

0

Control Data® 3600 Computer System
Reference Manual

Record of Revisions

REVISION

NOTES

D Manual revised; obsoletes all previous editions

Pub. No. 60021300
July, 1964

© 1964, Control Data Corporation

Address comments concerning this man-
ual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue

St. Paul, Minnesota 55112

Or use comment sheet located in the rear

Printed in the United States of America of this manual.

Chapter | - Basic System Description

3600 System Characteristics
Basic 3600 System
Computation Module
Communication Module
Storage Module
Console

Options

Chapter Il - Storage Module

Storage Word
Storage Addressing
Storage Access

Priority Section

Address Parity Checking

Chapter |1l - Computation Module

Logical Description
Arithmetic Section

A Register
Q Register
P Register
D Register
U Register
Bl. Bé
Bounds Register
Instruction Bank Register
Operand Bank Register
Interrupt Register
Interrupt Mask Register
Product Register
Shift Count Register

Miscellaneous Mode Selections

Register

Time Register

Time Limit Register
Control Section
Storage Bank Selection

Internal Operating Modes

Trace Mode
1604 Mode

Two's Complement Mode

CONTENTS

2-1
2-1
2-2
2-2

3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2
3.3

3-3
3-3
3-3
3-3
3-3

3-4
3-5
3-5
3-5
3-5
3-6
3-6
3-8
3-7

Real Time Ciock
Description of Instructions
Word Format
Class |
Class I}
Class Il
Class IV

Address Modification Modes
Execution of Instructions
Symbols
Order of Instructions

Inter-Register Transmission

Full-Word Transmission

Transmit Commands and
Transmit Augment

Address Transmission
Single Precision Augment
Fixed Point Arithmetic

Single Precision Floating
Point Arithmetic

Double Precision Floating
Point Arithmetic

Double Precision Augment
Address Arithmetic
Logical
Shifting
Scale
Replace
Storage Test
Storage Search
Search Order
Locate List Element
Jumps and Stops

Normal Jump

Return Jump
Bank Jumps
Unconditional Jump to Lower
Variable Data Field
Internal Function

Fault

3-21
3-22
3-23
3-26

3-27

3-28
3-28
3-29
3-29
3-30
3-31
3.31
3-32
3-32
3-32
3-34
3-36
3-36
3-36
3-40
3-42
3-42
3-45
3-46

Chapter IV - Interrupt System

When Computer May Be Interrupted
Logical Description of Interrupt System

Interrupt Register

Interrupt Mask Register

Main Product Register

Channel Product Register
Programming the: Interrupt System

Interrupt Mode

Selecting Interrupt

Interrupt Routine

Automatic Operations in the
Interrupt System

Interrupt Instructions
Main Product Register Jump
Channel Product Register Jump
Interrupt Processing
Internal Interrupt Processing

External Interrupt Processing

Chapter V - Input / Output

Input / Qutput Instructions
Connect (CONN)
Function (EXTF)

Read (BEGR)

Write (BEGW)

Copy Status (COPY)
Clear Channel (CLCH)
Input to A (IPA)

Perform Algorithm (ALG)

Control Word

Input / Output Chaining

Auto-Load

Sequence of Steps in
Read and Write Operations

Transmission Rate
Storage Reference Fault

Parity

Chapter VI - Parity

Parity Generation
Data

Storage Address

4-1
4-2
4.2
4-2
4.2
4-2
4-3
4-3
4-3
4-4

4-4
4-6
4-6
4-6
4-6
4-7
4-11

5-3
5-3
5-4
5-5
5-5
5-5
5-8
5-8
5-8
5-8
5-10
5-12

5-12
5-16
5-16
5-17

6-1
6-1
6-1

Data Channel Transmissions
Parity Checking

Storage Address Transmissions

Storage or Transmission of Data

Data Channel Transmissions
Parity Errors

Storage Address

Instruction

Storage or Data Transmission

Data Channel Transmission

Interrupt Selection on 1/0 Parity Error

External Equipment Parity Error

Chapter VI - Console

Maintenance Section
Register Displays
Instruction Format Display Panel
Switches and Push Buttons
Operator Section
Displays
Temperature and Circuit Breaker Lights
Switches
Console Typewriter
Switches and Indicators
Codes

Programming

Glossary

Appendix Section

| Number Systems

Il Interruptible Conditions and Faults
11l 3600 Software Systems

IV Powers of 2

YV Octal - Decimal Conversion Table

Vi Index to 3604 (Mnemonic) Instructions
(Includes tables for designator and
instruction modifiers codes.)

VIl Instruction Execution Times

6-1
6-2
6-2
6-2
6-2
6-2
6-2
6-2
6-2
6-2
6-3
6-4

7-2
7-2
7-3
7-3
7-8
7-8
7-10
7-10
7-1
7-11
7-13
7-15

16
19
20
27

31

FIGURES TABLES

1-1 Basic 3600 Computing System 1-2 3-1 Arithmetic Properties of Registers 3-2
2-1 Typical Storage Access Channel 3-2 Augment Operation Designators 3-24
Hook-up 2-2 . Lty
3-3 Augment Operation With ‘v 3-24
3- i Addressi 3-1
1 Indirect ressing 3-4 Augmentable Instructions 3-25
3-2 Augmented Transmit Operation 3-22 3.5 Instructions Which May Be
3-3 Sequencing for 63.4 Search Augmented Using 12 and 14 3-26
Operations 3-33 3-6 Augmentable Instructions 3-28
3-4 Locate List Element Operations 3-35 3.7 Augment Operation Designators 2.98
3-5 Return Jump 3-36 4-1 Instructions stored on Internal
3-6 Jump and Set Index 3.41 Interrupt Conditions 4-5
3-7 Load Byte Operation 3.43 4-2 Instructions Which Destroy
344 Contents of SCR 4.9
3-8 Byte Scan Operati -
yre Scan Lperation 5-1 Copy Status Designators 5-6
4-1 Typical Internal Interrupt Processing 4-10 7.1 Register Displays 7.3
4.2 Typical External Int t P ing 4-12
ypical External fnterrupt Trocessing 7-2 Maintenance Switches 7-4
5.1 3600 System 5-1
7-3 Conditions Associated With
5.2 3602 Communication Module 5-2 Console Lights 7-8
5-3 3606 Data Channel 5-2 7-4 Operator Switches 7-1
5-4 Read and Write Operations 5-7 7-5 Connect, Function, and Status Codes 7-13
5-5 Chaining Operation 5-1 7.6 Console Typewriter Codes 714
7-1 3601 Console 7-1
7-2 Maintenance Section of Console 7-2
7-3 Operator Section of Console 7-9

7-4 Console Typewriter 7-12

PREFACE

This manual provides information for the machine-language use of the 3600 system
(computer as well as peripheral equipment). Its intention is to describe the cap-
abilities of the hardware. Options and constraints for programming are noted.
Programming examples are given to illustrate how instructions perform.

Other than using COMPASS mnemonics to abbreviate titles of instructions, no
software systems are used in describing instructions. A number of programming
languages and special purpose programs are now available or are being developed
for the 3600 computer. Included are an operating system (SCOPE), an assembly
language (COMPASS), FORTRAN, COBOL, ALGOL, and SIMSCRIPT compilers,
a SORT program, a linear programming system, and nuclear codes. Brief descrip-
tions of these systems are included in the Appendix section. Reference manuals
describing software systems in detail are available for all systems which are in
current operation.

Programming information for all peripheral equipments available for use with the

3600 system is availabie in a separate volume; 3000 Series Computer Systems -
Peripheral Equipment Reference Manual, Publication Number 60108800,

vii

-nﬁi.»;z..

[[

CHAPTER |
BASIC SYSTEM DESCRIPTION

The CONTROL DATA* 3600 is a solid-state, stored program, general-purpose digital com-
puting system. With large storage capacity and exceedingly fast data transmission and

computation speeds, the 3600 computing system is efficient in large-volume data processing

and in solving large-scale scientific problems.

program compatibility with this machine. To provide greater flexibility and capabilities in
systems applications, the 3600 system is constructed in functional modules. With the sev-

eral available options, a variety of systems configurations is possible.

3600 SYSTEM CHARACTERISTICS

Stored-program general purpose computer
Parallel mode of operation
Single address logic
51-bit storage word (48 bits of data, 3 parity bits)
Six 15-bit index registers
Indirect addressing
Magnetic core storage (options available)

32,768 51-bit words in two independent

16,384 word units

Input/Output

Transmission of 48-bit words

(12-bit bytes)

Four separate bi-directional input/output channels
(options available)

System interrupt
Flexible repertoire of instructions
Fixed point arithmetic (integer and fractional)

Floating point arithmetic (single and double

precision)

Logical and masking operations

*Registered Trademark of Control Data Corporation.

1-1

Variable length data manipulation
Block transfers
Indexing
Storage searching
Bit sensing
Binary arithmetic

Modulus 284 -1 (one’s complement) for single pre-
cision operations

Modulus 284 -1 (one’s complement) double pre-
cision floating point operations

Completely solid-state
Diode logic
Transistor amplifiers
Ready access to circuits
Console includes:
Register contents displayed in octal

Electric typewriter

Inter-computer communication

3604 ~—— 160/160- A
3604 ~— 3604

Satellite operations

BASIC 3600 SYSTEM

The basic 3600 system consists of a central computer,
an input/output section, magnetic core storage, and
a console (figure 1-1). Over-all system operation
depends on the integral operation of these elements.
The system is divided into several modules to pro-
vide flexibility and other advantages of modularity.

Computation Module

The 3604 computation module (throughout this manual
the term ‘‘computer’’ may also be used to refer to
the 3604) performs the arithmetic and logical opera-
tions required by the instructions of a stored program.

The computation module also generatesthe commands
necessary to initiate input and output operations in
the communication module.

Communication Module

Two modules govern input/output operations in the
3600 system. These modules are the 3602 com-
munication module and the 3606 data channels (four
12-bit data channels are standard with the basic
3600 system).

The 3602 acts as an access path between the data
channels and storage and the computer. Information
from the 3604 to initiate input/output activity is

3602 also sequentially examines the data channels
for storage requests, increments storage addresses
to which storage references will be made, and per-
forms parity operations.

The data channels governthe input/output operations
initiated by the computer. All controls and registers
necessary for communication between the external
equipments and storage or the computer are located
in the data channels.

Storage Module

The basic 3600 system provides high-speed, random
access magnetic core storage for 32,768 51-bit
words (48 bits of data, 3 parity bits). This basic
storage module consists of two independent 3609
storage units, each with a capacity of 16,384 words.
Two 3609 storage units arranged in a module are
termed a 3603. These two units operate together
during the execution of a stored program and are
independently addressable.

Console

Included in the basic 3600 computing system is a
3601 operator and maintenance console. The con-
sole contains all the controls and indicators neces-
sary to operate the 3600 system.

An electric typewriter on the console serves as a

conveyed by the 3602 to the data channels. The direct entry keyboard and an output type-printer.
3606
DATA CHANNELS
A
3602
COMMUNICATION je—22T4
[Je——= MODULE
3603
[:]1— CONTROL STORAGE
MODULE
3604
COMPUTATION =
MODULE oATA
DATA | CONTROL
360!
CONSOLE

Figure 1 - 1.

1-2

Basic 3600 Computing System

OPTIONS

For greater systems capability, the 3600 computing
system may be expanded with several available
options:

)

An additional 3604 computation module may be
added to provide greater arithmetic and control
capabilities.

Additional magnetic core storage may be added
in the foiiowing configurations:

a) Up to fourteen 3609 storage modules (each
providing 16,384 words of magnetic core
storage) or

b) Up to seven 3603 storage modules.

The expanded system may thus have a maximum
of sixteen 3609 storage modules or eight 3603
storage modules. Expanding the system storage
capability to this maximum provides storage for

a total of 262,144 51-bit words.

To provide additional input/output capability,
several options exist:

a) The communication module supplied with
the basic 3600 may be expanded to include
four additional data channeis. (The asso-
ciated channel control in the communication
module is designed to accommodate addi-
tions.) Thus, a communication module may
provide a total of eight bi-directional data
channels.

1-3

b) Up to three communication modules may be
added to the system, providing a total of
four modules. Each such module may be
supplied with up to eight channels.

If all data channel options are exercised and in-
cluded in the four communication modules, input/
output capability may be expanded to 32 bi-direction-
al data channels.

¢) Three different data channels are available:

1) Standard 12-bit data channel; handles
12 bits of data at a time and assembles
four of these 12-bit bytes to complete a
48-bit word.

2) Special 24-bit data channel; handles 24
bits of data at a time and assembles two
of these 24-bit bytes to complete a 48-bit
word (available for special applications
only).

3) Special 48-bit data channel; handles 48
bits of data which are transmitted directly
as a 48-bit word (available for special
applications only).

d) For data transmission to and from the com-
puting system, several external equipments
may be attached to the data channeis. Ex-
amples of these equipments are: magnetic
tape control, magnetic disc file, card reader,
card punch, and high-speed printer.

CHAPTER 1l

STORAGE

MODULE

The 3609 magnetic core storage module provides high-speed, random access storage for
16,384 words. The 3609 storage module consists of the storage elements themselves, five
access channels, a priority section, an address parity checker, and the circuitry for address-

foo sl o | SR,
ing the storage elements.

termed a 3603 storage module.

STORAGE WORD

A storage word may be two 24-bit instructions, a
single 48-bit instruction, a 48-bit data word, or half
a 96-bit data word. Three parity bits are appended to
each 48-bit word; thus a storage word is 51 bits in
length. The format of a typical storage word is
diagrammed below.

50494847 3938 15 14 o

FUNCTION
{9 BITS)

UPPER ADDRESS
Q15 BITS})

FUNCTION
(9 BITS)

LOWER ADDRESS

o370
(15 BITS)

& N\~ LOWER ADDRESS
UPPER "PARITY BIT
! ADDRESS
PARITY BIT

FUNCTION
PARITY BIT

The storage word is divided into three portions:
(1) a 15-bit lower address, (2) a 15-bit upper address,
and (3) an 18-bit function portion, distributed in the
A parity bit accom-
panies each of these portions when the word is stored,
The parity bit (P1) associated with the lower address
portion is placed in bit 48 of the storage word, parity
bit P2 (upper address) is placed in bit 49, and parity
bit P3 (function) is placed in bit 50.

sforage word as diagrammed.

When part of the word or the entire 51 bits is read
from storage, the appropriate parity bit(s) accom-
panies the word to the 3604 or 3602 where it is
checked for parity (refer to chapter VI).

STORAGE ADDRESSING

The location of each word in storage is identified by
an assigned number (address). An address consists
of 18 bits interpreted as shown.

7 151413

SPECIFIES A BANK OR| SPECIFIES A LOCATION
A PAIR OF 3609's WITHIN A 3609

SPECIFIES ONE 3609
OF THE PAIR

A pair of 3609 modules (typically, these are in the
same cabinet, but need not be) make up @ storage

2-1

Two 3609 siorage moduies iocated within the same cabinet are

bank which can store 32,768 words. The addresses
within a bank (e.g., bank 2) are assigned as follows:
one 3609 has locations with addresses 2 000008
through 2 377773, and the other 3609 has locations
with addresses 2 40000g through 2 77777g.

STORAGE ACCESS

Each 3609 storage module has five access channels
to permit storage requests from five sources. For
example, four communication modules and one com-
putation module may have access to a 3609 (figure

2-1).

Each of the five access channels of a 3609 is as-
signed a designation number by manually setting
four binary switches asscciated

channel.

with that gece

inaGr Gccess

The equipment requesting access to storage transmits
a request and an 18-bit address to storage. The
upper 4 bits of the 18-bit address select or address
a particular 3609. Thus, only the 3609 which has a
channel switch designation matching that specified
by the upper 4 address bits recognizes the memory
request. The lower 14 bits of the 18-bit address
specify a particular location within the 3609.

The storage request accompanying the storage address
indicates whether a read or write reference is to be
performed.

3603
STORAGE MODULE

3609 3609
STORAGE STORAGE
MODULE MODULE
|1213|4|5 |]2]3[415
7
3602 3602 3602 3602 3604
COMMUNICATION COMMUNICATION COMMUNICATION COMMUNICATION COMPUTATION
MODULE MODULE MODULE MODULE MODULE

Figure 2-1. Typical Storage Access Channel Hook-up

PRIORITY SECTION

Each 3609 storage module contains a priority section
which scans the five access channels for storage
requests. This scanner successively examines each
channel to insure that each channel has access to
storage once per scan cycle, thus preventing simul-
taneous storage requests. |f the channel being ex-
amined by the scanner has recognized a memory
request, the scanner halts and the memory reference
via that channel is initiated. [f any other units are
requesting storage access via their channels, these

units must wait until the current storage request is
completed and the scanner advances to their parti-
cular access channel.

ADDRESS PARITY CHECKING

The unit requesting access to storage transmits a
parity bit along with the storage address. This
parity bit and address are checked in the 3609. If a
transmission error has occurred, the 3609 returns a
Parity Error signal to the equipment requesting
access. (For a comprehensive explanation of parity,
refer to chapter VI.)

2-2

CHAPTER 111
COMPUTATION MODULE

The 3604 computation module performs calculations and processes data in a parallel binary

mode through the step-by-step execution of individual instructions.

data are stored in the 3609 storage module(s).

LOGICAL DESCRIPTION

Functionally, the 3604 may be divided into an
arithmetic section and a control section.

Arithmetic Section

The arithmetic section performs the arithmetic and
logical operations necessary for executing instruc-

tions. |t consists primarily of several operational
registers. The operational registers are described
below. Table 3-1 lists the arithmetic properties of

the registers,
A Register

Nearly all arithmetic and logical operations use the
48-bit A (Arithmetic) register. The contents of this
register may be shifted right or left, separately or in
conjunction with the Qregister. In certain conditional
instructions, the A register holds control quantities
which govern operations. In some arithmetic op-
erations, the A register operates as a 49-bit register.
Only 48 bits are necessary, however, to display the
final result.

Q Register

The 48-bit Q (Auxiliary Arithmetic) register assists
the A register in performing arithmetic and logical
operations. The contents of the Q register may be
shifted right or left, separately or in conjunction
with the A register. Q may also be used with the A
register fo form a double length register, AQ or QA.

3-1

The instructions and

In addition to assisting the A register, certain in-
structions reference the Q register directly. In
some arithmetic operations, the Q register operates
as a 49-bit register. Only 48 bits are necessary,
however, to display the final result.

P Register

The 15-bit P register functions as a program address
counter. The P register holds the address of each
program step. After executing the instruction (or
instructions) contained in the program step, the

intity in P is advanced to the address of the
next instruction. The amount by which P is ad-
vanced is determined by the type of exit the instruc-
tion fakes:

1) Normal exit - the P register is advanced by one.

2) Skip exit - the P register is advanced by two.

3) Jump exit - the P register is set to the quantity
specified by the execution address of the jump
instruction. If the instruction is a return
jump, the contents of P are stored before exe-
cuting the jump, permitting a return to the pro-
gram sequence after the jump is made.

Since the P register is a two's complement additive
register, it can generate storage addresses in se-
quence from 00000 to 77777g. When a count of
777778 is reached, the next count in P reduces its
value to 00000. (Note that in generating storage
addresses by adding the contents of an index register
to a base quantity, address 777778 cannot be reached.
Refer to the section on Address Modification Modes.)

Table 3-1. Arithmetic Properties Of Registers

Register ;:g:i Modulus C(;\ln;;:cl:in:;nf Arithmetic Result
A Register 48 2481 one’s subtractive signed®
Q Register 43 248.1 one’'s | eeeeeeeee- signed
P Register 15 215 two's additive unsigned
Index Registers 15 215.1 one’s** | emmemeeee | e
Time Register 27 227 two'st additive unsigned

D Register

The 48-bit D (Flag) register is an auxiliary register
which may be:

1) Specifically referenced in the D Register Jump,
Inter-Register, Register Jump and Bit Sensing
instructions.

2) Used toprovide temporary storage for a quantity
while operations proceed in other registers.
This eliminates an additional storage reference.

U Register
The 48-bit U (Program Control) register holds the

program step while it is being executed. All opera-
tions necessary to execute aninstruction are governed
by the contents of this register.

B1. B6 (Index Registers)
Six 15-bit index registers may:
1) Hold quantities used as address modifiers.

2) Hold control quantities for certain instructions
(e.g., Search, Locate List Element, etc.).

The index registers may also be explicitly referenced
by certain instructions (refer to Repertoire of In-
structions section).

Bounds Register

The 37-bit Bounds register is a memory and jump
lock-out. The lower 18 bits of the Bounds register
hold an 18-bit lower bound address (15-bit storage
address plus 3-bit bank address). The upper 19 bits
hold a 15-bit storage address, a 3-bit bank address
and a single upper bit which, together, define the
upper bound address.

Bounds checking on jump and memory addresses
occurs only if the interrupt system is active and if
the Bounds bit in the Interrupt Mask register is set
to ‘““1”’. If these conditions are present, the following
operations are not permitted, and will cause an
interrupt if attempted:

1) A jump to an address outside the bounds de-
fined by the upper and lower bound addresses.
(If a jump is attempted out of bounds, it will
not be effected, and interrupt will occur.tt Upon
return to the main program after processing the
interrupt, the next instruction will be executed.)

2) Writing in an address out of bounds.
3) Reading an instruction from out of bounds.

The only permissible use of an address out of bounds
is to read its contents as an operand except when:

* The result of an arithmetic operation in A satisfies A< 247 . 1 since A is always treated as a signed quantity. When

the result in A is zero, it is always represented as 000 .

.. 000 except when 111... 111 is addedto 111... 111 or

when 000 . . . 000 is subtracted from 111... 111. In these cases, the resultis 111. .. 111 (negative zero).

** Though the index registers have no arithmetic capabilities themselves, address modification using the index registers

is performed modulus 215
performed modulus 22 (two's complement).

- 1 (one’s complement). |f two's complement mode is selected, address modification is

t In selecting Real Time Clock interrupt, the addition of a time value (in milliseconds) to the count held in the Time
register (to be placed in the Time Limit register) is performed in one’s complement notation. In the add operation,
the operands are treated as 48-bit operands with the upper 21 bits zeros. Therefore (even though the addition is
performed in one's complement arithmetic) the next count after reaching the caopacity of the TimeL imit register

(227 - 1) becomes all zeros.

+t+ The following actions occur on jump instructions before Bounds interrupt occurs:
1) No register contents are changed in the 22, 23, 63.0, 63.1, 75, and 76 instructions; the only action is the stop

during the 76 instruction.

2) All functions of the 55, 62, 63.4, 63.6, 77.4, 77.5, and 77.6 instructions are performed except the actual jump
(e.g., the contents of BP are decremented in the 55 instruction.).

3-2

a.) the Bounds Fault bit in the Interrupt Mask re-
gister is set,

b.) the 1604 Mode bit in the Interrupt Mask register
is set, and

c.)the Interrupt system is active.

When the above three conditicns are met, any read
reference out of bounds will result in an interrupt.

Addresses which may be referenced are such that
BL <S and By >S (where S is the storage address).
Setting the upper bit of the upper bound address
effectively removes the upper bound. This permits
writing into address 777777.

When the contents of the Bounds register are trans-
mitted into a 48-bit register via the Inter-Register
instruction, its contents are distributed as follows
in that register:

a.) lower bound address placed in bits 0-17.

b.) upper bound address placed in bits 24-42,

Instruction Bank Register

The 3-bit Instruction Bank register holds the designa-
tion of the storage bank in which instructions are
located. This storage bank remains selected until
explicitly changed.

Operand Bank Register

The 3-bit Operand Bank register holds the designa-
tion of the storage bank in which operands are lo-
cated. This storage bank remains selected until
explicitly changed.

Interrupt Register

Each interruptible condition in the system is con-
nected to a particular bit position of the Interrupt
register. The lower bit positions (16) detect in-
ternal interrupt conditions such as overflow, divide
fault, exponent fauit, etc. The upper bit positions
(32) are interrupt lines coming from each of the 32
possible communication channels.

Interrupt Mask Register

This register enables testing of external interrupt
lines and internal conditions. The bit positions of
this register match the Interrupt register. The in-
terrupt lines are always tested because the upper
Mask bits are forced to ‘‘1's’’. Interrupt occurs on
an internal condition if the matching bit of the lower
Interrupt Mask register is set to “1"’. The Inter-
Register or Bit Sensing instructions may be used to
set the {nterrupt Mask register bit.

3-3

Product Register

The Product register contains the bit-by-bit logical
product of the Interrupt register and the Interrupt
Mask register {refer to the Interrupt section).

Shift Count Register

The 7-bit Shift Count register (SCR) holds the shift
count whenever a shift operation is performed. On a
right shift operation, the count held in the SCR is the
true right shift count. On a left shift operation, how-
ever, the count held in the SCR is 140_ minus the
true left shift count (since the shift network can only
shift right). The right shift performed is thus equiv-

alent to left-shifting by a true left shift count.

In addition to the Shift instructions, several other
instructions use shifting operations (and thus use
the SCR), or in some way tamper with its contents
in their execution. These instructions are listed in

table 4-2, page 4-9.

A typical use of the SCR (in instructions other than
Shifts) is to govern normalize operations in the
floating point instructions. At the completion of a
floating point instruction, the contents of the SCR
depend on whether normalized or un-normalized
arithmetic was selected before the operation.

If normalized arithmetic was selected (either by
augmenting a floating point instruction or by execut-
ing the instruction in the normal manner), the SCR
holds the following:

1) If a right shift was necessary to normalize the
number, a ‘1"’ is held in the register. in single
precision operations requiring a right shift, the
lowest bit of the A register is shifted into the
uppermost bit of the Q register.

2) If a left shift was necessary to normalize the
number, the SCR holds 140q minus the true left
shift (i.e., true left shift is the number of
places the coefficient must be shifted left to
normalize the number.).

If un-normalized arithmetic was selected (by aug-
menting a Floating Point instruction), the Shift
Count register holds the following:

1) Even though un-normalized arithmetic was
selected, if a right shift was necessary to
normalize the number, a ‘‘1"" is held in this
register, and the number is normalized. [n this
case, normalizing is necessary topack the expo-
nent into the floating point word.

2) Otherwise, the SCR holds zeros at the end of
the operation, and the number is not normal-
ized.

If the Shift Count register is to be examined, the
Inter-Register, Register Jump, or Bit Sensing in-
structions may specifically address this register.
The Shift Count register must, however, be examined
by one of these instructions before executing an in-

struction which may destroy its contents. Refer to
table 4-2, page 4-9.

The Inter-Register and Register Jump instructions
treat the Shift Count register as a 15bit register,
with the upper bits zeros.

Miscellaneous Mode Selections Register

The 15-bit Miscellaneous Mode Selections register
holds a binary indication of the status of several
switches and internal operating conditions. The
condition associated with each of the register's bit
positions is listed in the table below.

The Miscellaneous Mode Selections register may be
examined by the Inter-Register, Register Jump, or
Bit Sensing instructions. Using these instructions,
the programmer may determine a current operating
mode or use the Sense switches to control program
flow.

Bit Switch or Mode Condition if Bit = *1"’

00 Console Sense Switch 1

01 Console Sense Switch 2 The programmer may use these switches to flag internal condi-
tions. . o]

0 Console Sense Switch 3 ions The switches may then be checked by machine instruc
tions and used to control program flow.

03 Console Sense Switch 4

04 Console Sense Switch 5

05 Console Sense Switch 6

06 Two's Complement Mode Allindex arithmeticisperformedintwo's complement arithmetic.

07 [/0 Illegal Instruction If this bit = ““1"", the 1/0 Illegal Instruction FF is set. If the
llegal Instruction bit in the Interrupt Mask register is set, in-
terrupt will occur when an Input/Output instruction (74.0-74.6)
is to be executed (refer to the Internal Function instruction).

08 Interrupt Exit Upon return to the main program after processing an interrupt
condition, the upper instruction will be executed if this bit is
a “‘0"”; the lower instruction will be executed if this bit is a
(l],’

09 Interrupt Active Interrupt system is active. Interrupt will occur if the condition
arises and the appropriate Interrupt Mask register bit is set.

10 Selective Stop Switch 1 Stop switch 1is set.

11 Selective Stop Switch 2 Stop switch 2 is set.

12 Selective Stop Switch 3 Stop switch 3 is set.

13 Card Input Mode/Normal Reader is selected for operation if this bitis a ““1'"; i.e., Card

Switch ' C I input Mode switch has been pressed. If a *'0", the console
witches at Lonsole typewriter is selected (Normal switch has been pressed).
14 Negate BCD Conversion Negate BCD Conversion FF is set, inhibiting BCD conversion.

3-4

Time Register

The 27-bit Time register hoids the Real Time Clock
count. lts contents are incremented by one each
millisecond. This register is addressable as an
operand (i.e., its contents may be read, but writing
into this register is not permitted) via the Inter-
Register, Bit Sensing, or Register Jump instructions
{refer to section on Real Time Clock).

Time Limit Register

The 27-bit Time Limit register may be set to hold
the Real Time Clock count plus a given time in milli-
seconds. Setting the Time Limit register may be
accomplished by the Inter-Register, Bit Sensing, or
Register Jump instructions (refer to section on Real

Time Clock).

Control Section

The control section of the 3604 directs the operations
required to execute instructions, and establishes the
timing relationships needed to perform these opera-
tions in the proper sequence. !t also sends to the
communication module the preliminary commands
necessary to begin the processing of input/output
data.

The control
storage,

section acquires an instruction from
interprets it, and sends the necessary
commands to other sections. A program step may
be a single 48-bit instruction or a pair of 24-bit
instructions which together occupy a single storage
location as a 48-bit word.

The program address counter, P, is a two's comple-
ment additive register. It provides program continu-
ity by generating in sequence the storage addresses
which contain the individual program steps. Usually,
at the completion of each program step, the count in
P is advanced by one to specify the address of the
next program step.

The Program Control register, U, holds a program
step while it is being executed. If the program step
is a pair of 24-bit instructions, the upper instruction
is executed first followed by the lower instruction.

After executing an instruction, a half exit, full exit,
skip exit, or jump exit is performed. A half exit
always allows the lower instruction of a program
step to be executed. A full exit advances the count
in P by one and executes the upper instruction of the

3-5

new program step at the address specified by the con-
tents of P. A skip exit advances the count in P by
two, skipping the next sequential program step. A
jump exitallows a new sequence of instructions to be
executed; the storage location of the new instruction
is specified by the execution address of the jump in-
struction. In this case, the execution address is
entered into P and specifies the starting location of
a new sequence of program steps.

Storage Bank Selection

The 3600 system may be expanded to include up to
eight 3603 storage modules (refer to Options section).

Expanding the system to include several storage
modules requires the provision for addressing any
specific module.

The storage modules are numbered 0, 1, 2, 3, ... 7.
Two 3-bit bank registers, the Operand Bank register
and the Instruction Bank register, may be manually
manipulated from the console and may also be ad-
dressed as operands in the Inter-Register, Register
Jump and Bit Sensing instructions. Also, a 3-bit
bank address designator contained in the instruction
itself specifies the bank to which the storage refer-
enceis tobe made. Thus, a complete storage address
is an 18-bit composite address (bank address plus
execution address).

Once an instruction bank selection is made, all in-
structions will be read from that storage bank until
one of the following instructions is executed:

1) An Unconditional Bank Jump (63.0 s=0)
2) An Unconditional Bank Jump to Lower (63.1)
3) A 48-bit Return Jump (63.0 s=1)

Once an operand bank selection is made, all operands
will be read from that storage bank until one of the
following instructions is executed:

1) A 48-bit Return Jump

2) Any Bank Jump
3) Execute

4) Search Order
5) Transmit

6) Locate List

7) Augment

INTERNAL OPERATING MODES
Trace Mode

The 3604 computer may be operated in a special mode
called Trace. The Trace mode is selected by set-
ting the Trace Mode bit in the Interrupt Mask register.
In Trace mode, all jump instructions (in which the
jump condition is met) are trapped in interrupt before
executing the jump (assuming the interrupt system
is active.)*

The contents of the Program Address register are
automatically stored when the interrupt subroutine is
entered to permit return to the main program. After
interpretively executing the jump instruction in the
interrupt subroutine, the main program resumes with
the instruction which was about to be executed when
inferrupt occurred unless the interrupt routine pro-
vides for a return elsewhere.

1604 Mode

Most programs written for the 1604 computer canbe ex-
ecuted on the 3600 system through the 1604 compati-
bility program package. Except for five cases, op-
eration codes in the 1604 and 3604 designate identical
instructions. Codes 00, 62, 63, 74, and 77 designate
differentinstructions in the two computers. To aidin
achieving compatibility of 1604 programs with the
3600 system, the latter may be placed in 1604 mode,
which detects the occurrence of any of these codes
and causes an interrupt. The interrupt routine then
can interpretively execute the instruction.

The 1604 mode of operation is selected by setting
the 1604 Mode bit in the Interrupt Mask register and
activating the interrupt system. Setting this bit sends
a Negate BCD Conversion signal to external equip-
ments, indicating that 1604 mode is in operation.

Some external equipments associated with the 3600
system continue normal operation whether or not
3600 (normal) or 1604 mode is in operation. Others
perform the following operations in transmitting data
into or out of the 3600 system (cases are defined for

normal 3600 mode and for 1604 mode):

1) 3600 (Normal) Mode with 362X:

a) In reading information from magnetic tape,
the 362X magnetic tape controller converts
IBM 704 external BCD to internal BCD (i.e.,
if the 5th level is ‘‘1"", complement the 6th

level - for example, on tape, the code for the
character ‘A’ (61) is converted to 21).

b) In writing information on magnetic tape,
internal BCD is converted to external BCD.

2) 1604 Mode with 362X:
No conversion is performed while in 1604 mode;
the 3600 performs like the 1604 computer. The
program should provide for reading and writing
in external BCD (even parity).

3) 3600 (Normal) Mode with High-Speed Printer:
Data transmitted to the printer in 3600 (normal)
mode is converted from internal to external BCD.

4) 1604 Mode with High-Speed Printer:

In 1604 mode, the program should provide for
transmitting data in external BCD format.

In transmitting data into or out of the 3600 system,
two ways exist for inhibiting BCD conversion:

1) Setting the 1604 Mode bit in the Interrupt Mask
register sends a Negate BCD Conversion signal
to the external equipments.

2) Executing an Internal Function instruction
(77.0 00031 - Select Negate BCD Conversion)
transmits a Negate BCD Conversion signal to
the external equipments.

To permit BCD conversion:

1) The 1604 Mode bit in the Interrupt Mask register

must be clear, and

2) An Internal Function instruction (77.0 00032)
Release Selection of Negate BCD Conversion)
must be executed.

The Negate BCD Conversion FF, set or cleared by
the Internal Function codes listed above, may be
examined by sampling the Miscellaneous Mode Selec-
tions register. Bit 14 of this register is the Negate
BCD Conversion FF. A “‘1"’ in this bit indicates
that this FF is set, inhibiting BCD conversion.

An internal master clear also clears the Negate BCD
Conversion FF and the Interrupt Mask register. Thus,
BCD conversion will occur in any input/output op-
erations performed following an internal master clear.

* The following actions occur on jump instructions before Trace Mode interrupt occurs:
1.) No register contents are changed in the 22, 23, 63.0, 63.1, 75, and 76 instructions; the only action is the

stop during the 76 instruction.

2) All functions of the 55, 62, 63.4, 63.6, 77.4, 77.5, and 77.6 instructions are performed except the actual

jump (e.g., the contents of Bb

are decremented in the 55 instruction.).

3-6

Two’s Complement Mode

In the normal mode of operation, one's complement
arithmetic is used in address modification and all
indexing instructions (except ISK and [JP). When
Two's Complement mode is selected, two's com-
plement arithmetic is used in alladdress modification
and in the execution of the Increase Index instruc-
tion.

Selecting Two's Complement mode permits using
storage location 777778 as an addressable location
through address modification.

Once Two’s Complement mode is selected, it remains
selected until it is:

1) Cleared by the Internal Function instruction,
2) Cleared by a manual internal master clear, or

3) Temporarily suppressed* by one of the following
occurrences:

a) Exponent arithmetic
b) One of the scale instructions
c) One of the product register jump instructions

d} One of the Search instructions

When Two's Complement mode is cleared via the
Internal Function instruction, one’s complement
arithmetic is again used in address modification and
all indexing instructions except Index Skip and
Index Jump. These instructions use two's comple-
ment arithmetic regardless of whether or not Two's
Complement mode is selected.

REAL TIME CLOCK

The Real Time Clock in the 3604 is a free-running,
two's complement,** 27-bit counter that advances
each millisecond. This counter runs continually as
long as power is on.

The clock count (held in the 27-bit Time register
which is specified by code 31) may be examined by
the Inter-Register, Bit Sensing or Register Jump
instructions,

A 27-bit Time Limit register, specified by code 32,
may be set or examined by the above three instruc-
tions.

The program may select interrupt to occur when the
Time register (Clock) and the Time Limit register
become equal. The necessary steps to select a
Real Time Clock interrupt are outlined below (assume
the program wants an interrupt indication after 25
milliseconds have elapsed).

1) Examine clock count in Time register (using one
of the three instructions listed above).

2) Set Time Limit register to clock count plus 25.

3) Select interrupt by setting the Real Time Clock
bit in the Interrupt Mask register to *‘1'".

4) Activate the interrupt system.

After 25 milliseconds have elapsed, the Time regis-
ter and Time Limit register become equal. The Readl
Time Clock bit in the Interrupt register is set when
this time occurs.

Interrupt occurs immediately after an advance clock
pulse if the Time register and Time Limit register
are equal. This precludes setting the two registers
equal to force a Real Time Clock interrupt.

* Temporarily suppressing Two’s Complement mode as in case 3 above does not clear the selection of the mode.

** When the clock reaches its maximum count of all ones, the next count reverts the clock count to all zeros, and the

count continues in sequence.

3-7

DESCRIPTION OF INSTRUCTIONS
Word Format

A computer word consists of 48 bits and may be inter-
preted as one 48-bit data word, half a 96-bit data
word, a 48-bit instruction, or two 24-bit instructions.

Most instructions designated by three-letter mne-
monic codes are 24-bit instructions common to the
1604 computer. These instructions are arranged in
a 48-bit word; the higher order 24 bits are called the
upper instruction and the lower order 24 bits are
called the lower instruction.

Instructions which are not common to the 1604
computer and designated by mnemonic codes of
three or four letters, differ in format and in word
length (some are 24 bits; others are 48 bits).

Instruction formats are arranged in four major classes,
according to differences in word length and the
position of the function code within the format. A
typical format from each class is outlined below.
Designators used within these formats are explained
at the end of this section. For a comprehensive
description of instructions, refer to the Repertoire of
Instructions section.

Class |

Class | instruction formats are 24 bits in length and
have 6-bit function codes, ‘f’. All instructions
common to the 1604 computer and designated by
three-letter mnemonic codes are included in this
category. The Inter-Register instruction, not a 1604
instruction, but indicated by a three-letter mnemonic
code, is also included.

23 BI7 1518 o

b
f or myork
i

INSTRUCTIONS DESIGNATED BY
THREE-LETTER MNEMONICS

23 18171514 109 54 o

OPERATION |SUB- | ORIGIN | ORIGIN |DESTINATION:

CODE oP P q r
f=00 s

Class 1l

Class Il instruction formats are 24 bits in length
and have 9-bit function codes. All instructions in
this category are designated by mnemonic codes of
three or four letters.

23 15 14]

OPERATION CODE OPERAND

n s
v

v
=773 y

Class I

Class Il instruction formats are 48 bits in length
and have 9-bit function codes. All instructions in
this category are designated by mnemonic codes of
four letters.

a7 3938 2423 1817 1514 o
OPERATION REJECT JumP CHANNEL |BANK STORAGE ADDRESS
CoDE ADDRESS ’
AN v —J\ v \..—v_l_v_l\—v_.—_l
=742 n 13 a m
,
v
CONTROL WORD ADDRESS
Class 1Y

Class IV instruction formats are 48 bits in length,
and except for the Register Jump instruction, have
9-bit function codes. These formats differ from Class
Il formats in that the bits of the function code are
non-contiguous. Six bits of the function code are
in bit positions 42 - 47, and the remaining three
bits are in bit positions 21 - 23.

47 424 4039 38 2423 220101817 1514 [+
OPERATION op. s
JUMP ADDRESS 4 o ADDRESS
CODE ICODE | o
,/f R S N —
263 n =4 s ~ ™
UNUSED. BANK
INDIRECT

BANK ADDRESS
USAGE

The Register Jump instruction differs from other
48-bit Instructions in Class |V in that a 6-bit function
code is used.

a7 4241 338 2423 2209 514 0
1 -
OPERATION |INDEX OPERAND su8 REGISTER JUMP ADDRESS
CODE b
— —_— e N
f=62 y s P m

UNUSED

3-8

structions.

« Designator

a

DESCRIPTION OF DESIGNATORS

Designators used throughout the Description of Instructions section and in instruction formats
are explained below. For specific interpretations of designators, refer to the individualin-

First Bank Address

First Index

Connect and Function

Bank Address Usage

Byte Size

Function Code

Bit Address

Second Bank Address

Condition

Unmodified Shift Count
Modified Shift Count
Unmodified Execution
Address (Address One)

Modified Execution
Address (Address One)

Address Two

Offset

Operand One

Operand Two

3-9

Use

With first storage address, ‘m’', specifies an 18-bit
composite storage location.

Specifies index register(B) used, or whose contents
are used in the operation.

Specifies codes used in Connect and Function
instructions.

Indicates whether or not bank address designators
(‘a’ or ‘i’) will be interpreted in the operation (if

d =0, notused; d = 1, used).

Lengt h of the byte (number of bits of the word) used
in operation.

A 6 or 9-bit code (depending on the operation) which
specifies the operation to be performed.

Specifies which bit of 48; i.e., address of any bit
from 0 - 47,

With second storage address, ‘n’, specifies an 18-

bit composite storage location.
Conditions operations in jumps and stops.
Number of shifts to be executed.

[K=k + (Bb)]; when shift instruction is augmented,
becomes [K =k + (Bb) + (W)L

Address of operand.

M = m + (Bb); when a 24-bit instruction is aug-
mented or when the execution address is modified
in the Execute instruction, becomes [M =m + (Bb) +
(V)L

Usually used as a jump address.

Specifies the A or Q register address of leftmost bit
receiving the byte.

Register which holds first operand in Inter-Regi ster
and Register Jump instructions.

Register which holds second operand in Inter-
Regi ster instruction.

Designator

r Destination

s Suboperation Code

t Augment Operation
(10~ +7)

v Second Index

w Word Count

X Channel Number

y Unmodified Operand

Y Modified Operand

z Instruction Bank

Use

Register to which result is sent after specified
operation is complete.

Specifiesone or more suboperations tobe performed.

(See individual instructions for interpretations of
[]
s’.)

Specifies one or more of eight specific operations
(see Augment instructions).

Specifies second index register (V) used, or whose
contents are used in the operation.

A 15-bit quantity which specifies the number of
words to be processed in a transfer operation.

Specifies data channel; also used to specify channel
whose status will be read or sensed.

Used in execution address portion of instruction;
specifies this address will be used as the operand.
Specifies a 15-bit comparison quantity in Register
Jump instruction. Designates the quantity used as
an addend in Add to Exponent instruction.

Y =y +(Bb)L.

Storage bank in which instructions are located.

ADDRESS MODIFICATION

The portion of the instruction word designated by
‘m’, ‘y', or 'k’ is often termed the base execution
address. The base execution address may be used
as (1) a shift count, ‘k’, (2) an operand, ‘y’, (3) an
address of an operand, ‘m’, in storage. The execution
address may be modified or left unmodified depending
on the index designator. The execution address is
modified by adding the contents of the designated
index register to the execution address. If left
unmodified, the lower-case symbols ‘k’, ‘y’, or ‘m’
If the address is modified, the symbols
are capitalized.

are used.

The modified shift count is represented by:

1) K =k +(Bb) where:
K =modified shift count

k = unmodified shift count (execution address)
(BP) = contents of index register b
If the index designator = 0, then K = k.

The modified operand is represented by:
2) Y =y + (Bb) where:

Y =modified operand
y =~ =unmodified operand (execution address)
(Bb) = contents of index register b

If the index designator =0, then Y =y,

The modified operand address is represented by:
A3 M=m + (Bb) where:

M = modified address of operand
m =unmodified address of operand
(execution address)
(Bb) = contents of index register b
If the index designator = 0, then M = m.

3-10

In some instructions, the contents of a second index
register are also used to modify the execution ad-

dress.

These are double indexed instructions.

The

modified operand address is then represented by:

4HM=m+ (Bb) + (VV) where:

M

m

= modified address of operand
= unmodified address of operand

(execution address)

(Bb) = contents of index register b
(VY) = contents of index register v
If the index designators are both = 0, then M = m.

The operand, ‘y’, or the shift count,
be modified by the double indexing operation.

‘k’, may also

This

operation proceeds exactly as in the above example.

Address Modification Modes

Three possible modes of address modification, as
determined by the index designator, are:

No address modification. The execu-
tion address is directly interpreted.

Relative address modification. The
execution address is modified as out-
lined above. One's complement arith-
metic is used in determining the modi-
fied execution address.

NOTE

Since one's complement arithmetic is used
in determining the relative address, address
77776g is the highest address which can be
generated in the normal manner. For example,
modifying execution address 77776 by adding,
in one's complement arithmetic, an index
value of 1, results in 00000, During address
modification, the modified address will equal
77777g only if: (1) the unmodified execution
address equals 77777g and b = 0, or (2) the
unmodified execution address equals 77777g
and (Bb) = 777773,

Indirect addressing.

ence is made to the location specified
by the execution address. The lower
order 18 bits of the wordat this storage

A storage refer-

/ EXAMINE INDEX

DESIGNATOR _IN
LOWER INSTRUCTION,
1S b=7 2

location are interpreted as the index
designator ‘b’ (3 bits) and execution
address (15 bits) of the present in-
The new index designator
may refer to any one of the three modes.

struction.

NOTE

Indirect addressing occurs in the internal
sequence before the instruction is executed.
Therefore, the indirect address is obtained
from the storage bank currently selected, If,
in the execution of the instruction, a change
in storage bank is specified, the bank is
changed and the operand will be obtained
from the new bank.

IF V= 1-6,PER—
FORM ADDRESS
MODIFICATION
(VV) ¢ m= M,

NO

YES |M IN LOWER INSTR.

{INSTRUCTION
PAIR IN U,

(AUGMENT +

SOME AUGMENTABLE
INSTRUCTION)

EXAMINE INDEX
DESIGNATOR IN
AUGMENT [INSTRUCTION. |

Isv=7 7 /

YES

SELECT m INDIRECTLY,
jm IN LOWER iNSTR.
AND V IN AUGMENT
INSTR. ARE REPLACED

BY LOWER (8 BITS
AT ADDRESS m.

IS NEW V=772

I'SELECT M INDIRECTLY,

AND b IN LOWER
INSTR. REPLACED
BY LOWER {8 BITS
AT ADDRESS M.

L

YES

Fb=1-86,
PERFORM ADDRESS
MODIFICATION
(89) + M= M.

NO

IS NEW b=77? \\
T

l

READ OPERAND
FROM ADDRESS
M AND EXECUTE
INSTRUCTION .

Figure 3-1. Indirect Addressing

When instructions use more than one index designator,
indirect addressing may be specified by one or both
designators. Since bothindex designators specifying
indirect addressing (b = 7, v = 7) constitutes a
special case, this operation is outlined in detail.

This double indirect addressing applies only to
instructions being augmented by the Augment in-
structions (see figure 3-1).

Example:

Storage Address

Contents of Storage Location

f f b m
00005 Augment 7 — LDA 7 00010
. b m
00010 7 00011
b m
00011 3 54321
. m
54322 60000
60001
(B3) = 00001

The contents of storage location 00005 are read
The second index
designator, Since v =7,
indirect addressing is designated. The lower order
18 bits of the storage word at address 00010 are read
interpreted as the new index designator and
execution address. Since the new index designator
also specifies indirect addressing, the lower order
18 bits of the storage word at address 00017 are read
and interpreted. The new index designator (3)
indicates the contents of index register 3 are to be

added to the execution address (54321g + 00001g =

from storage and placed in U.
‘v', is examined first.

and

543228).* The first step is now complete; the lower
instruction at address 00005 reads LDA 7 54322 (the
index designator of 7 has been preserved during the
first step). The first index designator, ‘b’,
amined. The indirect addressing mode is again
specified and the lower order 18 bits of the storage
word at address 54322 are read and examined. The
contents of the new index register, designated by 3,
are added to the execution address, 60000. Upon com-
pleting this address modification, the instruction is
executed, loading the A register with the contents of
storage location 60001.

is ex-

* If the Augment instruction at address 00005 were to specify a change in bank as well as indirect addressing, the

sequence of events would be as follows:
1) Obtain relative address indirectly.
2) Modify relative address (if new ‘v’ = 1-6).
3) Change bank.

4) Obtain relative address in L DA instruction indirectly (in new bank).

5) Proceed

3-12

EXECUTION OF INSTRUCTIONS

A program example and a step by step explanation of

its execution are outlined below. Instructions from
Classes | and |V are used in the example to help

explain the use of various designators.

Example:

Storage Address

00300

—hl:j —_
>

00301 63

(81) = 001008
(V2) = 02000g

The storage reference is initiated at address 00300
(the address held in the P register). The 48-bit word
is read from address 00300 and entered into U. Com-
puter operation is now dependent upon the interpreta-
tion of the 24-bit instruction in the upper half of U.

The operation code, LDA, and the index designator,
0, aretranslated. The function of the LDAinstruction
is to load the A register with the contents of the
designated storage location. Because the index
designator is 0, the execution address is not modi-
fied. The translation of the operation code initiates
the sequence of commands which executes the in-
struction, and the operand in address 00200 is loaded
into A.

The lower instruction in U is translated. The ADD
instruction causes the quantity in storage location M
to be added to the contents &f the A register. Since
the index designator is not 0 or 7, the contents of the
index register are added to the execution address to
form M (M = m + (Bb) = 00210g + 00100g = 00310g).
The contents of storage address 00310 are added to
the contents of the A register, completing the in-
struction. The contents of the P register are in-
creased by one and the next program step at address
00301 is read from storage, entered into U, and
translated.

