
iJ

COMPUTER SYSTEMS

COMPASS
PROGRAMMING TRAINING MANUAL

CONTROL DATA
CORPORATION

INSTRUCTION INDEX

BY OCTAL OPERATION CODE BY MNEMONIC OPERATION CODE

OCTAL MNEMONIC OCTAL MNEMONIC MNEMONIC MNEMONIC
OPERATION OPERATION SECTION OPERATION OPERATION SECTION OPERATION SECTION OPERATION SECTION
CODE CODE NUMBER CODE CODE NUMBER CODE NUMBER CODE NUMBER

00.0 RLT 3.5.5 40 STA,I 3.2.1 ADA,I 3.3.1 LDA,I 3.1.1
00.1

I
3.5.6 41 STQ,I 3.2.2 ADAQ,I 6.1 LDAQ,I 5.1

00.2 3.5.6 42 SACR 8.2.3 ADE 14.2.8 10E 14.2.6
00.3 3.5.6 43 SQCR 8.2.4 AEU 13.2.2 LDI,I 3.1.3
00.4 3.5.6 44 SWA,I 3.7 AlA 9.5.2 LDL,I 7.2
00.5 -& . 3.5.6 45 STAQ,I 5.2 ANA 7.4.2 LDQ,I 3.1.2
00.6 3.5.6 46 SCRA,I 8.2.5 ANA,S 7.4.2 LPA,I 7.4.1
00.7 RTJ 3.5.4 47 STI,I 3.2.3 ANI 7.4.4 LQCH 8.2.2
01 UJP,I 3.5.1 50 MUA,I 3.3.3 ANQ 7.4.3 MEQ 11.1
02.0 No Operation 51 DVA,I 3.3.4 ANQ,S 7.4.3 MOVE,INT 10.3
02.1-3 IJI 3.5.7 52 CPR,I 11.4 AQA 9.5.1 MTH 11.2
02.4 No Operation 53.01 TMQ 9.3.1 AQE 13.4.2 MUA,I 3.3.3
02.5-7 IJD 3.5.7 53.02 TMA 9.2.1 AQJ,EQ 3.5.3 MUAQ,I 6.3
03.0 AZJ ,EQ 3.5.2 53.04 AQA 9.5.1 AQJ ,GE 3.5.3 NOP
03.1 AZJ,NE 3.5.2 53. (O+b)O TIA 9.1.1 AQJ,LT 3.5.3 OTAC,INT 20.8.3
03.2 AZJ,GE 3.5.2 53. (0+b)3 TMI 9.4.1 AQJ,NE 3.5.3 OTAW,INT 20.8.4
03.3 AZJ,LT 3.5.2 53. (O+b) 4 AlA 9.5.2 ASE 3.6.1 OUTC,INT, 20.7
03.4 AQJ,EQ 3.5.3 53.41 TQM 9.3.2 ASE,S 3.6.1 B,H
03.5 AQJ,NE 3.5.3 53.42 TAM 9.2.2 ASG 3.6.2 OUTW,INT, 20.5
03.6 AQJ,GE 3.5.3 53. (4+b)0 TAl 9.1.2 ASG,S 3.6.2 B,R
03.7 AQJ,LT 3.5.3 53. (4tb)3 TIM 9.4.2 AZJ ,EQ 3.5,2 PAUS 10.4 &
04.0 ISE 3.6.1 53. (4+b)4 IAI 9.5.3 AZJ,GE 3.5.2 20.10.5.3
04.1-3 ISE 3.6.1 54 LDI,I 3.1.3 AZJ,LT 3.5.2 QEL 13.3.2
04.4 ASE,S 3.6.1 55.0 No Operation AZJ ,NE 3.5.2 QSE 3.6.1
04.5 QSE,S 3.6.1 55.1 ELQ l3.3.1 CINS 20.9.5 QSE,S 3.6.1
04.6 ASE 3.6.1 55.2 EUA 13.2.1 CON 20.2 QSG 3.6.2
04.7 QSE 3.6.1 55.3 EAQ l3.4.1 COpy 20.9.2 QSG,S 3.6.2
05.0 ISG 3.6.2 55.4 No Operation CPR,I 11.4 RAD,I 3.3.5
05.1-3 ISG 3.6.2 55.5 QEL l3.3.2 CTI 20.10.5.1 RTJ 3.5.4
05.4' ASG,S 3.6.2 55.6 AEU l3.2.2 CTO 20.iD.5.2 SACH 8.2.3
05.5 QSG,S 3.6.2 55.7 AQE l3.4.2 DINT SBA,I 3.3.2
05.6 ASG 3.6.2 56 MUAQ,I 6.3 DVA,I 3.3.4 SBAQ,I 6.2
05.7 QSG 3.6.2 57 DVAQ, I 6.4 DVAQ,I 6.4 SBCD
06.0-7 MEQ .,..-' 11.1 60 FAD,I 12.3.1 EAQ l3.4.1 SBE 14.2.9
07.0-7 MTH ~,. 11.2 61 FSB,I 12.3.2 ECHA 8.2.6 SCA,I 7.5.1
10.0 SSH 11.3 62 FMU,I 12.3.3 ECHA,S 8.2.6 SCAQ l3.5
10.1-3 lSI 3.6.3 63 FDV,I 12.3.4 EINT 21.1-2 SCHA,I 8.2.5
10.4 ISD 3.6.3 64 :- 14.2.6 ELQ l3.3.1 SCIM
10.5-7 ISD 3.6.3 65 14.2.7 ENA 3.4.4 SEL 20.3
11.0 ECRA 8.2.6 66 L. 14.2.8 ENA,S 3.4.4 SET 14.2.5
ll.4 ECHA,S 8.2.6 67 14.2.9 ENI 3.4.4' SFE 14.2.1
12.0-3 SHA 3.8.2 70.0-3 14.2.1 ENQ 3.4.4 SFPF
12.4-7 SHQ 3.8.2 70.4 14.2.2 ENQ,S 3.4.4 SHA 3.8.2
l3.0-3 SHAQ 5.3 70.5 "WX' 14.2.3 EOJ 14.2.4 SHAQ 5.3
13.4-7 SCAQ 13.5 70.6 '; J 14.2.4 EUA 13.2.1 SHQ 3.8.2
14.0 NOP 70.7 ~' 14.2.5 EXS 20.9.1 SJ1 3.5.6
14.1-3 ENI 3.4.4 71 ,,;' "INT 10.2.1 EZJ,EQ 14.2.2 SJ2 3.5.6
14.4 ENA,S 3.4.4 71 s1t"IT 10.2.2 EZJ,LT 14.2.3 SJ3 3.5.6
14.5 ENQ,S 3.4.4 I 72 MiE,INT 10.3 FAD;I 12.3.1 I SJ4 3.5.6
14.6 ENA 3.4.4 73 IN. C,IN!, 20.6 FDV,I 12.3.4 . SJ5 3.5.6
14.7 ENQ 3.4.4 .~,R FMU,I 12.3.3 SJ6 3.5.6
15.0 No Operation 73 ,,'NT 20.8.1 FSB,I 12.3.2 SLS I
15.1-3 INI 3.4.3 74 IN ,INT, 20.4 HLT 3.5.5 SQCH 8.2.4
15.4 INA,S 3.4.1 ,N IAI 9.5.3 SRCE,INT 10.2.1
15.5 INQ,S 3.4.2 74 .IN.~l,~NT 20.8.2 IAPR SRCN,INT 10.2.2
15.6 INA 3.4.1 75 OU C,INT, 20.7 IJD 3.5.7 SSA,I 7.6
15.7 INQ 3.4.2

f
1J1 3.5.7 SSH ll.3

16.0 No Operation 75 O'i,G~INT 20.8.3 INA 3.4.1 SSIM 21.1
16.1-3 XOI 7.5.4 76 o W,INTj 20.5 INA,S 3.4.1 STA,I 3.2.1
16.4 XOA,S 7.5.2 Od~~INT INAC,INT 20.8.1 STAQ,I 5.2
16.5 XOQ,S 7.5.3 76 20.8.4 INAW,INT 20.8.2 STE 14.2.7
16.6 XOA 7.5.2 77.0 CO~ 20.2 INCL 21.2 STI,I 3.2.3
16.7 XOQ 7.5.3 77 .1 SEl 20.3 INI 3.4.3 STQ,I 3.2.2
17.0 No Operation 77 .2 EX 20.9.1 INPC,INT, 20.6 SWA,I 3.7
17.1-3 ANI 7.4.4 77 .2 COlY 20.9.2 B,R TAl 9.1.2
17.4 ANA,S 7.4.2 77.3 IN~ 20.9.4 INPW ,INT, 20.4 TAM 9.2.2
17.5 ANQ,S 7.4.3 77 .3

]
20.9.5 B,N TIA 9.1.1

17.6 ANA 7.4.2 77.4 IN S 20.9.3 INQ 3.4.2 TIM 9.4.2
17.7 ANQ 7.4.3 77.50 IN 21.2 INQ,S 3.4.2 TMA 9.2.1
20 LDA,1 3.1.1 77 .51 10 INS 20.9.4 TMI 9.4.1
21 LDQ,1 3.1.2 77 .52 SS 21.1 INTS 20.9.3 TMQ 9.3.1
22 LACH 8.2.1 77.53 SC IOCL TQM 9.3.2
23 LQCH 8.2.2 77.54-56 No ~ration ISD 3.6.3 UCS
24 LCA,I 7.3.1 77 .57

IAr
ISE 3.6.1 UJP,I 3.5.1

25 LDAQ,1 5.1 77.6 PA S 10.4 & ISG 3.6.2 XOA 7.5.2
26 LCAQ,I 7.3.2 sJ, 20.10.5.3 lSI 3.6.3 XOA,S 7.5.2
27 LDL,I 7.2 77 .70 LACH 8.2.1 XOI 7.5.4
30 ADA,I 3.3.1 77.71 £; LCA,I 7.3.1 XOQ '7.5.3
31 SBA,I 3.3.2 77 .72 LCAQ,I 7.3.2 XOQ,S 7.5.3
32 ADAQ,I 6.1 77.73
33 SBAQ,I 6.2 I 77.74 21.1-2
34 RADJI 3.3.5 77.75 CTI 20.10.5.1
35 SSA,I 7.6 77.76 CTO 20.10.5.2
36 SCA,I 7.5.1 77.77 ~
37 LPA,1 7.4.1

Introduction to 3100/3200/3300/3500

Computer Hardware

3100
3200

3300
3500

COMPASS

PROGRAMMING

TRAINING

MANUAL

Introduction to SCOPE I COMPASS

COMPASS Instructions

Instruction Modification

48-bit Operations

Interrupts

Sample COMPASS Programs

Additional Exercises

May 1967
Pub. No. 60184200

Copyright 1967, Control Data Corporation
Printed in the United States of America

Aknowledgement

With the exception of an index, three appendices, two additional
chapters, a few new sections and extensive editting, the very
excellent programming training manual that follows has been
written by Mr. H. D. Pridmore and his staff at Commonwealth
Bureau of Census and Statistics in Australia. We are grateful
to Mr. Pridmore and the Bureau for permission to modify and
print their manual so that all 3100/3200/3300/3500 users may
benefit from their efforts.

EDP Education Services Department
Corporate Marketing
Control Data Corporation
May 8, 1967

CHAPTER 1

CHAPTER 2

CONTENTS

INTRODUCTION TO 3100/3200/3300/3500 COMPUTER HARDWARE

1.1 3200 HARDWARE

1.1.1 Diagram of 3200 Computer

1.1. 2 Data Bus

1.1.3 Arithmetic Section

1.1.4 Program Control

1.1.5 Block Control

1.1.6 Diagram of 3200 Console Register Display

1.2 3200 CORE STORAGE

1.2.1 Storage Word

1.2.2 Word Addressing

INTRODUCTION TO SCOPE/COMPASS

2.1 INTRODUCTION TO THE SCOPE MONITOR

2.1.1 SCOPE Library Tape

2.1.2 SCOPE System Terms

2.1.3 SCOPE Control Card

2.1. 4 SCOPE/COMPASS Run

2.1. 5 SCOPE/Program Execution Run

2.2 INTRODUCTION TO THE COMPASS ASSEMBLY SYSTEM

2.2.1 Assembly Process

2.2.2 General Word Addressing Instruction Format

2.2.3 COMPASS Source Program - Coding

2.2.3.1 LOCATION Field

2.2.3.2 OPERATION Field

2.2.3.3 ADDRESS Field

2.2.3.4 COMMENTS Field

2.2.4 Coding Simple COMPASS Programs

2.2.4.1 Beginning the Program

2.2.4.2 Ending the Program

2.2.4.3 SCOPE Entry

2.2.4.4 Deck Structure for COMPASS Course Exercises

CHAPTER 3

CONTENTS (cont.)

COMPASS INSTRUCTIONS

3.1

3.2

3.3

3.4

LOAD INSTRUCTIONS

3.1.1 Load A

~{.1. 2 Load Q

3.1.3 Load Index

STORE INSTRUCTIONS

3.2.1 Store A

3.2.2 Store Q

3.2.3 Store Index

ARITHMETIC, FIXED POINT,

3.3.1 Add to A

3.3.2 Subtract from A

3.3.3 Multiply A

3.3.4 Divide A

3.3.5 Replace Add

24-BIT PRECISION

REGISTER OPERATIONS WITHOUT STORAGE REFERENCE

3.4.1 Increase A

3.4.2 Increase Q

3.4.3 Increase Index

3.4.4 Enter Register

3.5 JUMP INSTRUCTIONS

3.5.1 Unconditional Jump

3.5.2 Compare A with Zero, Jump

3.5.3 Compare A with Q, Jump

3.5.4 Return Jump

3.5.5 Unconditional Halt

3.5.6 Selective Jump

3.5.7 Index Jump (Incremental/Decremental)

3.6 SKIP INSTRUCTIONS

3.6.1

3.6.2

3.6.3

Skip if Equal

Skip if Greater Than or Equal

Index Skip Incremental/Decremental

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS (cont.)

3.7 STORE WORD ADDRESS

3.8 SHIFT INSTRUCTIONS

3.8.1 Shift Instruction Format

3.8.2 Shift A and Shift Q

INSTRUCTION MODIFICATION

4.1 SIGN EXTENSION

4.2 ADDRESS MODES

4.3 INDEX MODIFICATION OF WORD ADDRESSING INSTRUCTIONS

48-BIT OPERATIONS

5.1 LOAD AQ

5.2 STORE AQ

5.3 SHIFT AQ

48-BIT, FIXED POINT, ARITHMETIC

6.1 ADD TO AQ

6.2 SUBTRACT FROM AQ

6.3 MULTIPLY AQ

6.4 DIVIDE AQ

LOGICAL OPERATIONS

7.1 LOGIC TABLES

7.1.1 Logical IIANDu

7.1~2 Inclusive "ORII

7.1.3 Exclusive "ORn

7.1.4 Examples of Logical Operations Using Octal Numbers

7.2 LOAD A LOGICAL

7.3 LOAD COMPLEMENTS

7.3.1 Load A Complement

7.3.2 Load AQ Complement

CHAPTER 7

CHAPTER 8

CHAPTER 9

CONTENTS (cont.)

7.4 LOGICAL lIANDll OPERATIONS

7.4.1 Logical Product A

7.4.2 AND of A and y

7.4.3 AND of Q and y

7.4.4 AND of Index Register Bb and y

7.5 EXCLUSIVE TlORU OPERATIONS

7.5.1 Selectively Complement A

7.5.2 Exclusive OR of A and y

7.5.3 Exclusive OR of Q and y

7.5.4 Exclusive OR of Index Register Bb and y

7.6 SELECTIVELY SET A

CHARACTER MODE OF OPERATION

8.1 INTRODUCTION

8.2 CHARACTER ADDRESS INSTRUCTIONS

8.2.1 Load A Character

8.2.2 Load Q Character

8.2.3 Store A Character

8.2.4 Store Q Character

8.2.5 Store Character Address

8.2.6 Enter Character Address into A

8.3 INDEX MODIFICATION OF CHARACTER ADDRESSING INSTRUCTIONS

INTER-REGISTER TRANSFERS

9.1 TRANSFERS BETWEEN THE A REGISTER AND INDEX REGISTERS

9.1.1 Index Register to A Register

9.1.2 A Register to Index Register

9.2 TRANSFERS BETWEEN THE A REGISTER AND THE REGISTER FILE

9.2.1 Register File to A Register

9.2.2 A Register to Register File

9.3 TRANSFERS BETWEEN THE Q REGISTER AND THE REGISTER FILE

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CONTENTS (cont.)

9.3.1 Register File to Q Register

9.3.2 Q Register to Register File

9.4 TRANSFERS BETWEEN INDEX REGISTERS AND THE REGISTER FILE

9.4.1 Register File to Index Register

9.4.2 Index Register to Register File

9.5 INTER-REGISTER ADDITION

9.5.1 Add Contents of Q to Contents of A

9.5.2 Add Contents of Index Register to Contents of A

9.5.3 Add Contents of A to Contents of Index Register

SEARCH AND MOVE OPERATIONS

10.1 BLOCK CONTROL

10.2 SEARCH OPERATIONS

10.2.1

10.2.2

Search for Character Equality

Search for Character Inequality

10.3 MOVE INSTRUCTION

10.4 PAUSE INSTRUCTION

(as used with SEARCH/MOVE Instructions)

STORAGE TESTS

11.1 MASKED EQUALITY SEARCH

11.2 MASKED THRESHOLD SEARCH

11.3 STORAGE SHIFT

11.4 COMPARE (WITHIN LIMITS TEST)

FLOATING POINT OPERATIONS

12.1 INTRODUCTION

12.1.1 Storage of Floating Point Numbers

12.1.2 Normalizing the Coefficient

12.1.3 Exponent

12.1.4 Conversion Procedures

CHAPTER 12

CHAPTER 13

CHAPTER 14

CONTENTS (cont.)

12.1.5 Unpacking Floating Point Numbers

12.2 EXECUTION OF FLOATING POINT OPERATIONS

12.2.1 Addition

12.2.2 Subtraction

12.2.3 Rounding of Floating Point Numbers

12.2.4 Multiplication

12.2.5 Division

12.3 FLOATING POINT INSTRUCTIONS

12.3.1 Floating Point ADD

12.3.2 Floating Point SUBTRACT

12.3.3 Floating Point MULTIPLY

12.3.4 Floating Point DIVIDE

48-BIT REGISTER OPERATIONS

13.1 48-BIT E REGISTER

13.1.1 Introduction

13.1.2 Trapped Instructions for the E Register

13.2 TRANSFERS BETWEEN A AND EU

13.2.1 Transfer EU to A

13.2.2 Transfer A to EU

13.3 TRANSFERS BETWEEN Q AND EL

13.3.1 Transfer EL to Q

13.3.2 Transfer Q to EL

13.4 TRANSFERS BETWEEN AQ AND E

13.4.1 Transfer E to AQ

13.4.2 Transfer AQ to E

13.5 SCALE AQ

13.6 USE OF THE SCALE AQ INSTRUCTION

BCD DIGIT OPERATIONS

14.1 INTRODUCTION

CONTENTS (cont.)

CHAPTER 14

14.1.1 BCD Digits

14.1.2 Field

14.1.3 Sign Bits

14.1. 4 ED Register (In Machine)

14.1. 5 ED Register (On Console)

14.1. 6 BCD Fault

14.2 BCD INSTRUCTIONS

14.2.1 Shift ED Register

14.2.2 ED Equal to ZERO Jtmlp

14.2.3 ED Less Than ZERO Jtmlp

14.2.4 1<' Overflmv Jt.mlp ~D

14.2.5 Setting Field Length in D Register

14.2.6 Load ED

14.2.7 Store ED

14.2.8 Add to ED

14.2.9 Subtract From ED

14.3 BCD TRAPPED INSTRUCTIONS

CHAPTER 15 COMPASS PSEUDO INSTRUCTIONS

15.1 CONCEPTS OF PSEUDO INSTRUCTIONS

15.2 PROGRAM DEFINITION

15.2.1 IDENT Instruction

15.2.2 END Iristruction

15.2.3 FINIS Instruction

15.3 ASSEMBLY AREAS

15.3.1 Introduction

15.3.2 DATA Area

15.3.3 Return Assembly Control to Subprogram PRG Area

15.3.4 COMMON Area

15.3.5 ORGR Instruction

15.4 STORAGE RESERVATIONS

CHAPTER 15

CHAPTER 16

CONTENTS (cont.)

15.4.1 Word Block

15.4.2 Character Block

15.5 ENTRY AND EXTERNAL INSTRUCTIONS

15.5.1 ENTRY Pseudo Instruction

15.5.2 EXTERNAL Pseudo Instruction

15.5.3 SCOPE Loading of Subprogram

15.6 SYMBOL DEFINITION BY EQUIVALENCING

15.6.1 Introduction

15.6.2 Word Equating

15.6.3 Character Equating

15.7 COMPASS OUTPUT LISTING CONTROL

15.7.1 REMarks

15.7.2 NO LIST Instruction

15.7.3 Resume LISTing Instruction

15.7.4 SPACE Instruction

15.7.5 New Page EJECT Instruction

15.7.6 TITLE Instruction

15.7.7 Comments

SCOPE ORGANIZATION OF INPUT/OUTPUT

16.1 INTRODUCTION

16.1.1 Programmer Units

16.1.2 Scratch Units

16.1.3 Systems Units

16.2 CENTRAL INPUT/OUTPUT ROUTINE

16.2.1 Introduction

16.2.2 Calling Sequences

16.2.3 Input/Output Operations

16.2.4 Tape Control Operations

16.2.5 Unit Status Requests

16.2.6 Format Selection

Page Control of the Line Printer

CHAPTER 17

CHAPTER 18

CONTENTS (cont.)

SCOPE CONTROL CARDS

17.1 INTRODUCTION

17.2 SEQUENCE CARD

17.3 JOB CARD

17.4 ENDSCOPE STATEMENT

17.5 ENDREEL STATEMENT

17.6 CTO STATEMENT

17.7 REWIND STATEMENT

17.8 UNLOAD STATEMENT

17.9 EQUIP STATEMENTS

17.9.1 Hardware Definition

17.9.2 Equating Logical Units

17.9.3 Physical Unit Assignment

17.10 TRANSFER STATEMENT

17.11 LOAD STATEMENT

17.12 COMPASS LIBRARY CALLING STATEMENT

17.13 RUN STATEMENT

17.14 DIAGRAMMATIC DECK

SCOPE DEBUGGING AIDS

18.1 OCTAL CORRECTION CARDS

18.1.1 Location Symbols

18.1.2 Octal Corrections

18.1.3 Relocation Factors

18.1.4 Error Indicators

18.2 ·SNAP DUMPS

18.2.1 Errors

18.2.2 Location

18.2.3 First and Last Word Addresses

18.2.4 Mode

18.2.5 Identification

18.2.6 Note

CHAPTER 18

CHAPTER 19

CHAPTER 20

CONTENTS (cont.)

18.2.7 Example

18.2.8 Rules for Using SNAP

18.3 OTHER DEBUGGING AIDS

18.3.1 Memory Map

18.3.2 Abnormal Termination Dump

18.4 COMPASS ERROR CODES

COMPASS ASSEMBLY OF CONSTANTS

19.1 OCTAL CONSTANT PSEUDO INSTRUCTIONS

19.2 DECIMAL CONSTANTS, FIXED POINT

19.3 DOUBLE PRECISION AND/OR FLOATING POINT CONSTANTS

19.4 BCD CONSTANTS

19.5 BCD CHARACTER CONSTANTS

19.6 VARIABLE FIELD CONSTANTS

19.6.1 Introduction

19.6.2 Octal Mode

19.6.3 Hollerith Mode

19.6.4 Word Address Arithmetic Mode

19.6.5 Character Address Mode

19.6.6 Example of VFD Instruction

INPUT/OUTPUT WITHOUT CIO

20.1 INPUT/OUTPUT CHARACTERISTICS

20.1.1 Introduction

20.1.2 Interface Signals

20.1.3 System Configuration

20.1.4 Logical Sequence of Events for Initiating

INPUT/OUTPUT Operations

20.2 CONNECT

20.3 SELECT

20.4 WORD ADDRESSED INPUT TO STORAGE

CHAPTER 20

CONTENTS (cont.)

20.5 WORD ADDRESSED OUTPUT FROM STORAGE

20.6 CHARACTER ADDRESSED INPUT TO STORAGE

20.7 CHARACTER ADDRESSED OUTPUT FROM STORAGE

20.8 INPUT/OUTPUT TO AND FROM THE A REGISTER

20.8.1 Input Character to A

20.8.2 Input Word to A

20.8.3 Output Character from A

20.8.4 Output Word from A

2089 SENSING INSTRUCTIONS

20.9.1 Sense External Status

20.9.2 Copy External Status and Interrupt Mask Register

20.9.3 Sense Interrupt

20.9.4 Sense Internal Status

20.9.5 Copy Internal Status and Interrupt Mask Register

20.9.6 Comments on Internal Status and the Interrupt

Mask Register

20.10 CONSOLE TYPEWRITER INPUT/OUTPUT

20.10.1 General Description

20.10.2 Operation

20.10.2.1 Set Tabs, Margins and Spacing

20.10.2.2 Clear

20.10.2.3 Status Checking

20.10.2.4 Type In and Type Load

20.10.2.5 Type Out and Type Dump

20.10.3 Typewriter Console Switches and Indicators

20.10.4 Character Codes

20.10.5 Input/Output Instructions

20.10.5.1 Set Console Typewriter Input

20.10.5.2 Set Console Typewriter Output

20.10.5.3 Pause Instruction

(as used with console typewriter

instructions)

CHAPTER 21

CONTENTS (cont.)

INTERRUPTS

21.1 INTERRUPTS USING CIC

21.2 INTERRUPTS WITHOUT USING CIC

21.3 I/O USING CIC

21.4 INTERRUPT MASK REGISTER BIT ASSIGNMENTS

21.5 CIT ASSIGNMENTS

INTRODUCTION TO 3100/3200/3300/3500 COMPUTER HARDWARE

1.1 3200 HARDWARE

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1. 6

Diagram of 3200 Computer

Data Bus

Arithmetic Section

Program Control

Block Control

Diagram of 3200 Console Register Display

1.2 3200 CORE STORAGE

1.2.1 Storage Word

1.2.2 Word Addressing

Chapter II

CHAPTER 1- INTRODUCTION TO 3100/3200/3300/3500 COMPUTER HARDWARE

The majority of the programming that will be done for the
3100/3200/3300/3500 computers will be done with a subset of
the total instruction repertoire for the particular machine.
The subset chosen for this manual applies primarily to the
3100/3200 computers because of the BCD instructions chosen.
If this chapter were eliminated, what remains applies equally
to all computers in the series. The 3300/3500 computers in
addition to having different BCD instructions, have some addi~
tiona1 features and instructions. These will not be discussed
here. The student is referred to the appropriate machine
reference manual for a description of those additions. The
timing information included in this manual applies to the 3200/
3300 computers. 3100 times are about forty percent higher;
3500 times are at least forty percent lower. Other then in the
case of timing information and the BCD instructions, the manual
points out those areas that are specifically 3200, which was
the machine chosen as representative of those in the series.

3200 COMPUTER SYSTEM

STUDENT NOTES

1 • 1 3200 HARDWARE

1.1.1 Diagram of 3200 computer

BLOCK PROGRAM ARITHMETIC
CONTROL CONTROL PROCESSOR

Index Re~ I I [SJ ~ B3
A I Register I I File I pjhj: Ya Q

I E I
I .

I
I I r- -- --------~
I
I
I
I

8 DATA Bus

I
I I L ___ I S Res I I Z Reg

~---,----
STORAGE

Main Frame

FIELD I .
0 I .

(4K) I

I
I

I

I/O MODULE

PERIPHERAL
EQUIPMENT
CONTROLLER

PERIPH.
UNIT

FIELD MODULE

1 (8K)

(4K)

DATA J
CHANNELS

- (Maximum of 8 for
a 3200 Computer.
Only 4 shown here.)

S Reg: l3-bit register, which
holds the address of
the word being processed.

Z Reg: 28-bit register, which
holds the contents of the
word being processed.
(Used also to write contents
of word back into store.)

1 .1.2 Data Bus

The data bus is the path along which data flows between the
various seotions of the computer. The sections (storage, the arithmetic unit,
the oonsole typewriter, and the input/output section) are connected in parallel
to the data bus,. During exeoution of each instruction. program control
deter.mines which unique path is to be enabled so that the function called
tor- in "Gile program instruction can be oarried out.

The data bus contains a 24-bit register called the Data Bus
Register (DBR) which is used to hold data temporarily during a data transfer.

1.1.3 Arithmetic Section

The arithmetic section of the 3200 processor consists of three
operational registers, namely -

(i) A
(ii) Q

(iii) E

- arithmetic register
- auxiliary arithmetic register

optional arithmetic register.

(i) The A Register (Accumulator)

The A Register is the principal arithmetic register. It is a
24-bit register, whose contents can be displayed on the console
of the 3200.

All arithmetic and logical operations use the A register in
formulating a result. It is the only register with provision
for adding its contents to the contents of a storage word or
another register.

(ii) The Q Register (Quotient)

The Q register is an auxiliary register and is generally used
in conjunction with the A register. It is a 24-bit register,
whose contents can be displayed on the 3200 console. Combined
with A it forms a 48-bit register, AQ. Most arithmetic operations
possible with the A register are also possible with the AQ
register. The Q register often is used to provide temporary
storage for the contents of the A register while the A register
is used for some other operation.

(iii) The E Register

This register acts as a supplement to the AQ register. It is
a 48-bit register, whose contents can be displayed on the 3200
console, in the display sections usually occupied by A and Q.
(The upper 24 bits of E - called EU - are displayed in A, and the
lower 24 bits of E - called EL - are displayed in Q.) The reg­
ister is used in 48-bit precision mUltiplication and division,
and in floating point multiplication and division.

In BCD operations, the E register is designated the ED
register, and its size is extended to 53 bits, to enable it to
handle thirteen 4-bit characters, plus a sign bit.

1.1.4 Program Control

The program control section contains six operational registers,
all of which may be displayed on the 3200 console. They are -

(i)
(ii)

(iii)
(iv)

F - program control register
P - Program address counter
C - Communication register
B - Three index registers, B1, B2, and B3

(i) The F Register

This 24-bit register is used to hold the instruction
during the time it is being executed.

(ii) The P Register

This 15-bit register holds the address of the instruction currently
being executed, and generates, in sequence, the storage addresses
which contain the individual instructions. After execution of an
instruction, P is altered to indicate the address of the next
instruction to be read. The address is sent via the S (address) BUS
to the specified storage module where the instruction is read.

(iii) The C Register

The 24-bit C register is used to enter quantities into Storage,
A, Q, E, B or P registers via the console key board. The quantity
is entered in C, and then transferred to the specified register
when the "transfer" button on the keyboard is pushed.

(iv) The B Registers

The 15-bit B registers (Index registers) are used principally as
counters and instruction modifiers.

1.1.5 Block Control

For a general description of the use of Block Control see
Section 10.1.

(i) The Register File

The register file is a 64 word (24-bits per word) rapid access
memory with a cycle time 0.5 mioroseconds. Although the programmer
can acoess all registers in the file with the inter-register transfer
instructions, certain registers are reserved for speoific purposes.
These are defined in the following table:

1-1.5 (cont.)

REGISTER RESERVED FOR
NUMBER

00-01 Modified I/O instruction word oontaining the current
I character address (Channel 0-7 control)

10-17 MOdified I/O instruction word containing the last
character address plus (or minus) one (Channel 0-7).

20 Current character address for search control

21 Source address for move control

22 Real time clock, current time

23 Current character address for typewriter control

24-27 Temporar,y storage

30 Last character address + 1 for search control

31 Destination address for move control

32 Real time clock, time at which to generate interrupt

33 Last character address + 1 for typewriter oontrol

34-77 I Temporary storage

Because of the fast access time, use of Registers 24-27 and 34-77
as temporar,y storage will speed up program execution. Other registers m~
also be used for temporary storage if their use will not disrupt operations
in progress.

(ii) The Real Time Clock

The real time clock is a 24-bit counter that is incremented each
millisecond. The current time is stored in Register 22. It is removed from
storage each millisecond, updated, and compared with the contents of Register
32. When the two are equal, an interrupt condition occurs.

The clock has a period of 16,777,216 milliseconds (approximately
4 hours 40 minutes). It starts as soon as power is supplied to the computer.
Its oontents may be examined at any time by transferring them to the A
register using an inter-register transfer statement. It may be reset to any 24
bit quantity (including zero) by loading A, and transferring the contents of
A into Register 22.

1.1.6 Diagram of 3200 Console Register Display

~ __ B_3 ____ ~1 ~1 ___ A_, __ E_u_, __ E_D ____ ~

~_B2_--,I_1 _B_1 -----II _I _p_.......I1 ,--I __ F ,_c_-.I

1.2 3200 CORE STORAGE

1. 2.1 ~torage _ Wo_rd

27 26 25 24 23 18 17 12 11 06 05 00

Character 0 Character 1 Character 2 Character 3

~'~--------------C-h-ar-ac-t~e~~de-s-ig-n-at-o-rs--------------~/

The 3200 is a word maohine with eaoh word oonsisting of 28 bits.
Eaoh word may be regarded as four 6-bit oharaoters as shown above, with
parity bits for eaoh oharaoter located in bits 24-21.

1.2.2 Word Addressing

Eaoh word in the storage of the 3200 is addressable. The address of
a particular word is its relative position in the storage. The first word
is word 00000, the seoond is word 00001, the third 00002, eto. The address
is speoified as five ootal digits, whioh m~ be broken down to indioate the
aotual looation of the word in-oore.

The 3200 oore is oomposed of modules of 8,192 words eaoh. There may
be up to four such modules attaohed to the oomputer, and the modules are
numbered from 0 through 3. Thus an SK 3200 would have only one module,
numbered Os (002), a 16K 3200 would have two modules, 002 and 01 2 , and so on.

Eaoh SK module is made up of two 4,096 word fields, numbered field 0
and field 1.

Field
o

Module 00

Field
1

Within eaoh field, words may be regarded as numbered from 0000 to
7777S (409610 words). The position of a word in a field is known as its

~dinate address in that field.

Thus a 15-bit address 01200S may be divided up to indioate its
position in oore as follows:

bits 00 - 11 indioate the oo-ordinate address (12008)

bit 12 indioates the field (0)

bits 13 - 14 indioate the module (0)

Exam:eles:

Address 31040S
... Module 1 , field 1 , address 1040S

Address 111118 - Module 3, field 1 , address 11118

INTRODUCTION TO SCOPE/COMPASS

2.1 INTRODUCTION TO THE SCOPE MONITOR

2.1.1 SCOPE Library Tape

2.1. 2 SCOPE System tenns

2.1.3 SCOPE Control Card

2.1. 4 SCOPE/COMPASS Run

2.1.5 SCOPE/Program Execution Run

2.2 INTRODUCTION TO THE COMPASS ASSEMBLY SYSTEM

2.2.1

2.2.2

2.2.3

2.2.4

Assembly Process

General Word Addressing Instruction Fonnat

COMPASS Source Program - Coding

2.2.3.1

2.2.3.2

2.2.3.3

2.2.3.4

LOCATION Field

OPERATION Field

ADDRESS Field

COMMENTS Field

Coding Simple COMPASS Programs

Beginning the Program

Ending the Program

SCOPE Entry

Chapter iJ

2.2.4.1

2.2.4.2

2.2.4.3

2.2.4.4 Deck Structure for COMPASS Course Exercises

2.1 INTRODUCTION TO THE SCOPE MONITOR

The SCOPE monitor is a program that provides a
system of operator and programmer aids to increase through-put
and to simplify the operator's job.

Its purpose is to increase job processing efficiency
by increasing information through-put, and to minimize operator
errors, operator intervention and idle computer time.

2.1.1 SCOPE Library Tape

The library tape serves as the source for the SCOPE
operating system as well as thoEe library routines operating
under control of SCOPE. The tape consists of two files:

Load
i po~ FILE 1 FILE 2

0-

~ ~~
SCOPE RELOCATABLE

OPERATING BINARY
SYSTEM SUBPROGRAMS

(6 RECORDS) (COMPASS, FORTRAN, etc)

LIBRARY TAPE FORMAT

The first file consists of absolute binary information
which, from this point on, will be considered the SCOPE
operating system. The second file consists of relocatable
binary subprograms such as COMPASS, FORTRAN, COBOL, etc.

2.1.2 SCOPE System Terms

RUN

The complete execution of a subprogram under the control
of SCOPE.

JOB

The sets of tasks assigned to SCOPE by the programmer.
A job consists of one or more runs.

STACKED JOBS

A stack consists of one or more jobs. The termination of
a job is signaled by the printout of the SEQUENCE card for the
next job.

NON-STACKED JOBS

A stack which consists of only one job. The presents of
the "NS" parameter on the job card indicates that this job is
a non-stacked job.

The termination of a non-stacked job is signaled by the
printout of IlNORMAL END" or "ABNORMAL END" at which time pro­
cessing will halt.

~
~
)

2.1.2 (cont.)

SUBPROGRAM

The smallest unit recognized by the SCOPE LOADER.

LUN

A two-digit decimal number representing a logical reference
to a physical I/O unit.

2.1.3 SCOPE Cbntrol Card

Refer to Chapte~ 17

2.1.4 SCOPE/COMPASS Run

Scope Operating
System is read

Control is
transferre
to Scope. in from LIB.(LUN 63

After reading a
~COMPASS control
card, SCOPE then
searches and loads
the subprogram,
COMPASS, from the
2nd file of the
1 ibrary tape.

~
U~

Control is then
transferred to the
subprogram COMPASS
which, in turn,
assembles the user's
subprogram (SOURCE
DECK) and produces a
relocatable object
deck as well as a
printer listing.

SCOPE/ COMPASS RUN

Scope reads from
the standard input
unit, and by the
presence of contro
cards is told what
to do next.

Control is then
transferred back to
SCOPE and SCOPE again
reads from the stand­
ard input unit for
further operating
instructions.

2.1.5 SCOPE/Program Execution Run

Scope Operating
ystem is read i
rom LIB. (LUN 63)

Control is
transferred
to SCOPE.

SCOPE reads the
user's binary object
program from the
standard input unit
into high core and
then branches (RTJ)
to the program for
execution.

The very last instruction
executed in the user's pro­
gram must be an instruction
which transfers control
back to SCOPE, enabling the
system to continue the pro­
cessing of various other
jobs.

After obtaining control
from the user's program,
SCOPE again reads from
the standard input unit
for futher operating
instructions.

SCOPE/PROGRAM EXECUTION RUN

2.2 INTRODUCTION TO THE COMPASS ASSEMBLY SYSTEM

(a) COMPASS is the COMPrehensive ASsembly ~ystem for us~ with
Control Data Computers.

(b) COMPASS operates under the SCOPE monitor system.

(c) COMPASS enables the programmer to write machine language
through the use of mnemonic instructions and symbolic
addresses. The COMPASS assembler translates these
instructions and addresses into machine language.

(d) In COMPASS source language, the programmer is also able
to specify constants, exercise control over subprogram
communication and control the assembly process with a
powerful set of PSEUDO (assembly) instructions.

(e) A COMPASS program consists of a number of linked subprograms,
each of which will be assembled independently and linked by
the LOADER, prior to execution of the program.

(f) A COMPASS subprogram consists of lines of coding preceded by
an IDENT pseudo instruction, and followed by an END pseudo
instruction. The size of the subprogram and the magnitude
of the problems solved by it are at the discretion of the
programmer.

2.2.1 Assembly Process

(a) Assembly language is much closer to machine code than languages
like FORTRAN and COBOL. A line of FORTRAN coding may generate
many machine instructions (perhaps in the ratio of 1:10). Most
COMPASS instructions generate only one machine instruction.

Example : STA C¢UNT
If C¢UNT is located at address 1748 ,

this instruction would be assembled as

40000174

(b) The assembly process may be represented diagrammatically as
follows:

DIAGRAM OF THE ASSEMBLY PROCESS

COMPASS
CODING·
WRITTEN

PRINTER
LISTING

Note: (a) The COMPASS assembly program converts programs written in
COMPASS into machine language for execution under the
SCOPE monitor system.

(b) Souroe programs may be punched on cards or paper tape,
or written on magnetic tape.

(0) ~2tput from the assembler includes an assembly list~~
and a relooatable binar,y object deck. The output deck
may be punched out on cards, or written on a magnetic
tape for immediate execution.

2.2.1 (cont.)

(d) What does the assembler do?

(i) Allocates storage locations to instructions and
to blocks defined in pseudo or area-definition
instructions. Note use of 1I0RGRfI.

(ii) Replaces symbolic addresses with allocated
storage locations from (i).

(iii) Replaces symbolic instruction addresses with
actual instruction addresses from (i).

(iv) Indicates index register use and/or indirect
addressing in the relevant bits of the necessary
instructions.

(v) Converts mnemonic operation-codes to machine
language equivalents.

(vi) Stores literals in a special literal table, after
checking for any prior use of that literal.

(vii) Replaces literals in the instructions with the
addresses of the table locations of the literals.

(viii) Check for assembly language (source language) errors
and generates necessary diagnostic messages.

Most assemblers perform these functions in a number of passes.
The source program is first written on to tape, at the same time carrying
out some of the above functions. Then the tape is passed against the
assembler at least once more to carry out the remainder of the functions.

