughout the entirety of a program,
its identifier may be declared to have another meaning at any particular
level; whenever it is used at that level, the identifier assumes the new
meaning rather than that of the standard procedure.

3-4



STATEMENTS

3.3.4 Operations and Types

Arithmetic expressions whose type cannot be determined at compile time
are considered real. For example, the parenthesized expression in the
following statement is considered real if one or both of the arithmetic
expressions R and Sis :_c_e_a_l_.

P (fQthen R else §)

3.3.4.3

The rule for evaluating an expression of the form A4I is: The result is real -
except where A is integer and I is a constant with positive integral Value,——
in which case the result is integer. This differs from the report only when
the base A is integer and the exponent I is an integer variable whose value

is positive.

3.5.5 Unsigned integers as labels are not permitted.

4. Statements

4.1 Blocks
Blocks may be nested to a maximum of 32 levels.

4.3.5
If a goto statement is executed for a switch designator whose value is not
in the range of the switch, the object program is terminated abnormally.

4.6.3

In a for statement, if the controlled variable is subscripted, the same
array element is used as the control variable throughout the execution of
the for statement, regardless of any changes that might occur to the value
of the subscript expressions. The element used is the one referenced by
the value of the subscript expressions on entry to the for statement.

4.7 Procedure Statements

4.7.5 Restrictions
The largest number of parameters which may be specified in a procedure
call is 63; the largest number of constants is 62.

3-5



DECLARATIONS

3-6

4.7.8
The symbol code is included to permit reference to separately compiled
procedures (Section 5. 4. 6).

5. Declarations

Because of their assigned positions in the object program stack

(Appendix C), own variables are treated in definition as being global to the
whole program. In the same way as other variables, however, they are
treated as being local in scope.

5.2.2
own arrays with dynamic bounds (bounds which are not constants in the
program) are not permitted. The following statement is illegal.

own integer array A [i_f_C < 0 then 2 else 1:20]
5.4 Procedure Declarations

5.4.3 Semantics
The largest number of formal parameters that can be declared for a
procedure is 63.

5.4.5 Specifications
The last sentence should be changed to read: ''Specifications of all formal
parameters, if any, must be supplied."

5.4.6 Code as Procedure Body

ALGOL source programs and procedures must be self-contained. A pro-
cedure declaration must be included for any procedure to be compiled
separately from the program or procedure which references it. This
declaration consists of a procedure heading plus a code procedure body.

The identifying name included in the heading need not be the same as the one
specified when the procedure is compiled separately, nor need the names

of the formals (though their number must be the same). The value part, if
any, and the specification part may be omitted. All references to the re-
placed procedure must use the name declared in the procedure heading



included rather than the procedure heading when it is compiled separately. :

The code procedure body consists of the symbol code followed by a number
xxxxx in the range 0-99999. This number must be assigned to the procedure
when it is compiled separately™ (Chapter 7).

In the following example, both AVERAGE and SQUAREAVERAGE can be
replaced; the resulting program is shown below the original.

begin
real procedure AVERAGE (LOWER, UPPER);
value LOWER, UPPER;
real LOWER, UPPER;

begin \ yERAGE:= (LOWER + UPPER)/2;
end;

real procedure SQUAREAVERAGE (LOW, HIGH);
value LOW , HIGH;
Teal LOW, HIGH;

begin SQUAREAVERAGE:= SQRT (LOW#2/4 + HIGH4 2/4);
end;
real X, Y, S, SQ;
S:=0;
SQ:=0;
for X:=1 step 1 until 100 do
mY:=X+ 1;
S:=S + AVERAGE (X, Y);
8Q:=SQ + SQUAREAVERAGE (X, Y);
end;

end

1 Since the separately-compiled procedure is included in the main program
at object program level, it does not have to be defined as an ALGOL
procedure to produce the desired object code. The procedure can be
generated in any way, provided the object code conforms to that pro-
duced by compilation of an ALGOL procedure.

3-7



real procedure MEAN (A, B);
code 129;

real procedure SQUAREAVERAGE (LOW, HIGH);
value LOW, HIGH;
real LOW, HIGH;

code 527;
real X, Y, S, SQ;
S:=0;
SQ:=0;
for X:=1 step 1 until 100 do
begin
Y:=X+1;
S:=S + MEAN (X, Y);
SQ:=5Q + SQUAREAVERAGE (X, Y);
end;

end

The first procedure body has been replaced by the symbol code with the
identifying number 129. In the heading, the identifying name AVERAGE has
been changed to MEAN, the formal parameter names to A and B, and the
value and specification parts omitted. Reference to this procedure is to the
name MEAN. The procedure called AVERAGE should be compiled
separately with the code number 129 associated with it on the ALGOL
control card.

The source deck for this compilation is the ALGOL control card followed by:

real procedure AVERAGE (LOWER, UPPER);
value LOWER, UPPER;
real LOWER, UPPER;
begin
AVERAGE:= (LOWER+UPPER)/2;

end
and then the 'EOP' indication in columns 10 through 14 of the next card.

The second procedure body has been replaced by the symbol code and the
identifying number 527. Since the procedure heading remains in identical
form, the procedure is referenced exactly as before. The procedure called
SQUAREAVERAGE should be compiled separately with the code number 527
associated with it on the ALGOL control card.



COMPARISON WITH
ACM PROPOSAL

FORMATS

INPUT-OUTPUT 4

The following descriptions explain the differences between the input-output
procedures included in this version of ALGOL and the procedures defined

in the ACM proposal. To facilitate cross referencing, the same numbering
system is used in this chapter as in the proposal. Since comments are made
only on selected features, section numbers do not run consecutively. The
ACM proposal is a continuation of the ALGOL-60 Revised Report, and begins
with Section 6.

All descriptions of the modifications to the input-output procedures are made
at the main reference in the proposal; wherever feasible, all other
references are also noted. The reader should assume, however, that such
modifications apply to all references to the features, noted or otherwise.

A section or feature not mentioned in this chapter is implemented fully in
this version of ALGOL in exact accordance with the proposal.

This chapter also contains descriptions of additional input-output procedures
which are not defined in the ACM proposal, and a description of the
transmission error, end-of-file, and end-of-tape functions automatically
supplied within the framework of the input-output procedures.

6. Formats

6.1 Number formats

6.1.1 Syntax
The structure <replicator> <string> is not permitted as an insertion
component of a number format (Section 6.1.3.2).

6.1.3 Semantics

6.1.3.1 Replicators
\ replicator of value 0 {either n or X) implies the absence of the guantity to
which the replicator refers. The maximum size of a replicator is 32,766.



6.1.3.2 Insertions

String quotes‘and’ are not allowed within a string inserted in a number
format. The structure<replicator><strings is not permitted as an
insertion component of a number format (Section 6.1.1).

6.1.3.3 Sign and Zero Suppression

On input, if no sign appears in the format and the number is negative, an
error message is issued and the object program terminates abnormally.
Output uses the standard format bounded on either side by an asterisk
(Section 6.2.3.7).

6.1.3.5 Truncation

On output, the same number of significant digits will appear for a real
number corresponding to the storage of the number in a 48-bit floating-
point form (Section 2.5.4, Chapter 3). Either 10 or 11 significant digits
are output, followed by trailing zeros, if necessary.

The letter T has no meaning when applied to an integer number and is
ignored.

6.1.3.7 Two types of Numeric Format

The maximum number of D's and Z's appearing before the exponent part in
a number format is 24; the maximum number of D's and Z's in the exponent
part is 4. On output overflow the standard format bounded on either side by
an asterisk is used (Section 6.2.3.7).

6.1.3.8 Input
If the input data does not conform to the format, an error message is
issued, and the object program terminates abnormally.

6.2 Other Formats

6.2.1 Syntax

The character M has been added to the <nonformat> codes.

After each quantity of a format item is expanded by the corresponding

replicator, the maximum length is 136 characters; the expanded format
item corresponds to data on the external medium.



6.2.3.1 String Format

Because of the difference in the definition of a string (Section 2.6.1,
Chapter 3), each of the S—-positions in the format corresponds to a single
basic character in the output string rather than a single basic symbol. If
the string exceeds the number of S's, the leftmost basic characters are
transferred; if the string is shorter, blank characters are filled to the right.

The string quotes ‘ and ' are represented internally by 1201g and 12024;
string quotes contained in an output string will therefore print as : 1 and :2;
if written on magnetic tape in even parity, they can be subsequently recog-

nized only as 00018 and 0002,.

6.2.3.2 Alpha Format

Because of the difference in the definition of a string (Section 2.6.1,
Chapter 3), the letter A indicates one basic character rather than one basic
symbol is to be transmitted. This is the same as S-format, except the
ALGOL equivalent of the basic character is of type integer rather than a
string.

Again because of the difference in string definition, the transfer function
EQUIV(S) is an integer procedure whose value is the internal representation
(Appendix A) of the first basic character in the string S. Thus, it has the
same value as if the string S were input in alpha format.

6.2.3.3 Nonformat

The M code added to the nonformat ¢odes indicates that the value of a single
variable of any type is to be input or output in the exact form it appears on
the external medium or in memory with no conversion.

All four nonformat codes I, R, L, and M input or output 16 consecutive octal
digits.

6.2.3.4 Boolean Format
On input, incorrect forms cause error messages and the object program
terminates abnormally.

6.2.3.7 Standard Format

The standard format for output is +D. 9D +3D for real values and +15ZD for
integer values. When the given format is incorrect, the modified output
standard formats are‘*’+D.9D+3D **’ for real values and * **+16D **'for
integer values (Sections 6.1.3.3 and 6.1.3.7).

The number of blank characters, k, serving as a delimiter between numbers
in standard format may be specified on the channel card (Chapter 5); if not,
2 is assumed.



1/0 PROCEDURES

4-4

String parameters can be output under STANDARD format, nS, where n is
the length of the string.

