
COMPUTER SYSTEMS
COMPATIBLE COMPASS

REFERENCE MANUAL

CONTROL DATA
I

CORPORATION

April, 1967
Pub. No. 601HOOO,A

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales office.

CONTROL DATA CORPORATION
Documentation Department

3145 PORTER DRIVE

PALO ALTO, CALIFORNIA
©1967, Control Data Corporation

Printed 111 the United States of America

INTRODUCTION

CHAPTER 1

CHAPTER 2

CONTENTS

COMPASS PROGRAMS

1. 1 Instruction Format
1.2 Location Field
1. 3 Operation Field
1.4 Address Field

1.4.1 Symbols
1. 4.2 Constants
1.4.3 Expressions
1.4.4 Literals
1.4.5 Evaluation of Expressions
1.4.6 Non-Relocatable Symbols
1. 4.7 Interchange Word/Character Addresses

1.5 Comments and Identification

PSEUDO INSTRUCTIONS

2 . 1 Subprogram Control
2.1.1 IDENT
2.1.2
2.1. 3

END
FINIS

2 . 2 Program Storage Areas
2.2.1 PRG
2.2.2 DATA
2.2.3 COMMON
2.2.4 ORGR

2.3 Word/Character Storage
2.3.1 BSS
2.3.2 BSS,C

2.4 Subprogram Communication and Linkage
2.4.1 ENTRY
2.4.2 EXT

2.5 Definition by Equating
2.5.1 EQU
2.5.2 EQU ,C

2.6 Assembly of Constants
2.6.1 OCT
2.6.2 DEC
2.6.3 DECD
2.6.4 BCD
2.6.5 BCD,C

v

1-1

1-2
1-3
1-3
1-4
1-4
1-5
1-5
1-5
1-6
1-7
1-7
1-7

2-1

2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-6
2-6
2-7
2-8
2-9
2-9
2-10
2-10

2-11
2-11
2-11
2-13
2-14
2-15
2-15

III

CHAPTER 3

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

iv

2.6.6 ASCII
2.6.7 BCDN

2.7 Variable Field Definition
2.7. 1 VFD Modes

2.8 Assembler Control
2.8.1 IFZ
2.8.2 IFN

2. 9 Listing Control
2.9.1 REM
2.9.2 NO LIST
2.9.3 LIST
2.9.4 SPACE
2.9.5 EJECT
2.9.6 TITLE

MACROS

3.1 MACRO Heading
3. 2 Prototype

3.2.1 1FT
3.2.2 IFF

3. 3 Macro Terminator
3.4 Macro Calls
3.5 Nesting of Macros
3. 6 Library Macros

MACHINE LANGUAGE INSTRUCTIONS

PSEUDO INSTRUCTIONS INDEX

COMPASS PROGRAM EX/\lVIPLES

2-17
2-17
2-18
2-19
2-21
2-21
2-22
2-22
2-22
2-23
2-23
2-23
2-24
2-24

3-1

3-2
3-3
3-3
3-6
3-6
3-7
3-9
3-11

A-I

B-1

C-1

Index-l

INTRODUCTION

The Compatible Compass Language Reference Manual is designed for the
programmer-user of the 3100, 3200, 3300 or 3500 computer, who chooses
to use COMPASS assembler language.

With COMPASS, the Comprehensive Assembly System for Control Data
computers, the programmer may conveniently use mnemonic instructions
and symbolic addresses to write machine language programs.

The COMPASS assembly system:

Permits the use of location symbols as addresses.

Attaches character designators to word addresses.

Causes specified initial values to be loaded into data areas in the
source program.

Allows the establishment of common areas to expedite communication
among subprograms.

Recognizes integer, floating point, and BCD constants in familiar
notation.

Facilitates calling system library routines.

Controls the format of the assembly listing with COMPASS pseudo­
instructions.

Lists diagnostics for source program errors.

Enables macro instructions to be defined and used.

This Compatible Language Reference Manual is to be used in conjunction with
the appropriate COMPASS Programming Guide. The guides provide operating
system information such as job deck structures and diagnostic flags for assem­
bHng under specific operating systems, such as MSOS or MASTER.

v

COMPASS PROGRAMS 1

In C OMP ASS source language, the programmer writes machine language
instructions in mnemonic and symbolic form, specific constants, controls
subprogram communication and directs the assembly process with a powerful
set of pseudo instructions.

Subprograms in COMPASS language are assembled, linked at load time, and
executed as a single unit; one program usually consists of several sub­
programs. The size of subprograms or the magnitude of the problems solved
by a subprogram is established by the programmer.

A subprogram consists of an IDENT pseudo instruction followed by subsequent
lines of coding and finally an END pseudo instruction. Storage for assembled
subprograms consists of three main areas:

Data area - one area for all subprograms of a single run

Subprogram area

Common area

The three areas are defined at assembly time. When more than one subpro­
gram is loaded for execution at run time, the total storage requirement must
be considered. The data area must be sufficient to contain the total informa­
tion assigned to it by all subprograms. The programmer must also insure
that information stored in the data area by the loader will not conflict with
information from other subprograms destined for the shared area.

COMPASS object code contains relocatable addresses which are modified by
a relocation factor during loading to obtain the actual address in the computer
memory. When assembling subprograms, COMPASS assumes that the initial
location in each of the three areas - data, common and subprogram - has a
relocatable address of zero. Locations are then assigned sequentially from
zero unless the pseudo instruction ORGR is encountered. ORGR instructs
COMPASS to assign the value in the address field of ORGR as the relocatable
address of the following instruction and assign storage sequentially from that
relocatable address.

Each area recognized by COMPASS has its own address counter. The address
counter affected by ORGR is the counter currently in use. The address counter
used by COMPASS for a given area is the same throughout the subprogram.
A counter set by ORGR remains set until a subsequent ORGR. All counters
are initialized before assembling a new subprogram.

1-1

1.1

INSTRUCTION
FORMAT

1-2

Instructions to be assembled by COMPASS are written on coding forms and
subsequently punched into cards or prepared on other media for input to
COMPASS. Each line on the coding sheet is normally punched into a single
card. The correspondence between columns on coding sheet and card is one­
to-one.

COMPASS SYSTEM COOING FORM _" NAME
~P~RO=GR~A~M~~~~~~------------~ r.P~AG~E __________ ~
r.R~OU:'::'TI:::':NE=---------------------------; DATE

I.IC1I IPElATlO llfiERS ADllESSflELD IDEMT

, t I • S • , I • iO" 1~ 'I'~ " "" II .,I.~, rz. Dt4U:t&t,"")(I " !lI1i $4 UM"» '>940

1
., 4 •• , ••• , ••• , .. .,50" NU .. n"" " It uuu HI. "I.!!I!">' >t'n P"~ H," ' •• , ••

I I

Ii

Ii
. i I

II

I

I i 1

, I ... , • T • ~ .. , II " II " ' 10 Z' II U" n H %. U It "'" .. n ,. u "'" ..)t·oO ••• ,.' •••• 4 ••••• • •• 0 •• $I ""14., ~ 51 •••• -0 II It u •• U:U '0 r, .: ,.'11 "'n II ...

Each line of code has five fields; all instructions are defined in terms of the
contents of these fields (Appendix A).

Field

Location
Operation
Address

Comments

Ident

Columns

1-8 inclusive, 9 always blank.
Begins in column 10 and continues until the first blank column.
It may begin after the blank terminating the operation field; it

must begin before column 41; and terminates with the first
blank, or column 73.

Remarks are written between the end of the address field and
column 73.

Identification or sequence numbers in 73-80 are treated as a
comment by COMPASS.

i.2
LOCATION FIELD

1.3
OPERATION FIELD

A location symbol placed anywhere in columns 1-8 specifies the address of an
instruction or data item.

Location fields may be totally blank or contain symbols consisting of from 1 to
8 alphabetic or numeric characters or a period. The first character must be
alphabetic. Imbedded blanks are illegal. An illegal symbol is flagged as an
L error on the assembly listing.

The location field symbol may represent a 15- or 17-bit relocatable address
or a 15- or 17-bit non-relocatable value. Symbols representing an address are
defined under control of one of the three address counters (except in EQU);
they reference the first word or character position occupied by the particular
instruction.

When an asterisk appears in column 1, columns 2-72 are treated as a
comment.

Examples of location field symbols:

Acceptable

A123.456

H3

ABCDEFGH

P1234567

Unacceptable

12345678

.2345678

The operation field may contain mnemonic machine instruction codes or
pseudo instruction mnemonics, with specific, related modifiers, macro
instruction names, the octal values 00-77, or the octal values 00-77 with
the modifier C.

The field begins in column 10 and is terminated by the first blank. If column
lOis blank, an operation code of 00 is assembled. An illegal operation field
is flagged as an 0 error on the assembly listing. Modifiers are separated
from operation codes by commas; no blank columns may intervene.

Examples of acceptable operation fields:

BSS,C
BSS
LDA

INPC, INT, B, H
MACRO
74
74,C

1-3

1.4
ADDRESS FIELD

1.4.1
SYMBOLS

1-4

The address field begins anywhere before column 41 after the blank terminat­
ing the operation field and terminates with a blank or column 73. It is
composed of one or more subfields, depending upon the instruction.

Machine instructions have implied subfields which may contain symbols,
constants or expressions. A subfield may be assigned the value zero by
giving only its trailing comma. The last address subfield may be assigned
the value zero by omitting both its content and the preceding comma. But if
the operation code specifies a BDP instruction, the preceding comma is re­
quired.

An address field symbol may occupy the entire field or it may be only one
element in the field. Any symbol used in an address field must be defined by
appearance in the location field of another instruction in the subprogram, or
it must be declared as external. A symbol in the address field is formed and
expressed exactly like a location symbol; it may be relocatable or non­
relocatable.

A non-relocatable symbol is defined or equated to a value of 15 or 17 bits.
The value assigned to the non-relocatable symbol will not be modified during
loading.

A relocatable symbol represents either a 15- or 17-bit address. Relocatable
addresses are values related to a memory area. These values will be incre­
mented or decremented by the loader prior to storage of the instruction in
which the address occurs. Relocatable symbols are local or external to a
subprogram and are equated to a 15-bit word address or a 17-bit character
address. Relocatable symbols may be:

subprogram relocatable

external symbols

data relocatable

common relocatable

The special character, *, may be placed in the address field and used as any
symbol. The * is interpreted as the current value of the COMPASS address
counter in effect when the * is encountered. The * may result in either a
15-bit or 17 -bit address. If the machine instruction consumes two words,
* is the address of the first word.

The special character ** may be used as the only entry in a field or subfield.
The ** yields a subfield containing a one in each bit position. Normally, the
field represented by the ** will be modified during execution of the program
and the double asterisk provides a convenient way to ascertain if the modifica­
tion transpired.

1.4.2
CONSTANTS

1.4.3
EXPRESSIONS

1.4.4
LITERALS

The address field may contain signed or unsigned decimal or octal integers.
If the sign is not present, the integer is assumed to be positive. Octal
integers are suffixed by the character B.

In an address field or subfield, symbols, the special character *, and
constants may be combined with the operators, plus or minus, to form an
address expression. The value of the expression is calculated by substituting
the numeric value of the symbol and performing 15- or 17-bit arithmetic with
the designated operators. External symbols, the double asterisk, and
literals may not appear in an address expression.

If relocatable symbols are part of an address expression, the result of the
evaluated expression must be relocatable \\rithin a single area. Subprogram,
data, or common relocatable symbols may be mixed:

D - P + P - D + C -c
1 1 2 2 1 2

non-relocatable value

D-C +C
1 2

C -P-C
1 2

positive data relocatable value

negative subprogram relocatable value

D. data relocatable addresses
1

p. subprogram relocatable addresses
1

C. common relocatable addresses
1

In an expression containing relocatable symbols, the algebraic sum of the
relocation indicators must be either an area relocation increment or
decrement, or no relocation designator and, therefore, a non-relocatable
value.

The result of an address arithmetic symbol depends on the number of bits
assigned to the subfield in the object code.

If the address field or subfield of an instruction refers to an operand which
may be a single or double precision value, the entry may be a literal
expressed as an equal sign followed by a mode designator and a value (=mv).

1-5

1.4.5
EVALUATION OF

EXPRESSIONS

1-6

The equal sign denotes that the field contains a literal; m indicates the mode
of the literal; v is the value of the literal. Single precision literals are
expressed as above; double precision literals (48-bit) are expressed as =2mv.

The mode of a literal may be decimal, octal, Hollerith, or DSACII.

Decimal literals: =Dv
The value of the decimal literal is expressed in the same manner as DEC and
DECD pseudo instructions; they may be signed, cannot be more than 7 digits
(14 for double precision), and may be followed by a scaling factor. A blank
terminates the field. A BCD character is illegal.

Octal literals: =Ov
The value of the octal literal is written in the same manner as an OCT pseudo
instruction; it may be signed, cannot be more than 8 digits (16 for double
precision), and may be followed by a scaling factor. A blank terminates the
field. A BCD character is illegal.

Hollerith literals: =Hv
The Hollerith literal is expressed as a string of 4 or 8 characters. The
column following a Hollerith literal must contain a blank or a comma.

ASCII literals: =Iv
The ASCII literal is expressed as a string of 2 (4 for double precision) BCD
characters. The characters are stored 2 per word as follows:

bits 23-20 zero
bits 19-12 first ASCII character
bits 11-08 zero
bits 07 -00 second ASCII character

The column following an ASCII literal must contain a blank or a comma.

During assembly, a literal is converted to binary and assigned a relocatable
address which is substituted for the literal in the object code. Literals are
assigned to contiguous storage locations at the end of the subprogram.
Literals of the same value and size are not duplicated in the object subpro­
gram. Each time COMPASS encounters a literal, the value is compared
against all previously assembled literals; and if an identical value exists, the
address of the previously assigned literal is substituted in the object code.

Address expressions are evaluated as a word address (15 bits) or a character
address (17 bits). All address expressions are converted to binary numbers
of modulus 215 -1 or 217 -1, and stored in the proper subfield. No size check
is made for 15- or 17 -bit subfields by COMPASS.

The location terms of all instructions except BCD, C, BSS, C and EQU, Care
evaluated as word addresses.

1.4.6
NON-RElOCA TABLE
SYMBOLS

1.4.7

INTERCHANGE WORD/

Symbols defined as non-relocatable values are treated as integers. If the
most significant bit of a non-relocatable value is one, the integer is assumed
to be in complement form. A 17-bit non-relocatable value placed in an m, n
or y subfield is reduced to modulo 215_1.

CHARACTER ADDRESSES A word address may be placed in a character address field or vice-versa. If
a symbol defined as a word address is placed in a subfield which consists of

1.5

COMMENTS AND
IDENTIFICATION

1 7 bits, the assigned binary value is shifted left two places.

If a symbol defined as a character address is placed in a subfield which has
only 15 bits, the 17-bit character is shifted right two places; if a one bit is
lost by the shift, a T error occurs.

Comments may be included with any instructions. A blank column must
separate them from the last character in the address field and they may
extend to column 73. Comments have no effect upon compilation, but will be
included on the assembly listing.

Columns 73 -80 may be used for program identification or for sequence
numbers. This field has no effect upon assembly; if an asterisk is placed in
column 1, the entire line will be considered a comment.

1-7

2.1
SUBPROGRAM
CONTROL

2.1.1
IDENT

PSEUDO INSTRUCTIONS 2

COMPASS pseudo instructions control assembly process, convert constants,
and reserve and assign storage.

Three pseudo instructions define a subprogram and provide control informa­
tion for COMPASS.