2.2.2 General Word Addressing Instruction Format

The 3200 (24-bit) word addressing instruction takes the
following general form -

Bit position 23 1 8 11 16 15 14 00

I (6 bits) III bit~, t 12 bits) I (15 bits) I
~~~----------~v~------------/ 

f a b m or y 

Where f - function coae of b bits. 
Range is 008 through 71

8
• 

This code determines the type of action 
to be carried out. 

e.g. 208 = Load the A register. 

318 = Subtract from the A register. 

a - Addressing mode of 1 bit. 

b = 

If this bit is a zero, direct addressing is 
carried out. 
If this bit is a 1 bit, indirect addressing is 
carried out. 

Index designator of 2 bits. 
If b - 00, no index is used 
If b 01, index 1 is used 

~ .of" Lidex 2 ~s ,.~.aA u IV, I,.U;>c .... 

b 11 , index 3 is used. 

m - ExeQution address of 15 bits. 
This is the address in memorJ at which data 
required for execution will be found. The 
24-bit quantity found at that address will be 
used in a manner determined by the rest of the 
instruction. 

y = Operand of 15 bits. 
This specifies a 15 bit quantity which will 
be used as data in some way. I t is the 
actual data, not the address of the data. 

Exercise: Divide up the following octal instructions into their components: 

20400100 
27100000 
56201010 
01322222 
77654321 
46077776 
17500000 
66766766 

Note that the address "m" specified in a word address instruction can be 
divided further to indicate its actual location in storage. 



2.2.3- COMPASS Source Program - Coding 

The following fields are used on the COMPASS coding sheets and 
on COMPASS punched cards. 

NAME OF COLUMNS ON CARD 
FIELD OR CODING SHEET 

Location 1 - 8 

Operation 10 - 20 

Address 21 - 40 

Comments 41 - 12 

Identification 13 - 80 

The use of these fields is discussed following the samples of 
the COMPASS CODING FORM and the COMPASS CARD. 

Instructions in subprograms to be assembled by COMPASS are 
written on coding fonns. The information on the coding form 
will be punched into cards or prepared on other suitable media 
for input to COMPASS. Following is a sample COMPASS ,CODING FORM. 

PIOCUll .. 
~ 

~-

to.PASS CODING FORI 

l-,- ..usfllJ 

, 
, 

I 

-. 
-. 
I 

-. 
, 
, 

, 

I 

-. 
, 

.' 
, 

-,. 
".1.,.".0 0-'1_0 

_m 
I 

, 
, 
, 
, 
! 
I 

, 
, 
I 

! 
I 

I 

, 
I 

, 
, 
I 

I 

I 

, 
I 

I 

I 

J·IoL"+till ,·0fII1 .... ~,. .... ! 

COMPASS CODING FORM 
(half-size) 

'·'.0 

UI[ 

PACE 
liTE 

II1II 

Each line of the coding form represents one card when punched 
into cards. 



2.2.3 (cont.) 

Following is a sample of the COMPASS CARD. 

I 
I 
I 
I 
1 
1 

LOCATION =:,~~~~.: ADDRESS FIELD I COMMENTS IDENT 
, I I 

o 0 0 0 0 0.0 0 ,,0 0 0 0 0 0 0 ~ D 9.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Z 1 2 3 4 5 6 1 8 :$ 10 11 12 13 14 15 16 1118 19:2021 22232425 26 21 28 29 30 31 32 33 3435 36 37 383940141424344 45464748 49 50 51 525354 55 56 51 58 596061 62 63 64 65 66 61 6a 69 lD n 7213 14 1516 17 1819 

o 1111111111111111111p 11111111111111111111:1111111111111111111111111111111111111111 
~ I I 

~ 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2122 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 212 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
0:1 1 

8~ 3 3 3 3 3 3 3 3 , 3 3 3 3 3 3 3 3 3 3~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3ll 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
a: :':<, I I 

~~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 414 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4' 4 4 
OU 1 I 

6 5 5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 5 5 5 5:5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
It: ;/ I I 

§ &~6Ji 6 6 6 6 6 ~ 6 6 6 6 6 6 6 6 6 6:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6!6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

: : : : : : : :~~ :: : : : : : : : :!: : : : : : : : : : : : : : : : : : : : :1: : : : : 8 8 I 8 I 8 8 i 8 I 8 I 8 8 8 8 8 I 8 8 I 8 : : : : : : : : : : : : : 

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9:9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 919 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
~ 123(56)8.W"~U14~ffil1~~ro~~n~25~nn~ID~~nM~36D~~4~~U44~48U484850~~~54~565156566061~~6465"~~"mn7n~151617n~ 

MC-ZT12901 

COMPASS CARD (full size) 

2.2.3-.1 LOCATION Field 

Symbolic Address of the instruction ~Titten on that line. 

e.g. ADA TABLE 

OR Symbolic address of a storage area set up by a pseudo 
- instruction. 

e.g. ALEx: 

Restrictions - Ca) 

(b) 

(c) 

(d) 
Examples: 

LEGAL 

ABODE 

A1234 

X 

A1Al.!1 

XYZ.23 

PART 3 

4 

LDA ALEK 

1-8 characters (need not be right 
or left justified). 

,First character must be alphabetic, 
others can be alphanumeric. 

Special characters are not allowed, 
except period. 

Imbedded blanks are illegal. 

Aa .. 'Aa 
IA. IA. 1 A. 

ILLEGAL 

ABCDEFGHIJ 

F¢G* 



2.2.3.1 (cont.) 

Special Comment Card 

An asterisk in Column 1 of the location field means that the rest 
of the card will be treated as if it is a comment. 

Example: 
\1 2 3 116 7 19 10 112114 I~ Isl18 IS 21)1,11241127 111S 30 31 3233 :4 35 30 37 38 394(j 41 42 43« 

iHIS 1$ A COMMENTS CARD, 

I III I I 
00 10010 0 I 000000000 II 000000000000000000000000 
123456789 10 11121J141516111819202;22232425262)282930313233~35363738394D414243« 

111111111111111 I I II 11111111! 1IIIIII!!!I!1111 

22222122122222222221222222222222222222222222 
1 2 3 4 5 6 7 I 9 10 II 121314151617 18 19 20 2122 23 24 25 26 27 2B 2930 31 323334 35 36 37 J8 39 40 41 424344 

33133333333313333313313331333333333333333333 

I H 4 4 44 4 4 44 4 441144 4 4 4 44 414 4444444 4 4 4 4 4 4 44 44 4 
, 1 2 3 .\ 5 II a Hl to ... 1"' ." Of:' .co " '" 1i1l ':'f< .,. on .., ":'~ "'1 ,.::: II 78 29 .10 31 17 ." 

2.2.3.2 OPERATION Field 

This field can contain 

(a) Mnemonic operation codes. 

(b) Pseudo ins truct ion Mnemonics. 

(c) Macro instruction names. 

(d) Octal instructions 00
8
-77

8
• 

The code must begin in col. 10, otherwise'it will assemble as 
008 (halt code). Modifiers are written in this field. 

e.g. CHAR BSS,C 4 means set up an area consisting of 4 
characters and labelled "CHAR". 

Examples: 

05 
BSS 

ENA,S 

LDA 

LDA,I 
INPC,INT,B,H 

MACNAME 

2.2.3.3 ADDRESS Field 

This field can contain 

(a) Symbols 

(b) Constants 

(c) Special Characters 

(d) Literals 

(e) Expressions 

The address field can begin anywhere after the operation 
field, provided it is separated from the operation field 
by at least one blank. 



2.2.3.3 (cont.l) 

However, it must begin before oolumn 41, and finish before 
oolumn 13. 

(a) Symbols: 

A symbol appearing in the address field must be defined by 
appearanoe in the looation field of an instruotion in the subprogram, or 
be deolared as external. If it is not so defined, an error flag "UII 

-

undefined symbol - will be given on the listing. The symbol may be 
relooatable or non-relooatable. The value assigned to a non-relocatable 
symbol will not be modified on loading~ 

Examples: LM 

ENA 

CIC.2 (relooatable) 

o CIC.2 

LDA 

INTADDR EQU 

INTADDR (non-relocatable) 

4 

(b) Constants: 

Integer oonstants oan represent a number of funotions depending 
on the type of instruotion -

e.g. ootal address (LDA) 

constant value (ENA) 

shift faotor (SHA) 

(LDA 100B) 

(ENA 100B) 

(SHA 6 ) 

Ootal integers must be suffixed by the letter B. 

NOTE: Numbers in address field are assumed to be 
decimal unless followed by a B. 

(c) Speoial Characters: 

Two special entries may be made in the address field -
(i) A single asterisk is interpreted as the ourrent value 

of the address oounter when the * is encountered. 

Example: ENA 

LM 

o 
*-1 

means: Load the A register with the instruotion 
preceding the LDA instruction. 
(i.e. with assembled ENA 0) 

(ii) The double asterisk oauses the address portion of the 
instruction to be assembled with a 1-bit in eaoh bit 
position, and is used where modifioation of the 
address will take plaoe during exeoution. 

Example: 

(d) Literals: 

START 

Assembled as 

UJP ** 
01011111 

If the address field refers to an operand (a value), the 
entr,y may be a literal, expressed as ~v. 

whara m... the mode 
v = the value 

Double preoision literals are expressed as =2mv. 



2.2.3.3 (cont.2) 

The mode of the literal may be: 

(i) Decimal 
DVA =D23 
DVAQ =2D2753 

(ii) Octal 
LDA -¢777 
LDAQ =2¢7777777777777777 

(Up to 16 octal digits may be specified for 
double precision) 

(iii) Hollerith 
LDA 

LDAQ 

-HABCD (max: 4 characters) 

=2BABCDEFGH (max: 8 characters) 

During assembly, a literal is converted to binar,y, and assigned 
a relocatable address which is substituted for the literal in the object code. 
Literals are all stored at the end of the subprogram. If two literals of the 
same value and size are specified, they are not duplicated. When C¢MPASS 
encounters a literal, the value is compared against all other previously 
assembled literals. If an identical value exists, the address of the 
previously assigned literal is substituted in the object code. 

(e) Address Expression: 

Address expressions may be formed. 

Examples: LM 

ENA 

SYM EQU 

T¢M-2 

SYMl-46B 

275B 

Subprogram, data and cammon relocatable symbols may be mixed. 

NOTE: External symbols, the double asterisk and literals may not 
appear in an address expression. 

2.2.3.4 COMMENTS Field 

Comments may be included with a:ny instruction. A blank column 
must separate them from the last character in the address field and they 
may extend to column 72. 

Comments have no effect on assembly, but will be included on the 
assembly listing. 

It is highlY recommended that liberal use should be made of 
comments and comments cards. 

An example is shown on the following page. 



2.2.3.4 (cont.) 

IDENT ¢NE 

* 
* COMPASS C¢URSE EXERCISE 3 

* J. SMITH 

* 
ENTRY START *SCOPE ENTRY* 

START UJP ** 
ENQ 1413 

ENA 0 INITIALIZATION 
STA SUM OF COUN'l'ERS 
STA C¢UNT 

* 
* 
L¢¢p LDA SUM 

ADA. C¢UNT 
STA SUM MAIN 
LDA C¢UNT L¢¢P 
AQJ ,EQ START 

INA 1 

STA C¢UNT 
UJP L¢¢p 

* 
* 
* 
C¢UNT BSS 1 

SUM BSS 1 

END START 



2.2.4 Coding Simple COMPASS Programs 

2.2.4.~ Beginning the Program 

The first card in the deck must be an IDENT card. This card has 
the word IDENT punched beginning at Column 10, and the program name (of 1-8 
alphanumeric characters, the first of which must be alphabetic) punched 
beginning at Column 20. 

Examples: 

or 

or 

... . _LQ.~IjI ... 
i1.PL~IjI 

L ... JPgNI __ J 

2.2.4.2 Ending the Program 

: .;r~;[~lr_; .. I 
.."._ .. "._. ____ .. ,_ ..... L __ .L ... O_.L ]_'-1_. __ :" 

.. li'!AZ 
:t1e~(~l!.bI1_ ... ___ L.J _ L.LL .... ! .... _~L..L..l ... _.L.Li __ .L_L.L 

The last card in the deck must be an END card. The word END is 
punched beginning at Column 10, and the entry point (the beginning 
instruction in the program) is punched beginning at column 20. (However, 
see later section on END statement in relation to programs containing more 
than one sub-program). 

Examples: 

or 
or 

1 

2.2.4.3 SCOPE Entry 

20 

TART 
GIN 

I46~PIN 

So that the program can be run under SCOPE, it is necessary to 
ensure that control returns to SCOPE when the program is finished. The 
entry point into the program should take the following form to enable this 
to be done: 

I~ 
This will be the first executable statement in the program. SCOPE 

will enter the return address into the location START instead of the two 
asterisks. The last executable instruction in the program should .be a jump 
back to the beginning so that control can be returned to SCOPE. 

EDmples: 

I~: UJP 
UJP 

20 

or [¢II 
or F 

I I 



2.2.4.4 Deck Structure for COMPASS Course Exercises 

(i) Assembly only 

~SEQUENCE,666 

~JOB,11l2l15,6404,5 

7 9COMPASS ,L 

~COMPASS source deck 

FINIS (punching begins in column 10) 

~~ (end of file card) 

(ii) Assembly and execution: 

(iii) 

~SEQUENCE,666 

~JOB,1112ll5,6404,3 

~EQUIP,56=MT 

~COMPASS,L,X 

~COMPASS source deck 

FINIS 

~LOAD,56 

~RUN,4 

Data 

77 (end of file card) 
88 

Alternative "assembly onlyl1. 

Use all cards as for execution, except RUN and DATA. 
Any LOADER errors will then be indicated, but the 
program will not be executed. 

NOTE: 1. The ~ is a mUltiple punching in column 1 of the card. 

2. The end of file card has a mUltiple 7,8 punching in 
columns 1 and 2. It signifies the end of the job. 
(EOF cards used on other systems that use 

1212 
1 1 
4 4 in column 1 thru 4 are also acceptable.) 

7 7 7 7 
8 8 



STUDENT NOTES 



COMPASS INSTRUCTIONS 

3.1 LOAD INSTRUCTIONS 

3.1.1 Load A 

3.1.2 Load Q 

3.1.3 Load Index 

3.2 STORE INSTRUCTIONS 

3.2.1 Store A 

3.2.2 Store Q 

3.2.3 Store Index 

3.3 ARITHMETIC, FIXED POINT, 24-BIT PRECISION 

3.3.1 

3.3.2 

3.3.3 

3.3.4 

3.3.5 

Add to A 

Subtract from A 

Multiply A 

Divide A 

Replace Add 

3.4 REGISTER OPERATIONS WITHOUT STORAGE REFERENCE 

3.4.1 

3.4.2 

3.4.3 

3.4.4 

Increase A . 

Increase Q 

In~rease Index 

Enter Register 

3.5 JUMP INSTRUCTIONS 

3.5.1 

3.5.2 

3.5.3 

3.5.4 

3.5.5 

3.5.6 

3.5.7 

Unconditional Jump 

Compare A with Zero, Jump 

Compare A with Q, Jump 

Return Jump 

Unconditional Halt 

Selective Jump 

Index Jump (Incremental/Decremental) 

3.6 SKIP INSTRUCTIONS 

3.6.1 

3.6.2 

3.6.3 

Skip if Equal 

Skip if Greater Than or Equal 

Index Skip Incremental/Decremental 

3.7 STORE WORD ADDRESS 

3.8 SHIFT INSTRUCTIONS 

3.8.1 

3.8.2 

Shift Instruction Format 

Shift A and Shift Q 

Chapter ~] 



3.1 LOAD INSTRUCTIONS 

3.1.1 Load A 

Description 

Examples 

23 18 17 16 15 14 00 

I 20 I a I b I m 

a - addressing mode designator 

b - index designator 

m - storage address. 

Loads A Register with the 24-bit conten~s of storage 
address M, where. - m+(Bb). 
NOTE: () indicates contents of. 

(i) If the oontents of location 100
8 

in memor,y is 

52307777, what will be the contents of A after 
execution of the following statement? 

LDA 100B 

Answer: (A) - 52307777 

(ii) If looation 1008 is called by the symbolic 

address L¢c, what will be the contents of A 
after execution of the following statement? 

LDA L¢c 
~: (A) - 52307777 

(iii) A block of memor,y in octal is as follows: 

L¢C I 01'\ 1'\0 00 01 I v v 

00 00 00 10 
00 00 01 00 
00 00 10 00 
00 01 00 00 
00 10 00 00 

What will be the contents of A after executic 
of the following statement? 

LDA ~0+4 

Answer: (A) - 00 01 00 00 

Exercises on Load A: 

(i) L¢c LDA ** 

LDA L¢c 
What will be the oontents of A at the end of the above seotion 
of a pro~? 

(The function oode for LDA - 200). 

(11) If location 1018 oontains 

/101 010\ 000 011 \111 110 I 001 100 I (in binary) 



3.1.1 (cont.) 

What is the octal amount loaded in A as a result of the 
following instruction? 

LDA 101B 

(iii) If MASK is location 1058, and a block of memory is as follows, 

104 

105 

106 

101 

110 

111 

1234 1234 

1023 1301 

1111 2222 

6013 4261 

3333 3333 

4444 3066 

What will be in A after execution of the following instruction? 

LDA MASK+3 

(iv) The instruction to be executed is: 

LDA =D43 

Which answer gives the correct contents of A after the 
instruction has been executed? 

3.1.2 Load Q 

Description 

Examples 

a. 438 

c. The contents of location 43 

d. 538 

231817161514 00 

I 21 I a I b I m 

a - addressing mode indicator 

b - index designator 

m = storage address. 

Load Q with a 24-bit quantity from storage address M 
where. - m + (Bb) 

(i) LDQ MASK 

Load Q with the 24-bit quantity at the 
symbolic address MASK. 

(ii) If MASK contains 00001111 

LDQ MASK 

(Q) = 0000 1111 



3.1.2 (cont.l) 

(iii) If MASK = location 1048 and a block of memory is 

as shown, what will be the contents of Q after 
execution of the following instruction? 

LDQ MASK-4 

76 

77 

100 

101 

102 

103 

104 

105 

106 

107 

14 00 00 20 

25 25 52 52 

11 22 33 44 

55 66 77 00 

17 53 17 53 

20 64 20 64 

31 75 31 75 

42 06 42 06 

53 17 53 17 

64 20 64 20 

(Q) - 11 22 33 44 

Exercises on Load Q 

(1) What will be the contents of Q after execution of each of the following 
instructions? (The block of memor,y to be used is shown below). 

(a) 

(b) 

(0) 

(d) 

LDQ 

LBQ 
LDQ 

LDQ 

00267 I 00 00 01 01 I 
2'" 10 4" 40 

272B 
184 

L¢C-3 
L¢C+2 

u u 

11 11 17 17 
20 20 20 20 

16 25 34 07 
60 60 60 60 
21 22 23 24 

10 00 00 10 

(2) If PLACE - location 26178, and a block of memory is as shown, 

01 47 26 35 
12 50 37 46 
23 61 40 57 

02616 34 72 51 60 
45 03 62 71 
56 14 73 02 
67 25 04 13 
70 36 15 24 
01 47 66 65 



3.1.2 (cont.2) 

What will be the contents of Q after execution of each of the 
following instructions? 

(a) LDQ 2613B 
(b) LDQ. PLACE-1 
(c) LDQ. PLACE+3 
(d) LDQ 1427 

3.1.3 Load Index 

Description 

Examples-: 

23 18 17 16 15 14 00 

I 54 I a I b I m 

a ~ addressing mode designator 

b - index designator 

m = storage address 

_ _ _ _ _ ~. _b .. _ ._ 
Load LndeX-Heglster ~ wltn tne lower i5 bits of the 
contents of storage address m. No address modification 
using index registers is possibleo 

"btl indicates which index register is to be loaded. 

(i) If (CI¢) - 12345670 
What will be the contents of index register 2 as a 
result of the following instruotion? 

LDI CI~,2 

Answer: B2 - 45670 

(ii) A block of memory is as shown: 

o 0 0 0 0 001 
7 7 7 7 7 7 7 7 
2 3 4,2 3 4 2 3 
104 1 040 4 
4 4 4 4 1 000 
2 0 O' 2 2 1 2 4 

41234414 

The index registers are as follows: 

B1 0 0 0 0 2 

B2 0 0 0 1 4 
B3 7 7 7 7 3 

What will be the contents of the registers after 
the following? 

LDI L¢C+3,3 
LDI L¢C+6,1 
LDI ~C,2 



3.1.3 (cont.) 

Answer: B1 = 34414 

00001 

10404 

Exercises on Load Index instruction 

(1) What will be the contents of the index registers after execution of 
each of the following instructions, if 

(2) 

(CAB) ::: 00100001 

(ST¢RE) = 77777771 

(TEMP) = 40100010 

(HIGH) .,. 20002020 

(r.¢C3) - 33003303 

(a) LDI CAB,l 

(b) LDI HIGH, 3 

(c) LDI ST¢RE,2 

(d) LDI TEMP,l 

(e) LDI r.¢C3,3 

(f) LDI HIGH, 2 

A block of memory is as shown: 

405 00 00 00 21 

04 04 04 04 
32 57 14 13 
51 21 41 61 
00 00 00 00 

21 04 00 10 

12 74 11 11 

I 00 07 77 75 I 
If TAG.,. Location 4108, what will be the contents of the Index 

registers after execution of the following instructions? 

(a) LDI TAG-2,3 

(b) LDI TAG+4,1 

(0) LDI 411B,2 

(d) LDI TAG, 1 

.(e) LDI TAG+2,3 



3.2 STORE INSTRUCTIONS 

3.2.1 Store A 

Description 

Examples 

23 1 8 17 1 6 1 5 14 00 

m 

a = addressing mode designator 

b = index designator 

m = storage address. 

Stores the contents of the A Register in storage 
location M. (M = m+(Bb)). Contents of A are unchanged. 

(i) STA 

The value in A is stored in the location specified 
by the symbol H¢LD. 

(ii) (A) - 1212 3434 

TEMP = Location 101a 
H¢LD = Location 103a 

100 

101 . 
102 

103 
104 

105 
106 

101 
110 

00 00 00 00 

11 11 11 11 
22 22 22 22 

33 33 33 33 
44 ·44 44 44 

55 55 55 55 
66 66 66 66 

11 11 11 11 
00 00 00 00 

TEMP 

HOLD 

What will be contained in the above block after the 
following: 

LM 100B 

STA TEMP+2 

LDA H¢LD-2 

STA 106B 

LDA H¢LD+S 

STA TEMP 

Answer: 
100 

101 

102 

103 

104 

105 

106 

101 

110 

00 00 00 00 

00 00 00 00 

22 22 22 22 

00 00 00 00 

44 44 44 44 

55 55 55 55 
11 11 11 11 

11 11 71 11 
00 00 00 00 



3.2.1 (cont.) 

Exercises on STA Instruction 

(i) If TEMPY is location 3028, and the block of memor" shown 

results from the following instruction 

STA TEMPF-4 

What were the contents of A before exeoution of the instruction? 

301 

302 

303 

304 
305 
306 

307 

7723 7723 
1111 1111 
2222 2222 

3044 6133 
2442 4224 
1212 3434 
7777 5555 

(ii) If H¢LD - Location 1038 and TAG - Location 1018, what will be 

the contents of the block of memory below after execution of 
the following instructions? . 

LDA H¢LD-1 
STA TAG +3 

100 

101 
102 

103 

104 
105 

106 

0000 0000 

1111 1111 
2222 2222 

3333 3333 

4444 4444 
5555 5555 
6666 6666 

(iii) If the above instruotions were followed by 

LDA 101B 
STA 69 
LDA TAG +5 

STA TAG-1 

LDA H¢LD 
STA H!6LD+3 

What would be the final oontents of the block of memory? 

3.2.2 Store Q 

23 18 17 16 15 14 00 

m 

a - addressing mode designator 
b - index designator 
m - storage address 



3.2.2 (cont.) 

Desoription Stores the 2~bit quantity in Q at address X, 
where » - m + (Bb) 

Example LDQ 

STQ 

*+1 

Exeroise : 

RESULT (- 41 00 05 00) 

ORGR 500B 

RESULT BSS 

What would be the oontents of RESULT after execution 
of the above? 

Answer: RESULT ... 41000500 

A block of memor,y is as shown: 

t¢c 20 00 01 00 

00 00 04 01 

00 04 44 00 

21 23 25 27 

MASK 07 04 07 04 

12 34 56 70 

00 00 00 01 

What will be its oontents after exeoution of the following? 

LDQ L¢C+3 

STQ L¢C+l 

LDQ L¢C+2 

STQ MASK+l 

LDQ MASK-4 

STQ L¢c+6 

3.2.3 Store Index 

23 18 17 16 15 14 00 

I 47 I a I b I m 

a = addressing mode designator 

b ~ index designator 

m - storage address 
• 1--. 

Desoription: Store the (B-) in the lower 15 bits of storage address m. 
N .B. The upper 9 bits of m remain unohanged. "b" 
indioates the ,index register. If b - 0, the lower 
15 bits of "m" are set to zero. 



3.2.3 (cont.) 

Examples: (i) STI TMP2,2 where (TMP2) = 40050012 

(B2) = 63636 

After execution (TMP2) = 40063636 

(ii) If (FIELDA) ... 31244444 

(CHANGE) = 11111111 

What will be the contents of TEMPY after 
execution of the following? 

LDA FIELD! 

STA TEMPY 

LDI CHANGE, 3 

Answer: 

STI 

(TEMPY) 

(iii) If (B1) - 00502 

STA ** 
LM *-1 

STA H¢LD 

STI H¢LD,l 

TEMPY,3 

- 31211111 

What will be the contents of H¢LD? 

Answer: (H0LD) = 4000 0502 

Exercises on Store Index instruction 

(1) If (L¢C) = 21043072 

(B2) = 00004 

What will be contents of L¢C after execution of the following? 

(2) If (L¢C) - 21043072 
(TEMP) - 00140001 

STI L¢C,2 

What will be the contents of L¢C and TEMP after execution of the 
following? 

LD! L¢C 

LDI TEMP, 2 

STA TEMP 

STI TEMP,2 

(3) If (TEMP) - 23002000, (BIG) - 11111112, and (H¢LD) - 00000001, 

What will be contents of TEMP and BIG after execution of the 
following? 

LD! TEMP 

STA H¢LD 

LDI BIG,3 

STI H¢LD 

LDI TEMP ,3 

STI BIG,3 

LDA H¢LD 

STA TEMP 



3.3 ARITHMETIC, FIXED POINT, 24-BIT PRECISION 

3.3.1 Add to A 

23 18 17 16 1 5 14 

m 

00 

a = addressing mode designator 

b = index designator 

m = storage address 

Description: Adds the 24 bit quantity located at address M to the 
oontents of RegisterA. The result is stored in A. 
M =m + (Bb). 

Examples: (i) If (1008) = 10001010 

(A) = 00077777 

What will be the contents of A after execution of 
the following instruction? 

ADA 100B 

Answer: (A) 10101007 

(ii) If~PR = location 1008 in the block of memor,y shown, 
what will be the oontents of A and index register 2 
after execution of the following? 

Answer: 

000000 1 1 

o 0 1, 4 1 3 1 0 

100 

101 

1-02 

103 

1Q4 

105 

2 1 0 000 0 5 

',1 4 0 1 4 0 0 0 

o 0 7 7 1 777 

2 0 2 0 1 020 

LDA ¢PR+2 

STA ¢PR+4 

LDA ¢PR+3 

ADA ¢PR+4 

STA ~PR+2 

STI ¢PR+2,2 

1M ¢PR+5 

ADA ¢PR+2 

LDI ¢PR+l,2 

(A) - 55201034 

(B2 ) - 41310 

B2 - 00014 



3.3.1 (cont.) 

Exercise: 

A block of memory is as shown: 

100 00 00 00 01 

00 00 00 02 

00 00 00 03 

00 00 00 04 

00 00 00 05 

00 00 00 06 

00 00 00 07 

00 00 00 10 

(a) Write a program segment which will add together the contents 
of locations 100, 102, 104 and 106 and store the result in 
107· 

(b) Write a program segment which will add up locations 101 
and 102 and store the result in 103, add 103 and 104 and 
store the result in 105, and add 105 and 106 and store 
the result in 107. 

3.3.2 Subtract from A 

Description: 

ExamEles: 

SBA,! m,b 

23 18 17 16 15 i 4 00 

I 31 I a I b I m 

a = addressing mode designator 

b = index designator 

m = storage address 

Subtracts the 24-bit ~uantity located at address M 
from (A). The difference appears in A. M = m + (Bb ). 

(i) If (A) =. 10404040 

( 100£) a 10303030 

SBA 100B 

Answer: (A) ... 00101010 

(ii) If (A) ... 04444444 

(TEMP) ... 02132132 

SEA TEMP 

Answer: (A) ... 02312312 



3.3.2 (cont .. ) 

(iii) 
TEMP 1 000 0 001 

24001 020 

7 7 7 7 7 7 7 7 

14021 020 

o 000 1 000 

o 0 0 0 2 2 2 2 

o 2 0 2 0 2 0 2 

What will be in this section of memor,r after the 
following? 

LDA TEMP 

ADA TEMP+6 

STA TEMP+2 

SBA TEMP+4 

STA TEMP+5 

100 000 0 1 TEMP 

24001 020 

1 2 020 203 

140 2 1 020 

o 0 0 0 1 000 

120 1 720 3 

o 2 0 2 0 2 0 2 

Exercises on Subtract from A 

(a) LM =D401 

SBA =D30 

What will then be the contents of A? 

(b) If (C¢DE) = 00000001 

What will be the contents of H¢LD after the following? 

LDA C¢DE 

ADA C¢DE 

STA H¢LD 

ADA H¢LD 

STA H¢LD 

ADA H¢LD 

ADA H¢LD 

STA H¢LD 

(0) Write a program segment to multiply the oontents of X by two and 
subtraot from the answer,the contents of locations Y and Z. 
Store your answer in ANSWER. 



3.3.3 Multiply A 

23 18 17 16 15 14 00 

m 

a :: address mode designator 

b = index designator 

m = storage address 

Description: Multiply the contents of A by the contents of Address M. 

Examples: 

The 48-bit product appears in ~ with the lowest order 
bits in A. 

M = m + (Bb) 

(i) What will be the contents of ~ after execution 
of the following instructions? A contains 1oo8~ 
and TABLE contains 5. 

STA SUM24 

1DA TABLE 

MUA SUM24 

Solution: SUM24 ... 100 00 01 00 I 
A = 1 00 00 00 05 I 

Q A 
Answer = 1 00 00 00 00 I 00 00 05 00 I 

(ii) If TABLE contains 5 and A contains 200000008' what 
will be the contents of QA .after execution of the 
following instructions? 

STA SUM24 

1DA TABLE 

MUA SUM24 

Solution: SUM24 = 120 00 00 00 I 
A :: I 00 00 00 05 I 

Q A 

Answer = I 00 00 00 01 120 00 00 00', ' 

Exercises on Multiply A Instruction 

(a) If (A) - 10 , (TABLE) = 3 , (SUM24) = 5 , and (H¢LD) = 0 
what will be the contents of A after execution of the following 
instructions? 

MUA TABLE 

STA H~1D 

1M SUM24 

MUA T~LE 

ADA H~LD 



3.3.3 (cont.) 

3.3.4 

(b) A block of memor,y is as shown 

100 00 00 00 01 

00 00 00 02 

00 00 00 03 

00 00 00 04 

00 00 00 05 

00 00 00 06 

00 00 00 07 
00 00 00 10 

Write a program segment to add the contents of 100 and 101~ 
multiply the result by the contents of 102, add the contents 
of 103, 104 and 105, multiply the result by (106)9 and then 
add (107). Store the result in 100. 

(c) What will be the contents of A after execution of the following 
sequence of instructions, if the initial contents of A = 0, 
(¢NE) = 6, (TW¢) 2, (THREE) = 1010 • 

Divide A 

Description: 

ADA 0NE 
MUA TW0 
SEA THREE 

MlJA 0'NE 
MUA 0NE 
SBA TW¢ 
ADA THREE 

23 18 17 16 15 14 00 

I 51 I a I b I m 

a = addressing mode designator 

b - index designator 

m = storage address 

Divide the 48 bit quantity in AQ by the quantity in 
storage at address M (M = m + eBb)). The quotient 
appears in A, and the remainder with its sign extended 
appears in Q. 

If a divide fault*occurs, the instruction halts and thE 
progr~ advances to P + 1. (The contents of A and ~ 
are usually meaningless in this case.) A divide fault 
occurs whenever the number of leading sign bits 
(0 or 1, ie, + or -) in M is greate.r than or equal to 
the number of leading sign bits inAQ. A fault can 
also occur if the number of sign bits in M is one less 
than that in AQ;'however, the actual number in M and 
in AQ now has to be considered. Since the number in 
AQ is usually achieved by shifting AQ 24 bits to the 
right, extending the sign thru A into Q, an overfiow 
rarely occurs. 

*Quotient greater than 223_ 1 



3.3.4 (cont.) 

Example.: 
If (AQ) 

and (D) 

I 000000001377777771 

100000001 I 
What will be in A and Q after execution of: 

DVA D 

Answer: (A) 1377777771 = Quotient 

(Q) 100000000 I = Remainder 

Divide Fault bit = 0, ie, 'No Divide Fault" 

Note: Had the initial contents of AQ been just one 
number larger, a Divide Fault would have occurred. 

Exercises: 

(a) If (A) - 0000 0000 

(Q) - 0000 4040 

(TAG) - 0000 2000 

What will be"in A and Q after execution of the following instruction? 

DVA TAG 

(b) If (A) - 00000000 

(Q) ... 00000122 

(LOC) - 00000005 

What will be in A and Q after execution of the following instruction? 

(c) 

DVA r.s'C 

If (A) • 7777777 
(Q) - 7777771 

and Index Register 2 contains 00003 

TAG 

What would be in A and. Q after the instruction: 

DVA TAG,2 

I 0000 0007 II 

I 001' OA 40 4 I 

0771 7717 
0000 0004 

7771 7713 

(d) If Index Register 2 contains 4, TAG is as above, and 
(A) and (Q) are as shown: 

(e) 

A Q 

I 7117 1777 I 7777 1171 

What would be in A "and Q after execution of the following 
instruction? 

DVA TAG,2 

Draw diagrams of the machine instruction word which would be 
assembled from the following C¢MPASS instructions: 

(i) DVA 

(ii) DVA 

414B,1 

100B 



3.3.5 Replace Add 

Description: 

Examples: 

Exercise: 

23 18 17 16 1 5 14 00 

I 34 I a I b \ m 

a = address mode designator 

b = index designator 

m = storage address. 

Replace the quantity at address Mwith the sum of (M) 
and the contents of A register. M = m + (Bb). 

The A register remains unchanged. 

(i) If A = 674321368 and 

(INC) :: 1008 

STA 1¢C 
1DA INC 
HAD_ L¢c 

L¢C now equals 67432236B. 

(ii) If (A) = 200~ and (INC) = 5000 
o u 

HAD INC 

Answer: (INC) 7008 

If (A) - 1008 and (INC) = 2008 

HAD INC 

STA TEMP 

LM INC 

STA ¢NE 

LM TEMP 

HAD INC 

1M INC 

STA TW¢ 
LM TEMP 

-RAD - -INC 

LDA INC 

STA THREE 

What will be the contents of ¢BE, TW¢ and THREE? 



3.4 REGISTER OPERATIONS WITHOUT STORAGE REFERENCE 

3.4.1 Increase A 

23 18 17 16 1 5 14 00 

I 15 11 1 b 1 v 

b = a if sign extension 

23 18 17 15 14 00 

15 4 v 

b = 2 if no sign extension 

23 18 . 17 15 14 

I 15 6 y 

Descriptions Adds the amount "Y" to the contents of the A register. 

Examples I (i) 

If there is no sign extension specified, only the 15 
bits of "yn are added to A. 
If sign extension is specified, the sign bit of y is 
extended before addition to A. (Note - if A is 
increased by a negative number, sign extension should 
be used.) 

If (A) • 00 00 00 01 

INA 12B 

(A) • 00 00 00 13 

If (A) .. 00 00 00 01 

INA,S 40000B 

(y .. 777 4 0000) 

Answer I (A) • 77740001 

Exercisesl (ERR¢R~ D 00004040B 

(a) What viII be the contents of ERR~RC after the following? 

LDA ERR¢RC 

INA 55565B 
STA ERR¢RC 

(b) If the instructions had been 

LDA 

INA,S 

STA 

ERR¢RC 

55565B 
ERR¢RC 

What would have been the final contents of A? 



3.4.1 (Cont.) 

3.4.2 

(c) If (ERR~RC) 601o, write the coding necessary to increase 
it to 10010. 

(d) If (A) = 108, what will be the final contents of A after 
execution of the following? 

INA,S 77776B 

Increase Q 

23 1 8 1 7 1 6 1 5 14 00 

15 11 1 b 1 y 

b 1 if sign extension 

23 18 17 15 14 00 

15 5 y 

b 3 if no sign extension 

23 18 17 15 14 00 

I 15 7 y 

Description: Adds the amount llyn to the contents of the Q register. 

Examples: 

Exercises: 

If there is no sign extension specified, only the 15 
bits of nyn are added to Q. 
If sign extension is specified, the sign bit of y is 
extended before addition to Q. (note: if Q is increased 
by a negative number, sign extension should be used.) 

(i) 

(ii) 

If (Q) 00 00 00 20 

INQ 60B 

Answer ~ Q) = 00 00 01 

If- (Q) 00 00 00 20 

INQ, S 44444B 
(y = 777 44444) 

Answer: (Q) = 777 44464 

00 

(i) If (Q) 5778, what will be the result in Q 
after the instruction INQ 547B is executed? 



3.4.2 (cont.) 

(ii) If (Q) • 50B, (STACK) ~ 500B what will be the 
result in Q after the following sequence of 
instructions? 

INQ 100B 

STQ TEXP 

LDA TEMP 

RAD STACK 

LDQ STACK 

INQ,S 21111B 

J.~. J Increase Index 

23 18 17 16 15 14 00 

15 10 I b I v 

b = index register designator 

Descriptions Adds the 15-oit quantity "y" to the contents of the 
index Tegister specified. 

Examples I (i) INI 6,2 where (B2) 

What will be the contents of B2? 

(B2) == 20B 

(ii) un 1ooB,3 

IN! 10B,3 

What will be the contents of B3? 

(B3) • (100B) + 10B. 

l2B 

(iii) If a block of memory is as shown below, what will 
be in the index registers as a result of the 
following' 

107 20 00 00 04 

40 10 00 21 

60 00 00 01 

77 77 77 77 

00 00 00 20 

04 01 07 01 

22 22 33 33 

LDI 110B,1 

LDI 111B,2 

INI 20B,2 

LDI 113B,3 

IN! 70B,3 

Answer a B1 • 21B 

B2 • 21B 

B3 • 110B 



3.4.3 (cont.) 

Exercises en Increase Index instruction 

(i) A block of memory is as shown I 

100 00 00 00 01 

00 00 00 10 

0000 01 00 

00 00 10 00 

00 01 00 00 

00 10 00 00 

01 00 00 01 

What will be the contents of the three index registers after 
execut:j.on of the - folloWing? 

LDA 101B 

RAn 100B 

LDI 100B,1 

INI 100B,1 

LDI 104B,2 

INI 17777,2 
LDI 106B,3 

INI 100B,3 

STI 106B, 3 

LDA 106B 

HAD 106B 

LDI 106B, 3 

(ii) If index 1 contains 1, write a program using this 
index to st ore the numbers 1,3, 5,·7 and 8 in 5 cDnsecuti Ve 
locations beginning at locaiiion 1000 



3.4.4 Enter Register 

23 18 17 16 15 14 

14 I d I 

(a) d = 1 
b = 2 

23 18 17 

14 

(b) d = 1 
b = 0 

23 18 17 

14 

(c) d = 1 
b = 3 

23 18 17 

14 

(d) d 1 
b 1 

23 18 17 

14 

(e) d = 0 

b I 

ADDms fiHII 

15 14 

6 

mms FlHD 

15 14 

4 

15 14 

7 

15 14 

5 

y 

y 

y 

y 

Y 

b = index designator 

23 18 17 1 6 1 5 14 

14 10 I b I y 

00 

00 

Enter A 

00 

00 

Enter Q 

00 j 

00 Enter Index 

If b = 0, this is a no-operation instruction . 

../ 



3.4.4 (cont.) 

Description: The 15-bit quantity fly" is entered in the specified 
register. The register is cleared before fly" is entered. 
If sign extension is specified, the sign bit of nyu is 
extended before nyu is entered into the register. 

Examples: (i) ENA 14B 

(A) • 00 00 00 14 

(ii) ENQ,S 40001B 

(Q) = 777 40001 

(iii) EN! 77B,1 

(B 1) = 00077 

Exercises on the Enter Register Instructions 

(1) If (Q) = 11025321, and location 708 contains 10101§ 
what will be the contents of Q after execution of uhe 
following? 

(2) 

ENQ 70B 

AA ENA 0 
LDA *-1 
INA 40 
STA AA 

What will be the contents of storage location "AA" after 
execution? 

(3) If (FIELD) = 11010 101~ 

(4) 

and FIELD. locaton 456B 

What will be the contents of the A Register after execution 
of the instruction 

ENA FIELD 

ENA,S 0 
STA lOOB 
ENI lOB,l 
INI lOOB, 1 
STI lOOB,l 
LDA lOOB 
INA,S ·4QO(iOB·· 
STA lOOB 
LDI lOOB,2 

What will be the contents of A, Bl and B2 after execution 
of the above? 



3 .5 JUMP INSTRUCTIONS 

3.5.1 Unconditional Jump 

23 1 8 1 7 1 6 1 5 14 00 

I 01 I a I b I m 

a = addressing mode designator 

b = index designator 

m = storage address 

Description: Unconditionally jump to address M, where M = m + (Bb). 

Examples: 1M 100B 

UJP E¢F 

Control will jump back to statement EOF 

(ii) Ali UJP *+2 (AAA = address ;0) 

Program jumps to address 12. 

Where the address to which control is to jump is not known 
at the time of assembly, but will be entered in during execution, 
the instruction is usually coded as follows, to enable easy recog­
nition of the statement in assembled programs: 

UJP ** (asdembled as 01077777) 

This causes 1 bi~to be set in the address portion of the word, 
and this will be replaced during execution by the actual address 
to which control is to jump. 

SC¢PE entry to a program takes this form. (See section 2.2.4.3) 

However, in such cases, the contents of the address portion of 
the word may be ~. legal address. Whatever the address is, it will 
be replaced by the correct address during execution. Thus: 

START 

UJP ** 

UJP * 

UJP 

UJP 

*+7 
START 

will all serve the same purpose, for they will all be modified as 
required in the program,during execution. 



3.5.2 Compare A with Zero, Jump 

23 18 17 16 15 14 

03 10 I j I m 

j = jump designator (0-3) 
m = jump address 

00 

(a) j = 0, jump if A = +0 or -0 

23 18 17 15 14 00 

03 o m 

(b) j 1, jump if A f +0 or -0 

23 18 17 15 14 00 

03 m 

(c) j 2, jump if A ~ +0 (-0 < +0) 

23 18 17 15 14 00 

03 2 m 

(d) j = 3, jump if A < +0 (-0< +0) 

23 18 17 15 14 00 

03 3 m 

Description: (A) are compared with zero to establish test conditions 
as above. If the condition specified by the modifier 
is true, the program jumps to address "m". If the test 
condition is not true, RNI from address P + 1. (RNI = 
read next instruction). 



3.5. 2 (cont .1) 

Example: If (A) - 1 

(i) What will be the ENI address after exeoution of 

AZJ,EQ L¢¢P 

Answer: RNI at address P + 1 

(ii) If the instruotion had been 

AZJ,GE L¢¢P 

Answer: mil at address L¢¢P 

Exeroises: 

Given the information below, give the RNI addresses for eaoh problem. 

(i) If (A) ~ 77777777 
AZJ,EQ 100B 

ENI II: ? 

(ii) If (A) ... 00020000 

AZJ,EQ ST¢RE 
ENI ... ? 

(iii) If (A) - 00000000 
AZJ ,NE CARRY+l 

mn .., ? 

(iv) If (A) ... 77777776 
AZJ,LT NEXT 

ENI • ? 

(v) If (A) ... 03675671 
AZJ,GE ¢NE 

RNI ... ? - ---
(vi) If (A) - 00000000 

AZJ;GE L¢~P 

RNI= ? -- --
(vii) ENA,S 40001B 

AZJ,GE YES 

ENI= ? -- --

(viii) ENA 77771B 
AZJ ,LT nYBE 

ENI ... ---- ? 

(ix) ENA,S 20141B 
AZJ,GE 200B 

RNI- ? ----
(x) ENA,s 32161 

AZJ ,LT FINISH 

RNI- ? --- -



3.5.2 (cont.2) 

(xi) Which Halt will be reached after execution of the 
following program segment? 

LM -¢423 
SBA =~424 
AZJ ,EQ HLT 

UJP HLT+1 

HLT HLT 

HLT 2 

3.5.3 Compare A with Q, Jump 

23 1 8 1 7 16 1 5 14 

03 l,j j I m 

j = 0-3 jump designator (0-3) 
m = jump address 

00 

(a) j = 0, jump if A = Q (+0 = -0) 

23 18 17 15 14 00 

03 4 m 

(bY j 1, jump if A f Q (+0 = -0) 

23 18 17 15 14 00 

03 5 m 

(c) j = 2, jump if A ~--~ (+0 > -0) 

23 18 17 15 14 00 

03 6 m 

(d) j = 3, jump if A< Q (+0>-0) 

23 18 17 15 14 00 

03, 7 m 



3.5.3 (cont.) 

3.5.4 

Desoription: 

Exam}2les: (i) 

(ii) 

ExamEles: 

The quantity in A is compared to the quantity in Q 
to establish a comparison or test - oondition. If 
the test-oondition is true, RNI from address "mHo 
If not true RNI .. P+1. 

AQJ, EQ L~~P (A) .. 00000000 

(Q) - 11111111 
RNI L¢¢P 

AQJ,GE Lf/lfp (A) = 00000000 
(Q) = 77777777 

RNI L~¢P (+0 >-0) 

Given the information below, supply the RNI's 
for each problem: 

(a) AQJ ,LT L¢~P (A) =07234567 

(Q) -04444444 

RNI- ? - _ ....... -
(b) AQJ ,GE L¢¢P (A) = 50523411 

(Q) .. 23456133 
IDll .. ? - ---

(c) AQJ ,NE L¢~P (A) .. 00 00 00 01 

(Q) a iO 00 00 01 

RNI- ? ----

Return Jump 

23 18 17 15 14 00 

m 

Desori}2tion: The address portion of the oontents of address m is 
replaoed by the return address P + 1. The program 
jumps to ~ + 1, i.e. liNI = m + 1. This instruction 
is used for subroutine linkage. 

Exam}2les: (i) RTJ XS¢RT 

Here the address portion of XS¢RT will be replaced by 
the address of the RTJ instruotion + 1, and the 
program oontrol will advance to XS¢RT+l. 



3.5.4 (cont.1) 

(ii) RTJ SUBR¢oT 

SUBR9fUT UJP ** 

UJP SUBR¢\JT 

If the numbers in brackets indicate the addresses of 
the respective instructions, the assembled program 
before execution would appear as: 

00100 00700200 

00200 01077777 

00210 01000200 

After execution the contents of memory would 
appear as: 

00100 00700200 

00200 01000101 
,... 

00210 01000200 

Note: ** is assembled as 777778 and is used 
where the value is to be changed at 
run t~e, such as the address portion 
of the instruction at address 00200. 
Or, to say it another way, ** = TBC 
(To Be Clobbered.) 



3.5.4 (cont. 2) 

Use of the RTJ statement 

There are two types of subroutines used in C¢MPASS - open and 
closed. An open subroutine is a series of instructions which is required 
more than once during a program, and is inserted where it is required. 

e.g. 

~ 
~ 

Main 
Program 

Main 
Program 

Open 
Subroutine 

This method has obvious disadvantages and it is more usual to 
employ the closed subroutine method. 

e.g. 

~ 
~ 
Jump to Sub. 

~in ~ ~ Closed 
Program -X Subroutine 

/~/ /L--________ ~ 
./ / 

Jump to Sub.~./ // Return to Main Prog. 
/ 

~ __ Ma ___ in ____ ~IL/~/ 
_ Program r 

What is the problem here? 

It is that the program jumps to the subroutine from two or more. 
points in the main program, and once the program is in the subroutine, how 
does it know to which main program instruction it should return? 

It doesn't, since it· doesn't know where the jump to the 
subroutine was located in the Main Program. 



3.5.4 (cont.3) 

This problem is eliminated by using the RTJ (Return Jump) 
instruction in the Main Program when a jump to the subroutine is desired. 
The instruction stores the address of the instruction following the RTJ 
in the lower 15 bits of the first instruction of the subroutine. The 
first instruction is then skipped and the first instruction executed is 
actually the second instruction of the subroutine. 

e.g. 

Main 
Program 

RTJ to Sub. 

Main 
Program 

RTJ to 

/' I 
not"" I 
~ I 

."." / 
Sub!" $I' 

Main 
Program 

~/ 

Closed } ...... , 
Subroutine 2 ~ 

Jump to first -_/ 
Instr. of Sub. 

Following is a section of a Compass Program that illustrates 
this latter method: 

ENI 0,1 
LDA 100B 
SM 101B 
RTJ SUB 
LDA 105B 
MUA 155B 
RTJ SUB 
LDA 255B 
INA 21 

etc. 

SUB UJP ** AZJ.LT SUB 
INI 1,1 
UJP SUB 

When the RTJ instruction is encountered, execution jumps to SUB, 
and the address portion of SUB is replaced by the address of the RTJ 
instruction + 1. After execution of the instructions in the subroutine, a 
jump is made back to SUB, which instruction is now an unconditional jump to 
the instruction after the RTJ instruction. Execution of the Main Program 
then continues. 





3.5.5 Unconditional Halt 

23 18 17 15 14 00 

I 00 0 m 

Description: Unconditionally stop at this instruction. Upon 
restarting, RNI from address "m" 

Example: CTR.l 

SEVEN 

LM 

INA 

STA 

ISE 

UJP 

HLT 

LDQ 

END 

CTR.2 

100B 

T¢M,1 

1 0 ~ 1 

CTR.1-3 

SEVEN 

MASK 

Selective Jump 

23 18 17 15 14 00 

00 m 

j 1 - 6 = SELECTIVE JUMP switch number 

j = 1, jtmlp if "SELECT JUMP 1" switch is on 

j 2, jump if "SELECT JUMP 211 switch is on 

;_~jA .... L. .. ~._L.L ....... j . ........< •...• ; ••••. _ 

j 3, jtmlp if "SELECT JUMP 3" switch is on 

j :;;:; 4, jump if "SELECT JUMP 4" switch is on 

j 5, jtmlp if IISELECT JUMP 5" switch is on 

j 6, jump if IISELECT JUMP 6" switch is on 

j = 0, see HLT instruction 
j = 7, see RTJ instruction 



3.5.6 (cont.) 

Description: Jump to address III if the jump key specified is set "on". 
Otherwise RNI P+1. 

Example: SJ4 BYPASS 
CARDS LDA CARD, 1 

ADA TEMP, 1 
UJP ENDING 

BYPASS LDA TAPE, 2 
ADA ST¢RE,2 

ENDING HLT L¢C4 

END 

If jump switoh 4 is set "on" jump to BYPASS otherwise 
RNI at address CARDS. 

3.5·7 Index Jump (Incremental/Decremental) 

23 18 17 16 15 14 00 

m 

b = index register designator 

d = 0, Index Jump Increment 

23 18 17 15 14 00 

02 b m 

d = 1, Index Jump Decrement 

23 18 17 15 14 00 

02 b+4 m 

Desoription: Jump to "m" if (Bb) ~ 0 and inorement (or deorement) index 
by 1. 

(i) 

(ii) 

(iii) 

There are 3 possible oonditions: 

If b - 0, the instruotion is a no-oPe and 
RNI from P + 1. 

If (Bb) • a RNI from P + 1. 

If (Bb) ~ 0, the jump test oondition is 
satisfied. One is added or 
subtraoted to (Bb); jump to 
address m and RNI. 

The oounting is done in a one's oomplement adder. 
Negative zero is not generated because the cca~t 
progresses ••••• 77775, 77776, 00000, stopping 
at -to. If a ... ° is initially in Bb, the count 
progresses 77777,00001, etc. 



3.5.7 (cont.) 

Examples: 

~p 

Answer: 

Exercises: 

t¢¢p 

ENI 9,2 
LDA BUFFER, 2 

STA DATA, 2 

IJD ~¢P,2 
HLT 

How many words will transfer? 

1°10 

ENI 

LDA 

IJI 
HLT 

-5,1 
T¢M 

tyS¢P,1 

How many times will the loop be executed? 



3.6 SKIP INSTRU,CTI~S 

3.6.1 Skip if Equal 

23 18 17 16 15 14 

(i) d = 1 
b = 0 

23 18 17 

04 

(ii) d 1 
b 2 

23 18 17 

04 

(iii) d 1 
b 1 

23 18 17 

04 

(iv) d = 1 
b = 3 

23 18 17 

04 

(v) d = 0 

15 14 

4 

15 14 

6 

15 14 

5 

15 14 

7 

y 

y 

y 

y 

y 

b = index designator 

23 18 17 15 14 

04 b y 

00 

00 

00 

00 

00 

00 

b = index register designator (1-3 ) 

If b = 0, y is compared to zero. 



3.6.1 (cont-l) 

Description: 

ExamElesa 

If the instruction is ASE, QSE or ISE; (Alower 15)' 
(Qlower 15) or (Bb) respectively is compared bit ~ 
bit to "y". If equal, RNI from P+2, otherwise RNI 
from P+l. 
Note: To be equal to "y", the quantities must be 

'exactly the same, thus if (A) or (Q) = 
xxxOOOOO or (Bb) = 00000, lIy" must be 00000 
to be equal. Or, if (A) or (Q) = xxx77777 
or (Bb) = 77777, "yil must be 77777 to be equal. 

If sign extension is specified, i.e. the instruction 
is ASE,S or QSE,S the sign of lIy" (bit 14) is extended 
and the 24 bit quantity is compared with the quantity 
in the specified register. 
Note: In this case, if (A) or (Q) = 77777777 or 00000000 

and "y" is 77777 or 00000, the quantities are 
considered to be equal. For all other values in 

(i) 

(ii) 

(iii) 

(iv) 

A or Q, the sign extended "y" value must be 
exactly the same to be considered equal. 

ISE 300B,2 

If (B2 ) • 30°8' RNI P + 2. 

ISE 50,1 (B 1) 
• 

62
8 

What is the RNI? 

RBI lII: P + 2 

BEGIN LDQ FIELDA 

QSE 64210B 

... . . . 
FIELDA ¢CT 50964210 

What is the RNI after QSE? 

RNI.P+2 (=BEGIN + 3) 

Example of use of ASE instruction in a loopo 

ENA 0 

L9¥p STA CIC.l 

STA TEMP 

LDA *-2 

INA 

STA *-4 

LDA TBMP 

INA 5 

ASE 25 

UJP L¢¢P 

HLT 

TEMP BSS 1 

This will store numbers 0, 5, 10, 15 and 20 in 
consecutive locations, begining at location CIC.l. 



(iv) Use of Index skip-if-equal in a loop_ 

ENI 0,1 

1¢¢P 1DA VALUE 

MUA =D5 

DVA =D8 

STA RESULT 

1DA L~P 

INA 1 

STA 1¢¢P 

LDA *-4 
INA 2 

STA *-6 
INI 1, 1 

ISE 100,1 

UJP L¢¢p 

HLT 

VALUE 'S~CT 1 

Exercises en SKIP-if- equal instructions 

(a) How many times will the following loop be executed? 

ENQ ° L~P LDA ANS 

MUA TW 

STA ANS 

INQ 5 
QSE 100 

UJP- 1¢¢P 

HLT 

(b) Wri te a program segment to move ten numbers in consecutive 
locations, beginning at STORE, to consecutive locations beg­
inning at RESULT. 

(c) If CHECK contains 20100010, how many times will the following 
loop be executed? 

LDQ 

LDA 

INQ . 

QSE 
UJP 

RLT 



3.6.1 (cont.S) 

(d) What will be the final contents of HOLD after 
execution of the following? 

EN! 0,1 

ENA 0 

STA H,¢LD 

INA 10 

INI 1, 1 

ISE 10,1 

UJP *-3 
STA H(}tD 





3.6.2 Skip if Greater Than or Equal 

23 18 17 16 1 5 14 

05 I·~I b I 

(i) d = 1 
b = 0 

I lOCATION ; iOPERAllOII, MDDlfI£RS ADDRESS fIELD 

00 

y 

b.·;~J±~~:":":~;~""'!":":":"''':H:''!~=~ 
23 18 17 

05 

(ii) d 1 
b 2 

23 18 17 

05 

(iii) d 1 
b 1 

23 18 17 

05 

(iv) d = 1 
b = 3 

23 18 17 

05 

(v) d = 0 

15 14 

4 y 

15 14 

6 y 

15 14 

5 y 

15 14 

7 y 

b = index designator 

00 

00 

00 

00 

,...---_ .• __ .. __ ._--•. _--_ .... _----
I LOCATION .. iOP_ERAl!O!l,MDD!fIER~ mms flm 

~41,SG . ..LLL~;pb, ~ , ! ' , ! 
i, :2\$!," '''',l'' It ;~~.o::.::-: 'l-;:,,:;,,:c1l':'f:ilt~p¢J~.1E.!.!!.1.~J!!U!J!}~:_::l.!!.l.:!!l!.'?:'S .. :""'U;!l-_:J, 

23 18 17 15 14 00 

05 b y 



3.6.2 (cont.) 

Description: 

Examples: 

Exercises in 

If the instruction is ASG, QSG or ISG; (Alower 15)' 
(Qlower 15) or (Bb) respectively is compared to "y". 
If greater than or equal, RNI from P+2, otherwise 
RNI from P+1. 
Note: If the (A) or (Q) = xxx77777 or (Bb) = 77777, 

the instruction will skip if "y" is either 
77777 or 00000. If the (A) or (Q) = 00000000 
or (Bb) = 00000, the instruction will skip if 
"y" is 00000 but .will not skip if it is 77777. 

If sign extension is specified, i.e. the instruction 
is ASG,S or QSG,S the sign of "y" (bit 14) is extended 
and the 24 bit quantity is compared with the quantity 
in the specified register. If the sign bits are different 
the one with a sign bit of zero is larger. 
Note: If the (A) or (Q) = 00000000, the instruction 

will skip if "y" is either 77777 or 00000. If 
the (A) or (Q) = 77777777, the instruction will 
skip_if "y" is 77777 but will not skip if it 
is 00000. 

(i) If (A) = 00002020 

ASG 2020B 

(A) is equal to y, skip next instruction, RNI at P + 2 

(ii) If (A) = 10000001 

ASG,S 40002B 

y = 77740002 with sign extended 

(A) is greater than y, skip next instruction, RNI at P + 2 

SKIP-IF-GREATER-THAN-OR-EQUAL Instruction 

(a) To which STOP location will control jump? 

ENA,S 40000B 
INA 20B 
ASG,S 40040B 
UJP ST~P1 
ASG 40020B 
UJP ST{6P2 
UJP ST~P3 

(b) To which location will control jump? 

ENQ 200B 
QSG,S 128 
UJP ENDING 
UJP PAUSEl 

(c) How many times will the loop be executed? 

ENI 0,1 
LDA PERS~N, 1 
MUA RATE 1 
SHAQ 24 
DVA RATE 2 
STA TAX, 1 
IN! 1,1 
ISG 500,1 
UJP *-1 
HLT 



3.6.3 Index Skip Incremental/Decremental 

23 18 17 1 6 15 14 00 

I 10 I ~ I b I y 

d = 0, Index Skip Incremental 

23 18 17 15 14 00 

10 b y 

b = index register designator 

d = 1, Index Skip Decremental 

-
23 18 17 15 14 00 

iO I b + 41 y 

b = index register designator 

Descriptions If (B~) = Y skip to P + 2 and clear the index register. 
If (B ) I y RNI from P + 1 and add 1 to (or subtract 1 
from) the index register. 

Exampless 

Exercise: 

(i) EN! 0,1 

LDA BUFFER, 1 

STA DATA, 1 

lSI 9,1 

UJP *-3-

HLT 

What is this series of instructions doing? 

Answer: Moving 10 words from BUFFER to DATA 

(ii) How can the same problem be done using the ISD instead 
of the lSI? 

EN! 9,1 

LDA BUFFER, 1 

STA DATA, 1 

ISD 0,1 

UJP *-3 
HLT 

Wri te a program segment to move 50 numbers from BUFFER to 
locations beginning at STORE. FIND the total of these 
numbers and store the answer in RESULT. 



3.7 STORE WORD ADDRESS 
--_ .• -. _._ ... __ ...•. _ .. _ ... __ ._-_ .. - ... -r lOCATION OPERAHOII,MDD!flfRS mR(SS fiElD 

k_i·-'..Ll·Ii~1v41.L.j .. ~~.j.~ •• c .. ~.~~-LLL_L 
Lj .. !.J..J:.l,~:~.~:?.~:.!~ ... :.L:'!l!! .. .!1_<:l.~.:~l!..~l!.'.i!!l~;~~::.~.~.':':'~!.;..l. 

23 18 17 16 15 14 00 

144 lal b I m 

Description. Stores the lower 15 bits of (A) in the storage 
location M. The high - order 9 bits of (~) are 
unchanged. 

Examples: 

Exercisea 

SWA INST (A) 17603216 

INST LM ** 

What will be the contents of INST? 

(INST) = 20077777 (Before) 

(INST) = 20003216 (After) 

INST LDA *+1 

SWA *-1 

Where INST = 76B, what will be the contents 
of words 76B and 77B? 

(76B) .. 20000076 

(77B) • 44000076 

What, if any, is the difference between the modification 
achieved by the two program segments below? 

Program A Program B 

lNST 

LDA 

SWA 

ENA 

. 

F~UR06 

lNST 

** 

F~UR06 ¢CT 406 

lUST 

LDA 

ENA 

lNST 

406 

STA lNST 

ENA ** 



3.8.1 Shift Instruction format 

23 18 17 16 1 5 14 00 

k • 
d • an operation designator, which is virtually an extension 

of the function cOde. It differentiates_between 2 
instructions using the same f code. 

e.g. SEA d = 0 

SHQ d • 

b = index register designator 
The contents of the index register is treated as a 
15 bit signed number and is used as a shift direction 
and/or number-of-bits modifier. 

k Shift count, base 
It may be positive or negative (in complement form) 
depending on the direction of the shift. 

Left shift = positive 

Right shift = negative 

K shift count, actual 
K = (Bb) + k if b t 0 otherwise K = k if b = O. 
If the sum is iiiiiS or larger, subtract iiiiiS to get 
the true sum, otherwise the sum is the true sum. 
If the true sum is between 00000 and 37777S' the 
righthand two octal digits are the actual shift 
count for a lert sn~rt. If the true sum is between 
40000 and 77777S, the complement of the righthand two 
octal digits are the actual shift count for a right 
shift. 

Shift timing if K = + (use only lower 2 digits of K)* 

~ xO xl x2 x3 x4 x5 x6 x7 

·Ox 
1.3 usec 

Ix 

2x 1.45 usec Mx + xN = 

3x 1.7 octal shift 

4x 

5¥ 

6x 

7x 

usec 
count 

1.95 usee 

2.2 usee 

2.45 usec 

2.7 usec 

*if K = -, complement and use the lower 2 digits 
to determine the timing 



3.8.2 Shift A and Shift Q 

Descriptionl 

23 18 17 16 15 14 00 

k 

d = 0, Shift A 

23 18 17 15 14 00 

12 b k 

b = index register designator 

d = 1, Shift Q 

23 18 17 15 14 00 

12 b + 4 I k 

b = index register designator 

The 24-bit contents of the register are shifted 
according to the magnitude and sign of K (i.e., 
k + b) 

If K is +, instruction is left shift end around 
If K is -, instruction is right shift end off 

e.g. Shift left 6 positions: K 00006 

Shift right 6 positions: K = 77771 

N.B. (i) During right shift, the sign bit is extended 
and the low order bits are discarded. 

(ii) During left shift, the high order bits are 
brought end around. 

(iii) (Bb) and k,with their signs extended, are 
added to give K. The computer then senses 
bits 00-05 and bit 23 to determine the 
size and direction of shift, respectively. 



3.8.2 (cont.) 

Examples of Shift A and Shift Q 

(i) SHA 6 (A) c 10203040 

After Shift (A) a 20304010 

(ii) SH. -6 (A) = 12345671 

After Shift (A) II ? 

(A) a 00123456 

(iii) SHA -6 (A) '" 50367123 

After Shift (A) '" ? 

(A) '" 77503671 

Exerciseson Shift A and Shift Q 

(a) If (A) = "20000010 

What will be the contents of A after 

SHA 4 
SHA .-4 

(b) If (A) '" 21354706 

What will be the contents of A after 

Em 2001,1 
SHA 8,1 

(c) If (Q) '" 10000001 

What will be the contents of Q after 

SHQ 6 

(d) If (Q) :I 12345670 

What will be the contents of Q after each shift in the 
following? 

EN! 307,2 
SHQ 4,2 
SHQ -13 

(e) If (LABEL) = 10421045 

What will be the contents of LABEL after 

LDA LABEL 

SHA -15 

STA LABEL 

LDQ LABEL 

SHQ 1404B 

STQ LABEL 



STUDENT NOTES 



INSTRUCTION MODIFICATION 

4.1 SIGN EXTENSION 

4.2 ADDRESS MODES Chapter ~ I 
4.3 INDEX MOD!FICATION OF WORD ADDRESSING INSTRUCTIONS 



4. 1 SIGN EXTENSION 

Certain instructions offer the option of extending the sign 
of a 15 or l1-bi t operand by putting a modifier "S" in the operation 
field. 

e.g. ENA,S 06370B 

76432B 

(A) • 00006370 

(Q) • 77776432 

Examples I 

ENQ,S 

(i) ASE,S 77777B 

What is RNI address? 

BNI from P + 2. 

where (A) • 77777777 

(ii) EllA,S what will be (A)? 

(-A) =- 77777771 

(iii) ENQ,S 405B what will be t Q)? 

(Q) • 00090405 

(iv) ENA,S 7B what will be (A)? 

(A) • 00000007 

(v) ENQ,S 43125B what will be (Q)? 

(Q) • 77743125 

(Vi) Where (Q) • 00054631B 

QSE, S 54631B will result in the RNI being 
\a) P + 1 or (b) P + 2? 

Answer I P + 1 

(vii) ASG,S 43671 B where A • 43671234 

what is BNI'? 

Answer I "y" extended • 77743671 

(A) is not greater than or equal to !!y", 

because try" is less negative. 

(A) = -34106543 
y = -00034106 

RNI at P + 1 



4.2 ADDRESS MODES 

There are three address modes as followsl 

(a) No address 

e.g. Operand 
Shift count 

(b) Direct Addressing 

a = 0 

ENA 
SHAQ 

m - operand address 

lOB 
5 

e.,g. LDA 45B will load the contents of word 
45B into the A register. 

(c) Indirect Addressing 

a .. 1 

e.ge LDA, I m the "I" specifies indirect 
addressing and generates a 
"1" bit in bit 17. 

The best way to explain is with the following flow 
chart and examples. 

YES 

Add (Bb) to 
'----.""1 m to form M 

Execute, 

NO 

1 ~ ________ ~using address~--------~~ 
M 

Examples I 

In the following examples use the contents of these 5 
words 

100 26000101 

101 37421623 2 

102 00000103 

103 76543214 4 

1.04 40500100 I 



4.2 (cont.) 

(i) LDA 100B 

What will be the (A) after execution? 
(A ) = 26000101. 

(ii) LDA,I 100B 

What will be the (A) after execution? 
(A) = 37421673 

(iii) LDA,I 100B,1 

What will be the (A) after execution? 
(A) = 76543214 

(iv) LDA,I 100B,2 

What will be the (A) after execution? 



4.3 INDEX MODIFICATION OF WORD ADDRESSING INSTRUCTIONS 

The 3200 has 3 Index Registers each of 15-bit capacity. These 
Index Registers can be used to modify the address fields of many instructions. 

Example 

e.g. LDA STORE will load the contents of STORE into the A 
Register. ~ut LDA STORE,l will load the conte1fts of 
(STORE + (B )) into the A Register, (i.e. if (B ) = 1, 
it will load STORE + 1). 
How is an indexed instruction assembled? 
LDA STORE,2 where STORE = 00142B will assemble as: 20200142 
Why? 

23 18 17 16 15 14 00 

I 20 I a m 

a = addressing mode designator 
b = index register designator 

b OO~ means no index register 

b 012 means index register 1 

b 10;!means index register 2 

b 11~ means index register 3 

LDA TAG, 1 where (B 1 ) 3 100 1111111111 

and TAG 100B 101 22222222 

(A) = 44444444 

102 33333333 

103 44444444 

104 55555555 

Restrictions on Indexing 

The following instructions cannot specify indexing. 

LDI 

STl 

INI 

ENI 

ISE 

ASE 

QSE 

Exercises an Index Modification * 

1 • A block of memory is 

TABLE 00000000 

11111111 

22222222 

33333333 
TABLEX 44444444 

I 55555555 
66666666 

77777777 

INA 

INQ 

ENA 

ENQ 

AQjJ 

AZJ 

as shown: 

*Additional material 
on Index Modification 
is located in Chapter 
8.3 



4.3 (cont.) 

2. 

What will be the contents of memory as a result of 
the following: 

ENI 0,1 

LDA TABLE, 1 

STA TABLEX,l 

INI 1, 1 

LDA TABLE, 1 

STA TABLEX,l 

INI 2,1 

LDA TABLE, 1 

STA TABLEX,l 

A block of memory contains the values shown 

100 00000001 

00002222 

00000303 

04040404 

50055005 

TAG 06606606 

77777777 

00000000 

11111111 

What will be contained in the block after execution of the 
following instructions: 

ENI 0,1 

LDA 100B,1 

un: 2,1 

STA 100B,1 

ENI 3,2 

LDA 100B,1 

STA 100B,2 

E1J: 5,3 

LDA TAG-6,3 

STA TAG,l 

S[1A TAG,2 



48-BIT OPERATIONS 

5.1 LOAD AQ 

5.2 STORE AQ 

Chapter 
5.3 SHIFT AQ 



5.1 LOAD AQ 

Description: 

Examples 

Exercises: 

mmSFlm 
~.- - ".-......... ~,-- .... -.... _-,_ ... _ ..... __ . 

:",b .. 

23 18 17 16 15 14 00 

I 25 I a I b I m 

a = addressing mode designator 

b • index designator 

m storage address. 

Loads Registers A and Q with the two words from 
address M and M + 1 respectively, where M = m + (Bb). 

(SUH48) - = 11 11 11 il 

(SUM48+1) = 22 22 22 22 

LDAQ SUM48 
A 

AQ. I 11 11 11 11 

IQ i 22 22 22 22 

(i) A block of memory is as follows: 

103 

104 

105 

106 

107 

110 

111 

1111 1111 

2000 2000 

6666 6666 

2323 2323 

0111 1110 

7070 7070 

3333 4444 

Tnis has been set up by a subprogram, part of 
which was 

ORGR 1000 

BSS 5 

FIELD BSS 3 

What would be the contents of AQ after execution 
ofl 

LDAQ FIELD+3 



5.1 (cont.) 

Exarcisesl ( Continued) 

(ii) A block of memory is as follows' 

77 

100 

102 

103 

104 

105 

11 11 11 11 

22 22 22 22 

33 33 33 33 

44 44 44 44 

55 55 55 55 

66 66 66 66 

77 77 77 77 

A portion of a program readsl 

LDAQ TABLE 

Lm, TABLE+3 

STA TABLE+2 

STQ TABLE+1 

OOOR Af'lf'I"D 
IVVJJ 

TABLE BSS 10 

What would be the contents of the block after 
execution of the above program? 



5.2 STORE AQ 

23 18 17 16 15 14 00 

m 

a = addressing mode designator 

b index designator 

m = storage address 

Description: Store the contents of Registers A and Q in storage 
locations M and M + 1 respectively. 

Example: 

Exercise : 

(i) If (A) 1111 1111 

( Q) 3333 3333 

A IQ 

i.e. AQ = I 11 11 11 11 i 33 33 33 33 

What will be the contents of locations 1008 and 
101 8 after execution of the following instruction? 

STAQ 100B 

Answer (00100) = 11111111 
(00101) = 33333333 

(ii) If FIELD = location 2048 

(A) 22334455 

(Q) = 66006600 

Answer 

100 

102 

103 

104 

105 

106 

STAQ FIELD 

(FIELD) becomes 22334455 

(FIELD + 1) becomes 66006600 

2 0 0 0 0 0 0 1 

3 0 0 0 100 1 

000 000 0 0 

1 1 1 1 2 2 0 0 

o 0 0 000 0 0 

140 140 1 0 

o 0 0 0 0 0 0 0 

What will be the contents of the above after 
execution of the following instructionsl 

LDAQ 102B 

STAQ 105B 

LDAQ 100B 

STAQ, 104B 



5.3 SHIFT AQ 

Description: 

Exampless 

23 18 17 15 14 00 

I 13 I b k 

b = index register designator 

The oontents of A and Q are shifted as one 48-bit 
register (AQ). 

Everything else is the same as for SRA and SHQ. 

(i) SHAQ -1Z where (A) = 12345677 

(Q) 22223333 

Wha t will be the contents of A and Q? 