Contents of Address

b m f b m

0 00200 ADD 1 00210
b f d a m
1 I 7 __ 1 3 03000

Address 00301 contains a 48-bit instruction (Execute).
The function of the Execute instruction is to execute
the instruction (if 48-bit) or instructions (if a pair
of 24-bit instructions) at M. M specifies the storage
location designated by the execution address plus
the contents of index register 1 and the contents of
index register 2 {(double additive indexing). M =m +

B1) + (v2) = 03000g + 00100g + 02000g = 05100g,

After address modification, two designators are
examined before the “‘jump’’ to address 05100. The
‘a’ designator, whose value is 3, specifies the
““jump”” will be to address 05100 in storage bank 3.
Designator ‘d’ indicates (by a “‘1"") that this bank
designator will be considered (if ‘d' is a “0", ‘o'
will be disregarded and the “‘jump’’ will be within

the storage bank currently in use).

The instruction or instruction pair at M is placedin
U and execution proceeds in the normal manner.
Upon completion of program step 00301, the contents
of P are increased by one and the program proceeds.

SYMBOLS

The following symbols are used in the order of Instructions section. For definitions of terms
used in this section, refer to the Glossary of Terms.

A The A register

A, The binary digit in position ‘n’ of the A register

Bb Designated first index register

D Auxiliary register; also referred to as the Flag register
Exit (full) Proceed to upper instruction of next program step

Exit (half) Proceed to lower instruction of same program step
Exit (skip) Proceed to upper instruction of next program step plus one

Exit (jump) Proceed to the address specified by the execution address

LA Lower address; execution address portion of lower instruction of a program step
Q Auxiliary Arithmetic register

UA Upper address

\'Al Designated second index register

0 Contents of a register or storage location

One’s compiement contents of a register or storage location

—~
~

Final contents of a register or storage location

= =

Initial contents of a register or storage location

A flag to denote the instruction must be located in the upper instruction position
of an instruction word

v The logical inclusive OR function

- The logical exclusive OR function

A The logical AND function

> The logical implication function

il

The logical equivalence function

NOTE

Except for the Double Precision and Truncated Divide instructions (these instructions are selected via one of the
augment instructions), the Order of Instructions table which follows outlines unaugmented instructions.

3-14

ORDER OF INSTRUCTIONS

Octal Mnemonic Indirect Storage* Address Number of
Code Code Name Addressing References Modification Instruction
Bits
Inter-Register Transmission
00 ROP Inter-Regi ster No 0 24
Full-Word Transmission
12 LDA Load A Yes 1 Yes 24
16 LDQ Load Q Yes 1 Yes 24
20 STA Store A Yes 1 Yes 24
21 STQ Store Q Yes 1 Yes 24
13 LAC Load A, Complement Yes 1 Yes 24
17 LQC Load Q, Complement Yes 1 Yes 24
63.2 XMIT Transmit No No 48
63.2 _ Transmit Augment No r Yes 48
Address Transmission
53 LIL Load Index (lower) Yes 1 No 24
52 Liu Load Index (upper) Yes 1 No 24
57 SIL Store Index (lower) Yes 1 No 24
56 Siu Store Index (upper) Yes 1 No 24
61 SAL Substitute Address
(lower) Yes 1 Yes 24
60 SAU Substitute Address
(upper) Yes 1 Yes 24
50 ENI Enter index Yes 0 No 24
04 ENQ Enter Q Yes 0 Yes 24
10 ENA Enter A Yes 0 Yes 24
Instruction Augment
77.1 __ Single Precision
Augment Yes 0 Yest 24
77.2 — Double Precision
Augment Yes] Yest 24
Fixed Point Arithmetic
14 ADD Add Yes 1 Yes 24
15 SuB Subtract Yes 1 Yes 24
24 MUI Multiply Integer Yes 1 Yes 24
26 MUF Multiply Fractional Yes 1 Yes 24
25 DvI Divide Integer Yes 1 Yes 24
27 DVF Divide Fractional Yes 1 Yes 24
77.1-27) —_ Truncated Divide Yes 1 Yes 48

If indirect addressing is designated, ot least one additional storage reference is required.
Number of repetitions of the operation.

1t On lower address.

3-15

ORDER OF INSTRUCTIONS (Cont'd)

Octal Mnemonic Indirect Storage Address Number of
Code Code Name Addressing References Modification Instruction
Bits
Single Precision Floating
Point Arithmetic
30 FAD Floating Add Yes 1 Yes 24
31 FSB Floating Subtract Yes 1 Yes 24
32 FMU Floating Multiply Yes 1 Yes 24
33 FDV Floating Divide Yes 1 Yes 24
77.3 ADX Add to Exponent No 0 No 24
Double Precision Floating
Point Arithmetic
77.2-30| DFAD Floating Add Yes 2 Yes 48
77.2-31| DFSB Floating Subtract Yes 2 Yes 48
77.2-32] DFMU Floating Multiply Yes 2 Yes 48
77.2-33| DFDV Floating Divide Yes 2 Yes 48
Address Arithmetic
n INA increase A Yes] Yes 24
51 INI Increase Index Yes 0 No 24
54 ISK Index Skip Yes 0 No 24
Logical
40 SST Selective Set Yes 1 Yes 24
41 SCL Selective Clear Yes 1 Yes 24
42 SCM Selective Complement Yes 1 Yes 24
43 SSu Selective Substitute Yes 1 Yes 24
44 LDL Load Logical Yes 1 Yes 24
45 ADL Add Logical Yes 1 Yes 24
46 SBL Subtract Logical Yes 1 Yes 24
47 STL Store Logical Yes 1 Yes 24
Shifting
01 ARS A Right Shift Yes 0 Yes 24
02 QRS Q Right Shift Yes 0 Yes 24
03 LRS Long Right Shift (AQ) Yes 0 Yes 24
05 ALS A Left Shift Yes 0 Yes 24
06 QLS Q Left Shift Yes 0 Yes 24
07 LLS Long Left Shift (AQ) Yes 0 Yes 24
34 SCA Scaie A Yes 0 No 24
35 SCQ Scale AQ Yes 0 No 24

ORDER OF INSTRUCTIONS (Cont'd)

Octal Mnemonic indirect Storage Address Number of

Code Code Name Addressing References Modification Instruction
Bits

Replace

70 RAD Replace Add Yes 2 Yes 24

71 RSB Repiace Subtract Yes 2 Yes 24

72 RAO Replace Add One Yes 2 Yes 24

73 RSO Replace Subtract One Yes 2 Yes 24

Storage Test

36 SSK Storage Skip Yes 1 Yes 24
37 SSH Storage Shift Yes 2 Yes 24
Search
64 EQS Equality Search Yes n Yest 24
65 THS Threshold Search Yes n Yest 24
66 MEQ Masked Equality
Search Yes n Yest 24
67 MTH Masked Threshold
Search Yes n Yest 24
63.4 i SEQU Equality Search | Yes i n Yes 48
63.4 SMEQ Masked Equality
Search Yes n Yes 48
63.4 SEWL Search Within Limits Yes n Yes 48
63.4 SMWL Search Magnitude
Within Limits Yes n Yes 48
3.3 STU
é {_'___. Locate List Element Yes n Yes 48
LoiIL

Jumps and Stops

22 AJP A Jump No 1* No 24
23 QJP Q Jump No 4 1* ; No 24
55 {JP Index Jump Yes 0 No 24
75 SLJ Selective Jump No 1* No 24
76 SLS Selective Stop No 1* No 24
63.7 EXEC Execute Yes 0 +x Yes 48
62 RGJP Register Jump , Yes 0 Yes 48
77.6 DRJ D Regi ster Jump No 0 No 24
63.6 [NBJP |

7BJp Bit Sensing Yes 0 Yes 48

If b= 0, only the word at ‘m' is searched; if (Bb) = 0, no search is made.
Number of words searched.
Ret urn jump only.

Number of storage references required by the executed instruction(s).

3-17

ORDER OF INSTRUCTIONS (Cont'd)

Octal Mnemonic Indirect Storage Address Number of
Code Code Name Addressing References Modification | Instruction
Bits
Bank Jumps
63.0 UBJP Unconditional Jump Yes 0 Yes 48
63.0 BRTJ Unconditional Return
Jump Yes 1 Yes 48
63.1 BJPL Unconditional Jump
Lower Yes 0 Yes 48
63.0 BJSX Jump and Set Index Yes 1 No 48
Variable Data Field
63.5 LBYT Load Byte Yes 1 Yes 48
63.5 SBYT Store Byte Yes 2 Yes 48
63.5 SCAN Scan Byte Yes s Yes 48
Interrupt
77.4 m——Mcin Product
Register Jump No 0 No 24
77.5 CPJ Channel Product
Register Jump No 0 No 24
Input/Output
74.0 CONN Connect No 0 No 48
74.1 EXTF Function No 0 No 48
74.2 BEGR Read No 0 No 48
74.3 BEGW Write No 0 No 48
74.4 COPY Cspy Status No 0 No 48
74.5 CLCH Channel Clear No 0 No 48
74.6 [PA Input to A No 0 No 24
74.7 ALG Perform Algorithm No 0 No 24
77.0 INF Internal Function No 0 No 24
77.7 — Fault No 0 No 24

Number of words scanned.

3-18

INSTRUCTION REPERTOIRE

23 1817 1514 109 5 4 [

OPERATION|SUB-| ORIGIN | ORIGIN [DESTINATION|

COOE opP P q 4
| G ——
£200 s

The 24-bit Inter-Register Transmission instruction
performs an operation, ‘s’, upon operands ‘p’ and ‘q
and places the resuit in r’. Origin (operand) or
destination registers are indicated below according

to their octal values of ‘p’, ‘q’, and ‘t’.

01-B! 12 - Q Upper Address

02 - B2 13- A Full

03-83 14 - Q Full

04 - B4 15- D Full

05 - B9 16 - Bounds Register

06 - B6 17 - Interrupt Mask Register

07 - A Lower Address
10 - A Upper Address
11 - Q Lower Address

25 - Operand Bank Register
32 - Time Limit Register

The registers indicated below must be used for

operands only,

20 - Interrupt Register 26 - Shift Count Register

21 - All **0's”’ 27 - Miscellaneous Mode

22 - +1 Selections

23- All “17s 30 - P Register

24 . Instruction Bank 31 - Time Register
Register

The operations which may be performed are listed
below according to their octal values of ‘s’.

s =0 Register Inclusive OR pvg-r

Forms the logical inclusive OR of operands ‘p’ and

‘q" and places the result in ‘r'.

s =1 Register Exclusive OR pwq-r

Forms the logical exclusive OR of operands ‘p’ and
q' and places the result in ¢’

s =2 Register AND pAqg-or

Forms the logical AND of operands ‘p’ and ‘q’ and

places the result in ‘r’.

* Al “0's”, +

s=3

Register Implication psgqg-r
Forms the logical implication of operands ‘p’ and
‘q’ and places the result in *
s =4 Register Equivalence p=q-r
Forms the logical equivalence of operands ‘p’ and

‘q" and places the result in r’

s =5 Register Sum p+g-r

Adds the contents of ‘p’ to the contents of ‘q’ and
places the result in ‘r'. If ‘p’ and ‘q’ are negative
zero, ‘r’ is negative zero. Arithmetic overflow fault
conditions apply.

s =6 Register Difference p-q-r

Subtracts the operand ‘q’ from ‘p’ and places the
result in ‘r'. If 'q’ is positive zero and ‘p’ is nega-
tive zero, ‘r’ is negative zero. Arithmetic overflow
fault conditions apply.

s =7 Register Transmit/Swap (RXT/RSW)

Uses register designators ‘q’ and ‘r’ only. The
unused ‘p’ portion of the Inter-Register instruction

format becomes afunction modifier with the following
designator:

16 121110

Values for the ‘t’designator are:

Swap (q) and (r); do not clear g; do not clear r
Swap (q) and (r); do not clear q; clear r
Swap (q) and (r); clear q; do not clear r
A
{r)

Swap (q) and (r); clear q; clear r

0
1
2
3
4 Transmit (q) to r; do not clear q; do not clearr
5
6 Transmit (q) to r; clear q; do not clear r

7

d
)
Transmit (q) to r; do not clear q; clear r
)
)

Transmit (q) to r; clear q; clear r

1, and all *'1’s’* are not registers, but are forced operands which may be referenced in an operation.

The

clear operation in the Transmit/Swap order

functions as follows:

Swap Operations

1)

2)

When the selected registers are not A, Ay,
QL, or Qu, the registers are automatically
cleared while the contents of the registers are
being transmitted to their respective destinations.

When one or both of the selected registers is
AL, Ay, QL, or Qu, clearing is not automatic,
but depends on the function specified by ‘t’. If
a clear is specified, that register of whichA[or
Ay is a part (the Agy|| register) or that register
of which Q__ or QU is a part (the Q|| register)
is cleared before the new quantity is entered.
If no clear operation is specified, a replace
operation is effected.

Transmit Operations

1)

2)

When the selected registers are not Ap, Ay,
QL, or Qu, the destination register is auto-
matically cleared before the new quantity is
entered. The contents of the source register
remain unchanged unless a clear function is
specified for the source register.

When one or both of the selected registers is
AL, Ay, QL, or Qu, clearing the destination
register is not automatic, but depends on the
function specified by ‘t’. If a clear operation
is specified on the:

a) Destination register, the full register is
cleared before the new quantity is entered.
If no clear is specified on the destination
register, a replace operation is effected.

b) Source register, the specified register or
partial register is cleared after transmitting
its contents to the destination register. If
no clear is specified on the source register,
its contents remain unchanged.

Performing the logical operations listed above (s =
0-6) with any of the four possible combinations yields
the results indicated in the foilowing tabie.

Logical Combinations

AND OR |Excl.OR| Impl. | Equiv.
pla|paalpva|p~ag {pag]| p=q
111 1 1 0 1 1
110 0 1 1 0 0
01 0 1 1 1 0
0]o0 0 0 0 1 1

Operations performed on designated register(s)

contents follow the rules outlined below:

1)

2)

3)

4)

If the destination register is a full register and
one or both source operands designate 15-bit
quantities, the sign bits are extended when
arithmetic operations are performed. No sign
extension occurs when logical operations are
performed on 15-bit quantities.

If the destination register is 15 bits and one or
both source operands designate 48-bit quantities,
the operation is performed on 48 bits, and the
result is taken from the lower 15 bits.

In the swap or transfer operations, the sign bit
of the sourceoperand is extended if the destina-
tion register is 48 bits. In the contrary situa-
tion, the lower 15 bits are taken as the source
operand.

When AL, Ay, QL, or QU are used as the
destination registers, a replace operation is
effected.

In the swap or transfer operations, when a clear
function is not designated, statements 1 and 2
above do not hold true (i.e., a replace operation
is effected).

When the Operand or Instruction Bank registers
or the Shift Count register are used as operands,
the upper bits are always ““0’s’’.

If, in executing an Inter-Register instruction, an
operation attempts to alter the contents of a register
designated by codes 20-31 (except 25), the following
occurs:

1)

3-20

That operation which couid aiter the contents
of registers 20-31 (except 25) is not performed,
and

2) The instruction continues to completion. The
next instruction is then executed.

This operation does not constitute a fault or an
interruptible condition.

Executing the Inter-Register instruction (f = 00,
s = xx) with g =0 or r = O results in an interruptible
fault condition. Iif the illegal Instruction bit in the
Interrupt Mask register is set, and the interrupt
system is active, interrupt occurs. If this Interrupt
Mask register bit is not set, this instruction becomes
a pass (do nothing) instruction. The next instruction
is then executed.

Full-Word Transmission

1) In Full-Word Transmission instructions, a 48-
bit operand or data word is used in executing
the instruction.

2) Index registers used when augmenting the
Transmit commands are fixed. For example,
index register 1 (designated by B1) must be
used to hold the word count, as specified.

Replaces the contents of A with a 48-bit operand
contained in the storage location specified by M.
Negative zero is formed in A if the operand at M is
equal to negative zero.

Replaces the contents of A with the complement of
a 48-bit operand contained in the storage location
specified by M. Negative zero is formed in A if the
operand at M is equal to positive zero.

Replaces the contents of Q with a 48-bit operand

contained in the storage location specified by M.
Negative zero is formed in Q if the operand at M is
equal to negative zero.

Replaces the contents of Q with the complement of
a 48-bit operand contained in the storage location
specified by M. Negative zero is formed in Q if the
operand at M is equal to positive zero.

Replaces the contents of the designated storage
location, M, with the contents of A.

Replaces the contents of the designated
location, M, with the contents of Q.

storage

a7 4241 3938

2423 220 1817 1514 o

OPERATON| ORIGIN ADDRESS OP. |SUB-} DESTINATION ADDRESS
CODE CODE | OP.
1263 ist m tz=2 s oM n
BANK BANK
ADDRESS ADDRESS

The Transmit commands read an operand from the
storage location designated by the first storage
address ‘am’, perform the specified operations, and
place the results in storage address ‘i n'. At the
end of the operation, the Operand Bank register is
set to 'i’. [Interpretations of the 3-bit suboperation
designator ‘s’ are given below (the lower order two
bits of ‘s’ specify the operation):

s = X00 Transmit

The contents of storage location ‘am’ are transmitted
to storage location ‘i n’. The contents of ‘am’ remain
unchanged.

s = X01 Transmit Complement

The complement of the contents of storage location
‘am’ are placed in storage location ‘i n’. The con-
tents of ‘am’ remain unchanged.

s = X10 Transmit Masked

The logical product of the contents of storage loca-
tion ‘am’ and Q is placed in storage location ‘i n’.
The contents of ‘am’ remain unchanged.

s = X11 Transmit + Constant

The contents of storage location ‘am’ are added to
a constant {constant is in A) and transmitted to
storage location ‘i n'. The contents of ‘am’ remain

unchanged.

3-21

Values for the upper order bit of ‘s’ are:

s = 0XX Execute the specified Transmit command
without augmentation.
s = 1XX Augment the specified Transmit command.

The augment portion of this instruction may be used
to increase the capability of the designated command.
Commands may be executed without using the aug-
ment capability; in this case, just one word is trans-
mitted.

With augmentation selected, the specified Transmit
operation may be repeated a given number of times.
Storage addresses may be increased by an increment
quantity for each repetition of the operation. Five
index registers are assigned to hold the necessary
control quantities for an augmented Transmit operation.
Index register assignment is as follows:

Bl - Holds word count; i.e., the number of words
to be transmitted. Its contents are reduced
by one after each operation. When (B1) = 0,
operation is complete,

BZ. Holds new origin address modifier (incre-
ment in B3 has been added to old origin ad-
dress). Normally, this index register is clear
at start.

B3 - Holds an increment quantity which will be
added to the origin address modifier in B2,
Note: If (B3) =0, the same storage word will
be transmitted the number of times specified

by (B1).

oo
1N
]

Holds new destination address modifier (incre-
ment in B9 has been added to old destination
address). Normally this index register is
clear at start.

BS - Holds an increment quantity which will be
added to the destination address modifier in
B4, Note: If (Bd) = 0, all storage words
transmitted will be placed in the same storage
location.

Figure 3-2 details the operation of a sample aug-
mented Transmit operation (s = 100).

INSTRUCTION

IN U WITH

AUGMENTATION

SELECTED

ty.gp \ES | OPERATION IS
1S (B')=07 COMPLETE.
EXECUTE NEXT
INSTRUCTION.
NO i .

REDUCE (B') BY

ONE COUNT:

(B)-1—>8'

EXECUTE SPECIFIED
TRANSMIT OPERATION:
READ CONTENTS OF
STORAGE LOCATION

[om+(B2)] AND TRANSMIT
TO LOCATION [in+(8%4]

ADD INCREMENT ADD INCREMENT

TO ORIGIN ADD- TO DESTINATION
RESS MODIFIER: ADDRESS MODIFIER.

(B?) +(B%)—>B? (8%)+(8%) —8*

Figure 3-2. Augmented Transmit Operation.

Address Transmission

1) In the Address Transmission instructions, only
the lower 15 bits of a 24-bit half-word instrue-
tion or data word are used.

2

~

In the LIU and LIL instructions, an index
designation of ‘0"’ has no meaning and should
not be used. If used, these instructions become
pass instructions, but use some time in storage
reference. Thenextinstructionis then executed.
Using “0"" as an index designation does not
constitute a fault.

Replaces the contents of the designated index register
with the upper address of storage location ‘m’. [f
b =0, this instruction becomes a pass (do nothing)
instruction.

Replaces the contents of the designated index register
with the lower address of storage location ‘m’. If
b = 0, this instruction becomes a pass (do nothing)
instruction.

3-22

Replaces the upper address portion of storage loca-
tion ‘m’ with the contents of the designated index
register.)
remain unchanged. If b =0, (m,q) is cleared.

The remaining bits of the word in storage

Replaces the lower address portion of storage location
‘m’ withthe contents of the designated index register.
The remaining bits of the word in storage remain
unchanged. 1f b =0, (m]q)is cleared.

Replaces the upper address portion of M with the
lower order 15 bits of A. Remaining bits of M are not
modified and the initial contents of A are unchanged.

Replaces the lower address portion of M with the

iower order 15 bits of A. Remaining bits of M are not
modified and the initial contents of A are unchanged.

e

The 15-bit operand, Y, is entered into Q and its
highest order bit (sign bit) is extended in the re-
maining 33 bits. The largest positive 15-bit operand
that can be entered into Q is 377779 (2]4-1) and its
“0"" sign bit will be duplicated in each of the remain-
ing 33 bits of Q. Negative zero will be formed in Q if:

*1) (Bb) =77777g and y = 777778 or

*2) b =0andy =77777g.

The 15-bit operand, Y, is entered into the A register
and its highest order bit (sign bit) is extended in the
remaining 33 bits. The largest positive 15-bit oper-
and that can be entered into A is 37777g (214-]) and
the “‘0’" sign bit will be duplicated in each of the
remaining 33 bits. Negative zero will be formed in A

if:
*1) (Bb) =77777g and y = 777775 or

*2) b=0andy =77777g.

* One's complement mode.

Replaces (BP) with the operand y. If b = 0, this
instruction becomes a pass (do nothing) instruction.

23 1516 121110 8765483210

INDE!
OPERATION CODE _‘L’qd o Irlshshelslelele
— N
e SN AUGMENT OPERATION
BANK ADDRESS ;
USAGE DESIGNATORS

The 24-bit Single Precision Augment command may
be used to perform one or more of the following
operations:

1) Increase the capabilities of certain instructions
by specifying additional operations to be

performed.
2) Change the value of the Operand Bank register.

3) Provide additional modification of the address
portion of the lower instruction.

When this command is used in the lower instruction
position of a program step (case 2 above), the follow-
ing operations occur:

1) The value of the Operand Bank register is set
to ‘a’ (if ‘d"isa ‘1)

2) All other designators perform no meaningful
operations and have no effect on subsequent
instructions.

When this command is used in the upper instruction
position of a program step (case 1 above), the follow-
ing operations occur:

1) Operations using the index designator ‘v’ are
peformed (refer to table 3-3).

2) The vaiue of the Operand Bank register is set
to ‘a’ (if 'd" isa ‘1),

3) The augment operation designators ‘t’ are

stored to condition the operation of the lower
instruction being augmented. If the fower in-
struction is not augmentable (i.e., not listed
in either table 3-4 or 3-5),the “t"’ designators
have no effect on these instructions. Note
also that these instructions can only be

augmented by using certain ‘'t designators
listed. Any other

on the instruction being augmented.

“t"' bits set have no effect

3-23

Instructions which may be augmented using ‘v’ and When the Augment command is in the upper instruction
the augment designators ‘t’ are listed in tables 3-4 position of a program step, the index designator ‘v
and 3-5. Designators which may be used when aug- may be used as shown in table 3-3 to augment the

menting a given instruction are checked opposite that lower instruction.

instruction. Augment operation designators are listed

in table 3-2.

Table 3-2. Augment Operation Designators

Designator Value
Ifa 0" Ifa1”

d Bank address not used Bank address is used; the value of the bank
address designator ‘a’ is always placed in
the Operand Bank regi ster.

10 Rounded arithmetic Un-rounded arithmetic*

t1 Normalized arithmetic Un-normalized arithmetic

12 Use signed operand Use magnitude of operand (positive valué)

13 Leave source alone Clear source (source is always aregister)

14 Do not complement operand Complement operand

£2 Do normal operation Do replace operation

16 Direction of shift determined
by lower instruction operation
code (normal).

Direction of shift determined by lower in-
struction operation code as modified by
operand sign value (i.e., if k + (Bb) + (vv)
is a negative value, reverse the direction
of the shift being augmented).

+/ Shift being augmented is end
around (left shift) or end-off
and sign extended (right shift).

Shift being augmented is end-off (left or
right) or sign not extended (right shift).

Table 3-3. Augment Operation With ‘v’

Value Operation
v=0 If v =0, this designator has no significance in the operation.
v=146 If v = 1-6, address modification rules apply. The contents of the index register

specified by ‘v’ are added to the address portion (bits 00-14) of the lower in-
struction to form m, y, or k, whichever the case.

and:
a) The upper 3 bits (new
augment instruction.

v=7 If v =7, indirect addressing rules apply. The quantity held in the address por-
tion (bits 00-14) of the lower instruction is treated as a storage address (whether
m’, ‘y’, or ’k’). The lower 18 bits at this storage address are read from storage

v') are placed in the ‘v’ designator position of the

b) Thelower 15 bits are placed in the address portion of the lower instruction.
If new v =7, indirect addressing continues until completed; if new v =
1-6, address modification i s performed,

*

3-24

If augmenting Divide Fractional instruction, execute Truncated Divide.

Upon completing the operations specified by the
upper (Augment) instruction, the address portion of
the lower instruction now contains a modified value
(if ‘v’ specified indirect addressing or address modi-
fication). When the instruction being augmented (the
lower instruction) is executed, its index designator
is interpreted in the normal manner. Indirect address-

Table 3-4.

ing or address modification is performed on the
address modified by the Augment operation.

Instructions which may be augmented are listed in
table 3-4. In addition to the instructions listed, there
are several instructions which may be augmented
using designators +2 and t4. Even though augmenting

Augmentable Instructions

instruction
to be f7 1'6 to
Augmented

+4 +3 +2 +1 +0 * %

ARS

QRS

LRS

ALS

QLS

XX X[XIx|Xx
XX XX | x| >

LLS

LDA

LDQ

STA

STQ

>
X XXX

LAC

LQcC

ENA

INA

ENQ

HNKIX | XX IX|X|X|>x|Xx

ADL X

SBL X

ADD

SUB '

MUI

MUF

Dvi

DVF

FAD X

FSB X

FMU

FDV

PN XX XXX XX |X]| X
PP XXX X|X][X]|x
XX |>X| X
X)X X X

* Refer to Truncated Divide instruction description.

* %

May be meaningfully used to augment most 24-bit instructions.

3-25

these instructions is a redundant operation {another
instruction without augmentation usually can accom-
plish the same function), they may legitimately be
augmented using designators t2 and t4. These
instructions are listed in table 3-5.

Table 3-5. Instructions Which May Be Augmented
Using 12 and +4

Mnemonic
Code Instruction
LAC Load A Complement
LQC Load Q Complement
SST Selective Set
SCL Selective Clear
SCM Selective Complement
SsuU Selective Substitute
LIU Load Index (Upper)
LIL Load Index (Lower)
RAD Replace Add
RSB Replace Subtract
RAC Replace Add One
RSO Replace Subtract One

NOTE
If an instruction is augmented with designators
t2 and 4 (+2 = 1, +4 = 1), the operation
specified by designator 14 takes precedence
over the operation specified by 2, icet2is
ignored.

Fixed Point Arithmetic

instruction
in this

1) The Single Precision Augment
may be used with all instructions
category (see table 3-4 for uses).

2) If the capacity of the A register, 1(247-1), is
exceeded during the execution of the Fixed
Point Arithmetic instructions (ADD and SUB),
an arithmetic overflow fault is produced. When
executing the DVI or DVF instructions, if the
result exceeds the capacity of the A register,
£247-1), a divide fault is produced (refer to
appendix).

3) The Multiply Integer instruction (MUI) uses the
double register configuration QA. The least
significant bit of the product is left in bit
position Apg. The most significant may be in
either A or Q, depending on the magnitude of
the product.

Adds a 48-bit operand obtained from storage location
M to contents of A. A negative zero may be pro-
duced by this instruction if (A) and (M) are initially
negative zero.

Obtains a 48-bit operand from storage location M and
subtracts it from the initial contents of A. A nego-
tive zero will be produced if the initial contents of
A are negative zero and that of storage location M

are positive zero.

peN ‘ « :
e e e £

Forms a 96-bit product from two 48-bit operands.
The multiplier must be loaded into A prior to execu-
tion of the instruction. The execution address

specifies the storage location of the multiplicand.
The product is contained in QA as a 96-bit quantity.
The operands are considered as integers and the
binary point is assumed to be at the lower order
(right-hand) end of the A register.

Divides a 96-bit integer dividend by a 48-bit integer
divisor. The 96-bit dividend must be formed in the
QA register prior to executing the instruction. If a
48-bit dividend is loaded into A, the sign of Q must
be set (the sign of the dividend in A must be ex-
tended throughout Q). The 48-bit divisor is read

from the storage location specified by the execution
address. The quotient is formed in A and the remain-
der is left in Q at the end of the operation. Dividend
and remainder have the same sign.

Forms a 96-bit product from two 48-bit operands.
The operands are treated as fractions with the binary
point immediately to the right of the sign bit. The
multiplier must be loaded into A prior to executing

the instruction. The multiplicand is read from the

storage location specified by M. The 96-bit product
is contained in AQ.

Divides a 96-bit quantity by a 48-bit divisor (divisor
must be > dividend). All operands are treated as
fractions with the binary point immediately to the
right of the sign bit. The 96-bit dividend must be

3-26

loaded into AQ prior to executing this instruction. [f
a 48-bit dividend is loaded into Q, the sign of Q
must be extended throughout A. At the end of this
operation the quotient is left in A and the remainder
in Q. Remainder and dividend have the same sign.
77.1-27 Truncated Divide

If the Divide Fractional instructionis being augmented
by the Single Precision Augment instruction, and the
value of bit 19 is @ “1"", a Truncated Divide is
executed.

With this operation selected, a 96-bit integer is
divided by a 48-bit integer. The Truncated Divide
operation differs from the normal Divide Integer op-
eration in the following respects:

1) The 96-bit dividend is formed in the AQ register

prior o executing the instruction.

2) In the iterative sequence of the divide opera-

tion, six iterations are performed, rather than 48.

3) The quotient (most significant 6 bits) is left
in the lower order bit positions of Q at the end
of the operation.

4) The partial remainder is left in the remaining
portion of AQ (the position of the remainder is
its position after the shift operations for the
six iterations).

Single Precision Floating Poini
Arithmetic

1) Refer to appendix for a discussion of floating
point format and notes on floating point opera-

tions.

N
~=

The Single Precision Augment instruction may
be used with all instructions in this category.

3) Rapid FMU and FDV arithmetic by powers of
two may be accomplished by using the Add to
Exponent instruction.

4

~

Floating Point range faults (overflow/under-
flow) occur if the exponent exceeds i(Q]O-'I).
(Refer to the appendix.) Note that AQ is
cleared if an exponent underflow fault occurs
during any of these instructions.

Forms the sum of two operands packed in floating
point format. A floating point operand is read from
storage location M and added to the floating point
word in A, The result is rounded, normalized, and

retained in A at the end of the opera tion. Q contains
only the residue of the rounding operation at the end

of the sequence.

Forms the difference of two 48-bit operands in floai-
ing point format. The subtrahend is acquired from
storage addressM and is subtracted from the minuend
in A, The result is rounded and normalized if nec-
essary and retained in A. The residue from the
rounding operation is left in Q at the end of the

sequence,

Forms the product of an operand in floating point
format with the previous contents of A also in float-
ing point format. The operand is read from storage
location M. The product is rounded and normalized
if necessary and retained in A. The residue from the
rounding operation i left in Q at the end of the

sequence,

Forms the quotient of two 48-bit operands in floating
point format. The dividend must be loaded into A
prior to executing this instruction. The divisor is
read from the storage location specified by M. The
quotient is rounded and normalized if necessary and
retained in A at the end of the operation. The residue
from the rounding operation is left in Q at the end
of the operation.

23 1514 J

OPERATION CODE OPERAND

t:773 ‘;

This instruction adds a signed value field 'y’ to the
signed exponent in the A register. The operation is
performed only if A Z0. If A =0, this instruction
is a pass (or do nothing) instruction. If A # 0 and
is negative, (A) will be complemented before the add
operation and recomplemented after the operation.
Overflow and underflow conditions apply.

3-27

Double Precision Floating
Point Arithmetic

1)

2)

)
=

=

Refer to appendix for double precision floating
point format and notes on floating point opera-
tions.

This category of instructions, selected byusing
the Double Precision Augment instruction,
enables the use of 96-bit operands in executing
the floating point operations (Add, Subtract,
Multiply, and Divide). Refer to Double Pre-

cision Augment instruction.

The first 96-bit operand is in AQ by a previous
instruction. The second 96-bit operand is read
from consecutive storage locations M and M +1.

Floating point range faults (overflow/underflow)
occur if the exponent exceeds +(210-1). (Refer
to the appendix.) Note that AQ is cleared if
an exponent underflow fault occurs during any
of the floating peint instructions.

23 1514 121110 876543210

X 3
OPERATION CODE | "Pe¥|g| o 1514 |° r2] 119)
v

i '\ —
f=77.2 BANK
BANK ADDRESS AUGMENT OPERATION
USAGE DESIGNATORS
1JNUSED

The 24-bit Double Precision Augment command is
used in the same manner as the Single Precision
Augment command. Instructions which may be aug-
mented by this command are listed in table 3-6.
Operations in this instruction category are performed
on 96-bit operands. Designators which may be used
when augmenting a given instruction are checked
opposite that instruction. Augment operation designa-
tors are listed in table 3-7.

Table 3-6. Augmentable Instructions

Instrs ction
Ttobe
Augmented t2 14 +3 +2 t] +0
LDA X X
STA X X X
FAD X X X X
FSB X X X X
FMU X X X X
FDV X X X X
Table 3-7. Augment Operation Designators
Designator Value
Ifa 0" [fa“1”
+0 Rounded arithmetic Un-rounded arithmetic
t Normalized arithmetic Un-normalized arithmetic
+2 Use signed operand Use magnitude of operand
+3 Leave source alone Clear source
14 Do not complement operand Complement operand
£9 Do normal operation Do replace operation
d Bank address not used Bank address is used; the value of the bank
address designator ‘a’ is always placed in
the Operand Bank register.

3-28

¢ Eeiiot
o I S

Loads the double-length register AQ with a 96-bit
operand contained in storage locations M and M + 1.
The contents of storage location M are loaded into
A: the contents of M + 1 are loaded into Q.

Stores the contents of the double-length register AQ
in storage locations M and M + 1. The contents of A
are stored at address M; the contents of Q are stored

at M + 1.

Mol g o

two 96-bit operands packed in
floating point format. A floating noint operand is
read from storage locations M anu M + 1 and added
to the floating point word in AQ. The result is
rounded, normalized, (if specified by appropriate

i

s g S i
Forms the sum of

augment designators), and retained in AQ at the end
of the operation.

Forms the difference of two 96-bit opérands in float-
ing point format. The subtrahend is acquired from

storage locations M and M + 1 and is subtracted from
the minuendin AQ. The result is rounded and normal-
ized if necessary (and if specified) and retained in
AQ at the end of the operation.

Forms the product of a 96-bit o;erand in floating
point format with the previous contents of AQ also
in floating point format. The 96-bit operand is read

from storage locations M and M + 1. The product is
rounded and normalized if necessary (and if specified)
and retained in AQ at the end of the operation.

Forms the quotient of two 96-bit operd;ds in floating
point format, The dividend must be loaded into AQ
prior to executing this instruction. The divisor is
read from the storage locations M and M + 1. The
quotient is rounded and normalized if necessary (and
if specified) and retained in AQ at the end of the
operation.

Address Arithmetic

1) In the Address Arithmetic instructions, only the
lower 15 bits of the operand or data words are
used.

Adds Y to A. The 15-bit operand Y, with its highest
order bit (sign bit) extended, is added to A.

iz
Increases (BP) by the operand ‘y’. 1f the ‘b’ designa-

tor is zero, this instruction becomes a pass (do
nothing) instruction.

Compares (Bb) with ‘y’. |f the two quantities are
equal, Bb is cleared and a full exit is performed. [f
the quantities are unequal, (Bb) is increased one
count and a half exit is performed. (Counting in this
instruction is performed in two’s complement notation,
regardless of whether or not the computer is in two's
complement mode.) If b =0, a full exit is taken.
ISK is usually restricted to the upper instruction.
If used as a lower instruction, it will half exit upon
itself until the full exit condition is satisfied.

Logical

1) The LDL, ADL, SBL and STL instructions
achieve their result by forming a logical pro-
duct. A logica! product is a bit by bit multi
cation of two binary numbers:

1x0=0

Ix1=1

0x0=0
0x1=0

2) A logical product is used, in many cases, to
select specific portions of an operand for entry
into another operation. For example, if only a
specific portion of an operand in storage is to
be added to (A), the operand is subjected to a
mask composed of a predetermined pattern of
““0's’’ and ‘‘1's’’. Forming the logical product

f the operand and the mask causes the operand
to retain its original contents only in those
stages which have corresponding ‘‘1's’’ in the
mask. When only the selected bits remain, the
instruction proceeds to conclusion.

3) Capabilities of the Inter-Register instruction in
logical operations should be noted.

3-29

Sets the individual bits of A to ‘1’" where there are
corresponding ‘‘1's’’ in the word at storage location
M; ‘0"’ bits in the storage word do not modify the
corresponding bits in A. In a bit by bit comparison
of (A) and (M) there are four possible combinations
of bits.

DAXy=1 2)(A)y=1 3 (Ay=0 4)(A)j=0
(M) =1 (M) =0 M) =1 (M) =0
(A =1 Ag=1 (Ay=1 (A) = 0
M)y =1 (M =0 (M) =1 M)y =0

Individual bits of A are complemented where there

are corresponding ‘‘1's’’ in the word at storage
location M. If the corresponding bits at M are ““0’s”’,

the associated bits of A remain unchanged.

DA)y=1 2)(Ay=1 3)(A);=0 4)(A);=0
(M) =1 (M); =0 M) =1 (M} =0
(A =0 (A} =1 (A =1 (Ag=0
(M) =1 (M) =0 (M) =1 (M)} =0

Clears individual bits of A where there are corres-
ponding ‘‘1’s’’ in the word at storage location M. If
the corresponding bits at M are ‘‘0's’’ the associated
bits of A remain unchanged.

In a bit by bit comparison of (A) and (M) there are
four possible combinations of bits.

DA)y=1 2)(A)=1 3)(A);=0 4)(A);=0
(M); =1 (M); =0 M) =1 M); =0
A¥=0 (Ag=1 (A} =0 (A) =0
Mr=1 (My=0 (Mg=1 (My=0

Substitutes selected portions ofan operand at storage
address M into the A register where there are corres-
ponding ‘‘1’s’’ in the Q regi ster (mask). The portions
of A not masked by ““1’s”’ in Q are left unmodified.

In a bit by bit comparison of (A) and (M), there are
four possible combinations of bits. The mask in Q
may have one of two values. The result in A thus
may have the final values for the various combina-
tions as indicated below.

N (Ay=1 2)(Ax=1 3)(Ay=0 4) (A)=0
(M) =1 (M) =0 (M); =1 (M); =
@y =1 Q) = Q) =1 Q) =1
(A¥ =1 (A¥=0 (A¥=1 (A)=0

Ay =1 2) (A); =1 3) (Ay; =0 4) (A) =0
(M); =1 (M); =0 M); =1 (M); =0
Q; =0 Q) =0 (Q); =0 (Q; =0
(A =1 (A =1 (A)f=0 (A =0

- B -

Loads A with the logical product of Q and the desig-

nated storage location, M. The operand can be in

either Q or M.

Adds to A the logical product of Q and the quantity
in location M; the mask may be in Q or storage. Once
the logical product is formed, addition follows normal
rules (see appendix).

ook SBE
2 .
L s

e —

Subtracts from A the logical product of the Q register

and the quantity in storage location M. The mask
may be in Q or storage. When the logical product

is formed, the subtraction proceeds in the normal
manner (see appendix).

Replaces the bits in location M with the logical pro-

duct of Q and A. Neither (A) nor (Q) is modified.
The mask may be located in A or Q.

il i

Shifting

1) The largest practical shift count for a 48-bit
register is 4810; for a 96-bit register, 960 .
If a shift greater than the practical shift count
is attempted, the Shift Favult indicator will be
set and the shift will not be performed.

2) The Single Precision Augment instruction may
be used with these instructions to provide
greater flexibility.

3) When augmenting a shift instruction, double
additive indexini is used to modify the shift
count [K =k +(BP) + (VV)1.

4) Shifts are constant speed; e.g., performing a
shift of 4610 places takes no longer than a shift
of 1 place.

3-30

i i L e e i e

Shifts contents of A to the right K places. The
sign is extended and the lower bits are discarded.
The largest practical shift count is 4710 since the
register is now an extension of the sign bit.

i i
Rt

o i e

Shifts contents of Q to the right K places.
is extended and the lower bits are discarded. The
largest practical shift count is 4710 since the
registeris now an extension of the sign bit.

The sign

L

Shifts contents of
96-bit register. The A register is considered as the
leftmost 48 bits and the Q register as the rightmost
48 bits. The sign of A is extended. The lower order
bits of A replace the higher order bits of Q and the
lower order bits of Q are discarded. The largest

il

practical shift count is 9510 since AQ is now an
extension of the sign of A.

Shifts contents of Ato the leftK places, left circular.
The higher order bits of A replace the lower order
bits. The largest practical shift count, 481, returns
the register to its original state.

Shifts contents of Qto the leftK places, left circular.
The higher order bits of Q replace the [ower order
bits. The largest practical shift count, 481, returns
the register to its original state.

Shifts contents of AQ to the left K places, left
circular, as one 96-bit register. The higher order
bits of A replace the lower order bits of Q and the
higher order bits of Q replace the lower order bits
of A. The largest practical shift count, 961(, returns
AQ to its original st ate.

Scale

1) Address modification does not apply; the index
register is used fo preserve the scale factor.

2) If b = 0, scaling is execwted but the scale
factor is lost,

b =7

least one storage reference is made.

indirect addressing is used and at

4) If (A)j is already scaled or equal to positive
or negative zero,k»Bb and scaling is not exe-
cuted.

5) If the execution address (k) is initially equal

to 0, Bb is cleared.

~.

6) The Shift Fault indicator is not affected by
these instructions.

Shifts A left circularly until the most significant
digit is to the right of the sign bit or until k =0,
Shift count ‘k’ is reduced by one for each shift and
terminates when k = 0 or the most significant digit
is to the right of the sign bit. Upon termination, the
count (scale factor) is entered in the designated
index register.

Shifts AQ left circularly until the most significant
digit is to the right of the sign bit. Shift count 'k’ is
reduced by one for each shift. Operation terminates
when k = 0 or the most significant digit is to the
right of the sign bit. Upon termination, the count
(scale factor) is entered in the designated index
register.

Replace

1) If the capacity of the A register, £(247.1), is
exceeded during the execution of the Replace
instructions,
produced (refer to appendix).

an arithmetic overflow fault is

2) The Single Precision Augment and the Double

Precision Augment instructions (with the

appropriate designator set) also effect a replace
operation when used to augment a FAD or FSB
operation.

Obtains a 48-bit operand from storage location M and
adds it to the initial contents of A. The sum is left
in A and i s also transmitted to location M.

ts A from M and places the result in both the

Subtra

A regis

ter and location

Replaces the operand in
original value plus one. The result is also placed in

A.

storage location M with its

Replaces the operand in storage location M with its

original contents minus one. The difference is also
left in A; the original contents of A and M are des-
troyed.

Storage

iy

Test

Senses the sign bit of the operand in storage location
M. If the sign is negative, a full exit is taken. If the
sign is positive, a half exit is taken.. The contents
of the operational registers are left unmodified. SSK
is usually restricted to an upper instruction. [f used
as alower instruction and the sign of (M)is negative,
a full exit will be executed. If the sign is positive,

it will half exit upon itself and never execute a full
exit.

Senses the sign bit of the quantity in storage location
M. If the sign bit is negative, a full exit is taken.
If the quantity is positive, a half exit is taken. In
either case the quantity is shifted left circular one
bit before the exit. This instruction is usually re-
stricted to the upper position. If used as a lower
instruction and the sign of (M) is positive, the in-
struction will half exit upon itself until a negative
sign bit is-found. The contents of the operational
registers are left unmodified.

Storage Search

1) If b = 0 in the following instructions, only the
word at storage location ‘m’ will be searched.

2) If b =7, indirect addressing is used to obtain
the execution address and ‘b’ designator.

3) If (Bb) =0, no searchis made, and a half exit

istaken.

4) The operands searched by these instructions
may be in either fixed or floating point format.

Searches a list of operands to find one that is equal
to A. The number of items to be searchedis specified

by Bb. These items are in sequential addresses
beginning at the location specified by ‘m’. The
search begins with the last address, m + BP-1. Bbis
reduced one count for each word that is searched
until an operand is found that equals A or until Bb
equals zero. |f the search is terminated by finding
an operand that equals A, a full exit is made. The
address of the operand satisfying this condition is
given by the sum of ‘m’ and the final contents of
Bb. If no operand is found that equals A, a half
is taken.

exit Positive zero and minus zero are

recogni zed as unequal quantities. When EQS is used
as a lower instruction, a full exit is always taken
when (Bb) =0, or when the condition is met.

Searches a list of operands to find one that is great-
er than A, The number of items to be searched is
specified by Bb. These items are located in se-
quential addresses beginning at the location specified
by ‘m’. The search begins with the last address,
m + Bb-1. The contents of the index register are re-
duced by one for each operand examined. The search
continues until an operand is reached that is greater
than Aor until BP is reduced to zero. If the search is
terminated by finding an operand greater than the
value in A, a full exit is performed. The address of
the operand satisfying the condition is given by the
sum of ‘m’ and the final contents of Bb. If no op-
erand in the list is greater than the value in A, a
half exit is performed. If THS is used as a lower

instruction, the next instruction will be executed
In the comparison made
here, positive zero is considered as greater than
minus zero.

when search terminates.

&?ﬁearches a list of operands to find one such that the
logical product of (Q) and (M) is equal to (A). This

instruction, except for the mask in Q, operates in the
same manner as an equality search.

Searches a list of operands to find one such that the
logical product of (Q) and (M) is greater than (A).
Except for the mask in Q, this instruction operates
in the same manner as the threshold search.

a7 42 44030 38

2423 2201817 1514 o

OPERATION ' : oP. fsus
sS ADDR
CODE JUMP ADDRE! oot | on |°] ° DDRESS
f:63 n f:.4
UNUSED s BANK m

INDIRECT
BANK ADDRESS

USAGE

3-32

Four search operations are conditioned by the

designator ‘s’.

shim | jmmise
Iy LATRT I IR~ 4

s =3 Search Magnitude Within Limits (SMWL)

~_~~

CEWI
o

"

~—

i these operations searches a list of operands
to find one that satisfies the specific criterion.
These items may be in sequential or incremented
(other than 1) addresses. The first item is in the

location specified by starting address ‘am’ + B2.

In the Search instruction (63.4), depending on the
value of bit 39, storage is referenced at address
“m+ (B2 Jto obtain the operand or the address of the
operand. This storage reference is to bank ‘‘a’’ if
“d"” =1; ("o’ is placed in the operand Bank reg-
ister) if ““d’’ =0, the reference is within the bank
currently selected as the operand bank.

If bit 39 = 0, the contents of address [m+ (B2)] is
the operand. If bit 39 = 1, the lower 18 bits are read
from this address. These lower 18 bits designate the
storage address (bank and address) from which the
operand will be obtained. Note that the upper 3 bits
of this 18 - bit address are not placed in the Operand
Bank register. (B1) is reduced one count for each
word that is searched until an orerand is found that
satisfies the criterion or until B' equals zero. If the
search is terminated by finding an operand which
meets the criterion, an exit is performed to the next
instruction. The address of the operand that meets
the criterion is m + (B2) - (B3). If no operand in the
list is found that meets the criterion, a jump is ex-
ecuted to the location specified by the jump address
‘n’ (jump is effected within the same storage bank).

Three index registers used in the search operations
are assigned as follows:

B1- Holds the word count; i.e., the number of
words to be searched.

BZ - Holds the new operand address modifier (the
increment has been added to the old address
modifier).

B3 - Holds the increment quantity; i.e., the quantity
which will be added to the operand address
modifier to specify a new operand address.

index register values are set by program prior to
executing the Search instruction

The search operations are:

s =0 Equality Search (M) = (A)

Searches a list of operands to find one such that (M)
is equal to (A).

s = 1 Masked Equality Search L(Q)(M) = (A)

Searches a list of operands to find one such that the
logical product of (M) and (Q) is equal to (A).
s = 2 Search Within Limits (A) = (M) > (Q

Searches a list of operands to find one whose value

lies between (A) and (Q).

s = 3 Search Magnitude Within Limits
w =|m|> @

Searches a list of operands to find one whose ab-
solute magnitudelies between (A) and (Q). (Magnitude
refers to the magnitude of signed operands.)

Figure 3-3 outlines the sequence of events during a
typical search operation.

INSTRUCTION
IN
U

1s(g'y=07

L

MODIFY OPERAND
ADDRESS !
(B2) +m=M™

REDUCE WORD
COUNT |

(8'y-1—>8!

]

1 j
IS BIT 39:=""72

(INDIRECT
ADDRESSING)

READ LOWER 18 BITS
FROM M AND
OBTAIN OPERAND
FROM ADDRESS
SPECIFIED BY
THOSE 18 BITS.

READ OPERAND
FROM STORAGE

AT MODIFIED
OPERAND ADDRESS,
M.

