SreiE)@)
SISIEE

COMPUTER SYSTEMS

USASI COBOL/
MASTER

REFERENCE MANUAL

CONTROL DATA

CORPORATION

60229400

REVISION RECORD

REVISION

NOTES

(2-6-69)

Original printing.

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Pub. No. 50229400

February 1969

©1969 Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Software Documentation
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the hack of
this manual,

PREFACE

The features of USASI COBOL/MASTER specified in this manual conform to the United States of
America Standards Institute (USASI) COBOL Standard. The USASI specifications define a Nucleus
for internal processing and eight functional processing modules: Table Handling, Sequential Access,
Random Access, Random Processing, Sort, Report Writer, Segmentation, and Library. The
Nucleus is divided into two levels, low and high.

USASI COBOL/MASTER is implemented at the high level of the Nucleus. Of the modules, only
Random Processing and Segmentation are not implemented. All other modules are implemented
at the high level. The Report Writer module can be omitted from the COBOL library. USASI
COBOL/MASTER runs under control of the MASTER operating system.

Additional features of COBOL are implemented in USASI COBOL/MASTER to facilitate operating and
to support system interfaces. The inclusion of COBOL features over and above the USASI standard
is not prohibited by the standard; however, an installation option is available to diagnose all non-
USASI features as errors at compile time.

The Business Data Processing Unit (3312) must be present to compile and execute USASI COBOL/
MASTER programs on a CONTROL DATA® 3300 computer. The CONTROL DATA® 3500 computer
comes equipped with the Business Data Processing hardware.

This manual is organized in the traditional manner of Identification, Environment, Data, and Pro-

cedure Divisions with the exception of the Report Writer and Library modules which are described
in separate chapters.

60229400 iii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company or group of companies, or of
any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as to
the accuracy and functioning of the programming system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries concerning the procedures
for proposing changes should be directed to the Executive Committee of the Conference on Data
Systems Languages.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the Univac (R) I and
II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation
IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM
FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell
have specifically authorized the use of this material in whole or in part, in the COBOL specifications.

Such authorization extends to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

60229400 v

INTRODUCTION

INTRODUCTION TO COBOL

COBOL (Common Business Oriented Language) is a programming language which uses English terms
to simplify the programming of business data processing problems. This manual presents the details
and rules for writing a program in USASI COBOL/MASTER for the CONTROL DATA® 3300 and 3500
computers. Familiarity with basic COBOL is desirable, but not essential. This introduction con-
tains a brief outline of the COBOL language elements, program structure and content. Used in
conjunction with the rest of the manual, it provides the new user with an introduction to the funda-
mentals of COBOL programming.

LANGUAGE ELEMENTS

The COBOL language is made up of the following elements:

COBOL reserved words
User-defined words
Literals
Level numbers
Symbols
Pictures
The user composes user-defined words, literals, and pictures according to rules that govern the

choice and arrangement of characters. Within the limits imposed by the rules, it is virtually
possible to compose an infinite number of words, literals, and pictures.

The COBOL reserved words, symbols, and level numbers are presented in fixed sets from which the
user selects what he needs, He cannot invent new reserved words, symbols, or level numbers and
must use these elements according to the rules of the language.

The sample COBOL source program entry below shows all six elements:

02, DATA-NAME-1, PICTURE, XXX VALUE p12

|

level user-defined picture literal symbol
number word

COBOL reserved
words

60229400 vii

COBOL Reserved Words

Over 250 English words and abbreviations have been set aside as COBOL reserved words. (Appendix
C contains a complete list of these reserved words.) Special meanings have been assigned to these
words; the user

® Does not define reserved words

® Cannot change the meaning of a reserved word

® Cannot add words to the reserved word list

® Cannot substitute other words for those on the list

® Must not alter or misspell reserved words

® May use reserved words only for specified purposes
The reserved words have various purposes as defined in the reference formats. They may identify
program units, such as SECTION, PROCEDURE, WORKING-STORAGE. They may identify parts of
entries, such as VALUE, PICTURE, USAGE. They may specify actions like WRITE, PERFORM,
DIVIDE. They may have specific functional meanings such as NEGATIVE, COMPUTATIONAL,

EQUAL. As figurative constants, they can represent specific data values: ZERO, SPACES, LOW-
VALUE. (A complete list of figurative constants is given in appendix B.)

User-Defined Words

The user must supply words that name data items, data conditions, and procedures. These words
have no preassigned meaning, but they must be defined within the program in which they are used.
The formation of these words is governed by the following rules:

e A word may be up to 30 characters long.

® It may contain letters (A through Z), digits (0 through 9) and the hyphen (-).

® Only procedure names may be entirely numeric; all other words must contain at
least one letter.

® A word may neither begin nor end with a hyphen.
® Spaces (blanks) must not appear in a word.

e It must not be spelled exactly like a reserved word.

The example below contains user-defined words as well as reserved words and symbols.

ADD-DEDUCTIONS;. reserved words
ADD HOSP-INS,, LIFE-INS,, STATE-UNEMPL ,, UNITED,, MISC, GIVING TOT-DED ,.
\ user-defined ///—/

words

viii 50229400

Appendix B contains a detailed description of the formation of different types of user-defined words
such as data-names, condition-names, procedure-names, and so forth.

Literals

Literals are a special case of user-defined words. They are actuai values used in the program and
as such are self-defining. Literals may be numeric or non-numeric.

A numeric literal is a string of digits that may include a plus or minus sign, and a decimal point.
Its value is the quantity represented by the characters in the literal. Every numeric literal is
classed as a numeric item.

A non-numeric literal is a string of one to 120 characters enclosed in quotation marks from the
computer's character set (appendix B). It may contain reserved words and spaces but not the
quotation mark. The value of a non-numeric literal is the string of characters excluding the quota-
tion marks. Non-numeric literals are classed as alphanumeric items.
Rules governing the formation of literals are given in appendix B.
The following examples show the use of literals in an entry:

DIVIDE ,1.%INTO CONVERTED-TEMP1 GIVING TEMP-2.

numeric literal
77 HEADING-A PICTURE X(10) VALUE IS "COBOL LIST",

cconon o

non-numeric literal

Level Numbers

Level numbers (01 through 49, 66, 77, and 88) are used in entries that assign names to data items
and data values. They designate the level of the entries relative to each other.

Numbers 01 through 49 designate the hierarchy of data entries within records. 01 is always assigned
to the record itself; 02 through 49 are assigned to items within the record. Level numbers need not
be consecutive but must be ordered so that the higher the number, the lower the entry in the
hierarchy.

Level number 66 designates an entry that renames a previously defined entry. It is always used with
the reserved word RENAMES.

Level number 77 designates an independent data item, one that is not part of a record.

Level number 88 is used with entries that assign condition names to specific values a data item may
assume,

60229400 ix

Whenever a level number is used, it is the first element in the entry.
The entries below show how level numbers are used:
ITEM-A PICTURE XX VALUE 01.

77
0} UPDATE-RECORD.
02 RECORD-ID.
'//____',%, CODE-NUMBER PICTURE X.

level »88 NEW-CODE VALUE "A".
numbers —_————————— .88 OLD-CODE VALUE "B",
\%

ACCOUNT-NUMBER PICTURE 999,
02, CUSTOMER-IDENTIFICATION.
6

RETAIL-ID RENAMES CUSTOMER-IDENTIFICATION.

Symbols

Symbols are special characters which have specific meanings for the compiler. Symbols are used
in punctuation, as operators in arithmetic expressions, as relational operators in conditions, and
as editing symbols in pictures. The COBOL Character Set in appendix B lists all the symbols
available to the COBOL programmer. Punctuation rules are given in appendix B, the rules for
arithmetic and conditional operators in chapter 4, and picture symbols in chapter 3.

Pictures
Pictures describe such characteristics of data items as:

e Size of item

e Class of item: numeric, alphabetic, or alphanumeric

e Whether the item is signed

e DPosition of an assumed decimal point

e Editing (deletion, insertion, or replacement of characters) to be performed on the item
Each picture is a string of from 1 to 30 characters. Pictures are composed of the characters listed
under PICTURE in chapter 3. In general, the number of characters defines the size of the item and
the character itself defines the class: X=alphanumeric, 9=numeric, A=alphabetic. A picture may be
abbreviated by enclosing an integer in parentheses to show the size immediately after the character

defining the class. For instance, X(20) means the same as 20 X's in a row; both mean that the item
consists of 20 alphanumeric characters.

< 60229400

The word PICTURE or the words PICTURE IS or the abbreviation PIC always precedes the picture
itself in an entry.

Examples of pictures in entries:

02 FILLER PICTURE X(8).

02 STOCK-ITEM PIC Wmc'ﬂwes

PROGRAM STRUCTURE

A COBOL source program is composed of entries organized into divisions, sections, and paragraphs.
In general, a division is made up of sections, and a section is made up of paragraphs.

Divisions

All COBOL programs consist of four divisions each with a fixed name: IDENTIFICATION,
ENVIRONMENT, DATA, and PROCEDURE. The divisions always appear in that order in a program.

The beginning of each division is marked by a division header entry consisting of the name of the
division followed by the word DIVISION and a period. The division header always appears on a line
by itself.

Sections

The inclusion of sections depends on the particular division. There are no sections in the Identification
Division. The Environment and Data Divisions always have sections and these sections have fixed
names. Sections are optional in the Procedure Division, and when sections are included, the section

names are supplied by the user.

Each section is identified by a header entry consisting of the section name followed by the word
SECTION and a period. A section header usually appears on a line by itself.

Paragraphs

All divisions except the Data Division contain paragraphs. Paragraph names in the Identification and
Environment Divisions are fixed. In the Procedure Division, paragraph names are user defined.

Paragraphs are identified by header entries consisting of a name followed by a period and a space.

A paragraph header need not appear on a line by itself; it must be the first entry on a line, but may
be followedonthe same line by one or more entries in that paragraph.

60229400 xi

Entries

An entry is one or a series of language elements terminated by a period and a space. The precise
sequence of elements in each entry is dictated by the format rules contained in this manual.

Sample Division showing structural units

division entries

ENVIRONMENT DIVISION,
sections

CONFIGURATION SECTION.,
paragraphs

SOURCE-COMPUTER,.

3500,

OBJECT-COMPUTER.
3500,

INPUT-OUTPUT SECTION,

FILE-CONTROL.
SELECT OLD-MASTER-FILE
ASSIGN TO TAPE 01,
SELECT NEW-MASTER-FILE
ASSIGN TO TAPE 02,

|
1t rimr rrt rri

|
[
l

PROGRAM CONTENTS

A COBOL source program must be identified, it must specify linkage between the computer system
and the data files to be processed, it must define the data to be processed, and finally it must specify
how the data is to be processed. A COBOL source program consists of the information required to
perform these functions organized into the four required divisions.

Identification Division contains the information that identifies the program. At the very least, this
division states the program name. In addition, it may contain the date the program was written, the
date compiled, the author, the installation, and any remarks that might be useful to someone
reading the program.

xii 60229400

Environment Division contains information about the equipment used to compile and execute the pro-
gram. Its primary function is to assign each data file by name to an input-output device and to
specify any special input-output techniques.

Data Division contains a full description of the data to be processed by the object program. In the

File Section, it describes the data items that make up each of the files named in the Environment
Division. In the Working-Storage section it describes the data items used for constants and for data
developed during execution of the program. If the program is divided into subprograms, the Common-
Storage Section contains descriptions of data common to more than one subprogram. The Report
Section contains a description of data to be output on a printed report in terms of the format in which
it will be presented.

Data Division entries show how data items are grouped and organized into files and records. Data
names, level numbers, pictures, and other information are contained in these entries.

Procedure Division specifies the actions required to process the data and it indicates the sequence
of processing. The basic functions of this division are input-output, arithmetic, data movement,
and sequence control. In addition, it provides the user with the capability to sort files, search
tables, and write reports.

REFERENCE FORMATS

Each COBOL entry is described in terms of a reference format. Throughout this manual a format
is shown adjacent to information defining the entry. When more than one specific arrangement is
permitted, the format is separated into numbered formats.

Notation Used in Reference Formats

UPPER CASE words are COBOL reserved words. They must be spelled
correctly including any hyphens and may not be used in a
source program except as specified in the reference formats.

UNDERLINED UPPER CASE words are required when the format in which they appear
is used. They define the action of the compiler.

lower-case-words are generic terms which represent the words or symbols
supplied by the user. When generic terms are repeated
in a format, a number or letter is appended to the term for
identification.

level numbers are one- or two-digit numbers that precede entries in the
Data Divisionto indicate the hierarchy level of entries.

[1 Brackets enclose optional portions of a reference format. All of the
format within the brackets may be omitted or included at
the user's option.

60229400 xiii

”Braces enclose two or more vertically stacked items in a reference
format when only one of the enclosed items can be used.

... Ellipses immediately following a pair of brackets or braces indicate
that the enclosed material can be repeated at the user's
option.

Punctuation symbols (period, comma, semicolon) shown within the formats are required unless
enclosed in brackets and specifically noted as optional.

Notation used in Examples

t+ indicates the position of an assumed decimal point in an item.

+
A plus or minus sign above a numeric character (n) indicates an operational sign is stored
in combination with the numeric character.

Character positions in storage are shown by boxes, EE
An empty box means an unpredictable result.

A indicates a space (blank).

Xiv 60229400

CONTENTS

CHAPTER 1

CHAPTER 2

CHAPTER 3

60229400

IDENTIFICATION DIVISION

1.

1

Specification of Identification Division
1.1.1 PROGRAM-ID Paragraph
1.1.2 DATE-COMPILED Paragraph

ENVIRONMENT DIVISION

2.
2.

1
2

2.3

Specification of Environment Division
CONFIGURATION SECTION

2.2.1 SOURCE-COMPUTER Paragraph
2.2.2 OBJECT-COMPUTER Paragraph
2.2.3 SPECIAL-NAMES Paragraph
INPUT-OUTPUT SECTION

2. FILE
2.

3.1 FILE-CONTROL Paragraph
3.2 I-O-CONTROL Paragraph

DATA DIVISION

3.

3.

w w
I

1

2

Sections

3.1.1 FILE SECTION

3.1.2 COMMON-STORAGE SECTION
3.1.3 WORKING-STORAGE SECTION
3.1.4 REPORT SECTION

Data Division Concepts

. 2. Entry

Item

Record

Level Number

Data Name

Initial Value

Literal

.2.8 Figurative Constant

File Description Entry

Data Description Entry

NS U W N

W wWwwWwwwowwow
NNNNN!&

l}? no [}D NN DD DN 3
| U
"o" G WO N b

|
—

1 L I N T N |
rPkaOONN)—‘

|
[=2IR e PR @ PRI« PRI) BN B

wwwwwwww?wwwwwwww
[}
-3

i
L

CHAPTER 4

xvi

3.5

Data Division Clauses

BLANK WHEN ZERO
BLOCK CONTAINS
DATA RECORDS
JUSTIFIED

LABEL RECORDS
OCCURS

PICTURE

PICTURE Edit
RECORD CONTAINS
RECORDING MODE
REDEFINES
RENAMES
SEQUENCED ON
.14 SYNCHRONIZED

.15 USAGE

16 VALUE

W =1 U WD

[
N - O

LW W WwWWwWwwWwwwwwwwweow
Ju—
o

©

PROCEDURE DIVISION

4.1

4.2

4.3

4.4

4.6

Specification of Procedure Division

4.1.1 Declaratives

4.1.2 Statements and Sentences

Arithmetic Expressions and Statements

4.2.1 Expressions

4.2.2 Statements

Conditions

4.3.1 Relation Condition

4.3.2 Comparison of Numeric Operands
4.3.3 Comparison of Nonnumeric Operands
4.3.4 Comparisons with Index Names/Index Data Items
4.3.5 Sign Condition

4.3.6 Class Condition

4.3.7 Condition-Name Condition

4.3.8 Evaluation Rules

Common Options in Statements
4.4.1 ROUNDED Option

4.4.2 SIZE ERROR Option
4.4.3 CORRESPONDING Option
Table Handling

4.5.1 Subscripts

Indexing

Search Function
Restrictions on Indexing, Subscripting
and Qualification
Debugging Aid

Ll
2 B 7 I
NN

3-11
3-11
3-12
3-13
3-14
3-16
3-18
3-22
3-28
3-33
3-34
3-35
3-36
3-37
3-38
3-40
3-43

60229400

CHAPTER 5

60229400

4.7

Procedure Division Statements

4.7.1 ACCEPT
4.7.2 ADD

4.7.3 ALTER
4.7.4 CLOSE
4.7.5 COMPUTE
4.7.6 DISPLAY
4.7.7 DIVIDE
4.7.8 ENTER
4.7.9 EXAMINE
4.7.10 EXIT
4.7.11 GO TO
4.7.12 IF

4.7.13 MOVE
4.7.14 MULTIPLY
4.7.15 NOTE
4.7.16 OPEN
4.7.17 PERFORM
4.7.18 READ
4.7.19 RELEASE
4.7.20 RETURN
4.7.21 SEARCH
4.7.22 SEEK
4.7.23 SET
4.7.24 SORT
4.7.25 STOP
4.7.26 SUBTRACT
4.7.27 TRACE
4.7.28 USE
4.7.29 WRITE

REPORT WRITER

5.1

5.2

General Description

5.1.1 Control Group/Control Break
5.1.2 Page Break

5.1.3 LINE-COUNTER

5.1.4 PAGE-COUNTER

Data Division Entry Formats

5.2.1 File Description Entry

5.2.2 Report Description Entry

5.2.3 Report Group Description Entry

4-17
4-17
4-18
4-20
4-21
4-23
4-24
4-25
4-26
4-29
4-30
4-31
4-32
4-35
4-39
4-40
4-41
4-44
4-51
4-53
4-54
4-55
4-61
4-62
4-64
4-67
4-68
4-70
4-72
4-74

|
ot

I
DN DN

U |
N o0k W

O‘IO‘IO‘IUIO‘ICITIU‘IU‘IUT (%]

CHAPTER 6

CHAPTER 7

xviii

5.3 Data Division Clauses

5.3.1 CODE

5.3.2 COLUMN NUMBER
5.3.3 CONTROL

5.3.4 GROUP INDICATE
5.3.5 LINE NUMBER

5.3.6 NEXT GROUP

5.3.7 PAGE LIMIT

5.3.8 RESET

5.3.9 SOURCE-SUM-VALUE
5.3.10 TYPE

5.4 Procedure Division Statements

5.4.1 GENERATE

5.4.2 INITIATE

5.4.3 TERMINATE

5.4.4 USE BEFORE REPORTING
5.5 Sample Report Writer Program

LIBRARY

6.1 COPY Statement

6.2 Source Library Preparation

SOURCE PROGRAM PREPARATION, COMPILATION,
EXECUTION

7.1 Reference Format
7.1.1 COBOL Coding Sheet
7.2 COBOL Control Cards

7.2.1 UCBL Card

7.2.2 END PROGRAM Card
7.2.3 FINIS Card

7.2.4 ENDATA Card

7.3 MASTER Control Cards

7.3.1 JOB Card

7.3.2 SCHEDULE Card
7.3.3 *DEF Card
7.3.4 Task Name Cards

7.4 Outputs from Compilation
7.4.1 Source Program Listing
7.4.2 Error Diagnostics
7.4.3 Symbolic Listing of Object Program
7.4.4 Object Program
7.4.5 Data Map

7.5 Rerun/Restart Procedures
7.5.1 Rerun
7.5.2 Restart

7-1

1

i

[}
@ oo o= o O,

U
[¢'a)

)
= W W W

“3 A3 ~3 =] ~F - ~1 a1 =1 ~]] = =3 =3 =3 =3
|]
S

2204

7.6 Sample COBOL Decks
7.6.1 Compile Only

7.6.2 COBOL Source Deck
7.6.3 Compile and Execute
7.6.4 Restart
7.6.5 Compile and Execute
7.6.86 Execute
APPENDIX SECTION
APPENDIX A SAMPLE PROGRAM
APPENDIX B COBOL LANGUAGE
APPENDIX C COBOL RESERVED WORD LIST
APPENDIX D COBOL COLLATING SEQUENCE
APPENDIX E STANDARD FILE LABELS
APPENDIX F FILE BLOCKING FORMATS
APPENDIX G INPUT/OUTPUT SUMMARY TABLE
APPENDIX H DIFFERENCES BETWEEN MS COBOL AND USASI COBOL
APPENDIX I DIAGNOSTICS
APPENDIX J ENTER VERB OBJECT CODE EXAMPLES

60229400

7-11
7-11
7-12
7-13
7-14
7-15
7-16

I-1

J-1

xXix

IDENTIFICATION DIVISON 1

1.1

SPECIFICATION OF
IDENTIFICATION
DIVISION

60229400

The Identification Division specifies the information to identify the source
program and the output from compilation. It must include the program name,
and may also include the date the program was written, the date compiled,
and so forth. Information specified in this division is included in the listing
of the source program, but only the PROGRAM-ID clause affects the object
program.

IDENTIFICATION DIVISION,

PROGRAM-ID. program-name,.
[AUTHOR. comment-paragraph.]
[INSTALLATION. comment-paragraph.]

[DATE-WRITTEN. comment-paragraph.]

[DATE-COMPILED. [comment-paragraph.]]

[SECURITY. comment-paragraph.]
[REMARKS. comment-paragraph.]

The header IDENTIFICATION DIVISION begins in column 8 of the first line
and is followed by a period and a space. The name of each succeeding para-
graph is specified on a new line; each begins in column 8 and is followed by

a period and a space. The comment paragraphs are any combination of
characters from the COBOL character set (appendix B) organized to con-
form to sentence and paragraph structure. Only the PROGRAM-ID paragraph
is required.

1-1

1.1.1
PROGRAM-ID The PROGRAM-ID paragraph gives the name by which the program is

identified.

PROGRAM-ID. program-name.
The program name is a word and must conform to the rules for forming a
word (appendix B). The program name identifies the source program, the

object program, and all listings pertaining to the program. The first seven
characters of this name must be unique within the COBOL source program.

1.1.2
DATE-COMPILED DATE-COMPILED

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

DATE-COMPILED. [comment-paragraph.]

The paragraph name DATE-COMPILED causes the current date to replace
the comment paragraph during program compilation.

The remaining paragraphs in the division supply documentary information
and if specified, will appear in the source program listing.

1-2 60229400

ENVIRONMENT DIVISION 2

The Environment Division describes aspects of a COBOL program that depend
on the physical characteristics of a specific computer. This division must be
rewritten and the entire source program recompiled when the object program

is to be run on different computers.

The Environment Division specifies the configuration of the compiling com-
puter and the object computer. In addition, information relating to input-
output control, special hardware characteristics, and control techniques can be
specified. The information in the Environment Division is specified in two
sections: The Configuration Section specifies the characteristics of the

source computer and the object computer. The Input-Output Section specifies
the information needed to control transmission and handling of data between
external devices and the object program.

2.1

SPECIFICATION OF

ENVIRONMENT

DIVISION ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer entry.

OBJECT-COMPUTER, object-computer entry.

[SPECIAL-NAMES. special-names entry.}

INPUT-OUTPUT SECTION.
[FILE-CONTROL. file-control entry.]

[I-O-CONTROL. input-output-control entry.]

The Environment Division must begin with the header: ENVIRONMENT
DIVISION followed by a period and a space.

60229400 2-1

2.2
CONFIGURATION
SECTION

221
SOURCE-COMPUTER

2.2.2
OBJECT COMPUTER

This paragraph describes the computer upon which the program is to be
compiled.

SOURCE-COMPUTER. COPY statement.
SOURCE-COMPUTER, computer-name.

COPY is used only when the COBOL library contains the complete text of
the SOURCE-COMPUTER paragraph. The COPY statement is described
in section 6.1.

Computer name is a word which must appear as the first entry following
SOURCE-COMPUTER. 3300 and 3500 are the only words permitted as
computer names in this paragraph. The SOURCE-COMPUTER paragraph
is used for documentation only, and has no effect on the object program.

This paragraph describes the computer on which the program is executed.

OBJECT-COMPUTER. COPY statement.

OBJECT-COMPUTER. computer-name

WORDS
MEMORY SIZE integer { CHARACTERS
MODULES

COPY is used only when the COBOL library contains the complete OBJECT -
COMPUTER paragraph. The COPY statement is described in section 6. 1.

Computer name is a word and must appear as the first entry following the
paragraph name OBJECT-COMPUTER. The computer names may be either
3300 or 3500. The integer memory size may be any value and may include
alphabetic characters.

This paragraph is used for documentation purposes only and has no effect
on the object program.

Example:

OBJECT-COMPUTER. 3500 MEMORY SIZE 262K WORDS.

60229400

223
SPECIAL NAMES

60229400

This paragraph assigns special control characters and implementor names to
user defined mnemonic names. Two clauses permit the specification of non-
standard currency conventions. If none of these features is required, this
paragraph may be omitted.

Format 1:

SPECIAL-NAMES. COPY statement.

Format 1 is used only when the COBOL library contains the entire description
of all SPECIAL-NAMES used in the program. The COPY statement is des-
cribed in section 6.1.

Format 2:

SPECIAL-NAMES. [implementor-name IS mnemonic-name]...

[,literal IS mnemonic-name]
[, CURRENCY SIGN IS literal]
[, DECIMAL-POINT IS COMMA].

Each mnemonic name defined under SPECIAL-NAMES must be unique within
the source program.

implementor-name IS mnemonic-name
Implementor names are restricted to the following hardware names:

SYSTEM-INPUT SYSTEM-PUNCH
SYSTEM-OUTPUT CONSOLE

Mnemonic names must be used in references to system files or the console in
an ACCEPT or DISPLAY statement in the Procedure Division.
literal IS mnemonic~name

The non-numeric literal is a one-character identifier used in either of the
following:

carriage control in the WRITE ADVANCING mnemonic-name LINES
statement

record prefix code in the CODE clause of the Report Description

2-3

CURRENCY SIGN IS literal

The non-numeric literal is used in the PICTURE clause to represent a currency
symbol other than the $ (dollar sign). Alternate currency symbols are used for
foreign currency. The literal must be a single character and may not be any of
the following:

digits 0-9

alphabetic characters ABCDEPRSVX?Z

space

special characters * +-, . ; () "

If the CURRENCY SIGN clause is absent, only $ (dollar sign) may be used as
a currency symbol in a PICTURE clause.

DECIMAL-POINT IS COMMA

This clause indicates that the function of comma and period are exchanged in
any PICTURE clause character string and in numeric literals. This clause
is useful for specifying foreign currency.

Example:

SPECIAL-NAMES.
SYSTEM~OUTPUT IS PRINT,
'A' IS EJECT, CURRENCY SIGN IS 'M',
DECIMAL-POINT IS COMMA.

23

INPUT - OUTPUT

SECTION This section consists of the header INPUT-OUTPUT SECTION and the two
paragraphs FILE-CONTROL and I-O-CONTROL. If neither paragraph is
used, the entire section can be omitted.

4 60229400

[\

23.1

FILE-CONTROL This paragraph names each file, identifies the file device, and allows particular
hardware assignment. It also specifies alternate input-output areas, the access
mode and file limits of mass storage files, and the key to accessing random
access files.

Format 1:

FILE-CONTROL. COPY statement.

Format 1 is used only when the COBOL library contains the entire text of the
FILE-CONTROL paragraph. The COPY statement is described in section 6. 1.

Format 2:

FILE-CONTROL.

SELECT [OPTIONAIL] file-name-1
{

{, RENAMING file-name-2}

ASSIGN TO [integer-1] hardware-name-1 dsi-1

{tl.u
[’ hardware-name-2 dsi—2}]

- REEL
,FOR MULTIPLE { o }]

[integer-2 [{AREA
, RESERVE { Yo } ALTERNATE | {0t }]

- (FILE-LIMIT IS - .
_’{FILE—LIMITS ARE} integer-3 [THRU integer 4]]

[,ACCESS MODE IS {MN_DQM }]

SEQUENTIAL
[, PROCESSING MODE IS SEQUENTIAL]

[, ACTUAL KEY IS data-name-1]. $ cee

If file-name-1 is a sort file, only the SELECT and ASSIGN clauses are included
in the FILE-CONTROL paragraph. If file-name-1 is in the USING or GIVING
options of the SORT verb, FOR MULTIPLE REEL/UNIT and RESERVE clauses
may be included in addition to the required SELECT and ASSIGN clauses. (See
SORT, section 4.7.24).

60229400 2-5

o

SELECT [OPTIONAL] file-name-1

The SELECT clause is required for each file described in the Data Division.
Each file is named only once as file-name-1 in the FILE-CONTROL para-
graph following the key word SELECT. Each selected file must have a file
description entry in the Data Division of the source program unless a RE-
NAMING clause relates the selected file to a file that is the subject of another
SELECT clause. The SELECT clause for the renamed file must not contain
the RENAMING option.

The key word OPTIONAL is required for input files that are not necessarily
present each time the object program is run.

RENAMING file-name-2
If the RENAMING clause is used, file-name-1 uses the file description entry,
including the associated record description already specified for file-name-2.
The files do not share the same area unless the SAME AREA clause appears
in the I-O-CONTROL paragraph. File-name-1 is essentially a duplicate of
file-name-2 except that file-name-1 has its own FILE-CONTROL paragraph
entry. File-name-2, the renamed file, may not be a sort file.

ASSIGN TO [integer-1] hardware-name-1 dsi-1

[(]
lhardware-name-2 dsi-2

All files used in the program must be assigned to an input or output device
(hardware name).

Allowable hardware names are as follows:

READER SYSTEM-INPUT TAPE TTY (teletypewriter)
PRINTER SYSTEM-OUTPUT DISK CRT (211 display)
PUNCH SYSTEM-PUNCH SCRATCH

Each hardware name, except SYSTEM-INPUT, SYSTEM-OUTPUT and
SYSTEM-PUNCH must be accompanied by a data set identifier (dsi). The
dsi is a 1-4 character alphanumeric identifier used by MASTER and the
input-output control system for all references to this file during the running
of the program. It must not begin with an asterisk (*), and may not be INP,
OUT, PUN or any COBOL reserved word.

Integer-1 indicates the number of input-output units of a given hardware name

assigned to the file name. This option is used for documentation purposes
only.

60229400

If alternating tape units are to be used, each must be given a unique dsi.
Each file on a multi-file reel must have the same dsi. System files do not
require dsi.

Examples:

SELECT PAY-FILE ASSIGN TO TAPE Al, TAPE B2.
SELECT PAY-FILE ASSIGN TO DISK MSO1.

When a file is assigned to hardware names TTY and CRT, a second identifier
code, terminal unit identifier, must follow the dsi. (When the hardware-name
is TTY or CRT, only one hardware-name may be specified.) The terminal

unit identifier (tui) is a 1-4 character alphanumeric code used by MASTER

and the input-output control system to determine the local terminal unit as-
sociated with the assigned file. This identifier must match the code assigned
to the device when it is entered into the MASTER operating system hardware
unit table. For further information concerning the tui, refer to the MASTER
2.0 Reference Manual Pub. No. 60213600 and applicable installation procedures
documentation.

Examples:

SELECT TWX-FILE ASSIGN TO TTY ABS A0O1.
SELECT DISPLAY-FILE ASSIGN TO CRT DEF B010.

All equipment assigned, except TTY and CRT, must be scheduled on the
$SCHED card. Additionally, if the system printer, reader or punch are

to be used directly by the program they must be preempted from MASTER
with a $DIRECT card. (See Section 7, Source Program Preparation, Com-
pilation and Execution).

SCRATCH files are automatically allocated by the I-O control system in the
system scratch file area. These files exist only for the duration of the job
and are released by MASTER at the end of each job. They may be processed
and used in all respects as a sequential mass storage file might be used.
Scratch area for these files must be scheduled with the $SCHED card (section
7.3.9).

If file-name-1 is a file, only the ASSIGN clause can follow the key word
SELECT in the FILE-CONTROL paragraph (section 4.7.24, Sort).

60229400 2-7

2-8

REEL}

FOR MULTIPLE {UNIT

The MULTIPLE REEL clause must be included whenever the number of tape
units assigned, explicitly or implicitly, might be less than the number of
reels in the file. The MULTIPLE UNIT clause must be included whenever
the number of mass storage devices assigned might be less than the number
of mass storage units in the file. This can occur when the file is assigned
to disk packs. If a random file is located on multiple disk packs, all such
packs must be mounted on the drives at the time the file is opened.

integer-2 [{AREA }]
RESERVE {EQ } ALTERNATE AREAS

The RESERVE clause allows the user to modify the number of input-output
areas allocated by the compiler. The option RESERVE integer-2 ALTERNATE
AREAS reserves integer-2 areas for the file in addition to the minimum area.
Two additional alternate areas may be assigned for unblocked files, one for
blocked files. The NO ALTERNATE AREAS option is documentary only. This
clause does not apply to random files. Blocked random files have one alternate
area; unblocked, no alternate areas. Alternate areas are never allocated to
files assigned to TTY and CRT. All integers must be positive.

FILE-LIMIT IS
{FILE—LIMITS ARE

} integer-3 [THRU integer-4]

The FILE-LIMIT clause is applicable only to permanent mass storage files
which will be internally allocated and/or expanded by the input-output con-
trol system at object time. Integer-3 indicates the number of blocks to be
initially allocated to the file. The THRU integer-4 option applies only to
sequential files.

During program execution the file limits logic operates as follows:

When an OPEN request is made on a mass storage file, the input-output
control system attempts to open the file through the MASTER operating
system. If the request to MASTER is rejected because the file does not
exist, an internal allocation is performed, using the information furnished
in the file description entry for the file. Open processing then continues
in a2 normal manner.

If the allocated area is exceeded and the user has specified the THRU
integer-4 option, the I-O control system automatically expands the file by
ten percent of integer-3. This expansion may continue until the file reaches
the maximum limit indicated by integer-4.

60229400

60229400

ACCESS MODE IS {M }

SEQUENTIAL

The ACCESS MODE clause must be included for mass storage files. When
ACCESS MODE IS SEQUENTIAL, the mass storage records are obtained or
placed sequentially. That is, the next logical record is made available from
the file on execution of a READ statement, or a specific logical record is
placed into the file on execution of a WRITE statement. No ACTUAL KEY
entries are necessary for the SEQUENTIAL mode.

When ACCESS MODE IS RANDOM, mass storage records are organized
randomly and records are retrieved according to the contents of the ACTUAL
KEY data name.

PROCESSING MODE IS SEQUENTIAL

This clause specifies that mass storage records are processed in the order
in which they are accessed; it is documentary only.

ACTUAL KEY IS data-name-1

The ACTUAL KEY clause must be specified for random access files. The
mass storage control system obtains or writes each record randomly. The
specific logical record is located through data-name-1 of the ACTUAL KEY
clause and is made available on execution of a READ statement. When a
WRITE statement is executed for a random access file, effectively, the
record is placed at the location in the file specified by data-name-1 of the
ACTUAL KEY clause. Mass storage records in a random file are processed
in the order in which they are accessed.

If a SEEK statement is executed prior to a READ or WRITE, the location of
the record as specified by the value of data-name-1 is made available to the
next READ or WRITE executed.

If no SEEK is issued, the record is automatically located from the value of
data-name-1 upon execution of a READ or WRITE. The user is responsible
for setting the value of data-name-1 prior to execution of each SEEK or
READ or WRITE statement associated with a random access file.

Data-name-1 is a 12-character numeric group item, subdivided into two
fields. The first is a seven-character block number indicating the relative
position of this block from the beginning of the file (1 = the first block, etc.).
The second field is a five-character position number giving the first character
position of the record relative to the beginning of a block (0 = the first char-
acter, etc.).

2-9

The ACTUAL KEY item should be defined in the Data Division as follows:

01 RECORD-ADDRESS.
02 BLOCK-NUMBER PIC 9(7).
02 RECORD-POSITION PIC 9(5).

If data-name-1 points to the location of a record outside the specified file
limits, the INVALID KEY clause of the READ or WRITE is executed.

The ACTUAL KEY clause is optional for sequential access files. If it is
specified, the input-output control system updates data-name-1 by the
following rules:

After a WRITE is executed, the contents of the ACTUAL KEY data item
are always implicitly updated.

Before a READ is executed, the contents of the ACTUAL KEY data item
are implicitly updated only if the READ was not logically preceded by a
WRITE.

Since implicit updating of the ACTUAL KEY data item is a function of the
input-output control system, changes made by the programmer to the ACTUAL
KEY data item do not affect the mass storage file processing; but they may
result in unpredictable values if the programmer makes subsequent reference
to the contents of the ACTUAL KEY data item.

2.3.2
I-O-CONTROL The I-O-CONTROL paragraph specifies the points at which rerun is to be

established, the memory area to be shared by different files, and the loca-
tion of files on a multiple-file reel.

Format 1:

I-O-CONTROL. COPY statement.

Format 1 is used only when the COBOL library contains the complete text of
the I-O-CONTROL paragraph. The COPY statement is described in section
6.1.

2-10 60229400

Format 2:

I-O-CONTROL.

[RERUN ON hardware-name-3 dsi-3

END OF {REEL}
EVERY). UNIT ; OF file-name-3
integer-1

[SAME l:{soﬂ }] AREA FOR file-name-4 {, file—name—5} .. :| ..

RECORDS

RECORD
E MULTIPLE FILE TAPE CONTAINS file-name-6 [POSITION integer-3]

[, file-name-7 [POSITION integer-4]] ..] cee

This paragraph is optional. The file name of a sort file cannot appear in a
RERUN or MULTIPLE FILE option; nor can a sort file name appear in the
SAME clause, unless the RECORD option is used. The END OF UNIT option
may be used only if file-name-4 is a sequentially accessed mass storage file.

RERUN ON hardware-name-3 dsi-3 EVERY

froor {128

integer-1 RECORDS} OF file-name-3

If the RERUN clause is specified, the contents of memory and of all necessary
registers and the position of all files during execution are saved on the device
specified by hardware-name-3. This device may be either magnetic tape or
mass storage. If the dump file is to be on mass storage, the file must be
allocated. In either case, it must be opened prior to execution with a *DEF
card. The dsi parameter on the OPEN card must be identical to that specified
in dsi-3.

The rerun dump can be used to restart execution at the point where a dump was
taken (chapter 9, Source Program Execution). If the END OF REEL/UNIT
option is used, a rerun dump is taken at the end of every reel or unit of the file
named in file-name-3. The END OF UNIT condition occurs when the next se-
quential physical record is in a file segment of a disk pack other than the pack
currently mounted on the device assigned to the file.

If the integer-1 RECORDS option is used, a rerun dump is taken each time the

number of physical records specified by integer-1 is read from or written on
the device associated with file-name-3.

60229400 2-11

SORT . :
SAME [{ RECORD }] AREA FOR file-name-4 {, file-name-5 % e

This clause specifies that two or more files are to use the same memory area
during processing. If the RECORD option is specified, the files, including any
sort-files, share only the area in which the current logical record is processed.
Several files may be open at the same time but the logical record of only one
file can reside in the record area at one time.

If the SORT option is used, one or more file names representing sort files may
appear within the set of file names. For each sort file, the SAME SORT AREA
clause is interpreted as follows:

The SORT statement referring to the sort file and any associated input or
output procedures can use all buffer storage associated with the other files
in the SAME SORT AREA clause. All other files are thus guaranteed to be
closed throughout operation of the SORT statement and any associated in-
put or output procedures.

Files other than sort files in the SAME SORT AREA clause do not share
the same storage area. If other files are to share the same storage area,
the user must write a SAME RECORD AREA clause.

If a SAME AREA clause does not contain the RECORD or SORT option, the

shared area includes all storage areas assigned to the files; therefore, no
more than one file may be open at one time.

MULTIPLE FILE TAPE CONTAINS file-name-6 [POSITION integer-3j. ..

The MULTIPLE FILE clause is required when more than one file shares the
same reel of tape. Regardless of the number of files on a single reel, only
those files used in the object program need be specified. If all file names
have been listed in consecutive order, the POSITION option need not be given.
If any file in the sequence is not listed, the POSITION relative to the begin-
ning of the tape must be given. Not more than one file on the same tape reel
may be opened at one time.

Files on a multiple-file reel are handled in the same manner as other files
except that OPEN and CLOSE perform the additional functions to locate each
of the files on the reel.

The input-output control system searches for and locates any file on an input
multifile reel which the user opens. If the indicated file is further along the
tape than the current position, the tape is skipped forward; otherwise, the
tape is rewound, then skipped forward to the correct file.

2-12 60229400

60229400

The files on an output multifile reel are written in the order dictated by the
logic of the program rather than the order in which they are defined in the
MULTIPLE FILE clause. If an output multifile reel is to be used as input
to the same program, the input-output control system assumes that the files
were written in the order specified by the MULTIPLE FILE clause.

The input-output control system assumes that all files on the multifile reel
have the same type of labeling.

Since no two files on a multifile reel may be open simultaneously, they share
buffer and record areas automatically. No file which shares a reel with
another file can extend across reels; that is, a file cannot be on a multifile
reel and also be multireel.

2-13

DATA DIVISION 3

The Data Division, required in every COBOL program, contains a full
description of the data to be processed by the object program. The data
falls into four categories:

Data stored on external files

Data common to more than one subprogram

Constants and data developed during program operation

Output reports
3.1
SECTIONS The Data Division is divided into four sections corresponding to the categories
of data:

DATA DIVISION.

[FILE SECTION.]

{COMMON-STORAGE SECTION.]
[WORKING-STORAGE SECTION.]

[REPORT SECTION.]

The Data Division must begin with the header: DATA DIVISION followed by a
period and a space. Each of the sections is optional; when present, they
must be in the order of appearance shown in the format above. Each section
header is followed by one or more sets of entries; the File Section and Report
Section contain file descriptions followed by associated record description
entries, the Working-Storage and Common-Storage headers are followed

by data description entries for independent items, followed by record
descriptions.

60229400 3-1

3.1.1
FILE SECTION

3.1.2
COMMON-STORAGE
SECTION

The File Section defines the contents of data files stored on an external de-
vice and the contents of sort files. Each file is defined by a file description
entry followed by one or more record description entries. A file description
entry consists of a level indicator (FD or SD), a file name, and a series of
independent clauses. An external file is described with a level FD entry which
indicates recording mode, block size, labeling conventions, names of records
or reports in the file, and so on. Every external file must have a level FD
file description entry. Sort files are described with level SD entries which
specify the name, size, and number of records to be sorted.

FILE SECTION.
FDfile-name-1...
01 data-name-1...
02 data-name-2...
66 data-name-3 RENAMES data-name-2.

03 data-name-4...
01 data-name-5...
02 data-name-6...
88 condition-name-1...

01 data-name-7...
SD file-name-2. ..

FD file-name-3...

.

During execution of an object program, independently compiled subprograms
communicate through common storage. Each item in a Common Storage
Section has a record description entry; all entries are preceded by the header
COMMON-STORAGE SECTION and a period. All data structures permitted in
the Working Storage Section are legal in the Common Storage Section.

A Common Storage Section must be present in each independently compiled
subprogram so that all references to common storage will be properly defined.
The item descriptions in each Common Storage Section should be identical in
format; if they are not, the contents of common storage in memory cannot be
guaranteed.

60229400

3.1.3
WORKING-STORAGE
SECTION

60229400

The system loader loads only the first Common Storage Section encountered.
Subsequent Common Storage Sections are ignored and all reference to common
storage items in communicating subprograms are directed to the first Common
Storage Section loaded.

During execution of an object program, intermediate results and other
information need to be stored before being processed further or transferred
out of memory. The storage areas, called working storage items, are
contained in the Working Storage Section.

The Working Storage Section is composed of the section header WORKING-
STORAGE SECTION foilowed by a period. This header is followed by any
independent data description entries which are in turn followed by any record
description entries. Each name of an independent item or a record must be
unique. Subordinate data names need not be unique if they can be made unique
by qualification.

COMMON-STORAGE SECTION.
WORKING-STORAGE SECTION,

77 data-name-1
88 condition-name-1

77 data-name-2
01 data-name-3
02 data-name-4

.

66 data-name-5 RENAMES data-name-4
01 data-name-6
02 data-name-7
03 data-name-3
88 condition-name-2

3.14
REPORT SECTION

3.2
DATA DIVISION
CONCEPTS

3.2.1
ENTRY

The Report Writer enables the user to specify the format of reports
generated by a COBOL program. The Report Section is included when

the Report Writer module is used. The content and format of reports are
described in the Report Section. The header REPORT SECTION and a period
is followed on succeeding lines by entries describing the physical format of
each report to be produced.

Section 5 contains a complete description of the Report Writer and Report
Section entries.

REPORT SECTION.
RD report-name-1
01 [data-name-1]
02 [data-name-2]

02 [data-name-3]
01 [data-name-4]}
01 [data-name-5]

01 [data-name-6]
RD report-name-2

.
.

The basic unit of description for the data in all sections is an entry. Each
entry consists of a level indicator or level number, a name which can be
referenced elsewhere in the program, and one or more clauses describing
the data item. The Data Division contains three types of entry:

File description entries describe physical characteristics of a file.

Record description entries describe characteristics of items used in
the program.

Report and report group description entries describe items generated

as a report.

The Working Storage and Common Storage Sections contain record descriptions
only; the File Section contains file descriptions and record descriptions; the
Report Section contains report and report group descriptions.

60229400

3.2.2
iTEM

3.23
RECORD

3.24
LEVEL NUMBER

60229400

An item is an area used to contain data of a particular kind. The COBOL
language recognizes four kinds of items:

> At
elementary lx’"”‘) ”“"{
GTOUD gt asds olonrt”

independent
report

Elementary items are items that are not subdivided into smaller items. A
group item is subdivided into smaller items which can themselves be group

or elementary items. Group and elementary items may be used in all sections
of the Data Division. Independent items are unrelated elementary items not
contained in a record; each is defined by the special level number 77. Inde-
pendent items are illegal in the File Section. Report items are group or
elementary items that appear in a report. They may be used only in the
Report Section (see Report Writer, section 5).

A record is the most inclusive item in the File, Working Storage or Common
Storage Sections. It is usually, but not necessarily a group item. A record
must have the level number 1 or 01 and a data name. Each item in a record
must have at least a level number and a data name. In addition, any elementary
items in a record must have at least a PICTURE or USAGE defined as INDEX,
COMPUTATIONAL-1, or COMPUTATIONAL-2. Data names of items not at

the 01 level in a record need not be unique if they can be made unique by
qualification. In the File Section only, data names at the 01 level need not be
unique since they can be qualified by a file name.

The level number shows the hierarchy of data within a record description;

the more inclusive an item, the lower its level number. Level numbers need
not be consecutive as long as the less inclusive item has the higher number.
The specific number is determined by the user. The first entry in a record
description always has the level number 1 or 01. Group and elementary items
within a record have level numbers in the range 2-49.

Special level numbers are assigned to certain entries where there is no real
concept of level:

66 identifies RENAMES entries.

77 identifies independent items.

88 identifies condition-name entries.

3.2.5
DATA NAME

3.2.6
INITIAL VALUE

3.2.7
LITERAL

3.2.8
FIGURATIVE
CONSTANT

Every entry must have a subject; that is, a name assigned to the item. This
data name is used to reference the item from the Procedure Division. It
must not be qualified or subscripted when used as the subject of a Data
Division entry.

The word FILLER may be used instead of a data name as the subject of an
entry that is never referenced. It may name only an unused elementary item
within a record. A record containing a FILLER item can be referenced from
the Procedure Division, although the FILLER item itself cannot. A FILLER
item must have a level number and any data description clauses that would be
required for a data-name entry in the same location.

Report names, file names, library names, and condition names are special
cases of the data name used in report, description, file description, source
library, and condition name entries. Appendix B contains the rules for
forming all data-names.

The initial value of any item in the Working Storage Section is specified with
the VALUE clause in the record description entry.

A literal is an explicit statement of the value to be used in an operation per-
formed by the object program. Literals may be used wherever the format
indicates. Appendix B contains a description of literals and the rules
governing their formation.

Figurative constants are predefined as part of the COBOL language. They
may be used wherever a literal is allowed in the reference format. A
complete list of figurative constants is contained in Appendix B.

60229400

3.3
FILE DESCRIP-

TION ENTRY A file description entry provides information about the physical structure,
identification, and record names of each file used in the source program.

Format 1:

{ %} file-name-1 COPY statement.

Format 2:

FD file-name-1

F ezl [, fmsn]

; RECORDING MODE IS
SECTOR SEGMENTED
TRACK CONTIGUOUS
; BLOCK CONTAINS [integer-1 TO] integer-2 (RECORDS 1]
\CHARACTERS f

; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS

[DEPENDING ON { data-name-1 }H

r

RECORD-MARK

STANDARD
RECORDS ARE ey ——
; LABEL %RECORD IS ; {OMITTED }
—_— data-name-2

[. VALUE OF glabel-fleld—ls 3data—name—4{ [31abe1—ﬁe1d—2}

data-name-3 literal-1 data-name-5
IS data-name-6
literal-2 ves
RECORD IS
; DATA gRECORDS ARE% data-name-7 [, data-name-8] ...

REPORT IS

H gREPORTS ARES report-name-1 [, report-name-2] ...

[; SEQUENCED ON data-name-9].

60229400 3-7

Format 3:
SD file-name-1

; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

data-name-1
[DEPENDING ON % RECORD-MARK {:I]

RECORD IS

; DATA gRECORDS ARE

s data-name-2 [, data-name-3j ...

Format 1 is used only when the COBOL library contains the entire ¥D or SD
entry; format 2 describes external files; format 3 describes sort files. The
COPY statement is defined in section 6.1.

The level indicator FD or SD identifies the beginning of each file description
entry and must precede the file name. All semicolons are optional, but

the entry must be terminated by a period. The clauses which follow the name
of the file are optional in many cases, and their order of appearance is
immaterial.

The REPORT clause of the FD entry is used only when Report Writer is used;
it is described in chapter 5.

60229400

34

DATA DESCRIP-

TION ENTRY A data description entry specifies the characteristics of each particular
item of data.

Format 1:

01 data-name COPY statement

Format 2:
level - b data-name-1
evel-number FILLER

[; REDEFINES data-name-2]
[{pICTURE/(
RRECEEN

INDEX \
DISPLAY

j COMPUTATIONAL
|comp
; USAGE IS g

18 character—string]

COMP-1
3 COMPUTATIONAL-2 f
J

COMPUTATIONAL-1 ‘

COMP-2

[; OCCURS [integer-1 TO] integer-2 TIMES [DEPENDING ON data-name-l]]

{ 3 ASCENDING

DESCENDING% KEY IS data-name-2 [, data-name-3] .. :I ..

[INDEXED BY index-name-1 [, index-name-2] ...]
| sYNC LEFT
’ SYNCHRONIZED RIGHT
JUST
[’ 3JUSTIFIED£ B@]

[; BLANK WHEN ZEROQ]

[; VALUE IS literal-3].
Format 3:

66 data-name-1 RENAMES data-name-2 [THRU data-name-3].

60229400 3-9

3-10

Format 4:

VALUE IS

VALUES ARE% literal-1 [THRU literal-2]

88 condition-name ; 3

[, literal-3 [THRU literal-4]]

Format 5:
PIC
77 data-name-1} PICTURE (IS ... [USAGE IS]... [VALUE IS]... ete.

All semicolons and commas are optional in the data description, but the entry
must be terminated by a period.

Format 1 is used at the 01 level only. It may be used when the complete
record description is contained in the COBOL library. The COPY statement
is described in section 6.1.

Format 2 has a level number in the range 1-49. The clauses are written in
any order with one exception: the REDEFINES clause, when used, must
immediately follow the data name. PICTURE must be specified for every
elementary item unless USAGE is INDEX, COMP-1, or COMP-2. The
following clauses may be specified only at the elementary item level:
PICTURE, SYNCHRONIZED, JUSTIFIED, and BLANK WHEN ZERO.

Format 3 is used with the RENAMES clause for alternate naming of elementary
items or group items not at the 01 level. The level number must always be 66.
The RENAMES clause must not be used with independent, level 77, entries.

Format 4 is used for condition name entries. Each condition name requires a
separate entry with the level number 88. A condition name is a data name
assigned to the condition; VALUE(S) specifies the value, values, or range of
values associated with the condition name. A condition name entry must follow
the entry describing the variable item with which it is associated. A condition
name can be associated with any elementary or group item except the following:

another condition name, a level 66 item, a group of items requiring
special handling such as synchronization or usage, an index data item.

Format 5 describes independent items. An independent item is elementary,
and is not part of a record or in the File Section. The level number must be
77. Independent items are described with the same clauses used in format 2
for elementary items.

60229400

3.5
DATA DIVISION

CLAUSES All clauses in the file and data description reference formats are described
in this section with the exception of the REPORT clause which is described
in section 5. The clauses are listed alphabetically.

3.5.1
BLANK WHEN ZERO The BLANK WHEN ZERO clause permits the blanking of an item when its

value is zero.
BLANK WHEN ZERO
When this clause is specified, the item will contain nothing but spaces if

the value of the item is zero. This clause may be used only with a
numerically edited item.

60229400 3-11

3.5.2
BLOCK CONTAINS

3-12

This clause specifies the size of a block or physical record.

CHARACTERS E

BLOCK CONTAINS [integer-1 TO] integer-2 3RECORDS

BLOCK CONTAINS is required in a file description entry unless the block
contains exactly one logical record. A file assigned to TTY or CRT cannot
be blocked.

Integer-1 and integer-2 are positive integers.

For a mass storage file the size is stated in terms of RECORDS. The
CHARACTERS option should be used if one of the following situations exists:

® Logical records extend across blocks
® The block contains padding, an area not contained in a logical record

® Logical records are grouped in such a manner that an inaccurate
block size is implied

When the CHARACTERS option is used, the physical record size is specified
in terms of the number of characters in the physical record. Characters are
specified in standard data format regardless of their types.

If only integer-2 is shown, it represents the exact size of the physical record.
If integer-1 and integer-2 are both shown, they refer to the minimum and
maximum size of the physical record respectively.

If logical records of differing size are grouped into one physical record, the
end of the logical record must be explicitly defined in the record description
entry unless the RECORD CONTAINS DEPENDING ON option is used. The
maximum file block size is 131,067 characters. Appendix F describes
COBOL/MASTER file blocking formats.

Block

A block is a physical unit of data that is convenient for storage on an input or
output device for a particular computer. It is identical with physical record.
The block size has no direct relationship to the size of the file containing it,

or to the size of logical records contained in the block. A block is normally
composed of one or more logical records, or a portion of a logical record.

Logical Record

A COBOL logical record is a group of related information, uniquely identifiable,
and treated as a unit. The concept of logical record is not restricted to file
data but is carried over into the definition of working storage items. Logical
records, whether in the File Section, Working Storage, or Common Storage
Sections are defined by record description entries (section 3.2.3).

60229400

3.5.3
DATA RECORDS

60229400

The DATA RECORDS clause is required in each file description entry. The
processor uses it to correlate file and record description entries.

RECORDS ARE

DATA 3 RECORD IS

$ data-name-~7 [, data-name-§] ...

The data names are names of data records which must have 01 level numbers.
The presence of more than one data name indicates that the file contains more
than one type of data record. The order in which names are listed is
immaterial.

Data records in a file need not have the same description. All data records
within a file are processed from the same record area. The size of this area

is equivalent to the largest record in the file.

When the file description entry is for a sort file (SD), the data names identify
records named in the RELEASE statement.

This clause or the REPORT clause (Report Writer, section 5) must be included
in each file description entry.

3-13

3.5.4
JUSTIFIED

3-14

The JUSTIFIED clause specifies nonstandard positioning of data within a
receiving data item.

{ JUSTIFIED

JUST } RIGHT

The JUSTIFIED clause can be specified only at the elementary item level in
a record description entry.

The standard rules for positioning data within an elementary data item area
depend on the category of the receiving item.

Receiving Item Rule for Positioning Data

Numeric Data is aligned by decimal point and moved to the
receiving character positions with zero fill or
truncation on either end as required. If an assumed
decimal point is not explicitly specified, the item is
treated as if an assumed decimal point immediately
followed the rightmost character.

Numeric Edited Data is aligned by decimal point with zero fill or
truncation at either end as required within the
receiving data item, except where editing causes
replacement of leading zeros.

Alphanumeric/ Data is moved to the receiving character positions
Alphabetic and aligned at the leftmost character position with
space fill or truncation to the right.

The JUSTIFIED clause cannot be specified for an item described as numeric
or for a numeric edited data item.

When the receiving item is described with the JUSTIFIED clause and the
sending item is larger than the receiving data item, the leftmost characters
are truncated; when the receiving item described with the JUSTIFIED clause
is larger than the sending item, the data is aligned at the rightmost character
position in the data item with space fill.

60229400

Example:

Picture Data Item Justified

96 o[o[12[F] “ joros filled-in,
sove 1]z oJoJo[1]3] e by ot
S9(4)V9 E 2 22277/ BT
X©) RIEM ke fillod.in
X(5) - rlfxf-:;;ﬁ;lf e
X(2) [A[B[] B[c] RIGH logs character

truncated.

60229400 3-15

3.5.5
LABEL RECORDS

3-16

The LABEL RECORDS clause is required in every file description entry
regardless of the presence or absence of label records. It identifies labels
as standard or as nonstandard; but if labels are not present, it specifies that
they are omitted.

Format 1:
RECORDS ARE .
LABEL 3 RECORD IS f STANDARD VALUE OF label-field-1 IS
literal-1 . literal-2
zdata-name-ls [» label-field-2 IS 3data-name—2 z]
Format 2:
RECORDS ARE
LABEL 2 RECORD IS $ data-name-3 VALUE OF data-name-4 IS
literal-3 literal-4
;data—name—Ss [’ data-name-6 1S 3data—name—7$] T
Format 3:
RECORDS ARE
LABEL 3RECORD IS s OMITTED

Format 1 is used when a file has standard labels (appendix E). All mass
storage files except scratch files must be specified STANDARD in this clause.
Mass storage scratch files, may have OMITTED or STANDARD labels. Mass
storage file labels are maintained by MASTER File Supervisor and are not
accessible to the user. For any non-mass storage file that has standard
labels, the record area defined for that file is used by the input-output con-
trol system for processing the header and/or trailer labels. Thus, the user
may access each label within the USE declarative procedures.

Format 2 is used when labels are nonstandard or user defined. Data-name-3
is the name of a label record area. It must not appear in the DATA RECORDS
clause, and is either the subject of a record description associated with the
file, or an area in working or common storage. Only the beginning labels are
checked for files with data name labels. All Procedure Division references to
the data name specified in this clause, or to any items subordinate to this
data name, must appear within USE procedures.

Format 3 is specified when no explicit labels exist for the file or for the device

to which the file is assigned. Files assigned to TTY or CRT do not have
labels and OMITTED should be specified.

60229400

The VALUE OF clause is used only in formats 1 and 2. It specifies the
values of data items used to identify or create the labels. A figurative
constant may be substituted for any literal in the format.

The following label field names are used to define the values of standard labels:

Tape Mass Storage
IDENTIFICATION IDENTIFICATION
EDITION-NUMBER {OWNER }
REEL-NUMBER OWNER-ID

RETENTION-CYCLE EDITION-NUMBER
ACCESS-PRIVACY
MODIFICATION-PRIVACY

The IDENTIFICATION or ID field is required. The specified label fields are
checked against the label record by the input-output control system. If the
physical file labels do not agree, the file is not processed. The values of
these fields must exactly match the values given as parameters on any
external file control cards. (*DEF cards, section 7.7.3).

When a label is nonstandard, the VALUE OF clause is required to define the
values of identifying data items. Each of the subject data names (data-name-4,
data-name-6, and so forth) is in the label record. The data names or literals
following IS must be in the Working-Storage Section. The data names in this
clause can be qualified but not subscripted or indexed, nor can they be
described by USAGE IS INDEX.

VALUE OF causes the following action to be taken:

Input file A label routine checks to see that the value of each label
record data name or label field is equal to the value of its
corresponding literal or data name. I any field does not
compare, the file is rejected and a request is made to
mount the correct file.

Output file The value of each label record name or label field is made
equal to the value of its corresponding literal or data name.

60229400 3-17

3.5.6

OCCURS

3-18

The OCCURS clause eliminates the need for separate entries when the items
in a sequence are identical to each other in every respect except value. It
also supplies information required to subscript or index the repeated items.

OCCURS [integer-1 TO] integer~2 TIMES [DEPENDING ON data-name-1]j

ASCENDING
B DESCENDING{ KEY IS data-name-2 [, data-name-3] ... :I .

[INDEXED BY index-name-1 [, index-name-2] .. :‘

Each integer must be positive. I both are used, the value of integer-1 must
be less than that of integer-2. The value of integer-1 can be zero; the value
of integer-2 can never be zero.

The OCCURS clause is optional. It cannot be specified in a data description
entry that has:

A level number of 01 or 77

Subordinate item containing the OCCURS. .. DEPENDING ON option

The OCCURS clause is used to define tables and other homogeneous sets of
repeated data. The data name which is the subject of the data description
entry containing the OCCURS clause must be either subscripted or indexed
when it is referenced by any statement. If the entry containing OCCURS is a
group item, each data name in the group must also be subscripted or indexed
when referenced. The other clauses in an entry containing OCCURS apply to
each occurrence of the item they describe. Three levels of nested OCCURS
clauses are permitted.

The DEPENDING ON option is used to specify that the subject of the entry has
a variable number of occurrences. Integer-1 represents the minimum number
of occurrences and integer-2 the maximum. If the DEPENDING ON option is
not specified, integer-2 is the exact number of occurrences and integer-1, if
specified, is documentary only. Data-name-1 contains the count of the actual
number of occurrences; its value must not exceed integer-2. Data-name-1
must be a positive COMPUTATIONAL integer; if it is described in the same
record as the current entry, it must not be the subject of, or be subordinate
to, an entry containing an OCCURS. ..DEPENDING ON clause. The value of
data-name-1 should not be reduced below the actual number of occurrences
of the data items; otherwise, the content of any data items whose occurrences
exceed the new value of data-name-1 become unpredictable. An entry con-
taining the DEPENDING ON option must not be the object of a REDEFINES
clause.

60229400

When the DEPENDING ON option is specified in a data description in the
File Section, records written on external devices will be variable in length
depending on the value of data-name-1. DEPENDING ON may appear only
once in a record description entry and must be at the last major level of
the record.

The KEY IS option indicates that the repeated data is arranged in ascending
or descending order according to the value of the key data names (data-
name-2, data-name-3, etc.). This option is required when a SEARCH ALL
statement is used in the Procedure Division to search the table of repeated
data. The key data names are listed in descending order of significance.
Data-name-2 either names the entry containing the OCCURS clause or names
an entry subordinate to the entry containing OCCURS.

If data-name-3 or any succeeding key data names are used, each must name
an entry subordinate to the group item which is the subject of the entry con-
taining OCCURS. Except when data-name-2 is the subject of the OCCURS
clause, none of the key data names can be the subject of, or subordinate to
an entry containing an OCCURS clause.

The INDEXED BY option is required if the subject of this entry (or if it is a
group, an item within it) is referred to by indexing or is referenced by the
SEARCH statement. The index name is not defined elsewhere since its
allocation and format is controlled by the compiler. It is not data, and cannot
be associated with any data hierarchy. However, an index name must be
initialized by the SET statement before it is used as a table reference.

Index name items are one computer word in length and are in binary format
(COMPUTATIONAL-1).

The VALUE clause must not be stated in a data description entry which
contains OCCURS or is subordinate to an entry containing OCCURS. This
rule does not apply to condition name entries. Initial values of items in
working storage may be specified in the following manner:

The table is described as a record with contiguous data description entries
each of which has a VALUE clause as well as other clauses, (USAGE,
PICTURE, etc.) required to complete the description. The table must be
specified again with a REDEFINES clause to show its hierarchical
structure. The entries subordinate to the REDEFINES entry are repeated
because of the OCCURS clause; but they must not contain VALUE clauses.

An alternate method can be used when the table elements do not require
separate handling because of usage, synchronization, etc. In this case,
the value of the entire table can be specified in the entry defining the
table. The lower level entries specify the hierarchical structure of the
table with OCCURS; they cannot contain VALUE clauses.

60229400 3-19

Examples:

1. 01 PARTS-LIST.
02 A-PARTS.
03 PART-A1l PICTURE 9(10) VALUE XXXXXXXXXX.
03 PART-A2 PICTURE 9(10) VALUE XXXXXXXXXX.

.
.