LOCATION lOPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I
I
I
I

The address field contains the subprogram name; it may include as many
characters as will fit into the field, but only the first 8 are used. They appear
in the IDC card of the relocatable object subprogram deck and are printed as
the title on the output listing unless a TITLE listing control pseudo instruction
intervenes. The pseudo instruction, IDENT, will not appear on the output
listing. The location field should be blank; it will be ignored by COMPASS.

The subprogram name is not an entry point name and cannot be referenced in
the source subprogram. IDENT must be the first instruction of a subprogram;
otherwise, the job is terminated. If it also appears elsewhere in the subpro­
gram, an 0 error is indicated.

Instructions following IDENT are assembled using the subprogram address
counter until the pseudo instructions DATA or COMMON intervene.

2-1

2.1.2
END

2.1.3
FINIS

2-2

LOCATION OPERATION. MOOIFIERS AOORESS FIELD COMMENTS

I 8 10 :20 141
I I

END I I
I I
I I

The final instruction in a COMPASS subprogram must be END. It terminates
the subprogram and produces a TRA card in the relocatable obje ct subprogram
deck. The location field is ignored by COMPASS and should be blank.

A symbol in the address field is output to the TRA card as the symbolic
transfer address. If a program is to receive control at the address indicated,
the transfer address must be defined as an entry point.

LOCATION PPERATION. MOOIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141
I I

FINIS I I
I I
I I

FINIS signals that all subprograms have been submitted for assembly; it is
the final instruction of a COMPASS input deck. Location and address fields
are ignored. Normally, FINIS immediately follows an END pseudo
instruction.

COMPASS will recognize FINIS at any point, however, and proceed as if END
had occurred. If END is missing, the job is terminated when control is
returned to the operating system.

2.2
PROGRAM STORAGE
AREAS

2.2.1
PRG

The progra...rnmer may establish two storage areas to be shared by several
subprogra...rns. The common area may be shared for information which is
processed by the running program, or accumulated during the cQurse of
execution. Information may not be assembled in the common area. At the
source language level the programmer may label, reserve, or otherwise
organize the common area but nothing more.

Information assembled for storage into the data area may consist of constants,
message formats, masks, and other information to be used by more than one
subprogram. Both the common and data areas are shared by all subprograms
during execution. The significant difference is that the data area can be pre­
stored or loaded by the loader; common cannot.

During assembly, COMPASS initially uses the subprogram address counter.
"Vhen the pseudo instructions DATA or COMMON are encountered, COMPASS
assembles subsequent information for the indicated area until another area
assignment occurs. The pseudo instruction, PRG, returns control to the
subprogram address counter.

If any statement which results in binary output occurs while COMMON is in
effect, an error indication is given and assembly continues as if PRG had
occurred in the source subprogram. Anyone of the three location counters
may be set by the pseudo instruction ORGR. "When COMPASS initiates a
different area address counter, or the counter currently in effect is reset
by an ORGR, or is incremented by a BSS pseudo instruction, the current RIF
card is produced.

LOCATION ioPERATION, MOOIAERS AODRESS FIELD COMMENTS

I 8 10 120 141

PRG I I
I I
I I

PRG establishes the subprogram area location counter during assembly.
PRG specifies that all instructions which follow are to be assembled in a sub­
program area; it restores the subprogram location counter for use by
COMPASS after an area of another type has been defined. "When IDENT is
encountered, the subprogram counter is initialized and remains in effect
until DATA or COMMON occurs. The location and address fields are ignored
by COMPASS.

2-3

2.2.2
DATA

2.2.3
COMMON

2-4

lOCATION OPERATION, MODIAERS ADDRESS FIELD COMMENTS

1 8 10 :20 :41

DATA I
I

I I
I

I I

DATA specifies that all subsequent information is to be stored or identified
as part of the data area; it indicates use of the data area location counter.
The location and address fields are ignored and should be blank.

Any instruction or pseudo instruction may follow DATA, providing no
reference is made to an external name and no location within the data area is
declared an entry point to the subprogram. Once DATA occurs in a sub­
program, the data area location counter is used for assembly to the end of the
subprogram unless PRG or COMMON occur.

lOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 141

I
I

COMMON I
I I
I I

COMMON organizes, labels, and reserves space in the common area. The
location and address fields are ignored and should be blank.

Information may not be assembled for storage in the common area; therefore,
the only instructions which may follow COMMON are BSS, BSS, C, COMMON,
EQU, EXT, ENTRY, ORGR, 1FT, IFN, IFF, IFZ, listing control
instructions, and PRG, DATA or END. If any other instruction is encountered,
an error is flagged and assembly continues as if PRG had been encountered.

2.2.4
ORGR LOCATION OPERATION, MODIFIERS AOORESS FIELD COMMENTS

1 8 10 ~20 141 .
I I IORGR 1m I

1
I

1 1

ORGR specifies the relocatable address for storage of instructions,
constants, or reservation of space in any of the three storage areas. The
location field of ORGR is ignored by COMPASS but is printed on the output
listing.

The address field may contain an expression which results in a value for a
relocatable address. Symbols must have been defined in the location field of
a preceding instruction and, if relocatable, be assigned to the same area as
the address counter currently in effect.

The incorrect sequence in the following example demonstrates how symbols
must be controlled by the subprogram address counter in the area in which
they were assigned.

MAC1

IDENT SAM

DATA
BSS
OCT

PRG
ORGR

2
63

MACl+l6

Since MACl was assigned in the data area, MAC 1 +16 could not
be under control of the PRG subprogram address counter.

If COMPASS is assembling into one area and an ORGR occurs with a different
area relocatable symbol in the address field, an error results. All address
counters remain unchanged, and COMPASS ignores the ORGR. The error
flag is included on the output listing.

2-5

2.3
WORD / CHARACTER
STORAGE

2.3.1
BSS

2-6

Full words or character positions may be reserved and labeled with the
pseudo instructions BSS or BSS, C. Reservation is made in the area governed
by the current address counter. The address field determines how many words
or character positions are to be reserved.

LOCATION ~PERATION. MOOIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

symbol BSS hn
I
I

or blank I I
I I

BSS reserves and labels a block of words in any area. The location field may
be blank or contain a symbol which is defined as the 15-bit relocatable word
address of the first word in the block to be reserved by BSS.

The address field, which specifies the number of words to be reserved, must
contain a constant, a symbol, or an address expression which results in a non­
relocatable value.

Example: .ABLE

ABLE

ABLE +1

ABLE + 11

BSS 12

23 o

The double asterisk in the address field is illegal; symbols in an address
field must be defined in the location field of a preceding instruction.

A negative address field such as: BSS
will be interpreted by COMPASS as: BSS
and 77775B words will be reserved

-2B
77775B

If the address field is in error or is zero; no storage will be reserved but a
symbol in the location field will have been defined. If the address field
contains zero, and the instruction is immediately preceded by BCD, C or
BSS, C, the next instruction which consumes space .vill be forced to a ne"v
word.

2.3.2
BSS, C

Examples:

ALPHA BCD,C 3,ABC ALPHA IAIB Ic I I I
BSS 0

BCD,C 3,GHI ALPHA + 1 I G IH I I I I
ALPHA BCD,C 3~ABC ALPHA IAIBICIGI

BCD,C 3,GHI ALPHA + 1 I H I I I I I

I-Ir~-~

BSS, C reserves and labels a block of character positions. The location field
may be blank or contain a symbol which is defined as a 17 -bit relocatable
address of the first character in the block to be reserved. The address field
specifies the number of characters to be reserved. It must contain a constant,
a symbol, or an. address expression which will result in a non-relocatable
value.

A negative address field such as: BSS, C
will be interpreted by COMPASS as: BSS,C
and 77775B characters will be reserved.

-2B
7777SB

A zero address field does not reserve space, but the location symbol will be
defined as above. When BSS,C is encountered, COMPASS will output the
binary eard it is constructing.

2-7

2.4
SUBPROGRAM
COMMUNICATION
AND LINKAGE

2-8

The following illustrates the reservation of storage for characters:

ABLE BSS, C 25

23 18 17 1211

ABLE ABLE +1 ..

., .. , .. :'.::' ... "" .. "'.,.,." " ..

ABLE + 24 ,.. unused
.. .., .. ,., ..

6 5

ABLE +23
[<) ... :.,..>

OBits

1
25

characters

j

The ENTRY and EXT pseudo instructions establish communication between
subprograms. With ENTRY, a programmer may define locations in a sub­
program and declare them to be entry points. Symbols declared as external
with EXT may be referenced within a subprogram, even though they are not
defined within that program. Symbols de clared external in one subprogram
are declared as entry points in another subprogram. Linked object sub­
programs are loaded at the same time, but they need not be assembled at
the same time. Using ENTRY and EXT, COMPASS produces EPT and XNL
loader cards.

On the COMPASS assembly listing, instructions containing references to
external names have the usual format; except the address field, prefaced by
X, indicates the relocatable word address of a previous instruction in the
subprogram area which references the external symbol. If it is the first or
only reference to the external symbol, the address field will appear as
X77777.

COMPASS places the relocatable address of the last instruction referencing
the external symbol into the XN L loader card to begin the threaded list. If
no reference is made to the external symbol in the subprogram, the XNL
loader card will contain 77777

8
, indicating there is no thread.

External names can be associated with either of hvo threaded lists; one for
15-bit addresses and one for 17-bit addresses. All references are chained
in the threaded list \vith only the symbol in the EXT declaration appearing in
an XNL cal"d.

2.4.1
ENTRY

2.4.2
EXT

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 141 73
1 I

I

ENTRY :m1 ,m2 , •..••.......•. . : •. .•...••.••.•• ,mn

I I

The address field contains one or more location names separated by commas;
it may not contain blanks. The field terminates with the first blank or
column 73. Each subfield contains a symhol defined as a relocatable word
address by appearance in a location field elsewhere in the subprogram.

If an entry point symbol appears in a location field of a character definition
instruction, an error will be flagged. The location field is ignored by
COMPASS and should be blank.

LOCATION !oPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141 73
I I

EXT ~l ,m2 , •••••••••••••• • : .•.••••• •.•••.• ,mn

I I

Symbols referenced but not defined in the subprogram must be declared as
external names in EXT pseudo instructions.

The address field contains one or more subfields separated by commas; it
may not contain blanks. This field terminates with column 73 or the first
blank column. Each subfield contains a symbol which is output to an XNL
loader card. The symbol must not be defined within the subprogram which
declares it as external; it may be referenced only from an instruction
assembled into the subprogram area.

The location field is ignored by COMPASS and should be blank.

2-9

2.5
DEFINITION
BY EQUATING

2.5.1
EQU

2-10

A symbol in the location field may be defined by equating it to the value of
another symbol, a constant, or an expression of the address field. It may be
defined as an absolute value, a relocatable word or relocatable character
address. If a symbol is declared an entry point in the subprogram, it must
not be equated to a symbol declared as external. When the symbols are
equated, they are identical and interchangeable.

All symbols in the address field must have been previously defined by
appearance in the location field of a preceding instruction or in an EXT
declaration. If an entry point is erroneously equated to an external symbol,
COMPASS will not always log an error; but when the object subprogram is
loaded, an error will result.

lOCATION OPERATION, MOOlFIERS AOOIIESS FIELD COMIIIEHTS

I 8 10 :20 141
I

symbol EQU hi I
I I
I 1

The location symbol is equated to another symbol, a l5-bit word address or
a 15-bit value. If the location field does not contain a symbol, an error
occurs.

The address field determines the definition of the symbol in the location field.
It may contain:

An integer modulo 2
15

-1

A symbol defined by appearance in the location field of a
preceding instruction. The symbol in the location field is
equated to the entry in the address field. If the symbol in
the address field is relocatable to a given area, the
symbol in the location field is also relocatable to that area.

An address expression contai.ning symbols defined as above,
and conforming to the rules for m subfields. Expressions
must not result in a complement relocatable value.

2.5.2
EQU, C

2.6
ASSEMBLY OF
CONSTANTS

2.6.1
OCT

LOCATION

1

I symbol

I

8

OPERATION, MOOIFIERS ADDRESS FIELD

10 ;20

Ir
I

COMMENTS

:41

I

The symbol is equated to a 17-bit address, 17-bit constant, or another
symbol. If the location field does not contain a symbol, an error occurs.

The address field determines the definition of the symbol in the location
field. It may contain:

An integer modulo 21
7

-1.

A symbol defined by appearance in the location field of a
preceding instruction. The symbol in the location field is
equated to the entry in the address field. If the symbol in
the address field is relocatable to a given area, the symbol
in the location field is also relocatable to that area.

An address expression containing symbols defined as above
and conforming to the rules for r subfields. Expressions
must not result in a complement relocatable value.

Constants may be stated as octal, decimal, or character in the source
language. They may be single, double, or variable precision of fixed or
floating point format. Constants may be placed into bit positions of variable
length fields. Character constants may be placed into full words or
character positions.

LOCATION OPERATION, MOOIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 141 73

I
symbol OCT rl ,fi2 ' .•......•.....• ~•.......•. ,fin

or blank
I I

The OCT pseudo instruction expresses constants as signed or unsigned octal
integers of 8 or less digits. As many constants can be expressed in the

2-11

2-12

address field as can be written from column 20 through 72; they are separated
by commas. The address field is terminated by the first blank or column 73.
The octal constants are assembled, right adjusted, for storage into
consecutive locations.

An optional binary scale factor is specified with a B suffix and a scale factor
expressed as a signed or unsigned decimal integer of not more than two digits.
The magnitude of the constant after scaling must be less than 224.

The location field may be blank or contain a symbol which yields the 15-bit
word address of the first constant in the address field.

Example:

OCT 77777777,12345670,76543210
octal result

word 1 77777777

2 12345670

3 76543210

OCT + 1, -57,2040,-2
octal result

word 1 00000001

2 77777720

3 00002040

4 77777775

OCT 72B2
octal result

00000350

2.6.2
DEC LOCATION OPERATION, MOOIFIERS ADDRESS FIELD COMMENTS

(8 (0 '20 141 73

I
symbol DEC kil'd2'···············~··············,d

or blank , I n
I I

The location field of the DEC instruction may be blank or contain a symbol
which is the relocatable word address of the first constant in the address
field. The address field may consist of as many subfields, separated by
commas, as the card can contain. The first blank or column 73 terminates
the address field and subsequent information is treated as remarks.

Decimal constants may be converted for storage as single precision fixed
point binary constants. A decimal and/or binary scale factor may be
expressed for the 24-bit constant. The decimal may consist of a sign and
not more than seven digits with a magnitude of less than 223 . The decimal
integer may be followed by a decimal or a binary scaling factor or both; if
both are stated, they may appear in either order.

Examples:

1

+2

-38

ID5

73D-2

-6D+IB4

200B-7

36B+2Dl

decimal integer

decimal integer

decimal integer

decimal integer, decimal scale factor

decimal integer, decimal scale factor

decimal integer, decimal and binary
scale factors

decimal integer, binary scale factor

decimal integer, binary and decimal
scale factors

2-13

2.6.3
DECO

2-14

The magnitude of the constant after scaling must be less than 223. The
conversion is performed in three steps:

I

1. The decimal integer is converted to binary; the binary
integer must be less than or equal to 223_1 in magnitude.

2. The binary integer is multiplied or divided by 10d; d is
the decimal scaling factor. The magnitude of the result
must be less than 247. If the decimal scaling factor is
negative, a 47-bit fraction or mixed fraction is formed.

