@)=

COMPUTER SYSTEMS
COMPASS

REFERENCE MANUAL

CONTROL DATA
R

CORPORATION

SIG|E)]®)

COMPUTER SYSTEMS
COMPASS

REFERENCE MANUAL

CONTROL DATA
compomarion]

CORPORATION

REVISION RECORD

60052500
REVISION NOTES
(11-67) Original printing.
C
(12-67) Reprint with revision,

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Pub. No. 60052500
September 1966

© 1962, 1967 Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Software Documentation
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

CONTENTS

INTRODUCTION

CHAPTER 1 ASSEMBLY LANGUAGE CODING

1.1 Coding Form
1.2 Bank Relocatability
1.3 Instruction Pairing

CHAPTER 2 PSEUDO INSTRUCTIONS

2.1 Assembler Control

2.2 Listing Control

2.3 Conditionals

2.4 Program Organization

2.5 Data Definition
CHAPTER 3 GENERATIVE CODING

Operation Search Order
Macro Heading
Prototype

Macro Terminator
Macro Call

System Macros

Library Macros

ECHO

IFT

IFF

LW W WwWwwWwwWwwoww
W 00 IO O WN

-
<

CHAPTER 4 COMPRESSED SYMBOLIC (COSY)

4.1 COSY Input

4.2 COSY Listing

4.3 COSY Deck Formats

4.4 COSY Diagnostics
CHAPTER 5 DECK STRUCTURE

5.1 Deck Sequence

iii

e <
| [[.

1
00 =1 i

[

NN NN N
1
= =3 U=

|
=
(=23

1 1

|
W b WWwN =

o
=
[<2 B

c::wwoowwwwww ()
| |

b

W =

1
[y

1

.Js»»?us ~
~ G

CHAPTER 6

TABLE 1
TABLE 2
TABLE 3
TABLE 4
TABLE 5
TABLE 6
TABLE 7

ERROR DIAGNOSTICS AND OUTPUT LISTING

6.1 Output Listing

6.2 Error Messages

MNEMONIC CODES FOR 3600 OPERATION REGISTERS
MNEMONIC CODES FOR INSTRUCTION MODIFIERS
ADDRESS SUBFIELDS

MNEMONIC MACHINE INSTRUCTIONS

PSEUDO INSTRUCTIONS

SPECIAL CODES FOR TYPE ENTRIES

CHARACTER REPRESENTATION AND USAGE

v

T-12
T-13
T-14

INTRODUCTION

COMPASS
LANGUAGE

MACRO
INSTRUCTIONS

COMPASS is the comprehensive assembly system for the Control Data ® 3600
computer. Operating under control of the SCOPE supervisory system,
COMPASS facilitates the writing of assembly language programs by providing
a complete set of machine language mnemonics.

The COMPASS language provides the following features for assembly language

programmers:

Address arithmetic

Preloaded data

Common assignments

Data definitions

Listing control

Diagnostics

Variable Field Definitions

Constants, symbolic addresses, literals,
and arithmetic expressions may be used to
represent the value of the address field.

Data areas may be specified and loaded with
values at the same time the program 'is
loaded.

Common areas may be designated to provide
for communication among COMPASS sub-
programs and subprograms written in other
source languages.

Integer, floating-point, BCD, and typewriter
constants may be programmed using the
familiar notation.

The format of the assembly listing may be
controlled with COMPASS pseudo instructions.

Diagnostics for source program errors are
included in the output listing.

Information can be catenated in core storage
without regard to word length.

COMPASS provides three types of macro instructions:

Programmer-defined macros allow the programmer to specify a sequence of

instructions as a macro definition; whenever the associated macro name
appears subsequently, the sequence of instructions will be inserted by

the COMPASS compiler.

COsy

ASSEMBLER

EQUIPMENT
CONFIGURATION

Library macros supply sequences of instructions and can be referenced by
programmers without the necessity of writing their own macros. The
COMPASS macro library is flexible and can be easily expanded and
modified to include installation oriented and specialized sets of
instructions,

System macros provide a full set of instructions to perform various input/output

operations, tape handling routines, interrupt controls, and library
requests.

The COMPASS assembly option, COSY, may be selected to reproduce the
source program compressed as much as 19:1, compared to the normal BCD
source deck. The compressed source program makes faster reassembly and
modification possible and simplifies maintenance of source programs on
magnetic tape.

The COMPASS assembly program converts programs written in COMPASS
source language into binary machine language for execution under control of
the SCOPE supervisory system. Source programs may consist of punched
cards or BCD card images on magnetic tape. The assembly output provides
an assembly listing and a relocatable binary object program on punched cards
or on magnetic tape, and an optional compressed source language deck of
COSY card images.

The COMPASS assembler uses the SCOPE standard input and output units. A
load-and-go unit makes it possible to execute a program immediately after
assembly. Need for additional units depends on the demands of the COMPASS
programs.

vi

ASSEMBLY LANGUAGE CODING 1

1.1

CODING FORM In the coding form for COMPASS 3600, the 80 columns correspond to the
columns of the source card image. Each card image is represented by
one line of coding. The form is further divided into five fields; location,
operation, address, comments and identification.

' |
ciagagesieprpe|efopgagggaeg Joy3r a7 33134 38361973839 a0 41| Leojanjs0)s |32y (ssgenyroriralraprapas reprrgre ejee
[[
L1 PR S T O N T T T VA U U G S U S 0 S Y D U 0 B A B R B B B B e S
| '
[R [S S U T ST YT T U U W S S WV O T 0 0 B S G B R SRR B S S
' i
L1 NI U U U Y U T T U T U T U W T T T U W T T T 0 S B B S R B B A e e
[1
I P O N U T N U N U YO S 0 U U S Y S W W B T Y B O T B B B e e
' U
L I S U U U N HET U U T T U U U U S S O S U T T Y B W B B B R B S
) !
L1 R U S ET U U U VT TS U T T VO T T 0 0 S U T 0 0 B B S B BB B S
| 1
IR T T U U U T U U U T SN T 0 G A S 0 S Y T A G B S B 0 B W S 0 T N W B B B B S e
| i
Ly PRI ST ST U U ST U SO U A U T U S WO W S VI WU I B 0 T W W S S B R R S S
1 '
W P S S U T Y U YT S 0 S U S U 0 T T T S G W B S B B R RS e S S
0 '
L S I U U T N U U U U T I 0 S S ST T T S Y B S G T W B i B B B S e e
1 [
i [T S ET I U U U Y T 0 T U U S U S 0 T G S0 0 0 G W RO S B B B e S
1 [
L PP S S E N U T T U T U T Y U 1 T T S 0 W A A T A 0 U0 IR B B BB B s B
1 i
L1 NS I O A I U U T N N T U U U U T T 0 W S S 0 S U W Y B S A W W B B S S
! |
L1 N S N S U N N T U T VO S T VO ST S S A I U VGO B WAV B N O WS G B SR S B Sy
[1
N NI W ET S U T N U TN T U T U U W VO 0 U S W 0 W B B G G B B B S e s
I [
L PSS I N SO N U U AU T 0 N U0 S N UV T U S G T T 0 G U 0 0 0 B S S BB S e S
(t
AT B P S U N ET U U U U A U U Y U S T S S T T S T U 0 W T 0 SV 0 0 O B W B B B e St
[[
L P U U T N U U U U ST SO ST S U0 T T U V00 U 0 G T 6 P B B S B R B B B e S
] l
I T I AT A U T N N S U N U ST S T S ST U N 0 T 00 TS U Y B 0 B N R L R SRR S B S
| '
P R A PRI U U0 U0 N U U S U U S 0 U T T 0 O A R Y S W PR TN T T U S VAU S ST S U 0 S 0 A U i
1 '
11 P T S U U ST U N N U U YU N T U VA S S W S G M 0 S D B S S B B B S B B B S
1 1
I TSN S A U U AT A O N SN AT 0 W S ST S ST SV S0 SV U T 0 0 B T S W A G B R R RS B e
[]
I I A U U U0 N U U A ST O N GO 0 G S S S B B B S B s S
1 '
cqagsgaqsgeyryafe]ogupaisepmpeyryoge » pegissoe (393380 ropyre rrprspragen
cBC 366

LOCATION The location field occupies columns 1-8. It may be blank or contain one
of the following symbol types:

An alphanumeric symbol of 1 to 8 characters composed of letters,
numbers or special characters. The symbol may not begin with a
numeric character. Allowable special characters are the internal
BCD codes 148, 328, 528, and 338'

OPERATION

ADDRESS

A plus or minus sign placed anywhere in the field, with the remaining
columns blank.

An 8-character symbol consisting of any combination of numbers and
blanks.

An alphanumeric location symbol labels a word for reference by instruc-
tions elsewhere in the program. Imbedded blanks are ignored; A B is
equivalent to AB,

A plus or minus location symbol forces the instruction to be assembled
into an upper or lower half-word, respectively. If a half-word is skipped
by this action, it is filled with a no-operation (NOP) instruction,

A numeric location symbol identifies a numbered common block,

An asterisk in column 1 signifies that the entire card is a comment card.
Columns 1 through 72 may contain any legal BCD characters. Such a line
has no effect on the assembly, but columns 1-72 will be printed on the
output listing,

The operation field begins in column 10 and ends with the first blank
column, This field consists of one or more subfields separated by
commas. The first subfield may contain:

One of the machine instruction mnemonics listed in Table 4
One of the pseudo instructions listed in Table 5
The name of a macro instruction

An octal number in the range, 0-77

Succeeding subfields contain operation modifiers from the set in Table 2,
A blank in column 10 terminates the operation field and specifies an
operation code of zero,

A three-letter machine mnemonic implies a 24-bit instruction; a four-
letter machine mnemonic implies a 48-bit instruction. However, opera-
tion modifiers normally cause an instruction to be augmented to 48 bits,

The address field may begin in any column following the operation field's
blank terminator up to, and including, column 40, It is terminated by the
first blank, but may not extendbeyond column 72. The address field may
have one or more subfields, separated by commas or parentheses, Ma-
chine instructions have implied subfields, If the address field of a machine
instruction is blank, each of the implicit subfields assumes a zero value.

A subfield may be skipped and assigned a zero value by giving only its
trailing comma or; if it is the last subfield in the address field, by omit-
ting both its value and the preceding comma.

1-2

For machine instructions, the address field may contain the following
subfields:

Subfield Contents

a first bank designatorJr
second bank designator

[

first operand address
second operand address
operand

first index register
second index register]L
equipment designator
bit designator

first source register
second source register
destination register
unit designator
operand

X € £ %02 T R O < T < B H

channel number

ADDRESS

ELEMENTS Address subfields are expressed in terms of one or more address ele~
ments. Address subfields may contain an alphanumeric symbol, a
constant, an asterisk, a double asterisk, a dollar sign, a literal, data
storage, a dollar sign plus a name, an expression, or mnemonics for
3600 operational registers.

ALPHANUMERIC
SYMBOL This symbol consists of 1 to 8 characters composed of letters, numbers or
the special characters; the first character may not be a digit.

an apostrophe (internal BCD 148)
a plus zero, +0, (internal BCD 328)
a minus zero, -0, (internal BCD 528)

a period (internal BCD 338)

t a and v are not considered as implicit subfields in 24-bit instructions.

1-3

CONSTANT A constant may be a decimal or octal integer; an octal integer is suffixed by
the letter B. The size of a constant depends upon the size of the subfield
or the kind of subfield in which it is placed.

ASTERISK For m, n or y subfields, the character, *, is interpreted as the current
value of the location counter, For a and i subfields, it is a bank relocat-
able element, and implies the bank into which the subprogram will be loaded.

DOUBLE ASTERISK The symbol, **, gives a one value to each bit of the subfield. This element
normally indicates a subfield to be set during program execution.

DOLLAR SIGN Subfields a or i may contain the character, $, alone or followed by an alpha-
numeric symbol. I $ appears alone, it implies the bank associated with the
symbol in the operand address subfield. If a symbol follows $ in the same
subfield, it implies the bank associated with that symbol. In either case,
if the symbol to which $ applies is non-relocatable, no entry will be made in
the Bank Relocation Table.

DATA STORAGE Data storage, signified by an equal sign followed by an S, establishes a
storage area at the end of the program following the literals and substitutes
its starting address for the address in the instruction. The starting loca-
tion of the storage area is assigned the name which follows the S. The name
is an alphanumeric symbol, and may be used in any expression except those
which require that the symbol be previously defined. The length of the storage
area is defined by a dimension string, enclosed in parentheses, following the
name. Each dimension may consist of an expression containing constants
and previously defined symbols. If no dimensions are given, one word is
assigned.

Example: LDA=SX(5)

X word 1

X+1 word 2

X+2 word 3

X+3 word 4

X+4 word 5
If the same name appears in more than one data storage element, the same
location will be assigned for each occurrence, but the length will be that of

the largest array. The coding should nol depend on the order of assigniment
of the data storage areas.

LITERAL

If the name is defined elsewhere by an element other than data storage,
no space will be reserved and the address substituted will be that of the
otherwise defined symbol.

A literal is signified by an equal sign followed by a mode designator and
value. The value is converted according to the specified mode and stored
as one or two words at the end of the program. The assigned address is

substituted in the address of the instruction.

When literals of the same

value occur, storage is not duplicated.

The mode designator may be one of the following.

D Decimal constant The value is written in the format specified by
the DEC pseudo instruction and is terminated by
the first blank character, or by a comma if
another subfield follows.

O Octal constant The value is written in the format specified by
the OCT pseudo instruction and is terminated by
the first blank character, or by a comma if
another subfield follows.

H Hollerith codes The first eight characters following H specify
the BCD value; the ninth character must be a
comma or blank.

T Typewriter codes The first eight typewriter characters following
T specify the value. A typewriter character is
represented by one or two BCD characters, as in
the TYPE pseudo-instruction. A blank or a
comma must follow the eighth typewriter character.

DD Double Precision The value must be in floating point format as speci-

Decimal Constant fied by the DECD pseudo instruction. The result
occupies two words.

DO Double Precision The value is written in the format specified by the

Octal Constant OCT pseudo instruction. The result occupies two
words.

Examples:

Coded Assembled Value

Single =D2222 0000000000004256

Precision _ 01234567 0000000001234567

=HABCDABCD 2122232421222324
Double =D012345670123456701234 0000000000001234
Precision 5670123456701234

1-5

EXPRESSION An expression consists of alphanumeric symbols, constants, and asterisks

OPERATION
REGISTER
MNEMONICS

COMMENTS

joined by the operators: + addition, - subtraction, * multiplication, and

/ division, The position of an asterisk defines its meaning. For example,
in the expression, **2, the inner * denotes multiplication; the outer * is a
self-reference symbol,

An expression is evaluated from left to right; Multiplication and division
are performed before addition and subtraction. Parentheses may not be
used for grouping: 15*A+5/2*C-5 is evaluated as (15.A) + ((-g-).C)—S.

A remainder generated by a divide operation will be lost, Thus 5/2*2=4,
If a divide by zero is attempted, an address error will be flagged unless
the dividend is also zero.