03 PART-A100 PICTURE 9(10) VALUE XXXXXXXXXX.
02 B-PARTS.

03 PART-B1 PICTURE 9(10) VALUE XxxXXXXXXXX.

03 PART-B2 PICTURE 9(10) VALUE XXXXXXXXXX.

03 PART-B100 PICTURE 9(10) VALUE XXXXXXXXXX.
02 C-PARTS.
03 PART-C1 PICTURE 9(10) VALUE XXXXXXXXXX.

02 J-PARTS.
03 PART-J1 PICTURE 9(10) VALUE XXXXXXXXXX.

.

The above list contains a thousand entries, 100 lower level entries for each
02 level entry and 10 entries at the 02 level. To reference the list by sub-
scripting or indexing, it must be redefined as:

01 PARTS-TABLE REDEFINES PARTS-LIST.
02 LIST OCCURS 10 TIMES.
03 PART PICTURE 9(10) OCCURS 100 TIMES.

2. If the list PARTS-LIST has a varying number of occurrences of the entries
at the 02 level, it is redefined as follows:

01 PARTS-TABLE REDEFINES PARTS-LIST.
02 PART PICTURE 9(10) OCCURS 1 TO 150 DEPENDING ON
PART-NUMBER.

In this case, the number of occurrences is contained in the data item named
PART-NUMBER with the following data description.

77 PART-NUMBER PICTURE 999 COMPUTATIONAL VALUE xxx.

Value must be a positive integer.

60229400

3. A table referenced by a SEARCH statement or by indexing can be
described as follows:

01 DATA-LIST OCCURS 25 TIMES INDEXED BY LIST-INDEX,
ITEM-INDEX.
03 ITEMA PICTURE 9(3) OCCURS 10 TIMES

The SET statement can be used to set the initial values of LIST-INDEX
and ITEM-INDEX:

SET LIST-INDEX TO 25. SET ITEM-INDEX TO 10.

4. A table to be searched by the SEARCH ALL statement can be described
as follows:

01 DATA-LIST OCCURS 25 TIMES INDEXED BY LIST-INDEX,
ITEM-INDEX DESCENDING KEY IS DATA-LIST, ITEM-KEY.
03 ITEMA OCCURS 10 TIMES.
05 AVALUE PICTURE 9(7)
88 VALA VALUES ARE 1 THRU 999999.
03 ITEM-KEY PICTURE X.

When a table area or record area requires subscripting or indexing, hardware
indexing is employed only if the defined area is less than 16,383 characters.
For a larger area, however, software logic is used for subscripting and
indexing. Thus, subscripting and indexing may be slower if the defined area
is greater than 16, 383 characters.

60229400 3-21

3.5.7
PICTURE

3-22

The PICTURE clause describes general characteristics and editing require-
ments of an elementary item; it may be used only at the elementary item level.

PICTURE
PIC

} IS character string

A character string consists of a maximum of 30 characters from the COBOL
set. The particular combination of characters determines the category of
the item. Six categories of data may be described with a PICTURE clause:
alphabetic, numeric, alphanumeric, alphanumeric edited, numeric edited,
and floating point edited.

The number of symbols that represent character positions indicate the size
of an item. (Size means the number of character positions occupied by the
item in standard data format.) For instance, an item containing 12 character
positions is represented by a PICTURE clause containing either 12 symbols,
AAAAAAAAAAAA, or the integer 12 in parentheses following the symbol,
A(12). An integer in parentheses can be used to show the number of con-
secutive occurrences of the symbols: AX 9 PBO0 *, + - Z or the currency

sign.
Alphabetic

The PICTURE string for an alphabetic item contains only the symbol A
specified as many times as required. The item may contain any combination
of letters of the alphabet and spaces not exceeding 131,067 alphabetic
character positions.

Numeric

The PICTURE string for a numeric item is composed of the symbols 9 PS V.
The item may contain any combination of numerals 01234567 8 9 and an
optional plus (+) or minus (-) sign. The maximum size of the item is 18
numeric digit positions.

Alphanumeric

The PICTURE string for an alphanumeric item may contain the symbols A X
and 9 only. It may contain all X's, but not all A's or all 9's; and an alpha-
numeric item is always treated as if it were all X's. Contents of the item are
characters allowable in the computer's character set. The maximum size of
the item is 131, 067 alphanumeric character positions.

The following three categories are PICTURES of edited items. Editing alters

the format or the punctuation of data in an item; characters can be suppressed
or added.

60229400

Numeric Edit

The PICTURE string for a numeric edited item contains only the symbols
BPVZ09,./*+-CRDB and the currency sign. Allowable symbol
combinations are determined by the order of precedence of symbols and
editing rules. A maximum of 4095 character positions may be represented
in the character string, but only 18 may be numeric digit positions. Contents
of character positions representing digits must be numerals 0-9.

Alphanumeric Edit

The PICTURE string of an alphanumeric edited item contains the symbols
A X 9 B 0; combinations are restricted to: at least one B and one X or
at least one 0 and one X or at least one 0 and one A.

An alphanumeric edited item contains characters allowable in the computer's
character set not exceeding 4095 alphanumeric character positions.

Floating Point Edit

The PICTURE string of a floating point edited item is restricted to the
following symbols in the order listed:

+ or -

One to eleven 9's with leading, embedded, or trailing decimal point
or scaling symbol V (the coefficient).

Letter E
+ or - (sign of the exponent)

Three 9's (value of the exponent)

The initial plus indicates that a plus sign represents positive values and a
minus sign negative values; the initial minus indicates that blank represents
positive values, a minus negative values. The maximum size is 18 alpha~
numeric character positions; the coefficient can have up to 11 numeric digit
positions and the exponent 3 numeric digit positions.

CAUTION: The PICTURE clause defines the characteristics of the
expected contents in a data item, and the code generated by the
compiler is dependent upon the PICTURE descriptions. During
object program execution, the actual contents of the data item are
assumedto conform with the PICTURE. No data validation is

ever performed by the generated code. If invalid data is introduced
to the program the course of events is unpredictable.

60229400 3-23

Definition of Symbols Used in PICTURE

Symbol Definition

A Represents character position which can contain only a
letter or a space; it is counted in size of item.

X Represents a character position containing any allowable
character from computer's character set; it is counted
in size of item.

9 Represents a character position which contains a
number; it is counted in the size of the item.

P Indicates an assumed decimal scaling position when this
position does not occur within the number that appears
in the data item. It is not counted in the size of a
numeric data item, but it is counted in determining the
maximum size of a numeric edited item used as an
operand in an arithmetic statement. P can appear only
to the left or right in a string of one or more P's within
the character string. The assumed decimal point is
to the left of the leftmost P or to the right of the right-
most P; each P represents an implied character position
(treated as zero) between the assumed decimal point
and the leftmost character of the data item if the P's are
to the left and the rightmost character if the P's are
to the right. The assumed point location may be up to
31 places to the right or 30 places to the left of the
rightmost digit position in the picture. The symbol V
is redundant when P is specified.

For example, a data item containing the number 2567 is
treated as 256700 if the PICTURE is 9999PP; or as
. 002567 if the PICTURE is PP9999.

S Indicates the presence of an operational sign (+ or -)
and must be written as the leftmost character of a
PICTURE string. It is not counted in determining the
size of an item. (This character is used for documenta-
tion purposes only.)

\% Indicates the location of an assumed decimal point for
aligning items during computation. It does not repre-
sent a character position and is not counted in determin-
ing the size of an item. V may appear only once in a
PICTURE string. V is redundant when the assumed
decimal point is to the right of the rightmost symbol in
the PICTURE string.

3-24 60229400

60229400

Symbol

(zero)

(comma)

(period)

+

CR
DB

%
(asterisk)

/
(slash)

currency
symbol

$

Definition

Represents a character position into which a space is
inserted. It is counted in the size of the item.

Represents the leftmost leading numeric character

position to be replaced by a space when the contents
of that position and all positions to the left of it are
zero. Each Z is counted in the size of the item.

Represents a character position into which the digit 0
will be inserted. Each 0 is counted in the size of the
item.

Represents a character position into which the comma
will be inserted. It is counted in the size of the item.

Represents the decimal point for alignment purposes
as well as a character position into which the period
will be inserted. It is counted in the size of the item.

For a given program the functions of the period an
comma are exchanged if DECIMAL-POINT IS COMMA
is specified in the SPECIAL-NAMES paragraph of the
Environment Division. In this special case, all rules
for a period apply to the comma, and rules for the
comma apply to the period wherever they appear in a
PICTURE clause.

Used as editing sign control symbols to represent the
character position into which the symbol is placed.
These four symbols are mutually exclusive in any one
PICTURE string. Each character is counted in
determining the size of the item.

Represents a leading numeric character position into
which an asterisk is placed when the contents of that
position is zero. Each * is counted in determining
the size of the item.

Represents a character position into which the slash
character will be inserted. It is counted in the size
of the item.

Represents a character position into which the symbol
will be placed. The dollar sign or a single character
specified in the CURRENCY SIGN clause of the
SPECIAL-NAMES paragraph in the Environment
Division. It is counted in the size of the item.

Used in the PICTURE string of a floating point edited
item to indicate the exponent. It is counted in the
size of the item.

3-25

Examples:

PICTURE Data Item Result Item

Alphabetic
AAAAA or A(B)

> |
2
=
E
=]
I
=]

NEERE

Numeric
999 3
S99V99 2|3
PPP9999 jooo
SPPP9999 J000
S999PPP 000}

Alphanumeric

xxxxxxxx or X@) [A[B[c[p[-[*[*[*] [a[B|c|[p][-|*|*|*]
XXXXXXXX or X(8) [1]2]3]. [4]5]6]7] [1]2]s]. [4]5]6]7]
AAAX999 lalBlcl|/]|1]2]3] [alB[c]/]1]2]s]

3-26 60229400

PICTURE Data Item Result Ttem
Numeric Edit

"

-

99.99 AEE

*kkokk 99 lo]o]o 1o

FEEE]
+999 218 12 |+ i2 |8|2|

Alphanumeric Edit

BBBXXXB

000XXX

Floating Point Edit

+9, E+999 +4,0 I+]4].] E[+[o]o]o]

+999. 9E+999 -3.125 [-[3]1[2].[5][E]-Jo]o]2]
+.99999E+999 +15275. <[11]s]2]7][s [E]+]o[o]5]
-999. 99E+999 +74.325 I7]4] 3] . [2][s]E[-Jo]o]1]
~9.99E+999 -84.2 I-18].[4]2]E[+]o]o]1]

3-27

3.5.8
PICTURE EDIT Editing Rules

Editing is accomplished by insertion or by suppression with replacement.
Insertion editing consists of simple insertion, special insertion, fixed
insertion, and floating insertion. Suppression with replacement editing
consists of zero suppression with replacement by spaces or asterisks.
Simple insertion editing is performed only on alphanumeric edited items.
All types of editing may be performed on numeric edited items with the
following restrictions:

Floating insertion editing and suppression with replacement editing
cannot be used in the same PICTURE.

One type of replacement (either spaces or asterisks) with zero
suppression can be used in the same PICTURE.

A variable length item cannot be edited.

Simple Insertion Editing

Insertion characters are: , (comma), the letter B, / (slash), and 0 (zero).
If the item is alphanumeric edited, only B or 0 may be used. Insertion
characters are counted in the size of the item and represent the position in
the item into which the character is inserted.

Examples:
PICTURE Data Item Result Item
99/99/99 [o]1]2]s]6 [7] [o]1]/]2]3]/]6]7]
wpsss [DOBEE [AIEBIEM
BB99. 99 [o]1]5]7[o]o] [a]as]7].]o]o]

Special Insertion Editing

The only special insertion character is the period. It also represents the
decimal point for alignment purposes. When used as an actual decimal point,
the period is counted in the size of the item. An assumed decimal point
represented by the symbol V may not appear in the same PICTURE string

as an actual decimal point represented by a period. When the period is the
last symbol in the PICTURE string, it must be followed immediately by one
of the punctuation characters, semicolon or period, followed by a space.

The result of special insertion editing is the appearance of the insertion
character in the item in the same position as shown in the character string.

3-28 60229400

60229400

Fixed Insertion Edifing

The fixed insertion characters are the currency symbol (cs) and the editing
sign control symbols: + - CR and DB. Only one currency symbol and only
one editing control symbol can be used in a given PICTURE string. CR and
DB must be the rightmost character positions in the item; they are each
counted as two character positions in determining the size of the item. The
symbol + or - must be either the leftmost or the rightmost character position
in the item. The currency symbol must be the leftmost character position
unless it is preceded by a + or a -. The +, the -, and the currency symbol
are each counted in determining the size of the item.

Fixed insertion editing results in the insertion of the editing symbol in the
same position in the item as it occupied in the PICTURE. The result depends
on the value of the item:

Symbol in Result
Picture Character String | Data Item Positive | Data Item Negative
+ + .
- space -
CR 2 spaces CR
_ DB 2 spaces DB
Examples:
PICTURE Data Ttem Result Ttem
B0H BB0E
TORAE [RRRLhE
NE0E
Doy BOBEBEE
99.99DB [2]3]7]6] [2]3].]7]6] D[B]
99,99DB [2[3]7]6] [2]s].]7[¢] 4 4
99.99CR 1]1]3]4] {1]1].]s]4[][R
99,99CR 1[1]3]4] [1]1].[3]4] 4] 4
$BB999. 99 [2]4]3]2]1] [s]a]a]2]4]3]. [2]1]
$00999. 99 [2]4]3]2]1] [s[oJo]2[4]3].T2]1]

3-29

3-30

Floating Insertion Editing

The symbols used for floating insertion are: the currency symbol (cs), and
the editing sign symbols + or -. They are mutually exclusive as floating
insertion characters in a given PICTURE string. Floating insertion editing is
indicated by using at least two of the floating symbols in the leftmost numeric
character positions. Any other insertion symbols embedded in the string of
floating insertion symbols or to the immediate right of the string are part of
the floating string.

Floating insertion in a PICTURE may be represented in two ways:

Any or all leading numeric character positions to the left of the decimal
point are insertion symbols.

All numeric character positions in the picture are represented by the
floating insertion symbol.

The first case results in a single insertion character placed in the position
immediately preceding the first nonzero character or the decimal point,
whichever is encountered first.

The result in the second case depends on the value of the data. If the value is
zero, the entire edited item will contain spaces. If the value is not zero,
the insertion character is placed in the position immediately preceding the

first nonzero character or the decimal point, whichever is encountered first.

Examples:

PICTURE Data Item Result Item
------- orrs [o[ofofo[o[o] [2[a[a[a[a[a]4]
() [o]o]1]2[3 [a]afaf+]1]2]3]

1.9 OOMplE] EREELEE]
$5$95.99 [o[o]4]3]5[¢] [a[s]¢[s]. To]¢]
9 [o] ooJo[o]o] [2]a[]a[a]]a]
5.9 5] EEEELEE]

The PICTURE character string must contain at least one more floating
insertion character than the maximum number of significant digits in the
item to be edited. All floating insertion characters are counted in the size
of the item.

60229400

60229400

Zero Suppression Editing

Suppression of leading zeros in numeric character positions is indicated by
the symbols Z or * in the PICTURE string. If Z is used, leading zeros are
replaced by the space; if * is used, leading zeros are replaced by the asterisk.
The PICTURE string contains one or more of either symbols in the leading
numeric character positions. Any of the insertion characters embedded in or
to the immediate right of this string are part of the string. The symbols + -
* Z and the currency symbol (cs) are mutually exclusive within a given
PICTURE string.

Zero suppression within a PICTURE string may be represented in two ways:

Any or all leading numeric character positions to the left of the decimal
point are represented by suppression symbols.

All numeric character positions are represented by suppression symbols.

In the first case, any leading zero in the data which corresponds to a symbol
in the siring is replaced. Suppression terminates with the first nonzero digit
or at the decimal point, whichever is encountered first.

In the second case, the result depends on the value of the data. If the value is
zero, the entire data item is set to spaces when the suppression symbol is all
Z or all *, except the decimal point when the symbol is *. If the value is not

zero, the result is the same as if the suppression characters were only to the
left of the decimal point.

When the asterisk is used as a suppression symbol and the clause BLANK

WHEN ZERO also appears in the same entry, zero suppression editing
overrides the function of BLANK WHEN ZERO.

3-31

Examples of Zero Suppression Editing:

PICTURE
7.2.999
Z77,999.99
7.99,999.99
$7727,729.99
$227,227.99

$***’ **9 99

Gk kx99
Gk kkk 99
-227,777
$227,279.99CR
$222,279.99DB
$(4), $$9.99
$(4),$$8.99
72727.7Z

$3$$,$22.99

Data Item

0] 0] o] 2[5]

Result Item

2] a] o] 2] 3]

lol1]2[a]e]s] [afs]2[.[3]4]5].[o]0]
lofof1[2]3]4] [[ofo].[o[a]2].]3]4]
lofofo[a]2]s] [s|a[aa]a]a[a]1].]2]s]
[o[ofofo1]2] [sla[a[a[a]a]a]a].[1]2]
lolo[a]z[s]+] [s[*]*[a[.[2]s]4] .[o]o]
[1[2[s[4]s]6] [s[]2[s].]4]s]e].[o]o]
[2]2[s][sle] [s[e[=[=I*]*[*]]-]2]s]
[ofofofo]s]2] [-[a[a]a]a[a]1]z]
(1[2[s]4]56] [s[a[2]3].[4]5]6] [o]o|c]r]
[o]ofo]s]2[3] [s]a]a]afa]a]a]a] . [2]s]a]a]
lofo[a[2[3]¢] |a[a]a]a]s[s]2[s]. [4]o]
o]ofofo]ofo] [a[a]a]a]a]a]a]s].[o]o]
[ofofofo]ofo] [afa]aa]afa]a]

illegal picture

60229400

3.5.9
RECORD CONTAINS

60229400

The RECORD CONTAINS clause of a file description entry specifies the
size of data records in the file.

RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS

[data-name-1 $:|

LDEPENDING ON RECORD-MARK

This clause is not required. When present, however, the following rules
apply:

Integer-3 and integer-4 must be positive integers. Only integer-4 is
used when all data records inthe file have the same size. In this case,
integer-4 represents the exact number of characters in each record.
When integer-3 and integer-4 are both shown, integer-3 refers to the
minimum number of characters in the smallest data record and integer-4
refers to the maximum number of characters in the largest data record.

Size is specified in terms of the number of characters in the logical
record. These characters are given in standard data format regardless
of types within the logical record. Record sizes are determined
according to the rules for obtaining the size of a group item. The maxi-
mum record size is 131, 067 characters.

The DEPENDING ON option provides a key field (data-name-1) which governs
the size of the record. Normally, it is a field within the record but may be
located elsewhere. Data-name-1 may be a BCD integer or a binary number.

If data-name-1 is binary (COMPUTATIONAL-1) the key field is prefixed at
the beginning of each record by the input-output control system. A prefixed
key field format is called a universal record.

If RECORD MARK is specified, each record is terminated by a special
character, external 32g (0,2,8 multiple punch). Reading or writing
terminates when the RECORD MARK is encountered.

Files assigned to TTY or CRT must have fixed length logical records.

3-33

3.5.10
RECORDING MODE

3-34

The RECORDING MODE clause of a file description entry specifies the
manner in which data is recorded on external storage devices.

LOW
o] [{ G } oy |
RECORDING —_— (HYPER
MODE IS SECTOR SEGMENTED
;TRACK ; [gCONTIGUOUS%]

For magnetic tape, the density settings are: LOW=200 bpi, HIGH=556 bpi,
and HYPER=800 bpi. If this clause is not present, a RECORDING MODE of
DECIMAL HIGH DENSITY will be assumed.

The SECTOR/TRACK and SEGMENTED/CONTIGUOQOUS options apply only to
mass storage files. When the FILE-LIMITS clause of the Environment
Division is specified, the input-output control system will internally allocate
and/or expand permanent mass storage files at object time. This allocation
is performed according to the RECORDING MODE specification. SECTOR
indicates that the minimum unit of allocation is a sector; TRACK that it is a
track. SEGMENTED means that the file may be located in different areas of
the same disk file. The MASTER file supervisor keeps track automatically
of the locations of file portions. If CONTIGUOUS is specified, the file is
assigned to one area large enough to hold the entire file on a single device
(disk file or disk pack). The input-output control system automatically
releases any unused portion of any file specified as SECTOR SEGMENTED.
If RECORDING MODE is not specified for mass storage files, SECTOR
SEGMENTED is assumed. Whenever possible, mass storage files should
be allocated in CONTIGUOUS mode to minimize read/write head movement,
thus increasing the rate of processing.

A file assigned to TTY or CRT is always assumed to have a recording mode
of DECIMAL.

60229400

3.5.11
REDEFINES

60229400

The REDEFINES clause allows data items in the same physical area in
memory to be specified in an alternate manner. The data is not changed,
only the method of referencing the data; this includes giving the item a new
name.

level-number data-name-1; REDEFINES data-name-2

The level number of data-name-1 must be the same as that specified for
data-name-2; it may not be 66 or 88. This clause may not be at the 01 level
in the File Section. Implicit redefinition is provided by the DATA RECORDS
clause in the file description entry.

Entries giving the new description of the area in memory must immediately
follow entries describing the area being redefined. Redefinition starts at
data-name-2 and ends when a level number less than or equal to that of data-
name-2 is encountered. Unless data-name-1 is at the 01 level, it must
specify an area in memory the same size as that of data-name-2.

The data-name-2 entry cannot contain an OCCURS clause and cannot be sub-
ordinate to an entry containing an OCCURS clause. Nor can an OCCURS
clause with the DEPENDING ON option be specified for any entries in the
original item or its redefinition.

Example:

01 LIST.
02 PART-1 PICTURE 999 VALUE IS xxx.
02 PART-2 PICTURE 999 VALUE IS xxx.
02 PART-3 PICTURE 999 VALUE IS xxx.

02 PART-50 PICTURE 999 VALUE IS xxx.
01 NEW-LIST REDEFINES LIST.
02 PARTS PICTURE 999 OCCURS 50 TIMES,

3-35

3.5.12
RENAMES The RENAMES clause permits alternate, possibly overlapping, groupings
of elementary items.

66 data-name-1, RENAMES data-name-2 [THRU data-name-3]

All RENAMES entries associated with a given entry must immediately follow
the last data item description in the entry. One or more RENAMES entries
may be written for a given record description.

Data-name-2 and data-name-3 must be names of elementary items or groups
of elementary items in the associated record description entry; they must not
be the same data name. Data-name-2 must precede data-name-3 in the
record description. Data-name-3 must not be subordinate to data-name-2.

A level 66 entry cannot rename another level 66 entry nor can it rename a
level 77, level 88, or level 01 entry.

Data-name-1 must not be used as a qualifier and may be qualified only by the
names of level 01 or FD entries. Data-name-2 and data-name-3 may be
qualified. Neither data-name-2 nor data-name-3 may have an OCCURS
clause in its data description entry nor be subordinate to an item that has an
OCCURS clause in its data description entry.

When the THRU option is specified, data-name-1 is a group item which
includes all elementary items starting with data-name-2 if data-name-2 is
an elementary item, or the first elementary item in data-name-2 if data-
name-2 is a group item, and concluding with data-name-3 if data-name-3 is
an elementary item, or the last elementary item in data-name-3 if data~
name-3 is a group item.

When the THRU option is not specified, data-name-2 can be either a group
or an elementary item. If data-name-2 is a group item, data-name-1 is
treated as a group item; if data-name-2 is an elementary item, data-name-1
is treated as an elementary item.

Examples:

1. 01 DATE-WORD.
02 YEAR-1 PICTURE 99.
66 YEAR-2 RENAMES YEAR-1.
02 MONTH-1 PICTURE 99.
66 MONTH-2 RENAMES MONTH-1.
02 DAY-1 PICTURE 99.
66 DAY-2 RENAMES DAY-1.
66 DAY-3 RENAMES DAY-1.

3-36 60229400

3.5.13
SEQUENCED ON

60229400

2. 01 DETAIL,
03 ITEM-NUMBER PICTURE 9(4).
03 VENDOR-IDENT.
05 VENDOR-CLASS PICTURE 9(3).
05 VENDOR-NUMBR PICTURE 9(5).
03 CUST-IDENT.
05 CUST-CLASS PICTURE 9(3).
05 CUST-NUMBR PICTURE 9(5).
66 ALL-IDENT RENAMES VENDOR-IDENT THRU
CUST-IDENT.

Lb PALATE-X DENY Renswes | Erost

YT

'\'(h‘b\ CusT-IeErT
The SEQUENCED ON clause of a file description entry indicates the location
of the identification field of a record accessed by RESPOND. RESPOND is
the remote file processing system for the 3300/3500 computer configurations.
SEQUENCED ON data-name-9

If the FD entry for a file contains this clause and also specifies:

RECORD CONTAINS integer-1 TO integer-2 CHARACTERS
DEPENDING ON data-name-n

where data-name-n is defined as

COMPUTATIONAL-1

USAGE IS {w }

The input-output control system will insert the following information into the
mass storage file label when the file is created:

Leftmost character position, relative to the beginning of the record, of
the identification field (data-name-9)

Identification field length

Identification field mode (numeric or alphanumeric)

See appendix F for the description of the mass storage file label.

3-37

3.5.14
SYNCHRONIZED

3-38

The SYNCHRONIZED clause specifies positioning of an elementary item
within a computer word or words.

SYNCHRONIZED LEFT
SYNC RIGHT

This clause may appear only with an elementary item.

SYNCHRONIZED specifies that the COBOL compiler, in creating the internal
format of this item, must place the item in the minimum number of computer
words which can contain it. If the size of the item, explicit or implicit, is
not an exact multiple of the number of characters in a computer word, the
character positions between the item and the computer word boundary cannot
be assigned to another item. Such unused character positions are included in:

the size of any group to which the elementary item belongs; and

the computer memory allocation when the elementary item appears as
the object of a REDEFINES clause.

SYNCHRONIZED LEFT (SYNC LEFT) specifies that the elementary item is
positioned to begin at the left boundary of a computer word.

SYNCHRONIZED RIGHT (SYNC RIGHT) specifies that the elementary item is
positioned to terminate at the right boundary of a computer word.

When a SYNCHRONIZED item is referenced in the source program, the original
size of the item, as shown in the PICTURE clause is used in determining any
action that depends on size, such as justification, truncation, or overflow.

If the data description of an item contains the SYNCHRONIZED clause and an
operational sign, the sign of the item appears in the normal operational sign
position of the computer whether the item is SYNCHRONIZED LEFT or
SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified for an item within the scope
of an OCCURS clause, each occurrence of the item is SYNCHRONIZED.
(See OCCURS.)

Items described as SYNCHRONIZED in the File Section are assumed on input
to be synchronized on the external device, and on output are written in
SYNCHRONIZED form on external device.

If the elementary item immediately preceding an item containing the

SYNCHRONIZED clause does not terminate at a word boundary, the remaining
character positions are regarded as FILLER and are not addressable.

60229400

Examples:

PICTURE Data SYNCHRONIZED Result Item
{(machine words)

S9(3)V 3] RIGHT § _

S9(3)V 3 LEFT 1[2[37

R

S9(3)V E 2 RIGHT 7/ 00E .

so@v [1]z LEFT oo [17

S9(5) [1]2]3 RIGHT 7k
n 123

S9(5) 1]2]3 LEFT [0

X(9) |als|c|p|E|Flalu]t| LEFT AlBIC|D
E|F|G|H
)

X(9) lalBlc|plE|Flc|r|1| miGHT 777/
B|C|D|E
Flclu|t

60229400 3-39

3.5.15
USAGE The USAGE clause specifies the format of a data item in storage.

DISPLAY
COMPUTATIONAL }
{ COMP
COMPUTATIONAL-1
{ COMP-1 }
{ COMPUTATIONAL-2 }
COMP-2
INDEX

USAGE IS

The USAGE clause can be written at any level; at a group level, it applies to
each elementary item in the group. The USAGE clause of an elementary item
cannot contradict the USAGE clause of a group to which the item belongs.

If USAGE is not specified for an elementary item, or for any group to which
the item belongs, usage is assumed to be DISPLAY. DISPLAY indicates

that the data is standard data format. Standard data format uses the decimal
system to represent numbers (regardless of the radix used by the computer),
and the remaining characters in the COBOL character set to describe non-
numeric data items.

A COMPUTATIONAL item contains a value to be used in computations; it
must be numeric. The PICTURE string of a COMPUTATIONAL item without
an integer suffix can contain only 9 S V and one or more P's. If a group
item is described as COMPUTATIONAL, the elementary items in the group
are COMPUTATIONAL; however, the group item, itself, is not COMPUTA-
TIONAL since a group cannot be used in computations. A COMPUTATIONAL
item is stored in standard data format and its sign is stored over the low-
order numeric digit. Its size must not exceed 18 numeric digits.

COMPUTATIONAL-1 describes an elementary item in fixed point binary

format. Such an item occupies one computer word (24 bits) and its value
may not exceed 223-1. A fixed point binary number consists of a sign bit
and coefficient as shown below:

2322 00

coefficient

sign bit

3-40 60229400

60229400

The binary point is assumed to be immediately to the right of the lowest
order bit (00). The upper bit of any fixed number designates the sign of the
coefficient (23 low order bits).

Sign Bit Coefficient
1 Negative
0 Positive

COMPUTATIONAL-2 describes an item in floating point format. Such an
item occupies two computer words (48 bits) and is stored as follows:

47 46 35 00

Exponent Coefficient

}

Sign bit

The coefficient consists of a 36-bit fraction in the low order positions of the
floating point word. The coefficient is a normalized fraction; it is equal to
or greater than 1/2 but is less than 1. The highest order bit position (47)
is occupied by the sign bit of the coefficient.

Sign Bit Coefficient
1 Negative
0 Positive

The floating point exponent is expressed as an 11-bit quantity with a value
ranging from 0000 to 37778. It is formed by adding a true positive exponent
and a bias of 20008 or a true negative exponent and a bias of 1777g. This
results in an effective exponent modulus of +1 0231 o

For further information concerning fixed point and floating point arithmetic,
refer to the 3300 Computer Systems Reference Manual, Pub. No. 60157000.

The only meaningful clauses to be used with COMPUTATIONAL-n are the
VALUE and REDEFINES clauses. COMPUTATIONAL-n items are
synchronized left.

USAGE IS INDEX describes an elementary item as an index data item. An
index data item is always one computer word in length in binary format;
USAGE IS INDEX has the same effect as USAGE IS COMPUTATIONAL-1.

An index data item is referred to by a SEARCH or a SET statement. It
contains the character address bias of a table element. (The character
address bias is the value added to the base character address of a table to
give the character address of a particular element in the table.) An index
data item can also appear in a relation condition, but it cannot be a conditional
variable.

3-41

If a group is described with USAGE IS INDEX, all the elementary items in
the group are assumed to be index data items. The group itself cannot be

an index data item and cannot be referenced in a SEARCH or SET statement
or a relation condition. The group can be referenced in a MOVE or an input-
output statement; but no conversion takes place.

SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and editing clauses cannot
be used to describe group or elementary items for which usage is INDEX,

Examples:

1. 01 PRINT-LINE.
02 FILLER PIC X(8) USAGE DISPLAY VALUE 'EMPLOYEE'.
02 NAME PIC X(16) USAGE DISPLAY VALUE SPACES.

The described item would appear in memory as follows:

Clb|b ||
Pl =

NERREEE
Blb|b|b|=]|=

A

2. 77 SUB-TOTAL PIC 9999V99 USAGE COMP VALUE ZEROS.

This item appears in memory as follows:

nooonn

assumed decimal point

3. 01 OUTPUT-RECORD.
02 RECORD-SIZE USAGE COMP-1 VALUE 120.
02 FILLER PICTURE X(13) USAGE DISPLAY VALUE
'MASTER-FILE-A'.
02 FILE-DATE PICTURE X(8) VALUE SPACES.

3-42 60229400

This group appears in memory as follows:

=

=

>l |
D N ol =N

§

00| 00 (01 |70 | binary value

4. 77 TODAYS-DATE PIC X(8) USAGE DISPLAY VALUE '01/26/68'.

77 SALARY-MAXIMUM PIC 9(4) V99 USAGE COMPUTATIONAL
VALUE IS 5000.00.

77 SALARY-TOTAL PIC 9(4) V99 USAGE IS COMP VALUE ZEROS.
77 HOURS-WORKED USAGE COMP-1 VALUE ZEROS.
77 MAX-HOURS-WORKED USAGE COMP-1 VALUE 60,
77 COMP-VAL-1 USAGE COMPUTATIONAL-2 VALUE IS 3.46875E0,
77 COMP-VAL-2 USAGE COMP-2 VALUE 12, 279296E0.

The above items appear in memory as follows:

}

SALARY-MAXIMUM
(6 BCD digits)

HOURS-WORKED
(fixed point binary)

COMP-VAL-1
(floating point)

60229400

{

/

0
6
5
0
0

oclolol~|m~

6
0
0
0

S|l o]l]l |

] 00

00

00

00

20

67

00

00

TODAYS-DATE
(8 BCD characters)

SALARY-TOTAL
(6 BCD digits)

MAX-HOURS-WORKED
(fixed point binary)

COMP-VAL-2
(floating point)

3-43

3.5.16
VALUE

3-44

The VALUE clause defines the initial value of working storage items or the
values associated with a condition name.

Format 1:

VALUE IS literal

Format 2:
VALUE IS . . .
Y literal-1 [THRU literal-2 literal-3
3VALUES AREz 1L

[THRU literal-4]}...

The VALUE clause cannot be stated for any item for which size is variable,
explicitly or implicitly.

A figurative constant may be used wherever literal appears in the format.

If VALUE is specified for a group, the literal must be a figurative constant
or a non-numeric literal, and the group area is initialized without regard for
the individual elementary or group items. VALUE must not be specified

for subordinate items within the group.

Format 2 is used only with condition names. In the THRU option, literal-1
must be less than literal-2, and literal-3 less than literal-4, etc. The
VALUE clause is required in a condition name entry, and it is the only clause
permitted in the entry. Characteristics of the condition name are implicitly
those of its associated data item (its conditional variable).

The values specified in a VALUE clause must be consistent with any other
clauses in the data description of the item. The following rules apply:

If the category of the item is numeric, all literals in the VALUE clause must
be numeric literals. The literal is aligned according to the alignment rules
given for the JUSTIFIED clause. The literal must not have a value requiring
truncation of nonzero digits. Literals assigned to COMPUTATIONAL-2 items
must be in the floating point literal format.

If the category of the item is alphabetic or alphanumeric, all literals in the
VALUE clause must be non-numeric. The literal is aligned according to
the rules; the number of characters in the literal must not exceed the size
of the item.

All numeric literals in a VALUE clause must have a value within the range

indicated by the PICTURE. For example, if the PICTURE is PPP99 the
literal must be within the range . 00000 through .00099.

60229400

The function of the editing clause or editing characters in a PICTURE is
ignored in determining the initial appearance of the item. However, editing
characters are included in determining the size of the item.

Rules governing the use of the VALUE clause differ in different sections of
the Data Division:

Section Rule

File Section The VALUE clause may be used in
condition name entries. It is docu-
mentary only in other entries.

Working-Storage/ The VALUE clause may be used in

Common-Storage Sections condition name entries and also to
specify the initial value of any data
item. The item assumes the specified
value at the start of the object program.
If VALUE is not specified, the initial
value of an item is unpredictable.

Report Section The VALUE clause causes the report
data item to assume the specified
value each time its report group is
presented. This clause may be used
only at the elementary level.

The VALUE clause must not be stated in a record description entry which
contains an OCCURS clause or in an entry subordinate to an entry containing
OCCURS. Nor can the VALUE clause be stated in an entry which contains

a REDEFINES clause, or in an entry subordinate to an entry containing
REDEFINES. These rules do not apply to condition name entries.

The VALUE clause must not be written for a group item containing descriptions
that include SYNCHRONIZED or USAGE clauses.

Examples:

1. The value of an independent constant item is defined:
77 FICA-MAX PICTURE 999V9 VALUE IS 150.0.

The constant item will appear as follows:

1[50

E
assumed decimal point location

60229400 3-45

3-46

Value is specified for the range of a condition name
associated with an item:

01 YEARS PICTURE IS 9(4).
88 SIX-YEARS VALUES ARE 1951 THRU 1956.

Value is specified for the initial value of an item:

01 HEADING-A.

03 FIRST-WORD PICTURE X(10) VALUE IS "COBOL-~LIST",

60229400

PROCEDURE DIVISION 4

4.1
SPECIFICATION
OF PROCEDURE
DIVISION

60229400

Statements in the Procedure Division describe the operaticns to be performed
by the object program. Execution of the object program begins with the first
statement of the Procedure Division, excluding declaratives, and statements
are executed in order of appearance until they are exhausted. The order of
execution can be altered according to rules specified below.

Declaratives define procedures to be executed in addition to the standard error
and label record handling procedures of the input-output control system.
Procedures specified in a declarative are executed automatically under the
input-output control system according to conditions specified in a USE state-
ment. USE is the only declarative statement.

PROCEDURE DIVISION.
[DECLARATIVES.

section-name-1 SECTION,
introductory-sentence-1.
paragraph-name-1.

| END DECLARATIVES. |
[section-name-2 SECTION.]
paragraph-name-2.

.
.
.

paragraph-name-3.
[section-name-n SECTION.]
paragraph-name-n.

4-1

4.1.1
DECLARATIVES

The division begins with the header and a period on the first line. When
declaratives are included, the entire declarative portion of the specification

is written immediately following the division header. If declaratives are not
included, the next line contains the first section name followed by a space

and the word SECTION. If sections are not specified, the next line is the first
paragraph name followed by a period. Sections are optional, but if any para-
graph in the division is in a section, then all paragraphs must be in sections.

Statements in the Procedure Division are combined to form sentences and
paragraphs; paragraphs may be combined to form sections. Sentences are
terminated by a period and a space; paragraphs by the next paragraph name,
section name, or the end of the division. Sections are terminated by the next
section name, the end of the division, or if they are declarative sections, by
the terminator END DECLARATIVES. Paragraphs and sections are both

called procedures; paragraph names and section names are referred to as
procedure names. The elements of statements are COBOL words, identifiers,
and literals. A summary description of these elements and of procedure names
is contained in appendix B.

When the entire contents of a paragraph or section are contained in the COBOL
library, the procedure name may be followed by the COPY statement. Section 6
contains a description of the COBOL library and the COPY statement.

Declarative sections are grouped at the beginning of the Procedure Division
under the collective header DECLARATIVES. They are followed by the
collective termination header END DECLARATIVES. Each declarative is
specified in a section by itself, preceded by a section header. The introductory
sentence containing a USE statement follows the header. Associated proce-
dures are specified according to the same rules as all other procedures in

the program. The introductory USE sentence defines the conditions under
which these procedures are to be executed by the input-output control system.

60229400

4.1.2

STATEMENTS

AND SENTENCES The three types of statements correspond to the three sentence types:
imperative, conditional, and compiler directing. A semicolon, may be
used as a separator between statements or within the IF statement to make
a sentence more readable. A separator may not immediately follow another
separator.

An imperative statement indicates a specific action to be taken by the object
program. An imperative sentence is an imperative statement terminated by
a period followed by a space. An imperative statement may consist of a
sequence of imperative statements each separated optionally from the next
by a separator. Imperative verbs are the following:

ACCEPT DIVIDET MOVE SET

ADDT EXAMINE MULTIPLYT SORT
ALTER EXIT OPEN STOP
CLOSE GENERATE PERFORM SUBTRACTT
COMPUTET GO RELEASE TERMINATE
DISPLAY INITIATE SEEK WRITETT

In a statement format, the term, imperative-statement, refers to a sequence
of consecutive imperative statements ended by a period or an ELSE associated
with a previous IF verb or a WHEN associated with a previous SEARCH verb.

A conditional statement specifies a condition to be evaluated for truth, and
subsequent action of the object program is dependent on this truth value.

A conditional sentence is a conditional statement or sequence of conditional
statements optionally preceded by an imperative statement, terminated by a
period followed by a space. Conditional statements are the following:

IF RETURN
READ WRITE with INVALID KEY
SEARCH Arithmetic statements with ON SIZE ERROR

A compiler directing statement consists of a compiler directing verb and its
operands. A compiler directing sentence is a single compiler directing
statement terminated by a period followed by a space. Compiler directing
verbs are the following:

COPY

ENTER
NOTE

T Without the SIZE ERROR option
7T Without the INVALID KEY option

60229400 4-3

4.2

ARITHMETIC
EXPRESSIONS AND
STATEMENTS

4.2.1
EXPRESSIONS An arithmetic expression may be composed of the following elements:
Identifier of a numeric elementary item
Numeric literal
Identifiers and literals separated by arithmetic operators
Two arithmetic expressions separated by an arithmetic operator
Arithmetic expression enclosed in parentheses
Figurative constant: ZERO (S) (ES)
An identifier is a data name followed, as required, by the syntactically
correct combination of qualifiers, subscripts, and indexes necessary to
make unique reference to the data item. The identifiers and literals appearing
in an arithmetic expression are numeric elementary items or numeric literals

on which arithmetic may be performed. The USAGE of the identifiers is
specified as:

COMPUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL-2

The following arithmetic operators are used in arithmetic expressions:

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
*k Exponentiation

Each operator is preceded by a space and followed by a space. Logical
negation is expressed by a unary -.

An arithmetic expression may begin only with:
left parenthesis (unary - variable
and may end only with:

right parenthesis) variable

4-4 60229400

A one-to-one correspondence is necessary between left and right parentheses
such that each left parenthesis is to the left of its corresponding right
parenthesis.

Arithmetic expressions may be evaluated according to paired parentheses.
Expressions within parentheses are evaluated first, and, within a test of
parentheses, evaluation proceeds from the least inclusive to the most inclusive
set. When parentheses are not used, or parenthesized expressions are at the
same level of inclusiveness, the following hierarchical order of operations is
implied:

Unary -

*k
* and /
+ and -

When the order of a sequence of consecutive operations is not on the same

hierarchical level completely specified by parentheses, the order of evalua-
tion is from left to right.

4.2.2

STATEMENTS Arithmetic statements are ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT. They have several common features: data descriptions of
the operands need not be the same; any necessary conversion and decimal
point alignment is supplied throughout the calculation.

The maximum size of each operand is 18 decimal digits.

Operands may be COMPUTATIONAL, COMPUTATIONAL-1, or
COMPUTATIONAL-2 items.

When the operands in arithmetic statements are not all the same mode, the
compiler must generate conversions. In the following conversions:
COMPUTATIONAL-2 to COMPUTATIONAL-1
COMPUTATIONAL-2 to COMPUTATIONAL
COMPUTATIONAL-1 to COMPUTATIONAL
the converted value may not fit in the resultant field. The most significant
digits could be lost making the result completely unreliable. To avoid this
situation, the user should specify the ON SIZE ERROR option (see OPTIONS,

4.4.2). He may also use MOVE statements prior to the arithmetic statements
to make the operands all the same mode.

60229400 4-5

43

CONDITIONS A condition causes the object program to select between alternate paths of
control depending on the truth value of a test. Conditions are used in IF,
PERFORM, and SEARCH statements.

A condition is one of the following:

Relation condition
Class condition
Condition-name condition
Sign condition
NOT condition

AND$
OR

Condition ;
(Condition)

The construction: NOT condition, where condition is one of the first four
types listed above, is not permitted if the condition itself contains NOT.

Conditions may be combined into logical operators. The logical operators
must be preceded by a space and followed by a space.

Logical

Operator Meanin

OR Logical Inclusive Or
AND Logical Conjunction
NOT Logical Negation

The figure below shows the relationships between the logical operators and
conditions, A and B.

Condition Condition and Value
A B A AND B AORB NOT A
true true true true false
false true false true true
true false false true false
false false false false true

4-6 60229400

4.3.1

RELATION

CONDITION A relation condition results in a comparison of two operands; the operands
may be identifiers, literals, or arithmetic expressions. Comparison of two
numeric operands is permitted regardless of the format specified by USAGE.
For all other comparisons the operands must have the same usage specification.

General format for relation condition:

identifier-1 identifier-2
literal-1 relational < literal-2
-operator
arithmetic-expression-1 arithmetic-expression-2

The first operand (to the left of the operator) is called the subject of the
condition; the second operand (to the right of the operator) is called the
object of the condition. The subject and object may not both be literals.

The relational operators specify the comparison to be made in a relation
condition. They must be preceded by a space and followed by a space.

Relational Operator Meaning

Greater than, or not greater than
IS[NOT] >

IS[NOT JLESS THAN
{IS [NoT]< }

IS[NOT]JEQUAL TO
{IS [yoT = }

{IS[NOT |GREATER THAN }

Less than or not less than

Equal to or not equal to

In any relation condition other than the first in a sentence, the subject, the
subject and relational operator, or the subject and ob ject may be omitted.
The effect is the same as if the omitted parts were taken from the nearest
preceding complete relation condition within the same sentence.

If in a consecutive sequence of relation conditions, separated by logical
operators, the subjects are identical, the relational operators are identical,

and the logical connectors are identical, the sequence may be abbreviated
as follows:

60229400 4-7

Only the first occurrence of the subject and relational operator is written.
The logical operator is written only once immediately preceding the last
object.
IF X IS EQUAL TO 2 OR X EQUAL TO Y OR X EQUAL TO Z MOVE M TO N
can be abbreviated to

IFX IS EQUALTO2, Y, ORZ MOVEM TO N

Abbreviation 1: Identical subjects are omitted in a consecutive sequence of
relation conditions.

IF A EQUAL TO B OR A IS LESS THAN C
can be abbreviated to

IF A EQUAL TO B OR IS LESS THAN C
and

IF A EQUAL TO B MOVE M TO N ELSE IF A IS LESS THAN C ADD
XTOY

can be abbreviated to
IF A EQUAL TO B MOVE M TO N ELSE IF LESS THAN CADDX TO Y

Abbreviation 2: Identical subjects and relational operators are omitted in a
consecutive sequence of relation conditions.

IFA=BORA=C
can be abbreviated to

IFA=BORC
and

IFA=BADDXTOYELSE IFA=CANDA=DMOVEMTON
can be abbreviated to

IFA=BADD XTO Y ELSE IF C AND D MOVE M TO N

60229400

Abbreviation 3: Identical subjects and objects are omitted in a consecutive
sequence of relation conditions.

IF A EQUAL TO B OR A IS GREATER THAN B MOVE C TOA IF A IS
GREATER THAN B ADD B TO A

can be abbreviated to

IF A EQUAL TO B OR IS GREATER MOVE C TO A IF GREATER
ADDBTO A

4.3.2

COMPARISON OF

NUMERIC OPERANDS A comparison of numeric operands results in the determination that the
algebraic value of one is less than, equal to, or greater than the other. The
length of the operands, in terms of number of digits, is not significant.

Zero is considered a unique value regardless of the sign. Comparison of
these operands is permitted regardless of their usage.

43.3

COMPARISONS OF

NONNUMERIC

OPERANDS A comparison between nonnumeric operands, or one numeric and one non-
numeric operand, results in the determination that one is less than, equal
to, or greater than the other with respect to a specified collating sequence of
characters.

The size of an operand is the total number of characters in the operand.

Numeric and nonnumeric operands may be compared only when their usage
is the same, implicitly or explicitly.

Operands of Equal Size

Characters in corresponding positions of the two operands are compared
from the high-order end through the low-order end. If all pairs of
characters compare equally, the operands are considered equal.

The first pair of unequal characters to be encountered is compared to
determine their relative position in the collating sequence. The operand
that contains the higher character in the collating sequence is considered
to be the greater.

60229400 4-9

Operands of Unequal Size

The comparison of characters proceeds from high-order characters to
low-order characters until a pair of unequal characters is encountered or
until the characters in one of the operands are exhausted. If remaining
characters in the longer operand consist entirely of spaces, the two
operands are considered equal, otherwise the longer operand is con-
sidered greater.

4.3.4
COMPARISONS
INVOLVING
INDEX NAMES AND/OR
INDEX DATA ITEMS Comparison of two index names is the same as if the corresponding occurrence
numbers are compared. Conversion from character address bias is performed
automatically.
In the comparison of an index name with a literal or data item (other than an
index data item), the occurrence number is compared to the actual value of
the data item or literal. Conversion of the character address bias in the
index name occurs prior to the comparison.
In the comparison of an index data item with an index name or another index
data item, the actual values are compared without conversion.
The result of any other comparison involving an index data item is unpredictable.
43.5
SIGN CONDITION This condition determines whether or not the algebraic value of a numeric

operand is less than, greater than, or equal to zero.

identifier POSITIVE
IS [NOT] { NEGATIVE

arithmetic-expression ZERO

An operand is positive if its value is greater than zero, negative if its value
is less than zero, and zero if its value is equal to zero.

4-10 60229400

4.3.6
CLASS CONDITION

60229400

This condition determines whether the operand is numeric, that is, consists
entirely of the characters 0, 1, 2, 3, ..., 9, with or without an operational
sign, or whether it is alphabetic, that is, consists entirely of the characters
A, B, C, ..., Z, space.

)
identitier 18 [NOT) {%m}

The operand being tested must be described, implicitly or explicitly, as
USAGE DISPLAY.

The NUMERIC test cannot be used with an item described as alphabetic.
The record description of the item being tested is determined to be numeric
only if the contents are numeric.

The ALPHABETIC test cannot be used with an item described as numeric.
The item being tested is determined to be alphabetic only if the contents
consists of any combination of alphabetic characters and the space.

If the low-order character position of an otherwise numeric field contains a
digit with a sign overpunch, the field is determined to be totally numeric.
For a one-character alphanumeric field, that contains a numeric digit with

a sign overpunch, both the NUMERIC and ALPHABETIC tests are considered
true, and the results of the NOT option of the tests are false. An example
of the latter case follows:

02 FLD-A PICX, VALUE 'A'

IF FLD-A NUMERIC GO TO FLD-NUM

IF FID-A ALPHABETIC GO TO FLD-ALPHA
IF FLD-A NOT NUMERIC GO TO FLD-ALPHA
IF FLD-A NOT ALPHABETIC GO TO FLD-NUM

The first two tests will take the true path; the last two tests will take the

false path. Since 'A' in internal octal form is 21, it can be interpreted as
either an alpha A or a numeric +1.

4-11

4.3.7
CONDITION-NAME
CONDITION

4.3.8
EVALUATION RULES

4-12

A conditional variable is tested to determine whether or not its value is
equal to one of the values associated with a condition name.

[NOT] condition-name

If the condition name is associated with a range or ranges of values, the
conditional variable is tested to determine whether or not its value falls in
this range, including the end values.

The rules for comparing a conditional variable with a condition name are the
same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the condition
name equals the value of its associated conditional variable.

Evaluation rules for conditions are analogous to those given for arithmetic
expressions except that the following hierarchy applies:

arithmetic expression

all relational operators

NOT

AND

OR

60229400

44

COMMON OPTIONS

IN STATEMENTS

4.4.1
ROUNDED OPTION

4.4.2
SIZE ERROR OPTION

60229400

Three options appear frequently in the statement descriptions that follow:

ROUNDED, SIZE ERROR, and CORRESPONDING

Truncation occurs after decimal point alignment if the number of fractional
places in the result of an arithmetic operation is greater than the number of
fractional places provided for the result in the receiving item. Excess digits
are truncated according to the format of the item containing the result,
(result identifier). When rounding is requested, the absolute value of the
result is increased by 1 when the most significant digit of the excess is
greater than or equal to 5.

When the low-order integer positions in a result identifier are represented
in a PICTURE by the character P, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

A size error condition exists if the value of a result exceeds the largest value
that can be contained in the associated result identifier after decimal point
alignment. The size error condition applies only to final results, except in
MULTIPLY and DIVIDE statements where size error applies to the inter-
mediate results as well. Division by zero always causes a size error
condition. If ROUNDED is specified, rounding takes place before checking
for size error. When a size error condition occurs, subsequent action
depends on whether or not the SIZE ERROR option is specified.

If SIZE ERROR is not specified and a size error condition occurs,
the value of the result identifier is unpredictable.

If SIZE ERROR is specified and a size error condition occurs, the
previous value of the result identifier is not altered. After the
operation is completed, the imperative statement in the SIZE
ERROR option is executed.

For CORRESPONDING arithmetic operations, the imperative statement in
the SIZE ERROR clause is not executed until all individual additions or

subtractions are completed.

Invalid non-numeric data contained within a numerically defined field does
not constitute an ON SIZE error condition during arithmetic operations.

4-13

443
CORRESPONDING
OPTION For this discussion, d; and d, are each identifiers that refer to group items.

A pair of data items, one from d1 and one from d2 correspond if the following
conditions exist:

A data item in d, and a data item in d2 have the same name and the
same qualifications up to, but not including, dl and d2.

At least one of the data items is an elementary data item in the
case of a MOVE statement, and both of the data items are elementary
numeric data items in the case of ADD or SUBTRACT.

Neither d1 nor d2 are data items with level number 66, 77, or 88.

When the CORRESPONDING option is specified, only the pairs of corresponding
items as defined above are moved, added, or subtracted. When the groups
identified by d1 or dy contain items described with RENAMES, REDEFINES,

or OCCURS clauses, those items are ignored; however, the groups themselves
may be described with REDEFINES or OCCURS or be subordinate to items

with these clauses.

4-14 60229400

4.5

TABLE HANDLING The table handling functions provide a method for accessing tables of repet-
itive contiguous data items. Tables described with the OCCURS clause in the
Data Division are scanned with the SEARCH statement in the Procedure
Division. Items in tables also may be referenced by subscripting (up to
three levels) or by indexing.

4.5.1
SUBSCRIPTS Subscripts are used only when reference is made to an individual element in

a list or table of like elements that have not been assigned individual data
names. The subscript is a numeric literal integer, the special register
TALLY, or a data name. The data name must identify a numeric elementary
item that represents an integer. The data name used as a subscript may be
qualified but not subscripted.

The subscript may contain a sign, but the lowest permissible subscript value
is 1. The highest permissible subscript value, in any particular case, is
the maximum occurrences of the item as specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is en-
closed in parentheses immediately following the terminal space of the table
element data name. The table element data name appended with a subscript
is called a subscripted data name or an identifier. When more than one sub-
script appears within a pair of parentheses, the subscripts must be separated
by commas. A space must follow each comma, but no space may appear
between the left parenthesis and the leftmost subscript or between the right
parenthesis and the rightmost subscript.

IN

(@)
data-name ; —Eé data-name-1 |... (subscript [, subscript] ...)

4.5.2

INDEXING Indexing is used to reference individual elements within a table of like elements.
An index name is assigned to the level of the table in which it appears with
the INDEXED BY option of the OCCURS clause when the table is described in
the Data Division. The index name is initialized by a SET statement before
it is used as a table reference.

Direct indexing is specified by using an index name as a subscript. Relative
indexing is specified when the index name is followed by the operator + or -
followed by an unsigned integral numeric literal all enclosed in the parentheses
immediately following the terminal space of the data name.

60229400 4-15

4.5.3
SEARCH FUNCTION

454

RESTRICTIONS ON
INDEXING,
SUBSCRIPTING

AND QUALIFICATION

4-16

Composite format:

IN% data—name—l:] (index-name Dt% integer:]

data-name [3 OF

,index-name B; % integer | |...)

The search function operates in the linear mode (SEARCH) or the binary
bisecting mode (SEARCH ALL). Both types of search terminate when a
stated condition is met when table element equals search argument. All
tables to be searched must have at least one element described as an index
name with the INDEXED BY option of the OCCURS clause. The index name
is incremented during search operations by the element character offset,
and the index name always contains the character address bias of the table
entry currently being compared. See paragraph 4. 3.4 for rules governing
the comparison of index names and index data items.

The element character offset is the number of character positions in a table
element. The character address bias is the value added to the base character

address of the table to give the character address of a particular element
in the table.

Tables may have one, two, or three dimensions; therefore, references to an
element in a table may require up to three subscripts or indexes.

A data name may not be subscripted nor indexed when the data name is used
as an index, subscript, or qualifier.

When a data item requires qualification, subscripting or indexing, the indexes
or subscripts are stated following all necessary qualification.

Subscripting and indexing must not be used together in a single reference.
Where subscripting is not permitted, indexing is also not permitted.
An index can be modified only by the SET, SEARCH, and PERFORM statements.

Index data items are described by USAGE IS INDEX. They permit storage of
the values of index names as data with conversion.

The commas shown in the formats for indexes and subscripts are required.

60229400

4.6
DEBUGGING AID

4.7
PROCEDURE
DIVISION
STATEMENTS

4.7.1
ACCEPT

60229400

The TRACE statement is a source language debugging aid. It is used to
display the contents of data items and literals during job execution. The user
can include any number of TRACE statements and he can specify the frequency
and point of execution.

The following pages contain the Procedure Division statements in alphabetical
order.

The ACCEPT statement causes low volume data to be read from the system
input file (INP) or the console.

ACCEPT identifier [FROM mnemonic-name]

The file or device must be associated with the mnemonic name in the
SPECIAL-NAMES paragraph of the Environment Division.

ACCEPT causes the next set of data available at the file or device to replace
the contents of the data item named by the identifier.

If the size of the data item is less than the fixed input unit (80 characters for
system input, 127 characters for the console), the data appears as the first
set of characters within the minimum unit. When data is input from INP, if
the size of the data item is greater than 80 characters, multiples of 80 char-
acters are read until the storage area allocated to the data item is filled.

If the data item is greater than the fixed unit but is not an exact multiple,

the remainder of the last fixed unit is not accessible.

If the FROM option is not given, data is accepted from the console.

4-17

4.7.2
ADD

4-18

The ADD statement causes two or more numeric operands to be summed and
the result to be stored.

Format 1:

ADD

identifier-1] | {identifier-2 S
;literal—l % ,:'§Iitera1—2 €j| ... identifier-n [ROUNDED]

[; ON SIZE ERROR imperative-statement}
Values of operands are added together and the sum is stored in the location
of the last operand specified. This operand may not be a literal.

Format 2:

ADD

identifier-1 identifier-2
literal-1 ’|literal-2

” ... TO identifier-m [ROUNDED]

[, identifier-n [ROUNDED]] ...
[ON SIZE ERROR imperative-statement}

Values of operands preceding the word TO are added together, then the sum

is added to the current value in each identifier-m, identifier-n, ..., and the
result is stored in each identifier-m, identifier-n, ..., respectively.
Format 3:

FUS i I ot B i | R
identifier-m [ROUNDED] [identifier-n [ROUNDED]] . ..
[; ON SIZE ERROR imperative-statement]
Values of operands preceding the word GIVING are added together, then the
sum is stored as the new value of identifier-m, identifier-n, ...

Format 4:

ADD ggggESPOND]NG identifier-1 TO identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

Data items in identifier-1 are added to and stored in corresponding data items
in identifier-2.

In Formats 1, 2, and 3 each identifier refers to an elementary numeric item;

identifiers to the right of GIVING may refer to data items containing editing
symbols. Each literal must be a numeric literal.

60229400

The composite of operands must not contain more than 18 digits. The com-
posite is the data item resulting from superimposing all operands, aligned
by decimal points. The data items that follow GIVING are not included in the
composite. The compiler insures that enough places are carried to avoid
loss of significant digits during execution.

If one or more of the additions results in a size error, the procedure RATE-
OVERFLOW-PROC is performed after completion of the whole ADD statement.
Each receiving item that has a size error retains its current value instead of
the computed result. Control returns to the statement following ADD statement.

Examples:

ADD MONTHLY-EARNINGS OVERTIME-EARNINGS GROSS-YEAR-
TO-DATE

ADD MONTHLY-EARNINGS OVERTIME-EARNINGS GIVING MONTHLY-
GROSS-PAY WORK-MONTHLY-GROSS-PAY

ADD HOS-INSURANCE LIFE-INSURANCE STATE-UNEMPLOYMENT
UNITED MISCELLANEOUS GIVING TOTAL-DEDUCTIONS

ADD CORRESPONDING UPDATE-RATE-TABLE TO RATE-TABLE ON
SIZE ERROR PERFORM RATE-OVERFLOW-PROC

UPDATE-RATE-TABLE and RATE-TABLE are described as follows:

01 UPDATE-RATE-TABLE 01 RATE-TABLE
03 EASTERN-REG 03 EASTERN-REG
05 NEW-YORK 05 NEW-YORK
07 RATE 07 RATE
05 BOSTON 05 BOSTON
07 RATE 07 RATE
03 WESTERN-REG 05 PHILADELPHIA
05 LOS-ANGELES 07 RATE
07 RATE

03 WESTERN-REG
05 LOS-ANGELES
07 RATE
05 SAN-FRANCISCO
07 RATE

“ e

03 MIDWEST-REG

The rates for New York, Boston, and Los Angeles in the UPDATE-RATE-
TABLE are added to the rates for these three cities in the RATE-TABLE,
and the results are the new rates. No other alteration occurs in the
RATE-TARLE.

60229400 4-19

4.7.3
ALTER The ALTER statement modifies a predetermined sequence of operations.

ALTER procedure-name-1 TO [PROCEED TO | procedure-name-2

[, procedure-name-3 TO [PROCEED TO]procedure-name-4]...

Each procedure-name-1, procedure-name-3, ... is the name of a paragraph
that contains only one sentence consisting of a GO TO statement without the
DEPENDING option.

Each procedure-name-2, procedure-name-4, ... is the name of a paragraph
or section in the Procedure Division.

During execution of the object program, the ALTER statement modifies the
GO TO statement in the paragraph named procedure-name-1, procedure-

name-3, ... replacing the object of the GO TO by procedure-name-2,
procedure-name-4, ..., respectively.
Example:

ALTER CC1 TO PROCEED TO CC5; CC5 TO PROCEED TO
FINAL-RESULT.

CC0. ADD 001 TO COUNTR.
IF COUNTR IS LESS THAN OVFLW GO TO CcC2.

CCl. GO TO.

CC2. MOVE CORRESPONDING INPUT-TABLE TO WORK-AREA.
ADD INP1 OF WORK-AREA TO I-TOTAL.
ADD INP2 OF WORK-AREA TO P-TOTAL.
GO TO CCo.

CC5. GO TO CC10.

When the ALTER statement is executed, the paragraph name CC5 is inserted
as the object of the GO TO in paragraph CC1; and the paragraph name
FINAL-RESULT is inserted in place of CC10 as the object of the GO TO in
paragraph CC5. FINAL-RESULT and CC10 must be procedure names in the
COBOL program.

4-20 60229400

4.7.4
CLOSE

60229400

The CLOSE statement terminates the processing of input and output reels,
units, and files with optional rewind and/or lock where applicable.

. REEL NO REWIND | |
CLOSE file-name-1 [%UNIT é] [WITH %LOCK %_]

. REEL NO REWIND
[, file-name~2 [% UNIT S] [WITH % LOCK é]] cs

Each file name is the name of a file upon which the CLOSE statement operates;
it must not be the name of a sort file.

The REEL, LOCK, and NO REWIND options are applicable only to tape files.
The UNIT option is applicable only to mass storage files in the sequential
access mode. UNIT, throughout this specification means the storage device
rather than the driver or power unit. Its use in the CLOSE statement is
documentary and has the same effect as CLOSE file-name. It is illegal to
specify CLOSE UNIT with the LOCK or NO REWIND options.

To explain CLOSE options for the various storage devices, all files are
classified as follows:

Non-reel A file on an input or output device for which concepts of
rewinding and reels have no meaning (disk file, disk pack,
drum, reader, printer, punch, TTY, CRT)

Single-reel A file entirely contained on one reel of tape; the reel
may contain more than one file

Multi-reel A file contained on more than one reel of tape

A CLOSE statement with no options performs the following standard close
operations on non-reel, single-reel, or multi-reel files:

Input files: If the file is positioned at its end and there is an ending label
record, the ending label record is checked and the data area
is released. If the file is positioned at its end and there is no
ending label record, or if the file is not positioned at its end,
the data area is released but no ending label checking takes
place. An input file is positioned at its end when the AT END
imperative statement has been executed but no CLOSE statement
has yet been executed.

Output files: If an ending label record has been described for the file, it is
constructed and written on the output device and the data area
is released.

Input- Regardless of the position of the file, the data area is released.
output files:

4-21

Single or multi-reel files are rewound; the file is positioned at its beginning
on the last (or only) used reel. The previous reels are not affected.

If a mass storage file is described with a FILE LIMITS clause, the input-
output control system automatically releases the unused portion of the area
allocated to the file when the file is closed. For a mass storage file CLOSE
UNIT has the same effect as CLOSE FILE.

CLOSE WITH LOCK applies only to tape files. It performs the standard close
operations for single-reel and multi-reel files, rewinds the file, and unloads
it. The file is no longer available for processing.

CLOSE WITH NO REWIND applies only to tape files. The file is closed with
the standard close procedures but the current reel remains in its current
position.

