= I OO0
S E)E)

BBO T
BEOC

COMPUTER SYSTEMS
COMPASS

PROGRAMMING TRAINING MANUAL

CONTROL DATA

CORPORATION

INSTRUCTION

INDEX

BY OCTAL OPERATION CODE

BY MNEMONIC OPERATION CODE

OCTAL MNEMONIC OCTAL MNEMONIC MNEMONIC MNEMONIC

OPERAT ION OPERATION SECTION OPERATION OPERATION SECTION OPERATION SECTION OPERATION SECTION
CODE CODE NUMBER CODE CODE NUMBER CODE NUMBER CODE NUMBER
00.0 HLT 3.5.5 40 STA,I 3.2.1 ADA,T 3.3.1 LDA,I 3.1.1
00.1 s 3.5.6 41 STQ,I 3.2.2 ADAQ,I 6.1 LDAQ,I 5.1
00.2 54— 3.5.6 42 SACH 8.2.3 ADE 14,2.8 LDE 14.2.6
00.3 T ke 3.5.6 43 SQCH 8.2.4 AEU 13.2.2 LDI,I 3.1.3
00.4 S L 3.5.6 44 SWA,I 3.7 AIA 9.5.2 LDL,I 7.2
00.5 ST 3.5.6 45 STAQ,1 5.2 ANA 7.4.2 LDQ,I 3.1.2
00.6 -slrev 3.5.6 46 SCHA,I 8.2.5 ANA,S 7.4.2 LPA,I 7.4.1
00.7 RTJ 3.5.4 47 STI,I 3.2.3 ANI 7.4.4 LQCH 8.2.2
01 uJP,I 3.5.1 50 MUA, I 3.3.3 ANQ 7.4.3 MEQ 11.1
02.0 No Operation 51 DVA,I 3.3.4 ANQ,S 7.4.3 MOVE, INT 10.3
02.1-3 1J1 3.5.7 52 CPR,1 11.4 AQA 9.5.1 MTH 11.2
02.4 No Operation 53.01 T™MQ 9.3.1 AQE 13.4,2 MUA,I 3.3.3
02.5-7 1JD 3.5.7 53.02 TMA 9.2.1 AQJ,EQ 3.5.3 MUAQ,I 6.3
03.0 AZJ,EQ 3.5.2 53.04 AQA 9.5.1 AQJ,GE 3.5.3 NOP

03.1 AZJ,NE 3.5.2 53.(0+b)0 TIA 9.1.1 AQJ,LT 3.5.3 OTAC, INT 20.8.3
03.2 AZJ,GE 3.5.2 53.(0+b)3 TMI 9.4.1 AQJ,NE 3.5.3 OTAW, INT 20.8.4
03.3 AZJ,LT 3.5.2 53.(0+b) 4 AIA 9.5.2 ASE 3.6.1 OUTC,INT, 20.7
03.4 AQJ,EQ 3.5.3 53.41 TQM 9.3.2 ASE,S 3.6.1 B,H

03.5 AQJ,NE 3.5.3 53.42 TAM 9.2.2 ASG 3.6.2 OUTW,INT, 20.5
03.6 AQJ,GE 3.5.3 53.(4+b)0 TAI 9.1.2 ASG,S 3.6.2 B,H

03.7 AQJ,LT 3.5.3 53.(4+b)3 TIM 9.4.2 AZJ,EQ 3.5,2 PAUS 10.4 &
04.0 ISE 3.6.1 53.(4tb)4 IAI 9.5.3 AZJ,GE 3.5.2 20.10.5.3
04,1-3 ISE 3.6.1 54 LDI,I 3.1.3 AZJ,LT 3.5.2 QEL 13.3.2
04.4 ASE,S 3.6.1 55.0 No Operation AZJ ,NE 3.5.2 QSE 3.6.1
04.5 QSE,S 3.6.1 55.1 ELQ 13.3.1 GINS 20.9.5 QSE,S 3.6.1
04.6 ASE 3.6.1 55.2 EUA 13.2.1 GON 20.2 Qs6 3.6.2
04.7 QSE 3.6.1 55.3 EAQ 13.4.1 COPY 20.9.2 QSG,S - 3.6.2
05.0 1SG 3.6.2 55.4 No Operation CPR,I 11.4 RAD,I 3.3.5
05.1-3 1SG 3.6.2 55.5 13.3.2 CTI 20.10.5.1 | RTJ 3.5.4
05.4 ASG,S 3.6.2 55.6 13.2.2 CTO 20.10.5.2 | SACH 8.2.3
05.5 QsG,S 3.6.2 55.7 13.4.2 DINT SBA,I 3.3.2
05.6 ASG 3.6.2 56 6.3 DVA,1 3.3.4 SBAQ,I 6.2
05.7 QsG . 3.6.2 57 6.4 DVAQ, I 6.4 SBCD

06.0-7 MEQ ~ 11.1 60 12.3.1 EAQ 13.4.1 SBE 14.2.9
07.0-7 MTH 11.2 61 12.3.2 ECHA 8.2.6 sCaA,I 7.5.1
10.0 SSH 11.3 62 12.3.3 ECHA,S 8.2.6 SCAQ 13.5
10.1-3 1S1 3.6.3 63 12.3.4 EINT 21.1-2 SCHA,T 8.2.5
10.4 1SD 3.6.3 64 14.2.6 ELQ 13.3.1 SCIM

10.5-7 1SD 3.6.3 65 14,2.7 ENA 3.4.4 SEL 20.3
11.0 ECHA 8.2.6 66 14.2.8 ENA,S 3.4.4 SET 14.2.5
11.4 ECHA,S 8.2.6 67 14.2.9 ENI 3.b4o4 SFE 14.2.1
12.0-3 SHA 3.8.2 70.0-3 14.2.1 ENQ 3.4.4 SFPF

12.4-7 SHQ 3.8.2 70.4 14,2.2 ENQ,S 3.4.4 SHA 3.8.2
13.0-3 SHAQ 5.3 70.5 14,2.3 EOJ 14.2.4 SHAQ 5.3
13.4-7 $CAQ 13.5 70.6 14.2.4 EUA 13.2.1 SHQ 3.8.2
14.0 NOP 70.7 14,2.5 EXS 20.9.1 sJ1 3.5.6
14.1-3 ENI 3.4.4 71 SRCE; 10.2.1 EZJ,EQ 14.2.2 $J2 3.5.6
14.4 ENA,S 3.4.4 71 S%N,‘INT 10.2.2 EZJ,LT 14.2.3 sJ3 3.5.6
14.5 ENQ,S 3.4.4 72 MOVE, INT 10.3 FAD,I 12.3.1 sJ4 3.5.6
14.6 ENA 3.4.4 73 INPC,INT, 20.6 FDV,I 12.3.4 sJ5 3.5.6
14.7 ENQ 3.4.4 B,H FMU, I 12.3.3 SJ6 3.5.6
15.0 No Operation 73 LINT 20.8.1 FSB,1 12.3.2 SLS

15.1-3 INT 3.4.3 74 INHW,INT, 20.4 HLT 3.5.5 SQCH 8.2.4
15.4 INA,S 3.4.1 SN 1AI 9.5.3 SRCE, INT 10.2.1
15.5 INQ,S 3.4.2 74 :mf{,vgu‘ 20.8.2 IAPR SRCN,INT 10.2.2
15.6 INA 3.4.1 75 . OUTC,INT, 20.7 1JD 3.5.7 SSA,I 7.6
15.7 INQ 3.4.2 B,H 1J1 3.5.7 SSH 11.3
16.0 No Operation 75 OIAC,INT 20.8.3 INA 3.4.1 SSIM 21.1
16.1-3 X01 © o 7.5.4 76 OUlW,INT; 20.5 INA,S 3.4.1 STA,I 3.2.1
16.4 X0A,S 7.5.2 AN INAC,INT 20.8.1 STAQ,I 5.2
16.5 X0Q,S 7.5.3 76 OT4&W,INT 20.8.4 INAW,INT 20.8.2 STE 14.2,7
16.6 X0A 7.5.2 77.0 coﬁ 20.2 INCL 21.2 STI,I 3.2.3
16.7 X0Q 7.5.3 77.1 ssg 20.3 INI 3.4.3 STQ, I 3.2.2
17.0 No Operation 77.2 EX$ 20.9.1 INPC,INT, 20.6 SWA,I 3.7
17.1-3 ANI 7.4.4 77.2 copy 20.9.2 B,H TAI 9.1.2
17.4 ANA,S 7.4.2 77.3 ING 20.9.4 INPW,INT, 20.4 TAM 9.2.2
17.5 ANQ,S 7.4.3 77.3 CInS 20.9.5 B,N TIA 9.1.1
17.6 ANA 7.4.2 77.4 INES 20.9.3 INQ 3.4.2 TIM 9.4.2
17.7 ANQ 7.4.3 77.50 IN 21.2 INQ,S 3.4.2 TMA 9.2.1
20 LDA,I 3.1.1 77.51 10 INS 20.9.4 TMI 9.4.1
21 LDQ,I 3.1.2 77.52 Ss 21.1 INTS 20.9.3 TMQ 9.3.1
22 LACH 8.2.1 77.53 sC I0CL TQM 9.3.2
23 LQCH 8.2.2 77.54-56 Noj Operation 1sD 3.6.3 ucs

24 LCA,I 7.3.1 77.57 IAPR ISE 3.6.1 uJP,I 3.5.1
25 LDAQ,I 5.1 77.6 PABS 10.4 & 15G 3.6.2 XOA 7.5.2
26 LCAQ,I 7.3.2 20.10.5.3 1SI 3.6.3 XO0A,S 7.5.2
27 LDL,I 7.2 77.70 LACH 8.2.1 X01 7.5.4
30 ADA,1 3.3.1 77.71 LCA,I 7.3.1 X0Q 745.3
31 SBA,T 3.3.2 77.72 LCAQ,I 7.3.2 X0Q,S 7.5.3
32 ADAQ,I 6.1 77.73 .

33 SBAQ,I 6.2 77.74 21,1.2

34 RAD, 3.3.5 77.75 20.10.5.1

35 S5A,1 7.6 77.76 20.10.5.2

36 SCA,I 7.5.1 77.77

37 LPA,1 7.4.1

Introduction to 3100/3200/3300/3500 |
Computer Hardware

Introduction to SCOPE /COMPASS
COMPASS Instructions

Instruction Modification

3100 48-bit Operations
3200 48-bit, Fixed Point, Arithmetic
3300 Logical Operations
3500 Character Mode of Operation

Inter-register Transfers

COM P AS S Search and Move Operations
Storage Tests
PROGRAMMlNG Floating-point Operations
TRA' N |NG ~ 48-bit Register Operations
B C D Digit Operations

MANUAL

COMPASS Pseudo Instructions
SCOPE Organization of 1/0
SCOPE Control Cards

SCOPE Debugging Aids
COMPASS Assembly of Constants
Input/Output Without CIO

Interrupts

Sample COMPASS Programs

Additional Exercises

May 1967 Copyright 1967, Control Data Corporation
Pub. No. 60184200 Printed in the United States of America

Aknowl edgement

With the exception of an index, three appendices, two additional
chapters, a few new sections and extensive editting, the very
excellent programming training manual that follows has been
written by Mr. H. D. Pridmore and his staff at Commonwealth
Bureau of Census and Statistics in Australia. We are grateful
to Mr. Pridmore and the Bureau for permission to modify amd
print their manual so that all 3100/3200/3300/3500 users may
benefit from their efforts,

EDP Education Services Department
Corporate Marketing

Control Data Corporation

May 8, 1967

CONTENTS

CHAPTER 1 - INTRODUCTION TO 3100/3200/3300/3500 COMPUTER HARDWARE

1.1

3200 HARDWARE

1.1.1 Diagram of 3200 Computer
1.1.2 Data Bus

1.1.3 Arithmetic Section

1.1.4 Program Control

1.1.5 Block Control

1.1.6 Diagram of 3200 Console Register Display

1.2 3200 CORE STORAGE
1.2.1 Storage Word
1.2.2 Word Addressing
CHAPTER 2 - INTRODUCTION TO SCOPE/COMPASS
2.1 INTRODUCTION TO THE SCOPE MONITOR
2.1.1 SCOPE Library Tape
2.1.2 SCOPE System Terms
2.1.3 SCOPE Control Card
2.1.4 SCOPE/COMPASS Run
2.1.5 SCOPE/Program Execution Run
2.2 INTRODUCTiON TO THE COMPASS ASSEMBLY SYSTEM

2.2,1 Assembly Process
2.2.2 General Word Addressing Instruction Format
2.2.3 COMPASS Source Program - Coding
2.2.3.1 LOCATION Field
2.2.3.2 OPERATION Field
2.2.3.3 ADDRESS Field
2.2.3.4 COMMENTS Field
2.2.4 Coding Simple COMPASS Programs
2,2.4,1 Beginning the Program
2.2.4.2 Ending the Program

2.2.4.3 SCOPE Entry

2.2.4.4 Deck Structure for COMPASS Course Exercises

CONTENTS (cont.)

CHAPTER 3 - COMPASS INSTRUCTIONS

3.1 LOAD INSTRUCTIONS
3.1.1 Load A
3.1.2 Load Q
3.1.3 Load Index
3.2 STORE INSTRUCTIONS
3.2.1 Store A
3.2.2 Store Q
3.2.3 Store Index
3.3 ARITHMETIC, FIXED POINT, 24-BIT PRECISION
3.3.1 Add to A
3.3.2 Subtract from A
3.3.3 Multiply A
3.3.4 Divide A
3.3.5 Replace Add
3.4 REGISTER OPERATIONS WITHOUT STORAGE REFERENCE
3.4.1 Increase A
3.4.2 Increase Q
3.4,3 Increase Index
3.4.4 Enter Register
3.5 JUMP INSTRUCTIONS
3.5.1 Unconditional Jump
3.5.2 Compare A with Zero, Jump
3.5.3 Compare A with Q, Jump
3.5.4 Return Jump
3.5.5 Unconditional Halt
3.5.6 Selective Jump
3.5.7 Index Jump (Incremental/Decremental)
3.6 SKIP INSTRUCTIONS
3.6.1 Skip if Equal
3.6.2 Skip if Greater Than or Equal

3.6.3 Index Skip Incremental/Decremental

CONTENTS (cont.)

CHAPTER 3 -
3.7 STORE WORD ADDRESS
3.8 SHIFT INSTRUCTIONS
3.8.1 Shift Instruction Format
3.8.2 Shift A and Shift Q
CHAPTER 4 - INSTRUCTION MODIFICATION
4,1 SIGN EXTENSION
4.2 ADDRESS MODES
4.3 INDEX MODIFICATION OF WORD ADDRESSING INSTRUCTIONS
CHAPTER 5 - 48_BIT OPERATIONS
5.1 LOAD AQ
5.2 STORE AQ
5.3 SHIFT AQ
CHAPTER 6 - 48-BIT, FIXED POINT, ARITHMETIC
6.1 ADD TO AQ
6.2 SUBTRACT FROM AQ
6.3 MULTIPLY AQ
6.4 DIVIDE AQ
CHAPTER 7 - LOGICAL OPERATIONS

7.1 LOGIC TABLES

7.1.1 Logical “ANDY

?.1,2 Inclusive "OR™M

7.1.3 Exclusive "ORM

7.1.4 Examples of Logical Operations Using Octal Numbers
7.2 LOAD A LOGICAL
7.3 LOAD COMPLEMENTS

7.3.1 Load A Complement

7.3.2 Load AQ Complement

CONTENTS (cont.)

CHAPTER 7 -
7.4 LOGICAL "AND" OPERATIONS
7.4.1 Logical Product A
7.4.2 AND of A and y
7.4.3 AND of Q and y
7.4.4 AND of Index Register BP and y
7.5 EXCLUSIVE "OR" OPERATIONS
7.5.1 Selectively Complement A
7.5.2 Exclusive OR of A and y
7.5.3 Exclusive OR of Q and y
7.5.4 Exclusive OR of Index Register BP and y
7.6 SELECTIVELY SET A
CHAPTER 8 -~ CHARACTER MODE OF OPERATION
8.1 INTRODUCTION
8.2 CHARACTER ADDRESS INSTRUCTIONS
8.2.1 Load A Character
8.2.2 Load Q Character
8.2.3 Store A Character
8.2.4 Store Q Character
8.2.5 Store Character Address
8.2.6 Enter Character Address into A
8.3 INDEX MODIFICATION OF CHARACTER ADDRESSING INSTRUCTIONS
CHAPTER 9 - INTER-REGISTER TRANSFERS

9.1 TRANSFERS BETWEEN THE A REGISTER AND INDEX REGISTERS
9.1.1 Index Register to A Register
9.1.2 A Register to Index Register

9.2 TRANSFERS BETWEEN THE A REGISTER AND THE REGISTER FILE
9.2.1 Register File to A Register
9.2.2 A Register to Register File

9.3 TRANSFERS BETWEEN THE Q REGISTER AND THE REGISTER FILE

CONTENTS (cont.)

9.3.1 Register File to Q Register

9.3.2 Q Register to Register File

TRANSFERS BETWEEN INDEX REGISTERS AND THE REGISTER FILE
9.4.,1 Register File to Index Register

9.4.2 1Index Register to Register File

9.5.1 Add Contents of Q to Contents of A
9.5.2 Add Contents of Index Register to Contents of A

9.5.3 Add Contents of A to Contents of Index Register

10.2.1 Search for Character Equality

10.2.2 Search for Character Inequality

(as used with SEARCH/MOVE Instructions)

CHAPTER 9 -

9.4

9.5 INTER-REGISTER ADDITION
CHAPTER 10 - SEARCH AND MOVE OPERATIONS

10.1 BLOCK CONTROL

10.2 SEARCH OPERATIONS

10,3 MOVE INSTRUCTION

10.4 PAUSE INSTRUCTION
CHAPTER 11 - STORAGE TESTS

11,1 MASKED EQUALITY SEARCH

11,2 MASKED THRESHOLD SEARCH

11.3 STORAGE SHIFT

11.4 COMPARE (WITHIN LIMITS TEST)
CHAPTER 12 - FLOATING POINT OPERATIONS

12.1

INTRODUCTION

12.1.1 Storage of Floating Point Numbers
12.1.2 Normalizing the Coefficient
12.1.3 Exponent

12.1.4 Conversion Procedures

CONTENTS (cont.)

CHAPTER 12 -
12.1.5 Unpacking Floating Péint Numbers
12.2 EXECUTION OF FLOATING POINT OPERATIONS
12.2.1 Addition
12.2,2 Subtraction
12.2.3 Rounding of Floating Point Numbers
12.2.4 Multiplication
12.2.5 Division
12.3 FLOATING POINT INSTRUCTIONS
12.3.1 Floating Point ADD
12.3.2 Floating Point SUBTRACT
12.3.3 Floating Point MULTIPLY
12.3.4 Floating Point DIVIDE
CHAPTER 13 - 48-BIT REGISTER OPERATIONS
13.1 48-BIT E REGISTER
13.1.1 Introduction
13.1.2 Trapped Instructions for the E Register
13.2 TRANSFERS BETWEEN A AND EU
13.2.1 Transfer Ey to A
13.2.2 Transfer A to Ey
13.3 TRANSFERS BETWEEN Q AND Ep
13.3.1 Transfer EL to Q
13.3.2 Transfer Q to Ep
13.4 TRANSFERS BETWEEN AQ AND E
13.4.1 Transfer E to AQ
13.4.2 Transfer AQ to E
13.5 SCALE AQ
13.6 USE OF THE SCALE AQ INSTRUCTION
CHAPTER 14 - BCD DIGIT OPERATIONS

14,1

INTRODUCTION

CONTENTS (cont.)

CHAPTER 14 -
14.1.1 BCD Digits
14.,1.2 Field
14.,1.3 Sign Bits
14.1.4 E Register (In Machine)
14.1.5 ED Register (On Console)
14.1.6 BCD Fault
14.2 BCD INSTRUCTIONS
14.2.1 Shift E;) Register
14.2.2 ED Equal to ZERO Jump
14.2.3 ED Less Than ZERO Jump
14,24 En Overflow Jump
14.2.5 Setting Field Length in D Register
14,2.6 Load Ep
14.2.7 Store Ej
14,2.8 Add to ED
14.2.9 Subtract From Ep
14.3 BCD TRAPPED INSTRUCTIONS
CHAPTER 15 - COMPASS PSEUDO INSTRUCTIONS

15.1 CONCEPTS OF PSEUDO INSTRUCTIONS
15.2 PROGRAM DEFINITION
15.2.1 IDENT Instruction
15.2.2 END Instruction
15.2.3 FINIS Instruction
15.3 ASSEMBLY AREAS
15.3.1 Introduction
15.3.2 DATA Area
15.3.3 Return Assembly Control to Subprogram PRG Area
15.3.4 COMMON Area
15.3.5 ORGR lnstruction

15.4 STORAGE RESERVATIONS

CONTENTS (cont.)

CHAPTER 15 -

15.4.1 Word Block
15.4.2 Character Block

15.5 ENTRY AND EXTERNAL INSTRUCTIONS
15.5.1 ENTRY Pseudo Instruction
15.5.2 EXTERNAL Pseudo Instruction
15.5.3 SCOPE Loading of Subprogram

15.6 SYMBOL DEFINITION BY EQUIVALENCING
15.6.1 Introduction
15.6.2 Word Equating
15.6.3 Character Equating

15.7 COMPASS OUTPUT LISTING CONTROL
15.7.1 REMarks
15.7.2 NO LIST Instruction
15.7.3 Resume LISTing Instruction
15.7.4 SPACE Instruction
15.7.5 New Page EJECT Instruction
15.7.6 TITLE Instruction
15.7.7 Comments

CHAPTER 16 - SCOPE ORGANIZATION OF INPUT/OUTPUT

16.1 INTRODUCTION
16.1.1 Programmer Units
16.1.2 Scratch Units
16.1.3 Systems Units

16.2 CENTRAL INPUT/OUTPUT ROUTINE

16.2.1 Introduction

16.2.2 Calling Sequences
16.2.3 Input/Qutput Operations
16.2.4 Tape Control Operations
16.2.5 Unit Status Requests

16.2.6 Format Selection

16.2.7 Page Control of the Line Printer

CONTENTS (cont.)

CHAPTER 17 - SCOPE CONTROL CARDS

17.1 INTRODUCTION

17.2 SEQUENCE CARD

17.3 JOB CARD

17.4 ENDSCOPE STATEMENT

17.5 ENDREEL STATEMENT

17.6 CTO STATEMENT

17.7 REWIND STATEMENT

17.8 UNLOAD STATEMENT

17.9 EQUIP STATEMENTS
17.9.1 Hardware Definition
17.9.2 Equating Logical Units
17.9.3 Physical Unit Assignment

17.10 TRANSFER STATEMENT

17.11 LOAD STATEMENT

17.12 COMPASS LIBRARY CALLING STATEMENT

17.13 RUN STATEMENT

17.14 DIAGRAMMATIC DECK

CHAPTER 18 - SCOPE DEBUGGING AIDS

18.1 OCTAL CORRECTION CARDS
18.1.1 Location Symbols
18.1.2 Octal Corrections
18.1.3 Relocation Factors
18.1.4 Error Indicators
18.2 'SNAP DUMPS
18.2.1 Errors
18.2.2 Location
18.2.3 First and Last Word Addresses
18.2.4 Mode
18.2.5 Identification

18.2.6 Note

CONTENTS (cont.)

CHAPTER 18 -
18.2.7 Example
18.2.8 Rules for Using SNAP
18.3 OTHER DEBUGGING AIDS
18.3.1 Memory Map
18.3.2 Abnormal Termination Dump
18.4 COMPASS ERROR CODES
CHAPTER 19 - COMPASS ASSEMBLY OF CONSTANTS
19.1 OCTAL CONSTANT PSEUDO INSTRUCTIONS
19.2 DECIMAL CONSTANTS, FIXED POINT
19.3 DOUBLE PRECISION AND/OR FLOATING POINT CONSTANTS
19.4 BCD CONSTANTS
19.5 BCD CHARACTER CONSTANTS
19.6 VARIABLE FIELD CONSTANTS
19.6.1 Introduction
19.6.2 Octal Mode
19.6.3 Hollerith Mode
19.6.4 Word Address Arithmetic Mode
19.6.5 Character Address Mode
19.6.6 Example of VFD Instruction
CHAPTER 20 - INPUT/OUTPUT WITHOUT GIO

20.1 INPUT/OUTPUT CHARACTERISTICS
20.1.1 Introduction
20.1.2 Interface Signals
20.1.3 System Configuration
20.1.4 Logical Sequence of Events for Initiating
INPUT/OUTPUT Operations
20.2 CONNECT
20.3 SELECT

20.4 WORD ADDRESSED INPUT TO STORAGE

CONTENTS (cont.)

CHAPTER 20 -
20.5 WORD ADDRESSED OUTPUT FROM STORAGE
20.6 CHARACTER ADDRESSED INPUT TO STORAGE
20.7 CHARACTER ADDRESSED OUTPUT FROM STORAGE
20.8 INPUT/OUTPUT TO AND FROM THE A REGISTER
20.8.1 Input Character to A
20.8.2 Input Word to A
20.8.3 Output Character from A

20.8.4 Output Word from A
20.9 SENSING INSTRUCTIONS
20.9.1 Sense External Status
20.9.2 Copy External Status and Interrupt Mask Register
20.9.3 Sense Interrupt
20.9.4 Sense Internal Status
20.9.5 Copy Internal Status and Interrupt Mask Register
20.9.6 Comments on Internal Status and the Interrupt
Mask Register
20,10 CONSOLE TYPEWRITER INPUT/OUTPUT
20.10.1 General Description
20.10.2 Operation
20.10.2.1 Set Tabs, Margins and Spacing
20,10.2.2 Clear
20.10.2.3 Status Checking
20,10.2.4 Type In and Type Load
20.10.2.5 Type Out and Type Dump
20.10.3 Typewriter Console Switches and Indicators
20,10.4 Character Codes
20.10.5 Input/Output Instructions
20.10.5.1 Set Console Typewriter Input
20.10.5.2 Set Console Typewriter Output
20.10.5.3 Pause Instruction
(as used with console typewriter

instructions)

CHAPTER 21

CONTENTS (cont.)

INTERRUPTS

21.1 INTERRUPTS USING CIC

21,2 INTERRUPTS WITHOUT USING CIC

21.3 1/0 USING CIC

21.4 INTERRUPT MASK REGISTER BIT ASSIGNMENTS

CIT ASSIGNMENTS

INTRODUCTION TO 3100/3200/3300/3500 COMPUTER HARDWARE

1.2

3200 HARDWARE

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

Diagram of 3200 Computer
Data Bus

Arithmetic Section
Program Control

Block Control

Diagram of 3200 Console Register Display

3200 CORE STORAGE

1.2.1

1.2.2

Storage Word

Word Addressing

Chaptern

CHAPTER 1- INTRODUCTION TO 3100/3200/3300/3500 COMPUTER HARDWARE

The majority of the programming that will be done for the
3100/3200/3300/3500 computers will be done with a subset of

the total instruction repertoire for the particular machine.
The subset chosen for this manual applies primarily to the
3100/3200 computers because of the BCD instructions chosen.

If this chapter were eliminated, what remains applies equally
to all computers in the series. The 3300/3500 computers in
addition to having different BCD instructions, have some addi-
tional features and instructions. These will not be discussed
here. The student is referred to the appropriate machine
reference manual for a description of those additions. The
timing information included in this manual applies to the 3200/
3300 computers. 3100 times are about forty percent higher;
3500 times are at least forty percent lower. Other then in the
case of timing information and the BCD instructions, the manual
points out those areas that are specifically 3200, which was
the machine chosen as representative of those in the series.

3200 COMPUTER SYSTEM

STUDENT NOTES

1.1 3200 HARDWARE

l.1.1 Diagram of 3200 computer

BLOCK PROGRAM ARITHMETIC
CONTROL CONTROL PROCESSOR
Index Regs

Register Bl 32 i
P F C
I L)
] i
r-—----- - -
!
I
|
!
S Bus DATA Bus
T
|
|
L-—-H s Reg | [ZReg |
—— —] — —
H STORAGE
FIELD l FIELD MODULE
0 i 1 (8K)
(4K) i {4K)
L]
|
1/0 MODULE
2 %
Z %
7 Z DATA
Main Frame g Z CHANNELS
7

A R R RN NN

z
Z

PERIPHERAL
EQUIPMENT
CONTROLLER

PERIPH .
UNIT

S Reg:

Z Reg:

T (Maximum of 8 for

a 3200 Computer.
Only 4 shown here.)

13-bit register, which
holds the address of
the word being processed.

28-bit register, which

holds the contents of the
word being processed.

(Used also to write contents
of word back into store.)

1. .2 Data Bus

The data bus is the path along which data flows between the
various sections of the computer. The sections (storage, the arithmetic unit,
the console typewriter, and the input/output section) are connected in parallel
to the data bus. During execution of each instruction, program control
determines which unique path is to be emabled so that the function called
tor in vhe program instruction can be carried out.

The data bus containg a 24-bit register called the Data Bus
Register (DBR) which is used to hold data temporarily during a data transfer.

1ls1.3 Arithmetic Section

The arithmetic section of the 3200 processor consists of three
operational registers, namely -

(ig A - arithmetic register
{(ii) Q - auxiliary arithmetic register
(iii) E - optional arithmetic register.

(1) The A Register (Accumulator)

The A Register is the principal arithmetic register. It is a
24-bit register, whose contents can be displayed on the console
of the 3200.

All arithmetic and logical operations use the A register in
formulating a result. It is the only register with provision
for adding its contents to the contents of a storage word or
another register.

(ii) The Q Register (Quotient)

The Q register is an auxiliary register and is generally used
in conjunction with the A register. It is a 24-bit register,
whose contents can be displayed on the 3200 console. Combined
with A it forms a 48-bit register, AQ. Most arithmetic operations
possible with the A register are also possible with the AQ
register. The Q register often is used to provide temporary
storage for the contents of the A register while the A register
is used for some other operation.

(iii) The E Register

This register acts as a supplement to the AQ register. It is
a 48-bit register, whose contents can be displayed on the 3200
console, in the display sections usually occupied by A and Q.
(The upper 24 bits of E - called E. - are displayed in A, and the
lower 24 bits of E - called E; - are displayed in Q.) The reg-
ister is used in 48-bit precision multiplication and division,
and in floating point multiplication and division.

In BCD operations, the E register is designated the Ep
register, and its size is extended to 53 bits, to enable it to
handle thirteen 4-bit characters, plus a sign bit.

1.1.4 Program Control

The program control section contains six operational registers,
all of which may be displayed on the 3200 console. They are -

(1) F - program control register
(ii) P - Program address counter
(iii) C - Communication register

(iv) B - Three index registers, B,, B,, and B3

(i) The F Register

This 24-bit register is used to hold the instruction
during the time it is being executed.

(ii) The P Register

This 15-bit register holds the address of the instruction currently
being executed, and generates, in sequence, the storage addresses
which contain the individual instructions. After execution of an
instruction, P is altered to indicate the address of the next
instruction to be read. The address is sent via the S (address) BUS
to the specified storage module where the instruction is read.

(1ii) The C Register

The 24-bit C register is used to enter quantities into Storage,

A, Q, E, B or P registers via the console key board. The quantity
is entered in C, and then transferred to the specified register
when the "transfer" button on the keyboard is pushed.

(iv) The B Registers

The 15-bit B registers (Index registers) are used principally as
counters and instruction modifiers.

1.1.5 Block Control

For a general description of the use of Block Control see
Section 10.1.

(1) The Register File

The register file is a 64 word (24-bits per word) rapid access
memory with a cycle time 0.5 mioroseconds. Although the programmer
can access all registers in the file with the inter-register transfer
instructions, certain registers are reserved for specific purposes.
These are defined in the following table:

1.1.5 (cont.)

REGISTER
NUMBER

00-07 Modified I/0 instruction word containing the current
character address (Channel 0-7 control)

RESERVED FOR

10-17 Modified I/O instruction word containing the last
character address plus {or minus) one (Channel 0-T7).

20 Current character address for search control

21 Source address for move control

22 Real time clock, current time

23 Current character address for typewriter control

24-27 Temporary storage

30 Last character address + 1 for search control

N Destination address for move control

32 Real time clock, time at which to generate interrupt
33 Last character address + 1 for typewriter control

34-77 Temporary storage

Because of the fast access time, use of Registers 24-27 and 34-77
as temporary storage will speed up program execution. Other registers may
also be used for temporary storage if their use will not disrupt operations
in progress.

(ii) The Real Time Clock

The real time clock is a 24-bit counter that is incremented each
millisecond. The current time is stored in Register 22. It is removed from
storage each millisecond, updated, and compared with the contents of Register
32. When the two are equal, an interrupt condition occurs.

The clock has a period of 16,777,216 milliseconds (approximately
4 hours 40 minutes). It starts as soon as power is supplied to the computer.
Its contents may be examined at any time by transferring them to the A
register using an inter-register transfer statement. It may be reset to any 24
bit quantity (including zero) by loading A, and transferring the contents of
A into Register 22.

1.1.6 Diagram of 3200 Console Register Display

L B3 J[A, Ey, Ep p— r Q, Ep, Ep j

B, By P F, C

- 1.2 3200 CORE STORAGE

1.2.1 Storage. Word

27 26 25 24 23 18 17 12 1 06 05 00
Po| P1 lr P2} P3| Character O Character 1 Character 2 L Character 3
Parity bits Characte?ﬁesignators

The 3200 is a word machine with each word consisting of 28 bits.
Each word may be regarded as four 6-bit characters as shown above, with
parity bits for each character located in bits 24-27.

1.2.2 Word Addressing

Bach word in the storage of the 3200 is addressable. The address of
a particular word is its relative position in the storage. The first word
is word 00000, the second is word 00001, the third 00002, etc. The address
is specified as five octal digits, which may be broken down to indicate the
actual location of the word in-core.

The 3200 core is composed of modules of 8,192 words each. There may
be up to four such modules attached to the computer, and the modules are
numbered from O through 3. Thus an 8K 3200 would have only one module,
numbered Og (002), a 16K 3200 would have two modules, 00, and 01,, and so on.

Each 8K module is made up of two 4,096 word fields, numbered field O
and field 1.

Module 00

Field Field

Within each field, words may be regarded as numbered from 0000 to
77778 (409610 words). The position of a word in a field is known as its
Coordinate address in that field. '

Thus a 15-bit address 012008 may be divided up to indicate its
position in core as follows:

bits 00 - 11 indicate the co-ordinate address (12008)

bit 12 indicates the field (0)
bits 13 - 14 indicate the module (O)
Examples:

Address 310408 = Module 1, field 1, address 1040B

Address 777778 = Module 3, field 1, address 77778

INTRODUCTION TO SCOPE/COMPASS

2.1

2.2

Chapter

INTRODUCTION TO THE SCOPE MONITOR

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

SCOPE Library Tape
SCOPE System terms
SCOPE Control Card
SCOPE/COMPASS Run

SCOPE/Program Execution Run

INTRODUCTION TO THE COMPASS ASSEMBLY SYSTEM

2.2.1

2.2.2

2.2.3

2.2.4

Assembly Process

General Word Addressing Instruction Format
COMPASS Source Program - Coding

2.2.3.1 LOCATION Field

2.2.3.2 OPERATION Field

2.2.3.3 ADDRESS Field

2.2.3.4 COMMENTS Field

Coding Simple COMPASS Programs

2.2.4.1 Beginning the Program

2.2.4.2 Ending the Program

2.2.4.3 SCOPE Entry

2.2.4.4 Deck Structure for COMPASS Course Exercises

2.1 INTRODUCTION TO THE SCOPE MONITOR

The SCOPE monitor is a program that provides a

system of operator and programmer aids to increase through-put
and to simplify the operator's job.

Its purpose is to increase job processing efficiency

by increasing information through-put, and to minimize operator
errors, operator intervention and idle computer time.

2.1.,1 SCOPE Library Tape

The library tape serves as the source for the SCOPE
operating system as well as thosce library routines operating
under control of SCOPE. The tape consists of two files:

Load
poigf:; FILE 1 FILE 2
2
O
SCOPE E RELOCATABLE E
OPERATING 0 BINARY o
SYSTEM F SUBPROGRAMS F
(6 RECORDS) (COMPASS, FORTRAN, etc)
LIBRARY TAPE FORMAT
The first file consists of absolute binary information
which, from this point on, will be considered the SCOPE
operating system. The second file consists of relocatable
binary subprograms such as COMPASS, FORTRAN, COBOL, etc.
2.1.2 SCOPE System Terms

RUN

The complete execution of a subprogram under the control
of SCOPE.

JOB

The sets of tasks assigned to SCOPE by the programmer.
A job consists of one or more runms.

STACKED JOBS
A stack consists of one or more jobs. The termination of
a job is signaled by the printout of the SEQUENCE card for the

next job.

NON-STACKED JOBS

A stack which consists of only one job. The presents of
the "NS" parameter on the job card indicates that this job is
a non-stacked job.

The termination of a non-stacked job is signaled by the
printout of PNORMAL END" or "ABNORMAL END” at which time pro-
cessing will halt.

2.1.2 (cont.)
SUBPROGRAM

The smallest unit recognized by the SCOPE LOADER.

A two-digit decimal number representing a logical reference
to a physical I/0 unit.

2.1.3 SCOPE Control Card

Refer to Chapté} 17

2.1.4 SCOPE/COMPASS Run

AUTOLOAD

Scope Operating Control is Scope reads from

System is read transferred| the standard input

in from LIB.(LUN 63 to Scope. unit, and by the __(:::>
presence of control

cards is told what
to do next.

After reading a Control is then Control is then
7COMPASS control transferred to the transferred back to
card, SCOPE then subprogram COMPASS SCOPE and SCOPE again
<::)—searches and loadsl—{which, in turn, —reads from the stand——{Z::)
the subprogram, assembles the user's| lard input unit for
COMPASS, from the subprogram (SOURCE further operating
2nd file of the DECK) and produces a| Jinstructions.
library tape. relocatable object
deck as well as a
printer listing.

SCOPE/COMPASS RUN

2.1.5 SCOPE/Program Execution Run

Scope Operating Control is SCOPE reads the
System is read in transferred| Juser's binary object

into high core and
then branches (RTJ)
to the program for

execution.
The very last instruction After obtaining control
executed in the user's pro- from the user's program,

gram must be an instruction SCOPE again reads from

which transfers control the standard input unit
(:::)—*back to SCOPE, enabling the for futher operating

system to continue the pro- instructions.
cessing of various other
jobs.

SCOPE/PROGRAM EXECUTION RUN

2.2 INTRODUCTION TO THE COMPASS ASSEMBLY SYSTEM

(a)

(b)

(c)

(d)

(e)

(£)

COMPASS is the COMPrehensive ASsembly System for use with
Control Data Computers.

COMPASS operates under the SCOPE monitor system.

COMPASS enables the programmer to write machine language
through the use of mnemonic instructions and symbolic
addresses. The COMPASS assembler translates these
instructions and addresses into machine language.

In COMPASS source language, the programmer is also able
to specify constants, exercise control over subprogram
communication and control the assembly process with a
powerful set of PSEUDO (assembly) instructions.

A COMPASS program consists of a number of linked subprograms,
each of which will be assembled independently and linked by
the LOADER, prior to execution of the program.

A COMPASS subprogram consists of lines of coding preceded by
an IDENT pseudo instruction, and followed by an END pseudo
instruction. The size of the subprogram and the magnitude
of the problems solved by it are at the discretion of the
programmer.

f rom LIB.(LUN 63) to SCOPE. program from the
standard input unit l-———(:::)

2,2.1 Assembly Process

(a) Assembly language is much closer to machine code than languages

(b)

SOURCE
PAPER TAPE

like FORTRAN and COBOL. A line of FORTRAN coding may generate
many machine instructions (perhaps in the ratio of 1:10). Most
COMPASS instructions generate only one machine instruection.

Example : STA CHUNT
If CPUNT is located at address 1748,
this instruction would be assembled as
40000174

The assembly process may be represented diagrammatically as
follows:

DIAGRAM OF THE ASSEMBLY PROCESS

COMPASS
CODING -
WRITTEN

\/

PUNCHED
AND

CHECKED

SOURC
OR
------- SOURCE ———==——4 mac

A

PRINTER
LISTING

L

(a) The COMPASS assembly program converts programs written in
COMPASS into machine language for execution under the
SCOPE monitor system.

(b) Source programs may be punched on cards or paper tape,
or written on magnetic tape.

(c) Output from the assembler includes an assembly listing
and a relocatable binary object deck. The output deck
may be punched out on cards, or written on a magnetic

tape for immediate execution.

2.2.1 (cont,)

(d) What does the assembler do?

(1)

(i1)
(iii)

(iv)

(v)
(vi)
(vii)

(viii)

Allocates storage locations to instructions and
to blocks defined in pseudo or area-definition
instructions. Note use of "ORGR".

Replaces symbolic addresses with allocated
storage locations from (i).

Replaces symbolic instruction addresses with
actual instruction addresses from (i).

Indicates index register use and/or indirect
addressing in the relevant bits of the necessary
instructions.

Converts mnemonic operation-codes to machine
language equivalents.

Stores literals in a special literal table, after
checking for any prior use of that literal.

Replaces literals in the instructions with the
addresses of the table locations of the literals.

Check for assembly language (source language) errors
and generates necessary diagnostic messages,

Most assemblers perform these functions in a number of passes.
The source program is first written on to tape, at the same time carrying
out some of the above functions. Then the tape is passed against the
assembler at least once more to carry out the remainder of the functions.

2.2,2 General Word Addressing Instruction Format

The 3200 (24-bit) word addressing instruction takes the
following general form -

Bit position 23 18 17 16 15 14 00
| @6bi) [binf@bis) | (15 bits)
f a b mory

Where £ = function coae of 6 bits.
Range is 008 through 778.

This code determines the type of action
to be carried out.

e.g. 208 = Load the A.register.

318 = Subtract from the A register.

a = Addressing mode of 1 bit.
If this bit is a zero, direct addressing is
carried out.
If this bit is a 1 bit, indirect addressing is
carried out.

b = Index designator of 2 bits.
If b = 00, no index is used
If 01, index 1 is used
10, index 2 is used

11, index 3 is used.

o oo

m = Exegution address of 15 bits.
This is the address in memory at which data
required for execution will be found. The
24-bit quantity found at that address will be
used in a manner determined by the rest of the
instruction,

¥ = Operand of 15 bits.
This specifies a 15 bit guantity which will
be used as data in some way. It is the
actual data, not the address of the data.

Exercise: Divide up the following octal instructions into their components:

20400100
27100000
56201010
01322222
77654321
46077776
17500000
66766766

Note that the address "m" specified in a word address instruction can be
divided further to indicate its actual location in storage.

2.2.3. COMPASS Source Program - Coding

The following fields are used on the COMPASS coding sheets and
on COMPASS punched cards.

NAME OF COLUMNS ON CARD
FIELD OR CODING SHEET

Location 1-~-8
Operation 10 - 20
Address 21 - 40
Comments 41 - T2

Identification 73 - 80

The use of these fields is discussed following the samples of
the COMPASS CODING FORM and the COMPASS CARD.

Instructions in subprograms to be assembled by COMPASS are
written on coding forms. The information on the coding form
will be punched into cards or prepared on other suitable media
for input to COMPASS. Following is a sample COMPASS-CODING FORM.

|Wmll:l)ll’lss CODING FORM :::
TR T)
| COmENTS

| ¥
NN TN E NS S E RN RN R TSR BRSNS W S W I S G I I A

] [l

L T P L s b gty b
] 1

N A A A I R U0 I O S A ST S W A A AU IR W S U N WAL S SV AN ST A0 YA A I A VPN A S AU AT A S VPR S W

]]
Pl s s v b aa vt s s besara s

))

e e s
!

T T T T T T TR TS ST TR SR TS N T

E ['

AN E T ERE W L 5 s i psaa g aa o

1]
TN TS TSN R NN E S E U W RN RN L r et b

'
RN SR TEE SN SN i i, i il RN E NN ST RS WS

1]

P L b b b by b L b R ety
' T

TN TR NN TR RS NN RN E N I

E 1

RN S B RO O S O SN S ST B S S S A A AP G R W S S W A S A W S S S AW VAN A I AU 00 S A AW I WA S I I W A W

'

TSRS SN EN TS EEEEE N NN S SN WS NN E S W
1 1

SN T ORI S SN N I A W WA W A Ll g

W

L T T T TS TR e e
Bl e e b
e e
T IR i Liisaaaaaia]y 4
e

|
INENTEEE :: FTEEN RS SRR NS AN SR L S N W g sl

E [
v eaen s Bl ey s e e bbbl

v
T AN NSNS S T DN NS NN SN N it

& I R I N I G A S S S S SV EN S U SR ET A Y ST U S S U S A A S A NE S S SV ANA IR S SV A U SRRV S AVAVES WA W I W ')
& t

COMPASS CODING FORM
(half-size)

Each line of the coding form represents one card when punched
into cards.

2.2.3 {cont.)

Following is a sample of the COMPASS CARD.

~

% OPERATION,
g

LOCATION MODIFIERS

I]BDI]UDBI]I]UUHI]I]UL"’!I

ssnsaasfsssssaasss'sssasssssxssasssssasal

ADDRESS FIELD

22232

1
000000000000000000000/00000000000000000000000000000000

10 1112 13 1 1516 17 18 19,20 21 222324 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40041 42 43 44 4546 47 49 49 50 51 52 53 54 55 56 57 58 5960 6162 636465666763 63 70 71 712473 14 7576 77 78 79 30

COMMENTS

88888888888”888“33833388388882]

IDENT

00000000

é IHIHII111llllHI'HlllllllllllllllHlIIIIIIIIHIIIIIIHHIHIIIIIHIHIIIIIIII
§ 222222222222222222'222222222222222222222'22222 222220222222212
§§333333333333333333|333333333333333333333'33333 3333333333333
%%444444444444444444:444444444444444444444|44444 e 444441444442444
é 555555555555555555!5555'55555555555555555i55555 5555555555555
g '&B;EBGSBG*SGBEGBGSGSEGSGGSGG66568686656668'56668 6666666666666

777777777777777777:77777777777777777777777777 1711114171111117

88888883

99999999999999989999!199899999999999999999999999999999{3599999839

2526212828303 3231341‘38373.3934!lln“lﬁ(slll&lﬂiuﬁ5153515556575!58305152535‘555567886973717 13U TS 6 717819 80f

MC-ZT12501
——

COMPASS CARD (full size)

2.2.3.1 LOCATION Field

Symbolic Address

of the instruction written on that line.
e.g. LggP ADA TABLE
UJP LggP

OR Symbolic address of a storage area set up by a pseudo

instruction.

e.8. ALEK

Restrictions - (a)

ger 4

LDA ALEK

1-8 characters (need not be right
or left justified).

(b) .First character must be alphabetic,
others can be alphanumeric.
(¢) Special characters are not allowed,
except period.
(@) Imbedded blanks are illegal.
Examples:
LEGAL ILLEGAL
ABCIDBE AfA1AY 1ATATA 2 2
41234 XYZ.23 TEM+5 ABCDEFGHIJ
X PART3 27 Fga*

2.2.3.1 (cont.)

Special Comment Card

An asterisk in Column 1 of the location field means that the rest
of the card will be treated as if it is a comment.

Example://*TH\s 1S A COMMENTS CARD.
?930‘-" 32 33 <4 35 3 37 38 30 A0 41 42 43 44

i [|
oMocBoooooocooMMooooooco0000000000000000
6789
1111

I(IIIIZ!J1415Iﬁ17IIISZ‘UZ:‘??ZJNZSZE?IZ&ZEJUZH321336]55313'39464!‘2‘3“

§
I i} RRRRREERERY IRERRRER AR ERRRRERRR RN

1222:02:022222222220222222222222222222222121212

12345678 91W0NIZBHISEITBYVAANR2H252627829N03NI233MAI56I7B0L42434

33B3333333335033333M33M333M333333333333333333
[IRENNRRRRRRREY | IYYRERTY] kY
L1234 B8 4 33 9943 14 e e 97 16 3 - g o4 ¢ 37

7 10 10 o0 220 1 og o5 o0

4444404 44444444

78 29 20 31 42 2

2.2,3,2 OPERATION Field

This field can contain
() Mnemonic operation codes.
(b) Pseudo instruction Mnemoniecs,
(¢) Macro instruction names.
(d) Octal instructions 004-774-
The code must begin in col. 10, otherwise'it will assemble as
004 (halt code). Modifiers are written in this field.
e.g. CHAR BSS,C 4 means set up an area consisting of 4
characters and labelled "CHAR".
Examples:
05
BSs
ENA,S
LDA
LDA,I
INPC, INT,B,H
MACNAME

2,2.3.3 ADDRESS Field

This field can contain :
(2) symbols
(b) Constants
(¢) Special Characters
(d) Literals
(e) Expressions
The address field can begin anywhere after the operation

field, provided it is separated from the operation field
by at least one blank.

2424303 (Cont.l)

However, it must begin before column 41, and finish before
column 73.

(a) Symbols:

A symbol appearing in the address field must be defined by
appearance in the location field of an instruction in the subprogram, or
be declared as external. If it is not so defined, an error flag "U" -
undefined symbol - will be given on the listing. The symbol may be
relocatable or non-relocatable. The value assigned to a non-relocatable
symbol will not be modified on loading.

Examples: LDA CIC,2 (relocatable)
CIGC.2 ENA 0
LDA INTADDR (non-relocatable)
INTADDR EQU 4

(b) Constants:

. Integer constants can represent a number of functions depending
on the type of instruction -

e.g. octal address (LDA) (DA 100B)
constant value (ENA) (ENA 100B)
shift factor (sHa) (sEA 6)

Octal integers must be suffixed by the letter B.

NOTE: Numbers in address field are assumed to be
decimal unless followed by a B.

(c) Special Characters:

Two special entries may be made in the address field -
(i) a single asterisk is interpreted as the current value
of the address counter when the * is encountered.
Example: ENA 0
LDA *-1

means: Load the A register with the instruction

preceding the LDA instruction.
(i.e. with assembled ENA 0)

(ii) The double asterisk causes the address portion of the
instruction to be assembled with a 1-bit in each bit
position, and is used where modification of the
address will take place during execution.

Example: START oJp ¥
Assembled as 01077777

(d) Literalsa:

If the address field refers to an operand (a value), the

entry may be a literal, expressed as «mv.
-l Aera - dlem e Do
WUTLT o = Lile woue
v = the value

Double precision literals are expressed as =2mv.

2.2.3.3 (cont.2)

The mode of the literal méy be:

(i) Decimal
DVA =D23
DVAQ =2D2753
(ii) Octal
LDA #7177
LDAQ =2TT7TT7TTTTTT7777

(Up to 16 octal digits may be specified for
double precision)

(iii) Hollerith
LDA =HABCD (max: 4 characters)

LDAQ =2HABCDEFGH (max: 8 characters)

During assembly, a literal is converted to binary, and assigned
a relocatable address which is substituted for the literal in the object code.
Literals are all stored at the end of the subprogram. If two literals of the
same value and size are specified, they are not duplicated. When C¢MPASS
encoumnters a literal, the value is compared againat all other previously
assembled literals. If an identical value exists, the address of the
previously assigned literal is substituted in the object code.

(e) Address Expression:

Address expressions may be formed.

Examples: LDA TEM-2
ENA SYMH46B
SYM EQU 275B

Subprogram, data and common relocatable symbols may be mixed.

NOTE: External symbols, the double asterisk and literals may not
appear in an address expression.

2.2.3.4 COMMENIS Field

Comments may be included with any instruction. A blank column
must separate them from the last character in the address field and they
may extend to column 72.

Comments have no effect on assembly, but will be included on the
assembly listing.

It is highly recommended that liberal use should be made of
comments and comments cards.

An example is shown on the following page.

2.2¢3.4 (cont.)

IDENT ¢NE
*

* COMPASS C@URSE EXERCISE 3

* J. SMITH
%
ENTRY START *SCOPE ENTRY*
START UJP *¥
ENQ 14B
ENA 0 INITIALIZATION
STA SUM OF COUNTERS
STA CPUNT
*
Lggp LDA SUM
ADA C@UNT
STA SUM MAIN
LDA CPUNT Lgdp
AQJ,EQ START
INA 1
STA CPUNT
uJP Lggp
*
*
*
C@UNT BSS 1
SUM BSS 1

END START

2,2.4 Coding Simple COMPASS Programs

2.2.4.1 Beginning the Program

The first card in the deck must be an IDENT card. This card has
the word IDENT punched beginning at Column 10, and the program name (of 1-8
alphanumeric characters, the first of which must be alphabetic) punched
beginning at Column 20.

Examples:
... .. IDENT . TEST4Z
or | i IDENTM : 6427 AR N N T - : L
or . . . IDENT L ¢PC¢QER TS 0 N N WL T W W f piie

2.2,4.2 Ending the Program

The last card in the deck must be an END card. The word END is
punched beginning at Column 10, and the entry point (the beginning
instruction in the program) is punched beginning at colum 20. (However,
see later section on END statement in relation to programs containing more
than one sub-program).

Examples:
h | |10 20
D TART
or GIN
or LYGPIN

2.2.4.3 SCOPE Entry

So that the program can be run under SCOPE, it is necessary to
ensure that control returns to SCOPE when the program is finished. The
entry point into the program should take the following form to enable this
to be done:

I | lo 20

TART UJP lal
or IN UJP e
or PIN GJP e

This will be the first executable statement in the program. SCOPE
will enter the return address into the location START instead of the two
asterisks. The last executable instruction in the program should be a jump
back to the beginning so that control can be returned to SCOPE.

Examples:
1 10 20
UJP START
or [TPM UJP BEGIN

or | |0JP I#gPIN

2.2.4.4 Deck Structure for COMPASS Course Exercises

(i) Assembly only
;SEQUENCE,666
JJ0B,1112115,6404,5

;COMPASS,L

ECOMPASS source deck

FINIS (punching begins in column 10)

77 ;
88 (end of file card)

(ii) Assembly and execution:
;SEQUENCE,666

;JOB,1112115,6404,3

;EQUIP,56=MT

;coMPAss,L,x

ECOMPASS source deck

FINIS
104D, 56
9

;RUN,A

Data
77 (end of file card)
88
(iii) Alternative "assembly only",

Use all cards as for execution, except RUN and DATA,
Any LOADER errors will then be indicated, but the
program will not be executed.

NOTE: 1. The g is a multiple punching in column 1 of the card.

2. The end of file card has a multiple 7,8 punching in
columns 1 and 2. It signifies the end of the job.
(EOF cards used on other systems that use

re

in column 1 thru 4 are also acceptable.)

N =
~NOR

o~
0~

STUDENT NOTES

COMPASS INSTRUCTIONS

3.1 LOAD INSTRUCTIONS

3.1.1 Load A

3.1.2 Load Q Chapter E

3.1.3 Load Index

3.2 STORE INSTRUCTIONS
3.2.1 Store A
3.2.2 Store Q
3.2.3 Store Index
3.3 ARITHMETIC, FIXED POINT, 24-BIT PRECISION
3.3.1 Add to A
3.3.2 Subtract from A
3.3.3 Multiply}A
3.3.4 Divide A
3.3.5 Replace Add
3.4 REGISTER OPERATIONS WITHOUT STORAGE REFERENCE
3.4.1 Increase A.
3.4,2 Increase Q
3.4.3 Increase Index
3.4.4 Enter Register
3.5 JUMP INSTRUCTIONS
3.5.1 Unconditional Jump
3.5.2 Compare A with Zero, Jump
3.5.3 Compare A with Q, Jump
3.5.4 Return Jump
3.5.5 Unconditional Halt
3.5.6 Selective Jump
3.5.7 Index Jump (Incremental/Decremental)
3.6 SKIP INSTRUCTIONS
3.6.1 Skip if Equal
3.6.2 Skip if Greater Than or Equal
3.6.3 Index Skip Incremental/Decremental

3.7 STORE WORD ADDRESS

w
0

SHIFT INSTRUCTIONS
3.8.1 Shift Instruction Format

3.8.2 Shift A and Shift Q

3.1 LOAD INSTRUCTIONS

3.1.1 Load A

CoLgangy OPERAION BRBIFIERS ABURESS HIELD
| | LDA,I b

A 2 L S LY

23 1817 16 15 14 00

a = addressing mode designator
b = index designator
m = storage address.

Description : Loads A Register with the 24-bit contents of storage

address M, where M = m+(BP).
NOTE: () indicates contents of.

Examples : (1) If the contents of location 1008 in memory is
52307777, what will be the contents of A after
execution of the following statement?

LDA 100B
Angwer : (&) = 52307777

(ii) If location 1008 is called by the symboliec

address LfC, what will be the contents of A
after execution of the following statement?

LDA 1gc
Answer : (A) = 52307777

(iii) A block of memory in octal is as follows:

ige

00 00 00 01
00 00 00 10
00 00 01 00
00
00

00 10 00
01 00 00
00 10 00 00

What will be the contents of A after executic
of the following statement?

LDA 1gct4

Answer : (A) = 00 01 00 00

Exercises on Load A:

(1) 1gc LDA >

.

LDA e

What will be the contents of A at the end of the above section
of a program?
(The function code for LDA = 200).

(i1) If location 101, contains

8

[101 010 { 000 011 | 111 110 | 001 100 | (in binary)

3.1.1 (cont.)

What is the octal amount
following instruction?

loaded in A as a result of the

LDA 10138 Feesy7a ¥
(iii) If MASK is location 1055, and a block of memory is as follows,
8
104 | 1234 1234
105 | 7023 1307
106 | 1111 2222
107 | 6073 4261
110 | 3333 3333
111 | 4444 3066
What will be in A after execution of the following instruction?
LDA MASK+3
(iv) The instruction to be executed is:

LDA =D43

Which answer gives the correct contents of A after the
instruction has been executed?

a. 43g
b. 3510
C. The contents of location 43
d. 534
3.1.2 Load Q
[lochHON QPIRIIG.MOOIRERS ADRESS RELD
cmyb

RS

ez (e

18 17 16 15 14

23
|21 Tal b|

m

a = addressing mode indicator

b = index designator

m = storage address.

Description : Load Q with & 24-bit quantity from storage address M

where M = m + (Bb)

Examples @ (1) 1D MASK

Load Q with the 24-bit quantity at the
symbolic address MASK,

(i1) If MASK contains 00001111

LDQ
()

MASK
0000 1111

3.1.2 (cont,.l)

(iii) If MASK = location 104g and a block of memory is

as shown, what will be the contents of Q after
execution of the following instruction?

1DQ MASK-4

76 | 14 00 00 20

77 125 25 52 52
100 |11 22 33 44

101 | 55 66 77 00

102 117 53 17 53

103 | 20 64 20 64

104 131753175
105 | 42 06 42 06

106 |53 17 53 17
107 | 64 20 64 20

(Q) = 11 22 33 44
Exercises on Load Q

(1) What will be the contents of Q after execution of each of the following
instructions? (The block of memory to be used is shown below).

00267 | 00 00 01 01
20 10 40 40
11117 17
20 20 20 20
16 25 34 07
Lgc | 60 60 60 60
21 22 23 24
10 00 00 10

(a)
(v)

2728
184

(e) 14c-3
(a) 14C+2

(2) If PLACE = location 26178, and a block of memory is as shown,

EEEE

01 47 26 35
12 50 37 46
23 61 40 57
02616 34 72 51 60
45 03 62 T1
56 14 73 02
67 25 04 13
70 36 15 24
01 47 66 65

3.1.2 (cont.2)

What will be the contents of Q after execution of each of the
following instructions?

(a) 1dQ 2613B
(») 1DQ PLACE-1
(c) LDQ PLACE+3
(@) 13q 1427

3.1.3 Load Index

i (OCATION | OPERATION MODIFUERS ABURESS RELD
i DI, mb

A Plglfl it

23 1817 16 15 14 00

Lo Jel o] |

a = addressing mode designator
b = index designator

m = storage address

Description : Load Index Register Bh with the lower 15 bits of the
contents of storage address m. No address modification
using index registers is possible.

"b" indicates which index register is to be loaded.

Examples 't (1) 1f (c1g) = 12345670

What will be the contents of index register 2 as a
result of the following instruction?

LDI cI¢, 2

Answer: B, = 45670

(ii) A block of memory is as shown:

gc (00000001
7TTTT7T7T7T77
23423423
10410404
44441000
20022124
41234414

The index registers are as follows:

B1({00002
B2|00014
B3|TTT7T73

What will be the contents of the registers after
the follewing?
LDI Lgec+3,3

TNT T Ar+
UL 0‘6’1“

LII 14c, 2

3.1.3 (cont,)

Angwer: B1 = 34414

32 = 00001

= 10404
33 0

Exercises on Load Index instruction

(1) What will be the contents of the index registers after execution of
each of the following instructions, if

(cas) = 00100001

(STERE) = TTTTTTTH
(TEMP) = 40100010
(HIGH) = 20002020
(1#c3) = 33003303

(a) 1DI CAB,1

(v) LI HIGH, 3

(¢) 1DI ST¢RE, 2

(a) 1dI TEMP, 1

(e) 1DI 13,3

(£) 1p1 HIGH, 2

(2) A block of memory is as shown:

405 | 00 00 00 21
04 04 04 04
32 57 14 13
51 21 41 61
00 00 00 00
21 04 00 10
12 74 11 1
00 07 77 75

If TAG = Location 4108’ what will be the contents of the Index

registers after execution of the following instructions?

(a) 1DI TAG=2,3
(b) wupI TAG+4,1
(e) LDI 411B,2
(a) 1p1 TAG, 1

(e) LDI TAG+2,3

3.2

STORE INSTRUCTIONS

3.2.1

Store A

[tananion

b?iﬁk?i%ﬁ.&ﬁﬂi?% ABORESS FIELD

Description :

Examples :

23 1817 16 15 14 00
Lo ol o]]

a = addressing mode designator

b = index designator

m = storage address.

Stores the contents of the A Register in storage

location M. (M = m+(BP)). Contents of A are unchanged.

(i) sTA HPLD
The value in A is stored in the location specified
by the symbol H@LD.

(11) (&) = 1212 3434
TEMP = Location 1018
HPLD = Location 1034

100 |00 00 00 00
101.]11 11 11 1 TEMP
102 22 22 22 22
103 | 33 33 33 33| HOLD
104 |44 44 44 44
105 |55 55 55 55
106 | 66 66 66 66
107 (7777 11 77
110 | 00 00 00 00
What will be contained in the above block after the
following :
LDA 100B
STA TEMP-+2
LDA BPLD-2
STA 106B
LDA BPLD+5
STA TEMP
Angwer:
100 | 00 00 00 00
101 | 00 00 00 00
102 | 22 22 22 22
103 | 00 00 00 00
104 | 44 44 44 44
105 | 55 55 55 55
106 1111 11 11
107 |77 77 17 77
110 | 00 00 00 OO

3.2.1 (cont.)

Exercises on STA Instruction

i 8 location y 8n e block of memory shown
(1) 1If TEMPY is 1 i 3028 d the block of sh
results from the following instruction
STA TEMPY+H4

What were the contents of A before execution of the instruction?

301 | 7723 7723
302 | 1111 11119
303 | 2222 2222
304 | 3044 6133
305 | 2442 4224
306 {1212 3434
307 | 7777 5555

(11) 1If HYLD = Location 1034 and TAG = Location 1015, what will be

the contents of the block of memory below after execution of
the following instructions?

LDA HFLD-1
STA TAGH3

100 | 0000 0000
101 | 1111 1111
102 | 2222 2222
103 | 3333 3333
104 | 4444 4444

105 | 5555 5555
106 | 6666 6666

(iii) If the above instructions were followed by

LDA 101B
STA 69
LDA TAG+5
STA TAG -1
LDA HPLD
STA HFLD+3

What would be the final contents of the block of memory?

3.2.2 Store Q

LBCATION /OPERATION, MODIFIERS ADBRESS FIELB
s'tQ*‘Ixa.s?"z’xb‘=xi
|

RIS B UL NN L

23 1817 16 15 14 00
Lo Jalo | o |

a = addreesing mode designator
b = index designator
m = gtorage address

3.2.2 (cont,)

Description : Stores the 24-bit quantity in Q at address M,
where M = m + (Bb)

Example : LD *41)
STQ RESULT (= 41 00 05 00)
ORGR 500B
RESULT BSS 1

What would be the contents of RESULT after execution
of the above?

Answer: RESULT = 41000500

Exercise 3
A block of memory is as shown:

1gc | 20 00 01 00
00 00 04 01
00 04 44 00
21 23 25 27
'MASK | O 04 07 04
12 34 56 70
00 00 00 O1

What will be its contents after execution of the following?

LDQ Lgc+3
STQ Lgc+l
LDQ Lgc+2
STQ MASK+1
LDQ MASKw=4
sTQ Lgc +6
3.2.3 Store Index
LoATlo PERATION MIDIFIERS ADERESS FIELD
STI,I““M’b R RN
23 1817 16 15 14 00

(o]s] -

a = addressing mode designator

b = index designator

m = storage address

Description: Store the (Bb) in the lower 15 bits of storage address m.
N.B. The upper 9 bits of m remain unchanged. "b"
indicates the .index register. If b = O, the lower
15 bits of "m" are set to zero.

3.2.3 (cont.)

Examples: (i) stI TMP2,2 where (TMP2) = 40050012
1 (B°) = 63636
After execution (TMP2) = 40063636

(i1) If (PIELDA) = 31244444
(CHANGE) = 11111111

What will be the contents of TEMPY after
execution of the following?

LpA FIELDA
STA TEMPY
LbI CHANGE, 3
STI TEMPY, 3

Answer: (TEMPY) = 31211111

(111) 1f (B') = 00502

STA *»
LDA *-1
STA H@LD

STI HPLD, 1
What will be the contents of HPLD?