(A) • 00001234 

(Q) '" 56772222 

(ii) If (A) = 00010444 and (Q) = 11335577 

SHAQ 35 

Answer s (A) = 66774000 
(Q) = 42220455 



STUDENT NOTES 



48-BIT, FIXED POINT, ARITHMETIC 

6.1 ADD TO AQ 

6.2 SUBTRACT FROM AQ 

6.3 MlILXIPLY AQ 
Chapt-er 

6.4 DIVIDE AQ 



6.1 ADD TO .AQ 

I lOCAnON OPERAlIU.MUIFlfRS ADDRESS flHD 

f~.;-=~: . ~~~L.,~~,i.~;-'==·-== 
I 

:-'.2...:.. •. U .. ~,..:_.:..!.....i.l..~~~_::.~_:.:.:w..:!..l.:..~L!.~~i~.~l!..~~lJ.tt.l.!.:!~::.~~~i:~.~~.:_ 

23 18 17 16 1 5 14 00 

m 

a - addressing mode design 

b - index designator 

m • storage address 

M = m + (Bb) 

Desoription Add the 48-bit oontents of two oonseoutive 
looations M and K + 1 to the contents of AQ. 
The sum appears in AQ. 

Examples: 
A IQ 

(i) If I 0 0 0 0 0 0 0 0 i 00 14 76 21 

(ii) 

and 

I 
\!P48 II'lP48+1 

What will be the oontents of AQ after exeoution of the 
following instruotion? 

ADAQ 0P48 

Solution: 
A IQ 

Final AQ • 10 00000 o 1 i 32 56 70 12 

If (A) • 0000 0123 77 11004 04041 
100 0000 0200 

(Q.) - 7000 0000 101 7000 0000 

(Index register 1) = 1 102 7777 7713 

What will be the oontents of A and Q after exeoution of 
the instruction: 

ADAQ 77B,1 

Solution: 
A IQ 

AQ - I 0000 0324 i 6000 0000 



6.1 (cont.) 

Exercises: 

(i) 

(ii) 

What will be the contents of AQ after execution of the 
following section of a program? 

ENI 0,1 
ENA 24314B 
STA 100B,1 
INA 14141B 
INI 1 ,1 
STA 100B,1 
ENA,S 34567B 
ENQ,S 15617B 
ADAQ 100B 

If (TAG) = 0202 0303 

(TAG+l) 0= 0404 0505 
(A) = 2662 6626 
(Q) - 1451 1406 

What will be the contents of A and Q after execution 
of the following instr~ction? 

ADAQ TAG 



6.2 SUBTRACT FROM AQ 

231817161514 00 

I 33 I a I b I m 

a = addressing mode indicator 

b ... index designator 

m = storage address 

M =- m + (:Bb) 

Description! Subtract the contents of 2 consecutive 
lopations » and » + 1 from the contents of 
AQ. The difference appears in AQ. 

Examples: 
A IQ 

(i) 
I 0 o 0 0 0 0 0 1 i 0 o 0 0 0 0 0 0 

I 

TAG ,TAG+l 

100 o 0 0 0 0 0 i 7 
7 7 77777 

SBAQ TAG 

Final AQ ~ too 0 0 0 0 0 0 f 0 0 0 0 0 0 0 1 

(ii) If (A) = 0 

(Q) .. 0000 0003 

(TAG) ... 0 

(TAG+l) m 0000 0004 

What will be L~ A and Q after execution of the 
following instruction? 

SBAQ TAG 

Answer: 
A ~ 

I 0 000 0 0 0 0 !00000003 
I 

TAG trAG+l 

minuB I 0 0000000 ! 0 0 0 0 000 4 

t 

A g 

17 7 7 7 7 7 7 7 ! 7 7 7 7 7 7 7 6 , 

J 

(using end around borrow in the subtraction) 



6.2 (cont.) 

Exeroises 

(i) (A) = 0005 7777 

(Q) • 7777 0000 

(TAG) = 0000 0234 

(TAG+l) = 5670 0000 

What will be in A and Q after execution of the following 
instructi on? 

SBAQ TAG 

(ii) A block of memory is as showns 100 

101 

102 

103 

104 

105 

21 

00 

21 

14 

00 

77 

21 21 21 

00 01 35 

64 16 45 

14 21 21 

00 00 27 

77 77 77 

106 I 56 56 57 57 I 
wna~ W~.L.L oe the contents of AQ after execution of the 
following instruction? 

ENQ,S 

ENA,S 

SBAQ 

SBAQ 

o 
2222B 

101B 

104B 



6.3 MULTIPLY AQ 

Descriptionl 

Example a 

23 18 1 7 1 6 1 5 14 00 

I 56 I a I b I m 

a = addressing mode designator 

b = index designator 

m • storage address 

The instruction uses the 48-bit E register to extend 
the precision of AQ (by forming AQE). 
Muliply the contents of AQ by the 48-bit operand in b 
two consecutive locations M and M + 1, where M ~ m + (B ) 
The 96-bit product appears in AQE, with the least signif­
icant bits in E. 

A IQ 

10 0 000 000 i 7 6 0 0 0 0 0 0 

TAG I TAG+l 

10 0 o 0 0 0 0 0 100000002 

MUAQ TAG 

The final results in AQE = 
A Q E 

10000000010000000010000000174000000 

Exercise I 

A block of memory is as shown 400 

401 

402 

403 

404 

405 

00 

00 

00 

25 

24 

00 

00 01 

00 00 

00 00 

37 32 

24 42 

00 17 

What will be the contents of AQE after execution 
of the following instructions? 

LDA 404B 

SEA 405B 

STA 404B 

LDQ 404B 

LDA 400B 

MUAQ 401 B 

11 

00 

07 

10 

44 

07 



6.4 DIVIDE AQ 

23 1 8 1 7 1 6 1 5 14 00 

I 57 I a I b I m 

a = addressing mode designator 

b index designator 

ill storage address 

M = m + (Bb) 

Description: Divide (AQE) by the 48 bit contents of two 
consecutive addresses, M and M + 1. The answer 
appears in AQ, and the remainder, with sign 
extended, in E. 

Exarnpl~ : 
A 

I I 

o 0 0 0 0 0 0 0 1000 0 6 7 4 3 2 -6 5 4 3 1 ~ 4: 2 0 0 0 0 0 0 0 
I 

TAG I TAG+1 

DVAQ TAG 10 0 o 0 000 1 I o 0 0 0 0 0 0 , 
I 

Answer is in AQ "" 
A 

!\ 10 o 0 a 6 7 4 3 6 543 1 7 

Remainder is in E = E 

(Sign extended) 10 o 0 0 0 0 0 0 2 0 0 000 0 

Note: If a divide fault occurs, this operation 
hal ts, and the program advances t.O the 
next instruction. 
The final contents of AQ and E are meaningless 
if this occurs. 

01 

41 

01 



STUDENT NOTES 



LOGICAL OPERATIONS 

7.1 LOGIC TABLES 

Logical "ANDlI 

Inclusive 1I0RlI 

Exclusive "ORn 

7.1.1 

7.1.2 

7.1.3 

7.1.4 Examples of Logical Operations Using Octal Numbers 

7.2 LOAD A LOGICAL 

7.3 LOAD COMPLEMENTS 

7.4 

7.5 

7.3.1 

7.3.2 

LOGICAL 

7.4.1 

7.4.2 

7.4.3 

7.4.4 

Load A Complement 

Load AQ Complement 

HANDu OPERATIONS 

Logical Product A 

AND of A and y 

AND of Q and y 

AND of Index Register 

EXCLUSIVE 1I0RII OPERATIONS 

7.5.1 Selectively Complement 

7.5.2 Exclusive OR of A and 

7.5.3 Exclusive OR of Q and 

7.5.4 Exclusive OR of Index 

7.6 SELECTIVELY SET A 

Chapter "1 

Bb and y 

A 

y 

y 

Register Bb and y 



1.1 LOGIC TABLES 

1.1.1 Logical "AND" (Logical product) 

A B 

0 0 

0 1 

1 0 

1 1 

C 

0 

0 

0 

1 

Note: C is only a "1" if both 
A and Bare "l's". 

Example I AND of 1001 and 1010 (binary numbers) 

1001 
1010 

1000 

1.1.2 Inclusive "OR" (Selective Set) 

A B C 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Note: C is a "1" if either or 
both A and Bare "l's". 

Example I Inclusive OR of 1001 and 1010 

1.1.3 Exclusive "OR" (Selective Complement) 

A 15 
,.. 
v 

0 0 0 

0 1 1 Note: C is a "1" only if 

1 0 1 
A and B are different. 

1 1 0 

Example I Exclusive OR of 1001 and 1010 

1001 
1010 

0011 



7.1.4 Examples of Logical Operations Using Octal Numbers 

(i) What is the logical "AND" of 43B and 62B? 

Answer : 42B 

(ii) What is the exclusive "OR" of 7021B and 33B? 

Answer : 7012B 

(iii) What is the inclusive "OR" of 361B and 403B? 

Answer : 763B 

(iv) What is the excl usi ve II QR" of 361B and 777B? 

Answer : 416B 



7 • 2 LOAD A LOGICAL 

I-l)L 1 I . "'~o 

23 18 1 7 1 6 1 5 14 00 

I 27 I a I b I m 

a = addressing mode indicator 

b index designator 

rn ; storage address 

M = m+ (Bb) 

Description: A is loaded with the logical product (AND) of ,:t and 
the contents of location M. In this instruction,Q 
serves as a mask. 

Q M 

0 0 

0 1 

1 0 

1 1 

Examples: 

(i) LDL 100B 

(A) = 30470230 

A 

0 

0 

0 

1 

Note: The bit in A is 
a 11111 only if 
both of the 
corresponding 
bits in Q and M 
are "l's". 

1 00 '-"'::.:L.i~~-I 
101 ~~~:..J....::.-I 
1 02 4-=o~:":"''''-I.-I 

Q = I 70770770 I 

(ii) If index register 3 contains 00002 

LDL 100B,3 

M = 00100 + 00002 

= 00102 

octal 

(00102B) = 246013578 

(Q) = 707707708 

(A) = 206003508 

binary 

010 100 110 000 001 011 101 1112 

111 000 111 111 000 111 111 0002 

010 000 110 000 000 011 101 0002 

Answer: (A) = 20600350 



7.3 LOAD COMPLEMENTS 

7.3.1 Load A Complement 

Description: 

Examples s 

23 18 17 16 15 14 00 

m 

a II: addressing mode indicator 

b = index designatQr 

m = storage address 

The instruction load A with the complement of b 
the 24-bit word located at M, where M = m + (B ) 

(i) LCA 100B 10 
1011--"!i..;;....:.. ......... ~"""i 

10 
(A) ... 41301256 10 ~~~~~ 

(ii) If index register 2 contains 00003 

LOA 100B,2 M = 00100 + (B2) = 00103 

(A) ... 05647562 

7.3.2 Load AQ Complement 
._ ...... _ .... _ . .... --..... -.~ .. ~ .. - .. ~ ..... -.-..... - 'rnl~ 

23 18 17 16 1 5 14 00 

I 26 I a I b I m 

a = addressing mode indicator 

b = index designator 

m· storage address 

Description' The instruction loads A with the complement of b 
M, and Q with the complement of M + 1, where M = m + (fr ) 

Examples, 

(i) LCAQ' 100B (using example above) 

(A) II: 41301256 

(Q) ... 10234567 

(ii) If index register 3 contains 00002' 
• 

LCAQ 100B,3 

(A) :I: 35323526 

(Q) ... 05647562 

M ... 00100 + (B3) = 00102 



7.4 LOGICAL "AND" OPERATIONS 

7.4.1 Logical Product A 

Description: 

23 18 17 16 1 5 14 00 

I 37 I a I b I m 

a = addressing mode designator 

b = index register designator 

m = storage address 

Replace (A) with the logical .product of (A) and (M) 
(logical AND) 

Examples: (i) LPA 100B wbere (100) • 55555555 

(A) = 52525252 

What will (A) be after execution? 

(ii) LDA 

LPA 

MASK 

CI~X 

(A) = 50505050 

where (MASK) = 77777777 

and (CI~X) = 43752016 

Answer (A) • 43752016 

(iii) ENA,S 20301B where (MASK) = 77777777 
LPA MASK 

Answer (A) = 00020301 

(iv) LDA STATUS where (STATUS) = 10203040 

STATMASK (STATMASK) = 76543210 

Answer (A) = 1000 3000 



7.4.2 AND of A and y 

r::::::;-.-----.. -.--------.-
~TI6N.-~[RATlOH,MODlmRs An~Rm fI~ .. __ . __ 

LLL--L-L.L...i....I AlVA J!~i._1._L.L~..Ll-L ... '__'__'_LLLLLl_' _' ! .... Le 

L_1.!J2.J .. ~ .. d~1.i.:..:....i...l.i:::.l.:.:~ . ..:..!!.l~.:!..l!!.~.:llilr~.~:::I¢!',!.,,;tjj'1;)4'j'S'KJ!!.,;. 

23 18 17 16 15 14 00 

I 17 1/1/ b I y 

b = 0, if sign extension 

23 18 17 15 14 00 

I 17 4 y 

b = 2, if no sign extension 

AnDRESS flHD 

23 18 17 15 14 00 

17 6 y 

Description: Enter the 24 bit logical product of (A) and y (with 
sign extension if specified) into A. If sign extension 
is not specified, zeros are extended rather then the 
sign of y. 

A Y 

0 0 

0 1 

1 0 

1 1 

Exam121es: (i) ANA 23456B 

Where ~)= 12345610 
0002~~6 

000014508 

(ii) ANA,S 23456B 

Where (A) - 01654321 
000234~6 

000000008 

(iii) ANA,S 43456B 

Where (A)- 01654321 
1114~26 

01640000s 

(iv) ANA, S 70707B 

Where (A) = 11111111 
11110101 

111101018 

A 

0 

0 

0 

1 

Note: The bit inA is a 
"I"· only if both 
of the -corresponding 
bits in A and yare 
"l's". 

001 010 010 100 101 110 111 000 
000 000 000 010 all 100 101 110 

000 000 000 000 001 100 101 0002 

000 111 110 101 100 all 010 001 
000 000 000 010 all 100 101 110 

000 000 000 000 000 000 000 0002 

000 111 110 101 100 all 010 001 
111 111 111 100 all 100 101 110 

000 111 110 100 000 000 000 0002 

001 001 001 001 001 001 001 001 
III 111 111 111 000 111 000 111 

001 001 001 001 000 001 000 0012 



7.4.3 AND of Q and y 

23 18 17 16 15 14 00 

y 

b 1, if sign extension 

15 14 00 

y 

b = 3, if no sign extension 

23 1817 15 14 00 

17 7 y 

Description: Enter the 24 bit logical product of (Q) and y (with sign 
extension if specified)int0 Q. If sign extension is not 
spe£ified, zeros are extended rather then the sign of y. 

Examples: As for ANA,S y 

7.4.4 AND of Index Register Bb and y 

23 18 1 7 1 6 1 5 14 00 

17 10 I b I y 

b • index register designator (1-3) 

Descriptions Enter the logical product of (Bb) and y-into index 
regist'er b. 

Examples l 77B,3 

ANI 12B,3 

Index 3 contents = 00077 

nAND" with QQQj£ 

00012 

Answer I 00012 in index register 3 



7.4.4 (cont.) 

Examples I (Continued) 

(ii) Em 

ANI 

12345B,2 

25252B,2 

(Index 3) • 12345 

"AND" with ~ 

00240 

Answer I 00240 in index 2 



7.5 EXCLUSIVE "OR" OPERATIONS 

Sel~ctively Complement A 

23 18 1 7 1 6 1 5 14 00 

I 36 I a I b I m 

a = addressing mode designator 

b = index register designator 

m = storage address 

Description: Selectively complements corresponding bits in A for 
all 1-bits at address M. (Exclusive OR) 

Examples: (i) SCA 100B where ( 100) • 70707010 

(A) • 52525252 

What will (A) be after execution? 

Answer : (A) = 22222222 

(ii) ENA, S 11111B where (MASKS) = 10203040 

SCA MASKS 

Answer: (A) = 61514131 

(iii) ENA,S 40J01B where (SIGN) = 40000001 

seA SIGN 

Answer, (A) =8~ 
(iv) LDA TAG where CrAG) = 77777777 

seA SETBIT (SET.BIT) = 52525252 

Answer : (A) = 25252525 

(v) LDA GTRC where (GTRC) = 40000001 

seA GTRC 

Answer s (A) = 0000 0000 



7.5.2 Exclusive OR of A and y 

IlOClTIDIi. : inPERATIOII,MOOlflERS UlllESS fIELD 

I,,,,,:.:,~JI~~~,,,:,,~!==::::~~ 

Description: 

Examples: 

23 1 8 1 7 1 6 1 5 14 00 

y 

b = 0, if sign extension 

23 18 17 15 14 00 

16 4 y 

b = 2, if no sign extension 

23 18 17 15 14 00 

16 6 y 

Enter the 24 bit~clusive OR .of (A) and y (with sign 
e~en~n if spe~ified) imto A. ~f sign extension ,is 
net specified, zeros are extended rather then the sign 
of y. 

A 

0 
0 
1 
1 

44444B 

38';;:;; 0112 

48 - 1002 
OR = Id'~ 1112 

Y 

0 
1 
0 
1 

A 

0 
1 
1 
0 

Note: The bit in A is a 
"1" only if the 
corresponding bits 
in A and yare 
different. 

if A =1 33333333 I 

= answer 

44444B if A =133333333] 

44444 is a negative number since 48 = 1002; 
therefore, fiIidexc1usive OR o~ (A) and 77744444. 

38 = 0112 
78 = 1112 

OR = 48 = 1002 

3333 3333 
1114 4444 

1444 7 71~11 = answer 



7.5.2 (cont.) 

(iii) X9)A,S 40001B 

Where A = 20117070 

40001 is negative and equals 77740001 with sign 
extended, therefore 

Answer: (A) 57657071 

7.5.3 Exclusive OR of Q and y 

23 18 17 16 15 14 00 

16 111 b I v 

b = 1, if sign extension 

23 18 17 15 14 00 

16 5 v 

b = 3, if no sign extension 

@IUii'---OP[RlTIOII,M86!flERSADDmS fiElD . __ 

L . .;......j.--'-.. i . ...L ... W ... n~L...i._..L.L.-'-..L-.l._.S_..J..._l.--L.i_L . ..L...'---'--LL-'-l. . ...L.'-_.L.'---' 
: :' . 
t~.:--..L:~: .. ~::l.::·.,;,.:.:...;.:.;~.i:1-.~.~.:.;.;..'.~:.!J.:.-'"..~.:.:!1J.?:!.U!1!tL~.~.J..!..:;.~.~:!.:..l..!:J~-!.!.~~~l!!~ 

23 18 17 15 14 00 

16 7 v 

20117070 
77740001 
57657071 

Description: Enter the 24 bit exclusive OR ()f (Q) and y (with sIgn 
extension if specified) into Q. If sign extensi~n is 
not specified, zeros are extended rather then the sign 
of .y. 

Examples: As for X9)A,S 



7.5.4 Exclusive OR of Index Register Bb and y 

Descriptions 

Examplesr. 

23 1 8 1 7 16 1 5 14 00 

16 10 I b I y 

b 3 index designator (1-)) 

Enter the exclusive OR of (Bb) and Y into ~b 
No sign extension is possible on eitaer (B ) or y. 

(i) X¢I 77B,1 

where index 1 contains 32B 

00032 

00077 

000 000 000 011 010 

000 000 000 111 111 

000 000 000 100 1012 = 000458 

Answer: Index regi ster 1 will contain 45 B 

77777B,2 

Where index register 2 contains 74321B 
74321 = 111 100 011 010 001 
77777 = 111 111 111 111 111 

000 011 100 101 1102 = 034568 

Answer: Index register 2 contains 3456B 



7.6 SELECTIVELY SET A 

--_ .•. -. _ .... _._ ....... _. __ .. __ •.. _ ...•. -
I lOCATION . ,OPERAllSH,MDDIFI£RS ADDRESS FIElD 

[~:·~-'..L··~tl$~~;fL-=-:~~::.~,-UJ ... LLL ... L 

t...:..J1..,;...l.!...i...!...L!.;.~L!.~.:;.i:.:..i..L.;.~ .. ~: .. U~l.~.~l?.~J!!l.!!.l!!.l!!.i!-..!.;,..~~:.~.l~~~l.~.!..l 

23 18 17 16 1 5 14 00 

I 35 I a I b I m 

a = addressing mode designator 

b = index register designator 

m = storage address 

Descriptionl Selectively set 1-bits in A for all 1-bits in M 
N.B. This instruction leaves "ltt bits which were ---,. 

already present in the register;i.e. it does 
not clear A before execution. 
This instruction is performing an "inclusive OR" 
operation. 

Examples I (i) SSA 10GB where ( 100) • 70707070 

(A) • 52525252 

What will (A) be after execution~ 

(A) = 72727272 

(ii) ENA,S 0 wh.re (ABIT) = 76543210 
SSA ABIT 

Answer a (A) • 76543210 

(iii) »lA, S 21010B where (M~D) 11111111 
SSA M~n 

Answer I (A) • 11131111 

(iv) ENA,S 44444B where (M~D) = 11111111 
SSA M~D 

Answer. (A) • 77755555 



CHARACTER MODE OF OPERATION 

8.1 INTRODUCTION 

8.2 CHARACTER ADDRESS INSTRUCTIONS 

8.2.1 Load A Character 

8.2.2 Load Q Character 

8.2.3 Store A Character 

8.2.4 Store Q Character 

8.2.5 Store Character Address 

8.2.6 Enter Character Address into A 
Chapter (:1 

8.3 INDEX MODIFICATION OF CHARACTER ADDRESSING INSTRUCTIONS 



8.1 INTRODUCTION 

Data may be stored in two ways in the 3200. It may be stored 
in full words - that is, the information stored in 24 bits. Or, it may 
be stored in character form. 

Each word in the 3200 may be broken up into four 6-bit 
characters, which are called characters 0, 1, 2 and 3 in the particular 
word, as showns 

23 lB 17 1211 ~05 00 

o 1 2 3 

Information may be stored in chara~, instead of in words, 
for convenience and economy. For instance, if we wish to store fifty digits, 
it could be more oonvenient to store them as 50 characters, to take up only 
121 words of storage, rather than put each digit into a separate computer 
word. 

The computer is able to address any character in any word in 
storage. To find the character address of any particular character, the 
word' address of the word containing the character is multiplied by 4; 
and the character position is added on. 

The process is simpler if the, arithmetic is done in binar,y. 
To multiply by 4 in binary you suffix two ZQPOS to the righthand end of the 
number. The character positions are (in binary) 00, 01, 10 and 11. 
Therefore to find the oharacter addresss 

Example I 

(i) Change the word address to binary 

(ii) Add the character position in binary as 2 extra 
low order bits 

(iii) Convert back to octal 

Character 2 in word 104 

Binary • 001 000 100 • r-Character position 
, " .A 

Add on character position=001 000 100 10 

After lIegrouping bits • =00 100 010 010 

(iii) Convert to octal = 422B = Character Address 

Exercises Find the character addresses of the following charaoters. 

Word Address Character Position Character ~ggIIiI 

100 3 

405 1 

t021 0 

477 2 
4001 1 

2664 0 

17777 3 

Similarly, if we know a character address, we can determine 
the word address in which the character is contained, and 'its position 
in the word. 



S.l (cont.l) 

Example: 

The steps area 

(i) Convert to binary 

(ii) Remove the last two binary digitso 
character position) 

(iii) Convert the remainder to octalo 

Character address 422 

(i) Binary = 100 010 010 

(These are the 

(ii) 

(iii) 

Divide by 4 = 100 010 02 Remainder = 102 = 2S = Cha~acter 
Position 

Regrouped = 1 000 1002 Octal = 104 = word 
Address 

Answer - Character 2 in word 104 

Exercises (i) Find the word address and character position of th~ 
following character addressesa 

(a) 201 (e) 2110 

(b) 3 (f) 4231 

(0) 417 (g) 16524 

(d) 555 (h) 66666 

(ii) What is the smallest character address? 

( .; .; .; \ What ........ the 1 <:>,..,.,.,0",,+ character address in an 8K , .............. , ~c;;:..I,o ...... 6\;;..,;J'" 

computer? 

(iv) What is the largest character address in an 32K 
comput er? 

Character Address Instruction Format 

The instruction format enables the address of a particular 
character in a word to be specifiedo 

23 18 17 16 15 14 00 

I 16 bits) 111 bit) I 117 bits) I 
"-------~ '--- ---' '-~---------.., ,--------/ I 
~.--~ yl y 

I storage address 

t6 15 14 13 02 01 00 I 
I I I I 

~'-/ '------~y~------/ '----y---" 
Storage Field Co-ordinate Address Character 
Module within field 0-3 

0-3 0-1 0000-17178 

Character-Addressed Instruction Format 

(i) Function Code (f) 

6 bit code of action to be carried out. 

(ii) Operation Designator (d) - 1 bit 

If d '" 1, modify address tim" by contents of a 
sEt index for the particular instruction. 

If d ~ 0, no modifications. 

(iii) Storage Address (17 bits) 

The address of· the character required is specified. 
This may be broken up into the module, field and 
co-ordinate address, as for vord addressing, plus 
two-bits to indicate the character position in the word. 



8.1 (cont.2) 

Exercises 

Assume that the following block of memory is in Field 1 of an 
SK computer. What will be the character addresses of the characters 
marked x1 The co-ordinate address of the first word in the block is 
31 24S• 

I 
I 

I I x 

I I I 

:x 
I I I 

I 

:x I I I 

I 

Ix \ I 

I I 
I 

I I 
I 

X t I 
I , 
I IX I 

I 

X I I I 
I I 

I 

J I 
I 

1 I I :x 
I I 



8.2 CHARACTER ADDRESS INSTRUCTIONS 

8.2.1 Load A Character 

Descriptions 

Examples: 

23 18 17 16 00 

m 

m = 17 bit character address 

b = index designator - but can be only 
one bit, so has special use. See section 
on indexing{section 8.3). 

Clears (A) and loads into bits 00-05 of A, the 
contents of the character specified by M. (m + (81

)) 

(i) LACH 403B (A) :: 40012431 

(100) = 01020304 

(400) "" 05060701 

(403) = 02030405 

What will be the contents of the A Register? 

(A) = 00000004 since 403B (chare) 

= 100B (word), poso 30 

(ii) LACH 5B 

(iii) 

What will be the contents 
of the A Register after 
execution? 

(A) 00000034 

LACH HRTABLE+3 

HRT ABtE BS S 4 

o I--~~~~-I 
1 I--...:......;O::"':"';~ __ ~ 

2 I--~~;"':"';;''''':-~ 
3~~~~~ 
4 I--~~~_~ 
5,-~.:.....:.;~'---J 

What will be the (A) after execution? 

(A) "" 00000067 

(iv) In (iii) what would be the (A) if the instruction was 
LACH HRTABLE+13B 
(A) = 00000044 

8.2.2 Load Q Character 

23 18 17 16 00 

m 

Description: Same as LACH except substitute Q Register for A Hegister, 
and it uses a different index register (which also is 
different from SQCH), 



8.2.3 Store A Character 

23 18 17 16 00 

m 

m = 17 bit character address 

b index designator - but can be only 
one bit, so has special use. See section 8.3 
on indexing. 

Description' Store the contents of bits 0-5 of the A Register in the 
specified character address. 

Examples: 

N.B. The contents of A and the remaining 3 characters 
in the storage word, are unchangedo 

(i) SACH 43B if (A) 20012345 

imch character position of which word is affected, 
and what will be the contents of the 'character position? 

Answer: ( 1 ) Word 10 

(2) Position 3 

(3) 45B 

(ii) SACH L¢C+3 (A) c 11560133 

LPC BSS 5 

What changes will be made to 
the 5 words shown? 

(L¢C) • 00112233 

i.e. no change! 

8.2.4 Store Q Character 

23 18 17 16 00 

m 

Description: Same as SACHexeept substitute Q register for A register, 
and it uses a different index register (which also is 
different then that used by LQCH) 



8.2.5 Store Character Address 

23 18 17 16 15 14 00 

m 

a = addressing mode designator 
b = index register designator 
m = storage address 

Descriptiona Stores the lower 17 bits of (A) in the lower 17 bits of word 
M. The upper bits of M and the whole of A are unchanged. 
The instruction is used for character address modification. 
Compare with SWA instruction. 

Examples: 

SCRA 50B (A) = 1074'7021 

(50) = 23064513 

What will be the contents of 50 after execution? 

(50) = 23347021 

(ii) Location Instruotion Assembled as 

100 

101 

SCH..4. *+1 

LACH ** 
46000101 

22377777 

If (A) 11117643 when 100 is executed9 what will be the 
contents of 101 a.fter execution? 

Answer: (101) = 22117643 



8.2.6 Enter Character Address into A 

Description: 

Examples: 

23 18 17 16 00 

Vi 

d 0, if no sign extension 

finD 

23 18 17 16 00 

y 

d 1, if sign extension 

23 18 17 16 00 

V 

Enters the 17 bit quantity flyfl into the A register. 
When d = 1, the sign of the quantity (2 16 bit) is 
extended in A. When d ~ 0, the upper 7 bits of the 
A register are set to zero. flyfl is usually a character 
address. If fly" is a s:ymbolic word address, the actual 
machine address is mUltiplied by 4 before it is assembled 
in the instruction. 

(i) It ~UTBUF is character position 3 in the word at 
word address 100, what would be the contents of A 
after: 

ECHA ~UTBUF 

Answer: (A) 00000403 

(ii) What would be the contents of A after execution of: 

ECHA 117640B 

Answer: (A) = 00117640 

(iii) If TABLE starts at word address 40000, what would be 
the contents of A after: 

ECHA TABLE 

Answer: (A) = 00200000 

ECHA,S TABLE 

Answer: (A) = 77600000 



8.3 INDEX MODIFICATION OF CHARACTER ADDRESSING INSTRUCTIONS 

Character address instructions have limited indexing ability. 

f b m (17 bits) 

b is only one bit, therefore it can only indicate whether 
a specific index is used or not used. 

i.e. If the lib" bit is2set, the address is modified by 
either (B1) or (B ) depending on the particular 
instruction. 

LACH m,1 

LQCH m,2 

SACH m,.2 

SQCH m,1 

Also, if the 'm' address is at one or the other end of a 
table, the table is limited in length to 16383 10 characters. 

i.e. If TABLE equals word address >OOOOB (character address = 
100000B) and the instruction is: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

LACH TABLE,l 

= 40000B 

the character address referenced 

or = 77776B 

the character address referenced 

or (B1) = OOOOOB 

the character address referenced 

or (Bl) = OOOOlB 

the character address referenced 

or (Bl) = 37777B 

the character address referenced 

77740000 
00100000 

040001 

77777776 
00100000 

077777 

00000000 
00100000 

100000 

00000001 
00100000 

100001 

00037777 
00100000 

137777 

Note: If the index register contains 40000 thru 77776 
the reference is backward in memory, whereas if 
the index register contains 00001 thru 37777 the 
reference is forward in memory. This means that 
when writing programs in COMPASS, FORTRAN, ALGOL 
or COBOL one should be careful not to exceed 
1638310 when defining character arrays. 



8.3 (cont.). 

Examples: In the following examples assume the contents of the 
index registers to be: 

Exercises; 

(B 
1

) • 5 

(B2) = 2 

(B3) = -3 

LABEL+l,3 

STA LABEL, 2 

LDQ LABEL, 2 

Wha t will be the contents LABEL 
of Q after execution of the 
program segment above? 

(Q) = 22222222 

(ii) LACH LABEL, 1 

What will be the contents of A? 

Answer (A) = 00 00 00 55 

-11111111 

22222222 

33333333 

44444444 

55555555 

66666666 

77777777 

1. A block of memory (maximum length = 100 words) contains 
numbers stored one to a word. The end of the list is 
indicated by a word containing BCD blanks. Write a routine 
which will add the numbers in the list. (Use indexing.) 

2. Transfer 57 words located 4 meTI10ry locatioilS apart, irlto 57 
consecutive memory locations. 

3. Transfer 17 words located 5 memory locations apart, into 
17 words located 10 memory locations apart. 

4. Calculate the sum of the octal numbers 0-14. 



INTER-REGISTER TRANSFERS 

9.1 TRANSFERS BETWEEN THE A REGISTER AND INDEX REGISTERS 

9.1.1 

9.1.2 

Index Register to A Register 

A Register to Index Register 

9.2 TRANSFERS BETWEEN THE A REGISTER AND THE REGISTER FILE 

9.2.1 

9.2.2 

Register File to A Register 

A Register to Register File 

Chapter 

9.3 TP~~SFERS BETWEEN THE Q P£GISTER ~~D THE REGISTER FILE 

9.3.1 Register File to Q Register 

9.3.2 Q Register to Register File 

9.4 TRANSFERS BETWEEN INDEX REGISTERS AND THE REGISTER FILE 

9.4.1 

9.4.2 

Register File to Index Register 

Index Register to Register File 

9.5 INTER-REGISTER ADDITION 

9.5.1 

9.5.2 

9.5.3 

Add Contents of Q to Contents of A 

Add Contents of Index Register to Contents of A 

Add Contents of A to Contents of Index Register 



9.1 TRANSFER BETWEEN THE A REGISTER AND INDEX REGISTERS 

9.1.1 Index Register to A Register 

Descriptions 

Example I 

23 1 8 17 16 1 5 14 12 11 00 

53 \01 b \ 0 ~ 
b = index designator (~3) 
bits 0-11 are not used 

Transfer the 15-bit contents of index register Bb 
to A. (A Register is cleared before the transfer 
is done.) 

If B2 contains 54321 and A containsl7003 21461 

TIA 2 

(a) clear A • 0000 0000 

(b) transfer 15 bits in B2 to lower 15 bit positions of A 

(A) • 0005 4321 

9. 1 .2 A Regi ster to Index Regi st er 

23 18 17 16 15 14 12 11 00 

53 111 b I 0 ~ 
b = index designator (1-3) 
bits 0-11 are not used 

Descriptions Clear index register Bb , and transfer the lower 15 
• bits of (A) to it. 

Examples If B3 contains 21B and A cantainsl7643 10001 
TAl 3 

(a) Clear Index 3 

(b) Load it with lower 15 bits of A 

(B3) = 31000 



9.2 TRANSFERS BEl'WEEN THE A REGISTER AND THE REGISTER FILE 

(The Register File is a special high speed memory of 1008 locations 

Register File to A Register 
numbered from 008 - 778.) 

23 1 8 1 7 16 1 5 14 12 11 06 05 00 

15310. 2 Bm 

m = Register File Address (00-77) 

Bits 6 - 11 and t5 - 16 are not used. 

Descriptions Transfer the contents to Register file m to A 
A is cleared prior to the transfer. 

Examples If A • 0000 0006, and Register file 20 • 0000 0014, 
what will be in A after execution of the following 
instruction? 

T.MA 20B 

Answer , (a) A is cleared 

(b) Contents of Rego File 20 put in A 

(A) = 00000014 

9:2.2 A Register to Register File 

23 1 8 1 7 16 1 5 14 12 11 06 05 00 

15311B2Blmi 

m = Register File Address (00-77) 
Bits 6 - 11 and 15 - 16 are not used. 

Descriptions Register fil~ m is cleared, and the contents of 
the A register are transferred to m. 

Examples If (A). 0000 1000 

Register file 30 = 0000 0777 

TAM 30B 

Answer: (a) Register file 30 is cleared 

(b) Contents of A placed in Reg. file 30 

(Reg File 30) = 00001000 



9.3 TRANSFER BEl'WEEN THE Q REGISTER AND THE REGISTER FILE 

9.3.1 Register File to Q Register 

23 18 17 16 15 14 12 11 06 05 00 

I 53 loB 1 • m I 
Description: As for TMA except uses Q register 

9.3.2 Q Register to Register File 

• Description: As for TAM except uses Q register 



9.4 TRANSFER BETWEEN INDEX REGISTERS AND ·THE REQISTER FILE 

9.4.1 Register File to Index Register 

23 18 17 16 15 14 12 11 0605 00 

I 53 101 b I 3 • 1m I 
b = index register designator 
m = register file address (00-778) 
bits 06-11 are not used 

Description: Ttansfer the lower 15 bits of Register m to Index 
B. Index is cleared before transfer. 

Efample: Index register 3 contains 00010, and 
Register file 25 contains 0000 2000. 

What will be in B3 after execution of the follOwing 
statement? 

(a) 

(b) 

TMI 25B,3 

Index 3 is cl eared 

Lower 15 bits of Register file 25 are put in 
1. 

BJ 
• 02000 

9.4.2 Index Register to Register File 

23 18 17 16 1 5 14 12 11 06 05 00 

153111 b 13.rml 

b = index register designator 
m = register file address (00-778) 
bits 06-11 are not used 

..:+ 

.L" • 

Description: Clear Register filebM, and transfer to it the contents 
Of index register B 0 

Example: (i) Index 3 contains 22B 

TIM 26B,3 

0000 0022 



9.5 INTER-REGISTER ADDITION 

9.5.1 Add Contents of Q to Contents of A 

mmSFI£lD 

23 18 17 15 14 12 11 00 

531014~ 

Descriptions Transfer the contents of A plus the contents of Q 
toA. No information is given in the address field 
in this instruction. 

Examples If Q..). 0000 1000 

Answers 

(Q). 0000 4104 

What will be A after execution of the following instruction? 

AQA. 

(A) and (Q) are added together and put in A 

(A) = 00005104 

9.5.2 Add Contents of Index Register to Contents of A 

Descriptions 

Examples 

Answers 

23 18 1 7 16 1 5 14 12 11 00 

53 \0\ b \ 4 _ 

b = index 'register designator (1-3) 

Transfer the contents of A plus the contents of Bb 
to A. The CD ntents of Bb is sign extended Co per.innn 
the addition. 
If(A)== 0000 0100 

(B2) • 01404 

What will be in A after execution of the following 
instruction? 

AlA 2 

(A) an.d (B2) are .added and the result stored in A 

(A) = 00001504 



9.5.3 Add Contents of A to Contents of Index Register 

Descriptaons 

Example: 

Exercises: 

mmsnHD 

b = index designator (1-3) 

The contents of A are added to the contegts of Index 
Register (Bb) and the result stored in BoThe sign 
of the original Bb is extended prior to addition, and 
only the lower 15 bits of the answer are placed in Bb. 

(B2) = 00006 

(A):a 0000 0007 

What will be the contents of index register 2 after 
execution of the following statement? 

(i) If (B3) s 40001 

(A) • 0000 0007 

What will be the contents of B3 after execution 
of the following instruction? 

IAI 3 

(ii) If (Bl) • 40001 

(A) • 1000 0007 

What will be the contents of Bl after execution 
o£ the following instruction? 

IAI 



STUDENT NOTES 



SEARCH AND MOVE OPERATIONS 

10.1 BLOCK CONTROL. 

10.2 SEARCH OPERATIONS 

10.2.1 Search for Character Equality 

10.2.2 Search for Character Inequality 

10.3 MOVE INSTRUCTION 

10.4 PAUSE INSTRUCTION 

(as used with SEARCH/MOVE Instructions) 

I Chapter i [I] 



10. 1 BLOCK CONTROL 

Block control is an auxiliary control section within the 
3200 processor. In conjunction with the register file (see section 
1.2.5) and program control (see section 1.2.4), it directs the 
following operationsl 

(a) External equivment Input/Output 
(b) Search and Move operations 
(c) Real time clock 
(d) Console typewriter Input/Output 
(e) High speed temporary storage in the register file. 

Block control is called in to initiate Search/Move 
operations. When the operation is initiated, it then hands control 
back to program control, allowing programamcution to continue while 
the Search/Move operations are being carried out. 

Note that only one operation at a time can take place under 
Block control. An attempt to initiate, say, a Move operation while a 
Search operation is in progress,vill cause the Move operation request 
to be rejected, and Program oontrol will skip to the reject address 
following the instructiO:lle. 



10.2 SEARCH OPERATIONS 

10.2.1 Search for Character Equality 

P 

P+l 

23 18 17 16 00 

71 I iNTI l'Jl2 

23 18 17 16 00 

c 
1
0

1 ml 

INT Interrupt designator 
"1" = Interrupt at completion of search 
"0" = Do not interrupt at completion of search 

C = 008-778, BCD character to be looked for in memory 
ml = First character address to be checked 
m2 = Last character address plus I to be checked 

Description: This instruction attempts to INITIATE a search through 
a block of characters in storage, looking for a charactel 
equal to character "C!! (specified in the instruction.) 

SEARCH INITIATE POSSIBLE, i.e., the search/move section 
of block control is not busy_ The instruction transfers 
the lower 18 bits of the first word of the instruction 
to register file address 30 and transfers all of the 
second word of the instruction to register file address 
20. The hardware then sets flags in the upper 6 bits 
of register file address.JG", the search is started and 
the computer RNI's from P+3. (During the search, 
register file addresses 20 and 30 are not to be disturbed, 
also the upper six bits of register file address 30 
cannot be counted on to be any particular combination 
of bits). 

SEARCH INITIATE NOT POSSIBLE, i.e., the search/move 
section of block control is busy. The instruction in 
this case executes as if it were a NOP (no operation 
instruction). It has no effect on the search/move 
section of block control, the register file or the 
interrupts if a search cannot be initiated. P+l will 
be bypassed and RNI will be from P+2. This latter 
location is usually filled by the programmer with 

UJP *-2 

to cause the computer to loop until the previous search/ 
move operation is complete and the search can be started. 

BUFFERED SEARCH. The search progresses while other 
instructions following the search initiate instruction 
are executed. The search is made, beginning at character 
address ml and continues character by character through 
memory until a character equal to "cn is found or until 
the address to be processed is equal to m2. The programmer 
can find out that the search is complete at the instant it 
terminates or when he is ready to check. The first is 
achieved with the interrupt designator, the second by 
using a sense instruction (both of which are to be 
covered later). 



10.2.1 (cont.) 

Example: 

Special Note: 

Assuming that the. programmer knows the search has completed, 
he can now determine if he found a character equal to 
character "C". If the lower 17 bits of register file 
address 20 and 30 are equal, no match was found. However, 
if they are unequal, the lower 17 bits of register file 
address 20 will contain the exact character address where 
the match with character "C" occurred. No ambiguity is 
possible, since register file address 30 (lower 17 bits) 
cont~ins the last character address to be searched plus 
one; if the lower 17 bits of register file address 20 is 
equal to this address, the hardware has checked all 
addresses to be checked and is beyond the block of characters. 

Given the block of data shown 

CDIMAGE 00 23 46 44 

47 21 62 62 

73 43 73 67 

73 51 60 60 

"""... ~;:. 

60 60 60 60 } (word address of this last 
~ word is CDIMAGE+19) 
~(character address of the 

and the instruction last character is CDlMAGE+79) 

SRCE 73B,CDIMAGE,CDIMAGE+80 

what address will be in the lower 17 bits of register 
file address 20 at the termination of the search? 

Answer: The address equal to CDIMAGE+8. 
If CDIMAGE is equal to word 'address 10008 
(character address 40008), thp.n(register 
file 20, Lower 17) = 0040108 

When checking for a no-find condition at termination 
of the search, the checking is easier if the block to 
be searched is less then 3276810 characters. If this 
is the caseJone of the following two methods can be 
used: 

(m2 address fixed and lower two bits = 002) 

TMA 20B 
SHA -2 
ASE endaddr 
UJP find 

(m2 address variable or lower two bits f 002) 

TMA 30B 
SWA *+2 
TMA 20B 
ASE ** 
UJP find 



10.2.2 Search for Character Inequality 

P 

P+1 

23 18 17 16 00 

71 IINTI m2 

23 18 17 16 00 

c 1
4.+: ml 

INT Interrupt designator 
"111 = Interrupt at completion of search 
110 11 = Do not interrupt at completion of search 

C = 008-778 , BCD character to be checked against 
ml First character address to be checked 
m2 = Last character address plus 1 to be checked 

Description: This instruction attempts to INITIATE a search through 
a block of characters in stor~ge, looking for the first 
character not equal to the charater "e" (specified in 
the instruction.) 

SEARCH INITIATE POSSIBLE, i.e., the search/move section 
of block control is not busy. The instruction transfers 
the lower 18 bits of the first word of the instruction 
to register file address 30 and transfers all of the 
second word to the instruction to register file address 
20. The hardware then sets flags in the upper 6 bits 
of register file address 30, the search is started and 
the computer RNIfs at P+3. (during the search, 
register file addresses 20 and 30 are not to be disturbed, 
also the upper six bits of register file address 30 
cannot be counted on to be any particular ,combination of 
bits.) 

SEARCH INITIATE NOT POSSIBLE, i.e., the search/move 
section of block control is busy. The instruction in 
this case executes as if it were a NOP (no operation 
instruction). It has no effect on the search/move 
section of block control, the register file or the 
interrupts if a search cannot be initiated. P+I will 
be skipped and RNI will be from P+2. This latter 
location is usually filled by the programmer with 

UJP *-2 

to cause the computer to loop until the previous 
search/move operation is complete and the search can 
be started. 

BUFFERED SEARCH. The search progresses while other 
instructions following the search initiate instruction 
are executed. The search is made, beginning at character 
address ml and continues character by character through 
memory until the first character not equal to IIC!! is 
found or until the address to be processed is equal to m2. 
The programmer can find out that the search is complete 
at the instant it terminates or when he is ready to check. 
The first is achieved with the interrupt designator, the 
second by using a sense instruction (both of which are to 
be covered later.) 



10.2.2 (cont.) 

Example: 

Assuming that the programmer knows the search has completed, 
he can now determine if there were any characters other 
then the character tIC" and where the first of those occurred. 
If the lower 17 bits of register file address 20 and 30 are 
equal, no characters others then "C" exist in the block. 
However, if they are unequal, the lower 17 bits of register 
file address 20 will contain the exact character address 
where the first character other then IIcn occurred. No 
ambiguity is possible, since register file address 30 
(lower 17 bits) contains the last character address to be 
searched plus one; if the lower 17 bits of register file 
address 20 is equal to this address, the hardware has 
checked all addresses to be checked and is beyond the 
block of characters. 

Given the block of data shown 

CDIMAGE 60 60 60 60 

60 60 60 60 

60 62 51 23 

45 60 60 60 

...::~ 

60 60 60 60 

and the instruction 

... ~ 

(word address of this last 
word is CDIMAGE+19) 

(character address of this 
last character is CDIMAGE+79) 

SRCN 60B,CDIMAGE,CDIMAGE+80 

what address will be in the lower 17 bits of register 
file address 20 at the termination of the search? 

Answer: The address equal to CDIMAGE+9. 
If CD IMAGE is equal to word address 100008 
(character address 400008), then the contents 
of register file address 20lower 17 bits = 0400118 

Special Note: See the Special Note for the SRCE instruction (Section 
10.2.1) for techniques in determining type of termination. 



10.3 MOVE INSTRUCTlON 

23 18 17 16 00 

P I 72 IINTI m2 

23 17 16 00 

P + 1 Y fil 

INT Interrupt designator 
III TT = Interrupt at the completion of the Move 
TTOTT = Do not interrupt at the completion of the Move 

y = Number of characters to be Moved 
If y = 001-1778 , 001-127 10 characters are Moved 
If y = 000 , 12810 characters are Moved 

ml = First character address of data source 
m2 = First character address of data destination 

Description: This instruction attempts to INITIATE the copying of a 
block of TTyTT characters in one area in storage into a 
second area of storage. TTy!! is specified in the instruction. 

MOVE INITIATE POSSIBLE, i.e., the search/move section 
of block control is not busy. The instruction transfers 
the lower 18 bits of the first word of the instruction 
to register file address 31 and transfers all of the 
second word of the instruction to register file address 
21. The hardware then sets flags in the upper 6 bits 
of register file address 31, the move is started and 
the computer RNI1s at P+3. (During the ~ove, register 
file addresses 21 and 31 are not to be disturbed, also 
the upper six bits of register file address 31 cannot 
be counted on to be any particular combination of bits.) 

MOVE INITIATE NOT POSSIBLE, i.e., the search/move 
section of block control is busy. The instruction in 
this case executes as if it were a NOP (no operation 
instruction). It has no effect on the search/move 
section of block control, the register file or the 
interrupts if a move cannot be initiated. P+l will be 
skipped and RNI will be from P+2. This latter location 
is usually filled by the programmer with 

UJP *-2 

to cause the computer to loop until the previous 
search/move operation is complete and the move can 
be started. 

BUFFE-RED MOVE. The move is made beginning at character 
address ml (source) and m2 (destination) and continues 
through memory until "y" characters have been moved. If 
both ml and m2 are character addresses that represent 
character position 0 and the number of characters to be 
moved is a multiple of four, the data is copied a word 
at a time. If all three conditions are not met, the 
copying proceeds a character at a time. The word move 
only takes one-fourth _the time of a character move for 
the S~lle number of characters, so should be used when 
possible. As soon as the nyn characters have been moved, 
the move operation terminates and the search/move section­
of block control reverts to the not busy status. 



10.3 (cont.) 

Examples Given the block- of data sho~ 

MOVE 6,410B,424B 

UJP *-2 
102 

What is in storage at end 106 
of MOVE Operation? 

Answers 

102 

103 

104 

105 

106 

21 

60 

21 

60 

17 

25 

21 

60 

21 

60 

60 

21 

14 16 32 

60 60 60 

31 41 21 

60 60 60 

01 17 01 

25 25 25 

14 16 32 

60 60 60 

31 41 21 

60 60 60 

60 60 60 

31 25 25 

Special Note: If fly" is set by the programmer, he should remember 
that it is 7 bits. A SACH (or SQCH) into the upper 
6 bits of "yn represents a character move of twice 
the number represented by (Alower 6).or (Q1ower 6) 
(or is twice+l depending on the least significant 
bit of the original lIyll). 

Techniques for changing "y": 

Word Move, "y" originally set to 0, number of words 
to be moved in A register (right justified). 

SHA 1 
SACH Moveinst+4 

Word Move, "y" current contents unknown, Number of 
words to be moved in A register (right justified). 

SHA 2 
LDQ Moveinst+1 
SHQ 7 
SHAQ 17 
STA Moveinst+1 

Character Move, Number of characters to be moved 
in A register(right justified). 

LDQ Moveinst+1 
SHQ 7 
SHAQ 17 
STA Moveinst+l 

AI;;" if the source and dest inat ion blocks overlap, 
be sure that the source address is the higher address 
in memory or same of the source data will be destroyed. 



10.4 PAUSE INST.RUCTION (as used with SEAR.CH/MOVE Instructions) 

23 1 8 17 1 5 14 12 11 00 

1716. 4000 

Description: Once the main program has begun a Search/Move operation, 
iElianos-6-ver contiolofthaEpcfrt-6f tli-e-program t6tlie 
Search/Move section of Block Control. The main program 
is then resumed at P + 3. If it is necessary to find the 
result of the Search/Move operation before the main pro­
gram goes on with further calculations, etc, the PAUS 
instruction is used. 

This instruction senses the status of the Search/Move 
section of Block Control. If it is busy, the machine 
main control pauses for 40 msec., or until the Search/Move 
section becomes not busy. If it· stays busy for 40 msec., 
the computer RNI's at P + 1. If it was originally not 
busy or becomes not busy during the 40 msec. interval, the 
computer RNI's at P + 2~ 

At the completion of a Search/Move operation, Reg~er File 
Location 20 contains the final current word address for a 
S~arch operation and Register File Location 21 contains it 
for a Move. The contents of that word is generally not 
useful to the programmer in the case of a Move, but is 
quite important in the case of a Search. Here is how the 
word at Register File Location 20 is divided! 

23 

I 
18 17 16 

I I 
00 

J 
rCurrent address at termination of 

Search operation. If ~t is equal 
to the last character address plus 
one, it means that the condition 

~. for which the search was performed 
was not found. Otherwise it is 
equal to the character address of 

.. the '-find I • 

{ 
0 if SRCE instruction 

~--------- 1 if SRCN instruction 

{
Character used for equal or L-_______________ not equal test during search. 

Examples: i) The instructions to be 
performed are: 

The block of characters to be 
searched is: 

What 

SRCN 
UJP 
PAUS 
UJP 
TMA 
HLT 

will 

21B,400B,4l4B 
*-2 
4000B 
*-1 
20B 

be the contents 
computer halts on the HLT 

Answer: (A) 21400412 

100 21 21 21 21 

101 21 21 21 21 

102 21 21 20 21 

of the A register when the 
instruction? 

23 18 17 16 00 

21 11 I 000414 



10.4 (cont.1) 

ii) Given the block of data shown, where the word address 
of RHT = 17714

8
, what will be the contents .of A after 

execution of: 

SRCE 
UJP 
PAUS 
UJP 
TMA 

Answer: (A) 

21B,RHT,RHT+33 
*-2 
4000B 
*-1 
20B 

21077501 

RHT 00 00 00 25 

00 00 00 31 

00 00 00 46 

00 00 00 27 

03 21 60 60 

00 00 00 41 

00 00 00 31 

77 77 77 77 

iii) If the word address of ST~RE is 177178 , and. the character 
address of CEASE is 775148 , given the block of data shown, 
what will be the contents of A after execution of: 

SRCN 
UJP 
PAUS 
UJP 
TMA 

Answer: 

60B,ST¢RE,CEASE 
*-2 
4000B 
*-1 
20B 

ST¢RE 

(A) = 60477506 

ST¢RE = word addr 177178 = 001 

= char position 04 = 
= char address 001 

regrouped = 00 

60 60 60 60 

60 60 60 60 

60 60 21 60 

60 60 60 60 

III III "'" 
, , , VV.L .L.L.L2 

00 2 
111 111 001 111 002 

111 111 100 111 1002 

iv) If the word address of INBUFF is 170008 and the word address 
of ¢UTBUFF is 174008 and the number of characters to be moved 
is 8, what will be the contents of the A register after the 
move is complete? 

M¢VE 
UJP 
PAUS 
ujp 
TMA 

Answer: 

8,INBUFF,¢UTBUFF 
*-2 
4000B 
*-1 
21B 

(A) = 00074010 

At the start of the Move,the contents of 
~egister file location 21 was: 

04074000 

774748 



10.4 (cont.2) 

Exercises: i) INBUFF currently contains a card image. Somewhere in the 
card image is a comma. Write the code that will search 
for the comma and then copy all the· information up to the 
comma into an output area called ~UTBUFF. ~UTBUFF is large 
enough to contain all of INBUFF. 

ii) ZUP currently contains a twelve digit'BCD number with leading 
zeros. Using the Search Instruction, find the most significant 
digit and replace all leading zeros with 60B codes. 

iii) Using the Search instruction, check the character in the A 
register against a table of characters, seven characters 
long. The table is as follows: 

FTN~P 13 20 34 40 

j4 61 74 00 

If the character is equal to any of these characters, 
transfer control to location WAS0P, otherwise continue 
to the next section of code. 



STUDENT NOTES 



STORAGE TESTS 

11.1 MASKED EQUALITY SEARCH 

11.2 MASKED THRESHOLD SEARCH 

11 .3 STORAGE SHIFT 

11.4 COMPARE (WITHIN LIMITS TEST) 

Chapter I i I 



11.1 MASKED EQUALITY SEARCH 

Descriptions 

Examples: 

23 18 17 15 14 00 

06 m 

i = 0 thru 7 = interval designator 

m = storage address (of first word) 

(A) is compared with the logioal product of (Q) and (M) 
where]( .. m+(B1) 

NOTE: This instruction uses B1 exclusivelY. 

" / 

'Lf 
Put the 

instruction 
in F RegisteI 

Lf 

Decrement 
Bl by i 

,~ 

Did sign of Yes RNI from 
Bl change from _ ...... ,. 

P + 1 + to -? 
• No 

I Modify: M = m + (8 1
) I .. 

No (A)=(Q)- (M) Yes 
~ RNI from 

P + 2 

N .B. i .. 1 means interval 

i = 7 
i .. 0 

" 
tt 

tt 

" 
7 
8 

(i) Given the following conditions: 

5 
777777778 
60606060 8 

100 00674320 

101 21314367 

102 60606060 

103 67676767 

104 47532167 

and the following program section: 

ENI 
ENQ,S 
MEQ 
UJP 
INI 
STI 

do the following: 

5,1 
-0 
100B,1 
N0FIND 
100B,1 
FIND,l 

..... 
7 



11.1 (cont.) 

Answer: 

(a) Decrement Bl by 1 and calculate M. 

M ~ m + (Bl) 

=- 100 + 4 

= 104 

(b) Compare (A) with logical product of (Q) and (104) 

(Q) = 11111111 
(104)= 47532161 

41532161 

which is not equal to A. 

(c) Decrement Bl by 1 and"repeat 

(Q) = 11111111 
(103) .. 67676761 

61616161 
which is not equal to A. 

(d) Decrement Bl by 1 and repeat 

(Q) .. 11111Tn 

(102)= 60606060 
60606060 

which is equal to A. 

RNI P + 2. 

(e) Contents of FIND = 102. 



11.2 MASKED THRESHOLD SEARCH 

23 18 17 15 14 00 

I 07 m 

i = 0 thru 7 = interval designator 

m = storage address (of first word) 

Description: This instruction is similar to the MEQ; the only 
differences being that RNI from P+2 occurs when 
(A) ~ (Q) x (M) , and that index B2 is used 
exclusively. 

... 

Example: 

, 

,~ 

Instruction 
put in F 
Re£ister 

Decrement 
Index B2 by i 

'v 
2Did sign of Yes 

B change from '- RNI from , , 
+ to -? P + 1 

! No 

I Modify: M = m + (82 ) I 
• 

No (A) ~ (0). {M) Yes RNI from 
P + 2 

Given the following conditions and program section: 

00000067 

(Q) = 777777778 

(A) = 000000408 

100 

101 

102 

103 

104 

105 

106 

00000104 

00000040 

00000111 

00000700 

00000077 

00000052 

MTH lOOB,2 
UJP N~FIND 
INI 100B,2 
STI FIND,2 

a) What will be the contents of FIND after this 
program section is executed? 

b) What locations will have been checked? 

Answers: a) (FIND) = 000001028 

b) Locations checked = 104B 
and l02B 



11.3 STORAGE SHIFT 

Description: 

RNI P + 1 " "' 

Examples: 

23 18 17 15 14 00 

10 0 m 

Sense bit 23 of (m). 
Shift (m) one place left, end around, and replace 
it in storage. If bit 23 of (m) was a 1-bit~ RNI 
from P+2, if 0 RNI from P+1. 

Yes_ 

SSH 

UJP 

UJP 

1 
Instruction 
put in F 
Register 

,If 
Check Sign 
of (m) 

'If 
Shift (m) 

one ~lace left, 
ena around 

,if 

Was sign 
of (m) +1 

100B 

ST¢P 

*-2 

No -"" RNI P + 2 ,. 

(100) = 52525252 

ST~P HLT 

First time through (100) = 101010 101 010 101 010 101 010 
which is negative, so RNI at P + 2. 

Second time through (100) = 010' 101 010 .101 010 101 010 101 
which is positive, so RNI at P + 1 and jump to Halt. 



11.4 COMPARE (WITHIN LIMITS TEST) 

23 1 8 1 7 1 6 1 5 14 00 

I 52 I a I b I m 

a = addressing mode designator 

b index designator 

m storage address 

Description: The Compare, within limits test, instruction, is a two 
phase instruction. The first phase compares the 
contents of the M address against the contents of the 
A register. If the contents of memory is larger, the 
computer RNI's at P + 1. If. the contents of memory is 
less than or equal to the contents of the A register, 
the instruction proceeds to the second phase of the 
test. This phase compares the contents of the Q register 
against the contents of the M address. If the contents 
of Q is larger, the computer RNI's at P + 2. If the 
contents is less than or equal to control passes to 
P + 3. 

Summarized: If (M) > (A), RNI at P + 1 
otherwise, next test 

If (Q) > (M), RNI at P + 2 
otherwise, RNI at P + 3 

Expanded these relations become: 

(Q) > (M) > (A) 
(Q) = (M) > (A) 

(M) > (Q) > (A) 
(M) > (A) = (Q) } 
(M) > (A) > (Q) 

RNI at P + 1 

(A) > (Q) > (M) 

= (A)} 
(A) = (Q) > (M) 

(Q) > (A) > (M) 
(Q) > (M) 

RNI at P + 2 

(A
5 

= (M) = (Q) } (A = (M) .> (Q) 
(A) > (M) = (Q) 
(A) > (M) > (Q) 

RNI at P + 3 

All possible relationships between A, Q and M 
are shown. 

Normally, the value in the A register is greater than 
or equal to the value in the Q register. If this is the 
case, the following indicates the action of the instruction. 

(M) > (A) RNI at P + 1 
(A) ~ (M) ~ (Q) RNI at P + 3 

(Q) > .(M) - RNI at P + 2 



11.4 (cont.l) 

While the instruction is almost always used in situations 
where the contents of A is greater than or equal to the 
contents of Q, occasionally it is not. Following is a 
discussion of the instruction in these alternate uses. 

Stated in shorthand form, where the contents of the A 
register is less than the contents of the Q register, 
the instruction behaves as follows: 

(M) > (A) RNI at P + 1 
otherwise, RNI at P + 2 

Note: RNI at P + 3 is not possible because if 
(M) ~ (A) then (M) < (Q) as (A) < (Q). 

Reversing positions of A and M, the branching 
conditions become: 

(A) < (M) 
(A) ~ (M) 

RNI at P + 1 
RNI at P + 2 

This then is nothing more then an ASG with a full 24 bit 
operand. However, one value that A can take on is 
troublesome and that is 37777777. When this is the 
contents of A, (A) < (Q) is not possible as 377777.77 is 
the largest possible positive number. 

While this form of the instruction looks useful, it 
rarely is used as it can usually be replaced by a load Q 
and an AQ test. The coding that way ends up shorter and 
executes faster. 

Another possible use of the instruction exists wher~ the 
contents of the A register is set to ~77777778 or the 
contents of the Q register is set to 400000008 • 

In the case where (Q) is set to 400000008 , the instruct~on 
acts as follows: 

(M) > (A) RNI at P + 1 
otherwise, RNI at P + 3 

This looks very much 1 ike the previous form 
except for the RNI's. It is essentially an . 
A skip greater than or equal to where the 
skip is two words rather than one. Since P + 2 
is unused, M can be set equal to it with (M) 
equal to the test value •. 

e.g. LDQ 
CPR 

=9)40000000 
*+2 

UJP less-than-routine 
~CT test-value 
greater-than-or-equal-condition-next-instr. 

In the case where (A) is set to 377777778' the ~nstruction 
acts as follows: 

(Q) > (M) RNI at P + 2 
otherwise, RNI at P + 3 

This is essentially a Q test. Also since P + 1 
is unused, M can be set equal to it with (M) 
equal to the test value. 

e.g. LDA =9)37777777 
CPR *+1 
9)CT test-value 
UJP greater.than- routine 
less-than-or-equal-condition-next-instr. 



11. 4 ( con t • 2 ) 

Note in both of the two previous fonns that A or Q must 
be set prior to the execution of the instruction and both 
A and Q are in use. Here as with the condition earlier, 
a load A or a load Q coupled with an AQ test usually 
produces shorter code which executes faster. 

Still another possible.use of the instruction exists 
where the contents of the A register is set equal to the 
contents of M or the contents of the Q register is set 
equal to the contents of M. 

Where (Q) = (M), the instruction executes as indicated: 

Where (A) 

(M) > (A) RNI at P + 1 
otherwise, RNI at P + 3 

This is similar to the case where the contents 
of Q is set to 400000008 • As in that case, 
P + 2 is unused. Therefore, M can be set 
equal toP + 2 with (M) set equal to (Q) 
during execution~ 

e.g. STQ 
CPR 

*+3 
*+2 

UJP less-than-routine 
BSS 1 
greater-than-or-equal-to-next-instr. 

(M), the instruction executes as follows: 

(Q) > (M) RNI at P + 2 
otherwise, RNI at P + 3 

This is similar to the case where the contents 
of A is set to 377777778• As in that case, 
P + 1 is unused. Therefore, M can be set 
equal to P + 1 with (M) set equal to (A) 
during execution. 

e.g. STA *+2 
CPR *+1 
BSS 1 
UJP greater-than-routine 
less-than-or-equal-to-next-instr. 

Note: In the case where (Q) is set equal to (M), 
the same thing could have been achieved by: 

AQJ,GE *+2 

Likewise, in the case where (A) is set equal 
to (M), the following instruction serves the 
same purpose: 

AQJ,GE *+2 

Since *+1 will almost :certainly be a UJP, 
these can be replaced by a: 

AQJ,LT address-in-UJP-instruction 

Obviously, the formsof the instruction where (Q) = (M) 
or (A) = (M) are not useful. 



11.4 (cont.3) 

Example: 

Exercise: 

About the only useful form of the instruction other then 
the one where it is known that (A) ~ (Q), is where the 
(Q) is totally unknown and of no concern. When this is 
the case, the instruction is applied as follows: 

(M) > (A) RNI at P + 1 
otherwise, RNI at P + 2 or P + 3 

When used in this manner, it is nothing more then an 
ASG where the test value is a 24 bit operand and (P+2) 
must be a NOP. 

No matter how the CPR instruction is applied, the following 
is always true: 

00000000 t 77777777 
and, 00000000 > 77777777 

Assuming the following initial conditions, what does this 
program do? 

BEGIN 

(A) = 100B 
(Q) = 50B 

(100) = 00000064 
(101) = 00000104 
(102) = 70000000 
(103) = 00000700 

CPR 100B 
UJP *+2 
UJP *-2 
CPR 101B 
CPR 102B 
UJP *+2 
CPR 103B 
HLT 0 
UJP *-5 

Answer: RNI sequence = BEGIN 
BEGIN+3 
BEGIN+4 
BEGIN+6 
BEGIN+7 (Halt) 

Table IQ contains 100 IQ values. Count all the IQ's. 
in the following ranges 0-79, 80-119, l20-up. Use the 
CPR instruction, then do it without the CPR instruction. 



STUDENT NOTES 



FLOATING POINT OPERAtIONS 

12.1 INTRODUCTION 

12.1.1 Storage of Floating Point Numbers 

12.1.2 Normalizing the Coefficient 

12.1.3 Exponent 

12.1.4 Conversion Procedures 

12.1.5 Unpacking Floating Point Numbers 

12.2 I EXECUTION OF FLOATING POINT OPERATIONS 

12.2.1 Addition 

12.3 

12.2.2 Subtraction 

12.2.3 Rounding of Floating Point Numbers 

12.2.4 Multiplication 

12.2.5 Division 

FLOATING POINT INSTRUCTIONS 

12.3.1 Floating Point ADD 

12.3.2 Floating Point SUBTRACT 

12.3.3 Floating Point MULTIPLY 

12.3.4 Floating Point DIVIDE 

I Chapter i tl 



12. 1 INTRODUCTION 

12.1.1 Storage of floating point numbers 

Any number oan be expressed in the form ~ 
when k - ooeffioient 

B ... base 

n z: exponent 

Floating point is always packed into 2 words in the 3200, 
making a 48-bit representation of the number. 

The lower 36 bits = the coefficient 

next 11 bits 

Upper bit 

- exponent and sign of exponent 

- sign of the coefficient 

Coefficient a, ~ I 
Sign bit ~~ __ If~x_p_o_n_e_n_t~~ ______ Co __ e+;_~_i_c_ie_n_t ____________ ~~ 

~~ ~~ I 00 

P IP + 1 

12.1.2 Normalizing the coefficient 

The coefficient is a 36-bit fraction, which is adjusted b~fore 
paoking, so that the fraction lies between t and 1. 

1. e. 1 > FRACTION ~ t 
The coefficient is always adjusted so that a binary 1 follows 

the radix point, and nothing is in front of the radix point. The adjustment 
