CONTROL DATA

CORPORATION

3100/3200/3300/3500 ALGOL
ABNORMAL OBJECT TIME
TERMINATION DUMP

3100/3200/3300/3500 ALGOL
ABNORMAL OBJECT TIME
TERMINATION DUMP

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CONTENTS

INTRODUCTION

OBJECT TIME ABNORMAL TERMINATION DUMP

Structured Dump
Global and Environmental Information

GLOBAL INFORMATION

UA
[9A%
LASTUSED

ENVIRONMENTAL INFORMATION

Formal Variables

Local Variables

Values of Variables
Descriptions of Variables

DESCRIPTIONS

Terminology

02 Switch

03 String

04 Label or Designational Expression
05 No-type Procedure
06 Typed Procedure

07 Array

10 Constant

11 Expression

12 Simple Variable

13 Subscripted Variable

SAMPLE PROGRAM AND DUMP

Program
Dump

i~

[) B) |

@ 0 =3 =3 -3

11

11
11
12
12
12
12
12
14
14
14
14

15

15
16

INTRODUCTION

This bulletin describes Object Time Abnormal Termination Dump in
Control Data®3100/3200/3300/3500 computer series ALGOL. It is
assumed that the reader is acquainted with the general characteristics
of 3100/3200/3300/3500 series computers and programming in the
ALGOL language. The language is as defined in the Communications of
the ACM, 1963, vol. 6, No. 1, pp 1-17 with some additional procedures
and exceptions as stated in the Control Data Reference Manual

OBJECT TIME ABNORMAL TERMINATION DUMP 2

STRUCTURED DUMP

Upon abnormal termination of an object program, a diagnostic (such as,
ARITHMETIC OVERFLOW or FORMAT STRING ERROR) is printed on the
standard output unit to indicate the nature of the error. The contents of all
non-empty output format areas are output on their respective units. In
particular, if there is a non-empty format area associated with LU 61
(standard output), its contents appear on that unit following the object time
diagnostic. This information is followed by a structured dump.

The structured dump traces the execution path through the blocks in the
block structure currently active when the error occurs. The information
relevant to the ALGOL program at the time the error occurred (values,
descriptions, and/or locations of variables), is selected from core storage
for printing in this dump. The dump has the following format;:

THIS ERROR OCCURRED AFTER LINE xxxx
IN THE BLOCK ENTERED AT LINE xxxx
(global information)

(environmental information)

THIS BLOCK WAS CALLED FROM LINE xxxx
IN THE BLOCK ENTERED AT LINE xxxx
(environmental information)

THIS BLOCK WAS CALLED FROM LINE xxxx
IN THE BLOCK ENTERED AT LINE xxxx

(environmental information)

The line number xxxx refers to the number assigned to each source image
line during compilation and printed with the source program listing. If the
block entered is a standard procedure, the word STAN appears instead of
the line number.

GLOBAL AND

ENVIRONMENTAL

INFORMATION Each line of global and environmental information consists of a 15-bit
address field printed as 5 octal digits. This is immediately followed by
48 bits representing the contents of one stack entry, printed as 16 octal
digits in fields of 2, 6, 2, and 6, as follows:

Address Field Information Field

XXXXX XX 0 OXXXXXX XX XXXXXX

UA

uv

LASTUSED

GLOBAL INFORMATION 3

The global information applies to the running program as a whole, without
regard to the currently active block structure. It has the following format:

THE GLOBAL VARIABLES ARE . .

UA, VALUE XXXXX XX ~XXXXXX XX & XXXXXX
Uuv XXXXX XX XXXXXX XX = XXXXXX
LASTUSED XXXXX XX XXXXXX XX = XXXXXX

UA, UV, and LASTUSED are the names of variables internal to the ALGOL
system.

UA contains the address of the last accessed formal parameter, the address
of the value of a typed procedure, or the address of the last referenced array
element. The address field gives the contents of UA. The other 48 bits are
the contents of the location referenced by this address.