Answer: (H@LD) = 4000 0502

Exercises on Store Index instruction

(1) 1f (Lgc) = 21043072
(8%) = 00004
What will be contents of L@C after execution of the following?
STI Lgc,?2
(2) 1If (LgC) = 21043072
(TEMP) = 00140001
What will be the contents of L@C and TEMP after execution of the

following?
1DA Lgc
LDI TEMP, 2
STA TEMP
STI TEMP,2

(3) If (TEMP) = 23002000, (BIG) = 77777772, and (HFLD) = 00000001,
What will be contents of TEMP and BIG after execution of the

following?
LDA TEMP
STA HPLD
1DI BIG,3
STI HLD
LDI TEMP,3
STI BIG,3
LDA HPLD

STA TEMP

3.3 ARITHMETIC, FIXED POINT, 24-BIT PRECISION

3.3.1 Add to A

| nATicR PIRATIEN MLIFIERS ABERESS RIELD
! ADA, I myb

23 1817 16 15 14 00
r30 |a| b I m

a = addressing mode designator

index designator
m = storage address

Description: Adds the 24 bit quantity located at address M to the
contents of Register A. The result is stored in A.

M=mn+ (Bb),
Examples: (1) Ir (1008) = 10001010
(4) = 000TTTTT

What will be the contents of A after execution of
the following instruction?

ADA 1008
Answer: (A) = 10101007
(ii) If @PR = location 100, in the block of memory shown,

what will be the contents of A and index register 2
fter execution of the following?

100 00000011
101 {001.41310
02 121000005| B = 00014
103 }14014000
104 {00771 TTT
105 |20201020

Lpa @PR+2
STA @PR+4
DA @PR+3
ADA @$PR14
STA #PR+2
STI #PR42,2
LpA , @PR+5
ADA PPR42
LDI @$PR+1,2
Answer:

(A) = 55201034
(8,) = 41310

3.3.1 (Conto)

Exercise:

A block of memory is as shown:

100 | 00 00 00 01
00 00 00 02
00 00 00 03
00 00 00 04
00 00 00 05
00 00 00 06
00 00 00 07
00 00 00 10

(a) Write a program segment which will add together the contents
of locations 100, 102, 104 and 106 and store the result in
107.

(v) Write a program segment which will add up locations 101
and 102 and store the result in 103, add 103 and 104 and
store the result in 105, and add 105 and 106 and store
the result in 107.

3.3.2 Subtract from A

BT SO

58A,T

23 18 17 16 15 i4 00
[731 I{l,b]7 m

a = addressing mode designator

index designator

m

storage address

Description: Subtracts the 24-bit quantity located at address M
from (A). The difference appears in A. M = m + (BP).

Examples: (1) If (A) =. 10404040
(1008) = 10303030
SBA 100B

Answer: (A) = 00101010

(11) If (&) = 04444444
(TEMP) = 02132132
SBA TEMP
Answer: (A) = 02312312

3.3.2 (cont,)

(iii)

TEMP [1 000000 1|
24001020
TTTTT7T1T77
14021020
00001000
00002222
02020202

What will be in this section of memory after the

following?
LDA TEMP
ADa TEMP+6
STA TEMP-+2
SBA TEMP+4
STA TEMP+5
Answer:

1000000 1] TEMP
24001020
12020203
14021020
00001000
12017203
02020202

Exercises on Subtract from A

(a) LDA =D401
SBA =D30

What will then be the contents of A?

(v) If (cgoE) = 00000001
What will be the contents of HPLD after the following?

LDA C@DE.
ADA C@DE
STA HPLD
ADA HPLD
STA HPLD
ApA HPLD
ADA HPLD
STA HFLD

(c) Write a program segment to multiply the contents of X by two and
subtract from the answer,the contents of locations Y and Z.
Store your answer in ANSWER.

IPTRATIAN MEDUIIRT ABURISS AL
MUA,I myb

TSR SN

23 1817 16 15 14 00
Leo o] o] = |

a = address mode designator

]

index designator

storage address

Description: Multiply the contents of A by the contents of Address N.
The 48-bit product appears in QA with the lowest order

bits in A.
M=m+ (B)
Examples: (i) What will be the contents of QA after execution

of the following instructions? A contains 100
and TABLE contains 5,

STA SUM24
LDA TABLE
MUA SUM24

Solution: SUM24 =| 00 00 01 00
A = [00 00 00 05
A

Q
Answer = | 00 00 00 00 | 00 00 05 00 |

(ii) If TABLE contains 5 and A contains 200000008, what
will be the contents of QA after execution of the
following instructions?

STA SuM24
LDA TABLE
MUA SUM24

Solution: SUM24 = |20 00 GO 00
A =100 00 00 05

A _
Answer = | 00 00 00 01 [20 00 00 00 .

”IU

Exercises on Multiply A Instruction

(a) If (A) = 10, (TABLE) =3 , (SUM24) =5 , and (H@LD) = 0
what will be the contents of A after execution of the following
instructions?
MUA TABLE
STA HYLD
1DA SUM24
MUA TABLE

ADA HPLD

3.3.3 (cont,)

(®) A block of memory is as shown

100 { 00 00 00 01
00 00 00 02
00 00 00 03
00 00 00 04
00 00 00 C5
00 00 00 06

00 00 00 07
00 00 00 10

Write a program segment to add the contents of 100 and 101,

multiply the result by the contents of 102, add the contents
of 103, 104 and 105, multiply the result by (106), and then

add (107). Store the result in 100.

(¢) What will be the contents of A after execution of the following
sequence of instructions, if the initial contents of 4 = O,

(#NE) = 6, (TWg) = 2, (THREE) = 10

3.3.4 Divide A

10"
ADA gNE
MUA WG
SBA THREE
MUA gNE
MUA @NE
SBA TWY
ADA THREE

Description:

18 17 16 15 14 00

RS

a = addressing mode designator

b = index designator

m = storage address

Divide the 48 bit quantity in AQ by the quantity in
storage at address M (M = m + (BP)), The quotient
appears in A, and the remainder with its sign extended
appears in Q.

If a divide fault*occurs, the instruction halts and the
program advances to P + 1. (The contents of A and Q
are usually meaningless in this case.) A divide fault
occurs whenever the number of leading sign bits

(0 or 1, ie, + or ~) in M is greater than or equal to
the number of leading sign bits in AQ. A fault can
also occur if the number of sign bits in M is one less
than that in AQ; however, the actual number in M and
in AQ now has to be considered. Since the number in
AQ is usually achieved by shifting AQ 24 bits to the
right, extending the sign thru A into Q, an overfiow
rarely occurs.

*Quotient greater than 223-1

3.3.4 (cont.)

Example:

1¢ (aQ) = [00000000 [37777777
s -

What will be in A and Q after execution of:

DVA

il

D
Answer: (A)
@

Divide Fault bit = 0, ie, 'No Divide Fault"

1l

Quotient

Remainder

Note: Had the initial contents of AQ been just one
number larger, a Divide Fault would have occurred.

Bxercises:

(a)

(e)

(a)

(e)

If (A) = 0000 0000
(@) = 0000 4040

(TAG) = 0000 2000
What will be 'in A and Q after execution of the following instruction?
DVA TAG

If (A) = 00000000
(Q) = 00000122
(Loc) = 00000005

What will be in A and Q after execution of the following instruction?

DVA Lgc
If (A) = 7777777
EQ; 3/;77771 Tac | 0000 o0
0014 0i40
and Index Register 2 contains 00003
o771 7717
0000 0004
What would be in A and Q after the instruction: 17771773
DVA TAG,2
If Index Register 2 contains 4, TAG is as above, and
(A) and (Q) are as shown:
A Q
L7777 7777 [1717 7T |
What would be in A'and Q after execution of the following
instruction?
DVA TAG,2
Draw diagrams of the machine instruction word which would be

assembled from the following CPMPASS instructions:
(1) Dwa 474B,1

(11) Dpva 100B

3.3.5 Replace Add

Cloeon UL MINGERS ARISS Fis
E i RAD%I m_!é.

T e D A S R SO X

23 1817 16 15 14 00
Loe lelo | o |

a = address mode designator

index designator
m = storage address.

Description: Replace the quantity at address M with the sum of (M)
and the contents of A register. M =m + (BP).

The A register remains unchanged.

Examples: (1) If A = 674321368 and
(INc) = 100g

STA Lgc
LDA INC
RAD__ LgC

LPC now equals 67432236B.
(i) 1If (a) = 2005 and (INC) = 500,
RAD INC

Answer: (INC) = 7008

Exercise:

If (A) = 100, and (INC) = 200g

RAD INC
STA TEMP
LDA INC
STA #NE
LDA TEMP
RAD ING
LDA INC
STA WG
LDA TEMP
"RAD " UUTING
LDA INC
STA THREE

What will be the contents of @NE, TW§ and THREE?

3.4 REGISTER OPERATIONS WITHOUT STORAGE REFERENCE

3.4.1 1Increase A

Doygtan

foN eﬁ?fﬁiiiﬂﬁﬂfiﬂiﬁfﬁs AEURESS FIELD
. _.IN_Ais, SESEINESE B

18 17 16 16 14 00

(Sl 5]

b =0 1if sign extension

‘ 1904108 PERATION MODIFIERS ADDRESS ﬁﬂgw
. mas gy

23 18 17 15 14 00

b =2 if no sign extension

EibE L] G;"Evﬁiifﬁﬁ‘?’}ﬂﬁl?ffﬁﬁ ADIRESS RS
L ANA Ly

£y

it L L e I A2 ey e e

23 18'17 15 14 00

Les [6] v]

Description: Adds the amount "Y" to the contents of the A register.
If there is no sign extension specified; only the 15
bits of "Y' are added to A.
If sign extension is specified, the sign bit of y is
extended before addition to A. (Note - if A is
increased by a negative number, sign extension should
be used.)

Exampless (i) If (4) = 00 00 00 01
INA 12B
(A) = 00 00 00 13

(i1) If (A) = 00 00 00 01
INA,S 40000B
{y = 777 4 0000)

Answer 3 (A) = 77740001
Exercisess (ERRRC) = 00004040B

(a) What will be the contents of ERRPRC after the following?
LDA ERRZRC
INA 555658
STA ERR@RC

(b) If the instructions had been

LDA ERR@RC
INA,S 555658
STA ERRPRC

What would have been the final contents of A?

3.4.1 (Cont.)

(c¢) 1If (ERR@RC) = 607, write the coding necessary to increase
it to 1001g.

(d) 1If (A) = 10g, what will be the final contents of A after
execution of the following?

INA,S 777768

3.4,2 Increase Q

23 18 17 16 15 14 00

Ls]l

b =1 if sign extension

GRS MR ADORESS RE

L INa,s

Lo

23 1817 15 14 00

|15| 7 | y I

Description: Adds the amount "Y" to the contents of the Q register.
If there is no sign extension specified, only the 15
bits of "Y" are added to Q.
If sign extension is specified, the sign bit of y is
extended before addition to Q. (note: if Q is increased
by a negative number, sign extension should be used.)

Examples: (i) 1If (Q) = 00 00 00 20
INQ 60B

Answer : 1Q) = 00 00 01 00
{(ii) If (Q) = 00 00 00 20

ING,S 44444B

(y = 717 44444)

Answer ¢ (Q) = 777 44464

Exercises: (i) 1If (Q) = 5774y what will be the result in Q
after the inStruction INQ 5478 is executed?

3.4,2 (cont.)

(i1) If (Q) = 50B, (STACK) = 500B what will be the
result in Q after the following sequence of

instructions?
INQ 100B
STQ TEMP
LDA TEMP
RAD STACK
LDQ STACK

INQ, S 27711B

3.4.3 Increase Index

LOCATHON (OPERATION WADIFIERS RDURESS FIELD

INI, Y1.b

o
23 1817 16 15 14 00
l 15 Iol b I y

b=index register designator

Descriptions Adds the 15-0it quantity "y" to the contents of the
index 'register specified.

Examples: (1) 1IN 6,2 where (B2) = 12B
What will be the contents of Bo?
(32) = 20B
(ii) wLbI 100B, 3
INT 10B, 3

What will be the contents of B?
(8%) = (100B) + 10B.
(iii) 1If a block of memory is as shown below, what will

be in the index registers as a result of the
followings

107 20 00 00 04

40 10 00 21

60 00 00 O1

L Y
00 00 00 20

04 01 07 Ot

22 22 33 33
LDI 110B,1
LDI 111B,2
INI 20B,2
LDI 113B,3
INI 70B,3

Answers B1 = 21B
Bé - 21B

B. a
3 110B

3.4.3 (Cont-)

Exercises on Increase Index instruction

(i) A block of memory is as shown:

100 | 00 00 00 01

00 00 00 10

00 00 01 00

00 00 10 00

00 01 00 00

00 10 00 00

01 00 00 01

What will be the contents of the three index registers after
axecution of the following?

LDA 101B
RAD 100B
LDI 1008, 1
INI 100B, 1
LDI 10438, 2
INI 17777,2
LDI 106B, 3
INI 100B, 3
STI 10638, 3
LDA 106B
RAD 106B
LDI 106B, 3

(ii) If index 1 contains 1, write a program using this
index to store the numbers 1,3, 5, 7 and 8 in 5 consecutive
locations beginning at location 100.

3.4.4 Enter Register

23 18 17 16 15 14

00

[e Jal o | v I
(a) d=1
b=2

LOCATIER | GPERATION MGDITIERS ABBRESS HELD
inl
23 18 17 15 14 00

Lo | o |

(b) d=1
b=20
(SCATI0N ‘GPERATION MOBIFIERS ABERESS FIED
5ol E“A’>S"ci:“s=~zs:,;-ﬁ|'

23 18 17 15 14

00

1

(¢c) d=1
b=3

TUOCAIIR . OPLUATIONMODIWRS ADORESS PR
ENQ

23 1817 1514 00
e [2 [v |
(@ a=1
b=1
[CKTON OPERADIONMODINERS MDURESS RELD

_ENG,S

23 18 17 16 14

00

e | s | y

(e) d=0
b = index designator
ULLaTIon OPERATION.WODIFIERS ABURESS FIELD
ﬁNI ,;f‘l:,vbz‘,-,;,,- L
i H " Niver .

23 18 17 16 156 14

00

Lo Jofo |

\

>

Enter A

Enter Q

Enter Index

If b=0, this is a no-operation instruction.

~/

3.4.4 (cont.)

Description: The 15-bit quantity "y" is entered in the specified
register. The register is cleared before "y" is entered.
If sign extension is specified, the sign bit of "y" is
extended before "y" is entered into the register.
Examples: (i) ENA 14B
(4) = 00 00 00 14
(ii) ENQ,S 40001B
(Q) = 777 40001
(iii) ENI 77B,1

(3" = 00077

Exercises on the Enter Register Instructions

(1) 1£ (Q = 11025321, and location 70, contains 10101g
what will be the contents of @ aftér execution of The

folliowing?
ENQ 70B
(2) A ENA 0
LbA *-1
INA 40
STA AA

What will be the contents of storage location "AAY after
execution?

(3) 1If (FIELD) = (1010 1010

and FIELD = locaton 456B

What will be the contents of the A Register after execution
of the instruction

ENA FIELD
(4) ENA,S 0

STA 100B

ENI 10B,1
INI 100B,1
STI 100B,1
LDA 1008
INA,S 40000B
STA 100B

LDI 100B,2

What will be the contents of A, Bl ana B? after execution
of the above?

3.5 JUMP INSTRUCTIONS

3.5.1 Unconditional Jump

Thinor 7 psemeonwiens ams ReEr

18 17 16 15 14 00

o] w |

23
e

a = addressing mode designator
b = index designator
m = storage address

Description: Unconditionally jump to address M, where M = m + (Bb).

Examples: (i) EgF LDA 100B

UJP E@F
Control will jump back to statement EOF

(ii) AAA uJp *42 (AAA = address i0)
Program jumps to address 12.

Where the address to which control is to jump is not known
at the time of assembly, but will be entered in during execution,
the instruction is usually coded as follows, to enable easy recog-
nition of the statement in assembled programs:

UJP * (assembled as 01077777)
This causes 1 bits to be set in the address portion of the word,
and this will be replaced during execution by the actual address
to which control is to jump.
SCPPE entry to a program takes this form. (See section 2.2,4.3)
However, in such cases, the contents of the address portion of

the word may be any legal address. Whatever the address is, it will
be replaced by the correct address during execution. Thus:

UJP **

uJP *

uJp *+7
START UJP START

will all serve the same purpose, for they will all be modified as
required in the program, during execution.

3.5.2 Compare A with Zero, Jump

23 18 17 16 15 14 00
| 03 |Ol i ' m

i =jump designator (0-3)
m =jump address

(a) j =0, jump if A = +0 or -0

LG0ATION ‘GPERATION MEDIFIERS ADORISS R(B

GOATION | GPIRAVIGN MODIRERS ADIRESS RELD
AZJ,NE i
23 18 17 15 14 00
[03 l 1 | m

(¢) 3 =2, jump if A 2 40 (-0<+40)

LOCATION OPERAJIGHN, MOADIFIERS ADURESS RIflD
AZJ,6E
23 1817 1514 00
[2] o |

(d) j =3, jump if AL +0 (-0<+0)

LICATIEN 'OPERATION MODIFIERS ABORESS FIELD
CAZILT om

il k.

23 1817 15 14 00

[o [o« |

Description: (A) are compared with zero to establish test conditions
as above. If the condition specified by the modifier
is true, the program jumps to address "m". If the test
condition is not true, RNI from address P + 1. (RNI =
read next instruction).

3.5.2 (cont.l)

Example: If (A) =1
(i) What will be the RNI address after execution of
AZJ,EQ L@gP
Answer: RNI at address P + 1

(i1i) If the instruction had been
AZJ,GE LggP
Answer: BRNI at address Lggp
Exercises:
Given the information below, give the RNI addresses for each problem.

(1) 1I£ (&) = 77777777

AZJ,EQ 100B
BNI = _ __ _ ?
(i1) If (o) = 00020000
AZJ ,EQ ST@RE
RNI = _ _ _ _ 2
(iii) 1If (A) = 00000000
AZJ,NE CARRY-H
RNI= _ ___ ®
(iv) 1If (&) = 77777776
AZJ,LT NEXT
RNI = _ _ _ _ 2
(v) If (A) = 03675671
AZJ,GE ¢@NE
BNI = _ _ _ _ ?
(vi) If (A) = 00000000
AZJ,GE LggP
RNI = _ _ __ ?
(vii) ENA,S 40001B
AZJ,GE YES
RNI= _ ___ 2
(viii) ENA 77777B
AZJ,LT MAYBE
RNI = e __
(ix) ENA,S 20741B
AZJ,GE 200B
RNI = —_——— ?
(x) ENa,s 32767
AZJ,LT FINISH

RNI =

?

3.5.2 (cont.2)

(xi) Which Halt will be reached after execution of the
following program segment?

L =@423

SBA =@424

AZJ ,EQ HLT

uJP HLT+1
HLT HLT 1

HLT 2

3.5.3 Compare A with Q, Jump

2 18 17 16 1514

3
Los [+] i |

j =0-3 jump designator (0-3)
m = jump address

m

(@) 1=0, juwp if A=Q (40 = -0)
i atATioN 'OPERATION MODIFIERS ADERTSS RIELB
: AQJ,EQ@ m
23 1817 15 14 00
[s | o | m I

(b)Y j=1, junp if A#Q (40 = -0)
i 1HATIGE | OPLRAIION MODINIERS ADDRESS FIELD
.. AQLNE m
23 1817 15 14 00
(=] =1 -]

(¢) j =2, jump if AZ2:Q (+H0>-0)
L USANOK PIRANGRONAERS ADORESS FIEQD
. AQNLGE om.
23 1817 1514 00
Los | 6 | w1

(d) 3 =3, jump if AL Q (40> -0)
I (gcaniox U GPERAIION MODISUERS KBDAESS RIELS
AQULLT m .
23 1817 1514 00

Loz | 7 |

3.5.3 (cont.)

Description:

The quantity in A is compared to the quantity in Q
to establish a comparison or test - condition. If
the test-condition is true, RNI from address "m".
If not true RNI = P+i.

Examples: (i) A4QJ,EQ Lgge (4) = 00000000
(Q) = 77777777
RNI LggP
(ii) AQJ,GE LgpP (A) = 00000000
Q) = 77777777
RNI Lggp (+H0>-0)
Examples: Given the information below, supply the RNI's
for each problem:
(a) AQJ,LT LggPp (4) =07234567
(Q) =04444444
RNI = e __ 7
(b) AQJ,GE Lggp (4) = 50523417
(Q) = 23456733
RNI = L __
(c) AQJ,NE Lg#P (A) = 00 00 00 O1
(Q) = 10 00 00 01
BNI = —_———— ?
3.5.4 Return Jump

CLgraTied

OPIRATION MEDITIERS ABDRISS FIELD

Description:

Examples: (i)

18 17 15 14

23
Lo | » |

The address portion of the contents of address m is
replaced by the return address P + 1. The program
jumps tom + 1, i.e. BNI = m + 1. This instruction
is used for subroutine linkage.

RTJ XS@RT

Here the address portion of XS@RT will be replaced by
the address of the RTJ instruction + 1, and the
program control will advance to XS@RT+l.

3.5.4 (cont.l)

(1)

RTJ SUBR@UT [100]
SUBRUT TP ** [200]
TP SUBRZUT [219]

If the numbers in brackets indicate the addresses of
the respective instructions, the assembled program
before execution would appear as:

00100 00700200
00200 01077717
00210 01000200

After execution the contents of memory would
appear as:

00100 00700200

00200 01000101
T

00210 01000200

Note: #** is assembled as 77777g and is used
where the value is to be changed at
run time, such as the address portion
of the instruction at address 00200.
Or, to say it another way, ** = TBC
(To Be Clobbered.)

3.5.4 (cont.2)

Use of the RTJ statement

There are two types of subroutines used in CﬁMPASS - open and
closed. An open subroutine is a series of instructions which is required
more than once during a program, and is inserted where it is required.

e.g.

Program

Open

Main Subroutine
Program

Main
Program

This method has obvious disadvantages and it is more usual to
employ the closed subroutine method.

e.g.

Main
Program

Jump to Sub.~\\\\\\\st
Main ‘;\\\\\><\ Closed

Subroutine

Program

Jump to Sub.-~ /// Return to Main Prog.

Main ﬂ//
Program

What is the problem here?

It is that the program jumps to the subroutine from two or more.
points in the main program,and once the program is in the subroutine, how
does it know to which main program instruction it should return?

It doesn't, since it doesn't know where the jump to the
subroutine was located in the Main Program.

3.5.4 (cont.3)

This problem is eliminated by using the RTJ (Return Jump)
instruction in the Main Program when a jump to the subroutine is desired.
The instruction stores the address of the instruction following the RTJ
in the lower 15 bits of the first instruction of the subroutine. The
first instruction is then skipped and the first instruction executed is
actually the second instruction of the subroutine.

e.g.
Main
Program
RTJ to Sub.
Main Closed -*‘\\
Program Subroutine
& 2
P
RTJ to Sub, - / Jump to firstZ-~
/):7 Instr. of Sub.
'A_’
Main
Program

Following is a section of a Compass Program that illustrates
this latter method:

ENI 0,1
LpA 100B
SBA 101B
RTJ SUB
LDA 105B
MUA 1558
RTJ SUB
LDA 255B
INA 21
etc.

SUB uJpP *%
AZJ.LT SUB
INI 1,1
uJp SUB

When the RTJ instruction is encountered, execution jumps to SUB,
and the address portion of SUB is replaced by the address of the RTJ
instruction + 1. After execution of the instructions in the subroutine, a
jump is made back to SUB, which instruction is now an unconditional jump to
the instruction after the RTJ instruction. Execution of the Main Program
then continues.

3.5.5 Unconditional Halt

LOCATION 'OPERATION MUDIFIERS ABORESS MUY
HLT,

IR R AN BT PR e BTN N

23 1817 1514 00
Lo o | = |

Description: Unconditionally stop at this instruction. Upon
restarting, RNI from address "m"

Example: CTR,1 LDA CTR.2
INA 10038
STA TgM, 1
ISE 10,1
UJP CTR,1-3
HLT SEVEN

SEVEN §) 4] MASK

END

3.5.6 Selective Jump

23 1817 1514 00
Lol s+ [o |

1 - 6 = SELECTIVE JUMP switch number

[y
f

switch is on

j =2, jump if "SELECT JUMP 2" switch is on

Pk HIBFERS ABIRESS TIELS

j =3, jump if "SELECT JUMP 3'" switch is on

GRERATIDN MBDIFIERS ADDRISS R
iSJ3 m

ke

j = 4, jump if "SELECT JUMP 4" switch is on

i LBCATION 'UPERATION MIDIFIERS ADRRESS FIELD
i SJ4 e

|
it ez AN RIS R 6T

j =15, jump if "SELECT JUMP 5" switch is on

| LCATIoN f&?iRHl%S.Hﬂ&!HERS 4BORESS FIELD

'

SIS oM

j =6, jump if "SELECT JUMP 6" switch is on

[LOCATION OPERATUON WEDIFIERS ADORESS FIELD
.

2i8iToa

rimirie : 0iser3e jae)a3isaie; st

j =0, see HLT instruction
7, see RTJ instruction

.
I

3.5.6 (cont.)

Description: Jump to address m if the jump key specified is set "on".
Otherwise RNI P+1.

Example: SJ4 BYPASS

CARDS LDA CARD, 1
ADA TEMP, 1
UJP ENDING

‘BYPASS LDA TAPE, 2
ADA ST@RE, 2

ENDING HLT 1gc4
END

If jump switch 4 is set "on" jump to BYPASS otherwise
RNI at address CARDS.

3:2.7 Index Jump (Incremental/Decremental)

23 1817 16 15 14 00
Loz [a] o[=]

b =index register designator

d = 0, Index Jump Increment

CATION MPOIUERS ABDRESS PIEIE
. m,b

23 1817 15 14 00

d =1, Index Jump Decrement

CPERATION ¥IDITERS RUGRESS FELD
.. 140 b

udla:

18 17 15 14 00

3
I 02 Lb+4! m l

2

Description: Jump to "m" if (Bb) # 0 and increment (or decrement) index
by 1. There are 3 possible conditions:

(i) If b = 0, the instruction is a no-op. and
RNI from P + 1.

(i1) If (B%) = O BNI from P + 1.

(111) If (8°) # 0, the jump test condition is
satisfied. One is added or
subtracted to (BP); jump to
address m and RNI.

N.B. The counting is done in a one's complement adder.
Negative zero is not generated because the count
progresses77775, 77776, O0CCO, stopping
at 40, If a ~0 is initially in BP, the count
progresses 77777, 00001, etc.

30507 (COnt.)

Examples: ENI 9,2
Lggp LDA BUFFER, 2
STA DATA,2
13D 1ggp,2
HLT

How meny words will transfer?

Answer: 10

10
Exercises: ENI -5,1
Lggp LDA 'S
171 1g@p,1
HLT

How many times will the loop be executed?

3,6 SKIP INSTRUCTIONS

3.6.1 Skip if Equal

23 1817 16 15 14 00

|o4ld&lb| y j

1
=0

Il

(1) d
b

LOCATION : [OPERRTION MOMFIERS ADBRESS FIELD
Asz’esix‘;;iqa-zs-xz
IJ

i e s ray R T ST

ki Lededold i A fnid

Lirgdganaleaieisia;

23 1817 1514 00
I 04 | a4 | y
(i) d=1
b =2
WGCATON | PERATION MODIFIERS ADDRESS FELD -
L ASE Ty
K Yoo
23 1817 1514 00
ro4 | 6 l v J
(iii) d =1
b=1
WOATION | PERATIOH NODIFIERS WBURESS FIECD
QSE"S " M st 1
b tet il e L L e e L Y e e AR OIS b SET
23 1817 1514 00
Lo | s | |
(iv) a=1
b=3
TIATGR |, GFLRATONBODTHRS ALDRIS Te
L4

2 18 17 15 14 00

(e] o]

(v) d=0
b = index designator
[LOCATION © QPERRIGN MEDIFIERS ADORESS FIELD
j ISE. . . . ysh,

23 1817 1514 00
Loo [o | v |

b=index register designator (1-3)

If b=0, y is compared to zero.

3.6.1 (cont.l)

Description: If the 1nstruct10n is ASE, QSE or ISE; (Alower 15)»
(Q1ower 15) or (Bb) respectively is compared bit fr
bit to "y". If equal, RNI from P+2, otherwise RNI
from P+1.

Note: To be equal to "y", the quantities must be
exactly the same, thus if (A) or (Q) =
xxx00000 or (BP) = 00000, "y" must be 00000
to be equal., Or, if (A) or (Q) = xxx77777
or (BP) = 77777, "y" must be 77777 to be equal.

If sign extension is specified, i.e. the instruction

is ASE,S or QSE,S the sign of "y" (bit 14) is extended

and the 24 bit quantity is compared with the quantity
in the specified register.

Note: In this case, if (A) or (Q) = 77777777 or 00000000
and "y" is 77777 or 00000, the quantities are
considered to be equal. For all other values in
A or Q the sign extended "y" value must be
exactly the same to be considered equal.

Examples: (i) 1IsE 300B,2
If (BZ) = 3005, BNI P + 2.
(ii) ISE 50,1 (B') = 62

What is the RNI?
RRTI = P + 2

(iii) BEGIN LDQ FIELDA
QSE 64210B

FIELDA #CT 50964210
What is the RNI after QSE?
BNI = P+ 2 (=BEGIN + 3)

(iv) Example of use of ASE instruction in a loop.

ENA 0
L§gP STA CIC.1
STA TEMP
LDA *.2
INA 1
STA *_4
LDA TEMP
INA 5
ASE 25
uJP L@gp
HLT
TEMP BSS 1

This will store numbers O, 5, 10, 15 and 20 in
consecutive locations, begining at location CIC.1.

3.6.1 (cont.?2)

(iv) Use of Index skip-if-equal in a loop.

ENI 0,1
19gP LDA VALUE
MUA =D5
VA =D8
STA RESULT
LDA L@gP
INA 1
STA LggP
LDA LA
INA 2
STA *_6
INI 191
ISE 100,1
ip3 L&gP
HLT
VALUE #CT 1

Exercises cn SKIP-if-equal instructions

(a) How many times will the following loop be executed?

ENQ 0

Lggp LDA ANS
MUA v
STA ANS
INQ 5
QSE 100
UJp LogP
HLT

(b) Write a program segment to move ten numbers in consecutive
locations, beginning at STORE, to consecutive locations beg-
inning at RESULT.

(¢) If CHECK contains 20100010, how many times will the following
loop be executed?

LDg CHECK
LOgP LDA M

;NQ 1

QSE 12

UJP LigP

HLT

3.,6 o 1 (Cont 03)

e emseee et ——

(4) what will be the final contents of HOLD after
execution of the following?

ENI 0,1
ENA 0
STA HELD
INA 10
INI 151
ISE 10, 1
UIP %23

STA HOLD

3.,6.2 Skip if Greater Than or Equal

23 1817 16 15 14

[os Jaf o |

y
(i) d=1
b=0
(OCATION {OPERATION, MODIFIERS ADBRESS FIELA
i A,sslzs,,;‘gigv:xf.ssxltx-)i=x
T4
23 18 17 15 14 00
Lo | « | v |
(ii) d=1
b=2
LOCATION | (OPERATION MODIFIERS ADDRESS Fielp
23 18 17 15 14 00
Los [6 | v 1|
(iii) d=1
b=1
WOATION | (GPERATION MODIFIERS ADORESS FlE(S
foieid Bod Vit b bild
23 18 17 15 14 -00
I 05 | 5 I y 1
(iv) d=1
b=3
WCATIOR | OPERATION HODIFIERS ADDRESS FIELD
e JRS6L Ly .
23 18 17 15 14 00
Los 1 7 | v |

(v) d=0
b = index designator
LCATION GPERATION,MODIFERS ADDRESS FIE(S
I ISG ':'Izlb T L

18 17 i5 14

(o] o]

3.6.2 (cont.)

Description: If the instruction is ASG, QSG or ISG; (Alower 15),
(Qiower 15) or (BP) respectively is compared to Ty".
1f greater than or equal, RNI from P+2, otherwise
RNI from P+l.

Note: If the (A) or (Q) = xxx77777 or (BP) = 77777,
the instruction will skip if "y" is either
77777 or 00000. 1If the (A) or (Q) = 00000000
or (BP) = 00000, the instruction will skip if
"y" is 00000 but will not skip if it is 77777.

If sign extension is specified, i.e. the instruction

is ASG,S or QSG,S the sign of "y" (bit 14) is extended

and the 24 bit quantity is compared with the quantity

in the specified register. If the sign bits are different

the one with a sign bit of zero is larger.

Note: If the (A) or (Q) = 00000000, the instruction
will skip if "y" is either 77777 or 00000. If
the (A) or (Q) = 77777777, the instruction will
skip.if "y" is 77777 but will not skip if it
is 00000.

Examples: (1) 1f (4) = 00002020
ASG 20208
(A) is equal to y, skip next instructien, RNI at P + 2
(i1) If (A) = 10000001
ASG,S 40002B
y = 77740002 with sign extended

(A) is greater than y, skip next instruction, RNI at P + 2

Exercises in SKIP-IF-GREATER-THAN-OR-EQUAL Instruction

(a) To which STOP location will control jump?

'ENA,S 40000B

INA 20B
ASG,S 400408
UJP ST@P1
ASG 40020B
UJpP ST$P2
UJP ST@P3

(b) To which location will control jump?

ENQ 200B
QsG,s 128
UJP ENDING
UJP PAUSEL

(c) How many times will the loop be executed?

ENI 0,1

LDA PERSEN, 1
MUA RATE1
SHAQ 24

DVA RATE2
STA TAX, 1
INI 1,1

1SG 500,1
UJP *.7

HLT

3.6.3 Index Skip Incremental/Decremental

18 17 16 15 14 00

(o lle] o |

d = 0, 1Index Skip Incremental

LGCATION " OPERATION MODIFIERS ADDRESS FIES
ISI:,?”1=;qi"vb¥"J“l"‘!"l
e

s

23 18 17 15 14 00

[0] o | Y]

b=index register designator

d =1, 1Index Skip Decremental

) OPERNT 0N, HEDITIERS AODRESS RELE
T Isp b
23 1817 1514 00
R

b = index register designator

. b .
Description: If (Bb) = y skip to P + 2 and clear the index register.

If (B") / y RNI from P + 1 and add 1 to (or subtract 1
from) the index register.
Examples:s (i) ENI 0y 1
LDA BUFFER, 1
STA DATA, 1
ISI 9;1
uJp *3
HLT

What is this series of instructions doing?
Answer: Moving 10 words from BUFFER to DATA

(ii) How can the same problem be done using the ISD instead
of the ISI?

ENI 9,1
LDA BUFFER, 1
STA DATA, 1
I3D 0,1
UJp *_3
HLT
Exercisges Write a program segment to move 50 numbers from BUFFER to

locations beginning at STORE. FIND the total of these
numbers and store the answer in RESULT.

3.7 STORE WORD ADDRESS

(OCATION | OPERATIONODIFIERS _ ADIRESS FIELS
Lo OWAL L mb

A T S IR I AT AN I I
H

914 e e 2 g i

!

18 17 16 15 14 00

(Sl = 1

Descriptions Stores the lower 15 bits of (A) in the storage
location M. The high - order 9 bits of (M) are
unchanged.

Exampless (1) SWA INST (A) = 17603216

L

-

INST LbA *k

What will be the contents of INST?
(INST) = 20077777 (Before)
(INST) = 20003216 (After)

(ii) INST LDA *+1
SWA *.1

Where INST = 76B, what will be the contents
of words 76B and 77B?

(76B) = 20000076

(77B) = 44000076

Exercises What, if any, is the difference between the modification
achieved by the two program segments bslow?
Program A Program B
L1DA F@URO6 LDA INST
SWA INST ENA 406
. STA INST

INST ENA *

INST ENA *
F@URO6 gor 406

3,8 SHIFT JNSTRUCTIONS

3.8.1 Bhift Instruction format

23 1817 16 15 14 00

el]

an operation designator, which is virtually an extension
of the function code. It differentiates between 2
instructions using the same f code.

e.g. SHA d=0
SHQ d =1

index register designator

The contents of the index register is treated as a

15 bit signed number and is used as a shift direction
and/or number-of-bits modifier.

Shift count, base ’
It may be positive or negative (in complement form)
depending on the direction of the shift.

Left shift = positive
Right shift = negative

shift count, actual

K = (BP) + k if b # 0 otherwise K =k if b = 0.

the true sum, otherwise the sum is the true sum.

If the true sum is between 00000 and 37777g, the
righthand two octal digits are the actual shift

count for a left shift. 1If the true sum is between
40000 and 777778, the complement of the righthand two
octal digits are the actual shift count for a right
shift.

Shift timing if K = + (use only lower 2 digits of K)*

Q}fﬁ x0 x1 =x2 | x3| x4 |x5]|x6]|x7
Ox
1.3 wusec
1x
2x 1,45 usec Mx + xN =
3x 1.7 usec octal shift
count
4x 1,95 usec

5% 2.2 usec

6x 2.45 usec

7x 2.7 usec

*if K = -, complement and use the lower 2 digits
to determine the timing

3.8.2 Shift A and Shift Q

23 1817 16 15 14 00

Loz Jal o |« |

d =0, Shift A

CLaRATION

' ([OPERRTIGN MUDIFIERS ADERESS RIE(D

[

_SHA kb

T T AT L e b e

23 1817 15 14 00
Lz o |«]

b=index register designator

d =1, Shift Q

ACAHgE

PLRATIGN.MODIFIERS ABORESS HELD

Description:

LSHe. . Kb
23 1817 15 14 o 00
l 12 J b+ 4 l k I

b =index register designator

The 24-bit contents of the register are shifted
according to the magnitude and sign of K (i.e.,
k +b)

If X is +, instruction is left shift end around
If K is -, instruction is right shift end off

e.g. Shift left 6 positions: K = 00006

Shift right 6 positionst X = 77771

N.3. (i) During right shift, the sign bit is extended
and the low order bits are discarded.

(ii) During left shift, the high order bits are
brought end around.

(ii1) (Bb) and k,with their signs extended, are
added to give K. The computer then senses
bits 00-05 and bit 23 to determine the
size and direction of shift, respectively.

3.8.2 (cont.)

Examples of Shift A and Shift Q

(i) sHA 6 (4) = 10203040
After Shift (4) = 20304010
(11) sHfy -6 (4) = 12345671
After Shift (8) = ?
{A) = 00123456
(iii) sSHa -6 (4) = 50367123
After Shift 4y =7

(4) = 77503671

Exerciseson Shift A and Shift Q

(a) 1If (&) = 20000010

What will be the contents of A after

SHA 4
SHA =4

(b) If (A) = 21354706
What will be the contents of A after

ENI 2001,1
SHA 8,1

(e) 1f (Q) = 10000001
What will be the contents of @ after
SHQ 6
(a) 1If (Q) = 12345670

What will be the contents of @ after each shift in the

following?
ENI 307,2
SHQ 4,2
SHQ -13

(e) 1If (LABEL) = 10421045

What will be the contents of LABEL after

LDA LABEL
sHA -15

STA LABEL
LDQ LABEL
SHQ 1404B

STQ LABEL

STUDENT NOTES

INSTRUCTION MODIFICATION

4.1 SIGN EXTENSION

4.2 ADDRESS MODES Chapter ﬂ

4.3 INDEX MODIFICATION OF WORD ADDRESSING INSTRUCTIONS

4.1 SIGN EXTENSION

Certain instructions offer the option of extending the sign
of a 15 or 17-bit operand by putting a modifier "S" in the operation
field.

e.g. KNA,S 063708 (&) = 00006370
ENQ, S 764328 (Q) = 77776432
Exgggless
(1) ASE,s 777778 where (A) = 77777177

What is BRNI address?
REI from P + 2.

(ii) ENA,S b what will be (A)?
(A) = 777777171

(1ii) ENQ,S 405B what will be (Q)?
(Q) = 00000405

(iv) ENa,S 1B what will be (A4)?

(4) = 00000007

(v) ENQ,8 431258 what will be (Q)?
(Q) = 77743125

(vi) Wwhere (Q) = 00054631B

QSE, S 54631B will result in the RNI being
\a) P+1or(b) P4+27

Answer 3 P + 1
(vii) ASG,S 436718 where A = 43671234
what is RNI?
Answer 3 "y" extended = 77743671
(A} is not greater tham or equal to "y",
because "y" is less negative.

(A) = -34106543
y = -00034106

ENI at P + 1

4.2 ADDRESS MODES

There are three address modes as follows:

(a) No address
e.g. Operand ENA 10B
Shift count SHAQ 5
(b) Direct Addressing

a=0
m - operand address

e.g. LDA 45B will load the contents of word
45B into the A register.

(¢) Indirect Addressing
a =1
esg. LDA,I m the "I" specifies indirect

addressing and generates a
"M bit in bit 17.

The best way to explain is with the following flow
chart and examples.

NO

YES
Is a = 0?

Add (BP) to
m to form M

Execute,
(:E:} using address > EXIT
M

Examplest

In the following examples use the contents of these 5
words

100 26000101

101 | 37421623 3" =2

102 00000103

103 76543214 (5) = 4
104 40500100

4,2 (cont.)

(1)

(i1)

(11i)

(iv)

LDA 100B

What will be the
(A) = 26000101.
Lpa,I 100B

What will be the
(4) = 37421673
LDA,I 1003, 1

What will be the
(4) = 76543214
LDA,I 100B,2

What will be the

(4)

(4)

(a)

after execution?

after execution?

after execution?

affer execution?

4,3 INDEX MODIFICATION OF WORD ADDRESSING INSTRUCTIONS

The 3200 has 3 Index Registers each of 15-bit capaecity.

These

Index Registers can be used to modify the address fields of many instructions.

e.g.

Example

(4

LDA STORE will load the contents of STORE into the A
Register. FutLDA STORE,L will load the conte?ts of

(STCRE + (B')) into the A Register, (i.e. if (B') = 1,

it will load STORE+ 1).

How is an indexed instruction assembled?

LDA STORE,2 where STORE = 00142B will assemble as: 20200142
Why?

I gcation | OPERAVION MODIFIERS ADBRESS RIELD

23 18 17 16 15 14
EXENE

a = addressing mode designator
b=index register designator

00

|

m

b = 00, means no index register

b = 01, means index register 1

b = 10, means index register 2

b = 11, means index register 3

LDA TAG,1 where (B') = 3 100 [11111111
and TAG = 100B 101 22222222
102 | 33333333
103 | 44444444
104 | 55555555

) = 44444444

Restrictions on Indexing

The following instructions cannot specify indexing.

LDI ISE INA
STI ASE INQ
INI QSE ENA
ENI ENQ
AQJ
AZJ

Exercises on Index Modification *

*Additional material

1e
TABLE

TABLEX

A block of memory is as shown:

on Index Modification
is located in Chapter
8.3

00000000

1111111

22222222

33333333

44444444

T555555

P

66666666

7777 |

4.3 (cont.) What will be the contents of memory as a result of
- the followings

ENT 0,1

LDA TABLE,1
STA TABLEX, 1
INI 151

LDA TABLE, 1
STA TABLEX,1
INT 2,1

LDA TABLE, 1
STA TABLEX, 1

2. A block of memory contains the values shown

100 { 00000001

00002222

00000303

04040404
50055005
TAG | 06606606

T
00000000

11111111

What will be contained in the block after execution of the
following instructions:

ENI 0,1
LDA 100B,1
INL 2,1
STA 100B,1
ENI 3,2

LDA 100B,1
STA 100B,2

ENI 53
LDA TAG-6,3
STA TAG,l

STA TAG,2

48-BIT OPERATIONS

5.1 LOAD AQ

5.2 STORE AQ

Chapter ﬂ

5.3 SHIFT AQ

5.1 LOAD AQ

GPERATIOR MOUFIERS | ADORESS FID
. LDAQ, I m,b

23 1817 16 15 14 00
Lzs ol o] m |

a = addressing mode designator

b = index designator

m = storage address.

Description: Loads Registers A and Q with the two words from
address M and M + 1 respectively, where M = m + (B").

Examples (SUM48) == 11 11 11 I1
(SUM48+1) = 22 22 22 22
LDAQ SUM48
A 1Q
AQ = 11 11 11 11 E 22 22 22 22
1
Exercises: (1) A block of memory is as follows:

103 | 1111 1111

104 | 2000 2000

105 | 6666 6666

106 | 2323 2323

107 | 0111 1110

110 | 7070 7070

111 | 3333 4444

This has been set up by a subprogram, part of

which wass
ORGR 100B
BSS 5

FIELD 3SS 3

What would be the contents of AQ after execution
of

LDAQ FIELD+3

5.1 (cont,)

Exorcises: _ (Continued)

(1i) A block of memory is as follows:

77111 11 11 1

100 | 22 22 22 22

101 33 33 33 33

102 | 44 44 44 44

103155 55 55 55
104 | 66 66 66 66

051717 71 71

A portion of a program readss

LDAQ TABLE
L TABLE+3
STA TABLE+2
STQ TABLE+1
CRGR 1003
TABLE BSS 10

What would be the contents of the block after
execution of the above program?

5.2 STORE AQ

SREERTIAN ROBIVHRS ABRRE

 STAQ, I myb

18 17 16 15 14 00

[Llel =]

addressing mocde designator

"

index designator

m storage address

Description: Store the contents of Registers A and Q in storage
locations M and M + 1 respectively.

1111 1111

Examples (1) 1If (4)

(Q) = 3333 3333
A

ie. AQ=| 11111111

Q

33 33 33 33

What will be the contents of locations 1004, and
1018 after execution of the following instTuction?

STAQ 100B
Answer : (00100) = 11111111
(00101) = 33333333

(11) If FIELD = location 204g

(4) = 22334455

STAQ FIELD

Answer : (FIELD) becomes 22334455
(FIELD + 1) becomes 66006600

Exercise 3

1001 20000001

101 30001001

102 00000000

03] 11112200

104 00000000

105 14014010

106 00000000

What will be the contents of the above after
execution of the following instructionss
LDAQ 102B
STAQ 105B
LDAQ 100B
STAQ 1048

5,3 SHIFT AQ

LOCATION | OPERRIN NOBFIERS ABERESS FIELS
[SHAQ kb

23 1817 15 14 00
Lol o [« |
b=index register designator

The contents of A and Q are shifted as one 48-bit
register (AQ).

Descriptions

Everything else is the same as for SHA and SHQ.
(1) SHAQ -12 where (&) = 12345677
(Q) = 22223333

Exampless

What will be the contents of A and Q?
(4) = 00001234
(Q) = 56772222
(i1) If (4) = 00010444 and (Q) = 11335577

SHAQ 35
) = 66714000

Answer 3 gA\ =
(Q) = 42220455

STUDENT NOTES

48-BIT, FIXED POINT, ARITHMETIC

6.1

6.2

6.3

6.4

ADD TO AQ

SUBTRACT FROM AQ

MULTIPLY AQ

DIVIDE AQ

| Chs;ﬂe:m

6.1 ADD TO AQ

| LOCATION GPERATION, MODIFIERS ADDRESS FIELB

£v~,M“,ILV ;'lr‘ag-:zs”mw.;.,

i

IR I3 (A M

23 1817 16 15 14 00
Loz Jol o] = |

a = addressing mode design

b = index designator
m = storage address
¥=mn+ (Bb)
Description : Add the 48-bit contents of two consecutive

locations M and M + 1 to the contents of AQ.
The sum appears in AQ.

Examples:
A 1Q
(1) 1¢ 00000000 | 00 14 76 21
f
|
@P48 | $P48+]
and 00000001 ! 32417171
|

What will be the contents of AQ after execution of the
following instruction?

ADAQ ¢P48

Solution: A iQ

Final AQ = (00000001 ; 325670 12
1

(i1) 1If (A) = 0000 0123 77 1004 0404
100 | 0000 0200
101 7000 0000
102 7777 7713

(Q) = 7000 0000

(Index register 1) = 1

What will be the contents of A and Q after execution of
the instruction:

ADAQ 77B,1
Solution:
A 1Q
AQ = 0000 0324 ' 6000 0000
1
]

6.1 (cont.)

Exerciges:

(1) What will be the contents of AQ after execution of the
following section of a program?

ENI 0,1
ENA 24314B
STA 100B, 1
INA 147418
INI 1,1
STA 100B, 1
ENA,S 345678
ENQ,S 156778
ADAQ 100B

(i1) If (Tac) = 0202 0303

(TAG+1) = 0404 0505
(4) = 2662 6626
(Q) = 1457 1406
What will be the contents of A and Q after execution
of the following instruction?
ADAQ TAG

6.2 SUBTRACT FROM AQ

LoCATION © OPERATION MODIFIERS ABORESS FIELD

- S8AQ,I

ML! : Sk

i
aimyel

23 18 17 16 15 14

Lo falo | o |

a = addressing mode indicator
b = index designator

m = gtorage address
M=m+(Bb)
Subtract the contents of 2 consecutive

locations M and M + 1 from the contents of
AQ. The difference appears in AQ.

Description:

Examples:
A Q
(1)
00000001!00000000
TAG TAGH
00000000 ! 77777777
SBAQ TAG
A -0
Final 8 = | 5 0000000'00000001
1
(1) 1Ir Q) =0
(Q) = 0000 0003
(TaG) = 0
(TAGFl) = 0000 0004

What will be in & and Q after execution of the
following instruction?

SBAQ TAG
Answer:
A R
1
00000000 !0000000 3
T
]
TAG ITAGH.
minus 00000000 (00000004
[}

A

7717771171177

/Q
[}
177777776

(using end around borrow in the subtraction)

6.2 (cont.)
Exercises

1) W
()]
(TAG) = 0000 0234

0005 7711

T177 0000

(TAGH1) = 5670 0000

What will be in A and Q after execution of the following

instruction?

SBAQ TAG

{ii) A block of memory is as showns

What will be the contents of AQ after execution

following instruction?

ENQ, S
ENA,S
SBAQ
SBAQ

0
2222B
101B
104B

100
101
102
103
104
105

106

21

21

21

21

00

00

01

35

21

64

16

45

14

14

21

21

00

00

00

27

17

1

7

T

56

56

51

o7

of

6.3 MULTIPLY AQ

LOCATION

| (GPERATION,MEMIFIERS ADURESS FIELD

L MUARLL myb
. i

20iTaves R NS e B Y

Descriptions

Examples

A

23 1817 16 15 14 00
[eo [Jo] » |

a = addressing mode designator

b = index designator

m = storage address

The instruction uses the 48-bit E register to extend

the precision of AQ (by forming AQE).

Muliply the contents of AQ by the 48-bit operand in b
two consecutive locations M and M + 1, where M = m + (B")
The 96~bit product appears in AQE, with the least signif-
icant bits inE.

A 1Q
00000000 76000000

TAG AGHL

T
00000000 ,00000002

MUAQ TAG
The final results in AQE =
Q E

oce00000 00000000 |O0O00000O011 74000000

Exercises

A block of memory is as shown 400 00 00 01 11

401y 00 0O 00 0O

4021 00 00 Q0 07

4031 25 371 32 10
404 | 24 24 42 44

405 00 00 17 07

What will be the contents of AQE after execution
of the following instructions?

LDA 404B
S3A 4058
STA 404B
1DQ 404B
LDA 4008

MUAQ 401B

6.4 DIVIDE AQ

I Lgeanon GPERATION MEDIFIERS ADDRESS FIEC
. DVAQ,I 'myb

H i
P2iiei3idnYialEiviiminiasyieiirie (s SN e s

NSNS N 0 S S N

23 18 17 16 15 14 00
I 57 al b] m

addressing mode designator

index designator

B o n
"

storage address
M=m+(Bb)

i

Description: Divide (AQE) by the 48 bit contents of two
consecutive addresses, M and M + 1. The answer
appears in AQ, and the remainder, with sign

extended, in E.

Example @
ample o

|E
- ‘.
00000000 [00006743 | 26543174 20000000
1 +— :
TAG | TAG+1
DVAQ TAG 00000001 !oooooooo
1
Answer is in AQ = A Q

00006743

1263543174

Remainder is in B = E

00000000

(Sign extended)

20000000

Note ¢ If a divide fault occurs, this operation
halts, and the program advances to the

next instruction.

The final contents of AQ and E are meaningless

if this occurs.

STUDENT NOTES

LOGICAL OPERATIONS

7.1 LOGIC TABLES
7.1.1 Logical "AND®
7.1.2 Inclusive MORY
7.1.3 Exclusive "OR®

7.1.4 Examples of Logical Operations Using Octal Numbers

7.2 LOAD A LOGICAL Chapter

7.3 LOAD COMPLEMENTS

7.3.1 Load A Complement

7.3.2 Load AQ Complement

7.4 LOGICAL VAND" OPERATIONS
7.4.1 Logical Product A
7.4.2 AND of A and y
7.4.3 AND of Q and y

7.4.4 AND of Index Register BP and y

.7.5 EXCLUSIVE *OR" OPERATIONS
7.5.1 Selectively Complement A
7.5.2 Exclusive OR of A and y
7.5.3 Exclusive OR of Q and y

7.5.4 Exclusive OR of Index Register BP and y

7.6 SELECTIVELY SET A

7.1 LOGIC TABLES
7.1.1 Logical "AND" (Logical product)

A|B |C

0 {0 |O

01 {0 Note: C is only a "1" if both
110 lo A and B are "1's",

111 11

Example ¢+ AND of 1001 and 1010 (binary numbers)

1001
1010

1000

7+1.2 Inclusive "OR" (Selective Set)

Note: C is a "1" if either or
both A and B are '"l'g",

- 2 O O »
©C - O] w
- - - Ol O

Example ¢ Inclusive OR of 1001 and 1010
1001
1010
1011

71.1.3 Exclusive "OR" (Selective Complement)

Note: C is a "1" only if
A and B are different.

- . O O] &
- O - Ol s
O - = O O

Example 3 Exclusive OR of 1001 and 1010

1001
1010

0011

7.1.4 Examples of Logical Operations Using Octal Numbers

(1) What is the logical "AND" of 43B and 62B?
Answer 3 42B
(ii) What is the exclusive "OR" of 7021B and 33B?
Answer : T012B
(iii) What is the inclusive "OR" of 361B and 403B?
Angwer ¢ T763B
(iv) What is the exclusive "OR' of 361B and 777B?

Answer ¢ 416B

7.2 LOAD A LOGICAL

Descriptions

LbL,I

23 1817 16 15 14 00

[z Jofo] =w |

a = addressing mode indicator
b = index designator
m = storzge address
M= m+ (Bb>
4 is loaded with the logical product (AND) of Q and

the contents of location M. In this instruction, @
serves as a mask.

Q| M | a
0 0
0 Note: The bit in A is
0 0 a "1" only if
! both of the
1 1 1 corresponding
bits in Q and M
are "1l'g",
Exampless
(i) LDL 100B 100 [32470235
101 | 12345670
102 | 24601357
¢ - [To770770]
(A) = 30470230 *
(ii) If index register 3 contains 00002
LIL 1008B,3
M = 00100 + 00002
=00102
octal binary
(00102B) = 246013578 010 100 110 000 001 011 101 111,
(Q) = 70770770g 111 000 111 111 000 111 111 00Oy
(A) = 206003508 010 000 110 000 000 011 101 0009

Answer: (A) = 20600350

7.3 LOAD COMPLEMENTS
7.3+.1 Load A Complement

LCATION | OPERATIONNIDIRERS ADERESS FIELS
LLeA,L . med

L e e : g

R S A

23 18 17 16 15 14 00
o 1.1 -
a

= addressing mode indicator

b index designator

m = storage address

Description: The instruction load A with the complement of
the 24-bit word located at M, where M = m + (B°)

Exampless

(i) Leca 100B 100 36476521
101 67543210

103 42454251

(&) = 41301256 103 72130215

(ii) 1If index register 2 contains 00003

LCA 100B, 2 M = 00100 + (B2) = 00103

(8) = 05647562

7.3.2 Load AQ Complement

HCATION OPERRTION, MIDIFIERS ADURESS FIELS
. LCAQ,L . myb

23 1817 16 15 14 00
Lze Jol o[o |
a

addressing mode indicator

b

index designator
m = gstorage address

Descriptions The instruction loads A with the complement of b
M, and Q with the complement of M + 1, where M = m + (B")

Examples:
(i) 1Lcag 100B (using example above)
(4) = 41301256
(Q) = 10234567
(i1) If index regisfer 3 contains 00002
LCAQ 100B, 3 ¥ = 00100 + (B3) = 00102
(4) = 35323526
(Q) = 05647562

7.4 LOGICAL "AND" OPERATIONS

7.4.1 Logical Product A

COHION OPEAATION MODIFIERS ADORESS RELD
f LPR,Y . . m

t
15612 I N T 2 R T AN e LTI A

23 18 17 16 15 14 00

(o o] =

addressing mode designator

w
I

b = index register designator

m = storage address

Description: Replace (A) with the logical product of (A) and (M)
(logical AND)

Examples: (i) LPA 100B where (100) = 55555555
(4) = 52525252
What will (A) be after execution?
(&) = 50505050

(i1) LDA MASK where (MASK) = 77777777
LPA CIgX and (CIPX) = 43752016

Answer (4) = 43752016

(iii) ENA,S 20301B where (MASK) = 77777777
LP4 MASK

Answer (A) = 00020301

10203040
76543210

(iv) LDA STATUS where (STATUS)
LPA STATMASK (STATMASK)

Answer (4) = 10003000

7.4.2 AND of A and y

10CATIBR | 'OPERATION MOBIFIERS ABDRESS FIELD
ANA,‘S‘);HISEJ'l'L

:

e

23 18 17 16 15 14

(T Ll-] o 1

b =0, if sign extension

1BCATION 'BPERATIEN, MEDIFIERS ABBRESS RIELE

G bl it

18 17 15 14 00

(ol] 5]

b =2, if no sign extension

LCATIBR | OPIRATION MODIFIERS ABDRESS FIELD
ANA

18 17 15 14 00

23
(ol [v |

Description: Enter the 24 bit logical product of (A) and y (with
sign extension if specified) into A, If sign extension
is not specified, zeros are extended rather then the

sign of y. _—
Al Y a
0 0 0 Note: The bit in A is a
0 0 "inm only if both
of the ‘corresponding
1 0 0 bits in A and y are
Hl[sll'
1 1 1
Examples: (i) ANA 234568
Where @)= 12345670 001 010 010 100 101 110 111 000
00023456 000 000 000 010 011 100 101 110
000014508 000 000 000 000 001 100 101 000,
(ii) ANa,S 23456B
Where (A) = 07654321 000 111 110 101 100 011 010 001
00023456 000 000 000 010 011 100 101 110
00000000g 000 000 000 000 000 000 000 000,
(iii) ANA,S 43456B
Where (4) = 07654321 000 111 110 101 100 011 010 001
17743456 111 111 111 100 011 100 101 110
076400005 000 111 110 100 000 000 000 0002
(iv) ANA,S 707073
Where ()= 11111111 001 001 001 001 001 001 001 001
11170707 F11 111 111 111 000 111 000 111

11110101g 001 001 001 001 000 001 GO0 001,

7.4.3 AND of Q and y

LOCATION

(GPERATION MOOIFIERS ADDRESS RIELD

ANR,S . .y .

L e S

18 17 16 15 14

1;|b|

23
[

b =1, if sign extension

LGCRTION

GPERATION MODIFIERS ADDRESS HIELD

_ANQS

18 17

23
Lo |

15 14

5|

b = 3, if no sign extension
UUGATION . GPERATION MODIFIERS ADDRESS FIELD T
ﬁ AN Y b

23 1817 1514 00

I 17 l 7 | y l

Description:

Examples:

7.4.4 AND of Index Register Bb

Enter the 24 bit logical produect of (Q) and y (with sign
extension 1f specified)inte Q. If sign extension is not
specified, zeros are extended rather then the sign of y.

As for ANA,S y

and y

Descriptions

Exampless

23 1817 16 15 14
Lo lol o |

b = index register desigmator (1-3)

y

Enter the logical product of (Bb) and vy into index
register b,

(1) BENI 778, 3
ANI 12B, 3
Index 3 contents = 00077
"AND" with 00092
00012

Answer ¢ 00012 in index regisler 3

7.4.4 (cont.)
Examples: (Continued)
(i) =1 123458, 2
ANT 252528, 2

(Index 3) = 12345
UAND" with 25252
00240

Answer s 00240 in index 2

7.5 EXCLUSIVE "OR" OPERATIONS

Te5.1 Selegctively Complement A

IPLEALION MODIFIERS 4BORESS HIELD

23 1817 16 15 14 00
‘ 36 ai b l m J

a = addressing mode designator

o
I

index register designator

m = storage address

Description: Selectively complements corresponding bits in A for
all 1-bits at address M. (Exelusive OR)

Examples: (i) sca 100B where (100) = 70707070
(4) = 52525252
What will (A) be after execution?

Answer : (A) = 22222222

(1i) ENa,S 777778 where (MASKS) = 10203040
SCa MASKS
Answer : (4) = 67574737
(iii) ENA,S 40001B where (SIGN) = 40000001
SCA SIGN
Answer : (&) = 37740000 /‘
(iv) 1pa where (TAG) = 77777777
SCA SETBIT (SETBIT) = 52525252
Answer : (A) = 25252525
(v) LDA GIRG where (GTRC) = 40000001
SCA GTRC

Answer 3 (A) = 0000 0000

7.5.2 Exclusive OR of A and y

Hus i © OPERATION MOOIFIERS ADDRESS FIELD
NSy

&

PEFTTITRTYIATI Y sremen

18 17 16 15 14 00

(s Ll-]

b =10, if sign extension

160ATIAN ‘GPERATION MODIFRS ABDRESS FIELD

23 18 17 15 14 00

Le [« 1 v |

b =2, if no sign extension

100ATIGR %Piﬁiiiﬁ&ﬁ%i?ii!s ABDRESS HELD
L XPA e
'

23 1817 15 14 00

Le | o [+ |

Description: Enter the 24 bit emclusive OR .of (A) and y (with sign
' extension if speqified) imto A, If sign extension is
not specified, zeros are extended rather then the sign

of y.
A y A
0 0 0 Note: The bit in A is a
0 1 1 "1 only if the
1 0 1 corresponding bits
111 0 in A and y are
different.
Examples: (1) Xpa 444448 if A ={33333333
35 = 0113
48 = 1003
OR = 18'5 111,
33333333
00044444

33377717| = answer

(1i) X@gA,S 44444B if A o 33333333

44444 is a negative number since 4g = 100y;
therefore, find exclusive OR of (A) and 77744444,
7g = 111y
OR = 4g = 100y
3333 3333
1174 4444
447 TTTT] = answer

7.5.2 (cont,)

(iii) X@A,S 400018
Where A = 20117070
40001 is negative and equals 77740001 with sign
extended, therefore
' 20117070
77740001
57657071

Answer: (A) = 57657071

7.5.3 Exclusive OR of Q and y

(BCATION | OPERATISN MODIFIERS ADDRESS FIELS
x.“'xs)l'c‘:}'?" PO SO TN TS S S

virgigecsiaygaisis iriiags

23 1817 16 15 14 00

[4:;]11 b l v |

b =1, if sign extension

LOTATION {OPERATION MODIFIERS ABDRESS FIFLD
x:mlsxr.;g;;-1(;=-| L)

stpayersegriads g psnen i

i ik

18 17 15 14 00

23
Le | s T v |

b =3, if no sign extension

LOCATION . GPERATION MOGIFIERS ABDRESS HIELY

I

23 1817 15 14 00

Lel » T+ |

Description: Enter the 24 bit exclusive OR of (Q) and y (with sign
extension 1f specified) into Q. If sign extension is
ngt specified, zeros are extended rather then the sign
of -y.

Examples: As for XpPA,S

7.5.4 Exclusive OR of Index Register BP and y

| 15caTion OPERRTIGH RIDIFERS ABDRESS RIE(2
Lo XOL . gk
! f I P :

g g :30136537

23 18 17 16 1514 00
| 16 [0], b T y I

b = index designator {1-3)

Descriptions Enter the exclusive OR of (B°) and Y into gb
No sign extension is possible on either (B") or y.

Exampless (i) x¢1 T7B, 1
where index 1 contains 32B

00032 = 000 000 000 011 010
00077 = 000 000 000 111 111

000 000 00C 100 101; = Q0045g

Answer : Index register 1 will contain 45B

(11) xd1 TT777B,2

Where index register 2 contains T4321B
74321 = 111 100 011 010 001
717717 = 114 141 111 111 111

000 011 100 101 110, = 034568

Answer 3 Index register 2 contains 3456B

7.6 SELECTIVELY SET A

LOCATION JOPERATIGN MEDIRERS ADORESS HIELR
L SSAL L mib .
B .
23 18 17 16 15 14 00
r 35 l a| b l m

addressing mode designator

Il

index register designator

m = storage address

Descriptions Selectively set 1-bits in A for all 1-bits in M
N.B. This instruction leaves "1" bits which were
already present in the register;i.e. it does
not clear A before execution.
This instruction is performing an "inclusive OR"
operation.
Exampless (1) ssa 1003 where (100) = 70707070

(4) = 52525252
What will (A) be after execution.
(&) = 72727272

(1i) EMA,8 © whare (ABIT) = 76543210
SSA ABIT

Answer: (A) = 76543210

(iii) ENA,8 21010B where (MPD) = 11111111
SSA M@D
Answer 3 (4) = 11131111
(iv) ENA,S 44444B where (MgD) = 11111111

SSA M@D

Answers (&) = 77755555

CHARACTER MODE OF OPERATION

8.1

8.2

INTRODUCTION

CHARACTER ADDRESS INSTRUCTIONS

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

Load A Character
Load Q Character
Store A Character
Store Q Character
Store Character Address

Enter Character Address into A

Chapter m

INDEX MODIFICATION OF CHARACTER ADDRESSING INSTRUCTIONS

8.1 INTRODUCTION

Data may be stored in two ways in the 3200. It may be stored
in full words - that is, the information stored in 24 bits. Or, it may
be stored in character form.

Bach word in the 3200 may be broken up into four 6-bit
characters, which are called characters O, 1, 2 and 3 in the particular
word, as shown:

23 B17 L1 06 05 00

Information may be stored in charadciers, instead of in words,
for convenience and economy. For instance, if we wish to store fifty digits,
it eould be more convenient to store them as 50 characters, to take up only
12& words of storage, rather than put each digit into a separate computer
word.

The computer is able to address any character in any word in
storage. To find the character address of any particular character, the
word address of the word containing the character is multiplied by 4;
and the character position is added on.