When multi-reel files are closed, previous reels are not affected unless
controlled by a prior CLOSE REEL. If the current reel is not the last in an
input file, succeeding reels are not processed in any way. CLOSE REEL
applies only to multi-reel tape files. The following operations are performed
in a standard close reel:

Input files: Reel swap and standard beginning reel label and user's be-
ginning reel label procedures (if specified by USE). Order of
execution is specified in USE statement.

Makes available the next data record on the new reel.

Output files: Standard ending reel label and user's ending reel procedure
(if specified by USE). Order of execution is specified in
USE statement.

Reel swap and standard beginning reel label procedure and
user's beginning reel label procedure if specified by USE.

The file is rewound, positioned at its beginning on the last used reel.

CLOSE REEL WITH LOCK causes the standard close reel operations to be
performed on the current reel of a multi-reel tape file. In addition, the
reel is rewound and unloaded. The reel cannot be processed again as a
part of the file.

CLOSE REEL WITH NO REWIND causes the standard close reel operations

to be performed on the current reel of a multi-reel tape file but the reel is
left in its current position.

4-22 60225400

4.7.5

COMPUTE

60229400

The COMPUTE statement assigns to data items the value of a numeric data
item, literal, or arithmetic expression.

COMPUTE identifier-1 [ROUNDED] , [identifier-2 ROUNDED]] ...

FROM identifier-n
= literal-1
EQUAILS arithmetic-expression

[; ON SIZE ERROR imperative-statement]

The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on the composite of operands and/or receiving data
items imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY,
and DIVIDE.

Each identifier must refer fo an elementary numeric item, except that
identifiers to the left of the equals sign maydescribe data items containing
editing symbols. Literal-1 must be a numeric literal. The arithmetic ex-
pression option permits the use of any meaningful combination of identifiers,
numeric literals, and arithmetic operators, parenthesized as required.

The words FROM and EQUALS are equivalent to the equals sign (=).

The maximum size of each operand is 18 decimal digits.

The identifier-n and literal-1 options provide a method for setting the values
of identifier-1, equal to the value of identifier-n or literal-1.

Examples:

COMPUTE COST-PRICE = (HOURS * RATE + PARTS-COST) *
(1 + PROFIT-FACTOR).

COMPUTE DATA-1 = 100.

4-23

4.7.6
DISPLAY

4-24

The DISPLAY statement causes low volume data to be written on the system
output file (OUT), the system punch file (PUN), or the console.

:l ... [UPON mnemonic-name}

DISPLAY %hteral—l | [, literal-2

identifier-lg , identifier-2

The mnemonic name is associated with a system file or the console in the
SPECIAL-NAMES paragraph in the Environment Division. Each literal may
be any figurative constant except ALL.

DISPLAY causes the contents of each operand to be written on the system file
or the console in the order listed. If a figurative constant is specified as
one of the operands, only a single occurrence of the figurative constant is
displayed.

When a DISPLAY statement contains more than one operand, the data com-
prising the first operand is stored as the first set of characters, the data
comprising the second operand as the second set of characters, and so on,
until the maximum output file and 127 characters for the console) is filled.
This operation continues until all information is displayed. Data comprising
an operand may extend into subsequent units.

1f the UPON option is not used, the data is displayed on the console.

COMP-2 items are converted to a standard 18-character format:
+.9(11)E+999 before being displayed.

COMP-1 items are converted to a standard 8-character format:
+9(7) before being displayed.

All other items are displayed without conversion.

60229400

47.7
DIVIDE The DIVIDE statement divides one numeric data item into another and sets
the value of a data item equal to the results.

Format 1:

identifier-1

literal-1 é INTO identifier-m [ROUNDED]

DIVIDE %

{, identifier-n ROUNDED]j.. . [; ON SIZE ERROR imperative-
statement)

The value of identifier-1 or literal-1 is divided into the initial values of
identifier-m, identifier-n,... Dividend values are replaced by the
quotient values.

Format 2:

TN
1LV 1

§ identifier-1

s identifier-2
| literal-1

. GIVING identifier-m
) literal-2 =

)

INTO

[ROUNDED] |, identifier-n [ROUNDEDI]. ..
[; ON SIZE ERROR imperative-statement]

The initial value of identifier-1 or literal-1 is divided into identifier-2 or

literal-2 and the result is stored in identifier-m, identifier-n,... respectively.
Format 3:
ﬂidentifier-l identifier-2 . i ps
DIVIDE }literal-l BY literal-2 GIVING identifier-m

[ROUNDED] [, identifier-n [ROUNDED]]. ..
[; ON SIZE ERROR imperative-statement]

The value of identifier-1 or literal-1 is divided by the value of identifier-2
or literal-2 and the result is stored in identifier-m, identifier-n, .
respectively.

Each identifier must refer to a numeric elementary item, except that any

identifiers to the right of the word GIVING can refer to data items that con-
tain editing symbols. Each literal must be a numeric literal.

60229400 4-25

47.8
ENTER

4-26

The maximum size of each operand is 18 decimal digits.

Examples:

1. DIVIDE 1.8 INTO CONVERTED-TEMP1 CONVERTED-TEMP2
CONVERTED-TEMP3 CONVERTED-TEMP4.

2. DIVIDE ABLE INTO BAKER GIVING CHARLEY
ROUNDED ON SIZE ERROR GO TO RECOMPUTE.

3. DIVIDE TOTAL BY DAILY GIVING RATE ROUNDED
RATE-A ROUNDED ON SIZE ERROR
PERFORM DIVIDE-FAULT-ROUTINE.

The ENTER statement makes it possible to use more than one language in
the same program.

ENTER language-name; routine-name [; (parameter-string)}

Language-name may be COBOL, FORTRAN, or COMPASS for USASI COBOL,
USASI FORTRAN, COMPASS/MASTER. Statements in the other language are
executed as if they had been compiled into the object program following the
ENTER statement.

Routine name identifies the portion of coding to be executed at this point in
the procedure sequence. A routine name is a COBOL word which may be
referred to only in an ENTER sentence. It is 1-8 characters and must con-
form to requirements for an entry point name recognizable by the MASTER
loader. It is automatically declared as an EXTERNAL symbol by the USASI
COBOL compiler.

Parameter strings may contain any or all of the following: procedure names,
file names, identifiers, non-numeric literals, and signed numeric literals.

Parameter names must be separated by commas. A numeric literal must be
prefixed by plus or minus to distinguish it from an all numeric procedure name.

Parameters occupy 24, 36, or 48 bits in storage. The compiler analyzes the
parameter name list and codes and structures the parameters as shown below.
A procedure name or a file name and floating point or binary integer param-
eters require one word only; BCD parameters require two words.

60225400

60229400

Code

00
40
52
56
60
61
64
65
70
71
74
75

Words

[3S]

23 I8 i7 0
Paxéix(zineeter % Character Address
23 17 15 0
Parameter % Word Address
‘ Code
23 17 11 5 0
Point Numeric Point Numeric
Location Length Location Length
(BCD numeric)
23 16 0
7///////////% Alpha Length
(BCD dlpha)
Descriptive
Type Address Chapter Word
Procedure name word
File name word
BCD Alpha character 2 follows
BCD Alpha character 1 follows
BCD Numeric character 2 follows
BCD Numeric character 2 precedes
BCD Numeric character 1 follows
BCD Numeric character 1 precedes
Binary Interger word 2
Floating Point word 2
Binary Integer word 1
Floating Point word 1

4-27

4-28

The descriptions of BCD numeric items are in the half-word preceding or
following the parameter depending on the code. A one- or two-chapter method
of addressing is indicated by the code (see MASTER Reference Manual for
description of chapters). The word address of a file name is the beginning
address of the File Environment Table entry associated with that file name.

The size and address of a literal are passed as parameters in the same
manner as the size and address of identifiers. When a subscripted identifier
is listed in the ENTER parameter string, the compiler computes the actual
subscripted address and passes it in the appropriate parameter word.

Before control is passed to the routine named by ENTER, the mode of program
execution is automatically relocated to instruction state and, upon return from

the routine, is relocated to operand state.

Refer to Appendix J for ENTER Verb examples.

60229400

4.7.9
EXAMINE The EXAMINE statement replaces or counts the number of occurrences of a

given character in a data item.

TALLYING UNTIL FIRST

literal-1 [REPLACING

ALL]
EXAMINE LEADING BY literal-2]
identifier
ALL
REPLACING < LEADING literal-3 BY literal-4

[UNTIL] FIRST

The description of the identifier must be USAGE is DISPLAY (explicitly or

implicitly).

Each literal must consist of a single character belonging to a class consistent
with that of identifier. A literal may be any figurative constant, except ALL.

Examination proceeds as follows:

® Non-numeric data items are examined from left to right. Each
character in the data item specified by the identifier is examined in
turn.

e Numeric data item referred to by EXAMINE must consist of numeric
characters. Examination starts at the leftmost character and pro-
ceeds to the right. Each character except the sign is examined in
turn. The sign is ignored by EXAMINE.

The TALLYING option creates an integral count which replaces the value of a
special register called TALLY (Special Register, appendix B). The count
represents the number of:

® Occurrences of literal-1 when the ALL option is used.

® Occurrence of literal-1 prior to a character other than literal-1 when
the LEADING option is used.

® Characters not equal to literal-1 before the first occurrence of
literal-1 when the UNTIL FIRST option is used.

60229400 4-29

4.7.10
EXIT

4-30

For the REPLACING options, the replacement rules are:

e When the ALL option is used, literal-2 or literal-4 is substituted
for each occurrence of literal-1 or literal-3.

® When the LEADING option is used, the substitution of literal-2 or
literal-4 terminates as soon as a character other than literal-1 or
literal-3 or the righthand boundary of the data item is encountered.

e When the UNTIL FIRST option is used, the substitution of literal-2
or literal-4 terminates as soon as literal-1 or literal-3 or the
righthand boundary of the data item is encountered.

® When the FIRST option is used, the first occurrence of literal-1 or
literal-3 is replaced by literal-2 or literal-4.

The EXIT statement provides a common end point for a series of procedures.
EXIT.

The word EXIT appears in a sentence by itself. It must be preceded by a
paragraph name and be the only sentence in the paragraph.

It is sometimes necessary to transfer control to the end point of a series of
procedures. Normally control is transferred to the next paragraph or section,
but in some cases this does not have the required effect. For instance, the
point to which control is to be transferred may be at the end of a range of
procedures governed by a PERFORM or at the end of a declarative section.
The EXIT statement is provided to enable a procedure name to be associated
with such a point.

If control reaches an EXIT paragraph and no associated PERFORM or USE

statement is active, control passes through the EXIT point to the first
sentence of the next paragraph.

60229400

4.7.11
GO TO The GO TO statement causes control to be transferred from one part of the

Procedure Division to another.
Format 1:

GO TO [procedure-name-1]
Format 2:

GO TO procedure-name-1 [, procedure-name-2] ...,
procedure-name-n DEPENDING ON identifier
Each procedure name is the name of a paragraph or section in the Procedure

Division. Identifier is the name of a numeric elementary item with no posi-
tions to the right of the assumed decimal point.

Whenever a format 1 GO TO statement is executed, control is transferred to
procedure-name-1 or to another procedure name if the GO TO statement has
been altered by an ALTER statement.

If procedure-name-1 is not specified in format 1, an ALTER statement re-
ferring to this GO TO statement must be executed prior to the GO TO statement.
When the GO TO statement is referred to by an ALTER statement the following
rules apply:

® GO TO statement must have a paragraph name.

® GO TO statement must be the only statement in the paragraph.

If a format 1 GO TO statement appears in an imperative sentence, it must be
the only or last in a sequence of imperative statements.

A format 2 GO TO statement causes control to be transferred to procedure-
name-1, procedure-name-2,..., procedure-name-n, depending on whether
the value of the identifier is 1, 2,..., n. If the value of identifier is other
than a positive or unsigned integer in the range 1 to n, control passes to the
next statement.

Examples:

1. ADD 1 TO COUNT.
2. IF COUNT GREATER 3 GO TO CONTINUE.
3. GO TO PRl PR2 PR3 DEPENDING ON COUNT.

60229400 4-31

4.7.12
IF The IF statement causes a condition to be evaluated; subsequent action of the
object program depends on whether the value is true or false.

L statement-1 . statement-2
IF condition; { yps SENTENCE% [ELSE ;NEXT SENTENCE”

Statement-1 and statement-2 represent a conditional statement or an impera-
tive statement; either may be followed by a conditional statement.

The phrase ELSE NEXT SENTENCE may be omitted if it immediately precedes
the terminal period of the sentence.

When an IF statement is executed, the following action is taken:
o If the condition is true, statements immediately following the condition

are executed; control then passes implicitly to the next sentence.

o If the condition is false, either statements following ELSE
(statement-2) are executed, or if the ELSE clause is omitted, the
next sentence is executed.

If the words NEXT SENTENCE are written and the condition is met, control
passes explicitly to the next sentence.

Examples:
1. IF COUNTER IS GREATER THAN 5 GO TO RESET-CNT; ELSE

ADD 1 TO COUNTER GO TO UPDATE-PROC.

2. IF A IS NUMERIC MULTIPLY A BY B; IF B IS LESS THAN 50
ADD A B TO C ELSE ADD A B TO D ELSE GO TO BADCLASS.

3. IF PERFORM-COUNT IS POSITIVE; GO TO START; ELSE NEXT
SENTENCE.

4. DATA DIVISION.
01 PASSING-GRADE.
88 PASS VALUE 75 TO 100.
88 FAIL VALUE 0 TO 75.

PROCEDURE DIVISION.

IF PASS GO TO X.

If statement-1 and statement-2 contain an IF statement, the IF statement is
said to be nested.

4-32 60229400

60229400

IF statements within IF statements may be considered as paired IF and ELSE
combinations, proceeding from left to right. Any ELSE encountered is con-
sidered to apply to the immediately preceding IF that has not been already
paired with an ELSE.

When control is transferred to the next sentence, implicitly or explicitly,
control passes to the next sentence as written or to a return mechanism of a
PERFORM or a USE statement.

The following sentence contains two independent nests of conditional statements.
The first nest ends after the statement PERFORM procedure-name-2; the
second nest consists of the remainder of the sentence and has an implied

ELSE NEXT SENTENCE before the period. A,B,C,D,E,F each corresponds

to a conditional expression.

IF A; IF B PERFORM procedure-name-1 ELSE NEXT SENTENCE
ELSE IF C NEXT SENTENCE ELSE PERFORM procedure-name-2

IF D PERFORM procedure-name-3 IF E PERFORM procedure-name-4
IF F PERFORM procedure-name-5 ELSE PERFORM procedure-name-6
ELSE STOP RUN.

4-33

The following flow-chart indicates the execution of this sentence.

> True ‘ Next
Sentence

Next Procedure-
Sentence name-2

True

Y

Procedure-
name-1

False Next

D Sentence

True

[

Next
Sentence

il
T

Proce
nam

dure-

[}
|
w

False Stop

True

gl
¥

Procedure-
name-4

False | Procedure- Next
F? ‘
name-6 Sentence

Next
Sentence

4-34 60229400

4.7.13
MOVE The MOVE statement transfers data, in accordance with the rules of editing,

to one or more data areas.

Format 1:

MOVE ﬁ?;’;tﬁelr'ﬂ TO identifier-m [, identifier-n] ...
Format 2:

MOVE BEEEEESPOND]NG identifier-1 TO identifier-2

In format 1, identifier-1 and literal-1 represent the sending area; identifier-m,
identifier-n. .., represent the receiving area.

The data designated by the literal or identifier-1 is moved first to identifier-m,
then to identifier-n, etc.

When both the sending and receiving items are elementary the move is ele-
mentary. Every elementary item belongs to one of the following categories:
numeric, alphabetic, alphanumeric, numeric edited, alphanumeric edited,
floating point edited. Numeric literals belong to the category numeric, and
nonnumeric literals belong to the category alphanumeric.

The following elementary MOVES are illegal:

Source Item Category Receiving Item Category

Numeric Edited

Alphanumeric Edited Numeric
—_—— —
Floating Point Edited Numeric Edited
Alphabetic
Numeric
Numeric Edited ~— = — —= Alphabetic

Floating Point Edited

. . Alphanumeric
Numeric (non-integer) — — — — Alphanumeric Edited

60229400 4-35

All other elementary MOVES are legal, and are performed according to the
following rules:

MOVE to Alphanumeric Edited, Alphanumeric, Alphabetic:

Justification and any necessary space-filling takes place as defined under
the JUSTIFIED clause. If the size of the sending item is greater than the
size of the receiving item, the excess characters are truncated after the
receiving item is filled.

Examples:
Picture of
Source Data Receiving Item Receiving Item

A(4) or X(4) AB[c|D]
A(5) or X(5) alB]c[p]a]
B[c[1]2]s X(®) [a[s[c]1]z]z [a]a]

EIRESNES

o =]
al[a] [a]
=] [&]
=

Bag o [EFEEEER
"ABCD'l’ X(4) a|B]c|p]

ALL "ABCD" X(7) la|B]c|p]a]B]c]
"ABC-123" X(7) lalBlc]-]1]2]3]
123" X(2)

ALL "123" X(7) l1]2]s]a]2]s]1]
ALL 123 X(7) illegal (no quotes)

MOVE to Numeric, Numeric Edited, Floating Point Edited:

Alignment by decimal point and any necessary zero-filling is done auto-
matically except where zeros are replaced because of editing requirements.
If the sending item has more digits to the left or right of the decimal point
than the receiving item can contain, excess digits are truncated. K the
sending item contains any non-numeric characters, the results at object
time are unpredictable.

4-36 60229400

60229400

Examples:

Picture of

Source Data Receiving Item Receiving Item
2[3] 99V9 2|3
[1]2]3] 999V99 [o]1]2]3]0]
3‘ 9999 lo]1]2]s

2 lEl 9999 [o]o]1]z2]
-1.23 (literal) S9V99 [1]z

1 F_E] 9v9 E__"_zj
[1]2]3] 9V9 EE’

+1.23 S9V99 EE
+1.23 S9V9 EE

123 9(5) E 0
ZEROS 599999

o
[\V]
W
=
(3]

s 4]5] §49.99 B
3 999. 9
1 $**9. 99 |

=
=
=
[+]

R
x|
x|
o |
—
o |
L

Any necessary conversion of data from one form of internal representation
to another takes place during the move along with any specified editing in
the receiving item.

A move that is not an elementary move is treated exactly as if it were an
elementary alphanumeric to alphanumeric move. An index data item cannot
appear as an operand in a MOVE statement.

If the CORRESPONDING option is used, selected items within identifier-1 are
moved to selected items within identifier-2, according to the rules for the
CORRESPONDING option. Results are the same as if the user had referred
to each pair of corresponding identifiers in separate MOVE statements. Only
one identifier may appear to the right of the word TO. Both identifier-1 and
identifier-2 must be group items.

4-37

4-38

Example:

If a record named MASTER contains information to be written as part of a
record called MAST-REP, the MOVE CORRESPONDING statement can
specify movement of all relevant data.

01 MASTER 01 MAST-REP
03 ITEM-NUMBER 03 ITEM-NUMBER
03 ITEM-NAME 03 ITEM-NAME
05 GENERAL-CLASS 05 GENERAL-CLASS
05 DETAIL-NAME 05 DETAIL-NAME
03 ON-HAND-QUAN 03 YEAR-TO-DATE-SALES
03 REORDER-LEVEL 03 LAST-YEAR-SALES
03 RETAIL-PRICE 03 YEAR-TO-DATE-PROFIT
03 WHOLESALE-LEVEL 03 PROJECTED-PROFIT
03 WHOLESALE-PRICE 03 LAST-YEAR-PROFIT
03 YEAR-TO-DATE-SALES 03 SALES-COMP
03 YEAR-TO-DATE-PROFIT 03 PROFIT-COMP

03 LAST-YEAR-SALES
03 LAST-YEAR-PROFIT

MOVE CORRESPONDING MASTER TO MAST-REP results in movement of
items: ITEM-NUMBER, ITEM-NAME (GENERAL-CLASS and DETAIL-
NAME), YEAR-TO-DATE-SALES, LAST-YEAR-SALES, YEAR-TO-DATE-
PROFIT, and LAST-YEAR-PROFIT.

60229400

4.7.14
MULTIPLY

60229400

The MULTIPLY statement causes numeric data items to be multiplied and
sets the value of a data item or items equal to the results.

Format 1:

identifier-1

MULTIPLY 3 literal-1

é BY identifier-m [ROUNDED] , [identifier-n
[ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2:

MULTIPLY %“ientlfler-l{ BY gldentlfler—zs

literal-1 literal-2

GIVING identifier-m [ROUNDED] , [identifier-n [ROUNDED]] Qe

[; ON SIZE ERROR imperative-statement]

In format 1, each identifier must refer to a numeric elementary item. In
format 2, an identifier to the right of the word GIVING may refer to a data
item that contains editing symbols. Each literal must be a numeric literal.
The maximum size of each operand is 18 decimal digits. The initial value of
identifier-1 or literal-1 is multiplied by the initial values of identifier-m,
identifier-n, ... The resulting products replace the values of identifier-m,
identifier-n, ... respectively.

In format 2, the initial value of identifier-1 or literal-1 is multiplied by
identifier-2 or literal-2 and the result is stored in identifier-m,
identifier-n, ... respectively.

Examples:

1. MULTIPLY 1. 05 BY MONTHLY-EARNINGS, OVERTIME-RATE,
SOC-SEC, FEDERAL-TAX.

2. MULTIPLY ALPHA BY BETA GIVING CHI ROUNDED DELTA
ROUNDED ON SIZE ERROR PERFORM ERROR-ROUTINE.

4-39

4.7.15
NOTE

4-40

The NOTE sentence allows the user to write commentary which will be
produced on the listing, but not compiled.

NOTE character-string.

Any combination of the characters from the allowable character set may be
included in the character string.

If a NOTE sentence is the first in a paragraph, the entire paragraph is con-
sidered to be part of the character string. Format rules for paragraph
structure must be observed.

If a NOTE sentence is not the first sentence of a paragraph, the commentary
ends with the first instance of a period followed by a space.

Examples:
1. CC10. PERFORM SUMMARIZE.
NOTE THIS PROCEDURE WILL SUMMARIZE THE FINAL
RESULTS.
2. NOTE-PARAG. NOTE SINCE THE FIRST WORD IN THE

PARAGRAPH IS A NOTE, NO MATTER WHAT THE FOLLOWING
SENTENCES SAY, THEY ARE ACCEPTED AS COMMENTARY ONLY.

60229400

4.7.16
OPEN The OPEN statement initiates the processing of both input and output files.
It performs checking and/or writing of labels and other input-output operations.

: REVERSED | :)
INPUT file-name-1 [3WITH NO REWINDg] [, file-name-2

REVERSED
WITH NO REWIND(| |

OPEN < OUTPUT file-name-1[WITH NO REWIND |

[, file-name-2 [WITH NO REWIND]] ...
I-O file-name-1 [, file-name-2] ...

\ INPUT-OUTPUT file-name-1 [, file-name-2]...

At least one of the options INPUT, OUTPUT, I-O must be specified; however,
there should be no more than one instance of each option per statement. These
options may appear in any order. The I-O and INPUT-OUTPUT options per-
tain only to mass storage files.

All files except sort files must be opened with an OPEN statement prior to
execution of the first SEEK, READ, WRITE or CLOSE statement for that file.
Sort files must not be named in an OPEN statement. OPEN does not obtain
or release the first data record; a READ must be executed to obtain, or a
WRITE to release the first data record. A second OPEN statement for a file
cannot be executed prior to the execution of a CLOSE statement for that file.

The user's beginning label subroutine is executed for checking or writing the
first label if one is specified by a USE statement.

The REVERSED and NO REWIND options can be used only with sequential
single-reel files; they do not apply to mass storage processing. If the external
device permits rewinding, and if REVERSED or NO REWIND are not specified,
execution of the OPEN statement positions the file at its beginning.

If either REVERSED or NO REWIND is specified, the file is not repositioned.

REVERSED assumes the file is positioned at its end; NO REWIND assumes
the file is positioned at its beginning.

60229400 4-41

When REVERSED is specified, subsequent READ statements make the data
records of the file available in reverse order; that is, starting with the last
record. Caution: The format of files to be read in reverse must be either
unblocked logical records or blocked fixed-length logical records.

If OPTIONAL is specified for an input file in the File-Control paragraph of the
Environment Division, the input-output control system checks for the presence
or absence of this file. If the file is not present, the first READ statement
for this file causes the imperative statement in the AT END phrase to be
executed.

The I-O option permits the opening of a mass storage file for both input and
output operations. Since this option implies the existence of the file, it
cannot be used if the mass storage file is being created.

When the access mode is sequential, the OPEN statement supplies the initial
address of the first record to be accessed in mass storage files.

When an attempt is made to open a mass storage file which the MASTER
operating system indicates does not exist, the input-output system will
attempt to allocate the file internally only if a FILE-LIMITS clause was
specified for the file.

The following label information must be included in the FD entry for a file
which is to be internally allocated:

D S data-name-1
IDENTIFICATION literal-1

OWNER IS data-name-2
OWNER-ID literal-2

EDITION-NUMBER Is {02ta-name-3
literal-3

ACCESS-PRIVACY IS 3data'“ame'4 ;

literal-4

MODIFICATION-PRIVACY IS %

data-name-5
literal-5

The number of blocks to be allocated initially must be given as integer-1 of
the FILE-LIMITS clause.

4-42 60229400

60229400

The size of each mass storage block is determined from the BLOCK CONTAINS
clause and/or RECORD CONTAINS clause. If the clause BLOCK CONTAINS
integer-1 TO integer-2 CHARACTERS is given, a block size of integer-2
characters is allocated.

If the clause BLOCK CONTAINS integer-1 TO integer-2 RECORDS and
RECORD CONTAINS integer-3 TO integer-4 CHARACTERS are given, a
block size equal to integer-2 times integer-4 characters is allocated.

In addition to the basic block size, eight characters are added to allow for a
header used internally by the input-output control system. This header is
never accessible to the user program.

Files assigned to TTY or CRT are assumed by MASTER to be I-O files when
the device is opened.

Examples:

1. OPEN INPUT CARD-FILE,
2. OPEN OUTPUT PRINT-FILEA WITH NO REWIND PRINT-FILEB,
3. OPEN INPUT-OUTPUT MASTER-FILE.

4-43

4.7.17
PERFORM The PERFORM statement is used to depart from the normal execution sequence
to execute one or more procedures either a specified number of times or until
a specified condition is satisfied and to return control to the normal sequence.
Format 1 (simple):
PERFORM procedure-name-1 [THRU procedure-name-2]
Format 2 (TIMES):
PERFORM procedure-name-1 [THRU procedure-name-2]

identifier-1
integer-1

z TIMES

Format 3 (UNTIL):

PERFORM procedure-name-1 [THRU procedure-name-2]
UNTIL condition~-1

Format 4 (VARYING):
PERFORM procedure-name-1 [THRU procedure-name-2]
index-name-2

s FROM <« literal-2
identifier-2

index-name-1

VARYING % identifier-1

literal-3 o
BY gi dentifier—3§ UNTIL condition-1

index-name—4 index-name-5
AFTER 1 . ‘e FROM [literal-5
—=———— | identifier-4 . pe
identifier-5

literal-6 -
BY 3 identifier—6 s UNTIL condition-2
literal-8
l FROM < identifier-8
index-name-8

index-name-7

[——AFTER gidentifier—7

7

3litera1—9

BY identifier-9

% UNTIL condition—:B]:I

4-44 60229400

Each procedure name is the name of a section or paragraph in the
Procedure Division.

Each identifier represents a numeric elementary item described in the Data
Division. In format 2, the identifier represents a numeric item with no
positions to the right of the assumed decimal point.

A literal must be numeric.

When the PERFORM statement is executed, control is transferred to the first
statement of procedure-name-1. An automatic return is made to the state-
ment following the PERFORM statement. If the THRU option is not specified,
the return follows execution of the last statement of the paragraph or section
referred to by procedure-name-1. If the THRU option is specified, the return
follows execution of the last statement of the paragraph or section referred to
by procedure-name-2.

The only relationship necessary between procedure-name-1 and procedure-
name-2 is that a consecutive sequence of operations is to be executed
beginning at procedure-name-1 and ending with the last statement in
procedure-name-2. GO TO and PERFORM statements may occur between
these limits. If there are two or more direct paths to the return point, then
procedure-name-2 may name a paragraph containing an EXIT statement, to
which all these paths must lead.

If control passes to these procedures by means other than a PERFORM state-
ment, it passes through the last statement of the procedure to the following
statement as if no PERFORM statement mentioned these procedures.

A procedure referenced by a PERFORM statement can include within it
another PERFORM statement only if the procedure associated with the
second PERFORM is entirely within or entirely without the procedure
referenced by the first PERFORM.

Correct Specifications

x PERFORM a THRU m x PERFORM a THRU m
a a

d APERFORNi f THRU j d PERFORM f THRU j
f . h

i ‘ m

m . f

60229400 4-45

Incorrect Specifications

X PERFORM a THRU m a

a b PERFORM c THRU £
d PERFORM f THRU j c

f d

m

j x PERFORM a THRU d

A procedure associated with one PERFORM statement can overlap or inter-
sect the procedure associated with another PERFORM if neither procedure
includes the PERFORM statement associated with the other procedure.

Correct Specification

x PERFORM a THRU m

a

f

m

i
d PERFORM f THRU j

Format 1:

A procedure referenced in the basic PERFORM statement is executed once
and then control passes to statement following the PERFORM. For example:

PERFORM SUMMARY.
Format 2:

When the TIMES option is used, the procedures are performed the number of
times specified by the value of integer-1 or the initial value of identifier-1.

At the time of execution, this value must not be negative. If the value is zero,
control passes immediately to the statement following the PERFORM. Other-
wise, the procedures are executed the specified number of times and then
control passes to the statement following the PERFORM. Once execution is
begun, any change to identifier-1 has no effect on the number of times the
procedures are executed.

4-46 60229400

60229400

Examples:

1. PERFORM CALCULATION 4 TIMES.
2. PERFORM ISSUE NO-COPIES TIMES.

Format 3:

If the UNTIL option is specified, the procedures are performed until the
specified condition is true. Control returns to the statement following the
PERFORM statement. If the condition is true when PERFORM is first
encountered, the procedure is not executed.

Example:

PERFORM REORDER UNTIL ON-ORDER + SUPPLY = AV-USE * 2 or
SUPPLY GREATER THAN AV-USE * 2.

Format 4:

The VARYING option augments the value of one or more identifiers or index
names during execution of the PERFORM statement. Every reference to an
identifier as the object of the VARYING and FROM phrases also refers to
index names. When index names are used, the FROM and BY clauses have
the same effect as in a SET statement.

When one identifier is varied, identifier-1 is set equal to the value of
identifier-2 or literal-2 at the start of execution of the PERFORM. The
condition is evaluated, and if false, the sequence of procedures (procedure-
name-1 through procedure-name-2) is executed once. Then the value of
identifier-1 is augmented by the increment or decrement specified by
identifier-3, and condition-1 is evaluated again. The cycle continues until
the condition is true; then control passes to the statement following the
PERFORM. I the condition is true at the start of execution, control passes
directly to the statement following PERFORM.

Examples of a PERFORM statement with one varying identifier:

1. PERFORM ABLE THRU BAKER VARYING ID-1 FROM ID-2 BY
ID-3 UNTIL ID-1 = 20.

2. PERFORM RATE-CALC VARYING QUAN FROM 50 BY 5 UNTIL
QUAN GREATER 200.

4-47

The first example is illustrated in the following flow chart:

Entrance
(from statement previously executed)

l

Set ID-1 = ID-2

il
1
D1 - True To statement following
-1=20 PERFORM statement
} False

Execute specified procedure

!

Increment or decrement
ID-1 by ID-3

When the optional clause beginning with AFTER is included, two identifiers
are varied. Identifier-1 and identifier-4 are set to the values of identifier-2
and identifier-5, respectively. (During execution, these initial values must
be positive). At the start of execution, condition-1 is evaluated. I true,
control is transferred to the statement following the PERFORM. If false,
condition-2 is evaluated. I condition-2 is false, procedure-name-1 through
procedure-name-2 is executed once, after which identifier-4 is augmented by
identifier-6 and condition-2 is evaluated again. This cycle of execution and
augmentation continues until condition-2 is true. When it is true, identifier-4
is set to its initial value (identifier-5), identifier-1 is augmented by
identifier-3, and condition-1 is re-evaluated. The PERFORM statement is
completed if condition-1 is true; if not, the cycles continue until condition-1
is true. The identifiers following BY (identifier-3 and identifier-6) must not
be zero.

Example of a PERFORM varying two identifiers:
PERFORM CALCULATION VARYING CNT FROM 1 BY 1 UNTIL

CNT =100 AFTER AMNT FROM ORIG BY DIFF UNTIL AMNT
GREATER LIMT.

4-48 60229400

Entrance
(from statement previously executed)

|

Set CNT =1
Set AMNT = ORIG

-
CNT = 100 True __ To statement following
PERFORM statement
—Jl False
T
AMNT > 250 e
* False]
Execute CALCULATION

} Set AMNT = ORIG

Augment AMNT BY DIFF

Augment CNT by 1

60229400

At termination of the PERFORM statement, AMNT contains its initial value.
CNT has a value that exceeds the last used setting by an increment or decre-
ment, unless condition-1 was true when the PERFORM statement was entered,
in which case CNT and AMNT contain their initial values.

For three identifiers, the mechanism is the same as for two identifiers except
that identifier-7 goes through a complete cycle each time that identifier-4 is
augmented by identifier-6 or literal-6, which in turn goes through a complete
cycle each time identifier-1 is varied.

Example of PERFORM varying three identifiers:
PERFORM PROC-1 THRU PROC-2 VARYING ID-1 FROM ID-2 BY ID-3
UNTIL ID-1 EQUAL TO TERM-1 AFTER ID-4 FROM ID-5 BY ID-6

UNTIL ID-4 GREATER LIMIT-2 AFTER ID-7 FROM ID-8 BY 1 UNTIL
ID-7 = 5.

4-49

Entrance

(from statement previously executed)

Set ID-1 = ID-2
Set ID-4 = ID-5
Set ID-7 = ID-8

—
. |

ID-1 = TERM-1

True

|
. | False

ID-4 > LIMIT-2

True

To statement following
PERFORM statement

—% False

ID-7 =5

True

* False

Execute PROC-1
through PROC-2

!

L Augment ID-7 by 1

Set ID-7 = ID-8

Set ID-4 = ID-5

Augment ID-4
by value of ID-6

Augment ID-1
by value of ID-3

Upon completion of the PERFORM, ID-4 and ID-7 contain their initial values,
ID-1 has a value exceeding its last used setting by one increment or decrement.
If ID-1 equals TERM-1 (condition-1 is true) when the PERFORM statement is
entered, ID-1, ID-4, and ID-7 all contain their initial values.

4-50

60229400

4.7.18
READ The READ statement makes the next logical record available from an input

file and allows performance of a specified imperative statement when end of
file is detected.

Format 1: (for sequential files from any device)
READ file-name RECORD [INTO identifier-1]
; AT END imperative-statement
Format 2: (for random access mass storage files only)
READ file-name RECORD [INTO identifier-1j

; INVALID KEY imperative-statement

An OPEN statement must be executed for a file prior to execution of the first
READ statement for that file.

If INTO is specified, the data is read into both the record area and the area
specified by identifier-1.

Format 1:

If the logical end of the file is reached during execution of a READ, and an
attempt is made to read that file, the AT END imperative statement is exe-
cuted. Files assigned to TTY and CRT have no end-of-file condition, so the
AT END phrase is never executed. Following execution of the AT END
imperative statement, a READ statement for that file must not be given unless
a prior CLOSE and OPEN for the file have been executed.

When a file consists of more than one type of logical record, these records
automatically share the same storage area; this is equivalent to an implicit
redefinition of the area. Only the information present in the current record
is accessible.

If a file described with the OPTIONAL clause is not present, the imperative
statement in the AT END phrase is executed on the first READ and standard

end-of-file procedures are not performed.

If the end of a tape reel is recognized during execution of a READ statement on
a multi-reel/unit file, the following operations are carried out:

60229400 4-51

o Standard ending reel label procedure and user's ending reel label
procedure, if specified, by the USE statement. The order of
execution is specified by the USE statement.

e Tape swap.

e Standard beginning reel label procedure and user's beginning reel
label procedure, if specified. The order of execution is specified
by the USE statement.

® First data record on the new reel is made available.
Format 2:

The READ statement implicitly performs the functions of a SEEK statement
for a specific mass storage file, unless a SEEK statement for the file is
executed prior to the READ. Records in the file are read in accordance with
the contents of the ACTUAL KEY data item. The user is responsible for
setting the contents of this data item prior to execution of the READ statement
(ACTUAL KEY, chapter 2). I an attempt is made to read a mass storage
record and contents of the associated ACTUAL KEY data item are outside the
allocated file area, the INVALID KEY phrase is executed. The allocated area
of a file is the number of blocks assigned to it by the ALLOCATE request of
the MASTER *DEF function (section 7. 3. 3).

Regardless of the method used to overlap access time with processing time,
the concept of the READ statement is unchanged in that a record is available
prior to the execution of any statement following the READ statement.

Examples:
READ MASTER-FILE AT END MOVE 1 TO MASTER-ENDED-IND
GO TO END-MASTER.

READ DETAIL-FILE AT END GO TO END-DETAIL.

READ INVENT-FILE AT END ADD 1 TO INVENT-IND GO TO END-
INVENT.

READ DATA-FILE INTO ITEM-1 INVALID KEY DISPLAY "END DATA",

4-52 60229400

4.7.19
RELEASE

60229400

The RELEASE statement transfers records to the initial phase of a SORT
operation. It is equivalent to a WRITE statement applied to a sort file.

RELEASE record-name [FROM identifier]

A RELEASE statement is used only within the range of an input procedure
associated with a SORT statement for a sort file the description of which
includes a DATA RECORDS clause containing record name.

RELEASE causes the record named by record name to be released to the
initial phase of a sort. RELEASE must be part of an input procedure in the
SORT statement. When control passes from the input procedure, the sort file
consists of all records placed in it by execution of RELEASE statements.
Following execution of the RELEASE statement, the contents of the record
area named by record name are no longer available.

If the FROM option is included, the contents of the identifier data area are
moved to record name before being released to the sort file. The move is
made in accordance with the rules governing a simple MOVE without the
CORRESPONDING option. The information in the data area associated with
identifier remains available even though the information in the record name

area is no longer available.

4-53

4.7.20
RETURN The RETURN statement obtains sorted records from the final phase of a
sort operation. It is equivalent to a READ statement applied to a sorted file.

RETURN file-name RECORD [INTO identifier]

; AT END imperative-statement.

A RETURN statement is used only within the range of an output procedure
associated with a SORT statement for the specified file name. File-name is
a sort file with a Sort File Description entry in the Data Division.

The INTO option is used only when the input file contains just one type of
record. The identifier is the name of a working storage area or output
record area. When INTO is specified, the data is available in both the
input record area and the data area associated with identifier.

When a file consists of more than one type of record, records share the
storage area automatically. This is equivalent to implicit redefinition of
the area, and only the information that is present in the current record is
accessible.

Execution of RETURN causes the next record, in the order specified by the
keys listed in the SORT statement, to be made available for processing in

the record area associated with the sort file. Moving is performed according
to the rules specified for the MOVE statement without the CORRESPONDING
option. After execution of the imperative statement in the AT END phrase,
no more RETURN statements can be executed within the current output
procedure.

4-54 60229400

4.7.21
SEARCH

60229400

N

LA

< §°

The SEARCH statement is used to search a table for an element that satisfies
the specified condition and to adjust the associated index name or index data
item to point to that table element. (See Table Handling, section 4.5, also
OCCURS, section 3.5.6, and SET, section 4.7.2.3.)

Format 1 (linear search):

index—name—l}:l

SEARCH identifier-1 [VARYING {i dentifier—2

[; AT END imperative-statement-1]
NEXT SENTENCE

. WHEN condition-1 { imperative-statement-2 }
Y

NEXT SENTENCE

[. WHEN condition-2 { imperative-statement-3 }:l o

Format 2 (bisecting search):

w \ SEARCH ALL identifier-1 [; AT END imperative-statement-1]

NEXT SENTENCE

«I . i ive—- -9
Q’) wa}’/; WHEN condition-1 { imperative-statement-2 }

Identifier-1 cannot be subscripted or indexed. Its description must contain an
OCCURS clause with the INDEXED BY option. In format 2, identifier-1 must
also contain the KEY IS option in its OCCURS clause. When format 1 is used,
condition-1, condition-2, etc, are any conditions defined in section 4.3. In
format 2, condition-1 is limited to a relation condition using the relational
operator EQUAL TO (=), a condition-name condition, or a compound condition
formed by joining the first two conditions with an AND.

If index-name-1 is specified in the VARYING option, it must appear in the
INDEXED BY option of an OCCURS clause describing either the table associated
with identifier-1 or another table. If index-name-1 is in the INDEXED BY
option of another table, the first (or only) index-name given in the INDEXED

BY option for identifier-1 is used and index-name-1 is simultaneously incre-
mented by the element character offset of the other table.

If identifier-2 is specified in the VARYING option, it must be either an index

data item described with a USAGE IS INDEX clause or an elementary numeric
item with no positions to the right of the assumed decimal point.

4-55

Format 1:

A simple SEARCH statement defines a linear search (a serial type of search
operation). The search starts by checking the character address bias of the
first (or only) index name listed in the INDEXED BY option for this table.

The character address bias is the value which, when added to the base address
of a table, gives the character address of a particular element in the table.

If this value is greater initially than the highest permissible location value for
identifier-1, the search terminates.

If the AT END clause is specified, the imperative statement associated with
AT END is executed; otherwise, control passes to the next sentence. If the
character address bias is not greater than the highest permissible location
value for identifier-1, the conditions specified in the SEARCH statement are
evaluated in the order they are written.

If no condition is satisfied, the index name is incremented by the element
character offset to reference the next table element. The element character
offset is the number of character positions in a table element. This process
is repeated until one of the conditions is satisfied or the character address
bias of the index name exceeds the table limit by one or more entries.

If a condition is satisfied, the imperative statement associated with the
condition is executed. The index name remains set at the character address
bias of the entry which satisfied the condition.

If the table limit is exceeded before a condition is satisfied, the AT END
imperative statement is executed; otherwise, control passes to the next
sentence.

If the SEARCH statement references an identifier-1 in a group or hierarchy

of groups described with an OCCURS clause, each group must have an
associated index name. Index name settings are used throughout the SEARCH
to refer to identifier-1 or items within it. Only the index name associated

with identifier-1 is incremented by the SEARCH; the items identifier-2 or
index-name-1 are also incremented if they are specified in the VARYING option.

The VARYING option permits the location of entries in an associated table
simultaneously with location of entries in the primary table (identified by
identifier-1). If index-name-1 appears in the INDEXED BY clause describing
identifier-1, that index name is used for the search, otherwise the first (or
only) index name given in the INDEXED BY clause of identifier-1 is used.
However, if index-name-1 appears in the INDEXED BY clause of another table,
index-name-1 is incremented by the character address bias of the other table.

4-56 60229400

7@0@4

60229400

The starting point of a linear search may be established by using the SET
statement to preset values of the index names associated with the table.

SET need not be used with all SEARCH statements since the starting point of
a linear search depends on the current value of the index name associated
with the table or the index name specified in the VARYING option of the
SEARCH statement. Thus, one SET...SEARCH combination can establish
a position within the table and subsequent SEARCH statements will begin
with the last setting of the table's index name. The SET statement does not
apply to a bisecting search since the initial setting of the index name is
ignored in that type of search.

Format 2:

The SEARCH ALL statement provides a bisecting nonserial type of search
operation. The initial setting of the index name for identifier-1 is ignored
and the index name setting is varied as the bisecting search takes place.
The setting value will not exceed the location value of the last element in the
table, nor be less than the location value of the first element in the table.

If condition-1 is satisfied, the index points to the table entry that satisfied the
condition and the associated imperative statement is executed. X this im-
perative statement does not terminate with a GO TO, control passes to the
next sentence.

If condition-1 is not satisfied for any setting of the index within the range per-
mitted for the table, the imperative statement associated with the AT END
option is executed. If no AT END is specified, control passes to the next
sentence. When condition-1 cannot be satisfied, the final setting of the index
is unpredictable.

Any or all data names in the KEY clause of identifier-1 may appear as subjects
or objects of a test, or they may be conditional variables with which the tested
condition name is associated. All preceding data names in the KEY clause
hierarchy must also be tested within condition-1. No other tests may appear
in condition-1.

Examples:

1. The following example shows a nonserial search of a one-dimensional
table:

DATA DIVISION.

01 TABLE-1.
03 ID-1 PIC X(4) OCCURS 250 TIMES INDEXED BY INDX-1
ASCENDING KEY IS ID-1.

PROCEDURE DIVISION.

4-57

4-58

SEARCH ALL ID-1 AT END GO TO END-SEARCH WHEN ID-1
(INDX-1) = "A100" GO TO EMPL-A.

The bisecting search proceeds until an ID-1 is found with a value of
""A100". If none is found, control passes to the procedure,
END-SEARCH.

The search operation is illustrated below.

Start

f

Set low limit to
beginning of table

!

Set high limit to
end of table

Set INDX-1 to midpoint
between low limit and high limit

Is high
limit =
low limit

Yes END-
SEARCH

Put INDX-~1
into high limit

Put INDX-1
| into low limit

60229400

60229400

The following example and flow chart illustrate a linear search with
two WHEN conditional phrases:

DATA DIVISION.

01 TABLE-1.

03 ID-1 PIC X(}.@ OCCURS 150 TIMES INDEXED BY INDX-1.
01 TABLE-2. -

03 ID-2 PIC X(12) OCCURS 200 TIMES INDEXED BY INDX-2.
PROCEDURE DIVISION.

SEARCH ID-1 VARYING INDX-2 AT END GO TO NOT-FOUND
i =L
WHEN ID-1 (INDX-1) = "A 1234567890" GO TO A-FILE

INDX-1 and INDX-2 are each incremented until one or the other of the
two conditions is satisfied or until the character address bias of
INDX-1 exceeds the table limit of TABLE-1. If neither condition is
satisfied, control passes to the procedure NOT-FOUND.

4-59

INDX-1 and INDX-2 are each incremented until one or the other of the two conditions is
satisfied or until the character address bias of INDX-1 exceeds the table limit of TABLE-1.
If neither condition is satisfied, control passes to the procedure NOT-FOUND.

Start

INDX-1 > 150 yos GO TO NOT-FOUND
_ yes
ID-1 (INDX-1)=A 1234567890 GO TO A-FILE
ID-2 (INDX-2) = yes

A XXXXXXXKXX GO TO B-FILE

increment INDX-1
and
INDX-2 by 12 characters

4-60 60229400

4.7.22
SEEK

60229400

The SEEK statement initiates access to a mass storage data record for sub-
sequent reading or writing.

SEEK file-name RECORD

A SEEK statement pertains only to mass storage files in the random access
mode and, when specified, is executed before each READ and WRITE statement.

SEEK finds the location of the record to be accessed from the contents of the
ACTUAL KEY identifier. The user is responsible for setting the contents of
this identifier prior to execution of the SEEK statement (see ACTUAL KEY,
section 2.3.1). Validity of the contents of the ACTUAL KEY identifier for the
particular mass storage file is determined at the time of execution. If the
key is invalid, the imperative statement in the INVALID KEY clause of the
next READ or WRITE statement for the associated file is executed.

Two SEEK statements for the same mass storage file may logically follow each
other. Any validity check associated with the first SEEK statement is negated
by execution of a second SEEK statement.

CAUTION: The intent of the SEEK statement is to provide an overlap
of actual processing while the read/write heads on a mass storage
device are being positioned to the next data block that will be refer-
enced by a subsequent READ or WRITE request. The advantage
gained in the SEEK statement may be lost if other programs within
the MASTER multiprogramming environment are accessing the

same mass storage device. Therefore, the SEEK statement should
be used only on random files that do not share mass storage devices
with other files.

4-61

4.7.23

SET The SET statement sets values for index names associated with elements in
tables so that these table elements can be referenced by indexing.
Format 1:

index-name-1 index-name-2 index-name-3
SET {identifier—l } [{ , identifier-2 }] _’I_'_Q{ldentlf1er-3 }

literal -1
Format 2:
. . UP BY identifier-4
SET index-name-4 [, index-name-5] ... {DOWNLY_} {Hteral—z }

The identifiers are index data items or numeric elementary items described
without any positions to the right of the assumed decimal point. However,
identifier-4 in format 2 may not be an index data item. A literal must be a
positive integer. The index names must be defined in the INDEXED BY option
of the OCCURS clause for a given table.

When SET is used to preset the contents of any index names in a table, all the
index names which are to be set must be specified in the SET statement. No
implicit setting is performed.

Format 1:

If index-name-1 is specified, it is set to the character address bias which
corresponds to the occurrence number referred to by or contained in index-
name-3, identifier-3 or literal-1. If identifier-3 is an index data item, or if
index-name-3 is related to the same table as index-name-1, no conversion is
made from occurrence number to character address bias.

If identifier-1 is specified, the particular action depends on whether it is an
index data item or a data name containing a numeric elementary item. If it
is an index data item, it is set equal to the contents of index-name-3 or
identifier-3 which is also an index data item. Literal-1 cannot be used when
identifier-1 is an index data item.

If identifier-1 is a data name, it is set to the occurrence number that corre-
sponds to the character address bias in index-name-3. Neither identifier-3

nor literal-1 can be used in this case.

In the above discussion, all references to index-name-1 and identifier-1
apply to index-name-2 and identifier-2, respectively.

4-62 60229400

Format 2:

The contents of index-name-4 (and index-name-5, if specified) are incremented
(UP BY) or decremented (DOWN BY) a value that corresponds to the number of
occurrences represented by the value of literal-2 or identifier-4. Identifier-4

must be a data name identifying a numeric elementary item with no positions

to the right of the assumed decimal point.

Example:

DATA DIVISION.
77 B-1 PIC 99 USAGE IS INDEX.
77 D-1 PIC 9 USAGE IS INDEX.
01 ABLE.
02 BAKER OCCURS 20 TIMES INDEXED BY INDX-B.
03 CHARLIE PIC 9(3).
03 DOG PIC X(3) OCCURS 5 TIMES INDEXED BY INDX-D.

PROCEDURE DIVISION.
M-1. SET B-1 TO INDX-B.
M-2. SET D-1 TO INDX-D.

IF CHARLIE (B-1) LESS THAN 100,
MOVE DOG (B-1, D-1) TO TABLE-D.
IF INDX-B GREATER THAN 20; GO TO OUT.
IF INDX~-D LESS THAN 6; SET INDX-D UP BY 1; GO TO M-2;
ELSE SET INDX-D DOWN BY 5, GO TO M-1.
OUT.

60229400 4-63

4.7.24
SORT

4-64

The SORT statement creates a sort file by executing input procedures or by
transferring records from another file. Records in the sort file are sorted on
a set of specified keys. In the final phase of the sort operation, each record
from the sort file is made available, in sorted order, to some output pro-
cedures or to an output file.

DESCENDING

SORT file-name-1 ON 3 ASCENDING

g KEY ;identiﬁer—lg

. on | DESCENDING
’ ASCENDING

f KEY {identifier-2 |]

INPUT PROCEDURE IS section-name-1 [THRU section—name-z]
USING file-name-2

OUTPUT PROCEDURE IS section-name-3 [THRU section-name-4]
GIVING file-name-3

A program may contain more than one SORT statement in the Procedure
Division. No SORT statement may appear in the Declaratives Section or in
the input and output procedures associated with a SORT statement.

File-name-1 is a sort file described in an SD entry in the Data Division.

Each identifier must represent data items described in records associated
with file-name-1. Section-name-1 is the name of an input procedure; section-
name-3 names an output procedure. File-name-2 and file-name-3 are
described in FD entries in the Data Division. They are not sort files, and
must not be described in an SD entry. The FILE-CONTROL paragraph of

the Environment Division must specify only the SELECT and ASSIGN clauses
for a sort file (file-name-1). FILE-CONTROL for file-name-2 and file-
name-3 may include MULTIPLE and RESERVE as well as SELECT and
ASSIGN.

ASCENDING specifies a sorting sequence from the lowest to the highest value
of KEY; DESCENDING specifies a highest to lowest sequence. The order of
values is in accordance with the ordered character set given in appendix D.

The record description of every record listed in the DATA RECORDS clause
of the sort file must contain the KEY items identifier-1, identifier-2, etc.
When KEY items appear in more than one record, data descriptions must be
equivalent and starting positions must be the same character positions relative
to the beginning of each record. They may not contain or be subordinate to
entries that contain an OCCURS clause. The KEY identifiers are listed from
left to right in the SORT statement in order of decreasing significance without
regard to how they are divided into KEY clauses.

60229400

INPUT PROCEDURE consists of one or more sections written consecutively
which must not be a part of any output procedure. An input procedure can
include any procedures needed to select, create, or modify records, and at
least one RELEASE statement to transfer a record to the sort file. Control
may be passed to an input procedure only when a related SORT statement is
being executed. If INPUT PROCEDURE is specified, control is passed to the
input procedure before file-name-1 is sequenced by the SORT statement.

The compiler inserts a return mechanism at the end of the last section; and
when the last statement in the input procedure has been executed, the records
that have been released to the sort file are sorted.

OUTPUT PROCEDURE consists of one or more sections written consecutively
which must not be a part of any input procedure. An output procedure may
consist of any procedures required to select, modify, or copy the records
that are returned one at a time in sorted order from the sort file. At least
one RETURN statement must be inciuded in an output procedure to make the
sorted records available for processing. Control must not be passed to an
output procedure unless a related SORT statement is being executed. Control
passes to the output procedure after file-name-1 has been sequenced by the
SORT statement. The compiler inserts a refurn mechanism at the end of the
last section. When the last statement has been executed, this mechanism
terminates the sort and transfers control to the statement following the SORT
statement.

The procedural statements in an INPUT PROCEDURE or an OUTPUT
PROCEDURE are subject to the following restrictions:

® The procedure must not contain any SORT statements.

® The procedure must not transfer control to points outside the
procedure.

® The remainder of the Procedure Division must not contain any
transfers of control to points inside an input or output procedure.

If USING is specified, the SORT statement automatically performs the functions
of the OPEN, READ, USE, and CLOSE statements for file-name-2. All the
records in file-name-2 are transferred automatically to file-name-1 for
sorting. File-name-2 must not be open at the time of execution of the SORT
statement.

If GIVING is specified, all the sorted records in file-name-1 are transferred
automatically to file-name-3. File-name-3 must not be open when the SORT
statement is executed. Execution of the SORT statement automatically opens
file-name-3 before the records are transferred and closes it after the last
record in the sort file is returned.

60229400 4-65

Examples:

1. DATA DIVISION.
FILE SECTION.
FD GEN-FILE
BLOCK CONTAINS 10 RECORDS
LABEL RECORD IS OMITTED
DATA RECORD IS GEN-REC.
01 GEN-REC.
02 IDENT-A PIC 9(8).
02 IDENT-B.
03 ID-B PIC 99.
02 IDENT-C PIC X(20).
SD SORT-FILE.
DATA RECORD IS SORT-REC.
01 SORT-REC.
02 IDENT-1 PIC 9(8).
02 IDENT-2.
03 ID-2A PIC 99.
02 IDENT-3 PIC X(20).

PROCEDURE DIVISION.
A-SORT SECTION.
ST-1. SORT SORT-FILE ON ASCENDING KEY IDENT-1
ON DESCENDING KEY ID-2A, IDENT-3
INPUT PROCEDURE IS INP-1
OUTPUT PROCEDURE IS OUT-1.
GO TO REST-OF-PROGRAM.
INP-1 SECTION.
OPEN INPUT GEN-FILE.
I-1. READ GEN-FILE AT END GO TO I-2.
MOVE GEN-REC TO SORT-REC.
RELEASE SORT-REC.
GO TO I-1.
I-2. CLOSE GEN-FILE.
OUT-1 SECTION..
OPEN OUTPUT GEN-FILE.
O-1. RETURN SORT-FILE RECORD AT END GO TO O-2.
MOVE SORT-REC TO GEN-REC.
WRITE GEN-REC.
GO TO O-1,
0-2. CLOSE GEN-FILE.
REST-OF-PROGRAM SECTION,

4-66 60229400

4.7.25
STOP

60229400

2. Given two files, FILE-1 and FILE-2, with data records identical to
GEN-REC in example 1, and a sort file identical to SORT-FILE in
example 1, the following SORT statement can be specified:

SORT SORT-FILE ON ASCENDING KEY IDENT-1, IDENT-3
ON DESCENDING KEY ID-2A
USING FILE-1

GIVING FILE-2.

The STOP statement halts the object program permanently or temporarily.

{ =

literal g

The literal may be numeric, non-numeric, or any figurative constant,
except ALL.

If the RUN option is used, the program is terminated and control is returned
to its caller.

If the literal option is used, the literal is displayed on the console. The
program is temporarily suspended until the operator responds. A response
of any combination of characters other than NO, causes the object program
to continue with the execution of the next sequential statement. The response
NO is reserved for the option of terminating program execution.

If a STOP statement with the RUN option appears in an imperative sentence,

it must appear as the only or last statement in a sequence of imperative
statements.

4-67

4.7.26
SUBTRACT The SUBTRACT statement is used to subtract one, or the sum of two or
more, numeric data items from one or more items equal to the results.

Format 1:

}] ... FROM identifier-m

SUBTRACT {hteral—l }[’ {hteral—z

identifier-1 identifier-2
[ROUNDED] , identifier-n [ROUNDED
[; ON SIZE ERROR imperative-statement]

All literals or identifiers preceding the word FROM are added together and
this total is subtracted from identifier-m, identifer-n, ... The differences
are stored in the respective identifiers.

Format 2:

literal-1 } {hteral-z } {literal—m }
§LJ]:7’—'1‘}{4‘\&1“{identifier—l [’ identifier-2 --- EROM identifier-m

GIVING identifier-n [ROUNDED] [, identifier-o [ROUNDEDi] e

[; ON SIZE ERROR imperative-statement]

All literals or identifiers preceding the word FROM are added together,
subtracted from literal-m or identifier-m, and the result stored as the new
value of identifier-n, identifier-o,

Format 3:

(). oo C s
SUBTRACT iggﬁESPONDINGf identifier-1 FROM identifier-2

[ROUNDED] [; ON SIZE ERROR imperative-statement]

Data items in identifier~1 are subtracted from and stored into corresponding
data items in identifier-2.

Each identifier must refer to a numeric elementary item except in format 2,
where an identifier which appears to the right of the word GIVING may refer
to a data item that contains editing symbols. Each literal must be a numeric
literal.

4-68 60229400

60229400

The maximum size of each operand is 18 decimal digits; and the composite of
operands, must not contain more than 18 digits. The composite of operands
is the data item resulting from superimposing all operands aligned by decimal
point, excluding the data items that follow the word GIVING.

The compiler insures that enough places are carried to avoid loss of significant
digits during execution.

Examples:

SUBTRACT SOC-SEC FEDERAL-TAX TOTAL-DEDUCTIONS FROM
MONTHLY-GROSS GIVING MONTHLY-NET.

SUBTRACT CORRESPONDING UPDATE-RATE-TABLE FROM
RATE-TABLE.

SUBTRACT DAY OF CURRENT-DATE FROM 30 GIVING DAYS-LEFT
ON SIZE ERROR ADD 1 TO ERROR-COUNTER.

4-69

4.7.27

TRACE The TRACE statement is a source language debugging tool which enables the
user to display literals and the contents of data names on the job standard
output file during execution of the object program.

TRACE [WHEN integer-1] [EVERY integer-2} [UNTIL integer-3]
{ literal-1 } { literal-2 }
data-name-1 ’ldata-name-2 e

Any number of TRACE statements may be inserted in the Procedure
Division of a COBOL source program.

Compilation of TRACE statements is controlled by the TRACE parameter on
the UCBL control card for the program. When the T parameter is specified,
all TRACE statements are compiled into the object program at the points of
occurrence.

During program execution, as each compiled TRACE request is encountered,
each specified literal value is displayed as given. The contents of data names
are displayed in edited form according to the edit picture assigned to each
data name. The data name followed by a space, an equal sign and another
space are presented preceding the value. All literals and values are displayed
in a linear fashion across the print line.

WHEN integer-1 indicates the first execution of the TRACE statement. Each
time the program enters a TRACE request, a counter initially set to one is
incremented by one and a comparison is made with the value given as integer-1.
When the counter equals integer-1, the literals and values for the request are
displayed for that cycle and all successive integer-2 cycles, until integer-3

has been reached. If WHEN integer-1 is omitted, the TRACE begins at the
first cycle.

EVERY integer-2 indicates the timing between each display. If this option is
omitted, a display is generated during each cycle of the TRACE request.

UNTIL integer-3 indicates the maximum number of TRACE cycles to be
processed before the request becomes inoperative. If the option is omitted,

the TRACE request is processed until program execution is ended.

A TRACE statement may be continued on succeeding source lines, it may
begin on or after column 12.

4-70 60229400

60229400

Example:

READ FILE-A AT END GO TO FINISH.
TRACE WHEN 50 EVERY 10 UNTIL 5000 "FILE-A"
REC-COUNT, REC-ID, "THE FOLLOWING'" REC-SIZE.

The resuit of the TRACE statement is:

FILE-A REC-COUNT = 1,500 REC-ID = INV-MAST THE
FOLLOWING REC-SIZE = 150

4-71

4.7.28
USE

4-72

The USE statement introduces user-defined input-output label and error
handling procedures.

Format 1:

file-name-1 [file-name-2] ...

INPUT
USE AFTER STANDARD OUTPUT

ERROR PROCEDURE ON)1 o
INPUT-OUTPUT

Format 2:
REEL
BEFORE BEGINNING ——
USE ;__AFTER : STANDARD D_END]NG s] {FILE
_ —_— UNIT
file-name-1 [file-name-2] . ..
INPUT
LABEL PROCEDURE ON/ OUTPUT
-0
INPUT-OUTPUT
Format 3:

USE BEFORE REPORTING identifier~1[,identifier-2 ...] .

A USE statement immediately follows a section header in the Declaratives
portion of the Procedure Division. It must be followed by a period and a
space. The remainder of the section consists of one or more procedural
paragraphs defining the procedures to be used.

The USE statement itself is never executed, rather it defines the conditions
calling for execution of the USE procedures.

A USE procedure must not contain any reference to non-declarative proce-
dures. Conversely, the non-declarative portion must not contain references
to procedure names that appear in the declarative portion; except that a
PERFORM statement may refer to a USE declarative or to the procedures
associated with a USE declarative.

The only I-O statements allowed within a USE procedure are ACCEPT,
DISPLAY, and CLOSE. A file name must not be referred to explicitly or
implicitly in more than one USE statement. No file name referred to in a
USE procedure can represent a sort file.

60229400

The USE procedures in format 1 are executed by the input-output control
system after completion of the standard input-output error routine.

If a bad block is read, the error declarative is executed for each READ
statement that causes retrieval of a logical record from the bad block.
On entry to the declarative, the record requested will have been moved to
the record area. Upon exiting the declarative, the input-output control
system ignores the error, aceepts the bad record, and resumes normal
processing.

If a WRITE error occurs, the declarative is executed only once for the error.

In format 2 for an input file, the procedures are executed before and/or
after execution of a beginning or ending input label check procedure. For an
output file, the USE procedures are executed either before a beginning or
ending output label is created, or after a beginning or ending output label is
created but before it is written on tape.

The following rules govern format 2 USE procedures:

If file-name-1, file-name-2, etc. is specified, the associated File
Description entry for the file must not specify LABEL RECORDS ARE
OMITTED.

If the words BEGINNING or ENDING are not included, the designated
procedures are executed for both beginning and ending labels.

If neither REEL nor FILE is included, the designated procedures are
executed for both REEL and FILE labels. The REEL option is not
applicable to mass storage files.

The USE label procedures are not applicable to scratch files. The USE label
procedure statement may be used for mass storage files even though mass
storage file labels are maintained by MASTER and are not available to the
user. Only the BEFORE or AFTER BEGINNING FILE or UNIT options of
format 2 are valid. The UNIT and FILE options are synonymous. The
input-output control system passes control to the BEFORE BEGINNING
procedure just before the user's label identification data is moved to a
MASTER OPEN request skeleton. The MASTER OPEN request makes the
file available for processing, and then control passes to the AFTER BE~
GINNING label procedure.

USE BEFORE REPORTING (format 3) is used only in conjunction with the

Report Writer. It is described in section 5.4.4 with the Report Writer
statements.