An expression may be scanned for legality using the following rules:
1. For each relocatable element, substitute Rj, where i = p for program
relocatable, i = cl for relocation with respect to the first common block.

i = ¢2 for relocation with respect to the second common block, etc.

2. Algebraically, sum all terms within the expression, The only permis-
sible results are zero, a non-relocatable value, or +R;.

=+ - - = -
Rp RCl Rp Rcl non-relocatable
Z*Rp - Rp = program relocatable
—2*Rp + Rp = negative program relocatable

3. A single term may not contain more than one relocatable symbol,

4. Within a single term, a relocatable symbol may not be an operand in a
divide operation, and no slashes (/) may occur to the right of a relo-
catable symbol,

5. An external symbol may not be part of a multiply or divide operation.

No more than one external symbol may appear in an expression., The
end result must be of the form:

+ < external > + < non-relocatable value >

6. Every relocatable element must be defined elsewhere.

These special mnemonic codes, listed in Table 1, may be used in
certain instructions to represent registers pertinent to the instruction.

The comments field may begin after the blank column which terminates the
address ficld and may extend through column 72. If the instruction has no
address field, comments may begin following the operation field; if the

1-6

IDENTIFICATION

1.2

BANK

RELOCATABILTY

ASTERISK

DOLLAR SIGN

BANK RELOCATION
TABLE

instruction has an address field which is null, comments may begin in
column 41. The comments field has no effect on the assembly, but its
contents are printed on the output listing.

Columns 73 through 80 may be used for identification; they have no effect
on assembly. If a COSY option is requested, this identification will be
replaced on the output listing by COSY sequence numbers.

Subprograms and common blocks may be assigned to any memory bank or
combination of memory banks. If the programmer does not designate the
bank assignments, the SCOPE loader assigns each subprogram or block

to the memory bank into which it best fits. For bank relocatable fields,
COMPASS assembles a zero in the object deck and makes an entry in the
Bank Relocation Table to enable the SCOPE loader to make the proper bank

assignments.

The symbol, *, in an a or i subfield is interpreted as the bank into which
the subprogram in which it appears will be loaded.

The symbol, $, appearing alone in an a or i subfield, is interpreted as the
bank associated with the symbol appearing in the operand address subfield.
If an alphanumeric symbol follows the $, in the same subfield, the $§ im-
plies the bank associated with that symbol.

If the symbol associated with $ is non-relocatable, no entry will be made in
the Bank Relocation Table.

COMPASS produces, as part of its relocatable binary output, a Bank
Relocation Table for the SCOPE loader. (See SCOPE Reference Manual
Pub. No. 60053300 for full description of BRT). The BRT cards direct the
loader to insert the proper bank references in instructions containing relo-
catable bank terms; a or i subfields which contain fixed values do not re-
quire BRT entries. A BRT entry would be made, for example, for each of
the following:

LDA ($)NAME1
ENO $NAME1
STA (*)NAME1
BRTJ NAMEL, $

1-7

Two entries would be made for each of the following:

XMIT ($)NAME1, (SNAME2)NAME3
BRTJ ($)NAME1, ,$
UBJP (*)NAMET, ,*

No BRT entry would be made for the following since the operand address
subfield is not relocatable or external:

BRTJ $)**,,$
LDA ($)0
NAME1 EQU 1
XMIT (SNAME1)NAME2, ($)**

If a subprogram will be referencing locations outside itself, including
common blocks, and if these locations may reside in a different bank,

the programmer must be certain that the bank registers are set and reset
accordingly.

NOTE: For instructions BEGR, BEGW, XMIT, IOSR, IOTR, IOSW, and
IOTW, if no a (and/or i) subfield is specified by the programmer,
$ will be assumed, and a BRT entry will be produced for each
bank subfield associated with a relocatable or external symbol.
In the following example, NAME2 and NAME3 are relocatable or

external:
XMIT NAME2, NAME3 (2 BRT entries)
BEGR 3,NAME2,NAME3 (1 entry)
IOTW NAMEZ2,20 (1 entry)
XMIT %%, *x* (no entry)
1.3
INSTRUCTION
PAIRING The instruction set for the 3600 computer contains both 24-bit (half-word)
instructions and 48-bit (full-word) instructions. The assembler organizes
instructions in memory subject to the following considerations.
NORMAL PAIRING Normally, two 24-bit instructions are stored in one computer word.

Starting with the first two machine instructions in a subprogram, pairs of
instructions are assigned to consecutive locations. The first instruction

is assigned to the upper half, the second instruction to the lower half of

the word. This sequence is maintained until forcing upper or forcing lower
occurs.

1-8

FORCING UPPER

FORCING LOWER

AUGMENTS

MNEMONICS

The following conditions force an instruction to begin in the upper half of
the next available location. The lower half of the current location, if
unused, is filled with a NOP instruction:

An alphanumeric symbol or a plus sign in the location field
A full-word instruction, 48 bits

One of the 24-bit half-word instructions; CPJ, DRJ, EQS, ISK, MEQ,
MPJ, MTH, SSH, SSK, or THS, unless specifically forced lower.

One of the pseudo instructions; BCD, BES, BSS, DEC, DECD, OCT,
ORGR or TYPE

An instruction immediately following a BLOCK, EJECT or REM
pseudo instruction

A minus sign in the location field of a 24-bit instruction forces the instruc-
tion to be located in the next available lower half-word. The upper half-word,
if unused, is filled with a NOP instruction. A minus sign in the location field
of a 48-bit instruction will not force lower, and it will be flagged as a loca-
tion error on the output listing.

The single precision augment will automatically be inserted before a 24-bit
instruction, making it a 48-bit instruction, if a bank designator or second
index designator appears in the address field, or if an operation code
modifier appears in any instruction except ROP, RXT, RSW, AJP, QJP,
ARJ or QRJ.

In the case of ISK, SSK, SSH, EQS, THS, MEQ and MTH, which are normally
forced upper, augmenting will force them to the lower half-word which will
affect the manner of exit from the instruction. The double precision aug-
ment is automatically inserted for instructions DFAD, DFDV, DFMU, DFSB,
DLDA and DSTA.

Instructions with 3-letter mnemonic codes are half-word instructions ex-
cept where the single precision augment is used. Instructions with 4-letter
mnemonic codes are full-word instructions.

Table 4 lists the mnemonic codes for machine instructions with the allow-
able modifiers. Modifiers which are mutually exclusive are listed in a
vertical column. Modifiers may appear in any order and may be omitted
except as noted. In the address field, the subfields must appear in the order
specified. The bank designators (a) and (i) are optional.

PSEUDO INSTRUCTIONS 2

21
ASSEMBLER
CONTROL

IDENT

END

Pseudo instructions direct COMPASS to perform specific assembly functions.
They are used to define assembler control, listing control, conditional
assembly, program organization, data definition and macro coding. The
general format for pseudo instructions is the same as that for machine in-
structions.

These pseudo instructions define assembly mode and subprogram linkage.
They control the operation of the assembler but, except for CALL, do not
generate code in the object program.

COMPASS includes a provision for assembling instructions coded in CODAP-1
format. The CODAP-1 mode is initiated using the CODAP pseudo instruction.
An instruction with a punch in column 9 is always recognized as a CODAP-1
instruction, regardiess of mode.

| 8 |I0

IDENT m,nl,nz,...

IDENT must be the first instruction of each subprogram; it will be flagged as
an O error if it appears again before an END instruction. The m subfield

must contain an alphanumeric symbol of 1 to 8 characters, which names the
subprogram. The location field should be blank. The n; subfields are optional;
they may contain address field expressions which result in values punched in
the IDC card of the object deck. A typical use of the n; subfields is the decla-
ration of system parameters in the coding of Drum SCOPE background pro-
grams.

|| el ||o

I END m

END signals termination of a subprogram. If an alphanumeric symbol appears
in the address field, it will be punched as the symbolic transfer address on
the TRA card of the relocatable object deck. The transfer address must be

2-1

defined elsewhere in the program as an entry point. The location field should
be blank.

ENTRY | g |io
| ||ENTRY m,m

c..m
2’ n

ENTRY declares alphanumeric symbols within the subprogram as entry points
which may be referenced by other subprograms. An entry point must be de-
fined by its appearance in the location field elsewhere in the subprogram.
Non-relocatable and program relocatable symbols may be declared as entry
points. Symbols in the address field, separated by commas, may extend
through column 72; the first blank column terminates the string. The location
field of ENTRY should be blank.

Example:
EI\{TRY SYM1, SYM2,SYM3
SYM1 LDiA CON1
SYM2 ENI 7B
SYM3 EQ:U 19

SYM1, SYM2 and SYM3 may be referenced by other subprograms.

EXT
| 8] |10

EXT ml,mz,.. .mn

EXT defines symbols which are external to the subprogram in which the EXT
instruction occurs. They are of the same form as symbols declared by ENTRY
and represent entry point names in subprograms called by this subprogram.

At load time, external symbols are assigned the value corresponding to the
symbol in another subprogram. Symbols, separated by commas, may extend
through column 72. The first blank column terminates the string. The loca-
tion field of EXT should be blank.

Subprogram 1 Subprogram 2

EXT SYMI, SYM2 ENTRY SYM1, SYM2
SLJ SYM1 SYM1 LDA AA

RTJ SYM2 SYM2 SLJ **

The two symbols declared as entry points in subprogram 2 are defined as
external symbols and referenced in subprogram 1.

2-2

CALL

EQU

SET

| 8|h0
symbolllCALL m

CALL defines the symbol appearing in the address field as an external symbol,
and it assembles a bank return jump to that symbol into the program, as
follows:

BRTJ @)m, , $
EXT m

Location field may contain a symbol identifying BRTJ instruction.

| ello

EQU m

symbol

The EQU statement must appear before a reference is made to the symbol
which it defines.

A location field symbol may be defined by equating it to an address field ex-
pression. An alphanumeric symbol in the location field is assigned the value
of the address field expression. This value is substituted for all program
references to the symbol. Address field symbols must be previously defined
(used as location symbols earlier in the subprogram).

Symbols may be equated to other symbols or values within the same subpro-
gram, Symbols may also be equated to external symbols which must appear
singly in the address field; the location symbol will not appear in the external
symbol list.

! el ||o

|‘SET s,n

SET permits the definition and subsequent re-definition of a symbol during
assembly. The s subfield contains a single alphanumeric symbol. The n sub-
field contains an address field expression which may be relocatable or non-
relocatable. Any symbols appearing in the n subfield must have been pre-
viously defined. The symbol s will retain the value n until altered by the
occurrence of another SET pseudo-instruction. A symbol defined by SET may

2-3

CODAP

COMPASS

SCOPE

not be defined by any other type of symbol definition. A symbol defined by
SET within a macro will be global. A symbol may be set equal to an external
symbol according to the same rules as in EQU.

Any entry in the location field is meaningless and will be ignored.

I sl Ilo

CODAP

CODAP changes the assembly mode to accept instructions in CODAP-1 format.
All subsequent instructions are so interpreted until a COMPASS psuedo in-
struction is encountered.

A location symbol is meaningless, and will be ignored.

| 8| |10

COMPASS

COMPASS reestablishes the COMPASS mode if a CODAP pseudo instruction
was encountered previously; otherwise, it is ignored. An instruction with a
punch in column 9 is always interpreted as a CODAP-1 instruction, regardless
of mode.

A location symbol is meaningless, and will be ignored. Everything beyond
column 17 is treated as comments.

SCOPE

SCOPE terminates the assembly process and causes COMPASS to return con-
trol to the SCOPE monitor. The SCOPE pseudo instruction should follow an
END pseudo instruction. If SCOPE follows any instruction other than END, it
is treated as an END and flagged as an O error. Return is made to the moni-
tor after the subprogram is assembled.

A location symbol is meaningless, and will be ignored. Everything beyond
column 15 will be treated as comments.

2.2
LISTING
CONTROL

EJECT

SPACE

NOLIST

The COMPASS assembly listing may be controlled with the following pseudo
instructions; they are not printed on the output listing. Symbols in the location
field will be ignored.

COMPASS will allow EJECT, SPACE, NOLIST, LIST and REM to be placed
before or between macro definitions. They may not, however, precede LIBM,
if it is present. TITLE, BRIEF and DETAIL may occur anywhere in the deck,
following macro definitions, if any.

EJECT causes the printer to eject paper to the top of the next page. The next
instruction will be printed following the title line on the next page. EJECT
also forces upper.

l SPACE n

This pseudo instruction spaces the output listing the number of lines specified
in the address field. If the spacing would cause an overflow at the bottom of
the page, the page is ejected to the top of the next page. If there is an address
field error, SPACE is ignored; no error diagnostic is given.

NOLIST

NOLIST suppresses the printing of assembly lines until a LIST pseudo instruc-
tion is encountered. However, lines with error flags will still be listed.

2-5

LIST

TITLE

REM

| 8|Lo

LIST

LIST resumes output listing and is meaningful only if a NOLIST has been en-
countered previously.

The list option on the COMPASS control card takes precedence over the LIST
pseudo instruction. If listing is not specified on the control card, LIST has
no effect.

L oo
llTITLE any

TITLE may appear anywhere in a subprogram after macro definitions and be-
fore the END instruction. Columns 16-72 of the first TITLE instruction, no
matter where it appears, will be printed on the top of the first page of the sub-
program listing and at the top of all subsequent pages until another TITLE in-
struction is encountered. Second and subsequent TITLE instructions will
cause a page eject.

If TITLE is not used in a subprogram, the contents of the IDENT address field
will be printed as the title.

I 8| |10
rny REM any

REM produces a printed line containing remarks only. All columns, except
10-13, are printed as remarks. REM forces the next instruction upper.

| 8| |10

A comment line is also produced if an * appears in column 1. Sucha card
does not force the next instruction upper, and all columns, 1-72, are
printed.

2-6

BRIEF

DETAIL

23
CONDITIONALS

BRIEF suppresses the listing of the following:

Literals
All but the first full word generated by DEC, OCT and DECD

The second half word and all subsequent words generated by VFD, TYPE
or BCD

Location digits of second and subsequent array names of a COMMON
pseudo instruction.’

BRIEF may occur at any point in a program after macro definitions. It re-
mains in effect until a DETAIL pseudo instruction is encountered.

I' 8| lio
I

DETAIL causes a return to the normal listing mode to resume printing of
information suppressed by BRIEF.

Conditional pseudo instructions determine whether a specified number of lines
are to be assembled. These instructions define a condition and test to see
whether the condition is satisfied. If the condition is satisfied, the lines
specified are assembled. If the condition is not satisfied, the bypassed code
is not listed unless the M option is specified on the COMPASS control card.

An entry in the location field serves to identify the conditional if it is to be
terminated by an ENDIF pséudo instruction. The symbol is not program-
defined and can be used elsewhere without ambiguity.

END and IDENT may be skipped as the result of a conditional. Care should be

taken that instructions which follow the skipped lines will be legally positioned
in the resultant subprogram.