1

¥

(82)+(83)+(82)

COMPARE
DOES OPERAND YES EXECUTE
MEET NEXT
CRITERION ? INSTRUCTION

NO

Figure 3-3. Sequencing for 63.4
Search Operations

3-33

a7 az41 3938 3635

UNUSED

This instruction may be used to locate elements of a
list when the elements are scattered throughout a
storage bank or throughout several storage banks.
An element of the list contains two parts: (1) dataq,
and (2) the location (storage address) of the next
element of the list. An element may occupy one
storage word or several. [f the element occupies
several storage words, the words are usually in
consecutive storage locations.

The format of the word holding an element (or the
format of the first word if the element occupies
several words) is as follows:

47 42 41 39 38 24 23 1817 1514 0

(USED IF $=0)
I15-BIT UPPER ADDRESS

(USED IF S=1)
15-BIT LOWER ADDRESS

— ——
OPERAND OPERAND
BANK RANK

ADDRESS OF NEXT ELEMENT

UNUSED] UNUSED a

TAKEN FROM UPPER OR LOWER

DEPENDING ON VALUE OF "s"
Note that the format permits several options for
positioning data within the word:

1) If the lower 18 bits are used to specify the
address of the next element (s = 1 in the in-
struction word), the entire upper 30 bits may be
used to hold data.

2) If the upper address portion is used to specify
the address of the next element (s = 0 in the
instruction word), the lower 24 bits and the
uppermost 6-bit portion may be used to hold
data.

Interpreting data is determined by the list containing
it, its location in a particular list, or by an identify-
ing tag in the data portion of the element.

Executing the Locate List Element instruction locates
the ‘nth’ element of the list.

Before executing the Locate List Element instruction,
two operations must have been accomplished. These
are:

1) The first element of the list is located at the
storage address designated by the contents of
VV. (The first element must be in the storage
bank currently in use as the operand bank.)
Therefore, this index register must be loaded
with the appropriate address before executing
this instruction.

2) BP designates another index register (distinct
from VY) which holds the count field. Bb must
be preset to contain one less than the count de-
sired. That is, if one wishes to locate the ‘‘nth”’
element, he must load BP with the valve (n-1).

Note that neither ‘b’ nor ‘v’ can be set to 7 in this
instruction.

Operation then proceeds as follows:

1) Examine (BP). If (Bb) = 0, the ‘nth’ element
has been located and the operation is complete.

If (Bb) # 0, reduce (Bb) by one.

2) Read element from storage at address specified

by (VV).

3) If s = 0 (refer to instruction format), replace
the old (VV) with the upper address portion of
the new storage word (refer to the format of the
word holding an element).

If s =1, replace the old (VV) with the lower address
portion of the new storage word.

NOTE

Once the value of ‘s’ is set in the instruction
word, it cannot be changed during the course
of the instruction. For example, if ‘s’ is set
to '‘1”’, the lower address portion of the
storage word will be used to locate the next
element each time until the ‘nth’ element is
lo cated.

4) Examine (VV). If the new(VV) = 0, the operation
is complete. (The programmer must previously
have loaded all zeros in the designated address
portion of the last storage word of the list.)
Address 00000 may be used as the first list
element location, but operation will halt (since
the check on VY occurs after the first storage
reference) if address 00000 is used to locate a
subsequent list element.

3-34

5) Return to step 1.

At the end of operations:

If (VY) £0, (VY) now designates the address
next element. Also, if the new (VV) # 0, the Operand
Bank register is switched to ‘a’ (where ‘a’ is the
bank designator adjacent to the designated address
portion of the storage word).

1) If the ‘nth’ element has been located, Bb
a count of zero, VY hoids the address of the

of the

2) i

holds

|
|
¥
ENI
LOAD VY WITH
ADDRESS OF
FIRST ELEMENT.

I
¥
ENI

LOAD BB WITH
COUNT, “n". THIS
COUNT SHOULD BE
THE "nth" ELEMENT
MINUS ONE.

T P

v
EXECUTE
LOCATE LIST
ELEMENT
INSTRUCTION

l

INSTRUCTION IN

\'2

‘nth’ element, and the Operand Bank register
is set to the bank containing that element.

the ‘nth’ element has not been located and
the last element has been reached, B holds a
non-zero count (indicating an erroneous count
was initially placed in Bb), V¥ holds 00000, and
the Operand Bank register holds the bank ad-
dress of the last element.

The flow diagram in figure 3-4 details the operation
of this instruction.

PREPARATORY INSTRUCTIONS
PRIOR TO EXECUTING LOCATE
LIST ELEMENT INSTRUCTION.

MACHINE OPERATION (N
EXECUTING LOCATE LIST
ELEMENT INSTRUCTION.

THE "nth" ELEMENT
HAS BEEN LOCATED
EXECUTE NEXT
INSTRUCTION .

U REGISTER
J
YES
Is(b)=0?
NO
1
'L READ ELEMENT
REDUCE AT ADDRESS
(8b) BY I SPECIFIED
BY (V).

\F 520" REPLACE (VY]
WITH UPPER ADDRESS
PORTION OF LIST ELEMENT.
IF $="1": REPLACE (V")
WITH LOWER ADDRESS
PORTION OF LIST ELEMENT

NO

YES
INTERRUPT ?

TO INTERRUPT
SEQUENCE

EXAMINE
NEW (VV), IS
NEW (VW)=0?

LAST LIST ELEMENT
HAS BEEN REACHED.
OPERATION IS

COMPLETE. EXECUTE
NEXT INSTRUCTION.

NO

vY NOW HOLDS ADDRESS
OF NEXT LIST ELEMENT

PLACE "a" IN OPERAND
BANK REGISTER. USING
QUANTITY HELD IN 3-BIT
"a" DESIGNATOR ADJACENT
TO SPECIFIED ADDRESS

PORTION.

Figure 3-4. Locate List Element Operations

3-35

Jumps and Stops

Normal Jump

A Jump instruction causes a current program se-
quence to terminate and initiates a new sequence at
a different location in storage. The Program Address
register, P, provides continuity between program
steps and always contains the storage location of the
current program step.

When a jump instruction occurs, P is cleared and a
new address is entered. In all jump instructions, the
execution address ‘m’ specifies thebeginning address
of the new program sequence. The word at address
‘m' is read from storage, placed in U and the upper
instruction (first instruction of the new sequence) is

executed.
Some of the jump instructions are conditional upon a

register containing a specific value or upon the
position of a Jump or Stop switch on the console.

MAIN PROGRAM

UPPER INST. LOWER

w
W\————’\/\’/J

INST.

If the criterion is satisfied, the jump is made to
location ‘m’. If it is not satisfied, the program pro-
ceeds in regular sequence to the next instruction.

A jump instruction may appear in either position in
a program step. If the jump instruction appears in
the first (upper) part of the program step and the jump
is taken, the second (lower) part of the program step
is never executed. If the instruction appears in the
lower part, the upper part is executed in the normal
manner.

Return Jump

A return jump begins a new program sequence at the
lower instruction portion of the program step to which
the jump is made. At the same time, the execution
address of the upper instruction of that program step
is replaced with the address of the next program step
in the main program. This instruction is usually
an Unconditional Jump instruction and allowsa
return to the main program after completing the sub-
program sequence (figure 3-5).

RETURN
00010 JUMP TGO 0010
INSERT SUBPROGRAM A
ADDRESS OF
NEXT AL UPPER INST. LOWER INST.
PROGRAM
00011 STEP(000I1)
oo10! 75 ol Ist INSTRUCTION

RETURN TO NEXT
INSTRUCTION T
IN MAIN

MMW’\/J PROGRAM

SUBPROGRAM
EXIT

SUBPROGRAM A

I

- — — —

PROGRAM STEPS
RETURN TO T T

75 0O 00io0l

Figure 3-5. Return Jump

3-36

Jumps to ‘m’ if the conditions of the A register
specified by the jump designator ‘i’ exist. If not,
the next instruction is executed.

=0 Jump if (A)

1 Jump if (A)

2 Jump if (A) =
3 Jump if (A)

Lidl FAY . =2 I T S Al tes
when \A) IS negartive zero mne Inrerpré?urlon 1s:

i =0 The jump is executed because, in this case,

negative zerois recognized as positive zero.

The jump is not executed when (A)=+00r ~0.

The jump is not executed because the sign

bit is a

i =3 The jump is executed because the sign bit
isa 1",

1]
N et

‘(]’8.

Executes a return jump to storage location ‘m’ if the
condition of the A register specified by ‘i’ exists.
If not, the next instruction is executed.

i =4 Return jump if (A)=0
i =5 Return jump if (A} Z0
i =6 Return jump if (A) =+
i =7 Return jump if (A) = -
Note: If (A) = negative zero, the AJP (Normal)

interpretation appli es.

Jumps to ‘m’ if the condition of the Q register spec-
ified by the jump designator ‘i’ exists. If not, the
next instruction is executed.

i=0 Jumpif (Q)=0
1 Jump if (Q) #0
i =2 Jump if (Q) =+
3 Jumpif (Q) =-

When (Q) = negative zero the AJP interpretation
applies.

Executes a return jump to storage location ‘m’ if the
condition of the Q register specified by ‘|’ exists.
If not, the next instruction is executed.

i =4 Return jumpif(Q)=0

5 Return jump if (Q) #£0
6 Return jumpif (Q) = +
=7 Retumn jump if (Q) = -

Note:

if (Q) = negative zero, the AJP interpretation
applies.

Examines (Bb). If this quantity is not zero, the
quantity is reduced one count and a jump is executed
to program step ‘m’. The index iump can be used in
the upper or lower instruction without reservation; it
executes a normal jump upon satisfaction of the jump
condition. If b =0, a normal exit is taken. (Counting
in this instruction is performed in two’s complement
notation, regardless of whether or not the computer is
in two’s complement mode.)

Jumps to 'm’ if the condition of the Jump switches

specified by ‘i’ exists. If not, the next instruction

is executed.

SLJ j =0 Jump unconditionally (does not
reference Jump switch setting).

SJ1 Jump if Jump switch 1 is set

i=1
$J2 j =2 Jump if Jump switch 2 is set
SJ3 j=3

Jump if Jump switch 3is set

Executes a return jump to storage location ‘m’ on
condition ‘i’ where condition ‘i’ represents the set-
ting of the Jump switches. if the condition is not

satisfied, the next instruction is executed.

RTJ | =4 Return jump unconditionally (does not
reference Jump switches).
RJ1 | =5 Return jump if Jump switch 1is set

i
RJ2 j =6 Return jump if Jump switch 2 is set
RJ3 j =7 Return jump if Jump switch 3 is set

Note:

The Jump switch is illuminated when it is in
the Set position.

i R

Stops at present step in the sequence if the condition

of the Stop switch specified by ‘i’ exists. If the stop
condition exists, the stop is executed, and the jump
is executed unconditionally when the Go switch is
pressed. If the stop condition is not satisfied, the
jump is executed unconditionally.

3-37

SLS | =0 Stop unconditionally (does not reference
Stop switch setting).

SS1 j =1 Stop if Stop switch 1is set

$S2 | =2 Stop if Stop switch 2 is set
SS3

=3

s

Stop if Stop switch 3 is set

Stops on condition ‘j’ and executes a return jump when
the Go switch is pressed. If the stop condition is not
satisfied, the stop is not executed and the return
jump is executed unconditionally.

SRJ j =4 Stop unconditionally; return jump on Go
(does not reference Stop switches).

SR1 j =5 Stop if Stop switch1 is set; return jump
on Go.

SR2 | =6 Stop if Stop switch2 is set; return jump
on Go.

SR3 | =7 Stop if Stop switch 3 is set; return jump
on Go.

Note: The Stop switch is illuminated when it is in

the Set position.

e

1514 o

R E—
f=77.6

This instruction scans the D (Flag) register from
left to right. If a non-zero bit is detected, a jumpis
executed to address P +i + 1 (where P is the cur-
rent address and ‘i’ is the location of the first non-
zero bit in the D register).* If the D register is
zero, the next instruction is executed. This instruc-
tion is restricted to use as an upper instruction.

2423 220 W17 1514 o

a7 4241 3938 3433 029

This instruction examines a single bit of 48 (spec-
ified by ‘g’) in a designated register ('p' specifies
the register - see Inter-Register instruction). Note:
When the A Upper Address or Q Upper Address reg-
ister is specified by ‘p’, the lowest order bit in that
register is numbered 00. A 3-bit suboperation desig-
nator ‘s’ specifies the operation to be performed on
this bit.

The lower order two bits of ‘s’ specify the operation
to be performed after the sense operation:

=0 Leave bit alone

1 Set bit to “1"

2 Clear bit

3 Complement (toggle) the bit

S
S
S
S

[f, in the execution of this instruction, an attempt is
made to alter the contents of registers designated by
codes 20-31 (except 25), the following occurs:

1) That operation which would alter the contents
of register 20-31 (except 25) is not performed,
and

2) The instruction continues to completion.

This operation does not constitute a fault or inter-
ruptible condition.

The upper order bit of ‘s’ conditions a jump operation.
Jump if bit being exam-

ned in the specified
register is a ‘0",

If upper order bit of s =1

If upper order bit of s =0 Jump if bit being exam-
ined in the specified
register is a ‘1",

If the condition is met, the jump is to the address

OPERATION | INDEX| GRIGIN o soovess| 07 (U8 JUMP ADDRESS specified by M. If the jump condition is not met,
CODE b P
the next instruction is executed. lf, in the execution
\ N NN N . . . [L H H
e UNUSED g fe6 s UNUSED m of this instruction, ‘p’ specifies 00, no register is
specified, and zeros are used in the operation.
* 4’ the location of the particular bit within the register. Though the register is numbered from right to left, scanning

is from left to right. The first bit scanned is bit 47.
[P+ 47+ 1 (decimal notation).

If a''1"’ exists in bit 47, i = 47, and a jump is effected to

3-38

s
.

g

a7 4241 3938 3635

2423 220191817 1514 o

el -

[
f:63 = ‘EKMK "
unused | appRess
BANK
USAGE

ADDRESS

Jumps to M IM = m + (BP) + (VY)] and executes the
instruction(s) at M. (An index designator of v =7 in
this instruction is illegal; if used, the result of
address modification is 2 [m + (BP}l.)] The Operand
Bank register is set to ‘a’ if ‘d’ is a “1"". After
executing M, the main sequence continues unless
the instruction executed was a jump. In this case,
a new sequence is initiated at the jump address in
the same program bank as EXEC. This instruction
is effectively an indirect instruction, or a subroutine
of a single instruction. Note that the instruction
bank address is not changed by the Execute instruc-
tion and the contents of P remain at the address of
the EXEC instruction.

During execution of the instruction pair specified
by the Execute instruction, interrupt conditions are
not recognized. Once execution of the upper instruc-
tion of the pair has begun, an interrupt will not be
recognized until the next upper instruction is per-
formed. Thus, if that upper instruction (specified
by Execute)produces an interruptible fault condition,
the lower instruction will be executed before inter-
rupt can occur.

ar azal 138

2423 220% 1514 [

INDE X SuB- ’z

QPERAND / REGISTER | JUMP ADDRESS
7
%

iR B oP
| % |
[E——— Ly N N ——
i
®

162 y s |
UNUSED

}ZPERL“QN
i
L

m

Jumps to M [M =m + (Bb)] if, in the operation spec-
ified by ‘s’, the condition is met. If the condition
is not met, it executes the next instruction. Ifb =7
in this instruction, the jump address is obtained
indirectly.

If, in the execution of this instruction, an operation
would attempt to alter the contents of registers
designated by codes 20-31 (except 25), the following
occurs:

*

1) The operation (s = 6 or 7) which could alter
registers 20-31 (except 25) is not performed,
and

2) The instruction continues to completion.

This operation does not constitute a fault or inter-
ruptible condition.

Octal values for ‘s’ and the specific operations are:

s Operation

0 (p) =y?

1 (p) > y?

2 P < y?

3 () Ay

4GSy

5 (p) > y?

‘; E’:;; :Z} if (p) <y, then () —y - (p)

In executing the above operations, the following
arithmetic properties hold:

a) If ‘p’ designates a 48-bit register, the sign
bit of 'y’ is extended, and signed quantities
are compared in the operation.

b) If ‘p’ designates a 15-bit register, the op-
erands are compared as 48-bit quantities (15
bit quantities with ‘‘0’s’’ extended in the
upper bit positions). If ‘p’ designates a
register < 15 bits (e.g., the SCR), *0's”
are extended.

Operand registers are indicated below according to
their octal values of ‘p’. (If, in the execution of
this instruction, ‘p’ specifies 00, no operand is
specified and zeros are used in the operation.)

01-B! 11- Q Lower Address
02 - B2 12 - Q Upper Address
03-B3 13- A Full
04 - B4 14 - Q Full
05- B> 15- D Full
06 - BS 16 - Bounds Register

07 - A Lower Address

17 - Interrupt Mask
10 - A Upper Address

Regi ster

These are not registers, but forced operands which may be referenced in the operation.

3-39

20 - Interrupt Register 26 - Shift Count Register

21 - All ““0’s”’ 27 - Miscellaneous Mode
* 422- 41 Selections

23 - All “1's™ 30 - P Register

24 - Instruction Bank 31 - Time Register
Register

25 - Operand Bank
Register

32 - Time Limit Register

g gnator ‘d’ must be set to
to effect an inter-bank jump. If ‘d' = 0, all
jumps are within the storage bank currently in
use.

ll]"

2) The bank address designator ‘a’ must be set to
the bank to which the jump is desired.

3) The Jump and Set Index instruction effects
changes in bank addresses. These bank ad-
dresses remain in effect until explicitly changed.

4) Interpreting the bank designators (both ‘a’ and
‘i') depends on the value of ‘d’.

The Bank Jumps are similar in operation to the
Normal and Return Jumps. These instructions pro-
vide the additional capability of inter-bank jumping.
Provision is also made for returning to the initial

bank.

ar 4241 3938 2726 2423 220191817 1514 o

Eas 0 EEr

t:63 —7 $0 s . m
BANK BANK
ADDRESS ADDRESS

JUMP ADDRESS

Three jump instrucfions, using the format above, are
designated by the suboperation designator ‘s’. Jumps
may be within the same storage bank or to another
storage bank. In the latter case, provision is made
for returning to the initial storage bank (BRTJ or
BJSX) upon completion of the instruction(s) in the
bank to which the jump was effected. Interpretations
of ‘s’ and the operations are outlined below.

s =0 Unconditional Jump .(UBJP)

Jumps unconditionally to the modified jump address
MIM=m +(BP)l. The jump is to the storage bank
designated by ‘a’. The operand bank is set to “i’.
If b =0, the jump is to ‘m’. If b =7, the jump ad-

dress is obtained by indirect addressing.
s = 1 Unconditional Return Jump (BRTJ)

Stores an Unconditional Bank Jump instruction (63.0)
(s=0) in address designated by ‘aM’ [M =m + (Bb)].

Designator values in this stored (UBJP) instruction
are selected to enable return to the initial storage
bank. Values for these designators are:

Enables return to the
next main program step.

Nm=P+1

Set tobank in which main
program is located to en-
able return to appropriate
bank in which P + 1is
located.

2) a = instruction bank

Set to bank in which
main program operands
are located (may be other
than main program instruc-
tion bank).

3) i =operand bank

4)b=0 Index designator set to
zero so that P + 1 (in
‘m’ portion) is not modi-

fied when UBJP instruc-

tion is executed.

After storing this instruction, jumps to M + 1 (ad-
dress immediately following store address); sets
operand bank to ‘i’.

s =2 Jump and Set Index (BJSX)

The Jump and Set Index instruction provides the
programmer with a convenient method of bridging
and processing constants which may be used at
various places in a program loop. In executing this
instruction, bank addresses are changed. - The opera-
tion of this instruction provides for returning to the
initial bank. Operations for this instruction are:

1) Store contents of the Program Address register
(P) in Bb.

2) Store Unconditional Bank Jump instruction (63.0)
(s = 0) in storage address designated by ‘am’.
Values for designators in the UBJP instruction
(that is stored)are automatically set as follows:

a) m = 00000.

b) a = value of the Instruction Bank register at
the time the (63.0) (s = 2) instruction was
executed.

c) i = the value of the current contents of the
Operand Bank register.

3-40

d) b the index register in which (P) was
stored.

¢) Jumps to ‘am’ + 1 and sets the operand
bank to the previous instruction bank.

3) Jump to address ‘am’ + 1. The Operand Bank Step 2: Subprogram instructions are executed; op-
register is set to the value of the Instruction erands used are in bank 0.
Bank register at the time the (63.0) (s = 2)
instruction was executed. Step 3: At conclusion of subprogram, execute In-
crease Index instruction. Since (P) is stored
[y] 7 ’e LIV4Y R ~ L . T . aa . N .
cxampie (see figure 5-0): in BY, the INI instruction ettectively in-
creases the count in P[00010 + 00005 =
Step 1: The Jump and Set Index instruction is exe- 00015], (Bb) = 00015.
cuted; the following operations occur.
Step 4: An unconditional jump is executed, returning
a) Stores P (00010) in Bb. the program to the UBJP instruction at ad-
dress 05000.
b) Stores UBJP instruction at address 305000
{bank 3; address 05000). Values for ‘a’ Step 5: The UBJP instruction is executed. Modify-
and ‘i’ are set to enable a return to bank ing execution address[M=m + (BP) = 00000 +
0; ‘m’ is set to 00000. 00015] provides for returning to the next
main program step.
BANK "O"
MAIN PROGRAM
g
STEP 1
0 00010 JUMP & SET INDEX----: 305000
~
COPERAND NO. |
OPERAND NO. 2
” < BANK "3"
OPERAND NO. 3 SUBPROGRAM
OPERAND NO. 4 \L
0 00015 | NEXT INSTRUCTION IN MAIN PROGRAM 3 05000
UBJP -+ v vvvv . . 00000 l&—
STEP 5
/ -
I st SUBPROGRAM INSTRUCTION
_ S‘rEp 2 2nd n " un
<
3rd " il H
4fh " [} n
o INCREASE INDEX
STEP 3 75 0 05000 —-

Figure 3-6. Jump and Set Index

3-41

a7 azai

3938

e % i czzE a

2726 2423 220191817 1514 o

JUMP ADDRESS

BANK ! N
ADDRESS

UNUSED

m
BANK
ADDRESS

USAGE

This instruction, specified by operation code 63.1,
performs an unconditional jump to the lower instruc-
tion contamed in the storage address designated by
MIM=m +(B Bb)l. The jump is to the storage bank
designated by ‘a’. The operand bank is set to ‘i’. If
b = 0, the jump is to the lower instruction in 'm’; if
b = 7, the jump address is obtained by indirect
addressing.

2423 2120191817 16 15 14 o

a7 4241 3938 %635

30 29

OPERATION (INDEX [INDEX 0oP. o 1|0
CODE b v OFFSET BYTE SIZE CODE ADDRESS

S — e _1;___\,____./
f=63 [e f=.5 SUB-OP

The byte instruction performs two general operations
on specified portions (bytes) of A, Q, or a designated
storage operand. These operations are:

Transmit

1) Load - Loads a byte of the specified register
(A or Q) with the designated byte of M.

2) Store - Stores a byte of A or Q in the selected
byte of M.

Scan

Searches storage operands in byte-size increments
until the specified condition is met or until (A) = 0

(the A register holds the byte count). Operation
designators are tabulated below.
Designator Operation
) Offset designator; holds address of rightmost bit of byte in A or Q (bytes are
left to right).
e Byte-size designator; specifies size of byte (number of bits) used in the operation.
(Legitimate values: 1,2, 3, ...48; 0 is not legitimate.)
* b Index designator; used as an address modifier. If b =7, indirect addressing oc-
curs; address modification then occurs using the new ‘b’ and ‘m’.
* v Index designator; holds address of rightmost bit of byte of M. Ifv =7 on Load
Byte, v is read as ‘‘0"’.
S Suboperation designator: if a ‘0", execute transmit operation.
if a‘‘1”, execute scan operation.
U Suboperation designators; significance of each depends on the value of 2 (i.e.,
whether transmit or scan operation is to be performed).
$0- s4 values for transmit operation:
Designator If a0 Operation If a1
4 Execute operation without indexing Execute operation with indexing
s> Use right indexing Use left indexing
52 Execute load operation Execute store operation
1 Use A register Use Q register
0 Clear entire word Replace byte

* Both BP and VY must be loaded by program.

3-42

The transmit operations are:

Load (for this example, the A register has been
selected)

1} Load specified byte of M into specified byte of
A.

2) If right indexing is selected, bytes of M are
loaded from left to right into designated byte of

A. After byte is loaded, operation is then:

a) Subtract ‘e’ (byte-size) from (VV); VY now

hoids decremented byte address in M.

b) Examine (VV). If (V¥) 2 0, a skip exit is
taken. If (VV) < 0, the load operation on
bytes of M is complete, and a normal exit
is taken.

3) If left indexing is selected, bytes of M are
loaded from right to left into the designated
byte of A. After the byte isloaded, operation is:

a) Add ‘e’ (byte-size) to (VY); (VY) now holds
incremented byte address in M.

b) Examine (VVY). If (VY) = 48-e, a skip exit

is taken. If (VV) > 48.e, the load op

CcLl Cpe

©

on bytes of M is complete, and a normal exit
is taken.

Note that only one byte is transmitted in the above
operation. If subsequent byte oper ations are desired,
the appropriate indexing steps must be accomplished
by the main program (refer to figure 3-7).

{

INSTRUCTION IN
U (WITH LOAD A

OPERATION SPECIFIED).

LEFT INDEXING

RIGHT INDEXING

v

LOAD SPECIFIED
BYTE OF M
INTC A.

IS INDEXING

I}

LOAD SPECIFIED
BYTE OF M
INTO A.

IS INDEXING

NO

SPECIFIED ? SPECIFIED ?)
YES YES
WV)te—vY (VV)-e—vV
b33 *¥%

>48-e [COMPARE \<4g-e COMPARE
(vV):48-e Vo
THESE OPERATIONS
NORMAL SKIP ARE AUTOMATIC IN SKIP NORMAL
EXIT EXIT EXECUTING THE EXIT EXIT
INSTRUCTION.
MAIN PROGRAM
by_y b (8b)+1—>Bb
8-l —8} (IND 4
WV —e VY V)i—svV
* (ENI)

% |F SUCCESSIVE BYTE OPERATIONS
ARE DESIRED, THESE STEPS MUST
BE ACCOMPLISHED BY THE MAIN
PROGRAM.

MAIN
PROGRAM

¥*% ALWAYS DONE USING TWO'S
COMPLEMENT ARITHMETIC

Figure 3-7. Load Byte Operation

3-43

Store

1) The source operand is the specified byte of the
indicated register.

2) The destination is the specified byte of M.

3) Indexing (right or left) is accomplished in the
same mamner as in the load operation.

Scan

s0 - s4 values for scan operation:

Designator Operation
4 .+ . . Not Interpreted .
s3 Not Interpreted .

lfs 2.0 Operation is:
count is:

000 Scan until m = (Q) or (A) =0
001 Scan until m > (Q) or (A) =0
010 Scan untii m <(Q) or {A) =0
011 Scan until m Z (Q) or (A) =0
100 Scan until m <(Q) or (A} =0
101 Scan until m Z(Q) or (A) =0
110 Equivalent to operation when s = 100
11 Equivalent to operation when s = 101

The following rules apply to comparisons in the scan
operation:

a) If byte size is 48 bits, signed quantities are
compared.

b) If byte size < 48 bits, magnitude quantities
are compared.

The scan operation is:

1) Test (A) for 0 (A holds the number of bytes to

be scanned). If (A) =0, a normal exit is taken.
2) If A #0, read M from storage.
3) Compare byte of Q with specified byte of M.

4) If the condition is met, the operation is com-
plete, and a skip exit is taken.

3-44

5) If the condition is not met, reduce (A) by one.
Again test (A) for 0. If (A) =0, a normal exit
is taken. If (A) Z0, index.

6) Indexing is right indexing only. Decrementing
is accomplished in the following manner:

a) Subtract ‘e’ (byte-size) from (VV); VY now
holds decremented byte address in M.

b) Examine (VV). IF(VY) Z 0, return to step 3.
If (VY) < O bytes of M have been scanned,
and a new storage word must be obtained.

c) Increment (Bb) by and place in (Bb).

d) Place (48-e) in VV. Leftmost byte of new M

can now be referenced.

e) Retumn to step 2.

INSTRUCTION

PROCESS - NORMAL
INTERRUPT : EXIT

YES

(TEST FOR \ NO
INTERRUPT / READ M

COMPARE BYTE \ yes
(1S CONDITION o~
MET?)

NO

NO

(V) —e —> Vv
*

* THESE OPERATIONS USE TW
COMPLEMENT ARITHMETIC IF
TWO'S COMPLEMENT MODE |
SELECTED.

(vv) > 07
(Bb)+1—>Bb
48—e—>Vv'

(i

Figure 3-8. Byte Scan Operation

The Internal Function instruction establishes the
internal operating mode or executes the operation

v b

i
Moo 48 iy il
AR i Vit

- specified by the function code ‘y’. These codes
SrERATION 008 o (values) for ‘y’ and their designated functions are
— t v ! tabulated below.

t:77.0 y

Code Function Comments

00001 Ciear Shift Fault Interrupt

00002 Clear Divide Fault Int errupt

00003 Ciear Exponent Overflow interrupt

00004 Clear Exponent Underflow Interrupt

00005 Clear Arithmetic Overflow Interrupt

00007 Clear Internal Reject Interrupt

00011 Clear Real Time Clock Interrupt Clear the designated bit of the

00012 Clear Storage Reference Fault Interrupt Interrupt register.

00013 Clear 1604 Mode Interrupt

00014 Clear Trace Mode Interrupt

00015 Clear Bounds Interrupt

00016 Clear Illegal Instruction Interrupt

00017 Clear Operand Parity Error Interrupt

00020 Clear Manual Interrupt

00021 Clear All Internal Interrupts Clears the entirelnterrupt register.

00022 Set Interrupt Active Sets the Interrupt Active FF which
enables the Interrupt system.
Interrupts will now occur if a
particular bit in the Interrupt Mask
register is set when the interrupt
condition occurs.

00025 Clear Interrupt Active Clears the Interrupt Active FF.
Regardless of the condition of bits
in the Interrupt Mask register, en-
trance into the interrupt routine
does not occur when the interrupt
system is inactive.

00026 Set 1/0 lllegal Instruction FF Sets the 1/0 Illegal Instruction bit.
Interrupt will occur when: a.) an in-
put/output instruction (74.0 - 74.6)
is to be executed, and b.) the II-
legal Instruction Mask bit is set,
and c.) the Interrupt system is
active. When Interrupt is entered,
the lllegal Instruction bit in the
Interrupt register is set. This
feature protects 1/0 operations
done under a Monitor or Master
Control program.

3-45

Code Function

Comments

When the 1/0 lllegal Instruction
FF is cleared, execution of an
Input/Output instruction does not
set the Illegal Instruction bit in
the Interrupt register.

Entering Two’s Complement mode
results in performing all address
modification, indexing instructions,
and indexing in the Byte instruc-
tion in two’s complement notation.

Selecting Negate BCD conversion
sets the Negate BCD Conversion
FF and transmits a Negate BCD
Conversion signal to the external
equipments, inhibiting BCD con-
version.

00027 Clear 1/0 Illegal Instruction FF
00030 Select Two’s Complement Mode
00031 Select Negate BCD Conversion
00032 Release Selection of Negate BCD

Conversion

Clearing the Negate BCD Con-
version FF removes the inhibit on
BCD conversion in the external
equipments if the 1604 Mode bit in
the Interrupt Mask register is also
clear.

00040 Clear Two's Complement Mode All index arithmetic is accom-
plished in one’s complement nota-
tion when Two's Complement mode
is cleared.

00100

through Reserved for Direct Interrupt

07700

23 1514 [

OPERATION CODE % UNUSED %
—

f=77.7

The lllegal Instruction bit in the Interrupt register is
set by the Fault instruction if:

a) the Interrupt sequence is entered because 1604
mode is selected and the Interrupt system is
active, and

b) the lllegal Instruction bit in the Interrupt Mask
regisfer is sef.

If 1604mode is not selected or if the Interrupt system
is inactive, the Fault instruction is a pass instruc-
tion.

3-46

CHAPTER IV
INTERRUPT SYSTEM

The 3600 interrupt system provides for testing whether certain conditions (internal or ex-
temal) exist without having these tests in the main program. Examples of these conditions
are faults (internal) and end of operation (in an external equipment). After executing each
main program instruction, a test is made for these conditions. If one of the conditions exists,
execution of the main program halts. The contents of the Program Address register, P, and
the bank designators are stored and an interrupt routine is initiated. This interrupt routine
takes the necessary action for the condition and then jumps back to the next unexecuted
main program step.

For each condition that can cause an interrupt, the program has two alternatives. It may
select an interruptible condition, such that interrupt occurs when that condition occurs or it
may choose to have the interrupt system ignore the condition. This is accomplished by not
selecting interrupt on the condition. The program also has the choice of whether the interrupt
system is to be used. The Internal Function instruction activates or deactivates the inter-

rupt system.

WHEN COMPUTER MAY BE
INTERRUPTED

The computer main program may be interrupted at
the following times:

1) After reading an instruction from storage, but

prior fo executing that instruction.

2) Between upper and lower instructions of a

program step, except for two cases:

a) Interrupt is not recognized immediately
after executing an Augment instruction (Single
or Double Precision Augment}. If an in-
terrupt condition occurs, the main program
will be interrupted after the augmented
instruction is complete.

b) Interrupt is not recognized between the upper

and lower instructions specified by the

Execute instruction. If an interrupt condi-

tion occurs, the main program will be in-

terrupted after the instruction pair has been
executed.

3) Between levels of multi-level indirect address-

ing. (If an interrupt occurs between levels of

4-1

5)

6)

multi-level indirect addressing, the instruction
involving this operation will begin over again
when the main program resumes.)

Between iterations of instructions of consider-
able length. Examples of this type of instruc-
tion are the Searches and an Augmented Transmit
instruction. If an inferrupt occurs between
iterations ‘n’ and ‘n+1° of such an instruction,
the ‘n + 1’ iteration will begin when the main
program resumes. Thus, interruption does not
necessitate repeating the entire instruction.

When the computer is operatingin 1604 mode,
before executing an instruction with operation
codes (in octal) 00, 62, 63, 74, and 77. Upon
return to the main program, the unexecuted
instruction will be executed unless provision
to skip that instruction was made in the in-
terrupt routine.

In Trace mode, during the execution of a Jump
instruction in which the Jump condition(s) is
met but before the jump is taken. When the
main program resumes, the Jump instruction
which is interrupted will be executed, unless
the interrupt routine provides for returning
elsewhere.

LOGICAL DESCRIPTION OF INTERRUPT
SYSTEM

Four registers are directly involved in the 3600
interrupt system. These are:

1) a 48-bit Interrupt register
2) a 48-bit Interrupt Mask register
3) a 48-bit Main Product register, and

4) an 11-bit Channel Product register

The bits in these registers are numbered from right
to left in ascending order. The rightmost bit is
numbered zero, and the leftmost bit (in a 48-bit
register) is numbered 47.

Each of the 48 bits of the register is associated
with a particular internal or external condition. This
bit association is identical in all three 48-bit reg-
isters. Bits 00 through 04 and 07 through 15 are

associated with internal conditions and bits 05
through 06 and 16 through 47 are associated with

external conditions. The specific condition associ-

Y I I TR TR SSRY J 1 SR
ated with each bit is as follows:

Bit Association Bit Association

00 Shift Fault 24 Data Channel 10
01 Divide Fault 25 Data Channel 11
02 Exponent Overflow Fault 26 Data Channel 12
03 Exponent Underflow Fault 27 Data Channel 13
04 Arithmetic Overflow Fault 28 Data Channel 14
05 Interrupt 1 } See Direct 29 Data Channel 15
06 Interrupt 2 Interrupt 30 Data Channel 16
07 Internal Reject 31 Data Channel 17
08 Real Time Clock 32 Data Channel 20
09 Storage Reference Fault 33 Data Channel 21
10 1604 Mode 34 Data Channel 22
11 Trace Mode 35 Data Channel 23
12 Bounds Fault 36 Data Channel 24
13 lllegal Instruction Fault 37 Data Channel 25
14 Operand Parity Error 38 Data Channel 26
15 Manual Interrupt 39 Data Channel 27
16 Data Channel 00 40 Data Channel 30
17 Data Channel 01 41 Data Channel 31
18 Data Channel 02 42 Data Channel 32
19 Data Channel 03 43 Data Channel 33
20 Data Channel 04 44 Data Channel 34
21 Data Channel 05 45 Data Channel 35
22 Data Channel 06 46 Data Channel 36
23 Data Channel 07 47 Data Channel 37

Though the uses of these registers will be detailed
later, brief statements concerning the registers fol-
low:

Interrupt Register

Each of the internal conditions which can cause an
interrupt is wired to a particular bit position of this
register. The bit positions associated with external
conditions receive an interrupt line from each of the
32 possible data channels.

Interrupt Mask Register

The programmer selects to have a given interrupt
condition (internal) tested by setting the appropriate
bit of the Interrupt Mask register. The upper 32bit
positions associated with the 32 possible data
channels are always set to “‘1's’’,

Main Product Register

The Main Product register contains the logical pro-
duct of the Interrupt register and the Interrupt Mask
register. The logical product of the registers is the
logical product of their corresponding bits. For
example, if one considers the logical product of two
4-bit registers, the result is:

1010
not
1000 (their logical product)

4-bit register
4-bit register

An interrupt results from a ““1"’ in a bit of the Main

Product register. To set to any bit in the Main
g

Product register requires that the Interrupt Mask Re-

gister bit to be set to ‘‘1’".

‘ll,!

Channel Product Register

Associated with eachof the 32 possible data channels
is an 11-bit Channel Product register. Each data
channel may have up to eight equipments attached
to it. The Tl-bit Channel Product register contains
the interrupt lines from these equipments in the
eight lower order bit positions (bits 0-7). The
three higher order bits indicate an interrupt from the
data channel as follows:

Bit 08="*1"" Interrupt from channel on End of Chain.

Bit 09=**1" Interrupt from channel on Parity Error
(Storage or |/0).

Bit 10="1" Interrupt from channel on Contro] Word

Parity Error.
The mask associated with the Channel Product

register is always set to ‘‘1's'’,

PROGRAMMING THE INTERRUPT
SYSTEM

If an interrupt is desired when one or more specific
conditions arise, a number of preparatory steps must
first be accomplished by the programmer. These
steps are:

ust be activated.

1) The interrunt system m

2) External and internal conditions to be tested

muect ha calactad
musStT 0© $T:8C7C0.

3) An inferrupt routine must be programmed fo
determine the cause(s) of interrupt and to pro-
cess the interrupt condition(s).

Interrupt Mode

The interrupt system is activated by executing an
Internal Function instruction (77.0 00022 - Set In-
terrupt Active). The interrupt system remains active
until:

1) An Internal Function instruction (77.0 00025-
Clear Interrupt Active) is executed,

2) An internal master clear is performed, or

3) The system is automatically deactivated (tem-
porarily) by entering the interrupt routine.

Selecting Interrupt

Selecting the interrupt condition to be tested is
accomplished in two ways, depending upon the condi-
tion - internal or external.

Internal

Interrupts on internal conditions are selectéd by
setting the associated bits in the Interrupt Mask
register to *‘1"’. The internal conditions on which the
computer can be interrupted are listed below accord-
ing to their bit position in the Interrupt Mask register.

Bit Internal Condition

00 Shift Fault

01 Divide Fault

02 Exponent Overflow

03 Exponent Underflow

04 Arithmetic Overflow Fault
05 Interrupt 13 Direct

06 Interrupt 2 } Interrupt

Bit Internal Condition

07 internal Reject Interrupt
08 Real Time Clock Interrupt
09 Storage Reference Fault
10 1604 Mode

11 Trace Mode

12 Bounds Fault

12 IHlegal Instruction

14 Operand Parity Error

15 Manual Interrupt

Setting the particular bit or bits in the Interrupt
Mask register to provide for interrupt may be accom-
plished by an Inter-Register or Bit Sensing instruc-
tion. These bits remain set until cleared by an
internal master clear or by one of the above instruc-
tions. (Refer to the appendix on Interruptible Con-
ditions and Faults).

Direct Interrupt

By means of cables, certain external devices (usually
another computer or some specialized external equip-
ment) may be connected directly to the 3604. This
direct connection allows the external device to act
upon the 3604 interrupt system without going through
the normal input/output interrupt facility.

Signal lines for the direct interrupt facility are as
follows:

1) Interrupt 1: Bit 05 of the Interrupt register in
the 3604 is the Interrupt 1 line from the external
device. A ‘1" in bit 05 indicates an interrupt
condition has occurred in the external device.
If the associated bit of the Interrupt Mask
register is set, and the Interrupt system is
active, interrupt will occur in the 3604,

2) Interrupt 2: Bit 06 of the Interrupt register in

the 3604 is the Interrupt 2 line from the external

device. A “1’’ in bit 06 indicates an interrupt
condition has occurred in the external device.

If the associated bit of the Interrupt Mask

register is set, and the interrupt system is

active, interrupt will occur in the 3604,

Stop Computer: The Stop Computer signal is
transmitted by the external device to the 3604.
When received by the 3604, the 3604 halts
activity, just as though the Stop switch had
been pressed.

4) Computer Running: The Computer Running
signal is transmitted continuously to the ex-
ternal device when the 3604 is running.

Internal Master Clear: When the Internal Master
Clear switch is pressed on the 3601 console,
the 3604 transmits an Internal Master Clear
signal to the external device.

6) External Master Clear: When the External
Master Clear switch is pressed on the 3601
console or when the Clear Channel instruction
is executed with the channel designator set to
40g (equivalent to an external master clear),
the 3604 transmits an External Master Clear

signal to the external device.

7) Data Cables (bits 30-35 of UOO0 register):
When the 3604 executes an internal function
instruction with codes 00100 through 07700
selected, bits 30-35 of the internal function
code are transmitted to the external device via

the data cables.

External

Interrupts on external conditions are selected in a
manner different from internal conditions. Selection
is not accomplished by setting the Interrupt Mask
register bits, since the upper 32 bits of the Interrupt
Mask register are automatically always set to “‘1's’’,
To provide for an interrupt if a specific externdl
condition arises, a Function instruction (refer to
Input/Output section) must be executed to select
interrupt on the condition. This condition remains
selected until cleared by another Function instruc-

tion or an external master clear is performed.

Interrupt Routine

An interrupt routine must be programmed. The interrupt
routine typically:

1) Stores the contents of the operational registers
(including SCR if its contents are to be re-
tained) if these registers are to be used in the
interrupt routine.

2) Processes the interrupt condition(s).

3) Clears the condition causing the interrupt.

4) Reloads the operational registers upon com-
pleting the routine.

5) Returns control to the main program.

AUTOMATIC OPERATIONS IN THE
INTERRUPT SYSTEM

Certain operations in the interrupt system occur
automatically and require no intervention by the pro-
grammer, These automatic operations are:

1) Setting the particular bit in the Interrupt register
when the particular condition arises (e.g., the
Shift Fault bit in the Interrupt register is set
when a shift fault has occurred). For a descrip-
tion of conditions which set the individual
bits of the Interrupt register, refer to the appen-
dix on Interruptible Conditions and Faults.

~

Examining the Main Product register as de-
scribed on page 4-1 (if the interrupt system has
been activated by the Internal Function in-
struction).

3)

Halting the main program when interrupt occurs.

Deactivating the interrupt system when interrupt
occurs (to prevent interrupts from occurring
while in the interrupt routine).

When interrupt occurs, executing a wired-in
return jump to address 0 00001, the entrance to
the interrupt routine. At address 0 00000*, an
Unconditional Bank Jump instruction (63.0)
(s=0) or an Unconditional Jump to Lower instruc-
tion (63.1) is stored, depending on whether
return is to the upper or lower instruction. The
address of the interrupted main program step,
P, is placed in the address portion of the
instruction stored at address 0 00000. This
instruction (63.0 or 63.1) provides for return to
the main program (upper or lower instruction)
after executing the interrupt routine.

5)

Internal interrupt conditions may occur:
1) as a result of executing certain instructions, or
2) because of the nature of certain instructions, or

3) simply at random times without any specific re-
lationship to instructions (e. g. Real Time

Clock).

Depending on (1) which of the above three conditions
caused an internal interrupt condition and (2) the
position of the instruction being executed, the in-
struction stored at address 0 00000 is (63.0) (s = 0)
or 63.1. The value of P stored in either of these in-
structions may be P or P + 1, depending upon the
instruction and the time the interrupt ro was
entered. Table 4-1 lists the various cases for each
of the intemal interrupt conditions.

+in
utineg

* The first digit refers to the storage bank; the remaining five digits refer to the storage address within that bank.

4-4

Table 4-1. Instructions stored on Internal Interrupt Conditions

Bank Jump Value Of Program
Instruction Address Register In
Internal Condition Instruction Stored At Jump Instruction Stored
Causing Interrupt Upper/Lower? Address 0 00000. At Address 0 00000.
Shift Fault* upper 63.1 P
lower 63.0 P+1
Divide Fault* upper 63.1 P
Exponent Overflow * upper 63.1 P
lower 63.0 P +1
Exponent Underflow * upper 63.1 P
lower 63.0 P+1
Arithmetic Overflow * upper 63.1 P
lower 63.0 P+1
Internal Reject* 48- bit 63.0 Reject jump address “‘n’"’
Storage Reference 3 upper 63.0)
Fault lower 63.1 P
instruction fetch 63.0 P
1604 Mode upper 63.0 P
. lower 63.1 P
Trace Mode* upper 63.0 P
 lower 63.1 P
Bounds Fault™, 5 upper 63.0 : P
lower 63.1 P
lllegal Instruction upper 63.0 P
lower 63.1 P
Operand Parity * upper 63.1 P
Error lower 63.0 P+1
Asynchronous Interrupts:
Real Time Clock
Interrupt | 63.0 or 63.1 P
Manual Interrupt : 63.0 or 63.1 P
Direct Interrupt 63.0 or 63.1 P
External Interrupts i 63.0 or 63.1 P

1 Whenever a Bounds Fault interrupt or Storage Reference Fault interrupt occurs: (a) while executing
an augmented instruction, or (b) while executing the [ower instruction of the pair specified by the
Execute instruction, the following occurs:

a) a 63.0 instruction is stored at address 0 00000, and

b) the value of P is stored in the jump instruction at address 0 00000.

*Internal interrupt conditions flagged by an asterisk are conditions which arise during the execution of certain instruc-
tions (i.e., instruction execution causes the condition). Internal interrupt conditions not flagged occur because of the
nature of certain instructions, or simply occur at random times as asynchranous interrupts.

4-5

INTERRUPT INSTRUCTIONS

Two interrupt instructions used in the interrupt
routine facilitate determining the cause(s) of the
interrupt. These instructions are explained below.

o

=774

This instruction, restricted to the upper instruction
position of a program step, scans the Main Product
register from left to right; that is, from bit 47 to bit 0.
If a non-zero bit is detected, a jump is executed to
the location (P+i+1). P is the current program
address and ‘i’ is the location of the non-zero bit in
the Main Product register.* If the Main Product
register is zero, the next instruction is executed.

Thus, this instruction determines which channel (a
non-zero bit in one of the upper 32 bit positions), or

lnfnrnn' con d‘f ion (c nan r

{ o
16 bit positions) caused an interrupt.

If a non-zero bit is detected in one of the upper 32
bit positions (indicating an interrupt on channel ‘x’),
it is necessary to determine which equipment on that
channel caused the interrupt. The Channel Product
Register Jump instruction, described below, is used
for this purpose.

g 39 38 3 32

OPERATION CODE | CHANNEL
| S——

f=77.5

This instruction, restricted to the upper instruction
position of a program step, enables the designated
Channel Product registerinto the main computer to be
scanned. Scanning is from left to right; that is, from
bit 10 to bit 0. [f a non-zero bit is detected, a jump

* l-)

is from left to right.
[P+ 47+ 1] (decimal notation).

**l ’

is from left to right.
P+10+1] (decimal notation).

- the location of the particular bit within the register.

The first bit scanned is bit 47.

- the location of the particular bit within the register.
The first bit scanned is bit 10,

is executed to location (P+i+1). (P is the current
program address and ‘i’ is the location of the non-
zero bit in the Channel Product register.)** |f the
Channel Product register is zero, the next instruction
is executed.

Thus, after determining the channel on which interrupt
has occured (via the Main Product Register Jump
instruction), the Channel Product Register Jump in-
struction determines which equipment, ejuipments,
or condition caused the interrupt.

To determine the particular condition within the
equipment causing the interrupt, a Copy Status instruc-
tion must be executed (refer to Input/Output section).

INTERRUPT PROCESSING

During execution of the main program (if the interrupt
system has been activated by the Internal Function
instruction), theMain Product registeris automatically
examined as outlined on page 4-1. If, in this ex-
amination, a non-zero bit is detected in the Main
Product register, inferrupt occurs.

When an interrupt occurs, the main program is halted
and a previously programmed routine of instructions
(interrupt routine) is performed. Entrance to this
interrupt routine is accomplished by an automatic
wired-in unconditional return jump to address 0 00001,
The following automatic operations also occur:

1) An Unconditional Bank Jump instruction
(63.0) (s=0) or Unconditional Jump to Lower
instruction (63.1) is stored at address 0 00000,
Values for the operand and instruction bank
designators and P (current address) are set in
this instruction such that a return may be
effected to the storage bank and current ad-
dress of the main program at the time interrupt
occurred. (The 63.0, s =0 instruction is stored
if return is to the upper instruction; the 63.1
instruction is stored if return is to the lower
instruction.)

Though the register is numbered from right to left, scanning

If a **1"" exists in bit 47, i= 47, and a jump is effected to

Though the register is numbered from right to left, scanning

If @ 1" exists in bit 10, i= 10, and a jump is effected to

2) Operand Bank and Instruction Bank registers
are set to bank **0"".

3) The interrupt system is deactivated; that is,
examination of the Product register is no longer
automatic, but is program controlled.

Once the entrance to the interrupt routine is made,
processing begins to determine the type (interna! or
external) and cause of theinterrupt. Since processing
internal and external interrupt conditions differs,

each will be examined in detail.

Internal Interrupt Processing

Refer to figure 4-1.