The process is simplep if the arithmetic is done in binary.
To multiply by 4 in binary you suffix two zevos to the righthand end of the
number. The character positions are (in binary) 00, 01, 10 and 11.
Therefore to find the character addresss

(1) Change the word address to binary

(ii) Add the character position in binary as 2 extra
low order bits

(iii) Convert back to octal
le: Character 2 in word 104 -

(1) Binary = 001 000 100 —M —Character position
(11) Add on character position=001 000 10010
After zegrouping bits =00 100 010 C1¢C
(111) Convert to octal = 422B = Character Address

Exercises Find the character addresses of the following characters.

Word Address Character Position Character Addrese

100 3
405
1021
471
4001
2664
17777

W O = NN O

. Similarly, if we know a character address, we can determine
the word address in which the character is contained, and its position
in the word.

8.1 (cont.l)
The steps ares

(i) Convert to binary

(ii) Remove the last two binary digits. (These are the
character position)

(iii) Convert the remainder to octal.

Examples Character address 422

Il

100 010 010
100 010 Oy Remainder = 109 = 2g = Character

P
1 000 1007 Octal = 104 = word osition
Address

(i) Binary
(ii) Divide by 4
(iii) Regrouped

Answer - Character 2 in word 104

Exercise: (i) Find the word address and character position of the
following character addresses:

(a) 201 (e) 2110
(b) 3 (£) 4231
(e) 417 (g) 16524
() 555 (h) 66666
(ii) What is the smallest character address?
(iii) What is the largest character address in an 8K
computer?

(iv) What is the largest character address in an 32K
comput er?

Character Address Instruction Format

The instruction format enables the address of a particular
character in a word to be specified.

23 18 17 16 15 14 00
[(6 bits) J(1 bit) ’ (17 bits) I
R RN ~ i
f - d
|

l storage address

16_15 14 13 02 01 00|

~ "
Storage Field Co-ordinate Address Character
Module within field 0-3
0-3 01 0000-7777=

Character-Addressed Instruction Format

(1) Punction Code (f)

6 bit code of action to be carried out.

(ii) Operation Designator (d) - 1 bit
If & = 1, modify address "m" by contents of a
set index for the particular instruction.
If d = O, no modifications.

(1ii) Storage Address (17 bits)
The address of-the character required is specified.
This may be broken up into the module, field and

co-ordinate address, as for word addressing, plus
two bits to indicate the character position in the word.

801 (Cont.Z)
Exercises

Assume that the following block of memory is in Field 1 of an
8K computer. What will be the character addresses of the characters
marked x? The co-ordinate address of the first word in the block is
31248-

o

]

- ke e et — . - 3

L4

-4 -1)

e e = -
L e] e — 4 - 4]

8.2 CHARACTER ADDRESS INSTRUCTIONS

8.2.1 Load A Character

| LcATION OPERRTIOH, MIDIFIERS ADURESS RELD
L LACH om
23 1817 16 00
[722 |b| m
m = 17 bit character address

b

index designator - but can be only
one bit, so has special use. See section
on indexing(section 8.3).

Description: Clears (A) and loads into bits 00-05 of A, the
contents of the character specified by M. (m + B

Examples:
(i) 1LacH 403B (&) = 40012431
{100) = 01020304
(400) = 05060701
(403) = 02030405
What will be the contents of the A Register?
(4) = 00000004 since 403B (char.)
= 100B (word) pos. 3.
(ii) LACH 5B
What will be the contents O] 01234567
of th . 1 [[12345670
e A Regigter after =
execution? 2 23456701
334567012
41 4567012
556701234
(&) = 00000034
(iii) LACH HRTABLE+3 HRTABLE [01! 23 | 45 6]
. 12 ' 34,56 70
. 11122 133 44
551 66 1771 00

HRTABLE BSS 4
What will be the (A) after execution?
(A) = 00000067

(iv) In (iii) what would be the (A) if the instruction was

LACH HRTABLE+13B
(4) = 00000044

8.2.2 Load Q Character

LacATION OPERNTION MIDIFIERS ADURESS FIELD
LQCH m,2

i@ T E e e 3 EIIIILINII M

23 1817 16 00

(5Ll =

Description: Same as LACH except substitute Q Register for A Register,
and it uses a different index register (which also is
different from SQCH{

8.2.3 Store A Character

L (ghAnON GPERATIGN MEDIFIERS ABORISS FIELD

SACH om2

f
23 18 17 16 00
[o] .

17 bit character address

B8
I

b = index designator - but can be only
one bit, so has special use. See section 8.3
on indexing.

Description: Store the contents of bits 0-5 of the A Register in the
specified character address.,
N.B. The contents of A and the remaining 3 characters
in the storage word, are unchanged.

Examples:
(1) SACH 43B if (&) 20012345

Wiich character position of which word is affected,
and what will be the contents of the character position?

Answer : (1) Word 10
(2) Position 3

(3) 458
(i1) SACH L@C+3 (&) = 11560133
LOc Bss 5 LACc [00 11 22 33
44 55 66 71
What changes will be made to 01 02 03 04
the 5 words shown? 05 06 Q7 00
(1#C) = 00112233 12 34 56 07

i.e. no change!

8.2.4 Store Q Character

a Lﬁ%ﬁf{i}!w e iﬂ?;ﬁﬁiﬂ_ﬂ.ﬂ%lmﬁs ADORESS FiELE
vs'QCHr"'xsmiL::
'

Lt L I L 1202 AR L A L A AT

23 1817 16 00

(e L] =

Description: Same as SACH execept substitute Q register for A register,
and it uses a different index register (which also is
different then that used by LQCH)

8.2.5 Store Character Address

LBCATION IGPERATION HODIFIERS ROURESS Fifld

_SCHA .. mb o
23 1817 16 15 14 00
Lo lalo| =

a = addressing mode designator
b = index register designator
m = storage address

Descriptions Stores the lower 17 bits of (4) in the lowser 17 bits of word
M. The upper bits of M and the whole of A are unchanged.
The instruction is used for character address modification.
Compare with SWA instruction.

Examples:
(i) SCHA 50B (4) =10747021
(50) = 23064513

What will be the contents of 50 after execution?
(50) = 23347021

(ii) Location Instruction Assembled as
100 SCHA *41 46000101
101 LACH #% 22377771

If (A) = 11117643 when 100 is executed, what will be the
contents of 101 after execution?

Answers (101) = 22117643

8.2.6 Enter Character Address into A

©OPERATIGN WADIFIERS ABERESS FIFLD

! Ao

?'

L ECHA)S | 9 s
e ~

I i deEEEs e (eireae s

23 1817 16 00

| 11 {d| v/ AJ

d = 0, if no sign extension

¥

. LOCATION

| GPERATION MODIFIERS ADBRESS HIELD

i
I
f

ECHA

23 1817 16 00

I 11 lo»l v J

d =1, if sign extension

Description:

Examples:

s BHE

18 17 16 00

F311 l4+‘ y AJ

Enters the 17 bit quantity "y" into the A register.

When d = 1, the sign of the quantity (216 bit) is
extended in A. When d = 0, the upper 7 bits of the

A register are set to zero. "y" is usually a character
address. If "y" is a symbolic word address, the actual
machine address is multiplied by 4 before it is assembled
in the instruction.

(i) It QUTBUF is character position 3 in the word at
word address 100, what would be the contents of A
after:

ECHA @UTBUF
Answer: (A) = 00000403
(ii) What would be the contents of A after execution of:

ECHA 117640B

Answer: (A) = 00117640

(iii) If TABLE starts at word address 40000, what would be

the contents of A after:
ECHA TA3LE

Answer: (A) = 00200000
ECHA,S TABLE

Answer: (A) = 77600000

8,3 INDEX MODIFICATION OF CHARACTER ADDRESSING INSTRUCTIONS

Character address instructions have limited indexing ability.

b is only one bit, therefore

f

b

m (17 bits)

a specific index is used or not used.

i.e.

it can only indicate whether

If the "b" bit is.set, the address is modified by
either (B') or (B°) depending on the particular

instruction.
LACH myl
LQCH m,2
SACH m,2
SQCH m,l

Also, if the 'm! address is at one or the other end of a

table, the table is limited in length to 16383y characters.

i,e,

1f TABLE equals word address
100000B) and the instruction

LACH
(i) and
the
(ii) or
the
(iii) or
the
(iv) or
the
(v) or
the

Note: 1If the index register contains 40000 thru 77776
the reference is backward in memory, whereas if
the index register contains 00001 thru 37777 the
reference is forward in memory. This means that

when writing programs in COMPASS, FORTRAN, ALGOL

TABLE,

(B =

character
(8l) =
character
(8l) =

character

(Bl =

character
(8l) =

character

1
L

40000B

address

77776B

address

00000B

address

00001B

address

37777B

address

50000B (eharacter address

is:

referenced

referenced

referenced

referenced

referenced

77740000
00100000
040001

1

77777776
00100000
077777

00000000
00100000
100000

Il

00000001
00100000
= 100001

00037777
00100000
= 137777

or COBOL one should be careful not to exceed
1638313 when defining character arrays.

8.3 (cont.)

Examples: In the following examples assume the contents of the
index registers to bes

@" -5
(8%) = 2

(B3) = -3
(i) 1ma LABEL+1,3

1111111
STA LABEL, 2

22222222
LDQ LABEL,2

33333333

What will be the contents LABEL| 44444444
of Q after execution of the

program segment above? 55555555

66666666

(Q) = 22222222
17171771

(ii) LACH LABEL,1

What will be the contents of A?

Answer (A) = 00 00 00 55

Exercisess

1. A block of memory (maximum length = 100 words) contains
numbers stored one to a word. The end of the list is
indicated by a word containing BCD blanks. Write a routine
which will add the numbers in the list. (Use indexing.)

7 3

2 Transfer 57

L Ian

T words located 4 memory locations apart, into 57
consecutive memory locations.

3. Transfer 17 words located 5 memory locations apart, into
17 words located 10 memory locations apart.

4, Calculate the sum of the octal numbers 0-14.

INTER-REGISTER TRANSFERS

9.2

9.3

9.4

9.5

TRANSFERS BETWEEN THE A REGISTER AND INDEX REGISTERS
9.1.1 Index Register to A Register

9.1.2 A Register to Index Register

TRANSFERS BETWEEN THE A REGISTER AND THE REGISTER FILE

Chapter ﬂ

TRANSFERS BETWEEN THE Q REGISTER AND THE REGISTER FILE

9.2.1 Register File to A Register

9.2.2 A Register to Register File

9.3.1 Register File to Q Register

TRANSFERS BETWEEN INDEX REGISTERS AND THE REGISTER FILE
9.4.1 Register File to Index Register

9.4.2 Index Register to Register File

INTER-REGISTER ADDITION
9.5.1 Add Contents of Q to Contents of A
9.5.2 Add Contents of Index Register to Contents of A

9.5.3 Add Contents of A to Contents of Index Register

9.1 TRANSFER BETWEEN THE A REGISTER AND INDEX REGISTERS

9.1.1 1Index Register to A Register

igGATiON GPERRTION MODIRERS ABDRESS IELS
i TIA, ... b ...

23 1817 16 15 14 12 11 00
s fof » |

b = index designator (1-3)
bits 0-11 are not used

Description: Transfer the 15~bit contents of index register Bb
to A. (A Register is cleared before the transfer
is done.)

Examples

If B2 contains 54321 and A cohtains|7003 2146

TIA 2
(a) clear A = 0000 0000
(b) transfer 15 bits in B2 to lower 15 bit positions of A

(4) = 0005 4321

9.1.2 A Register to Index Register

M.é’fk?cék ’anaz‘;sss,naasms AZURESS RiELD
ATy

23 18 17 16 15 14 12 11

rmlo

ex designator (1-3)

= index
its 0-11 are not used

Descriptions Clear index register Eb, and transfer the lower 15
® bits of (4) to it.

Exampl et ir B3 contains 21B and A contains{7643 1000

TAI 3

(a) Clear Index 3
(b) Load it with lower 15 bits of A

(83) = 31000

9.2 TRANSFERS BETWEEN THE A REGISTER AND THE REGISTER FILE

(The Register File is a special high speed memory of 1008 locations

numbered from 00g - 77g.)
9.2.1 Register File to A Register

TUREN aPRANR WOUERS AGSHESS RIELH

TMA . om

18 17 16 15 14 12 11 06 05 00

(s 070 -

m = Register File Address (00-77)

Bits 6 - 11 and 15 - 16 are not used.

Descriptions Transfer the contents to Register file m to 4
A is cleared prior to the transfer.

Examples If A = 0000 0006, and Register file 20 = 0000 0014,
what will be in A after execution of the following
instruction?

™A 20B

Answer ¢+ (a) A is cleared

(b) Contents of Reg. File 20 put in A

(A) = 00000014

9.2.2 A Register to Register File

gt PERLION HIMAIERS ADDRESS RIEED
TAM . m

32333ireic T

23 1817 16 15 14 12 11 06 05 00
D mom

m = Register File Address (00-77)
Bits 6 - 11 and 15 - 16 are not used.

Description:t Register file m is cleared, and the contents of
the A register are transferred to m.

Example: If (A) = 0000 1000

Register file 30 = 0000 0777
TAM 30B

Answer: (a) Register file 30 is cleared
(b) Contents of A placed in Reg. file 30

(Reg File 30) = 00001000

9.3 TRANSFER BETWEEN THE Q REGISTER AND THE REGISTER FILE

9.3.1 Register File to Q Register

LTI OPERATION MBDEIERS BEORESS BIELD

SeBIELITAITELINIRNN 8RR T Y LI Y b Y

23 1817 16 15 14 12 11 06 05 00
53 0o 1

Description: As for TMA except uses Q register

9.3.2 Q Register to Register File

:ﬂ{zﬁﬁ?i&k OPLAATION MEDIFIERS AGORESS RID
Tam -

R

7

[T ETITRTRp AN
#

23 1817 16 15 14 A2 11 06 05 00
(= .7 77 -1

h
s

» Description: As for TAM except uses Q register

9.4 TRANSFER BETWEEN INDEX REGISTERS AND THE REGISTER FILE

9.4.1 Register File to Index Register

LECATION OPERATION, HIDIFIERS ABBRESS FIE(D

SiaiitiTiRisio e en ety 52209191351 K 37

18 17 16 15 14 12 11 06 05 00
’/
I 3 0| b | 3 7]Im |

= index register designator
m = register file address (00-77g)
bits 06-11 are not used

Descriptions Transfer the lower 15 bits of Register m to Index
B". 1Index is cleared before transfer.

mples Index register 3 contains 00010, and
Register file 25 contains 0000 2000.

What will be in B3 after execution of the following
statement?

MI 25B,3

~3

(a) Index 3 is cleared
{b) Lower 15 bits of Register file 25 are put in it.

B2 = 02000

9.4.2 Index Register to Register File

L86ATIOR : 50?53&1%38,!&%{&3 ARORESS RIELE
TIM m,b

i i
sizloiuiaiaisg2iagnia

23 1817 16 1514 12 11 06 05 00
|53|1|b|s m
= index register designator

m = register file address (00-77g)
bits 06~11 are not used

Descriptiont Clear Register filebM, and transfer to it the contents
of index register B .

Examples (i) Index 3 contains 22B
TIM 26B,3

(M%) = 0000 0022

9.5 INTER-REGISTER ADDITION

9.5.1 Add Contents of Q to Contents of A

[acation UPERRIION HIDIFIERS ADORESS FIECD
... . AGA

BiGnb e e cee T i

23 18 17 15 14 12 11

= 1. 1- =

Descriptiont Transfer the contents of A plus the contents of Q
to A. No information is given in the address field
in this instruction.

Examples If A)= 0000 1000
(Q)= 0000 4104

What will be A after execution of the following instruction?
AA -
Answer: (4) and (Q) are added together and put in A

(A) = 00005104

9.5.2 Add Contents of Index Register to Contents of A

L LBLATION " PERATIGN MOMIFIERS KBURESS FIELD
AtA.__ 6.

[
e

b 220 A L2 T T

23 18 17 16 15 14 1211

[s |o|bl4

. . PR . PR, hY
b = index register designator (1-3)

Description: Transfer the contents of A plus the contents of Bb
to A. The mntents of B° is sign extended to perform
the addition.

Examples If(a)= 0000 0100
(B2) = 01404

What will be in A after execution of the following

instruction?
AIA 2
Answers (4) ard (BZ) are added and the result stored in A

(A) = 00001504

9.5.3 Add Contents of A to Contents of Index Register

| LOCATION

i

| OPERRTION.MODIFIERS ABGRESS FIELD
. JAI b,

i
e) ~ 2233 isaisseT

)

23 18 17 16 15 14 12 11 00
EEnEEY

b = index designator (1-3)

Descriptions The contents of A are added to the oontegts of Index
Register (BP) and the result stored in B°. The sign
of the original Bb is extended prior to addition, and
only the lower 15 bits of the answer are placed in Bb,

Example: (82) = 00006
(4) = 0000 0007

What will be the contents of index register 2 after
execution of the following statement?

IAI 2
Answers (3%) . 00015
Exercises: (i) If (B3) = 40001
(4) = 0000 0007

What will be the contents of B3 after execution
of the following instruction?

IAI 3
(11) 1 () = 40001
(a) = 1000 0007

What will be the contents of Bl after execution
of the following instruction?

IAI 1

STUDENT NOTES

SEARCH AND MOVE OPERATIONS

10.1

10.2

10.4

BLOCK CONTROL

SEARCH OPERATIONS
10.2.1 Search for Character Equality

10.2.2 Search for Character Inequality

MOVE INSTRUCTION

PAUSE INSTRUCTION

(as used with SEARCH/MOVE Instructions)

Chapter [E]

10.1 BLOCK CONTROL

Block control is an auxiliary control section within the
3200 processor. In conjunction with the register file (see section
1.2.5) and program control (see section 1.2.4), it directs the
following operationss

(a) External equipment Input/Output

(b) Search and Move operations

(e) Real time clock

(d) Console typewriter Input/Output

(e) High speed temporary storage in the register file.

Block control is called in to initiate Search/Move
operations. When the operation is initiated, it then hands control
back to program control, allowing program execution to continue while
the Search/Move operations are being carried out.

Note that only one operation at a time can take place under
Block control. An attempt to initiate, say, a Move operation while &
Search operation is in progress,will cause the Move operation request
to be rejected, and Program control will skip to the reject address
following the instruction..

10.2 SFARCH OPERATIONS

10.2.1 Search for Character Equality

LACATION

GPERATIGN MODUIERS ABORESS BIELR

f

_SRCE,INT comom. . . ., .
i f

ey 3 BT e

23 1817 16 00
(ol]
23 18 17 16 00
T [

Description:

INT = Interrupt designator
11" = Interrupt at completion of search
"O" = Do not interrupt at completion of search
C = 00g-77g, BCD character to be looked for in memory
m) = First character address to be checked
my = Last character address plus 1 to be checked

This instruction attempts to INITIATE a search through
a block of characters in storage, looking for a characte:
equal to character "C" (specified in the instruction.)

SEARCH INITIATE POSSIBLE, i.e., the search/move section
of block control is not busy. The instruction transfers
the lower 18 bits of the first word of the instruction
to register file address 30 and transfers all of the
second word of the instruction to register file address
20. The hardware then sets flags in the upper 6 bits

of register file address. 30, the search is started and

the computer RNI's from P+3., (During the search,

register file addresses
also the upper six bits
cannot be counted on to

20 and 30 are not to be disturbed,
of register file address 30
be any particular combination

of bits).

SEARCH INITIATE NOT POSSIBLE, i.e., the search/move
section of block control is busy. The instruction in
this case executes as if it were a NOP (no operation
instruction). It has no effect on the search/move
section of block control, the register file or the
interrupts if a search cannot be initiated. P+l will
be bypassed and RNI will be from P+2. This latter
location is usually filled by the programmer with
UuJp *2

to cause the computer to loop until the previous search/
move operation is complete and the search can be started.

BUFFERED SEARCH. The search progresses while other
instructions following the search initiate instruction
are executed. The search is made, beginning at character
address mj and continues character by character through
memory until a character equal to "C" is found or until
the address to be processed is equal to mj. The programmer
can find out that the search is complete at the instant it
terminates or when he is ready to check. The first is
achieved with the interrupt designator, the second by
using a sense instruction (both of which are to be

covered later).

10.2.1 (cont.)

Example:

Special Note:

Assuming that the programmer knows the search has completed,
he can now determine if he found a character equal to
character "C". If the lower 17 bits of register file
address 20 and 30 are equal, no match was found. However,
if they are unequal, the lower 17 bits of register file
address 20 will contain the exact character address where
the match with character "C" occurred. No ambiguity is
possible, since register file address 30 (lower 17 bits)
contains the last character address to be searched plus

one; if the lower 17 bits of register file address 20 is
equal to this address, the hardware has checked all
addresses to be checked and is beyond the block of characters.

Given the block of data shown

CDIMAGE 00 23 46 44

47 21 62 62

73 43 73 67

73 51 60 60

60 60 60 60 (word address of this last
word is GCDIMAGE+19)

t—— (character address of the
and the instruction last character is CDIMAGE+79)

SRCE 73B,CDIMAGE ,CDIMAGE+80

what address will be in the lower 17 bits of register
file address 20 at the termination of the search?

Answer: The address equal to CDIMAGE+8.
I1f CDIMAGE is equal to word ‘address 1000g
(character address 40002), then (register

file 20, Lower 17) = 00 0108

When checking for a no-find condition at termination
of the search, the checking is easier if the block to
be searched is less then 32768, characters. If this
is the case,one of the following two methods can be
used:

(m2 address fixed and lower two bits = 003)

TMA 20B

SHA -2

ASE endaddr
uJp find

(m, address variable or lower two bits # 005)

TMA 30B
SWA *+2
TMA 20B
ASE *%

UJP find

10.2.2

Search for Character Inequality

| tacarion

| OPERAIION MEDIFIERS ADORESS FIELS)

o SRENINT ¢, m,me,
i

23 1817 16 00
A T m |
23 1817 16 00
25 I T
INT = Interrupt designator
"l" = Interrupt at completion of search
"0" = Do not interrupt at completion of search
C = 00g-77g, BCD character to be checked against
m; = First character address to be checked
m, = Last character address plus 1 to be checked
Description: This instruction attempts to INITIATE a search through

a block of characters in storage, looking for the first
character not equal to the charater "C" (specified in
the instruction.)

SEARCH INITIATE POSSIBLE, i.e., the search/move section
of block control is not busy. The instruction transfers
the lower 18 bits of the first word of the instruction
to register file address 30 and transfers all of the
second word to the instruction to register file address
20. The hardware then sets flags in the upper 6 bits

of register file address 30, the search is started and
the computer RNI's at P+3. (during the search,

register file addresses 20 and 30 are not to be disturbed,
also the upper six bits of register file address 30
cannot be counted on to be any particular combination of
bits.)

SEARCH INITIATE NOT POSSIBLE, i.e., the search/move
section of block control is busy. The instruction in
this case executes as if it were a NOP (no operation
instruction). It has no effect on the search/move
section of block control, the register file or the
interrupts if a search cannot be initiated. P+l will
be skipped and RNI will be from P+2. This latter
location is usually filled by the programmer with

uJp *.2

to cause the computer to loop until the previous
search/move operation is complete and the search can
be started.

BUFFERED SEARCH. The search progresses while other
instructions following the search initiate instruction
are executed. The search is made, beginning at character
address m; and continues character by character through
memory until the first character not equal to "C" is
found or until the address to be processed is equal to mj.
The programmer can find out that the search is complete
at the instant it terminates or when he is ready to check.
The first is achieved with the interrupt designator, the
second by using a sense instruction (both of which are to
be covered later.)

10.2.2 (cont.)

Assuming that the programmer knows the search has completed,
he can now determine if there were any characters other
then the character "C" and where the first of those occurred.
If the lower 17 bits of register file address 20 and 30 are
equal, no characters others then "C" exist in the block.
However, if they are unequal, the lower 17 bits of register
file address 20 will contain the exact character address
where the first character other then "C" occurred. No
ambiguity is possible, since register file address 30

(lower 17 bits) contains the last character address to be
searched plus one; if the lower 17 bits of register file
address 20 is equal to this address, the hardware has
checked all addresses to be checked and is beyond the

block of characters.

Example: Given the block of data shown

CDIMAGE 60 60 60 60

60 60 60 60

60 62 51 23

45 60 60 60

60 60 60 60 (word address of this last
word is CDIMAGE+19)
(character address of this
last character is CDIMAGE+79)

and the instruction
SRCN 60B,CDIMAGE , CDIMAGEH80

what address will be in the lower 17 bits of register
file address 20 at the termination of the search?

Answer: The address equal to CDIMAGEH9.
If CDIMAGE is equal to word address 10000g
(character address 40000g), then the contents
of register file address 20y, ..y 17 bits = 0400llg

Special Note: See the Special Note for the SRCE instruction (Section
10.2.1) for techniques in determining type of termination.

10.3

MOVE INSTRUCT ION

LICATION

| DPERATION MODIFIERS ADERISS RIELD

M,VE)INI ;:M"-’:'l; RSN S

e 2 AN RTINS 43T

P+ 1

Description:

23 1817 16 00
l 72 ‘mrl my]
23 17 16 00

EN m |

INT = Interrupt designator

"l" = Interrupt at the completion of the Move

"0" = Do not interrupt at the completion of the Move
y = Number of characters to be Moved

If y = 001-177g, 001-127,, characters are Moved

If y = 000 » 12819 characters are Moved
m; = First character address of data source
my = First character address of data destination

This instruction attempts to INITIATE the copying of a
block of "y" characters in one area in storage into a
second area of storage. '"y" is specified in the instruction.

MOVE INITIATE POSSIBLE, i.e., the search/move section
of block control is not busy. The instruction transfers
the lower 18 bits of the first word of the instruction
to register file address 31 and transfers all of the
second word of the instruction to register file address
21. The hardware then sets flags in the upper 6 bits
of register file address 31, the move is started and
the computer RNI's at P+3. (During the move, register
file dddresses 21 and 31 are not to be disturbed, also
the upper six bits of register file address 31 cannot

be counted on to be any particular combination of bits.)

MOVE INITIATE NOT POSSIBLE, i.e., the search/move
section of block control is busy. The instruction in
this case executes as if it were a NOP (no operation
instruction). It has no effect on the search/move
section of block control, the register file or the
interrupts if a move cannot be initiated. P+l will be
skipped and RNI will be from P+2. This latter location
is usually filled by the programmer with

UJp *-2

to cause the computer to loop until the previous
search/move operation is complete and the move can
be started.

BUFFERED MOVE. The move is made beginning at character
address m; (source) and my (destination) and continues
through memory until "y" characters have been moved. If
both m; and m) are character addresses that represent
character position 0 and the number of characters to be
moved is a multiple of four, the data is copied a word
at a time. If all three conditions are not met, the
copying proceeds a character at a time. The word move
only takes one-fourth the time of a character move for
the same number of characters, so should be used when
possible., As soon as the "y" characters have been moved,
the fove operation teminates and the search/move section
of block control reverts to the not busy status.

10.3 (cont.)

Example

Given the block of data shown,

MOVE 6,410B,424B -
101 |21 14 16 3

UJp #-2 :
102 |60 60 60 60

103 |21 31 41 21

104 |60 60 60 60

105 |17 01 17 01

What is in storage at end 106 | 25 25 25 25
of MOVE Operation?

Answers
101 |21 14 16 32

102 |60 60 60 60

103 1219 31 41 21

104 | 60 60 60 60

105 |60 60 60 60

106 |21 31 25 25

Special Note: If "y" is set by the programmer, he should remember

that it is 7 bits. A SACH (or SQCH) into the upper
6 bits of "y" represents a character move of twice
the number represented by (Ajgyer 6).0T (Qiower 6)
{or is twicetl depending on the least significant
bit of the original "y").

Techniques for changing "y":

Word Move, "y" originally set to Q, number of words

to be moved in A register (right justified).

SHA 1
SACH Moveinst+4

Word Move, "y" current contents unknown, Number of

words to be moved in A register (right justified).

SHA 2
LDQ Moveinst+l
SHQ 7
SHAQ 17
STA Moveinst+l

Character Move, Number of characters to be moved
in A register(right justified).

LDQ Moveinst+l
SHQ 7
SHAQ 17
STA Moveinst+l

Als:. if the source and destination blocks overlap,
be sure that the source address is the higher address

in memory or some of the source data will be destroyed.

10.4 PAUSE INSTRUCTION (as used with SEARCH/MOVE Instructions)

19041104 'GPERATION MODIFIERS ABBRESS PIELB
. PAUS

Lirispecaisivoaisiogruianaie e aeia

23 18 17 15 14 12 11 00
[[T s

Description: Once the main program has begun a Search/Move operation,
it hands over control of that part of the program to the
Search/Move section of Block Control. The main program
is then resumed at P + 3, If it is necessary to find the
result of the Search/Move operation before the main pro-
gram goes on with further calculations, etc, the PAUS
instruction is used.

This instruction senses the status of the Search/Move
section of Block Control. If it is busy, the machine
main control pauses for 40 msec., or until the Search/Move
section becomes not busy. If it stays busy for 40 msec.,
the computer RNI's at P + 1. If it was originally not
busy or becomes not busy during the 40 msec. interval, the
‘computer RNI's at P + 2.

At the completion of a Search/Move operation, Regifter File
Location 20 contains the final current word address for a
Sgearch OperdLLOLl and Regxsl.cx File Location 21 contains it
for a Move. The contents of that word is generally not
useful to the programmer in the case of a Move, but is
quite important in the case of a Search. Here is how the

word at Register File Location 20 is divided:

23 18 17 16 00

L s 14l)]

(Current address at termination of
Search operation. If it is equal
to the last character address plus
one, it means that the condition
for which the search was performed
was not found. Otherwise it is
equal to the character address of
_ the 'find'.

0 if SRCE instruction
1 if SRCN instruction

-

Character used for equal or
not equal test during search.

Examples: i) The instructions to be The block of characters to be
performed are: searched is:

SRCN 21B,400B,414B 100 21 21 21 21

uJpP *a2

PAUS 4000B 101 21 21 21 21

uJp *a1

™A 20B 102 21 21 20 21

HLT

What will be the contents of the A register when the
computer halts on the HLT instruction?

18 17 16 00
Answer: (A) = 21400412 = L21 j] 000414

10.4 (cont.l)

ii) Given the block of data shown, where the word address
of RHT = 177148, what will be the contents of A after
execution of:

SRCE 21B,RHT,RHT+33 RHT | 00 00 00 25

uJp *-2

PAUS 40008 00 00 00 31

uJp *-1

TMA 20B 00 00 00 46
00 00 00 27
03 21 60 60
00 00 00 41
00 00 00 31
77 77 77 77

Answer: (A) = 21077501

iii) If the word address of ST¢RE is 17717,, and the character
address of CEASE is 775148, given the block of data shown,
what will be the contents of A after execution of:

SRCN 60B,STPRE ,CEASE STPRE | 60 60 60 60

uJp *.2

PAUS 4000B 60 60 60 60

uJp *-1

T™MA 20B 60 60 21 60
60 60 60 60

Answer: (A) = 60477506

STERE = word addr 177178 = (001 111 111 001 1112
= char position 04 00,
= char address 001 111 111 001 111 00,
00 111 111 100 111 100, = 774748

regrouped

iv) If the word address of INBUFF is 17000g and the word address
of PUTBUFF is 174008 and the number of characters to be moved
is 8, what will be the contents of the A register after the
move is complete?

M@VE 8, INBUFF,pUTBUFF
uJp %2

PAUS 4000B

uJp *.1

TMA 21B

Answer: (A) = 00074010

At the start of the Move,the contents of
Register file location 21 was:

04074000

10.4 (cont.2)

Exercises: i)

ii)

iii)

INBUFF currently contains a card image. Somewhere in the
card image is a comma. Write the code that will search

for the comma and then copy all the-information up to the
comma into an output area called PUTBUFF. QUTBUFF is large
enough to contain all of INBUFF.

ZUP currently contains a twelve digit BCD number with leading
zeros., Using the Search Instruction, find the most significant
digit and replace all leading zeros with 60B codes.

Using the Search instruction, check the character in the A
register against a table of characters, seven characters
long. The table is as follows:

FTNOP 13 20 34 40

54 61 74 00

If the character is equal to any of these characters,
transfer control to location WASPP, otherwise continue
to the next section of code.

STUDENT NOTES

STORAGE TESTS

11.1

11.4

MASKED EQUALITY SEARCH

MASKED THRESHOLD SEARCH

STORAGE SHIFT

COMPARE (WITHIN LIMITS TEST)

11.1 MASKED EQUALITY SEARCH

PTG EDIFERS ADRRESS EDD
oMEQ

»
[

23 1817 1514 00
Los [+ | = |

i = 0 thru 7 = interval designator

m = storage address (of first word)

Description: (&) is compared with the logical product of (Q) and (M)
where M = m+(B1)

NOTE: This instruction uses B1 exclusively.

Put the
instruction
in F Registen

Decrement

N

BDidhsign gf Yes RNI from
1 change from ‘ P41 —
+ to =?
¥ No

Modify: M = m + (BY)

TN

No {A)=(Q)® (M) Yes RNI from
P+ 2

N.B. i = 1 means interval 1

i=7 " " 7
i - 0 " " e
Examples: (i) Given the following conditions:
(8 =5 100 [00674320
(@ = 777777774 101 [21314367

a) 606060604

102 | 60606060
103 | 67676767
104 | 47532167

and the following program section:

ENI 5,1
ENQ,S -0
MEQ 100B,1
uJp N@FIND
INI 100B,1
STI FIND,1

do the following:

11.1 (cont.)

Angwer:

(a)

(v)

(e)

(a)

(e)

Decrement Bl by 1 and calculate M.
¥=mn+ (31

= 100 + 4
= 104

Compare (A) with logical product of (Q) and (104)

Q) = 77777777

(104)= 47532167
47532167

which is not equal to A.

Decrement B1 by 1 and repeat

(Q) = 77777777

(103)= 67676767
67676767
which is not equal to A.

Decrement Bl by 1 and repeat

(Q = 7T17717TM
(102)= 60606060

60606060
which is equal to A.
RNI P + 2.

Contents of FIND = 102.

11.2 MASKED THRESHOLD SEARCH

| LacATIN

OPERATION MODIFIERS 4BDRESS FIELB

MTH, owmi

EITIINENRE R e (B, 2

Description:

23 18 17 15 14 00

I

o |] -]

i = 0 thru 7 = interval designator

m = storage address (of first word)

This instruction is similar to the MEQ; the only
differences being that RNI from P+2 occurs when
(4) 2 (@) x (M) , and that index B? is used

exclusively.

Example:

Instruction
put in F
Register

A

Decrement
Index B2 by i

2Did sign of Yes g
B® change from t RNI from [
+ to =? P+1 -

No

[—Modify: M=m + (B2 J

RNI from

(A} = (Q) = (M)} }
P+2

Given the following conditions and program section:

(82) =6 100 00000067
- 101 00000104
(Q =777777774
102 00000040
A =
) 000000404 103 00000111
104 | 00000700
105 | 00000077
106 00000052
MTH 100B,2
UJP N@FIND
INI 100B,2
STI FIND,2

a) What will be the contents of FIND after this
program section is executed?
b) What locations will have been checked?

Answers: a) (FIND) = 00000102¢

b) Locations checked = 104B
and 102B

11.3 STORAGE SHIFT

OPRAIGE MADWERS ABIRENS B

[kg

| S8H m

LS ST RE IS s (3 Y T

Description:

RNI P + 1

Examples:
(1)

ST@P

23 18 17 15 14 00

Lol o | - |

Sense bit 23 of (m).

Shift (m) one place left, end around, and replace
it in storage. If bit 23 of (m) was a 1-bit, RNI
from P+2, if O RNI from P+1.

|

Instruction
put in F
Register

Check Sign
of (m)

|

Shift (m)

one place left,
end around

RNI P + 2
SSH 100B
UJP ST@P
UJP *.2 (100) = 52525252
HLT

First time through (100) = 101 010 101 010 101 010 101 010
which is negative, so RNI at P + 2,

Second time through (100) = 010" 101 010 101 010 101 010 101
which is positive, so RNI at P + 1 and jump to Halt.

11.4 COMPARE (WITHIN LIMITS TEST)

LEEATIOR

QPERATION MODIFIERS ABERESS FIE(E

A B

"CPR,I . mb

AT S RN 0 YUY e s (S0 YA LTS (Y 45

Description:

23 1817 16 15 14 00
Loz Jal o | w |

a = addressing mode designator

b = index designator

m = storage address

The Compare, within limits test, instruction, is a two
phase instruction. The first phase compares the
contents of the M address against the contents of the
A register. If the contents of memory is larger, the
computer RNI's at P + 1. If. the contents of memory is
less than or equal to the contents of the A register,
the instruction proceeds to the second phase of the
test. This phase compares the contents of the Q register
against the contents of the M address. If the contents
of Q is larger, the computer RNI's at P + 2. 1If the
contents is less than or equal to control passes to

P + 3.

Summarized: If (M) > (A), RNI at P + 1
otherwise, next test

If (Q) > (M), RNI at P + 2
otherwise, RNI at P + 3

Expanded these relations become:

-

Q@ > M > (a)
Q) = (M) > (4)
M) > (Q) > (4) > RNI at P+1
) >) =W
™M) > (4) > (Q) |
By 3w
A) = (Q > (M
Q> o) = (A)

(Ag =) =(Q
(a) = (M) > (Q)
a) > M =(Q)
(a) > M) >(Q)

All possible relationships between A, Q and M
are shown.

Normally, the value in the A register is greater than
or equal to the value in the Q register. If this is the

case, the following indicates the action of the instruction.

M) > (a) RNI at P + 1
(A) 2 (M) > (QQ —— RNI at P + 3
(Q) > (M) -RNI at P + 2

RNI at P + 3

11.4 (cont.l)

While the instruction is almost always used in situations
where the contents of A is greater than or equal to the
contents of Q, occasionally it is not. Following is a
discussion of the instruction in these alternate uses.

Stated in shorthand form, where the contents of the A
register is less than the contents of the Q register,
the instruction behaves as follows:

) > (a) RNI at P + 1
otherwise, RNI at P + 2

Note: RNI at P + 3 is not possible because if
(M) € (4) then (M) < (Q) as (A) < (Q).

Reversing positions of A and M, the branching
conditions become:

(A) < ™) RNI at P + 1
ay 2@ RNI at P + 2

This then is nothing more then an ASG with a full 24 bit
operand. However, one value that A can take on is
troublesome and that is 37777777. When this is the
contents of A; (A) € (Q) is not possible as 37777777 is
the largest possible positive number.

While this form of the instruction looks useful, it

and an AQ test. The coding that way ends up shorter and
executes faster.

Another possible use of the instruction exists where the
contents of the A register is set to 377777775 or the
contents of the Q register is set to 40000000 .

In the case where (Q) is set to 400006008, the instructdion
acts as follows:

() > (4a) RNI at P + 1
otherwise, RNI at P + 3

This looks very much like the previous form
except for the RNI's. It is essentially an

A skip greater than or equal to where the

skip is two words rather than one. Since P + 2
is unused, M can be set equal to it with (M)
equal to the test value..

e.g. LDQ =$40000000
CPR *42)
uJp less-than-routine
$CT test-value

greater-than-or-equal-condition-next-instr,

In the case where (A) is set to 37777777g, the instruction
acts as follows:

(Q >M) . RNI at P+ 2
otherwise, RNI at P + 3

This is essentially a Q test, Also since P+ 1
is unused, M can be set equal to it with (M)
equal to the test value.

e.g. LDA =937777777
CPR *+1
@CcT test-value
uJp greaterethan- routine

less-than-or-equalecondition-next-instr.

11.4 (cont.2)

Note in both of the two previous forms that A or Q must
be set prior to the execution of the instruction and both
A and Q are in use. Here as with the condition earlier,
a load A or a load Q coupled with an AQ test usually
produces shorter code which executes faster.

Still another possible.use of the instruction exists
where the contents of the A register is set equal to the
contents of M or the contents of the Q register is set
equal to the contents of M.

Where (Q) = (M), the instruction executes as indicated:

() > (a) RNI at P + 1
otherwise, RNI at P + 3

This is similar to the case where the contents
of Q is set to 40000000,. As in that case,

P + 2 is unused. Therefore, M can be set
equal to P + 2 with (M) set equal to (Q)
during execution.

€e8e STQ *+3
CPR %42
uJp less-than-routine
BSS 1

greater-than-or-equal-to-next-instr.
Where (A) = (M), the instruction executes as follows:

Q) > @) RNI at P + 2
otherwise, RNI at P + 3

This is similar to the case where the contents
of A is set to 377777774. As in that case,

P + 1 is unused. Therefore, M can be set
equal to P + 1 with (M) set equal to (A)
during execution,

€.ge STA *+2
CPR *+1
BSS 1
uJp greater-than-routine

less-than-or-equal-to-next-instr.

Note: In the case where (Q) is set equal to (M),
the same thing could have been achieved by:

AQI,GE *+2
Likewise, in the case where (A) is set egual
to (M), the following instruction serves the
same purpose:

AQJ,GE *+2

Since *+1 will almost :certainly be a UJP,
these can be replaced by a:

AQJ,LT address-in-UJP-instruction

Obviously, the formsof the instruction where (Q) = (M)
or (A) = (M) are not useful.

11.4 (cont.3)

Example:

Exercise:

About the only useful form of the instruction other then
the one where it is known that (A) 2 (Q), is where the
(Q) is totally unknown and of no concern. When this is
the case, the instruction is applied as follows:

M) > (a) RNI at P + 1
otherwise, RNI at P+ 2 or P + 3

When used in this manner, it is nothing more then an
ASG where the test value is a 24 bit operand and (P+2)
must be a NOP.

No matter how the CPR instruction is applied, the following
is always true:

00000000 # 77777777
and, 00000000 > 77777777

Assuming the following initial conditions, what does this
program do?

(A) = 100B
(Q) = 508
(100) = 00000064
(101) = 00000104
(102) = 70000000
(103) = 00000700
BEGIN CPR 100B
uJp *+2
JP *a2
CPR 101B
CPR 1028
UJpP *42
CPR 103B
HLT 0
UJP %25
Answer: RNI sequence = BEGIN
BEGIN+3
BEGIN+4
BEGIN+6
BEGIN+7 (Halt)

Table IQ contains 100 IQ values. GCount all the IQ's
in the following ranges 0-79, 80-119, 120-up. Use the
CPR instruction, then do it without the CPR instruction.

STUDENT NOTES

FLOATING POINT OPERATIONS

12.1

12.2

[ary

W

INTRODUCTION

12.1.1 Storage of Floating Point Numbers
12.1.,2 Normalizing the Coeffitcient
12.1.3 Exponent

12.1.4 Conversion Procedures

12.1.5 Unpacking Floating Point Numbers

EXECUTION OF FLOATING POINT OPERATIONS
12.2.1 Addition

12.2.2 Subtraction

12.2.3 Rounding of Floating Point Numbers
12.2.4 Multiplication

12.2.5 Division

Chapter m

FLOATING POINT INSTRUCTIONS

12.3.1 Floating Point ADD
12.3.2 Floating Point SUBTRACT
12.3.3 Floating Point MULTIPLY

12.3.4 Floating Point DIVIDE

12.1 INTRODUCTION

12.1.1 Storage of floating point numbers

Any number can be expressed in the form kB®
when k = coefficient
B = base

n = exponent

Floating point is always packed into 2 words in the 3200,
making & 48-bit representation of the number.

The lower 36 bits = the coefficient

next 11 bits = exponent and sign of exponent
Upper bit = gign of the coefficient
P :P +1
3 [}
g ?Zﬁf;gie%kpon ent Coef ficient
4% ¥ 35 | 00

12.1.2 Normalizing the coefficient

The coefficient is a 36-bit fraction, which is adjusted before
packing, so that the fraction lies between % and 1.

i.e. 1 > FRACTION > 3

The coefficient is always adjusted so that a binary 1 follows
the radix point, and nothing is in front of the radix point. The adjustment
is made by shifting the radix point and multiplying the answer by the
required power of 2.

e.g. 4g = 100.0 in binary
= .100 x 23 in binary
= .4 x 23 in octal
1018 =1 000 001. in binary
= .100 000 100 x 27 in binary
= 404 x 27 in octal
.068 = ,000 110 in binary
= .110 x 2”3 in binary
= .6 x 273 in octal
.00001g = .000 000 000 000 001 in binary
=.100 x 2716 in binary

~-16 exponent = -1l6g = -14
= .4 x 2716 45 octal } 8 10

12.1.3 The Exponent

lies in the range 0000 - 3777,. However 1777g is not possible
as it implies an exponent of -0 which will never result when
performing a floating point operation. If one of the operands
has 1777 for an exponent, it will be used as though it were 2000.

12.1.3 (cont.)

It is always biased before packing to enable comparison with
other Floating point numbers.
This biasing ensures that the exponent is always positive.

RULE: If positive, 2000g is added to it.
If negative, 17778 is added to it.

Thus if the biased value lies in the range 0000g - 17765, it is
a negative exponent. 17778 does not normally occur as it = -0.

But if the biased value lies in the range 2000g - 3777g, it is
a positive exponent.

e.g. kx 24 Exponent is positive, therefore 2000 added.
= 2004

e.g. k x 2% Exponent is negative, therefore 1777, added
= 17775 + (-4)

- 1173,
and k x 2% 1370,

12.1.4 Conversion Procedures

(1) Convert the number to binary

(2) Normalize the number

(3) Bias the exponentt

(4) Assemble the number

(5) 1If negative, complement the result

Example: 4.0

(1) Binary = 100.
(2) Normalize = .100 x 23
3
= .48 x 2
(3) Exponent = 3 + 2000
= 2003 ,
.
(4) Assemble =2003 40000000 0000 |
Leftmost Actal number = 2 = 010
in binary

Sign bit = 0 = POSITIVE NUMBER
e.g. Pack 5638
(1) Binary = 101 110 O
.101 110 011 x 2= .s563 x 2
11 + 2000 = 2011

(2) Normalize 11

(3) Exponent

12,1.4 (cont,)

(4) Assemble

[2011 L563o ioooo 0000

e.g. Pack -5638

Steps (1) to (4) as above

Then, because it is negative, complement the result.

1
= | 5766 | 2147 1777 TITT
I
Note: Bit 47 (top bit) = 1, because 5 = 101 in binary.

e.g. Pack -14638

(1) Binary = 001 100 110 O11.

(2) Normalize = .110 011 001 100 x 2
= .6314 x 212

(3) Exponent = 12 + 2000 = 2012

12 «¢—— octal. exponent

(4) Assemble =[201216314foooo 0000 |
]

Complement because number is negative

- [5765 [1463 [77777777 |

e.g. Pack --.35'B

(1) Binary = .011101
(2) Formalize = .111010 x 2
- 72127

(3) Expoment = 1777 + (-1) = 1776
(4) Assemble -[1776 [7200;10009 ooooJ

[]
Number is negative, so complement the number

. §
- | 6001 {0577 : 7777 7777 |
I

12.1.5 Unpacking Floating Point Fumbers

Rules:
(1) If upper bit is a one, number is negative. Complement,
and note that sign of the final answer must be negative.

(2) If exponent is less than 1777, exponent is negative.
Subtract 1777 from exponent.

(3) If exponent is greater than 20004, exponent is positive.
Subtract 2000 from it.

e.g. UNPACK

R

]2000}4000 0000 oooo|

1
(1) Fumber is positive (the upper bit = 0)
(2) Exponent is positive (}2000)
v = 2000 - 2000 = O
(3) Rumber = .4 x 20

= 4

12.1.5 (cont,)
f
e.g. UNPACK | 6002 | OTTT! TT7T 17777

(1) Upper bit is 1 - number is therefore negative,
so first complement it

|
- [J77§l7oooioooo oooo]
. i
(2) Exponent is < 1777, and is negative

= 1775 - 1777
= =2

Shift coefficient to right 2 places

(3) Coefficient = .7
= .M
Shift = .001 110
= .16
Answer = --0.168 or -0.2187510

12.2 EXECUTION OF FLOATING POINT OPERATIONS

12.2.1 Addition

(1) Equalize exponents by shifting coefficient of the algebraically
smaller number to the right.

(2) Add coefficients, and normalize
e.g. 10, + 100

8 8
[] [
T L)
104 -[2004 |40004Loooooooo] 1008=4 2007 |4ooo: 00000000
]]
Shift coefficient of 108
S x 2% . .0001) x 2!
=.%éx27

= | 2007 104oo§’oooooooo

Add coefficients and normalize '

.4000 0000 0000 x 27

.0400 0000 0000 x 27

= .4400 0000 0000 x 27
this is normalized already

Number

- 100100000000 000000000000 000000000000, x 27
1001000.
001 001 0002

= 1 1 08

12.2.2 Subtraction

(1) Equalize exponents
(2) Subtract coefficients and normalize

e.g. 438 - 68

438 = ,100011 x 26 = 2006430000000000

6 = -110 x 23 = 2003600000000000

Equalize exponents, ie, 2003 6000 0000 0000 (.1102 x 23)
becomes
2006 0600 0000 0000 (.000110, x 25)

Subtract coefficients and normalize

.4300 0000 0000 x 2°
(-).0600 0000 0000 x 26

.3500 0000 0000 x 28
.7200 0000 0000 x 2° after being normalized

Number = .111016000000 000000000000 000000000000, x 25
11101.

011 101,

= 3 58

12.2.3 Rounding of Floating Point Numbers

In floating point operations, the E register is joined to the AQ
register, to form a 96~BIT REGISTER AQE (the uppermost bit is the sign).

A Q 1By Ep,

Coeff%cient

S Exponent

1 11 bits 12 bits! 24 bits i 24 bits 24 bits

To carry out rounding, the sign of AQ is compared with the sign of E.
If sign of AQ is not equal to sign of E, number in AQ is rounded.

- - —

Example:
(1) 1f AQ47 = 0, number is positive.
If E47 = 1, number in E must begin with either a
4, 5, 6 or T

i.e. E can begin 100 = 4

101 =5

110 = 6

or 111 =17

The number in AQ is therefore rounded up by adding one to AQ.

(ii) 1f AQ4

7= 1, number is negative.

If B = 0, number in E must begin with either a

0, 1, 20r3

A7
i

which is -7, -6, -5, and -4.

The number in AQ is therefore rounded down by subtracting one from AQ.

AQ E
e.g. : :
247- - T TS T TS T = 6 |512=—~T—T— —=——=7
BIT,,6 =0 BIT,., = 1
47 47
Positive number is rounded.
AQ E
B b ey 6 |277— = == ————= -7
No rounding is necessary.
AQ E
e.g.
& 77 ——— = —==—==7|l66 ~——=—===—=- 7
BIT,, = 1 BIT,, = O
47 47

Rounded down because negative number.

Summary: If the sign of AQ is different from the uppermost bit of E,
one is added to AQ if AQ 1is positive or one 1s subtracted
from AQ if AQ 1is negative.

12.2.4 Multiplication

(i) Unbias the exponents by subtracting 20008 or .17778, as the case
may be.

(ii) Add the unbiased exponents.
(1ii) Multiply the coefficients.

12.2.4 (cont.)

(iv) Normalize the coefficient resulting and adjust the exponent.

(v) Assemble the number.

e.g. Multiply 1008 by 108

1005 = 001000000
= .100000 x 27 (Binary)
= 4 x 2T (Octal)
1
1
= { 2007 | 4000 | 00000000 |
105 = 001000

= .100 x 24 (Binary)

= .4 x 2% (Octal)

- | 2004 | 4000 ioooooooo |

(i) Unbias exponents
2007 becomes 7
2004 becomes 4

(ii) Add unbiased exponents

7
4

138

(1ii) Multiply coefficients

1008 becomes ’48 when normalized

108 becomes .48 when normalized

product = ‘208

(iv) Normalize resulting coefficient
.20 x 213
13 .
= ,010 x 2~ (Binary)
= .100 x 212
= 4 x 212 (Octal)
(v) Assemble answer

= [2012 | 40001 00 00 00 00 |
[}

(vi) Checking

1008 x 108 = 10008

001 000 000 000,

.100 x 212 (Binary - exponent in octal)

.4 x 212 (Octal - exponent in octal)

12.2.5 Division

(i) TUnbias the exponents

(i1) Subtract the unbiased exponents

(iii) Divide the coefficients

(iv) Normalize the coefficient resulting and adjust the exponent
(v) Assemble the numbers

e.g. Divide 1008 _by 108

1008 = 001 000 000

- axal (Binary)

- .4 x2" (octal) =][2007[4000 | 00000000
10 = 001 000

-.1x24 (Binary)

- .4 x 2% (octa1) = [2004]4000 | 00000000 |

(i) Unbias the exponents
2007 becomes 7
2004 becomes &

(ii) Subtract unbiased exponents

7
=4
3

(iii) Divide coefficients

1008 becomes .48 when normalized

108 becomes .48 when normalized 1.0

quotient = 1.08 ie, .4 s A

(iv) Normalize resulting coefficient
1.0 x 23

.1 x 24 (Binary)
4 ox 24 (Octal)

(v) Assemble answer

[

f

|
= | 2004 | 4000 1 0000 0000 |
1

(vi) Checking

1005 + 10g = 104
10g =001 000 (Binary)
= .100 x 2%

= .4 x 2% (Octal)

12.3 FLOATING POINT INSTRUCTIONS

12.3.1 Floating Point ADD

LICATION © OPERATIGN,MODIFIERS ABORESS FiELD
:%F’A.Dxl‘rltsxz;,-l’z=x;=‘x5z|=v|;;,
i 1

siridgasaieiTisizis : ferzaiters e laY s n 84T

23 1817 16 15 14 00
Leofal o | m |

addressing mode designator

index designator

m = storage address
Description: Add the contents of two consecutive locations b
(M and M + 1) to the contents of AQ, where M = m + (B")
The normalized and rounded sum appears in AQ.
Example:
FAD FRSUM AQ=[2007 1400000000000
FPSUM \ FPSUM+1

2004 /4000100000000

[}
Final result of AQ
A) 1Q

. I
2007 {4400'00000000

Exercise: If contents of Registers and a part of memory are:

(A) = 20014500
(Q) = 00000000

FPSUM 6060 6060 |

FPSUHL| 2007|3621
FPSUM+2{ 00000000
FRSUM3] 2004 | 4000
FPSUMHY 0000 0000

Index register 3 contains 3, and
Index register 1 contains 1,
What would be AQ after execution of
(a) FAD FPSUM, 3
(b) FAD TFPSUM,1

12.3.2 Floating Point SUBTRACT

LOCATION E&PSBAINK,HNFIIIS ABORESS FIELR
xirsa)‘rl |5;n:"b-=’if‘lx)1"|1 L

i

Lilisrazitivasanloge ey ey 12 Ry ey

18 17 16 15 14 00

23
Lo Jofo] m

8 - addressing mode designator
b » index designator
m = storage address

12.3.2 (cont.)

Description:

locations (M and M + 1
of AQ,where M = m + (BP)

Subtract the contents of two consecutive

from the contents

Example: A 1Q
If (4Q) =|200%8/ 4300000000000 = 35
i
FSB FP@P
FP@P | FPPPHL
2003|6000 60000600 6
i
Final result of AQ :
A lLQ
2005(7200 00000000 29

12.3.3 TFloating Point MULTIPLY

L80ATION

OPERANGN MODIFIERS ADLRESS FlELD

18

a = addressing mode designator

b = index register

m = storage address

Description:

Multiply the contents of AQ by the contents

of 2 consecutive locations, M and M + 1,

where M = m + (Bb).

10

10

The product appears in AQ normalized and rounded.

Example:
Example N 1o
FMU If (aQ) = 2007[4000]00000000
1
EPPP | ERPP+1
[]
and (EPPP) = |2 0 0 4 4000100000000
L
and the instrugtion-= MU EPPP
|
the final TQ
(AQ) = |2012|4000}00000000

T
I

12.3.4 Floating Point DIVIDE

I tacation " IOPERATIGN. MODIFIERS ADDRESS FIELE
L FDV, I omb

i

TR RERTE L SARL R L TR T T TR Pt SLETIT.)

23 1817 16 15 14 00

Loo elo] m |

= addressing mode designator

= index designator

m = storage address

Description: Divide the contents of AQ by the contents of
2 consecutive location , M and M + 1, where

M=mn+ (Bb). The result appears in AQ,
normalized and rounded.

Example: If (AQ) are as shown below, FP@P
contains 20044000, and FP@P+l contains O,
what would be the contents of AQ after
execution of the instruction.

FDV FPgP

Solution: A p

2007 400 0: 00000000

FPPP [FPEP+1

2004} 400 0: 00000000
T

A 1Q

1
Final result of AQ (2004 | 40 0,0; 00000O0CGO

48-BIT REGISTER OPERATIONS

13.1 48-BIT E REGISTER
13.1.1 Introduction

13.1.2 Trapped Instructions for the E Register

13.2 TRANSFERS BETWEEN A AND Ey
13.2.1 Transfer Ey to A

13.2,.2 Transfer A to Ey

13.3 TRANSFERS BETWEEN Q AND EL
13.3.1 Transfer Ef to Q

13.3.2 Transfer Q to EL

—
w
.
~
:e
2
[
|
:
b
1
=
=
=
=
=
=4

AQ AND E
13.4.1 Transfer E to AQ

13.4.2 Transfer AQ to E

Chapter m

13.5 SCALE AQ-

13.6 USE OF THE SCALE AQ INSTRUCTION

13.1 48-BIT E REGISTER

13.1.1 Introduction

The E register is a 48-bit, octal register* used as a
supplement to AQ in floating point and 48-bit precision operations.
It extends the size of AQ to 96 bits by forming AGE.

All 3200 computers do not contain the hardware for
the E register, which therefore cannot be displayed on the console
of these machines. (Where the full hardware is available, the
contents of the E register can be displayed on the console in the
displays usually containing A and Q.)

% The E register is the lower 48 bits of the 52 bit + sign Ej register.
The .upper 4 bits of Ep and the sign of E are not affected by
Floating point, 48-bit multiply or divide, or inter-register
operations.

13.1.2 Trapped Instructions for the E Register

Floating point and 48-bit precision operations are handled
on the 3204 basic processor by a special software package. The
instructions are detected by the hardware, and "trapped". They are
then processed by the special software programs OPTBOXS and FDPBOXS.
OPTBOXS examines each trapped instruction to see if it is a Floating
point/48-bit instruction or a BCD instruction (see Section 14.3).

If it is a BCD instruction, the program BCDBOXS is used to process
it. If it is a Floating point or a 48-bit precision instruction, the
program FDPBOXS is used.

FDPBOXS simulates the hardware for the E register so that
the instructions can be executed without the hardware being present.

13.2 TRANSFERS BETWEEN A AND Ey

¥3+2.1 Transfer Ey to A

WCATION | OPERATIGN,WEDIFIERS _ ADORESS FIELD
L BUA .

LS gALS iR gl e AN e g 3 B3BBG 0 R

23 18 17 156 14 00

Description: This instruction transfers the contents of E, per (bits 47-24)
to the A register. The E register is not disgurbed by the
transfer.

Example: Suppose §P48 contains 0, and $P48+l contains 2.

If A contains O, and Q contains 76000000, what
will be in A as a result of:

MUAQ gr48
EUA
i
Answer: yq | 00000000 | 76000000
@P48 PP4s+1
Multiplied by | 00000000 | 00000002
1
T]
A R Ey A
' v .
results in 00000000 | 00000000 00000001 | 74000000

Transferring EU to A, (A) = 00000001

13.2.,2 Transfer A to Eg

(G0ATION | OPIRATION MEDIFIERS ki}ﬁ?fSS ik
CAEO

R §
1081t e g geia

23 1817 15 14 00

| s | o &

Description: This instruction transfers the contents of the A register
(bits 47-24). E register bit positions 51 thru 48

u
and 23 thru 00 are not disturbed by the transfer. Also the
A register remains unchanged as does the sign of E.

Example: What will be in EU after execution of the following
instructions:
ENA 20321B
AEU

Answer: EU‘ = 00020321

13.3 TRANSFERS BETWEEN Q AND EL

13.3.1 Transfer Ej to Q

L OLBCATION GPERAVION, MODIFIERS ADDRESS RIELD
i L ELQ

[
B A A O T 2R N 2SS 613§

23 18 17 15 14 00

| s |

Description: The lower 24 bits of E, ie, E{ower> are transferred to
the Q register. The E register remains unchanged at
the end of the transfer.

Example: In the EUA example, if the instructions had been:
MUAQ PP48
EUA
ELQ

What would be in Q after execution?

Answer: (Q) = 74000000

13.3.2 Transfer Q to EL

f LOCATION. CPIRATION, MODIFIERS ABDRESS HIELY

LT 2 S e N e e 2208 B N IR AN

231817 1514 00
_

Description: The contents of the Q register is transferred to E owe
(bits 23-00). Bit positions 51 thru 24 and the sign o?
E are not disturbed by the transfer. Likewise the Q
register remains unchanged.

Example: In the following example:
ENQ 20321B
QEL

What will be in EL after execution of the instructions?

Answer: (EL) = 00020321

13.4 TRANSFERS BETWEEN AQ AND E

13.4.1 Transfer E to AQ

WOCATIONOPERRIION,MODIFIERS_ AODRESS RIELD
(EAQ

1

slmgugmiaiemisirags 3 depayise s

23 1817 15 14 00

= | s

Description: Transfer the 48 bit contents of E (bits 47-00) to AQ.
Ey(bits 47-24) is transferred to A and Ep(bits 23-00)
is transferred to Q. The contents and sign of E is
not disturbed by the transfer.

Example: In the EUA example, if the instructions had been:
MUAQ PP48
EAQ

What would be in AQ after execution?

A Q

Answer: AQ = | 00000001 | 74000000

=1

13.4.2 Transfer AQ to

LCATION | OPERATIONMAMIFIERS ABORESS RIELS
. AQE

2530835380 iaiviniz ey

st

23 1817 15 14 00

s | » O

Description: Transfer the 48 bit contents of AQ to E (bits 47-00).
A is transferred to Ey(bits 47-24) and Q is transferred
to EL(bits 23-00). Eg(bits 51-48) and the sign of E
are unaffected by the transfer. The contents of A and Q
are not disturbed and remain after the transfer.

Example: Divide the 48 bit operand in AQ by PP48. Write the
appropriate coding. (PP48)= 2.
Answer: AQE Transfer Number to E for Div.
SHAQ =47 Set AQ to sign of E
DVAQ PP48 (AQ) = Quotient,(E) = remainder
A Q
At Start
AQ = 77777777 | 77777765
A Q E E
After AQE v L
AQE = 77777777 | 77777765 | 77777777 | 77777765
A Q
After SHAQ
AQ = 77777777 | 77777777
After DVAQ -
AQE = 77777777 | 77777772 | 00000000 | 00000000

13.5 SCALE AQ

CLOCATION

| [GPERATIGN MODIFIERS ABDRESS FIELS

_5CAQ . kb

SLUEEIN AN i 2001003 (20103 iy azyn 1 se 2T

Description:

Example:

Exercise:

23 1817 16 15 14 00
Los [iJe] « |

b = index designator

k = shift designator

AQ is shifted left, end around, until the upper two
bits (46 and 47 are unequal.)

During the operation, the computer makes a shift
count. A guantity K = k minus the shift count.

If b = 0, this residue is discarded

If b = 1-3, the residue is placed in
index register Bb.

A Q

AQ initial 03000000 00000000
contents g

SCAQ 24,2

Top bits of A = 000 011 000 etc.

To get top 2 bits unequal, shift left 3 places

011 000 etec.

AQ becomes 30000000 |000000O00O

k=24
= 308

K = k - shift count
=30, - 3

258, which is placed in Index Reg. 2.

If A contains 100B, and Q contains zero, what would be
in A, Q and Index register 1 after execution of the
following instruction?

SCAQ 2027B,1

13,6 TUSE OF THE SCALE AQ INSTRUCTION

It is used to pack floating point numbers.

Example:

1008 =

20071400

o}oooooooo

In previous example (using 1008)

AQ, afte

r zcaling, was

Q

20000000

00000000

and Index Register 1 = 2007

(®) Then shifting AQ to right 11- places

00004000

‘00000000

(b) by storing AQ elsewhere, ,
Reading Index Register 1 into 4,
and shifting it left 12 places,
we have the exponent at the top of the AQ.

) By th

float

Final

(d)
(e)

00002007

20070000

after shifting

en adding back to

ing point number

Al m mdbaand
AQ the stored

A 1Q
2007[0000100000000
ST@YRE STPRE+]
0000[4000100000000
AQ '

A Q

2007| 400000000000

This will only work with positive numbers.

For negative numbers, complement the number first.

Then pack the number, as above and complement. the
packed number.

13.6 (cont.)

Alternate method for packing floating point numbers:

If the computer has floating-point hardware and

if the number to be packed is a single precision integer
(24-bit operand), then the following method is used
instead of the one just illustrated:

SHAQ -24 FPRM 48-BIT SIGNED PPERAND
SCA K2044 MERGE WITH PRPPER EXPPNENT
FAD K2044 NGRMALIZE THE F.P. NUMBER
UJP
*
K2044 @CT 20440000,0 F.P. CPNSTANT = 2044000000000000

Here the FAD instruction is used to do the normalizing instead
of the SCAQ. Also the normalizing is done after forming the
floating point number rather then before. If the operand to
be packed is larger than 24-bits or if the computer doesn't
have floating point hardware, the number can be packed faster
using the SCAQ instruction.

BCD DIGIT OPERATIONS

14,1

14.2

14.3

INTRODUCTION

14.1.1 BCD Digits

14.1.2 Field

14.1.3 Sign Bits

14.1.4 Ep Register (In Machine)
14.1.5 Ep Register (On Console)
14.1.6 BCD Fault

BCD INSTRUCTIONS

14.2.1

14.2.2

14.2.3

14.2.4

14.2.5

14.2.6

14.2.7

14.2.8

14.2.9

Shift Ep Register

Ep Equal to ZERO Jump

Ep Less Than ZERO Jump

Ep Overflow Jump

Setting Field Length in D Register
Load Ep

Store Ep

Add to Ep

Subtract From Ep

BCD TRAPPED INSTRUCTIONS

Chopterm

14.1 INTRODUCTION

14.1.1 BCD Digits

The BCD instructions handle 4-bit BCD DIGITS. These digits
are the decimal digits 0-9 represented as follows:
0000 = 0O
0001 = 1
0010 = 2
0011 = 3

1001 = 9

Each 24-bit word of storage is divided into 4 BCD Digit characters of
6 bits, as shown:

23 1817 zu 06 05 00

The lower 4 bits in each character are the BCD Digit. The upper 2 bits

in the least significant character is used to represent the sign of the
field.