3. The result in step 2 is shifted the number of bits specified
by the binary scaling factor. A negative factor produces a
right shift; a positive scale factor, a left shift. If non-zero
bits are lost from the high order 24 bit s of the result from
step 2, an error is flagged. Loss of low order bits of the
intermediate result is not flagged as an error.

LOCATION OPERATION, MOOIFlERS ADDRESS FIELD COMMENTS

8 10 '20 141 73

symbol DEeD ~l,d2,···············~··············,dn
or blank

I I

Decimal values may be stored as double precision fixed point constants or
floating point constants. Either format requires 48 bits for storage. The
location and address fields are treated in the same fashion for DEC and
DECD. A symbol in the location field references the first of the two words
assembled as the result of DECD.

Fixed point constant format differs from the DEC single precision constants
in that magnitudes may be larger. Up to 14 decimal digits may be specified,
expressing a value of less than 241. Decimal and binary scale factors may
be used as in DEC. The signed 48-bit binary result is stored in two
consecutive computer words.

Floating point constants contain a decimal point. They are stored as two
24-bit words made up of a 12-bit characteristic and a 36-bit mantissa.
Negative values are held in complement form.

23 1211 0

'.'lord 1 I characteristic I man- I

I
I

I word 2 tissa

2.6.4
BCD

2.6.5
BCD, C

Floating point consta..'1ts may contain not more than 14 decimal digits and a
decimal point which may appear anywhere within the constant. Binary
scaling is not permitted. Decimal scaling is specified with a D suffix
followed by a signed or unsigned decimal scaling factor. In the absence of a
sign, a positive value is assumed. The result after scaling must not exceed
the capacity of the hardware (approximately 10 ±308).

LOCATION OPERATION, MOOIFIERS AOORESS FIELD COMMENTS

I 8 10 120 141 73
T I

symbol BCD IIl'C l C 2 ···············t C4n
or blank I I

I I

Characters are assembled for storage into consecutive computer ,\xlords.
They are stored as 6-bit binary coded decimal character codes (internal
BCD) into addressable character positions. The location field may be blank
or contain a symbol which is established as the 15-bit relocatable word
address of the first word in the field.

In the address field the decimal integer n specifies the number of words to be
used. Following a comma after n are the characters to be converted and
stored. Four characters can be contained in one word; 4n characters may be
punched in one card. If 4n is greater than the number of characters that can
be contained on a card, through column 72, additional positions reserved by n
will be filled with blanks. Information between 4n characters and column 73
is treated as a comment.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141 73
T I

symbol BCD,C r,c l c2 •· .•••.••••••• ·1· ,cn
or blank

I I

Characters may be assembled for storage into consecutive character
positions; they are converted and encoded as for BCD. The modifier, C,
in the operation code indicates that character addresses and character
strings rather than words are to be processed. The location field may be
blank or contain a symbol established as a 17-bit character address.

2-15

2-16

The number of character positions to be reserved is specified by
n (1 to 215 -1), the characters to be converted are specified by c

1
- c

n
'

If n specifies more characters than can be contained on one card through
column 72, excess positions to be reserved will be filled with blanks. Any
information appearing between n characters and column 73 will be treated as
comments.

Characters are stored in consecutive positions. If BCD, C is immediately
preceded by a line of code which assigns character storage (BSS, C) rather
than word storage (BSS) , the character string begins in the first available
character position. Should the preceding line assign word storage, the
character string begins in the first character position of the first word
available.

If the number of characters declared by BCD, C does not fill an entire word,
the unused positions are filled with zeros. If the next instruction which
consumes space in the object program is BCD, C, the positions in the partial
word are assigned to the leading characters to produce a packed field.

Example:

MOTCC BCD, C 35, ABCDEFGHIJKLivJNOPQRSTU,rwAY"'Z
BCD,C 15,* /,(1234567890

Location Contents

MOTCC A B C D
21 22 23 24
E F G H
25 26 27 30
I J K L
31 41 42 43
M N 0 P
44 45 46 47
Q R S T
50 51 62 63
U V W X
64 65 66 67
y Z = I

70 71 13 14
+ +0 .)
20 32 33 34
- -0 $ ~k

40 52 53 54
/ , (

60 61 73 74
1 2 3 4
01 02 03 04
5 6 7 8
05 06 07 10
9 0 0 0
1 .Ll 00 00 00 I

" t , "';:;' ...
'T u.)-u:;>

2.6.6
ASCII

2.6.7
BCDN

LOCATION OPERATIO~, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 T41

symbol ASCII,p :n, c 1 c 2c 3c 4' •....•... '1' •.•..•.•..•..••••• cpn
pr b1ank\

I
I

I 1

BCD characters are converted to ASCII characters and stored in consecutive
words. The ASCII characters are stored p-characters per word; p may be
1, 2, or 3.

p = 1: bits 23-08 zero
bits 07-00 ASCII character

p = 2: bits 23-20 zero
bits 19-12 first ASCII character
bits 11-08 zero
bits 07-00 second ASCII character

p = 3: bits 23-16 first ASCII character
bits 15-08 second ASCII character
bits 07 -00 third ASCII character

In the address field, the decimal integer n specifies the number of words to be
used. Following a comma after n are the BCD characters to be converted
and stored. This results in n computer words, each containing p ASCII
characters. Anything after pn characters is treated as remarks. If pn is
greater than the number of characters that can be contained on a card,
through column 72, additional positions reserved by n will be filled with blanks.

If p is omitted, p is assumed to equal 2.

The location field may be blank or contain a symbol which is established as the
15-bit relocatable word address of the first word of the field.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

1 8 10 120 141 73

symbo 1 BCDN h,sddd l ddd
or blank 1 I

I I

BCD numeric characters are converted to 4-bit characters and stored in n
consecutive words.

2-17

2.7
VARIABLE FiELD
DEFINITION

2-18

In the address field, the decimal integer n specifies the number of words
to be used. Following a comma after n are the BCD numeric characters
and related sign to be converted and stored as 4-bit characters:

s sign (+ or -; if omitted, + is assumed.)

d BCD numeric character

If n specifies a number of words greater than that required for the conversion,
leading zeros are inserted.. If the number of characters cannot be contained
in n words, an A-error appears on the assembly listing. If any character
d is not in the range 0-9 an A-error also appears.

The 4-bit characters are stored from right to left beginning with the least
significant characters. The sign is stored in the rightmost character
position (positive 1010

2
, negative 1011

2
),

The location field may be blank or contain a symbol which is established as
the 15-bit relocatable word address of the first word of the field.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 :20 141 73

symbol ~FD !mn/v, •..••.........•. L ••••••••••••• ,mn/v
pr blank I I

I 1

VFD enters octal numbers, character codes, relocatable addresses, or con­
stants into variable length fields assigned as continuous strings of specified
length. Information is placed regardless of word length of character position.
Values are entered right adjusted and character strings left adjusted. Each
VFD instruction begins filling a new computer word.

The location field may contain a legal symbol or blanks. A symbol yields
a relocatable word address. As many address subfields are allowed as
can be contained on a single card through column 72. The address subfield
terminates with a comma; a blank terminates the VFD pseudo instruction.
The mode parameter, m, may designate one of five modes; the remainder
of the subfield is governed by the specified mode.

2.7.1
VFD MODES

m mode indicator

n unsigned decimal integer specifying the number of bit
positions in the variable field. The range of values for
n varies with mode.

/ separates the description of the field mode and length
from the statement of the field content.

v content of the variable field; varies according to mode
and is restricted by declared length.

The statement of variable field length and content varies according to the
mode. Five modes may be expressed in a VFn address subfield.

OCTAL VFn On/v
In octal, n may be 1 to 24 and v may be a maximum of 8 octal digits; the
integer may be signed. If negative, the field content is stored in one!s
complement form. The value is entered right justified with leading bits
inserted according to the sign and length. If the value exceeds the length
of the field, an error is flagged and the field is set to zero. A binary scale
factor may be supplied in the same manner as for the OCT pseudo instruction.

Example: VFn 05/17

HOLLERITH VFn Hn/v
Hollerith information is stored as 6-bit internal BCn character codes; n must
be a multiple of six; v terminates with the first comma or blank. If the sub­
field does not terminate after the n/6 character, an error results.

Example: VFn HI2/KY

ARITHMETIC EXPRESSION VFn An/v
The arithmetic expression consists of a constant, a symbol, or an expression
formed by the rules for address field arithmetic.

If an expression yields a relocatable word address, the field length n must be
at least 15, the programmer must enter the value into the computer word
right justified to bit zero and the expression is evaluated as modulo 215_1.
If an expression yields a fixed value, the field length n may be 1-24 and the
expression is evaluated as modulo 2n-l.

Example: VFn A6/63,A3/7,AI5/JOE

2-19

2-20

CHARACTER ADDRESS VFD Cn/v
This variable field is governed by the above rules, except that a minimum
of 17 bits is required for an expression which yields a relocatable character
address. A relocatable expression is evaluated modulo 217_1.

Example: VFD C7/0, C17/JOE

ASCII VFD In/v
BCD characters (v) are stored as 8-bit ASCII characters. n must be a
multiple of 8 and cannot exceed 96. If v does not terminate after the n/8
character, an error results. The last character is followed by a space
or a comma.

··Example: VFD I8/A

Example:

VFD012/-737, A21/ A-X+B, H24/+AB,A15/NAME12, H12/BQ

A, X, and B are not relocatable symbols. Four words are generated, '\lith
the data placed as follows:

012/-737 A21/A-X+B
23(\1211(\0

ALPHA 7 0 4 0 I (A-X + B) I
cont'd H241..+ A3
23 ("1514 f 8 3 2 \0

ALPHA + 1 I 1
20

1
21

1
0 I

cont'd AI5/NAME+2
23 (15\14 I \ 0

ALPHA + 2

I 3
i

60 I (NAME + 2)
I

H12/BQ filler
23/ 18 17 \ 12/11 d'

ALPHA+3

I
22

1

50 I 0
0 0 0

I

2.8
ASSEMBLER
CONTROL

2.8.1
IFZ

Source subprogram assembly may be conditional as stated by the pseudo
instructions listed below. COMPASS tests for the condition and includes
subsequent lines of code depending on the outcome of the test.

IFZ if zero

IFN if non-zero

1FT if true

IFF if false

IF Z and IFN may be used as desired in a subprogram. 1FT and IFF, which
compare a parameter string against stated variables, may occur only within
a macro prototype; their use is discussed in the chapter on macros.

LOCATION OPERATION, MOOIFIERS ADDRESS FIELD COMMENTS

1 8 10 :20 :41

IFZ tn,n I
I

I I
I I

An arithmetic expression may be tested for zero to determine whether
subsequent instructions should be included in a subprogram. The expression
must conform to the rules for address expressions. A symbol in the location
field is ignored by COMPASS but included in the output listing.

The address field consists of two subfields containing previously defined
symbols.

m

n

is an expression, the value of which is com~uted as any
address expression and evaluated modulo 2 5 -1.

contains an integer or an expression which results in a
positive non-relocatable value.

If the expression in the m subfield results in zero, the psuedo instruction IF Z
is printed and the following n lines of code are assembled into the object sub­
program. If the m subfield yields a non-zero value, the pseudo instruction
IF Z is not printed and n lines of code are skipped. Symbols in the address
field must be defined by appearance in the location field of a preceding
instruction.

2-21

2.8.2
IFN

2.9

LISTING CONTROL

2.9.1
REM

2-22

LOCATION OPERATION, MODIFIERS AOORESS FIELD COMMENTS

I 8 10 120 141

IFN 1m n I
I ' I
1 I

This pseudo instruction is the same as IF Z except that n lines of code are
assembled if the value in the m field is non-zero.

The following pseudo instructions apply to COMPASS output listings:

I

REM
NOUST
UST
SPACE
EJECT
TITLE
asterisk
(colume one)

insert remarks
suppress output listing
resume output listing
space lines on output listing
eject printer paper to top of neA"t page
begin succeeding pages with title given
print card columns 2-80 as a comment

LOCATION joPERATlON, MODIFIERS AOORESS FIELD COMMENTS

8 10 120 141

1 I

any REM lany I

I I I
I I

Remarks may be inserted into the source program to appear on the output
listing with this pseudo instruction. All fields except columns 9 to 13 of the
operation code field may be used for remarks; for example:

THIS IS REM A REMARK PSEUDO-INSTRUCTION

2.9.2
NOLIST

2.9.3
LIST

2.9.4
SPACE

LOCATION ~PERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 ~20 141

T I

I
I NOLIST I !

I I
I I

NOLIST suppresses listing of the subprogram until LIST appears in the source
program. Lines in the source program containing errors will be listed
regardless of NOLIST. The location and address fields are ignored by
COMPASS. The pseudo instruction will not appear on the output listing. The
number of instructions not listed is counted and when LIST mode resumes, the
following appears:

I

PRINTING SUPPRESSED FOR xxx LINES
xxx = number of lines

LOCATION OPERATION, MODIFIERS AOORESS FIELD

8 10 ~20

LIST I
I
I

COMMENTS

141

I
I
I

LIST resumes output listing after NOLIST has been used. If LIST occurs
without a preceding NOLIST, it is ignored. The pseudo instruction will not
appear on the output listing.

LOCATION OPERATION, MOOIAERS ADDRESS FIELD COMMENTS

I 8 10 :20 :41
I I

SPACE !tn I
I I
I I

This pseudo instruction specifies m lines are to be skipped on the printed
output listing. If, as a result of SPACE, the end of the page is reached,
printing resumes with the first line of the new page. A symbol in the

2-23

2.9.5
EJECT

2 .. 9.6
TITLE

2-24

location field is ignored. The pseudo instruction, SPACE, will not appear on
the output listing.

The parameter, m, may be an unsigned decimal integer, 0 to 32767.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

EJECT I
I
1

I 1
1 1

When EJECT is encountered, the printer skips to the top of a new page. A
symbol in the location field is ignored. The pseudo instruction, EJECT,
will not appear on the output listing.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

TITLE I heading 1
I I
I I

The TITLE pseudo instruction describes a heading to be printed at the top of
each page of a listing. If the first page of the listing is to be titled, TITLE
must immediately follow IDENT. A symbol in the location field is ignored.
The contents of columns 20-72 of the address field contain the title. The
pseudo, TITLE, will not appear on the output listing.

In the body of the subprogram, TITLE information replaces the present
heading obtained from IDENT or preceding TITLE. If TITLE occurs in
midpage, it is not acted on until top of the next page is encountered. However,
any lines following TITLE will be printed to fill out the first page. There­
fore, EJECT should follow TITLE to insure that all material succeeding
TITLE is printed under the proper heading.

MACROS 3

'When an operation is performed frequently in a program or in many
programs, the sequence of machine or pseudo instructions which accomplish
that operation may be grouped together to form a macro. This group of
instructions may contain formal parameters which are given actual values
when the macro is called.

Macros are defined and called by COMPASS pseudo instructions. The same
code is obtained and included in the subprogram each time the macro is
called.

Library macros reside on the system library. All library macros to be
called in a subprogram must be declared in LIBM pseudo instructions
immediately following the mENT pseudo instruction. Since the library
macros may be unique to an installation, a list of macros should be
available to the programmer.

The programmer may define his own macros. They are defined only in the
subprogram in which they occur and for reference within that subprogram.
Programmer macro definitions may not precede the pseudo instructions
LIBM or IDE NT .

All macro definitions are composed of the follOwing:

Macro heading

Prototype

Macro terminator

N ames the macro and declares the formal
parameters used in the prototype.

Contains the instruction sequence with
variable elements expressed as formal
parameters.