The foliowing description of internal interrupt
processing outlines pertinent facts necessary for a
satisfactory interrupt program. In outlining the
operation of interrupt processing, a list of steps for
a sample interrupt routine is given. Steps flagged by
a single asterisk indicate those steps which are

essential to processing the interrupt. Otherwise, no
constraints are placed on the interrupt routine.

NOTE

Since the interrupt system is inactive while

in the interrupt routine, neither Bounds

checking nor Trace mode are in effect to
constrain the interrupt program. In step 7,
execution of the Bank Jump instruction at
address 0 00000 to retum to the main pro-
gram accomplished the interrupt

routine. If this jump is taken to an address

is in

out of bounds, an out-of-bounds indication
is not revealed until an attempt is made to
read the first instruction at the jump address.

Steps in Interrupt Routine (Sample)

*1) Enter interrupt routine at address 0 00001.

2) Execute subroutine to store contents of Shift
Count register and operational regi sters.

*N Taws abho Moo Do do_x ot _x_ L.]
~) 151 TN€ vMGin rToauch regisrer inis may pe
accomplished by:
a) Mnin Peadis~+ anictar lismesm Somodor.oal_
Sy ivaseria vuvL NS ST SR FHSiiuLIioi,

b) Bit Sensing instruction, or
c) Other logical instructions.

4) Execute subroutine to process particular interrupt
condition.

*a) Clear the interrupt condition.

*5) Test for further interrupt conditions. This test
may be accomplished by steps 3a, 3b, or 3c.

restore contents of
including Shift Count

subroutine to

registers

6) Execute
operational
register.**

*7) Execute jump instruction at address 0 00000 to
return to main program.

** Restoring the normalize count in the SCR before returning to the main program may be accomplished as follows:

Since the SCR cannot be written into directly by the Inter-Register instruction, etc., restoring the normalize

count in the SCR must be accomplished via a shift instruction.

Before restoring the contents of A or Q, shifting

Aor Qright by k (where k is the normalize count) places k in the SCR.

Sample Interrupt Program

Address Contents Comments
0 00000 63.0 or 63.1 Instruction stored when interrupt occurred; address portion of
instruction instruction is P (address of main program). Executing this
instruction tests the Product register: if non-zero, goes to
0 00001; if zero, jumps to P and activates interrupt system.
0 00001 . Subroutine stores contents of operational registers, including
Subroutine . .
Shift Count register.
X XXXXX | MPJ instruction Test Productregister; if Product register zero, jump to Y YYYYY.
in upper; Jump
instruction to
Y YYYYY is lower.
P+i+1 > Jump to subroutine for processing interrupt on shift fault.
Jump instructions
P+i+1 o Jump to subroutine for processing interrupt on channel 321g.
Y YYYYY
Subroutine Subroutine restores operational registers.
ZZZ7Z77Z Jump instruction Jump to address 0 00000 to return to main program.

The operation of steps in the interrupt routine is
detailed below:

1) The interrupt routine is automatically entered

at address 0 00001.

2) If interrupt occurs immediately following «
Floating Point instruction, it is often desirable
to preserve the normalize count (held in the
Shift Count register). To prevent destroying the
contents of the SCR, the following may be
performed:

Upon entering the interrupt routine, the
SCR must be stored prior to executing the
Main Product Register Jump instruction.
Executing the MPJ instruction changes the

contents of the SCR; this precludes the use
of address 0 00001 for the MPJ instruction.
The subroutine for storing the SCR (and
other operational registers) may begin at
address 0 00001 or a jump may be taken
elsewhere from address 0 00001 to this
subroutine. After storing the SCR, the MPJ
instruction may then be executed.

Instructions used to store the contents of the
Shift Count register must be instructions
which, in their execution, do not harm the
contents of the SCR. Listed in table 4-2 are
all instructions which, in their execution,
destroy the contents of the Shift Count
register.

Table 4-2. Instructions Which Destroy Contents of SCR

All Shift Instructions

A Jump, Q Jump, Selective Jump, and
Selective Stop with b=4-7

Scale Instructions
Cx - R <4 P
Storage oKip
Storage Shift

I —y
SeiecTiv

"

e
et

[yl
wy

Selective Clear

Selective Complement
Selective Substitute
Load Logical

Add Logical

Subtract Logical

Load Index Upper

Load Index Lower

Store Index Upper
Substitute Address Upper

Register Jump

Transmit with s=4, 5, 6, or 7
Locate List Element

Search Order with s=0, 1, 2, or 3
Byte

Bit Sensing

All 1604 Type Search Instructions
All Replace Instructions

Main Product Register Jump

Channel Product Register Jump

D Register Jump

Multiply Integer and Multiply Fractional
Divide Integer and Divide Fractional
Ail Floating Point Instructions

Add to Exponent

Inter-Register Swap

3) Executing the Main Product Register Jump

instruction can

test for a non-zero bit.
non-zero bit is designated by ‘i

truction scans the Main Product register to

The location of a
'* and indicates

a specific condition (internal or external - refer
to the register description) is present which
caused the interrupt.

a) If a non-zero is detected, a jump is executed

to address [P +i+1]. Since the Main Pro-
duct register is 4810 bits, ‘i’ may have
4810 values. In order to branch to the
individual subroutines to process each
interrupt condition, the programmer must

c) Within the appropriate subroutine, the pro-
grammer must clear the interrupt condition,
or the subroutine is re-entered when the

Product register is again scanned.

the interrupt condition may be

Function

instruction (refer to the Faults section in

Main
Clearing

accomplished by the Internal

the appendix).

4) Upon completing this subroutine, a jump is
taken to either address 0 00000 or the location
of the Main Product Register Jump Instruction.

a) If return is to address 0 00000, the Bank

previously have stored jump instructions in
the first 4810 storage locations following
the location of the Main Product Register
Jump instruction.

b) The jump address specified by the jump
instruction at [P+i+1] is the starting
location of the subroutine to process the
particular interrupt condition.

Jump instruction stored there tests the Main
Product register. If non-zero, the Jump
instruction becomes a pass instruction and
the Main Product Register Jump instruction
is executed. If zero, a jump is effected
back to the main program.

* ‘i’ - the location of the particular bit within the register. Though the register is numbered from right to left, scanning

is from left to right.
[Py 47+ 1 (decimal notation).

The first bit scanned is bit 47.

If a**1”’ exists in bit 47, i= 47, and a jump is effected to

b) If return is to the address containing the
Main Product Register Jump instruction,
this instruction is again executed to scan
for further interrupt conditions. When the
Main Product register is zero (no further in-
terrupt conditions to process), the next
instruction executed is a jump instruction.
This jump may be to a subroutine to restore

5)

!
|
I
v

LOAD
MASK
REGISTER.

|
¥

the contents of operational registers or to

address 0 00000.

Returning to the main program via the jump
instruction at address 0 00000 automatically
activates the entire interrupt system again to
permit the automatic testing of interrupt con-
ditions.

THESE OPERATIONS MUST BE

EXECUTE
INTERNAL FUNCTION
INSTRUCTION.
(ACTIVATES ENTIRE
INTERRUPT SYSTEM)

> EXECUTED FOR INTERRUPT
TO OCCUR,

<

TEST _PRODUCT REGISTER

F-— == —— TESTING THE
PRODUCT REGISTER
MAY BE ONE OR IS THERE A OCCURS BEFORE
MANY MAIN I _No_ NON-ZERO BIT IN EACH MAIN PRO-
PROGRAM STEPS. | [CONTINUE MAIN THE MAIN PRODUCT | (GRAM INSTRUCTION
PROGRAM REGISTER ? IS EXECUTED, AND
| : BETWEEN ITERA-
TIONS OF AN
N YES EXTENDED IN-~
STRUCTION,
| ENTER INTERRUPT ROUTINE
(WIRED-IN JUMP TO O 00001) MAIN PROGRAM
BANK JUMP r—————F---12 1 INTERRUPT ROUTINE
AT ADDRESS ! '] STORE AT ADDRESS
ES 1.) JUMP BACK TO
o0 ne: ! MAIN PROGRAM. |1 | 000000 A BANK DEACTIVATE
| | | JUMP INSTRUCTION INTERRUPT
| | 2)ACTIVATE INTER- (63.0)($=0) SYSTEM. 4
| RUPT SYSTEM. ¥ | | oR 6%.1. *
|
1
NO |YE$
! [
| I
EXECUTE MAIN
| PRODUCT REGisTER, || || PRODUCT REGIsTER
IS A NON-Z2ERO JUMP INSTRUCTION.
| BIT PRESENT? |
L - | 1
EXECUTE LOWER SCAN MAIN
INSTRUCTION AT ISTER. JUMP TO
ADDRESS 0 0000, T DECSTER YES ADDRESS
(JUMP TO ADDRESS BIT PRESENT ? (P+i+1).
0 00000) :
AT X XXXXX -
BEGIN SUBROUTINE AT
TO PROCESS ECUTE Jump
INTERRUPT. TO X XXXXX.
EXECUTE INTERNAL
INSTRUC-
TION TO CLEAR
INT. CONDITION.
END OF INTERRUPT
SUBROUTINE;
¥ AUTOMATIC OPERATIONS EXECUTE JUMP
TO O 00000 OR
00000,

Figure 4-1. Typical Internal Interrupt Processing

4-10

External Interrupt Processing

For errupt
conditions arerecognizedonly onone of the fo llowing
three situations:

sach externa! equipmeni, externa! inte

1) Interrupt on ready and not busy

3) Interrupt on abnormal end of operation

Since the meaning of these three situations depends
on the external equipment,
manual for that equipment.

refer to the reference

Two external interrupt conditions are recognized
within the data channel itself. These are interrupt
on end of chain and interrupt on error (refer to the
description of the Function instruction).

The preliminary steps in processing external in-
terrupt conditions occur as described in the internal
Interrupt Processing section. The following steps
are directly pertinent to processing external interrupt
conditions (figure 4-2):

1) The Main Product Register Jump instruction is
executed. A non-zero bit detected in one of
the upper 32 bit positions indicates an in-
terrupt condition is present on one of the 32
possible data channels. Thus, executing this
instruction isolates the interrupt condition to a
specific channel.

a) Detecting a non-zero bit effects a jump to
address [P +i +1]. Address [P +i + 1] contains
a previously stored Jump instruction to the
starting location of the particular external
interrupt subroutine.

At the jump address, a Channel Product Register
Jump instruction has been previously stored.
Its channel designator ‘x’ must have a valuve
corresponding to the channel number associated
with bit “‘i’’. (Refer to the Channel Product
Register Jump instruction description.)

4)

7)

a) The Channel Product Register Jump directs

its 6-bit channel designator ‘x’ to the
specified channe| attached to the communi-
cation module.

b) An 11-bit Channel Product register (one bit
for each equipment on that channel and one
bit for each of the other interrupt conditions)
is enabled into the computer to be scanned
by this instruction.

Tiata -

¢} Detecting a C
Product regfs’rer causes a jump fo[P .
The source of the interrupt has now been
isolated to a particular equipment or a par-

ticular condition on a particular channel.

The address [P +i+1] is the starting location
of the subroutine to process the particular
interrupt condition.

To determine the particular condition causing
the interrupt in the equipment, the programmer
must execute a Copy Status instruction in this
subroutine (refer to the Input/Output section).

As in internal interrupt processing, the interrupt
condition must be cleared within the subroutine
to prevent re-recognition of that condition when
the Channel Product register is again scanned.
Ciearing the interrupt condition is accom-
plished by a Function instruction. Clearing a
particular interrupt condition may not necessarily
clear the bit in the Interrupt register, since
more than one interrupt condition may exist at
one time on the same channel.

Upon completion of the subroutine, the Channel
Product register is again scanned. If no
further interrupt conditions are present, a
return is effected to address 0 00000 after re-
storing the contents of the operational registers.

The Main Product register is again scanned.
If there are no further interrupt conditions to
process, a return is effected to the main pro-
gram via the same steps taken for internal
interrupt processing.

BANK JUMP
INSTRUCTION
0 00000
DOES THE
FOLLOWING:

MAY BE ONE OR MANY l NO
MAIN PROGRAM STEPS. ST

|
v
EXECUTE
INTERNAL FUNCTION
INSTRUCTION

(ACTIVATES ENTIRE
INTERRUPT SYSTEM). g

T

1
s

EXECUTE FUNCTION

INSTRUCTION (PERMITS

A PARTICULAR IN-—

TERRUPT CONDITION

TO BE RECOGNIZED),)
I

THESE OPERATIONS MUST BE
EXECUTED FOR INTERRUPT

TO OCCUR.

TEST PRODUCT REGISTER

CONTINUE
MAIN PROGRAM

1.} JUMP BACK TO

Yoo

ENTER INTERRUPT ROUTINE]

IS THERE A
NON-ZERO BIT IN
THE MAIN PRODUCT
REGISTER?

(WIRED-IN JUMP TO O O000!)

TESTING THE PRODUCT
REGISTER OCCURS BEFORE
EACH MAIN PROGRAM
INSTRUCTION IS EXECUTED,
AND BETWEEN ITERATIONS
OF AN EXTENDED IN-
STRUCTION.

MAIN PROGRAM

STORE AT ADDRESS
000000 A BANK
JUMP INSTRUCTION
(63.0)(S=0)

OR 63.1. *

DEACTIVATE
INTERRUPT
SYSTEM x

MAIN PROGRAM.

2.)ACTIVATE
INTERRUPT SYSTEM. %

NO

TEST MAIN
PRODUCT REGISTER.

IS A NON-ZERO BIT
PRESENT ?

*

EXECUTE LOWER
INSTRUCTION AT

ADDRESS O 0000!
(JUMP TO ADDRESS

0 00000).

* AUTOMATIC OPERATIONS

NO

EXECUTE MAIN
PRODUCT REGISTER
JUMP INSTRUCTION .

SCAN CHANNEL

PRODUCT REGISTER.
IS A NON-ZEROQ BIT

INTERRUPT ROUTINE

YES

PRESENT ?
JUMP TO (P+i+1).
AT (P+i+1), EXECUTE
SCAN MAIN JUMP TO Y YYYYY
PRODUCT REGISTER. TO PROCESS
'S A NON-ZERO BIT INTERRUPT CONDITION.
PRESENT ?
YES EXECUTE COPY STATUS
INSTRUCTION IN SUB-
JUMP TO ROUTINE TO DETER-
ADDRESS MINE PARTICULAR
(PHi+i) INTERRUPT CONDITION
OCCURRING IN EQUIP.
AT (P+i+1) EXECUTE CnnneL | | EXECUTE FUNCTION
EXECUTE JUMP 22T | INSTRUCTION TO
e o PRODUCT REGISTER LEAR
: JOM
INSTRUGTION. INTERRUPT CONDITION.
RETURN TO

Figure 4-2. Typical External Interrupt Processing

4-12

EXAMINE CHANNEL
PRODUCT REGISTER
FOR FURTHER INTER-
RUPT CONDITIONS.

CHAPTER V
INPUT/OUTPUT

Input/output facility for the 3600 system is provided by two modules: the 3602 communication
module and the 3606 data channel.

These two modules operate conjunctively and are both located in a data interchange cabinet.
Together they provide the method for bi-directional data exchange and for proper contro! of
information transmission between the 3600 system and its various external equipments.

A simplified block diagram of a 3600 system is shown in figure 5-1. For purposes of ilius-
tration, the system in figure 5-1 shows only one 3602 communication module and one 3606
data channel. Block diagrams of the communication module and data channel are shown in

figures 5-2 and 5-3.

A basic 3600 system includes one 3602 communication module and four 3606 data channels.
Additional data channels, up to a total of eight, may be added. For maximum 1/0 capability,
a 3600 system may include up to 32 bi-directional data channels. This is obtained by ex-
panding the basic system to its limit of four communication modules with each controlling
eight data channels.

A 3606 data channel may control a maximum of eight external equipments. Typical external
devices are line printers, punched card equipment, and magnetic tape equipment. The Connect
Instruction selects the equipments individually to communicate with the 3600 system via the
data channel and communication module.

*
* (EIGHT PER
EXTERNAL
r R SYSTEM
(FOUR PER SYSTEM) COMMUNICATION MODULE.; EQUIPMENT
DATA (EIGHT PER CHANNEL)
3603 3602 3606
STORAGE COMMUN|— DATA 00
MODULE CONTROL. CATION CHANNEL
MODULE
0l
DATA
02
A L g
3604 TO OTHER 03
COMPUTA-| | DATA CHANNELS
TION
MODULE
04
05
/L_'L/
TO OTHER
COMMUNICATION 06
MODULES
* .
DENOTES MAXIMUM SYSTEM o7

Figure 5-1. 3600 System

5-1

CONNECT

FUNCTION
CONTROL WORD ADDRESS
STATUS REQUEST AND CONTROL SIGNALS
3604 STATUS RESPONSE
COMPUTA-
TION
MODULE CHANNEL SELECTED CHANNEL SELECTED
CONTROL _SIGNALS CONTROL SIGNALS
REPLY , REJECT REPLY , REJECT
BUSY
ACCESS
CONTROL
LOGIC
REQUEST REQUEST 3606
CONTROL _SIGNALS CONTROL SIGNALS DATA
CHANNEL
STORAGE ADDRESS s STORAGE ADDRESS, WORD COUNT
REGISTER (COMPLEMENT)
PARITY PARITY INCREMENTING
BIT GENERATOR NETWORK
STORAGE
48 -BIT DATA WORD
UPPER ADDRESS BIT 3
LOWER ADDRESS BIT PARITY CHECKERS
FUNCTION BIT & GENERATORS
CONNECT
FUNCTION
CHANNEL SELECTED l CONTROL _SIGNALS
CONTROL _ SIGNALS REPLY , REJECT
REPLY , REJECT CONTROL
REQUEST Logic r— COUNTER
BUSY |
i
|]
1 H 48-8BIT 12 BITS
[| DATA ASSEMBLY DATA
48 BITS ! DISASSEMBLY
{ CONTROL REGISTER
| WORD
|
1
3602 i] sl-\?:r:ElgS ;::é;;R PARITY EXTERNAL
COMMUNI~ : REGISTER & BT £QuIP—
CATION GENERATOR MENT
MODULE
TO S REGISTER & WORD
INCREMENT ING COUNT |
NETWORK > REGISTER
CONTROL —>ICONTROL JUMP|—¢
CONTROL WORD WORD
ADDRESS ADDRESS OPERATION
REGISTER CODE
REQUEST (-}
STATUS
REQUEST
- e STATUS
RESTONSE Losre PRODUCT REGISTER (INTERRUPT)

Figure 5-3.

3606 Data Channel

5-2

INPUT OUTPUT INSTRUCTIONS

Seven instructions govem input/output operations in
the 3600 system. These instructions establish oper-
ating modes within external equipments and provide
for transferring data between the storage and com-
munication modules. Provision is made for sampling
the status of operating conditions in the external
equipments, and for monitoring the progress of data
transmission.

The Conneci instruction must be used to connect
the external equipment to the 3600 system before data
transmission can be initiated. If various operating
conditions within the connected equipment are to be
specified, a Function instruction is executed. Affer
initial operating conditions have been established,
the Read or Write instruction may be executed to
transmit data into or out of the system automatically
and independent of the main program. In addition, the
Read or Write instruction specifies the address of the
control word which contains all other information
necessary to perform the operation; i.e., starting
address, word count, and operation code. While
input/output operations are in progress, the status of
data transmission or operating conditions within the
extemal equipments may be sampled by using the
Copy Status instruction. The Channel Clear instruc-
tion is used to clear the designated channel at the
start of a program or in the event of a program fail-
ure. For direct entry of keyboard or punched card
information into the 3604, the Input to A instruction
is used.

47 » 38 24 23 i8 17 21 98 [

% 5
CHANNEL / / CONNECT CODE
%/

OPERATION REJECT JUMP

CODE ADDRESS
e Y ——
£=74.C n x EQUIP. UNIT

c

An external equipment is connected to the system
via a data channel and communication module. The
upper octal digit of the channel designator ‘x’

specifies one of four possible communication modules.

The lower digit of ‘x’ specifies one of the eight
possible data channels attached to the communi cation
module. Data channels are numbered in octal as:

Channels 0 - 7
Channels 10- 17

Communication Module 0
Communication Module 1

Channels 20 - 27
Channels 30 - 37

Communi cation Module 2
Communication Module 3

Up to eight equipments may be attached to each
data channel. The desired equipment is specified
by the upper octal digit of the Connect code ‘c’.
The equipments are numbered 0 through 7 (octal).
Each equipment, via an eight position switch located
on the equipment, may assume any one of the eight
possible equipment codes.* Certain equipments,
such as magnetic tape controllers, control more than
one unit. Anumber specifies each unit. Unit numbers
are the three lower octal digits of ‘c’ and may range
from 0008 to 777g. Normally, the legitimate range of
unit numbers is from 000g to 017g.

The Connect instruction connects an equipment and/or
unit to the computing system by specifying:

1) The 6-bit channel code (one of 32 channels

divided among four communication modules).

2) The 3-bit equipment code (one of eight equip-
ments assigned to the selected channel).

3) The 9-bit unit code, if any (one of 512 possible
units; 16 possible unitsin all ordinary systems).

When the Connect instruction has been executed:

1) The Function instruction may be used to
establish various operating modes within the
equipment, if desired, and

2) The Read or Write instruction may be executed
to fransmit data from or to the designaied equip-
ment.

The external equipment remains connected until
another Connect instruction is executed for the
same channel , or the Clear Channel instruction is
executed. Only one equipment may be connected to
a channel at any one time. All 32 channels may have
an equipment connected, and all may be active at
Thus, 32 equipments may be simultaneously
communicating with the 3600 system.

once.

Under certain conditions, it may not be possible to
connect the designated equipment. When one or
more of these conditions occurs, a Reject signal is
sent to the 3604, and a jump is effected to the address

*If the operator has selected the same octal equipment number for more than one equipment on a particular channel, a
Connect instruction will connect each equipment. Subsequent Read or Write instructions will reference each connected
equipment resulting in loss of data or in a program malfunction.

5-3

specified by the 15bit reject jump address. This
address will be within the bank specified by the
Program Address Bank regi ster.

A Reject signal will be sent to the 3604 only under
one or more of the following conditions:

1) Channel Busy: The selected channelis currently
performing a Read or Write operation.

2) Unit Unavailable: The unit referenced is in use
by another data channel. This may occur only
if an equipment is multi-channel (such as a
magnetic tape controller).

3) False Reference: When the 3604 receives no
response within 100 usec, it generates its own
Reject signal and performs the jump. This
case may occur if the referenced equipment is
not attached to the specified channel or the
equipment is inoperative.

The program may determine whether a reject is
internally or externally generated by examining bit
07 of the Interrupt register. This bit is set whenever
an internal reject occurs.

47 3938 2423 1817 12 n [}

7
CHANNEL %

OPERATION REJECT JumP

FUNCTION CODE
CODE ADDRESS /
%
v e v N ——1 | —
f:74.0 n x ¢

The Function instruction specifies operating condi-
tions within an external equipment or a condition on
which interrupt will occur. This instruction contains
a 12-bit Function code ‘c’ which specifies operating
conditions. If the upper bit of channel designator
x’ = 0", the Function code ‘¢’ is sent to the ex-
ternal equipment connected to channel ‘x'. A list of
codes for each external equipment is included in its

associated chapter.

The Function code ‘c’ is sent to the data channel if
the upper bit of channel designator ‘x’ = ““1’*. The
codes to which the channel will respond are as
follows:

Bit 23

74.1 n 1x 0001 Stop Channel Activity

1. Selects data channel x.

2. Cuts off any [/0 operation in
progress.

3. Does not clear any registers.

4. Does not disconnect equipment.

5. Contents of the operating reg-
isters may be sampled by means
of the Copy Status instruction,
These register contents may be
stored in the form of a Control
Word. A Read or Write instruc-
tion containing the address of
this new Control Word will cause
the truncated 1/0 operation to
resume at the point at which it
was cut off.*

§— Bit 23
74.1n 1x 0002 Select Interrupt on End of Chain

1. Selects data channel x.

2. Data channel interrupts main
program in 3604 when current
Read or Write operation is com-

fos s

pleted and ne

specified.

—Bit 23
74.1n 1x 0004 Clear Interrupt on End of Chain

1. Selects data channel x.

2. Removes interrupt selection by
clearing control FFs.

i Bit 23
74.1n 1x 0010 Select Interrupt on Error

1. Selects data channel x.

2. Data channel interrupts main
program in 3604 upon:
a. Storage reference fault
b. I/0 transmission parity error
c. Storage address parity error
d. Parity error on word from

storage.
y Bit 23
74.1 n 1x 0020 Clear Interrupt on Error

1. Selects data channel x.

2. Removes interrupt selection by
clearing control FFs.

NOTE
An Interrupt signal from o data channel may be dropped using the Clear Channel instruction, the master
clear facility, or by sending any Function code fo the data channel (with bit 23 = “‘1"’). The latter
method does not remove the interrupt selection, allowing Interrupt to occur again the next time the

condition is reached.

* In tape units, tape will move to the next inter-record gap after a Stop Channel Activity function. Thus a truncated

1/0 operation on tapes cannot resume where it was cut off,

5-4

if an equipment to which the Function instruction is
directed has not been previously connected to the
system via a Connect instruction, the Function code
cannot be recognized and a Reject signal will be
generated. The Reject signal causes the program to
jump to the 15bit reject jump address (within the
bank specified by the 3-bit Program Address Bank
register). The following conditions or combination of
conditions will result in a reject:

1) No Unit or Equipment Connected: The referenced
not recognize a Function instruction. I[f no
response is received within 100 usec, the Reject
signal is generated automatically by the 3604.

Illegal Code: The Function code ‘c’ cannot be
interpreted by the specified device. The Re-
ject signal is generated by the external equip-
ment after the attempted reference.

Equipment or Unit Busy or Not Ready: The
device cannot perform the operation specified by
‘c’ without damaging the equipment or losing
data. For example, a Write End of File code
will be rejected by a tape unit if the tape unit
i s rewinding.

Channel Busy: The selected data channel is
currently performing a Read or Write operation.
o

e

a7

3938

2423 1817 1518

OPERATION REJECT JUMP

CODE ADDRESS CHANNEL |BANK STORAGE ADDRESS
A v J\ v l\—,—l_."—-/__"—-/
=742 n x a m
N ,
CONTROL WOVRD ADDRESS
The Read instruction initiates input activity on

channel ‘x’. The 18-bit control word address ‘am’
is transmitted to the data channel.

Unless a Reject signal is generated, the main com-
puter program proceeds independent of activity
in the communication module. If a Reject signal is
generated, a jump is effected to the 15-bit reject jump
address (located in the storage bank specified by
the Program Address Bank register). A Reject signal
is generated by a Channel Busy (the designated
channel is currently performing a Read or Write
operation).

If no Reject signal is given, the control word (see
page 5-8) is fetched from the storage address
designated by ‘a m’. The control word and its asso-

ciated 18-bit address are placed in their respective
registers in data channel ‘x’.

This activity occurs simultaneously with main com-
puter program activity., The communication module
and the designated data channel control all activity
until the channel becomes inactive.

The diagram in figure 5-4 represents Read and Write
operations in flow chart form.

a7

2423

817 1518

OPERATION
CODE

REJECT JUMP

HANNEL
ADDRESS ¢

BANK STORAGE ADDRESS

\Z
f=74.3

\Z

n m

\ ;

v
CONTROL. WORD ADDRESS

The Write instruction initiates output activity on
channel ‘x’. The 18-bit control word address ‘a m’
is transmitted to the data channel.

Unless a Reject signal is generated, the main com-
puter program proceeds independent of activity in the
3602. If a Reject signal is generated, a jump is
effected to the 15-bit reject jump address (located
in the storage bank specified by the Program Address
Bank register). A Reject signal is generated by a
Channel Busy (the designated channel is currently
performing a Read or Write operation).

If no Reject signal is issued, the control word is
fetched from the storage address designated by ‘a m!
The control word and its associated 18-bit address
are placed in the proper registers in channel ‘x'.
This

activity occurs simultaneously with main

computer program activity. The 3602 and the designa-
ted data channel control all activity until the channel
becomes inactive.

3338 3635343332 2

S
_V_J_V-l
b SuB-OP
DESIGNATORS

a7

OPERATION
CODE

B..

INDEX

f=74.4

After a connection has been performed, the Copy
Status instruction may be used to determine if
the data channel is busy and to sample the status of
the external equipment, the control word, and the
control word address.

The status of the data channel and external equip-

ment may be examined via the 15-bit channel and
equipment status response.

The external equipment issues a 12-bit status code
(bits 00-11) to indicate operating conditions. (See
individual chapters for list of status codes.) This
code is presentat all times on lines from the external
equipment to the data channel to which it is connect-
ed. The upper bits are appended by the data channel
to indicate the following:
Bit 14 = **1"", Parity error has occurred.

Bit 13 = ““1"", Write operation is in progress.
Bit 12 = “1"’, Read operation is in progress.
The status of a data transmission may be determined
y
by examining the word count and the current address.

These quantities are held in registers in the datc
channel. Since the word count is reduced by one and

the address is increased by one for each data word
transmitted, the number of words processed in the
operation may be determined atany time by examining
these quantities. (The sum of the word count and the
current address is always constant.)

During chaining operations, it may be necessary to
examine the status of the control word address.
Since the control word address is always advanced
by one immediately after reading a new control word
from storage, the Control Word Address register always
contains the address of the next control word.

The Copy Status instruction determines if the data
channel is busy, and samples the status of the
external equipment, the control word and the control
word address. The three 1-bit designators determine
whether one, two, or all three quantities are to be
examined (See Table 5-1).

Table 5-1. Copy Status Designators

Designator | If a *‘0”’ fa"1"
s0 No operation | Places channel and equipment status bits in B2 if bis 0 or 7 these status
bits are lost.
s No operation | Places control word address in the lower order 18 bits of the Q register.
$2 No operation | Places control word in the A register in the following bit positions:
current address 00-17 control jump 44
word count 24-38 operation code 45-47

NOTES

1. The Busy bit of the Status Response (bit 01) is the logical OR combination of the Read In Progress
(bit 12) and the Write In Progress (bit 13) from the data channel, and the Busy Condition of from the con-
nected equipment. Bit 01 becomes ‘1"’ as soon as the Read or Write instruction is executed, and stays
up until the extemal equipment has finished all activity and is ready to perform another operation.
Bits 12 and 13 come up as soon as the respective instruction is executed and drop when the data
channel becomes inactive. The extemal equipment does not become busy until the data channel has
fetched the control word and initiated the operation, but may remain busy for some time after the data
channel becomes inactive. This is shown in the following diagram.

/ READ OR WRITE INSTRUCTION EXECUTED

BIT 12
STATUsS | OR
RESPONSE | BIT I3

BIT OI L

-

1
TIME REQUIRED FOR EQUIPMENT

TO BECOME READY TO PERFORM
ANOTHER OPERATION

BUSY CONDITION OF I

CONNECTED EQUIPMENT |

< N

TIME REQUIRED TO FETCH CONTROL
WORD AND INITIATE OPERATION

ot

2. The Copy Status instruction will hang up if used to examine the control word during a series of
control word jumps. If the 3604 executes a Copy Status to examine the Control Word while the data
channel is in the process of fetching a new control word, the 3604 will not be allowed fo complete the
instruction until the new control word has been entered into the data channel registers. During a series
of jump operations, the contents of the Control Word registers in the data channel are continuously
changing. A Copy Status instruction executed at this time will be automatically repeated as long as
the jump operations continue; therefore, if the jump operations are proceeding in a ring, the Copy Status
instruction will remain hung up indefinitely.

3. In systems containing multi- channel peripheral equipment, a Connect code from a data channel may
be rejected by an equipment because it is busy, reserved, or otherwise occupied by another data chan-
nel. The equipment will, however, enable its status lines to the channel which attempted to connect,
so that the reason for the reject may be determined using the Copy Status instruction. The status lines
remain enabled to that channel until it attempts to connect another of its equipments.

5-6

%*

*
BIT TRANSLATIONS :

BIT
BIT
BIT
BIT

REFER

44 = JUMP

45 = TRANSMIT

46 = END OF RECORD

47 = CHAIN

TO CONTROL WORD DESCRIPTION

FOR DEFINITIVE TRANSLATIONS.

EXECUTE EXECUTE
WRITE READ
INSTRUCTION INSTRUCTION
CHANNEL) YES REJECT YES /CHANNEL
8U | SIGNAL TO BUSY?
3604
NO NO
REPLY
SIGNAL TO
3604
SET SET
WRITE READ
ACTIVE ACTIVE
SET CONTROL
WORD ADDRESS
IN CONTROL
WORD ADDRESS
REGISTER
READ CONTROL WORD
FROM STORAGE AND
PLACE (N CONTROL
WORD REGISTER.
ADD | TO CONTROL
WORD ADDRESS TRANSFER 18— BIT
STARTING ADDRESS

IN
GCONTROL WORD:

IS BIT 44 = (?

IN CONTROL WORD
TO CONTROL WORD
ADDRESS REGISTER

* %
LOAD

E3 3
THE AUTO LOAD OPERATION

PROVIDES FOR LOADING STORAGE
WITH INFORMATION FROM A
GIVEN EXTERNAL EQUIPMENT
VIA CONSOLE CONTROL .

1) MASTER CLEAR
2) EXECUTE CONNECT
3) EXECUTE FUNCTION

l

1) SET WORD COUNT TO
40000

8
2) SET READ ACTIVE
3) SET BIT 46= |
4) SET BIT 45=

WRITE

READ

N
CONTROL WORD]
IS BIT 45217

READ J

DATA WORD
FROM STORAG

l(_

ADD | TO
CURRENT ADDRESS,|
SUBTRACT | FROM

WORD COUNT

!

DISASSEMBLE 48— BIT
DATA WORD INTO FOUR
12— BIT BYTES AND
TRANSMIT TO
EXTERNAL EQUIPMENT

CLEAR
READ /WRITE
ACTIVE

Figure 5-4. Read and Writ

5-7

e Operations

ASSEMBLE FOUR |2-
BIT BYTES INTO48-
BIT DATA WORD

YES

IN
ONTROL WORD!
IS BIT 45=1?

STORE DATA WORD

ADD
CURRENT
WORD COUNT

1 T0
ADDRESS-
SUBTRACT | FROM

a7 3938 2423 1817 o

— N
f=74.5 x

The Clear Channel instruction:

1) Disconnects all equipments from the specified
channel, preventing any communication until a
Connect instruction is executed.

2) Disconnects all units within an equipment.

3) Clears the channel control word to its original
state; i.e., a control word containing all zeros.
This cuts off any data transmission in progress.

4) If channel 408 is specified (a non-existent
channel), all channels are cleared.

This instruction assures a cleared channel prior to
use when the previous condition of the channel is

unknown, or removes a hang-up condition caused by

a malfunction.

23 1518 o

e -

e
1=74.6

The Input to A instruction enters a single byte into
the cleared A register from an external equipment.
Note that the A register is cleared before the byte
is placed in A. [f successive Input to A operations
are programmed, the contents of A must be stored
after each operation or the succeeding Input to A
instruction will clear A and information will be lost.
A switch on the maintenance section of the console
selects the equipment to be used. The following
equipments may be used with the Input to A instruc-
tion:

1) Keyboard: 6-bit byte entered into positions 0
through 5 of the A register.

2) Card Reader: 12-bit byte entered info positions
0 through 17 of the A regi ster.

23 1514 o

OPERATION

PERAI
CODE OPERAND

\—___v__——l
£=74.7 y

Certain special functions may be accomplished in
the 3600 computing system with the addition of an
algorithm module. The 3604 computation module is
equipped to:

1) Receive command signals from the algorithm
module.

2) Send certain signals to the algorithm module.

3) Send (continuously) the upper address portion
of the U000 register to the algorithm module.

4) Receive information from the algorithm module
(information received by the 3604 is placed in
index register BS).

The Perform Algorithm instruction transmits a Begin
Algorithm signal to an algorithm module. The 15-bit
‘y’ portion of the instruction activates a combination
of fifteen lines connecting the 3604 to the algorithm
module. (Refer to the appropriate Algorithm Manual
for ‘y’ values.) The 3604 ceases all activity (other
than that noted above) and gives total control of the
system to the algorithm module.

I1f this instruction is executed and no algorithm
module is attached to the 3604, the following occurs:

1) If the Illegal Instruction Fault bit in the In-
terrupt Mask register is set, and interrupt is
active, interrupt occurs.

2) If the Illlegal Instruction Fault bit in the In-
terrupt Mask register is not set, this instruction
is a pass (do nothing) instruction.

CONTROL WORD

47 454443 39 38 24 23 1817 1514 [¢]
OoP.
coDE UNUSED, WORD COUNT UNUS?BANK STORAGE ADDRESS
f] w a m
\ /
CONTROL vV
JUMP STARTING ADDRESS

All data transmission between the 3600 system and
external unitsis governed by control words associated
with each data channel. The control word specifies
the number of data words to be transmitted into or
out of the system, the starting address in storage for
the list of words, and eight possible operating modes
for the input or output activity.

The control word, prior to the input or output opera-
tion, is located in one of the storage modules. lts
location is designated by an 18-bit control word
address. A Read or Write instruction transmits the
18 -bit control word address to the data channel. The
control word specifies an 18-bit starting address
‘a m’ from which the first output word will be read,
or in which the first input word will be stored. A
15-bit word count ‘w' specifies the number of data
words to be transmitted. Any Read or Write instruc-
tion specifying a control word in which the word
count is zero will be treafed as a pass (do nothing)
instruction, except as noted under chaining. The
conirol word is fetched from storage and the starting
address, word count operation code, and the incre-
mented control word address are placed in their re-
spective registers within the designated data channel.

When the current operation is complete (word count
is zero), the data channel:

1) Reads another control word from storage (if
chaining is selected), or

2) Halts the input or output activity.

The word count must be a value such that the sum of
the word count and the lower order 15 bits of the
sfarfing] address do not exceed 2'°. A sum greater
than 219 exceeds the capacity of the designated
storage module. The last address which can be
referenced in an input or output operation is address
77777. 1% the word count is not reduced to zero when
address 77777 is referenced, the next word written
into or read from storage will reference address
00000 (within the same storage module). Subsequent
data words are transmitted to or from consecutive
storage locations in the normal manner.

If a return to address 00000 is not desired, the word
count must be such that it is reduced to zero when
address 77777 is reached. |f additional input or
output data is to be processed, chaining may be
effected to fetch a new control word.

Before examining the 3-bit operation code ‘f’ in the
control word, the 1-bit designator (bit 44) is examined.
This bit provides for a contro! jump. [f bit 44 is a
““1"’", the following operations occur:

1) The 3-bit ‘' portion is not interpreted.

2) The address portion of the control word is
placed in the Control Word Address register.

3) A new control word is read from that address.

The 3-bit operation code ‘f' is specified by bits

* Refer to Record Gap definition on page 5-10.

47, 46, and 45 of the control word. Their individual

meanings are as follows:

Bit 47 = *“1", Chain
(When word count = zero, a new con-
trol word is fetched from storage and
the operation continues.)

Bit

S

~

=N (Laining na

~ + e
y enlining N7 S

Bit 46 =**1"’, End of record
(Operation terminates at end of record,
although word count may not be zero.)

Bit 46 = **0”’, End of record not selected

Bit 45="1", Transmit
(Send information to storage or to
external equipment.)

Bit 45 = “0’*, Skip
(The specified number of words are
read from the external equipment, but
are not sent to storage. Ifinformation is
being written from storage into the
external equipment, the words skipped
will be written as all ‘*0’s’’.)

The 3-bit operation code ‘f’ specifies eight possible
modes for a Read operation, and eightpossible modes
for a Write operation. These conditions are:

For a Read Operation:

f Operation

0 Skip ‘w’ words and terminate

1 Read ‘w’ words and terminate

2 Skip to end of record and terminate

3 Read ‘w words or to end of record and
terminate

4 Skip ‘w’ words and chain to next control word

5 Read ‘w' words and chain to next control
word

6 Skip to end of record and chain to next con-
trol word

7 Read ‘w’ words or to end of record and chain

to next control word

For a Write Operation:

‘f Operation

0* Write ‘w’ words of zeros, insert record gap
and terminate

1 Write ‘w’ words, insert record gap and term-
inate

5-9

2 Write ‘W’ words of zeros, insert record gap

and terminate

3 Write ‘w’ words, insert record gap and
terminate
4 Write ‘w’ words of zeros and chain to next

control word

5 Write ‘w’ words and chain to next control

6 Write ‘w’ words of zeros, insert record gap

and chain to next control word

7 Write ‘W’ words, insert record gap and chain

to next control word

The following definitions apply to the terms used in
the above description:

Skip

Read

(Transmit)

Write

Chain

The number of words specified by
the word count designator ‘w’ are
read from the external equipment,
but are not transmitted to storage.

The number of words specified by
‘w’ are transmitted to storage; the
first word of the list is stored in
the location specified by the 18-bit
starting address (lower order 18 bits
of the control word).

The number of words specified by
‘w’ are transmitted from storage to
the external equipment. The first
word of the list is read from the
storage location specified by the
18-bit starting address (lower order
18 bits of the control word).

If chainingis selected, the operation
specified by the operation code in
the control word is executed. The
number of words ‘w’ (or to the end
of record, as specified) are read,
skipped, or written, depending on
whether the operation is read or
write. A new control word is then
fetched from storage, and operation
continues without a halt. [f chain-
ing operations are to be per-
formed, the appropriate control
words must previously have been
stored in consecutive storage loca-
tions within the same storage
module.

NOTE

Record Gap

End of
Record

Terminate

In writing data on magnetic tape
with chaining not selected, the
number of words ‘w’ constitutes a
record. |f chaining is selected and
‘t7 = 4 or 5 everything written
under the control of the chain con-
stitutes a record. If chaining is
selectedand ‘f’ = 6 or7, the number
of words ‘w’ in each control word
constitutes a record; the chain may
contain several records. When all
data words in a record have been
transmitted, the Write signal drops,
causing the tape unit to write a
record gap.

When end of record is selected and
the word count is reduced fo zero,
before end of record is reached,
the Terminate or Chain operation
(whichever is selected) occurs. If
end of record is selected and this
condition is reached before the
word count reaches zero, the Ter-
minate or Chain operation occurs.

The operation terminates when the
word count is reduced to zero at end
of chaining, or end of record is
reached before the word count
reaches zero (Redd operation with
End of Record selected). This in-
activates the channel and removes
the console channel active indica-
tion,

INPUT/OUTPUT CHAINING

Data may be transmitted to or from several block
locations in storage by a process called chaining. |f
chaining is selected (by the appropriate operation
code in the control word), the programmer must pre-
viously have stored the correct control words in con-
secutive storage locations within the same storage
bank. After performing the input or output operation
on the first block of data (the number of data words
in the block is determined by the word count in the
control word), the second control word is read from
storage and the operation continues without interrup-
tion. A sample chaining operation is diagrammed in

figure 5- 5.

All blocks of data involved in the chaining operation must contain at least one word, except the final

block which may be zero words in length. Thus, a control word in which bit 47
chain operation must contain a word count of 00001 or greater.

- u-’n

specifying the

Any control word specifying the chain

operation in which the word count is zero constitutes an illegal condition and will result in a malfunction.

5-10

Problem:

Read one record of data from magnetic tape. Break this record into three portions and store in three non-
consecutive block locations in storage. The record is 40 data words in length. The first portion is 15 words,
the second portion is 15 words, and the third portion is 10 words.

FROM MAIN PROGRAM

v LOCATION CONTROL WORDS IN STORAGE

READ 5 WORDS OF DATA

CONNECT & FUNCTION 0 00200 & CHAIN. 3 50000
INSTRUCTIONS ESTABLISH ol el R
INITIAL OPERATING Reaol) 1D wWioRDD Ur URA

CONDITIONS. 0 00201 & CHAIN. 4 10200
READ 10 WORDS OF DATA

0 00202 & TERMINATE. 7 20300

READ INSTRUCTION PLACES

Ist CONTROL WORD (LOCATED AT
ADDRESS 0O 00200) IN DATA
CHANNEL REGISTERS.

3604

3602/3/6

PLACE 15 WORDS OF DATA FROM
TAPE IN CONSECUTIVE STORAGE
LOCATIONS BEGINNING AT ADDRESS
3 50000.

CHANNEL

WORD COUNT =0; CHAIN. READ 2nd
CONTROL WORD FROM STORAGE
LOCATION O 00201 AND PLACE IN
DATA CHANNEL REGISTERS.

INACTIVATED
& CONSOLE
INDICATION
REMOVED.

PLACE |5 WORDS OF DATA FROM
TAPE IN CONSECUTIVE STORAGE
LOCATIONS BEGINNING AT ADDRESS
4 IO?_OO.*

WORD COUNT =0
CHAINING NOT SELECTED.
TERMINATE

WORD COUNT = O; CHAIN. READ PLACE |0 WORDS OF DATA FROM
3rd CONTROL WORD FROM STORAGE TAPE IN CONSECUTIVE STORAGE
LOCATION O 00202. AND PLACE LOCATIONS BEGINNING AT ADDRESS

IN DATA CHANNEL REGISTERS. 7 20300.

% NOTE : THOUGH THE CONTROL WORDS MUST BE LOCATED
{N CONSECUTIVE LOCATIONS WITHIN THE SAME
STORAGE BANK, BLOCKS OF DATA [N THE CHAINING
PROCESS MAY BE IN DIFFERENT STORAGE BANKS.

Figure 5-5. Chaining Operation

5-11

AUTO-LOAD

The auto-load feature provides a means by which in-
structions or data contained on an external storage
medium may be automatically loaded into storage in
the 3600 system. The operator can specify the channel
and equipment to be connected, and the function to
be executed by means of switches on the 3604 chassis.

Pressing the Auto-Load switch on the console initiates
the following sequence of operations:
1) Performs internal and external master clear.
2) Connects the channel, equipment and unit as
specified by the Auto-Load switches on the 3604
chassis.
3) Performs the function specified on the Function
switches,
4) Begins a Read operation; the starting address
is always 0 00000, the word count is 40,0008. The
Read operation continues until 40,0003 words are
read or until End of Record.
5) After completing the Read operation, execution
of the program automatically begins at address

0 00000.

Any external storage medium may be auto-loaded, in-
cluding magnetic tape, disc file, and punched cards.
The magnetic tape produces an End of Record signal
after each record. The disc file produces an End of
Record signal at the end of a segment (a segment is
thrity-two 48-bit words). In the case of punched cards,
each individual card constitutes a logical record. If
several cards are to be auto-loaded, the first card
must contain a ‘‘loader’’. This is a programmed Read
instruction covering the remaining cards.

SEQUENCE OF STEPS
IN READ AND WRITE OPERATIONS

The order in which activity progresses during /0
Read and Write operations is presented in the follow-
ing outline:

I. The program must execute a Connect instruction.
The equipment remains connected until cleared
or until another Connect instruction is executed
for the same channel.

A. This instruction directs the 3604 to send a
6-bit code to select the channel, a 12-bit
Connect code to select the external equip-
ment, and a Connect signal.

1. The é-bit Channel code contains one extra
bit since only 5 bits are necessary to
select one of the 32 possible channels.

5-12

The lower 3 bits of the 5bit code select
one of eight data channels and the upper
2 bits select one of four communication
modules, thus specifying only one of 32
possible channels.

The 12-bit Connect code is composed of
a 3-bit Equipment code and a 9-bit Unit
code. The 3-bit Equipment code selects
one of the eight equipments which may be
attached to the selected channel. The
9-bit Unit code provides for selecting one
of the units controlled by a piece of
external equipment. As an example, if
the selected equipment is a magnetic
tape controller, the 9-bit code must
select one of up to 16 tape units which
may be controlled by it.

The Connect signal directs the external
equipment to examine the 12-bit Connect
code and to respond if selected. The
Connect signal stays up until a response
is returned. The response may be a Reply
or a Reject, depending on whether or not
the connection can be made.

B. The signals which may be produced in re-
sponse to the Connect signal are listed

below.

In all cases, the response drops as

soon as the Connect signal drops.

1.

The Reject signal means that the con-
nection cannot be made. It may be pro-
duced because of any or all of the follow-
ing reasons:

a. Channel Busy: The selected channel
is currently performing a Read or
Write operation. The channel indicates
this condition by a Busy signal which
is sent to the communication module.
[f the Busy signal is present, the com-
munication module returns a Reject to
the 3604 immediately upon receipt of
a Connect signal.

b. False Reference: The referenced
equipment or unit is not attached to
that channel. [f no response is re-
ceived within 100 psec, the Reject is
generated automatically by the 3604.

c. UnitUnavailable: Theunit iscurrently
being used by another source. This
may occur only if an equipment is
multi-channel, such as a magnetic
tape controller.

2. The Reply signal is returned to the
3604 when the instruction has been per-
formed, meaning, in this case, that the
selected external equipment has been
connected. It is generated by the ex-
ternal equipment and indicates that the
3604 is free to resume its main program.

1. The program may execute a Functicn instruction

if the designated equipment is capable of per-
forming more than one operation. For instance,
it the designaied equipment were a printer, the
Function instruction might specify the Double
Space mode.

A. This instruction directs the 3604 to send a
6-bit code to select the channel, a 12-bit
code to specify the function, and a Function
signal.

1. The 6-bit code selects the desired
channel; the external equipment has «ql-
ready been connected to that channel by
the Connect instruction.

2. The 12-bit Function code specifies the
operating conditions of the externdl
equipment. The various function codes
for each equipment are listed in the
associated reference manuals.

3. The Function signal directs the external
equipment to examine the 12-bit Function
Code. The Function signal stays up un-
til a response is received. The response
may be either a Reply or a Reject, de-
pending on whether or not the specified
operafion can be performed.

B. The signals which may be produced in re-
sponseto a Function signal are listed below.
In. all cases, the response drops as soon
as the Function signal drops.

1. The Reject signal means that the spec-
ified function cannot be performed. It
may be produced because of any or dli
of the following reasons:

a. lliegal Code: The Function code
cannot be interpreted by the specified
device.

b. Equipment or Unit Busy or Not Ready:
The device cannot perform the speci-
fied operation without damaging the
equipment or losing data.

¢. Channel Busy: The selected channel

is currently performing a Read or

5-13

Hi.

Write operation. The channel in-
dicated this by sending a Busy signal
to the 3602 communication module.
If the Busy signal is present,
the 3602 returns a Reject to the
3604 immediately upon receipt of a
Function signal.

d. No Eaquipment or Unit Connected:
The referenced device is not connected
to the system and cannot recognize

The Reiect

for this condition is generated by the
3604 after a 100 psec delay.