2-7

IFZ

IFN

symbol IFZ m,p

If the value of m is zero, the next p lines will be assembled. IFZ may appear
anywhere in a subprogram. Both m and p may be address field expressions
which are evaluated modulo 215-1. Symbols must have been previously de-
fined. The resultant value, m, is tested for zero. The expression, p,
specifies a number of coding lines to be processed if the value of m is zero.
These lines immediately follow the IFZ instruction. If m is not zero, the
assembler will bypass the number of lines specified and continue assembling
at line p+1.

If p and the preceding comma are omitted, the range of the IFZ is determined
by an ENDIF pseudo instruction.

Example:
D EQU
E EQU 0
IFZ D,1
A ENA 0
IFZ E,1

B ENQ 0

In the above example, the values of D and E are tested for a zero
condition when the IFZ instructions are encountered. Since D is
assigned a non-zero value, the ENA instruction which follows the
IFZ instruction is not assembled. Because the converse is true
for E, the ENQ instruction will be assembled. The IFZ pseudo
instruction does not result in a card image or assembled line. It
merely tests a condition at assembly time.

symbol IFN m,p

IFN differs from IFZ only in that the lines are assembled if the value of m in
the address field is non-zero.

2-8

IF

IFU

IFL

symbol IF,s m,n,p

IF may appear anywhere in a subprogram. The next p coding lines will be
assembled if the relationship specified by the instruction modifier, s, exists
between m and n. The next p lines are not assembled if the specified relation-
ship does not exist. The m, n and p subfields may contain arithmetic ex-
pressions evaluated modulo 219 -1, All symbols must be previously defined.
If the p subfield and the preceding comma are omitted, the range of the IF will
be determined by an ENDIF pseudo instruction. The modifier, s, may be any
of the following:

mnemonic meaning
EQ m=n
NE m#n
LT mce¢n
LE m =n
GT msn
GE m=n
i sl 10

symbol IFU p

If the lower half-word of the preceding instruction is occupied, the next p lines
are assembled; otherwise, they are not assembled. If p is omitted, the range
of the IFU will be determined by an ENDIF pseudo instruction.

1 SI llo
symbol IlIFL P

If the lower half-word of the preceding instruction is vacant, the next p lines
are assembled; otherwise they are not assembled. If p is omitted, the range
of the IFL will be determined by an ENDIF pseudo instruction

2-9

IFT/ IFF

ENDIF

IFT and IFF are restricted to the range of an ECHO or MACRO pseudo
instruction. Their use is defined in Chapter 3.

| BlLO

l ENDIF m

Conditional pseudo instructions, not containing a line count, may be
terminated by an ENDIF pseudo instruction which defines the limit of
the conditional range. If lines are skipped because of a conditional
pseudo instruction, the associated ENDIF causes normal processing to
resume. The associated conditional is defined by a name in the ENDIF
address field which matches the name in the location field of the condi-
tional. An ENDIF with a blank address field is associated with the last
encountered unlabeled conditional.

An ENDIF occurring in the range of a conditional with which it is not
associated has no effect on that conditional, but is counted as a coding
line.

Address symbols used with ENDIF are not program defined; therefore,

they may be assigned without regard for any prior use. An entry in
the location field will be ignored.

2-10

24
PROGRAM
ORGANIZATION

BSS

Example:

STA CACHE

A IF, EQ CACHE, STORE
ENI 99,1
B IFU
AB RAO AA,1 Skipped if the "ENI 99, 1"
JP AB,1 instruction occupies upper
ENI 49, 2 half-word.
c IFU Skipped if
ENDIF B -] the symbol
ENI 49, 2 Skipped if the "ENT 99, 1 | CACHE
AB RAO AA,1 instruction occupies lower #STORE
1JP AB, 1 half-word.
ENDIF C |
BC RSO BB, 2
JP BC, 2
ENDIF A
LDA NEXT

These pseudo instructions are concerned with the organization of the program
in memory. They establish storage areas local to the subprogram and storage
areas used in common by more than one subprogram. They provide for the
allocation of instructions and data to specified storage areas and make bank
assignments for subprograms and common blocks.

1 4 ho

symbol lBSS m

BSS reserves a block of consecutive 48-bit machine words. The value of the
expression in the address field determines the number of words to be reserved.
Symbols in the address field expression must be previously assigned. If the
value is zero, no space is reserved and the next instruction is forced upper
before the location symbol is assigned. A location symbol is optional; if
present, it is assigned to the first word reserved.

2-11

BES

symbol BES m

BES is identical to BSS, except that the location symbol, if present, is assigned
to the last word reserved.

INTRODUCTION
TO BLOCK

AND COMMON BLOCK and COMMON pseudo instructions reserve storage areas that can be
addressed by more than one subprogram.

If the location symbol in the BLOCK pseudo instruction is alphanumeric, the
storage area is termed labeled common. If the location symbol is numeric
or blank, the storage area is assigned a separate portion of core storage
termed numbered common. Constants and instructions that are not bank re-
locatable and do not contain external symbols can be assembled into a labeled
common area. A numbered common area may not be preset.

COMMON pseudo instructions describe data arrays within an area assigned by
BLOCK. To address a block of common storage reserved in another subpro-
gram, the location field symbol of the BLOCK pseudo instruction must be
identical in each subprogram, and the length of the second and subsequent
blocks must be less than or equal to the first. The last numbered common
block defined in a bank may vary in length from one subprogram to another.

BLOCK |. 8| ‘.o
BLOCK m

symbol

BLOCK defines a block of common. The name of the block must be given in
the location field by an alphanumeric symbol which identifies the block as
labeled common, or a numeric symbol or blank which identifies the block as
numbered common. Each block must have a unique name. If two or more
blocks have the same name, a D error will be indicated on the output listing
in each line where the duplicate symbol occurs,

A symbol in the BLOCK location field serves only to name the common storage
area. The symbol may not be referenced elsewhere in the subprogram except
by a subfield in the BANK pseudo instruction.

BLOCK forces the next subprogram instruction upper.

An expression in the address field of BLOCK specifies block size or the total

length of the common block. The block size must be greater than or equal to
the length expressed in the COMMON instructions subsequent to BLOCK. If

2-12

COMMON

the address field is blank or zero, block size is determined by the sum of
the array sizes of subsequent COMMON instructions.

For operation under Drum SCOPE, a name of the form . POOLxxx in the
location field has a special meaning; it is generally used to assign buffers
for the Drum SCOPE system. A user may not have a common block with
a name of this form. The m need not be specified with this usage of
BLOCK as the system assigns a labeled common block the length of the
drum block. xxx are arbitrary characters,

| 8] |10

COMMON A_(i j.,K ,...n oA (L, kL.
1(11:31’ lr l)’ n(n)Jnr n’ nn)

COMMON defines the arrays to be included in the common block defined by the
last encountered BLOCK. An entry in the location field will be ignored. The
address field consists of one or more subfields, each of which defines an array
to be included in the block. A subfield is terminated by a comma; the field is
terminated by a blank. An array length of zero is legal.

The general form of an address subfield is:
Ad,j,k,....n)

A is a symbol which names the first element of the array and i, j, k,....n
are the dimensions of the array.

The general form of the address field is:
A(i’ j’ k), P(l’ m’ n), ...

i, j, k, 1, m, and n are integers or expressions which result in non-relocatable
values. Symbols must be previously defined. A 2-dimension array has two sub-
scripts. A l1-dimension array has only one subscript. For a single element,

no parenthetical term need appear.

Example:
COMMON A (15, 15), B(3, 4, 5), C, D(15)

The assembler will sum the expressed sizes of the arrays for all the common
in one block. This sum will be the total number of computer words reserved
for the block if the BLOCK address field value is zero. If the address field

of the BLOCK pseudo instruction gives a number larger than this sum, that
number will be the number of words reserved for the block. The first element
of the first array in the block will occupy the first word of the reserved area.

2-13

ORGR | 8| [10

ORGR m

ORGR may be used at any point in a subprogram to initiate a sequence of
instructions or constants at a location different from the current program
location. The ORGR address field contains an expression which must result
in a program or labeled common relocatable value. Symbols in the address
field must be previously assigned. Subsequent instructions or data words are
assembled sequentially, beginning at the location specified by that value.

This sequence continues until another ORGR card or the end of the subprogram
is encountered.

The number of words assembled into a labeled common block must not exceed
the length of the block. Instructions assembled into labeled common may not
contain external symbols or bank relocatable terms (a or i fields). The
instructions XMIT, I0SW, IOTW, IOSR, IOTR, I0JP, BEGR and BEGW
generate bank terms and are, therefore, excluded unless the address fields
result in a nonrelocatable value.

The address expression, m, may not represent a location in numbered
common. An entry in the location field will be ignored. ORGR forces the
next instruction to begin in the upper half of a machine word. If the preceding
instruction occupies an upper half-word, the lower half-word will be filled
with a NOP.

When the main program storage assignment sequence is interrupted by an
ORGR, the program location counter is saved. An ORGR with an asterisk (*)
in the address field causes storage assignment to resume at that location.

Example: IDENT ABC
00000 A BLOCK 0
00000 COMMON C(100B)
00000 P1 ENA 0
00001 P2 BSS 100B
00101 ENQ 0

C00005 ORGR C+5
00005 oCT 0
00006 LDA P1
00007 + STA P3

P00102 ORGR *
00102 P3 OCT 0
00103 P4 BSS 5

P00004 ORGR P2+3

2-14

00004 OCT 0
00005 OCT 1
00006 OCT 2
P00110 ORGR *
00110 ENQ P3
ENA P4
BANK | gl lio

BANK (al) ,name, ,name - (az) ,name,, ,name

12’ 22’ "

BANK defines the memory bank assignment for subprograms and common
blocks. The address field contains one or more bank terms, each followed
by one or more names which represent entry points or common blocks. The
bank term is enclosed in parentheses and designates a bank in one of three
ways:

A digit in the range, 0-7

An entry point in a subprogram for which the bank is assigned at load
time or by another BANK declaration

A common block name, enclosed by slashes within the parentheses, for
which the bank is assigned at load time or by another BANK declaration

The names following the bank term are separated by commas; they represent
common blocks, and entry point names in subprograms to be assigned to the
same bank as that represented in the bank term.- Common block names are
enclosed in slashes.

Entry points and common block names must be defined when the program is
loaded, but they need not be defined or referenced in the subprogram con-
taining the BANK pseudo instruction. COMPASS does not check the validity
of such symbols, or proper address field formatting; the programmer must
ensure that they are correct. The location field of BANK should be blank.

Example:

BANK (1), ENTRA, /BLKA/, (/BLKB/), ENTRB

The above bank declaration assigns the common block, BLKA, and the
subprogram containing entry point, ENTRA, to bank 1; it assigns the
subprogram containing entry point, ENTRB, to the same bank as assigned
to common block, BLKB.

2-15

25
DATA
DEFINITION

ocT

DEC

Data definition pseudo instructions cause data to be assembled into the sub-
program or into a common block.

| 8] |IO
symbol

n

'OCT my,m, ...

OCT stores octal constants in consecutive machine words. Each address sub-
field specifies one constant of 1 to 16 octal digits, optionally preceded by a +
or -. A constant of less than 16 octal digits will be right justified in the word,
with the sign extended. Each constant is assigned to a separate word. A
location symbol is optional; if present, it is assigned to the first word.

Example:
OCT +1,-57,2040, -2

word 1 0000000000000001
word 2 117777707720
word 3 0000000000002040
word 4 TTTT777777777775
! 8 ho
symbol lDEC dl,dz,...,dn

DEC converts signed or unsigned decimal constants to binary and stores
them in consecutive machine words. Each constant occupies a full machine
word, Each subfield contains a sign (optional) and a string of 1 to 28 deci-
mal digits. The value may be followed by a decimal scaling factor con-
sisting of a D and 1 to 3 signed or unsigned decimal digits and/or a binary
scaling factor consisting of a B and 1 to 4 signed or unsigned decimal
digits. If the value contains a decimal point, it is converted to floating
point form; the magnitude must fall in the range 10+307 to 10308 decimal
or 2*102: binary. If no decimal point appears, the value is stored in
fixed point form; the magnitude must be less than 247, A decimal constant
of the form fDdBb is equivalent to the expression f. 104, 2b,

A location symbol is optional; if present, it is assigned to the first word.

2-16

Examples:

-38 fixed point decimal
7.3D-2 floating point decimal, decimal scaled
200B-7 fixed point decimal, binary scaled
36D1B+2 fixed point decimal, decimal and binary scaled
DECD | 8| |10
symbol DECD d1’d2" . ,dn

DECD converts double precision floating point decimal constants to binary and
stores them in consecutive pairs of machine words. The format is identical to
DEC except that each constant will occupy two machine words. A location sym-
bol is optional; if present, it is assigned to the first word.

BCD i 8} |i0

symbol BCD n,8n characters

[4
BCD stores internal BCD characters in consecutive machine words.

The address field consists of a word count, n, followed by a comma and 8n
characters, including blanks, ending before column 73. The word count

may be a digit or an expression as previously defined. This results in n
computer words, each containing 8 BCD characters. Anything after 8n
characters is treated as remarks. If the value of n exceeds the number of
characters which may be punched in a single card, blanks are filled in for
the excess. If nis zero, no characters are stored, and no space is assigned.

A location symbol is optional; if present, it is assigned to the first word.

Example:
BCD 3, BLUE PLATE SPECIAL-$1. 25

word one 2243642560474321
word two 6325606247252331
word three 2143405301330205

2-17

TYPE

VFD

|| al ilo
‘TYPE n,8n characters

symbol

TYPE converts BCD characters into typewriter code and stores them in con-
secutive machine words. The format is the same as for the BCD pseudo in-
struction with the following exceptions:

Lower case typewriter characters and functions not represented on the
keypunch require a special 2-character code as shown in Table 6.

Upper case typewriter characters require that the upper case mode be
established using the function code, *U. The required characters are
then entered if represented on the keypunch; otherwise, their lower
case equivalents are used. *L must be used to return to lower case
mode.

In computing the word count, n, the special 2-character codes are counted as
on character. A location symbol is optional; if present, it is assigned to the
first word.

Example:
TYPE 4, BLUE PLATE SPECIAL-*U$*L1. 25

word 1 0141355160544112
word 2 7551604654511116
word 3 1241046447667732
word 4 3757606060606060

The equivalent typewriter message is BLUE PLATE SPECIAL-$1. 25,

h elho
symbol

VFD ‘e
mlnl/vl, mpnp/vp

VFD (variable field definition) converts octal constants, Hollerith characters,
tvpewriter characters, and arithmetic expressions and stores them as contig-
uous strings of bits without regard for word boundaries. The address field
consists of one or more subfields separated by commas. Each subfield is in
the form, mn/v, where m specifies mode, n specifies bit length and v defines
the value to be stored. The address field is terminated by the first blank not
a part of a Hollerith or typewriter value. If partially filled, the remainder

of the half-word is padded with zeros.

A location symbol is optional; if present, it is assigned to the first word.

2-18

Five modes

On/v

Hn/v

Tn/v

Bn/v

An/v

If the value

(m) are allowed:

Octal number. ¥ v is preceded by a minus sign, the one's com-
plement form will be stored. The number of bits (n) may not
exceed 48.