is made by shifting the radix point and mUltiplying the answer by the 
required power of 2. 

e.g. 48 = 100.0 in binary 

.100 x 23 in binary 

= .4 x 23 in octal 

lOIS = 1 000 001. in binary 

.100 000 100 x 27 in binary 

.404 x 27 in octal 

.068 = .000 110 in binary 

= .110 x 2~3 in binary 

.6 x 2-3 in octal 

.000018 = .000 000 000 000 001 in binary 

12.1.3 The Exponent 

.100 x 2-
16 

in' binary } -16 exponent = -16
8 

= -14
10 

= .4 x 2-16 in octal 

lies in the range 0000 - 37778 " However 17778 is not possible 
as it implies an exponent of -0 which will never result when 
perfor.ming a floating point operation. If one of the operands 
has 1777 for an exponent, it will be used as though it were 2000. 



12.1.3 (cont.) 

It is always biased before packing to enable comparison with 
other Floating point number$. 

This biasing ensures that the exponent is always positive. 

RULE: If positive, 20008 is added to it. 

If negative, 17778 is added to it. 

Thus if the biased value lies in the range 00008 - 17768, it is 
a negative exponent. 17778 does not normally occur as it = -0. 

But if the biased value lies in the range 20008 - 37778, it is 
a positive exponent •. 

e.g. Exponent is positive, therefore 2000 added. 

== 2004 

and k x 2401 = 2401 

-4 e.g. k x 2 Exponent is negative, therefore 11118 added 

• 11718 + (-4) 

• 17738 

and k x 2-407• 13708 

12.104 Conversion Procedures 

(1) Convert the number to binary 

(2) Normalize the number 

(3) Bias the exponentt 

(4) Assemble the number 

(5) If negative, complement the result 

Example: 4.0 

(1) Binary 

(2) Normalize 

(3) Exponent 

(4) Assemble 

eog. Pack 5638 

(1) Binary 

(2) Normalize 

(3) Exponent 

... 100 • 

• • 100 x 23 

3 
== .48 x 2 

a 3 + 2000 

... 2003 I 

= /200314000 ! 0000 0000 I 
Leftmost ~ctal number - 2 = 010 
in binary 

Sign bit ... 0 ... POSITIVE NUMBER 

101 110 011 

.101 110 011 x 211= .563 x 211 

11 + 2000 = 2011 



12.1.4 (cont.) 

(4) Assemble 1 2011 b 5630 i 0000 0000 I 

e.g. Pack -5638 

Steps (1) to (4) as above 

Then, because it is negative, complement the result. 

Note: 

e.g. Pack 

(1 ) 

(2) 

I 

15166 12141 i 1177 77771 

Bit 41 (top bit) = 1, because 5 = 101 in binar.r. 

Binar.r 001 100 110 011. 
Normalize .... 110 011001 100 x 212~octal.exponent 

= .6314 x 212 

Exponent = 12 + 2000 ;: 2012 
. I 

Assemble = §2 /6314 i 0000 0000 I 
Complement because number is negative 

-I 5765 ( 1463 1 1711 1111 I 
I 

e.g. pack. -035S 
(1) Binar,y • 0011101 

(2) Normalize * .111010 x 2-1 

... 1 • .72 x 2 

(3) Exponent * 1711 + (-1) * 1716 
I 

(4) A,UselIlble -1 1176 17200 i 0000 00001 
I 

Number is negative. 80 complement the number 
. .1 

-I. 6001 .1~57711777 7777 I 

12.1 .5 Unp!cking Floating Point Numbers 

(1) If upper bit ,is a one, number is negative. Complement, 
and note that sign of the final answer must be negative. 

(2) If exponent is less than 1177
8

, exponent is negative. 
Subtract 1117 from exponent. 

(3) If exponent is greater t~ 20008 , exponent is positive. 
Subtraot 2000 from it. 

I 

e.g. UNPACK I 

12000 I 4000 ! 0000 0000 I 
I 
I 

(1) Number is positive (the upper bit ::I 0) 

(2) Exponent is positive C~ 2000) 

- 2000 - 2000 - 0 
(3) Number 

-= .. 4 



12.1.5 (cont.) 

e.g. UNPACK I 6002 I 0777\ 7777 7771 I 
(1) Upper bit is 1 - number is therefore negative, 

so first complement it 
I 

11115 11000 ! 0000 0000 I 
(2) Exponent is < 1171, and is negative 

= 1175 - 1111 

= -2 

Shift coefficient to right 2 places 

(3) Coefficient .7 

•. 111 

Shift = .001 110 

- .16 
Answer = -0.168 or -0.2181510 



12.2 EXECUTION OF FLOATING POINT OPERATIONS 

12.2.1 Addition 

(1) Equalize exponents by shifting coefficient of the algebraically 
smaller number to the right. 

(2) Add coefficients, and normalize 

e.g. 108 + 1008 
I 

108 -/ 200414000 ! 00000000 I 1008 = I 2007 I 4000 i 00000000 
I 

Shift coefficient of 108 
4 7 .12 x 2 000012 x 2 

N.' 7 
.V+8 x 2 

= I 2007 I 0400 1 00000000 I 
Add coefficients and normalize 

.4000 0000 0000 x 27 

.0400 0000 0000 x 27 

= .4400 0000 0000 x 27 

this is normalized alrea~ 

I 

I 

Number .100100000000 000000000000 0000000000002 x 27 

12.2.2 Subtraction 

::a 1001000. 

- 001 001 0002 
08 

(1) Equalize exponents 

(2) Subtract coefficients and normalize 

e.g. 436 - 66 

438 = .100011 x 26 - 2006430000000000 

- 2003600000000000 

Equalize exponents, ie, 2003 6000 0000 0000 (.1102 x 23) 

becomes 

2006 0600 0000 0000 (.0001102 x 26) 

Subtract coefficients and normalize 

.4300 0000 0000 x 26 

(-).0600 0000 0000 x 26 

.3500 0000 0000 x 26 

.7200 0000 0000 x 25 after being' normalized 

Number = .111010000000 000000000000 0000000000002 x 25 

= 11101-

= 011 1012 

3 58 



12.2.3 Rounding of Floating Point Numbers 

In floating point operations, the E register is joined to the AQ 
register, to form a 96-BIT REGISTER AQE (the uppermost bit is the sign). 

A IQ 

s~Exponentl : 
-1 11 bits 12 bits. 

coeffiCient 
24 bits : 24 bits 24 bits 

To carr,y out rounding, the sign of AQ is compared with the sign of E. 
If sign of AQ is not equal to sign of E, number in AQ is rounded. 

Example: 

(i) If AQ
47 

0, number is positive. 

If E47 1, number in E must begin with either a 

4, 5, 6 or 7 
i.e. E can begin 100 4 

101 5 

110 6 

or 111 7 
The number L~ AQ is therefore rounded up by adding one to AQ. 

(ii) If AQ
47 

~ 1, number is negative. 

If EA'7 
'1"1 

0, number in E must begin with either a 

0, 1, 2 or 3 

which is -7, -6, -5, and -4. 

The number in AQ is therefore rounded down by subtracting one from AQ. 

AQ E 
e.g. 

1247 -- - - - - - - - -6 1512- - - --- ----71 

BIT47 = ° BIT47 = 1 

Positive number is rounded. 

AQ E 

e.g. 1247--------- 6[277- ----------7 

No rounding is necessary. 

AQ E 

e.g. 1777 --- - -----7 ( 166 - --- - - ----7 

BIT47 = ° 
Rounded down because negative number. 

Summary: If the sign of AQ is different from the uppermost bit of E, 
one is added to AQ if AQ is positive or one is subtracted 
from AQ if AQ is· negative. 

12.2.4 Multiulication 

(i) Unbias the exponents by subtracting 20008 or 17778 , as the case 
may be. 

(ii) Add the unbiased exponents. 

(iii) Multiply the coefficients. 



12.2.4 (cont.) 

(iv) Normalize the coefficient resulting and adjust the exponent. 

(v) Assemble the number. 

e.g. Multiply 100S by 10S 

100S = 001000000 

= .100000 x 27 (Binar,y) 

= .4 x 27 (Octal) 
I 

== I 2007 I 4000 l 00000000 I 
I 

10
S 

= 001000 

- .100 x 24 (Binar,y) 

_ .4 x 24 (Octal) 
I 

= I 2004 I 4000 ! 00000000 I 
I 

(i) Unbias exponents 

2007 beeomes 7 

2004 be~omes 4 

(ii) Add unbiased exponents 

(iii) Multiply coefficients 

1008 becomes .48 when normalized 

10~ becomes .4~ when normalized 
o 0 

product = .208 

(iv) Normalize resulting coefficient 

.20 x 213 

_ .010 x 213 (Binar,y) 

= .100 x 212 

= .4 x 212 (Octal) 

(v) Assemble answer 

= I 2012 I 4000 : 00 00 00 00 I 
I 

( vi) Checking 

100S x lOS = 10008 

- 001 000 000 0002 
_ .100 x 212 (Binary - exponent in octal) 

.4 x 212 (Octal - exponent in octal) 



12.2.5 Division 

(i) Unbias the exponents 

(ii) Subtract the unbiased exponents 

(iii) Divide the coefficients 

(iv) Normalize the coefficient resulting and adjust the exponent 

(v) Assemble the numbers 

e.g. Divide 100sby 10S 

100
S 

= 001 000 000 

.1 x 27 (Binary) 
I 

... ·4 x 27 (Octal) = 1200714000 i 00000000 1 

10
S 

= 001 000 

- .1 x 24 (Binary) 

.4 x 24 (Octal) = I 200414000 ! 00000000 I 
(i) Unbias the exponents 

2007 becomes 7 

2004 becomes 4 

(ii) Subtract unbiased exponents 

7 
=!... 

3 

(iii) Divide coefficients 

100S becomes .48 when normalized 

10
S 

becomes~when normalized 

quotient = 1.08 

(iv) Normalize resulting coefficient 

1.0 x 23 

(v) 

(vi) 

.1 x 24 (Binary) 

.4 x 24 (Octal) 

Assemble answer 

I 2004 1 4000 : 0000 0000 I 
J 

Che~king 

1008 f 108 = 108 

108 = 001 000 (Binary) 

.100 x 24 

= .4 x 24 (Octal) 

1.0 
ie1 .4) .4 



12.3 FLOATING POINT INSTRUCTIONS 

12.3.1 Floating Point AJ?D. 

23 18 17 16 15 14 00 

60 1 a 1 b 1 m 

a addressing mode designator 

b index designator 

m storage address 

Description: Add the contents of two consecutive locations b 
(M and M + 1) to the contents of AQ, where M = m + (B ) 
The normalized and rounded sum appears in AQ. 

Example: 

FAD FJSUM 
A 

AQ = 12 0 0 7 

FPSUM 

Final result of AQ 
A 

4 0 0 

4 0 0 

440 

JQ 
I 

0: 0 000 0 000 
I 

,FPSUM+1 

01 o 0 0 0 0 0 o 0 
I 

IQ 

0: 0 o 0 0 0 000 
1 

Exercise: If contents of Registers and a part of memor,y are: 

(A) = 20014500 
(Q) = 00000000 

FPSLJ 6060 6060 I L 

FPSUMt 

FPSUMt 

FPSUM+ 

1 200713621 

2 00000000 

3 200414000 

FPSUM+ 4 0000 0000 

Index register 3 contains 3, and 

Index register contains 1, 

What would be AQ after exeoution of 

(a) FAD 

(b) FAD 

12.3.2 Floating Point SUBTRACT 

23 18 17 16 15 14 

61 la 1 b 

FPSUM',3 

F~SUM,l 

m 

00 

a addreSSing mode designator 
b i~dex designator 
m • storage address 



12.3.2 (cont.) 

12.3.3 

Description: Subtract the contents of two consecutive 
locations (M and M + 1) from the contents 
of AQ,where M = m + (Bb) 

Example: A IQ 

If (AQ) a 12 0 0 .1j I 4 3 0 01 0 0 0 0.0 0 0 0 

I 

FSB F~P 
F:P¢P FP¢P+ 1 

12 0 0 31 6 0 0 O! . -l'Y 0 0 0 0 !'l 0 0 

I 
Final result of AQ : 

A Q 

I 2 o 0 51 720 OJ 0 0 o 0 0 0 0 0 

I 

Floating Point MULTIPLY 

, lOCATION jOPfaAHUII, MOD!FI£RS mms fiElD 
----~~~~------~=----------

~~.' ......... '~. , ;fMU,;r~~~,~, '~'-L.LLj_LLL.L.L .. L.L 

~ ... !....i.!..i..!.:..J...!...i...!:':::::':'<·:l:'~::'i'::;":·~::.I""i;C¢j):~~~~?:'l:~=.,»:U-;lr: 

23 18 17 16 15 14 00 

I 62 I a I b I m 

a = addressing mode designator 

b = index register 

m - storage address 

Description: Mul tiply the contents of AQ by the. contents 
of 2 consecutive locations, M and M + 1, 

where M = m + (B
b). 

= 6 

= 29 10 

The product appears in AQ normali&ed and rounded. 

Example: 

If (AQ) [ 2 0 0 714 0 0 0 i 0 0 0' 0 0 0 0 0 

A IQ 

I 

I 

EPg)P I EPg)P+l 

and the instru~tion= FMU EP9)P 

the final 
(AQ) = 

A IQ 

12 0 1 2 140 0 0 10 0 0 0 0 0 0 0 

I 



12.3.4 Floating Point DIVIDE 

23 18 17 16 15 14 00 

m 

a = addressing mode designator 

b = index designator 

m = storage address 

Description: Divide the contents of AQ by the contents of 
2 consecutive location, M and M + 1, where 

M = m + (Bb). The result appears in AQ, 
normalized and rounded. 

Example: If (AQ) are as shown below, FP~P 
contains 20044000, and FP~P+l contains 0, 
what would be the contents of AQ after 
execution of the instruction. 

FDV FP¢P 

Solution: A 

12 0 0 7 

IQ 

4 0 0 oj 0 0 0 0 0 0 0 0 

FP!6P 

,2 o 0 4. 4 ~ 0 oj 0 0 0 0 0 0 0 0 

A 

Final result of AQ /2 004 4 0 OO! 0 0 0 0 0 0 0 0 



48-BIT REGISTER OPERATIONS 

13.1 48-BIT E REGISTER 

13.1.1 Introduction 

13.1.2 Trapped Instructions for the E Register 

13.2 TRANSFERS BETWEEN A AND EU 

13.2.1 Transfer EU to A 

13.2.2 Transfer A to EU 

13.3 TRANSFERS BETWEEN Q AND EL 

13.3.1 Transfer EL to Q 

13.3.2 .Transfer Q to EL 

13.4 TF~~SFEFS BETWEEN AQ ~~D E 

13.4.1 Transfer E to AQ 

13.4.2 Transfer AQ to E 

13.5 SCALE AQ· 

13.6 USE OF THE SCALE AQ INSTRUCTION 

Chapter i'fC] 



13.1 48-BIT E REGI$~ER 

13.1.1 Introduction 

The E register is a 48-bit, octal register* used as a 
supplement to AQ in floating point and 48-bit precision operations. 
It extends the size of AQ to 96 bits by forming AQE. 

All 3200 computers do not contain the hardware for 
the E register, which therefore cannot be displayed on the console 
of these machines. (Where the full hardware is available, the 
contents of the E register can be displayed on the console in the 
displays usually containing A and Q.) 

* The E register is the lower 48 bits of the 52 bit + sign ED register. 
The upper 4 bits of ED and the sign of ED are not affected by 
Floating point, 48-bit multiply or divide, or inter-register 
operations. 

13.1.2 Trapped Instructions for the E Register 

Floating point and 48-bit precision operations are handled 
on the 3204 basic processor by a special software package. The 
instructions are detected by the hardware, and "trapped". They are 
then processed by the special software programs OPTBOXS and FDPBOXS. 
OPTBOXS examines each trapped instruction to see if it is a Floating 
point/48-bit instruction or a BCD instruction (see Section 14.3). 
If it is a BCD instruction, the program BCDBOXS is used to process 
it. If it is a Floating point or a 48-bit precision instruction, the 
program FDPBOXS is used. 

FDPBOXS simulates the hardware for the E register so that 
the instructions can be executed without the hardware being presen~. 



13.2 rRANSFERS BETWEEN A AND EU 

Description: 

Example: 

Answer: 

23 1 8 17 1 5 14 00 

55,2'_ 

This instruction transfers the contents of Eupper (bits,47-24) 
to the A register. The E register is not disturbed by the 
transfer. 

Suppose ¢P48 contains 0,. arid ~P48+l contains 2. 
If A conta.ins 0, and Q contains 76000000, what 
will be in A as a result of: 

AQ 

MUAQ 
EUA 

00000000 

~P48 

¢P48 

I 
I 76000000 I 

P48+l 
I 

Multiplied by 00000000 I 00000002 
I 

A R I~ 

results in 00000000 00000000 00000001 74000000 

Transferring Eo to A, (A) 00000001 

13.2.2 Transfer A to EU 

23 18 17 15 14 00 

I 55 
6_ 

Description: This instruction transfers the contents of the A register 
to E (bits 47-24). E register bit positions 51 thru 48 upper . 
and 23'thru 00 are not disturbed by the transfer. Also the 
A register remains unchanged as does the sign of E. 

Example: What will be in Eu after execution of the following 
instructions: 

ENA 20321B 
AEU 

Answer: EU' = 00020321 



13.3 TRANSFERS BETWEEN Q AND EL 

13.3.1 Transfer EL to Q 

ADDRESS nm 

23 18 17 15 14 00 

I 55 
.,. 

Description: The lower 24 bits of E, ie, E10wer' are transferred to 
the Q register. The E register remains unchanged at 
the end of the transfer. 

Example: In the EUA exa~p1e, if the instructions had been: 

MUAQ ~P48 
EUA 
ELQ 

What would be in Q after execution? 

Answer: (Q) = 74000000 

13.3.2 Transfer Q to EL 

23 18 17 15 14 00 

I 55 5 
.,. 

Description: The contents of the Q register is transferred to Elowet 
(bits 23-00). Bit positions 51 thru 24 and the sign ot 
E are not disturbed by the transfer. Likewise the Q 
register remains unchanged. 

Example: In the following example: 

ENQ 20321B 
QEL 

What will be in EL after execution of the instructions? 

Answer: (EL) = 0002Q321 



13.4 TRANSFERS BETWEEN AQ AND E 

13.4.1 Transfer E to AQ 

AnDRESS finn 

23 18 17 15 14 00 

, 55 3 -Description: Transfer the 48 bit contents of E (bits 47-00) to AQ. 
EU(bits 47-24) is transferred to A and EL(bits 23-00) 
is transferred to Q. The contents and sign of E is 
not disturbed by the transfer. 

Example: In the EUA example, if the instructions had been: 

MUAQ ~P48 
EAQ 

What would be in AQ after execution? 

A Q 

Answer: AQ = 00000001 74000000 I 

13.4.2 Transfer AQ to E 

23 18 17 15 14 00 

I 55 7 -Description: Transfer the 48 bit contents of AQ to E (bits 47-00). 

Example: 

A is transferred to EU(bits 47-24) and Q is transferred 
to EL(bits 23-00). EO(bits 51-48) and the sign of E 
are unaffected by the transfer. The contents of A and Q 
are not disturbed and remain after the transfer. 

Divide the 48 bit operand in AQ by ~P48. Write the 
appropriate coding. (~P48) = 2. 

Answer: AQE Transfer Number to E for Div. 
SHAQ -47 Set AQ to sign of E 
DVAQ ~P48 (AQ) = Quotient,(E) = remainder 

A Q 
At Start 

AQ = 77777777 77777765 

A Q EU EL 
After AQE 

AQE = 77777777 77777765 77777777 77777765 

A Q 
After SHAQ I 

AQ = 77777777 77777777 

A Q EU EL 

A£t:~E D~AQ I 77777777 77777772 00000000 00000000 



13.5 SCALE AQ 

OPERAlIOUIDD!FI£RS ADDRESS F1flD , .. __ ........••. _ •............. _-'-_ •... 

Description: 

Example: 

Exercise: 

23 18 17 16 15 14 

13 11 I b I k 

b = index designator 

k shift designator 

00 

AQ is shifted left, end around, until the upper two 
bits (46 and 47 are unequal.) 

During the operation, the computer makes a shift 
count. A quantity K = k minus the shift count. 

If b 0, this residue is discarded 

If b 1-3, the residue is placed in 
index register Bb. 

AQ initial 
contents 

A Q 

030 000 0 0 100 0 0 0 0 0 0 

SCAQ 24,2 

Top bits of A 000 011 000 etc . 

. To get top 2 bits unequal, shift left 3 places 

011 000 etc. 

AQ becomes 13 0 0 0 0 0 0 0 I 0 0 0 0 0 O· 0 0 

K k - shift count 

30
8 - 3 

258 , which is placed in Index Reg. 2. 

If A contains 100B, and Q contains zero, what would be 
in A, Q and Index register 1 after execution of the 
following instruction? 

SCAQ 2027B,1 



l3~6 USE OF THE SCALE AQ INSTRUCTION 

It is used to pack floating point numbers. 

Example: 1~8 - 12 0 0 7 1 4 0 0 0\ 0 0 0 0 0 0 0 0 

In previous example (using 1008) 

AQ, after scaling, was 
A 

IQ 120000 0000000 o 0 0 1'0 

and Index Register 1 2007 

(a) Then shifting AQ to right l} places 

100004000 \00000000 

(b) by storing AQ elsewhere, 
Reading Index Register 1 into A, 
and shifting it left 12 places, 
we have the exponent at the top of the AQ. 

A 
1
0 00020 0 7 I 

12 6 '0 '1 0 0 0 o I after shifting 

(c) By then adding back to A~ the stored value previously 
in AQ, (~he normalized exponent) we have the packed 
floating point number 

A IQ 

j2.0 0 7 10 000 jo 0 0 0 0 0 O· 0 

ST~RE ST¢RE+l 

10 0 0 01 40 0 0 10 000 0 0 0 0 

Final AQ 

A r 
(e) For negative numbers, complement the number first. 

Then pack the number, as above'and camp 1 emeat. the 
packed number. 



13.6 (cont.) 

Alternate method for packing floating point numbers: 

If the computer has floating-point hardware and 
if the number to be packed is a single precision integer 
(24-bit operand), then the following method is used 
instead of the one just illustrated: 

* 
K2044 

SHAQ 
SCA 
FAD 

UJP 

~CT 

-24 
K2044 
K2044 

20440000,0 

F~RM 48-BIT SIGNED ~PERAND 
MERGE WITH PR~PER EXP~NENT 
N~RMALIZE THE F.P. NUMBER 

F.P. C~NSTANT ~ 2044000000000000 

Here the FAD instruction is used to do the normalizing instead 
of the SCAQ. Also the normalizing is done after forming the 
floating point number rather then before. If the operand to 
be packed is larger than 24-bits or if the computer doesn't 
have floating point hardware, the number can be packed faster 
using the SCAQ instruction. 



BCD DIGIT OPERATIONS 

14.1 INTRODUCTION 

14.1.1 BCD Digits 

14.1. 2 Field 

14.1. 3 Sign Bits 

14.1.4 ED Register (In Machine) 

14.1. 5 ED Register (On Console) 

14.1.6 BCD Fault 

14.2 BCD INSTRUCTIONS 

14.2.1 Shift ED Register 

14.2.2 ED Equal to ZERO Jump 

14.2.3 ED Less Than ZERO Jump 

14.2.4 ED Overflow Jump 

14.2.5 Setting Field Length in D Register 

14.2.6 Load ED 

14.2.7 Store ED 

14.2.8 Add to ED 

14.2.9 Subtract From ED 
Chapter i ~ I 

14.3 BCD TRAPPED INSTRUCTIONS 



14.1 INTRODUCTION 

14.1.1 BCD Digits 

The BCD instructions handle 4-bit BCD DIGITS. These digits 
are the decimal digits 0-9 represented as follows: 

0000 • 0 

0001 • 1 

0010 - 2 

0011 .. 3 

1001 .. 9 

Each 24-b±t word of storage is divided into 4 BCD Digit characters of 
6 bits, as shown: 

23 18 17 12 11 06 05 00 

1---1 _..&.-, _____ --1...-_.J 
The lower 4 bits in each character are the BCD Digit. The upper 2 bits 
,in the least significant character is used to represent the sign of the 
field. 

14.1.2 Field 

A field is a group of BCD Digits, of a maximum length of 12 digits. 
The length of the field is stored in the D register, which consists of a 
4 bit register within the hardware. It is not displayed on the Console. 

14.1.3 Sign Bits 

This represents the sign of the field as a whole - not of the 
individual BCD digit. It is stored in the least significant digit in 
the field. The signs bits of the other digits in the field must be 00, 
or a fault is generated. 

If the sign bit stored is 10, 

the field is negative. 

For all other combinations, it is positive 

i.e. (00 xxxx ) 
) 
) 

Example: 

( 
( 01 xxxx 
( 
( 11 xxxx ~ 

00 0001 

00 0110 

positive field 

00 0100 00 0011 00 1000 

00 0010 00 1001 00 0000 

.. 1438 

• 6290 

If the Field is 7 digits long, the sign is stored with the least 
significant digit (i.e. the rightmost of the field, .. 9). It is 00. so 
the number in memor,y is positive • 1,438,629. 



14.1.4 The En Register (in machine) - where hardware is available. 

This is a decimal register, consisting of 12 BCD decimal digits and 
overflow BCD decimal digit. 

1401.5 The En Register (on console) - where hardware is available. 

Displayed in the AQ register as decimal numbers. Displays the 
full ED register plus 3 additional characters, as shown. 

Sign of 
digit being 
currently 
accessed 
+ or -

14.106 BCD Fault 

+ 

Digits 
being 
currently 
accessed 

+ 

Sign of 
ED 

+ or -

12 DEC DIGITS 

Overflow 
digit 

Max number in ED = 999,999,999,999 

If one more is adqed, the digit in the overflow position 
will become a one. 

Programmer can arrange for an interrupt to occur if a BCD fault; is 
discovered. He can also arrange t.c keep sensing for a fault without an 
interrupt. 

3 cond.itions will produce a faulto 

(a) If the upper 2 bits of any digit (except those of the least 
significant digit in the fie]d) are not 00. 

C'b) If an ill.egal digit is present 
i.e. any four bit combination greater than 9. 

e.g. 1011 = 11 is illegal 

(c) If the contents of the D register are greater than 12 (148) 

BCD fau'lt is sensed by the SENSE Internal Status Instruction: 

INS 400GB 

If BCD fault j run P + 

If no fault, RNI P +- 2 



1402 BCD INSTRUCTIONS 

140201 Shift Er, Regi ster 

Description: 

23 18 17 16 15 14 00 

I 70 10 1 b 1 k 

k = shift count 
b = index designator 

The ED register i~ shifted in one character steps 
(i.eo 4 bits at a time) 

K = k + (Bb) with sign extension 

(The instructiOY senses bits 0-3 and 23 only of the 
sum of k and (B ). 
If bit 23 • 0, Shift is left, end off, zero fill. 

If bit 23 = 1, Shift is right, end off, zero fillo) 

!:!:. : BOTH SHIFTS ARE END OFF. 

Example: SFE 

Exercises: 

Shifts EO 1 character to left (i.e. shifts one digit 
to the left.) 

o 0 0 0 0 1 8 2 9 Befora Shift 

o 10 0 0 o 0 0 0 1 8 2 9 0 After Shift 

(i) If the ED register contains 

10 \6781 437 1921;698 
What will it contain after the following instructions 

ENI 1,1 

SFE 3,1 

(ii) If the above result is followed by 

SFE -8,1 

What will be the final contents of ED? 



14.2.2 En equal to ZERO Jump 

~TlOII~ iommtU1DDlflEiS ADDRESS FIElD 

~ "" ~J~~.!!. j :!! ,', , .--LL/-1--1. 

i l 12', $!. ,,-;& IT 1$ ; 1'0'" :'~·cJ,::'''':C.iln'III!",u(:P:'!Z:;;l!U!:t.!Z1II:r.1:r1!"'U!_,.,.t!~t)o'l:1.'';-"114\)1, 

231817 1514 00 

I 70 4 

m = storage address 

Description: The contents of the 52-bit En register are compared with 
zero 

Example: 

ENnL~p 

If (ED) 0, RN1 address m 

If (En) I 0, RNI P + 

EZJ,EQ ENDL~P 

SFE 1,2 

UJP *-+5 

LDA 144B 

etc. 

14.2.3 En less than ZERO Jump 

! LOCATIOll iOPERAlIO!UIUO!fI£iS ADDRESS FIElD 

~~JJ,T, , . ! ~ , ' , '. ' ! ! , ! • I ' ! ! ! ! l.. 
, I 
~ ,1;\ :,' ;:~ l'l;'~ ,:'$ ".:;~;"!!"J!"Cll:;Z;Cl:t*!:t.~J!!l!!J.!.1~~~l" !Uln;'~'»lM!P' 

23 18 17 15 14 00 

I 70 5 m 

m = storage address 

Description: The contents of the 52-bit En register are compared 
with zero 

If (EJ c( 0 

If (En) > 0 

RNI address m 

RNIP+1 

14.2.4 En Overflow Jump 

231817 1514 00 

I 70 6 m 

m = s:tQ.J::age address 

Descriptions If the upper 4 bits of the En register contain anything 
but zero, oontrol jumps to address m. 

If Upper 4 bits contain ze,ro, HNI P + 



14.2.4 (cont.) 

Examples: 

1 0 I 4 2 1 357 619 878 - no overflow,jump RNI P + 1 

000 000 241 - 0/ flow, jump RNI Address m. 

14.2.5 Setting Field Length in D Register 

23 18 17 15 14 0403 00 

y = fie1~ length indicator 

Description: 'rhe instruction takes the lower 4 bits of y and puts 
them in the D registero Maximum length of field is 

Exaffiple: 

14B for all operations except STE, when maximum length 
of the field is 15B, I'he D register remains at the 
vEilue set until it is set a,gain. 

It is not cleared it:. N""ster Clear operations. 

SEr 14B 

Sets D rogiJtsr to ,~8 fer fielj le~~th 

23 18 17 16 

m 

b = index designator 

00 

O:NLY INDEX RFJJ I STER 1 
CAN BE USED 

If b = 0, m is the unmodified address 
If b = 1, m is modified by (Bl) sign extended 

m = storage address (character address) 

Description: The instruction loads the En register with a field of up 
to 12 numeric BCD characterso The field length is 
specified by the D register. Characters are put in 
the lower end of ED' with zero fill to the left. 

Examples SEr 7 

LDE 400B 

Find h~ast significant digit 
100 

1()1 ''''' , 



14.2.6 (cont.) 

M + (D - 1) 

M + (6) = 406 

L00"ds this character lnto ED first, intc left:nost -bi ts of 
ED. The R shifts one character, adds in next digits, shifts, 
etc, 'I'llien 10Lided D characters, zero fills rest of ED from 
lefto 

Answer: E = 10 -J 000003689456 1 

14.2.7 Store ED 

23 18 17 16 

m 

b = index designator 

00 

O~~Y INDEX REGISTER 2 
CAl; BE USED 

If b = 0, m is the unmodified address 
If b = 1, m is modified by (B2) only 

m = storage address (character address) 

Description: The instructions stores a field of up to 13 decimal 
digits (3oC.Do numeric character3). Jeginning at 
address fir \ the addres'3 of the most significant digi t 
in the field). The length of the field is determlned 
by the D register. 

Example: 

The least significant dlg.i t. is storec_ first, and the 
register is then Shifted rlght one digitoThe next 
digit is stored,and the register shifted right again9 
and so ono NOTE TIL<\T S'rORING DESTROYS THE COllJ""TENTS OF Zn, 

SET 14B 

STE 400B 

E =\0 I 746871264789 

Field = 12 characters 

Address of least 
significant character 

Character address = 

(D- 1) + M 

(13) + 400 

413 

100 001 011 

001 000 010 11 

= Word 102 

character 3 

12 digits in E stored as follows: 

100 7 4 6 8 

101 7 1 2 6 

102 I 4 7 8 9 I 



14.2.7 (cont.) 

DUMP OF MEMORY: 

If an area of memory containing BCD numeric characters is dumped 
out, the 6 bits for each character (2 sign bits, and 4 bits for the 
digit) will be dumped in octal numbers: 

e.g. 00 1000 • 8 in BCD digit 

But would be 001 000 10 in octal during dump. 

Example: A block of memory is as follows (Characters are BCD Digits) 

100 4 7 8 9 

101 6 4 3 1 

102 8 7 4 9 

103 6 2 1 3 

A program working on this is as follows: 

SEI' 12B 

LDE 402B (a) 

SEl' 6 

STE 405B (b) 

SEI' 14B 

LDE 403B ( c) 

What would be contained in Eo at the end of the operations? 

14.2.8 Add to ED 

1 LOCATION llPERAlIONJIDDlflERS ADDRESS flUD 

[~:=·:._A~ .... , .. ===~1!'L,3, .. .1 .. _L-L ..• ;:w-:: •...• i~=-='~== 
• . I 

L~';' .. ~...;..1.,.;..!.c ... ,...!.......:;,.i .. ~.~s~;.:.~;. .. .'~;.:':,l..!!J,:~C;";'L..i.l.i.l.!.!i;~.~.illl.!~.J.~~.i!!..1l'..!.;.!~:.:.!.:..J.l!l!..~ . .:.!!L~.~.:.1 

23 18 17 16 00 

m 

b = index designator 

MODIFIED BY INDEX 
REGISTER 3 ONLY 

If b = 0, m is the unmodified address, i.e. M = m 
If b = 1, m is modified by (B3) only, M =m + (B3) 

m = storage address (character address) 

Description: This instruction adds 'D' numeric BCD digits to the ED 
register. The 'D' digits are lined up with the lower 
ID' digits of the ED register before they are added. 

The ED register has a maxbnum capacity of 13 digits, 
i.e., 12 digits plus overflow digit. The maximum number 
of digits in the number to be added is 12, i.e., D may 
not be greater than 12. M is the most significant digit 
of the number to be added. M + D - 1 is the least 
significant digit. 



14.2.8 (cont.) 

Example I 

Answer: 

If (ED) .. 

I 0 I 0 0 0 000 876 543 

And a block of memory is 

100 7 2 4 9 

1 5 8 2 

102 6 1 3 6 

2 0 8 4 

What will be the contents of ED after the following 
instructions are executed? 

ENI 1,3 

SEr 10B 

ADE 400B,3 

(a) M .. m + (B3) 

.. 400 + 1 .. 401 

Add to ED 8 character the least significant of 
which will be 

M + (D -1) 

401 + 7 

410 

ED I 0 I 000 000 876 543 

+ [ 0 I 000 024 915 826 

Final ED:: 
1

0 I 000 025 792 369 

14.2.9 Subtract from ED 

23 18 17 16 00 

67 I b I m 

b = index designator 
If b = 0, m is the unmodified address, i.e., M = m 
If b = 1, m is modified by (B3) only, M = m + (B3) 

m = storage address (character address) 

Description: As for ADE j except that the field of up to 12 BCD digits 
is subtracted from the ED register. 



14.3 BCD TRAPPED INSTRUCTIONS 

All BCD instructions may be used in any 3200 Computer, regardless 
of the model of the processor. Where the processor lacks the BCD hardware 
package necessary for direct processing of BCD instructions, the implement­
ation of these instructions is carried out by a special software package. 
The instructions are then known as "trapped" instructions. 

(It should be noted that where the software package is used, the 
contents of the Ed register cannot be displayed on the console, because 
the Ed register hardware does not eXist.) 

The B.C.D. instructions are detected by a translator as they appear 
in the Function register, and trapped. They are processed like 
interrupts, and the following action takes place 

(a) P + 1 is stored in the lower 15 bits of address 00010 

(b) The upper 6 bits of the Function register are stored 
in the lower 6 bits of 00011 - the upper 18 bits of 
00011 remain unchanged. 

(c) Program control is transferred to 00011, and a RNI cycle 
is executed. 



COMPASS PSEUDO INSTRUCTIONS 

15.1 CONCEPTS OF PSEUDO INSTRUCTIONS 

15.2 PROGRAM DEFINITION 

15.2.1 

15.2.2 

15.2.3 

IDENT Instruction 

END Instruction 

FINIS Instruction 

15.3 ASSEMBLY AREAS 

15.3.1 Introduction 

15.3.2 DATA Area 

15.3.3 Return Assembly Control t·o Subprogram PRG Area 

15.3.4 COMMON Area 

15.3.5 ORGR Instruction 

15.4 STORAGE RESERVATIONS 

15.4.1 Word Block 

15.4.2 Character Block 

15.5 ENTRY AND EXTERNAL INSTRUCTIONS 

15.5.1 ENTRY Pseudo Instruction 

15.5.2 EXTERNAL Pseudo Instruction 

15.5.3 SCOPE Loading of Subprogram 

15.6 SYMBOL DEFINITION BY EQUIVALENCING 

15.6.1 Introduction 

15.6.2 Word Equating 

15.6.3 Character Equating 

15.7 COMPASS OUTPUT LISTING CONTROL 

15.7.1 REMarks 

15.7.2 NO LIST Instruction 

15.7.3 Resume LISTing Instruction 

15.7.4 SPACE Instruction 

15.7.5 New Page EJECT Instruction 

15.7.6 TITLE Instruction 

15.7.7 Comments 

Chapter i f; 1 



15.1 CONCEPTS OF PSEUDO INSTRUCTIONS 

A 1(etter name would be "Assembly-Control" instructions. 
They are simply instructions from the programmer to the assembler. 

They will be used during assembly only. Program execution 
can make no use of them. 

e.g. BSS 4 is an instruction to the assembler to set aside 4 words 
of storage somewhere in the storage area. The 4 words are set 
up during assembly and then the function and usefulness of the 
BSS instruction is finished. 



15.2 PROGRAM DEFINITION 

15.2.1 IDENT Instruction 

Description: The Location field is blank. Ho'~ever if a symbol is 
written in it, C01f.tPASS will ignore it. Cor.U>ASS picks 
up 8 or less alphanumeric characters from the address 
field, the first of which must be alphabetic. The 
Address field terminates at the first blank or the 
eighth alpha-numeric character, whichever is the first 
encountered. A period may appear in m. 

m = PROGRAM NAME 

This will appear on the top of each page of the 
assembly listing. 
The IDENT card must be the first card in the program 
or the job will~terminated. 

Examples: (a) I DENT TEST F¢R ILLEGAL STI~¢LS 

END 

Program name will be TEST 

(0) I DENT C¢NTnm¢us TESTING ¢F TAPES 

END 

Program name will be C¢N'rINU¢ 

15.2.2 END Instruction 

Description: The location field should be blank. If a symbol is 
present, it is ignored by COMPASS. 
The END instruction terminates the sub program. The 
final instruction in a CO~~ASS Sub-program must' be 
an ~ID instruction. 

SymbOlic Transfer Address 

The "m" signifies a symbol in the address field of some 
subroutine which has declared it to be an entry point. 
This address is called the Symbolic Transfer Address and 
need not be in the subroutine terminated by this END card. 

Examples: (i) A program of ~ subprogram. 

The symbolic transfer address must appear, and the symbol 
must be defined within the subprogram as an entry point. 

e.g. 

FIRST 

IDENT 
ENTRY 
UJP 

END 

TEST 
FIRST 

** 

FIRST 



15.2.2 (cont .1) 

(ii) A program of more than one Compass eubprogram 

The symbolic transfer address must appear in 
one of the END statements, and be defined as 
an-entry point as before. 

Examples I DENT 

ENTRY 
FIRST WP 

END 

I DENT 

END 

TEST 

FIRST 

** 

WRITER 

FIRST 

Note that this program could have appeared as follows: 

IDElrr 

ENTRY 

TEST 

FIRST 

FIRST UJP ** 

END FIRST 

I DENT ~'lRITER 

END 

(iii) A program of COMPASS and FORrRAN subprograms. 

A symbolic transfer address should not appear 
in any END sta temen-t in the program;-if the 
FORTRAN program i s the main program. 



15.2.2 (cont.2) 

Example: PR¢QRAM TEST 

CALL ¢NE 
CALL TW~ 

END 

I DENT ¢NE 

I DENT TW¢ 

END 

If the FORTRAN is a subroutine of a COMPASS subprogram 
a transfer address should appeur in the END statement 
in the COMPASS subprogram. 

TRA Card diagnostic 

Where an error occurs in using sJ~bolic transfer 
addresses, the error is flagged by the Loader when 
the program is loaded, and execution is not attempted. 

'fue flag "TR" is shown (after the Load card is listed) 
on the standard output unit. 

15.2.3 FINIS Instruction 

mmsnHn 

Description: Symbols in the location and address fields are ignored. 

Ex8.L:lple: 

The instruction tells the assembler that it has reached 
the end of the assembly, and that all sub-programs have 
been assembled. If the FINIS card is put in out of 
order, the assembly will be terminated when it is 
reached. Control is returned to SCOPE when the 
FINIS card is read. 

I DENT 

END 

IDENT 

END 
FINIS 

TYP¢UT 

S¢UT 

TYPlN 



15.2.3 (cont.) 

Example: 

~fuere FOR'I'RAN and COMPASS subprograms are used in the 
one subprogram, the FINIS card is used to indicate the 
end of each group of subprograms. 

7F~RAN,L,X 
9 

PR¢GRAM 

END 

¢NE 

SUBR~INE TW¢ 

END 

FINIS 

7C~PASS.L,X 
9 

I DENT 

END 

Funs 

THREE 



15.3. 1 Intro::~ucti0n 

There s.re 3 are2.S in an~l sub pl'ogr::~m assembly 

In this area all normal parts of the subprogra'Il 
are assemoled. 

( b) COMMON Area 

}'arts of the prograG declared to be in com::10n are 
assembled in this area. 

(c) nJ.s.,;, Area. 

far~s declared "'" cor.;.tain Data are assem-nled in 

Three counte:r"s are used at assembly time to put PlTt s of program 
in sequential places in the areas above. These Gounters a::"e incre:nented 
to i':ive th3 current address of the instruction beinE~ assem-oled in the 
particular area in ~'ihicj, the assembly is taking place. 

15.3.2 DATA Area 

Description: IYl:;:·Ol~~;2ij.tion :Jc-:'Y be '[u~ ir..to the }}:;,ta ::o,r8& at aS3e:-e'Jly 
ti~:18. 

,b;xample: 

°Ehere may Je r~o 1-:8~ererlce to all exts:rr1t11 sYT~;b()l , 
nor can any s;.'Wbol in the :JAr]:.. &r8:1 be a:1 entry 
point for th:.3 subpro{?ral7l in y·/hic> it occurs. 
Theinstructi on specifies that all in.::or::lcdi on 
following is to be s~ored or identified as part 
of the DATA area, until PRG or COMMCr-; or Elm 
occurs. Any instruction or pseudo instruction 
may follow DATA. The DATA area is shared by all 
subl_T'ografJ.s at execution time. 
The Locatton and. .A.:idress fields should be blank. 

I DENT BINBeD 

DATA 

BSS 2 

DATA ¢CT 273 

END 

NOTE: The total DATA area must be defined in 
the first subprogram loaded. 



15.3.2 (cont.) 

Example: I DENT 

DATA 
) 
) 

MAIN 

)5 INSTRUCTIONS 
) 

. ) 
¢RGR 100B 

BSS 50 

PRG 

E1TD MAIN 

ID.:;r~ SUBPRGI 

DATA 

¢RGR 5 

PRG 

MEMORY ALLOCATION 
AT LmD TIME 

INSTRUCTIONS IN 
SUBPROGRAM AREA OF 
SUBPROGRAM SUBPRGl 

FIRST 5 INSTRUCTIONS 
IN SUBPROGRAbI MAIN 

DATA AREA USED IN 
SUBPROG~ SUBPRGl 

AREA RESERVED AS A 
BSS IN SUBPROGRAM MAIN 

INSTRUCTIONS IN 
SUBPROGRAM AREA OF 
SUBPROGRAM MA.IN 

Upper Boundary of 
Available Memory 

15.3.3 Return Assembly Control to Subprogram PRG A~ea 

I loCI·TlO. ·---····~·-~o·m-AlI8 •. ltDltfIEls lIDlESS AE1I 

~ ; '.L.' , ,'~~~ -"-:~_,i_.~ ... _.L...L.Ll ' , ; , , , , ! ' '-LLL.l.. 
- j 1 
1...:...il...i..L~~ : .. ·::··'~;'·..L:!..i.:.!:..':":~l1!i!ll!!l""'i:!'''Jt:'U'~'''i~;'''i.!t)n!i.!!i.!!,1!.!.i 

Description; All instructions that follow are to be assembled 
in the subprogram area. 

Example: 

The PHG instruction may be used to signal the end 
of the DATA or the CCh':llo:ON areas. 

IDE1~ BL¢CKER 

DA'rA 

SCALEF ¢CT 213 

~CT -0 

c¢f.rr.¢N 

INBUFF BSS 100 

PRG 

01 
PRG Afea 
Program 

Len:r1 

~:{Area 
161 

o 
PRG Area 

Program 
Length-l 

J 



15.3.4 COMMON Area 

mmsnHB 

Description: The instruction labels and reserves space in the 
cornmon area. 

No information can be put into the area at assembly 
time. If this is attempted, an error listing is 
given. COMPASS assumes that a PRG card had been 
included before the instruction and resumes assembly 
in the subprogram area. 

The CObThl0N area is shared by all subprograms at 
execution time. 

Note: COr,IT-lON is the same for <':1.11 subprogTams. If 
it is desired to have separate areas, ORGR instructions 
must be used to separate them. 

W¢RKAREA 

I DENT 

c¢m¢N 

BSS 

END 

I DENT 

C¢MM¢n 

BSS 

END 

TEST 

100 

SUBEDIT 

60 

In this program, the common area will be overlapped 
by the two subprograms. 

COMi'!ION 
SUBPROGRAM 1 

o W¢RKAREA 

+99 

SUBPROGRAM 2 

L¢C 

1---------1 

o W¢RKAREA and 
L¢C reference 

~ the same word. 

59 

Tnis can be used to reference the same words in 
co~on in two subprograms. 



15.3.4 (cont.l) 

Example: Setting up common area in 2 subprograms 

TEMP 

CTABLE 

QT¢TAL 

FLAGS 

I DENT 

C¢M1.1¢N 

BSS 

BSS,C 

PRG 

END 

I DENT 

. 
c¢l.IM¢N 

BSS· 

BSS,C 

FRG 

END 

MAX 

10 

6 

SUBPR¢G 

12 

4 

The area will be set up as follows: 

TEMP 

TEMP+l 

TEMP+2 

TEMP+3 

TEMP+4 

TEMP+5 

TEMP+6 

TEMP+7 

TEMP+8 

TEMP+9 

CTABLE CTABLE+l CTABLE+~CTABLE+3 
~ABLE~ CTABLE+5 not used by MAX 

FLAGS FLAGS+l FLAGS+2 jFLAGS+3 

QT¢TAL 

QT¢I'AL+l 

QT~TAL+2 

QT¢TAL+3 

QT~TAL+4 

QT!lJTAL+5 

QT¢TAL+6 

QT¢TAL+7 

QT0TAL+8 

QT~AL+9 

QT!6TAL+I0 

QT~TAL+ll 

FLAGS 



15.3.4 (cont.2) 

Note: 'rhe only instructions which can be used in the 
Cml:lON area are as follows, 

BSS ¢RGR 

BSS, C 1FT 

EQU IFN 

EXJ1 IFF 

ENTRY IFZ 

COM1{ON is terminated by PRG 

DATA 

or END 

15.3.5 ORGR Instruction 

Description: This instruction controls the relocatable address for 
storage of instructions, constants, Or the reservation 
of space in any of the three storage areas. 

Example: 

The location field is ignored by CONif'ASS, but printed 
on the listing. 
Any symbol used in the addres3 field must have been p revious1y 
defined in the storage area being referenced. If 
COMPASS is assembling into one area, and an ORGR occurs 
with a different area relocatable symbol in the address 
field, an error results. C01{PASS ignores the OOOR, 
but puts an error flag on the listing. 

DTAG 

A 

IDE1TT 

DATA 

BSS 

~CT 

PRG 

. 
¢RGR 

END 

¢RGRT 

2 

227 

DTAG+1 

Note: the error flag "A" set to show the error in 
the address field. DTAG is in the DATA area, and 
cannot be used in an ORGR statement in the SUBPROGRAM 
area. 



15.3.5 (cont.) 

ii) 

iii) 

IDENT HARRY 

9)RGR 100B 

LDA CIT 

END 

The first instructi on (LDA CIT) will be assembled 
in Location 100, and the rest will be stored 
following it. 

IDENT ~RGRTEST 

ENTRY START ST~RA GE ADDRESS 

¢RGR 50 

START UJP ** 00062 

LDA CI¢ 

STA CI~BLtfCK 

UJP 02010B 

C¢NTABLE ~CT 0,-1 00076 and 77 

¢RGR *+50 

INPFLAG ¢CT 0 00162 

¢RGR INPFLAG+20 

¢NE ¢CT 00206 

Elm START 



15.4 STORAGE RESERVATIONS 

This is made in the area currently being used. The 
address field will. determine the number of words or character 
posi tions to be reserved. 

15.4.1 Word Block 

m a constant, a symbol, or an address 
expression. 

Description: (i) The instruction reserves and labels a block of 
word storage. A symbol in the location field is 
the 15-bit, relocatable word address of the first 
word in the block of storage. 

(ii) The address field specifies the nu~ber of locations 
to be reserved. It may be 

(c.) a constant 

(b) 

Example: STATUS 
DISKBUFF 

a symbol 
~ 

Example: VARINP 
IN PARE A 

BSS 
BSS 

EQU 
BSS 

2 
745 

5 
VARINP 

Note that the symbol must not be a relocatable 
address, or an error results: 

A 

VARINP 

INPAREA 

¢CT 

BSS 

5 

VARINP 

(The "A" indicates the address field error.) 

(c) An address expression which results in a 
non relocatable value. 

Example: VARINP 
INPAREA 

EQU 
BSS 

5 

VARINP+7 

If the s~bol is a relocatable address, an 
error results. 

A 

VARINP 

INPAREA 

~CT 

BSS 

5 

VARINP-2 

(The "A" indicates the address field error). 

(iii) The double asterisk is illegal 

i • e. PRINTBUF BSS ** 



15.4.1 (cont.l) 

Descriptions (Continued) 

(iv) If an address field is zero or in error, the 
symbol is defined, but no storage is reserved. 

(v) 

Example: TAGl BSS 

TAG2 

TAG3 

TAG4 

BSS 

BSS 

BSS 

** 
1 

2 

The second instruction is illegal, and no location 
will be reserved forTAG2, but TAG2 is defined. It 
will reference the same word as TAG3. 

TAG1 

TAG2 and TAG3 

TAG 4 

TAG 4+1 

All symbols used in the subprogram must have 
storage allocated to them: 

I DENT MATRIX 

1DA C¢UNT 

INA 

STA C¢UNT 

BSS 1 

END 

(vi) NOrE: Where no symbol is used, storage is reserved 
but not labelled. It may be referenced from other 
labelled locations. 

Example: TAGI ¢CT 4 
BSS 3 

TAG2 ¢CT 27 

BSS 3 

TAG3 ¢CT 14 



15.4.1 (cont.2) 

Description: (Continued) 

The block of storage set up will be: 

TAG1 00 00 00 04 

*** 

TAG2 00 00 00 27 

TAG3 00 00 00 14 

The location marked *** may be referenced ~s: 

15.4.2 Character Block 

TAG1+2 

or TAG2-2 

or TAG3-6 

Description: Reserves and labels a block of character storage 
in the area currently in use. 

(i) A symbol in the location field is the 17 bit, 
relocatable character address of the first character 
in the block. 

(ii) The address field specifies the number of chara~ters 
to be reserved. It may contain 

(a) a constant 

Example: CTAG1 BSS, C 6 

CTAG2 BSS,C 2 

Storage will be reserved as follows: 

CTAGl CTAGl+1 CTAGl+~ CTAGl+3 

jcTAG1+4 ~TAGl+5 CTAG2 CTAG2+1 



15.4.2 (cont.) 

(1i) Continued 

(b) a symbol 

Examples SIZE 
PARLIST 

EQU 

BSS,C 
5 

SIZE 

Note that the symbol must not be a relocatable 
address or an error results. 

A 

SIZE 

PARLIST 

OCT 

BSS,C 

5 

SIZE 

(The "A" indicates the address field error). 

(c) an address expression which results in a 
non-relocatable value. 

Example: SIZE 

PARLIST 

EQU 

BSS,C 

15 

SIZE-3 

(iii) If a BSS,C instruction is followed by a BSS 0 
instruction, it forces any following character 
reservation to a new word, even if the last character 
word is not filled. 

Example: INPl!LAGS BSS"C 6 

BSS 0 

¢UTFLAGS BSS,C 2 

Storage is reserved as follows: 

INPFLAGS INPFLAGS+1 INPFLAGS+2IINPFLAGS+3 

INPFLAGS+4 INPFLAGS+5 Not Used 

gSUTFLAGS ~UTFLAGS+l Not Used 



15.5 ENTRY AND EXTERNA* INSTRUCTIONS 

15.5.1 ENTRY PS,eudo Instruction 

f l8tAI10M oPERA-i"iuH,MDntfliiSAnDR£ss flu-n - ... ---­

L:.,.~--" ,;~~r~ ' .. i.' ;·'~J~.''';)~~7.U-:J!!L.L= 
l' ! 

L!..J...L.u.~: . ..L!..L...L:~~L:~~!'j~E'!l~jtJl~1>~lll':t&!t!~~~l~':J 

Description The location field should be blank, but if a symbol 
does appear, it will be ignored by COMPASS. The 
address field contains one of more location names 
separated by commas. No blanks may occur. The 
field terminates at the first blank, or at Column 
73. If there are more entry points to be defined 
than will fit on one card, a second card can be 
used. 

Example: 

Each of the address field location names contains 
a symbol defined as a subprogram relocatable word 
address by appearance in a location field elsewhere 
in the subprogram. 

I DENT 

ENTRY 

START UJP 

ENA 

INT¢ UJP 

END 

Note that more 

I DENT 

ENTRY 

ENTRY 

START UJP 

I1~ UJP 

END 

¢NE 
STARl',INT¢ 

** 
o 

** 

START 

than one entry card can be used. 

TW¢ 

START 

INT¢ 

** 

** 

START 

15.5.2 EXTERNAL Pseudo Instruction 

r lUWION OPERAlIarUIOD!f!ERS ADDRESS FIElD 

~., . ,~ . :~T ... '~.L.'-L.""~~.:~.:.:L:.!!L-'-.l. 
: I. I 
~.i.~.:.~::~j ... !~!.:..:!.~~~~.!!!.!.!!J!.riu:~<f.:~!",!U!"':O;:'!<~!.'~J.w.ll.:; 

Description: The location field should be blank. .ArJy symbol appearing 
there will be ignored by COMPASS. The address field 
contains one or more location names up to Column 73. 
These must be separated by commas. No blanks may occur. 
A symbol in the address field may B21 be defined in the 
subprogram in which the EXT instruction appears. 
The EXT instruction can only reference location names 
in the subprOgram area of another subprQgram. It 
cannot reference DATA or C¢~~!¢N areas. 



15.5.2 (cont.1) 

Example; I DENT 

ENTRY 

MAIN 

NUMBER 

Example: 

. 
NUMBER ¢CT 

END 

I DENT 

EXT 

LDA 

END 

37 

SUBPR¢a 

NUMBER 

NUMBER 

All subprograms within a main program are assembled 
independently, and all symbols in a subprogram are 
local to that program only, unless declared as 
external symbols ip another subprogram, and as entry 
points in the former program. 

TAG 

TAG 

I DENT DRIVER01 

LDA TAG 

¢CT 

END 

I DENT 

LDA 

¢CT 

END 

14 

DRIVER02 

TAG 

27B 

The two Symbols (TAG) are not linked in any way. 
Each will be referenced only by the subprogrrurr in 
which it appears. 



15.5.2 (cont.2) 
BUT} If they refer to the same symbol, the 
Program could appear as followsl 

CARDBUFF 

I DENT 

EXT 

LDA 

I DENT 

ENTRY 

LDA 

. 
¢CT 

END 

EDIT 

CARDBUFF 

CARDBUFF 

READ 

CARDBUFF 

CARDBUFF 

24 

Address arithmetic is not permissible with external symbols 

e.g. LDA CARDBUFF+2 

But, address modification is permissible 

e.g. LDA CARDBUFF ,3 

15.5.3 SCOPE Loading of Subprograms 

The Assembler establishes links between the subprogram as 
directed by the EXT and ENTRY instructions. These linkages are then 
set up by the Loader la part of the SCOPE monitor) when the assembled 
program is loaded prior to execution. 

If an external is referenced in a subprogram, but there is 
no ENTRY for it in any other subprogram, SCOPE will look through the 
Library Tape to see if it can find a Librar,y Routine to enter. 

I DENT 

EXT 

RTJ 

QUAD 

SQRTF 

SQRTF 

I DENT DISC 

END 

If it can find no Librar,y routine of the same name, it will 
give an error symbol, and terminate the run. (This is done at Load Time, 
not in Assembly). The error symbol appears on the listing after the 
LOAD card print out e.g. LOAD, 56 

DISC un SQRTF 



15.5.3 (cont.) 

The COMPASS assembly listing of a subprogram containing 
external symobl references will have the usual format, except that 
the address field will be prefaced by an X. 

Example: 

00010 00 1 XOOO03 

The digits following the X are the reloctable word address of a 
previous instruction in the subprogram area which references the 
external symbol. The first (or only) reference to the external 
symbol will contain X77777 in the address field. COMPASS thus 
produces a "threaded list" of instructions referencing the external 
symbol. 

Example: Program Listing 

I DENT TEST 

EXT CI¢ 

ENA 10B 00000 14 6 00010 

RTJ CI~ 00010 00 7 X77777 

RTJ CI¢ 00030 00 7 X00010 

RTJ CI¢ 00050 00 7 X00030 

END 

The address of the last instruction referencing the external is placed by 
COM~SS into the XNL Loader Card to begin the backward threaded list. When 
the loader loads the program, it enters the actual address of the external 
symbol into the address portion of each instruction referencing the external. 
It does this by saving the address portion of the last instruction referencing 
the external symbol, it then replaces the address with the actual address of 
the external symbol. The loader then, repeats the process using the saved 
adqress as the new last instruction address referencing the external symbol. 
The process continues until the address of the next instruction in the list 
is 77777, which indicates all instructions referencing this external symbol 
have been modified. 

Thus, if CI~ is loaded at address 00106, the program will be loaded into 
storage as: 

00000 14600010 (ENA lOB) 

00010 00700106 (RTJ CI(J) 

00030 00700106 (RTJ CI(J) 

00050 00700106 (RTJ CI(J) 



15.6 STI4BOL DEFINITION BY EQUIVALENCING 

15.6.1 Introduction 

A symbol may be defined by equivalencing it to another symbol, 
a constant, or an expression. The symbol may be defined as an absolute 
value, a relocatable word or relocatable character address. The symbol 
in the location field is equivalenced to the value of the address field. 
A symbol which is declared an entry point must not be equated to a s~~bol 
which is declared external. ~'/hen symbols are equivalenced they are 
identical and interchangeable. 

All symbols in the address field of an equivalence must have 
been previously defined by the appearance in the location field of a 
preceeding instruction, or in an EXT pseudo instruction. 

15.6.2 Word Equating 

DescriFtion: The symbol is eq~ivalenced to another symbol, a 
15-bit word address, or a 15-bit value. The sJwbol 
in the :ocation field will be non-relocatable or 
relocatable, as determined by the address field. 

ExarnEles: 

If the loc~tion field is blank, an error occurs. 
T-he address field may contain 

(i) 
(ii) 

(iii) 

An integer, modulo 215_ 1 (15 bits or less') 
A symbol, previously defined 
An address expression containir-g symbols 
previously defined. 

If a sJ~bol in the address is defined as relocatable 
in a given area, the symbol in the location field 
TtTill also be relocatable ir .. that area. 

SYMB¢L EQU 57641B 

DATE EQU 27B 

TEMP BSS 

3m E~~U TEMP 

TEMP2 g~u SYM+6 

Assembled as follows: SYMB¢L 57641 

DATE 00027 

00165 TEMP Storage reserved 

SYM 00165 

TEMP2 00113 

TEMP, SYM and TEMP2 are re1ocatab1e. 



15.6.3 Character Equating 

Description: The symbol is equivalenced to a 17-bit address, 
a 17-bit value or another symbol. The symbol will 
be nonrelocatable, or relocatable, as determined by 
the address field. If the location field is blank, 
an error occurs. 
The address field may contain 

(i) An integer, Modulo 217_1(17 bits or less) 

(ii) 

(iii) 

Example: ABADD EQU, C 372B 

ABADD is equivalenced to the l7-bit character 
address 372, which is word 76, character 2. 
This word address is shown on the listings 

000762 ABADD EQU,C 372.B 

00027 DATE EQU 27B 

A symbol previously defined 

Example: SYM BSS,C 

NDF'LAG EQU,C SYM 

If the address of S1M is 00013, the value 
of NDFLAG will be 13 also. 

An address expression, ccntaining symbols 
already defined. 

Example: NDFLAG EQU ,C SYM-4 

If the address of SYM is OOJ13, the value 
of NDFLAG will be 50. 

Word address 13 = character address 54 
4 

NDFLAG = character address 50 



15.7 COMPASS OUTPUT LIS;rING CONTROL 

The programmer can control output listings under C¢Y~ASS 
wi th these instructions. They are written in the same way as any 
other instruction. 

15· 7.1 REMarks 

Description: Any remark may be inserted into the source program, 
to appear on the output listing. All columns except 
9-13 may be used. 

9 10 13 

Example: THIS IS A RH~RK INSTRUCTION 

15.7.2 NO LIST Instruction 

Description: The instruction suppresses listing of the subpro€TaID 
until the instruc:ion LIST is enoountered. 
HOvlever, if lines containing errors are encountered, 
they will be printed out, regC<.rdless of the N¢LIST 
instruction. 
The instruction I;Ii11 no-:; appear on t:le outfut 

15.7.3 Resume LISTing Instruction 

Description: The instruction resumes output listing after a 
NOLIST instruction 
If LIST occurs -without a proceeding 1~¢LIST statement 
it is ignored. 

15.7.4 SPACE Instruction 

Description: The instruction instructs the prir:ter to skip ill 

lines of print, or go to the top of the next page, 
whichever is the less. 

Examples: 

m is an unsignsd decimal integer. 

(i) SPACE 2 

2 lines are ski;ped on the printer 

(ii) If only 3 lines remain in the page, 

SPACE 10 

v1ill cause the printer to skip to a new page 
and begin in line 1 of the page. 



15.7.5 New Page EJECT Instruction 

Description: 

ADDRESS FlHD 

'rhe page being printed is fed through the printer, and 
the line following the EJECT instruction will be the 
first line of listing on the new pageo 
The address field must be blar~ or an error will occur, 
although comments may be inserted from column 41. 

15.7.6 TITLE Instruction 

Description: Normally the name of the subprogram will appear at 

Examples: 

15.7.7 Comments 

the top of each page of listing of the subprogram. 
If another t,i tIe is required' instead, it can be 
inserted using this instruction. The heading obtained 
from the IDENT or prevlous TlrLE instruction is 
replaced, and the first page following the TITLE 
instruction will have the new heading. 
If the new heading is to be inserted immediately, the 
instruction EJECT should immediately follow TITLE. 
If th9 new title is to be used on the first page of 
the listing, the TITLE instruction must immediately 
follow IDENT. 
The title must be contained in columns 20-72 of the 
address field. 

(i) I DENT 

TITLE 

TEST 

TES'r F'¢R ILLEGAL CHAR'iCr'::;RS 

Tnis will cause the full title to be printed 
on the first and subsequent pages of the listing 
of the subprogTam. 

(ii) I DENT TEST 

TITLE 

TI'rLE 

EJECT 

END 

TEST F¢R ILLEGAL CHARACTERS 

PRINT ¢UT CHARACTERS F¢UND 

The first title will be printed on all pages until 
the second TITLE ins,truction is found. A new page 
will be begun by the EJECT instruction, and it 
will bear the new title. 

When C¢MPASS detects a card with an asterisk in column 1, it 
prints the content of .. '$ card as a comment. No other action is performedo 
Note: The asterisk itse;r is not printed. (See also Section 2.2.3.1) 



SCOPE ORGANIZATION OF INPUT/OUTPUT 

16.1 INTRODUCTION 

16.1.1 Programmer Units 

16.1.2 Scratch Units 

16.1.3 Systems Units 

16.2 CENTRAL INPu~/OUTPu~ ROUTINE 

16.2.1 Introduction 

16.2.2 Calling Sequences 

16.2.3 Input/Output Operations 

16.2.4 Tape Control Operations 

16.2.5 Unit Status Requests 

16.2.6 Format Selection 

I Chapter i r~ 



1601 INTRODUCTION 

Under SCOPE) Input/Output devices are specified by Logical 
Unit Numbers (LUN's) which are organized according to functiono The 
programmer or operator assigns the logical unit to a particular type 
or unit of hardware, through SCOPE control" 

Logical Units may be specified as 

(i) Programmer units, 

(ii) Scratch units, 

or (iii) System uni tso 

1601.1 Programmer Units 

They are for general purpose use by the programmer, and they 
are unrestricted as to use in any run in a job. 

Once defined, the definition of the programmer unit is 
fixed for the whole jobe They are released by SCOPE at the end of 
the job, unless saved by the programmer by the use of a SCOPE unload 
card. 

,Programmer units are numbered 1-49. 

160102 Scratch Units 

Scratch units must be defined for each run, and are released 
a t the end of the run 6 They are assigned and used by Library programs, 
and may be accessed by the programmer for temporary use" 

Scratch units are numbered 50-55. 
They cannot be saved by the programmer. 

1601.3 Systems Units 

Systems units are assigned to specific physical equipment 
within SCOPE, but these assignments may be altered by the operator. 
They are used for certain common functions, and may be protected by 
SCOPE from input-output request5 which might destroy their contents. 

Systems units are numbered 56-63, as follows: 

56 Load and Go (for storage of object decks from 
assembly, prior to Loading and 
Execution) 

57 Accounting 

58 Comments fram operator (only read requests allowed) 

59· Comments to operator (orJy write requests allowed) 

hO Standard Input (protected ~~ainqt. writ;ng,Bt~.) 

61 

62 

Standard Output - holds listable output 

Standard punch - output from OOKPASS, etoo 

6J Library" 



16.2 CENTRAL INPUT/OUTPUT ROUTINE 

16.2.1 Introduction 

Input/Output requests in COMPASS programs are written as 
calling sequences for monitor routines controlled by a central Input/ 
Output routine called CIO$ 

16.2.2 

CIa performs the follOwing functions: 

(i) Selects an available channel 

(ii) Rejects requests if 

(a) the unit is not available (e.g. due to an 
operator error). 

(b) no access channel is available 

(c) an illegal instruction (function code) is giveno 

(iii) Provides the current status for all requests. 

(iv) Initiates all I/O operations, and then returns 
control to the main program 30 that processing 
may continue while the I/O operation is carrted 
out. 

(v) Responds to external interrupts, and transfers 
control to a routine specified by the programmer. 

Calling Sequences 

Input/Output operations are specified by entering an octal 
function code and other parameters into a calling sequence. The function 
codes are 

Function Code Request 

01 Read 
02 Write 

03 Read backwards 
04 Rewind 

05 Unload 
06 Backspace 

07 Space forward past 1 
10 Space backwards past 

11 Write E¢F 
12 Erase 

13 Status 
14 Format 

There are 4 operations performed with eIO 

(i) 

(ii) 

(iii) 

(iv) 

I/O operations 

Tape control operations 

Unit Status operations 

Format selection operationso 

E¢F 
1 ~F 



16.2.3 Input/Output Operations 

The function codes used by Input/Output operations are: 

(a) 01 READ n words, starting at FWA (First word address) 
(b) 02 WRITE n words, starting from FWA 
(c) 03 READ BACKWARDS, n words, and store backwards, 

starting at FWA+n-1. 

Calling Sequence: 

Input/Output operations are requested by the following sequence 
of instructions. 

Notes: (a) The logical unit number (LUN) is defined by an EQUIP card, and 
may be 1~63, depending on function code. 

(b) The function code is an octal number, 1-14 as defined previously. 

(c) The interrupt indicator selects an interrupt on normal or 
abnormal end of operation when set. 

o = no interrupt 

1 interrupt on ABNORMAL end of operation only (end of tape, 
EOF mark, load point, parity error, lost data for mag. tape.) 

2) interrupt on an end of operation, whether normal 
3) or abnormal. 

(d) JUMP is any legitimate jump to the reject address. 

(e) Interrupt address is the address of a closed subroutine to which 
control goes when the specified interrupt occurs. 

(f) Reject address is a symboliC address to which control goes in the 
event of CIa rejecting the calling routine. In the event of a 
reject because a channel or a unit is not available the A register 
will contain zero. If the reject is due to an illegal function 
code, the A register will contain a non-zero quantity. For both 
types of rejects, the Q register will contain the status of the 
unit. 



16.2.3 (cont.l) 

Example: 

(g) The mode designates the method of recording, and is given as 
an octal number. 

I 

I 
I 

If no mode is designated, binary mode is assumed and density 
is under the control of the operator. 

Code Density Parity 

00 Do not select a new mode 

40 none even 

41 none odd 

50 low even 

51 low Odd 

I 60 medium even 

61 medium odd I 

I 70 high even 

_. . . . . . I 
11 nl.gn Odd 

(h) First Word Address (FWA) is the symbolic address of the first 
word in the input or output area. 

(i) Number of words (n) is the decimal number of words to be 
transmitted. 

(j) If no interrupt is specified, the normal return is written in 
location L+5. 

(k) On interrupt, before control is passed to the interrupt address, 
SCOPE saves A, Q and the 3 index registers. On completion of 