60229400 4-73

4.7.29
WRITE

4-74

The WRITE statement releases a logical record from the output record area
to the input-output control system which writes the record on an external
device as part of an output file.

Format 1:

WRITE record-name [FROM identifier-1]

identifier-2 LINES
BEFORE . .
3 AFTER s ADVANCING {mteger I'_.IN'ES }
_ mnemonic-name

Format 2:
WRITE record-name [FROM identifier-1)
; INVALID KEY imperative-statement

Format 1 is used to process non-mass storage files. The ADVANCING option
allows the user to specify vertical position of the printer. Format 2 is used
to process mass storage files. INVALID KEY specifies an imperative
statement to be executed if an attempt is made to write outside the allocated
file area.

An OPEN statement must be executed for a file before a WRITE statement
for that file can be executed.

Record name is the name of a logical record in the File Section of the Data
Division; it must not name a sort file. After the WRITE is executed, record
name is no longer available.

The FROM option is used to move a record from the area in memory specified
by identifier-1 to the output record area and simultaneously release this
record to the input-output control system. The record is moved in accordance
with the rules for a simple MOVE. Record name may not be the same as
identifier-1.

Format 1:

When WRITE is specified for a multi-reel tape file, the following operations
are performed after an end-of-reel condition is recognized:

60229400

Standard ending reel label procedure and user's ending reel label
procedure (if specified by a USE statement) in the order specified by
the USE statement.

Reel swap.

Standard beginning reel label procedure and user's beginning reel label
P

procedure (if specified by a USE statement) in the order specified by the

USE statement.

When records are written for a teletypewriter or 211 display unit, the user
is responsible for determining the positioning of the data. The input-output
control system interprets the first.character of the file's record area before
the write operation is initiated. If the first character is the internal octal
code 36, the following action will take place before the record is displayed
on the device:

Device Action

TTY Carriage return to the lefthand margin of the page. The
first character of the record is not printed.

CRT Clear the screen and position the entry marker to the upper
lefthand corner of the screen. The first character of the
record is converted to a blank character and is displayed
as such.

When the first character of the record is other than internal code 36, the
record is displayed immediately following the last character written by a
previous WRITE request. In this case, the first character is always displayed
as presented by the WRITE request.

The ADVANCING option allows control of the vertical positioning of each

record on the printed page. The ADVANCING option overrides automatic
advancing.

Identifier-2 must be the name of a numeric elementary item described without
any positions to the right of the assumed decimal point. The mnemonic

name is defined in the Special-Names paragraph of the Environment Division;
it is identified with a printer carriage control character.

e If identifier-2 is specified, the printer page is advanced the number
of lines contained in identifier-2.

e If integer is specified, the printer page is advanced the number of
lines equal to the value of integer.

e If mnemonic-name is specified, the printer page is advanced
according to printer carriage control rules below:

60229400 4-75

4-76

Control Character Action Before Print Action After Print

A Space 1 Page Eject
B Space 1 Skip to Last Line
C Space 1 Skip to Level 6
D Space 1 Skip to Level 5
E Space 1 Skip to Level 4
F Space 1 Skip to Level 3
G Space 1 Skip to Level 2
H Space 1 Skip to Level 1
1 Page Eject \
2 Skip to Last Line
3 Skip to Level 6
4 Skip to Level 5
5 Skip to Level 4 ‘
6 Skip to Level 3
7 Skip to Level 2 > No Space
8 Skip to Level 1
0 (zero) Space 2
+ No Space
- Space 3

(blank) Space 1
Q Clear Auto Page Eject No Print
R Select Auto Page Eject No Print

When a file is assigned to PRINTER or SYSTEM-OUTPUT the first character
(carriage control character) of the record is suppressed when the record is
printed.

Format 2:

When WRITE is specified for mass storage files in the sequential access mode,
the imperative statement in the INVALID KEY clause is executed when the end
of the last allocated segment of the file is reached; and an attempt is made to
execute a WRITE statement for that file. If the THRU integer-4 option of the
FILE-LIMITS clause is specified, the file will be expanded by ten percent of
the originally allocated area and the INVALID KEY imperative statement is

not executed. However, if an attempt to expand the file results in the maxi-
mum limit (integer-4) being reached or all scheduled mass storage being used,
the INVALID KEY imperative statement is executed.

When WRITE is specified for a mass storage file in random access mode,
records are written on the file in accordance with the contents of the ACTUAL
KEY data item. The user is responsible for setting the contents of this data
item prior to execution of the WRITE statement (ACTUAL KEY, chapter 2).
The imperative statement in the INVALID KEY phrase is executed when the
contents of the ACTUAL KEY data item are out of range.

60229400

When an INVALID KEY condition exists, no writing takes place and the
information in the record area remains available.

The WRITE statement performs the function of the SEEK statement unless a
SEEK statement for the specified record is executed prior to the WRITE.

Examples:

WRITE MASTER-REC.

WRITE DETAIL OF MASTER-OUT FROM DETAIL OF WORK-AREA.
WRITE PRINT-LINE AFTER ADVANCING 2 LINES.

WRITE HEADER-LINE BEFORE ADVANCING LINE-NO LINES.

WRITE ERROR-REC INVALID KEY ADD 1 TO ERR-COUNT GO TO
ERROR-PROCC.

60229400 4-77

REPORT WRITER 3

5.1
GENERAL
DESCRIPTION

60229400

The Report Writer enabies the user to specify the format of printed reports

to be output from the COBOL program. Each report is defined in the Report
Section of the Data Division. Once defined, the Report Writer statements in
the Procedure Division place the report in the specified format on a user
specified device. More than one report can be generated from a single source
program.

When the Report Writer is used, the Report Section must be included as the
last section of the Data Division, and File Description entries {FD) in the
File Section must contain the names of the reports to be output.

A report is a pictorial presentation of data. In preparing a report, the
format id differentiated from the content. The format must be planned in
terms of page width and length, organization of report items on the page,
and the hardware device on which the report is to be written.

Two types of entries are required for each report: the report description
entry (RD level) which describes the physical aspects of the report format
and the report group description entry (01 level) which describes the char-
acteristics of the items included in the report and their relation to the
report format.

The Report Description (RD level) specifies the overall format: characteris-
tics of the page are outlined; limits are prescribed for the page and for
footings, headings, and detail information. This entry also speecifies data
items that act as print control factors. Each report associated with an output
file must be defined in an RD entry.

Each report must contain at least one report group. A report group is a set
of one or more data items which is always presented as a single unit regard-
less of format. It may consist of one or more report lines. The report
group always has an 01 level number; but it may contain lower level group
and/or elementary items with level numbers from 2-49. Each report group
at the 01 level must have a TYPE clause which specifies the type of the
report group: heading, footing, or detail. A data name identifying the
report group is optional. However, it must be specified for any report group
referenced by GENERATE or USE statements in the Procedure Division.

The placement of an item in relation to the report group and of the report

5-1

5.1
CONTROL GROUPS/
CONTROL BREAKS

5.1.2
PAGE BREAK

5-2

group in relation to the entire report, the format description of all items,
and any control factors associated with the report group are defined by this
entry.

Summary information can be presented within the body of a report. The
concept of a control hierarchy makes it possible to automatically produce
required summary information together with any heading, detail, and foot-
ing information in a control group. Control items are specified in the report
description entry in the same order as the control hierarchy. Any change in
the contents of a control item produces a control break. Changes are recog-
nized between executions of GENERATE statements and they set in motion
the automatic production of control footing and heading report groups asso-
ciated with the item. A control group is the set of control heading, control
footing, and detail report groups associated with a given control data name.
Within the control hierarchy, lower level heading and/or footing report
groups are included in the higher level control group.

A page break occurs whenever the LINE-COUNTER is changed, by a LINE
NUMBER clause or a NEXT GROUP clause, to a line number that is not
currently available to the user. A line number may not be available to the
user under the following two conditions:

® Relative spacing exceeds the PAGE LIMIT clause specification

@ Absolute spacing references a number that is equal to or less
than the current line number

If the above page break conditions are detected at object time, PAGE HEAD-
ING and PAGE FOOTING report groups are produced if appropriate. The
page counter associated with the fixed data name PAGE-COUNTER is incre-
mented by one each time a page break occurs. It is incremented after the
page footing is produced and before the page heading on the next page.

60229400

5.1.3
LINE-COUNTER

60229400

The fixed data name, LINE-COUNTER is generated automatically by the
Report Writer for each report. LINE-COUNTER determines when a page
heading and/or footing report group is to be presented and controls vertical
spacing of information on the page. If is a numeric item, and its size is
based on the number of lines per page specified in the PAGE LIMIT clause.

Initially, the line counter is set to zero by the Report Writer. It is auto-
matically tested and incremented during execution according to the PAGE
LIMIT clause and the values specified by the LINE NUMBER and NEXT
GROUP clauses in a report group description. The value of LINE-COUNTER
may be incremented with relative spacing, or it may be replaced with absolute
spacing. If relative spacing advances the line counter beyond the limits de-
fined in the PAGE LIMIT clause, PAGE FOOTING is presented if appropriate
and the line counter is reset to zero (fop-of-form). No additional setting is
made to the line counter based on the relative line specification. If absolute
spacing causes the line counter to be less than or equal to the current line
number, the line counter is set to the requested absolute line number follow-
ing the generation of PAGE-FOOTING and PAGE-HEADING groups.

LINE-COUNTER may be referred to by Procedure Division statements;
however, if it is changed by a Procedure Division statement, page format
control may be unpredictable. If more than one line counter exists because
more than one Report Description entry is specified, LINE-COUNTER must
be qualified by a report name when it is referenced by a Procedure Division
statement.

The value of LINE-COUNTER during execution represents:

® Last line number of previous report group
® Last line number skipped by a previous NEXT GROUP specification
® Zero, if at top of page

5-3

5.14
PAGE-COUNTER

5.2
DATA DIVISION
ENTRY FORMATS

PAGE-COUNTER is a fixed data name automatically generated by the Report
Writer as a data item to number the pages within a report. One numeric
page counter is supplied for each report. The size of the counter is specified
by the PICTURE clause associated with the first elementary data item that
uses PAGE-COUNTER as a source. If PAGE-COUNTER is given as a source
in more than one item, each PICTURE clause must specify the identical num-
ber of numeric characters. The size must be sufficient to prevent overflow.

PAGE-COUNTER may be referenced from the Procedure Division. If more
than one Report Description entry exists, PAGE-COUNTER must be qualified
by the report name when referenced. It must not be qualified when used as

a source in the Data Division.

The page counter is automatically preset to one by the Report Writer. If a
starting value greater than one is desired, the contents of the page counter
can be changed with a Procedure Division statement following the INITIATE
statement.

The page counter is automatically incremented by one each time a page break
occurs. It is incremented after page footing and before a page heading is
generated.

Format specifications used in the Report Writer are defined in this section.
Each report must be named in the File Section and described in the Report
Section of the Data Division. Statements which generate a report are speci-
fied in the Procedure Division.

60229400

5.2.1
FILE DESCRIPTION
ENTRY The File Description furnishes information concerning the physical structure,

identification, and record names of a given file.

FD file-name

RECORDS
CHARACTERS

l; BLOCK CONTAINS [integer-1 TO] integer-2 3
[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS

RECORD-MARK

I:DEPENDING ON gdata'name‘l S]

{ . . (STANDARD)
RECORD IS STANDARD
» LABEL 5 RECORDS ARE % {—(‘;’;thg;iz_z ;
r‘ VALUE OF fdata-name-3 | data-name-4 §
L’ — {label—ﬁeld 1} = {hteral 1 }

{data—name—5} IS {data-name—G}
> |label-field-2 J — | literal-2

RECORD IS
[, DATA %RECORDS AREe data-name-7 [,data-name-8] ..]

) 3 REPORT IS

REPORTS ARE£ report-name-1 [, report-name-2] .

The level indicator FD identifies the file description entry; it must precede
the file name. All semicolons are optional, but the entry must be terminated
by a period.

Clauses which follow the file name are optional in many cases, and their
order of appearance is immaterial. See section 3 for a discussion of the
BLOCK, RECORD, LABEL, VALUE OF, and DATA clauses.

If the RECORD CONTAINS or DATA RECORD clauses are not specified, a
record area 136 characters long is automatically assigned to the file.

60229400 5-5

5.22
REPORT
DESCRIPTION ENTRY

The REPORT clause cross references the report description entries with
associated file description entries:

REPORT 1S g report-name-1 [, report-name-2]

REPORTS ARE ? T

The REPORT clause is required in the file description entry if the file is
an output report or if it is to contain output report records. FEach report
name listed in the FD entry must be the subject of a report description
(RD) entry in the Report Section. The presence of more than one report
name indicates that the file contains more than one report. These reports
need not have the same description and the order in which they are listed
is not significant.

The Report Description defines the physical structure and identification of
a named report.

Format 1:
RD report-name-1 [WITH CODE mnemonic-name] COPY library-name.

This format is used only when the complete RD entry is contained in the
COBOL library.

Format 2:

RD report-name-2[WITH CODE mnemonic-name-2]
B FINAL
; Q%((ﬁ—'%%%sliﬁz f {identifier—l [identifier-2] l_]

(Z2E2R0Le ARE) | pINAL identifier-1 [identifier-2] }_l

=
LIMIT IS . LINE
; PAGE B LIMITS AREz] integer-1 2LINES f

L [HEADING integer-2]
[FIRST DETAIL integer-3]
[LAST DETAIL integer-4]
[FOOTING integer-5]

The level indicator RD which identifies the Report Description must precede
the report name. The report name must appear in a REPORT clause of an
FD entry. All semicolons are optional in the Report Description but the
entry must be terminated by a period.

60229400

Clauses which follow the report name are optional in many cases. Except
in format 1, the order of their appearance is immaterial.

The fixed data names, LINE-COUNTER, and PAGE-COUNTER are auto-
matically generated by the Report Writer based on the presence of specific
entries; they are not data clauses.

5.2.3

REPORT GROUP

DESCRIPTION ENTRY The report group description entry specifies the characteristics of a particular
report group and of the individual items within a report group. All semicolons
are optional in the report group description but the entry must be terminated
by a period. A report group must have a data-name if it is referred to by a
Procedure Division statement.

Format 1:

01 [data-name-1]

integer-1
; LINE NUMBER IS { PLUS integer—z}
NEXT PAGE

integer-3
; NEXT GROUP IS { PLUS integer-4
NEXT PAGE

RE PORT HEADING }

PAGE HEADING }

FINAL

{ CONTROL HEADING} { identi_fier—l}
; TYPE IS {

DETAIL}

CONTROL FOOTING) (identifier-2
’{C_F } {FINAL }
{ PAGE FOOTING }

\PE

REPORT FOOTING

{&r }

[; USAGE IS DISPLAY].

60229400 5-7

Format 1 indicates a report group; the report group extends from this entry
to the next report group (level 01) entry. The TYPE clause is required for
every report group to indicate whether the group is a heading, detail, or
footing group. I a control heading or control footing group is specified,
TYPE also indicates the control item whichwill cause these groups to be
generated.

Format 2:

nn [data-name-1}
[; COLUMN NUMBER IS integer-1}

[; GROUP INDICATE]

_{JusT
>] JUSTIFIED (RIGHT

integer-2
; LINE NUMBER IS{ PLUS integer—3}:|
NEXT PAGE

11

PIC

; % PICTURE % IS character—strmg:l

FINAL

. RESET ON ;ldentlfler—l Sil

—

; BLANK WHEN ZERO]

; SOURCE IS identifier-2
; SUM identifier-3 = [, identifier-4] ... [UPON data-name-2}
; VALUE IS literal-1

[; USAGE IS DISPLAY] .

Format 2 indicates an elementary item or group item within a report group.
If a report group consists of only one elementary entry, format 2 may include
TYPE and NEXT GROUP clauses to specify the report group and elementary
item in the same entry. In this case, the level number must be 01. Other-
wise, the level numbers in format 2 are in the range 02 to 49. Elementary
item descriptions are written (left to right) in the order in which they will
appear on the printed page. The position of a report group within a report

is determined by the TYPE clause.

60229400

5.3
DATA DIVISION
CLAUSES

5.3.1
CODE

60229400

See section 3 for a discussion of the JUSTIFIED, PICTURE, BLANK WHEN
ZERO, and USAGE clauses. The remaining clauses in the report descrip-
tion entry and the report group description entry are described in the follow-
ing pages; they appear in alphabetic order.

The CODE clause defines a unique character to be affixed to each report line
produced in this report.

WITH CODE mnemonic-name-1

The CODE clause, when used in formal 1 of the RD entry, must follow
immediately after the report name.

CODE mnemonic-name-1 indicates a unique character which is automatically
prefixed to and identifies each report line produced. Multiple reports may
then be produced simultaneously onto one output device for later individual
report selection. The mnemonic name must appear in the Special-Names
Paragraph of the Environment Division.

5-9

5.3.2
COLUMN NUMBER

5-10

This clause indicates the absolute column number on the printed page of the
high-order (leftmost) character of the elementary item. Integer-1 must be
positive.

COLUMN NUMBER IS integer-1

The COLUMN NUMBER clause can be given only at the elementary level
within a report group. For a particular line, COLUMN NUMBER entries
are presented in the order, from left to right, in which the items will
appear on the page.

The COLUMN NUMBER clause must be specified if this elementary item is
to be presented. If the column number is not indicated, the elementary item,
though included in the description of the report group, is suppressed when
the report group is produced. When COLUMN NUMBER is specified, the
PICTURE clause and one of the clauses, SOURCE, SUM, or VALUE must

be included in the item description.

Example:

01 DETAIL-LINE
TYPE DETAIL LINE PLUS 01.
03 COLUMN 02 PICTURE X(10) SOURCE IS PROG-NAME.
03 COLUMN 13 PICTURE ZZZZ9 SOURCE IS COBOL-LINES.
03 COLUMN 20 PICTURE ZZZZ9 SOURCE IS GMAP-LINES.
03 COLUMN 27 PICTURE Z83.99 SOURCE IS G-RATIO.
03 COLUMN 34 PICTURE Z(5)9 SOURCE IS O-LINES.
03 COLUMN 42 PICTURE ZZZ$.99 SOURCE IS O-RATIO.

60229400

53.3
CONTROL

60229400

The CONTROL clause specifies the identifiers which provide control breaks
for this report. Whenever the value contained in these identifiers changes,
a control break occurs. The control hierarchy is defined by the order of
the control breaks. This clause is included in the report description (RD)
entry for an entire report.

CONTROL IS EM . .
CONTROLS ARE identifier-1 [, 1dent1f1er—2]...
— FINAL, identifier-1 [, identifier-2] ...

The CONTROL clause is required when control heading or control footing
report groups are specified.

The identifiers are listed in order from major to minor; FINAL is the highest
control, identifier-1 is the major control, identifier-2 is the intermediate
control, etc. The last identifier specified is the minor control. The idenfi-
fiers must be defined in the File, Common-Storage or Working-Storage
Section of the Data Division.

The identifiers specified in the CONTROL clause are the only identifiers
referred to by the RESET and TYPE clauses in a report group description
entry for this report. This clause is optional, but must be included when

the TYPE clause specifies control headings or footings or when RESET is
specified. Control headings and footings are printed automatically whenever
the value of an identifier specified in this clause changes. The final control
heading is printed before any other control headings when the first GENERATE
is executed, and final control footing is printed when the TERMINATE state-
ment is executed.

Example:

RD REPORT-A
CONTROLS ARE FINAL, DEPT-NO, SECT-NO

During the generation of REPORT-A, the control headings and footings
associated with SECT-NO are produced when the contents of the data item
called SECT-NO changes. The control headings and footings associated with
DEPT-NO are produced in addition to those associated with SECT-NO when
the contents of DEPT-NO changes. The final control heading, in addition to
all lower level control headings, is produced when the first GENERATE
statement is executed for this report, the final footing follows all other con-
trol footings when the TERMINATE statement is executed.

5-11

5.3.4
GROUP INDICATE This clause specifies that its associated elementary item is to be presented

only once on the first occurrence of the item following a control break or at
the beginning of a new page.

GROUP INDICATE

GROUP INDICATE must be given only at the elementary item level within a
TYPE DETAIL report group.

An elementary item is group indicated in the first DETAIL report group
containing the item after a control break. It is also group indicated in the
first DETAIL report group containing the item on a new page, even if a con-
trol break did not occur.

Example:

01 DETAIL-ITEM TYPE DETAIL LINE PLUS 1.
02 DEPT PICTURE X COLUMN 20 SOURCE DEPT-NO
GROUP INDICATE.
02 SECT PICTURE X(3) COLUMN 30 SOURCE SECT-NO
GROUP INDICATE.
02 GRP-NO PICTURE X(3) COLUMN 40 SOURCE GROUP-NO.
02 AMOUNT PICTURE 9(5) COLUMN 45 SOURCE AMNT-NO.

In the above detail report group, the items called DEPT and SECT will be
printed only the first time the detail group appears on a page or when a
control break occurs. The other items in the group will be printed each
time the detail group is printed.

5-12 60229400

5.3.5
LINE NUMBER

60229400

This clause indicates the absolute or relative line number of the entry in
reference to the page or the previous entry.

¢ integer-1
LINE NUMBER IS! PLUS integer-2 }
NEXT PAGE)

Integer-1 and integer-2 are positive integers. Integer-1 must be within the
range specified by the PAGE LIMITS clause in the report description entry.

The LINE NUMBER clause must be given for each report line of a report
group. For the first line of a report group it is given at the report group
level; it may also be given before or at the first elementary item in the
line. For report lines other than the first in a report group, it must be
given before or at the first elementary item in the line.

If the LINE NUMBER clause is specified at the report group ievel, entries
for the first report line within the report group are presented on the speci-
fied line number. If LINE NUMBER is specified for an entry at a subordinate
level, all succeeding printable items are presented on that print line, until
another LINE NUMBER clause is declared or the report group ends. Print-
able items are those elementary items which have descriptions containing
the COLUMN NUMBER clause. A line number for the first subordinate level
may not contradict the line number of its group level.

Integer-1 indicates an absolute line number. The line counter is set to this
value in this and following entries within the report group until a different
value for LINE NUMBER is specified.

PLUS integer-2 indicates a relative line number which increments the line
counter in this and following entries within the report group until a different
value for LINE NUMBER is specified.

Within a report group, absolute LINE NUMBER entries must be indicated in

ascending order, and an absolute LINE NUMBER cannot be preceded by a
relative LINE NUMBER.

5-13

5-14

The NEXT PAGE phrase indicates an automatic skip to the next page before
presenting the first line of the current report group. Appropriate page
footings and page headings will be produced as specified. NEXT PAGE may
not be specified for page heading or page footing report groups.

Examples:

1. 01 GROUP-A TYPE DETAIL LINE IS NEXT PAGE.
03 PART-1 LINE 01...
03 PART-2 LINE PLUSO01 ...

Each detail report group starts on a new page; the first entry in the
group is on the first line, the second on the next line.

2. 01 TYPERHLINEIS1...
NEXT GROUP IS PLUS 2.
01 TYPE DE LINE PLUS1 ...
01 TYPE CF DATA-LIST LINE PLUS 2 ...

The report heading group is printed on line 1; 3 lines are skipped before
the first detail group is printed, each subsequent detail line is printed

on the next line; 2 lines are skipped before the control footing group is
printed.

60229400

5.3.6
NEXT GROUP

60229400

The NEXT GROUP clause specifies the spacing between the iast line of the
report group and the next report group to be generated.

integer-1
NEXT GROUP IS{ PLUS integer-2
NEXT PAGE

The NEXT GROUP clause must appear only at the 01 level which defines the
report group.

Integer-1 and integer-2 are positive, and integer-1 cannot exceed the maxi-
mum number of lines specified per report page. Integer-1 indicates an
absolute line number which sets the line counter to this value after producing
the last line of the current report group.

PLUS integer-2 specifies a relative line number which increments the line
counter by the integer-2 value. Integer-2 represents the number of lines
skipped following the last line of the current report group. Further spacing

- v s £ A - ~ 2 Alasecmn ~F dle v v meed oo Prpp——— J— |
is specified by the LINE NUMBER clause of the next report group produced.

The NEXT PAGE phrase indicates an automatic skip to the next page following
the last line of the current report group. Page heading and page footing report
groups are produced as specified. When specified for a control footing or
heading report group, NEXT GROUP results in automatic line spacing only
when a control break occurs on the level for which the control footing or

heading is specified. NEXT PAGE is illegal in page heading and page footing
report groups.

Example:

01 DETAIL-LINE
TYPE DETAIL
LINE PLUS 01...
NEXT GROUP PLUS 3.

DETAIL-LINE is printed on the line following the preceding group; and
DETAIL-LINE will be followed by three blank lines before the next
group is printed.

5-15

537
PAGE LIMIT

5-16

This clause indicates the specific line control to be maintained within the
logical presentation of a page. PAGE LIMIT is required when page format
is to be controlled by the Report Writer; it may be omitted when no associa-
tion is necessary between report groups and the physical format of the report
page. If PAGE LIMIT is omitted, absolute LINE NUMBER and absolute
NEXT GROUP clauses must also be omitted.

Only one PAGE LIMIT clause can be specified for each RD entry.

LIMIT IS . LINE .
PAGEBLIMITS ARE%] integer-1 3——LINES$ [, HEADING integer-2]

[, FIRST DETAIL integer-3] [, LAST DETAIL integer-4]
[, FOOTING integer-5]

Integer-1 through integer-5 must be positive. Integer-2 through integer-5
each must be less than or equal to integer-1.

Integer-1 is required to specify the depth of the report page; it need not be
equal to the physical perforated continuous form often associated in a report
with the page length.T The size of the fixed data name, LINE-COUNTER, is
based on the integer-1 LINES specification. If is the maximum numeric
size required to prevent overflow.

If absolute line spacing is indicated for all report groups, integer-1 must be
specified, and none of the integer-2 through integer-5 controls need be
specified.

If relative spacing is indicated for individual type detail report group entries,
the following must be specified:

Integer-3 if a page heading is present
Integer-4 if a control heading is present
Integer-5 if a page footing is present

HEADING integer-2: First line number of first heading report group. No
report group will start before integer-2.

FIRST DETAIL integer-3: First line number of first normal (detail or con-

trol) report group. No detail or control report group will start before
integer-3.

T The only carriage control tape requirement is that the TOP-OF-FORM punch
must be equal to LINE 0 of the report.

60229400

LAST DETAIL integer-4: Last line number of last normal (detail or control)
report group. No detail or control heading report group will extend beyond
integer-4.

FOOTING integer-5: Last line number of last control footing report group.
No control footing report group will start before integer-3 nor extend beyond
integer-5. Page footing report groups foilow integer-5.

When relative line numbers are specified for report groups, PAGE LIMITS
integer-1 is specified and some or all of HEADING, FIRST DETAIL, LAST
DETAIL, and FOOTING, clauses are omitted, the following implicit control
is assumed for the omitted specifications:

H HEADING integer-2 is omitted, integer-2 is considered equivalent to
the value 1, that is, LINE NUMBER one.

If FIRST DETAIL integer-3 is omitted, integer-3 is considered equivalent
to the value of integer-2.

If LAST DETAIL integer-4 is omitted, integer-4 is considered equivalent
to the value of integer-5.

If FOOTING integer-5 is omitted, integer-5 is considered to be equivalent
to the value of integer-4. If both LAST DETAIL integer-4 and FOOTING
integer-5 are omitted, both are considered to be equivalent to the value
of integer-1.

The following chart represents the limits of page format when all options of
the PAGE LIMIT clause are specified:

Report Page Detail & Control .Page
Heading/ Heading Control Footing Footing
Footing Heading

integer-2

integer-3 1

integer-4 -—‘ e

integer-5

‘ [
integer-1 _‘_ !

60229400 5-17

5-18

Absolute LINE NUMBER or absolute NEXT GROUP spacing must be consistent
with controls specified in the PAGE LIMIT clause.

Examples:

1. REPORT SECTION.
RD RATIO-REPORT
PAGE LIMIT IS 55 LINES.

In this example, an absolute page limit is indicated.

2. REPORT SECTION.

RD REPORT-A
CONTROLS ARE FINAL, DEPT-NO, SECT-NO
PAGE LIMIT IS 60 LINES
HEADING 1
FIRST DETAIL 10
LAST DETAIL 55
FOOTING 60.

In this example, automatic line control of heading, footing, and detail groups
within the report page are indicated.

60229400

5.3.8

RESET The RESET clause is used in an elementary item description in a control
footing report group to override the automatic resetting of the sum counter
following the associated control break.

identifier-1
RESET ON% FINAL f

RESET can be used only at the elementary level in conjunction with the SUM
clause (see SUM clause description). Identifier-1 must be one of the identi~
fiers specified in the CONTROL clause of the RD entry for the report. It
must be a higher level identifier than the control identifier associated with
the control footing or detail report group containing the RESET clause.

When RESET is not specified, the sum counters associated with the report
group by the SUM clause are automatically reset to zero after the controi
footing or the detail report group is presented. RESET prevents the auto-
matic resetting of the sum counters until the control footing or detail report
group associated with identifier-1 has been presented. This clause, therefore,
permits progressive totaling of data while presenting subtotals at lower levels
of control.

RESET FINAL indicates that the counter is not to be reset until the final con-
trol footing or detail report group has been generated. With this option cumu-
lative totals are presented throughout the report.

Example:

RD REPORT-A
CONTROLS ARE FINAL, DEPT, SECT, GROUP, MAN.

01 GROUP-TOTALS TYPE IS CONTROL FOOTING GROUP
LINE NUMBER IS PLUS 2.
03 COLUMN 30 PICTURE 9(10)
SUM GRP-HRS RESET ON SECT.

GRP-HRS are summed for this control footing group and the subtotal is
incremented and presented with each group total until there is a control
break at the SECT level of the control hierarchy. The subtotal is added to
the sum at the SECT level and then reset to zero before the SECT control
footing report group is presented.

60229400 5-19

5.3.9

SOURCE - SUM - YALUE The SOURCE, SUM, or VALUE clauses define the purpose of an elementary

5-20

item within the report group; only one clause is included in the description
of any one item, and it must only appear at the elementary level.

; SUM identifier-2 [, identifier-3] ... [UPON data-name-1}

; SOURCE IS identifier-1
{ ; VALUE IS literal-1 }

The identifiers must identify an item in the File, Working-Storage, or
Common-Storage Sections; a sum counter in the Report Section; or one of

the special registers: SYSTEM-DATE, or SYSTEM-TIME. The literal in

the VALUE clause may be numeric, non-numeric, or a figurative constant.
Data-name-1 is the name of a detail report group; it may be qualified by
report name if the name is used in more than one report description. SOURCE
and SUM are described below; VALUE is described in chapter 3.

The SOURCE clause indicates a data item used as a source for the report
item. PICTURE must also be specified in the entry for the report item. The
value of identifier-1 at object time is effectively moved to the report item and
presented according to the PICTURE specified in the report item description.
The fixed data items LINE-COUNTER or PAGE-COUNTER may be specified
as identifier-1; in this case the current value of the line counter or the page
counter is the source.

Examples:

1. 01 DETAIL-ITEM TYPE DETAIL LINE PLUS 1.
02 DEPT PIC X COLUMN 70 SOURCE IS DEPT-NO.

In this example, DEPT-NO is the name of a data item in the File, Working-
Storage, or Common-Storage Section.

2. 01 TYPE IS PAGE HEADING LINE PLUS 02.

02 COLUMN 110 PIC X(4) VALUE IS "PAGE".
02 COLUMN 115 PIC 999 SOURCE IS PAGE-COUNTER.

60229400

60229400

The SUM clause indicates values to be accumulated when a control break
occurs at object time. It may appear only in a control footing or a detail
report group at the elementary level. Any item containing a SUM clause
generates a numeric counter used for summing the operands specified by

the identifiers following the word SUM. This summation counter can be
referenced by specifying the data name of the item containing the SUM clause.
If a summation counter is never referenced, a data name need not be included
in the entry containing SUM. A PICTURE clause must always be included in
an entry containing a SUM clause. Editing characters or editing clauses may
be included but editing occurs only upon presentation of the summation counter
in the report. At all other times the summation counter is treated as a num-
eric data item. The PICTURE must specify a size large enough to accommo-
date the summed quantity without truncation of integral digits.

Each item being summed (identifier-3, identifier-4, etc.) must appear as the
object of a SOURCE clause in a detail report group, name an entry containing
a SUM clause in a control footing report group at an equal or lower position
in the control hierarchy, or name an entry containing a SUM clause in a detsil
report group of the lowest level of the control hierarchy. The items being
summed must be explicitly included in a detail report group, but they may be
suppressed at presentation time.

The summation of data items defined as summation counters in controi footing
or detail report groups is accomplished explicitly or implicitly by the Report
Writer. A summation counter is algebraically incremented just before the
detail report group which contains the data items being summed is presented.

The items being summed (identifier-3, identifier-4, etc.) are added to the
summation counter at each execution of a GENERATE statement. This
statement generates a detail report group that contains the SUM operands
at the elementary level. Summing is done according to the rules for ADD
in the Procedure Division (section 4.7.2).

5-21

5-22

If the sum of a data item is to be presented at a higher level of the control
hierarchy, the lower level SUM specification may be omitted. If higher level
report groups are indicated in the control heirarchy, counter updating pro-
cedures take place prior to the reset operation. Unless RESET is specified,
each summation counter at the level just produced is reset to zero.

The UPON data-name-1 option provides selective summation when a particular
data item is named in the SOURCE clause of two or more detail report groups.
Identifier-3, identifier-4, etc., must be named in a SOURCE clause in the
detail report group identified by data-name-2.

Example:

01 TYPE IS CONTROL FOOTING SECT-NO LINE PLUS 2.
02 COLUMN 20 PICTURE X(10) VALUE IS "SEC TOTAL".
02 COLUMN 30 PICTURE ZZZ,ZZZ.99 SUM AMNT-NO.

If AMNT-NO is the object of a SOURCE clause in a detail report group,
each time the detail group is presented the contents of AMNT-NO will

be added to the summation counter associated with AMNT-NO. The
contents of this counter will be presented when the control footing report
group is presented.

60229400

5.3.10
TYPE

60229400

This clause specifies the particular type of report group that is described
by this entry and indicates the time at which the report group is to be gen-
erated. It must appear in an 01 level entry.

{REPORT HEADING } \

PAGE HEADING }

CONTROL HEADING | (identifier-n
} {FINAL }
DETAIL }

CONTROL FOOTING } {identiﬁer—n}
FINAL

{5
{oa
ryepss { {ZEEALE
{er
{28

PAGE FOOTING }

{ REPORT FOOTING }
R /

The level number 01 identifies the particular report group to be generated

as output. The TYPE clause indicates the time for generating this report
group. A report group described as other than DETAIL is automatically
generated by the Report Writer. If the report group is described as DETAIL,
the Procedure Division statement, GENERATE identifier, directs the Report
Writer to produce the named report group.

The REPORT HEADING or RH entry indicates a report group that is produced
only once at the beginning of a report during execution of the first GENERATE
statement. Only one report group of this type can appear in a report. Nothing
may precede a REPORT HEADING entry in a report. SOURCE clauses used
in TYPE RH report groups refer to the values of data items at the time the
first GENERATE statement is executed.

The PAGE HEADING or PH entry indicates a report group produced at the
beginning of each page according to page condition rules. Only one report
group of this type can appear in a report.

The CONTROL HEADING or CH entry indicates a report group produced at
the beginning of a control group for a designated identifier. CH FINAL
indicates a report group produced once before the first control group at the
initiation of a report during execution of the first GENERATE statement.

Only one report group of this type can appear for each identifier and for the
FINAL specified in a report. To produce CONTROL HEADING report groups,
a control break must occur (see section 5.1.1). SOURCE clauses used in
TYPE CONTROL HEADING FINAL report groups refer to the values of the
items at the time the first GENERATE statement is executed.

5-23

5-24

The DETAIL or DE entry indicates a report group produced for each GENERATE
statement in the Procedure Division. Each DETAIL report group must have a
unique data name at the 01 level in a report.

The CONTROL FOOTING or CF entry indicates a report group produced at the
end of a control group for a designated identifier or produced once at the ter-
mination of a report ending a FINAL control group. Only one report group of
this type can appear for each identifier and for the FINAL specified in a report.
To produce any CONTROL FOOTING report groups, a control break must occur.

SOURCE clauses in TYPE CONTROL FOOTING FINAL report groups refer to
the values of the items at the time the TERMINATE statement is executed.

The PAGE FOOTING or PF entry indicates a report group produced at the
bottom of each page. Only one report group of this type can appear in a
report.

The REPORT FOOTING or RF entry indicates a report group produced only
once at the termination of a report. Only one report group of this type can
be used in a report. Nothing may follow a REPORT FOOTING entry in a
report. SOURCE clauses in REPORT FOOTING report groups refer to the
value of items at the time the TERMINATE statement is executed.

CONTROL HEADING report groups appear with the current values of any
indicated SOURCE data items before the DETAIL report groups of the control
group are produced. CONTROL FOOTING report groups appear with the pre-
vious values of any indicated SOURCE data items just after the DETAIL report
groups of that control group have been produced. These report groups appear
when a control break is noted. LINE NUMBER determines the absolute or
relative position of the CONTROL report groups exclusive of the other HEAD-
ING and FOOTING report groups.

Identifier-n, as well as FINAL, must be one of the identifiers described in
ithe CONTROL clause of the RD entry. A FINAL control break may be des-
ignated only once for CONTROL HEADING or CONTROL FOOTING entries

within a report.

60229400

60229400

HEADING and FOOTING report groups occur in the following sequence if all

exist for a given report:

REPORT HEADING (one occurence only)
PAGE HEADING

CONTROL HEADING
DETAIL
CONTROL FOOTING

PAGE FOOTING .
REPORT FOOTING (one occurrence only)

CONTROL HEADING report groups are presented in the following order:

Final Control Heading
Major Control Heading

Minor Control Heading

CONTROL FOOTING report groups are presented in the following order:

Minor Control Footing

Major Control Footing
Final Control Footing

5-25

5.4
PROCEDURE
DIVISION
STATEMENTS

5.4.1
GENERATE

5-26

The GENERATE statement links the Procedure Division to the Report Writer
as described in the Report Section of the Data Division.

GENERATE identifier
Identifier represents a detail report group or an RD entry.

If identifier is the name of a detail report group, the GENERATE statement
produces all the automatic operations within a Report Writer and produces
an output detail report group on the output device. This procedure is called
detail reporting.

If identifier is the name of an RD entry, the GENERATE statement produces
all the automatic operations of the Report Writer and updates the footing re-
port groups within a particular report description without actually producing

a detail report group associated with the report. In this case, all summation
counters associated with the report description are algebraically incremented.
This procedure is called summary reporting. If more than one detail report
group is specified in a report defined by the RD entry, all summation counters
are algebraically incremented each time a GENERATE statement is executed.

A GENERATE statement, implicitly in both detail and summary reporting,
produces the following automatic operations:

® Recognizes specified control breaks to produce control footing and
control heading report groups

® Accumulates into the summation counters all specified identifiers

@® Executes specified routines defined by a USE statement before
generating associated report groups (See USE, section 5.4.4)

® Steps and tests the line counter and page counter to produce page
footing and page heading report groups

® Creates and prints the print line image

® Resets the summation counters unless suppressed by the RESET
clause

60229400

60229400

During execution of the first GENERATE statement, report groups are produced
in the following order:

REPORT HEADING report group
PAGE HEADING repoi‘t group
all CONTROL HEADING report groups in the order FINAL, major to minor

DETAIL report group, if specified in the GENERATE statement

If a control break is recognized when any GENERATE statement after the first
is executed, all specified control footing report groups are produced from the
minor report group up to and including the report group specified for the identi-
fier which caused the control break. Then, all specified control heading report
groups from the report group specified for the identifier that caused the control
break down to the minor report group, are produced in that order. The detail
report group specified in the generate statement is then produced.

Data is moved to the data item in the report group description entry of the

Report Section, and it is edited under control of the Report Writer according
to the same rules for movement and editing as described for MOVE.

5-27

5.4.2
INITIATE

INITIATE

Report processing begins with the INITIATE statement.

INITIATE report-name-1 [, report-name-2]. ..

Each report name must be defined by a report description entry in the Report
Section of the Data Division.

The INITIATE statement resets all data name entries that contain SUM clauses
associated with the report; and it sets up the Report Writer controls for all
report groups associated with this report.

If PAGE-COUNTER is specified, it is set to one before or during execution
of the INITIATE statement. If the starting value is to be other than one, the
user may reset this counter following the INITIATE statement.

If LINE-COUNTER is specified, it is set to zero before or during the execu-~
tion of INITIATE.

The INITIATE statement performs Report Writer functions for individually
described report programs analogous to the input-output functions that the
OPEN statement performs for individually described files.

A second INITIATE statement for a particular report name may not be executed

unless anintervening TERMINATE statement has been executed for that report
name,

60229400

5.4.3
TERMINATE

60229400

Report processing is completed by the TERMINATE statement.
TERMINATE report-name-1 [, report-name-2]...
Each report name must be defined by an RD entry in the Data Division.

The TERMINATE statement produces all control footings associated with this
report as if a control break had just occurred at the highest level; and it com-
pletes the Report Writer functions for the named reports. TERMINATE also
produces the last page and report footing report groups associated with this
report. Page heading or page footing report groups are prepared in order
for the report description.

A second TERMINATE statement for a particular report may not be executed

uniess an intervening INITIATE statement has been executed for the report
name.

The TERMINATE statement performs Report Writer functions for individually
described report programs analogous to the input-output functions that the
CLOSE statement performs for individually described files, TERMINATE
does not close the file with which the report is associated; a CLOSE statement
for the file must be given by the user.

SOURCE clauses used in final control footing or report footing report groups
refer to the values of the items during execution of the TERMINATE statement.

5-29

5.4.4
USE BEFORE
REPORTING

The USE statement specifies Procedure Division statements to be executed
just before a report group is produced.

USE BEFORE REPORTING identifier-1 [, identifier-2]...

A USE statement is specified immediately after a section header in the
Declarative portion of the Procedure Division; it must be followed by a space.
The remainder of the section must consist of one or more procedural para-
graphs that define the procedures to be used.

Each identifier represents a report group named in the Report Section of the
Data Division. An identifier must not appear in more than one USE statement.

No Report Writer statement (GENERATE, INITIATE, or TERMINATE) may
be written in a procedural paragraph following the USE sentence in the declara-
tive portion.

The USE statement itself is never executed, rather it defines the conditions
calling for the execution of the USE procedures. The designated procedures
are executed by the Report Writer just before the named report is produced,
regardless of page or control break associations with report groups. If USE
procedures are specified for a CONTROL FOOTING report group, they affect
the previous value of items specified in the CONTROL clause or the current
value of items specified in a SOURCE clause.

A USE procedure must not contain any reference to non-declarative procedures.
Conversely, the non-declarative portion must not contain reference to proce-
dure-names that appear in the declarative portion, except that PERFORM
statements may refer to a USE declarative or to the procedures associated

with the USE declarative.

60229400

00%62209

1€-9

JOB ACCQUNTING INFORMAT{ON

NAME=V]IANDS aCcCl=NLVK3L W]

NDATE=10/14/68 FOLTION=UC
TIME USED
COMP-88/00/19.354
cHAN=00,00/030642

FACILITIES NUT VatkD
CORE=(18
ScR =006
LINE=3702
CARD=499

TIME=ON®13/716/57 TIME=OFF=13/17/34

JOB o NLVK3LWIsVIANUS, 60950009500
SCHED s CORE=50+SCR=159CLASS=]9ABORT=1500

UCaL (LyMy0,x)

USAST COuOL le0 /7 MASTER 2.1

00001
00002
00003
0n00V4
00009
00006
00007
00008
00009
00010
00011
00012
00013

REPORT=WRITER=EXAMPLE

IDENTIFICATION DIVISION,

PROGRAM™IDa REPORT=WRITER=EXAMPLE e

AUTHORe ANONYMOUS Q CITIZENe

UATE=~WRITTEN. 02709768,

DATE=COMPILED 10/14/648

ENVIRONMENT DIVISION,

CONFIGURATION SECTION,

SOURCE=COMPUTER. 3300,

ORJECT=~COMPUTER, 3300,

INPUT=QUTPUT SECTION,

FILE=CONTROL»
SELECT FILE=A ASSIGN TO SYSTEM=INPUT,
SELECT FILE=B ASSIGN TO SYSTEM=OQUTPUT,

WYI90Ud ¥3LRIM

10/14/68

LIOdIA I1dWVS

S'S

2e-¢

00¥62209

USASI COJOL let 7/ #ASTER 2.1

00014
00015
00016
00017
00018
0001y
00020
00021
oovez
00023
00024
0002%
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
0004]
00042
00043
00046
00045
00046
00047
00048
00049
00050
00051
00052
00053
00056
00055
00056

Dooviy
NGl
peoola
QUQUIJ
n(}OOlQ

REPORT=wRITER-EXAMPLE 10/14/68

UATA DIVISION,
FILE SECTIONe

FD

01

Fi)

FILE=A
LABEL RECORDS aRe UMITTED
DATA RECORD IS CaRDO=IMAGE.
CARD-IMAGEC
0?2 DEPT=NO PICIURE X(5) e
02 SECT=NO PICTURE X(5)a
02 GROUP=NO PIC X(9),
02 AMNT=NO PIC 9(3)1Vg(2),
FILE=B
LASEL RECORDS are OMITTED
REPORT 1S REPORT=A

HREPURT SECTION,

RO

01

vl

'3}

vl

0l

vl

REPORT=4A
CONTROLS ARE FINals DEPT=NOs SECT=NO
PAGE LIMIT IS 60 LINES
HEADING }
FIRST DETAIL 10
LAST DFTAIL g0
FOOTING 55«
TYPE IS REPURT HEADING LINE n2e
02 COLUMN 02 FIC XX VALUE 1S #RH#,
02 COLUMN 52 PIC A(15) VALUE #EXPENSE ACCOUNT#,.
TYPE 1S PAGE HEADING LINE PLUS 2,
02 COLUMN 3 PIC XX VALUE #PH#
02 COLUMN 110 PIC X(&) VALUE #PAGE¥®,
02 COLUMN 119 PIC 999 SOURCE IS PAGE~COUNTER,
02 LINE PLUS 1 COLUMN 90 PIC X(8) VALUE #GROUP NO#,
02 COLUMN 100 PIC X(7) VALUE #EXPENSE#,
TYPE 1S CONTROL HEADING FINAL LINE PLUS 2.
02 COLUMN 4 PIC XXX VALUE #CHF#,
02 cOLUMN 60 P1c X(17) VALYg *ITEMIZED BY GROUP#.
TYPE 1S cOTROL HEADING DEPTSNO LINE PLys 2,
02 CoLumn 5 PIC xxx vaLyE #CHAe,
02 COLUMN 70 PIC X(7) VALUE #DEPT=NO#e
TYPE 1S CONTROL HEADING SECT=NO LINE PLUS 1}
NEXT GROUP PLUS 2.
02 COLUMN 6 PIC XXX VALUE #CHB#.
02 COLUMN B0 PIC X(7) VALUE #SECTION#.
DETAIL=TTEM TYPE DETAIL LINE PLUS 1,
02 COLUMN 7 PIC XX VALUE #DE#.

02 DNERPT PIC X(S5) COLUMN 70 SOURCE DEPT=NO GROUP INDICATE.

00¥62209

€8-¢

USAS]I COBOL leg / MASTER 21 REPQRT=WRITER=EXAMPLE 10714768
00057 02 SECT PIC X(5) COLUMN B0 SOURCE SECT»NO GROUP INDICATE.
000sg 02 GRP=n PIC X(5) COLUMN 90 SQURCE GROUP=NO.
00059 02 AMOUNT PIC 222427 COLUMN 100 SOURCE AMNT=NO.
00060 U1 TYPE 1S CONTROL FOUTING SECT=NO LINE PLUS 2.
0006l 02 COLUMN & PIC XXX VALUE #CFB#,

00062 02 COLUMN B9 PIC x(10) VALUE ®#SEC TOTAL#.
00063 o; COLUMN 100 PIC Z2Z2ZZZ¢ZZ_5UM AMNT=NO.
00064 01 TYPE IS CONTROL FOOTING DEPT«NQ LINE PLUS 2.
00065 02 COLUMN % PIC XXX VALUE #CFA#,.

00066 02 COLUMN 70 PIC X(11) VALUE #DEPT. TQTALZ.
00067 02 COLUMN 100 PIC z27222.2Z SUM AMNTLNO,
0pp68 01 TYPE 1S cONTROL FOOTING FINAL LINE PLUS 2,
00069 02 COLUMN 4 PIC XXX VALUE #CFF#,

00070 02 OLUMN €0 PIC X(11) VALUE #GRAND TgTAL*.
00071 02 COLUMN 100 PIC 227222.22 SUM AMNTLNO,
00072 0l TYPE 1S PAGE FOOTING LINE PLUS 2.

00073 02 COLUMN 3 PIC XX VALUE #PF#,

00074 02 COLUMN 110 PIC X(%) VALUE #PAGE#,

0007% 02 COLUMN 115 PIC 999 SOURCE IS PAGE-COUNTER,
00076 01 TYPE IS REPORT FOOTING LINE FLUS 2,

00077 02 COLUMN 2 PIC XX VALUE #RF#s

00078 02 COLUMN 30 PIC X(4l) vALUE IS

00079 #THIS COMPLETES THE MONTHLY EXPENSE REPORTge
00080 PROCEDURE DIVISION

00081 START,

00082 OPEN INPUT FILE=A,

00083 ORPEN OUTPUT FILE~B.

00034 INITIATE REPORT=As

00085 STEP=2,

00086 READ FILE=A AT EnD GO TO STOP~1IT,

00087 GENERATE DETAIL=ITEM,

00088 G0 TO STEP=2,

00049 STOP=IT,

00040 TERMINATE REPORT=A,

00091 CLOSE FILE=As FILE=B.

00092 STOP RUN,

00093 END PROGRAM,

7e-¢

00762209

RH
PH

CHF

CHA
91,1]
DE
DE
DE
DE
DE

CFB
CHB
OE
DE
DE
DE
CFn
CHR
DE

CFR
CHB

DE
CFR
CFa

CHaA
CHR

DE
OE

CFR
PF

EXPENSE ACCOUNT

ITEMIZED BY GROUP
DERT=NO

A0010

A0010

Ajol0

Agolo

SECTION
AAQO]

SECTION
AAQDZ

SECTION
AADSO

SECTION
AAQ60

DEPT, TOTAL

DERPT=NO

A0020

SECTION
AAQO3

GROUP NO

AAAQ]
AAAQ2
AAAD3
AAADG
AAAOS

SEC TOTAL

AAAD]
AAAQ2
AAASO
AAAGO

SEC TOTAL
AAAODL

SEC TOTAL

AAA3Q
SEC TOTAL

AAAQG
AAAQT

SEC TOTAL

EXPENSE

10050
120,50
135,00
125,90
158,20

6404010

2450
28+50
35600
505000

892400

600,00

60000

785,00
785.00
2917+10

500.50
655.00

1155450

PAGE 001

PAGE. 001

00%62209

Gge-g

PH
CHB
DE
CFB
CFaA

CHA
CHR
DE

CFR
CFA

CHA
CHa
DE

CFB
Che

DE
CFg
CFa

CHA
CHH
DE

CFR

CFA
PF

SECTION
Apo20 AAQOG

DEPTs TOTAL

DEPT=NO
SECTION
A0030 AADOS

DEPTs TOTAL

DEPT=NO
SECTION
A0040 AAQDG6
SECTION
A0040 AAQOT

DEPT. TOTAL

DEPT=NO
SECTION

AD0S0 AADBO

DERPTS TOTAL

GROUP NO

AAA16

SEC TOTAL

AAALT

SEC TOTAL

AAA20
SEC TOTAL
AAA30
SEC TOTAL

AAA4Q

SEC TOTaAL

EXPENSE

425400
425400
1580450

525,25

52525
525,25

682,00

682+00

725,00
725400
1407,.,00

605,80
60580
605,80

PAGE 002

PAGE 002

PH

9¢-¢

CHa
CHB

DE

CFg
CH8

DE
CFB
CFa

CHA
CHg
DE

CFa
CHHE
DE

CFR
CFa

CHA
CHa
DE

CFR

CFa
PF

00%62209

DEPT=NO
SECTION
Apo6o0 AAl0Q0
SECTIUN
AQ060 AA150

DEPT. TOTAL

DEPT=NO
SECTION
A0070 AA250
SECTION
Apo70 AA260

DEPT. TOTAL

DEPT=NO
SECTION

AQQRYD AA300

DEPT. TOTAL

GROUP NO

AAASO

SEC TOTAL

AAAGO
SEC TOTAL

AAATO
SEC TOTAL

AAABO

SEC TOTAL

"AAASQ

SEC. TOTAL

EXPENSE

725,00
725000

688,85
688.85
1413.85

10105
101.05

189,50

189.50
290,55

198,50
1984+50

198,50

PAGE 003

PAGE 003

00¥62%09

Lg-G

PH

Cha
CHA
DE
CFR
CFa
CHa
CHB
DE
CF8
CFa
CcFF

PF
RF

DEPT=NO
SECTION

A0090 AA350

DEPTs TOTAL

DERT=NO

SECTION

A0100 AA3B0

DERPT. TOTAL

BRAND TOTAL

THIS COMPLETES THE MONTHLY EXPENSE REPORT

GROUP NO

AAA9S
SEC TOTAL

AAA99
SEC TOTAL

EXPENSE

995,00
995400
995400

9934,95

PAGE 004

PAGE 004

LIBRARY 6

6.1
COPY STATEMENT

60229400

The COBOL library contains text that is available to a source program at
compile time. Compilation of library text is effectively the same as if the
text were actually written as part of the source program.

The COBOL library may contain text for the Environment Division, the Data

Division, and the Procedure Division. Library text is made available through
the COPY statement.

COPY library-name

word-1 } B { word-2 1
identifier-1 identifier-2 f

{word-3 } BY fword-4 }
? identifier-3 == identifier-4 te J

REPLACING {

A word is any COBOL word in a library routine that is not on the list of
COBOL reserved words (appendix C).

The COPY statement may appear:

® In any Environment Division paragraphs
® TInany FD, SD, RD or 01 level entry in the Data Division
® In a Procedure Division section or paragraph

No other statement or clause may appear in the same entry as the COPY
statement.

The library text is copied from the library at compilation time. The result
is the same as if the text were actually part of the source program. The
COPY process is terminated by the end of the library text.

6-1

If the REPLACING option is used, each word or identifier specified in the
format is replaced by a corresponding word or identifier when COPY is exe-
cuted. Replacement of one identifier by another includes all associated qual-
ifiers, subscripts, and indexes. Use of the REPLACING option does not alter
the text as it appears in the library.

The library must not contain any COPY statements.
The COPY statement may be written as follows:
The COPY statement may be written as follows:
ENVIRONMENT DIVISION.

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES. COPY statement.

FILE-CONTROL.
I-O-CONTROL,

DATA DIVISION

FILE SECTION

FDfile-name
{ SD sort-file-name COPY statement.
01 data-name

WORKING-STORAGE SECTION
01 data-name COPY statement.

REPORT SECTION.

{ RD report-name |

? 01 data-name COPY statement.

PROCEDURE DIVISION

procedure-name. COPY statement

60229400

6.2
SOURCE LIBRARY
PREPARATION

60229400

The information to be copied may appear on the system library file (*1LIB) or
on an auxiliary library file. These are mass storage files referenced through
the system library directory (*DIR) or an auxiliary library directory. COBOL
source library entries are placed on a library file using the MASTER library
generation routine GLIB. GLIB is described in the MASTER Installation
Manual. BCD COBOL source statements are written on the library in card
image format and an entry is placed in the non-resident library subprogram
directory using the $BCD card as follows:

$BCD, library-name
COBOL source statements

Fach Environment or Procedure Division paragraph, file description, record
description, or report description entry must be placed on the library as a
separate $BCD entry.

Library names may not exceed eight characters.
Examples:

$BCD, SCOMP
SOURCE-COMPUTER, 3300.

$BCD, PAY-FILE
FD PAY-FILE LABEL RECORD OMITTED
DATA RECORD IS PAY-CARD.,

$BCD, PAY-CARD
01 PAY-CARD
02 NAME PIC X(30),
02 PAY-RATE PIC 9(5).

$BCD,SECT-1
MASTER-UPDATE SECTION.
PARAGRAPH-1,
OPEN INPUT... .

.
.
.

$BCD, PAR-2
PARAGRAPH-2.
CLOSE

The $BCD card always begins in card column 1; the COBOL source statements
follow the COBOL coding sheet format (chapter 8).

6-3

SOURCE PROGRAM PREPARATION,
COMPILATION, EXECUTION

7.1

REFERENCE FORMAT The reference format is the standard method for describing COBOL source
programs. It is described in terms of character positions in 80-character
source records read from the standard input file (INP) or from the dsi
supplied by the user in the UCBL control card parameter, I =dsi.

The rules for spacing given in the discussion of the reference format take

precedence over all other rules for spacing.

Each division must be written according to the reference format rules; and
the divisions must be ordered as follows:

Identification Division

Environment Division

Data Division

Procedure Division

Each source record is equivalent to one line of the COBOL coding sheet.

source line is divided into five areas as follows:

Character Position

1-6

7
8-11
12-72
73-80

60229400

Area

Sequence Number
Continuation
Area A

Area B
Identification

This

7-1

7.1.1
COBOL CODING
SHEET

Specifications for the source program are written on COBOL coding sheets
according to the formats contained in this manual.

All division names, section names, and paragraph names start in area A of
the coding sheet. Division names are followed by a period and the rest of the
line must be blank. Section names are followed by the word SECTION and a
period. The remainder of the line is blank, except if the section is a DE~
CLARATIVE, it may be followed by a USE or COPY sentence. Paragraph
names are followed by a period and at least one space. The text may follow
or may start in area B of the next line.

The level indicators: FD, SD, RD, the level numbers: 01 and 77 begin in
area A. They are followed by one or more spaces and the associated entry.
All other level numbers begin in area B followed by a space and associated
entry.

Sequence numbers, if specified, are in the sequence number area. Program
identification is placed in the identification code area. Lines may be broken

at any convenient point, spaces may remain at the end of the line. When a
word or a numeric literal is split between two lines, a hyphen must be specified
in column 7 of the second line, (continuation area). If a non-numeric literal is
split between two lines, a quotation mark must be specified in area B of the
second line in addition to a continuation hyphen in column 7 of the second line.
In this case only, the blanks at the end of the first line are considered part of
the literal.

60229400

COBOL Coding Sheet Rules

Element Type Division Reference Area Remarks
Division-name ALL Area A Name must be followed by a
period; remainder of the line
must be blank.
Section-name ENVIRONMENT Area A Name must be followed by a
Name DATA space, the word SECTION,
PROCEDURE priority if specified, and a
period; remainder of the line
must be blank, or contain a USE
sentence.
Paragraph- IDENTIFICATION Area A Name must be followed by a
name ENVIRONMENT period and at least one space.
PROCEDURE Text may follow on same line or
at column 12 on next line.
File Description DATA Area A Descriptions begin with level
Sort Description indicator, FD, SD, or RD,
Report Description two or more spaces separate it
Data from data name. Clauses are
Description separated by one or more
Entry spaces.
Record Description DATA Area A or Same as file description entry.
Report Element Area B Level number 01-49, 66, 77 and
Description 88. Only 01,77 entries may begin
in Area A.
First sentence IDENTIFICATION Following period
of a paragraph ENVIRONMENT and 1 space after
or section PROCEDURE paragraph or
Sentence section name, or
on next line in
Area B.
All other IDENTIFICATION Following period Sentences may be written in
sentences ENVIRONMENT and 1 space after columns 12 through 72 only.
PROCEDURE the previous
sentence.
Data description DATA Area B Line breaks may occur at any
entry convenient point, with spaces at
end of line if desired. If a word
Continued Sentence IDENTIFICATION Area B or literal is split between two
Elements ENVIRONMENT lines, a hyphen must be specified
PROCEDURE in column 7 of the second line.
Sequence ALL Sequence Area Sequence number does not affect
Number the object program; processor
Non-Program does check for correct sequencing.
Entry
Program Ident- ALL Identification Area Identification information does
ification not affect object program.

60229400

7-3

7.2

COBOL CONTROL

CARDS

7.2.1
UCBL CARD

This card, which signals MASTER to call the COBOL compiler, is placed
directly before the Identification Division of the source deck. It may contain
up to nine parameters which specify input/output options provided by the
compiler.

((SUCBL (®,p,,.-By)

Parameters are free field, separated by commas; they have the general form:
option = dsi
The option must begin with a character I, P, X, L, M, C, O, or T.

Additional characters preceding the equal sign are ignored; for example, L
and LIST are the same parameter. If only the option is stated, COBOL will
make a standard assignment for the option. The user is responsible for
opening the file and giving it the proper dsi before calling COBOL.

INPUT = dsi Source input file; if the parameter or file equation
is omitted, the standard input file, INP, is assumed.

PUNCH = dsi Punch; dsi represents a data set identifier assigned
to an output file or device. If the parameter is
absent, no punch output is produced. If only P
appears, binary output is produced on the standard
punch file, PUN.

XECUTE =dsi Binary output for load-and-go; dsi represenis a data
set identifier assigned to a read/write file. If the
parameter is absent, no load-and-go file will be
written. If only X appears, binary output will be
produced on the standard load-and-go file, LGO.

LIST =dsi Source code list; dsi represents a data set identifier
assigned to an output file or device. If the parameter
is absent, no listing will be produced. If only L
appears, the listing will be produced on the standard
output file, OUT.

MAP Supplies a memory map in the Data Division only if
L is also specified; the map is produced on the same
dsi as the list.

60229400

7.2.2
END PROGRAM CARD

7.23
FINiIS CARD

724
ENDATA CARD

60229400

OBJECT Provides a listing of the object code generated for
the program. A mnemonic operation code and data
reference symbols as well as an octal representa-
tion are produced for each instruction. This option
may be specified only when LIST is specified. The
object is produced on the same dsi as the list.

COPY = fdsi/ddsi Identifies library files; fdsi is the data set identifier
of the file from which source COBOL statements are
copied when COPY is specified in the source program.
ddsi is the data set identifier of the directory used to
locate the source statement entries on the library
file. If C appears alone or is omitted, *LIB/*DIR
is used when a COPY statement is encountered.

TRACE Indicates embedded TRACE statements are to be
compiled; if omitted, ali TRACE statements within
the source program are ignored during compilation.

This card indicates the end of the source program to the COBOL compiler.
It contains the specification END PROGRAM beginning in column 8, and
should follow the last card in the Procedure Division of the source deck.

The FINIS card signals the end of compilation and returns control to MASTER.
It consists of the word FINIS starting in or to the right of column 8.

If only one COBOL program is submitted for compilation, the FINIS card is
placed behind the END PROGRAM card. If more than one COBOL program
is submitted for compilation, the END PROGRAM card for the first program
is followed by the Identification Division for the second program, and so on.
The FINIS card is placed after the last END PROGRAM card. FINIS is cor-
rectly recognized only after an END PROGRAM card.

The ENDATA card signals that the end of data has been reached on the system
input file (INP) or the input file on the card reader. It consists of the word
ENDATA beginning in column 1. The ENDATA card should be inserted directly
behind the user's data deck. If the deck has MASTER control cards between
the end of the data deck and the standard MASTER end-of-file card, the
ENDATA card preceds the MASTER control cards.

7-5

7.3
MASTER
CONTROL CARDS

7.3.1
JOB CARD

7.3.2
SCHEDULE CARD

7-6

MASTER control cards contain a $ punch in column one, followed by the
statement name and parameters, separated by commas. Only cards required
for a compile-only and a compile-and-execute run are described in this manual.
A complete discussion of the options available under MASTER is found in the
MASTER Reference Manual, Publication number 60213600. The UCBL card is
a MASTER control card.

All jobs submitted for processing under MASTER require a JOB card. It sup-
plies information to the installation accounting routine, identifies the program-
mer, and sets a job processing time limit.

$JOB,c,i,t,lc,pe

c Account number, 0-8 characters
i Programmer identification, 0-8 characters

t Job time limit in minutes for entire job maximum 1440 minutes;
if blank, job time depends on the installation accounting routine

le line count, specifies size of standard output file
pc punch count, specifies size of standard punch file

The ¢ and i fields are mandatory. If one of the fields is blank, the job is
terminated. The JOB card is written on OUT.

($SCHED, SCR=x, CORE=x, ...