14.1.2 Field

A field is a group of BCD Digits, of a maximum length of 12 digits.
The length of the field is stored in the D register, which consists of a
4 bit register within the hardware. It is not displayed on the Console.

14,1.3 Sign Bits

This represents the sign of the field ag a whole - not of the
individual BCD digit. It is stored in the least significant digit in
the field. The signs bits of the other digits in the field must be 00,
or a fault is generated.

If the sign bit stored is 10,
the field is negative.

For all other combinations, it is positive

i.e. (00 xxxx)
(01 xxxx) positive field
% 11 xoxx %
Example:

00 0001 | 00O 0100 | 00 0011 { OO 1000 = 1438
00 0110 | 00 0010 | 00 1001 | OC 0000 = 6290

If the Field is 7 digits long, the sign is stored with the least

significant digit (i.e. the rightmost of the field, = 9). It is 00. so
the number in memory is positive = 1,438,629.

14.1.4 The Ep Register (in machine) - where hardware is available.

This is a decimal register, consisting of 12 BCD decimal digits and
1 overflow BCD decimal digit.

14.1.5 The Ep Register (on console) - where hardware is available.

Displayed in the AQ register as decimal numbers. Displays the
full Ej register plus 3 additional characters, as shown.

Sign of
digit being
currently + 1 + 1 12 DEC DIGITS
accessed
+or - Digits Sign of Overflow
being Ep digit
currently + or -
accessed

Max number in Ep = 999,999,999,999

If one more is added, the digit in the overflow position
will become a one.

14.1.6 BCD Fault

Programmer can arrange for an interrupt to occur if a BCD fault is
discovered. He can also arrange %o keep senging for a fault without an
interrupt.

3 conditions will produce a fauls:.

a) If the upper 2 bits of any digit (except those of the least
pp
significant digit in the field) are not 00.

(8) If an illegal digit is present
i.e. any four bit combination greater than 9.
&é.g. 1011 = 11 is illegal
(¢) 1If the contents of the D register are greater than 12 (148)

BCD fauit is sensed by the SENSE Internal Status Instruction:

NS 4000B
If BCD fault, RNI P + 1
If no fault, BNI P + 2

14.2 BCD INSTRUCTIONS

14.2.1 Shift B, Register

LOCATION QPLRATION, MOBIFIERS ADDRESS RIELD
| SFE. ... kb

23 1817 16 15 14 00
Lrofolo] « |

k = shift count
b = index designator

Description: The Epregister ig shifted in one character steps
(i.e. 4 bits at a time)

K=k + (Bb) with sign extension
(The instructiop senses bits 0-3 and 23 only of the

sun of k and (B").
If bit 23 = 0, Shift is left, end off, zero fill.

If bit 23 = 1, Shift is right, end off, zero fill.)

N.B. s BOTH SHIFTS ARE END OFF.

Example: SFE 1

Shifts E, 1 character to left (i.e. shifts one digit
to the left.)

0/000 000,001, 829 | 3efors Shift.

ofooo0 000

e

After Shift

F__-
o
-
®

I ~— -]
»N
Vel
o

Exercises:
(1) If the Ep register contains

. . :
0l678 437;921:698

’
s

What will it contzin after the following instructions

ENI Ts1
SFE 31

(i1) If the above result is followed by
SFE -8,1

What will be the final contents of Ep?

14,2,2 Ep equal to ZERO Jump

LCATION ﬂsamnes,xamrtm ADBRESS FIELR
o EELER M

23 18 17 15 14 00
Lo [o | m |

m = storage address

Description: The contents of the 52-bit B register are compared with
Zero

If (ED) = 0, RNI address m
If (BEp) # 0y BNI P + 1

Examples EZi,EqQ ENDL@@P
SFE 1,2
UJp *.|_-5
ENDL@#P LDA 144B
etc.

14.2,3 Ep less thar ZERO Jump

LGCATION - | OPERATION, MEDIFIERS ADBRESS FIEWS

23 1817 1514 00
Lol s | = |

m = storage .address

Description: The contents of the 52-bit E register are compared
with zero

If (ED) < 0 RNI address m

If (Bp) 20 RNI P + 1

14.2.4 Ep Overflow Jump

(8CATION {SPERATION MBDIFIERS ABDRESS FIELE

llll%”’ii‘i"!]tl=ill_24
1

18 17 15 14 00

23
lro] 6 | = |

m = storage address

Descriptions If the upper 4 bits of the Ej register contain anything
but zero, control jumpes to address m.

If Upper 4 bits contain zero, RNI P + 1

14.204 (Cont.)

Examples:

T f
42311357 619

| ! 878 - no overflow, jump RNI P + 1

419000,000
|

000

241 - 0/flow, junp RNI Address m.

14,2.5 Setting Field Length in D Register

e

COERRTION MODIFIERS ABURSSS FIELD

TSET

soppesne T TN LT M

Description:

’
,%
5
3
e

14.2.6 Load 5p

23 1817 1514 04 03 00
[70 I 7| 5 y41

y = field length indicator

The instruction takss the lower 4 bits of y and puts
them in the D register. Maximum length of field is
14B feor all operations except STE, when maximum length
of the field is 15B. The D register remains at the
valus set until 1t is set zagain.

It is not cleared in Muster Clear cpsrations.
SET 143

Setz D rogiaster to 145 for field length

ONLY INDEX REGISTER 1
VEAINHODEER ARDRESS FIELD CAN BE USED

omyd

AT ST S R Y e e

Descriptions

Examples

23 1817 16 00

Lo o] m

b = index designator

If b =0, m is the ummodified address

If b =1, m is modified by (Bl) sign extended
m = storage address (character address)

The instruction loads the Ep register with a field of up
to 12 numeric BCD characters. The field length is
specified by the D register. Characters are put in

the lower end of Eps with zero fill to the left.

SET 7
LDE 400B

100 3 6 8
101 4 5 6

Find least significant digit

14,2.6 (cont.)

M+ (D-1)

M+ {6) = 405

Lozds this character into &p first, intc leftmost bits of

Ep. The R shifts one character, adds in next digits, shifts,
etc, When lozded D characters, zero fills rest of Ep from
left.

Answer ¢+ E = |0 00000 3689456

14.2.7 Store Ep

CNLY INDEX REGISTER 2
CAN BE USED

23 1817 16 00

Lo [of n |

b = index designator
If b =0, m is the unmodified address
If b =1, m is modified by (B2) only
m = storage address (character address)

Description: The instructions stores a field of up to 13 decimeal
digits {3.C.D. numeric characters), deginning at
address M (the address of the most significant digit
in the field). The length of the fisld is determined
by the D register.
The least significant digit is storec¢ first, and the
register is then Shifted right one digit. The next
digit is storzad,and the register shifted right again,
and so on., NOTE THAT STORING DESTROYS THE CONTENTS OF Ep.

Example: SET 148
STE 400B

E =|0 | 746871264789

Field = 12 characters

Address of least =(D-1) + ¥
significant character = (13) + 400
= 413
= 100 001 011
Character address = = 001 000 010 11
Word 102

character 3

12 digits in B stored as follows:

100 T 4 6 8

101 7 1 2 6

102 4 7 8 9

14.2,7 (cont.)

NOTE:
DUMP OF MEMORY:
If an area of memory containing BCD numeric characters ig dumped
out, the 6 bits for each character (2 sign bits, and 4 bits for the
digit) will be dumped in octal numbers:
e.g. 00 1000 = 8 in BCD digit
But would be 001 000 = 10 in octal during dump.

Example: A block of memory is as follows (Characters are BCD Digits)

004 7 8 9
1011 6 4 3 1
102 8 7 4 9
103} 6 2 1 3

A program working on this is as follows:

SE? 12B
LDE 402B (a)
SET 6

STE 405B (v)
SET 14B

LDE 403B (c)

What would be contained in Ey at the end of the operations?

14.2.8 Add to Ej

i LacATIoN GPERATIGN NOBIFIERS ABORESS FIECD

o AOEL LMD MODIFIED BY INDEX
S REGISTER 3 ONLY

23 1817 16 00

Lee [o] n |

b = index designator
If b =0, m is the unmodified address, i.e. M =m
If b =1, m is modified by (83) only, M =m + (83)
m = storage address (character address)

bk

Description: This instruction adds 'D' numeric BCD digits to the Ep
register. The 'D! digits are lined up with the lower
D' digits of the Ej register before they are added.
The Ep register has a maximum capacity of 13 digits,
i.e., 12 digits plus overflow digit. The maximum number
of digits in the number to be added is 12, i.e., D may
not be greater than 12. M is the most significant digit
of the number to be added. M + D -~ 1 is the least
significant digit.

14,2.8 (cont.)

Example If (Ep) =

ofocoo0 000 | 876

— T
|
|
|

And a bYlock of memory is

100 | 7 2

>
O

o +]
n

101 1 5

1021 6 1 3 6

103} 2 0 8 4

What will be the contents of Ep after the following
instructions are executed?

ENI 1.3

SET 10B

ADE 400B, 3
Answer: (&) M =m + (B3)

= 400 + 1 = 401

Add to Ep 8 character the least significant of
which will be

M+ (D-1)
=401 + 7
= 410
T L |
Ep = {0 | 000 ! 000 | 876 ; 543
: : .
+ 0 | 000 | 024 | 915 |826 ,
Final Ep= |0 | 000 : 025 : 792 | 369
14.2.9 Subtract from Ep
QPERATION MEDIFIERS ADDRESS FIECD
_SBE "53.,
23 18 17 16 00

(o L] =]

b = index designator
If b =0, m is the urmodified address, i,eey, M=m
If b =1, m is modified by (B3) only, M =m + (B3)
m = storage address (character address)

iption: As for ADE, except that the field of up to 12 BCD digits
is subtracted from the Ep register.

14,3 BCD TRAPPED INSTRUCTIONS

All BCD instructions may be used in any 3200 Computer, regardless
of the model of the processor. Where the processor lacks the BCD hardware
package necessary for direct processing of BCD instructions, the implement-
ation of these instructions is carried out by a special software package.
The instructions are then known as "trapped" instructions.

(It should be noted that where the software package is used, the
contents of the Ed register cammnot be displayed on the console, because
the Ed register hardware does not exist.)

The B.C.D. instructions are detected by a translator as they appear
in the Function register, and trapped. They are processed like
interrupts, and the following action takes place

(a) P + 1 is stored in the lower 15 bits of address 00010

(b) The upper 6 bits of the Function register are stored
in the lower 6 bits of 00011 - the upper 18 bits of
00011 remain unchanged.

(¢) Program control is transferred to 00011, and a RNI cycle
is executed.

COMPASS PSEUDO INSTRUCTIONS

15.1

15.2

15.3

15.4

15.5

15.6

15.7

CONCEPTS OF PSEUDO INSTRUCTIONS
PROGRAM DEFINITION

15.2.1 IDENT Instruction

15.2.2 END Instruction

15.2.3 FINIS Instruction

ASSEMBLY AREAS

15.3.1 Introduction

15.3.2 DATA Area

15.3.3 Return Assembly Control to Subprogram PRG Area
15.3.4 COMMON Area

15.3.5 ORGR Instruction

STORAGE RESERVATIONS

15.4.1 Word Block

15.4.2 Character Block

ENTRY AND EXTERNAL INSTRUCTIONS
15.5.1 ENTRY Pseudo Instruction
15.5.2 EXTERNAL Pseudo Instruction
15.5.3 SCOPE Loading of Subprogram
SYMBOL DEFINITION BY EQUIVALENCING

15.6.1 Introduction Chap*erm

15.6.2 Word Equating

15.6.3 Character Equating

COMPASS OUTPUT LISTING CONTROL
15.7.1 REMarks

15.7.2 NO LIST Instruction

15.7.3 Resume LISTing Instruction
15.7.4 SPACE Instruction

15.7.5 New Page EJECT Instruction
15.7.6 TITLE Instruction

1507'7 Comment s

15.1 CONCEPTS OF PSEUDO INSTRUCTIONS

A better name would be "Assembly-Control" instructions.
They are simply instructions from the programmer to the assembler.

They will be used during assembly only. Program execution
can make no use of them.

e.g., BSS 4 is an instruction to the assembler to set aside 4 words
of storage somewhere in the storage area. The 4 words are set
up during assembly and then the function and usefulness of the
BSS instruction is finished.

15.2 PROGRAM DEFINITION

15,2.1 IDENT Instruction

bogsanien

OPERRTION MODIFIERS ADORESS FIELD

. IDENT m

LLLiSiaiaisariel

|
AR AN B 8 2SR v (SIS AAE Y A1

Description:

Examples: (a)

—~
o
~—

The Location field is blank. However if a symbol is
written in it, COMPASS will ignore it. COMPASS picks
up 8 or less alphanumeric characters from the address
field, the first of which must be zlphabetic. The
Address field terminates at the first blank or the
eighth alpha-numeric character, whichever is the first
encountered. A period may appear in m.

m = PROGRAM NAME

This will appear on the top of each page of the
assembly listing.

The IDENT card must be the first card in the program
or the job will be terminated.

IDENT TEST FYR ILLEGAL SYMB@LS

END

Program name will be TEST

T nAemTy

IDENT CEETINUPUS TESTING $F TAPES
.

.

.

END

Program name will be C¢NTINU¢

15.2.,2 END Instruction

LBCATION

GPIAMIION MADIFIERS ABURESS FIFLS

.?END am

i

AL s o, 3 s

Descriptions:

Examples: (1)

The location field should be blank. If a symbol is
present, it is ignored by COMPASS.

The END instruction terminates the sub program. The
final instruction in a COMPASS Sub-program must be
an END instruction.

Symbolic Transfer Address

The "™m" signifies a symbol in the address field of some
subroutine which has declared it to be an entry point.
This address is called the Symbolic Transfer Address and
need not be in the subroutine terminated by this END card.

A program of one subprogram.

The symbolic transfer address must appear, and the symbol
must be defined within the subprogram as an entry point.

e.g. IDENT TEST
ENTRY FIRST
FIRST uJp *k

END FIRST

15,2.2 (cont.l)

(ii) A program of more than one Compass subprogram

The symbolic transfer address must appear in
one of the END statements, and be defined as
an entry point as before.

Examples IDENT TEST
ENTRY FIRST
FIRST WP **
END

IDENT WRITER

END FIRST
Note that this program could have appeared as followss

IDENT TEST
ENTRY FIRST
FIRST WP *¥

END FIRST

IDENT WRITER

END
(1ii) A program of COMPASS and FORTRAN subprograms.
A symbolic transfer address should not appear

in any END statement in the program, if the
PORTRAN program is the main program.

15.202 (cont.Z)

Example: PRYGRAM TEST
CALL ¢NE
CALL Twg

XD

If the FORTRAN is a subroutine of a COMPASS subprogram
a transfer zddress should appeur in the END statement
in the COMPASS subprogram.

TRA Card diagrostic

Where an error occurs in using symbolic transfer
addressss, the error is flagged by the Loader when
the program is loaded, and execution is not zttempted.

The flag "TR" is shown (after the Load card is listed)
on the standard output unit.

15.2.3 FINIS Instruction

LCATION OPERRTION HERIFIERS _ BOBRESS FELD
FINIS

Liiiviesaienviais

230

Description: Symbols in the location and address fields are ignored.
The instruction tells the assembler that it has reached
the end of the assembly, and that all sub-programs have
been assembled. If the FINIS card isput in out of
oréer, the assembly will be terminated when it is
reached. Control ig returned to SCCPE when the
FINIS card is read.

Example: IDENT TYPPUT
END
IDENT SguT
END
IDENT TYPIN
END

FINIS

15.2.3 (cont.)

Example:

Where FORTRAN and COMFASS subprograms are used in the
one subprogram, the FINIS card is used to indicate the
end of each group of subprograms.

;FERTRAN,L,X
PREGRAM ZNE

FINIS

;CQMPASS.L,X
IDENT THREE

ZND
FINIS

15.3 ASSEMBLY AREAS

15.3.1 Introducticn

Thare are 3 aress in any sud program sssembdly

(&) Subprozram iArsa.

1 B!

In this arez all normal parts of the subprogram

are

azsemdled.

e

{b) COMMON irea

(c) D&

of the progrzm declared %0 be in common are
this =

Parss declarsd v. contain Data are assembled in
t re

o

ree counters are used &t assembly tims to pul paris of program
ntial places in the arezs above. E

snented

hess counters are incr

L

Descripiions

o

Information may Ye rut into ths Dsta zsrez atl assesdly
s
v

There may be no rafs
nor can any symool
point for ths subprosT
The insiruciion speciiies tact all informeiion
following is to be siored or identified as part
of the DATA area, uniil PRG or COMMCK or END
occurs. Any instruction or pseudo instruction
may follow DATA. The DATA area is shared dy all
subprograns at execution time.

The Location and Address fields should be blank.

oy ot
&
£)

o HB

]

IDEKRT BINBCD

DATA
BSS 2

DATA ger 273
END

NOTHE:s The total DATA zrea must be defined in
the first subprogram loaded.

ple: MAIN MEMORY ALLOCATION
Exazple TDERT AT LOAD TIME
DATA INSTRUCTIONS IN PRGOA
ea
.) SUBPROGRAM AREA OF Progrgm
. SUBPROGRAM SUBPRG1 Length-1
.)5 INSTRUCTIONS 0
.) FIRST 5 INSTRUCTIONS
.) IN SUBPROGRAM MAIN 4
PRGE 100B
DATA AREA USED IN
3 DATA A
BSS >0 SUBPROGRAM SUBPRG1 rea
PRG 100
: AREA RESERVED AS A
. BSS IN SUBPROGRAM MAIN| 149
END MAIN INSTRUCTIONS IN 0
SUBPROGRAM AREA OF PRG Area
ID:NT SUBPRG1 SUBPROGRAM MAIN (
Pl:ogl.‘am1
. Upper Boundary of Length-
. Available Memory
ATA
#RGR 5
PRG
END

15.3.3 Return Assembly Control to Subprogram PRG Area

LEATION

OPERATIGN MODIFIERS ABBRESS FIELE

P il i

... PR&

ik ie g e

All instructions that follow are to be assembled
in the subprogram area.

The PRG instruction may be used to signal the end
of the DATA or the COMMON areas.

Examples IDENT BL@CKER
DATA
SCALEF gor 273
gCT -0
COM N
INBUFF BSS 100
PRG

15.3.4 COMMON Area

| canen

©OPLRALDN MODIFIERS ADDRESS AIELS

A0 SN R 0028 I RN TN 186107

Description:

The instruction labels and reserves space in the
common area.

No informetion can be put into the area at assembly
time. If this is attempted, an error listing is
given. COMPASS assumes that a PRG card had been
included before the instruction and resumes assembly
in the subprogram area.

The COMMON area is shared by all subprograms at
execution time.

Note: COMMON is the same for zll subprograms. If
it is desired to have separate areas, ORGR instructions
must be used to separate them.

Example: IDENT TEST

chuign

W@RKAREA BSS 100
D
IDENT SUBEDIT
CmgN

L@gc BSS 60
END

In this program, the common area will be overlapped
by the two subprograms.

COMMON
SUBPROGRAM 1 SUBPROGRAM 2
0 WPRKAREA Lge 0 WPRKAREA and
L@#C reference
+1 # the same word.
59
+99

This can be used to reference the same words in

common in two subprograms.

15.3.4 (cont.l)

Examples Setting up common area in 2 subprograms
IDENT MAX
CAMMEN
TEMP BSs 10
CTABLE BSs, C 6
PRG
END
IDENT SUBPREG
CAMPN
QT@¥TAL BSS 12
FLAGS BSS,C 4
PRG
END

The area will be

TEMP

TEMP+1

TEMP+2

TEMP+3

TEMP+5
TEMP+6
TEMP+7
TEMP+8

TEMP+9

set up as follows:

CTABLE

CTABLE+

CTABLE+2

CTABLE+3

CT ABLEH

CTABLE+Y

not used by MAX

FLAGS FLAGS-Fl

LAGS+2

FLAGSH+3

QT@TAL
QT@TAL+L
QT@TAL+2
QT@TAL+3
QT@TAL+4
QT@TAL+S
QT@TAL+6
QT#TAL+7
QT@TALA+8
QT@TAL+9
QT@TAL+10
QT@TAL+11

FLAGS

15¢3o4 (Cont.Z)

Note: The only instructions which can be used in the
COMMON arez are as follows,

3sS #RGR
3sS,C IFT
EQU IFN
EXT IFF
ENTRY IFZ

COMMOX is terminated by PRG

or END

15.3.5 ORGR Instruction

ettt fﬂ?iﬁkl!ﬁﬁ,%ﬁ%ﬂfﬁs ARDRESS FIECE

i

Lot iGeia ERIAN AT 06 {11 2R LN VL {BRINNIEN XY 62

Liiiiieivieitin

Description: This instruction controls the relocatable address for
storage of instructions, constants, or the reservation
of space in any of the three storage areas.

The location field is ignored by COMFASS, but printed

on the listing.

Any symbol used in the zddresz field must have besn previously
defined in the storage area being referenced. If

COMPASS is assembling into one area, and an ORGR occurs

with a different area relocatable symbol in the addiress

field, an error results. COMPASS ignores the ORGR,

but puts an error flag on the listing.

Example: IDENT PRGRT
DATA
BSS 2
DTAG #CT 227
PRG
A PRCGR DTAG+1
END

Note: the error flag "A" set to show the error in
the address field. DTAG is in the DATA area, and
cannot be used in an ORGR statement in the SUBPROGRAM
area.

15.3.5 (cont.)

i) IDENT HARRY
@RGR 100B
LDA CIT
END

The first instruction (LDA CIT) will be assembled
in Location 100, and the rest will be stored
following it.

iii) IDENT @RGRTEST

ENTRY START ST@PRAGE ADDRESS
PRGR 50

START UJp *% 00062
LDA cig
STA CI@BLECK
WP 02010B

CANTABLE #cT 0,-1 00076 and 77
#RCR *450

INPFLAG gcr 0 00162
ZRGR INPFLAG+20

@NE ger 1 00206

EXD START

15.4 STORAGE RESERVATIONS

This is made in the area currently being used. The
address field will.determine the number of words or character
positions to be reserved.

15.4.1 Word Block

185ATI0H ! ‘GPERATICN HODIFIERS ADORESS RIELR
. 8ssm

PURE o SRS RS NN I TE WA SIS
t

figmiainimirie 130432093 3010 36 3

m = a constant, a symbol, or an address
2xpression.

Description: (i) The instruction reserves and labels a block of

a

word storage. A symbol in the location field is
the 15-bit, relocatable word address of the first
word in the block of storage.

(ii) The address field specifies the number of locations
t0 be reserved. It may be

(s) a constant
Example: STATUS BSS 2
DISKBUFF BSS 745

(b) a symbol

Example: VARINP EQU 5 :
INPAREA BSS VARINP

Note that the symbol must not be a relocatable
address, Or an error results:

VARINP #CT 5
A INPAREA BSS VARINP

(The "A" indicates the address field error.)

{¢) An address expression which results in a
non relocatable value.

Example: VARINP EQU 5
INPAREA BSS VARINP+7

If the symbol is a relocatable zddress, an
error results.

VARINP #CT 5
A INPAREA BSS VARINP-2

(The "A" indicates the address field error).

(iii) The double asterisk is illegal
i.e. PRINTBUF BSS *%

15.4.1 (cont.l)

Description: (Continued)

{(iv) If an address field is zero or in error, the
symbol is defined, but no storage is reserved.
Example: TAGL BSS 1

TAG2 BSS *%
TAG3 BSS
TAG4 BSS 2
The second instruction is illegal, and no location

will be reserved for TAG2, but TAG2 is defined. It
will reference the same word as TAG3.

i.e. TAGL
TAG2 and TAG3
TAGS

TAG4+L

(v)

1 symbols used in the subprogram must have

storage allocated to them:

IDEFT MATRIX
L1Da CAUNT
INA

STA CYURT

o
§
g . . » . . .
w
-

%-..o.o
o

(vi) NOTE: Where no symbol is used, storage is reserved
but not labelled. It may be referenced from other
labelled locations.

Example: TAGL @CT

BSS
TAG2 fCT 27
BSs 3

TAG3 £CT 14

15.4.1 (cont.2)

Description: (Continued)

The block of storage set up will bes

TAGL |00 00 00 04

¥* %%

TAG2 00 00 00 27

TAG3 00 00 00 14

The location marked *** may be referenced us:

TAG1+2
or TAG2-2
or TAG3=-6

15.4.2 Character Block

(8CATION OPERAHGN MODIFIERS RBDRESS FUELB
... 8ss,c.. . .m

H
SR

Description: Reserves and labels a block of character storage
in the area currently in use.

(i) A symbol in the location field is the 17 bit,
relocatable character address of the first character
in the block.

(ii) The address field specifies the number of characters
to be reserved. It may contain

(a) a constant

Example: CTAGl 3BSS,C 6
CTAGZ BSS,C 2

Storage will be reserved as follows:

CTAGl [CTAGL+1{CTAG1+2CTAGI+3

CTAGL+4CTAGL+5| CTAGZ |CTAG2+1

15.402 (cont.)

(ii) Continued
(b) a symbol

Example: SIZE EQU 5
PARLIST BSS,C SIZE

Note that the symbol must not be a relocatable
address or an error results.

SIZE OoCT 5
A PARLIST BSS,C SIZE

(The "A" indicates the address field error).

(¢) an address expression which results in a
non-relocatable value.
Example: SIZE EQU 15
PARLIST BSS,C SIZE-3
(iii) If a BSS,C instruction is followed by a 3S5 0
instruction, it forces any following character

reservation to a new word, even if the last character
word is not filled.

Example: INPTLAGS BSS,C 6
BSS 0

PUTFLAGS BSS,C 2

Storage is reserved as follows:

INPFLAGS |INPFLAGS+1|INPFLAGS+2|INPFLAGS+3
INPFLAGS+4 | INPFLAGS+S Not Used
PUTFLAGS |@UTFLAGS+1 Not Used

15.5 ENTRY AND EXTERNAL INSTRUCTIONS

15.5.1 ENTRY Pseudo Instruction

E L8CATION : 50?ERH!§N‘WB§IE§S ABDRESS DiELD
.. ENRY _ mmm-com
i s et ! 428 301800

1i2isiaiaisiian

Tt

Description The location field should be blank, but if a symbol
does appear, it will be ignored by COMPASS. The
address field contains one of more location names
separated by commas. No blanks may occur. The
field terminates at the first blank, or at Column
73« If there are more entry points to be defined
than will fit on one card, a second card can be
used.

Bach of the address field location names contains
a symbol defined as a subprogram relocatable word
address by appearance in a location field elsewhere
in the subprogram.

Example: IDENT #NE
ENTRY START, INTE
START UJP *x
ENA o
INT UJP *%
END START

Note that more than one entry card can be used.

IDENT TWg
ENTRY START
ENTRY INTY
START UJP *x
INY UJP *x
END START

15.5.2 EXTERNAL Pseudo Instruction

{BCATION foPERmeﬁ,msiﬂEas ABDRESS HiELS
EXT . mym =7 omn
[!

Bisges3ianTiais i i da sl el g

Description: The location field should be blank. Any symbol appearing
there will be ignored by COMPASS. The address field
contains one or more location names up to Column 73.
These must be separated by commas. No blanks may occur.
A symbol in the address field may not be defined in the
subprogram in which the EXT instruction appears.
The EXT instruction can only reference location names
in the subprogram area of another subprogram. It
cannot reference DATA or C¢MM¢N areas.

15.5.2 (cont.l)

Example:

Example:

IDENT MAIN
ENTRY NUMBER

NUMBER @CT 37
END
IDENT SUBPR#G
BXT NUMBER
LDA NUMBER
END

All subprograms within a main program are assembled
independently, and all symbols in a subprogram are
local to that program only, unless declared as
external symbols in another subprogram, and as entry
points in the former program.

IDENT DRIVEROL
1LD4 TAG

TAG @cT 14
END

IDENT DRIVERO2

LDA TAG
TAG @geT 27B
END

The two Symbols (TAG) are not linked in any way.
Bach will be referenced only by the subprogram in
which it appears.

15.5.2 (cont.2)

BT

If they refer to the same symbol,

the

Program could appear as follows:

CARDBUFF

IDENT
EXT

LA

.

END

EDIT
CARDBUFF

CARDBUFF

READ
CARDBUFF

CARDBUFF

24

Address arithmetic is not permissible with external symbols

e.g.

LDa

CARDBUFF+2

But, address modification is permissible

e.g.

LDA

15.5.3 SCOPE Loading of Subprograms

CARDBUFF, 3

The Assembler establishes links between the subprogram as

directed by the EXT and ENTRY instructions.

These linkages are then

set up by the Loader (a part of the SCOPE monitor) when the assembled

program is loaded prior to execution.

If an external is referenced in a subprogram, but there is
no ENTRY for it in any other subprogram, SCOPE will look through the
Library Tape to see if it can find a Library Routine to enter.

IDENT

BEXT

SQRTF

QUAD
SQRTF

DISC

If it can find no Library routine of the same name, it will

give an error symbol, and terminate the run.

not in Assembly).
LOAD card print out e.g.

LOAD, 56

DISC Ub

(This is done at Load Time,

The error symbol appears on the listing after the

SQRTF

1505*3 (Conto)

The COMPASS assembly listing of a subprogram containing
external symobl references will have the usual format, except that
the address field will be prefaced by an X.

Examples:
00010 00 1 X00003

The digits following the X are the reloctable word address of a
previous instruction in the subprogram area which references the
external symbol. The first (or only) reference to the external
symbol will contain X77777 in the address field. COMPASS thus
produces a "threaded list" of inmstructions referencing the external
symbol.

EEE!REE‘ Program Listing

IDENT TEST

EXT c1g

ENA 10B 00000 14 6 00010
RTJ c1¢g 00010 00 7 X77777
RTJ c1¢ 00030 00 7 X00010
RTJ c1g 00050 00 7 X00030
END

The address of the last instruction referencing the external is placed by
COMPASS into the XNL Loader Card to begin the backward threaded list. When
the loader loads the program, it enters the actual address of the external
symbol into the address portion of each instruction referencing the external.
It does this by saving the address portion of the last instruction referencing
the external symbol, it then replaces the address with the actual address of
the external symbol. The loader then, repeats the process using the saved
address as the new last instruction address referencing the external symbol.
The process continues until the address of the next instruction in the list
is 77777, which indicates all instructions referencing this external symbol
have been modified.

Thus, if CI§ is loaded at address 00106, the program will be loaded into
storage as:

00000 14600010 (ENA 10B)
00010 00700106 (RTJ CI¢)
00030 00700106 (RTJ CcIg)

00050 00700106 (RTJ ci®)

15.6 SYMBOL DEFINITION BY EQUIVALENCIRG

15.6.1 Introduction

A symbol may be defined by equivalencing it to anothsr symbol,
a constant, or an expression. The symbol may be defined as an absolute
value, a relocatable word or relocatable character address. The symbol
in the location field is equivalenced to the value of the address field.
A symbol which is declared an entry point must not be squated to z symbol
which is declared external. When symbols are equivalenced they are
identical and interchangeable.

All symbols in the address field of an equivalence must have
been previously defined by the appearance in the location field of a
preceeding instruction, or in an EXT pseudo instruction.

15.6.2 Word Equating

WCHTION | OPEAATION MEDIFIERS ABORESS RIFLD
QU o

t
SRR 5

Description: The symbol is equivalenced to another symbol, a
15-bit word address, or a 15-bit value. The symbol
in the location field will be non-relocatable or

relocatable, as determined by the address field.

If the locztion field is blank, an error occurs.
The address field may contain

(i) An integer, modulo 21°-1(15 bits or less)
(ii) A symbol, previously dsfined
(iii) An address expression containing symbols
previously defined.

If a symbol in the addrsss is defined as relocatable
in a given arsa, the symbol in the location fisld
will also be relocatable in that area.

Exzmples: SY¥BPL BQU 576413

DATE BQU 278

TEME 3383 1

SYM BEQU TEMP

TEMP2 EQU STM+6

Assemblad as followss. SYMBFL 57641
DATE 00027

00165 TEMP Storage reserved

SYM 00165
TEMP2 00173

TEMP, SYM and TEMP2 are relocatable.

15.6.3 Character Equating

(gCaTion

" 'OPERMIION MODIFIERS ADERESS FIELD

Lizpsiasaisivial

Eau)'c'xn»aa,”e:=)-’zns;.|v‘i)sx

1

Bir i e e e acianas ppYivessenT:

Description:

The symbol is equivalenced to a 17-bit address,

a 17-bit value or another symbol. The symbol will

be nonrelocatable, or relocatable, as determined by
the address field. If the location field is blank,
an error accurs.

The address field may contain

(1) An integer, Modulo 217-1(17 bits or less)
Example: ABADD EQU,C 3728

ABADD is equivalenced to the 17-bit character
address 372, which is word 76, character 2.
This word address is shown on the listing:

000762 ABADD EQU,C 372B
00027 DATE EQU 27B

(ii) A symbol previously defined

Example: SYM BSS, C 1
NDFLAG EQU,C SYM

If the address of SYM is 00013, the value
of NDFLAG will be 13 also.

(iii) An address expression, ccntaining symbols
already defined.

Example: NDFLAG EQU,C SYM-4

If the address of SYM is 00013, the value
of NDFLAG will be 50.

Word address 13

character address 54
- 4

NDFLAG character address 50

1

15.7 COMPASS OUTPUT LISTING CONTROL

The programmer can control output listings under CPMPASS
with these instructions. They are written in the same way as any
other instruction.

15.7.1 REMarks

LACATION | OPERAVION MODIFIERS ABORESS RIELD

iy 12122 peiepepyisai e T

Description; Any remark may be inserted intc the source program,
to appear on the ocutput listing. All columns except
S-13 may be used.

9110 13

Example: THIS IS REM A REMARK INSTRUCTION

15.7.2 NO LIST Instruction

LG0ATION OPERATION WADIFERS ABDRESS FIELD
NdezsT
1

jead i iaE Sir IR et e isey LRI E RN 33

Description: The instruction suppresses listing of the subprogram
until the imstruction LIST is encountered.
However, if lines containing errors are encountersd,
they will be printed out, regardless of the NﬁLIST
instruction.
The insiruction will not appear on ta

q

output listing.

[}

15.7.3 Resume LISTing Instruction

LaLATIER SRERATION MADINENS AURRESE RUELD
LIST

Description: The instruction resumes output listing after a
NOLIST imstruction ,
If LIST occurs without a proceeding LPLIST statement
it is ignored.

15.7.4 SPACE Instruction

TlanENSY opides MIDWERS AMIRESS RES
; SPACE m

3

Description: The instruction instructs the printer to skip n
lines of print, or go tc the top of the next page,
whichever is the less.

m is an unsignzd decimal integer.

Examples: (i) spaCE 2

2 lines are skirped on the printer

If onl} 3 lines remain in the page,

—
e
[N

~——

SPACE 10

will cause the printsr to skip 0 a new page
and begin in line 1 of the page.

15.7.5 New Page EJECT Instruction

LOCKTION | [OPERATION.MODIFIERS__ ADORESS FIELD
EVECT i

i

Lidibiegdieyreisini e 28 2a0:

Description: The page being printed is fed through the printer, and
' the line following the EJECT instruction will be the
first line of listing on the new page.
The address field must be blank or an error will occur,
although comments may be inserted from column 41.

15,7.6 TITLE Instruction

LECATION GPERATIGN, MEDIFIERS ADERESS FIELD
TITLE ‘title to be used |

i
CALS IS TR iS it iR i e s riie) 1o yeiire e ne v 213N Isaa 33T

Description: Normally the name of the subprogram will appear at
the top of each page of listing of the subprogram.
If another title is required instead, it can be
inserted using this instruction. The heading obtained
from the IDENT or previous TITLE instruction is
replaced, and the first page following the TITLE
instruction will have the new heading.
If the new heading is to be inserted immediately, the
instruction EJECT should immediately follow TITLE.
If ths new title is to be used on the first page of
the listing, the TITLE instruction must immediately
follow IDENT.
The title must be contained in columns 20-72 of the
address field.

Examples: (i) IDENT TEST
TITLE TEST FYR ILLEGAL CHAR4CTERS

°
°

This will cause the full title to be printed
on the first and subsequent pages of the listing
of the subprogram.

(ii) IDENT TEST
TITLE TEST FPR ILLEGAL CHARACTERS

°

TITLE PRINT #UT CHARACTERS F@UND
EJECT

.

END

The first title will be printed on all pages until
the second TITLE instruction is found. A new page
will be begun by the EJECT instruction, and it
will bear the new title.

15.7.7 Comments

When CPMPASS detects a card with an asterisk in column 1, it
prints the content of e card as a comment. No other action is performed.

Note: The asterisk itse ' f is not printed. (See also Section 2.2.3.1)

SCOPE ORGANIZATION OF INPUT/OUTPUT

16.1

16.2

INTRODUCTION

16.1.1 Programmer Units
16.1,2 Scratch Units
16.1.3 Systems Units

CENTRAL INPUT/OUTPUT ROUTINE

16.2.1
16.2.2
16.2.3
16.2.4
16.2

14
elLeT

16.2.6

Introduction
Calling Sequences
Input/Output Operations

Tape Control Operations

Chapterm

16.1 INTRODUCTION

Under SCOPE, Input/Output devices are specified by Logical
Unit Numbers (LUN's) which are organized according to function. The
programmer or operator assigns the logical unit to a particular type
or unit of hardwars, through SCOPE control.
Logical Units may be specified as
(i) Programmer units,

(ii) Scratch units,

or (iii) System units.

16.1.1 Programmer Units

They are for general purpose use by the programmer, and they
are unrestricted as to use in any run in a job.

Once defined, the definition of the programmer unit is
fixed for the whole job. They are released by SCOPE at the end of
the job, unless saved by the programmer by the use of a SCOPE unload
card.

Programmer units are numbered 1-49.

16.1.2 Scratch Units

Scratch units must be defined for each run, and are released
at the end of the run. They are assigned and used by Library programs,
and may be accessed by the programmer for temporary use.

Scratch units are numbered 50-55.

They cannot be saved by the programmer.

16.1.3 Systems Units

Systems units are assigned to specific physical equipment
within SCOPE, but these assignments may be altered by the operator.
They are used for certain common fimctions, and may be protected by
SCOPE from input-output requests which might destroy their contents.

Systems units are numbered 56~63, as follows:

56 Load and Go (for storage of object decks from
assembly, prior to Loading and
Execution)

571 Accounting

%8 Comments from operator (only read requests allowed)
59 Comments to operator (only write requests allowed)
60 Standard Input (protected azainst writing,ste.)

61 Standard Output - holds listable output

62 Standard punch - output from COMPASS, etc.

63 Library.

16,2 CENTRAL INPUT/OUTPUT ROUTINE

16-2.1 Introduction

Input/Output requests in COMPASS programs are written as
calling sequences for monitor routines controlled by a central Input/
Cutput routine called CIO.

CIO performs the following functions:

(1)
(i1)

(ii1)

(iv)

(v)

Selects an available channel

Rejects requests if

(a) the unit is not available (e.g. due to an
operator error).

(b) =no access channel is available

(¢} an illegal instruction (function code) is given.
Provides the current status for all requests.

Initiates all I/O operations, and then returns
control to the main program so that processing
may continue while the I/O operation is carrjed
outo

Responds to external interrupts, and transfers
control to a routine specified by the programmer.

16.2.2 Calling Sequences

Input/Output operations are specified by entering an octal
function code and other parameters into a2 calling sequence. The function

codes are

Function Code Request
01 Read
02 Write
03 Read backwards
04 Rewind
05 Unload
06 Backspace
07 Space forward past 1 EZF
10 Space backwards past 1 BZF
11 Write EFF
12 Erase
13 Status
14 Format

There are 4 operations performed with CI0O

(1)
(i1)
(ii1)

(iv)

I/O operations
Tape control operations
Unit Status operations

Format selection operations.

16.2.3 Input/Output Operations

The function codes used by Input/Output operations are:

(a) 01 READ n words, starting at FWA (First word address)

(b) 02 WRITE n words, starting from FWA

(c) 03 READ BACKWARDS, n words, and store backwards,
starting at FWA+in-1.

Calling Sequence:

Input/Output operations are requested by the following sequence
of instructions.

LOCATION . OPERATION, MODIFIERS ADDRESS HIELD COMMENTS
,i_wa.:i_‘;ii;"lL;L,f;’yc R SIS ML LS UL “33 LRSKAR KR EEFAIM A BN LI KIuH it Tl Gk Ko Sark Bedid B 3”“‘“95"’%"*I‘Z!“i“i‘*é‘sl"i“
ke (L‘\ fond ' RTJ Lok EC’L¢ S SO S N i dod o dodnd ; NS AP SR N N SO O
,_..xm«(l"xt;,) H ﬂ“.h.? ?Ok I iL%"‘.{ u““‘ 1“’)"!"?) D“’*’Y“’f"i P‘f"{"wf : SO SO SN TN U O OO |

(e+2) . UJP ., Reject Address

(e#3) . Mode At wonf Address L

(eta) L Mamber of words 1 E L

CLﬂn5) e . Interropt Address L

j (Lv6). FnesT mreuc'r:c;m EXECUTED uPIN EETue.u ﬁeou cr(a’

L A}d’e Cﬂé most be decfared . eitermlsaqq»*-rc in +he swmre"l L

L a/so ¥, Drterrupt Dndigafoe O ; SN BN SR A

’ i no Peterevpt Address i< iP‘a‘; ‘F(t*? SN N
f fujs" ms'l-rvd-w—n o ba ﬁ'licv""}d upon. rdfvrni

o » f-d a+ Lrs lnﬁhnd
TR T from | ctd _should be foca S 1n L
H !’F‘ L{l‘rﬁag f

Lo i
{ H

Notes: (a) The logical unit number (LUN) is defined by an EQUIP card, and
may be 1-63, depending on function code.

(b) The function code is an octal number, 1-14 as defined previously.

(c) The interrupt indicator selects an interrupt on normal or
abnormal end of operation when set.

0

il

no interrupt

1 = interrupt on ABNORMAL end of operation only (end of tape,
EOF mark, load point, parity error, lost data for mag. tape.)

2) interrupt on an end of operation, whether normal
3) or abnormal.

(d) JUMP is any legitimate jump to the reject address.

(e) Interrupt address is the address of a closed subroutine to which
control goes when the specified interrupt occurs.

(£) Reject address is a symbolic address to which control goes in the
event of CIO rejecting the calling routine. In the event of a
reject because a chanmel or a unit is not available the A register
will contain zero. If the reject is due to an illegal function
code, the A register will contain a non-zero quantity. For both
types of rejects, the Q register will contain the status of the
unit.

16.2.3 (cont.l)

(g)

(h)

(i)

(1)

(k)

Example:

The mode designates the method of recording, and is given as
an octal number.

If no mode is designated, binary mode is assumed and density
is under the control of the operator.

Code Density Parity
00 Do not select a new mode

40 none even
41 none odd
50 low even
51 low oda
60 medium even
61 medium odd
70 high even
71 high odd

First Word Address (FWA) is the symbolic address of the first

word in the input or output area.

Number of words (n) is the decimal number of words to be

transmitted.

If no interrupt is specified, the normal return is written in
location L+5.

On interrupt, before control is passed to the interrupt address,
SCOPE saves A, Q and the 3 index registers. On completion of
the interrupt subroutine, the programmer must return control to
SCOPE, which will then restore the A, Q and Index registers to
their original values. Note that no values obtained in the sub-
routine can be returned to the main program in these registers.

Write at 556 bpi in BCD on a magnetic tape that has previously

been defined as LUN 20, a 27 word block of data commencing at the symbolic
address ORIGIN.

After successfully initiating the write operation, jump to the

symbolic address PROCESS and continue the execution of the program.

In the event of an abnormal end of operation, go to the

symbolic address ABANDON; and if the write request is rejected, jump to

PAUSE.

16.2.3 (cont.2)

Answer:

(GPERATION MODIFIERS ADDRESS FIELD

H

Lot i EEI éc I¢; Lo o4 L.
OZ: Lot s g 210)11 i bl
: UJP FI FO iPAo‘Sigi LU S S T |
60! fond EQeEI!GEIA‘ I T T S
beddod R i2‘7 I S S N T)
fd hdind H)BIA-{MDAQN‘ B S T

i

[

Lo bbb b

Use of interrupt facility (See also Section 21.3)

If an interrupt

address is specified, and the interrupt

indicator is non zero, control transfers to the interrupt address at the
end of the operation, or upon an abnormal condition interrupt.

Before giving control to the interrupt address, SCOPE saves the
contents of the A, Q and three index registers. It then enters the current
condition and status of the unit in the A and Q registers respectively.

LF =

TCA =

LS =

LC =

STATUS

Condition of unit
0 = dynamic
1 = static

lLast function code (other than 13) given
for the unit

Terminating character address of data
transmissicn contained in the Buffer
Control Register.

Logical Status of the Unit
00 = (a) if a status request, unit is static,
channel is available
(b) for reject return, hardware reject

(c) for normal return, unit is dynamic

01

I

Channel is not available for any requests

10

previous operation is incomplete

11 = previous operation is complete, but an
interrupt request is being processed.

Last channel to which the unit was connected (or
is still connected).

Retention code (from standard 3200 tape label)
0 = tape may be used for output

1 = contents of tape should not be destroyed.

See following chart.

16.2.3 (cont.3)

UNIT STATUS TABLE

STATUS
BIT MT CR CP PR PT TY
00 Ready Ready Ready Ready Ready Ready
01 Busy Busy Busy Busy Busy
Write
02 enable
File
03 mark E¢F
Load
04 point
Tape
05 EJT z;§£§r supply
low
DENSITY
% 100 - 10w
01 = med.
07 10 = hiosh
v 154-611
Fail to Fail to
08 Lost data read feed
End of
09 operation
10 Parity Reader Compare Parity
error error error error
Binary Binary Binary Binary
11
mode card mode mode
Stacker
12 full or
Jjammed
13
14
15
16

NOTES: (a) Density is signified by combinations of 2 bits -
bits 6 and 7 - as shown.

(b) Bits 13-16 are not used.

16.2.3 (cont.4)

Control transfers to the interrupt address by a return jump
instruction established by SC@PE within the CIO routine.

The interrupt address should therefore be an unconditional
Jump instruction to enable control to return to CIO after the interrupt
has been processed ’

e.g. INTERUPT UJP **

The programmer must transfer control to SCPPE from the
interrupt routine by returning through linkage established by the
return jump instruction

e.g. INTRUPT UJp **

.

UJP,I INTRUPT

Upon regaining control, SC¢PE restores the 4, Q and Index
registers, and then returns control to the running program.

Note that values placed in A, Q or the index registers in
the Interrupt routine will be lost when the return to CI0 is made.
Values to be returned should therefore be stored before the transfer
of control is carried out.

An example of this appears on the following page.

16.2.3 (cont.5)

Example;

Read 500 words from tape LUN 3 into a buffer commencing at
BUFF. When the Operation has been initiated, continue program executiocn.
When the operation is complete, set location FLAG to a non-zero value.
If the read request is rejected because of an illegal code, jump to
ABANDON. If it is rejected due to channel or unit not being available,
jump to PAUSE.

Answers: RTJ CIo

01 3,2

01

51 BUFF
500
INTER

LDA

IKTER UJP x%

ENA 1111B

STA FLAG

uJp INTER

REJ] AZJ,EQ PAUSE
UJP ABANDON

16.2.4 Tape Control Cperations

The codes used in tape control calling sequence are

04 REWIND

05 UNLOAD

06 BACKSPACE

O7 SPACE FORWARD PAST ONE EJF MARK
10 SPACE BACKWARDS PAST ONE EfF MARK
11 WRITE EfF

12 ERASE

The calling sequence:d

Location L RTJ CIO
L+1 function code LUN, INTERRUPT INDICATOR
L2 JUMP REJECT ADDRESS
L+3 INTERRUPT ADDRESS
L+ NORMAL RETURN

Note: (a) If no interrupt is requested, the normal return is written
in Location L43.

(b) The notes for I/0 control apply here also.

16.2.4 (cont.)

Examples:

(i) To rewind logical unit 56

RTJ CIO
04 56
UJP *.2

normal return

(ii) To write an end-of-file on LUN 20

RTJ CIOo
" 20
uJp *-2

normal return

(iii) To space forward past an end-of-file mark on LUN 17

RTJ CIo
07 17
uJp *-2

normal return

Notes: (i) The direction of tape motion following a BACKSPACE request
depends upon whether the last operation was a READ or a
READ BACKWARDS operation -

(a) If the last operation was a READ operation, the
tape will move backwards.

(b) If it was a READ BACKWARDS operation, the tape
will move forward one record.

Other motion requests indicate the true direction of the
tape and are not affected by READ BACKWARDS.

(ii) Tape control operations require the channel only during
initiation of the function. They do not cause the channel
to be busy while the function is carried out. However; if
an interrupt at the end of operation is requested, CIO
considers the channel to be busy until the interrupt occurs.

16.2.5 Unit Status Regquests

For codes returned as status replies, see table on (cont.3) of
section 16.2.3.

The calling sequence:

Location L RTJ CIOo
L+1 13 LUN, Dynamic flag
L+2 N@RMAL RETURN

NOTES: (a) The function code in L+1 is always 13.

(b) SC@PE provides the status in the Q register, and the
current condition in the A register (A is negative
if the unit is static, positive if it is dymamic).

(c) Dynamic flag:
If thie is non-zerc, the unit is interrogated for
status unconditionally. (Status is given if wmit is

16.2.5 (Conto)

busy or not). If the flag is zero:

(i) If it is not busy, the status of the last
completed operation is given.

(ii) If the unit is busy, the current status is
reburned.

16.2.6 Format Selection

The codes used in this sequence are -

1 = BCD

2 = BINARY
3= LOW

4 = MEDITM
5 = HIGH

The calling sequence:

RTJ cIO
14 LUN, FORMAT CODE (as above)
JUMP REJECT ADDRESS

NgRMAL RETURN

16.2.7 Page Control of the Line Printer

The first character of the output buffer is used to
position the paper prior to and after printing. This is accomplished
by the following sequence of events.

(a) The first character is removed and replaced with
a blank.

(b) The corresponding function code is found and
selected.

{c) The output buffer is printed.

16.2,7 (cont.l)

The character codes used in Page Control are:

User Character Action Before Print Action After Print
1 Skip to channel 8 Space 1 line
2 Skip to channel 7 Space 1 line
3 Skip to channel 6 Space 1 line
4 Skip to channel 5 Space 1 line
5 Skip to channel 4 Space 1 line
6 Skip to channel 3 Space 1 line
7 Skip to channel 2 Space 1 line
8 Skip to channel 1 Space 1 line
A No space Skip to channel 8
B No sﬁace Skip to channel 7
C No space Skip to channel 6
D No space Skip to channel 5
E No space Skip to channel 4
F No space Skip to channel 3
G No space Skip to channel 2
H No space Skip to channel 1
blank No space Space 1
0 Space 1 Space 1
- Space 2 Space 1
* No space No space
other No space Skip to channel 1

Examples:

(a) To advance paper to the top of the new page

RTJ CIg
02 61
RTJ REJX
00 PAGE
00 1

PAGE BCD 1,1

16.2.7 (cont.2)

(b) To advance one line

DS

Note:

RTJ cIig
02 61
RTJ REJX
00 DS
00 1
BCD 1,

If unit 61 is assigned to tape by the operator and the
tape is listed later or is listed off-line, trouble may
develop because of the short print record (4 chars).
Therefore it is recommended that all records be at least
24 characters so that they won't be considered 'noise!
records by tape input routines.

STUDENT NOTES

SCOPE CONTROL CARDS

17.1

17.2

17.3

17.4

17.5

17.6

17.10

17.11

17.12

17.13

17.14

INTRODUCTION

SEQUENCE CARD

JOB CARD

ENDSCOPE STATEMENT

ENDREEL STATEMENT

CTO STATEMENT

REWIND STATEMENT

EQUIP STATEMENT

17.9.1 Hardware Definition
17.9.2 Equating Logical Units

17.9.3 Physical Unit Assignment

TRANSFER STATEMENT

LOAD STATEMENT

COMPASS LIBRARY CALLING STATEMENT

RUN STATEMENT

DIAGRAMMATIC DECK

Chapter

17.1 INTRODUCTION

SC@PE control cards have a 7,9 punch in column one.
There must be no other punchings in column 1.

Columns 2 through 80 contain Hollerith information or
blanks. The first information on each card must be the statement
name, followed by a comma.

e.g. ;RUN,

7
9J¢B ,

17.2 SEQUENCE CARD

| Lprangs APERATION MODIFIERS ADDRESS Rifid
BSEQUENCE

i

oiriagersiagrialaieiieisieiieiagyze

.

I A L PR OIS S W

The sequence statement assigns a number (j) to the job which it
precedes. J must lie between 1 and 999. This card is normally supplied
by the operating staff.

An E¢F must precede each SEQUENCE statement except the first on
input.

When a SEQUENCE statement is detected, the statement is typed out
on the console typewriter, and listed on the standard output unit. SC¢PE
writes an E¢F on the standard output tape (when tape is being used), and
on the punch tape (if assigned), and releases all programmer units held
from the last job.

SC¢PE also closes off the last job's accounting, and opens a new
accounting record for the new job.

If the sequence card is not followed by a J¢B card, the job is
terminated, and SC%PE searches forward until it finds an EPF. The
following statement must be a SEQUENCE, ENDREEL or ENDSCPPE. If it is a
SEQUENCE followed by a J¢B card, SC¢PE proceeds normally.

After SEQUENCE is read, SC¢PE pauses for comments from operator to
be typed in on the console typewriter. These enable the operator to spec-
ify the services for program execution (e.g. special EQUIP statements).
This is the only opportunity the operator has to enter such statements.

Note: If the column following "j" contains a comma, comments may
follow.

Example:

;SEQUENCE,O27, COMMENT

17.3 JOB CARD

LGCATHON QPERATION MODIFIERS ABIRESS AIELS
§I@8,c,i, 2,72 ND

PITYY. R kel AN T N A T N T A T NI S !
LAl i

,,,,,,,,,

The symbols used in the statement are interpreted as follows:

c charge number, O0-8 characters
i programmer identification, 0-4 characters
t time limit in minutes for the entire job,

including all operator setting up, idle
time, etc.

NS indicates a single non stacked job. If
NS is specified, NP is implied also.

All system units are rewound and unloaded,
making all I/0 units available to the
programmer.

NP Suppresses system I/0 protection for
stacked job.

ND Suppresses the normal post execution dump
in octal of the non system part of memory
should abnormal termination of the job
occur.

The ¢, i, and t fields are mandatory. If a field is blank, the
comma showing this must appear.

€.g. ;JOB,c,,t

The job card is written on the standard output unit, and also on
the CT@ (comments to operator) if the job is part of a stack. It must be
immediately preceded by a SEQUENCE card or the run will be terminated.

17.4 ENDSCZPE STATEMENT

§igsanied i}'r:?ﬁ!{x‘*(BOJIFIRS ADBRESS LD
SENDSCPE

BTN TN AN AN N8N NI Y 980)

This indicates that a SCPPE run is to be terminated. On the
standard input unit, it should follow the EPF terminating the last in
the stack. This card is normally supplied by the operations staff.

The card is listed on the CT¥ unit and on @UT, and the standard
input wnit is unloaded, if magnetic tape.

The library tape is rewound, and the accounting file is closed
off.

A double EFF and one BCD word, consisting of ER,, are written
on the standard output tape (when tape is used), which is then unloaded.
If the punch tape is assigned, it is treated in the same way.

When all action is completed, the computer stops.

17 .5 ENDREEL STATEMENT

CLCRON | APORATON MOOIIERS ADORESS FIRD
\QENDREEL ', ..
RO N

The statement terminates a reel of magnetic tape
containing a job stack. (Normally it will be placed in a card
job stack by the operations staff during card to tape operations
preparing a tape for use as a standard input tape.)

SC¢PE requires an E¢F both immediately before and after

ENDREEL.

When the statement is detected, SC¢PE prints a message on
the CT¢ unit requesting the operator to mount the next reel of
input, and halts the computer until the operator takes the action.

17.6 CT¢ STATEMENT

{ 10CATION Eﬂ?{%ﬂ%ﬂ&mﬁmfﬁ ADDRESS FIELD
%ZCT¢.»ft,-tenerztmei

i
seisyeisseiziaiein

The programmer may provide instructions o? messages to
the operator. The message is punched in Hollerith.

Examples: ;CT¢,PLEASE UNL@AD TAPE TW@.

;CT¢,SNAP DUMPS WILL $CCUR.

The message is printed on the CT@, and also listed on
@UT. CTP cards may be placed in the deck where SC@PE control
cards may appear, except as follows:

(i) Before or after SEQUENCE, ENDSCPPE
or ENDREEL.

(ii) After CPMPASS or FPRTRAN.

(iii) Between RUN and last data card.

17.7 REWIND STATEMENT

f g U GPERATION MEDIFIERS ADDGRESS FiRLD
GREWIND, Ui s, - - - U

ok £ b de Li

{
SrgdifinLiinie s AT e ey

The magnetic tapes specified are rewound to load point.
U is the logical unit number, and may be 1 through 57 or 63. The
statement is copied onto the standard output unit, and on the
CTg unit.

If U is not 1-57,63 or not a magnetic tape unit, the

request is ignored for that unit, but the rest of the units on
the card are processed.

Example: gREWIND,21,42,01,55

17.8 UNL@AD STATEMENT

CLoCHTs | [(PERATION MODIFIERS_ ADDRESS FIELD
QUNLPAD, UnslUzg s <o 5lhv, .
Lo e,

i3 Al 53104;38; 384321

[T E R RN N SO !

The Logical units, U (1-57), may be unloaded by the
programmer. The statement acts similarly to the REWIND, except
that the unit is unloaded after rewinding.

Example: ;UNL¢AD,21,42s01,55

17.9 EQUIP. STATEMENTS

] ©OPIRATION MEDISIERS ADBRESS ﬂflyﬂ_v
SEQUIP, X;2d, Xy, - - - - -€8C .
‘ [

sivseisiatiain) LI T BTN O AN T 8 v

S
]
H
©
bl
it

the logical unit number

[«
"

a declaration about the unit.

17.9.1 Hardware definition
7EQUIP X,=hh,,X,=hh_,........etc
9 '™ P2 '
hh is a hardware type mnemonic
X is a L.U.N.

Mnemonic Type
MT Magnetic Tape
CR Card Reader
PR Printer
Cp Card Punch
TY Console typewriter
PT Paper tape station
DP Disk Pac

SC¢PE assigns the LUN to an available equipment of the
specified type.

If no equipment is available, a diagnostic is given, and
the job is terminated.

e d
!

Examples: 9EQUIP,51=MP

gEQUIP, 51=MT, 43=PR, 26=PT

17.9.2 Equating Logical Units

Logical units are equated by this statement

7 -
GEAUIP, X, =X,

A system unit (57-63) may not be specified on the left
hand side of the statement. If it is, the job is terminated.

Examples: ;EQUIP,43=6O is permissable

but ;EQUIP,60-43 is illegal

gEQUIP, 22.MT)

TeQUIP,23=22 ;
9 !)

Here both LUNS 22 and 23 will
reference the same magnetic tape.

17.9.3 Physical Unit Assignment

;EQUIP,X=th EU
cC e uu

channel number (0-7), prefixed by C

c =
e = equipment number {controller), prefixed by E
uu = unit number (device), prefixed by U
Example:

;EQHIP,15=MTCOE2UO3

It is possible to omit some parameters in the statement.

The following table sets out permissable combinations.

hh c E U
c e un

x

x X

X b4 X

X X x x
X X x
X b4

Use of non-existant ¢, e or uu, will cause a diagnostic
and termination of the job.

Example:
Assign PUN (LUN 15) and LGO (Load and Go,
56) to the physical unit on channel 0,
Equipment 1, and unit 7.

Answer:
gEQUIP,15=MTCOE1U07
gEQUIP,56=15

or gEQUIP,15=MTCOE1UO7,56=15

17.10 TRANSFER STATEMENT

i L0CATION ‘UPERATION MADIFIERS ADDRESS FiELD
@XFER,U
| .

SRR RT R RT R LT RRE RO TH I U U T ST FUa LS LY

U = Magnetic Tape Unit,
defined as 1-56,
or undefined.

Description: SCPPE transfers all the information following
the XFER statement from the Standard input
unit (INP) to the magnetic tape LUN U,
until another SCPPE statement is encountered.

The records must be binary records and they are
written on LUN U in odd parity. When the next
SCOPE statement is found, an EOF is written on the
tape, and SCOPE then backspaces over the EOF.
Uses:

(1) Programmer binary data cards* may be transferred
from INP to a magnetic tape unit. A
card with a ; punch in column 1 is suffic-
ient fto terminate the XFER operation.

(ii) Binary object subprograms may similarly be
stored on another magnetic tape for future
use. The unit must be rewound before the

L@AD operation if it is a programmer or
scratch unit.

Example:

7
gXFER, 03

*
Binary Data

.
.

7
9

The data is written on unit 3; when the g card
is found, SC@PE writes E@F and backspaces over
it.

*Data cards must be binary data cards where
column 1 has a g punch plus at least one punch

in the + - 0 1 2 or 3 position. The data used is

usually a subprogram binary deck.

17.11 LOAD STATEMENT

TN | PERATIONMOBIIERS ADDRESS FIELD
5;L¢AD,}’:£".R,VL . BN : P
[R N ;

(U1, U, and U3 are Mag. tape units, previously
defined by EQUIP statements as LUN 1-56. If
omitted, SCPPE will try to load from the INP

wit 60)

Description: Not more than 3 units can be specified, and the
loading is done in the order indicated. Unit U1
will be loaded until an E@F is found. Then U2 is
loaded until EQF, and finally U3 is loaded. i

there are 3 parts on one unit, each terminated by

an EJF, the unit number can be repeated:
T1940,23,23,23

When the units designated have been loaded, the
Standard input unit is examined to see if binary
object subprograms follow the LPAD card.

NOTE: If the LGf unit is being used, the L@AD
card must be of the form:

7
9L¢AD,56

The L@AD statement calls the loader to load binary
subprograms into memory from programmer units,
scratch units, LG@ or INP. Only one LPAD statement
may appear in a run.

If 56 (LG@P) is specified, it will first be rewound
by SCPE. Other units must be rewound by rewind
statements before loading is attempted.

Example:
T11D,56,3,25
LGP is rewound by SCPPE and loaded until EFF is

found. Units 3 and 25 are then loaded to EgF
marks.

NOTE: If only binary object programs are to be
loaded (on INP), no LPAD card is necessary.

Example:
gJ¢B,11121156,404,2
Binary object deck
;RUN,1

i

17.12 COMPASS LIBRARY GALLING STATEMENT

L6CRTIDN | GPERATIGN MODIFILRS iﬂmiss HELD
7, : t
fﬁ‘MPQSSJXIJ P’.Lax’ﬂ b e b b d S LIS

i
IEPSSIVIVITUEITN OY PYET S s s

Description: The C¢MPASS library program is called in and
loaded into memory, so that source programs in
CPMPASS may be assembled and executed.

The parameter letters are free field, and may
thus appear in any order. Each parameter must
start with the character shown.

I = INPUT (the source subprogram input unit)

Specified as I = u, when u = LUN, when a source
subprogram is to be loaded from a unit other than INP.

If the I parameter is absent, input is assumed to be
from unit 60 - INP.

Example:

;EQUIP,MT=23

;C¢MPASS,I=23,etc.

P = PUNCH-UNIT

Specified as P = u, where the punch unit is to be
assigned to an output device.

If P only occurs, punching is on the binary punch
unit (PUN) - wnit 62.

If the parameter is absent, no binary output is
produced.

X = EXECUTE (X = u)

Assigns the Load-Go unit (LGf) to logical unit U,
which must have been previously defined as a MT
unit.

If absent, no LGf tape will be produced, and the
program will be assembled and listed only.

If only X appears, output will be put on the
standard LG@ unit (56).

L = LIST OPTION (L = u)

Output is listed on unit u, which must have been
previously defined.

If L only appears, listing will be done on the OUT
mit (61).

If the parameter is absent, no listing of the
program is given.

17.12 (cont.)

R = REFERENCE

When R appears, a symbol reference list is produced
on the assembly listing. This is an alphabetic list
of all symbols used in the program, with the address,
or the value, of the symbol shown. The symbol list
appears immediately following the listing of the
assembled program.

Example:
A 77777 P00013
ABNORMAL EXTERNAL PO0001
B 00020 PO0O013
JOHN PO0002 PO0011
NAME PO0011 PO0013
X 00057 PO0012 P0O0013

SYMBOLS NOT REFERENCED
ABLE PO0013 LOC POO0O7 START POOO0OO

Note that X is referenced at two different locations in
the program (12 and 13).

Character addresses are shown as follows:

CAN PO0166 O
BILL P00156 1

17-Bit non-relocatable symbols are shown

oM 00076 2

17.13 RUN STATEMENT

T Lvanien

APERATION MODIFIERS ADDRESS FIELD

BRUN, ¢, NM Lt
R A S
t = execution time in minutes
May be in the range O through 999.
The time is not used by SCPPE, but is entered in the
installation accounting file.
If not specified, maximum time is assumed.
NM = NO MEMORY MAP
If NM appears, it suppresses the memory map that would
otherwise be written on ¢UT, before program is executed.
(211 absolute memory allocations are given in the map).
Examples:
(1) ;RUN,Q
(the execution time is assumed to be two minutes.
The memory map will appear on @UT.)
(1) Jrow,727,m0
(the execution time is assumed to be 727 minutes,
and no memory map will appear on ouT).
(ii4) ;RUN

(iv)

(maximum execution time is assumed. Map will be
printed).

gRUN,,NM

(maximum execution time assumed, and no map will
be listed on FUT).