the interrupt subroutine, the programmer must return control to 
SCOPE, which will then restore the A, Q and Index registers to 
their original values. Note that no values obtained in the sub­
routine can be returned to the main program in these registers. 

Write at 556 bpi in BCD on a magnetic tape that has previously 
been defined as LUN 20, a 27 word block of data commencing at the symbolic 
address ORIGIN. 

After successfully initiating the write operation, jump to the 
symbolic address PROCESS and continue the execution of the program. 

In the event of an abnormal end of operation, go to the 
symbolic address ABANDON; and if the write request is rejected, jump to 
PAUSE. 



16.2.3 (cont.2) 

Answer: 

ADDRESS finD 

..... , .... -,-_,,,"--, .. ,,.' ..... ,L_-'-.... j. .. " .. c ..... ," ••• L. L~;'!;~ L . .J,-LL.L.JLL 

'--'... .", ..• , ....... ___ ..... , ..... .;---"_, .. " ...... ,_,-1.. ... 1 , .... ,~J.!L.LJ_LJ-L.l.L 
; : ;UJP, ;, "; IPAU1SE ., 

.;..~ ....... , •... ~ • .• ~ .. ~ ••. " ••. L.~ . .l L.L ....... _.I ..... '--'--~ .•.• L .. .L ,.L, . .L~.L .... 1.. 

j .. L.+_J~L~-L1L-L..lL~~~ir l~l;1\f ! .. L.L.J. ... L 

. J ;_., I Z. 7 
.. [._L ... ,.;, .. _-'. ,.L.LL." .. L.J .• ..lLJ..::L:LLLLL_L,LL.LJ. 

".~+'Ll ..... l .. l--L .... J. ... '-L.l_J.~lll!)ll!l!!l~~-L.l_J. ;. 

LL._lg~~ .. LLL.l",.".L_, ,,1f!~(!Ef ~'~.J_Ll .1 

Use of interrupt facility (See also Section 21.3) 

If an interrupt address is specified, and the interrupt 
indicator is non zero, control transfers to the interrupt address at the 
end of the operation, or upon an abnormal condition interrupt. 

Before giving control to the interrupt address, SCOPE saves the 
contents of the A, Q and three index registers. It then enters the current 
condition and status of the unit in the A and Q registers respectively. 

C Condition of unit 
o dynamic 
1 = static 

LF Last function code (other than 13) given 
for the unit 

TCA Terminating character address of data 
transmission contained in the Buffer 
Control Register. 

LS Logical Status of the Unit 

00 = (a) if a status request, unit is static, 
channel is available 

(b) for reject return, hardware reject 
(c) for norma) return, unit is dynamic 

01 Channel is not available for any requests 

10 previous operation is incomplete 

11 previous operation is complete, but an 
interrupt request is being processed. 

LC Last channel to which the unit was connected (or 
is still connected). 

R = Retention code (from standard 3200 tape label) 
o tape may be used for output 
1 = contents of tape should not be destroyed. 

STATUS See following chart. 



16.2.3 (cont.3) 

UNIT STATUS TABLE 

STATUS 
MT CR CP PR PT TY BIT 

00 Ready Ready Ready Ready Ready Ready 

01 Busy Busy Busy Busy Busy 

02 Write 

I enable 

03 
File 

E¢F mark 

04 
Load 
point 

E¢T 
Hopper Tape 

05 empty supply 
low 

DENSITY I I I I I 
I 

00 = low ~ ________ ~ ______ ~ ______ ~ ______ ~ ______ ~ ~6 I 

I 
01 = med. I 

07 1~~' ~ 
IV - J..l..J..5..1.~ 

08 Lost data Fail to Fail to 
read feed 

09 
End of 
operation 

10 Parity Reader Compare 
error error error 

11 Binary Binary Binary Binary 
mode card mode mode 

Stacker 
12 full or 

jammed 

13 

14 

15 

16 

NOTES: (a) Density is signified by combinations of 2 bits -
bits 6 and 7 - as shown. 

(b) Bits 13-16 are not used. 

Parity 
error 



16.2.3 (cont.4) 

Control transfers to the interrupt address by a return jump 
instruction established by SC¢PE within the CIa routine. 

The interrupt address should therefore be an unconditional 
jump instruction to enable control to return to CIa after the interrupt 
has been processed 

e.g. INTERUPT ** 
The programmer must transfer control to SC¢PE from the 

interrupt routine by returning through linkage established by the 
return jump instruction 

e.g. INTRUPT UJP ** 

UJP,I INTRUPT 

Upon regalnlng control, SC¢PE restores the A, Q and Index 
registers, and then returns control to the running program. 

Note that values placed in A, Q or the index registers in 
the Interrupt routine will be lost when the return to CIa is made. 
Values to be returned should therefore be stored before the transfer 
of control is carried out. 

An example of this appears on the following page. 



16.2.3 (cont.5) 

Example; 

Read 500 words from tape LUN3 into a buffer commencing at 
BUFFe When the Operation has been initiated, continue program executione 
When the operation is complete, set location FLAG to a non-zero valueo 
If the read request is rejected because of an illegal code, jump to 
ABANDON. If it is rejected due to channel or unit not being available, 
jump to PAUSE. 

Answer: RTJ CIa 

01 3,2 

01 REJ 

51 B!JFF 

500 

INTER 

LDA 

INTER UJP ** 
ENA 1111B 

STA FLAG 
TTTD Tl.Tm"G''O uur ~.L'IIJ..J,;,LL" 

REJ AZJ,.EQ PAUSE 

UJP ABANDON 

16.204 Tape Control Operations 

The codes useJ in tape control calling sequence are 

04 REWIND 

05 UNLOAD 

06 BACKSPACE 

07 SPACE FORWAPJ) PAST ONE E¢F MARK 

10 SPACE BACKWARDS PAST ONE E¢F MARK 

11 WRITE ~F 

12 ERASE 

The calling sequence: 

Location L RTJ CIO 

L+1 function code LUN, INTERRUPT INDICATOR 

L+2 JUMP REJECT ADDRESS 

L+3 INTERRUPT ADDRESS 

L+4 NORMAL RErURN 

(a) If no interrupt is requested, the normal return is written 
in Location L+3o 

(b) The notes for I/O control apply here alsoJ 



16.2.4 (cont.) 

Examples: 

(i) To rewind logical unit 56 

RTJ CIO 
04 56 
UJP *-2 
normal return 

(ii) To write an end~of-file on LUN 20 

RTJ CIO 
11 20 
UJP *~2 

normal return 

(iii) To space forward past an end-of-·filemark on LUN 17 

RTJ CIO 
07 17 
UJP *~2 

normal return 

Notes: (i) The direction of tape motion following a BACKSPACE request 
depends upon whether the last operation was a READ or a 
READ BACKWARDS operation -

(a) If the last operation was a READ operation, the 
tape will move backwards. 

(b) If it was a READ BACKWARDS operation, the tape 
wi.ll move forward one record. 

Other motion requests indicate the true direction of the 
tape and are not affected by READ BACKWARDS. 

(ii) Tape control operations require the channel only during 
initiation of the function. They do not cause the channel 
to be busy while the function is carried out. However, if 
an interrupt at the end of operation is requested, CIO 
considers the channel to be busy until the interrupt occurs. 

16.2.5 Unit Status Requests 

For codes returned as status replies, see table on (cont.3) of 
section 16.2.3. 

The calling sequence: 

Location L 

1+1 

1+2 

RTJ 

13 

N~RlIAL 

CIO 

LUN, Dynamic flag 

RETURN 

NOTFS: (a) The function code in L+1 is always 13. 

(b) SC~PE provides the status in the Q register, and the 
current condition in the A register (A is negative 
if the unit is static, positbre if it is dynamic). 

(0) Dynamic flag: 

If this is non~zero, the unit is interrl)gated for 
status unconditionally. (Status is gi~en' if unit is 



16.2.5 (cont.) 

busy or not). If the flag is zero: 

(i) If it is not busy, the status of the last 
completed operation is given. 

(ii) If the unit is busy, the current status is 
ret14""ned. 

16.2.6 Format Selection 

The codes used in this sequence are -

BCD 

2 BINARY 

3 = LOW 

4 :: MEDIUM 

5 ;: HIGH 

The calling sequence: 

RTJ 
14 
JUMP 
N¢RMAL 

CIa 
LUN, FORMAT CODE (as above) 
REJECT ADDRESS 
RETURN 

16.2.7 Page Control of the Line Printer 

The first character of the output buffer is used to 
position the paper prior to and after printing. This is accomplished 
by the following sequence of events. 

(a) The first character is removed and replaced with 
a blank. 

(b) The corresponding function code is found and 
selected. 

(c) The output buffer is printed. 



16.2.7 (contol) 

The character codes used in Page Control are: 

User Character Action Before Print Action After Print 

1 Skip to channel 8 Space 1 line 

2 Skip to channel 7 Space 1 line 

3 Skip to channel 6 Space 1 line 

4 Skip to channel 5 Space 1 line 

5 Skip to channel 4 Space 1 line 

6 Skip to channel 3 Space 1 line 

7 Skip to channel 2 Space 1 line 

8 Skip to channel 1 Space 1 line 

A No space Skip to channel 8 

B No space Skip to channel 7 

C No space Skip to channel 6 

D No space Skip to channel 5 

E No space Skip to channel 4 

F No space Skip to channel 3 

G No space Skip to channel 2 

H No space Skip to channel 1 

blank No space Space 1 

0 Space 1 Space 1 

Space 2 Space 1 

* No space No space 

other No space Skip to channel 1 

Examples: 

(a) To advance paper .to the top of the new page 

RTJ CI¢ 
02 61 
RTJ REJX 
00 PAGE 
00 1 

PAGE BCD 1,1 



16.2.7 (cont.2) 

(b) To advance one line 

RTJ CI¢ 
02 61 
RTJ REJX 
00 DS 
00 1 

DS BCD 1, 

Note: If unit 61 is assigned to tape by the operator and the 
tape is listed later or is listed off-line, trouble may 
develop because of the short print record (4 chars). 
Therefore it is recommended that all records be at least 
24 characters so that they won't be considered 'noise' 
records by tape input routines. 



STUDENT NOTES 



SCOPE CONTROL CARDS 

17.1 INTRODUCTION 

17.2 SEQUENCE CARD 

17.3 JOB CARD 

17.4 ENDS COPE STATEMENT 

17 .5 ENDREEL STATEMENT 

17.6 CTO STATEMENT 

17.7 REWIND STATEMENT 

17.8 Ul~LOAD STATEMENT 

17.9 EQUIP STATEMENT 

17.9.1 Hardware Definition 

17.9.2 Equating Logical Units 

17.9.3 Physical Unit Assigrunent 

17.10 TRANSFER STATEMENT 

17.11 LOAD STATEMENT 

17.12 COMPASS LIBRARY CALLING STATEMENT 

17 • 13 RUN STATEMENT 
Chapter i t4 

17.14 DIAGRAMMATIC DECK 



17.1 INTRODUCTION 

SC¢PE control cards have a 7,9 punch in column one. 
There must be no other punchings in column 1. 

Columns 2 through 80 contain Hollerith information or 
blanks. The first information on each card must be the statement 
name, followed by a comma. 

e.g. 



1 7. 2 SEQUENCE CARD 

The sequence statement assigns a number (j) to the job which it 
precedes. j must lie between 1 and 999. This card is normally supplied 
by the operating staff. 

An E¢F ~ precede each SEQUENCE statement except the first on 
input. 

\Vhen a SEQUENCE statement is detected, the statement is typed out 
on the console typewriter, and listed on the standard output unit. SC¢PE 
writes an E¢F on the standard output tape (when tape is being used), and 
on the punch tape (if assigned); and releases all programmer units held 
from the last job. 

SC¢PE also closes, off the last job's accounting, and opens a new 
accounting record for the hew job. 

If the se~uence card is not followed by a J¢B card, the job is 
terminated, and SC~PE searches forward until it finds an E¢F. The 
following statement must be a SEQUENCE, ENDREEL or ENDSC¢PE. If it is a 
SEQUENCE followed by a J¢B card, SC¢PE proceeds normally. 

After SEQUENCE is read, SC¢PE pauses for comments from operator to 
be typed in on the console typewriter. These enable the operator to spec­
ify the services for program execU'taon (e.g. special EQUIP statements),. 
This is the only opportunity the operator has to enter such statements. 

Note: If the column following 11 j" contains a comma, comments may 
follow. 

Example: 
7 9SEQUENCE,027 , COMMENT 



17 • 3 JOB CARD 

The symbols used in the statement are interpreted as follows: 

c charge number, 0-8 characters 

i programmer identification, 0-4 characters 

t time limit in minutes for the entire job, 
including all operator setting up, idle 
time, etc. 

NS indicates a single non stacked job. "If 
NS is specified, NP is implied also. 

All system units are rewound and unloaded, 
making all I/O units available to the 
programmer. 

NP SUppresses system I/O protection for 
stacked job. 

ND Suppresses the normal post execution dump 
in octal of the non system part of memory 
should abnormal termination of the job 
occur. 

The c, i, and t fields are mandatory. If a field is blank, the 
comma showing this must appear. 

e.g. 7 9JOB,c, ,t 

The job card is written on the standard output unit, and also on 
the CT¢ (comments to operator) if the job is "part of a stack. It must be 
immediately preceded by a SEQUENCE card or the run will be terminated. 



17.4 ENDSC¢PE STATEMENT 

This indicates that a SC¢PE run is to be terminated. On the 
standard input unit, it should follow the E¢F terminating the last in 
the stack. This card is normally supplied by the operations staff. 

The card is listed on the CT¢ unit and on ¢UT, and the standard 
input unit is unloaded, if magnetic tape. 

The library tape is rewound, and the accounting file is closed 
off. 

A double E¢F and one BCD word, consisting of ER~~ are written 
on the standard output tape (when tape is used), which is then unloaded. 
If the punch tape is aSSigned, it is treated in the same way. 

When all action is completed, the computer stops. 



17.5 ENDREEL STATEMENT 

The statement terminates a reel of magnetic tape 
containing a job stack. (Normally it will be placed in a card 
job stack by the operations staff during card to tape operations 
preparing a tape for use as a standard input tape.) 

SC¢PE requires an E¢F both immediately before and after 
ENDREEL. 

When the statement is detected, SC¢PE prints a message on 
the CT¢ unit requesting the operator to mount the next reel of 
input, and halts the computer until the operator takes the action. 



17.6 CT¢ STATE~~NT 

The programmer may provide instructions o~ messages to 
the operator. The message is punched in Hollerith. 

Examples: ~CT¢,PLEASE UNL¢AD TAPE TW¢. 

~CT¢,SNAP DUMPS WILL ¢CCUR. 

The message is printed on the CT¢, and also listed on 
¢UT. CT¢ cards may be placed in the deck where SC¢PE control 
cards may appear, except as follows: 

(i) Before or after SEQUENCE, ENDSC¢PE 
or ENDREEL. 

(ii) After C¢MPASS or F¢RTRAN. 

(iii) Between RUN and last data card. 



17.7 REWIND STATEMENT 

The magnetic tapes specified are rewound to load point. 
U is the logical unit number, and may be 1 through 57 or 63. The 
statement is copied onto the standard output unit, and on the 
CT¢ unit. 

If U is not 1-57,63 or not a magnetic tape unit, the 
request is ignored for that unit, but the rest of the units on 
the card are processed. 

Example: 7 9REWIND ,21,42,01,55 



1 7.8 gAD STATEMENT 

~-.---.. --.. -----------.. -.-.-
~nDN._; IgmAT!O!(,~!f!HlS _ADoms flHD 

~NL.f/J.I!R'~J~~~~-,-~. '~'~l~.l...-'. 
! :1': 11,,-,::0 ,"! :*1" t,,",: ::~"3::4::~:'Ii"~"'!''$J<C!::t:2Z2!t'!=itAE~!Nj!·~a*:}.,*:'!-eD'·''~j.n:)4:~ 

The Logical units, U (1-57), may be unloaded by the 
programmer. The statement acts similarly to the REWIND, except 
that the unit is unloaded after rewinding. 

Example: ~UNL¢AD,21'42,01,55 



17.9 EQUIP. STATEMENTS 

Where X = the logical unit number 

d = a declaration about the unit. 

17.9.1 Hardware definition 

7 
9EQUIP'X1=hh1'X2=hh2'········etc. 

hh is a hardware type mnemonic 

X is aL.U.N. 

Mnemonic ~ 
MT Magnetic Tape 

CR Card Reader 

PR Printer 

CP Card Punch 

TY Console typewriter 

PT Paper tape station 
DP Disk Pack 

SC¢PE assigns the LON to an available equipment of the 
specified type. 

If no equipment is available, a diagnostic is given, and 
the job is terminated. 

Examples: 
'7 

9EQUIP,51=Mr 

7 9EQUIP,51=MT,43=PR,26=PT 

17.9.2 Equating Logical Units 

Logical units are equated by this statement 

A system unit (57-63) may not be specified on the left 
hand side of the statement. If it is, the job is terminated. 

Examples: 

but 

7 9EQUIP,43=60 is permissable 

~EQUIP,60-43 is illegal 

7 9EQUIP ,22=MT 

7 9EQUIP,2):.:22 

Here both LUNS 22 and 23 will 
reference the same magnetic tape. 



1 7.9.3 Physical Unit Assignment 

~QUIP, X=hhC E U 
'j c e uu 

c channel number (0-7), prefixed by C 

e equipment number (controller), prefixed by E 

uu = unit number (device), prefixed by U 

Example: 

~EQUIP'15=MTCOE2U03 

It is possible to omit some parameters in the statement. 

The following table sets out permissable combinations. 

hh C E U c e uu 

x 

I x I x I I 

x x x 

x x x x 

x x x 

x x 

Use of non-existant c, e or uu, will cause a diagnostic 
and termination of the job. 

Example: 

Answer: 

Assign PUN (LUN 15) and LGO (Load and Go, 
56) to the physical unit on channel 0, 
Equipment 1~ and unit 7. 

~EQUIP'15=MTCOE1U07 

7 9EQUIP, 56= 15 

or ~EQUIP ,15 =MTCOE1U07, 56= 15 



17.10 TRANSFER S~TEMENT 

mms flUD 

U = Magnetic Tape Unit, 
defined as 1-56, 
or undefined. 

Description: SC¢PE transfers all the information following 
the XFER statement from the Standard input 
unit (INP) to the magnetic tape LUN U, 
until another SC¢PE statement is encountered. 

Example: 

The records must be binary records and they are 
written on LUN U in odd parity. When the next 
SCOPE statement is found, an EOF is written on the 
tape, and SCOPE then backspaces over the EOF. 

Uses: 

(i) Programmer binary data cards* may be transferred 
from INP to a magnetic tape unit. A 
card with a 7 punch in column 1 is suffic-

9 
ient to terminate the XFER operation. 

(ii) Binary object subprograms may similarly be 
stored on another magnetic tape for future 
use. The unit must be rewound before the 
L¢AD operation if it is a programmer or 
scratch unit. 

7 9XFER ,03 

* Binary Dat,a 

7 
9 

The data is written on unit 3; when the ~ card 

is found, SC¢PE writes E¢F and backspaces over 

it. 

*Data cards must be binary data cards where 

7 column I has a 9 punch plus at least one punch 

in the + - 0 I 2 or 3 position. The data used is 

usually a subprogram binary deck. 



17.11 LOAD STATEMENT 

(U
1

, U
2 

and U
3 

are Mag. tape units, previously 

defined by EQUIP statements as LUN 1-56. If 

omitted, SC¢PE will tr,y to load from the INP 

unit 60) 

Description: Not more than 3 units can be specified, and the 

loading is done in the order indicated. Unit U1 
will be loaded until an E¢F is found. Then U2 is 

loaded until E¢F, and finally U
3 

is loaded. If 

there are 3 parts on one unit, each terminated by 

an E¢F, the unit number can be repeated: 

Example: 

7 9~AD,23,23,23 

When the units designated have been loaded, the 
Standard input unit is examined to see if binar.y 
object subprograms follow the L¢AD card. 

NOTE: If the LG¢ unit is being used, the L¢AD 
card must be of the form: 

~L¢AD,56 
The L¢AD statement calls the loader to load binar,y 
subprograms into memory from programmer units, 
scratch units, LG¢ or INP. Only one L¢AD statement 
may appear in a run. 

If 56 (LG¢) is specified, it will first be rewound 
by SC¢PE. Other units must be rewound by rewind 
statements before loading is attempted. 

7 9L¢AD,56 ,3,25 

LG¢ is rewound by SC¢PE and loaded until E¢F is 
found. Units 3 and 25 are then loaded to E¢F 
marks. 

NOTE: 

Example: 

If only binar,y object programs are to be 
loaded (on INP), ~ L¢AD card is necessar,y. 

~J¢B,11121156'404,2 

Binar.y object deck 



17 .12 COMPASS LIBRARY CALLING STATEMENT 

Description: The C¢MPASS librau program is called in and 
loaded into memory, so that source programs in 
C¢MPASS may be assembled and executed. 

The parameter letters are free field, and may 
thus appear in any order. Each parameter must 
start with the character shown. 

I INPUT (the source subprogram input unit) 

Specified as I = u, when u = LUN, when a source 
subprogram is to be loaded from a unit other than INF. 

If the I parameter is absent, input is assumed to be 
from unit 60 - INF. 

Example: 

~EQUIP,MT"'23 

~C¢MPASS,I=23,etc. 

P ... PUNCH-UNIT 

Specified as P = u, where the punch unit is to be 
assigned to an output device. 

If P only occurs, punching is on the binary punch 
unit (PUN) - unit 62. 

If the parameter is absent, no binary output is 
produced. 

x = EXECUTE (X = u) 

Assigns the Load-Go unit (LG¢) to logical unit u, 
which must have been previously defined as a MT 
unit. 

If absent, no LG¢ tape will be produced, and the 
program will be assembled and listed only. 

If only X appears, output will be put on the 
standard LG¢ unit (56). 

L = LIST OPTION (L = u) 

Output is listed on unit u, which must have been 
previously defined. 

If L only appears, listing will be done on the OUT 
unit (61). 

If the parameter is absent, no listing of the 
program is given. 



17.12 (cont.) 

Example: 

A 

R = REFERENCE 

When R appears, a symbol reference list is produced 
on the assembly listing. This is an alphabetic list 
of all symbols used in the program, with the address, 
or the value, of the symbol shown. The symbol list 
appears immediately following the listing of the 
~ssembled program. 

77777 POO013 
ABNORMAL EXTERNAL POOO01 
B 00020 POO013 
JOHN POOO02 POO011 
NAME POO011 POO013 
X 00057 POO012 POO013 

SYMBOLS NOT REFERENCED 

ABLE POO013 LOC POOO07 START POOOOO 

Note that X is referenced at two different locations in 
the program (12 and 13). 

Character addresses are shown as follows: 

CAN po0166 0 

BILL P00156 

17-Bit non-relocatable symbols are shown 

00076 2 



17.13 RUN S~TEMENT 

t = execution time in minutes 

May be in the range 0 through 999. 

The time is not used by SC¢PE, but is entered in the 
installation accounting file. 

If not specified, maximum time is assumed. 

Nlf = NO MEMORY MAP 

Examples: 

If NM appears, it suppresses the memory map that would 
otherwise be written on ¢UT, before program is executed. 
(All absolute memory allocations are given in the map). 

(ii) 

(iii) 

(iv) 

7 
9RUN ,2 

(the execution time is assumed to be two minutes. 

The memory map will appear on ¢UT.) 

7 9RUN, 727 ,NM 

(the execution time is assumed to be 727 minutes, 
and no memory map will appear on OUT). 

7RUN 9 
(maximum execution time is assumed. :Map will be 
printed) • 

7 9RUN, ,Nlf 

(maximum execution time assumed, and no map will 
be listed on ¢UT). 



17.14 DIAGRAMMATIC DECK 

~SEQUENCE,001 

7 
9J~B,3200,ST~RMA,10 

~EQUIP,56=MT 

~F~RTRAN,(parameters) 

PR~GRAM MAIN 

CALL START 

END 

FINIS 

7 
9C~MPASS,(Parameters) 

IDENT 

ENTRY START 

START UJP ** 

END 

FINIS 

data deck 

77 
88 (End-of-Fi1e Card) 

~ENDSC~PE 

77 
88 

F~RTRAN Main Program 

J 

C~PASS Subprogram 



STUDENT NOTES 



SCOPE DEBUGGING AIDS 

1B.1 OCTAL CORRECTION CARDS 

1B.1.1 Location Symbols 

1B.l.2 Octal Corrections 

1B.l.3 Relocation Factors 

IB.l.4 Error Indicators 

1B.2 SNAP DUMPS 

1B.2.1 Errors 

1B.2.2 Location 

1B.2.3 First and Last Word Addresses 

1B.2.4 Mode 

1B.2.5 Identification 

18.2.6 Note 

1B.2.7 Example 

18.2.8 Rules for Using SNAP 

1B.3 OTHER DEBUGGING AIDS 

1B.3.1 Memory Map 

1B.3.2 Abnormal Termination Dump 

1B.4 COMPASS ERROR CODES 

Chapter I (:) 



18.1 ¢CTAL CORRECTION CARDS 

~¢cc,location,octal correction,----------,octal correction. 

Description: Octal corrections may be made to binary object 
subprograms after loading, using this instruction. 

The parameters are free field. 

If a period is used to terminate the card, comments 
may follow it. 

The statement may be used to -

(i) define corrections 

(ii) enter corrections 

(iii) enter additions to a subprogram by 
establishing a program extension 
area after the subprogram area. 

18.1.1 Location Symbols 

(i) (Program name) k 

Corrections on this card are loaded beginning with relative 
address "kll in the named subprogram. The subprogram name 
~ appear in parentheses. 

Examples: 

~CC,(TEST)15,01000000 

~CC,(BUFFIN)107,20 

ExamEle of use: 

IDENT TW¢ 
ENTRY START 

0 START UJP ** 

10 ENA 20B 

END 

To change ENA 20B to ENA 

~CC,(TW¢)10,14600030 

(ii) Data Area Corrections 

Dk 

30B 

Corrections are loaded beginning with location "kIt in the 
Data area. 

Example: ~CC,D70,14000000 



18.1.1 (cont.) 

(iii) Program Extension Area 

Xk 

(a) First occurrence: 

Defines a program extension area of length k words. 
Corrections on this card are ignored. 

(b) Subsequent occurrences: 

Corrections are loaded beginning at location k 
of the program extension area. 

Example: ~CC,X30 

~¢CC,X3,14000010,14000250 

(iv) Continuation Cards 

+k 

Increment k locations from the last location plus 1, corrected 
by the previous ¢CC card. k must be octal. 

~CC,(TEST)136,00000100 

7 

9¢CC,+5,1 4000600 

Location 136 in Subprogram TEST, and location 144 in TEST 
are changed. 

18.1.2 Octal Corrections 

(i) Corrections may be of up to 8 digits, and are in the form of 
machine instructions. 

(ii) Each correction is separated from the preceding correction by 
a comma. 

(iii) Leading zeros may be omitted. Each value is stored right 
justified with zero fill, in successive computer words. 

(iv) Locations may be omitted for correction by using commas to 
indicate the omissions -

e.g. ~¢CC,(TEST)10,140,,162,,10014100 

Location 10 is altered to 140 
11 is unchanged 
12 is altered to 162 
13 is unch~~gcd 
14 is altered to 10014100 

18.1.3 Relocation Factors 

(i) none given the quantity specified is absolute. 

(ii) (Subprogram name) - the address field of the correction iR 



18.1.3 (cont.) 

relative to the subprogram's first location. 

(iii) Data area - D 

Relocate the word address portion of the 
Octal correction relative to the DATA area. 

(iv) Common Area - C 

Relocate the word address portion of the 
Octal correction relative to the C¢UM¢N 
area. 

(v) Program Extension Area - X 

Relocate relative to Prog. Ext. Area. 

(vi) Last subprogram area referred to - * 

Example: 

18.1.4 Error Indicators 

Relocate relative to the last subprogram 
named in this or a preceding ¢CC or SNAP 
statement. 

~¢CC,(TW¢)30,2oo00040(TW¢) 

Correction made to location 30 in subprogram 
TW¢, with the address part of the correction 
relocated by the factor by which TW¢ itself 
is relocated. 

(i.e., if subprogram TW¢ itself is relocated 
by 1000, the actual correction loaded would 
be 2001040). 

Note: The above example ~ould also have 
been written: 

~OCC,(TW¢)30,20000040* 

Errors in ¢CC cards prevent execution of the program. 

If the extension area is incorrectly defined, the following message 
is printed on ¢UT: 

***Xnnn 

where nnn is the 3-digit octal length of the 
SC¢PE defined extension area. 

The format for all other errors is: 

COL nn 

where mn error mnemonic 

nn column number on the card. 



18.1.4 (cont.) 

The following table sets out the error mnemonics used. 

Mnemonic Meaning 

PN Program name 

BS Common or data storage is 
undefined and referenced 

AD Address or location field begins 
with an illegal character 

8F Octal field contains a non-
octal character 

](A Program extension area error 

WR Wrap around of location field 
address - exceeds core size 

AN Antecedent reference to a 

I progra..'1l or loading address I 

RL Relocation factor error 



18 • 2 SNAP DUMPS 

SC¢PE provides selective memory dumps during execution, using this 
statement. 

~SNAP,(parameters) 

The statement must appear after the program is loaded and before 
the RnN card is encountered. 

The dump is carried out by the library routine SNAPSH¢T, which must 
be defined in the progpam as an external. (If it is not declared 
as external, the routine is not loaded into storage at load time. 
A diagnostic of this is given on the ¢UT listing as fellows: 

.1(** N¢SD 

RUN AB¢RTED 

The job is terminated.) 

Snap ota.tement parameters define 

(a) Where the dump is to be taken 
i.e. when execution reaches a predetermined 

point, the dump is taken. 

(b) The area to be dumped. 

( c) The format of the dump. 

The SNAP statement is of the following form: 

~SNAP,location,beginning address,ending address,mode, 
identification,comments. 

Each parameter is separated by commas. 

Program names are always enclosed in parentheses. 

18.2.1 Errors 

If there is an error in any subfield, the following diagnostic is 
reno 

*DIn, COL nn 

mn = error mnemonic 

nn the card column number, in which the 
error occurs. 

The error mnemonics are set out in the table on the following page. 



18.2.1 (cont.) 

Mnemonic 

PN 

BS 

AD 

8F 

XA 

WR 

f'\'tT v, 

1M 

RG 

Meaning 

Program name 

Common or data storage is 
undefined 

Address or location field begins 
with illegal character 

Octal field contains a non-octal 
character 

Program extension area is 
undefined or too small 

Location field address wrap 
around - exceeds core size 

Overflow of memo_ will recur ry 
this SNAP is loaded 

Illegal mode 

Rar~e to be snapped has FWli 
greater than LWA 

if 

wnen an error occurs, the SNAP statement is ignored, and execution 
continues as if no SNAP statement had been given. 

18.2.2 Location 

(i) (Subprogram name) k 

Replace location k in the subprogram with a RTJ to SNAP 
calling sequence. 

(ii) Program extension area - Xk 

Replace location k in the P.EXT area by a RTJ to SNAP 
calling sequence. 

(iii) Data area - Dk 

Replace statement k in the DATA area by a RTJ to the 
SNAP calling sequence. 

18.2.3 First and Last Word Addresses 

The ending address must always be greater than the beginning 
address, or the SNAP statement is ignored. 

The address oan be 

Dk - dump begins or ends with word k in the DATA a.rea. 

Ck dump begins or ends with word k in the C¢MV¢N area. 



18.2.3 (cont.) 

(iii) Xk - dump begins or ends with word k in the Program 
Extension Area, 

(iv) (Subprogram name) k - dump begins or ends with the 
location k in the specified subprogram. 

(v) *k - dump begins with the location k in the last named 
subprogram in a preceding ¢CC or SNAP statement. 

18.2.4 Mode 

The dump may be in one of 3 formats, and may include the Register 
file or not, as specified. 

o octal 

C 6-Bit Characters 

F Floating point 

If the register file is to be included, R is used. Thus ¢R 
will give the dump printed out in ¢CTAL, plus the register file 
contents. 

18.2.5 Identification 

o to 4 BCD characters will be printed out on the SNAP output to 
identify the dump. (Used if several dumps are to be made). 

18.2.6 Note 

If the location specified is in a loop, the contents of the area 
will be dumped out each time the location is encountered in the 
loop. 

18.2.7 Example 

Dump after the execution of the 5th instruction of subprogram SUBI 
(assuming the first location of the subprogram is the entry point 
and is entered by a RTJ). Dump from location 441 in SUBI to location 
465 in SUBI in OCTAL, with the Register File also, and identify the 
dump as ~NE. 

Answer: §SNAP,(SUBl)6,*441,*465,~R,~NE 

*441 could also be written (SUB1)441 



18.2.8 Rules for Using SNAP 

(1) DON'T specify SNAP for an instruction using more than one word, 

(2 ) 

e.g. SRCE 

SRCN 

MOVE 

DON'T SNAP jumps or tests, e.g., AQJ,EQ. 
-- not be executed correctly. 

- The jumps will 

(3) DON'T SNAP indirectly addressed instructions. 

(4) DON'T SNAP instructions which will be modified by program 
execution. 

(5) ~ using SNAP instruction in a loop. 

(6) DON'T modify the location at which the SNAP occurs by an 
-- ¢CC statement. 

(7) DON'T specify SNAP for the following instructions: 

MEQ 

MTH 

SSH 

CPR 

CON 

SEL 

EXS 

INS 

INTS 

PAUS 

(8) DON'T specify SNAP for any SKIP Instruction 

e.g. lSI, ASE, QSG, etc. 

(9) DON'T specify SNAP for INPUT/¢UTPUT instructions. 



18.3 OTHER DEBUGGIllG AIDS 

19.3.1 Memo;y Map 

The programmer may secure a map of memory allocated 
to a loaded program at the time the run card is encountered. This 
map may be suppressed by a parameter of the RUN control statement 
(NY). 

The map contains the following information: 

(1) Absolute address of the first location in each 
subprogram loaded. 

(2) All entry point symbols and their absolute 
addresses. 

(3) The absolute addresses of the first and last 
locations in the common area. 

(4) The absolute address of the first location in the 
data area. 

(5) The absolute address of the first location in the 
program extension area. 

18.3.2 Abnormal Termination Dump 

If a job is terminated abnormally, a post execution 
dump of all the non system part of memory is written on the 
standard output unit, unless the programmer has specified in the 
job card that it be suppressed (ND parameter). 

The dump consists of the console conditions, the 
register file, and all the non-system part of memory. 

Should the contents of words making up a line of 
print be exactly the same as both the last word on the preceding 
line, and the first word on the following line, the line is not 
printed, and the word "GAP" appears instead. 

e.g. If all the locations between 10010 and 10017 are 
the same as both 10007 and 10020, the line will 
not be printed, and GAP will indicate the omission. 



18.4 C¢MPASS ERROR CODES 

A Format error in address field. 

C Attempt to assemble information into C¢MM¢N. 

(Instructions are processed as if a PRG was encountered.) 

D Doubly defined symbol. 

(The first time the symbol is used it is legal, and no 
flag is issued. Subsequent errors are flagged, and the 
instructions using the symbol are assembled as if no 
symbol occurred.) 

F Full symbol table. 

(All F flagged symbols are undefined, and reference to 
them in address fields of other instructions will 
produce U errors.) 

L Location field error. 

M Modifier error. 

o Operation code error. (The field is assembled as zeros.) 

U Undefined symbol. 

T Truncation error. 

(A symbol defined as a 17-bit character address is used 
in a subfield of only 15 bits. The 2 least significant 
bits are lost in truncation, and the flag indicates this 
loss.) 



STUDENT NOTES 



COMPASS ASSEMBLY OF CONSTANTS 

19.1 OCTAL CONSTANT PSEUDO INSTRUCTIONS 

19.2 DECIMAL CONSTANTS, FIXED POINT 

19.3 DOUBLE PRECISION AND/OR FLOATING POINT CONSTANTS 

19.4 BCD CONST~~TS 

19.5 BCD CHARACTER CONSTANTS 

19.6 VARIABLE FIELD CONSTANTS 

19.6.1 Introduction 

19.6.2 Octal Mode 

19.6.3 Hollerith Mode 

19.6.4 Word Address Arithmetic Mode 

19.6.5 Character Address Mode 

19.6.6 Example of VFD Instruction 

I Chapter i tel 



19. C¢MPASS ASSEMBLY OF CONSTANTS 

Constants may be 

(i) stated as octal, decimal or character in the source 
language. 

(ii) single, double or variable precision. 

(iii) fixed or floating point format. 

(iv) placed into bit positions of variable length fields. 

12.1 ¢CTAL CONSTANT PSEUDO mSTRUCTIONS 

tHWIOUl6DIFltRS mms finn 
I:(J£!-~~~=!!~-,,~-,-::i 7' ~j~A_~_-':== 

Description: The instruction expresses constants as signed or unsigned 
octal constants. The octal integer may consist of 8 or 
less digits. 

Example: 

As many constants as can be contained on a card may be 
expressed in the address field, separated by commas. 
No blanks may appear between constants. The field 
terminates at the first blank or at Column 73. 

The octal constants are assembled, right justified, in 
consecutive locations. The symbol in the location field 
is the 15 bit word address of the first constant in the 
field. 

CVTABLE ¢CT -17,32,12345670,5742,-361 

CVTABLE 777 7 7 7 6 a 
00000 0 3 2 

1 2 345 6 7 0 

1 0 000 574 2 

7 7 7 7 741 6 

Binar,r Scale factor: 

ExamEles: 

An optional binary scale factor may be stated by suffixing 
the constants by B, and expressing the scale factor as a 
signed or unsigned decimal integer-of not more than 2 digits. 
~he magnitude of the constant after scaling must be less than 

224. The scaling factor is used to save space in coding 

e.g. CVTABLE ¢CT 200000 could be written as 

CVTABLE ¢CT 2B15 

(i) CVTABLE ¢CT 72B2 

72 111 010 in binary 

111 010 00 scaled by 2 (shift binary point 
2 places right) 

11 101 000 regrouped 

3 5 a 

(CVTABLE) 0000 0350 I 



19.1 (cont.) 

Note: 

(ii) t¢c 36B3,4B12,270B-2 

36 - 011 1102 

c 011 110 000 (scaled) 

= 100 000 000 000 0002 (scaled) 

- 400008 

270 - 010 1)1 0002 

= 010 111 02 (scaled - 2) 

L¢C I 0000 0360 I 
0000 4000 

0000 0056 

(iii) NUMBER ¢CT 2416,311B16,3417B-8,-372 

NUMBER 0000 2416 

6220 0000 

0000 0007 

7777 7405 

In negative scaling, digits are discarded from the right. 
If the number after scaling is greater than 224_1, the field 
is set to zero and the A flag is set. 

Example: 6666B20 

Assembled as A = 00000000 



19.2 DECIMAL CONSTANTS, FIXED POINT 

Description: The instruction expresses constants as single preC1S10n 
fixed point binary constants. The constant may consist of 
a sign, and not more than 7 digits, with a magnitude of 

Example: 

less than 223. The symbol in the location field is the 
address of the first constant in the field. The address 
field may contain as many constants separated by commas 
as the card may contain. The field terminates at first 
blank or Column 73. 

L¢C DEC 

L¢c 0 0 0 0 0 0 0 1 

00000 1 2 2 

77777731 

1,82,-38 

(18 = 110) 
(1228 = 8210) 

(-46
8 

= .. 3810) 

Scaling Factors: 

Both decimal and/or binary scaling factors may be stated 
by suffixing the constant with D and/or B, and e~ressing 
the scale factor as signed or unsigned decimal integers. 
The magnitude of the constant after scaling must be less 
than 223. 

Steps in the conversion: 

(i) Decimal integer is converted to binary. 

The result must be less than 223. 

Example: 3610 '"' 448 

"" 100 100 

(ii) Binary integer is multiplied or divided by 10d, 
where d is the scaling factor. 

The result must be less than 223. 

Example: 3610 D2 = 36 x 100 

448 x 1448 

100100 x 001100100 

= 111000 x 010 000 

'"' 70208 

(iii) Shift the result the number of bits specified by 
the binary scaling factor. 

Negative factor '"' RIGHT shift 

Positive factor '"' LEFT shift 

Example: 
3610 D2 B2 

3610 D2 '"' 111000010000 
- 11100001000000 - 341008 



19.3 DOUBLE PRECISION AND/OR FLOATING POINT CONSTANTS 

Description: Decimal values may be stored as double preclslon fixed 
point constants, or as floating point constants. Either 
format requires 48 bits for storage (2 consecutive words). 
Up to 14 decimal digits may be specified, and the value 
of the expression must be less than 247. 

Example: 

Decimal and binary scaling factors may be used, as in the 
DEC instruction. 

The signed 48-bit result is stored in two consecutive 
computer words. 

SYM. TAG DECD 32,64D2B4 

SYM.TAG 00 00 00 00 
00 00 00 40 

00 00 00 00 

00 31 00 00 

6410 1008 

D2 102 

1008 x 1448 

100 1448 

1 44 OOa 

= 001100100000000 

11001000 000 000 000 

3 1 000 0 

Floating Point Constants: 

1. Floating point constants contain a decimal point. 

Examples: 300.246 

2.040117321 

.111 
1765122.1 

2. They are stored in two consecutive 24 bit words as a 12 bit 
characteristic (exponent) and a 36-bit mantissa (coefficient). 

WORD 1 

WORD 2 
I BIASED EXP I COEFF 

COEFF 

3. A floating point constant may contain not more than 14 decimal 
digits and a decimal point. 

4. Binary scaling is not permitted, but decimal scaling is. 

5. The result after scaling must not exceed the capacity of the 

hardware (1o±308) 

Example: SYM.TAG DEeD 17643.463214 

17643.46321410 

42353.35512468 

.4235335512468 x 21
5 



19.4 BCD CONSTANTS 

Description: Characters are assembled for store into consecutive computer 
words as 6-bit BCD character codes, in addressable character 
positions. The code used is internal BCD. 

Example: 

The decimal integer n = the number of ~ to be used. 

The maximum number of characters to be stored would be 4 x n. 

The instruction reserves "nit words of storage, and any 
character positions not filled from the instruction are 
filled with blanks. 

Characters specified in excess of (4 x n) are treated as 
comments. 

The symbol in the location field is the l5-bit address 
of the first word. 

(i) ERR~RMSG BCD 

ERR~RMSG I / 
E R 

R 60 

(ii) ERR~RMSG BCD 

ERR¢ID1SG I I 
I 

E R 

¢ 

R 

60 

rI. 
'fJ 

R 

3,I/'/J ERR'/JR 

60 

¢ 

60 

2,I/'/J ERR'/JR 

60 

¢ 

3 words reserved, 
therefore the maxlinum 
number of characters is 
12. Here only 9 appear 
before the end of message, 
so all are included. 

2 words reserved, 
therefore the rnaxlinum 
number of characters is 8. 
Here 9 appear, therefore 
the last one is treated as 
a comment and discarded. 



19.5 BCD CH~\CTER CONSTANTS 

Description: Characters are assembled into consecutive character positions. 
n signifies the number of character positions to be reserved, 

Examples: 

and must be an integer less than 215. Characters in excess 
of n are treated as comments; positions reserved but not 
used are filled with blanks. 

The symbol in the location field is the 17-bit address of 
the first character. 

Storage 

If the line of coding before BSS,C assigns character storage, 
the character string begins in the next available character 
position. If not, it begins with the first character 
position in the first available word. 

If the number of characters specified does not exactly fill 
the last word, the rest of the word is zero filled. However, 
if the next instruction in the program which consumes space 
is a BCD,C instruction, it will fill up the remaining 
character positions in the last word. 

MSG 

(ii) 

MSG 

(iii) 

MSG 

MSG BCD,C 

T E S T 

60 P R ¢ 

I G I 0 I 0 1
0

1 

MSG 

T E 

60 P 

T E 

60 p 

G 60 

D 60 

BCD,C 

S 

0 

BCD,C 

BCD,C 

S 

R 

E 

0 

T 

0 

T 

¢ 
N 

0 

9,TEST PR~G 

6,TEST PR~G 

10,TEST PR~G 

4,END 

(Note: 60 = blank read 
after PR¢G above.) 



19.5 (cont.) 

(iv) Example of actual listing of assembled BCD and BCD,C 
constants: 

Assembled 
Constants 

31 61 46 60 
25 51 51 46 
31 61 46 60 
25 51 51 46 
51 60 60 60 
63 25 62 63 
60 47 51 46 
27 

63 25 62 
63 60 47 

63 
25 62 63 60 
47 51 46 27 
60 

25 45 24 
60 00 00 00 

Instruction 

BCD 2,1/" ERR~R 

BCD 3,1/'/J ERR'/JR 

BCD,C 9,TEST PR'/JG 

BCD,C 6,TEST PR0G 

BCD,C 10,TEST PR~ 

BCD,C 4,END 



19.6 VARIABLE FIELD CONS~NTS 

19.6.1 Introduction 

The general form of the instruction is: 

where M mode indicator 

n positive decimal integer denoting the number of 
bit positions in the variable field specified by 
this subfield. (NOTE: the range of values of n 
varies with the mode M). 

v the content of the field. This varies according 
to the mode and is restricted by the declared 
length. 

As many address subfields as may be contained on a single card are allowed. 
Each subfield is terminated by a comma, except the last, which is termin­
ated by a blank. 

Use: 

The instruction is used to enter information in one of the 
following modes into a field of a designated bit-length. 

(i) octal numbers 

(ii) character codes (BCD) 

(iii) relocatable addresses (either word or character addresses) 

or (iv) constants. 

It enables information to be packed into computer words during 
assembly time. 

Packing: 

(i) Values are entered right adjusted in the field, with sign 
extension. 

(ii) Character strings are entered left adjusted, with blank fill. 

e.g. A B X is a character string. 

Relocation: 

If entered in a 24-bit character 
VFD, it will be entered as: 

121 22 69 60 I 

If relocatable addresses are entered into a field, the 
addresses will be relocated when the assembled subprogram is loaded. 
(The listing will show only the assembled fields.) 

19.6.2 Octal Mode 

where ¢ indicates the octal mode. 

n indicates the number of bit positions in the field. 
It may be in the range 1-24 inclusive. 



19.6.2 (cont.) 

v indicates the octal information to be entered into the field. 
It may be 1-8 octal digits, and may be signed. (If v is 
negative, the filled content is stored in one's complement 
form). The information is entered right justified in the field, 
zero filled if positive, one-bit filled if negative. 

A binary scale factor, similar to that used with the OCT pseudo 
instruction, may be specified. 

Example: 

Exam::Qles: (i) 

(ii) 

(iii) 

Errors: 

VFD 

Assembled as 

¢24/24B6 

00002400 

VFD ¢24/30502 

Assembled as 00030502 

VFD ¢24/-30502 

Assembled as 77747275 

VFD ¢15/30502 

Assembled as 30502000 

(Unused portions of the word are zero filled) 

If the value v exceeds the field length n,or is not octal, the 
error is flagged and the field is set to zero. (The C¢MPASS address 
field error flag A appears on the listing.) 

Example: VFD ~15/30502,~15/2030502 

Assembled as: 30502000 in word 1, 
word 2 not shown on the listing. 
"A" error flag set against the line. 

(Note: the program will not be executed.) 

If an error occurs in any field on the card, subse1uent fields 
in that card are not listed, although space is reserved for them. 

Example: VFD 

19.6.3 Hollerith Mode 

¢10/12345,¢15/ 24,¢15/60,¢24/1021 

Word 1 is set to zero because the field 
is too small. 
Words 2 and 3 are not listed. 
Program listing resumes at word 4 with 
next card. 

Here n must be a multiple of 6 to enable storage of Hollerith 
information as 6-bit internal BCD character codes. The address subfield 
terminates with a blank or a comma. If the field is too small for the 
number of characters specified, an error results. 

Example: L¢C 

L¢C 

VFD 

VFD 

H 18/ ABC = I 21 I 22 I 23 I 00 I 
H12/ABC is illegal. (Address 
field flag "A" is set). 



19.6.3 (cont.) 

If the field is longer than the number of (~har.:acters speci.fied, 
the work is blank filled. Characters are stored ,LEFT justified in the 
field. 

Example: L¢C VFD H"IS/AB ~)21122160Iool 

19.6.4 Word Address Arithmetic Mode 

The address field v may be: 

(i) 

( ., . ) 
,.~ 1 

(iii) 

A aonstant 

A symbol 

An expressi.on formed by the rules of 
address field arithmetic. 

If the expression yields a reloca table word aO.aress, the 
programmer must arrange so that it will be right justified on bit 0 in 
a word, and be contained in 15 bits. If it is not relocatable r the full 
24 bits can be used. 

Examples: VFD A24/A+3 

If A is a .r-el.ocatable word address, previously 
defined, then answer must be 15 bits stored Right 
justified i.n word on bi.t O. 

If A is an absolute value, 24 bits can be stored. 

(ii) Using relocatable word ad~~ess 

VFD ¢9/010,A15/BUFR 

where BUFR is a symbol ~ address 00002 in the 
program. 

Assembled as 01000002 

(iii) Using non relocatable symbol 

A EQU 77777B 
B EQU 57B 
C EQU 20B 

VFD A2~/A~B+C 

Assembled as '711140 in the designaf.jp.d 2~ bits. 

19.6.5 Character Address Mode 

! lGWlftli~~~!".,MOD._lfl_ER_S -::-A_OD.lE_SS_f_lft_D ____ _ 

~-'-"-LJ-.l.-.• : :V!.p~_,,_. , , ,~"/v, , I .. ,.~_,_, _, '--'-

: . : t: ) ." ,~ 1. ! T :. " 1>: ;";:: • ".;.:.:J..:.~ ... ~ ,:f;,n,'''t''''~Cll'!n!nItA!~,l ''':..!.:_!!i.!!;..'C!~' pOlI.:n.;u,3$,$CI" 

A minimum 0; 11 bits i8 required for charac:ter addressing. 

n must therefore not be .!.ess than 11. 



19.6.5 (cont.) 

If the address is relocatable, the field must be right justified 
on bit 0 in the word. 

Examples: (i) VFD C24/237B 
Assembled as 00000237 

VFD C24/237 
Assembled as 00000355 

(ii) Suppose NAME is assembled at location 00025 in 
the subprogram, and is a word address. 

VFD C24/NAME 
Assembled as 00000124 

(Note: 124 is the character address of 
word address 25) 

(iii) CADR 

~PAD 

EQU,C 

VFD 

237B 

fJ7 /04, C17 / CADR 

CADR: is assembled as a 17-bit character address 

= 000237 

... Word 47, character position j 

= 000473 on the listing. 

0PAD: is assembled as a 24-bit word 

z 02000237 

04 is entered right justified in a 7-bit 
field 

... 0000100 

... 000 010 0 

CADR is the 17-bit character address 
000237 

= 00 000 000 010 011 111 

(iv) Suppose TMPC is assembled as character 0 in 
word 20 in the subprogram 

JAC VFD ¢7/4,C17/™PC 

Assembled as 02000100 

(100 is character address of TMPC) 

19.6.6 Example of VFD instruction 

If NAME is 19cated at address 00011 in the assembled program, 
what will be assembled as a result of: 

A 

X 

B 

Answer: 

EQU 

EQU 

EQU 

VFD 

77777B 

57B 

20B 

¢12/-737,A21/A-X+B,H24/HA3,A15/NAME+2,H12/BQ 

70 40 77 77 

74 03 02 10 

36 00 00 13 

22 5n 00 00 



INPUT/OUTPUT WITHOUT CIO 

20.1 INPUT/OUTPUT CHARACTERISTICS 

20.1.1 Introduction 

20.1.2 Interface Signals 

20.1.3 System Configuration 

20.1.4 Logical Sequence of Events for Initiating 

INPUT/OUTPUT Operat ions 

20.2 CONNECT 

20.3 SELECT 

20.4 WORD ADDRESSED INPUT TO STORAGE 

20.5 WORD ADDRESSED OUTPUT FROM STORAGE 

20.6 CHARACTER ADDRESSED INPUT TO STORAGE 

20.7 CHARACTER ADDRESSED OUTPUT FROM STORAGE 

20.8 INPUT/OUTPUT TO AND FROM THE A REGISTER 

20.8.1 Input Character to A 

20.8.2 Input Word to A 

20.8.3 Output Character from A 

20.8.4 Output Word from A 

20.9 SENSING INSTRUCTIONS 

20.9.1 Sense External Status 

20.9.2 Copy External Status and Interrupt Mask Register 

20.9.3 Sense Interrupt 

20.9.4 Sense Internal Status 

20.9.5 Copy Internal Status and Interrupt Mask Register 

20.9.6 Comments on Internal Status and the Interrupt Mask Register 

20.10 CONSOLE TYPEWRITER INPUT/OUTPUT 

20.10.1 General Description 

20.10.2 Operation 

20.10.2.1 
20.10.2.2 
20.10.2.3 
20.10.2.4 
20.10.2.5 

Set Tabs, Margins and Spacing 

~!:~:s Checking rl-C-h-o-p-t-e-r-"5f-I-I-~ 
Type In and Type Load _ ______ ~ 
Type Out and Type Dump 

20.10.3 Typewriter Console Switches and Indi~ators 

20.10.4 Character Codes 

20.10.5 Input/Output Instructions 

20.10.5.1 
20.10.5.2 
20.10.5.3 

Set Console Typewriter Input 
Set Console Typewriter Output 
Pause Instruction 
(as used with console typewriter instructions) 



20.1 INPUT/OUTPUT CHARACTERISTICS 

20.1.1 Introduction 

The Input/Output section of the computer is responsible for 
transferring data to and from the computer and to and from an external 
device. Data is transferred between a 3200 Computer and its associated 
external equipment via a 3206 or 3207 Communication Channel. For 
programming purposes, the eight possible 3206 channels in a system are 
designated by numbers 0 through 7. A 3207 replaces the 3206 type I/O 
channels 2 and 3 in expanded systems. It is programmed as channel 2. 

20.1.2 Interface signals 

Up to eight external equipment controllers may be attached in 
parallel to each 3206 Communication Channel. The following chart shows 
the principal signals which flow between a 3206 and its external equip­
ment. The 12 status lines are active only between the channel and the 
controller to which it has been connected by the CON (77.0) instruction*. 

The eight interrupt lines, designated 0-7, connect to all eight 
controllers attached to a channel. These lines match the Equipment 
Selector switch setting on each controller. For a complete description 
of the I/O interface signals as well as an I/O timing chart, refer to 
the 3000 Series I/O Specification, publication number 60048800. 

Data Lines (12 for 3206; 24 for 3207 ) 

Parity Lines (1 for 3206; 2 for 3207) 

Connect 

Function 

Read 
3206 or 3207 External 

Write 
Communication Equipment 

Data Signal 
Channel I Controller 

tlaster Clear 

Clear External Interrupt 

Channel Busy 

~ 
Reply 

... 

I" Reject 

~ End of Record 

External Parity Error 

Status Lines (12) 

Interrupt Lines (8) 

Suppress Assembly/Disassembly 

Word Mark 

* The connect instruction selects one of eight controllers which may be 
attached to the channel. 



20.1.3 System configuration 

A typical configuration is: 

r --­
I 
I 

I 8K 
I 
I 
I r---

3200 SYSTEM 

3204 
8K 

MEM PROCESSOR 

I CH CH 
L ____ L.-l..--L..0--.--'-______ ~ 

~J PERIPHERAL I CONTROLLE .. R_s_(_ca_l_l_e_d_EQ_U_I_P_M~E .. NT_) -------4.....---...., 

l{ 3234 

PERIPHERAL 
EQUIPMENT (Called UNITS) 

DISC 
PACK 

4 

3245 

415 

CARD 
PUNCH 

3256 

501 

LINE 
PRINTER 

o 
3228 

MAGNETIC 
TAPES 

3 

3248 

405 

CARD 
READER 



20.1.4 Logical Sequence of Events for Initiating INPUT/OUTPUT Operations 

20.2 

Execute a connect instruction which will indicate the channel, 
controller and unit which is to receive or transmit the data. 

Sense the status of the controller to determine if the unit is available 
and ,:;apable of performing nhe function and/or data transmission (lIPRE .. STATusn). 

Send the appropriate select functions. Select functions 
are used to format the INPUT/OUTPUT device. 

Execute the data transmission instructions. 

At end of operation, sense the status of the controller to determine 
if the function and/or data transmission was successful. ("POST .. STATUS" check). 

CONNECT 

~Ef~-=~-nPfRruoitjoOifiiI$ ADDRESS flilD-----
l--'-... ~j.--'-.. ;.~ ... '--'-. F~.....L . ...Li....LJ.....l .... lt~ . ...LJ. . ....L.i....L .. LL.LL..L.L..L._l-'. 

t,:..l.!.';..Ll..~....i..: .. ~_~1l..:.:...i.:! . .:2.1.:.:~ . .L:li:!.l.!!...L:.!J.!:!~:'ll!t'J!t.!~-!:t'~~!..I..!&~~.1.!!.l 

23 18 17 15 14 12 11 00 

77 o ch x 

ch I/O channel designator, 0-7 
x 12 bit connect code. Bits 09-11 

select one of eight controllers which 
may be attached to channel ch. Bits 
00-08 select the peripheral units 
connected to the controller. 

Description: This instruction sends a l2-bit connect code along with a 
connect enable to an external equipment controller on I/O 
channel 'chI. If a Reply is received from the controller 
within 100 usec, the next instruction is read from address 
P + 2. If a Reject is received or there is no response 
within 100 usec, a reject instruction is read from address 
P + 1. If the I/O channel is busy, a reject instruction 
is read immediately from address P + 1. 

Examples: 

Once the connect is successful (RNI at P + 2) it will re­
main in effect until another connect is attempted on the 
same channel or a clear function is performed. 

100lB,2 

This instruction connects controller number 1 and unit 1 
on channel 2. 

The reject ins~ruction coded at P + 1 is usually a jump 
back to the connect to cause the computer to wait until 
the connect is successful. 

e.g. C~N 
UJP 

1001B,2 
* .. 1 



20.2 (cont.) 

20.3 SELECT 

In the following example, which controllers and units 
will be connected on channel 1 and 2 when the computer 
stops. Assume all connects can be made. 

C~N 2004B,1 
UJP *-1 
C~N 3004B,2 
UJP *-1 
C9)N 5B,1 Answers~ 

UJP *-1 Channel 1 
UCS Channel 2 

23 18 1 7 15 14 12 11 00 

77 ch x 

ch I/O channel designator, 0-7 
x 12-bit function code. Each piece 

of external equipment has a unique 
set of function codes to specify 
operations within that device. 
Refer to the 3000 Series Computer 
Systems Peripheral Equipment Codes 
pubiication No. 60113400 for a 
complete list of function codes. 

Equip 0, Unit 
Equip 3, Unit 

5 
4 

Description: This instruction sends a 12-bit function code along with 
a function enable to the unit connected to I/O channel 
!Chl. If a Reply is received from the unit within 100 
usec, the next instruction is read from P + 2. If a 
Reject is received or there is no response within 100 usec, 
a reject instruction is read from address P + 1. If the 
I/O channel is busy, a reject instruction is read trrrrnediately 
from address P + 1. 

The following conditions or combination of conditions will 
result in a Reject: 

1) No Unit or Equipment Connected: The referenced device 
is not connected to the system and cannot recognize a 
Function instruction. If no response is received with­
in 100 usec, the Reject signal is generated automatically 
by the I/O channel. 

2) Undefined Code: When the Function code x is not defined 
for the specific device, a Reject may be generated by 
the device. However, in some cases an undefined code 
will cause the device to generate a Reply although no 
operation is performed. (Refer to the reference manual 
for the specific device.) 

3) Equipment or Unit Busy or Not Ready: The device cannot 
perform the operation specified by the function code x 
without damaging the equipment or losing data. For 
example, a Write End of File code is rejected by a tape 
unit if the tape unit is rewinding. 

4) Channel Busy: The selected data channel is currently 
perfonning a Read or Write operation. 



20.3 (cont • ) 

Example: 

Exercise: 

The function codes for magnetic tape and card reader are: 

MAGNETIC TAPE CONTROLLERS 
FUNCTION CODES 

0000 Release 
0001 Binary 
0002 Coded 
0003 556 BPI 
0004 200 BPI 
0005 Clear 
0006 800 BPI 
0010 Rewind 
0011 Rewind Unload 
0012 Backspace 
0013 Search Forward to 

File Mark 
0014 Search Backward to 

File Mark 
0015 Write File Mark 
0016 Skip Bad Spot 
0020 Interrupt on Ready 

and Busy 
0021 Release Interrupt on 

Ready and Busy 
0022 Interrupt on End of 

Operation 
0023 Release Interrupt on 

End of Operation 
0024 Interrupt on Abnormal 

End of Operation 
0025 Release Interrupt on 

Abnormal End of Operation 
0040 Clear Reverse Read 
0041 Set Reverse Read 

3248 CARD READER CONTROLLER 
FUNCTION CODES 

0001 

0002 

0004 
0005 
0020 

0021 

0022 

0023 

0024 

0025 

Negate Hollerith to 
Internal BCD Conversion 
Release Negate Hollerith 
to Internal BCD Conversion 
Set Gate Card 
Clear 
Interrupt on Ready and 
"Busy 
Release Interrupt on 
Ready and Busy 
Interrupt on End of 
Operation 
Release Interrupt on 
End of Operation 
Interrupt on Abnormal 
End of Operation 
Release Interrupt on 
Abnormal End of Operation 

C¢N 2B,1 Connects Controller o Unit 2 on channel I 
UJP REJX 
S1:'1 LL lOB, 1 Rewinds Tape Unit 2 to Load Point 
UJP REJX 
SEL 3B,1 Sets the Density to 556 bpi 
UJP REJX 
SEL IB,l Sets the Mode to binary 
UJP REJX 

UCS 

What dQes the following group of select function codes for Tape Unit 6 
aceomplish? 

C0N 6B,0 
UJP REJX 
SEL 6B,0 
UJP REJX 
SEL 13B,0 
UJP REJX 

UCS 



20.4 WORD ADDRESSED INPUT TO STORAGE 

23 1817 161514 00 

P~I ___ 7_4 __ ~lo~~~~ __ n ____ ~ 
23 21 20 19 18 17 16 15 14 00 

m 

BIll II for backward storage 
ch I/O channel designator, 0=7 
INT llll! for interrupt upon completion 
N IIO!! for 12- to 24-bit assembly 

Hl!! for no assembly 
m first word address of I/O data block; 

becomes current address as I/O oper­
ation progresses 

n last word address of input data block, 
plus one (minus one, for backward 
storage) 

Description: This instruction transfers a word-addressed data block from 
an e~ternal equipment to storage. Transferring 12-bit bytes 
or 24-bit words depends upon the type of I/O channel used. 

ExamE1es: 

The 3206 utilizes 12-bit bytes and the 3207 uses 24-bit words. 

During forward storage and 12- to 24-bit assembly, the first 
byte of a block of data is stored in the upper half of the 
memory location specified by the storage address. Conversely, 
during backward storage, the first byte is stored in the 
lower half of the memory location. 

This instruction is an initiate type instruction, which means 
all the foregoing actions will occur only if the instruction 
executes nonnal1y. And RNI will be at P + 3. However, if 
the input/output control for the specified channel in Block 
Control is busy, the instruction will act as a double NOP and 
RNI from P + 2. The instruction at that location is tenned 
the IReject Instruction I. 

(i) C¢N 1001B,1 
RTJ REJX 
SEL 2B,1 
RTJ REJX 
SEL 3B,1 
RTJ REJX 
INPW 1,INBUFF,INBUFF+50 
RTJ REJX 

This example initiates an Input from tape unit 1, controller 1 
on channell. The tape is written in BCD mode at 556 bpi. 



20.4 (cont.l) 

(ii) A block of memory is as shown: 

INEUFF 77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 

And th~ contents of a data card is: 

ABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABC 

0) 

(2) 

(3) 

( 4) 

What will be the contents of memory as a result of 
the following coding examples? 

C~N 
UJP 
INPW 
UJP 

q6N 
UJP 
INPW,B 
UJP 

C~N 
UJP 
INPW,N 
UJP 

q6N 
UJP 
INPW,B,N 
UJP 

3000B,O 
REJX 
0,INBUFF,INBUFF+20 
REJX 

3000B,O 
REJX 
O,INBUFF+l9,INBUFF-l 
REJX 

3000B,0 
REJX 
0,INBUFF,INBUFF+40 
REJX 

3000B,0 
REJX 
0,INBUFF+39,INBUFF-l 
REJX 



20.4 (cont.2) 

Answers: (1) (2) 

INBUFF 21222324 INBUFF 22334221 
25262730 31412730 
31414121 25262324 
22232425 21224142 
26273031 30312627 
41422122 24252223 
23242526 42213141 
27303141 27302526 
42212223 23242122 
24252627 41423031 
30314142 26272425 
21222324 22234221 
25262730 31412730 
31414221 25262324 
22232425 21224142 
26273031 30312627 
41422122 24252223 
23242526 42213141 
27303141 27302526 
42212223 23242122 

(3) (4) 

INBUFF 77772122 INBUFF 77772223 
77772324 77774221 
77772526 77773741 
77772730 77772730 
77773141 77772526 
77774221 77772324 
77772223 77772122 
77772425 77774142 
77772f127 77773031 
77773031 77772627 
77774142 77772425 