Hollerith character code. The n term must be a multiple of 6;
n/6 defines the number of characters which appear in the v term,
The (n/6 + 1)th character must be a blank or a comma. If used
within a MACRO or ECHO, blanks and commas in the v term

act as normal delimiters when parameters are substituted.

Typewriter character code. Same rules apply as in the Hollerith
mode.

Bank term. The n term may be omitted; it is always assumed 3.
The v term, when stored, must coincide with one of the five bank
designator positions of a machine word (bits 41-39, 34-32, 26-24,
17-15, 10-8). The v term may be an expression evaluated modulo
8, or a bank relocatable * (bank of the subprogram in which VFD
appears) or $name (bank associated with that name). If the v
term is bank relocatable, the 3-bit value generated by the assem-
bler will be zero.

Arithmetic expression or constant. The v term is an expression
formed according to the rules for address arithmetic, with the
following exceptions:

1. n must be =48.

2. A relocatable expression must be in the correct position to
insure that it will be relocated by the loader. The result
of a relocatable expression must fit, right justified, into
bit position 24 or 0 of a machine word. A relocatable ex-
pression is evaluated modulo 215-1, 1n must be = 15.

3. If an expression results in a fixed value and field length, n,
is not 15, it is evaluated 2R, If field length is 15, and value
is not 777778, modulus is 215-1. If the field length exceeds
the size required for a value, the value is right justified with
the sign extended in the high order bits.

of a non-relocatable A, O, or B subfield exceeds 2n—1, it is

truncated to fit the field; thus A4/20B produces zero.

Example:

VFD T6/A, B/*, A24/A*X+B, H30/A2 B3, 015/-737,B/2, A15/NAME+2

A, X and B are assumed non-relocatable symbols; NAME may be relo-

word 1 I 12

catable. The following two words are generated:
47 4241 3938 15 14 Y .]
[o | (a*x+B) f21 o2 | 6|j
33 32 1817 1514 [*]
122 jos | [2] e |
22 | 03 77040 2 (N +

47
word 0

2-19

GENERATIVE CODING 3

3.1
OPERATION
SEARCH ORDER

Generative coding is a procedure whereby a single pseudo instruction may call
for the assembly of a defined sequence of machine or pseudo instructions.
Selected parameters in the instruction sequence may be specified by the calling
instruction.

Pseudo instructions in this class define and call macros, or repeat coding
sequences (ECHO). Other pseudo instructions described here are restricted
to macro or ECHO coding. COMPASS recognizes three types of macros -
system macros, library macros, and programmer macros.

System macros are always accessible to the subprogram through a macro call;
they need not be declared or defined in the subprogram. System macros
include calling sequences to SCOPE subroutines. They may be called at any
point in the program after any LIBM declarations and programmer macro
definitions.

Library macros are contained in an expandable macro library on the library
tape. All library macros to be called in a subprogram must be declared in
LIBM pseudo instructions immediately following the IDENT pseudo instruction.

Programmer macros are defined by the programmer for his own use. Pro-
grammer macro definitions may not precede LIBM pseudo instructions, if
any, or the IDENT pseudo instruction. Programmer macro definitions must
precede all other instructions except EJECT, SPACE, NOLIST, LIST and
REM.

All macro definitions, regardless of type, consist of the following:

Macro heading Names the macro and declares the formal
parameters used in the prototype.

Prototype Contains the instruction sequence with
variable elements expressed as formal
parameters.

Macro terminator Defines the end of the macro definition.

The pseudo instruction which brings the prototype into the body of the program
is referred to as a macro call. It consists of the macro name and a string
of actual parameters to be substituted for the formal parameters in the proto-

type.

In assigning formal parameter names and macro names, the programmer is
not prohibited from using symbols which are identical to COMPASS mnemonics
or names of macros of another type. When these symbols appear in an

3-1

3.2
MACRO
HEADING

operation code field, their meaning is subject to the condition under which
COMPASS encounters them. For example, if a formal parameter is named
LDA, and LDA appears in an operation code field in the associated macro
prototype, it is treated as any formal parameter; its meaning as a COMPASS
mnemonic does not apply. Similarly, if a programmer macro is named
READ, and a macro call to READ appears in the subprogram, the programmer
macro is called, not the system macro of the same name.

COMPASS interprets the operation code field according to the following order
of precedence:

1. Formal parameters

2. Programmer macro names
3. Library macro names

4, System macro names

5. COMPASS mnemonics

,I e| IIO

’name

The macro heading consists of one or more lines of the pseudo instruction,
MACRO. The location field contains the macro name which may be any alpha-
numeric symbol except IDENT, LIBM, MACRO, IFT, IFF, ENDIF, ENDM,
END or SCOPE.

MACRO (formal parameters)

The address field contains a set of formal parameters. If the formal para-
meters extend beyond the length of a single code line, the mnemonic MACRO
must be repeated in the next operation field; and the entire formal parameter
list must be enclosed in parentheses. A blank character terminates the
address field. If the list is enclosed in parentheses and a blank occurs before
the final right parentheses, the following card should contain the MACRO
pseudo instruction. If the list is not enclosed in parentheses, a blank will
terminate the list. Parameters are expressed as alphanumeric symbols and
are separated by commas. The parameter symbols are local to the macro
and may be used elsewhere in a program without ambiguity. Individual
parameters must be contained on a single line.

Examples:
DIVIDE MACRO P1,P2,P3,P4,P5
MULTIPLY MACRO (P1, P2, P3, P4, P5,
MACRO P6)
READ MACRO (P1, P2, P3, P4, P5,
MACRO P6, P7, P8, P9, P10,
MACRO P11)

3.3
PROTOTYPE

3.4
MACRO
TERMINATOR

As in the above examples, formal parameters should be short for efficient
use of the 3600 macro facility. The formal parameters in the heading lines
establish the order in which actual parameters must be declared in the macro
call. The pseudo instruction, MACRO, does not produce a card image in

the object deck.

A set of instructions follows the heading line. Any operation code is accept-
able in the prototype except SCOPE. It is up to the programmer to ensure
that, when the macro is called, the resulting code will not contain illegalities.
The prototype does not, itself, produce any code in the object deck.

Location, address, and operation fields for these instructions may be ex-
pressed as formal parameters. Any element in any field or subfield, except
comments, may be a formal parameter, A location symbol in the prototype,
which is not a formal parameter, is local to the macro and may be used
elsewhere in the subprogram without ambiguity, COMPASS will substitute
an internally generated symbol for the local location symbol and for all
references to it within the macro. The location field of an asterisk com-
ment card will not be substituted. For more efficient operation,

local location symbols should be kept to a minimum.

Il 8| l|0

I

This pseudo instruction terminates a macro definition: A location field
symbol will be ignored. It does not produce a card image in the object
deck.,

Example:

ABC MACRO P3,P2,P1,P4 Macro heading
ENI P1,1)

A LDA P2,1
P3 B L Prototype
STA P2
IJP A1
UBJP SCRAM

B DEC P4)
ENDM Macro terminator

Formal parameter P1 represents an operand, P2 an address, P3 an operation
code, and P4 adecimal constant. Location symbols A and B are local to the
macro and may be used elsewhere without ambiguity. The formal parameters
in the macro heading establish the order in which actual parameters must be
specified in the macro call.

3-3

3.5
MACRO CALL

8] |10

symbol macro name (actual parameters)

The macro call names the macro to be inserted at this point in the program,
and it assigns a set of actual parameters to be substituted for the formal
parameters in the prototype. The actual parameters appear in the same
order as the formal parameter list in the macro heading. The location field
may contain blanks, an alphanumeric symbol, or a plus or minus symbol. A
symbol in the location field will be assigned to the next availabie full word.

The macro name appears in the operation field and the address field contains
the actual parameter string. The actual parameters are code elements or
expressions separated by commas. If a single parameter contains commas,
blanks or parentheses, the entire parameter must be enclosed in parentheses.
If the actual parameter list extends beyond a single line, the macro name
must be repeated; the location symbol should not be repeated.

The rules governing the use of parentheses are as follows:
The entire actual parameter string must be enclosed in parentheses if
it extends beyond a single line or if the first actual parameter is

enclosed in parentheses.

Groups of elements, separated by parentheses or commas, which form
a single parameter, must be enclosed in parentheses.

For each left parenthesis, there must be a matching right parenthesis.
Example:

A macro is defined as follows:

ABC MACRO P1, P2, P3
LDA P1
STA P2
P3 P2
BRTJ ($)OUT
ENDM

When the above macro is called by a macro call of the form

ABC (("M,1,2), ($)M2,1,2),
ABC (LDA,CM))
the actual parameter (*)M, 1,2 is substituted for formal parameter P1

($)M2,1, 2 is substituted for formal parameter P2
LDA,CM is substituted for formal parameter P3

NESTING OF
MACROS

and the following instruction sequence is produced:

LDA (YM, 1,2
STA ($)M2,1,2
LDA,CM ($)M2,1,2
BRTJ ($)OUT

The code generated by a macro call will not be listed unless the M option is
specified on the COMPASS control card.

Consecutive commas in the actual parameter string define a null subfield; an
explicit zero must be entered as a parameter.

Example:

Macro definition:

ABC MACRO P1,P2,P3,P4
LDA P1,P2
STA P3,P4
ENDM
Macro call:
ABC ABLE, , BAKER,1

In the above example, a null subfield, bounded by commas, corresponds
to parameter P2. In this case, the second subfield in the first instruc-
tion is omitted; the trailing comma will appear.

If there are fewer actual parameters in a macro call than formal parameters
for that macro, null subfields are assumed. Trailing commas need not appear
for null subfields at the end of the list. If there are more actual parameters
than formal parameters, extra actual parameters at the end of the list are
ignored.

A macro definition may, itself, contain macro calls to system, library, or
programmer macros. These inner macro calls become effective at the time
a call is made to the outer macro. A macro definition may also contain calls
to itself; it is the programmer's responsibility to prevent infinite recursion
through the use of conditionals.

3-5

Examples:

Macro definition:

AAA MACRO P1,P2,P3
ENA 0
STA P1
ENI 47,P3
AA QJIP, P2 BB
CcC QLS 1
P AA,P3
SLJ *+2
BB RAO P1
SLJ CC
ENDM

Maecro definition:

BBB MACRO P1, P2, P3
LDQ P1
SSU P2
RXT A,Q
AAA D, M1, P3
ADD TOT
STA TOT
ENDM

A macro call of the form
BBB ONE, AA, 3

will generate the following sequence of instructions:

LDQ ONE

Ssu AA

RXT A,Q

ENA 0

STA D

ENI 47,3
11000003 QJP, MI 1000001
t1 000002 QLS 1

P 11000003, 3

SLJ *42

3-6

t1000001

Macro definition:

LOG
A

NAME

NAME

SLJ
ADD
STA

MACRO
REM
IFZ
EQU
IFN
LOG
EQU
ENDM

A macro call of the form

will generate the following sequence:

t1 000001

NAME

t1000002

NAME

t1000003

11000002

NAME
t4 000001

LOGNAM

LOG

IFZ 5/2,1

EQU 0

IFN 5/2,2

LOG t4000001,5/2

IFZ 5/2/2,1
EQU 0
IFN 5/2/2,2

@
2)
3
4)
()
6
M
(8
9)

LOG 11000002, 5/2/2(10)

IFZ 5/2/2/2, 1
EQU 0

IFN 5/2/2/2,2
LOG A, VALUE/2
EQU A+l

EQU t1000002+1

EQU 11000001+1

3=

1)
12)
13)
14
(15)
(16)
amn

(18)

D
t1 000002
TOT
TOT

NAME, VALUE

VALUE/2,1
0
VALUE/2,2
A,VALUE/2
A+l

LOGNAM, 5

Identifier of local symbol A.

Condition not met. Line 3 is skipped.
Listed, but not assembled.

Condition met. Lines 5and18assembled.
Calls LOG with new parameters.

2nd identifier of local symbol A.
Condition not met. Line 8 is skipped.
Listed, but not assembled.

Condition met. Lines 10 and17 assembled.
Calls LOG with new parameters.

3rd identifier of local symbol A.
Condition met. Line 13 assembled.
Equates 2nd A identifier to zero.
Condition not met. Lines 15 and16 skipped.
Listed, but not assembled.

Listed, but not assembled.

Equates 1st A identifier to 2nd A
identifier plus 1.

Equates LOGNAM to 1st A identifier
plus 1.

PARAMETER
SUBSTITUTION

This example demonstrates a macro which produces no object code. It
equates the symbol substituted for the formal parameter NAME with an
integral logarithm of the number substituted for the formal parameter
VALUE. The end result is represented by line 18 which is equivalent to
LOGNAM EQU 2. In expanding the macro, COMPASS assigns a unique
identifier for each occurrence of a local location symbol.

At macro call time, each line of the prototype is examined for substitutable
elements. In a macro prototype, a single element is identified by the
characters which bound it, and by the field in which it appears:

A location field element is the group of non-blank characters contained
in the location field. The location field may contain at most one
element.

An operation field element is a group of characters bounded by
column 9, a blank, a comma, or a 0, 5, 8 punch,

An address field element is a group of characters bounded by the
following special characters:

blank $ *
) = /
) + - (punched as 0, 5, 8)

(-

Location and address field elements are compared first with the local location
symbol list and then with the formal parameter list. If the element is a local
location symbol, an assembler-created symbol is substituted. If the element
is a formal parameter, the corresponding actual parameter is substituted.

An actual parameter which is identical to a local location symbol is not con-
sidered to be equivalent; such an actual parameter should be defined elsewhere.
Operation field elements are compared only with the formal parameter list.

Special characters will appear in the generated line with the exception of —
which the machine interprets as a signal to catenate. (See example).

If an actual parameter will not fit on a single card image, the action taken
depends on the operation code. If the operation code is an ECHO or a macro
call whose address field begins with a left parenthesis, COMPASS will generate
a continuation card. Otherwise, substitution ceases when column 72 is
encountered.

In the example, -> in ST —P1, is interpreted as a symbol to catenate and
ST — Pl becomes STA (where P1= A). Similarly, B — P2 is catenated to
B2 (P2 = 2), P3 ~ L becomes QL (P3 = Q), and P4 ~ P5 becomes LOC2
(P4 = LOC, P5 = 2).

Catenation is legal in the operation and address fields only and not in the
location field.

Location Operation Address

Example:
~
CATNATE MACRO P1,P2,P3,P4,P5
ST —P1 LOC1
Macro LIL LOC1, P2
Definition: ROP,XOR B—P2,MZ,P3 —~ L
ST —P3 P4—P5
ENDM
-
LOC1 BSS 1
LOC2 BSS 1
LOC3 BSS 1
Macro Call: CATNATE A,2,Q,L0OC,2
STA LOC1
Expansion: LIL LoC1, 2
ROP,XOR B2, MZ, QL
STQ LOC2
3.6
SYSTEM
MACROS System macros are contained on the library tape but need not be declared

with LIBM by the programmer. These macros include input/output control,
tape handling, internal interrupt, and equipment status checks. They are
accessible to the programmer through the macro calls listed below. These
macros are described in SCOPE Reference Manual, Pub, No. 60053300 and
Drum SCOPE Reference Manual, Pub. No. 60059200, The parameters
indicated for these system macros are defined as follows:

Parameter Meaning
a starting or return adress T
ak address key location
b bank designator
bna background program name address
c disposition or assignment code
cwa control word address t
d density (HY, HI, LO or OP)
dr direction of tape (RV or ND)
du Duration in seconds or (seconds, milliseconds)
e edition number
ea exit address

t Associated actual parameters may have index subfields provided that the entire parameter is

enclosed in parentheses.