Under MASTER $SCHED cards are optional; but at least one is required for
COBOL users. Card format is free field and the entires may occur in any
order. Blanks or commas may be used as separators, but are not required.

The fields required by COBOL follow:

SCR=x 1-3 decimal digits describing number of segments of system
scratch required to hold the intermediate output of the COBOL
compiler and the user's scratch files during execution. SCR=8

is the minimum required for compilation.

60229400

CORE=x 1-3 decimal digits describing the number of 512 word quarter
pages required for the run. If object program is larger than
the compiler, the user must reserve additional memory.
CORE-=35 is suggested as a minimum for normal compilation.

Optional fields that may be required by the object program follow:

CLASS= E Emergency
B Background
I Input/Output (usual class for COBOL jobs)
C Compute

peq= peq is a hardware type number, decimal digits to the right of =
indicate the quantity of equipment of this type required to handle
user files. Drives must be reserved for all Class B files. Unit
record devices must also be reserved.

7.3.3
*DEF CARD ﬁ*DEF(pl,pz, c.l)

These cards are used to allocate, open, or close user files. Complete descrip-
tions appear in the MASTER Reference Manual. *DEF cards are not required
for COBOL compilation or execution except:

User must OPEN a nonstandard file for INPUT, LIST, PUNCH, XECUTE,
or COPY, and he must specify the dsi for the file on the $UCBL card.

User must allocate all permanent online mass storage files which are not
in existence when execution starts. Other mass storage files are allocated
internally during program execution when the programmer includes the
FILE LIMITS clause in the source program. OPEN source statements in
the user program open all allocated files except a rerun dump file on mass
storage, this must be opened with a *DEF card prior to object time. If
the file to be allocated is blocked, the user must add eight characters to
the block size for an 1/0 control system mass storage block header.

60229400 7-7

734
TASK NAME CARDS

74
OUTPUTS FROM
COMPILATION

7.4
SOURCE PROGRAM
LISTING

7.4.2
ERROR
DIAGNOSTICS

($name,d31(p1,p2,p3, L)

This MASTER control card is read by the job monitor, an operating system
task. The file specified by dsi is positioned at its beginning and the first

task is loaded. However, if the dsi is *LIB, the library directory is searched
and the named task is located before it is loaded.

On a compile and execute run, this card follows the FINIS card.

Since only the name is checked for library tasks, the task name card will
usually appear as follows:

($name, LGO.

The COBOL compiler provides a printer listing of the source program. The
lines are exact images of the cards in the source program deck. New line
numbers are generated corresponding to the card image on the listing. The
sequence numbers from the input cards are also printed.

Compiler diagnostics follow the source program listing and object code listing.
Line numbers adjacent to the diagnostics serve as cross reference to the ori-
ginal source line. Data names appear in coded form in the diagnostics. The
user can refer to the Data Division portion of the source listing where a code
was generated for the data name of first encounter.

The only errors recognized by the compiler are those in which the user has
broken rules of the COBOL language; it does not recognize faulty programming

logic, unless this also produces a language error.

All compiler diagnostics are listed in Appendix I,

60229400

743

SYMBOLIC LISTING
OF OBJECT
PROGRAM

7.4.4
OBJECT PROGRAM

7.4.5
DATA MAP

7.5
RERUN/RESTART
PROCEDURES

7.5.1
RERUN

60229400

When O is specified on the SUCBL card, an object program listing is printed
following the source program listing. For each instruction generated, a
mnemonic operation code and data reference codes are presented. An octal

Al

representation of each instruction is also printed.

When X or P is specified on the COBOL control card, the object program is
written on load-and-go or standard punch files. The decks produced may be
executed in the usual manner.

When M is specified in combination with L on the COBOL control card, a
data map of the information described in the Data Division of the source
program is printed following the source program listing.

When the RERUN option of the I-O-CONTROL paragraph is specified in the
source program, special control cards are required to create a rerun dump
file and to produce absolute task dumps which may later be used to restart
the job. Required control cards are listed below. Cards to allocate object-
time mass storage space for user files are not shown:

$JOB,...
$SCHED, ...

$*DEF(A,...) Allocate the rerun dump file (mass storage

only); block size must be at least 256 characters

$*DEF(3,W, rdsi,...) Open the rerun dump file

$xxxx,idsi Call task xxxx from idsi (INP, LGO, etc.)
If the rerun dump file is on tape, the allocate card is not required and the open

card will contain U as the first parameter. Only one rerun dump file may be
opened for a given job.

7-9

7.5.2
RESTART To restart a program from one of the dumps on the rerun dump file, the

following cards are required:

$JOB,...

$SCHED,... Must have same parameters as original

$*DEF(([)I,W,rdsi, . Openthe rerun dump file

$xxxx,idsi(rdsi, n) Task name card
XXXX Task name
idsi dsi of input file (INP, etc.)
(rdsi, Restart from rdsi; parameter passed to COBOL restart
routine
n) Number of rerun dump to be used for restart; n = 1-9999.

If n is omitted, the last dump on the file will be loaded.
The comma must be present.

Mass storage ALLOCATE cards should not be included in a restart run of the
program.

The restart routine re-positions all files to their locations at the time rerun
dump was taken. The rerun dump file is poritioned so that the next dump
follows the one used to restart the program. If input data came from system
input (INP) the entire data deck must be reloaded into the card reader.

7-10 60229400

7.6
SAMPLE
COBOL DECKS

7.6.1
COMPILE ONLY COMPILE ONLY With LIST and TRACE Options
7
88
(FINIS
l[

COBOL Source Deck
($UCBL(L, T)

/ $SCHED, CORE=35, SCR=10

/ $JOB, 723-M,JHL, 10, 100

60229400 7-11

7.6.2

COBOL SOURCE

DECK

7-12

COBOL SOURCE DECK

END PROGRAM

PROCEDURE DIVISION

L

L
/ DATA DIVISION

VA

L

L

-

Vs
(ENVIRONMENT DIVISION

L
L
=

IDENTIFICATION DIVISION

60229400

7.6.3
COMPILE AND
EXECUTE

COMPILE and EXECUTE With LIST and Disk Object Time CLASS A Storage

77
88

/ $*DEF(R, W, MFG, INVENTORY, 1,XYZ, ZYX, UNUSED)

|

/ ENDATA

/7
—4
(Data cards

{ $X,LGO

M

L
L
L
L
L

L
COBOL Source Deck

(EUCBL(L, X)

/ $5000,671231, 8, S, 853)

/ $*DEF(A, W, MFG,INVENTORY, 1,XYZ, ZYX, 50
|

/ $SCHED, CORE=40, SCR=10

($JOB,6181,CCC, 15,1000

60229400 7-13

7.6.4
RESTART

RESTART Rerun DUMPFILE on Disk, RESTART at Dump 5

77 |
88 L
Data cards l

Program binary deck
/§x, INP(RRUN, 5)
($*DEF(0,W, RRUN, JWR, RRDUMP, 1, ABC,0)
/$*DEF(O,W, PROG, JWR, PRG, 1,XYZ,])
($SCHED, CORE=35, SCR=10, CLASS=I, 853=2
$JOB, 7818, DWR, 20, 2000

7-14 60229400

7.6.5

COMPILE AND
EXECUTE
COMPILE AND EXECUTE
With LIST, Memory Map, and Tape Object-Time Storage
77
88
((Data cards
(’ $X, LGO
| !
A
v
~
(COBOL Source Deck
$UCBL(L, M, X)
/ $SCHED, CORE=35, SCR=10, CLASS=I, 604=4
$JOB, 4112,JRH, 15, 2000
60229400

7-15

7.6.6
EXECUTE

EXECUTE With Object-Time Mass Storage and RERUN on Mass Storage
77
88

Data cards

/END

1

-5

3
iBinary Deck]

$X, INP

{$*DEF(O,W, RRUN, JWR, RRDUMP, , , 0, S, 1)

$2048, 1000, ,,, 853)

{$*DEF(A,W,JWR, RRDUMP, ,,,

{$1000 ,8000,671115,8,S,853)

$*DEF(A,W, MFG, SPARE PARTS, 01, MFX, XYZ,
||

r $SCHED, CORE=30, SCR=10, CLASS~I, 853=2

$JOB, 7192, JWR, 20, 2000

7-16 60229400

APPENDIX SECTION

SAMPLE PROGRAMS A

The sample program (PSR-UPDT) listed on the following pages is a Program
Summary Report (PSR) update program. Its principal functions are to:

Maintain the PSR master file as a random access mass storage file.
Periodically update the master file.

Extract information from the file.

Produce reports showing, by product set, the number and status
of current PSRs.

60229400

-V

00%63209

00001
00002
00003
00004
00005
00006
00007
nnoo0s
00009
00010
00nll
ngole
0n013
00014
0cols
00016
o017
00018
00019
Q9¢020
00021
00022
Q0023
QC024
c0025
00026
00027
00028
00029
00030
0031
00032
0G033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043

ncoell
Deo0l2
DCOOY3
Doool4

PSR=UPDT

IDENTIFICATICON DIVISICON,
PRCGRAM=TIDs PSR=UPDT.
AUTHAR, DAS=DDJ.
REMARKS.
ENVIRCNMENT DIVISICN.
CCNFIGURATICN SECTICN,
OBJECT-COMPUTER. 3300.
SPECTAL=-NAMES.
SYSTEM=CUTPUT IS 2UT.
INPUT=AUTPUT SECTICN,
FILE-CAONTRCL,.
SELECT CUT=FILE ASSIGN T2 SYSTEM=CUTPUT.
SELECT INFILE=CARD ASSTGN TC SYSTEM=INPUT.
SELECT PRIM=-SEC~LIST ASSIGN TC DISK LIST
ACCESS MODE IS RANDOM
ACTUAL KEY IS PRIM=KEY.
SELECT PSR=FTLE ASSIGN To DISK PSR
ACCESS MCUE IS RaNDCM
ACTUAL KFY IS PSR-KEYe
SEILECT NUMBER=FILE ASSIGN TC DISK PNUM
ACCESS MJUE IS RANDOM
ACTUAL KEY IS NUM=KEY.
SEILECT SCRT=FILE ASSTGWN T SCRATCH SCRe
SEILECT SCRT-CUT ASSIGN To TAPE 05
SFLECT PeS=LIST ASSIGN TC DISK LST
ACCESS MODE IS RANDCM
ACTUAL KEY IS P=KEY,
SELECT WN=FILE ASSIGN TC DISK PANM
ACCESS MJUE 1S SEQUENTIAL
ACTUAL KFY IS N=KEY,
DATA DIVISICN.
FILE SrCTICN,
FD) auT=-fFILE
LAREL RECCKDS ARE oMITTED
REPCRTS ARE NELETF=RFPORT=19 LIST=PSR=NUM=REPCRT.
FD INFILE=CArD
LAREL RECCwD [S OMITTED
NATA RECZRD TS INREC,
0l INQEC.
N2 CARLO=TYPE PIC X.
88 LEGAL=CODE VALUES #A%s #C#e #D#9 #Lgy #5#,
n2 FILLER PIC X(79).

#R#e

00763209

e~V

00044 FD PRIM=SEC-LIST

00045 BLCOCK CONTAINS 24 RECCRDS

0C046 RECCRD CONTATNS 82 CHARACTERS
00047 LAREL RECCRD IS STANDARD VALUE CF
00048 ID IS #LIST=FILES®

00049 CWNER IS #PSR#

00050 ACCESS~FRIVACY IS #APSR#
00051 CDIFICATION=PRIVACY 1S 2MPSR#
00052 FNITICN=NUMBER IS 01

00053 DATA RECZRDS ARE

0G054 HEADER=RECCRDy PRIMARY~RECCRD)
00055 . SECCHNNARY=RECARD, EMPTY=-RECCZRD,
00056 Noonl6 0l HFADER=-RECCRD.

00057 nopool17 n2 CHWARD = INK PIC 9(12)
00058 DCooln 02 BACKWARD~LINK PIC 9(12)
00059 DNQO19 N2 HEADER=LINK PIC 9(i2).
00060 DEO020 N2 HEADER=LFV=NAMF,

00061 npoo2l 03 SUPP-LEVEL PIC X

00062 Naoo2? 03 HEADEX=NAMF PIC X(21)e
00063 nEooe3 N2 HEADER=5AK PIC 9(l2).
00064 DOONZ4 0l PRIMARY=RECCRI)

00065 NOQ025 02 FILLFR PIC X(24).
00066 DOOO26 02 PRCDUCT=-NAME PIC x(10y.
06067 DOOO27 02 MASTER=-SAK PIC 9(l12).
00068 DQO028 02 MSUS-SAK PIC 9(12).
00069 Dcooe9 02 RTS=SAK PIC 9(12)+
0no70 0¢0030 n2 FILLER PIC x(12).
0co7l Dao031 0l SECCNDARY=RECCRD,

00072 D0oo32 02 FILLER PIC X(24).
00073 NONO33 02 PSR=NUMBER PIC 9(5),
00074 DCO034 n2 PSR=S5AK PIC 9(12).
00075 D0Q035 02 PROU=NAME PIC X(10)e
00076 DNOO36 n?2 FILLER PIC XX

00077 Deon37 02 CP=SYS=nAME PIC X(6),
00078 DOON3A 02 LIST=LIT PIC X(8),.
0079 D039 02 FILLER PIC X(15).
00080 DOQO4O 01 EMPTY=RECCRD.

00081 Deeo4l 02 EMPTY=SAK PIC 9(12).
00082 Doon42 n2 FILLER PIC X(70).
00083 FD pPSR=-FILE

00084 RECCRD CONTATHMS 12 CHARACTERS
00085 LASEL RECCRD LS STANDARD VALUE OF
00086 ID IS #PS=R=FILES#

00087 CWNER IS #PSk#

ooos8s8 ACCESS-PRIVACY IS #APSR#

¥-v

00%¥62209

06089 COIFICATICN-PRIVACY IS *MPSR#

00090 FDITICN=NUMBER IS 02

00091 . NDATA RECCRU TS PSR=-FILE~-HEADERs PSR=FILE-REC.
00092 DQOC44 0l pSP=FILE-HEADER,

00093 NGOO4S 0?2 NEXT-EMPTY PIC 9(12),

00094 D(:0046 02 FILLER PIC X(500).

00095 DCOQ4? 01 pPSe-FILE=REC,

00096 NQOC4A N2 PSR=FILK1-MCVE,

00097 DCO049 03 PSKR=ND PIC 9(5).

00098 DCQOS0 03 DATE=IN PIC X(B).

00099 DNCOS! 03 PRCD=NM PIC X(10),

00100 DQOOS2 03 VERSICN=NC PIC 9V9,.
00101 DPNOOS3 03 PRCD=NC PIC X(4).

00102 D0QOS4 03 oP=SYS~1 PIC X,

00103 DCQO55 03 VER=-1 PIC 9V9.
0N104 DLQGS6 03 0oP-SYS=2 PIC X,

0105 DCOOS7 03 VER=-2 PIC 9V9.
00106 DQOO58 03 ¢P-SYS5=3 PIC X,

00107 DNQO59 03 VER=-3 PIC 9V9,
00108 DQOO6KO 03 REPCRT-CRG PIC X(l4).
CC109 DQQO6lL 03 FQUAL=PSR PIC X(5)a

00110 nOO0AK2 n2 PSR=FILE2-MOVF,

00111 DCOC63 03 guT=nTD PIC X(8).

00112 DNQQO64 03 SCHEN=-1IMPL,

00113 DNOO6S 04 SYS=A PIC 9V9.
00114 DQO066 04 VER=A PIC 9V9,
00115 DAQO67 04 SYsS=B PIC 9V9.
00116 DQO068 04 VER-8 PIC 9V9.
00117 DQOOAS 04 SYS=C PIC 9V9.
00118 DGOCTO 04 VFER=C PIC 9V9,
00119 DpOO71 03 TESTFV PIC X.

00120 DoQNT2 03 SuM=NC PIC 999.

00121 DAQNT3 02 DESCRIPTICN,

00122 DNOCT4 03 DESC PIC X(73) CCCURS 5 TIMES.
00123 DGONTS 0?2 PSR=FILF3-MOVE,

00124 DPRQOTA 03 ABS=DT PIC 9(4y.

00125 DOOOTT 03 PSR-AK=FCRW PIC 9(12).
00126 NOHQOTA 03 PSR=-AK=BACK PIC 9(12).
00127 DOOOT9 03 OP-KEYl.

00128 DGO0O8BO 04 MASTER-LIST=AK PIC 9(12).
€0129 neooel 04 MSOS=LIST=AK PIC 9(12).
00130 DNEOB2 04 RTS=LIST-AK PIC 9(12).
00131 nDOQ083 03 CP-KEY2 REDEFINES CP=-KEYl.
00132 DCQOR4 04 OoP=KEY PIC 9(12) CCCURS 3 TIMES,

00133 DO0NO8BS 03 FILLER PIC XX.

00%62209

G-V

00134
00135
00136
00137
00138
00139
06140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178

D0O08T
D2QOAA
DOOOES

D00118

FD

nl

FO

0l

nl

ol

NUMBER=FILE
RLACK CONTAINS 42 RECCRDS
RECORD CONTAINS 12 CHARACTERS
LASEL RECCRD IS STANDARD VALUE OF
1D IS 2PSR-LIST#
CWNER IS #PSR#
ACCESS~PRIVACY IS5 #APSR#
COIFICATICN=PRIVACY IS #MPSR#
EDTTICN=NUMHER IS 03
NATA RECORL IS5 NUMBER=RFCa
NUMBER=REC.

02 NUM=BLK PIC 9(7),
02 NUM=CHAR PIC 9(5),
SORT-CUT

LABEL RECCPD IS OMITTED
NATA RECAORDS ARE
REC=Ay RFC=Cy REC=Ds REC=Ls+ REC=U, REC=R.
QEC'AQ
ne2 CDE=ALPHA PIC X.
N? CCOUE=NUM PIC 9,
02 REC=A=MCVEl,
03 PSR=NUM PIC X(5),
03 FILLER PIC X(52),

n2 FILLER PIC X(21),
REC'C.

02 FILLER PIC X(7)e
ne COGFH=2UT PIC X(B).

02 SCHEDULED=IMPL,
03 (oP=SYSTEM=1 PIC 99,

03 VERS=1 PIC 99
03 CP=SYSTEM=2 PIC 99
03 VERSe? PIC 99,
03 CP=SYSTEM=3 PIC 99,
03 VERS=3 PIC 99.
02 TEST PIC X
02 SUM=NUM PIC 999,
N2 PSR=FQ PIC X(45).
0?2 FILLER PIC x(4),
REC=Do.
02 FILLER PIC XX

02 DELETE=-FIELD ©OCCURS 5 TIMES.
03 DELETE=PSR=NC PIC 9(5).
03 DELETE=-REASSN PIC X(9)a
03 DELETE-LINKED PIC Xe

02 FILLER PIC XXXe

9-v

00¥62209

00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
0021%
00216
00217
co218
00219
00220
00221
00222
00223

DoO119
n00120
000121
PO122
Ngo123
000124

000125

DoQ126
Dgo127
Dgo128
DOO129
DO0130
D00131
Deol32
000133
DOC134
D00135%
DQ0136
000137
Doo138
DNN139
DQO140
NoCl41

NNO143
DCOl44
NO0145
DGO146
DE0147

DCO149

ol

ol

0l

sD

ol

FO

0l
FD

REC=Le
02 FILLER PIC XX,
02 PRIDUCT=LEVEL PIC X(10).
02 CP=SYS-LFVEL PIC X(6)a
02 SUPPCORT=-LEVEL PIC X
02 FILLER PIC X(6l1).
REC=Ue
02 FILLER PIC X
02 uU=FIELD PIC X(15)e
n2 U=BIAS Pic 9(8).
02 FILLER PIC X(59)e
REC=R.
n2 FILLER FIC X,
0?2 OS=FIELO,
03 OS=FTELD1.
04 CS=FIELD? PIC X(4),
04 OS-FIELD3 PIC X
03 CS~FIELD4 PIC X

02 PROD-FIELD PIC X(13),
02 WHICH=FIELD PIC Xx(10).
n2 AGE-FIELD PIC x(5),
02 QUANTITY=FIELD PIC X(7)
02 FILLER PIC X (4R),
SORT=FILF
RECCRD CCONTAINS B0 CHARACTERS
PDATA RECZCRD 15 SORT=FILF=REC,
SORT=FILE=RECS
02 SCRT<CCDE=] PIC X
02 SCRT=-CCOE=2 PIC X.
02 SCRT=CCOF=3 PIC X(S).
02 FILLER PIC X(7¥)a
N=FILE

BLOCK CONTAINS 42 RECCRDS

RECCRD CONTAINS 12 CHARACTERS

LAREL RECCKDS ARE STANDARD VALUE
ID IS #TEMPORY=PSR=-LTST#

CWNER IS #PS
ACCESS~FPRIVACY

R#
1s

#APSR#

MONIFICATICN-PRIVACY 1S #2MPSR#

EDTTICN=NUMBER IS

04

NATA RECSRD (S T=RFC-1,

T=REC=1
P=g=| IST

PIC 9(12).

RLACK CONTAINS 24 RECCRDS
RECCRD CONTAINS B2 CHARACTERS

00%62209

-V

00224
0n225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268

DO0151
DO0153
NQO154
N00155
DQN156
DNO157
DQ0158
DCO159
NHO160
DA0161
Daol62
D00163
DO0164
DC0165
000166
DO0167
D00168
D00169
DOO170

NRQ171
DQO172

" DOQ173

DOO174
DOO175
DOO176

ol

ILAREL RECCRDS ARE STANDARD VALUE ¢
ID IS #TEMPORY=LIST~FILE#
OWNER IS #PSR#
ACCESS=-PRIVACY 1§ #APSRg
CDIFICATICON=PRIVACY IS #MPSR#
EDTTICN=NUMBER IS 05
DATA RECCRD 1S T=REC-2.
T=REC=2 PIC X(82)a

WCRKING=STCRAGE SECTICN.

77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77

77
77

REL=FILES PIC XX,
CTR PIC 99,
Cp~cTR PICTURE IS 9,
INENT=CTR PICTURE IS 99.
CHECKED=CUT PICTURE IS X(19).
STARS PIC X(6) VALUE # ##éa #,
DIAGNCSSTIC=-U PIC Xxt(44) VALUE
2ILLEGAL UTILITY FUNCTION#.
DIAGNCSTIC-C PIC x(44) VALUE
#ILLEGAL CARD CODE#.
NIAGNCSTIC=P PIC X(44) VALUF
#NEW PRCDUCT NAME == NCT ALLOWED#,
NIAGNSSTIC=L1 PIC X(44) VALUE
#2LFVEL CHANGE = NON=EXISTENT OPERATING SYSTEM#,.
NIAGNSSTIC=L2 PIC X(44) VALUE
2LEVEL CHANGE == NCN=EXISTENT PRODUCT NAME#.
NTAGNCSTIC=P)1 PIC X(44) VALUE
#2PSR NUMBER == | ESS THAN RIAS#.
NTAGNCSTIC=P2 PIC X(44) VALUE
#PSR NUMBER == NON=EXISTENT FOR DELETE#,
NTAGNSSTIC=P3 PIC Xx(44) VALUE
#PSR NUMBER ==~ EXISTING FQR ADD#.
NIAGNCSTIC=S PIC X(44) VALUE
#ILLEGAL SEQUENCE NUMRERZ#,
NIAGNCSTIC=C PIC X(44) VALUE
#NC OPERATING SYSTEM#,
DTAGNCSTIC=E1 PIC X(44) VALUE
#EQUATED PSR NUMBFR == NCT IN FILE, IGNORED#.

NIAGNCSTIC=Py PIC x(44) VALUE
#PSR NUMBER =« NON=EXISTENT FOR CHANGE#,.
RK1=CHO PIC 9(12) VALUE 100000.
HCLD'PSR pIC 9(‘3) o
PSR PIC 9(5)
ALLPHA=SAVE PIC Xe
READY=PSR PIC 9(12) e
READY=LIST PIC 9(12) .

8-v

00¥62209

00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313

D0Q177
nDo0178
DCO179
noo180
pool8l
NOoo182
NON183
noQles
po018s
DQQ18A
Dool187
D0O183
Donl189
Neo1go
Nno191
DO0n192
00N193
NCO194
DO0195
DNO196
DNO197
DNN198
DoO199
N0Q200
DQo201
Dnp202
neo203
DQC204
NOQ205
D00?6C6
NNo207
Doo208
D209
nPoo210
D0O211
Dgo212
000213
Npo214
Dpo215
DQo216
000217
Doo218
D0Q219
D00220

0l

ol
0l
ol

0l
ol

GC=KEY PIC Se

SAVE=SAK PIC 9(12) .
DELLETE=SuB PIC 9e

RACK=SAVE PIC 9(12)
RACK=SAVE PIC 9(12) .
I PIC 9

TEM=KEY=] PIC 9(12)
TE4=KEY=2 PIC S(12).
TEM=KEY=3 PIC 9(12) .
TEM=KEY=4 PIC 9(12).
TEM=KEY=5% PIC 9(12).
TEM=KEY=6 PIC 9(12).
TEM=KEY=T PIC 9(12).

TEM=KEY=8 PIC 9(7),
REPT=HEADRING PIC X(17).
0S=NUMBER PIC 9.

TSNAYS=DATE PIC 9(4),
NIFF=DATE PIC 9¢(4),

DESC~CTR PIC 9.

TEM=HCLD=1 PIC X(R2).
TIME=-STCRE PIC X(8).
NATE=STCRE PIC X(R),

P=KEY PIC 9(12).,

N-KEY PIC 9(12).
LIST=AREA=FIELD,

02 LIST=-AREA CCCURS 6 TIMES PICTURE 1S 9(6),
FIRST=DATE.

02 MM RPIC 99.

0?2 FILLER PIC X

o2 DD PI{C Q9.

n?2 FILLER PIC X

n2 Yy PIC Q9.

MMTAR

n?2 FILLER PIC Xx{36) VALUE 1§

#000031059090120151181212243273304334%,
TAR REDEFINES MMTARB.

02 MTAB pPIC 999 CCCURS 12 TIMEs,
Up—KEYlo

02 U=BLK PIC 9(7).

n2 U=CH PIC 9(5).

JP=KEY REDEFINES UP=KEY1l PIC 9(12).

R=C PIC 9(7)1v999,

R=c1 REUEFINFS B-C,

02 B8LK PIC 9(T).

02 CHAR PIC 999,

00%62¢09

6-V

00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358

npo221
D0Q222
000223
N00224
000225
00226
N00227
nQ0228
N00229
000230
n0o231
000?32
D00233
000234

DQQ247
D00248

De0o250
DQO251
npo252
N0Q253
DO0254
DQQ255
D002S6
000257
DQQ0258
000259
DQ0260
Doo261
D262
NQQ263
Do0264
D00265

0l

0l

ol

01

ol
0l

01l

ol

ol

ol

01

ol

PRIM=KEY] .
PRIMeKEY=1 PIC 9(T7),

02

(oY PﬁéM-KEY-H PIC 9(5),

PRIM=KEY REDEFINE -KE"

P SmaREYL. S PRIM=KEY1l PIC 9(12).
02 PSR=KEY=] PIC 9(7).

02 PSR=KEY=2 PIC 9(5),

PSR=-KEY REDEFINES PSR=KEYl PIC 9(12),
NUM"KEYI .

02 NUM=KEY=-] PIC 9(7),

N2 NUM=KEY=-2 PIC 9(5),

NUM=KEY REDEFINES NUM~KEY1 PIC 9(12).

HEADER=RECCRD=STORAGE »

LIST HEADER#,

0?2 EMPTY=HEAU=REC PIC 9(12).
02 PLH=SAK PIC 9(12),
02 PRIM=EXPAND PIC 9(12).
02 H=R=§ PIC X(34),
02 H=R=§=SAK PIC 9(12).
PSR=FILE=HEADER=STORAGE o
02 EMPTY-PSR=FILE PIC 9(12).
02 FIRST=PSR=ENT PIC 9(12),
02 PSR=EXPANU PIC 9(12).
02 P=F=H=§=H PIC X(476).
NUMBER=F ILE~STORAGE .
02 NUM=EXPAND PIC 9(7).
02 BIAS PIC 9(5).
PSR~EQT e
02 EQUAL-?SR: PIC 9(5) OCCURS 9 TIMES
NDEXED RY PSR~
HEADER=RECORDT SR=INDEX.
02 FCORWARD=LINKT PIC 9(12)e
02 BACKWARD=LINKT PIC 9(12).
02 HEADER=LINKT PIC 9(12).
02 SUPP=LEVELT PIC Xe
02 HEADFER=NAMET PIC X(33) VALUE
02 HEADER=-SAKT PIC 9(12).
PRIMARY=RECCRUT
02 FOR=LINKT PIC 9(12).
02 BAK=LINKT PIC Q(12)
02 PRCDUCT=NAMET PIC X (10}
02 MASTER=SAKT PIC 9(12).
02 MSOS=SAKT PIC 9(12).
02 RTS=SAKT PIC 9(12).
02 HEAD=SAKT PIC x(12)e

RPRIMARY=RECCRDT REDEFINES PRIMARY=RECCRDT,

01-Vv

00%62209

00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403

D00309
000310

ol

0l

02 FILLER PIC X(34),.
02 R=SAKT PIC 9(12) CCCURS 3 TIMES.
02 FILLER PIC X(12).
SENCNDARY=RECCRDT.
02 FCRWARD=LKT PIC 9(12),
02 BACKWARD=LKT PIC 9(l2y.
02 PSR=-NUMBERT PIC X(S),
02 PSR=sAKT PIC 9(12).,.
0?2 PRCDeNAMET PIC x(10)e.
02 FILLER PIC XX
02 OCOP=SYS=NAMET PIC x(6),
n2 FILLER PIC XX
02 LIST=LITERALT PIC X(9) VALUE
02 HEADER=-ST PIC 9(12).
PSR-FILE=RECT.
02 PSR=-fFILE1-MOVET.
03 PSR=NCT PIC 9(S),
03 DATE=INT PIC X(8),
03 PROD=NMT PIC X(10).
03 VERSICN=NCT PIC 9V9,
03 PRODeNCT PIC X(4),
03 O0P=SYS=1T PIC Xe
03 VER=-IT PIC 9v9,
03 oP=SYS=2T PIC X
03 VER=-2T PIC 9v9,
03 oP=SYS=3T PIC X,
03 VER=3T pIC 9V9,
03 REPCRT=CRGT PIC X(lay.,
03 EQUAL=PSRT pIC 9(5),
02 PSR=FILE2=MCVET.
03 oUT=DTDT PIC X(8),
03 SCHED=IMPLT.
04 SYS=-AT PIC 9v9,
04 VER=AT pPIC 9v9,
04 SYS=-BT PIC 9V9,
04 VER-BT PIC 9v9,
04 SYS=CT PIC 9V9,
04 VER=CT pIC 9V9,
03 TESTEOD=-T PIC X.
03 SUM=NCT PIC 999,
02 DESCRIPTICNT,
03 DESCT PIC X(T73)
02 PSR=FIL3=MOVET,
03 AB-DTT PIC 9(4),
03 PSR=AK=FORWT PIC 9(12).

PSR=LINK#.

CCCURS 5 TIMES,

00%62209

11-V

00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448

P00311
D00312
000313
D0Q314
n00315
D00316
000317
D0Q318
D00319
000320
000321
D00323
D00324
D00325
000326
D00327

03 PSR=AK=BACKT PIC 9(12).
03 MASTER=LIST=AKT PIC 9(12).
03 MSOS-LIST=AKT PIC 9(12).
03 RTS=LIST=AKT pIC 9(12).
03 FILLER PIC XX.

01l SyS=CP~l.

02 SYS=CP PICTURE IS X(6) CCCURS 3 TIMES.
0l No=vER=1.

02 NO=VER PICTURE IS 9V9 COCCURS 3 TIMES.
0l IDENT=PSR=STCR.

02 STCR=IDENT CCCURS 10 TIMES INDEXED BY INDX=STOR.

03 STOR=IDENT=~1 PIC Xo
03 FILLER PIC X,
03 STCH=TVENT=2 PIC 9(5),
01 PROD=VER=1.
02 PRCU-VER PICTURE IS qQV9 £CCURS 3 TIMES,
REPCRT SECTICN.
RD DELETE=REPCRT=-1
PAGE LIMIT IS &0 LINES
HEADING 10
FIRST DETAIL 17,
01 LIMNE NUMRER IS 10
TYPE IS PAGE HEADING
CCLUMN NUMBER 1S 37
PICTURE TS X(17) SCURCE 1S REPT=HEADING,
01 RERPCRTED«DELEVE
TYPE IS DETAIL.
n?2 LINE NUMRER IS 12
CLUMN NUMBER 1S 73
PICTURE 1S X(8)
SCURCE 1S SYSTEM=DATE.,
n2 LINE NUMRER IS 15
CCLUMN NUMBER 1S 10
PICTURE IS X(10) VALUE IS #PSR NUMBER#.
02 CCLUMN NUMBER IS 22
PICTURE I8 9(5)
, SCURCE 1S PSR=N2T.
02 LLINE NUMBRER IS 17
CCLUMN NUMBER IS 10
} PICTURE TS X(7) VALUF IS #PRODUCT#.
02 CLUMN NUMBER IS 22
PICTURE 1S X(10)
SCURCE IS PRZD=NMT,.
02 CCLUMN NUMBER IS 35

PICTURE I3 X(14) VALUE IS #VERSION NUMBER#.

cI-Vv

00%62209

02449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
0n471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492
00493

0l

ol

0l

02 CCLUMN NUMBER IS 31
PICTURE IS 9.9
CURCE IS VERSICN~NCT.
N2 CCLUMN NUMBER IS %7
PICTURE T5 X(1a) VALIE IS #PRCDUCT NUMBER#,
02 COLUMN NUMBER 1S 73
PICTURE I35 X(4)
CURCE IS PRZD=NAT,
OP=SYS=RPT
TYPE IS DETAIL.
02 LINE NUMHER IS PLUS 2
COLUMN NUMHER 35
PICTURE TS X (1) VALUE IS #CPERATING SYSTEM#.
02 CLUMN MUMBER IS 53
PICTURE I X(6)
SCURCE IS SYS=0P (2P=CTR).
02 CCLUMN NuUMBER 1S 61
PICTURE IS X(14) VALUE IS #VERSICN NUMBER#.
02?2 CLUMN NUWBER 1S 77
PICTURE 15 9,9
SCURCE 1S NC=VFR (CP=CTR),
RPPT=CRG
TYPE IS DETAIL,
02 LINE NUMBER Is PLUS 2
CCLUMN NUMBER TS 35
PICTURE IS5 X(22) VALUE Is #REPCRTING ORGANIZATION#.
02 CCLUMN NUMBER IS 60
PICTURE IS X(14)
CURCE IS REPORT-CRGT,
02 LINE NUMRER IS PLUS 2
COLUMN MUIMBER 1S 35
PIC X(13) VALUE IS #REPCRTED DATE#.
02 CLUMN MU™MBER IS 60
PICTURE 1S X(8)
CURCE IS DATE-INT.
02 LINE NUMBER IS PLUS 2
CCLUMN NUMBER 1S 35
PICTURE T3 X(11) VALUE IS #PSR SUMMARY#,
02 CCLUMN NUMBER IS 60
PICTUKRE 15 999
SCURCE IS SUM«NCT.
NCT=ANS
TYPE IS DETAIL,
02 LINE NUMBER IS PLUS 2
CLUMN NUMBER IS 10

00%62209

§I-V

00494
00495
0N496
00497
00498
00499
00500
00501
00s02
00503
00504
00505
00506
00507
00508
00509
00510
00511
Qosl2
00513
00514
00515
00516
00517
ons18
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538

0l

ol

ol

PICTURE IS X(12) VALUE IS #NCT ANSWERED#.

ANSWERED

o2

0?

02

02

TYPE IS DETAIL,
LINE NUMBER IS PLUS 2
CCLUMN NUMBER IS 10

PICTURE TS X(20) VALUE IS #ANSWERED INFORMATION#,

LINE NUMRER IS PLUS 2
CCLUMN NUMBER IS 10
PICTURE IS X(13) VALUE IS #DATE ANSWERED#.
COLUMN NUMBER IS 25
PICTURE TS X(8)
SCURCE IS CUT=DTDT.
CLUMN NUMBER IS 36
PICTURE 15 X(19)
SCURCE IS CHECKED=0UT.

OPER=SYS<RPT

0?2

02

02

02

02

02

02
02

TYPE 1S DETAIL,
LINE NUMBER 1S PLUS 2
CLUMN NUMBER IS 30

PICTURE 15 X(21) VALUE Is #IMPL CPERATING SYSTEM#,

COLUMN NUMBER 1S 53
PICTURE IS5 X(6)
CURCE IS SYS-2P (2P=-CTR) .
CCLUMN NUMBER 1S 61
PICTURE IS5 X(14) VALUE IS #VERSION NUMBER#.
CCLUMN NUYBER 1S 77
PICTURE 15 9,9
CURCE IS NC=VER (CP=CTR)
LINE NUMRER IS PLUS 1}
CLUMN NUMBER 1S 30
PICTURE I3 X(12) VALUE Ig 2IMPL PRODUCT#.
CCLUMN NUMBER IS 44
PICTURE I3 X(10)
SCURCE IS PR2D=NMT.
CCLUMN NUMBER 1S 61
PICTURE IS X(14) VALUE IS #VERSICN NUMBER#.
COLUMN NUVBER 1S 77
PICTURE I5 9,9
CURCE IS PROD=VER (2FP=CTR).

REL=~PSRS

02
02

TYPE IS DETAIL,
LIN@ NUMR%R IS PLUS 3 COLUMN NUMBER IS 10
PICTURE 15 X(12) VALUE IS #RELATED PSRS#,

LINE NUMBER IS PLUS 2 CCOLUMN NUMBER IS 10
PICTURE I3 X(70)

¥1-v

00%63209

0ns39
ans40
06541
00542
00543
00544
00545
0N546
00547
00548
00549
00550
00551
ongs2
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00S63
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00875
00576
00577
Q0578

00579
00580
00581
onsez
00583

ol

ol

RO

ol

0l

SCURCE IS IDENTepPSR=§TOR,
02 LINE NUMBRER IS PLUS 3
CCOLUMN NUVBER IS 10
PICTURE IS X(11) VALUE IS #DESCRIPTION#,
DESCRIP=RPT
TYPE IS DETAIL,
02 LINE NUMReR IS PLUS 2
COLUMN NUMBER IS 10
PICTURE 1S X(73)
SCURCE IS DESCT (DESC=CTR) .
NFL=REASSN
TYPE IS D=TAIL.
02 LINE NUMBEx IS PLUS 3
SLUMN NUHMBER IS 10
PICTURE I5 X(17) VaLUE IS #REASON FOR DELETE#,
02 LINE NUMRER IS PLUS 2
CCLUMN NUMBER IS 10
PICTURE I3 X(9)
CURCE IS NELETE-REASCN (DELETE=SUB),
ILIST=PSR=NUM=REPORT
PAGE LIMIT IS 60 LINES
HEADING 10
FIRST DETAIL 18.
LINE NUMRER I3 10
TYPE IS PAGE HEADING
NEXT GRCUP IS PLUS 3,
0? CLUMN NUSBER 1S 56
PICTURE I5 X(6)
. SCURCE Is CP-SYS-NAMFT.
0n? CLUMN NU-BER 1S A3
PICTURE IS5 X(13)
7 CURCE IS PRSDUCT=NAMET,
02 COLUMN NUMBER IS 77
PICTURE 1S X(4) VALUE IS #PSRS#,
02 LINE NUMRER IS 13
CCLUMN Is 53
PICTURE 13 X(13)
SCURCE IS WHICH=FIELD.
N2 COLUMN NIJIBER TS a7
PICTURE 13 X(5)
SCURCE IS AGF=FIELD.
02 COLUMN NU.JBER IS 73
PICTURE TS X(8)
SCURCE 1S SYSTEM=DATE.
LISTING=REPCRTY

00%62209

SI-V

00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611
00612
00613
00614
00615
00616
00617
o618
00619
00620
00621
00622
00623
00624
00625
0062¢
00627
00628

TYPE IS DETATL, .
0?2 LINE NUMRER IS PLUS 2
CCLUMN NUMBER IS 10
PICTURE 15 9(6) SCURCE
0?2 CCLUMN NUMBER 1§ 32
PICTURE T% 9(&) SJURCE
0?2 CCLUMN NUMBER 1S 54
PICTURE 15 9(6) SCURCE
02 CCLUMN NUMBER 1S 76
PICTURE 15 9(h) SCURCE
02 CCLUMN NUMBER 1S 98
PICTURE T> 9(&) SCURCE
0?2 CCLUMN NUIMBER IS 120
PICTURE I% 9(6) SCURCE
PRCCEDURE DIVISICH.
DECLARATIVES,
PRIMaSFC SECTICN,

USFE AFTER STARDARD ERRZR PRO

PARA-1,

IS LIST~AREA (1),
IS LIST~AREA (2),
IS LIST~AREA (3).
IS LIST=AREA (4).
IS LIST=AREA (5).

Is LIST-AREA (6),

CEDURE CN PRIM=SEC=LIST,.

NISPLAY # ERRUR QCCURRED ON 1/0 OF PRIM=SEC=-LIST# UPON OUT.

PSR SECTICN.

USE AFTER STAMDARD ERRCR PRQ

PARA=?2,

CEDURE CN PSR-FILE.

NPISPLAY # ERRUR CCCURRED ON I/C OF PSR-FILE# UPCN oUT,

NUMBR SECTICN,

USFE AFTER STANDARD ERKCR PRC

PARA.3,

CEDURE CON NUMBER~FILE,

NDISPLAY # ERRCR CCCURRED ON 1/C8 CF NUMBER-FILE# UPON oUT,

SCRTT SECTICON.

USF AFTER STANDARD ERRSR PRO

PARA=G,
DISPLAY # ERRLR OCCURRED 2

END DECLARATIVES,

READLCARD SECTICON.

SCRT=TNPUT»

CELDURE ON SCRT=0UT.

N I/C CF SCRT~-CUT# UPCN QUT,

MCOVE SYSTEMTDATE TC FIRST=-DATE.
COMPUTE TCODAYS=DATE = ((YY = 66) % 365) + MTAB (MM) + DD,

OPEN INPUT INFILE=CARD.

SCRT SQRT-FILt Cn ASCENDING KEY SORT=CCDE=1 SCRT=CODE=2
SCRT«CCDE=3 INPUT PROCEDURE IS INPUT=PROCEDURE

GIVING SORT=0UT.
CLSSE INFILE=CARD,
READTAPE SECTICN.
TAPE«CPEN.
OPEN INPUT SOHT=CUT.

91~V

00¥62209

00629
00630
00631
00632
00633
00634
00635
00636
00637
00638
00639
00640
00641
00642
00643
00644
00645
00646
00647
00648
00649
00650
00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671
ooe72
00673

READ SCRT=CUT AT END G2 T2 LAST=CARD,
IF CCDE=-ALPHA = 2% GC To UTILITY.
CVvE CCUE=ALPHA TC ALPHA=SAVE.
FILE-OPEN,
CPEN I=C PRIM=SEC~| IST, PSR=FILE, NUMBER=FILE
MCVE BKleCHO 1C PRIM=KEY, NUM=KEYy PSR=KEY,
READ PRIM-SEC-LIST INVALID KEY PERFORM PROGRAM=BUG,
READ PSR-FILF INVALID KEY PERFCRM PROGRAM=BUG.
READ NUMBER-FILE INVALID XKEY PERFCRM PRCGRAM=BUG,
MCVE HEADER=~RELCCRD T4 HEADER-RECSRD=-STCRAGE,
MOVE PSReFILE=HEADFR TS PSR=FILE~HEADER=STORAGE .
MCVE NUMBER-RtC TC NUMBER=FILE~STCRAGE.
GC TC TAPE~CHECK,
TAPE=TNFPUT
PERPFCRM READ=-KCUTINE.
TAPE=CHECK
1F CCOE=ALPHA
1F CODE=ALPHA
IF CCDE=-ALPHA

282 GC Tn ADD~PRJCESSZR.
#C# GC T2 CHANGE-PRCOCESSOR,
#0¢ 6C T2 DELETE-PROCESSCR,.

JF CCDE=ALPHA #l.# GC T5 LEVEL-PROCESSCR.

IF CoODE=ALPHA #R2 GC To REPCRT=PRCCESSCRe.

PERFCRM PRCGRAM=HUG.

LAST=CARD.
MCVE BKl=CHO T3 PRIM=KEY, PSR=KEYs NUM=KEY,
WRTTE NUMBER«REC FRCM NUMRER«-FILE=STCRAGE INVALID KEY
PERFCORM PHOGRAM=RUG.
WRITE PSR-FILE~REC FROM PSR=FII.E~-HEADER=STCRAGE INVALID KEY
PERFCRM PHCGRAM=RUG,
WRTTE HEADER-wECSRD FRCM HEADER=RECSRD INVALLID KEY
PERFORM P“CGRAM=RUG.
CLASE SCORT=CU!s PRIM=SEC-LISTy PSR=FILLEs NUMBER=FILE,
ALTER=STCP.

60 T2 SToP=PAk.
STCP=PAR,.

STAP RUN,
ADDING SECTICN.
ADD=PRACESSCR.

MOVE 1 TC GCerEY,

TF CCDE=NUM = O MOVE REC=-A~MOVEL TC PSR=-FILF1-MCVE.
PSK=FILE)~MCVET PERFARM READ=-RCUTINE ELSE DISPLAY STARS»
DIAGNCSTIC-S, STARS, REC=A UPCN 2UT G2 T2 CARD=SEQ=ERRCR,

IF=CHECKER.

IF PSR=NUM NCT EQUAL TC PSR=NC GO TS ADD=END,

TF \CCDE=NUM = 1 CR 2 OR 3 CR 4 OR 5 G2 TC ADD=~PRCC,.

DISPLAY STARSs DIAGNSSTIC-Sy STARSs REC=A UPON CUT.

00¥622609

LI-V

v0674
00675
00676
00677
0nek78
00679
00680
0Ce81
00682
00683
00684
00685
00686
00687
onet8
00689
00690
0C6e091
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718

GO TS TAPE=INRPUT,
ADD=PROC,
MOVE REC=A=MOVEL T4 DESC (CONE~NUM)y DESCT (CODE=NUM)
PFRFORM READ-~CUTINE,
GO T IF=CHECKRER,

ADD=FEND.
MOVE DATE=INT TC FIRST-DATE,
COMPUTE AB=DTT = ((YY = 66) # 365) + MTAB (MM) + DD.
MOVE PSR=NCT 10 FSR.
COMPYUTE B=C = (((PSR = BTAS) # 12) + 504) / 504.

IF B=-C IS NEGATIVE DISPLAY STARS, DIAGNCSTIC=Pls STARSs #AO¥s

PSR=FILE1-MCVET UPAN 2UT GC TC TAPE=CHECK.
MCVE BLK TC NUM=KEY=1.
MOVE CHAR T NUMeKFYe2,.
ADD"END"‘I .
READ NUMBER-FILE INMVALID KEY PERFCRM EXPAND= -
GO TC ADD=END~1le EXPAND-NUM=FILE
IF NUMBER-REC IS NOT EQUAL TC ZERCES DISPLAY STARS,
NIAGNOSTIC=-P3, STARS, #£AQ#s PSR~FILE1~M2VET UPON QUT
GC To TAPE~INPYT,
ADD=FNN=2 .
MOVE PSR«NCT 10 PSR=NUMBERT,
MOVE PLH=SAK C PRIM=KFY, SAVE=SAK,
READ PRIM=SEC=LIST INVALID KEY PERFCRM PRCGRAM=BUG.
TF FORWARD=LINK = RACKWARD=LINK AND HEADER«SAK
GC TC BUILD=PRIM=FENTRY.
MOVE FCORWARD=LINK TC PHIM~KEY.
CHECK=ANCTHER
READ PRIM=SEC-LIST INVALID KEY PERFCRM PRCGRAM=BUG,
IF PRCU=NMT = PRODUCT=NAME G& TS FROUND=PRCD,
MOVE FCRWARD=LLINK TC PRIM=KEYe
IF PRIM=KEY IS NCT EQUAL TC sA AK GC TC =ANC
AUTLoE RN ER TRy Q TC SAVE-S GC TC CHECK AN THER,
MOVE SPACES TC PRODUCT=-NAMET,
DISPLAY # NEW PRCDUCT NAME# PRCD=NMT # TC BE ENTERED a#
#2RESPCOND CKe N2 CR CORRECT SPELLING#.
ACCEPT PRODUCT=NAMET,
IF PRCLDUCT=NAMET = #0K2 60 TG BLD=ENTRY.
1F PRCDUcT-NA@ET = #NC# DISPLAY STARS, DIAGNCSTIC-Py STARSS
#A0# PSR«FILE1=-MOVET UPCSN CUT GC TC TAPE=-CHECK,
MOVE PRCDUCT=NAMET To PROD=~NMT.
GC T2 ADD=END=2.
8LD‘ENTRY .
PERFCORM GET=EMPTY=| IST. MOVE ALL ZERCES TC PRIMARY~RECCRDT.
MCVE PRIM=KEY TC BRAK«LINKTe

81-V

00%63209

00719
00720
00721
00722
00723
oCc724
00725%
00726
o0r27
00728
00729
00730
00731
00732
00733
00734
00735
00736
00737
00738
00739
00740
oQT4l
00742
00743
00744
00745
00746
00747
00748
00749
00750
00751
00752
00753
00754
00755
00756
00757
00758
007%9
00760
Q0761
00762
007673

MCVE HEADER=SAK TS HEAD=SAKT, FOR=LINKT.,

MOVE PROD=NMT TS PRODUCT-NAMET,

MOVE READY=LTST T4 FORWARD=LINK,

WRITE PRIMARY=KRECORD INVALID KEY PERFORM PROGRAM=BUG,
MOVE FCRaLINKT TC PRIM=KEY,

READ PRIM=SEC-LIST INVALTI" KEY PERFCRM PRCGRAM=BUG,
MOVE READY=LIST TC BACKWARD=| INK,

WRTTF PRIMARY=RECCZRD INVALID KEY PERFCRM PROGRAM=BUG,
MCVE READY=LIST TS PRIM=KEYe

MCVE PRIMARY-<ECCRDT 12 PRIMARY=RECCRD.

WRTTE PRIMARY=RECCRD INVALID KEY PERFORM PROGRAM=BUG,

FCUND=PR2D

PFRFNRM GET=FuPrTY=PSRe MAVE PSR=NCT TS PSR=NUMBERT,

MOVYE KEADY=PSiK TC NUMAER-REC, PSR=SAKT.

WRTTE NUMBER=«tC INVAILID KEY PERFCRM PRCGRAM«BUG,

OVE PRIM=KEY TC TEMeKEY=1ls

MOVE PROD=(MT TS PRON-NAMF T,

IF CPp=SYSTEmM=1 = SPACES MEXT SENTENCE ELSE MOVE MASTER=SAK TO
PRIMeKEY ™COVE #MASTERZ TQ OP=SYS=NAMET PERFORM SYS=FOUND.

TF CP=SYSTEM=r = SPACES NEXT SENTENCE ELSE MOVE MSOS=SAK TO
PR{M=KEY #MCOVF 2MSCSy¢ TO OP=SYS=NAMET PERFCRM SYS=FCOUNDe

IF OP=SYSTEM=1 = SPACES NEXT SENTENCE ELSE MOVE RTS=SAK TO
PRIMeKEY 1CVE 2RT32 TZ CP=SYS=NAMET PERFCRM SYS=FCUND,

TF SPACES = 0P=SYSTEM~] nP=SYSTEM=2 AND {P=SYSTEM=3 DISPLAY
STARS s DIAGNISTIC-Cs STARSy REC=A UPCN oUT.

IF FQUAL=-PSRT = SPACES NFXT SENTENCE ELSE PERFORM
EQ=PSR=NI}it,

MOVE READY=P G T3 PSU=KEY.

WRTTE PSR=FIILn=REC FRCM pSH=-FILE-RECT INVALID KEY PERFORM

PRAGRAM=BUGs “CVFE TEM=KEY=1 TC PRIM=KEY,.

GO T TAPE~CHRUK,

FO=PSR=NIIMs

MOVE EWUAL=PSH T TS PSK,.

CMPUTE B=C = (((PSR = 814aS) # 12) + 504) / S04,

1F B=C IS NEG#VIVE DISPLAY STARS. DIAGNOSTIC«Ele STARSs #AO#,
PSR=FILEV=+OVET UPCN 2UT GC TC EQ=PSR=END.

MOVE BLK TS NusM=KFY=1.

MOVE CHAR TC M=KFEY=Z2,.

READ NUMBER=-FILE IMVALID KEY MOVE ZERS T2 NUMBER=REC,

IF NUMBER=REC = ZFRC LISPLAY STARSy DIAGNOSTIC=Ely STARS,
#A0#, PSR=FILE1=MOVET UPSN CUT GO T2 EQ=PSR=END

MOVE NUMBER=R:cC TC PSR=-AK=HACKTs PSR=KEY,.

PEAD PSR«FTILE INVALID KEY PERFCRM PRCGRAM=BUG

1F PSR=AK=FCR% = ZFR{ MCOVE PSR=KEY TC PSR-AK-BACK,
PSR=AK=FO~n,

00766209

61-V

00764
00765
00766
00767
00768
00769
00770
00771
00772
00773
00774
00775
00776
00777
00778
00779
00780
00781
00782
00783
00784
00785
00786
00787
00788
00789
00790
00791
00792
00793
00794
00795
00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00806
00807
00808
00809

OVE PSR=AK~FCHW T0 SAVE=SAK, PSR=AK=FCRWT.,
OVE READY=PSR TO PSR=AK~FCRWe
WRITE PSR=FILE=REC INVALID KEY PERFORM PROGRAM=BUG,
MOVE SAVE=SAK TC PSR-KFY,
READ PSR«FILE INVALIN KEY PERFCRM PROGRAM=BUGe
MCVE READY=PSit T2 PSR=AK=RACKe
WRITE PSR=FILE-REC INVALID KEY PERFCRM PRCGRAM=BUG.

EQ=PSR~ENDe

EXITe

CHANGE=PRCC SECTIUN.
CHANGE=PRCCESSCR,

MBVE PSReNUM 12 PSp,

CVE 2 TC GC=KEY,

COMPUTE B=C = (((PSR = BTAS) #* 12) ¢+ 504) / 504

IF CODE=NUM NCT EQUAL Tn ZERGS DISPLAY STARS, DIAGNOSTIC=S,
STARSy REC=A UPCN CUT G2 TC CARD=SEQ=ERROR.

IF B=C IS NEGATIVFE DISPLAY STARS, DIAGNOSTIC=Pls STARS
REC=A UPON CUT GO TC CARD=SEQ=ERRQOR.

MCVE BLK TC NUM=KFYwl,

MCVE CHAR TC NUM=KEY=Z.

READ NUMBER=FILE INVALID KEY MCVE ZERC TS NUMBER=REC,

T1F NUMBER=REC = ZFRC DISPLAY STARSy DIAGNOSTIC=P4, STARS,
REC=A UPSN CUT Gg TS CARD=-SEQ=-ERROR

MOVE NUMBER=REC TC PSK-KFYs MCVE PSR-EQ T2 PSR=EQT.

READ PSReFILE INTZ PSR=FTLE=-RECT INVALID KEY PERFCRM

PROGRAM=BUG,

IF LOGGED=-CUT = SPACES NEXT SENTENCE ELSE MoVE LOGGED=QUT
TC CUT=DTUT.

1F CP=SYSTEM=1 = SPACES MFEXT SENTENCE ELSE MOVE CP=SYSTEM=1
TC SYS=-AT.

IF VERS=1 = S¥ACES NFEXT SEWTENCE ELSE MCVE VERS=1 TC VEReAT.

1F OP-S;S;EE-Z = SPACES NEXT SENTENCE ELSE MCVE CP=SYSTEM=2
C SYS=BTe.

IF VERS=2 = SPACES NEXT SENTENCE ELSE MOVE VERS=2 TC VER=BT.

IF OP=SYSTEM=3 = SPACES NFXT SENTENCE ELSE MCVE OP=SYSTEMe3
TC SYS=CTe.

IF VER-3 = SPACES NEXT SENTENCE ELSE MCVE VFER=3 TC VER=CT.

IF TEST = SPACES MEXT SENTENCE ELSE MOVE TEST TS TESTED=Te

IF SUM=NUM = SPACES NEXT SENTENCE ELSE MQVE SUM-NUM TC
SUM=NCTs MCVE PSR=KEY TC TEM=KEY=3. °

CHANGE=CHECKER

PERFCRM READ-®CUTINE,

IF PSR=NUM N2Ii EQUAL T2 PSR=NOT G2 T2 CHANGE=~END.

IF CCDE=NUM = 1 2 3 4 CR % MOVE REC=A=MOVE] T2 DESCT
(CODE=NUM) GO TC CHANGE=CHECKER,

DISPLAY STARSs DIAGNGSTIC=Ss STARSy REC=C UPON SUT.

05~V

00%62209

00810
00811
00812
00813
00814
00815
00816
00817
00818
00819
00820
00821
00822
00823
00824
00825
00826
00827
00828
00829
00830
00831
00832
00833
00834
00835
00836
00837
00838
00839
00840
00841
00842
00843
00844
00845
00846
00847
00848
00849
00850
00851
00852
00853
00854

G2 TC TAPE=INPUT,.
CHANGE=END o
1F CP=SYSTEMel = ZERCES GC TC SECCND=CHECK.
IF MASTER=LIST=AK = ZERCFS MOVE #MASTER# TC OP=-SYS=NAMET
PERFCRM NEED=SECCNDARY=-LTIST.
SECCND-CHECK,
IF CP=SYSTEM=¢ = ZERZES G2 TS THIRD=CHECK.
IF MSOS=| [ST=At = Z7ERCES MCVE #MSCS# TC OP=SYS=NAMET
PERFCORM NEED-SECONDARY=LIST.
THIRD-CHECK
1F CP=SYSTEM=3 = ZFROES GJ To PSR=LINKAGE.
IF RTS=LIST=pAx = ZFROES MOVE #PTS# TC CP=SYS-NAMET,
PERFCRM NEED-SECOMDARPY-LTST,.
PSR=| INKAGE « MCVF PSH=KEY TJ TEMeKEY=3,
1F PSR=AK=FCR®T = ZERCES AND PSR~AK~BACKT G2 T2
NC=PSR=L 10K,
TF PSR=AK=FCRvT IS NCT EQUAL TC PSR=AK=BACKT GC TZ BACK=CKe
MCVE PSReAR=FUKRWT TC PSR-=KEY,
READ PSR=FILE INVALID KEY PERFJORM PRCGRAM=BUG.
PERFLRM MCVE-UATA,
WRITE PSR=FILE~REC INVALID KEY PERFCRM PROGRAM=BUG.
IF EQUAL~PSRS (1) = SPACFES GO TC NC=CTHER=PSRe
SEARCH EQUAL-PSRS AT END GC TC NC=PSR«LINK WHEN EQUAL=PSRS
(PSR=INDEX)
= PSR=NC “MCVE ZERCES TC EQUAL=PSRS (PSR=-INDEX) G2 T2
NC-PSR“LINK.
BACKeCK
MCVE PSR«AK=RACKT T PSR=KEY,
READ PSReFILE INVALID KEY PERFCRM PRCGRAM=BUIG.
PERFCRM MCVE~UATA,
WRITE PSR=-FILE=REC INVALID KEY PERFCRM PRCGRAM=BUG,
TF PSR=AK=BACK = TEM«KEY=3 G2 TO BACK=CK=1,
IF EQUAL=PSRS (l) = SPACFS G2 T2 BACK=CK.
SEARCH EQUAL=-PSRS AT END G TC BACK=CK WHEN EQUAL=PSRS
(PSR=INDEX)
= PSR=NC MCVE 7ERCES TC EQUAL=PSRS (PSR-INDEX) GO TO
BACK=CK.
BACK«CK=1+
IF EQUAL«PSRS (1) = SPACES GG TS NC=OTHER=PSR.
SEARCH EQUAL<PSRS AT END 3C TO NO=PSR-LINK WHEN EQUAL=PSRS
(PSR=INDEX)
= PSR=NC MOVE ZERCES TC EQUAL=PSRS (PSR=INDEX).
NC=PSR=L INK,
MCVE 1 T2 DELETE=-SuB,

'\NC'pSR-LINK‘lo

00¥62209

18-V

00855
00856
00857
00858
00859
00860
00861
00862
00863
00864
00865
00866
00867
00868
00869
00870
00871
00872
00873
00874
00875
00876
00877
00878
00879
00880
00881
00882
00883
00884
00885
00886
00887
00888
00889
00890
00891
00892
00R93
00894
00865
00896
00897
0089R
00899

IF DELETE=SUB GREATER THAN 9 G2 TC NC=CTHER=-PSR.
CVE EQUAL=PSRS (DELETE=-SuUB) TC PSR.
COMPUTE B=C = (((PSR = HIAS) # 12) + 504) / S504s
IF B=C Is NEGATIVE DISPLAY STARS, DIAGNCSTIC=Els STARS,
PRCDeNCT, EQUAL~PSRS (DELETE=SUB) UPON oUT ADD 1 TO
DELETE=SUB GC TO NC=PSR=| INK=1l,
MOVE BLK TC NUM=KEY=].
MOVE CHAR TS NUM=KEY=2e
READ NUMBER=FILE INVALID KEY MOVE ZERGES TC NUMBER-REC.
IF NUE?ER-StC = ZERC DISPLAY STARSs DIAGNCSTIC~P4, STARS,
REC=A UPON CUT ADD 1 TS DELETE=SUB G2 T4 NC=PSRe=LINK=
MOVE NUMBER=REC TO PSR=KFY. SReL1 1e
READ PSR=FILE INVALID KEY PERFORM PRCGRAM=BUG.
MOVE=DATA.
IF L$GGED;03T = SPACES NEXT SENTENCE ELSE MOVE LCGGED=CUT
c CU DTV
1F CP-S;STEM-I = SPACES NEXT SENTENCE ELSE MCVE CP=SYSTEM=1
C YS"A.
IF VERS=1 = SPACES NEXT SENTENCE ELSE MCVE VERS=1 TC VER=A.
IF C?-S;s;EM-a = SPACES NEXT SENTENCE ELSE MCVE CP=SYSTEM=2
] Y -Bo
IF VERS=2 = SPACES NEXT SENTENCE ELSE MOVE VERS=2 TC VER=Be
1F cp-s;s;ﬁm-3 = SPACES NEXT SENTENCE ELSE MCVE CP=SYSTEM«3
Tc Y -Co
IF VER=3 = SPACES NEXT SENTENCE ELSE MCVE VER=3 TC VER=C,
IF TFST = SPAL?S NEXT SENTENCE ELSE MOVE TEST TZ TESTED.
3 SUS;NUM = SPACES NEXT SENTENCE ELSE MOVE SUM=NUM TO
SUM=NC o

IF PSR=AK=FCH®W = ZER{ GC TO MCVE=-DATA-3,
MOVE PSReAK=FUKW TQ PSR=KEYy TEM=KEY=T,
READ PSRwFILFE INVALID KEY PERFORM PROGRAM=BUG
PERFCRM MOVEiLIATA, :
IF PSR=AK=FCR%W = NUMRER=REC GC TC E - - .
MOVE ATz G EQUAL=PSR= INKAGE
MCVE PSR=AK=FORW TC PSR=KEY.
READ PSReiILE INVALIN KEY PERFCRM PRCGRAM=BUG,
PERFCRM MOVE=DATA. LF PSR=AK=-FCRW = NUMBER=REC NEXT
SENTENCE ELSE WRITE PSR=FILE=REC INVALID KEY PERFORM
PRCGRAM=RiG 58 T2 MOVE=DATA=2.
MCVE=DATA=3.
OVE TEMeKEY=d T PSR=~AK=FJRWe
MCVE PSReAK=BACKT TC PSR-AK=BACK,
WRITE PSR=FILE=REC INVALID KEY PERFCRM PROGRAM=BUG.
MOVE PSReKEY TC PSR~AK=-BACKT,

35~V

00%62209

00990
00901
00902
00603
00504
0090%
00906
00907
00908
00909
00910
00911
00912
00913
00914
00915
00916
00917
00918
00919
00620
00921
00622
00923
00924
00925
00926
00927
00928
00929
00930
00931
00932
00933
00934
00935
00936
00937
00938
00939
00940
00941
00942
00943
00944

MCVE PSReKEY TC TEM=KEY=7,
MOVE PSReAR=RACKT TL PSK-KEY,
READ POSHeFILE INVALID KEY FERFGCRM PROGRAM=BLG.
MCVE TEMOKEYOY TO PSR'AK‘FCRW-
WRTITE PSR=FILZ~REC INVALTID KEY PERFCRM PROGRAM=BUG,
ADD 1 TS DELFTE-SUR,
GC TC NCePSR«LINK=],.
EQUAL =PSR~LINKAGFE »
MOVE TEMeKEYw.3 T2 PSR~AK=FCRWe
MOVE PSReAK=RA4CKT C TEM=KEYwb6,
OVE TEMeKEY«7 TC PSR=AK=FHACKT.
WRTITE PSR=FILE=REC INVALIU KEY PERFCRM PRCGRAM=BUG.
MOVE TEMweKEYwn T2 PSR=KEY.
RFEAD PSR=FILF INVALID KEY PERFCRM PRCGRAM=BUG
CVE NUMBER=REC TO PSH-AK=FCRW,
WRITE PSR=FILF=REC INVALIV KEY PERFCRM PRCGRAM=BUG,
MOVE NUMBER=REC TC PSR=KEY.
READ PSReFILE INVALID KEY PERFCRM PROGRAM=BUG.
MCVE TEMwKEY=f TC PSR=AK=-RACK.
WRITE PSR=FILE=REC INVALIN KEY PERFCRM PRCOGRAM=BUG
MCVE TEM=KEY=/ T2 PSR=KEY.
WRITE PSR=FILE=REC INVALIND KEY PERFCRM PROGRAM=BUG.
ANDD 1 TC DELETE=SUBa
G2 T2 NCaPSReLINK=1,
NS=CTHER=PSR,
MOVE TEMeKEY=1 T2 PSR=KEY.
WRITE PSR-FILE=REC FRCOM PSR=FILE=RECT INVALID KEY
PERFCORM PHRCGRAM=RUG.
62 TC TAPE=CHECK,
NEED=SFCSNDARY=LIST SECTICN,.
NEED=LTST=1.
IF MASTER=LIST~AKT 1S NOT ZERS
MCVE MASTER=_IST=AKT TS TEM=KEY=]1 GC T2 NEED=-LIST=2.
IF MSCS=LIST-AKT IS N2T ZERD
CVE MSCS-LIST~AKT To TEM=KEY=1 GC TO NEED=LIST=2.
IF RTS=LIST=~«xT 1S NOT ZERD
MCVE RYS«LIST=AKT TC TEM=KEY=1 GC TC NEED=LIST=2s
PERFCRM PROGRaM=RBUG,
NEED-LTST'ZQ
OVE PRIM=KEY TO TEM=KEY=2.
MCVE TEM=KEY=~1 T2 PRIM=KEY,
READ PRIM=SFC~LIST INVALID KEY PERFZRM PROGRAM=BUG.
MCVE HEADER«SAK T¢ PHIM=KEY,
READ PRIM=SEC-LIST INVALID KEY PERFORM PROGRAM=BUG.
MCVE HEADER=L.INK T2 PRIM=KEY, TEM=KEYwl.