77772122 77772223 
77772324 77774221 
77772526 77773141 
77772730 77772730 
77773141 77772526 
77774221 77772324 
77772223 77772122 
77772425 77774142 
77772627 77773031 
77773031 77772627 
77774142 77772425 
77772122 77772223 
77772324 77774221 
77772526 77773141 
77772730 77772730 
77773141 77772526 
77774221 77772324 
77772223 77772122 
77772425 77774142 
77772627 77773031 
77773031 77772627 
77774342 77772425 
77772122 77772223 
77772324 77774221 
77772526 77773141 
77772730 77772730 
77773141 77772526 
7777/.')')1 
I I I I ""L 77772324 
77772223 77772122 



20.5 WORD ADDRESSED OUTPUT FROM STORAGE 

P 

P + 1 

23 18 17 161514 00 

76 n 

23 21 20 1 9 1 8 1 7 1 6 15 14 00 

m 

B "1 11 for backward storage 
ch I/O channel designator 
INT = Jll U for interrupt upon complet ion 
N = JlOII for 24- to 12 bit disassembly 

= Jll" for straight 24.bit (no disassembly) 
data transfer 

m = first word adaress of I/O data block; 
ecames current ad&ress as I/O 

operation progresses 
n last word address of output data 

block, plus one (minus one, for 
backward output) 

Description: This instruction transfers a word-addressed block of data 
consisting of l2-bit bytes or 24-bit words, from storage 
to an external equipment. 

Examples: 

With no disassembly, 12 or 24-bit transfer capability depends 
upon whether a 3206 or 3207 I/O channel is. used. If an 
attempt is made to send a 24-bit word over a 3206 I/O channel, 
the upper byte will be lost. 

This instruction is an initiate type instruction, which means 
all the foregoing actions will occur only if the instruction 
executes nonnally. And RNI will be at P + 3. However, if 
the input/output control for the specified channel in Block 
Control is busy, the instruction will act as a double NOP and 
RNI from P + 2. The instruction at that location is tenned 
the !Reject Instruction l • 

A block of memory is as shown: 

Ntnnerica1 Value Alphabetical Representation 

¢UTBUFF 21222324 ABC D 
25262730 E F G H 
31414221 I J K A 
22232425 B C D E 
26273031 F G H I 
41422122 J KAB 
23242526 C D E F 
27303141 G H I J 
42212223 K ABC 
24252627 D E F G 
30314142 H I J K 
21222324 ABC D 
25262730 E F G H 
31414221 I J K A 
22232425 BCD E 
26273031 F G H I 

r-.'~1422l22 
~ :242526 

27303141 

J K A B 
C D E F 
G H I J 

42212223 K ABC 



20.5 (cant.) 

What will be printed on the line printer as a result of 
the following coding examples? 

(1) C~N 5000B,1 
UJP REJX 
0UTW 1,0UTBUFF,0UTBUFF+20 
UJP REJX 

(2) CON 5000B,1 
UJP REJX 
~UTW,B 1,~UTBUFF+19,~UTBUFF-1 
UJP REJX 

(3) C0N 5000B,1 
UJP REJX 
0UTW,N 1,~UTBUFF,~UTBUFF+20 
UJP REJX 

(4) C~N 5000B,1 
UJP REJX 
0UTW,B,N 1,0UTBUFF+19,~UTBUFF-1 
UJP REJX 

Answers! 

(1) 

ABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABC 

(2 ) 

BCKAIJGHEFCDABJKHIFGDEBCKAIJGHEFCDABJKHIFGDEBCKAIJGHEFCDABJKHIFGDEBCKAIJGHEFCDAB 

(3) 

CDGHKADEHIABEFIJACFGJKCDGHKADEHIABEFIJBC 

(4) 

BCIJEFABHIDEKAGHCDJKFGBCIJEFABHIDEKAGHCD 



20.6 CHARACTER ADDRESSED INPUT TO STORAGE 

P 

P + 1 

INPC,INr,B.H "', r.1 

23 18 17 16 00 

73 10 I 

23 21 20 19 18 17 16 00 

I ch I B IH IINTI 

B "III for backward storage 

ch I/O channel designator, 0-3 
H "0" for 6- to 24-bit assembly 

"I" for 12- to 24-bit assembly 
INT "I" for interrupt upon completion 
r first character address of I/O da~a block; 

becomes current address as I/O operation 
progresses 

s last character address of input data 
block, plus one (minus one, for back­
ward storage) 

Description: This instruction transfers a character-address block of 
data, consisting of 6-bit characters or 12-bit hytes, from 
an external equipment to storage. During 12- to 24-bit 
assembly, the lowest bit of each character address is 
forced to remain a "0" in register OX. This ensures that 
assembled bytes are in either the upper or the lower half 
of the word being stored. 

This instruction is an initiate type instruction, which means 
all the foregoing actions will occur only if the instruction 
executes normally. And RNI will be at P + 3. However, if 
the input/output control for the specified channel in Block 
Control is busy, the instruction will act as a double NOP and 
RNI from P + 2. The instruction at that location is termed 
the 'Reject Instruction'. 

A block of memory is as shol.JT1: 

INBUFF 11117/771 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 
77777777 

And the contents of a data card is: 

ABCDEFGHIJ~~CDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGIIIJKABCDEFGHIJKABCDEFGHIJKABC 



20.6 (cont.) 

Answers: 

What will be the contents of memory as a result of the 
following coding examples? 

(1) 

(2) 

(3) 

(4) 

0) 

(3) 

CV'N 
UJP 
INPC 
UJP 

C0N 
UJP 
INPC ,B 
UJP 

C0N 
UJP 
INPC ,H 
UJP 

C0N 
UJP 
INPC,B,H 
UJP 

21222324 
25262730 
31414221 
22232425 
26273031 
41422122 
23242526 
27303141 
42212223 
24252627 
30314142 
21222324 
25262730 
31414221 
22232425 
26273031 
41422122 
23242526 
27303141 
42212223 

Same as IiI 

3000B,0 
REJX 
0,INBUFF,INBUFF+80 
REJX 

3000B,0 
REJX 
0,INBUFF+79,INBUFF-l 
REJX 

3000B,0 
REJX 
0,INBUFF,INBUFF+80 
REJX 

3000B,0 
REJX 
O,INBUFF+19,INBUFF-l 
REJX 

(2) 

(4) 

23222142 
41313027 
26252423 
22214241 
31302726 
25242322 
21424131 
30272625 
24232221 
42413130 
27262524 
23222142 
41313027 
26252423 
22214241 
31302726 
25242322 
21424131 
30272625 
24232221 

Same as In 



20.7 CHARACTER ADDRESSED OUTPUT FROM STORAGE 

P 

P + 1 

23 18 17 16 00 

75 101 

23 21 20 19 18 17 16 00 

I ch II B I H liNT I 
B "I" for backward storage 
ch I/O channel designator, 0-3 
H f'O" for 24- to 6-bit disassembly 

lfl" for 24- to l2-bit disassembly 
INT "I" for interrupt upon completion 
r first character address of I/O data 

block; becomes current address as 
I/O operation progresses 

s last character address of output 
data block, plus one (minus one, 
for backward output) 

Description: This instruction transfers a character-addressed block of 
data, consisting of 6-bit characters or l2-bit bytes, from 
storage to an external equipment. 

Examples: 

This instruction is an initiate type instruction, which mertns 
all the foregoing actions will occur only if the instru~tion 
executes normally. And RNI will be at P + 3. However, if 
the input/output control for the specified channel in 1lock 
Control is busy, the instruction will act as a double iOP and 
RNI from P + 2. The instruction at that location is termed 
the 'Reject Instruction'. 

A block of memory is as shown: 

Ntunerica1 Value Alphabetical Representation 

25262730 
I ABC D ¢UTBUFF I 21222324 I 

E F G H 
31414221 1 J K A 
22232425 B C D E 
26273031 F G H 1 
41422122 J K A B 
23242526 C D E F 
27303141 G H I J 
42212223 K ABC 
24252627 D E F G 
30314142 H I J K 
21222324 A B C D 
25262730 E F G H 
31414221 I J K A 
22232425 BCD E 
26273031 F G H I 
41422122 J K A B 
23242526 C D E F 
27303141 G H I J 
42212223 K ABC 



20.7 (cont.) 

What will be printed on the line printer as a result of the 
following coding examples? 

(1) 

(2) 

(3) 

( 4) 

Answers: 

(1) 

C0N 
UJP 
~UTC 
UJP 

C~N 
UJP 
0UTC,B 
UJP 

C0N 
UJP 
0UTC,H 
UJP 

C~N 
UJP 
0UTC,B,H 
UJP 

SOOOB,l 
REJX 
l,~UTBUFF,~UTBUFF+80 
REJX 

5000B,1 
REJX 
l,0UTBUFF+79,~UTBUFF-l 
REJX 

5000B,1 
REJX 
1,0UTBUFF,0UTBUFF+80 
REJX 

5000B,1 
REJX 
1,0UTBUFF+79,0UTBUFF-l 
REJX 

ABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABCDEFGHIJKABC 

(2) 

CBAKJIHGFEDCBAKIJHGFEDCBAKJIHGFEDCBAKJIHGFEDCBAKJIHGFEDCBAKJIHGFEDCBAKJIHGFEDCBA 

(3) 

Sames as Number 1 

(4) 

Same as Number 2 



20.S INPUT/OUTPUT TO AND FROM THE A R~GISTER 

20.S.l Input Character to A 

P 

P + 1 

INAC~iNT . J.. 

23 18 17 16 00 

73 1
1

_ 

23 21 20 18 1 7 1 6 00 

ch ol'NT_ 
ch I/O channel designator, 0-7 

Bits 00-16 at 
P and P+l should 
be loaded with O's 

INT 11111 for interrupt upon completion 
110 11 for do not interrupt upon completion 

Description: This instruction transfers a 6-bit character from an 
external equipment into the lower 6-bits of the A regis­
ter. A is cleared prior to loading and the upper IS-bits 
remain cleared. 

Example: 

Main control is stalled until the character is received 
from the external equipment. At that time it resumes 
reading instructions and RNI's from P + 3. If the 
input/output control for the specified channel in Block 
Control is busy, the instruction will act as a double 
NOP and RNI from P + 2. The instruction at that location 
is tenned the 'Reject Instruction'. 

Ct'N 
UJP 
INAC 
UJP 

3000B,1 
*-1 
1 
*-2 

This example inputs 6-bits from controller 3, unit 0 on 
channel 1 into the lower 6-bits of the A register. A 
is cleared prior to loading and the upper lS-bits remain 
cleared. 

20.S.2 Input Word to A 

P 

P + 1 

23 18 17 16 00 

74 11_ 
23 21 20 18 17 16 00 

ch o I'NT_ 
ch I/O channel designator, 0-7 

Bits 00-16 at 
P and P+l should 
be loaded with O's 

INT 111" for interrupt upon completion 
"011 for do not interrupt upon completion 

Description: This instruction transfers a l2-bit byte into the lpwer 
l2-bits of A or a 24-bit word into all of A from an 
external equipment. Trapsferring 12 or 24 bits depends 
upon whether a 3206 or 3~07 I/O channel is used. (A) is 
cleared prior to loading and, in the case of a l2-bit 
input, the upper 12 bits remain cleared. 



20.B.2 (cont.) 

Main control is stalled until the byte (word) is received 
from the external equipment. At that time it resumes 
reading instructions and RNI's from P + 3. If the 
input/output control for the specified channel in Block 
Control is busy, the instruction will act as a double NOP 
and RNI from P + 2. The instruction at that location is 
termed the 'Reject Instruction'. 

Note: Bits lB, 19 and 20 are all zeros when a 3206 data channel is 
used. If the operation with A involves the use of a 3207, 
these bits take on the following significance: 

Examples: 

Bit 20 
Bit 19 

always a HOll 
If bit lB = lIl", the state of bit 19 is 
of no consequence. 
If bit lB = 110 11 , a fll" in bit 19 sign!fies 
backward operation. A 110 11 in bit 19 
signifies a forward operation. 

If the connect code for the card reader is 3000B and a data 
card has ABCD in the first four columns, w~at will be the 
contents of the A register as a result of the following 
coding examples? 

C9}N 
UJP 
INAW 
UJP 

Assume a 3206 data channel. 

3000B,0 
REJX 
a 
REJX 

Answer: (A) = 00002122 Also, this is all the information 
that is available from that card. 
Another input to A would cause the 
next card to be read. 

20.B.3 Output Character from A 

P 

P + 1 

23 18 17 16 00 

75 /1_ 
23 21 20 18 17 16 00 

ch o IINT_ 

ch I/O channel deSignator, 0-7 

Bits 00-16 at 
P and P+l should 
be loaded with O's 

INT "III for interrupt upon completion 
110" for do not interrupt upon completion 

Description: This instruction transfers a character from the lower 
6-bits of A to an external equipment. The original 
contents of A are retained. 

After outputting the character, main control proceeds 
immediately and RNI's at P + 3~ Should the input/output 
control for the specified channel in Block Control be 
busy, the instruction will act as a double NOP and RNI 
from P + 2. The instruction at that location is termed 
the 'Reject Instruction'. 



20.8.3 (cont.) 

Example: 

P 

P + 1 

If the connect code for the external device is 3002B, it is 
connected to channel 4, and it requires a data output of 
2lB to perfonn a certain task, what coding is necessary to 
perfonn the task. 

Ans: C9)N 3002B,4 
UJP *-1 
ENA 21B 
9)TAC 4 
UJP *-2 

The data sent to the external device is 002lB accompanied by 
a suppress assembly/disassembly control signal. This latter 
informs the device to ignore the upper 6 bits and recognize 
the 2lB only. 

23 18 17 16 00 

76 11~ 
23 21 20 18 17 16 00 

ch 0 IINT~ 

c:~ i/'J channel designator, 0-7 

Bits 00-16 at 
P and P+l should 
be loaded with O's 

INT "1" for interrupt upon completion 
"Of! for do not interrupt upon completion 

Description: This instruction transfers a l2-bit byte from the lower 12 
bits of A (or all 24-bits of A) to an external equipment 
depending upon the type of I/O channel (3206 or 3207) that 
is used. The contents of A is not disturbed and is retained. 

After outputting the information, main control proceeds 
immediately and &~I:s at P + 3. Should the input/output 
control for the specified channel in Block Control be 
busy, the instruction will act as a double NOP and RNI 
from P + 2. The instruction at that location is termed 
the IReject Instruction'. 

Note: Bits 18, 19 and 20 are all zeros when a 3206 data channel is 
used. If the operation with A involves the use of a 3207, 
these bits take on the following significance: 

Bit 20 
Bit 19 

always a 110 11 

If bit 18 = "1 II, the state of bit 19 is 
of no consequence. 
If bit 18 = 110 II, a "1 II in bit 19 signifies 
backward operat ion. A lIO II in bit 19 
signifies a forward operation. 

Assuming a remote typewriter connected to a data channel 
(nnt to be confused with the console typewriter) has a 
connect code of 5000B and is connected to channel 2, 'vhat 
code is necessary to cause that typewriter to perform a 
cnrriage return tab sequence of operations? The code for 
a cnrriiJge return is 77B and for the tab is 75B. 



20.B.4 (cont.) 

Answer: C~N 
UJP 
ENA 
~TAW 
UJP 

5000B,2 
*-1 
7775B 
2 
*-2 

The data transmitted to the typewriter is 7775B. 

20.9 SENSING INSTRUCTIONS 

20.9.1 Sense External Status 

23 18 17 15 14 12 11 00 

77 2 I ch I 

ch I/O channel designator, 0-7 
x external status sensing mask code 

Description: When a peripheral equipment contro ller is connected to an 
I/O channel by the C¢N (77.0) instruction, the EXS instruc­
tion can sense conditions within that controller. Twelve 
status lines run between each controller and its I/O channel. 
Each line may monitor one condition within the controller, 
and each controller has a unique set of line definitions. 
To sense a specific condition, a Hlll is placed in the bit 
position of the status sensing mask that corresponds to the 
line number. When this instruction is recognized in a 
program, RNI at address P + I if an external status line 
is active when its corresponding mask bits are 'lIfT. RNI 
at address P + 2 if no selected lin~ is active. 

Status Codes: Following are the st~tus response codes for magnetic tape and 
card reader: 

XXX 1 
XXX2 

XXX4 
>:Xl:~ 

XX2;.;: 
XX4X 
X1XX 
X2XX 

X4XX 
LXXX 
2 XXX 

4XXX 

i'1A(;NETIC TAPE 
STATUS CODES 

Ready 
Channel and/or 
Read/Write Control 
2nd/or 0nit Busy 
Write Encbled 
File Mark Read 
At Loadpoint 
End-of-Ta8e Read 
Density 2 bit** 

** 00 
01 
10 
11 

21 bit*~'~ 
200 bpi 
556 bpi 
BOO bpi 

= undefined 
Lost Data 
End of Operation 
Vertical or 
Longitudinal 
Parity Error 
Reserved by another 
control (multiple 
channel controllers 
only) 

XX~~l 

XXX2 
xxx 4 
XXIX 
XX2X 

XX4X 
X1XX 

X2XX 

X4XX 

IXXX 

2 XXX 

3248 CARD READER 
STA.TliS CODES 

R~adv 

Busy 
Binary Card 
File Card Read 
Fail to Feed, 
Stacker Full or 
Jam 
Input Tray Empty 
Input Tray Empty and 
End of File Switch On 
Ready ani not Busy 
Interrupt Present 
End of Operation 
Interrupt Present 
Abnonnal End of 
Operation Interrupt 
Present 
Read Compare, 
Preread Error or 
Illegal Suppress 
Assembly 



20.9.1 (cont.) 

Comments: 

.example: 

Refer to the 3000 Series Computer Systems Peripheral 
Equipment Codes manual, publication no. 60113400 for a 
complete list of status response codes. 

The example below accomplishes the following: 

a) Connects the card reader on channel o. 
b) Checks the status of the card reader. 

If busy it waits until it becomes not busy. 
c) Initiates reading of a card at the card reader and 

transfer of the data read to memory. 
d) Waits until the INPUT is complete. 

C9}N 3000B,0 CONNECT CARD READER 
UJP *-1 
EXS 2B,0 SENSE BUSY 
UJP *-1 LOOP IF BUSY' 
INPW o ,INBUFF,INBUFF+20 INITIATE INPUT 
UJP *-2 
EXS 2B,0 SENSE BUSY 
UJP *-1 LOOP UNTIL DONE 

UCS 

20.9.2 Copy External Status and Interrupt Mask Register 

lOW!D~ , .. _ ..• - ", 

i 
.' ...... ~.: .... ...;.:.: . .:.:.::...;.:.!.L1.L~".' ... 11C!l'!~2!1"!t.!nlk.~~..:~~.!...:.l:!i.~!!.:.~~~ 

23 1 8 17 15 14 12 11 00 

77 121chl 0000 

ch = I/O channel designator, 0-7 

Description: This instruction performs the following functions: 

Examples: 

(1) The external status code from I/O channel ch is 
loaded into the lower 12 bits of A. See EXS 
instruction. 

(2) The contents of the Interrupt Mask register are 
loaded into the upper 12 bits of A. 

(3) RNI from address P + 1. 

If the INTERRUPT MASK REGISTER is 0032
8

, and the external 
status on channel 1 = 10048 , what will be in A after 
execution of the following instruction? 

C¢py 

Anslver: 

(a) A is cleared. 

(b) Contents of INTERRUPT MASK REGISTER put in upper 
12 bits of A. 

(c) External status on channel I put in lower 12 bits of A. 

(A) = 00321004 



20.9.3 Sense Interrupt 

23 1 8 1 7 1 5 14 1 2 11 00 

x 

ch I/O channel designatbr, 0-7 
x Interrupt sensing mask code 

Description: Sense for the interrupt conditions listed in the following 
table. RNI from P + 1 if an interrupt line is active 
corresponding to any "1" bit in the mask. If none of the 
selected lines are active, RNI from P + 2. Internal 
interrupts are cleared as soon as they are sensed. External 
interrupts are cleared by connecting the unit and executing 
one of the SEL functions controlling peripheral interrupts. 

INTERRUPT SENSING MASK BIT ASSIGNMENTS 

Mask Bit 
Position 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 

10 

11 

Mask Code 
x 

0001 
0002 
0004 
0010 
0020 
0040 
0100 
0200 
0400 
1000 

2000 

4000 

Interrupt Condition Represented 

I/O Equip # ~ on designated channel 1 
3 External 

~~:!:~~eo~~1~~OW;U~d:r~1~W-(~1~I~;:irUPts 
and BCD Fault ~nternal 

Arithmetic Overflow Interrupts 
and Divide Fault (integer) J 
Search/Move Completion ______ _ 

ExampleS': i) If there :Ls an interrupt line active on channel 2, which 
instruction will be executed after executing the INTS 
instruction in the following section of code? 

INTS 4B,2 
UJP INTADD 
UJP N~INT 

Answer: UJP INTADD if equip. nr. 4 generated the 
interrupt, else UJP N~INT 

ii) The contents of the A register = 37777777 and the instruction 
executed is: 

INA 1 

An arithmetic overflow is generated. What code is necessary 
to sense this fact? 

Answer: INTS 2000B 

UJP overflow-routine 
normal non-overflow next instruction 

Note: The "ch" designator is required only when sensing 
external interrupts originating on a channel. 

(P+l) 
(P+2) 



20.9.4 Sense Internal Status 

ji,mSSflHn 
.. ,. ............... - ....................... -

. ",cit 

23 18 1 7 1 5 14 12 11 00 

77 I 3 I ch I 
ch I/O channel designator, 0-7 
x = Internal Status Sensing Mask Code 

Description: Sense for the internal conditions listed in the following 
table. RNI from P + 1 if an internal condition is present 
corresponding to any "1" bit in the mask. If none of the 
selected conditions are present, RNI from P + 2. Internal 
conditions are cleared as soon as they are sensed, except 
when they are related to channel "chIT. 

INTERNAL STATUS SENSING MASK BIT ASSIGNMENTS 

Mask Bit Mask Code 
Position x 

00 0001 
01 0002 
02 0004 
03 0010 
04 0020 
05 0040 
06 0100 

07 0200 

08 0400 

09 1000 

10 2000 

11 4000 

Internal Condition Present 

Parity Error ----------------- -1 
Read Active 
Write Active Channel 

. Control 
External (controller) Reject 1 
Internal (no E.e~E~n1i!:L ~~~£t:.. _____ _ 
Illegal Write Main Control 
C~N or C~N and SEL- execut-ed - - - -- - --1 
and channel currently not busy 
Block Control Interrupt waiting Channel 
Write: Buffer complete Control 
Read: Buffer complete or i 

End of Record at peripheral 
Exponent Overflow/Underflow fault -­
(fIt pt option) 
Arithmetic Overflow fault 
(main arithmetic section) Main Control 
Divide fault j' 
(main arithmetic or fIt pt opt) 
BCD fault (BCD option) ________ _ 

The following coding example sums a table of 50 numbers. 
It detects and corrects for arithmetic overflow using the INS 
instruction. 

L"~P 

* 

* 
FINIS 

* 
f/JV 

* 

SUM48 
TABLE 

ENI 
ENA 
ADA 

INS 
UJP 

IJD 

SHAQ 
ADAQ 

UJP 
SHAQ 
X~A,S 
ADAQ 

STAQ 
ENA 
IJD 
UJP 
DECD 
BSS 

49,1 SET L~~P INDEX T~ MAX NR - 1 
0 CLEAR THE ACCUMULAT~R 
TABLE,l ADD NEXT ENTRY f/JF TABLE T~ THE 

ACCUMULAT~R 
1000B,0 WAS THERE ARITHMETIC ~VERFL~W 
~V YES, JUMP T~ Cf/JRRECT AT L~CATI~N 

f/JV 
L~~P,1 AFTER LAST TIME THR~UGH L~~P -

N~ DECREASE Bl BY 1 ~R JUMP 
Tf/J L~¢P 

-24 C"NVERT 24 BIT SUM T~ 48 BITS 
SUM48 ADD C~NVERTED SUM Tf/J 48 BIT 

ACCUMULAT~R 
EXIT 
-24 Cf/JRRECT F~R ARITHMETIC ¢VERFL¢W 
-0 BY Cf/JMPLEMENTING THE SIGN 
SUM48 ADD C"NVERTED SUM T¢ 48 BIT 

ACCUMULAT~>R 
SUM48 
0 CLEAR 24 BIT ACCUMULAT¢R 
L¢"P,l DECREASE Bl AND JUMP T" L00P 
FINIS 
0 
50 



20.9.4 (cont.) 

Exercise: Assuming that data channelS is busy at th~ moment, determine 
if the operation in progress is a Read or a Write. Write 
the coding required to do this check. 

20.9.5 Copy Internal Status and Interrupt Mask Register 

23 18 17 15 14 12 11 00 

77 0000 

ch = I/O channel designator, 0-7 

Description: The CINS instruction performs the following functions: 

Example: 

1) The internal status information (see table in Section 20.9.4) 
is loaded into the lower 12 bit positions of the A register. 

2) The contents of the Interrupt Mask register are loaded into 
the upper 12 bit positions of the A register. 

3) RNI from P + 1 

If the Interrupt Mask register contains 01218 and the internal 
status is 01ll Q , what will be in the A register after execution 
of the followi~g instruction? 

CINS 1 

Answer: a) The A register is cleared 

b) The contents of the Interrupt Mask Register is 
copied in the upper 12 bits of A. 

c) The current internal status is copied in the 
lower 12 bits of A. 

(A) = 012101118 

Exercises: i) If the Interrupt Mask register contains 74008 and a parity 
error has occurred on the channel for data channel 6 (called 
a "transmission parity error"), what will be in A after the 
execution of: 

CINS 6 

ii) If the Interrupt Mask register contains 04038 and the reject 
instruction following a SEL was executed, what coding would 
be necessary to determine the cause of the reject. (Remember 
there are three sources of SEL rejects 1) channel busy, 2) 
function illegal, and 3) function not recognized) 

20.9.6 Comments on Internal Status and the Interrupt Mask Register 

At first glance, it appears that the INTS and INS instructions 
perform essentially the same function with relation to internal 
conditions. However, there is one important difference and that 
is the INTS instruction needs both the condition and the 
interrupt mask bit set to get a match. The INS instruction 
senses the internal condition without the necessity of having the 
interrupt mask register bit set. 



20.10 CONSOLE TYPEWRITER INPUT/OUTPUT 

20.10.1 General Description 

The 3192 Console Typewriter is an on-line input-output 
(I/O) device; i.e., it requires no connection to a 
communication channel and no function codes are issued. 
The typewriter receives output data directly from storage 
via the lower 6 bits of the Data Bus. Inputs to storage 
are handled in the same manner. 

The console typewriter consists of an electric typewriter 
and a typewriter control panel mounted on a desk console. 

Used in conjunction with block control and the Register 
File, the typewriter may be used to enter a block of 
internal binary-coded characters into storage and to 
print out data from storage. The two storage addresses 
that define the limits of the block must be stored in 
the register file prior to an input or output operation. 
Register 23* contains the initial character address of the 
block, and register 33 contains the last character address, 
plus one. Because the initial character address is 
incremented for each storage reference, it always shows 
the address of the character currently being stored or 
dumped. Output operations occur at the rate of 15 
characters per second. Input operations are limited by 
the operator's typing speed. 

*The upper seven bits of registers 23 and 33 should be "0". 

20.10.2 Operation 

The general order of events when using the console type­
writer for an input or output operation is: 

1) Set tabs, margins and spacing. Turn on typewriter. 

2) Clear 

3) Check status 

4) Type out or type in 

20.10.2.1 Set tabs, margins, and spacing 

All tabs, margins, and paper spacing must be set manually 
prior to the input or output operation. A tab may be set 
for each space on the typewriter between margins. 

20.10.2.2 Clear 

There are three types of clears which may be used to clear 
all conditions (except ENCODE FUNCTION) existing in the 
typewriter control. These are: 

1) Internal Clear or a Master Clear 

This signal clears all external equipment, the 
communications channels, the typewriter control, 
and sets the typewriter to lower case. 



20.10.2.2 (cont.) 

2) Clear Channel, Search/Move Control, or Type Control 
instruction (77.51). 

This instruction selectively clears a channel, the 
S/M control, or, by placing a 11111 in bit 08 of the 
instruction, the typewriter control, and sets the 
typewriter to lower case. 

3) Clear Switch on typewriter. 

This switch clears the typewriter control and sets 
the typewriter to lower case. 

20.10.2.3 Status Checking 

The programmer may wish to check the status of the type­
writer before proceeding. This is done with the Pause 
instruction. Status response is returned to the computer 
via two status lines. 

The typewriter control transmits two status signals that 
are checked by the Busy Comparison Mask using the Pause 
instruction. These status signals are: 

Bit 09 
Bit 10 

Type Not Finish 
Type Not Repeat 

An additional status bit appears on sense line 08. This 
code is Type Busy, and is transmitted by block control in 
the computation section when a typewriter operation has 
been selected. If the programmer is certain of the status 
of the typewriter, this operation may be omitted. 

20.10.2.4 Type In and Type Load 

The Set Type In instruction or pressing the TYPE LOAD switch 
on the console or typewriter permits the operator to enter 
data directly into storage from the typewriter. When the 
TYPE LOAD indicator on the console or typewriter glows, the 
operator may begin typing. The Encode function switch must 
be depressed to enable backspace, tab, carriage return, and 
case shifts to be transmitted to the computer during a type­
writer input operation. 

Input is in character mode only. As each character is typed, 
the information is transmitted via the Data Bus to the stor­
age address specified by block control. This address is 
incremented as characters are transmitted. When the current 
address equals the terminating address, the TYPE LOAD indicator 
goes off and the operation is terminated. Data is lost if 
the operator continues typing after the TYPE LOAD indicator 
goes off. 

20.10.2.5 Type Out and Type Dump 

The typewriter begins to type out when the computation 
section senses a Set Type Out instruction or the operator 
presses the TYPE DUMP switch on the console or typewriter. 
Single 6-bit characters are sent from storage to the 
typewriter via the lower 6 bits of the Data Bus. When 
the current address equals the terminating address, the 
TYPE DUMP indicator goes off and the operation is 
terminated. 

During a Type Out operation, the keyboard is locked to 
prevent loss of data in the event a key is accidentally 
pressed. 



20.10.3 Typewriter Console. Switches and Indicators 

The following table shows the function of each switch and indicator for 
the console typewriter. 

Name 

HIGH 
TEMP 

BUSY 

POWER ON 

TYPE 
DUMP 

TYPE 
LOAD 

REPEAT 

FINISH 

INTERRUPT 

ENCODE 
FUNCTION 

CLEAR 

Switch (S) 
Indicator (I) 

I 

I 

I 

S & I 

S & I 

S & I 

S & I 

S & I 

S & I 

S & I 

Description 

This indicator glows when the ambient 
temperature within the typewriter cabinet 
exceeds 110°F. 

This indicator shows that the TYPE LOAD or 
TYPE DUMP switch has been pressc:,J and the 
operation is in progress. 

This indicator shows that power is applied 
to the typewriter. 

This switch is in parallel with the TYPE 
DUMP switch on the main console and causes 
the computer to send data to the typewrit­
er for print-out. It is a momentary con­
tact switch that is illuminated until the 
last character in the block has been print 
printed or the CLEAR buttoi is pressed. 

This switch is in parallel with the TYPE 
LOAD switch on the main console and allows 
the computer to receive a block of input 
data from the typewriter. The TYPE LOAD 
indicator remains on until either the 
FINISH, REPEAT or CLEAR button is pressed, 
or until the last character of the block 
has been stored. If the program immedi­
ately reactivates the typewriter, it may 
appear that the light does not go off. 

This switch is pressed during a Type Load 
operation to indicate that a typing error 
occurred. This switch deactivates busy 
sense line 10 (see PAUS instruction). If 
the computer does not respond, this light 
remains on. 

This switch is pressed during a Type Load 
operation to indicate that there is no 
more data in the current block. This 
action is necessary if the block that the 
operator has entered is smaller than the 
block defined by registers 23 and 33. 
This switch also deactivates busy sense 
line 09. If the computer does not respond, 
this light remains on. 

This switch is in parallel with the MANUAL 
INTERRUPT switch on the console and is 
used to manually interrupt the computer 
program. 

This switch enables the typewriter to 
send to storage the special function codes 
for backspace, tab, carriage return, 
upper-case shift, and lower-case shift. 

This switch clears the typewriter controls 
and sets the typewriter to lower case but 
does not cancel Encode Function. 



20.10.4 Character Codes 

The following table lists the internal BCD codes, typewriter print-out and 
upper- or lower-case shift that applies to the console typewriter. All 
character transmission between the computation section and the typewriter 
is in the form of internal BCD. The typewriter logic makes the necessary 
conversion to the machine code. 

Note: Shifting to upper case (57) or lower case (32) is not necessary 
except on keyboa~d letters where both upper and lower case is 
available. The standard type set for the 3192 has two sets of 
upper case letters and no lower case letters. This eliminates 
the need for specifying a case shift. 

Those characters that are strictly an upper or lower case character 
are not affected by the case currently selected. Case selection 
only affects those characters that may be printed in either upper 
or lower case. 

Print-out 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
+ 

; 
? 
+ 
A 
B 
C 
D 
E 
F 

'G 
H 
I 

(Shift to LC) 

) 
I 

@ 

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
U 
L 
U 
U 
L 
U 
U 

Case 

U or L 
U or L 
U or L 
U or L 
U or L 
U or L 
U or L 
U or L 
U or L 

U or L 
U 
L 
U 
L 

CONSOLE TYPEWRITER CODES 

Internal 
BCD 
Code 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 

Print-out 

I -
J 
K 
L 
M 
N 
0 
P 
Q 
R 

0 (degree) 
$ 

* 
1ft 

% 
(Shift to UC) 
(Space) 

/ 
S 
T 
U 
V 

W 
X 
Y 
Z 
& 
, 
( 

(Tab) 
(Backspace) 
(Carriage 

Return) 

Internal 
Case BCD 

Code 

L 40 
U or L 41 
U or L 42 
U or L. I 43 I U or L 44 
U or L 45 
U or L 46 
U or L 47 
u or L 50 
U or L 51 
U 52 
U 53 
U 54 
U 55 
U 56 

57 
60 

L 61 
U or L 62 
U or L 63 
U or L 64 
U or L 65 
U or L 66 
U or L 67 
U or L 70 
U or L 71 
U 72 
U or L 73 
U 74 

75 
76 
77 



20wlO.5 Input/Output Instructions 

20.10.5.1 Set Console Typewriter Input 

ADDRESS finn 

23 18 1 7 12 11 00 

77 75 ~a1 
Bits 00 - 11 should 
be loaded with zeros 

Description: This instruction~ like the TYPE LOAD switch, permits a 
block of data to be entered into storage as soon as the 
Type Load indicator lights. If a block of data smaller 
than the one defined by registers 23 and 33 is to be 
typed, the FINISH switch should be depressed when the 
typing is completed. If more data is entered than the 
defined block can hold, the excess data is lost. If a 
typing error occurs, the REPEAT button should be depressed, 
the typewriter input operation is terminated and the 
appropriate status bits (09 and 10) may be sensed with 'the 
PAUS instruction. 

Example: The below example illustrates initiating a typewriter 
INPUT. The INPUT data is to be stored in address IN BUFF 
through IN BUFF + 12. 

INBUFF 

ECRA 
TAM 
INA 
TAM 
CTI 

UCS 
BSS,C 

INBUFF 
23B 
13 
33B 

13 

SET R.F. L~CA 23 T0 FCA 

SET R.F. L~CA 33 T~ LCA+l 
INITIATE TYPEWRITER INPUT 

20.10.5.2 Set Console Typewriter Output 

ctfi 

23 18 1 7 12 11 00 
Bits 00 - 11 should 
be loaded with zeros 77 76_ 

Description! This instruction, like the TYPE DUMP switch, causes the 
typewriter to print out the block of data defined by the 
character addresses in registers 23 and 33. 

Note: The CTI and CTO instructions are mutually exclusive. 
Any attempt to execute one while the other is being 
executed will be ignored by the computer. Typewriter 
busy should be checked before these instructions are 
used and before registers 23 and 33 are altered. 



20.10.5.2 (conte) 

Example: The following example illustrates initiating a typewriter 
OUTPUT. The OUTPUT will be from address ¢UTBUFF through 
~UTBUFF+15. 

ECHA 
TAM 
INA 
TAM 

CT¢ 

UCS 

¢UTBUFF 
23B 
16 
33B 

SET R.F. L¢CA 23 T¢ FCA 

SET R.F. L¢CA 33 T¢ LCA+l 
INITIATE TYPEWRITER ¢UTPUT 

¢UTBUFF BSS,C 16 

20.l0.~.3 Pause Instruction (as used with Console Typewriter Instructions) 

23 18 17 15 14 12 11 

77 

00 

x 
Bits 00 - 11 should 
be loaded with zeros 

Description: This instruction allGws the program to halt for a maximum 
of 40 ms if a condition (excluding typewriter-see note) 
defined by the pause sensing mask exists. If a nln appears 
on a line that corresponds to a mask bit that is set, the 
count in P will not advance. If the advancement of P is 
delayed for more than 40 ms, a reject instruction is read 
from address P + 1. If none of the lines being sensed is 
active, or if they become inactive during the pause, the 
program immediately skips to address P + 2. If an interrupt 
occurs and is enabled during aPAUS, the pause condition is 
terminated, the interrupt sequence is initiated and the 
address of the PAUS instruction is stored as the interrupted 
address. 

Note: If either bit 08, 09 or 10 (or any combination of these 
bits) is set and the sensed condition exists, a pause will 
not occur and the instruction at P + 1 is read up immediately. 
If these bits are set but the condition(s) does not exist, 
the program immediately skips to P + 2. For all other bits, 
the normal PAUS routine is followed. 

PAUSE Sensing Mask Table 

Mask Mask 
Bit Code Condition Notes 

00 0001 I/O channel 0 Busy Channel Read or Write 
01 0002 1 operation in progress, 
02 0004 2 or the external Master 
03 0010 3 Clear logic within the 
04 0020 4 channel is set. 
05 0040 5 
06 0100 6 
07 0200 7 
08 0400 Typewri'ter BUSY Typewriter input or 

output in progress 
09 1000 Typwrtr NOT FINISH FINISH switch not depressed 
10 2000 Typwrtr NOT REPEAT REPEAT switch not depressed 
11 400() S"'arrn IMnu", rnnt-,-nl ~o"''-rh ",.. MI"'\"ITo. I"\T"IIoo .... ~t-;".,..... 

in progress 



20.10.5.3 (cont.l) 

Examples: i) This example initiates and waits until a typewriter OUTPUT 
is complete. 

ECHA 
TAM 
INA 
TAM 
CT~ 
PAUS 
UJP 

UCS 
~UTBUFF BCD,C 

~UTBUFF 
23B SET R.F. L~CA 23 T~ FCA 
16B 
33B SET R.F. L~CA 33 T~ LCA+l 

INITIATE TYPEWRITER ~UTPUT 
400B WAIT UNTIL ~UTPUT IS C~MPLETE 
*-1 

16, THIS IS THE END 

ii) Study the following example and detennine what it will do. 

* 

* 

* 

* 

* 
INBUF 
CR 
INBUFR 

PAUS 400B 
UJP *-1 
ECHA INBUF 
TAM 23B 
INA 80 
TAM 33B 
CTI 

PAUS 400B 
UJP *-1 
ECHA CR 
TAM 23B 
INA 1 
TAM 33B 
CT~ 

FAUS 400B 
UJP *-1 
ECHA INBUFR 
TAM 23B 
INA 10 
TAM 33B 
CTI 

UJP ELSE 

BSS,C 
t'CT 
BSS,C 

etc. 

80 
-0 
10 

It looks like the program will do an input, then a carriage 
return and then call for more input. If the first input is 
tenninated by a REPEAT or FINISH, and 1) few or no characters 
were inputted or 2) if the operator is slow in getting his 
finger off the switch, then the second input will be tenni­
nated before he has a chance to type any further characters. 

Verify this for yourself by studying the actions listed on 
the next page. The key is that the CTI can be initiated 
during the 50msec interval following the end of a type-out 
as the PAUS 400B senses buffer busy not typewriter busy. 



20.10.5.3 (cont.2) 

Exercise: 

Note: Some programs use the REPEAT and FINISH switches 
as self clearing Sense switches. This use is 
possible but is not recommended except under 
controlled conditions. The reason for this will 
be evident when the actions of the REPEAT and 
FINISH switches and PAUS instruction are studied 
below. 

REPEAT or FINISH switch depressed 

Typewriter NOT busy and not in the 50msec interval 
following a type-out operation 

Action: Set REPEAT or FINISH status bit, turn on light 

Typewriter executing a type-out or in the 50msec 
interval following a type-out operation 

Action: None 

Typewriter waiting for type-in 

Action: Set REPEAT or FINISH status bit, turn on light 
and terminate ~ype-in. 

End of 50msec interval at end of type-out operation and 
REPEAT or FINISH switch being held down 

Typewriter not busy. 

Action: Set REPEAT or FINISH stat~s bit, turn on light 

Typewriter busy with new output 

Action: None 

Typewriter busy with type-in 

Action: Set REPEAT or FINISH status bit, turn on light 
and terminate type-in. 

At any time when the REPEAT or FINISH light is on and 
status bit set and the REPEAT or FINISH switch is being 
held down. 

REPEAT or FINISH being sensed by PAUS instruction 

Action: Clear REPEAT or FINISH status bit and 
turn off light. (Switch must be released 
and depressed again to reset) RNI at P+2, 
where otherwise it would be P+l. 

Write a subroutine that will output a carriage return and 
then tab the console typewrite~. Then initiate a type-in 
of 1 character and wait until that character is received 
or a NOT busy, repeat or finish condition arises. Clear 
repeat and/or finish if present. 



STUDENT NOTES 



INTERRUPTS 

21.1 INTERRUPTS USING ele 

21.2 INTERRUPTS WITHOUT USING ele 

21.3 I/O USING ele 

21.4 INTERRUPT MASK REGISTER BIT ASSIGNMENTS 

21.5 CIT ASSIGNMENTS 

Chapter fll 



21.1 INTERRUPTS USING CIC 

Description: There are twelve groups of conditions for which, when one or 
more of these conditions occur, the programmer may wish to jump 
to a special sequence of coding, and upon completion of that 
task, resume processing in his original task. Processing in 
this manner is called "interrupt processingll. 

Example: 

The twelve groups of conditions mentioned above are listed in 
the table llInterrupt Mask Register Bit Assignments 1! in Section 
21.4 at the end of this discussion. This register (IMR) is 
set by the programmer. 

In addition to the IMR, there are twelve flip-flops, each 
representing one of the conditions specified by the IMR. 
(Schematically, we may consider this as a 12-bit Interrupt 
Register.) When one of the 12 interruptible conditions occurs, 
the hardware sets the corresponding flip-flop in this Interrupt 
Register. If the corresponding bit has been set by the pro­
grammer in the IMR (and the interrupt system is enabled), 
interrupt processing will take place. The programmer must 
have previously placed the address of his interrupt routine 
in the CIT table. 

Add the integers in BUF thru BUF+99. If an arithmetic over­
flow occurs, jump to a routine to process the sum using 
double-precision (48-bit) integer arithmetic. 

EXT CIT 
SUM ~CT 0,0 
START UJP ** 

ENA INTADD *STfbRE ADDRESS 
ENI 7,1 fbF INTERRUPT R0UTINE AT 
SWA CIT,l (SEE TABLE 21.5) 

CIT+7 

SSIM 2000B *SET IMR F~R 0VERFL0W C0NDITI~N 
EINT *ENABLE INTERRUPT SYSTEM 

ENA 0 
ENI 99,1 

L0~P ADA BUF ,1 *ADDITIfbN Lfb¢P 
IJD L~0P, 1 

* *100 W0RD SUM IS COMPLETE,. EXCEPT 
SHAQ = 2 Ii- *ADD 24-BIT SL1}f I~I *l\* 
ADAQ SUM T9S 48-BIT SUM IN *SUM* 
STAQ SUM *ALL D¢NE 

UJP,I START 

* 
INTADD UJP ** 

ENA INTADD 1 
SWA CIT ,1 2 
ENI 1,1 3 
LDA CIT,1 4 
SHAQ -24 5 
Xf/JA,S -0 6 
ADAQ SUM 7 
STAQ SUM 8 
ENA 0 9 
STA CIT,1 10 
UJP,I INTADD 11 



21.1 (cont.O 

Discussion of START+l thru START+5 in the Example 

Initialization to recognize an interrupt 

(1) the programmer must store the address of his interrupt 
routine in the lower 15 bits of the proper CIT table 
entry (See Section 2l~5) and 

(2) the programmer must set the proper bit or bits in the 
IMR (See Section 21.4) and 

(3) the programmer must enable the interrupt system. 

Discussion of INTADD in the Example 

Processing the interrupt 

(0* an d ( 2 ) * 

(3)* and (4)* 

CIC replaced the lower 15 bits of CIT+7 with the 
address of ABNORMAL. If we expect to get another 
overflow interrupt, we must again place the address 
of our routine in CIT+7. (Location CIT+7 applies 
only to overflow interrupts, see Section 21.5) 
Upon entry to an interrupt routine, CIT+(Bl) equals 
the CIT table location where the ~~A of an Interrupt 
Routine must be placed to process the next interrupt 
of the type currently being processed. 

CIC stored the original contents (the "overflowed tl 

sum) of the A register at CIT+l and used the A 
register for its own purposes. We are merely re­
loading the original A regi~ter contents at the 
time of overflow so that we may process the over­
flow. 

(4)*, (5)*, (6)*, (7)* & (8)* are processing the overflow condition 
into a 48-bit true sum. 

(9)* and (0)* Since CIC will load the A register from CIT+l be­
fore returning to our original sequence, we must 
place into CIT+l whatever quantity we desire to 

(1)* 

be in the A register upon re-entry into our original 
sequence. 

Returns us to CIC for housekeeping (explained later) 
before giving control to our original sequence. 

Discussion of the Function of CIC 

When an interruptible condition occurs, the Interrupt Register 
is compared to the !MR. If (a) any corresponding bits are set, 
and (b) the interrupt system has been enabled, then 

(1) the interrupt system is disabled, 
(2) the address of the instruction which would normally be 

executed next is stored in the lower 15 bits of absolute 
location 4, 

(3) an identifying code is stored in the lower 12 bits of 
location 5 and, 

(4) control is given to location 5. 

Here are the contents of locations 4, 5 and 6 under SCOPE. 

00004 
00005 
00006 

UJP 
N~P 
UJP 

*refers to card number in INTADD example 

** 
o 
CIC 



21.1 (cont.2) 

Since the hardware gives control to location 5 (which is a no 
operation instruction),we see that a jump is made to CIC (Central 
Interrupt Control). CIC saves the contents of A, Q, B1, B2 and B3 
at CIT+I thru CIT+5. Since an identifying code (showing what 
condition caused the interrupt) is set in the lower 12 bits of 
location 00005, CIC knows which entry in CIT contains the address 
of the programmers interrupt routine. 

CIC does a return jump to this location, and the programmer's 
interrupt routine (INTADD in this example) is executed. The 
interrupt routine does a UJP or UJP,I thru it's entry point 
to return to CIC when finished. 

CIC restores the five registers, clears the flip-flop which was 
set by the interruptible condition (arithmetic overflow in the 
example), enables the interrupt system, and does an indirect 
jump through location 00004. The indirect jump gives control back 
to the instruction which was orgina1ly interrupted. 

21.2 INTERRUPTS WITHOUT USING CIC* 

If the programmer does not wish to us~ CIC to help in the pro­
cessing of his interrupt, then at location 00006 he must store 
a jump to the address to which he wishes control to be given. 
In his interrupt routine, he must save and restore his registers 
(if his routine uses them) if he wishes them to have their 
original contents upon return to the main coding. He must also 
clear the flip-flop in the Interrupt Register (with an INCL 
instruction) which signalled the interruptible condition. His 
last two instructions should be: -

EINT 
UJP,I 4 

If the last instruction in the interrupt routine does not use 
an indirect reference to location 00004, the control may never 
return to the main progran. This is because after an EINT he is 
assured of being able to execute only one more instruction before 
the interrupt system can recognize another interrupt. Hence, if 
he has programmed for interrupt on more than one condition and 
another is present, the computer will interrupt again and the 
address portion of the j~p instruction at location 00004 will 
be changed before it can be executed. Since it will be changed 
to 00004, the computer will stall on a jump to location 00004 
after completing the processing·of the current interrupt. 

*Since CIC is essential for SCOPE I/O, it is assumed that no I/O 
will be done or that SCOPE isn't being used. 

21.3 I/O USING CIC (See also Section 16.2.3) 

In progrrumming for I/O interrupts using CIO, all the housekeeping 
is done by CIO. (The programmer does not EINT, SWA CIT+k, or set 
the IMR with an SSIM). CIO actually uses CIC in the same manner 
that we indicated, but the programmer does not have to attend to 
the details. 

Exa~le: Suppose that we wish to output 30 words fram locations BUFF thru 
BUFF+29 onto logical unit 15. We wish to continue executing 
instructions while the output is going on. However, as soon as 
the output is finished, we wish to be "interrupted" and process 
a special sequence of code, then return to our original sequence. 



21.3 (cont.) 

Following is the code that will accomplish the task: 

EXT CI~ 

START UJP ** ENTRY 

ENA 0 SET BUFFER FLAG T~ BUSY 
STA BFRBUSY 
RTJ CI~ G~ T~ CI~ T~ -
02 15,2 WRITE WITH INTERRUPTS ~N LU 15 
UJP REJECT WRITE REJECTED IF WE GET HERE 
40 BUFF START ~UTPUTTING FR~M L~CA *BUFF* 
0 30 ~UTPUT 30 W~RDS 
0 INTADD WHEN INTRPT ~CCURS, G~ T~ INTADD 

SSH BFRBUSY NEED *BUFF* N~W, IS WRITE D~NE 
UJP *-1 IF N~, L~~P UNTIL FINISHED 

IF YES, C~NTINUE 

UJP,I START PR~GRAM ALL ~NE, EXIT T~ SC~PE 
* 
TlI..T'" AT'\n TTTU ** ENTRY ~INT f/JF INTERRUPT R¢UTINE .1.1'l.LfiJ.JU Uu'" 

1 Interrupt Routine 

J 
Special Sequence of Code 

ENA,S -0 SET BUFFER FLAG T~ N~T BUSY 
STA BFRBUSY 
UJP,I INTADD EXIT T~ MAIN C~DE VIA CIe 

* 
BFRBUSY ~CT -0 +0 = BUSY, -0 = N~T BUSY 

21.4 INTERRUPT MASK REGISTER BIT ASSIGNMENTS 

Mask Bit 
Mask (x) Positions Codes Interrupt Conditions Represented 

00 0001 I/O Channel 0 (includes interrupts 
generated within the 
channel and external 
equipment interrupts) 

01 0002 1 
02 0004 2 
03 0010 3 
04 0020 4 
05 0040 5 
06 0100 6 
07 0200 7 
08 0400 Real-time clock 
09 1000 Exponent overflow/underflow & BCD faults 
10 2000 Arithmetic overflow & divide faults 
11 4000 Search/Move completion 



21.5 CIT ASSIGNMENTS 

Symbolic 
Location 

CIT+O 

+1 
+2 
+3 
+4 
+5 

+6 
+7 
+8 
+9 
+10 
+11 
+12 
+13 

+14 
+15 
+16 
+17 
+18 
+19 
+20 
+21 

Content 

Interrupt flag 

(A) 
(Q) 
(Bl) 
(B2) 
(B3) 

Real Time Clock 
Ari thmet ic Overflow 
Divide Fault 
Exponent Overflow 
BCD Fault 
Search/Move 
Manual Interrupt 
Associated Processor 

Interrupt 

Channel 0 
Channel 1 
Channel 2 
Channel 3 
Channel 4 
Channel 5 
Channel 6 
Channel 7 

I Explanation 

If +0, no interrupt occurred. 

If -0, interrupt occurred. 

l Contents of these registers 
Vlhen last interrupt occurred. 

J
'r Registers are restored 

from here on exit from 
CIC. 

I 
I 

Initially contains UJP ABN~RMAL., 
I Address of user interrupt routine 
~ stored in CIT by user main 

program when the corresponding 
interrupt is selected. 

"1 Initially contains UJP ABN0RMAL. 
Address is set by CIO when 

J 
interrupt is selected. Table is 
extended for each pair of 
channels added to the hardware 
con f igurat ion*. 

~'( The Central Interrupt Table (CIT) length varies from 
15 to 21 entries and is dependent on the number of 
channels present in the system. The length of the 
table is specified at the time CIC is assembled under 
COHPASS prior to doing a PRELIR (Prepare library tape) 
of SCOPE. 



SAMPLE COMPASS PROGRAMS 

SEQUENCE ,001 

EXAMPLES 

EXAMPLE 20 (AVERAGE) 

EXAMPLE 19A(CR2PR) 

EXAMPLE 21 (CODE) 

EXAMPLE 22 (MEQ.TEST) 

EXAMPLE 23 (TY.OLT) 

EXAMPLE 24 (DEMO) 

EXAMPLE 25 (MTDRlVER) 

MAC 

EXAMPLE 26 (COPY) 

eIe VERSION SI 0.0 

MTMTCIO 

TYPEIN 

SORT 

TYPEOUT 

FLOATF 

CRDTP 

MTMT 

CVfBCDB 

CVfBBCD 

SEQUENCE ,002 

IDC 

- Load/Snap/Run -

- Memory Map -

- Snap Number I & 2 -

SEQUENCE ,003 and OCC's 

- Memory Map -

- Memory Dump -

AlT 

AlB - A9T 

A9B - AIOB 

AlIT - Al2T 

Al2B - Al3B 

Al4T - Al5T 

Al5B - Al6B 

Al7T - A2lB 

A22T - A24B 

A25T - A26B 

A27T - A29T 

A29B ~ Po.31B 

A32T - A33B 

A34T - A35T 

A35B - A36B 

A37T - A38T 

A38B - A39B 

A40T - A4lB 

A42T - A43B 

A44T - A45T 

A45B - A46B 

A47T 

A47B - A48T 

A48B 

A49T 

A50T - A50B 

A5lT 

A5lB 

A52B Appendix 



;. 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
e 

• 
• 
• 
• 
• 
• 
• 
• 
• 

SEQUENCE,OOl 
JOlh", 
COMPASS,L.,H 

C:OMPASS .. 32 (2.11 

UNDEFINED SYMBOLS 
SAM 
SYM 
SYMBOL 

• MUL TIPLY"OEFlNEO SYM80LS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

GEORGE 

EXTERNAL SYMBOLS 
BCOBOXS 
FDPBOXS 

LENGTH OF SUBPROGRAM 
LENGTH OF COMMON 
LENGTH OF DATA 

00372 
00000 
00000 

EXAMPl.ES 

··f A-l 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

11"11&6 PAGE • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• COMPASS-J2 12.11 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

EJ\A~PlE.S 111:>l/b6 PAGE 
T • .tJS IS A lISTING OF T"I1 CDC 3200 II>jSTRUCTlO~ SET 

•••• **.** ........... ** .................................................. . 
uHINITIO~ O~' OPt:RATr0ll< rODE MOOIFIE'IS 

............................................ ** ••••••••••••••••••••••••••• 

EI.l EQUAL 
NE "/OT EQUAl 
GE GHEATER T"'A~ OR EO~Al 10 
l T L.ESS THAlli 
I INDIRECT ADOHESSIIIIG 
S SIGN EXTEIIISIOIII 
INT IIllTE~RUPT 
B HACKoIARO 
H >tALF ASSE-.Rl" OR DISASSE..,BL Y 
N 1110 ASSEMBL y O~ 0 I SASSEMBL Y 

•••• 00 .................................................................. . 

OEFIh.llTION OF TE"lMS AND O;YMBOL.S ............................................................................ 
A THE IIAII REGI!>TER 
Q THE IIOt REGISTER 
A 101 48 BIT REG, (A AND Q CO"BINED RESPEcTIVELY) 
lolA 411 RtT REG, (0 AND A COMBINED RESPErTlVEL.Y) 
E THE 4B BIT tEt REGISTEw 
EL LO"'E~ 24 BITS OF IIEII 
EU UPPE~ ~4 BITS OF tEt 
EO THE '52 BIT (13 CHAR) liE OECIMALII REGTSTeR. SAME AS 

IIEII RUT EXTENOED FRO.., 4B TO 52 BITS. 
AUE 96 BIT REG, (A,O ANn E COMBINED RESpECTIvELY) 
B ANY ONE OF THE THREE INDEX REGISTERS 
fil INDEX REGISTER O~E Ollll'( 
liZ INDEX REGISTER 1010 O"JLY 
~3 INDEX REGISTER THREE ONLy 
o 4 61T 11011 REGISTER 
IMR INTEHRUPT "ASK REGISTEH 

.., 15 BIT WORD ADDR~SS 
R 11 BIT CHARACTER AvDQESS 
FSCA FIRST SOURCE CHAHACTroR ADDRESS 
FDr.A FIRST DESTINATION CHARACTER ADOREo;S 
v ~ ~IT REGISTER FILE 400RroSS 
Y 15 BIT OPERAND 
C ... BIT SEARCH CHAHACTFR 
FL 4 BIT OPERAND '~CD FIEL.o LEIIIGTH) 
P CURRE~T IIIISTHUCTION aDURFSS AS INoICaTEO BY THE P REG 

( , .. ) 
( ... ·01+1) 
(H) 

, VI 

CONTF.:~TS OF 
;? SIT COIIITENTS OF "E"ORy LOCATION M 
loR RIT CONTENTS OF MroM LoCS M A~O .. +, RESPECTIVELY 
6 BIT COIllTENT OF MEMnHY CHARACTEH LOr:AT LON H 
24 AIT CONTENTS OF RroG FILE LOCATTON V 

HEAD NEXT INSTRUCTIO"J 
",HERE OA TA IS BEING c;TORroD INTO PART OF A MEMOR'!' 
L.OCATION , TtiE REMAINDER OF THIoT LOCaTION REM'INS 
UNCHANGED 

AL.L POSSIBLE ()PEtI,TInN MtIOIFtEHS A!'iE SHOlli!ll wITH EACH 
'4NEMONIC CODE. SEPARATE!) BY (.1. 
TI'iERE IS ~~o U~DEK • ",HER;:: I<UL,TIPL,. M·1DFIERS :ORE 
POSSIBLE. 
THE FellLOIll I 1116 MOO I F I.HS ARE OPTI O"JAL Alllt) CAN tiE 
I)HOPPED 8Y EL.E"INATI~G BoTH THE "1nOII"JEH ANO THE 
PRECEOING COM"1A. 

I • S • IIIIT • B , "I • N • 

ON ALL CONDITIONAL J'J'"'P AND SKIP INSTRUCTIONS, 
IF T"'~ COIIIDlTION IS 'lor MET THEN Ah.lI P.l 

.' 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• .' • 

A-2 



• • A-3 

• COMPASS·32 12.11 EIl.AMPL.ES ll/;>l/bb PAGE • ....... ** ••••••••••••••••••••• ** ................... 00 ••• *************** •••••• 

• 3200 INSTRUCTION SET • 00 ..... * •••••••• 0**0** .... 06 ............... 0.··.** ••• *** .. ** ..... * ................. 

• L.OAD CLASS • 
00000 20725252 20 25252 3 LOA,1 "',B 1M) TO • • 00001 21725252 21 25252 3 LOQ,I "1,B 1M) TO 
00002 22'+25253 22 05252 3 L.ACH >l,81 (101) TO 05-00 • A 23 .. 06 CL.EARED 
00003 23'+25253 23 05252 3 LiilCH >l,82 (fol) TO Q 05-00 • Q 23-06 CL.EARED ·1 • 0000'+ 2'+725252 2'+ 25252 3 LCA,1 "'.8 (1'1) COMPLEMENT TI') A 
00005 25725252 25 25252 3 L.OAQo1 "".1'1 11'1,"'+11 TO AQ 

I 
00006 2b125252 2b 25252 3 LCAIol.l "'.B IM.M.1)COMPL.~MENT TO AQ • • 00007 ;:>7725252 27 25252 3 L.DL.I 1'1.8 (M)LM(GI TO A • 1'1 AND Iol UNCHANGE 
00010 5'+725252 5'+ 25252 3 L.OI.l ".B 1M 1'+-001 TO 1'1 

• STORE CLASS • 
00011 '+0725252 40 25252 STAr! "',8 IAI TO M • • 00012 41725252 41 25252 3 STQt! ,""A IQI TO M 
00013 421025253 102 05252 3 SACH ;<,B2 IA n5-00) TO R 
0001'+ 43425253 43 05252 3 s Cole 11 R.B1 (101 05-001 TO " • • 00015 44725252 44 25252 3 SIllAd ",.8 (A 14-00) To M \4 .. 00 
00016 45725252 45 25252 3 Sh<.l.I M.B (AG) TO "1,1'1.1 

• 00017 46725252 '+b 25252 3 SCHA,I "',8 (A 16-001 TO M 16-00 • 00020 47725252 47 25252 3 STI.I "1,8 (tJ) TO M 14-nO 

24 • FlIT ARIT'" CL.ASS • 00021 30725252 30 25252 3 AOAf 1 "1,B (A). (1'1) TO A 

• 00022 31725252 31 25252 3 S8A. I "',B (AI.(M) TO A • 00023 50725252 50 25252 3 MtJAtl '4.B (A)*IM) TO Oil 
00024 51725252 51 25252 3 OVA'I "1,B (AG)/IM) TO A , REMA I NDER TO 0 

• 00025 34725252 34 25252 ~AO,I "1.B IA) .11'1) TO M , A IS UNCHANGED • 
• 48 BIT ARlTH CL.ASS • 00026 32725252 32 25252 3 ALlAiil. I ... ,B (AG).(M,"'·l) TO AiiI 

• 00027 33725252 33 25252 3 SI:jAt.I, I '1,1'1 IAG)-IM,"'·l) TO AQ • 00030 56725252 56 25252 3 ~UAY,I M,B IAQ)"IM,"'·ll TO AGE 
00031 57725252 57 25252 3 DVAt.I. I "I.B IAQr::)/IM.M·1) Tn AG. REM()H TO E 

• Fl.OATING POINT ARITH CLASS • 
00032 60725252 60 25252 FAD.I "'.8 FPIAQ) + FPIM,M·1) TO AQ • • 00033 61725252 61 25252 FSFhl .... a FPIAQI - r:PIM.M+11 TO AQ 
00034 62725252 62 25252 FMU,I M.a FP(AQ) * FPIM.M.11 TO AO 

• 00035 63725252 63 25252 FOv.I ... B FPIAQI I FPIM.M+1) TO AQ • 
• • 
• • 
• • ------------------------------------------------------------------------------------------------------------------

• • 
• COMPASS·32 12.11 EJl.AIolPL.ES 11/;:01/66 PAGE • 
• BCD CLASS • 00036 6'+425253 b4 05252 LDE FCA,i'll IFCA THRU FCA.IO)-lI TO EO Rlr,HT JUSTIFIED 

• 00037 65425253 65 05252 3 ST" FCA,B2 (ED) TO FCA TH~U FCA+ID)"l t ~IGHT JUSTIFIED • 000'+0 66425253 66 1)!)252 3 A Or;: FCAtH3 IED)+IFCA THRU fCA.(O)-ll TO FD 
0.0.041 67425253 67 05252 3 SBr:: FCA.A3 IEDl-IFCA THAI) FCA.(O)-lI TO FO 

• 00042 70300014 70 00014 3 SFr:: t<t8 SHIFT EO t K nIGITS LEFT OR RIGHT (END OFF) • 00043 70700012 70 00012 SET FL FL. TO 

• 00044 70625252 70 25252 EOJ RNI 1'1 IF ED OVEkFLOIll CHARACTEq IS NONZERO • 00045 70425252 70 25252 EZJ.EQ RNI M IF EO CI')NTAyNS ZERO 

• 00046 70525252 70 25252 ElJ.L.T RNI M IF ED IS NEGATIVE • 24 BIT INTER-REGISTEH TRANSFER CLASS 

• 00047 53300000 53 00000 3 TIl. (£:I) TO A 14-00 • A 23 .. 15 CL.EAAED • 00050 53700000 53 00000 3 TAl 14 14-001 TO B 

• 00051 53010077 53 10077 0 TMC) IV) TO Q 
00052 53410017 53 10077 0 1101", (Q) TO V • 00053 53020017 53 20017 0 TMA (~) TO A 

• 00054 53420017 53 20017 0 TAM IA) TO V 
00055 53330017 53 30077 3 TMI II,B IV 14 .. 00) TO 8 • 00056 53730017 53 10017 3 Tl'" 11.1'1 (I:j) TO V 14-nO , V 23-15 CL.EARED 

• 00057 53040000 53 40000 AiolA IA) .IGI TO II • 00060 53340000 53 40000 AlA A IAI. (BI TO A 

• 00061 53740000 53 40000 IAI ~ IAI.IA) TO '" • 48 AIT INTER-REGI STEH TRANSFER 

• 00062 55100000 55 00000 El.Q IEl.) TO Q • 00063 55500000 55 00000 GEL Iwl TO EL 

• 00064 55200000 55 00000 EUA IlU) TO A 
00065 55600000 55 00000 AEU (A) TO EU • 00066 55300000 55 00000 EAQ Il) TO AO 

• 00067 55700000 55 00000 AG!: (AQ) TO E • 
• • 
• • 
• • 
• • 
• • 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
~ 

• 
• 
• 
• 
• 
• 

COMPASS-J2 12.11 

00010 14000000 14 

00011 00025252 00 
00012 11170000 77 

00073 01125252 01 

00014 00125252 00 

00015 
00016 
00017 
00100 
00101 
00102 

00103 
00104 
00105 
00106 

00101 
00110 
00111 
00112 

00125252 00 
00225252 00 
00325252 00 
00425252 00 
00525252 00 
00625252 00 

03025252 03 
03125252 03 
03225252 03 
03325252 03 

03425252 03 
113525252 03 
113625252 03 
03125252 03 

00113 02325252 02 
00114 02125252 02 

00115 
00116 
00111 
00120 

00121 
00122 
00123 

04412345 04 
04512345 04 
04312345 04 
04012345 04 

n5412345 05 
05512345 05 
05312345 05 

00000 0 

25252 a 
10000 3 

25252 

25252 

25252 
25252 2 
25252 3 
25252 0 
25252 1 
25252 2 

25252 a 
25252 1 
25252 2 
25252 3 

25252 0 
25252 1 
25252 2 
25252 3 

25252 3 
25252 3 

12345 a 
12345 1 
12345 3 
12345 0 

12345 
12345 
12345 

NOP 

tiLT 
UCe; 

UJp. I 

RTJ 

SJl 
SJ2 
SJ3 
SJ4 
SJ5 
SJ6 

AZJ.EQ 
AZJ,NE 
AlJ.GE 
AZJ.LT 

AQJ.EQ 
AQJ.NE 
AQJ.GE 
AQJ.LT 

IJI 
IJI) 

11/21/66 PAGE 

STOP AND JUI4P CLASs 

M,B 

... 

... 
14 
". 
... 
... 
... 
... 
... 
... 

"'.8 
.... 8 

IF 181 NE 
IF CBI NE 

SKIP CLASS 

00 NOTHIIIIG 

STOP. ANI '" 
STOP. RIllI P.l 

RNI '" 

IPI TO M 14·00 , RNI "'.1 

RNI '" IF KEV 1 IS SET 
RNI '" IF KEV 2 TS SET 
ANI '" IF KEv 3 TS SET 
RNI '" IF KEy • TS SET 
ANI '" IF KEy 5 lS SET 
ANI '" IF KEV 6 tS SET 

ANI M If IAI EQ + OA • ZEAO 
RNI M IF IAI NE + OA • ZERO 
ANI '" IF (A) PO~ITIVE 
RNI '" If (AI NEGATIvE 

RNI '" IF (AI EQ IQI 
RNI '" IF IAI NE IGI 
RNI M IF CAl GE IQI 
RNI '" IF IAI LT IQI 

1~I+l TO BAND RNI M. Ow RNI P+l 
(I'll-I TO R ANO RNT M. Ow RNI P+l 

6 

WITI'IOUT SIGN EXTENSION. ONLY THE LOwEA 15 RIT .. Of A OR Q 
MIE COI4PARED WITH Y. 
WITH SIGN EXTENSION • BIT 14 OF V IS EXTENDEO THRU BIT 23 
"'AKING V 24 BITS FOA COMPARISON wITH ALL OF A OR Q. 

ASE'S 
QSE'S 
ISE 
I SF. 

ASG'S 
QSG'S 
ISG 

y.B 
V 

'I' 
V 
V.B 

RNI P+2 IF CAl EQ Y • Ow RNI P+l 
RNI P+2 IF IQI ~Q 'I' • Ow RNI P+l 
RNI P+2 IF lei FQ v , Ow RNI P.l 
RNI P+2 IF 'I' EO a • Ow ANI P+l 

RNI P.2 IF 141 GE 
R~I P+2 IF CQI ~E 
RNI P+2 IF C~I GE 

• Ow RNI P+l 
• O. ANI P+l 
, Ow RNI P+, 

00124 10712345 10 12345 3 ISO '1'.8 If (BI EQ Y CLEAA B AND ANI P+2. OTHERwiSE 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 00125 10312345 10 0 12345 3 lSI '1'.8 If (BI EQ Y CLEAR 8 AND ANt P+2. OTHEAIIISE 

I, eBI +1 TO 8 ANO RNt '+1 • 
~ eBl.l TO B ANO ANt P+1 

I~ ~ 

I-:---~~~:~:s--~:---~:~~,-------------:::~P~:-------------------------------------~/~~~~~:--------------~ 
I 

I: 
I~ 
• 
• 
~ 

• 
~ 

• 
• 
• 
• 
• 
• 
• 
• 
• 

00126 
00127 
00130 

12300014 12 
12100014 12 
13300014 13 

00131 13700014 13 

00132 
00133 
00134 

00135 
00136 
00137 

H412345 14 
14512345 14 
14312345 14 

15412345 15 
15512345 15 
15312345 15 

00014 3 
00014 3 
00014 3 

00014 

12345 
12345 
12345 

12345 
12345 
12345 

SHIH CLASS 

POslTIVE S'"'IfT COUNT CI<I INDIC4TES LEFT SHIFT. ALL LEFT 
SHIFTS ARE END AROUNO. 
NEr,ATIVE S'"'IFT COUNT 111.1 INDICATES AIGHT SHIFT. ALL RIGHT 
Sl'trFTS ARE ENO OFf WITH SIGN El(TENOED. 

I(,B 

1(.8 
1(.8 

ENTER CLASS 

SHIFT (A I LEFT nR RIGHT I( BITS 
SHIFT IQI LEFT nR RIGHT I< BITS 
SHIFT IAGI LF.FT OR RIGHT K 8ITS 

SCALE IAQI 

IIlTtiOUT SIGN EXTENSION • THE UPPER BITS OF A 'OR G ARE CLEARED. 
IIITH SIGN EXTENSION, BIT 14 OF Y IBIT 16 OF AI IS EXTENDED 
"'AI<ING Y OR A ?4 BITS FOR ENTRy INTO ALL OF A OR O. 

ENUS 
ENO.S 
ENJ Y,B 

INCREASE CLASS 

V To A 14-00 
V To Q 14-00 
V To B 