2. The Reply signal is returned to the 3604
when the instruction has been performed,
meaning, in this case, that the external
equipment has accepted the Function
code. |t is generated by the external
equipment and indicates that the 3604 is
free to resume its main program.

Equipment or
il r

a Function instruction.

The program may execute a Read instruction,
initiating input activity on the selected channel
and external equipment. During a Read opera-
tion, the 3600 system obtains information from
the selected external equipment. Examples of
external equipment of this type are magnetic
tape wunits or punched card readers. A Read
operation is initiated by the 3604 in response to
a programmed insfruction, but the remainder of
the operation is performed by the 3602 and the
data channel.

The operation is governed by a control word,
which is a 48-bit word that has been previously
stored in memory. The control word specifies
the starting address in memory, and the word
count, which is the number of words involvedin
the operation.

A. This insfruction directs the 3604 to send a
6-bit Channel Selection code, an 18-bit
control word address consisting of a 3-bit
bank address and a 15bit storage address,
and a Read signal.

1. The 6-bit code selects the data channel
to which the external equipment is con-
nected,

2. The 18-bit control word address specifies
one of eight possible storage modules by
means of the 3-bit bank address, and the
location within that storage module by
means of the 15-bit storage address.

3. The Read signal directs the data channel
to examine the 18-bit control word address
and to start the Read operation. The
Read signal stays up until a response is
received by the 3604. The response may
be a Reply or a Reject, depending on
whether or not the operation can be per-
formed.

B. The signals which may be produced in re-

sponse to a Read signal are listed below.
In all cases, the response drops as soon as
the Read signal drops.

1. The Reject signal means that the Read
operation cannot be performed because:

a. Channel Busy: The selected channel
is currently performing @ Read or
Write operation. This condition is
indicated by a Busy signal which the
channel sends to the 3602 communica-
tion module. If the Busy signal is
present, the 3602 returns a Reject to
the 3604 immediately upon receipt of
the Read signal.

2. The Reply signal indicates that the in-
struction has been performed and the
3604 is free to resume its main program.
If the Busy signal is not present when
the Read signal is received, the 3602
immediately returns a Reply to the 3604,

The 3604, having initiated and established
the Read operation, continues its main pro-
gram. The Read operation is performed by
the 3602 communication module and the data
channel, and is completely independent of
the main program in the 3604. The Read
operation proceeds as follows:

1. The control word is fetched from storage.
The control word address is transmitted
to the 3602 S register, is incremented by
1, aond returned to the Control Word Ad-
dress register in the data channel. The
starting - address and word count are
placed in their respective registers. Bits
47, 46, and 45 specify the operation code,
and bit 44 determines whether a control
word jump will occur.

2. The starting address in storage is speci-
fied by the lower 18 bits of the control
word.

3. The word count is specified by bits 24
through 38 of the control word. The 15-

bit word count limits the operation to a

5-14

maximum of 32,768 words, which is the
capacity of a single storage module.
Operations involving more words than
this must use the technique of chaining
to other modules.

The Read operation continues with the
data channel sending a Read signal and
a Data signal to the external equipment.
The Read signal stays up during the en-
tire operation. The Data signal indicates
that the data channel is ready to receive
a 12-bit word from the external equipment.
When the Reply signal is received from
the external equipment, the Data signal
drops.

The Reply signal is returned by the ex-
ternal equipment to the data channel.
In a Read operation, the Reply signal
indicates that the external equipment has
a 12-bit word of data ready for trans-
mission, and directs the data channel to
sample it. tJpon receipt of the Reply
signal, the data channel drops the Data
signal, causing the external equipment to
drop the Repliy signai.
a. The data channel transmits the Word
Mark signal to the external equipment
to indicate the completion of each 48-
bit word. The Word Mark signal comes
up simultaneously with the Dat a signal
for the final 12-bit byte and drops
when the Data signal drops. It is not
repeated until the data channel finishes
assembling another 48-bit word.

The data channel sends another Data
signal to the external equipment approx-
imately 0.1 psec after the Reply signal
drops. The operation continues until
four 12-bit bytes have been assembled
into a 48-bit word.

When the 48-bit word is assembled, the
data channel sends the storage address
and a Request to the 3602,

The 3602 obtains access to storage and
returns an Enabling signal to the data
channel. The word of information is then
stored in memory.

While the word is being stored, the 3602
increments the storage address by one
and returns it to the Storage Address reg-
ister in the data channel. The channel
then sends the complement of the word
count to the 3602 where it is incremented

by one and returned. By incrementing its
complement, the actual word count is
effectively reduced by one.

10. If the operation code does not specify
chain or end of record, the preceding
steps are repeated until the word count
in the data channel reaches zero. The
data channel then inactivates the ex-

temal equipment by dropping the Read
signal.

IV. The program may execute a Write instruction,
initiating output activity on the selected channel
and external equipment. During a Write operation,
the 3600 system sends informationto the selected
external equipment. An example of an external
equipment of this type would be a line printer.

A Write operation is initiated by the 3604 in
response to a programmed instruction, but the
remainder of the operation is performed by the
3602 and the data channel. The operation is
governed by a control word, which is a 48-bit
word that has been previously stored in memory.
The control word specifies the starting address
in memory, and the word count which is the num-
ber of words involved in the operation.

A. This instruction directs the 3604 to send a
6-bit Channel Selection code, an 18-bit con-
trol word address consisting of a 3-bit bank
address and a 15-bit storage address, and a
Write signal.

1. The 6-bit code selects the data channel
to which the external equipment is con-
nected.

2. The 18-bit control word address specifies
one of eight possible storage modules by
means of the 3-bit bank address, and the
location within that storage module by
means of the 15-bit storage address.

3. The Write signa! directs the data channel
to examine the 18-bit control word ad-
dress and to start the Write operation.
The Write signal stays up until the 3604
receives a response. The response
may be a Reply or a Reject, depending
on whether or not the operation can be
performed.

B. The signals which may be produced in re-
sponse to a Write signal are listed below.
In all cases, the response drops as soon as
the Write signal drops.

1. The Reject signal means that the Write

5-15

operation cannot be performed because:

a. Channel Busy: The selected channel
is currently performing a Read or
Write operation. This condition is
indicated by a Busy signal which the
channel sends to the 3602 communica-
tion module. If the Busy signal is
present, the 3602 returns a Reject tc

the 3604 immediately upon receipt of
the Write signal.

imdl andac Fhod o
TN W\ iy e

. .
Tramei -
g TeS i

ha 'Je.du <
1 N\Cpiy Ssignda

structionhas been performed and the 3602
immediately returns a Reply to the 3604.

The 3604, having initiated and established
the Write operation, continues with its main
program. The Write operation is performed by
the 3602 communication module and the data
channel, and is completely independent of
the main program in the 3604. The Write
operation proceeds as follows:

»o

1. The control word is fetched from storage.
The control word address is transmitted
to the 3602 S register, is incremented by
1, and returned to the Control Word Ad-
dress register in the data channel. The
starting address and word count are placed
in their respective registers. Bits 47,
46, and 45 specify the operation code and
bit 44 determines whether a control jump
will occur.

2. The starting address in storage is speci-
fied by the lower 18 bits of the control
word.

3. The word count is specified by bits 24
through 38 of the control word. The 15
bit word count limits the operation to a
maximum of 32,768 words, which is the
capacity of a single storage module.
Operations involving more words than
this must use the technique of chaining
to other modules.

4. The Write operation continues with the
data channel sending a Write signal to
the external equipment and a Request,
together with the storage address, to the
3602. The Write signal to the external
equipment stays up during the entire
operation. The Request signal drops
when the channel has been honored. The
3602 then obtains access to storage and
the 48-bit wordis fetched and entered into
the Assembly/Disassembly register in
the data channel.

5. While the word is being fetched, the 3602
increments the storage address by one and
retums it to thedata channel. The channel
then sends the word count to the 3602
where it is incremented by one and
returned. By incrementing its complement,
the actual word count is effectively re-
duced by one.

6. The channel sends the Data signal to the
external equipment. This indicates that
a 12-bit byte of the 48-bit word is avail-
able and directs the external equipment
to sample it. The Data signal drops as
soon as the Reply signal is received from
the external equipment.

a. The data channel transmits the Word
Mark signal to the external equipment
to indicate the completion of each 48-
bit word. The Word Mark signal comes
up simultaneously with the Data signal
for the final 12-bit byte and drops
when the Data signal drops. It is not
repeated until the data channel finishes
disassembling another 48-bit word.

7. The Reply signal is returned by the ex-
ternal equipment to the data channel. In
a Write operation, the Reply signal indi-
cates that the external equipment has
accepted the 12-bit word of data. Upon
receipt of the Reply signal, the data
channel drops the Data signal, causing
the external equipment to drop the Reply
signal.

8. The preceding operation continues until
the four 12-bit bytes of the 48-bit data
word have been transmitted to the external
equipment. The data channel then sends
another Request to the 3602 and another
48-bit data word is fetched from storage.

9. If the operation code does not specify
Chain, the operation ends when the word
count in the data channel reaches zero.
The data channel then inactivates the
external equipment by dropping the Write
signal.

TRANSMISSION RATE

The rate of transmitting each 48-bit word of /0
information is within the following boundaries:

Best Case
Worst Case

1.5 psec per word
60 psec per word

The best case refers to a situation in which only one
data channel is active and demanding access to
storage. [t must be communicating with an external
equipment of sufficiently high speed so that the rate
of information transfer is limited by the memory
cycle time.

The worst case is a situation in which one storage
module is providing storage capacity for the 3604 and
a total of 32 data channels, all of which are simul-
taneously active and demanding access to storage.
The 3604 has exclusive use of one of the five access
channels to storage; thus, 40 memory cycles are re-
quired to honor the 32 data channels and a total of
eight requests from the 3604.

All 1/0 information is transmitted on a word-by-word
basis. As soon as each word isdelivered, the storage
module disconnects itself and will not communicate
further with the selected 3602 until it has honored
its four remaining access channels. [n addition,
the 3602 will have no more communication with the
selected data channel until it has honored the seven
other channels which may be attached to it.

The storage module and the 3602 each contain a free-
running scanner which sequentially monitors their
communication channels. lfno other channels require
servicing, the scanners will return to their original
position after approximately 0.3 pusec.

STORAGE REFERENCE FAULT

Each 3602, like the 3604, has exclusive use of one
of the five access channels to storage. When one of
its associated data channels is ready to fetch or
store a word, the 3602 sends a Request signal to
storage. Requests to storage are honored sequen-
tially and, in the worst case, the 3602 willberequired
to wait approximately 6 psec. |f the request is not
honored within 10 psec, a Storage Reference Fault
has occurred. The 3602 then releases the data
channel and will accept requests from other data
channels. The data channel which was unable to
reference storage does not continue the operation.
It is left with its storage address incremented by 1,
but the word count remains the same as before the
attempted reference.

The Storage Reference Fault condition is shown by a
lighted indicator on the 3602 and can be removed
only by a master clear. This condition will cause
the data channel to interrupt if it previously has
been selected by the Function code.

5-16

PARITY

All transmissions of data between storage and ex-
temal equipment are accompanied by at least one
parity bit. In all cases, odd parity is used.

Parity Error

Bit 14 of the Channel and Equipment Status Response
is set to ‘1"’ if a parity error occurs. Interrupt will
occur on parity error if it has been selected by the
Function code.

I/O Transmission Parity Error

Each 12 bits of data transmitted between the data
channel and external equipment are accompanied by
a parity bit. During a Read operation, the parity bit
is generated by the external equipment and checked
by the data chanrel. During a Write operation, the
parity bit is generated by the data channel and
checked by the external equipment, which returns a
Parity Error signal to the data channel if an error
has occurred.

Storage Parity Error

The 18-bit storage address transmitted from the
3602 communication module to the storage module is
accompanied by a parity bit generated by the 3602.
The address and parity bit are checked by the storage
module, which returns a Storage Address Parity Error
signal to the 3602 if an error has occurred. The
3602, in turn, forwards the signal to the data channel.

Each 48-bit word of data transmitted between the
data channel and storage passes through the 3602.

During a Read operation, the 3602 generates three
parity bits which are stored together with the 48 bits
of data. During a Write operation, the 3602 examines
the 51 parity and data bits to determine if the pre-
viously generated parity condition is still present.
if an error has occurred, the 3602 sends a Parity
Error on Word from Storage Signal to the data channel.

The 48-bit word of data is divided into three portions
with a parity bit for each. These are:

Lower Address:
Upper Address:
Function:

bits 00 through 14

bits 24 through 38

bits 15 through 23, and 39
through 47

Control Word Parity Error

The Read or Write operation halts if a parity error
occurs during the fetching of a control word. The
data channel will not proceed further until the Control
Word Parity Error condition is cleared. This may be
done using the Clear Channel instruction, the master
clear facility, or by sending another Function code
to the data channel (with bit 23 = *1"").

Parity Error On Connect Or Function
Code

The external equipment does not connect and does
not return a Parity Error signal if a parity error
exists on the Connect code. |f a parity error exists
on the Function code, the connected equipment re-
turns a Parity Error signal but does not perform the
specified function.

5-17

CHAPTER VI
PARITY

In the 3600 system, parity bits are generated and checked to determine one of three possible
conditions: ‘

1) Etrors in data channel transmissions

2) Errors in storage address transmissions

3) Errors in storage transmission of data or instruction words
The presence of a parity error may indicate one or more of the above has occurred. Odd
parity is used; that is, the parity bit is set such that the total number of ones in the address

or storage word is odd.

In addition to the three cases listed above, the external equipment itself may generate and
check parity on its internal operations. Treatment of this case is discussed later in this

chapter. For operational details, refer to the chapter for the specific equipment.

PARITY GENERATION

Parity bits are generated in the following cases:

1) On each storage address transmitted to storage

from either the 3604 or the 3602.

2) On an instruction transmitted to storage from

either the 3604 or the 3602,

3) On a data word transmitted to storage from

either the 3604 or the 3602.

4) On each 12-bit byte of data transmitted to an
external equipment from the 3606 data channel.

5) On each 12-bit byte of data transmitted to a
3606 data channel from an external equipment.

Data Parity Generation

Each module (3604 or 3602) attached to a storage
access channel provides three parity bits along with
the 48-bit instruction or data word on a Write opera-

tion. The format of this word with its associated
parity bits follows.

5049 4847 3938 2423 15 i4 [

UPPER ADDRESS FUNCTION
(15 BITS} (9 BITS)

LOWER ADDRESS
{15 BITS)

FUNCTION
(9 BITS)
* ’\ ~———— LOWER ADDRESS

UPPER
ADDRESS PARITY BIT

2!

PARITY BIT

FUNCTION
PARITY BIT

A parity bit is generated by the 3602 or 3604 for
each of the three portions of the instruction or
data word.

Storage Address Parity Generation

Each 3604 or 3602 module attached to a storage
access channel must provide an address along with

the word to be stored or from which a word will be
read. A parity bit is generated by the 3604 or 3602
and accompanies the address to storage.

Parity Generation For Data Channel
Transmissions

Each 12-bit byte of data being transmitted into a
3606 data channel from an external equipment has
an accompanying parity bif. This parity bit is
generated by the external equipment. The 3606 data
channel generates a parity bit to accompany a 12-bit
byte of data being transmitted to an external equip-
ment.

PARITY CHECKING

Parity Checking On
Storage Address Transmissions

Each storage address transmitted to the 3609 storage
module from the 3602 or 3604 for a read or write
reference is checked (in the 3609) for a parity error.
If a transmission error has occurred, the 3609 re-
turns a Parity Error signal to the appropriate module.

Parity Checking On Storage Or
Transmission Of Data

When an instruction or data word is read from storage
by the 3602 or 3604, the module initiating the storage
reference checks for a parity error. The existence
of a parity error may indicate one or more of the
following:

1) A transmission error may have occurred either
when the word was initially transmitted to
storage or when the word was transmitted
from storage.

2) The information was garbled in the storage
read/write process itself.

Parity Checking On Data Channel
Transmissions

Each 12-bit byte of data being transmitted from an
external equipment into the 3606 data channel is
checked for a parity error by the data channel. A
parity error indicates a transmission error has
occurred. A 12-bit byte of data being transmitted
to an external equipment is checked for a parity
error by the external equipment.

PARITY ERRORS

When parity errors occur, the manner in which they
are handled depends on the module (3602, 3606 or
3604) to which the Parity Error signal is sent, or
in which parity is checked. Descriptions of parity
errors given below list the cases for each module.

Storage Address Parity Error

A storage address transmitted to the 3609 storage
module from the 3604 is checked for parity in the
3609. If a transmission error has occurred, the
3609 returns a Parity Error signal to the 3604, This
Parity Error signal lights an indicator on the console
and stops the computer.

6-2

A storage address transmitted to the 3609 storage
module from the 3602 is checked for parity in the
3609. If a transmission error has occurred, the
3609 returns a Parity Error signal to the 3606 via
the 3602. This Parity Error signal sets an 1/0
Parity Error bit in the data channel. If interrupt is
not selected to examine this bit, addressing opera-
tions will result in error. (Refer to following dis-
cussion on interrupt selection on 1/0 parity errors.)

Instruction Parity Error

An instruction word read from storage is checked for
parity in the 3604. [f an instruction parity error
occurs, the instruction will not be executed and
the computer will stop. An instruction parity error
lights an indicator on the console.

Storage Or Data Transmission Parity
Error

An operand read from storage by the 3604 is checked
for parity in the 3604, [f an operand parity error
occurs, and if the Operand Parity Error bit in the
Interrupt Mask register is set (assuming interrupt
is active), interrupt occurs. If the Operand Parity
Error bit is not set, interrupt does not occur and
operations using this operand will result in error.
An operand parity error lights an indicator on the
console, regardless of whether the Operand Parity
Error bit has selected interrupt.

A data word read from storage by the 3602 is checked
for parity in the 3602. If a parity error occurs,
the 1/0 Parity Error bit in the data channel is set.
[f interrupt is not selected to examine this bit,
operations using this data will result in error. (Refer
to following discussion on interrupt selection on
1/0 parity errors.)

Data Channel Transmission Parity
Error

Data channel transmission parity errors may occur
during several operations involving the data channel.
Each of these cases is outlined below.

1) If a parity error occurs in transmitting the
12-bit Function code to an external equipment
from the 3606, the following actions take place:

a) The function specified by the code is not
executed.

b) No external Reject signal is generated by
the external equipment; the Reject signal
is generated internally by the 3604,

2)

3)

c) No Reply signal is sent to the 3604 from
the external equipment.

d) A Parity Error Signal is sent to the 3606
data channel. This signal sets the 1/0
Parity Error bit in the data channel.

e) In order to initiate operation, either an
external master ciear {(from the console) or a
Clear Channel instruction must be executed
to clear the condition.

If a parity error occurs in transmitting the
12-bit Connect code to an external equipment,
the following actions occur:

a) The connection specified by the Connect
code is not effected.

b) No external Reject signal is generated by
the external equipment; the Reject signal
is generated internally by the 3604.

c) No Reply signal is sent to the 3604 from
the external equipment.

d)

No Parity Error signal is generated.

In order to initiate operation, either an
external master clear (from the console) or
a Clear Channel instruction must be per-

formed to clear the condition.

If a parity error occurs in transmitting a 12-bit
byte of data

data
ternal equipment, the following actions occur:

from the data channel o an ex-

a) A Parity Error signal is returned to the
3606 data channel. This Parity Error signal
sets the 1/0 Parity Error bit in the data
channel.

b) The Write operation continues as specified

by the control word unless interrupt on 1/0

parity error is selected. (Refer to following

discussion on interrupt section on |/0
parity errors.)

If a parity error occurs in transmitting a 12-bit
byte of data into the data channel from an ex-
ternal equipment, the following actions occur:

a) The |/0 Parity Error bit in the data channel

is set.

6-3

b) The Read operation continues as specified
by the control word unless interrupt on 1/0
parity error is selected. (Refer to following
discussionon interrupt selectionon /0 parity
errors.)

c) In order to initiate subsequent operation,

either an external master clear (from the

console] or a Clear Channel instruction
must be performed to clear the condition.

Interrupt Selection On 1/O Parity
Error

Interrupt may be selected to recognize parity errors
occurring in input/output operations. Selecting
interrupt causes the 1/O Parity Error bit in the 3606
data channel to be examined. The conditions which
set this bit are:

1) address parity error

2) data parity error

3) data transmission parity errors:
a) parity error on Function code
b) parity error on Connect code

¢) parity error on 12-bit data transmission to
external equipment from channel

d) parity error on 12-bit data transmission from
externai equipment to channel

Selecting interrupt to recognize one of these occur-
rences is accomplished as follows:

1) Execute Function instruction (74.1 X0010 -
Select Interrupt on Error).

2) Activate interrupt system via Internal Function
instruction (77.0 XXX22 - Set Interrupt Active).

When interrupt is selected and one of the above
conditions occurs, an interrupt routine is entered.
Within the interrupt routine, scanning the Channel
Product register isolates the cause of interrupt to
an 1/0 parity error. An 1/0 parity error constitutes
a major machine malfunction. In re-executing the
1/0 operations, if the error persists, call a main-
tenance engineer. (Refer to Interrupt chapter and
appendix on Interruptible Conditions and Faults.)

External Equipment Parity Error If a parity error occurs within the external equipment,
a Parity Error signal is retumed to the data channel

Parity errors within an external equipment (e.g., via one of the twelve status lines.
longitudinal parity error during a Read/Write opera-
tion on magnetic tape) are handled differently from Once the interrupt routine has isolated the cause of

the 1/O parity errors. These parity errors indicate a interrupt fo a particular equipment (via the Channel
difficulty in reading or writing information on the Product Register Jump instruction), a Copy Status
equipment’s medium. instruction must be executed to determine the parti-

cular condition causing interrupt (e.g., longitudinal
parity error). Refer to the Interrupt chapter.

6-4

CHAPTER ViI
CONSOLE

The basic 3600 computing system includes a 3601 console. The console, connected to the
3604 computation module and a 3606 data channel, contains switches for operating and main-
taining the system, displays of register contents, and an electric typewriter for input to A
and output operations.

The console is divided into two areas, one for operating the system and one for maintenance.

Figure 7-1. 3601 Console

7-1

MAINTENANCE SECTION

The maintenance section of the console, with its indicator panels and switches, is shown in

figure 7-2.

OPERAND BANK

REGISTER INDEX REGISTER

ARITHMETIC REGISTER

INSTRUCTION BANK

REGISTER PROGRAM ADDRESS COUNTER

INSTRUCTION REGISTER

Blolalolojola

\i
/ BREAKPOINT ADDRESS
BREAKPOINT SWITCHES

ADDRESS SELECTOR
SWITCH

DISPLAY SELECTORS

INSTRUCTION FORMAT DISPLAY PANEL

ARITHMETIC REGISTER
[e]]

INDEX REGISTER

LOWER
INSTRUCTION

OPERAND BANK

REGISTER INDEX REGISTER

ARITHMETIC REGISTER

PUSH BUTTONS PUSH BUTTONS ISH BUTTONS
NSNS RN NSNS OO T O T T O L T T T T T T T
w] [m] (]
INSTRUCTION BANK
REGISTER PROGRAM ADDRESS COUNTER INSTRUCTION REGISTER
PUSH BUTTONS PUSH BUTTONS PUSH BUTTONS
[mmn) OO ITITTs OO T T T T T T T T T
o a a [m]] a
CARD TEST pisc. SWEEP STEP
ADVANCE £
INPUT P HODE SELECTIVE | SELECTIVE | SELECTIVE EXTERNAL | INTERNAL rop
sToP 3 | sTop 2 | sToP 1 CLEAR | CLEAR stof o
NORMAL NORMAL NORMAL NORMAL NORMAL

% SHIFT CONTROL

Figure 7-2. Maintenance Section of Console

Register Displays

Six indicator panels on the maintenance section of
the console display the contents of all operational
registers. The light indicators within the panels
are lamp modules, each of which displays a single
octal digit. The lamps, in response to binary signals
from the computer, display the register contents in
octal form*only when the computer is stopped; the

display is blank when the computer is running. Ex-
ceptions to this are the Operand and Instruction
Bank registers, the Program Address register, and the
Instruction register. The contents of these registers
are displayed at all times, whether the computer is
running or stopped. (However, this display is binary
rather than octal. The Set push buttons beneath the
octal displays for these registers are illuminated.)
Registers displayed are iisted in table 7 -1.

*Lamp modules within the Set push buttons associated with each of the register displays provide binary displays in
addition to the octal displays of register contents when the computer is stopped. These binary displays are blank when

the computer is running (note the exceptions).

7-2

Table 7-1. Register Displays

No. of
. » P I
Register Octal Digits Display Pane
Program Address Register 5 Program Address Register display panel.
Operand Bank Register 1 Cperand Bank Register display panel.
Instruction Bank Register 1 Instruction Bank Register display panel.
Index Regi ster (B] - Bé) 5 The six index registers and the Shift Count register (Shift
Shift Count Register 3 Control) share the single Index Register display panel. The
register fo be displayed (B] - BS or SCR) is selected by
pressing the appropriate Selector switch.
Located at the left end of the Index Register display panel
is a light which indicates the register whose contents are
being displayed (B], B2, etc.).
Inst ruction Register 16 Instruction Register display panel.
M Register 16 These registers share the single Arithmetic Register dis-
A Register 16 play panel. The register to be displayed is seleciedby
Q Register 16 pressing the appropriate Selector switch.
D Register 16 Located at the left end of the Arithmetic Register display
Interrupt Register 14 panel is a light which indicates the register whose contents
Interrupt Mask Register 16 are being displayed (M, A, etc.).
Bounds Register 13

Instruction Format Display Panel

Located immediately beneath thelnstruction Regi ster
display is an Instruction Format display panel. This
panel lights words and/or phrases interpreting the
designator values in the instruction held in the
Instruction Register display panel. For example, if
the quantity 10 appears in the upper two octal digits
of the Instruction Register display panel, Operation
Code is illuminated in the identical positions of the
Format display panel. Thus, one can compare the
two indicator panels and readily determine the octal

7-3

value of a particular operation designator within the
instruction being displayed.

Also included in this display is an indicator which
is illuminated when the lower instruction of a pair
of 24-bi t instructions is being executed.

Switches and Push Buttons

Several switches appear on the maintenance section
of the console. These switches and their operations
are listed in table 7-2.

Table 7-2. Maintenance Switches

Switch No.

Mor L*

Function

Card Input 1

Pressing the Card Input switch selects the card reader
for an Input to A operation. This operation loads the
lower 12 bits of the A register with a 12-bit character
from the card reader. This switch is illuminated when
pressed.

Normal 1

Pressing the Normal switch (paired with the Card Input
switch) selects the console typewriter for an Input to
A operation and turns off the Card Input light. This
operation loads the lower 6 bits of the A register with
a 6-bit character for each typewriter key pressed.

Test Mode 1

Pressing the Test Mode switch places the computer in
the Test mode. The following then occurs:

1) Instructions are executed in the normal manner.

2) After 300 psec, the computer stops.

3) Approximately 50 psec after stopping, an internal
master clear is performed.

4) After 50 psec, instructions are again executed, be-
ginning with the instruction(s) at address 0 00000.
Steps 2 through 4 are repeated as long as the computer

is in Test mode.

Normal 1

Pressing the Normal switch removes the selection of
Test mode and turns off its light. When the Go switch
is pressed, computer operation proceeds in the normal
manner.

Disconnect Advance P 1

Pressing the Disconnect Advance P switch disables ad-
vancing the count in the Program Address register.
When the Go switch is pressed, the same instruction is
repeated. The Disconnect Advance P switch is illuminated
when pressed.

Normal 1

Pressing the Normal switch removes the selection made
by the Disconnect Advance P switchand turns off its light.
When the Go switch is pressed, the program steps will
be executed in normal sequential order.

Sweep Mode 1

Pressing the Sweep Mode switch places the computer
in Sweep mode. When the Go switch is pressed, instruc-
tions are read from consecutive storage locations in the
normal manner, but are not executed. The Sweep Mode
switch is illuminated when pressed.

Normal 1

Pressing the Normal switch removes the selection of
Sweep mode and turns off its light. When the Go switch
is pressed, instructions are read from storage and exe-
cuted in the normal manner.

* M - momentary, L - locking

7-4

Table 7-2. (Cont'd)

Switch No. Mor L Function

Pressing the Step Mode switch places the computer in
Step Mode 1 M Step mode. A step may be defined as that portion of a
program step executed between successive pressings of
the Go switch (where a program step is an instruction
pair or a single 48-bit instruction). Since steps can
differ, the possible cases are outlined below:

Case 1: Perform internal master clear; select Step
mode; press Go switch. In this case, the program step
(instruction word) is read from storage and the computer
stops before executing the instruction. Pressing the Go
switch again results in the following operations:

a) If indirect addressing is specified by the instruction,
the indirect address is determined and the computer
stops. The next time the Go switch is pressed, the
instruction is executed (if indirect addressing is not
called for again) and the computer stops after: (1)
reading (from the U register) the lower instruction of
an instruction pair, or(2) reading a new instruction
word from storage (if the previous instruction word
word was a 48-bit instruction).

b) If indirect addressing is not specified by the in-
struction, the instruction is executed and the computer
stops after (1) or (2) above.

Case 2: No internal master clear has been performed;
select Step mode; press Go switch. In this case, the fol-
lowing operations occur:

a) If indirect addressing is specified by the instruction,
the indirect address is determined and the computer
stops before executing that instruction.

b) If no indirect addressing is specified,the instruction is
executed and the computer stops after (1) or (2) above
in case 1.

The Step Mode switch is illuminated when pressed.

Normal 1 M Pressing the Nomal switch removes the selection of
Step mode and turns off its light. When the Go switch
is pressed, instructions are read from storage and exe-
cuted in the normal high-speed manner.

Selective Stop 1* 1 L Pressingthe SelectiveStop switches provides the manual
conditions for stopping the computer on the Selective
Selective Stop 2* 1 L Stop instruction (76, b =1, 2, 3, 5, 6 or 7). The Stop

switches are illuminated when pressed.
Selective Stop 3* 1 L

* An asterisk denotes switch is active when running or stopped; others are active only when stopped.

7-5

Table 7-2. (Cont'd)

Switch

Mor L

Function

External Clear

Pressing the External Clear switch master clears all
extenal equipment, the data channels to which they are
attached, all registers and controls in the 3602 and the
data channels, and registers and controls in storage.

Internal Clear

Pressing the Internal Clear switch master clears the
3604 computation module; i.e., all registers and most
control FFs.

Go

Pressing the Go switch initiates executibnof the instruc-
tion currently in the Program Control register if Master
Clear was not previously pressed. |f previous master
clear was performed, reads instruction from address
specified by current value of P and initiates execution
of that instruction.

Pressing the Go switch initiates execution of the pro-
gram at the rate governed by the paired Step Mode/
Normal switches (whichever has been pressed).

Stop *

Pressing the Stop switch stops the computer. When the
computer stops, selected operational registers are dis-
played on the console.

Display Selector
Switches (M, A,
Q, D, Interrupt,
Mask, and Bounds
Register Switches)

Pressing the particular register Display Selector switch
enables that register to be displayed in the Arithmetic
Register display panel when the computer is stopped.
Pressing the Selector switch also permits quantities to
be manually entered into the selected register or allows
clearing that register via the Set and Clear push buttons.

Display Selector
Switches (Index

Registers B1-B6
and Shift Count

Register)

Pressing the particular register Display Selector switch
enables that register to be displayed in the Index Reg-
i ster display panel when the computer is stopped. This
selection also permits quantities to be manually entered
into the selected register or allows clearing that register
via the Set and Clear push butions.

NOTE

The contents of the Shift Count register may not be
altered. Pressing the Set or Clear push buttons has
no effect when this register is being displayed.

* An asterisk denotes switch is active when running or stopped; others are active on ly when stopped.

7-6

Table 7-2. {Cont'd)

Switch No. Mor L Function

Set Push Buttons

Instruction Register 48 M The Set push buttons are located beneath the register
indicator panels such that each register indicator panel

Arithmetic Register 48 M has provision for manual entry. The Set push buttons
are binary switches numbered in the powers of 2, be-

Program Address ginning with zero. Each group of 3 is an octal digit.

Register 15 M Pressing a Set push button forces that particular stage
of a register to the set (or ‘“1""} state. The register to

Index Register 15 M be manually loaded must have previously been selected
by pressing oneof the register Display Selector switches.

Instruction Bank

Register 3 M The Set push buttons beneath the Instruction, Program
Address, Instruction Bank and Operand Bank registers

Operand Bank are illuminated while the computer is running.

Register 3 M

Clear Push Buttons

Instruction Register 5 M Pressing the Clear push button associated with the
register display panel clears (to “'0"") every stage of the

Arithmetic Register 1 M selectedregister. FiveClearpush buttons are associated
with various portions of the Instruction register. Press-

Program Address ing a particular push button results in clearing the

Register 1 M following:

Index Register 1 M 1) The entire register

2) Lower address portion
Instruction Bank 3) Lower operation code portion
Register] M 4) Upper address portion
5} Upper operation code portion

Operand Bank

Register 1 M

Breakpoint 6 L Six 8-position thumb-nail wheel switches can be set to

Address* octal addresses 000000 through 777777 (banks 0 through
7, addresses 00000 through 77777).

Breakpoint Address 1 L Breakpoint Address Selector switch is afour-position

Selector Switch*

switch permitting selection of:

a) Operand address
b) Instruction address
¢) Operand or instruction address

d) Off

Computer stops when breakpoint address and address
selected by Selector switch are equal.

* An asterisk denotes switch is active when running or stopped; others are active only when stopped.

7-7

OPERATOR SECTION

The operator section of the console, with its indi-
cator panels and switches, appears in figure 7-3.

Displays

By means of lights, the operator section of the con-
sole displays a single register, a variety of fault

conditions, and the activity of input/output opera-
tions. All displays on the operator section of the
console are active when the condition arises, whether
the computer is running or stopped. Conditions
indicated by console lights are listed in table
7-3. For definitive descriptions, of various fault
conditions, refer to the appendix on Interruptible
Conditions and Faults,

Table 7-3. Conditions Associated With Console Lights

Display Condition When [lluminated
D Register The 48-bit Flag (D) register is a binary display arranged in eight 6-bit
portions, roughly forming a square. The contents of this register are dis-
playedatall times. Nopush buttons are provided for entry into this register.
(However, the D register may be manually manipulated on the maintenance
section of the console.)
Input/Qutput The Input/Output Status display provides an indication of data channel

Status

activity by illuminating the channel number and the operation (input or
output) occurring on that channel (refer to figure 7-2).

Two’s Complement

Computer is in Two’'s Complement mode of operation.

Address Parity

Error

An error has occurred in transmitting an address from the 3604 to storage.

Interrupt Mode

Computer is in interrupt routine.

Interrupt Active

Interrupt system is enabled, permitting examination of selected interrupt
conditions in an interrupt routine when these conditions occur.

Bounds Fault Light

A storage reference has been attempted outside the bounds specified by
the contents of the Bounds register. Refer to Bounds register description,
chapter 1II.

Exponent Underflow
Light

An exponent underflow fault has occurred; in a Floating Point instruction,
exponent is < 2-10-7,

Exponent Overflow

Light

An exponent overflow fault has occurred; in a Floating Point instruction,
exponent is > 2101,

Arithmetic
Overflow Light

The result of an add or subtract operation exceeds the capacity of the A
register.

Divide Fault Light

An improper Divide instruction has been executed.

Shift Fault Light

Shift count is greater than 608 or 1408 (depending on whether 48 or 96-bit
register was to be shifted).

7-8

6-L

8josuo) jo uoijdag iojpsadQ ‘g -z vanbig

SYSTEM STATUS INTERCHANGE STATUS D REGISTER
TERM-
NATOR NO INTERRUPT INTERRUPT wpur | oo [ourpur I weut {10 |outeur | mput |20 | outeur | meur |30 |oursur 47 (46 {43 |aa |02 [a2
STORAGE SYSTEM - — —1— - g~
POWER T MODE
FAULT |REFERENCE| ACTIVE meur o foutpur [ineur [i [outpur | weut |21 | oureur | meur |3t | outeur 41 {40 39 [38 (57 |36
- - - - —1— —
TWO'S | INSTRUG- |)\ oess | opERAND weyr oz fourpur I iNput (12 | output | weut | 22 | outeur | meur | 32 [outeur 35 [3a |3 f22 |3 |30
C:“E”::',E PI';:V PARITY | PARITY — -
leMERGENGY INTERLOGK MODE ERROR ERROR ERROR INPUT {03 | ouTPUT | INPUT [13 | ouTPUT | INPUT | 23 | cuTeuT | iNpPuT [33 [ouTPuT 29 |28 27|26 |25 |24
OFF BYPASSED BOUNDS 1604 STORASE |pRITHMETIC wput [o0a | aurrut | weut | 1a | oureut | meur | 24 [oureur | meur | 34 | outPuT 2|2z {2 |20 19 [
FAULT MODE FAuLT | OVERFLOW wpur [o5 | outeut | weut |15 | outeur | meut | 2s [oureur | mput | 38 | outeur w e fs [win]e
EXPONENT | EXPONENT | DIVIDE SHIFT weur | os |ourpur | meut |16 |outeur | meur {2 |outeur | weut | 36 | oureur 0|0]os]cs|or[os
UNDERFLOW| OVERFLOW | FAULY FAULY weuT |07 [outPur | wput |47 [outeur | weur |27 | oureut | meur |37 |ourpur o3 (040302} |00
SENSE SENSE SENSE SENSE SENSE SENSE
SWITCH SWITCH SWITCH SWITCH SWITCH SWITCH
6 5 4 3 2 ’
SELECTIVE SELECTIVE SELECTIVE
JUMP 3 . JUMP 2 JUMP |

o | ot | e | cotmnce | Penoneen | emmena | T
o[s ss]so]ss[sofar [cr e [os]os [o5]on [or [t [on [on oo Joo s |
52|52 |52 | 52 o100 [2 | | e o | on | 8 | | | 2 [v e | 2 | v |
5333 {53 [s s [sn on fsu [[s [ax o for for [os |ws | os [ou [o s |vs |vs
54 | 54|34 [sa|si2|8i2 [siz|s2]ca |ca|ca |oB oo joa |pa [re |pa |Piz|pi2 [Pz {Te |Ta | T4
$5 |88 |53 iss [53]5) |sdafs3for |0 [or {os ”7 09 |Ps (PS | S [Pr3ipi3(Pi3fTs [T8 T8
86 | 6 [S6 | 86 [814 | 514 ;I‘ #4102 J 02 (02 Joic 010 (00 | P [P8 |PE friairia [pia]| Te | Te |16
o [57 57] [0 [s o o5 | 03 o3 o {os o [| o7 [o7 s [oo | o7 |7
88 | s S8 |58 {3516 |816 |86 [f16 | D4 | D4 |Da Joi2 DI2 [D12 | Pe (P8 [P8 {Pi6 |Pi6 (P16 | To | Te |Ta
wewe, [[rewr. oo vewe. oo | vewn. [co] vewn. fco | e, [en| coun o
AUTO LOAD INTERRUPT
TYPE-IN

Table 7-3, (Cont'd)

Display

Condition When Illuminated

Instruction Parity

A parity error has occurred in reading an instruction from storage to be

Reference Light

Error Light executed in the 3604.

Operand Parity A parity error has occurred in reading an operand from storage.

Error Light

Storage Reference An attempt has been made to address a non-existent storage bank.

Fault Light

No Storage Indicates a deepend condition; computer has failed to complete an operation.

1604 Mode Light

Computer is in 1604 mode of operation.

Type In Light

Indicates an Input fo A operation is to be performed, either with the console
typewriter or the card reader. (If the card reader has been selected, the
Card Input switch will also be illuminated.)

Terminator Power

Fault Light

Teminator power has been lost or one side of the terminator power line
has been shorted to ground.

Temperature and Circuit Breaker Lights

Various cabinets of the system are equipped with
temperature sensing devices and circuit breakers to
insure operations proceed without harm to the equip-
ments.

Light indicators on the operator section of the console
monitor these conditions. [f the temperature in a
given cabinet exceeds the normal range, an amber
light comes on. [f the temperature reaches a point
which might harm the equipment, a red light comes on
and the computer halts.

When a circuit breaker in a particular cabinet trips,

light indicators for circuit breakers are illuminated
red and the computer halts.

An Interlock Bypassed switch is provided to override
stopping the computer in the cases outlined above.
Pressing the Interlock Bypassed switch: (1)allows
computation to proceed regardless of ambient temp-
erature conditions, and (2) lights the Interlock By-
passed light on the console.

Switches

Several switches appear on the operator section of
the console. These switches and their operations
are listed in table 7-4.

7-10

Table 7-4. Operator Switches

Switch No. Mor L* Function

Sense Switches** 6 L Each of the six Sense switches may be pressed to flag
an internal condition. Pressing a Sense switch places a
“1"" in its matching bit position of the Miscellaneous
Modes Selections register. The Sense switches are
illuminated when pressed.

Selective Jump 1** 1 L Pressing the Selective Jump switches provides the
manual conditions for executing a program jump on the

Selective Jump 2** 1 L Selective Jump instruction(75, b =1, 2, 3, 5, 6 or 7).
The Selective Jump switches are illuminated when

Selective Jump 3** 1 L pressed.

Auto Load** 1 M Pressing the Auto-Load switch provides for automatically
loading storage with information from a given externdl
equipment.

Manual Interrupt** 1 M Pressing the Manual Interrupt switch forces the com-
puter into an interrupt routine if:

a) The Manual Interrupt bit in the Interrupt Mask
register is set to ‘‘1'’, and
b) The interrupt system is active.

Interlock Bypassed** 1 M Pressing the Interlock Bypassed switch overrides stop-
ping the computer on reaching abnormal temperature
conditions. This switch is illuminated when pressed.

Emergency Off** 1 M Pressing the Emergency Off switch removes power
from all the system,

x

M - momentary, L - locking

** Denotes switch is active when running or stopped; others are active only when stopped.

CONSOLE TYPEWRITER

The 731 IBM Selectric typewriter (mounted on the
right wing of the console) is used as an input/output
device with the 3600 system. The typewriter is con-
nected directly to the computer and also to a 3606
data channel. The typeout speed is approximately 15
characters per second.

All input from the typewriter is done directly by the
Input to A instruction. Output operations with the
typewriter occur in the normal manner via the 3606
data channel and the 3602 communication module.
The input/output facilities of the typewriter are
entirely independent (see Input to A section, last
paragraph).

SWITCHES AND INDICATORS
Equipment Number Switch (0 -- 7)

The Equipment Number switch designates the type-
writer as equipment N. Bits 9, 10, and 11 of the
Connect code must match the octal setting of this
switch.

I/O Fake Reply Switch

This switch is used in ON position only during
maintenance. A Ready signal will be available on
the status lines only if this switch is in the OFF
position.

Figure 7-4. Console Typewriter

Transmission Parity Indicator

1)

2)

In a Connect code:

If a parity error occurs during output of a Con-
nect code, the red Transmission Parity Error
indicator on the console typewriter chassis
lights. The typewriter will not be connected
and no signals will be returned to the 3606 data
channel. This light will go out if an externdl
master clear or a Clear Channel instruction is
performed.

In a Function code:

If a parity error occurs during output of a Func-
tion code, the red Transmission Parity Error
indicator lights. A Parity Error signal is re-
turned to the 3606 data channel if the typewriter
is connected. This sets the 1/0 Parity Error
bit in the data channel. The desired function
will not be executed. The light goes out and
the Parity Error signal drops when an external
master clear or a Clear Channel instruction is
performed.

3) .During a Write operation:

If a parity error occurs during a Write operation,
the red Transmission Parity Error indicator
lights. A Parity Error signal is returned to the
3606 which sets the /0 Parity Error bit in the
data channel. The Write operation continues
without stopping. The light goes out and the
1/0 Parity Error bit is cleared when an external
master clear or a Clear Channel instruction is
performed.

Even if a parity error occurs in any of these cases,
an Input to A operation may proceed, or be initiated.

Connect Indicator

The white Connect light on the conscle typewriter
chassis lights when the typewriter is connected to a

data channel.

This light goes out when the type-

writer is no longer connected.

7-12

Typewriter On/Off Switch

The Typewriter On/Off switch is located on the
Selectric typewriter. This switch must be in the ON
position for any typewriter operation. The power for
the typewriter control logic is applied when the
system power is on.

Card Input Mode/Normal Switches

The pair of switches, Card Input Mode/Normal,
determines whether the card reader or the console
typewriter will have the use of the Input to A path.
The Normal switch selects the typewriter.

Type In Indicator

The Type In indicator is located on the operator
section of the console. When this light comes on,
the program has reached an Input to A instruction
and the Input to A operation may begin via the type-
writer.

CODES

The codes in table 7-6 are used for both input and
output operations. (See the Input to A section for
additional comments on the codes in table 7-6.) The
codes intable7-5are usedmainly in output operations.

Table 7-5. Connect, Function, and Status Codes

CONNECT

Connect Equipment N NXXX
FUNCTION

Set Interrupt On Abnormal Operation XXX1
Clear Interrupt On Abnormal Operation XXX2
Clear Interrupt XXX4
STATUS

Ready XXX1
Busy XXX2
Upper/Lower Case XXX4
End of Line XX4X
Type Parity Error 2XXX

Connect

Connect Equipment N (NXXX)

Bits 9, 10, and 11 of the Connect code must match
the octal setting of the Equipment Number switch.
If the switch setting and these bits do not agree,
the typewriter will not be connected. No signals will
be returned to the 3606 data channel. A new Connect
code not equal to NXXX clears a previous connec-
tion.

Function

Set Interrupt on Abnormal Operation (XXX1)

If bit O is present in the Function code (accompanied
by a Function signal), an Interrupt on Abnormal
Operation condition is established in the typewriter.
(In all discussion of codes, bit 0 is in the right-
most position, and bits are numbered from right to
left in ascending order.) This allows the typewriter
to send an Interrupt signal to the computer when
either or both of two conditions occur:

1} End of Line
The typewriter carriage has reached the right
margin of the line it is typing as indicated by
the right margin stop setting.

2) Type Parity Error
A parity error has occurred in the typewriter
logic. (See the Type Parity Error discussion
under Status Lines for additional comments.)

The Interrupt signal is transmitted on the line which
corresponds to the equipment number (N) of the
typewriter.

7-13

Table 7-6. Console Typewriter Codes

Lower Case Code Upper Case u Lower Case Code Upper Case
A 12 A
B 01 B 0 (zero) 43)
C 11 C 1 77 +
D 55 D 2 37 @
E 51 E 3 33 #
F 30 F 4 47 $
G 74 G 5 57 %
H 45 H 6 13 ¢
| 16] 7 53 & (and)
J 70 J 8 17 2 (asterisk)
K 15 K 9 07 (
L 41 L 1 ! 76 ©(degree)
M 72 M 32
N 31 N ' 52 "
0 42 0 ; 50 :
P 54 P » 14 ’
Q 10 Q / 44
R 56 R = 34 +
S 46 S Dash - 04 Underline _
T 75 T Space 60 Space
U 35 U Backspace 61 Backspace
\% 36 \% Tab 62 Tab
W 02 W C. R. 63 C. R
X 71 X u. C 64 u. C.
Y 40 Y L. C. 66 L. C.
z 73 YA

Clear Interrupt On Abnormal Operation (XXX2) Status

If bit 1 is present in the Function code, the Interrupt Ready (XXXT1)
on Abnormal Operation condition is cleared.
If status bit O is present, the console typewriter is
Clear Interrupt (XXX4) connected, the typewriter on/off switch is ON and
the Fake 1/0 Reply switch is OFF.
[f bit 2 is present in the Function code, the Interrupt

signal is cleared. Busy (XXX2)

If bit 1is present in the Status code, the typewriter
is doing one of the following operations:

7-14

1) Typing a character

2) Backspacing

3) Carriage return or tab
4) Shifting to upper case
5) Shifting to lower case

6) Processing a 00, 65, 67, or Correct Case code.
If one or both 6-bit frames of the 12-bit word
received by the typewriter during a normal out-
put (Write) operation equal 00, 65, or 67, nothing
is typed or spaced corresponding to that code.
The time interval required to process these
codes is approximately 3 psec. This time
interval also applies when an Upper/Lower
Case code is specified and the typewriter is
already shifted to the desired case.

Upper/Lower Case (XXX4)

If bit 2 is present in the Status code, the typewriter
is in upper case. Ifbit2is not present in the Status
code, the typewriter is in lower case.

End of Line (XX4X)

If bit 5 is present in the Status code, the typewriter
has reached the end of a line as indicated by the
right margin stop setting. During output operations
there is nothing to prevent typing beyond the right
margin stop. If this is done, the End of Line signal
will remain up only for a distance of 7+to 8 characters
beyond the right margin.

Type Parity Error (2XXX)

If bit 10 is present in the Status code, a type parity
error has occurred. This indicates some logic has
failed in the typewriter control and the character
typed is not necessarily the one specified by the
code. A type parity error can occur during an output
operation. The Type Parity Error signal drops when
an external master clear or a Clear Channel instrue-
tion is performed. It also drops if a Carriage Return
or Clear Interrupt Function code is received.

7-15

PROGRAMMING
Output

The generalorder of events when using thetypewriter
for an output operation via a 3606 data channel is:

1) Set tabs, margins, and spacing. Turn on type-
writer

2) Clear

3) Connect

4) Check status
5) Function

6) Write
Set Tabs, Margins, and Spacing

All tabs, margins, and paper spacing must be set
manually prior to the output operation. A tab may be
set for each space on the typewriter between the
margins.

Clear

There are two types of clears which may be used to
clear all conditions existingin the typewriter control.
These are:

1) External Master Clear
This signal is sent out on all data channels.
In the case of the typewriter, it clears all
functions, control logic, and an Interrupt signal
ifone exists. It also turns off the Transmission
Parity Error light on the 3606 and a Parity Error
signal if one exists.

2) Clear Channel Instruction
This instruction performs the same operation as
an external master clear, except it normally
only applies to one data channel.