17.14 DIAGRAMMATIC DECK

;SEQUENCE,OOI

7 198,3200,5¢RMA, 10
7

oEQUIP, 56=MT
;F¢RTRAN,(Parameters)

PRGGRAM MAIN

e e o o o

CALL START

FINIS

;C¢MPASS,(Parameters)

IDENT W@
ENTRY START
START uJp *%
E&D
FINIS
T1gaD, 56
;RUN,S
data deck
;g (End-of-File Card)
;ENDSC¢PE
77

88

> FPRTRAN Main Program

> GC@MPASS Subprogram

STUDENT NOTES

SCOPE DEBUGGING AIDS

18.1 OCTAL CORRECTION CARDS
18.1.1 Location Symbols
18.1.2 Octal Corrections
18.1.3 Relocation Factors

18.1.4 Error Indicators

18.2 SNAP DUMPS
18.2.1 Errors
18.2.2 Location
18.2.3 First and Last Word Addresses
18.2.4 Mode
18.2.5 Identification
18.2.6 Note
18.2.7 Example

18.2.8 Rules for Using SNAP

18.3 OTHER DEBUGGING AIDS

18.3.1 Memory Map

18.3.2 Abnormal Termination Dump

18.4 COMPASS ERROR CODES

Chapter [E]

18.1 (@CTAL CORRECTION CARDS

g¢CC,location,octa1 correction,~-~-===--~ yoctal correction.

Description: Octal corrections may be made to binary object
subprograms after loading, using this instruction.

The parameters are free field.

If a period is used to terminate the card, comments
may follow it.
The statement may be used to -

(i) define corrections

(ii) enter corrections

(iii) enter additions to a subprogram by
establishing a program extension
area after the subprogram area.

18.1.1 Location Symbols

(i) (Program name) k

Corrections on this card are loaded beginning with relative
address "k" in the named subprogram. The subprogram name
must appear in parentheses.

Examples:
Z,gfcc, (TEST)15,01000000

;¢CC,(BUFFD¢)107,20

Example of use:

IDENT ™Wg
ENTRY START
O START UJP *x
10 ENA 20B
END

To change ENA 20B to ENA 30B

gpﬁcc , (TW$)10, 14600030

(ii) Deta Area Corrections
Dk

Corrections are loaded beginning with location "k" in the
Data area.

Example: ;¢cc,n7o,14oooooo

18.1.1 (cont.)

(iii) Program Extension Area
Xk

(a) First occurrence:
Defines a program extension area of length k words.
Corrections on this card are ignored.

(p) Subseguent occurrences:

Corrections are loaded beginning at location k
of the program extension area.

Example: ;¢CC,X3O

g¢cc,x3,1400001o,14000250

(iv) Continuation Cards
+k

Increment k locations from the last location plus 1, corrected
by the previous @CC card. k must be octal.

;¢CC,(TEST)136,DOOOO1OO
;¢cc,+5,14oooeoo

Location 136 in Subprogram TEST, and location 144 in TEST
are changed.

18.1.2 Octal Corrections

(i) Corrections may be of up to 8 digits, and are in the form of
machine instructions.

(ii) Each correction is separated from the preceding correction by
a comma.

(iii) Leading zeros may be omitted. Each value is stored right
justified with zero fill, in successive computer words.

(iv) Locations may be omitted for correction by using commas to
indicate the omissions -

e.g- ;¢CC,(TEST)10,140,,162,,10014100

Location 10 is altered to 140
11 is unchanged
12 is altered to 162
13 is unchanged
14 is altered to 10014100

18.1.3 Relocation Factors

(i) none given - the guantity specified is absolute.

\N=7/

(ii) (Subprogram name) - the address field of the correction is

relative to the subprogram's first location.

iji a area -
(iii) Dat D
Relocate the word address portion of the
Octal correction relative to the DATA area.
(iv) Common Area -C

Relocate the word address portion of the
Octal correction relative to the CEMMZN
area.

(v) Program Extension Area - X

Relocate relative to Prog. Ext. Area.

(vi) Last subprogram area referred to - *

Relocate relative to the last subprogram
named in this or a preceding ¢CC or SNAP
statement.

Example: ;¢CC,(TW¢)30,ZOOOOO40(TW¢)

Correction made to location 30 in subprogram
TW@, with the address part of the correction
relocated by the factor by which TW@ itself
is relocated.

(i.e., if subprogram TW@ itself is relocated
by 1000, the actual correction loaded would
be 2001040).

Note: The above example could also have
been written:

;occ,(Tw¢)3o,20000040*

18.1.4 Error Indicators

Errors in @CC cards prevent execution of the program.

If the extension area is incorrectly defined, the following message
is printed on @UT:

**¥*Xnnn

where nnn is thé 3-digit octal length of the
SCPPE defined extension area.

The format for dll other errors is:
*mn COL nn

where mn = error mnemonic

nn = column number on the card.

[}

18.1.4 (cont.)

The following table sets out the error mnemonics used.

Mnemonic

Meaning

PN

Program name

BS

Common or data storage is
undefined and referenced

AD

Address or location field begins
with an illegal character

8F

Octal field contains a non-
octal character

Program extension area error

Wrap around of location field
address - exceeds core size

Antecedent reference to a
program or loading address

RL

Relocation factor error

18.2 SNAP DUMPS

SC¢PE provides selective memory dumps during execution, using this
statement.

gSNAP,(Parameters)
The statement must appear after the program is loaded and before
the RN card is encountered.

The dump is carried out by the library routine SNAPSH@T, which must
be defined in the program as an external. (If it is not declared
as external, the routine is not loaded into storage at load time.

A diagnostic of this is given on the ¢UT listing as fcllows:

iy N@SD
RON AB@RTED

The job is terminated.)

Snap statement parameters define
(a) Where the dump is to be taken
i.e. when execution reaches a predetermined
point, the dump is taken.
(b) The area to be dumped.
(¢) The format of the dump.
The SNAP statement is of the following form:

7

9SNAP,location,beginning address,ending address,mode,
identification,comments.

Bach parameter is separated by commas.

Program names are always enclosed in parentheses.

18.2.1 Errors

If there is an error in any subfield, the following diagnostic is

ren.
*mn , COoL nn
m = error mnemonic
nm = the card column number, in which the

error occurs.

The error mnemonics are set out in the table on the following page.

Mnemonic Meaning

PN Program name

BS Common or data storage is
undefined

AD Address or location field begins
with illegal character

8F Octal field contains a non-octal
character

XA Program extension area is

undefined or too small

WR Location field address wrap
around - exceeds core size

ov Overflow of memory will recur if
this SNAP is loaded

™ Illegal mode

RG Range tc be snapped has FWA
greater than LWA

When an error occurs, the SNAP statement is ignored; and execution
continues as if no SNAP statement had been given.

18.2.2 Location

(i) (subprogram name) k
Replace location k in the subprogram with a RTJ to SNAP
calling sequence.
(ii) Program extension area - Xk
Replace location k in the P.EXT area by a RTJ to SNAP
calling sequence.
(iii) Data area - Dk

Replace statement k in the DATA ares by a RTJ to the
SNAP calling sequence.

18.2.3 PFirst and Last Word Addresses

The ending address must always be greater than the beginning
address, or the SNAP statement is ignored.

The address can be
(i) Dk - dump begins or ends with word k in the DATA area.

(i1) Ck - dump begins or ends with word k in the CHMMEN area.

(iii) Xk - dump begins or ends with word k in the Program
Extension Area,

(iv) (Subprogram name) k - dump begins or ends with the
location k in the specified subprogram.

(v) *k - dump begins with the location k in the last named
subprogram in a preceding ¢CC or SNAP statement.

18.2.4 Mode

The dump may be in one of 3 formats, and may include the Register
file or not, as specified.

octal
6-Bit Characters

]

Floating point

L}

If the register file is to be included, R is used. Thus ¢R
will give the dump printed out in ¢CTAL, plus the register file
contents.

18.2.5 Identification

0 to 4 BCD characters will be printed out on the SNAP output to
identify the dump. (Used if several dumps are to be made).

18.2.6 Note
If the location specified is in a loop, the contents of the area

will be dumped out each time the location is encountered in the
loop.

18.2.7 Example

Dump after the execution of the 5th instruction of subprogram SUBL
(assuming the first location of the subprogram is the entry point

and is entered by a RTJ). Dump from location 441 in SUBL to location
465 in SUB1 in OCTAL, with the Register File also, and identify the
dump as @NE.

Answer: JSNAP, (SUBL)6,%441,%465 @R ,PNE

*441 could also be written (SUB1)441

18.2.8 Rules for Using SNAP

(1)

(2)

(3)
(4)

(5)
(6)

(7)

(9)

DON'T specify SNAP for an instruction using more than one word,

e.g. SRCE
SRCN
MOVE

DON'T SNAP jumps or tests, e.g., AQJ,EQ. - The jumps will
not be executed correctly.

DON'T SNAP indirectly addressed instructions.

DON'T SNAP instructions which will be modified by program
execution.

AVOID using SNAP instruction in a loop.

DOR!'T modify the location at which the SNAP occurs by an
¢CC statement.

DON'T specify SNAP for the following instructions:

MEQ
MTH
SSH
CPR
con
SEL
EXS
INS
INTS
PAUS

DON'T specify SNAP for any SKIP Instruction
e.g. ISI, ASE, QSG, etc.

DON'T specify SNAP for INPUT/@UTPUT instructions.

18.3 OTHER DEBUGGING AIDS

18.3.1 Memory Map

The programmer may secure & map of memory allocated
to a loaded program at the time the run card is encountered. This
map may be suppressed by a parameter of the RUN control statement
(Nu).

The map contains the following information:

(1) Absolute address of the first location in each
subprogram loaded.

(2) All entry point symbols and their absolute
addresses.

(3) The absolute addresses of the first and last
locations in the common area.

(4) The absolute address of the first location in the
data area.

(5) The absolute address of the first location in the
program extension area.

18.3.2 Abnormal Termination Dump

If 2 job is terminated abnormally, a post execution
dump of all the non system part of memory is written on the
standard output unit, unless the programmer has specified in the
job card that it be suppressed (ND parameter).

The dump consists of the console conditions, the
register file, and all the non-system part of memory.

Should the contents of words making up a line of
print be exactly the same as both the last word on the preceding
line, and the first word on the following line, the line is not
printed, and the word "GAP" appears instead.

e.g. If all the locations between 10010 and 10017 are
the same as both 10007 and 10020, the line will
not be printed, and GAP will indicate the omission.

18.4 C@PMPASS ERROR CODES

A Format error in address field.

C Attempt to assemble information into CPMMZN.

(Instructions are processed as if a PRG was encountered.)

D Doubly defined symbol.

(The first time the symbol is used it is legal, and no
flag is issued. Subsequent errors are flagged, and the
instructions using the symbol are assembled as if no
symbol occurred.)

F Full symbol table.

(A1l ¥ flagged symbols are undefined, and reference to
them in address fields of other instructions will
produce U errors.)

L Location field error.
M Modifier error.
0 Operation code error. (The field is assembled as zeros.)

U Undefined symbol.

T Truncation error.

(A symbol defined as a 17-bit character address is used
in a subfield of only 15 bits. The 2 least significant
bits ire lost in truncation, and the flag indicates this
loss.

STUDENT NOTES

COMPASS ASSEMBLY OF CONSTANTS

19.1 OCTAL CONSTANT PSEUDO INSTRUCTIONS

19.2 DECIMAL CONSTANTS, FIXED POINT

19.3 DOUBLE PRECISION AND/OR FLOATING POINT CONSTANTS
19.4 BCD COﬁSTANTS

19.5 BCD CHARACTER CONSTANTS

19.6 VARIABLE FIELD CONSTANTS
19.6.1 Introduction
19.6.2 Octal Mode
19.6.3 Hollerith Mode
19.6.4 Word Address Arithmetic Mode
19.6.5 Character Address Mode

19.6.6 Example of VFD Instruction

Chapter m

19. CPMPASS ASSEMBLY OF CONSTANTS

Constants may be

(1)

(i1)
(iii)

(iv)

19.1 @CTAL CONS

stated as octal, decimal or character in the source
language.

single, double or variable precision.
fixed or floating point format.

placed into bit positions of variable length fields.

TANT PSEUDO INSTRUCTIONS

L A

QPERATION MODIFIERS ADORESS FIELD

wioisiis B I I

Description:

The instruction expresses constants as signed or unsigned
octal constants. The octal integer may consist of 8 or
less digits.

As many constants as can be contained on a card may be
expressed in the address field, separated by commas.
No blanks may appear between constants. The field
terminates at the first blank or at Column 73.

The octal constants are assembled, right justified, in
consecutive locations. The symbol in the location field
is the 15 bit word address of the first constant in the
field.

Exemple: CVTABLE ger ~17,32,12345670,5742,-361
CVIABLE |7 7777760
000000 32
12345670
00005742
77777416
Binary Scale factor:
An optional binary scale factor may be stated by suffixing
the constants by B, and expressing the scale factor as a
signed or unsigned decimal integer of not more than 2 digits.
The magnitude of the constant after scaling must be less than
224. The scaling factor is used to save space in coding
-5 CVTABLE ger 200000 could be written as
CVTABLE ger 2B15
Examples: (i) CVTABLE gCT 72B2

72 = 111 010 in binary

111 010 00 scaled by 2 (shift binary point
2 places right)

11 101 000 regrouped

=3 5 0

(CVTABLE) = | 0000 0350

19.1 {(cont.)

(ii) 1gC geT 36B3,4B12,270B=2

36 = 011 1102

011 110 000 (scaled)

=36 08

4= 1002

100 000 000 000 000, {scaled)

400008
270

010 111 000,

010 111 0, (scaled - 2)

= 568

ge | 0000 0360
0000 4000
0000 0056

(iii) NUMBER @CT 2416,311B16,3417B-8,-372

NUMBER 0000 2416
6220 0000
0000 0007
TT77 7405

Note: In negative scaling, digits are discarded from the right.
If the number after scaling is greater than 22%4-1, the field
is set to zeroc and the A flag is sed.

Example: gor 6666B20

Agsembled as A= 00000000

19.2 DECIMAL CONSTANTS, FIXED POINT

; LACATIEE PIRATION MOBINIERS ADDHESS FiELD
DEC = dshyiseroron,

et a8 IR YN e e Y 228 8 Y ioe e vet YN A MY

Description: The instruction expresses constants as single precision
fixed point binary constants. The constant may consist of
a sign, and not more than 7 digits, with a magnitude of

less than 223. The symbol in the location field is the

address of the first constant in the field. The address
field may contain as many constants separated by commas
as the card may contain. The field terminates at first
blank or Column 73.

Example: Lgc DEC 1,82,-38

e 00000001 (1g=14)
00000122 (1228 = 8210)
77777731 (-464 = -38;)

Scaling Factors:

Both decimal and/or binary scaling factors may be stated
by suffixing the constant with D and/or B, and eéxpressing
the scale factor as signed or unsigned decimal integers.
The magnitude of the constant after scaling must be less

than 23,

Steps in the conversion:

(i) Decimal integer is converted to binary,

The result must be less than 2°°.

Example: 36,, = 444

(ii) Binary integer is multiplied or divided by 10d,
where d is the scaling factor.

23
The result must be less than 2 .

Example: 3610 D2 = 36 x 100

[}

444 x 144,

100100 x 001100100
111000 x 010 000
70208

(iii) Shift the result the number of bits specified by
the binary scaling factor.

Negative factor = RIGHT shift
Pogitive factor = LEFT shift

Example:

3610 D2 B2

3610 D2 = 111000010000
= 11100001000000 = 341008

19.3 DQUBLE PRECISION AND/OR FLOATING POINT CONSTANTS

SpLRiTE

WasEES ADORESS FIELD

JI,JI’ “-o.‘»

dn_.

Description:

ample :

F

Decimal values may be stored as double precision fixed

point constants, or as floating point constants. Either
format requires 48 bits for storage (2 consecutive words).
Up to 14 decimal digits may be specified, and the value
of the expression must be less than 247,

Decimal and binary scaling factors may be

DEC instruction.

The signed 48-bit result is stored

computer words.

SYM.TAG DECD
SYM.TAG { 00 00 00 00
00 00 00 40
00 00 00 00
00 31 00 00

Floating Point Constants:

1.

Floating point constants contain a decimal point.

Examples: 300.246
2.040117321
<111
1765122.1

32,64D2B4

%410

D2

1008

in two

100

10

used, as in the

consecutive

(]

]

100 = 1448

1 44 008
001100100000000
11001000 000 000 000
310000

They are stored in two consecutive 24 bit words as a 12 bit
characteristic (exponent) and a 36-bit mentissa (coefficient).

WORD 1
WORD 2

BIASED EXP

l

COEFF

COEFF

A floating point constant may contain not more than 14 decimal
digits and a decimal point.

Binary scaling is not permitted, but decimal scaling is.

The result after scaling must not exceed the capacity of the

hardware (10%

308)

Example: syM.TAG DECD
17643.46321410

423533551246,
1423533551246 x 2'°

2017 | 4235

3355 1246

17643.463214

19.4 BCD CONSTANTS

LG0RTIBN

T OPCRATION HODIFIERS ADORESS HIELD

BCD . L n_,l‘q:f;-g. .C“——

SLIALTIE ey aay ey

Description:

Example:

Characters are assembled for store into consecutive computer
words as 6-bit BCD character codes, in addressable character
positions. The code used is internal BCD.

The decimal integer n = the number of words to be used.
The maximum number of characters to be stored would be 4 x n.
The instruction reserves "n" words of storage, and any
character positions not filled from the instruction are

filled with blanks.

Characters specified in excess of (4 x n) are treated as
comments.

The symbol in the location field is the 15-bit address
of the first word.

(i) ERRPRMSG BCD 3,1/ ERRPR
I 3 words reserved,
ERRFRMSG / ¢ 60 therefore the maximum
E!R |R ¢ number of characters is
12, Here only 9 appear
R | 606060 before the end of message,
so all are included.

(ii) ERR@RMSG BCD 2,1/9 ERRPR
1 4 2 words reserved,
ERRZRMSG I,/ 960 therefore the maximum
number of characters is 8.
E|R|R| M Here 9 appear, therefore

the last one is treated as
2 comment and discarded.

19.5 BCD CHARACTER CONSTANTS

AT

GFIRATION MORIHIERS ADDAESS HELD

BCD,C n,CG-- - -Cu

TSI 8 e Y IS Y 5

Description:

=

xamples:

Characters are assembled intc consecutive character positions.
n signifies the number of character positions to be reserved,

15

and must be an integer less than 2 7. Characters in excess
of n are treated as comments; positions reserved but not
used are filled with blanks.

The symbol in the location field is the 17-bit address of
the first character.

Storage

If the line of coding before BSS,C assigns character storage,
the character string begins in the next available character
position. If not, it begins with the first character
position in the first available word.

If the number of characters specified does not exactly fill
the last word, the rest of the word is zero filled. However,
if the next instruction in the program which consumes space
is a BCD,C instruction, it will fill up the remaining
character positions in the last word.

(1) MSG BCD,C 9,TEST PRYG

MSG TIE|S|T

60| P |R | &

(ii) MSG BCD,C 6,TEST PRYG

MSG TIBE |8 |T

60| P (OO

(iii) MSG BCD,C 10,TEST PR@G
BCD,C 4 ,END
MSG | T |E|s|®T
60|P |R| @
G |60 | E| N (Note: 60 = blank read
D leo ol o after PREG above.)

19.5 (cont.)

(iv)

Example of actual listing of assembled BCD and BCD,C

constants:
Assembled

Constants

31 61 46 60
25 51 51 46
31 61 46 60
25 51 51 46
51 60 60 60
63 25 62 63
60 47 51 46
27

63 25 62
63 60 47
63
25 62 63 60
47 51 46 27
60

25 45 24
60 00 00 00

BCD

BCD

BCD,C

BCD,C

BCD,C

BCD,C

Instruction

2,1/9 ERRPR

3,1/9 ERRPR

9,TEST PRPG

6,TEST PRYG

10,TEST PRPG

4,END

19.6 VARIJABLE FIELD CONSTANTS

19.6.1 1Introduction

The general form of the instruction is:

where M = mode indicator

n = positive decimal integer denoting the number of
bit positions in the variable field specified by
this subfield. (NOTE: the range of values of n
varies with the mode M).

v = the content of the field. This varies according
to the mode and is restricted by the declared
length.
As many address subfields as may be contained on a single card are allowed.
Bach subfield is terminated by a comma, except the last, which is termin-
ated by a blank.
Use:

The instruction is used to enter information in one of the
following modes into a field of a designated bit-length.

(i) octal numbers
(ii) character codes (BCD)
(iii) relocatable addresses (either word or character addresses)
or (iv) constants.

It enables information to be packed into computer words during
assembly time.

Packing:

(1) Values are entered right adjusted in the field, with sign
extension.

(i1) Character strings are entered left adjusted, with blank fill.
e.g. A B X is a character string.

If entered in a 24-bit character
VFD, it will be entered as:

Relocation:

If relocatable addresses are entered into a field, the
addresses will be relocated when the assembled subprogram is loaded.
(The listing will show only the assembled fields.)

19.6.2 Octal Mode

i LGBATISR

indicates the number of bit positions in the field.
It may be in the range 1-24 inclusive.

19.6.2 (cont.)

v indicates the octal information to be entered into the field.
It may be 1-8 octal digits, and may be signed. (If v is
negative, the filled content is stored in one's complement
form). The information is entered right justified in the field,
zero filled if positive, one-bit filled if negative.

A binary scale factor, similar to that used with the OCT pseudo
instruction, may be specified.

Example: VFD @#24/24B6
Assembled as 00002400
Examples: (i) VFD @24/30502

Assembled as 00030502

(ii) VFD @24/-30502
Assembled as 77747275

(iii) VFD #15/30502
Assembled as 30502000

(Unused portions of the word are zero filled)
Errors:

If the value v exceeds the field length n,or is not octal, the
error is flagged and the field is set to zero. (The CPMPASS address
field error flag A appears on the listing.)

Example: VFD $15/30502,15/2030502

Agsembled as: 30502000 in word 1,
word 2 not shown on the listing.
"A" error flag set against the line.

(Note: the program will not be executed.)
Note:

If an error occurs in any field on the card, subsejuent fields
in that card are not listed, although space is reserved for them.

Example: VFD #10/12345,815/ 24 ,815/60,824/1021

Word 1 is set to zero because the field
is too small.

Words 2 and 3 are not listed.

Program listing resumes at word 4 with
next card.

19.6.3 Hollerith Mode

| 1gCATION | GPERATION MWOGIHIERS ADDRESS Fitld
_VFD__ Hn/y

RRIgALE ALt iade i ety e e Qriazsen

) fotedido b

Here n must be & multiple of 6 to enable storage of Hollerith
information as 6-bit internal BCD character codes. The address subfield
terminates with a blank or a comma. If the field is too small for the
number of characters specified, an error results.

Example: L§C VFD H18/ABC = |21]22]23]00]

Lge VFD H12/ABC is illegal. (Address
field flag "A" is set).

19.6.3 (cont.)

If the field is longer than the number of characters specified,
the work is blank fiiled. Characters are stored LEFT justified in the
field.

Example: LG VED His/ab = |21]22]60] 00|

19.6.4 Word Address Arithmetic Mode

r LUDATIOR BPIRRTION MOBITIERS ADDRESS Fiftd
VFD - An/v

LIEiaarisisTasie i

s

SiepTiEia el

The address field v may be:
(i) A constant
(1i) A symbol

(iii) An expression formed by the rules of
address field arithmetic.

If the expression yields a relocatable word address, the
programmer must arrange so that it will be right Jjustified on bit O in
a word, and be contained in 195 bits. If it is not relocatable, the full
24 bits can be used.
Examples: (i) ALPC VFD A24/A+3
If A is a relocatable word address, previously
defined, then answer must be 15 bits stored Right
justified in word on bit O.
If A is an absclute value, 24 bits can be stored.
(ii) Using relocatable word address

VFD $9/010,A15/BUFR

where BUFR is a symbol, address 00002 in the
program.

Assembled as 01000002

(iii) Using non relocatable symbol

4 EQU 777778
B EQU 57
c EQU 20B
VFD A21/A-B+C

Assembled as 777740 in the designated 21 bits.

19.6.5 Character Address Mode

L60ATIOR - (QPERATION MOBIFIERS ADDRESS FIZl

LTIy iBieTIe s s ey

A minimum of 17 bits is required for chavacier addressing.

n must therefore not be iess than 17.

19.6.5 (cont.)

If the address is relocatable, the field must be right justified
on bit O in the word.

Examples: (i) VFD C24/237B
Assembled as 00000237

VFD c24/237
Assembled as 00000355

(ii) Suppose NAME is assembled at location 00025 in
the subprogram, and is a word address.

VFD C24/NAME
Agsembled as 00000124

(Note: 124 is the character address of
word address 25)
(iii) capr EQU,C 237B
PPAD VFD $7/04,C17/ CADR

CADR: is assembled as a 17-bit character address
= 000237
= Word 47, character position 3
= 000473 on the listing.

@PAD: 1is assembled as a 24-bit word
= 02000237
04 is entered right justified in a 7-bit
field
= 0000100
= 000 010 O

CADR is the 17-bit character address
000237

= 00 000 000 010 011 111
(iv) Suppose TMPC ig asgembled as character O in
word 20 in the subprogram
JAC VFD #7/4,C17/TMPC
Agsembled as 02000100
(100 is character address of TMPC)

19.6.6 Example of VFD instruction

If NAME is located at address 00011 in the assembled program,
what will be assembled as a result of:

A EQU 777778
X EQU 578
B EQU 20B
VFD #12/-737,421/A-X+B,H24/HA3,A15/NAME+2,H12/BQ

Angwer: 70 40 77 77
74 03 02 10
36 00 00 13
22 50 00 00

INPUT/OUTPUT WITHOUT CIO

20.1 INPUT/OUTPUT CHARACTERISTICS
20.1.1 Introduction
20.1.2 Interface Signals
20.1.3 System Configuration
20.1.4 Logical Sequence of Events for Initiating
INPUT/OUTPUT Operations
20.2 CONNECT
20.3 SELECT
20.4 WORD ADDRESSED INPUT TO STORAGE
20.5 WORD ADDRESSED OUTPUT FROM STORAGE
20.6 CHARACTER ADDRESSED INPUT TO STORAGE
20.7 CHARACTER ADDRESSED OUTPUT FROM STORAGE
20.8 INPUT/OUTPUT TO AND FROM THE A REGISTER
20.8.1 Input Character to A
20.8.2 Input Word to A
20.8.3 Output Character from A
20.8.4 Output Word from A
20.9 SENSING INSTRUCTIONS
20.9.1 Sense External Status
20.9.2 Copy External Status and Interrupt Mask Register
20.9.3 Sense Interrupt
20.9.4 Sense Internal Status
20.9.5 Copy Internal Status and Interrupt Mask Register
20.9.6 Comments on Internal Status and the Interrupt Mask Register
20.10 CONSOLE TYPEWRITER INPUT/OUTPUT
20.10.1 General Description

20.10.2 Operation

20.10.2.1 Set Tabs, Margins and Spacing

20.10.2.2 Clear

20.10.2.3 Status Checking Chapter []
20.10.2.4 Type In and Type Load

20.10.2.5 Type Out and Type Dump

20.10.3 Typewriter Console Switches and Indigators
20.10.4 Character Codes
20.10.5 Input/Output Instructions
20.10.5.1 Set Console Typewriter Input
20.10.5.2 Set Console Typewriter Output

20.10.5.3 Pause Instruction
(as used with console typewriter instructions)

20.1 INPUT/OUTPUT CHARACTERISTICS

20.1.1 1Introduction

The Input/Output section of the computer is responsible for
transferring data to and from the computer and to and from an external
device. Data is transferred between a 3200 Computer and its associated
external equipment via a 3206 or 3207 Communication Channel. For
programming purposes, the eight possible 3206 channels in a system are
designated by numbers O through 7. A 3207 replaces the 3206 type 1/0
channels 2 and 3 in expanded systems. It is programmed as channel 2.

20.1.2 1Interface signals

Up to eight external equipment controllers may be attached in
parallel to each 3206 Communication Channel., The following chart shows
the principal signals which flow between a 3206 and its external equip-
ment. The 12 status lines are active only between the channel and the
controller to which it has been connected by the CON (77.0) instruction¥*.

The eight interrupt lines, designated 0-7, connect to all eight
controllers attached to a channel., These lines match the Equipment
Selector switch setting on each controller. For a complete description
of the I/0 interface signals as well as an I/0 timing chart, refer to
the 3000 Series I/0 Specification, publication number 60048800,

Data Lines (12 for 3206; 24 for 3207)

Parity Lines (1 for 3206; 2 for 3207)

Connect
Function
Read

3206 or 3207 External
Write

Communication Equipment
Data Signal

Channel Controller

Master Clear

Clear External Interrupt

Channel Busy

Reply

Reject

End of Record

. External Parity Error

e Status Lines (12)

Interrupt Lines (8)

Suppress Assembly/Disassembly

Word Mark

* The connect instruction selects one of eight controllers which may be
attached to the channel.

20.1.3 System configuration

A typical configuration is:

3200 SYSTEM
P
|
! 3204
1l 8K 8K
|
: MEM PROCESSOR
r~—_ CH |CH
L 1 0
| PERIPHERAL
1 CONTROLLERS (Called EQUIPMENT)
Ll L] (5] Lo} L3]
- 3234 3245 3256 3228 3248
[405
853
415 501
— <
606
PERIPHERAL
EQUIPMENT (Called UNITS)
DISC CARD LINE MAGNETIC CARD

PACK PUNCH PRINTER TAPES READER

20.1.4 Logical Sequence of Events for Initiating INPUT/OUTPUT Operations

Execute a connect instruction which will indicate the channel,
controller and unit which is to receive or transmit the data.

Sense the status of the controller to determine if the unit is available
and capable of performing the function and/or data transmission ("PRE-STATUS").

Send the appropriate select functions. Select functions
are used to format the INPUT/OUTPUT device.

Execute the data transmission instructions.

At end of operation, sense the status of the controller to determine
if the function and/or data transmission was successful ("POST-STATUS" check).

20.2 GONNECT

LGEATION © OPERATION MOBIFIERS ABBRESS FIELD
c¢” : f!';x\’ldxis

I PRI S O TS TS S S

4y y atne

23 18 17 1514 12 1 00

L7 lofea] ~ |

0
=
|

= 1/0 channel designator, 0-7

= 12 bit connect code. Bits 09-11
select one of eight controllers which
may be attached to channel ch. Bits
00-08 select the peripheral units
connected to the controller.

E]
|

Description: This instruction sends a 12-bit connect code along with a
connect enable to an external equipment controller on I/0
channel 'ch'!. If a Reply is received from the controller
within 100 usec, the next instruction is read from address
P + 2. 1If a Reject is received or there is no response
within 100 usec, a reject instruction is read from address
P + 1. If the I/0 channel is busy, a reject instruction
is read immediately from address P + 1.

Once the connect is successful (RNI at P + 2) it will re-
main in effect until another connect is attempted on the
same channel or a clear function is performed.

Examples:
CPN 1001B,2

This instruction tonnects controller number 1 and unit 1
on channel 2.

The reject instruction coded at P + 1 is usually a jump
back to the connect to cause the computer to wait until
the connect is successful.

e.g. CPN 1001B,2
uJpP *.1

20.2 {(cont.)

In the following example, which controllers and units
will be connected on channel 1 and 2 when the computer
stops. Assume all connects can be made.

CPN 2004B,1
uJp *.1
CPN 3004B,2
uJp *.1
CoN 58,1 Answers:
uJp *-1 Channel 1 = Equip 0, Unit 5
ucs Channel 2 = Equip 3, Unit 4
20.3 SELECT
LGCRTIDR | OPERATION MOBIFIERS ABBRESS BiELD
s Xach

23 18 17 15 14 12 11 00

r77|1|ch| X J

ch = I/0 channel designator, 0-7

x = 12-bit function code. Each piece
of external equipment has a unique
set of function codes to specify
operations within that device.
Refer to the 3000 Series Computer
Systems Peripheral Equipment Codes
pubiication No. 60113400 for a
complete list of function codes.

Description: This instruction sends a 12-bit function code along with
a function enable to the unit connected to I/0 channel
'ch'. 1If a Reply is received from the unit within 100
usec, the next instruction is read from P + 2. If a
Reject is received or there is no response within 100 usec,
a reject instruction is read from address P + 1. 1If the
I/0 channel is busy, a reject instruction is read immediately
from address P + 1.

The following conditions or combination of conditions will
result in a Reject:

1) No Unit or Equipment Connected: The referenced device
is not connected to the system and cannot recognize a
Function instruction. If no response is received with-
in 100 usec, the Reject signal is generated automatically
by the I/0 channel.

2) Undefined Code: When the Function code x is not defined
for the specific device, a Reject may be generated by
the device. However, in some cases an undefined code
will cause the device to generate a Reply although no
operation is performed. (Refer to the reference manual
for the specific device.)

3) Equipment or Unit Busy or Not Ready: The device cannot
perform the operation specified by the function code x
without damaging the equipment or losing data. For
example, a Write End of File code is rejected by a tape

unit if the tape unit is rewinding.

4) Channel Busy: The selected data channel is currently
performing a Read or Write operation.

20.3

Example:

Exercise:

(cont.)

The function codes for magnetic tape and card reader are:

MAGNETIC TAPE CONTROLLERS

FUNCTION CODES

3248 CARD READER CONTROLLER

FUNCTION CODES

0000
0001
0002
0003
0004
0005
0006
0010
0011
0012
0013

0014

0015
0016
0020

0021
0022
0023
0024
0025

0040
0041

CoN
uJp

EL
uJp
SEL
uJp
SEL
uJp

.
.

.

ucCs

Release

Binary

Coded

556 BPI

200 BPI

Clear

800 BPI

Rewind

Rewind Unload
Backspace

Search Forward to
File Mark

Search Backward to
File Mark

Write File Mark

Skip Bad Spot
Interrupt on Ready
and Busy

Release Interrupt on
Ready and Busy
Interrupt on End of
Operation

Release Interrupt on
End of Operation
Interrupt on Abnormal
End of Operation
Release Interrupt on
Abnormal End of Operation
Clear Reverse Read
Set Reverse Read

2B,1
REJX
108,1
REJX
3B,1
REJX
18,1
REJX

0001
0002
0004
0005
0020
0021
0022
0023
0024

0025

Sets the Mode to binary

Negate Hollerith to
Internal BCD Conversion
Release Negate Hollerith
to Internal BCD Conversion
Set Gate Card

Clear

Interrupt on Ready and

‘Busy

Release Interrupt on
Ready and Busy

Interrupt on End of
Operation

Release Interrupt on

End of Operation
Interrupt on Abnormal

End of Operation

Release Interrupt on
Abnormal End of Operation

Connects Controller O Unit 2 on channel 1
Rewinds Tape Unit 2 to Load Point

Sets the Density to 556 bpi

What dees the following group of select function codes for Tape Unit 6

aceomplish?

C@N 6B,0
uJp REJX
SEL 6B,0
UuJp REJX
SEL 13B,0
UJp REJX

ucs

20.4 WORD ADDRESSED INPUT TO STORAGE

LOLATION PERATION MOBIFIERS ABDRESS FIELD
INPW,INT,8,N chym,n

108116121 2E1E

23 18 17 161514 00
T Er—
23 2120 19 18 17 161514 00
P+1|ch %B]NLNT% m J
B = "l" for backward storage
ch = I/0 channel designator, 0-7
INT = "1" for interrupt upon completion
N = "0" for 12- to 24-bit assembly
= "1" for no assembly
m = first word address of I/O data block;

becomes current address as I/0 oper-
ation progresses

n = last word address of input data block,
plus one (minus one, for backward
storage)

Description: This instruction transfers a word-addressed data block from
an external equipment to storage. Transferring 12-bit bytes
or 24-bit words depends upon the type of I/O channel used.

The 3206 utilizes 12-bit bytes and the 3207 uses 24-bit words.

During forward storage and 12- to 24-bit assembly, the first
byte of a block of data is stored in the upper half of the
memory location specified by the storage address. Conversely,
during backward storage, the first byte is stored in the
lower half of the memory location.

This instruction is an initiate type instruction, which means
all the foregoing actions will occur only if the instruction
executes normally. And RNI will be at P + 3. However, if
the input/output control for the specified channel in Block
Control is busy, the instruction will act as a double NOP and
RNI from P + 2. The instruction at that location is termed
the 'Reject Imstruction!.

Examples: (i) CoN 1001B,1
RTJ REJX
SEL 2B,1
RTJ REJX
SEL 38,1
RTJ REJX
INPW 1, INBUFF , INBUFF+50
RTJ REJX

This example initiates an Input from tape unit 1, controller 1
on channel 1. The tape is written in BCD mode at 556 bpi.

20.4 (cont.l)

(ii) A block of memory is as shown:

INEUFF | 77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777

And the contents of a data card is:

ABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABC

What will be the contents of memory as a result of
the following coding examples?

(1) CEN 3000B,0
UJP REJX
INPW 0, INBUFF , INBUFF+20
uJP REJX
(2) coN 30008B,0
uJP REJX
INPW,B O, INBUFF+19,INBUFF-1
UJP REJX
(3) cgN 3000B,0
uJP REJX
INPW,N 0, INBUFF,INBUFF+40
uJP REJX
(4) CPN 3000B,0
uJP REJX

INPW,B,N O0,INBUFF+39,INBUFF-1
uJp REJX

20.4 (cont.2)

Answers:

(1)

INBUFF

3)

INBUFF

21222324
25262730
31414121
22232425
26273031
41422122
23242526
27303141
42212223
24252627
30314142
21222324
25262730
31414221
22232425
26273031
41422122
23242526
27303141
42212223

77772122
77772324
77772526
77772730
77773141
77774221
77772223
77772425
717772627
77773031
77774142
77772122
77772324
77772526
77772730
77773141
77774221
77772223
77772425
77772627
77773031
77774142
77772122
77772324
77772526
77772730
77773141
77774221
77772223
77772425
77772627
77773031
77774342
77772122
77772324
77772526
77772730
77773141

77774221

77772223

(2)

INBUFF

(4)

INBUFF

22334221
31412730
25262324
21224142
30312627
24252223
42213141
27302526
23242122
41423031
26272425
22234221
31412730
25262324
21224142
30312627
24252223
42213141
27302526
23242122

77772223

77774221

77773741

77772730

77772526

77772324
77772122
77774142

77773031

77772627

77772425

77772223

77774221

77773141

77772730
77772526
77772324
77772122
77774142
77773031
77772627
77772425
77772223
77774221
77773141
77772730
77772526
77772324
77772122
77774142
77773031
77772627
77772425
77772223
77774221
77773141
77772730
77772526
77772324
77772122

20,5 WORD ADDRESSED OUTPUT FROM STORAGE

LOcATION

| [OPERATION MODIFIERS ADDRESS Hitld

S S S

gt

itgageizie;zoslst

P+1

Description:

Examples:

@UTBUFF [21222324

23 18 17 161514 00
D e

23 2120 19 18 17 161514 00

(o Pl =]

B = #1" for backward storage

ch = I/0 channel designator

INT = %1% for interrupt upon completion
N = 1n0" for 24- to 12 bit disassembly

nlu for straight 24-bit (no disassembly)

data transfer

m = first word address of I/0 data block;

ecomes current address as I/0

operation progresses

n = last word address of output data

block, plus one (minus one, for

backward output)

This instruction transfers a word-addressed block of data
consisting of 12-bit bytes or 24-bit words, from storage
to an external equipment.

With no disassembly, 12 or 24-bit transfer capability depends
upon whether a 3206 or 3207 I/O channel is.used. If an
attempt is made to send a 24-bit word over a 3206 I/0 channel,
the upper byte will be lost.

This instruction is an initiate type instruction, which means
all the foregoing actions will occur only if the instruction
executes nommally. And RNI will be at P + 3. However, if
the input/output control for the specified channel in Block
Control is busy, the instruction will act as a double NOP and
RNI from P + 2. The instruction at that location is termed
the 'Reject Imstruction'. :

A block of memory is as shown:

.

Numerical Value Alphabetical Representation

25262730
31414221
22232425
26273031
41422122
23242526
27303141
42212223
24252627
30314142
21222324
25262730
31414221
22232425
26273031

| W1422122 |

242526

27303141

42212223

o - e | ol R O] O] o Al) | = 3ol R o) o
(oY L el] B B D= S K Ko R K TR =T T] o ==

> olR|O|O[GH W H E IO R O] O] G| =) W

) () (0 01 I Tt B ST RS Bt Ho Y K) 0 1 e e

20.5 (cont.)

What will be printed on the line printer as a result of
the following coding examples?

¢D) CgN 5000B,1
UuJP REJX
PUTH 1,BUTBUFF , JUTBUFF+20
uJp REJX

(2) CPN 50008, 1
UJP REJX
@UTW,B 1,@UTBUFF+19 , UTBUFF-1
UJP REJX

(3) CgN 5000B,1
uJp REJX
$UTW,N 1,@UTBUFF , UTBUFF+20
uJp REJX

(4) CcoN 5000B,1
UJP REJX
@UTW,B,N 1,@UTBUFF+19,@UTBUFF-1
UJp REJX

Answers:
(n

ABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHI JKABCDEFGHI JKABCDEFGHI JKABCDEFGHIJKABC

(2)

BCKATJGHEFCDABJKHIFGDEBCKAIJGHEFCDABJKHIFGDEBCKAI JGHEFCDABJKHIFGDEBCKAI JGHEFCDAB

3)

CDGHKADEHTABEFIJACFGJKCDGHKADEHIABEFIJBC

(4)

BCIJEFABHIDEKAGHCDJKFGBCIJEFABHIDEKAGHCD

20.6 CHARACTER ADDRESSED INPUT TO STORAGE

INPC,INT B, H chyrys

23 18 17 16 00
P I 73]0] s J
23 2120 19 18 17 16 00
P+1 I ch Ezg BIHlmrl r J
B = 11" for backward storage
ch = I1/0 channel designator, 0-3
H = "0" for 6- to 24-bit assembly
= W1" for 12- to 24-bit assembly
INT = "1" for interrupt upon completion
r = first character address of I/0 data block;
becomes current address as I/0 operation
progresses
s = last character address of input data

block, plus one (minus one, for back-
ward storage)

Description: This instruction transfers a character-address block of
data, consisting of 6-bit characters or 12-bit bytes, from
an external equipment to storage. During 12- to 24-bit
assembly, the lowest bit of each character address is
forced to remain a "O" in register OX. This ensures that
assembled bytes are in either the upper or the lower half
of the word being stored.

This instruction is an initiate type instruction, which means
all the foregoing actions will occur only if the instruction
executes normally. And RNI will be at P + 3. However, if
the input/output control for the specified channel in Block
Control is busy, the instruction will act as a double NOP and
RNI from P + 2, The instruction at that location is termed
the 'Reject Instruction!,

sxsmples: A block of memory is as shown:

INBUFF 777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777
17777777
717777777
77777777
77777777

And the contents of a data card is:

ABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABC

20.6 (cont.)

What will be the contents of memory as a result of the
following coding examples?

(1) C@N 3000B,0
uJp REJX
INPC 0, INBUFF,INBUFF+80
uJp REJX

(2) C@N 30008B,0
UuJp REJX
INPC,B 0, INBUFF+79,INBUFF-1
uJp REJX

(3) CON 3000B,0
IR} 4 REJX
INPC,H 0, INBUFF,INBUFF+80
uJp REJX

(4) C@N 30008,0
UJP REJX
INPC,B,H 0, INBUFF+79, INBUFF-~1
uJp REJX

Answers: (1) (2)

21222324 23222142
25262730 41313027
31414221 26252423
22232425 22214241
26273031 31302726
41422122 25242322
23242526 21424131
27303141 30272625
42212223 24232221
24252627 42413130
30314142 27262524
21222324 23222142
25262730 41313027
31414221 26252423
22232425 22214241
26273031 31302726
41422122 25242322
23242526 21424131
27303141 30272625
42212223 24232221

(3) (4)

Same as #1 Same as #2

20.7 CHARACTER ADDRESSED OUTPUT FROM STORAGE

DescriEtion:

Examples:

QUTC,INT,B,H hyrys

23 18 17 16 00
L7 ol : |
23 2120 19 18 17 16 00
l ch %BJHIINT' r J
B = "1" for backward storage
ch = I/0 channel designator, 0-3
H = "0" for 24- to 6-bit disassembly
= 11" for 24- to 12-bit disassembly
INT = "1" for interrupt upon completion
r = first character address of I/0 data

block; becomes current address as
1/0 operation progresses

s = last character address of output
data block, plus one (minus one,
for backward output)

This instruction transfers a character-addressed block of
data, consisting of 6-bit characters or 12-bit bytes, from
storage to an external equipment.

This instruction is an initiate type instruction, which means
all the foregoing actions will occur only if the instruction
executes normally. And RNI will be at P + 3. However, if
the input/output control for the specified channel in 3lock
Control is busy, the instruction will act as a double *OP znd
RNI from P + 2. The instruction at that location is termed
the 'Reject Instruction!.

A block of memory is as shown:

Numerical Value Alphabetical Representation
@UTBUFF 21222324 ABCD
25262730 EFGH
31414221 I JKA
22232425 BCDE
26273031 FGHI
41422122 JKAB
23242526 CDEF
27303141 GHIJ
42212223 KABC
24252627 DEFG
30314142 HIJK
21222324 ABCD
25262730 EFGH
31414221 I JKA
22232425 BCDE
26273031 FGHI
41422122 JKAB
23242526 CDEF
27303141 GHIJ
42212223 KABGC

20.7 (cont.)

What will be printed on the line printer as a result of the
following coding examples?

(1) C@N 5000B,1
UJP REJX
puTC 1,$UTBUFF,JUTBUFF+80
UuJp REJX

(2) CgN 5000B,1
uJP REJX
$UTC,B 1,BUTBUFF+79 ,UTBUFF-1
UJP REJX

3 CON 5000B,1
uJP REJX
@UTC,H 1, @UTBUFF , JUTBUFF+80
uJP REJX

(4 C@N 5000B,1
UJP REJX
@UTC,B,H 1,$UTBUFF+79 ,@UTBUFF-1
UJP REJX

Answers:
(1)

ABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABC

(2)

CBAKJIHGFEDCBAKIJHGFEDCBAKJIHGFEDCBAKJIHGFEDCBAKJIHGFEDCBAKJIHGFEDCBAKJIHGFEDCBA

(3

Sames as Number 1

(4)

Same as Number 2

20.8 INPUT/OUTPUT TO AND FROM THE A REGISTER

20.8.1 Input

Character to A

P+1

BRI ER I
INAC,INT o

23 18 17 16 00

73 1 Bits 00-16 at
P and P+l should
23 2120 1817 16 00 be loaded with O's
ch 4] INT
ch = I/0 channel designator, 0-7

Description:

Example:

20,8.2 Input

INT

I

"l for interrupt upon completion
"0" for do not interrupt upon completion

This instruction transfers a 6-bit character from an
external equipment into the lower 6-bits of the A regis-
ter. A is cleared prior to loading and the upper 18-bits
remain cleared.

Main control is stalled until the character is received
from the external equipment. At that time it resumes
reading instructions and RNI's from P + 3. If the
input/output control for the specified channel in Block
Control is busy, the instruction will act as a double
NOP and RNI from P + 2, The instruction at that location
is termed the 'Reject Instruction!.

CPN 3000B,1
UJP *-1
INAC 1

UJP *.2

This example inputs 6-bits from controller 3, unit 0 on
channel 1 into the lower 6-bits of the A register. A

is cleared prior to loading and the upper 18-bits remain
cleared.

Word to A

SRR

P+1

Description:

GRERATION MODIIERS RGDRLGS LR

23 18 17 16 00

| 1\ 1 Bits 00-16 a

P and P+l should
232120 181716 % be loaded with O's

ch (V] INT

ch
INT

i

I/0 channel designator, 0-7
"M for interrupt upon completion
10" for do not interrupt upon completion

i

This instruction transfers a 12-bit byte into the lower
12-bits of A or a 24-bit word into all of A from an
external equipment. Trarnsferring 12 or 24 bits depends
upon whether a 3206 or 3207 I/0 channel is used. (A) is
cleared prior to loading and, in the case of a 12-bit
input, the upper 12 bits remain cleared.

20.8.2 (cont.)

Note:

Examples:

Main control is stalled until the byte (word) is received
from the external equipment. At that time it resumes
reading instructions and RNI's from P + 3. If the
input/output control for the specified channel in Block
Control is busy, the instruction will act as a double NOP
and RNI from P + 2. The instruction at that location is
termed the 'Reject Instruction!.

Bits 18, 19 and 20 are all zeros when a 3206 data channel is
used. If the operation with A involves the use of a 3207,
these bits take on the following significance:

Bit 20 = always a "0¥

Bit 19 = If bit 18 = »1", the state of bit 19 is
of no consequence.
If bit 18 = 0", a "1" in bit 19 signifies
backward operation. A "0 in bit 19
signifies a forward operation.

If the connect code for the card reader is 3000B and a data
card has ABCD in the first four columns, what will be the
contents of the A register as a result of the following
coding examples? Assume a 3206 data channel.

CPN 3000B,0
uJp REJX
INAW 0

UJpP REJX

Answer: (A) = 00002122 Also, this is all the information
that is available from that card.
Another input to A would cause the
next card to be read.

20.8.3 Output Character from A

LGBATIOR

| OPLRATION HODIFIERS ARBRESS FiELD

‘h :

P+1

DescriEtion:

23 18 17 16 00

| s [\] B0l

P and P+l should
23 2120 1817 16 00 be loaded with O's

ch o) mr,///

ch
INT

I/0 channel designator, 0-7
"1 for interrupt upon completion
"0" for do not interrupt upon completion

This instruction transfers a character from the lower

6-bits of A to an external equipment. The original
contents of A are retained.

After outputting the character, main control proceeds
immediately and RNI's at P + 3. Should the input/output
control for the specified channel in Block Control be
busy, the instruction will act as a double NOP and RNI
from P + 2. The instruction at that location is termed
the 'Reject Instruction'.

20.8.3 {(cont.)

Example:

If the connect code for the external device is 3002B, it is
connected to channel 4, and it requires a data output of
21B to perform a certain task, what coding is necessary to
perform the task.

Ans: C@N 3002B,4
uJp *a1
ENA 21B
@TAC 4
uJpP *a2

The data sent to the external device is 0021B accompanied by
a suppress assembly/disassembly control signal. This latter
informs the device to ignore the upper 6 bits and recognize
the 21B only.

20.8.4 Output Word from A

P+1

Description:

Example:

Note:

STAW,INT

23 18 17 16 00
76 1 Bits 00-16 at
P and P+l should
23 2120 1817 16 00 be loaded with O's
ch [} INT

¢iv - 1/0 channel designator, 0-7
INT = "1" for interrupt upon completion
"0" for do not interrupt upon completion

This instruction transfers a 12-bit byte from the lower 12
bits of A (or all 24-bits of A) to an external equipment
depending upon the type of I/0 channel (3206 or 3207) that

is used. The contents of A is not disturbed and is retained.

After outputting the information, main control proceeds
immediately and RNI's at P + 3. Should the input/output
control for the specified channel in Block Control be
busy, the instruction will act as a double NOP and RNI
from P + 2. The instruction at that location is termed
the 'Reject Instruction'.

Bits 18, 19 and 20 are all zeros when a 3206 data channel is
used., If the operation with A involves the use of a 3207,
these bits take on the following significance:

Bit 20 = always a "O"

Bit 19 = If bit 18 = "1", the state of bit 19 is
of no consequence.
If bit 18 = "0", a "1" in bit 19 signifies
backward operation. A "0" in bit 19
signifies a forward operation.

Assuming a remote typewriter connected to a data channel
(not to be confused with the console typewriter) has a
connect code of 5000B and is connected to channel 2, what
code is necessary to cause that typewriter to perform a
carriage return tab sequence of operations? The code for
a carriage return is 77B and for the tab is 75B.

20.8.4 (cont,)

Answer: CON 5000B,2
UJP *al
ENA 7775B
PTAW 2
uJp *=2

The data transmitted to the typewriter is 7775B.

20.9 SENSING INSTRUCTIONS

20.9.1 Sense External Status

LECRTIOR

§a?iﬁ;xsux WODIFIERS ADRESS HiELD

Koch

HETr)

Description:

Status Codes:

18 17 15 14 12 11

14777 | 2 | ch I

ch = I/0 channel designator, 0«7
x = external status sensing mask code

en a peripheral equipment controller is connected to an
1/0 channel by the CPN (77.0) instruction, the EXS instruc-

tion can sense conditions within that controller. Twelve
status lines run between each controller and its I/0 channel.
Each line may monitor one condition within the controller,
and each controller has a unique set of line definitions.

To sense a specific condition, a "l" is placed in the bit
position of the status sensing mask that corresponds to the
line number. When this instruction is recognized in a
program, RNI at address P + 1 if an external status line

is active when its corresponding mask bits are "l". RNI

at address P + 2 if no selected line is active.

Following are the status response codes for magnetic tape and
card reader:

3248 CARD READER
STATUS CODES

MAGNETIC TAPE
STATUS CODES

XXXl Ready XXX1 Readv
XXX2 Channel and/or XXX2 Busy
Read/Write Control XXX4 Binary Card
and/or tnit Busy XX1X File Card Read
XXX4 Write Enzbled XX2X Fail to Feed,
A¥1l% File Mark Read Stacker Full or
¥X2X At Loadpoint Jam
X¥4X End-of-Tape Read XX4X Input Tray Empty
X1XX Density 2Y bit#** X1XX Input Tray Empty and
X2XX 21 bigxx End of File Switch On
** 00 = 200 bpi X2XX Ready anl not Busy
01 = 556 bpi Interrupt Present
10 = 800 bpi X4XX End of Operation
11 = undefined Interrupt Present
X4XX Lost Data 1XXX Abnormal End of
1XXX End of Operation Operation Interrupt
2XXX Vertical or Present
Longitudinal 2XXX Read Compare,
Parity Error Preread Error or
4XXX Reserved by another ‘Illegal Suppress

control (multiple
channel controllers
only)

Assembly

20.9.1 (cont.)

Comments: Refer to the 3000 Series Computer Systems Peripheral
Equipment Codes manual, publication no. 60113400 for a
complete list of status response codes.

xample: The example below accomplishes the following:

;

a) Connects the card reader on channel 0.

b) Checks the status of the card reader.
If busy it waits until it becomes not busy.

c) Initiates reading of a card at the card reader and
transfer of the data read to memory.

d) Waits until the INPUT is complete.

CON 3000B,0 CONNECT CARD READER
UJp *.1

EXS 2B,0 SENSE BUSY

UJP *o1 LOOP IF BUSY’

INPW 0, INBUFF , INBUFF+20 INITIATE INPUT

uJp *22

EXS 2B,0 SENSE BUSY

UJpP *al LOOP UNTIL DONE

UGS

20.9.2 Copy External Status and Interrupt Mask Register

Do

. GPIRATIGN MOIFIERS ABORESS FIELD

23 1817 1514 12 11 00
I 77 | 2 | ch | 0000 l

ch = I/0 channel designator, 0-7
Description: This instruction performs the following functions:
(1) The external status code from I/0 channel ch is
loaded into the lower 12 bits of A. See EXS

instruction.

(2) The contents of the Interrupt Mask register are
loaded into the upper 12 bits of A.

(3) RNI from address P + 1.
Examples: If the INTERRUPT MASK REGISTER is 0032_, and the external

status on channel 1 = 1004g, what will be in A after
execution of the following instruction?

cgpy 1
Answer:
(a) A is cleared.

(b) Contents of INTERRUPT MASK REGISTER put in upper
12 bits of A.

(c) External status on channel 1 put in lower 12 bits of A,

(A) = 00321004

20.9.3 Sense Interrupt

WCATION | OPERATIONMODIFIERS ADDRESS FiELD
CINTS | xah

(SIS

IS TenTIEmIze

23 18 17 15 14 12 11 00
[77 l 4 ‘ chw x

ch = I/0 channel designator, 0-7
x = Interrupt sensing mask code

Description: Sense for the interrupt conditions listed in the following
table, RNI from P + 1 if an interrupt line is active
corresponding to any "1" bit in the mask. If none of the
selected lines are active, RNI from P + 2, Internal
interrupts are cleared as soon as they are sensed. External
interrupts are cleared by connecting the unit and executing
one of the SEL functions controlling peripheral interrupts.

INTERRUPT SENSING MASK BIT ASSIGNMENTS

Mask Bit Mask Code

Position X Interrupt Condition Represented

00 0001 I/0 Equip # O on designated channel]

ol 0002 1

02 0004 2

03 0010 3 External

04 0020 4 Interrupts

05 0040 5

06 0100 6

07 0200 T

08 0400 Real-time Clock 7

09 1000 Exponent Overflow/Underflow (flt pt)
and BCD Fault Internal

10 2000 Arithmetic Overflow Interrupts
and Divide Fault (integer)

11 4000 Search/Move Completion B

Examples: i) If there is an interrupt line active on channel 2, which
instruction will be executed after executing the INTS
instruction in the following section of code?

INTS 48,2
UJP INTADD
UJP N@INT
Answer: uJp INTADD if equip. nr. 4 generated the

interrupt, else UJP NQINT

ii) The contents of the A register = 37777777 and the instruction
executed is:

INA 1

An arithmetic overflow is generated. What code is necessary
to sense this fact?

Answer: INTS 20008
uJpP overflow-routine (P+1)
normal non-overflow next instruction (P+2)

Note: The "ch" designator is required only when sensing
external interrupts originating on a

20.9.4 Sense Internal Status

Description:

Example:

23 18 17 15 14 12 1 00

[(1] - |

ch = I/0 channel designator, 0-7
x = Internal Status Sensing Mask Code

Sense for the internal conditions listed in the following
table. RNI from P + 1 if an internal condition is present
corresponding to any "1" bit in the mask. If none of the
selected conditions are present, RNI from P + 2, Internal
conditions are cleared as soon as they are sensed, except
when they are related to channel "ch",

INTERNAL STATUS SENSING MASK BIT ASSIGNMENTS

Mask Bit Mask Code

Position X Internal Condition Present

00 0001 Parity Error

01 0002 Read Active

02 0004 Write Active Channe

03 0010 External (controller) Reject

04 0020 Internal (no response) Reject _ _____

05 0040 Illegal Write _ _ ___] ﬁgiﬁ_ﬁgﬂfrol

06 0100 CPN or CPN and SEL executed
and channel currently not busy

07 0200 Block Control Interrupt waiting Channel
Write: Buffer complete Control

Read: Buffer complete or
End of Record at peripheral _

08 0400 Exponent Overflow/Underflow fault
(f1t pt option)
09 1000 Arithmetic Overflow fault
(main arithmetic section) Main Control
10 2000 Divide fault
(main arithmetic or flt pt opt)
11 4000 BCD fault (BCD option) _)

The following coding example sums a table of 50 numbers.
It detects and corrects for arithmetic overflow using the INS
instruction.

ENI 49,1 SET LPPP INDEX T$ MAX NR - 1
ENA 0 CLEAR THE ACCUMULAT@R
LppP ADA TABLE,1 ADD NEXT ENTRY @F TABLE T¢ THE
* ACCUMULAT@R
INS 1000B,0 WAS THERE ARITHMETIC QVERFLOW
uJp ov YES, JUMP T® C@RRECT AT LPCATI@N
% oV
1JD Lgpp,1 AFTER LAST TIME THRPUGH L@PP -
* N$ DECREASE Bl BY 1 @R JUMP
* T¢ LOPP
FINIS SHAQ =24 CONVERT 24 BIT SUM T 48 BITS
ADAQ SUM48 ADD CPNVERTED SUM T@ 48 BIT
* ACCUMULAT@R
UJp EXIT
oV SHAQ =24 CPRRECT FPR ARITHMETIC @VERFL@W
X@A,S =0 BY CPMPLEMENTING THE SIGN
ADAQ SUM48 ADD C@NVERTED SUM T@ 48 BIT
* ACCUMULAT@R
STAQ SUM48
ENA 0 CLEAR 24 BIT ACCUMULAT@R
I1JD Lpgpr,1 DECREASE Bl AND JUMP TQ L@@P
uJp FINIS
S5UM48 DECD 0

TABLE BSS 50

20.9.4 (cont.)

Exercise:

Assuming that data channel 5 is busy at the moment, determine
if the operation in progress is a Read or a Write. Write
the coding required to do this check.

20.9.5 Copy Internal Status and Interrupt Mask Register

| LOBRTION

| GPIRATION MODIFIERS ABDRESS HELD

_C€INS ch

Description:

Example:

Exercises: i)

ii)

23 1817 1514 12 11 00
I77|3|ch| ooool

ch = I/0 channel designator, 0-7
The CINS instruction performs the following functions:

1) The internal status information (see table in Section 20.9.4)
is loaded into the lower 12 bit positions of the A register.

2) The contents of the Interrupt Mask register are loaded into
the upper 12 bit positions of the A register.

3) RNI from P + 1

If the Interrupt Mask register contains 0121, and the internal
status is 01118, what will be in the A register after execution
of the following instruction?

CINS 1
Answer: a) The A register is cleared

b) The contents of the Interrupt Mask Register is
copied in the upper 12 bits of A.

c¢) The current internal status is copied in the
lower 12 bits of A.

(A) = 012101114

If the Interrupt Mask register contains 7400g and a parity
error has occurred on the channel for data channel 6 (called
a "transmission parity error"), what will be in A after the
execution of:

CINS 6

If the Interrupt Mask register contains 0403g and the reject
instruction following a SEL was executed, what coding would
be necessary to determine the cause of the reject. (Remember
there are three sources of SEL rejects 1) channel busy, 2)
function illegal, and 3) function not recognized)

20.9.6 Comments on Internal Status and the Interrupt Mask Register

At first glance, it appears that the INTS and INS instructions
perform essentially the same function with relation to internal
conditions. However, there is one important difference and that
is the INTS instruction needs both the condition and the
interrupt mask bit set to get a match. The INS instruction
senses the internal condition without the necessity of having the
interrupt mask register bit set.

20.10 CONSOLE TYPEWRITER INPUT/OQUTPUT

20.10.1

General Description

The 3192 Console Typewriter is an on-line input-output
(I1/0) device; i.e., it requires no connection to a
communication channel and no function codes are issued.
The typewriter receives output data directly from storage
via the lower 6 bits of the Data Bus. Inputs to storage
are handled in the same manner.

The console typewriter consists of an electric typewriter
and a typewriter control panel mounted on a desk console.

Used in conjunction with block control and the Register
File, the typewriter may be used to enter a block of
internal binary-coded characters into storage and to

print out data from storage. The two storage addresses
that define the limits of the block must be stored in

the register file prior to an input or output operation.
Register 23* contains the initial character address of the
block, and register 33 contains the last character address,
plus one. Because the initial character address is
incremented for each storage reference, it always shows
the address of the character currently being stored or
dumped. Output operations occur at the rate of 15
characters per second. Input operations are limited by
the operator's typing speed.

*The upper seven bits of registers 23 and 33 should be "0".

20.10.2 Operation

20.10.2.1

The general order of events when using the console type-
writer for an input or output operation is:

1) Set tabs, margins and spacing. Turn on typewriter.
2) Clear
3) Check status

4) Type out or type in

Set tabs, margins, and spacing

All tabs, margins, and paper spacing must be set manually
prior to the input or output operation. A tab may be set
for each space on the typewriter between margins.

20.10.2.2 Clear

There are three types of clears which may be used to clear
all conditions (except ENCODE FUNCTION) existing in the
typewriter control. These are:

1) Internal Clear or a Master Clear
This signal clears all external equipment, the

communications channels, the typewriter control,
and sets the typewriter to lower case.

20.10.2.2 (cont.)

2) Clear Channel, Search/Move Control, or Type Control
instruction (77.51).

This instruction selectively clears a channel, the
S/M control, or, by placing a 1" in bit 08 of the
instruction, the typewriter control, and sets the
typewriter to lower case.

3) Clear Switch on typewriter.

This switch clears the typewriter control and sets
the typewriter to lower case.

20.10.2.3 Status Checking

The programmer may wish to check the status of the type-
writer before proceeding., This is done with the Pause
instruction. Status response is returned to the computer
via two status lines.

The typewriter control transmits two status signals that
are checked by the Busy Comparison Mask using the Pause
instruction. These status signals are:

Bit 09 Type Not Finish
Bit 10 Type Not Repeat

An additional status bit appears on sense line 08. This
code is Type Busy, and is transmitted by block control in
the computation section when a typewriter operation has
been selected. If the programmer is certain of the status
of the typewriter, this operation may be omitted.

20.10.2.4 Type In and Type Load

The Set Type In instruction or pressing the TYPE LOAD switch
on the console or typewriter permits the operator to enter
data directly into storage from the typewriter. When the
TYPE LOAD indicator on the console or typewriter glows, the
operator may begin typing. The Encode function switch must
be depressed to enable backspace, tab, carriage return, and
case shifts to be transmitted to the computer during a type-
writer input operation.

Input is in character mode only. As each character is typed,
the information is transmitted via the Data Bus to the stor-
age address specified by block control. This address is
incremented as characters are transmitted. When the current
address equals the terminating address, the TYPE LOAD indicator
goes off and the operation is terminated. Data is lost if

the operator continues typing after the TYPE LOAD indicator
goes off.

20.,10,2.5 Type Out and Type Dump

The typewriter begins to type out when the computation
section senses a Set Type Out instruction or the operator
presses the TYPE DUMP switch on the console or typewriter.
Single 6-bit characters are sent from storage to the
typewriter via the lower 6 bits of the Data Bus., When

the current address equals the terminating address, the
TYPE DUMP indicator goes off and the operation is
terminated.

During a Type Out operation, the keyboard is locked to
prevent loss of data in the event a key is accidentally
pressed.

20.10.3 Typewriter Console Switches and Indicators

The following table shows the function of each switch and indicator for

the console typewriter.

Name

Switch (S)

Indicator (I)

Description

HIGH
TEMP

This indicator glows when the ambient
temperature within the typewriter cabinet
exceeds 110°F,

BUSY

This indicator shows that the TYPE LOAD or
TYPE DUMP switch has been pressed and the
operation is in progress.

POWER ON

This indicator shows that power is applied
to the typewriter.