WITti OR WITHOUT SIGN EJITENSION • V WILL BE TREaTED AS A 24 8IT 
VALUE WI'IEN ADDEO TO A OR Q. 
IIITIiOUT SIGN EXTENSION • BlTS ?3·1C; OF V WILL QE ZERO. 
WITH SIGN EXTENSION • tlIT 14 OF Y IS EXTENDED THRU BIT 23 
MAKING 'I' A 24 BIT VALUE. 

IF V IS A NEGATIvE VALUE. TtiE REGISTER IIILL B~ DECREASED BY 
TriAl AMOU"IT. I MUST uSE SIG"I EXT TN THIS CASE FOri A ANO 01 

INA'S 
IIIIO'S 
INr V.B 

INCREASE CAl BY 'I' 
INCREASE IQI ~y V 
INCREASE IBI BV 'I' 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-4 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
•• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMPASS-32 

00140 
00141 
00142 

00143 
00144 
00145 

00146 
00147 
00150 

00151 
00152 
00153 
00154 
00155 
00156 
00157 
00160 

16412345 16 
16512345 16 
16312345 16 

17412345 17 
17512345 17 
17312345 17 

35725252 35 
36725252 36 
37125252 37 

71425261 11 
23025253 23 
01000151 01 
71425261 71 
23425253 23 
01000154 01 
72425653 72 
(15025253 05 

12345 
12345 
12345 

12345 
12345 
12345 

25252 
25252 3 
25252 3 

05254 
05252 

P00151 
05254 
05252 

P00154 
05352 
05252 

00161 01000157 01 0 P00157 0 

00162 ~6225252 06 
00163 07225252 07 
00164 10025252 10 
00165 52725252 52 

COMPASS-32 (2.11 

00166 77067007 77 
00167 01000166 01 
00170 77160022 77 
00171 01000170 01 

00172 73025261 73 
00173 63425253 63 
00174 01000172 01 

00175 73400000 73 
00176 60400000 60 
00177 01000175 01 

00200 14025322 74 
00201 63425252 63 
00202 01000200 01 

00203 74400000 74 
00204 60400000 60 
00205 01000203 01 

00206 75025261 75 
00201 63425253 63 
00210 01000206 01 

25252 2 
25252 2 
25252 0 
25252 3 

EXAMPLES 

67007 0 
P00166 

60022 
P00170 

05254 
05252 

P00172 

00000 
00000 

P00175 

25322 
25252 

P00200 

00000 
00000 

P00203 

05254 1 
05252 3 

P00206 0 

00211 75400000 75 1 00000 
00212 60400000 60 1 00000 
00213 01000211 01 0 P002H 

00214 76025322 76 
00215 63425252 63 
00216 01000214 01 

00217 76400000 76 
'00220 60400000 60 
00221 01000217 01 

vu222 7;;50000 77 
00223 77760000 77 

25322 
25252 

P00214 

00000 
00000 

P00217 

50000 
60000 

11/:,1/66 PAGE 

LOGICAL INST~UCTlOIIJS WITHOUT STORAGE REFERENCE 

"'lTH OR wITHOUT SIGN EXTENSION. Y IS TREATED 4S A 2 .. BIT 
VALUE. 
wITHOUT SIGIIJ EXTENSION. ilITS ;>3-10; OF Y ARF ZFROS. 
wITH SIGN ~XTENSION • ~IT 14 OF Y TS EXTENDED THRU SIT 23 
MAKING Y A ;>4 ~IT VALUE FO>l THF OPFRATION. 

XllAlS 
XOQ.S 
xoy 

AII/A'S 
ANQ.S 
AN! 

SS"'. I 
SCAI [ 
LPAt! 

S;;CE.INT 

UJp 
SRCNoIII/T 

UJp 
MOvE.INT 

UJp 

MEG! 
MTH 
S5,,! 
CPR.! 

Y,B 

Y,B 

SC (A) BY 
SC (01 AY 
SC (Bl RY 

LM (AI BY 
LM (01 BY 
LM la) BY 

LOGICAL INSTRUCTIONS WITH STORAGE REFERENCE 

SS (AI BY ("'I) 

SC (AI BY ("'I 
~"" IAI BY ''''I 

BUFFERED SEARCH ANn MOVE CLASS 

*-2 
FL.FSCA.FDCA 

*-2 

STI'lRAGE TEST CLASS 

'I. INTERVAL 
'1.INTE""AL 
M 

'1.B 

INPUT I OUTPUT 

SEARCH (FC" THRU ~CA) FOR EQ C 

REJECT INSTRUcTlnN 
SEARCH (FCA THRU I.CAI FOR NE C 

REJECT I"ISTRUCTII'lN 
MOVE (FSCA THRU FSChFI.-l1 TO 

FUCA THRU FDCA+FI.-1 
REJECT INSTRUCTION 

MASKED EQUAL t TY SEARCH 
MASI(ED THRESHOl.n SEARCH 
STORAGE TEST ANn SHIFT 
COMPARE (M) wIT"! (A) AND CQ) 

llnl/66 PAGE 

CO"lNECT TO 1/0 ~QUIPMENT 
REJECT I"ISTRUCTION 

9 

CON 
UJp 
SEL 
UJp 

CC.CH 
*-1 
FC,CH 
"-1 

SELECT FUNCTtON ON 1/0 EQUIPMENT 
REJECT INSTRUt:TION 

INPC.INT.B,H 

UJp 

INAC.INT 

UJp 

INPw.I"IT,a."I 

UJP 

UJP 

UJp 

OTAC,INT 

UJP 

OUT"',INT.B.N 

UJp 

OTAW.INT 

UJp 

ell 
CTo 

CH,FCA,LCA·l 

*-2 

CH 

*-2 

*-2 

CH 

CH.FCA,I.CA·l 

*-2 

CH 

*-2 

CH,FWA,LWA+l 

CH 

*-2 

CHAR ADRS INPUT TO STORAGE 

REJECT INSTRUCTIoN 

CHAq ADRS I"IPUT TO A 

REJECT INSTRUCTII'lN 

WORO ADRS IIIiPUT TO STORAGE 

REJECT I"ISTRUCTION 

WORn ADRS INPuT TO A 

REJECT I"ISTRUCTII'lN 

CHAR ADRS OUTPUT FROM STORAGE 

REJECT INSTRUCTIt'lN 

CHAR ADRS OUTPUT F~OM A 

REJECT INSTRUCTIoN 

WORO ADRS OUTPUT F~OM STORAGE 

REJECT INSTRUCTION 

"'ORI) ADRS OUTPUT FROM A 

REJECT INSTRUCTIt'lN 

CONSOLE TYPEwRITER INPUT 
CONC;OLE TYPEwRITER OUTPUT 

• A-5 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• • 
• COMPASS-32 (2.11 EXAMPI.ES 111;?1Ibb PAGE 10 • 

SENSING AND COPy CLASS • • 00224 11260000 71 60000 COpy CH COpy EXTERNAL STATUS AND IMR TO A 
00225 77360000 77 ftOOOO 3 CINS CH CnPY TNTERNAL STATUS AND IMR TO A • 00226 11267171 71 67771 2 ElI.S X,CH SENC;E EXTERNAL "TA TuS • 00227 11367171 77 67171 3 INS X,CH SENC;E INTERr-aL "U rus 

• 00230 11467171 77 67717 0 INTS l(,CH SENSE INTERRUPT • 00231 77607771 77 07771 2 PAUS X PAUSE 

• CONTROL CLASS 

• 00232 11507771 71 07717 INCL I NTERRUPT CLEAR 

• 00233 11517171 71 17717 lOCI. INPUT/OUTPUT CLFAR • 00234 11710000 71 10000 3 SFpF SET FLOATING POtNT FAULT 

• 00235 77120000 71 20000 3 SBCD SET BCD FAULT • INTERRUPT CLASS 

• 00236 77521171 77 21711 SSI'" sEI.ECTIYELY SET lMR • 00231 71537717 71 31171 SCI'" J( SEI.ECTIVEI.Y CLEAR IMR 

• 00240 77130000 77 30000 3 DINT DISABLE INTERRUPT SYSTEM • 00241 11140000 71 40000 3 EINT ENARLE INTERRUPT SYSTEM 

• 00242 11425253 11 05252 3 ECHA,S R R TO A 16-00 • 00243 77570000 71 70000 1 UPR INTERRUPT ASSOCTATEO PROCESSOR 

• ... _----------------- TABLE OF MASt< BIT ASSIGNMENTS ------------------ • 
• BIT CODE SSIM • SCIM INCI. INTS lOCI. PAUS TNS 

• 00 0001 CH 0 CH 0 LINE 0 Cli 0 CH 0 BUSY PARtTY ERR ON CH J( • 01 0002 eH 1 Cli 1 LINE 1 CH 1 CH 1 BUSY CH X BUSY READING 
02 0004 CH 2 CH 2 LINE 2 CH 2 CH 2 BUSY CH J( BUSY WRITING 

• 03 0010 CH 3 CH 3 LINE 3 CH 3 CH 1 8USY EXT REJECT ON CH X • 04 0020 CH 4 CH 4 LINE 4 CH " CH " BUSY NO ~ESP REJ ON CH X 
05 0040 eH 5 CH 5 LINE 5 CH 5 CH 5 RUSY - ILLEGAL WRITE 

• 06 0100 eH 6 CH 6 LINE 6 eH 6 CH ft BUSY Cli l( PRESET CON/SEL • 01 0200 CH 7 Cli 7 LINE 7 Cli 7 CH 7 BUSY INTF:RNAL. INT ON CH X 
08 0400 REAL TIME CLOCt< INT TY TV RUSY *EXp O\,FL'" FAULT 

• 09 1000 *EXP OYfLW/BCO f AUI. T NOT FINISH .. PI tTH OIlFI.", FAULT • 10 2000 dRITH OIlFI.WIOIIi FAUI.T NOT REPE_T -DIvIDE FAULT 
11 4000 SEARCH/""OYE COMPLETE SIM SIM BUSy _AC" FAuLT 

• • INTERNAL FAULTS CLEARED BY SENSING • 
• • 
• • ,. . 

I _~. _______________________________________________________________________________________________________ ~j 
• • 
• COMPASS-32 12.11 EXAMPI.ES 111;11/66 PAGE 11 • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

00244 
00245 
00246 
00247 
00250 
00251 
00252 
00253 
00254 
00255 
00256 
00257 
00260 
00261 
00262 
00263 
00264 
00265 
00266 
00261 
00210 
00211 
00212 
00213 
00214 
00275 
002753 
00216 
00271 
00300 
00301 

00302 
00305 
003053 

00306 
00307 
00310 

20000302 
22001424 
22001427 

00000001 
00000002 
71771715 
00000050 
77171700 
00000001 
00000002 
00000062 
71171715 
00000143 
03611006 
00000000 
00000001 
71171771 
17777776 
00000000 
00000142 
51763717 
77777177 
20076100 
00000000 
20044114 
63146315 
44256262 
21272560 
442562 

62 
21272560 
17304643 
00000277 
00001374 

20 POOJ02 
22 PoOlOS 
22 Po0305 

0 
0 
3 

........................................................................ 
-------- COMPASS COOING TECHldQUU --------....................................................................... 
OCr 

DEc 

DECO 

BCO 

BCo,C 
BCo,C 

HOLMSG liFO 

TON BSs 
TOMe BSS'C 
TOMe! BSS,C 

LOA 
LACH 
LACH 

ASSEM81. Y Of CONSUNts 

2,NESSAGE 

3,NES 
5.SAGE 

06171, H 18/HOL, 091 0, A i5/HOLMSG. C24/HOLMSG 

STORAGE RESERYATtO/<j 

3 
3 
1 

TON 
TOMC 
TOMei 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-6 



• 
• COMPASS-32 (2.ll EXAMPLES 

• 
• 00311 20000012 20 0 00012 0 

00312 20000010 20 00010 0 S'fMRl 
00313 20071HO 20 77140 S'fMR2 • 00314 20000001 20 00001 
00315 20000025 20 0 00025 

00025 ADRS • 
• 00316 20000317 20 o P003}7 

00317 20000321 20 o POO321 TEMP 
00320 20000317 20 o P00311 

00317 TEMPI • 
• 00321 2000036i 20 P00361 a 

00322 2!:>000362 25 P00362 • 00323 25000364 25 P00364 
00324 20000360 20 P00360 
00325 25000366 25 POO366 
00326 20000357 20 P00357 • 00327 25000370 25 P00370 

• 
00330 20000330 20 P00330 a • 00331 20000332 20 P00332 
00332 20000330 20 P00330 
00333 • 20071717 20 71777 

•• 00334 WORr)AORS 
00334 Cl"iARAORI 

• 003343 CHARADR2 

00334 2000033 .. 20 P00334 
00335 20000334 20 P00334 0 
00336 22001560 22 o P00334 0 • 

• 
• 
• 
• 
• 
• 
• COMPASS-32 (2.ll EU>lPLES 

• 25252 ADURESS 

• 25252 M 
052523 R 
00003 8 

• 00001 Bl 
00002 82 
00003 83 

• 052523 FeA 
052511- LeA 
OOn14 K 

• 00017 II 
12345 y 
053523 FUCA 

• 052523 FSCA 
00012 FL 
00006 CH 

• 25252 FWA 
25321 L"A 
07777 X 

• uln07 CC 
u0022 FC 
00002 IllifERVAL 

• 00023 C 

• 
• 
• 
• 
• 
• 
• 
• 
• 

LilA 
LilA 
LUA 
LUA 
LUA 
EWIj 

LOA 
LOA 
LDA 
EQu 

LOA 
LUAIol 
LDAI.I 
LOA 
LDAQ 
LOA 
LDAQ 

LUll. 
LOA 
LOA 
LOA 

EQU 
ECoIu.C 
EQIj.C 

LUll. 
LUA 
LACH 

Ewu 
E.l.l1j 
El.lu.C 
EI.IIJ 
EWIj 
EIolI.) 
£'.1) 
E(.)lltC 
EIolIJoC 
ECoIlj 
Elt/IJ 
EWIj 
E(.)lj,C 
EWIj,C 
E(,)u 
EI.IIJ 
Ewu 
EI.IU 
El.ltJ 
EIo/IJ 
EUIJ 
E(.)IJ 
EWIJ 

AODRESSIIIIG MODES 

ABSOLUTE 

10 
lOS 
-37R 
S'fMR2-S'f"'81 
ADRS " 
258 

TEMP 
TEMP+2 
TEMPI 
TEMP 

=09 
=209 
-209. 

RELOCA T Ai3LI" 

LITERALS 

,,077777777 
-207373737373737373 
:CHABCD 
=2HARCOEFGH 

SPECIAL" CHARACTERS 

11/:>1/06 PAGE. 17 

tIllTERCl"iA'liGE OF wORD AND CHaRACTER ADURESSES 

. 
··3 
CHARAOR1 
CHARAOR2 TRUNCA T I O"l ERROQ 
,",OROAORS 

111:>1/66 PAGE 13 

S'f"'lBOL EQU~TIO"lS 

2525;>8 
IIDDRESS 
"'+1 
3 
1 
) 

"3 
>l 
>l+5 
12 
77B 
1234'53 
FCA+;>C;6 
FCA 
12B 
6 
"~ 

"·39 
7777~ 

1007>l 
2?1:l 
2 
;>38 

• A-7 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CUMPASS-32 

A 00331 

C 00340 
003'H 

UA 00342 
00343 

o 00344 

L. 00345 

M 00346 

o 00347 

U 00350 

T 00351 

12.11 EXAMPLES 11/':'1/&6 PAGE 14 

20000000 20 0 00000 0 

20000005 20 0 00005 0 
00000001 

20000343 20 0 P00343 0 

OOOOOUOI 
OOOOOUl~ 

?OOOOOOS 20 0 00005 U 

00000005 00 0 00005 0 

00000000 00 00000 () 

20000000 20 0 00000 0 

20000352 20 o 1'00352 0 
00)!)23 

LUA 

CO"''''ON 
L.UA 
OCT 
I'kr; 

L.uA 
G~.O"(j1:. OCT 
Gt:.UI'li:JE OEC 

1.!3 L.UA 

LUA.l 

LIn 

L.OA 

LUA 
C"A~ tI.lIJ'C 

CO"'PASS ASSEMBLY EQ~ORC; 

SAM 

~DLJH~SS FO~MAT EQROH 

ATTFMPT TO 4SSE~BLE INFO IN 
THE COMMON AJ:lEA 

MULTIPL.y DEFTNE"! SYMBOL 

O"'ERATlON MOnIFTEH EIUWR 

O,",ERATlOIII COnE ~RRUH 

iI- ..... oS:t .............. OtHt .. O ... ***O.****** .... * ... OO******* .. *** ........ ***.* ......... **00 ••••• *_ 
LI TE.HAL IN A C>iARACTEH ADDIiESS INSTRUCTlON 

00352 22001610 22 0 Po0356 a L.ACH =012 

L 00353 
U 00354 
U 00355 

Ll TERALS 
00356 
00361 
00362 
00366 

** .. ****0*******0*******0***0.**.******,.*.*****.*0.*.* ....... *** ....... **** ••••••• 
******.0*.0.0 •• 00000*.*.0.***.0.".****** •• * •••• *.**."'.** ... *** •••••• * ••••••••••••• 

"L.ANK CHAHACTE~~ IIII SYMAOLS 
20000353 20 0 Po0353 0 SYM tjOL LLlA 
01000000 01 00000 UJp SYM oWL 
01000000 01 00000 UJI> SYM80L 

•• *.**.* •• *** •••••• **.** •• ~*o-*.*.***o*o*.****o*oo .... ** ...• * ........ * •• ***** ... *** .... * ...... 
** ..... * ......... ****** ....... **.0 .. ***0'0.*.*******0** ................. ***** .... ** ••••••••• 

00000012 00357 21222324 00360 11117777 
00000011 

0000000000000011 
1373137313731313 

00164 
00310 

200444000 00000 00 
212223242">2 .. 2730 

NUMRt::H OF LINES wITI-! J)iAG"'U!:>TICC; 13 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

I. • I: ---~,~~~:~~:,-- -~:~,-'------------~~~~:,~~------------------------------------~~~~~~-~~~,----,-----------:-
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

AOOHESS 
AUIiS 
B 

81 
B2 
B3 
C 
CC 
CH 

CHAH 
CHA~ADHI 

CHAHAUH2 
FC 
FeA 

FOCA 
FL 
FSCA 
FillA 
Gt:UwGE 
HOL.MSG 
INTERVAL 
K 

LCA 
LiliA 
M 

25252 
00025 
00003 

00001 
00002 
00003 
00023 
07001 
00006 

P00352 
P00334 
P00334 

00022 
05252 

05352 
00012 
05252 
25252 

P00343 
P00211 

00002 
000 14 

05254 0 
~S3?1 
2525<' 

MUL. T 1I'LE-UEF INE.U 

1'2!);>!>? 
1'00315 
poooon poooo 1 
Poooo~ POOO01 
10'00012 1'00015 
POO020 1'000;>1 
1'00024 1'000;>5 
10'00030 POO031 
1'00034 POOO15 
"'00050 POOO55 
1'00061 POO073 
"'00111 POOl;>3 
"'0012" POO127 
POOl J4 POO 131 
1'0014~ POOh7 
1'00002 POOOl4 
1'0 00 r13 POOO13 
POO040 POO041 
POOl51 POO154 
POO1~6 
POO166 POOI10 
1'00200 P00203 
1'00214 P00211 
P00226 P00221 
P003Sl 
P00334 
,",00335 
1'00110 
1'00036 POOO37 
1'00151 POOlS4 
POS3'>2 p052<;2 
POO157 
POO041 POO151 
POO157 
10'00200 P00214 
1'00342 
I'OO? 71 1'00271 
POOl"" PO~ 1,,1 
"00042 1'001;>& 
1'00131 
1-'00 \'>1 1>00154 
I-'U0200 POOe14 
"'lIOOOO POOOO 1 

"'0000" PoOo01 
1-'0001" POOO 1 c; 
"'v0020 POOu;>1 
"'000;>4 pnoo?!> 
1"00030 I>OOUB 
1-'000,4 pnou15 
I-'tJOO4f. POOI)71 
"'000'" POOil7l> 
I"u 0 I ~ I 1>00 l~" 
"'001 0 ., "n n 1 oe, 

POOon4 
POOOlll 
POOolt> 
POOI)2? 
P0002& 
POOo32 
P00042 
P0005& 
P00113 
POO 124 
POOl30 
1'00142 
POOlSo 
POOn3& 
P00031 

POOl12 
POO;:>O& 
P00224 
P00230 

1'00040 
POO 112 

POOln 

1'00\7<' 

1'00004 
1>00010 
Poonl" 
POOOU 
POD ~;>" 
poOn3c 
POOO4" 
POUO 7j 
POOrn 
POUIII ; 
pro l' 7 

POOOOr., 
POOO 11 
1'00011 
POOO?3 
1>00021 
poo033 
P00041 
POOO&O 
POOl14 
P00125 
;>00131 
1'0014::' 
POOl"5 

P0017~ 

P00211 
'"'00225 

'"'00041 
P00206 

1>00130 

~OO206 

,",0000., 
,",00011 
1>00017 
"'OU02 i 
I'OUO;>7 
1>000] j 

!>OOO,,!:> 

"'000 'II. 
"'UO 1 nu 
"'0\1 )'''' 
~) fJ!J 1 .! q 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-a 



• 
• 
• 
•• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMPASS-32 

SAM 
SYM 
SY1481 
SY1482 
SYMBOL 
TEMP 
TEMPI 
TOM 
T014C 
TOMCI 
V 

WOHDAORS 
X 

LITERAL 
LITERAL 
LITERAL 
LITERAL 
LITERAL 
LITERAL 
LITERAL 
LITERAL 

(2.1 I 

05252 

00000 
00000 

P00312 
P00313 

00000 
P00317 
P00317 
P00302 
P00305 
P00305 

00077 

P00334 
07777 

12345 

P00366 
P00360 
P00362 
P00361 
P00356 
P00364 
P00370 
P00357 

SYM~OLS NOT RE.FERENCEO 

BCDRD~S E~T 

COMPASS-J2 (2.11 

• ENTRy-POINT SYM80LS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

START 00000 

LENGTH OF SUBPROGRAM 
LENGTH OF COMMON 
LENGTH OF DATA 

UNDEF INED 
UNDEFINED 

UNDEF INED 

7373737373737373 
77777777 
0000000000000011 
00000011 
00000012 
2004440000000000 
2122232425262730 
21222324 

FDP80XS EXT 

"00111 
P0014/\ 
P00163 
P2S2S2 
P00002 
P00242 
P003'50 
P003S4 
P00314 
P003I. 
P003S5 
P00316 
P00320 
P00306 
P00307 
P00310 
POOOsl 
POOOSs 
P00336 
P00226 
P00232 
POOliS 
P00121 
1>00125 
POOns 
P00l41 
POOl4s 
P0032s 
P00324 
P00322 
P00321 
P00352 
P00323 
P00327 
P00326 

E~A"'PLE 20 (AVERAGEI 

00016 
110000 
00000 

P00112 
POOlH 
P00164 
P2532I 
POOOn3 
Pos2s2 

P00317 

POOOs2 
POO056 

POOl27 
P00233 
POO1l6 
POO122 
POO132 
POOlJf> 
POO142 

POOllJ 
POOls0 
P00165 

POOo13 
P052S4 

P00317 

POOOs3 

P00230 
P00236 
POO1l1 
POO123 
POO133 
POOl37 
POO143 

11/;)1/f>(;! PAGE 

lln1/66 

1'0011. 
P00162 
P05252 

P00014 

POOOs4 

P00231 
P00237 
POO120 
POO124 
POO134 
POO140 
POO144 

PAGE 

• .A-9 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• -\ A-IO 

• COMPASS-32 (201) EIIA,",'PLE 20 (AVERAGE) 1l1?1/bb PAGE • PolyS PROGRAM -ILL COMPUTE THE AVERAGE f)F hIREE;, POS IT I V!' NUr048ERS 

• ENTMY START • 00000 01071117 01 0 77771 0 STA'H UJp EXIT TO MONlTOq PROGRAM 
00001 20000011 20 0 POOOll 0 L.DA "lI.lMBl L.OAn FIRST '-IUMijr:R I'-1TO A 
00002 30000012 30 0 1'00012 0 ADA NIJMB2 AUD SECo"lO "IIJMtlFR • • 00003 30000013 30 0 POOO13 0 ADA '-IUMBl ADO TH I RO Nl)",~EQ 
00004 13017741 13 0 71141 0 SI''I4101 -24 CONvERT TO A 4~ BIT vALUE 
00005 51000014 51 0 POOO 14 0 OIlA T.;REE 0111101' BY THI:IEE • • 00006 40000015 40 0 POOO15 0 STA AVG STORE RESULT 
00001 11710000 77 1 10000 3 UCs STOp 
00010 nl000000 01 o 1'00000 0 UJp START GO TO EXIT ON Hc:START • • 00011 00000100 NUMRI OCT 100 CONSTANT Cloo OCTAL) 
00012 00000011 NUMJ:!2 DEC <j CONSTANT (9 DECTMAL.. 11 OCTAL.) 
00013 00000020 NUMJ:!3 OCT 20 CONSTANT (20 OCTAL) 
00014 00000003 T.;REE DEC ) CONSTANT (31 • • 
00015 AI/G ASS 1 HES!'RVED LOCATION FOR RESULT 

END START • • 
NUIiIsER OF LINES wITH DIAGNOSTICS • • 

• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 

t
~-----------------------------------------------------------------------------------------!-- -• CUMPASS-J2 12.11 ElA .. P,-E 20 (AVEifAGE) 1l1?1/66 PAGE 1 • 

AV6 POOOIS POD on" • • Nu".,l POOOll 1'00001 
NU"S2 1'00012 POOO02 

• NUMIt) POOOll POOO03 • STAIn POOOOO POO010 
THHEE 1'000)4 "'00005 

• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 

I • • I I. • 
• 



• 
• COMPASS-32 (2.11 

• 
• . ENTRY-POINT SYMSOLS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

START 00000 

LENGTH OF SUBPROGRAM 
LENGTH OF COMMON 
L.ENGTH OF DATA 

COMPASS-32 12.11 

00000 01071717 
00001 77012000 
00002 01000001 
00003 74000045 
00004 10000021 
00005 01000003 
00006 77310002 
00007 01000006 
00010 77013000 
00011 01000010 
00012 76000045 
00013 10000021 
OOOH 01000012 
00015 77310004 
00016 01000015 
00017 71170000 
00020 01000001 
00021 

01 
77 
01 
74 
10 
01 
77 
01 
77 
01 
76 
10 
01 
77 
01 
77 
01 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

E~AMPLE 19A (CR2PR) 

00045 
00000 
00000 

EXAMPLE 19A (CR2PR) 
ENTRy 

nns PROGRAM wILL 

77777 0 START UJp 
12000 0 REPF:AT CON 

POOOOI 0 UJP 
POO045 0 INPw 
POOO21 0 
POOO03 0 UJP 

10002 3 INS 
POOO06 0 UJP 

13000 0 CON 
POO010 0 UJp 
POO045 0 OUTII 
POO021 0 
POOO12 0 UJP 

10004 3 INS 
POO015 0 UJP 

70000 3 UCS 
POOOO 1 0 UJp 

BuF BSs 
ENI") 

NUMRER OF 

• A-II 
1l1?1/66 PAGE • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

1l1?1/66 PAGE • START 
READ ONE HOLL.ERITH CARD AND COpy IT I")N THE LINE PIUNTER • 
20008.1 ESTABL.ISH CONNEr.TION TO CR 
"-1 REJECT INSTRUCT TON • l,BUF ,BUF+20 INITIATE INPuT rlF ONE CARD 

"-2 Rt.JFCT INSTRlICTTON • 2.1 St:NSE TO SEE IF CHANNEL. 1 IS BUSY 
"-1 BUSy - THEN ~EED CHECKING 
3000~.1 NOT BUSy - THEN CONNECT TO PR • "-1 REJF:CT INSTRuCTtON 
1,BUF,BUF+20 INITIATE OUTpUT OPERATION • .... 2 Rt:JFCT I"ISTRuCTTON 
4.1 StNSE TO SEE IF CHANNEL 1 IS BUSY 
"-1 oUSy - THEN ~EEp CHECKING • NOT BUSY - THEN STOP 
REPEAT REPF:AT ON RESTAQT 
20 • START 

LINES IIITH DIAGNOSTICS • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• 
• 

COMPASS-32 

BUF 
REPEAT 

( 2.11 

P0002l 
poooo 1 

• SYMBOLS NOT REFERENCED 

·START POOOOO • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

EUMPLE 19A (CR2PR) 

P00003 
P00020 

POOOO) POOOl2 POOOl2 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

f~---------------------------------------------------------------------------------------------~I 
• COMPASS-32 12.11 EXAMPLE 21 (CODEI 111:»1/1111 PAGE t • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

ENTRY-POINT SYMBOLS 
IN,OUT 00000 

LEN&TH OF SUBPROGRAM 
LENGTH OF COMMON 
L.ENGTH uF DATA 

00014 
00000 
00000 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• ·i 

A-12 



• 
• COMPASS-32 (2.11 

• 
00000 01071717 01 
00001 00100003 00 • 00002 01000001 01 
00003 00200001 00 
00004 00300006 00 • 00005 01000001 01 
00006 00400010 00 
00007 01000001 01 • 00010 00500012 00 
00011 01000001 01 
00012 00600001 00 • 00013 00000001 00 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• COMPASS-32 (2.11 

• IN.OUT POOOOO 
LOOP POOOOl 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

EXAMPLE 21 (CODEI 11171/66 PAGE 
ENTRY IN.OUT 

THIS PROGRAM WILL HANG IN A LOOP UNTIL THE SELECTIVE JIIMP KEYS ARE 
SET TO A CODE OF 35 OCTAL. pqOGqAM REPEATS ON RESTAQT. 

77177 0 IN.OUT UJp 
POOO03 1 LOOP SJl *+2 TEST BIT 0 
POOOOI 0 UJp LOOP 
POOOOI 2 SJ2 LOOP TEST BIT 
POOO06 3 SJ3 ··2 TEST BIT 
POOOOl 0 UJp LOOP 
POOOI0 0 SJ4 *+2 TE.ST BIT 3 
POOOOl 0 UJp LOOP 
POOO12 1 SJ5 ··2 TE.ST BIT 4 
POOOOI 0 UJp LOOP 
POOOOl 2 SJ6 LOOP TEST BIT 5 
POOOOI 0 i-tLT IN.OUT.1 STOp 

END IN.OUT 

NUMBER OF LINES wITH DIAGNOSTICS 

11 /21/66 PAGE EXAMPLE 21 (CODE) 

POOOll 
P00002 
POOOll 

P00003 
POOO}2 

P00005 P00007 

• A-13 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 



• 
• COMPASS-32 12.11 

• 
• ENTRY·POINT SYM60L.S 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

START 00000 

LENGTH OF SUBPROGRAM 
LENGTH OF COMMON 
L.ENGTH OF DATA 

00014 
00000 
00000 

11/21/&& PAGE 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

t:---:O~:=S~:---~:~'~------------'~~~:'~-:~~::;~~~T~--S-T~~~--------------------~~:~~:-~.~~-------------:1 
• 

00000 01077777 01 0 77777 • 00001 14300000 14 00000 
00002 14117716 14 17116 

• 00003 14&03500 14 03500 
0000_ 1-101100 1- 077\10 j 

00005 06200000 0& 00000 2 

• 00006 01000011 01 POOOll 0 
00007 15300001 15 00001 3 
00010 01000005 01 POOO05 0 

• 00011 71770000 77 70000 3 
00012 00100000 00 POOOOO 1 
00013 01000001 01 POOO01 0 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

!~~~ ~~D~~A~>1:~;~T~~U~~sii~o~IJ~~ER 0" EVEN LOCATIONS IN MEMORY 181<) • 

START 

REENTER 

STOP 

UJp .... 
ENI 0.3 
ENy 11776>4,1 
EN" 35001'1 
ENQ nOO\! 
MEl) ..• i; 

UJp !!>TOP 
INI 1,3 
uJp ~EENTER 
UCS 
SJl STARl 
UJp START·1 
ENO 5T ilRT 

t:L.EAR COUNTER IR3) 
SET I'll TO 111768 

SET SEARC'1 PATTERN IN A 
5i::T SEilRC" ';ASK I/Ii Gi 
It •• SEARCH ••• 
n IIlOT FOUND •• THEN STOP 
... rOUND •• THEN INCREASE COUNT 

AND CONTINUE SEARCfi 
D1SPLAY RESULTS IN 83 
EAIT IF JUMP KEy 1 IS SET 
OhiERiI I SE REpEAT 

NUMBER 0" LI>,jES ilITfi DIAGNOSTICS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-14 



• 
• COMPASS-32 (2.11 

REENTER POOOOS • START POOOOO 
STOP POOOll 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• COMPASS-32 (2.11 

• 
• ENTRY-POINT SYMBOLS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
e 

• 
• 

TV.OUT 00000 

LENGTH OF SUBPROGRAM 
LENGTH OF COMMON 
LENGTH OF DATA 

00010 
00000 
00000 

EXA"'PLE 22 (MEIol. fEST! 

POOOI0 
P00012 
PO.0006 

EXA"PLE 2 3 (TV. OUT! 

111;>1/&& PAGE. 

POD013 

111:>1/06 PAGE 

• A-15 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• • A-16 

• CUMPASS-32 (2,1l E}(AMPLE 23 (TV,OUT) 111;>1/&& "AGE • ENTI'IY TY,OUT 

• THIS IS A CL.OSED SUBROUTINE fOi< TYPIIIIG MESSAGE ON THE r:ONSOL.E TY, • CALL.ING SE'}UENCE ECHA fCA (fIRST CHA~ ADHS OF MSGE) 

EN'" NUMI'! CHARS (LEN~TH OF MESSAGE) 
RT J TY,nUT • • NE}(T IIliSTRIICTlnlll 

• NOTE TY.OUT MUST RE DECLARED F X TERNAL. (EXT TV, OUT! • 
00000 01077777 01 77777 0 Ty,nUT UJp • 00001 77&00400 71 00400 2 PAU~ 4008 I S TV CURRENTL Y 8USY • 00002 01000001 01 POOOOI 0 UJg *-1 YES - THEN KEEP CHECKING 
00003 53420023 53 20023 0 TAM 238 NO _ TIoiEIII PLACE fCA IN REG 2303 
00004 53040000 53 40000 0 AIJA fORM LCAoI • • 00005 53420033 53 20033 0 TA'4 338 PL.ACE L.CA.l Till ClEG 338 
0000& 771&0000 77 60000 3 CTn Ir.ITlATE OUTPUT 
00007 nl000000 01 POOOOO 0 UJp TY,OIlT Rt:TURN TO USFR • • EN/) 

• NUMBE.R OF LINES wITH OIAGNOSTlC<; • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 

t:-- ~~~~:'~:2---~~'~~-----------~'~~~~~:-~T~~O~:~------------------------~,~~~.~-~~G~-------------:l 
TY,oUT POOOOO POOOO7 • • 

• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 



• 
• COMPASS-32 12.11 

• 
• ENTRy-POINT SYMBOLS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

START 00000 

LENGTH OF SUBPROGRAM 
LENGTH uF COMMON 
LENGTH OF DATA 

00614 
00000 
00000 

EUMPLE 2'4 (DEMOI 111:>1/66 

• 
PAGE • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• ------------------------------------------------------------------------------------

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMPASS-32 12.11 E)I;AMPLE 24 (DEMO I 111;:>1/66 PAGE 
ENTRY START 

00000 01077771 01 a 71717 0 START UJp ** 
THE FOLLOWING I NST~UCTI ONS WILL INITIATE Alii OUTPUT TO THE CONSOLE T'I' 

00001 11000034 11 POOO07 ECHA '4SG FIRST CHAR AORS TO A 
00002 53420023 53 20023 
00003 11003060 11 P00614 

TAM 238 THEIII TO REG FILF LOC 238 
ECHA "1SGENO LAST CHAR ADRS TO A 

00004 53420033 53 20033 TAM 338 THEN TO REG FI Lr: LOC 338 
00005 77760000 77 60000 CTO INITIATE TYPF OIIT 

00006 00000000 00 POOOOO HLT START E)I;IT 8ACK TO SCoPE ON RESTART 

FOL.LOWING IS THE MESSAGE 

00007 31602144 
00010 60216023 
00011 46456351 
00012 46436024 
00013 21632160 
00014 03020000 
00015 60234644 
00016 47646325 
00017 51336031 
00020 6021'+460 
00021 77575757 
00022 21602231 
00023 45215170 
00024 73602631 
00025 67252460 
00026 66465124 
00027 60432545 
00030 27633073 
00031 60626346 
00032 51252460 
00033 47514627 
00034 51214473 
00035 77575757 
00036 24312731 
00037 63214360 
00040 23464447 
00041 64632551 
00042 77775757 
00043 63302562 
00044 25602151 
00045 25M4470 
00046 60624725 
00047 2331263! 
00050 23216331 
00051 46456260 
00052 71775757 
00053 01330205 
00054 60443123 
00055 51466062 

MSG !:ICO'C 

OCT 
BCO.C 

OCT 
8CO.C 

OCT 
8CO'C 

OCT 
8CO.C 

40. I AM A CONTROL DATA 3?00 COMPUTER. I AM 

77575757 
44,A 9INARy. FIXED W!,,)RO LENGTH. STORED PROGRAM, 

77575757 
16,OIGITAL COMPUTER 

17775757 
28.THESE ARE MY SPECIFICaTIONS 

17775757 
36tl.25 MICRO SECO"lO MEMORY CYCLE Tl",E 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-17 



'. • COMPASS-32 (2.11 
00056 
00051 • 00060 
00061 
00062 • 00063 
00064 
00065 • 00066 
00067 

• 00070 
00071 
00072 
00073 • 00074 
00075 

• 00076 
00017 
00100 

• 00101 
00102 
00103 

• 00104 
00105 
00106 
00107 • 00110 
00111 

• 00112 
00113 
00114 

• 00115 
00116 
00117 

• 00120 
00121 
00122 

• 00123 
00124 
00125 

• 00126 
00 121 
00130 

• 00131 
00132 
00133 
00134 • 00135 
00116 
00131 • 00140 
00141 

• 00142 
00143 

25234645 
24604425 
44465110 
602371123 
43256063 
31442560 
71575757 
10427360 
01064273 
F,0465160 
03024260 
60664651 
24626041.. 
26602341.. 
51256062 
63465121 
21256060 
71515157 
02046022 
31b36066 
46512460 
43254521 
63306060 
77575751 
03603145 
24256760 
51252131 
62632:'51 
62006060 
71515757 
44644363 
31404325 
65254360 
31452431 
51252363 
60212424 
51256262 
31452760 
17515751 
23302151 
21236325 
51603021 
45244331 
45216031 
45626351 
64236331 
46456,,60 
71575751 
22642026 
25512:'24 
r,0233021 
51212J63 
75516062 
25215123 

EXAMPLE 24 (DEMO) 

OCT 
BCo.C 

OCT 
BCo.C 

OCT 
"Co.C 

• 
Ill?1/66 PAGE • 

• 
• 77575757 

4.,,81(. 16K, OR 32K ·~OHDs 0,... CilRF STI'IRA()E • 
• 
• 

17515151 • ~0.24 BIT 11/01010 I.ENGTIoI 

• 
7151<;757 • 20,3 INDEX RtGISTERS 

• 
71575757 • l2,MUI.TI-LEVEL INOIR,CT AODRF.SSING 

• 
• 

7151<;757 • 37, C!-IARAC TER HANOU "Ir; 1 N<; T RUC T IONS 

• 
• 

1757'i751 • 4!hBU,...FEREO C"iAR4CTE'l SEA~CH A"lO MOVF. OPERATIONS .1 
• 

• • 
I. .11 

r---- -- ------------- --- -- ------ --------------.. --- .. ---------.------------------- - ----------------/. . 
I. COMPASS-32 (2.11 EXA"PL': 24 (DEMO) I1n1/66 PAGE .1 
I 0014.. 30(,02145 

00145 ~460H4~ 

I
' • 00146 65256046 

00147 47255121 
00150 63314645 

• 00151 62606060 

I 00152 71575757 
a a 153 ::>346456::> 

I • ~~~~~ :~j~~~~~ 
00156 66513163 
00157 ~5516060 • 00160 77575757 
00161 51252143 
00162 60633144 • 00163 25602343 
00164 46234,,60 
00165 77775157 • 00166 6263214~ 
00161 24215124 
00170 60215131 • 00171 63304425 
00112 63312360 
00173 23214721 • 00174 22314331 
00175 6331256~ 
00 176 71776060 • 00 117 02046022 
00200 31636060 
00201 21242473 • 00202 60626422 
00203 73604464 
00204 43636020 • 00205 60243165 
00206 17516060 
00201 04106022 • 00210 31636060 
00211 21242"60 
00212 20606264 • 00213 22606060 
00214 77775751 
00215 46476331 • 00216 46452143 
00217 60215131 
00220 63304425 • 00221 63312360 
00222 2321"721 
00223 2231 .. 331 • 00224 "BI2,)6;? 
00225 7777606'1 
00226 ?6476124 • 00221 41604721 
007.30 23422127 
00231 256060611 

OCT 
!:lCn.c 

OCT 
8CI).C 

OCl 
BCo.C 

vCT 
FlCf).C 

OCT 
tlCn.c 

OCr 
!'ICn,c 

7 1::J 7<; 75 7 

7157., 7<;7 
16,RE'A1. Tl"E CLOCK 

7771">757 
1?,STA';OARD "HIT,i",UTC C4PAHILITIF.S 

17776060 
;>~'24 Rn 

17'i761'160 
<!n.4R BIT 

71775751 

AUO. SU6. "'ULr + OIv 

.6,m • SuB 

32.0PTIO"lJlI. ARIT,",,,,UrC CAPABILITIES 

71716060 
"?,FP/')P PAC~AGE 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-IS 



• • A-19 

• COMPASS-32 12.11 EXAMPL.E 24 IDEMol 111;:11/66 PAGE 5 • 00232 60602643 
00233 46216331 • • 00234 45276047 
00235 46314561 

• 00236 60212424 • 00237 73606264 
00240 22736044 
00241 64436360 • • 00242 20606060 
00243 77576060 OCT 77576060 
00244 60606060 8CO,C 48, DIYYOE AJI!O FyxEI') POINT 48 BIT • • 00245 60606060 
00246 60606060 
00247 60606060 • • 00250 60602431 
00251 65312425 

• 00252 60214524 • 00253 60263167 
00254 25246047 

• 00255 46314563 • 00256 60041060 
00257 22316360 
00260 77576060 OCT 77576060 • • 00261 60606060 8CO,C 28, MUL.T .. 0111 
00262 60606060 

• 002&3 60&06060 • 00264 60606060 
00265 60604464 

• 002&.6 43636020 • 00267 60243165 
00210 77576060 OCT 17576060 
00271 22232460 8CO,C 52,8CO PACKAGE BINARY COOED DECIMAL. ADO .. SUB • • 00272 47212342 
00273 21272!:)60 
00274 60606060 • • 00275 60602231 
00276 45215170 

• 00277 60234624 • 00300 25246024 
00301 25233144 

• 00302 21436060 • 00303 212424&0 
00304 20606264 

• 00305 22606060 • 00306 77775757 OCT 1777<;757 
00307 31454764 8CO,C ?B, INPUT /OUTPUT CAPARIL.IyIES 
00310 63614664 • • 00311 63416463 
00312 60232147 
(1)313 21223143 • 00314 31633125 • 00315 62&06060 
00316 7777606Q OCT 77776060 • • 00317 02401060 8CO,C 20,2-8 OHA CHANNEI.S 

• • 
• • --------------------------------------------------------------------------------------
• • 
• COMPASS-32 12.11 El(AI'IPL.E 24 (DEMol 11/;>1/&6 PAGE 6 • 00320 24216321 

00321 60233021 • • 00322 45452543 
00323 62&06060 
00324 77576060 OCT 17576060 • 00325 01401060 BCO,C 44,1-8 EQUIPMENT CONTROI.L.ERS PER OAT A CHANNEL • 00326 25506431 
00327 47442545 • • 00330 63&02346 
00331 45&35146 

• 00332 43432551 • 00333 62604725 
00334 51&02421 

• 00335 
00336 

63216023 
30214545 • 00337 25436060 

• 00340 77776060 OCT 77776060 • 00341 60&06060 8CO'C 40, AIIAILA8L.E EQUIPMENT SPEEDS 
00342 21652131 
00343 43212243 • 00344 25602550 • 00345 64314744 
00346 25456360 • 00347 60606060 • 00350 60606060 

• 00351 60606247 • 00352 25252462 
00353 71576060 OCT 77576060 

• 00354 60606060 8CO,C 48, I4AGNETIC TApES 1.51(C - 120KC • 00355 60&04421 
00356 27452563 

• 00351 31236063 • 00360 21472!:)62 
00361 60&06060 

• 00362 60606060 • 00363 60606060 
00364 60073305 

• 00365 42236040 • 00366 600}0200 
00367 42236060 

• 00310 11516060 OCT 77516060 • 00371 60606060 8CO.C 48. CARD READER 1200 CARDS/MIN 
00312 60602321 

• 00373 51246051 • 00314 25212425 
00375 51606060 - 00376 60606060 • ... GG37; 60606060 
00400 60606060 

• 00401 60010200 • 00402 00602321 
00403 51246261 

• 00404 44314560 • 00405 11516060 OCT 77576060 



• • A-20 

• COMPASS-32 (2.11 ExAMPLE 24 IOEMO) 11nl/66 PAGE • 00406 60606060 SCO'C 41'1t CARD PUNCHES 150 - ;>50 CAROS/M I N 
00407 60602.321 • 00410 51246047 • 00H1 64452330 
00412 25626060 • 00413 60606060 • 00414 60606001 

• 00415 05006040 
00416 60020500 • 00417 60232151 

• 00420 24626144 
00421 31456060 • 00422 77576060 OCT 71576060 

• 00423 60606060 BCO.C 48. PAPEq TAPE C;TATYONS 350 - \000 CPS READ • 00424 60604721 
00425 47<!55160 

• 00426 63214125 • 00421 60626321 
00430 63314645 

• 00431 62606003 • 00432 05006040 
00433 60010000 

• 00434 00602347 
00435 44606051 • 00436 25212060 

• 00431 77576060 OCT 77516060 
00440 60606060 BCO.C 48. 110 CPS PUNCH • 00441 60606060 

• 00442 60606060 • 00443 60606060 
00444 60606060 

• 00445 60606060 • 00446 60606060 
00447 60606060 

• 00450 60600101 • 00451 00602341 
00452 44606047 

• 00453 (4452331) • 00454 77576060 OCT 77576060 
00455 60606060 ijCO'C 48. LINE PRINTERS ISO - 1000 LINES/MIN 

• 00456 60604331 • 00451 45256047 
00460 51314563 

• 00461 25516260 • 00462 60606060 
00463 606Ot.OOI 
00464 05006040 • 00465 60010000 • 00466 00604331 
00461 45256261 I. 00410 44314560 • 00471 71576060 OCT 77576060 

• 00472 60606060 BCD.C 52. OISC PACKS 91 MILU SEC AVG ACCESS • 00473 60602431 

• • 1. • 
r-------------------------------------------------------------------------------------• • 
I • COMPASS-.32 (2.1 ) ExAMPLE 24 IOEMOI 111;>1/66 PAGE R • 00"i4 b223b047 

I • 00475 21234262 
00476 60b06060 • 

I 
00477 60606060 

• 00500 60606011 • 00501 07604431 
00502 43433160 

• 00503 62252360 • 00504 21652760 
00505 21232.325 

• 00506 62b26060 • 00507 77576060 OCT 71576060 
00510 60606060 BCO.C 48. 11K CHAR/SEC AVG XFER 

• 00511 60606060 • 00512 60606060 
00513 60606060 

• 00514 60606060 • 00515 60606060 
00516 60606007 
00517 01426023 • 00520 30215161 • 00521 62252360 

• 00522 21652760 • 00523 67262551 
00524 77576060 OCT 71576060 
00525 60606\160 IiC!).C 52. DRUM STORAGr: 17 MILLI SEC AVG ACCESS • 00526 60602,+5\ • 00527 6H46062 

• 00530 63465121 • 00531 27256060 
00532 60606060 

• 00533 60b06001 • 00534 07(0443) 
00535 43433160 

• 00536 62252.360 • 00537 2165276n 
00540 21232325 

• 00541 62b26060 • 00542 77576060 OCT 71576060 
00543 60606060 BCO'C 48. 2<;OK - 2M CHAQ/SEC OATA XFEIoi 

• 00544 60606060 • 00545 60b06060 
00546 60b06060 

• 00547 60606u60 • 00550 02050{)42 
00551 60406002 

• 00552 44602330 • 00553 21510162 
00554 25236024 

• 00555 211:>32160 • 00556 67262!:151 
00557 77576060 uCr 7757"060 
00560 60606060 Hen.C 16. PLOTTERS • • 00561 60b04H1 



• 
• CUMPASS-32 12.11 

00562 46636325 
00563 51626060 • 00564 71576060 
00565 60006060 
00566 60604721 • 00567 27256051 
00570 25212'125 
00571 51606060 • 00572 71576060 
00573 60606060 
00514 60602351 • 00575 63602431 
00576 62474321 
00517 70606445 • 00600 31636260 
00601 77576060 
00602 60606060 • 00603 60602145 
00604 24604421 
00605 45106046 • 00606 63302551 
00601 60624725 
00610 23312143 • 00611 31712524 
00612 60242565 
00613 31232562 • 00614 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• COMPASS-]2 (2.1 ) 

• MSG POOO07 
MSGENO P00614 
SURT POOOOO 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

OCT 
BC!).C 

OCT 
BCD.C 

OCT 
BCD.C 

MSGENO EQU,C 
ENO 

11 /;;> 1/06 PAGE 

77576060 
20. PAGE READER 

77516060 
;>4, CRT DISPL.AY uNITS 

77516060 
40, AND MANV OT.,EI'l SPECIAL.IZED DEVICES 

START 

NUMeER OF L.INES wITH DIAGNOSTICS 

EUMPLE 24 (DEMOI 

P00001 
POOOO] 
P00006 

lln1/66 PAGE 

• A-21 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• ... -
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• COMPASS-32 12.11 

• 
• ENTRY-POINT SYMBOL.S 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

MTORI VEH 00000 

L.ENGTH OF SUBPROGRAM 
L.ENGTH OF COMMON 
L.ENGTH OF DATA 

EXAMP~E 2S (MTORIVEAI 

00101 
00000 
00000 

1l1?1/66 PAGE 

• 
• .' • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

t:----:::::S~~::---~:~~,------------~~~:.~E---2~-~:~~~,~::,~~:R~~~-----------------~~~~:,-~~~------------:1 
THIS SUBPRoGRAM IS AN 110 DRIvER DESIGNEll TO HANDL.E AL.L MAG TAPE 

• OPERATIONS. USE OF THIS DRIVER wIL.L. GREATLy REDUCE THE AMOUNT OF EFFORT • 
REQUIRED ON THE PROr,RA ...... ER~S PART wHEN WORKING WITH MAG TAPE. HE NEED 

• ~~6Hi~~N I~E U~~~C~~~~~ ~~i; i~E H~~~~~;E~~ ~~~~~ e~:~ T ION OF THE PARTICUL.AR • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

---------- CAL.L 1 NG SEQUENCE ----------

1. SET PARAMETERS INTO A. Q 

CAl A '" TAPE UNIT ',UMBER CO-7> 
(8) Q 23-18 = FUNCTION CODE 
Ie) Q 14-00 = RUFFER FWA CNEEOEO FOR 110 REQUEST ONL. '1') 

2. RTJ TO "'TDRIvER (MTDRIvER "'uST BE DECLARED EXTERNAL) 

---------- OPERA TlONS AVA ILABLF. ----------

OPERA TI ON 

1. REA' 30 WUS IN BCn (120 CHARS) 
2. READ 40 WOS IN BhJAH'I' 
3. WRITE 30 wOS IN eco (120 CHARS) 
4. wRITE 40 wDS IN BINARy 
5. REwiND 
1'>. UNLOAD 
7. BACKSPACE 
"I. SF.ARCH FlL.E f'ORWAtlD 
9. SEARCH Fh.E BAC!(vlARD 

In. WRITE FILE MARK 
11. SKIP BAD ~POT 

-------.-- O"l RETUR"l ------.---

1. 8 REGS ARE UNCHANGED. 

FLJ"'CTlO"l CODE COCTAL) 

01 
02 
03 
04 
10 
11 
12 
13 
14 
15 
16 

2. IF REQUEST viAS lIn IFr. 1-4). THE OPE~ATlON "'IL.L. fiE 
CO,",PL.ETE. 

3. A 11-00 :: STATUS FRUM Tf.4E TAPE AT ENU Of' OPERATIO"l 
If' REQUEST ,"AS III) (FC 1-.). 

~. A IS MEANINC;~ESS IF NnT Ir ~E(lUE<;T. 
5. Q IS MEANINGL.ESS. 

------.--- ERROR PROCEOUIlES ----------

1. IF TAPE UNIT IS Fl'lu"'D 1",01 ~EAr)y1I A uIAGNOSTIC 
WIL.L. BE TYPED (READY uT ~1. ··~:lGRAM wILL. CONTINUE 
lI"!E"l U"IIT IS REA!)y, 

2. ALL OIEJECTS wIL.L LOOP. 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-22 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CUMPASS-J2 12.11 HAMPL.E 2!> IMfI)~lVER) 

110000 01U1T717 01 0 11111 0 MTlJRIVt:t< uJ;> 

"""""*" 1 N 11 1 AL 1 ZING PROCEDURE "**""" 

00001 420001!)1 42 0 P00033 

00002 42000311 42 0 1"00016 

00003 
00004 
00005 
00006 
00001 
00010 

14600000 14 
13000006 13 
42000400 42 
05600017 05 
05600010 05 
01000013 01 

00000 
00006 

POOI00 
00017 
00010 

P00013 

00011 4200u247 42 0 POOOSI 3 

00012 01000033 01 0 P00033 0 

SAC-" 
SAl:H 

ENA 
SHAW 
SAC" 
ASG 
ASG 
UJP 

SAC" 
UJI-' 

00013 05600005 05 00005 INPOUT A~b 

00014 0560000i 05 00001 A~G 
00015 00000015 00 P00015 U HL.T 

00016 12000005 12 
00011 13000022 13 

00020 14700002 14 
00021 03300023 03 
00022 14700001 14 
00023 43000247 43 

00024 
00025 
00026 
00027 
00030 
00031 
00032 

COMPASS-32 

1t4000066 44 
it4000062 44 
15600036 15 
03300031 03 
15600012 15 
44000065 44 
44000061 44 

12.11 

00005 
'00022 

00002 3 
P00023 3 

00001 3 
P00051 3 

POOO&6 
P00062 0 

00036 2 
P00031 3 

00.012 2 
P00065 0 
P00061 0 

SHA 
SHAW 

ENW 
AlJ,LT 
ENW 
SWCH 

SwA 
S~A 
INA 
AlJ.LT 
INA 
SIIIA 
SWA 

E."AMPL.E 25 IMrURlvERI 

CONNECT.3 
HDYMSG·9 

6 
FC 
17B 
lOB 
INPOUT 

SELECT.3 
CONNECT 

5 
1 

" 
5 
18 

2 
"·2 
1 
SELECT·3 

INPUT·l 
OUTPUT·l 
30 
"·2 
10 
INPUT 
OUTPUT 

""",,""" CONNECT PROCEDURE """"*""* 

00033 77001000 11 0 01000 0 CONNECT CUN 
00034 01000033 01 0 P00033 0 UJ!" 

CONCODE,CH 

*-1 

TES 1 FOR READY ""*""""" 

00035 71200001 11 0 00001 2 
00036 01000D!>1 01 0 POOO!)l 0 

00031 
00040 

00041 
00042 
00043 
00044 
00045 

71600400 11 

01000037 01 

11 000360 11 
53420023 53 
15600013 15 
53420033 53 
11760000 11 

00400 2 
P00031 0 

1'00014 0 
20023 0 
00013 2 
20033 0 
bOOOO 3 

00046 11100001 11 0 00001 

00047 010000!)1 01 0 1"00051 
00050 0100U046 01 0 1"00046 

EX:. 
UJ;> 

PAU::; 

UJ!> 

ECHA 
TAM 
INA 
TAM 
CTU 

EXS 
UJ;> 
UJ;> 

0001,CH 
SELECT 

4008 

"-1 

RDYMSG 
23~ 

11 
338 

OOOl,CH 

*·2 
"-2 

""""*"" SELE.CT PROCEDURE *"""""""* 

00051 71100000 11 0 00000 SE.LECT SEL 
000!)2 01000051 01 0 1"00051 0 UJP 

000!>3 22000400 22 
000!)4 05b00006 O!) 
00055 01000055 01 
00056 01000072 01 

1"00100 0 
00006 2 

1"00055 0 
1"00012 0 

LAC" 
ASG 
UJP 
UJ!" 

OOOO,CH 

"-1 

FC 
6 

EXIT 

REAU/IIIRITE PROCEDURE "*"**""" 

000~7 05000003 05 00003 AS\> 

00060 01000005 01 P00065 0 UJ;> 

00001 10071717 76 0 77717 OuTPuT OUlii 

00002 00071777 00 77771 
000b3 01000061 01 1"00001 UJ!" 
00064 01000010 01 0 "00070 UJ!" 

00065 14077717 74 0 77117 0 IIII"UT IN!"" 
00066 00077171 00 77117 
000b1 0100U()05 01 P00065 UJ!" 

INPUT 

CH,"","* 

"-2 
WAIT 

CH,*"."* 

*-2 

11/;11/66 PAGE 
LINKAGE BACK TO USE~ 

ESTABLISH CONNECT CODE 
SET TAPE NO. IN READY MESSAGE 

pLAq FUNCTION CODE 
IN A 5-0. 
SAVE FUNCTION CODE 
IS THIS AN 
1/0 REQUEST 

YES - THEN JUMP 

NO - THEN SET S~LECT CODE AND 
GO TO CONNECT PROCEDURE 

TEST TO SEE IF FUNCTION CODE IS 

LEGAL. 
BLIND HALT ON iLLEGAL CODE 

POSITION FC AND FillA IN A 
A 14-00 :II: FillA OF USER;tS SUFFER 
A 23 ,. 1 IF BCD REQUEST ,0 IF BINARY 

BCD SELECT CODE TO Q 
IS REQUEST BCD 

NO • THEN BINARy CODE TO Q 
PLACE SELECTED CODE IN SEL INSTRUCTION 

SET FIiiA IN INPUT/OUTPUT 
INSTRUCTIONS 
FORM BCD LlliA.1 
IS REQUEST BCD 

NO - THEN FORM 8INARY LWA.l 
SET LlliA.l IN INPUT/OUTPUT 
INSTRUCTIONS 

111<'1/66 PAGE 

CONNECT TO SPECIFIED MAG TAPE 

IS THE CONNECTED UNIT READy 

4 

YES - THEN GO TO SELECT PROCEDURE 

NO - THEN TYPE LlIAGNOSTIC 
WAIT FOR TY NOT BUSY 

- INITIATE TY OUTPUT 

- LOOP UNTIL READY 

INITIATE NON_I/O OPERATION OR 
SELECT MODE FOR I/U OPERATION 

FUNCTION CODE TO A 
IS THIS AN 1/0 REwUEST 

NO - THEN GO TO HEAD/WRI TE PROCEDURE 
YES - THEN GO TO EXIT 

IS THIS A READ REI.lUEST 

YES - GO TO INPUT INSTRUcTION 

NO - THEN INITIATE OUTPUT 

LOOP ON REJECT 
GO TO WAIT BEFORE EXIT 

INITIATE INPUT 

LOOP 0111 REJECT 

• A-23 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• • 
• EXAMPLE 25 (MrORIVER) 111::»1/66 PAGE 5 • 
• ••••••• iliA 1 T FOR ENO OF OPERATION •••••••• 

• 00070 11200002 11 00002 2 WAIT EX!) 0002.CH IS UNIT STILL IiUSY 

• 00011 01000010 01 o P00070 0 UJP ··1 YES· THEN LOOP • ....... EXU PROCEDURE ••••••• c 

• 00072 11200000 11 00000 2 EXIT COpy CH • 00073 01000000 01 o POOOOO UJI' MTDRIVER RETURN TO USER 

• ....... MISCELLANEOuS •••••••• • 
• 00074 51252124 RUYMSG IiCU.C 10.REAOY '41 X 

00015 70604463 • 00076 6067 
00011 77000000 yFU 06/77 
00100 FC 8SS,C 1 • • ....... SYMtlOL EQUATI'ONS . ....... • • 00000 CH EUU 0 THIS DRIYER MAY BE ALTERED TO FIT ANY 

01000 CONCODE EIolU 1000B EQUIPMENT CONFIGURATION BY ONLY THESE 
END • • 

NUMtlER OF LINES IIlTH DIAGNOSTICS • • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 

t
!----------------------------------------------------------------------------------~ • • 
• COMPASS-32 12.11 EAAMPLE 2S IMTDRIVER) 111::»1/66 PAGE • 

CH 00000 

• CONCODE 01000 
CONNECT POO033 • EXlT POO072 
FC P00100 
INPOUT POOO13 • INPUT POO065 
MTORIVEA POOOOO 
OUTPUT POO061 • ROYMSG POO074 
SELECT POO051 
WAlT • POO070 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

POO033 POO03S 
POO061 POO06S 
POOOll 
POOOOI POOOl2 
POO056 
POOOOS POO053 
POOOIO 
1'00024 POOOll 
POOO73 
POO02S POOOll 
POOO02 POO04l 
POOOll POO023 
POO064 

P00046 
P00010 

P00060 

POOOl6 

POOOSl 
P00012 • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-24 



• 
• COMPASS-32 12.11 

• 
• EXTERNAL SYMBOLS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CIO 

LENGTH OF SUBPROGRAM 
LENGTH OF COMMON 
LENGTH OF DATA 

00076 
00000 
00000 

• 
MAC 11121166 PAGE • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• ------------------------------------------------------------------------------------• • 

• COMPASS-32 12.11 MAC 11/:)1166 PAGE • LIRM READS, REWIND,STATUS'FOHMA T 
........... * ••••• ** •••••••• *** •••••••• * ••••• ** •••••• ** .......................... * ••• • MACRO EXAMPLES • 

• • 
• REAOS MAcRO (L,R, FIOlA ,N, X, lA, 14, C) • EXT CIa 

RTJ CIO 

• 01 L,X • 1FT 1*I,R,l 
UJP *-2 

• IFF 1*I,R,l • UJP A 
14 FillA 

• C III 
IFF 10/,X,l • 00 IA 

• ENDM 
REwlrlD MAC~O (L.,R.hIlI • EXT CIO 

• RTJ CIO • 04 L,X 
1FT 1*I,R,l 
UJp *-2 • IFF 1*I,A,l • UJP A 

• IFF 10/,X.1 
00 lA • ENDM 

• STATUS MACHO IL,X) • EXT CIO 
IHJ CIO 

• 13 L,X 
ENDM • FORMAT MACRO IL.,A,XI 

• EXT CIO • ATJ CIO 
14 L.,X 

• 1FT 1*I,A,1 
UJp *-2 • IFF I*I,A,} 

• UJP >l 

ENn'" • REAOS 114,*, IIliBUFF .40",40) 

• E.lIr c!a !-lEADS • 00000 00717717 00 X77777 RTJ CII) JoIEAOS 
00001 0~0000l6 01 00016 01 14,0 READS 

• 1FT *,*,1 REAOS • 00002 01000000 01 POOOOO UJp *-2 READS 
IFF .,.,1 HEADS 

• 00003 40000026 40 POO026 40 IN8UFF READS 
00004 00000050 00 00050 o 40 JoIEADS • 

A-25 



• 
• COMPASS-32 12.1) MAC 

• 
• 00005 00700000 00 XOOOOO 3 

• 00006 01200016 01 00016 2 

• 00007 01000024 01 POO024 
00010 40000026 40 POO026 
00011 40000050 40 00050 

• 00012 00000022 00 o P00022 0 

• 
• 00013 00700005 00 xoooos 

00014 04000016 04 00016 

• 00015 01000013 01 o P00013 0 

• 
• 00016 00700013 00 XOOO13 3 

00017 14200016 14 00016 2 

• 00020 01000016 01 0 00016 0 

• 00021 77710000 77 70000 

• 00022 01077777 01 77777 
00023 01400022 01 POO022 
00024 01077777 01 77777 

• 00025 01400024 01 POO024 
00026 

• 
• 
• 
• 
• 

INTADD 

REJX 

INSUFF 

11121/66 PAGE 
IFF 0,0.1 

READS 114,REJX, INBUFF, 40, 2.1NTADD.40 ,40) 
EXT CIa 
RTJ CIa 
01 14,2 
1FT •• REJx,l 
IFF -,REJX.1 
UJp REJX 
40 INBUFF 
40 40 
IFF 0,2.1 
00 INlADD 

REwIND 114.-) 
EXT CIo 
RTJ CIo 
04 14,0 
1FT .,-,1 
UJP .-2 
IFF -,-.1 
IFF 0,0.1 

FORMAT 114,14.2) 
EAT CIa 
RTJ CIO 
14 14,2 
1FT -,14.1 
IFF -.14,1 
UJp 14 

ucs 
UJp 
UJp,I INTADD 
UJp 

_. 
UJP,I REJX 
ass 40 
ENI) 

NUMBER OF LINES wITH DIAGNOSTICS 

3 
READS 

READS 
READS 
READS 
READS 
READS 
READS 
READS 
READS 
READS 
READS 

REWIND 
REWIND 
REWIND 
REWIND 
REWIND 
REWIND 
REWIND 

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

t:-- :~"~~~s~::-- -,~~~----- ------~~------------------------------------~l~'~~.~-~.~~-------------: j 
• CIO 

INBUFF POO026 
INlADD POO022 
REJX POO024 • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

EXTERNAL POOoOO 
P00003 
P00012 
P00007 

P00005 
POOOI0 
P00023 
P00025 

P00013 P00016 • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-26 



• 
• 
• 
• 
• 
• 

COMPASS-32 (2.1) 

EXTERNAl. S'i'MBOI.S 
PRDRIVER 
CRDRIVER 
MTDRIVER 

• ENTRY-POINT SYMBOI.S 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COpy 00000 

I.ENGTH OF SUBPROGRAM 
I.ENGTH OF COMMON 
I.ENGTH OF DATA 

00112 
00000 
00000 

EllAMPL.E 26 (COPY) llnl/66 PAGE 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• ----~-------------------------------------------------------~-------------------------------• • 

• COMPASS-32 (2.1) EXA"'PL.E 26 (COPY) 11121/66 PAGE 2 • ENTRY COpy 
EXT "1TDRIVER,CRDRIVER,PRnRIVER 

THIS SUBPROGRAM IS DESIGNED TO TEST THE DRIVERS THAT wERE wRITTEN • • PREVIOUSLY (EXAMPI.E 25 AND WORKSHEET 8). IT COPIES A LlECK OF HOI.LERITH 
CARDS TO MAG TAPE. REWINDS THE TAPE ANn COPIES THE TAPE ON THE PRINTER. • PROGRAM REPEATS ON RESTART UNLESS JUMP KE.Y 1 IS SET IN WHICH CASE • 

• IT wILl. EXIT BACK TO SCOPE. 

00000 01071111 01 0 77117 0 COPY UJp .. I.INKAGE BACK TO SCOPE • 
• --------- REwIND TAPE 1 --------- • 

00001 14600010 14 00010 ENA lOB PLACE FUNCTION CODE 
00002 13071171 13 77771 0 SHAQ -6 TN Q 23-l!~ (QEWINDI • • 00003 14600001 14 00001 2 ENA 1 PLACE TAPE NUMBER I N A 5-1 
00004 00777777 00 1177777 3 RTJ MTDRIVER 

--------- READ NEXT CARD • • 
00005 14600054 14 P00054 2 NEX TCARD ENA BUF 
00006 13077755 13 77755 0 SHAQ -18 • • 
00007 14600001 14 1 00001 2 ENA 1 
00010 13077771 13 0 77771 0 SHAQ -6 • • 00011 00771177 00 1 X77777 3 RTJ CRDRIVER 

• TEST FOR END OF FlI.E CARl') •••• ---. • 
00012 17600010 17 00.010 ANA lOB 
00013 03100023 03 POO023 AZJ.NE FILEMARK • • 

• --------- OUTPUT CARD IMAGE TO MAG TAPE 1 -.--••••• 

00014 14600054 14 POO054 2 ENA BUF • 
00015 13077755 13 77755 0 SHAQ -18 
00016 14600003 14 00003 2 ENA 3 • • 00017 13077771 13 77771 0 SHAQ -& 
00020 14600001 14 00001 2 ENA 1 
00021 00700004 00 X00004 3 RTJ MTDRIVER • • 
00022 01000005 01 P00005 0 UJP NEXTCARD • • 

• • 
• • 
• • 
• • 

A-27 



• 
• COMPASS-32 (2.11 

• 00023 14600015 14 
00024 13071771 13 • 00025 14600001 14 
00026 00700021 00 

• 
00027 14600010 14 • 00030 13077771 13 
00031 14600001 14 

• 00032 00700026 00 

• 00033 14600054 14 
00034 13017755 13 

• 00035 14600001 14 
00036 13017771 13 
00037 14600001 14 

• 00040 00100032 00 

• 00041 17600010 17 
00042 03100051 03 

• 
00043 14600054 14 • 00044 13077755 13 
00045 14600003 14 

• 00046 13017771 13 
00047 00777777 00 

• 00050 01000033 01 

• 00051 17710000 11 
00052 00100000 00 

• 00053 01000001 01 

• 
• 
• 
• 
• 
• 
• COMPASS-32 12.11 

• 00054 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

E~AMPLE 26 (COPY) 1l1:>1/bb PAGE 

--------- CLOSE OUT MAG TAPE I WITH A F'" -.------. 
00015 FILEMAkK ENA 15B 
77771 0 St1AQ -6 
00001 2 ENA 1 

XOO021 3 RTJ MTDRIVER 

... -------- REWIND MAG TAPE 1 ----------

00010 2 ENA lOB 
77171 0 SMA'" -6 
00001 2 ENA 1 

XOO026 3 RTJ MTDRIVER 

--------- READ NEXT RECORD FROM MAl; TAPE 1 ---------

P00054 2 NEXTREC ENA BUF 
77155 0 St1AQ -IB 
00001 2 ENA 1 
11771 0 SHAC.I -6 
00001 2 ENA 1 

X00032 3 RTJ MTDRIVER 

-------- TEST FOR END OF F I I.E .. - .. ------

00010 2 ANA lOB 
POO051 1 AZJtNE EXIT 

--- ... ----- OUTPUT RECORD TO PRINTER --------

POO054 2 ENA BUF 
11155 0 SHAQ -18 
00003 2 ENA 3 
11171 0 SHAQ -6 

X17777 3 RTJ PRDRIVER 

P00033 0 UJP NExTREC 

------- EXIT PROCEDURE --.------
70000 3 EXIT UCs 

POOOOO 1 SJl COpy 
POOOOI 0 UJp COPY·1 

EXAMPLE 26 (COpy) 11/21/66 PAGE 

aUF 

--------- BUFFER AREA --------

BSS 

END 

30 

COpy 

NUMBER OF LINES IHTM DIAGNOSTICS 

• A-28 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CllMPASS-J2 

BUF 
COt"Y 
eHI.lRIvER 
EXl T 
F" 1l.EMARK 
MTLiHIYER 

NExTeAHD 
Ne.xTHEC 
PHuHlvER 

eOMPASS-32 

(2.1 ) 

P0005'> 
POOOOO 

P00051 
PUOl)23 

POOJ05 
1'00033 

(2.1 ) 

EX TERNAI. SYMBOI.S 
CUI 
A~NORMAI. 

ENTRy-POINT SYMBOLS 
ele 00000 
CIT 00044 

LENGTH OF" SUBPROGHAM 
LENGTH OF COMMON 
L.ENGTH OF" DATA 

EXAMPLE 

E.XTERr.AI. 

EXTERNAl. 

EXTERNAl. 

00072 
00000 
00000 

ele 

26 <COpy) 

POOO05 
1'00052 
PODOll 
1'00042 
POOO13 
t"00004 
1'00040 
POO022 
1'00050 
1"00047 

VERSION Sl 0.0 

P00014 
P00053 

P00021 

12/07/64 

P00033 

P00026 

11171/66 PAGE 

P00043 

P00032 

111;:>1/66 PAGE 

• A-29 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• CuMPASS-J2 (2.11 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CIC ~E"'SION SI 0.0 12101164 llnl/b6 !>AGE 
• •• CE."IIkAL INTERRUPT CONT"'Ol PROCfUURF REIIIS!:!) 12-ll4-b" 

WHENE~ER AN INTERR(jPT OCCU~S. THE. ~AROIoAioIE 
1. DISABLES T~E INTERHU~T SYSTEM 
2. REPLACES (00004. IH TS 14-0n) IIITTH THE lnCATION OF THE 

I NTfRRtlPTEi) I NSTRUC TI ON 
3. HEPlACES (OOOOS. 8ITS 11-00) WITH AN IfJFTlFyI"IG CODE 
-. THA~ISFERS CPU CaNTHal TO lnCATTON OOOOS. 

SCoPE-32 lOADS THE FOlL-OwING LTNKA(;E To CIC 
(000041 
(u00051 
(00U06) 

UJP 
NOP 
iJJP 

n 
o 
CIC 

CIC PERFOH"'S THE FOLLOIliING TASI(S 
1. LOGICALLY IGNORES AN INTERRUPT ON A OI"IT I"'STRUCTION 
2. !oAVES THE (AI. (QI. (81). (62) AND (il31 
3. SETS lOCKOUT flAG fO IOENTIFY INTERRUPT PRnCESSING 
.... TRANSFuRMS INTERRUPT CODE TNTO RELATIIiE CIT ENTRY 
5. SE TS EN TRY LOCATION (FkO'" c: IT) TO LI NK TO IISEH 
6. SETS INCL INSTRUCTlON fOR EXt-CIlTIDN ON USER RtTURN 
7. RESTORES ABNOR"'AL "ODHESS TO CIT ENT>tY 
8. ENTEHS USER INTERRUPT PROCEDURE: 
9. CLEARS NON-I/O INT£RRUPTS 
10. RESTORES LOCK-OUT FLAG 
11. HESTORES SAIiEu REGISTERS 
12. ENABLES INTERRUPT SYSTE~ 
13. EXITS TO INTERRUPTED PHOGRAM 

* • * • • • • • • * • • * • • • • • • • • • • * • • • • * • • • 

00004 

00006 
00001 
OOOO':! 
OOOO~ 

001) 11) 
000 11 

00013 
0001'" 
00015 
00016 

00018 
00019 
00020 
00021 
00022 
00023 
00024 
0002:' 
00026 
00027 
00028 
00029 
00030 
00031 
00032 

t
~.-' .------------------------------------ -- -------------------------------------------------- -

CUMPASS-32 (2.11 CIC VERSION 51 0.0 12/01l6~ 11/21/66 PAGE 
~NTHY CIC!CIT 0003-

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

00000 45000045 45 

00001 24400004 24 
00002 37000043 37 
00003 03100006 03 
0000.. c000004S cO 
00005 01400004 01 

00006 47100047 47 
00007 47200050 47 
00010 47300051 47 

00011 14477777 14 
00012 ... 0000044 40 

00013 54100005 54 
00014 171 07777 17 
00015 05100UO 05 
00016 01000040 01 
00017 15177675 15 

00020 20100044 20 
00021 44000026 44 

00022 12000006 12 
00023 42000136 42 

00024 14677777 14 
00025 44100044 44 

00026 00700026 00 

00027 77500000 77 

00030 14400000 14 
00031 40000044 40 

00032 54100047 54 
00033 54200050 54 
00034 54300051 54 
00035 25000045 25 

00036 77740000 77 1 
00037 81480G04 01 1 

00040 
00041 
00042 

00043 

17\00007 17 
15100016 15 
01000020 01 

77730000 77 

POOO~5 

OOOO~ 
POOO~3 
P00006 
POGO .. S 

00004 

POOOH 1 
POOOSO 2 
POOOSI 3 

77777 
POOO .. 

OOOOS 
07177 
00110 

POOO~O 
7167S 

P00044 
P00026 

00006 
P00027 

X71777 2 
POOO~4 1 

P00026 

00000 

00000 
P0004~ 

P00047 
P00050 
P00051 
POOO~S 

~OOOO 
00004 

00007 1 
00016 1 

P00020 0 

30000 3 

CIC 

CICl.l 

CICS.O 

CICS.O 

CIC9'.O 

CIC •• 1 

OJNT 

EXT ABNOH~AL.COI 00035 

STA~ 

LeA.l 
L.PA 
AZJ.NE 
LOA 
UJp.l 

STI 
SIl 
STI 

ENA'S 
STA 

LUI 
ANI 
lSi; 
UJP 
INI 

LOA 
Sill A 

SHA 
SACH 

ENA 
SIJIA 

RTJ 

INCL. 
REM 

E'I'A'S 
SlA 

ANI 
INl 
UJP 

DINT 

CIT.l SAV£ (AI AND (QI 
lOG I C /ILL Y IGNORE ,. 
OINT 
CIC2.1 
CiT+i 
4 

INTERHUPT ON DINT - - - - - - - - -
((4». INTERRUPTED INSTRUCTIO'< 
MASI( DINT INST (lERO BITS 11-0) 
JUMp IF ((4) I NI)T OINT 
E.L.Sf RESTORE iAi 
AND EXIT. INTERRUPT DISABLED 

SAllE REGISTEHS IN 
CIT.3.1 

CIT - - - - - - - - - - -

CIT·4.l 
cn+s.3 
SET LOCK-OuT FLAG 
-0 
CIT 
TRANSF!'lRM INTERRUPT 
5.1 
17778,1 
1108.1 
CIC4.1 
-10lB.l 
SET USER ENTHy (FROM 
CIT.l 

SAIIF IIHI 
(82) 
(83) 

COOE TO RELATIIiE CIT ENTRy 
L.OAO AND 
MASK INTERRupT CODE 
SKIp If NON-I/O INTERRUPT 
ELSE GO PROCESS THE", 
COMPUTE INDEx RFLATlvE TO 
CITI INTO RTJ - - -
USER ENTRy LOCATION GOES 
TO RTJ INSTRUCTTON CIC8.0 

SET INCL 
6 

"lASK "QI< CLEAkING INTERRIJPT - -
CHARACTER 0 C~RRIES MASK 

CIC9.0+l 
RESTORE ABNORMAL ADDRESS TO CIT ENTRv 
ABNOHI4AL 
CIT.I 
ENTER USER INTERHUPT PROCEDURE 

* CLEAR INTERRUPT IF NON-lID - -
o ".51( wILL. IfE ZE~O ON 110 
INTERRUPTS. CLEARED wITHIN CIO 
RESTORE LOCK-OUT FLAG - - - - - -
o 
cn 

CIT. 

HE STORE SAilED REGISTFRS - - - - - - - - - - - - - -
CIT·3.1 
CIT.4.2 
CIT.S.3 
cn.l 
ENABLE INTERRUPT AND EXIT TO INTERRUpTEU PROGRAM 

4 
TRANSFORM 1/0 
7.1 
CITCHO-CIT,l 
CICS.O 
CONSUNTS AND 

INTERRuPT CODE - - - - - - - - - -
MASK CHANNEL A ITS 
INCI!EASE !BII Tn RELATIVE 
CI1ANNEL ENTRy AND CONTINUE 

CENTRAL INTERRUPT TABLF - - - - -

00037 
0003':! 
00039 
OOO~O 

000"'1 
00042 
00043 
0004_ 
00045 
000"'6 
00047 
00048 
000~9 
00050 
0005) 
00052 
00053 
00054 
00055 
00056 
00057 
00051:1 
000:'9 
00060 
00061 
00062 
00063 
0006 ... 
00065 
00066 
00067 
00068 
0006<1 
00070 
00071 
00072 
00073 
00074 
00015 
00076 
00071 
0007!:! 
00079 
00080 
00081 
00081;! 
00083 
00084 
00085 
00086 
00087 

• A-30 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMPASS-32 

0004 .. 

00045 
00046 
00047 
00050 
00051 

00052 
00053 
00054 
00055 
00056 
00057 
00060 
00061 

00062 
00063 
00064 
00065 
00066 
00067 
00070 
00071 

COMPASS-32 

ABNORMAL 

COL 

CIC2.1 
CIC4.1 
CIC5.0 
CICB.O 
CIC9.0 
cn 

ClTCHO 
DINT 

SYMBOLS NOT 

*CIC 

(2.11 

04000024 
20000052 
20000053 

77717777 

00000000 
00000000 
00000000 
00000000 
00000000 

04 XOO024 
20 lI.Q0052 
20 XOO053 

10000054 10 XOO054 
10000055 10 XOO055 
40000056 40 M0056 
00000057 00 XOO057 
00000060 00 XOO060 

00077777 00 X77777 
00000062 00 XOO062 
00000063 00 XOO063 
00000064 00 XOO064 
00000065 00 XOO065 
00000066 00 XOO066 
00000067 00 XOO067 
00000070 00 XOO070 

(2.11 

CIC 

CIC 

EXTERNAL 

EXTERNAL 

POOO06 
POO040 
POO020 
POO026 
POO027 
POO044 

POO062 
POO043 

REFERENCED 

POOOOO 

CIT 

CITCHO 

VERSION S1 0.0 12101164 11-121/66 PAGE 

C 

77777777 INTERRUPT LOCK-OUT FLAG. OCT 
HEM 
RE'I 

VALUE IS -0 IIIIHEN INTEHRUPT PROCESSING IN P~OGRESS. 

CONTENTS 
RESToRED 
OCT 
OCT 
OCT 
OCT 
OCT 

INTERRUPT DISABLED. AND IS .0 OTHERWISE 

OF REGISTERS ON ENTRY TO CIC SAVED IN CIT AND 
FROM T~ESE LOCATIONS 

o (AI 
o (YI 
o (81) 

(1i2, 
(S3) 

NON-liD USER INTERRUPT LINKAGE CELLS. INCL MASK IS IN 
CHARACTER 0 AND GOES INTO 8IS 11-0" OF INCL INSTRUCTION. 
AOORESS IS INITIALIZED TO ABNO~MAL AND RESTO~Er') PHIOR TO 
ENTHY TO A USER ROUTINE. 
04 ABNORMAL CODEo:Olln REAL TIME CLOCO( 
20 ABNORMAL 0111 ARITHMETIC OVEPFLOW 
20 ABNORMAL 0112 DIvIDE FAULT 
10 ABNORMAL 0113 EXPONENT OVERFLOW 
10 ABNORMAL 0114 at!) FAULT 
40 ABNORMAL 011e; SEARCH/MOVE 
00 ABNOR'IAL 0116 MANUAL FROM CO~SOLE 
00 ABNORMAL 0117 ADJACENT PROCESSOH 
1/0 INTERRUPT LINKAGE CELLS. tNCL MASK ACTs At,; NOP - A 
MUSr BE GIVEN IN THE 110 INTERRUPT PROCEDURE. ADLlRESS 
INITIALIZATION IS PERFORMED BY CID. 
00 COL CHANIllEL 0 
00 COl CHANNEL 1 
00 COl CHANNEL 2 
00 COl CHANNEL 3 
00 COl CHANNEL 4 
00 COl CHANNEL 5 
00 COl CHANNEL 6 
00 COl CHANNEL 7 
END 

NUMBER OF LINES IIITH DIAGNOSTICS 

CLEAH 

12/01164 11/?1/66 PAGE 

4 

P00024 00064 
P00055 OOlll 
P00061 00115 
P00062 00119 
P00066 00123 
P00003 00041 
1"00016 0005'5 
P00042 00085 
P00021 00059 
1"00023 00062 
POOOOO 00037 
POOOI0 00047 
P00031 00073 
P00035 00078 
P00041 00084 
P00002 00040 

P00052 OOlOR 
P00056 00112 

P00053 00109 
P00057 00113 

1'00054 00110 
1'00060 00114 

P00063 00120 
P00067 00124 

P00004 00042 
P00012 00050 
P00032 00075 
P00041 00084 

P00064 00121 
P00070 00125 

P00006 00045 
P00020 OoOSR 
P00033 0007 .. 

POOO&5 00122 
POOOl1 00126 

P00007 00046 
P00025 00065 
P00034 00017 

• A-:31 

• 0:0089 
00C¥90 
00091 • 00092 
00093 • 00094 

00096 • 00097 
00098 
00099 • 00100 
00101 • 00102 

00104 • 00105 
00106 • 00107 
00108 
00109 • 00110 
00111 
00112 • 00113 
00114 
00115 • 00116 
00117 
00118 • 00119 
00120 
00121 • 00122 
00123 
00124 • 00125 
00126 
00127 • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• COMPASS-32 C2.1I 

• 
• EXTERNAL SYMBOLS 

• 
• 
• 
• ,. 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CIO 

ENTRY-POINT SYMttOLS 
MT"'TCIO 00000 

LENGTH OF SUBPROGRAM 
LENGTH uF COMMON 
LENGTH OF DATA 

00000 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00020 
00021 
000412 

00023 
000414 
000415 
000416 
000Z7 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00040 
00041 
00042 
00043 
00044 
00045 

00046 
011047 
OU050 

01077777 01 0 
00777777 00 1 
0400001,6 04 0 
01000001 01 0 
00700001 00 1 
04000017 04 0 
01000004 01 0 
00700004 00 1 
14200016 14 0 
01000007 01 0 
00700007 00 1 
01000016 01 0 
01000012 01 0 
00000374 00 0 
40000764 40 0 
00700012 00 1 
13100016 13 0 
03200017 03 0 
17702010 17 1 

04700000 04 1 
01000046 01 0 
37000076 37 0 
31000015 31 0 
44000041 44 0 
22000041 22 0 
42000155 42 
00700017 00 
14000017 14 
01000032 01 
00700032 00 
02000017 02 
01000035 01 
00000374 00 
40000000 40 
00700035 00 
13100017 13 
03200042 03 
01060061 01 

17700010 17 
o'l700uOO 0 .. 
01000U61 01 

MTMTCIO 

00274 
00000 
00000 

77777 0 
)(77777 3 

00016 0 
POOOOI 0 
)(00001 3 

00017 0 
P00004 0 
)(00004 3 

00016 2 
P00007 0 
)(00007 3 

00016 0 
P00012 0 
P00077 0 

00764 0 
)(00012 3 

00016 1 
P00017 2 

02010 3 

00000 3 
P00046 0 
P00076 0 
P0001S 0 
POOhl 0 
POOOIO 1 
P00033 1 
)(00017 3 

00017 0 
P00032 0 
)(00032 3 

00017 0 
P00035 0 
POOO 17 0 

00000 0 
X00035 3 

00017 1 
pouh2 2 
1"06001 0 

00010 
00000 

P00061 I) 

M1MTCIO 

MODE 

FCA 

OUTMODE 

NOC 

TEST 

ENTHY 
EXT 
UJp 
H1J 
0" 
UJp 
HTJ 
0'1 
UJp 
RT J 
14 
UJp 
HTJ 
01 
UJp 
OOIC 
40 
RTJ 
13 
AlJ.GE 
ANf~ 

I.IS~ 

U.JP 
I.P, 
S~A 
SWA 
LACH 
~ACH 
wTJ 
14 
UJp 
I1TJ 
02 
UJp 
OO,C 
40 
IHJ 
13 
,,,,,,GE 
UJP 

ANQ 
l)S~ 

UJP 

"ITMTCIO 
CIO 

CIO 
h 
·_2 
CIO 
IS 
*-2 
CIO 
14.2 
*-2 
CIO 
14 
*-2 
INBUH 
SOO 
CIO 
1401 
*-2 
2010F! 

o 
TEST 
'"'ASK 
FCA 
NOC 
,",ODE. 1 
OUTMOOE·l 
CIO 
1510 
*-2 
CIO 
15 
*-2 
I "ISUFI'" 
o 
CIO 
15.1 ·_2 
"100£-1 

lOB 
o 
r:OF 

111;'1/66 PAGE 

REWIND INPUT TAPE 

HEWYNO OUTPUT TAPE 

ASSUME ANO SET TNPUT TAPE TO 
BINARY '"'ODE (MOllE /oIAY BE CHANG[O 
LATER) 
INITIATE REAOING INPUT RECORD 
FHOt.! LOtHCAL UNTT 14 CMAII RECORO 
SIlE IS 500 CHA~ACTERS) 

WAIT UNTIL THE INPUT IS COMPLETE 

MASI( OUT EVERY <;ATAUS BIT EXCEPT 
EOF AND PAHI TV 
WAS THERE AN EO~ OR PARITY ERROR 
YES JUMP TO TEST. 
lonER STATUS RE'lUEST CA) .. LChl 
CALCULATE NU'48ER OF INPUT CHAR­
ACTERS ANO STOHE IN OUTPUT 
Ft.TCH MooE OF l.rPUT RECORD AIIID 
S lORE To SET OUTPUT MOI.>E THE 
SAM~ AS INPUT. 

INITIATE "RITIN~ OUTPUT8UF!'"ER 

WAIT UNTIL OUTPIIT IS COMPLETE 

l.oOp TO REAO "IE .. INPUT RECORD 

WAS AN EOF HEAD 
ns JUMP TO EOF 

• A-32 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• COMPASS-l2 

00051 

• 00052 

• 00053 
0005,," 
00055 
00056 • 00057 
00060 

• 00061 
00062 • 00063 
0006,," 

• 00065 

• 00066 

• 00067 
00010 
00071 

• 00072 
00073 
0007,," 

• 00075 
00016 
00077 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• COMPASS·32 

• CIO 

• EOF 
EXlT 
FCA 

• IN8UFF 
MASK 
MODE 

• MTHTCIO 
NOC 

• OUTMOOE 
TEST 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

(2.11 MTMTCIO 
71770000 77 70000 3 

007000,,"2 00 XOOO,,"2 
06000016 06 00016 
01000052 01 1'00052 
22000041 22 1'00010 
16600010 16 00030 2 
,,"2000041 ,,"2 1'00010' 
01000007 01 1'00001 

00100052 00 XOO052 3 EOF 
11000011 11 00011 0 
01000061 01 1'00061 0 
77700000 77 00000 3 

00100067 00 o 1'00061 

ntooo007 01 o 1'00007 

00700061 00 XOO061 EXIT 
05000016 05 00016 0 
01000061 01 1'00067 0 
00700067 00 XOO061 3 
05000017 05 00017 0 
01000012 01 POO072 0 
01400000 01 1 POOOOO 0 

00317777 

12.11 

POO061 
1'00067 
POOO15 
POOO71 
POO076 
1'00010 

1'00000 
1'000""1 
1'00033 
1'000,,"6 

MASK 
IN8UFF 

MTMTCIO 

EXTERNAL 

UCS 

RTJ 
06 
UJP 
LACH 
XOA 
SACH 
UJp 

RTJ 
11 
UJp 
SLS 

SJl 

UJp 

RTJ 
05 
UJp 
RTJ 