Defines the end of the macro definition.

The pseudo instruction which brings the prototype into the body of the
program is the macro call. It consists of the macro name and a string of
actual parameters to be substituted for the formal parameters in the
prototype.

3-1

3.1
MACRO HEADING

3-2

LOCATION ~PERATION, MOOIFIERS ADDRESS FIELD COMMENTS

I 8 10 ~20 141

I I

name MACRO I (PI' P2 ' •••••••••••••• L •••••••••••• ,Pn)
I I
I I

The macro heading consists of one or more lines of the pseudo instruction,
MACRO. The location field contains the macro name, which may not be a
hardware instruction or pseudo instruction.

The address field contains a set of formal parameters. The address subfield
or a portion of it may be expressed as a single formal parameter if that
portion of the subfield is set off by a plus or minus sign, a comma, a blank or,
in the case of VFD, a slash.

If the formal parameter list exceeds a single code line, the list is continued
in subsequent MACRO pseudo instructions with the following restrictions:

The location field is blank.

The operation field contains the mnemonic, MACRO.

A formal parameter field and its terminal comma must
be on a single line pr:ior to column 73.

In the address field, the parameter list, enclosed in parentheses, may contain
alphanumeric symbols separated by commas; blanks may precede or follow the
parameter but may not be embedded. The parameter symbols are local to the
macro and may be used elsewhere in a program without ambiguity.

Examples:

DIVIDE

MULTIPLY

MACRO

MACRO
MACRO

(PI ,P2 ,P3, P4)

(Pl,P2,P3,P4,
P5,P6)

The MACRO pseudo instruction must immediately follow IDENT, LIBM,
ENDM, or MACRO, except that comment cards (*in column 1) and REM or
TIT LE may intervene. When MACRO follows IDENT, llBM, or ENDM, it
defines a macro instruction, and the location field must contain the macro
name.

3.2
PROTOTYPE

3.2.1
1FT

A set of instructions, called the prototype, follows the heading line. It is up
to the programmer to insure that when the macro is called the resulting code
will not contain illegalities.

Formal parameters may represent any portion of an instruction or an entire
instruction except for the location field. This flexibility is attained through
the use of parentheses as delimiters.

In the prototype, the location field of an instruction may contain a symbol of
four characters or less. Any location defined in the subprogram may be
referenced within the prototype; however, a location within a macro prototype
is local to the macro and may not be referenced from outside the macro.
COMPASS will substitute an internally generated symbol for the local location
symbol and for all references to it \vithin the macro.

Reference may be made within the prototype to symbols external to the sub­
program if they are declared by EXT pseudo instructions within either the
macro or the subprogram. An EXT declaration within the macro remains in
force for the entire subprogram.

If the EQU pseudo instruction appears within the macro instruction prototype,
the symbol in the location field is considered local to the macro and treated
as any location symbol in the macro.

LOCATION OPERATION, MOOIFIERS ADDRESS FIELD COMMENTS

1 8 10 ~20 141

I I

1FT I ill, p, n I
I I
I ,

Within a macro prototype, lines of code may be excluded or included in an
object subprogram with the 1FT pseudo instruction which compares the first
two subfields in its address field for literal equality. If the two character
strings are equal, subsequent lines of code are assembled; otherwise they
are excluded from the object program.

A symbol in the location field is ignored by COMPASS. If the 1FT condition
is met, the 1FT instruction appears in the output listing; otherwise it is not
printed.

3-3

3-4

The three address subfields are:

m first comparand

p second comparand

n must result in a positive non-relocatable value
denoting the number of lines of code to be
assembled or excluded

The m and p terms may be character strings or formal parameters; the
character string may not include slashes. If a character string is identical
to a formal parameter, the string must be enclosed in slashes.

The actual values compared are obtained by COMPASS as follows:

If the subfield is enclosed in slashes, the content is used in
the comparison.

If the subfield contains a formal parameter, COMPASS substitutes
the actual parameter before the test is made.

If the subfield is not a formal parameter and is not enclosed in
slashes, the character string is used as though slashes had
appeared.

The n term must be a symbol, constant, or expression which results in a
non-relocatable value. Symbols in the address field must be previously
defined.

If the m and p terms compare bit for bit, n lines of code immediately following
the 1FT pseudo instruction are assembled into the subprogram. If the m and p
terms are unlike, n lines are skipped and not assembled by COMPASS.

Examples:

Macro definitions:

COMPUTE MACRO
LDA
DVA
STQ
1FT
ENA
EN1
ENDM

(Pl, P2, P3, P4, P5, P6)
Pl
P2
P3
Ip6/,P5,2
P4
P6

The following sequence of instructions occurs within a subprogram
and the call refers to the previously defined macro set.

Macro call 1:

CAKE STA
COMPUTE
LDAQ

TABLE
(B ,C ,A, LOC1, P6, 56)
QUANTITY

The assembler would generate:

CAKE STA
LDA
DVA
STQ
1FT
ENA
ENI
LDAQ

TABLE
B
C
A
P6,P6,2
LOCl
56
QUANTITY

Since the actual parameter substituted for P5 is identical to the
character string "P6", the assembler includes the two instructions,
ENA and ENI. The 1FT instruction does not appear in the object
subprogram.

Macro call 2:

STA
COMPUTE
LDAQ

TABLE
(B ,C ,A, LOC2, 54, 56)
QUANTITY

The assembler would generate:

STA
LDA
DVA
STQ
LDAQ

TABLE
B
C

A
QUANTITY

Since 54 is not equal to the characters enclosed in slashes in the
1FT pseudo instruction, the assembler does not assemble the two
instructions, ENA and EJ\TI. Assembly continues with the next
instruction from the input deck.

3-5

3.2.2
IFF

3.3
MACRO
TERMINATOR

3-6

LOCATION !oPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 ~O 141

IFF Im,p,n I
I I
I I

The conditional pseudo instruction IFF functions the same as 1FT, except if
the comparands are unlike, the next n lines of code are assembled. If the
m and p terms are identical, the n lines of code are excluded.

LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 ~20 :41
I I

ENDM I I
I I
I

ENDM terminates a macro definition. A symbol in the location field will be
ignored by CaMP ASS but included on the output listing.

Example:

AOK MACRO (P3, P2, PI ,P4) Macro Heading
ENI PI,1

A LDA P2,l
P3 B
STA P2

Prototype

IJD A,l
UJP SCRAM

B DEC P4
ENDM Macro Terminator

Formal parameter Pl represents an operand, P2 an address, P3 an
operation code, and P4 a decimal constant. Locations A and Bare
local to the macro and may be used elsewhere without ambiguity.

3.4

MACRO CALLS LOCATION OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 '20 '41

symbol macro name!(Pl'P2'············· .1 ••.••.•.••••• ,Pn)
or blankl I

I I
I I

The macro call names the macro to be inserted at this point in the program
and assigns a set of actual parameters to be substituted for the formal
parameters in the prototype. The actual parameters, pI, ... ,pn, must
appear in the same order as the formal parameter list in the macro heading.

The location field may be blank or contain a symbol which is the relocatable
address of the first instruction that consumes space in the assembled macro.

The operation field may contain any macro instruction name defined for the
subprogram by LIBM and IVL.t\.CRO pseudo instructions and prototypes. If the
macro is defined for the subprogram, COMPASS will assemble and insert the
macro code at the point at which the macro name appears in the operation
field.

The address field of the macro name instruction contains the list (enclosed
by parentheses) of actual parameters, separated by commas. Single actual
parameters may also be enclosed by parentheses within the list. This allows
an entire instruction or several subfields of an instruction in the macro
prototype to be expressed as a single actual parameter.

Single actual parameters may not include blanks or commas unless the entire
actual parameter is enclosed in parentheses. If a single actual parameter is
enclosed by parentheses, it may contain any character legal for the portion of
the instruction it represents, except a right parenthesis (see example
below) . An actual parameter may be omitted but a trailing comma must
appear. Actual parameters not expressed are assembled as zeros.

The address field of the macro name instruction may contain constants,
symbols, expressions, or Hollerith literals. Actual parameters retain the
sequence of the formal parameter list in the macro definition. "When COMPASS
assembles the macro, the actual parameters are transferred to the position
at which the formal parameters are referenced in the prototype. The
address field of a single line of code terminates at column 72 or with a right
parenthesis.

3-7

3-8

If the list of actual parameters is too long for a single line of code, it may be
continued on subsequent lines with blank location fields and the macro name
operation code repeated. An actual parameter must be wholly contained on a
single line. If the list is not closed by a right parenthesis, an error results.

Actual parameters may not contain entries for location fields in the prototype.
These fields will not be modified by COMPASS in assembling a macro
instruction.

Examples of Programmer Macro Definition:

Example A: DIVIDE

Macro call:

Assembled:

Example B:

Macro Definition:

COMPUTE

MACRO
LDAQ
DVA
STQ
ENDM

DIVIDE

LDAQ
DVA
STQ

MACRO
LDA
LDQ
ADA
SBAQ
VFD
P4
DVA
STQ
LDA
P8
ENDM

(Pl,P2,P3)
Pl
P2
P3

(DICK , DAVE, DAN)

DICK
DAVE
DAN

(Pl , P2 , P3 , P4 , P5 , P6 , P7 , P8 , P9)
Pl
Pl
P2
P3
P4/P5
**
P6
P7
P7
*-P9

3.5
NESTING
OF MACROS

The above example shows how parameters may be specified in the operation
or address field, or both, within the macro set of instructions. It also shows
that a parameter may appear more than once in a set of instructions.

Example C:

Macro Definition:

TOSS MACRO (PI,P2,P3,P4)
LDA TOM,3
ADA DICK
STA MARV
UJP,P2

TOM PI
DICK DEC P4
MAR V P3

ENDM

Macro call:

BETTY TOSS ((BCD 6 ,A), (I JOE, 2))

Assembled:

BETTY LDA TOM,3
ADA DICK
STA MAR V
UJP,I JOE,2

TOM BCD 6,A
DICK DEC 0
MARV 00

This example demonstrates how multiple parentheses are used and
how actual parameters are assembled as zeros when they are not
expressed before the formal parameter list terminates.

A macro definition may, itself, contain an unlimited number of macro calls
to library or programmer macros defined for the subprogram. These inner
macro calls become effective at the time a call is made to the outer macro.

A macro definition may be passed as an actual parameter at call time or a
macro definition may contain calls to itself; it is the programmer's
responsibility to prevent infinite recursion through the use of conditionals.

The use of local symbols is the same as that explained in 3.2. Local
location symbols are unique to each macro call.

3-9

3-10

The parameter list in the address field of an inner macro instruction must
be enclosed in parentheses. The list may not contain imbedded blanks; the
occurrence of a blank will terminate parameter substitution.

The parameters of the inner macro may consist of parameters of the outer
macro. At macro call time, inner macro parameters will be substituted
with the actual corresponding parameters of the outer macro.

An inner macro may use the continuation feature for lengthy parameter lists.
When coding a macro prototype which contains a macro instruction, consider­
ation should be given to the length of the actual parameters. The continuation
feature enables the programmer to divide the list to avoid overflow of a card
image. When overflow occurs, information is lost and the macro is
improperly generated.

Example:

A MACRO
B
ENDM

(Pl, P2 , P3 , P4 , P5, P6, P7 , P8)
(Pl, P2 ,P3,P4 ,P5,P6,P7, P8)

where B is a macro instruction.

The follOwing modification with the continuation feature will ensure
that an overflow will not occur when the A macro is called:

A

Example:

MACRO
B
B
ENDM

Macro Definition:

COMPUTE

HELP
JOHN

vVOOF

(Pl, P2 , P3 , P4 , P5 , P6 , P7 , P8)
(Pl, P2 , P3 , P4 ,
P5,P6,P7,P8)

MACRO (Pl, P2, P3)
ENA 0
STA Pl
ENI 47,P3
AZJ,P2 WOOF
SHQ 1
IJD HELP,P3
UJP *+2
RAD Pl
UJP JOHN
ENDM

3.6
LIBRARY MACROS

Macro Definition:

JUMP MACRO (PI, P2, P3)
LDQ PI
LDL P2
SHAQ 24
COMPUTE (D, LT ,P3)
ADA TOT
STA TOT
ENDM

A macro call of the form:

JUMP (ONE ,M2,3)

will generate the following sequence of instructions:

LDQ ONE
LDL M2
SHAQ 24
ENA 0
STA D
ENI 47,3

HELP AZJ,LT WOOF
JOHN SHQ I

IJD HELP,3
UJP *+2

WOOF RAD D
UJP JOHN
ADA TOT
STA TOT

LOCATION joPERATION, MODIFIERS ADDRESS FIELD COMMENTS

I 8 10 120 141

I I

I
LIBM lname

1
,name

2
, ••••••••. l ,name

I I n
I I I

LIBM instructs COMPASS to call the named library macros from the system
library. A location symbol will be ignored by COMPASS but included on the
output listing. The address subfields contain the names of library macros
separated by commas; the address field is terminated by the first blank or
column 73.

3-11

3-12

All library macros to be called in a subprogram must be declared in lJBM
pseudo instructions immediately following the IDENT pseudo instruction;
otherwise an error will result. Comment cards with an asterisk in column
one or the pseudo instructions REM and TIT LE may intervene, however.
lJBM does not consume space in the object program.

The programmer may use as many UBM pseudo instructions as required.
However, a macro name must be wholly contained within a single subfield
on a single line of code.

Available library macros are defined in the operating system reference
manual and the Data Processing Package reference manual.

APPENDIX SECTION

MACHINE LANGUAGE INSTRUCTIONS A

The Control Data instru.ction repertoire for data processing, scientific, and logical programming
contains optional sets of BCD, floating point, and double precision instructions for the hardware.
All of these, including the optional commands, may be coded in the COMPASS language using
mnemonic codes and comprehensive symbolic programming techniques. This appendix describes
how machine language instructions are expressed in COMPASS, how COMPASS assembles them,
and how they appear in the object program. t

Control Data provides a set of simulation routines for the optional instructions. For optional sets
not included at an installation, simulator routines may be placed on the library tape and called as
subroutines. Therefore, a programmer may use the mnemonics in the source subprogram as if
the hardware were present.

INSTRUCTION SUBFIELDS

Instruction fields may be optional or mandatory: an optional field may be expressed or not, as the
programmer requires; a mandatory field must be present and must contain only specific parameters.
The indirect addressing field and the b field are examples of optional fields. The conditional
modifiers for the AZJ instruction are an example of a mandatory field.

ADDRESS SUBFIE LDS

m, nand y

rand s

b

i

The m, n and y subfields for machine instructions may be represented by a
symbol, the special symbols * and **, a constant, an expression, or a
literal. The m and n subfields represent operand addresses; the y subfield
represents an operand.

Machine language instructions using a 17 -bit character address contain r or s
subfields which may be represented as a symbol, literal, constant, external
symbol, expression, or the special characters, * and **.

The b subfield may be represented by a digit 1, 2, 3, a symbol equated to 1, 2,
or 3, an expression with anon-relocatablevalueof 1, 2, 3, or **. The b subfield
designates an index register.

The i subfield occurs in the MEQ and MTH instructions; it may be a symbol,
constant, or expression which results in anon~relocatable value from 0 to 7, or **.

t For more detailed explanations of the machine language instructions, see 3200 Computer System
Reference Manual, Pub. No. 60043800 or 3300 Computer System Reference Manual,
Pub. No. 60157000.

A-I

A-2

In the following example ABLE = 100
8

INTERVAL = 1.