6.3.3 Semantics
The infinite repetition of the parenthesized quantity is defined as meaning
32,767 repetitions.

7. Standard Input-Output Procedures

7.1 General Characteristics

In the input-output procedures, the term CHANNEL indicates an integer
variable called by value. This value is the channel number. Channel
numbers are associated with a set of characteristics on a channel card
(Chapter 5). These characteristics include the SCOPE logical unit number
of a hardware device, recording mode and density; physical recording
characteristics, such as record size and paging factor, and so on.

Each channel is associated with a format area, which is the memory image
of the external line. The area is as long as the maximum record size
defined by the P parameter on the channel card. Channels used for GET
ARRAY and PUT ARRAY are not associated with a format area since these
procedures do not involve formatting.

All characteristics associated with a channel, including the format area,
are contained in a stack of information which is retained during execution
of the object program (Appendix C).

7.2 Horizontal and Vertical Control

The initial value of P on the channel card (Chapter 5) defines the maximum
size of the physical record to be read or written. P may be changed during
program execution, but may never exceed its initial setting. At any one
time, the actual size read or written is always the current value of the P
parameter. The initial value of P' on the channel card defines the number
of lines per page; the value of this parameter may be changed to exceed

its initial setting.

7.3 Layout Procedures

If any of the procedures FORMAT, H END, V END, H LIM, V LIM,
TABULATION, or NO DATA are called when neither IN LIST nor OUT LIST
is active, they have the effect of a dummy procedure; a procedure call is
made and the procedure is exited immediately.



7.3.1 Format Procedures

The single procedure with call
FORMAT (STRING, Xl’Xz’ .. .Xn)

replaces the n+1 procedures with call

FORMAT n (STRING, XI’XZ’ .. .Xn) n=0,1,2,3,4,5,6,7,8,9

defined in the proposal. The number of Xi variables included in the call to
FORMAT defines which of the n+1 procedures (defined in the proposal) it is
equivalent to. For example,

FORMAT (STRING, X ,X,) is equivalent to
FORMAT 2 (STRING, X 1’X2) defined in the proposal.

A call to FORMAT may include 0-30 variables (unlike the proposal which is
0-9). The maximum number depends on the parenthesized structure of the
string.

7.3.2 Limits

Since the first character of each record is used by the system to control
skipping when paging is requested, the H LIM procedure increases the
valuesofthe Land R parameters by 1, to overcome the loss of this
character.

7.3.5 End of Data
End of data is defined as the occurrence of an end-of-file mark (7.8
punch in the first character position of a record) on the input device.

If the procedure NO DATA is not used, transfer occurs to the label
established for the channel by the EOF procedure. If the EOF pro-
cedure has not been called, the object program terminates abnormally
with the message UNCHECKED EOF.,

7.5.1 Symbol Transmission

Because of the definition of a string (Section 2.6.1, Chapter 3), the
procedures IN SYMBOL and OUT SYMBOL are replaced by the analogous
procedures IN CHARACTER and OUT CHARACTER with the calls:

IN CHARACTER (CHANNEL, STRING, DESTINATION)
OUT CHARACTER (CHANNEL, STRING, SOURCE)
IN CHARACTER examines the next basic character on the channel; if it has

a value 12_, the integer variable DESTINATION is set to -1. If not, the
character is compared for equality with the characters that comprise the



string; if a match is found at the Jth character, DESTINATION is set to
the value J; if no match is found, DESTINATION is set to 0.

OUT CHARACTER examines the value of SOURCE; if it is negative, the
character 12_ is output. If the value is in the range of 1 to J where J is
the length of the string, the corresponding character of the string is output;
otherwise, an object program error results.

In both IN CHARACTER and OUT CHARACTER, embedded string quotes
(*and’) are each counted as two characters, as in the procedure CHLENGTH.

7.5.2 Transmission of Type real
The procedures IN REAL and OUT REAL handle numbers in standard format.

7.5.4.1 Output
The single procedure with call:

OUTPUT (CHANNEL, FORMAT STRING, X_,X_,.. .Xn)

172
replaces the n+1 procedures with call:

OUTPUT n (CHANNEL, FORMAT STRING, XI’XZ" . .Xn)
n=0,1,2,3,4,5,6,7,8,9

defined in the proposal. The number of X variables included in the call to

1
OUTPUT defines which of the nt+1 procedures (defined in the proposal) it is
equivalent to. For example,

OUTPUT (CHANNEL, FORMAT STRING, X,)  is equivalent to
OUTPUT 1 (CHANNEL, FORMAT STRING, X ) defined in the proposal.

A call to OUTPUT may include 0-61 variables (unlike the proposal which is
0-9).

In Step 6 (Formatting the Output), the number of characters, s, does not
depend on the output value using "A'" or "S" format since these involve basic
characters (s=1) not basic symbols.

In Step 9 (Finish the Item), Process D (New Line), skipping the output
medium to a new line involves writing a record on the external device. The
size of the record is the smallest number of whole words that can contain

P characters. The successful completion of the write operation is ensured
before Process D is exited.

In Step 9 (Finish the Item), Process E (New Page), skipping the output
medium to a new page involves setting character 1 of the next line to a value
which has significance only to the printer driver and causes page eject. On



normal line, character 1 is set to a value which results in single spacing.
his character does not appear if the external device is a printer; on any
other device, it is simply the first character on the external medium.

When the user specifies paging, therefore, character 1 is not available for
use, regardless of the external device. To overcome the loss of this
character position, the procedure H LIM (Section 7.3.2) increases the
values of the L and R parameters by 1.

If no paging is specified, the user may reference character 1; H LIM does
not adjust the L and R parameter values. However, if the external device
is a printer, character 1 of each record is used by the driver as described
above; to avoid loss of a significant character and random page and line
skipping, the user should set this character accordingly.

Process F (Page Alignment); when Process D is executed, each line skipped
consists solely of blank characters.

7.5.4.2 Input
The single procedure with call:

INPUT (CHANNEL, FORMAT STRING, Xl’XZ’ .. .Xn)
replaces the n+1 procedures with call:

INPUT n (CHANNEL, FORMAT STRING, Xl’Xz’ .. .Xn)

n=0,1,2,3,4,5,6,7,8,9

defined in the proposal. The number of Xi variables included in the call to
INPUT defines which of the n+1 procedures (defined in the proposal) it is
equivalent to. For example,

INPUT (CHANNEL, FORMAT STRING, XI’XZ’XS) is equivalent to

INPUT 3 (CHANNEL, FORMAT STRING, Xl,X2
proposal, A call to INPUT may include 0-61 variables (unlike the proposal

which is 0-9).

, X 3) defined in the

In Step 6 (Formatting for Input), no special test is made to see if the format
item is "A" to determine the length s, since this format involves a basic
character (s=1) not a basic symbol.

In Step 8 (Processing Overflow), because of the definition of "A'" format,
only one basic character is input.

4-7



4-8

In Step 9 (Finish the Item), the mention of "A" format does not apply because
of its definition; and the first sentence should read: "If any format other
than "N" is being used, input s characters. Determine the value of the item
that was input here, or in steps 7 and 8 in the case of "N" format, using the
rules of format."

Process D (New Line), skipping the input medium to a new line involves
reading a record from the input device. The size read is the smallest
number of whole words that can contain P characters. The successful
completion of the read operation is ensured before Process D is exited.

Process E (New Page), skipping the input medium to a new page involves the
assumption that the next physical record on the input device begins the new
page (control character in position 1 which is not accessible by the program,
as specified in the corresponding process of output in Section 7.5.4.1).

7.5.5 Intermediate Data Storage

The procedures GET and PUT are not implemented; they have been replaced
by GET ARRAY and PUT ARRAY, though these are in no way analogous.
The calls are:

GET ARRAY (CHANNEL, DESTINATION)
PUT ARRAY (CHANNEL, SOURCE)

DESTINATION and SOURCE are both the names of arrays. These procedures
can be used only on non-formatted channels defined on channel cards by the
special character A.

GET ARRAY reads one physical record, equal in length to DESTINATION,
from the channel directly into DESTINATION. The record is not stored
first in a format area and no regard is made for maximum record size or
paging. The record should contain the array arranged by rows, since this
is how arrays are assumed to be stored in the system.

PUT ARRAY writes one physical record, equal in length to SOURCE,
directly from SOURCE to the channel. The record is not stored first in a
format area and no regard is made for maximum record size or paging.
The physical record reflects exactly how the array is stored in memory, by
TOWS.

7.5.7 Additional Primitives

The procedure LENGTH is replaced by its analog CHLENGTH to correspond
to the substitution of IN - CHARACTER and OUT CHARACTER for IN SYMBOL
and OUT SYMBOL. The procedures NAME and TYPE are not implemented.



HARDWARE
FUNCTION
PROCEDURES

7.5.7.1 String Handling
CHLENGTH is the analog procedure of LENGTH; the difference results from
the definition of a string (Section 2.6.1, Chapter 3).

CHLENGTH (STRING)

CHLENGTH is an integer procedure whose value is the length of the string in
characters. Each embedded string quote (‘and ’) counts as two characters.

Because of the definition of a string (Section 2.6.1, Chapter 3), the
procedure STRING ELEMENT assigns to the integer variable X an integer
corresponding to the Ith character of the string S1 as encoded by the string
S2. Effectively, an OUT CHARACTER (Section 7.5.1) process is performed
on the string S1, according to the integer variable I. An IN CHARACTER
process is then performed with the resultant character on the string S2,
producing an integer value to be stored in the integer variable X.

7.5.7.2 Name Association
The NAME function is not implemented.

7.5.7.3 Type Determination
The TYPE function is not implemented.

In the following description of specific hardware functions, wherever the
condition of an external device is mentioned, it refers only to that condition
as recognized on the associated channel.

A channel is considered to be input if last used for a read operation, output
if last used for a write operation, and closed if not previously referenced
or if referenced by a closing procedure such as ENDFILE.

- PARITY (CHANNEL, LABEL)

Each of the four procedures MANINT, ARTHOFLW, PARITY, and EOF
establishes a label, LABEL, to which control transfers in the event of
a manual interrupt, arithmetic overflow, uncorrectable parity error,
or end-of-file condition. Each procedure can be called as many times
as necessary in the course of the program to modify the label. The
PARITY and EOF procedures must be called once for each channel for
which a label is to be established. If a procedure has not been called
or if the label is no longer accessible when the corresponding condition
occurs, the object program terminates abnormally with an appropriate
error message.