UV is used only to contain either the value of the last accessed formal
parameter if this does not appear in the stack (such as, a formal expression)
or the value of a typed procedure. Whenever UV is in use, UA contains the
address of UV. The address field gives the address of UV. The other 48 bits
are its contents.

LASTUSED contains the address of the top stack element. The address field
gives the address of the top stack element. The other 48 bits are the contents
of the location referenced by this address.

ENVIRONMENTAL INFORMATION 4

The environmental information consists of descriptions or values of those
formal and/or local variables belonging to the appropriate block level.
Formal variables appear only if the particular block is a procedure. Simple
local variables and simple formal parameters called by value are
represented by their values; all other variables are represented by a
description. The formats of these values and descriptions are given later.

FORMAL VARIABLES Formal variables are dumped in the following structure:

LOCAL VARIABLES

1st line Return information
2nd line 1st formal parameter
3rd line 2nd formal parameter

last formal parameter
1st constant used as actual parameter

2nd constant used as actual parameter

In addition to every declared variable, one stack entry exists for each
artificial label generated for a for statement and one for each designational
expression of a switch list; moreover, each bound-pair list, in an array
declaration containing n bound pairs, generates n+l1 stack entries. All of
these entries appear in the stack in reverse order from their appearance in
the source program, and they are dumped in this form. Any additional stack
entries following the first declared (last printed) variables represent inter-
mediate working locations generated by the compiler.

VALUES OF
VARIABLES

DESRIPTIONS
OF VARIABLES

Simple local variables and simple formal parameters called by value are
represented in the stack as follows:

Boolean

A 48-bit entry in which bits 47-25 are always set to 0. Bit 24
is set to 1 for true and 0 for false. Bits 23-0 are irrelevant.

Integer
A 48-bit entry in a fixed-point, right-justified integer form.

Real

A 48-bit entry in standard floating-point form.

All descriptions of variables in the stack have the following general form:

<X > < <i < > < >
X 3<1:>3 address1>18 1>1 kk 5 address 2 18

x is three bits representing the transformation which must be applied to
formal arithmetic variables.

t is three bits representing the type of a variable.
i is 1 bit used by the system in conjunction with kk as described below.
kk is 5 bits representing the kind of the variable.

The interpretation of the addresses address 1 and address 2 depends on the
kind (kk) of description.

The transformation, x, is used only for the descriptions of formal
parameters and can take the following values:

Possible Use

0 No transformation Formal and local
1 Fix Formal only
2 Float Formal only
3 Fix~then-float Formal only
4-7 Not used Not used

The type, t, can take the following values:

1O U RN O

The kind, kk, can take the following values:

00
01
02
03
04

05
06
07
10
11
12
13
14-37

The reader should be aware that a staék entry 'representing an arithmetic
value may have a bit structure which makes it appear to be a description.

No type

Boolean

Real

Integer
Real~integer
Integer-real
Real-integer-real
Not used

Not used

Not used

Switch

String

Label or designational
expression

No-type procedure

Typed procedure

Array

Constant

Expression

Simple variable

Subscripted variable

Not used

Possible Use

Formal and local
Formal and local
Formal and local
Formal and local
Formal only

" Formal only

Formal only
Not used

Possible Use

Not used
Not used
Formal and local
Formal and local

Formal and local
Formal and local
Formal and local

.Formal and local

Formal only
Formal only
Formal only
Formal only
Not used

TERMINOLOGY

RETURN
INFORMATION

02 SWITCH

DESCRIPTIONS 5

The following detailed explanations of the descriptions are ordered according
to the kind, kk, as described above, except for Return Information which does
not have a kind and is described first.

All references to the stack in the object program are relative to the beginning
of the stack area for a parti¢ular block. When a block is entered at execution
time, the base address of the corresponding stack area is assigned. This
absolute base address is the Stack Reference of the block. In the following
descriptions, Stack Reference is used to define the environment of the
particular element. '

The term Segment Location means an address pointing to a position in the
object program. In non-segmented execution, it is the 18-bit complement of
an absolute address. In segmented execution, it is interpreted as a 9-bit
segment number followed by a 9-bit segment relative address.