Coding: Results (in octal)

MEQ ABLE, INTERVAL

MEQ ABLE, INTERVAL+1

MEQ ABLE, 2

MEQ ABLE, 8

MEQ ABLE, **

06

06

06

06

06

1 00100

2 00100

2 00100

0 00100

7 00100

v The v subfield machine language instruction denotes a location in the register file.
It may be any symbol, constant, or expression which results in a non-relocatable
value 0 to 6310 or **.

In the following examples, AB LE is equated to the value 00118 elsewhere in the
program.

Coding:

TMA ABLE

TMA 77B

TMA **
TMA ABLE+22B

53

53

53

53

Results (in octal)

0 2 ... 11

0 2 ... 77

0 2 ... 77

0 2 ... 33

x The connect code for input/output units or the comparison mask for interrupt
instructions is represented by x. This subfield may contain a symbol, constant,
or expression which results in anon-relocatable value 0 ::::; x::::; 212_1, or **.

ch This subfield contains the channel designator for input/output instructions. It may
contain a symbol, constant, or expression which results in a non-relocatable value
o ::::; ch::::; 7, or **.

The £ subfield specifies the length of a character field.

MOVE: The £ subfield may be a symbol or an expression which
results in a non-relocatable value from 1 to 177

8
, or **.

cm The 8-bit channel mask for CILO and CLCA instructions is represented by cm.
This subfield may contain a symbol, constant, or expression which results in a
non-relocatable value 0 ::::; cm ::::; 28-1 or **.

In the following examples, ABLE is equated to 1008 elsewhere in the program,
BAKER to 00200

8
. Both are equated as 17 -bit character addresses.

Coding:

Fields: £, r, s Results (in octal)

MOVE ABLE ,BAKER ,BAKER+100B word 1 72000300

2 40000200

3

MOVE 128,BAKER,BAKER+128 word 1 72000400

2 00000200

3

MOVE 27B ,BAKER ,BAKER+27B word 1 72000227

2 13400200

3

MOVE ** ,BAKER ,BAKER+100B word 1 72000300

2 77400200

3

c The c subfield specifies a search character"

SRCE or SRCN: The c subfield may be any symbol, constant, or ** which
represents the 6-bit character code of the character for which the
search is made, 00 ::::; c ::::; 77

8

A is defined elsewhere in the program as 21
8

; ABLE and BAKER are defined
as 00200

8
and 00100

8
"

A-3

Term

Coding

8RCE A,ABLE ,BAKER

8RCE 21B,ABLE,BAKER

8RCE A+21B ,ABLE ,BAKER

24-bit A register

index register designator 1 to 3

index register defined by Bb

Result (in octal)

word 1 71000200

2 21000100

3

word 1 71000200

2 21000100

3

word 1 71000200

2 42000100

3

Meaning

A

b

B

B
m

index register flag,

index register flag.

index register flag.

M = m+ (B) for these instructions only
m 1 2

B
r

B
s

If B = 1 or 3, R = r+ (B). If B = 2, R = r+ (B).
r 1 r 2

IfB =lor3,8=s+(B). IfB =2,8=s+(B).
s s

c 00-77
8

BCD code of search character

em 8-bit channel mask

D D register

E 48 (52) -bit E register

E £ lower half of 48'-bit E register (bits 23-00)

E upper half of 48-bit E register (bits 47-24)
u

i increment or decrement, 0 to 7

k shift count

£ field length of block, 0 -1 7 7 8

P. number of characters in field R
r

P. number of characters in field 8
s

m 15-bit word address, first opera..'1d or jump address

A-4

IfB =O,R=r.
r

HB =0,8=s.
s

Term Meaning

M actual operand or jump address as modified; M = m+(B
b

)

n same as m, second operand address

p

Q

r

15 (or 17) -bit P register

24-bit Q register

1 7.:....bit character address

R

s

actual character address as modified; R = r+(B
b

)

same as r, second operand address

s b
same as R, second operand address; S = s+(B)

v

sc

w

x

y

Instruction
Modifiers

6-bit address in register file

scan character

page index file address

connect code or interrupt mask

15-bit operand

A conversion

B backward read or write

C evaluate address expression modulo 21
7

_1

dc delimiting character

EQ equal

GE greater than or equal

H half assembly or disassembly

I indirect addressing

!NT interrupt on completion

N no assembly or disassembly

NC no conversion
/'

NE not equal

S instruction modifier denoting sign extension

S present, sign extended S omitted, no sign extension

In the following instructions, () _ () indicates the contents of one register, operand, or address
field is replaced by the contents of another register, operand field, or address field. For example:
(M) - (A) means "replace contents of A register with contents of M operand field"

A-5

Mnemonic Code

ADA,I

ADAQ,I

ADE

AEU

AlA

ANA

ANA,S

ANI

ANI

ANQ

ANQ,S

AQA

AQE

AQJ,EQ

AQJ,GE

AQJ,LT

AQJ,NE

ASE

ASE,S

ASG

ASG,S

A-6

3100/3200 INSTRUCTION LIST
(also 3300/3500 non-executive mode)

Address
Octal Code Field Operation Performed

30 m,b (M)+(A) -+ (A)

32 m,b (M,M+l)+(A,Q) ~ (A,Q)

66 r,3 Up to twelve 4-bit characters added to (E)
(most significant character at address R). Sum
appears in E. (D) specifies field length

55.6 (A)-+ (EU)

53. (0+b)4 b (Bb)+(A) ~ (Ai

17.6 y Y 1\ (A) -+- (A), no sign extension

17.4 Y y 1\ (A) --.. (A), sign of y extended

17.0 Y No operation

17.1-3 y,b
b b

y 1\ (B) -+ (B)

17.7 y y 1\ (Q) -+ (Q), no sign extension

17.5 Y Y 1\ (Q) --. (Q), sign of y extended

53.04 (A)+(Q) --+ (A)

55.7 (A ,Q) --+ (EU ' E L)

03.4 m If (A) = (Q), RNI m, otherwise RNI P+1

03.6 m If (A)2:(Q), RNI m, otherwise RNI P+1

03.7 m If (A) < (Q), RNI m, otherwise RNI P+ 1

03.5 m If (A) =f (Q), RNI m, otherwise RNI P+1

04.6 Y If y =(A), RNI P+2, otherwise RNI P+ 1
00-14

04.4 Y If y = (A), RNI P+2, otherwise RNI P+1.
Sign of y is extended

05.6 Y If (A) 2: y, RNI P+2, otherwise RNI P+1
00-14

05.4 Y If (A) 2:y , RNI P+2, otherwise RNI P+1.
Sign of y is extended

Mnemonic Code

AZJ,EQ

AZJ,GE

AZJ,LT

AZJ,NE

CINS

CON

COpy

CPR,I

CTI

CTO

DINT

DVA,I

DVAQ,I

EAQ

ECHA

ECHA,S

3100/3200 INSTRUCTION LIST (cont'd)

Address
Octal Code Field

03.0 m

03.2 m

03.3 m

03.1 m

77.3 ch

77.0 x,ch

77.2 ch

52 m,b

77.75

77.76

77.73

51 m,b

57 m,b

55.3

11 r

11 r

Operation Performed

If (A) = 0, RNI m, otherwise RNI P+l

If (A) 2:0 , RNI m, otherwise RNI P+l

If (A) < 0, RNI m, otherwise RNI P+ 1

If (A) :f. 0, RNI m, otherwise RNI P+l

Internal status code - (A
1l

-
0
); (Interrupt

Mask Register)~ (A
23

-
10

); RNI P+1

If channel ch is busy, reject instruction,
RNI P+ 1. If channel ch is not busy, 12-bit
connect code sent on channel ch with connect
enable, RNI P+2.

External status code from I/O channel
ch ---+- (A

11
-

0
); (interrupt mask register) ~

(A
23

-
12

) RNI P+1.

(M) > (A), RNI P+1 }
(Q) > (M), RNI P+2 (A) and (Q) are
(A) 2:(M)2: (Q) , RNI P+3 unchanged

}

Beginning character address must
Set Type In be preset in location 23 of

register file and last character
Set Type Out address + 1 must be preset in

location 33 of the file.

Interrupt control is disabled

(A, Q) / (M) -+- (A), Remainder ~(Q)

(A,Q,E) / (M,M+1)-- (A,Q) and remainder
with sign extended -- (E). Divide fault, halts
operation and program advances to next
instruction.

(EU,E
L
)-- (A,Q)

O-(A), then r-(A
OO

_
16

)

o ~ (A), then r - (A 6)' sign extended
00-1

A-7

Mnemonic Code

EINT

ELQ

ENA

ENA,S

ENI

ENI

ENQ

ENQ,S

EO.J

EUA

EXS

EZJ,EQ

EZJ,LT

FAD,I

FDV,I

FMU,I

FSB,I

HLT

IAI

A-8

3100/3200 INSTRUCTION LIST (cont'd)

Octal Code

77.74

55.1

14.6

14.4

14.0

14.1-3

14.7

14.5

70.6

55.2

77.2

70.4

70.5

60

63

62

61

00.0

53. (4+b)4

Address
Field

y

y

y

y,b

y

y

m

x,ch

m

m

m,b

m,b

m,b

m,b

m

b

Operation Performed

Enables interrupt control; allows one more
instruction to be executed before interrupt.

o -+- (A), then y ---+- (AoO- 14)

o - (A), then y --. (A), sign extended

No operation

b b
0---... (B), then y--" (B)

0-- (Q) , then y - (QOO-14)

o --+- (Q) , then y ~ (QOO-14) , sign extended

Jump to m if E overflows, otherwise RNI P+1.

Sense external status. If 1 bits occur on status
lines in any of the same positions as 1 bits in the
mask, RNI P+1. If no comparison, RNI P+2.

(E) = 0, jump to m; (E) i- 0, RNI P+1

(E) < 0, jump to m; (E)2:0, RNI P+1

Floating point addition of (M,M+1) to (A,Q)
--(A,Q)

Floating point division of (A, Q) by (M, M+1)
----. (A, Q). Remainder with sign extended ~(E)

Floating point multiplication of (A, Q) and
(M,M+1)~(A,Q)

Floating point subtraction of (M, M+1) from
(A,Q)~(A,Q)

Unconditional stop, RNI m upon restarting

A b b. f b t dd . ()+(B)~(B), sIgn 0 B ex en e prior to
addition

Mnemonic Code

IAPR

IJD

IJD

131

IJI

INA

INA,S

INAC,INT

INAW,INT

INCL

INI

INI

INPC ,INT,B, H

INPW,INT ,B,N

INQ

INQ,S

INS

3100/3200 INSTRUCTION LIST (cont'd)

Octal Code

77.57

02.4

02.5-7

02.0

02.1-3

15.6

15.4

73.1

74.1

77.50

15.0

15.1-3

73.0

74.0

15.7

15.5

77.3

Address
Field

m

m,b

m

m,b

y

y

ch

ch

x

y

y,b

ch,r,s

ch,m,n

y

y

x,ch

Operation Performed

Interrupt associated processor

No operation

If (B
b

) = O,RNI P+1: If (B
b

) f 0, (B
b

) - 1- (B
b

),
RNlm

No operation

If (B
b

) = 0, RNI P+1: If (Bb) f 0, (B
b

)+1 ~ (Bb),
RNIm

Increase (A) by y

Increase (A) by y, sign of y is extended

(A) is cleared and a 6-bit character is transferred
from a peripheral device to the lower 6 bits of A.

(A) is cleared and a 12- or 24-bit word is read
from a peripheral device into the lower 12 bits
or all of A (word size depends on I/O channel).

Interrupt faults defined by x are cleared.

No operation

Increase (B
b

) by y, signs of y and Bb are
extended.

A 6- or 12-bit character is read from a periph­
eral device and stored in memory at a given
location.

Word Address is placed in bits 00-14, 12- or 24-
bit words are read from a peripheral device and
stored in memory.

Increase (Q) by y.

Increase (Q) by y, sign of y is extended.

Sense internal status. If 1 bits occur on status
lines in any of the same positions as 1 bits in the
mask, RNI P+l. If no comparison, RNI P+2.

A-9

Mnemonic Code

INTS

IOCL

ISD

ISD

ISE

ISE

ISG

ISG

lSI

LACH

LCA,I

LCAQ,I

LDA;I

LDAQ,I

LDE

LDI,I

A-IO

3100/3200 INSTRUCTION LIST (cont'd)

Octal Code

77.4

77.51

10.4

10.5-7

04.0

04.1-3

05.0

05.1-3

10.1-3

22

24

26

20

25

64

54

Address
Field

x,ch

x

y

y,b

y

y,b

y

y,b

y,b

r,l

m,b

m,b

m,b

m,b

r ,1

m,b

Operation Performed

Sense for interrupt condition; if 1 bits occur
simultaneously in interrupt lines and in the
interrupt mask, RNI P+1; if not, RNI P+2.

Clears I/O channel or search/move control as
defined by bits 00-07,08, and 11 of x.

If y = 0, RNI P+2. If y =I 0, RNI P+1.

b b b
If bB) = y, clEar Band RNI P+2. If (B) =I y,
(B) - 1 -- (B), RNI P+ 1.

If y = 0, RNI P+2, otherwise RNI P+1.

If y = (B
b

), RNI P+2, otherwise RNI P+1.

If y~O, RNI P+2, otherwise RNI P+1.

If (Bb)~y, RNI P+2, otherwise RNI P+1.

b b
If (B

b
) = y, cltar B and ~NI P+2.

If (B) =I y, (B) + 1 -+- (B), RNI P+ 1.

o -- (A) ,(R) - (AOO-05)

(M) --(A)

(M)--A

Load E with up to 12 numeric BCD characters
from storage. BCD field length specified by
contents of D register. (SET, instruction 70.7).
Characters are read consecutively from least
significant character (at address (R + (D) - 1)
until the most significant character (at address R)
is in E. E is shifted right as loading progresses.
The sign is acquired along "vith the least
significant character.

Mnemonic Code

LDL,I

LDQ,I

LPA,I

LQCH

MEQ

MOVE,INT

MTH

MUAil

MUAQ,I

NOP

OTAC,INT

OTAW,INT

OUTC,INT,
B,H

OUTW,INT,
B,H

PAUS

QEL

QSE

3100/3200 INSTRUCTION LIST (cont'd)

Octal Code

27

21

37

23

06.0-7

72

07.0-7

50

56

14.0

75.1

76.1

75.0

76.0

77.6

55.5

04.7

Address
Field

m,b

m,b

m,b

r,2

m,i

£,r,s

m,i

m,b

m,b

ch

ch

ch,r,s

ch,m,n

x

y

y

Operation Performed

(M)A (Q) ---+- (A)

(M)~(Q)

(M)A (A) --+ (A)

o ~ (Q), (R)---+- (QOO-05)

(B1) f i ~ (Bl); if (Bl) negative, RNI P+1.
If (B) positive, test (A) = (Q)A (M); if true,
RNI P+2, if false, repeat sequence.

Move £ characters from r to s; 1~£~12810

(B2) _ i-+-(B2); if (B2) negative, RNI P+1. If
(B2) positive; test (A) 2::(Qt'\ (M); if true; RNI P+2;
if false, repeat sequence.

(A)*(M)-+ (Q,A)

(A, Q)*(M ,M+1)~ (A, Q, E)

No operation (COMPASS assembled NOP)

Character from (AOO-05) is sent to peripheral
device, (A) retained.

Transfer (A
oO

-
11

) or (A
oO

-
23

)' depending on type

of I/O channel, to peripheral device.

Storage words assembled into 6 or 12-bit
characters and sent to a peripheral device.