MANINT (LABEL)
ARTHOFLW (LABEL)
PARITY (CHANNEL, LABEL)

EOF (CHANNEL, LABEL)

If IN LIST is in operation a label may be established by the NO DATA
procedure (Section 7. 3.5) instead of by the EOF procedure. During
the execution of the IN LIST procedure, any label established by the
NO DATA procedure takes precedence over an EOF label.

MODE (CHANNEL, TYPE)

This procedure sets density or parity for the subsequent reading or writing
of the external device. Density and parity are initialized on a channel card
and depend on the value of TYPE, as follows:

No density or parity selection required

Do not change density, set parity to odd (binary)

Do not change density, set parity to even (BCD)

No density selection required, do not change parity
Set density to low (200 bpi), do not change parity

Set density to medium (556 bpi), do not change parity
Set density to high (800 bpi), do not change parity

DU WD HO

A channel is considered to be input if last used for a read operation, output
if last used for a write operation, and closed if not previously referenced
or if referenced by a closing procedure such as ENDFILE.

If any of the following procedures are called for an external device which
cannot perform the operation, the procedure behaves like a dummy
procedure; and at the completion of the procedure the channel is considered
to be closed.

SKIPF (CHANNEL)
This procedure spaces the external device forward past one end-of-file mark.
It is treated as a dummy procedure on an output channel.

SKIPB (CHANNEL)

This procedure spaces the external device backwards past one end-of-file
mark. On an output channel before the spacing occurs, information in the
format area is written out, an end-of-file mark written, and backspaced
over.

4-10



1/O ERRORS

ENDFILE (CHANNEL)

This procedure writes an end-of-file mark on the external device. It is
treated as a dummy procedure on an input channel. Before the end-of-file
mark is written, information in the format area is written out.

REWIND (CHANNEL)

This procedure rewinds the external device to load point. On output, before
the rewind occurs, information in the format area is written out, and an
end-of-file mark is written and backspaced over.

UNLOAD (CHANNEL)

This procedure unloads the external device. On output, before the unloading
occurs, information in the format area is written out, and an end-of-file
mark is written and backspaced over.

BACKSPACE (CHANNEL)

This procedure backspaces the external device past one physical record. On
output, before the backspace occurs, an end-of-file mark is written and
backspaced over.

IOLTH (CHANNEL)

This procedure can be used only on non-formatted channels (those used for
GET ARRAY and PUT ARRAY). It yields the number of array elements in
the last read or write operation on the external device (the number in the
last GET ARRAY or PUT ARRAY operation).

At object time, two types of errors not directly concerned with programming
are detected: illegal input-output operation requests and invalid transmission
of data.

Illegal Input-Output Operations

If the user requests an input operation on a channel associated with a device
which cannot read, or if the last operation on the channel was neither an
input operation nor a closing operation (such as REWIND), the object
program terminates abnormally with the diagnostic ILLEGAL IN-OUT. The
same result occurs if the user requests an output operation on a channel
associated with a device which cannot write, or if the last operation was
neither an output operation nor a closing operation (such as ENDFILE).

4-11



4-12

Input-Output Transmission Errors

If a parity error occurs on an input tape, the tape is backspaced over the
error record, and the record is re-read. If the error persists, the cycle
may be repeated up to 10 times before it is considered uncorrectable.

If a parity error occurs on an output tape, the tape is backspaced over the
error record, the tape spaced and erased forward 6 inches, and the error
record re-written. If the error persists, the cycle may be repeated up to
10 times before it is considered uncorrectable.

On an uncorrectable parity error, control transfers to the label established
for the channel by the PARITY procedure. If there is no label available,
the object program terminates abnormally with the diagnostic UNCHECKED
PARITY.

End-of-File

When an end-of-file is encountered on an external input device, control
transfers to the label established for the channel by the NO DATA procedure
(if within IN LIST only) or the EOF procedure. If there is no label available,
the object program terminates abnormally with the message UNCHECKED
EOF. During execution of the IN LIST procedure, a label established by

NO DATA takes precedence over a label established by EOF.

An end-of-file mark is a 7, 8 punch in the first character position of a
record.

End-of-Tape

If an end-of-tape s detected during writing, the tape is backspaced over the
record, two end-of-file marks are written, and it is unloaded. A message,
RE-LOAD LUN XX - PRESS GO WHEN READY appears on the CTO; the
record is written as the first record of the newly mounted tape.



CHANNEL DEFINE
CARD

CHANNEL CARDS 5

All input-output statements (Chapter 4) specify a channel on which the
operation is to be performed. A channel is referenced by a channel number
and every channel is associated with a set of characteristics defined on
channel cards.

Channel cards appear as the first or only cards of the object-time data on
the standard input device; they are interpreted by the controlling routine
before the object program is entered and are printed on the standard output
device.

Each channel define card describes the characteristics to be associated
with one channel number. The general format of this card is:

CHANNEL, CN=LUXX, Pr, PPs, Kb, Dd, B, A

The eight characters CHANNEL, appear in columns 1-8, and each
parameter describes a different characteristic. Parameters are separated
by commas; blank columns may appear anywhere. The last parameter

has no delimiter; but the information for one channel must be wholly
contained on a single card. Only the first parameter is required; the
others are optional and may be specified in any order.

CN is an unsigned integer, maximum 14 decimal digits. XX is a SCOPE
logical unit number which must be declared to the SCOPE monitor with
an EQUIP card (Chapter 8). This parameter indicates that whenever
the number CN is used in the call of an input-output procedure logical
unit XX is to be referenced.

The P parameter indicates the maximum width (r characters) of the
physical page (the record) for that channel. This is equivalent to
establishing a formatting area of r characters, 20 or more. When
parameter P is omitted, 136 is assumed.

The PP parameter indicates the maximum length of the physical page

(s records) for the channel. If PPO is specified or if the parameter
is omitted, the page length is governed by the external device.

5-1



If the user defines page width or page length beyond the capabilities
of the corresponding external device, data is lost.

The K parameter determines the number of consecutive blanks that
serves as a delimiter for a number read or written in standard format
(Chapter 4) on the channel. The omission of this parameter is equivalent
to K2.

The D parameter is meaningful only for magnetic tape. D2 sets the
density to 200 bpi, D5 to 556 bpi, D8 to 800 bpi, and when DO is used
or the phrase is omitted the density is dependent on operator or
installation control or selected by the MODE procedure.

The B parameter indicates reading or writing in binary (odd) parity.
The absence of this parameter sets BCD (even) parity.

The A parameter is included when a channel is to be used only by the
procedures GET ARRAY and PUT ARRAY which do not involve formatting
of data. All page width, page length, and delimiter blank length -
indications are ignored if this parameter is included.

CHANNEL EQUATE

CARD Channel equate cards permit the user to associate more than one channel
number with an identical set of characteristics. The card format is:

CHANNEL, CNl = CN2
CN, and CN2 are each unsigned integers with a maximum of 14 decimal
digits.

CN_. must appear on a channel define card elsewhere (though not necessarily
ear%ier) in the set of channel cards. The characteristics defined on that
card, including the same format area, can be referenced by the number

CN, as well as CN_. Any number of channel numbers may be equated in
this way with the same channel.

5-2



CHANNEL
END CARD

STANDARD ALGOL
CHANNEL CARDS

The last card of every set of channel cards must be in the format:

CHANNEL, END

This card indicating the end of channel information must be included even
when there are no other channel cards in the deck.

Two channel cards with standard channel numbers and characteristics are
automatically supplied by the ALGOL system for the SCOPE standard input
and output devices, as follows:

CHANNEL, 60=LU60, P80
CHANNEL,61=LU61,P136,PP60

The two standard units may be referenced by the channel numbers 60 and 61
and do not require channel cards. They are printed as part of the channel
card listing as if they were specified by the user.

Logical unit numbers 60 and 61 do not require SCOPE EQUIP cards.

Duplication of Channel and Logical Unit Numbers

The same channel number may not appear in more than one channel define
card in a set. Similarly, a channel number which appears on a channel
define card may not be included on the left-hand side of a channel equate
card, since this is equivalent to associating that number with more than one
set of characteristics. For example, the following set of cards is illegal
since it associates channel number 135 with logical unit number 26 and also
with logical unit number 37.

CHANNEL, 135=1LU26
CHANNEL, 151=1U37
CHANNEL, 135=151

The same logical unit number may appear on any number of channel define
cards; although the channels remain completely independent of each other,
all input-output operations specifying any of the different channel numbers
make reference to the same logical unit. For example, in the following
cards, logical unit number 45 is referenced whenever channel number 107
or 123 is specified; it is irrelevant that chamel 107 is associated with
formatting, and channel 123 is used only for GET ARRAY and PUT ARRAY.

CHANNEL, 107=1LU45
CHANNEL,123=1U45,A

These rules apply to both user defined channels and those automatically
supplied by 3100/3200/3300/3500 ALGOL.

5-3



OBJECT PROGRAM FORMATS AND EXECUTION OPTIONS 6

NORMAL MODE

An object program generated by an ALGOL compilation may be in a form

to be loaded and executed in the normal manner directly under the SCOPE
monitor, or it may be in a form to be loaded and executed in segments under
control of special compiler routines. In either form, the instruction
sequence is identical.

If the segmented mode of output is requested, pass 4 of the compiler
prepares a segment tape for later execution (Appendix B). In effect, pass 4
modifies the program in normal form to make it acceptable to pass 5, then
writes it in 512-word segments on the segment tape.

It is possible to compile a main program or a procedure in either mode.

In addition, a segment tape can be produced from only a load-and-go tape.

Ciiv

In this mode, the binary form of the program conforms completely to the
specifications defined in the SCOPE/COMPASS Reference Manual.

All object programs in this form are assigned the entry point ALGOLRUN,
the entry point to the library routine which controls execution of the object
program. The ALGOLRUN routine is loaded by the SCOPE loader during
normal processing. All object programs in this form have a DATA allocation
of 192 (300 8) words and a COMMON allocation of 0 words.