The term Stack Address means an absolute address pointing to a particular
stack entry.

< No. of formals> 6 < Stack Reference> 18 < No. of constants+1> 6

< Segment Location> 18

<0>3 <0>3 <No. of switch elements>18 < 0>1 <’02>5 <1>3 <Stack Address>

Stack Address points to the first element of the switch list.

In a switch declaration, the switch list (see kind 04, below) precedes the

switch description as follows:)
< Designational expressidn of the nth switch element> 4

8

< Designational expression of (n-1)th switch element> 48

11

15

STACK ADDRESS

03 STRING

04 LABEL OR
DESIGNATIONAL
EXPRESSION

05 NO-TYPE
PROCEDURE

06 TYPED
PROCEDURE

07 ARRAY

12

<Designational expression of 1st switch element > 48

< Switch description as above 548

i . i . <i 3
<Relative Address> 12 < No. of string char >12 i >1 <0 >5

<Segment Location> 18

The above description is a copy of the description saved as an own variable
in the stack. The Relative Address is the address relative to the stack
reference of Block 0 of this own stack entry.

The string itself is stored in-line in the object program. The Segment
Location points to the first word of the string.

After syntax checking on the string has been performed the first time, the
i bit is set to 1 in the own stack entry, to prevent further syntax checking
on the same string.

<0 >3 <0>3 < Stack Reference>18 <i > <O4>5 < Segment Location >18

If a designational expression is not a label, the Segment Location points to
the code which evaluates the expression and jumps to the resulting label.

For each for statement, the compiler generates an artificial label which has
the same description as above. This label is used to return from the end of
the for statement to the control at the beginning. Whenever the for statement
is not in execution, the Segment Location of this label is set to point to a
special system entry 000011, in order to detect abnormal use of the statement.
The i bit is set to 1 in this case.

In addition, the i bit is preset to 1 before entry to each step-until element,
and set to 0 after this element has been entered.

<0 >3 <0>_<Stack Reference> <1>1 <05 >5 < Segment Location>

3 18 18

<x>_<t>_< > <1> <06>_< ion>
X>g t 3 Stack Reference 18 1 1 06 5 Segment Location 18

<x>3 <1:>3 <Stack Address 1>18 <0>1 <07 >5 < 1>3 < Stack Address 2 >15

Stack Address 1 is the base address of the array elements in the stack.

nonta of oy 3 3
ements of an array are assigned above the lagt working location

of the particular block, but do not appear in the dump.

-
=
da
a
e
-

own arrays are handled in the same way, except that their elements are
assigned among the own variables in block 0.

The elements of an array called by value are copied (and transformed, if
necessary) to a position above the working locations of the block of the

procedure.

Stack Address 2 is the base address of the dope vector which is used to
calculate the addresses of the array elements (see below).

In an array declaration, the dope vector of the corresponding bound-pair
list precedes the descriptions for all array identifiers of an array segment.

The dope vector for the array declaration

arrayA[!Zl : ul, !22 : uz, Qn :un] is:
<Crl >24 <Not used >94
<Cn_1 >24<Notused > o4
<C2 >24<Notused >4
< Length of array >24<Not used > o4

< Lower bound effect > 24 <n=No. of dimensions > 24

where C,=u, - £ +1
1 1 1
= * * g
Length of array C1 C2 03....Cn

= * * * *
Lower bound effect = (((.. (21 02 + 22) C3 + 23) ceed) Cn + !Zn

The address of any element is referenced by the base address of the array plus

N +i)* +i)*..L0)* + i - d .
«((11 02 12) C3 13)) Cn i lower bound effect

13

For example, the description of the declaration
array A, B [1: 3, 2: 5:| is:

<4 > <Not used>2

24 4
<12 >24<Not used>24
STACK ADDRESS <6 > 04 < 2 >94
< Description of B > 48
< Description of A >48
10 CONSTANT <X>p<t>g <Stack Address >15<0 > <10>5 <Not used>18

The Stack Address locates the constant in the stack.