TYPE
DUMP

S&l

This switch is in parallel with the TYPE
DUMP switch on the main console and causes
the computer to send data to the typewrit-
er for print-out. It is a momentary con-
tact switch that is illuminated until the
last character in the block has been print
printed or the CLEAR button is pressed.

TYPE
LOAD

This switch is in parallel with the TYPE
LOAD switch on the main console and allows
the computer to receive a block of input
data from the typewriter. The TYPE LOAD
indicator remains on until either the
FINISH, REPEAT or CLEAR button is pressed,
or until the last character of the block
has been stored. If the program immedi-
ately reactivates the typewriter, it may
appear that the light does not go off.

REPEAT

S &1

This switch is pressed during a Type Load
operation to indicate that a typing error
occurred, This switch deactivates busy
sense line 10 (see PAUS instruction). If
the computer does not respond, this light
remains on.

FINISH

S&l1

This switch is pressed during a Type Load
operation to indicate that there is no
more data in the current block. This
action is necessary if the block that the
operator has entered is smaller than the
block defined by registers 23 and 33.

This switch also deactivates busy sense
line 09. If the computer does not respond,
this light remains on.

INTERRUPT

S&I

This switch is in parallel with the MANUAL
INTERRUPT switch on the console and is
used to manually interrupt the computer
program.

{[ENCODE
[FUNCTION

S &1

This switch enables the typewriter to

send to storage the special function codes
for backspace, tab, carriage return,
upper-case shift, and lower-case shift.

CLEAR

S &1

This switch clears the typewriter controls
and sets the typewriter to lower case but
does not cancel Encode Function.

20.10.4 Character Codes

The following table lists the internal BCD codes, typewriter print-out and
upper- or lower-case shift that applies to the console typewriter. All
character transmission between the computation section and the typewriter
is in the form of internal BCD. The typewriter logic makes the necessary
conversion to the machine code.

Note: Shifting to upper case (57) or lower case (32) is not necessary
except on keyboard letters where both upper and lower case is
available. The standard type set for the 3192 has two sets of
upper case letters and no lower case letters. This eliminates
the need for specifying a case shift.

Those characters that are strictly an upper or lower case character

are not affected by the case currently selected. Case selection

only affects those characters that may be printed in either upper

or lower case.

CONSOLE TYPEWRITER CODES
Internal Internal
Print-out Case BCD Print-out Case BCD
Code Code
0 L Q0 - L 40
1 L 01 J U or L 41
2 L 02 K Uor L 42
3 L 03 L U or L. 43
4 L 04 M Uor L 44
5 L 05 N Uor L 45
6 L 06 0 U or L 46
7 L 07 P Uor L 47
8 L 10 Q Uor L 50
9 L 11 R Uor L 51
+ U 12 ° (degree) U 52
= L 13 $ U 53
u U 14 * U 54
: U 15 # U 55
3 L 16 % U 56
? U 17 (Shift to UC) 57
+ U 20 (Space) 60
A Uor L 21 / L 61
B Uor L 22 S Uor L 62
C Uor L 23 T U or L 63
D Uor L 24 U U or L 64
E Uor L 25 v Uor L 65
F U or L 26 W Uor L 66
G Uor L 27 X U or L 67
H U or L 30 Y Uor L 70
I Uor L 31 4 U or L 71
(Shift to LC) 32 & U 72
. Uor L 33 , Uor L 73
) U 34 (U 74
! L 35 (Tab) 75
@ U 36 (Backspace) 76
! L 37 (Carriage 77
) Return)

20.10.5 Input/Output Instructions

20.10.5.1 Set Console Typewriter Input

LTI OPLRATION MODIFIERS MDORESS FIELD
‘ _CTIL

23 1817 12 11 00 Bits 00 - 11 should

W/m be loaded with zeros

Description: This instruction, like the TYPE LOAD switch, permits a
block of data to be entered into storage as soon as the
Type Load indicator lights. If a block of data smaller
than the one defined by registers 23 and 33 is to be
typed, the FINISH switch should be depressed when the
typing is completed. If more data is entered than the
defined block can hold, the excess data is lost. If a
typing error occurs, the REPEAT button should be depressed,
the typewriter input operation is terminated and the
appropriate status bits (09 and 10) may be sensed with 'the
PAUS instruction.

Example: The below example illustrates initiating a typewriter
INPUT. The INPUT data is to be stored in address INBUFF
through INBUFF + 12.

ECHA INBUFF

TAM 23B SET R.F. LCA 23 T$ FCA
INA 13

TAM 33B SET R.F. LCA 33 T¢ LCA+1
CTI INITIATE TYPEWRITER INPUT
ucs

INBUFF BSS,C 13

20.10.5.2 Set Console Typewriter Output

23 18 17 12 11 00

Bits 00 - 11 should
77 76 be loaded with zeros

Description: This instruction, like the TYPE DUMP switch, causes the
typewriter to print out the block of data defined by the
character addresses in registers 23 and 33.

Note: The CTI and CTO instructions are mutually exclusive.
Any attempt to execute one while the other is being
executed will be ignored by the computer. Typewriter
busy should be checked before these instructions are
used and before registers 23 and 33 are altered.

20.10.5.2 (cont.)

Example:

The following example illustrates initiating a typewriter
OUTPUT. The OUTPUT will be from address QUTBUFF through
@UTBUFF+15.

ECHA @UTBUFF
TAM 23B SET R.F. L@CA 23 TP FCA
INA 16
TAM 33B SET R.F. L@CA 33 TP LCA+L
CTP INITIATE TYPEWRITER UTPUT
ucs

@UTBUFF BSS,C 16

20.10.5.3 Pause Instruction (as used with Console Typewriter Instructions)

JERTER

PERATIDA MODHURS RLORESS M—i—?}

Lmaeis

Description:

Note:

23 18 17 15 14 12 11 00

7 Bits 00 - 11 should
I £ | 6 % X bz ioaded wit}sl (z):ros

This instruction allews the program to halt for a maximum

of 40 ms if a condition (excluding typewriter-see note)

______ ypewrilillel-¢s neLe,

defined by the pause sensing mask exists. If a ™1™ appears
on a line that corresponds to a mask bit that is set, the
count in P will not advance. If the advancement of P is
delayed for more than 40 ms, a reject instruction is read
from address P + 1. If none of the lines being sensed is
active, or if they become inactive during the pause, the
program immediately skips to address P + 2. If an interrupt
occurs and is enabled during a PAUS, the pause condition is
terminated, the interrupt sequence is initiated and the
address of the PAUS instruction is stored as the interrupted
address.

If either bit 08, 09 or 10 (or any combination of these

bits) is set and the sensed condition exists, a pause will

not occur and the instruction at P + 1 is read up immediately.
If these bits are set but the condition(s) does not exist,

the program immediately skips to P + 2. For all other bits,
the normal PAUS routine is followed.

PAUSE Sensing Mask Table

Mask | Mask
Bit Code Condition Notes

00 0001 I/0 channel Busy Channel Read or Write

0
01 0002 1 operation in progress,
02 0004 2 or the external Master
03 0010 3 Clear logic within the
04 0020 4 channel is set.
05 0040 5
06 0100 6
07 0200 7
08 0400 | Typewriter BUSY Typewriter input or

output in progress

09 1000 | Typwrtr NOT FINISH | FINISH switch not depressed
10 2000 | Typwrtr NOT REPEAT | REPEAT switch not depressed
11 4000 | Search/Move control! Search or Move ocperation

1o concrt CVe

BUSY in progress

20.10.5.3 (cont.1l)

Examples:

i) This example initiates and waits until a typewriter OUTPUT

ii)

is complete.

ECHA PUTBUFF
TAM 23B SET R.F. LPCA 23 TP FCA
INA 16B
TAM 33B SET R.F. L@PCA 33 TP LCA+H
CTP INITIATE TYPEWRITER UTPUT
PAUS 400B WAIT UNTIL PUTPUT IS C@MPLETE
uJP *.1
ucs

QUTBUFF BCD,C 16, THIS IS THE END

Study the following example and determine what it will do.

*
PAUS 400B
UJpP *a1
ECHA INBUF
TAM 23B
INA 80
TAM 33B
CTI1

*
PAUS 400B
uJp *.]
ECHA CR
TAM 23B
INA 1
TAM 33B
CT9

*
FAUS 400B
uwr *.1
ECHA INBUFR
TAM 23B
INA 10
TAM 33B
CT1

*
UJP ELSE

*

INBUF BSS,C 80

CR 9CcT -0

INBUFR BSS,C 10
etc.

It looks like the program will do an input, then a carriage
return and then call for more input. If the first input is
terminated by a REPEAT or FINISH, and 1) few or no characters
were inputted or 2) if the operator is slow in getting his
finger off the switch, then the second input will be termi-
nated before he has a chance to type any further characters.

Verify this for yourself by studying the actions listed on
the next page. The key is that the CTI can be initiated
during the 50msec interval following the end of a type-out
as the PAUS 400B senses buffer busy not typewriter busy.

20.10.5.3 (cont.2)

Exercise:

Note:

Some programs use the REPEAT and FINISH switches
as self clearing sense switches. This use is
possible but is not recommended except under
controlled conditions. The reason for this will
be evident when the actions of the REPEAT and
FINISH switches and PAUS instruction are studied
below.

REPEAT or FINISH switch depressed

Typewriter NOT busy and not in the 50msec interval
following a type-out operation

Action: Set REPEAT or FINISH status bit, turn on light

Typewriter executing a type-out or in the 50msec
interval following a type-out operation

Action: None
Typewriter waiting for type-in

Action: Set REPEAT or FINISH status bit, turn on light
and terminate type-in.

End of 50msec interval at end of type-out operation and
REPEAT or FINISH switch being held down

Typewriter not busy.

Action: Set REPEAT or FINISH status bit, turn on light
Typewriter busy with new output

Action: None

Typewriter busy with type-in

Action: Set REPEAT or FINISH status bit, turn on light
and terminate type-in.

At any time when the REPEAT or FINISH light is on and
status bit set and the REPEAT or FINISH switch is being
held down.

REPEAT or FINISH being sensed by PAUS instruction

Action: Clear REPEAT or FINISH status bit and
turn off light. (Switch must be released
and depressed again to reset) RNI at P+2,
where otherwise it would be P+1.

Write a subroutine that will output a carriage return and
then tab the console typewriter. Then initiate a type-in
of 1 character and wait until that character is received
or a NOT busy, repeat or finish condition arises. Clear
repeat and/or finish if present.

STUDENT NOTES

INTERRUPTS

2i.1

21.2

INTERRUPTS USING CIC

INTERRUPTS WITHOUT USING CIC

1/0 USING CIC

INTERRUPT MASK REGISTER BIT ASSIGNMENTS

CIT ASSIGNMENTS

Chapter

21.1 INTERRUPTS USING CIC

Description:

Example:

There are twelve groups of conditions for which, when one or
more of these conditions occur, the programmer may wish to jump
to a special sequence of coding, and upon completion of that
task, resume processing in his original task. Processing in
this manner is called "interrupt processing".

The twelve groups of conditions mentioned above are listed in
the table "Interrupt Mask Register Bit Assignments™ in Section
21.4 at the end of this discussion. This register (IMR) is
set by the programmer.

In addition to the IMR, there are twelve flip-flops, each
representing one of the conditions specified by the IMR.
(Schematically, we may consider this as a 12-bit Interrupt
Register.) When one of the 12 interruptible conditions occurs,
the hardware sets the corresponding flip-flop in this Interrupt
Register. If the corresponding bit has been set by the pro-
grammer in the IMR (and the interrupt system is enabled),
interrupt processing will take place. The programmer must

have previously placed the address of his interrupt routine

in the CIT table.

Add the integers in BUF thru BUF+99. If an arithmetic over-
flow occurs, jump to a routine to process the sum using
double-precision (48-bit) integer arithmetic.

EXT CIT
SUM ¢CT 0,0
START UJP *k
ENA INTADD *ST@PRE ADDRESS
ENI 7,1 @F INTERRUPT RPUTINE AT CIT+7
SWA CIT,1 (SEE TABLE 21.5)
SSIM 2000B *SET IMR F@R @VERFL@W C@NDITI@N
EINT *ENABLE INTERRUPT SYSTEM
ENA 0
ENI 99,1
L¢P ADA BUF, 1 *ADDITI@N L@@P
1JD LggP,1
* *100 WYRD SUM IS COMPLETE, EXCEPT
SHAQ =24 *ADD 24-BIT SUM IN #A%
ADAQ suM T$ 48-BIT SUM IN *SUM*
STAQ SUM *ALL D@NE
uJp,1 START
*
INTADD UJP ok
ENA INTADD 1
SWA C1T,1 2
ENI 1,1 3
LDA CIT,1 4
SHAQ -24 5
XPA,S -0 6
ADAQ SUM 7
STAQ SUM 8
ENA 0 9
STA CIT,1 10
UJpP,1 INTADD 11

21.1 (cont.l)

Discussion of START+l thru START+5 in the Example

Initialization to recognize an interrupt

(1)

(2)
(3

the programmer must store the address of his interrupt
routine in the lower 15 bits of the proper CIT table
entry (See Section 21.5) and

the programmer must set the proper bit or bits in the
IMR (See Section 21.4) and

the programmer must enable the interrupt system.

Discussion of INTADD in the Example

Processing the interrupt

(1% and (2)* cIC replaced the lower 15 bits of CIT+7 with the

address of ABNORMAL., If we expect to get another
overflow interrupt, we must again place the address
of our routine in CIT+7., (Location CIT+7 applies
only to overflow interrupts, see Section 21.5)

Upon entry to an interrupt routine, CIT+(Bl) equals
the CIT table location where the FWA of an Interrupt
Routine must be placed to process the next interrupt
of the type currently being processed.

(3)*and (4)* CIC stored the original contents (the Toverflowed"

sum) of the A register at CIT+l and used the A
register for its own purposes. We are merely re-
loading the original A register contents at the
time of overflow so that we may process the over-
fiow.

4y, (5)*%, (6)*, (7)* & (8)* are processing the overflow condition

into a 48-bit true sum.

(9% and (10)* Since CIC will load the A register from CIT+l be-

fore returning to our original sequence, we must
place into CIT+l whatever quantity we desire to

be in the A register upon re-entry into our original
sequence.

(11)* Returns us to CIC for housekeeping (explained later)

before giving control to our original sequence.

Discussion of the Function of CIC

When an interruptible condition occurs, the Interrupt Register
is compared to the IMR. If (a) any corresponding hits are set,
and (b) the interrupt system has been enabled, then

(1)
(2)

(3)
(4)

the interrupt system is disabled,

the address of the instruction which would normally be
executed next is stored in the lower 15 bits of absolute
location 4,

an identifying code is stored in the lower 12 bits of
location 5 and,

control is given to location 5.

Here are the contents of locations 4, 5 and 6 under SCOPE.

00004 uJP **x
00005 NQP 0
00006 UJP CIC

*refers to card number in INTADD example

21,1 (cont.2)

Since the hardware gives control to location 5 (which is a no
operation instruction), we see that a jump is made to CIC (Central
Interrupt Control). CIC saves the contents of A, Q, Bl, B2 and B3
at CIT+l thru CIT+5. Since an identifying code (showing what
condition caused the interrupt) is set in the lower 12 bits of
location 00005, CIC knows which entry in CIT contains the address
of the programmers interrupt routine.

CIC does a return jump to this location, and the programmer's
interrupt routine (INTADD in this example) is executed. The

interrupt routine does a UJP or UJP,I thru it's entry point

to return to CIC when finished.

CIC restores the five registers, clears the flip-flop which was
set by the interruptible condition (arithmetic overflow in the
example), enables the interrupt system, and does an indirect

jump through location 00004, The indirect jump gives control back
to the instruction which was orginally interrupted.

21,2 INTERRUPTS WITHOUT USING CIC*

If the programmer does not wish to use CIC to help in the pro-
cessing of his interrupt, then at location 00006 he must store
a jump to the address to which he wishes control to be given.

In his interrupt routine, he must save and restore his registers
(if his routine uses them) if he wishes them to have their
original contents upon return to the main coding. He must also
clear the flip-flop in the Interrupt Register (with an INCL
instruction) which signalled the interruptible condition. His
last two instructions should be:

EINT
uJP,I 4

If the last instruction in the interrupt routine does not use
an indirect reference to location 00004, the control may never
return to the main program. This is because after an EINT he is
assured of being able to execute only one more instruction before
the interrupt system can recognize another interrupt. Hence, if
he has programmed for interrupt on more than one condition and
another is present, the computer will interrupt again and the
address portion of the jump instruction at location 00004 will
be changed before it can be executed. Since it will be changed
to 00004, the computer will stall on a jump to location 00004
after completing the processing of the current interrupt.

*Since CIC is essential for SCOPE I/0, it is assumed that nc I/0
will be done or that SCOPE isn't being used.

21,3 1I/0 USING CIC (See also Section 16,2.3)

In programming for I/0O interrupts using CIO, all the housekeeping
is done by CIO. (The programmer does not EINT, SWA CIT+k, or set
the IMR with an SSIM). CIO actually uses CIC in the same manner

that we indicated, but the programmer does not have to attend to

the details.

Example: Suppose that we wish to output 30 words from locations BUFF thru
BUFF+29 onto logical unit 15. We wish to continue executing
instructions while the output is going on. However, as soon as
the output is finished, we wish to be "interrupted" and process
a special sequence of code, then return to our original sequence.

21.3 (cont.)

Following is the code that will accomplish the task:

START

*
BFRBUSY

EXT
UJP

ENA
STA

RTJ
02

uJP,I

@CT

C1p

*%

0
BFRBUSY
cIp
15,2
REJECT
BUFF

30
INTADD

BFRBUSY

*.1

START

-0
BFRBUSY
INTADD

-0

ENTRY

SET BUFFER FLAG T¢ BUSY

Gp TP CIP TP -

WRITE WITH INTERRUPTS §N LU 15
WRITE REJECTED IF WE GET HERE
START QUTPUTTING FRPM LPCA *BUFF*
@UTPUT 30 WPRDS

WHEN INTRPT $GCURS, G@ TP INTADD

NEED *BUFF* NPW, IS WRITE D@NE
IF N@, L@@P UNTIL FINISHED

IF YES, CPNTINUE

PRGGRAM ALL D@NE, EXIT T@ SCPPE
ENTRY PPINT @F INTERRUPT RGUTINE

Interrupt Routine
Special Sequence of Code

)

SET BUFFER FLAG T N@T BUSY
EXIT T$ MAIN C@DE VIA CIC

+0 = BUSY, -0 = N@T BUSY

21.4 INTERRUPT MASK REGISTER BIT ASSIGNMENTS

ﬁask §1t Mask Codes (x) Interrupt Conditions Represented
ositions
00 0001 I/0 Channel 0 (includes interrupts
generated within the
channel and external
equipment interrupts)
01 0002 1
02 0004 2
03 0010 3
04 0020 4
05 0040 5
06 0100 6
07 0200 7
08 0400 Real-time clock
09 1000 Exponent overflow/underflow & BCD faults
10 2000 Arithmetic overflow & divide faults
11 4000 Search/Move completion

CIT ASSIGNMENTS

Symbolic
Location Content Explanation
CIT+0 Interrupt flag If +0, no interrupt occurred.
If -0, interrupt occurred.
+1 (A) Contents of these registers
+2 Q) when last interrupt occurred.
+3 (8l) Registers are restored
+4 (B2) from here on exit from
+5 (83) CcIC.
+6 Real Time Clock
+7 Arithmetic Overflow Initially contains UJP ABNPRMAL.
+8 Divide Fault Address of user interrupt routine
+9 Exponent Overflow stored in CIT by user main
+10 BCD Fault program when the corresponding
+11 Search/Move interrupt is selected.
+12 Manual Interrupt
+13 Associated Processor
Interrupt
+14 Channel 0 Initially contains UJP ABN@RMAL.
+15 Channel 1 Address is set by CIO when
+16 Channel 2 interrupt is selected. Table is
+17 Channel 3 extended for each pair of
+18 Channel 4 channels added to the hardware
+19 Channel 5 configuration¥*.
+20 Channel 6
+21 Channel 7

* The Central Interrupt Table (CIT) length varies from
15 to 21 entries and is dependent on the number of
channels present in the system., The length of the
table is specified at the time CIC is assembled under
COMPASS prior to doing a PRELIB (Prepare library tape)

of SCOPE.

SAMPLE COMPASS PROGRAMS

SEQUENCE,001 AlT
EXAMPLES AlB - A9T
EXAMPLE 20 (AVERAGE) A9B - AlO0B
EXAMPLE 19A(CR2PR) AllT - Al12T
EXAMPLE 21 (CODE) Al2B - Al3B
EXAMPLE 22 (MEQ.TEST) Al4T - AIST
EXAMPLE 23 (TY.OUT Al5B - Al6B
EXAMPLE 24 (DEMO) Al7T - A21B
EXAMPLE 25 (MTDRIVER) A22T - A24B
MAC A25T - A26B
EXAMPLE 26 (COPY) A27T - A29T
CIC VERSION SI 0.0 A29B - A31B
MTMTCIO A32T - A33B
TYPEIN A34T - A35T
SORT A35B - A36B
TYPEOUT A37T - A38T
FLOATF A38B - A39B
CRDTP A40T - A41B
MTMT A42T - A43B
CVTBCDB AG4T - A45T
CVIBBCD A45B - A46B

SEQUENCE 002 A47T
IDC A47B - A48T
- Load/Snap/Run - A48B
- Memory Map - A49T
- Snap Number 1 & 2 - A50T - A50B

SEQUENCE,003 and OCC's A51T
~ Memory Map - A51B

- Memory Dump - A52B Appendix m

@ @
® o
SEQUENCE»001 .
o il
[]
®
o
[
@
®
[J
®
o
®
o
®
@
®
®
L]
COMPASS=32 (2.1) EXAMPLES 11/21/66 PAGE

UNDEF INED SYMBOLS
SAM
SYM
SYMB0L

MULTIPLY=DEFINED SYMBOLS
GEORGE

EXTERNAL SYMBOLS

8CDBOXS

FDPBOXS
LENGTH OF SUBPROGRAM 00372
LENGTH OF COMMON 00000
LENGTH OF DATA 00000

CUMPASS=32 2.1 EXAMPLES

11/21/66 PAGE 2

THIS 1S A LISTING 0F THE CDC 3200 INSTRUCTION SET

RERRR R R R DGR RO R AR RGN EN NI RRE R R R RN BB R YRS S sa RNy

GRRERNRIERRERRNBDRAORRNS

EQ
NE
GE
LT
I

S
INTY

DEFINITION OF OPERATTION rCOE MODIFIERS =emewa=w
LA ARL]

EQUAL

NOT EQUAL

GREATER THAN OR EQUA_ T0
LESS THAN

INDIRECT ADDRESSING

SIGN EXTENSION

INTERRUPT

RACKWARD

HALF ASSEMBLY OR DISaSSEwmBLY
NO ASSEMBLY OR DISASSEMBLY

EXTYT TR YT Y

DEFINITION OF TERMS AND SYMBOLS «~===
HeuNdng

A THE z4# REGISTER

[+] THE #0# REGISTER

AQ 48 BIT REG 9 (A AND @ COMBINED RESPECTIVELY)

waA 4R RAIT REG » (Q AND A COMBINED RESPECTIVELY)

€ THE 48 BIT #E# REGISTER

EL LOWER 24 BITS OF #E+#

EV UPPER 24 BITS OF zE#

EQ THE 52 BIT (13 CHAR) #E nNECIMAL# REGISTER, SAME aS
#E# BUT EXTENDED FROu 48 TO 52 BITS.

AQE 96 BIT REG » (A+Q AND E COMBINED RESPECTIVELY)

B ANY ONE OF THE THREE INDEX REGISTERS

Bl INDEX REGISTER ONE ONLY

B2 INDEX REGISTER Tw0Q ONLY

83 INDEX REGISTER THREE ONLY

0 4 BIT #D2 REGISTER

MR INTERRUPT MASK REGISTER

" 15 BIT WORD ADDRESS

R 17 BIT CHARACTER ADDRESS

FSca FIRST SOURCE CHARACTER ADDRESS

FOeA FIRST DESTINATION CHARACTER ADDRESS

v 6 BIT REGISTER FILE aDURFSS

Y 15 BIT OPERAND

c 4 BIT SEARCH CHARACTFR

FL 4 BIT OPERAND (BCD fIELD LENGTH)

P CURRENT INSTRUCTION aDURESS aS INPICaTEU 8Y THE P REG

t) CONTENTS OF

(M) 24 BIT CONTENTS OF MEMORY LOCATION M

(MgMel) 48 RIT CONTENTS OF MFM LNCS M AND Mey RESPECTIVELY

r) 6 BIT CONTENT OF MEMNRY CHARACTER LORATION R

vy 24 HIT CONTENTS UF RFG FILE LOCATION V

CUMPASS=32 (2.1 EXAMPLES 11/21/766 PAGE 3
RNY READ NEXT INSTRUCTION

#HERE DATA IS BEING STORFD INTO PaRT OF A MEMORY
LOCATION y THE REMAINDER OF THAT L DCATION REMAINS
UNCHANGED

ALL POSSIBLE OPERATINN MADIFIERS ARE SHOWN WITH EACH
MNEMONIC CODE s SEPARATEN BY ().

THERE 1S NO CUADER ¢ WHERZ MULTIPLF MNDFIERS ARE
PNSSI8LE, '

THE FOLLOWING MODIFIFRS aRE OPTIONAL ANU CAN HE
NDROPPED BY ELEMINATING BOTH THE MNDIFIER AND THE
PRECEDING COMMA,

I o S 9 INV ¢ B o H o N,

ON ALL CONDITIONAL JyMP aND SKIP INSTRUCTIONS
IF THE CONDITION IS nOT MET THEN RNI Pel

1
® & &6 & 6 & & & & & 06 0 0o & & 0 o O & 00 O O o 0 o o 0O 0o 0 o O 0 0 O 0 O 0 0o 0o o 0

A-2

o [J
@® coMPass~32 (2e1) EXAMPLES 11/51/66 PAGE . [
3200 INSTRUCTION SET
[J * HraeIRBRERTBEEES o
® LOAD CLASS L4
00000 20725252 20 1 25252 3 Loasl "8 M) TO A °
® 00001 21725252 21 | 25252 3 LOQs i MeB M) 10 Q
00002 22425253 22 1 05252 3 LACH Ry81 (R) TO A 05=00 o A 23=06 CLEARED
00003 23425253 23 1 05252 3 LacH HeB2 (R) TO @ 05=00 , Q 23-06 CLEARED °
o 00004 24725252 24 1 25252 3 LCarl e (M) COMPLEMENT Tn &
00005 25725252 25 1 25252 3 LDAWT “yB (MeMe1) TO AQ
00006 26725252 26 1 25252 3 LCAUsI My (Myms1) COMPLEMENT TO AQ
o 00007 27725252 27 1 25252 3 oLl MyB (MILM(Q) TO &4 » M AND @ UNCHANGE ®
00010 54725252 54 1 25252 3 LBIs1 MyB (M 14=00) TO B
® STORE CLASS [
00011 40725252 40 1 25252 3 STasl MeB (a) T0 M °
L 00012 41725252 41 1 25252 3 STasl “y8 (@) TO M
00013 42625253 42 1 05252 3 SACH ReB2 (& 05-00) To R
00014 43425253 43 1 05252 3 sucH RyB1 (9 05-00) TO R °
[] 00015 44725252 44 1 25252 3 Swasl M,8 (A 14=00) TO M 16=00
00016 45725252 45 1 25252 3 STaus1 8 (AQ) TO MoeMey
00017 46725252 46 1 25252 3 SCHAs I Me8 (A 16+00) TO M 16=00 Py
[] 00020 47725252 47 1 25252 3 ST1sl 8 (8) TO M 14=00
24 BIT ARITH CLASS
[[]
00021 30725252 30 1 25252 3 ADASI MeB (A)o(M) TO A
00022 31725252 31 1 25252 3 s8as1 8 (A)a(M) TO & °
[J 00023 50725252 50 1 25252 3 MuAeT “yB (A)#(M) TO 04
00024 51725252 51 1 25252 3 Ovasl MeB (AQ)} /(M) TO a +» REMAINDER 7O Q
® 00025 34725252 34 1 25252 3 RAN I “eB (A)o(M) TO M » & IS UNCHANGED [
48 BIT ARITH CLASS
® L]
00026 32725252 32 1 25252 3 AVAQ I M8 (AQ) ¢ (MgM+1) TO AQ
00027 33725252 33 1 25252 3 SBausl MyR (AQ) =(M4M+]1) TO AQ
L 00030 56725252 56 1 25252 3 MUAMST M8 (AQ)s (M,Me1) TO AQE ®
00031 S7725252 ST 1 25252 3 Dvauel M,8 (AQE)/{MyMs1) Tn AQ, REMUR TO E
L FLOATING POINT ARITH CLASS []
00032 60725252 60 1 25252 3 FADsI “,8 FP(AQ) ¢ FP(M,Me1) TO aQ
] 00033 61725252 61 I 25252 3 FSR “ed FP{AQ) = FPIM,Mel) TO 4G ®
00034 62725252 62 1 25252 3 FMUs I MeB FP(AQ) # FP(M,M+l) TO a0
® 00035 63725252 63 | 25252 3 FOVeI 8 FP{AQ) / FP(M,Mel) TO aQ Py
® ®
@ [
L] o
@ coMPasSs=32 (2.1 EXAMPLES 11/21/66 PAGE 5 o
BCD CLASS
® o
00036 64425253 64 1 05252 3 LDE FCA,81 (FCA THRU FCA+(D}=1) TO EN RIGHT JUSTIFIED
00037 65425253 65 1 05252 3 STE FCA4B2 (ED) TO FCA THRU FCA#(D)=1 » RIGHT JUSTIFIED
® 00040 66425253 66 1 05252 3 apE FCA,B3 (ED)+(FCA THRy FCae(D)=1) TO FD []
00041 67425253 67 1 05252 3 SBE FCAyR3 (ED)=(FCA THRO FCa¢(D)=1) TO FD
° 000642 70300014 70 0 00014 3 SFE Ks8 SHIFT ED » K NIGITS LEFT OR RIGHT (END OFF) °
00043 70700012 70O 1 00012 3 SET FL FL TO D
o 00044 70625252 70 1 25252 2 €0y v RNI M IF ED OVERFLOW CHARACTER IS NONZERO ®
00045 70425252 T0 1 25252 0 EZJeEQ M RNI M IF ED CANTAINS ZERO
° 00046 70525252 70 1 25252 1 EZJsLT ™ ANI M IF ED IS NEGATIVE °
24 BIT INTER-REGISTER TRANSFER CLASS
® 00047 53300000 53 0 00000 3 T1a 3 (8) TO A 14=00 . A 23=15 CLEARED o
00050 53700000 S3 1 00000 3 TAL B (A 14=00) TO 8
00051 53010077 53 0 10077 0 T™Q v (V) 10 @
L 00052 53410077 53 1 10077 0 Tam v @) 10 v [
00053 53020077 53 0 20077 0 T™a v V) TO A
00054 53420077 53 1 20077 0 TAm v () TO v
e 00055 53330077 53 0 30077 3 T™] VB (V 14=00) T0 B]
00056 53730077 53 1 30077 3 TIv VR (8) TO v 14=00 . V 23~15 CLEARED
o 00057 53040000 53 0 40000 0 aua (a)e(@) TO & [
00060 53340000 53 0 40000 3 ala A (A)e(B) TO &
00061 53740000 53 1 40000 3 1a1 1 (A)4(R) TO B
L ®
48 RIT INTER=-REGISTER TRANSFER
o 00062 55100000 S5 0 00000 1 ELQ (EL) TO @ L
00063 55500000 55 1 00000 1 QEL, (@) 10 EL
00064 55200000 55 0 00000 2 3 (EUy TO &
® 00065 55600000 55 1 00000 2 AEY (a) T0 EU ®
00066 55300000 55 0 00000 3 EAQ (E) TO a0
00067 55700000 55 1 00000 3 AQF (AQ) TO E
e ()
®]
L4)
L])
L ®
o [

e
COMPASS=32 t2.1) EXAMPLES 11721766 PAGE 6 [
STOP AND JUMP CLASS °
00070 14000000 14 0 00000 © NOP DO NOTHING
00071 00025252 00 0 25252 0 HLT L] STOPy RANI M []
00072 T7770000 77 1 70000 3 ucs STOP, ANI Ps)
00073 01725252 01 1 25252 3 uJdps [“yB RNI M []
00074 00725252 00 1 25252 3 RTy " (P) TO M 1400 4 RNI Me] PS
00075 00125252 00 0 25252 1 SJ1 L] RNI M IF KEY 1 1S SET
00076 00225252 00 0 25252 2 SJ2 ™ RNI M IF KEY 2 1S SET
00077 00325252 00 0 25252 3 SJ3 ™ RNI M IF KEY 3 1S SET o
00100 00425252 00 1 25252 © SJé] RNI M IF KEY & 1S SET
00101 00525252 00 1 25252 1 SJs L} RNI M IF KEY 5 1S SET
00102 00625252 00 1| 25252 2 SJe - RNI M IF KEY & 1S SET]
00103 03025252 03 0 25252 0 AZJrEQ M RNI M IF (A) EQ + OR = ZERO
00104 03125252 03 0 25252 1 AZJsNE “ RNI M IF (A) NE « OR » ZERO [
00105 03225252 03 0 25252 2 AZJyGE M RNI M IF (A) POSITIVE
00106 03325252 63 0 25252 3 AZgoLT " RANI M IF (A) NEGATIVE PY
00107 03425252 03 1 25252 0 AQJsEQ M RN1 M IF (A) EQ (@)
00110 03525252 03 1 25252 1 AQJINE ™ RNI M IF (A) NE (@)
00111 03625252 03 1 25252 2 AQJrGE] RNI M IF (A) GE (@) []
00112 03725252 03 1 25252 3 AQJILT] RNI M IF (A) LT (@
00113 02325252 02 0 25252 3 1J1 M8 IF (B} NE 0 (R)+1 TO B AND RNI M. OW RNI Pel ®
0011s 02725252 02 1 25252 3 1Jn M8 IF (8) NE 0 (R)=l TO B AND RNY M, OW RNI Psl
SKIP CLASS [J
WITHOUT SIGN EXTENSION , ONLY THE LOWER 15 RITS OF A OR Q@ Qo
ARE COMPARED WITH Y,
WITH SIGN EXTENSION » BIT 14 OF Y IS EXTENDED THRU BIT 23
MAKING ¥ 24 BITS FOR COMPARISON WITH ALL OF A OR Q. [)
00115 04412345 04 1 12345 0 ASEsS Y RNI Pe2 IF ta) EQ Y » OW RNJ Pel]
00116 04512345 04 1 12345] QSEsS Y RNI P+2 IF (0) EQ Y o OW RANI Psl
00117 04312345 04 0 12345 3 1Se YeB ANI Pe2 IF (8) FQ Y + Ow RNI Pe]
00120 04012345 04 0 12345 0 ISk ¥ ANI Ps2 IF Y EQ 0 » OM RNI P+l e
00121 05412345 05 1 12345 0 ASGeS Y RNI P»2 IF (a) GE Y » OW RNI Pe}
00122 05512345 05 1| 12345 1 0SGsS Y o RNI P42 IF (Q) GE Y + Ow RNI Ps) ®
00123 05312345 05 0 12345 3 156 Y8 RANI P+2 IF ta) GE Y 1+ OW RNI Pe)
00124 10712345 10 1 12345 3 1sn YeB IF (B) EQ Y CLEAR B AND RN] Pe2. OTHERWISE []
00125 10312345 10 0 12345 3 181 Y8 IF (B) EQ@ Y CLEAR B AND RNT P+2, OTHERWISE
(8)+1 TO B AND RN Pe)
(B)=1 TO 8 AND RNY Ps} ®
®
e
COMPASS-32 (2e1) EXAMPLES 11721766 PAGE 7 o
SHIFT CLASS
o
POSITIVE SHIFT COUNT (K) INDICATES LEFT SHIFT. ALL LEFT
SHIFTS ARE END AROUND.
NEGATIVE SHIFT COUNT (K) INDICATES RIGHT SHIFT. ALL RIGHT ®
SHIFTS ARE END OFF WITH SIGN EXTENDED.
®
00126 12300014 12 0 00014 3 SHa KB SHIFT (A) LEFT nR RIGHT K BITS
00127 12700014 12 1 00014 3 SHo K48 SHIFT (Q) LEFT oR RIGHT K BITS
00130 13300014 13 0 00014 3 SHaGQ K4B SHIFT (AQ) LEFT OR RIGHT K BITS ®
00131 13700014 13 1 00014 3 SCa@ KyB SCALE (aQ) Py
ENTER CLASS
WITHOUT SIGN EXTENSION , THE UPPER BITS OF a 0f @ ARE CLEARED, o
WITH SIGN EXTENSION » BIT 14 OF Y (BIT 16 OF R) IS EXTENDED
MAKING Y OR R 24 BITS FOR ENTRY INTO ALL OF & NR Q, °
00132 14412345 14 1 12345 0 ENa»S ¥ Y T0 A 1400
00133 14512345 14 1 12345 | ENGsS Y Y 7o Q 1e=00 []
00134 14312345 14 0 12345 3 ENT Y8 Y Toe
[]
INCREASE CLASS
wiTH OR WITHOUT SIGN EXTENSION s Y WILL BE TREATED AS A 24 8IT L
VALUE WHEN ADDED TO A OR Q.
WITHOUT SIGN EXTENSION , BITS 23=15 OF Y WILL RE ZERO,
WITH SIGN EXTENSION , BIT 14 OF Y IS EXTENDED THRU 8IT 23 [J
MAKING Y A 24 BIT VALUE,
IF Y 1S A NEGATIVE VALUE o THE REGISTER WILL 8F DECREASED BY []
TriaT AMOUNT, (MUST USE SIGN EXT TN THIS CASE FOR A AND O)
[
00135 15412345 15 1 12345 0 INAYS Y INCREASE (A) BY Y
00136 15512345 15 1 12345 1 INQsS Y INCREASE (@) BY Y
00137 15312345 15 0 12345 3 INT Ye8 INCREASE (B) BY Y L
[]
L
®
[]

o COMPASS~=32 (2e1) EXAMPLES 11/21/66 PAGE [
P LOGICAL INSTRUCTIONS WITHOUT STORAGE REFERENCE
WITH OR WITHOUT SIGN EXTENSION o Y IS TREATED 45 A 2a BIT
VALUE.
o WITHOUT SIGN EXTENSION , BITS »3=15 OF Y ARF ZFROS.
Wit SIGN FXTENSION o BIT 14 OF Y 1S EXTENDED THRU BIT 23
. MAKING Y A 24 RIT VALUE FOR THF OPFRATION,
00140 16412345 16 1 12345 0 X0asS Y SC (A) BY Y
[J 00141 16512345 16 1 12345 1 X0Q1$ Y SC (@) BY Y
00142 16312345 16 0 12345 3 x01 YeB SC (8) RY Y
[] 00143 17412345 17 1 12345 0 ANASS Y LM (A) BY Y
00146 17512345 17 1 12345 1 ANQYS Y LM (Q) BY Y
PY 00145 17312345 17 0 12345 3 ANT YsB LM ¢8) BY Y
LOGICAL INSTRUCTIONS WITH STORAGE REFERENCE
o 00146 35725252 35 1 25252 3 SSael MeB SS (&) BY (M)
00147 36725252 36 1 25252 3 SCasl MeB SC (A) BY (M)
PY 00150 37725252 37 1 25252 3 LPasl 498 LM (A) BY (My
BUFFERED SEARCH ANp MOVE CLASS
® 00151 71425261 71 1 05254 1 SRCEsINT CsFCAsLCAS] SEARCH (FCA THRU LCA) FOR E@ C
00152 23025253 23 0 05252 3
00153 01000151 01 0 P0Q151 © uJp #a2 REJECT INSTRUCTIAN
[] 00154 71425261 T1 1 05254 1 SRCNs INT CyFCA4LCAs]) SEARCH (FCA THRU LCA) FOR NE C
00155 23425253 23 1 05252 3
00156 01000154 01 0 P0Ol54 0 uJp *e2 REJECT INSTRUCTINN
® 00157 72425653 72 1 05352 3 MOVESINT FLsFSCA+FDCA MOVE (FSCA THRU FSCA¢FLel) TO
00160 05025253 05 0 05252 3
FUCA THRU FDCA+FL~l
[] 00161 01000157 61 0 POO157 0 ude #=2 REJECT INSTRUCTION
° STNRAGE TEST CLASS
00162 06225252 06 0 25252 2 MEQ My INTERVAL MASKED EQUALITY SEARCH
00163 07225252 07 0 25252 2 MTH My INTERVAL MASKED THRESHOLD SEARCH
[J 00164 10025252 10 ¢ 25252 0 SSH Ll STORAGE TEST ANn SHIFT
00165 52725252 52 1 25252 3 cPRsl MyB COMPARE (M) wIT4 (A) AND (@)
[J
o
L
®
o
(J
®
[) COMPASS=32 (2e1) EXAMPLES 11/21/66 PAGE 9
P INPUT / OUTPUT
00166 77067007 77 0 67007 0 con CCrCH CONNECT TO 1,0 FQUIPMENT
00167 01000166 01 0 PQOL66 O uJe #e] REJECT INSTRUCTION
] 00170 77160022 77 0 60022 1 SEL FCyCH SELECT FUNCTTON ON [/0 EQUIPMENT
00171 01000170 61 0 POOL7C O uJp L25% REJECT INSTRUGTION
o 00172 73025261 73 0 05254 1 INPCoINTeByH CHiIFCAsLCA®] CHAR ADRS INPUT TO STORAGE
00173 63425253 63 1 05252 3
® 00174 01000172 01 0 POO172 0 uJde 2 REJECT INSTRUCTION
00175 73400000 73 1 00000 © INACs INT cH CHAR ADRS INPUT TO A
® 00176 60400000 60 1 00000 0
00177 01000175 01 0 POO17S O uJp -2 REJECT INSTRUCTINN
o
00200 74025322 74 0 25322 © INPWINT9BAN CHrFWAsLWASL WORD ADRS INPUT TO STORAGE
00201 63425252 63 1 25252 0
[00202 01000200 01 0 PQ0200 © uJde 2 REJECT INSTRUCTION
[] 00203 74400000 74 1 00000 © INAW INT cH WORN ADRS INPUT TO A
00204 60400000 60 1 00000 0
Py 00205 01000203 01 0 P00203 0 uJdp -2 REJECT INSTRUCTIAN
00206 75025261 75 0 05254 1 OUTCoINTsByH CHsFCAsLCA+] CHAR ADRS OUTPUT FROM STORAGE
® 00207 63425253 63 1 05252 3
00210 01000206 01 0 P00206 0 uJdp a2 REJECT INSTRUCTION
»
®
00211 75400000 75 1 00000 0 OTAC INT cH CHAR ADRS OUTPUT FROM A
00212 60400000 60 1 00000 O
o 00213 01000211 01 0 P0O211 O uJdp =2 REJECT INSTRUCTION
[J 00214 76025322 76 0 25322 ¢ OQUTWsINTsBsN CHsFWAsLWASL WORD ADRS OUTPUT FROM STORAGE
00215 63425252 63 1 25252 0
° 00216 01000214 01 0 PDO214 O uJe 2.2 REJECT INSTRUCTION
° 00217 76400000 T6 1 00000 0 OTAMSINT cH WORD ADRS OUTPUT FROM A
00220 60400000 60 1 00000 0
00221 01000217 01 0 PO021T O uJde o2 REVECT INSTRUCTIAN
o
00222 77750000 77 1 50000 3 cT1 CONSOLE TYPEWRITER INPUT
PY 00223 77760000 TT 1 60000 3 cTo CONSOLE TYPEWRITER OUTPUT
L

® & & & & 0 o & 0 & 0 & 0 O & 0 0 0 90 O & O 0 D P O O 9 OO0 6 6 0 0 0 0 O

COMPASS=32 (241} EXAMPLES

11/21/66 PAGE 10
SENSING AND COPY CLASS

00224 77260000 77 0 60000 2 copy CH COPY EXTERNAL STaTUS AND IMR TO a
00225 77360000 77 0 60000 3 CINS CH CAPY INTERNAL STATUS AND IMR TO &
00226 77267777 17T 0 6TTIT 2 Exs XeCH SENSE EXTERNAL STATUS
00227 77367777 71 0 67777 3 INS XeCH SENSE INTERNAL STATUS
00230 T746TT77 T7 1 67777 0 INTS X»CH SENSE INTERRyUPT
00231 77607T?T TT 1 07777 2 PAUS X PAUSE
CONTROL CLASS
00232 77507777 YT 1 07177 1 INCL X INTERRUPT CLEAR
00233 77517177 7T 1 17177 | I0cL X INPUT/0UTPUT CLFAR
00234 77710000 77 1 10000 3 SFpF SET FLOATING POINT FAULT
. 00235 77720000 T 1 20000 3 $8¢D SET BCD FAULT
INTERRUPT CLASS
00236 77S27TTY TT 1 27717 1 55]" X SELECTIVELY SET TMR
00237 77S37TTT YT 1 3TITT 1 SCIM X SELECTIVELY CLEAR IMR
00240 77730000 77 1 30000 3 DINT DISABLE INTERRUPT SYSTEM
00241 77740000 77 1 40000 3 EINT ENABLE INTERRUPT SYSTEM
00242 11425253 11 1 05252 3 ECHA,S L] R To A 16«00
00243 77570000 77 1 70000 1 IApR INTERRUPT ASSOCTATED PROCESSOR
ememcscccncneccnncss TABLE OF MASK BIT ASSIGNMENTS sececmccecccaccamca.
BIT CODE sSIM
sCIm INCL INTS 10cL PAUS NS
00 0001 cH o cH 0 LINE © cH 0 CH o 8USY PARITY ERR ON CH X
0l 0002 cH 1 CH 1 LINE 1 CH 1 CH 1 BUSY CH x BUSY READING
02 0004 cH 2 CH 2 LINE 2 CH 2 CH 2 BUsY cH X BUSY WRITING
03 0010 cH 3 CH 3 LINE 3 CH 3 CH 3 BUSY EXT REJECT ON CH X
04 0020 CH 4 CH & LINE ¢ CH & Cr 4 BUSY NO RESP REJ ON CH X
05 0040 cH S CH S LINE § CH 5 CH 5 AUSY « ILLEGAL WRITE
06 0100 cH 6 CH 6 LINE 6 CH 6 CH & BUSY CH x PRESET CON/SEL
07 0200 cH 7 cH LINE 7 CH 7 CH 7 BUSY INTERNAL INT ON CH X
08 0400 REAL TIME CLOCK INT TY TY ausy #EXP OVFLW FAULT
09 1000 «EXP OVFLW/BCO FAULT e==+= NOT FINISH #ARITH OVFLW FAULT
10 2000 #ARITH OVFLW/OIV FAULT ==~= NOT REPEAT #DIVIDE FAULT
11 4000 SEARCH/MOVE COMPLETE S/M S/M BUSY #ACH FAULT
INTERNAL FAULTS CLEARED BY SENSING
COMPASS=32 (241) EXAMPLES 11/21/66 PAGE 11
ean neny
se==w=ee COMPASS CODING TECHNIQUES «eeevee=
ASSEMBLY OF CONSTANTS
00244 00000002 ocT 1525=2558;:=77
00245 00000002
00246 TITT777S
00247 00000050
00250 TT777700
00251 00000001 OEC 1429509+50+99,987654
00252 00000002
00253 00000062
00254 TTT7771S
00255 00000143
00256 03611006
00257 00000000 DEcD 1919989=1,198499,.8
00260 00000001
00261 7777777
00262 T7777778
00263 00000000
00264 00000142
00265 57763777
00266 TTTTITNY
00267 20076100
00270 00000000
00271 20044714
00272 63146318
00273 44256262 8Co 29MESSAGE
00274 21272560
00275 442562 8CnsC 3,MES
002753 62 8CnsC SeSAGE
00276 21272560 _
00277 17304643 HOLMSG VFp 06/7TeH18/HOL09/09A1S/HOLMSG+C24/HOL MSG
00300 00000277
00301 00001374
STORAGE RESERVATION
00302 TOM 8ss 3
00305 TOMC 8Ss§+C 3
003053 TomMcl 85§:C 1
00306 20000302 20 0 P00302 O LDa TOoM
00307 22001424 22 0 P00305 0 LAcH TOMC
00310 22001427 22 0 P00305 3 LACH TOMC1

COMPASS=32 (2e1) EXAMPLES 11/21/66 PAGE 1?
ADNRESSING MODES
ABSOLUTE
00311 20000012 20 0 00012 0 Lla 10
00312 20000010 20 0 00010 O SYMRI LDA 108
00313 20077740 20 0 77740 0 SYMB2 Loa -378
00314 20000001 20 0 00001 O Lha SYMAZ2=SYMB]
00315 20000025 20 ¢ 000625 0 Loa ADRS :
00025 ADRS Edy 258
RELOCATASLF
00316 20000317 20 0 POO3l7 O Loa TEMP
00317 20000321 20 0 P0G32)] 0 TEMP L0a TEMP42
00320 20000317 20 0 P0O317 O L0a TEMP)
00317 TEMPL EQu TEMP
LITERALS
00321 20000361 20 C P00361 O Loa =09
00322 25000362 25 0 PQU362 0 LoaQ =209
00323 25000364 25 0 P0O0364 0 Loaw 2209,
00324 20000360 20 0 P00360 O LDa =0T7T177777
00325 25000366 25 0 P00366 0 LDaQ ®207373737373737373
00326 20000357 20 0 P00357 0 LDaA =HABCD
00327 25000370 25 0 P00370 0 L0aQ =2HARCDEFGH
SPECIAL CHaRACTERS
00330 20000330 20 0 P00330 0 Loa L4
00331 20000332 20 0 P00332 0 L0a LIS
00332 20000330 20 0 PQQ330 0 Lba *=2
00333 20077777 20 0 TT17T O LDa e
INTERCHANGE UF WORD AND CHaRACTER ADURESSES
00334 WORDADRS EQu *
00334 CrHARADR] EQUsC -
003343 CHARADR2 EGUsC *e3
00334 20000334 20 0 POU334 U woa CHARADR]
T 00335 20000334 20 0 P00334 0 Lba CHARADRZ TRUNCATION ERROR
00336 22001560 22 0 P00334 0 LACH AORDADRS
CUMPASS~32 (241 EXAMPLES 11/21/66 PAGE 13
SYMBOL EQUaTIONS
25252 ADURESS Euy 252528
25252 ™ Ewy 4DDRESS
052523 R EwusC Mol
00003 B EQy 3
00001 8l Edyy 1
00002 B2 EQiy ?
00003 83 Euwiy 3
052523 FCa EQuisC R
05254 Lca EQusC R+S
00014 K EQy 12
00077 v Euy 778
12345 Y Euy 123453
0513523 FuCa €QusC FCA+756
052523 FSCa EuysC FCa
00ol2 FL EQy 128
00006 Ch Euy [
25252 Fua Ewy “
25321 Lwé Ewy M+39
07777 X Euy 77718
vTaot cc Ewy 70078
00022 FC €Qy 228
00002 INTERVAL EQy 2
00023 [Euy 238

i

CUMPASS~32 (2.1 EXAMPLES 11721766 PAGE 14
COMPASS ASSEMBLY ERRORS
A 00337 20000000 20 0 00000 O Lua P88 ADURFSS FORMAT ERROR
COMMON
C 00340 20000005 20 0 00005 0 Loa 5 ATTFMPT TO ASSEMBLE INFO IN
00341 00000007 ocr 7 THE COMMON AREA
PHG
0A 00342 20000343 20 0 P00343 0 Lua GEORRE MULTIPLY DEFTNEN SYMBOL
00343 00000001 GRURGE OCT 1
D 00344 00000012 GEORGE DEC 10
L 00345 20000005 20 ¢ 00005 0 123 Lua) LOCATION FIE{D ERRUR
M 00346 00000005 00 0 00005 O Luasl 5 OPERATION MONIFIER ERROR
0 00347 00000000 00 0 00000 O tin 5 OPERATION CONE FRROR
U 00350 20000000 20 0 0UV000 © toa SAM UNDEF INED SYMBOL
T 00351 20000352 20 0 P00352 0 Loa CHAR THUNCATION ERROR
003523 ChAR EwnysC *e3
E2) aRaH * HORDURBP B RRG LRGSR R ROD &
LITERAL IN A CHARACTER ADDHESS INSTRUCTION
00352 22001670 22 0 P00356 0 LacH =012
ET X anay 2 aReEs * -
E 2 2] * teonn L2242 2 2] » L #
HLANK CHARACTEHS IN SYMROLS
L 00353 20000353 20 0 P0U353 0 SYM BOL LUa @
U 00354 01000000 01 0 00000 ¢ N3 SYM 300
U 00355 01000000 01 0 00000 0 uJp SYMBOL
BRDUED NI RO R R DR RO REURG REQBHpER &*
B AR R R R R RO R R RGN R IR R R BB RN RN ED N RO R R R QR RO G R REEY
END
LITERALS
00356 00000012 00357 21222324 00360 77T
00361 00000011
00362 0000000000000011 00364 2004440000000000
00368 7373737373737373 n0370 21222326252+2730
NUMRER OF LINES wITH DIAGNOSTICS 13
CUMPASS«32 2.1) EXAMPLES 11721766 PAGE 1
ADDRESS 25252 P25252
AURS 00025 00315
8 00003 POo0n0N Panonl POONNG P0O0ODS
Pooons PaoLNT PGOOYO PO0011
P00012 Pgo015 POON16 P00017
PO0020 Pa0021 200022 00023
Poon2e 00025 P00N26 00027
P00030 P0003] P0ON32 P000633
P00034 A P00035 P00042 P00047
P0O0050 P0005S P00N56 P00060
Pyoo6l PO00T3 P00113 POO114
00117 P00123 POO124 Po012S
00126 PO0O127 £00130 P00131
PO0134 P00137 P00142 POO145
Po0146 PO0l67 P0O0150 P001AS
81 00001 200002 PO0O14 P00036
82 00002 P0p0N3 PO0O13 P00037
B3 00003 PO0040 P0004]
[00023 P0O151 POO154
cC 07007 P0O166
ch 00006 Ppo166 P00170 00172 POU1TS
P00200 P00203 PO0206 P00211
P00214 P00217 P00224 P00225
P00226 Pp0227 P00230
CHAR PO0352 3 P00351
CHARADK1 P00334 0 P00334
CHARADR2 P00334 3 060335
FC 00022 Poo170
FCa 05252 3 P00036 P00037 POONGU PO0041
P00151 P001Se P0O0172 P00206
P05352 P05252
FLCA 05352 3 Poo157
FL 00012 P00042 POO1S7
FSCaA 05252 3 Puo1s57
FwA 25252 r00200 Pn0214
GEURGE P00343 MULTIPLE=-UEFINED Po0342
HOLMSG P00277 Poo277 00277
INTERvVAL 00002 P00167 P00163
K 00014 00042 PO0126 pau127 P00130
P00131
LCA 05254 0 Pon1S1 PpO1Se POUTe r00206
Lwa 2532) ruo2n0 PNoC14
M 25252 Puoo0o Ppoonl POCGNO4 PO000S
PHOO0S 00007 »00N10 POOOTY
00012 00035 poonle ©00017
POOD20 PDOU2] PO0022 Yool
Yoan?e PN00PS POON2S Bou027
00030 P00V 3] POONIL POU033
[T PONU3S PO0NGO PO00GS
Pyonaes PNOOTL PO0NT3 vouo e
PO00 7S POOUTE POONT7? »u0lny
Pug1nl PoOLINe POOYINA BOUY e

FO010G Lanlng POOINT CCLTRR]

COMPASS=32 (2.1) EXAMPLES 11/21/66 PAGE

P00111 Po0112 P00113 P0O0114
POO146 P00147 P00150 P00162
P00163 PO0l66 P00165 P05252
P25252 P25321

R 05252 3 P00002 P00003 P00n13 00014
P00242 PoS252 P05254

SAM 00000 UNDEF INED P00350

SYM 00000 UNDEF INED P00354

SYMB] PoO312 00314

SYMB2 P00313 P00314

SYMBOL 00000 UNDEF INED P003SS

TEMP PQ0317 P00316 P0O317 P00317

TEMPL P00317 P00320

TOM P00302 P00306

TOMC P00305 P00307

TOMC1 P00305 3 00310

v 00077 P000S) P00052 P000S3 P000S4
P0005S P000S6

WORDADRS P00334 P00336

X 07777 P00226 P00227 PQ0230 P00231
P00232 P00233 P00236 00237

Y 12345 PQ0115 POOL16 P00117 P00120
P00121 Po0Ll22 P00123 P00124
P00125 POO132 P00133 P00134
PO0135 PO0136 P00137 P00140
P00141 Po0ls2 P00143 PO0144
P00145

LITERAL P00366 7373737373737373 P00325

LITERAL P00360 77777177 P00324

LITERAL P00362 0000000000000011 P00322

LITERAL P00361 00000011 P0032]

LITERAL P00356 00000012 P00352

LITERAL P00364 2004440000000000 P00323

LITERAL P00370 2122232425262730 P00327

LITERAL P00G357 21222324 Po0326

SYMBOLS NOT REFERENCED
8CoR0OXs ExT FOPBOXS EXT
CUMPASS=32 t2.1) EXAMPLE 20 (AVERAGE) 11/21766 PAGE
ENTRY=POINT SYMBOLS
START 00000

LENGTH OF SUBPROGRAM
LENGTH OF COMMON

LENGTH OF DA

TA

00016
00000
00000

COMPASS=32

00000
00001
00002
00003
00004
00005
00006
00007
Qo¢10
00011
00012
00013
00014
00015

CUMPASS~32

AVG

NUMB |
NUMB2
NUMB3
STARY
THHEE

(2.1}
alorr?7r 01 0 77777
20006011 20 0 P00011
30000012 30 0 PO0012
30000013 30 0 POOO13
13077747 13 0 77747
51000014 51 0 P00014
40000015 40 0 P0O0O1S
TTT70000 77 1 70000
01000000 01 0 POOOOO
00000100
00000011
00000020
00000003
(212
P00015
Po0011]
Pgo012
P00013
P00000
P00014

EXAMPLE 20

(AVER

AGE)

11/21/66 PAGE

TH1S PHROGRAM WILL COMPUTE THE AVERAGE nf TwWREE. POSITIVE NUMBERS

START

cwoooood o

NUMAl
NUMR2
NUMB3
THREE
AVG

ENT
uJp
LDa
aDa
apa
SHa
ova
S$Ta
ucs
ude
ocr
DE¢
ocT
OEc
BSs
END

NUMBER OF LINES WITH DIAGNOSTICS

RY

W

EXAMPLE 20 (AVERAGE)

P00006
Podo0}
Po0o02
Poo0003
P00010
r00o0s

START
*e
NUMB1
NUMB2
NUMB?3
-24
THREE
AVG

START
100

2

20

a

1 .
START

EXIT TO MONITOR PROGRAM

LOAD FIRST NUMBER INTO A

ADD SECOND NUMHFR

ADD THIRD NUwHER

CONVERT TO A 4R BIT VALUE
OIVIDE RY THREE

STORE RESULT

STop

GO TO EXIT On RESTART
CONSTANT (100 OCTAL)

CONSTANT (9 DECTMAL, 11 0OCTAL)
CONSTANT (20 OCTaL)

CONSTANT
RESFRVED LOCATION FOR RESULT

W

11721/66 PAGE

1

A-10

NUMBER OF LINES wITH OIAGNOSTICS

@ CuMPASS-32 (2e1) EXAMPLE 194 (CRZPR) 11/21/66 PAGE 1
o
0. ENTRY=POINT SYMBOLS
START 00000
[
®
LENGTH OF SUBPROGRAM 00045
LENGTH OF COMMON 00000
L] LENGTH OF DATA 00000
o
o
®
®
o
[]
®
®
®
[
o
®
[]
o
®
®
@ CuMPaSS-32 (2e1) EXAMPLE 194 (CR2PR) 11/21/66 PAGE 2
ENTRY START
° THIS PROGRAM wILL READ ONE HOLLERITH CARD aND COPY IT AN THE LINE PRINTER
00000 01077777 01 0 77777 0 START UJP an
00001 77012000 77 0 12000 ¢ REPEAT CON 2000841 ESTaBLISH CONNEGTION TO CR
e 00002 01000001 01 0 PO0GOL 0 uJe *-1 REJECT INSTRUCTTON
00003 74000045 74 0 P00045 0 INPW 1+BUF 4BUF +20 INITIATE INPUT OF ONE CARD
00004 10000021 [0 0 POO02] O
[J 00005 01000003 01 0 P00003 0 uJp #e2 REJFCT INSTRUCTTON
00006 77310002 77 0 10002 3 INS 2,1 SENSE TO SEE IF CHANNEL 1 1S BUSY
00007 01000006 01 0 POO0O6 O uJe #e] BUSY ~ THEN KEE® CHECKING
[000106 77013000 77 0 13000 0 con 3000841 NOT BUSY = THEN CONNECT TO PR
00011 01000010 01 0 P00010 0 Ude *al REJECT INSTRUCTTON
00012 76000045 T6 0 P0U04S 0 ouTw 19BUF yBUF +20 INITIATE OUTPUT OPERATION
® 00013 10000021 10 0 P00021 0
00014 01000012 01 0 Po0012 0 uJdp »:2 REJFCT INSTRUCTTON
00015 77310004 77 0 10004 3 INS 4el SENSE T0 SEE IF CHANNEL 1 1S BUSY
® 00016 01000015 01 0 PO0OLS 0O uJp Sal BUSY = THEN KEEP CHECKING
00017 77770000 77 1 70000 3 ucs NOT BUSY = THEN STOP
00020 01000001 01 0 P000OL o0 uJde REPEAT REPEAT ON RESTART
[00021 BUF 8ss 20
END START
[J
[J
[
®
®
e
o
[
®
[]
[

COMPASS=32 (2.1} EXAMPLE 19A& (CR2PR)
BUF P00021 P00003 Pp0003
REPEAT Pooo01 Poo002n

SYMBOLS NOT REFERENCED
*START Poo00O

COMPASS=32 (2.1) EXAMPLE 21 (CODE)

ENTRY-PQINT SYMBOLS

INeOUT 00000
LENGTH OF SUBPROGRAM 00014
LENGTH OF COMMON 00000
LENGTHA UF DATA 00000

P00Q12

117721766 PAGE

Ppo0l2

11/21/66 PAGE

1

1

® o o e

COMPASS=32

00000
00001
00002
00003
00004
00005
006006
00007
00010
00011
00012
00013

COMPASS=32

INJQUT
LooP

(241) EXAMPLE 21 (CODE) 11/21/66 PAGE 2
ENTRY IN,OUT
THIS PROGRAM WILL HANG IN A LOOP UNTIL THE SELECTIVE JuMP KEYS ARE
SET TO A CODE OF 35 OCTAL. PROGRAM REPEATS ON RESTART.
01077777 01 6 TTITT 0 INGOUT uJdp Lid
00100003 00 0 P00003 1 LOOP SJy *e2 TEST BIT 0
01000001 01 0 P000O1 O uJdp LooP
00200001 00 0 P000OOLl 2 SJ2 LooP TEST BIT 1
00300006 00 0 P00006 3 SJ3 *e2 TEST BIT 2
01000001 01 0 PQO0Q1 O uJdp LOoOP
00400010 00 1 P00010 © SJa *e2 TEST BIT 3
01000001 ¢1 0 POOOO1 0 Udp LOOP
00500012 00 1 P0O0O12 1 SJs *e2 TEST BIT 4
01000001 01 0 P000O) © uJp LOOP .
00600001 00 1 P00001 2 SJs LOOP TEST BIT S
00000001 00 0 P0OOOL 0 HLT INJOUT#] STop
END INJOUT
NUMBER OF LINES WITH DIAGNOSTICS [
(2e1) EXAMPLE 21 (CODg) 11/721/66 PAGE 1
P0000O P00013
P000O1 P00002 P00003 P0000S P000OT
P00O11 P00012

A

COMPASS=32 (2.1)

ENTRY=POINT SYMBOLS
START

LENGTH OF SUBPROGRAM
LENGTH OF COMMON
LENGTH OF DATA

00000

EXAMPLE 22 (MEQ,TEST)

00014
00000
00000

11721766 PAGE

S

COMPASS=32 (241)

00000
00001
00002
00003
00004
00005
00006
00007
00010
00011l
00012
00013

01077777
14300000
18117776
14603500
1a707700
06200000
01000011
15300001
01000005
71770000
00100000
01000001

o1
14
14
14
1s
06
[

01
7
00
01

1777
00000
17776
03500
07700
00000
P0O0011
00001
P0000S
70000
P00000
P00001

EXAMPLE 22 (MEQ,TEST)
ENTRY

1

11721766 PAGE
STARY

THIS PHOGRAM WILL COUNT YHE NUMBER GF EVEN LOCATIONS IN MEMORY (8K)
WITH 35 IN CHARACTER POSITION 2,

0 START Ude X}
3 ENT 043 CLEAR COUNTER (R3)
1 ENT 17776841 SET 8] To 177768
2 ENa 35008 SET SEARCH PATTERN IN A
3 ENg 7Ty S5eT STARCH ~MaSK IN @
2 REENTER MEQ Ned #4E SEARCH #aw
0 uJe STUP #» NOT FOUND @## THEN STOP
3 IN1 143 2% FOUND ## THEN INCREASE COUNT
0 uJde REENTER AND CONTINUE SEARCH
3 sT0P uCs DISPLAY RESULTS IN B3
1 SJ1 START EXIT IF JuMP KEY 1 IS SET
0 udp START#+} OTHERWISE REPEAT
END START
NUMBER OF LINES WITH DIAGNOSTICS [

2

o e
A-15
[J COMPASS=32 t2.1) EXAMPLE 22 (MEQ@,TEST) 11/71/66 PAGE 1 ®
REENTER P0000S P00N10
® START P00000 P00012 POOGL3 @
SToP £00011 P0000S
® J
o o
[] o
e o
® ®
o [
o []
L J []
o []
[[]
o [J
o o
® ®
® o
@ e
o o
L °
[] ®
®]
COMPASS=32 t2.1) EXAMPLE 23 (TY.ouT) 11731766 PAGE 1
ENTRY=POINT SYMBOLS
TYLOUT 00000
LENGTH OF SUBPROGRAM 00010
LENGTH OF COMMON 00000
LENGTH OF DATA 00000

® & 0 ¢ © o o o o & o o o 6 o o o o o O
® © ® 6 6 o 6 © o & & 6 ¢ 0o ¢ 0o o 0o o O

CuMPaSS=32

00000
00001
00002
00003
00004
00005
00006
00007

CuMPASS=32

TY.0UT

(2.1)

01077777
77600400
01000001
53420023
53040000
§3420033
77760000
01000000

2.1}

0l
77
0l
83
S3
53
77
01

00000

EXAMPLE 23 (TY.num)
ENTRY
THIS IS A CLOSED SURROUTINE FOR TYPING MESSAGE ON THE ARONSOLE TY.