It is possible to compile a main program and any number of pre-compiled
procedures to the load-and-go tape separately, in any order, within the
same job; so that this load-and-go tape can be executed as an entity or
converted into a segment tape for execution in segmented mode.

If the user executes the main program in conjunction with non-ALGOL sub-
programs he must ensure that:

The subprogram with the largest DATA allocation is loaded first
(this is a loader requirement). It may be the main program.

The first 192 (300_) words of DATA may not be utilized in any of
the other subprograms.

6-1



SEGMENTED MODE

In the segmented form, the program is structured in 512-word segments, as
described in Appendix B, each of which appears as one record on the
segment tape. The segment tape may be executed directly following its
preparation as part of the same compilation, or it can be executed in a
completely separate process.

Execution of the segment tape is controlled by pass 5 of the compiler. This
routine keeps a record of each segment currently in memory. When a
segment is referenced, pass 5 determines if it is already in memory; if it is
not, pass 5 loads it into available memory. Segments are loaded and
retained until available memory is filled and space is required by another
segment or by the object program stack (Appendix C). Object program
execution requires space for at least two segments, otherwise execution
cannot begin or continue normally.

Segments are constructed so that they may be overlaid when no more memory
is available; and if required again later, read back in from the segment tape
any number of times.

The segmented mode of execution must be requested when the object
program and its data requirements will not fit as a whole into available
memory. It may also be used for smaller programs to avoid returning
control to SCOPE for loading the object program.

The maximum size of an object program produced in a single compilation
is 32K (32,768) words. The maximum size of a program on the segment
tape, however, can be 512 segments (262, 144 words), produced by the
combination of a main program and up to 50 pre-compiled procedures.



ALGOL
CONTROL CARD

COMPILATION OPTIONS 7

The ALGOL control card specifies the input and output options which the
user requires. This card also causes the SCOPE monitor to call the ALGOL
compiler from the library (SCOPE/COMPASS Reference Manual). The
format of the card is free-field; the parameters may appear in any order,
separated by commas, and may contain any number of blanks. The general
format of the card is:

7

9ALGOL,I,A,L,X,P,S,G,R,C,B,D,N

All options, excluding C and N, can be followed by =n, where n defines a
logical unit number. When =n is omitted, the standard logical unit is used
for the corresponding option. Each option must begin with the letter shown,

though additional letters may follow it and are ignored. For example, L
and LIST are equally acceptable for the list parameter.

1 Specifies the logical unit number for the source input
(standard unit is 60)

A List the assembly language form of the object program
(standard unit is 61)

L List the source language (standard unit is 61)

Write the object program in binary relocatable non-segmented
form on the load-and-go unit (standard unit is 56)

P Punch the object program in binary form (standard unit is 62)
S Produce the segment tape (standard unit is 55)
G Use only the binary decks of the load-and-go unit to prepare

the segment tape (standard unit is 56)

R Execute the segmented program on the segment tape
(standard unit is 55)

C=m Compile a procedure, rather than a program, from the input
device. The procedure is associated with the code number m,
0-99999. If fewer than five digits are specified, the number is
zero-filled on the left (20 is equivalent to 00020)

B Punch the assembly language form of the object program
(standard unit is 62)



OBJECT PROGRAM
OUTPUT OPTIONS

D=n Prepare the special tape which will be used in the case of
abnormal object program termination to cross-reference the
dump of the declared variables with the corresponding
identifiers. (No standard for this option; the logical unit
number, n, must always be specified.) See Appendix D for
the object-time dump formats.

N Do not generate the array bounds checking code in the object
program (Section 3.1.4.2, Chapter 3).

Except for the I option, the absence of any parameters indicates the
corresponding option is not required. If I is absent, the standard input
device (logical unit number 60) is used for the source deck. (Since I with
no =n specification and the absence of I have the same meaning, I should
be used only with =n to indicate a unit other than the standard one for the
source deck.)

Any illegal, contradictory, or meaningless combinations of parameters are
diagnosed by the compiler, which then makes a legal selection from the set
specified and continues compilation. The compiler diagnostic message is:

ERROR IN CONTROL-CARD, OPTION xx IS DELETED

The user may request the object program in normal binary relocatable non-
segmented form on either the punch or the load-and-go unit or in the
segmented form on the segment tape, as below. The format of the punched
program is identical to the load-and-go format.

Create Load-and-Go Tape (Option X)

A load-and-go tape can be created in two ways: from a main program on
the input device and from a procedure on the input device. In both cases,
the load-and-go tape is created on logical unit 56, unless the user requests
otherwise on the control card.

The format of the load-and-go tape conforms to the SCOPE specifications;
that is, the binary deck is followed by an end-of-file mark and the tape is
positioned after the deck and ahead of the mark.

The load-and-go tape may be executed normally under control of SCOPE
with SCOPE LOAD and RUN cards. The SCOPE loader loads all binary
decks between load point and the first end-of-file mark on the tape
(SCOPE/COMPASS Reference Manual).



Produce a Segment Tape (Option S)

There are three ways in which a segment tape can be produced: from a
main program on the input device, from a procedure on the input device,
and from binary decks on a load-and-go device. The segment tape is
produced on logical unit number 55, unless the user requests otherwise on
the control card.

Main Program on Input Device

In this mode, the main program on the input device is compiled
into a segmented program on the segment tape. All binary decks
residing on the load-and-go tape are also incorporated into this
segment tape.

The binary decks should be procedures referenced by the main
program (or each other) and compiled previously by the ALGOL
compiler in load-and-go mode.

If the compiler detects the presence of a main program already
on the load-and-go unit, it terminates compilation and returns
control to the SCOPE monitor.

Procedure on Input Device

Operation is the same as for a program on the input device except
that it is the absence of a main program from the load-and-go
unit that causes the compiler to terminate the job and return
control to the SCOPE monitor.

Binary Decks on Load-and-Go Unit (Options G and §)
In this mode, only the binary decks on a specified load-and-go
unit are included in the segmented program on the segment tape.

These binary decks should consist of only one main program and
up to 50 pre-compiled procedures. If the compiler detects

none or more than one main program on the load-and-go unit, it
terminates the job and returns control to the SCOPE monitor.

In all three cases, if the main program or any of the pre-compiled
procedures reference other procedures not on the load-and-go unit, the
compiler searches the library unit and incorporates them into the segment
tape.

Any standard procedures (such as SIN, COS) referenced by the main

program or pre-compiled procedures, are also incorporated from the
library into the segment tape.

7-3



7-4

A segment tape may be executed within the same compilation process or
may be executed later in a completely separate process. If executed in the
same process, any unit declared for the R option (meaning execute) must
be the same as that declared for the S option. If omitted, logical unit
number 55 is assumed to contain the segmented program.

If a segment tape is executed separately from the process in which it is
prepared, the resident monitor must be identical at compile time and
execution time since the relocation already performed on the program
during the segmentation process takes into account the memory situation

at compile time. Logical unit number 55 is assumed to contain the segment
tape, unless the user declares otherwise on the control card.



SCRATCH UNITS

EQUIPMENT REQUIREMENTS 8

Compilation requires a minimum of five input-output units:
1 input unit
1 output unit
1 library unit

2 scratch units

The input unit can be a card reader or a tape unit; the output unit can be a
printer or a tape unit.

The compiler selects for its two scratch tapes the units declared for the
segment tape and the load-and-go tape. When the user does not specify
either on the ALGOL control card, the compiler automatically uses
logical unit numbers 55 and 56.

During compilation of a source deck, each pass stores intermediate informa-
tion in available memory until it is full or until all information has been
processed. If the information fits in available memory, it is retained there
for the next pass. Otherwise, the compiler writes out the intermediate
information in records on the scratch tapes as it is processed. This
information is used as input to a subsequent pass of the compiler. To avoid
rewinding the scratch tapes, the intermediate information is read back in
reverse order from which it is written. If the scratch unit does not possess
the read backward facility, the compiler simulates the action by one back-
space, one read forward, and one backspace operation.

At the beginning of compilation, the compiler writes an end-of-file mark on
each of the scratch tapes exactly at the current positions, and the tapes are
used beyond this end-of-file mark only.



LOAD-AND-GO UNIT

EQUIPMENT
DECLARATIONS

8-2

If the ALGOL compilation calls for the preparation of a segment tape, all
binary decks on standard load-and-go between load point and the position
of the tape at the beginning of compilation are incorporated into the
segmented program.

Since, however, the standard load-and-go unit (logical unit 56) is a SCOPE
system unit, it is always rewound to load point at the beginning of each job.
Therefore, the ALGOL compiler will not find any decks to include in the
segment tape unless they are written during the same job and prior to the
ALGOL compilation making the segment tape.

The load-and-go tape is assumed to conform to SCOPE specification; that
is, the last binary deck written on the tape is followed by an end-of-file
mark and the tape is positioned following the deck but ahead of the mark,
ready for further writing or processing.

For example, a load-and-go tape can be written as output from an ALGOL
compilation within the same job as a segmented mode ALGOL compilation;
or the tape can be written as a result of an X¥ER of a binary deck punched
during a completely separate ALGOL compilation.

At the end of compilation, the load-and-go unit is positioned exactly where
it was at the beginning of compilation, unless the compilation called for
load-and-go output. In this case, the tape conforms with SCOPE specifica-
tions; that is, the binary deck written is followed by an end-of-file mark and
the tape is positioned following the deck and ahead of the mark.

When a segment tape is being made directly from a load-and-go tape, with
no source input, the load-and-go unit need not be the standard one nor need
it have been written during the same job, since the process does not really
involve the use of the tape as a scratch tape. The tape must, however,
conform to SCOPE specifications for a load-and-go tape (SCOPE/COMPASS
Reference Manual).

A SCOPE equipment declaration is not necessary if the user does not
explicitly request units other than the standard ALGOL scratch units
(logical units 55 and 56). However, if he specifies non-standard units, he
must include a SCOPE EQUIP card for each unit in his job deck. If only
the SCOPE standard units are to be used for object program execution,

no EQUIP card is necessary; otherwise EQUIP cards must be included.