3-9

Parameter Meaning

ek error key

f format (BCD or BIN)

fn family number

fwa first word address of buffer area

hw half-word

i interrupt code (SHIFT, DIVIDE, EXOV, EXUN, OVER,
ADDR, M1604, TRACE, INST, OPER or MANUAL)

ia interrupt address *

in index register number 1-6

k stop key

la label address +

Ib lower bound

11 lower limit

Ina label name address *

M master unit status

n integer

os overlay or segment

pv priority value

r reel number

ra reject address T

rd retention code or date written

rn record or partition number

rha record name address

s usage (RW, RO, WO, BY or RF)

sn subroutine name

sq sequence number

u logical unit number or mnemonic +

U unsave

ub upper bound

uc use code

ul upper limit

w word count

+Associated actual parameters may have index subfields provided that the entire parameter is
enclosed in parentheses.

3-10

INPUT/OUTPUT

TAPE CONTROL

INTERNAL
INTERRUPT

The following are tape and drum macros unless otherwise specified.

ADCOMP
LOCATE

LOCATEDR
MODE

POSIT
RACT
RDLABEL
WRLABEL
RELEASE
READ
WRITE
REOT
WEOT
STATUS

WRCK

BSPR
BSPF
UNLOAD
SKIP
ERASE
MARKEF
LABEL
SAVE

UNSAVE

SELECT
REMOVE
BOUND

UNBOUND

(u, ra, ia)

(u, cwa, ra, ia)

(u, ra, ia)
(u,ra,s, f,d,dr)

(u, cwa, ra, ia)
(u, ra, ia)
(u,la, ra, ia)
(u, la, ra, ia)
(u,ra,c)

(u, cwa, ra, ia)
{(u, cwa, ra, ia)
(u, cwa, ra, ia)
(u, cwa, ra, ia)
(v, M)

(u, cwa, ra, ia)

(u, ra, ia)
(u,ra,ia)

(u, ra,ia,c)

(u, ra, ia)
(u,ra,ia)

(u, ra, ia)

(u, Ina, e, r, rd)
(w, U)

()
@i, ia)

)
(Ib, ub, ra, ia)

3-11

a select interrupt on address compare

locate (Tape SCOPE only - parameters
differ for Drum SCOPE)

locate (Tape SCOPE only)

declare mode on called logical unit
(Tape SCOPE); declare mode on
master logical unit (Drum SCOPE).

position

read angular count
read label

write label

release logical unit
read

write

read end of tape
write end of tape

request status. Format of reply to
Status differs for Tape and Drum
SCOPE,

write check

backspace one record
backspace one file
rewind and unload

skip to end-of-file
erase six inches of tape
mark end-of-file

define label

saves tapes at end-of-job; Tape SCOPE
only; ignored by Drum SCOPE

cancel previous save action

select interrupt

remove interrupt

SCOPE; not stacked

set program bounds} Stacked in Tape

remove bounds in Drum SCOPE.

CLOCK
INTERRUPT

OTHER SYSTEM
MACROS

DRUM/SCOPE
ONLY

LIMIT
FREE
TIME

DATE

ATI
CALL
CORE
EXIT
HERESAQ
IAQ
LDCH
LIBRARY
LOADER
MEMORY
STCH

ABORT
ASSIGN
BINBCD
BUFFER
BYNBY
CHECK
CLBCD

DISABLE
DISPOSE
DYSTAT

ENABLE
ENTER
EXIT
FAMILY
INFORM
INVOKE
LIBRARY

(du, ra, ia)

(in)
(sn)
(11, ul)

(@, in, in)

(u, ra, rna, rn)

(b, i1, ul)
(a, in, in)

(ek)

(u,c)

(fn, a
(ia)

(u,ra)

12 29)

(u,c,ra)

(u, ra)

(fn, u)
(bna, fwa, w, ra)
(sn, ra)

(rna, ea)

T Valid for background programs, only.

3-12

time limit specification
free last imposed time limit

return remaining time to Q, time of
day to A

date request to A in Tape SCOPE: to A
and Julian date to Q in Drum SCOPE

A to index register

BRTJ to designated subroutine

set limits of available memory
return control to monitor

modify A and Q registers

register swap, A and Q

load byte instruction

library requests(Tape SCOPE only)
loader requests

set limits of available memory

store byte instruction

abort with diagnostic

assign hardware and logical unit t+
convert binary integers to BCD
declare family buffer

give control to interrupt address +
check status

convert column binary card images
to BCD

enter disable mode
set unit disposition

status request but returns a dynamic
status if unit is assigned

enter enable mode

enter data into system ¢

program complete

attach unit to family

send message to background program +
invoke background subroutine +

library request

LOCATE
LOVER
MEMBER
PRISEQ
READY
RETURN
RETURNM
SIWOH
SYSIO
WAIT
WHERE
XFER

(u, ak, ra)
(1,08, rn)
@

(u, pv, sq)
(u, ra, ia)

(hw, a’ b’)

(bna)

(uc,k,a,w)

(“1’ bna,u

2’

position specified drum unit

load partition

check family membership

set priority and sequence +

sense ready condition on unit

return control to system

return control at address

determine status of background program+
system I/0

return control to system temporarily *
check last location executed

allow a background program use of
same logical units as another
background program ¥

The following names are reserved for system macro calls, and may not be

used as programimer macro names.

Drum SCOPE Only

B

C

F
CALLIOC
EQUATE
FIELDS
FORBID
IOEX
IOEXW
I0G
IRUPT
LDRIV
LOAD

+ Valid for background programs, only.

LOOKUP
OPTIONS
PERMIT
RESERVE
SENTRY
SHA
SHAQ
SHIFT
SHQ
STARTUP
SYSTEM
TABLER
'/

3-13

Tape SCOPE

CALL36
IOF
STAR

3.7
LIBRARY
MACROS

The following SCOPE mnemonics, used in the above system macro calls to
indicate standard units, interrupts and equipment designation, may not be
used in system macro calls for any other purpose. No ambiguity results,
however, if the programmer defines and uses symbols of the same name
elsewhere in the subprogram.

ABNORM LGO RW

ACC LIB SCR

ADDR LO SHIFT

BCD M1604 S0

BIN MANUAL S1

BY ND S2

DIVIDE OCM S3

EXOV oP S4

EXUN OPER S5

FO ouT S6

HY OVER S7

ICM PUN S8

INP RO S9

INST RV TRACE
wO

[8| |lo
LIBM m ,m,,...m

All library macros to be called in a subprogram must be declared in LIBM
pseudo instructions immediately following the IDENT pseudo instruction.

A library macro, once declared, is available for call as long as COMPASS
remains in memory and the macro directory selected on the COMPASS con-
trol card remains the same. When several subprograms are assembled to-
gether, it is expedient to declare all the required library programs in the
first subprogram. The names of the library macros to be called are
entered in the address field, separated by commas. A location symbol will
be ignored.

Library macros are contained in an expandable macro library on the system
library tape. Macros may be added to or deleted from the library through
the TAPE SCOPE PRELIB routine (SCOPE manual Pub. Number 60053300)
or the Drum SCOPE LIBEDIT routine (Drum SCOPE manual

Pub. Number 60059200).

3-14

3.8
ECHO

! e| IIO

symbol ECHO m,n, (plzal’az’ oo ’an’p2=bl’b2’
ECHO ... P = K ,...
:bn, ’pk kl’ 9? :kn)

ECHO causes the m instructions which follow it to be assembled n times.
Parameters in the instruction sequence may be varied for each repetition
but the parameter list may not contain blanks. The m and n subfields may
contain expressions consisting of previously defined symbols. py,po,...,
pi are formal parameters; a, b,..., k are the actual parameters which are
to be substituted for the formal parameters. In the first iteration, the
actual parameters a{,by,...,k; are substituted for the formal parameters
P1:Pgs .+« sPke In the second itération, the actual parameters ag,bg,...,
ko are substituted for py, pog,... Pk and so on. If n is absent or zero, the
m lines of code which follow are duplicated as many times as there are
actual parameters associated with the first formal parameter. The n field
must be defined by its trailing comma if n is omitted.

The expanded code generated by ECHO will not be listed unless the M
option is specified on the COMPASS control card.

Any operation code is accepted in the range of an ECHO except END, ECHO
and SCOPE, It is up to the programmer to ensure that code resulting from
an ECHO statement will not contain illegalities. Comments within the range
of ECHO will appear on the output listing only in the first repetition but the
contents of cards with * in column 1 will be repeated each time,

The address field of ECHO may be terminated by a blank column following n
if no parameters are required. If there is no parameter list for an ECHO
within a macro, parameters within the range of ECHO will be associated
with the macro parameter list.

Example 1:
ECHO 3,3, (Tl=A,B,C,T2=D,E, F, T3=G, H,])
LDA T1
FAD T2
STA T3

expands to nine instructions:

LDA
FAD
STA
LDA
FAD
STA
LDA
FAD
STA

HMHOQENEWOLS >

3-15

Example 2:

ECHO 2,3
OoCT 1
ocT 0

expands to six assembled computer words, in the order:

oCcT 1
OoCT 0
OoCT 1
OoCT 0
oCT 1
oCT 0

This may be condensed to:
ECHO 1,3
oCcT 1,0

which is an equivalent form producing the same six computer words.

If an ECHO with a parameter list appears within a macro, symbols are
substituted as for any other macro. Therefore, an assembler-created
symbol or a macro actual parameter may be substituted in the ECHO state-
ment. Lines within an ECHO are local to the ECHO, and parameter substi-
tution proceeds according to ECHO rules. However, parameter substitution
is not allowed in the location field in the range of an ECHO within a macro
because an ambiguity can result as to which processor (echo or macro)
handles the label.

The formal parameter names are local to the range of the ECHO, and must
be alphanumeric symbols. The actual parameters may be any expressions
which legally may appear where the formal parameters occur. An actual
parameter containing commas, blanks, or parentheses, must be enclosed in
parentheses.

A location symbol within an ECHO range is assigned only in the first repeti-
tion and ignored in successive repetitions. + or - in a location field, however,
is repeated in each iteration. A location symbol in an ECHO instruction is
ignored.

The parameter list in ECHO may be continued on subsequent lines by repeating
the ECHO pseudo instruction on each line. If the parameter list continues to

a second line, the first line must not contain any blanks, even though this
requires splitting a name between two cards. The rules governing the use of
a parentheses in actual parameters are the same as for macro calls.

Example:
ECHO 3,2, (P1=A, B, P2=
ECHO C,D, P3=E, F)
LDA P1

3-16

3.9
IFT

The instructions within the range of an ECHO need not generate an integral
number of machine words. Consider the two examples:

ECHO 1,3 ECHO 2,3
LDA 0 OCT 1
LDA 0

The first produces three 24-bit sequential machine instructions; the second
produces five and a half computer words.

i oo

symbol IFT,s m(i,j),n(i,j),p

IFT makes a comparison of character strings m and n to determine if coding
lines which follow are to be assembled or skipped. IFT may be used only
within the range of an ECHO or MACRO pseudo instruction. If it occurs
elsewhere, it will be flagged as an O error. An operation modifier, s, is
required. A number of lines, p, will be assembled if the condition m s n is
satisfied. s may be any of the following:

Assemble if:

EQ m=n
NE m#£n
GT m>n
GE m=n
LT m<n
LE m=n
N m included in n; the character string n contains

the characters in string m in sequence, but not
necessarily consecutively.

The address field consists of two or three subfields. The m and n subfields
must be present; either or both may be a single formal parameter as defined
in the MACRO and ECHO discussions. Either may be a string of characters,
enclosed in slashes, for literal comparison; such a string may not, itself,
contain slashes. The slashes bounding such a string are not considered

part of the string to be compared. The p subfield may contain an expression
resulting in a non-relocatable value. Formal parameters may be included

in the expression. If p and the preceding comma are omitted, the range of the
IFT is determined by an ENDIF pseudo instruction.

The m and n subfields may include an optional modifier of the form (i, j) to
define a portion of the actual parameter to be used in the comparison. This
modifier may not contain formal parameters. The (i,j) modifier may be in
one of four forms, in which x,y and z represent integers and k represents any
non-blank BCD character except slash.

3-117

Form Interpretation

x,¥) y consecutive characters beginning with the xth
character of the actual parameter

(z=k,y) y consecutive characters following the zth
occurrence of the character k

(x,z=k) consecutive characters beginning with the
xth character up to, but not including, the zth
occurrence of the character k following the
xth character

(z1=k 1 z2=k2) consecutive characters following the z1th
occurrence of character ki up to, but not
including, the zath occurrence of character
ko

If z, butnot the equal sign, is omitted, z is assumed one.

Example:

Macro definition:

SAMPLE MACRO P1,P2
LDA P1
ADD P2
IFT,EQ P1,P2,1
STA A
IFT,EQ P2,/EED/,1
STA B
IFT,EQ P1(2,3), P2,1
STA C
IFT,EQ P1(2=E, 2),/DL/
STA D
ENDIF
IFT, IN P1(3,2=S), /EDXLEYS/, 1
STA E
IFT,LT P1(1=H, 3=E), /MEDL/, 1
STA F
ENDM

A macro call of the form
SAMPLE HEEDLESS,EED

will generate the following sequence of instructions:

3-18

3.10
IFF

A macro call of the form

LDA HEEDLESS
ADD EED

STA B

STA C

STA D

STA E

STA F

Explanation
(STA A is skipped; HEEDLESS # EED)

EED = EED

2nd, 3rd and 4th characters of
HEEDLESS = EED

The two characters following the second E
in HEEDLESS = DL

The characters EDLES in HEEDLESS
occur in EDXLEYS in the same order.

The characters EEDL in HEEDLESS< MEDL

SAMPLE HEEDLESS, HEEDLESS

will generate the following sequence of instructions:

LDA HEEDLESS
ADD HEEDLESS
STA A
STA D
STA E
STA F

8| |10

Explanation

(STA B is skipped; HEEDLESS # EED)

STA C is skipped; EED # HEEDLESS

HEEDLESS=HEEDLESS

Same as above

symbol IFF,s m(i,j),n(i,j),p

IFF is identical to IFT, except that the lines are assembled if the condition
tested for is false.

3-19

COMPRESSED SYMBOLIC (COSY) 4

4.1
COSY INPUT

BYPASS

In addition to listable and relocatable binary output, the user may elect

to receive a compressed symbolic deck (CO8Y), in binary, as output from
COMPASS. This results in a deck reduced in size by a maximum ratio

of 19:1. The COSY deck may be used as input in subsequent COMPASS
assemblies, thus realizing a significant saving in assembly time.