11 EXPRESSION <X>g <t>, <Stack Reference> . <1> <11> <Segment Location>, o

12 SIMPLE VARIABLE <x > <t>3 <Stack Address g < 0>1 <12 >g < Not used>18

The Stack Address locates the stack entry for the variable.

13 SUBSCRIPTED

VARIABLE <X >g <t > <Stack References >1g < 1 > <13 > < Segment Location >18

14

SAMPLE PROGRAM AND DUMP

PROGRAM
ALGOL - 32 (1.0) DUMP
0%* DUMP EXAMPLE
#BEGIN#

#INTEGER# N .,
#ARRAY# Al, A2(/1..3/) .,
#PROCEDURE# BLOW(BA, IB, IC, ID, L, PA, AA, AB) .,
#VALUE# 1D, AB .,
#INTEGER# 1B, IC, ID .,
#BOOLEAN# BA .,
-#LABEL#. L .,
#INTEGER# #PROCEDURE# PA .,
FARRAY# AA, AB .,
#FLLGINA
. #INTEGER# I .,
#SWITCH# SW ..= L, LA .,
I..=PA(I)+1/5.
EP# 1

oy
(@]
*
*

s ,
#FOR# 1 ..= 1 #STEP #UNTIL# 2 #D0# I ..= 1 + 1/0
. #FOR# I ..= 2 #DO# .,
IA..
#END# .,
#INTEGER# #PROCEDURE# K(I) ., #INTEGER# I ., K ..= 1 .,

20%* N ..= 4.7 ., :

BLOW (#TRUE#, N, 3.5+N, 2#%N, L2, K, Al, A2) .,

L2..

- FENDE pops

.3

15

DUMP

CHANNEL , 60=LU60 , P80

CHANMNEL, 61=LU61,P136, PP60

CHANNEL ,END
ARITHMETIC OVERFLOW

THIS ERROR OCCURED AFTER

IN THE BLOCK ENTERED AT

THE GLOBAL VARIABLES ARE ..

UA, VALUE 03214
uv 03214
LASTUSED 06361

THE FORMAL VARIABLES ARE ..
00323
06321
06317
00315
00313
06311
06307
06305
06303
06301

THE LOCAL VARIABLES ARE .,
06335
06337
06341
06343
06345
06347
06351
06353

34
34
14

10
01
03
14
00
00
03
02
02
00

00
00
00
00
00
00
00
17

003335
003335
600000

000237
000301
006263
000237
000000
006237
006237
006273
006355
000001

006327
006327
006327
006327
006237
000002
000000
756314

THIS BLOCK WAS CALLED FROM

IN THE BLOCK ENTERED AT

THE LOCAL VARIABLES ARE ..
06245
06247
06251
06253
06255
00257
06261
06263

00
03
00
00
00
02
02
00

006237
006237
006237
000003
000001
006265
006273
000000

THIS BLOCK WAS CALLED FROM

16

LINE 0014

LINE 0003

01
01
04

02
10
12
51
00

46
07
07
00

04
44
04
04
04
02
00
63

04
46
45
21
00
07
07
00

406333
406333
600001

001775
000000
000000
001757
000012
001775
001667
106255
100255
000000

001664
000011
001617
001664
001775
106345
000001
146315

LINE 0021

LINE 0001

001775
001667
001502
003347
000001
106255
106255
000005

LINE 0001

Explanation
Return Information
BA, Constant true
IB, Simple Variable N
IC, Expression 3.5+N
ID, Value 2*N
L , Label L2
PA, Typed Procedure K
AA, Array Al
AB, Value Array, A2

Value of constant true

LA, Label
for label not entered
for label entered
Designational Expression LA
Designational Expression L
SW, Switch
I , Value of integer
Working Location

L2, Label

K Typed Procedure

BLOW No type Procedure
Dope Vector
Dope Vector

A2, Array

Al, Array

N , Value of integer

CONTROL DATA CORPORATION
Documentation Department
3145 Porter Drive
Palo Alto, California

MAY 1966 PUB. NO. 60171000

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	xBack