Except for a segment and run compilation, compilation and object-time
equipment declarations appear separately in the deck. Compilation EQUIP
cards must appear just before the ALGOL control card; object-time EQUIP
cards must appear just prior to the LOAD card for load-and-go execution.



In a segment and run compilation, the object program EQUIP requirements
must be declared at the same time as compilation requirements (before

the ALGOL control card) since there is no logical break between compilation
and execution and no return to SCOPE. There can be no overlapping of the
equipment declarations for compilation and execution.

To create a logical break in the segment and run process, the user can
specify two ALGOL compilations: the first to prepare the segment tape;
the second to execute it. Moreover, he can now include separate EQUIP
card declarations for each part of the process. .

TYPICAL
DECK STRUCTURES

Compile a load-and-go tape and execute

data
/CHANNEL,END
/@HANNEL, 120 =LU52

gRUN ,5

ﬂ LOAD, 56

/JEQUIP,52= MT

Y
A
i

Source Deck

(
‘—T/gALGOL,L,X

§JOB,10019,MLB,10

Logical unit 52 is assigned to ALGOL channel 120

8-3



Compile Program to Segment Tape and Execute

/‘ data

CHANNEL,END
/CHANNEL,120=LU52 [

Va
L
o
L=

| /E Source Deck

/gALGOL,L,S,R

( JEQUIP,52= MT

4JOB,10019, MLB, 10 —

Logical unit 52 is assigned to ALGOL channel 120 for use at
object time.

Execute a Segment Tape

= ]
/ data

CHANNEL, END
CHANNEL, 120=LU52 j

( gA LGOL, R=49

gEQUIP, 49=MT, 52=MT

gJOB, 10019.MLB, 10

Segment tape created previously and assigned to logical unit 49 for
this job. Logical unit 52 is assigned to ALGOL channel 120.



Compile Program to Segment Tape

L

NS

A
/ Source Deck

( ALGOL, L,S

;JOB, 10019, MLB, 5

Compile Program to Segment Tape; Return to SCOPE, then Execute

/ data

/ CHANNEL, END
CHANNEL, 120=LU52 ]

/;ALGOL, R

TEQUIP, 52=MT

Source Deck

/ZALGOL, L,S

/’;JOB, 10019, MLB. 12

Logical unit 52 is assigned to ALGOL channel 120.



Pre-Compile two Procedures onto Load-and-Go Tape; Compile Segment

Tape from Main Program to Include these two Procedures: Execute

data
/ CHANNEL, END
/CHANNEL, 120=LU52

7
-

e

/ Program Source Deck
@ALGOL, L,S,R

(gEQUIP, 52=MT

Procedure 152 Source Deck l

/gALGOL, L,X, C=152 —

L
A=

Vs

| / Procedure 123 Source Deck

/gALGOL, L,X,C=123

;JOB, 10019, MLB, 25

Procedure 123 is compiled to load-and-go tape; procedure 152 is
compiled to load-and-go tape. The main program is compiled to a
segment tape with procedures 123 and 152 included. Logical unit
52 is assigned to ALGOL channel 120.



APPENDIX SECTION



ALGOL CHARACTER TABLES

The 48 characters available in ALGOL source (hardware) language are shown below. Any of the

complete 64 6-bit character set may appear in data or (except for 12 8) in strings.

Table 1. ALGOL Character Set

Character Card Punch Inotigllal Character Card Punch In(;;x;:lal
A 12 -1 21 Y 0-38 70
B 12 -2 22 / 0-9 71
C 12-3 23 0 0 00
D 12 -4 24 1 1 01
E 12 -5 25 2 2 02
F 12 -6 26 3 3 03
G 12 -7 27 4 4 04
H 12 -8 30 5 5 05
1 12-9 31 6 6 06
J 11 -1 41 7 7 07
K 11 -2 42 8 8 10
L 11 -3 43 9 9 11
M 11 -4 44 + 12 20
N 11 -5 45 - 11 40
o) 11-6 46 * 11-4-8 54
P 11 -7 47 / 0-1 61
Q 11 -8 50 = 3-8 13
R 11 -9 51 ( 0-4-8 74
S 0-2 62 ) 12-4-8 34
T 0-3 63 12-3-8 33
U 0-4 64 , 0-3-8 73
\ 0-5 65 ! 4-8 14
W 0-6 66 $ 11-3-8 53
X 0-7 67 o f - 60

1 blank column

A-1



Table 2. Character Representation of ALGOL Symbols

ALGOL 48-Character ALGOL 48-Character

Symbol Representation Symbol Representation

A-1Z A-17 true '"TRUE’

a-z ~ false 'FALSE'

0-9 0-9 go to 'GO TO'

+ + if EF'

- - then 'THEN'

x * else 'EISE'

/ / for 'FOR'

p ¥ '"POWER' do 'DO'

< '/' or 'DIV' step 'STEP'

> 'GREATER' until '"UNTIL!

> 'NOT LESS' while 'WHILE'

= = or 'EQUAL' comment 'COMMENT'

# 'NOT EQUAL' begin 'BEGIN'

< 'NOT GREATER' end "END'

< 'LESS' own 'OWN'

A 'AND' Boolean '"BOOLEAN'

\' 'OR' integer 'INTEGER'

= 'EQUIV' real 'REAL'

= 'NOT' array 'ARRAY'

D '"IMPL’ switch 'SWITCH'
procedure '"PROCEDURE'

s , string 'STRING'

: label 'LABEL'

H . value 'VALUE'

1011 ' codeftf 'CODE'

[ L segment 1t 'SEGMENT"

( (

= .=0or ..=

) )

[ ¢

] /)

¢ '(l

, ')l

T in a string format is represented by an asterisk.

1t ALGOL symbol1 0

is a subscript digit.

111 code and segment symbols are not defined in the ALGOL-60 Revised Report

A-2




OBJECT PROGRAM STRUCTURE B

The object program produced by an ALGOL compilation may be in the normal binary relocatable
non-segmented form or it may be in the special segmented form.

As described in Chapter 6, the segmented form can be derived directly, in whole or part, from a
program already in the normal form. Alternatively, the segmented form can be derived directly
from the source input. Since the latter case can be considered as a process in which the normal
form is generated first followed by the segmentation process, a segmented program can be
considered in both cases to have been derived from a program which is in the normal form.

The segmentation process does not affect the instruction sequence; it adjusts the address fields in
those instructions which reference other locations in the program, both in the same segment and in

different segments, so that the separate segments may be freely relocated at execution time.

To maintain compatibility between the two forms, pass 4 of the compiler generates the object
program with the following addressing conventions:

Program Reference in the same Segment

Normal Form

In the normal form, such addresses have a 15-bit form, XXYYY, where XX is a 6-bit segment
number (0-63) and YYY is a 9-bit relative location (0-511) in a segment. The address is assigned
positive program relocatability. Such an address is the normal form of a subprogram address and
thus results in the correct absolute address when relocated by the SCOPE loader relative to the
beginning of the subprogram. )

Segmented Form

The pass 4 segmenter recognizes all instructions with positive program relocatable address fields.
To create the segmented program, it modifies the 15-bit address form XXYYY to the 15-bit
address form OOYYY and flags the address as requiring further relocation at execution time. When
the segment is loaded, the address is changed to the first-word address of the segment (the segment
relocation factor) plus OOYYY.

Program Reference in a Different Segment

Normal Form

In the normal form, such a reference consists of a call to a controlling routine within ALGOLRUN,
with the destination address as a parameter to this call. This parameter is an 18-bit complement of
an address XXYYY where XX is a 6-bit segment number (0-63) and YYY is a 9-bit relative location
(0-511) in segment. The address is assigned negative program relocatability. When relocated

by the SCOPE loader relative to the beginning of the whole subprogram, this address results in the
complement of the correct absolute address.

B1



At execution time, the controlling routine performs the instruction with the complement of this
complemented address.

Segmented Form

The pass 4 segmenter recognizes all instructions with negative program relocatable address fields.
(Relocatability is used as a flag for the segmenter to distinguish between reference to the same and
different segments.)

To create the segmented program, the segmenter complements the address field (to the 15-bit
XXYYY form) and then modifies the segment number portion XX to MM. This modification is
required since the tape segments are numbered consecutively beginning with 1, whereas the
segment numbers in each subprogram included on the tape all begin with the segment number 0.
The segment number is therefore increased by the number assigned to the first segment of the
current subprogram.

For example, in the first subprogram on the segment tape, all segment numbers are increased by 1.
If this subprogram contains 3 segments (numbers 1, 2, and 3), the first segment of the next sub-
program is assigned to segment 4. Thus, all segment numbers in that segment are increased by 4,
and so on for subsequent segments.

At execution time, the controlling routine interprets the modified address as the first-word address
of the MM segment, plus OOYYY.

External Reference to Standard Library Procedures

The object-time addresses of the standard procedures appear in a table called STANLIST. This

table contains one entry for each of the standard procedures; therefore, a unique constant, which
is the relative position in STANLIST of the corresponding address entry, can be associated with

each standard procedure.

The standard procedures are organized on the library in 512-word subprograms each of which
contains several standard routines (such as SIN, COS). The entry points of these subprograms

are the entry points of the individual routines. Each subprogram contains a 192~-word (300_) DATA
allocation which is explicit only in the positions corresponding to the STANLIST entries for the
standard procedures in that subprogram. Each such DATA declaration consists of an instruction
whose address field is the same as described for a program reference in a different segment.

Normal Form

In this form, the STANLIST table is assigned to DATA. When the SCOPE loader overlays DATA
of the main program with the DATA of the library subprograms, the corresponding STANLIST
entries are filled in.

An XNL card entry is generated for the name of each standard procedure referenced. Each
reference generates a jump to a controlling routine followed by the constant associated with the
standard procedure referenced.

B-2



and the complement of the correct absolute address of the corresponding standard procedure.