The COSY deck may be modified, using COMPASS symbolic language, by
the COSY correction instructions, DELETE, REPLACE, and INSERT.

An up-to-date COSY deck may be produced with each subsequent assembly.
Since the COSY deck is a compressed image of the source deck, it will

not contain expansions of ECHO's or macros; it will contain conditionals
and all instructions in their range, whether or not the condition is satisfied.

A number of COSY decks, each comprising asubprogram, may be maintained
contiguously on tape. The pseudo instruction, BYPASS, provides rapid
access to a particular deck for processing.

The deck produced by specifying the COSY output option on the COMPASS
card consists of COSY text card images and a COSY end card image. Each
text instruction, beginning with IDENT, is assigned a ‘sequence number
which is printed at the right side of the output listing. These sequence
numbers are used as reference points when modifying a COSY deck.

The input unit for COSY decks is specified on the COMPASS control card
unless COSY input is from the standard input unit (INP). It may or may

not be the same as the unit selected for Hollerith input. COSY correction
decks containing COSY instructions and symbolic corrections to COSY decks
are entered via the Hollerith input unit. If COSY input is to be used, the
first card image following the COMPASS control card must be one of the
COSY instructions, BYPASS, INSERT, REPLACE, DELETE or COSY.

| 8 llO

BYPASS n

Where a number of COSY decks are on the same tape, BYPASS provides a
means of skipping n contiguous decks to arrive at a particular deck for
processing. If BCD or COSY output is specified on the COMPASS control
card, new Hollerith or COSY decks will be produced from the bypassed
decks. BYPASS must follow the COMPASS card to skip from the beginning
of a COSY tape; otherwise, it must follow the identifier, COSY.

19002} 4
CORRECTIONS

Corrections are made to a COSY deck through the correction instructions
INSERT, REPLACE and DELETE. Each correction instruction may be
followed by a correction set consisting of machine and pseudo instructions
coded in COMPASS symbolic form., A correction set is terminated by
another correction instruction or by the instruction, COSY. Each inserted
correction is printed on the preprocessor listing together with its COSY
number,

! 8] |l0

INSERT m

The INSERT instruction causes the card images which follow it to be in-
serted after line m; m is a sequence number in the COSY deck. Card
images are inserted until the next correction instruction or the instruc-
tion, COSY, is encountered.

L o

, REPLACE m,n

With REPLACE, lines m through n may be removed and replaced by the card
images which follow; replacement need not be one for one, Any number of
lines may be removed by a single REPLACE card. If a single line is to be
replaced, only m need appear in the address field, Replaced lines are not
logged in the correction listing. Sequence number m must be less than or
equal to n.

'I e, lvo

' DELETE m,n

With this card any number of lines m through n may be deleted. A single
line may be deleted by specifying m only. Deleted lines are logged in the
correction listing with their COSY numbers. If corrections follow DELETE,
they replace the deleted lines as in the RE PLACE pseudo instruction.
Sequence number m must be less than or equal to n,

The correction deck is terminated by the occurrence of the identifier,
COSY. It marks the separation of the correction deck and the COSY deck
to which it applies.

cosy
IDENTIFIER

This instruction identifies the input which follows as a COSY deck to be
read from the COSY input unit. Any corrections to the deck must precede

the COSY identifier. If no corrections precede COSY, the assembly pro-
ceeds normally according to the COMPASS control card options.

Example:

The fourth deck on a COSY tape consists of the following subprogram:

IDENT PROG 1 (sequence numbers)
ENTRY A,C 2
A SLJ ** 3
ENI 19,1 4
B LDA C,1 5
INA 50 6
AJP,PL D 7
AJP,ZR D 8
ENA 0 9
STA c,1 10
D IJP B,1 11
SLJ A 12
C BSS 20 13
END 14
The above deck is located on the tape and corrected by the following
sequence:
BYPASS 3
REPLACE 4
ENI 29,1
DELETE 7,8
AJP,PL E
INSERT 12
E INA -101
AJP,MI D
SLJ D-2
C BSS 30
DELETE 13
COSsY

Assuming that the COSY output option has been selected on the COMPASS
control card, the first three COSY decks will be copied on the new COSY
tape, and the corrected fourth deck written on tape as follows:

IDENT PROG 1
ENTRY A,C 2
SLJ *x 3
ENI 29,1 |
LDA C,1 5
INA 50 6
AJP,PL E *ARXT
ENA 0 8
STA C,1 9
1JP B,1 10
SLJ A 11
INA -101 **%x12
AJP,MI D ***13
SLJ D-2 *%%14

C BSS 30 *%%15
END

4.2

COSY LISTING An assembly listing will be produced for a new COSY deck if the list option
is specified on the COMPASS control card. The listing will begin with a
preprocessor correction listing of all insertions and deletions, except that

deletions resulting from REPLACE corrections will not be logged.

If the COSY output option is specified on the COMPASS control card, the
listing will contain re-sequenced COSY sequence numbers. Numbers repre-
senting corrected lines will be preceded by a triple asterisk. If COSY output
is not specified, sequence numbers are not changed and corrected lines are
identified only by the symbol, ***,

4.3

COSY DECK
FORMATS Compressed Symbolic Cards
Columns Rows Purpose
1 12,7,9 c COSY deck Identification
4,5,6 S Sequence Number: the
high order octal digit
8 X Ignore-checksum bit
2 12,11,0,1-9 S Sequence Number: the low
order four octal digits
3-4 12,11,0,1-9 C Checksum: 24-bit
5 e First card only: first compressed
card image (col. 5 to a77g) is COSY
edition number, BCD right justified
with leading blanks.
5-80 12,11,0,1-9 s Compressed Symbolic Cards:
19 machine words
12 c
11
]
1
Rows 2
3 S (o] S s | eee..
4
5 S
6
7 C
8 X
9 C
1 2 3 5 80
Columns

4-5

COSY End Card

Columns Rows

1 12,

3-4 12,11,0,1-9

5-80 12,11,0,1-9

Purpose

COSY End Card Identification
Sequence Number: high order
octal digit

Sequence Number: low order
four octal digits

Checksum: 24-bit

Zeros

12 /c

11

Rows 2

Columns

4-6

4.4

CcosyY

DIAGNOSTICS Messages Assembler Action
(Appear on listable output unit)

CARDS NOT PROCESSED Correction set following erroneous
Sequence numbers specified in an correction instruction is bypassed.
INSERT, REPLACE or DELETE
conflict with those on a previous
instruction or are erroneous.

FULL MEMORY-CORRECTIONS Remainder of correction deck and
Compressed correction sets COSY deck are bypassed. Next
exceed available storage. subprogram is processed.

The programmer may assemble the subprogram in two passes.
First, assemble the COSY deck with half of the correction deck,
obtaining a new COSY deck. Second, after changing the sequence
numbers specified in the correction instructions in the second
half of the correction deck, reassemble with the new COSY deck.

SEQ. or CHKSUM ERROR XXXXXXXX Assembly continues if only the

Sequence or checksum error on checksum is in error. A sequence

COSY card. XXXXXXXX are error terminates assembly, pre-

columns 1 and 2 of the erroneous venting a load-and-go, the remainder

card. of the COSY deck is bypassed and
processing resumes with the next
subprogram.

END CARD DELETED An END card with an illegal address
An END card has been deleted is produced, which prevents a
and there is no END card in load-and-go.

the last correction set.

EOF IN COSY DECK Terminates the job.
An end-of-file card has been
encountered in COSY deck. The programmer may remove the card.

4-7

DECK STRUCTURE

The COMPASS assembler is called from the system library tape using a
SCOPE control statement of the following form:

9

(TCOMPASS, parameters

This card contains a 7-9 punch in column 1 followed in column 2 by COMPASS

in Hollerith. The card is free field after column 2.
separated by commas and may appear in any order.

terminated by a period or the end of the control card.

The parameters are
The parameter field is

If no options are present, only lines with error flags and the basic assembler
headings are printed. Options can be abbreviated to the first character.

Most options may be followed by =n; n is the number of a logical unit to be
used for that option. If =n is absent, COMPASS will make a standard assign-
ment for the option. Unrecognized options and extraneous characters are

ignored.

The assembler produces output in either of two passes.

The first pass can

produce COSY (C) or BCD(B). The second pass produces binary (P) or
load-and-go (X). One logical unit may have only one output per pass assigned
to it. Therefore C and B may not be assigned to the same unit, whereas C
and X may be. Such a tape would have alternating decks of COSY (C) and

load-and-go (X).

The optional parameters and their meanings are defined below:

Option Abbreviation
INPUT(BCD) I=n
YINPUT Y=n

(COSY input)

PUNCH P=n
(binary output)

COSsY C=n
(COSY output)

Function

BCD input is on logical
unit n.

Cosy input is on logical
unit n.

Punch relocatable binary
deck on logical unit n.

Produce COSY output on
logical unitn. If C is
absent or zero, no COSY
output is produced.

t Standard input or output device assigned if option is absent.

5-1

Option Abbreviation Function Value

XECUTE X=n Produce binary output for 1 to 49
(load-and-go tape) load-and-go on logical 69 t
unit n, H X is absent or
zero, no load-and-go tape
is produced.

BCD Output B=n Produce Hollerith output 1to 49
on n., Logical unit n must 62
be specified. If the C
option is specified, the B
optlon is ignored.

LIST L=n List assembled programs. 1 to 49
If the option is absent or 61+
equal to zero, diagnostics
will appear on the standard
output list.

REFERENCE R List a cross reference none
symbol table. The list
will appear on the unit
requested by the LIST
option or on standard
unit if L is omitted. Un-
defined and doubly-defined
symbols will appear whether
or not R is specified.

MACRO LIST M List the ECHO expansion none
and macro calls, and list
lines skipped following con-
ditionals. If M is not
specified, skipped lines are
not listed and only the macro
calls and ECHO prototypes
are listed.

TAPE MACROS T Call tape system macros.
This allows a programmer to
assemble a program under a
drum system using tape macro
calls, and execute his program
on a tape system. If T is not
specified, macros of the cur-
rent operating system are
called.

DRUM MACROS D Call drum system macros.

This allows a programmer to
assemble a program under a
tape system using drum macro
calls, and execute his program
onadrum system. K Dis not
specified, macros of the current
operating system are called.

T Standard input or output device assigned if option is absent.

5-2

5.1
DECK SEQUENCE

COMPASS The COMPASS card precedes subprogram decks to be assembled or the
correction deck and COSY deck.

COSY ORDER If the BCD and COSY input units are the same, each correction deck is
terminated by the COSY identifier card and is followed by the associated
COSY deck. The assembly process is terminated by a SCOPE card or
end-of-file mark immediately following the last COSY deck.

If the BCD and COSY input units are not the same, the BCD input unit contains
contiguous correction decks, eachterminated by a COSY identifier card. A
BYPASS card is legal either as the first card or immediately following a COSY
identifier card.

SUBPROGRAM

ORDER The first card of a subprogram deck must be an IDENT card. LIBM cards,
naming library macros to be used, follow the IDENT card. Programmer
macro definitions, each consisting of a MACRO heading card(s), prototype
cards and an ENDM terminating card, appear next. If there are no LIBM's,
the programmer macro definitions immediately follow the IDENT card,
except that the pseudo instructions REM, LIST, NOLIST, SPACE or EJECT
may precede MACRO. Next appear any of the machine instructions, macro
instructions or pseudo instructions, in any order. The last card must be an
END card to identify the end of the subprogram.

SCOPE A SCOPE card terminates subprogram decks or the correction deck and
previously assembled COSY deck.

Maintaining a library of COSY decks.

I SCOPE

(BYPASS 2
(COSY
a

rcorrection deeck

(cosy
(CcosY

7z

(correction deck

7

9COMPASS, Y=1

Subprogram #4 (COSY deck)
\

|}
&,
\ A |

\Y
(Subprogram #3 (COSY deck)
\ \

A\ \
j a 1 N

[Subprogram #2 (COSY deck)
\

J

e |l
& N
) 4 \

Subprogram #1 (COSY deck)

logical unit 1

5-4

Placement of IDENT and END cards for assembly of a single subprogram:

(SCOPE

r END
Pam
) =

r IDENT

Z)COMPASS

Source Subprogram

Placement of IDENT and END cards for assembly of multiple subprograms.

Source Subprogram #3

;COMPASS

5-5

Source Subprogram #2

Source Subprogram #1

Placement of IDENT and END for assembly of several subprograms with
differing COMPASS parameters.

f SCOPE
Source Subprogram #2
(END
/.
2.
(IDENT
GCOMPASS, L, P.
{ SCOPE
Source Subprogram #1
(END
i
[IDENT

9COMPASS, L.

5-6

Placement of MACRO, ENDM and LIBMs for an assembly with defined macros

and library macros.

(SCOPE
[END
P
=
p 4

subprogram
instructions

r ENDM
P .
¢ .
r MACRO
‘ ENDM
A— —
(MACRO Source Subprogram
with defined macros
r LIBM and library macros
r LIBM
IDENT

-

';COMPASS

SCOPE

(
r END

instructions
ENDM

=
) 4
) 4
(subprogram

/
r 3
r MACRO
r IDENT
(END

ENDM

gfl/ =
MACRO
r

IDENT
I Z)COMPASS

Source Subprogram
with defined macros
and no library macros

Placement of LIBMs for several source subprograms assembled tog ther which
use library macros.

f SCOPE
r END
{
rd
P
subprogram
instructions
(IDENT
r END
p 4
'
r4
subprogram
instructions
(IDENT
(END
-
F
4
subprogram
instructions
(LIBM
(IDENT
TcOMPASS

9

Library macros called once for all the subprograms

r SCOPE
(END

v
F
jau

subprogram
instructions

r IDENT
(Z,COMPASS, L,P.
r SCOPE

L END

[
(
Z
r subprogram

instructions

(LIBM

(IDENT

;COMPASS, L.

5-9

Placement of COSY deck and corrections.

r SCOPE
/[
YA
r COSY deck
r COSY
p
E corrections
correction
instruction
{ corrections correction deck
correction
instruction
gCOMPASS
{ SCOPE
/
) 4
COSY deck
pi

correction deck

r COMPASS, L, P.
(SCOPE
[COSY deck
r A4 .
p A
f correction deck
Z)COMPASS, L.

5-10

ERROR DIAGNOSTICS AND

OUTPUT LISTING 6

6.1
OUTPUT
LISTING

ERROR CODES

A error

C error

D error

F error

L error

M error

O error

An output listing is produced by the assembler if a SCOMPASS card
specifies the list option. A line of print contains information as follows;
ordered from left to right on the page:

error codes

location of the machine word
word contents

source card image

COSY line sequence number (if COSY input or output is used)

Listed error codes may include the following; The occurrence of any one of
these errors causes a printed line even though the list option is not specified:

An address field error occurred. Either too many subfields for a machine
instruction appear on a code line, a subfield is terminated improperly,
illegal elements appear, or a relocation error occurred.