12 or 24-bit words transferred from storage to a
peripheral device.

Sense busy lines. If 1 appears on a line corre­
sponding to 1 bits in x, do not advance p. If P
inhibited for longer than 40 msec. , read reject
from p + 1. If no comparison, RNI p + 2.

If y = (QOO-14)' RNI P+2, otherwise RNI P+1.

A-11

Mnemonic Code

QSE,S

QSG

QSG,S

RAD,I

RTJ

SACH

SBA,I

SBAQ,I

SBCD

SBE

SCA,I

SCAQ

SCRA,I

SCIM

SEL

SET

A-12

3100/3200 INSTRUCTION LIST (cont'd)

Octal Code

04.5

05.7

05.5

34

00.7

42

31

33

77.72

67

36

13.4-7

46

77.53

77.1

70.7

Address
Field

y

y

y

m,b

m

r,2

m,b

m,b

r,3

m,b

y,b

m,b

x

x,ch

y

Operation Performed

If y = (Q), RNI P+2, otherwise RNI P+1.
Sign of y is extended.

If (Q) 2:y , RNI P+2, otherwise RNI P+1.

If (Q) 2:y, RNI P+2, otherwise RNI P+ 1.
Sign of y is extended.

(A)+(M) -+- (M)

(P)+l--- (m
OO

-
14

)' RNI m+1

(AOO-05) --- (R)

(A)-(M)~(A)

(A, Q)-(M,M+1) -+-(A,Q)

BCD fault set to 1

Up to twleve 4-bit characters (most significant
character at address r) is subtracted from E.
Difference appears in E. (D) register specifies
field length.

Where (M) contains a 1 bit, complement the
corresponding bit in (A).

Shift (A, Q) left end around until upper 2 bits of A
are unequal. Residue K = k-shift count. If
b = 1,2, or 3, K~(Bb); ifb = 0, K is
discarded.

Selectively clear interrupt mask register for
each 1 bit in x; corresponding bit in the mask
register is set to O.

If channel ch is busy, read reject instruction
from P+1. If channel ch is not busy, a 12-bit
function code is sent on channel ch with a
function enable, RNI P+2.

YOO-3-(D)

Mnemonic Code

SFE

SFPF

SHA

SHAQ

SHQ

SJ1

SJ2

SJ3

SJ4

SJ5

SJ6

SIB

SQCH

3100/3200 INSTRUCTION liST (cont'd)

Octal Code

70.0-3

77.71

12.0-3

13.0-3

12.4-7

00.1

00.2

00.3

00.4

00.5

00.6

77.70

43

Address
Field

k,b

k,b

17 "h no,"'"

k,b

m

m

m

m

m

m

r ,1

Operation Performed

Shift (E) in one character (4-bit) steps. Left
shift: bit 23 = 0, magnitude of shift = lower
4 bits of K = k+(Bb). Right shift: bit 23 = 1,
magnitude ~f shift lower 4 bUs of complement
of K = k+(B).

Set floating point fault.

Shift (A). Shift count K = k+(B b) (signs of k and
Bb extended). If bit 23 of K = 1, shift right;
complement of lower 6 bits equal shift magnitude.
If bit 23 of K = 0, shift left; lower 6 bits equal
shift magnitude. Left shifts end around; right
shifts end off.

<;!h.;-f+ I A (")\ <"leo n o oO'.;"'to.... ~h';ft ,",An-nt K = lz-+fg
b \

U~.1..L..LL> \~,qJ ,,"0 V.I...I."'" .L'-'f)..I.i.:J,",v.a. •,.L.L"L '-'_-....&..:Io. ~:rr... ,-- I

(signs of k and Bb extended). If bit 23 of K = 1,
shift right and complement of lower 6 bits equal
shift magnitude. If bit 23 of K = 0, shift left;
lower 6 bits equal shift magnitude. Left shifts
end around; right shifts end off.

Shift (Q), Shift count K = k+(Bb) (signs of k and Bb
extended). If bit 23 of K = 1, shift right;
complement of lower 6 bits equal shift magnitude.
If bit 23 of K = 0, shift left; lower 6 bits equal
shift magnitude. Left shifts end around; right
shifts end off.

If jump key 1 is set, jump to m

If jump key 2 is set, jump to m

If jump key 3 is set, jump to m

If jump key 4 is set, jump to m

If jump key 5 is set, jump to m

If jump key 6 is set, jump to m

Program stops if selective stop switch is on;
upon restarting RNI P+1.

A-13

3100/3200 INSTRUCTION LIST (cont'd)

Address
Mnemonic Code Octal Code Field Operation Performed

SRCE,INT 71. 0 c,r,S Search for equality of character c in a list begin-
ning at location r until an equal character is found,
or until character location s is reached; 0~c~63

10

SRCN ,INT 71.1 c,r,S Inequality search; same as SRCE.

SSA,I 35 m,b Where (M) contains a 1 bit, set the corresponding
bit in A to 1-

SSH 10.0 m Test sign of (m), shift (m) left one place, end
around and replace in storage. If negative sign,
RNI P+2; otherwise RNI P+1-

SSIM 77.52 x Selectively set interrupt mask register for each
1 bit in x. The corresponding bit in the mask
register is set to 1.

STA,I 40 m,b (A)-+(M)

STAQ,I 45 m,b (A, Q)-+ (M,M+l)

STE 65 r,2 Store up to 13 numeric BCD characters from E.
Least significant character stored at R+(D) - 1
continuing back to most significant character
stored at R.

STI,I 47 m,b
b

(B) ~ (MOO- 14)

STQ,I 41 m,b (Q)~ (M)

SWA,I 44 m,b (AOO- 14) ~(MOO-14)

TAl 53.40-70 b (A
oO

-
14

) ---+ (B
b

); if b = 0 becomes a no operation

instruction.

TAM 53.42 v (A)~ (v)

TIA 53.0-3 b 0-+ (A), (B
b

) --. (A
OO

-
14

); if b = 0, 0 ---+(A).

TIM 53. (4+b)3 v,b
b

(B)---+-(vOO- 14)

TMA 53.02 v (v)~(A)

TMI 53. (O+b)3 v,b ' Bb) (v 00-14)---+(

TMQ 53.01 1l (v) ~(Q)

A-14

3100/3200 INSTRUCTION LIST (cont'd)

Address
Mnemonic Code Octal Code Field Operation Performed

TQM 53.41 v (Q) -+- (v)

UCS 77.77 Unconditional stop. Upon restarting RNI P+ 1

UJP,I 01 m,b,b Unconditional jump to M

XOA 16.6 Y Y V (A) ~ (A), no sign extension

XOA,S 16.4 Y Y V (A) ~ (A), sign of y is extended

XOI 16.0 Y No operation

XOI 16.1-3 y,b
b b

Y V (B) --+- (B)

XOQ 16.7 y y V (Q)~ (Q) no sign extension

XOQ,S 16.5 Y y V (Q) ~ (Q) sign of y is extended

A-15

Mnemonic Code

ACrt

ADA,I

ADAQ,I

ADM

AEU

3300/3500 INSTRUCTION liST
(executive mode)

Address
Octal Code Field Operation Performed

77.54 (A
oo

-
02

) --.. channel index register

30 m,b (A)+(M) --.. (A)

32 m,b (A,Q)+(M,M+1)~ (A,Q)

67 r,B ,£. , Add field R to field S -+ field S
r r

s,B ,£.
s s

55.6 (A)~(EU)

AlA 53.1-3 b (A)+(B
b

) ~ (A), sign of (B
b

) is extended prior
to addition.

+
AlS' 77.664 (A

OO
-

02
) ~ instruction state register

ANA 17.6 Y y" (A)~ (A)

ANA,S 17.4 Y y" (A) ~ (A), sign of y extended

ANI 17.0 Y No operation

ANI 17.1-3 y,b
b b

y" (B)-(B)

ANQ 17.7 y y" (Q) ----+ (Q)

ANQ,S 17.5 y y A (Q) - (Q), sign of y extended

Aost 77.66 (A
OO

-
02

) ~ operand state register

APFt 77.64 w,2 (A
oO

-
11

) --+- page file

AQA 53.04 (A)+(Q) ----+ (A)

AQE 55.7 (A,Q)-+ (EU,E
L

)

AQJ,EQ 03.4 m If (A) = (Q), RNI m, otherwise RNI P+1

AQJ,GE 03.6 m If (A) 2:(Q) RNI m, otherwise RNI P+ 1

AQJ,LT 03.7 m If (A) < (Q), RNI m, otherwise RNI P+1

t In the program state, an attempt to execute instructions indicated by t on the following pages
will generate an executive interrupt and the processor will revert to the monitor state.

A-17

Mnemonic Code

AQJ,NE

ASE

ASE,S

ASG

ASG,S

ATD

ATD,dc

AZJ,EQ

AZJ,GE

AZJ,LT

AZJ,NE

CIAt

CILOt

CLCAt

CMP

CMP,dc

A-18

3300/3500 INSTRUCTION LIST (cont'd)

Octal Code

03.5

04.6

04.4

05.6

05.4

66

66

03.0

03.2

03.3

03.1

77.55

77.51

77.3

77.512

67

67

Address
Field

m

y

y

y

y

m,B ,£ ,
m m

s,B
s

m,B ,£ ,
B m m

s, s

m

m

m

m

cm

ch

cm

r,Br ,
s,B ,£

s s

Operation Performed

If (A) 1= (Q), RNI m, otherwise RNI P+1

If y = (A
OO

-
14

)' RNI P+2, otherwise RNI P+1

If y = (A
OO

-
14

), RNI P+2, otherwise RNI P+1,

sign of y is extended

If (A)2:y, RNI P+2, otherwise RNI P+1

If (A)2:y, RNI P+2, otherwise RNI P+1,
sign of y is extended.

Translate American Standard Code field
M ~ BCD character field S

Translate American Standard Code field
M --+-BCD character field S with delimiting
character possibility.
If (A) = 0, RNI m, otherwise RNI P+1

If (A) 2:0, RNI m, otherwise RNI P+ 1

If (A) < 0, RNI m, otherwise RNI P+1

If (A) t- 0, RNI m, otherwise RNI P+1

o ~ (A), then channel index register
--.. (AOO- 02)

Lockout external interrupt on masked channels,
cm, until channel(s) is not busy

Interrupt mask and internal status (A)

Clear the specified channel(s), but not
external equipment

Compare field R to field S, exit upon encounter­
ing ::J characters

Compare field R to field C, exit upon encounter­
ing ::J characters; delimiting character possibility

3300/3500 INSTRUCTION lJST (cont'd)

Address
Mnemonic Code Octal Code Field Operation Performed

CONt 77.0 x,ch If channel ch is busy, reject instruction,
RNI P+l. If channel ch is not busy, send
12-bit connect code (x) on channel ch with
connect enable, RNI P+2

COpyt 77.2 ch External status code from I/O channel ch
~ (A

OO
....

11
)' (interrupt mask register)

-+ (A
12

-
23

), RNI P+1

CPR,I 52 m,b (M) > (A), RNI P+ 1 } (A) and (Q) are
(Q) > (M), RNI P+2
(A);::: (M);::: (Q) , RNI P+3 unchanged

CTIt 77.75 Set cons ole l Beginning character address
typewriter must be present in location 23

CTOt in~t J of register file and last
77.76 Set console character +1 must be present

typewriter in location 33 of the file.
output

CVBD 66 m,B ,n,B Convert binary field M to BCD --+- field N n n

CVDB 66 r,B ,£ , Convert BCD field R to binary - field M
m,B r

m

DINTt 77.73 Disable interrupt control

DTA 66 r,B ,£ , Translate BCD field R to American
m,B r Standard Code - field M m

DTA,dc 66 r,B ,f. , Translate BCD field R to American Standard
m,B r Code --+-field M; delimiting character m

possibility

DVA,I 51 m,b (A, Q) / (M) ~ (A), remainder --+- (Q)

DVAQ,I 57 m,b (A,Q,E)/(M,M+1)---- (A,Q), remainder with
sign extended - (E)

EAQ 55.3 (EU,EL)~(A,Q)

ECHA 11 r 0- (A), then r - (A
oO

- 16)

ECHA,S 11 r 0---+ (A), then r -+ (A
OO

-
16

)' sign extended

A-19

Mnemonic Code

EDIT

EINTt

ELQ

ENA

ENA,S

EN!

EN!

ENQ

ENQ,S

EUA

EXSt

FAD,I

FDV,I

FMU,I

FRMT

FSB,I

+
HLT'

A-20

3300/3500 INSTRUCTION liST (cont'd)

Octal Code

64

77.74

55.1

14.6

14.4

14.0

14.1-3

14.7

14.5

55.2

77.2

60

63

62

64

61

00

Address
Field

r,B ,I ,
r r

s,B ,I
s s

y

y

y

y,b

y

y

x,ch

m,b

m,b

m,b

r,B ,I ,
r r

s,B ,I
s s

m,b

m

Operation Performed

Field R-+ field S with COBOL type of editing
specified by picture previously stored in field S

Interrupt control enabled; allows one more
instruction to be executed before interrupt.

0-+ (A), then y ~ (A
OO

-
14

)

0---+ (A), then y -?(A
oO

-
14

)' sign extended

No operation

b b
o -+ (B), then y ~ (B)

0---+ (Q), then y -+ (QOO-14)

0---+ (Q), then y -+(QOO-14)' sign extended

Sense external status. If 1 bits occur on status
lines in any of the same positions as 1 bits in the
mask, RN! P+1. If no comparison, RNI P+2.

Floating point addition of (M,M+1) to (A,Q)
---+ (A,Q)

Floating point division of (A,Q) by (M,M+l)
~(A,Q). Remainder with sign extended (E).

Floating point multiplication of (A, Q) and
(M,M+1) -+ (A,Q)

Move field R-+field S: replace leading zeros
with blanks; insert a comma after every three
characters moved; insert a decimal point in
third lowest order position in S field.

Floating point subtraction of (M,M+1) from
(A,Q) --+ (A,Q)

Unconditional stop, RNI m upon restarting

3300/3500 INSTRUCTION LIST (cont'd)

Address
Mnemonic Code Octal Code Field Operation Performed

IAI 53. (5-7)4 b (A)+(Bb) ---;. (B
b
), sign of Bb is extended prior

to addition

IAPRt 77.57 Interrupt associated processor

IJD 02.4 m No operation

IJD 02.5-7 m,b If (Bbb = 0, RNI P+1: If (B
b

) 1- 0, (B
b

) - 1
-+(B), RNI m

IJI 02.0 m No operation

IJI m,b
b

If (Bb) 1- 0, (B
b

) + 1 02.1-3 If (B b = 0, RN! P+1:
-+ (B), RNI m

INA 15.6 Y Increase (A) by y

INA,S 15.4 Y Increase (A) by y, sign of y is extended

INAC,INTt 73 ch (A) is cleared and a 6-bit character is
transferred from a peripheral device to the
lower 6 bits of A.

INAW,INTt 74 ch (A) is cleared and a 12- or 24-bit word is read
from a peripheral device into the lower 12 bits
or all of A (word size depends on I/O channel).

INCLt 77.50 x Interrupt faults defined by x are cleared

INI 15.0 Y No operation

INI 15.1-3 y,b Increase (B
b

) by y, signs of y and Bb extended

+
INPC ,INT ,B,H ' 73 ch,r,s A 6- or 12-bit character is read from a

peripheral device and stored in memory at a
given location.

INPW,INT,B,N t 74 ch,m,n Word address is placed in bits 00-14, 12- or
24-bit words are read from a peripheral device
and stored in memory.