Connect

The 12-bit portion of the Connect instruction (ac-
companied by a Connect signal) connects the type-
writer to a data channel. A Reply signal is returned
to the 3606 when the connection has been made.
There is no external reject under any circumstances.
The connection is cleared by a Clear signal or
another Connect code.

Check Status

The programmer may wish to check the status of the
connected typewriter before proceeding. This is
done with a Copy Status instruction. Status informa-
tion is returned to the data channel on five of twelve
status lines. The Bit Sensing instruction may be
used to determine the status of the connected type-
writer. If the programmer is certain of the status of
the typewriter, this operation may be omitted.

Function

The 12-bit portion of the Function instruction (ac-
companied by a Function signal) performs a certain
operation depending on the code. These codes are
listed in table 7-6. Since only 1 bit of the Function
code needs to be interpreted to perform a specified
operation, it is possible to combine operations using
one code. For example: XXXég = (XXX110)7 would
Clear Interrupt on Abnormal Operation and Clear
Interrupt.

Example:
XXX4 Clear Interrupt
XXX2 Clear Interrupt on Abnormal Operation
'XXX6 Clear both

Write

A Write instruction starts the output operation using
the codes listed in table 7-5. The upper 6 bits of the
12-bit data word received from the data channel are
translated and the character matching the code is
typed. Then the lower 6 bits of the code are trans-
lated, the character is typed, and a reply is returned
to the data channel.

The typewriter is automatically placed in lower case
at the beginning and end of every Write (output)
operation (upper case can still be selected when the
Write operation begins).

The typewriter keyboard does not have a lockout
during an output operation. If a key, space bar, etc.,
is accidently pressed during output, the typewriter
may miss a character or type something other than
the normal output character.

Input To A

When the typewriter is used for an [nput to A opera-
tion, the A register is initially cleared and 6 bits are
entered into bit positions O through 5 in the A reg-
ister. Nothing is entered into positions 6 through
47. Therefore, the A register cannot be used as an
assembly regi ster.

The order of events involved when using the type-
writer for an Input to A operation is:

1) Set tabs, margins, and spacing. Turn on type-
writer.

2) Press Normal switch (paired with Card Input
Mode switch).

3) Wait for Input to A indicator to light.
4) Begin Input to A operation.

After setting tabs, margins, and spacing, and turing
on the typewriter, press the Normal switch (paired
with the Card Input Mode switch). The indicator on
this switch lights when the typewriter is selected for
an Input to A operation.

When the Type In indicator lights, the program is
waiting for the Input to A operation and the operator
may enter information on the typewriter.

The mechanical operations, such as backspace,
carriage return, etc., enter their corresponding codes
into the A register. For example: shifting from lower
to upper case enters a 64g; shifting from upper case
to lower case enters a 66g.

The program may determine whether the typewriter
has the Input to A path by examining the Miscellan-
eous Modes Selections register. Bit 13 of this
register indicates which of the two switches (Card
Input Mode/Normal) has been pressed (refer to Mis-
cellaneous Modes Selections register description).

Note that the program may also monitor the status of
the typewriter during an Input to A operation by
connecting the typewriter on the data channel and
executing a Copy Status instruction.

An Input to A can occur during an output operation
when all of the following three conditions are met:

1) The typewriter is connected for
operation.

an oufput

2) The output is in progress; i.e., information is
being typed.

3) The main program in the computer encounters an
Input to A instruction.

When step 3 is reached, the information which is
being sent to the typewriter via the data channel will
be returned to the A register of the computer.

7-16

APPENDIX SECTION

APPENDIX |
NUMBER SYSTEMS

Any number system may be defined by two character-
istics, the radix or base and the modulus. The
radix or base is the number of unique symbols used
in the system. The decimal system has ten symbols,
0 through 9. Modulus is the number of unique quan-
tities or magnitudes a given system can distinguish.
For example, an adding machine with ten digits, or
counting wheels, would have a modulus of 1010,
The decimal system has no modulus because an
infinite number of digits can be written, but the adding
machine has a modulus because the highest number
which can be expressed is 9, 999, 999, 999.

Most number systems are positional, that is, the
relative position of a symbol determines its magnitude.
In the decimal system, a 5 in the units column re-
presents a different quantity than a 5 in the tens
column. Quantities equal to or greater than 1 may be
represented by using the 10 symbols as coefficients
of ascending powers of the base 10. The number

98410 is:
9 x 102 = 9 x 100 = 900
8x101=8x 10= 80
Mx100=4x 1= 1
98410

Quantities less than 1 may be represented by using
the 10 symbols as coefficients of ascending negative
powers of the base 10. The number 0. 59310 may be

represented as:

5x101=5x.1 = .5

+9x102=9x.01 = .09

+3x 103 =3 x.001 = .003
0.59319

BINARY NUMBER SYSTEM

Computers operate faster and more efficiently by
using the binary number system. There are only
two symbols, 0 and 1; the base =2. The following
shows the positional value.

.20 24 23 92
=32 =16 =8 =4

20

1 N
N —

=1 Binary point

The binary number 011010 represents:

0x25=0x32= 0
Ax2P=1x16=16
+1x23=1x 8=
+0x22=0x 4= 0
+1x2]:]x 2= 2
+0x20=0x 1= 0
2610

o)

Fractional binary numbers may be represented by
using the symbols as coefficients of ascending neg-
ative powers of the base.

71 22 23 24 27

Binary Point =1/2 =1/4 =1/8 =1/16 =1/32
The binary number 0.10110 may be represented as:

1x21=1x1/2 =1/2 =8/16
0x22=0x1/4 =0 =0
F1x23=1x1/8 =1/8 =2/16
1x24=1x1/16 = 1/16 = 1/16
11/1619

OCTAL NUMBER SYSTEM

The octal number system uses eight discrete symbols,
0 through 7. With the base 8 the positional value is:

gd g4 83 g2 gl g0
30,768 4096 512 64 8 1

The octal number 513g represents:

5x82=5x64 =320
+1x8'=1x 8= 8
+3x80:3x 1= 3

33110

Fractional octal numbers may be represented by

using the symbols as coefficients of ascending neg-
ative powers of the base.

g-1 g2 83 g-4
1/8 1/4 1/512 1/4096

The octal number 0.4520 represents:

4x81=4x1/8 =4/8 =256/512
+5x82=5x1/64 =5/64 = 40/512
+2x83=2x1/512 =2/512= 2/512

298/512 = 149/2561¢

ARITHMETIC

Addition and Subtraction

Binary numbers are added according to the following
rules:

0+0=0
0+1=1
1+0=1

1+1=0with acarry of 1

The addition of two binary numbers proceeds as

follows (the decimal equivalents verify the result):

Augend 0111 (7)
Addend +0100 +(4)
Partial Sum 0011
Carry 1
Sum 1011 (11)

Subtraction may be performed as an addition:

8 (minuend) 8 (minuend)
~6 (subtrahend) or +4 (ten’s comp. of sub.)
2 (difference)

2 (difference - omit carry)
The second method shows subtraction performed by
the “‘adding the complement’’ method. The omission
of the carry in the illustration has the effect of re-
ducing the result by 10.

One's Complement

The 3604 performs all arithmetic operations in the
binary one’s complement mode. In this system,
positive numbers are represented by the binary equi-
valent and negative numbers in one’s complement
notation.

The one’s complement representation of a number is
found by subtracting each bit of the number from 1.

For example:

11
-1001 9

0110 (one’s complement of 9)

This representation of a negative binary quantity
may also be obtained by substituting ““1's’’ for
“ols,7 and llols’, for l‘]fs”.

The value zero can be represented in one’s comple-
ment notation in two ways:

0000 > 00y positive (+) zero
1111 > 115 negative (-) zero

The rules regarding the use of these two forms for
computation are:

1) Both positive and negative zero are acceptable:
as arithmetic operands.

2) If the result of an arithmetic operation is zero,
it will be expressed as positive zero. The one
exception to this rule is when negative zero is
added to negative zero. In this case, the
result is negative zero.

One's complement notation applies not only to arith-
metic operations performed in A, but also to the
modification of execution addresses. During address
modification, the modified address will equal 77777g
only if the unmodified exceotion address equals

777778 and b = 0 or (BP) = 777773,
Two's Complement

The additive counter in the computer uses two's
complement arithmetic. An additive counter is a
register with provisions for increasing its contents
by one (P register). A two's complement counteris
open-ended; there is no end-around carry or borrow.

Positive numbers have the same representation in
both systems; negative values differ by one count.

Count Two’s Comp. Rep. One’s Comp. Rep.
+2 00010 00010
+1 00001 00001
0 60000 00000
-1 11 11110
-2 11110 11101

The difference in the representation of negative
values in these two systems is due to the skipping
of the all ““T's’’ count in one’s complement notation.
In the one’s complement system the end-around-
carry feature of the register automatically changes a
count of all “1’s” to all *“0’s”. (Note exception

under One's Complement.)

As an example, if the content of a subtractive counter
is positive seven (0111) and is to be reduced by one,
add the two’s complement expression of negative
one (1111) to 0111 as shown beiow. The resuit

is six.
0111

+1111
0110

Note that the two's complement expression for a
negative number may also be formed by adding one
to the one’s complement representation of the number.

Multiplication

Binary multiplication proceeds according to the
following rules:

0x0=0
0x1=0
1x0=0
1x1=1

Multiplication is always performed on a bit-by-bit
basis. Carries do not result from multiplication
since the product of any two bits is always a single
bit.
Decimal example:
multiplicand 14

12
partial products 28

14 (shifted one place left)
16810

multiplier

product

The shift of the second partial product is a shorthand
method for writing the true value 140.

Binary example:

multiplicand (14) 1110
multiplier (12) 1100
0000
0000 shift to place digits
partial products 1110 in proper columns
{1110
product (16819) 101010002

The computer determines the running subtotal of
the partial products. Rather than shifting the partial
product to the left to position it correctly, the com-
puter right shifts the summation of the partial pro-
ducts one place before the next addition is made.
When the multiplier bit is ‘1", the multiplicand is
added to the running total and the results are shifted
to the right (in effect, the quantity hasbeen multiplied

by 109).
Division

The following example shows the familiar method of
decimal division:

14 quotient

divisor 13 | 185 dividend
13
55 partial dividend
52
3 remainder

The computer performs division in a similar manner
(using binary equivalents):

1110 quotient (14)

divisor 1101 |]01'l]001 dividend
1101
10100 partial dividend
1101
1110 partial dividend
1101
11 remainder (3)
However, instead of shifting the divisor right to

position it for subtraction from the partial dividend
(shown above), the computer shifts the partial dividend
left, accomplishing the same purpose and permitting
the arithmetic to be performed in the A register. The

computer counts the number of shifts, which is the
number of quotient digits to be obtained; after the
correct number of counts, the routine is terminated.

CONVERSIONS

The procedures that may be used when converting
from one number system to another are power addition,
double dabble, and substitution.

RECOMMENDED CONVERSION PROCEDURES
(INTEGER AND FRACTIONAL)

Conversion Recommended Method

Power Addition
Power Addition
Double Dabbie
Double Dabble
Substitution

Binary to Decimal
Octal to Decimal
Decimal to Binary
Decimal to Octal
Binary to Octal

Octal to Binary Substitution

GENERAL RULES
*r; > rg: use Double Dabble, Substitution
r; < rf: use Power Addition, Substitution

r; = Radix of initial system

ri = Radix of final system

Power Addition

To convert a number from rj to rf (rj < rf), write
the number in its expanded r; polynomial form and

simplify using rf arithmetic.

Example 1 Binary to Decimal (Integer)
010 1119 =1 (24 +0(23) +1 (22 +1 (21) + 1 (20)
=1(16)+0(8) +1(4) +1(2) +1(1)
=16 +0 +4 +2 + 1
=2310

Example 2 Binary to Decimal (Fractional)
01017002 N +1 22 +023) +1(279
=0 +1/4 +0 +1/16
=5/1619

* r refers to the radix of the number system used.

Example 3 Octal to Decimal (Integer)
324g _ 5 (82) +2 (81) + 4 (80)
=3(64)+2(8) +4(1)
=192 +16 +4
=212y9

Example 4 Octal to Decimal (Fractional)
A4g =4 (871) +4 (872
=4/8 +4/64
= 36/6410

Double Dabble
To convert a whole number from r; torf (rj > rf):
1) Divide rj by rf using r; arithmetic.

2) The remainder is the lowest order bit in the
new expression.

3) Divide the integral part from the previous opera-
tion by rf.

4) The remainder is the next higher order bit in
the new expression.

5) The process continues until the division pro-
duces only a remainder which will be the highest
order bit in the rf expression.

To convert a fractional number from r; to ry:
1) Multiply rj by r§ using r; arithmetic.

2) The integral part is the highest order bit in
the new expression.

3) Multiply the fractional part from the previous
operation by ry.

4) The integral part is the next lower order bit
in the new expression.

5) Theprocess continuesuntil sufficient precision
is achieved or the process teminates.

Example 1 Decimal to Binary (integer) COMMON PURE NOTATIONS

45 + 2 =22 remainder 1; record 1 Decimal =
22 +2 =11 remainder 0; record 0 e;;ma ;nc;ng Octal
11+2=5 remainder 1; record 1 000 00
5+2=2 remainder 1; record] 01 00001 01
2+2=1 remainder 0; record 0 02 00010 02
1+2=0 remcinder 1; record 1 03 ooon 03
04 00100 04
101101
Thus: 4519 = 1011019 05 00101 05
Example 2 Decimal to Binary (Fractional) 06 00110 06
.25x2=0.5 record 0 07 00111 07
.5 x2=1.0; record 1 08 01000 10
.0 x2=0.0; record 0 09 01001 N
o010 10 01010 12
Thus: .25109 =.0107 11 01011 13
Example 3 Decimal to Octal (Integer) 12 01100 14
273 + 8 = 34 remainder 1; record 1 13 01101 15
34 -8 =4 remainder 2; record 2 14 01110 16
4 +8=0 remainder 4; record 4 15 o 17
421 16 10000 20
Example 4 Decimal to Octal (Fractional)
.55 x 8 =4.4; record 4
4 x8=3.2record 3
.2 x8=1.6; record 1 POWERS OF COMMON NUMBER SYSTEMS
- 0= 1]80-= 1] 100= 1
...... - 21 = 2 18l = 8] 10! = 10
22= 4]82-= 64 1102 = 100
Thus: .5519 =.431...g .431...
us: .5510 8 23 - 8 | 83-= 512103 = 1, 000
Substitution 4= 6|8d= 4,091104= 10, 000
, . _ 25= 32 {85= 32,768/10°= 100, 000
This method permits easy conversion between octal 26 = 64 |86 - 22 1441106 = 1. 000. 000
and binary representations of a number. [f a number 7 7 ! e
in binary notation is partitioned into triplets to the 2/= 128 |8/ = 2,097, 152
right and left of the binary point, each triplet may be 8= 256 |88 = 16, 777, 216
converted into an octal digit. Similarly each octal 29- 512
digit may be converted into a triplet of binary digits. 2102 1 024

Example 1 Binary to Octal

Binary = 110 000 . 001 010
Octal =6 0. 1 2

Example 2 Octal to Binary
Octal =6 5 0 . 2 2
1

7
Binary = 110 101 000 . 010 010 11

n1
Vo

p—

FIXED POINT AND FLOATING POINT
NUMBERS

Any number may be expressed in the form kBN,
where k is a coefficient, B a base number, and the
exponent n the power to which the base number is
raised.

A fixed point number assumes:
1) The exponent n =0 for all fixed point numbers.

2) The coefficient k occupies the same bit
positions within the computer word for all fixed
point numbers,

3) The radix (binary) point remains fixed with
respect to one end of the expression.

A 3604 fixed point number consists of a sign bit and
coefficient as shown below. The upper bit of any
3604 fixed point number designates the sign of the
coefficient (47 lower order bits). If the bit is ‘1”7,
the quantity is negative since negative numbers are
represented in one's complement notation; a ‘0"’
sign bit signifies a positive coefficient,

FIXED POINT FORMAT

4746 0

47 BITS

v]
v
COEFFICIENT
SIGN

BIT

The coefficient may be an integer or fraction. The
radix (binary) point, in the case of an integer, is
assumed to be immediately to the right of the lowest
order bit (00). In the case of the fraction, the point
is just to the right of the sign bit.

In many instances, the values in a fixed point opera-
tion may be too large or too small 1o be expressed
by the computer. The programmer must position the
numbers within the word format so they can be re-
presented with sufficient precision. The process,
called scaling, consists of shifting the values a
predetermined number of places. The numbers must
be positioned far enough to the right in the register
to prevent overflow but far enough to the left to
maintain precision. The scale factor (number of

places shifted) is expressed as the power of the
base. For example, 5,100,00019 may be expressed
as 0.51 x 107, 0.051 x 108, 0.0051 x 109, etc. The

scale factors are 7, 8, and 9.

Since only the coefficient is used by the computer,
the programmer is responsible for remembering the
scale factors. Also, the possibility of an overflow
during intermediate operations must be considered.
For example, if two fractions in fixed point format
are multiplied, the result is a number less than 1.

If the same two fractions are added, subtracted, or
divided, the result may be greater than 1 and an
overflow will oceur. Similarly, if two integers are
multiplied, divided, subtracted or added, the likeli-
hood of an overflow is apparent.

As an alternative to fixed point operation, a method
involving a variable radix point, called floating
point, is used. This significantly reduces the amount
of bookkeepingrequired onthe part of the programmer.

By shifting the radix point and increasing or decreas-
ing the value of the exponent, widely varying quan-
tities which do not exceed the capacity of the mach-
ine may be handled.

Floating point numbers within the computer are re-
presented in a form similar to that used in *“‘scientific’’
notation, that is, a coefficient or fraction multiplied
by a number raised to a power. Since the computer
uses only binary numbers, the numbers are multiplied
by powers of two.

F x 2E where: F = fraction

E = exponent

In floating point, different coefficients need not
relate to the same power of the base as they do in
fixed point format. Therefore, the construction of a
floating point number includes not only the coeffi-
cient but also the exponent.

Coefficient

The single precision coefficient consists of a 36-bit
fraction in the 36 lower order positions of the floating
point word. The coefficient is a normalized fraction;
it is equal to or greater than % but less than 1. The
highest order bit position (47) is occupied by the
sign bit of the coefficient. If the sign bit is a **0",
the coefficient is positive; a‘‘1’’ bit denotes a nega-
tive fraction (negative fractions are represented in
one’s complement notation).

Exponent

The floating point exponent is expressed as an 11-
bit quantity with a value ranging from 0000g to 37778.
Within this range, both positive and negative ex-
ponents must be expressed. Biasing the exponent
provides the ability to distinguish between positive
and negative exponents. It is formed by adding a
true positive exponent and a bias of 2000g or a true
negative exponent and a bias of 1777g. This results
in a range of biased exponents as shown below.

True Positive Biased True Negative Biased
Exponent Exponent Exponent Exponent
+0 2000 -0 2000*
+1 2001 -1 1776
+2 2002 -2 1775
+1776 3776 -1776 0001
+1777g 37773 -1777 000

When bias is used with the exponent, floating point
operation is more versatile since floating point
operands can be compared with each other in the
normal fixed point mode.

As an example, compare the unbiased exponents of

+52g and +0.02g (example 1).

Example 1, Number = +52
] 00 00C 000 110

Coefficient
Sign

(36 bits)

Exponent Coefficient

Number = +0.02

0 11 111 111 0ol (36 bits)
Coefficient Exponent Coefficient
Sign

In this case, +0.02 appears to be larger than +52
because of the larger exponent. If, however, both

exponents are biased (example 2), changing the sign

of both exponents makes +52 greater than +0.02.

Examnle 2. Number = +52¢
[7 G

0 10 000 000 110

(36 bits)
Coefficient Exponent Coefficient
Sign
Number = +0.02g
0 01 111 111 01 (36 bits)
Coefficient Exponent Coefficient
Sign

Conversion Procedures

Fixed Point to Floating Point
1) Express the number in binary.

2) Normalize the number. A normalized number has
the most significant 1 positioned immediately
to the right of the binary point and is expressed
in the range 1/2 = k < 1.,

3) Inspect the sign of the true exponent. [f the
sign is positive, add 2000g (bias) to the true
exponent of the normalized number. If the sign
is negative, add the bias 17773 to the tue
exponent of the normalized number. In either
case, the resulting exponent is the biased ex-
ponent.

4) Assemble the number in floating poini.

5) Inspect the sign of the coefficient. |f negative,
complement the assembled floating pointnumber
to obtain the true floating point representation
of the number. |f the sign of the coefficient is
positive, the assembled floating point number
is the true representation.

Example 1 Convert +4.0 to Floating Point

1) The number is expressed in octal.

* Minus zero is sensed as positive zero by the computer and is therefore biased by 20008 rather than1777g.

2) Normalize. 4.0 = 4.0 x 80 =0.100 x 23.

3) Since the sign of the true exponent is positive,
add 2000g (bias) to the true exponent. Biased
exponent = 2000 + 3.

4) Assemble number in floating point format.
Coefficient = 400 000 000 000g
Biased exponent = 2003g
Assembled word = 2003 400 000 000 000g

'5) Since the sign of the coefficient is positive,

the floating point representation of +4.0 is as
If, however, the sign of the coefficient
were negative, it would be necessary to comple-
ment the entire floating point word.

shown.

Example 2 Convert —4.0 to Floating Point

1) The number is expressed in octal.

2) Normalize. —-4.0 = 4.0 x 80 = ~0.100 x 25.

3) Since the sign of the true exponent is positive,
add 2000g (bias) to the true exponent. Biased
exponent = 2000 + 3.

4) Assemble number in floating point format.
Coefficient = 400 000 000 0003
Biased exponent = 2003g
Assembled word = 2003 400 000 000 000g

5) Since the sign of the coefficient is negative,
the assembled floating point word must be
complemented. Therefore, the true floating

point representation for -4.0 = 5774 377 777
777 7773.

Example 3 Convert 0.510 to Floating Point
1) Convert to octal. 0.519 = 0.4g.

2) Normalize. 0.4 = 0.4 x 80 = 0.100 x 20.

3) Since the sign of the true exponent is positive,
add 20008 (bias) to the true exponent. Biased
exponent = 2000 + 0.

4) Assemble number in floating point format.
Coefficient = 400 000 000 000g
Biased exponent = 2000g
Assembled word = 2000 400 000 000 000g

5) Since the sign of the coefficient is positive,
the floating point representation of + 0.510is
as shown. If, however, the sign of the coeffi-
cient were negative, it would be necessary to
complement the entire floating point word. This

example is a special case of floating point,
since the exponent of the normalized number is
0 and could be represented as ~0. The ex-
ponent would then be biased by 1777g instead
of 20008 because of the negative exponent. The
3604, however, recognizes ~0 as +0 and biases
the exponent by 2000g.

Example 4 Convert 0.04g to Floating Point

1) The number is expressed in octal.

0.04 = 0.04 x 80 = 0.4 x 8- =

2) Nomalize.

0.100 x 2-3.

3) Since the sign of the true exponent is negative,
add 1777g (bias) to the true exponent. Biased
exponent = 1777g +(-3) = 1774g.

4) Assemble number in floating point format.
Coefficient = 400 000 000 000g
Biased exponent = 1774g
Assembled word = 1774 400 000 000 000g

5) Since the sign of the coefficient is positive,
the floating point representation of 0.04g is as
shown. [f, however, the sign of the coeffi-
cient were negative, it would be necessary to
complement the entire floating point word.

Floating Point to Fixed Point

1) If the floating point humber is negative, comple-
ment the entire floating point word and record
the fact that the quantity is negative. The
exponent is now in a true biased form.

2) If the biased exponent is equal to or greater
than 20008, subtract 2000g to obtain the true
exponent. |f less than 2000g, subtract 17778 to
obtain true exponent.

3) Separate the coefficient and exponent. If the
true exponent is negative, the binary point
should be moved to the left the number of bit
positions indicated by the true exponent. |f
the frue exponent is positive, the binary point
should be moved to the right the number of bit
positions indicated by the true exponent.

4) The coefficient has now been converted to
fixed binary. The sign of the coefficient will
be negative if the floating point number was
complemented in step 1. (The sign bit must be
extended if the quantity is placed in aregister.)

5) Represent the fixed binary number in fixed octal
notation.

Example 1 Convert Floating Point Number 2003 400

1)

2)

4)

5)

000 000 000g to Fixed Octal

The fioating point number is positive and remains
uncomplemented.

The biased exponent > 2000g, therefore sub-
tract 20008 from the biased exponent to obtain
the true exponent of the number. 2003 - 2000 =
+3.

Coefficient = 400 000 000 000g =]002 Move

%) 1
'nlnnrv nnanf "ﬁ Tnﬂ ?lgﬁ? anna

cient = 100 09.

The sign of the coefficient is positive because
the floating point number was not complemented
in step 1.

Represented in fixed octal notation. 100.0 x

20-40x8.0

Example 2 Convert Floating Point Number 5774 377

1

2)

3)

4)

5)

777 777 7778 to Fixed Octal

The sign of the coeffici ent is negative, there-
fore complement the floating point number.

Complement = 2003 400 000 000 000g

The biased exponent (in complemented form)
is > 2000g, therefore subtract 2000g from the
biased exponent to obtain the true exponent of

the number. 2003 - 2000 = +3.

Coefficient = 400 000 000 000g = 0.1007
Move binary point to the right three places.
Coefficient = 100.09

The sign of the coefficient will be negative
because the floating point number was originally
complemented.

Convert to fixed octal. -100.09 = -4.0g.

Example 3 Convert Floating Point Number 1774 400

1)

2)

3)

000 000 000g to Fixed Octal

The floating point number is positive and re-
mains uncomplemented.

The biased exponent < 20008, therefore sub-
tract 1777g from the biased exponent to obtain

the true exponent of the number. 1774g - 1777g =
-3

Coefficient = 400 000 000 000g =.1009
Move binary point to the left three places.

Coefficient =.0001009

4) The sign of the coefficient is positive because
the floating point number was not complemented
in step 1,

S) Represent in fixed octal notation. .0001009 =

.04g,
Notes on 3600 Floating Point Qperations

1) All Floating Point Instructions
a) 3600 floclﬁng point numbers have the fol-

SINGLE PRECISION

47 46 36 35 o
1 1
' nBITs | 36 BITS
I i
1\ \S v /
SN EXPONENT COEFFICIENT

DOUBLE PRECISION

95 94 84 83 0
47 46 36 35 0 ar o

] 1 1

:

| nBITS | 84 BITS

1 ! i

" /\ J
SIGN Y
BT EXPONENT COEFFICIENT

Single precision results are in the A reg-
ister and double precisionresults are in the
A and Q registers.

In double precision floating point opera-
tions, 48 additional bits of coefficient are
added to form a 96-bit floating point word.
The upper 36 bits of coefficient are of
greater significance than the fower 48 bits.
The highest order bit (95) is the sign bit of
the 84-bit coefficient.

In arithmetic operations using double pre-
cision, the 96-bit operand is read from con-
secutive storage locations M and M + 1.
Refer to Order of Instructions section,
Double Precision Arithmetic.

b) Floating point instructions follow the se-
quence shown below.
reference memory
arithmetic operation
round
normalize
end sign correction

c) Operands do not have to be normalized.
However, in an FDV operation, the coeffi-
cient of the dividend must be less than two
times the coefficient of the divisor; if not,
a divide fault will result.

d) When a right shift is required to normalize,
it is performed whether the augment bit t1
(t1 = 1 for un-normalized arithmetic) is set
or not.

e) When a number is shifted left to normalize,
sign bits are entered into the least signifi-
cant positions.

f) In single precision, the Q register is never
touched during normalize or round opera-
tions.

g) In single precision instructions, if the
normalize count is checked to obtain the
proper significance, meaning can be at-
tached to the residue in Q.

h) On an exponent underflow, A and Q are
cleared after the end sign correction. On an
exponent overflow, the result is left as
formed.

i) When the coefficient of the result is 0 the
exponent portion of A is cleared before the
end sign correction.

i) The 2's complement mode is disabled during
floating point operations.

h) Rounding in single precision is accom-
plished by adding *1 to the A register; in
double precision by adding %1 to the Q
register.

2) FAD

a) The operand with the smallest exponent is
placed in A and is shifted right into Q un-
til the exponents are equal. The information
(residue) in Q is untouched during the rest
of the instruction. If the exponents are
equal initially, Q is cleared and Q47 is set
equal to A%/,

10

b)

The round decision (to add -1, 0 or +1) is
made after the shift to equalize exponents
and before the addition of the coefficients.
A47 Q47

Add +1 if 0 1

Add -1 if

Add 0 if AT = ¥
Note that when the exponents are equal,
A47 = Q47 (See a above). Therefore, there

is never a round.

3) DFAD

a)

b)

4) FMU

a)

b)

5) DFM

a)

The operand with the smallest exponent is
placed in AQ and is shifted right end off.
The last bit shifted off is retained in the
Round Flip Flop.if the exponents are equal,
the machine will never round.

Sec. 2-b applies here except the Round
Flip Flop should be substituted for Q4.

The magnitudes of the operands are multi-
plied to obtain a 72 bit product in AQ. Ex-
cept for end sign correction (Q carries the
sign of the result) Q is not changed after
the iterative step.

The round decision (to add 0 or +1) is made
after the iterative step. Since the result at
this time is always positive, the decision
is simpler than in FAD.
A g
Add +1 0 1
Add 0 A4 = Q¥

0]

The magnitudes of the operands are multi-
plied to obtain a 168 bit product. The bits
are distributed as shown below.

167 84 83 82 (o]
AN v I_v_/\ v 4
AQ ROUND LOST

FLIP FLOP

b) Sec. 4-b applies here except the Round

Flip Flop should be substituted for Q47.

6) FDV

a) The magnitudes of the operands are divided

to obtain a 36 bit coefficient in A and a 36
bit remainder in the lower part of Q. After
the iterative step, two times the remainder
is compared with the divisor. This is es-
sentially another iteration in divide step.
If 2 x remainder = divisor the Round
Flip Flop is set.

The round decision (to add 0 or +1) is made
after the probe to set the Round flip flop.
Since the result at this time is always
positive, the decision is simpler than in

FAD.
A47 Round Flip Flop

Add +1 0 1
Add 0 A4 = RND

During the normalize operation, the re-
mainder in Q is untouched. Proper signifi-
cance can be attached to the remainder
by checking the normalize count. The re-
mainder carries the sign of the result.

11

7) DFDV

a) The magnitudes of the operands are divided

to obfain a 84 bit coefficient in AQ. The
setting conditions for the Round Flip Flop
are the same as those in FDV. The remain-
der is lost.

b) Sec. 6-b applies here.

8) FSB, DFSB

FSB and DFSB are identical to FAD and
DFAD except the operands read from
memory are complemented before the execu-
tion of the instruction.

APPENDIX II
INTERRUPTIBLE CONDITIONS AND FAULTS

Under certain internal conditions in the execution of a computer program, faults may occur.
Most of these fault conditions are associated with a particular bit of the Interrupt register,
and may be tested in an interrupt routine. Faults which are not associated with the interrupt
register are denoted by an asterisk. In most cases, a fault condition does not stop operation,
but a visual indication of a fault occurrence is provided on the console.

SHIFT FAULT

When a single register shift of more than 481(places
or a double register shift of more than 961(places
is specified by the shift count in a Shift instruction,
bit 00 of the Interrupt register is automatically set
to ‘““1"’. The Shift operation does not occur under
these conditions. This Interrupt Register bit remains
set until:® (1) an Internal Function instruction
(77.0 00001 - Clear Shift Fault Interrupt) is executed,

or (2) a manual internal master clear is performed.

A shift fault lights an indicator on the console.

DIVIDE FAULT

Bit 01 of the Interrupt register is automatically set

to **1"’ when:

1) The dabsolute value of the quotient resulting
from a Divide Integer instruction is > 247,

2) The absolute value of the result of a Divide
Fractional instruction is 2 1, or

3) A fixed point or floating point divide by zero is
executed except when the dividend is zero.

4) A floating point divide is executed with the
dividend 2 two times the diviscr.

This Interrupt Register bit remains set until:

1) The Internal Function instruction (77.0 00002 -

Clear Divide Fault Interrupt) is executed, or
2) A manual internal master clear is performed.

A divide fault lights an indicator on the console.

12

EXPONENT OVERFLOW FAULT

Bit 02 of the Interrupt register is automatically set
to ““1"" when the value of the exponent formed in a
floating point add, subtract, multiply, or divide is
> 2107 (1777g). This bit is also set whenever a
floating point divide by zero is executed. This
Interrupt Register bit remains set until:

n
Y

NANNND

T
1 Vuuuo -

1 |] F P . _ L ot N B v 4
) 1ne internai uncrion instrucrion \ 77/
Clear Exponent Overflow Interrupt) is executed,
or

2) A manual internal master clear is performed.

An exponent overflow fault lights an indicator on the
console.

EXPONENT UNDERFLOW FAULT

Bit 03 of the Interrupt register is automatically set

to "1 when the value of the exponent formed in a
flom‘in? point add, subtract, multiply, or divide is
< 2-10 (-1777g). This Interrupt Register bit

remains set until:

1) The Internal Function instruction (77.0 00004 -
Clear Exponent Underflow Fault)is executed, or

2) A manual internal master clear is performed.

An exponent underflow fault lights an indicator on
the console.

ARITHMETIC OVERFLOW FAULT

Bit 04 of the Interrupt register is automatically set
to “1"" when:

1) The absolute value of the sum or difference of
two fixed point integers is = 247, or

2) The absolute value of the sum or difference of
two fixed point fractions is Z 1. ThisInterrupt
Register bit remains set until:

a) The Internal Function instruction (77.0
00005 - Clear Arithmetic Overflow Interrupt)
is executed, or

b) A manual internal master clear is performed.

An arithmetic overflow fault lights an indicator on
the console.

DIRECT INTERRUPT

Bits 05 and 06 of the Interrupt register may be set to
1" when another equipment in the system (usually
a computer) is causing an interrupt,

These bits remain set until cleared by the attached
equipment.

INTERNAL REJECT INTERRUPT

Bit 07 of the Interrupt register is automatically set
to ‘1" when an Internal Reject signal is generated
by the 3604. Internal Reject signals are generated
when an external equipment fails to send an External
Reject signal to the 3604. I[nternal Reject signals
are generated in the following cases:

1) In the execution of Connect and Function in-
structions --

a) The equipment or unit referenced is not
attached to the specified channel, or

b) The equipment or unit referenced is attached

to the specified channel, but its power is off.

2} In the execution of Read and Write instructions--
the 3602 specified by the upper octal digit of
the channel designator is not attached to the
system,

3) Some failure in the data channel itself prevents
generating an Extemal Reject signal.

This Interrupt Register bit remains set until:

1) The Intemal Function instruction (77.0 00007 -
Clear Internal Reject Interrupt) is executed, or

2) A manual internal master clear is performed.

13

REAL TIME CLOCK INTERRUPT

Bit 08 of the Interrupt register is automatically set
to ‘1"’ when the contents of the Time register and
the Time Limit register become equal. This bit re-
mains set until:

1) Cleared by an Internal Function instruction
(77.0 00011 - Clear Real Time Clock Interrupt),

or

2) An internal master clear is performed.

STORAGE REFERENCE FAULT

Bit 09 of the Interrupt register is automatically set
to “1”* when a storage reference is attempted to a
non-existent storage bank (e.g., a reference is made
to storage bank 6 and only three storage banks are
in the system). [f the Storage Reference Fault bit in
the Interrupt Mask register is not set, the computer
will stop.

This Interrupt Register bit remains set until:

1) The Internal Function instruction {77.0 00012 -
Clear Storage Reference Fault Interrupt) is
executed, or

2) Cieared by a manuai internai master clear.

1604 MODE

Most programs written for the CONTROL DATA 1604
Computer can be executed by the 3600 computing
system through the 1604 compatibility package.
Since the function codes 00, 62, 63, 74, and 77 refer
to different instructions in the 1604 and 3600, these
instructions in a 1604 program must be executed
interpretively by the 3600. This is accomplished by
interrupting after interpreting the function code, but
before executing an instruction with a function code

of 00, 62, 63, 74, or 77.

The instruction is then interpretively executed in the
interrupt routine.

Bit 10 {1604 Mode bit) of the Interrupt register is
automatically set to ‘1"’ when:

1) The interrupt system is active,

2) Bit 10 of the Interrupt Mask register is set to
“1"" (select 1604 mode), and

3) The computer is in the Interrupt mode, after
interpreting a00, 62, 63,74, 0r 77 function code.

This Interrupt Register bit remains set until:

1) The Intemnal Function instruction (77.0 00013 -
Clear 1604 Mode Interrupt) is executed, or

2) A manual internal master clear is performed.

TRACE MODE

The 3600 computing system can, by using the interrupt
system, trace all jumps occurring in a program. When
interrupt occurs, the jump is executed by the interrupt
routine. This feature, called tracing, is useful in
debugging complex programs.

Bit 11 of the Interrupt register is automatically set
to “‘1"’ when:

1) The interrupt system is active,

2) Bit 11 of the Interrupt Mask register is set to
“1"" (select Trace mode), and

3) The instruction being processed will result in
a jump.

This Interrupt Register bit remains set until:

1) Thelnternal Function instruction (77.0 00014 -
Clear Trace Mode Interrupt) is executed, or

2) A manual

internal master clear is performed.

BOUNDS FAULT

Bit 12 of the Interrupt register is automatically set
to 1"’ when:

1) The interrupt system is active,

2) Bit 12 of the Interrupt Mask register is set to
“1"" (check bounds), and
3) A write reference is attempted out of bounds
(the bounds addresses are defined by the con-
tents of the 37-bit Bounds register), or a jump
is attempted out of bounds, or an attempt is
made to read an instruction from out of bounds.
(When 1604 Mode is selected and conditions
(1) and (2) are met, any Read reference from
out of bounds sets the Interrupt Register bit.)

This Interrupt Register bit remains set until:

14

1) The Internal Function instruction (77.0 00015-

Clear Bounds Interrupt) is executed, or
2) A manual internal master clear is performed.

A bounds fault lights an indicator on the console.

ILLEGAL INSTRUCTION FAULT

Bit 13 of the Interrupt register is automatically set
to ‘1"’ when bit 13 of the Interrupt Mask register
is set to ‘1"’ (the Interrupt system is active) and:

a) The Fault instruction (77.7) is executed, or

b) The Perform Algorithm instruction is ex-
ecuted, and no algorithm module is attached
to the system, or

¢) The Inter-Register instruction is executed
with ‘q’ or ‘v’ equal to zero, or

d) An Input/Output instruction (74.0 — 74.6) is
executed and the /0 lllegal Instruction bit

This [nterrupt Register bit remains set until:

1) The Internal Function instruction(77.0 00016 -
Clear Illegal Instruction Interrupt) is executed,
or

2) A manual internal master clear is performed.

OPERAND PARITY ERROR

Bit 14 of the Interrupt register is automatically set to
‘1"’ if a parity error occurs when an operand is read
from storage.

This Interrupt Register bit remains set until:

1) The Intemal Function instruction (77.0 00017 -
Clear Operand Parity Error Interrupt) is executed,
or

2) A manuadl internal master clear is performed.

An operand parity error lights an indicator on the
console.

MANUAL INTERRUPT

When the Manual Interrupt button on the console is
pressed, bit 150f the Interruptregister is automatically
set to ‘1", This bit remains set until:

1) The Internal Function instruction (77.0 00020 -

Clear Manual Interrupt) is executed, or

2) A manual internal master clear is performed.

* ADDRESS PARITY ERROR

If a parity error occurs on an address transmitted

to
a4
>

torage for o read or write reference, the Addre
Parity Error bit is set. Since this bit is not in the
[nterrupt register, an interrupt cannot occur on an

address parity error.

s

"

Setting the Address Parity Error bit halts computer
operation and lights an indicator on the console.

The Address Parity Error bit remains set until cleared
by a manual internal master clear.

“INSTRUCTION PARITY ERROR

If a parity error occurs when reading an instruction
from storage, the Instruction Parity Error bit is
automatically set to “1'’. Setting this bit halts
computer operation and lights an indicator on the
console. Since this bit is not in the Interrupt reg-
ister, an interrupt cannot occur on an instruction
parity error.

The Instruction Parity Error bit remains set until
cleared by a manual internal master clear.

15

I/O PARITY ERROR

This bit, located in the 3606 data channel, is set to
““1"* when:

1) An address parity error has occurred,
2) A data parity error has occurred, or

3) A data channel transmission parity error has
occurred.

If this bit is set by one of the above conditions, op-
erations using this data will result in error.

The 1/0 Parity Error bit remains set until:

1) An external master clear (from the console) is
performed,

2) The Clear Channel instruction is executed, or

3) A Function instruction clears the selection of
interrupt on error.

SCOPE

COMPASS

APPENDIX 111
3600 SOFTWARE SYSTEMS

SCOPE is a supervisory control system which facilitates job processing and simplifies
programming and operating. SCOPE includes the following features:

JOB PROCESSING DEBUGGING AIDS

equipment assignments error diagnostics

memory allocation octal corrections facility

subprogram loading and linking debugging dumps

overlay processing memory map

INPUT/OUTPUT CONTROL SPECIAL STATEMENTS AND REQUESTS
input/output routines internal interrupt control

ext ernal interrupt control sampling of current equipment status

tape handling preparation of a new library tape

request stacking editing of an existing library tape

SCOPE is programmed with control statements and requests. Control statements
direct equipment assignments, compilations, assemblies, execution, data transfer, and
library preparation. They are punched into cards and placed before and after the pro-
grams which they control. Requests are assembly language pseudo instructions which
are assembled into calls to SCOPE routines. These routines do input /output process -
ing, interrupt control, equipment status sampling and numerous other jobs.

Jobs to be run on the 3600 computer, together with the necessary SCOPE control
cards, are placed on a designated input unit. The jobs are then processed sequentially
by SCOPE with a minimum of intervention by the operator. Using the control state-
ments and requests, SCOPE keeps accountirlg information, makes equipment assign-
ments, initiates compilations, assemblies, and executions, processes input/output
requests and provides recovery dumps for programs which terminate abnormally.

COMPASS is a comprehensive assembly system for the CONTROL DATA 3600 Com-
puter. Operating within the SCOPE monitor system, COMPASS provides a convenient
form for writing machine language programs. The assembly system accepts as input
cards or card images containing assembly language instructions and produces relocat-
able binary programs as output. These programs are punched into cards or written as
card images on magnetic tape and may be loaded by SCOPE into any section of memory
for execution. A listing of the assembled program and a compressed symbolic output
deck may also be obtained from an assembly.

COMPASS programs are composed of one or more subprograms; each is compiled in-
dependently, but may communicate with other subprograms. A subprogram is composed
of a sequence of symbolic machine instructions and pseudo instructions. Symbolic
machine instructions are alphabetic codes for the 3600 machine language instructions.
The address fields in mnemonic instructions may contain constants, variables, arith-
metic expressions, or literal expressions.

16

COMPASS pseudo instructions are used for the following operations:

identifying subprograms

linking subprograms

reserving storage locations

defining data

controlling the assembler

defining blocks of instructions by a single name

FORTRAN
FORTRAN is a ma’rhema'rlcally oriented programming language designed to simplify
programming while efficiently utilizing the 3600 instruction set. The FORTRAN
complier accepts as input cards or card images on magnetic tape and produces as
output relocatable binary programs.

A FORTRAN program is composed of one or more independently compiled subprograms,
each of which is written as a series of FORTRAN statements. FORTRAN statements
are translated by the compiler into machine language instructions. Both FORTRAN
and COMPASS subprograms can be included in a single program. FORTRAN state-
ments are used to transfer control from one subprogram to another and for transmitting
data between subprograms. Some typical FORTRAN statements are shown below:

Replacement statement: A = Expression

This statement specifies that the expression is evaluated and the result stored in the
location labeled A. An expression is composed of constants and variables, connected
by arithmetic, logical or masking operations. Constants and variables may be defined
as integer, real, double precision, complex, or logical quantities.

Data allocation: DIMENSION A(n1, n2, n3), ..., P(mi, m2, m3)

This statement reserves memory locations for the arrays A, .. ., P. Arrays may have
one, two or three dimensions; each element of the array is referenced by the array
name and its subscripts. For example, the element in row 6, column 5, plane 3 of the

array Ais A (6, 5, 3).
Control statement: GO TO (n1, n2, . . ., ny),i

Control will be transferred to one of the statements n],. . ., ny according to the value

of i. This value is set by other FORTRAN statements.
Input statement: BUFFER IN (i,p) LIST

This statement initiates the input of one record from logical unit i to the locations
given in the LIST. The record parity is indicated by the parameter p.

COBOL is a problem-oriented compiling system especially designed for business
data processing. Programs written in a language which resembles English are trans-
lated into 3600 machine language programs.

COBOL programs are composed of a sequence of sentences, arranged into the four

divisions of the COBOL language; IDENTIFICATION, ENVIRONMENT, DATA, and
PROCEDURE.

17

SIMSCRIPT

ALGOL

Linear Programming

The IDENTIFICATION division identifies the program and supplies information to the
monitor accounting routine. The ENVIRONMENT division describes the computer
which will be used for executing the program. The DATAdivision describes the organ-
ization and format of the data which the program is to process, and the PROCEDURE
division describes the actual processing of the data.

Compilation and execution of a COBOL program are handled by the SCOPE operating
system. COBOL statements punched into cards are submitted along with control state-
ments for processing under the monitor system. The COBOL compiler produces a
relocatable binary program which may be executed immediately and may also be saved
on magnetic tape or on cards for later execution.

SIMSCRIPT is a language used to simulate dynamic processes. It is designed to
facilitate the writing of such programs as those which trace the performance of alternate
system configurations for a manufacturing process or simulate the flow of crude oil
through a cracking plant. A SIMSCRIPT program consists of (1) descriptions of en-
tities, like manufacturing equipment or oil products, and attributes of the entities,
like cost, speed, yield per barrel, (2) subprograms that describe different events which
can occur and how they will affect other events (3) a report generator for which the
programmer specifies the form, content, and frequency of the output report.

A version of ALGOL-60, operating under the SCOPE monitor system, will be available
for the 3600. This system will include the following features:

full call-by-name facility

dynamic arrays

separately compiled procedures

ability to call FORTRAN subroutines and functions

versatile input/output routines

Input to the compiler can use either the 42- or 62-characters set.

CDM3, a linear programming system originally developed for the CONTROL DATA
1604 and 1604-A Computers, is being rewritten in FOR TRAN-63.