TrTIY
00400
P00001
20023
40000
20033
60000
P0000O

TYOUT

CALLING SEQUENCE

11/721/766 PAGE

ECHa FCA {(FIRST CHAR ADRS OF MSGE)
ENU NUMA CHARS (LENATH OF MESSAGE)
RTJ TYenuT

NEXT INSTRUCTINN

NOTE TY,OUT MUST BRE DECLARED FXTERNAL (EXT TY.0UT

0 TY.nuT udp e
2 PALS 4008 IS TY CURRENTLY BUSY
0 uJe] YES = THEN KEEP CHECKING
0 Tam 238 NO « THEN PLACE FCA IN REG 233
0 Ada FORM {Cael
0 TAM 338 PLACE LCA+l IN REG 33B
3 CTn INITIATE QUTPUT
[uJe TY.OUT RETURN TO USFR
END
NUMBER OF LINES WITH DIAGNOSTICS 0

EXAMPLE 23 (TY.ouT)

PoQo07

11/21/66 PAGE

2

1

A-16

@ ®
@ COMPASS=32 (2.1) EXAMPLE 24 (DEMo) 11/21/66 PAGE 1 ®
® o
® ENTRY=POINT SYMBOLS []
START 00000
® ®
® ®
LENGTH OF SUBPROGRAM 00614
LENGTH UF COMMON 00000 °
[LENGTH OF DATA 00000
® []
® (
®
® e
® ®
® ®
® ®
Y ®
e]
o)
& ®
[] ®
 J e
® ®
[J o
o o
@ COMPASS=32 (2.1) EXAMPLE 24 (DEMo) 11/71/66 PAGE 2 e
ENTRY START
00000 01077777 01 0 77777 0 START UJP *a
o o
THE FOLLOWING INSTRUCTIONS WILL INITIATE AN OUTPUT TO THE CONSOLE TY
o 00001 11000034 11 0 P0000T © ECHA usG FIRST CHAR ADRS TO A e
00002 53420023 53 1 20023 0 TAm 238 THEN TO REG FILF LOC 238
00003 11003060 11 0 P006l4 O ECHA MSGEND LAST CHAR ApDRS 1O A
[00004 53420033 53 1 20033 0 TAw 338 THEN TO REG FILF LOC 338]
00005 77760000 77 1 60000 3 CTo INITIATE TYPF OnT
[] 00006 00000000 00 0 P000OO O HLT START EXIT BACK TO SCOPE ON RESTART o
FOLLOWING IS THE MESSAGE
® @
00007 31602144 MSG 8CDeC 40s1 AM A CONTROL DATA 3200 COMPUTER. I AM
00010 60216023
® 00011 46456351 o
00012 46436024
00013 21632160
o 00014 03020000 L
00015 60234644
00016 47646325
o 00017 51336031 []
00020 60214460
00021 77575757 oct 17575757
[J 00022 21602231 B8CDIC 449A BINARY, FIXED WORD _ENGTHs STORED PROGRAM, ®
00023 45215170
00024 73602631 Py
[] 00025 67252460
00026 66465124
00027 60432545
o 00030 27633073 ®
00031 60626346
00032 51252460
L J 00033 47514627 ®
00034 51214473 .
00035 17575757 ocr 77515757
[J 00036 24312731 8C0sC 16sD1GITAL COMPUTER [
00037 63214360
00040 23464447
® 00041 64632551 [
00042 17175757 ocr 11715787
00043 63302562 8CosC 28, THESE ARE MY SPECIFICATIONS
® 00044 25602151 L
00045 25604470
00046 60624725
[00047 23312631 e
00050 23216331
00051 46456260
® 00052 17775757 oct 777751857 L]
00053 01330205 BCDsC 3691425 MICRO SECOND MEMORY CYCLE TIwME
00054 60443123

00055 51466062

¥

COMPASS=32
00056
00057
00060
00061
00062
00063
00064
00065
00066
00067
00070
00071
00072
00073
00074
00075
00076
00077
00100
00101
00102
00103
00104
00105
00106
00107
00110
00111
00112
00113
00114
00115
00l1le
00117
00120
00121
00122
00123
00124
00125
00126
00127
00130
00131
00132
00133
00134
00135
00136
00137
0dla0
00141
00142
00143

COMPASS=32

G014
00145
00145
00147
00150
00151
00152
00153
00154
00155
00156
00157
00160
00161
00162
00163
00164
00165
00166
00167
00170
00171
00172
00173
00174
0017s
00176
00177
00200
00201
00202
00203
00204
00205
00206
00207
00210
00211
00212
00213
00214
0021s
00216
00217
00220
00221

00222
00223
00224
00225
00226

00227

00230

0023}

{241)

(2e1)

25234645
24604425
44465170
60237023
43256063
31442560
TI575757
10427360
01066273
£0465160
03024260
60664651
24626046
26602346
51256062
63465121
27256060
77575757
02046022
31636066
46512460
43254527
63306060
77575757
03603145
24256760
51252731
62632551
62606060
TISTSTS7
44644363
31404325
65254360
31452431
51252363
60212424
51256262
31452760
7715715757
23302151
21236325
51603021
4524433)
45276031
45626351
66236331
46456260
77575757
22642626
25512524
60233021
51212363
25516062
25215123

3066214
24504646
65256044
47255121
63314645
62606060
77575757
23464567
46432569
63704725
66513163
25516060
775715757
51252143
60633144
25602343
46234260
717715757
62632145
24215124
60215131
63304425
63312360
23216721
22314331
63312562
77776060
02046022
31636060
21242473
60626422
73604864
43636020
60243165
77576060
n4loeuve2z
31636060
21242460
20606264
22606060
71775757
46476331
46452143
60215131
63304425
63312360
23214721
2231433)
63312562
17776060
764676124
47604721
23422127
25606060

EXAMPLE 24 (DEMg)

ocr
8CnyC

ocr
BCnsC

ocr
BCDsC

ocT
BCDsC

ocy
B8CDC

ocr
3CDsC

EXampLi 24 (DEMO)

ocT
ACnsC

ocr
8LnsC

ocT
BCNsC

ocCy
8CNsC

acr
BCNeC

ocr
BCNsC

aCry
BCNsC

11721766

77578757

4N0yBKy 16Ky OR 32K wORDS CF CORF STARAGE

71575757
20924 BIT WORD LENGTW

77575757
2093 INDEX REGISTERS

17575757
32 MULTI-LEVEL INDIRECT aDDRESSING

77575757
379CHARACTER HANDLINA INSTRUCTIONS

71575757

4By BUFFERED CHARACTER SEARCH AND MOVE OPERATJONS

11721766 PAGE

11575757
POLONSOLE TYPEWRITER

171573157
169REAL TIME CLOCK

1717715757
I24STANCARD ARITHMETTC CaAPRBILITIES

11776060
23926 BIY AUDy SUBy MULT + DIV

17576060
20548 BIT AUO » SUB

171775757
32+0PTIONAL ARITHMETIC CaAPABILITIES

77176060
92sFP/DP PACKAGE

FLOATING POInT 4DDy SUBy MULT »

L3

o &6 o & 6 © o & &6 & & o o o o o 0 ¢ 0 ¢ o O
H

A-18

COMPASS=32
00232
00233
00234
00235
00236
00237
00240
00241
00242
00243
00244
00245
00246
00247
00250
00251
00252
00253
00254
00255
00256
00257
00260
00261
00262
0g%z263
00264
00265
00266
00267
00270
00271
00272
00273
00274
00275
00275
00277
00300
00301
00302
00303
00304
00305
00306
00307
00310
00311
06312
00313
00314
00315
00316
00317

COMPASS=32
00320
0032]
00322
00323
00324
00325
00326
00327
00330
00331
00332
00333
00334
00335
00336
00337
00340
00341
00342
00343
00344
00345
00346
00347
00350
00351
00352
00353
00354
00355
00356
00357
00360
00361
00362
00363
00364
00365
00366
00367
00370
00371
00372
00373
00374
00375
00376
89377
00400
00401
00402
00403
00404
00405

(2:1)

(2.1)

60602643
46216331
45276047
46314563
60212424
73606264
22736044
64436360

‘20606060

17576060
60606060
60606060
60606060
60606060
60602431
65312425
60214524
60263167
25246047
46314563
60041060
22316360
77576060
60606060
60606060
60606060
60606060
60604464
43636020
60243165
77576060
22232460
47212342
21272560
60606060
60602231
452151790
60234624
25246024
25233144
21436060
21242460
20606264
22606060
77775757
31454764
63614664
63476663
60232147
21223143
31633128
62606060
TI776060
02401060

24216321
60233021
45452543
62606060
77576060
01401060
25506431
47442545
63602346
45635146
43432551
62664725
51602421
63216023
30214545
25436060
77776060
60606060
21652131
43212243
25602550
64314744
25456360
60606060
60606060
60606267
25252462
77576060
60606060
60604421
27452563
31236063
21472562
60606060
60606060
60606060
60073305
42236040
60010200
42236060
17576060
60606060
60602321
51246051
25212425
51606060
60606060
606356068
60606060
60010200
00602321
51246261
44314560
77576060

EXAMPLE 24 (DEMQ)

ocr 77576060

BCDIC 48y

oCT 77576060

8CDsC 28, MULT ¢ DIV
ocy 171576060

8CDsC 52+8CD PACKAGE

ocT 17775757

BCOsC 28+ INPUT/0UTPUT CAPARILITIES
ocT 77776060

8CosC 20928 DATA CHANNELS

EXAMPLE 24 (DEMO)

11721766 PAGE

DIVI0E AND FIXEn POINT 48 BIT

11721766 PAGE

ocr 77576060

BCpsC 449]=8 EQUIPMENT CONTROLLERS PER DATA CHANNEL

ocr 77176060

8CnsC 40y AVATLABLE EQUIPMENT SPEEDS

ocT 77576060

8CD+C 48y MAGNETIC TApPES 7+5KC = 120KC
ocr 17576060

BCpsC 48y CARD READER 1200 CARDS/MIN

ocr 77576060

5

BINARY CODED DECIMAL ADD + SUB

6

A-19

o
[] COMPASS=32 (2+1)
00406 60606060
00407 60602321
o 00410 51266047
00411 64452330
00412 25626060
[} 00413 60606060
00414 60606001
00415 05006040
[J 00416 60020500
00417 60232151
00420 24626144
® 00421 31456060
00422 77576060
00423 60606060
® 00424 60604721
00425 47255160
00426 63214725
[J 00427 60626321
00430 63314645
00431 62606003
[] 00432 05006040
00433 60010000
00434 00602347
[J 00435 44606051
00436 25212060
00437 77576060
o 00440 60606060
00441 60606060
00442 60606060
o 00443 60606060
00444 60606060
00445 60606060
o 00446 60606060
00447 60606060
00450 60600101
@ 00451 00602347
00452 44606047
00453 64452330
[00454 77576060
00455 60606060
00456 6060433)
o 00457 45256047
00460 51314563
00461 25516260
o 00462 60606060
00463 60606001
00464 05006040
[00465 60010000
00466 00604331
00467 45256261
® 00470 44314560
00471 77576060
00472 60606060
o 00473 60602431
e
@

®
® COMPASS=32 (2.1
00474 02236047
00475 21234262
[J 00476 60606060
00477 60606060
00500 60606011
o 00501 07604431
00502 43433160
00503 62252360
& 00504 21652760
00505 21232325
00506 62626060
® 00507 77576060
00510 60606060
00511 60606060
® 00512 60606060
00513 60606060
00514 60606060
[J 00515 60606060
00516 60606007
00517 01426023
L 00520 30215161
00521 62252360
00522 21652760
® 00523 67262551
00524 77576060
00525 60606060
o 20526 50602451
00527 64446062
00530 63465121
[] 00531 27256060
00532 60606060
00533 60606001
[00534 07604431
00535 43433160
00536 62252360
[] 00537 21652760
00540 21232325
00541 62626060
[] 00542 77576060
00543 60606060
00544 60606060
[] 00545 60606060
00546 60606060
00547 60606060
® 00550 02050042
00551 60406002
00552 44602330
. 00553 21516162
00554 25236024
00555 21632160
[00556 67262551
00557 77576060
00560 60606060
[] 00561 £0606743

EXAMPLE 24 (DEMo)

EXAMPLE 24 (DEMO)

11721766 PAGE 7
48, CARD PUNCHES 150 « 250 CARDS/MIN
17576060
48, PAPER TAPE STATIONS 350 - 1000 CPS REaD
77576060
48y 110 CPS PUNCH
77576060
48, LINE PRINTERS 150 = 1000 LINES/MIN
77576060
52 DISC PACKS 97 MILLI SEC AVG ACCESS
11/21/66 PAGE a
77576060
48, 71K CHAR/SEC AVG XFER
77576060
529 DRUM STORAGE 17 MILLI SEC AVG ACCESS
77576060
48y 250K ~ 2M CHAQ/SEC DATA XFER
77576060
169 PLOTTERS

A-20

CUMPASS=32
00562
00563
00564
00565
00566
00567
00570
00571
00572
00573
00574
00575
00576
00577
00600
00601
00602
00603
00604
00605
00606
00607
00610
00611
00612
00613

COMPASS=32

MSG
MSGEND
START

(2e1)
46636325
51626060
71576060
60606060
60604721
27256051
25212425
51606060
77576060
60606060
60602351
63602431
62474321
70606445
31636260
77576060
60606060
60602145
24604421
45706046
63302551
60624725
23312143
31712524
60242565
31232562
006lé

EXAMPLE 24 (DEMn)

11/721/66 PAGE

ocr 77576060

BCHC 204 PAGE READER

ocr 77576060

8CpsC 24y CRT DISPLAY UNITS

ocrt 77576060

8CoscC 40y AND MANY OTHER SPECIALIZED DEVICES

MSGENO EQusC *

END START
NUMBER OF LINES WwITH DIAGNOSTICS 0

(2e1)

Po0OOT
PO0614 O
P000GO

EXAMPLE 24 (DEMQ)

P00001
P00003
P00006

9

11721766 PAGE

1

....................L...”........’.‘......'.

A-2i

COMPASS=32 (2411 EXAMPLE 25 (MTDRIVER)

ENTRY=POINT SYMBOLS
MTORIVER 00000

LENGTH OF SUBPROGRAM 00lo0l
LENGTH OF COMMON 00000
LENGTH OF DATA 00000

11721766 PAGE 1

COMPASS=32 (2.1) EXAMPLE 25 (MTORIVER)
ENTRY

11721766 PAGE 2
MTORIVER

THIS SUBPRAGRAM IS AN [/0 DRIVER DESIGNED TO HANDLE ALL MAG TAPE
OPERATIONS, USE OF THIS DRIVER WwILL GREATLY REDUCE THME AMOUNT OF EFFORT
REQUIRED On THE PROGRAMMER#S PART WHEN WORKING WITH MAG TAPE, HE NEED
NOT EVEN BE CONCERNED WwITH THE EQUIPMENT CONFIGURATTION OF THE PARTICULAR
MACHINE IN USE, SINCE THIS IS HANDLED RY MTDRIVER.

cevemmecces CALLING SEQUENCE w===weace=

1. SET PARAMETERS INTO a + Q

(A) A 3 TAPE UNIT NUMBER (0=T7)
(8) Q 23-18 = FUNCTION CODE
{C) Q 14=00 = BUFFER FWA (NEEDED FOR I/0 REQUEST ONLY)

2. RTJ TO MTORIVER (MTDRIVER MyST BE DECLARED EXTERNAL)

w==mweamee OPERATIONS AVAILABLE ===esmecew

1

QPERATION FUNCTION CODE (OCTAL)
1. READN 30 WUS IN 8Cn {120 CHARS) ol
2. READ 40 W0S IN BINARY 02
3. WRITE 30 wDS IN BcD (120 CHARS) 03
4e WRITE 40 WDS IN BINARY L3
S« REWIND 10
6. UNLOAD 11
7, BACKSPACE 12
A, SFEARCH FILE FORWARD 13
9, SEARCH FILE BACKWaRD 14
e WRITE FILE MARK is
1« SKIP BAD SPOT 16

ececvacces ON RETURN =ee=evceows

1. B REGS ARE UNCHANGED.
2. 1F REQUEST wAS I/n (Fr 1=4)v THE OPERATIUN wilLL BE
COMPLETE,
3. A 1100 = STATUS FROM THE TAPE AT ENU OF OPERATION
IF REQUEST wAS [/0 (FC 1~4),
4e A IS MEANINGLESS IF NNT I/7" REQUEST.
5. @ IS MEANINGLESS.

==mme=—ecee ERROR PROCEDURES ======m--=

1. IF TAPE UNIT 1S FOUND 207 READY# A UIAGNOSTIC
WwILL BE TYPED (REaDY w7 X, ¥ROGRAM WILL CONTINUE
WHEN UNIT IS READY.

2, ALL REJECTS wWILL LOOP.

A-22

#a

#esosuws INLIJALIZING PROCEDURE zw#adsn

®
[] CUMPASS=32 (2e1) EXAMPLE 25 (MTUR[VER)
Y0000 01077777 01 0 77777 0 MTDRIVER UJP
o
00001 42000157 42 0 P00033 3 sacr
o 00002 42000371 42 0 PQ0OT76 1 SacH
00003 14600000 14 1 00000 2 ENA
[J 00004 13000006 13 0 00006 0 SHAW
00005 42000400 42 0 P00100 0 SacH
06006 05600017 05 1 00017 2 ASG
o 00007 05600010 05 1 00010 2 A5G
00010 01000013 01 0 PD0O013 0 ugp
® 00011 42000247 42 0 P000S] 3 SACH
00012 01000033 01 0 Pg0o33 0 TS
Y 00013 05600005 05 1 00005 2 INPOUT ASS
00014 0560000i 05 1 00001 2 ASG
PY 00015 00000015 00 0 P0001S © HLT
00016 12000005 12 0 00005 0 SHA
0007 13000022 13 0 006022 0 SHAQ
o
00020 14700002 14 I 00002 3 ENY
e 00021 03300023 03 0 P00023 3 ALJILT
00022 14700001 14 1 00001 3 ENG
® 00023 43000247 43 0 PO00S1 3 SucH
00026 44000066 44 0 P0O066 0 SwA
00025 44000062 44 0 P00062 0 SwA
o 00026 15600036 15 1 00036 2 INA
00027 03300031 03 0 P00031 3 AZISLT
00030 15600012 15 1 00012 2 INA
@ 00031 44000065 44 0 P00065 0 SWA
00032 44000061 44 0 P00061 O Swa
®
[J
e
o
®
®
o COMPASS=32 (241 EXAMPLE 25 (MTURIVER)
o
00033 77001000 77 0 01000 0 CONNECT CUN
° 00034 01000033 01 0 P00033 0 uge
R 222122)
[J 00035 77200001 77 0 00001 2 EXS
00036 01000051 01 0 P0pO51 0 [N
® 00037 77600400 77 1 00400 2 PAUS
00040 01000037 01 0 PO0037 © P
[] 00041 11000360 11 0 P000T4 0 ECHA
00042 53420023 53 1 20023 0 TAM
00043 15600013 15 1 00013 2 INA
{ 00044 53420033 53 1 20033 0 TAM
00045 77760000 77 1 60000 3 cTu
(] 00046 77200001 77 0 0000} 2 EXS
00047 01000051 01 0 P0O00S1 © uor
° 00050 01000046 01 0 P00046 O uJP
BEEDE
[J 00051 77100000 77 0 00000 1 SELECT SEL
00052 01000051 01 0 P0005)1 0 [INT
[00053 22000400 22 0 P00100 0 LACH
00054 05600006 05 1 00006 2 ASY
PY 00055 01000055 01 0 P000SS © [N
00056 01000072 01 0 P00OT2 © usp
R 1 2 20
[
00057 05600003 05 1 00003 2 aso
° 00060 01000065 01 0 P00065 0 usr
00061 76077777 76 0 77777 0 OUTPUT OUTH
00062 00077777 00 0 77777 0
[J 00063 01600061 01 0 PO0O6L 0 udr
00064 01000070 01 0 POQOTO 0 TN
® 00065 74077777 74 0 77777 0 INPUT INPw
00066 00077777 00 0 77777 0
° 00067 01000065 01 0 PO006S 0 udv
[
®

11/21/66 PAGE 3
LINKAGE BACK TO USER

®
[]
CONNECT+3 ESTABLISH CONNECT CODE
RDYMSG+9 SET TAPE NO. IN READY MESSAGE ®
0 PLACE FUNCTION CODE
6 IN A 5-0s o
FC SAVE FUNCTION CODE
178 IS TAIS aN
108 1/0 REQUEST ®
INPOUT YES = THEN JuMP
SELECT+3 NO = THEN SET SELECT CODE AND ®
CONNECT GO TG CONNECT PROCEDURE
5 TEST TO SEE IF FUNCTION CODE IS []
1 LEGAL,
@ BLIND HALT ON ILLEGAL CODE °
5 POSITION FC AND FWA IN A
18 A 14-00 = FWa OF USER#S BUFFER
A 23 = 1 IF BCD REQUEST +0 IF BINARY o
2 BCD SELECT CODE TO @ +
w42 IS REQUEST 8cCD @
1 NO « THEN BINARY CODE T0 @
SELECT+3 PLACE SELECTED CODE IN SEL INSTRUCTION Py
INPUT+]1 SET FWA IN INPUT/OUTPUT
OUTPUT#1 INSTRUCTIONS
30 FORM BCD LWAel L J
#e2 IS REQUESTBCD
10 NO « THEN FORM BINARY LWA+]
INPUT SET LwAel IN INPUT/QUTPUT L]
QUTPUT INSTRUCTIONS
®
[]
®
[]
e
11721766 PAGE Iy

#dueatd CUNNECT PROCEDURE #u#unscc®

CONCODEsCH
*e)

TES! FOR READY sawasses

0001,CH
SELECT

4008
LY

RDYMSG
238

11

338

0001.CH
*e2
v

SELECT PROCEDURE #ssusnunw

00004CH
el

FC
6

*

EXIT

REAU/WRITE PROCEDURE a#s#ssss

3
INPUT

CHy#ugus

a2
walTl

CHy#a 0

w2

CONNECT TO SPECIFIED MAG TAPE

IS THE CONNECTED UNIT READY
YES =~ THEN G0 TO SELECT PROCEDURE

NO = THEN TYPE UDIAGNOSTIC
WAlT FOR TY NOT BUSY

~ INITIATE TY OUTPUT

= LOOP UNTIL READY

INITIATE NON-1/0 OPERATION OR
SELECT MODE FOR I/U OPERATION

FUNCTION CODE TO A

IS THIS AN 1/0 REWUEST
NO - THEN GO TO READ/WRITE PROCEDURE
YES = THEN 6O TU EXIT

IS THIS A READ REWVEST
YES = GO TO INPUT INSTRUCTION

NO = THEN INITIATE OUTPUT

LOOP ON REJECT
GO TO wall BEFORE EXIT

INITIATE INPUT

LOOP ON REJECT

A-23

CUMPASS=32 (241} EXAMPLE 25 (MTDRIVER) 11421766 PAGE s []
esseess WALT FOR END OF OPERATION ®wsvssse °
00070 77200002 77 0 00002 2 WwAILT EXS 0002,CH IS UNIT STILL BUSY
00071 01000070 01 © P000T70 0 P -] YES = THEN LOOP °
#heanes FX[T PROCEDURE ¢s#e#suaes
00072 77200000 77 0 00000 2 EXIT coPy cH [J
00073 01000000 01 0 P0000O 0 uJP MTDRIVER RETURN TO USER
wnsnnss MISCELLANEOUS ®arnoens .
00074 51252124 RUYMS6 HCUsC 104READY MT X
00075 70604463 . L
00076 6067
00077 77000000 vFL 06/77
00100 FC 8SS»C 1 ®
wesennr SYMBOL EQUATIONS #sesssase '
00000 cH EQu 0 THIS DRIVER MAY BE ALTERED TO FIT ANY
01000 CONCODE EWV 10008 EQUIPMENT CONFIGURATION BY ONLY THESE
END []
NUMBER OF LINES WITH DIAGNOSTICS 0 .'
[]
[
o
®
®
o
®
[
[]
 J
COMPASS=32 (2.1} EXAMPLE 25 (MTDRIVER) - 11/21/66 PAGE 1 ®
cH 00000 P00033 P00035 P00046 P0O00OS]
P00061 P00065 P00070 P00072 []
CONCODE 01000 P00033
CONNECT P00033 P00001 PO012
EXIT P000T2 P00056 [J
FC P00100 P000S P00053
INPOUT P00013 P00010
INPUT 200065 P00024 P00031 P00060 []
MTORIVER P00000 P00073
QUTPUT P00061 P00025 P00032
RDYMSG P00074 P00002 P00041 ®
SELECT P00051 P00011 P00023 P00036
WALT Pooo70 Po0064
[
[]
®
[]
[]
[
[
[]
o
[J
[
®
®
[

A-24

@
@ COMPASS=32 (2.1) MAC 11721766 PAGE 1
[]
[EXTERNAL SYMBOLS
clo
®
o
LENGTH OF SUBPROGRAM 00076
LENGTH OF COMMON 00000
@ LENGTH OF DATA 00000
[
@
]
[
®
®
[J
o
o
[]
[]
o
o
®
. COMPASS=32 (2e1) MAC 11/721/66 PAGE 2
LigM READSyREWIND+STATUS»FORMAT
[] MAGRO EXAMPLES
o
READS MACRO (LyRsFWASNoX9IAyM,C)
[J EXT c10
RTY c1o
0l LeX
[J 1F1 /%7481
uge ve
IFF /%/3Ry1
[J uJde R
L Fua
c N
[] IFF 70/9%91
00 14
ENDM
[] REWIND MACRO (LyReXs 1A}
EXT c10
/Ty c1o
[] 04 LeX
IFT /%/ 4Ry 1
uJdp a2
[J IFF /%(4R,)
uJp R
IFF /70/9Xsl
o 00 14
ENpM
STATUS MACRO (LeX)
[J EXT c1o
RTJ c1o
13 LeX
[] ENpM :
FORMAT MACRO (LyRIX)
EXT c10
® ATy cio
16 LeX
IFT /%/4Ry 1
[uJdp w2
IFF /%74Ry1
uJe R
o ENDM
READS (14¢% 3 INBUFF 4405 0,40)
EXT ClO READS
® 00000 0O07TTTTT 00 1 XTTT77 3 RTJ CIn HEADS
00001 01000016 01 ¢ 00016 O 01 l&s0 READS
IFT ®y8,] READS
o 00002 01000000 01 0 P0000O 0 ude #=2 READS
IFF #eu,] READS
00003 40000026 40 0 P00026 0 40 INBUFF READS
[] 00004 00000050 00 0 00050 © 0 &0 READS

A-25

3
READS

READS
READS
READS
READS
READS
READS
READS
READS
READS
READS

REWIND
REWIND
REWIND
REWIND
REWIND
REWIND
REWIND

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

COMPASS=32 (2.1) MAC 11721766 PAGE
IFF 04091}
READS (149REJXy INBUFF 4092, INTADD Y400 40)
EXT Clo
00005 00700000 00 1 X00000 3 RTy Clo
00006 01200016 01 0 00016 2 01 1442
IFT #yREJXs]
IFF ®yREJXs)
00007 01000024 01 0 P00024 O UJp REJX
00010 40000026 40 0 Pp0026 © 40 INBUFF
00011 0000050 40 0 00050 0 40 &0
IFF 09241
00012 00000022 00 0 PO0022 0 00 - INTADD
REWIND (14y9)
EXT Clo
00013 00700005 00 1 X00005 3 RTy Clo
00014 04000016 04 0 00016 O 04 l4y0
IFT ®#ouy]
00015 01000013 01 0 POOO13 0 UJp #«2
IFF %93,y
IFF 03091
FORMAT (1451442)
EAT Clo
00016 00700013 00 1 X00013 3 RT) Clo
00017 14200016 14 0 00016 2 14 1442
IFT *414,1
IFF #914,1
00020 01000016 01 0 00016 0O uJde 14
00021 77770000 77 1 70000 3 ucs
00022 01077777 01 0 TYTIT 0 (INTADD uJde L
00023 01400022 01 1 PO0022 0 Udesl INTADD
00024 01077777 01 0 77777 0 REJX uJp e
00025 01400024 01 1 P00024 0 UJdPel REJX
00026 INBUFF BSS 40
ENp
NUMBER OF LINES wITH DIAGNOSTICS 0
COMPASS=32 {241) MAC 11/21/66 PAGE
clo EXTERNAL Po00OO P000O5 P00013 PO001S
INBUFF P00026 P00003 Po0C]0
INTADOD PQO022 Poool2 Po0Q23
REJX Pg0o24 PooooT Po002S

A-26

11721766 PAGE 1

®
@ CoMPASS=32 (2.1) EXAMPLE 26 {COPY)
@
[EXTERNAL SYMBOLS
PRORIVER
CRORIVER
o MTDRIVER
o
[] ENTRY=POINT SYMBOLS
COPY 00000
[]
®
LENGTH OF SUBPROGRAM 00112
LENGTH OF COMMON 00000
® LENGTH OF DATA 00000
]
®
o
®
[]
o
L]
@
]
o
[
®
®
@ COMPASS=32 (2.1) EXAMPLE 26 (COPY) 11/21/66 PAGE 2
ENTRY COPY
EXT MTDRIVER,CRDRIVER,PRORIVER
o THIS SUBPROGRAM 1S DESIGNED TO TEST THE DRIVERS THAT WERE WRITTEN
PREVIOUSLY (EXAMPLE 25 AND WORKSHEET 8). IT COPJES A DECK OF HOLLERITH
. CARDS TO MAG TAPE, REWINDS THE TAPE ANp COPIES THE TAPE ON THE PRINTER,
PROGRAM REPEATS ON RESTART UNLESS JUMP KEY 1 IS SET IN WHICH CASE
° IT WILL EXIT BACK TO SCOPE,
00000 01077777 01 0 77777 0 COPY uJde ae LINKAGE BACK TO SCOPE
[) cvmrmemces REWIND TAPE)| m=ecec=ee
00001 14600010 14 1 00010 2 ENa 108 PLACE FUNCTION CODE
® 00002 13077771 13 0 77771 0 SHAQ -6 IN @ 23«18 (REWIND)
00003 14600001 14 1 00001 2 ENA 1 PLACE TAPE NUMBER IN A Sel
° 00004 00777777 00 1 X77777 3 RTY MTDRIVER
emeencces READ NEXT CARD =—ecvemw=
Y 00005 14600056 14 1 P0005& 2 NEXTCARD ENA BUF
00006 13077755 13 0 77755 0 SHA@ -18
00007 14600001 14 1 00001 2 ENa 1
® 00010 13077771 13 0 77771 0 SHAQ -6
00011 00777777 00 1 X77777 3 RTY CRORIVER
® esmeecee TEST FOR END OF FILE CARDN e=caeeao
00012 17600010 17 1 00010 2 ANA 108
] 00013 03100023 03 0 P00023 1 AZJINE FILEMARK
° =emecceea QUTPUT CARD IMAGE TQ MAG TAPE] =me=me-===
00014 14600054 14 1 P000S4 2 ENa BUF
00015 13077755 13 0 77755 0 SHaQ ~18
[J 00016 14600003 14 1 00003 2 ENa 3
00017 13077771 13 0 77771 0 SHAQ -5
00020 14600001 14 1 00001 2 ENA 1
® 00021 00700004 00 1 X00004 3 RTy MTORIVER
° 00022 01000005 01 0 P0000S 0 uJp NEXTCARD
[
e
[
®

® o o o

A-27

COMPASS=32

ooo23
00024
0002S
00026

00027
00030
00031
00032

00033
00034
00035
00036
00037
00040

00041
00042

00043
00044
00045
00046
00047

00050

00051
00052
00053

COMPASS=32

00054

(2.1)

14600015
13077771
14600001
00700021

14600010
13077771
14600001
00700026

14600054
13077755
14600001
13077771
14600001
00700032

17600010
03100051

14600054
13077755
14600003
13077771
00777777

01000033

77770000
00100000
0100000)

(241)

EXAMPLE 26 (COPY) 11/21/66 PAGE 3
wmceemeee CLOSE OUT MAG TAPE § WITH A FM mceecem=a
14 1 00015 2 FILEMARK ENa 158
130 77771 0 SHAQ -6
14 1 0000) 2 ENp 1
00 1 Xxp0021 3 RTY MTODRIVER
ewmeceaee REWIND MAG TAPE] s======ca=
14 1 00010 2 ENa 108
130 77771 0 SHAW -6
14 1 00001 2 ENa 1
00 1 X00026 3 LN} MTORIVER
e==mweese READ NEXT RECORD FROM MAG TAPE] we=ew====
14 1 P00054 2 NEXTREC ENA BUF
13 0 77755 0 SHAQ -18
14 1 00001 2 ENa 1
130 77771 0 SHaQ -6
14 1 00001 2 ENa 1
00 1 X00032 3 RTY MTDORIVER
amemeccee TEST FOR END OF FILE ==-cws=ee
17 1 00010 2 ANA 108
03 ¢ P0005] 1 AZJoNE EXIT
ss=ewmcces QUTPUT RECORD TO PRINTER wesmceowe
14 1 P00054 2 ENA BUF
130 777155 0 SHaQ ~-18
14 1 00003 2 ENa 3
130 77771 0 SHaQ -6
00 1 X7777TT7 3 RTY PRORIVER
01 0 P00033 0 uJde NEXTREC
wswoencas EXIT PROCEQURE ==cece=mse
77 1 70000 3 EXIT ucs
00 0 P0OO00O 1 SJ1 CoPY
01 0 P00OOOL 0 uJp COPYe]
EXAMPLE 26 {(COPY) 11/21/66 PAGE 4
mmecesces BUFFER AREA s=weecwae
BUF BSS 30
END coPY
NUMBER OF LINES WITH DIAGNOSTICS 0

® @ 6 & 6 06 & & o o & ¢ o o & & o o o O j ® 6 & 6 ¢ 6 6 ¢ o ¢ 0 0 o & o & 0o o oo o o 0

A-28

CUMPASS=~32 (2e1) EXAMPLE 26 (cOPY)
BUF P000S6 P00g0S PO0014
CoPY P00000 P00052 P00053
CRURIVER EXTERNAL P00011
EXLT P000S5] Pg0062
FLLEMARK PU0023 P00013
MTURIVER EXTERNAL 00004 P00021
P00040
NEXTCARD £00005S Po0022
NEXTREC PU0033 P00050
PRURIVER EXTERNAL P00047
COMPASS=32 (2.1) cIC VERSTION SI 0,0 12/07/64
EXTERNAL SYMBOLS
cul
ABNORMAL
ENTRY=POINT SYMBOLS
00000
cIT 00044
LENGTH OF SUBPROGRAM 00072
LENGTH OF COMMON 00000
LENGTH OF DATA 00000

00033

P00026

11/21/66 PAGE

PO0043

Po0032

11/21/66 PAGE

I

A-29

T

CuUMPASS=32

(2+1)

CUMPASS=32

00000

00001
00002
00003
00004
0000S

00006
00007
00010

00011
ogol2

00013
00014
00015
00016
00017

00020
00021

00022
00023

00024
00025

00026
00027
00030
00031
00032
00033

00034
00035

00036
e06e37

00040
00041
00042

00043

(241)

45000045

24400004
37000043
03100006
20000045
01400004

47100047
47200050
47300051

14477777
40000044

54100005
17107777
05100110
01000040
15177675

20100044
44000026

12000006
42000136

14677777
44100044

00700026
77500000
14400000
40000044
54100047
54200050

54300051
25000045

77740000
61400004

17100007
15100016
01000020

77730000

45

24
37
03
26
0}

«7
47
47

14
40

54

05
01
15

20
44

12
42

14
s

oo

14
4«0

54
54
Sé
]

77
[33

17
15
0l

cic

VERSION SI 0.0 12701766

11771766 PAGE

= # CENTRAL INTERRUPT CONT“OL PROCEDURE REVISED 12-04=b4

WHENEVER AN INTERRUPT OCCURSs THE WAROWARE

l»
20

3.
Gy

O1SABLES THE INTERHUPT SYSTEM

HEPLACES (00004 BITS 14-0n) WITH THE LNCATION OF THE
INTERRUPTED INSTRUCTION

REPLACES (00005 BITS 11-0n) wWITH AN IOFTIFYING CUDE
THAMSFERS CPU CONTWHOL TO LNCATION 00005,

SCoPE=32 LUADS THE FOLLOWING LINKAGE Tn CIC

(00004 uJp n

(LHVOS) NOP 1]

(00V06) yJP clc

Clc PERFORMS THE FOLLOWING TASKS

le

LOGICALLY IGNORES AN INTERRUPT ON A DINT INSTRUCTION
SAVES THE (A)y (Q)s (Bl)s (82) AND (83)

SETS LOCKOUT FLAG 10 IDENTIFY INTERRUPT PRNCESSING
TRANSFURMS INTERRUPT CODE INTO RELATIVE CIT ENTRY
SETS ENTRY LOCATION (FROM cIT) TO LINK TO USER
SETS INCL INSTRUCTION FOR EXECUTION ON USER RETURN
RESTORES ABNORMAL ADDRESS TO CIT ENTRY

ENTERS USER INTERRUPT PROCEDURE

CLEARS NON=I/0 INTERRUPTS

RESTORES LOCK=0UT FLAG

RESTORES SAVEU REGISTERS

ENABLES INTERRUPT SYSTEM

EXITS TO INTERRUPTED PROGRAM

LR L R S B SR IR 2R I X BN IR BN BE N SR IR 2R 2 B N AR AR BN B IR AN)

?

00004

00006
00007
00003
00009
00010
0o00l1l

00013
0o0l4
00015
00016

00018
60019
00020
00021
00022
00023
00024
00025
00026
goo27
00028
00029
00030
00031
00032

P0OO04S

00004
P00043
P00006
Po0045

00004

PO00AT
P00050
PO0051

77177
P00044

00005
07777
oollo
POCO4O
77675

P00044
Po0026

00006
Pgoo27

XT7777
P0004s

P00026
00000
00000

P0OQ044

POO047

PQ0050

P00051

P0004S

40000
00004

00007
00016
P00020

30000

cIc

O CO WRN~ OO~ OO

™

co

DWW O W

W O

VERSIUON SI 0.0 12707764 11721766 PAGE
ENTRY CIC.CIT
EXT ABNORMAL +COI
cIc sTaw CIT+1 SAVE (A) AND (O)
= = = = = = =« LOGICALLY IGNORE INTERRUPT ON DINT o = = = = = = = «
LCarl 4 ({4))= INTERRUPTED INSTRUCTION
LPa DINT MASK DINT INST (ZERO BITS 11=-0)
AZ jsNE CIC2.1 JUMP IF ((4)) NOT DINT
Loa CiTei EL5SF RESTORE (A)
uJdrel “ AND EXITs INTERRUPT DISABLED
@ = = = = « « = SAVE REGISTEHS INCIT = = = = = = « « = = = = = =« <
Cic2.1 571 CIT+3,1 SAVF (B1)
STt ClTe4,2 82)
STy CITeS,3 (83)
- = = = ==« « SET LOCK~OUT FLAG L A R S R R
ENAYS -0
STa Civ
= = = = = =« o TRANSFORM INTERRUPT COLE TO RELATIVE CIT ENTRY = - =
o1 Sel LOAD AND
ANT 1777841 MASK INTERRUPT £OOE
156 11081 SKIP If NON-1/0 INTERRUPT
uup CICé.1 ELSE GO PROCESS THEM
INg =1028,] COMPUTE INDEX RFLATIVE TO CIT,
= == = « = =« =« SET USER ENTRY (FROM CITy INTORTY = « = = = = « = «
CICs.0 LDa CITy) USER ENTRY LOCATION GOES
Swa CIC8.0 TO RTJ INSTRUCTTON

= = = = = ==« SET INCL MASK FUR CLEARING INTERRUPT = @ = = = = =« =

SHa 6 CHARACTER 0 CARRIES MASK
SACH C1C9.0+2
= = = = == =« HESTORE ABNORMAL ADDRESS TO CIT ENTRY = = = = = = =
ENa ABNORMAL
SWaA CITs}
e = = === ENTER USER INTERRUPT PROCEDURE = = = = = = = = = = =
CICB.0 RTy L3

- = = = = = CLEAR INTERRUPT IF NON=1/0 = = = = « = = = = = = = =
0

vwaSk WILL BE ZERO ON I1/0

REM INTERRUPTS » CLEARED wITHIN CIO
= = = = =« = o RESTORE LOCK=OUT FLAG = = = = = = = = = = = = = = =
ENAYS []
STa cir
= w === === HKESTORE SAVED REGISTFRS = = = = = = = « = = = = = =
Lor Clle3,1
Lor ClTes,2
Lo1 CIT+5,3
Load CITs1 N
= * = = = = = =« ENABLE INTERRUPT AND EXIT TO INTERRUPTEU PROGHRAM = =
EINT
Ydpe i 4
= o = = « = « « TRANSFORM 1/0 INTERRUPT CODE = = = = = = = = = = « =
CIC4el AN Tl MASK CHANNEL RITS
INT CITCHO=CIT,1 INCREASE (81) Tn RELATIVE
uvp CIC5.0 CHANNEL ENTRY AND CONTINUE

= = = = = = = = CONSTANTS AND CENTRA[INTERRUPT TaBLF = = = = = = =

000346
00035

00037
00038
00039
00040
00041
G0042
00043
00044
00045
00046
00047
00048
00049
00050
0005}
00052
00053
00054
0005%
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
0008}
00082
00083
00084
00085
00086
00087

[]
[COMPASS~32 (2.1 cic VERSION SI 0.0 12/07/64 11/21/66 PAGE .
° c 1 T
00044 7777777 cIT oct 17777717 INTERRUPT LOCK=0UT FLAG,
REM VALUE 1S =0 WHEN INTERRUPT PROCESSING IN PROGRESSs
(] REM INTERRUPT DISABLEDs aND IS 0 OTHERWISE
o CONTENTS OF REGISTERS ON ENTRY TO CIC SAVED IN CIT AND
RESTURED FROM THESE LOCATIONS
00045 00000000 oCr 0 (A}
[] 00046 00000000 ocT 0 (@)
00047 00000000 ocr 0 (81)
00050 00000000 ocr 0 82y
[] 00051 00000000 ocr 0 (83)
® NON=1/0 USER INTERRUPT LINKAGE CELLS. INCL MASK 1S IN
CHARACTER 0 AND GOES INTO 8IS 1106 OF INCL INSTRUCTION.
ADDRESS 1S INITIALIZED TO ABNORMAL AND RESTOREN PRIOR TO
o ENTRY TO A USER ROUTINE, .
00052 04000026 04 0 X00024 0 04 ABNORMAL CODE=0lln REAL TIME CLOCK
00053 20000052 20 0 X00052 0 20 ABNORMAL 0111 ARJTHMETIC OVERFLOW
[00054 20000053 20 0 X00053 0 20 ABNORMAL 0112 OIVIDE FAULT
00055 10000054 10 0 X00054 0 10 ABNORMAL 0113 EXPONENT OVERFLOW
00056 10000055 10 0 X00055 0 10 ABNORMAL, 0114 BCH FAULT
® 00057 40000056 40 0 X00056 0 40 ABNORMAL 0115 SEARCH/MOVE
00060 00000057 00 0 X00057 0 00 ABNORMAL 0116 MANUAL FROM CONSOLE
00061 00000060 00 0 X00060 0 00 ABNORMAL 0117 ADJACENT PROCESSOK
¢ 1/0 INTERRUPT LINKAGE CELLS, INCL MASK ACTS AS NOP = A CLEAR
MUST BE GIVEN IN THE I/0 INTERRUPT PROCEDURE, ADURESS
INITIALIZATION IS PERFORMED BY CIO,
[00062 00077777 00 0 X77777 0 CITCHO 00 cDI CHANNEL 0
00063 00000062 00 0 X00062 0 00 co1 CHANNEL 1
00064 00000063 00 0 X00063 0 00 co1 CHANNEL 2
[00065 00000064 00 0 X00064 0 00 cog CHANNEL 3
00066 00000065 00 0 X00065 0 00 coj CHANNEL 4
00067 00000066 00 0 X00066 0 00 col CHANNEL 5
[J 00070 00000067 00 0 X00067 ¢ 00 col CHANNEL 6
00071 00000070 00 0 X00070 0 00 co1 CHANNEL 7
° END
NUMBER OF LINES WITH DIAGNOSTICS 0
[
o
[
[
@
o
L
@ COMPASS=32 (2e1) (31 VERSION SI 040 12/01/64 11/21/66 PAGE 1
° ABNORMAL EXTERNAL P00024 00064 P000S2 00108 P00053 00109 P00054 00110
P00055 00111 P00056 00112 PO0NST 00113 P00060 00114
P00061 00115
° col EXTERNAL P00062 00119 P00063 00120 P00064 00121 P00065 00122
P00066 00123 PO006T 00124 £00070 00125 P00071 00126
cIc2.1 P00006 P00003 00041
° CICésl P00040 P00016 00055
CI1C5,0 P00020 P00042 00085
CIC8.0 P00026 P00021 00059
PY CIC9.0 P00027 P00023 00062
cIT P00044 P00000 00037 P0000& 00042 P00006 00045 P00007 00046
P00010 00047 P00012 00050 P00020 0005R P00025 00065
PY PO0031 00073 P00032 00075 P00033 00074 P00034 00077
P00035 00078 P0004) 00084
CITCHO P00062 P00041 00084
° DINT £00043 P00002 00040
° SYMBOLS NOT REFERENCED
*CIC P00000
®
[J
[
[J
[J
[J
[J
[J

00089
00090
00091
00092
00093
00094

00096
00097
00098
00099
00100
00l0l
00i02

00104
00105
00106
00107
00108
00109
0o0llo
00111
0oll2
00113
00114
00115
00116
00117
00118
00l1l9
00120
00l2l
00122
00123
00124
0o0las
00126
00127

A-3|

COMPASS=32 {2+1) MTMTCIO 11771766 PAGE 1
EXTERNAL SYmMBOLS
0
ENTRY=POINT SYMBOLS
MTMTCIO 00000
LENGTH OF SUBPROGRAM 00274
LENGTH UF COMMON 00000
LENGTH OF DATA 00000
COMPASS=32 (2.1) MTMTCIO 11721766 PAGE 2
TH1S SUBPROGRAM COPIES A VARIABLE SYZE RECORn I“PUT TAPE (LOGI=-
CAL UNIT 14 7D ANOTHER TAPE {LUGIcAL UNIT 15) THE DENSITY OF
THE QUTPUT TAPE WILL BE THE DENSITy SET BY THE OPERATOR,
THIS SUBPROGRAM DOES NUT CHMECK FUR TAPE ERRORS, PARITY IS
CHECKED ONLY TO INSURE THAT THE MONE OF THE INPUT TAPE IS THE
SAME AS THE MODE SELECTED.
ENTRY MTMTCLO
EXT c1o
00000 01077777 01 0 77777 0 MIMTCIO UJP L34
00001 00777777 00 1 X77777 3 LiN] cl1o REWIND INPUT TAPE
00002 04000016 04 0 00016 O 0s ls
00003 01000001 01 0 POOOO1 ¢ udp a2
00004 00700001 00 1 X00001 3 RTy cio REWTIND OUTPUT TaPE
00005 04000017 G&# 0 00017 0 0s 15
00006 01000004 01 0 P0OOOs O uJde *a2
00007 00700004 00 1 X00004 3 RTY cI1o ASSUME AND SET INPUT TAPE TO
00010 14200016 14 0 00016 2 MODE 14 1492 BINARY MODE (MONDE MAY BE CHANGED
00011 01000007 Q1 O POOOO7 O Uup *a2 LATER)
00012 00700007 00 1 X00007 3 RT cIo INITIATE READING INPUT RECORD
00013 01000016 01 0 00016 0 01 1e FROM LOGICAL UNTT 14 (MAX RECORD
00014 01000012 01 0 P00012 ¢ UJp w2 S1Zg IS S00 CHARACTERS)
00015 00000374 00 0 POOO77 0 FCA 00,C INBUFF
00016 40000764 40 0 00764 0 40 800
00017 00700012 00 1 Xxo00012 3 RTy clo WAIT UNTIL THE INPUT IS COMPLETE
00020 13100016 13 0 00016) 13 1491
00021 03200017 03 0 PO0017 2 AZjsGE *a2
00022 17702010 17 1 02010 3 ANG 20108 MASK OUT EVERY SATAUS BIT EXCEPY
EOF AND PARITY
00023 04700000 04 1 00000 3 WSF 0 WAS THERE AN EOF OR PARITY ERROR
00024 01000046 01 0 PO0046 O uJp TEST YES JUMP TO TEST,
00025 37000076 37 0 P00076 O LPa MASK AFTER STATUS RENUEST (A) = LCAs}
00026 31000015 31 0 PQOO1S 0O R1-TY FCA CALCULATE NUMBER OF INPUT CHAR=
00027 44000041 44 0 POOOa] 0 Swa NOC ACTERS AND STORE IN QUTPUT
00030 22000041 22 0 POOClO 1 LAcH MODE +1 FETcH MODE OF INMPUT RECORD anND
00031 42000155 42 0 P00033) SACH OUTMODE+] STORE Tn SET OUTPUT MODE THE
00032 00700017 00 1 X00017 3 RTY clo SAME AS INPUT,
00033 14000017 14 0 00017 0 OQUTMODE 1a 1Sy0
00034 01000032 01 0 PO0032 0 ude a2
00035 00700032 00 1 X00032 3 ATy c10 INITIATE WwRITING OUTPUT "BUFFER
00036 02000017 02 0 00017 0 02 15
00037 01000035 01 0 P0003S 0 uJp *e2
00040 00000374 00 0 PO0077 0 00,C INBUFF
00041 40000000 40 0 00000 0 NOC 40 0
0uo4ée 00700035 00 1 X00035 3 RTy c10 WAIT UNTIL OUTPIT IS CUMPLETE
00043 13100017 13 0 00017 1 13 1591
00046 03200042 03 0 POUOa2 2 AL)vGE 0.2
00645 01000007 01 0 PGOOOT O udp “OUE~=1 LOOP TO READ NEW INPUT RECORD
00046 17700010 17 1 00010 3 TEST ANg 108
00047 04700u00 0& 1 00000 3 9SFE] WAS AN EOF READ
QU050 0l000u61 01 0 POO06] 0 uJdp FOF YES JUMP TO EOF

A-32

®
@ COMPASS=32 (2+1) MTMTCIO 11/771/66 PAGE 3
00051 77770000 77 1 70000 3 ucs IF PARITY ERROR STOP SO THE
OPERATOR MAY DECIDE IF IT IS A
[LEGAL PARITY ERROR OR WRONG MODE
00052 00700042 00 1 X00042 3 RTY c10
00053 06000016 06 0 00016 O 06 1 BACKSPACE INPUT TAPE A RECORD
[] 00054 01000052 01 0 P000S2 0 udp *ep
000SS 2200004) 22 0 POOOL0 1 LACH MODE+1 FETCH ASSUMED MADE AND
00056 16600030 16 1 00030 2 x0a 308 CHANGE IT.
[J 00057 42000041 &2 0 P00010 1 SACH MODE +} SET NEW MODE IN SEL CALL AND
00060 01000007 01 0 POOOOT O udp MODE~1 TRY AGAIN.
L]
00061 00700052 00 1 X00052 3 EOF RTY c10 WRITE EOF ON OUTPUT TAPE
00062 11000017 11 0 00017 0 11 15
o 00063 01000061 01 0 P0006] O uJde *a2
00064 77700000 77 1 00000 3 sLs STOP IF SELECTIVE STOP SWITCH
SET ON CONSOLE.
® 00065 00100067 00 0 P00067 1 sJ1 EXIT EXIT AND UNLGAD TAPES IF JUMP
. KEY | IS SET. ON CONSOLE,
° 00066 01000007 01 O P000OT 0 uJP MODE=1 1€ NOT JUMP TO PEAD INPUT RECORD
00067 00700061 00 1 X00061 3 EXIT RTY c1o UNLOAD INPUT TAPE
[00070 05000016 05 0 00016 0 05 14
00071 01000067 01 0 PO0067 O udp *=2
00072 00700067 00 1 X00067 3 RTY clo UNLOAD OUTPUT TaPE
e 00073 05000017 05 0 00017 0 05 15
00074 01000072 01 0 PQOOT2 0 uJde #a2
00075 01400000 01 1 P00000 © udesl MTMTCIO EXIT TO SCOPE
| 00076 00377777 MASK ocT 317777
00077 INBUFF BSSsC 500
® END MTMTCIO
NUMBER OF LINES WITH DIAGNOSTICS 0
®
®
[]
o
e
COMPASS=32 (2.1) MTMTCIO 11/21/66 PAGE 1
cio EXTERNAL P00001 P00004 P00007 P00012
£00017 P00032 P00035 P00042
£00052 £00061 P00067 P000T2
EOF P00061 £00050
EXIT P0006T £00065
FCA P00015 P00026
INBUFF POGOTT £00015 P00040
MASK P000T76 £00025
MODE P00010 P00030 P0004S P00055 P00057
P00060 P00066
MTMTCIO P00000 P000TS
NOC P00041 P00027
OUTMODE £00033 P00031
TEST P00046 P000ZS

A-33

c

OMPASS=32

ENTRY=POINT SYMBOLS

TYPEIN

LENGTH OF SUBPROGRAM
LENGTH OF COMMON
LENGTH OF DATA

COMPASS=32

00000
00001
00002
00003
00004
00005
00006
00007

0g010
00011

ooo0l2
00013
00014
00015

00016
00017
00¢20
006021
0022
00023
00024
00025
00026

(241) TYPEIN 11/21/66 PAGE 1
00000
00027
00000
00000
(2.1) TYPEIN 11721766 PAGE 2
THIS SUBROUTINE ALLOWS FOR TYPING IN A VARIABLE QUANTITY OF
FOUR DECIMAL DIGIT NUMBERS.THE INPUT IS TERMINATED WHEN A
PERIOD IS TYPED IN,THE CALLING SEQUENCE IS.
CaLL () = RTJ TYPEIN
{P+1)= RETURN
(A} aFIRST CHARACTER ADDRESS OF INPUT BUFFER
OQUTPUT (Bl)= NUMBER OF NUMBERS
ENTRY TYPEIN
01077777 01 0 77777 0 TYPEIN uJde b
14100000 14 O 00000) ENT 091 CLEAR B1
46000020 46 0 P00020 0O SCHA CKPERIODD
46000010 46 0 POOO0L10 0 SCHA SET23 SAVE INPUT PaR,
15400004 15 1 00004 0 INAYS «
77600400 77 1 00400 2 PAYS 4008 1S THE TYPEWRITER BUSY
01000005 01 0 P000OS 0 [N #a-] vES LOOP
53420033 S3 1 20033 0 Tam 338 SET (_AST CHARACTFR ADDRESS+1 OF
INPUT BUFFER INTN REGISTER FILE
LOCATION 338,
11377777 11 0 77777 3 SET23 ECHA *s
53420023 S3 1 20023 ¢ TAn 238 SET FIRST CHARACTER ADDRESS INTO
REGISTER FILE LOCATION 238,
77750000 77 1 50000 3 CcT1 SET TYPE IN
77602000 77 1 08000 2 LOOP PAyS 20008 HAS THE REPEAT SWITCH ON TYPE~
01000016 01 0 POO016 O uJe FINISH WRITER BEEN PUSHED=YES JUMP TO
01000010 01 0 POOO1O 0 uor SET23 ADDRESS SET23 AND START OVER-
NO JUMP TO FINISH,
77601000 77 1 (1000 2 FINISH PAyS 10008 HAS THE FINISH SwITCH BEEN
01000013 01 0 POOO13 0 uJe LOOP PUSHED~NO JUMP To LUOP,
22377777 22 0 77777 3 CKPERIOD LAcH s
04600033 04 1 00033 2 ASE 338 1S THE FIRST CHARACTER A PER]OD=-
01000026 01 0 POOO24 G uJp BYPASS vES EXIT=NO JUMP TO BYPASS
01400000 01 1 POCOOO O UJpel TYPEIN
15100001 15 0 0000) 1 BYPASS INT 11 INCREASE 81 Ay 1
53020033 S3 0 20033 0 T™a kki] SET NEW INPUT BUFFER AND LOOP
01000002 01 0 Fo0002 0 gJP TYPEINe2 TO TYPEINe2
ND
NUMRER OF LINES wITH DIAGNOSTICS 0

A-34

T

BYPASS
CKPERIOD
FINLISH
Loup
SETE3
TYPEIN

SORT

LENGTH OF DATA

CuMPasSS=32 2s12

PU0024
PY0020
PO0O16
P00013
P00010
P00000

COMPASS~32 (2.1)

ENTRY=POINT SYMBOLS
00000

LENGTH OF SUBPROGRAM
LENGTH OF COMMON

TYPEIN

SORT

Po0022
Pouong
P00014
©00017
P00003
Po0023

F00015
P00026

11721766 PAGE

11/21/66 PAGE

|
|
i
|
f
|
|
|
|
i
I
|
I
|
|
|
|
i
|
|
|
i
[
|
|
|
|
f
|
|
i
|
[
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
I
I
|
|
I
!
|
|
|
!
I
f
|
|
I
|
|
|
!
!