INQ 15.7 Y Increase (Q) by Y

INQ,S 15.5 Y Increase (Q) by y, sign of y extended

A-21

Mnemonic Code

INTSt

ISD

ISD

ISE

ISE

ISG

ISG

lSI

JMP,HI

JMP,LOW

JMP,ZRO

LACH

LBR

LCA,I

LCAQ, I

LDA,I

A-22

3300/3500 INSTRUCTION LIST (cont'd)

Octal Code

77.3

77.4

77.51

77.674

10.4

10.5-7

04.0

04.1:-3

05.0

05.1-3

10.1-3

77.56

70.0

70.2

70.1

22

70.

24

26

20

Address
Field

x,ch

x,ch

x

y

y,b

y

y,b

y

y,b

y,b

m

m

m

r ,1

m

m,b

m,b

Operation Performed

Sense internal status. If 1 bits occur on status
lines in any of the same positions as 1 bits in
the mask, RNI P+1. If no comparison, RNI P+2.

Sense for interrupt condition; if 1 bits occur
simultaneously in interrupt lines and in the
interrupt mask, RNI P+1. If not RNI P+2.

Clears I/O channel or search/move control as
defined by bits 00-07, 08, and 11 of x.

0-+ (A), instruction state register ~ (A
OO

-
02

)

If y = 0, RNI P+2. If y::f 0, RNI P+1

If (Bb) = y, clear Bb and RNI P+2; if (B
b

) ::f y,

(Bo) - 1-+ (Bb), RNI P+1

If y = 0, RNI P+2, otherwise RNI P+1

If y = (Bb
) , RNI P+2, otherwise RNI P+1

If y2:0, RNI P+2, otherwise RNI P+1

If (B
b

)2:y, RNI P+2, otherwise RNI P+1

b b . b
If (B) = y, clear Band RNI P+2; If (B) ::f y,

(Bb) + 1 ~ (Bb), RNI P+1

Last executed jump address --+ (A
OO

-
14

)

Jump if BDP condition register > 0 or +

Jump if BDP condition register < 0 or -

Jump if BDP condition register = 0

0-+ (A), (R) -+ (AOO-05)

Load BDP conditions with the contents of m.

(M) (A)

(M) (A), (?vII) (Q)

r:\;1\
\-'-,1

3300/3500 INSTRUCTION liST (cont'd)

Address
Mnemonic Code Octal Code Field Operation Performed

LDAQ,I 25 m,b (M)~ (A), (M + 1) ~ (Q)

LDI,I 54 m,b
b

(M
OO

-
14

) ~(B)

LDL,I 27 m,b (M)/\(Q) ~ (A)

LDQ,I 21 m,b (M) --+ (Q)

LPA 37 m,b (M)/\ (A) ----+ (A)

LQCH 23 r,2 O~(Q), (R)~ (QOO-05)

MEQ 06 m,i (B 1) _ i ~ (B 1); if (B 1) negative, RNI P+ 1. If

(B 1) positive, test (A) = (Q)/\ (M); if true"
RNI P+2, if false, repeat sequence.

MOVE,INTt 72 ~,r,s Move ~ characters from r to s; 0::;f::;127
10

MTH 07.0-7 m,i (B2) - i-+(B
2

), if (B2) negative, R~"1 P+1.

(132) positive, test (A) 2: (Q) /\ (M), if true,

If

RNI P+2; if false, repeat sequence.

MUA,I 50 m,b (A)*(M) ~ (Q,A)

MUAQ,I 56 m,b (A, Q)*(M, M+1) ~ (A, Q, E)

MVBF 64 r,B ,f , Move characters from field R ~ field S; if .
r r

field S > Field R, blank fill. s,B ,£
s s

MVE 64 r,B ,£ , Move characters from field R ~ field S
r r

according to parameters. s,B ,£
s s

MVE,dc 64 r,B , Move characters from field R ~ field S.
r

Delimiting character possibility s,B ,£
s s

MVZF 64 r,B ,£ , Move characters from field R ~ field S; if
r r

field S > field R, zero fill s,B ,£
s s

MVZS 64 r,B,£ , Move characters from field R~ field S;
r r

s,B ,£ suppress leading zeros
s s

MVZS,dc 64 r,B , Move characters from field R~ field S;
r

s,B ,£ suppress leading zeros. Delimi ting char acter
s s

possibility.

A-23

Mnemonic Code

NOP

OSAt

OTAC,INT t

OTAW,INTt

t OUTC,INT ,B,H

t OUTW,INT,B,N

PAK

QEL

QSE

QSE,S

QSG

QSG,S

RAD,I

A-24

3300/3500 INSTRUCTION UST (cont'd)

Octal Code

14.0

77.67

75

76

75

76

66

77.60

77.65

77.61

55.5

04.7

04.5

05.7

05.5

34

Address
Field

ch

ch

ch,r,s

ch,m,n

r,B ,I ,
r r

m,B
m

x

w,2

x

y

y

y

y

m,b

Operation Performed

No operation (COMPASS assembled NOP)

o ~ (A); operand state register -+ (A
OO

-
02

)

Character from (AOO-05) is sent to peripheral
device, (A) retained.

Transfers (A
OO

-
11

) or (A
oO

-
23

)' depending on
type of I/O channel, to a peripheral device.

Storage words assembled into 6- or 12-bit
characters and sent to a peripheral device

Transfer 12- or 24-bit words from storage to
a peripheral device

Convert and pack a 6-bit numeric BCD field R
to a 4-bit numeric BCD field and store the
result in field M

Sense busy lines. If 1 appears on a line corre­
sponding to 1 bits in x, do not advance P. If P
is inhibited for longer than 40 ms, read reject
instruction from P+1. If no comparison, RNI
P+2.

o ~ (A), then page index file ~ (A
OO

-
11

)

Same as P AUS, except real-time clock cannot
increment during the pause

If y = (QOO-14), RNI P+2, otherwise RNI P+l

If y = (Q), RNI P+2, otherwise RNI P+l, sign
of y is extended

If (QOO-14):::y, RNI P+2, otherwise RNI P+l

If (Q):::y, RNI P+2, otherwise RNI P+l, sign of
y is extended

(M)+(A) ~ (M)

3300/3500 INSTRUCTION LIST (cont'd)

Address
Mnemo:nic Code Octal Code Field Operation Performed

RCRt 77.634 Subcondition register ~ condition register

RIS 55.0 Relocate to instruction state

ROS 55.4 Relocate to operand state

RTJ 00.7 m (P)+l~ (m
OO

-
14

), RNI m+1

SACH 42 r,2 (AOO-05) ~ (R)

SBA,I 31 m,b (A) - (M) ~ (A)

SBAQ,I 33 m,b (A,Q) - (M,M+1)~ (A,Q)

SBCD 77.72 Set BCD fault logic

____ t
77.62 Transfer system from monitor state to program l:j.tlJP

O

state when next jump occurs

SBM 67 r,B ,f , Subtract field R from field S ~ field S
r r

s,B ,f
s s

SBR 70. m Store BDP conditions in m.

SCA,I 36 m,b Where (M) contains a 1 bit, complement the
corresponding bit in (A)

SCAN ,LR,EQ,dc 65 r,B ,f ,sc Scan field R from left to right, stop on =
r r

condition; delimiting character possibility

SCAN ,LR,NE ,dc 65 r,B ,f ,sc Scan field R from left to right, stop on "I-
r r condition; delimiting character possibility

SCA.L~ ,RL,EQ,dc 65 r,B ,i ,sc Scan field R from right to left, stop on =
r r condition; delimiting character possibility

SCAN ,RL,NE ,dc 65 r,B ,f ,sc Scan field R from right to left, stop on "I-
r r

condition; delimiting character possibility

SCAN,LR,EQ 65 r,B ,f ,sc Scan field R from left to right, stop on =
r r

condition

SCAN,LR,NE 65 r ,B ,f ,sc Scan field R from left to right, stop on "I-
r r

condition

A-25

Mnemonic Code

SCAN ,RL,EQ

SCAN ,RL,NE

SCAQ

SCHA,I

SCIM,It

SFPF

SRA

SRAQ

A-26

3300/3500 INSTRUCTION LIST (cont'd)

Octal Code

65

65

13.4-7

46

77.53

77.624

77.1

77.71

12. (0-3)

13. (0-3)

Address
Field

r,B ,£ ,sc
r r

r,B ,£ ,sc
r r

k,b

m,b

x

x,ch

k,b

k,b

Operation Performed

Scan field R from right to left, stop on =
condition

Scan field R from right to left, stop on :f.
condition

Shift (A, Q) left end around until upper 2 bits of
A are unequal. Residue K = k-shift count. If
b = 1,2, or 3, K-+ (Bb); if b = 0, K is
discarded.

Selectively clear interrupt mask register for
each 1 bit in x; corresponding bit in the mask
register is set to O.

Upon next LDA instruction:
1. (M)~ (A)

2. 77777777 ~ (M)

If channel ch is busy, read reject instruction
from P+1. If not busy, send a 12-bit function
code on channel ch with a function enable,
RNI P+2.

Set floating point fault logic

Shift (A). Shift count K=k + (B
b

) (signs of k and

Bb extended). If bit 23 of K=l, shift right;
complement of lower 6 bits equals shift magni­
tude. If bit 23 of K = 0, shift left; lower 6 bits
equal shift magnitude. Left shifts end around;
right shifts end off.

Shift (A, Q) as one register. Shift count
K = k + (Bo) (signs of k and Bb extended). If
bit 23 of K = 1, shift right and complement of
lower 6 bits equals shift magnitude. If bit 23
of K = 0, shift left and lower 6 bits equal shift
magnitude. Left shifts end around; right shifts
end off.

Mnemonic Code

SHQ

SJ1

SJ2

SJ3

SJ4

SJ5

SQCH

SRAt

SRCE,INTt

SRCN ,INTt

SSA,I

SSH

SSIMt

STA,I

STAQ, I

STI,I

3300/3500 INSTRUCTION llST (cont'd)

Octal Code

12. (4-7)

00.1

00.3

00.3

00.4

00.5

00.6

77.70

43

77.63

71

71

35

10.0

77.52

40

45

47

Address
Field

k,b

m

m

m

m

m

m

r,l

c,r,s

c,r,s

m,b

m

x

m,b

m,b

m,b

Operation Performed

Shift (Q). Shift count K=k + (B
b

) (signs of k and
b

B extended). If bit 23 of K = 1, shift right,
complement of lower 6 bits equals shift
magnitude. If bit 23 of K = 0, shift left, lower
6 bits equal shift magnitude. Left shifts end
around; right shifts end off.

If jump key 1 is set, jump to m

If jump key 2 is set, jump to m

If jump key 3 is set, jump to m

If jump key 4 is set, jump to m

If jump key 5 is set, jump to m

If jump key 6 is set, jump to m

Program stops if selective stop switch is on;
upon restarting RNI P+1.

o ~ (A); subcondition register ~ (Aoo-
02

)

Search for equality of character c in list begin­
ning at r until an equal character is found, or
until character at s is reached; 0:5C:56310

Inequality search; same as SRCE

Where (M) contains a 1 bit, set the correspond­
ing bit in A to 1.

Test sign of (m), shift (m) left one place, end
around and replace in storage. Negative sign,
RNI P -¥ 2; otherwise RNI P+ 1.

Selectively set interrupt mask register for each
1 bit in x. Corresponding bit in the mask
register is set to 1.

(A) ---7(M)

(A, Q)~ (M, M + 1)

b (B) ~ (M
OO

-
14

)

A-27

3300/3500 INSTRUCTION LIST (cont'd)

Address
Mnemonic Code Octal Code Field 0Eeration Performed

STQ,I 41 m,b (Q)~ (M)

SWA,I 44 m,b (AOO- 14) ~ (MOO- 14)

TAl 53.4-7 b (A
OO

-
14

) ~(Bb); becomes a no-operation

instruction if b = O.

TAMt 53.42 v (A)~ (v)

TIA 53.0-3 b 0---+ (A), (B
b

) ---+ (A
OO

-
14

); if b = 0, 0 ---+(A).

TIMt 53. (4-7)3 v,b
b

(B)---+ (v 00-14)

TMA 53.02 v (v)-+ (A)

TMAvt 77.61 Initiate memory request. If reply occurs within
5 usec. , RNI P+2; if not RNI P+1. Storage
address is (Bb) with (operand state register) or
zero appended.

TMI 53. (0-4)3 v,b
b

(vOO - 14) ~ B

TMQ 53.0 v (v) ~ (Q)

TQMt 53.41 v (Q)~ (v)

TST 67 r,B ,i Test field R; -, O,or +
r r

ucst 77.77 Unconditional stop.

UJP, I 01 m Unconditional jump to M.

UPAK 66 m,B ,s Unpack 4-bit BCD field Minto 6-bit BCD field S
m

B ,i
s s

XOA 16.6 Y yv (A) ~ (A)

XOA,S 16.4 Y y v (A)~ (A), sign of y is extended

XOI 16.0 Y No operation

XOI 16.1-3 y,b y v (Bb) ~ (B
b

)

XOQ 16.7 y yv (Q)~ (Q)

XOQ,S 16.5 Y y v(Q)~ (Q), sign of y extended

ZADM 67 r,B ,i , Clear field S; field R - field S, right justify
r r

s,B ,i
s s

A-28

3100/3200/3300/3500
COMPATIBLE INSTRUCTION LISTtt

:Mnemonic Address :Mnemonic Address Mnemonic Address
Code Field Code Field Code Field

ADA,I m,b CPR,I m,b IJD m,b

ADAQ,I m,b CTlt IJI m

AEU CTOt IJI m,b

AIA DINTt INA y

ANA Y DVA,I m,b INA,S y

ANA,S Y DVAQ,I m,b lNAC,INTt ch

ANI y EAQ lNAW,INTt ch

ANI y,b ECHA r INCLt x

ANQ y ECHA,S r INI y

ANQ,S Y EINTt INI y,b

AQA ELQ INPC,INT,B,Ht ch,r,s

AQE ENA Y INPW,INT,B,Nt ch,m,n

AQJ ,EQ m ENA,S y INQ Y

AQJ,GE m ENI y INQ,S Y

AQJ,LT m ENI y,b INSt x,ch

AQJ ,NE m ENQ y INTS t c,ch

ASE y ENQ,S Y IOCL t x

ASE,S Y EUA ISD Y

ASG Y EXSt x,ch ISD y,b

ASG,S Y FAD,I m,b ISE y

AZJ ,EQ m FDV,I m,b ISE y,b

AZJ ,GE m FMU,I m,b ISG y

AZJ ,LT m FSB,I m,b ISG y,b

AZJ ,NE m HLTt m lSI y,b

CINSt ch IAI b LACH r,l

CONt x,ch IAPRt LCA,I m,b

COpyt ch IJD ill LCAQ,I m,b

t When the 3300/3500 is operating in the program state of executive mode, an attempt to execute
instructions indicated by t will generate an executive interrupt and the processor will revert to
the monitor state.

tt These instructions may be used on 3100/3200 or 3300/3500 in either the non-executive or
executive mode.