00%62209

€¢-V

00945 READ PRIM=SEC=-LIST INVALID KEY PERFCRM PROGRAM=RUG,
00946 MOVE PSR=KEY TC PSR~SAKT.

00947 IF OP=SYS=NAMET = #MASTER# MCVE MASTER=SAK TC PRIM=KEY.
00948 IF COP=SYS=NAMET = #MSOS2 MCVE MS{S~SAK T2 PRIMeKEYe
00949 TIF OP=SYS=NAMET = #RTS# MCVE RTS=SAK T4 PRIM=KEYe
00950 MOVE PRCD=NMT T3 PROD-NAMET,

00951 MCVE PSReNCT TC PSR=NUMBERT.

00952 PERFORM SYS=FCUND.

00953 IF CP=SYS=NAMET = #MASTER# MOVE READY=LIST TC MASTER=SAKT.
00954 IF COP=SYS=NAMET = #MS0S# MOVE READY=LIST TC MSOS=SAKT.
00955 IF CP~SYS=NAMET = #RTSz MOVE READY=LIST T2 RTS=SAKT,
00956 MCVE TEM-KEY 2 TO PRIM«KEY,

00958 SECCNDARY-ENTRY~INSERT.

00959 IF PRIMeKEY = ZERO PERFORM SECCNDARY=HEADER=INSERT
00960 C TC SEC-ENT=IN=la '
00961 READ PRIM=SEE=LIST INVALTD KEY PERFCRM PRCGRAM=BUG.
00962 SEC=ENT=-IN=1,

00963 PERFCORM GET=EriPTY= IS8T,

00964 IF FCRWARD=~LINK = BACKWARD=_ INK AND HEADER=SAK

00965 GC To SEC-ENT=IN=3,

00966 SEC=FNT=IN=2,

00967 MOVE BACKWARD=LINK TC PRIM=KEY,

00968 . READ PRIM=SEC-LIST INVALID KEY PERFCRM PROGRAM=BUG.
00969 IF PSH=NUMBFX LESS THAN PSR= NUMBERT GC TS SEC=ENT=INe3,
00970 I1F BACKWARD=LINK NCT EGUAL TC HEADER-SAK

00971 GC TS SEC~ENT=TN=Z.

00972 MCVE BACKWARD=LINK T2 PRIM=KEY.

00973 READ PRIM=SEC-LIST INVALTD KEY PERFORM PR“GRAM-BUG.
00974 SEC=ENT=IN=3,

0097% OVE FCRWARD-LINK T2 FORWARD=LKT.

0Cc976 OVE READY=LIST T0 FORWARD=~LINKa

00977 MCVE HEADER=SAK TS HEADER=-ST.

00978 MCVE PRIM=KEY T8 BACKWARD=LKT

00979 WRITE SECONDARY=RECCRD INVALID KEY PERFCORM PRCGRAM=BUG
009R0 MCVE FCRWARD=LKT To PRIM=KEY,

00981 READ PRIM=SEC~L.IST INVALTD KEY PERFORM PRCGRAM=BUG
00982 MCVE READY=LIST TC BACKWARD=LINK,

00983 WRITE SECCUNDARY=RECSRD INVALID KEY PERFORM PRCGRAM=BUG»
00984 MOVE READY=LIST T2 PRIM=KEYs

00985 WRTTE SECCNOARY=RECCRD FRC M SECCNDARYRECSRDT

00986 INVALID KEY PERFSRM RPROGRAM=BUG,

00987 IF COP=SYS=NAMET = MASTFR# MCVE READY=-LIST 712

00988 MASTER=LTST=AKT, i

00989 v IF OP=SYS=NAMET = #MSCS¢ MOVE READY=-LIST TC MSCS=LIST~AKT.

-V

00%62309

00990 IF OP=SYS=NAMET = #RTS# MOVE READY=LIST TC RTS=LIST=-AKT,
00991 SECONDARY=HEADEK=INSERT SECTION.

00992 . SEC=HEAD=IN.

00993 PERFORM GET~FYPTY~-LIST.

00994 IF CP=SYS=NAET = #MASTFR# MOVE READY=-LIST TC MASTER=SAK,
00995 IF 0OP=SYS=NAMET #MS0S# MOVE READY=LIST TG MSCOS=SAKe

00996 IF OP=SYS=NAMET #pTS2 MCVE READY=LIST T2 RTS=SAK.
00997 MCVE TEM«KEY=-1 TC PRIM=KEYy HEADER=-LINKT,

00998 WRITE PRIMARY=RECCRD INVALID KEY PERFQRM PRCGRAM=BUG,
00999 MCVE READY=LIST TZ PRIM=KEYs FCRWARD~LINKT,

01000 BACKWARD=LINKT, HEADER=SAKT.

01001 MOVE #Az TC SUPP=-LEVELT,

01002 MCVE HEADER-RZCCRDT 10 HEADER~RECCRD,

01003 WRITE HEADER-~ECZRD INVALID KEY PERFCRM PRCGRAM=BUG.
01004 NELETING SECTICN.

01005 DELETE-PRCCESSOR.

01006 MOVE 1 T DELETE-SUB,

01007 MOVE #PSR DELETE REPCRT# TS REPT=-HEADING,.

01008 DELETE=-PRCCo

01009 IF DELETE~LINFED (DELETE-SUB) = SPACES NEXT SENTENCE ELSE
01010 GO To DELETE=ALL=PRCCe

01011 MOVE DELETE~-PSR=NZ (DELETE=-SUB) TC PSR

01012 COMPUTE B=C = (((PSR = BTAS) # 12) + 504) / S04
01013 MCVE BLK T2 NumM=HLK,

01014 MCVE CHAR TC ({UM=CHAR.

01015 MOVE NUMBER=BEC TC NUM=KFY.

01016 READ NUMBER=-FLLE INVALID KEY PERFCRM PROGRAM=BUG.
01017 MOVE NUMBER=REC T2 PSR=-KEY, TEM=KEY~1,

01018 MOVE ZERCES TC NUMBER=REC.

01019 WRTTE NUMBER=-REC INVALID KEY PERFCRM PRCGRAM=BUG,
01020 READ PSR=FILE INVALID KEY PERFORM PRCGRAM=BUG.

01021 MOVE PSR«FILF~REC TS PSR-FILE=RECT.

0lo2? MOVE SPACES TC PSR=FILE=~RECe

01023 MCVE EMPTY~=PS<=FILE TC NFXT=EMPTY.

01024 MOVE TEMeKEY=1l T2 READY=-PSR.

01025 WRITE PSR=FILEL~-HEADER INVALID KEY PERFORM PROGRAM=BUG,
01026 CVE PSR-AK=RACKT TC PSK~KEY,

01027 READ PSReFILE INVALID KEY PERFCRM PRCGRAM=BUG.

01028 MCVE PSReAK=FCRWT TC PSR=AK=FORW,

01029 WRITE PSR=FILE=-REC INVALTD KEY PERFCRM PROGRAM=BUG.
01030 MOVE PSR=AK=FCRWT TO PSR-KEY,

01031 READ PSReFILF INVALID KEY PERFORM PRCGRAM=BUG.

01032 MCVE PSR-AK=RACKT T0 PSR-AK=RACK,

01033 WRITE PSR=FILE=REC INVALID KEY PERFCRM PRCGRAM=BUG.,

01034 1F MASTER=LIST=AKT IS NCT EQUAL TS ZERC MOVE MASTER=LIST=AKT

00¥62209

¢g-Vv

01035
0lo036
01037
0lo038
01039
01040
01041
01042
01043
01044
010485
0lo046
01047
01048
01049
01050
01051
01052
01053
01054
01055
01056
01057
01058
01059
01060
01061
01062
01063
01064
01065
01066
01067
01068
01069
01070
01071}
0lo072
01073
01074
01075
0lo76
01077
01078
01079

TC PRIM=KEY RPERFORM PELETE=LIST.
IF MSCS=| 1ST=~KT 1S NCT EQUAL TC ZERC MCVE MSCS=LIST=AKT TS
PRIMeKEY FERFCRM DELETE=| IST,
IF RTS=LIST=ART IS NOT EQUAL T2 ZERC MOVE RTS=LIST=AKT T2
PRIMeKEY FERFCAM DELETE=| IST.
PERFCRM DELETE=PART=2.
PERFCRM DELET:==REPORT,
ADD 1 TC DELETE=-SUS.
IF DELETE=~SUR IS GREATER THAN & GC TC TAPE~INPUT ELSE
GC To DELETE-PRCC
DELETE=ALL=PRCCes “MCVE SPACES TC IDENT=PSR=STCR.
DELETE=ALL~1,
PERFCORM GET=AX,
PERFCRM GET=P3R,
IF MASTER=~LIS!I=AKT IS NCT EQUAL TS ZERS MCOVE MASTERwLIST=AKT
TC PRIM=KEY PERFORM DELETE=LIST.
TF MSCS=LIST«arT IS NCT gQUAL TC ZERC MOVE MSCS=LIST=AKT
TC PRIM=KLY PERFORM DELETE=LIST.
IF. RTS=LIST=AKT IS NOT EQUAL TC ZERS MOVE RTS=LIST-AKT
TC PRIM=KEY RERFORM DELETE=LIST.
DELETE=PART=1.
MOVE PSReAK=R4CKT T2 PSR=KEY,
oOVE 1 T2 CTR.
NELETF=PART=2,
) READ PSR=FILE INVALID KEy PERFORM PRCGRAM=BUG.
MOVE PSR=NC TC STOR=JVDENT=2 (CTR)
OVE TEMeKEY=Z T2 TEM=KEY=5,
WRITE PSR=FILt=REC INVALIN KEY PERFCRM PRCGRAM=BUG,
IF CTR = 10 GC T2 DELETE~-PART=34 ADD 1 T2 CTR.
IF PSR=AK=~BACrR = TEM~KEY=2 NEXT SENTENCE ELSE
MCOVE #9# TC STCR=IDENT=~1 (CTR)
CVE PSRe«AK=HACK TZ PSR=KEY G2 TC DELETE=PART=2,
DELETE=PART=3,
PERFCRM DELETE=RPT,
DELETF=PART=4,
PERFCORM DELETE=-ALL=-1,
PFRFCRM DELETE=PART=14
SET INUX=STCR T2 1,
SEARCH STCR~IUENT AT END GC TC DELETE=PART=5 WHEN
STCR=IDENT=2 (INDX=STCR) = PSR«NCT MOVE PSR=AK=FORWT
TC STOR=TUENT=2 (INOX=SToR).
DELETE-pART‘S .
PERFCRM DELETE=-RPT,
IF TEM=KEY=2 = TEM=KEY=5 NEXT SENTENCE ELSE G2 T2
DELETE~PART=4,

9e-Vv

00962209

01080
01081
01082
01083
010f4
010R5
01086
01087
010FR8
01089
01090
01091
01092
01093
01094
0109%
01096
01097
01098
01099
01100
01101
01102
01103
011C4
01165
01106
01107
01108
011009
01110
01111
o111z
01113
01114
011158
01116
01117
01118
01119
01120
01121
01122
01123
01124

ADN 1 TC DELETE=SUH.
1F DELETE=SUE 1S GREATER THAN 5 GC TC TAPE-INPUT ELSE
GC TC DELETE-PRCC.

GET=AK,
MCOVE DELETE=-PSK=NZ (DELETE=SUB) TC PSR
COMPUTE RBR=C = (((PSR = BIAS) # 12) ¢+ 504) / %04

MOVE BLK TS NUM=RLK.

MOVE CHAR TZ WNUM=~CHAR.

MEVE NUMRBER=RFC T2 NUMeKFEYe.

READ NUMBER=-FLLE INVALID KEY PERFCRM PRCGRAM=BUG.

MCVE NUMBER=R:C TS PSK-KFYs TEM=KEY=2,

MCVE ZERZES TU NUMBER=RECS

WRITE NUMBER=-~FC INVALID KEY PERFCRM PROGRAM-BUG,

GET-PSR.

READ PSR-FILF INTZ PSR-FILE=-RECT INVALID KEY PERFORM
PRCGRAM=RBuUL.,.

MOVE SPACES TC PSR«FILE=REC,

MOVE EMPTY=PS<=FILE TC NEXT=EMPTY

CVE TEMeKEY=2 TC EMPTY=pSR=FILE
WRITE PSR=FILE~HEADER INVALID KEY PERFCRM PROGRAM=BUG,
DELETF~RPT SECTION
NDELETF=-REPCRT.

INTTTATE DELFIE=~REPCRT=~1,

GENERATE REPCHTED=DELETE,

1F CP=SYS=1T = SPACES NEXT SENTENCE ELSE MOVE 1 T2 0P=CTR
MCVE #MASIFR# TC SYS=OP (CP=CTR) MCVE VER=1T T2
NC=VER (2+=CTR) GENERATE CP=SYS=RPT.

JF CP=SYS=2T = SPACES NEXT SENTENCE ELSE MOVE 2 TS 0P=CTR
MOVE #MSC5# T2 SYS=CP (CP=CTR) MOVE VER-2T T2
NC=VER (CS+=CTR) GENERATE COP=SYS=RPT.

IF CP=S5YS=3T = SPACES NFXT SENTENCE ELSE MCVE 3 TC CP-CTR

CVE #RTS#? T SYS=CP (CP=CTR) MOVE VER=~3T TO
NC=VERI(CP~-CTR) GFNERATE JP=SYS=RPT.

GENERATE RPT=CHG,.

1F CUT=DTDT = SPACES GFENFRATE NCT=ANS G2 T2 RPT=PT1
FLSE GENF~ATFE ANSWERFU .

IF SYS=AT = ZuHCES NFXT SFNTENCE ELSE MOVE 1 TO OP=CTR
MCVE #MASTERZ TC SYS-0P (CP=CTR) MCOVE SYS=AT T2
NC=VER (2~=CTR) MCVE VER=AT TC PROD=VER (2P=CTR)
GENERATE CPER=SYS=RPT,

IF SYS=RT = [ERJES NEXT SENTENCE ELSE MOVE 2 TS 0P=CTR
MCOVE #MSC52 TQ SYS-Cp (Op=CTR) MCVE SYS-RT T2
NC=VER (0F=CTR) MCVE VER«BT 70 PROD=VER (2P=CTR)
GENERATE CUPEQ=gYS=HPT,

IF SYS=CT = ZurZFES NFXT SENTENCE ELSE MOVE 3 T2 2P=CTR

00762209

18-V

01125 CVE #RTS# TC SYS=CP (CP-CTR) MOVE SYS=CT TC
01126 NC=VER (0F=CTR) MOVE VER«CT TC PROD=VER (SP=CTR)
01127 GENERATE CPER=SYS=RPT.

0l12e RPT=pT1.

01129 GENERATE REL=FSRS,

01130 ‘ MCOVE 1 Tg¢ DESC-CTR,

01131 GENERATE DESCRIP-RPT,

01132 MCVE 2 T8 DESC-CTR.

01133 GENERATE DESCRIP=RPT,

01134 : MCVE 3 TC DESC-CTR,

01135 GENERATE DESCHRIP=RPT,

01136 MOVE 4 TS DESC=CTR,

01137 GENERATE DESCRIP=RPT,

01138 MCVE 5 TS DESC-CTR,

01139 GENERATE DESCRIP=RPT, .
01140 IF REPT=HEADING = 2PSR DELETE REPCRT# GENERATE DEL~REASON
01141 ELSE NEXT SENIENCE,

0l1l42 RPT=pT2.

01143 TERMINATE DELETE=REPOKRT~=1.

01144 NELETE=LT SECTICNe

01145 - DELETF-LIST.

01146 READ PRIM=SEC=LIST INVALTD KEY PERFCRM PRCOGRAM=BUG,.
01147 MCVE HEADER=RECORD To HEANER=RECCRNDT.

01148 MOVE PRIM=KEY TC TEM=KEY-1,

01149 MOVE BACKWARD=LINKT TC PRIM=KEY.

01150 READ PRIM=SEC-LIST INVALTH KEY PERFUORM PRCGRAM=BUG,
01151 MCVE FURWARD=L INKT TO FCRWARD=LINK,

01152 WRITE HEADER=~<ECCRD INVALID KEY PERFORM PROGRAM=BLIG
01153 MCOVE FCRWARD=LINKT TQ PRIM=KEYe

01154 READ PRIM=SEC-I.1ST INVALID KEY PERFORM PRCGRAM=BUG.
01155 OVE BACKWARD=LINKT TC HBACKWARD=LINK,

01156 WRITE HEADER«<ECZRD INVALID KEY PERFCRM PRCOGRAM=BUG.
01157 MCVE SPACES TC HAFADER~RECCRO,

01158 MCVE EMPTY=HFAD=REC TS EMPTY=SAK,

01159 MCOVE TEM=KEY«]l TC PRIM=KEYs EMPTY~HEAD=REC.,

01160 WRTITE EMPTY=RZCCRD INVALID KEY PERFCRM PROGRAM=BUG,
01161 LEVEL=PRCC SECTICN,

01162 LEVEL=PROCESSCR. ,

01163 MOVE PLH=SAK TS PRIM=KEY,

01164 READ PHIM=SEC=LIST INVALID KEY PERFCRM PRCGRAM=BUG,
01165 . MCVE FURWARD«LINK T2 PRIM=KEYo.

01166 READ PRIM=SEC-LIST INVALID KEY PERFCRM PROGRAM=BUG.
0l167 IF PRODUCT=~NAME = PRODUCT=LEVEL G TZ OP=SYSTEM=CHECK,
01168 DISPLAY STARSs DIAGNCSTIC=L2, STARSs REC=L UPCN CUT.

01169 GC TG TAPE-INRPUT.

8%~V

00%¥62209

01170
01171
01172
01173
01174
01175
01176
01177
01178
01179
0118C
01181
01182
01183
01184
01185
01186
01187
01188
01189
01190
01191
01192
01193
01194
01195
01196
01197
01198
01199
01200
01201
01202
01203
01204
01205
01206
01207
01208
01209
01210
01211
01212
01213
01214

OP=SYSTEM=CHECK

IF CP=-SYS=LEVEL = zMASTER# MOVE MASTER~SAK TC PRIM=KEY

GC TC CCMPLETE=-LEVEL,

1F OP=SYS=LEVAL = #MSC0S# MZVE MSOS=SAK TC PRIM=KEY

GC TC COMPLETE~-LEVEL,
IF OP=SYS=LEVZL = #RTS# MCVE RTS=SAK TO PRIM-KEY
GC TC COMrLETE-LEVEL,

DISPLAY STARSs DTAGNOSTIC~L1le STARSs REC=~L UPTN CUT.

6GC TS TAPE=INKUT,
COMP{ETE~-LEVEL.

READ PRIM=SEC-LIST INVALID KEY PERFORM PROGRAM=BUG.

MCVE SUPPJRT=-LEVEL To SUPP-LEVEL.

WRITE HEADER=-<ECCRND INVALIUD KEY PERFCRM PRCGRAM=BUG.

G2 TC TAPE-INFUT,
REPCRT-PRCCESS SFCIION,
REPCRT-PRCCESSCR, i
IF CS~FIELD2 1S NUMERIC NEXT SENTENCE ELSE G2 TC
REPCRT=PRCCESSOR=1,
tF CS=FIELL3 IS EQAUAL TC SPACE MOVE 0S=-FIELDZ T2
MCVE (S=FIELD1 TO PSR.
GOMPUTE B=C = (((PSR = BTAS) # 12) + 504) / S04,
MOVE BLK TC NUMY=BLKa.
MOVE CHAR T2 “UM=CHAR.
MCVE NUMBER=REC T8 NUM=KEY.
READ NUMBER=-FILE INVALID KEY PERFCRM PROGRAM=BUG.
CVE NUMBER=REC TC PSK=KEY.
READ PSReFILE INVALID KEY PERFCRM PROGRAM=RBIIG.
MOVE #SINGLE FSR REPORTZ TS REPT=HEADING,
MCVE PSHReFILE-REC TS PSR-FILE=RECT.
PERFCRM DELETH=-RPT,
GC TC TAPE=INFUT,.
QEPCRT=PRCCESSCR=1,

PSR

ELSE

IF CS~FIELD = #ALL# PERFORM PROD=CHECK VARYING CS-NUMBER

FRCM 1 BY 1 UNTIL 0S=NUMRER = 3 60 TC TAPE-INPUT.
1F os~FIELD #MASTER# MoVE 1 TC CS=-NUMBER.
IF CS=FIELD #MS0S# MCVF 2 TC 0S=NUMBER,
IF CS~FIELD #¥*RTS# MCVE 3 To 2S=-NUMBER,
PERFCRM PRCD«CHECK G2 TC TAPE-INPUT.
PRCD=CHECK SECTIoM.
PROD=CHEK.
MCVE PLH=SAK TC PRIMeKEY, TEM=KEY=1l.

READ PRIM=SEC-LIST INVALID KEY PERFCRM PRCGRAM=BUG.

MCVE FORWARD=LINK TC TEM-KEY~2, PRIM=KEY,

IF PRCD=-FIELD = zALL# PERFCRM ALL~PROD G2 T2 PROD-CHECK3,

PRCD=~CHECK]

00%62209

62-V

01215
01216
01217

01218

01219
01220
01221
01222
01223
01224
01225
01226
01227
01228
01229
01230
01231
01232
01233
01234
01235
01236
01237
01238
01239
01240
01241
01242
01243
01244
01245
01246
01247
01248
01249
01250
01251
01252
01253
01254
01255
01256
01257
01258
01259

READ PRIM=SEC-LIST INVALLTD KEY PERFCRM PRCOGRAM=BUG,
MCVE FCRWARD=LINK T2 TEM=KEY=3,
IF PRCD=FIELD = PRODUCT-NAME GO TC PROD=CHECK2.
IF FORWARD=LIMK = TEM=KEY~1 GO TO NCNE=THERE.
G2 TS PROD=CHECK],
PRCD=CHECKZ o
MOVE PRIMARY«rECORD TC PRIMARY~RECORDT.
IF R=SAKT (CS~nUMBER) = 0 508 TS NCNE=THERE.
MOVE 1 TC DELFTE~SUR.
MOVE R=SAKT (US=MUMBER) T2 PRIM=KEYs TEM=KEYwi,
PERFCRM FOLL=L IST,.
PRCNaCHECK3,
FXTT.
FOLL=ILTST SECTICN.
FCL'LI;TQ
READ PRIM=SEC-LIST INVALTH KEY PERFCRM PROGRAM=BUG,
MOVE SECCONDARY~RECAORD TS SECONDARY=RECCRDT .
MCVE PSReSAKT TC PSR=KEY,
READ PSR=FILF INVALIN KEY PERFORM PRCOGRAM=R|JGe
MOVE PSReFILE~KEC TC PSR=FILE=RECT.
TF WHICHFIELY = #alL|# NEXT SENTENCE ELSE IF 2UT=DTDT IS
NCT EQUAL TC SPACES AND WHICH=FIELD = #NANSWERED#
MCVE FCRWarD=[KT T2 PRIMaKEY IF FORWARD=LKT = TEM=KEYe&.
GC 10 PERF-EXIT FLSE G2 TC FOL=LIST ELSE IF
SUT=DTDT 1S FQUAL TC SPACES AND WHICH=FIELD
MCVE FCORWARD=LKT TC PRIMaKEY IF FORWARD=LKT
GC T8 PERF=EXIT ELSE G2 TO FolL-=LIST.
SURTRACT AB=DI{T FRCM TZDAYS=DATE GIVING DIFFDATE,
IF AGE~FIELD = 2ALL# NEXT SENTENCE ELSE IF ToDAYS=DATE
IS LESS THAN 30 MOVE FORWARD=LKT TC PRIM=KEY
IF FORWARU=LKT = TEM=KEY=4 G2 TO PERF=EXIT
ELSE GC TC FOL=-LIST.
MOVE # PSR HEPORT # TC REPT=HEADING,
IF QUANTITY=FLELD = #DETaIL# PERFORM DELETE=~RPT G2 TQ ENCK.
IF QUANTITY=FLELD = #BRIFF# PERFORM DELETE=REPCRT GO TO ENCK,
c IF QUANTITY=FLELD = #LIST® PERFCRM LIST=RPT,
ENCK,
MOVE FORWARD<LKT T0 PRIMKEY,
IF FCRWARD=LKT = TEM=KEY=4 NEXT SENTENCE ELSF GC TO
CL=LIST,
TF QUANTITY=FLELD = #LIST# AND DELETE-SUB IS GREATER THAN 1
GENERATE LISTING=REPORT TERMINATE LIST~PSR=NUM=REPORT,.
PERF=EXITo
EXTIT,
LIST=RPT SECTION,

#ANSWERED#
TEM=KEY=4

0e-v

00%62209

01260
01261
01262
01263
01264
01265
01266
01767
01268
01269
01270
01271
01272
01273
01274
01275
01276
01277
o1278
01279
01280
01281
01282
01283
01284
01285
01286
01287
01288
01289
01290
01291
01292
01293
01294
01295
01296
01297
01298
01299
01300
01301

01302

01303
01304

LIST=PSR=NUM,
INITIATE LIST~PSR«NUM=REPZRT,
MOVE PSR-NUMBLKT To LIST=AREA (DELETE=-SUB) .
IF DFELETE=SUR = 6 GENERATE LISTING=REPCRT MoVvE 1 TC
DELETE~SUn.
ADD 1 18 DELF i R=SUR.
LIST-EXITe
EXTT,
ALL=PRAD SECTICN,
ALL=PRAD=FARA .
1F FCRWARO=LI“K = TEM+=KEY=1l GO T2 ALLePRCD=-gXIT.
RFEAD PRIM=SEC-LLIST INVALT! KEY PERFCRM PRCGRAM=BUG.
MOVE FORWAKD=L 1NK TC TEMeKEYe3s PRIM=KEY,.
1F R=SAKT (CS=inUMRER) = n 62 TC ALL=-PRCD-PARA.
MOVE PRIMARY-<ECZRD TS PRIMARY=RECCRDT.
MOVE 1 TS DFRL:TE-SUYR,
MCVE R=SAKT (US=nNUMBEH) TO PRIM=KEYs TEM=KEYwé,
PFRFORM FOLL=-i.IST,
MOVE TEMeKEYw3 T2 PRIM~KFYs FORWARD=LINK,
60 To ALL=PRN:I=PARA.
ALL=PRAD-EXIT.
EXIT.
NCNE=THERE SECTIC:
NEINaTHERE e
TF C0S=NUMBER =) DISPLAY # MASTER 2 PRODUCT-NAME
NONE THEREg UPRCN CSyUT.

IF 0S=NUMBEKF = 2 DISPLAY % MGJS #* PRODUCT=NAME # NONE THERE #

UPoN CUT,

TF CS=NUMBER = 3 nisplay # RTS # PRCDUCT=NAME # NONE THERE #

UPaN CuT,
GBS T PROD=CH-CKS,
GET=FMPTY-LIST SECTIAN,
GET-LTST.
SVE PRIM=KEY 13 TEMaKFYa4,.
MOVE EMPTY=HEaD=RKC T2 RFa)Y«LISTe PRIM=KEY,
MOVE HEADER=<FCORD TS TFRHd=HZLN=1.
READ PRIM=SFL=L.TST INVALID KEY PERFCRM PROGRAM=BUG,
TF FCRWARD~LT-«K = ZERD PERFORM EXPAND=LIST=FILE.
MOVE FURWARD-LINK TS EMPTY-HEADN=REC
MCVE TEM=KEY=4 T{ PRIM=KEY,
MOVE TEM=HCLi'~1 T HEADER=RECORD
GET=gMPTY=-PSR SECTION.
GET=pSa=~F.,
MOVE EMPTY=PSk=FILEF TC RFEADY=PSRy PSReKEY.
READ PSHeFILE INVALID KEY PERFCRM PROGRAM=BUG.

00%62209

18-V

01305
01306
01307
01308
01309
01310
01311
01312
01313
01314
01315
01316
01317
01318
01319
01320
01321
01322
01323
01324
01325
01326
01327
01328
01329
01330
01331
01332
01333
01334
01335
01336
01337
01338
01339
01340
01341
01342
01343
01344
01345
01346
01347
01348
01349

IF NEXT=EMPTY = ZERC PERFORM EXPAND=PSR«FILE,
MOVE NEXT=EMPTY TC EMPTY=PSReFILEW
EXPAND=LIST=FILE SECTICNs
EXP=_1ST.
CLLOSE PRIM=SEC=LIST.
MCOVE ZERS TC TEM=KEY=H.
ENTER COMPASSs EXPANDs PRIM=SEC=LISTy TEM=KEY«8,
COMPUTE PRIM=EXPAND = ((TEM=KEY=8 # 100000) « PRIM~EXPAND),
OPEN [=C PRIM=SEC-LIST,.
PERFLRM PRIM=KEY=UPDATE.
MOVE UP=KEY TC PRIM=KEYs TEMeKEY=S5,
PERFCORM | IST=FILE~EMPTY,
MOVE TEMKEY=5 TO FORWARD=LINKS.
EXPAND=PSR=FILE SECTIOM.
EXP=_1ST.
CLLASE PSR=FILc.
MOVE ZERS TC TEM=KFY=H8,.
FNTER CCMPASSs EXPANDs PSR=FILEs TEM=KEY=8,
OMPUTE PSR=FEAPAND = ((TEM=KEY=8 # 100000) + PSR<EXPAND) .
OPEN I=0 PSR=FILE.
PERFCRM PSR=KEY=PNDATE. .
MOVE UP=KEY TC PSR=KEYy TEM=KEY=S,
PERFCRM PSR=FLLE=FMPTY,.
MOVE TEMaKEYeb T0 NEXT=EMATY,
EXPAND=NUM=FILE SECTICN,
EXP=NUM.
CLASE NUMBER<FILFE.
ENTER COMPASSs EXPANDy NUMAER=FILEs TEM=KEY=824
OPEN I=C NUMRER=FILE.
MOVE NUMeKEY TC TFEM=KEY<=H
MOVE NUMeEXPAMND) TS NUM=KEY~],
MCOVE ZERG T2 NUM=KEY=2.
ADN TEM=KEY=8 1 NUM=EXPANDS
MCWE ZERS TS NUMRER=~REC.
PFAFLRM NUM=F LLE=ZFRO.
MOVE TEM=KEY=6 TS NUM=KEYa
LIST=FTLE=~EMPTY SECTION

LIST=EMPTY.
PERFORM PRIM=<EY=UPDATE .
IF UP=KEY = PRIM=EXPAND GO TO LIST=-EMPTY=END.

MOVE UP=KEY TO FORWARD=LINKe
WRITE HEADER«HECORD INVALIY KEY PERFLRM PROGRAM=BUG
MCOVE UP=KEY TC PRIM=KEY.
GC TS LIST=-EMITY,
LIST=FEMPTY=END.

ce-Vv

00762209

01350
01351
01352
01353
01354
01355
01356
01357
01358
01359
01360
01361
01362
01363
01364
01365
01366
01367
01368
01369
01370
01371
01372
01373
01374
01375
01376
01377
01378
01379
01380
01381
01382
01383
01384
013R5
01386
01387
01388
01389
01390
01391
01392
01393
01394

MOVE ZERC T2 FCRWARD~LINK.
WRTITE HEADER=~ECZRD INVAILID KEY PERFORM PROGRAM=BUG,
PSR=FI| E~EMPTY SECTIZSN,
PSR=FMDTY,
PFERFCRM PSR=KEY=I!PDATE.
IF UP~KEY = PSR=EXPAND 58 TS PSR=EMPTY~=END.
MOVE UP=KEY TU NEXT-EMPTY.
WRTITE PSR-FILL=HEADER INVALID KEY PERFORM PROGRAM=BUG,
MCVE UP=KEY TC PSR«KFEY.
0 TC PSReEMPIY.
PSR=FMPTY=END.
MOVE ZERS TS HEXT=EMPTY,
WRITE PSR=FILE=-HEADER INVALIPN KEY PERFORM PROGRAM=RUG,
NUM=FI|LF=Z2ERS SECTICN,
NUM=72FRC,
WRITE NUMBER=+EC INVALID KEY PERFCRM PRCGRAM=BUG,
PERFCRM NUM=KLY=UPNATE.
TF NUM=KEY=1 NCT EQUAL TO NUM=EXPAND GC TC NUM=ZERD,
UPDATE-KEYS SECTICUN.
PRIMeKFY=UFDATE .
ADD B2 PRIM=KEY GIVING UP=KEYes
1F U=~CH GREATER THAN 1887
ADD 1 TO uU=RLK
MCVE ZERZS TC U=CHe
PSR=kFY=UPLATE.
ANDD 100000 PSK=KEY GIVING UP=KEY.
NCTE PARAGRAPH PERFORM T2 ALLCW EASY MCDIFICATION
CF RLCCKING PARAMETER.
NUM=KEY=UIPDATE «
ADD 12 TS NUM=KEY,
IF NUM=KEY=? GREATER THAN 463
ADD 1 TC NUM=KEY=l
MCVE ZERZ TC NUM«KEY=2.
P=KEy=IIPDATE,
ADN 82 P=KEY GIVING UP=KFY,
IF 1=CH GREATER THAN 1RR7
ADD 1 TC U=BLk
OVE ZERC T2 U=CHe
CARD=SFQ=ERR SECTION,
CARD=SFQ=-ERRCR.,
MCVE PSR«NUM 18 HOLD=PSR,
CO=SEQ=ERR e«
READ SCRT=CUT AT END G2 TS LAST=CARD,
IF PSR=NUM = HAlLN=PSR ai\D CONE~ALPHA = ALPHA<SAVE G2 TO
CD=SEQ=ER~4

00%63209

€8~V

01398
01396
01397

01398

01399
01400
01401
01402
01403
01404
01405
01406
01407
01408
01409
01410
01411
01412
01413
01414
01415
01416
01417
01418
01419
01420
01421
01422
01423
01424
01425
01426
01427
01428
01429
01430
01431
01432
01433
01434
01435
01436
01437
01438
01439

MCVE CCDE=ALPHA TC ALPHA=SAVE
GC TS TAPE=CHECK,
PRCGRAM=BUG SECTICN
SYSTEM=ERRCR,

DISPLAY #IRREGULAR CONDITION GCCURREDs FILE INT
~ . ¢2$ABLE¢. Dy E 1GRITY
DISPLAY #=IRREGULAR CONDITION CCCURREDs FI
CNABLE# » Ds FILE INTIGRITY
UPON QUT.,

ENTER COMPASSs PRGABOKT.
INPUT=PROCEDURE SECTICON
PARA=ONE=TIME 4
READ INFILE=CARD AT END 62 To ONE=~TIME-ALSC,
IF LEGAL=CCDE REIEASE SORT=FILE=REC FROM INREC
GC To PARA=ONE~TIME,. :
DISPLAY STARSs DIAGNOSTIC-Ce STARS REC UPON &
GC TC PARA=CNE=TIME. » INREC LpoN ouT.
CNE=TIME=ALSCe EAIT,.
READ=ROUTINE SECTICN,
READ=RAQUT .
READ ggRT-CUT AT END G2 T2 READ=RCUT=2.
1F CCODE=ALPHA = ALPHA=SAVE G2 TS READwROUT=
READ R oot] EAD=RCUT=END
GC TgnAag;ENDs CHANGE=ENDs TAPE=CHECK DEPENDING ON
READ=ROUT=24
MOVE #Z# TO CUDE=ALPHA,
GS TC READ=RCOUT=1,
READ=ROUT=END -

EXITa

UTILYITY SECTICN.

U‘PRCCESSC?.
IF U=FIELD = #2L0AD FILES# s T2 o
IF U=FIELD = £0DUMP FILES:# gc $c ouag:
IF U=FIELD = #COLLECT FILESH G2 TC COLLECT.
1F U-fIELD = 2ESTABLISH FILES# Ge TO ESTABLISH,
IF U=FIELD = #LIST FILFES# 68 TC FILE=~LIST,.
DISPLAY STARSs OIAGNOSTIC=Uy STARSs REC=U,

U-PRCC"I .
READ SCRT=CUT AT END
GC TS ALTER~SToP,
IF CODE=~ALPHA = #$% GC TS U=PROCESSOR.
MOVE CCOE=ALPHA T ALPHA=SAVE.
GO TC FILE=CpEN,
LCAD SECTICN,

QUESTI
QUESTI!

ve-v

00%62209

01440 1.0=37.

01441 PERFORM QPERATCH-CHECK.

01442 FNTER COMPASSe RLFASEs PRIM=SEC=LISTs» PSR=FILEs NUMBER=FILEe
01443 FNTER COMPASSs LOADs PRIM-SEC-LISTs PSR=FILE, NUMBER-FILE.
01444 GS TS U=PRCCele

01445 NUMP SECTICN,

01446 pP=-1,

01447 ALTER ALTER=SICP TS PRCCEFD TS DUMP=FILES.

01448 G2 T2 U~PRCCe=1le

01449 NOTE FILES ARE DUMPED ONLY AT END CF RUN.

01450 NUMPLFTLES. ; ‘
01451 OPEN INPUT PRIM=SEC=L1ST, PSR~FILEs+ NUMBER=FILE.
01452 EMTER CCMPASSs DUMP, PRIM=SEC=LISTs PSR=FILEs NUMBER=FILE.
01453 CLAOSE PRIM=SEC=LISTy PSR=FILEs NUMBER-FILE.,

01454 60 TS STOP=PAH,.

0145% FILE«LTST SECTICN.

01456 FILE«L1.

01457 OPFEN INPUT PRIM=SEC={ IST. PSR=FILEs NUMBER=FILEs
01458 OVE SYSTEM=NATE T2 DATE=-STORE.

01459 MOVE SYSTEM=TIME To TIME-STCRE.

01460 NnISPLAY

01461 21 PSR LIST FILE LISTING, DATE # DATE=-STCRE
01462 £ TIME % TIME=STORE #.#

01463 UPCN QUT,

01464 PDISPLAY #0% UPSN SyT.

01465 MSVE BK1=CHO TC NUM=KEY.

01466 FILE«L?e

01467 READ NUMBER=F LL.E INVALID KEY GC TC FILE~L3.

01468 DISPLAY SPACE WNUM=KEY SPACE NUMBER=REC UPSN CuT.
01469 PERFCRM NUM=KcY=UPDATE,

01470 G0 TS FILE=-L2.

01471 FILE=L3.

01472 cLASF NUMBER=-FILE,

01473 MOVE SYSTEM=TIME T2 TIME=STORE.

01474 MCVE SYSTEM=DATE T2 DATE-STCRE.

01475 DISPLAY

01476 #1 LIST FILE LISTING, DATE # DATE=STCRE
01477 % TIME # TIME=STORE #,#

01478 UPCN QUT.

01479 DISPLAY #0# UPCN 2UT.

01480 MOVE BKleCHO TC PRIM«KEY,

01481 FILE<«L4e

01482 READ PRIM=SEC=LIST INVALIND KEY G2 TC FILE=LS,.

01483 NDISPLAY SPACFE PRIM&KEY SPACE HEADER~RECCRD UPCN JUTe

01484 PERFCRM PRIM=KEY=-UPDATE.

00%62209

Ge-v

01485
014856
01487
01488
01489
01490
01491
01492
01493
01494
01495
01496
01497
01498
01499
01500
01501
01507
01503
01504
01505
01506
01507
01508
01509
01510
01511
01512
01513
01514
01515
01516
01517
01518
01519
01520
01521
01522
01523
01524
015825
01526
01527
01528
01529

MOVE UF=KEY TU PRIM=KEYe
GN TO FILE=-L4s
FILE-I.S,
CLASE PRIM=SEC-L.IST,
MCOVE SYSTEM=DATE TA PATE=STORE,
MOVE SYSTEM=TIME T0 TIME=STORE.

NISPLAY
#1 PSK FLLE LISTING DATE # DATE«STORE
Za TIME # TIME=GTORE #4%

RSN 2UT,
MOVE BKleCHO TC PSRe-KEY.
FILE=Lfe
READ PSR=FILE INVALID KEY GO T8 FILE=L7.
NISPLAY #0# PSR=KFY SPACFE PSR-FILE1=MCVE PSR=FILE2=MJVE

HPCON QUT,
PISPLAY ¢ NESCRIPTICNS DELETED.# UPON QUT.
DISPLAY # # PSR=FILE3=~MOVE UPON OUT,.

PERFORM PSR=KEY=UPNATE .
MOVE UP=KEY TC PSK«KFEY.
GN TO FILE=LA.
FILE"L?.
CLASE PSR=FILra
NISPLAY #1# 1IFCN 2UT,.
GS T2 U=pRCC=1,
APERATAR=CHECK SECTION,
OPER«CKe
NISPLAY # RESHCND oK IF FILES ARE TO BE RELEASED#,.
ACCEPT REL=FTI.LES.
1F REL=FILFS IS NOT EWUAL TS #CK# DISPLAY SPACE REC=U
SPACE # CFERATOR DRCPz URCN QUT STCP RUN,
ESTARLLISH SECTICN.
ESTAR=1,
PERFCRIM CPERATCR=CHECK.,.

ENTEQ COMPASS+ RLFASEs PRIM~SEC-LIST, PSR=FILEs NUMBER=FILEs

FNTER CCMPASSs ALLOCATES
PRIM=SEC=LIST, +300,
PSH=FILE, +100,
NUMBER=FTLEy 4100
OPEN CUTPUT PRIM=SFC=LISTy PSR=FILEs NUMBER«FILE.
MOVE BXleCHO 1C PRIM«KEY, PSR=KEYs NUM=KEY.
MCVE U=BIAS 12 RIAS,
MCVE 101 TS NUM=EXPAND
WRITE NUMBER-REC FROM NUMBER=FILE=-STORAGE
INVALID KEY PERFORM PROGRAM=BUG.
PERFORM NUM=KEY=UPDATE o

9e-V

00¥62209

01530 PERFCRM NUM<F ILE=ZERC,

01531 CLASE NUMBER~FILE,.

01532 MCVE # PSR FILLE HAFEADER# TC P=F=H=S=H,

01533 PFRFoRM PSR=XEY=UPDATE,

01534 MOVE UP=KEY TC EMPTY=PSR=-FILEy FIRST«PSR-ENT.
01535 MZVE 10100000 TC PSR=FXPAND,

01536 WRTTE PSR=FILKE=REC FPUM PSR=FILE~HEADER=STCRAGE
01837 INVALID KEY ©PERFCRAM PROGRAM=BUG,

01538 MCVE SPACES 1T PSR=FILE-HEADER=STCRAGE.

01539 MCOVE UPeKEY IC PSR«KEY,.

01540 PERFCRM PSR=rJLF=FMPTY.

01541 CLASE PSR=FILE. '

01547 MCyE # LIST tILE HEADERz TC H=R=S,

01543 MOVE PRIM=KEY TQ H=R=S=SAK.

01544 PFRFORM PRIM=REY=UPDATE.

01545 : ICVE UPeKEY 10 PLU=SAKy PRIM=KEY.

01546 PFRFORM PRIM=KEY=UPDATFE .

01547 MOVE UPeKEY 1T EMPTY=-HEAD=REC.

01548 MOVE 30100C0" TS PRIM=FXPAND.

01549 MOVE bBK1=CHO T8 PRIM=KEY.

0155C WRITE HEADFR=AFCZORD FROM HEADER=RECCRD=STCRAGE
015851 INVALID KLY PERFORM PHCGRAM=SUG.

015572 MOVE FPLH=SAK T0 PRIM=KEYe FMRPTY=HEAD=RFCs H=R=S=SAK,
01553 MOVE ZERC TO FRIM=EXPAND,.

01554 MOVE # PRIMARY PRZHUCT LIST2 TS H=R=S,

01555 WRTITE HEADER=XECZRD FRCM HEANER=RECCRN=STORAGE
01556 . INVALID KEY PERFORM PRCGRAM=RUG,

01557 OVE SPACES TC HEADER=RECOKD,

01858 PERFCRM PRIM=HEY=IIDDATE .

01559 NVE UP=KEY I3 PRIM=KEY,

01560 MAVE 30100000 T2 PRIM=FXRAND.

01561 PERFCRM | IST=r ILFE=FMPTY.

01562 CLASE PRIM=SFC~-LIST.

01563 GC TS U=PRZC=1.

01564 COLLECT SECTICN

01565 CCLL=RFGIN

01566 : APEN I=C PRIY=SFC=LIS3Ty PSR=FILEs NUMRER=FILE.
01567 MCVE HBK1«CHO TC PRIM=KEYas P=KEYs NUM=KFY.
01568 READ PRIM=SEC=LIST INTC HEADER=-RECCRD-STZRAGE
01569 INVALID KrY PERFoORM PROGRAM=RUG,

01870 READ NUMRER=FILE INTZS NUMBER=FILE=STCRAGE INVALID KEY PERFCRM
01571 PROGRAM=RUG

01572 MOVE PRIM=EXPaND T UP=KFY.

01573 SIIRTRACT 1 FRUM U=RLKe«

01574 SURTRACT | FRUM NUM=FXPAN) GIVING BLK,

00%62209

Le-V

01575
01576
01577
01578
01579
01580
01581
01582
01583
01584
01585
01586
01s87
01588
01589
01590
01591
01592
01593
01594
01595
01596
01597
01598
01559
01600
01601
01602
01603
01604
01605
01606
01607
01608
01609
01610
01611
01612
01613
Olela
01615
0lélé
01617
01618
01619

ENTER COMPASSs ALLSCATEs P=S«LISTy U=BLK
N=FILEs» BLK,

OPEN I=C P=-S~LIST,

CRPEN CUTPUT N-FILE,

CLL=PRIMARY,

MOVE PLH=SAK T PRIM=KEY.

PERFCORM P=KEY=URDATE,

CVE UP=KEY TO PLH=SAK.

WRITE T=REC=2 FROM HEADER-RECQRD=STCRAGE,
INVALLD KEY PERFORM PROGRAM=RUG,

READ PHIM=SEC~-LIST INVALID KEY PERFORM PR“GRAM-BUG.

TF FORWARD=LINK = RACKWARD=LINK AND HEADER=SAK

GC To COLL=NUM=END,

MOVE FORWARD=L.INK TS PRIM=KEY.

MOVE BACKWARD=LINK T8 TEM=KEY=1l,

MOVE UP=KEY TC P=KEY, HEADER«SAKy TEMaKEY=?

PERFORM P=KEY=UPDATE,

MOVE UP=KEY TC FORWARU=LTWKe

WRITE T=REC=-2 FROM PRIMARYRFCSRD
INVALID KEY PFRFARM PROGRAM=HUG,

CCLL-DRIM -1,

IF PRIM=KEY = TEM=KFY=1 4C TC COLL=PRIM=2,
PEAD PRIM=SEC-LIST INVALIN KEY PERFORM PROGRAM<BUG.
MOVE FORWARD=LINK TC PRIM=KEYs

"~ MOVE P=KEY TC BACKWARUD~L INKe

MCVE TEMeKEYeZ TC HEADER=SAK,

MOVE UP=KEY TU P=KEY,

PERFORM p=KEY=UPDATE.

MCVE UP=KEY TC FORWARD=LTNK.

WRITE T=REC=2 FRCM PRIMARY~RECCRD
INVALID KEY PERFORM PROGRAM=RUG,

GC TC COLL=PRIM=1,

CCLLGPQIM'ei

READ PRIM=SEC=LIST INVALID KEY PERFORM PROGRAM<BUG,
MOVE P=KEY T2 BACKWARD=LINK,
MCVE TEMeKEY=¢d TS FCRWARN=LINKy HEADER=SAK.,
MCVE UP=KEY TC P=KEY, TEM=KEY=7.
WRITE T=REC=~? FROM PRIMARYRECZRD
INVALLD KEY PERFORM PROGRAM=BUG,
MOVE TEMeKEY=Z TO P=KEYe.
READ P=S=LIST INTS PRIMARY=RECCRD
INVALID KEY PERFORM PROGRAM=BUG.
CVE TEMeKEY«7 T2 RACKWARD=L INK.
WRITE T=REC=2 FRCM PRIMARY=RECORD
INVALID KEY PERFARM PROGRAM=BUG.

88-V

00%62209

01620
01621
01622
01623
0le24
01625
01626
01627
01628
01629
1630
01631
01632
01633
01634
01635
01636
01637
01638
01639
01640
01641
01642
01643
Oless
01645
01646
Cl1647
01648
01649
01650
01651
N1652
01653
01654
01655
01656
01657
01658
01659
01660
01661
01662
01663
0l664

MCVE FCRWARD=LINK TC P«KEYs TEM=KEY~6,
MCVE HEADER=SAK TO TFM=KFY=2,
CCLL=SEC=1o
IF P=KEY = TEM=KEY=-2 GC TO CCOLL=SEC=DCNE.
READ P=S«l.IST INTZ PRIMARY=RECCRDT
INVALID KEY PERFZKM PROGRAM=3UG.
1F MASTER=SAKY = 7EpC G0 TS CCLL-SEC-2.
MCVE 1 TC 1.
{OVE TEM=KEYe=/! T p=KEY.
PERFORM P=KEY=UPNATE.
MOVE MASTER=3AKT T2 PRIM=KEYa
MOVE UP=KEY TU MASTER=SAKT.
PFRFCRM | [STeLCLLECT.
CCoLL=SFC=2
1F MSUS=SAKT = ZERS 62 TO CoLL=-SEC=-3,
MOVE 2 To 1.
MOVE TEMmKEYw! T2 pe=kFY.
PEFRFCRM P~KEY=UPDATE,
MCVE MSTS<«SAK!T T2 PRIM=KEYe
MCVE UP=KEY TU MSOG=QAKT,
PFRFCORM LIST=CCOLLECT.
COLL-SFC=3a.
TF RTS=SAKT = ZEHS GC To COLL=-SEC=-4,
MCVE 3 TC Ile
MOVE TEMeKEY=7 T2 pekfY.
PERFCRM P=KEY=-UPDATE,
MOVE RTS=SAKT T PRIM=KEY.
MAOVE UP=KEY TC RTS«SAKT.
PFRFORM | [ST«UCOLLECT.
CLL=SFC=4oe
MOVE TEMwKEY=0 T2 P=KEY,
WRITE T=REC=2 FiRCOM PRIMARY=RECCRDT
INVALID KEY PERFARM PROGRAM=RUG.
OVE FCRa«LLINKT T3 pe=rfYy TEM=KEY=6,
60 T COLL=SEC=1.
OLL-SFC=DCONE .
MAVE TEMeKEY=/ TS P=KEY.
PFRFORM P=KEY=UPDATE.
MOVE UP=KEY TO EMPTY=HEAN«REC.
MOVE BK1l=CHO TC PRIM=KEY,
WRITE HEADER=RECCRND FROM HEADER=-RECCRD=STORAGE
INVALID KEY PERFCRM PRCGRAM=RBUGS
MOVE PLHeSAK 1 PeKEYs
COLL=SEC=DONE=1,

1IF P=KEY = EMPTY-HFAD=REC GC TC COLL=-SEC=DCNE=2,

00¥6¢209

68-V

01665
01666
01667
01668
01669
01670
01671
0le72
01673
01674
0167%
01676
01677
01678
01679
01680
01681
01682
01683
0le84
01685
0le86
01687
01688
01689
01690
01691
01692
01693
01694
01665
01696
01697
01698
01699
01700
01701
01702
01703
Q1704
01705
01706
01707
01708
01709
01710

PERFCRM PRIM=KEY=UPDATE.
MOVE UP=KEY TO PRIM=KEY.
READ P=S=LIST INTC PRIMARY=RECORD
INVALID KEY PERFORM PROGRAM=BUG,
PERFCRM P~KEY=UPDATE,
CVE UP=KEY TC P~KEY.
G2 TC COLL~SEC-DONF=1.
OLL-SFEC~DCNE~-2.
MOVE SPACES TC HEADER=RECCRD,
PERFCRM LIST«FILE=EMPTY.
CLOSE PRIM=SEC-LISTs P=S-LIST,

1IF . U=BIAS NCT EQUAL TS SPACES G TC COLL=NIUM=EN{D

WRITE T=REC=-) FROM NUMRER=FILE~STCRAGE
INVAL D KEY PERFORM PROGRAM=HUG,
COLL=MM=10
PERFCRM NUM=KEY=UPDATE o :
READ NUMRER=FILE INVALID KEY GC TS COLL=NUM<ENDS
TF NUMBER=REC NOT = ZERD GC TC COLLeNUM=?,
ADND 1 TS SIAS.
50 TS COLL=-NUM=1,
CCLL=NM=2 o
WRITE T=REC=-1 FROM NUMBER-REC
INVALID KEY RPERFORM PROGRAM=RUG .
TF NUM=KEY=1 = NUMeEXPAND GO TC COLLeNUM=3,
PERFCRM NiUM=KEY=UIPDATE, _
RPEAD NUMBER=-FILE INVALID KEY PERFCRM PROGRAMeBUG -
GC TS COLL=Nym=2,
COLL=NIM=3
MOVE Z2EKQ T2 ~UMBER-RECS
WRITE TerECel FRCM NUMRER=REC
INVALID KEY 62 T2 COLL=-NUM=4,
G2 TC COLL=Ny1=3,
COLL=NUM=4+
CLASE N=FILE,
aREN INPUT NeFI1LE,.
READ N=FILE AT END PERFARM PROGRAM=BUG,
MOVE BKleCHO T NUM=KEY,
WRTTE NUMBER«REC FRCM NUMRBER=FILE=STCRAGE
INVALID KEY PERFOKM PROGRAM=RUG,
CCLL=N{IM=5 s
PERFCORM NUM=KEY=UPDATE . :
IF NUM=KEZY = NUM=EXPAND 62 T2 COLL=NUM=END.,
READ N=FILE AT END PERFORM PROGRAM=BUG 4
G TS COLL=Nyri=5,
CCLL=NIM=END,
CLOSE NUMBERFILEs NeFILE.

0y-v

00¥62209

c1711
01712
01713
Cl1714
01715
01716
01717
01718
01719
01720
01721
Q1722
01723
01724
01725
01726
01727
01728
01729
01730
01731
01732
01733
C1734
01735
01736
01737
01738
01739

01740 .

01741
01742
01743
01744
01745
01746
01747
01748
01749
01750
01751
01782
01753
01754
01755

ENTER COMPASS, RLEASFs P=S=LISTy N=FILE.
GC TC U=pPRCC-l.
LIST-COLLECT SECTIUN,

LtC~1,

READ PRIM=SEC=LIST INVALID KEY PERFCRM PRCGRAM=BUG.

MOVE TEMwKEYeb T2 HEADER=LINKe

IF FORWARD=|. INK = RACKWARD=LINK AND HEADER=SAK
MCVE UP=KEY TO FORWARD=LINKy BACKWARD=L INKy

HEADER=SAK, P-KEY, TEM=KEY=7 GC TC LC=-E.

MOVE BACKWAXD=LINK T2 TEM=KEY=S.

OVE UP=KEY TC P=KFY, HFADER=SAK, TEM=KEY=4e
PERFORM P«KEY=UPNATF e

MOVE FCRWARDLINK TO PRIM=KEYs

MCVE

WRITE

T=RECeZ FRCM SECCNDARY=RECCRD

INVALIO KeY PFRFCRM PROGRAM«BUG,

LC-2,

TF PRIMeKEY = TEMeKFY=S5 GC TC LC=3.

READ PRIM=SEC~LIST INVALID KEY PERFCRM PROGRAM=BUG.
MOVE FCRWARNDSLINK TO PRIM=KEY.

MOVE P=KEY TC BACKWARD=LINK.

MCVE

UP=KEY TC P=KEY.

BERFORM P=KEY=UPNATE.
OVE UP=KEY TC FORWARU~LINK.
MOVE TEM=KEYe4 T2 HEADUER«SAK,

WRITE

TeREC=¢ FRCM SECZNDARY=RECCRD

INVALID KEY PFRF2RM PROGRAM=BUG,
MOVE PSR=SAK 10 PSR=KkEY.
READ PSReFILE INVALID KEY PERFCRM PROGRAM=RUG. -
MOVE P=KEY TL COP=KEY (1)
WRITE PSR=FILE=REC INVALID KEY PERFZRM PROGRAM=8UG.

3¢ T

LC=3.

LCu2,

READ PRIM=SEC=-LIST INVALIND KEY PERFCRM PRCGRAM=BUG,
MOVE TEMwKEY=4 TC FORWARD=LINKs HEADER=SAK,

MOVE P=KEY T2 BACKWARU=LINK.

MOVE UP=KEY TC P=KFY, TEM=KEY=T,

WRITE

TeREC=¢ FRCM SECCNDARY=RECCRD

INVALTU KEY PERF2RM PROGRAM=RBUG,

MOVE
READ
MCOVE
WRITE
MCVE
READ

PSR=SAK TC PSR=KEY,

PSR=FILE INVALID KEY PERFCRM PROGRAM=RUG.
P=KEY TC OP=KFY (I)e’

PSR=FILE=REC INVALID KEY PERFCRM PRCGRAM=BUG.
TEM‘KEY‘“ TC P-KEY.

P=g=LIST INTS SECONDARY=RECCRD

00¥62209

7V

N1756
01757
01758
01759
01760
01761

INVALID KEY PERFORM PROGRAM=BUG,
MOVE TEM=KEYw? T3 RACKWARD=LINK
LC=E
WRTTE T=REC-2 FROM SECONDARY=RECORD
INVALID KEY PERFCRM PROGRAM=BUG,
END PROGRAM,

THE COBOL LANGUAGE B

COBOL CHARACTER SET

The characters recognized by COBOL include the letters of the alphabet, digits, and those characters,
commonly called symbols, which are used in expressions, relations and editing. The complete
computer character set consists of the 63 characters listed in the COBOL collating sequence
(appendix D).

Character Set for Words

Letters A-Z, digits 0-9, and hyphen (-)

Character Set for Punctuation '

s comma

; semicolon
period

" quotation mark

{ left parenthesis

) right parenthesis

space

Character Set for Arithmetic Operators

+ addition

- subtraction

* multiplication
/ division

Fk exponentiation

60229400 B-1

Character Set for Relational Operators

> greater than
< less than
= equal to

Character Set for Editing

B space

0 zZero

+ plus

- minus

CR credit

DB debit

Z ZEero suppress

* check protect

$ currency sign

s comma (decimal point)

period (decimal point)
/ slash

WORDS

A word is composed of a combination of not more than 30 characters chosen from the character set
for words. The word cannot begin nor end with a hyphen. The space character is not allowed in 2
word; the space is a word separator. Wherever a space is used, more than one may be used. A
word is ended by a space, or by a period, right parenthesis, comma, or semicolon followed by a
space. A space must not immediately follow a left parenthesis or a beginning quotation mark. A
space must not immediately precede a right parenthesis or an ending quotation mark except when
the space is included in a literal.

Words are specified by the user or they are COBOL reserved words. User-defined words include
all names assigned by the user to elements in the program; they must never be from the set of
COBOL reserved words.

Lijterals are also considered user-defined words, but they are not restricted to the limits imposed
on other words.

B-2 60229400

Data Name

A data name is a word containing at least one alphabetic character. It names a data item in the Data
Division (file names, library names, mnemonic names, report names are all formed like data
names; their functions are defined in context.)

EXamples :
QUANTITY-ON~-HAND MESSAGE
LAST-YEAR-PROFIT 100A
ITEM-NUMBER FILE-1

Condition Name

A condition name is assigned to a value, set of values or range of values, within the complete set of
values that a data item may assume. The condition name must contain at least one alphabetic char-
acter. Each condition name must be unique, or be made unique through qualification. The associ-
ated data item may be the qualifier for any of its condition names. If references to this data item
require indexing, subscripting or qualification, references to any of its condition names require
the same combination of indexing, subscripting or qualification. Y T e =

1 e v A P F

. M o

Example: \ . W" o Aok M
yP (’VJ b""'

03 GRADE

88 GRADE-ONE VALUE IS 1.
88 GRADE-TWO VALUE IS 2.

88 GRADE-SCHOOL VALUES ARE 1 THRU 6.
88 JUNIOR-HIGH VALUES ARE 7 THRU 9.

88 HIGH-SCHOOL VALUES ARE 10 THRU 12.
88 GRADE-ERROR VALUES ARE 13 THRU 99.

A condition name may be used in conditions as an abbreviation for the relation condition. For
example: IF GRADE-ONE ...

Procedure Name

A procedure name identifies a paragraph or a section in the Procedure Division. A procedure name
may be composed solely of numeric characters. Two numeric procedure names are equivalent

only if they are composed of the same number of digits and have the same value; 0023 is not
equivalent to 23.

Examples:

PROC-1. A-INPUT SECTION.
002. 100 SECTION.

60229400 B-3

Identifier

An identifier is a data name followed, as required, by the syntactically correct combination of
qualifiers, subscripts, or indexes necessary to make unique reference to a data item.

Examples:

DAY OF MASTER-DATE
FIRST IN GRADE-ONE
MALE-FEMALE (2,5,1)

Qualifier

Every name in a source program must be unique, either because no other name has the identical
spelling, or because the name exists within a hierarchy of names, such that it can be made unique
by mentioning one or more of the higher levels of the hierarchy. The higher levels are called
qualifiers when used in this way. The qualification process is performed by writing IN or OF after
the name followed by a qualifier. The choice between IN or OF is based on readability; they are

. logically equivalent. Only sufficient qualification must be mentioned to make the name unique.
Whenever the data item or paragraph is referenced, any necessary qualifiers must be written as
part of the name.

Literal
A literal is a string of characters. Literals may be numeric or non-numeric.

Non-Numeric Literal

A non-numeric literal is a string of any characters allowable in the computer's character set
(including reserved words but excluding the quotation mark) and bounded by quotation marks. The
value of a non-numeric literal is the string of characters itself, excluding the quotation marks.

Any spaces included between the quotation marks are part of the non-numeric literal and, therefore,
are part of the value. All non-numeric literals are classed as alphanumeric. They may contain
from 1 to 120 characters excluding the quotes.