Segmented Form

The XNL card entries in the normal form indicate that the pass 4 segmenter should include the
corresponding library routines in the segment tape. As the segmenter encounters each DATA
declaration in the library subprograms, it applies the modifications to the address as described
above, and superimposes the resulting address on a skeleton form of STANLIST. The STANLIST
table is written as the last record on the segment tape.

Before execution of the program, pass 5 reads the STANLIST record into memory to reside there
permanently during program execution. When a reference to a standard procedure is executed,
the controlling routine uses the constant to locate the proper entry in STANLIST; this contains an
address of the form MMYYY which the controlling routine interprets as described for a program
reference in a different segment.

External Reference to Pre-Compiled Procedure

Normal Form

In this form, an XNL card entry exists for each procedure declared in a program. (The XNL

name is of the form CDPxxxxx, where xxxxx is the code number assigned to the procedure when
compiled separately (Section 5.4.6,Chapter 3). At the point in the program where the pseudo
procedure declaration is made (the code declaration), the compiler generates a jump to a controlling
routine plus an instruction reference to the corresponding external entry point name. For each call
to the procedure, the compiler generates a jump to the pseudo declaration.

The XNL card entry appears in the binary deck in the same segment portion as the pseudo
declaration.

Segmented Form

The XNL card entries in the normal form indicate that the pass 4 segmenter should include the
corresponding routines from the load-and-go unit or the library.

During the preparation of the segment tape, the segmenter adds one entry to the STANLIST skeleton
for each psuedo procedure declaration. In addition, it changes the external reference generated for
each call to the procedure to a constant which is the relative position in STANIIST of the entry
added for the procedure. The remainder of the processing is exactly as described above for
references to the standard library procedures in segmented mode.



OBJECT PROGRAM STACK C

According to the rules of the ALGOL language, a variable is active (available for reference) in
any block to which it is local or global. A variable is local to the block in which it is declared
and global to the sub-blocks within the block in which it is declared.

Depending on the block structure and the variables declared at each level, not all variables are
active at the same time. The object programs produced by ALGOL overlay those variables which
are not simultaneously active. The overlay process is described below.

During the execution of an object program, all variables are contained in a variable-length memory
stack consisting of 48-bit entries, one or more pertaining to each active variable. Since the stack
includes only active entries, the size fluctuates.

During compilation, the compiler assigns to each variable T v
reference for the block in which that variable is declared, in the reverse order
The stack reference for each block is the position in the stack where the entries for that block are
assigned at object-time. It is derived as follows.

When a new block is entered which is nested in the last block entered, the stack reference for the
new block is assigned to the first available (inactive) position in the stack. In addition, certain
preliminary information is set into the stack, beginning at this reference point.

The compiler assigns a block level number to each block in the program, and the object program
maintains 32 display entries each of which contains the stack reference for blocks at the corre-
sponding level. The display entry corresponding to the new block is set to contain the new stack
reference. Since there are 32 display entries, a program may contain a block structure in which
blocks are nested up to a depth of 32 levels.

When a block is exited, the space in the stack occupied by its local variables is released as the
variables become inactive. The display entry corresponding to the block being exited necessarily
contains the stack reference for this block (the point up to which the stack can be released).

A goto reference from one block in a nest to an outer one results in an exit from that block and
from all of the blocks up to but not including the referenced block. Thus, the effect is to change
the environment of the active variables to be only those local or global to the referenced block.



When a procedure call is made, the current environment (or record of it) is preserved, since a
return must be made to it at the completion of this call. The environment in which the procedure
is declared is established, the procedure is executed with the corresponding variables available to
it, and then the original environment is re-established. Consider the following program outline:

begin
begin
?eg‘n
X
A end;
begin
P Y
end;
end;
begin
B
end;
end

C-2



Block P is the program itself at level number 0; biocks A and B are at the same level (number 1)
within P; blocks X and Y are at the same level (aumber 2) within A. The changes in the stack can
be visualized as follows:

After block P is entered, the stack reference in the first display-entry is set to address p; the
stack is then active up to but not including point p'.

After the nested block A is entered, the stack reference in the second display-entry is set to
address p'(=a); the stack is then active up to but not including point a'.

After the nested block X is entered, the stack reference in the third display-entry is set to
address a'(=x); the stack is then active up to but not including point x'. After block X is exited,
the next available position in the stack is at address x (all variables declared in block X are now
inactive and may be overlaid).

After block Y is entered, the stack reference in the third display-entry need not be changed; the
stack is now active up to but not including point y'. After block Y is exited, the next available
position in the stack is at address x (all variables declared in block Y are now inactive and may
be overlaid). After block Ais exited, the next available position in the stack is at address a (all
variables declared in block A are now inactive and may be overlaid).

After block B is entered, the stack reference in the second display-entry need not be changed; the
stack is then active up to but not including point b'. After block B is exited, the next available
position in the stack is at address a (all variables declared in block B are now inactive and may
be overlaid).

C-3



Stack Entries

All stack entries are 48-bits long. The different types of variables require different number of
stack entries, as follows.

A simple variable requires a single stack entry containing the value of the variable.

A label or procedure requires a single stack entry containing the program location of the label
or procedure and the stack reference of the environment in which the label or procedure is
declared.

A switch requires one stack entry to describe the switch characteristics and one stack entry to
describe each element of the switch declaration. The stack entry describing the switch contains
the number of elements in the switch and the stack location of the list of stack entry elements.

An array requires one stack entry to describe the characteristics of the array, one stack entry
to describe each dimension of the array, one stack entry to describe the constant which is used
to check the correct overall bounds of the array, and one stack entry for each element in the
array itself.

The stack entry which describes the complete array contains the stack location of the actual array
eiements and the stack location of the stack dimension entries.

Own Variables in the Stack

All own variables are assigned entries in the stack prior to the entries assigned to the outermost
block of the program (the program itself). Thus, own variables are treated as global in definition
(local to the whole program), though they are only local in scope to the block in which they are
declared, just like other variables.

In particular, for an own array, the stack entries for each element in the array appear prior to
the entries for the outermost block; the other entries for the array appear in the normal position
in the declaration block.

Stack Listing

The object program controlling system includes a routine which produces the active contents of
the stack in a meaningful format in the case of abnormal object program termination
(Appendix D).



ALGOL DIAGNOSTICS D

There are four types of diagnostics associated with the ALGOL compiler system: compiler
diagnostics, compiler I/0 messages, object-time diagnostics, and object-time I/O messages.

COMPILER DIAGNOSTICS

Every error detected during compilation causes a diagnostic to be printed following the source
listing. Each card of the source deck is assigned a line count which is printed as part of the source
listing. Each compiler diagnostic includes the line count of the source card in error and a brief
summary of the error condition.

Five of the compiler diagnostics are compiler messages only and have no effect on the process;
PROGRAM ENDS and SOURCE DECK ENDS appear at the end of every compilation, regardless of

errors.

NOTE: If the line counts of the PROGRAM ENDS and SOURCE DECK ENDS differ
by a large number the programmer should make certain that part of his
program has not been treated as a commentary because of a missing begin
symbol or similar error. -

The remaining diagnostics cause suppression of generated code, regardless of user request; some
also result in the diagnostic STOP COMPILATION which terminates compilation, and any diagnostics
detected after such an error condition are lost.

Message

ARRAY BOUND TYPE Array bound expression is not arithmetic

ARRAY BOUND - LOCAL Variable specified for array bound is declared at same
level as array

ARRAY OR SWITCH CALL Identifier used as an array or switch has not been so
declared

ARRAY, SWITCH, PROCEDURE Too many subscripts or switch elements; or formal
or actual parameters

BYPASS OVERFLOW Capacity of compiler to handle forward references has
been exceeded

CALL PARAMETER Undeclared or untyped parameter in a procedure call

CALL PARAMETER COUNT Procedure is called with the wrong number of parameters

CHARACTER Ilegal character (such as 12 8) found in source text

D-1



Message

CHECK SUM

'CODE' INTEGER
'COMMENT'

COMPOUND DELIMITER

DATA PART

DECLARATION CAPACITY
DECLARATION CODE O-FLOW

DELIMITER
DELIMITER IN COMMENT

DELIMITER MISSING
DOUBLE DECLARATION
DOUBLE SPECIFICATION

'ELSE' COUNT OVERFLOW
'END'S MISSING
'"EOP' GEN. BY (PAR ERR)

(BIN CARD)
(EOF CARD)

EXTERNAL STACK OVERFLOW
'"FOR' CONTROL VARIABLE

FLOATED INTEGER
FLOAT-FIX OVERFLOW

FORMAL MISSING
IDC CARD

IDENTIFIER OVERFLOW

D-2

Check sum error in a binary program on load-and-go tape
Literal following the symbol code is not an integer
Symbol comment in an illegal position in source text

Hardware representation of an ALGOL symbol is incorrect
(e.g., 'BIGIN")

DATA address in binary program on load-and-go unit not in
range of STANLIST (Appendix B)

Too many variables declared in a block structure

Capacity of the compiler to store labels, procedures, etc.,
for declaration code is exceeded

Incorrect delimiter for the particular context appears in
source text

Statement may have been bypassed because of missing
delimiter (message only)

Delimiter expected at this point in source text not found
Identifier declared more than once in same block heading

Formal parameter specified more than once in same
procedure heading

Capacity of the compiler to handle nested _1£ statements has
been exceeded

More begin than end symbols when '"EOP' encountered

"EOP' (end of source deck) forced at this point by parity
error, binary card, or EOF card

Too many subprograms on load-and-go tape

Control variable of for statement must be simple or sub-
scripted arithmetic

Integer contains more than 14 digits (message only)

Conversion from floating-point to fixed-point exceeds
48 bits

Value or specification appears for an identifier not in
formal list

Error in IDC card in binary program on load-and-go tape:
either COMMON is not 0 or DATA is not 192 (3008)

No room in available memory to store complete list of
identifiers (symbol table overflow)