A-29

Mnemonic Address
Code Field

LDA,I m,b

LDAQ,I m,b

LDI,I m,b

LDL,I m,b

LDQ,I m,b

LPA,I m,b

LQCH r,2

MEQ m, i

MOVE,lNTt £,r,s

MI'H m,i

MUA,l m,b

MUAQ,l m,b

NOP

OTAC,INT t ch

OTAW,INTt ch

OUTC,lNT,B,Ht ch,r,s

OUTW , INT , B , N t ch,m,n

PAUSt x

QEL

QSE y

QSE,S Y

QSG Y

QSG,S Y

RAD,I m,b

A-30

3100/3200/3300/3500
COMPATIBLE INSTRUCTION LIST

Mnemonic Address Mnemonic
Code Field Code

RTJ m SSA,I

SACH r,2 SSH

SBA,I m,b SSIMt

SBAQ,I m,b STA,I

SBCD STAQ,l

SCA,I m,b STI,l

SCAQ y,b STQ,l

SCHA,I m,b SWA,l

SClM,I t x TAl

SELt x,ch TAMt

SFPF TIA

SHA k,b TIMt

SHAQ k,b TMA

SHQ k,b TMI

SJl m T~

SJ2 m TQMt

SJ3 m ucst

SJ4 m UJP,I

SJ5 m XOA

SJ6 m XOA,S

SLS t XOI

SQCH r,l XOl

SRCE,INT c,r,s XOQ

SRCN,INT c,r,s XOQ,S

Address
Field

m,b

m

x

m,b

m,b

m,b

m,b

m,b

b

v

b

v,b

v

v,b

v

v

m,b

y

y

Y

y,b

y

y

Pseudo
Instruction

ASCII

BCD

BCD,C

BCDN

BSS

BSS,C

COMMON

DATA

DEC

DECD

EJECT

END

ENDM

ENTRY

EXT

EQU

EQU,C

FINIS

IDENT

IFF

PSEUDO INSTRUCTIONS INDEX

Meaning or Use

8-bit character storage

Character storage using word addresses

Character storage using character addresses

4-bit numeric character storage

Block storage for words

Block storage for characters

Labels, orgaI'J.zes and reserves space in the common
area

Specifies information to be stored in or identified as part
of the data area

Expresses constants in decimal form for storage as
single-precision fixed point binary constants

Expresses constants in decimal form for storage as
double precision fixed point binary constants

Move to top of next page on the printer

Terminates subprogram and produces TRA card in
relocatable object subprogram deck

Terminates a macro definition

Defines locations in a subprogram and declares them as
entry points

Declares symbols as external to a subprogram

Defines a symbol by equating it to another symbol, a
constant, or an expression

Defines a symbol by equating it to a 17-bit address, a
17-bit constant, or another symbol

Final instruction of a COMPASS input deck; signals that
all subprograms have been submitted for assembly

First instruction of a COMPASS subprogram; identifies
the subprogram to follow

Assemble following lines of macro prototype code if the
first two entries in the address field are unlike

Section

2.6.6

2.6.4

2.6.5

2.6.7

2.3.1

2.3.2

2.2.3

2.2.2

2.6.2

2.6.3

2.9.5

2.1.2

3.3

2.4.1

2.4.2

2.5.1

2.5.2

2.1. 3

2.1.1

3.2.2

8

B-1

B-2

Pseudo
Instruction

IFN

1FT

IFZ

liBM

liST

MACRO

NOliST

OCT

ORGR

PRG

REM

SPACE

TITLE

VFD

Meaning or Use

Assemble following lines of code if the first entry in the
address field is non-zero

Assemble following lines of macro prototype code if the
first two entries in the address field are alike

Assemble following lines of code if the first entry in the
address field is zero

Instructs COMPASS to call a library macro from the
system library

Resume output listing

N ames a macro and declares the formal parameters used
in the prototype

Suppress output listing

Expresses constants as signed or unsigned octal integers

Controls the relocatable address for storage of instruc­
tions, constants, or the reservation of space in PRG j DATA;
or COMMON

Establishes the subprogram location counter during assembly

Print the follOwing remarks on the output listing

Indicates line spacing for output listing

Print title at top of each page of output listing

Enter octal numbers, character codes, relocatable
addresses, or constants into variable length fields

Section

2.8.2

3.2.1

2.8.1

3.6

2.9.3

3.1

2.9.2

2.6.1

2.2.4

2.2.1

2.9.1

2.9.4

2.9.6

2.7

COMPASS PROGRAM EXAMPLES C

COMPASS SYSTEM CODING FORM CONTROL DATA NAME
PROGRAM PAGE 1 of 1 EXAMPLE 1

ROUTINE SAMPLE 1 CORPORATION DATE
LOCN OPERATHlN,MODIFIERS ADDRESS FIELD IDENT

IDENT

TITLE

* THIS 'N I0NSENSE

B

I : : : : : : : I I:::~~ : : : : : : C: ! : ! : :

IAIBlc, I I I I IIU,J,P, I I I I I I :*1*1 I I I I I I I

I : IA 1 I, (1 , 2) ARE 1 AND 2

'THIS PR~DUCE,s RNA 3 I NISiT,~ , ;1

IUJP I 'ABC

IE ND 'A B C 'E,N DIS LAS T,C A R D ~ F SUB P R 0 G

I
FINIS IFINIS IS CARD AFTER L,A,ST SUBPR0Gl

I
L~ I

~

1

l_l

1 1 1

1

I I
I 2 3 " ~ I; l' e 9 10 II 12 13 I" 15 16 11' 18 19 20 21 22 23 24 2~ 26 27 28 29 30 31 32 33 34135 36 :3 l' 38 39 40 "I 42 43 44 45 46 47 48 49 50 51 52 53 54 55156 57 58 59 60161 62 63 64 6~'166 61" 68169 10 71 1'2 173 74 75 76 77 78 19 eo

C-l

CONTROL DATA PAGE 1 of 2

COMPASS SYSTEM CODING FORM NAME
PROGRAM EXAMPLE 2

SAMPLE 2 ROUTINE CORPORATION DATE
LOCN OPERATICN,MODIFIERS ADDRESS FIELD COMMENTS

IDENT

ND SUBPR-0GR
I
AM S IL USTRATE USAGE

E N'T R Y P0 I NT S C~MM~N A'ND DATA.

'I

11

11

K iBC D 11 ,ABCD

: iPRG

'ENT R Y ISTART

I I I I I
I

EN

KE N

I I
• , 10111 Illl) 14 I~ , .. 11 " 19 20121222) 24 2~'26 2' 2. 2'3')0)1 lHll ,.)$ll611'l' l'I), 40,,,,,, ""2'45 ""'I ""~!'6.7 411'4' !lO:SI 52 !I)'~. 55156)1511,5'1 601611621631''''!')1'' 61168'16' 10 1,

C-2

CONTROL DATA PAGE 2 of 2

COMPASS SYSTEM CODING FORM NAME
PROGRAM EXAMPLE 2

ROUTINE SAMPLE 3
CORPORATION DATE

LOCN OPERATlON,MODIFlERS ADDRESS FIELD COMMENTS IDENT

IDENT 'SAMPLE3

* THIS N¢NSENSE SdBPR¢GR

* EXT ERN A L S, DEC L A Ri E DIN SUB P R ¢ G R SAM piL E 2 •

I:: : : : : : : II~g~:N: : : : i:: i : i : : : : : : : 1

J

K

ST,AR T 3

X

y

, ,

, ! I I
I Z , " ~ 6 l' 8! 9 1,0 1I 12 13 •• I!I .6 .7 JI 19 2.0 2. I 22 23 24 25 2.6 2.7 28 29 30 31 32.13313-' 35 36 31')9~ 39 40 41 42 43 44 <15 46 47 48 49 50 51 52. 53 54 55 56 '!I7 59 59 60 61 62163 64 6!'166 67 69 6!; 70 7, ~2' 73 14 115 76 77 711 1'9 10

C-3

INDEX

Absolute value 2-10
Actual operand A-5
Actual parameter 3-1, 4, 5, 7, 10
Actual value 3 -1, 4
Address, character 1-6, A-3
Address counter 1-1, 3; 2-1, 3, 5, 6
Address expression 1-5, 6; 2-6, 7, 10, 11, 21
Address field 1-2, 4, 5, 7; 2-1, 2, 4, 5, 6, 7,

8, 19
Address, jump A-4, 5
Address, page index file A-5
Address subfield 3-2, 11
Address, word 1-6, '7
Address, operand A-I, 5
Address subfields A-I
Alphanumeric symbols 3-2
Area shared 1-1
Arithmetic expression 2-19, 21
ASCII 2-17, 20
Assembler control 2-21
Asterisk 1-3, 4, 5, 7; 2-22; 3-12; A-I

BCD
card 2-15
constants v
characters 2 -1 7
numeric characters 2-17, 18
internal BCD character codes 2-15, 19

BCD, C 1-6, 2-6, 15, 16
BDP instruction 1-4
Binary card 2-7
Binary constant 2-13
Binary integer 2 -14
Binary scaling factor 2-12, 13, 14, 15, 19
BSS 2-3, 4, 6, 16
BSS, C 1-6; 2-4, 6, 7, 16

Card image, overflow of 3-10
Channel designator A -2, 4
Channel mask A -2, 4

Character address 2-20; A-5
Character codes 2-18
Characters, alphabetic 1-3
Character definition instruction 2-9
Characters, numeric 1-3
Character positions 2-6
Character, scan A-5
Character, string 3 -3, 4, 5
ClLO A-2
CLCA A-2
Code lines 3-3, 7, 8, 12
Code of search character A-4
Coding forms 1-2
Comment 2-15, 16, 22
Comment card 3-2, 12
COMMON 2-1, 3, 4
Common area 1-1; 2-3
Comparison mask A-2
Complement 1-7; 2-10, 11, 14, 19
Conditionals 3-9
Connect codes A-2
Constants, assembly of

Octal 2-11
Decimal 2-11
Hollerith 2-11

Continuation feature 2-10

DATA 2-1, 3, 4
Data area 1-1, 3, 4
Data area location counter 2-4
DEC 2-13, 14
Decimal constant 2-13; 3-6
Decimal integer 2-12, 19, 24
Decimal scaling factor 2-13, 14, 15
Decrement A-4
Delimiters 3-3
Double asterisk 1-4, 5; 2-6; A-I, 3

Index-1

EJECT 2-22, 24
END 1-1; 2-2, 4
ENDM 3-2, 6
ENTRY 2-4, 8
Entry point 2-1, 2,4, 8, 9, 10
EDT loader card 2-8
EQU 2-4; 3-3
EQU, C 1-6
Equal sign 1-5, 6
Error L 1-3
Error T 1-7
Error ° 1-3
Errors V, 2-11, 19, 20, 23; 3-12
Error flag 2-5, 9, 14, 19
Expressions 1-4, 5; 2-5, 9, 11, 19, 20;

3-7; A-I
EXT 2-4, 8, 9, 10; 3-3
External symbols 1-4, 5; 2-4, 8, 9, 10; 3-3, A-I

Field
Optional A-I
Mandatory A-I

FINIS 2-2
Fixed point 2-11, 13, 14
Floating point V, 2-11, 14, 15; A-I
Formal parameters 3-1, 2, 3, 4, 6, 7, 9

Hardware capacity 2-15
Hardware instruction 3 -2; A-I
Heading line 3-3
Hollerith 2-19; 3-7

IDC card 2-1
IDENT 1-1; 2-1, 3, 24; 3-1, 2, 12
IDENT field 1-2
Identification, program 1-7
IFF 2-4, 21; 3-6
IFN 2-4, 21, 22
1FT 2-4, 21; 3-3, 4, 5, 6
IFZ 2-4, 21, 22
lllegal operation field 1-3
lliegal symbol 1-3
Increment A-4
Index register A-I, 3
Input deck 2 -2; 3-5

Index-2

Instruction modifiers A -5
Instruction subfields 1-4, 5, 7
Internal BCD 2-15, 19
Integer, V, 2-11, 21

decimal 1-5
octal 1-5

Jump address A-4, 5

L error 1-3
Labeling 2-6
LIBM 3-1, 2, 7, 11, 12
Library 3-1, 9
Library MACROS 3-1, 11, 12
LIST 2-22, 23
Listing control 2-22
Literals 1-5, 6; 3-3; A-I
Literals, Hollerith 3-7

Machine instruction 1-3; 3-1, A
MACRO 1-3, Chap. 3, 2-21
MACRO call 3-1, 5, 7, 8, 9, 10, 11
MACRO code 3-7
MACRO definitions 3-1, 4, 6, 8, 9, 10, 11
MACRO, heading 3-1, 2, 3; 3-6, 7
MACRO, inner 3-10
MACRO, name 3-2, 7, 8, 12
MACRO, nesting 3-9
MACRO, outer 3-9, 10
MACRO, prototype 3-10
MACRO set 3-5
MACRO, terminator 3-1, 6
Mantissa 2-14
Masks 2-3
MEO A-I
Message format 2-3
MTH A-I
Mode parameter 2-18, 19

NOLIST 2-22, 23
Non-relocatable address 1-3, 4, 5, 7; 2-6, 7,

21; 3 -4; A-I, 2

o error 1-3; 2-1
Object code 1-1, 5, 6
OCT 2-11, 12
Octal constants 2-12
OCTAL, VFD 2-19
Octal integers 2-11
Octal numbers 2-18
Operand

actual A-5
address A-I, 5

Operation field 1-2, 3, 5
ORGR 1-1; 2-3, 4, 5
Output listing 2-5, 21, 22, 23, 24; 3-3, 6, 11
Overflow of a card image 3-10

Pack 2-16
Parameters

Actu.al 3-1
Formal 3-9
List 3-2, 10

Parenthesis 3-2, 7, 8, 9, 10
Period 1-3
Precision

Single 1-5, 6; 2-11, 13, 14
Double 1-5, 6; 2-11, 14; A-I
Variable 2-11

PRG 2-3, 4

Register file A-2
Relocatable address 1-1, 3, 4, 6; 2-5, 7, 8, 18;

3-7
Relocatable character address 2-10, 20
Relocatable object subprogram deck 2-1
Relocatable symbols 1-4, 5; 2-5, 11, 20
Relocatable word address 2-6, 9, 10, 13,

REM 2-22; 3-2, 12
RIF card 2-3

Scaling 2-13
Scan character A -5
Sequence numbers 1-7
Shift count A -4
SPACE 2-22, 23
Space reservation 2-5

15, 17, 18, 19

Subfields, address A-I
Subfields, implied 1-4
Subfields, instruction A-I
Symbol, illegal 1-3
System library 3"":1, 11

Threaded list 2-8
Time, assembly 1-1
Time, load 1-1
Time, run 1-1
TITLE 2-1, 22, 24; 3-2, 12
TRA 2-2

Variable length field 2-18, 19, 20; 3-1
VFD (Variable Field Definition) 2-18, 19; 3-2

Octal 2-19
Hollerith 2-19
Arithmetic expression 2-19
Character address 2-20
ASCII 2-20

XNL loader card 2-8, 9

Zero 1-4; 2-6, 7, 16, 18, 19, 21; 3-9

Index-3

FROM

CONTROL DATA
CORPORATION

COMMENT AND EVALUATION SHEET

3100/3200/3300/3500 Computer Systems
Compatible COMPASS Language Reference Manual

Pub. No. 60174000,A April, 1967
THIS FORM is NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUD E PAGE NUMBER REFERENCE.

NAME: __ __

BUSINESS ADDRESS: __ ___

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

FOLD

STAPLE

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PA 10 BY

CONTROL DATA CORPORATION
Documentation Department
3145 PORTER DRIVE

PALO ALTO, CALIFORNIA

STAPLE

FOLD

FIRST CLASS

PERMIT NO. 8241

MINNEAPOLIS, MINN,

FOLD

STAPLE

Pub. No. 60174000 A

CONTROL DATA
CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	B-01
	B-02
	C-01
	C-02
	C-03
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