18

68
137
274
549

099
199
398
796

592
184
368
737
474
949

511

093

186
372
744
488
976
953

—

16
32

65
131
262
524

0438
097
194
388

77
554
108
217

435

Q70

Giv

741
483

967
934
869
738

476
953
906
813

627
255
511
022

044
088
177
355
710
421

288

576
152
304
608

218
432
864
728

456
912
824
648
296
592
184
368

736

888

416

312

wN - O

=3 O U1 W

J

OO OO0

[N o NoNe)

OO O

[=NeNo N

[N e NeNe)

QO OO

[N e NN OO OO (=N N

[=NoNoNe]

OO0 QOO

000

.000
. 000

.000

000

000

.000
. 000
. 000

. 000

000

. 000

000

.000
.000
. 000
. 000

. 000
. 000
. 000

000

. 000
. 000
. 000
.000

. 000
. 000
. 000

. 000
. 000

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000
000
000

APPENDIX IV
TABLE OF POWERS OF 2

258

907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000

000

000
000
000
000

000
000
000
000
000
000

625
312

578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000
000
000
000

000
000
000
000
000
000

25
125

062
531
265
632

316
158
579
289

644
322
161

580

290
645
322
661

830
415
207
103

551
275
637
818

909
454
227
113

056
028
014
007
003
001

19

406

775

596

298
149
574
287

643
321
660
830

915
957
978
989

494
747
373
686

843

210
105
552
776

25

125
562
781

390
695
847
923

461
230
615
307

653

913
456

228
614
807
403

701
350
675
837

418
709
854
427
713
356

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772
886
443
721

860
430
715
357
678
839

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928
464
232
616

808
404
202
601
800
400

25
625
812

906
453
226
613

806
903
951
475

237
118
059
029

014
007
003
001
500
250

25

125
562
281

640
320
660
830

915

478
739

869
434
717
858
929
464

677

25
125

062
531
765
882

941
9170
485
242
621
810

o)

625
812

406
703
351
675
337
668

25

125
562
781
890
945

25
625
312

0000 0000
fo to
0777 0511

(Octal) | (Decimal)

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000 0512
to to
1777 1023
(Octal} | (Decimal)

APPENDIX V

OCTAL-DECIMAL CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0000 0000 0001 0002 0003 0004 0005 0006 0007 0400 (0256 0257 0258 0259 0260 0261 0262 0263
0010 {0008 0009 0010 0011 0012 0013 0014 0015 0410|0264 0265 0266 0267 0268 0269 0270 0271
0020 {0016 0017 0018 0019 0020 0021 0022 0023 04200272 0273 0274 0275 0276 0277 0278 0279
0030 |0024 0025 0026 0027 0028 0029 0030 0031 0430 0280 0281 0282 0283 0284 0285 0286 0287
0040 |0032 6033 0034 0035 0036 0037 0038 0039 0440|0288 0289 0290 0291 0292 0293 0294 0295
0050 [0040 0041 0042 0043 0044 0045 0046 0047 0450|0296 0297 0298 0299 0300 0301 0302 0303
0060 {0048 0049 0050 0051 0052 0053 0054 0055 0460|0304 0305 0306 0307 0308 0309 0310 0311
0070 | 0056 0057 0058 0059 0060 0061 0062 0063 0470|0312 0313 0314 0315 0316 0317 0318 0319
0100 {0064 0065 0066 0067 0068 0063 0070 0071 0500|0320 0321 0322 0323 0324 0325 0326 0327
0110 (0072 0073 0074 0075 0076 0077 0078 0079 0510|0328 0329 0330 0331 0332 0333 0334 0335
0120 {0080 0081 0082 0083 0084 0085 0086 0087 0520 | 0336 0337 0338 0339 0340 0341 0342 0343
0130 {0088 0089 0090 0091 0092 0093 0094 0095 0530 | 0344 0345 0346 0347 0348 0349 0350 0351
0140 {0096 0097 0098 0099 0100 0101 0102 0103 0540 | 0352 0353 0354 0355 0356 0357 0358 0359
0150 {0104 0105 0106 0107 0108 0109 0110 0111 0550 {0360 0361 0362 0363 0364 0365 0366 0367
01600112 0113 0114 0115 0116 0117 0118 0119 0560 | 0368 0369 0370 0371 0372 0373 0374 0375
0170 (0120 0121 0122 0123 0124 0125 0126 0127 05700376 0377 0378 0379 0380 0381 0382 0383
0200 {0128 0129 0130 0131 0132 0133 0134 0135 0600|0384 0385 0386 0387 0388 0389 0390 0391
0210|0136 0137 0138 0139 0140 0141 0142 0143 0610|0392 0393 0394 0395 0396 0397 0398 0399
0220|0144 0145 0146 0147 0148 0149 0150 0151 0620 | 0400 0401 0402 0403 0404 0405 0406 0407
02300152 0153 0154 0155 0156 0157 0158 0159 0630 {0408 0409 0410 0411 0412 0413 0414 0415
0240|0160 0161 0162 0163 0164 0165 0166 0167 0640 | 0416 0417 0418 0419 0420 0421 0422 0423
0250 (0168 0169 0170 0171 0172 0173 0174 0175 0650 | 0424 0425 0426 0427 0428 0429 0430 0431
02600176 0177 0178 0179 0180 0181 0182 0183 0660 | 0432 0433 0434 0435 0436 0437 0438 0439
0270 {0184 0185 0186 0187 0188 0189 0190 0191 0670 | 0440 0441 0442 0443 0444 0445 0446 0447
0300 (0192 0193 0194 0195 0196 0197 0198 0199 0700 | 0448 0449 0450 0451 0452 0453 0454 0455
0310 {0200 0201 0202 0203 0204 0205 0206 0207 | 0710|0456 0457 0458 0459 0460 0461 0462 0463
032010208 0209 0210 0211 0212 0213 0214 021§ 072010464 0465 0466 0467 0468 0469 0470 0471
03300216 0217 0218 0219 0220 0221 0222 0223 07300472 0473 0474 0475 0476 0477 0478 0479
03400224 0225 0226 0227 0228 0229 0230 0231 0740|0480 0481 0482 0483 0484 0485 0486 0487
0350 {0232 0233 0234 0235 0236 0237 0238 0239 0750|0488 0489 0490 0491 0492 0493 0494 0495
03600240 0241 0242 0243 0244 0245 0246 0247 0760 | 0496 0497 0498 0499 0500 0501 0502 0503
03700248 02498 0250 0251 0252 0253 0254 0255 0770|0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
1000|0512 0513 0514 0515 0516 0517 0518 0519 1400|0768 0769 0770 0771 0772 0773 0774 0715
1010|0520 0521 0522 0523 0524 0525 0526 0527 1410|0776 0777 0778 0779 0780 0781 0782 0783
1020|0528 0529 0530 0531 0532 0533 0534 0535 1420|0784 0785 0786 0787 0788 0789 0790 0791
1030|0536 0537 0538 0539 0540 0541 0542 0543 1430 {0792 0793 0794 0795 0796 0797 0798 0799
1040|0544 0545 0546 0547 0548 0549 0550 0551 1440 {0800 0801 0802 0803 0804 0805 0806 0807
1050| 0552 0553 0554 0555 0556 0557 0558 0559 1450|0808 0809 0810 0811 0812 0813 0814 0815
1060|0560 0561 0562 0563 0564 0565 0566 0567 1460 {0816 0817 0818 0819 0820 0821 0822 0823
1070|0568 0569 0570 0571 0572 0573 0574 0575 14700824 0825 0826 0827 0828 0829 0830 0831
110010576 0577 0578 0579 0580 0581 0582 0583 1500|0832 0833 0834 0835 0836 0837 0838 0839
1110{0584 0585 0586 0587 0588 0589 0590 0591 1510|0840 0841 0842 0843 0844 0845 0846 0847
112010592 0593 0594 0595 0596 0597 0598 0599 1520|0848 0849 0850 0851 0852 0853 0854 0855
1130|0600 0601 0602 0603 0604 0605 0606 0607 1530|0856 0857 0858 0859 0860 0861 0862 0863
1140|0608 0609 0610 0611 0612 0613 0614 0615 1540|0864 0865 0866 0867 0868 0869 0870 0871
1150} 0616 0617 0618 0619 0620 0621 0622 0623 15501 0872 0873 0874 0875 0876 0877 0878 0879
1160|0624 0625 0626 0627 0628 0629 0630 0631 1560 0880 0881 0882 0883 0884 0885 0886 0887
1170|0632 0633 0634 0635 0636 0637 0638 0639 1570|0888 0889 0890 0891 0892 0893 0894 0895
1200|0640 0641 0642 0643 0644 0645 0646 0647 1600 [0896 0897 0898 0899 0900 0901 0902 0903
1210|0648 0649 0650 0651 0652 0653 0654 0655 1610 {0904 0905 0906 0907 0908 0909 0910 0911
1220|0656 0657 0658 0659 0660 0661 0662 0663 1620 [0912 0913 0914 0915 0916 0917 0918 0919
1230|0664 0665 0666 0667 0668 0669 0670 0671 1630 /0920 0921 0922 0923 0924 0925 0926 0927
1240|0672 0673 0674 0675 0676 0677 0678 0679 1640 {0928 0929 0930 0931 0932 0933 0934 0935
1250|0680 0681 0682 0683 0684 0685 0686 0687 1650 |0936 0937 0938 0939 0940 0941 0942 0943
1260 | 0688 0689 0690 0691 0692 0693 0694 0695 1660 [0944 0945 0946 0947 0948 0949 0950 0951
1270|0696 0697 0698 0699 0700 0701 0702 0703 1670 {0952 0953 0954 0955 0956 0957 0958 0959
1300{0704 0705 0706 0707 0708 0709 0710 0711 1700 ;0960 0961 0962 0963 0964 0965 0966 0967
1310|0712 0713 0714 0715 0716 0717 0718 0719 1710 {0968 0968 0970 0971 0972 0973 0974 0975
1320 (0720 0721 0722 0723 0724 0725 0726 0727 1720 {0978 0977 0978 0979 0980 0981 0982 0983
1330 (0728 0729 0730 0731 0732 0733 0734 0735 1730 {0984 0985 0986 0987 0988 0988 0990 0991
1340 (0736 0737 0738 0739 0740 0741 0742 0743 1740 {0992 0993 0994 0995 0996 0997 0998 0999
13500744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003 1004 1005 1006 1007
1360/0752 0753 0754 0755 0756 0757 0758 0759 176011008 1009 1010 1011 1012 1013 1014 1015
1370|0760 0761 0762 0763 0764 0765 0766 0767 17701016 1017 1018 1019 1020 1021 1022 1023

20

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont’d)

B i
1o 1 2 3 4 5 6 k¢ 0 1 2 3 4 5 3 T
200011024 1025 1026 1027 1028 1029 1030 1031 2400|1280 1281 1282 1283 1284 1285 1286 1287
2010:1032 1033 1034 1035 1036 1037 1038 1039 2410|1288 1289 1290 1291 1292 1293 1294 1295
2020 {1040 1041 1042 1043 1044 1045 1046 1047 2420|1296 1297 1298 1299 1300 1301 1302 1303
2030 :1048 1049 1050 1051 1052 1053 1054 1055 2430|1304 1305 1306 1307 1308 1309 1310 1311
204011056 1057 1058 1059 1060 1061 1062 10631 2440(1312 1313 1314 1315 1316 1317 1318 1319
2050 {1064 1065 1066 1067 1068 1069 1070 1071 24501320 1321 1322 1323 1324 1325 1326 1327
20601072 1073 1074 1075 1076 1077 1078 1079 246011328 1329 1330 1331 1332 1333 1334 1335
207011080 1081 1082 1082 1084 1085 1086 1087 24701 1335 1337 1338 1339 1340 1241 1342 1343
21001088 1089 1090 1091 1092 1093 1094 1095 2500|1344 1345 1346 1347 1348 1349 1350 1351
211011096 1097 1098 1099 1100 1101 1102 1103 2510|1352 1353 1354 1355 1356 1357 1358 1359
2120/1104 1105 1106 1107 1108 1109 1110 1111 25201360 1361 1362 1363 1364 1365 1366 1367
213011112 1113 1114 1115 1116 1117 1118 1119 253011388 1360 1370 1371 1372 1373 1374 1275
21401120 1121 1122 1123 1124 1125 1126 1127 2540{1376 1377 1378 1379 1380 1381 1382 1383
21501128 1129 1130 1131 1132 1133 1134 1135 2550|1384 1385 1386 1387 1388 1389 1330 1391
2160 (1136 1137 1138 1139 1140 1141 1142 1143 2560|1392 1393 1394 1395 1396 1337 1398 1399
217011144 1145 1146 1147 1148 1149 1150 1i51 (257011400 1401 1402 1403 1404 1405 1406 1407
22001152 1153 1154 1155 1156 1157 1158 1159 26001408 1409 1410 1411 1412 1413 1414 1415
221011160 1161 1162 1163 1164 1165 1166 1167 2610|1416 1417 1418 1419 1420 1421 1422 1423
1222011168 1169 1170 1171 1172 1173 1174 1175 2620 | 1424 1425 1426 1427 1428 1429 1430 1431
122301176 1177 1178 1179 1180 1181 1182 1183 2630|1432 1433 1434 1435 1436 1437 1438 1439
122401184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446 1447
122501192 1193 1194 1195 1196 1197 1198 1199 265011448 1449 1450 1451 1452 1453 1454 1455
226011200 1201 1202 1203 1204 1205 1206 1207 2660 | 1456 1457 1458 1459 1460 1461 1462 1463
2270 11208 1209 1210 1211 1212 1213 1214 1215 267011464 1465 1466 1467 1468 1469 1470 1471
I
2300|1216 1217 1218 1219 1220 1221 1222 1223 270011472 1473 1474 1475 1476 1477 1478 1479
23101224 1225 1226 1227 1228 1229 1230 1231/ 271011480 1481 1482 1483 1484 1485 1486 1487
232011232 1233 1234 1235 1236 1237 1238 1239! 272011488 1489 1490 1491 1492 1493 1494 1495
1233011240 1241 1242 1243 1244 1245 1246 1247: 273011496 1497 1498 1499 1500 1501 1502 1503
23401248 1249 1250 1251 1252 1253 1254 1255 2740|1504 1505 1506 1507 1508 1509 1510 1511
23501256 1257 1258 1259 1260 1261 1262 1263/ 2750(1512 1513 1514 1515 1516 1517 1518 1519
23601264 1265 1266 1267 1268 1269 1270 1271 2760|1520 1521 1522 1523 1524 1525 1526 1527
2370|1272 1273 1274 1275 1276 1277 1278 1279 2770{1528 1529 1530 1531 1532 1533 1534 1535
) 1 2 3 4 5 6 7 Y 1 2 3 4 5 6 7
il
3000 1536 1537 1538 1539 1540 1541 1542 1543 3400|1792 1793 1794 1795 1796 1797 1798 1799
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410|1800 1801 1802 1803 1804 1805 1806 1807
3020 11552 1553 1554 1555 1556 1557 1558 1559 3420/1808 1809 1810 1811 1812 1813 1814 1815
303011560 1561 1562 1563 1564 1565 1566 1567 343011816 1817 1818 1819 1820 1821 1822 1823
3040 11568 1569 1570 1571 1572 1573 1574 1575 34401824 1825 1826 1827 1828 1829 1830 1831
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836 1837 1838 1839
30601584 1585 1586 1587 1588 1589 1590 1591 346011840 1841 1842 1843 1844 1845 1846 1847
30701592 1593 1594 1595 1596 1597 1598 1599 347011848 1849 1850 1851 1852 1853 1854 1855
3100 (1600 1601 1602 1603 1604 1605 1606 1607 3500|1856 1857 1858 1859 1860 1861 1862 1863
3110|1608 1609 1610 1611 1612 1613 1614 1615 3510(1864 1865 1866 1867 1868 1869 1870 1871
3120/1616 1617 1618 1619 1620 1621 1622 1623 3520|1872 1873 1874 1875 1876 1877 1878 1879
31301624 1625 1626 1627 1628 1629 1630 1631 3530(1880 1881 1882 1883 1884 1885 1886 1887
3140|1632 1633 1634 1635 1636 1637 1638 1639 3540|1888 1889 1890 1891 1892 1893 1894 1895
315011640 1641 1642 1643 1644 1645 1646 1647 35501896 1897 1898 1899 1900 1901 1902 1903
31601648 1649 1650 1651 1652 1653 1654 1655 3560 1904 1905 1906 1907 1908 1909 1810 1911
3170|1656 1657 1658 1659 1660 1661 1662 1663 357011912 1913 1914 1915 1916 1917 1918 1919
3200 {1664 1665 1666 1667 1668 1669 1670 1671 3600 (1920 1921 1922 1923 1924 1925 1926 1927
32101672 1673 1674 1675 1676 1677 1678 1679 36101928 1929 1930 1931 1932 1933 1934 1935
3220 /1680 1681 1682 1683 1684 1685 1686 1687 36201936 1937 1338 1939 1940 1941 1942 1943
3230 {1688 1689 1690 1691 1692 1693 1694 1695 36301944 1945 1946 1947 1948 1949 1950 1951
3240 {1696 1697 1698 1699 1700 1701 1702 1703 3640|1952 1953 1954 1955 1956 1957 1958 1959
3250|1704 1705 1706 1707 1708 1709 1710 1711l 36501960 1961 1962 1963 1964 1965 1966 1967
32601712 1713 1714 1715 1716 1717 1718 1719] 366011968 1969 1970 1971 1972 1973 1974 1975
32701720 1721 1722 1723 1724 1725 1726 1727 36701976 1977 1978 1979 1980 1981 1982 1983
'3300 [1728 1729 1730 1731 1732 1733 1734 1735 3700?1984 1985 1986 1987 1988 1989 1990 1991
3310|1736 1737 1738 1739 1740 1741 1742 1743 37101992 1993 1994 1995 1996 1997 1998 1999
3320|1744 1745 1746 1747 1748 1749 1750 1751 3720|2000 2001 2002 2003 2004 2005 2006 2007
33301752 1753 1754 1755 1756 1757 1758 1759 730,2008 2009 2010 2011 20i2 2013 20i4 2015
3340|1760 1761 1762 1763 1764 1765 1766 1767! 3740|2016 2017 2018 2019 2020 2021 2022 2023
3350|1768 1769 1770 1771 1772 1773 1774 1775, 3750|2024 2025 2026 2027 2028 2029 2030 2031
33601776 1777 1778 1779 1780 1781 1782 1783, 3760|2032 2033 2034 2035 2036 2037 2038 2039
[3270,1784 1785 1786 1787 1788 1789 1790 1791 37702040 2041 2042 2043 2044 2045 2046 2047

21

2000 l 1024
to to

2777 l 1535

(Octal) | (Decimai)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000 1536
to to
3777 2047

{Octal) | (Decimal)

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont’d)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
4000 2048 4000 2048 2049 2050 2051 2052 2053 2054 2055 4400|2304 2305 2306 2307 2308 2309 2310 2311
1o 1o 4010| 2056 2057 2058 2059 2060 2061 2062 2063 4410|2312 2313 2314 2315 2316 2317 2318 2319
4777 2559 4020, 2064 2065 2066 2067 2068 2069 2070 2071 4420|2320 2321 2322 2323 2324 2325 2326 2327
(Octal) | (Decimal) 4030| 2072 2073 2074 2075 2076 2077 2078 2079 4430|2328 2329 2330 2331 2332 2333 2334 2335
4040| 2080 2081 2082 2083 2084 2085 2086 2087 4440|2336 2337 2338 2333 2340 2341 2342 2343
4050| 2088 2089 2090 2091 2092 2093 2094 2095 4450|2344 2345 2346 2347 2348 2349 2350 2351
Octal Decimal 4060 2096 2097 2098 2099 2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359
10000 - 4096 4070| 2104 2105 2106 2107 2108 2109 2110 2111 4470|2360 2361 2362 2363 2364 2365 2366 2367
0- 8192
ggggo- 12288 4100{ 2112 2113 2114 2115 2116 2117 2118 2119 4500|2368 2369 2370 2371 2372 2373 2374 2375
40000 - 16384 4110] 2120 2121 2122 2123 2124 2125 2126 2127 4510|2376 2377 2378 2379 2380 2381 2382 2383
50000 - 20480 4120] 2128 2129 2130 2131 2132 2133 2134 2135 4520|2384 2385 2386 2387 2388 2389 2390 2391
60000 - 24576 4130| 2136 2137 2138 2139 2140 2141 2142 2143 453012392 2393 2394 2395 2396 2397 2398 2399
70000 - 28672 4140| 2144 2145 2146 2147 2148 2149 2150 2151 4540|2400 2401 2402 2403 2404 2405 2406 2407
4150| 2152 2153 2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
4160 2160 2161 2162 2163 2164 2165 2166 2167 4560 | 2416 2417 2418 2419 2420 2421 2422 2423
4170| 2168 2169 2170 2171 2172 2173 2174 2175 4570|2424 2425 2426 2427 2428 2429 2430 2431
4200 2176 2177 2178 2179 2180 2181 2182 2183 4600 | 2432 2433 2434 2435 2436 2437 2438 2439
4210 2184 2185 2186 2187 2188 2189 2190 2191 4610|2440 2441 2442 2443 2444 2445 2446 2447
4220, 2192 2193 2194 2195 2196 2197 2198 2199 4620 | 2448 2449 2450 2451 2452 2453 2454 2455
4230] 2200 2201 2202 2203 2204 2205 2206 2207 4630 | 2456 2457 2458 2459 2460 2461 2462 2463
4240, 2208 2209 2210 2211 2212 2213 2214 2215 4640 | 2464 2465 2466 2467 2468 2469 2470 2471
4250, 2216 2217 2218 2219 2220 2221 2222 2223 4650 | 2472 2473 2474 2475 2476 2477 2478 2479
42601 2224 2225 2226 2227 2228 2229 2230 2231 4660 | 2480 2481 2482 2483 2484 2485 2486 2487
4270/ 2232 2233 2234 2235 2236 2237 2238 2239 4670 | 2488 2489 2490 2491 2492 2493 2494 2495
4300|2240 2241 2242 2243 2244 2245 2246 2247 4700 | 2496 2497 2498 2499 2500 2501 2502 2503
4310|2248 2249 2250 2251 2252 2253 2254 2255 4710|2504 2505 2506 2507 2508 2509 2510 2511
43202256 2257 2258 2259 2260 2261 2262 2263 4720|2512 2513 2514 2515 2516 2517 2518 2519
4330|2264 2265 2266 2267 2268 2269 2270 2271 4730|2520 2521 2522 2523 2524 2525 2526 2527
4340|2272 2273 2274 2275 2276 2277 2278 2279 4740|252€ 2529 2530 2531 2532 2533 2534 2535
4350|2280 2281 2282 2283 2284 2285 2286 2287 4750|2536 2537 2538 2539 2540 2541 2542 2543
4360|2288 2289 2290 2291 2292 2293 2294 2295 4760|2544 2545 2546 2547 2548 2549 2550 2551
4370|2296 2297 2298 2299 2300 2301 2302 2303 477012552 2553 2554 2555 2556 2557 2558 2559
— f
] 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
5000 2560 5000 2560 2561 2562 2563 2564 2565 2566 2567 5400 2816 2817 2818 2819 2820 2821 2822 2823
to o 5010|2568 2569 2570 2571 2572 2573 2574 2575 54102824 2825 2826 2827 2828 2829 2830 2831
5777 3071 5020° 2576 2577 2578 2579 2580 2581 2582 2583i 5420 2832 2833 2834 2835 2836 2837 2838 2839

5030|2584 2585 2586 2587 2588 2589 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 2847
5040|2592 2593 2594 2595 2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855
5050|2600 2601 2602 2603 2604 2605 2606 2607 15450 2856 2857 2858 2859 2860 2861 2862 2863
50602608 2609 2610 2611 2612 2613 2614 2615 5460 ' 2864 2865 2866 2867 2868 2869 2870 2871
5070|2616 2617 2618 2619 2620 2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878 2879

(Octal) | (Decimal)

5100 | 2624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
5110{2632 2633 2634 2635 2636 2637 2638 2639 5510 | 2888 2889 2890 2891 2892 2893 2894 2895
5120|2640 2641 2642 2643 2644 2645 2646 2647 5520 | 2896 2897 2898 2899 2900 2901 2902 2903
5130|2648 2649 2650 2651 2652 2653 2654 2655 5530|2904 2905 2906 2907 2908 2909 2910 2911
5140|2656 2657 2658 2659 2660 2661 2662 2663 5540|2912 2913 2914 2915 2916 2917 2918 2919
5150 | 2664 2665 2666 2667 2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927
5160 | 2672 2673 2674 2675 2676 2677 2678 2679 5560 | 2928 2929 2930 2931 2932 2933 2934 2935
5170|2680 2681 2682 2683 2684 2685 2686 2687 5570|2936 2937 2938 2939 2940 2941 2942 2943

52002688 2689 2690 2691 2692 2693 2694 2695 5600 | 2944 2945 2946 2947 2948 2949 2950 2951
5210 12696 2697 2698 2699 2700 2701 2702 2703 5610 |2952 2953 2954 2955 2956 2957 2958 2959
5220 2704 2705 2706 2707 2708 2709 2710 2711 5620 |2960 2961 2962 2963 2964 2965 2966 2967
5230|2712 2713 2714 2715 2716 2717 2718 2719 5630 | 2968 2969 2970 2971 2972 2973 2974 2975
5240 12720 2721 2722 2723 2724 2725 2726 2727 5640|2976 2977 2978 2979 2980 2981 2982 2983
5250 | 2728 2729 2730 2731 2732 2733 2734 2735 5650 | 2984 2985 2986 2987 2988 2989 2990 2991
5260 2736 2737 2738 2739 2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999
5270|2744 2745 2746 2747 2748 2749 2750 2751 5670 {3000 3001 3002 3003 3004 3005 3006 3007

5300 | 2752 2753 2754 2755 2756 2757 2758 2759 57003008 3009 3010 3011 3012 3013 3014 3015
5310|2760 2761 2762 2763 2764 2765 2766 2767 5710{3016 3017 3018 3019 3020 3021 3022 3023
5320|2768 2769 2770 2771 2772 2773 2774 2775 5720|3024 3025 3026 3027 3028 3029 3030 3031
5330|2776 2777 2778 2779 2780 2781 2782 2783 5730|3032 3033 3034 3035 3036 3037 3038 3039
5340|2784 2785 2786 2787 2788 2789 2790 2791 57403040 3041 3042 3043 3044 3045 3046 3047
5350|2792 2793 2794 2795 2796 2797 2798 2799 5750|3048 3049 3050 3051 3052 3053 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 5760|3056 3057 3058 3059 3060 3061 3062 3083
5370|2808 2809 2810 2811 2812 2813 2814 2815 5770|3064 3065 3066 3067 3068 3069 3070 3071

22

OCTAL-DECIMAL INTEGER CONVERSION TABLE {Cont’d)

01z 3 4 3 8 7 le v+ 2 2 & s & 1
f ¥ Rl —
"600013072 3073 3074 3075 3076 3077 3078 307 ; 6400 3328 3329 3330 3331 3332 3333 3334 3335@
6010 (3080 3081 3082 3083 3084 3085 3086 3087 64101 3326 3337 3338 3339 3340 3341 3342 3343]
6020}3088 3089 3080 3091 3052 3093 3094 23095 64201 3344 3345 3346 3347 3348 3349 3350 3351
6030}3096 3097 3098 3099 3100 3101 3102 3103} 6430] 3352 3353 3354 3355 3356 3357 3358 3359
6040 13104 3105 3106 3107 3108 3109 3110 3111 6440! 3360 3361 3362 3363 3364 3365 3366 3367
60503112 3113 3114 3115 3116 3117 3118 3119 6450; 3368 3369 3370 3371 3372 3373 3374 3375
6060 3120 3121 3122 3123 3124 3125 3126 3127! 6460 3376 3377 3378 3379 3380 3381 3382 3383
607013128 3129 3130 3131 2132 3133 3134 3135! 6470| 3384 3385 3386 3387 3388 3389 3390 3391
6100!3136 3137 3138 3139 3140 3141 3142 3143! 6500 3392 3393 3394 3395 3396 3337 3398 3399
61103144 3145 3146 3147 3148 3149 3150 3151} 6510 3400 3401 3402 3403 3404 3405 3406 3407
6120 :3152 3153 3154 3155 3156 3157 3158 3159] 16520, 3408 3409 3410 3411 3412 3413 3414 3415
6130[3160 3161 3162 3163 3164 3165 3166 3167i ‘16530;3416 3417 3418 3419 3420 3421 3422 3423
(6140 :31R8 3189 3170 3171 3172 3173 3174 31TH| 8540, 3424 3425 3426 3427 3428 3425 3430 3431
6150|3176 3177 3178 3179 3180 3181 3182 3183! "6550;3432 3433 3434 3435 3436 3437 3438 3439
6160 |3184 3185 3186 3187 3188 3189 3190 3191] 16560 3440 3441 3442 3443 3444 3445 3446 3447
6170 13192 3193 3194 3195 3196 3197 3198 3199/ 16570 3448 3449 3450 3451 3452 3453 3454 3455
i | i
6200 13200 3201 3202 3203 3204 3205 3206 3207 16600’ 3456 3457 3458 3459 3460 3461 3462 3463
6210 /3208 3209 3210 3211 3212 3213 3214 3215, 6610 3464 3465 3466 3467 3468 3469 3470 3471
6220 (3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479
16230 | 3224 3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3485 3486 3487
16240 | 3232 3233 3234 3235 3236 3237 3238 3239 6640| 3488 3489 3490 3491 3492 3493 3494 3495
6250 {3240 3241 3242 3243 3244 3245 3246 3247 16650 3496 3497 3498 3499 3500 3501 3502 3503
6260 ;3248 3249 3250 3251 3252 3253 3254 3255 6660) 3504 3505 3506 3507 3508 3509 3510 3511
6270 13256 3257 3258 3259 3260 3261 3262 3263 6670| 3512 3513 3514 3515 3516 3517 3518 3519
!6300 | 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527
16310 3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532 3533 3534 3535
i6320 3280 3281 3282 3283 3284 3285 3286 3287 6720|3536 3537 3538 3539 3540 3541 3542 3543
16330 3288 3289 3250 3291 3292 3293 3294 3295 6730! 3544 3545 3546 3547 3548 3549 3550 3551
63401‘3296 3297 3298 3299 3300 3301 3302 3303 6740] 3552 3553 3554 3555 3556 3557 3558 3559
6350 (3304 3305 3306 3307 3308 3309 3310 3311 6750| 3560 3561 3562 3563 3564 3565 3566 3567
6360 '3312 3313 3314 3315 3316 3317 3318 3319 16760 3568 3569 3570 3571 3572 3573 3574 3575
6370 13320 3321 3322 3323 3324 3325 3326 3327 [6770; 3576 3577 3578 3579 3580 3581 3582 3583
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
7000| 3584 3585 3586 3587 3588 3589 3590 3591 7400 | 3840 3841 3842 3843 3844 3845 3846 3847
7010] 3592 3593 3594 3595 3596 3597 3598 3599 7410| 3848 3849 3850 3851 3852 3853 3854 3855
7020! 3600 3601 3602 3603 3604 3605 3606 3607 7420/ 3856 3857 3858 3859 3860 3861 3862 3863
7030| 3608 3609 3610 3611 3612 3613 3614 3615 7430) 3864 3865 3866 3867 3868 3869 3870 3871
7040| 3616 3617 3618 3619 3620 3621 3622 3623 7440| 3872 3873 3874 3875 3876 3877 3878 3879
7050| 3624 3625 3626 3627 3628 3629 3630 3631 7450(3880 3881 3882 3883 3884 3885 38856 3687
7060| 3632 3633 3634 3635 3636 3637 3638 3639 7460] 3888 3889 3890 3891 3892 3893 3894 3895
7070! 3640 3641 3642 3643 3644 3645 3646 3647 7470| 3896 3897 3898 3899 3900 3901 3902 3903
7100| 3648 3649 3650 3651 3652 3653 3654 3655 7500 | 3904 3905 3906 3907 3908 3909 3910 3911
7110| 3656 3657 3658 3659 3660 3661 3662 3663 751013912 3913 3914 3915 3916 3917 3918 3919
7120| 3664 3665 3666 3667 3668 3669 3670 3671 7520 | 3920 3921 3922 3923 3924 3925 3926 3927
7130| 3672 3673 3674 3675 3676 3677 3678 3679 7530|2928 3029 3930 3931 3932 3933 3934 3935
7140/ 3680 3681 3682 3683 3684 3685 3686 3687 7540|3936 3937 3938 3939 3940 3941 3942 3943
7150| 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 3949 3950 3951
7160| 3696 3697 3698 3693 3700 3701 3702 3703 756013952 3953 3954 3955 3956 3957 3958 3959
7170| 3704 3705 3706 3707 3708 3709 3710 3711 7570] 3960 3961 3962 3963 3964 3965 3966 3967
7200] 3712 3713 3714 3715 3716 3717 3718 3719 76003968 3969 3970 3971 3972 3973 3974 3975
72101 3720 3721 3722 3723 3724 3725 3726 3727 761013976 3977 3978 3979 3980 3981 3982 3983
7220! 3728 3729 3730 3731 3732 3733 3734 3735 7620 1 3984 3985 3986 3987 3988 3989 3990 3991
7230| 3736 3737 3738 3739 3740 3741 3742 3743 7630|3992 3993 3994 3995 3996 3997 3998 3999
7240| 3744 3745 3746 3747 3748 3749 3750 3751 7640|4000 4001 4002 4003 4004 4005 4006 4007
7250| 3752 3753 3754 3755 3756 3757 3758 3759 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
7260] 3760 3761 3762 3763 3764 3765 3766 3767 7660|4016 4017 4018 4019 4020 4021 4022 4023,
7270| 3768 3769 3770 3771 3772 3773 3774 3775 7670|4024 4025 4026 4027 4028 4029 4030 4031
7300] 3776 3777 3778 3779 3780 3781 3782 3783 7700 [4032 4033 4034 4035 4036 4037 4038 4039
7310| 3784 3785 3786 3787 3788 3789 3790 3791 T710 14040 4041 4042 4043 4044 4045 4046 4047
7320| 3792 3793 3794 3795 3796 3797 3798 3799 7720 {4048 4049 4050 4051 4052 4053 4054 4055]
73301 3800 3801 3802 3803 3804 3805 3806 3807 7730 | 4056 4057 4058 4059 4060 4061 4062 4063
7340| 3808 3809 3810 3811 3812 3813 3814 3815 7740|4064 4065 4066 4067 4068 4069 4070 4071|
7350|3816 3817 3818 3819 3820 3821 3822 3823 7750 {4072 4073 4074 4075 4076 4077 4078 4079|
7360] 3824 3825 3826 3827 3828 3829 3830 3831 7760|4080 4081 4082 4083 4084 4085 4086 4087
73701 3832 3833 3834 3835 3836 3837 3838 3839 "77'70 4088 4089 4090 4091 4092 4093 4094 4095J

23

6000 3072
to to
6777 3583

(Octal) | (Decimal}

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576

PYTs

70000 - 28672

to to
7777 4095

7000 ’ 3584
(Octal) | (Decimal)

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC, OCTAL DEC. OCTAL DEC. OCTAL DEC.
.000 . 000006 . 100 . 125000 . 200 . 250000 .300 .375000
.001 . 001953 .101 . 126953 .201 .251953 .301 .376953
.002 . 003906 .102 . 128906 .202 . 253906 . 302 .378906
.003 . 005859 .103 . 130859 .203 . 255859 .303 .380859
.004 .007812 .104 . 132812 . 204 .257812 .304 .382812
.005 . 009765 .105 . 134765 .205 . 259765 .305 .384765
.006 .011718 .106 . 136718 .206 .261718 . 306 .386718
.007 .013671 .107 . 138671 .207 .263671 .307 .388671
.010 .015625 .110 . 140625 .210 . 265625 .310 . 390625
.011 .017578 111 . 142578 .211 .267578 .311 .392578
.012 .019531 112 . 144531 .212 .269531 .312 .394531
.013 .021484 .113 . 146484 .213 . 271484 .313 .396484
.014 . 023437 .114 . 148437 .214 . 273437 .314 .398437
.015 .025390 .115 . 150390 .215 . 275390 .315 . 400390
.016 . 027343 .116 .152343 .216 .277343 .316 .402343
.017 . 029296 117 . 154296 .217 . 279296 .317 .404296
.020 .031250 .120 . 156250 .220 .281250 .320 . 406250
.021 . 033203 121 .158203 .221 .283203 .321 .408203
. 022 .035156 .122 .160156 .222 .285156 .322 .410156
.023 .037109 .123 . 162102 .223 .287109 .323 .412109
.024 . 039062 .124 . 164062 .224 .289062 .324 . 414062
.025 .041015 .125 . 166015 .225 . 291015 .325 .416015
.026 . 042968 .126 . 167968 .226 .292968 .326 .417968
.027 . 044921 .127 . 169921 .227 .294921 .327 .419921
.030 . 046875 .130 . 171875 .230 . 296875 .330 . 421875
.031 . 048828 .131 . 173828 .231 .298828 .331 .423828
.032 .050781 .132 .175781 .232 .300781 .332 .426781
.033 . 052734 .133 . 177734 .233 . 302734 .333 .427734
.034 . 054687 . 134 . 179687 .234 . 304687 .334 .429687
.035 . 056640 .135 . 181640 .235 .306640 .335 .431640
.036 . 058593 .136 .183593 . 236 .308593 .336 .433593
.037 . 060546 .137 . 185546 .237 .310546 .337 .435546
.040 . 062500 140 . 187500 .240 . 312500 .340 .437500
.041 . 064453 141 . 189453 .241 .314453 .341 .439453
.042 . 066406 .142 . 191406 .242 .316406 .342 .441406
.043 . 068359 . 143 . 193359 .243 .318359 .343 .443359
.044 .070312 . 144 .195312 .244 .320312 .344 .445312
. 045 . 072265 . 145 . 197265 .245 .322265 .345 . 447265
.046 .074218 . 146 . 199218 .246 .324218 . 346 .449218
.047 .076171 . 147 .201171 .247 . 326171 .347 .451171
. 050 .078125 . 150 .203125 .250 .328125 .350 .453125
.051 . 080078 .151 .205078 .251 . 330078 .351 .455078
.052 . 082031 .152 .207031 .252 .332031 .352 .457031
.053 .083984 .153 .208984 .253 . 333984 .353 .458984
.054 . 085937 . 154 .210937 .254 . 335937 .354 .460937
.055 .087890 . 155 .212890 .255 .337890 .355 .462890
.056 . 089843 . 156 .214843 .256 .339843 .356 .464843
.057 . 091796 . 157 .216796 .257 .341796 .357 .466796
. 060 . 093750 . 160 .218750 .260 . 343750 .360 .468750
. 061 .095703 .161 . 220703 .261 . 345703 .361 . 470703
.062 . 097656 . 162 . 222656 .262 . 347656 .362 .472656
.063 . 099609 .163 . 224609 .263 . 349609 .363 .474609
.064 .101562 . 164 .226562 . 264 .351562 .364 .476562
. 065 . 103515 . 165 .228515 .265 .353515 .365 .478515
.066 . 105468 .166 .230468 . 266 .355468 .366 .480468
. 067 . 107421 . 167 .232421 .267 .357421 .367 .482421
.070 . 109375 . 170 .234375 .270 .359375 .370 .484375
.071 .111328 171 .236328 .27 .361328 .37 .486328
.072 . 113281 .172 . 238281 .272 .363281 .372 .488281
.073 . 115234 .173 .240234 .273 . 365234 .373 .490234
.074 . 117187 174 .242187 .274 . 367187 .374 .492187
.075 . 119140 .175 . 244140 .275 .369140 .375 . 494140
.076 . 121093 .176 .246093 .276 .371093 .376 .496093
.077 . 123046 177 .248046 .277 . 373046 377 .498046

24

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont,d)

OCTAL DEC, OCTAL DEC. OCTAL DEC, OCCTAL DEC.

. 000000 . 000000 .co0100 .000244 . 000200 . 000488 . 060300 . 000732
. 000001 . 000003 .000101 .000247 . 000201 .000492 . 000301 .000736
. 000002 . 000007 .000102 .000251 . 000202 . 000495 . 000302 .000740
. 000003 .000011 .000103 . 000255 .000203 . 000499 . 000303 .000743
. 000004 .000015 .000104 . 000259 . 000204 . 000503 .000304 .000747
. 000005 .000019 .000105 .000263 . 000205 . 000507 . 000305 . 000751
.000006 .000022 .000106 . 000267 . 000206 . 000511 .000306 . 000755
.000007 . 000026 .000107 - 000270 . 000207 . 000514 . 000307 . 000759
. 000010 . 000030 .000110 . 000274 000210 . 000518 .000310 . 000762
.000011 . 000034 .000111 . 000278 .000211 . 000522 . 000311 . 000766
.000012 . 000038 .000112 . 000282 . 000212 . 000526 .000312 .000770
.000013 . 000042 .800112 . 000288 .800213 . 000530 . 600313 .G00774
.000014 . 000045 .000114 .000289 .000214 . 000534 .000314 .000778
.000015 . 000049 .000115 . 000293 .000215 . 000537 . 000315 . 000782
.000016 .000053 .000116 . 000297 .000216 . 000541 . 000316 . 000785
.000017 .000057 .000117 .000301 .000217 . 000545 . 000317 . 000789
.000020 . 000061 .000120 . 000305 . 600220 . 000549 . 000320 .000793
.000021 .000064 .000121 . 000308 . 000221 . 000553 .000321 .000797
. 000022 . 000068 .000122 .000312 . 000222 . 000556 . 000322 .000801
.000023 .000072 .000123 . 000316 . 000223 . 000560 .000323 . 000805
. 000024 . 000076 .000124 . 000320 . 000224 . 000564 .000324 .000808
.000025 . 000080 .000125 . 000324 . 000225 . 000568 .000325 .000812
.000026 . 000083 . 000126 .000328 . 000226 . 000572 .000326 .000816
.000027 . 000087 . 000127 . 000331 . 000227 . 000576 . 000327 . 000820
. 000030 . 000091 .000130 .000335 . 000230 . 000579 . 000330 . 000823
.000031 . 000095 .000131 . 000339 . 000231 . 000583 .000331 . 000827
.000032 . 000099 .000132 .000343 . 000232 . 000587 . 000332 . 000831
.000033 . 000102 .000133 . 000347 . 000233 . 000591 . 000333 .000835
.000034 . 000106 .000134 . 000350 . 000234 . 000595 . 000334 . 000839
. 000035 .000110 .000135 . 000354 . 000235 . 000598 : . 000335 . 000843
.000036 .000114 .000136 . 000358 .000236 . 000602 .000336 . 000846
.000037 .000118 .000137 . 000362 . 000237 . 000606 . 000337 . 000850
. 000040 . 000122 .000140 .000366 . 000240 . 000610 . 000340 .000854
. 000041 .000125 .000141 . 000370 . 000241 . 000614 .000341 .000858
. 000042 .000129 .000142 . 000373 . 000242 . 000617 . 000342 .000862
. 000043 .000133 .000143 . 000377 .000243 . 000621 .000343 .000865
. 000044 .000137 .000144 . 000381 . 000244 . 000625 . 000344 .000869
. 000045 . 000141 .000145 .000385 . 000245 . 000629 . 000345 .000873
. 000046 . 000144 .000146 . 000389 . 000246 . 000633 .000346 .000877
. 000047 . 000148 .000147 . 000392 . 000247 . 000837 .000347 .000881
.000050 . 000152 . 000150 . 000396 . 000250 . 000640 . 000350 .000885
. 000051 . 000156 .000151 . 000400 . 000251 . 000644 . 000351 .000888
. 000052 . 000160 . 000152 . 000404 . 000252 . 000648 . 000352 . 000852
. 000053 . 000164 . 000153 . 000408 . 000253 . 000652 .000353 .000896
. 000054 . 000167 . 000154 . 000411 . 000254 . 000656 . 000354 . 000900
. 000055 .000171 .000155 . 000415 . 000255 . 000659 . 000355 .000904
. 000056 . 000175 . 000156 .000419 . 000256 . 000862 .00035¢ . 000907
. 000057 .000179 . 000157 . 000423 . 000257 . 000667 .000357 .000911
. 000060 .000183 .000160 . 000427 . 000260 , 000671 . 000360 . 000915
. 000061 . 000186 .000161 .000431 . 000261 . 000675 .000361 . 000919
. 000062 .000190 . 000162 .000434 . 000262 . 000679 .000362 . 000923
. 000063 . 000194 .000183 . 000438 . 000263 . 000682 I . 000363 . 000926
.000064 . 000198 .000164 .000442 . 000264 .000686 . 000364 . 000930
. 000065 . 000202 . 000165 . 000446 . 000265 . 000690 . 000365 . 000934
. 000066 . 000205 .000166 . 000450 . 000266 . 000694 . 000366 .000938
. 000067 . 000209 .000167 . 000453 . 000267 . 000698 . 000367 . 000942
.000070 .000213 .000170 . 000457 . 000270 . 000701 . 000370 . 000946
. 000071 . 000217 .000171 . 000461 . 000271 . 000705 . 000371 . 000949
.000072 . 000221 .000172 . 000465 .000272 . 000709 . 000372 .000953
.000073 . 000225 .000173 . 000469 .000273 .000713 . 000373 . 000857
. 000074 . 000228 .000174 . 000473 . 000274 .000717 .000374 . 000961
. 000075 . 000232 .000175 . 000476 . 000275 . 000720 .000375 . 000965
. 000076 . 000236 .000176 . 000480 . 000276 . 000724 .000376 .000968
.000077 . 000240 . 000177 . 000484 . 000277 . 000728 .000377 .000972

25

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont’d)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC,

. 000400 . 000976 . 000500 .001220 . 000600 . 001464 . 000700 .001708
.000401 . 000980 . 000501 .001224 . 000601 .001468 .000701 .001712
. 000402 . 000984 . 000502 .001228 . 000602 .001472 . 000702 .001716
. 000403 . 000988 . 000503 .001232 . 000603 .001476 . 000703 .001720
. 000404 . 000991 . 000504 .001235 .000604 . 001480 . 000704 .001724
. 000405 . 000995 . 000505 . 001239 . 000605 .001483 . 000705 .001728
. 000406 . 000999 . 000506 .001243 .000606 . 001487 .000706 .001731
.000407 .001003 . 000507 . 001247 . 000607 . 001491 . 000707 . 001735
.000410 . 001007 .000510 .001251 .000610 . 001495 .000710 .001739
.000411 .001010 .000511 .001255 ', 000611 . 001499 .000711 .001743
. 000412 .001014 .000512 .001258 . 000612 . 001502 .000712 .001747
.000413 .001018 .000513 .001262 . 000613 . 001506 .000713 .001750
.000414 .001022 .000514 . 001266 . 000614 .001510 .000714 .001754
.000415 . 001026 .000515 . 001270 . 000615 . 001514 .000715 .001758
.000416 .001029 .000516 .001274 .000616 . 001518 .000716 .001762
. 000417 .001033 .000517 . 001277 . 000617 . 001522 . 000717 . 001766
. 000420 . 001037 . 000520 . 001281 . 000620 . 001525 .000720 .001770
. 000421 .001041 .000521 .001285 . 000621 . 001529 .000721 .001773
. 000422 .001045 . 000522 . 001289 . 000622 . 001533 . 000722 .001777
. 000423 .001049 . 000523 .001293 . 000623 . 001537 . 000723 .001781
. 000424 .001052 . 000524 .001296 . 000624 .001541 . 000724 .001785
. 000425 .001056 . 000525 . 001300 . 000625 . 001544 . 000725 .001789
. 000426 .001060 . 000526 . 001304 .000626 . 001548 . 000726 .001792
. 000427 .001064 .000527 . 001308 .000627 . 001552 . 000727 . 001796
. 000430 .001068 .000530 .001312 . 000630 . 001556 . 000730 . 001800
. 000431 .001071 .000531 .001316 . 000631 . 001560 .000731 . 001804
. 000432 . 001075 . 000532 .001319 . 000632 . 001564 . 000732 .001808
. 000433 . 001079 . 000533 . 001323 . 000633 . 001567 . 000733 .001811
. 000434 .001083 .000534 .001327 . 000634 . 001571 .000734 .001815
.000435 .001087 . 000535 .001331 . 000635 . 001575 .000735 .001819
. 000436 .001091 . 000536 . 001335 . 000636 . 001579 .000736 .001823
. 000437 .001004 . 000537 .001338 . 000837 . 601583 . 000737 . 001827
. 000440 . 00109. . 000540 .001342 . 000640 . 001586 . 000740 .001831
. 000441 . 001102 . 000541 .001346 . 000641 . 001590 . 000741 .001834
. 000442 . 001106 .000542 . 001350 . 000642 . 001594 . 000742 .001838
.000443 .001110 .000543 .001354 . 000643 .001598 .000743 .001842
. 000444 .001113 . 000544 . 001358 . 000644 .001602 .000744 .001846
. 000445 . 001117 . 000545 .001361 . 000645 . 001605 .000745 .001850
. 000446 . 001121 . 000546 . 001365 . 000646 .001609 .000746 .001853
. 000447 .001125 . 000547 . 001369 .000647 .001613 . 000747 . 001857
. 000450 .001129 . 000550 . 001373 . 000650 .001617 . 000750 .001861
.000451 . 001132 .000551 . 001377 .000651 .001621 . 000751 .001865
. 000452 .001136 .000552 .001380 . 000652 . 001625 . 000752 .001869
. 000453 .001140 . 000553 .001384 . 000653 . 001628 .000753 .001873
.000454 .001144 .000554 .001388 . 000654 .001632 . 000754 .001876
. 000455 .001148 . 000555 .001392 . 000655 .001636 .000755 .001880
. 000456 .001152 . 000556 .001396 . 000656 . 001640 . 000756 .001884
. 000457 .001155 .000557 .001399 . 000657 . 001644 .000757 .001888
. 000460 .001159 .000560 . 001403 . 000660 .001647 .000760 . 001892
.000461 .001163 . 000561 .001407 . 000661 . 001651 ..000761 .001895
. 000462 . 001167 . 000562 .001411 . 000662 . 001655 .000762 .001899
. 000463 .001171 . 000563 .001415 . 000663 . 001659 .000763 .001903
. 000464 .001174 .000564 .001419 . 000664 .001663 .000764 . 001907
. 000465 .001178 . 000565 . 001422 . 000665 . 001867 .000765 .001911
. 000466 .001182 . 000566 . 001426 . 000666 .001670 .000766 .001914
. 000467 .001186 . 000567 . 001430 .000667 .001674 .000767 .001918
. 000470 .001190 . 000570 .001434 .000670 . 001678 . 000770 .001922
. 000471 .001194 .000571 .001438 . 000671 .001682 .000771 .001926
. 000472 .001197 . 000572 .001441 . 000672 .001686 . 000772 .001930
. 000473 .001201 . 000573 .001445 .000673 . 001689 . 000773 .001934
.000474 .001205 . 000574 .001449 . 000674 . 001693 .000774 .001937
. 000475 .001209 .000575 .001453 . 000675 . 001697 . 000775 .001941
.000476 .001213 . 000576 . 001457 . 000676 . 001701 . 000776 .001945
. 000477 . 001216 . 000577 .001461 . 000677 . 001705 .000777 . 001949

26

APPENDIX VI

INDEX TO 3604 (MNEMONIC) INSTRUCTIONS
DESIGNATORS AND ABBREVIATIONS FOR OCTAL CODES

a Specifies storage bank k

c Ext. function code K

CPR Channel Product Reg. m

cw Control word M

CWA Control word address MPR

d Bank usage n

i Specifies storage bank; or ieftmost Ni
‘1" bit in a register LA

i Designator for 22, 23, 75, 76 x

Op. Field

ADD, MG, CM
ADL, CM, RP, MG

ADX

AJP, ZR, NZ, PL, M

ALG

ALS, SS, EO

ARJ, ZR, NZ, PL, MI

ARS, §S, EO

BEGR

BEGW

BJPL

BJSX

BRTJ

CLCH

CONN

COPY, CW, CWA

cPJ

DFAD, UR, UN, MG, CM,
RP

DFDV, UR, MG, CM

DEMU, UR, UN, MG, CM
DFSB, UR, UN, MG, CM
DLDA, MG, CM

DRJ

DSTA, MG, CM
DVF, TR, MG, CM

DVI, MG, CM

ENA, CM

ENI
ENQ, CM

3604 MNEMONIC INSTRUCTIONS

Add. Field

(a) m,b,v
(a) m,b,v

~

—
o

-~

3
<

o~ O
AN
A~~~ =
El
o

3
E

a) m,
a) m,n
m,b,i
m,b, i

X
<

~— S

-

Q

—
a o o X

m,b,i

>

X
o
0
3

LAl At 4

X
-

(@) m,b,v
(a) m,b,v
(@) mb,v
(@) m,b,v
(a) m,b,v
a) m,b,v

a) m,b,v
a) m,b,v

PP

y.b
y.b

Oe.