Message
'IF' CLAUSE TYPE
'IF' EXPRESSION TYPE

INADMISSABLE CARD

INADMISSABLE RELOCATION
INSTRUCTION UNDER~COUNT
LABEL

LOCAL VARIABLE OVERFLOW
LONG IDENTIFIER

MACHINE ERROR

MISSING DECLARATION

NO 'CODE' INTEGER
NUMBER SIZE

NUMBER SYNTAX

OPERAND

OPERAND MISSING

OPERAND OVERFLOW

OPERATOR OVERFLOW
'"OWN' BOUNDS
PARAMETER COMMENT

PRE-COMPILATION "OWN'
PROCEDURE IDENTIFIER
PROGRAM ENDS
REDECLARATION CAPACITY

SECOND DECLARATION

'SEGMENT"'
SEQUENCE

Expression following an if symbol must be Boolean

Expression following symbols then and else in if statement
must be same type

Binary card with an inadmissable word count on load-and-go
tape

Incorrect relocation in binary program on load-and-go tape
Compiler estimate of program size incorrect

Identifier used as a label not so declared

Too many local variables defined in same block

Identifier exceeds 256 characters (message only)

Machine or compiler malfunction

Undeclared identifier used

Integer expected after symbol code is missing

A number exceeds the floating-point capacity of the machine
A number is incorrectly punctuated

Incorrect operand in source text for the particular context
Operand expected at this point in source text not found

Capacity of compiler to handle operands within the same
statement has been exceeded

Capacity of compiler to handle nested operators exceeded
Bounds in an own array must be constants

Parameter comment which replaces a comma in a procedure
declaration or procedure call is incorrectly formed

Pre-compiled procedures may not contain own variables
Identifier in procedure call is not declared as a procedure
This message indicates line on which the program ends

Capacity of compiler to handle similarly spelled identifiers
in a nested block structure has been exceeded

Indicates line on which second element of DOUBLE
DECLARATION is made

Symbol segment allowed only within comment

Binary cards on load-and-go tape are out of sequence

D-3



Message
SIMPLE 'FOR' ELEMENT

SOURCE DECK ENDS

SPECIFICATION MISSING

STANDARD FUNCTION PARAM

'STEP' ELEMENT TYPE
STOP COMPILATION

STRING
STRING CHARACTER
STRUCTURE CAPACITY

SUBPROGRAM MISCOUNT

SUBPROGRAM SIZE
SUBSCRIPT COUNT
SUBSCRIPT TYPE
'SWITCH' PARAMETER

TERMINATION
TOO MANY 'BEGINS'

TOO MANY IDENTIFIERS

TOO MANY WORKING LOCS

TYPE

VALUE SPECIFICATION

'WHILE' ELEMENT TYPE
XNL CARD

Expected arithmetic expression in a for statement not
arithmetic

This message indicates line on which '"EOP' is found or
forced

Specification is missing for identifier included as a formal

Parameter in a call to a standard procedure of incorrect

type

The third expression in a step element must be arithmetic

Indicates compilation stops at this line; error messages for
other lines may be lost. Appears in conjunction with
OPERAND OVERFLOW, MACHINE ERROR, etc.

Too many characters in string

Illegal character in a string (e.g., 12 8)

Compiler capacity to handle a nested structure, such as
parenthetical statements, exceeded

Incorrect number of subprograms on load-and-go or
library tape

Size of current subprogram has exceeded 32K words
Array or switch called with incorrect number of subscripts
All subscript expressions must be arithmetic

All elements in a switch list must be labels or designational
expressions

Language construction in source text terminates illegally

A block structure contains blocks nested to more than 32
levels

Too many differently spelled identifiers in the program

Too many working locations in excess of declared variables
are required to perform operations specified in this block

In a general expression, elements specified must have same
types

Value applied to formal parameter whose specification does
not permit a value (e.g., a label)

Second expression in a while statement must be Boolean

Error in XNL card in binary program on load-and-go tape



COMPILER I/O MESSAGE ON STANDARD OUTPUT UNIT

ALGOL-I/O-ERROR yy ON LU xx

Uncorrectable error occurred during loading one pass of
compiler from the library or during compilation. The type
of error is indicated by yy as follows:

yy = PA TIrrecoverable parity error
BC Inadmissible binary card or relocation
error

CS Check sum error
ID Lost data
ET EOT

The compiler will automatically terminate the compilation and return control to the SCOPE monitor.

COMPILER I/0 MESSAGE on CTO UNIT

RE-LOAD LUN xx - PRESS GO WHEN READY

OBJECT-TIME DIAGNOSTICS

xx indicates device:

The card hopper is empty but not all cards to complete an
ALGOL compilation have been read. Refill hopper. Press
GO to continue.

The card punch has failed to feed, or a card has been mis-
punched. When corrected, press GO to continue.

The end of tape has been encountered on a compiler output
tape; the tape has been backspaced, two end-of-file marks
written on it, and unloaded. Mount a new tape on the
designated unit. Press GO to continue.

Re-load printer with paper. Press GO to continue
compilation.

Upon normal exit from an object program, the contents of all non-empty output format areas
(Chapter 4) are output; the following message printed on the standard output device indicates a

successful execution.

END OF ALGOL RUN



Upon abnormal termination of an object program, a diagnostic is printed on the standard output

unit to indicate the nature of the error.

The contents of the non-empty output format areas are

output as above. Information which traces the execution path through the blocks in the currently
active block structure is then printed on the standard output unit as follows:

THIS ERROR OCCURRED AFTER LINE XXXX
IN THE BLOCK ENTERED AT LINE XXXX

(global stack information)
(local stack information)

THIS BLOCK WAS CALLED FROM LINE XXXX
IN THE BLOCK ENTERED AT LINE XXXX

(local stack information)

THIS BLOCK WAS CALLED FROM LINE XXXX

The stack information (Appendix C) for each block is printed following the corresponding BLOCK
ENTERED line. If the user requests the dump tape (control card option D), this information is
formatted so that each variable is associated with its source text identifier. Otherwise, the stack

is printed with no special formatting.

Message

ALPHA FORMAT ERROR
ARITHMETIC OVERFLOW
ARRAY BOUNDS ERROR
ARRAY DECLARE ERROR
ARRAY DIMENSION ERROR
BOOLEAN INPUT ERROR
CHN XXXXXXXXXXXXXX
DISPLAY EXCEEDED

EXPONENTIAL ERROR
FLOAT TO FIX ERROR

D-6

Output value is too large

Evaluation of an expression results in arithmetic over-
flow (e.g., division by zero) for which no provision
has been made with ARTHOFLW procedure

Computed element address in an array is not within
total array boundaries

Computed array size is negative

Array used as an actual parameter in a procedure call
has a different number of dimensions from the array
specified as a formal in the procedure declaration

In Boolean formats F or P, the input character is not
ForT,or0Oorl

The number given defines channel on which the
preceding error occurred

Block structure is nested to more than 32 levels; this
error can only occur because of calls to pre-compiled
procedures

Argument of the EXP procedure is too large

Result of converting a normal floating-point number to
fixed-point form exceeds 48 bits



Message
FORMAT ITEM ERROR

FORMAT MISMATCH
FORMAT REPLICATOR

FORMAT STRING ERROR
GET/PUT ARRAY ERROR

H/V LIM ERROR
ILLEGAL CHANNEL CARD

ILLEGAL IN-OUT
ILLEGAL MODE CALL

ILLEGAL STRING INPT

I/0 CHANNEL ERROR
LAYOUT CALL ERROR
LOGARITHM ERROR
LOST DATA

MANUAL INTERRUPT
NUMBER SYNTAX
NUMERIC INPUT ERROR

OUT CHARACTER ERROR

PARAM COUNT ERROR
PARAM KIND ERROR

More characters in expanded format item than permitted
in INPUT, OUTPUT, IN LIST, and OUT LIST

A syntactically correct format string appears to be incorrect
(probably machine or system malfunction)

Replicator in a call to the FORMAT procedure not in the
proper range :

Incorrect format string

GET ARRAY and PUT ARRAY may not be used on channel
for which formatting and format area have been specified

H LIM and V LIM arguments L, R and L', R' out of range

Syntax of channel card is incorrect; the incorrect card is
printed before the program is terminated

Illegal operation requested for equipment selected

T parameter in call to MODE procedure not in proper
range

During a call of INPUT or IN LIST, an attempt is made to
read info a string parameter

Normal input-output procedures (all except GET ARRAY
and PUT ARRAY) cannot be performed on non-formatted
channels

Procedures established by H END and V END and label set
by NODATA are no longer accessible after return from the
layout procedure called by IN LIST or OUT LIST

Argument to LN procedure may not be negative or zero

Information lost during transmission because of a hardware
malfunction

Manual interrupt has occurred for which no provision has
been made with MANINT procedure

A number input via standard format does not conform to
proper syntax

Data input under format control does not conform to numeric
input format

Parameter in a call of OUT CHARACTER is not in proper
range

Incorrect number of actual parameters in procedure call

Kind of an actual parameter in a procedure call does not
correspond to the kind of the associated formal



Message
PARAM TYPE ERROR

SIN - COS ERROR
SQUARE ROOT ERROR
STACK OVERFLOW
STANDARD OUTPUT ERR

STRING ELEMENT ERR
SWITCH BOUNDS ERROR
SYSPARAM - CHANNEL

SYSPARAM - WRONG F
SYSPARAM - WRONG Q
TABULATION ERROR
UNASSIGNED CHANNEL
UNCHECKED EOF

UNCHECKED PARITY

UNDEFINED FOR LABEL
UNTRANSLATED IN ERR

D-8

Type of an actual parameter in a procedure call does not
correspond to the type of the associated formal

Argument to SIN or COS procedure is too large
Argument to the SQRT procedure may not be negative
Data requirements of program exceed available memory

Standard output can be used only for numeric and string
formats

Rules of STRING ELEMENT violated
Switch designator is out of the switch range

SYSPARAM procedure can be called only for formatted
channels

SYSPARAM procedure is called with incorrect F parameter
SYSPARAM procedure is called with incorrect Q parameter
Argument of TABULATION procedure is not in proper range
No channel defined for a channel number used in program

End-of-file mark detected for which no provision has been
made with EOF procedure

Uncorrectable parity error detected for which no provision
has been made with PARITY procedure

Attempt to jump into middle of a for statement

In untranslated formats, I, R, L, and M; input field
contains non-octal characters



OBJECT TIME 1/0 MESSAGE ON CTO UNIT

RE-LOAD LUN xx - PRESS GO WHEN READY
xx indicates device:

The card hopper is empty, refill hopper; press GO to
continue.