Examples of non-numeric literals:

"LINE-COUNTER"
"PAGE 144 IS MISSING"
"ABCDE F"

"_125. 56"

"PAGE NUMBER IS "

The literal '"-125. 56" is not the same as the literal -125. 56; the quotation marks make it a non-
numeric literal and prevent it from hemg used for computation

LT VO AV 12030 O w 4AUL VUL PULA biULL.

B-d 60229400

Numeric Literal

A numeric literal is a string of characters chosen from digits 0 thru 9, the plus sign, the minus sign,
and the decimal point. HKs value is the algebraic quantity represented by the characters in the
literal. Every numeric literal is in the numeric category.

Rules for forming numeric literals:

® It must contain at least one and not more than 18 digits.

e It can contain only one sign character. If a sign is used, it must appear as the leftmost
character of the literal. An unsigned literal is positive.

® It can contain only one decimal point. The decimal point is treated as an assumed decimal
point, and may appear anywhere in the literal except as the rightmost character. A literal
without a decimal point is an integer.

If a literal conforms to the rules for forming a numeric literal, but is enclosed in quotation marks,
it is a non-numeric literal.

Examples of numeric literals:

15067893251459
-12572.6
+25675

1435.89

Floating Point Literal

A floating point literal is a numeric literal written in the following form.
[ﬂcoefficient E [+] exponent
Rules for floating-point literals:
e The coefficient may have from one to eleven digits in the range of 0 = n= 236—1 and a

decimal point.

® The coefficient is followed immediately by the symbol E, followed by an optional plus or
minus sign, followed by one to three numeric digits which indicate the power of the ex-
ponent. A zero exponent may be written as 0, 00, or 000. An unsigned exponent is
assumed to be positive. The exponent is to the base 10 and may range from 0 through 308.

e The plus and minus signs preceding the coefficient and exponent are optional. All other
elements of the format are required.

e A floating point literal must appear as a continuous string of characters with no intervening
spaces.

60229400 B-5

Examples

15.2E5 +2.725E-6

12.4E10 -4.0E+12

-.425E101 -5.124E-20

+30E-101 405E+305

6G.5E0 .68719476735E308
Reserved Words

Reserved words defined in appendix C are used for syntactical purposes and may not appear as
user-defined words. Reserved words are used as key words, optional words, and connectives.

Key Word

A word that is required when it appears in a source program format is called a key word. Within
each format, key words are uppercase and underlined. All verbs, for example, are key words
which must be included to designate the operation to be performed.

Optional Words

Uppercase words in a format that are not underlined are called optional words since they may appear
or not as the user chooses. The presence or absence of each optional word within a format does not
affect the compiler’s translation. An optional word must not be misspelled or replaced by another
word not explicitly stated to be its equivalent.

nninl oicta
Special Registers

The word TALLY is the name of a special register implicitly described as a five-digit integer.
TALLY is used primarily to hold information produced by the EXAMINE statement. TALLY may
also be used as a data name wherever an elementary data item of integral value may appear.

The special registers SYSTEM-DATE and SYSTEM-TIME are restricted for use as the subjects of
MOVE statements in the Procedure Division and the objects of SOURCE clauses in the Report Section
of the Data Division; they may not be used as literals. In a MOVE statement, the receiving field
must have a PICTURE of X(8). Likewise, in the Report Section, the elementary item description
containing the SOURCE clause must have a PICTURE clause of X(8).

SYSTEM-DATE represents the current date in the form mm/dd/yy: mm = month, dd = day,

yy = year. SYSTEM-TIME represents the time of day when the object program begins execution.
Its format is hh/mm/ss: hh = hour, mm = minute, ss = second.

B-6 60229400

Figurative Constants

Certain constants, called figurative constants, have been assigned fixed data names. Figurative
. constants must not be bounded by quotation marks, or they become non-numeric literals. The
singular and plural forms of figurative consiants are equivalent and may be used interchangeably.

Figurative Constant

ZERO
ZEROS
ZEROES

SPACE

[2]

SPACES

HIGH-VALUE

HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

60229400

Meaning

Represents the value 0, or one or more of the character 0, depending
on context.

Represents one or more blanks or spaces.

Represents one or more of the character with the highest value in
the COBOL collating sequence.

Represents one or more of the character with the lowest value in
the COBOL collating sequence.

Represents one or more of the character " or the character sub-
stituted for it on computers that do not use a quotation mark. The
word QUOTE cannot be used in place of a quotation mark in a source
program to bound a non-numeric literal.

Represents one or more of the string of characters comprising the
literal. The literal must be either a non-numeric literal or a figura-
tive constant other than ALL literal. When a figurative constant is
used, the word ALL is redundant and may be used for readability
only.

When a figurative constant represents a string of one or more characters, the length of the string is
set by the compiler according to the following rules:

® When the figurative constant is moved to or compared with another data item, its character
string is repeated character by character on the right until the size of the resultant string
is equal to the size in characters of the associated data item.

e When the figurative constant appears in a DISPLAY, EXAMINE or STOP statement, the
length of the string is one character. ALL literal may not be used with DISPLAY,
EXAMINE or STOP.

A figurative constant can be used any place where a literal appears in the format. When the literal
is restricted to numeric characters, ZERO (ZEROS) (ZEROES) is the only figurative constant per-
mitted.

Examples:
MOVE QUOTES TO AREA-A Assuming AREA-A consists of five character positions,
this statement moves the configuration """ to
AREA-A.
DISPLAY QUOTE "NAME'" QUOTE This statement results in "NAME" being displayed.
MOVE SPACES TO TITLE The item named TITLE is set to all spaces (or
blanks).
MOVE ALL "4" TO COUNT-FIELD Assuming COUNT-FIELD has a picture of X(4), a 4
: is placed in each position of the item named COUNT-
FIELD.

IF ALL "4" IS EQUAL TO COUNT-FIELD... Assuming COUNT-FIELD has a picture of 9(4) or
X(4), this compares 4444 with the value of COUNT-

FIELD.

MOVE ZEROS TO REGISTER This places 0 in each position of the item named
REGISTER.

MOVE ALL "NO-OP'" to EMPTY Assuming EMPTY consists of 12 character positions,

EMPTY is filled with repetitions of the characters of
the non-numeric literal, NO-OPNO-OPNO.

B-8 60229400

Connectives
There are three types of connectives:

® Qualifiers used to associate a data name or paragraph name with its qualifier: OF, IN.

® . A series connective that links two or more consecutive operands: ., -(comma) or two or
more consecutive clauses: ; (semicolon).

® TIogical connectives used in the formation of conditions: AND, OR, AND NOT, OR NOT.
Examples:

AIS GREATER THAN B
A IS GREATER B

A GREATER THAN B

A GREATER B

All these expressions are correct and have the same meaning whether the o

THAN are used or not.

PUNCTUATION

The punctuation symbols, period, comma, and semicolon, are shown within the formats. All division
and section headers are followed by a period with the remainder of the line blank, Specific rules for
each division follow:

Identification Division: Commas and semicolons may be used for readability within comment
paragraphs; they are not shown in the formats. Each paragraph and paragraph name must be
terminated by a period followed by a space.

Environment Division: Commas and semicolons shown in the formats are optional. Each
paragraph and paragraph name must terminate with a period followed by a space.

Data Division: Commas and semicolons shown in the formats are optional. Each file and data
description entry must be terminated by a period.

Procedure Division: Commas shown in the formats are optional. A semicolon may be used
between statements in a sentence. In addition, the semicolon may appear in an IF statement
immediately following the condition and also immediately preceding the keyword ELSE., Each
sentence must be terminated by a period and a space. Procedure names are terminated by a
period and one or more spaces.

60229400 B-9

When a period, semicolon, or comma is used, it immediately follows a word and must be immediately
followed by a space. A beginning quotation mark is not followed by a space nor is an ending quotation
mark preceded by a space unless the space is part of the nonnumeric literal. A left parenthesis is
followed by a space only when followed by + - (; in these cases a space is required. A right
parenthesis is preceded by a space only when it is preceded by a). A right parenthesis is always
followed by a space. Parentheses must be paired.

B-10 60229400

COBOL RESERVED WORD LIST C
ACCEPT CF CURRENCY EXAMINE
ACCESS CH DATA EXIT
ACCESS-PRIVACY CHARACTERS DATE-COMPILED FD
ACTUAL CLOSE DATE-WRITTEN FILE
ADD COBOL DE FILE-CONTROL
ADDRESS CODE DECIMAL FILE-LIMIT
ADVANCING COLUMN DECIMAL-POINT FILE-LIMITS
AFTER COMMA DECLARATIVES FILLER
ALL COMMON-STORAGE DENSITY FINAL
ALPHABETIC COMP DEPENDING FINIS
ALPHANUMERIC COMP-1 DESCENDING FIRST
ALTER COMP-2 DETAIL FOOTING
ALTERNATE COMPASS DISK FOR
AND COMPUTATKWAL. DISPLAY FORTRAN
ARE COMPUTATIONAL-1 DIVIDE FROM
AREA COMPUTATIONAL-2 DIVISION GENERATE
AREAS COMPUTE DOWN GIVING
ASCENDING CONFIGURATION EDITION-NUMBER GO
ASSIGN CONSOLE ELSE GREATER
AT CONTAINS END GROUP
AUTHOR CONTIGUOUS ENDING HEADING
BEFORE CONTROL ENTER HIGH
BEGINNING CONTROLS ENVIRONMENT HIGH-VALUE
BINARY COPY EQUAL HIGH-VALUES
BLANK CORR EQUALS HOLD
BLOCK CORRESPONDING ERROR HYPER
BY CRT EVERY 1-0

C-1

60229400

I-O-CONTROL
ID
IDENTIFICATION
IF

IN

INDEX
INDEXED
INDICATE
INITIATE
INPUT
INPUT-OUTPUT
INSTALLATION
INTO

INVALID

IS

JUST
JUSTIFIED
KEY

KEYS

LABEL

LAST

LEADING

LEFT

LESS

LIMIT

LIMITS

LINE
LINE-COUNTER
LINES

LOCK

Low
LOW-VALUE

LOW-VALUES
MEMORY
MODE

MODIFICATION-PRIVACY

MODULES

MOVE

MULTIPLE
MULTIPLY
NEGATIVE

NEXT

NO

NOT

NOTE

NUMBER

NUMERIC
OBJECT-COMPUTER
OCCURS

OF

OFF

OMITTED

ON
OPEN
OPTION!
OR
OUTPUT

OWNER
OWNER-ID

PAGE
PAGE-COUNTER
PERFORM

PF

>
-

t

PH

PIC
PICTURE
PLUS
POSITION
POSITIVE
PRINTER
PROCEDURE
PROCEED
PROCESS
PROCESSING
PROGRAM-ID
PUNCH
QUOTE
QUOTES
RANDOM

RD

READ
READER
RECORD
RECORDING
RECORDS
RECORD-MARK
REDEFINES
REEL
REEL-NUMBER
RELEASE
REMARKS
RENAMES
RENAMING
REPLACING
REPORT
REPORTING

REPORTS
RERUN
RESERVE
RESET
RETENTION-CYCLE
RETURN
REVERSED
REWIND

RF

RH

RIGHT
ROUNDED
RUN

SA

SAME
SCRATCH

SD

SEARCH
SECTION
SECTOR
SECURITY
SEEK
SEGMENT-LIMIT
SEGMENTED
SELECT
SENTENCE
SEQUENCED
SEQUENTIAL
SET

SIGN

SIZE

SORT

60229400

SOURCE

SOURCE-COMPUTER

SPACE

STANDARD
STATUS

STOP

SUBTRACT

SUM

SYNC
SYNCHRONIZED
SYSTEM-DATE
SYSTEM-INPUT
SYSTEM-OUTPUT
SYSTEM-PUNCH
SYSTEM-TIME
TALLY
TALLYING

TAPE
TERMINATE
THAN
THEN
THROUGH
THRU
TIMES

TO
TRACE
TRACK
TTY
TYPE
UNEQUAL

60229400

} equivalent

UNIT
UNTIL

USING
VALUE
VALUES
VARYING
WHEN
WITH
WORDS
WORKING-STORAGE
WRITE
ZERO
ZEROES
ZEROS

COBOL COLLATING SEQUENCE D

The following table shows the relationship between characters of the COBOL set and their equivalent
machine, printer, and punched card codes. They are listed according to ascending collating se-
quence. The COBOL quote (') character is represented as a not-equal-to (#) sign on the printer.
The 4-8 multiple punch must be used to represent the quote in a COBOL source card.

Characters shown with an asterisk are not available in COBOL source language but would be treated
in the sequence indicated if present in data. :

Cards

Collating Internal External Printer Character Punch

Sequence Code Code Character ’
00 60 20 A A blank
01 15 15 =% ' 8,5
02 16 16 % 8,6
03 17 17 [* 8,7
04 75 35 ' - * 0,8,5
05 76 36 =* 0,8,6
06 ' 77 37 A * 0,8,7
07 55 55 t* ' 11,8,5
08 56 56 ¥ 11,8,6
09 57 57. > : 11,8,7
10 35 75 =% ‘ 12,8,5
11 36 . 76 - 12,8,6
12 33 73 . . 12,8,3
13 34 74)) 12,8,4
14 37 77 ; 12,8,7
15 20 60 + + 12
16 53 53 $ $ 11,8,3
17 54 54 * 11,8,4
18 40 40 - - 11
19 61 21 / / 0,1

60229400 D-1

Cards
Collating Internal External Printer Character Punch
Sequence Code Code Character
20 73 33 , s 0,8,3
21 74 34 ((0,8,4
22 13 13 = = 8,3
23 14 14 # (dash) 8,4
24 32 72 < +0* 12,0
25 21 61 A A 12,1
26 22 62 B B 12,2
27 23 63 C C 12,3
28 24 64 D D 12,4
29 25 65 E E 12,5
30 26 66 F F 12,6
31 27 67 G G 12,7
32 30 70 H H 12,8
33 31 71 I 1 12,9
34 52 52 v ¥ -0* 11,0
35 41 41 J Jd 11,1
36 42 42 K K 11,2
37 43 43 L L 11,3
38 44 44 M M 11,4
39 45 45 N N 11,5
40 46 46 o 6] 11,6
41 47 47 P P 11,7
42 50 50 Q Q 11,8
43 51 51 R R 11,9
44 72 32 T 0,8,2
45 62 22 S S 0,2
46 63 23 T T 0,3
47 64 24 U U 0,4
48 65 25 A% v 0,5
D-2 60229400

Cards
Collating Internal External Printer Character Punch
Sequence Code Code Character

49 66 26 w w 0,6
50 67 27 X X 0,7
51 70 30 Y Y 0,8
52 71 31 VA Z 0,9
53 _ 00 *

53 } f 00 12 0 0 0

54 01 01 1 1 1

55 02 02 2 v 2 2

56 03 03 3 3 3

57 04 04 4 4 4

58 05 05 5 5 5

59 06 06 6 6 6

60 07 07 7 7 7

61 10 10 8 8 8

62 11 11 9 9 9

T Within the COBOL Collating sequence, external codes of 00 and 12 are the same.
D-3

60229400

STANDARD FILE LABELS | E

This appendix illustrates the standard file labels used with COBOL systems. The mass storage
file label is maintained by MASTER, and cannot be accessed by the user. The field lengths
specified in this appendix for standard label fields should be observed in the VALUE OF phrase
associated with the LABEL RECORDS ARE STANDARD clause.

MASS STORAGE FILE LABEL

-

24 il
Owner NextS i\;? able
3 26|RM RF BF % LRS
| wax | Tis
28 |[KFM|KFS KEY location
File name IDM| IDL Status | ID location
30
r Edition
11 Access privacy
Modification privacy
13 No. allocated blocks
* Bl‘ock size
15 Block count
Usage count
17 Creation date
Expiration date
19 Last access date
pr| sc | P | *
21 DTM| * * *
* * * *
23 File size 50 Checksum
* Denotes Reserved ' % Device number
These three words are —
repeated for each Low segment limit
segment of the file. Segment length

60229400 , E-1

FIELD NAME

File Identifier

Access Privacy

Modification
Privacy

No. Blocks
Allocated

Block Size

Block Count

Usage Count

Expiration Date

Last Access Date

SIZE

40 characters

4 characters

4 characters

24 bits

18 bits

24 bits

24 bits

24 bits

24 bits

DESCRIPTION

Uniquely identifies a file in label directory.
The standard identifier consists of:

Owner Identification - 8 characters
File Name - 30 characters
Edition Number - 2 characters

The 40-character field may be divided in
other ways at installation option.

Supplied when file is allocated and must be
supplied for each succeeding OPEN request.

Supplied when file is allocated and must be
supplied for each RELEASE, EXPAND, and
MODIFY request.

Binary integer giving the number of blocks
allocated to the file.

Binary integer indicating number of 6-bit
characters in each record block
(0 < block size < 131072).

Binary integer, highest block number
written. If file is processed sequentially,
this is the number of blocks written into the
file (0 = block count < 223),

Binary count of number of times file has
been opened.

Date in the form yymmdd, stored as a binary
integer, supplied by I/0O system when file
is allocated.

Date in the form yymmdd, stored as a
binary integer, supplied by user when the
file is allocated. This field determines
when a file may be deleted.

Date in the form yymmdd, stored as a

binary integer, supplied by I/O system
each time file is opened or changed.

60229400

FIELD NAME

DT (device type)

SC (segment count)

P (protection)

DTM (device type
modifier)

File Size

Next Available
SAK

RM (record mark)

60229400

SIZE

1 character

6 bits

1 character -

1 character

24 bits

8 characters

1 character

DESCRIPTION

6-bit code to indicate type of mass storage
device:

DT = 40_ (1311 Disk Packs)
=41_ (852 Disk Packs)
= 50_ (853 Disk Packs)
= 51_ (854 Disk Packs)
=60_ (813, 814 Disk Files)
©=70_ (863 Drum)

Co Co 00 0o 0o o

Binary integer giving number of segments
in file (0 < SC < 64).

Protection flags for use by I/0 system.
Values currently defined:

0 File may be read or written
1 File may not be written

6-bit code which provides further device
information. For 1311 and 852 disk packs,
the values are:

XXXXX0 Track Mode
XXXXX1 Sector Mode

For 853, 854, 813, 814, and 863, the
value is:

XXXXX1 Sector Mode

Binary integer indicating number of allo-
catable units (tracks) assigned to file
(0 < file size < 223).

File block and record positions where next
record can be written.

Character which terminates each record
when the record format is record mark
variability.

FIELD NAME

RF (record format)

BF (block format)

LRS (logical record

size)

MAX (maximum logical
record size)

TIS {trailer item size)

KFM (key field mode)

KFS (key field size)

Key Location

SIZE

3 bits

1 bit

2 characters

2 characters

1 bit

5 bits

17 bits

DESCRIPTION

Denotes the type of file records:

00 Fixed length records

01 Key field contains total number
of characters

02 Key field contains the number of
occurrences of a fixed length
trailer item

03 Universal format

04 Record mark specified by RM
terminates each record

1 = One logical record per block

0 = Logical records are blocked and each
block contains two word header which
specifies next block number (NBN) and
position of first available character in
block (POFAC).

Logical record size, in characters, of

fixed length record; size of fixed portion of
variable records with trailer items. Zero
if records vary by key field or record mark.

Maximum size in characters of variable
portion of logical records. For variable
records with trailers, this is size of trailer
item times maximum number of occurrences.
For all others this is maximum size of record
within file.

Trailer item size in characters if RF = 02,
else zero.
Mode of key field address

0 Key field is within each record
1 Key field is outside record (not
in file)

Number of characters in key field.
Character position of key field relative to

beginning of record if key field is within
record.

60229400

FIELD NAME

IDM (ID Mode)

IDL (ID Length)

Status

ID Location

Checksum

Device Number

Low Segment Limit
Segment Length

*(reserved)

60229400

SIZE

1 bit

5 bits

1 character

2 characters

24 bits

3 characters

24 bits

4 characters

89 characters

DESCRIPTION

Type of record identification associated
with every record in file.

0 = alphanumeric 1 = numeric

Length in characters of record identification
field.

Reserved to reflect current status of the
file as defined by each operating system or
library program.

Starting character position of identification
field in each record of the file.

24~bit binary checksum of entire label.
This field is checked by 1/0 system to
detect accidental modification of label.

Number of device on which this file segment
is stored. This field is checked against
device label to insure that proper packs are
mounted.

. Binary hardware address at which this file

segment begins.

Number of allocatable units (tracks) in this
segment.

These fields are reserved for future use of
1/0 system.

MAGNETIC TAPE

GENERAL HEADER LABELS

All header label records are 80 characters (480 bits) long, and are unblocked. They are recorded
in even parity (BCD) at the same density as the remainder of the data file.
separated from succeeding data records by an interrecord gap only. Header label record fields
are defined below; they are positioned as shown within the physical record. Values that may be
used within these fields are also indicated.

Header records are

Starting
Character Length in Defined Values
Field Name Position Characters BCD Characters Only Function
DensityT 1 1 2,5, 8 Specifies density
of recording file
Header Label 2 2 () Identifies record as
Identifier header label record
Not used 4 2
Retention Code 6 3 000-999 Specifies, in days,
file retention period
File NameT 9 14 Any combination of Identifies file
legal BCD characters
Reel NumberT 23 2 01-99 Sequence of reels
for multireel files
Date Written 25 6 Any legal numeric Date written is used
date, expressed as with retention period
mmddyy to determine release
date of file
Edition NumberT 31 2 00-99 or blank Identifies a single
file set
User Supplied 33 48 Any combination of User comments field

Information

legal BCD characters

T Used by *DEF open unit function

60229400

MAGNETIC TAPE

STANDARD ENDING LABELS

The input-output control system writes ending labels for all files with standard labeling and at the

end of each reel of a multireel file.

Starting
Character Length in Defined Values

Field Name Position Characters BCD Characters Only Function

End~of-Tape 1 3 EOT: End of tape for
intermediate reel

or or

End-of-File EOF End of file for
final tape

Block Count 4 5 numeric Physical record

" (block) count for

reel if multireel file;
for file if multifile
or single file reel

User supplied 9 72 Any combination of User comments field

information

legal BCD characters

60229400

FILE BLOCKING FORMATS F

The input-output system blocks and deblocks user files in accordance with information supplied in
the BLOCK CONTAINS and RECORD CONTAINS clauses of the FD entry for each file. Physical
record formats depend on the hardware type on which the file resides.

The maximum size of a block and logical record is 131,067 characters.

The following chart shows the possible variations of BLOCK and RECORD clauses. The reference
codes used in the chart are defined in the following pages.

File Blocking Reference Chart

1T Y y
Eﬁ < £ 2 Z M 2 Z i B Z "*T
OB n g |[f00 90 2|fad Ay
O =z 3 = e L 5 Sl P
26| & | B |2 |2Eg3 |2Hg,:[2Ee,3
O | § - B ST B 3= SEHAe g | THE 9D
o r O r O roaAn |OQ55|025
o :-é o <G :..ézm nézgq s..é gFﬂ
2) ot 0@ O orE FL ol FOQ
conTA 2 | g5 | g5 |g5a8 |84 |85as¢
~ -~ 2 -
CONTAINS 3 E5 50 |E0am |EvaSz|Ecase
clause omitted Fl F1 F2 F 9 F 9 F3
integer-1
CHARACTERS F4 F4 F5 F5 F5 FS
integer-1
RECORDS F6 FG F7 F’(F7 ’ F7
integer-1
TO
integer-2 FS F8 F8 FS FS FS
CHARACTERS
integer-1
TO
integer-2 F9 F9 FlO F10 FlO F10
RECORDS

60229400 F-1

Reference Code

F

10

Resultant Block Format

Unblocked, fixed-length logical records. Size of physical record is computed
from record description.

Unblocked logical records. Physical record may be variable on magnetic
tape, but on mass storage the record is always fixed length with size equal to
integer-4.

Nlegal combination. Universal records must always be blocked.

Blocked or unblocked logical records, depending on whether integer-1 is a
multiple of the record description length. Size of physical record is always

integer-1 characters.

Blocked logical records. Size of block is always integer-1 characters on mass
storage; the block may be variable on magnetic tape.

Blocked, fixed-length logical records. Size of block is equal to integer-1
times the length of the record description.

Blocked logical records. Size of block is equal to integer-1 times integer-4
for mass storage; block may be variable on magnetic tape.

Blocked logical records. Block size is always integer-2 characters on mass
storage; may be variable length on tape.

Blocked logical records. Mass storage block size is equal to integer-2 times
the length of the record description; may be variable on magnetic tape.

Blocked logical records. Mass storage block size is equal to integer-2 times
integer-4; may be variable on tape.

60229400

INPUT/OUTPUT SUMMARY TABLE

This
on a data file.

table indicates the various features included in COBOL for perfo
The list which follows is a guide for cross referencing the table.

Sumiary of I/O Options

rmin

g input/output operations

Hardware Type

Mass Storage System Unit Record
Options Magnetic Files (INP, CRT Reader, Printer,
Permanent Scratch Tape OUT, PUN) TTY Punch
Access Mode S, R S, R S. S S S
Labeling S o S,0,D S,0,D 0] S,0,D
Blocking B,U,R B,U,R B,U U U U
Block Size FH FH F,V X X X
Logical Record F,RM, F, RM, F,RM,K1 F F F
Size K1,K2 K1,K2
Allocation A A X X X X
Expansion E E X X X X
Release U A X X X X
Actual Key AR, AS AR, AS X X X X
Use Declaratives | SE, LB SE . SE, LB LB X LB
Open 03,04 03,04 01,02,04 | 04 03, 04 04
Close C1 C1 Cl1,C2, C1 Cl1 Cl
C3,C4
Read R1,R2 R1,R2 R1 R1 R1 R1
Write W1,W2 W1,W2 w1 w1 w1 w1
Seek S S X X X X

60229400

Option

ACCESS MODE

LABELING

BLOCKING

BLOCK SIZE

LOGICAL RECORD SIZE

ALLOCATION

EXPANSION

RELEASE

USE DECLARATIVES

Code Meaning

S SEQUENTIAL

R RANDCM

S STANDARD

(0] OMITTED

D data name

B Blocked logical records

U Unblocked logical records

R RESPOND - UNIVERSAL blocking

F Fixed Length - no block header

FH Fixed Length - eight character header
(mass storage only)

v Variable length

F Fixed length

RM Variable depending on record mark

K1 Variable depending on data-name (key field - BCD)

K2 Variable depending on data name (key field -
COMPUTATIONAL-1)

A File may be allocated internally

E File may be expanded internally if it is in sequential
mode.

A Entire file released at end of run

U Unused portion released when file is closed if in
segmented, sequential mode

AR Actual key must be updated by user if file is random
mode

AS 1/0 control will update actual key if file is sequential
mode

SE Use after standard error recovery

LB Use before/after standard

beginning/ending label procedure

60229400

Option

OPEN

CLOSE

READ (INTO)
WRITE (FROM)

SEEK

ILLEGAL OPTION

60229400

Code

Meaning

01

02
03

04

C1
C2
C3
C4

INPUT

OPEN 3 OUTPUT % WITH NO REWIND
OPEN INPUT REVERSED

OPEN I-O

INPUT |
OUTPUT

OPEN ;

CLOSE

CLOSE WITH NO REWIND
CLOSE WITH LOCK
CLOSE REEL

READ; AT END (sequential)
READ; INVALID KEY (random)

WRITE (sequential)
WRITE; INVALID KEY (random)

SEEK; INVALID KEY

DIFFERENCES BETWEEN MASS STORAGE

COBOL AND USASI COBOL

USASI COBOL and Mass Storage (MS) COBOL both operate under control of the MASTER operating
system. They are compatible except for the language differences described in this appendix.

The elements omitted from USASI COBOL either have no effect on the object program or their
functions can be performed by other elements present in both versions of COBOL/MASTER. The
elements omitted from MS COBOL are features in USASI COBOL which have no equivalent in MS

COBOL.

Elements in MS COBOL not in USASI COBOL

ENVIRONMENT DIVISION:

MEMORY SIZE clause of
SOURCE-COMPUTER paragraph

DATA DIVISION:
CONSTANT SECTION

File Description Clauses:
FILE CONTAINS

NON-STANDARD option of
LABEL RECORDS clause

Record Description Clauses:

SIZE

CLASS

POINT LOCATION
SIGN or SIGNED

60229400

Alternate Methods Available in Both

None, used for documentation only

Constants can be defined with the VALUE
clause in Working-Storage and Common-
Storage sections.

None, used for documentation only

Data-name option of LABEL RECORDS clause
can be used to specify nonstandard labeling.
Label checking is done by the input-output
control system in USASI COBOL.

Number of symbols representing character
position in PICTURE(includes all symbols but
V S and P).

Type of character in PICTURE:
9 is NUMERIC
A is ALPHABETIC
X is ALPHANUMERIC or AN

V in PICTURE
S in PICTURE

Elements in MS COBOL not in USASI COBOL Alternate Methods Available in Both

Record Description Clauses (cont'd):

ZERO SUPPRESS Z used as replacement character in PICTURE
CHECK PROTECT * used as replacement character in PICTURE
FLOAT DOLLAR SIGN currency symbol ($) used as replacement

character in PICTURE

PROCEDURE DIVISION:

Conditional statement connectives or operators:

OTHERWISE ELSE

THEN ; (semicolon)

UNEQUAL NOT EQUAL TO or NOT =
EQ EQUAL TOor =

NQ NOT EQUAL TO or NOT =
GR GREATER or >

LS LESS or <

Elements Common to MS and USASI COBOL

RESERVE ;E s ALTERNATE AREA
integer-1

clause in FILE-CONTROL

For MS COBOL: For USASI CORBOL:
NO Produces no buffering NO (or clause omitted)
1 Produces single buffering Produces no buffering for unblocked files
2 (or clause omitted) 1 Produces single buffering for unblocked
Produces double buffering f;;:i;i?;g;?: buffering for blocked
2 Produces double buffering for blocked

and unblocked sequential files

H-2 60229400

The elements given below are available in USASI COBOL but not in MS COBOL. Except for abbre-
viations, which can be replaced by the complete word, these elements represent new features which
have no equivalent in MS COBOL.

ENVIRONMENT DIVISION:

MODULES option of OBJECT-COMPUTER paragraph. (documentation only)
Literal IS mnemonic-name clause of SPECIAL-NAMES paragraph
CURRENCY SIGN IS literal clause of SPECIAL-NAMES paragraph
DECIMAL-POINT IS COMMA clause of SPECIAL-NAMES paragraph
RENAMING clause of FILE-CONTROL paragraph

DATA DIVISION:

MNNMTATNANT MmOy A QLYMATYNNT
AJLYLIWVIUINTO & UR[‘UL‘J [S2 V) WO B¥ LW)

REPORT SECTION
SD entry (sort file description)

File Description:

SECTOR/TRACK and SEGMENTED/CONTIGUOUS options of RECORDING MODE clause
VALUE OF option of LABEL RECORD IS data-name clause
REPORT clause

Record Description:

level-number 66 and RENAMES clause

INDEX and COMPUTATIONAL-2 options of USAGE clause

JUSTIFIED RIGHT clause |
ASCENDING/DESCENDING KEY and INDEXED BY options of OCCURS clause
PIC abbreviation of PICTURE

COMP abbreviation of COMPUTATIONAL

COMP-1 abbreviation of COMPUTATIONAL-1

60229400 H-3

PROCEDURE DIVISION:

GIVING series in ADD, SUBTRACT, MULTIPLY and DIVIDE
TO series in ADD

BY option in DIVIDE

UNIT option in CLOSE

language-name option of ENTER

UNTIL and VARYING options of PERFORM

REVERSED option of OPEN INPUT »
REPLACING and procedure-name options of COPY
BETFTORE/AFTER ADVANCING option of WRITE

compound conditions joined with AND

COMPUTE verb

Sort Feature:

RELEASE verb
RETURN verb
SORT verb

Table Handling Feature:

SEARCH verb
SET verb

Source Program Debugging Feature:

TRACE verb

Report Writer Feature:

BEFORE REPORTING option of USE statement
GENERATE verb

INITIATE verb

TERMINATE verb

60229400

DIAGNOSTICS

DIAGNOSTICS

Each diagnostic generated by the compiler has the following format:

nnnnn

¢ English text diagnostic word / D idn
nnnnn Source program line number where error occurred.
c Character code specifying severity of error:

S Severe error. No object code is generated for the statement; execution and binary
deck generation suppressed.

E Probable error. Code generated for statement; however, results during execution are
unpredictable.
W Warning. A minor inconsistency encountered. Program expected to run correctly.

word Current source text element deemed erroneous.

D idn Internal name assigned to a data-name for PASS 2 diagnostics.

In all cases, program compilation continues in order to diagnose additional errors.

IDENTIFICATION/ENVIRONMENT DIVISION

Type

Message

€

ggwmmmgwmmmmgg

ACCESS MODE CLAUSE IGNORED FOR NONMASS STORAGE FILE.

ACCESS MODE CLAUSE REQUIRED FOR MASS STORAGE--ASSUMED SEQUENTIAL.
ACTUAL KEY CLAUSE IGNORED FOR NONMASS STORAGE FILE.

ACTUAL KEY MISSING FOR RANDOM FILE--SET TO SEQUENTIAL.

ASSIGN MISSING--FILE IGNORED (word)

COMPUTER NAME MUST BE *3300* OR *3500%* (word)

DATA DIVISION HEADING MISSING--COMPILATION TERMINATED.

DATA-NAME USED WITH »ACTUAL KEY CLAUSE MAY NOT BE QUALIFIED.

DUPLICATE CLAUSE IN SELECT STATEMENT--IGNORED (word)

DUPLICATE *CURRENCY SIGN* CLAUSE--SECOND CLAUSE IGNORED.

DUPLICATE *DECIMAL POINT* CLAUSE--SECOND CLAUSE IGNORED.

DUPLICATE HEADER--FIRST DEFINITION ACCEPTED (word)

DUPLICATE SELECT STATEMENT FOR CURRENT FILE-NAME--2ND SELECT IGNORED.
END REEL IN *RERUN* CLAUSE NOT VALID FOR MASS STORAGE--ASSUMED *END UNIT*.
END UNIT IN *RERUN* CLAUSE NOT VALID FOR TAPE FILE~--ASSUMED *END REEL*.

60229400

o
R

Message

END UNIT INVALID IN *RERUN* CLAUSE FOR RANDOM ACCESS FILE.
FILE-LIMITS CLAUSE IGNORED FOR NON-MASS STORAGE FILE.
FILE NOT DEFINED VIA A *SELECT* STATEMENT (word)

HEADER OUT OF ORDER--IGNORED (word)

IDENTIFICATION DIVISION MISSING OR OUT OF ORDER.

ILLEGAL CLAUSE IN SPECIAL-NAMES SECTION (woxrd)

ILLEGAL CLAUSE WITHIN SELECT STATEMENT (word)

ILLEGAL *DSI* IN HARDWARE ASSIGNMENT--IGNORED (word)
ILLEGAL DSI IN *RERUN* CLAUSE (word)

ILLEGAL FILE-NAME IN *RENAMING* CLAUSE--CLAUSE IGNORED (word)
ILLEGAL FILE-NAME IN SELECT STATEMENT--FILE IGNORED (word)
ILLEGAL HARDWARE-NAME (word)

ILLEGAL HARDWARE TYPE IN *RERUN* CLAUSE (word)

ILLEGAL HEADER--IGNORED (word)

ILLEGAL LITERAL IN *CURRENCY IS* CLAUSE (word)

ILLEGAL *TUI* IN HARDWARE ASSIGNMENT--IGNORED (word)
ILLEGAL WORD IN *ACCESS-MODE* CLAUSE (word)

ILLEGAL WORD IN *ACTUAL KEY* CLAUSE (word)

ILLEGAL WORD IN *CURRENCY IS* CLAUSE (word)

ILLEGAL WORD IN *DECIMAL-POINT IS COMMA* CLAUSE (word)
ILLEGAL WORD IN *FILE-LIMITS* CLAUSE (word)

ILLEGAL WORD IN *IMPLEMENTATOR-NAME IS MNEMONIC-NAME* CLAUSE (word)
ILLEGAL WORD IN *LITERAL IS MNEMONIC-NAME* CLAUSE (word)
ILLEGAL WORD IN MEMORY SIZE CLAUSE (word)

ILLEGAL WORD IN *MULTIPLE REEL* CLAUSE (word)

ILLEGAL WORD IN *RESERVE AREA* CLAUSE--IGNORED (word)

INTEGER IN FILE-LIMITS CLAUSE TOO LARGE--VALUE NORMALIZED TO = 8388607
INTEGER-2 OF *RESERVE* IS GREATER THAN 2--SET TO 2.

INTEGER LITERAL MUST BE POSITIVE--MINUS SIGN IGNORED (word)

INTEGER MISSING FROM *POSITION* OPTION OF *MULTIPLE FILE* CLAUSE.
INVALID CLAUSE IN I-O-CONTROL PARAGRAPH (word)

INVALID INTEGER IN *RERUN* CLAUSE.

INVALID WORD IN *RERUN* CLAUSE (word)

LITERAL MUST BE 1 CHARACTER--LITERAL IGNORED (word)

1-2

60229400

Type

Message

£

=

n L’I)g n wn wm s

mmgmmmmmmmmmm

MNEMONIC-NAME PREVIOUSLY DEFINED (word) v
MULTIPLE DEFINITION OF FILE-NAME IN *SAME AREA* OR *MULTIPLE FILE* CLAUSES (word)

A file-name mentioned in a MULTIPLE FILE clause may not be mentioned in a SAME AREA clause
since MULTIPLE FILE implies sharing same areas. Likewise, a file-name may not be mentioned
more than once within either clause or in multiple like clauses.

MULTIPLE REEL CLAUSE IGNORED FOR-MASS STORAGE FILE.

MULTIPLE REEL/UNIT CLAUSE VALID ONLY FOR TAPE AND.MASS STORAGE FILES--CLAUSE
IGNORED.

MULTIPLE UNIT CLAUSE IGNORED FOR TAPE FILE.

NO FILE-NAMES GIVEN IN *MULTIPLE FILE* CLAUSE (word)

NO FILE-NAMES GIVEN IN *SAME-AREA* CLAUSE (word)

OQPTIONAL DISCREPANCY BETWEEN MASTER FILE AND CURRENT FILE (word)
PARAGRAPH HEADER PRECEDING THE COPY STATEMENT IS EXPECTED AT THIS POINT (word)
POSITION INTEGER IN *MULTIPLE FILE* CLAUSE CANNOT BE ZERO.
POSITION NUMRBER OF A FILE MAY NOT EXCEED 63.

PREVIOUS ERROR CAUSED CURRENT FILE TO BE UNDEFINED (word)
PROGRAM-ID NAME IS MISSING OR ILLEGAL (word)

RENAMED FILE PREVIOUSLY DEFINED AS A RENAMING FILE (word)

RENAMING FILE WAS PREVIOUSLY RENAMED (word)

REQUIRED HEADER MISSING OR OUT OF ORDER (word)

REQUIRED WORD MISSING.

SELECT MISSING--FILE IGNORED (word)

SECTION MISSING FROM SECTION HEADER.

TEXT MUST NOT FOLLOW CURRENT HEADER (word)

THE WORD *DIVISION* IS MISSING.

THRU OPTION OF FILE-LIMITS CLAUSE ILLEGAL FOR RANDOM ACCESS FILE.
UNDEFINED FILE-NAME IN *RERUN* CLAUSE (word)

UNDEFINED FILE-NAME IN *SAME AREA* OR *MULTIPLE FILE* CLAUSE (word)

60229400

I-3

DATA DIVISION

Type

Message

»n wn

[I > B > B T ¥ B o

|7, 7> B 7> B) N 5 T 7> B B s I > I > B <> B ¢

Z2B 7 B > B > B < <

=

A CONDITION NAME MAY NOT BE ASSOCIATED WITH A LEVEL 66 ITEM.
A CONDITION NAME MAY NOT BE ASSOCIATED WITH AN ITEM WHOSE USAGE IS INDEX.

A REDEFINED ITEM MAY NOT CONTAIN AN OCCURS CLAUSE NOR BE SUBORDINATE TO ITEM
CONTAINING ONE.

ACCESS-PRIVACY VALUE EXCEEDS 4 CHARACTERS.

ACCUMULATED SIZE OF PRECEDING GROUP ITEM IS GREATER THAN 131,067 CHARACTERS.
ALL SUBORDINATE ITEMS WITHIN A COMPﬁTATIONAL—l GROUP MUST BE COMPUTATIONAL-1.
ALL SUBORDINATE ITEMS WITHIN A COMPUTATIONAL-2 GROUP MUST BE COMPUTATIONAL-2.
ALL SUBORDINATE ITEMS WITHIN AN INDEX GROUP MUST BE INDEX.

AN ITEM MAY NOT CONTAIN VALUE CLAUSE IF IT IS SUBORDINATE TO AN ITEM WITH A VALUE
CLAUSE.

AN ITEM SUBORDINATE TO AN OCCURRING ITEM MAY NOT HAVE A VALUE CLAUSE.
ASCENDING/DESCENDING KEY CLAUSE REQUIRES AN *OCCURS* CLAUSE,
BINARY, DECIMAL, SECTOR, TRACK EXPECTED--CURRENT WORD INVALID (word)
BLANK WHEN ZERO CLAUSE MAY NOT BE USED UNLESS ITEM IS NUMERIC EDITED.
BLOCK CONTAINS CLAUSE INTEGER-2 MUST BE GREATER THAN INTEGER-1.

BLOCK CONTAINS CLAUSE MUST HAVE POSITIVE INTEGERS,

COMMON-STORAGE SECTION ENCOUNTERED TWICE.

COMMON-STORAGE SECTION MUST PRECEDE WORKING-STORAGE SECTION.
COMPUTATIONAL-1 LITERAL MAY NOT EXCEED + OR - 8338607.

COMPUTATIONAL-2 LITERAL EXPONENT MAY NOT EXCEED + OR - 308.
COMPUTATIONAL-2 ITEM ASSIGNED ILLEGAL LITERAL,

CURRENT FILE-NAME CANNOT BE A SORT FILE.

One or more of the following clauses in the ENVIRONMENT DIVISION were used to describe the
ENVIRONMENT of the current file (RENAMING, ACTUAL KEY, FILE-LIMITS, ACCESS MODE,
PROCESSING MODE, RERUN ON, MULTIPLE FILE, SAME AREA), thus, the file may not be a
SORT file.

CURRENT VALUE CLAUSE CONSIDERED DOCUMENTARY.
CURRENT WORD IS INVALID IN *USAGE* CLAUSE (word)
CURRENT WORD SHOULD BEGIN IN *A* MARGIN OF SOURCE TEXT (word)
DATA DIVISION MUST BEGIN WITH A SECTION HEADER
DATA-NAME EXPECTED--CURRENT WORD INVALID (word)
DATA-NAME IS NOT DEFINED IN DATA DIVISION (word)
A data-name mentioned within a DATA DIVISION qualification string has not been defined.
DATA-NAME LEVEL NUMBERS MUST BE EQUAL IN REDEFINES CLAUSE.
DATA RECORDS CLAUSE MISSING IN FILE DESCRIPTION(FD).

60229400

Type

Message

m o wm wn "2 > I o T o I o

PR R R R > B R 7

®w H B ! o o9

w »nn »n wm g)]

DATA RECORDS CLAUSE IN SORT-FILE DESCRIPTION(SD)
DIVISION EXPECTED AT THIS POINT (word)

DUPLICATE CLAUSE IN ENTRY--CLAUSES OTHER THAN FIRST IGNORED.
EDITION-NUMBER VALUE EXCEEDS 2 CHARACTERS.

ELEMENT CLASS CONFLICT DETECTED.

The compiler has detected either multiple PICTURE clauses for the data item or a VALUE has been
assigned which does not meet the class defined in the data item PICTURE.

EXPONENT OF COMPUTATIONAL-2 LITERAL MUST BE 1-3 DIGITS.

FD LEVEL ALLOWED ONLY IN FILE SECTION.

FIELD NAMED IN *SEQUENCED ON* CLAUSE FOR THIS FILE IS OUTSIDE OF THE RECORD.
FIELD NAMED IN *SEQUENCED ON* CLAUSE FOR THIS FILE MAY NOT BE COMP-1 OR COMP-2,
FILE-NAME NOT SELECTED IN ENVIRONMENT DIVISION (word)

FILE NAME NOT UNIQUE WITHIN DATA DIVISION (word)

FILE SECTION ENCOUNTERED TWICE.

FILE SECTION MUST PRECEDE OTHER DATA DIVISION SECTIONS.

FILLER OR DATA-NAME EXPECTED--CURRENT WORD INVALID (word}

HIGHEST DATA-NAME QUALIFIER IS NOT UNIQUE (word)

The last data-name mentioned in a qualification string must be unique when qualifying the following
data items:

1. Data-name-1 of the OCCURS. .. DEPENDING ON clause

2. Data-name-3, data-name-4, etc. of the VALUE OF clause in a level record description.

ID VALUE EXCEEDS 14 CHARACTERS.

ID VALUE EXCEEDS 30 CHARACTERS-MASS STORAGE.

ILLEGAL PICTURE CLAUSE (word)

ILLEGAL TO RENAME ITEMS WITH LEVELS 01, 66, 77, OR 88.

ILLEGAL TO SPECIFY VALUE CLAUSE WITH REDEFINES CLAUSE.

ILLEGAL TO SYNCHRONIZE AN ITEM SUBORDINATE TO AN ITEM CONTAINING A VALUE CLAUSE.
IN RENAMES CLAUSE DATA-NAME-2 MUST PRECEDE DATA-NAME-3.

IN RENAMES CLAUSE DATA-NAME-3 MAY NOT BE SUBORDINATE TO DATA-NAME-2.
INCORRECT STANDARD LABEL RECORD SPECIFIED.

INDEX-NAME NOT UNIQUE (word)

INDEXED BY CLAUSE MAY NOT BE USED WITHOUT AN OCCURS CLAUSE.
INSUFFICIENT BLOCK SIZE. »

INTEGER NUMBER EXPECTED--CURRENT WORD INVALID (word)

60229400

I-5

Type | Message
S INVALID LEVEL NUMBER HIERARCHY WITHIN RECORD DESCRIPTION.,
Within a record description a level number has been encountered which is less than the previous level
just processed, however, a prior item with an equal level number has not been defined.
Example: 01 ALPHA....
03 BETA....
03 BETA-B....
04 DELTA....
02 ZETA....
E ITEM MAY NOT HAVE USAGE OF COMP-1, COMP-2, OR INDEX IF SUBORDINATE TO ITEM WITH
DISPLAY USAGE
E ITEM MAY NOT HAVE USAGE OF COMP-1, COMP-2, OR INDEX IF SUBORDINATE TO ITEM WITH A
VALUE CLAUSE
E ITEM MAY NOT HAVE USAGE OF DISPLAY OR INDEX IF SUBORDINATE TO ITEM WITH
COMPUTATIONAL USAGE.
S ITEM MAY NOT HAVE VALUE CLAUSE IF SUBORDINATE TO AN ITEM WITH A REDEFINES CLAUSE.
E ITEM MUST BE NUMERIC IF SUBORDINATE TO AN ITEM WITH COMPUTATIONAL USAGE.
S ITEM WITH OCCURS DEPENDING ON CLAUSE ILLEGAL IN FILE WITH RECORD CONTAINS DEPENDING
ON CLATUSE.
E JUSTIFIED CLAUSE ILLEGAL AT GROUP LEVEL
S KEYFIELD FROM AN OCCURS DEPENDING ON CLAUSE IN FILE SECTION MUST BE A NUMERIC ITEM
<5 DIGITS
S KEYFIELD FROM AN OCCURS DEPENDING ON CLAUSE MAY NOT BE SUBORDINATE TO ITEM
CONTAINING CLAUSE.
S KEYFIELD FROM AN OCCURS DEPENDING ON CLAUSE MAY NOT BE WITHIN THE VARIABLE PART OF
THE RECORD.
S KEYFIELD IN RECORD CONTAINS DEPENDING ON CLAUSE MUST BE COMP-1 OR NUMERIC ITEM OF
< 5 DIGITS.
s *LABEL RECORDS* CLAUSE MISSING IN FILE DESCRIPTION(FD).
E *LEFT* OR *RIGHT* EXPECTED--CURRENT WORD INVALID (word)
S LEVEL 77 ILLEGAL IN FILE SECTION.
E LEVEL 77 ITEMS MUST BE DEFINED FIRST IN COMMON AND WORKING STORAGE.
S LEVEL 77 MAY NOT HAVE SUBORDINATE LEVELS. k
g LEVEL NUMBER FOLLOWING AN FD MUST BE 01.
S LITERAL ASSOCIATED WITH A NON-NUMERIC ITEM MUST BE A QUOTED LITERAL OR
FIGURATIVE CONSTANT.
S LITERAL OR FIGURATIVE CONSTANT EXPECTED--CURRENT WORD INVALID (word)
S LITERAL, FIGURATIVE CONSTANT OR DATA-NAME EXPECTED~--C URRENT WORD INVALID (word)
S MASS STORAGE FILE MUST HAVE STANDARD LABELS,
1-6 60229400

Type

Message

n

H ® o ®» o ®» ®w w»

&

=

BRI R I > B < -~

w g H 0 o

L o

MODIFICATION-PRIVACY VALUE EXCEEDS 4 CHARACTERS.

MORE THAN 3 LEVELS OF NESTED OCCURS CLAUSES ENCOUNTERED.
NO RECORD DEFINED FOR THE FILE.

NON-USASI ELEMENT,-CLAUSE IGNORED.

- OBJECTS OF RENAMES CLAUSE MAY NOT BE OCCURRING ITEMS NOR BE SUBORDINATE TO AN

OCCURRING ITEM.

OCCURS CLAUSE INTEGER-2 MUST BE GREATER THAN INTEGER-1.

OCCURS CLUASE ILLEGAL AT LEVEL 01 OR 177,

OCCURS CLAUSE MUST USE POSITIVE INTEGERS.

OMITTED OR *STANDARD VALUE OF* OR DATA-NAME EXPECTED--C URRENT WORD INVALID (word)
OWNER VALUE EXCEEDS 8 CHARACTERS.

PICTURE CLAUSE CONFLICTS WITH CLASS OF ITEM,.

PICTURE CLAUSE ILLEGAL AT GROUP LEVEL.

POINT ALIGNMENT OF LITERAL ASSIGNED TO DATA ITEM CAUSED LOSS OF NON-ZERO DIGITS ON
LEFT.

POINT ALIGNMENT OF LITERAL ASSIGNED TO DATA ITEM CAUSED LOSS OF NON-ZERO DIGITS ON
RIGHT.

PRECEDING DEFINITION DEFINED A STORAGE. AREA OF DIFFERENT SIZE THAN THE ORIGINAL ITEM.
QUOTED LITERAL IS TOO LARGE FOR ITEM~-RIGHT TRUNCATION OCCURRED.

RECORD CONTAINS CLAUSE INTEGER-2 MUST BE GREATER THAN INTEGER-1.

RECORD CONTAINS CLAUSE MUST HAVE POSITIVE INTEGERS.

RECORD CONTAINS CLAUSE NECESSARY IF USING LEVEL 01 WITH REPORTS ARE CLAUSE.
RECORD-MARK OR DATA-NAME EXPECTED--CURRENT WORD INVALID (word)

RECORD OR *RECORDS* EXPECTED--CURRENT WORD INVALID (word)

RECORD SIZE HAS BEEN DESCRIBED BY TWO OCCURS DEPENDING ON CLAUSES --SECOND CLAUSE
IGNORED. '

REDEFINES CLAUSE ILLEGAL AT LEVEL 66 AND 88.

REDEFINES CLAUSE MAY NOT BE SPECIFIED FOR AN OCCURRING ITEM.
REDEFINES CLAUSE MAY NOT BE USED AT LEVEL 01 ENTRIES IN FILE SECTION.
REDEFINES MUST IMMEDIATELY FOLLOW DATA-NAME-1.

REDEFINITION MUST IMMEDIATELY FOLLOW THE ENTRIES DESCRIBING THE AREA BEING
REDEFINED.

REEL-NUMBER VALUE EXCEEDS 2 DIGITS.
RENAMES EXPECTED--CURRENT WORD INVALID (word)
RENAMES CLAUSE RESULTS IN ITEM SIZE GREATER THAN 32K WORDS.

60229400

Type

Message

I 7 I R T R

N »

CIJUJ(IJUJQ

H O» w o »n »n o

RETENTION-CYCLE VALUE EXCEEDS 3 DIGITS.

RIGHT EXPECTED--CURRENT WORD INVALID (word)
SD LEVEL ALLOWED ONLY IN FILE SECTION.

SEARCH KEY I8 OUTSIDE LIMITS OF TABLE AREA.
SEARCH KEY MAY NOT HAVE AN OCCURS CLAUSE.
SECTION EXPECTED-~CURRENT WORD INVALID (word)
SYNCHRONIZED CLAUSE ILLEGAL AT GROUP LEVEL.
TABLE OVERFLOW--CANNOT EXPAND.

The user should re-compile with more core scheduled for the job.

THE KEYFIELD FROM AN ACTUAL KEY CLAUSE MUST HAVE A LENGTH OF 12 CHARACTERS.

THIS FILE MAY NOT APPEAR IN A FD SINCE ITS SELECT STATEMENT CONTAINS A RENAMING CLAUSE.
TERMINAL PERIOD MISSING.

UNDEFINED DATA-NAME USED IN REDEFINES CLAUSE (word)

UNDEFINED DATA-NAME USED IN RENAMES CLAUSE (word)

VALUE ASSIGNED TO COMPUTATIONAL ITEM MUST BE NUMERIC LITERAL,

VALUE ASSIGNED TO COMPUTATIONAL-1 ITEM MUST BE NUMERIC INTEGER LITERAL.

VALUE CLAUSE ILLEGAL IN AN ENTRY USING OCCURS CLAUSE.

VALUE OF EXPECTED--CURRENT WORD INVALID (word)

VALUE OR *VALUES* EXPECTED--CURRENT WORD INVALID (word)
WORD OUT OF CONTEXT--SCANNING RESUMED AT NEXT KEYWORD (word)
WORKING~STORAGE SECTION ENCOUNTERED TWICE.

ZERO EXPECTED--CURRENT WORD INVALID (word)

1-8

60229400

REPORT WRITER

Type | Message
S ABSOLUTE LINE NUMBER SPECIFICATION MAY NOT FOLLOW RELATIVE LINE SPECIFICATION.
S ABSOLUTE LINE NUMBER SPECIFIED IS NOT GREATER THAN PRECEDING LINE.
S/W | CLAUSE APPEARS MORE THAN ONCE IN SAME REPORT GROUP/ITEM DESCRIPTION.
S *CODE* EXPECTED TO FOLLOW *WITH* (word)
_ The word CODE must follow the word WITH in the WITH CODE mnemonic-name clause.
S *COLUMN NUMBER* CLAUSE REQUIRED WHEN REPORT GROUP IS TO BE PRESENTED.
The COLUMN NUMBER clause is required when one of the following clauses is given in the elementary
item description: GROUP INDICATE, JUSTIFIED, VALUE, or BLANK WHEN ZERO.
S CURRENT CLAUSE IS USED AT AN INVALID LEVEL NUMBER.
It is illegal to use the following clauses at the RD level: LINE NUMBER, NEXT GROUP, TYPE,
USAGE, COLUMN NUMBER, GROUP INDICATE, JUSTIFIED RIGHT, PICTURE, RESET, BLANK
WHEN ZERO, SOURCE, SUM, and VALUE. It is illegal to give an RD level clause at the group or
element level.
S CURRENT ELEMENT IS NOT RECOGNIZABLE (word)
S CURRENT OPERAND EXPECTED TO BE AN INTEGER (word)
S CURRENT OPERAND EXPECTED TO BE A PROGRAMMER ASSIGNED NAME (word)
S DATA-NAME EXPECTED TO FOLLOW *3SUM----UPON* CLAUSE (word)
S DATA-NAME IS IMPROPERLY QUALIFIED OR UNDEFINED (word)
W | *DISPLAY* MUST FOLLOW *USAGE* (word)
If the USAGE clause is specified, it should be USAGE IS DISPLAY. A report writer element is always
assumed to have display usage.
S GROUP CONTROL IDENTIFIER NOT DEFINED IN CONTROL CLAUSE.
w *GROUP INDICATE* CLAUSE MAY BE SPECIFIED ONLY FOR TYPE DETAIL ELEMENTARY ITEMS.
S ILLEGAL GROUP NAME.
The data-name following the level number of a report group must be unique within a report and cannot
reflect qualification, subscripting, or indexing.
S ILLEGAL GROUP TYPE CLAUSE (word)
S ILLEGAL *LINE IS NEXT PAGE* CLAUSE.
The NEXT PAGE option of the LINE clause is illegal in TYPE PAGE HEADING and TYPE PAGE
FOOTING report groups.
S ILLEGAL NAME IN SOURCE, SUM OR RESET CLAUSE.
S ILLEGAL *NEXT GROUP* CLAUSE.
S ILLEGAL QUALIFICATION OR SUBSCRIPTING OF ASSIGNED WORD (word)
The current word may not be qualified or subscripted in the current context of the source code.
60229400 I-9

Type | Message

S ILLEGAL REPORT GROUP LINE NUMBER SPECIFICATION.

The first subordinate report item description which follows a report group description cannot contain
a line number specification when the group description specifies a line number clause.

ILLEGAL REPORT-NAME (word)

ILLEGAL SUMMARY REPORTING--NO SUM COUNTERS DEFINED.

ILLEGAL VALUE SPECIFIED (word)

ILLEGAL *WITH CODE MNEMONIC-NAME* CLAUSE (word)

ILLEGAL VALUE IN REPORT LINE NUMBER CLAUSE (word)

INTEGER-1 REQUIRED IN PAGE CLAUSE WHEN ABSOLUTE SPACING USED.

n n Unn v v on wm

INTEGER-3 REQUIRED IN PAGE CLAUSE WHEN PAGE HEADING DEFINED AND DETAILS USE
RELATIVE SPACING.

INTEGER-4 REQUIRED IN PAGE CLAUSE WHEN PAGE FOOTING DEFINED AND DETAILS USE
RELATIVE SPACING.

INVALID *COLUMN NUMBER* CLAUSE.

wn

INVALID CONTROL GROUP-CONTROL IDENTIFIER PREVIOUSLY USED.
INVALID CONTROL GROUP-NO CONTROL CLAUSE DEFINED AT RD LEVEL,

nw »n w» wn

INVALID DATA-NAME IN RESET CLAUSE (word)

Data-name-1 in the RESET clause must be specified in the CONTROL clause in the report description.
It must be of a higher level in the CONTROL hierarchy than the data-name associated with the report
group in which the RESET clause appears.

N INVALID *FIRST DETAIL* INTEGER (word)
S INVALID *LAST DETAIL* INTEGER (word)
S INVALID *NEXT GROUP* CLAUSE SPECIFICATION.

The NEXT GROUP clause may not be used in a TYPE PAGE HEADING or TYPE PAGE FOOTING
report group.

INVALID PAGE *FOOTING* INTEGER (word)

INVALID PAGE *HEADING* INTEGER (word)

INVALID *PAGE LIMIT* INTEGER (word)

INVALID PICTURE CLAUSE.

INVALID RESET CLAUSE--CONTROL HIERARCHY RULES VIOLATED.

»n »n o »n mow

INVALID *SUM* CLAUSE SPECIFICATION.
The SUM clause may appear only in a TYPE CONTROL FOOTING or TYPE DETAIL report group.
INVALID SUM COUNTER USAGE--CONTROL HIERARCHY RULES VIOLATED.
LEVEL NUMBER ERROR-01 IS MISSING.
LINE CLAUSE ABSOLUTE VALUE EXCEEDS PAGE CLAUSE LIMITS.
LINE CLAUSE CONFLICTS WITH PAGE CLAUSE SPECIFICATIONS.
LINE NUMBER CLAUSE IS REQUIRED FOR REPORT LINE.

m N v wn wm

1-10 60229400

Type| Message
S MNEMONIC-NAME IN *WITH CODE* CLAUSE IS UNDEFINED OR INVALID (word)
Either the name is not defined or the wrong mnemonic-name in the SPECIAL-NAMES SECTION has been

»n nn n wm

referenced.
NEXT GROUP CLAUSE ABSOLUTE VALUE EXCEEDS PAGE CLAUSE LIMITS.
NO LEVEL NUMBER FOLLOWING AN RD-NO REPORT GROUPS.
PICTURE CLAUSE IS REQUIRED FOR ELEMENTARY ITEM.
RD LEVEL INDICATOR MISSING (word) | _
The compiler continues searching through the SOURCE RECORDS until a level RD is found.
REPORT GROUP *TYPE* CLAUSE IS REQUIRED.
RESET CONTROL IDENTIFIER NOT DEFINED IN CONTROL CLAUSE.
SOURCE, SUM OR VALUE CLAUSE IS REQUIRED FOR ELEMENTARY ITEM.
SUM CLAUSE OPERAND NOT DEFINED IN SOURCE CLAUSE OF DETAIL REPORT GROUP.
UNDEFINED NAME IN THE *CONTROLS ARE* CLAUSE (word)
UNUSED IDENTIFIER IN CONTROL CLAUSE.
WITH CODE MNEMONIC-NAME CLAUSE MUST PRECEDE *COPY* STATEMENT.
ZERO EXPECTED TO FOLLOW *BLANK WHEN* (word)

60229400 1-11

PROCEDURE DIVISION

Message

2
%

A FILE NAME MUST NOT BE REFERENCED IN MORE THAN ONE USE STATEMENT (word)

A RECORD NAME WAS NOT FOUND FOR THE FILE-NAME (word)

A SECTION-NAME MUST FOLLOW THE DECLARATIVES HEADER.

ADD OR SUBTRACT OPERANDS EXCEED 18 DIGITS WHEN SUPERIMPOSED ON DECIMAL POINTS.
AFTER MAY ONLY FOLLOW A CONDITION WITHIN A PERFORM STATEMENT (word)

ARE MORE LEFT PARENTHESES THAN RIGHT PARENTHESES IN COMPUTE STATEMENT.

ARE MORE RIGHT PARENTHESES THAN LEFT PARENTHESES IN COMPUTE STATEMENT.

«w v m o n v n m

ASCENDING/DESCENDING MUST BE SPECIFIED IN SORT STATEMENT (word)

Either ASCENDING or DESCENDING must be specified at least once. If ON is specified, either word
must immediately follow.

S *AT END* OPTION OF READ STATEMENT VALID ONLY FOR SEQUENTIAL ACCESS FILES (word)
S *AT END* OR *INVALID KEY* REQUIRED IN READ STATEMENT (word)

Either AT END or INVALID KEY is required in the READ statement. If AT is specified, END must be
given also.

S *AT END* REQUIRED IN RETURN STATEMENT (word)
If AT is specified, then END must be given also.
ATTEMPTED ARITHMETIC OPERATION ON NON-NUMERIC ITEM.
BEFORE/AFTER ADVANCING OPTION IS VALID ONLY FOR NON-MASS STORAGE (word)
BEFORE OR *AFTER* EXPECTED IN CURRENT WRITE STATEMENT (word)

wm wm

/]

The current word is not recognizable. The compiler is looking for BEFORE, AFTER, INVALID,
or the next verb.

S *BEFORE* OR *AFTER* MUST FOLLOW *USE* (word)
S *BY* EXPECTED AT THIS POINT IN *COPY REPLACING* (word)

S *BY* IS MISSING IN EXAMINE STATEMENT (word)

The word BY is required in the REPLACING BY option of the EXAMINE TALLYING statement and is
required by itself in the EXAMINE REPLACING statement.

BY MUST FOLLOW FIRST OPERAND OF MULTIPLY STATEMENT (word)
BY MUST FOLLOW *UP* OR *DOWN* IN A SET STATEMENT (word)
CANNOT MIX INDEXING AND SUBSCRIPTING IN ONE REFERENCE (word)
COMP-1 OR COMP-2 FIELDS CAN BE COMPARED TO NUMERIC FIELD ONLY.

COMPILER DOES NOT ALLOW MORE THAN 63 LEFT PARENTHESES WITHOUT ANY INTERVENING
RIGHT PAREN.

CORRESPONDING OPERATIONS ILLEGAL FOR ITEMS WITH LEVEL GREATER THAN 49.
CORRESPONDING OPERATIONS ILLEGAL FOR ELEMENTARY ITEMS.