An attempt was made to preset a numbered common block or to store data
beyond the last word of a labeled common block.

A symbol is doubly defined. The assembler assigns the value for the first
symbol encountered whenever the symbol is referenced.

An assembler table is full. No assignment is made if a table entry would
cause overflow of a COMPASS table.

A location field error occurred. A location symbol is improperly formatted
or the location field of an EQU instruction doesn't contain an alphanumeric
symbol.

An illegal or undefined modifier appears. A modifier appears where none
are allowed or a required modifier is absent.

An operation code is invalid or misplaced. For an invalid operation code
or a misplaced IDENT, LIBM, MACRO, ENDM or ECHO, a half-word of
zeros is substituted. A misplaced COMMON, IFT or IFF is listed but not
processed. A misplaced SCOPE is interpreted by the assembler as an END
followed by a SCOPE. An END occurring within the range of a macro or an
ECHO terminates the assembly.

6-1

R error A range error code is signalled for an ENDM which appears within the
range of an ECHO or within the range of a conditional that doesn't satisfy
the assembly condition. The range of a conditional whose condition for
assembly is not satisfied falls outside the range of an ECHO.

U error An undefined symbol appears in the address field; zeros are substituted.

MACHINE LOCATION Five octal digits appear to the right of error codes signifying the location
to which the machine word is assigned. The location digits appear only on
upper half words.

FULL WORD

CONTENTS The assembled content of a machine half word appears next, consisting of
three terms, a 2-digit operation, a 1-digit index designator, and a 5-digit
address. Program addresses are preceded by a P, common addresses by
a C. The first reference to an external address consists of all sevens
preceded by an X. Subsequent references to that external address appear
as the address of the previous reference to the external address and are pre-
ceded by an X.

SOURCE CARD

IMAGE The input card image appears to the right of the word content and is identical

to the coded line.

COSY SEQUENCE

NUMBER The COSY sequence number is a five digit decimal number.
ADDITIONAL
LINES At the top of every page of the listing, a line is printed consisting of the

COMPASS version number (enclosed in parentheses), the program title,
the date, an edition number indicating the nth cosy deck, and a page number.

After the first title line, the following information is produced by the
COMPASS list facility:

program length

block names and length

entry points and addresses

external symbols

6-2

6.2
ERROR
MESSAGES

At the end of the listing, 3600 COMPASS produces a list of the following:

undefined symbols

doubly defined symbols

an error count in octal

a cross referenced symbol table, if requested

Even though the list option is not requested, an IDENT line, program length,
block names and lengths, entry point names and their program addresses,
external symbols, undefined symbols, doubly defined symbols and any error

diagnostics are printed.

Error messages are placed on the standard output if certain conditions occur.

Message

FULL MEMORY

NO IDENT CARD

INVALID CHAR-
ACTERS ON
FOLLOWING
CARD ARE
DENOTED AS =

FAILURE XXXXX

Error Condition

Available memory
is exceeded.

The first card of
a sub-program is
not an IDENT,
END, or SCOPE
card.

A BCD character
with an octal code

of: 12,15, 16, 17, 35,

36,37, 55,56, 57,
72,76, 77 appears
on the input card.

A machine failure

is suspected. XXXXX

represents the

absolute location at
which the failure was

detected.

Action

Processing is discontinued.
Reduce number of programmer
macros, size of correction
deck, number of library
macros requested, and/or
number of system macros
contained on library tape

and reassemble.

Processing continues.

The assembler substitutes
the character = for the
illegal input character. A
load-and-go operation is not
effected.

Processing is discontinued.

JOB, 241710 ,MMMUELLER, 2

AT 0933 - 12

SCOPE 6.2
EQUIP,20=%%
LIBRARY,72
COMPASS ,Y=20,L,R,M
5/23/66 PRE-PROCESSOR CORRECTION LISTINGS 05/23/66 ED 1 PAGE NO. 1
IDENT EXAMPLE 00001 DELETED
IDENT NOSENSE *#%*INSERT 00001
LIBM LABELING , OWNCODE #%INSERT 00001
AJP,ZR (*)CALL 00021 DELETED
BRTJ ($)EXTSBRT, $ 00022 DELETED
ENTRY SBRT #*#%*INSERT 00022
AJP,ZR (*)LOC *#%INSERT 00022
BRTJ ($)EXTSBRT, ,$ #%INSERT 00022
LOC ENI 2,3 *#*INSERT 00026
B3 EQU 3 *%INSERT 00026
+ LDA COM2,B3 *#*INSERT 00026
STA CALL,B3 *%*INSERT 00026
1JP LOC+1,B3 #%*INSERT 00026
UBJP ($)EXTSBRT, ,$ **INSERT 00026
5.2TS 3600 COMPASS REFERENCE MANUAL - ASSEMBLY EXAMPLE 05/23/66 ED 1 PAGE NO. 2
IDENT NOSENSE ok
PROGRAM LENGTH 00107
ENTRY POINTS SBRT 00012
BLOCK NAMES
BLK1 00145
EXTERNAL SYMBOLS
EXT1
EXTSBRT
LIBM -LABELING, OWNCODE Fik
#% (REM PSEUDO-OP) ** MACRO DEFINITIONS 00002
OCTEKQ MACRO P1,P2,P3 00003
Pl BSS 0 00004
ECHO 1,P2 00005
P3 00006
ENDM 00007
ZERO MACRO 00008
ocT 0 00009
ENDM 00010
00000 BLK1 BLOCK 00012
00000 COMMON COM1,COoM2(10,10) 00013
00001 coM2 (10,10)
00000 PROG BSS 1008 00014
#*%% (REM) *%% TITLE PSEUDO-OP PRECEDES 00016
EXT EXT1,EXTSBRT 00017
P00012 ORGR PROG+10 00018
0001z 75 O 77777 SBRT SLJ w% 00019
50 0 00000
00013 77 1 04000 LDA ($)EXT1 00020
12 0 X77777
ENTRY SBRT *%INSERT
00014 77 1 04000 AJP,ZR (*¥)LOC #% INSERT
22 0 100103
00015 63 0 00000 BRTJ ($)EXTSBRT, ,$ %% INSERT
03 0 X77777
00016 77 1 04000 ENO * 00023
75 0 P00012 SLJ SBRT 00024
P00100 ORGR * 00025

5.2TS 3600 COMPASS REFERENCE MANUAL - ASSEMBLY EXAMPLE 05/23/66 ED 1 PAGE NO. 3

00100 CALL OCTEKO ,3,ZERO MACRO CALL. M OPTION 00026

00100 ¢ BSS 0 OCTEKO

ECHO 1,3 OCTEKO

P3 OCTEKO

00100 ZERO OCTEKO

00100 00 0O 00000 0CT 0 OCTEKO
00 0 00000

00101 ZERO OCTEKO

00101 00 O 00000 0CT 0 OCTEKO
00 0 00000

00102 ZERO OCTEKO

00102 00 O 00000 0CT 0 OCTEKO
00 0 00000

00103 50 3 00002 LOC ENI 2,3 **INSERT

00003 B3 EQU 3 ##%INSERT
50 0 00000

00104 12 3 CO0001 + LDA coM2, B3 #%INSERT

20 3 P00100 STA CALL, B3 #*INSERT

00105 55 3 P00104 1JP LOC+1,B3 #*#*INSERT
50 0 00000

00106 63 0 00000 UBJP ($)EXTSBRT, ,$ #*INSERT
01 0 X00015

END 00027

5.2TS 3600 COMPASS REFERENCE MANUAL - ASSEMBLY EXAMPLE 05/23/66 ED 1 PAGE NO. &

00003 B3 00104 00104 00105
P0O0100 CALL 00104

C00000 coMl

€00001 cCoM2 00104

X00001 EXT1 00013

X00002 EXTSBRT 00015 00106
P00103 LOC 00014 00105

PO0000 PROG 00100

P00012 SBRT 00016

00011 SYMBOLS
END JOB SEQUENCE 0033 DATE 05/23/66 TIME 1506 - 52 ELAPSED TIME 00 HRS 01 MIN 10 SFC

6-5

TABLE SECTION

TABLE 1
MNEMONIC CODES FOR 3600 OPERATION REGISTERS

Source and Destination

Code Register Code Register
LM Limit Register QL Q@ ~ Lower Address
B1 B1 (Index Register 1) QU Q - Upper Address
B2 B2 (Index Register 2) A A - Full 48 bits
B3 B3 (Index Register 3) Q Q - Full 48 bits
B4 B4 (Index Register 4) D D Register
B5 B5 (Index Register 5) BR Bounds Register
B6 B6 (Index Register 6) IM Interrupt Mask Register
AL A - Lower Address OB Operand Bank Register
AU A - Upper Address
Source Only
Code Register Code Register
IR Interrupt Register NC Normalization Count Register
PZ Plus Zero (all zeros) MS Mode Selection Register
Pl Plus One P P Register
MZ Minus Zero (all ones) CK Clock Register
IB Instruction Bank Register

NOTE: These mnemonic codes may be used only in ROP,RXT,RGJP,NBJP, ZBJP and RSW to
define the p,q and r subfields. If identical symbols are used elsewhere, they must be
program defined.

AND

Ao

AUG

CL

CM

CcQ
CR
CW

CWA

Ee

EO

EQ

GE

GT

IMP

TABLE 2
MNEMONIC CODES FOR INSTRUCTION MODIFIERS
Register and -- ROP instruction

Use A register in the LBYT or SBYT instruction; o is a one or two-digit
decimal integer which specifies the rightmost bit of the byte in A.

Augment -- XMIT instruction
Chain to next control word -- I/O control words

a) Clear source -- augmented instructions
b) Clear unused portion of destination -- LBYT, SBYT instructions

c) Clear bit g in register p after testing -- NBJP, ZBJP instructions

a) Complement operand -- augmented instructions
b) Complement bit g in register p after testing -- NBJP, ZBJP instructions

¢) Transmit complement -- XMIT instruction

Clear unused portion of ¢ in RSW and RXT instructions
Clear unused portion of r in RSW and RXT instructions
Control Word to A -- COPY instruction

Control Word Address to Q -- COPY instruction
Conditional decrementing -- RGJP instruction

In the LBYT, SBYT, and SCAN instructions, e is a one or two-digit decimal
integer which specifies the byte size in bits.

End Off; shift is end off and no sign extension -- augmented instructions

Equal test -- RGJP, IFF, IFT instructions, register equivalence --
ROP instruction

Greater or equal test -- RGJP, IFF, IFT instructions
Greater test -- RGJP, IFF, IFT instructions
Indirect addressing -- SEQU, SMEQ, SEWL, SMWL instructions

Register implication -- ROP instruction

LE
LI

LT
MG

MI

NE
NZ
OR
PC
PL

Qo

RI

RP

ST

TR

XOR

ZR

Table 2 (Cont'd)
Inclusion test -- IFF, IFT instructions
Less or equal test -- RGJP, IFF, IFT instructions
Left indexing -- LBYT, SBYT instructions
Less test ——- RGJP, IFF, IFT instructions
Magnitude of operand -- augmented instructions
Minus -- AJP, QJP, ARJ, QRJ instructions
Transmit masked -- XMIT instructions
Not equal test -- RGJP, IFF, IFT instructions
Non-zero -- AJP, QJP, ARJ, QRJ instructions
Register or -~ ROP instruction
Transmit plus constant (in A) -- XMIT instruction
Plus -- AJP, QJP, ARJ, QRJ instructions

Use Q register in the LBYT, SBYT, or SCAN instruction; o is a one or two-
digit decimal integer which specifies right-most bit of the byte in Q.

Right indexing -- LBYT, SBYT instructions
Replace operation -- augmented instructions

Signed shift -- (direction of shift determined by sign of shift count) --
augmented instructions

Set to one -- NBJP, ZBJP instructions

Truncated -- DVF instruction

Un-normalize arithmetic -- augmented instructions
Unrounded arithmetic -- augmented instructions
Register exclusive or -- ROP instruction

Zero -- AJP, QJP, ARJ, QRJ instructions
Register sum -- ROP instruction

Register difference -- ROP instruction

T-3

Relocatable or fixed

Fixed onlz
b

k

L T R

TABLE 3
ADDRESS SUBFIELDS

first bank designator
second bank designator

first operand address

second operand address

operand

first index register
jump or stop key
equipment designator
bit designator

first source register
second source register
destination register
unit designator

second index register
operand

channel number

Number

of bits

15
15

15

15

Operation Field

Inter-Register

ROP, OR

XOR

AND

IMP

EQ
¥

RSW, CQ,CR
RXT,CQ,CR

Full Word Transmission

LDA, CM, MG
LAC, CM, MG
LDQ, CM, MG
LQC, CM, MG

STA, CM, CL, MG
STQ, CM, CL, MG
XMIT, CM, AUG

Address Transmission

MK
PC

LIU, CM, MG
LIL, CM, MG

SIU
SIL

SAU, CM, MG
SAL, CM, MG

ENI

ENA, CM
ENQ, CM

TABLE 4

MNEMONIC MACHINE INSTRUCTIONS

Address Field

pP,d, T

q,r
q,r

(a) m, b,
(a) m, b,
(a) m, b,
(2) m, b,
(2) m, b,
(a) m, b,
(@) m, (i)

5 <4 <4 < < <« <«

Instruction

Register operation

r=popq

Register swap

Register transmit

Load A

Load A complement
Load Q

Load Q complement
Store A

Store Q

Transmit

Note: If either bank term is
missing, it is assumed ($).