The card punch has failed to feed. When corrected,
press GO to continue.

Reload printer with paper; press GO to continue.

The end of tape has been encountered on an output tape;
the tape has been backspaced, two end-of-file marks
written on it, and unloaded. Mount a new tape on the
designated unit; press GO to continue.

ALGOL-I/O-ERROR yy ON LU xx Uncorrectable error occurred during execution in
segmented mode. The type of error is indicated by
yy as follows

yy= SG System malfunction concerning segment
tape control
Pl Attempt to use segment tape
P2 Attempt to use library tape (63)

P3 Attempt to do other than write
on 61 or 62

P4 Attempt to do other than read on 60
P5 Attempt to read past EOF on 60



PROGRAM EFFICIENCY HINTS E

Since the object code produced by any ALGOL language structure is not necessarily in direct
correspondence to the apparent simplicity of the structure, the user can inadvertently produce
object program ineffficiency by choosing one structure rather than another for a particular
operation. Very often, the choice is not obvious.

In general, the user should avoid the complex structures and features of the ALGOL system (such
as call-by-name).

The following explanations should help the user utilize the language as efficiently as possible and to
decide which features, on balance, provide the most advantages for any operation. The list is
representative and not meant to be exhaustive.

Compile Time

Compile time can be saved, in general, by any simplification of the program. However, no
significant time is saved relative to the basic compilation time for the simplest statements.

Similarly, compile time can be saved in searching the identifier table if the identifiers are reduced
in number or made as short as possible. Here again, the saving is relatively insignificant.

If there is a shortage of space at compile time, identifiers should be shortened and their number
reduced until compilation is possible. Alternatively, a program can be divided into a main program
and separately compiled self-contained procedures.

Object Time

Avoid Mixed-Mode Arithmetic

The evaluation of any expression involving variables not all of which are of the same type (not all
real or all integer) results in one or more conversions from normal floating-point form to fixed-
point form or vice-versa.

Use Integer Subscript Expressions

All subscripts are treated as integer variables, so that the use of real subscript expressions
involves a conversion from normal floating-point form to fixed-point form.

Avoid Arrays where Simple Variables will Suffice

If all references to the elements of an array have integer constant subscripts, the elements of the
array can each be declared as simple variables.

Elimination of an array saves the array declaration code, the code required to calculate the address
of each element, and the stack space occupied by the entries which describe the array.

E-1



Minimize the Number of Dimensions in an Array

If all references to an array have integer constant subscripts for one of the dimensions, that
dimension can be eliminated from the array by appropriate redefinition of the elements of the array
into one or more simpler arrays.

Elimination of an array dimension saves part of the code required to calculate an element address
in the array, and the stack space occupied by the entry which describes the dimension.

Declare All Arrays with the Same Bounds in the Same Declaration

If arrays with identical dimensions are declared together, each array still maintains its own stack
entry and an entry for each of its elements; however, only one set of entries which describe the
common dimensions is included in the stack.

Since fewer entries are included in the stack, not only is stack space saved but the declaration code
for these arrays is reduced.

Declare Each Array, Switch, Label, and Procedure in Outermost Feasible Block

All such declarations produce object code which is executed whenever the block containing the
declaration is entered. Since blocks at a higher level are generally entered fewer times than
blocks at a lower level, the declaration code is executed fewer times if the declaration is made in
the outermost feasible block rather than the block in which the array, switch, label, or procedure
is used.

Avoid Call-by-Name

Each mention of a parameter called by name produces a procedure call in the object code. This
becomes especially costly when the parameter called by name appears in code which is executed
repetitively (such as within a for statement loop).

E-2



SAMPLE PROGRAM F

The following program is in the exact form that is punched into the cards that comprise the source
deck (the hardware language)

2-DIMENSIONAL ARRAY.
THIS PROGRAM DECLARES A SERIES OF ARRAYS OF EVER-INCREASING
DIMENSION. THE ARRAY IS THEN FILLED WITH COMPUTED VALUES, ONE
OF WHICH IS ALTERED. THE ALTERED VALUE IS THEN SEARCHED FOR
AND PRINTED.
THE PROGRAM HALTS WHEN THE DECLARED ARRAY SIZE EXCEEDS THE
AVAILABLE MEMORY. WHEN THIS OCCURS, THE PROGRAM EXITS WITH
THE MESSAGE STACK OVERFLOW ON THE STANDARD
OUTPUT UNIT.
'BEGIN' INTEGER' I.,
I..=10.,
L..I..=I+1.,
OUTPUT(61, '('/,3D"'.I).,
'BEGIN' 'ARRAY' A(/-3*I..-1,I1..2*I/)., 'INTEGER' P,Q.,
'"FOR!' P..=-3*I 'STEP' 1 'UNTIL'-I 'DO'
'"FOR' Q..=I 'STEP' 1 'UNTIL' 2*I 'DO'
A(/P,Q/)..=-P+100*%Q. ,
A(/-2*1,1+2/). .=A(/-2*1,1+2/)+10000. ,
'"FOR' P..=-3*I 'STEP' 1 'UNTIL" -I 'DO'
'"FOR' Q..=I 'STEP' 1 'UNTIL' 2*I 'DO'
TF' A(/P,Q/) 'NOT EQUAL' 100*Q-P 'THEN'
'BEGIN' OUTPUT(61,'('/,5D")',A(/P,Q/)) 'END'.,
'GOTO' L
'END'
'END'.,
'EOP'

F-1



ACM Proposal 4-1
ALGOL Control Card 7-1
ALGOL Symbols A-2
AILGOL-60 1-1, 3-1

Basic Concepts 3-1
Blocks 3-5
Structure C-1

Channel Cards
Define 5-1
End 5-3
Equate 5-2
Standard 5-3

Character Set A-1

Code Procedure Body 3-6

Coding Form 2-3

Compiler 1-1

Compilation
Options 7-1
Procedure 2-1, B-3
Program 2-2

Control Card 7-1

Deck Structures 8-3
Declarations 3-6
Equipment 8-2
Delimiters 3-1
Diagnostics
Compiler D-1
Object Time D-5

Errors, I/0 4-11
Equipment Declaration 8-2
Expressions 3-3

Type 3-5

Evaluation 3-5

Formats 4-1
Procedures 4-5

Hardware Function
Procedures 4-9

INDEX

Identifiers 3-2
Input/Output
Procedures 4-4
Input 4-7
Output 4-6
-Units 8-1

Language Conventions 1-2
Letters 3-1

Load and Go 8-2

Logical Unit Numbers 5-3

Normal 6-1, B-1
Segmented 6-2, B-1

Numbers 3-2

Object Code 2-1

Object Program
Load and Go 7-2
Segment Tape 7-3, 8-2
Stack C-1
Structure B-1

Primitives 4-7
Procedure
Code 3-6
Compilation 2-2
Declaration 3-6
Format 4-5
Hardware Function 4-9
1/0 4-4
Source Deck 2-4
Statement 3-5
Program Source Deck 2-4

SCOPE Monitor 1-1, 6-1, 7-1, 8-2
Scratch Units 8-1
Segment Tape 8-2
Source Deck 2-1
Procedure 2-4
Program 2-4

Index-1



Stack Entries C-4
Standard Functions 3-4
Standard Library B-2
Statements 3-5
Strings 3-3
Subscripts 3-3
Symbols 3-2

Types 3-2
Conversion 3-3

Variables C-1

Type 3-2
Own C-4

Index 2



CONTROL DATA |

CCRPORATION

COMMENT AND EVALUATION SHEET
3100/3200/3300/3500 COMPUTER SYSTEMS
ALGOL Reference Manual

Pub. No. 60134800 February, 1966

YOUR EVALUATION OF THiIS MANUAL WILL BE WELCOMED BY CONTROL,DATA
CORPORATION. ANY ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL
COMMENTS MAY BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM nNawme:

BUSINESS

ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE



STAPLE

STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOL IS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S.A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA



CONTROL DATA SALES OFFICES

ALAMOGORDO « ALBUQUERQUE + ATLANTA . BILLINGS . BOSTON . CAPE
CANAVERAL « CHICAGO « CINCINNATI « CLEVELAND . COLORADO SPRINGS
DALLAS « DAYTON « DENVER « DETROIT - DOWNEY, CALIFORNIA « GREENS-
BORO, NORTH CAROLINA « HONOLULU « HOUSTON « HUNTSVILLE « MIARI
MONTEREY, CALIFORNIA « INDIANAPOLIS « ITHACA « KANSAS CITY, KANSAS
LOS ANGELES « MADISON, WISCONSIN . MINNEAPOLIS « NEWARK « NEW
ORLEANS « NEW YORK CITY « OAKLAND « OMAHA « PALO ALTO . PHILA-
DELPHIA « PHOENIX « PITTSBURGH . SACRAMENTO . SALT LAKE CITY
SAN BERNARDINO « SAN DIEGO « SANTA BARBARA . SAN FRANCISCO
SEATTLE « ST. LOUIS « TULSA « WASHINGTON, D. C.

Pub. No. 60134800

AMSTERDAM « ATHENS « BOMBAY « CANBERRA . DUSSELDORF « FRANK-
FURT +« HAMBURG « JOHANNESBURG « LONDON « LUCERNE » MELBOURNE
MEXICO CITY « MILAN « MONTREAL « MUNICH . OSLO . OTTAWA « PARIS
TELAVIV « STOCKHOLM . STUTTGART « SYDNEY « TOKYO (C. ITOH ELEC-
TRONIC COMPUTING SERVICE CO., LTD.) « TORONTO « ZURICH

CONTROL DATA
[ conromarion]

C RP RATION
8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440 (il

Litho in U.S.A.

IVANVIA 3ON3N3:43Y 1091V oose/ee/Se/LE



	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	E-01
	E-02
	F-01
	Index-01
	Index-02
	replyA
	replyB
	xBack