‘CURRENT IDENTIFIER DOES NOT BELONG TO FILE SPECIFIED BY *SQRT* STATEMENT (word)
CURRENT IDENTIFIER MUST NOT BE USED IN MORE THAN ONE STATEMENT (word)

»n n m m o wm

w w»n w»n wm

I-12 60229400

Type| Message

— ——

S CURRENT OPERAND OF ENTER STATEMENT MUST BE AN IDENTIFIER, FILE, PROCEDURE NAME,
OR LITERAL (word))

] CURRENT OPERAND OF ENTER STATEMENT MUST BE A ROUTINE-NAME (word)

S CURRENT WORD HAS OCCURRED QUT OF CONTEXT--COMPILER IGNORES AND CONTINUES AT
NEXT VERB (word) '

The word DECLARATIVES, USE, EXIT, ELSE, or END has been used out of context. The word is
ignored and the compiler looks for the next key word.

S CURRENT WORD IN PERFORM STATEMENT SHOULD BE *TIMES* (word)

The second element, exclusive of the THRU option, is an assigned word or numeric literal and thus
implies the TIMES option is being used. The current word should be TIMES.

S CURRENT WORD IN PERFORM STATEMENT SHOULD BE *UNTIL* OR *VARYING* (word)

The second element, exclusive of the THRU option, is not an assigned word or numeric literal, thus
UNTIL or VARYING IS EXPECTED.

DATA-NAME CANNOT OCCUR PRIOR TO *UP/DOWN BY* IN *SET* (word)
DATA-NAME HAS MORE THAN 49 LEVELS OF QUALIFICATION (word)
DATA-NAME IS NOT UNIQUE AND NOT QUALIFIED.

DATA-NAME IS NOT UNIQUE WITHIN RANGE OF PREVIOUS QUALIFIER (word)
DATA-NAME USED WHERE A FILE-NAME WAS EXPECTED (word)
DEPENDING ON OPTION OF GO TO MISSING (word)

v v v v v wm

The DEPENDING ON option must be used when more than one procedure-name is specified in a

GO TO statement.

S DIVIDE, MULTIPLY, SUBTRACT, PERFORM OPERAND MUST BE IDENTIFIER OR NUMERIC
LITERAL (word)

The operand (word) does not meet the requirements of a programmer-assigned word.
S *DIVISION* MUST FOLLOW *PROCEDURE* (word)

The compiler assumes that DIVISION has been omitted and continues compilation.
EACH IDENTIFIER USED IN PERFORM MUST BE A NUMERIC ELEMENTARY ITEM (word)
EITHER *OUTPUT* OR *GIVING* OPTION REQUIRED IN SORT STATEMENT (word)
ELSE ENCOUNTERED AND CURRENT VERB IS NOT *IF* (word)

n n n w

ELSE OR TERMINAL PERIOD MUST FOLLOW *NEXT SENTENCE* EXCEPT IN SEARCH (word)

Within a conditional statement, the word ELSE or a terminal period must follow NEXT SENTENCE.
If none of these were found a test is made for a key word or A-margin element. This diagnostic is
produced after these tests fail to find the necessary element.

END DECLARATIVES DETECTED OUTSIDE OF DECLARATIVES SECTION (word)
END DECLARATIVES MUST BE FOLLOWED BY A PROCEDURE-NAME (word)
END DETECTED IN A-MARGIN--NEXT WORD NOT *PROGRAM* NOR *DECLARATIVES* (word)

»w wn n w

END DETECTED WHILE PROCESSING DECLARATIVES--ASSUMED *END DECLARATIVES* (word)

If the word END is encountered while processing a DECLARATIVES procedure and the word following
is not DECLARATIVES or PROGRAM, the compiler assumes it to be END DECLARATIVES.

60229400 1-13

Type| Message

S *END PROGRAM* DETECTED WITHIN DECLARATIVES SECTION (word)

The END DECLARATIVES statement was not found while processing the DECLARATIVES section;
however, END PROGRAM was encountered. Thus, the entire PROCEDURE division was probably
processed as being contained within the DECLARATIVE section.

ENTER ROUTINE-NAMES CANNOT BE QUALIFIED (word)

ERROR REQUIRED IN ON SIZE ERROR OPTION (word)

EXAMINE IDENTIFIER IS ALPHABETIC AND AT LEAST ONE LITERAL IS NOT ALPHABETIC.
EXAMINE IDENTIFIER IS NOT USAGE DISPLAY (word)

EXAMINE IDENTIFIER IS NUMERIC AND AT LEAST ONE LITERAL IS NOT NUMERIC.
EXIT VERB MUST COMPRISE A PARAGRAPH BY ITSELF.

FILE-NAME CANNOT REDEFINE ANOTHER DATA-NAME.

FILE-NAME IS NOT UNIQUE (word)

FILE-NAME IS UNDEFINED (word)

FILE-NAME MAY NOT BE AN OCCURRING ITEM.

FINIS DETECTED BEFORE *END PROGRAM*--ASSUMED END PROGRAM (word)

FINIS OR *IDENTIFICATION* DO NOT FOLLOW *END PROGRAM*--ASSUME STACKED JOB (word)

The compiler assumes the job does not contain stacked compilations.

S FIRST ELEMENT IS INVALID IN THE MOVE STATEMENT (word)

The first element must be a data-name, literal, SYSTEM-DATE, SYSTEM-TIME, CORR, or
CORRESPONDING. It does not meet the specifications of a programmer-assigned word.

S FIRST ITEM COPIED WAS NOT A PROCEDURE NAME.
S FIRST OPERAND IN THE CONDITIONAL STATEMENT IS INVALID (word)

The first operand does not meet the specification of a programmer-assigned word. It must be a
data-name, literal, NOT, unary minus, or a left parenthesis.

S *FROM, BY OR UNTIL* EXPECTED IN PERFORM VARYING STATEMENT (word)

The PERFORM VARYING option syntax must be exact. FROM, BY, or UNTIL is expected and has not
been found.

S *FROM* IS MISSING IN SUBTRACT CORRESPONDING STATEMENT (word)

The reserved word FROM is required at this point in the CORRESPONDING option of the SUBTRACT
statement.

S | *GIVING* OPTION REQUIRED WITH *BY* AND *INTO FOLLOWED-BY-LITERAL* OPTIONS OF
DIVIDE (word)

If BY is used, or INTO with a non data-name operand is used, the GIVING option is required in the
DIVIDE statement.

S HIGHEST LEVEL QUALIFIER IS NOT UNIQUE (word)

S | IDENTIFIER DESCRIBING THE TABLE IN SEARCH STATEMENT MUST CONTAIN AN OCCURS
CLAUSE (D idn)

I-14 60229400

Type| Message
S IDENTIFIER DESCRIBING THE TABLE IN SEARCH STATEMENT MUST CONTAIN INDEXED BY
CLAUSE (D idn)
S IDENTIFIER ENCOUNTERED NOT FOUND IN REPORT SECTION/DATA DIVISION OR WAS NOT PROPER
TYPE (word)
S IDENTIFIER MUST REPRESENT A REPORT GROUP NAMED IN THE REPORT SECTION (word)
8 IDENTIFIER SPECIFIED IN TIMES OPTION IS NOT NUMERIC (word)
S IF ONE PARAGRAPH-NAME APPEARS IN A SECTION, ALL PARAGRAPH-NAMES MUST APPEAR IN
SECTIONS (word)
S IF *GO TO-PERIOD-* IS SPECIFIED IT MUST APPEAR IN SENTENCE BY ITSELF (word)
S IF *WITH* IS SPECIFIED IN OPEN STATEMENT, *NO REWIND* MUST FOLLOW (word)
S ILLEGAL ATTEMPT TO PERFORM A SECTION WITHIN A SORT PROCEDURE.
The remainder of the PROCEDURE DIVISION must not contain any transfers of control to points
inside the SORT input and output procedures.
S ILLEGAL CHARACTER IN ARITHMETIC OPERATOR (word)
S ILLEGAL DATA-NAME (word)
The current operand (word) does not meet the requirements of a programmer-assigned word; it
should be a data-name.
S ILLEGAL FILE-NAME (word)
The current operand (word) does not meet the specifications of a programmer-assigned word; it
should be a file-name.
S ILLEGAL FIRST ELEMENT OF ADD/SUBTRACT STATEMENT (word)
The first element must be a data-name, floating-point literal, numeric literal, integer literal, CORR,
or CORRESPONDING.
S ILLEGAL MNEMONIC-NAME (word)
The current operand (word) does not meet the requirements of a programmer-assigned word; it
should be a mnemonic-name.)
S ILLEGAL OPERAND FOR INITIATE, GENERATE, TERMINATE STATEMENT (word)
The current operand (word) does not meet the specifications of a programmer-assigned word. For a
GENERATE statement it should name a TYPE DETAIL report group or an RD entry. For either of the
other two, it should be the name of an RD entry.
S ILLEGAL PROCEDURE-~NAME (word)
The current operand (word) does not meet the specifications of a programmer-assigned word; it
should be a procedure-name.
S ILLEGAL QUALIFICATION LEVEL FOUND WHILE PROCESSING *CORRESPONDING* ITEMS.
S ILLEGAL SORT NON-SORT PROCEDURE REFERENCE.
s ILLEGAL TO MOVE A NON-INTEGER OR FLOATING POINT NUMERIC ITEM TO A-N OR A-N

EDITED (D idn)

60229400

I-15

Type

Message

m om wn nm own ow

ILLEGAL TO MOVE EDITED OR ALPHABETIC ITEM TO A NUMERIC OR NUMERIC EDITED ITEM
(D idn)

A numeric edited, alphanumeric edited, alphabetic, or floating-point edited data item may not be
moved to a numeric edited, floating-point edited, numeric (non-integer), integer, COMPUTATIONAL-1,
or floating-point item.

ILLEGAL TO MOVE NUMERIC OR NUMERIC EDITED ITEM TO AN ALPHABETIC FIELD (D idn)

A numeric edited, floating-point edited, numeric (non-integer), integer, COMPUTATIONAL-1, or
floating-point field may not be moved to an alphabetic field.

ILLEGAL USE OF ARITHMETIC-EXPRESSION IN CONDITIONAL STATEMENT (word)

An arithmetic-expression can appear only as a subject and/or object in the relational option or as a
subject in the sign option of a conditional statement.

ILLEGAL USE OF LITERAL IN CONDITIONAL STATEMENT (word)

A nonnumeric literal can appear as the subject or object only in the relational option of a
conditional statement.

IMPERATIVE STATEMENT MUST FOLLOW *ON SIZE ERROR, AT END, INVALID KEY* (word)

Either the imperative statement is missing or an IF statement has been used; conditional statements
are not legal following these options.

IMPROPER USE OF COBOL KEYWORD (word)

IN NESTED IF STATEMENT *IF* WILL NOT BE EXECUTED WHEN FOLLOWS *NEXT SENTENCE* OR
GO TO

IN NESTED IF STATEMENT MORE *ELSE* STATEMENTS THAN *IF* STATEMENTS WERE ENCOUNTERED.
IN SEARCH ALL, AND IS THE ONLY ALLOWABLE LOGICAL CONNECTOR.
INCOMPLETE RELATIONAL OPTION OF A CONDITIONAL STATEMENT (word)

In the relational option, the first relation must be complete. The compiler has not been able to
identify an object.

INCORRECT FORMAT IN IMPLIED OPERATOR AND CONNECTOR OPTION OF RELATIONAL
CONDITION (word)

INDEX-DATA-ITEM ALLOWED ONLY IN SEARCH, SET, AND RELATION CONDITIONS (word)
INDEX-NAME ALLOWED ONLY IN PERFORM, SEARCH, SET, AND RELATION CONDITIONS (word)
INDEX-NAMES CANNOT BE QUALIFIED (word)

INITIATE, TERMINATE, AND GENERATE NOT ALLOWED IN DECLARATIVES.

INP MAY NOT BE USED AS MNEMONIC-NAME IN *DISPLAY*.

INPUT, OUTPUT, I-O, OR INPUT-OUTPUT MUST FOLLOW OPEN VERB (word)

One of these reserved words is expected following the OPEN verb. The compiler cannot identify the
current word.

INPUT-OUTPUT OPTION APPLICABLE ONLY FOR MASS STORAGE (word)
INSUFFICIENT PROCEDURE-NAMES IN GO TO DEPENDING ON STATEMENT (word)
At least two procedure-names must precede the DEPENDING ON option of a GO TO statement.

INTEGER IN TIMES OPTION IS NOT POSITIVE (word)

1-16

60229400

Type

Message

n »n v wm

INTO OR *BY* MUST FOLLOW FIRST OPERAND OF DIVIDE STATEMENT.
INVALID ADD/SUBTRACT STATEMENT (word)

A data-name, numeric literal, or one of the reserved words TO, GIVING, or FROM is expected at
this point in the source statement. If the word is a reserved word other than TO, GIVING, or FROM,
the compiler considers ifself lost and proceeds to the next keyword.

INVALID ALTER STATEMENT (word)

The first TO of the TO PROCEED TO phrase is required; if PROCEED is specified, the second TO
must follow.

INVALID ARITHMETIC EXPRESSION (word)

An arithmetic operator and the left parenthesis must be followed by a variable, a unary minus, or a
left parenthesis. A unary minus must be followed by a variable or a left parenthesis.

INVALID *AT END* OF SEARCH STATEMENT (word)
The AT END directive is optional, but if AT is specified, END must be present.
INVALID CLOSE STATEMENT (word)
When the word WITH is specified, the NO REWIND or L.OCK words must be given. ' If the word NO is

specified, the word REWIND must fellow.

INVALID COMPUTE STATEMENT (word)

" The expression following the equal sign must be a numeric data-item, literal, or arithmetic expression.
The current operand (word) is not a unary minus, left parenthesis, or a programmer-assigned word.

INVALID ELEMENT WITHIN DISPLAY STATEMENT (word)

Data-names, literals, or figurative constants other than ALL are expected. The current word does not
meet the specifications of a programmer-assigned word.

INVALID KEY OPTION OF READ STATEMENT VALID ONLY FOR RANDOM ACCESS MASS STORAGE
FILES (word)

INVALID KEY OF *WRITE* AND *I/O* OF *OPEN* OPTIONS APPLICABLE ONLY FOR MASS
STORAGE (word)

INVALID OPERAND IN SORT STATEMENT (word)

The current word is not identifiable. The compiler was looking for another data-name or one of the
following reserved words: ON, ASCENDING, DESCENDING, INPUT, or USING.

INVALID USE OF FIGURATIVE CONSTANT *ALL* (word)
The literal following all must be either a nonnumeric literal or a figurative constant other than ALL.
INVALID WRITE ADVANCING STATEMENT (word)

In the advancing option of the WRITE statement, only data-names, mnemonic-names, and integer
literals are allowed. The current word does not meet the specifications of a programmer-assigned word.

LANGUAGE-NAME OF ENTER STATEMENT MUST BE COMPASS, FORTRAN, OR COBOL (word)
LITERAL OTHER THAN FIG CON *ALL* EXPECTED (word)
MASS STORAGE WRITE STATEMENT MUST SPECIFY INVALID KEY (word)

MAXIMUM OF 48 LEVELS OF KEY DATA-NAMES MAY BE TESTED IN THE SEARCH ALL CONDITION
(D 1idn)

60229400 I-17

Type| Message

MINIMUM OF TWO OPERANDS MUST PRECEDE GIVING OPTION OF ADD.
MNEMONIC-NAME GIVEN IS NOT UNIQUE--*CONSOLE* USED INSTEAD.
MNEMONIC-NAME NOT DEFINED AS 1-CHAR LIT IN SPECIAL-NAMES (word)

mmgm

MNEMONIC-NAME USED IS EQUATED TO AN ILLEGAL DEVICE FOR USE IN *ACCEPT* (OUT OR PUN)
(word)

MULTIPLY **** BY NUMERIC LITERAL REQUIRES *GIVING* OPTION (word)

w

w NAME USED IS NOT A MNEMONIC-NAME--*CONSOLE* USED INSTEAD.

S *NEXT SENTENCE* OR A VERB EXPECTED IN CONDITIONAL STATEMENT (word)

The words NEXT SENTENCE or a verb is expected at this point in the conditional statement.
S NO SUBJECT DATA-NAME WAS ENCOUNTERED IN *SET* STATEMENT-(D idn)
NON-EXECUTABLE STATEMENTS FOLLOW STOP RUN OR UNCONDITIONAL GO TO (word)

The compiler has encountered statements following STOP RUN or an unconditional GO TO within the
same paragraph. Those statements can never be executed.

NON-NUMERIC ITEM CANNOT BE USED IN *SET* STATEMENT-(D idn)

NON SORT FILE ENCOUNTERED WHERE SORT FILE REQUIRED (word)

NON-UNIQUE MNEMONIC-NAME USED IN *WRITE---ADVANCING* (word)
NON-UNIQUE PROCEDURE-NAME REFERENCED

NON-UNIQUE SUBSCRIPT IS NOT QUALIFIED (word)

NOT OPTION CANNOT APPEAR WITHIN CONDITION PART OF A *NOT CONDITION*.

NOTE STATEMENT FOLLOWING A PARAGRAPH-NAME IS TERMINATED BY NEXT PARAGRAPH~-
NAME (word)

g v 0 o n ow

When the NOTE statement appears as the first sentence of a paragraph, the entire paragraph is
considered to be part of the NOTE character string. The compiler assumes the current element in
the A-margin to be a procedure-name.

When a NOTE sentence appears as other than the first sentence of a paragraph, the commentary ends
with the first instance of a period followed by a space.

5 NUMERIC ITEM IN *SET* STATEMENT MUST BE LESS THAN 18 NUMERIC DIGITS-(D idn)
S NUMERIC OPERAND IS GREATER THAN 18 DECIMAL DIGITS-(D idn)

An attempt has been made to use the identifier (D idn) as an operand in an arithmetic statement. The
size of such operands may not exceed 18 digits. The word indicated in the message is the internal
name assigned by the compiler to the item. Reference the DATA DIVISION source listing to determine
the actual name of the item involved.

S OBJECT OF A SET VERB MUST NOT BE A LITERAL.

I-18 60229400

Type

Message

gmmmwm

n

mgmmm

ONE CHARACTER LITERAL OR FIGURATIVE CONSTANT-EXCEPT ALL--EXPECTED AT THIS
POINT IN EXAMINE (word)

ONLY INTEGERS ARE ALLOWED WITH TRACE CONTROL OPTIONS (word)

ONLY ONE *WHEN* OPTION ALLOWED IN SEARCH ALL (word)

OPEN, READ, SEEK, AND WRITE ARE NOT ALLOWED IN DECLARATIVES SECTION.

ONLY USE BEFORE/AFTER BEGINNING ARE VALID LABEL PROCEDURES ON MASS STORAGE (word)
OPERAND FOLLOWING *BEFORE/AFTER* OR *BEFORE/AFTER STANDARD* IS NOT IDENTIFIABLE.

OPERAND OF PREVIOUS DIAGNOSTIC ASSUMED CORRECT IN ORDER TO CONTINUE SYNTAX CHECK
(word) ‘

The compiler assumes the operand to be as stated in the previous diagnostic in order to enable

continuation of syntax checking within the current statement.

This message does not clear the previous error; it indicates that the remainder of the statement is
checked for additional syntax errors.

PARAGRAPH HEADER PRECEDING THE COPY STATEMENT IS EXPECTED AT THIS POINT (word)

PARAGRAPH-NAME AND PROCEDURAL PARAGRAPH MUST FOLLOW USE STATEMENT (word)
PARAGRAPH-NAME ASSIGNED TO A *NOTE* STATEMENT MAY NOT BE REFERENCED (word)

When the NOTE verb immediately follows a paragraph-name, the name is a component of the NOTE
statement and thus cannot be referenced by any procedural statements.

PARAGRAPH-NAME EXPECTED TO FOLLOW SECTION-NAME (word)

PARAGRAPH-NAME NOT UNIQUE WITHIN ITS SECTION (word)

PARAGRAPH-NAME PREVIOUSLY USED AS A SECTION NAME (word)

PREVIOUS DIAGNOSTIC SUSPENDED SYNTAX CHECK--RESUMED AT THIS POINT (word)
PROCEDURAL SEQUENCE CONTROL IDENTIFIER MAY NOT BE FLOATING POINT-(D idn)

The control identifier for GO TO DEPENDING ON, PERFORM, and WRITE statements may not be
floating-point items.

PROCEDURAL SEQUENCE CONTROL IDENTIFIER MUST BE AN INTEGER-(D idn)

The procedural sequence controlling identifier-(D idn) for GO TO DEPENDING ON, PERFORM, and
WRITE statements must be defined as having no positions to the right of its assumed decimal point.
This numeric item is not an integer.

PROCEDURAL SEQUENCE CONTROL IDENTIFIER MUST BE NUMERIC ITEM-(D idn)

The procedural sequence controlling identifier (D idn) for GO TO DEPENDING ON, PERFORM, and
WRITE statements must be defined as a numeric elementary item with no positions to the right of its
assumed decimal point. The identifier (D idn) is not numeric.

60229400 : I-19

Type| Message

S PROCEDURAL STATEMENT EXPECTED TO FOLLOW A PARAGRAPH—NAME (word)

A procedure statement verb was not detected following a paragraph-name.
PROCEDURAL VERB EXPECTED BUT WAS NOT FOUND (word) ‘
PROCEDURE DIVISION HEADING MISSING OR ILLEGAL.
PROCEDURE MUST FOLLOW *ERROR* OR *LABEL* IN DECLARATIVES (word)
PROCEDURE MUST FOLLOW *INPUT* AND *OUTPUT* OF SORT STATEMENT (word)

gmmmm

PROCEDURE-NAME EXPECTED IN *A* MARGIN (word)

The current word does not meet the specifications of a programmer-assigned word; a procedure-name
was expected.

PROCEDURE-NAME COPIED IS NOT EQUAL TO THE PROCEDURE NAME ON THE SOURCE STATEMENT.

w

PROCEDURE-NAME OR DECLARATIVES HEADER EXPECTED (word)

A procedure-name or the DECLARATIVES header must follow the PROCEDURE DIVISION header. They
must start in the A-margin of the source card.

' PROCEDURE-NAMES AND PARAGRAPHS MUST HAVE TERMINAL PERIOD.
S QUALIFICATION OF PROCEDURE NAMES NOT ALLOWED IN A SORT STATEMENT.

w

RECORD-NAME MUST FOLLOW RELEASE VERB (word)

The current operand does not meet the specifications of a programmer-assigned word. It should be
a record-name.

RECORD REQUIRED AT THIS POINT IN SYNTAX.

REEL AND *LOCK* OPTIONS APPLICABLE ONLY FOR MAGNETIC TAPE (word)

REEL OPTION NOT APPLICABLE TO MASS STORAGE FILES (word)

RELEASE FROM IDENTIFIER MUST BE IN INPUT RECORD AREA OR WORKING STORAGE SECTION (word
RELEASE RECORD-NAME AND IDENTIFIER CAN NOT BE SAME DATA ITEM (word)

RELEASE RECORD-NAME MUST BE ASSOCIATED WITH A SORT FILE (word)

RELEASE STATEMENT APPEARS OUTSIDE A SORT INPUT PROCEDURE--NOTHING GENERATED.,

n n v n n g w

REPLACING/TALLYING MUST FOLLOW EXAMINE DATA-NAME AND PRECEDE *UNTIL/FIRST/ALL/
LEADING*.

Either REPLACING or TALLYING must be specified following the data-name. The next element
specified must either be UNTIL FIRST (UNTIL is optional if following REPLACING), ALL, or
LEADING.

S REPORT-NAME USED WHERE A FILE-NAME WAS EXPECTED.

w

w RESERVED WORD ENCOUNTERED OUT OF CONTEXT (word)

S *RETURN* INTO IDENTIFIER MUST BE IN OUTPUT RECORD AREA OR WORKING-STORAGE SECTION
(word)

S RETURN STATEMENT APPEARS OUTSIDE A SORT OUTPUT PROCEDURE--NOTHING GENERATED.

1-20 60229400

Type

Message
— e |

w w owmog ®w

n nn nn nu n w

14)]

w »n v wn o v W

REVERSED AND *REWIND* OPTIONS APPLICABLE ONLY FOR MAGNETIC TAPE (word)
REVERSED OPTION LEGAL ONLY FOR SINGLE REEL FILE (word)

RUN OR A LITERAL OTHER THAN *ALL* MUST FOLLOW THE STOP VERB (word)

SEARCH ALL CONDITIONS MUST BE RELATION WITH EQUAL OPTIONS OR CONDITION NAME.

SEARCH ALL KEY DATA-NAMES MUST BE TESTED INCLUSIVELY- HIGHEST TESTED THROUGH
LOWEST.

SEARCH VARYING IDENTIFIERS DESCRIPTION MUST IMPLY INTEGER OR CONTAIN USAGE IS
INDEX (D idn)

SECTION-NAME NOT UNIQUE (word)

SEEK, *INVALID KEY* OF READ, VALID ONLY FOR RANDOM ACCESS MASS STORAGE FILES (word)

SENTENCE MUST FOLLOW *NEXT* IN A CONDITIONAL STATEMENT-~ASSUMED *SENTENCE* (word)
The compiler assumes NEXT SENTENCE in order to continue syntax checking.

SIGN IS ILLEGAL WITH AN INTEGER SUBSCRIPT.

SIZE OF ENTER ROUTINE NAMES CANNOT EXCEED 8 CHARACTERS (word)

SORT-FILE-NAME USED WHERE A FILE-NAME WAS EXPECTED.

SORT INPUT PROCEDURE DOES NOT CONTAIN A RELEASE STATEMENT.

SORT INPUT PROCEDURE IS NOT A SECTION NAME.

SORT OUTPUT PROCEDURE DOES NOT CONTAIN A RETURN STATEMENT

SORT OUTPUT PROCEDURE IS NOT A SECTION NAME.

SORT PROCEDURES OVERLAP

SORT input and output procedures must consist of one or more sections that are written consecutively
and do not form a part of one another.

SORT STATEMENT IS ILLEGAL IN DECLARATIVES OR SORT PROCEDURE.
STATEMENT WHICH CAUSED PREVIOUS DIAGNOSTIC APPEARS INCOMPLETE (word)

According to the status of the compiler when the previous diagnostic was generated, the statement in
error appeared to be incomplete in addition to containing the error condition stated in the diagnostic.

SUBJECT AND OBJECT OF RELATIONAL CONDITION ARE BOTH LITERALS.

SUBJECT OF A CLASS TEST MUST BE USAGE DISPLAY—-[MPLICITLY OR EXPLICITLY--(word)
SUBJECT OF A CONDITION-NAME CONDITION MUST BE A CONDITION-NAME (word)

SUBJECT OF A NUMERIC CLASS TEST CANNOT BE ALPHABETIC (word)

SUBJECT OF A *SIGN* CONDITION MUST BE NUMERIC (word)

SUBJECT OF AN ALPHABETIC CLASS TEST CANNOT BE NUMERIC (word)

SUBJECT OF EACH CONDITION MUST BE IN KEY IS CLAUSE OF SEARCH ALL IDENTIFIER (D idn)
SUBJECT OF *SET* VERB IS ILLEGAL ACCORDING TO THE OBJECT(S) ENCOUNTERED-(D idn)
SUBSCRIPT CANNOT BE AN OCCURRING ITEM (word)

60229400 1-21

Type| Message

5 SUBTRACT ****FROM *LITERAL* REQUIRES GIVING OPTION (word)

TERMINAL PERIOD NOT FOUND WHERE EXPECTED IN PROCEDURAL STATEMENT (word)
THE CURRENT NAME MUST BE A RECORD DESCRIPTION ENTRY (word)

THE FIGURATIVE CONSTANT *ALL* IS NOT ALLOWED IN TRACE (word)

THE SEARCH IDENTIFIER MUST NOT BE SUBSCRIPTED OR INDEXED (word)

mmmwg

TO MISSING IN A GO TO STATEMENT (word)

The word TO may not be omitted. The compiler assumes (word) is a procedure-name in order to
continue syntax checking.

TO MUST FOLLOW *EQUAL* IN RELATIONAL CONDITIONAL (word)
TO MUST FOLLOW FIRST OPERAND OF MOVE STATEMENT (word)
TO REQUIRED IN ADD CORRESPONDING (word)

n v n w

UNARY MINUS MUST BE FOLLOWED BY A LEFT PARENTHESIS, IDENTIFIER OR NUMERIC LITERAL
(word)

UNBALANCED PARENTHESES ENCOUNTERED IN A CONDITION.

UNDEFINED DATA-NAME (word)

UNDEFINED MNEMONIC-NAME--*CONSOLE* USED INSTEAD.

UNDEFINED NAME USED AFTER *WRITE--ADVANCING* (word)

UNDEFINED SUBSCRIPT (word)

UNIDENTIFIABLE WORD FOLLOWING CONDITION PART OF *PERFORM* (word)
UNIT OPTION APPLICABLE ONLY FOR SEQUENTIAL MASS “TORAGE (word)

mgmmmgmm

UNRECOGNIZABLE OPERAND IN A CONDITIONAL STATEMENT (word)

A variable (i, e., data-name or literal) has been encountered or is assumed if a severe diagnostic
appears above but the next operand camnot be identified. The operand must be an arithmetic operator,
condition-name, NOT, relational operator, NUMERIC, ALPHABETIC, POSITIVE, NEGATIVE, ZERO,

or right parenthesis.
UNTIL OPTION MAY APPEAR ONLY 3 TIMES IN PERFORM STATEMENT (word)
USE LABEL PROCEDURES ARE NOT APPLICABLE TO SCRATCH FILES (word)
USE STATEMENT MUST FOLLOW EACH SECTION-NAME IN DECLARATIVE SECTION (word)
WHEN A DATA-NAME IS INDEXED THE OPERATOR + OR - MUST BE FOLLOWED BY INTEGER.
WHEN CONDITION-1 REQUIRED IN SEARCH STATEMENT (word)
WHEN IS VALID ONLY WITHIN A SEARCH STATEMENT.
WORD INAPPROPRIATE IN *COPY REPLACING* STATEMENT (word)

v w n »n v W

1-22 60229400

GENERATOR

Type

Message

&

A/N EDIT OF ITEM GREATER THAN 4095 CHAR--EXCESS CHAR TRUNCATED ON RIGHT.
BCD TOO LARGE FOR BINARY FIELD--ZERO IS MOVED.

DUPLICATE PROCEDURE-NAME WITHIN A SECTION.

FLOATING POINT-BCD NUMERIC COMPARISON MAY FAIL.

FRACTIONAL PORTION TRUNCATION OCCURS ON BCD-BINARY CONVERSION.
IDENTIFIER IN SET UP BY OR DOWN BY MAY NOT BE A FLOATING POINT ITEM.
IDENTIFIER IN SET UP BY OR DOWN BY MAY NOT BE AN INDEX DATA ITEM.

ILLEGAL DECLARATIVES PROCEDURE REFERENCE.

ILLEGAL TO PERFORM PROCEDURE IN DECLARATIVES THRU PROCEDURE IN NON-DECLARATIVES.
INVALID PERFORM--PROCEDURE-NAME-2 OCCURS BEFORE PROCEDURE-NAME-1.
LEFT TRUNCATION MAY OCCUR ON BCD-BINARY CONVERSION.

LOSS OF SIGNIFICANCE MAY OCCUR ON NUMERIC EDIT.

NUMBER OF SUBSCRIPTS GIVEN DOES NOT EQUAL NUMBER REQUIRED.
PROCEDURE-NAME UNDEFINED WITHIN SECTION QUALIFIER.

TALLY IS 5 DIGITS AND MAY OVERFLOW ON EXAMINE.

UNDEFINED PROCEDURE NAME (word)

GENERAL COBOL RULE VIOLATION DIAGNOSTICS

Type | Message
W CHARACTER IN CONTINUATION FIELD NOT A HYPHEN--ACCEPTED AS HYPHEN.
S COMPILER CANNOT READ THE LIBRARY DIRECTORY FOR COPY.
S COMPILER CANNOT READ THE LIBRARY FOR COPY.
S COPY IS NOT ALLOWED WITHIN A RENAMED FILE OR WITHIN TEXT COPIED FROM THE LIBRARY.
E FIRST NON-BLANK CHARACTER IN CONTINUED NON-NUMERIC LITERAL NOT A QUOTE--ACCEPTED
AS QUOTE.
S LIBRARY-NAME IN COPY STATEMENT CANNOT BE FOUND IN LIBRARY DIRECTORY.
ITEM USES MORE THAN 3 SUBSCRIPTS
ITEM USES MORE THAN 49 LEVELS OF QUALIFICATION
S LIBRARY-NAME IN COPY STATEMENT MAY NOT BE COBOL RESERVED WORD AND MUST BE 8
CHARS OR LESS. :
NON-COBOL CHARACTER IN SOURCE TEXT--THE FOLLOWING CHARACTER IS ILLEGAL (word)
E NON-NUMERIC LITERAL EXCEEDS 120 CHARACTERS--FIRST 120 ACCEPTED.
NON-USASI ELEMENT-CLAUSE IGNORED.
This diagnostic is produced only when an assembly option is exercised by the installation. This error
is always classed as severe.
TERMINAL PERIOD MISSING (word)
E WORD EXCEEDS 30 CHARACTERS--FIRST 30 ACCEPTED.

60229400

I-23

FATAL ERROR CONDITIONS

A system error which prohibits compilation from continuing causes a message of the following format to be
written on the job standard out file.

Message ’ Significance
*UCBL x=n function REJECT ON DSI dsi. X x or y returned by blocker/deblocker
Actlon phrase. x for LOCATE or SEXPAND MASTER
. X REFERENCE
n Corresponding reject code.
poncing el MANUAL

Funetion Any one of the following: PACK, PACKC, PACKR,
PICK, PICKC, PICKD, LOCATE, SEXPAND,
ASSIGNM, SALOCATE

Action Optional description applicable to error message.
phrase

1-24 60229400

OBJECT-TIME DIAGNOSTICS
REPORT WRITER

During program execution the routines generated to produce a report test for four invalid conditions. The
following corresponding messages are written on the job standard OUT file. The job is then terminated with
UCBL ABNORMAL TERMINATION written on the standard OUT file.

report-name INITIATE ON INITIATED REPORT

report-name TERMINATE ON UN-INITIATED REPORT

report-name GENERATE ON UN-INITIATED REPORT

report-name REACHED END OF ALLOCATED FILE

USASI COBOL/SORT

At the completion of a USASI COBOL/SORT operation, the following informative message is written on the
standard OUT f{ile.

UCBL SORT RECORDS IN xxxxxxxx RECORDS OUT yyyyyyyy

g
[$v
o,
=
15)
g
42
=)
=1
o

Aé 4ho haginnin i if i ici
At the beginning of the sort operaticn, if insufficient core is scheduled

voluntary abort message is generated for the job.
UCBL SORT INSUFFICIENT CORE SCHEDULED

The user should schedule more core before attempting to run the job again.

At the end of a SORT operation, if the record counts do not agree the following message is displayed to the operator.
UCBL SORT RECORD COUNTS DO NOT AGREE ACCEPT ABAi\lDON

Operator action is as follows:

1. Press MANUAL INTERRUPT

2. Type response code Rr,

3. Type either ACCEPT or ABANDON
4. Press FINISH

RERUN/RESTART MESSAGES

Message Significance

RERUN DUMP number of dump just written Written on job standard OUT file as each rerun dump is taken
during program execution.

RERUN FILE FULL. Subsequent dump requests are ignored. Dump file may become

LAST DUMP # IS number of last complete full if allocated area for mass storage file is exceeded, or

dump written magnetic tape file end-of-reel is reached..

Either expand mass storage dump file or mount new output tape
reel. Restart from any dump up to and including last complete
dump.

60229400

1-25

SYSTEM REJECT CONDITIONS

A job may abort because of conditions detected by the MASTER BLOCKER/DEBLOCKER, MIOCS, *DEF, or
system OCARE processors. The format of such diagnostics is as follows:

Message Significance
UCBL I/O ERR s mmecc DSI dsi s Code indicating the object-time processor rejected by
MASTER.
O Open request processor
C Close request processor
R Read request processor
w Write request processor
M Move processor
H Hardware failure processor
S Seek request processor
D Rerun/restart processor
E Multifile processor
U Unknown reject processor

mm 2-digit code indicating which MASTER routine caused
reject.

cc 2-digit error code returned by MASTER routine on

rejection.

mm Routine

01 BLOCKER/DEBLOCKER
02 MIOCS

03 *DEF

04 System OCARE

1-26

60229400

TERMINATIVE DIAGNOSTICS

When the object-time I/O system encounters a trouble area for which no correction can be made, the system generates
an abortive diagnostic on the standard OUT file for the job. The format of the message is indicated below; the error
code depends on the source code for interpretation.

UCBL I/O ERROR s nnnn DSI dsi

Code indicating which I/O routire generates the diagnostic.

nnnn Numeric code for the error encountered.

Fs nnnn Significance
| € 0001 Attempt to CLOSE an unopened file.
D 0001 Abnormal termination of a read/write operation in the rerun dump routine.
H 0001 Hardware device is inaccessible; processing cannot continue.
(¢] 0001 Attempt to OPEN WITH NO REWIND on a file not previously CLOSED WITH NO REWIND.
R 0001 Attempt to READ a file which was not opened for INPUT or INPUT-OUTPUT.
S 0001 User requested a SEEK on an unopened file.
w 0001 Attempt to WRITE on a file declared to be INPUT only.
C 0002 Attempt to CLOSE REEL on a mass storage file.
D 0002 Rerun file dsi error in the restart control card; control card contains more than four characters.
H 0002 Operator decided to abandon the job after encountering an irrecoverable I/0 transmission error
where the user provided no AFTER STANDARD ERROR RECOVERY declarative procedure.
M 0002 Logical record size error. A logical record exceeds the maximum size defined for the file.
(0] 0002 Attempt to OPEN WITH NO REWIND a mass storage file.
R 0002 Attempt to READ an unopened file.
S 0002 User attempted a SEEK on a sequential access file.
W 0002 Attempt to WRITE on an unopened file.
D 0003 Abnormal termination of a LOCATE, PICK, or READ request in the restart routine.
M 0003 Variable portion of a logical record exceeds the maximum variable portion size defined for the file.
o 0003 Attempt to OPEN a file which is already open.
R 0003 Attempt to READ a file which has reached EOF but has not been closed.
w 0003 Attempt to WRITE on a magnetic tape file which has been CLOSED WITH NO REWIND or CLOSED
WITH REWIND but has not been subsequently opened again.
(0] 0004 Attempt to open a file that shares areas with or is on the same multifile reel as another file which
is currently open.
w 0004 Attempt to WRITE on a mass storage file following a previous WRITE which was rejected; control
had been passed to the user's INVALID KEY procedure.
o 0005 Abnormal termination of a forward I/0 search on a multifile reel.
60229400 1-27

s nnnn Significance

(0] 0006 Abnormal termination of a tape rewind.

w 0006 User program attempted two successive WRITE requests without an intervening READ request on an
INPUT-OUTPUT file.

0007 Attempt to OPEN INPUT REVERSED a file with variable length blocked records.

E 00yy End-of-reel condition exists on an OUTPUT multifile reel. yy is the position number of the file
being created at the time the error occurred.

R 0106 A PICK request was rejected when the blocker/deblocker routine tried unsuccessfully to mount a
new segment on the file.

R 0107 Defined block area out of bounds to read routine.

U 02xx Abnormal status reject on an MIOCS function request; xx is the error code returned by

MIOCS (section 2.1, MASTER Diagnostic Handbook, Pub. No. 60206800.

L 010x Reject on a BLOCKER/DEBLOCKER request when attempting to PICK a STANDARD label card
from a file on SYSTEM-INPUT when file is declared to contain labels. x is error code returned
by blocker/deblocker (section 2.3, MASTER Diagnostic Handbook, Pub. No. 60206800.

1-28 60229400

OPERATOR MESSAGES

MESSAGE TO OPERATOR
Type | Job Task |naon | Optional Message Significance Action
_—
Rr JOB i | UCBL 1/0 IRR ERR ON DSI dsi Irrecoverable error on 1. Press MANUAL
ACCEPT BYPASS RETRY | I/O. User program did INTERRUPT
ABANDON not specify AFTER 2. Type MASTER generated
STANDARD ERROR response code and one
RECOVERY DECLARATIVE. action word:’
Operator must make appro-
priate decision. Action word
ACCEPT Ignore error
condition and proceed.
BYPASS Skip erroneous.
record and proceed.
RETRY Repeat recovery
procedures. o
ABANDON Terminate
job.
3. Press FINISH
Rr JOB i | UCBL LBL ERROR DSI dsi Header label does not agree | 1. After mounting correct
REEL nn ht CcEeUuuu with information furnished reel, type Rr,OK
by user. 2. To ignore incompatibility,
type Rr,NO
3. Press FINISH
. INP .
Rr JOB1i | UCBL MNT OUT DSI dsi 1. Mount reel n on tape
REEL nn ON ht) ‘,i,mt esponse:
CeEeUuuu RSVP - Ype response:
Rr,OK Reel mounted
Rr,NO Request cannot
be honored
3. Press FINISH
. INP . I . .
A JOBi|UCBL MNT OUT DSI dsi REEL File is assigned to alter- Mount reel nn on unit uuu.
an ON ht CeEeUuuu nating units. Ob]ec?—tlme No response required.
1/0 system automatically
switches to alternate reel
. at reel end.
. INP . . .
A JOB1i | UCBL MNT OUT DSI dsi REEL Mount reel nn on unit assigned
* .
mn ON UNIT NEXT o medtistery foitowing e
ASSIGNED TO THIS JOB © y 8
message.
60229400 1-29

ENTER VERB OBJECT CODE EXAMPLES J

The ENTER verb object code varies when data-names are all alphantmeric, all numeric, or mixed.
The following symbols are used in the VFD (variable field definition) in the examples:

Characters preceliing slash marks (mode indicators)

(@) Octal
A Word address arithmetic

C Character address arithmetic

The positive decimal integer following the mode indicator denotes the number of bit positions in the
variable field.

Characters following slash marks

location

L

S length
0 zero
P

point location
Characters in parentheses denote the data-name, file-name or procedure name associated with the

indicator. For example, S(DN3) means the size of DN3.

ENTER USASI COBOL Subprograms

ENTER COBOL; XCBLSUB.

Resulting object code:

EXT XCBLSUB
RIS

RTJ XCBLSUB
ROS

Parameters may not be passed to a COBOL subprogram. Instead, the two programs communicate
through the Common-Storage section of the DATA Division.

60229400 J-1

ENTER COMPASS/MASTER Subprograms

ENTER COMPASS; SUBR, DN1, DNZ,.DN3, FN1, PN1, C2DN, C1DN

DN Data-name
FN File-name
PN Procedure-name

C2DN COMP-2 data-name
C1DN COMP-1 data-name

Resulting object code:
EXT SUBR
RIS
RTJ SUBR
VFD 06/52,01/0,C17/L(DN1)
VFD 07/0,017/S(DN1)
VFD 06/60,01/0,C17/L(DN2)
VFD 06/P(DN3),06/S(DN#), 06/P(DN2), 06 /S(DN2)
VFD 06/61,01/0,C17/L(DN3)
VFD 06/40,03/0,A15/L(FN1)
VFD 06/00,03/0, A15/L(PN1)
VFD 06/71,03/0,A15/L(C2DN)
VFD 06/70,03/0,A15/L(C1DN)
ROS

ENTER USASI FORTRAN Subprogram

ENTER FORTRAN: SQRTFN; C2DN
C2DN COMP-2 data-name

Resulting object code:

EXT SQRTFN
RIS
RTJ SQRTFN

VFD 06/71,08/0,A15/L(C2DN)

J-2 60229400

INDEX

ACCEPT statement 4-17
ACCESS MODE clause 2-9

ACCESS-PRIVACY label field 3-17; 4-42

Access methods 2-9, 10
ACTUAL KEY clause 2-10
with READ 4-52
with SEEK 4-61
ADD statement 4-18
ADVANCING option
WRITE statement 4-75
AFTER option

PERFORM statement 4-44

ALL figurative constant B-7
ALLOCATE request 4-52; 7-7
Allocation 2-8; 4-41
Alphabetic items

JUSTIFIED 3-i4

test at 4-11

move to 4-36

PICTURE 3-22, 26
Alphanumeric items

edited 3-23

JUSTIFIED 3-14

move to 4-36

PICTURE 3-22, 26
ALTER statement 4-20
ALTERNATE AREA

RESERVE clause 2-8
Arithmetic expressions 4-4
Arithmetic operators 4-4
Arithmetic statements 4-5
ASCENDING KEY option

OCCURS clause 3-18

SORT statement 4-64
ASSIGN clause 2-6

with sort files 2-5; 4-64
AT END option

READ statement 4-51

RETURN statement 4-54

SEARCH statement 4-55
AUTHOR paragraph 1-1

60229400

BEGINNING option, USE statement 4-72
Binary items (See COMPUTATIONAL-1, -2)
BINARY option

RECORDING MODE clause 3-34
BLANK WHEN ZERO clause 3-11

with PICTURE edit 3-31
Block 3-12
BLOCK CONTAINS clause 3-12

file blocking formats F-1

with OPEN 4-43

CF option, TYPE clause 5-23
CH option, TYPE clause 5-23
CHARACTERS option
BLOCK CONTAINS clause 3-12
MEMORY SIZE clause 2-2
Character address bias
definition 4-16
with SEARCH 4-56
Character set B-1
Collating sequence D-1
CLOSE statement 4-21
COBOL control cards 7-4
Reserved words vii, viii
Reserved word list C-1, 2, 3
CODE clause, report writer 5-9
Codes, external, internal, machine,
printer, punched cards D-1
Coding areas 7-1
Coding sheet rules 7-3
Coding sheet 7-2, 3
Collating sequence D-1
COLUMN NUMBER clause, report writer 5-10
Comment paragraph 1-1
Common storage section 3-2
COMP, -1, -2 (See COMPUTATIONAL-1, -2)
Comparison of numeric operands 4-9
Comparison of nonnumeric operands 4-9
Comparison with index names or items 4-10
Compilation output 7-8 '

Index-1

Compiler directing statements 4-3
COMPUTATIONAL-1, -2 options
USAGE clause 3-40, 41
with OCCURS 3-19
COMPUTATIONAL-n items
in arithmetic statements 4-5
with DISPLAY statement 4-24
with SEQUENCED ON 3-37
COMPUTE statement 4-23
Conditional statements 4-3
Condition-name B-3
Condition-name condition 4-12
Condition-name entry 3-10
Conditions 4-6
Class 4-11
Comparison 4-9,10
Condition-name 4-12
Evaluation rules 4-12
Relation 4-7
Sign 4-10
CONFIGURATION SECTION 2-1
Connectives B-9
CONSOLE 2-3
Constants
figurative 3-6; B-7
(See initial value)
CONTIGUOUS option
RECORDING MODE clause 3-34
Control break, report writer 5-2
Control cards
COBOL 7-4
MASTER 7-6
CONTROL FOOTING option
TYPE clause 5-23
Control groups, report writer 5-2
CONTROL HEADING option
TYPE clause 5-23
COPY statement 6-1
Data description entry 3-9, 10
FILE-CONTROL paragraph 2-5
File description entry 3-7
I-O-CONTROL paragraph 2-10
OBJECT-COMPUTER paragraph 2-2
Procedure division 4-2
Report description entry 5-6

SOURCE-COMPUTER paragraph 2-2

SPECIAL-NAMES paragraph 2-3

Index-2

{CORR }option 4-14
CORRESPONDING
ADD statement 4-18, 19
MOVE statement 4-35, 37
Subtract 4-68
CRT 2-6
files assigned to 3-33
labels 3-16
CURRENCY SIGN clause 2-4

Data division xiii; 3-1

clauses 3-12, report writer 5-9

entry formats, report writer 5-4

entry formats, report writer 5-4
Data division sections 3-1
Data map 7-9
Data-name 3-6; B-3

(See user defined words, words)
DATA RECORDS clause 3-7, 13
DATE-COMPILED paragraph 1-1, 2
DATE-WRITTEN paragraph 1-1
DE option, TYPE clause 5-23
Debugging 4-17, 70
DECIMAL option

RECORDING MODE clause 3-34
DECIMAL POINT is COMMA clause 2-4
Decimal point alignment 3-14, 25

assumed 3-24

PICTURE character 3-25, 28
Declaratives description 4-2
DECLARATIVES specification 4-1
*DEF card 7-7
DENSITY option

RECORDING MODE clause 3-34
DEPENDING ON option

GO TO statement 4-31

OCCURS clause 3-18

RECORD CONTAINS clause 3-33
DESCENDING KEY option

SORT statement 4-64
DETAIL option, TYPE clause 5-23, 24
DETAIL, FIRST/LAST option

PAGE LIMITS clause 5-16

60229400

Diagnostics I-1 Entry xii; 3-4

Blocker/deblocker I-27 Environment division xiii; 2-1
COBOL rule violation I-24 diagnostics I-9
*DEF I-27 Error diagnostics 7-8; I-1
Environment division I-2 ERROR PROCEDURE option
Fatal error I-25 USE statement 4-72
Generator I-24 EXAMINE statement 4-29
Identification division I-2 EXIT statement 4-30
I-O object time I-28 with PERFORM 4-45
MIOCS I-27 Expressions, arithmetic 4-4
Object time I-26
OCARE I-27
Operator Messages I-1 FD entry
Procedure division I-13 Specification 3-7
Report writer I-10 Specification, report writer 5-5
object time I-26 with OPEN 4-41
Rerun-restart I1-26 with SORT 4-64
Sort-object time 1-26 Figurative constant 3-6; B-7
System reject conditions I-27 File blocking formats F-1
Terminative [-28 FILE CONTROL paragraph 2-5
UCBL I-1, 25 with SORT 4-64
USASI/COBOL SORT 1-26 File description entry 3-7
DISK 2-6 report writer 5-5
DISPLAY option, USAGE clause 3-40 FILE LIMIT clause 2-8
DISPLAY statement 4-24 file-name 3-7, 8
DIVIDE statement 4-25 (See user defined words, words)
Divisions xi FILE option, USE statement 4-72
dsi 2-6 FILE SECTION 3-2
FILLER 3-6, 9, 38
FINAL
Editing 3-22, 29 control break 5-23, 24
fixed insertion 3-29 CONTROL FOOTING 5-24
floating insertion 3-30 CONTROL HEADING 5-23, 27
rules 3-28 FINAL option
simple insertion 3-28 CONTROL clause 5-11
special insertion 3-28 RESET clause 5-19
zero suppression 3-31 TYPE clause 5-23
EDITION-NUMBER label field 3-17; 4-42 FIRST DETAIL option, PAGE LIMIT clause 5-16
Element character offset Floating point
definition 4-16 edit 3-23
with SEARCH 4-56 items (See COMPUTATIONAL-2)
Elementary item 3-5 literal B-4, 5
ELSE option, IF statement 4-32, 33 MOVE 4-35, 36.
END DECLARATIVES 4-1, 2 FOOTING option, PAGE LIMIT clause 5-16, 17
END OF REEL/UNIT option FROM option
RERUN clause 2-11 COMPUTE statement 4-23
ENDING option, USE statement 4-72 RELEASE statement 4-53
ENTER statement 4-26 SUBTRACT statement 4-68

WRITE statement 4-74

60229400 Index-3

GENERATE statement, report writer 5-26, 27

GIVING option
ADD statement 4-18
DIVIDE statement 4-25
MULTIPLY statement 4-39
SORT statement 4-64, 65
SUBTRACT statement 4-68
GO TO statement 4-31
with ALTER 4-20
with PERFORM 4-45
GROUP INDICATE clause, report writer 5-12
Group item 3-5

Hardware name 2-3, 5, 6, 11
HEADING option

PAGE LIMITS clause 5-16, 17

TYPE clause 5-23
HIGH option, RECORDING MODE clause 3-34
HIGH-VALUE, figurative constant B-7
HYPER option

RECORDING MODE clause 3-34

ID label field 3-17; 4-42
IDENTIFICATION DIVISION xii; 1-1
diagnostics I-2
Identification label field 3-17; 4-42
Identifier 4-4; B-4
IF statement 4-32
Imperative statements 4-3
Implementor name 2-3
Independent item 3-5, 10
Index data item 3-42; 4-55, 56, 62
Index-name 3-17; 4-15, 55, 56, 62
INDEX option, USAGE clause 3-40
INDEXED BY option, OCCURS clause 3-18
Indexing 4-15
Initial value 3-6
INITIATE statement, report writer 5-28
Input file labels 3-16
Input files, CLOSE statement 4-21, 22
INPUT option, OPEN statement 4-41
INPUT-OUTPUT option
OPEN statement 4-41
USE statement 4-72
INPUT-OUTPUT SECTION 2-4

Index-4

INPUT PROCEDURE

SORT statement 4-64, 65
I-O-CONTROL 2-9
1-O option (See INPUT-OUTPUT option)
I-O Summary of options G-1
INSTALLATION paragraph 1-1
INTO option

READ statement 4-51

RETURN statement 4-54
INVALID KEY option

READ statement 4-51

WRITE statement 4-74
Item 3-4

JOB card 7-6
Justification, MOVE statement 4-36
JUSTIFIED clause 3-14

KEY IS option, OCCURS clause 3-18
with SEARCH statement 4-55, 57
Key words B-6

Label
magnetic tape E-6
header E-6
ending E-7

mass storage E-1

procedure 4-72

standard file E-1
LABEL RECORDS clause 3-16
Language elements vii
Language name 4-26
LAST DETAIL option

PAGE LIMIT clause 5-16, 17
Level indicator 3-2; 5-1, 4
Level number ix; 3-5, 9

01 3-5, 9, 10; 5-1, 6

66 3-5, 9, 10, 35

77 3-5, 9, 10

88 3-5, 9, 10
Library 6-1

Source preparation 6-3
LINE COUNTER, report writer 5-3, 7
LINE NUMBER clause, report writer 5-13

60229400

Listings, source/symbolic 7-8

Literal ix; 3-6; B-4

Literal IS mnemonic-name option
SPECIAL-NAMES clause 2-3

LOCK option, CLOSE statement 4-21

Logical record 3-12

LOW option, RECORDING MODE clause 3-34

LOW-VALUE figurative constant B-7

Mass storage-USASI differences H-1
MASTER control cards 7-6
- MEMORY SIZE, OBJECT COMPUTER
paragraph 2-2

Messages (See diagnostics)
Mnemonic names 2-3
MODE

ACCESS 2-9

PROCESSING 2-9

RECORDING 3-34
MODIFICATION-PRIVACY label field 3-17; 4-42
MODULES option, MEMORY SIZE clause 2-2
MOVE statement 4-35
MULTIPLE FILE clause 2-12
MULTIPLE REEL/UNIT clause 2-8

with sort files 2-5; 4-64
MULTIPLY statement 4-39

Name (See data-name; word; user defined word)
NEGATIVE 4-10
NEXT GROUP clause, report writer 5-15
NEXT PAGE option
LINE NUMBER clause 5-13
NEXT SENTENCE option
IF statement 4-32
SEARCH statement 4-55
NO REWIND option
CLOSE statement 4-21, 22
OPEN statement 4-41
Nonnumeric literal B-5
NOT 4-6, 12
Notations xiii, xiv
NOTE statement 4-40
NUMERIC 4-11
Numeric
edit 3-23
literal B-5

60229400

Numeric items
with JUSTIFIED 3-14
with PICTURE 3-12, 26
in class condition 4-11
with MOVE 4-35, 36

OBJECT COMPUTER paragraph 2-2
Object program 7-9
OCCURS clause 3-18

with indexing 4-15

with REDEFINES 3-35

with SEARCH 4-55

with SET 4-62
OMITTED option, LABEL RECORDS clause 3-16
ON SIZE ERROR option 4-13

ADD statement 4-18

COMPUTE statement 4-23

DIVIDE statement 4-25

MULTIPLY statement 4-39
SUBTRACT statement 4-69
OPEN statement 4-41
Operators
arithmetic 4-4
logical 4-6
relational 4-7
OPTIONAL option, SELECT clause 2-5
Optional words B-6
Options in statements 4-14
OUTPUT option, OPEN statement 4-41
Output
Compilation 7-8
file labels 3-17
files, CLOSE statement 4-21, 22
Procedure 4-72

OWNER . ‘
{OWNER—ID} label field 3-17; 4-42

Page break, report writer 5-2
PAGE COUNTER, report writer 5-4
PAGE FOOTING option, TYPE clause 5-23, 24
PAGE HEADING option, TYPE clause 5-23
PAGE LIMIT clause, report writer 5-15
Paragraphs xi
Parameter string, ENTER statement 4-26
PERFORM statement 4-44

with USE procedures 4-72
PF option, TYPE clause 5-23, 24

Index-5

PH option, TYPE clause 5-23 RECORD CONTAINS clause 3-33

Physical record (See Block) file blocking formats F-1
PIC with OPEN 4-42, 43
{ PICTURE} X; 3-22 with SEQUENCED ON 3-37
Edit 3-28 RECORD MARK option
Symbols x; 3-24 RECORD CONTAINS clause 3-33
PLUS option RECORDING MODE clause 3-34
LINE NUMBER clause 5-13 RECORDS option
NEXT GROUP clause 5-15 BLOCK CONTAINS clause 3-12
POSITION option, MULTIPLE FILE clause 2-12 RERUN clause 2-11
POSITIVE 4-10 REDEFINES clause 3-35
PRINTER 2-6 with COMPUTATIONAL-2 3-41
PRIVACY label field 3-17; 4-42 REEL option
Procedure division xiii; 4-1 CLOSE statement 4-21
Diagnostics I-13 MULTIPLE clause 2-8
Report writer 5-26 RERUN clause 2-11
Statements 4-17 USE statement 4-72, 73
Procedure name 4-2; B-3 REEL NUMBER label field 3-17
PROCEED TO option Reference format xiii; 7-1
ALTER statement 4-20 Relation condition 4-7
Program contents xii RELEASE statement 4-53
PROGRAM ID paragraph 1-2 with SORT statement 4-64
Program structure xi REMARKS paragraph 1-1
PUNCH 2-6 RENAMES clause 3-9, 10, 36
Punctuation B-9 RENAMING clause 2-6

REPLACING option
COPY statement 6-1
Qualifier B-4 EXAMINE statement 4-29, 30
connective B-9 Report 5-1
REPORT clause, report writer 5-6
Report description entry 5-6

Random access 2-9 Report group 5-1
READ statement 4-51 REPORT FOOTING option, TYPE clause 5-23, 24
random access files 2-9 REPORT HEADING option, TYPE clause 5-23
sequential access files 2-9 Report group description entry 5-7
READER 2-6 Report item 3-5; 5-1
Receiving item Report-name 5-5, 6
JUSTIFIED clause 3-14 Report section 3-1, 4; 5-1
MOVE statement 4-35 Report writer 5-1
Record 3-5 clauses 5-5, 8
01 level data description entry 3-9, 10 diagnostics
RECORD option sample program 5-31
READ statement 4-51 statements 5-26
RETURN statement 4-54 RERUN clause 2-11
SEEK statement 4-61 Rerun dump 7-9
RECORD(S) Rerun/restart procedures 7-9
DATA clause 3-13 RESERVE ALTERNATE AREA 2-8
LABEL clause 3-16 with sort files 2-5; 4-47

Index-6 60229400

Reserved words vii, viii
listof C-1, 2, 3
RESET clause, report writer 5-19
Restart 7-9
RETENTION CYCLE label field 3-17
RETURN statement 4-54
with SORT statement 4-65
REVERSED option, OPEN statement 4-41
REWIND option
OPEN statement 4-41
RD entry 5-1, 6
RF option, TYPE clause 5-23, 24
RH option, TYPE clause 5-23
ROUNDED option 4-13
ADD statement 4-18
COMPUTE statement 4-23
DIVIDE statement 4-25
MULTIPLY statement 4-39
SUBTRACT statement 4-68
Routine name, ENTER statement 4-26
RUN option, STOP statement 4-67

SAME AREA clause 2-12
Sample program A-1
COBOL decks 7-11
report writer 5-31
SCHEDULE card 7-6
SCRATCH 2-6
SD entry 3-8
Search function 4-16
SEARCH statement 4-55
Sections xi; 3-1
Common storage 3-2
File 3-2
Report 3-4; 5-1
Working storage 3-3
SECTOR option
RECORDING MODE clause 3-34
SECURITY paragraph 1-1
SEEK statement 4-61
with ACTUAL KEY 2-10
with READ 4-52
SEGMENTED option
RECORDING MODE clause 3-34
SELECT clause 2-6
with sort files 2-6; 4-64
Sentences 4-3

60229400

SEQUENCED ON clause 3-37
SEQUENTIAL
ACCESS 2-9
PROCESSING 2-9
SET statement 4-62
with SEARCH 4-57
Sign
condition 4-10
currency 2-4; 3-25
operational 3-22, 23, 24, 25
SIZE ERROR option 4-13
ADD statement 4-19
COMPUTE statement 4-23
DIVIDE statement 4-25
MULTIPLY statement 4-39
UBTRACT statement 4-5
SORT statement 4-64
with RELEASE 4-53
with RETURN 4-54
with SAME SORT AREA 2-12
SOURCE clause, report writer 5-20
SOURCE COMPUTER paragraph 2-2
Soiirce library preparation 6-3
Source program listing 7-8
SPACE, f{igurative constant B-7
SPECIAL NAMES paragraph 2-3
with ACCEPT 4-17
with DISPLAY 4-24
Special registers B-6
Statements 4-3
Arithmetic 4-5
STOP statement 4-67
Subscripts 4-15
SUBTRACT statement 4-68
SUM clause, report writer 5-20, 21
Symbolic listing 7-9
Symbols x
SYNC
{ SYNCHRONIZED
SYSTEM-INPUT 2-3, 6
SYSTEM-OUTPUT 2-3, 6
SYSTEM-PUNCH 2-3, 6

} clause 3-38

Tables 3-18, 19, 20; 4-55, 62
handling 4-16

TALLY, special register 4-29; B-6
as subscript 4-15

Index-7

TALLYING option, EXAMINE statement 4-29 WRITE statement 4-74

TAPE 2-6 with ACTUAL KEY 2-9, 10
Task name cards 7-8)

Terminal unit identifier 2-6

TERMINATE statement, report writer 5-29 ZERO 4-16
THRU option, RENAMES clause 3-36 figurative constant B-7
TIMES option, PERFORM statement 4-46 Zero suppression editing 3-31

TRACE statement 4-78
TRACK option, RECORDING MODE clause 3-34
TTY 2-6
files assigned to 3-33
labels 3-16
tui 2-6
TYPE clause, report writer 5-23

UNIT option
CLOSE statement 4-22
RERUN clause 2-11
USE statement 4-72
UNTIL option, PERFORM statement 4-44, 47
UPON clause
DISPLAY statement 4-24
SUM clause 5-20, 21
USAGE clause 3-40
with SEQUENCED ON 3-37
USASI specifications, preface iii
USASI vs. mass storage H-1
USE BEFORE REPORTING 4-72; 5-30
USE statement 4-72
User defined words viii
USING option, SORT statement 4-64

VALUE clause 3-44; 5-20

with COMPUTATIONAL-2 3-41

with OCCURS 3-20
VALUE OF option, LABEL RECORDS clause 3-17
VARYING option, PERFORM statement 4-44, 47

WHEN option, SEARCH statement 4-55
WITH CODE clause, report writer 5-9
Words viii; B-2

WORDS option, MEMORY SIZE clause 2-2
Working storage item 3-3

WRITE ADVANCING 4-74, 75

Index~8

60229400

CUT ALONG LINE

— —— — —— — G—— — — — — A ST G GO " —— —— —— itv—— Gi—— —— {— — — —— — —— WS I G — Gr— S SO— — —— —— — — — — — — — — — — ——

PRINTED IN USA

FROM

CORPORATION

CONTROL DATA
[comporaTion |

COMMENT AND EVALUATION SHEET
3300/3500 USASI COBOL/MASTER
Reference Manual

Pub. No. 60229400 February 1969

THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED. BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

NAME :

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A.

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

BUSINESS REPLY MAIL]

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S,.A, J

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Software Documentation

4201 North Lexington Avenue

St. Paul, Minnesota 55112

STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOL IS, MINN,

STAPLE

- emm GEy Gy e e GEe GEy EEn GEE mee wWe me e e - ean = e -

CUT ALONG LINE

> »CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 60229400

CORPORATION

CONTROL DATA
[co=roraron

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A,

IVNNVIN 3ON3N34TN ¥ILSVIN/TOE0D ISYSN 00SE/OOEE

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	F-01
	F-02
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24
	I-25
	I-26
	I-27
	I-28
	I-29
	J-01
	J-02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	replyA
	replyB
	xBack