Load index upper

Load index lower

Store index upper

Store index lower
Substitute address upper
Substitute address lower
Enter index

Enter A

Enter Q

Table 4 (Cont'd)

Operation Field Address Field Instruction

Fixed Point Arithmetic

ADD, CM, MG (a)m, b, v Add

SUB, CM, MG (a) m, b, v Subtract

MUI, CM, MG (a)m, b, v Multiply integer
DVI, CM, MG (@ m, b, v Divide integer
MUF, CM, MG (am, b, v Multiply fractional
DVF, CM, MG, TR (a)m, b, v . Divide fractional
Address Arithmetic

INA, CM Ay, b, v Increase A

INI (a)y, b, v Increase index
ISK (a)y, b, v Index skip

Single Precision Floating Point Arithmetic

FAD,RP,CM, MG, UN, UR (&) m, b, v Floating add

FSB, RP,CM, MG, UN, UR (@ m, b, v Floating subtract
FMU, CM, MG, UN, UR (3 m, b, v Floating multiply
FDV, CM, MG, UN, UR (a)m, b, v Floating divide
ADX w Add to exponent
Double Precision Floating Point Arithmetic

DLDA, CM, MG (@) m, b, v Load A

DSTA, CM, CL, MG (a)m, b, v Store A

DFAD, RP, CM, MG, UN, UR () m, b, v Floating add
DFSB, RP, CM, MG, UN, UR (a)m, b, v Floating subtract
DFMU, CM, MG, UN, UR (a)m, b, v Floating multiply
DFDV, CM, MG, UR @ m, b, v Floating divide
Logical Operations

SST, CM, MG (@) m, b, v Selective set
SCM, CM, MG (a) m, b, v Selective complement
SCL, CM, MG (@ m, b, v Selective clear
SSU, CM, MG (@ m, b, v Selective substitute

Table 4 (Cont'd)
Operation Field Address Field Instruction

Logical Operations (Cont'd)

LDL (a) m, b, v Load logical

ADL, RP, CM, MG (a) m, b, v Add logical

SBL, RP, CM, MG (@) m, b, v Subtract logical

STL, CM, MG (8 m, b, v Store logical

Shifting Operations

ARS, EO, SS (a)y, b, v A right shift

ALS, EO, S8 () y, b, v A left shift

QRS, EO, SS (a)y, b, v Q right shift

QLS, EO, SS @y, b, v Q left shift

LRS, EO, S8 @y, b, v Long right shift

LLS, EO, S8 @y, b, v Long left shift

SCA @y, b, v Scale A

sSCQ @y, b, v Scale AQ

Replace Operations

RAD, CM, MG (a) m, b, v Replace add

RSB, CM, MG (3 m, b, v Replace subtract

RAO, CM, MG (a) m, b, v Replace add one

RSO, CM, MG (a) m, b, v Replace subtract one
Storage Test

SSK (@) m, b, v Storage skip

SSH (a) m, b, v Storage shift

Search

EQS (a) m, b, v Equality Search

THS (a) m, b, v Threshold search

MEQ (a) m, b, v Masked equality search
MTH (a) m, b, v Masked threshold search
SEQU, I () m, n Search for equality
SMEQ, I (a) m, n Search for masked equality
SEWL, I (a) m, n Search within limits

Operation Field

Search (Cont'd)

SMWL, I

LSTU
LSTL

Jumps and Stops

AJP,

QJP,

ARJ,

QRJ,

IJP
SLJ
SJ1
SJ2
SJ3
RTJ
RJ1
RJ2
RJ3
SLS
SS1
S82
SS3

ZR
NZ
PL
MI
ZR
NZ
PL
MI
ZR
NZ
PL
MI
ZR
NZ
PL
MI

Table 4 (Cont'd)

Address Field

(a) m, n
b, v
b, v

() m, v
(a) m, v
(@ m, v
(@) m,v

(a) m,
(2) m,
(a) m,
(a) m,
(a) m,

(a) m,

b

k

v

v

v

v

(a) m, v
(a) m, v
(aym, v
(a) m, k
(a) m, v
(A m, v
v

(2) m,

Instruction

Search magnitude within limits
Locate list element upper

Locate list element lower

A jump \

Q jump
A modifier is
required, it
does not cause
& insertion of the
single precision
A return jump augment
instruction,

Q return jump

/

Index jump

Jump

Selective jump key 1
Selective jump key 2
Selective jump key 3
Return jump

Selective return jump key 1
Selective return jump key 2
Selective return jump key 3
Stop

Selective stop jump key 1
Selective stop jump key 2
Selective stop jump key 3

Table 4 (Cont'd)

Operation Field Address Field Instruction

Jumps and Stops (Cont'd)

SRJ (@)m, v Stop return jump
SR1 (a) m, v Selective stop return jump key 1
SR2 (@) m, v Selective stop return jump key 2
SR3 () m, v Selective stop return jump key 3
EXEC (ay m, b, v Execute
RGJP, EQ p,y, m, b Register jump
GT Note: Modifier is required.
LT
NE
LE
GE
LT, D
GE, D
UBJP () m, b, i Unconditional bank jump
BJPL (a) m, b, i Unconditional bank jump lower
BRTJ (a) m, b, i Unconditional bank return jump
BJSX (a) m, b, i Bank jump and set index
NBJP, ST p, g m, b Non zero bit jump
CL
CcM
ZBJP, ST p, g m, b Zero bit jump
CL
CM
MPJ Main product register jump
CPJ X Channel product register jump
DRJ D Register Jump
Variable Data Field
LBYT, Ao, Ee, LI, CL m, b, v Load byte Modifiers Ao or Qo
Qo RI ?.nd Ee are required;
if neither LI or RI
SBYT, Ao, Ee, LI, CL m, b, v Store byte appears, no indexing

Qo RI will be assumed.

Table 4 (Cont'd)

Operation Field Address Field Instruction

Variable Data Field (Cont'd)

SCAN, Qo, Ee, EQ m, b, v Scan byte

GT Note: Qo, Ee, and one of the
comparison modifiers

LT .
are required.

NE

LE

GE
Input Output
CONN X, e, u, n Connect
EXTF X, W, n External function
BEGR X, () m, n Begin read If the bank term

is missing, it is

BEGW X, () m, n Begin write assumed $.
COoPY, CwW, CWA X, b Copy status
CLCH b4 Clear channel
IPA Input to A
ALG w Perform algorithm

Input Output Control Words

10SwW, C (a) m, w Skip words (write zeros under
word count control)
IOTW, C (a) m, w Transmit data under word

count control

IOSR, C (@) m, w Skip words to end of record
(and write end of record)

IOTR, C (a) m, w Transmit data under word count
or to end of record (and write
end of record)

I0JP (2) m Jump to (a) m for next control word

In any of these instructions, if the bank term is missing, it is assumed ($).

T-10

Table 4 (Cont'd)

Operation Field Address Field Instruction

Others

INF w Internal function

NOP m No operation

ENO a Enter operand bank register

(single precision augment
instruction in upper or lower

half-word)
00 m, b Octal instruction from 00-77
: or
77 (a) m
ZRO (a) m, b, v Operation code of 00

T-11

Mnemonic

BANK
BCD
BES
BLOCK
BRIEF
BSS
BYPASS
CALL
CODAP
COMMON
COMPASS
COSY
DEC
DECD
DELETE
DETAIL
ECHO
EJECT
END
ENDIF
ENDM
ENTRY
EQU
EXT
IDENT
IF

IFF

IFL

IFN

IFT
IFU

IFZ

TABLE 5
PSEUDO INSTRUCTIONS

Use

Declare subprogram and common block banks
Insert BCD characters

Reserve block of storage

Specify block of common

List control

Reserve block of storage

Skip COSY decks

Call an external subroutine

Change input to CODAP-1 format
Declare array in common

Change input to COMPASS format

COSY identification

Insert single precision decimal constants
Insert double precision decimal constants
Delete portions of program

List control

Replicate a sequence

Eject a page on the output listing

Specify the end of a subprogram

Control pseudo instruction

Terminate a macro-definition

Define entry points in a subprogram

Equate an undefined symbol to a defined symbol

Define external symbols

Identify the subprogram by name
Control pseudo instruction
Control pseudo instruction
Control pseudo instruction
Control pseudo instruction
Control pseudo instruction
Control pseudo instruction

Control pseudo instruction

T-12

Page

2-15
2-17
2-12
2-12
2-7

2-11
4-1

2-1
2-9
3-18
2-9
2-8
3-16
2-9
2-8

Mnemonic

INSERT
LIBM
LIST
MACRO

< macro name >
NO LIST
OoCT
ORGR
REM
REPLACE
SCOPE
SET
SPACE
TITLE
TYPE

VFD
*

Table 5 (Cont'd)

Use
Insert changes in a program
Declare library macros
Resume output listing
Define a macro
Call a macro
Suppress output listing
Insert octal constants
Set location counter
Insert remarks on the output listing
Replace portions of a program
Terminates assembly process
Symbol definition
Insert spaces in the output listing
Title pages with program name
Insert typewriter codes
Assign data in variable byte sizes

An asterisk in column 1 produces remarks on program listing

TABLE 6
SPECIAL CODES FOR TYPE ENTRIES

BCD
Characters Type Equivalent
*R Carriage Return
*U Shift to Upper Case
*L Shift to Lower Case
*B Backspace
*T Tab
*X
*A
*S

T-13

Page

4-2
3-13
2-6
3-2
3-4

2-16
2-14
2-6
4-2
24
2-3
2-5

2-18
2-18
2-6

TABLE 7

CHARACTER REPRESENTATION AND USAGE

Internal Character External Hollerith
BCD Code (501 Printer) BCD Code Card Punches Usage Code T
00 0 12 0 A
01-11 1-9 01-11 1-9 A
12 : 00 8,2 B
13 = 13 8,3 C
14 # 14 8, 4 (apos- D
15 = 15 8,5 trophe) E
16 % 16 8,6 B
17 [17 8,7 B
20 + 60 12 F
21 A 61 12,1 G
22 B 62 12,2 G
23 C 63 12,3 G
24 D 64 12,4 G
25 E 65 12,5 G
26 F 66 12,6 G
27 G 67 12,7 G
30 H 70 12,8 G
31 I 71 12,9 G
32 < 72 12,0 D
33 . 73 12,8,3 H
34) 74 12,8,4 I
35 > 75 12,8,5 B
36 1 76 12,8,6 B
37 ; 77 12,8,7 B
40 - (minus) 40 11 F
41 J 41 11,1 G
42 K 42 11,2 G
43 L 43 11,3 G
44 M 44 11,4 G
45 N 45 11,5 G
46 (0] 46 11,6 G
47 P 47 11,7 G
50 Q 50 11,8 G
51 R 51 11,9 G
52 \Y 52 11,0 D
53 $ 53 11,8, 3 J
54 * 54 11,8,4 F
55 t 55 11,8,5 B
56 | 56 11,8,6 B
57 > 57 11,8,7 B

1 Collating sequence, ascending order, for symbol table sort and for IFT/IFF comparisons.
1 Code is defined following the table.
g

T-14

Table 7 (Cont'd)

Code

G
H
I

d
K

Internal Character External Hollerith
BCD Code' (501 Printer) BCD Code Card Punches Usage Code't
60 blank 20 blank K
61 / 21 0,1 F
62 S 22 0,2 G
63 T 23 0,3 G
64 U 24 0,4 G
65 A" 25 0,5 G
66 w 26 0,6 G
67 X 27 0,7 G
70 Y 30 0,8 G
71 V4 31 0,9 G
72] 32 0,8,2 L
73 , 33 0,8,3 M
74 (34 0,8,4 N
75 — 35 0,8,5 O
76 = 36 0,8,6 B
4 A 37 0,8,7 B

Character Usage
Numerics; legal in constants and as second or subsequent character in symbol.

COSY compression characters. If one of these characters appears on a BCD input card, it
will be replaced with the general illegal character and an error message will be printed.

Delimiter; signals a literal or, in ECHO, signals an actual parameter list.

Handled as alphabetic characters and therefore may be assigned to alphabetic characters
which do not exist in our alphabet.

General illegal character. 158 will be handled as though it were an alphabetic character.

Delimiters representing addition, subtraction, multiplication and division. * may also
represent:

1) this location

2) subprogram bank

3) as part of **, a subfield of one bits

4) in column 1, a comments card
/ may also represent:

1) in BANK, encloses a common block

2) in IFT/IFF, encloses a character string
Alphabetic characters; legal in an alphanumeric symbol.
Handled as alphabetic character, or, in DEC/DECD, indicates floating point format.
Delimiter; used to close bank subfields or parameter lists.
Delimiter; used to indicate '""bank of ...".

Delimiter; in general, used to terminate operation and address fields.

i Collating sequence, ascending order, for symbol table sort and for IFT/IFF comparisons.
t1 Code is defined following the table.

T-15

z =

Table 7 (Cont'd)

Record mark; if 72g appears on an input BCD card, it will be replaced with the general
illegal character, and an error message will be printed.

Delimiter; used to separate subfields.
Delimiter; used to open bank subfields, array, and parameter lists.

Delimiter for use in macro definitions only; used to catenate two elements; illegal as part of
a symbol; not a delimiter outside a macro.

T-16

INDEX

Address elements 1-3
Address field 1-2
Alphanumeric symbol 1-3
Assembler control 2-1
Asterisk 1-4, 1-7
Augments 1-9

BANK 2-15

Bank relocation 1-7
BCD 2-17

BES 2-12

BLOCK 2-12
BRIEF 2-7

BSS 2-11

BYPASS 4-1

CALL 2-3
Character codes T-14
Clock interrupt macros 3-12
CODAP 2-4
Coding form 1-1
Comments 1-6
COMMON 2-12, 2-13
COMPASS 2-4
COMPASS control card 5-1
Compressed symbolic 4-1
Conditionals 2-7
Constant 1-4
COSY 4-1, 4-3
corrections 4-2
deck formats 4-5
diagnostics 4-7
identifier 4-3
listing 4-4

Data definition 2-16

Data storage 1-4

DEC 2-16

DECD 2-17

Deck structure 5-1

DELETE 4-2

DETAIL 2-7

Dollar sign 1-4, 1-7

Double Asterisk 1-4

Drum SCOPE macros 3-12, 13

ECHO 3-14,15
EJECT 2-5

END 2-1
ENDIF 2-10
ENDM 3-3
ENTRY 2-2
EQU 2-3
Error
codes 6-1
diagnostics 6-1
messages 6-3
Expression 1-6
EXT 2-2

Forcing Lower 1-9
Forcing Upper 1-9

Generative coding 3-1

IDENT 2-1

Identification 1-7

IF 2-9

IFF 3-19

IFL 2-9

IFN 2-8

IFT 3-17

IFU 2-9

IFZ 2-8

Input/Output macros 3-11

INSERT 4-2

Instruction
mnemonics T-5
modifiers T-2
pairing 1-8

* Internal interrupt macros 3-11

LIBM 3-14

Library macros 3-13
LIST 2-6

Listing control 2-5
Listing example 6-4
Literal 1-5

Location field 1-1

Macro
call 3-4
prototype 3-3
terminator 3-3
MACRO heading 3-2
Mnemonics 1-9

Index-1

Nesting of macros 3-5
NOLIST 2-5

OCT 2-16

Operation
field 1-2
register mnemonics 1-6, T-1
search order 3-1

ORGR 2-14

Output listing 6-1

Parameter substitution 3-8
Program Organization 2-11
Pseudo Instructions 2-1, T-12

REM 2-6
REPLACE 4-2

SCOPE 2-4

SET 2-3

SPACE 2-5

Subfield designators T-4
System macros 3-9

Tape control macros 3-11
TITLE 2-6

TYPE 2-18

Typewriter codes T-13

VFD 2-18

Index-2

CUT ALONG LINE

. —— — — — — — — ——— — — S — S — — — — — — — — — — — — —— O —— — — — —

PRINTED IN USA

FROM

CONTROL DATA
L conroration

CORPORATION

COMMENT AND EVALUATION SHEET

3600 Computer Systems
COMPASS Reference Manual

Pub. No. 60052500, C September, 1966

THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS. MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

NAME :

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,8.A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Software Documentation

4201 North Lexington Avenve

$t. Paul, Minnesota 55112

STAPLE

CUT ALONG LINE

s » CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 60052500

CONTROL DATA
[corroration]

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

AVNNVIN 3ON3H343H SSVANOD 009€E

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	T-00
	T-01
	T-02
	T-03
	T-04
	T-05
	T-06
	T-07
	T-08
	T-09
	T-10
	T-11
	T-12
	T-13
	T-14
	T-15
	T-16
	index-01
	index-02
	replyA
	replyB
	xBack