®
@ CoMPASS~32 t2e1) SORT 11/21/66 PAGE 2
THIS SURPROGRAM SORTS A BLOCK OF NUMBERS INTO aSCENDING ORDER,
UPAN ENTRY THE ADDRESS OF THE FIRST NUMBER IS _OCATED IN THE
] ;wea 15 BITS OF THE A REGISTER AND THE NUMBER OF NUMBERS IS IN
24
[CALL (P) =RTy SORT
(Pe1) =RETURN
(A) =ADDRESS OF THE FIRST NUMBER
o (B1) =NUMBER OF NUMBERS
® ENTRY SORT
000006 01077777 01 0 77777 ¢ SORT uJp [y
‘ 00001 44000010 44 0 POOO10 0O Swa INITel SAVE FIRST woRD ADDRESS OF DATA
BLOCK.
00002 53640000 53 1 40000 2 1A1 2 ADD FIRST WORD ADORESS TO NUMBER
OF ENTRIES To CALCULATE LAST
o WORD ADDRESSel nF INPUT 8LOCK.
00003 15277776 15 0 77776 2 INg ~142
00006 47200022 47 0 P00022 2 STy INLOOR 2 SET LIMIT OF INLOOP PASSES
® 00005 15277776 15 0 77776 2 INY -1s2
00006 47200024 4T O PQU024 2 STy QUTLOOPy2 SET LIMIT OF OUTLOOP PASSES
00007 47100026 47 0 POUO26 1 STy BSAVE, 1 SAVE (B])
® 00010 14177777 14 0 77777 1 ENT *e, 1 ENTER 81 WITH FIRST WORD ADDRESS
OF TNPUT BLOCK
00011 53100000 S3 0 00000 1 INIT TIa 1
[J 00012 15600001 15 1 00001 2 INa 1 SET B2 EQUAL TO (Bl)sl
00013 53600000 S3 1 00000 2 TAL 2
00014 21100000 21 0 00000 1 L0g 091 LOAD @ wITH FIRST NUMBER FOR
o THIS PASS,
00015 20200000 20 0 00000 2 LOOP LDa 42 LOAD A WITH NEXT NUMBER
00016 03600022 03 1 P00022 2 AQJrGE INLOOP IS a GE @ YES JuMP TO INLOOP
o 00017 41200000 @1 0 00000 2 sTq 042 IF (A) wAS LESS THAN (W) SWAP
00020 40100000 40 0 00000 1 STa Osl THE REGISTER ANN ALSO SWAP THEM
00021 13000030 13 0 00030 0 SHAQ 24 IN CORE,
[J 00022 10277777 10 0 77777 2 INLOOP ISt *ay2
00023 01000015 01 0 PO0OO15 O [N LoouP
00024 10177777 10 0 77777 1 OQUTLOOP ISy LAX R
o 00025 01000011 ¢1 0 Po001] O uJdp INIT
00026 14177777 16 0 77777 1 BSAVE ENY LALRY
00027 01400000 0} 1 POO0OOO O Udpe I SORT
[J END
NUMRER OF LINES WITH DIAGNOSTICS 0
[J
o
[
o
o
@
CUMPASS=32 (2e1) SORT 11721766 PAGE 1
BSAVE PGG0ZE £00007
INIT PUOO11 P00001 P00025
INLOOP P00022 P00004 P0OO016
Lour P00015 P00023
ouTLooP P00024 P00006
SO £00000 Poo027

®
COMPASS=32 (201) TYPEOUT 11/21/66 PAGE 1 .
o
ENTRY=POINT SYMBOLS ®
TYPEOUT 00000
[J
®
LENGTH OF SUBPROGRAM 00010
LENGTH OF COMMON 00000
LENGTH OF DATA 00000 ®
®
®
[]
®
®
®
[
®
®
®
[J
[
o
[
®
COMPASS=32 (2.1) TYPEOUT 11/21/66 PAGE 2
THIS SUBROUTINE ALLOWS FOR TYPING OUT A VARIBLE NUMBER OF
CHaRACTERS,THE CALLING SEQUENCE 1S,
CALL (4) =FIRST CHARACTER ADDRESS OF OUTPUT BUFFER
(81) =NUMBER OF CHARACTERS IN OUTPUT BUFFER
(P} =RTY TYPEOUT
(P+1) =RETURN
ENTRY TYPEQUT
00000 01077777 01 0 77777 0 TYPEOUT uup "
00001 77600400 77 1 00400 2 PAUS 4008 1S THE TYPEWRITER BUSY
00002 01000001 01 0 P0000) © uJdp *a] YES LOOP AND WAIT UNTIL NOT BUSY
00003 53420023 53 1 20023 0 TAM 238 TRANSFER FIRST CHARACTER ADDRESS
INTO REGISTER FILE LOCATION 238,
00004 53140000 53 0 40000) Ala 1 CALCULATE LAST CHARACTER ADDRESS
«1 By ADDING (A) AND (Bl),
00005 53420033 53 1 20033 0 TAM 338 TRANSFER LCA+] INTO RF 338
00006 77760000 77 1 60000 3 cTo SET TYPE ouT
00007 01400000 01 1 P0000O © uJdes1 TYPEOUT
END
NUMBER OF LINES WITH DIAGNOSTICS [

A-37

COMPASS=32 “2el)

TYPEOUT P00000

TYPEQUT

COMPASS=32 (2,1)

ENTRY~POINT SYMBOLS
FLOATF 00000
FLOAT 00000

LENGTH OF SUBPROGRAM
LENGTH OF COMMON.
LENGTH OF DATA

00025
00000
00000

FLOATF

Pooao0?

o
11/21/66 PAGE 1 °
®
®
®
®
]
L]
]
]
®
®
]
]
o
]
]
]
]
[]
]
o
11721766 PAGE 1

SYMBOLS NOT REFERENCEOD
*FLOAT P00000

2

EXIT

1

®
[] COMPASS~32 (241) FLOATF 11721766 PAGE
. THIS SUBPROGRAM CONVERTS AN INTEGER NUMBER INTO FLOATING POINT
FORMAT,UPON ENTRY THE ADDRESS ofF THE INTEGER NMBER IS LOCATED
® IN THE LOWER 15 BITS OF Pel,
CALL (P) = RTJ FLOATF
[] (Ps1)= ADDRESS OF THE INTEGER NUMBER
(P¢2)= RETURN
. QUTPUT (AQ)= FLOATING POINT EQIVALENT OF THE INTEGER NUMBER
[] ENTRY FLOAT s FLOATF
90000 01077777 01 0 77777 0 FLOATF uJde *8
. 00000 FLOAT EQu FLOATF EQUATE FLOAT TO FLOATF
[00001 47100021 47 0 P00021 1 STy FOUTs1 SAVE B1
00002 54100000 S4 0 P00000 1 LO01 FLOATF»1 LOAD 81 WITH ADDRESS OF INTEGER
00003 20500000 20 1 09000 1 LOasT 0s1 L0An & wITH INTEGER NUMBER
(] 00004 15100001 15 0 00001 1 IND I INCREASE AND SET RETURN ADDRESS
00005 47000022 47 0 P00022 0 STt EXIT TO Pe2 OF CALLING ROUTINE
00006 13077747 13 0 77747 0 SHAQ 24
9 00007 03400021 03 1 PO002] © AQUIE@ FOUT DID THE INPUT NUMBER=Q YES
00010 40000023 40 0 P00023 0 STa MASKO SAVE SIGN OF INPUT NUMBER
00011. 13502057 13 1 02057 i SCa@ 2057841 NORMALIZE THE INTEGER BY USING
[] THE SCALE INSTRUCTION
00012 13077764 13 0 77764 0 sraq -1 MERGE THE EXPONENT AND BIAS
e (CONTENTS OF 81) WITH THE
@ 00013 41000024 41 0 P00024 0 STa TEMP MANTISSA
00016 13077763 13 0 77763 0 SHa@ -12
00015 53100000 53 0 00000 1 Tia 1
[] 00016 36000023 36 0 P00023.0 SCa MASKO COMPLEMENT EXPONENT AND BIAS IF
. THE INPUT NUMBER WAS NEGATIVE.
00017 13000014 13 0 00014 0 SHAQ 12
] 00020 21000024 21 0 P00024 0 w00 TEMP
00021 14177777 14 0 777771 FOUT ENT 2%y1
00022 01077777 01 0 77777 0- EXIT uJp P
([] 00023 00000000 MASKO oct [
00024 TEMP 8Ss 1
N END
[
JUMBER OF LINES WITH DIAGNOSTICS 0
o
1@
. @
COMPASS-32 (2e1) FLOATF 11721766 ~PAGE
. EXIT P00022 P0000S
FLOATF P00020 P00000 P00002
FOUT P00021 P00001 P00007
MASKO P00023 £00010 P00016
TEMP P00024 P00013 P00020

A-39

® 6 &6 0 0 0 0 © & & 0 0 O © O o 0 O O 0 O 0 6 o O O O O O 0 O 0 O 0 O 0 0 0o 0 0

CUMPASS=32

--CROTP

11721766 PAGE

(241) 1
ENTRY=POINT SYMBOLS
CROTP 00000
LENGTH OF SUBPRIGRAM 00121
LENGTH OF COMMON 00000
LENGTH. OF DATA 00000
COMPASS=32 (2.1) CROTP 11721766 PAGE 2
Tr1S SUBPROGRAM COPIES A FILE oF CaRDS FROM A CARU READER(UNIT
0sCUNFROLLER 3,0N CHANNEL 0) Tn A TAPE UNIT (UMIT 1+CONTROLLER
0 ON CHANNEL 1).,THIS SURPROGRAM DOFS NOT CHECK FOH CARD OR
TARE ERRORS,THE MODE OF EACH TAPE RECORD 1S DETERMINED BY THE
MUDE OF THE CARD RECORU. THE OFNSITY OF THE OUTPUT TAPE witLlL
6E THE NENSITY SET By THE OPERATUR,
ENTRY CROTP
00000 01077777 01 0 77777 0 CROTP Udp L3
00001 77003000 7T 0 03000 © Con 30008340 CONNECT CARD REANER ON CHANNEL 0
00002 01000001 01 0 Pn0O0OL © ude *=}
00003 77010001 77 0 10001 O Cun 181 CONNECT NUTPUT TaPE ON CHANNEL
00004 01000003 01 0 PO0003 © uJe =]
00005 77110010 77 0 10010 1| SEL 108y1 eEWIND OUTPUT TARE
00006 01000005 01 0 PNO0OS 0 uJp #ul
00007 77200000 77 0 QU000 2 INPUT coupyY 0 15 THE CaRD READFR HEADY AND
0U0l0 17600003 17 1 00003 2 ANA 3R NOT QUSY=YES INITIATE INPUT=-
00041 06600001 04 1 00001 2 ASE 18 NO LOOP UNTIL IT BECOMES WEADY
00012 01000007 01 0 PO0OO7 O uJp INPUT ANV NOT BUSY.
00013 74000121 74 0 P00121 0 iNpW QeBUFF yBUFF e 40 INITIATE READING A BINARY OR
00014 0000005) 00 0 PEOOSY ¢
00015 01000013 01 0 POUUL3 0 uJdp #a2 RCL rARD,
00016 77200002 77 0 00002 2 EXs 2Rs0 WwALT UNTIL THE CARD READER
00017 #100016 01 0 PO0OL6 O uJe Ra=] RECOMES NOT RUSY,
00020 772020 0% JT 0 00006 2 EXs CLEYS) WAS THE CARD JUST READ A BINaRY
00021 6l0000%: 01 0 POOO41 © JJdp nINARY CARD YES JUMP TO BINARY,
00022 77200010 77T 0 00010 2 EXs 10840 WwAS a FILE CAoD oEAU (ROw 7 AND
00023 01000084 01 0 POUOA4 O UJp EOF A PUNCHED) YES JiMP TO EOF
00024 J4600002 14 1 00002 2 ENa 28
00025 2000133 42 0 PQ0026 3 SacH SELMNDE+3 SET aCD MOUE FOR OUTPUT TAPE,
00026 77110000 77 0 10000 1 SELMODE SE(01
00027 03000026 01 0 P00026 0 uJe 2a]
00030 53020000 %3 ¢ 20000 0 TMa 0 FETCH LAST CHARACTER ADDRESSe+]
00031 12077775 12 0 1I775 0 SHa -2 ANU CHANGE IT TO LAST WURD
ADURFSS+}
00032 44000033 44 0 P00033 0 Swa WuTPUT STURE ADDR IN OUTPUT INSTRUCTION
00033 76077777 Te G 77777 v OuTpul QUTW 1+HUFF o ## INITTATE WRITING QUTPUT BUFFER
0003« 10000051 10 0 POOOS1 0
00035 01000033 01 0 POUO33 0 yJp *=2
00036 77210002 77 0 10002 2 EXxs 2Ry 1 #ALT UNTIL THE UnTPUT TAPE
00037 0100003¢ 01 0 PoOU36G 0 Jde *=1 HECUMES NQOT WUSY
U040 010000U7 01 0 POOOOT ¢ ude INPUT
REsRG L2l 2] » ateng AERBOVRRRBRRRRREN BTN
R2 T2 FERER BRI QR RN BB R AR RD BRGNS “
0004] 14600001 14 1 00001 2 BINaRY ENa 1 SEl 3INARY MODE FOR QUTPUT TAPE,
00042 42000133 42 0 PQUO26 3 SACH SELMNDE 3
0UU43 01000uRe 01 0 POUOR6 O JUde SELMODE
RERRRRAO IR PBBHF ORI R G DR R AR R ETOT whO R CHORVUBRGVOLVIRID R U RO IR PO
aaged & LX T FREBR BB R AR R R PRI R RGO R AR B TR RT OB R RV U RGP ERRPRIRR RS
O0Uv4s 7711001 77 0 10015 1 EOF SEL 15841 #RITE EOF ON nuTRUT TAPE
00065 01000044 01 0 POUOSS 0 [TNTY wal
VU046 77110011 77 0 1VO11 1 SEL 11841 YINLOAD QUTPUT TARE (UNIT)

A-40

COMPASS=32
00047
00050
00051

CUMPASS~32

BINARY

SELMODE

(2e1)

CrROTP

01000046 01 0 P00046 O
01400000 01 1 P00000 0

(2.1)

P0004]
PO00SL
P00O0O
PU0044
P000OT
P00033
P00026

BUFF

CRDTP

uJp

uJpsl
BSS
END

e}
CRDTP
40
CRDTP

FXIT YO SCOPE

NUMBER OF LINES WITH DIAGNOSTICS 0

PQG021
PoOO13
P0Go50
P00023
Poo012
P00032
P00025

P00013

PO00&40

P00042

P00033

PO0043

11/21/66 PAGE

11/21/66

PAGE

3

1

A-4]

L L
@ CoMPASS=3Z (2.1 MTMT 11721766 PAGE 1 []
@ [J
[ENTRY=POINT SYMBOLS [
MTMT 00000
® [
o o
LENGTH OF SUBPROGRAM 00256
LENGTH OF COMMON 00000
[LENGTH OF DATA 00000 L
o o
® []
e [J
® [
o e
o []
® |]
® []
[[
® o
® ®
@ [
® ®
[} [J
® e
L e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e o e i e e .]
® o
@ CoMPASS-32 (2.1) MTMT 11/21/66 PAGE 2 [
THIS SUBPROGRAM COPIES A VARIABLE SIZE RECORD INPUT TAPE (UNIT
lchNTROLLER 0» ON CHANNEL 0) TO ANOTHER TAPE (UNIT 2+CONTROL
® LER 0sON CHANNEL 1), THE DENSITY OF THE OUTPUT TAPE WILL BE THE [J
DENSITY SET BY THE OPERATOR,
THIS SUBPROGRAM DOES NOT CHECK FOR TAPE ERRORS,PARITY IS
[J CHECKED ONLY TN INSURE THAT THE MODE OF THE INPUT TAPE IS THE [J
SAME AS THE MOOE SELECTED,
o ®
ENTRY MTMT
o 00000 OLOTTTIT 01 0 TITTT 0 MIMT uJdp » ®
00001 77000001 77 0 00001 0 con 1840 CONNECT INPUT TAPE(UNIT 1)
00002 01000001 01 0 PQ0001 O uJe sel ON CHANNEL 0
[] 00003 77010002 77 0 10002 © CON 2841 CONNECT OUTPUT TAPE (UNIT 2) [
00004 01000003 01 0 PQ0003 0 uJdp *e] ON CHANNEL 1
00005 77100010 77 0 00010 1 SEL 10840 REWIND INPUT TAPE
® 00006 01000005 01 0 PO00OS O uJp "l [
00007 77110010 77 0 10010 1 SEL 108,1 REWIND OUTPUT TaPE
00010 01000007 01 O P000OT O uJdp o=
([J 00011 77100001 77 ¢ 00001 1 MODE SEL 18,0 ASSUME AND SET INPUT TAPE TO ®
00012 01000011 01 0 POOOLl © uJp #el al?gnv MODE (MODE MAY BE CHANGED
LATER)
[] 00013 73001270 73 0 P00256 0 INPC 04 INRUFF, INBUFF+500 READ INPUT RECORN FROM TAPE UNIT ®
00014 00000304 00 0 PO0D6] O
00015 01000013 01 0 P00013 O uJe 2 1 (MAX RECORD SIZE IS 500
L CHARACTERS) ®
00016 77200002 77 0 00002 2 EXS 2840 WAIT UNTIL INPUT IS COMPLETE
00017 01000016 01 0 P0OO0L6 © uJe *=l
o 00020 77200010 77 0 00010 2 EXS 10840 WAS AN EOF READ ®
00021 01000047 01 0 P00047 O uJe EOF YES JUMP TO EoF
00022 77202000 77 0 02000 2 EXS 20008,0 WwAS THERE A PARITY ERROR
o 00023 01000040 01 0 P00040 0 uJp SETMNDE YES JUMP TO CHANGE MODES []
00024 53020000 53 0 20000 © ™A 0 FETCH LAST CHARACTER ADDRESS OF
INPUT RECORD*}
o 00025 46000032 46 0 P00032 0 SCHA ouUTPUT STORE CHARACTER ADDRESS IN OUT= ®
pUT INSTRUCTION.
00026 22000047 22 0 PO00I1 3 LACH MODE +3 FETCH MODE OF INPUT RECORD AND
[] 00027 42000143 42 0 P00030 3 SACH OUTMODE +3 STORE TO SET oUTPUT MODE THE o
00030 77110000 77 0 10000 1 OUTMODE SEL 01 SAME AS INPUT
00031 01000030 01 0 P0U030 O uJp *el
o 00032 75377777 75 0 77777 3 OUTRUT OUTC 10 INBUFF y#s INITIATE wRITING OUTPUT RECORD ®
00033 10000304 10 0 PO0061 0
00034 01000032 01 0 P00032 0 uJe *2 ®
] 00035 77210002 77 0 10002 2 EXs 28s1 WwAIT UNTIL OUTPUT IS COMPLETE
00036 01000035 01 0 P0G035 0 uJdp %ol
00037 01000011 01 0 P0001] O uJdp wODE LOUP TO READ NEW INPUT RECORD
. el » P T L LTI TS T P T Py T T T .
FRRRBEDEBI . ZITETTYTY TS SREELRRARBRRS RN RN » e » aAnnsane
*he » L3 A4 g
[] 00040 77770000 77 1 70000 3 SETMODE UCS 1F PaRITY ERROR STOP SO THE ®
nPERATOR MAY DECIDE IF IT IS A
LEGAL PARITY gRRNR DR WRONG MODE
o 00041 77100012 77 0 00012 1 SEL 12840 RACKSPACE INPUT TAPE A RECORD []

®
@ COMPASS=32 (2,1) MTMT 11721766 PAGE 3
00042 01000041 01 0 POO041 0 uJp *a]
00043 22000047 22 0 P00011 3 LAGH MODE +3 FETCH ASSUMED MODE AND
[00044 16600003 16 1 00003 2 X04 3 CHANGE 1T
00045 42000047 42 0 PQOO11 3 SACH MODE +3 SET NEW MODE TN SEL INSTRUCTION
AND TRY AGAIN,
[] 00046 01000011 01 0 P00O11 0 udp MODE
® wan * . a ane
00047 77110015 77 ¢ 1001S 1 EOF SEL 158, 1 wRITE EOF ON OUTPUT TAPE
00050 01000047 01 0 POCO4T O uJp sal
[] 00051 77700000 77 1 00000 3 sLs STOP IF SELECTIVE STOP SWITCH
SET NN CONSOLF.
00052 00100054 00 0 P000S4 1 s EXIT EXIT AND UNLOAD TAPES IF JuMP
e KEY 1 IS SET ON GONSOLEe
00053 01000011 01 0 P0OOl1 © Jop MODE IF NOT JUMP To READ INPUT RECORD
o P * wesse M M
00054 77100011 77 0 00011 1 EXIT SEL 11850 UNLOAD INPUT TAPE
{ B 00055 01000054 01 0 P000S¢ 0 uJp #al
00056 77110011 77 0 10011 1 SEL 1181 UNLOAD OUTPUT TAPE
00057 01000056 01 0 P00056 0 uJde #a
® 00060 01400000 01 1 PO000O 0 INTYS MTMT FXIT TO SCOPE
00061 INBUFF BSSsC 500
END MTHT
[]
NUMBER OF LINES WITH DIAGNOSTICS 0
@
o
[]
®
[
®
[
®
®
L
®
@
@ COMPASS=32 t2e1) MTMT 11/21/66 PAGE 1
EOF P00047 P0002]
® EXIT P000S4 £00052
INBUFF P00061 £00013 POO013 P00032
MOLE P00011 P00026 £00037 P00043 P00045
o P00046 P000S3
MTMT P00000 P00060
QUTMODE £00030 P00027
® ouTPUT £00032 £00025
SETMODE £00040 P00023
o
®
®
[J
[J
o
[J
®
[]
[
®
[]

43

COMPASS~32

(2.1}

ENTRY=POINT SYMBOLS

cviscoB

00000

LENGTH OF SUBPROGRAM
LENGTH OF COMMON
LENGTH OF DATA

COMPASS=32

00000
00001
00002
00003
00004

00005
00006
00007

ouolo
ovoll
00012
00013
0001s
00015

LITERALS

00016

2.1

01077777 01
40000015 40
47200013 47
14200000 14
22000064 22

50000016 50
15200001 15
23400064 23

53040000 53
04200003 04
01000005 01
14277777 16
01400000 01

00000012

cvracos 11721766 PAGE 1
00017
00000
00000
cvracus 11721766 PAGE 2
THIS SUSPROGRAM CONVERTS a POSITIVE FOUR CHaRACTER BCD NUMBER
TO A 24 BIT BINARY NUMHER,
CALL (P) =RTY cvraccs
(P+U) =RETURN
{A) =THE FOUR CHARACTER RCD ~NUMBER
OUTPUT (A)=24 BIT BINARY NUMBER
ENTRY CvTBCD8
77777 0 CvTIBCOH UJp L
P00015 0 STa TEMP SAVE INPUT PaR.
POOO13 2 STy B2SAVE.2 SAVE (82)
00000 2 ENT 092
POO01S © LAcH TEMP LOAD A WITH MOST SIGNIFICANT
CHARACTER.
P000l6 0 LOOP MUa a0l2 MULTIPLY (A) BY aN OCTAL 12
00001 2 INT 142
POO0O1S © LOcH TEMP,2 LOAD Q@ wITH NEXT SIGNIFICANY
CHARACTER,
40000 0 AQa
00003 2 ISE 342 1S B2 EQUAL Tn 3 YES EXIT
P0000S O uJp LoopP NO JuMP TO LOOP
TT771 2 B2SAVE ENT "2 RESTNRE B2
PO00O0D O UJdes] cvTBCDB
TEMP 8ss 1
€ND

NUMRER OF LINES WITH DIAGNOSTICS

............0.0....:.....O...O....O.....C.

CUMPASS=32 (2.1)

B2SAVE
cvTBCDB
LooP
TEMP
LITERAL

P000}3
P0000
P00005
P00015
P00016

0000

cvracusd

ool2

Poooo2
P00o14
P00012
P00001
P00005

Po000é

PO0O0OT

11/721/66 PAGE

1

COMPASS=32 (241)

ENTRY=POINT SYMBOLS

CVTBBCO

00000

LENGTH OF SUBPROGRAM
LENGTH OF COMMON

LENGTH OF DATA

00033
00000
00000

CvT8BCO

11/71/66 PAGE

1

o ®
COMPASS=32 (2e1) cvTBsco 11/721/66 PAGE F] []
THIS SUBPROGRAM CONVERTS A 26 RIT RINARY NUMBER TO A EIGHT
CHARACTER SCD NUMBER WITH BLANKS INSERTED To THE LEFT OF THE
MOST SIGNIFICANT DIGIT. [J
CALL (P) =RTY cvTB8Cco
(P+1) =RETURN o
(A) = 24 BIT BINARY NUMBER
OUTPUT (aQ) = EIGHT CHARACTER BCD NUMBER []
ENTRY CVTBRCD
00000 01077777 01 0 77777 0 CVTRBCD UJp » [J
00001 47100025 47 0 P00025 1 sT1 B1SAVE,] SAVE (B1)
00002 21000027 21 0 PA002T 0 L0a BLANKS
00003 41000030 41 0 P00030 0 sfq ACDANS SET NUTPUT AREA TO BLANKS [J
00004 41000031 41 0 P0003] 0 sTa BCOANS]
00005 43000113 43 0 P00022 3 SQcH SETSIGN#3 SET aSSUMED SIGN TO POSITIVE
00006 03200012 03 0 P00O12 2 AZJrGE BYPASS 15 INPUT NUMBER POSITIVE YES JUMP [J
00007 14100040 14 0 00040 1 EN] 40841 NO SFT SIGN
00010 47100022 47 0 P00022 1 sT] SETSIGNy)
00011 16477777 16 1 TITI7 © X0asS -0 COMPLEMENT THE 24 BIT NUMBER [J
00012 14100007 14 0 00007 1 BYPASS ENT 741 SET MAX TIMES THROUGH LOOP
00013 13077747 13 0 77747 0 LOOP SHAQ -da SHIFT FOR 48 gIT DIVIDEND
00014 51000032 S1 0 P00032 O ova =012 olvInE By OCTAL 12 .
00015 43400140 43 1 P00030 0 SGcH 3CDANSs1 STORE NEXT SIGNIFICANT DIGIT
00016 02500020 02 1 P00020 1 1Jo ®e2,1
00017 QlODOOZZ 01 0 POO022 O uJdp SETSIGN ‘
00020 04400000 04 1 00000 0 ASESS 0 IS THE GUOTIENT ZERO=-YES SKIP
00021 01000013 01 0 P00013 0 uJe LOOP
00022 14700060 14 1 00060 3 SETSIGN ENp 608 PLACE SIGN JUST TO THE LEFT OF .
00023 43400140 43 1 P00030 0 SQcH BCDANSs1 MOST SIGNIFICANT DIGIT,
00024 25000030 25 0 P0003p 0 LuaQ BCDANS
00025 14177777 14 0 77777 1 BI1SAVE ENI iyl RESTnRE (81) ®
00026 01400000 01 1 POC00O © UJPe I cvT8aCDd exIT
00027 60606060 BLANKS BCD 1y
00030 BCDANS BSS 2 [J
END
[
LITERALS
00032 00000012 Py
NUMBER OF LINES WITH DIAGNOSTICS [
[
[]
[
[
[J
@
COMPASS=32 (2.1) CVTBBCO 11721766 PAGE 1
B1SAVE P00025 P00001
8CDANS P00030 P00003 P00004 P00015 P00023
P00024
BLANKS P00027 P00g02
BYPASS PQOO12 PG0O0GE
CVTBBCO P00000 P00026
LOOP P00013 Pogo2!
SETSIGN P00022 #00005 P00010 P00017
L1TERAL P00032 00000012 P000l4

®
®
SEWUENCE (002
JOBesys
@ CoMPaSSILiX
o
o
[}
®
®
[
o
®
]
[
[
®
[J
[J
®
[J
L
[J
o
[
[) COMPASS=32 (241) 10C
®
® EXTERNAL SYMEOLS
c1o

[J
[J

ENTRY=PQINT SYMBOLS
® 10¢ 00000
[

LENGTH OF SUBPROGRAM 00032
[] LENGTH OF COMMON 00050

LENGTH OF DATA 00000
[J
@
[
[J
o
|
[J
@
[J
[J

11721766 PAGE 1

COMPASS~32 (2.1)

00000
00001
00002
00003
00004
00005
00006
00007
00010
00011
90012
30013
2001e
00015
00016
00017
00020
00021
09022
00023
00024
00025
00026
00027
90030
20031

01077777
00777777
0100007«
01000001
00000000
00000050
00700001
13000074
03200006
17700010
04700000
01000031
22000000
04600041
01000001
00700006
02000073
01000017
00000002
00000002
00700017
13000073
03200024
77700000
01000001
01400000

20000

04056
SNAR, (ILC) 154C04CATI0DP
Ringl0

0l
00
01
01
00
00
00
13
03
17
04
0l
2e
04
0l
00
02
01
00

00
13
03
17
01
'3}

O OO OO R OO O OO OO D

77777
X717
00074
P000O]
Co0000
00050
X0000}
00074
P00006
00010
00000
P0003}
€00000
0004}
P00001
X00006
00073
P00017
€ovoo02
00002
X00017
00073
Po0024
00000
P000Q]
P00000

10C
READ

EOF

INBUFF

11/21/66 PAGE

ENTRY 10C
EXT cio
udp -
RTy cio
0l 60
uJve L]
INBUFF
40
RTy cro
13 60
AZJsGE (V]
ANQ 108
WSE 0
uvp EOF
LACH INBUFF
ASE 418
uJp READ
RTy Clo
02 59
uJdp (LF]
INBUFF+2
2
RTY clo
13 59
AZJ9GE LT3
SLs
uJp READ
uJder 10C
COMMON
8Ss 40
END 10C
NUMBER OF LINES WwITH DIAGNOSTICS 0

A-48

SuBP
15547

ENTR
16557
15621
00745
02402
02737

ComMM
03206

DATA
NONE

EXTA
NONE

IODRAIN

I0DRAIN
WRITELUN
SEL
RDCKSUM
LOADER

03255

15611

16134
16163
02130
02305
02261

10PACK

READINP
WRITEOUT
usT
RDCKF1
ACCOUNTS

16245

16012
16397
02170
02015
02303

SNAPSHOT

READLUN
PROGDUMP
CsT
BCOBOXS
MEMORY

17705

15611
16266
00060
02018
02015

10C
WRITECTo
FORTOUMP

FDPBOXS
ABNORMA|_

16200
16245
02241
00107

WRITEACC
SNAPSHOT
RHT
clo

16172
177085
02201
02453

WRITEPUN
10C

AET
START2

bP LOC 17722 A 00000060 Q 00000000 Bl 00000
OCTAL MEMORY
03206 00000 60606060 60605125 21436044 64734564 73432144
03216 00010 45857360 31620321 51734547 65734473 44222151
03226 00020 51477344 30216347 60606060 80606060 00702015
GAP
* END +
OP LOC 17722 A 00000080 @ 00000000 81 00000
OCTAL MEMORY
03206 00000 60606060 60017345 64212273 60606060 60606060
GAP
03222 P°°°z° 60606060 60606060 60606060 60606060 00702015
A
® ENp ®

82 17708

22242174
73443021
00702015

Bz 17705

60606060

00702018

83

3147513
63734467
00702015

83

60606060

0070201%

00000

4425733)
73442221
00702015

60000

60606060

00702015

IMR 0003

IMR 0003

SENUENCEs003
JOHs JCe4B2915

0CCeX16

0CCa (IDCI274010000N0X
0CCsX220000024 (I1DC) +440000031¢64000010400777777
0CCy+50,2000073,01090003x400000015X,00000001
0CCo+9007T77T7413000073,03200010K,77700000
OCCe+901000030(TDCI 977606060

RUne 10

Susk
17635

ENTR
17635
02201
02453

CoMM

NONE

DATA

NONE

EXTA
17617

10C

In¢ 00745 SEL 02130
AET 02402 ROCKSUM 02305
START2 02737 LOADER 0225%)

usT
HDCKF)
ACCOUNTS

n2170 ST
n2015 RACDANXS
02303 “FMORY

nénen
02015
02015

crT
FDP20XS
2BNARMA(

n2241 RHT
00107 CIO

A-5i

LOC 00043 A nAN02015 9 40004001

REGISTER FILE
a0 00077460 20613%34 00770077
1o N40TTST4 26013534 00770077
20 60445400 N00A5254 265T1102
30 71045400 72045404 23575770
40 00004243 n0002403 00rTTTT76
54 01007331 N0003274 00000000
40 0000000k 00000070 000600000
1o 00000002 04077776 00000003

ME 10RY

Gar

03200 6060ARNAN KDANRKNKD 60RDBOAD

A

17510 00702015 00702015 00702015

17620 44017622 44n17627 001777777

17630 13000073 n3217627 17700000

1740 01017636 N0N1T7A6T 00N000DSO

17650 0101T66A 22077334 04600041

17660 00000002 no7onin? 13000073

17670 20102001 11007001 44002020

GAaP

17730 nooonone nQOOODNOO 0ONDOOON

SEG ERR

SEN ERRK

SEJUENCE 0N

R1 0n0l4

n07Tn077
no770077
20007725
no00772%
non03I32a
00060000
HOADAUGD
20000050

ABABROGQD

no7Tn201%
n2n00073
I101766%

np7onlat
01017636
03717661
11722100

nnnnnooo

/*ENAR

A2 17435

00770077
0UT70077
aTn306134
00770077
NHBNAVNALT
Noi0akT
aunuYNOA
a0nunlssé

A0R0ARDAHN

aB70201%
ninl7627
TTanANAN

13000074
noTUON1nT
0lnl7617
11n21004&

non0oaonn

B3 onono

A0TTnoT7
nnTTNOTT
"0002n15
0017435
20000000
NGRS
AN0n3271
290000013

“0606040

702915
ANgl754
n1n02n3T

13217443
2000073
n1017636
f000n000

nooonono

1€ n1le

007700677
06770077
40004003
aennoonn
00017302
60060000
nonNnA17y
LI LLEY Y]

007n2015

as7n201S
noonGony
80700107

17700010
n1n17654
01417635
00000000

ooanooo0

Ia 17645

n077T0077
aGTTNOTY
00000014
00030007
n000NOOO
Al202237
n000n013
n0LONOOO

n0702m5

20017661
not?TITI7
nlo0no74

n4700000
n0017671
n0054010
n0odn000

n0702015

TC on

TA

n201%

IMR 0002

A-52

ADDITIONAL EXERCISES (Assignment Sheets)

3200 Computer Characteristics

Load Instructions

Store Instructions

Arithmetic, Fixed Point

Register Operations Without Storage Reference
Stop and Jump Instructions

Inter-Register Transfer

Search and Move Operations

Storage Tests

BCD Operations

Bl

B3

B4

B5

B7

B9

B12

Bl4

B18

B20

B2

B6

B8

Bll

B13

B17

B19

B22

Appendix

3200 COMPUTER CHARACTERISTICS

For each of the following word addresses and character positions,
provide the equivalent character address and the storage module in

which it is contained.

Word Address Character Position Character Address Storage Module

a) 00027 #0
b) 06313 #1
c) 15346 #2
d) 20476 #3

For each of the following character addresses provide the equivalent

word address, character position and storage module.

Character Address Word Address Character Position Storage Module
a) 300630
b) 152063
c) 325076
d) 150762

If Character Address 340556 were specified, what character address

would actually be referenced in an 8K system?

If Character Address 160560 were specified, what character address

would actually be referenced in a 16K system?

The 3200 system can consist of a maximum of 12-bit data

channels.

9.

10.

11.

12.

A 24-bit data channel may be used in place of 12-bit data
channel(s). It will be programmed as channel number .
A 3200 data channel may control a maximum of peripheral

equipment controllers.

Give a brief description of the four (4) types of Processors.

What memory locations are always permanently protected and why?

What address or block of addresses are protected by the Storage

Protect Switches below?

111 111 110 NNN NNN =

Describe what happens when an instruction attempts to write into a

Protected address?

Give the function of each location within the register file.

LOAD INSTRUCTEONS

GIVEN: (A) = 00000000 ehy= 2
(Q) = 00007777 @% = 2
®) = o

TEMP = Memory Location 13314

TEMP [277313317]
+1 [40]51]33]15 |
+2 [20]41]33] 14 |
+3 [23] 14] 26] 15]‘

+4 [00]71]33] 16 |

What are the contents of the indicated registers after the execution

of each instruction? Assume initial condition above for each problem.

1. LDA TEMP (a) =
2. LDQ TEMP+1 Q@ =
3. LACH TEMP, 1 a) =
4, LDA,I TEMP, 2 (a) =
5. LDL TEMP,2 (a) =
6. LCAQ TEMP+1 a) =

' Q =
7. 20113315 a) =
8. 22055462 (A) =
9. 54113316 el =
10. LDI,I TEMPH4, 1 @l =
11. LQCH TEMP+7 Q) =

12. LACH TEMP+2,1 a) =

B-4

STORE INSTRUCTIONS

GIVEN: (A) = 24130120 3l = -1
(Q) = 13000003 %) = 10
) = 1

TEMP = Memory Location 33444
TEMP1 = Memory Location 33446
TEMP | o1]33]347143 |

L 771 5334 |44 |

TEMP1 [66] 73[34]45 |

[65T 033446 |

| 44] 55166177 |

What are the contents of the indicated registers or memory locations
after the execution of each instruction? (Assume original settings

at beginning of each instruction set.)

1. STA TEMP+4 4 =

2. STQ,I TEMP (TEMP) =

3. SACH TEMP, 2 (TEMPR2) =

4, SWA TEMP+3 (TEMP+3) =

5. STAQ,I TEMP Where are A & Q stored =
6. SCHA TEMP+1 (TEMP+l) =

7. STI TEMP+4 (TEMP+4) =

8. SQCH TEMP1,1 (Modified location) =

9. STI TEMP1,3 (TEMPL) =

10. SWA,I TEMP1+1 (TEMP1)

ARITHMETIC, FIXED POINT

The following problem set is to familiarize the student with the

arithmetic instructions.

1. MC, set P to "GO" and start.
GO ENA,S 604B
ENQ 777778
MUA INTEGER
HLT GO
INTEGER HLT 4
(), =
@, =
2. MC, set P to "GO! and start.
GO ENA,S 0
ENQ,S 600B
DVA DIVISOR
HLT GO
DIVISOR OCT -7
A =
()f
(Q)f =
3. MC, set P to "GO" and start.
GO LDA NUMB
ADA NUMB+1
ANA 777778
RAD NUMB+2
HLT
NUMB 0CT -10,-2000,1
), =
4. MC, set P to "GO" and start.
GO ENI 7,1
ENA,S 6
INA,S 1
SBA MINUS
HLT
MINUS OCT 10

(a), =

5.

What are the contents of A register when program halts?

TEMP

ENI
LDA
SHA
HLT
oCT

(a)

-6,1
TEMP
5,1

40123400

REGISTER OPERATIONS WITHOUT STORAGE REFERENCE

For each of the following short routines, indicate the final contents
of designated register., Assume that a M.C. was performed prior to

starting each program.

1. M.L. CONTENTS
00000 ENI 40000B,1
00001 INI 100B,1
00002 X01 7677B,1
00003 ANT 77778,1
00004 HLT
1 —
@b, =
2. 00000 ENA,S 40000B
00001 X0A,S 40000B
00002 INA,S 500008
00003 ANA,S 40000B
00004 HLT
(A)f =
3. 00000 ENQ 60000B
00001 X0Q 70000B
00002 INQ 777778
00003 ANQ 7777178
00004 HLT
@ =
4, 00000 ECHA 2003B
00001 ENQ 0
00002 SHA -2
00003 SHAQ 24
00004 SHQ 1
00005 SHAQ 35430B
00006 HLT
a), =

@, =

GIVEN: (A) = 40372156 L) = 77777
(Q) = 35642761 (8%) = 41745
(B3) = 72156

Regarding each of the following instructions as separate problems, indicate

which will RNI at P + 1 by placing a check () in the space provided.

1. ISE 0,1
2. ISE 41745B,3
3. ISE 437458, 2
4. ____ ASE,S 276l4B
5. ASE 72156B
6. ___ QSE 47321B
7. ___ QSE,S 34763B
8. __ ISE 721568,3
9. __ ISE 0,0
10. __ ASE,S 72156B
11. ___ 1sG 777778,1
12. 115G 273178,2
13. 156 77345B,3
14. __ ASG,S 73452B
15. __ QSG,S 04210B
16. ASG 721568
17. QSG 350168
18. 1SG 721568B,3
19. 1SG 177748,0

20. 1SG 37432B,2

B-8

GIVEN: (a)

I

(Q

STOP AND JUMP INSTRUCTIONS

40372156

35642761

sl)
(3%

(83)

i

B-9

77777

41745

72156

Regarding each of the following instructions as separate problems,

indicate which will RNI at P + 1 by placing a check () in the space

provided.

1. ISIT

2. __ 1sI

3. _ 181

4. ____ 1SD

5. I1SD

6. ___1IsD

7. ___ 1SD

8. __ 1IsD

9. __ 1sI
10. _ 1J1
1. _1JD
12, 11
13. _ 1JI
14. 1JD
15. _ AZJ,EQ
16. _ AZJ,NE
17. __ AZJ,GE
18. __ AZJ,LT
19. _ AQJ,EQ
20. __ AQJ,GE

0,1
306328, 2
72156B,3
0,0
777778,1
4744582
05621B,3
417458, 2
37621B,1
0,0
62156B,3
4444483
77777B,3
67565B,0
73125B
331278
272158
777778
414258

42761B

1. MC, set

06000
06001
06002
06003
06004
06005
06006

2. MC, set

3. MC, set

P to 06000 and start.

B-10

_CONTENTS

LDA
INA,S
AZJ,NE
HLT

00
INA,S
UJP

), =

P to 05120 and start.

CONTENTS

ENI
INA,S
1JD
INQ,S
1S1
uJP
ANA
HLT

i

@, =

Y,

i

P to 07000 and start.
CONTENTS

1J1
uJp
uJp
1JI
uJp
uJp
RTJ
HLT

(®, =

(07002)

6004B
-1

6005B

6001B

778,1
10000B
5121B,1
10000B
778,1
5123B

0

70078B,1
7006B,3
70048
70028, 2
7005B,1
70028
70028

4, What does this program do?

ENI 4,1
AGAIN LDA TEMP,1
RTJ ROUTINE
uJp *+4
*RAD TALLY
1JD AGAIN,1
HLT ok
RAD COUNT
ujp *.3
ROUTINE uJp *%,2
ENI 0,2
ASG 100B
INT 1,2
ENA 1
uJp,1I ROUTINE
TEMP OCT 100
OCT 21
0CT 77
0oCT i01
0OCT 10
TALLY OCT 0
COUNT OCT 0

*The RAD instruction must have been discussed before the above

problem can be done.

5. MC, set P to "C.0" and start. The selective stop switch and jump

switches 1 and 6 are set.

M.L. CONTENTS
C.0 uJpP C.6
c.1 HLT .0
C.2 sJ1 c.1
SLS
C.4 SJ3 C.10
SJ6 C.2
C.6 $J2 C.10
uJpP C.4
.10 SLS
(P =

If the machine were restarted from where it stopped, what memory

location would it go to?

INTER-REGISTER TRANSFER

1. What are the contents of the A register and Q register when program

is executed?

M.L.
00000 LDQ TEMP
00001 ENA GET
00002 SWA *+1
00003 LDA *%
00004 AQA
00005 STA *+2
00006 ENQ -6
00007 HLT *k
00010 HLT *%
00011 GET ENI 0,0
00012 TEMP OCT 02677771
(4) =
Q) =
2. MC, set P to GO and start.
GO ENA 10
TAI 3
ENQ 10
INI -1,3
HLT
@), =
(Q)f =
3
B e
()f
3. Write the octal coding that will be generated by the following
COMPASS coding.
COMPASS OCTAL
1) AQA =
2) INA 3 =
3) TIA 2 =
4) QM 22B =
5) AIA 1 =
6) TIM 20B,2 =
7) TAM 77B =
8) TMI 60B,3 =
9) T™MA 278 =
10) ™Q 55B =

11) TATI 1

B-13

4, MC, set P to BEGIN and start.

BEGIN ENI -100B,1
ENI -200B,2
ENI 300B,3
ENQ,S -0
TQM 24B
TIA 1
SHAQ ~24
TIA 3
AQA
TAM 25B

AIA ATA 2
TAM 26B
ENA,S -1
IAI 1
TIM 27B,2
TMQ 24B
ENA (0]

AQA

HLT

W, =
@, =
1

(B)f =
(v24) =
(v25) =
(v26) =
(v27) =

5. MC, set P to BEGIN and start.

BEGIN LDAQ NUMB
MUAQ INTEGER
DVAQ DIVISOR
STAQ ANSWER
ELQ
EUA
STAQ ANSWER+2
HLT
NUMB 0CT -0,-100
INTEGER 0CT 0,4
DIVISOR 0CT 0,2
ANSWER 0CT 0,0,0,0
(ANSWER) =
(ANSWER+1) =
(ANSWER+2) =

(ANSWER+3)

START

DATACARD

BELBLANK

SRC

INCRE

FCA

EXIT

SAVEB2

MASK

SEARCH AND MOVE OPERATIONS

IDENT
ENTRY
EXT

ENA
RTJ

BSS
END
IDENT
ENTRY
UJP
STI
ENI
SHA
SCHA
SCHA
INA,S
SCHA
SRCN
UJP
PAUS
uJp
TMA
LPA
SHAQ
TMA
LPA
AQJ,EQ
SCHA
INA,S
SCHA
LACH
SACH
INI
UJP
LDA
LPA
AIA
ENI
uJp,I
0CT
END
FINIS

MAIN
START
DELBLANK

DATACARD
DELBLANK

20

START
DELETE
DELBLANK
*%
SAVEB2,2
0,2

2

FCA
SRC+1

80

SRC
60B , %% k%
*.2
4000B
*.1

30B

MASK

24

ann

20B
MASK
EXIT
*+3
1

SCR+1
*k

LK%k, 2

1,2
SRC

*.3

MASK

2

#% 2
DELBLANK
00377777

B-14

B-15

Assume program MAIN had previously read in one card image into the
area labeled DATACARD before it transfers control to a commonly

used subprogram called DELETE.

A. Why is Index Register No. 2 saved upon entrance to the DELETE
subroutine?
B. Why does the program MAIN execute an ENA instruction before

it does a return jump to the DELETE subroutine?

C. What is the significance of the double asterisk (*%) in the

coding of the SRCN instruction in the DELETE subroutine?

D. What is the function of the unconditional jump instruction which

follows the SRCN instruction in the DELETE subroutine?

E. What two conditions will cause the PAUS instruction within the

DELETE ROUTINE to do a SKIP EXIT (P + 2)?

F. Why at location INCRE is the character address in A updated
by 1?
G. What does the A register contain when control is transferred

back to program MAIN?

ENTRY PROG1
PROGL ENI 0,1

ENI 0,2
MOVE LACH FILEL,1

SACH FILE2,2

INI 1,2

1sI 7,1

UJP MOVE

HLT

END PROG1

ENTRY PROG2
PROG2 MOVE 10B,FILE]l,FILE2

UJpP +-2

PAUS 4000B

UJpP *.1

HLT

END PROG2

Given the above routines, which one will accomplish the move faster?

Assume both routines do a character by character move.

Does the MOVE instruction buy the programmer much time if he has to

wait until the MOVE is completed?

B-17

Write a short program which will search a character block (character

addresses CARD to CARDH80) for the first COMMA(,). Loop until the

search is complete and determine if a COMMA(,) was found; if one

were found, load the ADDRESS intoc the A register; if not, set A = 0.

STORAGE

ENTRY
SEARCH ENI
ENI
ENA
ENQ
CPR
uJP
uJp
RTJ
1JD
HLT
FIND uJp
ENA
ATA
STA
INI
UJP,I
LIST DEC
ADDRESS 0CT
END

What does the above program do?

When the program comes to a HALT, what do the following locations

contain?

The number in the A register after executing a SSH

a)
b)
c)

d)

ADDRESS =

ADDRESS+1 =

ADDRESS+2 =

ADDRESS+3 =

Zero

TESTS

SEARCH
0,2
7,1
200
100
LIST,1
%43
%42
FIND
*_4,1

LIST

1

ADDRESS , 2

1,2

FIND
1,150,20,300,5,200,100,77
0,0,0,0,0,0,0,0

The original number from memory, unshifted.

The original number from memory, shifted.

The same number that was

< A
1Tl Al

instruction is?

SCAN

CONTINUE

CHARADDR

CHECK

CONTROL
MASK
DATA
LIST
LIST1

What does the above program do?

ENTRY
ENI
ENI
ENI
LDQ
LDA
MEQ
uJpP
ENA
ATA
SHA
AIA
STA
INI
UJP
SSH
HLT
SHQ
SHA
STAQ
INT
uJp
0CT
0CT
0CT
BSS
0CT
END

SCAN
0,3

0,2

3,1
MASK
DATA
LIST,1
CHECK
LIST

1

2

2
LIST1,3
1,3
CONTINUE
CONTROL

18
18

MASK

1,2

SCAN+2

73567356

77000000

45000000

3
0,0,0,0,0,0,0,0,0,0,0,0

Write a program which will search a table called INFO, looking for

the value 628 in bit positions 11 - 06. Search every other location

in INFO, which is a total of 1610 locations long, starting with the

last location within the INFO table. The program must keep track of

all addresses, where a find had occurred.

B-19

B-20

BCD OPERATIONS

The decimal quantity 432,768,987 is contained in a field beginning at
character address 010000. Indicate the octal contents of the appropriate
memory locations.

MEMORY LOGATIONS CONTENTS

After executing a SET 12 and a LDE AA+2 instruction, indicate the
sign and contents of the E register. AA - 65136
CONTENTIS
AA 11071002
02050711
(E)f = 06010210
11117102

After executing a SET 10 and a ADE BB+2 instruction, indicate the

final sign and contents of the E register. BB = 13417

CONTENTS
(E), = -0,000,987,654,321 BB 04060701

* 10010010
(E)g = 11100000

After executing a SET 4 and a SBE CC+2 instruction, indicate the

final sign and contents of the E register. CC = 40000

CONTENTS
(E)i = +0,000,000,000,989 cC 01141011
02650411

(E)g =

After executing a SET 13 and a ADE DD+1,3 instruction, indicate the

final sign and contents of the E register. (B3) = 77765 DD = 04002

CONTENTS
(E); = +1,000,000,000,000. 01100611

11070302
(E)g = 10100301

DD 00111151

6.

7.

After execut
sign and con

storage loca

(E).

1

(E)

Fill in the
contents, af

contents not

(Ep)

ouT
CHARS
ANSWER

CHARS

ing a SET 9 and a STE 10B instruction, indicate the final
tents of the E register as well as the contents of the

tions affected.

-9,568,765,867,898. M.L. CONTENTS

six (6) locations starting with "CHARS" with their octal
ter the following has been executed. Place X's where

known.

= +0000045468799
EZJ,EQ ouT
EZJ,LT oUT
SET 10
SFE 2
STE ANSWER
NOP
HLT
BCD,C 12,TOTAL EQUAL
BCD,C 10,

(B), =

o =

B-21

B-22

8. Fill in the octal contents of the four (4) locations starting at
"DATA", after the following program has been executed. Place X's

where the contents are not known.,

E = -0405060708090
SET 1
ENI 0,2

LOOP EZJ,EQ DONE
SFE -1
STE DATA, 2
INI 1,2
uJpP LOOP

DONE HLT

DATA BCD,C 12,

DATA

(E)f =

ANSWER SHEETS

3200 Computer Characteristics - Answers

Load Instructions - Answers

Store Instructions - Answers

Arithmetic, Fixed Point - Answers

Register Operations Without Storage Reference - Answers
Stop and Jump Instructions - Answers

Inter-Register Transfer - Answers

Search and Move Operations - Answers

Storage Tests - Answers

BCD Operations - Answers

Cl - C3

C4

C5

Ccé

c7

Cc8

Cc9

Cl0 - Cl1

Cl2

C13

Appendix

3200 COMPUTER CHARACTERISTICS -~ ANSWERS

Character Address

a)
b)
c)

d)

0001344
0314554
0656324

1023734

Word Address

a)

b)

Cr
~

Character Address

0405568

Character Address

a)

b)

a)

b)

1605608

#2

Storage Module
0

0

Character Position

0

D

Word Address
101338
Word Address

341348

Storage Module

3

w

Character Position

2

Character Position

0

3204 (Basic Processor) contains the logic to perform 24-bit fixed

point arithmetic, 48-bit fixed point addition and subtraction,

Boolean, character and word handling and decision making operations.

3205 (Scientific Processor) contains the capability of the 3204,

plus floating point and 48-bit precision fixed point multiplication

and division.

C-1

9.

10.

11.

12.

c) 3210 (Data Processor) contains the capability of the 3204, plus
the ability to handle BCD characters.
d) 3215 (General Processor) contains the capability of the 3204,

3205 and 3210.

Memory Size Locations Protected
4K 07640 - 07677
8K 17640 - 17677
16K 37640 - 37677
32K 77640 - 77677

The auto-load program resides here, and consists of the necessary
instructions to bring in a program from magnetic tape unit. If these
locations were not protected, this program could be destroyed and no
more auto-load capability, which is a necessary item for the 3200

Scope operating system.

LOCATIONS 776008 thru 776774

No writing takes place and the write instruction acts like a NOP
instruction. The computer does not HALT and does not generate an

interrupt. The illegal write can be only sensed by the INS instruction.

Register Numbers Reserved for:

00 - 07 Modified I/0 instruction word containing the
current character or word address (channel
0-7 control)

10 - 17 Modified I/0 instruction word containing the
last character or word address + 1, depending
on the instruction (channel 0-7 control)

20 Search instruction word containing the current
character address (search control)

21 Move instruction word containing the source
address (move control)

12. {(cont.)

Register Numbers

22

23

24

30

31

32

34

27

77

C-3

Reserved for:
Real-time clock, current time
Current character address (typewriter control)
Temporary storage

Instruction word containing the last character
address +1 (search control)

Instruction word containing the destination
address (move control)

Real-time clock, interrupt mask
Last character address + 1 (typewriter control)

Temporary storage

10.

11.

12.

27313317

40513315

00000033

23142615

00003314

37264462

57364463

23142615

00000

=)
w
(O8]

13314

42615

00000015

00000040

LOAD INSTRUCTIONS - ANSWERS

C-4

10.

24130120

01333443

20733445

65030120

(TEMP) =

(TEMP+1)

77530120

44500000

(TEMP+1)

66700001

66730120

A

STORE INSTRUCTIONS - ANSWERS

Q

77533403

Cc-5

(a),

@g

(A)g

@

(A,

(a),

(a)¢

ARITHMETIC, FIXED POINT - ANSWERS

00003020

00000000 (can't be a negative zero)

77777711 (-668)

00000006 Same Sign as Dividend

00075767

77777776

60051600

C-6

REGISTER OPERATIONS WITHOUT STORAGE REFERENCE - ANSWERS

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

BLY = 07777

(Adg = 77740000
Q)¢ = 00007777
(A)¢ = 00001000
(Q)¢ = 00000000

l/

I/

!/

l/

‘/

l/

l/

Ve

‘/'

10.

11.

12.

13.

14,

15.

17.

18.

19.

20.

\ N\

ANAN

S

NN N NN

C-8

STOP AND JUMP INSTRUCTIONS - ANSWERS

(A)¢ = 00000000
(A)¢ = 00000000
Q)¢ = 01000000
(Bl)f = 00000

(P)¢ = 07007
(07002) = UJP 07007B

Looks at all values of TEMP TEMP+4,
for values greater or equal to 100
octal. A count of all values equal

to or greater than 100 octal are

kept in COUNT. A count of all values
less than a 100 octal are kept in
TALLY.

(). = c.1
£ .0

(4)
(Q)

(a)
(Q

INTER-REGISTER TRANSFERS - ANSWERS

16600000

00077771

00000012

00000012

(133)f = 00011

1) 53040000
2) 53740000

3) 53200000

4y 53410022

5) 53140000

6) 53630020

7) 53420077

8) 53330060

9) 53020027
10) 53010055
11) 53500000
(4); = 00000000
Q¢ = 77777777
(Bl)f = 77676
(V24) = 77777777
(V25) = 00100177
(V26) = 00177776
(v27) = 00077577
77777777

77777577

00000000

00000000

A)

B)

¢

D)

E)

F)

SEARCH AND MOVE OPERATIONS - ANSWERS

All subroutines which are used by other programs, should save any
register that is uses in performing its task. Index Register #2
may contain valuable data to program MAIN, at the time it transfers
control to the DELETE subroutine; so if (B2) was not saved upon
entrance and restored before exiting from the DELETE subroutine,

it would contain invalid data upon return to program MAIN.

The DELETE subroutine must have the first word address of the card
image area in the A Register upon entrance to its routine. So
program MAIN must obtain the first word address of the card image
area into A, before it transfers control to the DELETE subroutine.

It does this by an ENA DATACARD.

Normally a field represented by a double asterisk(**) will be
modified during the execution of a program and the double asterisk
(**%) provides a convenient way to see if the modification took

place. (**) presets the field to all Is.

Control is transferred to this instruction if a SRCE, SRCN, or
MOVE instruction is already in progress and the search instruction
preceding this jump instruction will not be initiated until any

previous search or move is completed.

1. When a comparison occurs between the search character (non-
blank) and a non-blank character in storage.
2. When register file 20 is equal to register file 30 (no non-

blank character found).

The search is to continue until all blank characters are deleted.
Upon a find, the search is terminated and register file location

#20 contains the address of the find. So to continue the search

this address must be updated by 1 or the program will be hung in

a loop.

c-10

C-11

G) Upon exiting from the DELETE subroutine, A will contain the last

character address + 1 of the DATACARD area with all blank characters

deleted.
A) PROGL PROG2
1.8 90.2
1.8 1.8
3.5 92.0 usec.
3.5 Repeated 8 times
1.8
2.6
1.8
1.8

B) On the above move he saves only 17.2 usec. (approximately 2 usec.

- - PRI ~ . . eAa N .
per character). On a maximum move of 128 characters, the MOVE

instruction would be approximately 256 usec.

IDENT PROGRAM
ENTRY START
START SRCE 73B,CARD, CARD+80
UJP *.2
PAUS 40008
UJpP *.1
TMA 30B
LPA MASK
SHAQ 24
TMA 20B
LPA MASK
AQJ,EQ EXIT
HLT
EXIT ENA, S +0
UJP *.2
MASK gcT 377777

END

STORAGE TESTS - ANSWERS

A) The program searches a list of operands from LIST thru LIST+7
(10 locations) looking for values that are within or equal to
the upper limit in A (20010) and the lower limit in Q (10010).

On a find, the addresses of the operands are stored in a table

called ADDRESS.

B) M.L. Contents of
ADDRESS LIST+6
ADDRESS-+1 LIST+5
ADDRESS+2 LIST+1
ADDRESS+3 0

Answer is d; contents of A is not altered.

The program searches a list of 6 bit characters, from LIST thru LIST+2
(3 locations) for a 45 code in any character position (0 thru 3) of
each location. Upon a find, the character address is generated and

stored into a table called LISTI.

IDENT PRIGRAM

ENTRY START)
START ENI 17,1 B = SIZE ¢F TABLE (16) + INTERVAL-1
ENT 0,2 B2 = ADDRESS C@UNTER
ENQ 7700B Q = 00007700 (MASK)
SEARCH ENA 6200B
MEQ INF@, 2 INF@ = START @F TABLE, 2 = INTERVAL
uJpP THRU SEARCH C@MPLETE
ENA INFg (A) = O00INFg
AIA 1 (A) = 000INFg+BL
STA LIST,?2 SAVE FIND ADDRESS
INI 1,2 PREPARE F@R NEXT FIND
UJP SEARCH
THRU HLT
INF@ BSS 16
LIST gctT 0,0,0,0,0,0,0,0

Index register 1 must start with 17 because it will be decremented

10’
by the interval (2) before the search begins., This will start the search

at INF@+15, which is the last location of the table. -

BCD OPERATIONS - ANSWERS

02000 03020706
02001 10111007
(E)g = 0822579612899
(E) = +0006193435479
(E)g = +0000000009914
(E)¢ = +0026711689001
00010 = 07060510
00011 = 06071011
00012 = S50XXXXXX
(E)¢ = -0000000009568
CHARS T O T A
L E Q
U AL
04 05 04
06 10 07 11
11 00 00 XX
(E)¢ = +0000000000000
(D) = 10 or 12
10 B
DATA 51 50 47 46
45 44 XX XX
XX XX XX XX
XX XX XX XX

(E)g= +0000000000000

automatically changes to a +0

C-13

SUMMARY OF INSTRUCTION EXECUTION TIMES, usec.

25 ADA 25 LDI
3.8 ADAQ 25 LDL
11.5* ADE 25 LDQ
1.3* AEU 25 LPA
1.3 AlA 2.5 LQCH
1.3 ANA
1.3 ANI 4.2 +4.2n MEQ
1.3 ANQ 3.3 MOVE
1.3 AQA 42 4+42n MTH'
1.3* AQE 7.8-11.0 MUA
1.9 AQJ 16.0-21.0* MUAQ
1.9 ASE
1.9 ASG 3.3 OTAC
1.9 AZJ 3.3 OTAW
3.3 O0uTC
1.3-1.7 CINS 3.3 OUTW
*** CON
1.3-1.7 COPY 2.0us-40ms PAUS
25-3.4 CPR
1.3 CTI 1.3* QEL
1.3 CTO 1.9 QSE
1.9 QSG
1.3 DINT
11.256 DVA 3.8 RAD
22.5* DVAQ 25 RTJ
1.3* EAQ 25 SACH
1.3 ECHA 25 SBA
1.3 EINT 3.8 SBAQ
1.3* ELQ 1.3 SBCD
1.3 ENA 11.56* SBE
1.3 ENI 25 SCA
1.3 ENQ 1.9-3.9 SCAQ
1.3* EOJ 25 SCHA
1.3* EUA 1.3 SCIM
1.3-1.7 EXS ** SEL
1.3* EZJ 1.3* SET
1.3-4.3" SFE
10.0-12,0° FAD 1.3 SFPF
20.0* FDV 1.3-2:7 SHA
14.0-18.0° FMU 1.3-27 SHAQ
10.0-12.0* FSB 1.3-2.7 SHQ
1.3 SJ1-6
— HLT 1.3 SLS
2.5 SQCH
1.3 Al 3.3 SRCE
** IAPR 3.3 SRCN
1.9 1JD 25 SSA
1.9 I 3.8 SSH
1.3 INA 1.3 SSIM
** INAC 25 STA
= INAW 3.8 STAQ
1.3 INCL 8.0" STE
1.3 INI 25 STI
33 INPC 25 STQ
3.3 INPW 25 SWA
1.3 INQ 1.3 TAI
1.3-1.7 INS 1.8 TAM
1.3-1.7 INTS 1.3 TIA
1.3 I0CL 1.8 TIM
1.9 ISD 1.8 TMA
1.9 ISE 1.8 TMI
1.9 ISG 1.8 TMQ
1.9 I8l 1.8 TaMm
2.5 LACH . ucs
25 LCA 1.3 UJP
3.8 LCAQ
25 LDA 1.3 XOA
3.8 LDAQ 13 XOl
8.0" LDE 1.3 X0Q

number of words searched.

Trapped instruction in computers without the appropriate optional hardware package.
Dependent upon interrupt response.

*** = Dependent upon a variable signal response time from an external source of equipment.

n

.

i

e

INSTRUCTION

INDEX

BY OCTAL OPERATION CODE

BY MNEMONIC OPERATION CODE

OCTAL MNEMONIC OCTAL MNEMONIC MNEMONIC MNEMONIC

OPERATION OPERATION SECTION OPERATION OPERATION SECTION OPERATION SECTION OPERATION SECTION
CODE CODE NUMBER CODE CODE NUMBER CODE NUMBER CODE NUMBER
00.0 HLT 3.5.5 40 STA,1 3.2.1 ADA,I 3.3.1 LDA,I 3.1.1
00.1 SJ1 3.5.6 41 STQ,1I 3.2.2 ADAQ,I 6.1 LDAQ,I 5.1
00.2 SJ2 3.5.6 42 SACH 8.2,3 ADE 14.2.8 LDE 14.2.6
00.3 5J3 3.5.6 43 SQCH 842.4 AEU 13.2.2 LDI;I 3.1.3
00.4 SJ4 3.5.6 44 SWA,I 3.7 ATA 9.5.2 LDL,I 7.2
00.5 $J5 3.5.6 45 STAQ,I 5.2 ANA 7.4.2 LDQ,I 3.1.2
00.6 $J6 3.5.6 46 SCHA,I 8.2,5 ANA,S 7.4.2 LPA,I 7.4.1
00.7 RTJ 3.5.4 47 STI,I 3.2.3 ANI 7ot LQCH 8.2.2
o1 UJP,I 3.5.1 50 MUA,I 3.3.3 ANQ 7.4.3 MEQ 11.1
02.0 No Operation 51 DVA,I 3.3.4 ANQ,S 7.4.3 MOVE , INT 10.3
02.1-3 1J1 3.5.7 52 CPR,I 11.4 AQA 9.5.1 MTH 11.2
02.4 No Operation 53.01 TMQ 9.3.1 AQE 13.4.2 MUA,T 3.3.3
02.5-7 1JD 3.5.7 53.02 TMA 9.2.1 AQJ,EQ 3.5.3 MUAQ,I 6.3
03.0 AZJ,EQ 3.5.2 53,04 AQA 9.5.1 AQJ,GE 3.5.3 NOP

03.1 AZJ,NE 3.5.2 53.(0+b)0 TIA 9.1.1 AQJ,LT 3.5.3 . OTAC,INT 20.8.3
03.2 AZJ,GE 3.5.2 53.(0+b)3 TMI 9.4.1 AQJ,NE 3.5.3 OTAW,INT 20.8.4
03.3 AZJ,LT 3.5.2 53.(0+b)4 ATA 9.5.2 ASE 3.6.1 OUTC, INT, 20.7
03.4 AQJ,EQ 3.5.3 53.41 TQM 9.3.2 ASE,S 3.6.1 B,H

03.5 AQJ,NE 3.5.3 53.42 TAM 9.2.2 ASG 3.6.2 OUTW,INT, 20.5
03.6 AQJ,GE 3.5.3 53.(4tb)0 TAL 9.1.2 ASG,S 3.6.2 B,H

03.7 AQJ,LT 3.5.3 53.(4tb)3 TIM 9.4.2 AZJ,EQ 3.5.2 PAUS 10.4 &
04,0 ISE 3.6.1 53.(4tb)4, IAT 9.5.3 AZJ,GE 3.5.2 20.10.5.3
04,123 ISE 3.6.1 54 LDI,I 3.1.3 AZJ,LT 3.5.2 QEL 13.3.2
04.4 ASE,S 3.6.1 55.0 No Operation AZJ ,NE 3.5.2 QSE 3.6.1
04.5 QSE,S 3.6.1 55.1 ELQ 13.3.1 CINS 20.9.5 QSE,S 3.6.1
04.6 ASE 3.6.1 55.2 EUA 13.2.1 CON 20,2 QSG 3.6.2
04.7 QSE 3.6.1 55.3 EAQ 13.4.1 COPY 20.9.2 QSG,S 3.6.2
05.0 1SG 3.6.2 55.4 No Operation CPR,I 11.4 RAD,I 3.3.5
05.1-3 1SG 3.6.2 55.5 QEL 13.3.2 CTI 20.10.5.1 | RTJ 3.5.4
05.4 ASG,S 3.6.2 55.6 AEU 13.2.2 CTO 20.10.5.2 | SACH 8.2.3
05.5 QSG,S 3.6.2 55.7 AQE 13.4,2 . DINT SBA,I 3.3.2
05.6 ASG 3.6.2 56 MUAQ,T 6.3 DVA,I 3.3.4 SBAQ,I 6.2
05.7 QsG 3.6.2 57 DVAQ,1 6.4 DVAQ,I 6.4 SBCD

06.0-7 MEQ 11.1 60 FAD,I 12.3.1 EAQ 13.4,1 SBE 14.2.9
07.0-7 MTH 11.2 61 FSB,I 12.3.2 ECHA 8.2.6 sCa,I 7.5.1
10.0 SSH 11.3 62 FMU,I 12.3.3 ECHA,S 8.2.6 SCAQ 13.5
10.1-3 181 3.6.3 63 FDV,I 12.3.4 EINT 21.1-2 SCHA,I 8.2.5
10.4 1SD 3.6.3 64 LDE 14.2.6 ELQ 13.3.1 SCIM

10.5-7 1SD 3.6.3 65 - STE 14.2.7 ENA 3.4.4 SEL 20.3
11.0 ECHA 8.2.6 66 ADE 14.2.8 ENA,S 3.4.4 SET 14.2.5
11.4 ECHA,S 8.2.6 67 . SBE 14.2.9 ENI 3.4.4 SFE 14.2.1
12.0-3 SHA 3.8.2 70.0-3 SFE 14,2.1 ENQ 3.4.4 SFPF

12.4-7 SHQ 3.8.2 70.4 EZJ,EQ 14.2.2 ENQ,S 3.4.4 SHA 3.8.2
13,0-3 SHAQ 5.3 70.5 EZJ,LT 14.,2.3 EOJ 14.2.4 SHAQ 5.3
13.4-7 $CAQ 13.5 70.6 EOJ 14.2.4 EUA 13.2.1 SHQ 3.8.2
14,0 NOP 70.7 SET 14.2.5 EXS 20.9.1 sJ1 3.5.6
14.1-3 ENI 3.4.4 71 SRCE, INT 10.2.1 EZJ,EQ 14.2.2 SJ2 3.5.6
14.4 ENA,S 3.4.4 71 SRCN,INT 10.2.2 EZJ,LT 14.2.3 SJ3 3.5.6
14.5 ENQ,S 3.4.4 72 MOVE , INT 10.3 FAD,I 12.3.1 SJ4 3.5.6
14,6 ENA 3.4.4 73 INPC,INT, 20.6 FDV,I 12.3.4 sJ5 3.5.6
14,7 ENQ 3.4.4 B,H FMU, T 12.3.3 SJ6 3.5.6
15.0 No Operation 73 INAC,INT 20.8.1 FSB,I 12.3.2 SLS

15.1-3 INI 3.4.3 74 INPW,INT, 20.4 HLT 3.5.5 SQCH 8.2.4
15.4 INA,S 3.4.1 B,N IAI 9.5.3 SRCE,INT 10.2.1
15.5 INQ,S 3.4.2 74 INAW, INT 20.8.2 IAPR SRCN, INT 10.2.2
15.6 INA 3.4.1 75 OUTC,INT, 20,7 1JD 3.5.7 $SA,1 7.6
15.7 INQ 3.4.2 B,H 1J1 3.5.7 SSH 11.3
16.0 No Operation 75 OTAC, INT 20.8.3 INA 3.4,1 SSIM 21.1
16,1-3 X01 7.5.4 76 OUTW,INT, 20.5 INA,S 3.4,1 STA,I 3.2.1
16.4 X0A,S 7.5.2 B,N INAGC, INT 20.8.1 STAQ,I 5.2
16.5 X0Q,S 7.5.3 76 OTAW,INT 20.8.4 INAW, INT 20.8.2 STE 14.2.7
16.6 X0A 7.5.2 77.0 CON 20.2 INCL 21.2 STI,I 3.2.3
16.7 X0Q 7.5.3 77.1 SEL 20.3 INI 3.4.3 STQ,I 3.2.2
17.0 No Operation 77.2 EXS 20.9.1 INPC,INT, 20.6 SWa,I 3.7
17.1-3 ANI 7.4.4 77.2 COPY 20.9.2 B,H TAI 9.1.2
17.4 ANA,S 7.4.2 77.3 INS 20.9.4 INPW,INT, 20.4 TAM 9.2.2
17.5 ANQ,S 7.4.3 77.3 CINS 20.9.5 B,N TIA 9.1.1
17.6 ANA 7.4.2 77.4 INTS 20.9.3 INQ 3.4.2 TIM 9.4.2
17.7 ANQ 7.4.3 77.50 INCL 21.2 INQ,S 3.4.2 TMA 9.2.1
20 LDA,I 3.1.1 77.51 10CL INS 20.9.4 TMI 9.4.1
21 LDQ,I 3.1.2 77.52 SSIM 21.1 INTS 20.9.3 TMQ 9.3.1
22 LACH 8.2.1 77.53 SCIM 10CL - TQM 9.3.2
23 LQCH 8.2.2 77.54-56 No Operation ISD 3.6.3 ucs

24 LCA,I 7.3.1 77.57 IAPR ISE 3.6.1 UJp,I 3.5.1
25 LDAQ,I 5.1 77.6 PAUS 10.4 & 1SG 3.6.2 X0A 7.5.2
26 LCAQ,I 7.3.2 20.10.5.3 181 3.6.3 XO0A,S 7.5.2
27 LDL,I 7.2 77.70 SLS LACH 8.2.1 X01 7e5.4
30 ADA,I 3.3.1 77.71 SFPF LCA,I 7.3.1 X0Q 7.5.3
31 SBA,I 3.3.2 77.72 SBCD LCAQ,I 7.3.2 X0Q,S 7.5.3
32 ADAQ,I 6.1 77.73 DINT

33 SBAQ,1 6.2 77.74 EINT 21.1-2

34 RAD.I 3.3.5 77.75 CTI 20.10.5.1

35 S5A,1 7.6 77.76 CTO 20.10.5.2

36 SCA,I 7.5.1 77.77 ucs

37 LPA,1 7401

> » CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 60184200

|

-1/2— |
1
1-1/4

|__4|/

CONTROL DATA
 corPoraTion |

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CiTIES THROUGHOUT THE WORLD

Litho in U.S.A.

i

IVNNVIN ONINIVEL ONINWVEOONd SSYDWOD 00SE/sg/ze/1e

	00001
	00002
	00003
	00004
	00005
	00006
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-001
	01-002
	01-003
	01-01
	01-02
	01-03
	01-04
	01-05
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-001
	03-01
	03-02
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	13-001
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	15-001
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	16-001
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	17-001
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	18-001
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	19-001
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	20-001
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	20-25
	20-26
	20-27
	20-28
	20-29
	20-30
	20-31
	21-001
	21-01
	21-02
	21-03
	21-04
	21-05
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	B-001
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-001
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	ExecutionTimes
	xBackA
	xBackB