14
45

77.3

2
74.7
05
22
01
74.2
74.3
63.1
63.0
63.0
74.5
74.0
74.4
77.5
30

33
32
31

12

77.6
20
27
25
10

50
04

27

Unmodified shift count

k + (Bb)

Address portion of instruction

m + (BP)

Main Product Reg.
Jump address
Next instruction
Index Register v
Channel number

Function

Add (A) + (M) » A

Add Logical (A) +L (Q)
M) - A

Add to Exp. 'y’ +exp.
(A) » A

A Jump to ‘m’

Perform Algorithm

A left by K

A Ret. Jump tom

A right K places

Begin Read

Begin Write

Bank Jump lower

Bank Jump and Set Index

Bank Ret. Jump

Clear Channel

Connect

Copy Status

Chan. Prod. Jump

D.P. Float. Add (AQ) +
MM+1) > AQ

D.P. Float. Div. (AQ) /
MM+1)> A

D.P. Float. Mul, (AQ) +
MM+1) 5 AQ

D.P. Float, Sub. (AQ) -
MM+1) > AQ

D.P. Load AQ (MM + 1)
> AQ

D Reg. Jump

D.P. Store AQ in (MM + 1)

Div. Fract. (AQ) / (M) > A

Div. Integer (QA) /M » A

Enter A. Y » A, extend
sign Y

Enter Index. Y » BP

Enter Q. Y » Q, extend
sign Y

Page

3-26
3-30

3-27

3-37
5-8

3-31
3-37
3.31

5-5
3-42
3-40
3-40
5-8
5-3

4:6
3-29

3-29
3-29
3-29
3-29
3-38
3-29
3-26
3-26
3-23

3-23
3-23

Op. Field
EQS

EXEC

EXTF

FAD, UR, UN, MG, CM,
RP

FDV, UR, MG, CM

FMU, UR, UN, MG, CM
FSB, UR, UN, MB, CM, RP
1JP

INA, CM
INF
INI

IPA
ISK

LAC, CM

LBYT, LI, CL, RI
(Ao,Ee,Qo)*

LDA, MG, CM
LDL

LDQ, MG, CM
LIL

LU
LLS, SS, EO

LQC, CM
LRS, SS, EO

LSTL
LSTU
MEQ

MPJ
MTH

MUF, MG, CM

MUI, MG, CM

NBJP, CM, CL, ST
NOP

QJP, ZR, NZ, PL, MI
QLs, §s, EO

QRJ, ZR, NZ, PL, MI
QRS, SS, EO

RAD

RAO

RGJP,s

* LBYT require modifiers Ao or Qo and Ee.

Add. Field

(a) m,b,v

(a) m,b,v

(a) m,b,v
(a) m,b,v
p.g,m,b

65

63.7
74.1
30

33
32
31
55

11
77.0
51

74.6
54

13
63.5

12

L4

14
16
53

52
07

17
03

63.3
63.3
66

77.4
67

26
24
63.6
50.0
23
06
23
02
70
72
62

Function

Equal. Srch. Bb words; if

(M-1) etc. = A, skip
Execute inst. at address
Ext. Function

Float Add (A) + (M) - A

Float. Div. (A) / (M) > A

Float. Mult. (A) + (M) > A

Float. Sub. (A) — (M) > A

Index Jump. (Bb £ 0: (Bb
1> BP, NI =m (BD) =
0:NI

Increase AY + (A) > A

Internal Function y

Increase Index. y + (B) >
B

[nput to A

Index Skip. (B Bb) # Y (Bb)
+1- b, sklp(B)=y
0 > BP, next upper

Load A Comp. (M) » A

Load Byte

M- A

Load Logl a. LQ)M-> A

Load Q. (M) > Q

Load Index. (M) » B

Laad Index. (MU) > Bb

Long Left Shift (AQ) K
places

Load Q Comp. (M]) - Q

Long Right Shift (AQ) K
places

Locate list Element Lower

Locate list Element UpEer

Masked Equal. Srch. (B®)
words if L(Q) (M) = (A),
skip

Main Prod. Reg. Jump

Masked Thresh. Srch. (Bb)
words if L(Q) (M)>
(A), skip

Mult. Fract. (A) + (M) > AQ

Mult. Integ. (A) + (M) > QA

Non-zero Bit Jump

No. op.

Q Jump

Q Left Shift K places

Q Return Jump

Q Right Shift K places

Replace Add. (A) + (M) > M

Replace Add one. (A) +1 > M

Register Jump

Page
3-32

3-39
5-4
3-27

3-27
3-27
3-27
3-37

3-29
3-45
3-29

221
u=< |l

3-30
3-21
3-22
3-22
3-31

3-21
3-31

3-34
3-34
3-32

4:6
3-32

3-26
3-26
3-38
3-23
3-37
3-31
3-37
3-31
3-31
3-32
3-39

Op. Field

RJ1-3
ROP,s
RSB
RSO

RSW, CQ, CR
RTI
RXT, CQ, CR
SAL

SAU
SBL, CM, RP
SBYT, LI, CL, RI

(Ao,Ee,Qo)*
SCA

SCAN, EQ, GT, LT, NE,
LE, GE (Qo,Ee)*
SCL

SCM
SCQ

SEQU,
SEWL,

SIL
SIU
SJ1-3

Cl 1

G

SLS
SMEQ,

SMWL,

SR1-3
SRJ
S$S1-3
SSH

SSK
SST
SSU

STA, MG, CL, CM
STL

STQ, MG, CL, CM
SUB, MG, CM

Add. Field

q,r
(a} m,b,v

(a) m,b,v
(a) m,b,v
m,b,v

b,k

* SBYT and SCAN require Ao or Qo and Ee modifiers.

29

75
00
71
73

00
75
00
61

60
46
63.5

34

63.5
41

42
35

63.4
63.4

57
56
75
75
76

63.4
63.4

76
76
76
37

36
40
43

20
47
21
15

Function

Sel. Ret. Jump, key 1-3
Register Op. Inter Reg. Trans
Replace Sub. (A) = (M) > M
Replace Sub. one {A) = 1
> M
Reg. Swap, g and r
Return Jump
Reg. Transmit, q tor
Substitute Add. Lwr.
(Agg.14) > ML
Substitute Add Upp.
(Ap0-14) > Mya
Subtract Logical.
LQ M) - (A) > A
Store Byte Ee

Scale A left until
[(A)]Z .50r K =0,
K — # shifts » Bb

Scan, use byte Ee

Sel. Clear, A, to O for
Mp =1
Sel. Comp. A, for M, =1
Scale AQ left until
| (AQ) |>.50rK=0,
K — # shifts » Bb
Search for Equality (M) = (A)
Search in Limits (A)
> M) > (@Q
Store Index Lower (BP
Store Index Upper (BP)
Sel. Jump Keys 1-3
Selective Jump
STOP
Search Masked Equal.
L(Q) (M) = (A)
Search Mag. in Limits
A= M) | > (@)
Sel. Return Stop Keys 1-3
Stop Return Jump
Sel. Stop Keys 1-3
Storage Shift left one if (M)
neg. skip
Storage Skip if (M) neg.
Sel. Set (A,) to 1 for (M) =1
Sel. Sub. (M,) - (Ag) for
@) =1
Store A (A) > M
Store Logical L(Q) (A) > M
Store Q (Q) > M
Subtract (A) —= (M) > A

) > MLA
> Mya

Page

3-37
3-19
3-31
3-32

3-19
3.37
3-19
3-23

3-23

3-30

3-42

3-31

3-42
3-30

3-30
3-31

3-33
3-33

3-23
3-23
3-37
3.37
3-37
3-33

3-33

3-38
3-37
3-38
3-32

3-32
3-30
3-30

3-21
3-30
3-21
3-26

Op. Field Add. Field
THS (a) m,b,v
UBJP (a) m,b,i
XMIT, PC, CM, AUG, MK (@) m, (i) n
ZBJP, ST, CL, CM p.g,m,b

0.
65
63.0

63.6
63.6

Function Page
Threshold Search (Bb) words 3-32
if (M-1) etc. (A) skip
Uncon. Bank Jump 3-40
Transmit (am) to (in) 3-21
Zero bit Jump 3.38

MNEMONIC CODES FOR INSTRUCTION MODIFIERS

Ao A reg. in LBYT and SBYT; Ao= rightmost MI Minus
bit of byte MK Masked
AUG Augment NZ Non Zero
c Chain to next control word PC Plus constant in A
CL Clear Source PL Plus
CM Complement Qo Q. reg. in LBYT, SBYT. Qo=right bit of byte
CQ, CR Clear unused part of g or r in RSW, RXT RP Replace
cw Control word to A in COPY SS Signed Shift. Direction is sign count
CWA Control word add. to Q in COPY TR Truncated
Ee Byte size in # bits for LBYT, SBYT, SCAN UN Unnormalized
Eo Shiftend off with no sign exit UR Unrounded
| Indir. Add. in Searches ZR Zero
MG Magnitude
REGISTER CODES
(for 00, 62, 63.4 instruction)
Mnem. Octal
Code Code Register
VALUES OF § 00 —
ROP Inst. B1 01 BI
Mnem. Octal Function B2 02 B2
B3 03 B3
OR 0 Or B4 04 g4
XOR 1 Exc. OR B5 05 BS
AND 2 And B6 06 B6
IMP 3 Impl. AL 07 A lwr. addr.
EQ 4 Equiv. AU 10 A vp. addr.
+ 5 Sum QL 1 Q lwr. addr.
- 6 Diff. QU 12 Q up. addr.
A 13 A Full
RGJP Inst. 8 }g g ,Ez::
Mnem. Octal Function BR 16 Bounds Reg.
_ IM 17 Int. Mask Reg.
R O A1
s
PO 54 S T oo
LE 4 (b <y MZ 23* All“1s”) °P
GE 5 ®) ; y 1B 24* Inst. Bank Reg.
LT,D 6)<y, 0B 25 Op. Bank Reg.
Cond. NC 26* Shift Count Reg.
ED , ?ecrem_ P;S 3(7): h;isRc. Mode Sel.
, Py, egister
Cond. CK 31* Time Register
decrem. LM 32 Time Limit Reg.

30

* Used for operands only.

APPENDIX VII
INSTRUCTION EXECUTION TIMES

The time required to execute a given instruction may

vary

several factors.

danandinme ~m

from application to application, depending on

Factors to be considered in com-

puting execution times for a particular program are
as follows:

1)

3)

4)

$)

If consecutive storage references are made to
the same 3609 storage module, the read access
time from storage will be maximized.

If indirect addressing is specified, at least one
additional storage reference will be needed to
execute the instruction (the new index designa-
tor may itself specify indirect addressing).

If an instruction is augmented via the Single or
Double Precision Augment instructions, the
execution time of the augmented instruction
may be increased.

in repetitive operations (e.g., Augmented Trans-
mit, Search, etc.), the number of repetitions of
an operation increases execution times.

If the length of cables between the 3604 and
storage is increased appreciably, the time re-
quired to acquire an instruction or operand from
storage increases.

31

|
¥

2)

n computing the instruction execution times tabu-
ated below, the following criteria were used:

The storage cycle time was assumed to be

P | PR :
Gpproximarely .4 micresecends.

Instructions and operands were located in dif-
ferent 3609 storage modules (unless otherwise
indicated in the table).

Times listed include the time required for in-
struction acquisition from storage.

Indirect addressing was not specified for any
of the instructions.

The time listed for each 24-bit instruction was
derived by executing a long list of that instruc-
tion with both the upper and lower instruction
positions of the instruction word holding the
particular instruction. After executing this list
of instructions, the total elapsed time was di-
vided by the number of instructions executed to
provide an approximate time for each instruction
of the list.

The length of the cable between the 3604 and
storage was approximately 15 feet.

Instructions Comments Approximate
Time*
Inter - Register (ROP)
007 (Transmit) 1.33
007 (Swap) 1.82
000- 006 (Arith. or Logical operation) 1.88
Full Word Transmission
12 (LDA)! 2.00
16 (LDQ)! 2.00
20 (STA)? 1.88
21 (STQ)? 1.88
13 (LAC)! 2.00
17 (LQo)! 2.00
63.2 (XMIT) Transmission from one 3.63

63.2.(Augmented Transmit)

of transmits

= -
~ i (o

4]

3609 storage module to
another.

3.25(n-1)+5.00

Address Transmission

53 (LIL)]T 2.00
52 (LIV)! 2.00
57 (SIL) 2.07
56 (SiU) 2.07
61 (SAL) 2.07
60 (SAU) 2.25
50 (ENI) 1.00
04 (ENQ) Not Augmented 1.00
10 (ENA) 1.00
Instruction Augment
77.1 Single Precision Augment 1.13
77.2 Double Precision Augment 1.13

* Times are in microseconds

32

Instructions

Comments

Approximate

Time
Fixed Point Arithmetic
14 (ADD)] 2.07
15 (sUB)’ 2.07
24 (MU1) A=0 2.12
ESC* 6.50
No ESC 6.40
26 (MUF) A=0 2.12
ESC 6.70
No ESC 6.63
25 (DVI) A=0 2.12
ESC 14.9
No ESC 14.9
27 (DVF) A=0 2.12
ESC 14.9
No ESC 14.9
Truncated Divide (time includes Augmented with 10- 5.50
augment)
Address Arithmetic
11 (INA) 1.13
51 (INI) 1.07
54 (1SK) Assume for a lower \
instruction: BP=Y
1.50
Assume for an upper
instruction: BP#£Y
Single Precision Floating Point
Arithmetic
30 (FAD) 4.25
31 (FSB) 4.25
32 (FMU) 6.40
33 (FDV) 13.0
77.3 (ADX) 1.63

* End Sign Correction

33

Instructions Comments Approximate
Time
Double Precision Floating Point Times listed include time
Arithmetic for execution of Augment
instruction.
Aug. 30 (DFAD) 6.38
Aug. 31 (DFSB) 6.38
Aug. 32 (DFMU) 26.90
Aug. 33 (DFDV) 27.20
Aug. 12 (DLDA) 5.00
Aug. 20 (DSTA) 4.50
Logical
40 (ssT)] 2.00
41 (scL)! 2.13
42 (SCM) 2.07
43 (ssu) ! 2.07
44 (LpL)! 2.00
45 (ADL)' 2.07
46 (sBL)! 2.07
47 (STL) 2.13
01 (ARS) 1.25
02 (QRS) 1.25
03 (LRS) 1.25
* Augmented with 7 _1 2.63
05 (ALS) 1.37
06 (QLS) 1.37
07 (LLS) 1.37
* Augmented with 1/ = 1 2.63
34 (SCA) 2.38
35 (SCQ) A=0 2.63
A#£0 2.38

* Includes time for execution of Augment instruction.

34

Instructions

Comments

Approximate

Time
Replace
70 (RAD)' 3.13
71 (RsB)! 3.13
72 (RAO)! 3.13
73 (RsO)! 3.13
Storage Test
Assume: operand for upper
36 (SSK).l instruction is positive; 2.13
. operand for lower instruc-
37 (SSH) tion is negative. 3.13
Search
" 64 (EQS) b=0 3.13
Search satisfied 1.40 (n-1)+3.13
Search not satisfied 1.40 [(Bb)—f] +3.25
65 (THS) same as 64
66 (MEQ) same as 64
x{ 67 (MTH) same as 64

63.4 (s =0) (SEQU)

(s = 1) (SMEQ)

(s =2) (SEWL)

(s=3) (SMWL)
63.3 (LIST)

Search is satisfied
Search not satisfied
sameas s =0
sameas s =0

sameas s =0

n = number of items to scan

1.88 (h—1)+3.5
terminate w/VY =0

1.88 (n—1)+4.0
terminate w/Bb=0

Jumps and Stops
22 (AJP)

23 (QJP)
55 (JP)

No jump condition 1.12
B 1.75 Upper
b=0-3 1.25 Lower
e 2.38 Upper
b=4-7 1.88 Lower
Trace or out-of-bounds
interrupt (Time to start ex-
ecution at address 0 00001). 3.00
same as 22 same as 22
(8b-0) 1.25
(BP) £ 0 jump 2.25

* n = number of words searched

35

Instructions

Comments

Approximate

Time
Jumps and Stops (Cont’d.)

75 (SLJ) No jump condition 1.12
b
b=4-7 %gg Egaeerr

76 (SLS) Assume jump condition b=0-3 };g Ez\?vi:
b=4-7 135 Lower

63.7 (EXEQC) 1.75

62 (RGJP) No jump condition 2.50
Jump condition 3.13

63.6 (NBJP) (ZBJP) No jump condition 2.00
Jump condition 2.63

63.0 (s=0) (UBJP) 1.75
Trace mode or out-of-bounds
interrupt (Time to start exe-
cution of address 0 00001) 3.00

63.0 (s=1) (BRTJ) 2.88

63.0 (s=2) (BJSX) 2.88

63.1 (BJPL) 1.75

77.4 (MPJ) MPR =0 1.25
MPR #0 263 Lonar

77.5 (CPJ) CPR=0 2.50
CPR £0 353 Loner

77.6 (DRJ) DR=0 1.25
DR 40 263 Loveer

Variable Data Field

63.5, s°=0, s2=0 (LBYT) No index 4.25
Right indexing 4.25
Left indexing 5.00

63.5, s°=0, s2=1 (SBYT) No index 4.88
Right indexing 4.88
Left indexing 5.62

63.5, s°=1, (SCAN) k = no. of words 4.384+2.63 (n-1)
n = no. of bytes } +1.63 k-1

77.0 (INF) 1.18

36

Approximate

Time
Instructions Comments
int. Reject Ext. Reject Reply
Input/output

74.0 (CONN) y**=time for reject

or resume 102.5 2.5+y 2.13+y
74.1 (EXTF) y**=time for reject

or resume 102.5 2.5+y 2.13+y
74.2 (BEGR) y**=time for reject

or resume 102.5 2.5+y 2.13+y
74.3 (BEGW) y**=time for reject

or resume 102.5 2.5+y 2.13+y
74.4 (COPY) 163 + 1.22 + 122 + 2.44 Assumeno

1‘ { { Ambiguity
for for for
Status C.W.A. C.w.
74.5 (CLCH) 102.0
74.6 (IPA) y=time for reply 1.62+y
74.7 (ALG) y=time in algorithm
box 1.00+y

— If instruction is augmented, add 0.250 psec.

~ If instruction is augmented, add 0.125 psec.

** _ For internal reject, y is a fixed 100 usec. For external reject and for reply, y is a variable time
dependent upon cablie iength and response time of external equipment.

37

ABSOLUTE
ADDRESS

ACCESS TIME

ACCUMULATOR

ADDER

ADDRESS

ALPHABETIC
CODING

ALL ONES
REGISTER

ALL ZEROS
REGISTER

AND FUNCTION

A REGISTER

AUGMENT

BASE

BIT
BLOCK

BOOTSTRAP

BOUNDS REGISTER

BRANCH

BREAKPOINT

GLOSSARY

A specific storage location; contrast with relative address.

The time needed to perform a storage reference, either read or write. In
effect, the access time of a computer is one storage reference cycle.

A register with provisions for the addition of another quantity to its content.
It is also the name of the A register.

A device capable of forming the sum of two or more quantities.
A 15-bit quantity which identifies a particular storage location; an 18-bit

quantity identifies a particular storage location within a particular storage

bank.

A system of abbreviation used in preparing information for input into a

computer; e.g., Q Right Shift would be QRS.

A quantity composed of all ones which may be referenced as an operand in
the Inter-Register, Bit Sensing, and Register Jump instructions.

A quantity composed of all zeros which may be referenced as an operand in
the Inter-Register, Bit Sensing, and Register Jump instructions.

A logical function in Boolean algebra that is satisfied (has the value *1%)
only when all of its terms are ““1's’’. For any other combination of values

it is not satisfied and its value is ‘‘0".

Principal arithmetic register; operates as a 48-bit subtractive accumulator

(modulus 248_ 1).

Noun: The Single or Double Precision instruction.
Verb: To increase the capability of an ordinary instruction by prefacing
the instruction with one of the above instructions.

A quantity which defines some system of representing numbers by positional
notation; radix.

Binary digit, either ‘1" or ‘0"’
A group of words transported in and out of storage as a unit.

The coded instructions at the beginning of an input tape, together with the
manually entered instructions.

A 37-bit register holding two 18-bit addresses and a single bit which to-
gether define an upper and lower bound in storage. Operations are typically
confined to the addresses within these bounds.

A conditional jump.

Apointina routine at which the computer maybe stopped by manual switches
for a visual check of progress.

Bl . BS REGISTERS

BUFFER

BYTE

CAPACITY

CARRY

CHANNEL

CHARACTER

CLEAR

CLOCK PHASE

COMMAND

COMPILER

COMPLEMENT

CONTENT

CORE

COUNTER

D REGISTER

Index regi sters used primarily for modification of execution address.

A device in which data is stored temporarily in the course of transmission
from one point to another; to store data temporarily. The operation in which
either a word from storage is sent to an external equipment via an output
channel (output buffer), or a word is sent from an external equipment to
storage via an input channel (input buffer).

A portion of a computer word.

The upper and lower limits of the numbers which may be processed in a
a register or the quantity of information which may be stored in a storage
unit, |f the capacity of a register is exceeded, an overflow is generated.

In an additive counter or accumulator, a signal indicating that in stage ‘n’,
a ““1"’ was added to a ““1”’. The signal is sent to stage n + 1, which itcom-
plements.

A transmission path that connects the communication module to an external
equipment.

Two types of information handled by the computer:

1) A group of 6 bits which represents a digit, letter or symbol from the
typewriter.

2) Agroup of 12 bits whichrepresents a column of information from the card
reader.

A command that removes a quantity from a register by placing every stage
of the register in the “0’’ state. The initial contents of the register are
destroyed by the Clear operation.

One of two outputs from the master clock, even or odd.

A signal that performs a unit operation, such as transmitting the contents of
one register to another, or sefting a FF.

A routine which automatically produces a specific program for a particular
problem. The routine determines the meaning of information expressed in
a pseudo code, selects or generates the required subroutine, transforms the
subroutine into specific coding, assigns storage registers, and enters the
information as an element of the problem program.

Noun: See One’s Complement or Two's Complement.
Verb: A command which produces the one’s complement of a given quantity.

The quantity or word held in a register or storage location.

A ferromagnetic toroid used as the bi-stable device for storing a bit in a
memory plane.

A register with provisions for increasing or decreasing its contents by 1.

An auxiliarly (Flag) register which may be specifically referenced inthe
Inter-Register, Bit Sensing, or Register Jump instructions.

DOUBLE PRECISION

ENTER

EQUIVALENCE

EXCLUSIVE OR

EXECUTION
ADDRESS
EXIT

FAULT

FIXED POINT

FLIP-FLOP (FF)

FLOATING POINT

IMPLICATION

INCREASE

INDEX CODE

INSTRUCTION

INSTRUCTION BANK
REGISTER

INTERRUPT

Providing greater precisionin the results ofarithmetic operations by append-
ing to the initial operands 48 additional bits (of lesser significance) of
operand.

The Enter operation i s composed of two steps:
a) The register is cleared, and
b) The operand, Y, is copied in to the cleared register.

Refer to the truth table in the Order of [nstructions section.

A logical function in Boolean algebra that is satisfied (has the value “‘1")
o R wh <

., . . . P
R A - mmd mmdiofia
ne ot tfs ferm 1e 1ot ull:llcd

- - HEY
T iTS Terms is i . ITiS NS b

o]

wihien ail erms are

1" or when all its terms are ‘0"’

The lower 15 bits of a 24 or 48-bit instruction. Most often used to specify
the storage address of an operand. Sometimes used as the operand.

[nitiation of a second control sequence by the first, occurring when the
first is near completion; the circuit involved in exiting.

Operational difficulty which lights an indicator or for which interrupt may
be selected.

A notation or system of arithmetic in which all numerical quantities are
expressed by a predetermined number of digits with the binary point im-
plicitly located at some predetermined position; contrasted with floating
point.

A bi-stable storage device. A ‘1"’ input to the set side puts the FF inthe
Y “1"" input to the clear side puts the FF in the 0" state.
The FF remcins in a state indicative of its last ‘1"’ input. A stage of a
register consists of a FF.

state; a

A means of expressing a number X by a pair of numbers, Y and Z, such that
X =Yn% Zis an integer called the exponent or characteristic; n is a base,
usually 2 or 10; and Y is called the fraction or mantissa.

Refer to the truth table in the Order of Instructions section.

The increase operation adds a quantity (y or Y) to the contents of the
specified register.

A 3-bit quantity in an instruction; usually specifies an index register whose
contents are to be added to the execution address; sometimes specifies the
conditions for executing the instruction.

A 24 or 48-bit quantity consisting of an operation code and several other
designators.

A3-bit register whose contents specifythe storage bank in which instructions
are located.

Leaving the main program routine to execute a special sequence of instruc-
tions.

INTERRUPT REGISTER

INTERRUPT MASK
REGISTER

INVERTER

JUMP

LOAD

LOCATION

LOGICAL
PRODUCT

LOGICAL SUM

LOOP

LOWER ADDRESS

LOWER

INSTRUCTION

MASK

MASTER CLOCK

MASTER CLEAR

MNEMONIC CODE

A 48-bit register whose individual bits are set to ‘1"’ by the occurrence of

specific interrupt conditions, either internal or external.

A 48-bit register whose individual bits match those of the Interrupt register.
3

Setting the lower 16 bits of the Interrupt Mask register 1o “‘1’s’’ (the upper
bits are always ‘‘1's’’) is one of the conditions for selecting interrupt.

A circuit which provides as an output a signal that is opposite to its input.
An inverter output is ‘1"’ only if all the separate OR inputs are ‘0"

An instruction which alters the normal sequence control of the computer
and, conditionally or unconditionally, specifies the location of the next
instruction.

The Load operation is composed of two steps:
a) The register is cleared, and
b) The contents of storage location M are copied into the cleared register.

A storage position holding one computer word, usually designated by a
specific address.

In Boolean Algebra, the AND function of several terms. The product is
‘1"’ only when all the terms are “‘1'’; otherwise it is ‘“0"’. Sometimes re-
ferred to as the result of bit-by-bit multiplication.

In Boolean algebra, the OR function of several terms. The sum is 1"
when any or all of the terms are ““1'’; it is “‘0"’ only when all are ‘0",

Repetition of a group of instructions in a routine.

The execution address portion of a lower instruction; bits 0 through 14 of a
48-bit regi ster or storage location.

See Program Step.

In the formation of the logical product of two quantities, one quantity may
mask the other; i.e., determine what part of the other quantity is to be con-
sidered. |f the mask is *‘0'", that part of the other quantity is cleared; if
the mask is ‘‘1"’, the other quantity is left unaltered.

The source of standard signals required for sequencing computer operation.
The clock determines the basic frequency of the computer.

A general command produced by pressing one of two switches:

a) Internal Master Clear - Clears all operational registers and control FFs
in the 3604; also clears certain control FFs and registers in storage.

b) External Master Clear - Clears all external equipments, the data chennels,
and the communication module.

A three- or four-letter code which represents the function or pumpose of an
instruction. Also calied Alphabetic Code.

MODULUS

NORMALIZE

NUMERIC CODING

ONE’S
COMPLEMENT

ON-LINE
OPERATION

OPERAND
OPERAND BANK
REGISTER
OPERATION CODE
OPERATIONAL
REGISTERS

OR FUNCTION

OVERFLOW

PARITY CHECK

PARTIAL ADD

P REGISTER

An integer which describes certain arithmetic characteristics of registers,
especially counters and accumulators, within a digital computer. The
modulus of a device is defined by r? for an open-ended device and -1 for
a closed (end-around) device, where ‘r’ is the base of the number system
used and ‘n’ is the number of digit positions (stages) in the device. Gener-
ally, devices with modulus r use two’s complement arithmetic; devices
with modulus r"-1 use one’s complement.

To adjust the exponent and mantissa of a floating point result so that the
mantissa lies in the prescribed standard (normal) range.

An instruction that jumps from one sequence of instructions to a second,
and makes no preparation for returning to the first sequence.

A system of abbreviation in which all information is reduced to numerical
quantities.

With reference to a binary number, that number which results from subtract-
ing each bit of the given number from ‘‘1"”’. The one's complement of a
number is formed by complementing each bit of it individually, that is,
changing a““1"’to 0"’ and a ““0”’ to a “1"’. A negative number is expressed
by the one’s complement of the corresponding positive number.

A type of system application in which the input data to the system is fed
directly from the external equipment to the computer.

Usually refers to the quantity specified by the execution address. This
quantity is operated upon in the execution of the instruction.

A 3-bit register whose contents specifythe storage bank from which operands
wiii be obtained.

A 6 or 9-bit quantity in an instruction specifying the operation to be per-
formed.

Registers which are displayed on the operator’s section of the console.

A logical function in Boolean algebra that is satisfied (has the value “1'")
when any of its terms are 1", It is not satisfied when all terms are *‘0".
Often called the inclusive OR function.

The capacity of a rtegister is exceeded.

A summation check in which the binary digits in a character are added and
the sum checked against a previously computed parity digit; i.e., a check
which tests whether the number of ones is odd or even.

An uddition without carries. Accomplished by toggling each bit of the
augend where the corresponding bit of the addend is a *‘1”’.

The Program Address Counter (P register) is a two's complement additive
register (modulus 21) which generates in sequential order the storage
addresses containing the individual program steps.

PROGRAM

PROGRAM STEP

Q REGISTER

RANDOM ACCESS

READ

REJECT

RELATIVE
ADDRESS

REPLACE

REPLY

RESUME

RETURN JUMP

ROUTINE

SCALE FACTOR

SHIFT

SIGN BIT

A precise sequence of instructions that accomplishes a computer routine;
a plan for the solution of a problem.

Either a single 48-bit instruction or two 24-bit instructions contained in
one 48-bit storage address; the higher order 24 bits are the upper instruction;
lower order 24 bits, the lower instruction. An instruction or pair of instruc-
tions is read from storage, and the upper instruction is executed first. The
lower one is then executed, except when the upper one provides for skipping
the lower one.

Auxiliary arithmetic register which assists the A register in the more com-
plicated arithmetic operations (modulus 248-1).

Access to storage under conditions in which the next position from which
information is to be obtained is in no way dependent on the previous one.

To remove a quantity from a storage location.

A signal generated under certain circumstances by either the external
equipment or the 3604 during the execution of Input/Output instructions.

Identifies a word in a subroutine or routine with respect to its position.
Relative addresses are translated into absolute addresses by the addition

When used in the title of an instruction, the result of the execution of the
instruction is stored in the location from which the initial operand was
obtained. When replace is used in the description of an instruction, the
contents of a location or register are substituted by the operand. The
replace operation implies clearing the register or portion of the register in
preparation for the new quantity.

A response signal in 1/0 operations that indicates a positive response to
some previous operation or request signal.

A control signal sent by the 3609 to either the 3604 or 3606 indicating a
Read or Write operation in storage is completed.

An instruction that jumps from a sequence of instructions to initiate a
second sequence and prepares for continuing the first sequence after the
second is completed.

The sequence of operations which the computer performs under the direction
of a program.

One or more coefficients by which quantities are multiplied or divided so
that they lie in a given range of magnitude.

To move the bits of a quantity right or left.
Inregisters where a quantityis treatedas signed by use of one’s complement

notation, the bit in thehighestorder stage of the register. |f the bit is‘‘1”,
the quantity is negative; if the bit is ‘0'’, the quantity is positive.

SIGN EXTENSION
STAGE
STATUS

STORE

SUBINSTRUCTION

SUBOPERATION
CODE

TOGGLE

TRANSMISSION,
FORCED

TRANMIT

TWO'S

COMPLEMENT

U REGISTER

UNDERFLOW

UPPER ADDRESS
UPPER
INSTRUCTION

WORD

WRITE

The duplication of the sign bit in the higher order stages of a register.
The FFs and inverters associated with a bit position of a register.
The state or condition of input/ouiput operations.

To transmit information to a device from which the unaltered information
can later be obtained. The Store operation is essentially the reverse of
the Load operation. Storage iocation M is cieared and the contents of the
register are copied into M.

In a typical 24-bit instruction, the Index code specifies one of eight forms
of the instruction indicated by the Operation code. Such forms are called
subinstructions.

In an instruction having several options, the Suboperation code specifies
which of these options is to be performed.

To complement each bit of a quantity as a result of an individual condition.
A fransfer of bits into a register which has not been cleared previously.
The term transmit implies register contents are moved; i.e., the contents of
register 1 are copied into register 2. Unless specifically stated, the con-
tents are not changed during transmission. The term transfer is often used
synonymously with transmit.

Number that results from subtracting each bit of a number from “0"’. The

two's complement may be formed by complementing each bit of the given
number and then adding one to the result, performing the required carries.

Program Control register. Holds a program step while the single 48-bit
instruction or the two 24-bit instructions contained in it are executed.

That fault occurring in exponent arithmetic when the value of the exponent
formed in afloating point sum, difference, product, or quotient of two numbers

is < 27101 (-1777g).

The execution address portion of an upper instruction; bit positions 24
through 38 of a 48-bit register or storage address.

See Program Step.
A unit of information which has been coded for use in the computer as a
series of bits. The normal word length is 48 bits,

To enter a quantity into a storage location.

LUl ALUNGL LN
o - ——————— - - - - = - A - T —— - - — 0 G " — D - i " T — - Y ———— - " -~ - - ———

COMMENT SHEET

CONTROL DATA 3600

REFERENCE MANUAL - PUB, NO, 60021300

BUSINESS
ADDRESS :

COMMENTS: (bescriBE ERRORS, SUGGESTED ADDITION OR
DELETION AND INCLUDE PAGE NUMBER, ETC.)

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

STAPLE

|

!

I

|

|

|1
0

|E
3]

|

1

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN UeS.A,

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
8100 34TH AVENUE SOUTH
MINNEAPOLIS 20, MINNESOTA

ATTN: TECHNICAL PUBLICATIONS DEPT,
COMPUTER DIVISION
PLANT TWO

FOLD

STAPLE

STAPLE

LIS

Tl Rl S SRV YNV

Octal
Code

————

* Instructions not in the 1604 computer.

Operation Page
Inter-Register Transmissi‘;n 3-19
A Right Shift 3-31
Q Right Shift 3-31
Long Right Shift 3-31
Enter Q 3-23
A Left Shift 3.31
Q Left Shift 3-31
Long Left Shift 3-31
Enter A 3-23
Increase A 3-29
Load A 3-21
Load A Complement 3-21
Add 3-26
Subtract 3-26
Load Q 3-21
Load Q Complement 3-21
Store A 3-21
Store Q 3-21
A Jump 3.37
Q Jump 3-37
Multiply Integer 3-26
Divide Integer 3-26
Multiply Fractional 3-26
Divide Fractionai 3-26
Floating Add 3-27
Floating Subtract 3-27
Floating Multiply 3-27
Floating Divide 3-27
Scale A 3-31

Octal
Code
35
36
37
40
41
42
43
44
45
46
47
50
51
52

]

*63.0
*63.1
*63.2
*63.3
*63.4
*63.5
*63.6

Operation
Scale AQ
Storage Skip
Storage Shift
Selective Set
Selective Clear
Selective Complement
Selective Substitute
Load Logical
Add Logical
Subtract Logical
Store Logical
Enter Index
Increase index
Load Index Upper
Load Index Lower
Index Skip
Index Jump
Store Index Upper
Store Index Lower
Substitute Address Upper
Substitute Address Lower
Register Jump
Bank Jumps
Unconditional Jump to Lower
Transmit Order
Locate List Element
Search Order
Byte Order

Bit Sen'sing

Page
3-31
3-32
3-32
3-30
3-30
3-30
3.30
3.30
3-30
3-30
3-30
3-23
3.29
3.22
3-22
3-29
3-37
3.23
3.23
3.23
3-23
3-39
3-40
3-42
3-21
3-34
3-22
3-42
3-38

Octal
Code

*63.7

Operation

Execute

Equality Search
Threshold Search

Masked Equality Search
Masked Threshold Search
Replace Add

Replace Subtract

Replace Add One
Replace Subtract One
Connect

Function

Read

Write

Copy Status

Clear Channel

Input to A

Perform Algorithm
Selective Jump

Selective Stop

lnternal Function

Single Precision Augment
Truncated Divide

Double Precision Augment
Add to Exponent

Main Product Register Jump

Channel Product Register Jump

D Register Jump
Fault

Page

3-39
332
3-32
332
3.32
3-31
3-31
3-32
3.32
5.3
5.4
5.5
5.5
5.5
5.8
5.8
5-8
3.37
3.37
3.45
3.23
3.27
3-28
3.27
4-6
4-6
3-38
3-46

CONTROL DATA SALES OFFICES ALAMOGORDO « ALBUQUERQUE « ATLANTA « BOSTON « CAPE CANAVERAL
CHICAGO + CINCINNATI « CLEVELAND + COLORADO SPRINGS « DALLAS « DAYTON
DENVER « DETROIT « DOWNEY, CALIFORNIA « HONOLULU « HOUSTON « HUNTSVILLE
ITHACA « KANSAS CITY, KANSAS « LOS ANGELES « MADISON, WISCONSIN
MINNEAPOLIS « NEWARK « NEW ORLEANS « NEW YORK CITY « OAKLAND - OMAHA
PALO ALTO « PHILADELPHIA « PHOENIX « PITTSBURGH » SACRAMENTO

SALT LAKE CITY - SAN BERNARDINO « SAN DIEGO « SEATTLE » WASHINGTON, D.C.

INTERNATIONAL OFFICES FRANKFURT, GERMANY « HAMBURG, GERMANY « STUTTGART, GERMANY
GENEVA, SWITZERLAND « ZURICH, SWITZERLAND + CANBERRA, AUSTRALIA
MELBOURNE, AUSTRALIA « SYDNEY, AUSTRALIA « ATHENS, GREECE
LONDON, ENGLAND « OSLO, NORWAY « PARIS, FRANCE + STOCKHOLM, SWEDEN
MEXICO CITY, MEXICO, (REGAL ELECTRONICA DE MEXICO, S.A.)
OTTAWA, CANADA, (COMPUTING DEVICES OF CANADA, LIMITED) s TOKYO, JAPAN,

(C.ITOH ELECTRONIC COMPUTING SERVICE CO., LTD.)

CONTROL DATA
| corPORATION.

CORPORATION

8100 34th AVENUE SOUTH, MINNEAPOLIS, MINNESOTA 55440

Pub. No. 60021300 Litho in

REVISION

B

PUBLICATION NUMBER

60021300

TITLE 3600 Reference Manual

REASON FOR CHANGE

Change Order 8911

INSTRUCTIONS

Replace the following pages with the attached revised pages:

Record of Revisions
28
29

ORIGINATED BY _P.A. Kraska

FORM CA li4

APPROVED

DATE

Sept. 16, 1964

122

) () (/)

—)| I

'& I A 4

Control Data® 3600 Computer System
Reference Manual

Record of Revisions

REVISION NOTES
D Manual revised; obsoletes all previous editions. B
E Change Order 8911; pages 28, and 29 revised.

Pub. No. 60021300
September, 1964

© 1964, Control. Data Corporation

Address comments concerning this man-
ual to:

Control Data Corporation
Technical Publications Departinent
4201 North Lexington Avenue

St. Paul, Minnesota 55112

Or use comment sheet located in the rear

Printed in the United States of America of this manual.

APPENDIX VI

INDEX TO 3604 (MNEMONIC) INSTRUCTIONS
DESIGNATORS AND ABBREVIATIONS FOR OCTAL CODES

a Specifies storage bank k

c Ext. function code K

CPR Channel Product Reg. m

Ccw Control word M

CWA Control word address MPR

d Bank usage n

i Specifies storage bank; or leftmost NI
““1"" bit in a register (A4

i Designator for 22; 23, 75, 76 x

Op. Field

ADD, MG, CM
ADL, CM, RP, MG

ADX

AJP, ZR, NZ, PL, Ml

ALG

ALS, SS, EO

ARJ, ZR, NZ, PL, M

ARS, SS, EO

BEGR

BEGW

BJPL

BJSX

BRTJ

CLCH

CONN

COPY, CW, CWA

CPJ

DFAD, UR, UN, MG, CM,
RP

DFDYV, UR, MG, CM

DFMU, UR, UN, MG, CM
DFSB, UR, UN, MG, CM
DLDA, MG, CM

DRJ

DSTA, MG, CM

DVF, TR, MG, CM

DVI, MG, CM

ENA, CM

ENI
ENQ, CM

3604 MNEMONIC INSTRUCTIONS
Add. Field

(a) m,b,v

(a) m,b,v

Op.

14
45

77.3

22
74.7
05
22
01
74.2
74.3
63.1
63.0
63.0
74.5
74.0
74.4
77.5
30

33
32
31
12
77.6
20
27
25
10

50
04

27

Unmodified shift count

k + (Bb)

Address portion of instruction

m + (Bb)

Main Product Reg.
Jump address
Next Instruction
Index Register v
Channel number

Function

Add (A) + (M) > A

Add Logical (A) + L (Q)
M) > A

Add to Exp. 'y’ + exp.
(A) > A

A Jump to ‘m’

Perform Algorithm

A left by K

A Ret. Jump to m

A right K places

Begin Read

Begin Write

Bank Jump lower

Bank Jump and Set Index

Bank Ret. Jump

Clear Channel

Connect

Copy Status

Chan. Prod. Jump

D.P. Float. Add (AQ) +
MM+1) > AQ

D.P. Float. Div. (AQ) /
MM+T1)> A

D.P. Float. Mul. (AQ) +
MM+T1) > AQ

D.P. Float, Sub. (AQ) -
MM +1) > AQ

D.P. Load AQ MM + 1)
> AQ

D Reg. Jump

D.P. Store AQ in MM + 1)

Div. Fract. (AQ) / (M) - A

Div. Integer (QA) /M > A

Enter A. Y » A, extend
sign Y

Enter Index. Y » Bb

Enter Q. Y » Q, extend
sign Y

Page

3-26
3-30

3-27

3-37
5-8
3-31
3-37
2-31
5-5
5-5
3-42
3-40
3-40
5-8
5-3
5-5
4-6
3-29

3-29

Op. Field
EQS

EXEC

EXTF

FAD, UR, UN, MG, CM,
RP

FDV, UR, MG, CM

FMU, UR, UN, MG, CM
FSB, UR, UN, MB, CM, RP
1JP

INA, CM
INF
INI

IPA
ISK

LAC, CM

LBYT, LI, CL, RI
(Ao,Ee,Qo)*

1.DA, MG, CM
LLDL

LDQ, MG, CM
LIL

LIU

LLS, SS, EO

LQC, CM
LRS, S§, EO

LSTL
LSTU
MEQ

MPJ
MTH

MUF, MG, CM

MUI, MG, CM

NBJP, CM, CL, ST
NOP

QJP, ZR, NZ, PL, Ml
QLS, §S, EO

QRJ, ZR, NZ, PL, M
QRS, §S, EO

RAD

RAO

RGJP,s

* LBYT require modifiers Ao or Qo and Ee.

Add. Field

(@) m,b,v

(a) m,b,v
X,C,n

(a) m,b,v

(a) m,b,v
(a) m,b,v
(@) m,b,v

m,v

y,b
m

y,b

y:b

(a) m,b,v

m.b,v

(a) m,b,v
(a) m,b,v
(a) m,b,v
(a) m,b,v
{a) m,b,v

(a) m,b,v

{(a) m,b,v
(a) m,b,v
P.g,m,b
m

(a) m,v
b,k

(a) m,v
b,k

(a) m,b,v
(a) m,b,v
P,y,m,b

65

63.7
74.1
30

33
32
31
55

n
77.0
51

63.3
63.3
66

77.4
67

26
24
63.6
50.0
23
06
23
02
70
72
62

28

Function

Equal. Srch. Bb words; if

(M-1) etc. = A, skip
Execute inst. at address
Ext. Function

Float Add (A) + (M) > A

Float. Div. (A) / (M) > A

Float. Mult. (A) + (M) » A

Float. Sub. (A) (M) >

Index Jump. (B #0: (Bb
1> BP, NI'=m (BD) =
0:NI

Increase AY + (A) > A

Internal Function y

Increase Index. y + (BP) »
gb

Input to A

Index Skip. (B by # y: (B Bb)
+1 - Bb, skip (Bb) = y:
0 > BP, next upper

Load A Comp. (M) "> A
lLoad B

Load A. M) > A
Load Logical. L(Q) M
Load Q. (M) »
Load Index. (M,_) - Bb
Laad Index. (MU) > Bb
Long Left Shift (AQ) K
places
Load Q Comp. (M) > Q
Long Right Shift (AQ) K
places
Locate list Element Lower
Locate list Element UpE
Masked Equal. Srch.
words if L{(Q) (M) = (A)
skip
Main Prod. Reg. Jump
Masked Thresh. Srch. (B)
words if L(Q) (M)>
(A), skip
Mult. Fract. (A) + (M) > AQ
Mult. Integ. (A) + (M) > QA
Non-zero Bit Jump
No. op.
Q Jump
Q Left Shift K places
Q Return Jump
Q Right Shift K places

Page
3-32

3-39
54
3-27

3-27
3-27
3-27
3-37

3-29
3-45
3-29

3-21
3.30
3-21
3-22
3-22
3-31

3-21
3-31

3-34
3-34
3-32

4-6
3-32

3-26
3-26
3-38
3-23
3.37
3-31
3-37
3-3

Replace Add. (A) + (M) >M & A 3-31
Replace Add one.(M)+1->M& A 3-32

Register Jump

3-39

Cp. Field

RJi-3
ROP,s
RSB
RSO

RSW, CQ, CR
RTJ
RXT, CQ, CR
SAL

SAU
SBL, CM, RP

SBYT, LI, CL, RI
(Ao,Ee,Qo)*
SCA

SCAN, EQ, GT, LT, NE,
LE, GE (Qo,Ee)*
SCL

SCM
SCQ

SEQU, |
SEWL, |

SIL

SIU
$J1-3
sLJ
SLS
SMEQ, |

SMWL, |

SR1-3
SRJ
SS1-3
SSH

SSK
SST
SSU

STA, MG, CL, CM
STL

STQ, MG, CL, CM
SUB, MG, CM

Add. Field

{(a) m,v
plqtr

{a) m,b,v
(a) m,b,v

q,r
(a) m,v
q.r

(a) m,b,v

(a) m,b,v
(a) m,b,v
m,b,v

b,k

{(a) m,b,v
(a) m,b,v
(a) m,b,v

(a) m,b,v

* SBYT and SCAN require Ao or Qo and Ee modifiers.

29

N

75
00
71
73

00
75
00
61

60

46

63.5

34

63.5
41

42
35

63.4
63.4

57

EA

~U

75
76
76
63.4

63.4

76
76
76
37

36
40
43

20
47
21
15

Function Page

Sel. Ret. Jump, key 1-3 3-37

Register Op. Inter Reg. Trans 3-19

Replace Sub. (M) - (A) - M& A 3-31

Replace Sub. one (M) - 1 3-32
> M&A

Reg. Swap, qand r 3-19

Return Jump 3-37

Reg. Transmit, g tor 3-19

Substitute Add. Lwr. 3-23
(Ap0.14) > ML_A

Substitute Add Upp. 3-23
(Ago-14) » Mya

Subtract Logical. 3-30
L(Q) (M) - (A) » A

Store Byte Ee 3.42

Scale A left until 3.31

| (A)|Z 50r K =0,
K — # shifts » Bb

Scan, use byte Ee 3.42

Sel. Clear, A, to 0 for 3-30
M, =1

Sel. Comp. A, for M, =1 3-30

Scale AQ left until 3-31

| (AQ) |>.50r K =0,
K — # shifts > Bb
Search for Equality (M) = (A) 3-33
Search in Limits (A) 3-33
=M >(@Q
Store Index Lower (Bb) > M A 3-23
Store Index Upper (BP) » Mya 3-23

Sel. Jump Keys 1-3 3.37

Selective Jump 3.37

STOP 3-37

Search Masked Equal. 3-33
L(Q) M) = (A)

Search Mag. in Limits 3-33

(A)=] (M) | > (@)
Sel. Return Stop Keys 1-3 3-38

Stop Return Jump 3-37
Sel. Stop Keys 1-3 3-38
Storage Shift left one if (M) 3-32
neg. skip
Storage Skip if (M) neg. 3-32
Sel. Set (A,) to 1 for (M) =1 3-30
Sel. Sub. (M) - (A,) for 3-30
Q,) =1
Store A (A) > M 3-21
Store Logical L(Q) (A) > M 3-30
Store Q (Q) » M 3-21
Subtract (A) = (M) > A 3-26

Op. Field

THS

UBJP

XMIT, PC, CM, AUG, MK
ZBJP, ST, CL, CM

Add. Field

(a) m,b,v

(a) m,b,i
(@) m, (i)n
p,g,m,b

Op-
65
63.0

63.6
63.6

Function

Threshold Search (BP) words
if (M-1) ete. (A) skip

Uncon. Bank Jump

Transmit (am) to (in)

Zero bit Jump

Page
3-32
3-40

3-21
3-38

MNEMONIC CODES FOR INSTRUCTION MODIFIERS

Ao A reg. in LBYT and SBYT; Ao=rightmost MI Minus
bit of byte MK Masked
AUG Augment NZ Non Zero
C Chain to next control word PC Plus constant in A
CL Clear Source PL Plus
CM Complement Qo Q. reg. in LBYT, SBYT. Qo=right bit of byte
CQ, CR Clear unused part of g or r in RSW, RXT RP Replace
Cw Control word to A in COPY SS Signed Shift. Direction is sign count
CWA Control word add. to Q in COPY TR Truncated
Ee Byte size in # bits for LBYT, SBYT, SCAN UN Unnormalized
Eo Shift end off with no sign exit UR Unrounded
] Indir. Add. in Searches ZR Zero
MG Magnitude
REGISTER CODES
(for 00, 62, 63.6 instruction)
Mnem. Octal
Code Code Register
VALUES OF § 00 -
ROP Inst. B1 01 Bl
Mnem. Octal Function B2 02 B2
B3 03 B3
OR 0 Or B4 04 B¢
XOR 1 Exc. OR B5 05 BS
AND 2 And B6 06 g6
IMP 3 Impl. AL 07 A lwr. addr.
EQ 4 Equiv. AU 10 A up. addr.
+ 5 Sum QL LA Q Iwr. addr,
- 6 Diff. Qu 12 Q up. addr.
A 13 A Full
RGJP Inst. N i it
Mnem. Octal Function BR 16 Bounds Reg.
EQ 0 (p)=y IM 17 Int. Mask Reg.
GT 1 (P)>y IR 20: Int. Be'g.”
LT 2 (p)<y E:IZ 2]* Ali “0's forced
NE 3 (p)#y 22 +1 and
LE 4 P <y MZ 23* All ©17sr) OPETAnes
GE 5 (p);y 1B 24* Inst. Bank Reg.
LT,D 6 (p)<y, 0B 25 Op. Bank Reg.
Cond NC 26* Shift Count Reg.
decrem MS 27* Misc. Mode Sel.
GE,D 7 P2y, P 30* P Register
Cond CK 31* Time Register
decrem. LM 32 Time Limit Reg.

30

* Used for operands only.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	ReplyA
	ReplyB
	XBackA
	XBackB
	_revE_000
	_revE_001
	_revE_002
	_revE_27
	_revE_28
	_revE_29
	_revE_30