OS 
UJp 
UJp,I 
OCT 
8SS'C 
ENO 

NUMBER OF 

1'00001 
P00017 
1'00052 
1'00050 
1'00065 
1'00026 
1'00015 
1'00025 
POOOlO 
1'00060 
1'00075 
1'00027 
1'00031 
pOOO~4 

CIO 
U 
*-2 
"IODE+l 
30B 
"'ODE+l 
MODE .. 1 

CIO 
15 
*·2 

EXIT 

MODE .. 1 

CIO 
14 
*·2 
CIO 
15 
*.2 
"'TMTCIO 
317777 
500 
"TMTCIO 

LINES wITH OIAGNOSTICS 

1'0000,," 
1'00032 
1'00061 

1'000""0 

1'000,,"5 
1'00066 

11/;11/66 PAGE 
IF I)ARI TV ERROR STOP SO THE 
OPERATOR MAY DEClUE IF IT IS A 
LEGAL PARI TY ERROR OH wRONG MODE 

BAC~SPACE INPUT TAPE A RECORD 

FETCH ASSUMED MnDE AND 
CHANGE IT. 
SET NEW MODE IN SEL CALL AND 
TRY AGAIN. 

WRITE fOF ON OUTPUT TAPE 

STOp IF SELECTIvE STOP SwITcl'l 
SET ON CONSOLE. 
EXIT AND UNLOAD TAPES IF JUMP 
~~Y 1 IS SET, ON CONSOLE. 
l.f NOT JUMP TO I)EAu INPUT RECORD 

UNLOAD IJ\JPUT TAPE 

UNLOAD OUTPUT TAPE 

EXIT TO SCOPE 

111<'1/66 PAGE 

1'00007 
POOOl5 
1'00067 

1'00055 

P00012 
1'00042 
1'00072 

1'00057 

• A-33 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• COMPASS-32 12.11 

• 
• ENTRY-POINT SYMBOL.S 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

TYPEIN 00000 

L.ENGTH OF SUBPROGRAM 
L.ENGTH OF COMMON 
L.ENGTH OF OATA 

TYPEIN 

00027 
00000 
00000 

lln1/66 PAGE 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

t
!--------------------------------------------------------------------------! • • 
• COMPASS-J2 12.11 TYPEIN 11121/66 PAGE 2 • 

THIS SUBROUnr;E ALL.OWS I'OA tyPING IN " V"RUtlL.E QUANTITY OF 

• ~~~~ogEi~M~~p~~G~!.~~~8~:~LI=~ ~~~~~N~~ I~~MINATEU wHEN A • 
CAL.L. IPI • RTJ TYPEI~ 

• ::;11 :F~~~~R~HARACTER ADDRESS OF INPUT BUFFER • 

• OUTPUT IBll= NUJ04BER OF NUMBERS • 
• ENTHY TYPEI'" • 00000 01077777 01 77777 TYPEIN UJp 

• 00001 Iltl00000 lit 00000 ENI 0.1 CL.E.Aq 91 
00002 1t6000020 1t6 POO020 SCHA CKPE~IOD • OuOO3 1t6000010 1t6 POOOIO SCHA SET23 SAVE INPUT PAR. 

• 00001t 151100001t 15 00001t 0 INA'S .. 
00005 71600"00 77 001t00 2 PAllS .. 008 IS TIoIE TYPEWRItER BUSY • 00006 01000005 01 POOOOS 0 U.JP ·-1 yES LOOP 

• 00007 53420033 53 Z0033 0 TAM 339 SET LAST CHARACT~R AODRESS.1 OF 
tNPUT BUFFER INTn REGISTER FIL.E • LOCATION 33B. 

• 00010 11377777 11 77777 SEl23 ECHA .. 
00011 53420023 S3 20023 TAM 239 SET FIRST CHARACTER ADDRESS INTO • REGISTER FILE LOCATION 238. 

• 00012 17150000 17 50000 3 CTI SET TYPE IN 
00013 17602000 17 02uOO 2 LOOP "'''US 2000R IoIAS THE REPEAT SWITCH ON TYPE- • 00014 01000016 01 POOO16 0 UJP FINISH wAlTER BEEN PUSHED-YES JUJ04P TO 

• 00015 01000010 01 POOOI0 0 u.JP SET23 ADDRESS SET23 ANI) START OVER. 
~O JUMP TO FINISH. • 00016 71601000 71 01000 2 FINISH PAUS 10008 HAS THE FINISIoI SIoIITCH BEEN 

• 00017 01000013 01 POOO 13 0 UJp L.OOP PUSHfO-NO JUJ04P To LUOP. 
00020 22377117 22 77177 J CI(PERIUU LAC'" • 00021 04600033 04 00033 2 ASE J3B IS THE FIRST CHAQACTER A PERIOD-

• 00022 01000024 01 Pou024 0 U.JP BYPASS yES EX IT -NO JUMP TO BYPASS 
00023 01400000 01 POOOOO 0 u.JPII TYPEI'" • 00024 15100001 15 00001 1 ByPASS INI III J NCREA5E Bl I'IY 1 

• 00025 53020033 53 20033 0 TMA 339 SET ",EW INPUT BUFF'ER AND LOOP 
00026 01000002 01 .00002 0 UJp TYPEIN.2 TO TyPEIN.2 • END 

• NUMI'IEk OF' LINES WITH DIAGNOSTICS • 
• • 
• • 
• • 
• • 

A-34 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CUM"'A~S-j~ (2.1 ) 

B'I'Io'A~S POOO;>4 

CI\. ... ~HI()O POO020 
FINISH POOO 1 & 
LUU,", POOOll 
!of-T23 POOOIO 
T'l'PI:.1N PIlOOOO 

COMPASS-32 (2.ll 

• ENTRY-POINT SYMBOL.S 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

SOIolT 00000 

L.ENGTH OF SUBPROGRAM 
L.ENGTH OF COMMON 
Lt:NGTH OF DATA 

00030 
00000 
00000 

TYPt:.!N 

SORT 

POOO2? 

f'OUOO(, 
POOO14 
1'00017 
POOOO3 
POO02) 

111;>1/b& 

1'00015 
POOO2& 

11/;>1/b& 

• A-35 
PAGE • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

PAGE • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• .1 
A-36 • CQMPASS~32 12.11 SORT 11/;:11/&& PAGE 

THIS SUf3PROGRA'" SORTS A BL.OC'" OF NUMBERS INTO ASCENDING ORDER. 
2 • 

• U?nN ENTRY THE ADDRESS OF THE FIRST NUMBER IS LOCATED IN THE • LOwER 15 BITS OF THE A REGISTEII AND THE ,"U"'SER OF NUMBERS IS IN 
il2. 

• CAL.L IPI a'HJ SORT • IP+U-RETURN 

• IAI -ADDRESS OF THE FIllS T NUMBER • IBl) IINU"'BER OF NUMBERS 

• ENT~Y SORT • 00000 01077777 01 77177 SO~T UJp •• 
OUOOI 44000010 .. POOOI0 SWA INIT~1 SAVE" FIRST WORD ADDRESS OF DATA • • BLOCK. 
00002 53640000 53 40000 IAI ADD FIRST WORD ~DDRESS TO NUMBER 

• OF I':NT~IES TO C~L.CUL.ATE LAST • WORD ADDRESS. 1 rlF INPUT ~LOCK. 
00003 15277716 15 71776 2 INI ~lt2 
00004 47200022 47 POOO22 2 STI INL.OOP.2 SET LIMIT OF INLOOP PASSES • • 00005 15271716 15 77776 2 INt ~102 
00006 .. 1200024 .. 7 POO024 2 STI OUTL.OOP,2 Sf. T LIMIT OF OUTL.OOP PASSES 

• 00007 47100026 47 POU02& 1 !foTI BSAVE,1 SAV~ IBll • 00010 14177717 14 77777 1 ENI ··,1 ENTER Bl WITH FrRST WORD ADDRESS 
OF INPUT BL.OCK 

• 00011 53100000 53 00000 1 INlT TlA • 00012 15600001 15 00001 2 INA SET B2 EQUAL TO IBll+1 
00013 53600000 53 00000 2 TAl 
00014 21100000 21 00000 1 LOQ 001 LOAf) Q wITH F'IRST NUMBER FOR • • THIS PASS. 
00015 20200000 20 0 00000 LOOP LOA n.2 LOAD A WITH NEll. T NUMBER 
00016 03600022 03 1 POO022 AIoIJ,GE INLOOP IS A GE Q YES JIIMP TO INLOOP • • 00017 41200000 41 0 00000 STQ 0,2 IF (AI WAS LESS THAN (1.1) SWAP 
00020 40100000 40 0 00000 STA 0,1 THE REGISTER ANn ALSO SWJ\P THEM 
00021 13000030 13 0 00030 SI1 A I,,) 24 IN CORE. • • OU022 10277777 10 0 77777 2 INLOOP lSI ·*.2 
00023 01000015 01 0 POOO15 UJP LOOP 

• 00024 10177777 10 0 77777 OUTLOOP 151 ··,1 • 00025 01000011 01 0 POOO 11 UJp INIT 
0002& 14177717 14 0 77777 BSAvE ENI ··,1 
00027 nl .. 00000 01 1 POOOOO UJI),I SORT • • END 

NUMBER OF LINES WITH DIAGNOSTICS • • 
• • 
• • 
• • 
• • 

r:---c~~:'~:~,~---~,~~,----------~~:'------------------------------~~'~/~.-~.~: -----------: gSAII[ POOO?6 Pooon7 
• INlT PUOOll POOOOl POOO25 • IfIILOOP POOOl2 poooo .. POO~le. 

LOu... P00015 POOOl3 
• ourLOOP POOOl4 P00006 • SO"' PQOOOO P00027 

• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 



• 
• COMPASS-JZ 12.11 

• 
• ENTRy-POINT SYMBOLS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
-. • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

TYPEOUT 00000 

LENGTH OF SUBPROGRAM 
LENGTH OF COMMON 
LENGTH OF DATA 

COMPASS-32 (2.11 

00000 01077777 
00001 77600400 
00002 01000001 
00003 53420023 

00004 53140000 

00005 53420033 
00006 77760000 
00007 01400000 

01 
77 
01 
53 

53 0 

53 
77 
01 

TYPEOUT 

00010 
00000 
00000 

TYPEOUT 

77777 0 TYPEOUT 
00400 2 

f:l00001 0 
20023 a 

40000 

20033 
60000 

POOOOO 

11/:)1/66 PAGE 

11121/66 PAGE 
THIS SUBROUTINE ALLOWS FOR TYPING OUT A VARIBLE NUMBER OF 
CHARACTERS. THE CALLING SEQUENCE IS. 

CALI. (AI -FIRST CHARACTER ADDRESS 0" OUTPUT BUFFER 
1811 .. NUMBER OF CHARACTEHS IN OUTPUT BUFFER 
(PI :sRT J TYPEOUT 
(P+lI-RETURN 

ENTRY TYPEOUT 
UJf:I ** 
PAUS 400B IS TPiE TYPEWRITER BUSY 
UJP *-1 yES lOOP AND WAIT UNTIL NOT BUSY 
TAM 23B TRANSFER FIRST C~ARACTER ADDRESS 

JNTO REGISTER FILE LOCATION 23B. 
AlA CALCULATE LAST C~ARACTER ADDRESS 

.1 By ADDING (AI AND IB11. 
TAM 33B TRANSFER LC"1 INTO RF 33B 
CTO sET TYPE OUT 
UJP,I TYPEOUT 
ENO 

NUMBER Of LINES WITH DIAGNOSTICS 

• A-37 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

2 • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• • 
• COMPASS-32 ~2.11 TYPEOUT 11/21/66 PAGE • 

T~EO\J'" POOOOO POOO07 • • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 

f~----------------------------------------------------------------------------- - ----i i 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMPASS-32 12.H 

ENTRy .. POINT SYMBOI.S 
FLOATF 00000 
FLOAT 00000 

I.ENGTM OF SUBPROGRAM 
LENGTH OF COMMON 
LENGTH OF DATA 

00025 
00000 
00000 

FL.OATF 11/21166 PA6E • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-38 



• 
• :OMPASS-32 12.11 -L.OATF 

• 
• 
• 
• 00000 01077F7 01 0 711770 Fl.OATF 

00000 FLOAT • 00001 47100021 47 o POO021 
00002 5"100000 54 o POOOOO 

• 00003 20500000 20 1 00000 
00004 15100001 15 0 00001 
00005 47000022 ,.7 o POO022 

• 00006 130777H 13 a 17747 
00Q{)7 03400021 03 1 POO021 
00010 400110023 40 o POO023 

• 00011. 13502057 13 1 02057 

00012 13077764 13 77764 0 

'. 00013 41000024 41 POO024 0 
00014 13077763 13 77763 0 

• 00015 53100000 53 00000 1 
00016 36000023 3& POO023 a 

00017 13000014 13 0 00014 a • 0.0020 21000024 21 0 POO024 a 
00021 14177717 14 0 17777 1 FOUT 
00022 01077771 01 0 71777 0 ExIT • 00023 00000000 MASKO 
Op024 TEMp 

• 
• 
• 
•• 
• 
• 
• 
• 
• 
• COMPASS-32 (2.11 FI.OATF 

EXIT POO022 ., 
FLOATF POOQ.}O 
FOUT POO021 

• MA~I(O POO023 
TEMP 1'00024 

• SYMBOl.S NOT RE.FERENCED 

•• POOOOO 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

I1nl/&& PAGE 
TI'IIS SUBPROGRAM CONVERTS AN INTEGEQ NUM9ER INTO Fl.OATING POINT 
FORMAT .UPON ENTQY THE ADDRESS nF TtoIE INTEGER NIJMBER IS LOCATED 
IN THE l.OWER IS BITS OF P*l. 

CAl.l. (P) .. RTJ Fl.OATF 
(P·1) .. AODRESS OF THE INTEGER NU~8ER 
(P*2) .. RETURN 

OUTPUT (AQ) .. Fl.OATING POINT EQu I VALENT OF THE I NTEGER NUMBER 

ENT~Y FLOAT. FLOATF 
UJp ** 
EQU FLOATF EQUATE FLOAT TO FLOATF 
STI FOUT.l SAVE 81 
L.OI F .. OATF'.l LOAD 81 ""ITH AOORESS OF INTEGER 
LOuI 0.1 LOAn .to wITH I "lTEGER NUMBER 
IN1 101 INCQEASE AND SET RETURN ADDRESS 
STI EXIT TO 1'.2 OF CALLING ioCOUTlNE 
SHAIil -24 
AQJ,EQ ~'OUT 010 THE INPUT NUM8ER=0 yES EXIT 
STA MASKO SAVe- SIGN OF INPUT NUMBER 
SCAI;! 20578.1 NORMALIZE THE INTEGER By USlIljG, 

THE SCALE INSTRuCTION 
SriAIil -11 MERGE THE EXPONFNT AND 81AS 

(cOIllTENTS OF 81) wI TH THE 
ST" TEMP MANTISSA 
·SHAW -12 
TIA I 
SCA MASKO COMpLEMENT EXPONENT AND 8IAS IF 

THE INPUT Nu..,aER ""AS NEGATIVE. 
SriAQ 12 
L.C" TEMP 
ENI **.1 
U.JP ** 
OCT 
ass 
ENO 

~UMBER OF LINE$. wITH DIAGNOSTICS 

poooos 
pooooo 
POOOOI 
POOOIO 
POOOl3 

P00002 
P00007 
P00016 
1'00020 

• A-39 
2 • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
.--
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• COHPASS-3Z (z.u 

• 
• ENTRY-POINT ~YHSOl..S 

• -. 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CROT~ 00000 

L.ENGTH OF SUBPROGRAM 
L.ENGTI1 OF COMMON 
L.ENGTH of DATA 

00000 
00001 
00002 
00003 
0000 .. 
00005 
00000 
00007 
00010 
UOOi>1 
00012 
00013 
00014 
00015 
00016 
00011 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00030 
000.31 

00032 
00033 
0003 .. 
00035 
00036 
00037 
000"0 

00041 
000_2 
00043 

00044 
00045 
OU046 

01011717 01 0 
7'7003000 71 0 
01000001 01 0 
77010001 71 0 
01000003 01 0 
17110010 71 0 
01000005 01 0 
71200000 17 0 
17600003 17 1 
04600001 04 1 
01000001 01 0 
14000121 74 0 
00000051 00 0 
01000013 01 0 
7120000l 17 0 
nl000016 01 0 
7720,1:,). 71 0 
('10000"1 01 0 
71200010 77 0 
nl0000_4 01 0 
14000002 14 1 
42000133 .. 2 0 
771100011 17 0 
0100002b 01 0 
.,301.uO 00 .,3 0 
1207771') 12 0 

440000J3 44 
76077711 70 
100110051 10 
01000033 01 
71210002 17 
0100u036 01 
01000001 01 

)4600001 14 
42000133 .. ;? 
01000u26 01 

71110015 17 
010000""" 01 
71110ul1 71 0 

CRDTP 1110'1/66 PAGE 

00121 
00000 
00000 

17771 
03000 

1"00001 
10001 0 

P00003 0 
10010 1 

1"00005 0 
00000 2 
00003 2 
00001 2 

P00001 0 
POOI2! 0 
1"00051 0 
Pouu13 

00002 
1"00016 

00004 
1'00041 

00010 
POOO .. 4 

00002 
1"00026 

10000 
1'00026 

20000 
Tn15 0 

1"00033 
11111 

1"00051 
1'00033 

10002 
POOU36 
1"00001 

00001 
I>OUU26 
P00026 0 

10015 
POUOH 

1 U011 

E~THY 

CHOTP UJp 
CON 
UJP 
CON 
lJJp 
SEL 
UJp 

INPUT COpy 
ANA 
ASE 
UJP 
INp .. 

lJJP 
EX" 
UJp 
ElIe:; 
I.JJi-> 
EX'i 
UJp 
EN, 
SACt1 

SEL.,WDE ~EL 
UJp 
Pot, 
SHA 

S"A 
OuTpUT OUT" 

IJJp 

ElI'i 
uJp 
UJp 

C~DTP .. 
3000~.O 
·-1 

, lS.1 

·-1 
10thl ·-1 
o 
3R 
18 
I ",PUT 
O.8UFF.BUFf+ .. O 

"-2 
2A.a 
"-1 
.. R.O 
"'INA~Y 

1 Oti. 0 
t::Of 
2A 
SEL.MOoE+3 
fltl 
"-1 
n 
-2 

IIUTPUT 
1.IWFF.· .. 

·-2 
~M.l 

*-1 
INPUT 

cONNF:CT CA~D REAfiER ON CHANNEL. 0 

CONNECT OUTPIJT T APE ON CHANNFL. 

REwIND OUTPUT TAPE 

I S THE CA~O REAOt=:R HEADY AfliD 
",OT qUSY-YES INITIATE INPUT­
NO L.OOP UNT IL I T BECOMES HEADY 
ANU 'IIOT BUSY. 
INiTIATE READING A 1j1NAHY OR 

RCU CARD. 
",AU UNTIL. THE CARD "'EADE~ 
!'IE COMES NOT AlJSY. 
wAS THE CARD JUST Rt::AD A IHNARV 
CAHO YES JUMP TO RINA'iY. 
lolA:) A FILE. eARn QEAIJ IROw 1 ANU 
R t>U\JCt1Eo) YES J"MP TO EOF 

'iE T "leo MOUE FOR OUTPUT TAI>E. 

FE TCI4 LAST e-iAI'IAcTE>l ADDRESS. 1 
ANU t:t1ANGF.: IT TO LAST WORD 
AUURI'SS+l 
~TORF AOO~ IN OUTPUT INSTHuCTION 
INiTIATE wRITIN(; OUTPUT BUFFEH 

"All UNTIL. THE' U"TPuT TAPE 
4E.CO",ES NOT olUSV 

... *** •• * .......... 0 ............... 0 ................... 41'.0 ..... **.10** ••• * ••• *.* ........ .. 
•••••••• ** .......... ** ................... * .................. ** ... * ............... * ........ . 

B!NAHY E.N'" C;E I ,HNARY MOOE FOJ'l OUT~UT TAPE. 
5AtH "ELMIlLlE. ~ 
I.JJI' SEL.MODE 

.go Go ... ,.. a- 0 .. 0 ..... * ... .a. .. "' .. a.* ** ..... *~ ** a..** a. *.a.o .. o .... *o .. **~ .. * ........... 0. * ••••••••••••••• 0.0 

.. * .................. ** ..... * ••••• * ................. * •••• **** 00 •••••• *. tt •• * .. *.* ...... ,. 
EoF SEL 1 'j~, I ..,HUt=: EOI' ON nUT PUT TAI"E 

UJ!> .-1 
~tL lHJ~1 'JNL.OIID OUTI>UT TAPE lu"'IT 1) 

• A-40 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

COMPASS-32 12.11 CRO TP 
000.7 010000.6 01 0 POOO.6 0 
OOO~O 01400000 01 1 POOOOO 0 
OOOSl BUfF 

C0MPASS-32 

BINARY 
BUFF 
CROTP 
EOF 
INPUT 
OUTPUT 
SELMOOE 

12.11 

P00041 
P00051 
POOOOO 
POOO •• 
P00007 
P00033 
P00026 

CHOTP 

UJP 
UJP,I 
BSS 
END 

-·1 
CROTP 
.0 
CROTP 

111:>1/66 PAGE 

F.XlT TO SCOPE 

NUMeER Of LINES wITH DUGfIIOSTICS 

P00021 
POOOl3 
P00050 
P00023 
POOOl2 
P00032 
P00025 

POOOll 

POOO.O 

POOO.2 

11/21/66 PAGE 

P00033 

POOO.3 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-41 



• 
• COMPASS-32 (2.11 

• 
• ENTRY-POINT SYM80LS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

NTMT 00000 

LENGTH OF SU8PROGRAM 
LENGTH OF COMMON 
LENGTH OF DATA 

C0Jl4PASS-32 (2.11 

00000 01017717 01 
00001 77000001 71 
00002 01000001 01 
00003 71010002 71 
00004 01000003 01 
00005 77100010 17 
00006 01000005 01 
00007 77110010 71 
00010 01000007 01 
00011 17100001 71 
00012 01000011 01 

00013 13001270 13 
00014 00000304 00 
00015 01000013 01 

00016 11200002 17 
00011 01000016 01 
00020 71200010 71 
00021 01000047 01 
00022 71202000 71 
00023 01000040 01 
00024 53020000 53 

00025 46000032 46 

00026 22000047 22 
00021 42000143 42 
00030 11110000 17 
00031 01000030 01 
00032 75317171 75 
00033 10000304 10 
00034 01000032 01 
00035 11210002 77 
00036 01000035 01 
ou037 01000Ull 01 

00040 17770000 77 

00041 1711)0012 71 

0 
0 
0 
0 
0 
0 
0 
0 
a 
a 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

MTMT 

00256 
00000 
00000 

77171 
00001 

POOO01 
10002 

POOO03 
00010 

POOD05 
10010 

POOO01 
OOOOl 

POOOll 

P00256 
POO061 
POOO13 

00002 
POOO16 

00010 
POO047 

02000 
POO040 

20000 

POO032 

POOOll 
POOOlO 

10000 
POO030 

77171 
POO061 
POO032 

10002 
POO035 

MTMT 

2 
0 
2 
0 
2 
0 
0 

3 
3 
1 
0 
3 
0 
0 
Ii! 
0 

POOOll 0 

70000 

00012 

MTMT 

MODE 

111;11/66 PAGE 

11121/66 PAGE 2 
nitS SU8PROGRAM COPIES A VARUI)LE SIZE RECORD INPUT TAPE !UNIT 
ltCONTRO!.!.ER O. (IN CHANNEL 01 TO ANOTHER TAPE (UNIT 2.CONTROL 
LER O.ON CHANNEL 1). THE DENSITY OF THE OUTPUT TAPE WILL BE THE 
DENSITY SET BY THE OPERATOR. 
THIS SUBPROGRAM DOES NOT CHECK FOR TAPE ERRORS. PARITY IS 
CHECKED ONl.Y TO INSURE THAT THF.: MODE OF THE INPUT TAPE IS THE 
SAME AS THE HOOE SEl.ECTEO. 

ENTRY 
UJP 
CON 
UJP 
CON 
UJp 
SEL 
UJp 
SEL 
UJP 
SEl. 
UJp 

INPC 

UJP 

EAS 
UJP 
EXS 
UJp 
EXS 
UJp 
TMA 

"ITHT .. 
18,0 ·-1 
28,1 ·-1 
108,0 ·-1 
10B,1 
·-1 
1I~,0 
·-1 

CONNECT INPUT TAPE (UNIT 11 
ON CHANNEL 0 
CONNECT OUTPUT TAPE (UNIT 2) 
ON CHANNEl. 1 
REWIND INPUT TAP~ 

REWIND OUTPUT TAPE 

ASSUME AND SET INPUT TAPE TO 
RINARY MODE (MOOF.: MAY 8E CHANGED 
LATER). 

OoINRUFF,INBUFF+500 REAO INPUT REcORn FROM TAPE UNIT 

2B,0 ·.1 
10B.o 
EOF 
2000fhO 
SETM()DE 
o 

OUTPUT 

1 (MAX RECORD SIZE IS 500 
CHARACTERS) 
wAIT UNTIL INPUT 15 COMPLETE 

wAS AN EOF READ 
yES JUMP TO EoF 
",AS THERE A PARITY ERROR 
yES JUMP TO CHANGE MODES 
FE rCH LAST CHARACTER ADDRESS OF 
INPUT RECMD+l 
STORI;: CHARACTER ADDRESS IN OUT­
pUT INSTRUCTION. 

LACH 
SACH 

OUTMODE SEL 
UJP 

1400E·3 
OUTMODE+l 
0,1 
··1 
1.IN8UFF,·· 

FETC.,. MODE OF INPUT RECORD AND 
S TORE TO SE T OUTpUT MODE THE 
SAME AS It.4PUT 

OUTPUT OUTC INITIATE WRITING OUTPUT RECORD 

UJp .-2 
EAS 2thl "'All UNTIL OUTPUT IS COMPLETE 
UJp .-1 
UJp "'OOE l.ouP TO READ NEW INPUT ~ECORO 

•••••••••••••••••••••••••••••••••••••••••••••• ** ••••••••••••••••••••••••••••••• 
•••••••••••••••••••••• c ......................................................... . ............................................................................... 

SnJ40Df UCO; If'" PaRITy ERROR ~TOP SO THE 
oPERATOR MAY DECIDE IF IT IS A 
LEGAL PARITY £RR"IR OR WRONG MODE 

SEL 128.0 RACK~PACE INPUT TAPE A RECORD 

• A-42 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• COMPASS-32 (2.11 

00042 01000041 01 
00043 22000041 22 • 00044 16600003 16 
00045 "'2000041 ",2 

• 00046 01000011 01 

• 00047 11110015 17 
00050 01000041 01 • 00051 17100000 11 

00052 00100054 00 • 00053 01000011 01 

• 
0005'" 17100011 11 •• 00055 0100005", 01 
00056 17110011 17 

• 00051 01000056 01 
00060 01"'00000 01 
00061 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• COMPASS-32 (2.11 

• EOF POO041 
EXIT POO054 
INSUFF POO061 

• MOI)E POOOll 

MTMT POOOOO 

• OUTMODE POO030 
OUTPUT POO032 
SETMOOE POO040 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

MTMT 
P00041 0 
POOOll 3 

00003 2 
POOOll 3 

POOOll 

*-1 
"'00E+3 
3 
"'00E+3 

UJp "'ODE 

lln1/66 PAGE 

FETCH ASSUMED MOnE AND 
CPiANGE IT 
SET NEW "'ODE IN C;EL INSTRUCTION 
AND TRY AGAIN. 

............................................... ** ••••••••••• ** ......... **** ••••• 00 ... . 

.................................................. ** ............................. * ... 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * ....................... ** 

10015 EOF SEL 15B,l wRlTE EOF ON OUTPUT TAPE 
POO041 

00000 

POO054 

POOOll 

00011 
POO05. 

10011 
POO056 
POOOOO 

MTMT 

UJp *-1 
SL.S 

EXIT 

STOP IF SEL.ECTIvF. STOP SWITCH 
SET IlN CONSOLF.. 
EXIT ANO UNL.OAO TAPES IF JU"'P 
KEY 1 IS SET ON r.ONSOLE. 

JJp "'OOE IF NIlT JU"P To RIOAD INPUT RECORD 
•••••••••••••••••• ** •••••••••••• ** •••••••••••••••••••• 0 •••••••• ** •• ** ••••••• 0*000 

................................................. 0 •••• ** ............... *.** ...... **00** 
****************************** ... ******.0.*****0.*** ••• *** •••••• ***.*.0***.*00*** 

EXIT SEL 118,0 UNL.OAD INPUT TAPF=: 
UJp *-1 
SEL 11B,l uNL.OAO OUTPUT TAPE 
UJe> *-1 
UJp,1 "'TMT FXIT TO SCOPE 

INBUFF 8SS'C 500 
END "'TMT 

NUMaER OF L.INES WITH DIAGNOSTICS 

1l1:?1/66 PAGE 

P0002l 
P00052 
POOOl3 
P00026 
P00046 
P00060 
P00027 
P00025 
P00023 

P00013 
P00037 
P00053 

P00032 
P00043 POOOloS 

• A-43 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



, I. 
• 
• 

COMPASS-32 12.1 ) 

• ENTRY-POINT SYMBOLS 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CVT6C08 00000 

LENGTH 01' SUSPROG~AM 
I-ENGTH OF COMMON 
I-ENGTH 01' OATA 

COl'lPASS-32 12.ll 

00000 01077711 
00001 .0000015 
00002 .1200013 
00003 1.200000 
0000,. 2200006,. 

00005 50000016 
00006 )5200001 
00007 23,.0006,. 

OU010 53040000 
00011 0.200003 
00012 01000005 
00013 14277111 
0001" 01.00000 
00015 

LITERAI-S 

01 
,.0 
,.1 
14 
22 

50 
15 
23 

53 o. 
01 
1. 
01 

00016 00000012 

CVTBCOS 

00011 
00000 
00000 

71111 
POOOl5 
Poc/Oll 

00000 
POOO15 

POOO 16 
00001 

PODOl'S 

,.0000 
OU003 

POOO05 
71111 

POOOOO 

CIiTACUd 

CvTBCDIl 

0 LOOP 
2 
0 

0 
2 
0 
2 BlSAVE 
0 

TEMP 

• A-44 
111;11/66 PAGE • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• CALL IP) sRTJ CvTBCCS 

CP.U) zRET'JRN 
IA) -THE I'OUR CHA>lACTER RCO 'lUMBER • 

OUTI>UT CAl -2,. aIT BINA~Y NUMBER 

ENT~Y CVTaCDS • 
UJP .. 
STA TEMP SAVE INPUT PAR. • STI 82SAVE.2 SAvE (B2) 
ENr 0.2 
LACH TEMP LOAD A WJTOi "'OST SIGNIFICANT • cHARaCTER. 
MOA :0012 MULTtPLY CAl BY AN OCTAL 12 
INt 1.2 • U.lcH TF.MP.2 LOAD Q wITH NEXT SIGNIFICANT 

CIiARACTER. 
AQA • ISE 3.2 IS B~ EQUAL Tn 3 YES ExIT 
UJP I-DOP ",0 JUMP TO LOOP 
ENI ··.2 RESTORE B2 • UJP,I CVTBCDB 
8SS 1 
EIIIO • 

• 
NUMRER OF LINES wITH DIAGNOSTICS • 

• 
• 
• 
• 
• 
• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

CUMPASS-32 

B2SAVE 
CVTBCDB 
L.OOP 
TEMP 
L.ITERAL. 

COMPASS-32 

12.11 

POOOl3 
POOOOO 
POOOOS 
P0001S 
P00016 

(2.1 ) 

• ENTRY-POINT SYMBOL.S 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 

CVTBBCD 00000 

I.ENGTH OF SUBPROGRAM 
L.ENGTH OF COMMON 
I.ENGTH OF DATA 

CVTBCOB 

00000012 

00033 
00000 
00000 

CIITBBCD 

POOO02 
POOO1. 
POOO 12 
POOOOl 
POOOOS 

• A-45 
111:'1/66 PAGE • 

• 
POOOO. POOO07 • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

11nl/66 PAGE • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• • 
• COMPASS-32 (2.11 CVTBBCO 111;:>1/00 PAGE • THIS SUBPROGRAM CONVERTS A 24 RlT RINARY NU'4HEQ TO A EIG"" 

CHA~ACTER 'CO NUMBER WITH SLANKS INSERTED TO T-iE LEFT OF THE • • MOST SIGNIFICANT DIGIT. 

CALL (PI :oRTJ CVTtiBCO • ( P+II-RETURN • CAl :0 24 BIT BINARY NUMBr::R 

• OUTPUT (AOI :0 EIGHT CHARACT~R BCD NUMBER • 
ENT"'Y CVTBF.lCO • 00000 01011717 01 0 17177 CVTRBCD UJp • 00001 47100025 41 0 POO025 STI B1SAVEel SAVE (Bli 

00002 21000027 21 0 POO021 0 LDQ BLANKS • 00003 41000030 41 0 POO030 0 SfQ BCIJANS SET OUTPUT AREA TO tiLANKS • 0000. 41000031 41 0 POO031 0 STQ SCDANS·l 
00005 43000113 43 0 POO022 3 SQCH SETSIGN·3 c;ET ASSUMED SIGN TO posITIvE • 00006 03200012 03 0 POOO12 2 AlJ.GE ~YPASS IS INPUT NUMBF.R pOSI TIVE YES JUMP • 00001 14100040 14 0 00040 1 ENI 40B.l NO sn SIGN 
00010 47100022 47 0 POO022 1 STI SETSIGN.l • • 00011 16477711 10 1 71771 0 XOA'S -0 COMPLEMENT THE 24 BIT NUMtlER 
00012 14100007 14 0 00001 1 BYPASS ENt 1,1 SE T ... AX TI MES THROUGH LOOP 
00013 13077141 13 0 77141 0 LOOP SHAW -~4 SHIFT FOR 48 BIT DIVIDEND • • 00014 51000032 51 0 POO032 0 OVA -012 OIVIDE By OCTAL 12 
00015 43400140 43 1 POOOJO U S(')CH >3CDANS.l STORE NEXT SIGNII'lCANT DIGlT 
00016 02500020 02 1 POO020 1 IJO "+2.1 • • 00011 01000022 01 0 POO022 0 UJP SETSIGN 
00020 04400000 04 1 00000 0 ASE'S 0 IS T!oIE OUOTIENT ZERO-YES SKIP 
00021 01000013 01 0 POOO13 0 lIJp LOOP • 00022 14100000 14 1 00060 3 Sf:TSIGN EM 609 PLACI; SIGN JUST TO THE LEFT OF • 00023 43400140 43 1 POO030 0 SQCH HCDANS,1 '40ST SIGNIFICANT DIGIT. 
00024 25000030 25 0 POO030 0 LliAO 8CDANS • 00025 14171717 14 0 77117 1 BISAVE ENI ..... 1 RESToRE (BlI • 00026 D1400000 01 1 POOOOO u UJp.I CVTB8CD f.:XIT 
00027 60b06060 BLANKS BCD It • • 00030 BCDANS ass 2 

END 

• • LITERALS 

• 00032 00000012 • NUMBER OF LINES WITH DIAGNOSTICS 

• • 
• • 
• • 
• • 
• • 

t
!----------------------------------------------------------------------------------!-• • 
• COMPASS-32 (2.11 CVTt:IBCD llnl/66 PAGE • 

B1SAVE POO025 • BCDANS POOOlO 

BLANKS POO027 • BYPASS 1200012 
CVTBBCD POOOOO 
LOOP PODOll • SETSIGN POO02Z 
L1TE~AL POOOl2 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

00000012 

poooo 1 
1'00003 
P00024 
POOOD2 
1200006 
P00026 
PI)OD21 
"00005 
POOOl4 

P00004 

P00010 

P00015 

P00017 

POOOZ3 • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

A-46 



• 
• SEr.lUENCE,002 

• JOt'l"" 
COMPASS,I.,X 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• CUMI'ASS-J2 (2.ll 

• 
• EX TE:.RNAL SYM80L.S 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

elu 

tNTHy-I-'OINT SYMbOL.S 
tDC 00000 

L.tNGTH OF SUBPROGRAM 
L.t::NGTH OF COMMON 
L.E.NbTH of OATA 

00032 
oOO~O 
00000 

ILle 11 1;>1 Ihb P'Al,E 

• A-47 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
e 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• • A-48 • COMP4SS·3Z IZ.lI IOC I1nl/1>I> PA(;E • ENT~Y IOC 
EXT CIO • 00000 01077177 01 0 71777 0 IDC UJp • 00001 00771717 00 1 X77777 3 HEAD ~TJ CIO 

• OOOOZ 0100001. 01 0 00014 0 01 60 
00003 01000001 01 0 POOOO1 0 UJP _·z • 0000. 00000000 00 0 COOOOO 0 INBUFF 

• OOOOS 00000050 00 0 00050 0 40 
00006 00100001 00 1 XOOO01 3 RTJ CIO • 00007 }300001. 13 0 00074 0 13 1>0 
00010 03Z00006 03 0 POOO06 Z AZJ.GE -·z • 00011 11700010 11 1 00010 3 ANQ lOB • 0001Z 04100000 04 1 00000 3 w5E I) 

JU013 01000031 01 0 POOO31 0 UJP EOF • JOO1. ZZOOOOOO 22 0 COOOOO 0 LACH IN8UFF • 00015 0.600041 04 1 00041 2 ASE 41B 

• 00016 01000001 01 0 POOOOI 0 UJP READ 
00011 00100006 00 1 XOOO06 3 RTJ CIO • OOOZO 02000073 02 0 00013 0 02 59 
OOOZI 01000011 01 0 pooon 0 UJp --2 • 00022 oooooooz 00 0 COOO02 0 INBUFF+2 • 000Z3 OOOOOOOZ 00 0 OOOOZ a 2 
01.1024 00100011 00 1 )(00011 3 RTJ CIO • 000Z5 13000013 13 00013 13 59 • 000016 03Z000Z4 03 POl/OZ4 AZJ.GE ··2 
000011 77700000 77 00000 SLS • 00030 01000001 01 POOOO 1 UJp READ • 00031 01400000 01 Pooooo EOF UJp.I 10C 

• COMMON • 00000 IN8UFF !:ISS 40 
END IDC 

• NU"'I'IER OF L.INES wITIo4 DIAGNOSTICS • 
• • 
• • 
• • 
• • 
• • 
• • 

I- • ! • • 
• • r:-~~.~~,~----------------------- ------------------------ ----------- -- ---------------: 

1 ~~~:ici~uC) 15.C!l,C41.Q.OP '. . 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 



• • A-49 
• SUdI' • 15541 IOORAIN 15611 IOPACK 16245 SNAPSHOT 11105 IDC 

• £NTR • 15551 IOORAIN 16134 HEAOINP 16012 READLUN 15611 WRITECTO 16200 wRITEACC 16112 WRITEPUN 
15621 WHITELUN 16163 WRITEOUT 16301 PROGDUMP 16266 FORTDUMP 16245 SNAPSHOT 
00145 SEL 02130 UST 02170 CST 00060 CIT 02241 HHT 

11105 IDC 
02201 AET • • 02402 HDCKSU'" 02305 ROCKFI 02015 aCDBOXS 02015 FDPBOxS 00101 CIO 02453 START2 

• 02131 LOAOER 02261 ACCOUNTS 02303 MEMORY 02015 ABNORMAL • CO"'''' 

• 03206 03255 • DATA 

• NONE • ExTA 

• NONE • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 



• 
• DP LOC 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

OCTAL MEMORY 

03Z06 00000 
03C!16 00010 
032Z6 00020 

GAP 

03206 00000 
GAP 

03226 OOOZO 
GAP 

171ZZ 

60606060 
4S657360 
51471344 

60606060 

60606060 

A 00000060 

6060S12S 
3162UZl 
302163'H 

60017345 

60606060 

Q 00000000 

21436044 
S1U4S47 
60606060 

64212273 

60606060 

64734S64 
6S134473 
60606060 

• END • 

60606060 

60606060 

81 00000 

13432144 
4422Z151 
OOTOZOlS 

60606060 

00702015 

82 1710S 

2224Z17" 
13443u21 
001i\2U15 

60606060 

0070201'5 

tl3 00000 

31475131 
63734447 
00702015 

6060606n 

0070;!!)l'; 

44257331 
73442221 
00702015 

60606060 

00702015 

• A-50 
IMR 0003 • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

SEi~UENCE. 003 
JOtl.JC.48Z.1"i 
OCC,)(16 
OCC. (IOC)21.01IlnoonI)A 
OCC.)( .200000?4 (toe I ..... nooon h. 440000 I 0 (. I'n711111 
oce ••• &2000013. n 1 O~ 0003)(.000000 15X. 000l10no 1 
OCC ••• [;0111711.,3000073.037000 lOX .171000no 
oCe.·.Ol000030(TOel.11(,1)f,0,.,0 
j:j\N.IO 

SU~" 
116]5 

ENTI< 
116]5 
02201 
02453 

COMM 
NONe: 

DATA 
NONE: 

EXTA 
17611 

JDC 

IDC 
AEf 
START2 

00745 SEL 
02402 RDCI(SUM 
02137 LOAOE~ 

021311 
02305 
0226) 

UST 
~Del(F"l 
AceOI].,TC; 

021711 
0201 c; 
02303 

r:ST 
~CD>!O·S 
"F"MORY 

00060 
n2nl'i 
1)2111" 

r-TT 
FOp·,OXS 
ARIIJ"RMAI. 

02741 
00107 

QHT 
CIO 

• A-51 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• • A.;. 52 

• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 

• HEGISTER FlLf • 00 oon114"'n 2041 ~C;34 00170077 n017n011 00710077 '0171'1077 00770071 1'10170071 
10 1'14077574 260130;34 00170n77 00770077 011710077 ~011n017 00170011 f'tOHn077 • 20 ",(144540/'1 00045?54 .?6<;71102 oOllo7725 ~71l31l"'14 ~000;>/'115 100004003 00000014 • 30 1104':>40n 7.:?n4O;404 '»<;75110 1'10001125 007 '1'1077 '0017"'15 oOllnoonn 00031'1007 
40 00(10"';;>41 ~000;>403 (101'77776 non()1320 IlllnOn"47 '0000000 OO'l17J()2 000011000 • 0;,) 011'107331 ~(}OOl;;>J" uOOOOooo 1I()(\()nOOO t1tJt'l(iOtj~ ; liltjoti~nS iHH'IOOO,'H' IlDQQ;>'lH • M OOOOOI)!)~ 1)001)0071'1 flOnoOOou 1>0 .. 0 .... 060 OOn!lQ(}O" '11)1)0';>7\ nOI1Il .... 171 nOOOoo13 
70 0000000;> !)40 77776 (l0000003 'lOO(}OOSO ~Of'jOH44 '10000013 '"'0"'1'1"0"0 oOUOOOOO • • "IE ,'ORY 

GA'" 

• 03 .... 00 i:>n"'Il",O",n "0"'01\0"0 60"'060"0 '>0"'0"'01:>0 "O"O"f)",n '-060"0"0 0010?015 ,,010;>015 • (;A,' 

17"lfl 0070?0,,, n() 10211)':> 00102()1~ no 111;>0 15 n070?O 1 <; ,07{PrJ1S n0 7 n2015 ;;10017661 

• 11h2fl 10,." 116?? 10"017"27 00717711 ,)?nnoo73 ~ 1l'l176?? "0017"'1. OOO(}OOOI 110177177 • ltfoJU 1300007:'1 ~3<'17"27 '7100000 'll "1766~ 71,,1)"'0~(\ "II)O?n:n 007001 n7 n 1 0011074 

• 1"/-,'+0 01 fl17"'l", 10n17"",7 oonOOOo;o flO 1nl11 07 13nuOo74 '3217",43 11700010 114"fOOOOO • 17".,0 011117"'6" uo"77334 114"00041 01011'636 007u0107 ,)?00nn73 01°1760:,4 00017671 
11660 0000000;> 00700107 13(\00073 03;>17661 nln17617 ''1017616 01411635 n005.010 • 11670 2ulo;>on\ 1100;>001 ""11 021);;>0 11',2;>100 111'121004 ~ooonoOO 00000000 00000000 • 
GAP 

• 17730 ooooooo~ 00000000 00000000 000(1)000 no"oooon nooooono OOooooon n070;>015 • 
*FN"'* 

• SE'I fRR • SEr. E.RR 

• SE;juE~'rE' on", • 
• • 
• • 
• • 
• • 
• • 
• • 
• • 



ADDITIONAL EXERCISES (Assignment Sheets) 

3200 Computer Characteristics 

Load Instructions 

Store Instructions 

Arithmetic, Fixed Point 

Register Operations Without Storage Reference 

Stop and Jump Instructions 

Inter-Register Transfer 

Search and Move Operations 

Storage Tests 

BCD Operations 

BI - B2 

B3 

B4 

B5 - B6 

B7 - B8 

B9 - Bll 

BI2 - BI3 

BI4 - BI7 

BI8 - BI9 

B20 - B22 

•.. ~ Appendix _ l 



3200 COMPUTE-V: CHARACTERISTICS 

1. For each of the following word addresses and character positions, 

provide the equivalent character address and the ~torag&mod~le in 

which it is conta·ined. 

Word Address Character Position Character Address Storage Module 

a) 00027 ito 

b) 06313 iFl 

c) 15346 it2 

d) 20476 if3 

2. For each of the following character addresses provide the equivalent 

.word address, character position and storage module. 

Character Address Word Address Character Position Storage Module 

a) 300630 

b) 152063 

c) 325076 

d) 150762 

3. If Character Address 340556 were specified, what character address 

would actually be referenced in an 8K system? 

4. If Character Address 160560 were specified, what character address 

would actually be r~ferenced in a 16K system? 

5. The 3200 system can consist of a maximum of l2-bit data 

channels. 

B-I 



6. 

7. 

A 24-bit data channel may be used in place of l2-bit data 

channel{s). It will be programmed as channel number __________ __ 

A 3200 data channel may control a maximum of 

equipment controllers. 

____________ peripheral 

8. Give a brief description of the four (4) types of Processors. 

9. What memory locations are always pennanent1y protected ana why? 

10. What address or block of addresses are protected by the Storage 

Protect Switches below? 

111 111 110 NNN NNN 

11. Describe what happens when an instruction attempts to write into a 

Protected address? 

12. Give the function of each location within the register file. 

B-2 



GIVEN: (A) = 00000000 

(Q) = 00007777 

TEMP 

TEMP 

+1 

+2 

+3 

+4 

LOAD INSTRUCT10NS 

Memory Location 13314 

27 I 31 I 33 I 1:-

·401 51 I 331 15 

20 I 411 331 14 

231 141 26 1 15 

00 I 71 i 331 16 

(B1) = 2 

(B2) = 2 

(B
3 ) = 0 

What are the contents of the indicated regLsters after the execution 

of each instruction? Assume initial condition above for each problem. 

1. LDA TEMP (A) 

2. LDQ TEMP+1 (Q) -

3. LACH TEMP, 1 (A) 

4. LDA,I TEMP, 2 (A) 

5. LDL TEMP, 2 (A) 

6. LCAQ TEMP+1 (A) 
(Q) 

7. 20113315 (A) 

8. 22055462 (A) 

9. 54113316 (B1) 

10. LDI,I TEMP+4,1 (B1) 

II. LQCH TEMP+7 (Q) 

12. LACH TEMP+2,1 (A) 

B-3 



B-4 

STORE INSTRUCTIONS 

GIVEN: (A) 24130120 

(Q) 13000003 

TEMP = Memory Location 33444 

TEMPI = Memory Location 33446 

TEMP 01 33 34 143 

77 53 34 144 

TEMPI 66 73 34 145 

65 03 34 146 

44 55 66 177 

What are the contents of the indicated registers or memory locations 

after the execution of each instruction? (Assume original settings 

at beginning of each instruction set.) 

1. STA TEMP+4 (A) = 

2. STQ,I TEMP (TEMP) 

3. SACH TEMP, 2 (TEMP+2) 

4. SWA TEMP+3 (TEMP+3) 

5. STAQ,I TEMP Where are A & Q stored 

6. SCHA TEMP+l (TEMP+l) 

7. STI TEMP+4 (TEMP+4) 

8. SQCH TEMPl,l (Modified location) 

9. STI TEMPl,3 (TEMPI) 

10. SWA,I TEMPl+l (TEMPI) 



ARITHMETIC, FIXED POINT 

The following problem set is to familiarize the student with the 

arithmetic instructions. 

1. Me, set P to "GO" and start. 

GO 

INTEGER 

ENA,S 
ENQ 
MUA 
HLT 
HLT 

2. MC, set P to llGO" and start. 

GO 

DIVISOR 

ENA,S 
ENQ,S 
DVA 
HLT 
OCT 

3. MC, set P to llGO II and start. 

GO LDA 
ADA 
ANA 
RAD 
HLT 

NUMB OCT 

(A)f 

4. MC, set P to llGOll and start. 

GO ENI 
ENA,S 
INA,S 
SBA 
HLT 

MINUS OCT 

(A)f 

604B 
77777B 
INTEGER 
GO 
4 

o 
600B 
DIVISOR 
GO 
-7 

NUMB 
NUMB+l 
77777B 
NUMB+2 

-10,-2000,1 

7,1 
6 
1 
MINUS 

10 

B-5 



B-6 

5. What are the contents of A register when program halts? 

EN! -6,1 
LDA TEMP 
SHA 5,1 
HLT 

TEMP OCT 40123400 

(A) 



REGISTER OPERATIONS WITHOUT STORAGE REFERENCE 

For each of the following short routines, indicate the final contents 

of designated register. Assume that a M.C. was performed prior to 

starting each program. 

l. 

2. 

3. 

4. 

M.L. 

00000 
00001 
00002 
00003 
00004 

00000 
00001 
00002 
00003 
00004 

00000 
00001 
00002 
00003 
00004 

00000 
00001 
00002 
00003 
00004 
00005 
00006 

(Bl)f 

(A)f 

(Q)f 

CONTENTS 

ENI 
INI 
XOI 
ANI 
HLT 

ENA,S 
XOA,S 
INA,S 
ANA,S 
HLT 

ENQ 
XOQ 
INQ 
ANQ 
HLT 

ECHA 
ENQ 
SHA 
SHAQ 
SHQ 
SHAQ 
HLT 

40000B,1 
lOOB,l 
7677B,1 
7777B,1 

40000B 
40000B 
50000B 
40000B 

60000B 
70000B 
77777B 
77777B 

2003B 
o 
-2 
24 
1 
35430B 

B-7 



GIVEN: (A) = 40372156 

(Q) = 35642761 

(Bl) = 77777 

(B2) = 41745 

(B3) = 72156 

Regarding each of the following instructions as separate problems, indicate 

which will RNI at P + 1 by placing a check (~) in the space provided. 

1. ISE 0,1 

2. ISE 4l745B,3 

3. ISE 43745B,2 

4. ASE,S 276l4B --

5. ASE 72156B 

6. __ QSE 4732lB 

7. __ QSE,S 34763B 

8. ISE 72l56B,3 

9. ISE 0,0 

iO. __ ASE,S 72l56B 

1l. ISG 77777B,1 --
12. lSG 27317B,2 --
13. ISG 77345B,3 

14. __ ASG,S 73452B 

15. __ QSG,S 042l0B 

16. ASG 72156B 

17. __ QSG 35016B 

18. ISG 72l56B,3 --
19. ISG 17774B,0 --
20. ISG 37432B,2 

B-a 



GIVEN: (A) 

(Q) 

STOP AND JUMP INSTRUCTIONS 

40372156 

35642761 

77777 

41745 

Regarding each of the follo~:ng instructions as separate problems, 

indicate which will RNI at P + 1 by placing a check (~/) in the space 

provided. 

i- lSI 0,1 

2. lSI 30632B,2 

3. lSI 72156B,3 

4. ISD 0,0 

5. ISD 77777B,1 

6. ISD 47445B,2 

7. ISD 05621B,3 

8. ISD 41745B,2 

9. 151 37621B,1 

10. IJI 0,0 

II. IJD 62156B,3 

12. IJI 44444B,3 

13. IJI 77777B,3 

14. IJD 67565B,0 

15. __ AZJ,EQ 73125B 

16. __ AZJ,NE 33127B 

17. __ AZJ,GE 27215B 

18. __ AZJ,LT 77777B 

19. __ AQJ,EQ 41425B 

20. __ AQJ,GE 42761B 

B-9 



1. Me, set P to 06GOO and start. 

M.L. 

06000 
06001 
06002 
06003 
06004 
06005 
06006 

CONTENTS 

LDA 
INA,S 
AZJ,NE 
HLT 
00 
INA,S 
UJP 

2. MC, set P to 05120 and start. 

M.L. 

05120 
05121 
05122 
05123 
05124 
05125 
05126 
05127 

CONTENTS 

EN] 
INA,S 
IJD 
INQ,S 
lSI 
UJP 
ANA 
HLT 

3. MC, set P to 07000 and start. 

M.L. 

07000 
07001 
07002 
07003 
07004 
07005 
07006 
07007 

(P)f 

(07002) 

IJl 
UJP 
UJP 
IJI 
UJP 
UJP 
RTJ 
HLT 

CONTENTS 

6004B 
-1 
6005B 

o 
2 
6001B 

77B,1 
10000B 
5121B,1 
10000B 
77B,1 
5123B 
o 

7007B,1 
7006B,3 
7004B 
7002B,2 
7005B,1 
7002B 
7002B 

B-IO 



B-ll 

4. What does this program do? 

ENI 4,1 
AGAIN LOA TEMP,l 

RTJ ROUTINE 
UJP *+4 

*RAO TALLY 
IJO AGAIN ,1 
HLT "'k* 

RAO COUNT 
UJP ~';--3 

ROUTINE UJP **,2 
ENI 0,2 
ASG 100B 
INI 1,2 
ENA 1 
UJP,I ROUTINE 

TEMP OCT 100 
OCT 21 
OCT 77 
OCT 101 
OCT 10 

TALLY OCT 0 
COUNT OCT 0 

*The RAD instruction must have been discussed before the above 

problem can be done. 

5. He, set P to "C.OY' and start. The selective stop switch and jump 

switches 1 and 6 are set. 

M.L. CONTENTS 

C.O UJP C.6 
C.l HLT C.O 
C.2 SJ1 C.l 

SLS 
C.4 SJ3 C.lO 

SJ6 C.2 
C.6 SJ2 C.10 

UJP C.4 
C.10 SLS 

If the machine were restarted from where it stopped, what memory 

location would it go to? 



B-12 

INTER-REGISTER TRANSFER 

1. What are the contents of the A register and Q register when program 

is executed? 

M.L. 

00000 LDQ TEMP 
00001 ENA GET 
00002 SWA *+1 
00003 LDA ** 
00004 AQA 
00005 STA *+2 
00006 ENQ -6 
00007 HLT ** 
00010 HLT ** 
00011 GET ENI 0,0 
00012 TEMP OCT 02677771 

(A) 

(Q) 

2. MC, set P to GO and start. 

GO ENA 10 
TAl 3 
ENQ 10 
INI -1,3 
HLT 

(A) f 

(Q)f 

(B3 ) 
f 

3. Write the octal coding that will be generated by the following 

COMPASS coding. 

COMPASS OCTAL 

1) AQA 
2) INA 3 
3) TIA 2 
4) TQM 22B 
5) AlA 1 
6) TIM 20B,2 
7) TAM 77B 
8) TMI 60B,3 
9) TMA 27B 

10) TMQ 55B 
11) TAl 1 



B-13 

4. MC, set P to BEGIN and start. 

BEGIN ENI -100B,1 
ENI -200B,2 
ENI 300B,3 
ENQ,S -0 
TQM 24B 
TIA 1 
SHAQ .. 24 
TIA 3 
AQA 
TAM 25B 

AlA AlA 2 
TAM 26B 
ENA,S -1 
IAI 1 
TIM 27B,2 
TMQ 24B 
ENA ° AQA 
HLT 

(A)f 

(Q)f 

(Bl) 
f 

(V24) 

(V25) 

(V26) 

(y27) 

5. MC, set P to BEGIN and start. 

BEGIN LDAQ NUMB 
MUAQ INTEGER 
DVAQ DIVISOR 
STAQ ANSWER 
ELQ 
EUA 
STAQ ANSWER+2 
HLT 

NUMB OCT -0,-100 
INTEGER OCT 0,4 
DIVISOR OCT 0,2 
ANSWER OCT 0,0,0,0 

(ANSWER) 

(ANSWER+1) 

(ANSWER+2) 

(ANSWER+3) 



B-14 

SEARCH AND MOVE OPERATIONS 

1. 

IDENT MAIN 
ENTRY START 
EXT DELBLANK 

START 

ENA DATACARD 
RTJ DELBLANK 

DATACARD BSS 20 
END START 
IDENT DELETE 
ENTRY DELBLANK 

BELBLANK UJP ** 
STI SAVEB2,2 
ENI 0,2 
SRA 2 
SCHA FCA 
SCRA SRC+1 
INA,S 80 
SCHA SRC 

SRC SRCN 60B,**,** 
UJP *-2 
PAUS 4000B 
UJP *-1 
TMA 30B 
LPA MASK 
SRAQ 24 
T~.tA 2GB 
LPA MASK 
AQJ,EQ EXIT 
SCHA *+3 

INCRE INA,S 1 
SCHA SCR+1 
LACH ** 

FCA SACH . **,2 
INI 1,2 
UJP SRC 

EXIT LDA *-3 
LPA MASK 
AlA 2 

SAVEB2 ENI **,2 
UJP,I DELBLANK 

MASK OCT 00377777 
END 
FINIS 



Assume program MAIN had previously read in one card image into the 

area labeled DATACARD before it transfers control to a commonly 

used subprogram called DELETE. 

A. Why is Index Register No. 2 saved upon entrance to the DELETE 

sub rout ine? 

B. Why does the program ~~IN execute an ENA instruction before 

it does a return jump to the DELETE subroutine? 

C. What is the significance of the double asterisk ("",ok) in the 

coding of the SRCN instruction in the DELETE subroutine? 

D. What is the function of the unconditional jump instruction which 

follows the SRCN instruction in the DELETE subroutine? 

E. What two conditions will cause the PAUS instruction within the 

DELETE ROUTINE to do a SKIP EXIT (P + 2)? 

B-15 



B-16 

F. Why at location INCRE is the character address in A updated 

by 1'? 

G. What does the A register contain when control is transferred 

back to program MAIN? 

2. 

ENTRY PROG1 
PROG1 ENI 0,1 

ENI 0,2 
MOVE LACH FILE1,1 

SACH FILE2,2 
INI 1,2 
lSI 7,1 
UJP MOVE 
HLT 
END PROG1 

ENTRY PROG2 
PROG2 MOVE 10B,FILE1,FILE2 

UJP +-2 
PAUS 4000B 
UJP *-1 
HLT 
END PROG2 

Given the above routines, which one will accomplish the move faster? 

Assume both routines do a character by character move. 

Does the MOVE instruction buy the programmer much time if he has to 

wait until the MOVE is completed? 



3. Write a short program which will search a character block (character 

addresses CARD to CARD+80) for the first COMMA(,). Loop until the 

search is complete and determine if a COMMA(,) was found; if one 

were found, load the ADDRESS into the A register; if not, set A = O. 

B-17 



B-18 

STORAGE TESTS 

l. 

ENTRY SEARCH 
SEARCH ENI 0,2 

ENI 7,1 
ENA 200 
ENQ 100 
CPR LIST,l 
UJP ~~+3 

UJP *+2 
RTJ FIND 
IJD *-4,1 
HLT 

FIND UJP -;lck 

ENA LIST 
AlA 1 
STA ADDRESS,2 
INI 1,2 
UJP,I FIND 

LIST DEC 1,150,20,300,5,200,100,77 
ADDRESS OCT 0,0,0,0,0,0,0,0 

END 

What does the above program do? 

When the program comes to a HALT, what do the following locations 

contain? 

ADDRESS 

ADDRESS+I 

ADDRESS+2 

ADDRESS+3 

2. The number in the A register afte.r executing a SSH instruction is? 

a) Zero 

b) The original number from memory, unshifted. 

c) The original number from memory, shifted. 

d) Thr:> sarrre YluInber that "'was liL 
., 
rt. 



B-19 

3. 

ENTRY SCAN 
SCAN ENI 0,3 

ENI 0,2 
ENI 3,1 
LDQ MASK 

CONTINUE LDA DATA 
MEQ LIST,1 
UJP CHECK 
ENA LIST 
AlA 1 
SHA 2 

CHARADDR AlA 2 
STA LIST1,3 
INI 1,3 
UJP CONTINUE 

CHECK SSH CONTROL 
HLT 
SHQ 18 
SHA 18 
STAQ MASK 
INI 1,2 
UJP SCAN+2 

CONTROL OCT 73567356 
MASK OCT 77000000 
DATA OCT 45000000 
LIST BSS 3 
LISTI OCT 0,0,0,0,0,0,0,0,0,0,0,0 

END 

What does the above program do? 

4. Write a program which will search a table called INFO, looking for 

the value 628 in bit positions 11 - 06. Search every other location 

in INFO, which is a total of 1610 locations long, starting with the 

last location within the INFO table. The program must keep track of 

all addresses, where a find had occurred. 



B-20 

BCD OPERATIONS 

1. The decimal quantity +32,768,987 is contained in a field beginning at 

character address 010000. Indicate the octal contents of the appropriate 

memory locations. 

MEMORY LOCATIONS CONTENTS 

2. After executing a SET 12 and a LDE AA+2 instruction, indicate the 

sign and contents of the E register. AA - 65136 

AlA 

CONTENTS 

11071002 
02050711 
06010210 
11117102 

l. After executing a SET 10 and a ADE BB+2 instruction, indicate the 

final sign and contents of the E register. BB = 13417 

(E)~ -0,000.987,654,321 
l. 

BB 

CONTENTS 

04060701 
10010010 
11100000 

4. After executing a SET 4 and a SBE CC+2 instruction, indicate the 

final sign and contents of the 'E register. CC = 40000 

(E). = +0,000,000,000,989 
~ 

CC 

CONTENTS 

01141011 
02650411 

5. After executing a SET 13 and a ADE DD+1,3 instruction, indicate the 

final sign and contents of the E register. (B3) = 77765 DD = 04002 

(E). = +1,000,000,000,000. 
1 

DD 

CONTENTS 

01100611 
11070302 
10100301 
00111151 



6. After executing a SET 9 and a STE lOB instruction, indicate the final 

sign and contents of the E register as well as the contents of the 

storage locations affected. 

-9,568,765,867,898. M.L. CONTENTS 

7. Fill in the six (6) locations starting with "CHARS" with their octal 

contents, after the following has been executed. Place X!s where 

contents not known. 

(ED) 

OUT 
CHARS 
ANSWER 

CHARS 

(E)f 

(D) 

+0000045468799 

EZJ,EQ 
EZJ,LT 
SET 
SFE 
STE 
Nap 
HLT 
BCD,C 
BCD,C 

OUT 
OUT 
10 
2 
ANSWER 

l2,TOTAL EQUAL 
10, 

B-21 



B-22 

8. Fill in the octal contents of the four (4) locations starting at 

"DATAl!, after the following program has been executed. Place X IS 

where the contents are not known. 

ED -0405060708090 

SET 1 
ENI 0,2 

LOOP EZJ,EQ DONE 
SFE -1 
STE DATA, 2 
INI 1,2 
UJP LOOP 

DONE HLT 
DATA BCD,C 12, 

DATA 

I I I I I 
(E) 

f 



ANSWER SHEETS 

3200 Computer Characteristics - Answers 

Load Instructions - Answers 

Store Instructions - Answers 

Arithmetic, Fixed Point - Answers 

Register Operations Without Storage Reference - Answers 

Stop and Jump lnst ruct ions - Ans\'Jers 

Inter-Register Transfer - Answers 

Search and Move Operations - Answers 

Storage Tests - Answers 

BCD Operations - Answers 

Cl - C3 

C4 

C5 

C6 

C7 

C8 

C9 

Cia - Cll 

C12 

Cl3 

Appendix B 



C-l 

3200 COMPUTER CHARACTERISTICS - ANSWERS 

l. Character Address Storage Module 

a) 0001348 0 

b) 0314558 0 

c) 0656328 0 

d) 1023738 1 

2. Word Address Character Position Storage Module 

a) 601468 0 3 

b) 324148 3 1 

- \ 65217 8 C) 
'1 ') 
L J 

d) 321748 2 1 

3. Character Address Word Address Character Position 

0405568 2 

4. Character Address Word Address Character Position 

160560
8 

o 

5. 4 

6. a) 2 

b) #2 

7. 8 

8. a) 3204 (Basic Processor) contains the logic to perform 24-bit fixed 

point arithmetic, 48-bit fixed point addition and subtraction, 

Boolean, character and word handling and decision making operations. 

b) 3205 (Scientific Processor) contains the capability of the 3204, 

plus floating point and 48-bit precision fixed point mUltiplication 

and division. 



c) 3210 (Data Processor) contains the capability of the 3204, plus 

the ability to handle BCD characters. 

d) 3215 (General Processor) contains the capability of the 3204, 

3205 and 3210. 

9. Memory Size Locations Protected 

4K 07640 07677 

8K 17640 17677 

16K 37640 37677 

32K 77640 77677 

The auto-load program resides here, and consists of the necessary 

instructions to bring in a program from magnetic tape unit. If these 

locations were not protected, this program could be destroyed and no 

more auto-load capability, which is a necessary item for the 3200 

Scope operating system. 

10. LOCATIONS 776008 thru 776778 

11. No writing takes place and the write instruction acts like a Nap 

12. 

instruction. The computer does not HALT and does not generate an 

interrupt. The illegal write can be only sensed by the INS instruction. 

Register Numbers 

00 07 

10 17 

20 

21 

Reserved for: 

Modified I/O instruction word containing the 
current character or word address (channel 
0-7 control) 

Modified I/O instruction word containing the 
last character or word address + 1, depending 
on the instruction (channel 0-7-control) 

Search instruction word containing the current 
character address (search control) 

Move instruction word containing the source 
address (move control) 

C-2 



12. (cont.) 

Register 

22 

23 

24 27 

30 

31 

32 

33 

34 77 

Numbers Reserved for: 

Real-time clock, current time 

Current character address (typewriter control) 

Temporary storage 

Instruction word containing the last character 
address +1 (search control) 

Instruction word containing the destination 
address (move control) 

Real-time clock, interrupt mask 

Last character address + 1 (typewriter control) 

Temporary storage 

C-3 



1. 27313317 

2. 40513315 

3. 00000033 

4. 23142615 

5. 00003314 

6. 37264462 

57364463 

7. 23142615 

8. 00000033 

9. 13314 

10. 42615 

11. 00000015 

12. 00000040 

C-4 

LOAD INSTRUCTIONS - ANSWERS 



1. 24130120 

2. 01333443 

3. 20733445 

4. 65030120 

5. (TEMP) = A 

(TEMP+l) = Q 

6. 77530120 

7. 44500000 

STORE INSTRUCTIONS - ANSWERS 

8. (TEMP+l) 77533403 

9. 66700001 

10. 66730120 

C-5 



C-6 

ARITHMETIC, FIXED POINT - ANSWERS 

1. (A)f 00003020 

(Q)f 00000000 (can1t be a negative zero) 

2. (A)f 77777711 (-66
8

) 

(Q)f 00000006 Same Sign as Dividend 

3. (A)f 00075767 

4. (A)f 77777776 

5. (A)f 60051600 



C-7 

REGISTER OPERATIONS WITH01~ STORAGE REFERENCE - ANSWERS 

2. 77740000 

3. 00007777 

4. 00001000 

(Q)f 00000000 

1. V 

2. V 

3. V 

4. V-
5. 

6. V-
7. V-

8. 

9. 

10. V 

11. 

12. 

13. V 

14. V 

15. 

16. 

17. 

18. 

19. V 

20. 



I. V 

2. V 

3. 

4. 

5. 

6. V 

7. V 

8. 

9. V 

10. V 

1I. 

12. 

13. 

14. V 

15. V 

16. 

17. V-

18. 

19. V 

20. V 

C-8 

STOP AND JUMP INSTRUCTIONS - ANSWERS 

1-

2. 

3. 

4. 

5. 

(A)f 00000000 

(A)f 00000000 

(Q)f 01000000 

(B1) = 00000 f 

(P)f = 07007 

(07002) = UJP 07007B 

Looks at all values of TEMP TEMP+4, 
for values greater or equal to 100 
octal. A count of all values equal 
to or greater than 100 octal are 
kept in COUNT. A count of all values 
less than a 100 octal are kept in 
TALLY. 

(p) = 
f 

C.1 
C.O 



C-9 

INTER-REGISTER TRp~SFERS - ANSWERS 

1. (A) 16600000 

(Q) 00077771 

'1 (A) 00000012 L. 

(Q) 00000012 

(B3)_ = 00011 
r 

3. 1) 53040000 

')\ 53740000 <-/ 

3) 53200000 

/, \ 53410022 ""T/ 

5) 53140000 

6) 53630020 

7) 53420077 

8) 53330060 

9) 53020027 

10) 53010055 

11) 53500000 

4. (A)f 00000000 

(Q\ 77777777 

(Bl)f 77676 

(V24) 77777777 

(V25) 00100177 

(V26) 00177776 

(V27) 00077577 

5. 77777777 

77777577 

00000000 

00000000 



SEARCH AND MOVE OPERATIONS - ANSWERS 

1. A) All subroutines which are used by other programs, should save any 

register that is uses in performing its task. Index Register #2 

may contain valuable data to program MAIN, at the time it transfers 

control to the DELETE subroutine; so if (B2) was not saved upon 

entrance and restored before exiting from the DELETE subroutine, 

it would contain invalid data upon return to program MAIN. 

B) The DELETE subroutine must have the first word address of the card 

image area in the A Register upon entrance to its routine. So 

program MAIN must obtain the first word address of the card image 

area into A, before it transfers control to the DELETE subroutine. 

It does this by an ENA DATACARD. 

C) Normally a field represented by a double asterisk(**) will be 

modified during the execution of a program and the double asterisk 

(**) provides a convenient way to see if the modification took 

place. (**) presets the field to all l2's. 

D) Control is transferred to this instruction if a SRCE, SRCN, or 

MOVE instruction is already in progress and the search instruction 

preceding this jump instruction will not be initiated until any 

previous search or move is completed. 

E) 1. When a comparison occurs between the search character (non­

blank) and a non-blank character in storage. 

2. When regis.ter file 20 is equal to register file 30 (no non­

blank character found). 

F) The search is to continue until all blank characters are deleted. 

Upon a find, the search is terminated and register file location 

#20 contains the address of the find. So to continue the search 

this address must be updated by 1 or Ule lHog.cam will be hung in 

a loop. 

C-IO 



2. 

G) Upon exiting from the DELETE subroutine, A will contain the last 

character address + 1 of the DATACARD area with all blank characters 

deleted. 

A) PROGl 
1.8 
1.8 
3.5 
3.5 Repeated 8 times 
1.8 
2.6 
1.8 
1.8 

109.2 usec. 

PROG2 
90.2 

1.8 
92.0 usec. 

B) On the above move he saves only 17.2 usec. (approximately 2 usec. 

per character). On a maximum move of 128 characters, the MOVE 

instruction would be approximately 256 usec. 

IDENT PROGRAM 
ENTRY START 

START SRCE 73B,CARD,CARD+80 
UJP -k_2 

PAUS 4000B 
UJP *-1 
TMA 30B 
LPA MASK 
SHAQ 24 
TMA 20B 
LPA MASK 
AQJ,EQ EXIT 
HLT 

EXIT ENA,S +0 
UJP *-2 

MASK ilCT 377777 
END 

C-ll 



STORAGE TESTS - ANSWERS 

1. A) The program searches a list of operands from LIST thru LIST+7 

(10 locations) looking for values that are within or equal to 

the upper limit in A (20010) and the lower limit in Q (10010). 

On a find, the addresses of the operands are stored in a table 

called ADDRESS. 

B) M.L. 

ADDRESS 
ADDRESS+l 
ADDRESS+2 
ADDRESS+3 

Contents of 

LIST+6 
LIST+5 
LIST+1 

° 

2. Answer is d; contents of A is not altered. 

3. The program searches a list of 6 bit characters, from LIST thru LIST+2 

4. 

(3 locations) for a 45 code in any character position (0 thru 3) of 

each location. Upon a find, the character address is generated and 

stored into a table called LISTI. 

IDENT 
El~TRr1" 

START ENI 
ENI 
ENQ 

SEARCH ENA 

THRU 
INF¢ 
LIST 

MEQ 
UJP 
ENA 
AlA 
STA 
INI 
UJP 
HLT 
BSS 
0CT 

PR0GRAM 
START 
17,1 
0,2 
7700B 
6200B 
INF0,2 
THRU 
INF0 
1 
LIST,2 
1,2 
SEARCH 

Bl = SIZE 0F TABLE (16) + INTERVAL-l 
B2 = ADDRESS C¢UNTER 
Q = 00007700 (MASK) 

INF¢ = START ¢F TABLE, 2 
SEARCH C~PLETE 
(A) = OOOINF0 
(A) = OOOINF¢+B l 

SAVE FIND ADDRESS 
PREPARE F~R NEXT FIND 

INTERVAL 

"16 
0,0,0,0,0,0,0,0 

Index register 1 must start with 1710' because it will be decremented 

by the interval (2) before the search begins. This will start the search 

at INF¢+15, which is the last location of the table. 

C-12 



C-13 

BCD OPERATIONS - ANSWERS 

1. 02000 03020706 

02001 10111007 

2. +0822579612899 

3. +0006193435479 

4. +0000000009914 

5. +0026711689001 

6. 00010 07060510 

00011 06071011 

00012 50XXXXXX 

(E)f = -0000000009568 

7. CHARS T 0 T A 
L E Q 
u A L 

04 05 04 
06 10 07 11 
11 00 00 XX 

(E)f +0000000000000 

(D) = 10 or 12B 
10 

8. DATA 51 50 47 46 
45 44 XX XX 
XX XX XX XX 
XX XX XX XX 

(E)f= +0000000000000 

automatically changes to a +0 



SUMMARY OF INSTRUCTION EXECUTION TIMES, fLsec. 

2.5 ADA 2.5 LDI 
3.8 ADAO 2.5 LDL 

11.5* ADE 2.5 LDO 
1.3* AEU 2.5 LPA 
1.3 AlA 2.5 LOCH 
1.3 ANA 
1.3 ANI 4.2 + 4.2n M EO 
1.3 ANO 3.3 MOVE 
1.3 AOA 4.2 + 4.2n MTH 
1.3* AOE 7.8-11.0 MUA 
1.9 AOJ 16.0-21.0* M UAO 
1.9 ASE 
1.9 ASG 3.3 OTAC 
1.9 AZJ 3.3 OTAW 

3.3 OUTC 
1.3-1.7 CINS 3.3 OUTW 

*** CON 
1.3-1.7 COPY 2.0 us-40 ms PAUS 
2.5-3.4 CPR 

1.3 CTI 1.3* OEL 
1.3 CTO 1.9 OSE 

1.9 OSG 
1.3 DINT 

11.25 DVA 3.8 RAD 
22.5* DVAO 2.5 RTJ 

1.3* EAO 2.5 SACH 
1.3 ECHA 2.5 SBA 
1.3 EINT 3.8 SBAO 
1.3* ELO 1.3 SBCD 
1.3 ENA 11.5* SBE 
1.3 ENI 2.5 SCA 
1.3 ENO 1.9-3.9 SCAO 
1.3* EOJ 2.5 SCHA 
1.3* EUA 1.3 SCIM 

1.3-1.7 EXS *** SEL 
1.3* EZJ 1.3" SET 

1.3-4.3" SFE 
10.0-12.0· FAD 1.3 SFPF 

20.0" FDV 1.3-2:7 SHA 
14.0-18.0· FMU 1.3-2.7 SHAQ. 
10.0-12.0* FSB 1.3-2.7 SHQ 

1.3 SJ1-6 
- HLT 1.3 SLS 

2.5 SOCH 
1.3 IAI 3.3 SRCE 

** IAPR 3.3 SRCN 
1.9 IJD 2.5 SSA 
1.9 IJI 3.8 SSH 
1.3 INA 1.3 SSIM 
*** INAC 2.5 STA 
*** INAW 3.8 STAO 
1.3 INCL 8.0* STE 
1.3 INI 2.5 STI 
3.3 INPC 2.5 STO 
3.3 INPW 2.5 SWA 
1.3 INO 1.3 TAl 

1.3-1.7 INS 1.8 TAM 
1.3-1.7 INTS 1.3 TIA 

1.3 IOCL 1.8 TIM 
1.9 ISD 1.8 TMA 
1.9 ISE 1.8 TMI 
1.9 ISG 1.8 TMO 
1.9 lSI 1.8 TOM 

2.5 LACH - UCS 
2.5 LCA 1.3 UJP 
3.8 LCAO 
2.5 LDA 1.3 XOA 
3.8 LDAO 1.3 XOI 
8.0* LOE 1.3 XOO 

n = number of words searched . 
• = Trapped instruction in computers without the "pprl)pri<'ltl;' optio!')']! nard'lI.'are package. 

*' = Dependent upon interrupt response . 

••• = Dependent upon a variable signal response time from an external source of equipment. 



INSTRUCTION INDEX 

BY OCTAL OPERATION CODE BY MNEMONIC OPERATION CODE 

OCTAL MNEMONIC OCTAL MNEMONIC MNEMONIC MNEMONIC 
OPERATION OPERATION SECTION OPERATION OPERATION SECTION OPERATION SECTION OPERATION SECTION 
CODE CODE NUMl3ER CODE CODE NUMBER CODE NUMBER CODE NUMBER 

00.0 HLT 3.5.5 40 STA,I 3.2.1 ADA,I 3.3.1 LDA,I 3.1.1 
00.1 SJ1 3.5.6 41 STQ,I 3.2.2 ADAQ,I 6.1 LDAQ,l 5.1 
00.2 SJ2 3.5.6 42 SACH 8.2.3 ADE 14.2.8 LDE 14.2.6 
00.3 SJ3 3.5.6 43 SQCH 8.2.4 AEU 13.2.2 LDI;I 3.1.3 
00.4 SJ4 3.5.6 44 SWA,I 3.7 AlA 9.5.2 LDL,I 7.2 
00.5 SJ5 3.5.6 45 STAQ,I 5.2 ANA 7.4.2 LDQ,I 3.1.2 
00.6 SJ6 3.5.6 46 SCHA,I 8.2.5 ANA,S 7.4.2 LPA,I 7.4.1 

00.7 RTJ 3.5.4 47 STI,I 3.2.3 ANI 7.4.4 LQCH 8.2.2 

01 UJP,I 3.5.1 50 MUA,I 3.3.3 ANQ 7.4.3 MEQ 11.1 

02.0 No Operation 51 DVA,I 3.3.4 ANQ,S 7.4.3 MOVE,INT 10.3 

02.1-3 IJI 3.5.7 52 CPR,I 11.4 AQA 9.5.1 MTH 11.2 

02.4 No Operation 53.01 TMQ 9.3.1 AQE 13.4.2 MUA,I 3.3.3 

02.5-7 IJD 3.5.7 53.02 TMA 9.2.1 AQJ,EQ 3.5.3 MUAQ,I 6.3 

03.0 AZJ,EQ 3.5.2 53.04 AQA 9.5.1 AQJ,GE 3.5.3 NOP 
03.1 AZJ,NE 3.5.2 53. (o+b)O TIA 9.1.1 AQJ,LT 3.5.3 OTAC,INT 20.8.3 
03.2 AZJ,GE 3.5.2 53. (0+b)3 TMI 9.4.1 AQJ,NE 3.5.3 OTAW,INT 20.8.4 
03.3 AZJ,LT 3.5.2 53. (O+b) 4 AlA 9.5.2 ASE 3.6.1 OUTC,INT, 20.7 
03.4 AQJ ,EQ 3.5.3 53.41 TQM 9.3.2 ASE,S 3.6.1 B,H 
03.5 AQJ ,NE 3.5.3 53.42 TAM 9.2.2 ASG 3.6.2 OUTW,INT, 20.5 
03.6 AQJ,GE 3.5.3 53. (4+b)0 TAl 9.1.2 ASG,S 3.6.2 B,H 
03.7 AQJ,LT 3.5.3 53. (4+b)3 TIM 9.4.2 AZJ,EQ 3.5.2 PAUS 10.4 & 
04.0 ISE 3.6~1 53. (4+b)4. lAl 9.5.3 AZJ,GE 3.5.2 20.10.5.3 
04.1-3 ISE 3.6.1 54 LDI,I 3.1.3 AZJ,LT 3.5.2 QEL 13.3.2 
04.4 ASE,S 3.6.1 55.0 No Operation AZJ,NE 3.5.2 QSE 3.6.1 
04.5 QSE,S 3.6.1 55.1 ELQ 13.3.1 CINS 20.9.5 QSE,S 3.6.1 
04.6 ASE 3.6.1 55.2 EVA 13.2.1 CON 20.2 QSG 3.6.2 
04.7 QSE 3.6.1 55.3 EAQ 13.4.1 COpy 20.9.2 QSG,S 3.6.2 
05.0 ISG 3.6.2 55.4 No Operation CPR,I 11.4 RAD,I 3.3.5 
05.1-3 ISG 3.6.2 55.5 QEL 13.3.2 CTI 20.10.5.1 RTJ 3.5.4 
05.4 ASG,S 3.6.2 55.6 AEU 13.2.2 CTO 20.10.5.2 SACH 8.2.3 
05.5 QSG,S 3.6.2 55.7 AQE 13.4.2 DINT SBA,I 3.3.2 
,,~ c ASG 3.6.2 56 MUAQ,I 6.3 DVA,I 3.3.4 SBAQ,I 6.2 UJ.U 

05.7 QSG 3.6.2 57 DVAQ,I 6.4 DVAQ, I 6.4 SBCD 
06.0-7 MEQ 11.1 60 FAD,I 12.3.1 EAQ 13.4.1 SBE 14.2.9 
07.0-7 MTH 11.2 61 FSB,I 12.3.2 ECHA 8.2.6 SCA,I 7.5.1 
10.0 SSH 11.3 62 FMU,I 12.3.3 ECHA,S 8.2.6 SCAQ 13.5 
10.1-3 lSI 3.6.3 63 FDV,I 12.3.4 EINT 21.1-2 SCHA,I 8.2.5 
10.4 ISD 3.6.3 64 LDE 14.2.6 ELQ 13.3.1 SCIM 
10.5-7 ISD 3.6.3 65 . STE 14.2.7 ENA 3.4.4 SEL 20.3 
11.0 ECHA 8.2.6 66 ADE 14.2.8 ENA,S 3.4.4 SET 14.2.5 
11.4 ECHA,S 8.2.6 67 SBE 14.2.9 ENI 3.4.4 SFE 14.2.1 
12.0-3 SHA 3.8.2 70.0-3 SFE 14.2.1 ENQ 3.4.4 SFPF 
12.4-7 SHQ 3.8.2 70.4 EZJ,EQ 14.2.2 ENQ,S 3.4.4 SHA 3.8.2 
13.0-3 SHAQ 5.3 70.5 EZJ,LT 14.2.3 EOJ 14.2.4 SHAQ 5.3 
13.4-7 SCAQ 13.5 70.6 EOJ 14.2.4 EUA 13 .2.1 SHQ 3.8.2 
14.0 NOP 70.7 SET 14.2.5 EXS 20.9.1 SJ1 3.5.6 
14.1-3 ENI 3.4.4 71 SRCE,INT 10.2.1 EZJ,EQ 14.2.2 SJ2 3.5.6 
14.4 ENA,S 3.4.4 71 SRCN,INT 10.2.2 EZJ,LT 14.2.3 SJ3 3.5.6 
14.5 ENQ,S 3.4.4 72 MOVE,INT 10.3 FAD,I 12.3.1 SJ4 3.5.6 
14.6 ENA 3.4.4 73 INPC,INT, 20.6 FDV,I 12.3.4 SJ5 3.5.6 
14.7 ENQ 3.4.4 B,H FMU,I 12.3.3 SJ6 3.5.6 
15.0 No Operation 73 INAC,INT 20.8.1 FSB,I 12.3.2 SLS 
15.1-3 INI 3.4.3 74 INPW,INT, 20.4 HLT 3.5.5 SQCH 8.2.4 
15.4 INA,S 3.4.1 B,N IAI 9.5.3 SRCE,INT 10.2.1 
15.5 INQ,S 3.4.2 74 INAW,INT 20.8.2 IAPR SRCN,INT 10.2.2 
15.6 INA 3.4.1 75 OUTC,INT, 20.7 IJD 3.5.7 SSA,I 7.6 
15.7 INQ 3.4.2 B,H IJI 3.5.7 SSH 11.3 
16.0 No Operation 75 OTAC,INT 20.8.3 INA 3.4.1 SSIM 21.1 
16.1-3 XOI 7.5.4 76 OUTW,INT, 20.5 INA,S 3.4.1 STA,I 3.2.1 
16.4 XOA,S 7.5.2 B,N INAC,INT 20.8.1 STAQ,I 5.2 
16.5 XOQ,S 7.5.3 76 OTAW,INT 20.8.4 INAW,INT 20.8.2 STE 14.2.7 
16.6 XOA 7.5.2 77.0 CON 20.2 INCL 21.2 STI,I 3.2.3 
16.7 XOQ 7.5.3 77 .1 SEL 20.3 INI 3.4.3 STQ,I 3.2.2 
17.0 No Operation 77 .2 EXS 20.9.1 INPC,INT, 20.6 SWA,I 3.7 
17.1-3 ANI 7.4.4 77.2 COPY 20.9.2 B,H TAL 9.1.2 
17.4 ANA,S 7.4.2 77 .3 INS 20.9.4 INPW ,INT, 20.4 TAM 9.2.2 
17.5 ANQ,S 7.4.3 77 .3 CINS 20.9.5 B,N TIA 9.1.1 
17.6 ANA 7.4.2 77 .4 INTS 20.9.3 INQ 3.4.2 TIM 9.4.2 
17.7 ANQ 7.4.3 77 .50 INCL 21.2 INQ,S 3.4.2 TMA 9.2.1 
20 LDA,I 3.1.1 77 .51 IOCL INS 20.9.4 TMI 9.4.1 
21 LDQ,I 3.1.2 77.52 SSIM 21.1 INTS 20.9.3 TMQ 9.3.1 
22 LACH 8.2.1 77 .53 SCIM IOCL TQM 9.3.2 
23 LQCH 8.2.2 77.54-56 No Operation ISD 3.6.3 UCS 
24 LCA,I 7.3.1 77 .57 IAPR ISE 3.6.1 UJP,I 3.5.1 
25 LDAQ,I 5.1 77 .6 PAUS 10.4 & ISG 3.6.2 XOA 7.5.2 
26 LCAQ,I 7.3.2 20.10 .5.3 lSI 3.6.3 XOA,S 7.5.2 
27 LDL,I 7.2 77 .70 SLS LACH 8.2.1 XOI 7.5.4 
30 ADA,I 3.3.1 77.71 SFPF LCA,I 7.3.1 XOQ 7.5.3 
31 SBA,I 3.3.2 77.72 SBCD LCAQ,I 7.3.2 XOQ,S 7.5.3 
32 ADAQ,I 6.1 77 .73 DINT 
33 SBAQ,I 6.2 77.74 EINT 21.1-2 
34 RAD.I 3.3.5 77.75 CTI 20.10.5.1 
35 SSA,I 7.6 77 .76 CTO 20.10.5.2 
36 SCA,I 7.5.1 77.77 UCS 
37 LPA,l 7.4.1 



> .....•..............•....•..•....•.••••••• ~ 

•• ~t~.~·I.iil') "~M ..................................................... }} .. i}.\ ••.••• i.i ~ 
~ ~CUT OUT FOR USE AS LOOSE-LEAF BINDER TITlE TAB 

CONTROL DATA 
CORPORATION 

CORPORAiE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440 
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

Pub. No. 60184200 litho in U.S.A. 

() 
o 
s: 
1J » en 
en 
1J 
::0 
o 
(j) 
::0 » 

's: 
s: 
z 
(j) 

-I 
::0 » 
Z 
Z 
(j) 

s: » 
z 
c 
» 
r 


	00001
	00002
	00003
	00004
	00005
	00006
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-001
	01-002
	01-003
	01-01
	01-02
	01-03
	01-04
	01-05
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-001
	03-01
	03-02
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	13-001
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	15-001
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	16-001
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	17-001
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	18-001
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	19-001
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	20-001
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	20-25
	20-26
	20-27
	20-28
	20-29
	20-30
	20-31
	21-001
	21-01
	21-02
	21-03
	21-04
	21-05
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	B-001
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-001
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	ExecutionTimes
	xBackA
	xBackB

